xref: /freebsd/contrib/lua/src/lcode.c (revision 3068d706eabe99f930fb01d3cbfd74ff1f0eb5a2)
1 /*
2 ** $Id: lcode.c $
3 ** Code generator for Lua
4 ** See Copyright Notice in lua.h
5 */
6 
7 #define lcode_c
8 #define LUA_CORE
9 
10 #include "lprefix.h"
11 
12 
13 #include <float.h>
14 #include <limits.h>
15 #include <math.h>
16 #include <stdlib.h>
17 
18 #include "lua.h"
19 
20 #include "lcode.h"
21 #include "ldebug.h"
22 #include "ldo.h"
23 #include "lgc.h"
24 #include "llex.h"
25 #include "lmem.h"
26 #include "lobject.h"
27 #include "lopcodes.h"
28 #include "lparser.h"
29 #include "lstring.h"
30 #include "ltable.h"
31 #include "lvm.h"
32 
33 
34 /* Maximum number of registers in a Lua function (must fit in 8 bits) */
35 #define MAXREGS		255
36 
37 
38 /* (note that expressions VJMP also have jumps.) */
39 #define hasjumps(e)	((e)->t != (e)->f)
40 
41 
42 static int codesJ (FuncState *fs, OpCode o, int sj, int k);
43 
44 
45 
46 /* semantic error */
luaK_semerror(LexState * ls,const char * msg)47 l_noret luaK_semerror (LexState *ls, const char *msg) {
48   ls->t.token = 0;  /* remove "near <token>" from final message */
49   luaX_syntaxerror(ls, msg);
50 }
51 
52 
53 /*
54 ** If expression is a numeric constant, fills 'v' with its value
55 ** and returns 1. Otherwise, returns 0.
56 */
tonumeral(const expdesc * e,TValue * v)57 static int tonumeral (const expdesc *e, TValue *v) {
58   if (hasjumps(e))
59     return 0;  /* not a numeral */
60   switch (e->k) {
61     case VKINT:
62       if (v) setivalue(v, e->u.ival);
63       return 1;
64     case VKFLT:
65       if (v) setfltvalue(v, e->u.nval);
66       return 1;
67     default: return 0;
68   }
69 }
70 
71 
72 /*
73 ** Get the constant value from a constant expression
74 */
const2val(FuncState * fs,const expdesc * e)75 static TValue *const2val (FuncState *fs, const expdesc *e) {
76   lua_assert(e->k == VCONST);
77   return &fs->ls->dyd->actvar.arr[e->u.info].k;
78 }
79 
80 
81 /*
82 ** If expression is a constant, fills 'v' with its value
83 ** and returns 1. Otherwise, returns 0.
84 */
luaK_exp2const(FuncState * fs,const expdesc * e,TValue * v)85 int luaK_exp2const (FuncState *fs, const expdesc *e, TValue *v) {
86   if (hasjumps(e))
87     return 0;  /* not a constant */
88   switch (e->k) {
89     case VFALSE:
90       setbfvalue(v);
91       return 1;
92     case VTRUE:
93       setbtvalue(v);
94       return 1;
95     case VNIL:
96       setnilvalue(v);
97       return 1;
98     case VKSTR: {
99       setsvalue(fs->ls->L, v, e->u.strval);
100       return 1;
101     }
102     case VCONST: {
103       setobj(fs->ls->L, v, const2val(fs, e));
104       return 1;
105     }
106     default: return tonumeral(e, v);
107   }
108 }
109 
110 
111 /*
112 ** Return the previous instruction of the current code. If there
113 ** may be a jump target between the current instruction and the
114 ** previous one, return an invalid instruction (to avoid wrong
115 ** optimizations).
116 */
previousinstruction(FuncState * fs)117 static Instruction *previousinstruction (FuncState *fs) {
118   static const Instruction invalidinstruction = ~(Instruction)0;
119   if (fs->pc > fs->lasttarget)
120     return &fs->f->code[fs->pc - 1];  /* previous instruction */
121   else
122     return cast(Instruction*, &invalidinstruction);
123 }
124 
125 
126 /*
127 ** Create a OP_LOADNIL instruction, but try to optimize: if the previous
128 ** instruction is also OP_LOADNIL and ranges are compatible, adjust
129 ** range of previous instruction instead of emitting a new one. (For
130 ** instance, 'local a; local b' will generate a single opcode.)
131 */
luaK_nil(FuncState * fs,int from,int n)132 void luaK_nil (FuncState *fs, int from, int n) {
133   int l = from + n - 1;  /* last register to set nil */
134   Instruction *previous = previousinstruction(fs);
135   if (GET_OPCODE(*previous) == OP_LOADNIL) {  /* previous is LOADNIL? */
136     int pfrom = GETARG_A(*previous);  /* get previous range */
137     int pl = pfrom + GETARG_B(*previous);
138     if ((pfrom <= from && from <= pl + 1) ||
139         (from <= pfrom && pfrom <= l + 1)) {  /* can connect both? */
140       if (pfrom < from) from = pfrom;  /* from = min(from, pfrom) */
141       if (pl > l) l = pl;  /* l = max(l, pl) */
142       SETARG_A(*previous, from);
143       SETARG_B(*previous, l - from);
144       return;
145     }  /* else go through */
146   }
147   luaK_codeABC(fs, OP_LOADNIL, from, n - 1, 0);  /* else no optimization */
148 }
149 
150 
151 /*
152 ** Gets the destination address of a jump instruction. Used to traverse
153 ** a list of jumps.
154 */
getjump(FuncState * fs,int pc)155 static int getjump (FuncState *fs, int pc) {
156   int offset = GETARG_sJ(fs->f->code[pc]);
157   if (offset == NO_JUMP)  /* point to itself represents end of list */
158     return NO_JUMP;  /* end of list */
159   else
160     return (pc+1)+offset;  /* turn offset into absolute position */
161 }
162 
163 
164 /*
165 ** Fix jump instruction at position 'pc' to jump to 'dest'.
166 ** (Jump addresses are relative in Lua)
167 */
fixjump(FuncState * fs,int pc,int dest)168 static void fixjump (FuncState *fs, int pc, int dest) {
169   Instruction *jmp = &fs->f->code[pc];
170   int offset = dest - (pc + 1);
171   lua_assert(dest != NO_JUMP);
172   if (!(-OFFSET_sJ <= offset && offset <= MAXARG_sJ - OFFSET_sJ))
173     luaX_syntaxerror(fs->ls, "control structure too long");
174   lua_assert(GET_OPCODE(*jmp) == OP_JMP);
175   SETARG_sJ(*jmp, offset);
176 }
177 
178 
179 /*
180 ** Concatenate jump-list 'l2' into jump-list 'l1'
181 */
luaK_concat(FuncState * fs,int * l1,int l2)182 void luaK_concat (FuncState *fs, int *l1, int l2) {
183   if (l2 == NO_JUMP) return;  /* nothing to concatenate? */
184   else if (*l1 == NO_JUMP)  /* no original list? */
185     *l1 = l2;  /* 'l1' points to 'l2' */
186   else {
187     int list = *l1;
188     int next;
189     while ((next = getjump(fs, list)) != NO_JUMP)  /* find last element */
190       list = next;
191     fixjump(fs, list, l2);  /* last element links to 'l2' */
192   }
193 }
194 
195 
196 /*
197 ** Create a jump instruction and return its position, so its destination
198 ** can be fixed later (with 'fixjump').
199 */
luaK_jump(FuncState * fs)200 int luaK_jump (FuncState *fs) {
201   return codesJ(fs, OP_JMP, NO_JUMP, 0);
202 }
203 
204 
205 /*
206 ** Code a 'return' instruction
207 */
luaK_ret(FuncState * fs,int first,int nret)208 void luaK_ret (FuncState *fs, int first, int nret) {
209   OpCode op;
210   switch (nret) {
211     case 0: op = OP_RETURN0; break;
212     case 1: op = OP_RETURN1; break;
213     default: op = OP_RETURN; break;
214   }
215   luaK_codeABC(fs, op, first, nret + 1, 0);
216 }
217 
218 
219 /*
220 ** Code a "conditional jump", that is, a test or comparison opcode
221 ** followed by a jump. Return jump position.
222 */
condjump(FuncState * fs,OpCode op,int A,int B,int C,int k)223 static int condjump (FuncState *fs, OpCode op, int A, int B, int C, int k) {
224   luaK_codeABCk(fs, op, A, B, C, k);
225   return luaK_jump(fs);
226 }
227 
228 
229 /*
230 ** returns current 'pc' and marks it as a jump target (to avoid wrong
231 ** optimizations with consecutive instructions not in the same basic block).
232 */
luaK_getlabel(FuncState * fs)233 int luaK_getlabel (FuncState *fs) {
234   fs->lasttarget = fs->pc;
235   return fs->pc;
236 }
237 
238 
239 /*
240 ** Returns the position of the instruction "controlling" a given
241 ** jump (that is, its condition), or the jump itself if it is
242 ** unconditional.
243 */
getjumpcontrol(FuncState * fs,int pc)244 static Instruction *getjumpcontrol (FuncState *fs, int pc) {
245   Instruction *pi = &fs->f->code[pc];
246   if (pc >= 1 && testTMode(GET_OPCODE(*(pi-1))))
247     return pi-1;
248   else
249     return pi;
250 }
251 
252 
253 /*
254 ** Patch destination register for a TESTSET instruction.
255 ** If instruction in position 'node' is not a TESTSET, return 0 ("fails").
