1 /*-
2 * Copyright (c) 2014-2018, Matthew Macy <mmacy@mattmacy.io>
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are met:
7 *
8 * 1. Redistributions of source code must retain the above copyright notice,
9 * this list of conditions and the following disclaimer.
10 *
11 * 2. Neither the name of Matthew Macy nor the names of its
12 * contributors may be used to endorse or promote products derived from
13 * this software without specific prior written permission.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
16 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
19 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
20 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
21 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
22 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
23 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
24 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
25 * POSSIBILITY OF SUCH DAMAGE.
26 */
27
28 #include <sys/cdefs.h>
29 #include "opt_inet.h"
30 #include "opt_inet6.h"
31 #include "opt_acpi.h"
32 #include "opt_sched.h"
33
34 #include <sys/param.h>
35 #include <sys/types.h>
36 #include <sys/bus.h>
37 #include <sys/eventhandler.h>
38 #include <sys/kernel.h>
39 #include <sys/lock.h>
40 #include <sys/mutex.h>
41 #include <sys/module.h>
42 #include <sys/kobj.h>
43 #include <sys/rman.h>
44 #include <sys/sbuf.h>
45 #include <sys/smp.h>
46 #include <sys/socket.h>
47 #include <sys/sockio.h>
48 #include <sys/sysctl.h>
49 #include <sys/syslog.h>
50 #include <sys/taskqueue.h>
51 #include <sys/limits.h>
52
53 #include <net/if.h>
54 #include <net/if_var.h>
55 #include <net/if_private.h>
56 #include <net/if_types.h>
57 #include <net/if_media.h>
58 #include <net/bpf.h>
59 #include <net/ethernet.h>
60 #include <net/mp_ring.h>
61 #include <net/debugnet.h>
62 #include <net/pfil.h>
63 #include <net/vnet.h>
64
65 #include <netinet/in.h>
66 #include <netinet/in_pcb.h>
67 #include <netinet/tcp_lro.h>
68 #include <netinet/in_systm.h>
69 #include <netinet/if_ether.h>
70 #include <netinet/ip.h>
71 #include <netinet/ip6.h>
72 #include <netinet/tcp.h>
73 #include <netinet/udp.h>
74 #include <netinet/ip_var.h>
75 #include <netinet6/ip6_var.h>
76
77 #include <machine/bus.h>
78 #include <machine/in_cksum.h>
79
80 #include <vm/vm.h>
81 #include <vm/pmap.h>
82
83 #include <dev/led/led.h>
84 #include <dev/pci/pcireg.h>
85 #include <dev/pci/pcivar.h>
86 #include <dev/pci/pci_private.h>
87
88 #include <net/iflib.h>
89
90 #include "ifdi_if.h"
91
92 #ifdef PCI_IOV
93 #include <dev/pci/pci_iov.h>
94 #endif
95
96 #include <sys/bitstring.h>
97 /*
98 * enable accounting of every mbuf as it comes in to and goes out of
99 * iflib's software descriptor references
100 */
101 #define MEMORY_LOGGING 0
102 /*
103 * Enable mbuf vectors for compressing long mbuf chains
104 */
105
106 /*
107 * NB:
108 * - Prefetching in tx cleaning should perhaps be a tunable. The distance ahead
109 * we prefetch needs to be determined by the time spent in m_free vis a vis
110 * the cost of a prefetch. This will of course vary based on the workload:
111 * - NFLX's m_free path is dominated by vm-based M_EXT manipulation which
112 * is quite expensive, thus suggesting very little prefetch.
113 * - small packet forwarding which is just returning a single mbuf to
114 * UMA will typically be very fast vis a vis the cost of a memory
115 * access.
116 */
117
118 /*
119 * File organization:
120 * - private structures
121 * - iflib private utility functions
122 * - ifnet functions
123 * - vlan registry and other exported functions
124 * - iflib public core functions
125 *
126 *
127 */
128 static MALLOC_DEFINE(M_IFLIB, "iflib", "ifnet library");
129
130 #define IFLIB_RXEOF_MORE (1U << 0)
131 #define IFLIB_RXEOF_EMPTY (2U << 0)
132
133 struct iflib_txq;
134 typedef struct iflib_txq *iflib_txq_t;
135 struct iflib_rxq;
136 typedef struct iflib_rxq *iflib_rxq_t;
137 struct iflib_fl;
138 typedef struct iflib_fl *iflib_fl_t;
139
140 struct iflib_ctx;
141
142 static void iru_init(if_rxd_update_t iru, iflib_rxq_t rxq, uint8_t flid);
143 static void iflib_timer(void *arg);
144 static void iflib_tqg_detach(if_ctx_t ctx);
145 static int iflib_simple_transmit(if_t ifp, struct mbuf *m);
146
147 typedef struct iflib_filter_info {
148 driver_filter_t *ifi_filter;
149 void *ifi_filter_arg;
150 struct grouptask *ifi_task;
151 void *ifi_ctx;
152 } *iflib_filter_info_t;
153
154 struct iflib_ctx {
155 KOBJ_FIELDS;
156 /*
157 * Pointer to hardware driver's softc
158 */
159 void *ifc_softc;
160 device_t ifc_dev;
161 if_t ifc_ifp;
162
163 cpuset_t ifc_cpus;
164 if_shared_ctx_t ifc_sctx;
165 struct if_softc_ctx ifc_softc_ctx;
166
167 struct sx ifc_ctx_sx;
168 struct mtx ifc_state_mtx;
169
170 iflib_txq_t ifc_txqs;
171 iflib_rxq_t ifc_rxqs;
172 uint32_t ifc_if_flags;
173 uint32_t ifc_flags;
174 uint32_t ifc_max_fl_buf_size;
175 uint32_t ifc_rx_mbuf_sz;
176
177 int ifc_link_state;
178 int ifc_watchdog_events;
179 struct cdev *ifc_led_dev;
180 struct resource *ifc_msix_mem;
181
182 struct if_irq ifc_legacy_irq;
183 struct task ifc_admin_task;
184 struct task ifc_vflr_task;
185 struct taskqueue *ifc_tq;
186 struct iflib_filter_info ifc_filter_info;
187 struct ifmedia ifc_media;
188 struct ifmedia *ifc_mediap;
189
190 struct sysctl_oid *ifc_sysctl_node;
191 uint16_t ifc_sysctl_ntxqs;
192 uint16_t ifc_sysctl_nrxqs;
193 uint16_t ifc_sysctl_qs_eq_override;
194 uint16_t ifc_sysctl_rx_budget;
195 uint16_t ifc_sysctl_tx_abdicate;
196 uint16_t ifc_sysctl_core_offset;
197 #define CORE_OFFSET_UNSPECIFIED 0xffff
198 uint8_t ifc_sysctl_separate_txrx;
199 uint8_t ifc_sysctl_use_logical_cores;
200 uint16_t ifc_sysctl_extra_msix_vectors;
201 bool ifc_cpus_are_physical_cores;
202 bool ifc_sysctl_simple_tx;
203
204 qidx_t ifc_sysctl_ntxds[8];
205 qidx_t ifc_sysctl_nrxds[8];
206 struct if_txrx ifc_txrx;
207 #define isc_txd_encap ifc_txrx.ift_txd_encap
208 #define isc_txd_flush ifc_txrx.ift_txd_flush
209 #define isc_txd_credits_update ifc_txrx.ift_txd_credits_update
210 #define isc_rxd_available ifc_txrx.ift_rxd_available
211 #define isc_rxd_pkt_get ifc_txrx.ift_rxd_pkt_get
212 #define isc_rxd_refill ifc_txrx.ift_rxd_refill
213 #define isc_rxd_flush ifc_txrx.ift_rxd_flush
214 #define isc_legacy_intr ifc_txrx.ift_legacy_intr
215 #define isc_txq_select ifc_txrx.ift_txq_select
216 #define isc_txq_select_v2 ifc_txrx.ift_txq_select_v2
217
218 eventhandler_tag ifc_vlan_attach_event;
219 eventhandler_tag ifc_vlan_detach_event;
220 struct ether_addr ifc_mac;
221 };
222
223 void *
iflib_get_softc(if_ctx_t ctx)224 iflib_get_softc(if_ctx_t ctx)
225 {
226
227 return (ctx->ifc_softc);
228 }
229
230 device_t
iflib_get_dev(if_ctx_t ctx)231 iflib_get_dev(if_ctx_t ctx)
232 {
233
234 return (ctx->ifc_dev);
235 }
236
237 if_t
iflib_get_ifp(if_ctx_t ctx)238 iflib_get_ifp(if_ctx_t ctx)
239 {
240
241 return (ctx->ifc_ifp);
242 }
243
244 struct ifmedia *
iflib_get_media(if_ctx_t ctx)245 iflib_get_media(if_ctx_t ctx)
246 {
247
248 return (ctx->ifc_mediap);
249 }
250
251 void
iflib_set_mac(if_ctx_t ctx,uint8_t mac[ETHER_ADDR_LEN])252 iflib_set_mac(if_ctx_t ctx, uint8_t mac[ETHER_ADDR_LEN])
253 {
254
255 bcopy(mac, ctx->ifc_mac.octet, ETHER_ADDR_LEN);
256 }
257
258 if_softc_ctx_t
iflib_get_softc_ctx(if_ctx_t ctx)259 iflib_get_softc_ctx(if_ctx_t ctx)
260 {
261
262 return (&ctx->ifc_softc_ctx);
263 }
264
265 if_shared_ctx_t
iflib_get_sctx(if_ctx_t ctx)266 iflib_get_sctx(if_ctx_t ctx)
267 {
268
269 return (ctx->ifc_sctx);
270 }
271
272 uint16_t
iflib_get_extra_msix_vectors_sysctl(if_ctx_t ctx)273 iflib_get_extra_msix_vectors_sysctl(if_ctx_t ctx)
274 {
275
276 return (ctx->ifc_sysctl_extra_msix_vectors);
277 }
278
279 #define IP_ALIGNED(m) ((((uintptr_t)(m)->m_data) & 0x3) == 0x2)
280 #define CACHE_PTR_INCREMENT (CACHE_LINE_SIZE / sizeof(void *))
281 #define CACHE_PTR_NEXT(ptr) ((void *)(roundup2(ptr, CACHE_LINE_SIZE)))
282
283 #define LINK_ACTIVE(ctx) ((ctx)->ifc_link_state == LINK_STATE_UP)
284 #define CTX_IS_VF(ctx) ((ctx)->ifc_sctx->isc_flags & IFLIB_IS_VF)
285
286 typedef struct iflib_sw_rx_desc_array {
287 bus_dmamap_t *ifsd_map; /* bus_dma maps for packet */
288 struct mbuf **ifsd_m; /* pkthdr mbufs */
289 caddr_t *ifsd_cl; /* direct cluster pointer for rx */
290 bus_addr_t *ifsd_ba; /* bus addr of cluster for rx */
291 } iflib_rxsd_array_t;
292
293 typedef struct iflib_sw_tx_desc_array {
294 bus_dmamap_t *ifsd_map; /* bus_dma maps for packet */
295 bus_dmamap_t *ifsd_tso_map; /* bus_dma maps for TSO packet */
296 struct mbuf **ifsd_m; /* pkthdr mbufs */
297 } if_txsd_vec_t;
298
299 /* magic number that should be high enough for any hardware */
300 #define IFLIB_MAX_TX_SEGS 128
301 #define IFLIB_RX_COPY_THRESH 128
302 #define IFLIB_MAX_RX_REFRESH 32
303 /* The minimum descriptors per second before we start coalescing */
304 #define IFLIB_MIN_DESC_SEC 16384
305 #define IFLIB_DEFAULT_TX_UPDATE_FREQ 16
306 #define IFLIB_QUEUE_IDLE 0
307 #define IFLIB_QUEUE_HUNG 1
308 #define IFLIB_QUEUE_WORKING 2
309 /* maximum number of txqs that can share an rx interrupt */
310 #define IFLIB_MAX_TX_SHARED_INTR 4
311
312 /* this should really scale with ring size - this is a fairly arbitrary value */
313 #define TX_BATCH_SIZE 32
314
315 #define IFLIB_RESTART_BUDGET 8
316
317 #define IFC_LEGACY 0x001
318 #define IFC_QFLUSH 0x002
319 #define IFC_MULTISEG 0x004
320 #define IFC_SPARE1 0x008
321 #define IFC_SC_ALLOCATED 0x010
322 #define IFC_INIT_DONE 0x020
323 #define IFC_PREFETCH 0x040
324 #define IFC_DO_RESET 0x080
325 #define IFC_DO_WATCHDOG 0x100
326 #define IFC_SPARE0 0x200
327 #define IFC_SPARE2 0x400
328 #define IFC_IN_DETACH 0x800
329
330 #define IFC_NETMAP_TX_IRQ 0x80000000
331
332 #define CSUM_OFFLOAD (CSUM_IP_TSO | CSUM_IP6_TSO | CSUM_IP | \
333 CSUM_IP_UDP | CSUM_IP_TCP | CSUM_IP_SCTP | \
334 CSUM_IP6_UDP | CSUM_IP6_TCP | CSUM_IP6_SCTP)
335
336 struct iflib_txq {
337 qidx_t ift_in_use;
338 qidx_t ift_cidx;
339 qidx_t ift_cidx_processed;
340 qidx_t ift_pidx;
341 uint8_t ift_gen;
342 uint8_t ift_br_offset;
343 uint16_t ift_npending;
344 uint16_t ift_db_pending;
345 uint16_t ift_rs_pending;
346 /* implicit pad */
347 uint8_t ift_txd_size[8];
348 uint64_t ift_processed;
349 uint64_t ift_cleaned;
350 uint64_t ift_cleaned_prev;
351 #if MEMORY_LOGGING
352 uint64_t ift_enqueued;
353 uint64_t ift_dequeued;
354 #endif
355 uint64_t ift_no_tx_dma_setup;
356 uint64_t ift_no_desc_avail;
357 uint64_t ift_mbuf_defrag_failed;
358 uint64_t ift_mbuf_defrag;
359 uint64_t ift_map_failed;
360 uint64_t ift_txd_encap_efbig;
361 uint64_t ift_pullups;
362 uint64_t ift_last_timer_tick;
363
364 struct mtx ift_mtx;
365 struct mtx ift_db_mtx;
366
367 /* constant values */
368 if_ctx_t ift_ctx;
369 struct ifmp_ring *ift_br;
370 struct grouptask ift_task;
371 qidx_t ift_size;
372 uint16_t ift_id;
373 struct callout ift_timer;
374 #ifdef DEV_NETMAP
375 struct callout ift_netmap_timer;
376 #endif /* DEV_NETMAP */
377
378 if_txsd_vec_t ift_sds;
379 uint8_t ift_qstatus;
380 uint8_t ift_closed;
381 uint8_t ift_update_freq;
382 struct iflib_filter_info ift_filter_info;
383 bus_dma_tag_t ift_buf_tag;
384 bus_dma_tag_t ift_tso_buf_tag;
385 iflib_dma_info_t ift_ifdi;
386 #define MTX_NAME_LEN 32
387 char ift_mtx_name[MTX_NAME_LEN];
388 bus_dma_segment_t ift_segs[IFLIB_MAX_TX_SEGS] __aligned(CACHE_LINE_SIZE);
389 #ifdef IFLIB_DIAGNOSTICS
390 uint64_t ift_cpu_exec_count[256];
391 #endif
392 } __aligned(CACHE_LINE_SIZE);
393
394 struct iflib_fl {
395 qidx_t ifl_cidx;
396 qidx_t ifl_pidx;
397 qidx_t ifl_credits;
398 uint8_t ifl_gen;
399 uint8_t ifl_rxd_size;
400 #if MEMORY_LOGGING
401 uint64_t ifl_m_enqueued;
402 uint64_t ifl_m_dequeued;
403 uint64_t ifl_cl_enqueued;
404 uint64_t ifl_cl_dequeued;
405 #endif
406 /* implicit pad */
407 bitstr_t *ifl_rx_bitmap;
408 qidx_t ifl_fragidx;
409 /* constant */
410 qidx_t ifl_size;
411 uint16_t ifl_buf_size;
412 uint16_t ifl_cltype;
413 uma_zone_t ifl_zone;
414 iflib_rxsd_array_t ifl_sds;
415 iflib_rxq_t ifl_rxq;
416 uint8_t ifl_id;
417 bus_dma_tag_t ifl_buf_tag;
418 iflib_dma_info_t ifl_ifdi;
419 uint64_t ifl_bus_addrs[IFLIB_MAX_RX_REFRESH] __aligned(CACHE_LINE_SIZE);
420 qidx_t ifl_rxd_idxs[IFLIB_MAX_RX_REFRESH];
421 } __aligned(CACHE_LINE_SIZE);
422
423 static inline qidx_t
get_inuse(int size,qidx_t cidx,qidx_t pidx,uint8_t gen)424 get_inuse(int size, qidx_t cidx, qidx_t pidx, uint8_t gen)
425 {
426 qidx_t used;
427
428 if (pidx > cidx)
429 used = pidx - cidx;
430 else if (pidx < cidx)
431 used = size - cidx + pidx;
432 else if (gen == 0 && pidx == cidx)
433 used = 0;
434 else if (gen == 1 && pidx == cidx)
435 used = size;
436 else
437 panic("bad state");
438
439 return (used);
440 }
441
442 #define TXQ_AVAIL(txq) (txq->ift_size - get_inuse(txq->ift_size, txq->ift_cidx, txq->ift_pidx, txq->ift_gen))
443
444 #define IDXDIFF(head, tail, wrap) \
445 ((head) >= (tail) ? (head) - (tail) : (wrap) - (tail) + (head))
446
447 struct iflib_rxq {
448 if_ctx_t ifr_ctx;
449 iflib_fl_t ifr_fl;
450 uint64_t ifr_rx_irq;
451 struct pfil_head *pfil;
452 /*
453 * If there is a separate completion queue (IFLIB_HAS_RXCQ), this is
454 * the completion queue consumer index. Otherwise it's unused.
455 */
456 qidx_t ifr_cq_cidx;
457 uint16_t ifr_id;
458 uint8_t ifr_nfl;
459 uint8_t ifr_ntxqirq;
460 uint8_t ifr_txqid[IFLIB_MAX_TX_SHARED_INTR];
461 uint8_t ifr_fl_offset;
462 struct lro_ctrl ifr_lc;
463 struct grouptask ifr_task;
464 struct callout ifr_watchdog;
465 struct iflib_filter_info ifr_filter_info;
466 iflib_dma_info_t ifr_ifdi;
467
468 /* dynamically allocate if any drivers need a value substantially larger than this */
469 struct if_rxd_frag ifr_frags[IFLIB_MAX_RX_SEGS] __aligned(CACHE_LINE_SIZE);
470 #ifdef IFLIB_DIAGNOSTICS
471 uint64_t ifr_cpu_exec_count[256];
472 #endif
473 } __aligned(CACHE_LINE_SIZE);
474
475 typedef struct if_rxsd {
476 caddr_t *ifsd_cl;
477 iflib_fl_t ifsd_fl;
478 } *if_rxsd_t;
479
480 /* multiple of word size */
481 #ifdef __LP64__
482 #define PKT_INFO_SIZE 6
483 #define RXD_INFO_SIZE 5
484 #define PKT_TYPE uint64_t
485 #else
486 #define PKT_INFO_SIZE 11
487 #define RXD_INFO_SIZE 8
488 #define PKT_TYPE uint32_t
489 #endif
490 #define PKT_LOOP_BOUND ((PKT_INFO_SIZE / 3) * 3)
491 #define RXD_LOOP_BOUND ((RXD_INFO_SIZE / 4) * 4)
492
493 typedef struct if_pkt_info_pad {
494 PKT_TYPE pkt_val[PKT_INFO_SIZE];
495 } *if_pkt_info_pad_t;
496 typedef struct if_rxd_info_pad {
497 PKT_TYPE rxd_val[RXD_INFO_SIZE];
498 } *if_rxd_info_pad_t;
499
500 CTASSERT(sizeof(struct if_pkt_info_pad) == sizeof(struct if_pkt_info));
501 CTASSERT(sizeof(struct if_rxd_info_pad) == sizeof(struct if_rxd_info));
502
503 static inline void
pkt_info_zero(if_pkt_info_t pi)504 pkt_info_zero(if_pkt_info_t pi)
505 {
506 if_pkt_info_pad_t pi_pad;
507
508 pi_pad = (if_pkt_info_pad_t)pi;
509 pi_pad->pkt_val[0] = 0; pi_pad->pkt_val[1] = 0; pi_pad->pkt_val[2] = 0;
510 pi_pad->pkt_val[3] = 0; pi_pad->pkt_val[4] = 0; pi_pad->pkt_val[5] = 0;
511 #ifndef __LP64__
512 pi_pad->pkt_val[6] = 0; pi_pad->pkt_val[7] = 0; pi_pad->pkt_val[8] = 0;
513 pi_pad->pkt_val[9] = 0; pi_pad->pkt_val[10] = 0;
514 #endif
515 }
516
517 static inline void
rxd_info_zero(if_rxd_info_t ri)518 rxd_info_zero(if_rxd_info_t ri)
519 {
520 if_rxd_info_pad_t ri_pad;
521 int i;
522
523 ri_pad = (if_rxd_info_pad_t)ri;
524 for (i = 0; i < RXD_LOOP_BOUND; i += 4) {
525 ri_pad->rxd_val[i] = 0;
526 ri_pad->rxd_val[i + 1] = 0;
527 ri_pad->rxd_val[i + 2] = 0;
528 ri_pad->rxd_val[i + 3] = 0;
529 }
530 #ifdef __LP64__
531 ri_pad->rxd_val[RXD_INFO_SIZE - 1] = 0;
532 #endif
533 }
534
535 /*
536 * Only allow a single packet to take up most 1/nth of the tx ring
537 */
538 #define MAX_SINGLE_PACKET_FRACTION 12
539 #define IF_BAD_DMA ((bus_addr_t)-1)
540
541 #define CTX_ACTIVE(ctx) ((if_getdrvflags((ctx)->ifc_ifp) & IFF_DRV_RUNNING))
542
543 #define CTX_LOCK_INIT(_sc) sx_init(&(_sc)->ifc_ctx_sx, "iflib ctx lock")
544 #define CTX_LOCK(ctx) sx_xlock(&(ctx)->ifc_ctx_sx)
545 #define CTX_UNLOCK(ctx) sx_xunlock(&(ctx)->ifc_ctx_sx)
546 #define CTX_LOCK_DESTROY(ctx) sx_destroy(&(ctx)->ifc_ctx_sx)
547
548 #define STATE_LOCK_INIT(_sc, _name) mtx_init(&(_sc)->ifc_state_mtx, _name, "iflib state lock", MTX_DEF)
549 #define STATE_LOCK(ctx) mtx_lock(&(ctx)->ifc_state_mtx)
550 #define STATE_UNLOCK(ctx) mtx_unlock(&(ctx)->ifc_state_mtx)
551 #define STATE_LOCK_DESTROY(ctx) mtx_destroy(&(ctx)->ifc_state_mtx)
552
553 #define CALLOUT_LOCK(txq) mtx_lock(&txq->ift_mtx)
554 #define CALLOUT_UNLOCK(txq) mtx_unlock(&txq->ift_mtx)
555
556 /* Our boot-time initialization hook */
557 static int iflib_module_event_handler(module_t, int, void *);
558
559 static moduledata_t iflib_moduledata = {
560 "iflib",
561 iflib_module_event_handler,
562 NULL
563 };
564
565 DECLARE_MODULE(iflib, iflib_moduledata, SI_SUB_INIT_IF, SI_ORDER_ANY);
566 MODULE_VERSION(iflib, 1);
567
568 MODULE_DEPEND(iflib, pci, 1, 1, 1);
569 MODULE_DEPEND(iflib, ether, 1, 1, 1);
570
571 TASKQGROUP_DEFINE(if_io_tqg, mp_ncpus, 1);
572 TASKQGROUP_DEFINE(if_config_tqg, 1, 1);
573
574 #ifndef IFLIB_DEBUG_COUNTERS
575 #ifdef INVARIANTS
576 #define IFLIB_DEBUG_COUNTERS 1
577 #else
578 #define IFLIB_DEBUG_COUNTERS 0
579 #endif /* !INVARIANTS */
580 #endif
581
582 static SYSCTL_NODE(_net, OID_AUTO, iflib, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
583 "iflib driver parameters");
584
585 /*
586 * XXX need to ensure that this can't accidentally cause the head to be moved backwards
587 */
588 static int iflib_min_tx_latency = 0;
589 SYSCTL_INT(_net_iflib, OID_AUTO, min_tx_latency, CTLFLAG_RW,
590 &iflib_min_tx_latency, 0,
591 "minimize transmit latency at the possible expense of throughput");
592 static int iflib_no_tx_batch = 0;
593 SYSCTL_INT(_net_iflib, OID_AUTO, no_tx_batch, CTLFLAG_RW,
594 &iflib_no_tx_batch, 0,
595 "minimize transmit latency at the possible expense of throughput");
596 static int iflib_timer_default = 1000;
597 SYSCTL_INT(_net_iflib, OID_AUTO, timer_default, CTLFLAG_RW,
598 &iflib_timer_default, 0, "number of ticks between iflib_timer calls");
599
600
601 #if IFLIB_DEBUG_COUNTERS
602
603 static int iflib_tx_seen;
604 static int iflib_tx_sent;
605 static int iflib_tx_encap;
606 static int iflib_rx_allocs;
607 static int iflib_fl_refills;
608 static int iflib_fl_refills_large;
609 static int iflib_tx_frees;
610
611 SYSCTL_INT(_net_iflib, OID_AUTO, tx_seen, CTLFLAG_RD, &iflib_tx_seen, 0,
612 "# TX mbufs seen");
613 SYSCTL_INT(_net_iflib, OID_AUTO, tx_sent, CTLFLAG_RD, &iflib_tx_sent, 0,
614 "# TX mbufs sent");
615 SYSCTL_INT(_net_iflib, OID_AUTO, tx_encap, CTLFLAG_RD, &iflib_tx_encap, 0,
616 "# TX mbufs encapped");
617 SYSCTL_INT(_net_iflib, OID_AUTO, tx_frees, CTLFLAG_RD, &iflib_tx_frees, 0,
618 "# TX frees");
619 SYSCTL_INT(_net_iflib, OID_AUTO, rx_allocs, CTLFLAG_RD, &iflib_rx_allocs, 0,
620 "# RX allocations");
621 SYSCTL_INT(_net_iflib, OID_AUTO, fl_refills, CTLFLAG_RD, &iflib_fl_refills, 0,
622 "# refills");
623 SYSCTL_INT(_net_iflib, OID_AUTO, fl_refills_large, CTLFLAG_RD,
624 &iflib_fl_refills_large, 0, "# large refills");
625
626 static int iflib_txq_drain_flushing;
627 static int iflib_txq_drain_oactive;
628 static int iflib_txq_drain_notready;
629
630 SYSCTL_INT(_net_iflib, OID_AUTO, txq_drain_flushing, CTLFLAG_RD,
631 &iflib_txq_drain_flushing, 0, "# drain flushes");
632 SYSCTL_INT(_net_iflib, OID_AUTO, txq_drain_oactive, CTLFLAG_RD,
633 &iflib_txq_drain_oactive, 0, "# drain oactives");
634 SYSCTL_INT(_net_iflib, OID_AUTO, txq_drain_notready, CTLFLAG_RD,
635 &iflib_txq_drain_notready, 0, "# drain notready");
636
637 static int iflib_encap_load_mbuf_fail;
638 static int iflib_encap_pad_mbuf_fail;
639 static int iflib_encap_txq_avail_fail;
640 static int iflib_encap_txd_encap_fail;
641
642 SYSCTL_INT(_net_iflib, OID_AUTO, encap_load_mbuf_fail, CTLFLAG_RD,
643 &iflib_encap_load_mbuf_fail, 0, "# busdma load failures");
644 SYSCTL_INT(_net_iflib, OID_AUTO, encap_pad_mbuf_fail, CTLFLAG_RD,
645 &iflib_encap_pad_mbuf_fail, 0, "# runt frame pad failures");
646 SYSCTL_INT(_net_iflib, OID_AUTO, encap_txq_avail_fail, CTLFLAG_RD,
647 &iflib_encap_txq_avail_fail, 0, "# txq avail failures");
648 SYSCTL_INT(_net_iflib, OID_AUTO, encap_txd_encap_fail, CTLFLAG_RD,
649 &iflib_encap_txd_encap_fail, 0, "# driver encap failures");
650
651 static int iflib_task_fn_rxs;
652 static int iflib_rx_intr_enables;
653 static int iflib_fast_intrs;
654 static int iflib_rx_unavail;
655 static int iflib_rx_ctx_inactive;
656 static int iflib_rx_if_input;
657 static int iflib_rxd_flush;
658
659 static int iflib_verbose_debug;
660
661 SYSCTL_INT(_net_iflib, OID_AUTO, task_fn_rx, CTLFLAG_RD, &iflib_task_fn_rxs, 0,
662 "# task_fn_rx calls");
663 SYSCTL_INT(_net_iflib, OID_AUTO, rx_intr_enables, CTLFLAG_RD,
664 &iflib_rx_intr_enables, 0, "# RX intr enables");
665 SYSCTL_INT(_net_iflib, OID_AUTO, fast_intrs, CTLFLAG_RD, &iflib_fast_intrs, 0,
666 "# fast_intr calls");
667 SYSCTL_INT(_net_iflib, OID_AUTO, rx_unavail, CTLFLAG_RD, &iflib_rx_unavail, 0,
668 "# times rxeof called with no available data");
669 SYSCTL_INT(_net_iflib, OID_AUTO, rx_ctx_inactive, CTLFLAG_RD,
670 &iflib_rx_ctx_inactive, 0, "# times rxeof called with inactive context");
671 SYSCTL_INT(_net_iflib, OID_AUTO, rx_if_input, CTLFLAG_RD, &iflib_rx_if_input,
672 0, "# times rxeof called if_input");
673 SYSCTL_INT(_net_iflib, OID_AUTO, rxd_flush, CTLFLAG_RD, &iflib_rxd_flush, 0,
674 "# times rxd_flush called");
675 SYSCTL_INT(_net_iflib, OID_AUTO, verbose_debug, CTLFLAG_RW,
676 &iflib_verbose_debug, 0, "enable verbose debugging");
677
678 #define DBG_COUNTER_INC(name) atomic_add_int(&(iflib_ ## name), 1)
679 static void
iflib_debug_reset(void)680 iflib_debug_reset(void)
681 {
682 iflib_tx_seen = iflib_tx_sent = iflib_tx_encap = iflib_rx_allocs =
683 iflib_fl_refills = iflib_fl_refills_large = iflib_tx_frees =
684 iflib_txq_drain_flushing = iflib_txq_drain_oactive =
685 iflib_txq_drain_notready =
686 iflib_encap_load_mbuf_fail = iflib_encap_pad_mbuf_fail =
687 iflib_encap_txq_avail_fail = iflib_encap_txd_encap_fail =
688 iflib_task_fn_rxs = iflib_rx_intr_enables = iflib_fast_intrs =
689 iflib_rx_unavail =
690 iflib_rx_ctx_inactive = iflib_rx_if_input =
691 iflib_rxd_flush = 0;
692 }
693
694 #else
695 #define DBG_COUNTER_INC(name)
iflib_debug_reset(void)696 static void iflib_debug_reset(void) {}
697 #endif
698
699 #define IFLIB_DEBUG 0
700
701 static void iflib_tx_structures_free(if_ctx_t ctx);
702 static void iflib_rx_structures_free(if_ctx_t ctx);
703 static int iflib_queues_alloc(if_ctx_t ctx);
704 static int iflib_tx_credits_update(if_ctx_t ctx, iflib_txq_t txq);
705 static int iflib_rxd_avail(if_ctx_t ctx, iflib_rxq_t rxq, qidx_t cidx, qidx_t budget);
706 static int iflib_qset_structures_setup(if_ctx_t ctx);
707 static int iflib_msix_init(if_ctx_t ctx);
708 static int iflib_legacy_setup(if_ctx_t ctx, driver_filter_t filter, void *filterarg, int *rid, const char *str);
709 static void iflib_txq_check_drain(iflib_txq_t txq, int budget);
710 static uint32_t iflib_txq_can_drain(struct ifmp_ring *);
711 #ifdef ALTQ
712 static void iflib_altq_if_start(if_t ifp);
713 static int iflib_altq_if_transmit(if_t ifp, struct mbuf *m);
714 #endif
715 static void iflib_register(if_ctx_t);
716 static void iflib_deregister(if_ctx_t);
717 static void iflib_unregister_vlan_handlers(if_ctx_t ctx);
718 static uint16_t iflib_get_mbuf_size_for(unsigned int size);
719 static void iflib_init_locked(if_ctx_t ctx);
720 static void iflib_add_device_sysctl_pre(if_ctx_t ctx);
721 static void iflib_add_device_sysctl_post(if_ctx_t ctx);
722 static void iflib_ifmp_purge(iflib_txq_t txq);
723 static void _iflib_pre_assert(if_softc_ctx_t scctx);
724 static void iflib_stop(if_ctx_t ctx);
725 static void iflib_if_init_locked(if_ctx_t ctx);
726 static void iflib_free_intr_mem(if_ctx_t ctx);
727 #ifndef __NO_STRICT_ALIGNMENT
728 static struct mbuf *iflib_fixup_rx(struct mbuf *m);
729 #endif
730 static __inline int iflib_completed_tx_reclaim(iflib_txq_t txq, int thresh);
731
732 static SLIST_HEAD(cpu_offset_list, cpu_offset) cpu_offsets =
733 SLIST_HEAD_INITIALIZER(cpu_offsets);
734 struct cpu_offset {
735 SLIST_ENTRY(cpu_offset) entries;
736 cpuset_t set;
737 unsigned int refcount;
738 uint16_t next_cpuid;
739 };
740 static struct mtx cpu_offset_mtx;
741 MTX_SYSINIT(iflib_cpu_offset, &cpu_offset_mtx, "iflib_cpu_offset lock",
742 MTX_DEF);
743
744 DEBUGNET_DEFINE(iflib);
745
746 static int
iflib_num_rx_descs(if_ctx_t ctx)747 iflib_num_rx_descs(if_ctx_t ctx)
748 {
749 if_softc_ctx_t scctx = &ctx->ifc_softc_ctx;
750 if_shared_ctx_t sctx = ctx->ifc_sctx;
751 uint16_t first_rxq = (sctx->isc_flags & IFLIB_HAS_RXCQ) ? 1 : 0;
752
753 return (scctx->isc_nrxd[first_rxq]);
754 }
755
756 static int
iflib_num_tx_descs(if_ctx_t ctx)757 iflib_num_tx_descs(if_ctx_t ctx)
758 {
759 if_softc_ctx_t scctx = &ctx->ifc_softc_ctx;
760 if_shared_ctx_t sctx = ctx->ifc_sctx;
761 uint16_t first_txq = (sctx->isc_flags & IFLIB_HAS_TXCQ) ? 1 : 0;
762
763 return (scctx->isc_ntxd[first_txq]);
764 }
765
766 #ifdef DEV_NETMAP
767 #include <sys/selinfo.h>
768 #include <net/netmap.h>
769 #include <dev/netmap/netmap_kern.h>
770
771 MODULE_DEPEND(iflib, netmap, 1, 1, 1);
772
773 static int netmap_fl_refill(iflib_rxq_t rxq, struct netmap_kring *kring, bool init);
774 static void iflib_netmap_timer(void *arg);
775
776 /*
777 * device-specific sysctl variables:
778 *
779 * iflib_crcstrip: 0: keep CRC in rx frames (default), 1: strip it.
780 * During regular operations the CRC is stripped, but on some
781 * hardware reception of frames not multiple of 64 is slower,
782 * so using crcstrip=0 helps in benchmarks.
783 *
784 * iflib_rx_miss, iflib_rx_miss_bufs:
785 * count packets that might be missed due to lost interrupts.
786 */
787 SYSCTL_DECL(_dev_netmap);
788 /*
789 * The xl driver by default strips CRCs and we do not override it.
790 */
791
792 int iflib_crcstrip = 1;
793 SYSCTL_INT(_dev_netmap, OID_AUTO, iflib_crcstrip,
794 CTLFLAG_RW, &iflib_crcstrip, 1, "strip CRC on RX frames");
795
796 int iflib_rx_miss, iflib_rx_miss_bufs;
797 SYSCTL_INT(_dev_netmap, OID_AUTO, iflib_rx_miss,
798 CTLFLAG_RW, &iflib_rx_miss, 0, "potentially missed RX intr");
799 SYSCTL_INT(_dev_netmap, OID_AUTO, iflib_rx_miss_bufs,
800 CTLFLAG_RW, &iflib_rx_miss_bufs, 0, "potentially missed RX intr bufs");
801
802 /*
803 * Register/unregister. We are already under netmap lock.
804 * Only called on the first register or the last unregister.
805 */
806 static int
iflib_netmap_register(struct netmap_adapter * na,int onoff)807 iflib_netmap_register(struct netmap_adapter *na, int onoff)
808 {
809 if_t ifp = na->ifp;
810 if_ctx_t ctx = if_getsoftc(ifp);
811 int status;
812
813 CTX_LOCK(ctx);
814 if (!CTX_IS_VF(ctx))
815 IFDI_CRCSTRIP_SET(ctx, onoff, iflib_crcstrip);
816
817 iflib_stop(ctx);
818
819 /*
820 * Enable (or disable) netmap flags, and intercept (or restore)
821 * ifp->if_transmit. This is done once the device has been stopped
822 * to prevent race conditions. Also, this must be done after
823 * calling netmap_disable_all_rings() and before calling
824 * netmap_enable_all_rings(), so that these two functions see the
825 * updated state of the NAF_NETMAP_ON bit.
826 */
827 if (onoff) {
828 nm_set_native_flags(na);
829 } else {
830 nm_clear_native_flags(na);
831 }
832
833 iflib_init_locked(ctx);
834 IFDI_CRCSTRIP_SET(ctx, onoff, iflib_crcstrip); // XXX why twice ?
835 status = if_getdrvflags(ifp) & IFF_DRV_RUNNING ? 0 : 1;
836 if (status)
837 nm_clear_native_flags(na);
838 CTX_UNLOCK(ctx);
839 return (status);
840 }
841
842 static int
iflib_netmap_config(struct netmap_adapter * na,struct nm_config_info * info)843 iflib_netmap_config(struct netmap_adapter *na, struct nm_config_info *info)
844 {
845 if_t ifp = na->ifp;
846 if_ctx_t ctx = if_getsoftc(ifp);
847 iflib_rxq_t rxq = &ctx->ifc_rxqs[0];
848 iflib_fl_t fl = &rxq->ifr_fl[0];
849
850 info->num_tx_rings = ctx->ifc_softc_ctx.isc_ntxqsets;
851 info->num_rx_rings = ctx->ifc_softc_ctx.isc_nrxqsets;
852 info->num_tx_descs = iflib_num_tx_descs(ctx);
853 info->num_rx_descs = iflib_num_rx_descs(ctx);
854 info->rx_buf_maxsize = fl->ifl_buf_size;
855 nm_prinf("txr %u rxr %u txd %u rxd %u rbufsz %u",
856 info->num_tx_rings, info->num_rx_rings, info->num_tx_descs,
857 info->num_rx_descs, info->rx_buf_maxsize);
858
859 return (0);
860 }
861
862 static int
netmap_fl_refill(iflib_rxq_t rxq,struct netmap_kring * kring,bool init)863 netmap_fl_refill(iflib_rxq_t rxq, struct netmap_kring *kring, bool init)
864 {
865 struct netmap_adapter *na = kring->na;
866 u_int const lim = kring->nkr_num_slots - 1;
867 struct netmap_ring *ring = kring->ring;
868 bus_dmamap_t *map;
869 struct if_rxd_update iru;
870 if_ctx_t ctx = rxq->ifr_ctx;
871 iflib_fl_t fl = &rxq->ifr_fl[0];
872 u_int nic_i_first, nic_i;
873 u_int nm_i;
874 int i, n;
875 #if IFLIB_DEBUG_COUNTERS
876 int rf_count = 0;
877 #endif
878
879 /*
880 * This function is used both at initialization and in rxsync.
881 * At initialization we need to prepare (with isc_rxd_refill())
882 * all the netmap buffers currently owned by the kernel, in
883 * such a way to keep fl->ifl_pidx and kring->nr_hwcur in sync
884 * (except for kring->nkr_hwofs). These may be less than
885 * kring->nkr_num_slots if netmap_reset() was called while
886 * an application using the kring that still owned some
887 * buffers.
888 * At rxsync time, both indexes point to the next buffer to be
889 * refilled.
