1 /*
2 ** $Id: lcode.c $
3 ** Code generator for Lua
4 ** See Copyright Notice in lua.h
5 */
6
7 #define lcode_c
8 #define LUA_CORE
9
10 #include "lprefix.h"
11
12
13 #include <float.h>
14 #include <limits.h>
15 #include <math.h>
16 #include <stdlib.h>
17
18 #include "lua.h"
19
20 #include "lcode.h"
21 #include "ldebug.h"
22 #include "ldo.h"
23 #include "lgc.h"
24 #include "llex.h"
25 #include "lmem.h"
26 #include "lobject.h"
27 #include "lopcodes.h"
28 #include "lparser.h"
29 #include "lstring.h"
30 #include "ltable.h"
31 #include "lvm.h"
32
33
34 /* Maximum number of registers in a Lua function (must fit in 8 bits) */
35 #define MAXREGS 255
36
37
38 /* (note that expressions VJMP also have jumps.) */
39 #define hasjumps(e) ((e)->t != (e)->f)
40
41
42 static int codesJ (FuncState *fs, OpCode o, int sj, int k);
43
44
45
46 /* semantic error */
luaK_semerror(LexState * ls,const char * msg)47 l_noret luaK_semerror (LexState *ls, const char *msg) {
48 ls->t.token = 0; /* remove "near <token>" from final message */
49 luaX_syntaxerror(ls, msg);
50 }
51
52
53 /*
54 ** If expression is a numeric constant, fills 'v' with its value
55 ** and returns 1. Otherwise, returns 0.
56 */
tonumeral(const expdesc * e,TValue * v)57 static int tonumeral (const expdesc *e, TValue *v) {
58 if (hasjumps(e))
59 return 0; /* not a numeral */
60 switch (e->k) {
61 case VKINT:
62 if (v) setivalue(v, e->u.ival);
63 return 1;
64 case VKFLT:
65 if (v) setfltvalue(v, e->u.nval);
66 return 1;
67 default: return 0;
68 }
69 }
70
71
72 /*
73 ** Get the constant value from a constant expression
74 */
const2val(FuncState * fs,const expdesc * e)75 static TValue *const2val (FuncState *fs, const expdesc *e) {
76 lua_assert(e->k == VCONST);
77 return &fs->ls->dyd->actvar.arr[e->u.info].k;
78 }
79
80
81 /*
82 ** If expression is a constant, fills 'v' with its value
83 ** and returns 1. Otherwise, returns 0.
84 */
luaK_exp2const(FuncState * fs,const expdesc * e,TValue * v)85 int luaK_exp2const (FuncState *fs, const expdesc *e, TValue *v) {
86 if (hasjumps(e))
87 return 0; /* not a constant */
88 switch (e->k) {
89 case VFALSE:
90 setbfvalue(v);
91 return 1;
92 case VTRUE:
93 setbtvalue(v);
94 return 1;
95 case VNIL:
96 setnilvalue(v);
97 return 1;
98 case VKSTR: {
99 setsvalue(fs->ls->L, v, e->u.strval);
100 return 1;
101 }
102 case VCONST: {
103 setobj(fs->ls->L, v, const2val(fs, e));
104 return 1;
105 }
106 default: return tonumeral(e, v);
107 }
108 }
109
110
111 /*
112 ** Return the previous instruction of the current code. If there
113 ** may be a jump target between the current instruction and the
114 ** previous one, return an invalid instruction (to avoid wrong
115 ** optimizations).
116 */
previousinstruction(FuncState * fs)117 static Instruction *previousinstruction (FuncState *fs) {
118 static const Instruction invalidinstruction = ~(Instruction)0;
119 if (fs->pc > fs->lasttarget)
120 return &fs->f->code[fs->pc - 1]; /* previous instruction */
121 else
122 return cast(Instruction*, &invalidinstruction);
123 }
124
125
126 /*
127 ** Create a OP_LOADNIL instruction, but try to optimize: if the previous
128 ** instruction is also OP_LOADNIL and ranges are compatible, adjust
129 ** range of previous instruction instead of emitting a new one. (For
130 ** instance, 'local a; local b' will generate a single opcode.)
131 */
luaK_nil(FuncState * fs,int from,int n)132 void luaK_nil (FuncState *fs, int from, int n) {
133 int l = from + n - 1; /* last register to set nil */
134 Instruction *previous = previousinstruction(fs);
135 if (GET_OPCODE(*previous) == OP_LOADNIL) { /* previous is LOADNIL? */
136 int pfrom = GETARG_A(*previous); /* get previous range */
137 int pl = pfrom + GETARG_B(*previous);
138 if ((pfrom <= from && from <= pl + 1) ||
139 (from <= pfrom && pfrom <= l + 1)) { /* can connect both? */
140 if (pfrom < from) from = pfrom; /* from = min(from, pfrom) */
141 if (pl > l) l = pl; /* l = max(l, pl) */
142 SETARG_A(*previous, from);
143 SETARG_B(*previous, l - from);
144 return;
145 } /* else go through */
146 }
147 luaK_codeABC(fs, OP_LOADNIL, from, n - 1, 0); /* else no optimization */
148 }
149
150
151 /*
152 ** Gets the destination address of a jump instruction. Used to traverse
153 ** a list of jumps.
154 */
getjump(FuncState * fs,int pc)155 static int getjump (FuncState *fs, int pc) {
156 int offset = GETARG_sJ(fs->f->code[pc]);
157 if (offset == NO_JUMP) /* point to itself represents end of list */
158 return NO_JUMP; /* end of list */
159 else
160 return (pc+1)+offset; /* turn offset into absolute position */
161 }
162
163
164 /*
165 ** Fix jump instruction at position 'pc' to jump to 'dest'.
166 ** (Jump addresses are relative in Lua)
167 */
fixjump(FuncState * fs,int pc,int dest)168 static void fixjump (FuncState *fs, int pc, int dest) {
169 Instruction *jmp = &fs->f->code[pc];
170 int offset = dest - (pc + 1);
171 lua_assert(dest != NO_JUMP);
172 if (!(-OFFSET_sJ <= offset && offset <= MAXARG_sJ - OFFSET_sJ))
173 luaX_syntaxerror(fs->ls, "control structure too long");
174 lua_assert(GET_OPCODE(*jmp) == OP_JMP);
175 SETARG_sJ(*jmp, offset);
176 }
177
178
179 /*
180 ** Concatenate jump-list 'l2' into jump-list 'l1'
181 */
luaK_concat(FuncState * fs,int * l1,int l2)182 void luaK_concat (FuncState *fs, int *l1, int l2) {
183 if (l2 == NO_JUMP) return; /* nothing to concatenate? */
184 else if (*l1 == NO_JUMP) /* no original list? */
185 *l1 = l2; /* 'l1' points to 'l2' */
186 else {
187 int list = *l1;
188 int next;
189 while ((next = getjump(fs, list)) != NO_JUMP) /* find last element */
190 list = next;
191 fixjump(fs, list, l2); /* last element links to 'l2' */
192 }
193 }
194
195
196 /*
197 ** Create a jump instruction and return its position, so its destination
198 ** can be fixed later (with 'fixjump').
199 */
luaK_jump(FuncState * fs)200 int luaK_jump (FuncState *fs) {
201 return codesJ(fs, OP_JMP, NO_JUMP, 0);
202 }
203
204
205 /*
206 ** Code a 'return' instruction
207 */
luaK_ret(FuncState * fs,int first,int nret)208 void luaK_ret (FuncState *fs, int first, int nret) {
209 OpCode op;
210 switch (nret) {
211 case 0: op = OP_RETURN0; break;
212 case 1: op = OP_RETURN1; break;
213 default: op = OP_RETURN; break;
214 }
215 luaK_codeABC(fs, op, first, nret + 1, 0);
216 }
217
218
219 /*
220 ** Code a "conditional jump", that is, a test or comparison opcode
221 ** followed by a jump. Return jump position.
222 */
condjump(FuncState * fs,OpCode op,int A,int B,int C,int k)223 static int condjump (FuncState *fs, OpCode op, int A, int B, int C, int k) {
224 luaK_codeABCk(fs, op, A, B, C, k);
225 return luaK_jump(fs);
226 }
227
228
229 /*
230 ** returns current 'pc' and marks it as a jump target (to avoid wrong
231 ** optimizations with consecutive instructions not in the same basic block).
232 */
luaK_getlabel(FuncState * fs)233 int luaK_getlabel (FuncState *fs) {
234 fs->lasttarget = fs->pc;
235 return fs->pc;
236 }
237
238
239 /*
240 ** Returns the position of the instruction "controlling" a given
241 ** jump (that is, its condition), or the jump itself if it is
242 ** unconditional.
243 */
getjumpcontrol(FuncState * fs,int pc)244 static Instruction *getjumpcontrol (FuncState *fs, int pc) {
245 Instruction *pi = &fs->f->code[pc];
246 if (pc >= 1 && testTMode(GET_OPCODE(*(pi-1))))
247 return pi-1;
248 else
249 return pi;
250 }
251
252
253 /*
254 ** Patch destination register for a TESTSET instruction.
255 ** If instruction in position 'node' is not a TESTSET, return 0 ("fails").
256 ** Otherwise, if 'reg' is not 'NO_REG', set it as the destination
257 ** register. Otherwise, change instruction to a simple 'TEST' (produces
258 ** no register value)
259 */
patchtestreg(FuncState * fs,int node,int reg)260 static int patchtestreg (FuncState *fs, int node, int reg) {
261 Instruction *i = getjumpcontrol(fs, node);
262 if (GET_OPCODE(*i) != OP_TESTSET)
263 return 0; /* cannot patch other instructions */
264 if (reg != NO_REG && reg != GETARG_B(*i))
265 SETARG_A(*i, reg);
266 else {
267 /* no register to put value or register already has the value;
268 change instruction to simple test */
269 *i = CREATE_ABCk(OP_TEST, GETARG_B(*i), 0, 0, GETARG_k(*i));
270 }
271 return 1;
272 }
273
274
275 /*
276 ** Traverse a list of tests ensuring no one produces a value
277 */
removevalues(FuncState * fs,int list)278 static void removevalues (FuncState *fs, int list) {
279 for (; list != NO_JUMP; list = getjump(fs, list))
280 patchtestreg(fs, list, NO_REG);
281 }
282
283
284 /*
285 ** Traverse a list of tests, patching their destination address and
286 ** registers: tests producing values jump to 'vtarget' (and put their
287 ** values in 'reg'), other tests jump to 'dtarget'.