256 ** Otherwise, if 'reg' is not 'NO_REG', set it as the destination
257 ** register. Otherwise, change instruction to a simple 'TEST' (produces
258 ** no register value)
259 */
patchtestreg(FuncState * fs,int node,int reg)260 static int patchtestreg (FuncState *fs, int node, int reg) {
261   Instruction *i = getjumpcontrol(fs, node);
262   if (GET_OPCODE(*i) != OP_TESTSET)
263     return 0;  /* cannot patch other instructions */
264   if (reg != NO_REG && reg != GETARG_B(*i))
265     SETARG_A(*i, reg);
266   else {
267      /* no register to put value or register already has the value;
268         change instruction to simple test */
269     *i = CREATE_ABCk(OP_TEST, GETARG_B(*i), 0, 0, GETARG_k(*i));
270   }
271   return 1;
272 }
273 
274 
275 /*
276 ** Traverse a list of tests ensuring no one produces a value
277 */
removevalues(FuncState * fs,int list)278 static void removevalues (FuncState *fs, int list) {
279   for (; list != NO_JUMP; list = getjump(fs, list))
280       patchtestreg(fs, list, NO_REG);
281 }
282 
283 
284 /*
285 ** Traverse a list of tests, patching their destination address and
286 ** registers: tests producing values jump to 'vtarget' (and put their
287 ** values in 'reg'), other tests jump to 'dtarget'.
288 */
patchlistaux(FuncState * fs,int list,int vtarget,int reg,int dtarget)289 static void patchlistaux (FuncState *fs, int list, int vtarget, int reg,
290                           int dtarget) {
291   while (list != NO_JUMP) {
292     int next = getjump(fs, list);
293     if (patchtestreg(fs, list, reg))
294       fixjump(fs, list, vtarget);
295     else
296       fixjump(fs, list, dtarget);  /* jump to default target */
297     list = next;
298   }
299 }
300 
301 
302 /*
303 ** Path all jumps in 'list' to jump to 'target'.
304 ** (The assert means that we cannot fix a jump to a forward address
305 ** because we only know addresses once code is generated.)
306 */
luaK_patchlist(FuncState * fs,int list,int target)307 void luaK_patchlist (FuncState *fs, int list, int target) {
308   lua_assert(target <= fs->pc);
309   patchlistaux(fs, list, target, NO_REG, target);
310 }
311 
312 
luaK_patchtohere(FuncState * fs,int list)313 void luaK_patchtohere (FuncState *fs, int list) {
314   int hr = luaK_getlabel(fs);  /* mark "here" as a jump target */
315   luaK_patchlist(fs, list, hr);
316 }
317 
318 
319 /* limit for difference between lines in relative line info. */
320 #define LIMLINEDIFF	0x80
321 
322 
323 /*
324 ** Save line info for a new instruction. If difference from last line
325 ** does not fit in a byte, of after that many instructions, save a new
326 ** absolute line info; (in that case, the special value 'ABSLINEINFO'
327 ** in 'lineinfo' signals the existence of this absolute information.)
328 ** Otherwise, store the difference from last line in 'lineinfo'.
329 */
savelineinfo(FuncState * fs,Proto * f,int line)330 static void savelineinfo (FuncState *fs, Proto *f, int line) {
331   int linedif = line - fs->previousline;
332   int pc = fs->pc - 1;  /* last instruction coded */
333   if (abs(linedif) >= LIMLINEDIFF || fs->iwthabs++ >= MAXIWTHABS) {
334     luaM_growvector(fs->ls->L, f->abslineinfo, fs->nabslineinfo,
335                     f->sizeabslineinfo, AbsLineInfo, MAX_INT, "lines");
336     f->abslineinfo[fs->nabslineinfo].pc = pc;
337     f->abslineinfo[fs->nabslineinfo++].line = line;
338     linedif = ABSLINEINFO;  /* signal that there is absolute information */
339     fs->iwthabs = 1;  /* restart counter */
340   }
341   luaM_growvector(fs->ls->L, f->lineinfo, pc, f->sizelineinfo, ls_byte,
342                   MAX_INT, "opcodes");
343   f->lineinfo[pc] = linedif;
344   fs->previousline = line;  /* last line saved */
345 }
346 
347 
348 /*
349 ** Remove line information from the last instruction.
350 ** If line information for that instruction is absolute, set 'iwthabs'
351 ** above its max to force the new (replacing) instruction to have
352 ** absolute line info, too.
353 */
removelastlineinfo(FuncState * fs)354 static void removelastlineinfo (FuncState *fs) {
355   Proto *f = fs->f;
356   int pc = fs->pc - 1;  /* last instruction coded */
357   if (f->lineinfo[pc] != ABSLINEINFO) {  /* relative line info? */
358     fs->previousline -= f->lineinfo[pc];  /* correct last line saved */
359     fs->iwthabs--;  /* undo previous increment */
360   }
361   else {  /* absolute line information */
362     lua_assert(f->abslineinfo[fs->nabslineinfo - 1].pc == pc);
363     fs->nabslineinfo--;  /* remove it */
364     fs->iwthabs = MAXIWTHABS + 1;  /* force next line info to be absolute */
365   }
366 }
367 
368 
369 /*
370 ** Remove the last instruction created, correcting line information
371 ** accordingly.
372 */
removelastinstruction(FuncState * fs)373 static void removelastinstruction (FuncState *fs) {
374   removelastlineinfo(fs);
375   fs->pc--;
376 }
377 
378 
379 /*
380 ** Emit instruction 'i', checking for array sizes and saving also its
381 ** line information. Return 'i' position.
382 */
luaK_code(FuncState * fs,Instruction i)383 int luaK_code (FuncState *fs, Instruction i) {
384   Proto *f = fs->f;
385   /* put new instruction in code array */
386   luaM_growvector(fs->ls->L, f->code, fs->pc, f->sizecode, Instruction,
387                   MAX_INT, "opcodes");
388   f->code[fs->pc++] = i;
389   savelineinfo(fs, f, fs->ls->lastline);
390   return fs->pc - 1;  /* index of new instruction */
391 }
392 
393 
394 /*
395 ** Format and emit an 'iABC' instruction. (Assertions check consistency
396 ** of parameters versus opcode.)
397 */
luaK_codeABCk(FuncState * fs,OpCode o,int a,int b,int c,int k)398 int luaK_codeABCk (FuncState *fs, OpCode o, int a, int b, int c, int k) {
399   lua_assert(getOpMode(o) == iABC);
400   lua_assert(a <= MAXARG_A && b <= MAXARG_B &&
401              c <= MAXARG_C && (k & ~1) == 0);
402   return luaK_code(fs, CREATE_ABCk(o, a, b, c, k));
403 }
404 
405 
406 /*
407 ** Format and emit an 'iABx' instruction.
408 */
luaK_codeABx(FuncState * fs,OpCode o,int a,unsigned int bc)409 int luaK_codeABx (FuncState *fs, OpCode o, int a, unsigned int bc) {
410   lua_assert(getOpMode(o) == iABx);
411   lua_assert(a <= MAXARG_A && bc <= MAXARG_Bx);
412   return luaK_code(fs, CREATE_ABx(o, a, bc));
413 }
414 
415 
416 /*
417 ** Format and emit an 'iAsBx' instruction.
418 */
codeAsBx(FuncState * fs,OpCode o,int a,int bc)419 static int codeAsBx (FuncState *fs, OpCode o, int a, int bc) {
420   unsigned int b = bc + OFFSET_sBx;
421   lua_assert(getOpMode(o) == iAsBx);
422   lua_assert(a <= MAXARG_A && b <= MAXARG_Bx);
423   return luaK_code(fs, CREATE_ABx(o, a, b));
424 }
425 
426 
427 /*
428 ** Format and emit an 'isJ' instruction.
429 */
codesJ(FuncState * fs,OpCode o,int sj,int k)430 static int codesJ (FuncState *fs, OpCode o, int sj, int k) {
431   unsigned int j = sj + OFFSET_sJ;
432   lua_assert(getOpMode(o) == isJ);
433   lua_assert(j <= MAXARG_sJ && (k & ~1) == 0);
434   return luaK_code(fs, CREATE_sJ(o, j, k));
435 }
436 
437 
438 /*
439 ** Emit an "extra argument" instruction (format 'iAx')
440 */
codeextraarg(FuncState * fs,int a)441 static int codeextraarg (FuncState *fs, int a) {
442   lua_assert(a <= MAXARG_Ax);
443   return luaK_code(fs, CREATE_Ax(OP_EXTRAARG, a));
444 }
445 
446 
447 /*
448 ** Emit a "load constant" instruction, using either 'OP_LOADK'
449 ** (if constant index 'k' fits in 18 bits) or an 'OP_LOADKX'
450 ** instruction with "extra argument".
451 */
luaK_codek(FuncState * fs,int reg,int k)452 static int luaK_codek (FuncState *fs, int reg, int k) {
453   if (k <= MAXARG_Bx)
454     return luaK_codeABx(fs, OP_LOADK, reg, k);
455   else {
456     int p = luaK_codeABx(fs, OP_LOADKX, reg, 0);
457     codeextraarg(fs, k);
458     return p;
459   }
460 }
461 
462 
463 /*
464 ** Check register-stack level, keeping track of its maximum size
465 ** in field 'maxstacksize'
466 */
luaK_checkstack(FuncState * fs,int n)467 void luaK_checkstack (FuncState *fs, int n) {
468   int newstack = fs->freereg + n;
469   if (newstack > fs->f->maxstacksize) {
470     if (newstack >= MAXREGS)
471       luaX_syntaxerror(fs->ls,
472         "function or expression needs too many registers");
473     fs->f->maxstacksize = cast_byte(newstack);
474   }
475 }
476 
477 
478 /*
479 ** Reserve 'n' registers in register stack
480 */
luaK_reserveregs(FuncState * fs,int n)481 void luaK_reserveregs (FuncState *fs, int n) {
482   luaK_checkstack(fs, n);
483   fs->freereg += n;
484 }
485 
486 
487 /*
488 ** Free register 'reg', if it is neither a constant index nor
489 ** a local variable.
