xref: /linux/drivers/cpufreq/intel_pstate.c (revision 53edfecef66bfa65882ae065ed1a52f466c88979)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * intel_pstate.c: Native P state management for Intel processors
4  *
5  * (C) Copyright 2012 Intel Corporation
6  * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
7  */
8 
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 
11 #include <linux/kernel.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/module.h>
14 #include <linux/ktime.h>
15 #include <linux/hrtimer.h>
16 #include <linux/tick.h>
17 #include <linux/slab.h>
18 #include <linux/sched/cpufreq.h>
19 #include <linux/sched/smt.h>
20 #include <linux/list.h>
21 #include <linux/cpu.h>
22 #include <linux/cpufreq.h>
23 #include <linux/sysfs.h>
24 #include <linux/types.h>
25 #include <linux/fs.h>
26 #include <linux/acpi.h>
27 #include <linux/vmalloc.h>
28 #include <linux/pm_qos.h>
29 #include <linux/bitfield.h>
30 #include <trace/events/power.h>
31 #include <linux/units.h>
32 
33 #include <asm/cpu.h>
34 #include <asm/div64.h>
35 #include <asm/msr.h>
36 #include <asm/cpu_device_id.h>
37 #include <asm/cpufeature.h>
38 #include <asm/intel-family.h>
39 #include "../drivers/thermal/intel/thermal_interrupt.h"
40 
41 #define INTEL_PSTATE_SAMPLING_INTERVAL	(10 * NSEC_PER_MSEC)
42 
43 #define INTEL_CPUFREQ_TRANSITION_LATENCY	20000
44 #define INTEL_CPUFREQ_TRANSITION_DELAY_HWP	5000
45 #define INTEL_CPUFREQ_TRANSITION_DELAY		500
46 
47 #ifdef CONFIG_ACPI
48 #include <acpi/processor.h>
49 #include <acpi/cppc_acpi.h>
50 #endif
51 
52 #define FRAC_BITS 8
53 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
54 #define fp_toint(X) ((X) >> FRAC_BITS)
55 
56 #define ONE_EIGHTH_FP ((int64_t)1 << (FRAC_BITS - 3))
57 
58 #define EXT_BITS 6
59 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
60 #define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
61 #define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
62 
mul_fp(int32_t x,int32_t y)63 static inline int32_t mul_fp(int32_t x, int32_t y)
64 {
65 	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
66 }
67 
div_fp(s64 x,s64 y)68 static inline int32_t div_fp(s64 x, s64 y)
69 {
70 	return div64_s64((int64_t)x << FRAC_BITS, y);
71 }
72 
ceiling_fp(int32_t x)73 static inline int ceiling_fp(int32_t x)
74 {
75 	int mask, ret;
76 
77 	ret = fp_toint(x);
78 	mask = (1 << FRAC_BITS) - 1;
79 	if (x & mask)
80 		ret += 1;
81 	return ret;
82 }
83 
mul_ext_fp(u64 x,u64 y)84 static inline u64 mul_ext_fp(u64 x, u64 y)
85 {
86 	return (x * y) >> EXT_FRAC_BITS;
87 }
88 
div_ext_fp(u64 x,u64 y)89 static inline u64 div_ext_fp(u64 x, u64 y)
90 {
91 	return div64_u64(x << EXT_FRAC_BITS, y);
92 }
93 
94 /**
95  * struct sample -	Store performance sample
96  * @core_avg_perf:	Ratio of APERF/MPERF which is the actual average
97  *			performance during last sample period
98  * @busy_scaled:	Scaled busy value which is used to calculate next
99  *			P state. This can be different than core_avg_perf
100  *			to account for cpu idle period
101  * @aperf:		Difference of actual performance frequency clock count
102  *			read from APERF MSR between last and current sample
103  * @mperf:		Difference of maximum performance frequency clock count
104  *			read from MPERF MSR between last and current sample
105  * @tsc:		Difference of time stamp counter between last and
106  *			current sample
107  * @time:		Current time from scheduler
108  *
109  * This structure is used in the cpudata structure to store performance sample
110  * data for choosing next P State.
111  */
112 struct sample {
113 	int32_t core_avg_perf;
114 	int32_t busy_scaled;
115 	u64 aperf;
116 	u64 mperf;
117 	u64 tsc;
118 	u64 time;
119 };
120 
121 /**
122  * struct pstate_data - Store P state data
123  * @current_pstate:	Current requested P state
124  * @min_pstate:		Min P state possible for this platform
125  * @max_pstate:		Max P state possible for this platform
126  * @max_pstate_physical:This is physical Max P state for a processor
127  *			This can be higher than the max_pstate which can
128  *			be limited by platform thermal design power limits
129  * @perf_ctl_scaling:	PERF_CTL P-state to frequency scaling factor
130  * @scaling:		Scaling factor between performance and frequency
131  * @turbo_pstate:	Max Turbo P state possible for this platform
132  * @min_freq:		@min_pstate frequency in cpufreq units
133  * @max_freq:		@max_pstate frequency in cpufreq units
134  * @turbo_freq:		@turbo_pstate frequency in cpufreq units
135  *
136  * Stores the per cpu model P state limits and current P state.
137  */
138 struct pstate_data {
139 	int	current_pstate;
140 	int	min_pstate;
141 	int	max_pstate;
142 	int	max_pstate_physical;
143 	int	perf_ctl_scaling;
144 	int	scaling;
145 	int	turbo_pstate;
146 	unsigned int min_freq;
147 	unsigned int max_freq;
148 	unsigned int turbo_freq;
149 };
150 
151 /**
152  * struct vid_data -	Stores voltage information data
153  * @min:		VID data for this platform corresponding to
154  *			the lowest P state
155  * @max:		VID data corresponding to the highest P State.
156  * @turbo:		VID data for turbo P state
157  * @ratio:		Ratio of (vid max - vid min) /
158  *			(max P state - Min P State)
159  *
160  * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
161  * This data is used in Atom platforms, where in addition to target P state,
162  * the voltage data needs to be specified to select next P State.
163  */
164 struct vid_data {
165 	int min;
166 	int max;
167 	int turbo;
168 	int32_t ratio;
169 };
170 
171 /**
172  * struct global_params - Global parameters, mostly tunable via sysfs.
173  * @no_turbo:		Whether or not to use turbo P-states.
174  * @turbo_disabled:	Whether or not turbo P-states are available at all,
175  *			based on the MSR_IA32_MISC_ENABLE value and whether or
176  *			not the maximum reported turbo P-state is different from
177  *			the maximum reported non-turbo one.
178  * @min_perf_pct:	Minimum capacity limit in percent of the maximum turbo
179  *			P-state capacity.
180  * @max_perf_pct:	Maximum capacity limit in percent of the maximum turbo
181  *			P-state capacity.
182  */
183 struct global_params {
184 	bool no_turbo;
185 	bool turbo_disabled;
186 	int max_perf_pct;
187 	int min_perf_pct;
188 };
189 
190 /**
191  * struct cpudata -	Per CPU instance data storage
192  * @cpu:		CPU number for this instance data
193  * @policy:		CPUFreq policy value
194  * @update_util:	CPUFreq utility callback information
195  * @update_util_set:	CPUFreq utility callback is set
196  * @iowait_boost:	iowait-related boost fraction
197  * @last_update:	Time of the last update.
198  * @pstate:		Stores P state limits for this CPU
199  * @vid:		Stores VID limits for this CPU
200  * @last_sample_time:	Last Sample time
201  * @aperf_mperf_shift:	APERF vs MPERF counting frequency difference
202  * @prev_aperf:		Last APERF value read from APERF MSR
203  * @prev_mperf:		Last MPERF value read from MPERF MSR
204  * @prev_tsc:		Last timestamp counter (TSC) value
205  * @sample:		Storage for storing last Sample data
206  * @min_perf_ratio:	Minimum capacity in terms of PERF or HWP ratios
207  * @max_perf_ratio:	Maximum capacity in terms of PERF or HWP ratios
208  * @acpi_perf_data:	Stores ACPI perf information read from _PSS
209  * @valid_pss_table:	Set to true for valid ACPI _PSS entries found
210  * @epp_powersave:	Last saved HWP energy performance preference
211  *			(EPP) or energy performance bias (EPB),
212  *			when policy switched to performance
213  * @epp_policy:		Last saved policy used to set EPP/EPB
214  * @epp_default:	Power on default HWP energy performance
215  *			preference/bias
216  * @epp_cached:		Cached HWP energy-performance preference value
217  * @hwp_req_cached:	Cached value of the last HWP Request MSR
218  * @hwp_cap_cached:	Cached value of the last HWP Capabilities MSR
219  * @last_io_update:	Last time when IO wake flag was set
220  * @capacity_perf:	Highest perf used for scale invariance
221  * @sched_flags:	Store scheduler flags for possible cross CPU update
222  * @hwp_boost_min:	Last HWP boosted min performance
223  * @suspended:		Whether or not the driver has been suspended.
224  * @pd_registered:	Set when a perf domain is registered for this CPU.
225  * @hwp_notify_work:	workqueue for HWP notifications.
226  *
227  * This structure stores per CPU instance data for all CPUs.
228  */
229 struct cpudata {
230 	int cpu;
231 
232 	unsigned int policy;
233 	struct update_util_data update_util;
234 	bool   update_util_set;
235 
236 	struct pstate_data pstate;
237 	struct vid_data vid;
238 
239 	u64	last_update;
240 	u64	last_sample_time;
241 	u64	aperf_mperf_shift;
242 	u64	prev_aperf;
243 	u64	prev_mperf;
244 	u64	prev_tsc;
245 	struct sample sample;
246 	int32_t	min_perf_ratio;
247 	int32_t	max_perf_ratio;
248 #ifdef CONFIG_ACPI
249 	struct acpi_processor_performance acpi_perf_data;
250 	bool valid_pss_table;
251 #endif
252 	unsigned int iowait_boost;
253 	s16 epp_powersave;
254 	s16 epp_policy;
255 	s16 epp_default;
256 	s16 epp_cached;
257 	u64 hwp_req_cached;
258 	u64 hwp_cap_cached;
259 	u64 last_io_update;
260 	unsigned int capacity_perf;
261 	unsigned int sched_flags;
262 	u32 hwp_boost_min;
263 	bool suspended;
264 #ifdef CONFIG_ENERGY_MODEL
265 	bool pd_registered;
266 #endif
267 	struct delayed_work hwp_notify_work;
268 };
269 
270 static struct cpudata **all_cpu_data;
271 
272 /**
273  * struct pstate_funcs - Per CPU model specific callbacks
274  * @get_max:		Callback to get maximum non turbo effective P state
275  * @get_max_physical:	Callback to get maximum non turbo physical P state
276  * @get_min:		Callback to get minimum P state
277  * @get_turbo:		Callback to get turbo P state
278  * @get_scaling:	Callback to get frequency scaling factor
279  * @get_cpu_scaling:	Get frequency scaling factor for a given cpu
280  * @get_aperf_mperf_shift: Callback to get the APERF vs MPERF frequency difference
281  * @get_val:		Callback to convert P state to actual MSR write value
282  * @get_vid:		Callback to get VID data for Atom platforms
283  *
284  * Core and Atom CPU models have different way to get P State limits. This
285  * structure is used to store those callbacks.
286  */
287 struct pstate_funcs {
288 	int (*get_max)(int cpu);
289 	int (*get_max_physical)(int cpu);
290 	int (*get_min)(int cpu);
291 	int (*get_turbo)(int cpu);
292 	int (*get_scaling)(void);
293 	int (*get_cpu_scaling)(int cpu);
294 	int (*get_aperf_mperf_shift)(void);
295 	u64 (*get_val)(struct cpudata*, int pstate);
296 	void (*get_vid)(struct cpudata *);
297 };
298 
299 static struct pstate_funcs pstate_funcs __read_mostly;
300 
301 static bool hwp_active __ro_after_init;
302 static int hwp_mode_bdw __ro_after_init;
303 static bool per_cpu_limits __ro_after_init;
304 static bool hwp_forced __ro_after_init;
305 static bool hwp_boost __read_mostly;
306 static bool hwp_is_hybrid;
307 
308 static struct cpufreq_driver *intel_pstate_driver __read_mostly;
309 
310 #define INTEL_PSTATE_CORE_SCALING	100000
311 #define HYBRID_SCALING_FACTOR_ADL	78741
312 #define HYBRID_SCALING_FACTOR_MTL	80000
313 #define HYBRID_SCALING_FACTOR_LNL	86957
314 
315 static int hybrid_scaling_factor;
316 
core_get_scaling(void)317 static inline int core_get_scaling(void)
318 {
319 	return INTEL_PSTATE_CORE_SCALING;
320 }
321 
322 #ifdef CONFIG_ACPI
323 static bool acpi_ppc;
324 #endif
325 
326 static struct global_params global;
327 
328 static DEFINE_MUTEX(intel_pstate_driver_lock);
329 static DEFINE_MUTEX(intel_pstate_limits_lock);
330 
331 #ifdef CONFIG_ACPI
332 
intel_pstate_acpi_pm_profile_server(void)333 static bool intel_pstate_acpi_pm_profile_server(void)
334 {
335 	if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
336 	    acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
337 		return true;
338 
339 	return false;
340 }
341 
intel_pstate_get_ppc_enable_status(void)342 static bool intel_pstate_get_ppc_enable_status(void)
343 {
344 	if (intel_pstate_acpi_pm_profile_server())
345 		return true;
346 
347 	return acpi_ppc;
348 }
349 
350 #ifdef CONFIG_ACPI_CPPC_LIB
351 
352 /* The work item is needed to avoid CPU hotplug locking issues */
intel_pstste_sched_itmt_work_fn(struct work_struct * work)353 static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
354 {
355 	sched_set_itmt_support();
356 }
357 
358 static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
359 
360 #define CPPC_MAX_PERF	U8_MAX
361 
intel_pstate_set_itmt_prio(int cpu)362 static void intel_pstate_set_itmt_prio(int cpu)
363 {
364 	struct cppc_perf_caps cppc_perf;
365 	static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
366 	int ret;
367 
368 	ret = cppc_get_perf_caps(cpu, &cppc_perf);
369 	/*
370 	 * If CPPC is not available, fall back to MSR_HWP_CAPABILITIES bits [8:0].
371 	 *
372 	 * Also, on some systems with overclocking enabled, CPPC.highest_perf is
373 	 * hardcoded to 0xff, so CPPC.highest_perf cannot be used to enable ITMT.
374 	 * Fall back to MSR_HWP_CAPABILITIES then too.
375 	 */
376 	if (ret || cppc_perf.highest_perf == CPPC_MAX_PERF)
377 		cppc_perf.highest_perf = HWP_HIGHEST_PERF(READ_ONCE(all_cpu_data[cpu]->hwp_cap_cached));
378 
379 	/*
380 	 * The priorities can be set regardless of whether or not
381 	 * sched_set_itmt_support(true) has been called and it is valid to
382 	 * update them at any time after it has been called.
383 	 */
384 	sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
385 
386 	if (max_highest_perf <= min_highest_perf) {
387 		if (cppc_perf.highest_perf > max_highest_perf)
388 			max_highest_perf = cppc_perf.highest_perf;
389 
390 		if (cppc_perf.highest_perf < min_highest_perf)
391 			min_highest_perf = cppc_perf.highest_perf;
392 
393 		if (max_highest_perf > min_highest_perf) {
394 			/*
395 			 * This code can be run during CPU online under the
396 			 * CPU hotplug locks, so sched_set_itmt_support()
397 			 * cannot be called from here.  Queue up a work item
398 			 * to invoke it.
399 			 */
400 			schedule_work(&sched_itmt_work);
401 		}
402 	}
403 }
404 
intel_pstate_get_cppc_guaranteed(int cpu)405 static int intel_pstate_get_cppc_guaranteed(int cpu)
406 {
407 	struct cppc_perf_caps cppc_perf;
408 	int ret;
409 
410 	ret = cppc_get_perf_caps(cpu, &cppc_perf);
411 	if (ret)
412 		return ret;
413 
414 	if (cppc_perf.guaranteed_perf)
415 		return cppc_perf.guaranteed_perf;
416 
417 	return cppc_perf.nominal_perf;
418 }
419 
intel_pstate_cppc_get_scaling(int cpu)420 static int intel_pstate_cppc_get_scaling(int cpu)
421 {
422 	struct cppc_perf_caps cppc_perf;
423 
424 	/*
425 	 * Compute the perf-to-frequency scaling factor for the given CPU if
426 	 * possible, unless it would be 0.
427 	 */
428 	if (!cppc_get_perf_caps(cpu, &cppc_perf) &&
429 	    cppc_perf.nominal_perf && cppc_perf.nominal_freq)
430 		return div_u64(cppc_perf.nominal_freq * KHZ_PER_MHZ,
431 			       cppc_perf.nominal_perf);
432 
433 	return core_get_scaling();
434 }
435 
436 #else /* CONFIG_ACPI_CPPC_LIB */
intel_pstate_set_itmt_prio(int cpu)437 static inline void intel_pstate_set_itmt_prio(int cpu)
438 {
439 }
440 #endif /* CONFIG_ACPI_CPPC_LIB */
441 
intel_pstate_init_acpi_perf_limits(struct cpufreq_policy * policy)442 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
443 {
444 	struct cpudata *cpu;
445 	int ret;
446 	int i;
447 
448 	if (hwp_active) {
449 		intel_pstate_set_itmt_prio(policy->cpu);
450 		return;
451 	}
452 
453 	if (!intel_pstate_get_ppc_enable_status())
454 		return;
455 
456 	cpu = all_cpu_data[policy->cpu];
457 
458 	ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
459 						  policy->cpu);
460 	if (ret)
461 		return;
462 
463 	/*
464 	 * Check if the control value in _PSS is for PERF_CTL MSR, which should
465 	 * guarantee that the states returned by it map to the states in our
466 	 * list directly.
467 	 */
468 	if (cpu->acpi_perf_data.control_register.space_id !=
469 						ACPI_ADR_SPACE_FIXED_HARDWARE)
470 		goto err;
471 
472 	/*
473 	 * If there is only one entry _PSS, simply ignore _PSS and continue as
474 	 * usual without taking _PSS into account
475 	 */
476 	if (cpu->acpi_perf_data.state_count < 2)
477 		goto err;
478 
479 	pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
480 	for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
481 		pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
482 			 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
483 			 (u32) cpu->acpi_perf_data.states[i].core_frequency,
484 			 (u32) cpu->acpi_perf_data.states[i].power,
485 			 (u32) cpu->acpi_perf_data.states[i].control);
486 	}
487 
488 	cpu->valid_pss_table = true;
489 	pr_debug("_PPC limits will be enforced\n");
490 
491 	return;
492 
493  err:
494 	cpu->valid_pss_table = false;
495 	acpi_processor_unregister_performance(policy->cpu);
496 }
497 
intel_pstate_exit_perf_limits(struct cpufreq_policy * policy)498 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
499 {
500 	struct cpudata *cpu;
501 
502 	cpu = all_cpu_data[policy->cpu];
503 	if (!cpu->valid_pss_table)
504 		return;
505 
506 	acpi_processor_unregister_performance(policy->cpu);
507 }
508 #else /* CONFIG_ACPI */
intel_pstate_init_acpi_perf_limits(struct cpufreq_policy * policy)509 static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
510 {
511 }
512 
intel_pstate_exit_perf_limits(struct cpufreq_policy * policy)513 static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
514 {
515 }
516 
intel_pstate_acpi_pm_profile_server(void)517 static inline bool intel_pstate_acpi_pm_profile_server(void)
518 {
519 	return false;
520 }
521 #endif /* CONFIG_ACPI */
522 
523 #ifndef CONFIG_ACPI_CPPC_LIB
intel_pstate_get_cppc_guaranteed(int cpu)524 static inline int intel_pstate_get_cppc_guaranteed(int cpu)
525 {
526 	return -ENOTSUPP;
527 }
528 
intel_pstate_cppc_get_scaling(int cpu)529 static int intel_pstate_cppc_get_scaling(int cpu)
530 {
531 	return core_get_scaling();
532 }
533 #endif /* CONFIG_ACPI_CPPC_LIB */
534 
intel_pstate_freq_to_hwp_rel(struct cpudata * cpu,int freq,unsigned int relation)535 static int intel_pstate_freq_to_hwp_rel(struct cpudata *cpu, int freq,
536 					unsigned int relation)
537 {
538 	if (freq == cpu->pstate.turbo_freq)
539 		return cpu->pstate.turbo_pstate;
540 
541 	if (freq == cpu->pstate.max_freq)
542 		return cpu->pstate.max_pstate;
543 
544 	switch (relation) {
545 	case CPUFREQ_RELATION_H:
546 		return freq / cpu->pstate.scaling;
547 	case CPUFREQ_RELATION_C:
548 		return DIV_ROUND_CLOSEST(freq, cpu->pstate.scaling);
549 	}
550 
551 	return DIV_ROUND_UP(freq, cpu->pstate.scaling);
552 }
553 
intel_pstate_freq_to_hwp(struct cpudata * cpu,int freq)554 static int intel_pstate_freq_to_hwp(struct cpudata *cpu, int freq)
555 {
556 	return intel_pstate_freq_to_hwp_rel(cpu, freq, CPUFREQ_RELATION_L);
557 }
558 
559 /**
560  * intel_pstate_hybrid_hwp_adjust - Calibrate HWP performance levels.