288 */
patchlistaux(FuncState * fs,int list,int vtarget,int reg,int dtarget)289 static void patchlistaux (FuncState *fs, int list, int vtarget, int reg,
290 int dtarget) {
291 while (list != NO_JUMP) {
292 int next = getjump(fs, list);
293 if (patchtestreg(fs, list, reg))
294 fixjump(fs, list, vtarget);
295 else
296 fixjump(fs, list, dtarget); /* jump to default target */
297 list = next;
298 }
299 }
300
301
302 /*
303 ** Path all jumps in 'list' to jump to 'target'.
304 ** (The assert means that we cannot fix a jump to a forward address
305 ** because we only know addresses once code is generated.)
306 */
luaK_patchlist(FuncState * fs,int list,int target)307 void luaK_patchlist (FuncState *fs, int list, int target) {
308 lua_assert(target <= fs->pc);
309 patchlistaux(fs, list, target, NO_REG, target);
310 }
311
312
luaK_patchtohere(FuncState * fs,int list)313 void luaK_patchtohere (FuncState *fs, int list) {
314 int hr = luaK_getlabel(fs); /* mark "here" as a jump target */
315 luaK_patchlist(fs, list, hr);
316 }
317
318
319 /* limit for difference between lines in relative line info. */
320 #define LIMLINEDIFF 0x80
321
322
323 /*
324 ** Save line info for a new instruction. If difference from last line
325 ** does not fit in a byte, of after that many instructions, save a new
326 ** absolute line info; (in that case, the special value 'ABSLINEINFO'
327 ** in 'lineinfo' signals the existence of this absolute information.)
328 ** Otherwise, store the difference from last line in 'lineinfo'.
329 */
savelineinfo(FuncState * fs,Proto * f,int line)330 static void savelineinfo (FuncState *fs, Proto *f, int line) {
331 int linedif = line - fs->previousline;
332 int pc = fs->pc - 1; /* last instruction coded */
333 if (abs(linedif) >= LIMLINEDIFF || fs->iwthabs++ >= MAXIWTHABS) {
334 luaM_growvector(fs->ls->L, f->abslineinfo, fs->nabslineinfo,
335 f->sizeabslineinfo, AbsLineInfo, MAX_INT, "lines");
336 f->abslineinfo[fs->nabslineinfo].pc = pc;
337 f->abslineinfo[fs->nabslineinfo++].line = line;
338 linedif = ABSLINEINFO; /* signal that there is absolute information */
339 fs->iwthabs = 1; /* restart counter */
340 }
341 luaM_growvector(fs->ls->L, f->lineinfo, pc, f->sizelineinfo, ls_byte,
342 MAX_INT, "opcodes");
343 f->lineinfo[pc] = linedif;
344 fs->previousline = line; /* last line saved */
345 }
346
347
348 /*
349 ** Remove line information from the last instruction.
350 ** If line information for that instruction is absolute, set 'iwthabs'
351 ** above its max to force the new (replacing) instruction to have
352 ** absolute line info, too.
353 */
removelastlineinfo(FuncState * fs)354 static void removelastlineinfo (FuncState *fs) {
355 Proto *f = fs->f;
356 int pc = fs->pc - 1; /* last instruction coded */
357 if (f->lineinfo[pc] != ABSLINEINFO) { /* relative line info? */
358 fs->previousline -= f->lineinfo[pc]; /* correct last line saved */
359 fs->iwthabs--; /* undo previous increment */
360 }
361 else { /* absolute line information */
362 lua_assert(f->abslineinfo[fs->nabslineinfo - 1].pc == pc);
363 fs->nabslineinfo--; /* remove it */
364 fs->iwthabs = MAXIWTHABS + 1; /* force next line info to be absolute */
365 }
366 }
367
368
369 /*
370 ** Remove the last instruction created, correcting line information
371 ** accordingly.
372 */
removelastinstruction(FuncState * fs)373 static void removelastinstruction (FuncState *fs) {
374 removelastlineinfo(fs);
375 fs->pc--;
376 }
377
378
379 /*
380 ** Emit instruction 'i', checking for array sizes and saving also its
381 ** line information. Return 'i' position.
382 */
luaK_code(FuncState * fs,Instruction i)383 int luaK_code (FuncState *fs, Instruction i) {
384 Proto *f = fs->f;
385 /* put new instruction in code array */
386 luaM_growvector(fs->ls->L, f->code, fs->pc, f->sizecode, Instruction,
387 MAX_INT, "opcodes");
388 f->code[fs->pc++] = i;
389 savelineinfo(fs, f, fs->ls->lastline);
390 return fs->pc - 1; /* index of new instruction */
391 }
392
393
394 /*
395 ** Format and emit an 'iABC' instruction. (Assertions check consistency
396 ** of parameters versus opcode.)
397 */
luaK_codeABCk(FuncState * fs,OpCode o,int a,int b,int c,int k)398 int luaK_codeABCk (FuncState *fs, OpCode o, int a, int b, int c, int k) {
399 lua_assert(getOpMode(o) == iABC);
400 lua_assert(a <= MAXARG_A && b <= MAXARG_B &&
401 c <= MAXARG_C && (k & ~1) == 0);
402 return luaK_code(fs, CREATE_ABCk(o, a, b, c, k));
403 }
404
405
406 /*
407 ** Format and emit an 'iABx' instruction.
408 */
luaK_codeABx(FuncState * fs,OpCode o,int a,unsigned int bc)409 int luaK_codeABx (FuncState *fs, OpCode o, int a, unsigned int bc) {
410 lua_assert(getOpMode(o) == iABx);
411 lua_assert(a <= MAXARG_A && bc <= MAXARG_Bx);
412 return luaK_code(fs, CREATE_ABx(o, a, bc));
413 }
414
415
416 /*
417 ** Format and emit an 'iAsBx' instruction.
418 */
codeAsBx(FuncState * fs,OpCode o,int a,int bc)419 static int codeAsBx (FuncState *fs, OpCode o, int a, int bc) {
420 unsigned int b = bc + OFFSET_sBx;
421 lua_assert(getOpMode(o) == iAsBx);
422 lua_assert(a <= MAXARG_A && b <= MAXARG_Bx);
423 return luaK_code(fs, CREATE_ABx(o, a, b));
424 }
425
426
427 /*
428 ** Format and emit an 'isJ' instruction.
429 */
codesJ(FuncState * fs,OpCode o,int sj,int k)430 static int codesJ (FuncState *fs, OpCode o, int sj, int k) {
431 unsigned int j = sj + OFFSET_sJ;
432 lua_assert(getOpMode(o) == isJ);
433 lua_assert(j <= MAXARG_sJ && (k & ~1) == 0);
434 return luaK_code(fs, CREATE_sJ(o, j, k));
435 }
436
437
438 /*
439 ** Emit an "extra argument" instruction (format 'iAx')
440 */
codeextraarg(FuncState * fs,int a)441 static int codeextraarg (FuncState *fs, int a) {
442 lua_assert(a <= MAXARG_Ax);
443 return luaK_code(fs, CREATE_Ax(OP_EXTRAARG, a));
444 }
445
446
447 /*
448 ** Emit a "load constant" instruction, using either 'OP_LOADK'
449 ** (if constant index 'k' fits in 18 bits) or an 'OP_LOADKX'
450 ** instruction with "extra argument".
451 */
luaK_codek(FuncState * fs,int reg,int k)452 static int luaK_codek (FuncState *fs, int reg, int k) {
453 if (k <= MAXARG_Bx)
454 return luaK_codeABx(fs, OP_LOADK, reg, k);
455 else {
456 int p = luaK_codeABx(fs, OP_LOADKX, reg, 0);
457 codeextraarg(fs, k);
458 return p;
459 }
460 }
461
462
463 /*
464 ** Check register-stack level, keeping track of its maximum size
465 ** in field 'maxstacksize'
466 */
luaK_checkstack(FuncState * fs,int n)467 void luaK_checkstack (FuncState *fs, int n) {
468 int newstack = fs->freereg + n;
469 if (newstack > fs->f->maxstacksize) {
470 if (newstack >= MAXREGS)
471 luaX_syntaxerror(fs->ls,
472 "function or expression needs too many registers");
473 fs->f->maxstacksize = cast_byte(newstack);
474 }
475 }
476
477
478 /*
479 ** Reserve 'n' registers in register stack
480 */
luaK_reserveregs(FuncState * fs,int n)481 void luaK_reserveregs (FuncState *fs, int n) {
482 luaK_checkstack(fs, n);
483 fs->freereg += n;
484 }
485
486
487 /*
488 ** Free register 'reg', if it is neither a constant index nor
489 ** a local variable.
490 )
491 */
freereg(FuncState * fs,int reg)492 static void freereg (FuncState *fs, int reg) {
493 if (reg >= luaY_nvarstack(fs)) {
494 fs->freereg--;
495 lua_assert(reg == fs->freereg);
496 }
497 }
498
499
500 /*
501 ** Free two registers in proper order
502 */
freeregs(FuncState * fs,int r1,int r2)503 static void freeregs (FuncState *fs, int r1, int r2) {
504 if (r1 > r2) {
505 freereg(fs, r1);
506 freereg(fs, r2);
507 }
508 else {
509 freereg(fs, r2);
510 freereg(fs, r1);
511 }
512 }
513
514
515 /*
516 ** Free register used by expression 'e' (if any)
517 */
freeexp(FuncState * fs,expdesc * e)518 static void freeexp (FuncState *fs, expdesc *e) {
519 if (e->k == VNONRELOC)
520 freereg(fs, e->u.info);
521 }
522
523
524 /*
525 ** Free registers used by expressions 'e1' and 'e2' (if any) in proper
526 ** order.
