xref: /freebsd/sys/vm/vm_kern.c (revision 637d9858e6a8b4a8a3ee4dd80743a58bde4cbd68)
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  */
60 
61 /*
62  *	Kernel memory management.
63  */
64 
65 #include <sys/cdefs.h>
66 #include "opt_vm.h"
67 
68 #include <sys/param.h>
69 #include <sys/systm.h>
70 #include <sys/asan.h>
71 #include <sys/domainset.h>
72 #include <sys/eventhandler.h>
73 #include <sys/kernel.h>
74 #include <sys/lock.h>
75 #include <sys/malloc.h>
76 #include <sys/msan.h>
77 #include <sys/proc.h>
78 #include <sys/rwlock.h>
79 #include <sys/smp.h>
80 #include <sys/sysctl.h>
81 #include <sys/vmem.h>
82 #include <sys/vmmeter.h>
83 
84 #include <vm/vm.h>
85 #include <vm/vm_param.h>
86 #include <vm/vm_domainset.h>
87 #include <vm/vm_kern.h>
88 #include <vm/pmap.h>
89 #include <vm/vm_map.h>
90 #include <vm/vm_object.h>
91 #include <vm/vm_page.h>
92 #include <vm/vm_pageout.h>
93 #include <vm/vm_pagequeue.h>
94 #include <vm/vm_phys.h>
95 #include <vm/vm_radix.h>
96 #include <vm/vm_extern.h>
97 #include <vm/uma.h>
98 
99 struct vm_map kernel_map_store;
100 struct vm_map exec_map_store;
101 struct vm_map pipe_map_store;
102 
103 const void *zero_region;
104 CTASSERT((ZERO_REGION_SIZE & PAGE_MASK) == 0);
105 
106 /* NB: Used by kernel debuggers. */
107 const u_long vm_maxuser_address = VM_MAXUSER_ADDRESS;
108 
109 u_int exec_map_entry_size;
110 u_int exec_map_entries;
111 
112 SYSCTL_ULONG(_vm, OID_AUTO, min_kernel_address, CTLFLAG_RD,
113 #if defined(__amd64__)
114     &kva_layout.km_low, 0,
115 #else
116     SYSCTL_NULL_ULONG_PTR, VM_MIN_KERNEL_ADDRESS,
117 #endif
118     "Min kernel address");
119 
120 SYSCTL_ULONG(_vm, OID_AUTO, max_kernel_address, CTLFLAG_RD,
121 #if defined(__arm__)
122     &vm_max_kernel_address, 0,
123 #elif defined(__amd64__)
124     &kva_layout.km_high, 0,
125 #else
126     SYSCTL_NULL_ULONG_PTR, VM_MAX_KERNEL_ADDRESS,
127 #endif
128     "Max kernel address");
129 
130 #if VM_NRESERVLEVEL > 1
131 #define	KVA_QUANTUM_SHIFT	(VM_LEVEL_1_ORDER + VM_LEVEL_0_ORDER + \
132     PAGE_SHIFT)
133 #elif VM_NRESERVLEVEL > 0
134 #define	KVA_QUANTUM_SHIFT	(VM_LEVEL_0_ORDER + PAGE_SHIFT)
135 #else
136 /* On non-superpage architectures we want large import sizes. */
137 #define	KVA_QUANTUM_SHIFT	(8 + PAGE_SHIFT)
138 #endif
139 #define	KVA_QUANTUM		(1ul << KVA_QUANTUM_SHIFT)
140 #define	KVA_NUMA_IMPORT_QUANTUM	(KVA_QUANTUM * 128)
141 
142 extern void     uma_startup2(void);
143 
144 /*
145  *	kva_alloc:
146  *
147  *	Allocate a virtual address range with no underlying object and
148  *	no initial mapping to physical memory.  Any mapping from this
149  *	range to physical memory must be explicitly created prior to
150  *	its use, typically with pmap_qenter().  Any attempt to create
151  *	a mapping on demand through vm_fault() will result in a panic.
152  */
153 vm_offset_t
kva_alloc(vm_size_t size)154 kva_alloc(vm_size_t size)
155 {
156 	vm_offset_t addr;
157 
158 	TSENTER();
159 	size = round_page(size);
160 	if (vmem_xalloc(kernel_arena, size, 0, 0, 0, VMEM_ADDR_MIN,
161 	    VMEM_ADDR_MAX, M_BESTFIT | M_NOWAIT, &addr))
162 		return (0);
163 	TSEXIT();
164 
165 	return (addr);
166 }
167 
168 /*
169  *	kva_alloc_aligned:
170  *
171  *	Allocate a virtual address range as in kva_alloc where the base
172  *	address is aligned to align.
173  */
174 vm_offset_t
kva_alloc_aligned(vm_size_t size,vm_size_t align)175 kva_alloc_aligned(vm_size_t size, vm_size_t align)
176 {
177 	vm_offset_t addr;
178 
179 	TSENTER();
180 	size = round_page(size);
181 	if (vmem_xalloc(kernel_arena, size, align, 0, 0, VMEM_ADDR_MIN,
182 	    VMEM_ADDR_MAX, M_BESTFIT | M_NOWAIT, &addr))
183 		return (0);
184 	TSEXIT();
185 
186 	return (addr);
187 }
188 
189 /*
190  *	kva_free:
191  *
192  *	Release a region of kernel virtual memory allocated
193  *	with kva_alloc, and return the physical pages
194  *	associated with that region.
195  *
196  *	This routine may not block on kernel maps.
