1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3
4 /* ethtool support for ice */
5
6 #include "ice.h"
7 #include "ice_ethtool.h"
8 #include "ice_flow.h"
9 #include "ice_fltr.h"
10 #include "ice_lib.h"
11 #include "ice_dcb_lib.h"
12 #include <net/dcbnl.h>
13
14 struct ice_stats {
15 char stat_string[ETH_GSTRING_LEN];
16 int sizeof_stat;
17 int stat_offset;
18 };
19
20 #define ICE_STAT(_type, _name, _stat) { \
21 .stat_string = _name, \
22 .sizeof_stat = sizeof_field(_type, _stat), \
23 .stat_offset = offsetof(_type, _stat) \
24 }
25
26 #define ICE_VSI_STAT(_name, _stat) \
27 ICE_STAT(struct ice_vsi, _name, _stat)
28 #define ICE_PF_STAT(_name, _stat) \
29 ICE_STAT(struct ice_pf, _name, _stat)
30
ice_q_stats_len(struct net_device * netdev)31 static int ice_q_stats_len(struct net_device *netdev)
32 {
33 struct ice_netdev_priv *np = netdev_priv(netdev);
34
35 return ((np->vsi->alloc_txq + np->vsi->alloc_rxq) *
36 (sizeof(struct ice_q_stats) / sizeof(u64)));
37 }
38
39 #define ICE_PF_STATS_LEN ARRAY_SIZE(ice_gstrings_pf_stats)
40 #define ICE_VSI_STATS_LEN ARRAY_SIZE(ice_gstrings_vsi_stats)
41
42 #define ICE_PFC_STATS_LEN ( \
43 (sizeof_field(struct ice_pf, stats.priority_xoff_rx) + \
44 sizeof_field(struct ice_pf, stats.priority_xon_rx) + \
45 sizeof_field(struct ice_pf, stats.priority_xoff_tx) + \
46 sizeof_field(struct ice_pf, stats.priority_xon_tx)) \
47 / sizeof(u64))
48 #define ICE_ALL_STATS_LEN(n) (ICE_PF_STATS_LEN + ICE_PFC_STATS_LEN + \
49 ICE_VSI_STATS_LEN + ice_q_stats_len(n))
50
51 static const struct ice_stats ice_gstrings_vsi_stats[] = {
52 ICE_VSI_STAT("rx_unicast", eth_stats.rx_unicast),
53 ICE_VSI_STAT("tx_unicast", eth_stats.tx_unicast),
54 ICE_VSI_STAT("rx_multicast", eth_stats.rx_multicast),
55 ICE_VSI_STAT("tx_multicast", eth_stats.tx_multicast),
56 ICE_VSI_STAT("rx_broadcast", eth_stats.rx_broadcast),
57 ICE_VSI_STAT("tx_broadcast", eth_stats.tx_broadcast),
58 ICE_VSI_STAT("rx_bytes", eth_stats.rx_bytes),
59 ICE_VSI_STAT("tx_bytes", eth_stats.tx_bytes),
60 ICE_VSI_STAT("rx_dropped", eth_stats.rx_discards),
61 ICE_VSI_STAT("rx_unknown_protocol", eth_stats.rx_unknown_protocol),
62 ICE_VSI_STAT("rx_alloc_fail", rx_buf_failed),
63 ICE_VSI_STAT("rx_pg_alloc_fail", rx_page_failed),
64 ICE_VSI_STAT("tx_errors", eth_stats.tx_errors),
65 ICE_VSI_STAT("tx_linearize", tx_linearize),
66 ICE_VSI_STAT("tx_busy", tx_busy),
67 ICE_VSI_STAT("tx_restart", tx_restart),
68 };
69
70 enum ice_ethtool_test_id {
71 ICE_ETH_TEST_REG = 0,
72 ICE_ETH_TEST_EEPROM,
73 ICE_ETH_TEST_INTR,
74 ICE_ETH_TEST_LOOP,
75 ICE_ETH_TEST_LINK,
76 };
77
78 static const char ice_gstrings_test[][ETH_GSTRING_LEN] = {
79 "Register test (offline)",
80 "EEPROM test (offline)",
81 "Interrupt test (offline)",
82 "Loopback test (offline)",
83 "Link test (on/offline)",
84 };
85
86 #define ICE_TEST_LEN (sizeof(ice_gstrings_test) / ETH_GSTRING_LEN)
87
88 /* These PF_STATs might look like duplicates of some NETDEV_STATs,
89 * but they aren't. This device is capable of supporting multiple
90 * VSIs/netdevs on a single PF. The NETDEV_STATs are for individual
91 * netdevs whereas the PF_STATs are for the physical function that's
92 * hosting these netdevs.
93 *
94 * The PF_STATs are appended to the netdev stats only when ethtool -S
95 * is queried on the base PF netdev.
96 */
97 static const struct ice_stats ice_gstrings_pf_stats[] = {
98 ICE_PF_STAT("rx_bytes.nic", stats.eth.rx_bytes),
99 ICE_PF_STAT("tx_bytes.nic", stats.eth.tx_bytes),
100 ICE_PF_STAT("rx_unicast.nic", stats.eth.rx_unicast),
101 ICE_PF_STAT("tx_unicast.nic", stats.eth.tx_unicast),
102 ICE_PF_STAT("rx_multicast.nic", stats.eth.rx_multicast),
103 ICE_PF_STAT("tx_multicast.nic", stats.eth.tx_multicast),
104 ICE_PF_STAT("rx_broadcast.nic", stats.eth.rx_broadcast),
105 ICE_PF_STAT("tx_broadcast.nic", stats.eth.tx_broadcast),
106 ICE_PF_STAT("tx_errors.nic", stats.eth.tx_errors),
107 ICE_PF_STAT("tx_timeout.nic", tx_timeout_count),
108 ICE_PF_STAT("rx_size_64.nic", stats.rx_size_64),
109 ICE_PF_STAT("tx_size_64.nic", stats.tx_size_64),
110 ICE_PF_STAT("rx_size_127.nic", stats.rx_size_127),
111 ICE_PF_STAT("tx_size_127.nic", stats.tx_size_127),
112 ICE_PF_STAT("rx_size_255.nic", stats.rx_size_255),
113 ICE_PF_STAT("tx_size_255.nic", stats.tx_size_255),
114 ICE_PF_STAT("rx_size_511.nic", stats.rx_size_511),
115 ICE_PF_STAT("tx_size_511.nic", stats.tx_size_511),
116 ICE_PF_STAT("rx_size_1023.nic", stats.rx_size_1023),
117 ICE_PF_STAT("tx_size_1023.nic", stats.tx_size_1023),
118 ICE_PF_STAT("rx_size_1522.nic", stats.rx_size_1522),
119 ICE_PF_STAT("tx_size_1522.nic", stats.tx_size_1522),
120 ICE_PF_STAT("rx_size_big.nic", stats.rx_size_big),
121 ICE_PF_STAT("tx_size_big.nic", stats.tx_size_big),
122 ICE_PF_STAT("link_xon_rx.nic", stats.link_xon_rx),
123 ICE_PF_STAT("link_xon_tx.nic", stats.link_xon_tx),
124 ICE_PF_STAT("link_xoff_rx.nic", stats.link_xoff_rx),
125 ICE_PF_STAT("link_xoff_tx.nic", stats.link_xoff_tx),
126 ICE_PF_STAT("tx_dropped_link_down.nic", stats.tx_dropped_link_down),
127 ICE_PF_STAT("rx_undersize.nic", stats.rx_undersize),
128 ICE_PF_STAT("rx_fragments.nic", stats.rx_fragments),
129 ICE_PF_STAT("rx_oversize.nic", stats.rx_oversize),
130 ICE_PF_STAT("rx_jabber.nic", stats.rx_jabber),
131 ICE_PF_STAT("rx_csum_bad.nic", hw_csum_rx_error),
132 ICE_PF_STAT("rx_eipe_error.nic", hw_rx_eipe_error),
133 ICE_PF_STAT("rx_dropped.nic", stats.eth.rx_discards),
134 ICE_PF_STAT("rx_crc_errors.nic", stats.crc_errors),
135 ICE_PF_STAT("illegal_bytes.nic", stats.illegal_bytes),
136 ICE_PF_STAT("mac_local_faults.nic", stats.mac_local_faults),
137 ICE_PF_STAT("mac_remote_faults.nic", stats.mac_remote_faults),
138 ICE_PF_STAT("fdir_sb_match.nic", stats.fd_sb_match),
139 ICE_PF_STAT("fdir_sb_status.nic", stats.fd_sb_status),
140 ICE_PF_STAT("tx_hwtstamp_skipped", ptp.tx_hwtstamp_skipped),
141 ICE_PF_STAT("tx_hwtstamp_timeouts", ptp.tx_hwtstamp_timeouts),
142 ICE_PF_STAT("tx_hwtstamp_flushed", ptp.tx_hwtstamp_flushed),
143 ICE_PF_STAT("tx_hwtstamp_discarded", ptp.tx_hwtstamp_discarded),
144 ICE_PF_STAT("late_cached_phc_updates", ptp.late_cached_phc_updates),
145 };
146
147 static const u32 ice_regs_dump_list[] = {
148 PFGEN_STATE,
149 PRTGEN_STATUS,
150 QRX_CTRL(0),
151 QINT_TQCTL(0),
152 QINT_RQCTL(0),
153 PFINT_OICR_ENA,
154 QRX_ITR(0),
155 #define GLDCB_TLPM_PCI_DM 0x000A0180
156 GLDCB_TLPM_PCI_DM,
157 #define GLDCB_TLPM_TC2PFC 0x000A0194
158 GLDCB_TLPM_TC2PFC,
159 #define TCDCB_TLPM_WAIT_DM(_i) (0x000A0080 + ((_i) * 4))
160 TCDCB_TLPM_WAIT_DM(0),
161 TCDCB_TLPM_WAIT_DM(1),
162 TCDCB_TLPM_WAIT_DM(2),
163 TCDCB_TLPM_WAIT_DM(3),
164 TCDCB_TLPM_WAIT_DM(4),
165 TCDCB_TLPM_WAIT_DM(5),
166 TCDCB_TLPM_WAIT_DM(6),
167 TCDCB_TLPM_WAIT_DM(7),
168 TCDCB_TLPM_WAIT_DM(8),
169 TCDCB_TLPM_WAIT_DM(9),
170 TCDCB_TLPM_WAIT_DM(10),
171 TCDCB_TLPM_WAIT_DM(11),
172 TCDCB_TLPM_WAIT_DM(12),
173 TCDCB_TLPM_WAIT_DM(13),
174 TCDCB_TLPM_WAIT_DM(14),
175 TCDCB_TLPM_WAIT_DM(15),
176 TCDCB_TLPM_WAIT_DM(16),
177 TCDCB_TLPM_WAIT_DM(17),
178 TCDCB_TLPM_WAIT_DM(18),
179 TCDCB_TLPM_WAIT_DM(19),
180 TCDCB_TLPM_WAIT_DM(20),
181 TCDCB_TLPM_WAIT_DM(21),
182 TCDCB_TLPM_WAIT_DM(22),
183 TCDCB_TLPM_WAIT_DM(23),
184 TCDCB_TLPM_WAIT_DM(24),
185 TCDCB_TLPM_WAIT_DM(25),
186 TCDCB_TLPM_WAIT_DM(26),
187 TCDCB_TLPM_WAIT_DM(27),
188 TCDCB_TLPM_WAIT_DM(28),
189 TCDCB_TLPM_WAIT_DM(29),
190 TCDCB_TLPM_WAIT_DM(30),
191 TCDCB_TLPM_WAIT_DM(31),
192 #define GLPCI_WATMK_CLNT_PIPEMON 0x000BFD90
193 GLPCI_WATMK_CLNT_PIPEMON,
194 #define GLPCI_CUR_CLNT_COMMON 0x000BFD84
195 GLPCI_CUR_CLNT_COMMON,
196 #define GLPCI_CUR_CLNT_PIPEMON 0x000BFD88
197 GLPCI_CUR_CLNT_PIPEMON,
198 #define GLPCI_PCIERR 0x0009DEB0
199 GLPCI_PCIERR,
200 #define GLPSM_DEBUG_CTL_STATUS 0x000B0600
201 GLPSM_DEBUG_CTL_STATUS,
202 #define GLPSM0_DEBUG_FIFO_OVERFLOW_DETECT 0x000B0680
203 GLPSM0_DEBUG_FIFO_OVERFLOW_DETECT,
204 #define GLPSM0_DEBUG_FIFO_UNDERFLOW_DETECT 0x000B0684
205 GLPSM0_DEBUG_FIFO_UNDERFLOW_DETECT,
206 #define GLPSM0_DEBUG_DT_OUT_OF_WINDOW 0x000B0688
207 GLPSM0_DEBUG_DT_OUT_OF_WINDOW,
208 #define GLPSM0_DEBUG_INTF_HW_ERROR_DETECT 0x000B069C
209 GLPSM0_DEBUG_INTF_HW_ERROR_DETECT,
210 #define GLPSM0_DEBUG_MISC_HW_ERROR_DETECT 0x000B06A0
211 GLPSM0_DEBUG_MISC_HW_ERROR_DETECT,
212 #define GLPSM1_DEBUG_FIFO_OVERFLOW_DETECT 0x000B0E80
213 GLPSM1_DEBUG_FIFO_OVERFLOW_DETECT,
214 #define GLPSM1_DEBUG_FIFO_UNDERFLOW_DETECT 0x000B0E84
215 GLPSM1_DEBUG_FIFO_UNDERFLOW_DETECT,
216 #define GLPSM1_DEBUG_SRL_FIFO_OVERFLOW_DETECT 0x000B0E88
217 GLPSM1_DEBUG_SRL_FIFO_OVERFLOW_DETECT,
218 #define GLPSM1_DEBUG_SRL_FIFO_UNDERFLOW_DETECT 0x000B0E8C
219 GLPSM1_DEBUG_SRL_FIFO_UNDERFLOW_DETECT,
220 #define GLPSM1_DEBUG_MISC_HW_ERROR_DETECT 0x000B0E90
221 GLPSM1_DEBUG_MISC_HW_ERROR_DETECT,
222 #define GLPSM2_DEBUG_FIFO_OVERFLOW_DETECT 0x000B1680
223 GLPSM2_DEBUG_FIFO_OVERFLOW_DETECT,
224 #define GLPSM2_DEBUG_FIFO_UNDERFLOW_DETECT 0x000B1684
225 GLPSM2_DEBUG_FIFO_UNDERFLOW_DETECT,
226 #define GLPSM2_DEBUG_MISC_HW_ERROR_DETECT 0x000B1688
227 GLPSM2_DEBUG_MISC_HW_ERROR_DETECT,
228 #define GLTDPU_TCLAN_COMP_BOB(_i) (0x00049ADC + ((_i) * 4))
229 GLTDPU_TCLAN_COMP_BOB(1),
230 GLTDPU_TCLAN_COMP_BOB(2),
231 GLTDPU_TCLAN_COMP_BOB(3),
232 GLTDPU_TCLAN_COMP_BOB(4),
233 GLTDPU_TCLAN_COMP_BOB(5),
234 GLTDPU_TCLAN_COMP_BOB(6),
235 GLTDPU_TCLAN_COMP_BOB(7),
236 GLTDPU_TCLAN_COMP_BOB(8),
237 #define GLTDPU_TCB_CMD_BOB(_i) (0x0004975C + ((_i) * 4))
238 GLTDPU_TCB_CMD_BOB(1),
239 GLTDPU_TCB_CMD_BOB(2),
240 GLTDPU_TCB_CMD_BOB(3),
241 GLTDPU_TCB_CMD_BOB(4),
242 GLTDPU_TCB_CMD_BOB(5),
243 GLTDPU_TCB_CMD_BOB(6),
244 GLTDPU_TCB_CMD_BOB(7),
245 GLTDPU_TCB_CMD_BOB(8),
246 #define GLTDPU_PSM_UPDATE_BOB(_i) (0x00049B5C + ((_i) * 4))
247 GLTDPU_PSM_UPDATE_BOB(1),
248 GLTDPU_PSM_UPDATE_BOB(2),
249 GLTDPU_PSM_UPDATE_BOB(3),
250 GLTDPU_PSM_UPDATE_BOB(4),
251 GLTDPU_PSM_UPDATE_BOB(5),
252 GLTDPU_PSM_UPDATE_BOB(6),
253 GLTDPU_PSM_UPDATE_BOB(7),
254 GLTDPU_PSM_UPDATE_BOB(8),
255 #define GLTCB_CMD_IN_BOB(_i) (0x000AE288 + ((_i) * 4))
256 GLTCB_CMD_IN_BOB(1),
257 GLTCB_CMD_IN_BOB(2),
258 GLTCB_CMD_IN_BOB(3),
259 GLTCB_CMD_IN_BOB(4),
260 GLTCB_CMD_IN_BOB(5),
261 GLTCB_CMD_IN_BOB(6),
262 GLTCB_CMD_IN_BOB(7),
263 GLTCB_CMD_IN_BOB(8),
264 #define GLLAN_TCLAN_FETCH_CTL_FBK_BOB_CTL(_i) (0x000FC148 + ((_i) * 4))
265 GLLAN_TCLAN_FETCH_CTL_FBK_BOB_CTL(1),
266 GLLAN_TCLAN_FETCH_CTL_FBK_BOB_CTL(2),
267 GLLAN_TCLAN_FETCH_CTL_FBK_BOB_CTL(3),
268 GLLAN_TCLAN_FETCH_CTL_FBK_BOB_CTL(4),
269 GLLAN_TCLAN_FETCH_CTL_FBK_BOB_CTL(5),
270 GLLAN_TCLAN_FETCH_CTL_FBK_BOB_CTL(6),
271 GLLAN_TCLAN_FETCH_CTL_FBK_BOB_CTL(7),
272 GLLAN_TCLAN_FETCH_CTL_FBK_BOB_CTL(8),
273 #define GLLAN_TCLAN_FETCH_CTL_SCHED_BOB_CTL(_i) (0x000FC248 + ((_i) * 4))
274 GLLAN_TCLAN_FETCH_CTL_SCHED_BOB_CTL(1),
275 GLLAN_TCLAN_FETCH_CTL_SCHED_BOB_CTL(2),
276 GLLAN_TCLAN_FETCH_CTL_SCHED_BOB_CTL(3),
277 GLLAN_TCLAN_FETCH_CTL_SCHED_BOB_CTL(4),
278 GLLAN_TCLAN_FETCH_CTL_SCHED_BOB_CTL(5),
279 GLLAN_TCLAN_FETCH_CTL_SCHED_BOB_CTL(6),
280 GLLAN_TCLAN_FETCH_CTL_SCHED_BOB_CTL(7),
281 GLLAN_TCLAN_FETCH_CTL_SCHED_BOB_CTL(8),
282 #define GLLAN_TCLAN_CACHE_CTL_BOB_CTL(_i) (0x000FC1C8 + ((_i) * 4))
283 GLLAN_TCLAN_CACHE_CTL_BOB_CTL(1),
284 GLLAN_TCLAN_CACHE_CTL_BOB_CTL(2),
285 GLLAN_TCLAN_CACHE_CTL_BOB_CTL(3),
286 GLLAN_TCLAN_CACHE_CTL_BOB_CTL(4),
287 GLLAN_TCLAN_CACHE_CTL_BOB_CTL(5),
288 GLLAN_TCLAN_CACHE_CTL_BOB_CTL(6),
289 GLLAN_TCLAN_CACHE_CTL_BOB_CTL(7),
290 GLLAN_TCLAN_CACHE_CTL_BOB_CTL(8),
291 #define GLLAN_TCLAN_FETCH_CTL_PROC_BOB_CTL(_i) (0x000FC188 + ((_i) * 4))
292 GLLAN_TCLAN_FETCH_CTL_PROC_BOB_CTL(1),
293 GLLAN_TCLAN_FETCH_CTL_PROC_BOB_CTL(2),
294 GLLAN_TCLAN_FETCH_CTL_PROC_BOB_CTL(3),
295 GLLAN_TCLAN_FETCH_CTL_PROC_BOB_CTL(4),
296 GLLAN_TCLAN_FETCH_CTL_PROC_BOB_CTL(5),
297 GLLAN_TCLAN_FETCH_CTL_PROC_BOB_CTL(6),
298 GLLAN_TCLAN_FETCH_CTL_PROC_BOB_CTL(7),
299 GLLAN_TCLAN_FETCH_CTL_PROC_BOB_CTL(8),
300 #define GLLAN_TCLAN_FETCH_CTL_PCIE_RD_BOB_CTL(_i) (0x000FC288 + ((_i) * 4))
301 GLLAN_TCLAN_FETCH_CTL_PCIE_RD_BOB_CTL(1),
302 GLLAN_TCLAN_FETCH_CTL_PCIE_RD_BOB_CTL(2),
303 GLLAN_TCLAN_FETCH_CTL_PCIE_RD_BOB_CTL(3),
304 GLLAN_TCLAN_FETCH_CTL_PCIE_RD_BOB_CTL(4),
305 GLLAN_TCLAN_FETCH_CTL_PCIE_RD_BOB_CTL(5),
306 GLLAN_TCLAN_FETCH_CTL_PCIE_RD_BOB_CTL(6),
307 GLLAN_TCLAN_FETCH_CTL_PCIE_RD_BOB_CTL(7),
308 GLLAN_TCLAN_FETCH_CTL_PCIE_RD_BOB_CTL(8),
309 #define PRTDCB_TCUPM_REG_CM(_i) (0x000BC360 + ((_i) * 4))
310 PRTDCB_TCUPM_REG_CM(0),
311 PRTDCB_TCUPM_REG_CM(1),
312 PRTDCB_TCUPM_REG_CM(2),
313 PRTDCB_TCUPM_REG_CM(3),
314 #define PRTDCB_TCUPM_REG_DM(_i) (0x000BC3A0 + ((_i) * 4))
315 PRTDCB_TCUPM_REG_DM(0),
316 PRTDCB_TCUPM_REG_DM(1),
317 PRTDCB_TCUPM_REG_DM(2),
318 PRTDCB_TCUPM_REG_DM(3),
319 #define PRTDCB_TLPM_REG_DM(_i) (0x000A0000 + ((_i) * 4))
320 PRTDCB_TLPM_REG_DM(0),
321 PRTDCB_TLPM_REG_DM(1),
322 PRTDCB_TLPM_REG_DM(2),
323 PRTDCB_TLPM_REG_DM(3),
324 };
325
326 struct ice_priv_flag {
327 char name[ETH_GSTRING_LEN];
328 u32 bitno; /* bit position in pf->flags */
329 };
330
331 #define ICE_PRIV_FLAG(_name, _bitno) { \
332 .name = _name, \
333 .bitno = _bitno, \
334 }
335
336 static const struct ice_priv_flag ice_gstrings_priv_flags[] = {
337 ICE_PRIV_FLAG("link-down-on-close", ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA),
338 ICE_PRIV_FLAG("fw-lldp-agent", ICE_FLAG_FW_LLDP_AGENT),
339 ICE_PRIV_FLAG("vf-true-promisc-support",
340 ICE_FLAG_VF_TRUE_PROMISC_ENA),
341 ICE_PRIV_FLAG("mdd-auto-reset-vf", ICE_FLAG_MDD_AUTO_RESET_VF),
342 ICE_PRIV_FLAG("vf-vlan-pruning", ICE_FLAG_VF_VLAN_PRUNING),
343 ICE_PRIV_FLAG("legacy-rx", ICE_FLAG_LEGACY_RX),
344 };
345
346 #define ICE_PRIV_FLAG_ARRAY_SIZE ARRAY_SIZE(ice_gstrings_priv_flags)
347
348 static const u32 ice_adv_lnk_speed_100[] __initconst = {
349 ETHTOOL_LINK_MODE_100baseT_Full_BIT,
350 };
351
352 static const u32 ice_adv_lnk_speed_1000[] __initconst = {
353 ETHTOOL_LINK_MODE_1000baseX_Full_BIT,
354 ETHTOOL_LINK_MODE_1000baseT_Full_BIT,
355 ETHTOOL_LINK_MODE_1000baseKX_Full_BIT,
356 };
357
358 static const u32 ice_adv_lnk_speed_2500[] __initconst = {
359 ETHTOOL_LINK_MODE_2500baseT_Full_BIT,
360 ETHTOOL_LINK_MODE_2500baseX_Full_BIT,
361 };
362
363 static const u32 ice_adv_lnk_speed_5000[] __initconst = {
364 ETHTOOL_LINK_MODE_5000baseT_Full_BIT,
365 };
366
367 static const u32 ice_adv_lnk_speed_10000[] __initconst = {
368 ETHTOOL_LINK_MODE_10000baseT_Full_BIT,
369 ETHTOOL_LINK_MODE_10000baseKR_Full_BIT,
370 ETHTOOL_LINK_MODE_10000baseSR_Full_BIT,
371 ETHTOOL_LINK_MODE_10000baseLR_Full_BIT,
372 };
373
374 static const u32 ice_adv_lnk_speed_25000[] __initconst = {
375 ETHTOOL_LINK_MODE_25000baseCR_Full_BIT,
376 ETHTOOL_LINK_MODE_25000baseSR_Full_BIT,
377 ETHTOOL_LINK_MODE_25000baseKR_Full_BIT,
378 };
379
380 static const u32 ice_adv_lnk_speed_40000[] __initconst = {
381 ETHTOOL_LINK_MODE_40000baseCR4_Full_BIT,
382 ETHTOOL_LINK_MODE_40000baseSR4_Full_BIT,
383 ETHTOOL_LINK_MODE_40000baseLR4_Full_BIT,
384 ETHTOOL_LINK_MODE_40000baseKR4_Full_BIT,
385 };
386
387 static const u32 ice_adv_lnk_speed_50000[] __initconst = {
388 ETHTOOL_LINK_MODE_50000baseCR2_Full_BIT,
389 ETHTOOL_LINK_MODE_50000baseKR2_Full_BIT,
390 ETHTOOL_LINK_MODE_50000baseSR2_Full_BIT,
391 };
392
393 static const u32 ice_adv_lnk_speed_100000[] __initconst = {
394 ETHTOOL_LINK_MODE_100000baseCR4_Full_BIT,
395 ETHTOOL_LINK_MODE_100000baseSR4_Full_BIT,
396 ETHTOOL_LINK_MODE_100000baseLR4_ER4_Full_BIT,
397 ETHTOOL_LINK_MODE_100000baseKR4_Full_BIT,
398 ETHTOOL_LINK_MODE_100000baseCR2_Full_BIT,
399 ETHTOOL_LINK_MODE_100000baseSR2_Full_BIT,
400 ETHTOOL_LINK_MODE_100000baseKR2_Full_BIT,
401 };
402
403 static const u32 ice_adv_lnk_speed_200000[] __initconst = {
404 ETHTOOL_LINK_MODE_200000baseKR4_Full_BIT,
405 ETHTOOL_LINK_MODE_200000baseSR4_Full_BIT,
406 ETHTOOL_LINK_MODE_200000baseLR4_ER4_FR4_Full_BIT,
407 ETHTOOL_LINK_MODE_200000baseDR4_Full_BIT,
408 ETHTOOL_LINK_MODE_200000baseCR4_Full_BIT,
409 };
410
411 static struct ethtool_forced_speed_map ice_adv_lnk_speed_maps[] __ro_after_init = {
412 ETHTOOL_FORCED_SPEED_MAP(ice_adv_lnk_speed, 100),
413 ETHTOOL_FORCED_SPEED_MAP(ice_adv_lnk_speed, 1000),
414 ETHTOOL_FORCED_SPEED_MAP(ice_adv_lnk_speed, 2500),
415 ETHTOOL_FORCED_SPEED_MAP(ice_adv_lnk_speed, 5000),
416 ETHTOOL_FORCED_SPEED_MAP(ice_adv_lnk_speed, 10000),
417 ETHTOOL_FORCED_SPEED_MAP(ice_adv_lnk_speed, 25000),
418 ETHTOOL_FORCED_SPEED_MAP(ice_adv_lnk_speed, 40000),
419 ETHTOOL_FORCED_SPEED_MAP(ice_adv_lnk_speed, 50000),
420 ETHTOOL_FORCED_SPEED_MAP(ice_adv_lnk_speed, 100000),
421 ETHTOOL_FORCED_SPEED_MAP(ice_adv_lnk_speed, 200000),
422 };
423
ice_adv_lnk_speed_maps_init(void)424 void __init ice_adv_lnk_speed_maps_init(void)
425 {
426 ethtool_forced_speed_maps_init(ice_adv_lnk_speed_maps,
427 ARRAY_SIZE(ice_adv_lnk_speed_maps));
428 }
429
430 static void
__ice_get_drvinfo(struct net_device * netdev,struct ethtool_drvinfo * drvinfo,struct ice_vsi * vsi)431 __ice_get_drvinfo(struct net_device *netdev, struct ethtool_drvinfo *drvinfo,
432 struct ice_vsi *vsi)
433 {
434 struct ice_pf *pf = vsi->back;
435 struct ice_hw *hw = &pf->hw;
436 struct ice_orom_info *orom;
437 struct ice_nvm_info *nvm;
438
439 nvm = &hw->flash.nvm;
440 orom = &hw->flash.orom;
441
442 strscpy(drvinfo->driver, KBUILD_MODNAME, sizeof(drvinfo->driver));
443
444 /* Display NVM version (from which the firmware version can be
445 * determined) which contains more pertinent information.
