xref: /freebsd/sys/vm/vm_kern.c (revision 4dd828c80828637452a8a4e07a64e294c82e5d8b)
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  */
60 
61 /*
62  *	Kernel memory management.
63  */
64 
65 #include <sys/cdefs.h>
66 #include "opt_vm.h"
67 
68 #include <sys/param.h>
69 #include <sys/systm.h>
70 #include <sys/asan.h>
71 #include <sys/domainset.h>
72 #include <sys/eventhandler.h>
73 #include <sys/kernel.h>
74 #include <sys/lock.h>
75 #include <sys/malloc.h>
76 #include <sys/msan.h>
77 #include <sys/proc.h>
78 #include <sys/rwlock.h>
79 #include <sys/smp.h>
80 #include <sys/sysctl.h>
81 #include <sys/vmem.h>
82 #include <sys/vmmeter.h>
83 
84 #include <vm/vm.h>
85 #include <vm/vm_param.h>
86 #include <vm/vm_domainset.h>
87 #include <vm/vm_kern.h>
88 #include <vm/pmap.h>
89 #include <vm/vm_map.h>
90 #include <vm/vm_object.h>
91 #include <vm/vm_page.h>
92 #include <vm/vm_pageout.h>
93 #include <vm/vm_pagequeue.h>
94 #include <vm/vm_phys.h>
95 #include <vm/vm_radix.h>
96 #include <vm/vm_extern.h>
97 #include <vm/uma.h>
98 
99 struct vm_map kernel_map_store;
100 struct vm_map exec_map_store;
101 struct vm_map pipe_map_store;
102 
103 const void *zero_region;
104 CTASSERT((ZERO_REGION_SIZE & PAGE_MASK) == 0);
105 
106 /* NB: Used by kernel debuggers. */
107 const u_long vm_maxuser_address = VM_MAXUSER_ADDRESS;
108 
109 u_int exec_map_entry_size;
110 u_int exec_map_entries;
111 
112 SYSCTL_ULONG(_vm, OID_AUTO, min_kernel_address, CTLFLAG_RD,
113 #if defined(__amd64__)
114     &kva_layout.km_low, 0,
115 #else
116     SYSCTL_NULL_ULONG_PTR, VM_MIN_KERNEL_ADDRESS,
117 #endif
118     "Min kernel address");
119 
120 SYSCTL_ULONG(_vm, OID_AUTO, max_kernel_address, CTLFLAG_RD,
121 #if defined(__arm__)
122     &vm_max_kernel_address, 0,
123 #elif defined(__amd64__)
124     &kva_layout.km_high, 0,
125 #else
126     SYSCTL_NULL_ULONG_PTR, VM_MAX_KERNEL_ADDRESS,
127 #endif
128     "Max kernel address");
129 
130 #if VM_NRESERVLEVEL > 1
131 #define	KVA_QUANTUM_SHIFT	(VM_LEVEL_1_ORDER + VM_LEVEL_0_ORDER + \
132     PAGE_SHIFT)
133 #elif VM_NRESERVLEVEL > 0
134 #define	KVA_QUANTUM_SHIFT	(VM_LEVEL_0_ORDER + PAGE_SHIFT)
135 #else
136 /* On non-superpage architectures we want large import sizes. */
137 #define	KVA_QUANTUM_SHIFT	(8 + PAGE_SHIFT)
138 #endif
139 #define	KVA_QUANTUM		(1ul << KVA_QUANTUM_SHIFT)
140 #define	KVA_NUMA_IMPORT_QUANTUM	(KVA_QUANTUM * 128)
141 
142 extern void     uma_startup2(void);
143 
144 /*
145  *	kva_alloc:
146  *
147  *	Allocate a virtual address range with no underlying object and
148  *	no initial mapping to physical memory.  Any mapping from this
149  *	range to physical memory must be explicitly created prior to
150  *	its use, typically with pmap_qenter().  Any attempt to create
151  *	a mapping on demand through vm_fault() will result in a panic.
152  */
153 vm_offset_t
kva_alloc(vm_size_t size)154 kva_alloc(vm_size_t size)
155 {
156 	vm_offset_t addr;
157 
158 	TSENTER();
159 	size = round_page(size);
160 	if (vmem_xalloc(kernel_arena, size, 0, 0, 0, VMEM_ADDR_MIN,
161 	    VMEM_ADDR_MAX, M_BESTFIT | M_NOWAIT, &addr))
162 		return (0);
163 	TSEXIT();
164 
165 	return (addr);
166 }
167 
168 /*
169  *	kva_alloc_aligned:
170  *
171  *	Allocate a virtual address range as in kva_alloc where the base
172  *	address is aligned to align.
173  */
174 vm_offset_t
kva_alloc_aligned(vm_size_t size,vm_size_t align)175 kva_alloc_aligned(vm_size_t size, vm_size_t align)
176 {
177 	vm_offset_t addr;
178 
179 	TSENTER();
180 	size = round_page(size);
181 	if (vmem_xalloc(kernel_arena, size, align, 0, 0, VMEM_ADDR_MIN,
182 	    VMEM_ADDR_MAX, M_BESTFIT | M_NOWAIT, &addr))
183 		return (0);
184 	TSEXIT();
185 
186 	return (addr);
187 }
188 
189 /*
190  *	kva_free:
191  *
192  *	Release a region of kernel virtual memory allocated
193  *	with kva_alloc, and return the physical pages
194  *	associated with that region.
195  *
196  *	This routine may not block on kernel maps.