197  */
198 void
kva_free(vm_offset_t addr,vm_size_t size)199 kva_free(vm_offset_t addr, vm_size_t size)
200 {
201 
202 	size = round_page(size);
203 	vmem_xfree(kernel_arena, addr, size);
204 }
205 
206 /*
207  * Update sanitizer shadow state to reflect a new allocation.  Force inlining to
208  * help make KMSAN origin tracking more precise.
209  */
210 static __always_inline void
kmem_alloc_san(vm_offset_t addr,vm_size_t size,vm_size_t asize,int flags)211 kmem_alloc_san(vm_offset_t addr, vm_size_t size, vm_size_t asize, int flags)
212 {
213 	if ((flags & M_ZERO) == 0) {
214 		kmsan_mark((void *)addr, asize, KMSAN_STATE_UNINIT);
215 		kmsan_orig((void *)addr, asize, KMSAN_TYPE_KMEM,
216 		    KMSAN_RET_ADDR);
217 	} else {
218 		kmsan_mark((void *)addr, asize, KMSAN_STATE_INITED);
219 	}
220 	kasan_mark((void *)addr, size, asize, KASAN_KMEM_REDZONE);
221 }
222 
223 static vm_page_t
kmem_alloc_contig_pages(vm_object_t object,vm_pindex_t pindex,int domain,int pflags,u_long npages,vm_paddr_t low,vm_paddr_t high,u_long alignment,vm_paddr_t boundary,vm_memattr_t memattr)224 kmem_alloc_contig_pages(vm_object_t object, vm_pindex_t pindex, int domain,
225     int pflags, u_long npages, vm_paddr_t low, vm_paddr_t high,
226     u_long alignment, vm_paddr_t boundary, vm_memattr_t memattr)
227 {
228 	vm_page_t m;
229 	int tries;
230 	bool wait, reclaim;
231 
232 	VM_OBJECT_ASSERT_WLOCKED(object);
233 
234 	wait = (pflags & VM_ALLOC_WAITOK) != 0;
235 	reclaim = (pflags & VM_ALLOC_NORECLAIM) == 0;
236 	pflags &= ~(VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL);
237 	pflags |= VM_ALLOC_NOWAIT;
238 	for (tries = wait ? 3 : 1;; tries--) {
239 		m = vm_page_alloc_contig_domain(object, pindex, domain, pflags,
240 		    npages, low, high, alignment, boundary, memattr);
241 		if (m != NULL || tries == 0 || !reclaim)
242 			break;
243 
244 		VM_OBJECT_WUNLOCK(object);
245 		if (vm_page_reclaim_contig_domain(domain, pflags, npages,
246 		    low, high, alignment, boundary) == ENOMEM && wait)
247 			vm_wait_domain(domain);
248 		VM_OBJECT_WLOCK(object);
249 	}
250 	return (m);
251 }
252 
253 /*
254  *	Allocates a region from the kernel address map and physical pages
255  *	within the specified address range to the kernel object.  Creates a
256  *	wired mapping from this region to these pages, and returns the
257  *	region's starting virtual address.  The allocated pages are not
258  *	necessarily physically contiguous.  If M_ZERO is specified through the
259  *	given flags, then the pages are zeroed before they are mapped.
260  */
261 static void *
kmem_alloc_attr_domain(int domain,vm_size_t size,int flags,vm_paddr_t low,vm_paddr_t high,vm_memattr_t memattr)262 kmem_alloc_attr_domain(int domain, vm_size_t size, int flags, vm_paddr_t low,
263     vm_paddr_t high, vm_memattr_t memattr)
264 {
265 	vmem_t *vmem;
266 	vm_object_t object;
267 	vm_offset_t addr, i, offset;
268 	vm_page_t m;
269 	vm_size_t asize;
270 	int pflags;
271 	vm_prot_t prot;
272 
273 	object = kernel_object;
274 	asize = round_page(size);
275 	vmem = vm_dom[domain].vmd_kernel_arena;
276 	if (vmem_alloc(vmem, asize, M_BESTFIT | flags, &addr))
277 		return (0);
278 	offset = addr - VM_MIN_KERNEL_ADDRESS;
279 	pflags = malloc2vm_flags(flags) | VM_ALLOC_WIRED;
280 	prot = (flags & M_EXEC) != 0 ? VM_PROT_ALL : VM_PROT_RW;
281 	VM_OBJECT_WLOCK(object);
282 	for (i = 0; i < asize; i += PAGE_SIZE) {
283 		m = kmem_alloc_contig_pages(object, atop(offset + i),
284 		    domain, pflags, 1, low, high, PAGE_SIZE, 0, memattr);
285 		if (m == NULL) {
286 			VM_OBJECT_WUNLOCK(object);
287 			kmem_unback(object, addr, i);
288 			vmem_free(vmem, addr, asize);
289 			return (0);
290 		}
291 		KASSERT(vm_page_domain(m) == domain,
292 		    ("kmem_alloc_attr_domain: Domain mismatch %d != %d",
293 		    vm_page_domain(m), domain));
294 		if ((flags & M_ZERO) && (m->flags & PG_ZERO) == 0)
295 			pmap_zero_page(m);
296 		vm_page_valid(m);
297 		pmap_enter(kernel_pmap, addr + i, m, prot,
298 		    prot | PMAP_ENTER_WIRED, 0);
299 	}
300 	VM_OBJECT_WUNLOCK(object);
301 	kmem_alloc_san(addr, size, asize, flags);
302 	return ((void *)addr);
303 }
304 
305 void *
kmem_alloc_attr(vm_size_t size,int flags,vm_paddr_t low,vm_paddr_t high,vm_memattr_t memattr)306 kmem_alloc_attr(vm_size_t size, int flags, vm_paddr_t low, vm_paddr_t high,
307     vm_memattr_t memattr)
308 {
309 
310 	return (kmem_alloc_attr_domainset(DOMAINSET_RR(), size, flags, low,
311 	    high, memattr));
312 }
313 
314 void *
kmem_alloc_attr_domainset(struct domainset * ds,vm_size_t size,int flags,vm_paddr_t low,vm_paddr_t high,vm_memattr_t memattr)315 kmem_alloc_attr_domainset(struct domainset *ds, vm_size_t size, int flags,