561  * @cpu: Target CPU.
562  *
563  * On hybrid processors, HWP may expose more performance levels than there are
564  * P-states accessible through the PERF_CTL interface.  If that happens, the
565  * scaling factor between HWP performance levels and CPU frequency will be less
566  * than the scaling factor between P-state values and CPU frequency.
567  *
568  * In that case, adjust the CPU parameters used in computations accordingly.
569  */
intel_pstate_hybrid_hwp_adjust(struct cpudata * cpu)570 static void intel_pstate_hybrid_hwp_adjust(struct cpudata *cpu)
571 {
572 	int perf_ctl_max_phys = cpu->pstate.max_pstate_physical;
573 	int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling;
574 	int perf_ctl_turbo = pstate_funcs.get_turbo(cpu->cpu);
575 	int scaling = cpu->pstate.scaling;
576 	int freq;
577 
578 	pr_debug("CPU%d: perf_ctl_max_phys = %d\n", cpu->cpu, perf_ctl_max_phys);
579 	pr_debug("CPU%d: perf_ctl_turbo = %d\n", cpu->cpu, perf_ctl_turbo);
580 	pr_debug("CPU%d: perf_ctl_scaling = %d\n", cpu->cpu, perf_ctl_scaling);
581 	pr_debug("CPU%d: HWP_CAP guaranteed = %d\n", cpu->cpu, cpu->pstate.max_pstate);
582 	pr_debug("CPU%d: HWP_CAP highest = %d\n", cpu->cpu, cpu->pstate.turbo_pstate);
583 	pr_debug("CPU%d: HWP-to-frequency scaling factor: %d\n", cpu->cpu, scaling);
584 
585 	cpu->pstate.turbo_freq = rounddown(cpu->pstate.turbo_pstate * scaling,
586 					   perf_ctl_scaling);
587 	cpu->pstate.max_freq = rounddown(cpu->pstate.max_pstate * scaling,
588 					 perf_ctl_scaling);
589 
590 	freq = perf_ctl_max_phys * perf_ctl_scaling;
591 	cpu->pstate.max_pstate_physical = intel_pstate_freq_to_hwp(cpu, freq);
592 
593 	freq = cpu->pstate.min_pstate * perf_ctl_scaling;
594 	cpu->pstate.min_freq = freq;
595 	/*
596 	 * Cast the min P-state value retrieved via pstate_funcs.get_min() to
597 	 * the effective range of HWP performance levels.
598 	 */
599 	cpu->pstate.min_pstate = intel_pstate_freq_to_hwp(cpu, freq);
600 }
601 
turbo_is_disabled(void)602 static bool turbo_is_disabled(void)
603 {
604 	u64 misc_en;
605 
606 	if (!cpu_feature_enabled(X86_FEATURE_IDA))
607 		return true;
608 
609 	rdmsrq(MSR_IA32_MISC_ENABLE, misc_en);
610 
611 	return !!(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE);
612 }
613 
min_perf_pct_min(void)614 static int min_perf_pct_min(void)
615 {
616 	struct cpudata *cpu = all_cpu_data[0];
617 	int turbo_pstate = cpu->pstate.turbo_pstate;
618 
619 	return turbo_pstate ?
620 		(cpu->pstate.min_pstate * 100 / turbo_pstate) : 0;
621 }
622 
intel_pstate_get_epb(struct cpudata * cpu_data)623 static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
624 {
625 	u64 epb;
626 	int ret;
627 
628 	if (!boot_cpu_has(X86_FEATURE_EPB))
629 		return -ENXIO;
630 
631 	ret = rdmsrq_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
632 	if (ret)
633 		return (s16)ret;
634 
635 	return (s16)(epb & 0x0f);
636 }
637 
intel_pstate_get_epp(struct cpudata * cpu_data,u64 hwp_req_data)638 static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
639 {
640 	s16 epp;
641 
642 	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
643 		/*
644 		 * When hwp_req_data is 0, means that caller didn't read
645 		 * MSR_HWP_REQUEST, so need to read and get EPP.
646 		 */
647 		if (!hwp_req_data) {
648 			epp = rdmsrq_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
649 					    &hwp_req_data);
650 			if (epp)
651 				return epp;
652 		}
653 		epp = (hwp_req_data >> 24) & 0xff;
654 	} else {
655 		/* When there is no EPP present, HWP uses EPB settings */
656 		epp = intel_pstate_get_epb(cpu_data);
657 	}
658 
659 	return epp;
660 }
661 
intel_pstate_set_epb(int cpu,s16 pref)662 static int intel_pstate_set_epb(int cpu, s16 pref)
663 {
664 	u64 epb;
665 	int ret;
666 
667 	if (!boot_cpu_has(X86_FEATURE_EPB))
668 		return -ENXIO;
669 
670 	ret = rdmsrq_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
671 	if (ret)
672 		return ret;
673 
674 	epb = (epb & ~0x0f) | pref;
675 	wrmsrq_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
676 
677 	return 0;
678 }
679 
680 /*
681  * EPP/EPB display strings corresponding to EPP index in the
682  * energy_perf_strings[]
683  *	index		String
684  *-------------------------------------
685  *	0		default
686  *	1		performance
687  *	2		balance_performance
688  *	3		balance_power
689  *	4		power
690  */
691 
692 enum energy_perf_value_index {
693 	EPP_INDEX_DEFAULT = 0,
694 	EPP_INDEX_PERFORMANCE,
695 	EPP_INDEX_BALANCE_PERFORMANCE,
696 	EPP_INDEX_BALANCE_POWERSAVE,
697 	EPP_INDEX_POWERSAVE,
698 };
699 
700 static const char * const energy_perf_strings[] = {
701 	[EPP_INDEX_DEFAULT] = "default",
702 	[EPP_INDEX_PERFORMANCE] = "performance",
703 	[EPP_INDEX_BALANCE_PERFORMANCE] = "balance_performance",
704 	[EPP_INDEX_BALANCE_POWERSAVE] = "balance_power",
705 	[EPP_INDEX_POWERSAVE] = "power",
706 	NULL
707 };
708 static unsigned int epp_values[] = {
709 	[EPP_INDEX_DEFAULT] = 0, /* Unused index */
710 	[EPP_INDEX_PERFORMANCE] = HWP_EPP_PERFORMANCE,
711 	[EPP_INDEX_BALANCE_PERFORMANCE] = HWP_EPP_BALANCE_PERFORMANCE,
712 	[EPP_INDEX_BALANCE_POWERSAVE] = HWP_EPP_BALANCE_POWERSAVE,
713 	[EPP_INDEX_POWERSAVE] = HWP_EPP_POWERSAVE,
714 };
715 
intel_pstate_get_energy_pref_index(struct cpudata * cpu_data,int * raw_epp)716 static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data, int *raw_epp)
717 {
718 	s16 epp;
719 	int index = -EINVAL;
720 
721 	*raw_epp = 0;
722 	epp = intel_pstate_get_epp(cpu_data, 0);
723 	if (epp < 0)
724 		return epp;
725 
726 	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
727 		if (epp == epp_values[EPP_INDEX_PERFORMANCE])
728 			return EPP_INDEX_PERFORMANCE;
729 		if (epp == epp_values[EPP_INDEX_BALANCE_PERFORMANCE])
730 			return EPP_INDEX_BALANCE_PERFORMANCE;
731 		if (epp == epp_values[EPP_INDEX_BALANCE_POWERSAVE])
732 			return EPP_INDEX_BALANCE_POWERSAVE;
733 		if (epp == epp_values[EPP_INDEX_POWERSAVE])
734 			return EPP_INDEX_POWERSAVE;
735 		*raw_epp = epp;
736 		return 0;
737 	} else if (boot_cpu_has(X86_FEATURE_EPB)) {
738 		/*
739 		 * Range:
740 		 *	0x00-0x03	:	Performance
741 		 *	0x04-0x07	:	Balance performance
742 		 *	0x08-0x0B	:	Balance power
743 		 *	0x0C-0x0F	:	Power
744 		 * The EPB is a 4 bit value, but our ranges restrict the
745 		 * value which can be set. Here only using top two bits
746 		 * effectively.
747 		 */
748 		index = (epp >> 2) + 1;
749 	}
750 
751 	return index;
752 }
753 
intel_pstate_set_epp(struct cpudata * cpu,u32 epp)754 static int intel_pstate_set_epp(struct cpudata *cpu, u32 epp)
755 {
756 	int ret;
757 
758 	/*
759 	 * Use the cached HWP Request MSR value, because in the active mode the
760 	 * register itself may be updated by intel_pstate_hwp_boost_up() or
761 	 * intel_pstate_hwp_boost_down() at any time.
762 	 */
763 	u64 value = READ_ONCE(cpu->hwp_req_cached);
764 
765 	value &= ~GENMASK_ULL(31, 24);
766 	value |= (u64)epp << 24;
767 	/*
768 	 * The only other updater of hwp_req_cached in the active mode,
769 	 * intel_pstate_hwp_set(), is called under the same lock as this
770 	 * function, so it cannot run in parallel with the update below.
771 	 */
772 	WRITE_ONCE(cpu->hwp_req_cached, value);
773 	ret = wrmsrq_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
774 	if (!ret)
775 		cpu->epp_cached = epp;
776 
777 	return ret;
778 }
779 
intel_pstate_set_energy_pref_index(struct cpudata * cpu_data,int pref_index,bool use_raw,u32 raw_epp)780 static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
781 					      int pref_index, bool use_raw,
782 					      u32 raw_epp)
783 {
784 	int epp = -EINVAL;
785 	int ret;
786 
787 	if (!pref_index)
788 		epp = cpu_data->epp_default;
789 
790 	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
791 		if (use_raw)
792 			epp = raw_epp;
793 		else if (epp == -EINVAL)
794 			epp = epp_values[pref_index];
795 
796 		/*
797 		 * To avoid confusion, refuse to set EPP to any values different
798 		 * from 0 (performance) if the current policy is "performance",
799 		 * because those values would be overridden.
800 		 */
801 		if (epp > 0 && cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
802 			return -EBUSY;
803 
804 		ret = intel_pstate_set_epp(cpu_data, epp);
805 	} else {
806 		if (epp == -EINVAL)
807 			epp = (pref_index - 1) << 2;
808 		ret = intel_pstate_set_epb(cpu_data->cpu, epp);
809 	}
810 
811 	return ret;
812 }
813 
show_energy_performance_available_preferences(struct cpufreq_policy * policy,char * buf)814 static ssize_t show_energy_performance_available_preferences(
815 				struct cpufreq_policy *policy, char *buf)
816 {
817 	int i = 0;
818 	int ret = 0;
819 
820 	while (energy_perf_strings[i] != NULL)
821 		ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
822 
823 	ret += sprintf(&buf[ret], "\n");
824 
825 	return ret;
826 }
827 
828 cpufreq_freq_attr_ro(energy_performance_available_preferences);
829 
830 static struct cpufreq_driver intel_pstate;
831 
store_energy_performance_preference(struct cpufreq_policy * policy,const char * buf,size_t count)832 static ssize_t store_energy_performance_preference(
833 		struct cpufreq_policy *policy, const char *buf, size_t count)
834 {
835 	struct cpudata *cpu = all_cpu_data[policy->cpu];
836 	char str_preference[21];
837 	bool raw = false;
838 	ssize_t ret;
839 	u32 epp = 0;
840 
841 	ret = sscanf(buf, "%20s", str_preference);
842 	if (ret != 1)
843 		return -EINVAL;
844 
845 	ret = match_string(energy_perf_strings, -1, str_preference);
846 	if (ret < 0) {
847 		if (!boot_cpu_has(X86_FEATURE_HWP_EPP))
848 			return ret;
849 
850 		ret = kstrtouint(buf, 10, &epp);
851 		if (ret)
852 			return ret;
853 
854 		if (epp > 255)
855 			return -EINVAL;
856 
857 		raw = true;
858 	}
859 
860 	/*
861 	 * This function runs with the policy R/W semaphore held, which
862 	 * guarantees that the driver pointer will not change while it is
863 	 * running.
864 	 */
865 	if (!intel_pstate_driver)
866 		return -EAGAIN;
867 
868 	mutex_lock(&intel_pstate_limits_lock);
869 
870 	if (intel_pstate_driver == &intel_pstate) {
871 		ret = intel_pstate_set_energy_pref_index(cpu, ret, raw, epp);
872 	} else {
873 		/*
874 		 * In the passive mode the governor needs to be stopped on the
875 		 * target CPU before the EPP update and restarted after it,
876 		 * which is super-heavy-weight, so make sure it is worth doing
877 		 * upfront.
878 		 */
879 		if (!raw)
880 			epp = ret ? epp_values[ret] : cpu->epp_default;
881 
882 		if (cpu->epp_cached != epp) {
883 			int err;
884 
885 			cpufreq_stop_governor(policy);
886 			ret = intel_pstate_set_epp(cpu, epp);
887 			err = cpufreq_start_governor(policy);
888 			if (!ret)
889 				ret = err;
890 		} else {
891 			ret = 0;
892 		}
893 	}
894 
895 	mutex_unlock(&intel_pstate_limits_lock);
896 
897 	return ret ?: count;
898 }
899 
show_energy_performance_preference(struct cpufreq_policy * policy,char * buf)900 static ssize_t show_energy_performance_preference(
901 				struct cpufreq_policy *policy, char *buf)
902 {
903 	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
904 	int preference, raw_epp;
905 
906 	preference = intel_pstate_get_energy_pref_index(cpu_data, &raw_epp);
907 	if (preference < 0)
908 		return preference;
909 
910 	if (raw_epp)
911 		return  sprintf(buf, "%d\n", raw_epp);
912 	else
913 		return  sprintf(buf, "%s\n", energy_perf_strings[preference]);
914 }
915 
916 cpufreq_freq_attr_rw(energy_performance_preference);
917 
show_base_frequency(struct cpufreq_policy * policy,char * buf)918 static ssize_t show_base_frequency(struct cpufreq_policy *policy, char *buf)
919 {
920 	struct cpudata *cpu = all_cpu_data[policy->cpu];
921 	int ratio, freq;
922 
923 	ratio = intel_pstate_get_cppc_guaranteed(policy->cpu);
924 	if (ratio <= 0) {
925 		u64 cap;
926 
927 		rdmsrq_on_cpu(policy->cpu, MSR_HWP_CAPABILITIES, &cap);
928 		ratio = HWP_GUARANTEED_PERF(cap);
929 	}
930 
931 	freq = ratio * cpu->pstate.scaling;
932 	if (cpu->pstate.scaling != cpu->pstate.perf_ctl_scaling)
933 		freq = rounddown(freq, cpu->pstate.perf_ctl_scaling);
934 
935 	return sprintf(buf, "%d\n", freq);
936 }
937 
938 cpufreq_freq_attr_ro(base_frequency);
939 
940 static struct freq_attr *hwp_cpufreq_attrs[] = {
941 	&energy_performance_preference,
942 	&energy_performance_available_preferences,
943 	&base_frequency,
944 	NULL,
945 };
946 
947 static bool no_cas __ro_after_init;
948 
949 static struct cpudata *hybrid_max_perf_cpu __read_mostly;
950 /*
951  * Protects hybrid_max_perf_cpu, the capacity_perf fields in struct cpudata,
952  * and the x86 arch scale-invariance information from concurrent updates.
953  */
954 static DEFINE_MUTEX(hybrid_capacity_lock);
955 
956 #ifdef CONFIG_ENERGY_MODEL
957 #define HYBRID_EM_STATE_COUNT	4
958 
hybrid_active_power(struct device * dev,unsigned long * power,unsigned long * freq)959 static int hybrid_active_power(struct device *dev, unsigned long *power,
960 			       unsigned long *freq)
961 {
962 	/*
963 	 * Create "utilization bins" of 0-40%, 40%-60%, 60%-80%, and 80%-100%
964 	 * of the maximum capacity such that two CPUs of the same type will be
965 	 * regarded as equally attractive if the utilization of each of them
966 	 * falls into the same bin, which should prevent tasks from being
967 	 * migrated between them too often.
968 	 *
969 	 * For this purpose, return the "frequency" of 2 for the first
970 	 * performance level and otherwise leave the value set by the caller.
971 	 */
972 	if (!*freq)
973 		*freq = 2;
974 
975 	/* No power information. */
976 	*power = EM_MAX_POWER;
977 
978 	return 0;
979 }
980 
hybrid_get_cost(struct device * dev,unsigned long freq,unsigned long * cost)981 static int hybrid_get_cost(struct device *dev, unsigned long freq,
982 			   unsigned long *cost)
983 {
984 	struct pstate_data *pstate = &all_cpu_data[dev->id]->pstate;
985 	struct cpu_cacheinfo *cacheinfo = get_cpu_cacheinfo(dev->id);
986 
987 	/*
988 	 * The smaller the perf-to-frequency scaling factor, the larger the IPC
989 	 * ratio between the given CPU and the least capable CPU in the system.
990 	 * Regard that IPC ratio as the primary cost component and assume that
991 	 * the scaling factors for different CPU types will differ by at least
992 	 * 5% and they will not be above INTEL_PSTATE_CORE_SCALING.
993 	 *
994 	 * Add the freq value to the cost, so that the cost of running on CPUs
995 	 * of the same type in different "utilization bins" is different.
996 	 */
997 	*cost = div_u64(100ULL * INTEL_PSTATE_CORE_SCALING, pstate->scaling) + freq;
998 	/*
999 	 * Increase the cost slightly for CPUs able to access L3 to avoid
1000 	 * touching it in case some other CPUs of the same type can do the work
1001 	 * without it.
1002 	 */
1003 	if (cacheinfo) {
1004 		unsigned int i;
1005 
1006 		/* Check if L3 cache is there. */
1007 		for (i = 0; i < cacheinfo->num_leaves; i++) {
1008 			if (cacheinfo->info_list[i].level == 3) {
1009 				*cost += 2;
1010 				break;
1011 			}
1012 		}
1013 	}
1014 
1015 	return 0;
1016 }
1017 
hybrid_register_perf_domain(unsigned int cpu)1018 static bool hybrid_register_perf_domain(unsigned int cpu)
1019 {
1020 	static const struct em_data_callback cb
1021 			= EM_ADV_DATA_CB(hybrid_active_power, hybrid_get_cost);
1022 	struct cpudata *cpudata = all_cpu_data[cpu];
1023 	struct device *cpu_dev;
1024 
1025 	/*
1026 	 * Registering EM perf domains without enabling asymmetric CPU capacity
1027 	 * support is not really useful and one domain should not be registered
1028 	 * more than once.