527 */
freeexps(FuncState * fs,expdesc * e1,expdesc * e2)528 static void freeexps (FuncState *fs, expdesc *e1, expdesc *e2) {
529 int r1 = (e1->k == VNONRELOC) ? e1->u.info : -1;
530 int r2 = (e2->k == VNONRELOC) ? e2->u.info : -1;
531 freeregs(fs, r1, r2);
532 }
533
534
535 /*
536 ** Add constant 'v' to prototype's list of constants (field 'k').
537 ** Use scanner's table to cache position of constants in constant list
538 ** and try to reuse constants. Because some values should not be used
539 ** as keys (nil cannot be a key, integer keys can collapse with float
540 ** keys), the caller must provide a useful 'key' for indexing the cache.
541 ** Note that all functions share the same table, so entering or exiting
542 ** a function can make some indices wrong.
543 */
addk(FuncState * fs,TValue * key,TValue * v)544 static int addk (FuncState *fs, TValue *key, TValue *v) {
545 TValue val;
546 lua_State *L = fs->ls->L;
547 Proto *f = fs->f;
548 const TValue *idx = luaH_get(fs->ls->h, key); /* query scanner table */
549 int k, oldsize;
550 if (ttisinteger(idx)) { /* is there an index there? */
551 k = cast_int(ivalue(idx));
552 /* correct value? (warning: must distinguish floats from integers!) */
553 if (k < fs->nk && ttypetag(&f->k[k]) == ttypetag(v) &&
554 luaV_rawequalobj(&f->k[k], v))
555 return k; /* reuse index */
556 }
557 /* constant not found; create a new entry */
558 oldsize = f->sizek;
559 k = fs->nk;
560 /* numerical value does not need GC barrier;
561 table has no metatable, so it does not need to invalidate cache */
562 setivalue(&val, k);
563 luaH_finishset(L, fs->ls->h, key, idx, &val);
564 luaM_growvector(L, f->k, k, f->sizek, TValue, MAXARG_Ax, "constants");
565 while (oldsize < f->sizek) setnilvalue(&f->k[oldsize++]);
566 setobj(L, &f->k[k], v);
567 fs->nk++;
568 luaC_barrier(L, f, v);
569 return k;
570 }
571
572
573 /*
574 ** Add a string to list of constants and return its index.
575 */
stringK(FuncState * fs,TString * s)576 static int stringK (FuncState *fs, TString *s) {
577 TValue o;
578 setsvalue(fs->ls->L, &o, s);
579 return addk(fs, &o, &o); /* use string itself as key */
580 }
581
582
583 /*
584 ** Add an integer to list of constants and return its index.
585 */
luaK_intK(FuncState * fs,lua_Integer n)586 static int luaK_intK (FuncState *fs, lua_Integer n) {
587 TValue o;
588 setivalue(&o, n);
589 return addk(fs, &o, &o); /* use integer itself as key */
590 }
591
592 /*
593 ** Add a float to list of constants and return its index. Floats
594 ** with integral values need a different key, to avoid collision
595 ** with actual integers. To that, we add to the number its smaller
596 ** power-of-two fraction that is still significant in its scale.
597 ** For doubles, that would be 1/2^52.
598 ** (This method is not bulletproof: there may be another float
599 ** with that value, and for floats larger than 2^53 the result is
600 ** still an integer. At worst, this only wastes an entry with
601 ** a duplicate.)
602 */
luaK_numberK(FuncState * fs,lua_Number r)603 static int luaK_numberK (FuncState *fs, lua_Number r) {
604 TValue o;
605 lua_Integer ik;
606 setfltvalue(&o, r);
607 #ifndef LUA_AVOID_FLOAT
608 if (!luaV_flttointeger(r, &ik, F2Ieq)) /* not an integral value? */
609 return addk(fs, &o, &o); /* use number itself as key */
610 else { /* must build an alternative key */
611 const int nbm = l_floatatt(MANT_DIG);
612 const lua_Number q = l_mathop(ldexp)(l_mathop(1.0), -nbm + 1);
613 const lua_Number k = (ik == 0) ? q : r + r*q; /* new key */
614 TValue kv;
615 setfltvalue(&kv, k);
616 /* result is not an integral value, unless value is too large */
617 lua_assert(!luaV_flttointeger(k, &ik, F2Ieq) ||
618 l_mathop(fabs)(r) >= l_mathop(1e6));
619 return addk(fs, &kv, &o);
620 }
621 #else
622 /*
623 ** When we're avoiding floats, allow any collision since floats are ints.
624 */
625 return addk(fs, &o, &o); /* use number itself as key */
626 #endif
627 }
628
629
630 /*
631 ** Add a false to list of constants and return its index.
632 */
boolF(FuncState * fs)633 static int boolF (FuncState *fs) {
634 TValue o;
635 setbfvalue(&o);
636 return addk(fs, &o, &o); /* use boolean itself as key */
637 }
638
639
640 /*
641 ** Add a true to list of constants and return its index.
642 */
boolT(FuncState * fs)643 static int boolT (FuncState *fs) {
644 TValue o;
645 setbtvalue(&o);
646 return addk(fs, &o, &o); /* use boolean itself as key */
647 }
648
649
650 /*
651 ** Add nil to list of constants and return its index.
652 */
nilK(FuncState * fs)653 static int nilK (FuncState *fs) {
654 TValue k, v;
655 setnilvalue(&v);
656 /* cannot use nil as key; instead use table itself to represent nil */
657 sethvalue(fs->ls->L, &k, fs->ls->h);
658 return addk(fs, &k, &v);
659 }
660
661
662 /*
663 ** Check whether 'i' can be stored in an 'sC' operand. Equivalent to
664 ** (0 <= int2sC(i) && int2sC(i) <= MAXARG_C) but without risk of
665 ** overflows in the hidden addition inside 'int2sC'.
666 */
fitsC(lua_Integer i)667 static int fitsC (lua_Integer i) {
668 return (l_castS2U(i) + OFFSET_sC <= cast_uint(MAXARG_C));
669 }
670
671
672 /*
673 ** Check whether 'i' can be stored in an 'sBx' operand.
674 */
fitsBx(lua_Integer i)675 static int fitsBx (lua_Integer i) {
676 return (-OFFSET_sBx <= i && i <= MAXARG_Bx - OFFSET_sBx);
677 }
678
679
luaK_int(FuncState * fs,int reg,lua_Integer i)680 void luaK_int (FuncState *fs, int reg, lua_Integer i) {
681 if (fitsBx(i))
682 codeAsBx(fs, OP_LOADI, reg, cast_int(i));
683 else
684 luaK_codek(fs, reg, luaK_intK(fs, i));
685 }
686
687
luaK_float(FuncState * fs,int reg,lua_Number f)688 static void luaK_float (FuncState *fs, int reg, lua_Number f) {
689 lua_Integer fi;
690 if (luaV_flttointeger(f, &fi, F2Ieq) && fitsBx(fi))
691 codeAsBx(fs, OP_LOADF, reg, cast_int(fi));
692 else
693 luaK_codek(fs, reg, luaK_numberK(fs, f));
694 }
695
696
697 /*
698 ** Convert a constant in 'v' into an expression description 'e'
699 */
const2exp(TValue * v,expdesc * e)700 static void const2exp (TValue *v, expdesc *e) {
701 switch (ttypetag(v)) {
702 case LUA_VNUMINT:
703 e->k = VKINT; e->u.ival = ivalue(v);
704 break;
705 case LUA_VNUMFLT:
706 e->k = VKFLT; e->u.nval = fltvalue(v);
707 break;
708 case LUA_VFALSE:
709 e->k = VFALSE;
710 break;
711 case LUA_VTRUE:
712 e->k = VTRUE;
713 break;
714 case LUA_VNIL:
715 e->k = VNIL;
716 break;
717 case LUA_VSHRSTR: case LUA_VLNGSTR:
718 e->k = VKSTR; e->u.strval = tsvalue(v);
719 break;
720 default: lua_assert(0);
721 }
722 }
723
724
725 /*
726 ** Fix an expression to return the number of results 'nresults'.
727 ** 'e' must be a multi-ret expression (function call or vararg).
728 */
luaK_setreturns(FuncState * fs,expdesc * e,int nresults)729 void luaK_setreturns (FuncState *fs, expdesc *e, int nresults) {
730 Instruction *pc = &getinstruction(fs, e);
731 if (e->k == VCALL) /* expression is an open function call? */
732 SETARG_C(*pc, nresults + 1);
733 else {
734 lua_assert(e->k == VVARARG);
735 SETARG_C(*pc, nresults + 1);
736 SETARG_A(*pc, fs->freereg);
737 luaK_reserveregs(fs, 1);
738 }
739 }
740
741
742 /*
743 ** Convert a VKSTR to a VK
744 */
str2K(FuncState * fs,expdesc * e)745 static void str2K (FuncState *fs, expdesc *e) {
746 lua_assert(e->k == VKSTR);
747 e->u.info = stringK(fs, e->u.strval);
748 e->k = VK;
749 }
750
751
752 /*
753 ** Fix an expression to return one result.
754 ** If expression is not a multi-ret expression (function call or
755 ** vararg), it already returns one result, so nothing needs to be done.
756 ** Function calls become VNONRELOC expressions (as its result comes
757 ** fixed in the base register of the call), while vararg expressions
758 ** become VRELOC (as OP_VARARG puts its results where it wants).
759 ** (Calls are created returning one result, so that does not need
760 ** to be fixed.)