890 * In any case we publish (with isc_rxd_flush()) up to
891 * (fl->ifl_pidx - 1) % N (included), to avoid the NIC tail/prod
892 * pointer to overrun the head/cons pointer, although this is
893 * not necessary for some NICs (e.g. vmx).
894 */
895 if (__predict_false(init)) {
896 n = kring->nkr_num_slots - nm_kr_rxspace(kring);
897 } else {
898 n = kring->rhead - kring->nr_hwcur;
899 if (n == 0)
900 return (0); /* Nothing to do. */
901 if (n < 0)
902 n += kring->nkr_num_slots;
903 }
904
905 iru_init(&iru, rxq, 0 /* flid */);
906 map = fl->ifl_sds.ifsd_map;
907 nic_i = fl->ifl_pidx;
908 nm_i = netmap_idx_n2k(kring, nic_i);
909 if (__predict_false(init)) {
910 /*
911 * On init/reset, nic_i must be 0, and we must
912 * start to refill from hwtail (see netmap_reset()).
913 */
914 MPASS(nic_i == 0);
915 MPASS(nm_i == kring->nr_hwtail);
916 } else
917 MPASS(nm_i == kring->nr_hwcur);
918 DBG_COUNTER_INC(fl_refills);
919 while (n > 0) {
920 #if IFLIB_DEBUG_COUNTERS
921 if (++rf_count == 9)
922 DBG_COUNTER_INC(fl_refills_large);
923 #endif
924 nic_i_first = nic_i;
925 for (i = 0; n > 0 && i < IFLIB_MAX_RX_REFRESH; n--, i++) {
926 struct netmap_slot *slot = &ring->slot[nm_i];
927 uint64_t paddr;
928 void *addr = PNMB(na, slot, &paddr);
929
930 MPASS(i < IFLIB_MAX_RX_REFRESH);
931
932 if (addr == NETMAP_BUF_BASE(na)) /* bad buf */
933 return (netmap_ring_reinit(kring));
934
935 fl->ifl_bus_addrs[i] = paddr +
936 nm_get_offset(kring, slot);
937 fl->ifl_rxd_idxs[i] = nic_i;
938
939 if (__predict_false(init)) {
940 netmap_load_map(na, fl->ifl_buf_tag,
941 map[nic_i], addr);
942 } else if (slot->flags & NS_BUF_CHANGED) {
943 /* buffer has changed, reload map */
944 netmap_reload_map(na, fl->ifl_buf_tag,
945 map[nic_i], addr);
946 }
947 bus_dmamap_sync(fl->ifl_buf_tag, map[nic_i],
948 BUS_DMASYNC_PREREAD);
949 slot->flags &= ~NS_BUF_CHANGED;
950
951 nm_i = nm_next(nm_i, lim);
952 nic_i = nm_next(nic_i, lim);
953 }
954
955 iru.iru_pidx = nic_i_first;
956 iru.iru_count = i;
957 ctx->isc_rxd_refill(ctx->ifc_softc, &iru);
958 }
959 fl->ifl_pidx = nic_i;
960 /*
961 * At the end of the loop we must have refilled everything
962 * we could possibly refill.
963 */
964 MPASS(nm_i == kring->rhead);
965 kring->nr_hwcur = nm_i;
966
967 bus_dmamap_sync(fl->ifl_ifdi->idi_tag, fl->ifl_ifdi->idi_map,
968 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
969 ctx->isc_rxd_flush(ctx->ifc_softc, rxq->ifr_id, fl->ifl_id,
970 nm_prev(nic_i, lim));
971 DBG_COUNTER_INC(rxd_flush);
972
973 return (0);
974 }
975
976 #define NETMAP_TX_TIMER_US 90
977
978 /*
979 * Reconcile kernel and user view of the transmit ring.
980 *
981 * All information is in the kring.
982 * Userspace wants to send packets up to the one before kring->rhead,
983 * kernel knows kring->nr_hwcur is the first unsent packet.
984 *
985 * Here we push packets out (as many as possible), and possibly
986 * reclaim buffers from previously completed transmission.
987 *
988 * The caller (netmap) guarantees that there is only one instance
989 * running at any time. Any interference with other driver
990 * methods should be handled by the individual drivers.
991 */
992 static int
iflib_netmap_txsync(struct netmap_kring * kring,int flags)993 iflib_netmap_txsync(struct netmap_kring *kring, int flags)
994 {
995 struct netmap_adapter *na = kring->na;
996 if_t ifp = na->ifp;
997 struct netmap_ring *ring = kring->ring;
998 u_int nm_i; /* index into the netmap kring */
999 u_int nic_i; /* index into the NIC ring */
1000 u_int const lim = kring->nkr_num_slots - 1;
1001 u_int const head = kring->rhead;
1002 struct if_pkt_info pi;
1003 int tx_pkts = 0, tx_bytes = 0;
1004
1005 /*
1006 * interrupts on every tx packet are expensive so request
1007 * them every half ring, or where NS_REPORT is set
1008 */
1009 u_int report_frequency = kring->nkr_num_slots >> 1;
1010 /* device-specific */
1011 if_ctx_t ctx = if_getsoftc(ifp);
1012 iflib_txq_t txq = &ctx->ifc_txqs[kring->ring_id];
1013
1014 bus_dmamap_sync(txq->ift_ifdi->idi_tag, txq->ift_ifdi->idi_map,
1015 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1016
1017 /*
1018 * First part: process new packets to send.
1019 * nm_i is the current index in the netmap kring,
1020 * nic_i is the corresponding index in the NIC ring.
1021 *
1022 * If we have packets to send (nm_i != head)
1023 * iterate over the netmap ring, fetch length and update
1024 * the corresponding slot in the NIC ring. Some drivers also
1025 * need to update the buffer's physical address in the NIC slot
1026 * even NS_BUF_CHANGED is not set (PNMB computes the addresses).
1027 *
1028 * The netmap_reload_map() calls is especially expensive,
1029 * even when (as in this case) the tag is 0, so do only
1030 * when the buffer has actually changed.
1031 *
1032 * If possible do not set the report/intr bit on all slots,
1033 * but only a few times per ring or when NS_REPORT is set.
1034 *
1035 * Finally, on 10G and faster drivers, it might be useful
1036 * to prefetch the next slot and txr entry.
1037 */
1038
1039 nm_i = kring->nr_hwcur;
1040 if (nm_i != head) { /* we have new packets to send */
1041 uint32_t pkt_len = 0, seg_idx = 0;
1042 int nic_i_start = -1, flags = 0;
1043 pkt_info_zero(&pi);
1044 pi.ipi_segs = txq->ift_segs;
1045 pi.ipi_qsidx = kring->ring_id;
1046 nic_i = netmap_idx_k2n(kring, nm_i);
1047
1048 __builtin_prefetch(&ring->slot[nm_i]);
1049 __builtin_prefetch(&txq->ift_sds.ifsd_m[nic_i]);
1050 __builtin_prefetch(&txq->ift_sds.ifsd_map[nic_i]);
1051
1052 while (nm_i != head) {
1053 struct netmap_slot *slot = &ring->slot[nm_i];
1054 uint64_t offset = nm_get_offset(kring, slot);
1055 u_int len = slot->len;
1056 uint64_t paddr;
1057 void *addr = PNMB(na, slot, &paddr);
1058
1059 flags |= (slot->flags & NS_REPORT ||
1060 nic_i == 0 || nic_i == report_frequency) ?
1061 IPI_TX_INTR : 0;
1062
1063 /*
1064 * If this is the first packet fragment, save the
1065 * index of the first NIC slot for later.
1066 */
1067 if (nic_i_start < 0)
1068 nic_i_start = nic_i;
1069
1070 pi.ipi_segs[seg_idx].ds_addr = paddr + offset;
1071 pi.ipi_segs[seg_idx].ds_len = len;
1072 if (len) {
1073 pkt_len += len;
1074 seg_idx++;
1075 }
1076
1077 if (!(slot->flags & NS_MOREFRAG)) {
1078 pi.ipi_len = pkt_len;
1079 pi.ipi_nsegs = seg_idx;
1080 pi.ipi_pidx = nic_i_start;
1081 pi.ipi_ndescs = 0;
1082 pi.ipi_flags = flags;
1083
1084 /* Prepare the NIC TX ring. */
1085 ctx->isc_txd_encap(ctx->ifc_softc, &pi);
1086 DBG_COUNTER_INC(tx_encap);
1087
1088 /* Update transmit counters */
1089 tx_bytes += pi.ipi_len;
1090 tx_pkts++;
1091
1092 /* Reinit per-packet info for the next one. */
1093 flags = seg_idx = pkt_len = 0;
1094 nic_i_start = -1;
1095 }
1096
1097 /* prefetch for next round */
1098 __builtin_prefetch(&ring->slot[nm_i + 1]);
1099 __builtin_prefetch(&txq->ift_sds.ifsd_m[nic_i + 1]);
1100 __builtin_prefetch(&txq->ift_sds.ifsd_map[nic_i + 1]);
1101
1102 NM_CHECK_ADDR_LEN_OFF(na, len, offset);
1103
1104 if (slot->flags & NS_BUF_CHANGED) {
1105 /* buffer has changed, reload map */
1106 netmap_reload_map(na, txq->ift_buf_tag,
1107 txq->ift_sds.ifsd_map[nic_i], addr);
1108 }
1109 /* make sure changes to the buffer are synced */
1110 bus_dmamap_sync(txq->ift_buf_tag,
1111 txq->ift_sds.ifsd_map[nic_i],
1112 BUS_DMASYNC_PREWRITE);
1113
1114 slot->flags &= ~(NS_REPORT | NS_BUF_CHANGED | NS_MOREFRAG);
1115 nm_i = nm_next(nm_i, lim);
1116 nic_i = nm_next(nic_i, lim);
1117 }
1118 kring->nr_hwcur = nm_i;
1119
1120 /* synchronize the NIC ring */
1121 bus_dmamap_sync(txq->ift_ifdi->idi_tag, txq->ift_ifdi->idi_map,
1122 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1123
1124 /* (re)start the tx unit up to slot nic_i (excluded) */
1125 ctx->isc_txd_flush(ctx->ifc_softc, txq->ift_id, nic_i);
1126 }
1127
1128 /*
1129 * Second part: reclaim buffers for completed transmissions.
1130 *
1131 * If there are unclaimed buffers, attempt to reclaim them.
1132 * If we don't manage to reclaim them all, and TX IRQs are not in use,
1133 * trigger a per-tx-queue timer to try again later.
1134 */
1135 if (kring->nr_hwtail != nm_prev(kring->nr_hwcur, lim)) {
1136 if (iflib_tx_credits_update(ctx, txq)) {
1137 /* some tx completed, increment avail */
1138 nic_i = txq->ift_cidx_processed;
1139 kring->nr_hwtail = nm_prev(netmap_idx_n2k(kring, nic_i), lim);
1140 }
1141 }
1142
1143 if (!(ctx->ifc_flags & IFC_NETMAP_TX_IRQ))
1144 if (kring->nr_hwtail != nm_prev(kring->nr_hwcur, lim)) {
1145 callout_reset_sbt_on(&txq->ift_netmap_timer,
1146 NETMAP_TX_TIMER_US * SBT_1US, SBT_1US,
1147 iflib_netmap_timer, txq,
1148 txq->ift_netmap_timer.c_cpu, 0);
1149 }
1150
1151 if_inc_counter(ifp, IFCOUNTER_OBYTES, tx_bytes);
1152 if_inc_counter(ifp, IFCOUNTER_OPACKETS, tx_pkts);
1153
1154 return (0);
1155 }
1156
1157 /*
1158 * Reconcile kernel and user view of the receive ring.
1159 * Same as for the txsync, this routine must be efficient.
1160 * The caller guarantees a single invocations, but races against
1161 * the rest of the driver should be handled here.
1162 *
1163 * On call, kring->rhead is the first packet that userspace wants
1164 * to keep, and kring->rcur is the wakeup point.
1165 * The kernel has previously reported packets up to kring->rtail.
1166 *
1167 * If (flags & NAF_FORCE_READ) also check for incoming packets irrespective
1168 * of whether or not we received an interrupt.
1169 */
1170 static int
iflib_netmap_rxsync(struct netmap_kring * kring,int flags)1171 iflib_netmap_rxsync(struct netmap_kring *kring, int flags)
1172 {
1173 struct netmap_adapter *na = kring->na;
1174 struct netmap_ring *ring = kring->ring;
1175 if_t ifp = na->ifp;
1176 uint32_t nm_i; /* index into the netmap ring */
1177 uint32_t nic_i; /* index into the NIC ring */
1178 u_int n;
1179 u_int const lim = kring->nkr_num_slots - 1;
1180 int force_update = (flags & NAF_FORCE_READ) || kring->nr_kflags & NKR_PENDINTR;
1181 int i = 0, rx_bytes = 0, rx_pkts = 0;
1182
1183 if_ctx_t ctx = if_getsoftc(ifp);
1184 if_shared_ctx_t sctx = ctx->ifc_sctx;
1185 if_softc_ctx_t scctx = &ctx->ifc_softc_ctx;
1186 iflib_rxq_t rxq = &ctx->ifc_rxqs[kring->ring_id];
1187 iflib_fl_t fl = &rxq->ifr_fl[0];
1188 struct if_rxd_info ri;
1189 qidx_t *cidxp;
1190
1191 /*
1192 * netmap only uses free list 0, to avoid out of order consumption
1193 * of receive buffers
1194 */
1195
1196 bus_dmamap_sync(fl->ifl_ifdi->idi_tag, fl->ifl_ifdi->idi_map,
1197 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1198
1199 /*
1200 * First part: import newly received packets.
1201 *
1202 * nm_i is the index of the next free slot in the netmap ring,
1203 * nic_i is the index of the next received packet in the NIC ring
1204 * (or in the free list 0 if IFLIB_HAS_RXCQ is set), and they may
1205 * differ in case if_init() has been called while
1206 * in netmap mode. For the receive ring we have
1207 *
1208 * nic_i = fl->ifl_cidx;
1209 * nm_i = kring->nr_hwtail (previous)
1210 * and
1211 * nm_i == (nic_i + kring->nkr_hwofs) % ring_size
1212 *
1213 * fl->ifl_cidx is set to 0 on a ring reinit
1214 */
1215 if (netmap_no_pendintr || force_update) {
1216 uint32_t hwtail_lim = nm_prev(kring->nr_hwcur, lim);
1217 bool have_rxcq = sctx->isc_flags & IFLIB_HAS_RXCQ;
1218 int crclen = iflib_crcstrip ? 0 : 4;
1219 int error, avail;
1220
1221 /*
1222 * For the free list consumer index, we use the same
1223 * logic as in iflib_rxeof().
1224 */
1225 if (have_rxcq)
1226 cidxp = &rxq->ifr_cq_cidx;
1227 else
1228 cidxp = &fl->ifl_cidx;
1229 avail = ctx->isc_rxd_available(ctx->ifc_softc,
1230 rxq->ifr_id, *cidxp, USHRT_MAX);
1231
1232 nic_i = fl->ifl_cidx;
1233 nm_i = netmap_idx_n2k(kring, nic_i);
1234 MPASS(nm_i == kring->nr_hwtail);
1235 for (n = 0; avail > 0 && nm_i != hwtail_lim; n++, avail--) {
1236 rxd_info_zero(&ri);
1237 ri.iri_frags = rxq->ifr_frags;
1238 ri.iri_qsidx = kring->ring_id;
1239 ri.iri_ifp = ctx->ifc_ifp;
1240 ri.iri_cidx = *cidxp;
1241
1242 error = ctx->isc_rxd_pkt_get(ctx->ifc_softc, &ri);
1243 for (i = 0; i < ri.iri_nfrags; i++) {
1244 if (error) {
1245 ring->slot[nm_i].len = 0;
1246 ring->slot[nm_i].flags = 0;
1247 } else {
1248 ring->slot[nm_i].len = ri.iri_frags[i].irf_len;
1249 if (i == (ri.iri_nfrags - 1)) {
1250 ring->slot[nm_i].len -= crclen;
1251 ring->slot[nm_i].flags = 0;
1252
1253 /* Update receive counters */
1254 rx_bytes += ri.iri_len;
1255 rx_pkts++;
1256 } else
1257 ring->slot[nm_i].flags = NS_MOREFRAG;
1258 }
1259
1260 bus_dmamap_sync(fl->ifl_buf_tag,
1261 fl->ifl_sds.ifsd_map[nic_i], BUS_DMASYNC_POSTREAD);
1262 nm_i = nm_next(nm_i, lim);
1263 fl->ifl_cidx = nic_i = nm_next(nic_i, lim);
1264 }
1265
1266 if (have_rxcq) {
1267 *cidxp = ri.iri_cidx;
1268 while (*cidxp >= scctx->isc_nrxd[0])
1269 *cidxp -= scctx->isc_nrxd[0];
1270 }
1271
1272 }
1273 if (n) { /* update the state variables */
1274 if (netmap_no_pendintr && !force_update) {
1275 /* diagnostics */
1276 iflib_rx_miss++;
1277 iflib_rx_miss_bufs += n;
1278 }
1279 kring->nr_hwtail = nm_i;
1280 }
1281 kring->nr_kflags &= ~NKR_PENDINTR;
1282 }
1283 /*
1284 * Second part: skip past packets that userspace has released.
1285 * (kring->nr_hwcur to head excluded),
1286 * and make the buffers available for reception.
1287 * As usual nm_i is the index in the netmap ring,
1288 * nic_i is the index in the NIC ring, and
1289 * nm_i == (nic_i + kring->nkr_hwofs) % ring_size
1290 */
1291 netmap_fl_refill(rxq, kring, false);
1292
1293 if_inc_counter(ifp, IFCOUNTER_IBYTES, rx_bytes);
1294 if_inc_counter(ifp, IFCOUNTER_IPACKETS, rx_pkts);
1295
1296 return (0);
1297 }
1298
1299 static void
iflib_netmap_intr(struct netmap_adapter * na,int onoff)1300 iflib_netmap_intr(struct netmap_adapter *na, int onoff)
1301 {
1302 if_ctx_t ctx = if_getsoftc(na->ifp);
1303
1304 CTX_LOCK(ctx);
1305 if (onoff) {
1306 IFDI_INTR_ENABLE(ctx);
1307 } else {
1308 IFDI_INTR_DISABLE(ctx);
1309 }
1310 CTX_UNLOCK(ctx);
1311 }
1312
1313 static int
iflib_netmap_attach(if_ctx_t ctx)1314 iflib_netmap_attach(if_ctx_t ctx)
1315 {
1316 struct netmap_adapter na;
1317
1318 bzero(&na, sizeof(na));
1319
1320 na.ifp = ctx->ifc_ifp;
1321 na.na_flags = NAF_BDG_MAYSLEEP | NAF_MOREFRAG | NAF_OFFSETS;
1322 MPASS(ctx->ifc_softc_ctx.isc_ntxqsets);
1323 MPASS(ctx->ifc_softc_ctx.isc_nrxqsets);
1324
1325 na.num_tx_desc = iflib_num_tx_descs(ctx);
1326 na.num_rx_desc = iflib_num_rx_descs(ctx);
1327 na.nm_txsync = iflib_netmap_txsync;
1328 na.nm_rxsync = iflib_netmap_rxsync;
1329 na.nm_register = iflib_netmap_register;
1330 na.nm_intr = iflib_netmap_intr;
1331 na.nm_config = iflib_netmap_config;
1332 na.num_tx_rings = ctx->ifc_softc_ctx.isc_ntxqsets;
1333 na.num_rx_rings = ctx->ifc_softc_ctx.isc_nrxqsets;
1334 return (netmap_attach(&na));
1335 }
1336
1337 static int
iflib_netmap_txq_init(if_ctx_t ctx,iflib_txq_t txq)1338 iflib_netmap_txq_init(if_ctx_t ctx, iflib_txq_t txq)
1339 {
1340 struct netmap_adapter *na = NA(ctx->ifc_ifp);
1341 struct netmap_slot *slot;
1342
1343 slot = netmap_reset(na, NR_TX, txq->ift_id, 0);
1344 if (slot == NULL)
1345 return (0);
1346 for (int i = 0; i < ctx->ifc_softc_ctx.isc_ntxd[0]; i++) {
1347 /*
1348 * In netmap mode, set the map for the packet buffer.
1349 * NOTE: Some drivers (not this one) also need to set
1350 * the physical buffer address in the NIC ring.
1351 * netmap_idx_n2k() maps a nic index, i, into the corresponding
1352 * netmap slot index, si
1353 */
1354 int si = netmap_idx_n2k(na->tx_rings[txq->ift_id], i);
1355 netmap_load_map(na, txq->ift_buf_tag, txq->ift_sds.ifsd_map[i],
1356 NMB(na, slot + si));
1357 }
1358 return (1);
1359 }
1360
1361 static int
iflib_netmap_rxq_init(if_ctx_t ctx,iflib_rxq_t rxq)1362 iflib_netmap_rxq_init(if_ctx_t ctx, iflib_rxq_t rxq)
1363 {
1364 struct netmap_adapter *na = NA(ctx->ifc_ifp);
1365 struct netmap_kring *kring;
1366 struct netmap_slot *slot;
1367
1368 slot = netmap_reset(na, NR_RX, rxq->ifr_id, 0);
1369 if (slot == NULL)
1370 return (0);
1371 kring = na->rx_rings[rxq->ifr_id];
1372 netmap_fl_refill(rxq, kring, true);
1373 return (1);
1374 }
1375
1376 static void
iflib_netmap_timer(void * arg)1377 iflib_netmap_timer(void *arg)
1378 {
1379 iflib_txq_t txq = arg;
1380 if_ctx_t ctx = txq->ift_ctx;
1381
1382 /*
1383 * Wake up the netmap application, to give it a chance to
1384 * call txsync and reclaim more completed TX buffers.
1385 */
1386 netmap_tx_irq(ctx->ifc_ifp, txq->ift_id);
1387 }
1388
1389 #define iflib_netmap_detach(ifp) netmap_detach(ifp)
1390
1391 #else
1392 #define iflib_netmap_txq_init(ctx, txq) (0)
1393 #define iflib_netmap_rxq_init(ctx, rxq) (0)
1394 #define iflib_netmap_detach(ifp)
1395 #define netmap_enable_all_rings(ifp)
1396 #define netmap_disable_all_rings(ifp)
1397
1398 #define iflib_netmap_attach(ctx) (0)
1399 #define netmap_rx_irq(ifp, qid, budget) (0)
1400 #endif
1401
1402 #if defined(__i386__) || defined(__amd64__)
1403 static __inline void
prefetch(void * x)1404 prefetch(void *x)
1405 {
1406 __asm volatile("prefetcht0 %0" :: "m" (*(unsigned long *)x));
1407 }
1408
1409 static __inline void
prefetch2cachelines(void * x)1410 prefetch2cachelines(void *x)
1411 {
1412 __asm volatile("prefetcht0 %0" :: "m" (*(unsigned long *)x));
1413 #if (CACHE_LINE_SIZE < 128)
1414 __asm volatile("prefetcht0 %0" :: "m" (*(((unsigned long *)x) + CACHE_LINE_SIZE / (sizeof(unsigned long)))));
1415 #endif
1416 }
1417 #else
1418 static __inline void
prefetch(void * x)1419 prefetch(void *x)
1420 {
1421 }
1422
1423 static __inline void
prefetch2cachelines(void * x)1424 prefetch2cachelines(void *x)
1425 {
1426 }
1427 #endif
1428
1429 static void
iru_init(if_rxd_update_t iru,iflib_rxq_t rxq,uint8_t flid)1430 iru_init(if_rxd_update_t iru, iflib_rxq_t rxq, uint8_t flid)
1431 {
1432 iflib_fl_t fl;
1433
1434 fl = &rxq->ifr_fl[flid];
1435 iru->iru_paddrs = fl->ifl_bus_addrs;
1436 iru->iru_idxs = fl->ifl_rxd_idxs;
1437 iru->iru_qsidx = rxq->ifr_id;
1438 iru->iru_buf_size = fl->ifl_buf_size;
1439 iru->iru_flidx = fl->ifl_id;
1440 }
1441
1442 static void
_iflib_dmamap_cb(void * arg,bus_dma_segment_t * segs,int nseg,int err)1443 _iflib_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int err)
1444 {
1445 if (err)
1446 return;
1447 *(bus_addr_t *) arg = segs[0].ds_addr;
1448 }
1449
1450 #define DMA_WIDTH_TO_BUS_LOWADDR(width) \
1451 (((width) == 0) || (width) == flsll(BUS_SPACE_MAXADDR) ? \
1452 BUS_SPACE_MAXADDR : (1ULL << (width)) - 1ULL)
1453
1454 int
iflib_dma_alloc_align(if_ctx_t ctx,int size,int align,iflib_dma_info_t dma,int mapflags)1455 iflib_dma_alloc_align(if_ctx_t ctx, int size, int align, iflib_dma_info_t dma, int mapflags)
1456 {
1457 int err;
1458 device_t dev = ctx->ifc_dev;
1459 bus_addr_t lowaddr;
1460
1461 lowaddr = DMA_WIDTH_TO_BUS_LOWADDR(ctx->ifc_softc_ctx.isc_dma_width);
1462
1463 err = bus_dma_tag_create(bus_get_dma_tag(dev), /* parent */
1464 align, 0, /* alignment, bounds */
1465 lowaddr, /* lowaddr */
1466 BUS_SPACE_MAXADDR, /* highaddr */
1467 NULL, NULL, /* filter, filterarg */
1468 size, /* maxsize */
1469 1, /* nsegments */
1470 size, /* maxsegsize */
1471 BUS_DMA_ALLOCNOW, /* flags */
1472 NULL, /* lockfunc */
1473 NULL, /* lockarg */
1474 &dma->idi_tag);
1475 if (err) {
1476 device_printf(dev,
1477 "%s: bus_dma_tag_create failed: %d (size=%d, align=%d)\n",
1478 __func__, err, size, align);
1479 goto fail_0;
1480 }
1481
1482 err = bus_dmamem_alloc(dma->idi_tag, (void **)&dma->idi_vaddr,
1483 BUS_DMA_NOWAIT | BUS_DMA_COHERENT | BUS_DMA_ZERO, &dma->idi_map);
1484 if (err) {
1485 device_printf(dev,
1486 "%s: bus_dmamem_alloc(%ju) failed: %d\n",
1487 __func__, (uintmax_t)size, err);
1488 goto fail_1;
1489 }
1490
1491 dma->idi_paddr = IF_BAD_DMA;
1492 err = bus_dmamap_load(dma->idi_tag, dma->idi_map, dma->idi_vaddr,
1493 size, _iflib_dmamap_cb, &dma->idi_paddr, mapflags | BUS_DMA_NOWAIT);
1494 if (err || dma->idi_paddr == IF_BAD_DMA) {
1495 device_printf(dev,
1496 "%s: bus_dmamap_load failed: %d\n",
1497 __func__, err);
1498 goto fail_2;
1499 }
1500
1501 dma->idi_size = size;
1502 return (0);
1503
1504 fail_2:
1505 bus_dmamem_free(dma->idi_tag, dma->idi_vaddr, dma->idi_map);
1506 fail_1:
1507 bus_dma_tag_destroy(dma->idi_tag);
1508 fail_0:
1509 dma->idi_tag = NULL;
1510
1511 return (err);
1512 }
1513
1514 int
iflib_dma_alloc(if_ctx_t ctx,int size,iflib_dma_info_t dma,int mapflags)1515 iflib_dma_alloc(if_ctx_t ctx, int size, iflib_dma_info_t dma, int mapflags)
1516 {
1517 if_shared_ctx_t sctx = ctx->ifc_sctx;
1518
1519 KASSERT(sctx->isc_q_align != 0, ("alignment value not initialized"));
1520
1521 return (iflib_dma_alloc_align(ctx, size, sctx->isc_q_align, dma, mapflags));
1522 }
1523
1524 int
iflib_dma_alloc_multi(if_ctx_t ctx,int * sizes,iflib_dma_info_t * dmalist,int mapflags,int count)1525 iflib_dma_alloc_multi(if_ctx_t ctx, int *sizes, iflib_dma_info_t *dmalist, int mapflags, int count)
1526 {
1527 int i, err;
1528 iflib_dma_info_t *dmaiter;
1529
1530 dmaiter = dmalist;
1531 for (i = 0; i < count; i++, dmaiter++) {
1532 if ((err = iflib_dma_alloc(ctx, sizes[i], *dmaiter, mapflags)) != 0)
1533 break;
1534 }
1535 if (err)
1536 iflib_dma_free_multi(dmalist, i);
1537 return (err);
1538 }
1539
1540 void
iflib_dma_free(iflib_dma_info_t dma)1541 iflib_dma_free(iflib_dma_info_t dma)
1542 {
1543 if (dma->idi_tag == NULL)
1544 return;
1545 if (dma->idi_paddr != IF_BAD_DMA) {
1546 bus_dmamap_sync(dma->idi_tag, dma->idi_map,
1547 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1548 bus_dmamap_unload(dma->idi_tag, dma->idi_map);
1549 dma->idi_paddr = IF_BAD_DMA;
1550 }
1551 if (dma->idi_vaddr != NULL) {
1552 bus_dmamem_free(dma->idi_tag, dma->idi_vaddr, dma->idi_map);
1553 dma->idi_vaddr = NULL;
1554 }
1555 bus_dma_tag_destroy(dma->idi_tag);
1556 dma->idi_tag = NULL;
1557 }
1558
1559 void
iflib_dma_free_multi(iflib_dma_info_t * dmalist,int count)1560 iflib_dma_free_multi(iflib_dma_info_t *dmalist, int count)
1561 {
1562 int i;
1563 iflib_dma_info_t *dmaiter = dmalist;
1564
1565 for (i = 0; i < count; i++, dmaiter++)
1566 iflib_dma_free(*dmaiter);
1567 }
1568
1569 static int
iflib_fast_intr(void * arg)1570 iflib_fast_intr(void *arg)
1571 {
1572 iflib_filter_info_t info = arg;
1573 struct grouptask *gtask = info->ifi_task;
1574 int result;
1575
1576 DBG_COUNTER_INC(fast_intrs);
1577 if (info->ifi_filter != NULL) {
1578 result = info->ifi_filter(info->ifi_filter_arg);
1579 if ((result & FILTER_SCHEDULE_THREAD) == 0)
1580 return (result);
1581 }
1582
1583 GROUPTASK_ENQUEUE(gtask);
1584 return (FILTER_HANDLED);
1585 }
1586
1587 static int
iflib_fast_intr_rxtx(void * arg)1588 iflib_fast_intr_rxtx(void *arg)
1589 {
1590 iflib_filter_info_t info = arg;
1591 struct grouptask *gtask = info->ifi_task;
1592 if_ctx_t ctx;
1593 iflib_rxq_t rxq = (iflib_rxq_t)info->ifi_ctx;
1594 iflib_txq_t txq;
1595 void *sc;
1596 int i, cidx, result;
1597 qidx_t txqid;
1598 bool intr_enable, intr_legacy;
1599
1600 DBG_COUNTER_INC(fast_intrs);
1601 if (info->ifi_filter != NULL) {
1602 result = info->ifi_filter(info->ifi_filter_arg);
1603 if ((result & FILTER_SCHEDULE_THREAD) == 0)
1604 return (result);
1605 }
1606
1607 ctx = rxq->ifr_ctx;
1608 sc = ctx->ifc_softc;
1609 intr_enable = false;
1610 intr_legacy = !!(ctx->ifc_flags & IFC_LEGACY);
1611 MPASS(rxq->ifr_ntxqirq);
1612 for (i = 0; i < rxq->ifr_ntxqirq; i++) {
1613 txqid = rxq->ifr_txqid[i];
1614 txq = &ctx->ifc_txqs[txqid];
1615 bus_dmamap_sync(txq->ift_ifdi->idi_tag, txq->ift_ifdi->idi_map,
1616 BUS_DMASYNC_POSTREAD);
1617 if (!ctx->isc_txd_credits_update(sc, txqid, false)) {
1618 if (intr_legacy)
1619 intr_enable = true;
1620 else
1621 IFDI_TX_QUEUE_INTR_ENABLE(ctx, txqid);
1622 continue;
1623 }
1624 GROUPTASK_ENQUEUE(&txq->ift_task);
1625 }
1626 if (ctx->ifc_sctx->isc_flags & IFLIB_HAS_RXCQ)
1627 cidx = rxq->ifr_cq_cidx;
1628 else
1629 cidx = rxq->ifr_fl[0].ifl_cidx;
1630 if (iflib_rxd_avail(ctx, rxq, cidx, 1))
1631 GROUPTASK_ENQUEUE(gtask);
1632 else {
1633 if (intr_legacy)
1634 intr_enable = true;
1635 else
1636 IFDI_RX_QUEUE_INTR_ENABLE(ctx, rxq->ifr_id);
1637 DBG_COUNTER_INC(rx_intr_enables);
1638 }
1639 if (intr_enable)
1640 IFDI_INTR_ENABLE(ctx);
1641 return (FILTER_HANDLED);
1642 }
1643
1644 static int
iflib_fast_intr_ctx(void * arg)1645 iflib_fast_intr_ctx(void *arg)
1646 {
1647 iflib_filter_info_t info = arg;
1648 if_ctx_t ctx = info->ifi_ctx;
1649 int result;
1650
1651 DBG_COUNTER_INC(fast_intrs);
1652 if (info->ifi_filter != NULL) {
1653 result = info->ifi_filter(info->ifi_filter_arg);
1654 if ((result & FILTER_SCHEDULE_THREAD) == 0)
1655 return (result);
1656 }
1657
1658 taskqueue_enqueue(ctx->ifc_tq, &ctx->ifc_admin_task);
1659 return (FILTER_HANDLED);
1660 }
1661
1662 static int
_iflib_irq_alloc(if_ctx_t ctx,if_irq_t irq,int rid,driver_filter_t filter,driver_intr_t handler,void * arg,const char * name)1663 _iflib_irq_alloc(if_ctx_t ctx, if_irq_t irq, int rid,
1664 driver_filter_t filter, driver_intr_t handler, void *arg,
1665 const char *name)
1666 {
1667 struct resource *res;
1668 void *tag = NULL;
1669 device_t dev = ctx->ifc_dev;
1670 int flags, i, rc;
1671
1672 flags = RF_ACTIVE;
1673 if (ctx->ifc_flags & IFC_LEGACY)
1674 flags |= RF_SHAREABLE;
1675 MPASS(rid < 512);
1676 i = rid;
1677 res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &i, flags);
1678 if (res == NULL) {
1679 device_printf(dev,
1680 "failed to allocate IRQ for rid %d, name %s.\n", rid, name);
1681 return (ENOMEM);
1682 }
1683 irq->ii_res = res;
1684 KASSERT(filter == NULL || handler == NULL, ("filter and handler can't both be non-NULL"));
1685 rc = bus_setup_intr(dev, res, INTR_MPSAFE | INTR_TYPE_NET,
1686 filter, handler, arg, &tag);
1687 if (rc != 0) {
1688 device_printf(dev,
1689 "failed to setup interrupt for rid %d, name %s: %d\n",
1690 rid, name ? name : "unknown", rc);
1691 return (rc);
1692 } else if (name)
1693 bus_describe_intr(dev, res, tag, "%s", name);
1694
1695 irq->ii_tag = tag;
1696 return (0);
1697 }
1698
1699 /*********************************************************************
1700 *
1701 * Allocate DMA resources for TX buffers as well as memory for the TX
1702 * mbuf map. TX DMA maps (non-TSO/TSO) and TX mbuf map are kept in a
1703 * iflib_sw_tx_desc_array structure, storing all the information that
1704 * is needed to transmit a packet on the wire. This is called only
1705 * once at attach, setup is done every reset.
1706 *
1707 **********************************************************************/
1708 static int
iflib_txsd_alloc(iflib_txq_t txq)1709 iflib_txsd_alloc(iflib_txq_t txq)
1710 {
1711 if_ctx_t ctx = txq->ift_ctx;
1712 if_shared_ctx_t sctx = ctx->ifc_sctx;
1713 if_softc_ctx_t scctx = &ctx->ifc_softc_ctx;
1714 device_t dev = ctx->ifc_dev;
1715 bus_size_t tsomaxsize;
1716 bus_addr_t lowaddr;
1717 int err, nsegments, ntsosegments;
1718 bool tso;
1719
1720 nsegments = scctx->isc_tx_nsegments;
1721 ntsosegments = scctx->isc_tx_tso_segments_max;
1722 tsomaxsize = scctx->isc_tx_tso_size_max;
1723 if (if_getcapabilities(ctx->ifc_ifp) & IFCAP_VLAN_MTU)
1724 tsomaxsize += sizeof(struct ether_vlan_header);
1725 MPASS(scctx->isc_ntxd[0] > 0);
1726 MPASS(scctx->isc_ntxd[txq->ift_br_offset] > 0);
1727 MPASS(nsegments > 0);
1728 if (if_getcapabilities(ctx->ifc_ifp) & IFCAP_TSO) {
1729 MPASS(ntsosegments > 0);
1730 MPASS(sctx->isc_tso_maxsize >= tsomaxsize);
1731 }
1732
1733 lowaddr = DMA_WIDTH_TO_BUS_LOWADDR(scctx->isc_dma_width);
1734
1735 /*
1736 * Set up DMA tags for TX buffers.
1737 */
1738 if ((err = bus_dma_tag_create(bus_get_dma_tag(dev),
1739 1, 0, /* alignment, bounds */
1740 lowaddr, /* lowaddr */
1741 BUS_SPACE_MAXADDR, /* highaddr */
1742 NULL, NULL, /* filter, filterarg */
1743 sctx->isc_tx_maxsize, /* maxsize */
1744 nsegments, /* nsegments */
1745 sctx->isc_tx_maxsegsize, /* maxsegsize */
1746 0, /* flags */
1747 NULL, /* lockfunc */
1748 NULL, /* lockfuncarg */
1749 &txq->ift_buf_tag))) {
1750 device_printf(dev, "Unable to allocate TX DMA tag: %d\n", err);
1751 device_printf(dev, "maxsize: %ju nsegments: %d maxsegsize: %ju\n",
1752 (uintmax_t)sctx->isc_tx_maxsize, nsegments, (uintmax_t)sctx->isc_tx_maxsegsize);
1753 goto fail;
1754 }
1755 tso = (if_getcapabilities(ctx->ifc_ifp) & IFCAP_TSO) != 0;
1756 if (tso && (err = bus_dma_tag_create(bus_get_dma_tag(dev),
1757 1, 0, /* alignment, bounds */
1758 lowaddr, /* lowaddr */
1759 BUS_SPACE_MAXADDR, /* highaddr */
1760 NULL, NULL, /* filter, filterarg */
1761 tsomaxsize, /* maxsize */
1762 ntsosegments, /* nsegments */
1763 sctx->isc_tso_maxsegsize, /* maxsegsize */
1764 0, /* flags */
1765 NULL, /* lockfunc */
1766 NULL, /* lockfuncarg */
1767 &txq->ift_tso_buf_tag))) {
1768 device_printf(dev, "Unable to allocate TSO TX DMA tag: %d\n",
1769 err);
1770 goto fail;
1771 }
1772
1773 /* Allocate memory for the TX mbuf map. */
1774 if (!(txq->ift_sds.ifsd_m =
1775 (struct mbuf **) malloc(sizeof(struct mbuf *) *
1776 scctx->isc_ntxd[txq->ift_br_offset], M_IFLIB, M_NOWAIT | M_ZERO))) {
1777 device_printf(dev, "Unable to allocate TX mbuf map memory\n");
1778 err = ENOMEM;
1779 goto fail;
1780 }
1781
1782 /*
1783 * Create the DMA maps for TX buffers.
