1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2017-2025 Yandex LLC
5 * Copyright (c) 2017-2025 Andrey V. Elsukov <ae@FreeBSD.org>
6 * Copyright (c) 2002 Luigi Rizzo, Universita` di Pisa
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
30 #include <sys/cdefs.h>
31 #include "opt_inet.h"
32 #include "opt_inet6.h"
33 #include "opt_ipfw.h"
34 #ifndef INET
35 #error IPFIREWALL requires INET.
36 #endif /* INET */
37
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/hash.h>
41 #include <sys/mbuf.h>
42 #include <sys/kernel.h>
43 #include <sys/lock.h>
44 #include <sys/pcpu.h>
45 #include <sys/queue.h>
46 #include <sys/rmlock.h>
47 #include <sys/smp.h>
48 #include <sys/socket.h>
49 #include <sys/sysctl.h>
50 #include <sys/syslog.h>
51 #include <net/ethernet.h>
52 #include <net/if.h>
53 #include <net/if_var.h>
54 #include <net/vnet.h>
55
56 #include <netinet/in.h>
57 #include <netinet/ip.h>
58 #include <netinet/ip_var.h>
59 #include <netinet/ip_fw.h>
60 #include <netinet/tcp.h>
61 #include <netinet/udp.h>
62
63 #include <netinet/ip6.h> /* IN6_ARE_ADDR_EQUAL */
64 #ifdef INET6
65 #include <netinet6/in6_var.h>
66 #include <netinet6/ip6_var.h>
67 #include <netinet6/scope6_var.h>
68 #endif
69
70 #include <netpfil/ipfw/ip_fw_private.h>
71
72 #include <machine/in_cksum.h> /* XXX for in_cksum */
73
74 #ifdef MAC
75 #include <security/mac/mac_framework.h>
76 #endif
77
78 /*
79 * Description of dynamic states.
80 *
81 * Dynamic states are stored in lists accessed through a hash tables
82 * whose size is curr_dyn_buckets. This value can be modified through
83 * the sysctl variable dyn_buckets.
84 *
85 * Currently there are four tables: dyn_ipv4, dyn_ipv6, dyn_ipv4_parent,
86 * and dyn_ipv6_parent.
87 *
88 * When a packet is received, its address fields hashed, then matched
89 * against the entries in the corresponding list by addr_type.
90 * Dynamic states can be used for different purposes:
91 * + stateful rules;
92 * + enforcing limits on the number of sessions;
93 * + in-kernel NAT (not implemented yet)
94 *
95 * The lifetime of dynamic states is regulated by dyn_*_lifetime,
96 * measured in seconds and depending on the flags.
97 *
98 * The total number of dynamic states is equal to UMA zone items count.
99 * The max number of dynamic states is dyn_max. When we reach
100 * the maximum number of rules we do not create anymore. This is
101 * done to avoid consuming too much memory, but also too much
102 * time when searching on each packet (ideally, we should try instead
103 * to put a limit on the length of the list on each bucket...).
104 *
105 * Each state holds a pointer to the parent ipfw rule so we know what
106 * action to perform. Dynamic rules are removed when the parent rule is
107 * deleted.
108 *
109 * There are some limitations with dynamic rules -- we do not
110 * obey the 'randomized match', and we do not do multiple
111 * passes through the firewall. XXX check the latter!!!
112 */
113
114 /* By default use jenkins hash function */
115 #define IPFIREWALL_JENKINSHASH
116
117 #define DYN_COUNTER_INC(d, dir, pktlen) do { \
118 (d)->pcnt_ ## dir++; \
119 (d)->bcnt_ ## dir += pktlen; \
120 } while (0)
121
122 #define DYN_REFERENCED 0x01
123 /*
124 * DYN_REFERENCED flag is used to show that state keeps reference to named
125 * object, and this reference should be released when state becomes expired.
126 */
127
128 struct dyn_data {
129 void *parent; /* pointer to parent rule */
130 uint32_t chain_id; /* cached ruleset id */
131 uint32_t f_pos; /* cached rule index */
132
133 uint32_t hashval; /* hash value used for hash resize */
134 uint16_t fibnum; /* fib used to send keepalives */
135 uint8_t _pad;
136 uint8_t flags; /* internal flags */
137 uint32_t rulenum; /* parent rule number */
138 uint32_t ruleid; /* parent rule id */
139
140 uint32_t state; /* TCP session state and flags */
141 uint32_t ack_fwd; /* most recent ACKs in forward */
142 uint32_t ack_rev; /* and reverse direction (used */
143 /* to generate keepalives) */
144 uint32_t sync; /* synchronization time */
145 uint32_t expire; /* expire time */
146
147 uint64_t pcnt_fwd; /* packets counter in forward */
148 uint64_t bcnt_fwd; /* bytes counter in forward */
149 uint64_t pcnt_rev; /* packets counter in reverse */
150 uint64_t bcnt_rev; /* bytes counter in reverse */
151 };
152
153 #define DPARENT_COUNT_DEC(p) do { \
154 MPASS(p->count > 0); \
155 ck_pr_dec_32(&(p)->count); \
156 } while (0)
157 #define DPARENT_COUNT_INC(p) ck_pr_inc_32(&(p)->count)
158 #define DPARENT_COUNT(p) ck_pr_load_32(&(p)->count)
159 struct dyn_parent {
160 void *parent; /* pointer to parent rule */
161 uint32_t count; /* number of linked states */
162 uint32_t rulenum; /* parent rule number */
163 uint32_t ruleid; /* parent rule id */
164 uint32_t hashval; /* hash value used for hash resize */
165 uint32_t expire; /* expire time */
166 };
167
168 struct dyn_ipv4_state {
169 uint8_t type; /* State type */
170 uint8_t proto; /* UL Protocol */
171 uint16_t spare;
172 uint32_t kidx; /* named object index */
173 uint16_t sport, dport; /* ULP source and destination ports */
174 in_addr_t src, dst; /* IPv4 source and destination */
175
176 union {
177 struct dyn_data *data;
178 struct dyn_parent *limit;
179 };
180 CK_SLIST_ENTRY(dyn_ipv4_state) entry;
181 SLIST_ENTRY(dyn_ipv4_state) expired;
182 };
183 CK_SLIST_HEAD(dyn_ipv4ck_slist, dyn_ipv4_state);
184 VNET_DEFINE_STATIC(struct dyn_ipv4ck_slist *, dyn_ipv4);
185 VNET_DEFINE_STATIC(struct dyn_ipv4ck_slist *, dyn_ipv4_parent);
186
187 SLIST_HEAD(dyn_ipv4_slist, dyn_ipv4_state);
188 VNET_DEFINE_STATIC(struct dyn_ipv4_slist, dyn_expired_ipv4);
189 #define V_dyn_ipv4 VNET(dyn_ipv4)
190 #define V_dyn_ipv4_parent VNET(dyn_ipv4_parent)
191 #define V_dyn_expired_ipv4 VNET(dyn_expired_ipv4)
192
193 #ifdef INET6
194 struct dyn_ipv6_state {
195 uint8_t type; /* State type */
196 uint8_t proto; /* UL Protocol */
197 uint16_t kidx; /* named object index */
198 uint16_t sport, dport; /* ULP source and destination ports */
199 struct in6_addr src, dst; /* IPv6 source and destination */
200 uint32_t zoneid; /* IPv6 scope zone id */
201 union {
202 struct dyn_data *data;
203 struct dyn_parent *limit;
204 };
205 CK_SLIST_ENTRY(dyn_ipv6_state) entry;
206 SLIST_ENTRY(dyn_ipv6_state) expired;
207 };
208 CK_SLIST_HEAD(dyn_ipv6ck_slist, dyn_ipv6_state);
209 VNET_DEFINE_STATIC(struct dyn_ipv6ck_slist *, dyn_ipv6);
210 VNET_DEFINE_STATIC(struct dyn_ipv6ck_slist *, dyn_ipv6_parent);
211
212 SLIST_HEAD(dyn_ipv6_slist, dyn_ipv6_state);
213 VNET_DEFINE_STATIC(struct dyn_ipv6_slist, dyn_expired_ipv6);
214 #define V_dyn_ipv6 VNET(dyn_ipv6)
215 #define V_dyn_ipv6_parent VNET(dyn_ipv6_parent)
216 #define V_dyn_expired_ipv6 VNET(dyn_expired_ipv6)
217 #endif /* INET6 */
218
219 /*
220 * Per-CPU pointer indicates that specified state is currently in use
221 * and must not be reclaimed by expiration callout.
222 */
223 static void **dyn_hp_cache;
224 DPCPU_DEFINE_STATIC(void *, dyn_hp);
225 #define DYNSTATE_GET(cpu) ck_pr_load_ptr(DPCPU_ID_PTR((cpu), dyn_hp))
226 #define DYNSTATE_PROTECT(v) ck_pr_store_ptr(DPCPU_PTR(dyn_hp), (v))
227 #define DYNSTATE_RELEASE() DYNSTATE_PROTECT(NULL)
228 #define DYNSTATE_CRITICAL_ENTER() critical_enter()
229 #define DYNSTATE_CRITICAL_EXIT() do { \
230 DYNSTATE_RELEASE(); \
231 critical_exit(); \
232 } while (0);
233
234 /*
235 * We keep two version numbers, one is updated when new entry added to
236 * the list. Second is updated when an entry deleted from the list.
237 * Versions are updated under bucket lock.
238 *
239 * Bucket "add" version number is used to know, that in the time between
240 * state lookup (i.e. ipfw_dyn_lookup_state()) and the followed state
241 * creation (i.e. ipfw_dyn_install_state()) another concurrent thread did
242 * not install some state in this bucket. Using this info we can avoid
243 * additional state lookup, because we are sure that we will not install
244 * the state twice.
245 *
246 * Also doing the tracking of bucket "del" version during lookup we can
247 * be sure, that state entry was not unlinked and freed in time between
248 * we read the state pointer and protect it with hazard pointer.
249 *
250 * An entry unlinked from CK list keeps unchanged until it is freed.
251 * Unlinked entries are linked into expired lists using "expired" field.
252 */
253
254 /*
255 * dyn_expire_lock is used to protect access to dyn_expired_xxx lists.
256 * dyn_bucket_lock is used to get write access to lists in specific bucket.
257 * Currently one dyn_bucket_lock is used for all ipv4, ipv4_parent, ipv6,
258 * and ipv6_parent lists.
259 */
260 VNET_DEFINE_STATIC(struct mtx, dyn_expire_lock);
261 VNET_DEFINE_STATIC(struct mtx *, dyn_bucket_lock);
262 #define V_dyn_expire_lock VNET(dyn_expire_lock)
263 #define V_dyn_bucket_lock VNET(dyn_bucket_lock)
264
265 /*
266 * Bucket's add/delete generation versions.
267 */
268 VNET_DEFINE_STATIC(uint32_t *, dyn_ipv4_add);
269 VNET_DEFINE_STATIC(uint32_t *, dyn_ipv4_del);
270 VNET_DEFINE_STATIC(uint32_t *, dyn_ipv4_parent_add);
271 VNET_DEFINE_STATIC(uint32_t *, dyn_ipv4_parent_del);
272 #define V_dyn_ipv4_add VNET(dyn_ipv4_add)
273 #define V_dyn_ipv4_del VNET(dyn_ipv4_del)
274 #define V_dyn_ipv4_parent_add VNET(dyn_ipv4_parent_add)
275 #define V_dyn_ipv4_parent_del VNET(dyn_ipv4_parent_del)
276
277 #ifdef INET6
278 VNET_DEFINE_STATIC(uint32_t *, dyn_ipv6_add);
279 VNET_DEFINE_STATIC(uint32_t *, dyn_ipv6_del);
280 VNET_DEFINE_STATIC(uint32_t *, dyn_ipv6_parent_add);
281 VNET_DEFINE_STATIC(uint32_t *, dyn_ipv6_parent_del);
282 #define V_dyn_ipv6_add VNET(dyn_ipv6_add)
283 #define V_dyn_ipv6_del VNET(dyn_ipv6_del)
284 #define V_dyn_ipv6_parent_add VNET(dyn_ipv6_parent_add)
285 #define V_dyn_ipv6_parent_del VNET(dyn_ipv6_parent_del)
286 #endif /* INET6 */
287
288 #define DYN_BUCKET(h, b) ((h) & (b - 1))
289 #define DYN_BUCKET_VERSION(b, v) ck_pr_load_32(&V_dyn_ ## v[(b)])
290 #define DYN_BUCKET_VERSION_BUMP(b, v) ck_pr_inc_32(&V_dyn_ ## v[(b)])
291
292 #define DYN_BUCKET_LOCK_INIT(lock, b) \
293 mtx_init(&lock[(b)], "IPFW dynamic bucket", NULL, MTX_DEF)
294 #define DYN_BUCKET_LOCK_DESTROY(lock, b) mtx_destroy(&lock[(b)])
295 #define DYN_BUCKET_LOCK(b) mtx_lock(&V_dyn_bucket_lock[(b)])
296 #define DYN_BUCKET_UNLOCK(b) mtx_unlock(&V_dyn_bucket_lock[(b)])
297 #define DYN_BUCKET_ASSERT(b) mtx_assert(&V_dyn_bucket_lock[(b)], MA_OWNED)
298
299 #define DYN_EXPIRED_LOCK_INIT() \
300 mtx_init(&V_dyn_expire_lock, "IPFW expired states list", NULL, MTX_DEF)
301 #define DYN_EXPIRED_LOCK_DESTROY() mtx_destroy(&V_dyn_expire_lock)
302 #define DYN_EXPIRED_LOCK() mtx_lock(&V_dyn_expire_lock)
303 #define DYN_EXPIRED_UNLOCK() mtx_unlock(&V_dyn_expire_lock)
304
305 VNET_DEFINE_STATIC(uint32_t, dyn_buckets_max);
306 VNET_DEFINE_STATIC(uint32_t, curr_dyn_buckets);
307 VNET_DEFINE_STATIC(struct callout, dyn_timeout);
308 #define V_dyn_buckets_max VNET(dyn_buckets_max)
309 #define V_curr_dyn_buckets VNET(curr_dyn_buckets)
310 #define V_dyn_timeout VNET(dyn_timeout)
311
312 /* Maximum length of states chain in a bucket */
313 VNET_DEFINE_STATIC(uint32_t, curr_max_length);
314 #define V_curr_max_length VNET(curr_max_length)
315
316 VNET_DEFINE_STATIC(uint32_t, dyn_keep_states);
317 #define V_dyn_keep_states VNET(dyn_keep_states)
318
319 VNET_DEFINE_STATIC(uma_zone_t, dyn_data_zone);
320 VNET_DEFINE_STATIC(uma_zone_t, dyn_parent_zone);
321 VNET_DEFINE_STATIC(uma_zone_t, dyn_ipv4_zone);
322 #ifdef INET6
323 VNET_DEFINE_STATIC(uma_zone_t, dyn_ipv6_zone);
324 #define V_dyn_ipv6_zone VNET(dyn_ipv6_zone)
325 #endif /* INET6 */
326 #define V_dyn_data_zone VNET(dyn_data_zone)
327 #define V_dyn_parent_zone VNET(dyn_parent_zone)
328 #define V_dyn_ipv4_zone VNET(dyn_ipv4_zone)
329
330 /*
331 * Timeouts for various events in handing dynamic rules.
332 */
333 VNET_DEFINE_STATIC(uint32_t, dyn_ack_lifetime);
334 VNET_DEFINE_STATIC(uint32_t, dyn_syn_lifetime);
335 VNET_DEFINE_STATIC(uint32_t, dyn_fin_lifetime);
336 VNET_DEFINE_STATIC(uint32_t, dyn_rst_lifetime);
337 VNET_DEFINE_STATIC(uint32_t, dyn_udp_lifetime);
338 VNET_DEFINE_STATIC(uint32_t, dyn_short_lifetime);
339
340 #define V_dyn_ack_lifetime VNET(dyn_ack_lifetime)
341 #define V_dyn_syn_lifetime VNET(dyn_syn_lifetime)
342 #define V_dyn_fin_lifetime VNET(dyn_fin_lifetime)
343 #define V_dyn_rst_lifetime VNET(dyn_rst_lifetime)
344 #define V_dyn_udp_lifetime VNET(dyn_udp_lifetime)
345 #define V_dyn_short_lifetime VNET(dyn_short_lifetime)
346
347 /*
348 * Keepalives are sent if dyn_keepalive is set. They are sent every
349 * dyn_keepalive_period seconds, in the last dyn_keepalive_interval
350 * seconds of lifetime of a rule.
351 * dyn_rst_lifetime and dyn_fin_lifetime should be strictly lower
352 * than dyn_keepalive_period.
353 */
354 VNET_DEFINE_STATIC(uint32_t, dyn_keepalive_interval);
355 VNET_DEFINE_STATIC(uint32_t, dyn_keepalive_period);
356 VNET_DEFINE_STATIC(uint32_t, dyn_keepalive);
357 VNET_DEFINE_STATIC(time_t, dyn_keepalive_last);
358
359 #define V_dyn_keepalive_interval VNET(dyn_keepalive_interval)
360 #define V_dyn_keepalive_period VNET(dyn_keepalive_period)
361 #define V_dyn_keepalive VNET(dyn_keepalive)
362 #define V_dyn_keepalive_last VNET(dyn_keepalive_last)
363
364 VNET_DEFINE_STATIC(uint32_t, dyn_max); /* max # of dynamic states */
365 VNET_DEFINE_STATIC(uint32_t, dyn_count); /* number of states */
366 VNET_DEFINE_STATIC(uint32_t, dyn_parent_max); /* max # of parent states */
367 VNET_DEFINE_STATIC(uint32_t, dyn_parent_count); /* number of parent states */
368
369 #define V_dyn_max VNET(dyn_max)
370 #define V_dyn_count VNET(dyn_count)
371 #define V_dyn_parent_max VNET(dyn_parent_max)
372 #define V_dyn_parent_count VNET(dyn_parent_count)
373
374 #define DYN_COUNT_DEC(name) do { \
375 MPASS((V_ ## name) > 0); \
376 ck_pr_dec_32(&(V_ ## name)); \
377 } while (0)
378 #define DYN_COUNT_INC(name) ck_pr_inc_32(&(V_ ## name))
379 #define DYN_COUNT(name) ck_pr_load_32(&(V_ ## name))
380
381 static time_t last_log; /* Log ratelimiting */
382
383 /*
384 * Get/set maximum number of dynamic states in given VNET instance.