490 )
491 */
freereg(FuncState * fs,int reg)492 static void freereg (FuncState *fs, int reg) {
493   if (reg >= luaY_nvarstack(fs)) {
494     fs->freereg--;
495     lua_assert(reg == fs->freereg);
496   }
497 }
498 
499 
500 /*
501 ** Free two registers in proper order
502 */
freeregs(FuncState * fs,int r1,int r2)503 static void freeregs (FuncState *fs, int r1, int r2) {
504   if (r1 > r2) {
505     freereg(fs, r1);
506     freereg(fs, r2);
507   }
508   else {
509     freereg(fs, r2);
510     freereg(fs, r1);
511   }
512 }
513 
514 
515 /*
516 ** Free register used by expression 'e' (if any)
517 */
freeexp(FuncState * fs,expdesc * e)518 static void freeexp (FuncState *fs, expdesc *e) {
519   if (e->k == VNONRELOC)
520     freereg(fs, e->u.info);
521 }
522 
523 
524 /*
525 ** Free registers used by expressions 'e1' and 'e2' (if any) in proper
526 ** order.
527 */
freeexps(FuncState * fs,expdesc * e1,expdesc * e2)528 static void freeexps (FuncState *fs, expdesc *e1, expdesc *e2) {
529   int r1 = (e1->k == VNONRELOC) ? e1->u.info : -1;
530   int r2 = (e2->k == VNONRELOC) ? e2->u.info : -1;
531   freeregs(fs, r1, r2);
532 }
533 
534 
535 /*
536 ** Add constant 'v' to prototype's list of constants (field 'k').
537 ** Use scanner's table to cache position of constants in constant list
538 ** and try to reuse constants. Because some values should not be used
539 ** as keys (nil cannot be a key, integer keys can collapse with float
540 ** keys), the caller must provide a useful 'key' for indexing the cache.
541 ** Note that all functions share the same table, so entering or exiting
542 ** a function can make some indices wrong.
543 */
addk(FuncState * fs,TValue * key,TValue * v)544 static int addk (FuncState *fs, TValue *key, TValue *v) {
545   TValue val;
546   lua_State *L = fs->ls->L;
547   Proto *f = fs->f;
548   const TValue *idx = luaH_get(fs->ls->h, key);  /* query scanner table */
549   int k, oldsize;
550   if (ttisinteger(idx)) {  /* is there an index there? */
551     k = cast_int(ivalue(idx));
552     /* correct value? (warning: must distinguish floats from integers!) */
553     if (k < fs->nk && ttypetag(&f->k[k]) == ttypetag(v) &&
554                       luaV_rawequalobj(&f->k[k], v))
555       return k;  /* reuse index */
556   }
557   /* constant not found; create a new entry */
558   oldsize = f->sizek;
559   k = fs->nk;
560   /* numerical value does not need GC barrier;
561      table has no metatable, so it does not need to invalidate cache */
562   setivalue(&val, k);
563   luaH_finishset(L, fs->ls->h, key, idx, &val);
564   luaM_growvector(L, f->k, k, f->sizek, TValue, MAXARG_Ax, "constants");
565   while (oldsize < f->sizek) setnilvalue(&f->k[oldsize++]);
566   setobj(L, &f->k[k], v);
567   fs->nk++;
568   luaC_barrier(L, f, v);
569   return k;
570 }
571 
572 
573 /*
574 ** Add a string to list of constants and return its index.
575 */
stringK(FuncState * fs,TString * s)576 static int stringK (FuncState *fs, TString *s) {
577   TValue o;
578   setsvalue(fs->ls->L, &o, s);
579   return addk(fs, &o, &o);  /* use string itself as key */
580 }
581 
582 
583 /*
584 ** Add an integer to list of constants and return its index.
585 */
luaK_intK(FuncState * fs,lua_Integer n)586 static int luaK_intK (FuncState *fs, lua_Integer n) {
587   TValue o;
588   setivalue(&o, n);
589   return addk(fs, &o, &o);  /* use integer itself as key */
590 }
591 
592 /*
593 ** Add a float to list of constants and return its index. Floats
594 ** with integral values need a different key, to avoid collision
595 ** with actual integers. To that, we add to the number its smaller
596 ** power-of-two fraction that is still significant in its scale.
597 ** For doubles, that would be 1/2^52.
598 ** (This method is not bulletproof: there may be another float
599 ** with that value, and for floats larger than 2^53 the result is
600 ** still an integer. At worst, this only wastes an entry with
601 ** a duplicate.)
602 */
luaK_numberK(FuncState * fs,lua_Number r)603 static int luaK_numberK (FuncState *fs, lua_Number r) {
604   TValue o;
605   lua_Integer ik;
606   setfltvalue(&o, r);
607 #ifndef LUA_AVOID_FLOAT
608   if (!luaV_flttointeger(r, &ik, F2Ieq))  /* not an integral value? */
609     return addk(fs, &o, &o);  /* use number itself as key */
610   else {  /* must build an alternative key */
611     const int nbm = l_floatatt(MANT_DIG);
612     const lua_Number q = l_mathop(ldexp)(l_mathop(1.0), -nbm + 1);
613     const lua_Number k = (ik == 0) ? q : r + r*q;  /* new key */
614     TValue kv;
615     setfltvalue(&kv, k);
616     /* result is not an integral value, unless value is too large */
617     lua_assert(!luaV_flttointeger(k, &ik, F2Ieq) ||
618                 l_mathop(fabs)(r) >= l_mathop(1e6));
619     return addk(fs, &kv, &o);
620   }
621 #else
622   /*
623   ** When we're avoiding floats, allow any collision since floats are ints.
624   */
625   return addk(fs, &o, &o);  /* use number itself as key */
626 #endif
627 }
628 
629 
630 /*
631 ** Add a false to list of constants and return its index.
632 */
boolF(FuncState * fs)633 static int boolF (FuncState *fs) {
634   TValue o;
635   setbfvalue(&o);
636   return addk(fs, &o, &o);  /* use boolean itself as key */
637 }
638 
639 
640 /*
641 ** Add a true to list of constants and return its index.
642 */
boolT(FuncState * fs)643 static int boolT (FuncState *fs) {
644   TValue o;
645   setbtvalue(&o);
646   return addk(fs, &o, &o);  /* use boolean itself as key */
647 }
648 
649 
650 /*
651 ** Add nil to list of constants and return its index.
652 */
nilK(FuncState * fs)653 static int nilK (FuncState *fs) {
654   TValue k, v;
655   setnilvalue(&v);
656   /* cannot use nil as key; instead use table itself to represent nil */
657   sethvalue(fs->ls->L, &k, fs->ls->h);
658   return addk(fs, &k, &v);
659 }
660 
661 
662 /*
663 ** Check whether 'i' can be stored in an 'sC' operand. Equivalent to
664 ** (0 <= int2sC(i) && int2sC(i) <= MAXARG_C) but without risk of
665 ** overflows in the hidden addition inside 'int2sC'.
666 */
fitsC(lua_Integer i)667 static int fitsC (lua_Integer i) {
668   return (l_castS2U(i) + OFFSET_sC <= cast_uint(MAXARG_C));
669 }
670 
671 
672 /*
673 ** Check whether 'i' can be stored in an 'sBx' operand.
674 */
fitsBx(lua_Integer i)675 static int fitsBx (lua_Integer i) {
676   return (-OFFSET_sBx <= i && i <= MAXARG_Bx - OFFSET_sBx);
677 }
678 
679 
luaK_int(FuncState * fs,int reg,lua_Integer i)680 void luaK_int (FuncState *fs, int reg, lua_Integer i) {
681   if (fitsBx(i))
682     codeAsBx(fs, OP_LOADI, reg, cast_int(i));
683   else
684     luaK_codek(fs, reg, luaK_intK(fs, i));
685 }
686 
687 
luaK_float(FuncState * fs,int reg,lua_Number f)688 static void luaK_float (FuncState *fs, int reg, lua_Number f) {
689   lua_Integer fi;
690   if (luaV_flttointeger(f, &fi, F2Ieq) && fitsBx(fi))
691     codeAsBx(fs, OP_LOADF, reg, cast_int(fi));
692   else
693     luaK_codek(fs, reg, luaK_numberK(fs, f));
694 }
695 
696 
697 /*
698 ** Convert a constant in 'v' into an expression description 'e'
699 */
const2exp(TValue * v,expdesc * e)700 static void const2exp (TValue *v, expdesc *e) {
701   switch (ttypetag(v)) {
702     case LUA_VNUMINT:
703       e->k = VKINT; e->u.ival = ivalue(v);
704       break;
705     case LUA_VNUMFLT:
706       e->k = VKFLT; e->u.nval = fltvalue(v);
707       break;
708     case LUA_VFALSE:
709       e->k = VFALSE;
710       break;
711     case LUA_VTRUE:
712       e->k = VTRUE;
713       break;
714     case LUA_VNIL:
715       e->k = VNIL;
716       break;
717     case LUA_VSHRSTR:  case LUA_VLNGSTR:
718       e->k = VKSTR; e->u.strval = tsvalue(v);
719       break;
720     default: lua_assert(0);
721   }
722 }
723 
724 
725 /*
726 ** Fix an expression to return the number of results 'nresults'.
727 ** 'e' must be a multi-ret expression (function call or vararg).
728 */
luaK_setreturns(FuncState * fs,expdesc * e,int nresults)729 void luaK_setreturns (FuncState *fs, expdesc *e, int nresults) {
730   Instruction *pc = &getinstruction(fs, e);
731   if (e->k == VCALL)  /* expression is an open function call? */
732     SETARG_C(*pc, nresults + 1);
733   else {
734     lua_assert(e->k == VVARARG);
735     SETARG_C(*pc, nresults + 1);
736     SETARG_A(*pc, fs->freereg);
737     luaK_reserveregs(fs, 1);
738   }
739 }
740 
741 
742 /*
743 ** Convert a VKSTR to a VK
744 */
str2K(FuncState * fs,expdesc * e)745 static void str2K (FuncState *fs, expdesc *e) {
746   lua_assert(e->k == VKSTR);
747   e->u.info = stringK(fs, e->u.strval);
748   e->k = VK;
749 }
750 
751 
752 /*
753 ** Fix an expression to return one result.
754 ** If expression is not a multi-ret expression (function call or
755 ** vararg), it already returns one result, so nothing needs to be done.
756 ** Function calls become VNONRELOC expressions (as its result comes
757 ** fixed in the base register of the call), while vararg expressions
758 ** become VRELOC (as OP_VARARG puts its results where it wants).