1784 */
1785 if ((txq->ift_sds.ifsd_map = (bus_dmamap_t *)malloc(
1786 sizeof(bus_dmamap_t) * scctx->isc_ntxd[txq->ift_br_offset],
1787 M_IFLIB, M_NOWAIT | M_ZERO)) == NULL) {
1788 device_printf(dev,
1789 "Unable to allocate TX buffer DMA map memory\n");
1790 err = ENOMEM;
1791 goto fail;
1792 }
1793 if (tso && (txq->ift_sds.ifsd_tso_map = (bus_dmamap_t *)malloc(
1794 sizeof(bus_dmamap_t) * scctx->isc_ntxd[txq->ift_br_offset],
1795 M_IFLIB, M_NOWAIT | M_ZERO)) == NULL) {
1796 device_printf(dev,
1797 "Unable to allocate TSO TX buffer map memory\n");
1798 err = ENOMEM;
1799 goto fail;
1800 }
1801 for (int i = 0; i < scctx->isc_ntxd[txq->ift_br_offset]; i++) {
1802 err = bus_dmamap_create(txq->ift_buf_tag, 0,
1803 &txq->ift_sds.ifsd_map[i]);
1804 if (err != 0) {
1805 device_printf(dev, "Unable to create TX DMA map\n");
1806 goto fail;
1807 }
1808 if (!tso)
1809 continue;
1810 err = bus_dmamap_create(txq->ift_tso_buf_tag, 0,
1811 &txq->ift_sds.ifsd_tso_map[i]);
1812 if (err != 0) {
1813 device_printf(dev, "Unable to create TSO TX DMA map\n");
1814 goto fail;
1815 }
1816 }
1817 return (0);
1818 fail:
1819 /* We free all, it handles case where we are in the middle */
1820 iflib_tx_structures_free(ctx);
1821 return (err);
1822 }
1823
1824 static void
iflib_txsd_destroy(if_ctx_t ctx,iflib_txq_t txq,int i)1825 iflib_txsd_destroy(if_ctx_t ctx, iflib_txq_t txq, int i)
1826 {
1827 bus_dmamap_t map;
1828
1829 if (txq->ift_sds.ifsd_map != NULL) {
1830 map = txq->ift_sds.ifsd_map[i];
1831 bus_dmamap_sync(txq->ift_buf_tag, map, BUS_DMASYNC_POSTWRITE);
1832 bus_dmamap_unload(txq->ift_buf_tag, map);
1833 bus_dmamap_destroy(txq->ift_buf_tag, map);
1834 txq->ift_sds.ifsd_map[i] = NULL;
1835 }
1836
1837 if (txq->ift_sds.ifsd_tso_map != NULL) {
1838 map = txq->ift_sds.ifsd_tso_map[i];
1839 bus_dmamap_sync(txq->ift_tso_buf_tag, map,
1840 BUS_DMASYNC_POSTWRITE);
1841 bus_dmamap_unload(txq->ift_tso_buf_tag, map);
1842 bus_dmamap_destroy(txq->ift_tso_buf_tag, map);
1843 txq->ift_sds.ifsd_tso_map[i] = NULL;
1844 }
1845 }
1846
1847 static void
iflib_txq_destroy(iflib_txq_t txq)1848 iflib_txq_destroy(iflib_txq_t txq)
1849 {
1850 if_ctx_t ctx = txq->ift_ctx;
1851
1852 for (int i = 0; i < txq->ift_size; i++)
1853 iflib_txsd_destroy(ctx, txq, i);
1854
1855 if (txq->ift_br != NULL) {
1856 ifmp_ring_free(txq->ift_br);
1857 txq->ift_br = NULL;
1858 }
1859
1860 mtx_destroy(&txq->ift_mtx);
1861
1862 if (txq->ift_sds.ifsd_map != NULL) {
1863 free(txq->ift_sds.ifsd_map, M_IFLIB);
1864 txq->ift_sds.ifsd_map = NULL;
1865 }
1866 if (txq->ift_sds.ifsd_tso_map != NULL) {
1867 free(txq->ift_sds.ifsd_tso_map, M_IFLIB);
1868 txq->ift_sds.ifsd_tso_map = NULL;
1869 }
1870 if (txq->ift_sds.ifsd_m != NULL) {
1871 free(txq->ift_sds.ifsd_m, M_IFLIB);
1872 txq->ift_sds.ifsd_m = NULL;
1873 }
1874 if (txq->ift_buf_tag != NULL) {
1875 bus_dma_tag_destroy(txq->ift_buf_tag);
1876 txq->ift_buf_tag = NULL;
1877 }
1878 if (txq->ift_tso_buf_tag != NULL) {
1879 bus_dma_tag_destroy(txq->ift_tso_buf_tag);
1880 txq->ift_tso_buf_tag = NULL;
1881 }
1882 if (txq->ift_ifdi != NULL) {
1883 free(txq->ift_ifdi, M_IFLIB);
1884 }
1885 }
1886
1887 static void
iflib_txsd_free(if_ctx_t ctx,iflib_txq_t txq,int i)1888 iflib_txsd_free(if_ctx_t ctx, iflib_txq_t txq, int i)
1889 {
1890 struct mbuf **mp;
1891
1892 mp = &txq->ift_sds.ifsd_m[i];
1893 if (*mp == NULL)
1894 return;
1895
1896 if (txq->ift_sds.ifsd_map != NULL) {
1897 bus_dmamap_sync(txq->ift_buf_tag,
1898 txq->ift_sds.ifsd_map[i], BUS_DMASYNC_POSTWRITE);
1899 bus_dmamap_unload(txq->ift_buf_tag, txq->ift_sds.ifsd_map[i]);
1900 }
1901 if (txq->ift_sds.ifsd_tso_map != NULL) {
1902 bus_dmamap_sync(txq->ift_tso_buf_tag,
1903 txq->ift_sds.ifsd_tso_map[i], BUS_DMASYNC_POSTWRITE);
1904 bus_dmamap_unload(txq->ift_tso_buf_tag,
1905 txq->ift_sds.ifsd_tso_map[i]);
1906 }
1907 m_freem(*mp);
1908 DBG_COUNTER_INC(tx_frees);
1909 *mp = NULL;
1910 }
1911
1912 static int
iflib_txq_setup(iflib_txq_t txq)1913 iflib_txq_setup(iflib_txq_t txq)
1914 {
1915 if_ctx_t ctx = txq->ift_ctx;
1916 if_softc_ctx_t scctx = &ctx->ifc_softc_ctx;
1917 if_shared_ctx_t sctx = ctx->ifc_sctx;
1918 iflib_dma_info_t di;
1919 int i;
1920
1921 /* Set number of descriptors available */
1922 txq->ift_qstatus = IFLIB_QUEUE_IDLE;
1923 /* XXX make configurable */
1924 txq->ift_update_freq = IFLIB_DEFAULT_TX_UPDATE_FREQ;
1925
1926 /* Reset indices */
1927 txq->ift_cidx_processed = 0;
1928 txq->ift_pidx = txq->ift_cidx = txq->ift_npending = 0;
1929 txq->ift_size = scctx->isc_ntxd[txq->ift_br_offset];
1930
1931 for (i = 0, di = txq->ift_ifdi; i < sctx->isc_ntxqs; i++, di++)
1932 bzero((void *)di->idi_vaddr, di->idi_size);
1933
1934 IFDI_TXQ_SETUP(ctx, txq->ift_id);
1935 for (i = 0, di = txq->ift_ifdi; i < sctx->isc_ntxqs; i++, di++)
1936 bus_dmamap_sync(di->idi_tag, di->idi_map,
1937 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1938 return (0);
1939 }
1940
1941 /*********************************************************************
1942 *
1943 * Allocate DMA resources for RX buffers as well as memory for the RX
1944 * mbuf map, direct RX cluster pointer map and RX cluster bus address
1945 * map. RX DMA map, RX mbuf map, direct RX cluster pointer map and
1946 * RX cluster map are kept in a iflib_sw_rx_desc_array structure.
1947 * Since we use use one entry in iflib_sw_rx_desc_array per received
1948 * packet, the maximum number of entries we'll need is equal to the
1949 * number of hardware receive descriptors that we've allocated.
1950 *
1951 **********************************************************************/
1952 static int
iflib_rxsd_alloc(iflib_rxq_t rxq)1953 iflib_rxsd_alloc(iflib_rxq_t rxq)
1954 {
1955 if_ctx_t ctx = rxq->ifr_ctx;
1956 if_shared_ctx_t sctx = ctx->ifc_sctx;
1957 if_softc_ctx_t scctx = &ctx->ifc_softc_ctx;
1958 device_t dev = ctx->ifc_dev;
1959 iflib_fl_t fl;
1960 bus_addr_t lowaddr;
1961 int err;
1962
1963 MPASS(scctx->isc_nrxd[0] > 0);
1964 MPASS(scctx->isc_nrxd[rxq->ifr_fl_offset] > 0);
1965
1966 lowaddr = DMA_WIDTH_TO_BUS_LOWADDR(scctx->isc_dma_width);
1967
1968 fl = rxq->ifr_fl;
1969 for (int i = 0; i < rxq->ifr_nfl; i++, fl++) {
1970 fl->ifl_size = scctx->isc_nrxd[rxq->ifr_fl_offset]; /* this isn't necessarily the same */
1971 /* Set up DMA tag for RX buffers. */
1972 err = bus_dma_tag_create(bus_get_dma_tag(dev), /* parent */
1973 1, 0, /* alignment, bounds */
1974 lowaddr, /* lowaddr */
1975 BUS_SPACE_MAXADDR, /* highaddr */
1976 NULL, NULL, /* filter, filterarg */
1977 sctx->isc_rx_maxsize, /* maxsize */
1978 sctx->isc_rx_nsegments, /* nsegments */
1979 sctx->isc_rx_maxsegsize, /* maxsegsize */
1980 0, /* flags */
1981 NULL, /* lockfunc */
1982 NULL, /* lockarg */
1983 &fl->ifl_buf_tag);
1984 if (err) {
1985 device_printf(dev,
1986 "Unable to allocate RX DMA tag: %d\n", err);
1987 goto fail;
1988 }
1989
1990 /* Allocate memory for the RX mbuf map. */
1991 if (!(fl->ifl_sds.ifsd_m =
1992 (struct mbuf **) malloc(sizeof(struct mbuf *) *
1993 scctx->isc_nrxd[rxq->ifr_fl_offset], M_IFLIB, M_NOWAIT | M_ZERO))) {
1994 device_printf(dev,
1995 "Unable to allocate RX mbuf map memory\n");
1996 err = ENOMEM;
1997 goto fail;
1998 }
1999
2000 /* Allocate memory for the direct RX cluster pointer map. */
2001 if (!(fl->ifl_sds.ifsd_cl =
2002 (caddr_t *) malloc(sizeof(caddr_t) *
2003 scctx->isc_nrxd[rxq->ifr_fl_offset], M_IFLIB, M_NOWAIT | M_ZERO))) {
2004 device_printf(dev,
2005 "Unable to allocate RX cluster map memory\n");
2006 err = ENOMEM;
2007 goto fail;
2008 }
2009
2010 /* Allocate memory for the RX cluster bus address map. */
2011 if (!(fl->ifl_sds.ifsd_ba =
2012 (bus_addr_t *) malloc(sizeof(bus_addr_t) *
2013 scctx->isc_nrxd[rxq->ifr_fl_offset], M_IFLIB, M_NOWAIT | M_ZERO))) {
2014 device_printf(dev,
2015 "Unable to allocate RX bus address map memory\n");
2016 err = ENOMEM;
2017 goto fail;
2018 }
2019
2020 /*
2021 * Create the DMA maps for RX buffers.
2022 */
2023 if (!(fl->ifl_sds.ifsd_map =
2024 (bus_dmamap_t *) malloc(sizeof(bus_dmamap_t) * scctx->isc_nrxd[rxq->ifr_fl_offset], M_IFLIB, M_NOWAIT | M_ZERO))) {
2025 device_printf(dev,
2026 "Unable to allocate RX buffer DMA map memory\n");
2027 err = ENOMEM;
2028 goto fail;
2029 }
2030 for (int i = 0; i < scctx->isc_nrxd[rxq->ifr_fl_offset]; i++) {
2031 err = bus_dmamap_create(fl->ifl_buf_tag, 0,
2032 &fl->ifl_sds.ifsd_map[i]);
2033 if (err != 0) {
2034 device_printf(dev, "Unable to create RX buffer DMA map\n");
2035 goto fail;
2036 }
2037 }
2038 }
2039 return (0);
2040
2041 fail:
2042 iflib_rx_structures_free(ctx);
2043 return (err);
2044 }
2045
2046 /*
2047 * Internal service routines
2048 */
2049
2050 struct rxq_refill_cb_arg {
2051 int error;
2052 bus_dma_segment_t seg;
2053 int nseg;
2054 };
2055
2056 static void
_rxq_refill_cb(void * arg,bus_dma_segment_t * segs,int nseg,int error)2057 _rxq_refill_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
2058 {
2059 struct rxq_refill_cb_arg *cb_arg = arg;
2060
2061 cb_arg->error = error;
2062 cb_arg->seg = segs[0];
2063 cb_arg->nseg = nseg;
2064 }
2065
2066 /**
2067 * iflib_fl_refill - refill an rxq free-buffer list
2068 * @ctx: the iflib context
2069 * @fl: the free list to refill
2070 * @count: the number of new buffers to allocate
2071 *
2072 * (Re)populate an rxq free-buffer list with up to @count new packet buffers.
2073 * The caller must assure that @count does not exceed the queue's capacity
2074 * minus one (since we always leave a descriptor unavailable).
2075 */
2076 static uint8_t
iflib_fl_refill(if_ctx_t ctx,iflib_fl_t fl,int count)2077 iflib_fl_refill(if_ctx_t ctx, iflib_fl_t fl, int count)
2078 {
2079 struct if_rxd_update iru;
2080 struct rxq_refill_cb_arg cb_arg;
2081 struct mbuf *m;
2082 caddr_t cl, *sd_cl;
2083 struct mbuf **sd_m;
2084 bus_dmamap_t *sd_map;
2085 bus_addr_t bus_addr, *sd_ba;
2086 int err, frag_idx, i, idx, n, pidx;
2087 qidx_t credits;
2088
2089 MPASS(count <= fl->ifl_size - fl->ifl_credits - 1);
2090
2091 sd_m = fl->ifl_sds.ifsd_m;
2092 sd_map = fl->ifl_sds.ifsd_map;
2093 sd_cl = fl->ifl_sds.ifsd_cl;
2094 sd_ba = fl->ifl_sds.ifsd_ba;
2095 pidx = fl->ifl_pidx;
2096 idx = pidx;
2097 frag_idx = fl->ifl_fragidx;
2098 credits = fl->ifl_credits;
2099
2100 i = 0;
2101 n = count;
2102 MPASS(n > 0);
2103 MPASS(credits + n <= fl->ifl_size);
2104
2105 if (pidx < fl->ifl_cidx)
2106 MPASS(pidx + n <= fl->ifl_cidx);
2107 if (pidx == fl->ifl_cidx && (credits < fl->ifl_size))
2108 MPASS(fl->ifl_gen == 0);
2109 if (pidx > fl->ifl_cidx)
2110 MPASS(n <= fl->ifl_size - pidx + fl->ifl_cidx);
2111
2112 DBG_COUNTER_INC(fl_refills);
2113 if (n > 8)
2114 DBG_COUNTER_INC(fl_refills_large);
2115 iru_init(&iru, fl->ifl_rxq, fl->ifl_id);
2116 while (n-- > 0) {
2117 /*
2118 * We allocate an uninitialized mbuf + cluster, mbuf is
2119 * initialized after rx.
2120 *
2121 * If the cluster is still set then we know a minimum sized
2122 * packet was received
2123 */
2124 bit_ffc_at(fl->ifl_rx_bitmap, frag_idx, fl->ifl_size,
2125 &frag_idx);
2126 if (frag_idx < 0)
2127 bit_ffc(fl->ifl_rx_bitmap, fl->ifl_size, &frag_idx);
2128 MPASS(frag_idx >= 0);
2129 if ((cl = sd_cl[frag_idx]) == NULL) {
2130 cl = uma_zalloc(fl->ifl_zone, M_NOWAIT);
2131 if (__predict_false(cl == NULL))
2132 break;
2133
2134 cb_arg.error = 0;
2135 MPASS(sd_map != NULL);
2136 err = bus_dmamap_load(fl->ifl_buf_tag, sd_map[frag_idx],
2137 cl, fl->ifl_buf_size, _rxq_refill_cb, &cb_arg,
2138 BUS_DMA_NOWAIT);
2139 if (__predict_false(err != 0 || cb_arg.error)) {
2140 uma_zfree(fl->ifl_zone, cl);
2141 break;
2142 }
2143
2144 sd_ba[frag_idx] = bus_addr = cb_arg.seg.ds_addr;
2145 sd_cl[frag_idx] = cl;
2146 #if MEMORY_LOGGING
2147 fl->ifl_cl_enqueued++;
2148 #endif
2149 } else {
2150 bus_addr = sd_ba[frag_idx];
2151 }
2152 bus_dmamap_sync(fl->ifl_buf_tag, sd_map[frag_idx],
2153 BUS_DMASYNC_PREREAD);
2154
2155 if (sd_m[frag_idx] == NULL) {
2156 m = m_gethdr_raw(M_NOWAIT, 0);
2157 if (__predict_false(m == NULL))
2158 break;
2159 sd_m[frag_idx] = m;
2160 }
2161 bit_set(fl->ifl_rx_bitmap, frag_idx);
2162 #if MEMORY_LOGGING
2163 fl->ifl_m_enqueued++;
2164 #endif
2165
2166 DBG_COUNTER_INC(rx_allocs);
2167 fl->ifl_rxd_idxs[i] = frag_idx;
2168 fl->ifl_bus_addrs[i] = bus_addr;
2169 credits++;
2170 i++;
2171 MPASS(credits <= fl->ifl_size);
2172 if (++idx == fl->ifl_size) {
2173 #ifdef INVARIANTS
2174 fl->ifl_gen = 1;
2175 #endif
2176 idx = 0;
2177 }
2178 if (n == 0 || i == IFLIB_MAX_RX_REFRESH) {
2179 iru.iru_pidx = pidx;
2180 iru.iru_count = i;
2181 ctx->isc_rxd_refill(ctx->ifc_softc, &iru);
2182 fl->ifl_pidx = idx;
2183 fl->ifl_credits = credits;
2184 pidx = idx;
2185 i = 0;
2186 }
2187 }
2188
2189 if (n < count - 1) {
2190 if (i != 0) {
2191 iru.iru_pidx = pidx;
2192 iru.iru_count = i;
2193 ctx->isc_rxd_refill(ctx->ifc_softc, &iru);
2194 fl->ifl_pidx = idx;
2195 fl->ifl_credits = credits;
2196 }
2197 DBG_COUNTER_INC(rxd_flush);
2198 bus_dmamap_sync(fl->ifl_ifdi->idi_tag, fl->ifl_ifdi->idi_map,
2199 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2200 ctx->isc_rxd_flush(ctx->ifc_softc, fl->ifl_rxq->ifr_id,
2201 fl->ifl_id, fl->ifl_pidx);
2202 if (__predict_true(bit_test(fl->ifl_rx_bitmap, frag_idx))) {
2203 fl->ifl_fragidx = frag_idx + 1;
2204 if (fl->ifl_fragidx == fl->ifl_size)
2205 fl->ifl_fragidx = 0;
2206 } else {
2207 fl->ifl_fragidx = frag_idx;
2208 }
2209 }
2210
2211 return (n == -1 ? 0 : IFLIB_RXEOF_EMPTY);
2212 }
2213
2214 static inline uint8_t
iflib_fl_refill_all(if_ctx_t ctx,iflib_fl_t fl)2215 iflib_fl_refill_all(if_ctx_t ctx, iflib_fl_t fl)
2216 {
2217 /*
2218 * We leave an unused descriptor to avoid pidx to catch up with cidx.
2219 * This is important as it confuses most NICs. For instance,
2220 * Intel NICs have (per receive ring) RDH and RDT registers, where
2221 * RDH points to the next receive descriptor to be used by the NIC,
2222 * and RDT for the next receive descriptor to be published by the
2223 * driver to the NIC (RDT - 1 is thus the last valid one).
2224 * The condition RDH == RDT means no descriptors are available to
2225 * the NIC, and thus it would be ambiguous if it also meant that
2226 * all the descriptors are available to the NIC.
2227 */
2228 int32_t reclaimable = fl->ifl_size - fl->ifl_credits - 1;
2229 #ifdef INVARIANTS
2230 int32_t delta = fl->ifl_size - get_inuse(fl->ifl_size, fl->ifl_cidx, fl->ifl_pidx, fl->ifl_gen) - 1;
2231 #endif
2232
2233 MPASS(fl->ifl_credits <= fl->ifl_size);
2234 MPASS(reclaimable == delta);
2235
2236 if (reclaimable > 0)
2237 return (iflib_fl_refill(ctx, fl, reclaimable));
2238 return (0);
2239 }
2240
2241 uint8_t
iflib_in_detach(if_ctx_t ctx)2242 iflib_in_detach(if_ctx_t ctx)
2243 {
2244 bool in_detach;
2245
2246 STATE_LOCK(ctx);
2247 in_detach = !!(ctx->ifc_flags & IFC_IN_DETACH);
2248 STATE_UNLOCK(ctx);
2249 return (in_detach);
2250 }
2251
2252 static void
iflib_fl_bufs_free(iflib_fl_t fl)2253 iflib_fl_bufs_free(iflib_fl_t fl)
2254 {
2255 iflib_dma_info_t idi = fl->ifl_ifdi;
2256 bus_dmamap_t sd_map;
2257 uint32_t i;
2258
2259 for (i = 0; i < fl->ifl_size; i++) {
2260 struct mbuf **sd_m = &fl->ifl_sds.ifsd_m[i];
2261 caddr_t *sd_cl = &fl->ifl_sds.ifsd_cl[i];
2262
2263 if (*sd_cl != NULL) {
2264 sd_map = fl->ifl_sds.ifsd_map[i];
2265 bus_dmamap_sync(fl->ifl_buf_tag, sd_map,
2266 BUS_DMASYNC_POSTREAD);
2267 bus_dmamap_unload(fl->ifl_buf_tag, sd_map);
2268 uma_zfree(fl->ifl_zone, *sd_cl);
2269 *sd_cl = NULL;
2270 if (*sd_m != NULL) {
2271 m_init(*sd_m, M_NOWAIT, MT_DATA, 0);
2272 m_free_raw(*sd_m);
2273 *sd_m = NULL;
2274 }
2275 } else {
2276 MPASS(*sd_m == NULL);
2277 }
2278 #if MEMORY_LOGGING
2279 fl->ifl_m_dequeued++;
2280 fl->ifl_cl_dequeued++;
2281 #endif
2282 }
2283 #ifdef INVARIANTS
2284 for (i = 0; i < fl->ifl_size; i++) {
2285 MPASS(fl->ifl_sds.ifsd_cl[i] == NULL);
2286 MPASS(fl->ifl_sds.ifsd_m[i] == NULL);
2287 }
2288 #endif
2289 /*
2290 * Reset free list values
2291 */
2292 fl->ifl_credits = fl->ifl_cidx = fl->ifl_pidx = fl->ifl_gen = fl->ifl_fragidx = 0;
2293 bzero(idi->idi_vaddr, idi->idi_size);
2294 }
2295
2296 /*********************************************************************
2297 *
2298 * Initialize a free list and its buffers.
2299 *
2300 **********************************************************************/
2301 static int
iflib_fl_setup(iflib_fl_t fl)2302 iflib_fl_setup(iflib_fl_t fl)
2303 {
2304 iflib_rxq_t rxq = fl->ifl_rxq;
2305 if_ctx_t ctx = rxq->ifr_ctx;
2306 if_softc_ctx_t scctx = &ctx->ifc_softc_ctx;
2307 int qidx;
2308
2309 bit_nclear(fl->ifl_rx_bitmap, 0, fl->ifl_size - 1);
2310 /*
2311 * Free current RX buffer structs and their mbufs
2312 */
2313 iflib_fl_bufs_free(fl);
2314 /* Now replenish the mbufs */
2315 MPASS(fl->ifl_credits == 0);
2316 qidx = rxq->ifr_fl_offset + fl->ifl_id;
2317 if (scctx->isc_rxd_buf_size[qidx] != 0)
2318 fl->ifl_buf_size = scctx->isc_rxd_buf_size[qidx];
2319 else
2320 fl->ifl_buf_size = ctx->ifc_rx_mbuf_sz;
2321 /*
2322 * ifl_buf_size may be a driver-supplied value, so pull it up
2323 * to the selected mbuf size.
2324 */
2325 fl->ifl_buf_size = iflib_get_mbuf_size_for(fl->ifl_buf_size);
2326 if (fl->ifl_buf_size > ctx->ifc_max_fl_buf_size)
2327 ctx->ifc_max_fl_buf_size = fl->ifl_buf_size;
2328 fl->ifl_cltype = m_gettype(fl->ifl_buf_size);
2329 fl->ifl_zone = m_getzone(fl->ifl_buf_size);
2330
2331 /*
2332 * Avoid pre-allocating zillions of clusters to an idle card
2333 * potentially speeding up attach. In any case make sure
2334 * to leave a descriptor unavailable. See the comment in
2335 * iflib_fl_refill_all().
2336 */
2337 MPASS(fl->ifl_size > 0);
2338 (void)iflib_fl_refill(ctx, fl, min(128, fl->ifl_size - 1));
2339 if (min(128, fl->ifl_size - 1) != fl->ifl_credits)
2340 return (ENOBUFS);
2341 /*
2342 * handle failure
2343 */
2344 MPASS(rxq != NULL);
2345 MPASS(fl->ifl_ifdi != NULL);
2346 bus_dmamap_sync(fl->ifl_ifdi->idi_tag, fl->ifl_ifdi->idi_map,
2347 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2348 return (0);
2349 }
2350
2351 /*********************************************************************
2352 *
2353 * Free receive ring data structures
2354 *
2355 **********************************************************************/
2356 static void
iflib_rx_sds_free(iflib_rxq_t rxq)2357 iflib_rx_sds_free(iflib_rxq_t rxq)
2358 {
2359 iflib_fl_t fl;
2360 int i, j;
2361
2362 if (rxq->ifr_fl != NULL) {
2363 for (i = 0; i < rxq->ifr_nfl; i++) {
2364 fl = &rxq->ifr_fl[i];
2365 if (fl->ifl_buf_tag != NULL) {
2366 if (fl->ifl_sds.ifsd_map != NULL) {
2367 for (j = 0; j < fl->ifl_size; j++) {
2368 bus_dmamap_sync(
2369 fl->ifl_buf_tag,
2370 fl->ifl_sds.ifsd_map[j],
2371 BUS_DMASYNC_POSTREAD);
2372 bus_dmamap_unload(
2373 fl->ifl_buf_tag,
2374 fl->ifl_sds.ifsd_map[j]);
2375 bus_dmamap_destroy(
2376 fl->ifl_buf_tag,
2377 fl->ifl_sds.ifsd_map[j]);
2378 }
2379 }
2380 bus_dma_tag_destroy(fl->ifl_buf_tag);
2381 fl->ifl_buf_tag = NULL;
2382 }
2383 free(fl->ifl_sds.ifsd_m, M_IFLIB);
2384 free(fl->ifl_sds.ifsd_cl, M_IFLIB);
2385 free(fl->ifl_sds.ifsd_ba, M_IFLIB);
2386 free(fl->ifl_sds.ifsd_map, M_IFLIB);
2387 free(fl->ifl_rx_bitmap, M_IFLIB);
2388 fl->ifl_sds.ifsd_m = NULL;
2389 fl->ifl_sds.ifsd_cl = NULL;
2390 fl->ifl_sds.ifsd_ba = NULL;
2391 fl->ifl_sds.ifsd_map = NULL;
2392 fl->ifl_rx_bitmap = NULL;
2393 }
2394 free(rxq->ifr_fl, M_IFLIB);
2395 rxq->ifr_fl = NULL;
2396 free(rxq->ifr_ifdi, M_IFLIB);
2397 rxq->ifr_ifdi = NULL;
2398 rxq->ifr_cq_cidx = 0;
2399 }
2400 }
2401
2402 /*
2403 * Timer routine
2404 */
2405 static void
iflib_timer(void * arg)2406 iflib_timer(void *arg)
2407 {
2408 iflib_txq_t txq = arg;
2409 if_ctx_t ctx = txq->ift_ctx;
2410 if_softc_ctx_t sctx = &ctx->ifc_softc_ctx;
2411 uint64_t this_tick = ticks;
2412
2413 if (!(if_getdrvflags(ctx->ifc_ifp) & IFF_DRV_RUNNING))
2414 return;
2415
2416 /*
2417 ** Check on the state of the TX queue(s), this
2418 ** can be done without the lock because its RO
2419 ** and the HUNG state will be static if set.
2420 */
2421 if (this_tick - txq->ift_last_timer_tick >= iflib_timer_default) {
2422 txq->ift_last_timer_tick = this_tick;
2423 IFDI_TIMER(ctx, txq->ift_id);
2424 if ((txq->ift_qstatus == IFLIB_QUEUE_HUNG) &&
2425 ((txq->ift_cleaned_prev == txq->ift_cleaned) ||
2426 (sctx->isc_pause_frames == 0)))
2427 goto hung;
2428
2429 if (txq->ift_qstatus != IFLIB_QUEUE_IDLE &&
2430 ifmp_ring_is_stalled(txq->ift_br)) {
2431 KASSERT(ctx->ifc_link_state == LINK_STATE_UP,
2432 ("queue can't be marked as hung if interface is down"));
2433 txq->ift_qstatus = IFLIB_QUEUE_HUNG;
2434 }
2435 txq->ift_cleaned_prev = txq->ift_cleaned;
2436 }
2437 /* handle any laggards */
2438 if (txq->ift_db_pending)
2439 GROUPTASK_ENQUEUE(&txq->ift_task);
2440
2441 sctx->isc_pause_frames = 0;
2442 if (if_getdrvflags(ctx->ifc_ifp) & IFF_DRV_RUNNING)
2443 callout_reset_on(&txq->ift_timer, iflib_timer_default, iflib_timer,
2444 txq, txq->ift_timer.c_cpu);
2445 return;
2446
2447 hung:
2448 device_printf(ctx->ifc_dev,
2449 "Watchdog timeout (TX: %d desc avail: %d pidx: %d) -- resetting\n",
2450 txq->ift_id, TXQ_AVAIL(txq), txq->ift_pidx);
2451 STATE_LOCK(ctx);
2452 if_setdrvflagbits(ctx->ifc_ifp, IFF_DRV_OACTIVE, IFF_DRV_RUNNING);
2453 ctx->ifc_flags |= (IFC_DO_WATCHDOG | IFC_DO_RESET);
2454 iflib_admin_intr_deferred(ctx);
2455 STATE_UNLOCK(ctx);
2456 }
2457
2458 static uint16_t
iflib_get_mbuf_size_for(unsigned int size)2459 iflib_get_mbuf_size_for(unsigned int size)
2460 {
2461
2462 if (size <= MCLBYTES)
2463 return (MCLBYTES);
2464 else
2465 return (MJUMPAGESIZE);
2466 }
2467
2468 static void
iflib_calc_rx_mbuf_sz(if_ctx_t ctx)2469 iflib_calc_rx_mbuf_sz(if_ctx_t ctx)
2470 {
2471 if_softc_ctx_t sctx = &ctx->ifc_softc_ctx;
2472
2473 /*
2474 * XXX don't set the max_frame_size to larger
2475 * than the hardware can handle
2476 */
2477 ctx->ifc_rx_mbuf_sz =
2478 iflib_get_mbuf_size_for(sctx->isc_max_frame_size);
2479 }
2480
2481 uint32_t
iflib_get_rx_mbuf_sz(if_ctx_t ctx)2482 iflib_get_rx_mbuf_sz(if_ctx_t ctx)
2483 {
2484
2485 return (ctx->ifc_rx_mbuf_sz);
2486 }
2487
2488 static void
iflib_init_locked(if_ctx_t ctx)2489 iflib_init_locked(if_ctx_t ctx)
2490 {
2491 if_softc_ctx_t scctx = &ctx->ifc_softc_ctx;
2492 if_t ifp = ctx->ifc_ifp;
2493 iflib_fl_t fl;
2494 iflib_txq_t txq;
2495 iflib_rxq_t rxq;
2496 int i, j, tx_ip_csum_flags, tx_ip6_csum_flags;
2497
2498 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, IFF_DRV_RUNNING);
2499 IFDI_INTR_DISABLE(ctx);
2500
2501 /*
2502 * See iflib_stop(). Useful in case iflib_init_locked() is
2503 * called without first calling iflib_stop().
2504 */
2505 netmap_disable_all_rings(ifp);
2506
2507 tx_ip_csum_flags = scctx->isc_tx_csum_flags & (CSUM_IP | CSUM_TCP | CSUM_UDP | CSUM_SCTP);
2508 tx_ip6_csum_flags = scctx->isc_tx_csum_flags & (CSUM_IP6_TCP | CSUM_IP6_UDP | CSUM_IP6_SCTP);
2509 /* Set hardware offload abilities */
2510 if_clearhwassist(ifp);
2511 if (if_getcapenable(ifp) & IFCAP_TXCSUM)
2512 if_sethwassistbits(ifp, tx_ip_csum_flags, 0);
2513 if (if_getcapenable(ifp) & IFCAP_TXCSUM_IPV6)
2514 if_sethwassistbits(ifp, tx_ip6_csum_flags, 0);
2515 if (if_getcapenable(ifp) & IFCAP_TSO4)
2516 if_sethwassistbits(ifp, CSUM_IP_TSO, 0);
2517 if (if_getcapenable(ifp) & IFCAP_TSO6)
2518 if_sethwassistbits(ifp, CSUM_IP6_TSO, 0);
2519
2520 for (i = 0, txq = ctx->ifc_txqs; i < scctx->isc_ntxqsets; i++, txq++) {
2521 CALLOUT_LOCK(txq);
2522 callout_stop(&txq->ift_timer);
2523 #ifdef DEV_NETMAP
2524 callout_stop(&txq->ift_netmap_timer);
2525 #endif /* DEV_NETMAP */
2526 CALLOUT_UNLOCK(txq);
2527 (void)iflib_netmap_txq_init(ctx, txq);
2528 }
2529
2530 /*
2531 * Calculate a suitable Rx mbuf size prior to calling IFDI_INIT, so
2532 * that drivers can use the value when setting up the hardware receive
2533 * buffers.
2534 */
2535 iflib_calc_rx_mbuf_sz(ctx);
2536
2537 #ifdef INVARIANTS
2538 i = if_getdrvflags(ifp);
2539 #endif
2540 IFDI_INIT(ctx);
2541 MPASS(if_getdrvflags(ifp) == i);
2542 for (i = 0, rxq = ctx->ifc_rxqs; i < scctx->isc_nrxqsets; i++, rxq++) {
2543 if (iflib_netmap_rxq_init(ctx, rxq) > 0) {
2544 /* This rxq is in netmap mode. Skip normal init. */
2545 continue;
2546 }
2547 for (j = 0, fl = rxq->ifr_fl; j < rxq->ifr_nfl; j++, fl++) {
2548 if (iflib_fl_setup(fl)) {
2549 device_printf(ctx->ifc_dev,
2550 "setting up free list %d failed - "
2551 "check cluster settings\n", j);
2552 goto done;
2553 }
2554 }
2555 }
2556 done:
2557 if_setdrvflagbits(ctx->ifc_ifp, IFF_DRV_RUNNING, IFF_DRV_OACTIVE);
2558 IFDI_INTR_ENABLE(ctx);
2559 txq = ctx->ifc_txqs;
2560 for (i = 0; i < scctx->isc_ntxqsets; i++, txq++)
2561 callout_reset_on(&txq->ift_timer, iflib_timer_default, iflib_timer, txq,
2562 txq->ift_timer.c_cpu);
2563
2564 /* Re-enable txsync/rxsync. */
2565 netmap_enable_all_rings(ifp);
2566 }
2567
2568 static int
iflib_media_change(if_t ifp)2569 iflib_media_change(if_t ifp)
2570 {
2571 if_ctx_t ctx = if_getsoftc(ifp);
2572 int err;
2573
2574 CTX_LOCK(ctx);
2575 if ((err = IFDI_MEDIA_CHANGE(ctx)) == 0)
2576 iflib_if_init_locked(ctx);
2577 CTX_UNLOCK(ctx);
2578 return (err);
2579 }
2580
2581 static void
iflib_media_status(if_t ifp,struct ifmediareq * ifmr)2582 iflib_media_status(if_t ifp, struct ifmediareq *ifmr)
2583 {
2584 if_ctx_t ctx = if_getsoftc(ifp);
2585
2586 CTX_LOCK(ctx);
2587 IFDI_UPDATE_ADMIN_STATUS(ctx);
2588 IFDI_MEDIA_STATUS(ctx, ifmr);
2589 CTX_UNLOCK(ctx);
2590 }
2591
2592 static void
iflib_stop(if_ctx_t ctx)2593 iflib_stop(if_ctx_t ctx)
2594 {
2595 iflib_txq_t txq = ctx->ifc_txqs;
2596 iflib_rxq_t rxq = ctx->ifc_rxqs;
2597 if_softc_ctx_t scctx = &ctx->ifc_softc_ctx;
2598 if_shared_ctx_t sctx = ctx->ifc_sctx;
2599 iflib_dma_info_t di;
2600 iflib_fl_t fl;
2601 int i, j;
2602
2603 /* Tell the stack that the interface is no longer active */
2604 if_setdrvflagbits(ctx->ifc_ifp, IFF_DRV_OACTIVE, IFF_DRV_RUNNING);
2605
2606 IFDI_INTR_DISABLE(ctx);
2607 DELAY(1000);
2608 IFDI_STOP(ctx);
2609 DELAY(1000);
2610
2611 /*
2612 * Stop any pending txsync/rxsync and prevent new ones
2613 * form starting. Processes blocked in poll() will get
2614 * POLLERR.
2615 */
2616 netmap_disable_all_rings(ctx->ifc_ifp);
2617
2618 iflib_debug_reset();
2619 /* Wait for current tx queue users to exit to disarm watchdog timer. */
2620 for (i = 0; i < scctx->isc_ntxqsets; i++, txq++) {
2621 /* make sure all transmitters have completed before proceeding XXX */
2622
2623 CALLOUT_LOCK(txq);
2624 callout_stop(&txq->ift_timer);
2625 #ifdef DEV_NETMAP
2626 callout_stop(&txq->ift_netmap_timer);
2627 #endif /* DEV_NETMAP */
2628 CALLOUT_UNLOCK(txq);
2629
2630 if (!ctx->ifc_sysctl_simple_tx) {
2631 /* clean any enqueued buffers */
2632 iflib_ifmp_purge(txq);
2633 }
2634 /* Free any existing tx buffers. */
2635 for (j = 0; j < txq->ift_size; j++) {
2636 iflib_txsd_free(ctx, txq, j);
2637 }
2638 txq->ift_processed = txq->ift_cleaned = txq->ift_cidx_processed = 0;
2639 txq->ift_in_use = txq->ift_gen = txq->ift_no_desc_avail = 0;
2640 if (sctx->isc_flags & IFLIB_PRESERVE_TX_INDICES)
2641 txq->ift_cidx = txq->ift_pidx;
2642 else
2643 txq->ift_cidx = txq->ift_pidx = 0;
2644
2645 txq->ift_closed = txq->ift_mbuf_defrag = txq->ift_mbuf_defrag_failed = 0;
2646 txq->ift_no_tx_dma_setup = txq->ift_txd_encap_efbig = txq->ift_map_failed = 0;
2647 txq->ift_pullups = 0;
2648 ifmp_ring_reset_stats(txq->ift_br);
2649 for (j = 0, di = txq->ift_ifdi; j < sctx->isc_ntxqs; j++, di++)
2650 bzero((void *)di->idi_vaddr, di->idi_size);
2651 }
2652 for (i = 0; i < scctx->isc_nrxqsets; i++, rxq++) {
2653 if (rxq->ifr_task.gt_taskqueue != NULL)
2654 gtaskqueue_drain(rxq->ifr_task.gt_taskqueue,
2655 &rxq->ifr_task.gt_task);
2656
2657 rxq->ifr_cq_cidx = 0;
2658 for (j = 0, di = rxq->ifr_ifdi; j < sctx->isc_nrxqs; j++, di++)
2659 bzero((void *)di->idi_vaddr, di->idi_size);
2660 /* also resets the free lists pidx/cidx */
2661 for (j = 0, fl = rxq->ifr_fl; j < rxq->ifr_nfl; j++, fl++)
2662 iflib_fl_bufs_free(fl);
2663 }
2664 }
2665
2666 static inline caddr_t
calc_next_rxd(iflib_fl_t fl,int cidx)2667 calc_next_rxd(iflib_fl_t fl, int cidx)
2668 {
2669 qidx_t size;
2670 int nrxd;
2671 caddr_t start, end, cur, next;
2672
2673 nrxd = fl->ifl_size;
2674 size = fl->ifl_rxd_size;
2675 start = fl->ifl_ifdi->idi_vaddr;
2676
2677 if (__predict_false(size == 0))
2678 return (start);
2679 cur = start + size * cidx;
2680 end = start + size * nrxd;
2681 next = CACHE_PTR_NEXT(cur);
2682 return (next < end ? next : start);
2683 }
2684
2685 static inline void
prefetch_pkts(iflib_fl_t fl,int cidx)2686 prefetch_pkts(iflib_fl_t fl, int cidx)
2687 {
2688 int nextptr;
2689 int nrxd = fl->ifl_size;
2690 caddr_t next_rxd;
2691
2692 nextptr = (cidx + CACHE_PTR_INCREMENT) & (nrxd - 1);
2693 prefetch(&fl->ifl_sds.ifsd_m[nextptr]);
2694 prefetch(&fl->ifl_sds.ifsd_cl[nextptr]);
2695 next_rxd = calc_next_rxd(fl, cidx);
2696 prefetch(next_rxd);
2697 prefetch(fl->ifl_sds.ifsd_m[(cidx + 1) & (nrxd - 1)]);
2698 prefetch(fl->ifl_sds.ifsd_m[(cidx + 2) & (nrxd - 1)]);
2699 prefetch(fl->ifl_sds.ifsd_m[(cidx + 3) & (nrxd - 1)]);
2700 prefetch(fl->ifl_sds.ifsd_m[(cidx + 4) & (nrxd - 1)]);
2701 prefetch(fl->ifl_sds.ifsd_cl[(cidx + 1) & (nrxd - 1)]);
2702 prefetch(fl->ifl_sds.ifsd_cl[(cidx + 2) & (nrxd - 1)]);
2703 prefetch(fl->ifl_sds.ifsd_cl[(cidx + 3) & (nrxd - 1)]);
2704 prefetch(fl->ifl_sds.ifsd_cl[(cidx + 4) & (nrxd - 1)]);
2705 }
2706
2707 static struct mbuf *
rxd_frag_to_sd(iflib_rxq_t rxq,if_rxd_frag_t irf,bool unload,if_rxsd_t sd,int * pf_rv,if_rxd_info_t ri)2708 rxd_frag_to_sd(iflib_rxq_t rxq, if_rxd_frag_t irf, bool unload, if_rxsd_t sd,
2709 int *pf_rv, if_rxd_info_t ri)
2710 {
2711 bus_dmamap_t map;
2712 iflib_fl_t fl;
2713 caddr_t payload;
2714 struct mbuf *m;
2715 int flid, cidx, len, next;
2716
2717 map = NULL;
2718 flid = irf->irf_flid;
2719 cidx = irf->irf_idx;
2720 fl = &rxq->ifr_fl[flid];
2721 sd->ifsd_fl = fl;
2722 sd->ifsd_cl = &fl->ifl_sds.ifsd_cl[cidx];
2723 fl->ifl_credits--;
2724 #if MEMORY_LOGGING
2725 fl->ifl_m_dequeued++;
2726 #endif
2727 if (rxq->ifr_ctx->ifc_flags & IFC_PREFETCH)
2728 prefetch_pkts(fl, cidx);
2729 next = (cidx + CACHE_PTR_INCREMENT) & (fl->ifl_size - 1);
2730 prefetch(&fl->ifl_sds.ifsd_map[next]);
2731 map = fl->ifl_sds.ifsd_map[cidx];
2732
2733 bus_dmamap_sync(fl->ifl_buf_tag, map, BUS_DMASYNC_POSTREAD);
2734
2735 if (rxq->pfil != NULL && PFIL_HOOKED_IN(rxq->pfil) && pf_rv != NULL &&
2736 irf->irf_len != 0) {
2737 payload = *sd->ifsd_cl;
2738 payload += ri->iri_pad;
2739 len = ri->iri_len - ri->iri_pad;
2740 *pf_rv = pfil_mem_in(rxq->pfil, payload, len, ri->iri_ifp, &m);
2741 switch (*pf_rv) {
2742 case PFIL_DROPPED:
2743 case PFIL_CONSUMED:
2744 /*
2745 * The filter ate it. Everything is recycled.