761 */
luaK_setoneret(FuncState * fs,expdesc * e)762 void luaK_setoneret (FuncState *fs, expdesc *e) {
763 if (e->k == VCALL) { /* expression is an open function call? */
764 /* already returns 1 value */
765 lua_assert(GETARG_C(getinstruction(fs, e)) == 2);
766 e->k = VNONRELOC; /* result has fixed position */
767 e->u.info = GETARG_A(getinstruction(fs, e));
768 }
769 else if (e->k == VVARARG) {
770 SETARG_C(getinstruction(fs, e), 2);
771 e->k = VRELOC; /* can relocate its simple result */
772 }
773 }
774
775
776 /*
777 ** Ensure that expression 'e' is not a variable (nor a <const>).
778 ** (Expression still may have jump lists.)
779 */
luaK_dischargevars(FuncState * fs,expdesc * e)780 void luaK_dischargevars (FuncState *fs, expdesc *e) {
781 switch (e->k) {
782 case VCONST: {
783 const2exp(const2val(fs, e), e);
784 break;
785 }
786 case VLOCAL: { /* already in a register */
787 int temp = e->u.var.ridx;
788 e->u.info = temp; /* (can't do a direct assignment; values overlap) */
789 e->k = VNONRELOC; /* becomes a non-relocatable value */
790 break;
791 }
792 case VUPVAL: { /* move value to some (pending) register */
793 e->u.info = luaK_codeABC(fs, OP_GETUPVAL, 0, e->u.info, 0);
794 e->k = VRELOC;
795 break;
796 }
797 case VINDEXUP: {
798 e->u.info = luaK_codeABC(fs, OP_GETTABUP, 0, e->u.ind.t, e->u.ind.idx);
799 e->k = VRELOC;
800 break;
801 }
802 case VINDEXI: {
803 freereg(fs, e->u.ind.t);
804 e->u.info = luaK_codeABC(fs, OP_GETI, 0, e->u.ind.t, e->u.ind.idx);
805 e->k = VRELOC;
806 break;
807 }
808 case VINDEXSTR: {
809 freereg(fs, e->u.ind.t);
810 e->u.info = luaK_codeABC(fs, OP_GETFIELD, 0, e->u.ind.t, e->u.ind.idx);
811 e->k = VRELOC;
812 break;
813 }
814 case VINDEXED: {
815 freeregs(fs, e->u.ind.t, e->u.ind.idx);
816 e->u.info = luaK_codeABC(fs, OP_GETTABLE, 0, e->u.ind.t, e->u.ind.idx);
817 e->k = VRELOC;
818 break;
819 }
820 case VVARARG: case VCALL: {
821 luaK_setoneret(fs, e);
822 break;
823 }
824 default: break; /* there is one value available (somewhere) */
825 }
826 }
827
828
829 /*
830 ** Ensure expression value is in register 'reg', making 'e' a
831 ** non-relocatable expression.
832 ** (Expression still may have jump lists.)
833 */
discharge2reg(FuncState * fs,expdesc * e,int reg)834 static void discharge2reg (FuncState *fs, expdesc *e, int reg) {
835 luaK_dischargevars(fs, e);
836 switch (e->k) {
837 case VNIL: {
838 luaK_nil(fs, reg, 1);
839 break;
840 }
841 case VFALSE: {
842 luaK_codeABC(fs, OP_LOADFALSE, reg, 0, 0);
843 break;
844 }
845 case VTRUE: {
846 luaK_codeABC(fs, OP_LOADTRUE, reg, 0, 0);
847 break;
848 }
849 case VKSTR: {
850 str2K(fs, e);
851 } /* FALLTHROUGH */
852 case VK: {
853 luaK_codek(fs, reg, e->u.info);
854 break;
855 }
856 case VKFLT: {
857 luaK_float(fs, reg, e->u.nval);
858 break;
859 }
860 case VKINT: {
861 luaK_int(fs, reg, e->u.ival);
862 break;
863 }
864 case VRELOC: {
865 Instruction *pc = &getinstruction(fs, e);
866 SETARG_A(*pc, reg); /* instruction will put result in 'reg' */
867 break;
868 }
869 case VNONRELOC: {
870 if (reg != e->u.info)
871 luaK_codeABC(fs, OP_MOVE, reg, e->u.info, 0);
872 break;
873 }
874 default: {
875 lua_assert(e->k == VJMP);
876 return; /* nothing to do... */
877 }
878 }
879 e->u.info = reg;
880 e->k = VNONRELOC;
881 }
882
883
884 /*
885 ** Ensure expression value is in a register, making 'e' a
886 ** non-relocatable expression.
887 ** (Expression still may have jump lists.)
888 */
discharge2anyreg(FuncState * fs,expdesc * e)889 static void discharge2anyreg (FuncState *fs, expdesc *e) {
890 if (e->k != VNONRELOC) { /* no fixed register yet? */
891 luaK_reserveregs(fs, 1); /* get a register */
892 discharge2reg(fs, e, fs->freereg-1); /* put value there */
893 }
894 }
895
896
code_loadbool(FuncState * fs,int A,OpCode op)897 static int code_loadbool (FuncState *fs, int A, OpCode op) {
898 luaK_getlabel(fs); /* those instructions may be jump targets */
899 return luaK_codeABC(fs, op, A, 0, 0);
900 }
901
902
903 /*
904 ** check whether list has any jump that do not produce a value
905 ** or produce an inverted value
906 */
need_value(FuncState * fs,int list)907 static int need_value (FuncState *fs, int list) {
908 for (; list != NO_JUMP; list = getjump(fs, list)) {
909 Instruction i = *getjumpcontrol(fs, list);
910 if (GET_OPCODE(i) != OP_TESTSET) return 1;
911 }
912 return 0; /* not found */
913 }
914
915
916 /*
917 ** Ensures final expression result (which includes results from its
918 ** jump lists) is in register 'reg'.
919 ** If expression has jumps, need to patch these jumps either to
920 ** its final position or to "load" instructions (for those tests
921 ** that do not produce values).
922 */
exp2reg(FuncState * fs,expdesc * e,int reg)923 static void exp2reg (FuncState *fs, expdesc *e, int reg) {
924 discharge2reg(fs, e, reg);
925 if (e->k == VJMP) /* expression itself is a test? */
926 luaK_concat(fs, &e->t, e->u.info); /* put this jump in 't' list */
927 if (hasjumps(e)) {
928 int final; /* position after whole expression */
929 int p_f = NO_JUMP; /* position of an eventual LOAD false */
930 int p_t = NO_JUMP; /* position of an eventual LOAD true */
931 if (need_value(fs, e->t) || need_value(fs, e->f)) {
932 int fj = (e->k == VJMP) ? NO_JUMP : luaK_jump(fs);
933 p_f = code_loadbool(fs, reg, OP_LFALSESKIP); /* skip next inst. */
934 p_t = code_loadbool(fs, reg, OP_LOADTRUE);
935 /* jump around these booleans if 'e' is not a test */
936 luaK_patchtohere(fs, fj);
937 }
938 final = luaK_getlabel(fs);
939 patchlistaux(fs, e->f, final, reg, p_f);
940 patchlistaux(fs, e->t, final, reg, p_t);
941 }
942 e->f = e->t = NO_JUMP;
943 e->u.info = reg;
944 e->k = VNONRELOC;
945 }
946
947
948 /*
949 ** Ensures final expression result is in next available register.
950 */
luaK_exp2nextreg(FuncState * fs,expdesc * e)951 void luaK_exp2nextreg (FuncState *fs, expdesc *e) {
952 luaK_dischargevars(fs, e);
953 freeexp(fs, e);
954 luaK_reserveregs(fs, 1);
955 exp2reg(fs, e, fs->freereg - 1);
956 }
957
958
959 /*
960 ** Ensures final expression result is in some (any) register
961 ** and return that register.
962 */
luaK_exp2anyreg(FuncState * fs,expdesc * e)963 int luaK_exp2anyreg (FuncState *fs, expdesc *e) {
964 luaK_dischargevars(fs, e);
965 if (e->k == VNONRELOC) { /* expression already has a register? */
966 if (!hasjumps(e)) /* no jumps? */
967 return e->u.info; /* result is already in a register */
968 if (e->u.info >= luaY_nvarstack(fs)) { /* reg. is not a local? */
969 exp2reg(fs, e, e->u.info); /* put final result in it */
970 return e->u.info;
971 }
972 /* else expression has jumps and cannot change its register
973 to hold the jump values, because it is a local variable.
974 Go through to the default case. */
975 }
976 luaK_exp2nextreg(fs, e); /* default: use next available register */
977 return e->u.info;
978 }
979
980
981 /*
982 ** Ensures final expression result is either in a register
983 ** or in an upvalue.
984 */
luaK_exp2anyregup(FuncState * fs,expdesc * e)985 void luaK_exp2anyregup (FuncState *fs, expdesc *e) {
986 if (e->k != VUPVAL || hasjumps(e))
987 luaK_exp2anyreg(fs, e);
988 }
989
990
991 /*
992 ** Ensures final expression result is either in a register
993 ** or it is a constant.
994 */
luaK_exp2val(FuncState * fs,expdesc * e)995 void luaK_exp2val (FuncState *fs, expdesc *e) {
996 if (e->k == VJMP || hasjumps(e))
997 luaK_exp2anyreg(fs, e);
998 else
999 luaK_dischargevars(fs, e);
1000 }
1001
1002
1003 /*
1004 ** Try to make 'e' a K expression with an index in the range of R/K
1005 ** indices. Return true iff succeeded.