759 ** (Calls are created returning one result, so that does not need
760 ** to be fixed.)
761 */
luaK_setoneret(FuncState * fs,expdesc * e)762 void luaK_setoneret (FuncState *fs, expdesc *e) {
763   if (e->k == VCALL) {  /* expression is an open function call? */
764     /* already returns 1 value */
765     lua_assert(GETARG_C(getinstruction(fs, e)) == 2);
766     e->k = VNONRELOC;  /* result has fixed position */
767     e->u.info = GETARG_A(getinstruction(fs, e));
768   }
769   else if (e->k == VVARARG) {
770     SETARG_C(getinstruction(fs, e), 2);
771     e->k = VRELOC;  /* can relocate its simple result */
772   }
773 }
774 
775 
776 /*
777 ** Ensure that expression 'e' is not a variable (nor a <const>).
778 ** (Expression still may have jump lists.)
779 */
luaK_dischargevars(FuncState * fs,expdesc * e)780 void luaK_dischargevars (FuncState *fs, expdesc *e) {
781   switch (e->k) {
782     case VCONST: {
783       const2exp(const2val(fs, e), e);
784       break;
785     }
786     case VLOCAL: {  /* already in a register */
787       int temp = e->u.var.ridx;
788       e->u.info = temp;  /* (can't do a direct assignment; values overlap) */
789       e->k = VNONRELOC;  /* becomes a non-relocatable value */
790       break;
791     }
792     case VUPVAL: {  /* move value to some (pending) register */
793       e->u.info = luaK_codeABC(fs, OP_GETUPVAL, 0, e->u.info, 0);
794       e->k = VRELOC;
795       break;
796     }
797     case VINDEXUP: {
798       e->u.info = luaK_codeABC(fs, OP_GETTABUP, 0, e->u.ind.t, e->u.ind.idx);
799       e->k = VRELOC;
800       break;
801     }
802     case VINDEXI: {
803       freereg(fs, e->u.ind.t);
804       e->u.info = luaK_codeABC(fs, OP_GETI, 0, e->u.ind.t, e->u.ind.idx);
805       e->k = VRELOC;
806       break;
807     }
808     case VINDEXSTR: {
809       freereg(fs, e->u.ind.t);
810       e->u.info = luaK_codeABC(fs, OP_GETFIELD, 0, e->u.ind.t, e->u.ind.idx);
811       e->k = VRELOC;
812       break;
813     }
814     case VINDEXED: {
815       freeregs(fs, e->u.ind.t, e->u.ind.idx);
816       e->u.info = luaK_codeABC(fs, OP_GETTABLE, 0, e->u.ind.t, e->u.ind.idx);
817       e->k = VRELOC;
818       break;
819     }
820     case VVARARG: case VCALL: {
821       luaK_setoneret(fs, e);
822       break;
823     }
824     default: break;  /* there is one value available (somewhere) */
825   }
826 }
827 
828 
829 /*
830 ** Ensure expression value is in register 'reg', making 'e' a
831 ** non-relocatable expression.
832 ** (Expression still may have jump lists.)
833 */
discharge2reg(FuncState * fs,expdesc * e,int reg)834 static void discharge2reg (FuncState *fs, expdesc *e, int reg) {
835   luaK_dischargevars(fs, e);
836   switch (e->k) {
837     case VNIL: {
838       luaK_nil(fs, reg, 1);
839       break;
840     }
841     case VFALSE: {
842       luaK_codeABC(fs, OP_LOADFALSE, reg, 0, 0);
843       break;
844     }
845     case VTRUE: {
846       luaK_codeABC(fs, OP_LOADTRUE, reg, 0, 0);
847       break;
848     }
849     case VKSTR: {
850       str2K(fs, e);
851     }  /* FALLTHROUGH */
852     case VK: {
853       luaK_codek(fs, reg, e->u.info);
854       break;
855     }
856     case VKFLT: {
857       luaK_float(fs, reg, e->u.nval);
858       break;
859     }
860     case VKINT: {
861       luaK_int(fs, reg, e->u.ival);
862       break;
863     }
864     case VRELOC: {
865       Instruction *pc = &getinstruction(fs, e);
866       SETARG_A(*pc, reg);  /* instruction will put result in 'reg' */
867       break;
868     }
869     case VNONRELOC: {
870       if (reg != e->u.info)
871         luaK_codeABC(fs, OP_MOVE, reg, e->u.info, 0);
872       break;
873     }
874     default: {
875       lua_assert(e->k == VJMP);
876       return;  /* nothing to do... */
877     }
878   }
879   e->u.info = reg;
880   e->k = VNONRELOC;
881 }
882 
883 
884 /*
885 ** Ensure expression value is in a register, making 'e' a
886 ** non-relocatable expression.
887 ** (Expression still may have jump lists.)
888 */
discharge2anyreg(FuncState * fs,expdesc * e)889 static void discharge2anyreg (FuncState *fs, expdesc *e) {
890   if (e->k != VNONRELOC) {  /* no fixed register yet? */
891     luaK_reserveregs(fs, 1);  /* get a register */
892     discharge2reg(fs, e, fs->freereg-1);  /* put value there */
893   }
894 }
895 
896 
code_loadbool(FuncState * fs,int A,OpCode op)897 static int code_loadbool (FuncState *fs, int A, OpCode op) {
898   luaK_getlabel(fs);  /* those instructions may be jump targets */
899   return luaK_codeABC(fs, op, A, 0, 0);
900 }
901 
902 
903 /*
904 ** check whether list has any jump that do not produce a value
905 ** or produce an inverted value
906 */
need_value(FuncState * fs,int list)907 static int need_value (FuncState *fs, int list) {
908   for (; list != NO_JUMP; list = getjump(fs, list)) {
909     Instruction i = *getjumpcontrol(fs, list);
910     if (GET_OPCODE(i) != OP_TESTSET) return 1;
911   }
912   return 0;  /* not found */
913 }
914 
915 
916 /*
917 ** Ensures final expression result (which includes results from its
918 ** jump lists) is in register 'reg'.
919 ** If expression has jumps, need to patch these jumps either to
920 ** its final position or to "load" instructions (for those tests
921 ** that do not produce values).
922 */
exp2reg(FuncState * fs,expdesc * e,int reg)923 static void exp2reg (FuncState *fs, expdesc *e, int reg) {
924   discharge2reg(fs, e, reg);
925   if (e->k == VJMP)  /* expression itself is a test? */
926     luaK_concat(fs, &e->t, e->u.info);  /* put this jump in 't' list */
927   if (hasjumps(e)) {
928     int final;  /* position after whole expression */
929     int p_f = NO_JUMP;  /* position of an eventual LOAD false */
930     int p_t = NO_JUMP;  /* position of an eventual LOAD true */
931     if (need_value(fs, e->t) || need_value(fs, e->f)) {
932       int fj = (e->k == VJMP) ? NO_JUMP : luaK_jump(fs);
933       p_f = code_loadbool(fs, reg, OP_LFALSESKIP);  /* skip next inst. */
934       p_t = code_loadbool(fs, reg, OP_LOADTRUE);
935       /* jump around these booleans if 'e' is not a test */
936       luaK_patchtohere(fs, fj);
937     }
938     final = luaK_getlabel(fs);
939     patchlistaux(fs, e->f, final, reg, p_f);
940     patchlistaux(fs, e->t, final, reg, p_t);
941   }
942   e->f = e->t = NO_JUMP;
943   e->u.info = reg;
944   e->k = VNONRELOC;
945 }
946 
947 
948 /*
949 ** Ensures final expression result is in next available register.
950 */
luaK_exp2nextreg(FuncState * fs,expdesc * e)951 void luaK_exp2nextreg (FuncState *fs, expdesc *e) {
952   luaK_dischargevars(fs, e);
953   freeexp(fs, e);
954   luaK_reserveregs(fs, 1);
955   exp2reg(fs, e, fs->freereg - 1);
956 }
957 
958 
959 /*
960 ** Ensures final expression result is in some (any) register
961 ** and return that register.
962 */
luaK_exp2anyreg(FuncState * fs,expdesc * e)963 int luaK_exp2anyreg (FuncState *fs, expdesc *e) {
964   luaK_dischargevars(fs, e);
965   if (e->k == VNONRELOC) {  /* expression already has a register? */
966     if (!hasjumps(e))  /* no jumps? */
967       return e->u.info;  /* result is already in a register */
968     if (e->u.info >= luaY_nvarstack(fs)) {  /* reg. is not a local? */
969       exp2reg(fs, e, e->u.info);  /* put final result in it */
970       return e->u.info;
971     }
972     /* else expression has jumps and cannot change its register
973        to hold the jump values, because it is a local variable.
974        Go through to the default case. */
975   }
976   luaK_exp2nextreg(fs, e);  /* default: use next available register */
977   return e->u.info;
978 }
979 
980 
981 /*
982 ** Ensures final expression result is either in a register
983 ** or in an upvalue.
984 */
luaK_exp2anyregup(FuncState * fs,expdesc * e)985 void luaK_exp2anyregup (FuncState *fs, expdesc *e) {
986   if (e->k != VUPVAL || hasjumps(e))
987     luaK_exp2anyreg(fs, e);
988 }
989 
990 
991 /*
992 ** Ensures final expression result is either in a register
993 ** or it is a constant.
994 */
luaK_exp2val(FuncState * fs,expdesc * e)995 void luaK_exp2val (FuncState *fs, expdesc *e) {
996   if (e->k == VJMP || hasjumps(e))
997     luaK_exp2anyreg(fs, e);
998   else
999     luaK_dischargevars(fs, e);
1000 }
1001 
1002 
1003 /*
1004 ** Try to make 'e' a K expression with an index in the range of R/K
1005 ** indices. Return true iff succeeded.