2746 */
2747 m = NULL;
2748 unload = 0;
2749 break;
2750 case PFIL_REALLOCED:
2751 /*
2752 * The filter copied it. Everything is recycled.
2753 * 'm' points at new mbuf.
2754 */
2755 unload = 0;
2756 break;
2757 case PFIL_PASS:
2758 /*
2759 * Filter said it was OK, so receive like
2760 * normal
2761 */
2762 m = fl->ifl_sds.ifsd_m[cidx];
2763 fl->ifl_sds.ifsd_m[cidx] = NULL;
2764 break;
2765 default:
2766 MPASS(0);
2767 }
2768 } else {
2769 m = fl->ifl_sds.ifsd_m[cidx];
2770 fl->ifl_sds.ifsd_m[cidx] = NULL;
2771 if (pf_rv != NULL)
2772 *pf_rv = PFIL_PASS;
2773 }
2774
2775 if (unload && irf->irf_len != 0)
2776 bus_dmamap_unload(fl->ifl_buf_tag, map);
2777 fl->ifl_cidx = (fl->ifl_cidx + 1) & (fl->ifl_size - 1);
2778 if (__predict_false(fl->ifl_cidx == 0))
2779 fl->ifl_gen = 0;
2780 bit_clear(fl->ifl_rx_bitmap, cidx);
2781 return (m);
2782 }
2783
2784 static struct mbuf *
assemble_segments(iflib_rxq_t rxq,if_rxd_info_t ri,if_rxsd_t sd,int * pf_rv)2785 assemble_segments(iflib_rxq_t rxq, if_rxd_info_t ri, if_rxsd_t sd, int *pf_rv)
2786 {
2787 struct mbuf *m, *mh, *mt;
2788 caddr_t cl;
2789 int *pf_rv_ptr, flags, i, padlen;
2790 bool consumed;
2791
2792 i = 0;
2793 mh = NULL;
2794 consumed = false;
2795 *pf_rv = PFIL_PASS;
2796 pf_rv_ptr = pf_rv;
2797 do {
2798 m = rxd_frag_to_sd(rxq, &ri->iri_frags[i], !consumed, sd,
2799 pf_rv_ptr, ri);
2800
2801 MPASS(*sd->ifsd_cl != NULL);
2802
2803 /*
2804 * Exclude zero-length frags & frags from
2805 * packets the filter has consumed or dropped
2806 */
2807 if (ri->iri_frags[i].irf_len == 0 || consumed ||
2808 *pf_rv == PFIL_CONSUMED || *pf_rv == PFIL_DROPPED) {
2809 if (mh == NULL) {
2810 /* everything saved here */
2811 consumed = true;
2812 pf_rv_ptr = NULL;
2813 continue;
2814 }
2815 /* XXX we can save the cluster here, but not the mbuf */
2816 m_init(m, M_NOWAIT, MT_DATA, 0);
2817 m_free(m);
2818 continue;
2819 }
2820 if (mh == NULL) {
2821 flags = M_PKTHDR | M_EXT;
2822 mh = mt = m;
2823 padlen = ri->iri_pad;
2824 } else {
2825 flags = M_EXT;
2826 mt->m_next = m;
2827 mt = m;
2828 /* assuming padding is only on the first fragment */
2829 padlen = 0;
2830 }
2831 cl = *sd->ifsd_cl;
2832 *sd->ifsd_cl = NULL;
2833
2834 /* Can these two be made one ? */
2835 m_init(m, M_NOWAIT, MT_DATA, flags);
2836 m_cljset(m, cl, sd->ifsd_fl->ifl_cltype);
2837 /*
2838 * These must follow m_init and m_cljset
2839 */
2840 m->m_data += padlen;
2841 ri->iri_len -= padlen;
2842 m->m_len = ri->iri_frags[i].irf_len;
2843 } while (++i < ri->iri_nfrags);
2844
2845 return (mh);
2846 }
2847
2848 /*
2849 * Process one software descriptor
2850 */
2851 static struct mbuf *
iflib_rxd_pkt_get(iflib_rxq_t rxq,if_rxd_info_t ri)2852 iflib_rxd_pkt_get(iflib_rxq_t rxq, if_rxd_info_t ri)
2853 {
2854 struct if_rxsd sd;
2855 struct mbuf *m;
2856 int pf_rv;
2857
2858 /* should I merge this back in now that the two paths are basically duplicated? */
2859 if (ri->iri_nfrags == 1 &&
2860 ri->iri_frags[0].irf_len != 0 &&
2861 ri->iri_frags[0].irf_len <= MIN(IFLIB_RX_COPY_THRESH, MHLEN)) {
2862 m = rxd_frag_to_sd(rxq, &ri->iri_frags[0], false, &sd,
2863 &pf_rv, ri);
2864 if (pf_rv != PFIL_PASS && pf_rv != PFIL_REALLOCED)
2865 return (m);
2866 if (pf_rv == PFIL_PASS) {
2867 m_init(m, M_NOWAIT, MT_DATA, M_PKTHDR);
2868 #ifndef __NO_STRICT_ALIGNMENT
2869 if (!IP_ALIGNED(m) && ri->iri_pad == 0)
2870 m->m_data += 2;
2871 #endif
2872 memcpy(m->m_data, *sd.ifsd_cl, ri->iri_len);
2873 m->m_len = ri->iri_frags[0].irf_len;
2874 m->m_data += ri->iri_pad;
2875 ri->iri_len -= ri->iri_pad;
2876 }
2877 } else {
2878 m = assemble_segments(rxq, ri, &sd, &pf_rv);
2879 if (m == NULL)
2880 return (NULL);
2881 if (pf_rv != PFIL_PASS && pf_rv != PFIL_REALLOCED)
2882 return (m);
2883 }
2884 m->m_pkthdr.len = ri->iri_len;
2885 m->m_pkthdr.rcvif = ri->iri_ifp;
2886 m->m_flags |= ri->iri_flags;
2887 m->m_pkthdr.ether_vtag = ri->iri_vtag;
2888 m->m_pkthdr.flowid = ri->iri_flowid;
2889 #ifdef NUMA
2890 m->m_pkthdr.numa_domain = if_getnumadomain(ri->iri_ifp);
2891 #endif
2892 M_HASHTYPE_SET(m, ri->iri_rsstype);
2893 m->m_pkthdr.csum_flags = ri->iri_csum_flags;
2894 m->m_pkthdr.csum_data = ri->iri_csum_data;
2895 return (m);
2896 }
2897
2898 static void
_task_fn_rx_watchdog(void * context)2899 _task_fn_rx_watchdog(void *context)
2900 {
2901 iflib_rxq_t rxq = context;
2902
2903 GROUPTASK_ENQUEUE(&rxq->ifr_task);
2904 }
2905
2906 static uint8_t
iflib_rxeof(iflib_rxq_t rxq,qidx_t budget)2907 iflib_rxeof(iflib_rxq_t rxq, qidx_t budget)
2908 {
2909 if_t ifp;
2910 if_ctx_t ctx = rxq->ifr_ctx;
2911 if_shared_ctx_t sctx = ctx->ifc_sctx;
2912 if_softc_ctx_t scctx = &ctx->ifc_softc_ctx;
2913 int avail, i;
2914 qidx_t *cidxp;
2915 struct if_rxd_info ri;
2916 int err, budget_left, rx_bytes, rx_pkts;
2917 iflib_fl_t fl;
2918 #if defined(INET6) || defined(INET)
2919 int lro_enabled;
2920 #endif
2921 uint8_t retval = 0;
2922
2923 /*
2924 * XXX early demux data packets so that if_input processing only handles
2925 * acks in interrupt context
2926 */
2927 struct mbuf *m, *mh, *mt;
2928
2929 NET_EPOCH_ASSERT();
2930
2931 ifp = ctx->ifc_ifp;
2932 mh = mt = NULL;
2933 MPASS(budget > 0);
2934 rx_pkts = rx_bytes = 0;
2935 if (sctx->isc_flags & IFLIB_HAS_RXCQ)
2936 cidxp = &rxq->ifr_cq_cidx;
2937 else
2938 cidxp = &rxq->ifr_fl[0].ifl_cidx;
2939 if ((avail = iflib_rxd_avail(ctx, rxq, *cidxp, budget)) == 0) {
2940 for (i = 0, fl = &rxq->ifr_fl[0]; i < sctx->isc_nfl; i++, fl++)
2941 retval |= iflib_fl_refill_all(ctx, fl);
2942 DBG_COUNTER_INC(rx_unavail);
2943 return (retval);
2944 }
2945
2946 #if defined(INET6) || defined(INET)
2947 lro_enabled = (if_getcapenable(ifp) & IFCAP_LRO);
2948 #endif
2949
2950 /* pfil needs the vnet to be set */
2951 CURVNET_SET_QUIET(if_getvnet(ifp));
2952 for (budget_left = budget; budget_left > 0 && avail > 0;) {
2953 if (__predict_false(!CTX_ACTIVE(ctx))) {
2954 DBG_COUNTER_INC(rx_ctx_inactive);
2955 break;
2956 }
2957 /*
2958 * Reset client set fields to their default values
2959 */
2960 rxd_info_zero(&ri);
2961 ri.iri_qsidx = rxq->ifr_id;
2962 ri.iri_cidx = *cidxp;
2963 ri.iri_ifp = ifp;
2964 ri.iri_frags = rxq->ifr_frags;
2965 err = ctx->isc_rxd_pkt_get(ctx->ifc_softc, &ri);
2966
2967 if (err)
2968 goto err;
2969 rx_pkts += 1;
2970 rx_bytes += ri.iri_len;
2971 if (sctx->isc_flags & IFLIB_HAS_RXCQ) {
2972 *cidxp = ri.iri_cidx;
2973 /* Update our consumer index */
2974 /* XXX NB: shurd - check if this is still safe */
2975 while (rxq->ifr_cq_cidx >= scctx->isc_nrxd[0])
2976 rxq->ifr_cq_cidx -= scctx->isc_nrxd[0];
2977 /* was this only a completion queue message? */
2978 if (__predict_false(ri.iri_nfrags == 0))
2979 continue;
2980 }
2981 MPASS(ri.iri_nfrags != 0);
2982 MPASS(ri.iri_len != 0);
2983
2984 /* will advance the cidx on the corresponding free lists */
2985 m = iflib_rxd_pkt_get(rxq, &ri);
2986 avail--;
2987 budget_left--;
2988 if (avail == 0 && budget_left)
2989 avail = iflib_rxd_avail(ctx, rxq, *cidxp, budget_left);
2990
2991 if (__predict_false(m == NULL))
2992 continue;
2993
2994 #ifndef __NO_STRICT_ALIGNMENT
2995 if (!IP_ALIGNED(m) && (m = iflib_fixup_rx(m)) == NULL)
2996 continue;
2997 #endif
2998 #if defined(INET6) || defined(INET)
2999 if (lro_enabled) {
3000 tcp_lro_queue_mbuf(&rxq->ifr_lc, m);
3001 continue;
3002 }
3003 #endif
3004
3005 if (mh == NULL)
3006 mh = mt = m;
3007 else {
3008 mt->m_nextpkt = m;
3009 mt = m;
3010 }
3011 }
3012 CURVNET_RESTORE();
3013 /* make sure that we can refill faster than drain */
3014 for (i = 0, fl = &rxq->ifr_fl[0]; i < sctx->isc_nfl; i++, fl++)
3015 retval |= iflib_fl_refill_all(ctx, fl);
3016
3017 if (mh != NULL) {
3018 if_input(ifp, mh);
3019 DBG_COUNTER_INC(rx_if_input);
3020 }
3021
3022 if_inc_counter(ifp, IFCOUNTER_IBYTES, rx_bytes);
3023 if_inc_counter(ifp, IFCOUNTER_IPACKETS, rx_pkts);
3024
3025 /*
3026 * Flush any outstanding LRO work
3027 */
3028 #if defined(INET6) || defined(INET)
3029 tcp_lro_flush_all(&rxq->ifr_lc);
3030 #endif
3031 if (avail != 0 || iflib_rxd_avail(ctx, rxq, *cidxp, 1) != 0)
3032 retval |= IFLIB_RXEOF_MORE;
3033 return (retval);
3034 err:
3035 STATE_LOCK(ctx);
3036 ctx->ifc_flags |= IFC_DO_RESET;
3037 iflib_admin_intr_deferred(ctx);
3038 STATE_UNLOCK(ctx);
3039 return (0);
3040 }
3041
3042 #define TXD_NOTIFY_COUNT(txq) (((txq)->ift_size / (txq)->ift_update_freq) - 1)
3043 static inline qidx_t
txq_max_db_deferred(iflib_txq_t txq,qidx_t in_use)3044 txq_max_db_deferred(iflib_txq_t txq, qidx_t in_use)
3045 {
3046 qidx_t notify_count = TXD_NOTIFY_COUNT(txq);
3047 qidx_t minthresh = txq->ift_size / 8;
3048 if (in_use > 4 * minthresh)
3049 return (notify_count);
3050 if (in_use > 2 * minthresh)
3051 return (notify_count >> 1);
3052 if (in_use > minthresh)
3053 return (notify_count >> 3);
3054 return (0);
3055 }
3056
3057 static inline qidx_t
txq_max_rs_deferred(iflib_txq_t txq)3058 txq_max_rs_deferred(iflib_txq_t txq)
3059 {
3060 qidx_t notify_count = TXD_NOTIFY_COUNT(txq);
3061 qidx_t minthresh = txq->ift_size / 8;
3062 if (txq->ift_in_use > 4 * minthresh)
3063 return (notify_count);
3064 if (txq->ift_in_use > 2 * minthresh)
3065 return (notify_count >> 1);
3066 if (txq->ift_in_use > minthresh)
3067 return (notify_count >> 2);
3068 return (2);
3069 }
3070
3071 #define M_CSUM_FLAGS(m) ((m)->m_pkthdr.csum_flags)
3072 #define M_HAS_VLANTAG(m) (m->m_flags & M_VLANTAG)
3073
3074 #define TXQ_MAX_DB_DEFERRED(txq, in_use) txq_max_db_deferred((txq), (in_use))
3075 #define TXQ_MAX_RS_DEFERRED(txq) txq_max_rs_deferred(txq)
3076 #define TXQ_MAX_DB_CONSUMED(size) (size >> 4)
3077
3078 /* forward compatibility for cxgb */
3079 #define FIRST_QSET(ctx) 0
3080 #define NTXQSETS(ctx) ((ctx)->ifc_softc_ctx.isc_ntxqsets)
3081 #define NRXQSETS(ctx) ((ctx)->ifc_softc_ctx.isc_nrxqsets)
3082 #define QIDX(ctx, m) ((((m)->m_pkthdr.flowid & ctx->ifc_softc_ctx.isc_rss_table_mask) % NTXQSETS(ctx)) + FIRST_QSET(ctx))
3083 #define DESC_RECLAIMABLE(q) ((int)((q)->ift_processed - (q)->ift_cleaned - (q)->ift_ctx->ifc_softc_ctx.isc_tx_nsegments))
3084
3085 /* XXX we should be setting this to something other than zero */
3086 #define RECLAIM_THRESH(ctx) ((ctx)->ifc_sctx->isc_tx_reclaim_thresh)
3087 #define MAX_TX_DESC(ctx) MAX((ctx)->ifc_softc_ctx.isc_tx_tso_segments_max, \
3088 (ctx)->ifc_softc_ctx.isc_tx_nsegments)
3089
3090 static inline bool
iflib_txd_db_check(iflib_txq_t txq,int ring)3091 iflib_txd_db_check(iflib_txq_t txq, int ring)
3092 {
3093 if_ctx_t ctx = txq->ift_ctx;
3094 qidx_t dbval, max;
3095
3096 max = TXQ_MAX_DB_DEFERRED(txq, txq->ift_in_use);
3097
3098 /* force || threshold exceeded || at the edge of the ring */
3099 if (ring || (txq->ift_db_pending >= max) || (TXQ_AVAIL(txq) <= MAX_TX_DESC(ctx) + 2)) {
3100
3101 /*
3102 * 'npending' is used if the card's doorbell is in terms of the number of descriptors
3103 * pending flush (BRCM). 'pidx' is used in cases where the card's doorbeel uses the
3104 * producer index explicitly (INTC).
3105 */
3106 dbval = txq->ift_npending ? txq->ift_npending : txq->ift_pidx;
3107 bus_dmamap_sync(txq->ift_ifdi->idi_tag, txq->ift_ifdi->idi_map,
3108 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3109 ctx->isc_txd_flush(ctx->ifc_softc, txq->ift_id, dbval);
3110
3111 /*
3112 * Absent bugs there are zero packets pending so reset pending counts to zero.
3113 */
3114 txq->ift_db_pending = txq->ift_npending = 0;
3115 return (true);
3116 }
3117 return (false);
3118 }
3119
3120 #ifdef PKT_DEBUG
3121 static void
print_pkt(if_pkt_info_t pi)3122 print_pkt(if_pkt_info_t pi)
3123 {
3124 printf("pi len: %d qsidx: %d nsegs: %d ndescs: %d flags: %x pidx: %d\n",
3125 pi->ipi_len, pi->ipi_qsidx, pi->ipi_nsegs, pi->ipi_ndescs, pi->ipi_flags, pi->ipi_pidx);
3126 printf("pi new_pidx: %d csum_flags: %lx tso_segsz: %d mflags: %x vtag: %d\n",
3127 pi->ipi_new_pidx, pi->ipi_csum_flags, pi->ipi_tso_segsz, pi->ipi_mflags, pi->ipi_vtag);
3128 printf("pi etype: %d ehdrlen: %d ip_hlen: %d ipproto: %d\n",
3129 pi->ipi_etype, pi->ipi_ehdrlen, pi->ipi_ip_hlen, pi->ipi_ipproto);
3130 }
3131 #endif
3132
3133 #define IS_TSO4(pi) ((pi)->ipi_csum_flags & CSUM_IP_TSO)
3134 #define IS_TX_OFFLOAD4(pi) ((pi)->ipi_csum_flags & (CSUM_IP_TCP | CSUM_IP_TSO))
3135 #define IS_TSO6(pi) ((pi)->ipi_csum_flags & CSUM_IP6_TSO)
3136 #define IS_TX_OFFLOAD6(pi) ((pi)->ipi_csum_flags & (CSUM_IP6_TCP | CSUM_IP6_TSO))
3137
3138 /**
3139 * Parses out ethernet header information in the given mbuf.
3140 * Returns in pi: ipi_etype (EtherType) and ipi_ehdrlen (Ethernet header length)
3141 *
3142 * This will account for the VLAN header if present.
3143 *
3144 * XXX: This doesn't handle QinQ, which could prevent TX offloads for those
3145 * types of packets.
3146 */
3147 static int
iflib_parse_ether_header(if_pkt_info_t pi,struct mbuf ** mp,uint64_t * pullups)3148 iflib_parse_ether_header(if_pkt_info_t pi, struct mbuf **mp, uint64_t *pullups)
3149 {
3150 struct ether_vlan_header *eh;
3151 struct mbuf *m;
3152
3153 m = *mp;
3154 if (__predict_false(m->m_len < sizeof(*eh))) {
3155 (*pullups)++;
3156 if (__predict_false((m = m_pullup(m, sizeof(*eh))) == NULL))
3157 return (ENOMEM);
3158 }
3159 eh = mtod(m, struct ether_vlan_header *);
3160 if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
3161 pi->ipi_etype = ntohs(eh->evl_proto);
3162 pi->ipi_ehdrlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
3163 } else {
3164 pi->ipi_etype = ntohs(eh->evl_encap_proto);
3165 pi->ipi_ehdrlen = ETHER_HDR_LEN;
3166 }
3167 *mp = m;
3168
3169 return (0);
3170 }
3171
3172 /**
3173 * Parse up to the L3 header and extract IPv4/IPv6 header information into pi.
3174 * Currently this information includes: IP ToS value, IP header version/presence
3175 *
3176 * This is missing some checks and doesn't edit the packet content as it goes,
3177 * unlike iflib_parse_header(), in order to keep the amount of code here minimal.
3178 */
3179 static int
iflib_parse_header_partial(if_pkt_info_t pi,struct mbuf ** mp,uint64_t * pullups)3180 iflib_parse_header_partial(if_pkt_info_t pi, struct mbuf **mp, uint64_t *pullups)
3181 {
3182 struct mbuf *m;
3183 int err;
3184
3185 *pullups = 0;
3186 m = *mp;
3187 if (!M_WRITABLE(m)) {
3188 if ((m = m_dup(m, M_NOWAIT)) == NULL) {
3189 return (ENOMEM);
3190 } else {
3191 m_freem(*mp);
3192 DBG_COUNTER_INC(tx_frees);
3193 *mp = m;
3194 }
3195 }
3196
3197 /* Fills out pi->ipi_etype */
3198 err = iflib_parse_ether_header(pi, mp, pullups);
3199 if (err)
3200 return (err);
3201 m = *mp;
3202
3203 switch (pi->ipi_etype) {
3204 #ifdef INET
3205 case ETHERTYPE_IP:
3206 {
3207 struct mbuf *n;
3208 struct ip *ip = NULL;
3209 int miniplen;
3210
3211 miniplen = min(m->m_pkthdr.len, pi->ipi_ehdrlen + sizeof(*ip));
3212 if (__predict_false(m->m_len < miniplen)) {
3213 /*
3214 * Check for common case where the first mbuf only contains
3215 * the Ethernet header
3216 */
3217 if (m->m_len == pi->ipi_ehdrlen) {
3218 n = m->m_next;
3219 MPASS(n);
3220 /* If next mbuf contains at least the minimal IP header, then stop */
3221 if (n->m_len >= sizeof(*ip)) {
3222 ip = (struct ip *)n->m_data;
3223 } else {
3224 (*pullups)++;
3225 if (__predict_false((m = m_pullup(m, miniplen)) == NULL))
3226 return (ENOMEM);
3227 ip = (struct ip *)(m->m_data + pi->ipi_ehdrlen);
3228 }
3229 } else {
3230 (*pullups)++;
3231 if (__predict_false((m = m_pullup(m, miniplen)) == NULL))
3232 return (ENOMEM);
3233 ip = (struct ip *)(m->m_data + pi->ipi_ehdrlen);
3234 }
3235 } else {
3236 ip = (struct ip *)(m->m_data + pi->ipi_ehdrlen);
3237 }
3238
3239 /* Have the IPv4 header w/ no options here */
3240 pi->ipi_ip_hlen = ip->ip_hl << 2;
3241 pi->ipi_ipproto = ip->ip_p;
3242 pi->ipi_ip_tos = ip->ip_tos;
3243 pi->ipi_flags |= IPI_TX_IPV4;
3244
3245 break;
3246 }
3247 #endif
3248 #ifdef INET6
3249 case ETHERTYPE_IPV6:
3250 {
3251 struct ip6_hdr *ip6;
3252
3253 if (__predict_false(m->m_len < pi->ipi_ehdrlen + sizeof(struct ip6_hdr))) {
3254 (*pullups)++;
3255 if (__predict_false((m = m_pullup(m, pi->ipi_ehdrlen + sizeof(struct ip6_hdr))) == NULL))
3256 return (ENOMEM);
3257 }
3258 ip6 = (struct ip6_hdr *)(m->m_data + pi->ipi_ehdrlen);
3259
3260 /* Have the IPv6 fixed header here */
3261 pi->ipi_ip_hlen = sizeof(struct ip6_hdr);
3262 pi->ipi_ipproto = ip6->ip6_nxt;
3263 pi->ipi_ip_tos = IPV6_TRAFFIC_CLASS(ip6);
3264 pi->ipi_flags |= IPI_TX_IPV6;
3265
3266 break;
3267 }
3268 #endif
3269 default:
3270 pi->ipi_csum_flags &= ~CSUM_OFFLOAD;
3271 pi->ipi_ip_hlen = 0;
3272 break;
3273 }
3274 *mp = m;
3275
3276 return (0);
3277
3278 }
3279
3280 static int
iflib_parse_header(iflib_txq_t txq,if_pkt_info_t pi,struct mbuf ** mp)3281 iflib_parse_header(iflib_txq_t txq, if_pkt_info_t pi, struct mbuf **mp)
3282 {
3283 if_shared_ctx_t sctx = txq->ift_ctx->ifc_sctx;
3284 struct mbuf *m;
3285 int err;
3286
3287 m = *mp;
3288 if ((sctx->isc_flags & IFLIB_NEED_SCRATCH) &&
3289 M_WRITABLE(m) == 0) {
3290 if ((m = m_dup(m, M_NOWAIT)) == NULL) {
3291 return (ENOMEM);
3292 } else {
3293 m_freem(*mp);
3294 DBG_COUNTER_INC(tx_frees);
3295 *mp = m;
3296 }
3297 }
3298
3299 /* Fills out pi->ipi_etype */
3300 err = iflib_parse_ether_header(pi, mp, &txq->ift_pullups);
3301 if (__predict_false(err))
3302 return (err);
3303 m = *mp;
3304
3305 switch (pi->ipi_etype) {
3306 #ifdef INET
3307 case ETHERTYPE_IP:
3308 {
3309 struct ip *ip;
3310 struct tcphdr *th;
3311 uint8_t hlen;
3312
3313 hlen = pi->ipi_ehdrlen + sizeof(*ip);
3314 if (__predict_false(m->m_len < hlen)) {
3315 txq->ift_pullups++;
3316 if (__predict_false((m = m_pullup(m, hlen)) == NULL))
3317 return (ENOMEM);
3318 }
3319 ip = (struct ip *)(m->m_data + pi->ipi_ehdrlen);
3320 hlen = pi->ipi_ehdrlen + (ip->ip_hl << 2);
3321 if (ip->ip_p == IPPROTO_TCP) {
3322 hlen += sizeof(*th);
3323 th = (struct tcphdr *)((char *)ip + (ip->ip_hl << 2));
3324 } else if (ip->ip_p == IPPROTO_UDP) {
3325 hlen += sizeof(struct udphdr);
3326 }
3327 if (__predict_false(m->m_len < hlen)) {
3328 txq->ift_pullups++;
3329 if ((m = m_pullup(m, hlen)) == NULL)
3330 return (ENOMEM);
3331 }
3332 pi->ipi_ip_hlen = ip->ip_hl << 2;
3333 pi->ipi_ipproto = ip->ip_p;
3334 pi->ipi_ip_tos = ip->ip_tos;
3335 pi->ipi_flags |= IPI_TX_IPV4;
3336
3337 /* TCP checksum offload may require TCP header length */
3338 if (IS_TX_OFFLOAD4(pi)) {
3339 if (__predict_true(pi->ipi_ipproto == IPPROTO_TCP)) {
3340 pi->ipi_tcp_hflags = tcp_get_flags(th);
3341 pi->ipi_tcp_hlen = th->th_off << 2;
3342 pi->ipi_tcp_seq = th->th_seq;
3343 }
3344 if (IS_TSO4(pi)) {
3345 if (__predict_false(ip->ip_p != IPPROTO_TCP))
3346 return (ENXIO);
3347 /*
3348 * TSO always requires hardware checksum offload.
3349 */
3350 pi->ipi_csum_flags |= (CSUM_IP_TCP | CSUM_IP);
3351 th->th_sum = in_pseudo(ip->ip_src.s_addr,
3352 ip->ip_dst.s_addr, htons(IPPROTO_TCP));
3353 pi->ipi_tso_segsz = m->m_pkthdr.tso_segsz;
3354 if (sctx->isc_flags & IFLIB_TSO_INIT_IP) {
3355 ip->ip_sum = 0;
3356 ip->ip_len = htons(pi->ipi_ip_hlen + pi->ipi_tcp_hlen + pi->ipi_tso_segsz);
3357 }
3358 }
3359 }
3360 if ((sctx->isc_flags & IFLIB_NEED_ZERO_CSUM) && (pi->ipi_csum_flags & CSUM_IP))
3361 ip->ip_sum = 0;
3362
3363 break;
3364 }
3365 #endif
3366 #ifdef INET6
3367 case ETHERTYPE_IPV6:
3368 {
3369 struct ip6_hdr *ip6 = (struct ip6_hdr *)(m->m_data + pi->ipi_ehdrlen);
3370 struct tcphdr *th;
3371 pi->ipi_ip_hlen = sizeof(struct ip6_hdr);
3372
3373 if (__predict_false(m->m_len < pi->ipi_ehdrlen + sizeof(struct ip6_hdr))) {
3374 txq->ift_pullups++;
3375 if (__predict_false((m = m_pullup(m, pi->ipi_ehdrlen + sizeof(struct ip6_hdr))) == NULL))
3376 return (ENOMEM);
3377 }
3378 th = (struct tcphdr *)((caddr_t)ip6 + pi->ipi_ip_hlen);
3379
3380 /* XXX-BZ this will go badly in case of ext hdrs. */
3381 pi->ipi_ipproto = ip6->ip6_nxt;
3382 pi->ipi_ip_tos = IPV6_TRAFFIC_CLASS(ip6);
3383 pi->ipi_flags |= IPI_TX_IPV6;
3384
3385 /* TCP checksum offload may require TCP header length */
3386 if (IS_TX_OFFLOAD6(pi)) {
3387 if (pi->ipi_ipproto == IPPROTO_TCP) {
3388 if (__predict_false(m->m_len < pi->ipi_ehdrlen + sizeof(struct ip6_hdr) + sizeof(struct tcphdr))) {
3389 txq->ift_pullups++;
3390 if (__predict_false((m = m_pullup(m, pi->ipi_ehdrlen + sizeof(struct ip6_hdr) + sizeof(struct tcphdr))) == NULL))
3391 return (ENOMEM);
3392 }
3393 pi->ipi_tcp_hflags = tcp_get_flags(th);
3394 pi->ipi_tcp_hlen = th->th_off << 2;
3395 pi->ipi_tcp_seq = th->th_seq;
3396 }
3397 if (IS_TSO6(pi)) {
3398 if (__predict_false(ip6->ip6_nxt != IPPROTO_TCP))
3399 return (ENXIO);
3400 /*
3401 * TSO always requires hardware checksum offload.
3402 */
3403 pi->ipi_csum_flags |= CSUM_IP6_TCP;
3404 th->th_sum = in6_cksum_pseudo(ip6, 0, IPPROTO_TCP, 0);
3405 pi->ipi_tso_segsz = m->m_pkthdr.tso_segsz;
3406 }
3407 }
3408 break;
3409 }
3410 #endif
3411 default:
3412 pi->ipi_csum_flags &= ~CSUM_OFFLOAD;
3413 pi->ipi_ip_hlen = 0;
3414 break;
3415 }
3416 *mp = m;
3417
3418 return (0);
3419 }
3420
3421 /*
3422 * If dodgy hardware rejects the scatter gather chain we've handed it
3423 * we'll need to remove the mbuf chain from ifsg_m[] before we can add the
3424 * m_defrag'd mbufs
3425 */
3426 static __noinline struct mbuf *
iflib_remove_mbuf(iflib_txq_t txq)3427 iflib_remove_mbuf(iflib_txq_t txq)
3428 {
3429 int ntxd, pidx;
3430 struct mbuf *m, **ifsd_m;
3431
3432 ifsd_m = txq->ift_sds.ifsd_m;
3433 ntxd = txq->ift_size;
3434 pidx = txq->ift_pidx & (ntxd - 1);
3435 ifsd_m = txq->ift_sds.ifsd_m;
3436 m = ifsd_m[pidx];
3437 ifsd_m[pidx] = NULL;
3438 bus_dmamap_unload(txq->ift_buf_tag, txq->ift_sds.ifsd_map[pidx]);
3439 if (txq->ift_sds.ifsd_tso_map != NULL)
3440 bus_dmamap_unload(txq->ift_tso_buf_tag,
3441 txq->ift_sds.ifsd_tso_map[pidx]);
3442 #if MEMORY_LOGGING
3443 txq->ift_dequeued++;
3444 #endif
3445 return (m);
3446 }
3447
3448 static inline caddr_t
calc_next_txd(iflib_txq_t txq,int cidx,uint8_t qid)3449 calc_next_txd(iflib_txq_t txq, int cidx, uint8_t qid)
3450 {
3451 qidx_t size;
3452 int ntxd;
3453 caddr_t start, end, cur, next;
3454
3455 ntxd = txq->ift_size;
3456 size = txq->ift_txd_size[qid];
3457 start = txq->ift_ifdi[qid].idi_vaddr;
3458
3459 if (__predict_false(size == 0))
3460 return (start);
3461 cur = start + size * cidx;
3462 end = start + size * ntxd;
3463 next = CACHE_PTR_NEXT(cur);
3464 return (next < end ? next : start);
3465 }
3466
3467 /*
3468 * Pad an mbuf to ensure a minimum ethernet frame size.
3469 * min_frame_size is the frame size (less CRC) to pad the mbuf to
3470 */
3471 static __noinline int
iflib_ether_pad(device_t dev,struct mbuf ** m_head,uint16_t min_frame_size)3472 iflib_ether_pad(device_t dev, struct mbuf **m_head, uint16_t min_frame_size)
3473 {
3474 /*
3475 * 18 is enough bytes to pad an ARP packet to 46 bytes, and
3476 * and ARP message is the smallest common payload I can think of
3477 */
3478 static char pad[18]; /* just zeros */
3479 int n;
3480 struct mbuf *new_head;
3481
3482 if (!M_WRITABLE(*m_head)) {
3483 new_head = m_dup(*m_head, M_NOWAIT);
3484 if (new_head == NULL) {
3485 m_freem(*m_head);
3486 device_printf(dev, "cannot pad short frame, m_dup() failed");
3487 DBG_COUNTER_INC(encap_pad_mbuf_fail);
3488 DBG_COUNTER_INC(tx_frees);
3489 return (ENOMEM);
3490 }
3491 m_freem(*m_head);
3492 *m_head = new_head;
3493 }
3494
3495 for (n = min_frame_size - (*m_head)->m_pkthdr.len;
3496 n > 0; n -= sizeof(pad))
3497 if (!m_append(*m_head, min(n, sizeof(pad)), pad))
3498 break;
3499
3500 if (n > 0) {
3501 m_freem(*m_head);
3502 device_printf(dev, "cannot pad short frame\n");
3503 DBG_COUNTER_INC(encap_pad_mbuf_fail);
3504 DBG_COUNTER_INC(tx_frees);
3505 return (ENOBUFS);
3506 }
3507
3508 return (0);
3509 }
3510
3511 static int
iflib_encap(iflib_txq_t txq,struct mbuf ** m_headp)3512 iflib_encap(iflib_txq_t txq, struct mbuf **m_headp)
3513 {
3514 if_ctx_t ctx;
3515 if_shared_ctx_t sctx;
3516 if_softc_ctx_t scctx;
3517 bus_dma_tag_t buf_tag;
3518 bus_dma_segment_t *segs;
3519 struct mbuf *m_head, **ifsd_m;
3520 void *next_txd;
3521 bus_dmamap_t map;
3522 struct if_pkt_info pi;
3523 int remap = 0;
3524 int err, nsegs, ndesc, max_segs, pidx, cidx, next, ntxd;
3525
3526 ctx = txq->ift_ctx;
3527 sctx = ctx->ifc_sctx;
3528 scctx = &ctx->ifc_softc_ctx;
3529 segs = txq->ift_segs;
3530 ntxd = txq->ift_size;
3531 m_head = *m_headp;
3532 map = NULL;
3533
3534 /*
3535 * If we're doing TSO the next descriptor to clean may be quite far ahead
3536 */
3537 cidx = txq->ift_cidx;
3538 pidx = txq->ift_pidx;
3539 if (ctx->ifc_flags & IFC_PREFETCH) {
3540 next = (cidx + CACHE_PTR_INCREMENT) & (ntxd - 1);
3541 if (!(ctx->ifc_flags & IFLIB_HAS_TXCQ)) {
3542 next_txd = calc_next_txd(txq, cidx, 0);
3543 prefetch(next_txd);
3544 }
3545
3546 /* prefetch the next cache line of mbuf pointers and flags */
3547 prefetch(&txq->ift_sds.ifsd_m[next]);
3548 prefetch(&txq->ift_sds.ifsd_map[next]);
3549 next = (cidx + CACHE_LINE_SIZE) & (ntxd - 1);
3550 }
3551 map = txq->ift_sds.ifsd_map[pidx];
3552 ifsd_m = txq->ift_sds.ifsd_m;
3553
3554 if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
3555 buf_tag = txq->ift_tso_buf_tag;
3556 max_segs = scctx->isc_tx_tso_segments_max;
3557 map = txq->ift_sds.ifsd_tso_map[pidx];
3558 MPASS(buf_tag != NULL);
3559 MPASS(max_segs > 0);
3560 } else {
3561 buf_tag = txq->ift_buf_tag;
3562 max_segs = scctx->isc_tx_nsegments;
3563 map = txq->ift_sds.ifsd_map[pidx];
3564 }
3565 if ((sctx->isc_flags & IFLIB_NEED_ETHER_PAD) &&
3566 __predict_false(m_head->m_pkthdr.len < scctx->isc_min_frame_size)) {
3567 err = iflib_ether_pad(ctx->ifc_dev, m_headp, scctx->isc_min_frame_size);
3568 if (err) {
3569 DBG_COUNTER_INC(encap_txd_encap_fail);
3570 return (err);
3571 }
3572 }
3573 m_head = *m_headp;
3574
3575 pkt_info_zero(&pi);
3576 pi.ipi_mflags = (m_head->m_flags & (M_VLANTAG | M_BCAST | M_MCAST));
3577 pi.ipi_pidx = pidx;
3578 pi.ipi_qsidx = txq->ift_id;
3579 pi.ipi_len = m_head->m_pkthdr.len;
3580 pi.ipi_csum_flags = m_head->m_pkthdr.csum_flags;
3581 pi.ipi_vtag = M_HAS_VLANTAG(m_head) ? m_head->m_pkthdr.ether_vtag : 0;
3582
3583 /* deliberate bitwise OR to make one condition */
3584 if (__predict_true((pi.ipi_csum_flags | pi.ipi_vtag))) {
3585 if (__predict_false((err = iflib_parse_header(txq, &pi, m_headp)) != 0)) {
3586 DBG_COUNTER_INC(encap_txd_encap_fail);
3587 return (err);
3588 }
3589 m_head = *m_headp;
3590 }
3591
3592 retry:
3593 err = bus_dmamap_load_mbuf_sg(buf_tag, map, m_head, segs, &nsegs,
3594 BUS_DMA_NOWAIT);
3595 defrag:
3596 if (__predict_false(err)) {
3597 switch (err) {
3598 case EFBIG:
3599 /* try collapse once and defrag once */
3600 if (remap == 0) {
3601 m_head = m_collapse(*m_headp, M_NOWAIT, max_segs);
3602 /* try defrag if collapsing fails */
3603 if (m_head == NULL)
3604 remap++;
3605 }
3606 if (remap == 1) {
3607 txq->ift_mbuf_defrag++;
3608 m_head = m_defrag(*m_headp, M_NOWAIT);
3609 }
3610 /*
3611 * remap should never be >1 unless bus_dmamap_load_mbuf_sg
3612 * failed to map an mbuf that was run through m_defrag
3613 */
3614 MPASS(remap <= 1);
3615 if (__predict_false(m_head == NULL || remap > 1))
3616 goto defrag_failed;
3617 remap++;
3618 *m_headp = m_head;
3619 goto retry;
3620 break;
3621 case ENOMEM:
3622 txq->ift_no_tx_dma_setup++;
3623 break;
3624 default:
3625 txq->ift_no_tx_dma_setup++;
3626 m_freem(*m_headp);
3627 DBG_COUNTER_INC(tx_frees);
3628 *m_headp = NULL;
3629 break;
3630 }
3631 txq->ift_map_failed++;
3632 DBG_COUNTER_INC(encap_load_mbuf_fail);
3633 DBG_COUNTER_INC(encap_txd_encap_fail);
3634 return (err);
3635 }
3636 ifsd_m[pidx] = m_head;
3637 /*
3638 * XXX assumes a 1 to 1 relationship between segments and
3639 * descriptors - this does not hold true on all drivers, e.g.