1029 	 */
1030 	if (!hybrid_max_perf_cpu || cpudata->pd_registered)
1031 		return false;
1032 
1033 	cpu_dev = get_cpu_device(cpu);
1034 	if (!cpu_dev)
1035 		return false;
1036 
1037 	if (em_dev_register_perf_domain(cpu_dev, HYBRID_EM_STATE_COUNT, &cb,
1038 					cpumask_of(cpu), false))
1039 		return false;
1040 
1041 	cpudata->pd_registered = true;
1042 
1043 	return true;
1044 }
1045 
hybrid_register_all_perf_domains(void)1046 static void hybrid_register_all_perf_domains(void)
1047 {
1048 	unsigned int cpu;
1049 
1050 	for_each_online_cpu(cpu)
1051 		hybrid_register_perf_domain(cpu);
1052 }
1053 
hybrid_update_perf_domain(struct cpudata * cpu)1054 static void hybrid_update_perf_domain(struct cpudata *cpu)
1055 {
1056 	if (cpu->pd_registered)
1057 		em_adjust_cpu_capacity(cpu->cpu);
1058 }
1059 #else /* !CONFIG_ENERGY_MODEL */
hybrid_register_perf_domain(unsigned int cpu)1060 static inline bool hybrid_register_perf_domain(unsigned int cpu) { return false; }
hybrid_register_all_perf_domains(void)1061 static inline void hybrid_register_all_perf_domains(void) {}
hybrid_update_perf_domain(struct cpudata * cpu)1062 static inline void hybrid_update_perf_domain(struct cpudata *cpu) {}
1063 #endif /* CONFIG_ENERGY_MODEL */
1064 
hybrid_set_cpu_capacity(struct cpudata * cpu)1065 static void hybrid_set_cpu_capacity(struct cpudata *cpu)
1066 {
1067 	arch_set_cpu_capacity(cpu->cpu, cpu->capacity_perf,
1068 			      hybrid_max_perf_cpu->capacity_perf,
1069 			      cpu->capacity_perf,
1070 			      cpu->pstate.max_pstate_physical);
1071 	hybrid_update_perf_domain(cpu);
1072 
1073 	topology_set_cpu_scale(cpu->cpu, arch_scale_cpu_capacity(cpu->cpu));
1074 
1075 	pr_debug("CPU%d: perf = %u, max. perf = %u, base perf = %d\n", cpu->cpu,
1076 		 cpu->capacity_perf, hybrid_max_perf_cpu->capacity_perf,
1077 		 cpu->pstate.max_pstate_physical);
1078 }
1079 
hybrid_clear_cpu_capacity(unsigned int cpunum)1080 static void hybrid_clear_cpu_capacity(unsigned int cpunum)
1081 {
1082 	arch_set_cpu_capacity(cpunum, 1, 1, 1, 1);
1083 }
1084 
hybrid_get_capacity_perf(struct cpudata * cpu)1085 static void hybrid_get_capacity_perf(struct cpudata *cpu)
1086 {
1087 	if (READ_ONCE(global.no_turbo)) {
1088 		cpu->capacity_perf = cpu->pstate.max_pstate_physical;
1089 		return;
1090 	}
1091 
1092 	cpu->capacity_perf = HWP_HIGHEST_PERF(READ_ONCE(cpu->hwp_cap_cached));
1093 }
1094 
hybrid_set_capacity_of_cpus(void)1095 static void hybrid_set_capacity_of_cpus(void)
1096 {
1097 	int cpunum;
1098 
1099 	for_each_online_cpu(cpunum) {
1100 		struct cpudata *cpu = all_cpu_data[cpunum];
1101 
1102 		if (cpu)
1103 			hybrid_set_cpu_capacity(cpu);
1104 	}
1105 }
1106 
hybrid_update_cpu_capacity_scaling(void)1107 static void hybrid_update_cpu_capacity_scaling(void)
1108 {
1109 	struct cpudata *max_perf_cpu = NULL;
1110 	unsigned int max_cap_perf = 0;
1111 	int cpunum;
1112 
1113 	for_each_online_cpu(cpunum) {
1114 		struct cpudata *cpu = all_cpu_data[cpunum];
1115 
1116 		if (!cpu)
1117 			continue;
1118 
1119 		/*
1120 		 * During initialization, CPU performance at full capacity needs
1121 		 * to be determined.
1122 		 */
1123 		if (!hybrid_max_perf_cpu)
1124 			hybrid_get_capacity_perf(cpu);
1125 
1126 		/*
1127 		 * If hybrid_max_perf_cpu is not NULL at this point, it is
1128 		 * being replaced, so don't take it into account when looking
1129 		 * for the new one.
1130 		 */
1131 		if (cpu == hybrid_max_perf_cpu)
1132 			continue;
1133 
1134 		if (cpu->capacity_perf > max_cap_perf) {
1135 			max_cap_perf = cpu->capacity_perf;
1136 			max_perf_cpu = cpu;
1137 		}
1138 	}
1139 
1140 	if (max_perf_cpu) {
1141 		hybrid_max_perf_cpu = max_perf_cpu;
1142 		hybrid_set_capacity_of_cpus();
1143 	} else {
1144 		pr_info("Found no CPUs with nonzero maximum performance\n");
1145 		/* Revert to the flat CPU capacity structure. */
1146 		for_each_online_cpu(cpunum)
1147 			hybrid_clear_cpu_capacity(cpunum);
1148 	}
1149 }
1150 
__hybrid_refresh_cpu_capacity_scaling(void)1151 static void __hybrid_refresh_cpu_capacity_scaling(void)
1152 {
1153 	hybrid_max_perf_cpu = NULL;
1154 	hybrid_update_cpu_capacity_scaling();
1155 }
1156 
hybrid_refresh_cpu_capacity_scaling(void)1157 static void hybrid_refresh_cpu_capacity_scaling(void)
1158 {
1159 	guard(mutex)(&hybrid_capacity_lock);
1160 
1161 	__hybrid_refresh_cpu_capacity_scaling();
1162 	/*
1163 	 * Perf domains are not registered before setting hybrid_max_perf_cpu,
1164 	 * so register them all after setting up CPU capacity scaling.
1165 	 */
1166 	hybrid_register_all_perf_domains();
1167 }
1168 
hybrid_init_cpu_capacity_scaling(bool refresh)1169 static void hybrid_init_cpu_capacity_scaling(bool refresh)
1170 {
1171 	/* Bail out if enabling capacity-aware scheduling is prohibited. */
1172 	if (no_cas)
1173 		return;
1174 
1175 	/*
1176 	 * If hybrid_max_perf_cpu is set at this point, the hybrid CPU capacity
1177 	 * scaling has been enabled already and the driver is just changing the
1178 	 * operation mode.
1179 	 */
1180 	if (refresh) {
1181 		hybrid_refresh_cpu_capacity_scaling();
1182 		return;
1183 	}
1184 
1185 	/*
1186 	 * On hybrid systems, use asym capacity instead of ITMT, but because
1187 	 * the capacity of SMT threads is not deterministic even approximately,
1188 	 * do not do that when SMT is in use.
1189 	 */
1190 	if (hwp_is_hybrid && !sched_smt_active() && arch_enable_hybrid_capacity_scale()) {
1191 		hybrid_refresh_cpu_capacity_scaling();
1192 		/*
1193 		 * Disabling ITMT causes sched domains to be rebuilt to disable asym
1194 		 * packing and enable asym capacity and EAS.
1195 		 */
1196 		sched_clear_itmt_support();
1197 	}
1198 }
1199 
hybrid_clear_max_perf_cpu(void)1200 static bool hybrid_clear_max_perf_cpu(void)
1201 {
1202 	bool ret;
1203 
1204 	guard(mutex)(&hybrid_capacity_lock);
1205 
1206 	ret = !!hybrid_max_perf_cpu;
1207 	hybrid_max_perf_cpu = NULL;
1208 
1209 	return ret;
1210 }
1211 
__intel_pstate_get_hwp_cap(struct cpudata * cpu)1212 static void __intel_pstate_get_hwp_cap(struct cpudata *cpu)
1213 {
1214 	u64 cap;
1215 
1216 	rdmsrq_on_cpu(cpu->cpu, MSR_HWP_CAPABILITIES, &cap);
1217 	WRITE_ONCE(cpu->hwp_cap_cached, cap);
1218 	cpu->pstate.max_pstate = HWP_GUARANTEED_PERF(cap);
1219 	cpu->pstate.turbo_pstate = HWP_HIGHEST_PERF(cap);
1220 }
1221 
intel_pstate_get_hwp_cap(struct cpudata * cpu)1222 static void intel_pstate_get_hwp_cap(struct cpudata *cpu)
1223 {
1224 	int scaling = cpu->pstate.scaling;
1225 
1226 	__intel_pstate_get_hwp_cap(cpu);
1227 
1228 	cpu->pstate.max_freq = cpu->pstate.max_pstate * scaling;
1229 	cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * scaling;
1230 	if (scaling != cpu->pstate.perf_ctl_scaling) {
1231 		int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling;
1232 
1233 		cpu->pstate.max_freq = rounddown(cpu->pstate.max_freq,
1234 						 perf_ctl_scaling);
1235 		cpu->pstate.turbo_freq = rounddown(cpu->pstate.turbo_freq,
1236 						   perf_ctl_scaling);
1237 	}
1238 }
1239 
hybrid_update_capacity(struct cpudata * cpu)1240 static void hybrid_update_capacity(struct cpudata *cpu)
1241 {
1242 	unsigned int max_cap_perf;
1243 
1244 	mutex_lock(&hybrid_capacity_lock);
1245 
1246 	if (!hybrid_max_perf_cpu)
1247 		goto unlock;
1248 
1249 	/*
1250 	 * The maximum performance of the CPU may have changed, but assume
1251 	 * that the performance of the other CPUs has not changed.
1252 	 */
1253 	max_cap_perf = hybrid_max_perf_cpu->capacity_perf;
1254 
1255 	intel_pstate_get_hwp_cap(cpu);
1256 
1257 	hybrid_get_capacity_perf(cpu);
1258 	/* Should hybrid_max_perf_cpu be replaced by this CPU? */
1259 	if (cpu->capacity_perf > max_cap_perf) {
1260 		hybrid_max_perf_cpu = cpu;
1261 		hybrid_set_capacity_of_cpus();
1262 		goto unlock;
1263 	}
1264 
1265 	/* If this CPU is hybrid_max_perf_cpu, should it be replaced? */
1266 	if (cpu == hybrid_max_perf_cpu && cpu->capacity_perf < max_cap_perf) {
1267 		hybrid_update_cpu_capacity_scaling();
1268 		goto unlock;
1269 	}
1270 
1271 	hybrid_set_cpu_capacity(cpu);
1272 	/*
1273 	 * If the CPU was offline to start with and it is going online for the
1274 	 * first time, a perf domain needs to be registered for it if hybrid
1275 	 * capacity scaling has been enabled already.  In that case, sched
1276 	 * domains need to be rebuilt to take the new perf domain into account.
1277 	 */
1278 	if (hybrid_register_perf_domain(cpu->cpu))
1279 		em_rebuild_sched_domains();
1280 
1281 unlock:
1282 	mutex_unlock(&hybrid_capacity_lock);
1283 }
1284 
intel_pstate_hwp_set(unsigned int cpu)1285 static void intel_pstate_hwp_set(unsigned int cpu)
1286 {
1287 	struct cpudata *cpu_data = all_cpu_data[cpu];
1288 	int max, min;
1289 	u64 value;
1290 	s16 epp;
1291 
1292 	max = cpu_data->max_perf_ratio;
1293 	min = cpu_data->min_perf_ratio;
1294 
1295 	if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
1296 		min = max;
1297 
1298 	rdmsrq_on_cpu(cpu, MSR_HWP_REQUEST, &value);
1299 
1300 	value &= ~HWP_MIN_PERF(~0L);
1301 	value |= HWP_MIN_PERF(min);
1302 
1303 	value &= ~HWP_MAX_PERF(~0L);
1304 	value |= HWP_MAX_PERF(max);
1305 
1306 	if (cpu_data->epp_policy == cpu_data->policy)
1307 		goto skip_epp;
1308 
1309 	cpu_data->epp_policy = cpu_data->policy;
1310 
1311 	if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
1312 		epp = intel_pstate_get_epp(cpu_data, value);
1313 		cpu_data->epp_powersave = epp;
1314 		/* If EPP read was failed, then don't try to write */
1315 		if (epp < 0)
1316 			goto skip_epp;
1317 
1318 		epp = 0;
1319 	} else {
1320 		/* skip setting EPP, when saved value is invalid */
1321 		if (cpu_data->epp_powersave < 0)
1322 			goto skip_epp;
1323 
1324 		/*
1325 		 * No need to restore EPP when it is not zero. This
1326 		 * means:
1327 		 *  - Policy is not changed
1328 		 *  - user has manually changed
1329 		 *  - Error reading EPB
1330 		 */
1331 		epp = intel_pstate_get_epp(cpu_data, value);
1332 		if (epp)
1333 			goto skip_epp;
1334 
1335 		epp = cpu_data->epp_powersave;
1336 	}
1337 	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
1338 		value &= ~GENMASK_ULL(31, 24);
1339 		value |= (u64)epp << 24;
1340 	} else {
1341 		intel_pstate_set_epb(cpu, epp);
1342 	}
1343 skip_epp:
1344 	WRITE_ONCE(cpu_data->hwp_req_cached, value);
1345 	wrmsrq_on_cpu(cpu, MSR_HWP_REQUEST, value);
1346 }
1347 
1348 static void intel_pstate_disable_hwp_interrupt(struct cpudata *cpudata);
1349 
intel_pstate_hwp_offline(struct cpudata * cpu)1350 static void intel_pstate_hwp_offline(struct cpudata *cpu)
1351 {
1352 	u64 value = READ_ONCE(cpu->hwp_req_cached);
1353 	int min_perf;
1354 
1355 	intel_pstate_disable_hwp_interrupt(cpu);
1356 
1357 	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
1358 		/*
1359 		 * In case the EPP has been set to "performance" by the
1360 		 * active mode "performance" scaling algorithm, replace that
1361 		 * temporary value with the cached EPP one.
1362 		 */
1363 		value &= ~GENMASK_ULL(31, 24);
1364 		value |= HWP_ENERGY_PERF_PREFERENCE(cpu->epp_cached);
1365 		/*
1366 		 * However, make sure that EPP will be set to "performance" when
1367 		 * the CPU is brought back online again and the "performance"
1368 		 * scaling algorithm is still in effect.
1369 		 */
1370 		cpu->epp_policy = CPUFREQ_POLICY_UNKNOWN;
1371 	}
1372 
1373 	/*
1374 	 * Clear the desired perf field in the cached HWP request value to
1375 	 * prevent nonzero desired values from being leaked into the active
1376 	 * mode.
1377 	 */
1378 	value &= ~HWP_DESIRED_PERF(~0L);
1379 	WRITE_ONCE(cpu->hwp_req_cached, value);
1380 
1381 	value &= ~GENMASK_ULL(31, 0);
1382 	min_perf = HWP_LOWEST_PERF(READ_ONCE(cpu->hwp_cap_cached));
1383 
1384 	/* Set hwp_max = hwp_min */
1385 	value |= HWP_MAX_PERF(min_perf);
1386 	value |= HWP_MIN_PERF(min_perf);
1387 
1388 	/* Set EPP to min */
1389 	if (boot_cpu_has(X86_FEATURE_HWP_EPP))
1390 		value |= HWP_ENERGY_PERF_PREFERENCE(HWP_EPP_POWERSAVE);
1391 
1392 	wrmsrq_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
1393 
1394 	mutex_lock(&hybrid_capacity_lock);
1395 
1396 	if (!hybrid_max_perf_cpu) {
1397 		mutex_unlock(&hybrid_capacity_lock);
1398 
1399 		return;
1400 	}
1401 
1402 	if (hybrid_max_perf_cpu == cpu)
1403 		hybrid_update_cpu_capacity_scaling();
1404 
1405 	mutex_unlock(&hybrid_capacity_lock);
1406 
1407 	/* Reset the capacity of the CPU going offline to the initial value. */
1408 	hybrid_clear_cpu_capacity(cpu->cpu);
1409 }
1410 
1411 #define POWER_CTL_EE_ENABLE	1
1412 #define POWER_CTL_EE_DISABLE	2
1413 
1414 static int power_ctl_ee_state;
1415 
set_power_ctl_ee_state(bool input)1416 static void set_power_ctl_ee_state(bool input)
1417 {
1418 	u64 power_ctl;
1419 
1420 	mutex_lock(&intel_pstate_driver_lock);
1421 	rdmsrq(MSR_IA32_POWER_CTL, power_ctl);
1422 	if (input) {
1423 		power_ctl &= ~BIT(MSR_IA32_POWER_CTL_BIT_EE);
1424 		power_ctl_ee_state = POWER_CTL_EE_ENABLE;
1425 	} else {
1426 		power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
1427 		power_ctl_ee_state = POWER_CTL_EE_DISABLE;
1428 	}
1429 	wrmsrq(MSR_IA32_POWER_CTL, power_ctl);
1430 	mutex_unlock(&intel_pstate_driver_lock);
1431 }
1432 
1433 static void intel_pstate_hwp_enable(struct cpudata *cpudata);
1434 
intel_pstate_hwp_reenable(struct cpudata * cpu)1435 static void intel_pstate_hwp_reenable(struct cpudata *cpu)
1436 {
1437 	intel_pstate_hwp_enable(cpu);
1438 	wrmsrq_on_cpu(cpu->cpu, MSR_HWP_REQUEST, READ_ONCE(cpu->hwp_req_cached));
1439 }
1440 
intel_pstate_suspend(struct cpufreq_policy * policy)1441 static int intel_pstate_suspend(struct cpufreq_policy *policy)
1442 {
1443 	struct cpudata *cpu = all_cpu_data[policy->cpu];
1444 
1445 	pr_debug("CPU %d suspending\n", cpu->cpu);
1446 
1447 	cpu->suspended = true;
1448 
1449 	/* disable HWP interrupt and cancel any pending work */
1450 	intel_pstate_disable_hwp_interrupt(cpu);
1451 
1452 	return 0;
1453 }
1454 
intel_pstate_resume(struct cpufreq_policy * policy)1455 static int intel_pstate_resume(struct cpufreq_policy *policy)
1456 {
1457 	struct cpudata *cpu = all_cpu_data[policy->cpu];
1458 
1459 	pr_debug("CPU %d resuming\n", cpu->cpu);
1460 
1461 	/* Only restore if the system default is changed */
1462 	if (power_ctl_ee_state == POWER_CTL_EE_ENABLE)
1463 		set_power_ctl_ee_state(true);
1464 	else if (power_ctl_ee_state == POWER_CTL_EE_DISABLE)
1465 		set_power_ctl_ee_state(false);
1466 
1467 	if (cpu->suspended && hwp_active) {
1468 		mutex_lock(&intel_pstate_limits_lock);
1469 
1470 		/* Re-enable HWP, because "online" has not done that. */
1471 		intel_pstate_hwp_reenable(cpu);
1472 
1473 		mutex_unlock(&intel_pstate_limits_lock);
1474 	}
1475 
1476 	cpu->suspended = false;
1477 
1478 	return 0;
1479 }
1480 
intel_pstate_update_policies(void)1481 static void intel_pstate_update_policies(void)
1482 {
1483 	int cpu;
1484 
1485 	for_each_possible_cpu(cpu)
1486 		cpufreq_update_policy(cpu);
1487 }
1488 
__intel_pstate_update_max_freq(struct cpufreq_policy * policy,struct cpudata * cpudata)1489 static void __intel_pstate_update_max_freq(struct cpufreq_policy *policy,
1490 					   struct cpudata *cpudata)
1491 {
1492 	guard(cpufreq_policy_write)(policy);
1493 
1494 	if (hwp_active)
1495 		intel_pstate_get_hwp_cap(cpudata);
1496 
1497 	policy->cpuinfo.max_freq = READ_ONCE(global.no_turbo) ?