446 */
447 snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version),
448 "%x.%02x 0x%x %d.%d.%d", nvm->major, nvm->minor,
449 nvm->eetrack, orom->major, orom->build, orom->patch);
450
451 strscpy(drvinfo->bus_info, pci_name(pf->pdev),
452 sizeof(drvinfo->bus_info));
453 }
454
455 static void
ice_get_drvinfo(struct net_device * netdev,struct ethtool_drvinfo * drvinfo)456 ice_get_drvinfo(struct net_device *netdev, struct ethtool_drvinfo *drvinfo)
457 {
458 struct ice_netdev_priv *np = netdev_priv(netdev);
459
460 __ice_get_drvinfo(netdev, drvinfo, np->vsi);
461 drvinfo->n_priv_flags = ICE_PRIV_FLAG_ARRAY_SIZE;
462 }
463
ice_get_regs_len(struct net_device __always_unused * netdev)464 static int ice_get_regs_len(struct net_device __always_unused *netdev)
465 {
466 return (sizeof(ice_regs_dump_list) +
467 sizeof(struct ice_regdump_to_ethtool));
468 }
469
470 /**
471 * ice_ethtool_get_maxspeed - Get the max speed for given lport
472 * @hw: pointer to the HW struct
473 * @lport: logical port for which max speed is requested
474 * @max_speed: return max speed for input lport
475 *
476 * Return: 0 on success, negative on failure.
477 */
ice_ethtool_get_maxspeed(struct ice_hw * hw,u8 lport,u8 * max_speed)478 static int ice_ethtool_get_maxspeed(struct ice_hw *hw, u8 lport, u8 *max_speed)
479 {
480 struct ice_aqc_get_port_options_elem options[ICE_AQC_PORT_OPT_MAX] = {};
481 bool active_valid = false, pending_valid = true;
482 u8 option_count = ICE_AQC_PORT_OPT_MAX;
483 u8 active_idx = 0, pending_idx = 0;
484 int status;
485
486 status = ice_aq_get_port_options(hw, options, &option_count, lport,
487 true, &active_idx, &active_valid,
488 &pending_idx, &pending_valid);
489 if (status)
490 return -EIO;
491 if (!active_valid)
492 return -EINVAL;
493
494 *max_speed = options[active_idx].max_lane_speed & ICE_AQC_PORT_OPT_MAX_LANE_M;
495 return 0;
496 }
497
498 /**
499 * ice_is_serdes_muxed - returns whether serdes is muxed in hardware
500 * @hw: pointer to the HW struct
501 *
502 * Return: true when serdes is muxed, false when serdes is not muxed.
503 */
ice_is_serdes_muxed(struct ice_hw * hw)504 static bool ice_is_serdes_muxed(struct ice_hw *hw)
505 {
506 u32 reg_value = rd32(hw, GLGEN_SWITCH_MODE_CONFIG);
507
508 return FIELD_GET(GLGEN_SWITCH_MODE_CONFIG_25X4_QUAD_M, reg_value);
509 }
510
ice_map_port_topology_for_sfp(struct ice_port_topology * port_topology,u8 lport,bool is_muxed)511 static int ice_map_port_topology_for_sfp(struct ice_port_topology *port_topology,
512 u8 lport, bool is_muxed)
513 {
514 switch (lport) {
515 case 0:
516 port_topology->pcs_quad_select = 0;
517 port_topology->pcs_port = 0;
518 port_topology->primary_serdes_lane = 0;
519 break;
520 case 1:
521 port_topology->pcs_quad_select = 1;
522 port_topology->pcs_port = 0;
523 if (is_muxed)
524 port_topology->primary_serdes_lane = 2;
525 else
526 port_topology->primary_serdes_lane = 4;
527 break;
528 case 2:
529 port_topology->pcs_quad_select = 0;
530 port_topology->pcs_port = 1;
531 port_topology->primary_serdes_lane = 1;
532 break;
533 case 3:
534 port_topology->pcs_quad_select = 1;
535 port_topology->pcs_port = 1;
536 if (is_muxed)
537 port_topology->primary_serdes_lane = 3;
538 else
539 port_topology->primary_serdes_lane = 5;
540 break;
541 case 4:
542 port_topology->pcs_quad_select = 0;
543 port_topology->pcs_port = 2;
544 port_topology->primary_serdes_lane = 2;
545 break;
546 case 5:
547 port_topology->pcs_quad_select = 1;
548 port_topology->pcs_port = 2;
549 port_topology->primary_serdes_lane = 6;
550 break;
551 case 6:
552 port_topology->pcs_quad_select = 0;
553 port_topology->pcs_port = 3;
554 port_topology->primary_serdes_lane = 3;
555 break;
556 case 7:
557 port_topology->pcs_quad_select = 1;
558 port_topology->pcs_port = 3;
559 port_topology->primary_serdes_lane = 7;
560 break;
561 default:
562 return -EINVAL;
563 }
564
565 return 0;
566 }
567
ice_map_port_topology_for_qsfp(struct ice_port_topology * port_topology,u8 lport,bool is_muxed)568 static int ice_map_port_topology_for_qsfp(struct ice_port_topology *port_topology,
569 u8 lport, bool is_muxed)
570 {
571 switch (lport) {
572 case 0:
573 port_topology->pcs_quad_select = 0;
574 port_topology->pcs_port = 0;
575 port_topology->primary_serdes_lane = 0;
576 break;
577 case 1:
578 port_topology->pcs_quad_select = 1;
579 port_topology->pcs_port = 0;
580 if (is_muxed)
581 port_topology->primary_serdes_lane = 2;
582 else
583 port_topology->primary_serdes_lane = 4;
584 break;
585 case 2:
586 port_topology->pcs_quad_select = 0;
587 port_topology->pcs_port = 1;
588 port_topology->primary_serdes_lane = 1;
589 break;
590 case 3:
591 port_topology->pcs_quad_select = 1;
592 port_topology->pcs_port = 1;
593 if (is_muxed)
594 port_topology->primary_serdes_lane = 3;
595 else
596 port_topology->primary_serdes_lane = 5;
597 break;
598 case 4:
599 port_topology->pcs_quad_select = 0;
600 port_topology->pcs_port = 2;
601 port_topology->primary_serdes_lane = 2;
602 break;
603 case 5:
604 port_topology->pcs_quad_select = 1;
605 port_topology->pcs_port = 2;
606 port_topology->primary_serdes_lane = 6;
607 break;
608 case 6:
609 port_topology->pcs_quad_select = 0;
610 port_topology->pcs_port = 3;
611 port_topology->primary_serdes_lane = 3;
612 break;
613 case 7:
614 port_topology->pcs_quad_select = 1;
615 port_topology->pcs_port = 3;
616 port_topology->primary_serdes_lane = 7;
617 break;
618 default:
619 return -EINVAL;
620 }
621
622 return 0;
623 }
624
625 /**
626 * ice_get_port_topology - returns physical topology like pcsquad, pcsport,
627 * serdes number
628 * @hw: pointer to the HW struct
629 * @lport: logical port for which physical info requested
630 * @port_topology: buffer to hold port topology
631 *
632 * Return: 0 on success, negative on failure.
633 */
ice_get_port_topology(struct ice_hw * hw,u8 lport,struct ice_port_topology * port_topology)634 static int ice_get_port_topology(struct ice_hw *hw, u8 lport,
635 struct ice_port_topology *port_topology)
636 {
637 struct ice_aqc_get_link_topo cmd = {};
638 u16 node_handle = 0;
639 u8 cage_type = 0;
640 bool is_muxed;
641 int err;
642 u8 ctx;
643
644 ctx = ICE_AQC_LINK_TOPO_NODE_TYPE_CAGE << ICE_AQC_LINK_TOPO_NODE_TYPE_S;
645 ctx |= ICE_AQC_LINK_TOPO_NODE_CTX_PORT << ICE_AQC_LINK_TOPO_NODE_CTX_S;
646 cmd.addr.topo_params.node_type_ctx = ctx;
647
648 err = ice_aq_get_netlist_node(hw, &cmd, &cage_type, &node_handle);
649 if (err)
650 return -EINVAL;
651
652 is_muxed = ice_is_serdes_muxed(hw);
653
654 if (cage_type == 0x11 || /* SFP+ */
655 cage_type == 0x12) { /* SFP28 */
656 port_topology->serdes_lane_count = 1;
657 err = ice_map_port_topology_for_sfp(port_topology, lport, is_muxed);
658 if (err)
659 return err;
660 } else if (cage_type == 0x13 || /* QSFP */
661 cage_type == 0x14) { /* QSFP28 */
662 u8 max_speed = 0;
663
664 err = ice_ethtool_get_maxspeed(hw, lport, &max_speed);
665 if (err)
666 return err;
667
668 if (max_speed == ICE_AQC_PORT_OPT_MAX_LANE_100G)
669 port_topology->serdes_lane_count = 4;
670 else if (max_speed == ICE_AQC_PORT_OPT_MAX_LANE_50G)
671 port_topology->serdes_lane_count = 2;
672 else
673 port_topology->serdes_lane_count = 1;
674
675 err = ice_map_port_topology_for_qsfp(port_topology, lport, is_muxed);
676 if (err)
677 return err;
678 } else {
679 return -EINVAL;
680 }
681
682 return 0;
683 }
684
685 /**
686 * ice_get_tx_rx_equa - read serdes tx rx equaliser param
687 * @hw: pointer to the HW struct
688 * @serdes_num: represents the serdes number
689 * @ptr: structure to read all serdes parameter for given serdes
690 *
691 * Return: all serdes equalization parameter supported per serdes number
692 */
ice_get_tx_rx_equa(struct ice_hw * hw,u8 serdes_num,struct ice_serdes_equalization_to_ethtool * ptr)693 static int ice_get_tx_rx_equa(struct ice_hw *hw, u8 serdes_num,
694 struct ice_serdes_equalization_to_ethtool *ptr)
695 {
696 static const int tx = ICE_AQC_OP_CODE_TX_EQU;
697 static const int rx = ICE_AQC_OP_CODE_RX_EQU;
698 struct {
699 int data_in;
700 int opcode;
701 int *out;
702 } aq_params[] = {
703 { ICE_AQC_TX_EQU_PRE1, tx, &ptr->tx_equ_pre1 },
704 { ICE_AQC_TX_EQU_PRE3, tx, &ptr->tx_equ_pre3 },
705 { ICE_AQC_TX_EQU_ATTEN, tx, &ptr->tx_equ_atten },
706 { ICE_AQC_TX_EQU_POST1, tx, &ptr->tx_equ_post1 },
707 { ICE_AQC_TX_EQU_PRE2, tx, &ptr->tx_equ_pre2 },
708 { ICE_AQC_RX_EQU_PRE2, rx, &ptr->rx_equ_pre2 },
709 { ICE_AQC_RX_EQU_PRE1, rx, &ptr->rx_equ_pre1 },
710 { ICE_AQC_RX_EQU_POST1, rx, &ptr->rx_equ_post1 },
711 { ICE_AQC_RX_EQU_BFLF, rx, &ptr->rx_equ_bflf },
712 { ICE_AQC_RX_EQU_BFHF, rx, &ptr->rx_equ_bfhf },
713 { ICE_AQC_RX_EQU_CTLE_GAINHF, rx, &ptr->rx_equ_ctle_gainhf },
714 { ICE_AQC_RX_EQU_CTLE_GAINLF, rx, &ptr->rx_equ_ctle_gainlf },
715 { ICE_AQC_RX_EQU_CTLE_GAINDC, rx, &ptr->rx_equ_ctle_gaindc },
716 { ICE_AQC_RX_EQU_CTLE_BW, rx, &ptr->rx_equ_ctle_bw },
717 { ICE_AQC_RX_EQU_DFE_GAIN, rx, &ptr->rx_equ_dfe_gain },
718 { ICE_AQC_RX_EQU_DFE_GAIN2, rx, &ptr->rx_equ_dfe_gain_2 },
719 { ICE_AQC_RX_EQU_DFE_2, rx, &ptr->rx_equ_dfe_2 },
720 { ICE_AQC_RX_EQU_DFE_3, rx, &ptr->rx_equ_dfe_3 },
721 { ICE_AQC_RX_EQU_DFE_4, rx, &ptr->rx_equ_dfe_4 },
722 { ICE_AQC_RX_EQU_DFE_5, rx, &ptr->rx_equ_dfe_5 },
723 { ICE_AQC_RX_EQU_DFE_6, rx, &ptr->rx_equ_dfe_6 },
724 { ICE_AQC_RX_EQU_DFE_7, rx, &ptr->rx_equ_dfe_7 },
725 { ICE_AQC_RX_EQU_DFE_8, rx, &ptr->rx_equ_dfe_8 },
726 { ICE_AQC_RX_EQU_DFE_9, rx, &ptr->rx_equ_dfe_9 },
727 { ICE_AQC_RX_EQU_DFE_10, rx, &ptr->rx_equ_dfe_10 },
728 { ICE_AQC_RX_EQU_DFE_11, rx, &ptr->rx_equ_dfe_11 },
729 { ICE_AQC_RX_EQU_DFE_12, rx, &ptr->rx_equ_dfe_12 },
730 };
731 int err;
732
733 for (int i = 0; i < ARRAY_SIZE(aq_params); i++) {
734 err = ice_aq_get_phy_equalization(hw, aq_params[i].data_in,
735 aq_params[i].opcode,
736 serdes_num, aq_params[i].out);
737 if (err)
738 break;
739 }
740
741 return err;
742 }
743
744 /**
745 * ice_get_extended_regs - returns FEC correctable, uncorrectable stats per
746 * pcsquad, pcsport
747 * @netdev: pointer to net device structure
748 * @p: output buffer to fill requested register dump
749 *
750 * Return: 0 on success, negative on failure.
751 */
ice_get_extended_regs(struct net_device * netdev,void * p)752 static int ice_get_extended_regs(struct net_device *netdev, void *p)
753 {
754 struct ice_netdev_priv *np = netdev_priv(netdev);
755 struct ice_regdump_to_ethtool *ice_prv_regs_buf;
756 struct ice_port_topology port_topology = {};
757 struct ice_port_info *pi;
758 struct ice_pf *pf;
759 struct ice_hw *hw;
760 unsigned int i;
761 int err;
762
763 pf = np->vsi->back;
764 hw = &pf->hw;
765 pi = np->vsi->port_info;
766
767 /* Serdes parameters are not supported if not the PF VSI */
768 if (np->vsi->type != ICE_VSI_PF || !pi)
769 return -EINVAL;
770
771 err = ice_get_port_topology(hw, pi->lport, &port_topology);
772 if (err)
773 return -EINVAL;
774 if (port_topology.serdes_lane_count > 4)
775 return -EINVAL;
776
777 ice_prv_regs_buf = p;
778
779 /* Get serdes equalization parameter for available serdes */
780 for (i = 0; i < port_topology.serdes_lane_count; i++) {
781 u8 serdes_num = 0;
782
783 serdes_num = port_topology.primary_serdes_lane + i;
784 err = ice_get_tx_rx_equa(hw, serdes_num,
785 &ice_prv_regs_buf->equalization[i]);
786 if (err)
787 return -EINVAL;
788 }
789
790 return 0;
791 }
792
793 static void
ice_get_regs(struct net_device * netdev,struct ethtool_regs * regs,void * p)794 ice_get_regs(struct net_device *netdev, struct ethtool_regs *regs, void *p)
795 {
796 struct ice_netdev_priv *np = netdev_priv(netdev);
797 struct ice_pf *pf = np->vsi->back;
798 struct ice_hw *hw = &pf->hw;
799 u32 *regs_buf = (u32 *)p;
800 unsigned int i;
801
802 regs->version = 2;
803
804 for (i = 0; i < ARRAY_SIZE(ice_regs_dump_list); ++i)
805 regs_buf[i] = rd32(hw, ice_regs_dump_list[i]);
806
807 ice_get_extended_regs(netdev, (void *)®s_buf[i]);
808 }
809
ice_get_msglevel(struct net_device * netdev)810 static u32 ice_get_msglevel(struct net_device *netdev)
811 {
812 struct ice_netdev_priv *np = netdev_priv(netdev);
813 struct ice_pf *pf = np->vsi->back;
814
815 #ifndef CONFIG_DYNAMIC_DEBUG
816 if (pf->hw.debug_mask)
817 netdev_info(netdev, "hw debug_mask: 0x%llX\n",
818 pf->hw.debug_mask);
819 #endif /* !CONFIG_DYNAMIC_DEBUG */
820
821 return pf->msg_enable;
822 }
823
ice_set_msglevel(struct net_device * netdev,u32 data)824 static void ice_set_msglevel(struct net_device *netdev, u32 data)
825 {
826 struct ice_netdev_priv *np = netdev_priv(netdev);
827 struct ice_pf *pf = np->vsi->back;
828
829 #ifndef CONFIG_DYNAMIC_DEBUG
830 if (ICE_DBG_USER & data)
831 pf->hw.debug_mask = data;
832 else
833 pf->msg_enable = data;
834 #else
835 pf->msg_enable = data;
836 #endif /* !CONFIG_DYNAMIC_DEBUG */
837 }
838
ice_get_eeprom_len(struct net_device * netdev)839 static int ice_get_eeprom_len(struct net_device *netdev)
840 {
841 struct ice_netdev_priv *np = netdev_priv(netdev);
842 struct ice_pf *pf = np->vsi->back;
843
844 return (int)pf->hw.flash.flash_size;
845 }
846
847 static int
ice_get_eeprom(struct net_device * netdev,struct ethtool_eeprom * eeprom,u8 * bytes)848 ice_get_eeprom(struct net_device *netdev, struct ethtool_eeprom *eeprom,
849 u8 *bytes)
850 {
851 struct ice_netdev_priv *np = netdev_priv(netdev);
852 struct ice_vsi *vsi = np->vsi;
853 struct ice_pf *pf = vsi->back;
854 struct ice_hw *hw = &pf->hw;
855 struct device *dev;
856 int ret;
857 u8 *buf;
858
859 dev = ice_pf_to_dev(pf);
860
861 eeprom->magic = hw->vendor_id | (hw->device_id << 16);
862 netdev_dbg(netdev, "GEEPROM cmd 0x%08x, offset 0x%08x, len 0x%08x\n",
863 eeprom->cmd, eeprom->offset, eeprom->len);
864
865 buf = kzalloc(eeprom->len, GFP_KERNEL);
866 if (!buf)
867 return -ENOMEM;
868
869 ret = ice_acquire_nvm(hw, ICE_RES_READ);
870 if (ret) {
871 dev_err(dev, "ice_acquire_nvm failed, err %d aq_err %s\n",
872 ret, ice_aq_str(hw->adminq.sq_last_status));
873 goto out;
874 }
875
876 ret = ice_read_flat_nvm(hw, eeprom->offset, &eeprom->len, buf,
877 false);
878 if (ret) {
879 dev_err(dev, "ice_read_flat_nvm failed, err %d aq_err %s\n",
880 ret, ice_aq_str(hw->adminq.sq_last_status));
881 goto release;
882 }
883
884 memcpy(bytes, buf, eeprom->len);
885 release:
886 ice_release_nvm(hw);
887 out:
888 kfree(buf);
889 return ret;
890 }
891
892 /**
893 * ice_active_vfs - check if there are any active VFs
894 * @pf: board private structure
895 *
896 * Returns true if an active VF is found, otherwise returns false
897 */
ice_active_vfs(struct ice_pf * pf)898 static bool ice_active_vfs(struct ice_pf *pf)
899 {
900 bool active = false;
901 struct ice_vf *vf;
902 unsigned int bkt;
903
904 rcu_read_lock();
905 ice_for_each_vf_rcu(pf, bkt, vf) {
906 if (test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
907 active = true;
908 break;
909 }
910 }
911 rcu_read_unlock();
912
913 return active;
914 }
915
916 /**
917 * ice_link_test - perform a link test on a given net_device
918 * @netdev: network interface device structure
919 *
920 * This function performs one of the self-tests required by ethtool.
921 * Returns 0 on success, non-zero on failure.
922 */
ice_link_test(struct net_device * netdev)923 static u64 ice_link_test(struct net_device *netdev)
924 {
925 struct ice_netdev_priv *np = netdev_priv(netdev);
926 bool link_up = false;
927 int status;
928
929 netdev_info(netdev, "link test\n");
930 status = ice_get_link_status(np->vsi->port_info, &link_up);
931 if (status) {
932 netdev_err(netdev, "link query error, status = %d\n",
933 status);
934 return 1;
935 }
936
937 if (!link_up)
938 return 2;
939
940 return 0;
941 }
942
943 /**
944 * ice_eeprom_test - perform an EEPROM test on a given net_device
945 * @netdev: network interface device structure
946 *
947 * This function performs one of the self-tests required by ethtool.
948 * Returns 0 on success, non-zero on failure.
949 */
ice_eeprom_test(struct net_device * netdev)950 static u64 ice_eeprom_test(struct net_device *netdev)
951 {
952 struct ice_netdev_priv *np = netdev_priv(netdev);
953 struct ice_pf *pf = np->vsi->back;
954
955 netdev_info(netdev, "EEPROM test\n");
956 return !!(ice_nvm_validate_checksum(&pf->hw));
957 }
958
959 /**
960 * ice_reg_pattern_test
961 * @hw: pointer to the HW struct
962 * @reg: reg to be tested
963 * @mask: bits to be touched
964 */
ice_reg_pattern_test(struct ice_hw * hw,u32 reg,u32 mask)965 static int ice_reg_pattern_test(struct ice_hw *hw, u32 reg, u32 mask)
966 {
967 struct ice_pf *pf = (struct ice_pf *)hw->back;
968 struct device *dev = ice_pf_to_dev(pf);
969 static const u32 patterns[] = {
970 0x5A5A5A5A, 0xA5A5A5A5,
971 0x00000000, 0xFFFFFFFF
972 };
973 u32 val, orig_val;
974 unsigned int i;
975
976 orig_val = rd32(hw, reg);
977 for (i = 0; i < ARRAY_SIZE(patterns); ++i) {
978 u32 pattern = patterns[i] & mask;
979
980 wr32(hw, reg, pattern);
981 val = rd32(hw, reg);
982 if (val == pattern)
983 continue;
984 dev_err(dev, "%s: reg pattern test failed - reg 0x%08x pat 0x%08x val 0x%08x\n"
985 , __func__, reg, pattern, val);
986 return 1;
987 }
988
989 wr32(hw, reg, orig_val);
990 val = rd32(hw, reg);
991 if (val != orig_val) {
992 dev_err(dev, "%s: reg restore test failed - reg 0x%08x orig 0x%08x val 0x%08x\n"
993 , __func__, reg, orig_val, val);
994 return 1;
995 }
996
997 return 0;
998 }
999
1000 /**
1001 * ice_reg_test - perform a register test on a given net_device
1002 * @netdev: network interface device structure
1003 *
1004 * This function performs one of the self-tests required by ethtool.
1005 * Returns 0 on success, non-zero on failure.
1006 */
ice_reg_test(struct net_device * netdev)1007 static u64 ice_reg_test(struct net_device *netdev)
1008 {
1009 struct ice_netdev_priv *np = netdev_priv(netdev);
1010 struct ice_hw *hw = np->vsi->port_info->hw;
1011 u32 int_elements = hw->func_caps.common_cap.num_msix_vectors ?
1012 hw->func_caps.common_cap.num_msix_vectors - 1 : 1;
1013 struct ice_diag_reg_test_info {
1014 u32 address;
1015 u32 mask;
1016 u32 elem_num;
1017 u32 elem_size;
1018 } ice_reg_list[] = {
1019 {GLINT_ITR(0, 0), 0x00000fff, int_elements,
1020 GLINT_ITR(0, 1) - GLINT_ITR(0, 0)},
1021 {GLINT_ITR(1, 0), 0x00000fff, int_elements,
1022 GLINT_ITR(1, 1) - GLINT_ITR(1, 0)},
1023 {GLINT_ITR(0, 0), 0x00000fff, int_elements,
1024 GLINT_ITR(2, 1) - GLINT_ITR(2, 0)},
1025 {GLINT_CTL, 0xffff0001, 1, 0}
1026 };
1027 unsigned int i;
1028
1029 netdev_dbg(netdev, "Register test\n");
1030 for (i = 0; i < ARRAY_SIZE(ice_reg_list); ++i) {
1031 u32 j;
1032
1033 for (j = 0; j < ice_reg_list[i].elem_num; ++j) {
1034 u32 mask = ice_reg_list[i].mask;
1035 u32 reg = ice_reg_list[i].address +
1036 (j * ice_reg_list[i].elem_size);
1037
1038 /* bail on failure (non-zero return) */
1039 if (ice_reg_pattern_test(hw, reg, mask))
1040 return 1;
1041 }
1042 }
1043
1044 return 0;
1045 }
1046
1047 /**
1048 * ice_lbtest_prepare_rings - configure Tx/Rx test rings
1049 * @vsi: pointer to the VSI structure
1050 *
1051 * Function configures rings of a VSI for loopback test without
1052 * enabling interrupts or informing the kernel about new queues.
1053 *
1054 * Returns 0 on success, negative on failure.
1055 */
ice_lbtest_prepare_rings(struct ice_vsi * vsi)1056 static int ice_lbtest_prepare_rings(struct ice_vsi *vsi)
1057 {
1058 int status;
1059
1060 status = ice_vsi_setup_tx_rings(vsi);
1061 if (status)
1062 goto err_setup_tx_ring;
1063
1064 status = ice_vsi_setup_rx_rings(vsi);
1065 if (status)
1066 goto err_setup_rx_ring;
1067
1068 status = ice_vsi_cfg_lan(vsi);
1069 if (status)
1070 goto err_setup_rx_ring;
1071
1072 status = ice_vsi_start_all_rx_rings(vsi);
1073 if (status)
1074 goto err_start_rx_ring;
1075
1076 return 0;
1077
1078 err_start_rx_ring:
1079 ice_vsi_free_rx_rings(vsi);
1080 err_setup_rx_ring:
1081 ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0);
1082 err_setup_tx_ring:
1083 ice_vsi_free_tx_rings(vsi);
1084
1085 return status;
1086 }
1087
1088 /**
1089 * ice_lbtest_disable_rings - disable Tx/Rx test rings after loopback test
1090 * @vsi: pointer to the VSI structure
1091 *
1092 * Function stops and frees VSI rings after a loopback test.
