xref: /freebsd/sys/arm64/vmm/vmm_arm64.c (revision 095a7871f4320e7667a644e6e34a27e1f526b053)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (C) 2015 Mihai Carabas <mihai.carabas@gmail.com>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/smp.h>
33 #include <sys/kernel.h>
34 #include <sys/malloc.h>
35 #include <sys/mman.h>
36 #include <sys/pcpu.h>
37 #include <sys/proc.h>
38 #include <sys/sysctl.h>
39 #include <sys/lock.h>
40 #include <sys/mutex.h>
41 #include <sys/vmem.h>
42 
43 #include <vm/vm.h>
44 #include <vm/pmap.h>
45 #include <vm/vm_extern.h>
46 #include <vm/vm_map.h>
47 #include <vm/vm_page.h>
48 #include <vm/vm_param.h>
49 
50 #include <machine/vm.h>
51 #include <machine/cpufunc.h>
52 #include <machine/cpu.h>
53 #include <machine/machdep.h>
54 #include <machine/vmm.h>
55 #include <machine/atomic.h>
56 #include <machine/hypervisor.h>
57 #include <machine/pmap.h>
58 
59 #include <dev/vmm/vmm_mem.h>
60 #include <dev/vmm/vmm_vm.h>
61 
62 #include "mmu.h"
63 #include "arm64.h"
64 #include "hyp.h"
65 #include "reset.h"
66 #include "io/vgic.h"
67 #include "io/vgic_v3.h"
68 #include "io/vtimer.h"
69 #include "vmm_handlers.h"
70 #include "vmm_stat.h"
71 
72 #define	HANDLED		1
73 #define	UNHANDLED	0
74 
75 /* Number of bits in an EL2 virtual address */
76 #define	EL2_VIRT_BITS	48
77 CTASSERT((1ul << EL2_VIRT_BITS) >= HYP_VM_MAX_ADDRESS);
78 
79 /* TODO: Move the host hypctx off the stack */
80 #define	VMM_STACK_PAGES	4
81 #define	VMM_STACK_SIZE	(VMM_STACK_PAGES * PAGE_SIZE)
82 
83 static int vmm_pmap_levels, vmm_virt_bits, vmm_max_ipa_bits;
84 
85 /* Register values passed to arm_setup_vectors to set in the hypervisor */
86 struct vmm_init_regs {
87 	uint64_t tcr_el2;
88 	uint64_t vtcr_el2;
89 };
90 
91 MALLOC_DEFINE(M_HYP, "ARM VMM HYP", "ARM VMM HYP");
92 
93 extern char hyp_init_vectors[];
94 extern char hyp_vectors[];
95 extern char hyp_stub_vectors[];
96 
97 static vm_paddr_t hyp_code_base;
98 static size_t hyp_code_len;
99 
100 static char *stack[MAXCPU];
101 static vm_offset_t stack_hyp_va[MAXCPU];
102 
103 static vmem_t *el2_mem_alloc;
104 
105 static void arm_setup_vectors(void *arg);
106 
107 DPCPU_DEFINE_STATIC(struct hypctx *, vcpu);
108 
109 static inline void
arm64_set_active_vcpu(struct hypctx * hypctx)110 arm64_set_active_vcpu(struct hypctx *hypctx)
111 {
112 	DPCPU_SET(vcpu, hypctx);
113 }
114 
115 struct hypctx *
arm64_get_active_vcpu(void)116 arm64_get_active_vcpu(void)
117 {
118 	return (DPCPU_GET(vcpu));
119 }
120 
121 static void
arm_setup_vectors(void * arg)122 arm_setup_vectors(void *arg)
123 {
124 	struct vmm_init_regs *el2_regs;
125 	uintptr_t stack_top;
126 	uint32_t sctlr_el2;
127 	register_t daif;
128 
129 	el2_regs = arg;
130 	arm64_set_active_vcpu(NULL);
131 
132 	/*
133 	 * Configure the system control register for EL2:
134 	 *
135 	 * SCTLR_EL2_M: MMU on
136 	 * SCTLR_EL2_C: Data cacheability not affected
137 	 * SCTLR_EL2_I: Instruction cacheability not affected
138 	 * SCTLR_EL2_A: Instruction alignment check
139 	 * SCTLR_EL2_SA: Stack pointer alignment check
140 	 * SCTLR_EL2_WXN: Treat writable memory as execute never
141 	 * ~SCTLR_EL2_EE: Data accesses are little-endian
142 	 */
143 	sctlr_el2 = SCTLR_EL2_RES1;
144 	sctlr_el2 |= SCTLR_EL2_M | SCTLR_EL2_C | SCTLR_EL2_I;
145 	sctlr_el2 |= SCTLR_EL2_A | SCTLR_EL2_SA;
146 	sctlr_el2 |= SCTLR_EL2_WXN;
147 	sctlr_el2 &= ~SCTLR_EL2_EE;
148 
149 	daif = intr_disable();
150 
151 	if (in_vhe()) {
152 		WRITE_SPECIALREG(vtcr_el2, el2_regs->vtcr_el2);
153 	} else {
154 		/*
155 		 * Install the temporary vectors which will be responsible for
156 		 * initializing the VMM when we next trap into EL2.
157 		 *
158 		 * x0: the exception vector table responsible for hypervisor
159 		 * initialization on the next call.
160 		 */
161 		vmm_call_hyp(vtophys(&vmm_hyp_code));
162 
163 		/* Create and map the hypervisor stack */
164 		stack_top = stack_hyp_va[PCPU_GET(cpuid)] + VMM_STACK_SIZE;
165 
166 		/* Special call to initialize EL2 */
167 		vmm_call_hyp(vmmpmap_to_ttbr0(), stack_top, el2_regs->tcr_el2,
168 		    sctlr_el2, el2_regs->vtcr_el2);
169 	}
170 
171 	intr_restore(daif);
172 }
173 
174 static void
arm_teardown_vectors(void * arg)175 arm_teardown_vectors(void *arg)
176 {
177 	register_t daif;
178 
179 	/*
180 	 * vmm_cleanup() will disable the MMU. For the next few instructions,
181 	 * before the hardware disables the MMU, one of the following is
182 	 * possible:
183 	 *
184 	 * a. The instruction addresses are fetched with the MMU disabled,
185 	 * and they must represent the actual physical addresses. This will work
186 	 * because we call the vmm_cleanup() function by its physical address.