385 */
386 static int
sysctl_dyn_max(SYSCTL_HANDLER_ARGS)387 sysctl_dyn_max(SYSCTL_HANDLER_ARGS)
388 {
389 uint32_t nstates;
390 int error;
391
392 nstates = V_dyn_max;
393 error = sysctl_handle_32(oidp, &nstates, 0, req);
394 /* Read operation or some error */
395 if ((error != 0) || (req->newptr == NULL))
396 return (error);
397
398 V_dyn_max = nstates;
399 uma_zone_set_max(V_dyn_data_zone, V_dyn_max);
400 return (0);
401 }
402
403 static int
sysctl_dyn_parent_max(SYSCTL_HANDLER_ARGS)404 sysctl_dyn_parent_max(SYSCTL_HANDLER_ARGS)
405 {
406 uint32_t nstates;
407 int error;
408
409 nstates = V_dyn_parent_max;
410 error = sysctl_handle_32(oidp, &nstates, 0, req);
411 /* Read operation or some error */
412 if ((error != 0) || (req->newptr == NULL))
413 return (error);
414
415 V_dyn_parent_max = nstates;
416 uma_zone_set_max(V_dyn_parent_zone, V_dyn_parent_max);
417 return (0);
418 }
419
420 static int
sysctl_dyn_buckets(SYSCTL_HANDLER_ARGS)421 sysctl_dyn_buckets(SYSCTL_HANDLER_ARGS)
422 {
423 uint32_t nbuckets;
424 int error;
425
426 nbuckets = V_dyn_buckets_max;
427 error = sysctl_handle_32(oidp, &nbuckets, 0, req);
428 /* Read operation or some error */
429 if ((error != 0) || (req->newptr == NULL))
430 return (error);
431
432 if (nbuckets > 256)
433 V_dyn_buckets_max = 1 << fls(nbuckets - 1);
434 else
435 return (EINVAL);
436 return (0);
437 }
438
439 SYSCTL_DECL(_net_inet_ip_fw);
440
441 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, dyn_count,
442 CTLFLAG_VNET | CTLFLAG_RD, &VNET_NAME(dyn_count), 0,
443 "Current number of dynamic states.");
444 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, dyn_parent_count,
445 CTLFLAG_VNET | CTLFLAG_RD, &VNET_NAME(dyn_parent_count), 0,
446 "Current number of parent states. ");
447 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, curr_dyn_buckets,
448 CTLFLAG_VNET | CTLFLAG_RD, &VNET_NAME(curr_dyn_buckets), 0,
449 "Current number of buckets for states hash table.");
450 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, curr_max_length,
451 CTLFLAG_VNET | CTLFLAG_RD, &VNET_NAME(curr_max_length), 0,
452 "Current maximum length of states chains in hash buckets.");
453 SYSCTL_PROC(_net_inet_ip_fw, OID_AUTO, dyn_buckets,
454 CTLFLAG_VNET | CTLTYPE_U32 | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
455 0, 0, sysctl_dyn_buckets, "IU",
456 "Max number of buckets for dynamic states hash table.");
457 SYSCTL_PROC(_net_inet_ip_fw, OID_AUTO, dyn_max,
458 CTLFLAG_VNET | CTLTYPE_U32 | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
459 0, 0, sysctl_dyn_max, "IU",
460 "Max number of dynamic states.");
461 SYSCTL_PROC(_net_inet_ip_fw, OID_AUTO, dyn_parent_max,
462 CTLFLAG_VNET | CTLTYPE_U32 | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
463 0, 0, sysctl_dyn_parent_max, "IU",
464 "Max number of parent dynamic states.");
465 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, dyn_ack_lifetime,
466 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_ack_lifetime), 0,
467 "Lifetime of dynamic states for TCP ACK.");
468 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, dyn_syn_lifetime,
469 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_syn_lifetime), 0,
470 "Lifetime of dynamic states for TCP SYN.");
471 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, dyn_fin_lifetime,
472 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_fin_lifetime), 0,
473 "Lifetime of dynamic states for TCP FIN.");
474 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, dyn_rst_lifetime,
475 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_rst_lifetime), 0,
476 "Lifetime of dynamic states for TCP RST.");
477 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, dyn_udp_lifetime,
478 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_udp_lifetime), 0,
479 "Lifetime of dynamic states for UDP.");
480 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, dyn_short_lifetime,
481 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_short_lifetime), 0,
482 "Lifetime of dynamic states for other situations.");
483 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, dyn_keepalive,
484 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_keepalive), 0,
485 "Enable keepalives for dynamic states.");
486 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, dyn_keep_states,
487 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_keep_states), 0,
488 "Do not flush dynamic states on rule deletion");
489
490 #ifdef IPFIREWALL_DYNDEBUG
491 #define DYN_DEBUG(fmt, ...) do { \
492 printf("%s: " fmt "\n", __func__, __VA_ARGS__); \
493 } while (0)
494 #else
495 #define DYN_DEBUG(fmt, ...)
496 #endif /* !IPFIREWALL_DYNDEBUG */
497
498 #ifdef INET6
499 /* Functions to work with IPv6 states */
500 static struct dyn_ipv6_state *dyn_lookup_ipv6_state(
501 const struct ipfw_flow_id *, uint32_t, const void *,
502 struct ipfw_dyn_info *, int);
503 static int dyn_lookup_ipv6_state_locked(const struct ipfw_flow_id *,
504 uint32_t, const void *, int, uint32_t, uint32_t);
505 static struct dyn_ipv6_state *dyn_alloc_ipv6_state(
506 const struct ipfw_flow_id *, uint32_t, uint32_t, uint8_t);
507 static int dyn_add_ipv6_state(void *, uint32_t, uint32_t,
508 const struct ipfw_flow_id *, uint32_t, const void *, int, uint32_t,
509 struct ipfw_dyn_info *, uint16_t, uint32_t, uint8_t);
510 static void dyn_export_ipv6_state(const struct dyn_ipv6_state *,
511 ipfw_dyn_rule *);
512
513 static uint32_t dyn_getscopeid(const struct ip_fw_args *);
514 static void dyn_make_keepalive_ipv6(struct mbuf *, const struct in6_addr *,
515 const struct in6_addr *, uint32_t, uint32_t, uint32_t, uint16_t,
516 uint16_t);
517 static void dyn_enqueue_keepalive_ipv6(struct mbufq *,
518 const struct dyn_ipv6_state *);
519 static void dyn_send_keepalive_ipv6(struct ip_fw_chain *);
520
521 static struct dyn_ipv6_state *dyn_lookup_ipv6_parent(
522 const struct ipfw_flow_id *, uint32_t, const void *, uint32_t, uint32_t,
523 uint32_t);
524 static struct dyn_ipv6_state *dyn_lookup_ipv6_parent_locked(
525 const struct ipfw_flow_id *, uint32_t, const void *, uint32_t, uint32_t,
526 uint32_t);
527 static struct dyn_ipv6_state *dyn_add_ipv6_parent(void *, uint32_t, uint32_t,
528 const struct ipfw_flow_id *, uint32_t, uint32_t, uint32_t, uint32_t);
529 #endif /* INET6 */
530
531 /* Functions to work with limit states */
532 static void *dyn_get_parent_state(const struct ipfw_flow_id *, uint32_t,
533 struct ip_fw *, uint32_t, uint32_t, uint32_t);
534 static struct dyn_ipv4_state *dyn_lookup_ipv4_parent(
535 const struct ipfw_flow_id *, const void *, uint32_t, uint32_t, uint32_t);
536 static struct dyn_ipv4_state *dyn_lookup_ipv4_parent_locked(
537 const struct ipfw_flow_id *, const void *, uint32_t, uint32_t, uint32_t);
538 static struct dyn_parent *dyn_alloc_parent(void *, uint32_t, uint32_t,
539 uint32_t);
540 static struct dyn_ipv4_state *dyn_add_ipv4_parent(void *, uint32_t, uint32_t,
541 const struct ipfw_flow_id *, uint32_t, uint32_t, uint32_t);
542
543 static void dyn_tick(void *);
544 static void dyn_expire_states(struct ip_fw_chain *, ipfw_range_tlv *);
545 static void dyn_free_states(struct ip_fw_chain *);
546 static void dyn_export_parent(const struct dyn_parent *, uint32_t, uint8_t,
547 ipfw_dyn_rule *);
548 static void dyn_export_data(const struct dyn_data *, uint32_t, uint8_t,
549 uint8_t, ipfw_dyn_rule *);
550 static uint32_t dyn_update_tcp_state(struct dyn_data *,
551 const struct ipfw_flow_id *, const struct tcphdr *, int);
552 static void dyn_update_proto_state(struct dyn_data *,
553 const struct ipfw_flow_id *, const void *, int, int);
554
555 /* Functions to work with IPv4 states */
556 struct dyn_ipv4_state *dyn_lookup_ipv4_state(const struct ipfw_flow_id *,
557 const void *, struct ipfw_dyn_info *, int);
558 static int dyn_lookup_ipv4_state_locked(const struct ipfw_flow_id *,
559 const void *, int, uint32_t, uint32_t);
560 static struct dyn_ipv4_state *dyn_alloc_ipv4_state(
561 const struct ipfw_flow_id *, uint32_t, uint8_t);
562 static int dyn_add_ipv4_state(void *, uint32_t, uint32_t,
563 const struct ipfw_flow_id *, const void *, int, uint32_t,
564 struct ipfw_dyn_info *, uint16_t, uint32_t, uint8_t);
565 static void dyn_export_ipv4_state(const struct dyn_ipv4_state *,
566 ipfw_dyn_rule *);
567
568 /*
569 * Named states support.
570 */
571 static char *default_state_name = "default";
572 struct dyn_state_obj {
573 struct named_object no;
574 char name[64];
575 };
576
577 /*
578 * Classifier callback.
579 * Return 0 if opcode contains object that should be referenced
580 * or rewritten.
581 */
582 static int
dyn_classify(ipfw_insn * cmd0,uint32_t * puidx,uint8_t * ptype)583 dyn_classify(ipfw_insn *cmd0, uint32_t *puidx, uint8_t *ptype)
584 {
585 ipfw_insn_kidx *cmd;
586
587 if (F_LEN(cmd0) < 2)
588 return (EINVAL);
589
590 /*
591 * NOTE: ipfw_insn_kidx and ipfw_insn_limit has overlapped kidx
592 * field, so we can use one type to get access to kidx field.
593 */
594 cmd = insntod(cmd0, kidx);
595 DYN_DEBUG("opcode %u, kidx %u", cmd0->opcode, cmd->kidx);
596 /* Don't rewrite "check-state any" */
597 if (cmd->kidx == 0 &&
598 cmd0->opcode == O_CHECK_STATE)
599 return (1);
600
601 *puidx = cmd->kidx;
602 *ptype = 0;
603 return (0);
604 }
605
606 static void
dyn_update(ipfw_insn * cmd0,uint32_t idx)607 dyn_update(ipfw_insn *cmd0, uint32_t idx)
608 {
609
610 insntod(cmd0, kidx)->kidx = idx;
611 DYN_DEBUG("opcode %u, kidx %u", cmd0->opcode, idx);
612 }
613
614 static int
dyn_findbyname(struct ip_fw_chain * ch,struct tid_info * ti,struct named_object ** pno)615 dyn_findbyname(struct ip_fw_chain *ch, struct tid_info *ti,
616 struct named_object **pno)
617 {
618 ipfw_obj_ntlv *ntlv;
619 const char *name;
620
621 DYN_DEBUG("uidx %u", ti->uidx);
622 if (ti->uidx != 0) {
623 if (ti->tlvs == NULL)
624 return (EINVAL);
625 /* Search ntlv in the buffer provided by user */
626 ntlv = ipfw_find_name_tlv_type(ti->tlvs, ti->tlen, ti->uidx,
627 IPFW_TLV_STATE_NAME);
628 if (ntlv == NULL)
629 return (EINVAL);
630 name = ntlv->name;
631 } else
632 name = default_state_name;
633 /*
634 * Search named object with corresponding name.
635 * Since states objects are global - ignore the set value
636 * and use zero instead.
637 */
638 *pno = ipfw_objhash_lookup_name_type(CHAIN_TO_SRV(ch), 0,
639 IPFW_TLV_STATE_NAME, name);
640 /*
641 * We always return success here.
642 * The caller will check *pno and mark object as unresolved,
643 * then it will automatically create "default" object.
644 */
645 return (0);
646 }
647
648 static struct named_object *
dyn_findbykidx(struct ip_fw_chain * ch,uint32_t idx)649 dyn_findbykidx(struct ip_fw_chain *ch, uint32_t idx)
650 {
651
652 DYN_DEBUG("kidx %u", idx);
653 return (ipfw_objhash_lookup_kidx(CHAIN_TO_SRV(ch), idx));
654 }
655
656 static int
dyn_create(struct ip_fw_chain * ch,struct tid_info * ti,uint32_t * pkidx)657 dyn_create(struct ip_fw_chain *ch, struct tid_info *ti,
658 uint32_t *pkidx)
659 {
660 struct namedobj_instance *ni;
661 struct dyn_state_obj *obj;
662 struct named_object *no;
663 ipfw_obj_ntlv *ntlv;
664 char *name;
665
666 IPFW_UH_WLOCK_ASSERT(ch);
667
668 DYN_DEBUG("uidx %u", ti->uidx);
669 if (ti->uidx != 0) {
670 if (ti->tlvs == NULL)
671 return (EINVAL);
672 ntlv = ipfw_find_name_tlv_type(ti->tlvs, ti->tlen, ti->uidx,
673 IPFW_TLV_STATE_NAME);
674 if (ntlv == NULL)
675 return (EINVAL);
676 name = ntlv->name;
677 } else
678 name = default_state_name;
679
680 ni = CHAIN_TO_SRV(ch);
681 obj = malloc(sizeof(*obj), M_IPFW, M_WAITOK | M_ZERO);
682 obj->no.name = obj->name;
683 obj->no.etlv = IPFW_TLV_STATE_NAME;
684 strlcpy(obj->name, name, sizeof(obj->name));
685
686 no = ipfw_objhash_lookup_name_type(ni, 0,
687 IPFW_TLV_STATE_NAME, name);
688 if (no != NULL) {
689 /*
690 * Object is already created.
691 * Just return its kidx and bump refcount.
692 */
693 *pkidx = no->kidx;
694 no->refcnt++;
695 free(obj, M_IPFW);
696 DYN_DEBUG("\tfound kidx %u for name '%s'", *pkidx, no->name);
697 return (0);
698 }
699 if (ipfw_objhash_alloc_idx(ni, &obj->no.kidx) != 0) {
700 DYN_DEBUG("\talloc_idx failed for %s", name);
701 free(obj, M_IPFW);
702 return (ENOSPC);
703 }
704 ipfw_objhash_add(ni, &obj->no);
705 SRV_OBJECT(ch, obj->no.kidx) = obj;
706 obj->no.refcnt++;
707 *pkidx = obj->no.kidx;
708 DYN_DEBUG("\tcreated kidx %u for name '%s'", *pkidx, name);
709 return (0);
710 }
711
712 static void
dyn_destroy(struct ip_fw_chain * ch,struct named_object * no)713 dyn_destroy(struct ip_fw_chain *ch, struct named_object *no)
714 {
715 struct dyn_state_obj *obj;
716
717 IPFW_UH_WLOCK_ASSERT(ch);
718
719 KASSERT(no->etlv == IPFW_TLV_STATE_NAME,
720 ("%s: wrong object type %u", __func__, no->etlv));
721 KASSERT(no->refcnt == 1,
722 ("Destroying object '%s' (type %u, idx %u) with refcnt %u",
723 no->name, no->etlv, no->kidx, no->refcnt));
724 DYN_DEBUG("kidx %u", no->kidx);
725 obj = SRV_OBJECT(ch, no->kidx);
726 SRV_OBJECT(ch, no->kidx) = NULL;
727 ipfw_objhash_del(CHAIN_TO_SRV(ch), no);
728 ipfw_objhash_free_idx(CHAIN_TO_SRV(ch), no->kidx);
729
730 free(obj, M_IPFW);
731 }
732
733 static struct opcode_obj_rewrite dyn_opcodes[] = {
734 {
735 .opcode = O_KEEP_STATE,
736 .etlv = IPFW_TLV_STATE_NAME,
737 .classifier = dyn_classify,
738 .update = dyn_update,
739 .find_byname = dyn_findbyname,
740 .find_bykidx = dyn_findbykidx,
741 .create_object = dyn_create,
742 .destroy_object = dyn_destroy,
743 },
744 {
745 .opcode = O_CHECK_STATE,
746 .etlv = IPFW_TLV_STATE_NAME,
747 .classifier = dyn_classify,
748 .update = dyn_update,
749 .find_byname = dyn_findbyname,
750 .find_bykidx = dyn_findbykidx,
751 .create_object = dyn_create,
752 .destroy_object = dyn_destroy,
753 },
754 {
755 .opcode = O_PROBE_STATE,
756 .etlv = IPFW_TLV_STATE_NAME,
757 .classifier = dyn_classify,
758 .update = dyn_update,
759 .find_byname = dyn_findbyname,
760 .find_bykidx = dyn_findbykidx,
761 .create_object = dyn_create,
762 .destroy_object = dyn_destroy,
763 },
764 {
765 .opcode = O_LIMIT,
766 .etlv = IPFW_TLV_STATE_NAME,
767 .classifier = dyn_classify,
768 .update = dyn_update,
769 .find_byname = dyn_findbyname,
770 .find_bykidx = dyn_findbykidx,
771 .create_object = dyn_create,
772 .destroy_object = dyn_destroy,
773 },
774 };
775
776 /*
777 * IMPORTANT: the hash function for dynamic rules must be commutative
778 * in source and destination (ip,port), because rules are bidirectional
779 * and we want to find both in the same bucket.