316     vm_paddr_t low, vm_paddr_t high, vm_memattr_t memattr)
317 {
318 	struct vm_domainset_iter di;
319 	vm_page_t bounds[2];
320 	void *addr;
321 	int domain;
322 	int start_segind;
323 
324 	start_segind = -1;
325 
326 	if (vm_domainset_iter_policy_init(&di, ds, &domain, &flags) != 0)
327 		return (NULL);
328 
329 	do {
330 		addr = kmem_alloc_attr_domain(domain, size, flags, low, high,
331 		    memattr);
332 		if (addr != NULL)
333 			break;
334 		if (start_segind == -1)
335 			start_segind = vm_phys_lookup_segind(low);
336 		if (vm_phys_find_range(bounds, start_segind, domain,
337 		    atop(round_page(size)), low, high) == -1) {
338 			vm_domainset_iter_ignore(&di, domain);
339 		}
340 	} while (vm_domainset_iter_policy(&di, &domain) == 0);
341 
342 	return (addr);
343 }
344 
345 /*
346  *	Allocates a region from the kernel address map and physically
347  *	contiguous pages within the specified address range to the kernel
348  *	object.  Creates a wired mapping from this region to these pages, and
349  *	returns the region's starting virtual address.  If M_ZERO is specified
350  *	through the given flags, then the pages are zeroed before they are
351  *	mapped.
352  */
353 static void *
kmem_alloc_contig_domain(int domain,vm_size_t size,int flags,vm_paddr_t low,vm_paddr_t high,u_long alignment,vm_paddr_t boundary,vm_memattr_t memattr)354 kmem_alloc_contig_domain(int domain, vm_size_t size, int flags, vm_paddr_t low,
355     vm_paddr_t high, u_long alignment, vm_paddr_t boundary,
356     vm_memattr_t memattr)
357 {
358 	vmem_t *vmem;
359 	vm_object_t object;
360 	vm_offset_t addr, offset, tmp;
361 	vm_page_t end_m, m;
362 	vm_size_t asize;
363 	u_long npages;
364 	int pflags;
365 
366 	object = kernel_object;
367 	asize = round_page(size);
368 	vmem = vm_dom[domain].vmd_kernel_arena;
369 	if (vmem_alloc(vmem, asize, flags | M_BESTFIT, &addr))
370 		return (NULL);
371 	offset = addr - VM_MIN_KERNEL_ADDRESS;
372 	pflags = malloc2vm_flags(flags) | VM_ALLOC_WIRED;
373 	npages = atop(asize);
374 	VM_OBJECT_WLOCK(object);
375 	m = kmem_alloc_contig_pages(object, atop(offset), domain,
376 	    pflags, npages, low, high, alignment, boundary, memattr);
377 	if (m == NULL) {
378 		VM_OBJECT_WUNLOCK(object);
379 		vmem_free(vmem, addr, asize);
380 		return (NULL);
381 	}
382 	KASSERT(vm_page_domain(m) == domain,
383 	    ("kmem_alloc_contig_domain: Domain mismatch %d != %d",
384 	    vm_page_domain(m), domain));
385 	end_m = m + npages;
386 	tmp = addr;
387 	for (; m < end_m; m++) {
388 		if ((flags & M_ZERO) && (m->flags & PG_ZERO) == 0)
389 			pmap_zero_page(m);
390 		vm_page_valid(m);
391 		pmap_enter(kernel_pmap, tmp, m, VM_PROT_RW,
392 		    VM_PROT_RW | PMAP_ENTER_WIRED, 0);
393 		tmp += PAGE_SIZE;
394 	}
395 	VM_OBJECT_WUNLOCK(object);
396 	kmem_alloc_san(addr, size, asize, flags);
397 	return ((void *)addr);
398 }
399 
400 void *
kmem_alloc_contig(vm_size_t size,int flags,vm_paddr_t low,vm_paddr_t high,u_long alignment,vm_paddr_t boundary,vm_memattr_t memattr)401 kmem_alloc_contig(vm_size_t size, int flags, vm_paddr_t low, vm_paddr_t high,
402     u_long alignment, vm_paddr_t boundary, vm_memattr_t memattr)
403 {
404 
405 	return (kmem_alloc_contig_domainset(DOMAINSET_RR(), size, flags, low,
406 	    high, alignment, boundary, memattr));
407 }
408 
409 void *
kmem_alloc_contig_domainset(struct domainset * ds,vm_size_t size,int flags,vm_paddr_t low,vm_paddr_t high,u_long alignment,vm_paddr_t boundary,vm_memattr_t memattr)410 kmem_alloc_contig_domainset(struct domainset *ds, vm_size_t size, int flags,
411     vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary,
412     vm_memattr_t memattr)
413 {
414 	struct vm_domainset_iter di;
415 	vm_page_t bounds[2];
416 	void *addr;
417 	int domain;
418 	int start_segind;
419 
420 	start_segind = -1;
421 
422 	if (vm_domainset_iter_policy_init(&di, ds, &domain, &flags))
423 		return (NULL);
424 
425 	do {
426 		addr = kmem_alloc_contig_domain(domain, size, flags, low, high,
427 		    alignment, boundary, memattr);
428 		if (addr != NULL)
429 			break;
430 		if (start_segind == -1)
431 			start_segind = vm_phys_lookup_segind(low);
432 		if (vm_phys_find_range(bounds, start_segind, domain,
433 		    atop(round_page(size)), low, high) == -1) {
434 			vm_domainset_iter_ignore(&di, domain);
435 		}
436 	} while (vm_domainset_iter_policy(&di, &domain) == 0);
437 
438 	return (addr);
439 }
440 
441 /*
442  *	kmem_subinit:
443  *
444  *	Initializes a map to manage a subrange
445  *	of the kernel virtual address space.