1093 * Returns 0 on success, negative on failure.
1094 */
ice_lbtest_disable_rings(struct ice_vsi * vsi)1095 static int ice_lbtest_disable_rings(struct ice_vsi *vsi)
1096 {
1097 int status;
1098
1099 status = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0);
1100 if (status)
1101 netdev_err(vsi->netdev, "Failed to stop Tx rings, VSI %d error %d\n",
1102 vsi->vsi_num, status);
1103
1104 status = ice_vsi_stop_all_rx_rings(vsi);
1105 if (status)
1106 netdev_err(vsi->netdev, "Failed to stop Rx rings, VSI %d error %d\n",
1107 vsi->vsi_num, status);
1108
1109 ice_vsi_free_tx_rings(vsi);
1110 ice_vsi_free_rx_rings(vsi);
1111
1112 return status;
1113 }
1114
1115 /**
1116 * ice_lbtest_create_frame - create test packet
1117 * @pf: pointer to the PF structure
1118 * @ret_data: allocated frame buffer
1119 * @size: size of the packet data
1120 *
1121 * Function allocates a frame with a test pattern on specific offsets.
1122 * Returns 0 on success, non-zero on failure.
1123 */
ice_lbtest_create_frame(struct ice_pf * pf,u8 ** ret_data,u16 size)1124 static int ice_lbtest_create_frame(struct ice_pf *pf, u8 **ret_data, u16 size)
1125 {
1126 u8 *data;
1127
1128 if (!pf)
1129 return -EINVAL;
1130
1131 data = kzalloc(size, GFP_KERNEL);
1132 if (!data)
1133 return -ENOMEM;
1134
1135 /* Since the ethernet test frame should always be at least
1136 * 64 bytes long, fill some octets in the payload with test data.
1137 */
1138 memset(data, 0xFF, size);
1139 data[32] = 0xDE;
1140 data[42] = 0xAD;
1141 data[44] = 0xBE;
1142 data[46] = 0xEF;
1143
1144 *ret_data = data;
1145
1146 return 0;
1147 }
1148
1149 /**
1150 * ice_lbtest_check_frame - verify received loopback frame
1151 * @frame: pointer to the raw packet data
1152 *
1153 * Function verifies received test frame with a pattern.
1154 * Returns true if frame matches the pattern, false otherwise.
1155 */
ice_lbtest_check_frame(u8 * frame)1156 static bool ice_lbtest_check_frame(u8 *frame)
1157 {
1158 /* Validate bytes of a frame under offsets chosen earlier */
1159 if (frame[32] == 0xDE &&
1160 frame[42] == 0xAD &&
1161 frame[44] == 0xBE &&
1162 frame[46] == 0xEF &&
1163 frame[48] == 0xFF)
1164 return true;
1165
1166 return false;
1167 }
1168
1169 /**
1170 * ice_diag_send - send test frames to the test ring
1171 * @tx_ring: pointer to the transmit ring
1172 * @data: pointer to the raw packet data
1173 * @size: size of the packet to send
1174 *
1175 * Function sends loopback packets on a test Tx ring.
1176 */
ice_diag_send(struct ice_tx_ring * tx_ring,u8 * data,u16 size)1177 static int ice_diag_send(struct ice_tx_ring *tx_ring, u8 *data, u16 size)
1178 {
1179 struct ice_tx_desc *tx_desc;
1180 struct ice_tx_buf *tx_buf;
1181 dma_addr_t dma;
1182 u64 td_cmd;
1183
1184 tx_desc = ICE_TX_DESC(tx_ring, tx_ring->next_to_use);
1185 tx_buf = &tx_ring->tx_buf[tx_ring->next_to_use];
1186
1187 dma = dma_map_single(tx_ring->dev, data, size, DMA_TO_DEVICE);
1188 if (dma_mapping_error(tx_ring->dev, dma))
1189 return -EINVAL;
1190
1191 tx_desc->buf_addr = cpu_to_le64(dma);
1192
1193 /* These flags are required for a descriptor to be pushed out */
1194 td_cmd = (u64)(ICE_TX_DESC_CMD_EOP | ICE_TX_DESC_CMD_RS);
1195 tx_desc->cmd_type_offset_bsz =
1196 cpu_to_le64(ICE_TX_DESC_DTYPE_DATA |
1197 (td_cmd << ICE_TXD_QW1_CMD_S) |
1198 ((u64)0 << ICE_TXD_QW1_OFFSET_S) |
1199 ((u64)size << ICE_TXD_QW1_TX_BUF_SZ_S) |
1200 ((u64)0 << ICE_TXD_QW1_L2TAG1_S));
1201
1202 tx_buf->next_to_watch = tx_desc;
1203
1204 /* Force memory write to complete before letting h/w know
1205 * there are new descriptors to fetch.
1206 */
1207 wmb();
1208
1209 tx_ring->next_to_use++;
1210 if (tx_ring->next_to_use >= tx_ring->count)
1211 tx_ring->next_to_use = 0;
1212
1213 writel_relaxed(tx_ring->next_to_use, tx_ring->tail);
1214
1215 /* Wait until the packets get transmitted to the receive queue. */
1216 usleep_range(1000, 2000);
1217 dma_unmap_single(tx_ring->dev, dma, size, DMA_TO_DEVICE);
1218
1219 return 0;
1220 }
1221
1222 #define ICE_LB_FRAME_SIZE 64
1223 /**
1224 * ice_lbtest_receive_frames - receive and verify test frames
1225 * @rx_ring: pointer to the receive ring
1226 *
1227 * Function receives loopback packets and verify their correctness.
1228 * Returns number of received valid frames.
1229 */
ice_lbtest_receive_frames(struct ice_rx_ring * rx_ring)1230 static int ice_lbtest_receive_frames(struct ice_rx_ring *rx_ring)
1231 {
1232 struct ice_rx_buf *rx_buf;
1233 int valid_frames, i;
1234 u8 *received_buf;
1235
1236 valid_frames = 0;
1237
1238 for (i = 0; i < rx_ring->count; i++) {
1239 union ice_32b_rx_flex_desc *rx_desc;
1240
1241 rx_desc = ICE_RX_DESC(rx_ring, i);
1242
1243 if (!(rx_desc->wb.status_error0 &
1244 (cpu_to_le16(BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S)) |
1245 cpu_to_le16(BIT(ICE_RX_FLEX_DESC_STATUS0_EOF_S)))))
1246 continue;
1247
1248 rx_buf = &rx_ring->rx_buf[i];
1249 received_buf = page_address(rx_buf->page) + rx_buf->page_offset;
1250
1251 if (ice_lbtest_check_frame(received_buf))
1252 valid_frames++;
1253 }
1254
1255 return valid_frames;
1256 }
1257
1258 /**
1259 * ice_loopback_test - perform a loopback test on a given net_device
1260 * @netdev: network interface device structure
1261 *
1262 * This function performs one of the self-tests required by ethtool.
1263 * Returns 0 on success, non-zero on failure.
1264 */
ice_loopback_test(struct net_device * netdev)1265 static u64 ice_loopback_test(struct net_device *netdev)
1266 {
1267 struct ice_netdev_priv *np = netdev_priv(netdev);
1268 struct ice_vsi *orig_vsi = np->vsi, *test_vsi;
1269 struct ice_pf *pf = orig_vsi->back;
1270 u8 *tx_frame __free(kfree) = NULL;
1271 u8 broadcast[ETH_ALEN], ret = 0;
1272 int num_frames, valid_frames;
1273 struct ice_tx_ring *tx_ring;
1274 struct ice_rx_ring *rx_ring;
1275 int i;
1276
1277 netdev_info(netdev, "loopback test\n");
1278
1279 test_vsi = ice_lb_vsi_setup(pf, pf->hw.port_info);
1280 if (!test_vsi) {
1281 netdev_err(netdev, "Failed to create a VSI for the loopback test\n");
1282 return 1;
1283 }
1284
1285 test_vsi->netdev = netdev;
1286 tx_ring = test_vsi->tx_rings[0];
1287 rx_ring = test_vsi->rx_rings[0];
1288
1289 if (ice_lbtest_prepare_rings(test_vsi)) {
1290 ret = 2;
1291 goto lbtest_vsi_close;
1292 }
1293
1294 if (ice_alloc_rx_bufs(rx_ring, rx_ring->count)) {
1295 ret = 3;
1296 goto lbtest_rings_dis;
1297 }
1298
1299 /* Enable MAC loopback in firmware */
1300 if (ice_aq_set_mac_loopback(&pf->hw, true, NULL)) {
1301 ret = 4;
1302 goto lbtest_mac_dis;
1303 }
1304
1305 /* Test VSI needs to receive broadcast packets */
1306 eth_broadcast_addr(broadcast);
1307 if (ice_fltr_add_mac(test_vsi, broadcast, ICE_FWD_TO_VSI)) {
1308 ret = 5;
1309 goto lbtest_mac_dis;
1310 }
1311
1312 if (ice_lbtest_create_frame(pf, &tx_frame, ICE_LB_FRAME_SIZE)) {
1313 ret = 7;
1314 goto remove_mac_filters;
1315 }
1316
1317 num_frames = min_t(int, tx_ring->count, 32);
1318 for (i = 0; i < num_frames; i++) {
1319 if (ice_diag_send(tx_ring, tx_frame, ICE_LB_FRAME_SIZE)) {
1320 ret = 8;
1321 goto remove_mac_filters;
1322 }
1323 }
1324
1325 valid_frames = ice_lbtest_receive_frames(rx_ring);
1326 if (!valid_frames)
1327 ret = 9;
1328 else if (valid_frames != num_frames)
1329 ret = 10;
1330
1331 remove_mac_filters:
1332 if (ice_fltr_remove_mac(test_vsi, broadcast, ICE_FWD_TO_VSI))
1333 netdev_err(netdev, "Could not remove MAC filter for the test VSI\n");
1334 lbtest_mac_dis:
1335 /* Disable MAC loopback after the test is completed. */
1336 if (ice_aq_set_mac_loopback(&pf->hw, false, NULL))
1337 netdev_err(netdev, "Could not disable MAC loopback\n");
1338 lbtest_rings_dis:
1339 if (ice_lbtest_disable_rings(test_vsi))
1340 netdev_err(netdev, "Could not disable test rings\n");
1341 lbtest_vsi_close:
1342 test_vsi->netdev = NULL;
1343 if (ice_vsi_release(test_vsi))
1344 netdev_err(netdev, "Failed to remove the test VSI\n");
1345
1346 return ret;
1347 }
1348
1349 /**
1350 * ice_intr_test - perform an interrupt test on a given net_device
1351 * @netdev: network interface device structure
1352 *
1353 * This function performs one of the self-tests required by ethtool.
1354 * Returns 0 on success, non-zero on failure.
1355 */
ice_intr_test(struct net_device * netdev)1356 static u64 ice_intr_test(struct net_device *netdev)
1357 {
1358 struct ice_netdev_priv *np = netdev_priv(netdev);
1359 struct ice_pf *pf = np->vsi->back;
1360 u16 swic_old = pf->sw_int_count;
1361
1362 netdev_info(netdev, "interrupt test\n");
1363
1364 wr32(&pf->hw, GLINT_DYN_CTL(pf->oicr_irq.index),
1365 GLINT_DYN_CTL_SW_ITR_INDX_M |
1366 GLINT_DYN_CTL_INTENA_MSK_M |
1367 GLINT_DYN_CTL_SWINT_TRIG_M);
1368
1369 usleep_range(1000, 2000);
1370 return (swic_old == pf->sw_int_count);
1371 }
1372
1373 /**
1374 * ice_self_test - handler function for performing a self-test by ethtool
1375 * @netdev: network interface device structure
1376 * @eth_test: ethtool_test structure
1377 * @data: required by ethtool.self_test
1378 *
1379 * This function is called after invoking 'ethtool -t devname' command where
1380 * devname is the name of the network device on which ethtool should operate.
1381 * It performs a set of self-tests to check if a device works properly.
1382 */
1383 static void
ice_self_test(struct net_device * netdev,struct ethtool_test * eth_test,u64 * data)1384 ice_self_test(struct net_device *netdev, struct ethtool_test *eth_test,
1385 u64 *data)
1386 {
1387 struct ice_netdev_priv *np = netdev_priv(netdev);
1388 bool if_running = netif_running(netdev);
1389 struct ice_pf *pf = np->vsi->back;
1390 struct device *dev;
1391
1392 dev = ice_pf_to_dev(pf);
1393
1394 if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1395 netdev_info(netdev, "offline testing starting\n");
1396
1397 set_bit(ICE_TESTING, pf->state);
1398
1399 if (ice_active_vfs(pf)) {
1400 dev_warn(dev, "Please take active VFs and Netqueues offline and restart the adapter before running NIC diagnostics\n");
1401 data[ICE_ETH_TEST_REG] = 1;
1402 data[ICE_ETH_TEST_EEPROM] = 1;
1403 data[ICE_ETH_TEST_INTR] = 1;
1404 data[ICE_ETH_TEST_LOOP] = 1;
1405 data[ICE_ETH_TEST_LINK] = 1;
1406 eth_test->flags |= ETH_TEST_FL_FAILED;
1407 clear_bit(ICE_TESTING, pf->state);
1408 goto skip_ol_tests;
1409 }
1410 /* If the device is online then take it offline */
1411 if (if_running)
1412 /* indicate we're in test mode */
1413 ice_stop(netdev);
1414
1415 data[ICE_ETH_TEST_LINK] = ice_link_test(netdev);
1416 data[ICE_ETH_TEST_EEPROM] = ice_eeprom_test(netdev);
1417 data[ICE_ETH_TEST_INTR] = ice_intr_test(netdev);
1418 data[ICE_ETH_TEST_LOOP] = ice_loopback_test(netdev);
1419 data[ICE_ETH_TEST_REG] = ice_reg_test(netdev);
1420
1421 if (data[ICE_ETH_TEST_LINK] ||
1422 data[ICE_ETH_TEST_EEPROM] ||
1423 data[ICE_ETH_TEST_LOOP] ||
1424 data[ICE_ETH_TEST_INTR] ||
1425 data[ICE_ETH_TEST_REG])
1426 eth_test->flags |= ETH_TEST_FL_FAILED;
1427
1428 clear_bit(ICE_TESTING, pf->state);
1429
1430 if (if_running) {
1431 int status = ice_open(netdev);
1432
1433 if (status) {
1434 dev_err(dev, "Could not open device %s, err %d\n",
1435 pf->int_name, status);
1436 }
1437 }
1438 } else {
1439 /* Online tests */
1440 netdev_info(netdev, "online testing starting\n");
1441
1442 data[ICE_ETH_TEST_LINK] = ice_link_test(netdev);
1443 if (data[ICE_ETH_TEST_LINK])
1444 eth_test->flags |= ETH_TEST_FL_FAILED;
1445
1446 /* Offline only tests, not run in online; pass by default */
1447 data[ICE_ETH_TEST_REG] = 0;
1448 data[ICE_ETH_TEST_EEPROM] = 0;
1449 data[ICE_ETH_TEST_INTR] = 0;
1450 data[ICE_ETH_TEST_LOOP] = 0;
1451 }
1452
1453 skip_ol_tests:
1454 netdev_info(netdev, "testing finished\n");
1455 }
1456
1457 static void
__ice_get_strings(struct net_device * netdev,u32 stringset,u8 * data,struct ice_vsi * vsi)1458 __ice_get_strings(struct net_device *netdev, u32 stringset, u8 *data,
1459 struct ice_vsi *vsi)
1460 {
1461 unsigned int i;
1462 u8 *p = data;
1463
1464 switch (stringset) {
1465 case ETH_SS_STATS:
1466 for (i = 0; i < ICE_VSI_STATS_LEN; i++)
1467 ethtool_puts(&p, ice_gstrings_vsi_stats[i].stat_string);
1468
1469 if (ice_is_port_repr_netdev(netdev))
1470 return;
1471
1472 ice_for_each_alloc_txq(vsi, i) {
1473 ethtool_sprintf(&p, "tx_queue_%u_packets", i);
1474 ethtool_sprintf(&p, "tx_queue_%u_bytes", i);
1475 }
1476
1477 ice_for_each_alloc_rxq(vsi, i) {
1478 ethtool_sprintf(&p, "rx_queue_%u_packets", i);
1479 ethtool_sprintf(&p, "rx_queue_%u_bytes", i);
1480 }
1481
1482 if (vsi->type != ICE_VSI_PF)
1483 return;
1484
1485 for (i = 0; i < ICE_PF_STATS_LEN; i++)
1486 ethtool_puts(&p, ice_gstrings_pf_stats[i].stat_string);
1487
1488 for (i = 0; i < ICE_MAX_USER_PRIORITY; i++) {
1489 ethtool_sprintf(&p, "tx_priority_%u_xon.nic", i);
1490 ethtool_sprintf(&p, "tx_priority_%u_xoff.nic", i);
1491 }
1492 for (i = 0; i < ICE_MAX_USER_PRIORITY; i++) {
1493 ethtool_sprintf(&p, "rx_priority_%u_xon.nic", i);
1494 ethtool_sprintf(&p, "rx_priority_%u_xoff.nic", i);
1495 }
1496 break;
1497 case ETH_SS_TEST:
1498 memcpy(data, ice_gstrings_test, ICE_TEST_LEN * ETH_GSTRING_LEN);
1499 break;
1500 case ETH_SS_PRIV_FLAGS:
1501 for (i = 0; i < ICE_PRIV_FLAG_ARRAY_SIZE; i++)
1502 ethtool_puts(&p, ice_gstrings_priv_flags[i].name);
1503 break;
1504 default:
1505 break;
1506 }
1507 }
1508
ice_get_strings(struct net_device * netdev,u32 stringset,u8 * data)1509 static void ice_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
1510 {
1511 struct ice_netdev_priv *np = netdev_priv(netdev);
1512
1513 __ice_get_strings(netdev, stringset, data, np->vsi);
1514 }
1515
1516 static int
ice_set_phys_id(struct net_device * netdev,enum ethtool_phys_id_state state)1517 ice_set_phys_id(struct net_device *netdev, enum ethtool_phys_id_state state)
1518 {
1519 struct ice_netdev_priv *np = netdev_priv(netdev);
1520 bool led_active;
1521
1522 switch (state) {
1523 case ETHTOOL_ID_ACTIVE:
1524 led_active = true;
1525 break;
1526 case ETHTOOL_ID_INACTIVE:
1527 led_active = false;
1528 break;
1529 default:
1530 return -EINVAL;
1531 }
1532
1533 if (ice_aq_set_port_id_led(np->vsi->port_info, !led_active, NULL))
1534 return -EIO;
1535
1536 return 0;
1537 }
1538
1539 /**
1540 * ice_set_fec_cfg - Set link FEC options
1541 * @netdev: network interface device structure
1542 * @req_fec: FEC mode to configure
1543 */
ice_set_fec_cfg(struct net_device * netdev,enum ice_fec_mode req_fec)1544 static int ice_set_fec_cfg(struct net_device *netdev, enum ice_fec_mode req_fec)
1545 {
1546 struct ice_netdev_priv *np = netdev_priv(netdev);
1547 struct ice_aqc_set_phy_cfg_data config = { 0 };
1548 struct ice_vsi *vsi = np->vsi;
1549 struct ice_port_info *pi;
1550
1551 pi = vsi->port_info;
1552 if (!pi)
1553 return -EOPNOTSUPP;
1554
1555 /* Changing the FEC parameters is not supported if not the PF VSI */
1556 if (vsi->type != ICE_VSI_PF) {
1557 netdev_info(netdev, "Changing FEC parameters only supported for PF VSI\n");
1558 return -EOPNOTSUPP;
1559 }
1560
1561 /* Proceed only if requesting different FEC mode */
1562 if (pi->phy.curr_user_fec_req == req_fec)
1563 return 0;
1564
1565 /* Copy the current user PHY configuration. The current user PHY
1566 * configuration is initialized during probe from PHY capabilities
1567 * software mode, and updated on set PHY configuration.
1568 */
1569 memcpy(&config, &pi->phy.curr_user_phy_cfg, sizeof(config));
1570
1571 ice_cfg_phy_fec(pi, &config, req_fec);
1572 config.caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
1573
1574 if (ice_aq_set_phy_cfg(pi->hw, pi, &config, NULL))
1575 return -EAGAIN;
1576
1577 /* Save requested FEC config */
1578 pi->phy.curr_user_fec_req = req_fec;
1579
1580 return 0;
1581 }
1582
1583 /**
1584 * ice_set_fecparam - Set FEC link options
1585 * @netdev: network interface device structure
1586 * @fecparam: Ethtool structure to retrieve FEC parameters
1587 */
1588 static int
ice_set_fecparam(struct net_device * netdev,struct ethtool_fecparam * fecparam)1589 ice_set_fecparam(struct net_device *netdev, struct ethtool_fecparam *fecparam)
1590 {
1591 struct ice_netdev_priv *np = netdev_priv(netdev);
1592 struct ice_vsi *vsi = np->vsi;
1593 enum ice_fec_mode fec;
1594
1595 switch (fecparam->fec) {
1596 case ETHTOOL_FEC_AUTO:
1597 fec = ICE_FEC_AUTO;
1598 break;
1599 case ETHTOOL_FEC_RS:
1600 fec = ICE_FEC_RS;
1601 break;
1602 case ETHTOOL_FEC_BASER:
1603 fec = ICE_FEC_BASER;
1604 break;
1605 case ETHTOOL_FEC_OFF:
1606 case ETHTOOL_FEC_NONE:
1607 fec = ICE_FEC_NONE;
1608 break;
1609 default:
1610 dev_warn(ice_pf_to_dev(vsi->back), "Unsupported FEC mode: %d\n",
1611 fecparam->fec);
1612 return -EINVAL;
1613 }
1614
1615 return ice_set_fec_cfg(netdev, fec);
1616 }
1617
1618 /**
1619 * ice_get_fecparam - Get link FEC options
1620 * @netdev: network interface device structure
1621 * @fecparam: Ethtool structure to retrieve FEC parameters
1622 */
1623 static int
ice_get_fecparam(struct net_device * netdev,struct ethtool_fecparam * fecparam)1624 ice_get_fecparam(struct net_device *netdev, struct ethtool_fecparam *fecparam)
1625 {
1626 struct ice_netdev_priv *np = netdev_priv(netdev);
1627 struct ice_aqc_get_phy_caps_data *caps;
1628 struct ice_link_status *link_info;
1629 struct ice_vsi *vsi = np->vsi;
1630 struct ice_port_info *pi;
1631 int err;
1632
1633 pi = vsi->port_info;
1634
1635 if (!pi)
1636 return -EOPNOTSUPP;
1637 link_info = &pi->phy.link_info;
1638
1639 /* Set FEC mode based on negotiated link info */
1640 switch (link_info->fec_info) {
1641 case ICE_AQ_LINK_25G_KR_FEC_EN:
1642 fecparam->active_fec = ETHTOOL_FEC_BASER;
1643 break;
1644 case ICE_AQ_LINK_25G_RS_528_FEC_EN:
1645 case ICE_AQ_LINK_25G_RS_544_FEC_EN:
1646 fecparam->active_fec = ETHTOOL_FEC_RS;
1647 break;
1648 default:
1649 fecparam->active_fec = ETHTOOL_FEC_OFF;
1650 break;
1651 }
1652
1653 caps = kzalloc(sizeof(*caps), GFP_KERNEL);
1654 if (!caps)
1655 return -ENOMEM;
1656
1657 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
1658 caps, NULL);
1659 if (err)
1660 goto done;
1661
1662 /* Set supported/configured FEC modes based on PHY capability */
1663 if (caps->caps & ICE_AQC_PHY_EN_AUTO_FEC)
1664 fecparam->fec |= ETHTOOL_FEC_AUTO;
1665 if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN ||
1666 caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ ||
1667 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN ||
1668 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ)
1669 fecparam->fec |= ETHTOOL_FEC_BASER;
1670 if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ ||
1671 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ ||
1672 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN)
1673 fecparam->fec |= ETHTOOL_FEC_RS;
1674 if (caps->link_fec_options == 0)
1675 fecparam->fec |= ETHTOOL_FEC_OFF;
1676
1677 done:
1678 kfree(caps);
1679 return err;
1680 }
1681
1682 /**
1683 * ice_nway_reset - restart autonegotiation
1684 * @netdev: network interface device structure
1685 */
ice_nway_reset(struct net_device * netdev)1686 static int ice_nway_reset(struct net_device *netdev)
1687 {
1688 struct ice_netdev_priv *np = netdev_priv(netdev);
1689 struct ice_vsi *vsi = np->vsi;
1690 int err;
1691
1692 /* If VSI state is up, then restart autoneg with link up */
1693 if (!test_bit(ICE_DOWN, vsi->back->state))
1694 err = ice_set_link(vsi, true);
1695 else
1696 err = ice_set_link(vsi, false);
1697
1698 return err;
1699 }
1700
1701 /**
1702 * ice_get_priv_flags - report device private flags
1703 * @netdev: network interface device structure
1704 *
1705 * The get string set count and the string set should be matched for each
1706 * flag returned. Add new strings for each flag to the ice_gstrings_priv_flags
1707 * array.
1708 *
1709 * Returns a u32 bitmap of flags.
1710 */
ice_get_priv_flags(struct net_device * netdev)1711 static u32 ice_get_priv_flags(struct net_device *netdev)
1712 {
1713 struct ice_netdev_priv *np = netdev_priv(netdev);
1714 struct ice_vsi *vsi = np->vsi;
1715 struct ice_pf *pf = vsi->back;
1716 u32 i, ret_flags = 0;
1717
1718 for (i = 0; i < ICE_PRIV_FLAG_ARRAY_SIZE; i++) {
1719 const struct ice_priv_flag *priv_flag;
1720
1721 priv_flag = &ice_gstrings_priv_flags[i];
1722
1723 if (test_bit(priv_flag->bitno, pf->flags))
1724 ret_flags |= BIT(i);
1725 }
1726
1727 return ret_flags;
1728 }
1729
1730 /**
1731 * ice_set_priv_flags - set private flags
1732 * @netdev: network interface device structure
1733 * @flags: bit flags to be set
1734 */
ice_set_priv_flags(struct net_device * netdev,u32 flags)1735 static int ice_set_priv_flags(struct net_device *netdev, u32 flags)
1736 {
1737 struct ice_netdev_priv *np = netdev_priv(netdev);
1738 DECLARE_BITMAP(change_flags, ICE_PF_FLAGS_NBITS);
1739 DECLARE_BITMAP(orig_flags, ICE_PF_FLAGS_NBITS);
1740 struct ice_vsi *vsi = np->vsi;
1741 struct ice_pf *pf = vsi->back;
1742 struct device *dev;
1743 int ret = 0;
1744 u32 i;
1745
1746 if (flags > BIT(ICE_PRIV_FLAG_ARRAY_SIZE))
1747 return -EINVAL;
1748
1749 dev = ice_pf_to_dev(pf);
1750 set_bit(ICE_FLAG_ETHTOOL_CTXT, pf->flags);
1751
1752 bitmap_copy(orig_flags, pf->flags, ICE_PF_FLAGS_NBITS);
1753 for (i = 0; i < ICE_PRIV_FLAG_ARRAY_SIZE; i++) {
1754 const struct ice_priv_flag *priv_flag;
1755
1756 priv_flag = &ice_gstrings_priv_flags[i];
1757
1758 if (flags & BIT(i))
1759 set_bit(priv_flag->bitno, pf->flags);
1760 else
1761 clear_bit(priv_flag->bitno, pf->flags);
1762 }
1763
1764 bitmap_xor(change_flags, pf->flags, orig_flags, ICE_PF_FLAGS_NBITS);
1765
1766 /* Do not allow change to link-down-on-close when Total Port Shutdown
1767 * is enabled.