187 	 *
188 	 * b. The instruction addresses are fetched using the old translation
189 	 * tables. This will work because we have an identity mapping in place
190 	 * in the translation tables and vmm_cleanup() is called by its physical
191 	 * address.
192 	 */
193 	daif = intr_disable();
194 	/* TODO: Invalidate the cache */
195 	vmm_call_hyp(HYP_CLEANUP, vtophys(hyp_stub_vectors));
196 	intr_restore(daif);
197 
198 	arm64_set_active_vcpu(NULL);
199 }
200 
201 static uint64_t
vmm_vtcr_el2_sl(u_int levels)202 vmm_vtcr_el2_sl(u_int levels)
203 {
204 #if PAGE_SIZE == PAGE_SIZE_4K
205 	switch (levels) {
206 	case 2:
207 		return (VTCR_EL2_SL0_4K_LVL2);
208 	case 3:
209 		return (VTCR_EL2_SL0_4K_LVL1);
210 	case 4:
211 		return (VTCR_EL2_SL0_4K_LVL0);
212 	default:
213 		panic("%s: Invalid number of page table levels %u", __func__,
214 		    levels);
215 	}
216 #elif PAGE_SIZE == PAGE_SIZE_16K
217 	switch (levels) {
218 	case 2:
219 		return (VTCR_EL2_SL0_16K_LVL2);
220 	case 3:
221 		return (VTCR_EL2_SL0_16K_LVL1);
222 	case 4:
223 		return (VTCR_EL2_SL0_16K_LVL0);
224 	default:
225 		panic("%s: Invalid number of page table levels %u", __func__,
226 		    levels);
227 	}
228 #else
229 #error Unsupported page size
230 #endif
231 }
232 
233 int
vmmops_modinit(int ipinum)234 vmmops_modinit(int ipinum)
235 {
236 	struct vmm_init_regs el2_regs;
237 	vm_offset_t next_hyp_va;
238 	vm_paddr_t vmm_base;
239 	uint64_t id_aa64mmfr0_el1, pa_range_bits, pa_range_field;
240 	int cpu, i;
241 	bool rv __diagused;
242 
243 	if (!has_hyp()) {
244 		printf(
245 		    "vmm: Processor doesn't have support for virtualization\n");
246 		return (ENXIO);
247 	}
248 
249 	if (!vgic_present()) {
250 		printf("vmm: No vgic found\n");
251 		return (ENODEV);
252 	}
253 
254 	if (!get_kernel_reg(ID_AA64MMFR0_EL1, &id_aa64mmfr0_el1)) {
255 		printf("vmm: Unable to read ID_AA64MMFR0_EL1\n");
256 		return (ENXIO);
257 	}
258 	pa_range_field = ID_AA64MMFR0_PARange_VAL(id_aa64mmfr0_el1);
259 	/*
260 	 * Use 3 levels to give us up to 39 bits with 4k pages, or
261 	 * 47 bits with 16k pages.
262 	 */
263 	/* TODO: Check the number of levels for 64k pages */
264 	vmm_pmap_levels = 3;
265 	switch (pa_range_field) {
266 	case ID_AA64MMFR0_PARange_4G:
267 		printf("vmm: Not enough physical address bits\n");
268 		return (ENXIO);
269 	case ID_AA64MMFR0_PARange_64G:
270 		vmm_virt_bits = 36;
271 #if PAGE_SIZE == PAGE_SIZE_16K
272 		vmm_pmap_levels = 2;
273 #endif
274 		break;
275 	default:
276 		vmm_virt_bits = 39;
277 		break;
278 	}
279 	pa_range_bits = pa_range_field >> ID_AA64MMFR0_PARange_SHIFT;
280 
281 	if (!in_vhe()) {
282 		/* Initialise the EL2 MMU */
283 		if (!vmmpmap_init()) {
284 			printf("vmm: Failed to init the EL2 MMU\n");
285 			return (ENOMEM);
286 		}
287 	}
288 
289 	/* Set up the stage 2 pmap callbacks */
290 	MPASS(pmap_clean_stage2_tlbi == NULL);
291 	pmap_clean_stage2_tlbi = vmm_clean_s2_tlbi;
292 	pmap_stage2_invalidate_range = vmm_s2_tlbi_range;
293 	pmap_stage2_invalidate_all = vmm_s2_tlbi_all;
294 
295 	if (!in_vhe()) {
296 		/*
297 		 * Create an allocator for the virtual address space used by
298 		 * EL2. EL2 code is identity-mapped; the allocator is used to
299 		 * find space for VM structures.
300 		 */
301 		el2_mem_alloc = vmem_create("VMM EL2", 0, 0, PAGE_SIZE, 0,
302 		    M_WAITOK);
303 
304 		/* Create the mappings for the hypervisor translation table. */
305 		hyp_code_len = round_page(&vmm_hyp_code_end - &vmm_hyp_code);
306 
307 		/* We need an physical identity mapping for when we activate the MMU */
308 		hyp_code_base = vmm_base = vtophys(&vmm_hyp_code);
309 		rv = vmmpmap_enter(vmm_base, hyp_code_len, vmm_base,
310 		    VM_PROT_READ | VM_PROT_EXECUTE);
311 		MPASS(rv);
312 
313 		next_hyp_va = roundup2(vmm_base + hyp_code_len, L2_SIZE);
314 
315 		/* Create a per-CPU hypervisor stack */
316 		CPU_FOREACH(cpu) {
317 			stack[cpu] = malloc(VMM_STACK_SIZE, M_HYP, M_WAITOK | M_ZERO);
318 			stack_hyp_va[cpu] = next_hyp_va;
319 