197  */
198 void
kva_free(vm_offset_t addr,vm_size_t size)199 kva_free(vm_offset_t addr, vm_size_t size)
200 {
201 
202 	size = round_page(size);
203 	vmem_xfree(kernel_arena, addr, size);
204 }
205 
206 /*
207  * Update sanitizer shadow state to reflect a new allocation.  Force inlining to
208  * help make KMSAN origin tracking more precise.
209  */
210 static __always_inline void
kmem_alloc_san(vm_offset_t addr,vm_size_t size,vm_size_t asize,int flags)211 kmem_alloc_san(vm_offset_t addr, vm_size_t size, vm_size_t asize, int flags)
212 {
213 	if ((flags & M_ZERO) == 0) {
214 		kmsan_mark((void *)addr, asize, KMSAN_STATE_UNINIT);
215 		kmsan_orig((void *)addr, asize, KMSAN_TYPE_KMEM,
216 		    KMSAN_RET_ADDR);
217 	} else {
218 		kmsan_mark((void *)addr, asize, KMSAN_STATE_INITED);
219 	}
220 	kasan_mark((void *)addr, size, asize, KASAN_KMEM_REDZONE);
221 }
222 
223 static vm_page_t
kmem_alloc_contig_pages(vm_object_t object,vm_pindex_t pindex,int domain,int pflags,u_long npages,vm_paddr_t low,vm_paddr_t high,u_long alignment,vm_paddr_t boundary,vm_memattr_t memattr)224 kmem_alloc_contig_pages(vm_object_t object, vm_pindex_t pindex, int domain,
225     int pflags, u_long npages, vm_paddr_t low, vm_paddr_t high,
226     u_long alignment, vm_paddr_t boundary, vm_memattr_t memattr)
227 {
228 	vm_page_t m;
229 	int tries;
230 	bool wait, reclaim;
231 
232 	VM_OBJECT_ASSERT_WLOCKED(object);
233 
234 	wait = (pflags & VM_ALLOC_WAITOK) != 0;
235 	reclaim = (pflags & VM_ALLOC_NORECLAIM) == 0;
236 	pflags &= ~(VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL);
237 	pflags |= VM_ALLOC_NOWAIT;
238 	for (tries = wait ? 3 : 1;; tries--) {
239 		m = vm_page_alloc_contig_domain(object, pindex, domain, pflags,
240 		    npages, low, high, alignment, boundary, memattr);
241 		if (m != NULL || tries == 0 || !reclaim)
242 			break;
243 
244 		VM_OBJECT_WUNLOCK(object);
245 		if (vm_page_reclaim_contig_domain(domain, pflags, npages,
246 		    low, high, alignment, boundary) == ENOMEM && wait)
247 			vm_wait_domain(domain);
248 		VM_OBJECT_WLOCK(object);
249 	}
250 	return (m);
251 }
252 
253 /*
254  *	Allocates a region from the kernel address map and physical pages
255  *	within the specified address range to the kernel object.  Creates a
256  *	wired mapping from this region to these pages, and returns the
257  *	region's starting virtual address.  The allocated pages are not
258  *	necessarily physically contiguous.  If M_ZERO is specified through the
259  *	given flags, then the pages are zeroed before they are mapped.
260  */
261 static void *
kmem_alloc_attr_domain(int domain,vm_size_t size,int flags,vm_paddr_t low,vm_paddr_t high,vm_memattr_t memattr)262 kmem_alloc_attr_domain(int domain, vm_size_t size, int flags, vm_paddr_t low,
263     vm_paddr_t high, vm_memattr_t memattr)
264 {
265 	vmem_t *vmem;
266 	vm_object_t object;
267 	vm_offset_t addr, i, offset;
268 	vm_page_t m;
269 	vm_size_t asize;
270 	int pflags;
271 	vm_prot_t prot;
272 
273 	object = kernel_object;
274 	asize = round_page(size);
275 	vmem = vm_dom[domain].vmd_kernel_arena;
276 	if (vmem_alloc(vmem, asize, M_BESTFIT | flags, &addr))
277 		return (0);
278 	offset = addr - VM_MIN_KERNEL_ADDRESS;
279 	pflags = malloc2vm_flags(flags) | VM_ALLOC_WIRED;
280 	prot = (flags & M_EXEC) != 0 ? VM_PROT_ALL : VM_PROT_RW;
281 	VM_OBJECT_WLOCK(object);
282 	for (i = 0; i < asize; i += PAGE_SIZE) {
283 		m = kmem_alloc_contig_pages(object, atop(offset + i),
284 		    domain, pflags, 1, low, high, PAGE_SIZE, 0, memattr);
285 		if (m == NULL) {
286 			VM_OBJECT_WUNLOCK(object);
287 			kmem_unback(object, addr, i);
288 			vmem_free(vmem, addr, asize);
289 			return (0);
290 		}
291 		KASSERT(vm_page_domain(m) == domain,
292 		    ("kmem_alloc_attr_domain: Domain mismatch %d != %d",
293 		    vm_page_domain(m), domain));
294 		if ((flags & M_ZERO) && (m->flags & PG_ZERO) == 0)
295 			pmap_zero_page(m);
296 		vm_page_valid(m);
297 		pmap_enter(kernel_pmap, addr + i, m, prot,
298 		    prot | PMAP_ENTER_WIRED, 0);
299 	}
300 	VM_OBJECT_WUNLOCK(object);
301 	kmem_alloc_san(addr, size, asize, flags);
302 	return ((void *)addr);
303 }
304 
305 void *
kmem_alloc_attr(vm_size_t size,int flags,vm_paddr_t low,vm_paddr_t high,vm_memattr_t memattr)306 kmem_alloc_attr(vm_size_t size, int flags, vm_paddr_t low, vm_paddr_t high,
307     vm_memattr_t memattr)
308 {
309 
310 	return (kmem_alloc_attr_domainset(DOMAINSET_RR(), size, flags, low,
311 	    high, memattr));
312 }
313 
314 void *