1768 */
1769 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, change_flags) &&
1770 test_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags)) {
1771 dev_err(dev, "Setting link-down-on-close not supported on this port\n");
1772 set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags);
1773 ret = -EINVAL;
1774 goto ethtool_exit;
1775 }
1776
1777 if (test_bit(ICE_FLAG_FW_LLDP_AGENT, change_flags)) {
1778 if (!test_bit(ICE_FLAG_FW_LLDP_AGENT, pf->flags)) {
1779 int status;
1780
1781 /* Disable FW LLDP engine */
1782 status = ice_cfg_lldp_mib_change(&pf->hw, false);
1783
1784 /* If unregistering for LLDP events fails, this is
1785 * not an error state, as there shouldn't be any
1786 * events to respond to.
1787 */
1788 if (status)
1789 dev_info(dev, "Failed to unreg for LLDP events\n");
1790
1791 /* The AQ call to stop the FW LLDP agent will generate
1792 * an error if the agent is already stopped.
1793 */
1794 status = ice_aq_stop_lldp(&pf->hw, true, true, NULL);
1795 if (status)
1796 dev_warn(dev, "Fail to stop LLDP agent\n");
1797 /* Use case for having the FW LLDP agent stopped
1798 * will likely not need DCB, so failure to init is
1799 * not a concern of ethtool
1800 */
1801 status = ice_init_pf_dcb(pf, true);
1802 if (status)
1803 dev_warn(dev, "Fail to init DCB\n");
1804
1805 pf->dcbx_cap &= ~DCB_CAP_DCBX_LLD_MANAGED;
1806 pf->dcbx_cap |= DCB_CAP_DCBX_HOST;
1807 } else {
1808 bool dcbx_agent_status;
1809 int status;
1810
1811 if (ice_get_pfc_mode(pf) == ICE_QOS_MODE_DSCP) {
1812 clear_bit(ICE_FLAG_FW_LLDP_AGENT, pf->flags);
1813 dev_err(dev, "QoS in L3 DSCP mode, FW Agent not allowed to start\n");
1814 ret = -EOPNOTSUPP;
1815 goto ethtool_exit;
1816 }
1817
1818 /* Remove rule to direct LLDP packets to default VSI.
1819 * The FW LLDP engine will now be consuming them.
1820 */
1821 ice_cfg_sw_lldp(vsi, false, false);
1822
1823 /* AQ command to start FW LLDP agent will return an
1824 * error if the agent is already started
1825 */
1826 status = ice_aq_start_lldp(&pf->hw, true, NULL);
1827 if (status)
1828 dev_warn(dev, "Fail to start LLDP Agent\n");
1829
1830 /* AQ command to start FW DCBX agent will fail if
1831 * the agent is already started
1832 */
1833 status = ice_aq_start_stop_dcbx(&pf->hw, true,
1834 &dcbx_agent_status,
1835 NULL);
1836 if (status)
1837 dev_dbg(dev, "Failed to start FW DCBX\n");
1838
1839 dev_info(dev, "FW DCBX agent is %s\n",
1840 dcbx_agent_status ? "ACTIVE" : "DISABLED");
1841
1842 /* Failure to configure MIB change or init DCB is not
1843 * relevant to ethtool. Print notification that
1844 * registration/init failed but do not return error
1845 * state to ethtool
1846 */
1847 status = ice_init_pf_dcb(pf, true);
1848 if (status)
1849 dev_dbg(dev, "Fail to init DCB\n");
1850
1851 /* Register for MIB change events */
1852 status = ice_cfg_lldp_mib_change(&pf->hw, true);
1853 if (status)
1854 dev_dbg(dev, "Fail to enable MIB change events\n");
1855
1856 pf->dcbx_cap &= ~DCB_CAP_DCBX_HOST;
1857 pf->dcbx_cap |= DCB_CAP_DCBX_LLD_MANAGED;
1858
1859 ice_nway_reset(netdev);
1860 }
1861 }
1862 if (test_bit(ICE_FLAG_LEGACY_RX, change_flags)) {
1863 /* down and up VSI so that changes of Rx cfg are reflected. */
1864 ice_down_up(vsi);
1865 }
1866 /* don't allow modification of this flag when a single VF is in
1867 * promiscuous mode because it's not supported
1868 */
1869 if (test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, change_flags) &&
1870 ice_is_any_vf_in_unicast_promisc(pf)) {
1871 dev_err(dev, "Changing vf-true-promisc-support flag while VF(s) are in promiscuous mode not supported\n");
1872 /* toggle bit back to previous state */
1873 change_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, pf->flags);
1874 ret = -EAGAIN;
1875 }
1876
1877 if (test_bit(ICE_FLAG_VF_VLAN_PRUNING, change_flags) &&
1878 ice_has_vfs(pf)) {
1879 dev_err(dev, "vf-vlan-pruning: VLAN pruning cannot be changed while VFs are active.\n");
1880 /* toggle bit back to previous state */
1881 change_bit(ICE_FLAG_VF_VLAN_PRUNING, pf->flags);
1882 ret = -EOPNOTSUPP;
1883 }
1884 ethtool_exit:
1885 clear_bit(ICE_FLAG_ETHTOOL_CTXT, pf->flags);
1886 return ret;
1887 }
1888
ice_get_sset_count(struct net_device * netdev,int sset)1889 static int ice_get_sset_count(struct net_device *netdev, int sset)
1890 {
1891 switch (sset) {
1892 case ETH_SS_STATS:
1893 /* The number (and order) of strings reported *must* remain
1894 * constant for a given netdevice. This function must not
1895 * report a different number based on run time parameters
1896 * (such as the number of queues in use, or the setting of
1897 * a private ethtool flag). This is due to the nature of the
1898 * ethtool stats API.
1899 *
1900 * Userspace programs such as ethtool must make 3 separate
1901 * ioctl requests, one for size, one for the strings, and
1902 * finally one for the stats. Since these cross into
1903 * userspace, changes to the number or size could result in
1904 * undefined memory access or incorrect string<->value
1905 * correlations for statistics.
1906 *
1907 * Even if it appears to be safe, changes to the size or
1908 * order of strings will suffer from race conditions and are
1909 * not safe.
1910 */
1911 return ICE_ALL_STATS_LEN(netdev);
1912 case ETH_SS_TEST:
1913 return ICE_TEST_LEN;
1914 case ETH_SS_PRIV_FLAGS:
1915 return ICE_PRIV_FLAG_ARRAY_SIZE;
1916 default:
1917 return -EOPNOTSUPP;
1918 }
1919 }
1920
1921 static void
__ice_get_ethtool_stats(struct net_device * netdev,struct ethtool_stats __always_unused * stats,u64 * data,struct ice_vsi * vsi)1922 __ice_get_ethtool_stats(struct net_device *netdev,
1923 struct ethtool_stats __always_unused *stats, u64 *data,
1924 struct ice_vsi *vsi)
1925 {
1926 struct ice_pf *pf = vsi->back;
1927 struct ice_tx_ring *tx_ring;
1928 struct ice_rx_ring *rx_ring;
1929 unsigned int j;
1930 int i = 0;
1931 char *p;
1932
1933 ice_update_pf_stats(pf);
1934 ice_update_vsi_stats(vsi);
1935
1936 for (j = 0; j < ICE_VSI_STATS_LEN; j++) {
1937 p = (char *)vsi + ice_gstrings_vsi_stats[j].stat_offset;
1938 data[i++] = (ice_gstrings_vsi_stats[j].sizeof_stat ==
1939 sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
1940 }
1941
1942 if (ice_is_port_repr_netdev(netdev))
1943 return;
1944
1945 /* populate per queue stats */
1946 rcu_read_lock();
1947
1948 ice_for_each_alloc_txq(vsi, j) {
1949 tx_ring = READ_ONCE(vsi->tx_rings[j]);
1950 if (tx_ring && tx_ring->ring_stats) {
1951 data[i++] = tx_ring->ring_stats->stats.pkts;
1952 data[i++] = tx_ring->ring_stats->stats.bytes;
1953 } else {
1954 data[i++] = 0;
1955 data[i++] = 0;
1956 }
1957 }
1958
1959 ice_for_each_alloc_rxq(vsi, j) {
1960 rx_ring = READ_ONCE(vsi->rx_rings[j]);
1961 if (rx_ring && rx_ring->ring_stats) {
1962 data[i++] = rx_ring->ring_stats->stats.pkts;
1963 data[i++] = rx_ring->ring_stats->stats.bytes;
1964 } else {
1965 data[i++] = 0;
1966 data[i++] = 0;
1967 }
1968 }
1969
1970 rcu_read_unlock();
1971
1972 if (vsi->type != ICE_VSI_PF)
1973 return;
1974
1975 for (j = 0; j < ICE_PF_STATS_LEN; j++) {
1976 p = (char *)pf + ice_gstrings_pf_stats[j].stat_offset;
1977 data[i++] = (ice_gstrings_pf_stats[j].sizeof_stat ==
1978 sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
1979 }
1980
1981 for (j = 0; j < ICE_MAX_USER_PRIORITY; j++) {
1982 data[i++] = pf->stats.priority_xon_tx[j];
1983 data[i++] = pf->stats.priority_xoff_tx[j];
1984 }
1985
1986 for (j = 0; j < ICE_MAX_USER_PRIORITY; j++) {
1987 data[i++] = pf->stats.priority_xon_rx[j];
1988 data[i++] = pf->stats.priority_xoff_rx[j];
1989 }
1990 }
1991
1992 static void
ice_get_ethtool_stats(struct net_device * netdev,struct ethtool_stats __always_unused * stats,u64 * data)1993 ice_get_ethtool_stats(struct net_device *netdev,
1994 struct ethtool_stats __always_unused *stats, u64 *data)
1995 {
1996 struct ice_netdev_priv *np = netdev_priv(netdev);
1997
1998 __ice_get_ethtool_stats(netdev, stats, data, np->vsi);
1999 }
2000
2001 #define ICE_PHY_TYPE_LOW_MASK_MIN_1G (ICE_PHY_TYPE_LOW_100BASE_TX | \
2002 ICE_PHY_TYPE_LOW_100M_SGMII)
2003
2004 #define ICE_PHY_TYPE_LOW_MASK_MIN_25G (ICE_PHY_TYPE_LOW_MASK_MIN_1G | \
2005 ICE_PHY_TYPE_LOW_1000BASE_T | \
2006 ICE_PHY_TYPE_LOW_1000BASE_SX | \
2007 ICE_PHY_TYPE_LOW_1000BASE_LX | \
2008 ICE_PHY_TYPE_LOW_1000BASE_KX | \
2009 ICE_PHY_TYPE_LOW_1G_SGMII | \
2010 ICE_PHY_TYPE_LOW_2500BASE_T | \
2011 ICE_PHY_TYPE_LOW_2500BASE_X | \
2012 ICE_PHY_TYPE_LOW_2500BASE_KX | \
2013 ICE_PHY_TYPE_LOW_5GBASE_T | \
2014 ICE_PHY_TYPE_LOW_5GBASE_KR | \
2015 ICE_PHY_TYPE_LOW_10GBASE_T | \
2016 ICE_PHY_TYPE_LOW_10G_SFI_DA | \
2017 ICE_PHY_TYPE_LOW_10GBASE_SR | \
2018 ICE_PHY_TYPE_LOW_10GBASE_LR | \
2019 ICE_PHY_TYPE_LOW_10GBASE_KR_CR1 | \
2020 ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC | \
2021 ICE_PHY_TYPE_LOW_10G_SFI_C2C)
2022
2023 #define ICE_PHY_TYPE_LOW_MASK_100G (ICE_PHY_TYPE_LOW_100GBASE_CR4 | \
2024 ICE_PHY_TYPE_LOW_100GBASE_SR4 | \
2025 ICE_PHY_TYPE_LOW_100GBASE_LR4 | \
2026 ICE_PHY_TYPE_LOW_100GBASE_KR4 | \
2027 ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC | \
2028 ICE_PHY_TYPE_LOW_100G_CAUI4 | \
2029 ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC | \
2030 ICE_PHY_TYPE_LOW_100G_AUI4 | \
2031 ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4 | \
2032 ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4 | \
2033 ICE_PHY_TYPE_LOW_100GBASE_CP2 | \
2034 ICE_PHY_TYPE_LOW_100GBASE_SR2 | \
2035 ICE_PHY_TYPE_LOW_100GBASE_DR)
2036
2037 #define ICE_PHY_TYPE_HIGH_MASK_100G (ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4 | \
2038 ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC |\
2039 ICE_PHY_TYPE_HIGH_100G_CAUI2 | \
2040 ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC | \
2041 ICE_PHY_TYPE_HIGH_100G_AUI2)
2042
2043 #define ICE_PHY_TYPE_HIGH_MASK_200G (ICE_PHY_TYPE_HIGH_200G_CR4_PAM4 | \
2044 ICE_PHY_TYPE_HIGH_200G_SR4 | \
2045 ICE_PHY_TYPE_HIGH_200G_FR4 | \
2046 ICE_PHY_TYPE_HIGH_200G_LR4 | \
2047 ICE_PHY_TYPE_HIGH_200G_DR4 | \
2048 ICE_PHY_TYPE_HIGH_200G_KR4_PAM4 | \
2049 ICE_PHY_TYPE_HIGH_200G_AUI4_AOC_ACC | \
2050 ICE_PHY_TYPE_HIGH_200G_AUI4)
2051
2052 /**
2053 * ice_mask_min_supported_speeds
2054 * @hw: pointer to the HW structure
2055 * @phy_types_high: PHY type high
2056 * @phy_types_low: PHY type low to apply minimum supported speeds mask
2057 *
2058 * Apply minimum supported speeds mask to PHY type low. These are the speeds
2059 * for ethtool supported link mode.
2060 */
2061 static void
ice_mask_min_supported_speeds(struct ice_hw * hw,u64 phy_types_high,u64 * phy_types_low)2062 ice_mask_min_supported_speeds(struct ice_hw *hw,
2063 u64 phy_types_high, u64 *phy_types_low)
2064 {
2065 /* if QSFP connection with 100G speed, minimum supported speed is 25G */
2066 if ((*phy_types_low & ICE_PHY_TYPE_LOW_MASK_100G) ||
2067 (phy_types_high & ICE_PHY_TYPE_HIGH_MASK_100G) ||
2068 (phy_types_high & ICE_PHY_TYPE_HIGH_MASK_200G))
2069 *phy_types_low &= ~ICE_PHY_TYPE_LOW_MASK_MIN_25G;
2070 else if (!ice_is_100m_speed_supported(hw))
2071 *phy_types_low &= ~ICE_PHY_TYPE_LOW_MASK_MIN_1G;
2072 }
2073
2074 /**
2075 * ice_linkmode_set_bit - set link mode bit
2076 * @phy_to_ethtool: PHY type to ethtool link mode struct to set
2077 * @ks: ethtool link ksettings struct to fill out
2078 * @req_speeds: speed requested by user
2079 * @advert_phy_type: advertised PHY type
2080 * @phy_type: PHY type
2081 */
2082 static void
ice_linkmode_set_bit(const struct ice_phy_type_to_ethtool * phy_to_ethtool,struct ethtool_link_ksettings * ks,u32 req_speeds,u64 advert_phy_type,u32 phy_type)2083 ice_linkmode_set_bit(const struct ice_phy_type_to_ethtool *phy_to_ethtool,
2084 struct ethtool_link_ksettings *ks, u32 req_speeds,
2085 u64 advert_phy_type, u32 phy_type)
2086 {
2087 linkmode_set_bit(phy_to_ethtool->link_mode, ks->link_modes.supported);
2088
2089 if (req_speeds & phy_to_ethtool->aq_link_speed ||
2090 (!req_speeds && advert_phy_type & BIT(phy_type)))
2091 linkmode_set_bit(phy_to_ethtool->link_mode,
2092 ks->link_modes.advertising);
2093 }
2094
2095 /**
2096 * ice_phy_type_to_ethtool - convert the phy_types to ethtool link modes
2097 * @netdev: network interface device structure
2098 * @ks: ethtool link ksettings struct to fill out
2099 */
2100 static void
ice_phy_type_to_ethtool(struct net_device * netdev,struct ethtool_link_ksettings * ks)2101 ice_phy_type_to_ethtool(struct net_device *netdev,
2102 struct ethtool_link_ksettings *ks)
2103 {
2104 struct ice_netdev_priv *np = netdev_priv(netdev);
2105 struct ice_vsi *vsi = np->vsi;
2106 struct ice_pf *pf = vsi->back;
2107 u64 advert_phy_type_lo = 0;
2108 u64 advert_phy_type_hi = 0;
2109 u64 phy_types_high = 0;
2110 u64 phy_types_low = 0;
2111 u32 req_speeds;
2112 u32 i;
2113
2114 req_speeds = vsi->port_info->phy.link_info.req_speeds;
2115
2116 /* Check if lenient mode is supported and enabled, or in strict mode.
2117 *
2118 * In lenient mode the Supported link modes are the PHY types without
2119 * media. The Advertising link mode is either 1. the user requested
2120 * speed, 2. the override PHY mask, or 3. the PHY types with media.
2121 *
2122 * In strict mode Supported link mode are the PHY type with media,
2123 * and Advertising link modes are the media PHY type or the speed
2124 * requested by user.
2125 */
2126 if (test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags)) {
2127 phy_types_low = le64_to_cpu(pf->nvm_phy_type_lo);
2128 phy_types_high = le64_to_cpu(pf->nvm_phy_type_hi);
2129
2130 ice_mask_min_supported_speeds(&pf->hw, phy_types_high,
2131 &phy_types_low);
2132 /* determine advertised modes based on link override only
2133 * if it's supported and if the FW doesn't abstract the
2134 * driver from having to account for link overrides
2135 */
2136 if (ice_fw_supports_link_override(&pf->hw) &&
2137 !ice_fw_supports_report_dflt_cfg(&pf->hw)) {
2138 struct ice_link_default_override_tlv *ldo;
2139
2140 ldo = &pf->link_dflt_override;
2141 /* If override enabled and PHY mask set, then
2142 * Advertising link mode is the intersection of the PHY
2143 * types without media and the override PHY mask.
2144 */
2145 if (ldo->options & ICE_LINK_OVERRIDE_EN &&
2146 (ldo->phy_type_low || ldo->phy_type_high)) {
2147 advert_phy_type_lo =
2148 le64_to_cpu(pf->nvm_phy_type_lo) &
2149 ldo->phy_type_low;
2150 advert_phy_type_hi =
2151 le64_to_cpu(pf->nvm_phy_type_hi) &
2152 ldo->phy_type_high;
2153 }
2154 }
2155 } else {
2156 /* strict mode */
2157 phy_types_low = vsi->port_info->phy.phy_type_low;
2158 phy_types_high = vsi->port_info->phy.phy_type_high;
2159 }
2160
2161 /* If Advertising link mode PHY type is not using override PHY type,
2162 * then use PHY type with media.
2163 */
2164 if (!advert_phy_type_lo && !advert_phy_type_hi) {
2165 advert_phy_type_lo = vsi->port_info->phy.phy_type_low;
2166 advert_phy_type_hi = vsi->port_info->phy.phy_type_high;
2167 }
2168
2169 linkmode_zero(ks->link_modes.supported);
2170 linkmode_zero(ks->link_modes.advertising);
2171
2172 for (i = 0; i < ARRAY_SIZE(phy_type_low_lkup); i++) {
2173 if (phy_types_low & BIT_ULL(i))
2174 ice_linkmode_set_bit(&phy_type_low_lkup[i], ks,
2175 req_speeds, advert_phy_type_lo,
2176 i);
2177 }
2178
2179 for (i = 0; i < ARRAY_SIZE(phy_type_high_lkup); i++) {
2180 if (phy_types_high & BIT_ULL(i))
2181 ice_linkmode_set_bit(&phy_type_high_lkup[i], ks,
2182 req_speeds, advert_phy_type_hi,
2183 i);
2184 }
2185 }
2186
2187 #define TEST_SET_BITS_TIMEOUT 50
2188 #define TEST_SET_BITS_SLEEP_MAX 2000
2189 #define TEST_SET_BITS_SLEEP_MIN 1000
2190
2191 /**
2192 * ice_get_settings_link_up - Get Link settings for when link is up
2193 * @ks: ethtool ksettings to fill in
2194 * @netdev: network interface device structure
2195 */
2196 static void
ice_get_settings_link_up(struct ethtool_link_ksettings * ks,struct net_device * netdev)2197 ice_get_settings_link_up(struct ethtool_link_ksettings *ks,
2198 struct net_device *netdev)
2199 {
2200 struct ice_netdev_priv *np = netdev_priv(netdev);
2201 struct ice_port_info *pi = np->vsi->port_info;
2202 struct ice_link_status *link_info;
2203 struct ice_vsi *vsi = np->vsi;
2204
2205 link_info = &vsi->port_info->phy.link_info;
2206
2207 /* Get supported and advertised settings from PHY ability with media */
2208 ice_phy_type_to_ethtool(netdev, ks);
2209
2210 switch (link_info->link_speed) {
2211 case ICE_AQ_LINK_SPEED_200GB:
2212 ks->base.speed = SPEED_200000;
2213 break;
2214 case ICE_AQ_LINK_SPEED_100GB:
2215 ks->base.speed = SPEED_100000;
2216 break;
2217 case ICE_AQ_LINK_SPEED_50GB:
2218 ks->base.speed = SPEED_50000;
2219 break;
2220 case ICE_AQ_LINK_SPEED_40GB:
2221 ks->base.speed = SPEED_40000;
2222 break;
2223 case ICE_AQ_LINK_SPEED_25GB:
2224 ks->base.speed = SPEED_25000;
2225 break;
2226 case ICE_AQ_LINK_SPEED_20GB:
2227 ks->base.speed = SPEED_20000;
2228 break;
2229 case ICE_AQ_LINK_SPEED_10GB:
2230 ks->base.speed = SPEED_10000;
2231 break;
2232 case ICE_AQ_LINK_SPEED_5GB:
2233 ks->base.speed = SPEED_5000;
2234 break;
2235 case ICE_AQ_LINK_SPEED_2500MB:
2236 ks->base.speed = SPEED_2500;
2237 break;
2238 case ICE_AQ_LINK_SPEED_1000MB:
2239 ks->base.speed = SPEED_1000;
2240 break;
2241 case ICE_AQ_LINK_SPEED_100MB:
2242 ks->base.speed = SPEED_100;
2243 break;
2244 default:
2245 netdev_info(netdev, "WARNING: Unrecognized link_speed (0x%x).\n",
2246 link_info->link_speed);
2247 break;
2248 }
2249 ks->base.duplex = DUPLEX_FULL;
2250
2251 if (link_info->an_info & ICE_AQ_AN_COMPLETED)
2252 ethtool_link_ksettings_add_link_mode(ks, lp_advertising,
2253 Autoneg);
2254
2255 /* Set flow control negotiated Rx/Tx pause */
2256 switch (pi->fc.current_mode) {
2257 case ICE_FC_FULL:
2258 ethtool_link_ksettings_add_link_mode(ks, lp_advertising, Pause);
2259 break;
2260 case ICE_FC_TX_PAUSE:
2261 ethtool_link_ksettings_add_link_mode(ks, lp_advertising, Pause);
2262 ethtool_link_ksettings_add_link_mode(ks, lp_advertising,
2263 Asym_Pause);
2264 break;
2265 case ICE_FC_RX_PAUSE:
2266 ethtool_link_ksettings_add_link_mode(ks, lp_advertising,
2267 Asym_Pause);
2268 break;
2269 case ICE_FC_PFC:
2270 default:
2271 ethtool_link_ksettings_del_link_mode(ks, lp_advertising, Pause);
2272 ethtool_link_ksettings_del_link_mode(ks, lp_advertising,
2273 Asym_Pause);
2274 break;
2275 }
2276 }
2277
2278 /**
2279 * ice_get_settings_link_down - Get the Link settings when link is down
2280 * @ks: ethtool ksettings to fill in
2281 * @netdev: network interface device structure
2282 *
2283 * Reports link settings that can be determined when link is down
2284 */
2285 static void
ice_get_settings_link_down(struct ethtool_link_ksettings * ks,struct net_device * netdev)2286 ice_get_settings_link_down(struct ethtool_link_ksettings *ks,
2287 struct net_device *netdev)
2288 {
2289 /* link is down and the driver needs to fall back on
2290 * supported PHY types to figure out what info to display
2291 */
2292 ice_phy_type_to_ethtool(netdev, ks);
2293
2294 /* With no link, speed and duplex are unknown */
2295 ks->base.speed = SPEED_UNKNOWN;
2296 ks->base.duplex = DUPLEX_UNKNOWN;
2297 }
2298
2299 /**
2300 * ice_get_link_ksettings - Get Link Speed and Duplex settings
2301 * @netdev: network interface device structure
2302 * @ks: ethtool ksettings
2303 *
2304 * Reports speed/duplex settings based on media_type
2305 */
2306 static int
ice_get_link_ksettings(struct net_device * netdev,struct ethtool_link_ksettings * ks)2307 ice_get_link_ksettings(struct net_device *netdev,
2308 struct ethtool_link_ksettings *ks)
2309 {
2310 struct ice_netdev_priv *np = netdev_priv(netdev);
2311 struct ice_aqc_get_phy_caps_data *caps;
2312 struct ice_link_status *hw_link_info;
2313 struct ice_vsi *vsi = np->vsi;
2314 int err;
2315
2316 ethtool_link_ksettings_zero_link_mode(ks, supported);
2317 ethtool_link_ksettings_zero_link_mode(ks, advertising);
2318 ethtool_link_ksettings_zero_link_mode(ks, lp_advertising);
2319 hw_link_info = &vsi->port_info->phy.link_info;
2320
2321 /* set speed and duplex */
2322 if (hw_link_info->link_info & ICE_AQ_LINK_UP)
2323 ice_get_settings_link_up(ks, netdev);
2324 else
2325 ice_get_settings_link_down(ks, netdev);
2326
2327 /* set autoneg settings */
2328 ks->base.autoneg = (hw_link_info->an_info & ICE_AQ_AN_COMPLETED) ?