780 */
781 #ifndef IPFIREWALL_JENKINSHASH
782 static __inline uint32_t
hash_packet(const struct ipfw_flow_id * id)783 hash_packet(const struct ipfw_flow_id *id)
784 {
785 uint32_t i;
786
787 #ifdef INET6
788 if (IS_IP6_FLOW_ID(id))
789 i = ntohl((id->dst_ip6.__u6_addr.__u6_addr32[2]) ^
790 (id->dst_ip6.__u6_addr.__u6_addr32[3]) ^
791 (id->src_ip6.__u6_addr.__u6_addr32[2]) ^
792 (id->src_ip6.__u6_addr.__u6_addr32[3]));
793 else
794 #endif /* INET6 */
795 i = (id->dst_ip) ^ (id->src_ip);
796 i ^= (id->dst_port) ^ (id->src_port);
797 return (i);
798 }
799
800 static __inline uint32_t
hash_parent(const struct ipfw_flow_id * id,const void * rule)801 hash_parent(const struct ipfw_flow_id *id, const void *rule)
802 {
803
804 return (hash_packet(id) ^ ((uintptr_t)rule));
805 }
806
807 #else /* IPFIREWALL_JENKINSHASH */
808
809 VNET_DEFINE_STATIC(uint32_t, dyn_hashseed);
810 #define V_dyn_hashseed VNET(dyn_hashseed)
811
812 static __inline int
addrcmp4(const struct ipfw_flow_id * id)813 addrcmp4(const struct ipfw_flow_id *id)
814 {
815
816 if (id->src_ip < id->dst_ip)
817 return (0);
818 if (id->src_ip > id->dst_ip)
819 return (1);
820 if (id->src_port <= id->dst_port)
821 return (0);
822 return (1);
823 }
824
825 #ifdef INET6
826 static __inline int
addrcmp6(const struct ipfw_flow_id * id)827 addrcmp6(const struct ipfw_flow_id *id)
828 {
829 int ret;
830
831 ret = memcmp(&id->src_ip6, &id->dst_ip6, sizeof(struct in6_addr));
832 if (ret < 0)
833 return (0);
834 if (ret > 0)
835 return (1);
836 if (id->src_port <= id->dst_port)
837 return (0);
838 return (1);
839 }
840
841 static __inline uint32_t
hash_packet6(const struct ipfw_flow_id * id)842 hash_packet6(const struct ipfw_flow_id *id)
843 {
844 struct tuple6 {
845 struct in6_addr addr[2];
846 uint16_t port[2];
847 } t6;
848
849 if (addrcmp6(id) == 0) {
850 t6.addr[0] = id->src_ip6;
851 t6.addr[1] = id->dst_ip6;
852 t6.port[0] = id->src_port;
853 t6.port[1] = id->dst_port;
854 } else {
855 t6.addr[0] = id->dst_ip6;
856 t6.addr[1] = id->src_ip6;
857 t6.port[0] = id->dst_port;
858 t6.port[1] = id->src_port;
859 }
860 return (jenkins_hash32((const uint32_t *)&t6,
861 sizeof(t6) / sizeof(uint32_t), V_dyn_hashseed));
862 }
863 #endif
864
865 static __inline uint32_t
hash_packet(const struct ipfw_flow_id * id)866 hash_packet(const struct ipfw_flow_id *id)
867 {
868 struct tuple4 {
869 in_addr_t addr[2];
870 uint16_t port[2];
871 } t4;
872
873 if (IS_IP4_FLOW_ID(id)) {
874 /* All fields are in host byte order */
875 if (addrcmp4(id) == 0) {
876 t4.addr[0] = id->src_ip;
877 t4.addr[1] = id->dst_ip;
878 t4.port[0] = id->src_port;
879 t4.port[1] = id->dst_port;
880 } else {
881 t4.addr[0] = id->dst_ip;
882 t4.addr[1] = id->src_ip;
883 t4.port[0] = id->dst_port;
884 t4.port[1] = id->src_port;
885 }
886 return (jenkins_hash32((const uint32_t *)&t4,
887 sizeof(t4) / sizeof(uint32_t), V_dyn_hashseed));
888 } else
889 #ifdef INET6
890 if (IS_IP6_FLOW_ID(id))
891 return (hash_packet6(id));
892 #endif
893 return (0);
894 }
895
896 static __inline uint32_t
hash_parent(const struct ipfw_flow_id * id,const void * rule)897 hash_parent(const struct ipfw_flow_id *id, const void *rule)
898 {
899
900 return (jenkins_hash32((const uint32_t *)&rule,
901 sizeof(rule) / sizeof(uint32_t), hash_packet(id)));
902 }
903 #endif /* IPFIREWALL_JENKINSHASH */
904
905 /*
906 * Print customizable flow id description via log(9) facility.
907 */
908 static void
print_dyn_rule_flags(const struct ipfw_flow_id * id,int dyn_type,int log_flags,char * prefix,char * postfix)909 print_dyn_rule_flags(const struct ipfw_flow_id *id, int dyn_type,
910 int log_flags, char *prefix, char *postfix)
911 {
912 struct in_addr da;
913 #ifdef INET6
914 char src[INET6_ADDRSTRLEN], dst[INET6_ADDRSTRLEN];
915 #else
916 char src[INET_ADDRSTRLEN], dst[INET_ADDRSTRLEN];
917 #endif
918
919 #ifdef INET6
920 if (IS_IP6_FLOW_ID(id)) {
921 ip6_sprintf(src, &id->src_ip6);
922 ip6_sprintf(dst, &id->dst_ip6);
923 } else
924 #endif
925 {
926 da.s_addr = htonl(id->src_ip);
927 inet_ntop(AF_INET, &da, src, sizeof(src));
928 da.s_addr = htonl(id->dst_ip);
929 inet_ntop(AF_INET, &da, dst, sizeof(dst));
930 }
931 log(log_flags, "ipfw: %s type %d %s %d -> %s %d, %d %s\n",
932 prefix, dyn_type, src, id->src_port, dst,
933 id->dst_port, V_dyn_count, postfix);
934 }
935
936 #define print_dyn_rule(id, dtype, prefix, postfix) \
937 print_dyn_rule_flags(id, dtype, LOG_DEBUG, prefix, postfix)
938
939 #define TIME_LEQ(a,b) ((int)((a)-(b)) <= 0)
940 #define TIME_LE(a,b) ((int)((a)-(b)) < 0)
941 #define _SEQ_GE(a,b) ((int)((a)-(b)) >= 0)
942 #define BOTH_SYN (TH_SYN | (TH_SYN << 8))
943 #define BOTH_FIN (TH_FIN | (TH_FIN << 8))
944 #define BOTH_RST (TH_RST | (TH_RST << 8))
945 #define TCP_FLAGS (BOTH_SYN | BOTH_FIN | BOTH_RST)
946 #define ACK_FWD 0x00010000 /* fwd ack seen */
947 #define ACK_REV 0x00020000 /* rev ack seen */
948 #define ACK_BOTH (ACK_FWD | ACK_REV)
949
950 static uint32_t
dyn_update_tcp_state(struct dyn_data * data,const struct ipfw_flow_id * pkt,const struct tcphdr * tcp,int dir)951 dyn_update_tcp_state(struct dyn_data *data, const struct ipfw_flow_id *pkt,
952 const struct tcphdr *tcp, int dir)
953 {
954 uint32_t ack, expire;
955 uint32_t state, old;
956 uint8_t th_flags;
957
958 expire = data->expire;
959 old = state = data->state;
960 th_flags = pkt->_flags & (TH_FIN | TH_SYN | TH_RST);
961 state |= (dir == MATCH_FORWARD) ? th_flags: (th_flags << 8);
962 switch (state & TCP_FLAGS) {
963 case TH_SYN: /* opening */
964 expire = time_uptime + V_dyn_syn_lifetime;
965 break;
966
967 case BOTH_SYN: /* move to established */
968 case BOTH_SYN | TH_FIN: /* one side tries to close */
969 case BOTH_SYN | (TH_FIN << 8):
970 if (tcp == NULL)
971 break;
972 ack = ntohl(tcp->th_ack);
973 if (dir == MATCH_FORWARD) {
974 if (data->ack_fwd == 0 ||
975 _SEQ_GE(ack, data->ack_fwd)) {
976 state |= ACK_FWD;
977 if (data->ack_fwd != ack)
978 ck_pr_store_32(&data->ack_fwd, ack);
979 }
980 } else {
981 if (data->ack_rev == 0 ||
982 _SEQ_GE(ack, data->ack_rev)) {
983 state |= ACK_REV;
984 if (data->ack_rev != ack)
985 ck_pr_store_32(&data->ack_rev, ack);
986 }
987 }
988 if ((state & ACK_BOTH) == ACK_BOTH) {
989 /*
990 * Set expire time to V_dyn_ack_lifetime only if
991 * we got ACKs for both directions.
992 * We use XOR here to avoid possible state
993 * overwriting in concurrent thread.
994 */
995 expire = time_uptime + V_dyn_ack_lifetime;
996 ck_pr_xor_32(&data->state, ACK_BOTH);
997 } else if ((data->state & ACK_BOTH) != (state & ACK_BOTH))
998 ck_pr_or_32(&data->state, state & ACK_BOTH);
999 break;
1000
1001 case BOTH_SYN | BOTH_FIN: /* both sides closed */
1002 if (V_dyn_fin_lifetime >= V_dyn_keepalive_period)
1003 V_dyn_fin_lifetime = V_dyn_keepalive_period - 1;
1004 expire = time_uptime + V_dyn_fin_lifetime;
1005 break;
1006
1007 default:
1008 if (V_dyn_keepalive != 0 &&
1009 V_dyn_rst_lifetime >= V_dyn_keepalive_period)
1010 V_dyn_rst_lifetime = V_dyn_keepalive_period - 1;
1011 expire = time_uptime + V_dyn_rst_lifetime;
1012 }
1013 /* Save TCP state if it was changed */
1014 if ((state & TCP_FLAGS) != (old & TCP_FLAGS))
1015 ck_pr_or_32(&data->state, state & TCP_FLAGS);
1016 return (expire);
1017 }
1018
1019 /*
1020 * Update ULP specific state.
1021 * For TCP we keep sequence numbers and flags. For other protocols
1022 * currently we update only expire time. Packets and bytes counters
1023 * are also updated here.
1024 */
1025 static void
dyn_update_proto_state(struct dyn_data * data,const struct ipfw_flow_id * pkt,const void * ulp,int pktlen,int dir)1026 dyn_update_proto_state(struct dyn_data *data, const struct ipfw_flow_id *pkt,
1027 const void *ulp, int pktlen, int dir)
1028 {
1029 uint32_t expire;
1030
1031 /* NOTE: we are in critical section here. */
1032 switch (pkt->proto) {
1033 case IPPROTO_UDP:
1034 case IPPROTO_UDPLITE:
1035 expire = time_uptime + V_dyn_udp_lifetime;
1036 break;
1037 case IPPROTO_TCP:
1038 expire = dyn_update_tcp_state(data, pkt, ulp, dir);
1039 break;
1040 default:
1041 expire = time_uptime + V_dyn_short_lifetime;
1042 }
1043 /*
1044 * Expiration timer has the per-second granularity, no need to update
1045 * it every time when state is matched.
1046 */
1047 if (data->expire != expire)
1048 ck_pr_store_32(&data->expire, expire);
1049
1050 if (dir == MATCH_FORWARD)
1051 DYN_COUNTER_INC(data, fwd, pktlen);
1052 else
1053 DYN_COUNTER_INC(data, rev, pktlen);
1054 }
1055
1056 /*
1057 * Lookup IPv4 state.
1058 * Must be called in critical section.
1059 */
1060 struct dyn_ipv4_state *
dyn_lookup_ipv4_state(const struct ipfw_flow_id * pkt,const void * ulp,struct ipfw_dyn_info * info,int pktlen)1061 dyn_lookup_ipv4_state(const struct ipfw_flow_id *pkt, const void *ulp,
1062 struct ipfw_dyn_info *info, int pktlen)
1063 {
1064 struct dyn_ipv4_state *s;
1065 uint32_t version, bucket;
1066
1067 bucket = DYN_BUCKET(info->hashval, V_curr_dyn_buckets);
1068 info->version = DYN_BUCKET_VERSION(bucket, ipv4_add);
1069 restart:
1070 version = DYN_BUCKET_VERSION(bucket, ipv4_del);
1071 CK_SLIST_FOREACH(s, &V_dyn_ipv4[bucket], entry) {
1072 DYNSTATE_PROTECT(s);
1073 if (version != DYN_BUCKET_VERSION(bucket, ipv4_del))
1074 goto restart;
1075 if (s->proto != pkt->proto)
1076 continue;
1077 if (info->kidx != 0 && s->kidx != info->kidx)
1078 continue;
1079 if (s->sport == pkt->src_port && s->dport == pkt->dst_port &&
1080 s->src == pkt->src_ip && s->dst == pkt->dst_ip) {
1081 info->direction = MATCH_FORWARD;
1082 break;
1083 }
1084 if (s->sport == pkt->dst_port && s->dport == pkt->src_port &&
1085 s->src == pkt->dst_ip && s->dst == pkt->src_ip) {
1086 info->direction = MATCH_REVERSE;
1087 break;
1088 }
1089 }
1090
1091 if (s != NULL)
1092 dyn_update_proto_state(s->data, pkt, ulp, pktlen,
1093 info->direction);
1094 return (s);
1095 }
1096
1097 /*
1098 * Lookup IPv4 state.
1099 * Simplifed version is used to check that matching state doesn't exist.
1100 */
1101 static int
dyn_lookup_ipv4_state_locked(const struct ipfw_flow_id * pkt,const void * ulp,int pktlen,uint32_t bucket,uint32_t kidx)1102 dyn_lookup_ipv4_state_locked(const struct ipfw_flow_id *pkt,
1103 const void *ulp, int pktlen, uint32_t bucket, uint32_t kidx)
1104 {
1105 struct dyn_ipv4_state *s;
1106 int dir;
1107
1108 dir = MATCH_NONE;
1109 DYN_BUCKET_ASSERT(bucket);
1110 CK_SLIST_FOREACH(s, &V_dyn_ipv4[bucket], entry) {
1111 if (s->proto != pkt->proto ||
1112 s->kidx != kidx)
1113 continue;
1114 if (s->sport == pkt->src_port &&
1115 s->dport == pkt->dst_port &&
1116 s->src == pkt->src_ip && s->dst == pkt->dst_ip) {
1117 dir = MATCH_FORWARD;
1118 break;
1119 }
1120 if (s->sport == pkt->dst_port && s->dport == pkt->src_port &&
1121 s->src == pkt->dst_ip && s->dst == pkt->src_ip) {
1122 dir = MATCH_REVERSE;
1123 break;
1124 }
1125 }
1126 if (s != NULL)
1127 dyn_update_proto_state(s->data, pkt, ulp, pktlen, dir);
1128 return (s != NULL);
1129 }
1130
1131 struct dyn_ipv4_state *
dyn_lookup_ipv4_parent(const struct ipfw_flow_id * pkt,const void * rule,uint32_t ruleid,uint32_t rulenum,uint32_t hashval)1132 dyn_lookup_ipv4_parent(const struct ipfw_flow_id *pkt, const void *rule,
1133 uint32_t ruleid, uint32_t rulenum, uint32_t hashval)
1134 {
1135 struct dyn_ipv4_state *s;
1136 uint32_t version, bucket;
1137
1138 bucket = DYN_BUCKET(hashval, V_curr_dyn_buckets);
1139 restart:
1140 version = DYN_BUCKET_VERSION(bucket, ipv4_parent_del);
1141 CK_SLIST_FOREACH(s, &V_dyn_ipv4_parent[bucket], entry) {
1142 DYNSTATE_PROTECT(s);
1143 if (version != DYN_BUCKET_VERSION(bucket, ipv4_parent_del))
1144 goto restart;
1145 /*
1146 * NOTE: we do not need to check kidx, because parent rule
1147 * can not create states with different kidx.
1148 * And parent rule always created for forward direction.
1149 */
1150 if (s->limit->parent == rule &&
1151 s->limit->ruleid == ruleid &&
1152 s->limit->rulenum == rulenum &&
1153 s->proto == pkt->proto &&
1154 s->sport == pkt->src_port &&
1155 s->dport == pkt->dst_port &&
1156 s->src == pkt->src_ip && s->dst == pkt->dst_ip) {
1157 if (s->limit->expire != time_uptime +
1158 V_dyn_short_lifetime)
1159 ck_pr_store_32(&s->limit->expire,
1160 time_uptime + V_dyn_short_lifetime);
1161 break;
1162 }
1163 }
1164 return (s);
1165 }
1166
1167 static struct dyn_ipv4_state *
dyn_lookup_ipv4_parent_locked(const struct ipfw_flow_id * pkt,const void * rule,uint32_t ruleid,uint32_t rulenum,uint32_t bucket)1168 dyn_lookup_ipv4_parent_locked(const struct ipfw_flow_id *pkt,
1169 const void *rule, uint32_t ruleid, uint32_t rulenum, uint32_t bucket)
1170 {
1171 struct dyn_ipv4_state *s;
1172
1173 DYN_BUCKET_ASSERT(bucket);
1174 CK_SLIST_FOREACH(s, &V_dyn_ipv4_parent[bucket], entry) {
1175 if (s->limit->parent == rule &&
1176 s->limit->ruleid == ruleid &&
1177 s->limit->rulenum == rulenum &&
1178 s->proto == pkt->proto &&
1179 s->sport == pkt->src_port &&
1180 s->dport == pkt->dst_port &&
1181 s->src == pkt->src_ip && s->dst == pkt->dst_ip)
1182 break;
1183 }
1184 return (s);
1185 }
1186
1187 #ifdef INET6
1188 static uint32_t
dyn_getscopeid(const struct ip_fw_args * args)1189 dyn_getscopeid(const struct ip_fw_args *args)
1190 {
1191
1192 /*
1193 * If source or destination address is an scopeid address, we need
1194 * determine the scope zone id to resolve address scope ambiguity.
1195 */
1196 if (IN6_IS_ADDR_LINKLOCAL(&args->f_id.src_ip6) ||
1197 IN6_IS_ADDR_LINKLOCAL(&args->f_id.dst_ip6))
1198 return (in6_getscopezone(args->ifp, IPV6_ADDR_SCOPE_LINKLOCAL));
1199
1200 return (0);
1201 }
1202
1203 /*
1204 * Lookup IPv6 state.
1205 * Must be called in critical section.
1206 */
1207 static struct dyn_ipv6_state *
dyn_lookup_ipv6_state(const struct ipfw_flow_id * pkt,uint32_t zoneid,const void * ulp,struct ipfw_dyn_info * info,int pktlen)1208 dyn_lookup_ipv6_state(const struct ipfw_flow_id *pkt, uint32_t zoneid,
1209 const void *ulp, struct ipfw_dyn_info *info, int pktlen)
1210 {
1211 struct dyn_ipv6_state *s;
1212 uint32_t version, bucket;
1213
1214 bucket = DYN_BUCKET(info->hashval, V_curr_dyn_buckets);
1215 info->version = DYN_BUCKET_VERSION(bucket, ipv6_add);
1216 restart:
1217 version = DYN_BUCKET_VERSION(bucket, ipv6_del);
1218 CK_SLIST_FOREACH(s, &V_dyn_ipv6[bucket], entry) {
1219 DYNSTATE_PROTECT(s);
1220 if (version != DYN_BUCKET_VERSION(bucket, ipv6_del))
1221 goto restart;
1222 if (s->proto != pkt->proto || s->zoneid != zoneid)
1223 continue;
1224 if (info->kidx != 0 && s->kidx != info->kidx)
1225 continue;
1226 if (s->sport == pkt->src_port && s->dport == pkt->dst_port &&
1227 IN6_ARE_ADDR_EQUAL(&s->src, &pkt->src_ip6) &&
1228 IN6_ARE_ADDR_EQUAL(&s->dst, &pkt->dst_ip6)) {
1229 info->direction = MATCH_FORWARD;
1230 break;
1231 }
1232 if (s->sport == pkt->dst_port && s->dport == pkt->src_port &&
1233 IN6_ARE_ADDR_EQUAL(&s->src, &pkt->dst_ip6) &&
1234 IN6_ARE_ADDR_EQUAL(&s->dst, &pkt->src_ip6)) {
1235 info->direction = MATCH_REVERSE;
1236 break;
1237 }
1238 }
1239 if (s != NULL)
1240 dyn_update_proto_state(s->data, pkt, ulp, pktlen,
1241 info->direction);
1242 return (s);
1243 }
1244
1245 /*
1246 * Lookup IPv6 state.