446  *
447  *	Arguments are as follows:
448  *
449  *	parent		Map to take range from
450  *	min, max	Returned endpoints of map
451  *	size		Size of range to find
452  *	superpage_align	Request that min is superpage aligned
453  */
454 void
kmem_subinit(vm_map_t map,vm_map_t parent,vm_offset_t * min,vm_offset_t * max,vm_size_t size,bool superpage_align)455 kmem_subinit(vm_map_t map, vm_map_t parent, vm_offset_t *min, vm_offset_t *max,
456     vm_size_t size, bool superpage_align)
457 {
458 	int ret;
459 
460 	size = round_page(size);
461 
462 	*min = vm_map_min(parent);
463 	ret = vm_map_find(parent, NULL, 0, min, size, 0, superpage_align ?
464 	    VMFS_SUPER_SPACE : VMFS_ANY_SPACE, VM_PROT_ALL, VM_PROT_ALL,
465 	    MAP_ACC_NO_CHARGE);
466 	if (ret != KERN_SUCCESS)
467 		panic("kmem_subinit: bad status return of %d", ret);
468 	*max = *min + size;
469 	vm_map_init(map, vm_map_pmap(parent), *min, *max);
470 	if (vm_map_submap(parent, *min, *max, map) != KERN_SUCCESS)
471 		panic("kmem_subinit: unable to change range to submap");
472 }
473 
474 /*
475  *	kmem_malloc_domain:
476  *
477  *	Allocate wired-down pages in the kernel's address space.
478  */
479 static void *
kmem_malloc_domain(int domain,vm_size_t size,int flags)480 kmem_malloc_domain(int domain, vm_size_t size, int flags)
481 {
482 	vmem_t *arena;
483 	vm_offset_t addr;
484 	vm_size_t asize;
485 	int rv;
486 
487 	if (__predict_true((flags & (M_EXEC | M_NEVERFREED)) == 0))
488 		arena = vm_dom[domain].vmd_kernel_arena;
489 	else if ((flags & M_EXEC) != 0)
490 		arena = vm_dom[domain].vmd_kernel_rwx_arena;
491 	else
492 		arena = vm_dom[domain].vmd_kernel_nofree_arena;
493 	asize = round_page(size);
494 	if (vmem_alloc(arena, asize, flags | M_BESTFIT, &addr))
495 		return (0);
496 
497 	rv = kmem_back_domain(domain, kernel_object, addr, asize, flags);
498 	if (rv != KERN_SUCCESS) {
499 		vmem_free(arena, addr, asize);
500 		return (0);
501 	}
502 	kasan_mark((void *)addr, size, asize, KASAN_KMEM_REDZONE);
503 	return ((void *)addr);
504 }
505 
506 void *
kmem_malloc(vm_size_t size,int flags)507 kmem_malloc(vm_size_t size, int flags)
508 {
509 	void * p;
510 
511 	TSENTER();
512 	p = kmem_malloc_domainset(DOMAINSET_RR(), size, flags);
513 	TSEXIT();
514 	return (p);
515 }
516 
517 void *
kmem_malloc_domainset(struct domainset * ds,vm_size_t size,int flags)518 kmem_malloc_domainset(struct domainset *ds, vm_size_t size, int flags)
519 {
520 	struct vm_domainset_iter di;
521 	void *addr;
522 	int domain;
523 
524 	if (vm_domainset_iter_policy_init(&di, ds, &domain, &flags) != 0)
525 		return (NULL);
526 
527 	do {
528 		addr = kmem_malloc_domain(domain, size, flags);
529 		if (addr != NULL)
530 			break;
531 	} while (vm_domainset_iter_policy(&di, &domain) == 0);
532 
533 	return (addr);
534 }
535 
536 /*
537  *	kmem_back_domain:
538  *
539  *	Allocate physical pages from the specified domain for the specified
540  *	virtual address range.