1498 			cpudata->pstate.max_freq : cpudata->pstate.turbo_freq;
1499 
1500 	refresh_frequency_limits(policy);
1501 }
1502 
intel_pstate_update_max_freq(struct cpudata * cpudata)1503 static bool intel_pstate_update_max_freq(struct cpudata *cpudata)
1504 {
1505 	struct cpufreq_policy *policy __free(put_cpufreq_policy);
1506 
1507 	policy = cpufreq_cpu_get(cpudata->cpu);
1508 	if (!policy)
1509 		return false;
1510 
1511 	__intel_pstate_update_max_freq(policy, cpudata);
1512 
1513 	return true;
1514 }
1515 
intel_pstate_update_limits(struct cpufreq_policy * policy)1516 static void intel_pstate_update_limits(struct cpufreq_policy *policy)
1517 {
1518 	struct cpudata *cpudata = all_cpu_data[policy->cpu];
1519 
1520 	__intel_pstate_update_max_freq(policy, cpudata);
1521 
1522 	hybrid_update_capacity(cpudata);
1523 }
1524 
intel_pstate_update_limits_for_all(void)1525 static void intel_pstate_update_limits_for_all(void)
1526 {
1527 	int cpu;
1528 
1529 	for_each_possible_cpu(cpu)
1530 		intel_pstate_update_max_freq(all_cpu_data[cpu]);
1531 
1532 	mutex_lock(&hybrid_capacity_lock);
1533 
1534 	if (hybrid_max_perf_cpu)
1535 		__hybrid_refresh_cpu_capacity_scaling();
1536 
1537 	mutex_unlock(&hybrid_capacity_lock);
1538 }
1539 
1540 /************************** sysfs begin ************************/
1541 #define show_one(file_name, object)					\
1542 	static ssize_t show_##file_name					\
1543 	(struct kobject *kobj, struct kobj_attribute *attr, char *buf)	\
1544 	{								\
1545 		return sprintf(buf, "%u\n", global.object);		\
1546 	}
1547 
1548 static ssize_t intel_pstate_show_status(char *buf);
1549 static int intel_pstate_update_status(const char *buf, size_t size);
1550 
show_status(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1551 static ssize_t show_status(struct kobject *kobj,
1552 			   struct kobj_attribute *attr, char *buf)
1553 {
1554 	ssize_t ret;
1555 
1556 	mutex_lock(&intel_pstate_driver_lock);
1557 	ret = intel_pstate_show_status(buf);
1558 	mutex_unlock(&intel_pstate_driver_lock);
1559 
1560 	return ret;
1561 }
1562 
store_status(struct kobject * a,struct kobj_attribute * b,const char * buf,size_t count)1563 static ssize_t store_status(struct kobject *a, struct kobj_attribute *b,
1564 			    const char *buf, size_t count)
1565 {
1566 	char *p = memchr(buf, '\n', count);
1567 	int ret;
1568 
1569 	mutex_lock(&intel_pstate_driver_lock);
1570 	ret = intel_pstate_update_status(buf, p ? p - buf : count);
1571 	mutex_unlock(&intel_pstate_driver_lock);
1572 
1573 	return ret < 0 ? ret : count;
1574 }
1575 
show_turbo_pct(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1576 static ssize_t show_turbo_pct(struct kobject *kobj,
1577 				struct kobj_attribute *attr, char *buf)
1578 {
1579 	struct cpudata *cpu;
1580 	int total, no_turbo, turbo_pct;
1581 	uint32_t turbo_fp;
1582 
1583 	mutex_lock(&intel_pstate_driver_lock);
1584 
1585 	if (!intel_pstate_driver) {
1586 		mutex_unlock(&intel_pstate_driver_lock);
1587 		return -EAGAIN;
1588 	}
1589 
1590 	cpu = all_cpu_data[0];
1591 
1592 	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1593 	no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
1594 	turbo_fp = div_fp(no_turbo, total);
1595 	turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
1596 
1597 	mutex_unlock(&intel_pstate_driver_lock);
1598 
1599 	return sprintf(buf, "%u\n", turbo_pct);
1600 }
1601 
show_num_pstates(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1602 static ssize_t show_num_pstates(struct kobject *kobj,
1603 				struct kobj_attribute *attr, char *buf)
1604 {
1605 	struct cpudata *cpu;
1606 	int total;
1607 
1608 	mutex_lock(&intel_pstate_driver_lock);
1609 
1610 	if (!intel_pstate_driver) {
1611 		mutex_unlock(&intel_pstate_driver_lock);
1612 		return -EAGAIN;
1613 	}
1614 
1615 	cpu = all_cpu_data[0];
1616 	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1617 
1618 	mutex_unlock(&intel_pstate_driver_lock);
1619 
1620 	return sprintf(buf, "%u\n", total);
1621 }
1622 
show_no_turbo(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1623 static ssize_t show_no_turbo(struct kobject *kobj,
1624 			     struct kobj_attribute *attr, char *buf)
1625 {
1626 	ssize_t ret;
1627 
1628 	mutex_lock(&intel_pstate_driver_lock);
1629 
1630 	if (!intel_pstate_driver) {
1631 		mutex_unlock(&intel_pstate_driver_lock);
1632 		return -EAGAIN;
1633 	}
1634 
1635 	ret = sprintf(buf, "%u\n", global.no_turbo);
1636 
1637 	mutex_unlock(&intel_pstate_driver_lock);
1638 
1639 	return ret;
1640 }
1641 
store_no_turbo(struct kobject * a,struct kobj_attribute * b,const char * buf,size_t count)1642 static ssize_t store_no_turbo(struct kobject *a, struct kobj_attribute *b,
1643 			      const char *buf, size_t count)
1644 {
1645 	unsigned int input;
1646 	bool no_turbo;
1647 
1648 	if (sscanf(buf, "%u", &input) != 1)
1649 		return -EINVAL;
1650 
1651 	mutex_lock(&intel_pstate_driver_lock);
1652 
1653 	if (!intel_pstate_driver) {
1654 		count = -EAGAIN;
1655 		goto unlock_driver;
1656 	}
1657 
1658 	no_turbo = !!clamp_t(int, input, 0, 1);
1659 
1660 	WRITE_ONCE(global.turbo_disabled, turbo_is_disabled());
1661 	if (global.turbo_disabled && !no_turbo) {
1662 		pr_notice("Turbo disabled by BIOS or unavailable on processor\n");
1663 		count = -EPERM;
1664 		if (global.no_turbo)
1665 			goto unlock_driver;
1666 		else
1667 			no_turbo = 1;
1668 	}
1669 
1670 	if (no_turbo == global.no_turbo) {
1671 		goto unlock_driver;
1672 	}
1673 
1674 	WRITE_ONCE(global.no_turbo, no_turbo);
1675 
1676 	mutex_lock(&intel_pstate_limits_lock);
1677 
1678 	if (no_turbo) {
1679 		struct cpudata *cpu = all_cpu_data[0];
1680 		int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;
1681 
1682 		/* Squash the global minimum into the permitted range. */
1683 		if (global.min_perf_pct > pct)
1684 			global.min_perf_pct = pct;
1685 	}
1686 
1687 	mutex_unlock(&intel_pstate_limits_lock);
1688 
1689 	intel_pstate_update_limits_for_all();
1690 	arch_set_max_freq_ratio(no_turbo);
1691 
1692 unlock_driver:
1693 	mutex_unlock(&intel_pstate_driver_lock);
1694 
1695 	return count;
1696 }
1697 
update_qos_request(enum freq_qos_req_type type)1698 static void update_qos_request(enum freq_qos_req_type type)
1699 {
1700 	struct freq_qos_request *req;
1701 	struct cpufreq_policy *policy;
1702 	int i;
1703 
1704 	for_each_possible_cpu(i) {
1705 		struct cpudata *cpu = all_cpu_data[i];
1706 		unsigned int freq, perf_pct;
1707 
1708 		policy = cpufreq_cpu_get(i);
1709 		if (!policy)
1710 			continue;
1711 
1712 		req = policy->driver_data;
1713 		cpufreq_cpu_put(policy);
1714 
1715 		if (!req)
1716 			continue;
1717 
1718 		if (hwp_active)
1719 			intel_pstate_get_hwp_cap(cpu);
1720 
1721 		if (type == FREQ_QOS_MIN) {
1722 			perf_pct = global.min_perf_pct;
1723 		} else {
1724 			req++;
1725 			perf_pct = global.max_perf_pct;
1726 		}
1727 
1728 		freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * perf_pct, 100);
1729 
1730 		if (freq_qos_update_request(req, freq) < 0)
1731 			pr_warn("Failed to update freq constraint: CPU%d\n", i);
1732 	}
1733 }
1734 
store_max_perf_pct(struct kobject * a,struct kobj_attribute * b,const char * buf,size_t count)1735 static ssize_t store_max_perf_pct(struct kobject *a, struct kobj_attribute *b,
1736 				  const char *buf, size_t count)
1737 {
1738 	unsigned int input;
1739 	int ret;
1740 
1741 	ret = sscanf(buf, "%u", &input);
1742 	if (ret != 1)
1743 		return -EINVAL;
1744 
1745 	mutex_lock(&intel_pstate_driver_lock);
1746 
1747 	if (!intel_pstate_driver) {
1748 		mutex_unlock(&intel_pstate_driver_lock);
1749 		return -EAGAIN;
1750 	}
1751 
1752 	mutex_lock(&intel_pstate_limits_lock);
1753 
1754 	global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
1755 
1756 	mutex_unlock(&intel_pstate_limits_lock);
1757 
1758 	if (intel_pstate_driver == &intel_pstate)
1759 		intel_pstate_update_policies();
1760 	else
1761 		update_qos_request(FREQ_QOS_MAX);
1762 
1763 	mutex_unlock(&intel_pstate_driver_lock);
1764 
1765 	return count;
1766 }
1767 
store_min_perf_pct(struct kobject * a,struct kobj_attribute * b,const char * buf,size_t count)1768 static ssize_t store_min_perf_pct(struct kobject *a, struct kobj_attribute *b,
1769 				  const char *buf, size_t count)
1770 {
1771 	unsigned int input;
1772 	int ret;
1773 
1774 	ret = sscanf(buf, "%u", &input);
1775 	if (ret != 1)
1776 		return -EINVAL;
1777 
1778 	mutex_lock(&intel_pstate_driver_lock);
1779 
1780 	if (!intel_pstate_driver) {
1781 		mutex_unlock(&intel_pstate_driver_lock);
1782 		return -EAGAIN;
1783 	}
1784 
1785 	mutex_lock(&intel_pstate_limits_lock);
1786 
1787 	global.min_perf_pct = clamp_t(int, input,
1788 				      min_perf_pct_min(), global.max_perf_pct);
1789 
1790 	mutex_unlock(&intel_pstate_limits_lock);
1791 
1792 	if (intel_pstate_driver == &intel_pstate)
1793 		intel_pstate_update_policies();
1794 	else
1795 		update_qos_request(FREQ_QOS_MIN);
1796 
1797 	mutex_unlock(&intel_pstate_driver_lock);
1798 
1799 	return count;
1800 }
1801 
show_hwp_dynamic_boost(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1802 static ssize_t show_hwp_dynamic_boost(struct kobject *kobj,
1803 				struct kobj_attribute *attr, char *buf)
1804 {
1805 	return sprintf(buf, "%u\n", hwp_boost);
1806 }
1807 
store_hwp_dynamic_boost(struct kobject * a,struct kobj_attribute * b,const char * buf,size_t count)1808 static ssize_t store_hwp_dynamic_boost(struct kobject *a,
1809 				       struct kobj_attribute *b,
1810 				       const char *buf, size_t count)
1811 {
1812 	unsigned int input;
1813 	int ret;
1814 
1815 	ret = kstrtouint(buf, 10, &input);
1816 	if (ret)
1817 		return ret;
1818 
1819 	mutex_lock(&intel_pstate_driver_lock);
1820 	hwp_boost = !!input;
1821 	intel_pstate_update_policies();
1822 	mutex_unlock(&intel_pstate_driver_lock);
1823 
1824 	return count;
1825 }
1826 
show_energy_efficiency(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1827 static ssize_t show_energy_efficiency(struct kobject *kobj, struct kobj_attribute *attr,
1828 				      char *buf)
1829 {
1830 	u64 power_ctl;
1831 	int enable;
1832 
1833 	rdmsrq(MSR_IA32_POWER_CTL, power_ctl);
1834 	enable = !!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE));
1835 	return sprintf(buf, "%d\n", !enable);
1836 }
1837 
store_energy_efficiency(struct kobject * a,struct kobj_attribute * b,const char * buf,size_t count)1838 static ssize_t store_energy_efficiency(struct kobject *a, struct kobj_attribute *b,
1839 				       const char *buf, size_t count)
1840 {
1841 	bool input;
1842 	int ret;
1843 
1844 	ret = kstrtobool(buf, &input);
1845 	if (ret)
1846 		return ret;
1847 
1848 	set_power_ctl_ee_state(input);
1849 
1850 	return count;
1851 }
1852 
1853 show_one(max_perf_pct, max_perf_pct);
1854 show_one(min_perf_pct, min_perf_pct);
1855 
1856 define_one_global_rw(status);
1857 define_one_global_rw(no_turbo);
1858 define_one_global_rw(max_perf_pct);
1859 define_one_global_rw(min_perf_pct);
1860 define_one_global_ro(turbo_pct);
1861 define_one_global_ro(num_pstates);
1862 define_one_global_rw(hwp_dynamic_boost);
1863 define_one_global_rw(energy_efficiency);
1864 
1865 static struct attribute *intel_pstate_attributes[] = {
1866 	&status.attr,
1867 	&no_turbo.attr,
1868 	NULL
1869 };
1870 
1871 static const struct attribute_group intel_pstate_attr_group = {
1872 	.attrs = intel_pstate_attributes,
1873 };
1874 
1875 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[];
1876 
1877 static struct kobject *intel_pstate_kobject;
1878 
intel_pstate_sysfs_expose_params(void)1879 static void __init intel_pstate_sysfs_expose_params(void)
1880 {
1881 	struct device *dev_root = bus_get_dev_root(&cpu_subsys);
1882 	int rc;
1883 
1884 	if (dev_root) {
1885 		intel_pstate_kobject = kobject_create_and_add("intel_pstate", &dev_root->kobj);
1886 		put_device(dev_root);
1887 	}
1888 	if (WARN_ON(!intel_pstate_kobject))
1889 		return;
1890 
1891 	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1892 	if (WARN_ON(rc))
1893 		return;
1894 
1895 	if (!boot_cpu_has(X86_FEATURE_HYBRID_CPU)) {
1896 		rc = sysfs_create_file(intel_pstate_kobject, &turbo_pct.attr);
1897 		WARN_ON(rc);
1898 
1899 		rc = sysfs_create_file(intel_pstate_kobject, &num_pstates.attr);
1900 		WARN_ON(rc);
1901 	}
1902 
1903 	/*
1904 	 * If per cpu limits are enforced there are no global limits, so
1905 	 * return without creating max/min_perf_pct attributes
1906 	 */
1907 	if (per_cpu_limits)
1908 		return;
1909 
1910 	rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
1911 	WARN_ON(rc);
1912 
1913 	rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
1914 	WARN_ON(rc);
1915 
1916 	if (x86_match_cpu(intel_pstate_cpu_ee_disable_ids)) {
1917 		rc = sysfs_create_file(intel_pstate_kobject, &energy_efficiency.attr);
1918 		WARN_ON(rc);
1919 	}
1920 }
1921 
intel_pstate_sysfs_remove(void)1922 static void __init intel_pstate_sysfs_remove(void)
1923 {
1924 	if (!intel_pstate_kobject)
1925 		return;
1926 
1927 	sysfs_remove_group(intel_pstate_kobject, &intel_pstate_attr_group);
1928 
1929 	if (!boot_cpu_has(X86_FEATURE_HYBRID_CPU)) {
1930 		sysfs_remove_file(intel_pstate_kobject, &num_pstates.attr);
1931 		sysfs_remove_file(intel_pstate_kobject, &turbo_pct.attr);
1932 	}
1933 
1934 	if (!per_cpu_limits) {
1935 		sysfs_remove_file(intel_pstate_kobject, &max_perf_pct.attr);
1936 		sysfs_remove_file(intel_pstate_kobject, &min_perf_pct.attr);
1937 
1938 		if (x86_match_cpu(intel_pstate_cpu_ee_disable_ids))
1939 			sysfs_remove_file(intel_pstate_kobject, &energy_efficiency.attr);
1940 	}
1941 
1942 	kobject_put(intel_pstate_kobject);
1943 }
1944 
intel_pstate_sysfs_expose_hwp_dynamic_boost(void)1945 static void intel_pstate_sysfs_expose_hwp_dynamic_boost(void)
1946 {
1947 	int rc;
1948 
1949 	if (!hwp_active)
1950 		return;
1951 
1952 	rc = sysfs_create_file(intel_pstate_kobject, &hwp_dynamic_boost.attr);
1953 	WARN_ON_ONCE(rc);
1954 }
1955 
intel_pstate_sysfs_hide_hwp_dynamic_boost(void)1956 static void intel_pstate_sysfs_hide_hwp_dynamic_boost(void)
1957 {
1958 	if (!hwp_active)
1959 		return;
1960 
1961 	sysfs_remove_file(intel_pstate_kobject, &hwp_dynamic_boost.attr);
1962 }
1963 
1964 /************************** sysfs end ************************/
1965 
intel_pstate_notify_work(struct work_struct * work)1966 static void intel_pstate_notify_work(struct work_struct *work)
1967 {
1968 	struct cpudata *cpudata =
1969 		container_of(to_delayed_work(work), struct cpudata, hwp_notify_work);
1970 
1971 	if (intel_pstate_update_max_freq(cpudata)) {
1972 		/*
1973 		 * The driver will not be unregistered while this function is
1974 		 * running, so update the capacity without acquiring the driver
1975 		 * lock.
1976 		 */
1977 		hybrid_update_capacity(cpudata);
1978 	}
1979 
1980 	wrmsrq_on_cpu(cpudata->cpu, MSR_HWP_STATUS, 0);
1981 }
1982 
1983 static DEFINE_RAW_SPINLOCK(hwp_notify_lock);
1984 static cpumask_t hwp_intr_enable_mask;
1985 
1986 #define HWP_GUARANTEED_PERF_CHANGE_STATUS      BIT(0)
1987 #define HWP_HIGHEST_PERF_CHANGE_STATUS         BIT(3)
1988 
notify_hwp_interrupt(void)1989 void notify_hwp_interrupt(void)
1990 {
1991 	unsigned int this_cpu = smp_processor_id();
1992 	u64 value, status_mask;
1993 	unsigned long flags;
1994 
1995 	if (!hwp_active || !cpu_feature_enabled(X86_FEATURE_HWP_NOTIFY))
1996 		return;
1997 
1998 	status_mask = HWP_GUARANTEED_PERF_CHANGE_STATUS;
1999 	if (cpu_feature_enabled(X86_FEATURE_HWP_HIGHEST_PERF_CHANGE))
2000 		status_mask |= HWP_HIGHEST_PERF_CHANGE_STATUS;
2001 
2002 	rdmsrq_safe(MSR_HWP_STATUS, &value);
2003 	if (!(value & status_mask))
2004 		return;
2005 
2006 	raw_spin_lock_irqsave(&hwp_notify_lock, flags);
2007 
2008 	if (!cpumask_test_cpu(this_cpu, &hwp_intr_enable_mask))
2009 		goto ack_intr;
2010 
2011 	schedule_delayed_work(&all_cpu_data[this_cpu]->hwp_notify_work,
2012 			      msecs_to_jiffies(10));
2013 
2014 	raw_spin_unlock_irqrestore(&hwp_notify_lock, flags);
2015 
2016 	return;
2017 
2018 ack_intr:
2019 	wrmsrq_safe(MSR_HWP_STATUS, 0);
2020 	raw_spin_unlock_irqrestore(&hwp_notify_lock, flags);
2021 }
2022 
intel_pstate_disable_hwp_interrupt(struct cpudata * cpudata)2023 static void intel_pstate_disable_hwp_interrupt(struct cpudata *cpudata)
2024 {
2025 	bool cancel_work;
2026 
2027 	if (!cpu_feature_enabled(X86_FEATURE_HWP_NOTIFY))
2028 		return;
2029 
2030 	/* wrmsrq_on_cpu has to be outside spinlock as this can result in IPC */
2031 	wrmsrq_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
2032 
2033 	raw_spin_lock_irq(&hwp_notify_lock);
2034 	cancel_work = cpumask_test_and_clear_cpu(cpudata->cpu, &hwp_intr_enable_mask);
2035 	raw_spin_unlock_irq(&hwp_notify_lock);
2036 
2037 	if (cancel_work)
2038 		cancel_delayed_work_sync(&cpudata->hwp_notify_work);
2039 }
2040 
2041 #define HWP_GUARANTEED_PERF_CHANGE_REQ BIT(0)
2042 #define HWP_HIGHEST_PERF_CHANGE_REQ    BIT(2)
2043 
intel_pstate_enable_hwp_interrupt(struct cpudata * cpudata)2044 static void intel_pstate_enable_hwp_interrupt(struct cpudata *cpudata)
2045 {
2046 	/* Enable HWP notification interrupt for performance change */
2047 	if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY)) {
2048 		u64 interrupt_mask = HWP_GUARANTEED_PERF_CHANGE_REQ;
2049 
2050 		raw_spin_lock_irq(&hwp_notify_lock);
2051 		INIT_DELAYED_WORK(&cpudata->hwp_notify_work, intel_pstate_notify_work);
2052 		cpumask_set_cpu(cpudata->cpu, &hwp_intr_enable_mask);
2053 		raw_spin_unlock_irq(&hwp_notify_lock);
2054 
2055 		if (cpu_feature_enabled(X86_FEATURE_HWP_HIGHEST_PERF_CHANGE))
2056 			interrupt_mask |= HWP_HIGHEST_PERF_CHANGE_REQ;
2057 
2058 		/* wrmsrq_on_cpu has to be outside spinlock as this can result in IPC */
2059 		wrmsrq_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, interrupt_mask);
2060 		wrmsrq_on_cpu(cpudata->cpu, MSR_HWP_STATUS, 0);
2061 	}
2062 }
2063 
intel_pstate_update_epp_defaults(struct cpudata * cpudata)2064 static void intel_pstate_update_epp_defaults(struct cpudata *cpudata)
2065 {
2066 	cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
2067 
2068 	/*
2069 	 * If the EPP is set by firmware, which means that firmware enabled HWP
2070 	 * - Is equal or less than 0x80 (default balance_perf EPP)
2071 	 * - But less performance oriented than performance EPP
2072 	 *   then use this as new balance_perf EPP.