320 			for (i = 0; i < VMM_STACK_PAGES; i++) {
321 				rv = vmmpmap_enter(stack_hyp_va[cpu] + ptoa(i),
322 				    PAGE_SIZE, vtophys(stack[cpu] + ptoa(i)),
323 				    VM_PROT_READ | VM_PROT_WRITE);
324 				MPASS(rv);
325 			}
326 			next_hyp_va += L2_SIZE;
327 		}
328 
329 		el2_regs.tcr_el2 = TCR_EL2_RES1;
330 		el2_regs.tcr_el2 |= min(pa_range_bits << TCR_EL2_PS_SHIFT,
331 		    TCR_EL2_PS_52BITS);
332 		el2_regs.tcr_el2 |= TCR_EL2_T0SZ(64 - EL2_VIRT_BITS);
333 		el2_regs.tcr_el2 |= TCR_EL2_IRGN0_WBWA | TCR_EL2_ORGN0_WBWA;
334 #if PAGE_SIZE == PAGE_SIZE_4K
335 		el2_regs.tcr_el2 |= TCR_EL2_TG0_4K;
336 #elif PAGE_SIZE == PAGE_SIZE_16K
337 		el2_regs.tcr_el2 |= TCR_EL2_TG0_16K;
338 #else
339 #error Unsupported page size
340 #endif
341 #ifdef SMP
342 		el2_regs.tcr_el2 |= TCR_EL2_SH0_IS;
343 #endif
344 	}
345 
346 	switch (pa_range_bits << TCR_EL2_PS_SHIFT) {
347 	case TCR_EL2_PS_32BITS:
348 		vmm_max_ipa_bits = 32;
349 		break;
350 	case TCR_EL2_PS_36BITS:
351 		vmm_max_ipa_bits = 36;
352 		break;
353 	case TCR_EL2_PS_40BITS:
354 		vmm_max_ipa_bits = 40;
355 		break;
356 	case TCR_EL2_PS_42BITS:
357 		vmm_max_ipa_bits = 42;
358 		break;
359 	case TCR_EL2_PS_44BITS:
360 		vmm_max_ipa_bits = 44;
361 		break;
362 	case TCR_EL2_PS_48BITS:
363 		vmm_max_ipa_bits = 48;
364 		break;
365 	case TCR_EL2_PS_52BITS:
366 	default:
367 		vmm_max_ipa_bits = 52;
368 		break;
369 	}
370 
371 	/*
372 	 * Configure the Stage 2 translation control register:
373 	 *
374 	 * VTCR_IRGN0_WBWA: Translation table walks access inner cacheable
375 	 * normal memory
376 	 * VTCR_ORGN0_WBWA: Translation table walks access outer cacheable
377 	 * normal memory
378 	 * VTCR_EL2_TG0_4K/16K: Stage 2 uses the same page size as the kernel
379 	 * VTCR_EL2_SL0_4K_LVL1: Stage 2 uses concatenated level 1 tables
380 	 * VTCR_EL2_SH0_IS: Memory associated with Stage 2 walks is inner
381 	 * shareable
382 	 */
383 	el2_regs.vtcr_el2 = VTCR_EL2_RES1;
384 	el2_regs.vtcr_el2 |= VTCR_EL2_IRGN0_WBWA | VTCR_EL2_ORGN0_WBWA;
385 	el2_regs.vtcr_el2 |= VTCR_EL2_T0SZ(64 - vmm_virt_bits);
386 	el2_regs.vtcr_el2 |= vmm_vtcr_el2_sl(vmm_pmap_levels);
387 #if PAGE_SIZE == PAGE_SIZE_4K
388 	el2_regs.vtcr_el2 |= VTCR_EL2_TG0_4K;
389 #elif PAGE_SIZE == PAGE_SIZE_16K
390 	el2_regs.vtcr_el2 |= VTCR_EL2_TG0_16K;
391 #else
392 #error Unsupported page size
393 #endif
394 #ifdef SMP
395 	el2_regs.vtcr_el2 |= VTCR_EL2_SH0_IS;
396 #endif
397 	/*
398 	 * If FEAT_LPA2 is enabled in the host then we need to enable it here
399 	 * so the page tables created by pmap.c are correct. The meaning of
400 	 * the shareability field changes to become address bits when this
401 	 * is set.
402 	 */
403 	if ((READ_SPECIALREG(tcr_el1) & TCR_DS) != 0) {
404 		el2_regs.vtcr_el2 |= VTCR_EL2_DS;
405 		el2_regs.vtcr_el2 |=
406 		    min(pa_range_bits << VTCR_EL2_PS_SHIFT, VTCR_EL2_PS_52BIT);
407 	} else {
408 		el2_regs.vtcr_el2 |=
409 		    min(pa_range_bits << VTCR_EL2_PS_SHIFT, VTCR_EL2_PS_48BIT);
410 	}
411 
412 	smp_rendezvous(NULL, arm_setup_vectors, NULL, &el2_regs);
413 
414 	if (!in_vhe()) {
415 		/* Add memory to the vmem allocator (checking there is space) */
416 		if (vmm_base > (L2_SIZE + PAGE_SIZE)) {
417 			/*
418 			 * Ensure there is an L2 block before the vmm code to check
419 			 * for buffer overflows on earlier data. Include the PAGE_SIZE
420 			 * of the minimum we can allocate.
421 			 */
422 			vmm_base -= L2_SIZE + PAGE_SIZE;
423 			vmm_base = rounddown2(vmm_base, L2_SIZE);
424 
425 			/*
426 			 * Check there is memory before the vmm code to add.
427 			 *
428 			 * Reserve the L2 block at address 0 so NULL dereference will
429 			 * raise an exception.
430 			 */
431 			if (vmm_base > L2_SIZE)
432 				vmem_add(el2_mem_alloc, L2_SIZE, vmm_base - L2_SIZE,
433 				    M_WAITOK);
434 		}
435 
436 		/*
437 		 * Add the memory after the stacks. There is most of an L2 block
438 		 * between the last stack and the first allocation so this should
439 		 * be safe without adding more padding.