kmem_alloc_attr_domainset(struct domainset * ds,vm_size_t size,int flags,vm_paddr_t low,vm_paddr_t high,vm_memattr_t memattr)315 kmem_alloc_attr_domainset(struct domainset *ds, vm_size_t size, int flags,
316     vm_paddr_t low, vm_paddr_t high, vm_memattr_t memattr)
317 {
318 	struct vm_domainset_iter di;
319 	vm_page_t bounds[2];
320 	void *addr;
321 	int domain;
322 	int start_segind;
323 
324 	start_segind = -1;
325 
326 	vm_domainset_iter_policy_init(&di, ds, &domain, &flags);
327 	do {
328 		addr = kmem_alloc_attr_domain(domain, size, flags, low, high,
329 		    memattr);
330 		if (addr != NULL)
331 			break;
332 		if (start_segind == -1)
333 			start_segind = vm_phys_lookup_segind(low);
334 		if (vm_phys_find_range(bounds, start_segind, domain,
335 		    atop(round_page(size)), low, high) == -1) {
336 			vm_domainset_iter_ignore(&di, domain);
337 		}
338 	} while (vm_domainset_iter_policy(&di, &domain) == 0);
339 
340 	return (addr);
341 }
342 
343 /*
344  *	Allocates a region from the kernel address map and physically
345  *	contiguous pages within the specified address range to the kernel
346  *	object.  Creates a wired mapping from this region to these pages, and
347  *	returns the region's starting virtual address.  If M_ZERO is specified
348  *	through the given flags, then the pages are zeroed before they are
349  *	mapped.
350  */
351 static void *
kmem_alloc_contig_domain(int domain,vm_size_t size,int flags,vm_paddr_t low,vm_paddr_t high,u_long alignment,vm_paddr_t boundary,vm_memattr_t memattr)352 kmem_alloc_contig_domain(int domain, vm_size_t size, int flags, vm_paddr_t low,
353     vm_paddr_t high, u_long alignment, vm_paddr_t boundary,
354     vm_memattr_t memattr)
355 {
356 	vmem_t *vmem;
357 	vm_object_t object;
358 	vm_offset_t addr, offset, tmp;
359 	vm_page_t end_m, m;
360 	vm_size_t asize;
361 	u_long npages;
362 	int pflags;
363 
364 	object = kernel_object;
365 	asize = round_page(size);
366 	vmem = vm_dom[domain].vmd_kernel_arena;
367 	if (vmem_alloc(vmem, asize, flags | M_BESTFIT, &addr))
368 		return (NULL);
369 	offset = addr - VM_MIN_KERNEL_ADDRESS;
370 	pflags = malloc2vm_flags(flags) | VM_ALLOC_WIRED;
371 	npages = atop(asize);
372 	VM_OBJECT_WLOCK(object);
373 	m = kmem_alloc_contig_pages(object, atop(offset), domain,
374 	    pflags, npages, low, high, alignment, boundary, memattr);
375 	if (m == NULL) {
376 		VM_OBJECT_WUNLOCK(object);
377 		vmem_free(vmem, addr, asize);
378 		return (NULL);
379 	}
380 	KASSERT(vm_page_domain(m) == domain,
381 	    ("kmem_alloc_contig_domain: Domain mismatch %d != %d",
382 	    vm_page_domain(m), domain));
383 	end_m = m + npages;
384 	tmp = addr;
385 	for (; m < end_m; m++) {
386 		if ((flags & M_ZERO) && (m->flags & PG_ZERO) == 0)
387 			pmap_zero_page(m);
388 		vm_page_valid(m);
389 		pmap_enter(kernel_pmap, tmp, m, VM_PROT_RW,
390 		    VM_PROT_RW | PMAP_ENTER_WIRED, 0);
391 		tmp += PAGE_SIZE;
392 	}
393 	VM_OBJECT_WUNLOCK(object);
394 	kmem_alloc_san(addr, size, asize, flags);
395 	return ((void *)addr);
396 }
397 
398 void *
kmem_alloc_contig(vm_size_t size,int flags,vm_paddr_t low,vm_paddr_t high,u_long alignment,vm_paddr_t boundary,vm_memattr_t memattr)399 kmem_alloc_contig(vm_size_t size, int flags, vm_paddr_t low, vm_paddr_t high,
400     u_long alignment, vm_paddr_t boundary, vm_memattr_t memattr)
401 {
402 
403 	return (kmem_alloc_contig_domainset(DOMAINSET_RR(), size, flags, low,
404 	    high, alignment, boundary, memattr));
405 }
406 
407 void *
kmem_alloc_contig_domainset(struct domainset * ds,vm_size_t size,int flags,vm_paddr_t low,vm_paddr_t high,u_long alignment,vm_paddr_t boundary,vm_memattr_t memattr)408 kmem_alloc_contig_domainset(struct domainset *ds, vm_size_t size, int flags,
409     vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary,
410     vm_memattr_t memattr)
411 {
412 	struct vm_domainset_iter di;
413 	vm_page_t bounds[2];
414 	void *addr;
415 	int domain;
416 	int start_segind;
417 
418 	start_segind = -1;
419 
420 	vm_domainset_iter_policy_init(&di, ds, &domain, &flags);
421 	do {
422 		addr = kmem_alloc_contig_domain(domain, size, flags, low, high,
423 		    alignment, boundary, memattr);
424 		if (addr != NULL)
425 			break;
426 		if (start_segind == -1)
427 			start_segind = vm_phys_lookup_segind(low);
428 		if (vm_phys_find_range(bounds, start_segind, domain,
429 		    atop(round_page(size)), low, high) == -1) {
430 			vm_domainset_iter_ignore(&di, domain);
431 		}
432 	} while (vm_domainset_iter_policy(&di, &domain) == 0);
433 
434 	return (addr);
435 }
436 
437 /*
438  *	kmem_subinit:
439  *
440  *	Initializes a map to manage a subrange
441  *	of the kernel virtual address space.