3640 * cxgb
3641 */
3642 if (__predict_false(nsegs + 2 > TXQ_AVAIL(txq))) {
3643 (void)iflib_completed_tx_reclaim(txq, RECLAIM_THRESH(ctx));
3644 if (__predict_false(nsegs + 2 > TXQ_AVAIL(txq))) {
3645 txq->ift_no_desc_avail++;
3646 bus_dmamap_unload(buf_tag, map);
3647 DBG_COUNTER_INC(encap_txq_avail_fail);
3648 DBG_COUNTER_INC(encap_txd_encap_fail);
3649 if (ctx->ifc_sysctl_simple_tx) {
3650 *m_headp = m_head = iflib_remove_mbuf(txq);
3651 m_freem(*m_headp);
3652 DBG_COUNTER_INC(tx_frees);
3653 *m_headp = NULL;
3654 }
3655 if ((txq->ift_task.gt_task.ta_flags & TASK_ENQUEUED) == 0)
3656 GROUPTASK_ENQUEUE(&txq->ift_task);
3657 return (ENOBUFS);
3658 }
3659 }
3660 /*
3661 * On Intel cards we can greatly reduce the number of TX interrupts
3662 * we see by only setting report status on every Nth descriptor.
3663 * However, this also means that the driver will need to keep track
3664 * of the descriptors that RS was set on to check them for the DD bit.
3665 */
3666 txq->ift_rs_pending += nsegs + 1;
3667 if (txq->ift_rs_pending > TXQ_MAX_RS_DEFERRED(txq) ||
3668 iflib_no_tx_batch || (TXQ_AVAIL(txq) - nsegs) <= MAX_TX_DESC(ctx) + 2) {
3669 pi.ipi_flags |= IPI_TX_INTR;
3670 txq->ift_rs_pending = 0;
3671 }
3672
3673 pi.ipi_segs = segs;
3674 pi.ipi_nsegs = nsegs;
3675
3676 MPASS(pidx >= 0 && pidx < txq->ift_size);
3677 #ifdef PKT_DEBUG
3678 print_pkt(&pi);
3679 #endif
3680 if ((err = ctx->isc_txd_encap(ctx->ifc_softc, &pi)) == 0) {
3681 bus_dmamap_sync(buf_tag, map, BUS_DMASYNC_PREWRITE);
3682 DBG_COUNTER_INC(tx_encap);
3683 MPASS(pi.ipi_new_pidx < txq->ift_size);
3684
3685 ndesc = pi.ipi_new_pidx - pi.ipi_pidx;
3686 if (pi.ipi_new_pidx < pi.ipi_pidx) {
3687 ndesc += txq->ift_size;
3688 txq->ift_gen = 1;
3689 }
3690 /*
3691 * drivers can need as many as
3692 * two sentinels
3693 */
3694 MPASS(ndesc <= pi.ipi_nsegs + 2);
3695 MPASS(pi.ipi_new_pidx != pidx);
3696 MPASS(ndesc > 0);
3697 txq->ift_in_use += ndesc;
3698 txq->ift_db_pending += ndesc;
3699
3700 /*
3701 * We update the last software descriptor again here because there may
3702 * be a sentinel and/or there may be more mbufs than segments
3703 */
3704 txq->ift_pidx = pi.ipi_new_pidx;
3705 txq->ift_npending += pi.ipi_ndescs;
3706 } else {
3707 *m_headp = m_head = iflib_remove_mbuf(txq);
3708 if (err == EFBIG) {
3709 txq->ift_txd_encap_efbig++;
3710 if (remap < 2) {
3711 remap = 1;
3712 goto defrag;
3713 }
3714 }
3715 goto defrag_failed;
3716 }
3717 /*
3718 * err can't possibly be non-zero here, so we don't neet to test it
3719 * to see if we need to DBG_COUNTER_INC(encap_txd_encap_fail).
3720 */
3721 return (err);
3722
3723 defrag_failed:
3724 txq->ift_mbuf_defrag_failed++;
3725 txq->ift_map_failed++;
3726 m_freem(*m_headp);
3727 DBG_COUNTER_INC(tx_frees);
3728 *m_headp = NULL;
3729 DBG_COUNTER_INC(encap_txd_encap_fail);
3730 return (ENOMEM);
3731 }
3732
3733 static void
iflib_tx_desc_free(iflib_txq_t txq,int n)3734 iflib_tx_desc_free(iflib_txq_t txq, int n)
3735 {
3736 uint32_t qsize, cidx, mask, gen;
3737 struct mbuf *m, **ifsd_m;
3738 bool do_prefetch;
3739
3740 cidx = txq->ift_cidx;
3741 gen = txq->ift_gen;
3742 qsize = txq->ift_size;
3743 mask = qsize - 1;
3744 ifsd_m = txq->ift_sds.ifsd_m;
3745 do_prefetch = (txq->ift_ctx->ifc_flags & IFC_PREFETCH);
3746
3747 while (n-- > 0) {
3748 if (do_prefetch) {
3749 prefetch(ifsd_m[(cidx + 3) & mask]);
3750 prefetch(ifsd_m[(cidx + 4) & mask]);
3751 }
3752 if ((m = ifsd_m[cidx]) != NULL) {
3753 prefetch(&ifsd_m[(cidx + CACHE_PTR_INCREMENT) & mask]);
3754 if (m->m_pkthdr.csum_flags & CSUM_TSO) {
3755 bus_dmamap_sync(txq->ift_tso_buf_tag,
3756 txq->ift_sds.ifsd_tso_map[cidx],
3757 BUS_DMASYNC_POSTWRITE);
3758 bus_dmamap_unload(txq->ift_tso_buf_tag,
3759 txq->ift_sds.ifsd_tso_map[cidx]);
3760 } else {
3761 bus_dmamap_sync(txq->ift_buf_tag,
3762 txq->ift_sds.ifsd_map[cidx],
3763 BUS_DMASYNC_POSTWRITE);
3764 bus_dmamap_unload(txq->ift_buf_tag,
3765 txq->ift_sds.ifsd_map[cidx]);
3766 }
3767 /* XXX we don't support any drivers that batch packets yet */
3768 MPASS(m->m_nextpkt == NULL);
3769 m_freem(m);
3770 ifsd_m[cidx] = NULL;
3771 #if MEMORY_LOGGING
3772 txq->ift_dequeued++;
3773 #endif
3774 DBG_COUNTER_INC(tx_frees);
3775 }
3776 if (__predict_false(++cidx == qsize)) {
3777 cidx = 0;
3778 gen = 0;
3779 }
3780 }
3781 txq->ift_cidx = cidx;
3782 txq->ift_gen = gen;
3783 }
3784
3785 static __inline int
iflib_completed_tx_reclaim(iflib_txq_t txq,int thresh)3786 iflib_completed_tx_reclaim(iflib_txq_t txq, int thresh)
3787 {
3788 int reclaim;
3789 if_ctx_t ctx = txq->ift_ctx;
3790
3791 KASSERT(thresh >= 0, ("invalid threshold to reclaim"));
3792 MPASS(thresh /*+ MAX_TX_DESC(txq->ift_ctx) */ < txq->ift_size);
3793
3794 /*
3795 * Need a rate-limiting check so that this isn't called every time
3796 */
3797 iflib_tx_credits_update(ctx, txq);
3798 reclaim = DESC_RECLAIMABLE(txq);
3799
3800 if (reclaim <= thresh /* + MAX_TX_DESC(txq->ift_ctx) */) {
3801 #ifdef INVARIANTS
3802 if (iflib_verbose_debug) {
3803 printf("%s processed=%ju cleaned=%ju tx_nsegments=%d reclaim=%d thresh=%d\n", __func__,
3804 txq->ift_processed, txq->ift_cleaned, txq->ift_ctx->ifc_softc_ctx.isc_tx_nsegments,
3805 reclaim, thresh);
3806 }
3807 #endif
3808 return (0);
3809 }
3810 iflib_tx_desc_free(txq, reclaim);
3811 txq->ift_cleaned += reclaim;
3812 txq->ift_in_use -= reclaim;
3813
3814 return (reclaim);
3815 }
3816
3817 static struct mbuf **
_ring_peek_one(struct ifmp_ring * r,int cidx,int offset,int remaining)3818 _ring_peek_one(struct ifmp_ring *r, int cidx, int offset, int remaining)
3819 {
3820 int next, size;
3821 struct mbuf **items;
3822
3823 size = r->size;
3824 next = (cidx + CACHE_PTR_INCREMENT) & (size - 1);
3825 items = __DEVOLATILE(struct mbuf **, &r->items[0]);
3826
3827 prefetch(items[(cidx + offset) & (size - 1)]);
3828 if (remaining > 1) {
3829 prefetch2cachelines(&items[next]);
3830 prefetch2cachelines(items[(cidx + offset + 1) & (size - 1)]);
3831 prefetch2cachelines(items[(cidx + offset + 2) & (size - 1)]);
3832 prefetch2cachelines(items[(cidx + offset + 3) & (size - 1)]);
3833 }
3834 return (__DEVOLATILE(struct mbuf **, &r->items[(cidx + offset) & (size - 1)]));
3835 }
3836
3837 static void
iflib_txq_check_drain(iflib_txq_t txq,int budget)3838 iflib_txq_check_drain(iflib_txq_t txq, int budget)
3839 {
3840
3841 ifmp_ring_check_drainage(txq->ift_br, budget);
3842 }
3843
3844 static uint32_t
iflib_txq_can_drain(struct ifmp_ring * r)3845 iflib_txq_can_drain(struct ifmp_ring *r)
3846 {
3847 iflib_txq_t txq = r->cookie;
3848 if_ctx_t ctx = txq->ift_ctx;
3849
3850 if (TXQ_AVAIL(txq) > MAX_TX_DESC(ctx) + 2)
3851 return (1);
3852 bus_dmamap_sync(txq->ift_ifdi->idi_tag, txq->ift_ifdi->idi_map,
3853 BUS_DMASYNC_POSTREAD);
3854 return (ctx->isc_txd_credits_update(ctx->ifc_softc, txq->ift_id,
3855 false));
3856 }
3857
3858 static uint32_t
iflib_txq_drain(struct ifmp_ring * r,uint32_t cidx,uint32_t pidx)3859 iflib_txq_drain(struct ifmp_ring *r, uint32_t cidx, uint32_t pidx)
3860 {
3861 iflib_txq_t txq = r->cookie;
3862 if_ctx_t ctx = txq->ift_ctx;
3863 if_t ifp = ctx->ifc_ifp;
3864 struct mbuf *m, **mp;
3865 int avail, bytes_sent, skipped, count, err, i;
3866 int mcast_sent, pkt_sent, reclaimed;
3867 bool do_prefetch, rang, ring;
3868
3869 if (__predict_false(!(if_getdrvflags(ifp) & IFF_DRV_RUNNING) ||
3870 !LINK_ACTIVE(ctx))) {
3871 DBG_COUNTER_INC(txq_drain_notready);
3872 return (0);
3873 }
3874 reclaimed = iflib_completed_tx_reclaim(txq, RECLAIM_THRESH(ctx));
3875 rang = iflib_txd_db_check(txq, reclaimed && txq->ift_db_pending);
3876 avail = IDXDIFF(pidx, cidx, r->size);
3877
3878 if (__predict_false(ctx->ifc_flags & IFC_QFLUSH)) {
3879 /*
3880 * The driver is unloading so we need to free all pending packets.
3881 */
3882 DBG_COUNTER_INC(txq_drain_flushing);
3883 for (i = 0; i < avail; i++) {
3884 if (__predict_true(r->items[(cidx + i) & (r->size - 1)] != (void *)txq))
3885 m_freem(r->items[(cidx + i) & (r->size - 1)]);
3886 r->items[(cidx + i) & (r->size - 1)] = NULL;
3887 }
3888 return (avail);
3889 }
3890
3891 if (__predict_false(if_getdrvflags(ctx->ifc_ifp) & IFF_DRV_OACTIVE)) {
3892 txq->ift_qstatus = IFLIB_QUEUE_IDLE;
3893 CALLOUT_LOCK(txq);
3894 callout_stop(&txq->ift_timer);
3895 CALLOUT_UNLOCK(txq);
3896 DBG_COUNTER_INC(txq_drain_oactive);
3897 return (0);
3898 }
3899
3900 /*
3901 * If we've reclaimed any packets this queue cannot be hung.
3902 */
3903 if (reclaimed)
3904 txq->ift_qstatus = IFLIB_QUEUE_IDLE;
3905 skipped = mcast_sent = bytes_sent = pkt_sent = 0;
3906 count = MIN(avail, TX_BATCH_SIZE);
3907 #ifdef INVARIANTS
3908 if (iflib_verbose_debug)
3909 printf("%s avail=%d ifc_flags=%x txq_avail=%d ", __func__,
3910 avail, ctx->ifc_flags, TXQ_AVAIL(txq));
3911 #endif
3912 do_prefetch = (ctx->ifc_flags & IFC_PREFETCH);
3913 err = 0;
3914 for (i = 0; i < count && TXQ_AVAIL(txq) >= MAX_TX_DESC(ctx) + 2; i++) {
3915 int rem = do_prefetch ? count - i : 0;
3916
3917 mp = _ring_peek_one(r, cidx, i, rem);
3918 MPASS(mp != NULL && *mp != NULL);
3919
3920 /*
3921 * Completion interrupts will use the address of the txq
3922 * as a sentinel to enqueue _something_ in order to acquire
3923 * the lock on the mp_ring (there's no direct lock call).
3924 * We obviously whave to check for these sentinel cases
3925 * and skip them.
3926 */
3927 if (__predict_false(*mp == (struct mbuf *)txq)) {
3928 skipped++;
3929 continue;
3930 }
3931 err = iflib_encap(txq, mp);
3932 if (__predict_false(err)) {
3933 /* no room - bail out */
3934 if (err == ENOBUFS)
3935 break;
3936 skipped++;
3937 /* we can't send this packet - skip it */
3938 continue;
3939 }
3940 pkt_sent++;
3941 m = *mp;
3942 DBG_COUNTER_INC(tx_sent);
3943 bytes_sent += m->m_pkthdr.len;
3944 mcast_sent += !!(m->m_flags & M_MCAST);
3945
3946 if (__predict_false(!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)))
3947 break;
3948 ETHER_BPF_MTAP(ifp, m);
3949 rang = iflib_txd_db_check(txq, false);
3950 }
3951
3952 /* deliberate use of bitwise or to avoid gratuitous short-circuit */
3953 ring = rang ? false : (iflib_min_tx_latency | err);
3954 iflib_txd_db_check(txq, ring);
3955 if_inc_counter(ifp, IFCOUNTER_OBYTES, bytes_sent);
3956 if_inc_counter(ifp, IFCOUNTER_OPACKETS, pkt_sent);
3957 if (mcast_sent)
3958 if_inc_counter(ifp, IFCOUNTER_OMCASTS, mcast_sent);
3959 #ifdef INVARIANTS
3960 if (iflib_verbose_debug)
3961 printf("consumed=%d\n", skipped + pkt_sent);
3962 #endif
3963 return (skipped + pkt_sent);
3964 }
3965
3966 static uint32_t
iflib_txq_drain_always(struct ifmp_ring * r)3967 iflib_txq_drain_always(struct ifmp_ring *r)
3968 {
3969 return (1);
3970 }
3971
3972 static uint32_t
iflib_txq_drain_free(struct ifmp_ring * r,uint32_t cidx,uint32_t pidx)3973 iflib_txq_drain_free(struct ifmp_ring *r, uint32_t cidx, uint32_t pidx)
3974 {
3975 int i, avail;
3976 struct mbuf **mp;
3977 iflib_txq_t txq;
3978
3979 txq = r->cookie;
3980
3981 txq->ift_qstatus = IFLIB_QUEUE_IDLE;
3982 CALLOUT_LOCK(txq);
3983 callout_stop(&txq->ift_timer);
3984 CALLOUT_UNLOCK(txq);
3985
3986 avail = IDXDIFF(pidx, cidx, r->size);
3987 for (i = 0; i < avail; i++) {
3988 mp = _ring_peek_one(r, cidx, i, avail - i);
3989 if (__predict_false(*mp == (struct mbuf *)txq))
3990 continue;
3991 m_freem(*mp);
3992 DBG_COUNTER_INC(tx_frees);
3993 }
3994 MPASS(ifmp_ring_is_stalled(r) == 0);
3995 return (avail);
3996 }
3997
3998 static void
iflib_ifmp_purge(iflib_txq_t txq)3999 iflib_ifmp_purge(iflib_txq_t txq)
4000 {
4001 struct ifmp_ring *r;
4002
4003 r = txq->ift_br;
4004 r->drain = iflib_txq_drain_free;
4005 r->can_drain = iflib_txq_drain_always;
4006
4007 ifmp_ring_check_drainage(r, r->size);
4008
4009 r->drain = iflib_txq_drain;
4010 r->can_drain = iflib_txq_can_drain;
4011 }
4012
4013 static void
_task_fn_tx(void * context)4014 _task_fn_tx(void *context)
4015 {
4016 iflib_txq_t txq = context;
4017 if_ctx_t ctx = txq->ift_ctx;
4018 if_t ifp = ctx->ifc_ifp;
4019 int abdicate = ctx->ifc_sysctl_tx_abdicate;
4020
4021 #ifdef IFLIB_DIAGNOSTICS
4022 txq->ift_cpu_exec_count[curcpu]++;
4023 #endif
4024 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING))
4025 return;
4026 #ifdef DEV_NETMAP
4027 if ((if_getcapenable(ifp) & IFCAP_NETMAP) &&
4028 netmap_tx_irq(ifp, txq->ift_id))
4029 goto skip_ifmp;
4030 #endif
4031 if (ctx->ifc_sysctl_simple_tx) {
4032 mtx_lock(&txq->ift_mtx);
4033 (void)iflib_completed_tx_reclaim(txq, RECLAIM_THRESH(ctx));
4034 mtx_unlock(&txq->ift_mtx);
4035 goto skip_ifmp;
4036 }
4037 #ifdef ALTQ
4038 if (if_altq_is_enabled(ifp))
4039 iflib_altq_if_start(ifp);
4040 #endif
4041 if (txq->ift_db_pending)
4042 ifmp_ring_enqueue(txq->ift_br, (void **)&txq, 1, TX_BATCH_SIZE, abdicate);
4043 else if (!abdicate)
4044 ifmp_ring_check_drainage(txq->ift_br, TX_BATCH_SIZE);
4045 /*
4046 * When abdicating, we always need to check drainage, not just when we don't enqueue
4047 */
4048 if (abdicate)
4049 ifmp_ring_check_drainage(txq->ift_br, TX_BATCH_SIZE);
4050
4051 skip_ifmp:
4052 if (ctx->ifc_flags & IFC_LEGACY)
4053 IFDI_INTR_ENABLE(ctx);
4054 else
4055 IFDI_TX_QUEUE_INTR_ENABLE(ctx, txq->ift_id);
4056 }
4057
4058 static void
_task_fn_rx(void * context)4059 _task_fn_rx(void *context)
4060 {
4061 iflib_rxq_t rxq = context;
4062 if_ctx_t ctx = rxq->ifr_ctx;
4063 uint8_t more;
4064 uint16_t budget;
4065 #ifdef DEV_NETMAP
4066 u_int work = 0;
4067 int nmirq;
4068 #endif
4069
4070 #ifdef IFLIB_DIAGNOSTICS
4071 rxq->ifr_cpu_exec_count[curcpu]++;
4072 #endif
4073 DBG_COUNTER_INC(task_fn_rxs);
4074 if (__predict_false(!(if_getdrvflags(ctx->ifc_ifp) & IFF_DRV_RUNNING)))
4075 return;
4076 #ifdef DEV_NETMAP
4077 nmirq = netmap_rx_irq(ctx->ifc_ifp, rxq->ifr_id, &work);
4078 if (nmirq != NM_IRQ_PASS) {
4079 more = (nmirq == NM_IRQ_RESCHED) ? IFLIB_RXEOF_MORE : 0;
4080 goto skip_rxeof;
4081 }
4082 #endif
4083 budget = ctx->ifc_sysctl_rx_budget;
4084 if (budget == 0)
4085 budget = 16; /* XXX */
4086 more = iflib_rxeof(rxq, budget);
4087 #ifdef DEV_NETMAP
4088 skip_rxeof:
4089 #endif
4090 if ((more & IFLIB_RXEOF_MORE) == 0) {
4091 if (ctx->ifc_flags & IFC_LEGACY)
4092 IFDI_INTR_ENABLE(ctx);
4093 else
4094 IFDI_RX_QUEUE_INTR_ENABLE(ctx, rxq->ifr_id);
4095 DBG_COUNTER_INC(rx_intr_enables);
4096 }
4097 if (__predict_false(!(if_getdrvflags(ctx->ifc_ifp) & IFF_DRV_RUNNING)))
4098 return;
4099
4100 if (more & IFLIB_RXEOF_MORE)
4101 GROUPTASK_ENQUEUE(&rxq->ifr_task);
4102 else if (more & IFLIB_RXEOF_EMPTY)
4103 callout_reset_curcpu(&rxq->ifr_watchdog, 1, &_task_fn_rx_watchdog, rxq);
4104 }
4105
4106 static void
_task_fn_admin(void * context,int pending)4107 _task_fn_admin(void *context, int pending)
4108 {
4109 if_ctx_t ctx = context;
4110 if_softc_ctx_t sctx = &ctx->ifc_softc_ctx;
4111 iflib_txq_t txq;
4112 int i;
4113 bool oactive, running, do_reset, do_watchdog, in_detach;
4114
4115 STATE_LOCK(ctx);
4116 running = (if_getdrvflags(ctx->ifc_ifp) & IFF_DRV_RUNNING);
4117 oactive = (if_getdrvflags(ctx->ifc_ifp) & IFF_DRV_OACTIVE);
4118 do_reset = (ctx->ifc_flags & IFC_DO_RESET);
4119 do_watchdog = (ctx->ifc_flags & IFC_DO_WATCHDOG);
4120 in_detach = (ctx->ifc_flags & IFC_IN_DETACH);
4121 ctx->ifc_flags &= ~(IFC_DO_RESET | IFC_DO_WATCHDOG);
4122 STATE_UNLOCK(ctx);
4123
4124 if ((!running && !oactive) && !(ctx->ifc_sctx->isc_flags & IFLIB_ADMIN_ALWAYS_RUN))
4125 return;
4126 if (in_detach)
4127 return;
4128
4129 CTX_LOCK(ctx);
4130 for (txq = ctx->ifc_txqs, i = 0; i < sctx->isc_ntxqsets; i++, txq++) {
4131 CALLOUT_LOCK(txq);
4132 callout_stop(&txq->ift_timer);
4133 CALLOUT_UNLOCK(txq);
4134 }
4135 if (ctx->ifc_sctx->isc_flags & IFLIB_HAS_ADMINCQ)
4136 IFDI_ADMIN_COMPLETION_HANDLE(ctx);
4137 if (do_watchdog) {
4138 ctx->ifc_watchdog_events++;
4139 IFDI_WATCHDOG_RESET(ctx);
4140 }
4141 IFDI_UPDATE_ADMIN_STATUS(ctx);
4142 for (txq = ctx->ifc_txqs, i = 0; i < sctx->isc_ntxqsets; i++, txq++) {
4143 callout_reset_on(&txq->ift_timer, iflib_timer_default, iflib_timer, txq,
4144 txq->ift_timer.c_cpu);
4145 }
4146 IFDI_LINK_INTR_ENABLE(ctx);
4147 if (do_reset)
4148 iflib_if_init_locked(ctx);
4149 CTX_UNLOCK(ctx);
4150
4151 if (LINK_ACTIVE(ctx) == 0)
4152 return;
4153 for (txq = ctx->ifc_txqs, i = 0; i < sctx->isc_ntxqsets; i++, txq++)
4154 iflib_txq_check_drain(txq, IFLIB_RESTART_BUDGET);
4155 }
4156
4157 static void
_task_fn_iov(void * context,int pending)4158 _task_fn_iov(void *context, int pending)
4159 {
4160 if_ctx_t ctx = context;
4161
4162 if (!(if_getdrvflags(ctx->ifc_ifp) & IFF_DRV_RUNNING) &&
4163 !(ctx->ifc_sctx->isc_flags & IFLIB_ADMIN_ALWAYS_RUN))
4164 return;
4165
4166 CTX_LOCK(ctx);
4167 IFDI_VFLR_HANDLE(ctx);
4168 CTX_UNLOCK(ctx);
4169 }
4170
4171 static int
iflib_sysctl_int_delay(SYSCTL_HANDLER_ARGS)4172 iflib_sysctl_int_delay(SYSCTL_HANDLER_ARGS)
4173 {
4174 int err;
4175 if_int_delay_info_t info;
4176 if_ctx_t ctx;
4177
4178 info = (if_int_delay_info_t)arg1;
4179 ctx = info->iidi_ctx;
4180 info->iidi_req = req;
4181 info->iidi_oidp = oidp;
4182 CTX_LOCK(ctx);
4183 err = IFDI_SYSCTL_INT_DELAY(ctx, info);
4184 CTX_UNLOCK(ctx);
4185 return (err);
4186 }
4187
4188 /*********************************************************************
4189 *
4190 * IFNET FUNCTIONS
4191 *
4192 **********************************************************************/
4193
4194 static void
iflib_if_init_locked(if_ctx_t ctx)4195 iflib_if_init_locked(if_ctx_t ctx)
4196 {
4197 iflib_stop(ctx);
4198 iflib_init_locked(ctx);
4199 }
4200
4201 static void
iflib_if_init(void * arg)4202 iflib_if_init(void *arg)
4203 {
4204 if_ctx_t ctx = arg;
4205
4206 CTX_LOCK(ctx);
4207 iflib_if_init_locked(ctx);
4208 CTX_UNLOCK(ctx);
4209 }
4210
4211 static int
iflib_if_transmit(if_t ifp,struct mbuf * m)4212 iflib_if_transmit(if_t ifp, struct mbuf *m)
4213 {
4214 if_ctx_t ctx = if_getsoftc(ifp);
4215 iflib_txq_t txq;
4216 int err, qidx;
4217 int abdicate;
4218
4219 if (__predict_false((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0 || !LINK_ACTIVE(ctx))) {
4220 DBG_COUNTER_INC(tx_frees);
4221 m_freem(m);
4222 return (ENETDOWN);
4223 }
4224
4225 MPASS(m->m_nextpkt == NULL);
4226 /* ALTQ-enabled interfaces always use queue 0. */
4227 qidx = 0;
4228 /* Use driver-supplied queue selection method if it exists */
4229 if (ctx->isc_txq_select_v2) {
4230 struct if_pkt_info pi;
4231 uint64_t early_pullups = 0;
4232 pkt_info_zero(&pi);
4233
4234 err = iflib_parse_header_partial(&pi, &m, &early_pullups);
4235 if (__predict_false(err != 0)) {
4236 /* Assign pullups for bad pkts to default queue */
4237 ctx->ifc_txqs[0].ift_pullups += early_pullups;
4238 DBG_COUNTER_INC(encap_txd_encap_fail);
4239 return (err);
4240 }
4241 /* Let driver make queueing decision */
4242 qidx = ctx->isc_txq_select_v2(ctx->ifc_softc, m, &pi);
4243 ctx->ifc_txqs[qidx].ift_pullups += early_pullups;
4244 }
4245 /* Backwards compatibility w/ simpler queue select */
4246 else if (ctx->isc_txq_select)
4247 qidx = ctx->isc_txq_select(ctx->ifc_softc, m);
4248 /* If not, use iflib's standard method */
4249 else if ((NTXQSETS(ctx) > 1) && M_HASHTYPE_GET(m) && !if_altq_is_enabled(ifp))
4250 qidx = QIDX(ctx, m);
4251
4252 /* Set TX queue */
4253 txq = &ctx->ifc_txqs[qidx];
4254
4255 #ifdef DRIVER_BACKPRESSURE
4256 if (txq->ift_closed) {
4257 while (m != NULL) {
4258 next = m->m_nextpkt;
4259 m->m_nextpkt = NULL;
4260 m_freem(m);
4261 DBG_COUNTER_INC(tx_frees);
4262 m = next;
4263 }
4264 return (ENOBUFS);
4265 }
4266 #endif
4267 #ifdef notyet
4268 qidx = count = 0;
4269 mp = marr;
4270 next = m;
4271 do {
4272 count++;
4273 next = next->m_nextpkt;
4274 } while (next != NULL);
4275
4276 if (count > nitems(marr))
4277 if ((mp = malloc(count * sizeof(struct mbuf *), M_IFLIB, M_NOWAIT)) == NULL) {
4278 /* XXX check nextpkt */
4279 m_freem(m);
4280 /* XXX simplify for now */
4281 DBG_COUNTER_INC(tx_frees);
4282 return (ENOBUFS);
4283 }
4284 for (next = m, i = 0; next != NULL; i++) {
4285 mp[i] = next;
4286 next = next->m_nextpkt;
4287 mp[i]->m_nextpkt = NULL;
4288 }
4289 #endif
4290 DBG_COUNTER_INC(tx_seen);
4291 abdicate = ctx->ifc_sysctl_tx_abdicate;
4292
4293 err = ifmp_ring_enqueue(txq->ift_br, (void **)&m, 1, TX_BATCH_SIZE, abdicate);
4294
4295 if (abdicate)
4296 GROUPTASK_ENQUEUE(&txq->ift_task);
4297 if (err) {
4298 if (!abdicate)
4299 GROUPTASK_ENQUEUE(&txq->ift_task);
4300 /* support forthcoming later */
4301 #ifdef DRIVER_BACKPRESSURE
4302 txq->ift_closed = TRUE;
4303 #endif
4304 ifmp_ring_check_drainage(txq->ift_br, TX_BATCH_SIZE);
4305 m_freem(m);
4306 DBG_COUNTER_INC(tx_frees);
4307 if (err == ENOBUFS)
4308 if_inc_counter(ifp, IFCOUNTER_OQDROPS, 1);
4309 else
4310 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
4311 }
4312
4313 return (err);
4314 }
4315
4316 #ifdef ALTQ
4317 /*
4318 * The overall approach to integrating iflib with ALTQ is to continue to use
4319 * the iflib mp_ring machinery between the ALTQ queue(s) and the hardware
4320 * ring. Technically, when using ALTQ, queueing to an intermediate mp_ring
4321 * is redundant/unnecessary, but doing so minimizes the amount of
4322 * ALTQ-specific code required in iflib. It is assumed that the overhead of
4323 * redundantly queueing to an intermediate mp_ring is swamped by the
4324 * performance limitations inherent in using ALTQ.
4325 *
4326 * When ALTQ support is compiled in, all iflib drivers will use a transmit
4327 * routine, iflib_altq_if_transmit(), that checks if ALTQ is enabled for the
4328 * given interface. If ALTQ is enabled for an interface, then all
4329 * transmitted packets for that interface will be submitted to the ALTQ
4330 * subsystem via IFQ_ENQUEUE(). We don't use the legacy if_transmit()
4331 * implementation because it uses IFQ_HANDOFF(), which will duplicatively
4332 * update stats that the iflib machinery handles, and which is sensitve to
4333 * the disused IFF_DRV_OACTIVE flag. Additionally, iflib_altq_if_start()
4334 * will be installed as the start routine for use by ALTQ facilities that
4335 * need to trigger queue drains on a scheduled basis.
4336 *
4337 */
4338 static void
iflib_altq_if_start(if_t ifp)4339 iflib_altq_if_start(if_t ifp)
4340 {
4341 struct ifaltq *ifq = &ifp->if_snd; /* XXX - DRVAPI */
4342 struct mbuf *m;
4343
4344 IFQ_LOCK(ifq);
4345 IFQ_DEQUEUE_NOLOCK(ifq, m);
4346 while (m != NULL) {
4347 iflib_if_transmit(ifp, m);
4348 IFQ_DEQUEUE_NOLOCK(ifq, m);
4349 }
4350 IFQ_UNLOCK(ifq);
4351 }
4352
4353 static int
iflib_altq_if_transmit(if_t ifp,struct mbuf * m)4354 iflib_altq_if_transmit(if_t ifp, struct mbuf *m)
4355 {
4356 int err;
4357
4358 if (if_altq_is_enabled(ifp)) {
4359 IFQ_ENQUEUE(&ifp->if_snd, m, err); /* XXX - DRVAPI */
4360 if (err == 0)
4361 iflib_altq_if_start(ifp);
4362 } else
4363 err = iflib_if_transmit(ifp, m);
4364
4365 return (err);
4366 }
4367 #endif /* ALTQ */
4368
4369 static void
iflib_if_qflush(if_t ifp)4370 iflib_if_qflush(if_t ifp)
4371 {
4372 if_ctx_t ctx = if_getsoftc(ifp);
4373 iflib_txq_t txq = ctx->ifc_txqs;
4374 int i;
4375
4376 STATE_LOCK(ctx);
4377 ctx->ifc_flags |= IFC_QFLUSH;
4378 STATE_UNLOCK(ctx);
4379 for (i = 0; i < NTXQSETS(ctx); i++, txq++)
4380 while (!(ifmp_ring_is_idle(txq->ift_br) || ifmp_ring_is_stalled(txq->ift_br)))
4381 iflib_txq_check_drain(txq, 0);
4382 STATE_LOCK(ctx);
4383 ctx->ifc_flags &= ~IFC_QFLUSH;
4384 STATE_UNLOCK(ctx);
4385
4386 /*
4387 * When ALTQ is enabled, this will also take care of purging the
4388 * ALTQ queue(s).
4389 */
4390 if_qflush(ifp);
4391 }
4392
4393 #define IFCAP_FLAGS (IFCAP_HWCSUM_IPV6 | IFCAP_HWCSUM | IFCAP_LRO | \
4394 IFCAP_TSO | IFCAP_VLAN_HWTAGGING | IFCAP_HWSTATS | \
4395 IFCAP_VLAN_MTU | IFCAP_VLAN_HWFILTER | \
4396 IFCAP_VLAN_HWTSO | IFCAP_VLAN_HWCSUM | IFCAP_MEXTPG)
4397
4398 static int
iflib_if_ioctl(if_t ifp,u_long command,caddr_t data)4399 iflib_if_ioctl(if_t ifp, u_long command, caddr_t data)
4400 {
4401 if_ctx_t ctx = if_getsoftc(ifp);
4402 struct ifreq *ifr = (struct ifreq *)data;
4403 #if defined(INET) || defined(INET6)
4404 struct ifaddr *ifa = (struct ifaddr *)data;
4405 #endif
4406 bool avoid_reset = false;
4407 int err = 0, reinit = 0, bits;
4408
4409 switch (command) {
4410 case SIOCSIFADDR:
4411 #ifdef INET
4412 if (ifa->ifa_addr->sa_family == AF_INET)
4413 avoid_reset = true;
4414 #endif
4415 #ifdef INET6
4416 if (ifa->ifa_addr->sa_family == AF_INET6)
4417 avoid_reset = true;
4418 #endif
4419 /*
4420 * Calling init results in link renegotiation,
4421 * so we avoid doing it when possible.
4422 */
4423 if (avoid_reset) {
4424 if_setflagbits(ifp, IFF_UP, 0);
4425 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING))
4426 reinit = 1;
4427 #ifdef INET
4428 if (!(if_getflags(ifp) & IFF_NOARP))
4429 arp_ifinit(ifp, ifa);
4430 #endif
4431 } else
4432 err = ether_ioctl(ifp, command, data);
4433 break;
4434 case SIOCSIFMTU:
4435 CTX_LOCK(ctx);
4436 if (ifr->ifr_mtu == if_getmtu(ifp)) {
4437 CTX_UNLOCK(ctx);
4438 break;
4439 }
4440 bits = if_getdrvflags(ifp);
4441 /* stop the driver and free any clusters before proceeding */
4442 iflib_stop(ctx);
4443
4444 if ((err = IFDI_MTU_SET(ctx, ifr->ifr_mtu)) == 0) {
4445 STATE_LOCK(ctx);
4446 if (ifr->ifr_mtu > ctx->ifc_max_fl_buf_size)
4447 ctx->ifc_flags |= IFC_MULTISEG;
4448 else
4449 ctx->ifc_flags &= ~IFC_MULTISEG;
4450 STATE_UNLOCK(ctx);
4451 err = if_setmtu(ifp, ifr->ifr_mtu);
4452 }
4453 iflib_init_locked(ctx);
4454 STATE_LOCK(ctx);
4455 if_setdrvflags(ifp, bits);
4456 STATE_UNLOCK(ctx);
4457 CTX_UNLOCK(ctx);
4458 break;
4459 case SIOCSIFFLAGS:
4460 CTX_LOCK(ctx);
4461 if (if_getflags(ifp) & IFF_UP) {
4462 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
4463 if ((if_getflags(ifp) ^ ctx->ifc_if_flags) &
4464 (IFF_PROMISC | IFF_ALLMULTI)) {
4465 CTX_UNLOCK(ctx);
4466 err = IFDI_PROMISC_SET(ctx, if_getflags(ifp));
4467 CTX_LOCK(ctx);
4468 }
4469 } else
4470 reinit = 1;
4471 } else if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
4472 iflib_stop(ctx);
4473 }
4474 ctx->ifc_if_flags = if_getflags(ifp);
4475 CTX_UNLOCK(ctx);
4476 break;
4477 case SIOCADDMULTI:
4478 case SIOCDELMULTI:
4479 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
4480 CTX_LOCK(ctx);
4481 IFDI_INTR_DISABLE(ctx);
4482 IFDI_MULTI_SET(ctx);
4483 IFDI_INTR_ENABLE(ctx);
4484 CTX_UNLOCK(ctx);
4485 }
4486 break;
4487 case SIOCSIFMEDIA:
4488 CTX_LOCK(ctx);
4489 IFDI_MEDIA_SET(ctx);
4490 CTX_UNLOCK(ctx);
4491 /* FALLTHROUGH */
4492 case SIOCGIFMEDIA:
4493 case SIOCGIFXMEDIA:
4494 err = ifmedia_ioctl(ifp, ifr, ctx->ifc_mediap, command);
4495 break;
4496 case SIOCGI2C:
4497 {
4498 struct ifi2creq i2c;
4499
4500 err = copyin(ifr_data_get_ptr(ifr), &i2c, sizeof(i2c));
4501 if (err != 0)
4502 break;
4503 if (i2c.dev_addr != 0xA0 && i2c.dev_addr != 0xA2) {
4504 err = EINVAL;
4505 break;
4506 }
4507 if (i2c.len > sizeof(i2c.data)) {
4508 err = EINVAL;
4509 break;
4510 }
4511
4512 if ((err = IFDI_I2C_REQ(ctx, &i2c)) == 0)
4513 err = copyout(&i2c, ifr_data_get_ptr(ifr),
4514 sizeof(i2c));
4515 break;
4516 }
4517 case SIOCSIFCAP:
4518 {
4519 int mask, setmask, oldmask;
4520
4521 oldmask = if_getcapenable(ifp);
4522 mask = ifr->ifr_reqcap ^ oldmask;
4523 mask &= ctx->ifc_softc_ctx.isc_capabilities | IFCAP_MEXTPG;
4524 setmask = 0;
4525 #ifdef TCP_OFFLOAD
4526 setmask |= mask & (IFCAP_TOE4 | IFCAP_TOE6);
4527 #endif
4528 setmask |= (mask & IFCAP_FLAGS);
4529 setmask |= (mask & IFCAP_WOL);
4530
4531 /*
4532 * If any RX csum has changed, change all the ones that
4533 * are supported by the driver.