440 		 */
441 		if (next_hyp_va < HYP_VM_MAX_ADDRESS - PAGE_SIZE)
442 			vmem_add(el2_mem_alloc, next_hyp_va,
443 			    HYP_VM_MAX_ADDRESS - next_hyp_va, M_WAITOK);
444 	}
445 
446 	vgic_init();
447 	vtimer_init();
448 
449 	return (0);
450 }
451 
452 int
vmmops_modcleanup(void)453 vmmops_modcleanup(void)
454 {
455 	int cpu;
456 
457 	if (!in_vhe()) {
458 		smp_rendezvous(NULL, arm_teardown_vectors, NULL, NULL);
459 
460 		CPU_FOREACH(cpu) {
461 			vmmpmap_remove(stack_hyp_va[cpu],
462 			    VMM_STACK_PAGES * PAGE_SIZE, false);
463 		}
464 
465 		vmmpmap_remove(hyp_code_base, hyp_code_len, false);
466 	}
467 
468 	vtimer_cleanup();
469 
470 	if (!in_vhe()) {
471 		vmmpmap_fini();
472 
473 		CPU_FOREACH(cpu)
474 			free(stack[cpu], M_HYP);
475 	}
476 
477 	pmap_clean_stage2_tlbi = NULL;
478 	pmap_stage2_invalidate_range = NULL;
479 	pmap_stage2_invalidate_all = NULL;
480 
481 	return (0);
482 }
483 
484 static vm_size_t
el2_hyp_size(struct vm * vm)485 el2_hyp_size(struct vm *vm)
486 {
487 	return (round_page(sizeof(struct hyp) +
488 	    sizeof(struct hypctx *) * vm_get_maxcpus(vm)));
489 }
490 
491 static vm_size_t
el2_hypctx_size(void)492 el2_hypctx_size(void)
493 {
494 	return (round_page(sizeof(struct hypctx)));
495 }
496 
497 static vm_offset_t
el2_map_enter(vm_offset_t data,vm_size_t size,vm_prot_t prot)498 el2_map_enter(vm_offset_t data, vm_size_t size, vm_prot_t prot)
499 {
500 	vmem_addr_t addr;
501 	int err __diagused;
502 	bool rv __diagused;
503 
504 	err = vmem_alloc(el2_mem_alloc, size, M_NEXTFIT | M_WAITOK, &addr);
505 	MPASS(err == 0);
506 	rv = vmmpmap_enter(addr, size, vtophys(data), prot);
507 	MPASS(rv);
508 
509 	return (addr);
510 }
511 
512 void *
vmmops_init(struct vm * vm,pmap_t pmap)513 vmmops_init(struct vm *vm, pmap_t pmap)
514 {
515 	struct hyp *hyp;
516 	vm_size_t size;
517 	uint64_t idreg;
518 
519 	size = el2_hyp_size(vm);
520 	hyp = malloc_aligned(size, PAGE_SIZE, M_HYP, M_WAITOK | M_ZERO);
521 
522 	hyp->vm = vm;
523 	hyp->vgic_attached = false;
524 
525 	if (get_kernel_reg(ID_AA64MMFR0_EL1, &idreg)) {
526 		if (ID_AA64MMFR0_ECV_VAL(idreg) >= ID_AA64MMFR0_ECV_POFF)
527 			hyp->feats |= HYP_FEAT_ECV_POFF;
528 
529 		switch (ID_AA64MMFR0_FGT_VAL(idreg)) {
530 		case ID_AA64MMFR0_FGT_NONE:
531 			break;
532 		default:
533 		case ID_AA64MMFR0_FGT_8_9:
534 			hyp->feats |= HYP_FEAT_FGT2;
535 			/* FALLTHROUGH */
536 		case ID_AA64MMFR0_FGT_8_6:
537 			hyp->feats |= HYP_FEAT_FGT;
538 			break;
539 		}
540 	}
541 
542 	if (get_kernel_reg(ID_AA64MMFR1_EL1, &idreg)) {
543 		if (ID_AA64MMFR1_HCX_VAL(idreg) >= ID_AA64MMFR1_HCX_IMPL)
544 			hyp->feats |= HYP_FEAT_HCX;
545 	}
546 
547 	vtimer_vminit(hyp);
548 	vgic_vminit(hyp);
549 
550 	if (!in_vhe())
551 		hyp->el2_addr = el2_map_enter((vm_offset_t)hyp, size,
552 		    VM_PROT_READ | VM_PROT_WRITE);
553 
554 	return (hyp);
555 }
556 
557 void *
vmmops_vcpu_init(void * vmi,struct vcpu * vcpu1,int vcpuid)558 vmmops_vcpu_init(void *vmi, struct vcpu *vcpu1, int vcpuid)
559 {
560 	struct hyp *hyp = vmi;
561 	struct hypctx *hypctx;
562 	vm_size_t size;
563 
564 	size = el2_hypctx_size();
565 	hypctx = malloc_aligned(size, PAGE_SIZE, M_HYP, M_WAITOK | M_ZERO);
566 
567 	KASSERT(vcpuid >= 0 && vcpuid < vm_get_maxcpus(hyp->vm),
568 	    ("%s: Invalid vcpuid %d", __func__, vcpuid));
569 	hyp->ctx[vcpuid] = hypctx;
570 
571 	hypctx->hyp = hyp;
572 	hypctx->vcpu = vcpu1;
573 
574 	reset_vm_el01_regs(hypctx);
575 	reset_vm_el2_regs(hypctx);
576 
577 	vtimer_cpuinit(hypctx);
578 	vgic_cpuinit(hypctx);
579 
580 	if (!in_vhe())
581 		hypctx->el2_addr = el2_map_enter((vm_offset_t)hypctx, size,
582 		    VM_PROT_READ | VM_PROT_WRITE);
583 
584 	return (hypctx);
585 }
586 
587 static int
arm_vmm_pinit(pmap_t pmap)588 arm_vmm_pinit(pmap_t pmap)
589 {
590 
591 	pmap_pinit_stage(pmap, PM_STAGE2, vmm_pmap_levels);
592 	return (1);
593 }
594 
595 struct vmspace *
vmmops_vmspace_alloc(vm_offset_t min,vm_offset_t max)596 vmmops_vmspace_alloc(vm_offset_t min, vm_offset_t max)
597 {
598 	return (vmspace_alloc(min, max, arm_vmm_pinit));
599 }
600 
601 void
vmmops_vmspace_free(struct vmspace * vmspace)602 vmmops_vmspace_free(struct vmspace *vmspace)
603 {
604 
605 	pmap_remove_pages(vmspace_pmap(vmspace));
606 	vmspace_free(vmspace);
607 }
608 
609 static inline void
arm64_print_hyp_regs(struct vm_exit * vme)610 arm64_print_hyp_regs(struct vm_exit *vme)
611 {
612 	printf("esr_el2:   0x%016lx\n", vme->u.hyp.esr_el2);
613 	printf("far_el2:   0x%016lx\n", vme->u.hyp.far_el2);
614 	printf("hpfar_el2: 0x%016lx\n", vme->u.hyp.hpfar_el2);
615 	printf("elr_el2:   0x%016lx\n", vme->pc);
616 }
617 
618 static void
arm64_gen_inst_emul_data(struct hypctx * hypctx,uint32_t esr_iss,struct vm_exit * vme_ret)619 arm64_gen_inst_emul_data(struct hypctx *hypctx, uint32_t esr_iss,
620     struct vm_exit *vme_ret)
621 {
622 	struct vm_guest_paging *paging;
623 	struct vie *vie;
624 	uint32_t esr_sas, reg_num;
625 
626 	/*
627 	 * Get the page address from HPFAR_EL2.