442  *
443  *	Arguments are as follows:
444  *
445  *	parent		Map to take range from
446  *	min, max	Returned endpoints of map
447  *	size		Size of range to find
448  *	superpage_align	Request that min is superpage aligned
449  */
450 void
kmem_subinit(vm_map_t map,vm_map_t parent,vm_offset_t * min,vm_offset_t * max,vm_size_t size,bool superpage_align)451 kmem_subinit(vm_map_t map, vm_map_t parent, vm_offset_t *min, vm_offset_t *max,
452     vm_size_t size, bool superpage_align)
453 {
454 	int ret;
455 
456 	size = round_page(size);
457 
458 	*min = vm_map_min(parent);
459 	ret = vm_map_find(parent, NULL, 0, min, size, 0, superpage_align ?
460 	    VMFS_SUPER_SPACE : VMFS_ANY_SPACE, VM_PROT_ALL, VM_PROT_ALL,
461 	    MAP_ACC_NO_CHARGE);
462 	if (ret != KERN_SUCCESS)
463 		panic("kmem_subinit: bad status return of %d", ret);
464 	*max = *min + size;
465 	vm_map_init(map, vm_map_pmap(parent), *min, *max);
466 	if (vm_map_submap(parent, *min, *max, map) != KERN_SUCCESS)
467 		panic("kmem_subinit: unable to change range to submap");
468 }
469 
470 /*
471  *	kmem_malloc_domain:
472  *
473  *	Allocate wired-down pages in the kernel's address space.
474  */
475 static void *
kmem_malloc_domain(int domain,vm_size_t size,int flags)476 kmem_malloc_domain(int domain, vm_size_t size, int flags)
477 {
478 	vmem_t *arena;
479 	vm_offset_t addr;
480 	vm_size_t asize;
481 	int rv;
482 
483 	if (__predict_true((flags & (M_EXEC | M_NEVERFREED)) == 0))
484 		arena = vm_dom[domain].vmd_kernel_arena;
485 	else if ((flags & M_EXEC) != 0)
486 		arena = vm_dom[domain].vmd_kernel_rwx_arena;
487 	else
488 		arena = vm_dom[domain].vmd_kernel_nofree_arena;
489 	asize = round_page(size);
490 	if (vmem_alloc(arena, asize, flags | M_BESTFIT, &addr))
491 		return (0);
492 
493 	rv = kmem_back_domain(domain, kernel_object, addr, asize, flags);
494 	if (rv != KERN_SUCCESS) {
495 		vmem_free(arena, addr, asize);
496 		return (0);
497 	}
498 	kasan_mark((void *)addr, size, asize, KASAN_KMEM_REDZONE);
499 	return ((void *)addr);
500 }
501 
502 void *
kmem_malloc(vm_size_t size,int flags)503 kmem_malloc(vm_size_t size, int flags)
504 {
505 	void * p;
506 
507 	TSENTER();
508 	p = kmem_malloc_domainset(DOMAINSET_RR(), size, flags);
509 	TSEXIT();
510 	return (p);
511 }
512 
513 void *
kmem_malloc_domainset(struct domainset * ds,vm_size_t size,int flags)514 kmem_malloc_domainset(struct domainset *ds, vm_size_t size, int flags)
515 {
516 	struct vm_domainset_iter di;
517 	void *addr;
518 	int domain;
519 
520 	vm_domainset_iter_policy_init(&di, ds, &domain, &flags);
521 	do {
522 		addr = kmem_malloc_domain(domain, size, flags);
523 		if (addr != NULL)
524 			break;
525 	} while (vm_domainset_iter_policy(&di, &domain) == 0);
526 
527 	return (addr);
528 }
529 
530 /*
531  *	kmem_back_domain:
532  *
533  *	Allocate physical pages from the specified domain for the specified
534  *	virtual address range.