2073 	 */
2074 	if (hwp_forced && cpudata->epp_default <= HWP_EPP_BALANCE_PERFORMANCE &&
2075 	    cpudata->epp_default > HWP_EPP_PERFORMANCE) {
2076 		epp_values[EPP_INDEX_BALANCE_PERFORMANCE] = cpudata->epp_default;
2077 		return;
2078 	}
2079 
2080 	/*
2081 	 * If this CPU gen doesn't call for change in balance_perf
2082 	 * EPP return.
2083 	 */
2084 	if (epp_values[EPP_INDEX_BALANCE_PERFORMANCE] == HWP_EPP_BALANCE_PERFORMANCE)
2085 		return;
2086 
2087 	/*
2088 	 * Use hard coded value per gen to update the balance_perf
2089 	 * and default EPP.
2090 	 */
2091 	cpudata->epp_default = epp_values[EPP_INDEX_BALANCE_PERFORMANCE];
2092 	intel_pstate_set_epp(cpudata, cpudata->epp_default);
2093 }
2094 
intel_pstate_hwp_enable(struct cpudata * cpudata)2095 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
2096 {
2097 	/* First disable HWP notification interrupt till we activate again */
2098 	if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY))
2099 		wrmsrq_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
2100 
2101 	wrmsrq_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
2102 
2103 	intel_pstate_enable_hwp_interrupt(cpudata);
2104 
2105 	if (cpudata->epp_default >= 0)
2106 		return;
2107 
2108 	intel_pstate_update_epp_defaults(cpudata);
2109 }
2110 
atom_get_min_pstate(int not_used)2111 static int atom_get_min_pstate(int not_used)
2112 {
2113 	u64 value;
2114 
2115 	rdmsrq(MSR_ATOM_CORE_RATIOS, value);
2116 	return (value >> 8) & 0x7F;
2117 }
2118 
atom_get_max_pstate(int not_used)2119 static int atom_get_max_pstate(int not_used)
2120 {
2121 	u64 value;
2122 
2123 	rdmsrq(MSR_ATOM_CORE_RATIOS, value);
2124 	return (value >> 16) & 0x7F;
2125 }
2126 
atom_get_turbo_pstate(int not_used)2127 static int atom_get_turbo_pstate(int not_used)
2128 {
2129 	u64 value;
2130 
2131 	rdmsrq(MSR_ATOM_CORE_TURBO_RATIOS, value);
2132 	return value & 0x7F;
2133 }
2134 
atom_get_val(struct cpudata * cpudata,int pstate)2135 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
2136 {
2137 	u64 val;
2138 	int32_t vid_fp;
2139 	u32 vid;
2140 
2141 	val = (u64)pstate << 8;
2142 	if (READ_ONCE(global.no_turbo) && !READ_ONCE(global.turbo_disabled))
2143 		val |= (u64)1 << 32;
2144 
2145 	vid_fp = cpudata->vid.min + mul_fp(
2146 		int_tofp(pstate - cpudata->pstate.min_pstate),
2147 		cpudata->vid.ratio);
2148 
2149 	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
2150 	vid = ceiling_fp(vid_fp);
2151 
2152 	if (pstate > cpudata->pstate.max_pstate)
2153 		vid = cpudata->vid.turbo;
2154 
2155 	return val | vid;
2156 }
2157 
silvermont_get_scaling(void)2158 static int silvermont_get_scaling(void)
2159 {
2160 	u64 value;
2161 	int i;
2162 	/* Defined in Table 35-6 from SDM (Sept 2015) */
2163 	static int silvermont_freq_table[] = {
2164 		83300, 100000, 133300, 116700, 80000};
2165 
2166 	rdmsrq(MSR_FSB_FREQ, value);
2167 	i = value & 0x7;
2168 	WARN_ON(i > 4);
2169 
2170 	return silvermont_freq_table[i];
2171 }
2172 
airmont_get_scaling(void)2173 static int airmont_get_scaling(void)
2174 {
2175 	u64 value;
2176 	int i;
2177 	/* Defined in Table 35-10 from SDM (Sept 2015) */
2178 	static int airmont_freq_table[] = {
2179 		83300, 100000, 133300, 116700, 80000,
2180 		93300, 90000, 88900, 87500};
2181 
2182 	rdmsrq(MSR_FSB_FREQ, value);
2183 	i = value & 0xF;
2184 	WARN_ON(i > 8);
2185 
2186 	return airmont_freq_table[i];
2187 }
2188 
atom_get_vid(struct cpudata * cpudata)2189 static void atom_get_vid(struct cpudata *cpudata)
2190 {
2191 	u64 value;
2192 
2193 	rdmsrq(MSR_ATOM_CORE_VIDS, value);
2194 	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
2195 	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
2196 	cpudata->vid.ratio = div_fp(
2197 		cpudata->vid.max - cpudata->vid.min,
2198 		int_tofp(cpudata->pstate.max_pstate -
2199 			cpudata->pstate.min_pstate));
2200 
2201 	rdmsrq(MSR_ATOM_CORE_TURBO_VIDS, value);
2202 	cpudata->vid.turbo = value & 0x7f;
2203 }
2204 
core_get_min_pstate(int cpu)2205 static int core_get_min_pstate(int cpu)
2206 {
2207 	u64 value;
2208 
2209 	rdmsrq_on_cpu(cpu, MSR_PLATFORM_INFO, &value);
2210 	return (value >> 40) & 0xFF;
2211 }
2212 
core_get_max_pstate_physical(int cpu)2213 static int core_get_max_pstate_physical(int cpu)
2214 {
2215 	u64 value;
2216 
2217 	rdmsrq_on_cpu(cpu, MSR_PLATFORM_INFO, &value);
2218 	return (value >> 8) & 0xFF;
2219 }
2220 
core_get_tdp_ratio(int cpu,u64 plat_info)2221 static int core_get_tdp_ratio(int cpu, u64 plat_info)
2222 {
2223 	/* Check how many TDP levels present */
2224 	if (plat_info & 0x600000000) {
2225 		u64 tdp_ctrl;
2226 		u64 tdp_ratio;
2227 		int tdp_msr;
2228 		int err;
2229 
2230 		/* Get the TDP level (0, 1, 2) to get ratios */
2231 		err = rdmsrq_safe_on_cpu(cpu, MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
2232 		if (err)
2233 			return err;
2234 
2235 		/* TDP MSR are continuous starting at 0x648 */
2236 		tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
2237 		err = rdmsrq_safe_on_cpu(cpu, tdp_msr, &tdp_ratio);
2238 		if (err)
2239 			return err;
2240 
2241 		/* For level 1 and 2, bits[23:16] contain the ratio */
2242 		if (tdp_ctrl & 0x03)
2243 			tdp_ratio >>= 16;
2244 
2245 		tdp_ratio &= 0xff; /* ratios are only 8 bits long */
2246 		pr_debug("tdp_ratio %x\n", (int)tdp_ratio);
2247 
2248 		return (int)tdp_ratio;
2249 	}
2250 
2251 	return -ENXIO;
2252 }
2253 
core_get_max_pstate(int cpu)2254 static int core_get_max_pstate(int cpu)
2255 {
2256 	u64 tar;
2257 	u64 plat_info;
2258 	int max_pstate;
2259 	int tdp_ratio;
2260 	int err;
2261 
2262 	rdmsrq_on_cpu(cpu, MSR_PLATFORM_INFO, &plat_info);
2263 	max_pstate = (plat_info >> 8) & 0xFF;
2264 
2265 	tdp_ratio = core_get_tdp_ratio(cpu, plat_info);
2266 	if (tdp_ratio <= 0)
2267 		return max_pstate;
2268 
2269 	if (hwp_active) {
2270 		/* Turbo activation ratio is not used on HWP platforms */
2271 		return tdp_ratio;
2272 	}
2273 
2274 	err = rdmsrq_safe_on_cpu(cpu, MSR_TURBO_ACTIVATION_RATIO, &tar);
2275 	if (!err) {
2276 		int tar_levels;
2277 
2278 		/* Do some sanity checking for safety */
2279 		tar_levels = tar & 0xff;
2280 		if (tdp_ratio - 1 == tar_levels) {
2281 			max_pstate = tar_levels;
2282 			pr_debug("max_pstate=TAC %x\n", max_pstate);
2283 		}
2284 	}
2285 
2286 	return max_pstate;
2287 }
2288 
core_get_turbo_pstate(int cpu)2289 static int core_get_turbo_pstate(int cpu)
2290 {
2291 	u64 value;
2292 	int nont, ret;
2293 
2294 	rdmsrq_on_cpu(cpu, MSR_TURBO_RATIO_LIMIT, &value);
2295 	nont = core_get_max_pstate(cpu);
2296 	ret = (value) & 255;
2297 	if (ret <= nont)
2298 		ret = nont;
2299 	return ret;
2300 }
2301 
core_get_val(struct cpudata * cpudata,int pstate)2302 static u64 core_get_val(struct cpudata *cpudata, int pstate)
2303 {
2304 	u64 val;
2305 
2306 	val = (u64)pstate << 8;
2307 	if (READ_ONCE(global.no_turbo) && !READ_ONCE(global.turbo_disabled))
2308 		val |= (u64)1 << 32;
2309 
2310 	return val;
2311 }
2312 
knl_get_aperf_mperf_shift(void)2313 static int knl_get_aperf_mperf_shift(void)
2314 {
2315 	return 10;
2316 }
2317 
knl_get_turbo_pstate(int cpu)2318 static int knl_get_turbo_pstate(int cpu)
2319 {
2320 	u64 value;
2321 	int nont, ret;
2322 
2323 	rdmsrq_on_cpu(cpu, MSR_TURBO_RATIO_LIMIT, &value);
2324 	nont = core_get_max_pstate(cpu);
2325 	ret = (((value) >> 8) & 0xFF);
2326 	if (ret <= nont)
2327 		ret = nont;
2328 	return ret;
2329 }
2330 
hwp_get_cpu_scaling(int cpu)2331 static int hwp_get_cpu_scaling(int cpu)
2332 {
2333 	if (hybrid_scaling_factor) {
2334 		struct cpuinfo_x86 *c = &cpu_data(cpu);
2335 		u8 cpu_type = c->topo.intel_type;
2336 
2337 		/*
2338 		 * Return the hybrid scaling factor for P-cores and use the
2339 		 * default core scaling for E-cores.
2340 		 */
2341 		if (cpu_type == INTEL_CPU_TYPE_CORE)
2342 			return hybrid_scaling_factor;
2343 
2344 		if (cpu_type == INTEL_CPU_TYPE_ATOM)
2345 			return core_get_scaling();
2346 	}
2347 
2348 	/* Use core scaling on non-hybrid systems. */
2349 	if (!cpu_feature_enabled(X86_FEATURE_HYBRID_CPU))
2350 		return core_get_scaling();
2351 
2352 	/*
2353 	 * The system is hybrid, but the hybrid scaling factor is not known or
2354 	 * the CPU type is not one of the above, so use CPPC to compute the
2355 	 * scaling factor for this CPU.
2356 	 */
2357 	return intel_pstate_cppc_get_scaling(cpu);
2358 }
2359 
intel_pstate_set_pstate(struct cpudata * cpu,int pstate)2360 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
2361 {
2362 	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
2363 	cpu->pstate.current_pstate = pstate;
2364 	/*
2365 	 * Generally, there is no guarantee that this code will always run on
2366 	 * the CPU being updated, so force the register update to run on the
2367 	 * right CPU.
2368 	 */
2369 	wrmsrq_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
2370 		      pstate_funcs.get_val(cpu, pstate));
2371 }
2372 
intel_pstate_set_min_pstate(struct cpudata * cpu)2373 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
2374 {
2375 	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
2376 }
2377 
intel_pstate_get_cpu_pstates(struct cpudata * cpu)2378 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
2379 {
2380 	int perf_ctl_max_phys = pstate_funcs.get_max_physical(cpu->cpu);
2381 	int perf_ctl_scaling = pstate_funcs.get_scaling();
2382 
2383 	cpu->pstate.min_pstate = pstate_funcs.get_min(cpu->cpu);
2384 	cpu->pstate.max_pstate_physical = perf_ctl_max_phys;
2385 	cpu->pstate.perf_ctl_scaling = perf_ctl_scaling;
2386 
2387 	if (hwp_active && !hwp_mode_bdw) {
2388 		__intel_pstate_get_hwp_cap(cpu);
2389 
2390 		if (pstate_funcs.get_cpu_scaling) {
2391 			cpu->pstate.scaling = pstate_funcs.get_cpu_scaling(cpu->cpu);
2392 			if (cpu->pstate.scaling != perf_ctl_scaling) {
2393 				intel_pstate_hybrid_hwp_adjust(cpu);
2394 				hwp_is_hybrid = true;
2395 			}
2396 		} else {
2397 			cpu->pstate.scaling = perf_ctl_scaling;
2398 		}
2399 		/*
2400 		 * If the CPU is going online for the first time and it was
2401 		 * offline initially, asym capacity scaling needs to be updated.
2402 		 */
2403 		hybrid_update_capacity(cpu);
2404 	} else {
2405 		cpu->pstate.scaling = perf_ctl_scaling;
2406 		cpu->pstate.max_pstate = pstate_funcs.get_max(cpu->cpu);
2407 		cpu->pstate.turbo_pstate = pstate_funcs.get_turbo(cpu->cpu);
2408 	}
2409 
2410 	if (cpu->pstate.scaling == perf_ctl_scaling) {
2411 		cpu->pstate.min_freq = cpu->pstate.min_pstate * perf_ctl_scaling;
2412 		cpu->pstate.max_freq = cpu->pstate.max_pstate * perf_ctl_scaling;
2413 		cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * perf_ctl_scaling;
2414 	}
2415 
2416 	if (pstate_funcs.get_aperf_mperf_shift)
2417 		cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift();
2418 
2419 	if (pstate_funcs.get_vid)
2420 		pstate_funcs.get_vid(cpu);
2421 
2422 	intel_pstate_set_min_pstate(cpu);
2423 }
2424 
2425 /*
2426  * Long hold time will keep high perf limits for long time,
2427  * which negatively impacts perf/watt for some workloads,
2428  * like specpower. 3ms is based on experiements on some
2429  * workoads.
2430  */
2431 static int hwp_boost_hold_time_ns = 3 * NSEC_PER_MSEC;
2432 
intel_pstate_hwp_boost_up(struct cpudata * cpu)2433 static inline void intel_pstate_hwp_boost_up(struct cpudata *cpu)
2434 {
2435 	u64 hwp_req = READ_ONCE(cpu->hwp_req_cached);
2436 	u64 hwp_cap = READ_ONCE(cpu->hwp_cap_cached);
2437 	u32 max_limit = (hwp_req & 0xff00) >> 8;
2438 	u32 min_limit = (hwp_req & 0xff);
2439 	u32 boost_level1;
2440 
2441 	/*
2442 	 * Cases to consider (User changes via sysfs or boot time):
2443 	 * If, P0 (Turbo max) = P1 (Guaranteed max) = min:
2444 	 *	No boost, return.
2445 	 * If, P0 (Turbo max) > P1 (Guaranteed max) = min:
2446 	 *     Should result in one level boost only for P0.
2447 	 * If, P0 (Turbo max) = P1 (Guaranteed max) > min:
2448 	 *     Should result in two level boost:
2449 	 *         (min + p1)/2 and P1.
2450 	 * If, P0 (Turbo max) > P1 (Guaranteed max) > min:
2451 	 *     Should result in three level boost:
2452 	 *        (min + p1)/2, P1 and P0.
2453 	 */
2454 
2455 	/* If max and min are equal or already at max, nothing to boost */
2456 	if (max_limit == min_limit || cpu->hwp_boost_min >= max_limit)
2457 		return;
2458 
2459 	if (!cpu->hwp_boost_min)
2460 		cpu->hwp_boost_min = min_limit;
2461 
2462 	/* level at half way mark between min and guranteed */
2463 	boost_level1 = (HWP_GUARANTEED_PERF(hwp_cap) + min_limit) >> 1;
2464 
2465 	if (cpu->hwp_boost_min < boost_level1)
2466 		cpu->hwp_boost_min = boost_level1;
2467 	else if (cpu->hwp_boost_min < HWP_GUARANTEED_PERF(hwp_cap))
2468 		cpu->hwp_boost_min = HWP_GUARANTEED_PERF(hwp_cap);
2469 	else if (cpu->hwp_boost_min == HWP_GUARANTEED_PERF(hwp_cap) &&
2470 		 max_limit != HWP_GUARANTEED_PERF(hwp_cap))
2471 		cpu->hwp_boost_min = max_limit;
2472 	else
2473 		return;
2474 
2475 	hwp_req = (hwp_req & ~GENMASK_ULL(7, 0)) | cpu->hwp_boost_min;
2476 	wrmsrq(MSR_HWP_REQUEST, hwp_req);
2477 	cpu->last_update = cpu->sample.time;
2478 }
2479 
intel_pstate_hwp_boost_down(struct cpudata * cpu)2480 static inline void intel_pstate_hwp_boost_down(struct cpudata *cpu)
2481 {
2482 	if (cpu->hwp_boost_min) {
2483 		bool expired;
2484 
2485 		/* Check if we are idle for hold time to boost down */
2486 		expired = time_after64(cpu->sample.time, cpu->last_update +
2487 				       hwp_boost_hold_time_ns);
2488 		if (expired) {
2489 			wrmsrq(MSR_HWP_REQUEST, cpu->hwp_req_cached);
2490 			cpu->hwp_boost_min = 0;
2491 		}
2492 	}
2493 	cpu->last_update = cpu->sample.time;
2494 }
2495 
intel_pstate_update_util_hwp_local(struct cpudata * cpu,u64 time)2496 static inline void intel_pstate_update_util_hwp_local(struct cpudata *cpu,
2497 						      u64 time)
2498 {
2499 	cpu->sample.time = time;
2500 
2501 	if (cpu->sched_flags & SCHED_CPUFREQ_IOWAIT) {
2502 		bool do_io = false;
2503 
2504 		cpu->sched_flags = 0;
2505 		/*
2506 		 * Set iowait_boost flag and update time. Since IO WAIT flag
2507 		 * is set all the time, we can't just conclude that there is
2508 		 * some IO bound activity is scheduled on this CPU with just
2509 		 * one occurrence. If we receive at least two in two
2510 		 * consecutive ticks, then we treat as boost candidate.