541  */
542 int
kmem_back_domain(int domain,vm_object_t object,vm_offset_t addr,vm_size_t size,int flags)543 kmem_back_domain(int domain, vm_object_t object, vm_offset_t addr,
544     vm_size_t size, int flags)
545 {
546 	struct pctrie_iter pages;
547 	vm_offset_t offset, i;
548 	vm_page_t m;
549 	vm_prot_t prot;
550 	int pflags;
551 
552 	KASSERT(object == kernel_object,
553 	    ("kmem_back_domain: only supports kernel object."));
554 
555 	offset = addr - VM_MIN_KERNEL_ADDRESS;
556 	pflags = malloc2vm_flags(flags) | VM_ALLOC_WIRED;
557 	pflags &= ~(VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL);
558 	if (flags & M_WAITOK)
559 		pflags |= VM_ALLOC_WAITFAIL;
560 	prot = (flags & M_EXEC) != 0 ? VM_PROT_ALL : VM_PROT_RW;
561 
562 	i = 0;
563 	vm_page_iter_init(&pages, object);
564 	VM_OBJECT_WLOCK(object);
565 retry:
566 	for (; i < size; i += PAGE_SIZE) {
567 		m = vm_page_alloc_domain_iter(object, atop(offset + i),
568 		    domain, pflags, &pages);
569 
570 		/*
571 		 * Ran out of space, free everything up and return. Don't need
572 		 * to lock page queues here as we know that the pages we got
573 		 * aren't on any queues.
574 		 */
575 		if (m == NULL) {
576 			if ((flags & M_NOWAIT) == 0)
577 				goto retry;
578 			VM_OBJECT_WUNLOCK(object);
579 			kmem_unback(object, addr, i);
580 			return (KERN_NO_SPACE);
581 		}
582 		KASSERT(vm_page_domain(m) == domain,
583 		    ("kmem_back_domain: Domain mismatch %d != %d",
584 		    vm_page_domain(m), domain));
585 		if (flags & M_ZERO && (m->flags & PG_ZERO) == 0)
586 			pmap_zero_page(m);
587 		KASSERT((m->oflags & VPO_UNMANAGED) != 0,
588 		    ("kmem_malloc: page %p is managed", m));
589 		vm_page_valid(m);
590 		pmap_enter(kernel_pmap, addr + i, m, prot,
591 		    prot | PMAP_ENTER_WIRED, 0);
592 		if (__predict_false((prot & VM_PROT_EXECUTE) != 0))
593 			m->oflags |= VPO_KMEM_EXEC;
594 	}
595 	VM_OBJECT_WUNLOCK(object);
596 	kmem_alloc_san(addr, size, size, flags);
597 	return (KERN_SUCCESS);
598 }
599 
600 /*
601  *	kmem_back:
602  *
603  *	Allocate physical pages for the specified virtual address range.
604  */
605 int
kmem_back(vm_object_t object,vm_offset_t addr,vm_size_t size,int flags)606 kmem_back(vm_object_t object, vm_offset_t addr, vm_size_t size, int flags)
607 {
608 	vm_offset_t end, next, start;
609 	int domain, rv;
610 
611 	KASSERT(object == kernel_object,
612 	    ("kmem_back: only supports kernel object."));
613 
614 	for (start = addr, end = addr + size; addr < end; addr = next) {
615 		/*
616 		 * We must ensure that pages backing a given large virtual page
617 		 * all come from the same physical domain.
618 		 */
619 		if (vm_ndomains > 1) {
620 			domain = (addr >> KVA_QUANTUM_SHIFT) % vm_ndomains;
621 			while (VM_DOMAIN_EMPTY(domain))
622 				domain++;
623 			next = roundup2(addr + 1, KVA_QUANTUM);
624 			if (next > end || next < start)
625 				next = end;
626 		} else {
627 			domain = 0;
628 			next = end;
629 		}
630 		rv = kmem_back_domain(domain, object, addr, next - addr, flags);
631 		if (rv != KERN_SUCCESS) {
632 			kmem_unback(object, start, addr - start);
633 			break;
634 		}
635 	}
636 	return (rv);
637 }
638 
639 /*
640  *	kmem_unback:
641  *
642  *	Unmap and free the physical pages underlying the specified virtual
643  *	address range.
644  *
645  *	A physical page must exist within the specified object at each index
646  *	that is being unmapped.
647  */
648 static struct vmem *
_kmem_unback(vm_object_t object,vm_offset_t addr,vm_size_t size)649 _kmem_unback(vm_object_t object, vm_offset_t addr, vm_size_t size)
650 {
651 	struct pctrie_iter pages;
652 	struct vmem *arena;
653 	vm_page_t m;
654 	vm_offset_t end, offset;
655 	int domain;
656 
657 	KASSERT(object == kernel_object,
658 	    ("kmem_unback: only supports kernel object."));
659 
660 	if (size == 0)
661 		return (NULL);
662 	pmap_remove(kernel_pmap, addr, addr + size);
663 	offset = addr - VM_MIN_KERNEL_ADDRESS;
664 	end = offset + size;
665 	vm_page_iter_init(&pages, object);
666 	VM_OBJECT_WLOCK(object);
667 	m = vm_radix_iter_lookup(&pages, atop(offset));
668 	domain = vm_page_domain(m);
669 	if (__predict_true((m->oflags & VPO_KMEM_EXEC) == 0))
670 		arena = vm_dom[domain].vmd_kernel_arena;
671 	else
672 		arena = vm_dom[domain].vmd_kernel_rwx_arena;
673 	for (; offset < end; offset += PAGE_SIZE,
674 	    m = vm_radix_iter_lookup(&pages, atop(offset))) {
675 		vm_page_xbusy_claim(m);
676 		vm_page_unwire_noq(m);
677 		vm_page_iter_free(&pages, m);
678 	}
679 	VM_OBJECT_WUNLOCK(object);
680 
681 	return (arena);
682 }
683 
684 void
kmem_unback(vm_object_t object,vm_offset_t addr,vm_size_t size)685 kmem_unback(vm_object_t object, vm_offset_t addr, vm_size_t size)
686 {
687 
688 	(void)_kmem_unback(object, addr, size);
689 }
690 
691 /*
692  *	kmem_free:
693  *
694  *	Free memory allocated with kmem_malloc.  The size must match the
695  *	original allocation.