2329 AUTONEG_ENABLE : AUTONEG_DISABLE;
2330
2331 /* set media type settings */
2332 switch (vsi->port_info->phy.media_type) {
2333 case ICE_MEDIA_FIBER:
2334 ethtool_link_ksettings_add_link_mode(ks, supported, FIBRE);
2335 ks->base.port = PORT_FIBRE;
2336 break;
2337 case ICE_MEDIA_BASET:
2338 ethtool_link_ksettings_add_link_mode(ks, supported, TP);
2339 ethtool_link_ksettings_add_link_mode(ks, advertising, TP);
2340 ks->base.port = PORT_TP;
2341 break;
2342 case ICE_MEDIA_BACKPLANE:
2343 ethtool_link_ksettings_add_link_mode(ks, supported, Backplane);
2344 ethtool_link_ksettings_add_link_mode(ks, advertising,
2345 Backplane);
2346 ks->base.port = PORT_NONE;
2347 break;
2348 case ICE_MEDIA_DA:
2349 ethtool_link_ksettings_add_link_mode(ks, supported, FIBRE);
2350 ethtool_link_ksettings_add_link_mode(ks, advertising, FIBRE);
2351 ks->base.port = PORT_DA;
2352 break;
2353 default:
2354 ks->base.port = PORT_OTHER;
2355 break;
2356 }
2357
2358 /* flow control is symmetric and always supported */
2359 ethtool_link_ksettings_add_link_mode(ks, supported, Pause);
2360
2361 caps = kzalloc(sizeof(*caps), GFP_KERNEL);
2362 if (!caps)
2363 return -ENOMEM;
2364
2365 err = ice_aq_get_phy_caps(vsi->port_info, false,
2366 ICE_AQC_REPORT_ACTIVE_CFG, caps, NULL);
2367 if (err)
2368 goto done;
2369
2370 /* Set the advertised flow control based on the PHY capability */
2371 if ((caps->caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE) &&
2372 (caps->caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE)) {
2373 ethtool_link_ksettings_add_link_mode(ks, advertising, Pause);
2374 ethtool_link_ksettings_add_link_mode(ks, advertising,
2375 Asym_Pause);
2376 } else if (caps->caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE) {
2377 ethtool_link_ksettings_add_link_mode(ks, advertising,
2378 Asym_Pause);
2379 } else if (caps->caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE) {
2380 ethtool_link_ksettings_add_link_mode(ks, advertising, Pause);
2381 ethtool_link_ksettings_add_link_mode(ks, advertising,
2382 Asym_Pause);
2383 } else {
2384 ethtool_link_ksettings_del_link_mode(ks, advertising, Pause);
2385 ethtool_link_ksettings_del_link_mode(ks, advertising,
2386 Asym_Pause);
2387 }
2388
2389 /* Set advertised FEC modes based on PHY capability */
2390 ethtool_link_ksettings_add_link_mode(ks, advertising, FEC_NONE);
2391
2392 if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ ||
2393 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ)
2394 ethtool_link_ksettings_add_link_mode(ks, advertising,
2395 FEC_BASER);
2396 if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ ||
2397 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ)
2398 ethtool_link_ksettings_add_link_mode(ks, advertising, FEC_RS);
2399
2400 err = ice_aq_get_phy_caps(vsi->port_info, false,
2401 ICE_AQC_REPORT_TOPO_CAP_MEDIA, caps, NULL);
2402 if (err)
2403 goto done;
2404
2405 /* Set supported FEC modes based on PHY capability */
2406 ethtool_link_ksettings_add_link_mode(ks, supported, FEC_NONE);
2407
2408 if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN ||
2409 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN)
2410 ethtool_link_ksettings_add_link_mode(ks, supported, FEC_BASER);
2411 if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN)
2412 ethtool_link_ksettings_add_link_mode(ks, supported, FEC_RS);
2413
2414 /* Set supported and advertised autoneg */
2415 if (ice_is_phy_caps_an_enabled(caps)) {
2416 ethtool_link_ksettings_add_link_mode(ks, supported, Autoneg);
2417 ethtool_link_ksettings_add_link_mode(ks, advertising, Autoneg);
2418 }
2419
2420 done:
2421 kfree(caps);
2422 return err;
2423 }
2424
2425 /**
2426 * ice_speed_to_aq_link - Get AQ link speed by Ethtool forced speed
2427 * @speed: ethtool forced speed
2428 */
ice_speed_to_aq_link(int speed)2429 static u16 ice_speed_to_aq_link(int speed)
2430 {
2431 int aq_speed;
2432
2433 switch (speed) {
2434 case SPEED_10:
2435 aq_speed = ICE_AQ_LINK_SPEED_10MB;
2436 break;
2437 case SPEED_100:
2438 aq_speed = ICE_AQ_LINK_SPEED_100MB;
2439 break;
2440 case SPEED_1000:
2441 aq_speed = ICE_AQ_LINK_SPEED_1000MB;
2442 break;
2443 case SPEED_2500:
2444 aq_speed = ICE_AQ_LINK_SPEED_2500MB;
2445 break;
2446 case SPEED_5000:
2447 aq_speed = ICE_AQ_LINK_SPEED_5GB;
2448 break;
2449 case SPEED_10000:
2450 aq_speed = ICE_AQ_LINK_SPEED_10GB;
2451 break;
2452 case SPEED_20000:
2453 aq_speed = ICE_AQ_LINK_SPEED_20GB;
2454 break;
2455 case SPEED_25000:
2456 aq_speed = ICE_AQ_LINK_SPEED_25GB;
2457 break;
2458 case SPEED_40000:
2459 aq_speed = ICE_AQ_LINK_SPEED_40GB;
2460 break;
2461 case SPEED_50000:
2462 aq_speed = ICE_AQ_LINK_SPEED_50GB;
2463 break;
2464 case SPEED_100000:
2465 aq_speed = ICE_AQ_LINK_SPEED_100GB;
2466 break;
2467 default:
2468 aq_speed = ICE_AQ_LINK_SPEED_UNKNOWN;
2469 break;
2470 }
2471 return aq_speed;
2472 }
2473
2474 /**
2475 * ice_ksettings_find_adv_link_speed - Find advertising link speed
2476 * @ks: ethtool ksettings
2477 */
2478 static u16
ice_ksettings_find_adv_link_speed(const struct ethtool_link_ksettings * ks)2479 ice_ksettings_find_adv_link_speed(const struct ethtool_link_ksettings *ks)
2480 {
2481 const struct ethtool_forced_speed_map *map;
2482 u16 adv_link_speed = 0;
2483
2484 for (u32 i = 0; i < ARRAY_SIZE(ice_adv_lnk_speed_maps); i++) {
2485 map = ice_adv_lnk_speed_maps + i;
2486 if (linkmode_intersects(ks->link_modes.advertising, map->caps))
2487 adv_link_speed |= ice_speed_to_aq_link(map->speed);
2488 }
2489
2490 return adv_link_speed;
2491 }
2492
2493 /**
2494 * ice_setup_autoneg
2495 * @p: port info
2496 * @ks: ethtool_link_ksettings
2497 * @config: configuration that will be sent down to FW
2498 * @autoneg_enabled: autonegotiation is enabled or not
2499 * @autoneg_changed: will there a change in autonegotiation
2500 * @netdev: network interface device structure
2501 *
2502 * Setup PHY autonegotiation feature
2503 */
2504 static int
ice_setup_autoneg(struct ice_port_info * p,struct ethtool_link_ksettings * ks,struct ice_aqc_set_phy_cfg_data * config,u8 autoneg_enabled,u8 * autoneg_changed,struct net_device * netdev)2505 ice_setup_autoneg(struct ice_port_info *p, struct ethtool_link_ksettings *ks,
2506 struct ice_aqc_set_phy_cfg_data *config,
2507 u8 autoneg_enabled, u8 *autoneg_changed,
2508 struct net_device *netdev)
2509 {
2510 int err = 0;
2511
2512 *autoneg_changed = 0;
2513
2514 /* Check autoneg */
2515 if (autoneg_enabled == AUTONEG_ENABLE) {
2516 /* If autoneg was not already enabled */
2517 if (!(p->phy.link_info.an_info & ICE_AQ_AN_COMPLETED)) {
2518 /* If autoneg is not supported, return error */
2519 if (!ethtool_link_ksettings_test_link_mode(ks,
2520 supported,
2521 Autoneg)) {
2522 netdev_info(netdev, "Autoneg not supported on this phy.\n");
2523 err = -EINVAL;
2524 } else {
2525 /* Autoneg is allowed to change */
2526 config->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
2527 *autoneg_changed = 1;
2528 }
2529 }
2530 } else {
2531 /* If autoneg is currently enabled */
2532 if (p->phy.link_info.an_info & ICE_AQ_AN_COMPLETED) {
2533 /* If autoneg is supported 10GBASE_T is the only PHY
2534 * that can disable it, so otherwise return error
2535 */
2536 if (ethtool_link_ksettings_test_link_mode(ks,
2537 supported,
2538 Autoneg)) {
2539 netdev_info(netdev, "Autoneg cannot be disabled on this phy\n");
2540 err = -EINVAL;
2541 } else {
2542 /* Autoneg is allowed to change */
2543 config->caps &= ~ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
2544 *autoneg_changed = 1;
2545 }
2546 }
2547 }
2548
2549 return err;
2550 }
2551
2552 /**
2553 * ice_set_phy_type_from_speed - set phy_types based on speeds
2554 * and advertised modes
2555 * @ks: ethtool link ksettings struct
2556 * @phy_type_low: pointer to the lower part of phy_type
2557 * @phy_type_high: pointer to the higher part of phy_type
2558 * @adv_link_speed: targeted link speeds bitmap
2559 */
2560 static void
ice_set_phy_type_from_speed(const struct ethtool_link_ksettings * ks,u64 * phy_type_low,u64 * phy_type_high,u16 adv_link_speed)2561 ice_set_phy_type_from_speed(const struct ethtool_link_ksettings *ks,
2562 u64 *phy_type_low, u64 *phy_type_high,
2563 u16 adv_link_speed)
2564 {
2565 /* Handle 1000M speed in a special way because ice_update_phy_type
2566 * enables all link modes, but having mixed copper and optical
2567 * standards is not supported.
2568 */
2569 adv_link_speed &= ~ICE_AQ_LINK_SPEED_1000MB;
2570
2571 if (ethtool_link_ksettings_test_link_mode(ks, advertising,
2572 1000baseT_Full))
2573 *phy_type_low |= ICE_PHY_TYPE_LOW_1000BASE_T |
2574 ICE_PHY_TYPE_LOW_1G_SGMII;
2575
2576 if (ethtool_link_ksettings_test_link_mode(ks, advertising,
2577 1000baseKX_Full))
2578 *phy_type_low |= ICE_PHY_TYPE_LOW_1000BASE_KX;
2579
2580 if (ethtool_link_ksettings_test_link_mode(ks, advertising,
2581 1000baseX_Full))
2582 *phy_type_low |= ICE_PHY_TYPE_LOW_1000BASE_SX |
2583 ICE_PHY_TYPE_LOW_1000BASE_LX;
2584
2585 ice_update_phy_type(phy_type_low, phy_type_high, adv_link_speed);
2586 }
2587
2588 /**
2589 * ice_set_link_ksettings - Set Speed and Duplex
2590 * @netdev: network interface device structure
2591 * @ks: ethtool ksettings
2592 *
2593 * Set speed/duplex per media_types advertised/forced
2594 */
2595 static int
ice_set_link_ksettings(struct net_device * netdev,const struct ethtool_link_ksettings * ks)2596 ice_set_link_ksettings(struct net_device *netdev,
2597 const struct ethtool_link_ksettings *ks)
2598 {
2599 struct ice_netdev_priv *np = netdev_priv(netdev);
2600 u8 autoneg, timeout = TEST_SET_BITS_TIMEOUT;
2601 struct ethtool_link_ksettings copy_ks = *ks;
2602 struct ethtool_link_ksettings safe_ks = {};
2603 struct ice_aqc_get_phy_caps_data *phy_caps;
2604 struct ice_aqc_set_phy_cfg_data config;
2605 u16 adv_link_speed, curr_link_speed;
2606 struct ice_pf *pf = np->vsi->back;
2607 struct ice_port_info *pi;
2608 u8 autoneg_changed = 0;
2609 u64 phy_type_high = 0;
2610 u64 phy_type_low = 0;
2611 bool linkup;
2612 int err;
2613
2614 pi = np->vsi->port_info;
2615
2616 if (!pi)
2617 return -EIO;
2618
2619 if (pi->phy.media_type != ICE_MEDIA_BASET &&
2620 pi->phy.media_type != ICE_MEDIA_FIBER &&
2621 pi->phy.media_type != ICE_MEDIA_BACKPLANE &&
2622 pi->phy.media_type != ICE_MEDIA_DA &&
2623 pi->phy.link_info.link_info & ICE_AQ_LINK_UP)
2624 return -EOPNOTSUPP;
2625
2626 phy_caps = kzalloc(sizeof(*phy_caps), GFP_KERNEL);
2627 if (!phy_caps)
2628 return -ENOMEM;
2629
2630 /* Get the PHY capabilities based on media */
2631 if (ice_fw_supports_report_dflt_cfg(pi->hw))
2632 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG,
2633 phy_caps, NULL);
2634 else
2635 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
2636 phy_caps, NULL);
2637 if (err)
2638 goto done;
2639
2640 /* save autoneg out of ksettings */
2641 autoneg = copy_ks.base.autoneg;
2642
2643 /* Get link modes supported by hardware.*/
2644 ice_phy_type_to_ethtool(netdev, &safe_ks);
2645
2646 /* and check against modes requested by user.
2647 * Return an error if unsupported mode was set.
2648 */
2649 if (!bitmap_subset(copy_ks.link_modes.advertising,
2650 safe_ks.link_modes.supported,
2651 __ETHTOOL_LINK_MODE_MASK_NBITS)) {
2652 if (!test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags))
2653 netdev_info(netdev, "The selected speed is not supported by the current media. Please select a link speed that is supported by the current media.\n");
2654 err = -EOPNOTSUPP;
2655 goto done;
2656 }
2657
2658 /* get our own copy of the bits to check against */
2659 memset(&safe_ks, 0, sizeof(safe_ks));
2660 safe_ks.base.cmd = copy_ks.base.cmd;
2661 safe_ks.base.link_mode_masks_nwords =
2662 copy_ks.base.link_mode_masks_nwords;
2663 ice_get_link_ksettings(netdev, &safe_ks);
2664
2665 /* set autoneg back to what it currently is */
2666 copy_ks.base.autoneg = safe_ks.base.autoneg;
2667 /* we don't compare the speed */
2668 copy_ks.base.speed = safe_ks.base.speed;
2669
2670 /* If copy_ks.base and safe_ks.base are not the same now, then they are
2671 * trying to set something that we do not support.
2672 */
2673 if (memcmp(©_ks.base, &safe_ks.base, sizeof(copy_ks.base))) {
2674 err = -EOPNOTSUPP;
2675 goto done;
2676 }
2677
2678 while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) {
2679 timeout--;
2680 if (!timeout) {
2681 err = -EBUSY;
2682 goto done;
2683 }
2684 usleep_range(TEST_SET_BITS_SLEEP_MIN, TEST_SET_BITS_SLEEP_MAX);
2685 }
2686
2687 /* Copy the current user PHY configuration. The current user PHY
2688 * configuration is initialized during probe from PHY capabilities
2689 * software mode, and updated on set PHY configuration.
2690 */
2691 config = pi->phy.curr_user_phy_cfg;
2692
2693 config.caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
2694
2695 /* Check autoneg */
2696 err = ice_setup_autoneg(pi, &safe_ks, &config, autoneg, &autoneg_changed,
2697 netdev);
2698
2699 if (err)
2700 goto done;
2701
2702 /* Call to get the current link speed */
2703 pi->phy.get_link_info = true;
2704 err = ice_get_link_status(pi, &linkup);
2705 if (err)
2706 goto done;
2707
2708 curr_link_speed = pi->phy.curr_user_speed_req;
2709 adv_link_speed = ice_ksettings_find_adv_link_speed(ks);
2710
2711 /* If speed didn't get set, set it to what it currently is.
2712 * This is needed because if advertise is 0 (as it is when autoneg
2713 * is disabled) then speed won't get set.
2714 */
2715 if (!adv_link_speed)
2716 adv_link_speed = curr_link_speed;
2717
2718 /* Convert the advertise link speeds to their corresponded PHY_TYPE */
2719 ice_set_phy_type_from_speed(ks, &phy_type_low, &phy_type_high,
2720 adv_link_speed);
2721
2722 if (!autoneg_changed && adv_link_speed == curr_link_speed) {
2723 netdev_info(netdev, "Nothing changed, exiting without setting anything.\n");
2724 goto done;
2725 }
2726
2727 /* save the requested speeds */
2728 pi->phy.link_info.req_speeds = adv_link_speed;
2729
2730 /* set link and auto negotiation so changes take effect */
2731 config.caps |= ICE_AQ_PHY_ENA_LINK;
2732
2733 /* check if there is a PHY type for the requested advertised speed */
2734 if (!(phy_type_low || phy_type_high)) {
2735 netdev_info(netdev, "The selected speed is not supported by the current media. Please select a link speed that is supported by the current media.\n");
2736 err = -EOPNOTSUPP;
2737 goto done;
2738 }
2739
2740 /* intersect requested advertised speed PHY types with media PHY types
2741 * for set PHY configuration
2742 */
2743 config.phy_type_high = cpu_to_le64(phy_type_high) &
2744 phy_caps->phy_type_high;
2745 config.phy_type_low = cpu_to_le64(phy_type_low) &
2746 phy_caps->phy_type_low;
2747
2748 if (!(config.phy_type_high || config.phy_type_low)) {
2749 /* If there is no intersection and lenient mode is enabled, then
2750 * intersect the requested advertised speed with NVM media type
2751 * PHY types.
2752 */
2753 if (test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags)) {
2754 config.phy_type_high = cpu_to_le64(phy_type_high) &
2755 pf->nvm_phy_type_hi;
2756 config.phy_type_low = cpu_to_le64(phy_type_low) &
2757 pf->nvm_phy_type_lo;
2758 } else {
2759 netdev_info(netdev, "The selected speed is not supported by the current media. Please select a link speed that is supported by the current media.\n");
2760 err = -EOPNOTSUPP;
2761 goto done;
2762 }
2763 }
2764
2765 /* If link is up put link down */
2766 if (pi->phy.link_info.link_info & ICE_AQ_LINK_UP) {
2767 /* Tell the OS link is going down, the link will go
2768 * back up when fw says it is ready asynchronously
2769 */
2770 ice_print_link_msg(np->vsi, false);
2771 netif_carrier_off(netdev);
2772 netif_tx_stop_all_queues(netdev);
2773 }
2774
2775 /* make the aq call */
2776 err = ice_aq_set_phy_cfg(&pf->hw, pi, &config, NULL);
2777 if (err) {
2778 netdev_info(netdev, "Set phy config failed,\n");
2779 goto done;
2780 }
2781
2782 /* Save speed request */
2783 pi->phy.curr_user_speed_req = adv_link_speed;
2784 done:
2785 kfree(phy_caps);
2786 clear_bit(ICE_CFG_BUSY, pf->state);
2787
2788 return err;
2789 }
2790
2791 /**
2792 * ice_parse_hdrs - parses headers from RSS hash input
2793 * @nfc: ethtool rxnfc command
2794 *
2795 * This function parses the rxnfc command and returns intended
2796 * header types for RSS configuration
2797 */
ice_parse_hdrs(struct ethtool_rxnfc * nfc)2798 static u32 ice_parse_hdrs(struct ethtool_rxnfc *nfc)
2799 {
2800 u32 hdrs = ICE_FLOW_SEG_HDR_NONE;
2801
2802 switch (nfc->flow_type) {
2803 case TCP_V4_FLOW:
2804 hdrs |= ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV4;
2805 break;
2806 case UDP_V4_FLOW:
2807 hdrs |= ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV4;
2808 break;
2809 case SCTP_V4_FLOW:
2810 hdrs |= ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV4;
2811 break;
2812 case GTPU_V4_FLOW:
2813 hdrs |= ICE_FLOW_SEG_HDR_GTPU_IP | ICE_FLOW_SEG_HDR_IPV4;
2814 break;
2815 case GTPC_V4_FLOW:
2816 hdrs |= ICE_FLOW_SEG_HDR_GTPC | ICE_FLOW_SEG_HDR_IPV4;
2817 break;
2818 case GTPC_TEID_V4_FLOW:
2819 hdrs |= ICE_FLOW_SEG_HDR_GTPC_TEID | ICE_FLOW_SEG_HDR_IPV4;
2820 break;
2821 case GTPU_EH_V4_FLOW:
2822 hdrs |= ICE_FLOW_SEG_HDR_GTPU_EH | ICE_FLOW_SEG_HDR_IPV4;
2823 break;
2824 case GTPU_UL_V4_FLOW:
2825 hdrs |= ICE_FLOW_SEG_HDR_GTPU_UP | ICE_FLOW_SEG_HDR_IPV4;
2826 break;
2827 case GTPU_DL_V4_FLOW:
2828 hdrs |= ICE_FLOW_SEG_HDR_GTPU_DWN | ICE_FLOW_SEG_HDR_IPV4;
2829 break;
2830 case TCP_V6_FLOW:
2831 hdrs |= ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV6;
2832 break;
2833 case UDP_V6_FLOW:
2834 hdrs |= ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV6;
2835 break;
2836 case SCTP_V6_FLOW:
2837 hdrs |= ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV6;
2838 break;
2839 case GTPU_V6_FLOW:
2840 hdrs |= ICE_FLOW_SEG_HDR_GTPU_IP | ICE_FLOW_SEG_HDR_IPV6;
2841 break;
2842 case GTPC_V6_FLOW:
2843 hdrs |= ICE_FLOW_SEG_HDR_GTPC | ICE_FLOW_SEG_HDR_IPV6;
2844 break;
2845 case GTPC_TEID_V6_FLOW:
2846 hdrs |= ICE_FLOW_SEG_HDR_GTPC_TEID | ICE_FLOW_SEG_HDR_IPV6;
2847 break;
2848 case GTPU_EH_V6_FLOW:
2849 hdrs |= ICE_FLOW_SEG_HDR_GTPU_EH | ICE_FLOW_SEG_HDR_IPV6;
2850 break;
2851 case GTPU_UL_V6_FLOW:
2852 hdrs |= ICE_FLOW_SEG_HDR_GTPU_UP | ICE_FLOW_SEG_HDR_IPV6;
2853 break;
2854 case GTPU_DL_V6_FLOW:
2855 hdrs |= ICE_FLOW_SEG_HDR_GTPU_DWN | ICE_FLOW_SEG_HDR_IPV6;
2856 break;
2857 default:
2858 break;
2859 }
2860 return hdrs;
2861 }
2862
2863 /**
2864 * ice_parse_hash_flds - parses hash fields from RSS hash input
2865 * @nfc: ethtool rxnfc command
2866 * @symm: true if Symmetric Topelitz is set
2867 *
2868 * This function parses the rxnfc command and returns intended
2869 * hash fields for RSS configuration
2870 */
ice_parse_hash_flds(struct ethtool_rxnfc * nfc,bool symm)2871 static u64 ice_parse_hash_flds(struct ethtool_rxnfc *nfc, bool symm)
2872 {
2873 u64 hfld = ICE_HASH_INVALID;
2874
2875 if (nfc->data & RXH_IP_SRC || nfc->data & RXH_IP_DST) {
2876 switch (nfc->flow_type) {
2877 case TCP_V4_FLOW:
2878 case UDP_V4_FLOW:
2879 case SCTP_V4_FLOW:
2880 case GTPU_V4_FLOW:
2881 case GTPC_V4_FLOW:
2882 case GTPC_TEID_V4_FLOW:
2883 case GTPU_EH_V4_FLOW:
2884 case GTPU_UL_V4_FLOW:
2885 case GTPU_DL_V4_FLOW:
2886 if (nfc->data & RXH_IP_SRC)
2887 hfld |= ICE_FLOW_HASH_FLD_IPV4_SA;
2888 if (nfc->data & RXH_IP_DST)
2889 hfld |= ICE_FLOW_HASH_FLD_IPV4_DA;
2890 break;
2891 case TCP_V6_FLOW:
2892 case UDP_V6_FLOW:
2893 case SCTP_V6_FLOW:
2894 case GTPU_V6_FLOW:
2895 case GTPC_V6_FLOW:
2896 case GTPC_TEID_V6_FLOW:
2897 case GTPU_EH_V6_FLOW:
2898 case GTPU_UL_V6_FLOW:
2899 case GTPU_DL_V6_FLOW:
2900 if (nfc->data & RXH_IP_SRC)
2901 hfld |= ICE_FLOW_HASH_FLD_IPV6_SA;
2902 if (nfc->data & RXH_IP_DST)
2903 hfld |= ICE_FLOW_HASH_FLD_IPV6_DA;
2904 break;
2905 default:
2906 break;
2907 }
2908 }
2909
2910 if (nfc->data & RXH_L4_B_0_1 || nfc->data & RXH_L4_B_2_3) {
2911 switch (nfc->flow_type) {
2912 case TCP_V4_FLOW:
2913 case TCP_V6_FLOW:
2914 if (nfc->data & RXH_L4_B_0_1)
2915 hfld |= ICE_FLOW_HASH_FLD_TCP_SRC_PORT;
2916 if (nfc->data & RXH_L4_B_2_3)
2917 hfld |= ICE_FLOW_HASH_FLD_TCP_DST_PORT;
2918 break;
2919 case UDP_V4_FLOW:
2920 case UDP_V6_FLOW:
2921 if (nfc->data & RXH_L4_B_0_1)
2922 hfld |= ICE_FLOW_HASH_FLD_UDP_SRC_PORT;
2923 if (nfc->data & RXH_L4_B_2_3)
2924 hfld |= ICE_FLOW_HASH_FLD_UDP_DST_PORT;
2925 break;
2926 case SCTP_V4_FLOW:
2927 case SCTP_V6_FLOW:
2928 if (nfc->data & RXH_L4_B_0_1)
2929 hfld |= ICE_FLOW_HASH_FLD_SCTP_SRC_PORT;
2930 if (nfc->data & RXH_L4_B_2_3)
2931 hfld |= ICE_FLOW_HASH_FLD_SCTP_DST_PORT;
2932 break;
2933 default:
2934 break;
2935 }
2936 }
2937
2938 if (nfc->data & RXH_GTP_TEID) {
2939 switch (nfc->flow_type) {
2940 case GTPC_TEID_V4_FLOW:
2941 case GTPC_TEID_V6_FLOW:
2942 hfld |= ICE_FLOW_HASH_FLD_GTPC_TEID;
2943 break;
2944 case GTPU_V4_FLOW:
2945 case GTPU_V6_FLOW:
2946 hfld |= ICE_FLOW_HASH_FLD_GTPU_IP_TEID;
2947 break;
2948 case GTPU_EH_V4_FLOW:
2949 case GTPU_EH_V6_FLOW:
2950 hfld |= ICE_FLOW_HASH_FLD_GTPU_EH_TEID;
2951 break;
2952 case GTPU_UL_V4_FLOW:
2953 case GTPU_UL_V6_FLOW:
2954 hfld |= ICE_FLOW_HASH_FLD_GTPU_UP_TEID;
2955 break;
2956 case GTPU_DL_V4_FLOW:
2957 case GTPU_DL_V6_FLOW:
2958 hfld |= ICE_FLOW_HASH_FLD_GTPU_DWN_TEID;
2959 break;
2960 default:
2961 break;
2962 }
2963 }
2964
2965 return hfld;
2966 }
2967
2968 /**
2969 * ice_set_rss_hash_opt - Enable/Disable flow types for RSS hash
2970 * @vsi: the VSI being configured
2971 * @nfc: ethtool rxnfc command
2972 *
2973 * Returns Success if the flow input set is supported.