4534 */
4535 if (setmask & (IFCAP_RXCSUM | IFCAP_RXCSUM_IPV6)) {
4536 setmask |= ctx->ifc_softc_ctx.isc_capabilities &
4537 (IFCAP_RXCSUM | IFCAP_RXCSUM_IPV6);
4538 }
4539
4540 /*
4541 * want to ensure that traffic has stopped before we change any of the flags
4542 */
4543 if (setmask) {
4544 CTX_LOCK(ctx);
4545 bits = if_getdrvflags(ifp);
4546 if (bits & IFF_DRV_RUNNING && setmask & ~IFCAP_WOL)
4547 iflib_stop(ctx);
4548 STATE_LOCK(ctx);
4549 if_togglecapenable(ifp, setmask);
4550 ctx->ifc_softc_ctx.isc_capenable ^= setmask;
4551 STATE_UNLOCK(ctx);
4552 if (bits & IFF_DRV_RUNNING && setmask & ~IFCAP_WOL)
4553 iflib_init_locked(ctx);
4554 STATE_LOCK(ctx);
4555 if_setdrvflags(ifp, bits);
4556 STATE_UNLOCK(ctx);
4557 CTX_UNLOCK(ctx);
4558 }
4559 if_vlancap(ifp);
4560 break;
4561 }
4562 case SIOCGPRIVATE_0:
4563 case SIOCSDRVSPEC:
4564 case SIOCGDRVSPEC:
4565 CTX_LOCK(ctx);
4566 err = IFDI_PRIV_IOCTL(ctx, command, data);
4567 CTX_UNLOCK(ctx);
4568 break;
4569 default:
4570 err = ether_ioctl(ifp, command, data);
4571 break;
4572 }
4573 if (reinit)
4574 iflib_if_init(ctx);
4575 return (err);
4576 }
4577
4578 static uint64_t
iflib_if_get_counter(if_t ifp,ift_counter cnt)4579 iflib_if_get_counter(if_t ifp, ift_counter cnt)
4580 {
4581 if_ctx_t ctx = if_getsoftc(ifp);
4582
4583 return (IFDI_GET_COUNTER(ctx, cnt));
4584 }
4585
4586 /*********************************************************************
4587 *
4588 * OTHER FUNCTIONS EXPORTED TO THE STACK
4589 *
4590 **********************************************************************/
4591
4592 static void
iflib_vlan_register(void * arg,if_t ifp,uint16_t vtag)4593 iflib_vlan_register(void *arg, if_t ifp, uint16_t vtag)
4594 {
4595 if_ctx_t ctx = if_getsoftc(ifp);
4596
4597 if ((void *)ctx != arg)
4598 return;
4599
4600 if ((vtag == 0) || (vtag > 4095))
4601 return;
4602
4603 if (iflib_in_detach(ctx))
4604 return;
4605
4606 CTX_LOCK(ctx);
4607 /* Driver may need all untagged packets to be flushed */
4608 if (IFDI_NEEDS_RESTART(ctx, IFLIB_RESTART_VLAN_CONFIG))
4609 iflib_stop(ctx);
4610 IFDI_VLAN_REGISTER(ctx, vtag);
4611 /* Re-init to load the changes, if required */
4612 if (IFDI_NEEDS_RESTART(ctx, IFLIB_RESTART_VLAN_CONFIG))
4613 iflib_init_locked(ctx);
4614 CTX_UNLOCK(ctx);
4615 }
4616
4617 static void
iflib_vlan_unregister(void * arg,if_t ifp,uint16_t vtag)4618 iflib_vlan_unregister(void *arg, if_t ifp, uint16_t vtag)
4619 {
4620 if_ctx_t ctx = if_getsoftc(ifp);
4621
4622 if ((void *)ctx != arg)
4623 return;
4624
4625 if ((vtag == 0) || (vtag > 4095))
4626 return;
4627
4628 CTX_LOCK(ctx);
4629 /* Driver may need all tagged packets to be flushed */
4630 if (IFDI_NEEDS_RESTART(ctx, IFLIB_RESTART_VLAN_CONFIG))
4631 iflib_stop(ctx);
4632 IFDI_VLAN_UNREGISTER(ctx, vtag);
4633 /* Re-init to load the changes, if required */
4634 if (IFDI_NEEDS_RESTART(ctx, IFLIB_RESTART_VLAN_CONFIG))
4635 iflib_init_locked(ctx);
4636 CTX_UNLOCK(ctx);
4637 }
4638
4639 static void
iflib_led_func(void * arg,int onoff)4640 iflib_led_func(void *arg, int onoff)
4641 {
4642 if_ctx_t ctx = arg;
4643
4644 CTX_LOCK(ctx);
4645 IFDI_LED_FUNC(ctx, onoff);
4646 CTX_UNLOCK(ctx);
4647 }
4648
4649 /*********************************************************************
4650 *
4651 * BUS FUNCTION DEFINITIONS
4652 *
4653 **********************************************************************/
4654
4655 int
iflib_device_probe(device_t dev)4656 iflib_device_probe(device_t dev)
4657 {
4658 const pci_vendor_info_t *ent;
4659 if_shared_ctx_t sctx;
4660 uint16_t pci_device_id, pci_rev_id, pci_subdevice_id, pci_subvendor_id;
4661 uint16_t pci_vendor_id;
4662
4663 if ((sctx = DEVICE_REGISTER(dev)) == NULL || sctx->isc_magic != IFLIB_MAGIC)
4664 return (ENOTSUP);
4665
4666 pci_vendor_id = pci_get_vendor(dev);
4667 pci_device_id = pci_get_device(dev);
4668 pci_subvendor_id = pci_get_subvendor(dev);
4669 pci_subdevice_id = pci_get_subdevice(dev);
4670 pci_rev_id = pci_get_revid(dev);
4671 if (sctx->isc_parse_devinfo != NULL)
4672 sctx->isc_parse_devinfo(&pci_device_id, &pci_subvendor_id, &pci_subdevice_id, &pci_rev_id);
4673
4674 ent = sctx->isc_vendor_info;
4675 while (ent->pvi_vendor_id != 0) {
4676 if (pci_vendor_id != ent->pvi_vendor_id) {
4677 ent++;
4678 continue;
4679 }
4680 if ((pci_device_id == ent->pvi_device_id) &&
4681 ((pci_subvendor_id == ent->pvi_subvendor_id) ||
4682 (ent->pvi_subvendor_id == 0)) &&
4683 ((pci_subdevice_id == ent->pvi_subdevice_id) ||
4684 (ent->pvi_subdevice_id == 0)) &&
4685 ((pci_rev_id == ent->pvi_rev_id) ||
4686 (ent->pvi_rev_id == 0))) {
4687 device_set_desc_copy(dev, ent->pvi_name);
4688 /* this needs to be changed to zero if the bus probing code
4689 * ever stops re-probing on best match because the sctx
4690 * may have its values over written by register calls
4691 * in subsequent probes
4692 */
4693 return (BUS_PROBE_DEFAULT);
4694 }
4695 ent++;
4696 }
4697 return (ENXIO);
4698 }
4699
4700 int
iflib_device_probe_vendor(device_t dev)4701 iflib_device_probe_vendor(device_t dev)
4702 {
4703 int probe;
4704
4705 probe = iflib_device_probe(dev);
4706 if (probe == BUS_PROBE_DEFAULT)
4707 return (BUS_PROBE_VENDOR);
4708 else
4709 return (probe);
4710 }
4711
4712 static void
iflib_reset_qvalues(if_ctx_t ctx)4713 iflib_reset_qvalues(if_ctx_t ctx)
4714 {
4715 if_softc_ctx_t scctx = &ctx->ifc_softc_ctx;
4716 if_shared_ctx_t sctx = ctx->ifc_sctx;
4717 device_t dev = ctx->ifc_dev;
4718 int i;
4719
4720 if (ctx->ifc_sysctl_ntxqs != 0)
4721 scctx->isc_ntxqsets = ctx->ifc_sysctl_ntxqs;
4722 if (ctx->ifc_sysctl_nrxqs != 0)
4723 scctx->isc_nrxqsets = ctx->ifc_sysctl_nrxqs;
4724
4725 for (i = 0; i < sctx->isc_ntxqs; i++) {
4726 if (ctx->ifc_sysctl_ntxds[i] != 0)
4727 scctx->isc_ntxd[i] = ctx->ifc_sysctl_ntxds[i];
4728 else
4729 scctx->isc_ntxd[i] = sctx->isc_ntxd_default[i];
4730 }
4731
4732 for (i = 0; i < sctx->isc_nrxqs; i++) {
4733 if (ctx->ifc_sysctl_nrxds[i] != 0)
4734 scctx->isc_nrxd[i] = ctx->ifc_sysctl_nrxds[i];
4735 else
4736 scctx->isc_nrxd[i] = sctx->isc_nrxd_default[i];
4737 }
4738
4739 for (i = 0; i < sctx->isc_nrxqs; i++) {
4740 if (scctx->isc_nrxd[i] < sctx->isc_nrxd_min[i]) {
4741 device_printf(dev, "nrxd%d: %d less than nrxd_min %d - resetting to min\n",
4742 i, scctx->isc_nrxd[i], sctx->isc_nrxd_min[i]);
4743 scctx->isc_nrxd[i] = sctx->isc_nrxd_min[i];
4744 }
4745 if (scctx->isc_nrxd[i] > sctx->isc_nrxd_max[i]) {
4746 device_printf(dev, "nrxd%d: %d greater than nrxd_max %d - resetting to max\n",
4747 i, scctx->isc_nrxd[i], sctx->isc_nrxd_max[i]);
4748 scctx->isc_nrxd[i] = sctx->isc_nrxd_max[i];
4749 }
4750 if (!powerof2(scctx->isc_nrxd[i])) {
4751 device_printf(dev, "nrxd%d: %d is not a power of 2 - using default value of %d\n",
4752 i, scctx->isc_nrxd[i], sctx->isc_nrxd_default[i]);
4753 scctx->isc_nrxd[i] = sctx->isc_nrxd_default[i];
4754 }
4755 }
4756
4757 for (i = 0; i < sctx->isc_ntxqs; i++) {
4758 if (scctx->isc_ntxd[i] < sctx->isc_ntxd_min[i]) {
4759 device_printf(dev, "ntxd%d: %d less than ntxd_min %d - resetting to min\n",
4760 i, scctx->isc_ntxd[i], sctx->isc_ntxd_min[i]);
4761 scctx->isc_ntxd[i] = sctx->isc_ntxd_min[i];
4762 }
4763 if (scctx->isc_ntxd[i] > sctx->isc_ntxd_max[i]) {
4764 device_printf(dev, "ntxd%d: %d greater than ntxd_max %d - resetting to max\n",
4765 i, scctx->isc_ntxd[i], sctx->isc_ntxd_max[i]);
4766 scctx->isc_ntxd[i] = sctx->isc_ntxd_max[i];
4767 }
4768 if (!powerof2(scctx->isc_ntxd[i])) {
4769 device_printf(dev, "ntxd%d: %d is not a power of 2 - using default value of %d\n",
4770 i, scctx->isc_ntxd[i], sctx->isc_ntxd_default[i]);
4771 scctx->isc_ntxd[i] = sctx->isc_ntxd_default[i];
4772 }
4773 }
4774 }
4775
4776 static void
iflib_add_pfil(if_ctx_t ctx)4777 iflib_add_pfil(if_ctx_t ctx)
4778 {
4779 struct pfil_head *pfil;
4780 struct pfil_head_args pa;
4781 iflib_rxq_t rxq;
4782 int i;
4783
4784 pa.pa_version = PFIL_VERSION;
4785 pa.pa_flags = PFIL_IN;
4786 pa.pa_type = PFIL_TYPE_ETHERNET;
4787 pa.pa_headname = if_name(ctx->ifc_ifp);
4788 pfil = pfil_head_register(&pa);
4789
4790 for (i = 0, rxq = ctx->ifc_rxqs; i < NRXQSETS(ctx); i++, rxq++) {
4791 rxq->pfil = pfil;
4792 }
4793 }
4794
4795 static void
iflib_rem_pfil(if_ctx_t ctx)4796 iflib_rem_pfil(if_ctx_t ctx)
4797 {
4798 struct pfil_head *pfil;
4799 iflib_rxq_t rxq;
4800 int i;
4801
4802 rxq = ctx->ifc_rxqs;
4803 pfil = rxq->pfil;
4804 for (i = 0; i < NRXQSETS(ctx); i++, rxq++) {
4805 rxq->pfil = NULL;
4806 }
4807 pfil_head_unregister(pfil);
4808 }
4809
4810
4811 /*
4812 * Advance forward by n members of the cpuset ctx->ifc_cpus starting from
4813 * cpuid and wrapping as necessary.
4814 */
4815 static unsigned int
cpuid_advance(if_ctx_t ctx,unsigned int cpuid,unsigned int n)4816 cpuid_advance(if_ctx_t ctx, unsigned int cpuid, unsigned int n)
4817 {
4818 unsigned int first_valid;
4819 unsigned int last_valid;
4820
4821 /* cpuid should always be in the valid set */
4822 MPASS(CPU_ISSET(cpuid, &ctx->ifc_cpus));
4823
4824 /* valid set should never be empty */
4825 MPASS(!CPU_EMPTY(&ctx->ifc_cpus));
4826
4827 first_valid = CPU_FFS(&ctx->ifc_cpus) - 1;
4828 last_valid = CPU_FLS(&ctx->ifc_cpus) - 1;
4829 n = n % CPU_COUNT(&ctx->ifc_cpus);
4830 while (n > 0) {
4831 do {
4832 cpuid++;
4833 if (cpuid > last_valid)
4834 cpuid = first_valid;
4835 } while (!CPU_ISSET(cpuid, &ctx->ifc_cpus));
4836 n--;
4837 }
4838
4839 return (cpuid);
4840 }
4841
4842 #if defined(SMP) && defined(SCHED_ULE)
4843 extern struct cpu_group *cpu_top; /* CPU topology */
4844
4845 static int
find_child_with_core(int cpu,struct cpu_group * grp)4846 find_child_with_core(int cpu, struct cpu_group *grp)
4847 {
4848 int i;
4849
4850 if (grp->cg_children == 0)
4851 return (-1);
4852
4853 MPASS(grp->cg_child);
4854 for (i = 0; i < grp->cg_children; i++) {
4855 if (CPU_ISSET(cpu, &grp->cg_child[i].cg_mask))
4856 return (i);
4857 }
4858
4859 return (-1);
4860 }
4861
4862
4863 /*
4864 * Find an L2 neighbor of the given CPU or return -1 if none found. This
4865 * does not distinguish among multiple L2 neighbors if the given CPU has
4866 * more than one (it will always return the same result in that case).
4867 */
4868 static int
find_l2_neighbor(int cpu)4869 find_l2_neighbor(int cpu)
4870 {
4871 struct cpu_group *grp;
4872 int i;
4873
4874 grp = cpu_top;
4875 if (grp == NULL)
4876 return (-1);
4877
4878 /*
4879 * Find the smallest CPU group that contains the given core.
4880 */
4881 i = 0;
4882 while ((i = find_child_with_core(cpu, grp)) != -1) {
4883 /*
4884 * If the smallest group containing the given CPU has less
4885 * than two members, we conclude the given CPU has no
4886 * L2 neighbor.
4887 */
4888 if (grp->cg_child[i].cg_count <= 1)
4889 return (-1);
4890 grp = &grp->cg_child[i];
4891 }
4892
4893 /* Must share L2. */
4894 if (grp->cg_level > CG_SHARE_L2 || grp->cg_level == CG_SHARE_NONE)
4895 return (-1);
4896
4897 /*
4898 * Select the first member of the set that isn't the reference
4899 * CPU, which at this point is guaranteed to exist.
4900 */
4901 for (i = 0; i < CPU_SETSIZE; i++) {
4902 if (CPU_ISSET(i, &grp->cg_mask) && i != cpu)
4903 return (i);
4904 }
4905
4906 /* Should never be reached */
4907 return (-1);
4908 }
4909
4910 #else
4911 static int
find_l2_neighbor(int cpu)4912 find_l2_neighbor(int cpu)
4913 {
4914
4915 return (-1);
4916 }
4917 #endif
4918
4919 /*
4920 * CPU mapping behaviors
4921 * ---------------------
4922 * 'separate txrx' refers to the separate_txrx sysctl
4923 * 'use logical' refers to the use_logical_cores sysctl
4924 * 'INTR CPUS' indicates whether bus_get_cpus(INTR_CPUS) succeeded
4925 *
4926 * separate use INTR
4927 * txrx logical CPUS result
4928 * ---------- --------- ------ ------------------------------------------------
4929 * - - X RX and TX queues mapped to consecutive physical
4930 * cores with RX/TX pairs on same core and excess
4931 * of either following
4932 * - X X RX and TX queues mapped to consecutive cores
4933 * of any type with RX/TX pairs on same core and
4934 * excess of either following
4935 * X - X RX and TX queues mapped to consecutive physical
4936 * cores; all RX then all TX
4937 * X X X RX queues mapped to consecutive physical cores
4938 * first, then TX queues mapped to L2 neighbor of
4939 * the corresponding RX queue if one exists,
4940 * otherwise to consecutive physical cores
4941 * - n/a - RX and TX queues mapped to consecutive cores of
4942 * any type with RX/TX pairs on same core and excess
4943 * of either following
4944 * X n/a - RX and TX queues mapped to consecutive cores of
4945 * any type; all RX then all TX
4946 */
4947 static unsigned int
get_cpuid_for_queue(if_ctx_t ctx,unsigned int base_cpuid,unsigned int qid,bool is_tx)4948 get_cpuid_for_queue(if_ctx_t ctx, unsigned int base_cpuid, unsigned int qid,
4949 bool is_tx)
4950 {
4951 if_softc_ctx_t scctx = &ctx->ifc_softc_ctx;
4952 unsigned int core_index;
4953
4954 if (ctx->ifc_sysctl_separate_txrx) {
4955 /*
4956 * When using separate CPUs for TX and RX, the assignment
4957 * will always be of a consecutive CPU out of the set of
4958 * context CPUs, except for the specific case where the
4959 * context CPUs are phsyical cores, the use of logical cores
4960 * has been enabled, the assignment is for TX, the TX qid
4961 * corresponds to an RX qid, and the CPU assigned to the
4962 * corresponding RX queue has an L2 neighbor.
4963 */
4964 if (ctx->ifc_sysctl_use_logical_cores &&
4965 ctx->ifc_cpus_are_physical_cores &&
4966 is_tx && qid < scctx->isc_nrxqsets) {
4967 int l2_neighbor;
4968 unsigned int rx_cpuid;
4969
4970 rx_cpuid = cpuid_advance(ctx, base_cpuid, qid);
4971 l2_neighbor = find_l2_neighbor(rx_cpuid);
4972 if (l2_neighbor != -1) {
4973 return (l2_neighbor);
4974 }
4975 /*
4976 * ... else fall through to the normal
4977 * consecutive-after-RX assignment scheme.
4978 *
4979 * Note that we are assuming that all RX queue CPUs
4980 * have an L2 neighbor, or all do not. If a mixed
4981 * scenario is possible, we will have to keep track
4982 * separately of how many queues prior to this one
4983 * were not able to be assigned to an L2 neighbor.
4984 */
4985 }
4986 if (is_tx)
4987 core_index = scctx->isc_nrxqsets + qid;
4988 else
4989 core_index = qid;
4990 } else {
4991 core_index = qid;
4992 }
4993
4994 return (cpuid_advance(ctx, base_cpuid, core_index));
4995 }
4996
4997 static uint16_t
get_ctx_core_offset(if_ctx_t ctx)4998 get_ctx_core_offset(if_ctx_t ctx)
4999 {
5000 if_softc_ctx_t scctx = &ctx->ifc_softc_ctx;
5001 struct cpu_offset *op;
5002 cpuset_t assigned_cpus;
5003 unsigned int cores_consumed;
5004 unsigned int base_cpuid = ctx->ifc_sysctl_core_offset;
5005 unsigned int first_valid;
5006 unsigned int last_valid;
5007 unsigned int i;
5008
5009 first_valid = CPU_FFS(&ctx->ifc_cpus) - 1;
5010 last_valid = CPU_FLS(&ctx->ifc_cpus) - 1;
5011
5012 if (base_cpuid != CORE_OFFSET_UNSPECIFIED) {
5013 /*
5014 * Align the user-chosen base CPU ID to the next valid CPU
5015 * for this device. If the chosen base CPU ID is smaller
5016 * than the first valid CPU or larger than the last valid
5017 * CPU, we assume the user does not know what the valid
5018 * range is for this device and is thinking in terms of a
5019 * zero-based reference frame, and so we shift the given
5020 * value into the valid range (and wrap accordingly) so the
5021 * intent is translated to the proper frame of reference.
5022 * If the base CPU ID is within the valid first/last, but
5023 * does not correspond to a valid CPU, it is advanced to the
5024 * next valid CPU (wrapping if necessary).
5025 */
5026 if (base_cpuid < first_valid || base_cpuid > last_valid) {
5027 /* shift from zero-based to first_valid-based */
5028 base_cpuid += first_valid;
5029 /* wrap to range [first_valid, last_valid] */
5030 base_cpuid = (base_cpuid - first_valid) %
5031 (last_valid - first_valid + 1);
5032 }
5033 if (!CPU_ISSET(base_cpuid, &ctx->ifc_cpus)) {
5034 /*
5035 * base_cpuid is in [first_valid, last_valid], but
5036 * not a member of the valid set. In this case,
5037 * there will always be a member of the valid set
5038 * with a CPU ID that is greater than base_cpuid,
5039 * and we simply advance to it.
5040 */
5041 while (!CPU_ISSET(base_cpuid, &ctx->ifc_cpus))
5042 base_cpuid++;
5043 }
5044 return (base_cpuid);
5045 }
5046
5047 /*
5048 * Determine how many cores will be consumed by performing the CPU
5049 * assignments and counting how many of the assigned CPUs correspond
5050 * to CPUs in the set of context CPUs. This is done using the CPU
5051 * ID first_valid as the base CPU ID, as the base CPU must be within
5052 * the set of context CPUs.
5053 *
5054 * Note not all assigned CPUs will be in the set of context CPUs
5055 * when separate CPUs are being allocated to TX and RX queues,
5056 * assignment to logical cores has been enabled, the set of context
5057 * CPUs contains only physical CPUs, and TX queues are mapped to L2
5058 * neighbors of CPUs that RX queues have been mapped to - in this
5059 * case we do only want to count how many CPUs in the set of context
5060 * CPUs have been consumed, as that determines the next CPU in that
5061 * set to start allocating at for the next device for which
5062 * core_offset is not set.
5063 */
5064 CPU_ZERO(&assigned_cpus);
5065 for (i = 0; i < scctx->isc_ntxqsets; i++)
5066 CPU_SET(get_cpuid_for_queue(ctx, first_valid, i, true),
5067 &assigned_cpus);
5068 for (i = 0; i < scctx->isc_nrxqsets; i++)
5069 CPU_SET(get_cpuid_for_queue(ctx, first_valid, i, false),
5070 &assigned_cpus);
5071 CPU_AND(&assigned_cpus, &assigned_cpus, &ctx->ifc_cpus);
5072 cores_consumed = CPU_COUNT(&assigned_cpus);
5073
5074 mtx_lock(&cpu_offset_mtx);
5075 SLIST_FOREACH(op, &cpu_offsets, entries) {
5076 if (CPU_CMP(&ctx->ifc_cpus, &op->set) == 0) {
5077 base_cpuid = op->next_cpuid;
5078 op->next_cpuid = cpuid_advance(ctx, op->next_cpuid,
5079 cores_consumed);
5080 MPASS(op->refcount < UINT_MAX);
5081 op->refcount++;
5082 break;
5083 }
5084 }
5085 if (base_cpuid == CORE_OFFSET_UNSPECIFIED) {
5086 base_cpuid = first_valid;
5087 op = malloc(sizeof(struct cpu_offset), M_IFLIB,
5088 M_NOWAIT | M_ZERO);
5089 if (op == NULL) {
5090 device_printf(ctx->ifc_dev,
5091 "allocation for cpu offset failed.\n");
5092 } else {
5093 op->next_cpuid = cpuid_advance(ctx, base_cpuid,
5094 cores_consumed);
5095 op->refcount = 1;
5096 CPU_COPY(&ctx->ifc_cpus, &op->set);
5097 SLIST_INSERT_HEAD(&cpu_offsets, op, entries);
5098 }
5099 }
5100 mtx_unlock(&cpu_offset_mtx);
5101
5102 return (base_cpuid);
5103 }
5104
5105 static void
unref_ctx_core_offset(if_ctx_t ctx)5106 unref_ctx_core_offset(if_ctx_t ctx)
5107 {
5108 struct cpu_offset *op, *top;
5109
5110 mtx_lock(&cpu_offset_mtx);
5111 SLIST_FOREACH_SAFE(op, &cpu_offsets, entries, top) {
5112 if (CPU_CMP(&ctx->ifc_cpus, &op->set) == 0) {
5113 MPASS(op->refcount > 0);
5114 op->refcount--;
5115 if (op->refcount == 0) {
5116 SLIST_REMOVE(&cpu_offsets, op, cpu_offset, entries);
5117 free(op, M_IFLIB);
5118 }
5119 break;
5120 }
5121 }
5122 mtx_unlock(&cpu_offset_mtx);
5123 }
5124
5125 int
iflib_device_register(device_t dev,void * sc,if_shared_ctx_t sctx,if_ctx_t * ctxp)5126 iflib_device_register(device_t dev, void *sc, if_shared_ctx_t sctx, if_ctx_t *ctxp)
5127 {
5128 if_ctx_t ctx;
5129 if_t ifp;
5130 if_softc_ctx_t scctx;
5131 kobjop_desc_t kobj_desc;
5132 kobj_method_t *kobj_method;
5133 int err, msix, rid;
5134 int num_txd, num_rxd;
5135 char namebuf[TASKQUEUE_NAMELEN];
5136
5137 ctx = malloc(sizeof(*ctx), M_IFLIB, M_WAITOK | M_ZERO);
5138
5139 if (sc == NULL) {
5140 sc = malloc(sctx->isc_driver->size, M_IFLIB, M_WAITOK | M_ZERO);
5141 device_set_softc(dev, ctx);
5142 ctx->ifc_flags |= IFC_SC_ALLOCATED;
5143 }
5144
5145 ctx->ifc_sctx = sctx;
5146 ctx->ifc_dev = dev;
5147 ctx->ifc_softc = sc;
5148
5149 iflib_register(ctx);
5150 iflib_add_device_sysctl_pre(ctx);
5151
5152 scctx = &ctx->ifc_softc_ctx;
5153 ifp = ctx->ifc_ifp;
5154 if (ctx->ifc_sysctl_simple_tx) {
5155 #ifndef ALTQ
5156 if_settransmitfn(ifp, iflib_simple_transmit);
5157 device_printf(dev, "using simple if_transmit\n");
5158 #else
5159 device_printf(dev, "ALTQ prevents using simple if_transmit\n");
5160 #endif
5161 }
5162 iflib_reset_qvalues(ctx);
5163 IFNET_WLOCK();
5164 CTX_LOCK(ctx);
5165 if ((err = IFDI_ATTACH_PRE(ctx)) != 0) {
5166 device_printf(dev, "IFDI_ATTACH_PRE failed %d\n", err);
5167 goto fail_unlock;
5168 }
5169 _iflib_pre_assert(scctx);
5170 ctx->ifc_txrx = *scctx->isc_txrx;
5171
5172 MPASS(scctx->isc_dma_width <= flsll(BUS_SPACE_MAXADDR));
5173
5174 if (sctx->isc_flags & IFLIB_DRIVER_MEDIA)
5175 ctx->ifc_mediap = scctx->isc_media;
5176
5177 #ifdef INVARIANTS
5178 if (scctx->isc_capabilities & IFCAP_TXCSUM)
5179 MPASS(scctx->isc_tx_csum_flags);
5180 #endif
5181
5182 if_setcapabilities(ifp,
5183 scctx->isc_capabilities | IFCAP_HWSTATS | IFCAP_MEXTPG);
5184 if_setcapenable(ifp,
5185 scctx->isc_capenable | IFCAP_HWSTATS | IFCAP_MEXTPG);
5186
5187 if (scctx->isc_ntxqsets == 0 || (scctx->isc_ntxqsets_max && scctx->isc_ntxqsets_max < scctx->isc_ntxqsets))
5188 scctx->isc_ntxqsets = scctx->isc_ntxqsets_max;
5189 if (scctx->isc_nrxqsets == 0 || (scctx->isc_nrxqsets_max && scctx->isc_nrxqsets_max < scctx->isc_nrxqsets))
5190 scctx->isc_nrxqsets = scctx->isc_nrxqsets_max;
5191
5192 num_txd = iflib_num_tx_descs(ctx);
5193 num_rxd = iflib_num_rx_descs(ctx);
5194
5195 /* XXX change for per-queue sizes */
5196 device_printf(dev, "Using %d TX descriptors and %d RX descriptors\n",
5197 num_txd, num_rxd);
5198
5199 if (scctx->isc_tx_nsegments > num_txd / MAX_SINGLE_PACKET_FRACTION)
5200 scctx->isc_tx_nsegments = max(1, num_txd /
5201 MAX_SINGLE_PACKET_FRACTION);
5202 if (scctx->isc_tx_tso_segments_max > num_txd /
5203 MAX_SINGLE_PACKET_FRACTION)
5204 scctx->isc_tx_tso_segments_max = max(1,
5205 num_txd / MAX_SINGLE_PACKET_FRACTION);
5206
5207 /* TSO parameters - dig these out of the data sheet - simply correspond to tag setup */
5208 if (if_getcapabilities(ifp) & IFCAP_TSO) {
5209 /*
5210 * The stack can't handle a TSO size larger than IP_MAXPACKET,
5211 * but some MACs do.
5212 */
5213 if_sethwtsomax(ifp, min(scctx->isc_tx_tso_size_max,
5214 IP_MAXPACKET));
5215 /*
5216 * Take maximum number of m_pullup(9)'s in iflib_parse_header()
5217 * into account. In the worst case, each of these calls will
5218 * add another mbuf and, thus, the requirement for another DMA
5219 * segment. So for best performance, it doesn't make sense to
5220 * advertize a maximum of TSO segments that typically will
5221 * require defragmentation in iflib_encap().
5222 */
5223 if_sethwtsomaxsegcount(ifp, scctx->isc_tx_tso_segments_max - 3);
5224 if_sethwtsomaxsegsize(ifp, scctx->isc_tx_tso_segsize_max);
5225 }
5226 if (scctx->isc_rss_table_size == 0)
5227 scctx->isc_rss_table_size = 64;
5228 scctx->isc_rss_table_mask = scctx->isc_rss_table_size - 1;
5229
5230 /* Create and start admin taskqueue */
5231 snprintf(namebuf, TASKQUEUE_NAMELEN, "if_%s_tq", device_get_nameunit(dev));
5232 ctx->ifc_tq = taskqueue_create_fast(namebuf, M_NOWAIT,
5233 taskqueue_thread_enqueue, &ctx->ifc_tq);
5234 if (ctx->ifc_tq == NULL) {
5235 device_printf(dev, "Unable to create admin taskqueue\n");
5236 return (ENOMEM);
5237 }
5238
5239 err = taskqueue_start_threads(&ctx->ifc_tq, 1, PI_NET, "%s", namebuf);
5240 if (err) {
5241 device_printf(dev,
5242 "Unable to start admin taskqueue threads error: %d\n",
5243 err);
5244 taskqueue_free(ctx->ifc_tq);
5245 return (err);
5246 }
5247
5248 TASK_INIT(&ctx->ifc_admin_task, 0, _task_fn_admin, ctx);
5249
5250 /* Set up cpu set. If it fails, use the set of all CPUs. */
5251 if (bus_get_cpus(dev, INTR_CPUS, sizeof(ctx->ifc_cpus), &ctx->ifc_cpus) != 0) {
5252 device_printf(dev, "Unable to fetch CPU list\n");
5253 CPU_COPY(&all_cpus, &ctx->ifc_cpus);
5254 ctx->ifc_cpus_are_physical_cores = false;
5255 } else
5256 ctx->ifc_cpus_are_physical_cores = true;
5257 MPASS(CPU_COUNT(&ctx->ifc_cpus) > 0);
5258
5259 /*
5260 * Now set up MSI or MSI-X, should return us the number of supported
5261 * vectors (will be 1 for a legacy interrupt and MSI).
5262 */
5263 if (sctx->isc_flags & IFLIB_SKIP_MSIX) {
5264 msix = scctx->isc_vectors;
5265 } else if (scctx->isc_msix_bar != 0)
5266 /*
5267 * The simple fact that isc_msix_bar is not 0 does not mean we
5268 * we have a good value there that is known to work.
5269 */
5270 msix = iflib_msix_init(ctx);
5271 else {
5272 scctx->isc_vectors = 1;
5273 scctx->isc_ntxqsets = 1;
5274 scctx->isc_nrxqsets = 1;
5275 scctx->isc_intr = IFLIB_INTR_LEGACY;
5276 msix = 0;
5277 }
5278 /* Get memory for the station queues */
5279 if ((err = iflib_queues_alloc(ctx))) {
5280 device_printf(dev, "Unable to allocate queue memory\n");
5281 goto fail_intr_free;
5282 }
5283
5284 if ((err = iflib_qset_structures_setup(ctx)))
5285 goto fail_queues;
5286
5287 /*
5288 * Now that we know how many queues there are, get the core offset.
5289 */
5290 ctx->ifc_sysctl_core_offset = get_ctx_core_offset(ctx);
5291
5292 if (msix > 1) {
5293 /*
5294 * When using MSI-X, ensure that ifdi_{r,t}x_queue_intr_enable
5295 * aren't the default NULL implementation.
5296 */
5297 kobj_desc = &ifdi_rx_queue_intr_enable_desc;
5298 kobj_method = kobj_lookup_method(((kobj_t)ctx)->ops->cls, NULL,
5299 kobj_desc);
5300 if (kobj_method == &kobj_desc->deflt) {
5301 device_printf(dev,
5302 "MSI-X requires ifdi_rx_queue_intr_enable method");
5303 err = EOPNOTSUPP;
5304 goto fail_queues;
5305 }
5306 kobj_desc = &ifdi_tx_queue_intr_enable_desc;
5307 kobj_method = kobj_lookup_method(((kobj_t)ctx)->ops->cls, NULL,
5308 kobj_desc);
5309 if (kobj_method == &kobj_desc->deflt) {
5310 device_printf(dev,
5311 "MSI-X requires ifdi_tx_queue_intr_enable method");
5312 err = EOPNOTSUPP;
5313 goto fail_queues;
5314 }
5315
5316 /*
5317 * Assign the MSI-X vectors.
5318 * Note that the default NULL ifdi_msix_intr_assign method will
5319 * fail here, too.
5320 */
5321 err = IFDI_MSIX_INTR_ASSIGN(ctx, msix);
5322 if (err != 0) {
5323 device_printf(dev, "IFDI_MSIX_INTR_ASSIGN failed %d\n",
5324 err);
5325 goto fail_queues;
5326 }
5327 } else if (scctx->isc_intr != IFLIB_INTR_MSIX) {
5328 rid = 0;
5329 if (scctx->isc_intr == IFLIB_INTR_MSI) {
5330 MPASS(msix == 1);
5331 rid = 1;
5332 }
5333 if ((err = iflib_legacy_setup(ctx, ctx->isc_legacy_intr, ctx->ifc_softc, &rid, "irq0")) != 0) {
5334 device_printf(dev, "iflib_legacy_setup failed %d\n", err);
5335 goto fail_queues;
5336 }
5337 } else {
5338 device_printf(dev,
5339 "Cannot use iflib with only 1 MSI-X interrupt!\n");
5340 err = ENODEV;
5341 goto fail_queues;
5342 }
5343
5344 /*
5345 * It prevents a double-locking panic with iflib_media_status when
5346 * the driver loads.
5347 */
5348 CTX_UNLOCK(ctx);
5349 ether_ifattach(ctx->ifc_ifp, ctx->ifc_mac.octet);
5350 CTX_LOCK(ctx);
5351
5352 if ((err = IFDI_ATTACH_POST(ctx)) != 0) {
5353 device_printf(dev, "IFDI_ATTACH_POST failed %d\n", err);
5354 goto fail_detach;
5355 }
5356
5357 /*
5358 * Tell the upper layer(s) if IFCAP_VLAN_MTU is supported.
5359 * This must appear after the call to ether_ifattach() because
5360 * ether_ifattach() sets if_hdrlen to the default value.