696  */
697 void
kmem_free(void * addr,vm_size_t size)698 kmem_free(void *addr, vm_size_t size)
699 {
700 	struct vmem *arena;
701 
702 	size = round_page(size);
703 	kasan_mark(addr, size, size, 0);
704 	arena = _kmem_unback(kernel_object, (uintptr_t)addr, size);
705 	if (arena != NULL)
706 		vmem_free(arena, (uintptr_t)addr, size);
707 }
708 
709 /*
710  *	kmap_alloc_wait:
711  *
712  *	Allocates pageable memory from a sub-map of the kernel.  If the submap
713  *	has no room, the caller sleeps waiting for more memory in the submap.
714  *
715  *	This routine may block.
716  */
717 vm_offset_t
kmap_alloc_wait(vm_map_t map,vm_size_t size)718 kmap_alloc_wait(vm_map_t map, vm_size_t size)
719 {
720 	vm_offset_t addr;
721 
722 	size = round_page(size);
723 	if (!swap_reserve(size))
724 		return (0);
725 
726 	for (;;) {
727 		/*
728 		 * To make this work for more than one map, use the map's lock
729 		 * to lock out sleepers/wakers.
730 		 */
731 		vm_map_lock(map);
732 		addr = vm_map_findspace(map, vm_map_min(map), size);
733 		if (addr + size <= vm_map_max(map))
734 			break;
735 		/* no space now; see if we can ever get space */
736 		if (vm_map_max(map) - vm_map_min(map) < size) {
737 			vm_map_unlock(map);
738 			swap_release(size);
739 			return (0);
740 		}
741 		vm_map_modflags(map, MAP_NEEDS_WAKEUP, 0);
742 		vm_map_unlock_and_wait(map, 0);
743 	}
744 	vm_map_insert(map, NULL, 0, addr, addr + size, VM_PROT_RW, VM_PROT_RW,
745 	    MAP_ACC_CHARGED);
746 	vm_map_unlock(map);
747 	return (addr);
748 }
749 
750 /*
751  *	kmap_free_wakeup:
752  *
753  *	Returns memory to a submap of the kernel, and wakes up any processes
754  *	waiting for memory in that map.
755  */
756 void
kmap_free_wakeup(vm_map_t map,vm_offset_t addr,vm_size_t size)757 kmap_free_wakeup(vm_map_t map, vm_offset_t addr, vm_size_t size)
758 {
759 
760 	vm_map_lock(map);
761 	(void) vm_map_delete(map, trunc_page(addr), round_page(addr + size));
762 	if ((map->flags & MAP_NEEDS_WAKEUP) != 0) {
763 		vm_map_modflags(map, 0, MAP_NEEDS_WAKEUP);
764 		vm_map_wakeup(map);
765 	}
766 	vm_map_unlock(map);
767 }
768 
769 void
kmem_init_zero_region(void)770 kmem_init_zero_region(void)
771 {
772 	vm_offset_t addr, i;
773 	vm_page_t m;
774 
775 	/*
776 	 * Map a single physical page of zeros to a larger virtual range.
777 	 * This requires less looping in places that want large amounts of
778 	 * zeros, while not using much more physical resources.
779 	 */
780 	addr = kva_alloc(ZERO_REGION_SIZE);
781 	m = vm_page_alloc_noobj(VM_ALLOC_WIRED | VM_ALLOC_ZERO |
782 	    VM_ALLOC_NOFREE);
783 	for (i = 0; i < ZERO_REGION_SIZE; i += PAGE_SIZE)
784 		pmap_qenter(addr + i, &m, 1);
785 	pmap_protect(kernel_pmap, addr, addr + ZERO_REGION_SIZE, VM_PROT_READ);
786 
787 	zero_region = (const void *)addr;
788 }
789 
790 /*
791  * Import KVA from the kernel map into the kernel arena.
792  */
793 static int
kva_import(void * unused,vmem_size_t size,int flags,vmem_addr_t * addrp)794 kva_import(void *unused, vmem_size_t size, int flags, vmem_addr_t *addrp)
795 {
796 	vm_offset_t addr;
797 	int result;
798 
799 	TSENTER();
800 	KASSERT((size % KVA_QUANTUM) == 0,
801 	    ("kva_import: Size %jd is not a multiple of %d",
802 	    (intmax_t)size, (int)KVA_QUANTUM));
803 	addr = vm_map_min(kernel_map);
804 	result = vm_map_find(kernel_map, NULL, 0, &addr, size, 0,
805 	    VMFS_SUPER_SPACE, VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
806 	if (result != KERN_SUCCESS) {
807 		TSEXIT();
808                 return (ENOMEM);
809 	}
810 
811 	*addrp = addr;
812 
813 	TSEXIT();
814 	return (0);
815 }
816 
817 /*
818  * Import KVA from a parent arena into a per-domain arena.  Imports must be
819  * KVA_QUANTUM-aligned and a multiple of KVA_QUANTUM in size.