2974 */
2975 static int
ice_set_rss_hash_opt(struct ice_vsi * vsi,struct ethtool_rxnfc * nfc)2976 ice_set_rss_hash_opt(struct ice_vsi *vsi, struct ethtool_rxnfc *nfc)
2977 {
2978 struct ice_pf *pf = vsi->back;
2979 struct ice_rss_hash_cfg cfg;
2980 struct device *dev;
2981 u64 hashed_flds;
2982 int status;
2983 bool symm;
2984 u32 hdrs;
2985
2986 dev = ice_pf_to_dev(pf);
2987 if (ice_is_safe_mode(pf)) {
2988 dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n",
2989 vsi->vsi_num);
2990 return -EINVAL;
2991 }
2992
2993 symm = !!(vsi->rss_hfunc == ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ);
2994 hashed_flds = ice_parse_hash_flds(nfc, symm);
2995 if (hashed_flds == ICE_HASH_INVALID) {
2996 dev_dbg(dev, "Invalid hash fields, vsi num = %d\n",
2997 vsi->vsi_num);
2998 return -EINVAL;
2999 }
3000
3001 hdrs = ice_parse_hdrs(nfc);
3002 if (hdrs == ICE_FLOW_SEG_HDR_NONE) {
3003 dev_dbg(dev, "Header type is not valid, vsi num = %d\n",
3004 vsi->vsi_num);
3005 return -EINVAL;
3006 }
3007
3008 cfg.hash_flds = hashed_flds;
3009 cfg.addl_hdrs = hdrs;
3010 cfg.hdr_type = ICE_RSS_ANY_HEADERS;
3011 cfg.symm = symm;
3012
3013 status = ice_add_rss_cfg(&pf->hw, vsi, &cfg);
3014 if (status) {
3015 dev_dbg(dev, "ice_add_rss_cfg failed, vsi num = %d, error = %d\n",
3016 vsi->vsi_num, status);
3017 return status;
3018 }
3019
3020 return 0;
3021 }
3022
3023 /**
3024 * ice_get_rss_hash_opt - Retrieve hash fields for a given flow-type
3025 * @vsi: the VSI being configured
3026 * @nfc: ethtool rxnfc command
3027 */
3028 static void
ice_get_rss_hash_opt(struct ice_vsi * vsi,struct ethtool_rxnfc * nfc)3029 ice_get_rss_hash_opt(struct ice_vsi *vsi, struct ethtool_rxnfc *nfc)
3030 {
3031 struct ice_pf *pf = vsi->back;
3032 struct device *dev;
3033 u64 hash_flds;
3034 bool symm;
3035 u32 hdrs;
3036
3037 dev = ice_pf_to_dev(pf);
3038
3039 nfc->data = 0;
3040 if (ice_is_safe_mode(pf)) {
3041 dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n",
3042 vsi->vsi_num);
3043 return;
3044 }
3045
3046 hdrs = ice_parse_hdrs(nfc);
3047 if (hdrs == ICE_FLOW_SEG_HDR_NONE) {
3048 dev_dbg(dev, "Header type is not valid, vsi num = %d\n",
3049 vsi->vsi_num);
3050 return;
3051 }
3052
3053 hash_flds = ice_get_rss_cfg(&pf->hw, vsi->idx, hdrs, &symm);
3054 if (hash_flds == ICE_HASH_INVALID) {
3055 dev_dbg(dev, "No hash fields found for the given header type, vsi num = %d\n",
3056 vsi->vsi_num);
3057 return;
3058 }
3059
3060 if (hash_flds & ICE_FLOW_HASH_FLD_IPV4_SA ||
3061 hash_flds & ICE_FLOW_HASH_FLD_IPV6_SA)
3062 nfc->data |= (u64)RXH_IP_SRC;
3063
3064 if (hash_flds & ICE_FLOW_HASH_FLD_IPV4_DA ||
3065 hash_flds & ICE_FLOW_HASH_FLD_IPV6_DA)
3066 nfc->data |= (u64)RXH_IP_DST;
3067
3068 if (hash_flds & ICE_FLOW_HASH_FLD_TCP_SRC_PORT ||
3069 hash_flds & ICE_FLOW_HASH_FLD_UDP_SRC_PORT ||
3070 hash_flds & ICE_FLOW_HASH_FLD_SCTP_SRC_PORT)
3071 nfc->data |= (u64)RXH_L4_B_0_1;
3072
3073 if (hash_flds & ICE_FLOW_HASH_FLD_TCP_DST_PORT ||
3074 hash_flds & ICE_FLOW_HASH_FLD_UDP_DST_PORT ||
3075 hash_flds & ICE_FLOW_HASH_FLD_SCTP_DST_PORT)
3076 nfc->data |= (u64)RXH_L4_B_2_3;
3077
3078 if (hash_flds & ICE_FLOW_HASH_FLD_GTPC_TEID ||
3079 hash_flds & ICE_FLOW_HASH_FLD_GTPU_IP_TEID ||
3080 hash_flds & ICE_FLOW_HASH_FLD_GTPU_EH_TEID ||
3081 hash_flds & ICE_FLOW_HASH_FLD_GTPU_UP_TEID ||
3082 hash_flds & ICE_FLOW_HASH_FLD_GTPU_DWN_TEID)
3083 nfc->data |= (u64)RXH_GTP_TEID;
3084 }
3085
3086 /**
3087 * ice_set_rxnfc - command to set Rx flow rules.
3088 * @netdev: network interface device structure
3089 * @cmd: ethtool rxnfc command
3090 *
3091 * Returns 0 for success and negative values for errors
3092 */
ice_set_rxnfc(struct net_device * netdev,struct ethtool_rxnfc * cmd)3093 static int ice_set_rxnfc(struct net_device *netdev, struct ethtool_rxnfc *cmd)
3094 {
3095 struct ice_netdev_priv *np = netdev_priv(netdev);
3096 struct ice_vsi *vsi = np->vsi;
3097
3098 switch (cmd->cmd) {
3099 case ETHTOOL_SRXCLSRLINS:
3100 return ice_add_fdir_ethtool(vsi, cmd);
3101 case ETHTOOL_SRXCLSRLDEL:
3102 return ice_del_fdir_ethtool(vsi, cmd);
3103 case ETHTOOL_SRXFH:
3104 return ice_set_rss_hash_opt(vsi, cmd);
3105 default:
3106 break;
3107 }
3108 return -EOPNOTSUPP;
3109 }
3110
3111 /**
3112 * ice_get_rxnfc - command to get Rx flow classification rules
3113 * @netdev: network interface device structure
3114 * @cmd: ethtool rxnfc command
3115 * @rule_locs: buffer to rturn Rx flow classification rules
3116 *
3117 * Returns Success if the command is supported.
3118 */
3119 static int
ice_get_rxnfc(struct net_device * netdev,struct ethtool_rxnfc * cmd,u32 __always_unused * rule_locs)3120 ice_get_rxnfc(struct net_device *netdev, struct ethtool_rxnfc *cmd,
3121 u32 __always_unused *rule_locs)
3122 {
3123 struct ice_netdev_priv *np = netdev_priv(netdev);
3124 struct ice_vsi *vsi = np->vsi;
3125 int ret = -EOPNOTSUPP;
3126 struct ice_hw *hw;
3127
3128 hw = &vsi->back->hw;
3129
3130 switch (cmd->cmd) {
3131 case ETHTOOL_GRXRINGS:
3132 cmd->data = vsi->rss_size;
3133 ret = 0;
3134 break;
3135 case ETHTOOL_GRXCLSRLCNT:
3136 cmd->rule_cnt = hw->fdir_active_fltr;
3137 /* report total rule count */
3138 cmd->data = ice_get_fdir_cnt_all(hw);
3139 ret = 0;
3140 break;
3141 case ETHTOOL_GRXCLSRULE:
3142 ret = ice_get_ethtool_fdir_entry(hw, cmd);
3143 break;
3144 case ETHTOOL_GRXCLSRLALL:
3145 ret = ice_get_fdir_fltr_ids(hw, cmd, (u32 *)rule_locs);
3146 break;
3147 case ETHTOOL_GRXFH:
3148 ice_get_rss_hash_opt(vsi, cmd);
3149 ret = 0;
3150 break;
3151 default:
3152 break;
3153 }
3154
3155 return ret;
3156 }
3157
3158 static void
ice_get_ringparam(struct net_device * netdev,struct ethtool_ringparam * ring,struct kernel_ethtool_ringparam * kernel_ring,struct netlink_ext_ack * extack)3159 ice_get_ringparam(struct net_device *netdev, struct ethtool_ringparam *ring,
3160 struct kernel_ethtool_ringparam *kernel_ring,
3161 struct netlink_ext_ack *extack)
3162 {
3163 struct ice_netdev_priv *np = netdev_priv(netdev);
3164 struct ice_vsi *vsi = np->vsi;
3165
3166 ring->rx_max_pending = ICE_MAX_NUM_DESC;
3167 ring->tx_max_pending = ICE_MAX_NUM_DESC;
3168 if (vsi->tx_rings && vsi->rx_rings) {
3169 ring->rx_pending = vsi->rx_rings[0]->count;
3170 ring->tx_pending = vsi->tx_rings[0]->count;
3171 } else {
3172 ring->rx_pending = 0;
3173 ring->tx_pending = 0;
3174 }
3175
3176 /* Rx mini and jumbo rings are not supported */
3177 ring->rx_mini_max_pending = 0;
3178 ring->rx_jumbo_max_pending = 0;
3179 ring->rx_mini_pending = 0;
3180 ring->rx_jumbo_pending = 0;
3181 }
3182
3183 static int
ice_set_ringparam(struct net_device * netdev,struct ethtool_ringparam * ring,struct kernel_ethtool_ringparam * kernel_ring,struct netlink_ext_ack * extack)3184 ice_set_ringparam(struct net_device *netdev, struct ethtool_ringparam *ring,
3185 struct kernel_ethtool_ringparam *kernel_ring,
3186 struct netlink_ext_ack *extack)
3187 {
3188 struct ice_netdev_priv *np = netdev_priv(netdev);
3189 struct ice_tx_ring *xdp_rings = NULL;
3190 struct ice_tx_ring *tx_rings = NULL;
3191 struct ice_rx_ring *rx_rings = NULL;
3192 struct ice_vsi *vsi = np->vsi;
3193 struct ice_pf *pf = vsi->back;
3194 int i, timeout = 50, err = 0;
3195 u16 new_rx_cnt, new_tx_cnt;
3196
3197 if (ring->tx_pending > ICE_MAX_NUM_DESC ||
3198 ring->tx_pending < ICE_MIN_NUM_DESC ||
3199 ring->rx_pending > ICE_MAX_NUM_DESC ||
3200 ring->rx_pending < ICE_MIN_NUM_DESC) {
3201 netdev_err(netdev, "Descriptors requested (Tx: %d / Rx: %d) out of range [%d-%d] (increment %d)\n",
3202 ring->tx_pending, ring->rx_pending,
3203 ICE_MIN_NUM_DESC, ICE_MAX_NUM_DESC,
3204 ICE_REQ_DESC_MULTIPLE);
3205 return -EINVAL;
3206 }
3207
3208 /* Return if there is no rings (device is reloading) */
3209 if (!vsi->tx_rings || !vsi->rx_rings)
3210 return -EBUSY;
3211
3212 new_tx_cnt = ALIGN(ring->tx_pending, ICE_REQ_DESC_MULTIPLE);
3213 if (new_tx_cnt != ring->tx_pending)
3214 netdev_info(netdev, "Requested Tx descriptor count rounded up to %d\n",
3215 new_tx_cnt);
3216 new_rx_cnt = ALIGN(ring->rx_pending, ICE_REQ_DESC_MULTIPLE);
3217 if (new_rx_cnt != ring->rx_pending)
3218 netdev_info(netdev, "Requested Rx descriptor count rounded up to %d\n",
3219 new_rx_cnt);
3220
3221 /* if nothing to do return success */
3222 if (new_tx_cnt == vsi->tx_rings[0]->count &&
3223 new_rx_cnt == vsi->rx_rings[0]->count) {
3224 netdev_dbg(netdev, "Nothing to change, descriptor count is same as requested\n");
3225 return 0;
3226 }
3227
3228 /* If there is a AF_XDP UMEM attached to any of Rx rings,
3229 * disallow changing the number of descriptors -- regardless
3230 * if the netdev is running or not.
3231 */
3232 if (ice_xsk_any_rx_ring_ena(vsi))
3233 return -EBUSY;
3234
3235 while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) {
3236 timeout--;
3237 if (!timeout)
3238 return -EBUSY;
3239 usleep_range(1000, 2000);
3240 }
3241
3242 /* set for the next time the netdev is started */
3243 if (!netif_running(vsi->netdev)) {
3244 ice_for_each_alloc_txq(vsi, i)
3245 vsi->tx_rings[i]->count = new_tx_cnt;
3246 ice_for_each_alloc_rxq(vsi, i)
3247 vsi->rx_rings[i]->count = new_rx_cnt;
3248 if (ice_is_xdp_ena_vsi(vsi))
3249 ice_for_each_xdp_txq(vsi, i)
3250 vsi->xdp_rings[i]->count = new_tx_cnt;
3251 vsi->num_tx_desc = (u16)new_tx_cnt;
3252 vsi->num_rx_desc = (u16)new_rx_cnt;
3253 netdev_dbg(netdev, "Link is down, descriptor count change happens when link is brought up\n");
3254 goto done;
3255 }
3256
3257 if (new_tx_cnt == vsi->tx_rings[0]->count)
3258 goto process_rx;
3259
3260 /* alloc updated Tx resources */
3261 netdev_info(netdev, "Changing Tx descriptor count from %d to %d\n",
3262 vsi->tx_rings[0]->count, new_tx_cnt);
3263
3264 tx_rings = kcalloc(vsi->num_txq, sizeof(*tx_rings), GFP_KERNEL);
3265 if (!tx_rings) {
3266 err = -ENOMEM;
3267 goto done;
3268 }
3269
3270 ice_for_each_txq(vsi, i) {
3271 /* clone ring and setup updated count */
3272 tx_rings[i] = *vsi->tx_rings[i];
3273 tx_rings[i].count = new_tx_cnt;
3274 tx_rings[i].desc = NULL;
3275 tx_rings[i].tx_buf = NULL;
3276 tx_rings[i].tx_tstamps = &pf->ptp.port.tx;
3277 err = ice_setup_tx_ring(&tx_rings[i]);
3278 if (err) {
3279 while (i--)
3280 ice_clean_tx_ring(&tx_rings[i]);
3281 kfree(tx_rings);
3282 goto done;
3283 }
3284 }
3285
3286 if (!ice_is_xdp_ena_vsi(vsi))
3287 goto process_rx;
3288
3289 /* alloc updated XDP resources */
3290 netdev_info(netdev, "Changing XDP descriptor count from %d to %d\n",
3291 vsi->xdp_rings[0]->count, new_tx_cnt);
3292
3293 xdp_rings = kcalloc(vsi->num_xdp_txq, sizeof(*xdp_rings), GFP_KERNEL);
3294 if (!xdp_rings) {
3295 err = -ENOMEM;
3296 goto free_tx;
3297 }
3298
3299 ice_for_each_xdp_txq(vsi, i) {
3300 /* clone ring and setup updated count */
3301 xdp_rings[i] = *vsi->xdp_rings[i];
3302 xdp_rings[i].count = new_tx_cnt;
3303 xdp_rings[i].desc = NULL;
3304 xdp_rings[i].tx_buf = NULL;
3305 err = ice_setup_tx_ring(&xdp_rings[i]);
3306 if (err) {
3307 while (i--)
3308 ice_clean_tx_ring(&xdp_rings[i]);
3309 kfree(xdp_rings);
3310 goto free_tx;
3311 }
3312 ice_set_ring_xdp(&xdp_rings[i]);
3313 }
3314
3315 process_rx:
3316 if (new_rx_cnt == vsi->rx_rings[0]->count)
3317 goto process_link;
3318
3319 /* alloc updated Rx resources */
3320 netdev_info(netdev, "Changing Rx descriptor count from %d to %d\n",
3321 vsi->rx_rings[0]->count, new_rx_cnt);
3322
3323 rx_rings = kcalloc(vsi->num_rxq, sizeof(*rx_rings), GFP_KERNEL);
3324 if (!rx_rings) {
3325 err = -ENOMEM;
3326 goto done;
3327 }
3328
3329 ice_for_each_rxq(vsi, i) {
3330 /* clone ring and setup updated count */
3331 rx_rings[i] = *vsi->rx_rings[i];
3332 rx_rings[i].count = new_rx_cnt;
3333 rx_rings[i].cached_phctime = pf->ptp.cached_phc_time;
3334 rx_rings[i].desc = NULL;
3335 rx_rings[i].rx_buf = NULL;
3336 /* this is to allow wr32 to have something to write to
3337 * during early allocation of Rx buffers
3338 */
3339 rx_rings[i].tail = vsi->back->hw.hw_addr + PRTGEN_STATUS;
3340
3341 err = ice_setup_rx_ring(&rx_rings[i]);
3342 if (err)
3343 goto rx_unwind;
3344
3345 /* allocate Rx buffers */
3346 err = ice_alloc_rx_bufs(&rx_rings[i],
3347 ICE_RX_DESC_UNUSED(&rx_rings[i]));
3348 rx_unwind:
3349 if (err) {
3350 while (i) {
3351 i--;
3352 ice_free_rx_ring(&rx_rings[i]);
3353 }
3354 kfree(rx_rings);
3355 err = -ENOMEM;
3356 goto free_tx;
3357 }
3358 }
3359
3360 process_link:
3361 /* Bring interface down, copy in the new ring info, then restore the
3362 * interface. if VSI is up, bring it down and then back up
3363 */
3364 if (!test_and_set_bit(ICE_VSI_DOWN, vsi->state)) {
3365 ice_down(vsi);
3366
3367 if (tx_rings) {
3368 ice_for_each_txq(vsi, i) {
3369 ice_free_tx_ring(vsi->tx_rings[i]);
3370 *vsi->tx_rings[i] = tx_rings[i];
3371 }
3372 kfree(tx_rings);
3373 }
3374
3375 if (rx_rings) {
3376 ice_for_each_rxq(vsi, i) {
3377 ice_free_rx_ring(vsi->rx_rings[i]);
3378 /* copy the real tail offset */
3379 rx_rings[i].tail = vsi->rx_rings[i]->tail;
3380 /* this is to fake out the allocation routine
3381 * into thinking it has to realloc everything
3382 * but the recycling logic will let us re-use
3383 * the buffers allocated above
3384 */
3385 rx_rings[i].next_to_use = 0;
3386 rx_rings[i].next_to_clean = 0;
3387 rx_rings[i].next_to_alloc = 0;
3388 *vsi->rx_rings[i] = rx_rings[i];
3389 }
3390 kfree(rx_rings);
3391 }
3392
3393 if (xdp_rings) {
3394 ice_for_each_xdp_txq(vsi, i) {
3395 ice_free_tx_ring(vsi->xdp_rings[i]);
3396 *vsi->xdp_rings[i] = xdp_rings[i];
3397 }
3398 kfree(xdp_rings);
3399 }
3400
3401 vsi->num_tx_desc = new_tx_cnt;
3402 vsi->num_rx_desc = new_rx_cnt;
3403 ice_up(vsi);
3404 }
3405 goto done;
3406
3407 free_tx:
3408 /* error cleanup if the Rx allocations failed after getting Tx */
3409 if (tx_rings) {
3410 ice_for_each_txq(vsi, i)
3411 ice_free_tx_ring(&tx_rings[i]);
3412 kfree(tx_rings);
3413 }
3414
3415 done:
3416 clear_bit(ICE_CFG_BUSY, pf->state);
3417 return err;
3418 }
3419
3420 /**
3421 * ice_get_pauseparam - Get Flow Control status
3422 * @netdev: network interface device structure
3423 * @pause: ethernet pause (flow control) parameters
3424 *
3425 * Get requested flow control status from PHY capability.
3426 * If autoneg is true, then ethtool will send the ETHTOOL_GSET ioctl which
3427 * is handled by ice_get_link_ksettings. ice_get_link_ksettings will report
3428 * the negotiated Rx/Tx pause via lp_advertising.
3429 */
3430 static void
ice_get_pauseparam(struct net_device * netdev,struct ethtool_pauseparam * pause)3431 ice_get_pauseparam(struct net_device *netdev, struct ethtool_pauseparam *pause)
3432 {
3433 struct ice_netdev_priv *np = netdev_priv(netdev);
3434 struct ice_port_info *pi = np->vsi->port_info;
3435 struct ice_aqc_get_phy_caps_data *pcaps;
3436 struct ice_dcbx_cfg *dcbx_cfg;
3437 int status;
3438
3439 /* Initialize pause params */
3440 pause->rx_pause = 0;
3441 pause->tx_pause = 0;
3442
3443 dcbx_cfg = &pi->qos_cfg.local_dcbx_cfg;
3444
3445 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
3446 if (!pcaps)
3447 return;
3448
3449 /* Get current PHY config */
3450 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps,
3451 NULL);
3452 if (status)
3453 goto out;
3454
3455 pause->autoneg = ice_is_phy_caps_an_enabled(pcaps) ? AUTONEG_ENABLE :
3456 AUTONEG_DISABLE;
3457
3458 if (dcbx_cfg->pfc.pfcena)
3459 /* PFC enabled so report LFC as off */
3460 goto out;
3461
3462 if (pcaps->caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE)
3463 pause->tx_pause = 1;
3464 if (pcaps->caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE)
3465 pause->rx_pause = 1;
3466
3467 out:
3468 kfree(pcaps);
3469 }
3470
3471 /**
3472 * ice_set_pauseparam - Set Flow Control parameter
3473 * @netdev: network interface device structure
3474 * @pause: return Tx/Rx flow control status
3475 */
3476 static int
ice_set_pauseparam(struct net_device * netdev,struct ethtool_pauseparam * pause)3477 ice_set_pauseparam(struct net_device *netdev, struct ethtool_pauseparam *pause)
3478 {
3479 struct ice_netdev_priv *np = netdev_priv(netdev);
3480 struct ice_aqc_get_phy_caps_data *pcaps;
3481 struct ice_link_status *hw_link_info;
3482 struct ice_pf *pf = np->vsi->back;
3483 struct ice_dcbx_cfg *dcbx_cfg;
3484 struct ice_vsi *vsi = np->vsi;
3485 struct ice_hw *hw = &pf->hw;
3486 struct ice_port_info *pi;
3487 u8 aq_failures;
3488 bool link_up;
3489 u32 is_an;
3490 int err;
3491
3492 pi = vsi->port_info;
3493 hw_link_info = &pi->phy.link_info;
3494 dcbx_cfg = &pi->qos_cfg.local_dcbx_cfg;
3495 link_up = hw_link_info->link_info & ICE_AQ_LINK_UP;
3496
3497 /* Changing the port's flow control is not supported if this isn't the
3498 * PF VSI
3499 */
3500 if (vsi->type != ICE_VSI_PF) {
3501 netdev_info(netdev, "Changing flow control parameters only supported for PF VSI\n");
3502 return -EOPNOTSUPP;
3503 }
3504
3505 /* Get pause param reports configured and negotiated flow control pause
3506 * when ETHTOOL_GLINKSETTINGS is defined. Since ETHTOOL_GLINKSETTINGS is
3507 * defined get pause param pause->autoneg reports SW configured setting,
3508 * so compare pause->autoneg with SW configured to prevent the user from
3509 * using set pause param to chance autoneg.
3510 */
3511 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
3512 if (!pcaps)
3513 return -ENOMEM;
3514
3515 /* Get current PHY config */
3516 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps,
3517 NULL);
3518 if (err) {
3519 kfree(pcaps);
3520 return err;
3521 }
3522
3523 is_an = ice_is_phy_caps_an_enabled(pcaps) ? AUTONEG_ENABLE :
3524 AUTONEG_DISABLE;
3525
3526 kfree(pcaps);
3527
3528 if (pause->autoneg != is_an) {
3529 netdev_info(netdev, "To change autoneg please use: ethtool -s <dev> autoneg <on|off>\n");
3530 return -EOPNOTSUPP;
3531 }
3532
3533 /* If we have link and don't have autoneg */
3534 if (!test_bit(ICE_DOWN, pf->state) &&
3535 !(hw_link_info->an_info & ICE_AQ_AN_COMPLETED)) {
3536 /* Send message that it might not necessarily work*/
3537 netdev_info(netdev, "Autoneg did not complete so changing settings may not result in an actual change.\n");
3538 }
3539
3540 if (dcbx_cfg->pfc.pfcena) {
3541 netdev_info(netdev, "Priority flow control enabled. Cannot set link flow control.\n");
3542 return -EOPNOTSUPP;
3543 }
3544 if (pause->rx_pause && pause->tx_pause)
3545 pi->fc.req_mode = ICE_FC_FULL;
3546 else if (pause->rx_pause && !pause->tx_pause)
3547 pi->fc.req_mode = ICE_FC_RX_PAUSE;
3548 else if (!pause->rx_pause && pause->tx_pause)
3549 pi->fc.req_mode = ICE_FC_TX_PAUSE;
3550 else if (!pause->rx_pause && !pause->tx_pause)
3551 pi->fc.req_mode = ICE_FC_NONE;
3552 else
3553 return -EINVAL;
3554
3555 /* Set the FC mode and only restart AN if link is up */
3556 err = ice_set_fc(pi, &aq_failures, link_up);
3557
3558 if (aq_failures & ICE_SET_FC_AQ_FAIL_GET) {
3559 netdev_info(netdev, "Set fc failed on the get_phy_capabilities call with err %d aq_err %s\n",
3560 err, ice_aq_str(hw->adminq.sq_last_status));
3561 err = -EAGAIN;
3562 } else if (aq_failures & ICE_SET_FC_AQ_FAIL_SET) {
3563 netdev_info(netdev, "Set fc failed on the set_phy_config call with err %d aq_err %s\n",
3564 err, ice_aq_str(hw->adminq.sq_last_status));
3565 err = -EAGAIN;
3566 } else if (aq_failures & ICE_SET_FC_AQ_FAIL_UPDATE) {
3567 netdev_info(netdev, "Set fc failed on the get_link_info call with err %d aq_err %s\n",
3568 err, ice_aq_str(hw->adminq.sq_last_status));
3569 err = -EAGAIN;
3570 }
3571
3572 return err;
3573 }
3574
3575 /**
3576 * ice_get_rxfh_key_size - get the RSS hash key size
3577 * @netdev: network interface device structure
3578 *
3579 * Returns the table size.
3580 */
ice_get_rxfh_key_size(struct net_device __always_unused * netdev)3581 static u32 ice_get_rxfh_key_size(struct net_device __always_unused *netdev)
3582 {
3583 return ICE_VSIQF_HKEY_ARRAY_SIZE;
3584 }
3585
3586 /**
3587 * ice_get_rxfh_indir_size - get the Rx flow hash indirection table size
3588 * @netdev: network interface device structure
3589 *
3590 * Returns the table size.
3591 */
ice_get_rxfh_indir_size(struct net_device * netdev)3592 static u32 ice_get_rxfh_indir_size(struct net_device *netdev)
3593 {
3594 struct ice_netdev_priv *np = netdev_priv(netdev);
3595
3596 return np->vsi->rss_table_size;
3597 }
3598
3599 /**
3600 * ice_get_rxfh - get the Rx flow hash indirection table
3601 * @netdev: network interface device structure
3602 * @rxfh: pointer to param struct (indir, key, hfunc)
3603 *
3604 * Reads the indirection table directly from the hardware.