5361 */
5362 if (if_getcapabilities(ifp) & IFCAP_VLAN_MTU)
5363 if_setifheaderlen(ifp, sizeof(struct ether_vlan_header));
5364
5365 if ((err = iflib_netmap_attach(ctx))) {
5366 device_printf(ctx->ifc_dev, "netmap attach failed: %d\n", err);
5367 goto fail_detach;
5368 }
5369 *ctxp = ctx;
5370
5371 DEBUGNET_SET(ctx->ifc_ifp, iflib);
5372
5373 iflib_add_device_sysctl_post(ctx);
5374 iflib_add_pfil(ctx);
5375 ctx->ifc_flags |= IFC_INIT_DONE;
5376 CTX_UNLOCK(ctx);
5377 IFNET_WUNLOCK();
5378
5379 return (0);
5380
5381 fail_detach:
5382 ether_ifdetach(ctx->ifc_ifp);
5383 fail_queues:
5384 taskqueue_free(ctx->ifc_tq);
5385 iflib_tqg_detach(ctx);
5386 iflib_tx_structures_free(ctx);
5387 iflib_rx_structures_free(ctx);
5388 IFDI_DETACH(ctx);
5389 IFDI_QUEUES_FREE(ctx);
5390 fail_intr_free:
5391 iflib_free_intr_mem(ctx);
5392 fail_unlock:
5393 CTX_UNLOCK(ctx);
5394 IFNET_WUNLOCK();
5395 iflib_deregister(ctx);
5396 device_set_softc(ctx->ifc_dev, NULL);
5397 if (ctx->ifc_flags & IFC_SC_ALLOCATED)
5398 free(ctx->ifc_softc, M_IFLIB);
5399 free(ctx, M_IFLIB);
5400 return (err);
5401 }
5402
5403 int
iflib_device_attach(device_t dev)5404 iflib_device_attach(device_t dev)
5405 {
5406 if_ctx_t ctx;
5407 if_shared_ctx_t sctx;
5408
5409 if ((sctx = DEVICE_REGISTER(dev)) == NULL || sctx->isc_magic != IFLIB_MAGIC)
5410 return (ENOTSUP);
5411
5412 pci_enable_busmaster(dev);
5413
5414 return (iflib_device_register(dev, NULL, sctx, &ctx));
5415 }
5416
5417 int
iflib_device_deregister(if_ctx_t ctx)5418 iflib_device_deregister(if_ctx_t ctx)
5419 {
5420 if_t ifp = ctx->ifc_ifp;
5421 device_t dev = ctx->ifc_dev;
5422
5423 /* Make sure VLANS are not using driver */
5424 if (if_vlantrunkinuse(ifp)) {
5425 device_printf(dev, "Vlan in use, detach first\n");
5426 return (EBUSY);
5427 }
5428 #ifdef PCI_IOV
5429 if (!CTX_IS_VF(ctx) && pci_iov_detach(dev) != 0) {
5430 device_printf(dev, "SR-IOV in use; detach first.\n");
5431 return (EBUSY);
5432 }
5433 #endif
5434
5435 STATE_LOCK(ctx);
5436 ctx->ifc_flags |= IFC_IN_DETACH;
5437 STATE_UNLOCK(ctx);
5438
5439 /* Unregister VLAN handlers before calling iflib_stop() */
5440 iflib_unregister_vlan_handlers(ctx);
5441
5442 iflib_netmap_detach(ifp);
5443 ether_ifdetach(ifp);
5444
5445 CTX_LOCK(ctx);
5446 iflib_stop(ctx);
5447 CTX_UNLOCK(ctx);
5448
5449 iflib_rem_pfil(ctx);
5450 if (ctx->ifc_led_dev != NULL)
5451 led_destroy(ctx->ifc_led_dev);
5452
5453 iflib_tqg_detach(ctx);
5454 iflib_tx_structures_free(ctx);
5455 iflib_rx_structures_free(ctx);
5456
5457 CTX_LOCK(ctx);
5458 IFDI_DETACH(ctx);
5459 IFDI_QUEUES_FREE(ctx);
5460 CTX_UNLOCK(ctx);
5461
5462 taskqueue_free(ctx->ifc_tq);
5463 ctx->ifc_tq = NULL;
5464
5465 /* ether_ifdetach calls if_qflush - lock must be destroy afterwards*/
5466 iflib_free_intr_mem(ctx);
5467
5468 bus_generic_detach(dev);
5469
5470 iflib_deregister(ctx);
5471
5472 device_set_softc(ctx->ifc_dev, NULL);
5473 if (ctx->ifc_flags & IFC_SC_ALLOCATED)
5474 free(ctx->ifc_softc, M_IFLIB);
5475 unref_ctx_core_offset(ctx);
5476 free(ctx, M_IFLIB);
5477 return (0);
5478 }
5479
5480 static void
iflib_tqg_detach(if_ctx_t ctx)5481 iflib_tqg_detach(if_ctx_t ctx)
5482 {
5483 iflib_txq_t txq;
5484 iflib_rxq_t rxq;
5485 int i;
5486 struct taskqgroup *tqg;
5487
5488 /* XXX drain any dependent tasks */
5489 tqg = qgroup_if_io_tqg;
5490 for (txq = ctx->ifc_txqs, i = 0; i < NTXQSETS(ctx); i++, txq++) {
5491 callout_drain(&txq->ift_timer);
5492 #ifdef DEV_NETMAP
5493 callout_drain(&txq->ift_netmap_timer);
5494 #endif /* DEV_NETMAP */
5495 if (txq->ift_task.gt_uniq != NULL)
5496 taskqgroup_detach(tqg, &txq->ift_task);
5497 }
5498 for (i = 0, rxq = ctx->ifc_rxqs; i < NRXQSETS(ctx); i++, rxq++) {
5499 if (rxq->ifr_task.gt_uniq != NULL)
5500 taskqgroup_detach(tqg, &rxq->ifr_task);
5501 }
5502 }
5503
5504 static void
iflib_free_intr_mem(if_ctx_t ctx)5505 iflib_free_intr_mem(if_ctx_t ctx)
5506 {
5507
5508 if (ctx->ifc_softc_ctx.isc_intr != IFLIB_INTR_MSIX) {
5509 iflib_irq_free(ctx, &ctx->ifc_legacy_irq);
5510 }
5511 if (ctx->ifc_softc_ctx.isc_intr != IFLIB_INTR_LEGACY) {
5512 pci_release_msi(ctx->ifc_dev);
5513 }
5514 if (ctx->ifc_msix_mem != NULL) {
5515 bus_release_resource(ctx->ifc_dev, SYS_RES_MEMORY,
5516 rman_get_rid(ctx->ifc_msix_mem), ctx->ifc_msix_mem);
5517 ctx->ifc_msix_mem = NULL;
5518 }
5519 }
5520
5521 int
iflib_device_detach(device_t dev)5522 iflib_device_detach(device_t dev)
5523 {
5524 if_ctx_t ctx = device_get_softc(dev);
5525
5526 return (iflib_device_deregister(ctx));
5527 }
5528
5529 int
iflib_device_suspend(device_t dev)5530 iflib_device_suspend(device_t dev)
5531 {
5532 if_ctx_t ctx = device_get_softc(dev);
5533
5534 CTX_LOCK(ctx);
5535 IFDI_SUSPEND(ctx);
5536 CTX_UNLOCK(ctx);
5537
5538 return (bus_generic_suspend(dev));
5539 }
5540 int
iflib_device_shutdown(device_t dev)5541 iflib_device_shutdown(device_t dev)
5542 {
5543 if_ctx_t ctx = device_get_softc(dev);
5544
5545 CTX_LOCK(ctx);
5546 IFDI_SHUTDOWN(ctx);
5547 CTX_UNLOCK(ctx);
5548
5549 return (bus_generic_suspend(dev));
5550 }
5551
5552 int
iflib_device_resume(device_t dev)5553 iflib_device_resume(device_t dev)
5554 {
5555 if_ctx_t ctx = device_get_softc(dev);
5556 iflib_txq_t txq = ctx->ifc_txqs;
5557
5558 CTX_LOCK(ctx);
5559 IFDI_RESUME(ctx);
5560 iflib_if_init_locked(ctx);
5561 CTX_UNLOCK(ctx);
5562 for (int i = 0; i < NTXQSETS(ctx); i++, txq++)
5563 iflib_txq_check_drain(txq, IFLIB_RESTART_BUDGET);
5564
5565 return (bus_generic_resume(dev));
5566 }
5567
5568 int
iflib_device_iov_init(device_t dev,uint16_t num_vfs,const nvlist_t * params)5569 iflib_device_iov_init(device_t dev, uint16_t num_vfs, const nvlist_t *params)
5570 {
5571 int error;
5572 if_ctx_t ctx = device_get_softc(dev);
5573
5574 CTX_LOCK(ctx);
5575 error = IFDI_IOV_INIT(ctx, num_vfs, params);
5576 CTX_UNLOCK(ctx);
5577
5578 return (error);
5579 }
5580
5581 void
iflib_device_iov_uninit(device_t dev)5582 iflib_device_iov_uninit(device_t dev)
5583 {
5584 if_ctx_t ctx = device_get_softc(dev);
5585
5586 CTX_LOCK(ctx);
5587 IFDI_IOV_UNINIT(ctx);
5588 CTX_UNLOCK(ctx);
5589 }
5590
5591 int
iflib_device_iov_add_vf(device_t dev,uint16_t vfnum,const nvlist_t * params)5592 iflib_device_iov_add_vf(device_t dev, uint16_t vfnum, const nvlist_t *params)
5593 {
5594 int error;
5595 if_ctx_t ctx = device_get_softc(dev);
5596
5597 CTX_LOCK(ctx);
5598 error = IFDI_IOV_VF_ADD(ctx, vfnum, params);
5599 CTX_UNLOCK(ctx);
5600
5601 return (error);
5602 }
5603
5604 /*********************************************************************
5605 *
5606 * MODULE FUNCTION DEFINITIONS
5607 *
5608 **********************************************************************/
5609
5610 /*
5611 * - Start a fast taskqueue thread for each core
5612 * - Start a taskqueue for control operations
5613 */
5614 static int
iflib_module_init(void)5615 iflib_module_init(void)
5616 {
5617 iflib_timer_default = hz / 2;
5618 return (0);
5619 }
5620
5621 static int
iflib_module_event_handler(module_t mod,int what,void * arg)5622 iflib_module_event_handler(module_t mod, int what, void *arg)
5623 {
5624 int err;
5625
5626 switch (what) {
5627 case MOD_LOAD:
5628 if ((err = iflib_module_init()) != 0)
5629 return (err);
5630 break;
5631 case MOD_UNLOAD:
5632 return (EBUSY);
5633 default:
5634 return (EOPNOTSUPP);
5635 }
5636
5637 return (0);
5638 }
5639
5640 /*********************************************************************
5641 *
5642 * PUBLIC FUNCTION DEFINITIONS
5643 * ordered as in iflib.h
5644 *
5645 **********************************************************************/
5646
5647 static void
_iflib_assert(if_shared_ctx_t sctx)5648 _iflib_assert(if_shared_ctx_t sctx)
5649 {
5650 int i;
5651
5652 MPASS(sctx->isc_tx_maxsize);
5653 MPASS(sctx->isc_tx_maxsegsize);
5654
5655 MPASS(sctx->isc_rx_maxsize);
5656 MPASS(sctx->isc_rx_nsegments);
5657 MPASS(sctx->isc_rx_maxsegsize);
5658
5659 MPASS(sctx->isc_nrxqs >= 1 && sctx->isc_nrxqs <= 8);
5660 for (i = 0; i < sctx->isc_nrxqs; i++) {
5661 MPASS(sctx->isc_nrxd_min[i]);
5662 MPASS(powerof2(sctx->isc_nrxd_min[i]));
5663 MPASS(sctx->isc_nrxd_max[i]);
5664 MPASS(powerof2(sctx->isc_nrxd_max[i]));
5665 MPASS(sctx->isc_nrxd_default[i]);
5666 MPASS(powerof2(sctx->isc_nrxd_default[i]));
5667 }
5668
5669 MPASS(sctx->isc_ntxqs >= 1 && sctx->isc_ntxqs <= 8);
5670 for (i = 0; i < sctx->isc_ntxqs; i++) {
5671 MPASS(sctx->isc_ntxd_min[i]);
5672 MPASS(powerof2(sctx->isc_ntxd_min[i]));
5673 MPASS(sctx->isc_ntxd_max[i]);
5674 MPASS(powerof2(sctx->isc_ntxd_max[i]));
5675 MPASS(sctx->isc_ntxd_default[i]);
5676 MPASS(powerof2(sctx->isc_ntxd_default[i]));
5677 }
5678 }
5679
5680 static void
_iflib_pre_assert(if_softc_ctx_t scctx)5681 _iflib_pre_assert(if_softc_ctx_t scctx)
5682 {
5683
5684 MPASS(scctx->isc_txrx->ift_txd_encap);
5685 MPASS(scctx->isc_txrx->ift_txd_flush);
5686 MPASS(scctx->isc_txrx->ift_txd_credits_update);
5687 MPASS(scctx->isc_txrx->ift_rxd_available);
5688 MPASS(scctx->isc_txrx->ift_rxd_pkt_get);
5689 MPASS(scctx->isc_txrx->ift_rxd_refill);
5690 MPASS(scctx->isc_txrx->ift_rxd_flush);
5691 }
5692
5693 static void
iflib_register(if_ctx_t ctx)5694 iflib_register(if_ctx_t ctx)
5695 {
5696 if_shared_ctx_t sctx = ctx->ifc_sctx;
5697 driver_t *driver = sctx->isc_driver;
5698 device_t dev = ctx->ifc_dev;
5699 if_t ifp;
5700
5701 _iflib_assert(sctx);
5702
5703 CTX_LOCK_INIT(ctx);
5704 STATE_LOCK_INIT(ctx, device_get_nameunit(ctx->ifc_dev));
5705 ifp = ctx->ifc_ifp = if_alloc_dev(IFT_ETHER, dev);
5706
5707 /*
5708 * Initialize our context's device specific methods
5709 */
5710 kobj_init((kobj_t) ctx, (kobj_class_t) driver);
5711 kobj_class_compile((kobj_class_t) driver);
5712
5713 if_initname(ifp, device_get_name(dev), device_get_unit(dev));
5714 if_setsoftc(ifp, ctx);
5715 if_setdev(ifp, dev);
5716 if_setinitfn(ifp, iflib_if_init);
5717 if_setioctlfn(ifp, iflib_if_ioctl);
5718 #ifdef ALTQ
5719 if_setstartfn(ifp, iflib_altq_if_start);
5720 if_settransmitfn(ifp, iflib_altq_if_transmit);
5721 if_setsendqready(ifp);
5722 #else
5723 if_settransmitfn(ifp, iflib_if_transmit);
5724 #endif
5725 if_setqflushfn(ifp, iflib_if_qflush);
5726 if_setgetcounterfn(ifp, iflib_if_get_counter);
5727 if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
5728 ctx->ifc_vlan_attach_event =
5729 EVENTHANDLER_REGISTER(vlan_config, iflib_vlan_register, ctx,
5730 EVENTHANDLER_PRI_FIRST);
5731 ctx->ifc_vlan_detach_event =
5732 EVENTHANDLER_REGISTER(vlan_unconfig, iflib_vlan_unregister, ctx,
5733 EVENTHANDLER_PRI_FIRST);
5734
5735 if ((sctx->isc_flags & IFLIB_DRIVER_MEDIA) == 0) {
5736 ctx->ifc_mediap = &ctx->ifc_media;
5737 ifmedia_init(ctx->ifc_mediap, IFM_IMASK,
5738 iflib_media_change, iflib_media_status);
5739 }
5740 }
5741
5742 static void
iflib_unregister_vlan_handlers(if_ctx_t ctx)5743 iflib_unregister_vlan_handlers(if_ctx_t ctx)
5744 {
5745 /* Unregister VLAN events */
5746 if (ctx->ifc_vlan_attach_event != NULL) {
5747 EVENTHANDLER_DEREGISTER(vlan_config, ctx->ifc_vlan_attach_event);
5748 ctx->ifc_vlan_attach_event = NULL;
5749 }
5750 if (ctx->ifc_vlan_detach_event != NULL) {
5751 EVENTHANDLER_DEREGISTER(vlan_unconfig, ctx->ifc_vlan_detach_event);
5752 ctx->ifc_vlan_detach_event = NULL;
5753 }
5754
5755 }
5756
5757 static void
iflib_deregister(if_ctx_t ctx)5758 iflib_deregister(if_ctx_t ctx)
5759 {
5760 if_t ifp = ctx->ifc_ifp;
5761
5762 /* Remove all media */
5763 ifmedia_removeall(&ctx->ifc_media);
5764
5765 /* Ensure that VLAN event handlers are unregistered */
5766 iflib_unregister_vlan_handlers(ctx);
5767
5768 /* Release kobject reference */
5769 kobj_delete((kobj_t) ctx, NULL);
5770
5771 /* Free the ifnet structure */
5772 if_free(ifp);
5773
5774 STATE_LOCK_DESTROY(ctx);
5775
5776 /* ether_ifdetach calls if_qflush - lock must be destroy afterwards*/
5777 CTX_LOCK_DESTROY(ctx);
5778 }
5779
5780 static int
iflib_queues_alloc(if_ctx_t ctx)5781 iflib_queues_alloc(if_ctx_t ctx)
5782 {
5783 if_shared_ctx_t sctx = ctx->ifc_sctx;
5784 if_softc_ctx_t scctx = &ctx->ifc_softc_ctx;
5785 device_t dev = ctx->ifc_dev;
5786 int nrxqsets = scctx->isc_nrxqsets;
5787 int ntxqsets = scctx->isc_ntxqsets;
5788 iflib_txq_t txq;
5789 iflib_rxq_t rxq;
5790 iflib_fl_t fl = NULL;
5791 int i, j, cpu, err, txconf, rxconf;
5792 iflib_dma_info_t ifdip;
5793 uint32_t *rxqsizes = scctx->isc_rxqsizes;
5794 uint32_t *txqsizes = scctx->isc_txqsizes;
5795 uint8_t nrxqs = sctx->isc_nrxqs;
5796 uint8_t ntxqs = sctx->isc_ntxqs;
5797 int nfree_lists = sctx->isc_nfl ? sctx->isc_nfl : 1;
5798 int fl_offset = (sctx->isc_flags & IFLIB_HAS_RXCQ ? 1 : 0);
5799 caddr_t *vaddrs;
5800 uint64_t *paddrs;
5801
5802 KASSERT(ntxqs > 0, ("number of queues per qset must be at least 1"));
5803 KASSERT(nrxqs > 0, ("number of queues per qset must be at least 1"));
5804 KASSERT(nrxqs >= fl_offset + nfree_lists,
5805 ("there must be at least a rxq for each free list"));
5806
5807 /* Allocate the TX ring struct memory */
5808 if (!(ctx->ifc_txqs =
5809 (iflib_txq_t) malloc(sizeof(struct iflib_txq) *
5810 ntxqsets, M_IFLIB, M_NOWAIT | M_ZERO))) {
5811 device_printf(dev, "Unable to allocate TX ring memory\n");
5812 err = ENOMEM;
5813 goto fail;
5814 }
5815
5816 /* Now allocate the RX */
5817 if (!(ctx->ifc_rxqs =
5818 (iflib_rxq_t) malloc(sizeof(struct iflib_rxq) *
5819 nrxqsets, M_IFLIB, M_NOWAIT | M_ZERO))) {
5820 device_printf(dev, "Unable to allocate RX ring memory\n");
5821 err = ENOMEM;
5822 goto rx_fail;
5823 }
5824
5825 txq = ctx->ifc_txqs;
5826 rxq = ctx->ifc_rxqs;
5827
5828 /*
5829 * XXX handle allocation failure
5830 */
5831 for (txconf = i = 0, cpu = CPU_FIRST(); i < ntxqsets; i++, txconf++, txq++, cpu = CPU_NEXT(cpu)) {
5832 /* Set up some basics */
5833
5834 if ((ifdip = malloc(sizeof(struct iflib_dma_info) * ntxqs,
5835 M_IFLIB, M_NOWAIT | M_ZERO)) == NULL) {
5836 device_printf(dev,
5837 "Unable to allocate TX DMA info memory\n");
5838 err = ENOMEM;
5839 goto err_tx_desc;
5840 }
5841 txq->ift_ifdi = ifdip;
5842 for (j = 0; j < ntxqs; j++, ifdip++) {
5843 if (iflib_dma_alloc(ctx, txqsizes[j], ifdip, 0)) {
5844 device_printf(dev,
5845 "Unable to allocate TX descriptors\n");
5846 err = ENOMEM;
5847 goto err_tx_desc;
5848 }
5849 txq->ift_txd_size[j] = scctx->isc_txd_size[j];
5850 bzero((void *)ifdip->idi_vaddr, txqsizes[j]);
5851 }
5852 txq->ift_ctx = ctx;
5853 txq->ift_id = i;
5854 if (sctx->isc_flags & IFLIB_HAS_TXCQ) {
5855 txq->ift_br_offset = 1;
5856 } else {
5857 txq->ift_br_offset = 0;
5858 }
5859
5860 if (iflib_txsd_alloc(txq)) {
5861 device_printf(dev, "Critical Failure setting up TX buffers\n");
5862 err = ENOMEM;
5863 goto err_tx_desc;
5864 }
5865
5866 /* Initialize the TX lock */
5867 snprintf(txq->ift_mtx_name, MTX_NAME_LEN, "%s:TX(%d):callout",
5868 device_get_nameunit(dev), txq->ift_id);
5869 mtx_init(&txq->ift_mtx, txq->ift_mtx_name, NULL, MTX_DEF);
5870 callout_init_mtx(&txq->ift_timer, &txq->ift_mtx, 0);
5871 txq->ift_timer.c_cpu = cpu;
5872 #ifdef DEV_NETMAP
5873 callout_init_mtx(&txq->ift_netmap_timer, &txq->ift_mtx, 0);
5874 txq->ift_netmap_timer.c_cpu = cpu;
5875 #endif /* DEV_NETMAP */
5876
5877 err = ifmp_ring_alloc(&txq->ift_br, 2048, txq, iflib_txq_drain,
5878 iflib_txq_can_drain, M_IFLIB, M_WAITOK);
5879 if (err) {
5880 /* XXX free any allocated rings */
5881 device_printf(dev, "Unable to allocate buf_ring\n");
5882 goto err_tx_desc;
5883 }
5884 }
5885
5886 for (rxconf = i = 0; i < nrxqsets; i++, rxconf++, rxq++) {
5887 /* Set up some basics */
5888 callout_init(&rxq->ifr_watchdog, 1);
5889
5890 if ((ifdip = malloc(sizeof(struct iflib_dma_info) * nrxqs,
5891 M_IFLIB, M_NOWAIT | M_ZERO)) == NULL) {
5892 device_printf(dev,
5893 "Unable to allocate RX DMA info memory\n");
5894 err = ENOMEM;
5895 goto err_tx_desc;
5896 }
5897
5898 rxq->ifr_ifdi = ifdip;
5899 /* XXX this needs to be changed if #rx queues != #tx queues */
5900 rxq->ifr_ntxqirq = 1;
5901 rxq->ifr_txqid[0] = i;
5902 for (j = 0; j < nrxqs; j++, ifdip++) {
5903 if (iflib_dma_alloc(ctx, rxqsizes[j], ifdip, 0)) {
5904 device_printf(dev,
5905 "Unable to allocate RX descriptors\n");
5906 err = ENOMEM;
5907 goto err_tx_desc;
5908 }
5909 bzero((void *)ifdip->idi_vaddr, rxqsizes[j]);
5910 }
5911 rxq->ifr_ctx = ctx;
5912 rxq->ifr_id = i;
5913 rxq->ifr_fl_offset = fl_offset;
5914 rxq->ifr_nfl = nfree_lists;
5915 if (!(fl =
5916 (iflib_fl_t) malloc(sizeof(struct iflib_fl) * nfree_lists, M_IFLIB, M_NOWAIT | M_ZERO))) {
5917 device_printf(dev, "Unable to allocate free list memory\n");
5918 err = ENOMEM;
5919 goto err_tx_desc;
5920 }
5921 rxq->ifr_fl = fl;
5922 for (j = 0; j < nfree_lists; j++) {
5923 fl[j].ifl_rxq = rxq;
5924 fl[j].ifl_id = j;
5925 fl[j].ifl_ifdi = &rxq->ifr_ifdi[j + rxq->ifr_fl_offset];
5926 fl[j].ifl_rxd_size = scctx->isc_rxd_size[j];
5927 }
5928 /* Allocate receive buffers for the ring */
5929 if (iflib_rxsd_alloc(rxq)) {
5930 device_printf(dev,
5931 "Critical Failure setting up receive buffers\n");
5932 err = ENOMEM;
5933 goto err_rx_desc;
5934 }
5935
5936 for (j = 0, fl = rxq->ifr_fl; j < rxq->ifr_nfl; j++, fl++)
5937 fl->ifl_rx_bitmap = bit_alloc(fl->ifl_size, M_IFLIB,
5938 M_WAITOK);
5939 }
5940
5941 /* TXQs */
5942 vaddrs = malloc(sizeof(caddr_t) * ntxqsets * ntxqs, M_IFLIB, M_WAITOK);
5943 paddrs = malloc(sizeof(uint64_t) * ntxqsets * ntxqs, M_IFLIB, M_WAITOK);
5944 for (i = 0; i < ntxqsets; i++) {
5945 iflib_dma_info_t di = ctx->ifc_txqs[i].ift_ifdi;
5946
5947 for (j = 0; j < ntxqs; j++, di++) {
5948 vaddrs[i * ntxqs + j] = di->idi_vaddr;
5949 paddrs[i * ntxqs + j] = di->idi_paddr;
5950 }
5951 }
5952 if ((err = IFDI_TX_QUEUES_ALLOC(ctx, vaddrs, paddrs, ntxqs, ntxqsets)) != 0) {
5953 device_printf(ctx->ifc_dev,
5954 "Unable to allocate device TX queue\n");
5955 iflib_tx_structures_free(ctx);
5956 free(vaddrs, M_IFLIB);
5957 free(paddrs, M_IFLIB);
5958 goto err_rx_desc;
5959 }
5960 free(vaddrs, M_IFLIB);
5961 free(paddrs, M_IFLIB);
5962
5963 /* RXQs */
5964 vaddrs = malloc(sizeof(caddr_t) * nrxqsets * nrxqs, M_IFLIB, M_WAITOK);
5965 paddrs = malloc(sizeof(uint64_t) * nrxqsets * nrxqs, M_IFLIB, M_WAITOK);
5966 for (i = 0; i < nrxqsets; i++) {
5967 iflib_dma_info_t di = ctx->ifc_rxqs[i].ifr_ifdi;
5968
5969 for (j = 0; j < nrxqs; j++, di++) {
5970 vaddrs[i * nrxqs + j] = di->idi_vaddr;
5971 paddrs[i * nrxqs + j] = di->idi_paddr;
5972 }
5973 }
5974 if ((err = IFDI_RX_QUEUES_ALLOC(ctx, vaddrs, paddrs, nrxqs, nrxqsets)) != 0) {
5975 device_printf(ctx->ifc_dev,
5976 "Unable to allocate device RX queue\n");
5977 iflib_tx_structures_free(ctx);
5978 free(vaddrs, M_IFLIB);
5979 free(paddrs, M_IFLIB);
5980 goto err_rx_desc;
5981 }
5982 free(vaddrs, M_IFLIB);
5983 free(paddrs, M_IFLIB);
5984
5985 return (0);
5986
5987 /* XXX handle allocation failure changes */
5988 err_rx_desc:
5989 err_tx_desc:
5990 rx_fail:
5991 if (ctx->ifc_rxqs != NULL)
5992 free(ctx->ifc_rxqs, M_IFLIB);
5993 ctx->ifc_rxqs = NULL;
5994 if (ctx->ifc_txqs != NULL)
5995 free(ctx->ifc_txqs, M_IFLIB);
5996 ctx->ifc_txqs = NULL;
5997 fail:
5998 return (err);
5999 }
6000
6001 static int
iflib_tx_structures_setup(if_ctx_t ctx)6002 iflib_tx_structures_setup(if_ctx_t ctx)
6003 {
6004 iflib_txq_t txq = ctx->ifc_txqs;
6005 int i;
6006
6007 for (i = 0; i < NTXQSETS(ctx); i++, txq++)
6008 iflib_txq_setup(txq);
6009
6010 return (0);
6011 }
6012
6013 static void
iflib_tx_structures_free(if_ctx_t ctx)6014 iflib_tx_structures_free(if_ctx_t ctx)
6015 {
6016 iflib_txq_t txq = ctx->ifc_txqs;
6017 if_shared_ctx_t sctx = ctx->ifc_sctx;
6018 int i, j;
6019
6020 for (i = 0; i < NTXQSETS(ctx); i++, txq++) {
6021 for (j = 0; j < sctx->isc_ntxqs; j++)
6022 iflib_dma_free(&txq->ift_ifdi[j]);
6023 iflib_txq_destroy(txq);
6024 }
6025 free(ctx->ifc_txqs, M_IFLIB);
6026 ctx->ifc_txqs = NULL;
6027 }
6028
6029 /*********************************************************************
6030 *
6031 * Initialize all receive rings.
6032 *
6033 **********************************************************************/
6034 static int
iflib_rx_structures_setup(if_ctx_t ctx)6035 iflib_rx_structures_setup(if_ctx_t ctx)
6036 {
6037 iflib_rxq_t rxq = ctx->ifc_rxqs;
6038 int q;
6039 #if defined(INET6) || defined(INET)
6040 int err, i;
6041 #endif
6042
6043 for (q = 0; q < ctx->ifc_softc_ctx.isc_nrxqsets; q++, rxq++) {
6044 #if defined(INET6) || defined(INET)
6045 err = tcp_lro_init_args(&rxq->ifr_lc, ctx->ifc_ifp,
6046 TCP_LRO_ENTRIES, min(1024,
6047 ctx->ifc_softc_ctx.isc_nrxd[rxq->ifr_fl_offset]));
6048 if (err != 0) {
6049 device_printf(ctx->ifc_dev,
6050 "LRO Initialization failed!\n");
6051 goto fail;
6052 }
6053 #endif
6054 IFDI_RXQ_SETUP(ctx, rxq->ifr_id);
6055 }
6056 return (0);
6057 #if defined(INET6) || defined(INET)
6058 fail:
6059 /*
6060 * Free LRO resources allocated so far, we will only handle
6061 * the rings that completed, the failing case will have
6062 * cleaned up for itself. 'q' failed, so its the terminus.
6063 */
6064 rxq = ctx->ifc_rxqs;
6065 for (i = 0; i < q; ++i, rxq++) {
6066 tcp_lro_free(&rxq->ifr_lc);
6067 }
6068 return (err);
6069 #endif
6070 }
6071
6072 /*********************************************************************
6073 *
6074 * Free all receive rings.
6075 *
6076 **********************************************************************/
6077 static void
iflib_rx_structures_free(if_ctx_t ctx)6078 iflib_rx_structures_free(if_ctx_t ctx)
6079 {
6080 iflib_rxq_t rxq = ctx->ifc_rxqs;
6081 if_shared_ctx_t sctx = ctx->ifc_sctx;
6082 int i, j;
6083
6084 for (i = 0; i < ctx->ifc_softc_ctx.isc_nrxqsets; i++, rxq++) {
6085 for (j = 0; j < sctx->isc_nrxqs; j++)
6086 iflib_dma_free(&rxq->ifr_ifdi[j]);
6087 iflib_rx_sds_free(rxq);
6088 #if defined(INET6) || defined(INET)
6089 tcp_lro_free(&rxq->ifr_lc);
6090 #endif
6091 }
6092 free(ctx->ifc_rxqs, M_IFLIB);
6093 ctx->ifc_rxqs = NULL;
6094 }
6095
6096 static int
iflib_qset_structures_setup(if_ctx_t ctx)6097 iflib_qset_structures_setup(if_ctx_t ctx)
6098 {
6099 int err;
6100
6101 /*
6102 * It is expected that the caller takes care of freeing queues if this
6103 * fails.
6104 */
6105 if ((err = iflib_tx_structures_setup(ctx)) != 0) {
6106 device_printf(ctx->ifc_dev, "iflib_tx_structures_setup failed: %d\n", err);
6107 return (err);
6108 }
6109
6110 if ((err = iflib_rx_structures_setup(ctx)) != 0)
6111 device_printf(ctx->ifc_dev, "iflib_rx_structures_setup failed: %d\n", err);
6112
6113 return (err);
6114 }
6115
6116 int
iflib_irq_alloc(if_ctx_t ctx,if_irq_t irq,int rid,driver_filter_t filter,void * filter_arg,driver_intr_t handler,void * arg,const char * name)6117 iflib_irq_alloc(if_ctx_t ctx, if_irq_t irq, int rid,
6118 driver_filter_t filter, void *filter_arg, driver_intr_t handler, void *arg, const char *name)
6119 {
6120
6121 return (_iflib_irq_alloc(ctx, irq, rid, filter, handler, arg, name));
6122 }
6123
6124 /* Just to avoid copy/paste */
6125 static inline int
iflib_irq_set_affinity(if_ctx_t ctx,if_irq_t irq,iflib_intr_type_t type,int qid,struct grouptask * gtask,struct taskqgroup * tqg,void * uniq,const char * name)6126 iflib_irq_set_affinity(if_ctx_t ctx, if_irq_t irq, iflib_intr_type_t type,
6127 int qid, struct grouptask *gtask, struct taskqgroup *tqg, void *uniq,
6128 const char *name)
6129 {
6130 device_t dev;
6131 unsigned int base_cpuid, cpuid;
6132 int err;
6133
6134 dev = ctx->ifc_dev;
6135 base_cpuid = ctx->ifc_sysctl_core_offset;
6136 cpuid = get_cpuid_for_queue(ctx, base_cpuid, qid, type == IFLIB_INTR_TX);
6137 err = taskqgroup_attach_cpu(tqg, gtask, uniq, cpuid, dev,
6138 irq ? irq->ii_res : NULL, name);
6139 if (err) {
6140 device_printf(dev, "taskqgroup_attach_cpu failed %d\n", err);
6141 return (err);
6142 }
6143 #ifdef notyet
6144 if (cpuid > ctx->ifc_cpuid_highest)
6145 ctx->ifc_cpuid_highest = cpuid;
6146 #endif
6147 return (0);
6148 }
6149
6150 /*
6151 * Allocate a hardware interrupt for subctx using the parent (ctx)'s hardware
6152 * resources.
6153 *
6154 * Similar to iflib_irq_alloc_generic(), but for interrupt type IFLIB_INTR_RXTX
6155 * only.
6156 *
6157 * XXX: Could be removed if subctx's dev has its intr resource allocation
6158 * methods replaced with custom ones?