1247 * Simplifed version is used to check that matching state doesn't exist.
1248 */
1249 static int
dyn_lookup_ipv6_state_locked(const struct ipfw_flow_id * pkt,uint32_t zoneid,const void * ulp,int pktlen,uint32_t bucket,uint32_t kidx)1250 dyn_lookup_ipv6_state_locked(const struct ipfw_flow_id *pkt, uint32_t zoneid,
1251 const void *ulp, int pktlen, uint32_t bucket, uint32_t kidx)
1252 {
1253 struct dyn_ipv6_state *s;
1254 int dir;
1255
1256 dir = MATCH_NONE;
1257 DYN_BUCKET_ASSERT(bucket);
1258 CK_SLIST_FOREACH(s, &V_dyn_ipv6[bucket], entry) {
1259 if (s->proto != pkt->proto || s->kidx != kidx ||
1260 s->zoneid != zoneid)
1261 continue;
1262 if (s->sport == pkt->src_port && s->dport == pkt->dst_port &&
1263 IN6_ARE_ADDR_EQUAL(&s->src, &pkt->src_ip6) &&
1264 IN6_ARE_ADDR_EQUAL(&s->dst, &pkt->dst_ip6)) {
1265 dir = MATCH_FORWARD;
1266 break;
1267 }
1268 if (s->sport == pkt->dst_port && s->dport == pkt->src_port &&
1269 IN6_ARE_ADDR_EQUAL(&s->src, &pkt->dst_ip6) &&
1270 IN6_ARE_ADDR_EQUAL(&s->dst, &pkt->src_ip6)) {
1271 dir = MATCH_REVERSE;
1272 break;
1273 }
1274 }
1275 if (s != NULL)
1276 dyn_update_proto_state(s->data, pkt, ulp, pktlen, dir);
1277 return (s != NULL);
1278 }
1279
1280 static struct dyn_ipv6_state *
dyn_lookup_ipv6_parent(const struct ipfw_flow_id * pkt,uint32_t zoneid,const void * rule,uint32_t ruleid,uint32_t rulenum,uint32_t hashval)1281 dyn_lookup_ipv6_parent(const struct ipfw_flow_id *pkt, uint32_t zoneid,
1282 const void *rule, uint32_t ruleid, uint32_t rulenum, uint32_t hashval)
1283 {
1284 struct dyn_ipv6_state *s;
1285 uint32_t version, bucket;
1286
1287 bucket = DYN_BUCKET(hashval, V_curr_dyn_buckets);
1288 restart:
1289 version = DYN_BUCKET_VERSION(bucket, ipv6_parent_del);
1290 CK_SLIST_FOREACH(s, &V_dyn_ipv6_parent[bucket], entry) {
1291 DYNSTATE_PROTECT(s);
1292 if (version != DYN_BUCKET_VERSION(bucket, ipv6_parent_del))
1293 goto restart;
1294 /*
1295 * NOTE: we do not need to check kidx, because parent rule
1296 * can not create states with different kidx.
1297 * Also parent rule always created for forward direction.
1298 */
1299 if (s->limit->parent == rule &&
1300 s->limit->ruleid == ruleid &&
1301 s->limit->rulenum == rulenum &&
1302 s->proto == pkt->proto &&
1303 s->sport == pkt->src_port &&
1304 s->dport == pkt->dst_port && s->zoneid == zoneid &&
1305 IN6_ARE_ADDR_EQUAL(&s->src, &pkt->src_ip6) &&
1306 IN6_ARE_ADDR_EQUAL(&s->dst, &pkt->dst_ip6)) {
1307 if (s->limit->expire != time_uptime +
1308 V_dyn_short_lifetime)
1309 ck_pr_store_32(&s->limit->expire,
1310 time_uptime + V_dyn_short_lifetime);
1311 break;
1312 }
1313 }
1314 return (s);
1315 }
1316
1317 static struct dyn_ipv6_state *
dyn_lookup_ipv6_parent_locked(const struct ipfw_flow_id * pkt,uint32_t zoneid,const void * rule,uint32_t ruleid,uint32_t rulenum,uint32_t bucket)1318 dyn_lookup_ipv6_parent_locked(const struct ipfw_flow_id *pkt, uint32_t zoneid,
1319 const void *rule, uint32_t ruleid, uint32_t rulenum, uint32_t bucket)
1320 {
1321 struct dyn_ipv6_state *s;
1322
1323 DYN_BUCKET_ASSERT(bucket);
1324 CK_SLIST_FOREACH(s, &V_dyn_ipv6_parent[bucket], entry) {
1325 if (s->limit->parent == rule &&
1326 s->limit->ruleid == ruleid &&
1327 s->limit->rulenum == rulenum &&
1328 s->proto == pkt->proto &&
1329 s->sport == pkt->src_port &&
1330 s->dport == pkt->dst_port && s->zoneid == zoneid &&
1331 IN6_ARE_ADDR_EQUAL(&s->src, &pkt->src_ip6) &&
1332 IN6_ARE_ADDR_EQUAL(&s->dst, &pkt->dst_ip6))
1333 break;
1334 }
1335 return (s);
1336 }
1337
1338 #endif /* INET6 */
1339
1340 static int
dyn_handle_orphaned(struct ip_fw * old_rule,struct dyn_data * data)1341 dyn_handle_orphaned(struct ip_fw *old_rule, struct dyn_data *data)
1342 {
1343 struct ip_fw *rule;
1344 const ipfw_insn *cmd, *old_cmd;
1345
1346 old_cmd = ACTION_PTR(old_rule);
1347 switch (old_cmd->opcode) {
1348 case O_SETMARK:
1349 case O_SKIPTO:
1350 /*
1351 * Rule pointer was changed. For O_SKIPTO action it can be
1352 * dangerous to keep use old rule. If new rule has the same
1353 * action and the same destination number, then use this dynamic
1354 * state. Otherwise it is better to create new one.
1355 */
1356 rule = V_layer3_chain.map[data->f_pos];
1357 cmd = ACTION_PTR(rule);
1358 if (cmd->opcode != old_cmd->opcode ||
1359 cmd->len != old_cmd->len || cmd->arg1 != old_cmd->arg1 ||
1360 insntoc(cmd, u32)->d[0] != insntoc(old_cmd, u32)->d[0])
1361 return (-1);
1362 break;
1363 }
1364 return (0);
1365 }
1366
1367 /*
1368 * Lookup dynamic state.
1369 * pkt - filled by ipfw_chk() ipfw_flow_id;
1370 * ulp - determined by ipfw_chk() upper level protocol header;
1371 * dyn_info - info about matched state to return back;
1372 * Returns pointer to state's parent rule and dyn_info. If there is
1373 * no state, NULL is returned.
1374 * On match ipfw_dyn_lookup() updates state's counters.
1375 */
1376 struct ip_fw *
ipfw_dyn_lookup_state(const struct ip_fw_args * args,const void * ulp,int pktlen,const ipfw_insn * cmd,struct ipfw_dyn_info * info)1377 ipfw_dyn_lookup_state(const struct ip_fw_args *args, const void *ulp,
1378 int pktlen, const ipfw_insn *cmd, struct ipfw_dyn_info *info)
1379 {
1380 struct dyn_data *data;
1381 struct ip_fw *rule;
1382
1383 IPFW_RLOCK_ASSERT(&V_layer3_chain);
1384 MPASS(F_LEN(cmd) >= F_INSN_SIZE(ipfw_insn_kidx));
1385
1386 data = NULL;
1387 rule = NULL;
1388 info->kidx = insntoc(cmd, kidx)->kidx;
1389 info->direction = MATCH_NONE;
1390 info->hashval = hash_packet(&args->f_id);
1391
1392 DYNSTATE_CRITICAL_ENTER();
1393 if (IS_IP4_FLOW_ID(&args->f_id)) {
1394 struct dyn_ipv4_state *s;
1395
1396 s = dyn_lookup_ipv4_state(&args->f_id, ulp, info, pktlen);
1397 if (s != NULL) {
1398 /*
1399 * Dynamic states are created using the same 5-tuple,
1400 * so it is assumed, that parent rule for O_LIMIT
1401 * state has the same address family.
1402 */
1403 data = s->data;
1404 if (s->type == O_LIMIT) {
1405 s = data->parent;
1406 rule = s->limit->parent;
1407 } else
1408 rule = data->parent;
1409 }
1410 }
1411 #ifdef INET6
1412 else if (IS_IP6_FLOW_ID(&args->f_id)) {
1413 struct dyn_ipv6_state *s;
1414
1415 s = dyn_lookup_ipv6_state(&args->f_id, dyn_getscopeid(args),
1416 ulp, info, pktlen);
1417 if (s != NULL) {
1418 data = s->data;
1419 if (s->type == O_LIMIT) {
1420 s = data->parent;
1421 rule = s->limit->parent;
1422 } else
1423 rule = data->parent;
1424 }
1425 }
1426 #endif
1427 if (data != NULL) {
1428 /*
1429 * If cached chain id is the same, we can avoid rule index
1430 * lookup. Otherwise do lookup and update chain_id and f_pos.
1431 * It is safe even if there is concurrent thread that want
1432 * update the same state, because chain->id can be changed
1433 * only under IPFW_WLOCK().
1434 */
1435 if (data->chain_id != V_layer3_chain.id) {
1436 data->f_pos = ipfw_find_rule(&V_layer3_chain,
1437 data->rulenum, data->ruleid);
1438 /*
1439 * Check that found state has not orphaned.
1440 * When chain->id being changed the parent
1441 * rule can be deleted. If found rule doesn't
1442 * match the parent pointer, consider this
1443 * result as MATCH_NONE and return NULL.
1444 *
1445 * This will lead to creation of new similar state
1446 * that will be added into head of this bucket.
1447 * And the state that we currently have matched
1448 * should be deleted by dyn_expire_states().
1449 *
1450 * In case when dyn_keep_states is enabled, return
1451 * pointer to deleted rule and f_pos value
1452 * corresponding to penultimate rule.
1453 * When we have enabled V_dyn_keep_states, states
1454 * that become orphaned will get the DYN_REFERENCED
1455 * flag and rule will keep around. So we can return
1456 * it. But since it is not in the rules map, we need
1457 * return such f_pos value, so after the state
1458 * handling if the search will continue, the next rule
1459 * will be the last one - the default rule.
1460 */
1461 if (V_layer3_chain.map[data->f_pos] == rule) {
1462 data->chain_id = V_layer3_chain.id;
1463 } else if (V_dyn_keep_states != 0) {
1464 /*
1465 * The original rule pointer is still usable.
1466 * So, we return it, but f_pos need to be
1467 * changed to point to the penultimate rule.
1468 */
1469 MPASS(V_layer3_chain.n_rules > 1);
1470 if (dyn_handle_orphaned(rule, data) == 0) {
1471 data->chain_id = V_layer3_chain.id;
1472 data->f_pos = V_layer3_chain.n_rules - 2;
1473 } else {
1474 rule = NULL;
1475 info->direction = MATCH_NONE;
1476 }
1477 } else {
1478 rule = NULL;
1479 info->direction = MATCH_NONE;
1480 DYN_DEBUG("rule %p [%u, %u] is considered "
1481 "invalid in data %p", rule, data->ruleid,
1482 data->rulenum, data);
1483 /* info->f_pos doesn't matter here. */
1484 }
1485 }
1486 info->f_pos = data->f_pos;
1487 }
1488 DYNSTATE_CRITICAL_EXIT();
1489 #if 0
1490 /*
1491 * Return MATCH_NONE if parent rule is in disabled set.
1492 * This will lead to creation of new similar state that
1493 * will be added into head of this bucket.
1494 *
1495 * XXXAE: we need to be able update state's set when parent
1496 * rule set is changed.
1497 */
1498 if (rule != NULL && (V_set_disable & (1 << rule->set))) {
1499 rule = NULL;
1500 info->direction = MATCH_NONE;
1501 }
1502 #endif
1503 return (rule);
1504 }
1505
1506 static struct dyn_parent *
dyn_alloc_parent(void * parent,uint32_t ruleid,uint32_t rulenum,uint32_t hashval)1507 dyn_alloc_parent(void *parent, uint32_t ruleid, uint32_t rulenum,
1508 uint32_t hashval)
1509 {
1510 struct dyn_parent *limit;
1511
1512 limit = uma_zalloc(V_dyn_parent_zone, M_NOWAIT | M_ZERO);
1513 if (limit == NULL) {
1514 if (last_log != time_uptime) {
1515 last_log = time_uptime;
1516 log(LOG_DEBUG,
1517 "ipfw: Cannot allocate parent dynamic state, "
1518 "consider increasing "
1519 "net.inet.ip.fw.dyn_parent_max\n");
1520 }
1521 return (NULL);
1522 }
1523
1524 limit->parent = parent;
1525 limit->ruleid = ruleid;
1526 limit->rulenum = rulenum;
1527 limit->hashval = hashval;
1528 limit->expire = time_uptime + V_dyn_short_lifetime;
1529 return (limit);
1530 }
1531
1532 static struct dyn_data *
dyn_alloc_dyndata(void * parent,uint32_t ruleid,uint32_t rulenum,const struct ipfw_flow_id * pkt,const void * ulp,int pktlen,uint32_t hashval,uint16_t fibnum)1533 dyn_alloc_dyndata(void *parent, uint32_t ruleid, uint32_t rulenum,
1534 const struct ipfw_flow_id *pkt, const void *ulp, int pktlen,
1535 uint32_t hashval, uint16_t fibnum)
1536 {
1537 struct dyn_data *data;
1538
1539 data = uma_zalloc(V_dyn_data_zone, M_NOWAIT | M_ZERO);
1540 if (data == NULL) {
1541 if (last_log != time_uptime) {
1542 last_log = time_uptime;
1543 log(LOG_DEBUG,
1544 "ipfw: Cannot allocate dynamic state, "
1545 "consider increasing net.inet.ip.fw.dyn_max\n");
1546 }
1547 return (NULL);
1548 }
1549
1550 data->parent = parent;
1551 data->ruleid = ruleid;
1552 data->rulenum = rulenum;
1553 data->fibnum = fibnum;
1554 data->hashval = hashval;
1555 data->expire = time_uptime + V_dyn_syn_lifetime;
1556 dyn_update_proto_state(data, pkt, ulp, pktlen, MATCH_FORWARD);
1557 return (data);
1558 }
1559
1560 static struct dyn_ipv4_state *
dyn_alloc_ipv4_state(const struct ipfw_flow_id * pkt,uint32_t kidx,uint8_t type)1561 dyn_alloc_ipv4_state(const struct ipfw_flow_id *pkt, uint32_t kidx,
1562 uint8_t type)
1563 {
1564 struct dyn_ipv4_state *s;
1565
1566 s = uma_zalloc(V_dyn_ipv4_zone, M_NOWAIT | M_ZERO);
1567 if (s == NULL)
1568 return (NULL);
1569
1570 s->type = type;
1571 s->kidx = kidx;
1572 s->proto = pkt->proto;
1573 s->sport = pkt->src_port;
1574 s->dport = pkt->dst_port;
1575 s->src = pkt->src_ip;
1576 s->dst = pkt->dst_ip;
1577 return (s);
1578 }
1579
1580 /*
1581 * Add IPv4 parent state.
1582 * Returns pointer to parent state. When it is not NULL we are in
1583 * critical section and pointer protected by hazard pointer.
1584 * When some error occurs, it returns NULL and exit from critical section
1585 * is not needed.
1586 */
1587 static struct dyn_ipv4_state *
dyn_add_ipv4_parent(void * rule,uint32_t ruleid,uint32_t rulenum,const struct ipfw_flow_id * pkt,uint32_t hashval,uint32_t version,uint32_t kidx)1588 dyn_add_ipv4_parent(void *rule, uint32_t ruleid, uint32_t rulenum,
1589 const struct ipfw_flow_id *pkt, uint32_t hashval, uint32_t version,
1590 uint32_t kidx)
1591 {
1592 struct dyn_ipv4_state *s;
1593 struct dyn_parent *limit;
1594 uint32_t bucket;
1595
1596 bucket = DYN_BUCKET(hashval, V_curr_dyn_buckets);
1597 DYN_BUCKET_LOCK(bucket);
1598 if (version != DYN_BUCKET_VERSION(bucket, ipv4_parent_add)) {
1599 /*
1600 * Bucket version has been changed since last lookup,
1601 * do lookup again to be sure that state does not exist.
1602 */
1603 s = dyn_lookup_ipv4_parent_locked(pkt, rule, ruleid,
1604 rulenum, bucket);
1605 if (s != NULL) {
1606 /*
1607 * Simultaneous thread has already created this
1608 * state. Just return it.
1609 */
1610 DYNSTATE_CRITICAL_ENTER();
1611 DYNSTATE_PROTECT(s);
1612 DYN_BUCKET_UNLOCK(bucket);
1613 return (s);
1614 }
1615 }
1616
1617 limit = dyn_alloc_parent(rule, ruleid, rulenum, hashval);
1618 if (limit == NULL) {
1619 DYN_BUCKET_UNLOCK(bucket);
1620 return (NULL);
1621 }
1622
1623 s = dyn_alloc_ipv4_state(pkt, kidx, O_LIMIT_PARENT);
1624 if (s == NULL) {
1625 DYN_BUCKET_UNLOCK(bucket);
1626 uma_zfree(V_dyn_parent_zone, limit);
1627 return (NULL);
1628 }
1629
1630 s->limit = limit;
1631 CK_SLIST_INSERT_HEAD(&V_dyn_ipv4_parent[bucket], s, entry);
1632 DYN_COUNT_INC(dyn_parent_count);
1633 DYN_BUCKET_VERSION_BUMP(bucket, ipv4_parent_add);
1634 DYNSTATE_CRITICAL_ENTER();
1635 DYNSTATE_PROTECT(s);
1636 DYN_BUCKET_UNLOCK(bucket);
1637 return (s);
1638 }
1639
1640 static int
dyn_add_ipv4_state(void * parent,uint32_t ruleid,uint32_t rulenum,const struct ipfw_flow_id * pkt,const void * ulp,int pktlen,uint32_t hashval,struct ipfw_dyn_info * info,uint16_t fibnum,uint32_t kidx,uint8_t type)1641 dyn_add_ipv4_state(void *parent, uint32_t ruleid, uint32_t rulenum,
1642 const struct ipfw_flow_id *pkt, const void *ulp, int pktlen,
1643 uint32_t hashval, struct ipfw_dyn_info *info, uint16_t fibnum,
1644 uint32_t kidx, uint8_t type)
1645 {
1646 struct dyn_ipv4_state *s;
1647 void *data;
1648 uint32_t bucket;
1649
1650 bucket = DYN_BUCKET(hashval, V_curr_dyn_buckets);
1651 DYN_BUCKET_LOCK(bucket);
1652 if (info->direction == MATCH_UNKNOWN ||
1653 info->kidx != kidx ||
1654 info->hashval != hashval ||
1655 info->version != DYN_BUCKET_VERSION(bucket, ipv4_add)) {
1656 /*
1657 * Bucket version has been changed since last lookup,
1658 * do lookup again to be sure that state does not exist.