1006 */
luaK_exp2K(FuncState * fs,expdesc * e)1007 static int luaK_exp2K (FuncState *fs, expdesc *e) {
1008   if (!hasjumps(e)) {
1009     int info;
1010     switch (e->k) {  /* move constants to 'k' */
1011       case VTRUE: info = boolT(fs); break;
1012       case VFALSE: info = boolF(fs); break;
1013       case VNIL: info = nilK(fs); break;
1014       case VKINT: info = luaK_intK(fs, e->u.ival); break;
1015       case VKFLT: info = luaK_numberK(fs, e->u.nval); break;
1016       case VKSTR: info = stringK(fs, e->u.strval); break;
1017       case VK: info = e->u.info; break;
1018       default: return 0;  /* not a constant */
1019     }
1020     if (info <= MAXINDEXRK) {  /* does constant fit in 'argC'? */
1021       e->k = VK;  /* make expression a 'K' expression */
1022       e->u.info = info;
1023       return 1;
1024     }
1025   }
1026   /* else, expression doesn't fit; leave it unchanged */
1027   return 0;
1028 }
1029 
1030 
1031 /*
1032 ** Ensures final expression result is in a valid R/K index
1033 ** (that is, it is either in a register or in 'k' with an index
1034 ** in the range of R/K indices).
1035 ** Returns 1 iff expression is K.
1036 */
exp2RK(FuncState * fs,expdesc * e)1037 static int exp2RK (FuncState *fs, expdesc *e) {
1038   if (luaK_exp2K(fs, e))
1039     return 1;
1040   else {  /* not a constant in the right range: put it in a register */
1041     luaK_exp2anyreg(fs, e);
1042     return 0;
1043   }
1044 }
1045 
1046 
codeABRK(FuncState * fs,OpCode o,int a,int b,expdesc * ec)1047 static void codeABRK (FuncState *fs, OpCode o, int a, int b,
1048                       expdesc *ec) {
1049   int k = exp2RK(fs, ec);
1050   luaK_codeABCk(fs, o, a, b, ec->u.info, k);
1051 }
1052 
1053 
1054 /*
1055 ** Generate code to store result of expression 'ex' into variable 'var'.
1056 */
luaK_storevar(FuncState * fs,expdesc * var,expdesc * ex)1057 void luaK_storevar (FuncState *fs, expdesc *var, expdesc *ex) {
1058   switch (var->k) {
1059     case VLOCAL: {
1060       freeexp(fs, ex);
1061       exp2reg(fs, ex, var->u.var.ridx);  /* compute 'ex' into proper place */
1062       return;
1063     }
1064     case VUPVAL: {
1065       int e = luaK_exp2anyreg(fs, ex);
1066       luaK_codeABC(fs, OP_SETUPVAL, e, var->u.info, 0);
1067       break;
1068     }
1069     case VINDEXUP: {
1070       codeABRK(fs, OP_SETTABUP, var->u.ind.t, var->u.ind.idx, ex);
1071       break;
1072     }
1073     case VINDEXI: {
1074       codeABRK(fs, OP_SETI, var->u.ind.t, var->u.ind.idx, ex);
1075       break;
1076     }
1077     case VINDEXSTR: {
1078       codeABRK(fs, OP_SETFIELD, var->u.ind.t, var->u.ind.idx, ex);
1079       break;
1080     }
1081     case VINDEXED: {
1082       codeABRK(fs, OP_SETTABLE, var->u.ind.t, var->u.ind.idx, ex);
1083       break;
1084     }
1085     default: lua_assert(0);  /* invalid var kind to store */
1086   }
1087   freeexp(fs, ex);
1088 }
1089 
1090 
1091 /*
1092 ** Emit SELF instruction (convert expression 'e' into 'e:key(e,').
1093 */
luaK_self(FuncState * fs,expdesc * e,expdesc * key)1094 void luaK_self (FuncState *fs, expdesc *e, expdesc *key) {
1095   int ereg;
1096   luaK_exp2anyreg(fs, e);
1097   ereg = e->u.info;  /* register where 'e' was placed */
1098   freeexp(fs, e);
1099   e->u.info = fs->freereg;  /* base register for op_self */
1100   e->k = VNONRELOC;  /* self expression has a fixed register */
1101   luaK_reserveregs(fs, 2);  /* function and 'self' produced by op_self */
1102   codeABRK(fs, OP_SELF, e->u.info, ereg, key);
1103   freeexp(fs, key);
1104 }
1105 
1106 
1107 /*
1108 ** Negate condition 'e' (where 'e' is a comparison).
1109 */
negatecondition(FuncState * fs,expdesc * e)1110 static void negatecondition (FuncState *fs, expdesc *e) {
1111   Instruction *pc = getjumpcontrol(fs, e->u.info);
1112   lua_assert(testTMode(GET_OPCODE(*pc)) && GET_OPCODE(*pc) != OP_TESTSET &&
1113                                            GET_OPCODE(*pc) != OP_TEST);
1114   SETARG_k(*pc, (GETARG_k(*pc) ^ 1));
1115 }
1116 
1117 
1118 /*
1119 ** Emit instruction to jump if 'e' is 'cond' (that is, if 'cond'
1120 ** is true, code will jump if 'e' is true.) Return jump position.
1121 ** Optimize when 'e' is 'not' something, inverting the condition
1122 ** and removing the 'not'.
1123 */
jumponcond(FuncState * fs,expdesc * e,int cond)1124 static int jumponcond (FuncState *fs, expdesc *e, int cond) {
1125   if (e->k == VRELOC) {
1126     Instruction ie = getinstruction(fs, e);
1127     if (GET_OPCODE(ie) == OP_NOT) {
1128       removelastinstruction(fs);  /* remove previous OP_NOT */
1129       return condjump(fs, OP_TEST, GETARG_B(ie), 0, 0, !cond);
1130     }
1131     /* else go through */
1132   }
1133   discharge2anyreg(fs, e);
1134   freeexp(fs, e);
1135   return condjump(fs, OP_TESTSET, NO_REG, e->u.info, 0, cond);
1136 }
1137 
1138 
1139 /*
1140 ** Emit code to go through if 'e' is true, jump otherwise.
1141 */
luaK_goiftrue(FuncState * fs,expdesc * e)1142 void luaK_goiftrue (FuncState *fs, expdesc *e) {
1143   int pc;  /* pc of new jump */
1144   luaK_dischargevars(fs, e);
1145   switch (e->k) {
1146     case VJMP: {  /* condition? */
1147       negatecondition(fs, e);  /* jump when it is false */
1148       pc = e->u.info;  /* save jump position */
1149       break;
1150     }
1151     case VK: case VKFLT: case VKINT: case VKSTR: case VTRUE: {
1152       pc = NO_JUMP;  /* always true; do nothing */
1153       break;
1154     }
1155     default: {
1156       pc = jumponcond(fs, e, 0);  /* jump when false */
1157       break;
1158     }
1159   }
1160   luaK_concat(fs, &e->f, pc);  /* insert new jump in false list */
1161   luaK_patchtohere(fs, e->t);  /* true list jumps to here (to go through) */
1162   e->t = NO_JUMP;
1163 }
1164 
1165 
1166 /*
1167 ** Emit code to go through if 'e' is false, jump otherwise.
1168 */
luaK_goiffalse(FuncState * fs,expdesc * e)1169 void luaK_goiffalse (FuncState *fs, expdesc *e) {
1170   int pc;  /* pc of new jump */
1171   luaK_dischargevars(fs, e);
1172   switch (e->k) {
1173     case VJMP: {
1174       pc = e->u.info;  /* already jump if true */
1175       break;
1176     }
1177     case VNIL: case VFALSE: {
1178       pc = NO_JUMP;  /* always false; do nothing */
1179       break;
1180     }
1181     default: {
1182       pc = jumponcond(fs, e, 1);  /* jump if true */
1183       break;
1184     }
1185   }
1186   luaK_concat(fs, &e->t, pc);  /* insert new jump in 't' list */
1187   luaK_patchtohere(fs, e->f);  /* false list jumps to here (to go through) */
1188   e->f = NO_JUMP;
1189 }
1190 
1191 
1192 /*
1193 ** Code 'not e', doing constant folding.
1194 */
codenot(FuncState * fs,expdesc * e)1195 static void codenot (FuncState *fs, expdesc *e) {
1196   switch (e->k) {
1197     case VNIL: case VFALSE: {
1198       e->k = VTRUE;  /* true == not nil == not false */
1199       break;
1200     }
1201     case VK: case VKFLT: case VKINT: case VKSTR: case VTRUE: {
1202       e->k = VFALSE;  /* false == not "x" == not 0.5 == not 1 == not true */
1203       break;
1204     }
1205     case VJMP: {
1206       negatecondition(fs, e);
1207       break;
1208     }
1209     case VRELOC:
1210     case VNONRELOC: {
1211       discharge2anyreg(fs, e);
1212       freeexp(fs, e);
1213       e->u.info = luaK_codeABC(fs, OP_NOT, 0, e->u.info, 0);
1214       e->k = VRELOC;
1215       break;
1216     }
1217     default: lua_assert(0);  /* cannot happen */
1218   }
1219   /* interchange true and false lists */
1220   { int temp = e->f; e->f = e->t; e->t = temp; }
1221   removevalues(fs, e->f);  /* values are useless when negated */
1222   removevalues(fs, e->t);
1223 }
1224 
1225 
1226 /*
1227 ** Check whether expression 'e' is a short literal string
1228 */
isKstr(FuncState * fs,expdesc * e)1229 static int isKstr (FuncState *fs, expdesc *e) {
1230   return (e->k == VK && !hasjumps(e) && e->u.info <= MAXARG_B &&
1231           ttisshrstring(&fs->f->k[e->u.info]));
1232 }
1233 
1234 /*
1235 ** Check whether expression 'e' is a literal integer.