628 	 */
629 	vme_ret->u.inst_emul.gpa =
630 	    HPFAR_EL2_FIPA_ADDR(hypctx->exit_info.hpfar_el2);
631 	/* Bits [11:0] are the same as bits [11:0] from the virtual address. */
632 	vme_ret->u.inst_emul.gpa += hypctx->exit_info.far_el2 &
633 	    FAR_EL2_HPFAR_PAGE_MASK;
634 
635 	esr_sas = (esr_iss & ISS_DATA_SAS_MASK) >> ISS_DATA_SAS_SHIFT;
636 	reg_num = (esr_iss & ISS_DATA_SRT_MASK) >> ISS_DATA_SRT_SHIFT;
637 
638 	vie = &vme_ret->u.inst_emul.vie;
639 	vie->access_size = 1 << esr_sas;
640 	vie->sign_extend = (esr_iss & ISS_DATA_SSE) ? 1 : 0;
641 	vie->dir = (esr_iss & ISS_DATA_WnR) ? VM_DIR_WRITE : VM_DIR_READ;
642 	vie->reg = reg_num;
643 
644 	paging = &vme_ret->u.inst_emul.paging;
645 	paging->ttbr0_addr = hypctx->ttbr0_el1 & ~(TTBR_ASID_MASK | TTBR_CnP);
646 	paging->ttbr1_addr = hypctx->ttbr1_el1 & ~(TTBR_ASID_MASK | TTBR_CnP);
647 	paging->tcr_el1 = hypctx->tcr_el1;
648 	paging->tcr2_el1 = hypctx->tcr2_el1;
649 	paging->flags = hypctx->tf.tf_spsr & (PSR_M_MASK | PSR_M_32);
650 	if ((hypctx->sctlr_el1 & SCTLR_M) != 0)
651 		paging->flags |= VM_GP_MMU_ENABLED;
652 }
653 
654 static void
arm64_gen_reg_emul_data(uint32_t esr_iss,struct vm_exit * vme_ret)655 arm64_gen_reg_emul_data(uint32_t esr_iss, struct vm_exit *vme_ret)
656 {
657 	uint32_t reg_num;
658 	struct vre *vre;
659 
660 	/* u.hyp member will be replaced by u.reg_emul */
661 	vre = &vme_ret->u.reg_emul.vre;
662 
663 	vre->inst_syndrome = esr_iss;
664 	/* ARMv8 Architecture Manual, p. D7-2273: 1 means read */
665 	vre->dir = (esr_iss & ISS_MSR_DIR) ? VM_DIR_READ : VM_DIR_WRITE;
666 	reg_num = ISS_MSR_Rt(esr_iss);
667 	vre->reg = reg_num;
668 }
669 
670 void
raise_data_insn_abort(struct hypctx * hypctx,uint64_t far,bool dabort,int fsc)671 raise_data_insn_abort(struct hypctx *hypctx, uint64_t far, bool dabort, int fsc)
672 {
673 	uint64_t esr;
674 
675 	if ((hypctx->tf.tf_spsr & PSR_M_MASK) == PSR_M_EL0t)
676 		esr = EXCP_INSN_ABORT_L << ESR_ELx_EC_SHIFT;
677 	else
678 		esr = EXCP_INSN_ABORT << ESR_ELx_EC_SHIFT;
679 	/* Set the bit that changes from insn -> data abort */
680 	if (dabort)
681 		esr |= EXCP_DATA_ABORT_L << ESR_ELx_EC_SHIFT;
682 	/* Set the IL bit if set by hardware */
683 	esr |= hypctx->tf.tf_esr & ESR_ELx_IL;
684 
685 	vmmops_exception(hypctx, esr | fsc, far);
686 }
687 
688 static int
handle_el1_sync_excp(struct hypctx * hypctx,struct vm_exit * vme_ret,pmap_t pmap)689 handle_el1_sync_excp(struct hypctx *hypctx, struct vm_exit *vme_ret,
690     pmap_t pmap)
691 {
692 	uint64_t gpa;
693 	uint32_t esr_ec, esr_iss;
694 
695 	esr_ec = ESR_ELx_EXCEPTION(hypctx->tf.tf_esr);
696 	esr_iss = hypctx->tf.tf_esr & ESR_ELx_ISS_MASK;
697 
698 	switch (esr_ec) {
699 	case EXCP_UNKNOWN:
700 		vmm_stat_incr(hypctx->vcpu, VMEXIT_UNKNOWN, 1);
701 		arm64_print_hyp_regs(vme_ret);
702 		vme_ret->exitcode = VM_EXITCODE_HYP;
703 		break;
704 	case EXCP_TRAP_WFI_WFE:
705 		if ((hypctx->tf.tf_esr & 0x3) == 0) { /* WFI */
706 			vmm_stat_incr(hypctx->vcpu, VMEXIT_WFI, 1);
707 			vme_ret->exitcode = VM_EXITCODE_WFI;
708 		} else {
709 			vmm_stat_incr(hypctx->vcpu, VMEXIT_WFE, 1);
710 			vme_ret->exitcode = VM_EXITCODE_HYP;
711 		}
712 		break;
713 	case EXCP_HVC:
714 		vmm_stat_incr(hypctx->vcpu, VMEXIT_HVC, 1);
715 		vme_ret->exitcode = VM_EXITCODE_HVC;
716 		break;
717 	case EXCP_MSR:
718 		vmm_stat_incr(hypctx->vcpu, VMEXIT_MSR, 1);
719 		arm64_gen_reg_emul_data(esr_iss, vme_ret);
720 		vme_ret->exitcode = VM_EXITCODE_REG_EMUL;
721 		break;
722 	case EXCP_BRK:
723 		vmm_stat_incr(hypctx->vcpu, VMEXIT_BRK, 1);
724 		vme_ret->exitcode = VM_EXITCODE_BRK;
725 		break;
726 	case EXCP_SOFTSTP_EL0:
727 		vmm_stat_incr(hypctx->vcpu, VMEXIT_SS, 1);
728 		vme_ret->exitcode = VM_EXITCODE_SS;
729 		break;
730 	case EXCP_INSN_ABORT_L:
731 	case EXCP_DATA_ABORT_L:
732 		vmm_stat_incr(hypctx->vcpu, esr_ec == EXCP_DATA_ABORT_L ?