1659 */
1660 if (dyn_lookup_ipv4_state_locked(pkt, ulp, pktlen,
1661 bucket, kidx) != 0) {
1662 DYN_BUCKET_UNLOCK(bucket);
1663 return (EEXIST);
1664 }
1665 }
1666
1667 data = dyn_alloc_dyndata(parent, ruleid, rulenum, pkt, ulp,
1668 pktlen, hashval, fibnum);
1669 if (data == NULL) {
1670 DYN_BUCKET_UNLOCK(bucket);
1671 return (ENOMEM);
1672 }
1673
1674 s = dyn_alloc_ipv4_state(pkt, kidx, type);
1675 if (s == NULL) {
1676 DYN_BUCKET_UNLOCK(bucket);
1677 uma_zfree(V_dyn_data_zone, data);
1678 return (ENOMEM);
1679 }
1680
1681 s->data = data;
1682 CK_SLIST_INSERT_HEAD(&V_dyn_ipv4[bucket], s, entry);
1683 DYN_COUNT_INC(dyn_count);
1684 DYN_BUCKET_VERSION_BUMP(bucket, ipv4_add);
1685 DYN_BUCKET_UNLOCK(bucket);
1686 return (0);
1687 }
1688
1689 #ifdef INET6
1690 static struct dyn_ipv6_state *
dyn_alloc_ipv6_state(const struct ipfw_flow_id * pkt,uint32_t zoneid,uint32_t kidx,uint8_t type)1691 dyn_alloc_ipv6_state(const struct ipfw_flow_id *pkt, uint32_t zoneid,
1692 uint32_t kidx, uint8_t type)
1693 {
1694 struct dyn_ipv6_state *s;
1695
1696 s = uma_zalloc(V_dyn_ipv6_zone, M_NOWAIT | M_ZERO);
1697 if (s == NULL)
1698 return (NULL);
1699
1700 s->type = type;
1701 s->kidx = kidx;
1702 s->zoneid = zoneid;
1703 s->proto = pkt->proto;
1704 s->sport = pkt->src_port;
1705 s->dport = pkt->dst_port;
1706 s->src = pkt->src_ip6;
1707 s->dst = pkt->dst_ip6;
1708 return (s);
1709 }
1710
1711 /*
1712 * Add IPv6 parent state.
1713 * Returns pointer to parent state. When it is not NULL we are in
1714 * critical section and pointer protected by hazard pointer.
1715 * When some error occurs, it return NULL and exit from critical section
1716 * is not needed.
1717 */
1718 static struct dyn_ipv6_state *
dyn_add_ipv6_parent(void * rule,uint32_t ruleid,uint32_t rulenum,const struct ipfw_flow_id * pkt,uint32_t zoneid,uint32_t hashval,uint32_t version,uint32_t kidx)1719 dyn_add_ipv6_parent(void *rule, uint32_t ruleid, uint32_t rulenum,
1720 const struct ipfw_flow_id *pkt, uint32_t zoneid, uint32_t hashval,
1721 uint32_t version, uint32_t kidx)
1722 {
1723 struct dyn_ipv6_state *s;
1724 struct dyn_parent *limit;
1725 uint32_t bucket;
1726
1727 bucket = DYN_BUCKET(hashval, V_curr_dyn_buckets);
1728 DYN_BUCKET_LOCK(bucket);
1729 if (version != DYN_BUCKET_VERSION(bucket, ipv6_parent_add)) {
1730 /*
1731 * Bucket version has been changed since last lookup,
1732 * do lookup again to be sure that state does not exist.
1733 */
1734 s = dyn_lookup_ipv6_parent_locked(pkt, zoneid, rule, ruleid,
1735 rulenum, bucket);
1736 if (s != NULL) {
1737 /*
1738 * Simultaneous thread has already created this
1739 * state. Just return it.
1740 */
1741 DYNSTATE_CRITICAL_ENTER();
1742 DYNSTATE_PROTECT(s);
1743 DYN_BUCKET_UNLOCK(bucket);
1744 return (s);
1745 }
1746 }
1747
1748 limit = dyn_alloc_parent(rule, ruleid, rulenum, hashval);
1749 if (limit == NULL) {
1750 DYN_BUCKET_UNLOCK(bucket);
1751 return (NULL);
1752 }
1753
1754 s = dyn_alloc_ipv6_state(pkt, zoneid, kidx, O_LIMIT_PARENT);
1755 if (s == NULL) {
1756 DYN_BUCKET_UNLOCK(bucket);
1757 uma_zfree(V_dyn_parent_zone, limit);
1758 return (NULL);
1759 }
1760
1761 s->limit = limit;
1762 CK_SLIST_INSERT_HEAD(&V_dyn_ipv6_parent[bucket], s, entry);
1763 DYN_COUNT_INC(dyn_parent_count);
1764 DYN_BUCKET_VERSION_BUMP(bucket, ipv6_parent_add);
1765 DYNSTATE_CRITICAL_ENTER();
1766 DYNSTATE_PROTECT(s);
1767 DYN_BUCKET_UNLOCK(bucket);
1768 return (s);
1769 }
1770
1771 static int
dyn_add_ipv6_state(void * parent,uint32_t ruleid,uint32_t rulenum,const struct ipfw_flow_id * pkt,uint32_t zoneid,const void * ulp,int pktlen,uint32_t hashval,struct ipfw_dyn_info * info,uint16_t fibnum,uint32_t kidx,uint8_t type)1772 dyn_add_ipv6_state(void *parent, uint32_t ruleid, uint32_t rulenum,
1773 const struct ipfw_flow_id *pkt, uint32_t zoneid, const void *ulp,
1774 int pktlen, uint32_t hashval, struct ipfw_dyn_info *info,
1775 uint16_t fibnum, uint32_t kidx, uint8_t type)
1776 {
1777 struct dyn_ipv6_state *s;
1778 struct dyn_data *data;
1779 uint32_t bucket;
1780
1781 bucket = DYN_BUCKET(hashval, V_curr_dyn_buckets);
1782 DYN_BUCKET_LOCK(bucket);
1783 if (info->direction == MATCH_UNKNOWN ||
1784 info->kidx != kidx ||
1785 info->hashval != hashval ||
1786 info->version != DYN_BUCKET_VERSION(bucket, ipv6_add)) {
1787 /*
1788 * Bucket version has been changed since last lookup,
1789 * do lookup again to be sure that state does not exist.
1790 */
1791 if (dyn_lookup_ipv6_state_locked(pkt, zoneid, ulp, pktlen,
1792 bucket, kidx) != 0) {
1793 DYN_BUCKET_UNLOCK(bucket);
1794 return (EEXIST);
1795 }
1796 }
1797
1798 data = dyn_alloc_dyndata(parent, ruleid, rulenum, pkt, ulp,
1799 pktlen, hashval, fibnum);
1800 if (data == NULL) {
1801 DYN_BUCKET_UNLOCK(bucket);
1802 return (ENOMEM);
1803 }
1804
1805 s = dyn_alloc_ipv6_state(pkt, zoneid, kidx, type);
1806 if (s == NULL) {
1807 DYN_BUCKET_UNLOCK(bucket);
1808 uma_zfree(V_dyn_data_zone, data);
1809 return (ENOMEM);
1810 }
1811
1812 s->data = data;
1813 CK_SLIST_INSERT_HEAD(&V_dyn_ipv6[bucket], s, entry);
1814 DYN_COUNT_INC(dyn_count);
1815 DYN_BUCKET_VERSION_BUMP(bucket, ipv6_add);
1816 DYN_BUCKET_UNLOCK(bucket);
1817 return (0);
1818 }
1819 #endif /* INET6 */
1820
1821 static void *
dyn_get_parent_state(const struct ipfw_flow_id * pkt,uint32_t zoneid,struct ip_fw * rule,uint32_t hashval,uint32_t limit,uint32_t kidx)1822 dyn_get_parent_state(const struct ipfw_flow_id *pkt, uint32_t zoneid,
1823 struct ip_fw *rule, uint32_t hashval, uint32_t limit, uint32_t kidx)
1824 {
1825 char sbuf[24];
1826 struct dyn_parent *p;
1827 void *ret;
1828 uint32_t bucket, version;
1829
1830 p = NULL;
1831 ret = NULL;
1832 bucket = DYN_BUCKET(hashval, V_curr_dyn_buckets);
1833 DYNSTATE_CRITICAL_ENTER();
1834 if (IS_IP4_FLOW_ID(pkt)) {
1835 struct dyn_ipv4_state *s;
1836
1837 version = DYN_BUCKET_VERSION(bucket, ipv4_parent_add);
1838 s = dyn_lookup_ipv4_parent(pkt, rule, rule->id,
1839 rule->rulenum, bucket);
1840 if (s == NULL) {
1841 /*
1842 * Exit from critical section because dyn_add_parent()
1843 * will acquire bucket lock.
1844 */
1845 DYNSTATE_CRITICAL_EXIT();
1846
1847 s = dyn_add_ipv4_parent(rule, rule->id,
1848 rule->rulenum, pkt, hashval, version, kidx);
1849 if (s == NULL)
1850 return (NULL);
1851 /* Now we are in critical section again. */
1852 }
1853 ret = s;
1854 p = s->limit;
1855 }
1856 #ifdef INET6
1857 else if (IS_IP6_FLOW_ID(pkt)) {
1858 struct dyn_ipv6_state *s;
1859
1860 version = DYN_BUCKET_VERSION(bucket, ipv6_parent_add);
1861 s = dyn_lookup_ipv6_parent(pkt, zoneid, rule, rule->id,
1862 rule->rulenum, bucket);
1863 if (s == NULL) {
1864 /*
1865 * Exit from critical section because dyn_add_parent()
1866 * can acquire bucket mutex.
1867 */
1868 DYNSTATE_CRITICAL_EXIT();
1869
1870 s = dyn_add_ipv6_parent(rule, rule->id,
1871 rule->rulenum, pkt, zoneid, hashval, version,
1872 kidx);
1873 if (s == NULL)
1874 return (NULL);
1875 /* Now we are in critical section again. */
1876 }
1877 ret = s;
1878 p = s->limit;
1879 }
1880 #endif
1881 else {
1882 DYNSTATE_CRITICAL_EXIT();
1883 return (NULL);
1884 }
1885
1886 /* Check the limit */
1887 if (DPARENT_COUNT(p) >= limit) {
1888 DYNSTATE_CRITICAL_EXIT();
1889 if (V_fw_verbose && last_log != time_uptime) {
1890 last_log = time_uptime;
1891 snprintf(sbuf, sizeof(sbuf), "%u drop session",
1892 rule->rulenum);
1893 print_dyn_rule_flags(pkt, O_LIMIT,
1894 LOG_SECURITY | LOG_DEBUG, sbuf,
1895 "too many entries");
1896 }
1897 return (NULL);
1898 }
1899
1900 /* Take new session into account. */
1901 DPARENT_COUNT_INC(p);
1902 /*
1903 * We must exit from critical section because the following code
1904 * can acquire bucket mutex.
1905 * We rely on the 'count' field. The state will not expire
1906 * until it has some child states, i.e. 'count' field is not zero.
1907 * Return state pointer, it will be used by child states as parent.
1908 */
1909 DYNSTATE_CRITICAL_EXIT();
1910 return (ret);
1911 }
1912
1913 static int
dyn_install_state(const struct ipfw_flow_id * pkt,uint32_t zoneid,uint16_t fibnum,const void * ulp,int pktlen,struct ip_fw * rule,struct ipfw_dyn_info * info,uint32_t limit,uint16_t limit_mask,uint32_t kidx,uint8_t type)1914 dyn_install_state(const struct ipfw_flow_id *pkt, uint32_t zoneid,
1915 uint16_t fibnum, const void *ulp, int pktlen, struct ip_fw *rule,
1916 struct ipfw_dyn_info *info, uint32_t limit, uint16_t limit_mask,
1917 uint32_t kidx, uint8_t type)
1918 {
1919 struct ipfw_flow_id id;
1920 uint32_t hashval, parent_hashval, ruleid, rulenum;
1921 int ret;
1922
1923 MPASS(type == O_LIMIT || type == O_KEEP_STATE);
1924
1925 ruleid = rule->id;
1926 rulenum = rule->rulenum;
1927 if (type == O_LIMIT) {
1928 /* Create masked flow id and calculate bucket */
1929 id.addr_type = pkt->addr_type;
1930 id.proto = pkt->proto;
1931 id.fib = fibnum; /* unused */
1932 id.src_port = (limit_mask & DYN_SRC_PORT) ?
1933 pkt->src_port: 0;
1934 id.dst_port = (limit_mask & DYN_DST_PORT) ?
1935 pkt->dst_port: 0;
1936 if (IS_IP4_FLOW_ID(pkt)) {
1937 id.src_ip = (limit_mask & DYN_SRC_ADDR) ?
1938 pkt->src_ip: 0;
1939 id.dst_ip = (limit_mask & DYN_DST_ADDR) ?
1940 pkt->dst_ip: 0;
1941 }
1942 #ifdef INET6
1943 else if (IS_IP6_FLOW_ID(pkt)) {
1944 if (limit_mask & DYN_SRC_ADDR)
1945 id.src_ip6 = pkt->src_ip6;
1946 else
1947 memset(&id.src_ip6, 0, sizeof(id.src_ip6));
1948 if (limit_mask & DYN_DST_ADDR)
1949 id.dst_ip6 = pkt->dst_ip6;
1950 else
1951 memset(&id.dst_ip6, 0, sizeof(id.dst_ip6));
1952 }
1953 #endif
1954 else
1955 return (EAFNOSUPPORT);
1956
1957 parent_hashval = hash_parent(&id, rule);
1958 rule = dyn_get_parent_state(&id, zoneid, rule, parent_hashval,
1959 limit, kidx);
1960 if (rule == NULL) {
1961 #if 0
1962 if (V_fw_verbose && last_log != time_uptime) {
1963 last_log = time_uptime;
1964 snprintf(sbuf, sizeof(sbuf),
1965 "%u drop session", rule->rulenum);
1966 print_dyn_rule_flags(pkt, O_LIMIT,
1967 LOG_SECURITY | LOG_DEBUG, sbuf,
1968 "too many entries");
1969 }
1970 #endif
1971 return (EACCES);
1972 }
1973 /*
1974 * Limit is not reached, create new state.
1975 * Now rule points to parent state.
1976 */
1977 }
1978
1979 hashval = hash_packet(pkt);
1980 if (IS_IP4_FLOW_ID(pkt))
1981 ret = dyn_add_ipv4_state(rule, ruleid, rulenum, pkt,
1982 ulp, pktlen, hashval, info, fibnum, kidx, type);
1983 #ifdef INET6
1984 else if (IS_IP6_FLOW_ID(pkt))
1985 ret = dyn_add_ipv6_state(rule, ruleid, rulenum, pkt,
1986 zoneid, ulp, pktlen, hashval, info, fibnum, kidx, type);
1987 #endif /* INET6 */
1988 else
1989 ret = EAFNOSUPPORT;
1990
1991 if (type == O_LIMIT) {
1992 if (ret != 0) {
1993 /*
1994 * We failed to create child state for O_LIMIT
1995 * opcode. Since we already counted it in the parent,
1996 * we must revert counter back. The 'rule' points to
1997 * parent state, use it to get dyn_parent.
1998 *
1999 * XXXAE: it should be safe to use 'rule' pointer
2000 * without extra lookup, parent state is referenced
2001 * and should not be freed.
2002 */
2003 if (IS_IP4_FLOW_ID(&id))
2004 DPARENT_COUNT_DEC(
2005 ((struct dyn_ipv4_state *)rule)->limit);
2006 #ifdef INET6
2007 else if (IS_IP6_FLOW_ID(&id))
2008 DPARENT_COUNT_DEC(
2009 ((struct dyn_ipv6_state *)rule)->limit);
2010 #endif
2011 }
2012 }
2013 /*
2014 * EEXIST means that simultaneous thread has created this
2015 * state. Consider this as success.
2016 *
2017 * XXXAE: should we invalidate 'info' content here?
2018 */
2019 if (ret == EEXIST)
2020 return (0);
2021 return (ret);
2022 }
2023
2024 /*
2025 * Install dynamic state.
2026 * chain - ipfw's instance;
2027 * rule - the parent rule that installs the state;
2028 * cmd - opcode that installs the state;
2029 * args - ipfw arguments;
2030 * ulp - upper level protocol header;
2031 * pktlen - packet length;
2032 * info - dynamic state lookup info;
2033 * tablearg - tablearg id.
2034 *
2035 * Returns non-zero value (failure) if state is not installed because
2036 * of errors or because session limitations are enforced.
2037 */
2038 int
ipfw_dyn_install_state(struct ip_fw_chain * chain,struct ip_fw * rule,const ipfw_insn_limit * cmd,const struct ip_fw_args * args,const void * ulp,int pktlen,struct ipfw_dyn_info * info,uint32_t tablearg)2039 ipfw_dyn_install_state(struct ip_fw_chain *chain, struct ip_fw *rule,
2040 const ipfw_insn_limit *cmd, const struct ip_fw_args *args,
2041 const void *ulp, int pktlen, struct ipfw_dyn_info *info,
2042 uint32_t tablearg)
2043 {
2044 uint32_t limit;
2045 uint16_t limit_mask;
2046
2047 if (cmd->o.opcode == O_LIMIT) {
2048 limit = IP_FW_ARG_TABLEARG(chain, cmd->conn_limit, limit);
2049 limit_mask = cmd->limit_mask;
2050 } else {
2051 limit = 0;
2052 limit_mask = 0;
2053 }
2054 /*
2055 * NOTE: we assume that kidx field of struct ipfw_insn_kidx
2056 * located in the same place as kidx field of ipfw_insn_limit.
2057 */
2058 return (dyn_install_state(&args->f_id,
2059 #ifdef INET6
2060 IS_IP6_FLOW_ID(&args->f_id) ? dyn_getscopeid(args):
2061 #endif
2062 0, M_GETFIB(args->m), ulp, pktlen, rule, info, limit,
2063 limit_mask, cmd->kidx, cmd->o.opcode));
2064 }
2065
2066 /*
2067 * Free safe to remove state entries from expired lists.
2068 */
2069 static void
dyn_free_states(struct ip_fw_chain * chain)2070 dyn_free_states(struct ip_fw_chain *chain)
2071 {
2072 struct dyn_ipv4_state *s4, *s4n;
2073 #ifdef INET6
2074 struct dyn_ipv6_state *s6, *s6n;
2075 #endif
2076 int cached_count, i;
2077
2078 /*
2079 * We keep pointers to objects that are in use on each CPU
2080 * in the per-cpu dyn_hp pointer. When object is going to be
2081 * removed, first of it is unlinked from the corresponding
2082 * list. This leads to changing of dyn_bucket_xxx_delver version.