1236 */
isKint(expdesc * e)1237 static int isKint (expdesc *e) {
1238   return (e->k == VKINT && !hasjumps(e));
1239 }
1240 
1241 
1242 /*
1243 ** Check whether expression 'e' is a literal integer in
1244 ** proper range to fit in register C
1245 */
isCint(expdesc * e)1246 static int isCint (expdesc *e) {
1247   return isKint(e) && (l_castS2U(e->u.ival) <= l_castS2U(MAXARG_C));
1248 }
1249 
1250 
1251 /*
1252 ** Check whether expression 'e' is a literal integer in
1253 ** proper range to fit in register sC
1254 */
isSCint(expdesc * e)1255 static int isSCint (expdesc *e) {
1256   return isKint(e) && fitsC(e->u.ival);
1257 }
1258 
1259 
1260 /*
1261 ** Check whether expression 'e' is a literal integer or float in
1262 ** proper range to fit in a register (sB or sC).
1263 */
isSCnumber(expdesc * e,int * pi,int * isfloat)1264 static int isSCnumber (expdesc *e, int *pi, int *isfloat) {
1265   lua_Integer i;
1266   if (e->k == VKINT)
1267     i = e->u.ival;
1268   else if (e->k == VKFLT && luaV_flttointeger(e->u.nval, &i, F2Ieq))
1269     *isfloat = 1;
1270   else
1271     return 0;  /* not a number */
1272   if (!hasjumps(e) && fitsC(i)) {
1273     *pi = int2sC(cast_int(i));
1274     return 1;
1275   }
1276   else
1277     return 0;
1278 }
1279 
1280 
1281 /*
1282 ** Create expression 't[k]'. 't' must have its final result already in a
1283 ** register or upvalue. Upvalues can only be indexed by literal strings.
1284 ** Keys can be literal strings in the constant table or arbitrary
1285 ** values in registers.
1286 */
luaK_indexed(FuncState * fs,expdesc * t,expdesc * k)1287 void luaK_indexed (FuncState *fs, expdesc *t, expdesc *k) {
1288   if (k->k == VKSTR)
1289     str2K(fs, k);
1290   lua_assert(!hasjumps(t) &&
1291              (t->k == VLOCAL || t->k == VNONRELOC || t->k == VUPVAL));
1292   if (t->k == VUPVAL && !isKstr(fs, k))  /* upvalue indexed by non 'Kstr'? */
1293     luaK_exp2anyreg(fs, t);  /* put it in a register */
1294   if (t->k == VUPVAL) {
1295     int temp = t->u.info;  /* upvalue index */
1296     lua_assert(isKstr(fs, k));
1297     t->u.ind.t = temp;  /* (can't do a direct assignment; values overlap) */
1298     t->u.ind.idx = k->u.info;  /* literal short string */
1299     t->k = VINDEXUP;
1300   }
1301   else {
1302     /* register index of the table */
1303     t->u.ind.t = (t->k == VLOCAL) ? t->u.var.ridx: t->u.info;
1304     if (isKstr(fs, k)) {
1305       t->u.ind.idx = k->u.info;  /* literal short string */
1306       t->k = VINDEXSTR;
1307     }
1308     else if (isCint(k)) {
1309       t->u.ind.idx = cast_int(k->u.ival);  /* int. constant in proper range */
1310       t->k = VINDEXI;
1311     }
1312     else {
1313       t->u.ind.idx = luaK_exp2anyreg(fs, k);  /* register */
1314       t->k = VINDEXED;
1315     }
1316   }
1317 }
1318 
1319 
1320 /*
1321 ** Return false if folding can raise an error.
1322 ** Bitwise operations need operands convertible to integers; division
1323 ** operations cannot have 0 as divisor.
1324 */
validop(int op,TValue * v1,TValue * v2)1325 static int validop (int op, TValue *v1, TValue *v2) {
1326   switch (op) {
1327     case LUA_OPBAND: case LUA_OPBOR: case LUA_OPBXOR:
1328     case LUA_OPSHL: case LUA_OPSHR: case LUA_OPBNOT: {  /* conversion errors */
1329       lua_Integer i;
1330       return (luaV_tointegerns(v1, &i, LUA_FLOORN2I) &&
1331               luaV_tointegerns(v2, &i, LUA_FLOORN2I));
1332     }
1333     case LUA_OPDIV: case LUA_OPIDIV: case LUA_OPMOD:  /* division by 0 */
1334       return (nvalue(v2) != 0);
1335     default: return 1;  /* everything else is valid */
1336   }
1337 }
1338 
1339 
1340 /*
1341 ** Try to "constant-fold" an operation; return 1 iff successful.
1342 ** (In this case, 'e1' has the final result.)
1343 */
constfolding(FuncState * fs,int op,expdesc * e1,const expdesc * e2)1344 static int constfolding (FuncState *fs, int op, expdesc *e1,
1345                                         const expdesc *e2) {
1346   TValue v1, v2, res;
1347   if (!tonumeral(e1, &v1) || !tonumeral(e2, &v2) || !validop(op, &v1, &v2))
1348     return 0;  /* non-numeric operands or not safe to fold */
1349   luaO_rawarith(fs->ls->L, op, &v1, &v2, &res);  /* does operation */
1350   if (ttisinteger(&res)) {
1351     e1->k = VKINT;
1352     e1->u.ival = ivalue(&res);
1353   }
1354   else {  /* folds neither NaN nor 0.0 (to avoid problems with -0.0) */
1355     lua_Number n = fltvalue(&res);
1356     if (luai_numisnan(n) || n == 0)
1357       return 0;
1358     e1->k = VKFLT;
1359     e1->u.nval = n;
1360   }
1361   return 1;
1362 }
1363 
1364 
1365 /*
1366 ** Convert a BinOpr to an OpCode  (ORDER OPR - ORDER OP)
1367 */
binopr2op(BinOpr opr,BinOpr baser,OpCode base)1368 l_sinline OpCode binopr2op (BinOpr opr, BinOpr baser, OpCode base) {
1369   lua_assert(baser <= opr &&
1370             ((baser == OPR_ADD && opr <= OPR_SHR) ||
1371              (baser == OPR_LT && opr <= OPR_LE)));
1372   return cast(OpCode, (cast_int(opr) - cast_int(baser)) + cast_int(base));
1373 }
1374 
1375 
1376 /*
1377 ** Convert a UnOpr to an OpCode  (ORDER OPR - ORDER OP)
1378 */
unopr2op(UnOpr opr)1379 l_sinline OpCode unopr2op (UnOpr opr) {
1380   return cast(OpCode, (cast_int(opr) - cast_int(OPR_MINUS)) +
1381                                        cast_int(OP_UNM));
1382 }
1383 
1384 
1385 /*
1386 ** Convert a BinOpr to a tag method  (ORDER OPR - ORDER TM)
1387 */
binopr2TM(BinOpr opr)1388 l_sinline TMS binopr2TM (BinOpr opr) {
1389   lua_assert(OPR_ADD <= opr && opr <= OPR_SHR);
1390   return cast(TMS, (cast_int(opr) - cast_int(OPR_ADD)) + cast_int(TM_ADD));
1391 }
1392 
1393 
1394 /*
1395 ** Emit code for unary expressions that "produce values"
1396 ** (everything but 'not').
1397 ** Expression to produce final result will be encoded in 'e'.
1398 */
codeunexpval(FuncState * fs,OpCode op,expdesc * e,int line)1399 static void codeunexpval (FuncState *fs, OpCode op, expdesc *e, int line) {
1400   int r = luaK_exp2anyreg(fs, e);  /* opcodes operate only on registers */
1401   freeexp(fs, e);
1402   e->u.info = luaK_codeABC(fs, op, 0, r, 0);  /* generate opcode */
1403   e->k = VRELOC;  /* all those operations are relocatable */
1404   luaK_fixline(fs, line);
1405 }
1406 
1407 
1408 /*
1409 ** Emit code for binary expressions that "produce values"
1410 ** (everything but logical operators 'and'/'or' and comparison
1411 ** operators).
1412 ** Expression to produce final result will be encoded in 'e1'.
1413 */
finishbinexpval(FuncState * fs,expdesc * e1,expdesc * e2,OpCode op,int v2,int flip,int line,OpCode mmop,TMS event)1414 static void finishbinexpval (FuncState *fs, expdesc *e1, expdesc *e2,
1415                              OpCode op, int v2, int flip, int line,
1416                              OpCode mmop, TMS event) {
1417   int v1 = luaK_exp2anyreg(fs, e1);
1418   int pc = luaK_codeABCk(fs, op, 0, v1, v2, 0);
1419   freeexps(fs, e1, e2);
1420   e1->u.info = pc;
1421   e1->k = VRELOC;  /* all those operations are relocatable */
1422   luaK_fixline(fs, line);
1423   luaK_codeABCk(fs, mmop, v1, v2, event, flip);  /* to call metamethod */
1424   luaK_fixline(fs, line);
1425 }
1426 
1427 
1428 /*
1429 ** Emit code for binary expressions that "produce values" over
1430 ** two registers.
1431 */
codebinexpval(FuncState * fs,BinOpr opr,expdesc * e1,expdesc * e2,int line)1432 static void codebinexpval (FuncState *fs, BinOpr opr,
1433                            expdesc *e1, expdesc *e2, int line) {
1434   OpCode op = binopr2op(opr, OPR_ADD, OP_ADD);
1435   int v2 = luaK_exp2anyreg(fs, e2);  /* make sure 'e2' is in a register */
1436   /* 'e1' must be already in a register or it is a constant */
1437   lua_assert((VNIL <= e1->k && e1->k <= VKSTR) ||
1438              e1->k == VNONRELOC || e1->k == VRELOC);
1439   lua_assert(OP_ADD <= op && op <= OP_SHR);
1440   finishbinexpval(fs, e1, e2, op, v2, 0, line, OP_MMBIN, binopr2TM(opr));
1441 }
1442 
1443 
1444 /*
1445 ** Code binary operators with immediate operands.
1446 */
codebini(FuncState * fs,OpCode op,expdesc * e1,expdesc * e2,int flip,int line,TMS event)1447 static void codebini (FuncState *fs, OpCode op,
1448                        expdesc *e1, expdesc *e2, int flip, int line,
1449                        TMS event) {
1450   int v2 = int2sC(cast_int(e2->u.ival));  /* immediate operand */
1451   lua_assert(e2->k == VKINT);
1452   finishbinexpval(fs, e1, e2, op, v2, flip, line, OP_MMBINI, event);
1453 }
1454 
1455 
1456 /*
1457 ** Code binary operators with K operand.