2511 		 */
2512 		if (time_before64(time, cpu->last_io_update + 2 * TICK_NSEC))
2513 			do_io = true;
2514 
2515 		cpu->last_io_update = time;
2516 
2517 		if (do_io)
2518 			intel_pstate_hwp_boost_up(cpu);
2519 
2520 	} else {
2521 		intel_pstate_hwp_boost_down(cpu);
2522 	}
2523 }
2524 
intel_pstate_update_util_hwp(struct update_util_data * data,u64 time,unsigned int flags)2525 static inline void intel_pstate_update_util_hwp(struct update_util_data *data,
2526 						u64 time, unsigned int flags)
2527 {
2528 	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
2529 
2530 	cpu->sched_flags |= flags;
2531 
2532 	if (smp_processor_id() == cpu->cpu)
2533 		intel_pstate_update_util_hwp_local(cpu, time);
2534 }
2535 
intel_pstate_calc_avg_perf(struct cpudata * cpu)2536 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
2537 {
2538 	struct sample *sample = &cpu->sample;
2539 
2540 	sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
2541 }
2542 
intel_pstate_sample(struct cpudata * cpu,u64 time)2543 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
2544 {
2545 	u64 aperf, mperf;
2546 	unsigned long flags;
2547 	u64 tsc;
2548 
2549 	local_irq_save(flags);
2550 	rdmsrq(MSR_IA32_APERF, aperf);
2551 	rdmsrq(MSR_IA32_MPERF, mperf);
2552 	tsc = rdtsc();
2553 	if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
2554 		local_irq_restore(flags);
2555 		return false;
2556 	}
2557 	local_irq_restore(flags);
2558 
2559 	cpu->last_sample_time = cpu->sample.time;
2560 	cpu->sample.time = time;
2561 	cpu->sample.aperf = aperf;
2562 	cpu->sample.mperf = mperf;
2563 	cpu->sample.tsc =  tsc;
2564 	cpu->sample.aperf -= cpu->prev_aperf;
2565 	cpu->sample.mperf -= cpu->prev_mperf;
2566 	cpu->sample.tsc -= cpu->prev_tsc;
2567 
2568 	cpu->prev_aperf = aperf;
2569 	cpu->prev_mperf = mperf;
2570 	cpu->prev_tsc = tsc;
2571 	/*
2572 	 * First time this function is invoked in a given cycle, all of the
2573 	 * previous sample data fields are equal to zero or stale and they must
2574 	 * be populated with meaningful numbers for things to work, so assume
2575 	 * that sample.time will always be reset before setting the utilization
2576 	 * update hook and make the caller skip the sample then.
2577 	 */
2578 	if (cpu->last_sample_time) {
2579 		intel_pstate_calc_avg_perf(cpu);
2580 		return true;
2581 	}
2582 	return false;
2583 }
2584 
get_avg_frequency(struct cpudata * cpu)2585 static inline int32_t get_avg_frequency(struct cpudata *cpu)
2586 {
2587 	return mul_ext_fp(cpu->sample.core_avg_perf, cpu_khz);
2588 }
2589 
get_avg_pstate(struct cpudata * cpu)2590 static inline int32_t get_avg_pstate(struct cpudata *cpu)
2591 {
2592 	return mul_ext_fp(cpu->pstate.max_pstate_physical,
2593 			  cpu->sample.core_avg_perf);
2594 }
2595 
get_target_pstate(struct cpudata * cpu)2596 static inline int32_t get_target_pstate(struct cpudata *cpu)
2597 {
2598 	struct sample *sample = &cpu->sample;
2599 	int32_t busy_frac;
2600 	int target, avg_pstate;
2601 
2602 	busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift,
2603 			   sample->tsc);
2604 
2605 	if (busy_frac < cpu->iowait_boost)
2606 		busy_frac = cpu->iowait_boost;
2607 
2608 	sample->busy_scaled = busy_frac * 100;
2609 
2610 	target = READ_ONCE(global.no_turbo) ?
2611 			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2612 	target += target >> 2;
2613 	target = mul_fp(target, busy_frac);
2614 	if (target < cpu->pstate.min_pstate)
2615 		target = cpu->pstate.min_pstate;
2616 
2617 	/*
2618 	 * If the average P-state during the previous cycle was higher than the
2619 	 * current target, add 50% of the difference to the target to reduce
2620 	 * possible performance oscillations and offset possible performance
2621 	 * loss related to moving the workload from one CPU to another within
2622 	 * a package/module.
2623 	 */
2624 	avg_pstate = get_avg_pstate(cpu);
2625 	if (avg_pstate > target)
2626 		target += (avg_pstate - target) >> 1;
2627 
2628 	return target;
2629 }
2630 
intel_pstate_prepare_request(struct cpudata * cpu,int pstate)2631 static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
2632 {
2633 	int min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio);
2634 	int max_pstate = max(min_pstate, cpu->max_perf_ratio);
2635 
2636 	return clamp_t(int, pstate, min_pstate, max_pstate);
2637 }
2638 
intel_pstate_update_pstate(struct cpudata * cpu,int pstate)2639 static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
2640 {
2641 	if (pstate == cpu->pstate.current_pstate)
2642 		return;
2643 
2644 	cpu->pstate.current_pstate = pstate;
2645 	wrmsrq(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
2646 }
2647 
intel_pstate_adjust_pstate(struct cpudata * cpu)2648 static void intel_pstate_adjust_pstate(struct cpudata *cpu)
2649 {
2650 	int from = cpu->pstate.current_pstate;
2651 	struct sample *sample;
2652 	int target_pstate;
2653 
2654 	target_pstate = get_target_pstate(cpu);
2655 	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2656 	trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
2657 	intel_pstate_update_pstate(cpu, target_pstate);
2658 
2659 	sample = &cpu->sample;
2660 	trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
2661 		fp_toint(sample->busy_scaled),
2662 		from,
2663 		cpu->pstate.current_pstate,
2664 		sample->mperf,
2665 		sample->aperf,
2666 		sample->tsc,
2667 		get_avg_frequency(cpu),
2668 		fp_toint(cpu->iowait_boost * 100));
2669 }
2670 
intel_pstate_update_util(struct update_util_data * data,u64 time,unsigned int flags)2671 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
2672 				     unsigned int flags)
2673 {
2674 	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
2675 	u64 delta_ns;
2676 
2677 	/* Don't allow remote callbacks */
2678 	if (smp_processor_id() != cpu->cpu)
2679 		return;
2680 
2681 	delta_ns = time - cpu->last_update;
2682 	if (flags & SCHED_CPUFREQ_IOWAIT) {
2683 		/* Start over if the CPU may have been idle. */
2684 		if (delta_ns > TICK_NSEC) {
2685 			cpu->iowait_boost = ONE_EIGHTH_FP;
2686 		} else if (cpu->iowait_boost >= ONE_EIGHTH_FP) {
2687 			cpu->iowait_boost <<= 1;
2688 			if (cpu->iowait_boost > int_tofp(1))
2689 				cpu->iowait_boost = int_tofp(1);
2690 		} else {
2691 			cpu->iowait_boost = ONE_EIGHTH_FP;
2692 		}
2693 	} else if (cpu->iowait_boost) {
2694 		/* Clear iowait_boost if the CPU may have been idle. */
2695 		if (delta_ns > TICK_NSEC)
2696 			cpu->iowait_boost = 0;
2697 		else
2698 			cpu->iowait_boost >>= 1;
2699 	}
2700 	cpu->last_update = time;
2701 	delta_ns = time - cpu->sample.time;
2702 	if ((s64)delta_ns < INTEL_PSTATE_SAMPLING_INTERVAL)
2703 		return;
2704 
2705 	if (intel_pstate_sample(cpu, time))
2706 		intel_pstate_adjust_pstate(cpu);
2707 }
2708 
2709 static struct pstate_funcs core_funcs = {
2710 	.get_max = core_get_max_pstate,
2711 	.get_max_physical = core_get_max_pstate_physical,
2712 	.get_min = core_get_min_pstate,
2713 	.get_turbo = core_get_turbo_pstate,
2714 	.get_scaling = core_get_scaling,
2715 	.get_val = core_get_val,
2716 };
2717 
2718 static const struct pstate_funcs silvermont_funcs = {
2719 	.get_max = atom_get_max_pstate,
2720 	.get_max_physical = atom_get_max_pstate,
2721 	.get_min = atom_get_min_pstate,
2722 	.get_turbo = atom_get_turbo_pstate,
2723 	.get_val = atom_get_val,
2724 	.get_scaling = silvermont_get_scaling,
2725 	.get_vid = atom_get_vid,
2726 };
2727 
2728 static const struct pstate_funcs airmont_funcs = {
2729 	.get_max = atom_get_max_pstate,
2730 	.get_max_physical = atom_get_max_pstate,
2731 	.get_min = atom_get_min_pstate,
2732 	.get_turbo = atom_get_turbo_pstate,
2733 	.get_val = atom_get_val,
2734 	.get_scaling = airmont_get_scaling,
2735 	.get_vid = atom_get_vid,
2736 };
2737 
2738 static const struct pstate_funcs knl_funcs = {
2739 	.get_max = core_get_max_pstate,
2740 	.get_max_physical = core_get_max_pstate_physical,
2741 	.get_min = core_get_min_pstate,
2742 	.get_turbo = knl_get_turbo_pstate,
2743 	.get_aperf_mperf_shift = knl_get_aperf_mperf_shift,
2744 	.get_scaling = core_get_scaling,
2745 	.get_val = core_get_val,
2746 };
2747 
2748 #define X86_MATCH(vfm, policy)					 \
2749 	X86_MATCH_VFM_FEATURE(vfm, X86_FEATURE_APERFMPERF, &policy)
2750 
2751 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
2752 	X86_MATCH(INTEL_SANDYBRIDGE,		core_funcs),
2753 	X86_MATCH(INTEL_SANDYBRIDGE_X,		core_funcs),
2754 	X86_MATCH(INTEL_ATOM_SILVERMONT,	silvermont_funcs),
2755 	X86_MATCH(INTEL_IVYBRIDGE,		core_funcs),
2756 	X86_MATCH(INTEL_HASWELL,		core_funcs),
2757 	X86_MATCH(INTEL_BROADWELL,		core_funcs),
2758 	X86_MATCH(INTEL_IVYBRIDGE_X,		core_funcs),
2759 	X86_MATCH(INTEL_HASWELL_X,		core_funcs),
2760 	X86_MATCH(INTEL_HASWELL_L,		core_funcs),
2761 	X86_MATCH(INTEL_HASWELL_G,		core_funcs),
2762 	X86_MATCH(INTEL_BROADWELL_G,		core_funcs),
2763 	X86_MATCH(INTEL_ATOM_AIRMONT,		airmont_funcs),
2764 	X86_MATCH(INTEL_SKYLAKE_L,		core_funcs),
2765 	X86_MATCH(INTEL_BROADWELL_X,		core_funcs),
2766 	X86_MATCH(INTEL_SKYLAKE,		core_funcs),
2767 	X86_MATCH(INTEL_BROADWELL_D,		core_funcs),
2768 	X86_MATCH(INTEL_XEON_PHI_KNL,		knl_funcs),
2769 	X86_MATCH(INTEL_XEON_PHI_KNM,		knl_funcs),
2770 	X86_MATCH(INTEL_ATOM_GOLDMONT,		core_funcs),
2771 	X86_MATCH(INTEL_ATOM_GOLDMONT_PLUS,	core_funcs),
2772 	X86_MATCH(INTEL_SKYLAKE_X,		core_funcs),
2773 	X86_MATCH(INTEL_COMETLAKE,		core_funcs),
2774 	X86_MATCH(INTEL_ICELAKE_X,		core_funcs),
2775 	X86_MATCH(INTEL_TIGERLAKE,		core_funcs),
2776 	X86_MATCH(INTEL_SAPPHIRERAPIDS_X,	core_funcs),
2777 	X86_MATCH(INTEL_EMERALDRAPIDS_X,	core_funcs),
2778 	X86_MATCH(INTEL_GRANITERAPIDS_D,	core_funcs),
2779 	X86_MATCH(INTEL_GRANITERAPIDS_X,	core_funcs),
2780 	{}
2781 };
2782 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
2783 
2784 #ifdef CONFIG_ACPI
2785 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
2786 	X86_MATCH(INTEL_BROADWELL_D,		core_funcs),
2787 	X86_MATCH(INTEL_BROADWELL_X,		core_funcs),
2788 	X86_MATCH(INTEL_SKYLAKE_X,		core_funcs),
2789 	X86_MATCH(INTEL_ICELAKE_X,		core_funcs),
2790 	X86_MATCH(INTEL_SAPPHIRERAPIDS_X,	core_funcs),
2791 	X86_MATCH(INTEL_EMERALDRAPIDS_X,	core_funcs),
2792 	X86_MATCH(INTEL_GRANITERAPIDS_D,	core_funcs),
2793 	X86_MATCH(INTEL_GRANITERAPIDS_X,	core_funcs),
2794 	X86_MATCH(INTEL_ATOM_CRESTMONT,		core_funcs),
2795 	X86_MATCH(INTEL_ATOM_CRESTMONT_X,	core_funcs),
2796 	{}
2797 };
2798 #endif
2799 
2800 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
2801 	X86_MATCH(INTEL_KABYLAKE,		core_funcs),
2802 	{}
2803 };
2804 
intel_pstate_init_cpu(unsigned int cpunum)2805 static int intel_pstate_init_cpu(unsigned int cpunum)
2806 {
2807 	struct cpudata *cpu;
2808 
2809 	cpu = all_cpu_data[cpunum];
2810 
2811 	if (!cpu) {
2812 		cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
2813 		if (!cpu)
2814 			return -ENOMEM;
2815 
2816 		WRITE_ONCE(all_cpu_data[cpunum], cpu);
2817 
2818 		cpu->cpu = cpunum;
2819 
2820 		cpu->epp_default = -EINVAL;
2821 
2822 		if (hwp_active) {
2823 			intel_pstate_hwp_enable(cpu);
2824 
2825 			if (intel_pstate_acpi_pm_profile_server())
2826 				hwp_boost = true;
2827 		}
2828 	} else if (hwp_active) {
2829 		/*
2830 		 * Re-enable HWP in case this happens after a resume from ACPI
2831 		 * S3 if the CPU was offline during the whole system/resume
2832 		 * cycle.
2833 		 */
2834 		intel_pstate_hwp_reenable(cpu);
2835 	}
2836 
2837 	cpu->epp_powersave = -EINVAL;
2838 	cpu->epp_policy = CPUFREQ_POLICY_UNKNOWN;
2839 
2840 	intel_pstate_get_cpu_pstates(cpu);
2841 
2842 	pr_debug("controlling: cpu %d\n", cpunum);
2843 
2844 	return 0;
2845 }
2846 
intel_pstate_set_update_util_hook(unsigned int cpu_num)2847 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
2848 {
2849 	struct cpudata *cpu = all_cpu_data[cpu_num];
2850 
2851 	if (hwp_active && !hwp_boost)
2852 		return;
2853 
2854 	if (cpu->update_util_set)
2855 		return;
2856 
2857 	/* Prevent intel_pstate_update_util() from using stale data. */
2858 	cpu->sample.time = 0;
2859 	cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
2860 				     (hwp_active ?
2861 				      intel_pstate_update_util_hwp :
2862 				      intel_pstate_update_util));
2863 	cpu->update_util_set = true;
2864 }
2865 
intel_pstate_clear_update_util_hook(unsigned int cpu)2866 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
2867 {
2868 	struct cpudata *cpu_data = all_cpu_data[cpu];
2869 
2870 	if (!cpu_data->update_util_set)
2871 		return;
2872 
2873 	cpufreq_remove_update_util_hook(cpu);
2874 	cpu_data->update_util_set = false;
2875 	synchronize_rcu();
2876 }
2877 
intel_pstate_get_max_freq(struct cpudata * cpu)2878 static int intel_pstate_get_max_freq(struct cpudata *cpu)
2879 {
2880 	return READ_ONCE(global.no_turbo) ?
2881 			cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2882 }
2883 
intel_pstate_update_perf_limits(struct cpudata * cpu,unsigned int policy_min,unsigned int policy_max)2884 static void intel_pstate_update_perf_limits(struct cpudata *cpu,
2885 					    unsigned int policy_min,
2886 					    unsigned int policy_max)
2887 {
2888 	int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling;
2889 	int32_t max_policy_perf, min_policy_perf;
2890 
2891 	max_policy_perf = policy_max / perf_ctl_scaling;
2892 	if (policy_max == policy_min) {
2893 		min_policy_perf = max_policy_perf;
2894 	} else {
2895 		min_policy_perf = policy_min / perf_ctl_scaling;
2896 		min_policy_perf = clamp_t(int32_t, min_policy_perf,
2897 					  0, max_policy_perf);
2898 	}
2899 
2900 	/*
2901 	 * HWP needs some special consideration, because HWP_REQUEST uses
2902 	 * abstract values to represent performance rather than pure ratios.
2903 	 */
2904 	if (hwp_active && cpu->pstate.scaling != perf_ctl_scaling) {
2905 		int freq;
2906 
2907 		freq = max_policy_perf * perf_ctl_scaling;
2908 		max_policy_perf = intel_pstate_freq_to_hwp(cpu, freq);
2909 		freq = min_policy_perf * perf_ctl_scaling;
2910 		min_policy_perf = intel_pstate_freq_to_hwp(cpu, freq);
2911 	}
2912 
2913 	pr_debug("cpu:%d min_policy_perf:%d max_policy_perf:%d\n",
2914 		 cpu->cpu, min_policy_perf, max_policy_perf);
2915 
2916 	/* Normalize user input to [min_perf, max_perf] */
2917 	if (per_cpu_limits) {
2918 		cpu->min_perf_ratio = min_policy_perf;
2919 		cpu->max_perf_ratio = max_policy_perf;
2920 	} else {
2921 		int turbo_max = cpu->pstate.turbo_pstate;
2922 		int32_t global_min, global_max;
2923 
2924 		/* Global limits are in percent of the maximum turbo P-state. */
2925 		global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
2926 		global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
2927 		global_min = clamp_t(int32_t, global_min, 0, global_max);
2928 
2929 		pr_debug("cpu:%d global_min:%d global_max:%d\n", cpu->cpu,
2930 			 global_min, global_max);
2931 
2932 		cpu->min_perf_ratio = max(min_policy_perf, global_min);
2933 		cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf);
2934 		cpu->max_perf_ratio = min(max_policy_perf, global_max);
2935 		cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio);
2936 
2937 		/* Make sure min_perf <= max_perf */
2938 		cpu->min_perf_ratio = min(cpu->min_perf_ratio,
2939 					  cpu->max_perf_ratio);
2940 
2941 	}
2942 	pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", cpu->cpu,
2943 		 cpu->max_perf_ratio,
2944 		 cpu->min_perf_ratio);
2945 }
2946 
intel_pstate_set_policy(struct cpufreq_policy * policy)2947 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
2948 {
2949 	struct cpudata *cpu;
2950 
2951 	if (!policy->cpuinfo.max_freq)
2952 		return -ENODEV;
2953 
2954 	pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
2955 		 policy->cpuinfo.max_freq, policy->max);
2956 
2957 	cpu = all_cpu_data[policy->cpu];
2958 	cpu->policy = policy->policy;
2959 
2960 	mutex_lock(&intel_pstate_limits_lock);
2961 
2962 	intel_pstate_update_perf_limits(cpu, policy->min, policy->max);
2963 
2964 	if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2965 		int pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio);
2966 
2967 		/*
2968 		 * NOHZ_FULL CPUs need this as the governor callback may not
2969 		 * be invoked on them.
2970 		 */
2971 		intel_pstate_clear_update_util_hook(policy->cpu);
2972 		intel_pstate_set_pstate(cpu, pstate);
2973 	} else {
2974 		intel_pstate_set_update_util_hook(policy->cpu);
2975 	}
2976 
2977 	if (hwp_active) {
2978 		/*
2979 		 * When hwp_boost was active before and dynamically it
2980 		 * was turned off, in that case we need to clear the
2981 		 * update util hook.
2982 		 */
2983 		if (!hwp_boost)
2984 			intel_pstate_clear_update_util_hook(policy->cpu);
2985 		intel_pstate_hwp_set(policy->cpu);
2986 	}
2987 	/*
2988 	 * policy->cur is never updated with the intel_pstate driver, but it
2989 	 * is used as a stale frequency value. So, keep it within limits.
2990 	 */
2991 	policy->cur = policy->min;
2992 
2993 	mutex_unlock(&intel_pstate_limits_lock);
2994 
2995 	return 0;
2996 }
2997 
intel_pstate_adjust_policy_max(struct cpudata * cpu,struct cpufreq_policy_data * policy)2998 static void intel_pstate_adjust_policy_max(struct cpudata *cpu,
2999 					   struct cpufreq_policy_data *policy)
3000 {
3001 	if (!hwp_active &&
3002 	    cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
3003 	    policy->max < policy->cpuinfo.max_freq &&
3004 	    policy->max > cpu->pstate.max_freq) {
3005 		pr_debug("policy->max > max non turbo frequency\n");
3006 		policy->max = policy->cpuinfo.max_freq;
3007 	}
3008 }
3009 
intel_pstate_verify_cpu_policy(struct cpudata * cpu,struct cpufreq_policy_data * policy)3010 static void intel_pstate_verify_cpu_policy(struct cpudata *cpu,
3011 					   struct cpufreq_policy_data *policy)
3012 {
3013 	int max_freq;
3014 
3015 	if (hwp_active) {
3016 		intel_pstate_get_hwp_cap(cpu);
3017 		max_freq = READ_ONCE(global.no_turbo) ?