535  */
536 int
kmem_back_domain(int domain,vm_object_t object,vm_offset_t addr,vm_size_t size,int flags)537 kmem_back_domain(int domain, vm_object_t object, vm_offset_t addr,
538     vm_size_t size, int flags)
539 {
540 	struct pctrie_iter pages;
541 	vm_offset_t offset, i;
542 	vm_page_t m;
543 	vm_prot_t prot;
544 	int pflags;
545 
546 	KASSERT(object == kernel_object,
547 	    ("kmem_back_domain: only supports kernel object."));
548 
549 	offset = addr - VM_MIN_KERNEL_ADDRESS;
550 	pflags = malloc2vm_flags(flags) | VM_ALLOC_WIRED;
551 	pflags &= ~(VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL);
552 	if (flags & M_WAITOK)
553 		pflags |= VM_ALLOC_WAITFAIL;
554 	prot = (flags & M_EXEC) != 0 ? VM_PROT_ALL : VM_PROT_RW;
555 
556 	i = 0;
557 	vm_page_iter_init(&pages, object);
558 	VM_OBJECT_WLOCK(object);
559 retry:
560 	for (; i < size; i += PAGE_SIZE) {
561 		m = vm_page_alloc_domain_iter(object, atop(offset + i),
562 		    domain, pflags, &pages);
563 
564 		/*
565 		 * Ran out of space, free everything up and return. Don't need
566 		 * to lock page queues here as we know that the pages we got
567 		 * aren't on any queues.
568 		 */
569 		if (m == NULL) {
570 			if ((flags & M_NOWAIT) == 0)
571 				goto retry;
572 			VM_OBJECT_WUNLOCK(object);
573 			kmem_unback(object, addr, i);
574 			return (KERN_NO_SPACE);
575 		}
576 		KASSERT(vm_page_domain(m) == domain,
577 		    ("kmem_back_domain: Domain mismatch %d != %d",
578 		    vm_page_domain(m), domain));
579 		if (flags & M_ZERO && (m->flags & PG_ZERO) == 0)
580 			pmap_zero_page(m);
581 		KASSERT((m->oflags & VPO_UNMANAGED) != 0,
582 		    ("kmem_malloc: page %p is managed", m));
583 		vm_page_valid(m);
584 		pmap_enter(kernel_pmap, addr + i, m, prot,
585 		    prot | PMAP_ENTER_WIRED, 0);
586 		if (__predict_false((prot & VM_PROT_EXECUTE) != 0))
587 			m->oflags |= VPO_KMEM_EXEC;
588 	}
589 	VM_OBJECT_WUNLOCK(object);
590 	kmem_alloc_san(addr, size, size, flags);
591 	return (KERN_SUCCESS);
592 }
593 
594 /*
595  *	kmem_back:
596  *
597  *	Allocate physical pages for the specified virtual address range.
598  */
599 int
kmem_back(vm_object_t object,vm_offset_t addr,vm_size_t size,int flags)600 kmem_back(vm_object_t object, vm_offset_t addr, vm_size_t size, int flags)
601 {
602 	vm_offset_t end, next, start;
603 	int domain, rv;
604 
605 	KASSERT(object == kernel_object,
606 	    ("kmem_back: only supports kernel object."));
607 
608 	for (start = addr, end = addr + size; addr < end; addr = next) {
609 		/*
610 		 * We must ensure that pages backing a given large virtual page
611 		 * all come from the same physical domain.
612 		 */
613 		if (vm_ndomains > 1) {
614 			domain = (addr >> KVA_QUANTUM_SHIFT) % vm_ndomains;
615 			while (VM_DOMAIN_EMPTY(domain))
616 				domain++;
617 			next = roundup2(addr + 1, KVA_QUANTUM);
618 			if (next > end || next < start)
619 				next = end;
620 		} else {
621 			domain = 0;
622 			next = end;
623 		}
624 		rv = kmem_back_domain(domain, object, addr, next - addr, flags);
625 		if (rv != KERN_SUCCESS) {
626 			kmem_unback(object, start, addr - start);
627 			break;
628 		}
629 	}
630 	return (rv);
631 }
632 
633 /*
634  *	kmem_unback:
635  *
636  *	Unmap and free the physical pages underlying the specified virtual
637  *	address range.
638  *
639  *	A physical page must exist within the specified object at each index
640  *	that is being unmapped.
641  */
642 static struct vmem *
_kmem_unback(vm_object_t object,vm_offset_t addr,vm_size_t size)643 _kmem_unback(vm_object_t object, vm_offset_t addr, vm_size_t size)
644 {
645 	struct pctrie_iter pages;
646 	struct vmem *arena;
647 	vm_page_t m;
648 	vm_offset_t end, offset;
649 	int domain;
650 
651 	KASSERT(object == kernel_object,
652 	    ("kmem_unback: only supports kernel object."));
653 
654 	if (size == 0)
655 		return (NULL);
656 	pmap_remove(kernel_pmap, addr, addr + size);
657 	offset = addr - VM_MIN_KERNEL_ADDRESS;
658 	end = offset + size;
659 	vm_page_iter_init(&pages, object);
660 	VM_OBJECT_WLOCK(object);
661 	m = vm_radix_iter_lookup(&pages, atop(offset));
662 	domain = vm_page_domain(m);
663 	if (__predict_true((m->oflags & VPO_KMEM_EXEC) == 0))
664 		arena = vm_dom[domain].vmd_kernel_arena;
665 	else
666 		arena = vm_dom[domain].vmd_kernel_rwx_arena;
667 	for (; offset < end; offset += PAGE_SIZE,
668 	    m = vm_radix_iter_lookup(&pages, atop(offset))) {
669 		vm_page_xbusy_claim(m);
670 		vm_page_unwire_noq(m);
671 		vm_page_iter_free(&pages, m);
672 	}
673 	VM_OBJECT_WUNLOCK(object);
674 
675 	return (arena);
676 }
677 
678 void
kmem_unback(vm_object_t object,vm_offset_t addr,vm_size_t size)679 kmem_unback(vm_object_t object, vm_offset_t addr, vm_size_t size)
680 {
681 
682 	(void)_kmem_unback(object, addr, size);
683 }
684 
685 /*
686  *	kmem_free:
687  *
688  *	Free memory allocated with kmem_malloc.  The size must match the
689  *	original allocation.