1458 */
codebinK(FuncState * fs,BinOpr opr,expdesc * e1,expdesc * e2,int flip,int line)1459 static void codebinK (FuncState *fs, BinOpr opr,
1460                       expdesc *e1, expdesc *e2, int flip, int line) {
1461   TMS event = binopr2TM(opr);
1462   int v2 = e2->u.info;  /* K index */
1463   OpCode op = binopr2op(opr, OPR_ADD, OP_ADDK);
1464   finishbinexpval(fs, e1, e2, op, v2, flip, line, OP_MMBINK, event);
1465 }
1466 
1467 
1468 /* Try to code a binary operator negating its second operand.
1469 ** For the metamethod, 2nd operand must keep its original value.
1470 */
finishbinexpneg(FuncState * fs,expdesc * e1,expdesc * e2,OpCode op,int line,TMS event)1471 static int finishbinexpneg (FuncState *fs, expdesc *e1, expdesc *e2,
1472                              OpCode op, int line, TMS event) {
1473   if (!isKint(e2))
1474     return 0;  /* not an integer constant */
1475   else {
1476     lua_Integer i2 = e2->u.ival;
1477     if (!(fitsC(i2) && fitsC(-i2)))
1478       return 0;  /* not in the proper range */
1479     else {  /* operating a small integer constant */
1480       int v2 = cast_int(i2);
1481       finishbinexpval(fs, e1, e2, op, int2sC(-v2), 0, line, OP_MMBINI, event);
1482       /* correct metamethod argument */
1483       SETARG_B(fs->f->code[fs->pc - 1], int2sC(v2));
1484       return 1;  /* successfully coded */
1485     }
1486   }
1487 }
1488 
1489 
swapexps(expdesc * e1,expdesc * e2)1490 static void swapexps (expdesc *e1, expdesc *e2) {
1491   expdesc temp = *e1; *e1 = *e2; *e2 = temp;  /* swap 'e1' and 'e2' */
1492 }
1493 
1494 
1495 /*
1496 ** Code binary operators with no constant operand.
1497 */
codebinNoK(FuncState * fs,BinOpr opr,expdesc * e1,expdesc * e2,int flip,int line)1498 static void codebinNoK (FuncState *fs, BinOpr opr,
1499                         expdesc *e1, expdesc *e2, int flip, int line) {
1500   if (flip)
1501     swapexps(e1, e2);  /* back to original order */
1502   codebinexpval(fs, opr, e1, e2, line);  /* use standard operators */
1503 }
1504 
1505 
1506 /*
1507 ** Code arithmetic operators ('+', '-', ...). If second operand is a
1508 ** constant in the proper range, use variant opcodes with K operands.
1509 */
codearith(FuncState * fs,BinOpr opr,expdesc * e1,expdesc * e2,int flip,int line)1510 static void codearith (FuncState *fs, BinOpr opr,
1511                        expdesc *e1, expdesc *e2, int flip, int line) {
1512   if (tonumeral(e2, NULL) && luaK_exp2K(fs, e2))  /* K operand? */
1513     codebinK(fs, opr, e1, e2, flip, line);
1514   else  /* 'e2' is neither an immediate nor a K operand */
1515     codebinNoK(fs, opr, e1, e2, flip, line);
1516 }
1517 
1518 
1519 /*
1520 ** Code commutative operators ('+', '*'). If first operand is a
1521 ** numeric constant, change order of operands to try to use an
1522 ** immediate or K operator.
1523 */
codecommutative(FuncState * fs,BinOpr op,expdesc * e1,expdesc * e2,int line)1524 static void codecommutative (FuncState *fs, BinOpr op,
1525                              expdesc *e1, expdesc *e2, int line) {
1526   int flip = 0;
1527   if (tonumeral(e1, NULL)) {  /* is first operand a numeric constant? */
1528     swapexps(e1, e2);  /* change order */
1529     flip = 1;
1530   }
1531   if (op == OPR_ADD && isSCint(e2))  /* immediate operand? */
1532     codebini(fs, OP_ADDI, e1, e2, flip, line, TM_ADD);
1533   else
1534     codearith(fs, op, e1, e2, flip, line);
1535 }
1536 
1537 
1538 /*
1539 ** Code bitwise operations; they are all commutative, so the function
1540 ** tries to put an integer constant as the 2nd operand (a K operand).
1541 */
codebitwise(FuncState * fs,BinOpr opr,expdesc * e1,expdesc * e2,int line)1542 static void codebitwise (FuncState *fs, BinOpr opr,
1543                          expdesc *e1, expdesc *e2, int line) {
1544   int flip = 0;
1545   if (e1->k == VKINT) {
1546     swapexps(e1, e2);  /* 'e2' will be the constant operand */
1547     flip = 1;
1548   }
1549   if (e2->k == VKINT && luaK_exp2K(fs, e2))  /* K operand? */
1550     codebinK(fs, opr, e1, e2, flip, line);
1551   else  /* no constants */
1552     codebinNoK(fs, opr, e1, e2, flip, line);
1553 }
1554 
1555 
1556 /*
1557 ** Emit code for order comparisons. When using an immediate operand,
1558 ** 'isfloat' tells whether the original value was a float.
1559 */
codeorder(FuncState * fs,BinOpr opr,expdesc * e1,expdesc * e2)1560 static void codeorder (FuncState *fs, BinOpr opr, expdesc *e1, expdesc *e2) {
1561   int r1, r2;
1562   int im;
1563   int isfloat = 0;
1564   OpCode op;
1565   if (isSCnumber(e2, &im, &isfloat)) {
1566     /* use immediate operand */
1567     r1 = luaK_exp2anyreg(fs, e1);
1568     r2 = im;
1569     op = binopr2op(opr, OPR_LT, OP_LTI);
1570   }
1571   else if (isSCnumber(e1, &im, &isfloat)) {
1572     /* transform (A < B) to (B > A) and (A <= B) to (B >= A) */
1573     r1 = luaK_exp2anyreg(fs, e2);
1574     r2 = im;
1575     op = binopr2op(opr, OPR_LT, OP_GTI);
1576   }
1577   else {  /* regular case, compare two registers */
1578     r1 = luaK_exp2anyreg(fs, e1);
1579     r2 = luaK_exp2anyreg(fs, e2);
1580     op = binopr2op(opr, OPR_LT, OP_LT);
1581   }
1582   freeexps(fs, e1, e2);
1583   e1->u.info = condjump(fs, op, r1, r2, isfloat, 1);
1584   e1->k = VJMP;
1585 }
1586 
1587 
1588 /*
1589 ** Emit code for equality comparisons ('==', '~=').
1590 ** 'e1' was already put as RK by 'luaK_infix'.
1591 */
codeeq(FuncState * fs,BinOpr opr,expdesc * e1,expdesc * e2)1592 static void codeeq (FuncState *fs, BinOpr opr, expdesc *e1, expdesc *e2) {
1593   int r1, r2;
1594   int im;
1595   int isfloat = 0;  /* not needed here, but kept for symmetry */
1596   OpCode op;
1597   if (e1->k != VNONRELOC) {
1598     lua_assert(e1->k == VK || e1->k == VKINT || e1->k == VKFLT);
1599     swapexps(e1, e2);
1600   }
1601   r1 = luaK_exp2anyreg(fs, e1);  /* 1st expression must be in register */
1602   if (isSCnumber(e2, &im, &isfloat)) {
1603     op = OP_EQI;
1604     r2 = im;  /* immediate operand */
1605   }
1606   else if (exp2RK(fs, e2)) {  /* 2nd expression is constant? */
1607     op = OP_EQK;
1608     r2 = e2->u.info;  /* constant index */
1609   }
1610   else {
1611     op = OP_EQ;  /* will compare two registers */
1612     r2 = luaK_exp2anyreg(fs, e2);
1613   }
1614   freeexps(fs, e1, e2);
1615   e1->u.info = condjump(fs, op, r1, r2, isfloat, (opr == OPR_EQ));
1616   e1->k = VJMP;
1617 }
1618 
1619 
1620 /*
1621 ** Apply prefix operation 'op' to expression 'e'.
1622 */
luaK_prefix(FuncState * fs,UnOpr opr,expdesc * e,int line)1623 void luaK_prefix (FuncState *fs, UnOpr opr, expdesc *e, int line) {
1624   static const expdesc ef = {VKINT, {0}, NO_JUMP, NO_JUMP};
1625   luaK_dischargevars(fs, e);
1626   switch (opr) {
1627     case OPR_MINUS: case OPR_BNOT:  /* use 'ef' as fake 2nd operand */
1628       if (constfolding(fs, opr + LUA_OPUNM, e, &ef))
1629         break;
1630       /* else */ /* FALLTHROUGH */
1631     case OPR_LEN:
1632       codeunexpval(fs, unopr2op(opr), e, line);
1633       break;
1634     case OPR_NOT: codenot(fs, e); break;
1635     default: lua_assert(0);
1636   }
1637 }
1638 
1639 
1640 /*
1641 ** Process 1st operand 'v' of binary operation 'op' before reading
1642 ** 2nd operand.