1006 */
luaK_exp2K(FuncState * fs,expdesc * e)1007 static int luaK_exp2K (FuncState *fs, expdesc *e) {
1008 if (!hasjumps(e)) {
1009 int info;
1010 switch (e->k) { /* move constants to 'k' */
1011 case VTRUE: info = boolT(fs); break;
1012 case VFALSE: info = boolF(fs); break;
1013 case VNIL: info = nilK(fs); break;
1014 case VKINT: info = luaK_intK(fs, e->u.ival); break;
1015 case VKFLT: info = luaK_numberK(fs, e->u.nval); break;
1016 case VKSTR: info = stringK(fs, e->u.strval); break;
1017 case VK: info = e->u.info; break;
1018 default: return 0; /* not a constant */
1019 }
1020 if (info <= MAXINDEXRK) { /* does constant fit in 'argC'? */
1021 e->k = VK; /* make expression a 'K' expression */
1022 e->u.info = info;
1023 return 1;
1024 }
1025 }
1026 /* else, expression doesn't fit; leave it unchanged */
1027 return 0;
1028 }
1029
1030
1031 /*
1032 ** Ensures final expression result is in a valid R/K index
1033 ** (that is, it is either in a register or in 'k' with an index
1034 ** in the range of R/K indices).
1035 ** Returns 1 iff expression is K.
1036 */
exp2RK(FuncState * fs,expdesc * e)1037 static int exp2RK (FuncState *fs, expdesc *e) {
1038 if (luaK_exp2K(fs, e))
1039 return 1;
1040 else { /* not a constant in the right range: put it in a register */
1041 luaK_exp2anyreg(fs, e);
1042 return 0;
1043 }
1044 }
1045
1046
codeABRK(FuncState * fs,OpCode o,int a,int b,expdesc * ec)1047 static void codeABRK (FuncState *fs, OpCode o, int a, int b,
1048 expdesc *ec) {
1049 int k = exp2RK(fs, ec);
1050 luaK_codeABCk(fs, o, a, b, ec->u.info, k);
1051 }
1052
1053
1054 /*
1055 ** Generate code to store result of expression 'ex' into variable 'var'.
1056 */
luaK_storevar(FuncState * fs,expdesc * var,expdesc * ex)1057 void luaK_storevar (FuncState *fs, expdesc *var, expdesc *ex) {
1058 switch (var->k) {
1059 case VLOCAL: {
1060 freeexp(fs, ex);
1061 exp2reg(fs, ex, var->u.var.ridx); /* compute 'ex' into proper place */
1062 return;
1063 }
1064 case VUPVAL: {
1065 int e = luaK_exp2anyreg(fs, ex);
1066 luaK_codeABC(fs, OP_SETUPVAL, e, var->u.info, 0);
1067 break;
1068 }
1069 case VINDEXUP: {
1070 codeABRK(fs, OP_SETTABUP, var->u.ind.t, var->u.ind.idx, ex);
1071 break;
1072 }
1073 case VINDEXI: {
1074 codeABRK(fs, OP_SETI, var->u.ind.t, var->u.ind.idx, ex);
1075 break;
1076 }
1077 case VINDEXSTR: {
1078 codeABRK(fs, OP_SETFIELD, var->u.ind.t, var->u.ind.idx, ex);
1079 break;
1080 }
1081 case VINDEXED: {
1082 codeABRK(fs, OP_SETTABLE, var->u.ind.t, var->u.ind.idx, ex);
1083 break;
1084 }
1085 default: lua_assert(0); /* invalid var kind to store */
1086 }
1087 freeexp(fs, ex);
1088 }
1089
1090
1091 /*
1092 ** Emit SELF instruction (convert expression 'e' into 'e:key(e,').
1093 */
luaK_self(FuncState * fs,expdesc * e,expdesc * key)1094 void luaK_self (FuncState *fs, expdesc *e, expdesc *key) {
1095 int ereg;
1096 luaK_exp2anyreg(fs, e);
1097 ereg = e->u.info; /* register where 'e' was placed */
1098 freeexp(fs, e);
1099 e->u.info = fs->freereg; /* base register for op_self */
1100 e->k = VNONRELOC; /* self expression has a fixed register */
1101 luaK_reserveregs(fs, 2); /* function and 'self' produced by op_self */
1102 codeABRK(fs, OP_SELF, e->u.info, ereg, key);
1103 freeexp(fs, key);
1104 }
1105
1106
1107 /*
1108 ** Negate condition 'e' (where 'e' is a comparison).
1109 */
negatecondition(FuncState * fs,expdesc * e)1110 static void negatecondition (FuncState *fs, expdesc *e) {
1111 Instruction *pc = getjumpcontrol(fs, e->u.info);
1112 lua_assert(testTMode(GET_OPCODE(*pc)) && GET_OPCODE(*pc) != OP_TESTSET &&
1113 GET_OPCODE(*pc) != OP_TEST);
1114 SETARG_k(*pc, (GETARG_k(*pc) ^ 1));
1115 }
1116
1117
1118 /*
1119 ** Emit instruction to jump if 'e' is 'cond' (that is, if 'cond'
1120 ** is true, code will jump if 'e' is true.) Return jump position.
1121 ** Optimize when 'e' is 'not' something, inverting the condition
1122 ** and removing the 'not'.
1123 */
jumponcond(FuncState * fs,expdesc * e,int cond)1124 static int jumponcond (FuncState *fs, expdesc *e, int cond) {
1125 if (e->k == VRELOC) {
1126 Instruction ie = getinstruction(fs, e);
1127 if (GET_OPCODE(ie) == OP_NOT) {
1128 removelastinstruction(fs); /* remove previous OP_NOT */
1129 return condjump(fs, OP_TEST, GETARG_B(ie), 0, 0, !cond);
1130 }
1131 /* else go through */
1132 }
1133 discharge2anyreg(fs, e);
1134 freeexp(fs, e);
1135 return condjump(fs, OP_TESTSET, NO_REG, e->u.info, 0, cond);
1136 }
1137
1138
1139 /*
1140 ** Emit code to go through if 'e' is true, jump otherwise.
1141 */
luaK_goiftrue(FuncState * fs,expdesc * e)1142 void luaK_goiftrue (FuncState *fs, expdesc *e) {
1143 int pc; /* pc of new jump */
1144 luaK_dischargevars(fs, e);
1145 switch (e->k) {
1146 case VJMP: { /* condition? */
1147 negatecondition(fs, e); /* jump when it is false */
1148 pc = e->u.info; /* save jump position */
1149 break;
1150 }
1151 case VK: case VKFLT: case VKINT: case VKSTR: case VTRUE: {
1152 pc = NO_JUMP; /* always true; do nothing */
1153 break;
1154 }
1155 default: {
1156 pc = jumponcond(fs, e, 0); /* jump when false */
1157 break;
1158 }
1159 }
1160 luaK_concat(fs, &e->f, pc); /* insert new jump in false list */
1161 luaK_patchtohere(fs, e->t); /* true list jumps to here (to go through) */
1162 e->t = NO_JUMP;
1163 }
1164
1165
1166 /*
1167 ** Emit code to go through if 'e' is false, jump otherwise.
1168 */
luaK_goiffalse(FuncState * fs,expdesc * e)1169 void luaK_goiffalse (FuncState *fs, expdesc *e) {
1170 int pc; /* pc of new jump */
1171 luaK_dischargevars(fs, e);
1172 switch (e->k) {
1173 case VJMP: {
1174 pc = e->u.info; /* already jump if true */
1175 break;
1176 }
1177 case VNIL: case VFALSE: {
1178 pc = NO_JUMP; /* always false; do nothing */
1179 break;
1180 }
1181 default: {
1182 pc = jumponcond(fs, e, 1); /* jump if true */
1183 break;
1184 }
1185 }
1186 luaK_concat(fs, &e->t, pc); /* insert new jump in 't' list */
1187 luaK_patchtohere(fs, e->f); /* false list jumps to here (to go through) */
1188 e->f = NO_JUMP;
1189 }
1190
1191
1192 /*
1193 ** Code 'not e', doing constant folding.
1194 */
codenot(FuncState * fs,expdesc * e)1195 static void codenot (FuncState *fs, expdesc *e) {
1196 switch (e->k) {
1197 case VNIL: case VFALSE: {
1198 e->k = VTRUE; /* true == not nil == not false */
1199 break;
1200 }
1201 case VK: case VKFLT: case VKINT: case VKSTR: case VTRUE: {
1202 e->k = VFALSE; /* false == not "x" == not 0.5 == not 1 == not true */
1203 break;
1204 }
1205 case VJMP: {
1206 negatecondition(fs, e);
1207 break;
1208 }
1209 case VRELOC:
1210 case VNONRELOC: {
1211 discharge2anyreg(fs, e);
1212 freeexp(fs, e);
1213 e->u.info = luaK_codeABC(fs, OP_NOT, 0, e->u.info, 0);
1214 e->k = VRELOC;
1215 break;
1216 }
1217 default: lua_assert(0); /* cannot happen */
1218 }
1219 /* interchange true and false lists */
1220 { int temp = e->f; e->f = e->t; e->t = temp; }
1221 removevalues(fs, e->f); /* values are useless when negated */
1222 removevalues(fs, e->t);
1223 }
1224
1225
1226 /*
1227 ** Check whether expression 'e' is a short literal string
1228 */
isKstr(FuncState * fs,expdesc * e)1229 static int isKstr (FuncState *fs, expdesc *e) {
1230 return (e->k == VK && !hasjumps(e) && e->u.info <= MAXARG_B &&
1231 ttisshrstring(&fs->f->k[e->u.info]));
1232 }
1233
1234 /*
1235 ** Check whether expression 'e' is a literal integer.
1236 */
isKint(expdesc * e)1237 static int isKint (expdesc *e) {
1238 return (e->k == VKINT && !hasjumps(e));
1239 }
1240
1241
1242 /*
1243 ** Check whether expression 'e' is a literal integer in
1244 ** proper range to fit in register C
1245 */
isCint(expdesc * e)1246 static int isCint (expdesc *e) {
1247 return isKint(e) && (l_castS2U(e->u.ival) <= l_castS2U(MAXARG_C));
1248 }
1249
1250
1251 /*
1252 ** Check whether expression 'e' is a literal integer in
1253 ** proper range to fit in register sC
1254 */
isSCint(expdesc * e)1255 static int isSCint (expdesc *e) {
1256 return isKint(e) && fitsC(e->u.ival);
1257 }
1258
1259
1260 /*
1261 ** Check whether expression 'e' is a literal integer or float in
1262 ** proper range to fit in a register (sB or sC).