2083 * Unlinked objects is placed into corresponding dyn_expired_xxx
2084 * list. Reader that is going to dereference object pointer checks
2085 * dyn_bucket_xxx_delver version before and after storing pointer
2086 * into dyn_hp. If version is the same, the object is protected
2087 * from freeing and it is safe to dereference. Othervise reader
2088 * tries to iterate list again from the beginning, but this object
2089 * now unlinked and thus will not be accessible.
2090 *
2091 * Copy dyn_hp pointers for each CPU into dyn_hp_cache array.
2092 * It does not matter that some pointer can be changed in
2093 * time while we are copying. We need to check, that objects
2094 * removed in the previous pass are not in use. And if dyn_hp
2095 * pointer does not contain it in the time when we are copying,
2096 * it will not appear there, because it is already unlinked.
2097 * And for new pointers we will not free objects that will be
2098 * unlinked in this pass.
2099 */
2100 cached_count = 0;
2101 CPU_FOREACH(i) {
2102 dyn_hp_cache[cached_count] = DYNSTATE_GET(i);
2103 if (dyn_hp_cache[cached_count] != NULL)
2104 cached_count++;
2105 }
2106
2107 /*
2108 * Free expired states that are safe to free.
2109 * Check each entry from previous pass in the dyn_expired_xxx
2110 * list, if pointer to the object is in the dyn_hp_cache array,
2111 * keep it until next pass. Otherwise it is safe to free the
2112 * object.
2113 *
2114 * XXXAE: optimize this to use SLIST_REMOVE_AFTER.
2115 */
2116 #define DYN_FREE_STATES(s, next, name) do { \
2117 s = SLIST_FIRST(&V_dyn_expired_ ## name); \
2118 while (s != NULL) { \
2119 next = SLIST_NEXT(s, expired); \
2120 for (i = 0; i < cached_count; i++) \
2121 if (dyn_hp_cache[i] == s) \
2122 break; \
2123 if (i == cached_count) { \
2124 if (s->type == O_LIMIT_PARENT && \
2125 s->limit->count != 0) { \
2126 s = next; \
2127 continue; \
2128 } \
2129 SLIST_REMOVE(&V_dyn_expired_ ## name, \
2130 s, dyn_ ## name ## _state, expired); \
2131 if (s->type == O_LIMIT_PARENT) \
2132 uma_zfree(V_dyn_parent_zone, s->limit); \
2133 else \
2134 uma_zfree(V_dyn_data_zone, s->data); \
2135 uma_zfree(V_dyn_ ## name ## _zone, s); \
2136 } \
2137 s = next; \
2138 } \
2139 } while (0)
2140
2141 /*
2142 * Protect access to expired lists with DYN_EXPIRED_LOCK.
2143 * Userland can invoke ipfw_expire_dyn_states() to delete
2144 * specific states, this will lead to modification of expired
2145 * lists.
2146 */
2147 DYN_EXPIRED_LOCK();
2148 DYN_FREE_STATES(s4, s4n, ipv4);
2149 #ifdef INET6
2150 DYN_FREE_STATES(s6, s6n, ipv6);
2151 #endif
2152 DYN_EXPIRED_UNLOCK();
2153 #undef DYN_FREE_STATES
2154 }
2155
2156 /*
2157 * Returns:
2158 * 0 when state is not matched by specified range;
2159 * 1 when state is matched by specified range;
2160 * 2 when state is matched by specified range and requested deletion of
2161 * dynamic states.
2162 */
2163 static int
dyn_match_range(uint32_t rulenum,uint8_t set,const ipfw_range_tlv * rt)2164 dyn_match_range(uint32_t rulenum, uint8_t set, const ipfw_range_tlv *rt)
2165 {
2166
2167 MPASS(rt != NULL);
2168 /* flush all states */
2169 if (rt->flags & IPFW_RCFLAG_ALL) {
2170 if (rt->flags & IPFW_RCFLAG_DYNAMIC)
2171 return (2); /* forced */
2172 return (1);
2173 }
2174 if ((rt->flags & IPFW_RCFLAG_SET) != 0 && set != rt->set)
2175 return (0);
2176 if ((rt->flags & IPFW_RCFLAG_RANGE) != 0 &&
2177 (rulenum < rt->start_rule || rulenum > rt->end_rule))
2178 return (0);
2179 if (rt->flags & IPFW_RCFLAG_DYNAMIC)
2180 return (2);
2181 return (1);
2182 }
2183
2184 static void
dyn_acquire_rule(struct ip_fw_chain * ch,struct dyn_data * data,struct ip_fw * rule,uint32_t kidx)2185 dyn_acquire_rule(struct ip_fw_chain *ch, struct dyn_data *data,
2186 struct ip_fw *rule, uint32_t kidx)
2187 {
2188 struct dyn_state_obj *obj;
2189
2190 /*
2191 * Do not acquire reference twice.
2192 * This can happen when rule deletion executed for
2193 * the same range, but different ruleset id.
2194 */
2195 if (data->flags & DYN_REFERENCED)
2196 return;
2197
2198 IPFW_UH_WLOCK_ASSERT(ch);
2199 MPASS(kidx != 0);
2200
2201 data->flags |= DYN_REFERENCED;
2202 /* Reference the named object */
2203 obj = SRV_OBJECT(ch, kidx);
2204 obj->no.refcnt++;
2205 MPASS(obj->no.etlv == IPFW_TLV_STATE_NAME);
2206
2207 /* Reference the parent rule */
2208 rule->refcnt++;
2209 }
2210
2211 static void
dyn_release_rule(struct ip_fw_chain * ch,struct dyn_data * data,struct ip_fw * rule,uint32_t kidx)2212 dyn_release_rule(struct ip_fw_chain *ch, struct dyn_data *data,
2213 struct ip_fw *rule, uint32_t kidx)
2214 {
2215 struct dyn_state_obj *obj;
2216
2217 IPFW_UH_WLOCK_ASSERT(ch);
2218 MPASS(kidx != 0);
2219
2220 obj = SRV_OBJECT(ch, kidx);
2221 if (obj->no.refcnt == 1)
2222 dyn_destroy(ch, &obj->no);
2223 else
2224 obj->no.refcnt--;
2225
2226 if (--rule->refcnt == 1)
2227 ipfw_free_rule(rule);
2228 }
2229
2230 /*
2231 * We do not keep O_LIMIT_PARENT states when V_dyn_keep_states is enabled.
2232 * O_LIMIT state is created when new connection is going to be established
2233 * and there is no matching state. So, since the old parent rule was deleted
2234 * we can't create new states with old parent, and thus we can not account
2235 * new connections with already established connections, and can not do
2236 * proper limiting.
2237 */
2238 static int
dyn_match_ipv4_state(struct ip_fw_chain * ch,struct dyn_ipv4_state * s,const ipfw_range_tlv * rt)2239 dyn_match_ipv4_state(struct ip_fw_chain *ch, struct dyn_ipv4_state *s,
2240 const ipfw_range_tlv *rt)
2241 {
2242 struct ip_fw *rule;
2243 int ret;
2244
2245 if (s->type == O_LIMIT_PARENT) {
2246 rule = s->limit->parent;
2247 return (dyn_match_range(s->limit->rulenum, rule->set, rt));
2248 }
2249
2250 rule = s->data->parent;
2251 if (s->type == O_LIMIT)
2252 rule = ((struct dyn_ipv4_state *)rule)->limit->parent;
2253
2254 ret = dyn_match_range(s->data->rulenum, rule->set, rt);
2255 if (ret == 0 || V_dyn_keep_states == 0 || ret > 1)
2256 return (ret);
2257
2258 dyn_acquire_rule(ch, s->data, rule, s->kidx);
2259 return (0);
2260 }
2261
2262 #ifdef INET6
2263 static int
dyn_match_ipv6_state(struct ip_fw_chain * ch,struct dyn_ipv6_state * s,const ipfw_range_tlv * rt)2264 dyn_match_ipv6_state(struct ip_fw_chain *ch, struct dyn_ipv6_state *s,
2265 const ipfw_range_tlv *rt)
2266 {
2267 struct ip_fw *rule;
2268 int ret;
2269
2270 if (s->type == O_LIMIT_PARENT) {
2271 rule = s->limit->parent;
2272 return (dyn_match_range(s->limit->rulenum, rule->set, rt));
2273 }
2274
2275 rule = s->data->parent;
2276 if (s->type == O_LIMIT)
2277 rule = ((struct dyn_ipv6_state *)rule)->limit->parent;
2278
2279 ret = dyn_match_range(s->data->rulenum, rule->set, rt);
2280 if (ret == 0 || V_dyn_keep_states == 0 || ret > 1)
2281 return (ret);
2282
2283 dyn_acquire_rule(ch, s->data, rule, s->kidx);
2284 return (0);
2285 }
2286 #endif
2287
2288 /*
2289 * Unlink expired entries from states lists.
2290 * @rt can be used to specify the range of states for deletion.
2291 */
2292 static void
dyn_expire_states(struct ip_fw_chain * ch,ipfw_range_tlv * rt)2293 dyn_expire_states(struct ip_fw_chain *ch, ipfw_range_tlv *rt)
2294 {
2295 struct dyn_ipv4_slist expired_ipv4;
2296 #ifdef INET6
2297 struct dyn_ipv6_slist expired_ipv6;
2298 struct dyn_ipv6_state *s6, *s6n, *s6p;
2299 #endif
2300 struct dyn_ipv4_state *s4, *s4n, *s4p;
2301 void *rule;
2302 int bucket, removed, length, max_length;
2303
2304 /*
2305 * Unlink expired states from each bucket.
2306 * With acquired bucket lock iterate entries of each lists:
2307 * ipv4, ipv4_parent, ipv6, and ipv6_parent. Check expired time
2308 * and unlink entry from the list, link entry into temporary
2309 * expired_xxx lists then bump "del" bucket version.
2310 *
2311 * When an entry is removed, corresponding states counter is
2312 * decremented. If entry has O_LIMIT type, parent's reference
2313 * counter is decremented.
2314 *
2315 * NOTE: this function can be called from userspace context
2316 * when user deletes rules. In this case all matched states
2317 * will be forcedly unlinked. O_LIMIT_PARENT states will be kept
2318 * in the expired lists until reference counter become zero.
2319 */
2320 #define DYN_UNLINK_STATES(s, prev, next, exp, af, name, extra) do { \
2321 length = 0; \
2322 removed = 0; \
2323 prev = NULL; \
2324 s = CK_SLIST_FIRST(&V_dyn_ ## name [bucket]); \
2325 while (s != NULL) { \
2326 next = CK_SLIST_NEXT(s, entry); \
2327 if ((TIME_LEQ((s)->exp, time_uptime) && extra) || \
2328 (rt != NULL && \
2329 dyn_match_ ## af ## _state(ch, s, rt))) { \
2330 if (prev != NULL) \
2331 CK_SLIST_REMOVE_AFTER(prev, entry); \
2332 else \
2333 CK_SLIST_REMOVE_HEAD( \
2334 &V_dyn_ ## name [bucket], entry); \
2335 removed++; \
2336 SLIST_INSERT_HEAD(&expired_ ## af, s, expired); \
2337 if (s->type == O_LIMIT_PARENT) \
2338 DYN_COUNT_DEC(dyn_parent_count); \
2339 else { \
2340 DYN_COUNT_DEC(dyn_count); \
2341 if (s->data->flags & DYN_REFERENCED) { \
2342 rule = s->data->parent; \
2343 if (s->type == O_LIMIT) \
2344 rule = ((__typeof(s)) \
2345 rule)->limit->parent;\
2346 dyn_release_rule(ch, s->data, \
2347 rule, s->kidx); \
2348 } \
2349 if (s->type == O_LIMIT) { \
2350 s = s->data->parent; \
2351 DPARENT_COUNT_DEC(s->limit); \
2352 } \
2353 } \
2354 } else { \
2355 prev = s; \
2356 length++; \
2357 } \
2358 s = next; \
2359 } \
2360 if (removed != 0) \
2361 DYN_BUCKET_VERSION_BUMP(bucket, name ## _del); \
2362 if (length > max_length) \
2363 max_length = length; \
2364 } while (0)
2365
2366 SLIST_INIT(&expired_ipv4);
2367 #ifdef INET6
2368 SLIST_INIT(&expired_ipv6);
2369 #endif
2370 max_length = 0;
2371 for (bucket = 0; bucket < V_curr_dyn_buckets; bucket++) {
2372 DYN_BUCKET_LOCK(bucket);
2373 DYN_UNLINK_STATES(s4, s4p, s4n, data->expire, ipv4, ipv4, 1);
2374 DYN_UNLINK_STATES(s4, s4p, s4n, limit->expire, ipv4,
2375 ipv4_parent, (s4->limit->count == 0));
2376 #ifdef INET6
2377 DYN_UNLINK_STATES(s6, s6p, s6n, data->expire, ipv6, ipv6, 1);
2378 DYN_UNLINK_STATES(s6, s6p, s6n, limit->expire, ipv6,
2379 ipv6_parent, (s6->limit->count == 0));
2380 #endif
2381 DYN_BUCKET_UNLOCK(bucket);
2382 }
2383 /* Update curr_max_length for statistics. */
2384 V_curr_max_length = max_length;
2385 /*
2386 * Concatenate temporary lists with global expired lists.
2387 */
2388 DYN_EXPIRED_LOCK();
2389 SLIST_CONCAT(&V_dyn_expired_ipv4, &expired_ipv4,
2390 dyn_ipv4_state, expired);
2391 #ifdef INET6
2392 SLIST_CONCAT(&V_dyn_expired_ipv6, &expired_ipv6,
2393 dyn_ipv6_state, expired);
2394 #endif
2395 DYN_EXPIRED_UNLOCK();
2396 #undef DYN_UNLINK_STATES
2397 #undef DYN_UNREF_STATES
2398 }
2399
2400 static struct mbuf *
dyn_mgethdr(int len,uint16_t fibnum)2401 dyn_mgethdr(int len, uint16_t fibnum)
2402 {
2403 struct mbuf *m;
2404
2405 m = m_gethdr(M_NOWAIT, MT_DATA);
2406 if (m == NULL)
2407 return (NULL);
2408 #ifdef MAC
2409 mac_netinet_firewall_send(m);
2410 #endif
2411 M_SETFIB(m, fibnum);
2412 m->m_data += max_linkhdr;
2413 m->m_flags |= M_SKIP_FIREWALL;
2414 m->m_len = m->m_pkthdr.len = len;
2415 bzero(m->m_data, len);
2416 return (m);
2417 }
2418
2419 static void
dyn_make_keepalive_ipv4(struct mbuf * m,in_addr_t src,in_addr_t dst,uint32_t seq,uint32_t ack,uint16_t sport,uint16_t dport)2420 dyn_make_keepalive_ipv4(struct mbuf *m, in_addr_t src, in_addr_t dst,
2421 uint32_t seq, uint32_t ack, uint16_t sport, uint16_t dport)
2422 {
2423 struct tcphdr *tcp;
2424 struct ip *ip;
2425
2426 ip = mtod(m, struct ip *);
2427 ip->ip_v = 4;
2428 ip->ip_hl = sizeof(*ip) >> 2;
2429 ip->ip_tos = IPTOS_LOWDELAY;
2430 ip->ip_len = htons(m->m_len);
2431 ip->ip_off |= htons(IP_DF);
2432 ip->ip_ttl = V_ip_defttl;
2433 ip->ip_p = IPPROTO_TCP;
2434 ip->ip_src.s_addr = htonl(src);
2435 ip->ip_dst.s_addr = htonl(dst);
2436
2437 tcp = mtodo(m, sizeof(struct ip));
2438 tcp->th_sport = htons(sport);
2439 tcp->th_dport = htons(dport);
2440 tcp->th_off = sizeof(struct tcphdr) >> 2;
2441 tcp->th_seq = htonl(seq);
2442 tcp->th_ack = htonl(ack);
2443 tcp_set_flags(tcp, TH_ACK);
2444 tcp->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
2445 htons(sizeof(struct tcphdr) + IPPROTO_TCP));
2446
2447 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
2448 m->m_pkthdr.csum_flags = CSUM_TCP;
2449 }
2450
2451 static void
dyn_enqueue_keepalive_ipv4(struct mbufq * q,const struct dyn_ipv4_state * s)2452 dyn_enqueue_keepalive_ipv4(struct mbufq *q, const struct dyn_ipv4_state *s)
2453 {
2454 struct mbuf *m;
2455
2456 if ((s->data->state & ACK_FWD) == 0 && s->data->ack_fwd > 0) {
2457 m = dyn_mgethdr(sizeof(struct ip) + sizeof(struct tcphdr),
2458 s->data->fibnum);
2459 if (m != NULL) {
2460 dyn_make_keepalive_ipv4(m, s->dst, s->src,
2461 s->data->ack_fwd - 1, s->data->ack_rev,
2462 s->dport, s->sport);
2463 if (mbufq_enqueue(q, m)) {
2464 m_freem(m);
2465 log(LOG_DEBUG, "ipfw: limit for IPv4 "
2466 "keepalive queue is reached.\n");
2467 return;
2468 }
2469 }
2470 }
2471
2472 if ((s->data->state & ACK_REV) == 0 && s->data->ack_rev > 0) {
2473 m = dyn_mgethdr(sizeof(struct ip) + sizeof(struct tcphdr),
2474 s->data->fibnum);
2475 if (m != NULL) {
2476 dyn_make_keepalive_ipv4(m, s->src, s->dst,
2477 s->data->ack_rev - 1, s->data->ack_fwd,
2478 s->sport, s->dport);
2479 if (mbufq_enqueue(q, m)) {
2480 m_freem(m);
2481 log(LOG_DEBUG, "ipfw: limit for IPv4 "
2482 "keepalive queue is reached.\n");
2483 return;
2484 }
2485 }
2486 }
2487 }
2488
2489 /*
2490 * Prepare and send keep-alive packets.
2491 */
2492 static void
dyn_send_keepalive_ipv4(struct ip_fw_chain * chain)2493 dyn_send_keepalive_ipv4(struct ip_fw_chain *chain)
2494 {
2495 struct mbufq q;
2496 struct mbuf *m;
2497 struct dyn_ipv4_state *s;
2498 uint32_t bucket;
2499
2500 mbufq_init(&q, INT_MAX);
2501 for (bucket = 0; bucket < V_curr_dyn_buckets; bucket++) {
2502 DYN_BUCKET_LOCK(bucket);
2503 CK_SLIST_FOREACH(s, &V_dyn_ipv4[bucket], entry) {
2504 /*
2505 * Only established TCP connections that will
2506 * become expired within dyn_keepalive_interval.