3018 				cpu->pstate.max_freq : cpu->pstate.turbo_freq;
3019 	} else {
3020 		max_freq = intel_pstate_get_max_freq(cpu);
3021 	}
3022 	cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq, max_freq);
3023 
3024 	intel_pstate_adjust_policy_max(cpu, policy);
3025 }
3026 
intel_pstate_verify_policy(struct cpufreq_policy_data * policy)3027 static int intel_pstate_verify_policy(struct cpufreq_policy_data *policy)
3028 {
3029 	intel_pstate_verify_cpu_policy(all_cpu_data[policy->cpu], policy);
3030 
3031 	return 0;
3032 }
3033 
intel_cpufreq_cpu_offline(struct cpufreq_policy * policy)3034 static int intel_cpufreq_cpu_offline(struct cpufreq_policy *policy)
3035 {
3036 	struct cpudata *cpu = all_cpu_data[policy->cpu];
3037 
3038 	pr_debug("CPU %d going offline\n", cpu->cpu);
3039 
3040 	if (cpu->suspended)
3041 		return 0;
3042 
3043 	/*
3044 	 * If the CPU is an SMT thread and it goes offline with the performance
3045 	 * settings different from the minimum, it will prevent its sibling
3046 	 * from getting to lower performance levels, so force the minimum
3047 	 * performance on CPU offline to prevent that from happening.
3048 	 */
3049 	if (hwp_active)
3050 		intel_pstate_hwp_offline(cpu);
3051 	else
3052 		intel_pstate_set_min_pstate(cpu);
3053 
3054 	intel_pstate_exit_perf_limits(policy);
3055 
3056 	return 0;
3057 }
3058 
intel_pstate_cpu_online(struct cpufreq_policy * policy)3059 static int intel_pstate_cpu_online(struct cpufreq_policy *policy)
3060 {
3061 	struct cpudata *cpu = all_cpu_data[policy->cpu];
3062 
3063 	pr_debug("CPU %d going online\n", cpu->cpu);
3064 
3065 	intel_pstate_init_acpi_perf_limits(policy);
3066 
3067 	if (hwp_active) {
3068 		/*
3069 		 * Re-enable HWP and clear the "suspended" flag to let "resume"
3070 		 * know that it need not do that.
3071 		 */
3072 		intel_pstate_hwp_reenable(cpu);
3073 		cpu->suspended = false;
3074 
3075 		hybrid_update_capacity(cpu);
3076 	}
3077 
3078 	return 0;
3079 }
3080 
intel_pstate_cpu_offline(struct cpufreq_policy * policy)3081 static int intel_pstate_cpu_offline(struct cpufreq_policy *policy)
3082 {
3083 	intel_pstate_clear_update_util_hook(policy->cpu);
3084 
3085 	return intel_cpufreq_cpu_offline(policy);
3086 }
3087 
intel_pstate_cpu_exit(struct cpufreq_policy * policy)3088 static void intel_pstate_cpu_exit(struct cpufreq_policy *policy)
3089 {
3090 	pr_debug("CPU %d exiting\n", policy->cpu);
3091 
3092 	policy->fast_switch_possible = false;
3093 }
3094 
__intel_pstate_cpu_init(struct cpufreq_policy * policy)3095 static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
3096 {
3097 	struct cpudata *cpu;
3098 	int rc;
3099 
3100 	rc = intel_pstate_init_cpu(policy->cpu);
3101 	if (rc)
3102 		return rc;
3103 
3104 	cpu = all_cpu_data[policy->cpu];
3105 
3106 	cpu->max_perf_ratio = 0xFF;
3107 	cpu->min_perf_ratio = 0;
3108 
3109 	/* cpuinfo and default policy values */
3110 	policy->cpuinfo.min_freq = cpu->pstate.min_freq;
3111 	policy->cpuinfo.max_freq = READ_ONCE(global.no_turbo) ?
3112 			cpu->pstate.max_freq : cpu->pstate.turbo_freq;
3113 
3114 	policy->min = policy->cpuinfo.min_freq;
3115 	policy->max = policy->cpuinfo.max_freq;
3116 
3117 	intel_pstate_init_acpi_perf_limits(policy);
3118 
3119 	policy->fast_switch_possible = true;
3120 
3121 	return 0;
3122 }
3123 
intel_pstate_cpu_init(struct cpufreq_policy * policy)3124 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
3125 {
3126 	int ret = __intel_pstate_cpu_init(policy);
3127 
3128 	if (ret)
3129 		return ret;
3130 
3131 	/*
3132 	 * Set the policy to powersave to provide a valid fallback value in case
3133 	 * the default cpufreq governor is neither powersave nor performance.
3134 	 */
3135 	policy->policy = CPUFREQ_POLICY_POWERSAVE;
3136 
3137 	if (hwp_active) {
3138 		struct cpudata *cpu = all_cpu_data[policy->cpu];
3139 
3140 		cpu->epp_cached = intel_pstate_get_epp(cpu, 0);
3141 	}
3142 
3143 	return 0;
3144 }
3145 
3146 static struct cpufreq_driver intel_pstate = {
3147 	.flags		= CPUFREQ_CONST_LOOPS,
3148 	.verify		= intel_pstate_verify_policy,
3149 	.setpolicy	= intel_pstate_set_policy,
3150 	.suspend	= intel_pstate_suspend,
3151 	.resume		= intel_pstate_resume,
3152 	.init		= intel_pstate_cpu_init,
3153 	.exit		= intel_pstate_cpu_exit,
3154 	.offline	= intel_pstate_cpu_offline,
3155 	.online		= intel_pstate_cpu_online,
3156 	.update_limits	= intel_pstate_update_limits,
3157 	.name		= "intel_pstate",
3158 };
3159 
intel_cpufreq_verify_policy(struct cpufreq_policy_data * policy)3160 static int intel_cpufreq_verify_policy(struct cpufreq_policy_data *policy)
3161 {
3162 	struct cpudata *cpu = all_cpu_data[policy->cpu];
3163 
3164 	intel_pstate_verify_cpu_policy(cpu, policy);
3165 	intel_pstate_update_perf_limits(cpu, policy->min, policy->max);
3166 
3167 	return 0;
3168 }
3169 
3170 /* Use of trace in passive mode:
3171  *
3172  * In passive mode the trace core_busy field (also known as the
3173  * performance field, and lablelled as such on the graphs; also known as
3174  * core_avg_perf) is not needed and so is re-assigned to indicate if the
3175  * driver call was via the normal or fast switch path. Various graphs
3176  * output from the intel_pstate_tracer.py utility that include core_busy
3177  * (or performance or core_avg_perf) have a fixed y-axis from 0 to 100%,
3178  * so we use 10 to indicate the normal path through the driver, and
3179  * 90 to indicate the fast switch path through the driver.
3180  * The scaled_busy field is not used, and is set to 0.
3181  */
3182 
3183 #define	INTEL_PSTATE_TRACE_TARGET 10
3184 #define	INTEL_PSTATE_TRACE_FAST_SWITCH 90
3185 
intel_cpufreq_trace(struct cpudata * cpu,unsigned int trace_type,int old_pstate)3186 static void intel_cpufreq_trace(struct cpudata *cpu, unsigned int trace_type, int old_pstate)
3187 {
3188 	struct sample *sample;
3189 
3190 	if (!trace_pstate_sample_enabled())
3191 		return;
3192 
3193 	if (!intel_pstate_sample(cpu, ktime_get()))
3194 		return;
3195 
3196 	sample = &cpu->sample;
3197 	trace_pstate_sample(trace_type,
3198 		0,
3199 		old_pstate,
3200 		cpu->pstate.current_pstate,
3201 		sample->mperf,
3202 		sample->aperf,
3203 		sample->tsc,
3204 		get_avg_frequency(cpu),
3205 		fp_toint(cpu->iowait_boost * 100));
3206 }
3207 
intel_cpufreq_hwp_update(struct cpudata * cpu,u32 min,u32 max,u32 desired,bool fast_switch)3208 static void intel_cpufreq_hwp_update(struct cpudata *cpu, u32 min, u32 max,
3209 				     u32 desired, bool fast_switch)
3210 {
3211 	u64 prev = READ_ONCE(cpu->hwp_req_cached), value = prev;
3212 
3213 	value &= ~HWP_MIN_PERF(~0L);
3214 	value |= HWP_MIN_PERF(min);
3215 
3216 	value &= ~HWP_MAX_PERF(~0L);
3217 	value |= HWP_MAX_PERF(max);
3218 
3219 	value &= ~HWP_DESIRED_PERF(~0L);
3220 	value |= HWP_DESIRED_PERF(desired);
3221 
3222 	if (value == prev)
3223 		return;
3224 
3225 	WRITE_ONCE(cpu->hwp_req_cached, value);
3226 	if (fast_switch)
3227 		wrmsrq(MSR_HWP_REQUEST, value);
3228 	else
3229 		wrmsrq_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
3230 }
3231 
intel_cpufreq_perf_ctl_update(struct cpudata * cpu,u32 target_pstate,bool fast_switch)3232 static void intel_cpufreq_perf_ctl_update(struct cpudata *cpu,
3233 					  u32 target_pstate, bool fast_switch)
3234 {
3235 	if (fast_switch)
3236 		wrmsrq(MSR_IA32_PERF_CTL,
3237 		       pstate_funcs.get_val(cpu, target_pstate));
3238 	else
3239 		wrmsrq_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
3240 			      pstate_funcs.get_val(cpu, target_pstate));
3241 }
3242 
intel_cpufreq_update_pstate(struct cpufreq_policy * policy,int target_pstate,bool fast_switch)3243 static int intel_cpufreq_update_pstate(struct cpufreq_policy *policy,
3244 				       int target_pstate, bool fast_switch)
3245 {
3246 	struct cpudata *cpu = all_cpu_data[policy->cpu];
3247 	int old_pstate = cpu->pstate.current_pstate;
3248 
3249 	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
3250 	if (hwp_active) {
3251 		int max_pstate = policy->strict_target ?
3252 					target_pstate : cpu->max_perf_ratio;
3253 
3254 		intel_cpufreq_hwp_update(cpu, target_pstate, max_pstate,
3255 					 target_pstate, fast_switch);
3256 	} else if (target_pstate != old_pstate) {
3257 		intel_cpufreq_perf_ctl_update(cpu, target_pstate, fast_switch);
3258 	}
3259 
3260 	cpu->pstate.current_pstate = target_pstate;
3261 
3262 	intel_cpufreq_trace(cpu, fast_switch ? INTEL_PSTATE_TRACE_FAST_SWITCH :
3263 			    INTEL_PSTATE_TRACE_TARGET, old_pstate);
3264 
3265 	return target_pstate;
3266 }
3267 
intel_cpufreq_target(struct cpufreq_policy * policy,unsigned int target_freq,unsigned int relation)3268 static int intel_cpufreq_target(struct cpufreq_policy *policy,
3269 				unsigned int target_freq,
3270 				unsigned int relation)
3271 {
3272 	struct cpudata *cpu = all_cpu_data[policy->cpu];
3273 	struct cpufreq_freqs freqs;
3274 	int target_pstate;
3275 
3276 	freqs.old = policy->cur;
3277 	freqs.new = target_freq;
3278 
3279 	cpufreq_freq_transition_begin(policy, &freqs);
3280 
3281 	target_pstate = intel_pstate_freq_to_hwp_rel(cpu, freqs.new, relation);
3282 	target_pstate = intel_cpufreq_update_pstate(policy, target_pstate, false);
3283 
3284 	freqs.new = target_pstate * cpu->pstate.scaling;
3285 
3286 	cpufreq_freq_transition_end(policy, &freqs, false);
3287 
3288 	return 0;
3289 }
3290 
intel_cpufreq_fast_switch(struct cpufreq_policy * policy,unsigned int target_freq)3291 static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
3292 					      unsigned int target_freq)
3293 {
3294 	struct cpudata *cpu = all_cpu_data[policy->cpu];
3295 	int target_pstate;
3296 
3297 	target_pstate = intel_pstate_freq_to_hwp(cpu, target_freq);
3298 
3299 	target_pstate = intel_cpufreq_update_pstate(policy, target_pstate, true);
3300 
3301 	return target_pstate * cpu->pstate.scaling;
3302 }
3303 
intel_cpufreq_adjust_perf(unsigned int cpunum,unsigned long min_perf,unsigned long target_perf,unsigned long capacity)3304 static void intel_cpufreq_adjust_perf(unsigned int cpunum,
3305 				      unsigned long min_perf,
3306 				      unsigned long target_perf,
3307 				      unsigned long capacity)
3308 {
3309 	struct cpudata *cpu = all_cpu_data[cpunum];
3310 	u64 hwp_cap = READ_ONCE(cpu->hwp_cap_cached);
3311 	int old_pstate = cpu->pstate.current_pstate;
3312 	int cap_pstate, min_pstate, max_pstate, target_pstate;
3313 
3314 	cap_pstate = READ_ONCE(global.no_turbo) ?
3315 					HWP_GUARANTEED_PERF(hwp_cap) :
3316 					HWP_HIGHEST_PERF(hwp_cap);
3317 
3318 	/* Optimization: Avoid unnecessary divisions. */
3319 
3320 	target_pstate = cap_pstate;
3321 	if (target_perf < capacity)
3322 		target_pstate = DIV_ROUND_UP(cap_pstate * target_perf, capacity);
3323 
3324 	min_pstate = cap_pstate;
3325 	if (min_perf < capacity)
3326 		min_pstate = DIV_ROUND_UP(cap_pstate * min_perf, capacity);
3327 
3328 	if (min_pstate < cpu->pstate.min_pstate)
3329 		min_pstate = cpu->pstate.min_pstate;
3330 
3331 	if (min_pstate < cpu->min_perf_ratio)
3332 		min_pstate = cpu->min_perf_ratio;
3333 
3334 	if (min_pstate > cpu->max_perf_ratio)
3335 		min_pstate = cpu->max_perf_ratio;
3336 
3337 	max_pstate = min(cap_pstate, cpu->max_perf_ratio);
3338 	if (max_pstate < min_pstate)
3339 		max_pstate = min_pstate;
3340 
3341 	target_pstate = clamp_t(int, target_pstate, min_pstate, max_pstate);
3342 
3343 	intel_cpufreq_hwp_update(cpu, min_pstate, max_pstate, target_pstate, true);
3344 
3345 	cpu->pstate.current_pstate = target_pstate;
3346 	intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_FAST_SWITCH, old_pstate);
3347 }
3348 
intel_cpufreq_cpu_init(struct cpufreq_policy * policy)3349 static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
3350 {
3351 	struct freq_qos_request *req;
3352 	struct cpudata *cpu;
3353 	struct device *dev;
3354 	int ret, freq;
3355 
3356 	dev = get_cpu_device(policy->cpu);
3357 	if (!dev)
3358 		return -ENODEV;
3359 
3360 	ret = __intel_pstate_cpu_init(policy);
3361 	if (ret)
3362 		return ret;
3363 
3364 	policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
3365 	/* This reflects the intel_pstate_get_cpu_pstates() setting. */
3366 	policy->cur = policy->cpuinfo.min_freq;
3367 
3368 	req = kcalloc(2, sizeof(*req), GFP_KERNEL);
3369 	if (!req) {
3370 		ret = -ENOMEM;
3371 		goto pstate_exit;
3372 	}
3373 
3374 	cpu = all_cpu_data[policy->cpu];
3375 
3376 	if (hwp_active) {
3377 		u64 value;
3378 
3379 		policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY_HWP;
3380 
3381 		intel_pstate_get_hwp_cap(cpu);
3382 
3383 		rdmsrq_on_cpu(cpu->cpu, MSR_HWP_REQUEST, &value);
3384 		WRITE_ONCE(cpu->hwp_req_cached, value);
3385 
3386 		cpu->epp_cached = intel_pstate_get_epp(cpu, value);
3387 	} else {
3388 		policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY;
3389 	}
3390 
3391 	freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * global.min_perf_pct, 100);
3392 
3393 	ret = freq_qos_add_request(&policy->constraints, req, FREQ_QOS_MIN,
3394 				   freq);
3395 	if (ret < 0) {
3396 		dev_err(dev, "Failed to add min-freq constraint (%d)\n", ret);
3397 		goto free_req;
3398 	}
3399 
3400 	freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * global.max_perf_pct, 100);
3401 
3402 	ret = freq_qos_add_request(&policy->constraints, req + 1, FREQ_QOS_MAX,
3403 				   freq);
3404 	if (ret < 0) {
3405 		dev_err(dev, "Failed to add max-freq constraint (%d)\n", ret);
3406 		goto remove_min_req;
3407 	}
3408 
3409 	policy->driver_data = req;
3410 
3411 	return 0;
3412 
3413 remove_min_req:
3414 	freq_qos_remove_request(req);
3415 free_req:
3416 	kfree(req);
3417 pstate_exit:
3418 	intel_pstate_exit_perf_limits(policy);
3419 
3420 	return ret;
3421 }
3422 
intel_cpufreq_cpu_exit(struct cpufreq_policy * policy)3423 static void intel_cpufreq_cpu_exit(struct cpufreq_policy *policy)
3424 {
3425 	struct freq_qos_request *req;
3426 
3427 	req = policy->driver_data;
3428 
3429 	freq_qos_remove_request(req + 1);
3430 	freq_qos_remove_request(req);
3431 	kfree(req);
3432 
3433 	intel_pstate_cpu_exit(policy);
3434 }
3435 
intel_cpufreq_suspend(struct cpufreq_policy * policy)3436 static int intel_cpufreq_suspend(struct cpufreq_policy *policy)
3437 {
3438 	intel_pstate_suspend(policy);
3439 
3440 	if (hwp_active) {
3441 		struct cpudata *cpu = all_cpu_data[policy->cpu];
3442 		u64 value = READ_ONCE(cpu->hwp_req_cached);
3443 
3444 		/*
3445 		 * Clear the desired perf field in MSR_HWP_REQUEST in case
3446 		 * intel_cpufreq_adjust_perf() is in use and the last value
3447 		 * written by it may not be suitable.