820  */
821 static int
kva_import_domain(void * arena,vmem_size_t size,int flags,vmem_addr_t * addrp)822 kva_import_domain(void *arena, vmem_size_t size, int flags, vmem_addr_t *addrp)
823 {
824 
825 	KASSERT((size % KVA_QUANTUM) == 0,
826 	    ("kva_import_domain: Size %jd is not a multiple of %d",
827 	    (intmax_t)size, (int)KVA_QUANTUM));
828 	return (vmem_xalloc(arena, size, KVA_QUANTUM, 0, 0, VMEM_ADDR_MIN,
829 	    VMEM_ADDR_MAX, flags, addrp));
830 }
831 
832 /*
833  * 	kmem_init:
834  *
835  *	Create the kernel map; insert a mapping covering kernel text,
836  *	data, bss, and all space allocated thus far (`boostrap' data).  The
837  *	new map will thus map the range between VM_MIN_KERNEL_ADDRESS and
838  *	`start' as allocated, and the range between `start' and `end' as free.
839  *	Create the kernel vmem arena and its per-domain children.
840  */
841 void
kmem_init(vm_offset_t start,vm_offset_t end)842 kmem_init(vm_offset_t start, vm_offset_t end)
843 {
844 	vm_size_t quantum;
845 	int domain;
846 
847 	vm_map_init_system(kernel_map, kernel_pmap, VM_MIN_KERNEL_ADDRESS, end);
848 	vm_map_lock(kernel_map);
849 	/* N.B.: cannot use kgdb to debug, starting with this assignment ... */
850 	(void)vm_map_insert(kernel_map, NULL, 0,
851 #ifdef __amd64__
852 	    KERNBASE,
853 #else
854 	    VM_MIN_KERNEL_ADDRESS,
855 #endif
856 	    start, VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
857 	/* ... and ending with the completion of the above `insert' */
858 
859 #ifdef __amd64__
860 	/*
861 	 * Mark KVA used for the page array as allocated.  Other platforms
862 	 * that handle vm_page_array allocation can simply adjust virtual_avail
863 	 * instead.
864 	 */
865 	(void)vm_map_insert(kernel_map, NULL, 0, (vm_offset_t)vm_page_array,
866 	    (vm_offset_t)vm_page_array + round_2mpage(vm_page_array_size *
867 	    sizeof(struct vm_page)),
868 	    VM_PROT_RW, VM_PROT_RW, MAP_NOFAULT);
869 #endif
870 	vm_map_unlock(kernel_map);
871 
872 	/*
873 	 * Use a large import quantum on NUMA systems.  This helps minimize
874 	 * interleaving of superpages, reducing internal fragmentation within
875 	 * the per-domain arenas.
876 	 */
877 	if (vm_ndomains > 1 && PMAP_HAS_DMAP)
878 		quantum = KVA_NUMA_IMPORT_QUANTUM;
879 	else
880 		quantum = KVA_QUANTUM;
881 
882 	/*
883 	 * Initialize the kernel_arena.  This can grow on demand.
884 	 */
885 	vmem_init(kernel_arena, "kernel arena", 0, 0, PAGE_SIZE, 0, 0);
886 	vmem_set_import(kernel_arena, kva_import, NULL, NULL, quantum);
887 
888 	for (domain = 0; domain < vm_ndomains; domain++) {
889 		/*
890 		 * Initialize the per-domain arenas.  These are used to color
891 		 * the KVA space in a way that ensures that virtual large pages
892 		 * are backed by memory from the same physical domain,
893 		 * maximizing the potential for superpage promotion.
894 		 */
895 		vm_dom[domain].vmd_kernel_arena = vmem_create(
896 		    "kernel arena domain", 0, 0, PAGE_SIZE, 0, M_WAITOK);
897 		vmem_set_import(vm_dom[domain].vmd_kernel_arena,
898 		    kva_import_domain, NULL, kernel_arena, quantum);
899 
900 		/*
901 		 * In architectures with superpages, maintain separate arenas
902 		 * for allocations with permissions that differ from the
903 		 * "standard" read/write permissions used for kernel memory
904 		 * and pages that are never released, so as not to inhibit
905 		 * superpage promotion.
906 		 *
907 		 * Use the base import quantum since these arenas are rarely
908 		 * used.
909 		 */
910 #if VM_NRESERVLEVEL > 0
911 		vm_dom[domain].vmd_kernel_rwx_arena = vmem_create(
912 		    "kernel rwx arena domain", 0, 0, PAGE_SIZE, 0, M_WAITOK);
913 		vm_dom[domain].vmd_kernel_nofree_arena = vmem_create(
914 		    "kernel NOFREE arena domain", 0, 0, PAGE_SIZE, 0, M_WAITOK);
915 		vmem_set_import(vm_dom[domain].vmd_kernel_rwx_arena,
916 		    kva_import_domain, (vmem_release_t *)vmem_xfree,
917 		    kernel_arena, KVA_QUANTUM);
918 		vmem_set_import(vm_dom[domain].vmd_kernel_nofree_arena,
919 		    kva_import_domain, (vmem_release_t *)vmem_xfree,
920 		    kernel_arena, KVA_QUANTUM);
921 #else
922 		vm_dom[domain].vmd_kernel_rwx_arena =
923 		    vm_dom[domain].vmd_kernel_arena;
924 		vm_dom[domain].vmd_kernel_nofree_arena =
925 		    vm_dom[domain].vmd_kernel_arena;
926 #endif
927 	}
928 
929 	/*
930 	 * This must be the very first call so that the virtual address
931 	 * space used for early allocations is properly marked used in
932 	 * the map.