2507 */
2508 if (s->proto != IPPROTO_TCP ||
2509 (s->data->state & BOTH_SYN) != BOTH_SYN ||
2510 TIME_LEQ(time_uptime + V_dyn_keepalive_interval,
2511 s->data->expire))
2512 continue;
2513 dyn_enqueue_keepalive_ipv4(&q, s);
2514 }
2515 DYN_BUCKET_UNLOCK(bucket);
2516 }
2517 while ((m = mbufq_dequeue(&q)) != NULL)
2518 ip_output(m, NULL, NULL, 0, NULL, NULL);
2519 }
2520
2521 #ifdef INET6
2522 static void
dyn_make_keepalive_ipv6(struct mbuf * m,const struct in6_addr * src,const struct in6_addr * dst,uint32_t zoneid,uint32_t seq,uint32_t ack,uint16_t sport,uint16_t dport)2523 dyn_make_keepalive_ipv6(struct mbuf *m, const struct in6_addr *src,
2524 const struct in6_addr *dst, uint32_t zoneid, uint32_t seq, uint32_t ack,
2525 uint16_t sport, uint16_t dport)
2526 {
2527 struct tcphdr *tcp;
2528 struct ip6_hdr *ip6;
2529
2530 ip6 = mtod(m, struct ip6_hdr *);
2531 ip6->ip6_vfc |= IPV6_VERSION;
2532 ip6->ip6_plen = htons(sizeof(struct tcphdr));
2533 ip6->ip6_nxt = IPPROTO_TCP;
2534 ip6->ip6_hlim = IPV6_DEFHLIM;
2535 ip6->ip6_src = *src;
2536 if (IN6_IS_ADDR_LINKLOCAL(src))
2537 ip6->ip6_src.s6_addr16[1] = htons(zoneid & 0xffff);
2538 ip6->ip6_dst = *dst;
2539 if (IN6_IS_ADDR_LINKLOCAL(dst))
2540 ip6->ip6_dst.s6_addr16[1] = htons(zoneid & 0xffff);
2541
2542 tcp = mtodo(m, sizeof(struct ip6_hdr));
2543 tcp->th_sport = htons(sport);
2544 tcp->th_dport = htons(dport);
2545 tcp->th_off = sizeof(struct tcphdr) >> 2;
2546 tcp->th_seq = htonl(seq);
2547 tcp->th_ack = htonl(ack);
2548 tcp_set_flags(tcp, TH_ACK);
2549 tcp->th_sum = in6_cksum_pseudo(ip6, sizeof(struct tcphdr),
2550 IPPROTO_TCP, 0);
2551
2552 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
2553 m->m_pkthdr.csum_flags = CSUM_TCP_IPV6;
2554 }
2555
2556 static void
dyn_enqueue_keepalive_ipv6(struct mbufq * q,const struct dyn_ipv6_state * s)2557 dyn_enqueue_keepalive_ipv6(struct mbufq *q, const struct dyn_ipv6_state *s)
2558 {
2559 struct mbuf *m;
2560
2561 if ((s->data->state & ACK_FWD) == 0 && s->data->ack_fwd > 0) {
2562 m = dyn_mgethdr(sizeof(struct ip6_hdr) +
2563 sizeof(struct tcphdr), s->data->fibnum);
2564 if (m != NULL) {
2565 dyn_make_keepalive_ipv6(m, &s->dst, &s->src,
2566 s->zoneid, s->data->ack_fwd - 1, s->data->ack_rev,
2567 s->dport, s->sport);
2568 if (mbufq_enqueue(q, m)) {
2569 m_freem(m);
2570 log(LOG_DEBUG, "ipfw: limit for IPv6 "
2571 "keepalive queue is reached.\n");
2572 return;
2573 }
2574 }
2575 }
2576
2577 if ((s->data->state & ACK_REV) == 0 && s->data->ack_rev > 0) {
2578 m = dyn_mgethdr(sizeof(struct ip6_hdr) +
2579 sizeof(struct tcphdr), s->data->fibnum);
2580 if (m != NULL) {
2581 dyn_make_keepalive_ipv6(m, &s->src, &s->dst,
2582 s->zoneid, s->data->ack_rev - 1, s->data->ack_fwd,
2583 s->sport, s->dport);
2584 if (mbufq_enqueue(q, m)) {
2585 m_freem(m);
2586 log(LOG_DEBUG, "ipfw: limit for IPv6 "
2587 "keepalive queue is reached.\n");
2588 return;
2589 }
2590 }
2591 }
2592 }
2593
2594 static void
dyn_send_keepalive_ipv6(struct ip_fw_chain * chain)2595 dyn_send_keepalive_ipv6(struct ip_fw_chain *chain)
2596 {
2597 struct mbufq q;
2598 struct mbuf *m;
2599 struct dyn_ipv6_state *s;
2600 uint32_t bucket;
2601
2602 mbufq_init(&q, INT_MAX);
2603 for (bucket = 0; bucket < V_curr_dyn_buckets; bucket++) {
2604 DYN_BUCKET_LOCK(bucket);
2605 CK_SLIST_FOREACH(s, &V_dyn_ipv6[bucket], entry) {
2606 /*
2607 * Only established TCP connections that will
2608 * become expired within dyn_keepalive_interval.
2609 */
2610 if (s->proto != IPPROTO_TCP ||
2611 (s->data->state & BOTH_SYN) != BOTH_SYN ||
2612 TIME_LEQ(time_uptime + V_dyn_keepalive_interval,
2613 s->data->expire))
2614 continue;
2615 dyn_enqueue_keepalive_ipv6(&q, s);
2616 }
2617 DYN_BUCKET_UNLOCK(bucket);
2618 }
2619 while ((m = mbufq_dequeue(&q)) != NULL)
2620 ip6_output(m, NULL, NULL, 0, NULL, NULL, NULL);
2621 }
2622 #endif /* INET6 */
2623
2624 static void
dyn_grow_hashtable(struct ip_fw_chain * chain,uint32_t new,int flags)2625 dyn_grow_hashtable(struct ip_fw_chain *chain, uint32_t new, int flags)
2626 {
2627 #ifdef INET6
2628 struct dyn_ipv6ck_slist *ipv6, *ipv6_parent;
2629 uint32_t *ipv6_add, *ipv6_del, *ipv6_parent_add, *ipv6_parent_del;
2630 struct dyn_ipv6_state *s6;
2631 #endif
2632 struct dyn_ipv4ck_slist *ipv4, *ipv4_parent;
2633 uint32_t *ipv4_add, *ipv4_del, *ipv4_parent_add, *ipv4_parent_del;
2634 struct dyn_ipv4_state *s4;
2635 struct mtx *bucket_lock;
2636 void *tmp;
2637 uint32_t bucket;
2638
2639 MPASS(powerof2(new));
2640 DYN_DEBUG("grow hash size %u -> %u", V_curr_dyn_buckets, new);
2641 /*
2642 * Allocate and initialize new lists.
2643 */
2644 bucket_lock = malloc(new * sizeof(struct mtx), M_IPFW,
2645 flags | M_ZERO);
2646 if (bucket_lock == NULL)
2647 return;
2648
2649 ipv4 = ipv4_parent = NULL;
2650 ipv4_add = ipv4_del = ipv4_parent_add = ipv4_parent_del = NULL;
2651 #ifdef INET6
2652 ipv6 = ipv6_parent = NULL;
2653 ipv6_add = ipv6_del = ipv6_parent_add = ipv6_parent_del = NULL;
2654 #endif
2655
2656 ipv4 = malloc(new * sizeof(struct dyn_ipv4ck_slist), M_IPFW,
2657 flags | M_ZERO);
2658 if (ipv4 == NULL)
2659 goto bad;
2660 ipv4_parent = malloc(new * sizeof(struct dyn_ipv4ck_slist), M_IPFW,
2661 flags | M_ZERO);
2662 if (ipv4_parent == NULL)
2663 goto bad;
2664 ipv4_add = malloc(new * sizeof(uint32_t), M_IPFW, flags | M_ZERO);
2665 if (ipv4_add == NULL)
2666 goto bad;
2667 ipv4_del = malloc(new * sizeof(uint32_t), M_IPFW, flags | M_ZERO);
2668 if (ipv4_del == NULL)
2669 goto bad;
2670 ipv4_parent_add = malloc(new * sizeof(uint32_t), M_IPFW,
2671 flags | M_ZERO);
2672 if (ipv4_parent_add == NULL)
2673 goto bad;
2674 ipv4_parent_del = malloc(new * sizeof(uint32_t), M_IPFW,
2675 flags | M_ZERO);
2676 if (ipv4_parent_del == NULL)
2677 goto bad;
2678 #ifdef INET6
2679 ipv6 = malloc(new * sizeof(struct dyn_ipv6ck_slist), M_IPFW,
2680 flags | M_ZERO);
2681 if (ipv6 == NULL)
2682 goto bad;
2683 ipv6_parent = malloc(new * sizeof(struct dyn_ipv6ck_slist), M_IPFW,
2684 flags | M_ZERO);
2685 if (ipv6_parent == NULL)
2686 goto bad;
2687 ipv6_add = malloc(new * sizeof(uint32_t), M_IPFW, flags | M_ZERO);
2688 if (ipv6_add == NULL)
2689 goto bad;
2690 ipv6_del = malloc(new * sizeof(uint32_t), M_IPFW, flags | M_ZERO);
2691 if (ipv6_del == NULL)
2692 goto bad;
2693 ipv6_parent_add = malloc(new * sizeof(uint32_t), M_IPFW,
2694 flags | M_ZERO);
2695 if (ipv6_parent_add == NULL)
2696 goto bad;
2697 ipv6_parent_del = malloc(new * sizeof(uint32_t), M_IPFW,
2698 flags | M_ZERO);
2699 if (ipv6_parent_del == NULL)
2700 goto bad;
2701 #endif
2702 for (bucket = 0; bucket < new; bucket++) {
2703 DYN_BUCKET_LOCK_INIT(bucket_lock, bucket);
2704 CK_SLIST_INIT(&ipv4[bucket]);
2705 CK_SLIST_INIT(&ipv4_parent[bucket]);
2706 #ifdef INET6
2707 CK_SLIST_INIT(&ipv6[bucket]);
2708 CK_SLIST_INIT(&ipv6_parent[bucket]);
2709 #endif
2710 }
2711
2712 #define DYN_RELINK_STATES(s, hval, i, head, ohead) do { \
2713 while ((s = CK_SLIST_FIRST(&V_dyn_ ## ohead[i])) != NULL) { \
2714 CK_SLIST_REMOVE_HEAD(&V_dyn_ ## ohead[i], entry); \
2715 CK_SLIST_INSERT_HEAD(&head[DYN_BUCKET(s->hval, new)], \
2716 s, entry); \
2717 } \
2718 } while (0)
2719 /*
2720 * Hold traffic processing until we finish resize to
2721 * prevent access to states lists.
2722 */
2723 IPFW_WLOCK(chain);
2724 /* Re-link all dynamic states */
2725 for (bucket = 0; bucket < V_curr_dyn_buckets; bucket++) {
2726 DYN_RELINK_STATES(s4, data->hashval, bucket, ipv4, ipv4);
2727 DYN_RELINK_STATES(s4, limit->hashval, bucket, ipv4_parent,
2728 ipv4_parent);
2729 #ifdef INET6
2730 DYN_RELINK_STATES(s6, data->hashval, bucket, ipv6, ipv6);
2731 DYN_RELINK_STATES(s6, limit->hashval, bucket, ipv6_parent,
2732 ipv6_parent);
2733 #endif
2734 }
2735
2736 #define DYN_SWAP_PTR(old, new, tmp) do { \
2737 tmp = old; \
2738 old = new; \
2739 new = tmp; \
2740 } while (0)
2741 /* Swap pointers */
2742 DYN_SWAP_PTR(V_dyn_bucket_lock, bucket_lock, tmp);
2743 DYN_SWAP_PTR(V_dyn_ipv4, ipv4, tmp);
2744 DYN_SWAP_PTR(V_dyn_ipv4_parent, ipv4_parent, tmp);
2745 DYN_SWAP_PTR(V_dyn_ipv4_add, ipv4_add, tmp);
2746 DYN_SWAP_PTR(V_dyn_ipv4_parent_add, ipv4_parent_add, tmp);
2747 DYN_SWAP_PTR(V_dyn_ipv4_del, ipv4_del, tmp);
2748 DYN_SWAP_PTR(V_dyn_ipv4_parent_del, ipv4_parent_del, tmp);
2749
2750 #ifdef INET6
2751 DYN_SWAP_PTR(V_dyn_ipv6, ipv6, tmp);
2752 DYN_SWAP_PTR(V_dyn_ipv6_parent, ipv6_parent, tmp);
2753 DYN_SWAP_PTR(V_dyn_ipv6_add, ipv6_add, tmp);
2754 DYN_SWAP_PTR(V_dyn_ipv6_parent_add, ipv6_parent_add, tmp);
2755 DYN_SWAP_PTR(V_dyn_ipv6_del, ipv6_del, tmp);
2756 DYN_SWAP_PTR(V_dyn_ipv6_parent_del, ipv6_parent_del, tmp);
2757 #endif
2758 bucket = V_curr_dyn_buckets;
2759 V_curr_dyn_buckets = new;
2760
2761 IPFW_WUNLOCK(chain);
2762
2763 /* Release old resources */
2764 while (bucket-- != 0)
2765 DYN_BUCKET_LOCK_DESTROY(bucket_lock, bucket);
2766 bad:
2767 free(bucket_lock, M_IPFW);
2768 free(ipv4, M_IPFW);
2769 free(ipv4_parent, M_IPFW);
2770 free(ipv4_add, M_IPFW);
2771 free(ipv4_parent_add, M_IPFW);
2772 free(ipv4_del, M_IPFW);
2773 free(ipv4_parent_del, M_IPFW);
2774 #ifdef INET6
2775 free(ipv6, M_IPFW);
2776 free(ipv6_parent, M_IPFW);
2777 free(ipv6_add, M_IPFW);
2778 free(ipv6_parent_add, M_IPFW);
2779 free(ipv6_del, M_IPFW);
2780 free(ipv6_parent_del, M_IPFW);
2781 #endif
2782 }
2783
2784 /*
2785 * This function is used to perform various maintenance
2786 * on dynamic hash lists. Currently it is called every second.
2787 */
2788 static void
dyn_tick(void * vnetx)2789 dyn_tick(void *vnetx)
2790 {
2791 struct epoch_tracker et;
2792 uint32_t buckets;
2793
2794 CURVNET_SET((struct vnet *)vnetx);
2795 /*
2796 * First free states unlinked in previous passes.
2797 */
2798 dyn_free_states(&V_layer3_chain);
2799 dyn_expire_states(&V_layer3_chain, NULL);
2800
2801 /*
2802 * Send keepalives if they are enabled and the time has come.
2803 */
2804 if (V_dyn_keepalive != 0 &&
2805 V_dyn_keepalive_last + V_dyn_keepalive_period <= time_uptime) {
2806 V_dyn_keepalive_last = time_uptime;
2807 NET_EPOCH_ENTER(et);
2808 dyn_send_keepalive_ipv4(&V_layer3_chain);
2809 #ifdef INET6
2810 dyn_send_keepalive_ipv6(&V_layer3_chain);
2811 #endif
2812 NET_EPOCH_EXIT(et);
2813 }
2814 /*
2815 * Check if we need to resize the hash:
2816 * if current number of states exceeds number of buckets in hash,
2817 * and dyn_buckets_max permits to grow the number of buckets, then
2818 * do it. Grow hash size to the minimum power of 2 which is bigger
2819 * than current states count.
2820 */
2821 if (V_curr_dyn_buckets < V_dyn_buckets_max &&
2822 (V_curr_dyn_buckets < V_dyn_count / 2 || (
2823 V_curr_dyn_buckets < V_dyn_count && V_curr_max_length > 8))) {
2824 buckets = 1 << fls(V_dyn_count);
2825 if (buckets > V_dyn_buckets_max)
2826 buckets = V_dyn_buckets_max;
2827 dyn_grow_hashtable(&V_layer3_chain, buckets, M_NOWAIT);
2828 }
2829
2830 callout_reset_on(&V_dyn_timeout, hz, dyn_tick, vnetx, 0);
2831 CURVNET_RESTORE();
2832 }
2833
2834 void
ipfw_expire_dyn_states(struct ip_fw_chain * chain,ipfw_range_tlv * rt)2835 ipfw_expire_dyn_states(struct ip_fw_chain *chain, ipfw_range_tlv *rt)
2836 {
2837 IPFW_RLOCK_TRACKER;
2838
2839 /*
2840 * Do not perform any checks if we currently have no dynamic states
2841 */
2842 if (V_dyn_count == 0)
2843 return;
2844
2845 /*
2846 * Acquire read lock to prevent race with dyn_grow_hashtable() called
2847 * via dyn_tick(). Note that dyn_tick() also calls dyn_expire_states(),
2848 * but doesn't acquire the chain lock. A race between dyn_tick() and
2849 * this function should be safe, as dyn_expire_states() does all proper
2850 * locking of buckets and expire lists.
2851 */
2852 IPFW_RLOCK(chain);
2853 dyn_expire_states(chain, rt);
2854 IPFW_RUNLOCK(chain);
2855 }
2856
2857 /*
2858 * Pass through all states and reset eaction for orphaned rules.
2859 */
2860 void
ipfw_dyn_reset_eaction(struct ip_fw_chain * ch,uint32_t eaction_id,uint32_t default_id,uint32_t instance_id)2861 ipfw_dyn_reset_eaction(struct ip_fw_chain *ch, uint32_t eaction_id,
2862 uint32_t default_id, uint32_t instance_id)
2863 {
2864 #ifdef INET6
2865 struct dyn_ipv6_state *s6;
2866 #endif
2867 struct dyn_ipv4_state *s4;
2868 struct ip_fw *rule;
2869 uint32_t bucket;
2870
2871 #define DYN_RESET_EACTION(s, h, b) \
2872 CK_SLIST_FOREACH(s, &V_dyn_ ## h[b], entry) { \
2873 if ((s->data->flags & DYN_REFERENCED) == 0) \
2874 continue; \
2875 rule = s->data->parent; \
2876 if (s->type == O_LIMIT) \
2877 rule = ((__typeof(s))rule)->limit->parent; \
2878 ipfw_reset_eaction(ch, rule, eaction_id, \
2879 default_id, instance_id); \
2880 }
2881
2882 IPFW_UH_WLOCK_ASSERT(ch);
2883 if (V_dyn_count == 0)
2884 return;
2885 for (bucket = 0; bucket < V_curr_dyn_buckets; bucket++) {
2886 DYN_RESET_EACTION(s4, ipv4, bucket);
2887 #ifdef INET6
2888 DYN_RESET_EACTION(s6, ipv6, bucket);
2889 #endif
2890 }
2891 }
2892
2893 /*
2894 * Returns size of dynamic states in legacy format
2895 */
2896 int
ipfw_dyn_len(void)2897 ipfw_dyn_len(void)
2898 {
2899
2900 return ((V_dyn_count + V_dyn_parent_count) * sizeof(ipfw_dyn_rule));
2901 }
2902
2903 /*
2904 * Returns number of dynamic states.