690  */
691 void
kmem_free(void * addr,vm_size_t size)692 kmem_free(void *addr, vm_size_t size)
693 {
694 	struct vmem *arena;
695 
696 	size = round_page(size);
697 	kasan_mark(addr, size, size, 0);
698 	arena = _kmem_unback(kernel_object, (uintptr_t)addr, size);
699 	if (arena != NULL)
700 		vmem_free(arena, (uintptr_t)addr, size);
701 }
702 
703 /*
704  *	kmap_alloc_wait:
705  *
706  *	Allocates pageable memory from a sub-map of the kernel.  If the submap
707  *	has no room, the caller sleeps waiting for more memory in the submap.
708  *
709  *	This routine may block.
710  */
711 vm_offset_t
kmap_alloc_wait(vm_map_t map,vm_size_t size)712 kmap_alloc_wait(vm_map_t map, vm_size_t size)
713 {
714 	vm_offset_t addr;
715 
716 	size = round_page(size);
717 	if (!swap_reserve(size))
718 		return (0);
719 
720 	for (;;) {
721 		/*
722 		 * To make this work for more than one map, use the map's lock
723 		 * to lock out sleepers/wakers.
724 		 */
725 		vm_map_lock(map);
726 		addr = vm_map_findspace(map, vm_map_min(map), size);
727 		if (addr + size <= vm_map_max(map))
728 			break;
729 		/* no space now; see if we can ever get space */
730 		if (vm_map_max(map) - vm_map_min(map) < size) {
731 			vm_map_unlock(map);
732 			swap_release(size);
733 			return (0);
734 		}
735 		vm_map_modflags(map, MAP_NEEDS_WAKEUP, 0);
736 		vm_map_unlock_and_wait(map, 0);
737 	}
738 	vm_map_insert(map, NULL, 0, addr, addr + size, VM_PROT_RW, VM_PROT_RW,
739 	    MAP_ACC_CHARGED);
740 	vm_map_unlock(map);
741 	return (addr);
742 }
743 
744 /*
745  *	kmap_free_wakeup:
746  *
747  *	Returns memory to a submap of the kernel, and wakes up any processes
748  *	waiting for memory in that map.
749  */
750 void
kmap_free_wakeup(vm_map_t map,vm_offset_t addr,vm_size_t size)751 kmap_free_wakeup(vm_map_t map, vm_offset_t addr, vm_size_t size)
752 {
753 
754 	vm_map_lock(map);
755 	(void) vm_map_delete(map, trunc_page(addr), round_page(addr + size));
756 	if ((map->flags & MAP_NEEDS_WAKEUP) != 0) {
757 		vm_map_modflags(map, 0, MAP_NEEDS_WAKEUP);
758 		vm_map_wakeup(map);
759 	}
760 	vm_map_unlock(map);
761 }
762 
763 void
kmem_init_zero_region(void)764 kmem_init_zero_region(void)
765 {
766 	vm_offset_t addr, i;
767 	vm_page_t m;
768 
769 	/*
770 	 * Map a single physical page of zeros to a larger virtual range.
771 	 * This requires less looping in places that want large amounts of
772 	 * zeros, while not using much more physical resources.
773 	 */
774 	addr = kva_alloc(ZERO_REGION_SIZE);
775 	m = vm_page_alloc_noobj(VM_ALLOC_WIRED | VM_ALLOC_ZERO |
776 	    VM_ALLOC_NOFREE);
777 	for (i = 0; i < ZERO_REGION_SIZE; i += PAGE_SIZE)
778 		pmap_qenter(addr + i, &m, 1);
779 	pmap_protect(kernel_pmap, addr, addr + ZERO_REGION_SIZE, VM_PROT_READ);
780 
781 	zero_region = (const void *)addr;
782 }
783 
784 /*
785  * Import KVA from the kernel map into the kernel arena.
786  */
787 static int
kva_import(void * unused,vmem_size_t size,int flags,vmem_addr_t * addrp)788 kva_import(void *unused, vmem_size_t size, int flags, vmem_addr_t *addrp)
789 {
790 	vm_offset_t addr;
791 	int result;
792 
793 	TSENTER();
794 	KASSERT((size % KVA_QUANTUM) == 0,
795 	    ("kva_import: Size %jd is not a multiple of %d",
796 	    (intmax_t)size, (int)KVA_QUANTUM));
797 	addr = vm_map_min(kernel_map);
798 	result = vm_map_find(kernel_map, NULL, 0, &addr, size, 0,
799 	    VMFS_SUPER_SPACE, VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
800 	if (result != KERN_SUCCESS) {
801 		TSEXIT();
802                 return (ENOMEM);
803 	}
804 
805 	*addrp = addr;
806 
807 	TSEXIT();
808 	return (0);
809 }
810 
811 /*
812  * Import KVA from a parent arena into a per-domain arena.  Imports must be
813  * KVA_QUANTUM-aligned and a multiple of KVA_QUANTUM in size.