933 	 */
934 	uma_startup2();
935 }
936 
937 /*
938  *	kmem_bootstrap_free:
939  *
940  *	Free pages backing preloaded data (e.g., kernel modules) to the
941  *	system.  Currently only supported on platforms that create a
942  *	vm_phys segment for preloaded data.
943  */
944 void
kmem_bootstrap_free(vm_offset_t start,vm_size_t size)945 kmem_bootstrap_free(vm_offset_t start, vm_size_t size)
946 {
947 #if defined(__i386__) || defined(__amd64__)
948 	struct vm_domain *vmd;
949 	vm_offset_t end, va;
950 	vm_paddr_t pa;
951 	vm_page_t m;
952 
953 	end = trunc_page(start + size);
954 	start = round_page(start);
955 
956 #ifdef __amd64__
957 	/*
958 	 * Preloaded files do not have execute permissions by default on amd64.
959 	 * Restore the default permissions to ensure that the direct map alias
960 	 * is updated.
961 	 */
962 	pmap_change_prot(start, end - start, VM_PROT_RW);
963 #endif
964 	for (va = start; va < end; va += PAGE_SIZE) {
965 		pa = pmap_kextract(va);
966 		m = PHYS_TO_VM_PAGE(pa);
967 
968 		vmd = vm_pagequeue_domain(m);
969 		vm_domain_free_lock(vmd);
970 		vm_phys_free_pages(m, m->pool, 0);
971 		vm_domain_free_unlock(vmd);
972 
973 		vm_domain_freecnt_inc(vmd, 1);
974 		vm_cnt.v_page_count++;
975 	}
976 	pmap_remove(kernel_pmap, start, end);
977 	(void)vmem_add(kernel_arena, start, end - start, M_WAITOK);
978 #endif
979 }
980 
981 #ifdef PMAP_WANT_ACTIVE_CPUS_NAIVE
982 void
pmap_active_cpus(pmap_t pmap,cpuset_t * res)983 pmap_active_cpus(pmap_t pmap, cpuset_t *res)
984 {
985 	struct thread *td;
986 	struct proc *p;
987 	struct vmspace *vm;
988 	int c;
989 
990 	CPU_ZERO(res);
991 	CPU_FOREACH(c) {
992 		td = cpuid_to_pcpu[c]->pc_curthread;
993 		p = td->td_proc;
994 		if (p == NULL)
995 			continue;
996 		vm = vmspace_acquire_ref(p);
997 		if (vm == NULL)
998 			continue;
999 		if (pmap == vmspace_pmap(vm))
1000 			CPU_SET(c, res);
1001 		vmspace_free(vm);
1002 	}
1003 }
1004 #endif
1005 
1006 /*
1007  * Allow userspace to directly trigger the VM drain routine for testing
1008  * purposes.
1009  */
1010 static int
debug_vm_lowmem(SYSCTL_HANDLER_ARGS)1011 debug_vm_lowmem(SYSCTL_HANDLER_ARGS)
1012 {
1013 	int error, i;
1014 
1015 	i = 0;
1016 	error = sysctl_handle_int(oidp, &i, 0, req);
1017 	if (error != 0)
1018 		return (error);
1019 	if ((i & ~(VM_LOW_KMEM | VM_LOW_PAGES)) != 0)
1020 		return (EINVAL);
1021 	if (i != 0)
1022 		EVENTHANDLER_INVOKE(vm_lowmem, i);
1023 	return (0);
1024 }
1025 SYSCTL_PROC(_debug, OID_AUTO, vm_lowmem,
1026     CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, 0, debug_vm_lowmem, "I",
1027     "set to trigger vm_lowmem event with given flags");
1028 
1029 static int
debug_uma_reclaim(SYSCTL_HANDLER_ARGS)1030 debug_uma_reclaim(SYSCTL_HANDLER_ARGS)
1031 {
1032 	int error, i;
1033 
1034 	i = 0;
1035 	error = sysctl_handle_int(oidp, &i, 0, req);
1036 	if (error != 0 || req->newptr == NULL)
1037 		return (error);
1038 	if (i != UMA_RECLAIM_TRIM && i != UMA_RECLAIM_DRAIN &&
1039 	    i != UMA_RECLAIM_DRAIN_CPU)
1040 		return (EINVAL);
1041 	uma_reclaim(i);
1042 	return (0);
1043 }
1044 SYSCTL_PROC(_debug, OID_AUTO, uma_reclaim,
1045     CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, 0, debug_uma_reclaim, "I",
1046     "set to generate request to reclaim uma caches");
1047 
1048 static int
debug_uma_reclaim_domain(SYSCTL_HANDLER_ARGS)1049 debug_uma_reclaim_domain(SYSCTL_HANDLER_ARGS)
1050 {
1051 	int domain, error, request;
1052 
1053 	request = 0;
1054 	error = sysctl_handle_int(oidp, &request, 0, req);
1055 	if (error != 0 || req->newptr == NULL)
1056 		return (error);
1057 
1058 	domain = request >> 4;
1059 	request &= 0xf;
1060 	if (request != UMA_RECLAIM_TRIM && request != UMA_RECLAIM_DRAIN &&
1061 	    request != UMA_RECLAIM_DRAIN_CPU)
1062 		return (EINVAL);
1063 	if (domain < 0 || domain >= vm_ndomains)
1064 		return (EINVAL);
1065 	uma_reclaim_domain(request, domain);
1066 	return (0);
1067 }
1068 SYSCTL_PROC(_debug, OID_AUTO, uma_reclaim_domain,
1069     CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, 0,
1070     debug_uma_reclaim_domain, "I",
1071     "");
1072