733 		    VMEXIT_DATA_ABORT : VMEXIT_INSN_ABORT, 1);
734 		switch (hypctx->tf.tf_esr & ISS_DATA_DFSC_MASK) {
735 		case ISS_DATA_DFSC_TF_L0:
736 		case ISS_DATA_DFSC_TF_L1:
737 		case ISS_DATA_DFSC_TF_L2:
738 		case ISS_DATA_DFSC_TF_L3:
739 		case ISS_DATA_DFSC_AFF_L1:
740 		case ISS_DATA_DFSC_AFF_L2:
741 		case ISS_DATA_DFSC_AFF_L3:
742 		case ISS_DATA_DFSC_PF_L1:
743 		case ISS_DATA_DFSC_PF_L2:
744 		case ISS_DATA_DFSC_PF_L3:
745 			gpa = HPFAR_EL2_FIPA_ADDR(hypctx->exit_info.hpfar_el2);
746 			/* Check the IPA is valid */
747 			if (gpa >= (1ul << vmm_max_ipa_bits)) {
748 				raise_data_insn_abort(hypctx,
749 				    hypctx->exit_info.far_el2,
750 				    esr_ec == EXCP_DATA_ABORT_L,
751 				    ISS_DATA_DFSC_ASF_L0);
752 				vme_ret->inst_length = 0;
753 				return (HANDLED);
754 			}
755 
756 			if (vm_mem_allocated(hypctx->vcpu, gpa)) {
757 				vme_ret->exitcode = VM_EXITCODE_PAGING;
758 				vme_ret->inst_length = 0;
759 				vme_ret->u.paging.esr = hypctx->tf.tf_esr;
760 				vme_ret->u.paging.gpa = gpa;
761 			} else if (esr_ec == EXCP_INSN_ABORT_L) {
762 				/*
763 				 * Raise an external abort. Device memory is
764 				 * not executable
765 				 */
766 				raise_data_insn_abort(hypctx,
767 				    hypctx->exit_info.far_el2, false,
768 				    ISS_DATA_DFSC_EXT);
769 				vme_ret->inst_length = 0;
770 				return (HANDLED);
771 			} else {
772 				arm64_gen_inst_emul_data(hypctx, esr_iss,
773 				    vme_ret);
774 				vme_ret->exitcode = VM_EXITCODE_INST_EMUL;
775 			}
776 			break;
777 		default:
778 			arm64_print_hyp_regs(vme_ret);
779 			vme_ret->exitcode = VM_EXITCODE_HYP;
780 			break;
781 		}
782 
783 		break;
784 
785 	default:
786 		vmm_stat_incr(hypctx->vcpu, VMEXIT_UNHANDLED_SYNC, 1);
787 		arm64_print_hyp_regs(vme_ret);
788 		vme_ret->exitcode = VM_EXITCODE_HYP;
789 		break;
790 	}
791 
792 	/* We don't don't do any instruction emulation here */
793 	return (UNHANDLED);
794 }
795 
796 static int
arm64_handle_world_switch(struct hypctx * hypctx,int excp_type,struct vm_exit * vme,pmap_t pmap)797 arm64_handle_world_switch(struct hypctx *hypctx, int excp_type,
798     struct vm_exit *vme, pmap_t pmap)
799 {
800 	int handled;
801 
802 	switch (excp_type) {
803 	case EXCP_TYPE_EL1_SYNC:
804 		/* The exit code will be set by handle_el1_sync_excp(). */
805 		handled = handle_el1_sync_excp(hypctx, vme, pmap);
806 		break;
807 
808 	case EXCP_TYPE_EL1_IRQ:
809 	case EXCP_TYPE_EL1_FIQ:
810 		/* The host kernel will handle IRQs and FIQs. */
811 		vmm_stat_incr(hypctx->vcpu,
812 		    excp_type == EXCP_TYPE_EL1_IRQ ? VMEXIT_IRQ : VMEXIT_FIQ,1);
813 		vme->exitcode = VM_EXITCODE_BOGUS;
814 		handled = UNHANDLED;
815 		break;
816 
817 	case EXCP_TYPE_EL1_ERROR:
818 	case EXCP_TYPE_EL2_SYNC:
819 	case EXCP_TYPE_EL2_IRQ:
820 	case EXCP_TYPE_EL2_FIQ:
821 	case EXCP_TYPE_EL2_ERROR:
822 		vmm_stat_incr(hypctx->vcpu, VMEXIT_UNHANDLED_EL2, 1);
823 		vme->exitcode = VM_EXITCODE_BOGUS;
824 		handled = UNHANDLED;
825 		break;
826 
827 	default:
828 		vmm_stat_incr(hypctx->vcpu, VMEXIT_UNHANDLED, 1);
829 		vme->exitcode = VM_EXITCODE_BOGUS;
830 		handled = UNHANDLED;
831 		break;
832 	}
833 
834 	return (handled);
835 }
836 
837 static void
ptp_release(void ** cookie)838 ptp_release(void **cookie)
839 {
840 	if (*cookie != NULL) {
841 		vm_gpa_release(*cookie);
842 		*cookie = NULL;
843 	}
844 }
845 
846 static void *
ptp_hold(struct vcpu * vcpu,vm_paddr_t ptpphys,size_t len,void ** cookie)847 ptp_hold(struct vcpu *vcpu, vm_paddr_t ptpphys, size_t len, void **cookie)
848 {
849 	void *ptr;
850 
851 	ptp_release(cookie);
852 	ptr = vm_gpa_hold(vcpu, ptpphys, len, VM_PROT_RW, cookie);
853 	return (ptr);
854 }
855 
856 /* log2 of the number of bytes in a page table entry */
857 #define	PTE_SHIFT	3
858 int
vmmops_gla2gpa(void * vcpui,struct vm_guest_paging * paging,uint64_t gla,int prot,uint64_t * gpa,int * is_fault)859 vmmops_gla2gpa(void *vcpui, struct vm_guest_paging *paging, uint64_t gla,