1263 */
isSCnumber(expdesc * e,int * pi,int * isfloat)1264 static int isSCnumber (expdesc *e, int *pi, int *isfloat) {
1265 lua_Integer i;
1266 if (e->k == VKINT)
1267 i = e->u.ival;
1268 else if (e->k == VKFLT && luaV_flttointeger(e->u.nval, &i, F2Ieq))
1269 *isfloat = 1;
1270 else
1271 return 0; /* not a number */
1272 if (!hasjumps(e) && fitsC(i)) {
1273 *pi = int2sC(cast_int(i));
1274 return 1;
1275 }
1276 else
1277 return 0;
1278 }
1279
1280
1281 /*
1282 ** Create expression 't[k]'. 't' must have its final result already in a
1283 ** register or upvalue. Upvalues can only be indexed by literal strings.
1284 ** Keys can be literal strings in the constant table or arbitrary
1285 ** values in registers.
1286 */
luaK_indexed(FuncState * fs,expdesc * t,expdesc * k)1287 void luaK_indexed (FuncState *fs, expdesc *t, expdesc *k) {
1288 if (k->k == VKSTR)
1289 str2K(fs, k);
1290 lua_assert(!hasjumps(t) &&
1291 (t->k == VLOCAL || t->k == VNONRELOC || t->k == VUPVAL));
1292 if (t->k == VUPVAL && !isKstr(fs, k)) /* upvalue indexed by non 'Kstr'? */
1293 luaK_exp2anyreg(fs, t); /* put it in a register */
1294 if (t->k == VUPVAL) {
1295 int temp = t->u.info; /* upvalue index */
1296 lua_assert(isKstr(fs, k));
1297 t->u.ind.t = temp; /* (can't do a direct assignment; values overlap) */
1298 t->u.ind.idx = k->u.info; /* literal short string */
1299 t->k = VINDEXUP;
1300 }
1301 else {
1302 /* register index of the table */
1303 t->u.ind.t = (t->k == VLOCAL) ? t->u.var.ridx: t->u.info;
1304 if (isKstr(fs, k)) {
1305 t->u.ind.idx = k->u.info; /* literal short string */
1306 t->k = VINDEXSTR;
1307 }
1308 else if (isCint(k)) {
1309 t->u.ind.idx = cast_int(k->u.ival); /* int. constant in proper range */
1310 t->k = VINDEXI;
1311 }
1312 else {
1313 t->u.ind.idx = luaK_exp2anyreg(fs, k); /* register */
1314 t->k = VINDEXED;
1315 }
1316 }
1317 }
1318
1319
1320 /*
1321 ** Return false if folding can raise an error.
1322 ** Bitwise operations need operands convertible to integers; division
1323 ** operations cannot have 0 as divisor.
1324 */
validop(int op,TValue * v1,TValue * v2)1325 static int validop (int op, TValue *v1, TValue *v2) {
1326 switch (op) {
1327 case LUA_OPBAND: case LUA_OPBOR: case LUA_OPBXOR:
1328 case LUA_OPSHL: case LUA_OPSHR: case LUA_OPBNOT: { /* conversion errors */
1329 lua_Integer i;
1330 return (luaV_tointegerns(v1, &i, LUA_FLOORN2I) &&
1331 luaV_tointegerns(v2, &i, LUA_FLOORN2I));
1332 }
1333 case LUA_OPDIV: case LUA_OPIDIV: case LUA_OPMOD: /* division by 0 */
1334 return (nvalue(v2) != 0);
1335 default: return 1; /* everything else is valid */
1336 }
1337 }
1338
1339
1340 /*
1341 ** Try to "constant-fold" an operation; return 1 iff successful.
1342 ** (In this case, 'e1' has the final result.)
1343 */
constfolding(FuncState * fs,int op,expdesc * e1,const expdesc * e2)1344 static int constfolding (FuncState *fs, int op, expdesc *e1,
1345 const expdesc *e2) {
1346 TValue v1, v2, res;
1347 if (!tonumeral(e1, &v1) || !tonumeral(e2, &v2) || !validop(op, &v1, &v2))
1348 return 0; /* non-numeric operands or not safe to fold */
1349 luaO_rawarith(fs->ls->L, op, &v1, &v2, &res); /* does operation */
1350 if (ttisinteger(&res)) {
1351 e1->k = VKINT;
1352 e1->u.ival = ivalue(&res);
1353 }
1354 else { /* folds neither NaN nor 0.0 (to avoid problems with -0.0) */
1355 lua_Number n = fltvalue(&res);
1356 if (luai_numisnan(n) || n == 0)
1357 return 0;
1358 e1->k = VKFLT;
1359 e1->u.nval = n;
1360 }
1361 return 1;
1362 }
1363
1364
1365 /*
1366 ** Convert a BinOpr to an OpCode (ORDER OPR - ORDER OP)
1367 */
binopr2op(BinOpr opr,BinOpr baser,OpCode base)1368 l_sinline OpCode binopr2op (BinOpr opr, BinOpr baser, OpCode base) {
1369 lua_assert(baser <= opr &&
1370 ((baser == OPR_ADD && opr <= OPR_SHR) ||
1371 (baser == OPR_LT && opr <= OPR_LE)));
1372 return cast(OpCode, (cast_int(opr) - cast_int(baser)) + cast_int(base));
1373 }
1374
1375
1376 /*
1377 ** Convert a UnOpr to an OpCode (ORDER OPR - ORDER OP)
1378 */
unopr2op(UnOpr opr)1379 l_sinline OpCode unopr2op (UnOpr opr) {
1380 return cast(OpCode, (cast_int(opr) - cast_int(OPR_MINUS)) +
1381 cast_int(OP_UNM));
1382 }
1383
1384
1385 /*
1386 ** Convert a BinOpr to a tag method (ORDER OPR - ORDER TM)
1387 */
binopr2TM(BinOpr opr)1388 l_sinline TMS binopr2TM (BinOpr opr) {
1389 lua_assert(OPR_ADD <= opr && opr <= OPR_SHR);
1390 return cast(TMS, (cast_int(opr) - cast_int(OPR_ADD)) + cast_int(TM_ADD));
1391 }
1392
1393
1394 /*
1395 ** Emit code for unary expressions that "produce values"
1396 ** (everything but 'not').
1397 ** Expression to produce final result will be encoded in 'e'.
1398 */
codeunexpval(FuncState * fs,OpCode op,expdesc * e,int line)1399 static void codeunexpval (FuncState *fs, OpCode op, expdesc *e, int line) {
1400 int r = luaK_exp2anyreg(fs, e); /* opcodes operate only on registers */
1401 freeexp(fs, e);
1402 e->u.info = luaK_codeABC(fs, op, 0, r, 0); /* generate opcode */
1403 e->k = VRELOC; /* all those operations are relocatable */
1404 luaK_fixline(fs, line);
1405 }
1406
1407
1408 /*
1409 ** Emit code for binary expressions that "produce values"
1410 ** (everything but logical operators 'and'/'or' and comparison
1411 ** operators).
1412 ** Expression to produce final result will be encoded in 'e1'.
1413 */
finishbinexpval(FuncState * fs,expdesc * e1,expdesc * e2,OpCode op,int v2,int flip,int line,OpCode mmop,TMS event)1414 static void finishbinexpval (FuncState *fs, expdesc *e1, expdesc *e2,
1415 OpCode op, int v2, int flip, int line,
1416 OpCode mmop, TMS event) {
1417 int v1 = luaK_exp2anyreg(fs, e1);
1418 int pc = luaK_codeABCk(fs, op, 0, v1, v2, 0);
1419 freeexps(fs, e1, e2);
1420 e1->u.info = pc;
1421 e1->k = VRELOC; /* all those operations are relocatable */
1422 luaK_fixline(fs, line);
1423 luaK_codeABCk(fs, mmop, v1, v2, event, flip); /* to call metamethod */
1424 luaK_fixline(fs, line);
1425 }
1426
1427
1428 /*
1429 ** Emit code for binary expressions that "produce values" over
1430 ** two registers.
1431 */
codebinexpval(FuncState * fs,BinOpr opr,expdesc * e1,expdesc * e2,int line)1432 static void codebinexpval (FuncState *fs, BinOpr opr,
1433 expdesc *e1, expdesc *e2, int line) {
1434 OpCode op = binopr2op(opr, OPR_ADD, OP_ADD);
1435 int v2 = luaK_exp2anyreg(fs, e2); /* make sure 'e2' is in a register */
1436 /* 'e1' must be already in a register or it is a constant */
1437 lua_assert((VNIL <= e1->k && e1->k <= VKSTR) ||
1438 e1->k == VNONRELOC || e1->k == VRELOC);
1439 lua_assert(OP_ADD <= op && op <= OP_SHR);
1440 finishbinexpval(fs, e1, e2, op, v2, 0, line, OP_MMBIN, binopr2TM(opr));
1441 }
1442
1443
1444 /*
1445 ** Code binary operators with immediate operands.
1446 */
codebini(FuncState * fs,OpCode op,expdesc * e1,expdesc * e2,int flip,int line,TMS event)1447 static void codebini (FuncState *fs, OpCode op,
1448 expdesc *e1, expdesc *e2, int flip, int line,
1449 TMS event) {
1450 int v2 = int2sC(cast_int(e2->u.ival)); /* immediate operand */
1451 lua_assert(e2->k == VKINT);
1452 finishbinexpval(fs, e1, e2, op, v2, flip, line, OP_MMBINI, event);
1453 }
1454
1455
1456 /*
1457 ** Code binary operators with K operand.