3448 		 */
3449 		value &= ~HWP_DESIRED_PERF(~0L);
3450 		wrmsrq_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
3451 		WRITE_ONCE(cpu->hwp_req_cached, value);
3452 	}
3453 
3454 	return 0;
3455 }
3456 
3457 static struct cpufreq_driver intel_cpufreq = {
3458 	.flags		= CPUFREQ_CONST_LOOPS,
3459 	.verify		= intel_cpufreq_verify_policy,
3460 	.target		= intel_cpufreq_target,
3461 	.fast_switch	= intel_cpufreq_fast_switch,
3462 	.init		= intel_cpufreq_cpu_init,
3463 	.exit		= intel_cpufreq_cpu_exit,
3464 	.offline	= intel_cpufreq_cpu_offline,
3465 	.online		= intel_pstate_cpu_online,
3466 	.suspend	= intel_cpufreq_suspend,
3467 	.resume		= intel_pstate_resume,
3468 	.update_limits	= intel_pstate_update_limits,
3469 	.name		= "intel_cpufreq",
3470 };
3471 
3472 static struct cpufreq_driver *default_driver;
3473 
intel_pstate_driver_cleanup(void)3474 static void intel_pstate_driver_cleanup(void)
3475 {
3476 	unsigned int cpu;
3477 
3478 	cpus_read_lock();
3479 	for_each_online_cpu(cpu) {
3480 		if (all_cpu_data[cpu]) {
3481 			if (intel_pstate_driver == &intel_pstate)
3482 				intel_pstate_clear_update_util_hook(cpu);
3483 
3484 			kfree(all_cpu_data[cpu]);
3485 			WRITE_ONCE(all_cpu_data[cpu], NULL);
3486 		}
3487 	}
3488 	cpus_read_unlock();
3489 
3490 	intel_pstate_driver = NULL;
3491 }
3492 
intel_pstate_register_driver(struct cpufreq_driver * driver)3493 static int intel_pstate_register_driver(struct cpufreq_driver *driver)
3494 {
3495 	bool refresh_cpu_cap_scaling;
3496 	int ret;
3497 
3498 	if (driver == &intel_pstate)
3499 		intel_pstate_sysfs_expose_hwp_dynamic_boost();
3500 
3501 	memset(&global, 0, sizeof(global));
3502 	global.max_perf_pct = 100;
3503 	global.turbo_disabled = turbo_is_disabled();
3504 	global.no_turbo = global.turbo_disabled;
3505 
3506 	arch_set_max_freq_ratio(global.turbo_disabled);
3507 
3508 	refresh_cpu_cap_scaling = hybrid_clear_max_perf_cpu();
3509 
3510 	intel_pstate_driver = driver;
3511 	ret = cpufreq_register_driver(intel_pstate_driver);
3512 	if (ret) {
3513 		intel_pstate_driver_cleanup();
3514 		return ret;
3515 	}
3516 
3517 	global.min_perf_pct = min_perf_pct_min();
3518 
3519 	hybrid_init_cpu_capacity_scaling(refresh_cpu_cap_scaling);
3520 
3521 	return 0;
3522 }
3523 
intel_pstate_show_status(char * buf)3524 static ssize_t intel_pstate_show_status(char *buf)
3525 {
3526 	if (!intel_pstate_driver)
3527 		return sprintf(buf, "off\n");
3528 
3529 	return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
3530 					"active" : "passive");
3531 }
3532 
intel_pstate_update_status(const char * buf,size_t size)3533 static int intel_pstate_update_status(const char *buf, size_t size)
3534 {
3535 	if (size == 3 && !strncmp(buf, "off", size)) {
3536 		if (!intel_pstate_driver)
3537 			return -EINVAL;
3538 
3539 		if (hwp_active)
3540 			return -EBUSY;
3541 
3542 		cpufreq_unregister_driver(intel_pstate_driver);
3543 		intel_pstate_driver_cleanup();
3544 		return 0;
3545 	}
3546 
3547 	if (size == 6 && !strncmp(buf, "active", size)) {
3548 		if (intel_pstate_driver) {
3549 			if (intel_pstate_driver == &intel_pstate)
3550 				return 0;
3551 
3552 			cpufreq_unregister_driver(intel_pstate_driver);
3553 		}
3554 
3555 		return intel_pstate_register_driver(&intel_pstate);
3556 	}
3557 
3558 	if (size == 7 && !strncmp(buf, "passive", size)) {
3559 		if (intel_pstate_driver) {
3560 			if (intel_pstate_driver == &intel_cpufreq)
3561 				return 0;
3562 
3563 			cpufreq_unregister_driver(intel_pstate_driver);
3564 			intel_pstate_sysfs_hide_hwp_dynamic_boost();
3565 		}
3566 
3567 		return intel_pstate_register_driver(&intel_cpufreq);
3568 	}
3569 
3570 	return -EINVAL;
3571 }
3572 
3573 static int no_load __initdata;
3574 static int no_hwp __initdata;
3575 static int hwp_only __initdata;
3576 static unsigned int force_load __initdata;
3577 
intel_pstate_msrs_not_valid(void)3578 static int __init intel_pstate_msrs_not_valid(void)
3579 {
3580 	if (!pstate_funcs.get_max(0) ||
3581 	    !pstate_funcs.get_min(0) ||
3582 	    !pstate_funcs.get_turbo(0))
3583 		return -ENODEV;
3584 
3585 	return 0;
3586 }
3587 
copy_cpu_funcs(struct pstate_funcs * funcs)3588 static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
3589 {
3590 	pstate_funcs.get_max   = funcs->get_max;
3591 	pstate_funcs.get_max_physical = funcs->get_max_physical;
3592 	pstate_funcs.get_min   = funcs->get_min;
3593 	pstate_funcs.get_turbo = funcs->get_turbo;
3594 	pstate_funcs.get_scaling = funcs->get_scaling;
3595 	pstate_funcs.get_val   = funcs->get_val;
3596 	pstate_funcs.get_vid   = funcs->get_vid;
3597 	pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift;
3598 }
3599 
3600 #ifdef CONFIG_ACPI
3601 
intel_pstate_no_acpi_pss(void)3602 static bool __init intel_pstate_no_acpi_pss(void)
3603 {
3604 	int i;
3605 
3606 	for_each_possible_cpu(i) {
3607 		acpi_status status;
3608 		union acpi_object *pss;
3609 		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
3610 		struct acpi_processor *pr = per_cpu(processors, i);
3611 
3612 		if (!pr)
3613 			continue;
3614 
3615 		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
3616 		if (ACPI_FAILURE(status))
3617 			continue;
3618 
3619 		pss = buffer.pointer;
3620 		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
3621 			kfree(pss);
3622 			return false;
3623 		}
3624 
3625 		kfree(pss);
3626 	}
3627 
3628 	pr_debug("ACPI _PSS not found\n");
3629 	return true;
3630 }
3631 
intel_pstate_no_acpi_pcch(void)3632 static bool __init intel_pstate_no_acpi_pcch(void)
3633 {
3634 	acpi_status status;
3635 	acpi_handle handle;
3636 
3637 	status = acpi_get_handle(NULL, "\\_SB", &handle);
3638 	if (ACPI_FAILURE(status))
3639 		goto not_found;
3640 
3641 	if (acpi_has_method(handle, "PCCH"))
3642 		return false;
3643 
3644 not_found:
3645 	pr_debug("ACPI PCCH not found\n");
3646 	return true;
3647 }
3648 
intel_pstate_has_acpi_ppc(void)3649 static bool __init intel_pstate_has_acpi_ppc(void)
3650 {
3651 	int i;
3652 
3653 	for_each_possible_cpu(i) {
3654 		struct acpi_processor *pr = per_cpu(processors, i);
3655 
3656 		if (!pr)
3657 			continue;
3658 		if (acpi_has_method(pr->handle, "_PPC"))
3659 			return true;
3660 	}
3661 	pr_debug("ACPI _PPC not found\n");
3662 	return false;
3663 }
3664 
3665 enum {
3666 	PSS,
3667 	PPC,
3668 };
3669 
3670 /* Hardware vendor-specific info that has its own power management modes */
3671 static struct acpi_platform_list plat_info[] __initdata = {
3672 	{"HP    ", "ProLiant", 0, ACPI_SIG_FADT, all_versions, NULL, PSS},
3673 	{"ORACLE", "X4-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3674 	{"ORACLE", "X4-2L   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3675 	{"ORACLE", "X4-2B   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3676 	{"ORACLE", "X3-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3677 	{"ORACLE", "X3-2L   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3678 	{"ORACLE", "X3-2B   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3679 	{"ORACLE", "X4470M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3680 	{"ORACLE", "X4270M3 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3681 	{"ORACLE", "X4270M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3682 	{"ORACLE", "X4170M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3683 	{"ORACLE", "X4170 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3684 	{"ORACLE", "X4275 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3685 	{"ORACLE", "X6-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3686 	{"ORACLE", "Sudbury ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3687 	{ } /* End */
3688 };
3689 
3690 #define BITMASK_OOB	(BIT(8) | BIT(18))
3691 
intel_pstate_platform_pwr_mgmt_exists(void)3692 static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
3693 {
3694 	const struct x86_cpu_id *id;
3695 	u64 misc_pwr;
3696 	int idx;
3697 
3698 	id = x86_match_cpu(intel_pstate_cpu_oob_ids);
3699 	if (id) {
3700 		rdmsrq(MSR_MISC_PWR_MGMT, misc_pwr);
3701 		if (misc_pwr & BITMASK_OOB) {
3702 			pr_debug("Bit 8 or 18 in the MISC_PWR_MGMT MSR set\n");
3703 			pr_debug("P states are controlled in Out of Band mode by the firmware/hardware\n");
3704 			return true;
3705 		}
3706 	}
3707 
3708 	idx = acpi_match_platform_list(plat_info);
3709 	if (idx < 0)
3710 		return false;
3711 
3712 	switch (plat_info[idx].data) {
3713 	case PSS:
3714 		if (!intel_pstate_no_acpi_pss())
3715 			return false;
3716 
3717 		return intel_pstate_no_acpi_pcch();
3718 	case PPC:
3719 		return intel_pstate_has_acpi_ppc() && !force_load;
3720 	}
3721 
3722 	return false;
3723 }
3724 
intel_pstate_request_control_from_smm(void)3725 static void intel_pstate_request_control_from_smm(void)
3726 {
3727 	/*
3728 	 * It may be unsafe to request P-states control from SMM if _PPC support
3729 	 * has not been enabled.
3730 	 */
3731 	if (acpi_ppc)
3732 		acpi_processor_pstate_control();
3733 }
3734 #else /* CONFIG_ACPI not enabled */
intel_pstate_platform_pwr_mgmt_exists(void)3735 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
intel_pstate_has_acpi_ppc(void)3736 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
intel_pstate_request_control_from_smm(void)3737 static inline void intel_pstate_request_control_from_smm(void) {}
3738 #endif /* CONFIG_ACPI */
3739 
3740 #define INTEL_PSTATE_HWP_BROADWELL	0x01
3741 
3742 #define X86_MATCH_HWP(vfm, hwp_mode)				\
3743 	X86_MATCH_VFM_FEATURE(vfm, X86_FEATURE_HWP, hwp_mode)
3744 
3745 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
3746 	X86_MATCH_HWP(INTEL_BROADWELL_X,	INTEL_PSTATE_HWP_BROADWELL),
3747 	X86_MATCH_HWP(INTEL_BROADWELL_D,	INTEL_PSTATE_HWP_BROADWELL),
3748 	X86_MATCH_HWP(INTEL_ANY,		0),
3749 	{}
3750 };
3751 
intel_pstate_hwp_is_enabled(void)3752 static bool intel_pstate_hwp_is_enabled(void)
3753 {
3754 	u64 value;
3755 
3756 	rdmsrq(MSR_PM_ENABLE, value);
3757 	return !!(value & 0x1);
3758 }
3759 
3760 #define POWERSAVE_MASK			GENMASK(7, 0)
3761 #define BALANCE_POWER_MASK		GENMASK(15, 8)
3762 #define BALANCE_PERFORMANCE_MASK	GENMASK(23, 16)
3763 #define PERFORMANCE_MASK		GENMASK(31, 24)
3764 
3765 #define HWP_SET_EPP_VALUES(powersave, balance_power, balance_perf, performance) \
3766 	(FIELD_PREP_CONST(POWERSAVE_MASK, powersave) |\
3767 	 FIELD_PREP_CONST(BALANCE_POWER_MASK, balance_power) |\
3768 	 FIELD_PREP_CONST(BALANCE_PERFORMANCE_MASK, balance_perf) |\
3769 	 FIELD_PREP_CONST(PERFORMANCE_MASK, performance))
3770 
3771 #define HWP_SET_DEF_BALANCE_PERF_EPP(balance_perf) \
3772 	(HWP_SET_EPP_VALUES(HWP_EPP_POWERSAVE, HWP_EPP_BALANCE_POWERSAVE,\
3773 	 balance_perf, HWP_EPP_PERFORMANCE))
3774 
3775 static const struct x86_cpu_id intel_epp_default[] = {
3776 	/*
3777 	 * Set EPP value as 102, this is the max suggested EPP
3778 	 * which can result in one core turbo frequency for
3779 	 * AlderLake Mobile CPUs.
3780 	 */
3781 	X86_MATCH_VFM(INTEL_ALDERLAKE_L, HWP_SET_DEF_BALANCE_PERF_EPP(102)),
3782 	X86_MATCH_VFM(INTEL_SAPPHIRERAPIDS_X, HWP_SET_DEF_BALANCE_PERF_EPP(32)),
3783 	X86_MATCH_VFM(INTEL_EMERALDRAPIDS_X, HWP_SET_DEF_BALANCE_PERF_EPP(32)),
3784 	X86_MATCH_VFM(INTEL_GRANITERAPIDS_X, HWP_SET_DEF_BALANCE_PERF_EPP(32)),
3785 	X86_MATCH_VFM(INTEL_GRANITERAPIDS_D, HWP_SET_DEF_BALANCE_PERF_EPP(32)),
3786 	X86_MATCH_VFM(INTEL_METEORLAKE_L, HWP_SET_EPP_VALUES(HWP_EPP_POWERSAVE,
3787 		      179, 64, 16)),
3788 	X86_MATCH_VFM(INTEL_ARROWLAKE, HWP_SET_EPP_VALUES(HWP_EPP_POWERSAVE,
3789 		      179, 64, 16)),
3790 	{}
3791 };
3792 
3793 static const struct x86_cpu_id intel_hybrid_scaling_factor[] = {
3794 	X86_MATCH_VFM(INTEL_ALDERLAKE, HYBRID_SCALING_FACTOR_ADL),
3795 	X86_MATCH_VFM(INTEL_ALDERLAKE_L, HYBRID_SCALING_FACTOR_ADL),
3796 	X86_MATCH_VFM(INTEL_RAPTORLAKE, HYBRID_SCALING_FACTOR_ADL),
3797 	X86_MATCH_VFM(INTEL_RAPTORLAKE_P, HYBRID_SCALING_FACTOR_ADL),
3798 	X86_MATCH_VFM(INTEL_RAPTORLAKE_S, HYBRID_SCALING_FACTOR_ADL),
3799 	X86_MATCH_VFM(INTEL_METEORLAKE_L, HYBRID_SCALING_FACTOR_MTL),
3800 	X86_MATCH_VFM(INTEL_LUNARLAKE_M, HYBRID_SCALING_FACTOR_LNL),
3801 	{}
3802 };
3803 
intel_pstate_init(void)3804 static int __init intel_pstate_init(void)
3805 {
3806 	static struct cpudata **_all_cpu_data;
3807 	const struct x86_cpu_id *id;
3808 	int rc;
3809 
3810 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
3811 		return -ENODEV;
3812 
3813 	/*
3814 	 * The Intel pstate driver will be ignored if the platform
3815 	 * firmware has its own power management modes.
3816 	 */
3817 	if (intel_pstate_platform_pwr_mgmt_exists()) {
3818 		pr_info("P-states controlled by the platform\n");
3819 		return -ENODEV;
3820 	}
3821 
3822 	id = x86_match_cpu(hwp_support_ids);
3823 	if (id) {
3824 		hwp_forced = intel_pstate_hwp_is_enabled();
3825 
3826 		if (hwp_forced)
3827 			pr_info("HWP enabled by BIOS\n");
3828 		else if (no_load)
3829 			return -ENODEV;
3830 
3831 		copy_cpu_funcs(&core_funcs);
3832 		/*
3833 		 * Avoid enabling HWP for processors without EPP support,
3834 		 * because that means incomplete HWP implementation which is a
3835 		 * corner case and supporting it is generally problematic.
3836 		 *
3837 		 * If HWP is enabled already, though, there is no choice but to
3838 		 * deal with it.
3839 		 */
3840 		if ((!no_hwp && boot_cpu_has(X86_FEATURE_HWP_EPP)) || hwp_forced) {
3841 			hwp_active = true;
3842 			hwp_mode_bdw = id->driver_data;
3843 			intel_pstate.attr = hwp_cpufreq_attrs;
3844 			intel_cpufreq.attr = hwp_cpufreq_attrs;
3845 			intel_cpufreq.flags |= CPUFREQ_NEED_UPDATE_LIMITS;
3846 			intel_cpufreq.adjust_perf = intel_cpufreq_adjust_perf;
3847 			if (!default_driver)
3848 				default_driver = &intel_pstate;
3849 
3850 			pstate_funcs.get_cpu_scaling = hwp_get_cpu_scaling;
3851 
3852 			goto hwp_cpu_matched;
3853 		}
3854 		pr_info("HWP not enabled\n");
3855 	} else {
3856 		if (no_load)
3857 			return -ENODEV;
3858 
3859 		id = x86_match_cpu(intel_pstate_cpu_ids);
3860 		if (!id) {
3861 			pr_info("CPU model not supported\n");
3862 			return -ENODEV;
3863 		}
3864 
3865 		copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
3866 	}
3867 
3868 	if (intel_pstate_msrs_not_valid()) {
3869 		pr_info("Invalid MSRs\n");
3870 		return -ENODEV;
3871 	}
3872 	/* Without HWP start in the passive mode. */
3873 	if (!default_driver)
3874 		default_driver = &intel_cpufreq;
3875 
3876 hwp_cpu_matched:
3877 	if (!hwp_active && hwp_only)
3878 		return -ENOTSUPP;
3879 
3880 	pr_info("Intel P-state driver initializing\n");
3881 
3882 	_all_cpu_data = vzalloc(array_size(sizeof(void *), num_possible_cpus()));
3883 	if (!_all_cpu_data)
3884 		return -ENOMEM;
3885 
3886 	WRITE_ONCE(all_cpu_data, _all_cpu_data);
3887 
3888 	intel_pstate_request_control_from_smm();
3889 
3890 	intel_pstate_sysfs_expose_params();
3891 
3892 	if (hwp_active) {
3893 		const struct x86_cpu_id *id = x86_match_cpu(intel_epp_default);
3894 		const struct x86_cpu_id *hybrid_id = x86_match_cpu(intel_hybrid_scaling_factor);
3895 
3896 		if (id) {
3897 			epp_values[EPP_INDEX_POWERSAVE] =
3898 					FIELD_GET(POWERSAVE_MASK, id->driver_data);
3899 			epp_values[EPP_INDEX_BALANCE_POWERSAVE] =
3900 					FIELD_GET(BALANCE_POWER_MASK, id->driver_data);
3901 			epp_values[EPP_INDEX_BALANCE_PERFORMANCE] =
3902 					FIELD_GET(BALANCE_PERFORMANCE_MASK, id->driver_data);
3903 			epp_values[EPP_INDEX_PERFORMANCE] =
3904 					FIELD_GET(PERFORMANCE_MASK, id->driver_data);
3905 			pr_debug("Updated EPPs powersave:%x balanced power:%x balanced perf:%x performance:%x\n",
3906 				 epp_values[EPP_INDEX_POWERSAVE],
3907 				 epp_values[EPP_INDEX_BALANCE_POWERSAVE],
3908 				 epp_values[EPP_INDEX_BALANCE_PERFORMANCE],
3909 				 epp_values[EPP_INDEX_PERFORMANCE]);
3910 		}
3911 
3912 		if (hybrid_id) {
3913 			hybrid_scaling_factor = hybrid_id->driver_data;
3914 			pr_debug("hybrid scaling factor: %d\n", hybrid_scaling_factor);
3915 		}
3916 
3917 	}
3918 
3919 	mutex_lock(&intel_pstate_driver_lock);
3920 	rc = intel_pstate_register_driver(default_driver);
3921 	mutex_unlock(&intel_pstate_driver_lock);
3922 	if (rc) {
3923 		intel_pstate_sysfs_remove();
3924 		return rc;
3925 	}
3926 
3927 	if (hwp_active) {
3928 		const struct x86_cpu_id *id;
3929 
3930 		id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
3931 		if (id) {
3932 			set_power_ctl_ee_state(false);
3933 			pr_info("Disabling energy efficiency optimization\n");
3934 		}
3935 
3936 		pr_info("HWP enabled\n");
3937 	} else if (boot_cpu_has(X86_FEATURE_HYBRID_CPU)) {
3938 		pr_warn("Problematic setup: Hybrid processor with disabled HWP\n");
3939 	}
3940 
3941 	return 0;
3942 }
3943 device_initcall(intel_pstate_init);
3944 
intel_pstate_setup(char * str)3945 static int __init intel_pstate_setup(char *str)
3946 {
3947 	if (!str)
3948 		return -EINVAL;
3949 
3950 	if (!strcmp(str, "disable"))
3951 		no_load = 1;
3952 	else if (!strcmp(str, "active"))
3953 		default_driver = &intel_pstate;
3954 	else if (!strcmp(str, "passive"))
3955 		default_driver = &intel_cpufreq;
3956 
3957 	if (!strcmp(str, "no_hwp"))
3958 		no_hwp = 1;
3959 
3960 	if (!strcmp(str, "no_cas"))
3961 		no_cas = true;
3962 
3963 	if (!strcmp(str, "force"))
3964 		force_load = 1;
3965 	if (!strcmp(str, "hwp_only"))
3966 		hwp_only = 1;
3967 	if (!strcmp(str, "per_cpu_perf_limits"))
3968 		per_cpu_limits = true;
3969 
3970 #ifdef CONFIG_ACPI
3971 	if (!strcmp(str, "support_acpi_ppc"))
3972 		acpi_ppc = true;
3973 #endif
3974 
3975 	return 0;
3976 }
3977 early_param("intel_pstate", intel_pstate_setup);
3978 
3979 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
3980 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
3981