814  */
815 static int
kva_import_domain(void * arena,vmem_size_t size,int flags,vmem_addr_t * addrp)816 kva_import_domain(void *arena, vmem_size_t size, int flags, vmem_addr_t *addrp)
817 {
818 
819 	KASSERT((size % KVA_QUANTUM) == 0,
820 	    ("kva_import_domain: Size %jd is not a multiple of %d",
821 	    (intmax_t)size, (int)KVA_QUANTUM));
822 	return (vmem_xalloc(arena, size, KVA_QUANTUM, 0, 0, VMEM_ADDR_MIN,
823 	    VMEM_ADDR_MAX, flags, addrp));
824 }
825 
826 /*
827  * 	kmem_init:
828  *
829  *	Create the kernel map; insert a mapping covering kernel text,
830  *	data, bss, and all space allocated thus far (`boostrap' data).  The
831  *	new map will thus map the range between VM_MIN_KERNEL_ADDRESS and
832  *	`start' as allocated, and the range between `start' and `end' as free.
833  *	Create the kernel vmem arena and its per-domain children.
834  */
835 void
kmem_init(vm_offset_t start,vm_offset_t end)836 kmem_init(vm_offset_t start, vm_offset_t end)
837 {
838 	vm_size_t quantum;
839 	int domain;
840 
841 	vm_map_init_system(kernel_map, kernel_pmap, VM_MIN_KERNEL_ADDRESS, end);
842 	vm_map_lock(kernel_map);
843 	/* N.B.: cannot use kgdb to debug, starting with this assignment ... */
844 	(void)vm_map_insert(kernel_map, NULL, 0,
845 #ifdef __amd64__
846 	    KERNBASE,
847 #else
848 	    VM_MIN_KERNEL_ADDRESS,
849 #endif
850 	    start, VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
851 	/* ... and ending with the completion of the above `insert' */
852 
853 #ifdef __amd64__
854 	/*
855 	 * Mark KVA used for the page array as allocated.  Other platforms
856 	 * that handle vm_page_array allocation can simply adjust virtual_avail
857 	 * instead.
858 	 */
859 	(void)vm_map_insert(kernel_map, NULL, 0, (vm_offset_t)vm_page_array,
860 	    (vm_offset_t)vm_page_array + round_2mpage(vm_page_array_size *
861 	    sizeof(struct vm_page)),
862 	    VM_PROT_RW, VM_PROT_RW, MAP_NOFAULT);
863 #endif
864 	vm_map_unlock(kernel_map);
865 
866 	/*
867 	 * Use a large import quantum on NUMA systems.  This helps minimize
868 	 * interleaving of superpages, reducing internal fragmentation within
869 	 * the per-domain arenas.
870 	 */
871 	if (vm_ndomains > 1 && PMAP_HAS_DMAP)
872 		quantum = KVA_NUMA_IMPORT_QUANTUM;
873 	else
874 		quantum = KVA_QUANTUM;
875 
876 	/*
877 	 * Initialize the kernel_arena.  This can grow on demand.
878 	 */
879 	vmem_init(kernel_arena, "kernel arena", 0, 0, PAGE_SIZE, 0, 0);
880 	vmem_set_import(kernel_arena, kva_import, NULL, NULL, quantum);
881 
882 	for (domain = 0; domain < vm_ndomains; domain++) {
883 		/*
884 		 * Initialize the per-domain arenas.  These are used to color
885 		 * the KVA space in a way that ensures that virtual large pages
886 		 * are backed by memory from the same physical domain,
887 		 * maximizing the potential for superpage promotion.
888 		 */
889 		vm_dom[domain].vmd_kernel_arena = vmem_create(
890 		    "kernel arena domain", 0, 0, PAGE_SIZE, 0, M_WAITOK);
891 		vmem_set_import(vm_dom[domain].vmd_kernel_arena,
892 		    kva_import_domain, NULL, kernel_arena, quantum);
893 
894 		/*
895 		 * In architectures with superpages, maintain separate arenas
896 		 * for allocations with permissions that differ from the
897 		 * "standard" read/write permissions used for kernel memory
898 		 * and pages that are never released, so as not to inhibit
899 		 * superpage promotion.
900 		 *
901 		 * Use the base import quantum since these arenas are rarely
902 		 * used.
903 		 */
904 #if VM_NRESERVLEVEL > 0
905 		vm_dom[domain].vmd_kernel_rwx_arena = vmem_create(
906 		    "kernel rwx arena domain", 0, 0, PAGE_SIZE, 0, M_WAITOK);
907 		vm_dom[domain].vmd_kernel_nofree_arena = vmem_create(
908 		    "kernel NOFREE arena domain", 0, 0, PAGE_SIZE, 0, M_WAITOK);
909 		vmem_set_import(vm_dom[domain].vmd_kernel_rwx_arena,
910 		    kva_import_domain, (vmem_release_t *)vmem_xfree,
911 		    kernel_arena, KVA_QUANTUM);
912 		vmem_set_import(vm_dom[domain].vmd_kernel_nofree_arena,
913 		    kva_import_domain, (vmem_release_t *)vmem_xfree,
914 		    kernel_arena, KVA_QUANTUM);
915 #else
916 		vm_dom[domain].vmd_kernel_rwx_arena =
917 		    vm_dom[domain].vmd_kernel_arena;
918 		vm_dom[domain].vmd_kernel_nofree_arena =
919 		    vm_dom[domain].vmd_kernel_arena;
920 #endif
921 	}
922 
923 	/*
924 	 * This must be the very first call so that the virtual address
925 	 * space used for early allocations is properly marked used in
926 	 * the map.