1458 */
codebinK(FuncState * fs,BinOpr opr,expdesc * e1,expdesc * e2,int flip,int line)1459 static void codebinK (FuncState *fs, BinOpr opr,
1460 expdesc *e1, expdesc *e2, int flip, int line) {
1461 TMS event = binopr2TM(opr);
1462 int v2 = e2->u.info; /* K index */
1463 OpCode op = binopr2op(opr, OPR_ADD, OP_ADDK);
1464 finishbinexpval(fs, e1, e2, op, v2, flip, line, OP_MMBINK, event);
1465 }
1466
1467
1468 /* Try to code a binary operator negating its second operand.
1469 ** For the metamethod, 2nd operand must keep its original value.
1470 */
finishbinexpneg(FuncState * fs,expdesc * e1,expdesc * e2,OpCode op,int line,TMS event)1471 static int finishbinexpneg (FuncState *fs, expdesc *e1, expdesc *e2,
1472 OpCode op, int line, TMS event) {
1473 if (!isKint(e2))
1474 return 0; /* not an integer constant */
1475 else {
1476 lua_Integer i2 = e2->u.ival;
1477 if (!(fitsC(i2) && fitsC(-i2)))
1478 return 0; /* not in the proper range */
1479 else { /* operating a small integer constant */
1480 int v2 = cast_int(i2);
1481 finishbinexpval(fs, e1, e2, op, int2sC(-v2), 0, line, OP_MMBINI, event);
1482 /* correct metamethod argument */
1483 SETARG_B(fs->f->code[fs->pc - 1], int2sC(v2));
1484 return 1; /* successfully coded */
1485 }
1486 }
1487 }
1488
1489
swapexps(expdesc * e1,expdesc * e2)1490 static void swapexps (expdesc *e1, expdesc *e2) {
1491 expdesc temp = *e1; *e1 = *e2; *e2 = temp; /* swap 'e1' and 'e2' */
1492 }
1493
1494
1495 /*
1496 ** Code binary operators with no constant operand.
1497 */
codebinNoK(FuncState * fs,BinOpr opr,expdesc * e1,expdesc * e2,int flip,int line)1498 static void codebinNoK (FuncState *fs, BinOpr opr,
1499 expdesc *e1, expdesc *e2, int flip, int line) {
1500 if (flip)
1501 swapexps(e1, e2); /* back to original order */
1502 codebinexpval(fs, opr, e1, e2, line); /* use standard operators */
1503 }
1504
1505
1506 /*
1507 ** Code arithmetic operators ('+', '-', ...). If second operand is a
1508 ** constant in the proper range, use variant opcodes with K operands.
1509 */
codearith(FuncState * fs,BinOpr opr,expdesc * e1,expdesc * e2,int flip,int line)1510 static void codearith (FuncState *fs, BinOpr opr,
1511 expdesc *e1, expdesc *e2, int flip, int line) {
1512 if (tonumeral(e2, NULL) && luaK_exp2K(fs, e2)) /* K operand? */
1513 codebinK(fs, opr, e1, e2, flip, line);
1514 else /* 'e2' is neither an immediate nor a K operand */
1515 codebinNoK(fs, opr, e1, e2, flip, line);
1516 }
1517
1518
1519 /*
1520 ** Code commutative operators ('+', '*'). If first operand is a
1521 ** numeric constant, change order of operands to try to use an
1522 ** immediate or K operator.
1523 */
codecommutative(FuncState * fs,BinOpr op,expdesc * e1,expdesc * e2,int line)1524 static void codecommutative (FuncState *fs, BinOpr op,
1525 expdesc *e1, expdesc *e2, int line) {
1526 int flip = 0;
1527 if (tonumeral(e1, NULL)) { /* is first operand a numeric constant? */
1528 swapexps(e1, e2); /* change order */
1529 flip = 1;
1530 }
1531 if (op == OPR_ADD && isSCint(e2)) /* immediate operand? */
1532 codebini(fs, OP_ADDI, e1, e2, flip, line, TM_ADD);
1533 else
1534 codearith(fs, op, e1, e2, flip, line);
1535 }
1536
1537
1538 /*
1539 ** Code bitwise operations; they are all commutative, so the function
1540 ** tries to put an integer constant as the 2nd operand (a K operand).
1541 */
codebitwise(FuncState * fs,BinOpr opr,expdesc * e1,expdesc * e2,int line)1542 static void codebitwise (FuncState *fs, BinOpr opr,
1543 expdesc *e1, expdesc *e2, int line) {
1544 int flip = 0;
1545 if (e1->k == VKINT) {
1546 swapexps(e1, e2); /* 'e2' will be the constant operand */
1547 flip = 1;
1548 }
1549 if (e2->k == VKINT && luaK_exp2K(fs, e2)) /* K operand? */
1550 codebinK(fs, opr, e1, e2, flip, line);
1551 else /* no constants */
1552 codebinNoK(fs, opr, e1, e2, flip, line);
1553 }
1554
1555
1556 /*
1557 ** Emit code for order comparisons. When using an immediate operand,
1558 ** 'isfloat' tells whether the original value was a float.
1559 */
codeorder(FuncState * fs,BinOpr opr,expdesc * e1,expdesc * e2)1560 static void codeorder (FuncState *fs, BinOpr opr, expdesc *e1, expdesc *e2) {
1561 int r1, r2;
1562 int im;
1563 int isfloat = 0;
1564 OpCode op;
1565 if (isSCnumber(e2, &im, &isfloat)) {
1566 /* use immediate operand */
1567 r1 = luaK_exp2anyreg(fs, e1);
1568 r2 = im;
1569 op = binopr2op(opr, OPR_LT, OP_LTI);
1570 }
1571 else if (isSCnumber(e1, &im, &isfloat)) {
1572 /* transform (A < B) to (B > A) and (A <= B) to (B >= A) */
1573 r1 = luaK_exp2anyreg(fs, e2);
1574 r2 = im;
1575 op = binopr2op(opr, OPR_LT, OP_GTI);
1576 }
1577 else { /* regular case, compare two registers */
1578 r1 = luaK_exp2anyreg(fs, e1);
1579 r2 = luaK_exp2anyreg(fs, e2);
1580 op = binopr2op(opr, OPR_LT, OP_LT);
1581 }
1582 freeexps(fs, e1, e2);
1583 e1->u.info = condjump(fs, op, r1, r2, isfloat, 1);
1584 e1->k = VJMP;
1585 }
1586
1587
1588 /*
1589 ** Emit code for equality comparisons ('==', '~=').
1590 ** 'e1' was already put as RK by 'luaK_infix'.
1591 */
codeeq(FuncState * fs,BinOpr opr,expdesc * e1,expdesc * e2)1592 static void codeeq (FuncState *fs, BinOpr opr, expdesc *e1, expdesc *e2) {
1593 int r1, r2;
1594 int im;
1595 int isfloat = 0; /* not needed here, but kept for symmetry */
1596 OpCode op;
1597 if (e1->k != VNONRELOC) {
1598 lua_assert(e1->k == VK || e1->k == VKINT || e1->k == VKFLT);
1599 swapexps(e1, e2);
1600 }
1601 r1 = luaK_exp2anyreg(fs, e1); /* 1st expression must be in register */
1602 if (isSCnumber(e2, &im, &isfloat)) {
1603 op = OP_EQI;
1604 r2 = im; /* immediate operand */
1605 }
1606 else if (exp2RK(fs, e2)) { /* 2nd expression is constant? */
1607 op = OP_EQK;
1608 r2 = e2->u.info; /* constant index */
1609 }
1610 else {
1611 op = OP_EQ; /* will compare two registers */
1612 r2 = luaK_exp2anyreg(fs, e2);
1613 }
1614 freeexps(fs, e1, e2);
1615 e1->u.info = condjump(fs, op, r1, r2, isfloat, (opr == OPR_EQ));
1616 e1->k = VJMP;
1617 }
1618
1619
1620 /*
1621 ** Apply prefix operation 'op' to expression 'e'.
1622 */
luaK_prefix(FuncState * fs,UnOpr opr,expdesc * e,int line)1623 void luaK_prefix (FuncState *fs, UnOpr opr, expdesc *e, int line) {
1624 static const expdesc ef = {VKINT, {0}, NO_JUMP, NO_JUMP};
1625 luaK_dischargevars(fs, e);
1626 switch (opr) {
1627 case OPR_MINUS: case OPR_BNOT: /* use 'ef' as fake 2nd operand */
1628 if (constfolding(fs, opr + LUA_OPUNM, e, &ef))
1629 break;
1630 /* else */ /* FALLTHROUGH */
1631 case OPR_LEN:
1632 codeunexpval(fs, unopr2op(opr), e, line);
1633 break;
1634 case OPR_NOT: codenot(fs, e); break;
1635 default: lua_assert(0);
1636 }
1637 }
1638
1639
1640 /*
1641 ** Process 1st operand 'v' of binary operation 'op' before reading
1642 ** 2nd operand.