860     int prot, uint64_t *gpa, int *is_fault)
861 {
862 	struct hypctx *hypctx;
863 	void *cookie;
864 	uint64_t mask, *ptep, pte, pte_addr;
865 	int address_bits, granule_shift, ia_bits, levels, pte_shift, tsz;
866 	bool is_el0;
867 
868 	/* Check if the MMU is off */
869 	if ((paging->flags & VM_GP_MMU_ENABLED) == 0) {
870 		*is_fault = 0;
871 		*gpa = gla;
872 		return (0);
873 	}
874 
875 	is_el0 = (paging->flags & PSR_M_MASK) == PSR_M_EL0t;
876 
877 	if (ADDR_IS_KERNEL(gla)) {
878 		/* If address translation is disabled raise an exception */
879 		if ((paging->tcr_el1 & TCR_EPD1) != 0) {
880 			*is_fault = 1;
881 			return (0);
882 		}
883 		if (is_el0 && (paging->tcr_el1 & TCR_E0PD1) != 0) {
884 			*is_fault = 1;
885 			return (0);
886 		}
887 		pte_addr = paging->ttbr1_addr;
888 		tsz = (paging->tcr_el1 & TCR_T1SZ_MASK) >> TCR_T1SZ_SHIFT;
889 		/* Clear the top byte if TBI is on */
890 		if ((paging->tcr_el1 & TCR_TBI1) != 0)
891 			gla |= (0xfful << 56);
892 		switch (paging->tcr_el1 & TCR_TG1_MASK) {
893 		case TCR_TG1_4K:
894 			granule_shift = PAGE_SHIFT_4K;
895 			break;
896 		case TCR_TG1_16K:
897 			granule_shift = PAGE_SHIFT_16K;
898 			break;
899 		case TCR_TG1_64K:
900 			granule_shift = PAGE_SHIFT_64K;
901 			break;
902 		default:
903 			*is_fault = 1;
904 			return (EINVAL);
905 		}
906 	} else {
907 		/* If address translation is disabled raise an exception */
908 		if ((paging->tcr_el1 & TCR_EPD0) != 0) {
909 			*is_fault = 1;
910 			return (0);
911 		}
912 		if (is_el0 && (paging->tcr_el1 & TCR_E0PD0) != 0) {
913 			*is_fault = 1;
914 			return (0);
915 		}
916 		pte_addr = paging->ttbr0_addr;
917 		tsz = (paging->tcr_el1 & TCR_T0SZ_MASK) >> TCR_T0SZ_SHIFT;
918 		/* Clear the top byte if TBI is on */
919 		if ((paging->tcr_el1 & TCR_TBI0) != 0)
920 			gla &= ~(0xfful << 56);
921 		switch (paging->tcr_el1 & TCR_TG0_MASK) {
922 		case TCR_TG0_4K:
923 			granule_shift = PAGE_SHIFT_4K;
924 			break;
925 		case TCR_TG0_16K:
926 			granule_shift = PAGE_SHIFT_16K;
927 			break;
928 		case TCR_TG0_64K:
929 			granule_shift = PAGE_SHIFT_64K;
930 			break;
931 		default:
932 			*is_fault = 1;
933 			return (EINVAL);
934 		}
935 	}
936 
937 	/*
938 	 * TODO: Support FEAT_TTST for smaller tsz values and FEAT_LPA2
939 	 * for larger values.
940 	 */
941 	switch (granule_shift) {
942 	case PAGE_SHIFT_4K:
943 	case PAGE_SHIFT_16K:
944 		/*
945 		 * See "Table D8-11 4KB granule, determining stage 1 initial
946 		 * lookup level" and "Table D8-21 16KB granule, determining
947 		 * stage 1 initial lookup level" from the "Arm Architecture
948 		 * Reference Manual for A-Profile architecture" revision I.a
949 		 * for the minimum and maximum values.
950 		 *
951 		 * TODO: Support less than 16 when FEAT_LPA2 is implemented
952 		 * and TCR_EL1.DS == 1
953 		 * TODO: Support more than 39 when FEAT_TTST is implemented
954 		 */
955 		if (tsz < 16 || tsz > 39) {
956 			*is_fault = 1;
957 			return (EINVAL);
958 		}
959 		break;
960 	case PAGE_SHIFT_64K:
961 	/* TODO: Support 64k granule. It will probably work, but is untested */
962 	default:
963 		*is_fault = 1;
964 		return (EINVAL);
965 	}
966 
967 	/*
968 	 * Calculate the input address bits. These are 64 bit in an address
969 	 * with the top tsz bits being all 0 or all 1.
970 	  */
971 	ia_bits = 64 - tsz;
972 
973 	/*
974 	 * Calculate the number of address bits used in the page table
975 	 * calculation. This is ia_bits minus the bottom granule_shift
976 	 * bits that are passed to the output address.
977 	 */
978 	address_bits = ia_bits - granule_shift;
979 
980 	/*
981 	 * Calculate the number of levels. Each level uses
982 	 * granule_shift - PTE_SHIFT bits of the input address.
983 	 * This is because the table is 1 << granule_shift and each
984 	 * entry is 1 << PTE_SHIFT bytes.