927 	 */
928 	uma_startup2();
929 }
930 
931 /*
932  *	kmem_bootstrap_free:
933  *
934  *	Free pages backing preloaded data (e.g., kernel modules) to the
935  *	system.  Currently only supported on platforms that create a
936  *	vm_phys segment for preloaded data.
937  */
938 void
kmem_bootstrap_free(vm_offset_t start,vm_size_t size)939 kmem_bootstrap_free(vm_offset_t start, vm_size_t size)
940 {
941 #if defined(__i386__) || defined(__amd64__)
942 	struct vm_domain *vmd;
943 	vm_offset_t end, va;
944 	vm_paddr_t pa;
945 	vm_page_t m;
946 
947 	end = trunc_page(start + size);
948 	start = round_page(start);
949 
950 #ifdef __amd64__
951 	/*
952 	 * Preloaded files do not have execute permissions by default on amd64.
953 	 * Restore the default permissions to ensure that the direct map alias
954 	 * is updated.
955 	 */
956 	pmap_change_prot(start, end - start, VM_PROT_RW);
957 #endif
958 	for (va = start; va < end; va += PAGE_SIZE) {
959 		pa = pmap_kextract(va);
960 		m = PHYS_TO_VM_PAGE(pa);
961 
962 		vmd = vm_pagequeue_domain(m);
963 		vm_domain_free_lock(vmd);
964 		vm_phys_free_pages(m, m->pool, 0);
965 		vm_domain_free_unlock(vmd);
966 
967 		vm_domain_freecnt_inc(vmd, 1);
968 		vm_cnt.v_page_count++;
969 	}
970 	pmap_remove(kernel_pmap, start, end);
971 	(void)vmem_add(kernel_arena, start, end - start, M_WAITOK);
972 #endif
973 }
974 
975 #ifdef PMAP_WANT_ACTIVE_CPUS_NAIVE
976 void
pmap_active_cpus(pmap_t pmap,cpuset_t * res)977 pmap_active_cpus(pmap_t pmap, cpuset_t *res)
978 {
979 	struct thread *td;
980 	struct proc *p;
981 	struct vmspace *vm;
982 	int c;
983 
984 	CPU_ZERO(res);
985 	CPU_FOREACH(c) {
986 		td = cpuid_to_pcpu[c]->pc_curthread;
987 		p = td->td_proc;
988 		if (p == NULL)
989 			continue;
990 		vm = vmspace_acquire_ref(p);
991 		if (vm == NULL)
992 			continue;
993 		if (pmap == vmspace_pmap(vm))
994 			CPU_SET(c, res);
995 		vmspace_free(vm);
996 	}
997 }
998 #endif
999 
1000 /*
1001  * Allow userspace to directly trigger the VM drain routine for testing
1002  * purposes.
1003  */
1004 static int
debug_vm_lowmem(SYSCTL_HANDLER_ARGS)1005 debug_vm_lowmem(SYSCTL_HANDLER_ARGS)
1006 {
1007 	int error, i;
1008 
1009 	i = 0;
1010 	error = sysctl_handle_int(oidp, &i, 0, req);
1011 	if (error != 0)
1012 		return (error);
1013 	if ((i & ~(VM_LOW_KMEM | VM_LOW_PAGES)) != 0)
1014 		return (EINVAL);
1015 	if (i != 0)
1016 		EVENTHANDLER_INVOKE(vm_lowmem, i);
1017 	return (0);
1018 }
1019 SYSCTL_PROC(_debug, OID_AUTO, vm_lowmem,
1020     CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, 0, debug_vm_lowmem, "I",
1021     "set to trigger vm_lowmem event with given flags");
1022 
1023 static int
debug_uma_reclaim(SYSCTL_HANDLER_ARGS)1024 debug_uma_reclaim(SYSCTL_HANDLER_ARGS)
1025 {
1026 	int error, i;
1027 
1028 	i = 0;
1029 	error = sysctl_handle_int(oidp, &i, 0, req);
1030 	if (error != 0 || req->newptr == NULL)
1031 		return (error);
1032 	if (i != UMA_RECLAIM_TRIM && i != UMA_RECLAIM_DRAIN &&
1033 	    i != UMA_RECLAIM_DRAIN_CPU)
1034 		return (EINVAL);
1035 	uma_reclaim(i);
1036 	return (0);
1037 }
1038 SYSCTL_PROC(_debug, OID_AUTO, uma_reclaim,
1039     CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, 0, debug_uma_reclaim, "I",
1040     "set to generate request to reclaim uma caches");
1041 
1042 static int
debug_uma_reclaim_domain(SYSCTL_HANDLER_ARGS)1043 debug_uma_reclaim_domain(SYSCTL_HANDLER_ARGS)
1044 {
1045 	int domain, error, request;
1046 
1047 	request = 0;
1048 	error = sysctl_handle_int(oidp, &request, 0, req);
1049 	if (error != 0 || req->newptr == NULL)
1050 		return (error);
1051 
1052 	domain = request >> 4;
1053 	request &= 0xf;
1054 	if (request != UMA_RECLAIM_TRIM && request != UMA_RECLAIM_DRAIN &&
1055 	    request != UMA_RECLAIM_DRAIN_CPU)
1056 		return (EINVAL);
1057 	if (domain < 0 || domain >= vm_ndomains)
1058 		return (EINVAL);
1059 	uma_reclaim_domain(request, domain);
1060 	return (0);
1061 }
1062 SYSCTL_PROC(_debug, OID_AUTO, uma_reclaim_domain,
1063     CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, 0,
1064     debug_uma_reclaim_domain, "I",
1065     "");
1066