3605 */
3606 static int
ice_get_rxfh(struct net_device * netdev,struct ethtool_rxfh_param * rxfh)3607 ice_get_rxfh(struct net_device *netdev, struct ethtool_rxfh_param *rxfh)
3608 {
3609 struct ice_netdev_priv *np = netdev_priv(netdev);
3610 u32 rss_context = rxfh->rss_context;
3611 struct ice_vsi *vsi = np->vsi;
3612 struct ice_pf *pf = vsi->back;
3613 u16 qcount, offset;
3614 int err, num_tc, i;
3615 u8 *lut;
3616
3617 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
3618 netdev_warn(netdev, "RSS is not supported on this VSI!\n");
3619 return -EOPNOTSUPP;
3620 }
3621
3622 if (rss_context && !ice_is_adq_active(pf)) {
3623 netdev_err(netdev, "RSS context cannot be non-zero when ADQ is not configured.\n");
3624 return -EINVAL;
3625 }
3626
3627 qcount = vsi->mqprio_qopt.qopt.count[rss_context];
3628 offset = vsi->mqprio_qopt.qopt.offset[rss_context];
3629
3630 if (rss_context && ice_is_adq_active(pf)) {
3631 num_tc = vsi->mqprio_qopt.qopt.num_tc;
3632 if (rss_context >= num_tc) {
3633 netdev_err(netdev, "RSS context:%d > num_tc:%d\n",
3634 rss_context, num_tc);
3635 return -EINVAL;
3636 }
3637 /* Use channel VSI of given TC */
3638 vsi = vsi->tc_map_vsi[rss_context];
3639 }
3640
3641 rxfh->hfunc = ETH_RSS_HASH_TOP;
3642 if (vsi->rss_hfunc == ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ)
3643 rxfh->input_xfrm |= RXH_XFRM_SYM_XOR;
3644
3645 if (!rxfh->indir)
3646 return 0;
3647
3648 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL);
3649 if (!lut)
3650 return -ENOMEM;
3651
3652 err = ice_get_rss_key(vsi, rxfh->key);
3653 if (err)
3654 goto out;
3655
3656 err = ice_get_rss_lut(vsi, lut, vsi->rss_table_size);
3657 if (err)
3658 goto out;
3659
3660 if (ice_is_adq_active(pf)) {
3661 for (i = 0; i < vsi->rss_table_size; i++)
3662 rxfh->indir[i] = offset + lut[i] % qcount;
3663 goto out;
3664 }
3665
3666 for (i = 0; i < vsi->rss_table_size; i++)
3667 rxfh->indir[i] = lut[i];
3668
3669 out:
3670 kfree(lut);
3671 return err;
3672 }
3673
3674 /**
3675 * ice_set_rxfh - set the Rx flow hash indirection table
3676 * @netdev: network interface device structure
3677 * @rxfh: pointer to param struct (indir, key, hfunc)
3678 * @extack: extended ACK from the Netlink message
3679 *
3680 * Returns -EINVAL if the table specifies an invalid queue ID, otherwise
3681 * returns 0 after programming the table.
3682 */
3683 static int
ice_set_rxfh(struct net_device * netdev,struct ethtool_rxfh_param * rxfh,struct netlink_ext_ack * extack)3684 ice_set_rxfh(struct net_device *netdev, struct ethtool_rxfh_param *rxfh,
3685 struct netlink_ext_ack *extack)
3686 {
3687 struct ice_netdev_priv *np = netdev_priv(netdev);
3688 u8 hfunc = ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ;
3689 struct ice_vsi *vsi = np->vsi;
3690 struct ice_pf *pf = vsi->back;
3691 struct device *dev;
3692 int err;
3693
3694 dev = ice_pf_to_dev(pf);
3695 if (rxfh->hfunc != ETH_RSS_HASH_NO_CHANGE &&
3696 rxfh->hfunc != ETH_RSS_HASH_TOP)
3697 return -EOPNOTSUPP;
3698
3699 if (rxfh->rss_context)
3700 return -EOPNOTSUPP;
3701
3702 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
3703 /* RSS not supported return error here */
3704 netdev_warn(netdev, "RSS is not configured on this VSI!\n");
3705 return -EIO;
3706 }
3707
3708 if (ice_is_adq_active(pf)) {
3709 netdev_err(netdev, "Cannot change RSS params with ADQ configured.\n");
3710 return -EOPNOTSUPP;
3711 }
3712
3713 /* Update the VSI's hash function */
3714 if (rxfh->input_xfrm & RXH_XFRM_SYM_XOR)
3715 hfunc = ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ;
3716
3717 err = ice_set_rss_hfunc(vsi, hfunc);
3718 if (err)
3719 return err;
3720
3721 if (rxfh->key) {
3722 if (!vsi->rss_hkey_user) {
3723 vsi->rss_hkey_user =
3724 devm_kzalloc(dev, ICE_VSIQF_HKEY_ARRAY_SIZE,
3725 GFP_KERNEL);
3726 if (!vsi->rss_hkey_user)
3727 return -ENOMEM;
3728 }
3729 memcpy(vsi->rss_hkey_user, rxfh->key,
3730 ICE_VSIQF_HKEY_ARRAY_SIZE);
3731
3732 err = ice_set_rss_key(vsi, vsi->rss_hkey_user);
3733 if (err)
3734 return err;
3735 }
3736
3737 if (!vsi->rss_lut_user) {
3738 vsi->rss_lut_user = devm_kzalloc(dev, vsi->rss_table_size,
3739 GFP_KERNEL);
3740 if (!vsi->rss_lut_user)
3741 return -ENOMEM;
3742 }
3743
3744 /* Each 32 bits pointed by 'indir' is stored with a lut entry */
3745 if (rxfh->indir) {
3746 int i;
3747
3748 for (i = 0; i < vsi->rss_table_size; i++)
3749 vsi->rss_lut_user[i] = (u8)(rxfh->indir[i]);
3750 } else {
3751 ice_fill_rss_lut(vsi->rss_lut_user, vsi->rss_table_size,
3752 vsi->rss_size);
3753 }
3754
3755 err = ice_set_rss_lut(vsi, vsi->rss_lut_user, vsi->rss_table_size);
3756 if (err)
3757 return err;
3758
3759 return 0;
3760 }
3761
3762 static int
ice_get_ts_info(struct net_device * dev,struct kernel_ethtool_ts_info * info)3763 ice_get_ts_info(struct net_device *dev, struct kernel_ethtool_ts_info *info)
3764 {
3765 struct ice_pf *pf = ice_netdev_to_pf(dev);
3766
3767 /* only report timestamping if PTP is enabled */
3768 if (pf->ptp.state != ICE_PTP_READY)
3769 return ethtool_op_get_ts_info(dev, info);
3770
3771 info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
3772 SOF_TIMESTAMPING_TX_HARDWARE |
3773 SOF_TIMESTAMPING_RX_HARDWARE |
3774 SOF_TIMESTAMPING_RAW_HARDWARE;
3775
3776 info->phc_index = ice_ptp_clock_index(pf);
3777
3778 info->tx_types = BIT(HWTSTAMP_TX_OFF) | BIT(HWTSTAMP_TX_ON);
3779
3780 info->rx_filters = BIT(HWTSTAMP_FILTER_NONE) | BIT(HWTSTAMP_FILTER_ALL);
3781
3782 return 0;
3783 }
3784
3785 /**
3786 * ice_get_max_txq - return the maximum number of Tx queues for in a PF
3787 * @pf: PF structure
3788 */
ice_get_max_txq(struct ice_pf * pf)3789 static int ice_get_max_txq(struct ice_pf *pf)
3790 {
3791 return min3(pf->num_lan_msix, (u16)num_online_cpus(),
3792 (u16)pf->hw.func_caps.common_cap.num_txq);
3793 }
3794
3795 /**
3796 * ice_get_max_rxq - return the maximum number of Rx queues for in a PF
3797 * @pf: PF structure
3798 */
ice_get_max_rxq(struct ice_pf * pf)3799 static int ice_get_max_rxq(struct ice_pf *pf)
3800 {
3801 return min3(pf->num_lan_msix, (u16)num_online_cpus(),
3802 (u16)pf->hw.func_caps.common_cap.num_rxq);
3803 }
3804
3805 /**
3806 * ice_get_combined_cnt - return the current number of combined channels
3807 * @vsi: PF VSI pointer
3808 *
3809 * Go through all queue vectors and count ones that have both Rx and Tx ring
3810 * attached
3811 */
ice_get_combined_cnt(struct ice_vsi * vsi)3812 static u32 ice_get_combined_cnt(struct ice_vsi *vsi)
3813 {
3814 u32 combined = 0;
3815 int q_idx;
3816
3817 ice_for_each_q_vector(vsi, q_idx) {
3818 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
3819
3820 if (q_vector->rx.rx_ring && q_vector->tx.tx_ring)
3821 combined++;
3822 }
3823
3824 return combined;
3825 }
3826
3827 /**
3828 * ice_get_channels - get the current and max supported channels
3829 * @dev: network interface device structure
3830 * @ch: ethtool channel data structure
3831 */
3832 static void
ice_get_channels(struct net_device * dev,struct ethtool_channels * ch)3833 ice_get_channels(struct net_device *dev, struct ethtool_channels *ch)
3834 {
3835 struct ice_netdev_priv *np = netdev_priv(dev);
3836 struct ice_vsi *vsi = np->vsi;
3837 struct ice_pf *pf = vsi->back;
3838
3839 /* report maximum channels */
3840 ch->max_rx = ice_get_max_rxq(pf);
3841 ch->max_tx = ice_get_max_txq(pf);
3842 ch->max_combined = min_t(int, ch->max_rx, ch->max_tx);
3843
3844 /* report current channels */
3845 ch->combined_count = ice_get_combined_cnt(vsi);
3846 ch->rx_count = vsi->num_rxq - ch->combined_count;
3847 ch->tx_count = vsi->num_txq - ch->combined_count;
3848
3849 /* report other queues */
3850 ch->other_count = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0;
3851 ch->max_other = ch->other_count;
3852 }
3853
3854 /**
3855 * ice_get_valid_rss_size - return valid number of RSS queues
3856 * @hw: pointer to the HW structure
3857 * @new_size: requested RSS queues
3858 */
ice_get_valid_rss_size(struct ice_hw * hw,int new_size)3859 static int ice_get_valid_rss_size(struct ice_hw *hw, int new_size)
3860 {
3861 struct ice_hw_common_caps *caps = &hw->func_caps.common_cap;
3862
3863 return min_t(int, new_size, BIT(caps->rss_table_entry_width));
3864 }
3865
3866 /**
3867 * ice_vsi_set_dflt_rss_lut - set default RSS LUT with requested RSS size
3868 * @vsi: VSI to reconfigure RSS LUT on
3869 * @req_rss_size: requested range of queue numbers for hashing
3870 *
3871 * Set the VSI's RSS parameters, configure the RSS LUT based on these.
3872 */
ice_vsi_set_dflt_rss_lut(struct ice_vsi * vsi,int req_rss_size)3873 static int ice_vsi_set_dflt_rss_lut(struct ice_vsi *vsi, int req_rss_size)
3874 {
3875 struct ice_pf *pf = vsi->back;
3876 struct device *dev;
3877 struct ice_hw *hw;
3878 int err;
3879 u8 *lut;
3880
3881 dev = ice_pf_to_dev(pf);
3882 hw = &pf->hw;
3883
3884 if (!req_rss_size)
3885 return -EINVAL;
3886
3887 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL);
3888 if (!lut)
3889 return -ENOMEM;
3890
3891 /* set RSS LUT parameters */
3892 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags))
3893 vsi->rss_size = 1;
3894 else
3895 vsi->rss_size = ice_get_valid_rss_size(hw, req_rss_size);
3896
3897 /* create/set RSS LUT */
3898 ice_fill_rss_lut(lut, vsi->rss_table_size, vsi->rss_size);
3899 err = ice_set_rss_lut(vsi, lut, vsi->rss_table_size);
3900 if (err)
3901 dev_err(dev, "Cannot set RSS lut, err %d aq_err %s\n", err,
3902 ice_aq_str(hw->adminq.sq_last_status));
3903
3904 kfree(lut);
3905 return err;
3906 }
3907
3908 /**
3909 * ice_set_channels - set the number channels
3910 * @dev: network interface device structure
3911 * @ch: ethtool channel data structure
3912 */
ice_set_channels(struct net_device * dev,struct ethtool_channels * ch)3913 static int ice_set_channels(struct net_device *dev, struct ethtool_channels *ch)
3914 {
3915 struct ice_netdev_priv *np = netdev_priv(dev);
3916 struct ice_vsi *vsi = np->vsi;
3917 struct ice_pf *pf = vsi->back;
3918 int new_rx = 0, new_tx = 0;
3919 bool locked = false;
3920 int ret = 0;
3921
3922 /* do not support changing channels in Safe Mode */
3923 if (ice_is_safe_mode(pf)) {
3924 netdev_err(dev, "Changing channel in Safe Mode is not supported\n");
3925 return -EOPNOTSUPP;
3926 }
3927 /* do not support changing other_count */
3928 if (ch->other_count != (test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1U : 0U))
3929 return -EINVAL;
3930
3931 if (ice_is_adq_active(pf)) {
3932 netdev_err(dev, "Cannot set channels with ADQ configured.\n");
3933 return -EOPNOTSUPP;
3934 }
3935
3936 if (test_bit(ICE_FLAG_FD_ENA, pf->flags) && pf->hw.fdir_active_fltr) {
3937 netdev_err(dev, "Cannot set channels when Flow Director filters are active\n");
3938 return -EOPNOTSUPP;
3939 }
3940
3941 if (ch->rx_count && ch->tx_count) {
3942 netdev_err(dev, "Dedicated RX or TX channels cannot be used simultaneously\n");
3943 return -EINVAL;
3944 }
3945
3946 new_rx = ch->combined_count + ch->rx_count;
3947 new_tx = ch->combined_count + ch->tx_count;
3948
3949 if (new_rx < vsi->tc_cfg.numtc) {
3950 netdev_err(dev, "Cannot set less Rx channels, than Traffic Classes you have (%u)\n",
3951 vsi->tc_cfg.numtc);
3952 return -EINVAL;
3953 }
3954 if (new_tx < vsi->tc_cfg.numtc) {
3955 netdev_err(dev, "Cannot set less Tx channels, than Traffic Classes you have (%u)\n",
3956 vsi->tc_cfg.numtc);
3957 return -EINVAL;
3958 }
3959 if (new_rx > ice_get_max_rxq(pf)) {
3960 netdev_err(dev, "Maximum allowed Rx channels is %d\n",
3961 ice_get_max_rxq(pf));
3962 return -EINVAL;
3963 }
3964 if (new_tx > ice_get_max_txq(pf)) {
3965 netdev_err(dev, "Maximum allowed Tx channels is %d\n",
3966 ice_get_max_txq(pf));
3967 return -EINVAL;
3968 }
3969
3970 if (pf->adev) {
3971 mutex_lock(&pf->adev_mutex);
3972 device_lock(&pf->adev->dev);
3973 locked = true;
3974 if (pf->adev->dev.driver) {
3975 netdev_err(dev, "Cannot change channels when RDMA is active\n");
3976 ret = -EBUSY;
3977 goto adev_unlock;
3978 }
3979 }
3980
3981 ice_vsi_recfg_qs(vsi, new_rx, new_tx, locked);
3982
3983 if (!netif_is_rxfh_configured(dev)) {
3984 ret = ice_vsi_set_dflt_rss_lut(vsi, new_rx);
3985 goto adev_unlock;
3986 }
3987
3988 /* Update rss_size due to change in Rx queues */
3989 vsi->rss_size = ice_get_valid_rss_size(&pf->hw, new_rx);
3990
3991 adev_unlock:
3992 if (locked) {
3993 device_unlock(&pf->adev->dev);
3994 mutex_unlock(&pf->adev_mutex);
3995 }
3996 return ret;
3997 }
3998
3999 /**
4000 * ice_get_wol - get current Wake on LAN configuration
4001 * @netdev: network interface device structure
4002 * @wol: Ethtool structure to retrieve WoL settings
4003 */
ice_get_wol(struct net_device * netdev,struct ethtool_wolinfo * wol)4004 static void ice_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
4005 {
4006 struct ice_netdev_priv *np = netdev_priv(netdev);
4007 struct ice_pf *pf = np->vsi->back;
4008
4009 if (np->vsi->type != ICE_VSI_PF)
4010 netdev_warn(netdev, "Wake on LAN is not supported on this interface!\n");
4011
4012 /* Get WoL settings based on the HW capability */
4013 if (ice_is_wol_supported(&pf->hw)) {
4014 wol->supported = WAKE_MAGIC;
4015 wol->wolopts = pf->wol_ena ? WAKE_MAGIC : 0;
4016 } else {
4017 wol->supported = 0;
4018 wol->wolopts = 0;
4019 }
4020 }
4021
4022 /**
4023 * ice_set_wol - set Wake on LAN on supported device
4024 * @netdev: network interface device structure
4025 * @wol: Ethtool structure to set WoL
4026 */
ice_set_wol(struct net_device * netdev,struct ethtool_wolinfo * wol)4027 static int ice_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
4028 {
4029 struct ice_netdev_priv *np = netdev_priv(netdev);
4030 struct ice_vsi *vsi = np->vsi;
4031 struct ice_pf *pf = vsi->back;
4032
4033 if (vsi->type != ICE_VSI_PF || !ice_is_wol_supported(&pf->hw))
4034 return -EOPNOTSUPP;
4035
4036 /* only magic packet is supported */
4037 if (wol->wolopts && wol->wolopts != WAKE_MAGIC)
4038 return -EOPNOTSUPP;
4039
4040 /* Set WoL only if there is a new value */
4041 if (pf->wol_ena != !!wol->wolopts) {
4042 pf->wol_ena = !!wol->wolopts;
4043 device_set_wakeup_enable(ice_pf_to_dev(pf), pf->wol_ena);
4044 netdev_dbg(netdev, "WoL magic packet %sabled\n",
4045 pf->wol_ena ? "en" : "dis");
4046 }
4047
4048 return 0;
4049 }
4050
4051 /**
4052 * ice_get_rc_coalesce - get ITR values for specific ring container
4053 * @ec: ethtool structure to fill with driver's coalesce settings
4054 * @rc: ring container that the ITR values will come from
4055 *
4056 * Query the device for ice_ring_container specific ITR values. This is
4057 * done per ice_ring_container because each q_vector can have 1 or more rings
4058 * and all of said ring(s) will have the same ITR values.
4059 *
4060 * Returns 0 on success, negative otherwise.
4061 */
4062 static int
ice_get_rc_coalesce(struct ethtool_coalesce * ec,struct ice_ring_container * rc)4063 ice_get_rc_coalesce(struct ethtool_coalesce *ec, struct ice_ring_container *rc)
4064 {
4065 if (!rc->rx_ring)
4066 return -EINVAL;
4067
4068 switch (rc->type) {
4069 case ICE_RX_CONTAINER:
4070 ec->use_adaptive_rx_coalesce = ITR_IS_DYNAMIC(rc);
4071 ec->rx_coalesce_usecs = rc->itr_setting;
4072 ec->rx_coalesce_usecs_high = rc->rx_ring->q_vector->intrl;
4073 break;
4074 case ICE_TX_CONTAINER:
4075 ec->use_adaptive_tx_coalesce = ITR_IS_DYNAMIC(rc);
4076 ec->tx_coalesce_usecs = rc->itr_setting;
4077 break;
4078 default:
4079 dev_dbg(ice_pf_to_dev(rc->rx_ring->vsi->back), "Invalid c_type %d\n", rc->type);
4080 return -EINVAL;
4081 }
4082
4083 return 0;
4084 }
4085
4086 /**
4087 * ice_get_q_coalesce - get a queue's ITR/INTRL (coalesce) settings
4088 * @vsi: VSI associated to the queue for getting ITR/INTRL (coalesce) settings
4089 * @ec: coalesce settings to program the device with
4090 * @q_num: update ITR/INTRL (coalesce) settings for this queue number/index
4091 *
4092 * Return 0 on success, and negative under the following conditions:
4093 * 1. Getting Tx or Rx ITR/INTRL (coalesce) settings failed.
4094 * 2. The q_num passed in is not a valid number/index for Tx and Rx rings.
4095 */
4096 static int
ice_get_q_coalesce(struct ice_vsi * vsi,struct ethtool_coalesce * ec,int q_num)4097 ice_get_q_coalesce(struct ice_vsi *vsi, struct ethtool_coalesce *ec, int q_num)
4098 {
4099 if (q_num < vsi->num_rxq && q_num < vsi->num_txq) {
4100 if (ice_get_rc_coalesce(ec,
4101 &vsi->rx_rings[q_num]->q_vector->rx))
4102 return -EINVAL;
4103 if (ice_get_rc_coalesce(ec,
4104 &vsi->tx_rings[q_num]->q_vector->tx))
4105 return -EINVAL;
4106 } else if (q_num < vsi->num_rxq) {
4107 if (ice_get_rc_coalesce(ec,
4108 &vsi->rx_rings[q_num]->q_vector->rx))
4109 return -EINVAL;
4110 } else if (q_num < vsi->num_txq) {
4111 if (ice_get_rc_coalesce(ec,
4112 &vsi->tx_rings[q_num]->q_vector->tx))
4113 return -EINVAL;
4114 } else {
4115 return -EINVAL;
4116 }
4117
4118 return 0;
4119 }
4120
4121 /**
4122 * __ice_get_coalesce - get ITR/INTRL values for the device
4123 * @netdev: pointer to the netdev associated with this query
4124 * @ec: ethtool structure to fill with driver's coalesce settings
4125 * @q_num: queue number to get the coalesce settings for
4126 *
4127 * If the caller passes in a negative q_num then we return coalesce settings
4128 * based on queue number 0, else use the actual q_num passed in.
4129 */
4130 static int
__ice_get_coalesce(struct net_device * netdev,struct ethtool_coalesce * ec,int q_num)4131 __ice_get_coalesce(struct net_device *netdev, struct ethtool_coalesce *ec,
4132 int q_num)
4133 {
4134 struct ice_netdev_priv *np = netdev_priv(netdev);
4135 struct ice_vsi *vsi = np->vsi;
4136
4137 if (q_num < 0)
4138 q_num = 0;
4139
4140 if (ice_get_q_coalesce(vsi, ec, q_num))
4141 return -EINVAL;
4142
4143 return 0;
4144 }
4145
ice_get_coalesce(struct net_device * netdev,struct ethtool_coalesce * ec,struct kernel_ethtool_coalesce * kernel_coal,struct netlink_ext_ack * extack)4146 static int ice_get_coalesce(struct net_device *netdev,
4147 struct ethtool_coalesce *ec,
4148 struct kernel_ethtool_coalesce *kernel_coal,
4149 struct netlink_ext_ack *extack)
4150 {
4151 return __ice_get_coalesce(netdev, ec, -1);
4152 }
4153
4154 static int
ice_get_per_q_coalesce(struct net_device * netdev,u32 q_num,struct ethtool_coalesce * ec)4155 ice_get_per_q_coalesce(struct net_device *netdev, u32 q_num,
4156 struct ethtool_coalesce *ec)
4157 {
4158 return __ice_get_coalesce(netdev, ec, q_num);
4159 }
4160
4161 /**
4162 * ice_set_rc_coalesce - set ITR values for specific ring container
4163 * @ec: ethtool structure from user to update ITR settings
4164 * @rc: ring container that the ITR values will come from
4165 * @vsi: VSI associated to the ring container
4166 *
4167 * Set specific ITR values. This is done per ice_ring_container because each
4168 * q_vector can have 1 or more rings and all of said ring(s) will have the same
4169 * ITR values.
4170 *
4171 * Returns 0 on success, negative otherwise.
4172 */
4173 static int
ice_set_rc_coalesce(struct ethtool_coalesce * ec,struct ice_ring_container * rc,struct ice_vsi * vsi)4174 ice_set_rc_coalesce(struct ethtool_coalesce *ec,
4175 struct ice_ring_container *rc, struct ice_vsi *vsi)
4176 {
4177 const char *c_type_str = (rc->type == ICE_RX_CONTAINER) ? "rx" : "tx";
4178 u32 use_adaptive_coalesce, coalesce_usecs;
4179 struct ice_pf *pf = vsi->back;
4180 u16 itr_setting;
4181
4182 if (!rc->rx_ring)
4183 return -EINVAL;
4184
4185 switch (rc->type) {
4186 case ICE_RX_CONTAINER:
4187 {
4188 struct ice_q_vector *q_vector = rc->rx_ring->q_vector;
4189
4190 if (ec->rx_coalesce_usecs_high > ICE_MAX_INTRL ||
4191 (ec->rx_coalesce_usecs_high &&
4192 ec->rx_coalesce_usecs_high < pf->hw.intrl_gran)) {
4193 netdev_info(vsi->netdev, "Invalid value, %s-usecs-high valid values are 0 (disabled), %d-%d\n",
4194 c_type_str, pf->hw.intrl_gran,
4195 ICE_MAX_INTRL);
4196 return -EINVAL;
4197 }
4198 if (ec->rx_coalesce_usecs_high != q_vector->intrl &&
4199 (ec->use_adaptive_rx_coalesce || ec->use_adaptive_tx_coalesce)) {
4200 netdev_info(vsi->netdev, "Invalid value, %s-usecs-high cannot be changed if adaptive-tx or adaptive-rx is enabled\n",
4201 c_type_str);
4202 return -EINVAL;
4203 }
4204 if (ec->rx_coalesce_usecs_high != q_vector->intrl)
4205 q_vector->intrl = ec->rx_coalesce_usecs_high;
4206
4207 use_adaptive_coalesce = ec->use_adaptive_rx_coalesce;
4208 coalesce_usecs = ec->rx_coalesce_usecs;
4209
4210 break;
4211 }
4212 case ICE_TX_CONTAINER:
4213 use_adaptive_coalesce = ec->use_adaptive_tx_coalesce;
4214 coalesce_usecs = ec->tx_coalesce_usecs;
4215
4216 break;
4217 default:
4218 dev_dbg(ice_pf_to_dev(pf), "Invalid container type %d\n",
4219 rc->type);
4220 return -EINVAL;
4221 }
4222
4223 itr_setting = rc->itr_setting;
4224 if (coalesce_usecs != itr_setting && use_adaptive_coalesce) {
4225 netdev_info(vsi->netdev, "%s interrupt throttling cannot be changed if adaptive-%s is enabled\n",
4226 c_type_str, c_type_str);
4227 return -EINVAL;
4228 }
4229
4230 if (coalesce_usecs > ICE_ITR_MAX) {
4231 netdev_info(vsi->netdev, "Invalid value, %s-usecs range is 0-%d\n",
4232 c_type_str, ICE_ITR_MAX);
4233 return -EINVAL;
4234 }
4235
4236 if (use_adaptive_coalesce) {
4237 rc->itr_mode = ITR_DYNAMIC;
4238 } else {
4239 rc->itr_mode = ITR_STATIC;
4240 /* store user facing value how it was set */
4241 rc->itr_setting = coalesce_usecs;
4242 /* write the change to the register */
4243 ice_write_itr(rc, coalesce_usecs);
4244 /* force writes to take effect immediately, the flush shouldn't
4245 * be done in the functions above because the intent is for
4246 * them to do lazy writes.
4247 */
4248 ice_flush(&pf->hw);
4249 }
4250
4251 return 0;
4252 }
4253
4254 /**
4255 * ice_set_q_coalesce - set a queue's ITR/INTRL (coalesce) settings
4256 * @vsi: VSI associated to the queue that need updating
4257 * @ec: coalesce settings to program the device with
4258 * @q_num: update ITR/INTRL (coalesce) settings for this queue number/index
4259 *
4260 * Return 0 on success, and negative under the following conditions:
4261 * 1. Setting Tx or Rx ITR/INTRL (coalesce) settings failed.
4262 * 2. The q_num passed in is not a valid number/index for Tx and Rx rings.