2905 * Marks every named object index used by dynamic states with bit in @bmask.
2906 * Returns number of named objects accounted in bmask via @nocnt.
2907 * Used by dump format v1 (current).
2908 */
2909 uint32_t
ipfw_dyn_get_count(uint32_t * bmask,int * nocnt)2910 ipfw_dyn_get_count(uint32_t *bmask, int *nocnt)
2911 {
2912 #ifdef INET6
2913 struct dyn_ipv6_state *s6;
2914 #endif
2915 struct dyn_ipv4_state *s4;
2916 uint32_t bucket;
2917
2918 #define DYN_COUNT_OBJECTS(s, h, b) \
2919 CK_SLIST_FOREACH(s, &V_dyn_ ## h[b], entry) { \
2920 MPASS(s->kidx != 0); \
2921 if (ipfw_mark_object_kidx(bmask, IPFW_TLV_STATE_NAME, \
2922 s->kidx) != 0) \
2923 (*nocnt)++; \
2924 }
2925
2926 IPFW_UH_RLOCK_ASSERT(&V_layer3_chain);
2927
2928 /* No need to pass through all the buckets. */
2929 *nocnt = 0;
2930 if (V_dyn_count + V_dyn_parent_count == 0)
2931 return (0);
2932
2933 for (bucket = 0; bucket < V_curr_dyn_buckets; bucket++) {
2934 DYN_COUNT_OBJECTS(s4, ipv4, bucket);
2935 #ifdef INET6
2936 DYN_COUNT_OBJECTS(s6, ipv6, bucket);
2937 #endif
2938 }
2939
2940 return (V_dyn_count + V_dyn_parent_count);
2941 }
2942
2943 /*
2944 * Check if rule contains at least one dynamic opcode.
2945 *
2946 * Returns 1 if such opcode is found, 0 otherwise.
2947 */
2948 int
ipfw_is_dyn_rule(struct ip_fw * rule)2949 ipfw_is_dyn_rule(struct ip_fw *rule)
2950 {
2951 int cmdlen, l;
2952 ipfw_insn *cmd;
2953
2954 l = rule->cmd_len;
2955 cmd = rule->cmd;
2956 cmdlen = 0;
2957 for ( ; l > 0 ; l -= cmdlen, cmd += cmdlen) {
2958 cmdlen = F_LEN(cmd);
2959
2960 switch (cmd->opcode) {
2961 case O_LIMIT:
2962 case O_KEEP_STATE:
2963 case O_PROBE_STATE:
2964 case O_CHECK_STATE:
2965 return (1);
2966 }
2967 }
2968
2969 return (0);
2970 }
2971
2972 static void
dyn_export_parent(const struct dyn_parent * p,uint32_t kidx,uint8_t set,ipfw_dyn_rule * dst)2973 dyn_export_parent(const struct dyn_parent *p, uint32_t kidx, uint8_t set,
2974 ipfw_dyn_rule *dst)
2975 {
2976
2977 dst->type = O_LIMIT_PARENT;
2978 dst->set = set;
2979 dst->kidx = kidx;
2980 dst->rulenum = p->rulenum;
2981 dst->count = DPARENT_COUNT(p);
2982 dst->expire = TIME_LEQ(p->expire, time_uptime) ? 0:
2983 p->expire - time_uptime;
2984 dst->hashval = p->hashval;
2985
2986 /* unused fields */
2987 dst->pad = 0;
2988 dst->pcnt = 0;
2989 dst->bcnt = 0;
2990 dst->ack_fwd = 0;
2991 dst->ack_rev = 0;
2992 }
2993
2994 static void
dyn_export_data(const struct dyn_data * data,uint32_t kidx,uint8_t type,uint8_t set,ipfw_dyn_rule * dst)2995 dyn_export_data(const struct dyn_data *data, uint32_t kidx, uint8_t type,
2996 uint8_t set, ipfw_dyn_rule *dst)
2997 {
2998
2999 dst->type = type;
3000 dst->set = set;
3001 dst->kidx = kidx;
3002 dst->rulenum = data->rulenum;
3003 dst->pcnt = data->pcnt_fwd + data->pcnt_rev;
3004 dst->bcnt = data->bcnt_fwd + data->bcnt_rev;
3005 dst->expire = TIME_LEQ(data->expire, time_uptime) ? 0:
3006 data->expire - time_uptime;
3007 dst->state = data->state;
3008 if (data->flags & DYN_REFERENCED)
3009 dst->state |= IPFW_DYN_ORPHANED;
3010
3011 dst->ack_fwd = data->ack_fwd;
3012 dst->ack_rev = data->ack_rev;
3013 dst->hashval = data->hashval;
3014 }
3015
3016 static void
dyn_export_ipv4_state(const struct dyn_ipv4_state * s,ipfw_dyn_rule * dst)3017 dyn_export_ipv4_state(const struct dyn_ipv4_state *s, ipfw_dyn_rule *dst)
3018 {
3019 struct ip_fw *rule;
3020
3021 switch (s->type) {
3022 case O_LIMIT_PARENT:
3023 rule = s->limit->parent;
3024 dyn_export_parent(s->limit, s->kidx, rule->set, dst);
3025 break;
3026 default:
3027 rule = s->data->parent;
3028 if (s->type == O_LIMIT)
3029 rule = ((struct dyn_ipv4_state *)rule)->limit->parent;
3030 dyn_export_data(s->data, s->kidx, s->type, rule->set, dst);
3031 }
3032
3033 dst->id.dst_ip = s->dst;
3034 dst->id.src_ip = s->src;
3035 dst->id.dst_port = s->dport;
3036 dst->id.src_port = s->sport;
3037 dst->id.fib = s->data->fibnum;
3038 dst->id.proto = s->proto;
3039 dst->id._flags = 0;
3040 dst->id.addr_type = 4;
3041
3042 memset(&dst->id.dst_ip6, 0, sizeof(dst->id.dst_ip6));
3043 memset(&dst->id.src_ip6, 0, sizeof(dst->id.src_ip6));
3044 dst->id.flow_id6 = dst->id.extra = 0;
3045 }
3046
3047 #ifdef INET6
3048 static void
dyn_export_ipv6_state(const struct dyn_ipv6_state * s,ipfw_dyn_rule * dst)3049 dyn_export_ipv6_state(const struct dyn_ipv6_state *s, ipfw_dyn_rule *dst)
3050 {
3051 struct ip_fw *rule;
3052
3053 switch (s->type) {
3054 case O_LIMIT_PARENT:
3055 rule = s->limit->parent;
3056 dyn_export_parent(s->limit, s->kidx, rule->set, dst);
3057 break;
3058 default:
3059 rule = s->data->parent;
3060 if (s->type == O_LIMIT)
3061 rule = ((struct dyn_ipv6_state *)rule)->limit->parent;
3062 dyn_export_data(s->data, s->kidx, s->type, rule->set, dst);
3063 }
3064
3065 dst->id.src_ip6 = s->src;
3066 dst->id.dst_ip6 = s->dst;
3067 dst->id.dst_port = s->dport;
3068 dst->id.src_port = s->sport;
3069 dst->id.fib = s->data->fibnum;
3070 dst->id.proto = s->proto;
3071 dst->id._flags = 0;
3072 dst->id.addr_type = 6;
3073
3074 dst->id.dst_ip = dst->id.src_ip = 0;
3075 dst->id.flow_id6 = dst->id.extra = 0;
3076 }
3077 #endif /* INET6 */
3078
3079 /*
3080 * Fills the buffer given by @sd with dynamic states.
3081 * Used by dump format v1 (current).
3082 *
3083 * Returns 0 on success.
3084 */
3085 int
ipfw_dump_states(struct ip_fw_chain * chain,struct sockopt_data * sd)3086 ipfw_dump_states(struct ip_fw_chain *chain, struct sockopt_data *sd)
3087 {
3088 #ifdef INET6
3089 struct dyn_ipv6_state *s6;
3090 #endif
3091 struct dyn_ipv4_state *s4;
3092 ipfw_obj_dyntlv *dst, *last;
3093 ipfw_obj_ctlv *ctlv;
3094 uint32_t bucket;
3095
3096 if (V_dyn_count == 0)
3097 return (0);
3098
3099 /*
3100 * IPFW_UH_RLOCK garantees that another userland request
3101 * and callout thread will not delete entries from states
3102 * lists.
3103 */
3104 IPFW_UH_RLOCK_ASSERT(chain);
3105
3106 ctlv = (ipfw_obj_ctlv *)ipfw_get_sopt_space(sd, sizeof(*ctlv));
3107 if (ctlv == NULL)
3108 return (ENOMEM);
3109 ctlv->head.type = IPFW_TLV_DYNSTATE_LIST;
3110 ctlv->objsize = sizeof(ipfw_obj_dyntlv);
3111 last = NULL;
3112
3113 #define DYN_EXPORT_STATES(s, af, h, b) \
3114 CK_SLIST_FOREACH(s, &V_dyn_ ## h[b], entry) { \
3115 dst = (ipfw_obj_dyntlv *)ipfw_get_sopt_space(sd, \
3116 sizeof(ipfw_obj_dyntlv)); \
3117 if (dst == NULL) \
3118 return (ENOMEM); \
3119 dyn_export_ ## af ## _state(s, &dst->state); \
3120 dst->head.length = sizeof(ipfw_obj_dyntlv); \
3121 dst->head.type = IPFW_TLV_DYN_ENT; \
3122 last = dst; \
3123 }
3124
3125 for (bucket = 0; bucket < V_curr_dyn_buckets; bucket++) {
3126 DYN_EXPORT_STATES(s4, ipv4, ipv4_parent, bucket);
3127 DYN_EXPORT_STATES(s4, ipv4, ipv4, bucket);
3128 #ifdef INET6
3129 DYN_EXPORT_STATES(s6, ipv6, ipv6_parent, bucket);
3130 DYN_EXPORT_STATES(s6, ipv6, ipv6, bucket);
3131 #endif /* INET6 */
3132 }
3133
3134 /* mark last dynamic rule */
3135 if (last != NULL)
3136 last->head.flags = IPFW_DF_LAST; /* XXX: unused */
3137 return (0);
3138 #undef DYN_EXPORT_STATES
3139 }
3140
3141 /*
3142 * When we have enabled V_dyn_keep_states, states that become ORPHANED
3143 * will keep pointer to original rule. Then this rule pointer is used
3144 * to apply rule action after ipfw_dyn_lookup_state().
3145 * Some rule actions use IPFW_INC_RULE_COUNTER() directly to this rule
3146 * pointer, but other actions use chain->map[f_pos] instead. The last
3147 * case leads to incrementing counters on the wrong rule, because
3148 * ORPHANED states have not parent rule in chain->map[].
3149 * To solve this we add protected rule:
3150 * count ip from any to any not // comment
3151 * It will be matched only by packets that are handled by ORPHANED states.
3152 */
3153 static void
dyn_add_protected_rule(struct ip_fw_chain * chain)3154 dyn_add_protected_rule(struct ip_fw_chain *chain)
3155 {
3156 static const char *comment =
3157 "orphaned dynamic states counter";
3158 struct ip_fw *rule;
3159 ipfw_insn *cmd;
3160 size_t l;
3161
3162 l = roundup(strlen(comment) + 1, sizeof(uint32_t));
3163 rule = ipfw_alloc_rule(chain, sizeof(*rule) + sizeof(ipfw_insn) + l);
3164 cmd = rule->cmd;
3165 cmd->opcode = O_NOP;
3166 cmd->len = 1 + l/sizeof(uint32_t);
3167 cmd->len |= F_NOT; /* make rule to be not matched */
3168 strcpy((char *)(cmd + 1), comment);
3169 cmd += F_LEN(cmd);
3170
3171 cmd->len = 1;
3172 cmd->opcode = O_COUNT;
3173 rule->act_ofs = cmd - rule->cmd;
3174 rule->cmd_len = rule->act_ofs + 1;
3175 ipfw_add_protected_rule(chain, rule);
3176 }
3177
3178 void
ipfw_dyn_init(struct ip_fw_chain * chain)3179 ipfw_dyn_init(struct ip_fw_chain *chain)
3180 {
3181
3182 #ifdef IPFIREWALL_JENKINSHASH
3183 V_dyn_hashseed = arc4random();
3184 #endif
3185 V_dyn_max = 16384; /* max # of states */
3186 V_dyn_parent_max = 4096; /* max # of parent states */
3187 V_dyn_buckets_max = 8192; /* must be power of 2 */
3188
3189 V_dyn_ack_lifetime = 300;
3190 V_dyn_syn_lifetime = 20;
3191 V_dyn_fin_lifetime = 1;
3192 V_dyn_rst_lifetime = 1;
3193 V_dyn_udp_lifetime = 10;
3194 V_dyn_short_lifetime = 5;
3195
3196 V_dyn_keepalive_interval = 20;
3197 V_dyn_keepalive_period = 5;
3198 V_dyn_keepalive = 1; /* send keepalives */
3199 V_dyn_keepalive_last = time_uptime;
3200
3201 V_dyn_data_zone = uma_zcreate("IPFW dynamic states data",
3202 sizeof(struct dyn_data), NULL, NULL, NULL, NULL,
3203 UMA_ALIGN_PTR, 0);
3204 uma_zone_set_max(V_dyn_data_zone, V_dyn_max);
3205
3206 V_dyn_parent_zone = uma_zcreate("IPFW parent dynamic states",
3207 sizeof(struct dyn_parent), NULL, NULL, NULL, NULL,
3208 UMA_ALIGN_PTR, 0);
3209 uma_zone_set_max(V_dyn_parent_zone, V_dyn_parent_max);
3210
3211 SLIST_INIT(&V_dyn_expired_ipv4);
3212 V_dyn_ipv4 = NULL;
3213 V_dyn_ipv4_parent = NULL;
3214 V_dyn_ipv4_zone = uma_zcreate("IPFW IPv4 dynamic states",
3215 sizeof(struct dyn_ipv4_state), NULL, NULL, NULL, NULL,
3216 UMA_ALIGN_PTR, 0);
3217
3218 #ifdef INET6
3219 SLIST_INIT(&V_dyn_expired_ipv6);
3220 V_dyn_ipv6 = NULL;
3221 V_dyn_ipv6_parent = NULL;
3222 V_dyn_ipv6_zone = uma_zcreate("IPFW IPv6 dynamic states",
3223 sizeof(struct dyn_ipv6_state), NULL, NULL, NULL, NULL,
3224 UMA_ALIGN_PTR, 0);
3225 #endif
3226
3227 /* Initialize buckets. */
3228 V_curr_dyn_buckets = 0;
3229 V_dyn_bucket_lock = NULL;
3230 dyn_grow_hashtable(chain, 256, M_WAITOK);
3231
3232 if (IS_DEFAULT_VNET(curvnet))
3233 dyn_hp_cache = malloc(mp_ncpus * sizeof(void *), M_IPFW,
3234 M_WAITOK | M_ZERO);
3235
3236 DYN_EXPIRED_LOCK_INIT();
3237 callout_init(&V_dyn_timeout, 1);
3238 callout_reset(&V_dyn_timeout, hz, dyn_tick, curvnet);
3239 IPFW_ADD_OBJ_REWRITER(IS_DEFAULT_VNET(curvnet), dyn_opcodes);
3240
3241 dyn_add_protected_rule(chain);
3242 }
3243
3244 void
ipfw_dyn_uninit(int pass)3245 ipfw_dyn_uninit(int pass)
3246 {
3247 #ifdef INET6
3248 struct dyn_ipv6_state *s6;
3249 #endif
3250 struct dyn_ipv4_state *s4;
3251 int bucket;
3252
3253 if (pass == 0) {
3254 callout_drain(&V_dyn_timeout);
3255 return;
3256 }
3257 IPFW_DEL_OBJ_REWRITER(IS_DEFAULT_VNET(curvnet), dyn_opcodes);
3258 DYN_EXPIRED_LOCK_DESTROY();
3259
3260 #define DYN_FREE_STATES_FORCED(CK, s, af, name, en) do { \
3261 while ((s = CK ## SLIST_FIRST(&V_dyn_ ## name)) != NULL) { \
3262 CK ## SLIST_REMOVE_HEAD(&V_dyn_ ## name, en); \
3263 if (s->type == O_LIMIT_PARENT) \
3264 uma_zfree(V_dyn_parent_zone, s->limit); \
3265 else \
3266 uma_zfree(V_dyn_data_zone, s->data); \
3267 uma_zfree(V_dyn_ ## af ## _zone, s); \
3268 } \
3269 } while (0)
3270 for (bucket = 0; bucket < V_curr_dyn_buckets; bucket++) {
3271 DYN_BUCKET_LOCK_DESTROY(V_dyn_bucket_lock, bucket);
3272
3273 DYN_FREE_STATES_FORCED(CK_, s4, ipv4, ipv4[bucket], entry);
3274 DYN_FREE_STATES_FORCED(CK_, s4, ipv4, ipv4_parent[bucket],
3275 entry);
3276 #ifdef INET6
3277 DYN_FREE_STATES_FORCED(CK_, s6, ipv6, ipv6[bucket], entry);
3278 DYN_FREE_STATES_FORCED(CK_, s6, ipv6, ipv6_parent[bucket],
3279 entry);
3280 #endif /* INET6 */
3281 }
3282 DYN_FREE_STATES_FORCED(, s4, ipv4, expired_ipv4, expired);
3283 #ifdef INET6
3284 DYN_FREE_STATES_FORCED(, s6, ipv6, expired_ipv6, expired);
3285 #endif
3286 #undef DYN_FREE_STATES_FORCED
3287
3288 uma_zdestroy(V_dyn_ipv4_zone);
3289 uma_zdestroy(V_dyn_data_zone);
3290 uma_zdestroy(V_dyn_parent_zone);
3291 #ifdef INET6
3292 uma_zdestroy(V_dyn_ipv6_zone);
3293 free(V_dyn_ipv6, M_IPFW);
3294 free(V_dyn_ipv6_parent, M_IPFW);
3295 free(V_dyn_ipv6_add, M_IPFW);
3296 free(V_dyn_ipv6_parent_add, M_IPFW);
3297 free(V_dyn_ipv6_del, M_IPFW);
3298 free(V_dyn_ipv6_parent_del, M_IPFW);
3299 #endif
3300 free(V_dyn_bucket_lock, M_IPFW);
3301 free(V_dyn_ipv4, M_IPFW);
3302 free(V_dyn_ipv4_parent, M_IPFW);
3303 free(V_dyn_ipv4_add, M_IPFW);
3304 free(V_dyn_ipv4_parent_add, M_IPFW);
3305 free(V_dyn_ipv4_del, M_IPFW);
3306 free(V_dyn_ipv4_parent_del, M_IPFW);
3307 if (IS_DEFAULT_VNET(curvnet))
3308 free(dyn_hp_cache, M_IPFW);
3309 }
3310