1643 */
luaK_infix(FuncState * fs,BinOpr op,expdesc * v)1644 void luaK_infix (FuncState *fs, BinOpr op, expdesc *v) {
1645   luaK_dischargevars(fs, v);
1646   switch (op) {
1647     case OPR_AND: {
1648       luaK_goiftrue(fs, v);  /* go ahead only if 'v' is true */
1649       break;
1650     }
1651     case OPR_OR: {
1652       luaK_goiffalse(fs, v);  /* go ahead only if 'v' is false */
1653       break;
1654     }
1655     case OPR_CONCAT: {
1656       luaK_exp2nextreg(fs, v);  /* operand must be on the stack */
1657       break;
1658     }
1659     case OPR_ADD: case OPR_SUB:
1660     case OPR_MUL: case OPR_DIV: case OPR_IDIV:
1661     case OPR_MOD: case OPR_POW:
1662     case OPR_BAND: case OPR_BOR: case OPR_BXOR:
1663     case OPR_SHL: case OPR_SHR: {
1664       if (!tonumeral(v, NULL))
1665         luaK_exp2anyreg(fs, v);
1666       /* else keep numeral, which may be folded or used as an immediate
1667          operand */
1668       break;
1669     }
1670     case OPR_EQ: case OPR_NE: {
1671       if (!tonumeral(v, NULL))
1672         exp2RK(fs, v);
1673       /* else keep numeral, which may be an immediate operand */
1674       break;
1675     }
1676     case OPR_LT: case OPR_LE:
1677     case OPR_GT: case OPR_GE: {
1678       int dummy, dummy2;
1679       if (!isSCnumber(v, &dummy, &dummy2))
1680         luaK_exp2anyreg(fs, v);
1681       /* else keep numeral, which may be an immediate operand */
1682       break;
1683     }
1684     default: lua_assert(0);
1685   }
1686 }
1687 
1688 /*
1689 ** Create code for '(e1 .. e2)'.
1690 ** For '(e1 .. e2.1 .. e2.2)' (which is '(e1 .. (e2.1 .. e2.2))',
1691 ** because concatenation is right associative), merge both CONCATs.
1692 */
codeconcat(FuncState * fs,expdesc * e1,expdesc * e2,int line)1693 static void codeconcat (FuncState *fs, expdesc *e1, expdesc *e2, int line) {
1694   Instruction *ie2 = previousinstruction(fs);
1695   if (GET_OPCODE(*ie2) == OP_CONCAT) {  /* is 'e2' a concatenation? */
1696     int n = GETARG_B(*ie2);  /* # of elements concatenated in 'e2' */
1697     lua_assert(e1->u.info + 1 == GETARG_A(*ie2));
1698     freeexp(fs, e2);
1699     SETARG_A(*ie2, e1->u.info);  /* correct first element ('e1') */
1700     SETARG_B(*ie2, n + 1);  /* will concatenate one more element */
1701   }
1702   else {  /* 'e2' is not a concatenation */
1703     luaK_codeABC(fs, OP_CONCAT, e1->u.info, 2, 0);  /* new concat opcode */
1704     freeexp(fs, e2);
1705     luaK_fixline(fs, line);
1706   }
1707 }
1708 
1709 
1710 /*
1711 ** Finalize code for binary operation, after reading 2nd operand.
1712 */
luaK_posfix(FuncState * fs,BinOpr opr,expdesc * e1,expdesc * e2,int line)1713 void luaK_posfix (FuncState *fs, BinOpr opr,
1714                   expdesc *e1, expdesc *e2, int line) {
1715   luaK_dischargevars(fs, e2);
1716   if (foldbinop(opr) && constfolding(fs, opr + LUA_OPADD, e1, e2))
1717     return;  /* done by folding */
1718   switch (opr) {
1719     case OPR_AND: {
1720       lua_assert(e1->t == NO_JUMP);  /* list closed by 'luaK_infix' */
1721       luaK_concat(fs, &e2->f, e1->f);
1722       *e1 = *e2;
1723       break;
1724     }
1725     case OPR_OR: {
1726       lua_assert(e1->f == NO_JUMP);  /* list closed by 'luaK_infix' */
1727       luaK_concat(fs, &e2->t, e1->t);
1728       *e1 = *e2;
1729       break;
1730     }
1731     case OPR_CONCAT: {  /* e1 .. e2 */
1732       luaK_exp2nextreg(fs, e2);
1733       codeconcat(fs, e1, e2, line);
1734       break;
1735     }
1736     case OPR_ADD: case OPR_MUL: {
1737       codecommutative(fs, opr, e1, e2, line);
1738       break;
1739     }
1740     case OPR_SUB: {
1741       if (finishbinexpneg(fs, e1, e2, OP_ADDI, line, TM_SUB))
1742         break; /* coded as (r1 + -I) */
1743       /* ELSE */
1744     }  /* FALLTHROUGH */
1745     case OPR_DIV: case OPR_IDIV: case OPR_MOD: case OPR_POW: {
1746       codearith(fs, opr, e1, e2, 0, line);
1747       break;
1748     }
1749     case OPR_BAND: case OPR_BOR: case OPR_BXOR: {
1750       codebitwise(fs, opr, e1, e2, line);
1751       break;
1752     }
1753     case OPR_SHL: {
1754       if (isSCint(e1)) {
1755         swapexps(e1, e2);
1756         codebini(fs, OP_SHLI, e1, e2, 1, line, TM_SHL);  /* I << r2 */
1757       }
1758       else if (finishbinexpneg(fs, e1, e2, OP_SHRI, line, TM_SHL)) {
1759         /* coded as (r1 >> -I) */;
1760       }
1761       else  /* regular case (two registers) */
1762        codebinexpval(fs, opr, e1, e2, line);
1763       break;
1764     }
1765     case OPR_SHR: {
1766       if (isSCint(e2))
1767         codebini(fs, OP_SHRI, e1, e2, 0, line, TM_SHR);  /* r1 >> I */
1768       else  /* regular case (two registers) */
1769         codebinexpval(fs, opr, e1, e2, line);
1770       break;
1771     }
1772     case OPR_EQ: case OPR_NE: {
1773       codeeq(fs, opr, e1, e2);
1774       break;
1775     }
1776     case OPR_GT: case OPR_GE: {
1777       /* '(a > b)' <=> '(b < a)';  '(a >= b)' <=> '(b <= a)' */
1778       swapexps(e1, e2);
1779       opr = cast(BinOpr, (opr - OPR_GT) + OPR_LT);
1780     }  /* FALLTHROUGH */
1781     case OPR_LT: case OPR_LE: {
1782       codeorder(fs, opr, e1, e2);
1783       break;
1784     }
1785     default: lua_assert(0);
1786   }
1787 }
1788 
1789 
1790 /*
1791 ** Change line information associated with current position, by removing
1792 ** previous info and adding it again with new line.
1793 */
luaK_fixline(FuncState * fs,int line)1794 void luaK_fixline (FuncState *fs, int line) {
1795   removelastlineinfo(fs);
1796   savelineinfo(fs, fs->f, line);
1797 }
1798 
1799 
luaK_settablesize(FuncState * fs,int pc,int ra,int asize,int hsize)1800 void luaK_settablesize (FuncState *fs, int pc, int ra, int asize, int hsize) {
1801   Instruction *inst = &fs->f->code[pc];
1802   int rb = (hsize != 0) ? luaO_ceillog2(hsize) + 1 : 0;  /* hash size */
1803   int extra = asize / (MAXARG_C + 1);  /* higher bits of array size */
1804   int rc = asize % (MAXARG_C + 1);  /* lower bits of array size */
1805   int k = (extra > 0);  /* true iff needs extra argument */
1806   *inst = CREATE_ABCk(OP_NEWTABLE, ra, rb, rc, k);
1807   *(inst + 1) = CREATE_Ax(OP_EXTRAARG, extra);
1808 }
1809 
1810 
1811 /*
1812 ** Emit a SETLIST instruction.
1813 ** 'base' is register that keeps table;
1814 ** 'nelems' is #table plus those to be stored now;
1815 ** 'tostore' is number of values (in registers 'base + 1',...) to add to
1816 ** table (or LUA_MULTRET to add up to stack top).
1817 */
luaK_setlist(FuncState * fs,int base,int nelems,int tostore)1818 void luaK_setlist (FuncState *fs, int base, int nelems, int tostore) {
1819   lua_assert(tostore != 0 && tostore <= LFIELDS_PER_FLUSH);
1820   if (tostore == LUA_MULTRET)
1821     tostore = 0;
1822   if (nelems <= MAXARG_C)
1823     luaK_codeABC(fs, OP_SETLIST, base, tostore, nelems);
1824   else {
1825     int extra = nelems / (MAXARG_C + 1);
1826     nelems %= (MAXARG_C + 1);
1827     luaK_codeABCk(fs, OP_SETLIST, base, tostore, nelems, 1);
1828     codeextraarg(fs, extra);
1829   }
1830   fs->freereg = base + 1;  /* free registers with list values */
1831 }
1832 
1833 
1834 /*
1835 ** return the final target of a jump (skipping jumps to jumps)
1836 */
finaltarget(Instruction * code,int i)1837 static int finaltarget (Instruction *code, int i) {
1838   int count;
1839   for (count = 0; count < 100; count++) {  /* avoid infinite loops */
1840     Instruction pc = code[i];
1841     if (GET_OPCODE(pc) != OP_JMP)
1842       break;
1843      else
1844        i += GETARG_sJ(pc) + 1;
1845   }
1846   return i;
1847 }
1848 
1849 
1850 /*
1851 ** Do a final pass over the code of a function, doing small peephole
1852 ** optimizations and adjustments.
1853 */
luaK_finish(FuncState * fs)1854 void luaK_finish (FuncState *fs) {
1855   int i;
1856   Proto *p = fs->f;
1857   for (i = 0; i < fs->pc; i++) {
1858     Instruction *pc = &p->code[i];
1859     lua_assert(i == 0 || isOT(*(pc - 1)) == isIT(*pc));
1860     switch (GET_OPCODE(*pc)) {
1861       case OP_RETURN0: case OP_RETURN1: {
1862         if (!(fs->needclose || p->is_vararg))
1863           break;  /* no extra work */
1864         /* else use OP_RETURN to do the extra work */
1865         SET_OPCODE(*pc, OP_RETURN);
1866       }  /* FALLTHROUGH */
1867       case OP_RETURN: case OP_TAILCALL: {
1868         if (fs->needclose)
1869           SETARG_k(*pc, 1);  /* signal that it needs to close */
1870         if (p->is_vararg)
1871           SETARG_C(*pc, p->numparams + 1);  /* signal that it is vararg */
1872         break;
1873       }
1874       case OP_JMP: {
1875         int target = finaltarget(p->code, i);
1876         fixjump(fs, i, target);
1877         break;
1878       }
1879       default: break;
1880     }
1881   }
1882 }
1883