1643 */
luaK_infix(FuncState * fs,BinOpr op,expdesc * v)1644 void luaK_infix (FuncState *fs, BinOpr op, expdesc *v) {
1645 luaK_dischargevars(fs, v);
1646 switch (op) {
1647 case OPR_AND: {
1648 luaK_goiftrue(fs, v); /* go ahead only if 'v' is true */
1649 break;
1650 }
1651 case OPR_OR: {
1652 luaK_goiffalse(fs, v); /* go ahead only if 'v' is false */
1653 break;
1654 }
1655 case OPR_CONCAT: {
1656 luaK_exp2nextreg(fs, v); /* operand must be on the stack */
1657 break;
1658 }
1659 case OPR_ADD: case OPR_SUB:
1660 case OPR_MUL: case OPR_DIV: case OPR_IDIV:
1661 case OPR_MOD: case OPR_POW:
1662 case OPR_BAND: case OPR_BOR: case OPR_BXOR:
1663 case OPR_SHL: case OPR_SHR: {
1664 if (!tonumeral(v, NULL))
1665 luaK_exp2anyreg(fs, v);
1666 /* else keep numeral, which may be folded or used as an immediate
1667 operand */
1668 break;
1669 }
1670 case OPR_EQ: case OPR_NE: {
1671 if (!tonumeral(v, NULL))
1672 exp2RK(fs, v);
1673 /* else keep numeral, which may be an immediate operand */
1674 break;
1675 }
1676 case OPR_LT: case OPR_LE:
1677 case OPR_GT: case OPR_GE: {
1678 int dummy, dummy2;
1679 if (!isSCnumber(v, &dummy, &dummy2))
1680 luaK_exp2anyreg(fs, v);
1681 /* else keep numeral, which may be an immediate operand */
1682 break;
1683 }
1684 default: lua_assert(0);
1685 }
1686 }
1687
1688 /*
1689 ** Create code for '(e1 .. e2)'.
1690 ** For '(e1 .. e2.1 .. e2.2)' (which is '(e1 .. (e2.1 .. e2.2))',
1691 ** because concatenation is right associative), merge both CONCATs.
1692 */
codeconcat(FuncState * fs,expdesc * e1,expdesc * e2,int line)1693 static void codeconcat (FuncState *fs, expdesc *e1, expdesc *e2, int line) {
1694 Instruction *ie2 = previousinstruction(fs);
1695 if (GET_OPCODE(*ie2) == OP_CONCAT) { /* is 'e2' a concatenation? */
1696 int n = GETARG_B(*ie2); /* # of elements concatenated in 'e2' */
1697 lua_assert(e1->u.info + 1 == GETARG_A(*ie2));
1698 freeexp(fs, e2);
1699 SETARG_A(*ie2, e1->u.info); /* correct first element ('e1') */
1700 SETARG_B(*ie2, n + 1); /* will concatenate one more element */
1701 }
1702 else { /* 'e2' is not a concatenation */
1703 luaK_codeABC(fs, OP_CONCAT, e1->u.info, 2, 0); /* new concat opcode */
1704 freeexp(fs, e2);
1705 luaK_fixline(fs, line);
1706 }
1707 }
1708
1709
1710 /*
1711 ** Finalize code for binary operation, after reading 2nd operand.
1712 */
luaK_posfix(FuncState * fs,BinOpr opr,expdesc * e1,expdesc * e2,int line)1713 void luaK_posfix (FuncState *fs, BinOpr opr,
1714 expdesc *e1, expdesc *e2, int line) {
1715 luaK_dischargevars(fs, e2);
1716 if (foldbinop(opr) && constfolding(fs, opr + LUA_OPADD, e1, e2))
1717 return; /* done by folding */
1718 switch (opr) {
1719 case OPR_AND: {
1720 lua_assert(e1->t == NO_JUMP); /* list closed by 'luaK_infix' */
1721 luaK_concat(fs, &e2->f, e1->f);
1722 *e1 = *e2;
1723 break;
1724 }
1725 case OPR_OR: {
1726 lua_assert(e1->f == NO_JUMP); /* list closed by 'luaK_infix' */
1727 luaK_concat(fs, &e2->t, e1->t);
1728 *e1 = *e2;
1729 break;
1730 }
1731 case OPR_CONCAT: { /* e1 .. e2 */
1732 luaK_exp2nextreg(fs, e2);
1733 codeconcat(fs, e1, e2, line);
1734 break;
1735 }
1736 case OPR_ADD: case OPR_MUL: {
1737 codecommutative(fs, opr, e1, e2, line);
1738 break;
1739 }
1740 case OPR_SUB: {
1741 if (finishbinexpneg(fs, e1, e2, OP_ADDI, line, TM_SUB))
1742 break; /* coded as (r1 + -I) */
1743 /* ELSE */
1744 } /* FALLTHROUGH */
1745 case OPR_DIV: case OPR_IDIV: case OPR_MOD: case OPR_POW: {
1746 codearith(fs, opr, e1, e2, 0, line);
1747 break;
1748 }
1749 case OPR_BAND: case OPR_BOR: case OPR_BXOR: {
1750 codebitwise(fs, opr, e1, e2, line);
1751 break;
1752 }
1753 case OPR_SHL: {
1754 if (isSCint(e1)) {
1755 swapexps(e1, e2);
1756 codebini(fs, OP_SHLI, e1, e2, 1, line, TM_SHL); /* I << r2 */
1757 }
1758 else if (finishbinexpneg(fs, e1, e2, OP_SHRI, line, TM_SHL)) {
1759 /* coded as (r1 >> -I) */;
1760 }
1761 else /* regular case (two registers) */
1762 codebinexpval(fs, opr, e1, e2, line);
1763 break;
1764 }
1765 case OPR_SHR: {
1766 if (isSCint(e2))
1767 codebini(fs, OP_SHRI, e1, e2, 0, line, TM_SHR); /* r1 >> I */
1768 else /* regular case (two registers) */
1769 codebinexpval(fs, opr, e1, e2, line);
1770 break;
1771 }
1772 case OPR_EQ: case OPR_NE: {
1773 codeeq(fs, opr, e1, e2);
1774 break;
1775 }
1776 case OPR_GT: case OPR_GE: {
1777 /* '(a > b)' <=> '(b < a)'; '(a >= b)' <=> '(b <= a)' */
1778 swapexps(e1, e2);
1779 opr = cast(BinOpr, (opr - OPR_GT) + OPR_LT);
1780 } /* FALLTHROUGH */
1781 case OPR_LT: case OPR_LE: {
1782 codeorder(fs, opr, e1, e2);
1783 break;
1784 }
1785 default: lua_assert(0);
1786 }
1787 }
1788
1789
1790 /*
1791 ** Change line information associated with current position, by removing
1792 ** previous info and adding it again with new line.
1793 */
luaK_fixline(FuncState * fs,int line)1794 void luaK_fixline (FuncState *fs, int line) {
1795 removelastlineinfo(fs);
1796 savelineinfo(fs, fs->f, line);
1797 }
1798
1799
luaK_settablesize(FuncState * fs,int pc,int ra,int asize,int hsize)1800 void luaK_settablesize (FuncState *fs, int pc, int ra, int asize, int hsize) {
1801 Instruction *inst = &fs->f->code[pc];
1802 int rb = (hsize != 0) ? luaO_ceillog2(hsize) + 1 : 0; /* hash size */
1803 int extra = asize / (MAXARG_C + 1); /* higher bits of array size */
1804 int rc = asize % (MAXARG_C + 1); /* lower bits of array size */
1805 int k = (extra > 0); /* true iff needs extra argument */
1806 *inst = CREATE_ABCk(OP_NEWTABLE, ra, rb, rc, k);
1807 *(inst + 1) = CREATE_Ax(OP_EXTRAARG, extra);
1808 }
1809
1810
1811 /*
1812 ** Emit a SETLIST instruction.
1813 ** 'base' is register that keeps table;
1814 ** 'nelems' is #table plus those to be stored now;
1815 ** 'tostore' is number of values (in registers 'base + 1',...) to add to
1816 ** table (or LUA_MULTRET to add up to stack top).
1817 */
luaK_setlist(FuncState * fs,int base,int nelems,int tostore)1818 void luaK_setlist (FuncState *fs, int base, int nelems, int tostore) {
1819 lua_assert(tostore != 0 && tostore <= LFIELDS_PER_FLUSH);
1820 if (tostore == LUA_MULTRET)
1821 tostore = 0;
1822 if (nelems <= MAXARG_C)
1823 luaK_codeABC(fs, OP_SETLIST, base, tostore, nelems);
1824 else {
1825 int extra = nelems / (MAXARG_C + 1);
1826 nelems %= (MAXARG_C + 1);
1827 luaK_codeABCk(fs, OP_SETLIST, base, tostore, nelems, 1);
1828 codeextraarg(fs, extra);
1829 }
1830 fs->freereg = base + 1; /* free registers with list values */
1831 }
1832
1833
1834 /*
1835 ** return the final target of a jump (skipping jumps to jumps)
1836 */
finaltarget(Instruction * code,int i)1837 static int finaltarget (Instruction *code, int i) {
1838 int count;
1839 for (count = 0; count < 100; count++) { /* avoid infinite loops */
1840 Instruction pc = code[i];
1841 if (GET_OPCODE(pc) != OP_JMP)
1842 break;
1843 else
1844 i += GETARG_sJ(pc) + 1;
1845 }
1846 return i;
1847 }
1848
1849
1850 /*
1851 ** Do a final pass over the code of a function, doing small peephole
1852 ** optimizations and adjustments.
1853 */
luaK_finish(FuncState * fs)1854 void luaK_finish (FuncState *fs) {
1855 int i;
1856 Proto *p = fs->f;
1857 for (i = 0; i < fs->pc; i++) {
1858 Instruction *pc = &p->code[i];
1859 lua_assert(i == 0 || isOT(*(pc - 1)) == isIT(*pc));
1860 switch (GET_OPCODE(*pc)) {
1861 case OP_RETURN0: case OP_RETURN1: {
1862 if (!(fs->needclose || p->is_vararg))
1863 break; /* no extra work */
1864 /* else use OP_RETURN to do the extra work */
1865 SET_OPCODE(*pc, OP_RETURN);
1866 } /* FALLTHROUGH */
1867 case OP_RETURN: case OP_TAILCALL: {
1868 if (fs->needclose)
1869 SETARG_k(*pc, 1); /* signal that it needs to close */
1870 if (p->is_vararg)
1871 SETARG_C(*pc, p->numparams + 1); /* signal that it is vararg */
1872 break;
1873 }
1874 case OP_JMP: {
1875 int target = finaltarget(p->code, i);
1876 fixjump(fs, i, target);
1877 break;
1878 }
1879 default: break;
1880 }
1881 }
1882 }
1883