4263 */
4264 static int
ice_set_q_coalesce(struct ice_vsi * vsi,struct ethtool_coalesce * ec,int q_num)4265 ice_set_q_coalesce(struct ice_vsi *vsi, struct ethtool_coalesce *ec, int q_num)
4266 {
4267 if (q_num < vsi->num_rxq && q_num < vsi->num_txq) {
4268 if (ice_set_rc_coalesce(ec,
4269 &vsi->rx_rings[q_num]->q_vector->rx,
4270 vsi))
4271 return -EINVAL;
4272
4273 if (ice_set_rc_coalesce(ec,
4274 &vsi->tx_rings[q_num]->q_vector->tx,
4275 vsi))
4276 return -EINVAL;
4277 } else if (q_num < vsi->num_rxq) {
4278 if (ice_set_rc_coalesce(ec,
4279 &vsi->rx_rings[q_num]->q_vector->rx,
4280 vsi))
4281 return -EINVAL;
4282 } else if (q_num < vsi->num_txq) {
4283 if (ice_set_rc_coalesce(ec,
4284 &vsi->tx_rings[q_num]->q_vector->tx,
4285 vsi))
4286 return -EINVAL;
4287 } else {
4288 return -EINVAL;
4289 }
4290
4291 return 0;
4292 }
4293
4294 /**
4295 * ice_print_if_odd_usecs - print message if user tries to set odd [tx|rx]-usecs
4296 * @netdev: netdev used for print
4297 * @itr_setting: previous user setting
4298 * @use_adaptive_coalesce: if adaptive coalesce is enabled or being enabled
4299 * @coalesce_usecs: requested value of [tx|rx]-usecs
4300 * @c_type_str: either "rx" or "tx" to match user set field of [tx|rx]-usecs
4301 */
4302 static void
ice_print_if_odd_usecs(struct net_device * netdev,u16 itr_setting,u32 use_adaptive_coalesce,u32 coalesce_usecs,const char * c_type_str)4303 ice_print_if_odd_usecs(struct net_device *netdev, u16 itr_setting,
4304 u32 use_adaptive_coalesce, u32 coalesce_usecs,
4305 const char *c_type_str)
4306 {
4307 if (use_adaptive_coalesce)
4308 return;
4309
4310 if (itr_setting != coalesce_usecs && (coalesce_usecs % 2))
4311 netdev_info(netdev, "User set %s-usecs to %d, device only supports even values. Rounding down and attempting to set %s-usecs to %d\n",
4312 c_type_str, coalesce_usecs, c_type_str,
4313 ITR_REG_ALIGN(coalesce_usecs));
4314 }
4315
4316 /**
4317 * __ice_set_coalesce - set ITR/INTRL values for the device
4318 * @netdev: pointer to the netdev associated with this query
4319 * @ec: ethtool structure to fill with driver's coalesce settings
4320 * @q_num: queue number to get the coalesce settings for
4321 *
4322 * If the caller passes in a negative q_num then we set the coalesce settings
4323 * for all Tx/Rx queues, else use the actual q_num passed in.
4324 */
4325 static int
__ice_set_coalesce(struct net_device * netdev,struct ethtool_coalesce * ec,int q_num)4326 __ice_set_coalesce(struct net_device *netdev, struct ethtool_coalesce *ec,
4327 int q_num)
4328 {
4329 struct ice_netdev_priv *np = netdev_priv(netdev);
4330 struct ice_vsi *vsi = np->vsi;
4331
4332 if (q_num < 0) {
4333 struct ice_q_vector *q_vector = vsi->q_vectors[0];
4334 int v_idx;
4335
4336 if (q_vector) {
4337 ice_print_if_odd_usecs(netdev, q_vector->rx.itr_setting,
4338 ec->use_adaptive_rx_coalesce,
4339 ec->rx_coalesce_usecs, "rx");
4340
4341 ice_print_if_odd_usecs(netdev, q_vector->tx.itr_setting,
4342 ec->use_adaptive_tx_coalesce,
4343 ec->tx_coalesce_usecs, "tx");
4344 }
4345
4346 ice_for_each_q_vector(vsi, v_idx) {
4347 /* In some cases if DCB is configured the num_[rx|tx]q
4348 * can be less than vsi->num_q_vectors. This check
4349 * accounts for that so we don't report a false failure
4350 */
4351 if (v_idx >= vsi->num_rxq && v_idx >= vsi->num_txq)
4352 goto set_complete;
4353
4354 if (ice_set_q_coalesce(vsi, ec, v_idx))
4355 return -EINVAL;
4356
4357 ice_set_q_vector_intrl(vsi->q_vectors[v_idx]);
4358 }
4359 goto set_complete;
4360 }
4361
4362 if (ice_set_q_coalesce(vsi, ec, q_num))
4363 return -EINVAL;
4364
4365 ice_set_q_vector_intrl(vsi->q_vectors[q_num]);
4366
4367 set_complete:
4368 return 0;
4369 }
4370
ice_set_coalesce(struct net_device * netdev,struct ethtool_coalesce * ec,struct kernel_ethtool_coalesce * kernel_coal,struct netlink_ext_ack * extack)4371 static int ice_set_coalesce(struct net_device *netdev,
4372 struct ethtool_coalesce *ec,
4373 struct kernel_ethtool_coalesce *kernel_coal,
4374 struct netlink_ext_ack *extack)
4375 {
4376 return __ice_set_coalesce(netdev, ec, -1);
4377 }
4378
4379 static int
ice_set_per_q_coalesce(struct net_device * netdev,u32 q_num,struct ethtool_coalesce * ec)4380 ice_set_per_q_coalesce(struct net_device *netdev, u32 q_num,
4381 struct ethtool_coalesce *ec)
4382 {
4383 return __ice_set_coalesce(netdev, ec, q_num);
4384 }
4385
4386 static void
ice_repr_get_drvinfo(struct net_device * netdev,struct ethtool_drvinfo * drvinfo)4387 ice_repr_get_drvinfo(struct net_device *netdev,
4388 struct ethtool_drvinfo *drvinfo)
4389 {
4390 struct ice_repr *repr = ice_netdev_to_repr(netdev);
4391
4392 if (repr->ops.ready(repr))
4393 return;
4394
4395 __ice_get_drvinfo(netdev, drvinfo, repr->src_vsi);
4396 }
4397
4398 static void
ice_repr_get_strings(struct net_device * netdev,u32 stringset,u8 * data)4399 ice_repr_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
4400 {
4401 struct ice_repr *repr = ice_netdev_to_repr(netdev);
4402
4403 /* for port representors only ETH_SS_STATS is supported */
4404 if (repr->ops.ready(repr) || stringset != ETH_SS_STATS)
4405 return;
4406
4407 __ice_get_strings(netdev, stringset, data, repr->src_vsi);
4408 }
4409
4410 static void
ice_repr_get_ethtool_stats(struct net_device * netdev,struct ethtool_stats __always_unused * stats,u64 * data)4411 ice_repr_get_ethtool_stats(struct net_device *netdev,
4412 struct ethtool_stats __always_unused *stats,
4413 u64 *data)
4414 {
4415 struct ice_repr *repr = ice_netdev_to_repr(netdev);
4416
4417 if (repr->ops.ready(repr))
4418 return;
4419
4420 __ice_get_ethtool_stats(netdev, stats, data, repr->src_vsi);
4421 }
4422
ice_repr_get_sset_count(struct net_device * netdev,int sset)4423 static int ice_repr_get_sset_count(struct net_device *netdev, int sset)
4424 {
4425 switch (sset) {
4426 case ETH_SS_STATS:
4427 return ICE_VSI_STATS_LEN;
4428 default:
4429 return -EOPNOTSUPP;
4430 }
4431 }
4432
4433 #define ICE_I2C_EEPROM_DEV_ADDR 0xA0
4434 #define ICE_I2C_EEPROM_DEV_ADDR2 0xA2
4435 #define ICE_MODULE_TYPE_SFP 0x03
4436 #define ICE_MODULE_TYPE_QSFP_PLUS 0x0D
4437 #define ICE_MODULE_TYPE_QSFP28 0x11
4438 #define ICE_MODULE_SFF_ADDR_MODE 0x04
4439 #define ICE_MODULE_SFF_DIAG_CAPAB 0x40
4440 #define ICE_MODULE_REVISION_ADDR 0x01
4441 #define ICE_MODULE_SFF_8472_COMP 0x5E
4442 #define ICE_MODULE_SFF_8472_SWAP 0x5C
4443 #define ICE_MODULE_QSFP_MAX_LEN 640
4444
4445 /**
4446 * ice_get_module_info - get SFF module type and revision information
4447 * @netdev: network interface device structure
4448 * @modinfo: module EEPROM size and layout information structure
4449 */
4450 static int
ice_get_module_info(struct net_device * netdev,struct ethtool_modinfo * modinfo)4451 ice_get_module_info(struct net_device *netdev,
4452 struct ethtool_modinfo *modinfo)
4453 {
4454 struct ice_netdev_priv *np = netdev_priv(netdev);
4455 struct ice_vsi *vsi = np->vsi;
4456 struct ice_pf *pf = vsi->back;
4457 struct ice_hw *hw = &pf->hw;
4458 u8 sff8472_comp = 0;
4459 u8 sff8472_swap = 0;
4460 u8 sff8636_rev = 0;
4461 u8 value = 0;
4462 int status;
4463
4464 status = ice_aq_sff_eeprom(hw, 0, ICE_I2C_EEPROM_DEV_ADDR, 0x00, 0x00,
4465 0, &value, 1, 0, NULL);
4466 if (status)
4467 return status;
4468
4469 switch (value) {
4470 case ICE_MODULE_TYPE_SFP:
4471 status = ice_aq_sff_eeprom(hw, 0, ICE_I2C_EEPROM_DEV_ADDR,
4472 ICE_MODULE_SFF_8472_COMP, 0x00, 0,
4473 &sff8472_comp, 1, 0, NULL);
4474 if (status)
4475 return status;
4476 status = ice_aq_sff_eeprom(hw, 0, ICE_I2C_EEPROM_DEV_ADDR,
4477 ICE_MODULE_SFF_8472_SWAP, 0x00, 0,
4478 &sff8472_swap, 1, 0, NULL);
4479 if (status)
4480 return status;
4481
4482 if (sff8472_swap & ICE_MODULE_SFF_ADDR_MODE) {
4483 modinfo->type = ETH_MODULE_SFF_8079;
4484 modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
4485 } else if (sff8472_comp &&
4486 (sff8472_swap & ICE_MODULE_SFF_DIAG_CAPAB)) {
4487 modinfo->type = ETH_MODULE_SFF_8472;
4488 modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
4489 } else {
4490 modinfo->type = ETH_MODULE_SFF_8079;
4491 modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
4492 }
4493 break;
4494 case ICE_MODULE_TYPE_QSFP_PLUS:
4495 case ICE_MODULE_TYPE_QSFP28:
4496 status = ice_aq_sff_eeprom(hw, 0, ICE_I2C_EEPROM_DEV_ADDR,
4497 ICE_MODULE_REVISION_ADDR, 0x00, 0,
4498 &sff8636_rev, 1, 0, NULL);
4499 if (status)
4500 return status;
4501 /* Check revision compliance */
4502 if (sff8636_rev > 0x02) {
4503 /* Module is SFF-8636 compliant */
4504 modinfo->type = ETH_MODULE_SFF_8636;
4505 modinfo->eeprom_len = ICE_MODULE_QSFP_MAX_LEN;
4506 } else {
4507 modinfo->type = ETH_MODULE_SFF_8436;
4508 modinfo->eeprom_len = ICE_MODULE_QSFP_MAX_LEN;
4509 }
4510 break;
4511 default:
4512 netdev_warn(netdev, "SFF Module Type not recognized.\n");
4513 return -EINVAL;
4514 }
4515 return 0;
4516 }
4517
4518 /**
4519 * ice_get_module_eeprom - fill buffer with SFF EEPROM contents
4520 * @netdev: network interface device structure
4521 * @ee: EEPROM dump request structure
4522 * @data: buffer to be filled with EEPROM contents
4523 */
4524 static int
ice_get_module_eeprom(struct net_device * netdev,struct ethtool_eeprom * ee,u8 * data)4525 ice_get_module_eeprom(struct net_device *netdev,
4526 struct ethtool_eeprom *ee, u8 *data)
4527 {
4528 struct ice_netdev_priv *np = netdev_priv(netdev);
4529 #define SFF_READ_BLOCK_SIZE 8
4530 u8 value[SFF_READ_BLOCK_SIZE] = { 0 };
4531 u8 addr = ICE_I2C_EEPROM_DEV_ADDR;
4532 struct ice_vsi *vsi = np->vsi;
4533 struct ice_pf *pf = vsi->back;
4534 struct ice_hw *hw = &pf->hw;
4535 bool is_sfp = false;
4536 unsigned int i, j;
4537 u16 offset = 0;
4538 u8 page = 0;
4539 int status;
4540
4541 if (!ee || !ee->len || !data)
4542 return -EINVAL;
4543
4544 status = ice_aq_sff_eeprom(hw, 0, addr, offset, page, 0, value, 1, 0,
4545 NULL);
4546 if (status)
4547 return status;
4548
4549 if (value[0] == ICE_MODULE_TYPE_SFP)
4550 is_sfp = true;
4551
4552 memset(data, 0, ee->len);
4553 for (i = 0; i < ee->len; i += SFF_READ_BLOCK_SIZE) {
4554 offset = i + ee->offset;
4555 page = 0;
4556
4557 /* Check if we need to access the other memory page */
4558 if (is_sfp) {
4559 if (offset >= ETH_MODULE_SFF_8079_LEN) {
4560 offset -= ETH_MODULE_SFF_8079_LEN;
4561 addr = ICE_I2C_EEPROM_DEV_ADDR2;
4562 }
4563 } else {
4564 while (offset >= ETH_MODULE_SFF_8436_LEN) {
4565 /* Compute memory page number and offset. */
4566 offset -= ETH_MODULE_SFF_8436_LEN / 2;
4567 page++;
4568 }
4569 }
4570
4571 /* Bit 2 of EEPROM address 0x02 declares upper
4572 * pages are disabled on QSFP modules.
4573 * SFP modules only ever use page 0.
4574 */
4575 if (page == 0 || !(data[0x2] & 0x4)) {
4576 u32 copy_len;
4577
4578 /* If i2c bus is busy due to slow page change or
4579 * link management access, call can fail. This is normal.
4580 * So we retry this a few times.
4581 */
4582 for (j = 0; j < 4; j++) {
4583 status = ice_aq_sff_eeprom(hw, 0, addr, offset, page,
4584 !is_sfp, value,
4585 SFF_READ_BLOCK_SIZE,
4586 0, NULL);
4587 netdev_dbg(netdev, "SFF %02X %02X %02X %X = %02X%02X%02X%02X.%02X%02X%02X%02X (%X)\n",
4588 addr, offset, page, is_sfp,
4589 value[0], value[1], value[2], value[3],
4590 value[4], value[5], value[6], value[7],
4591 status);
4592 if (status) {
4593 usleep_range(1500, 2500);
4594 memset(value, 0, SFF_READ_BLOCK_SIZE);
4595 continue;
4596 }
4597 break;
4598 }
4599
4600 /* Make sure we have enough room for the new block */
4601 copy_len = min_t(u32, SFF_READ_BLOCK_SIZE, ee->len - i);
4602 memcpy(data + i, value, copy_len);
4603 }
4604 }
4605 return 0;
4606 }
4607
4608 /**
4609 * ice_get_port_fec_stats - returns FEC correctable, uncorrectable stats per
4610 * pcsquad, pcsport
4611 * @hw: pointer to the HW struct
4612 * @pcs_quad: pcsquad for input port
4613 * @pcs_port: pcsport for input port
4614 * @fec_stats: buffer to hold FEC statistics for given port
4615 *
4616 * Return: 0 on success, negative on failure.
4617 */
ice_get_port_fec_stats(struct ice_hw * hw,u16 pcs_quad,u16 pcs_port,struct ethtool_fec_stats * fec_stats)4618 static int ice_get_port_fec_stats(struct ice_hw *hw, u16 pcs_quad, u16 pcs_port,
4619 struct ethtool_fec_stats *fec_stats)
4620 {
4621 u32 fec_uncorr_low_val = 0, fec_uncorr_high_val = 0;
4622 u32 fec_corr_low_val = 0, fec_corr_high_val = 0;
4623 int err;
4624
4625 if (pcs_quad > 1 || pcs_port > 3)
4626 return -EINVAL;
4627
4628 err = ice_aq_get_fec_stats(hw, pcs_quad, pcs_port, ICE_FEC_CORR_LOW,
4629 &fec_corr_low_val);
4630 if (err)
4631 return err;
4632
4633 err = ice_aq_get_fec_stats(hw, pcs_quad, pcs_port, ICE_FEC_CORR_HIGH,
4634 &fec_corr_high_val);
4635 if (err)
4636 return err;
4637
4638 err = ice_aq_get_fec_stats(hw, pcs_quad, pcs_port,
4639 ICE_FEC_UNCORR_LOW,
4640 &fec_uncorr_low_val);
4641 if (err)
4642 return err;
4643
4644 err = ice_aq_get_fec_stats(hw, pcs_quad, pcs_port,
4645 ICE_FEC_UNCORR_HIGH,
4646 &fec_uncorr_high_val);
4647 if (err)
4648 return err;
4649
4650 fec_stats->corrected_blocks.total = (fec_corr_high_val << 16) +
4651 fec_corr_low_val;
4652 fec_stats->uncorrectable_blocks.total = (fec_uncorr_high_val << 16) +
4653 fec_uncorr_low_val;
4654 return 0;
4655 }
4656
4657 /**
4658 * ice_get_fec_stats - returns FEC correctable, uncorrectable stats per netdev
4659 * @netdev: network interface device structure
4660 * @fec_stats: buffer to hold FEC statistics for given port
4661 *
4662 */
ice_get_fec_stats(struct net_device * netdev,struct ethtool_fec_stats * fec_stats)4663 static void ice_get_fec_stats(struct net_device *netdev,
4664 struct ethtool_fec_stats *fec_stats)
4665 {
4666 struct ice_netdev_priv *np = netdev_priv(netdev);
4667 struct ice_port_topology port_topology;
4668 struct ice_port_info *pi;
4669 struct ice_pf *pf;
4670 struct ice_hw *hw;
4671 int err;
4672
4673 pf = np->vsi->back;
4674 hw = &pf->hw;
4675 pi = np->vsi->port_info;
4676
4677 /* Serdes parameters are not supported if not the PF VSI */
4678 if (np->vsi->type != ICE_VSI_PF || !pi)
4679 return;
4680
4681 err = ice_get_port_topology(hw, pi->lport, &port_topology);
4682 if (err) {
4683 netdev_info(netdev, "Extended register dump failed Lport %d\n",
4684 pi->lport);
4685 return;
4686 }
4687
4688 /* Get FEC correctable, uncorrectable counter */
4689 err = ice_get_port_fec_stats(hw, port_topology.pcs_quad_select,
4690 port_topology.pcs_port, fec_stats);
4691 if (err)
4692 netdev_info(netdev, "FEC stats get failed Lport %d Err %d\n",
4693 pi->lport, err);
4694 }
4695
4696 #define ICE_ETHTOOL_PFR (ETH_RESET_IRQ | ETH_RESET_DMA | \
4697 ETH_RESET_FILTER | ETH_RESET_OFFLOAD)
4698
4699 #define ICE_ETHTOOL_CORER ((ICE_ETHTOOL_PFR | ETH_RESET_RAM) << \
4700 ETH_RESET_SHARED_SHIFT)
4701
4702 #define ICE_ETHTOOL_GLOBR (ICE_ETHTOOL_CORER | \
4703 (ETH_RESET_MAC << ETH_RESET_SHARED_SHIFT) | \
4704 (ETH_RESET_PHY << ETH_RESET_SHARED_SHIFT))
4705
4706 #define ICE_ETHTOOL_VFR ICE_ETHTOOL_PFR
4707
4708 /**
4709 * ice_ethtool_reset - triggers a given type of reset
4710 * @dev: network interface device structure
4711 * @flags: set of reset flags
4712 *
4713 * Return: 0 on success, -EOPNOTSUPP when using unsupported set of flags.
4714 */
ice_ethtool_reset(struct net_device * dev,u32 * flags)4715 static int ice_ethtool_reset(struct net_device *dev, u32 *flags)
4716 {
4717 struct ice_netdev_priv *np = netdev_priv(dev);
4718 struct ice_pf *pf = np->vsi->back;
4719 enum ice_reset_req reset;
4720
4721 switch (*flags) {
4722 case ICE_ETHTOOL_CORER:
4723 reset = ICE_RESET_CORER;
4724 break;
4725 case ICE_ETHTOOL_GLOBR:
4726 reset = ICE_RESET_GLOBR;
4727 break;
4728 case ICE_ETHTOOL_PFR:
4729 reset = ICE_RESET_PFR;
4730 break;
4731 default:
4732 netdev_info(dev, "Unsupported set of ethtool flags");
4733 return -EOPNOTSUPP;
4734 }
4735
4736 ice_schedule_reset(pf, reset);
4737
4738 *flags = 0;
4739
4740 return 0;
4741 }
4742
4743 /**
4744 * ice_repr_ethtool_reset - triggers a VF reset
4745 * @dev: network interface device structure
4746 * @flags: set of reset flags
4747 *
4748 * Return: 0 on success,
4749 * -EOPNOTSUPP when using unsupported set of flags
4750 * -EBUSY when VF is not ready for reset.
4751 */
ice_repr_ethtool_reset(struct net_device * dev,u32 * flags)4752 static int ice_repr_ethtool_reset(struct net_device *dev, u32 *flags)
4753 {
4754 struct ice_repr *repr = ice_netdev_to_repr(dev);
4755 struct ice_vf *vf;
4756
4757 if (repr->type != ICE_REPR_TYPE_VF ||
4758 *flags != ICE_ETHTOOL_VFR)
4759 return -EOPNOTSUPP;
4760
4761 vf = repr->vf;
4762
4763 if (ice_check_vf_ready_for_cfg(vf))
4764 return -EBUSY;
4765
4766 *flags = 0;
4767
4768 return ice_reset_vf(vf, ICE_VF_RESET_VFLR | ICE_VF_RESET_LOCK);
4769 }
4770
4771 static const struct ethtool_ops ice_ethtool_ops = {
4772 .cap_rss_ctx_supported = true,
4773 .supported_coalesce_params = ETHTOOL_COALESCE_USECS |
4774 ETHTOOL_COALESCE_USE_ADAPTIVE |
4775 ETHTOOL_COALESCE_RX_USECS_HIGH,
4776 .cap_rss_sym_xor_supported = true,
4777 .rxfh_per_ctx_key = true,
4778 .get_link_ksettings = ice_get_link_ksettings,
4779 .set_link_ksettings = ice_set_link_ksettings,
4780 .get_fec_stats = ice_get_fec_stats,
4781 .get_drvinfo = ice_get_drvinfo,
4782 .get_regs_len = ice_get_regs_len,
4783 .get_regs = ice_get_regs,
4784 .get_wol = ice_get_wol,
4785 .set_wol = ice_set_wol,
4786 .get_msglevel = ice_get_msglevel,
4787 .set_msglevel = ice_set_msglevel,
4788 .self_test = ice_self_test,
4789 .get_link = ethtool_op_get_link,
4790 .get_eeprom_len = ice_get_eeprom_len,
4791 .get_eeprom = ice_get_eeprom,
4792 .get_coalesce = ice_get_coalesce,
4793 .set_coalesce = ice_set_coalesce,
4794 .get_strings = ice_get_strings,
4795 .set_phys_id = ice_set_phys_id,
4796 .get_ethtool_stats = ice_get_ethtool_stats,
4797 .get_priv_flags = ice_get_priv_flags,
4798 .set_priv_flags = ice_set_priv_flags,
4799 .get_sset_count = ice_get_sset_count,
4800 .get_rxnfc = ice_get_rxnfc,
4801 .set_rxnfc = ice_set_rxnfc,
4802 .get_ringparam = ice_get_ringparam,
4803 .set_ringparam = ice_set_ringparam,
4804 .nway_reset = ice_nway_reset,
4805 .get_pauseparam = ice_get_pauseparam,
4806 .set_pauseparam = ice_set_pauseparam,
4807 .reset = ice_ethtool_reset,
4808 .get_rxfh_key_size = ice_get_rxfh_key_size,
4809 .get_rxfh_indir_size = ice_get_rxfh_indir_size,
4810 .get_rxfh = ice_get_rxfh,
4811 .set_rxfh = ice_set_rxfh,
4812 .get_channels = ice_get_channels,
4813 .set_channels = ice_set_channels,
4814 .get_ts_info = ice_get_ts_info,
4815 .get_per_queue_coalesce = ice_get_per_q_coalesce,
4816 .set_per_queue_coalesce = ice_set_per_q_coalesce,
4817 .get_fecparam = ice_get_fecparam,
4818 .set_fecparam = ice_set_fecparam,
4819 .get_module_info = ice_get_module_info,
4820 .get_module_eeprom = ice_get_module_eeprom,
4821 };
4822
4823 static const struct ethtool_ops ice_ethtool_safe_mode_ops = {
4824 .get_link_ksettings = ice_get_link_ksettings,
4825 .set_link_ksettings = ice_set_link_ksettings,
4826 .get_drvinfo = ice_get_drvinfo,
4827 .get_regs_len = ice_get_regs_len,
4828 .get_regs = ice_get_regs,
4829 .get_wol = ice_get_wol,
4830 .set_wol = ice_set_wol,
4831 .get_msglevel = ice_get_msglevel,
4832 .set_msglevel = ice_set_msglevel,
4833 .get_link = ethtool_op_get_link,
4834 .get_eeprom_len = ice_get_eeprom_len,
4835 .get_eeprom = ice_get_eeprom,
4836 .get_strings = ice_get_strings,
4837 .get_ethtool_stats = ice_get_ethtool_stats,
4838 .get_sset_count = ice_get_sset_count,
4839 .get_ringparam = ice_get_ringparam,
4840 .set_ringparam = ice_set_ringparam,
4841 .nway_reset = ice_nway_reset,
4842 .get_channels = ice_get_channels,
4843 };
4844
4845 /**
4846 * ice_set_ethtool_safe_mode_ops - setup safe mode ethtool ops
4847 * @netdev: network interface device structure
4848 */
ice_set_ethtool_safe_mode_ops(struct net_device * netdev)4849 void ice_set_ethtool_safe_mode_ops(struct net_device *netdev)
4850 {
4851 netdev->ethtool_ops = &ice_ethtool_safe_mode_ops;
4852 }
4853
4854 static const struct ethtool_ops ice_ethtool_repr_ops = {
4855 .get_drvinfo = ice_repr_get_drvinfo,
4856 .get_link = ethtool_op_get_link,
4857 .get_strings = ice_repr_get_strings,
4858 .get_ethtool_stats = ice_repr_get_ethtool_stats,
4859 .get_sset_count = ice_repr_get_sset_count,
4860 .reset = ice_repr_ethtool_reset,
4861 };
4862
4863 /**
4864 * ice_set_ethtool_repr_ops - setup VF's port representor ethtool ops
4865 * @netdev: network interface device structure
4866 */
ice_set_ethtool_repr_ops(struct net_device * netdev)4867 void ice_set_ethtool_repr_ops(struct net_device *netdev)
4868 {
4869 netdev->ethtool_ops = &ice_ethtool_repr_ops;
4870 }
4871
4872 /**
4873 * ice_set_ethtool_ops - setup netdev ethtool ops
4874 * @netdev: network interface device structure
4875 *
4876 * setup netdev ethtool ops with ice specific ops
4877 */
ice_set_ethtool_ops(struct net_device * netdev)4878 void ice_set_ethtool_ops(struct net_device *netdev)
4879 {
4880 netdev->ethtool_ops = &ice_ethtool_ops;
4881 }
4882