6159 */
6160 int
iflib_irq_alloc_generic_subctx(if_ctx_t ctx,if_ctx_t subctx,if_irq_t irq,int rid,iflib_intr_type_t type,driver_filter_t * filter,void * filter_arg,int qid,const char * name)6161 iflib_irq_alloc_generic_subctx(if_ctx_t ctx, if_ctx_t subctx, if_irq_t irq,
6162 int rid, iflib_intr_type_t type,
6163 driver_filter_t *filter, void *filter_arg,
6164 int qid, const char *name)
6165 {
6166 device_t dev, subdev;
6167 struct grouptask *gtask;
6168 struct taskqgroup *tqg;
6169 iflib_filter_info_t info;
6170 gtask_fn_t *fn;
6171 int tqrid, err;
6172 driver_filter_t *intr_fast;
6173 void *q;
6174
6175 MPASS(ctx != NULL);
6176 MPASS(subctx != NULL);
6177
6178 tqrid = rid;
6179 dev = ctx->ifc_dev;
6180 subdev = subctx->ifc_dev;
6181
6182 switch (type) {
6183 case IFLIB_INTR_RXTX:
6184 q = &subctx->ifc_rxqs[qid];
6185 info = &subctx->ifc_rxqs[qid].ifr_filter_info;
6186 gtask = &subctx->ifc_rxqs[qid].ifr_task;
6187 tqg = qgroup_if_io_tqg;
6188 fn = _task_fn_rx;
6189 intr_fast = iflib_fast_intr_rxtx;
6190 NET_GROUPTASK_INIT(gtask, 0, fn, q);
6191 break;
6192 default:
6193 device_printf(dev, "%s: unknown net intr type for subctx %s (%d)\n",
6194 __func__, device_get_nameunit(subdev), type);
6195 return (EINVAL);
6196 }
6197
6198 info->ifi_filter = filter;
6199 info->ifi_filter_arg = filter_arg;
6200 info->ifi_task = gtask;
6201 info->ifi_ctx = q;
6202
6203 NET_GROUPTASK_INIT(gtask, 0, fn, q);
6204
6205 /* Allocate interrupts from hardware using parent context */
6206 err = _iflib_irq_alloc(ctx, irq, rid, intr_fast, NULL, info, name);
6207 if (err != 0) {
6208 device_printf(dev, "_iflib_irq_alloc failed for subctx %s: %d\n",
6209 device_get_nameunit(subdev), err);
6210 return (err);
6211 }
6212
6213 if (tqrid != -1) {
6214 err = iflib_irq_set_affinity(ctx, irq, type, qid, gtask, tqg, q,
6215 name);
6216 if (err)
6217 return (err);
6218 } else {
6219 taskqgroup_attach(tqg, gtask, q, dev, irq->ii_res, name);
6220 }
6221
6222 return (0);
6223 }
6224
6225 int
iflib_irq_alloc_generic(if_ctx_t ctx,if_irq_t irq,int rid,iflib_intr_type_t type,driver_filter_t * filter,void * filter_arg,int qid,const char * name)6226 iflib_irq_alloc_generic(if_ctx_t ctx, if_irq_t irq, int rid,
6227 iflib_intr_type_t type, driver_filter_t *filter,
6228 void *filter_arg, int qid, const char *name)
6229 {
6230 device_t dev;
6231 struct grouptask *gtask;
6232 struct taskqgroup *tqg;
6233 iflib_filter_info_t info;
6234 gtask_fn_t *fn;
6235 int tqrid, err;
6236 driver_filter_t *intr_fast;
6237 void *q;
6238
6239 info = &ctx->ifc_filter_info;
6240 tqrid = rid;
6241
6242 switch (type) {
6243 /* XXX merge tx/rx for netmap? */
6244 case IFLIB_INTR_TX:
6245 q = &ctx->ifc_txqs[qid];
6246 info = &ctx->ifc_txqs[qid].ift_filter_info;
6247 gtask = &ctx->ifc_txqs[qid].ift_task;
6248 tqg = qgroup_if_io_tqg;
6249 fn = _task_fn_tx;
6250 intr_fast = iflib_fast_intr;
6251 GROUPTASK_INIT(gtask, 0, fn, q);
6252 ctx->ifc_flags |= IFC_NETMAP_TX_IRQ;
6253 break;
6254 case IFLIB_INTR_RX:
6255 q = &ctx->ifc_rxqs[qid];
6256 info = &ctx->ifc_rxqs[qid].ifr_filter_info;
6257 gtask = &ctx->ifc_rxqs[qid].ifr_task;
6258 tqg = qgroup_if_io_tqg;
6259 fn = _task_fn_rx;
6260 intr_fast = iflib_fast_intr;
6261 NET_GROUPTASK_INIT(gtask, 0, fn, q);
6262 break;
6263 case IFLIB_INTR_RXTX:
6264 q = &ctx->ifc_rxqs[qid];
6265 info = &ctx->ifc_rxqs[qid].ifr_filter_info;
6266 gtask = &ctx->ifc_rxqs[qid].ifr_task;
6267 tqg = qgroup_if_io_tqg;
6268 fn = _task_fn_rx;
6269 intr_fast = iflib_fast_intr_rxtx;
6270 NET_GROUPTASK_INIT(gtask, 0, fn, q);
6271 break;
6272 case IFLIB_INTR_ADMIN:
6273 q = ctx;
6274 tqrid = -1;
6275 info = &ctx->ifc_filter_info;
6276 gtask = NULL;
6277 intr_fast = iflib_fast_intr_ctx;
6278 break;
6279 default:
6280 device_printf(ctx->ifc_dev, "%s: unknown net intr type\n",
6281 __func__);
6282 return (EINVAL);
6283 }
6284
6285 info->ifi_filter = filter;
6286 info->ifi_filter_arg = filter_arg;
6287 info->ifi_task = gtask;
6288 info->ifi_ctx = q;
6289
6290 dev = ctx->ifc_dev;
6291 err = _iflib_irq_alloc(ctx, irq, rid, intr_fast, NULL, info, name);
6292 if (err != 0) {
6293 device_printf(dev, "_iflib_irq_alloc failed %d\n", err);
6294 return (err);
6295 }
6296 if (type == IFLIB_INTR_ADMIN)
6297 return (0);
6298
6299 if (tqrid != -1) {
6300 err = iflib_irq_set_affinity(ctx, irq, type, qid, gtask, tqg, q,
6301 name);
6302 if (err)
6303 return (err);
6304 } else {
6305 taskqgroup_attach(tqg, gtask, q, dev, irq->ii_res, name);
6306 }
6307
6308 return (0);
6309 }
6310
6311 void
iflib_softirq_alloc_generic(if_ctx_t ctx,if_irq_t irq,iflib_intr_type_t type,void * arg,int qid,const char * name)6312 iflib_softirq_alloc_generic(if_ctx_t ctx, if_irq_t irq, iflib_intr_type_t type,
6313 void *arg, int qid, const char *name)
6314 {
6315 device_t dev;
6316 struct grouptask *gtask;
6317 struct taskqgroup *tqg;
6318 gtask_fn_t *fn;
6319 void *q;
6320 int err;
6321
6322 switch (type) {
6323 case IFLIB_INTR_TX:
6324 q = &ctx->ifc_txqs[qid];
6325 gtask = &ctx->ifc_txqs[qid].ift_task;
6326 tqg = qgroup_if_io_tqg;
6327 fn = _task_fn_tx;
6328 GROUPTASK_INIT(gtask, 0, fn, q);
6329 break;
6330 case IFLIB_INTR_RX:
6331 q = &ctx->ifc_rxqs[qid];
6332 gtask = &ctx->ifc_rxqs[qid].ifr_task;
6333 tqg = qgroup_if_io_tqg;
6334 fn = _task_fn_rx;
6335 NET_GROUPTASK_INIT(gtask, 0, fn, q);
6336 break;
6337 case IFLIB_INTR_IOV:
6338 TASK_INIT(&ctx->ifc_vflr_task, 0, _task_fn_iov, ctx);
6339 return;
6340 default:
6341 panic("unknown net intr type");
6342 }
6343 err = iflib_irq_set_affinity(ctx, irq, type, qid, gtask, tqg, q, name);
6344 if (err) {
6345 dev = ctx->ifc_dev;
6346 taskqgroup_attach(tqg, gtask, q, dev, irq ? irq->ii_res : NULL,
6347 name);
6348 }
6349 }
6350
6351 void
iflib_irq_free(if_ctx_t ctx,if_irq_t irq)6352 iflib_irq_free(if_ctx_t ctx, if_irq_t irq)
6353 {
6354
6355 if (irq->ii_tag)
6356 bus_teardown_intr(ctx->ifc_dev, irq->ii_res, irq->ii_tag);
6357
6358 if (irq->ii_res)
6359 bus_release_resource(ctx->ifc_dev, SYS_RES_IRQ,
6360 rman_get_rid(irq->ii_res), irq->ii_res);
6361 }
6362
6363 static int
iflib_legacy_setup(if_ctx_t ctx,driver_filter_t filter,void * filter_arg,int * rid,const char * name)6364 iflib_legacy_setup(if_ctx_t ctx, driver_filter_t filter, void *filter_arg, int *rid, const char *name)
6365 {
6366 iflib_txq_t txq = ctx->ifc_txqs;
6367 iflib_rxq_t rxq = ctx->ifc_rxqs;
6368 if_irq_t irq = &ctx->ifc_legacy_irq;
6369 iflib_filter_info_t info;
6370 device_t dev;
6371 struct grouptask *gtask;
6372 struct resource *res;
6373 int err, tqrid;
6374 bool rx_only;
6375
6376 info = &rxq->ifr_filter_info;
6377 gtask = &rxq->ifr_task;
6378 tqrid = *rid;
6379 rx_only = (ctx->ifc_sctx->isc_flags & IFLIB_SINGLE_IRQ_RX_ONLY) != 0;
6380
6381 ctx->ifc_flags |= IFC_LEGACY;
6382 info->ifi_filter = filter;
6383 info->ifi_filter_arg = filter_arg;
6384 info->ifi_task = gtask;
6385 info->ifi_ctx = rxq;
6386
6387 dev = ctx->ifc_dev;
6388 /* We allocate a single interrupt resource */
6389 err = _iflib_irq_alloc(ctx, irq, tqrid, rx_only ? iflib_fast_intr :
6390 iflib_fast_intr_rxtx, NULL, info, name);
6391 if (err != 0)
6392 return (err);
6393 NET_GROUPTASK_INIT(gtask, 0, _task_fn_rx, rxq);
6394 res = irq->ii_res;
6395 taskqgroup_attach(qgroup_if_io_tqg, gtask, rxq, dev, res, name);
6396
6397 GROUPTASK_INIT(&txq->ift_task, 0, _task_fn_tx, txq);
6398 taskqgroup_attach(qgroup_if_io_tqg, &txq->ift_task, txq, dev, res,
6399 "tx");
6400 return (0);
6401 }
6402
6403 void
iflib_led_create(if_ctx_t ctx)6404 iflib_led_create(if_ctx_t ctx)
6405 {
6406
6407 ctx->ifc_led_dev = led_create(iflib_led_func, ctx,
6408 device_get_nameunit(ctx->ifc_dev));
6409 }
6410
6411 void
iflib_tx_intr_deferred(if_ctx_t ctx,int txqid)6412 iflib_tx_intr_deferred(if_ctx_t ctx, int txqid)
6413 {
6414
6415 GROUPTASK_ENQUEUE(&ctx->ifc_txqs[txqid].ift_task);
6416 }
6417
6418 void
iflib_rx_intr_deferred(if_ctx_t ctx,int rxqid)6419 iflib_rx_intr_deferred(if_ctx_t ctx, int rxqid)
6420 {
6421
6422 GROUPTASK_ENQUEUE(&ctx->ifc_rxqs[rxqid].ifr_task);
6423 }
6424
6425 void
iflib_admin_intr_deferred(if_ctx_t ctx)6426 iflib_admin_intr_deferred(if_ctx_t ctx)
6427 {
6428
6429 taskqueue_enqueue(ctx->ifc_tq, &ctx->ifc_admin_task);
6430 }
6431
6432 void
iflib_iov_intr_deferred(if_ctx_t ctx)6433 iflib_iov_intr_deferred(if_ctx_t ctx)
6434 {
6435
6436 taskqueue_enqueue(ctx->ifc_tq, &ctx->ifc_vflr_task);
6437 }
6438
6439 void
iflib_io_tqg_attach(struct grouptask * gt,void * uniq,int cpu,const char * name)6440 iflib_io_tqg_attach(struct grouptask *gt, void *uniq, int cpu, const char *name)
6441 {
6442
6443 taskqgroup_attach_cpu(qgroup_if_io_tqg, gt, uniq, cpu, NULL, NULL,
6444 name);
6445 }
6446
6447 void
iflib_config_task_init(if_ctx_t ctx,struct task * config_task,task_fn_t * fn)6448 iflib_config_task_init(if_ctx_t ctx, struct task *config_task, task_fn_t *fn)
6449 {
6450 TASK_INIT(config_task, 0, fn, ctx);
6451 }
6452
6453 void
iflib_config_task_enqueue(if_ctx_t ctx,struct task * config_task)6454 iflib_config_task_enqueue(if_ctx_t ctx, struct task *config_task)
6455 {
6456 taskqueue_enqueue(ctx->ifc_tq, config_task);
6457 }
6458
6459 void
iflib_link_state_change(if_ctx_t ctx,int link_state,uint64_t baudrate)6460 iflib_link_state_change(if_ctx_t ctx, int link_state, uint64_t baudrate)
6461 {
6462 if_t ifp = ctx->ifc_ifp;
6463 iflib_txq_t txq = ctx->ifc_txqs;
6464
6465 if_setbaudrate(ifp, baudrate);
6466 if (baudrate >= IF_Gbps(10)) {
6467 STATE_LOCK(ctx);
6468 ctx->ifc_flags |= IFC_PREFETCH;
6469 STATE_UNLOCK(ctx);
6470 }
6471 /* If link down, disable watchdog */
6472 if ((ctx->ifc_link_state == LINK_STATE_UP) && (link_state == LINK_STATE_DOWN)) {
6473 for (int i = 0; i < ctx->ifc_softc_ctx.isc_ntxqsets; i++, txq++)
6474 txq->ift_qstatus = IFLIB_QUEUE_IDLE;
6475 }
6476 ctx->ifc_link_state = link_state;
6477 if_link_state_change(ifp, link_state);
6478 }
6479
6480 static int
iflib_tx_credits_update(if_ctx_t ctx,iflib_txq_t txq)6481 iflib_tx_credits_update(if_ctx_t ctx, iflib_txq_t txq)
6482 {
6483 int credits;
6484 #ifdef INVARIANTS
6485 int credits_pre = txq->ift_cidx_processed;
6486 #endif
6487
6488 bus_dmamap_sync(txq->ift_ifdi->idi_tag, txq->ift_ifdi->idi_map,
6489 BUS_DMASYNC_POSTREAD);
6490 if ((credits = ctx->isc_txd_credits_update(ctx->ifc_softc, txq->ift_id, true)) == 0)
6491 return (0);
6492
6493 txq->ift_processed += credits;
6494 txq->ift_cidx_processed += credits;
6495
6496 MPASS(credits_pre + credits == txq->ift_cidx_processed);
6497 if (txq->ift_cidx_processed >= txq->ift_size)
6498 txq->ift_cidx_processed -= txq->ift_size;
6499 return (credits);
6500 }
6501
6502 static int
iflib_rxd_avail(if_ctx_t ctx,iflib_rxq_t rxq,qidx_t cidx,qidx_t budget)6503 iflib_rxd_avail(if_ctx_t ctx, iflib_rxq_t rxq, qidx_t cidx, qidx_t budget)
6504 {
6505 iflib_fl_t fl;
6506 u_int i;
6507
6508 for (i = 0, fl = &rxq->ifr_fl[0]; i < rxq->ifr_nfl; i++, fl++)
6509 bus_dmamap_sync(fl->ifl_ifdi->idi_tag, fl->ifl_ifdi->idi_map,
6510 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
6511 return (ctx->isc_rxd_available(ctx->ifc_softc, rxq->ifr_id, cidx,
6512 budget));
6513 }
6514
6515 void
iflib_add_int_delay_sysctl(if_ctx_t ctx,const char * name,const char * description,if_int_delay_info_t info,int offset,int value)6516 iflib_add_int_delay_sysctl(if_ctx_t ctx, const char *name,
6517 const char *description, if_int_delay_info_t info,
6518 int offset, int value)
6519 {
6520 info->iidi_ctx = ctx;
6521 info->iidi_offset = offset;
6522 info->iidi_value = value;
6523 SYSCTL_ADD_PROC(device_get_sysctl_ctx(ctx->ifc_dev),
6524 SYSCTL_CHILDREN(device_get_sysctl_tree(ctx->ifc_dev)),
6525 OID_AUTO, name, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE,
6526 info, 0, iflib_sysctl_int_delay, "I", description);
6527 }
6528
6529 struct sx *
iflib_ctx_lock_get(if_ctx_t ctx)6530 iflib_ctx_lock_get(if_ctx_t ctx)
6531 {
6532
6533 return (&ctx->ifc_ctx_sx);
6534 }
6535
6536 static int
iflib_msix_init(if_ctx_t ctx)6537 iflib_msix_init(if_ctx_t ctx)
6538 {
6539 device_t dev = ctx->ifc_dev;
6540 if_shared_ctx_t sctx = ctx->ifc_sctx;
6541 if_softc_ctx_t scctx = &ctx->ifc_softc_ctx;
6542 int admincnt, bar, err, iflib_num_rx_queues, iflib_num_tx_queues;
6543 int msgs, queuemsgs, queues, rx_queues, tx_queues, vectors;
6544
6545 iflib_num_tx_queues = ctx->ifc_sysctl_ntxqs;
6546 iflib_num_rx_queues = ctx->ifc_sysctl_nrxqs;
6547
6548 if (bootverbose)
6549 device_printf(dev, "msix_init qsets capped at %d\n",
6550 imax(scctx->isc_ntxqsets, scctx->isc_nrxqsets));
6551
6552 /* Override by tuneable */
6553 if (scctx->isc_disable_msix)
6554 goto msi;
6555
6556 /* First try MSI-X */
6557 if ((msgs = pci_msix_count(dev)) == 0) {
6558 if (bootverbose)
6559 device_printf(dev, "MSI-X not supported or disabled\n");
6560 goto msi;
6561 }
6562
6563 bar = ctx->ifc_softc_ctx.isc_msix_bar;
6564 /*
6565 * bar == -1 => "trust me I know what I'm doing"
6566 * Some drivers are for hardware that is so shoddily
6567 * documented that no one knows which bars are which
6568 * so the developer has to map all bars. This hack
6569 * allows shoddy garbage to use MSI-X in this framework.
6570 */
6571 if (bar != -1) {
6572 ctx->ifc_msix_mem = bus_alloc_resource_any(dev,
6573 SYS_RES_MEMORY, &bar, RF_ACTIVE);
6574 if (ctx->ifc_msix_mem == NULL) {
6575 device_printf(dev, "Unable to map MSI-X table\n");
6576 goto msi;
6577 }
6578 }
6579
6580 admincnt = sctx->isc_admin_intrcnt;
6581 #if IFLIB_DEBUG
6582 /* use only 1 qset in debug mode */
6583 queuemsgs = min(msgs - admincnt, 1);
6584 #else
6585 queuemsgs = msgs - admincnt;
6586 #endif
6587 #ifdef RSS
6588 queues = imin(queuemsgs, rss_getnumbuckets());
6589 #else
6590 queues = queuemsgs;
6591 #endif
6592 queues = imin(CPU_COUNT(&ctx->ifc_cpus), queues);
6593 if (bootverbose)
6594 device_printf(dev,
6595 "intr CPUs: %d queue msgs: %d admincnt: %d\n",
6596 CPU_COUNT(&ctx->ifc_cpus), queuemsgs, admincnt);
6597 #ifdef RSS
6598 /* If we're doing RSS, clamp at the number of RSS buckets */
6599 if (queues > rss_getnumbuckets())
6600 queues = rss_getnumbuckets();
6601 #endif
6602 if (iflib_num_rx_queues > 0 && iflib_num_rx_queues < queuemsgs - admincnt)
6603 rx_queues = iflib_num_rx_queues;
6604 else
6605 rx_queues = queues;
6606
6607 if (rx_queues > scctx->isc_nrxqsets)
6608 rx_queues = scctx->isc_nrxqsets;
6609
6610 /*
6611 * We want this to be all logical CPUs by default
6612 */
6613 if (iflib_num_tx_queues > 0 && iflib_num_tx_queues < queues)
6614 tx_queues = iflib_num_tx_queues;
6615 else
6616 tx_queues = mp_ncpus;
6617
6618 if (tx_queues > scctx->isc_ntxqsets)
6619 tx_queues = scctx->isc_ntxqsets;
6620
6621 if (ctx->ifc_sysctl_qs_eq_override == 0) {
6622 #ifdef INVARIANTS
6623 if (tx_queues != rx_queues)
6624 device_printf(dev,
6625 "queue equality override not set, capping rx_queues at %d and tx_queues at %d\n",
6626 min(rx_queues, tx_queues), min(rx_queues, tx_queues));
6627 #endif
6628 tx_queues = min(rx_queues, tx_queues);
6629 rx_queues = min(rx_queues, tx_queues);
6630 }
6631
6632 vectors = rx_queues + admincnt;
6633 if (msgs < vectors) {
6634 device_printf(dev,
6635 "insufficient number of MSI-X vectors "
6636 "(supported %d, need %d)\n", msgs, vectors);
6637 goto msi;
6638 }
6639
6640 device_printf(dev, "Using %d RX queues %d TX queues\n", rx_queues,
6641 tx_queues);
6642 msgs = vectors;
6643 if ((err = pci_alloc_msix(dev, &vectors)) == 0) {
6644 if (vectors != msgs) {
6645 device_printf(dev,
6646 "Unable to allocate sufficient MSI-X vectors "
6647 "(got %d, need %d)\n", vectors, msgs);
6648 pci_release_msi(dev);
6649 if (bar != -1) {
6650 bus_release_resource(dev, SYS_RES_MEMORY, bar,
6651 ctx->ifc_msix_mem);
6652 ctx->ifc_msix_mem = NULL;
6653 }
6654 goto msi;
6655 }
6656 device_printf(dev, "Using MSI-X interrupts with %d vectors\n",
6657 vectors);
6658 scctx->isc_vectors = vectors;
6659 scctx->isc_nrxqsets = rx_queues;
6660 scctx->isc_ntxqsets = tx_queues;
6661 scctx->isc_intr = IFLIB_INTR_MSIX;
6662
6663 return (vectors);
6664 } else {
6665 device_printf(dev,
6666 "failed to allocate %d MSI-X vectors, err: %d\n", vectors,
6667 err);
6668 if (bar != -1) {
6669 bus_release_resource(dev, SYS_RES_MEMORY, bar,
6670 ctx->ifc_msix_mem);
6671 ctx->ifc_msix_mem = NULL;
6672 }
6673 }
6674
6675 msi:
6676 vectors = pci_msi_count(dev);
6677 scctx->isc_nrxqsets = 1;
6678 scctx->isc_ntxqsets = 1;
6679 scctx->isc_vectors = vectors;
6680 if (vectors == 1 && pci_alloc_msi(dev, &vectors) == 0) {
6681 device_printf(dev, "Using an MSI interrupt\n");
6682 scctx->isc_intr = IFLIB_INTR_MSI;
6683 } else {
6684 scctx->isc_vectors = 1;
6685 device_printf(dev, "Using a Legacy interrupt\n");
6686 scctx->isc_intr = IFLIB_INTR_LEGACY;
6687 }
6688
6689 return (vectors);
6690 }
6691
6692 static const char *ring_states[] = { "IDLE", "BUSY", "STALLED", "ABDICATED" };
6693
6694 static int
mp_ring_state_handler(SYSCTL_HANDLER_ARGS)6695 mp_ring_state_handler(SYSCTL_HANDLER_ARGS)
6696 {
6697 int rc;
6698 uint16_t *state = ((uint16_t *)oidp->oid_arg1);
6699 struct sbuf *sb;
6700 const char *ring_state = "UNKNOWN";
6701
6702 /* XXX needed ? */
6703 rc = sysctl_wire_old_buffer(req, 0);
6704 MPASS(rc == 0);
6705 if (rc != 0)
6706 return (rc);
6707 sb = sbuf_new_for_sysctl(NULL, NULL, 80, req);
6708 MPASS(sb != NULL);
6709 if (sb == NULL)
6710 return (ENOMEM);
6711 if (state[3] <= 3)
6712 ring_state = ring_states[state[3]];
6713
6714 sbuf_printf(sb, "pidx_head: %04hd pidx_tail: %04hd cidx: %04hd state: %s",
6715 state[0], state[1], state[2], ring_state);
6716 rc = sbuf_finish(sb);
6717 sbuf_delete(sb);
6718 return (rc);
6719 }
6720
6721 enum iflib_ndesc_handler {
6722 IFLIB_NTXD_HANDLER,
6723 IFLIB_NRXD_HANDLER,
6724 };
6725
6726 static int
mp_ndesc_handler(SYSCTL_HANDLER_ARGS)6727 mp_ndesc_handler(SYSCTL_HANDLER_ARGS)
6728 {
6729 if_ctx_t ctx = (void *)arg1;
6730 enum iflib_ndesc_handler type = arg2;
6731 char buf[256] = {0};
6732 qidx_t *ndesc;
6733 char *p, *next;
6734 int nqs, rc, i;
6735
6736 nqs = 8;
6737 switch (type) {
6738 case IFLIB_NTXD_HANDLER:
6739 ndesc = ctx->ifc_sysctl_ntxds;
6740 if (ctx->ifc_sctx)
6741 nqs = ctx->ifc_sctx->isc_ntxqs;
6742 break;
6743 case IFLIB_NRXD_HANDLER:
6744 ndesc = ctx->ifc_sysctl_nrxds;
6745 if (ctx->ifc_sctx)
6746 nqs = ctx->ifc_sctx->isc_nrxqs;
6747 break;
6748 default:
6749 printf("%s: unhandled type\n", __func__);
6750 return (EINVAL);
6751 }
6752 if (nqs == 0)
6753 nqs = 8;
6754
6755 for (i = 0; i < 8; i++) {
6756 if (i >= nqs)
6757 break;
6758 if (i)
6759 strcat(buf, ",");
6760 sprintf(strchr(buf, 0), "%d", ndesc[i]);
6761 }
6762
6763 rc = sysctl_handle_string(oidp, buf, sizeof(buf), req);
6764 if (rc || req->newptr == NULL)
6765 return (rc);
6766
6767 for (i = 0, next = buf, p = strsep(&next, " ,"); i < 8 && p;
6768 i++, p = strsep(&next, " ,")) {
6769 ndesc[i] = strtoul(p, NULL, 10);
6770 }
6771
6772 return (rc);
6773 }
6774
6775 #define NAME_BUFLEN 32
6776 static void
iflib_add_device_sysctl_pre(if_ctx_t ctx)6777 iflib_add_device_sysctl_pre(if_ctx_t ctx)
6778 {
6779 device_t dev = iflib_get_dev(ctx);
6780 struct sysctl_oid_list *child, *oid_list;
6781 struct sysctl_ctx_list *ctx_list;
6782 struct sysctl_oid *node;
6783
6784 ctx_list = device_get_sysctl_ctx(dev);
6785 child = SYSCTL_CHILDREN(device_get_sysctl_tree(dev));
6786 ctx->ifc_sysctl_node = node = SYSCTL_ADD_NODE(ctx_list, child,
6787 OID_AUTO, "iflib", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
6788 "IFLIB fields");
6789 oid_list = SYSCTL_CHILDREN(node);
6790
6791 SYSCTL_ADD_CONST_STRING(ctx_list, oid_list, OID_AUTO, "driver_version",
6792 CTLFLAG_RD, ctx->ifc_sctx->isc_driver_version, "driver version");
6793
6794 SYSCTL_ADD_BOOL(ctx_list, oid_list, OID_AUTO, "simple_tx",
6795 CTLFLAG_RDTUN, &ctx->ifc_sysctl_simple_tx, 0,
6796 "use simple tx ring");
6797 SYSCTL_ADD_U16(ctx_list, oid_list, OID_AUTO, "override_ntxqs",
6798 CTLFLAG_RWTUN, &ctx->ifc_sysctl_ntxqs, 0,
6799 "# of txqs to use, 0 => use default #");
6800 SYSCTL_ADD_U16(ctx_list, oid_list, OID_AUTO, "override_nrxqs",
6801 CTLFLAG_RWTUN, &ctx->ifc_sysctl_nrxqs, 0,
6802 "# of rxqs to use, 0 => use default #");
6803 SYSCTL_ADD_U16(ctx_list, oid_list, OID_AUTO, "override_qs_enable",
6804 CTLFLAG_RWTUN, &ctx->ifc_sysctl_qs_eq_override, 0,
6805 "permit #txq != #rxq");
6806 SYSCTL_ADD_INT(ctx_list, oid_list, OID_AUTO, "disable_msix",
6807 CTLFLAG_RWTUN, &ctx->ifc_softc_ctx.isc_disable_msix, 0,
6808 "disable MSI-X (default 0)");
6809 SYSCTL_ADD_U16(ctx_list, oid_list, OID_AUTO, "rx_budget",
6810 CTLFLAG_RWTUN, &ctx->ifc_sysctl_rx_budget, 0, "set the RX budget");
6811 SYSCTL_ADD_U16(ctx_list, oid_list, OID_AUTO, "tx_abdicate",
6812 CTLFLAG_RWTUN, &ctx->ifc_sysctl_tx_abdicate, 0,
6813 "cause TX to abdicate instead of running to completion");
6814 ctx->ifc_sysctl_core_offset = CORE_OFFSET_UNSPECIFIED;
6815 SYSCTL_ADD_U16(ctx_list, oid_list, OID_AUTO, "core_offset",
6816 CTLFLAG_RDTUN, &ctx->ifc_sysctl_core_offset, 0,
6817 "offset to start using cores at");
6818 SYSCTL_ADD_U8(ctx_list, oid_list, OID_AUTO, "separate_txrx",
6819 CTLFLAG_RDTUN, &ctx->ifc_sysctl_separate_txrx, 0,
6820 "use separate cores for TX and RX");
6821 SYSCTL_ADD_U8(ctx_list, oid_list, OID_AUTO, "use_logical_cores",
6822 CTLFLAG_RDTUN, &ctx->ifc_sysctl_use_logical_cores, 0,
6823 "try to make use of logical cores for TX and RX");
6824 SYSCTL_ADD_U16(ctx_list, oid_list, OID_AUTO, "use_extra_msix_vectors",
6825 CTLFLAG_RDTUN, &ctx->ifc_sysctl_extra_msix_vectors, 0,
6826 "attempt to reserve the given number of extra MSI-X vectors during driver load for the creation of additional interfaces later");
6827 SYSCTL_ADD_INT(ctx_list, oid_list, OID_AUTO, "allocated_msix_vectors",
6828 CTLFLAG_RDTUN, &ctx->ifc_softc_ctx.isc_vectors, 0,
6829 "total # of MSI-X vectors allocated by driver");
6830
6831 /* XXX change for per-queue sizes */
6832 SYSCTL_ADD_PROC(ctx_list, oid_list, OID_AUTO, "override_ntxds",
6833 CTLTYPE_STRING | CTLFLAG_RWTUN | CTLFLAG_NEEDGIANT, ctx,
6834 IFLIB_NTXD_HANDLER, mp_ndesc_handler, "A",
6835 "list of # of TX descriptors to use, 0 = use default #");
6836 SYSCTL_ADD_PROC(ctx_list, oid_list, OID_AUTO, "override_nrxds",
6837 CTLTYPE_STRING | CTLFLAG_RWTUN | CTLFLAG_NEEDGIANT, ctx,
6838 IFLIB_NRXD_HANDLER, mp_ndesc_handler, "A",
6839 "list of # of RX descriptors to use, 0 = use default #");
6840 }
6841
6842 static void
iflib_add_device_sysctl_post(if_ctx_t ctx)6843 iflib_add_device_sysctl_post(if_ctx_t ctx)
6844 {
6845 if_shared_ctx_t sctx = ctx->ifc_sctx;
6846 if_softc_ctx_t scctx = &ctx->ifc_softc_ctx;
6847 device_t dev = iflib_get_dev(ctx);
6848 struct sysctl_oid_list *child;
6849 struct sysctl_ctx_list *ctx_list;
6850 iflib_fl_t fl;
6851 iflib_txq_t txq;
6852 iflib_rxq_t rxq;
6853 int i, j;
6854 char namebuf[NAME_BUFLEN];
6855 char *qfmt;
6856 struct sysctl_oid *queue_node, *fl_node, *node;
6857 struct sysctl_oid_list *queue_list, *fl_list;
6858 ctx_list = device_get_sysctl_ctx(dev);
6859
6860 node = ctx->ifc_sysctl_node;
6861 child = SYSCTL_CHILDREN(node);
6862
6863 if (scctx->isc_ntxqsets > 100)
6864 qfmt = "txq%03d";
6865 else if (scctx->isc_ntxqsets > 10)
6866 qfmt = "txq%02d";
6867 else
6868 qfmt = "txq%d";
6869 for (i = 0, txq = ctx->ifc_txqs; i < scctx->isc_ntxqsets; i++, txq++) {
6870 snprintf(namebuf, NAME_BUFLEN, qfmt, i);
6871 queue_node = SYSCTL_ADD_NODE(ctx_list, child, OID_AUTO, namebuf,
6872 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Queue Name");
6873 queue_list = SYSCTL_CHILDREN(queue_node);
6874 SYSCTL_ADD_INT(ctx_list, queue_list, OID_AUTO, "cpu",
6875 CTLFLAG_RD, &txq->ift_task.gt_cpu, 0,
6876 "cpu this queue is bound to");
6877 #if MEMORY_LOGGING
6878 SYSCTL_ADD_UQUAD(ctx_list, queue_list, OID_AUTO, "txq_dequeued",
6879 CTLFLAG_RD, &txq->ift_dequeued, "total mbufs freed");
6880 SYSCTL_ADD_UQUAD(ctx_list, queue_list, OID_AUTO, "txq_enqueued",
6881 CTLFLAG_RD, &txq->ift_enqueued, "total mbufs enqueued");
6882 #endif
6883 SYSCTL_ADD_UQUAD(ctx_list, queue_list, OID_AUTO, "mbuf_defrag",
6884 CTLFLAG_RD, &txq->ift_mbuf_defrag,
6885 "# of times m_defrag was called");
6886 SYSCTL_ADD_UQUAD(ctx_list, queue_list, OID_AUTO, "m_pullups",
6887 CTLFLAG_RD, &txq->ift_pullups,
6888 "# of times m_pullup was called");
6889 SYSCTL_ADD_UQUAD(ctx_list, queue_list, OID_AUTO,
6890 "mbuf_defrag_failed", CTLFLAG_RD,
6891 &txq->ift_mbuf_defrag_failed, "# of times m_defrag failed");
6892 SYSCTL_ADD_UQUAD(ctx_list, queue_list, OID_AUTO,
6893 "no_desc_avail", CTLFLAG_RD, &txq->ift_no_desc_avail,
6894 "# of times no descriptors were available");
6895 SYSCTL_ADD_UQUAD(ctx_list, queue_list, OID_AUTO,
6896 "tx_map_failed", CTLFLAG_RD, &txq->ift_map_failed,
6897 "# of times DMA map failed");
6898 SYSCTL_ADD_UQUAD(ctx_list, queue_list, OID_AUTO,
6899 "txd_encap_efbig", CTLFLAG_RD, &txq->ift_txd_encap_efbig,
6900 "# of times txd_encap returned EFBIG");
6901 SYSCTL_ADD_UQUAD(ctx_list, queue_list, OID_AUTO,
6902 "no_tx_dma_setup", CTLFLAG_RD, &txq->ift_no_tx_dma_setup,
6903 "# of times map failed for other than EFBIG");
6904 SYSCTL_ADD_U16(ctx_list, queue_list, OID_AUTO, "txq_pidx",
6905 CTLFLAG_RD, &txq->ift_pidx, 1, "Producer Index");
6906 SYSCTL_ADD_U16(ctx_list, queue_list, OID_AUTO, "txq_cidx",
6907 CTLFLAG_RD, &txq->ift_cidx, 1, "Consumer Index");
6908 SYSCTL_ADD_U16(ctx_list, queue_list, OID_AUTO,
6909 "txq_cidx_processed", CTLFLAG_RD, &txq->ift_cidx_processed,
6910 1, "Consumer Index seen by credit update");
6911 SYSCTL_ADD_U16(ctx_list, queue_list, OID_AUTO, "txq_in_use",
6912 CTLFLAG_RD, &txq->ift_in_use, 1, "descriptors in use");
6913 SYSCTL_ADD_UQUAD(ctx_list, queue_list, OID_AUTO,
6914 "txq_processed", CTLFLAG_RD, &txq->ift_processed,
6915 "descriptors procesed for clean");
6916 SYSCTL_ADD_UQUAD(ctx_list, queue_list, OID_AUTO, "txq_cleaned",
6917 CTLFLAG_RD, &txq->ift_cleaned, "total cleaned");
6918 SYSCTL_ADD_PROC(ctx_list, queue_list, OID_AUTO, "ring_state",
6919 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
6920 __DEVOLATILE(uint64_t *, &txq->ift_br->state), 0,
6921 mp_ring_state_handler, "A", "soft ring state");
6922 SYSCTL_ADD_COUNTER_U64(ctx_list, queue_list, OID_AUTO,
6923 "r_enqueues", CTLFLAG_RD, &txq->ift_br->enqueues,
6924 "# of enqueues to the mp_ring for this queue");
6925 SYSCTL_ADD_COUNTER_U64(ctx_list, queue_list, OID_AUTO,
6926 "r_drops", CTLFLAG_RD, &txq->ift_br->drops,
6927 "# of drops in the mp_ring for this queue");
6928 SYSCTL_ADD_COUNTER_U64(ctx_list, queue_list, OID_AUTO,
6929 "r_starts", CTLFLAG_RD, &txq->ift_br->starts,
6930 "# of normal consumer starts in mp_ring for this queue");
6931 SYSCTL_ADD_COUNTER_U64(ctx_list, queue_list, OID_AUTO,
6932 "r_stalls", CTLFLAG_RD, &txq->ift_br->stalls,
6933 "# of consumer stalls in the mp_ring for this queue");
6934 SYSCTL_ADD_COUNTER_U64(ctx_list, queue_list, OID_AUTO,
6935 "r_restarts", CTLFLAG_RD, &txq->ift_br->restarts,
6936 "# of consumer restarts in the mp_ring for this queue");
6937 SYSCTL_ADD_COUNTER_U64(ctx_list, queue_list, OID_AUTO,
6938 "r_abdications", CTLFLAG_RD, &txq->ift_br->abdications,
6939 "# of consumer abdications in the mp_ring for this queue");
6940 }
6941
6942 if (scctx->isc_nrxqsets > 100)
6943 qfmt = "rxq%03d";
6944 else if (scctx->isc_nrxqsets > 10)
6945 qfmt = "rxq%02d";
6946 else
6947 qfmt = "rxq%d";
6948 for (i = 0, rxq = ctx->ifc_rxqs; i < scctx->isc_nrxqsets; i++, rxq++) {
6949 snprintf(namebuf, NAME_BUFLEN, qfmt, i);
6950 queue_node = SYSCTL_ADD_NODE(ctx_list, child, OID_AUTO, namebuf,
6951 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Queue Name");
6952 queue_list = SYSCTL_CHILDREN(queue_node);
6953 SYSCTL_ADD_INT(ctx_list, queue_list, OID_AUTO, "cpu",
6954 CTLFLAG_RD, &rxq->ifr_task.gt_cpu, 0,
6955 "cpu this queue is bound to");
6956 if (sctx->isc_flags & IFLIB_HAS_RXCQ) {
6957 SYSCTL_ADD_U16(ctx_list, queue_list, OID_AUTO,
6958 "rxq_cq_cidx", CTLFLAG_RD, &rxq->ifr_cq_cidx, 1,
6959 "Consumer Index");
6960 }
6961
6962 for (j = 0, fl = rxq->ifr_fl; j < rxq->ifr_nfl; j++, fl++) {
6963 snprintf(namebuf, NAME_BUFLEN, "rxq_fl%d", j);
6964 fl_node = SYSCTL_ADD_NODE(ctx_list, queue_list,
6965 OID_AUTO, namebuf, CTLFLAG_RD | CTLFLAG_MPSAFE,
6966 NULL, "freelist Name");
6967 fl_list = SYSCTL_CHILDREN(fl_node);
6968 SYSCTL_ADD_U16(ctx_list, fl_list, OID_AUTO, "pidx",
6969 CTLFLAG_RD, &fl->ifl_pidx, 1, "Producer Index");
6970 SYSCTL_ADD_U16(ctx_list, fl_list, OID_AUTO, "cidx",
6971 CTLFLAG_RD, &fl->ifl_cidx, 1, "Consumer Index");
6972 SYSCTL_ADD_U16(ctx_list, fl_list, OID_AUTO, "credits",
6973 CTLFLAG_RD, &fl->ifl_credits, 1,
6974 "credits available");
6975 SYSCTL_ADD_U16(ctx_list, fl_list, OID_AUTO, "buf_size",
6976 CTLFLAG_RD, &fl->ifl_buf_size, 1, "buffer size");
6977 #if MEMORY_LOGGING
6978 SYSCTL_ADD_UQUAD(ctx_list, fl_list, OID_AUTO,
6979 "fl_m_enqueued", CTLFLAG_RD, &fl->ifl_m_enqueued,
6980 "mbufs allocated");
6981 SYSCTL_ADD_UQUAD(ctx_list, fl_list, OID_AUTO,
6982 "fl_m_dequeued", CTLFLAG_RD, &fl->ifl_m_dequeued,
6983 "mbufs freed");
6984 SYSCTL_ADD_UQUAD(ctx_list, fl_list, OID_AUTO,
6985 "fl_cl_enqueued", CTLFLAG_RD, &fl->ifl_cl_enqueued,
6986 "clusters allocated");
6987 SYSCTL_ADD_UQUAD(ctx_list, fl_list, OID_AUTO,
6988 "fl_cl_dequeued", CTLFLAG_RD, &fl->ifl_cl_dequeued,
6989 "clusters freed");
6990 #endif
6991 }
6992 }
6993
6994 }
6995
6996 void
iflib_request_reset(if_ctx_t ctx)6997 iflib_request_reset(if_ctx_t ctx)
6998 {
6999
7000 STATE_LOCK(ctx);
7001 ctx->ifc_flags |= IFC_DO_RESET;
7002 STATE_UNLOCK(ctx);
7003 }
7004
7005 #ifndef __NO_STRICT_ALIGNMENT
7006 static struct mbuf *
iflib_fixup_rx(struct mbuf * m)7007 iflib_fixup_rx(struct mbuf *m)
7008 {
7009 struct mbuf *n;
7010
7011 if (m->m_len <= (MCLBYTES - ETHER_HDR_LEN)) {
7012 bcopy(m->m_data, m->m_data + ETHER_HDR_LEN, m->m_len);
7013 m->m_data += ETHER_HDR_LEN;
7014 n = m;
7015 } else {
7016 MGETHDR(n, M_NOWAIT, MT_DATA);
7017 if (n == NULL) {
7018 m_freem(m);
7019 return (NULL);
7020 }
7021 bcopy(m->m_data, n->m_data, ETHER_HDR_LEN);
7022 m->m_data += ETHER_HDR_LEN;
7023 m->m_len -= ETHER_HDR_LEN;
7024 n->m_len = ETHER_HDR_LEN;
7025 M_MOVE_PKTHDR(n, m);
7026 n->m_next = m;
7027 }
7028 return (n);
7029 }
7030 #endif
7031
7032 #ifdef DEBUGNET
7033 static void
iflib_debugnet_init(if_t ifp,int * nrxr,int * ncl,int * clsize)7034 iflib_debugnet_init(if_t ifp, int *nrxr, int *ncl, int *clsize)
7035 {
7036 if_ctx_t ctx;
7037
7038 ctx = if_getsoftc(ifp);
7039 CTX_LOCK(ctx);
7040 *nrxr = NRXQSETS(ctx);
7041 *ncl = ctx->ifc_rxqs[0].ifr_fl->ifl_size;
7042 *clsize = ctx->ifc_rxqs[0].ifr_fl->ifl_buf_size;
7043 CTX_UNLOCK(ctx);
7044 }
7045
7046 static void
iflib_debugnet_event(if_t ifp,enum debugnet_ev event)7047 iflib_debugnet_event(if_t ifp, enum debugnet_ev event)
7048 {
7049 if_ctx_t ctx;
7050 if_softc_ctx_t scctx;
7051 iflib_fl_t fl;
7052 iflib_rxq_t rxq;
7053 int i, j;
7054
7055 ctx = if_getsoftc(ifp);
7056 scctx = &ctx->ifc_softc_ctx;
7057
7058 switch (event) {
7059 case DEBUGNET_START:
7060 for (i = 0; i < scctx->isc_nrxqsets; i++) {
7061 rxq = &ctx->ifc_rxqs[i];
7062 for (j = 0; j < rxq->ifr_nfl; j++) {
7063 fl = rxq->ifr_fl;
7064 fl->ifl_zone = m_getzone(fl->ifl_buf_size);
7065 }
7066 }
7067 iflib_no_tx_batch = 1;
7068 break;
7069 default:
7070 break;
7071 }
7072 }
7073
7074 static int
iflib_debugnet_transmit(if_t ifp,struct mbuf * m)7075 iflib_debugnet_transmit(if_t ifp, struct mbuf *m)
7076 {
7077 if_ctx_t ctx;
7078 iflib_txq_t txq;
7079 int error;
7080
7081 ctx = if_getsoftc(ifp);
7082 if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
7083 IFF_DRV_RUNNING)
7084 return (EBUSY);
7085
7086 txq = &ctx->ifc_txqs[0];
7087 error = iflib_encap(txq, &m);
7088 if (error == 0)
7089 (void)iflib_txd_db_check(txq, true);
7090 return (error);
7091 }
7092
7093 static int
iflib_debugnet_poll(if_t ifp,int count)7094 iflib_debugnet_poll(if_t ifp, int count)
7095 {
7096 struct epoch_tracker et;
7097 if_ctx_t ctx;
7098 if_softc_ctx_t scctx;
7099 iflib_txq_t txq;
7100 int i;
7101
7102 ctx = if_getsoftc(ifp);
7103 scctx = &ctx->ifc_softc_ctx;
7104
7105 if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
7106 IFF_DRV_RUNNING)
7107 return (EBUSY);
7108
7109 txq = &ctx->ifc_txqs[0];
7110 (void)iflib_completed_tx_reclaim(txq, RECLAIM_THRESH(ctx));
7111
7112 NET_EPOCH_ENTER(et);
7113 for (i = 0; i < scctx->isc_nrxqsets; i++)
7114 (void)iflib_rxeof(&ctx->ifc_rxqs[i], 16 /* XXX */);
7115 NET_EPOCH_EXIT(et);
7116 return (0);
7117 }
7118 #endif /* DEBUGNET */
7119
7120
7121 static inline iflib_txq_t
iflib_simple_select_queue(if_ctx_t ctx,struct mbuf * m)7122 iflib_simple_select_queue(if_ctx_t ctx, struct mbuf *m)
7123 {
7124 int qidx;
7125
7126 if ((NTXQSETS(ctx) > 1) && M_HASHTYPE_GET(m))
7127 qidx = QIDX(ctx, m);
7128 else
7129 qidx = NTXQSETS(ctx) + FIRST_QSET(ctx) - 1;
7130 return (&ctx->ifc_txqs[qidx]);
7131 }
7132
7133 static int
iflib_simple_transmit(if_t ifp,struct mbuf * m)7134 iflib_simple_transmit(if_t ifp, struct mbuf *m)
7135 {
7136 if_ctx_t ctx;
7137 iflib_txq_t txq;
7138 int error;
7139 int bytes_sent = 0, pkt_sent = 0, mcast_sent = 0;
7140
7141
7142 ctx = if_getsoftc(ifp);
7143 if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
7144 IFF_DRV_RUNNING)
7145 return (EBUSY);
7146 txq = iflib_simple_select_queue(ctx, m);
7147 mtx_lock(&txq->ift_mtx);
7148 error = iflib_encap(txq, &m);
7149 if (error == 0) {
7150 pkt_sent++;
7151 bytes_sent += m->m_pkthdr.len;
7152 mcast_sent += !!(m->m_flags & M_MCAST);
7153 (void)iflib_txd_db_check(txq, true);
7154 } else {
7155 if (error == ENOBUFS)
7156 if_inc_counter(ifp, IFCOUNTER_OQDROPS, 1);
7157 else
7158 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
7159 }
7160 (void)iflib_completed_tx_reclaim(txq, RECLAIM_THRESH(ctx));
7161 mtx_unlock(&txq->ift_mtx);
7162 if_inc_counter(ifp, IFCOUNTER_OBYTES, bytes_sent);
7163 if_inc_counter(ifp, IFCOUNTER_OPACKETS, pkt_sent);
7164 if (mcast_sent)
7165 if_inc_counter(ifp, IFCOUNTER_OMCASTS, mcast_sent);
7166
7167 return (error);
7168 }
7169