985 	 */
986 	levels = howmany(address_bits, granule_shift - PTE_SHIFT);
987 
988 	/* Mask of the upper unused bits in the virtual address */
989 	gla &= (1ul << ia_bits) - 1;
990 	hypctx = (struct hypctx *)vcpui;
991 	cookie = NULL;
992 	/* TODO: Check if the level supports block descriptors */
993 	for (;levels > 0; levels--) {
994 		int idx;
995 
996 		pte_shift = (levels - 1) * (granule_shift - PTE_SHIFT) +
997 		    granule_shift;
998 		idx = (gla >> pte_shift) &
999 		    ((1ul << (granule_shift - PTE_SHIFT)) - 1);
1000 		while (idx > PAGE_SIZE / sizeof(pte)) {
1001 			idx -= PAGE_SIZE / sizeof(pte);
1002 			pte_addr += PAGE_SIZE;
1003 		}
1004 
1005 		ptep = ptp_hold(hypctx->vcpu, pte_addr, PAGE_SIZE, &cookie);
1006 		if (ptep == NULL)
1007 			goto error;
1008 		pte = ptep[idx];
1009 
1010 		/* Calculate the level we are looking at */
1011 		switch (levels) {
1012 		default:
1013 			goto fault;
1014 		/* TODO: Level -1 when FEAT_LPA2 is implemented */
1015 		case 4: /* Level 0 */
1016 			if ((pte & ATTR_DESCR_MASK) != L0_TABLE)
1017 				goto fault;
1018 			/* FALLTHROUGH */
1019 		case 3: /* Level 1 */
1020 		case 2: /* Level 2 */
1021 			switch (pte & ATTR_DESCR_MASK) {
1022 			/* Use L1 macro as all levels are the same */
1023 			case L1_TABLE:
1024 				/* Check if EL0 can access this address space */
1025 				if (is_el0 &&
1026 				    (pte & TATTR_AP_TABLE_NO_EL0) != 0)
1027 					goto fault;
1028 				/* Check if the address space is writable */
1029 				if ((prot & PROT_WRITE) != 0 &&
1030 				    (pte & TATTR_AP_TABLE_RO) != 0)
1031 					goto fault;
1032 				if ((prot & PROT_EXEC) != 0) {
1033 					/* Check the table exec attribute */
1034 					if ((is_el0 &&
1035 					    (pte & TATTR_UXN_TABLE) != 0) ||
1036 					    (!is_el0 &&
1037 					     (pte & TATTR_PXN_TABLE) != 0))
1038 						goto fault;
1039 				}
1040 				pte_addr = pte & ~ATTR_MASK;
1041 				break;
1042 			case L1_BLOCK:
1043 				goto done;
1044 			default:
1045 				goto fault;
1046 			}
1047 			break;
1048 		case 1: /* Level 3 */
1049 			if ((pte & ATTR_DESCR_MASK) == L3_PAGE)
1050 				goto done;
1051 			goto fault;
1052 		}
1053 	}
1054 
1055 done:
1056 	/* Check if EL0 has access to the block/page */
1057 	if (is_el0 && (pte & ATTR_S1_AP(ATTR_S1_AP_USER)) == 0)
1058 		goto fault;
1059 	if ((prot & PROT_WRITE) != 0 && (pte & ATTR_S1_AP_RW_BIT) != 0)
1060 		goto fault;
1061 	if ((prot & PROT_EXEC) != 0) {
1062 		if ((is_el0 && (pte & ATTR_S1_UXN) != 0) ||
1063 		    (!is_el0 && (pte & ATTR_S1_PXN) != 0))
1064 			goto fault;
1065 	}
1066 	mask = (1ul << pte_shift) - 1;
1067 	*gpa = (pte & ~ATTR_MASK) | (gla & mask);
1068 	*is_fault = 0;
1069 	ptp_release(&cookie);
1070 	return (0);
1071 
1072 error:
1073 	ptp_release(&cookie);
1074 	return (EFAULT);
1075 fault:
1076 	*is_fault = 1;
1077 	ptp_release(&cookie);
1078 	return (0);
1079 }
1080 
1081 int
vmmops_run(void * vcpui,register_t pc,pmap_t pmap,struct vm_eventinfo * evinfo)1082 vmmops_run(void *vcpui, register_t pc, pmap_t pmap, struct vm_eventinfo *evinfo)
1083 {
1084 	uint64_t excp_type;
1085 	int handled;
1086 	register_t daif;
1087 	struct hyp *hyp;
1088 	struct hypctx *hypctx;
1089 	struct vcpu *vcpu;
1090 	struct vm_exit *vme;
1091 	int mode;
1092 
1093 	hypctx = (struct hypctx *)vcpui;
1094 	hyp = hypctx->hyp;
1095 	vcpu = hypctx->vcpu;
1096 	vme = vm_exitinfo(vcpu);
1097 
1098 	hypctx->tf.tf_elr = (uint64_t)pc;
1099 
1100 	for (;;) {
1101 		if (hypctx->has_exception) {
1102 			hypctx->has_exception = false;
1103 			hypctx->elr_el1 = hypctx->tf.tf_elr;
1104 
1105 			mode = hypctx->tf.tf_spsr & (PSR_M_MASK | PSR_M_32);
1106 
1107 			if (mode == PSR_M_EL1t) {
1108 				hypctx->tf.tf_elr = hypctx->vbar_el1 + 0x0;
1109 			} else if (mode == PSR_M_EL1h) {
1110 				hypctx->tf.tf_elr = hypctx->vbar_el1 + 0x200;
1111 			} else if ((mode & PSR_M_32) == PSR_M_64) {
1112 				/* 64-bit EL0 */
1113 				hypctx->tf.tf_elr = hypctx->vbar_el1 + 0x400;
1114 			} else {
1115 				/* 32-bit EL0 */
1116 				hypctx->tf.tf_elr = hypctx->vbar_el1 + 0x600;
1117 			}
1118 
1119 			/* Set the new spsr */
1120 			hypctx->spsr_el1 = hypctx->tf.tf_spsr;
1121 
1122 			/* Set the new cpsr */
1123 			hypctx->tf.tf_spsr = hypctx->spsr_el1 & PSR_FLAGS;
1124 			hypctx->tf.tf_spsr |= PSR_DAIF | PSR_M_EL1h;
1125 
1126 			/*
1127 			 * Update fields that may change on exeption entry
1128 			 * based on how sctlr_el1 is configured.
1129 			 */
1130 			if ((hypctx->sctlr_el1 & SCTLR_SPAN) == 0)
1131 				hypctx->tf.tf_spsr |= PSR_PAN;
1132 			if ((hypctx->sctlr_el1 & SCTLR_DSSBS) == 0)
1133 				hypctx->tf.tf_spsr &= ~PSR_SSBS;
1134 			else
1135 				hypctx->tf.tf_spsr |= PSR_SSBS;
1136 		}
1137 
1138 		daif = intr_disable();
1139 
1140 		/* Check if the vcpu is suspended */
1141 		if (vcpu_suspended(evinfo)) {
1142 			intr_restore(daif);
1143 			vm_exit_suspended(vcpu, pc);
1144 			break;
1145 		}
1146 
1147 		if (vcpu_debugged(vcpu)) {
1148 			intr_restore(daif);
1149 			vm_exit_debug(vcpu, pc);
1150 			break;
1151 		}
1152 
1153 		/* Activate the stage2 pmap so the vmid is valid */
1154 		pmap_activate_vm(pmap);
1155 		hyp->vttbr_el2 = pmap_to_ttbr0(pmap);
1156 
1157 		/*
1158 		 * TODO: What happens if a timer interrupt is asserted exactly
1159 		 * here, but for the previous VM?
1160 		 */
1161 		arm64_set_active_vcpu(hypctx);
1162 		vgic_flush_hwstate(hypctx);
1163 
1164 		/* Call into EL2 to switch to the guest */
1165 		excp_type = vmm_enter_guest(hyp, hypctx);
1166 
1167 		vgic_sync_hwstate(hypctx);
1168 		vtimer_sync_hwstate(hypctx);
1169 
1170 		/*
1171 		 * Deactivate the stage2 pmap.
1172 		 */
1173 		PCPU_SET(curvmpmap, NULL);
1174 		intr_restore(daif);
1175 
1176 		vmm_stat_incr(vcpu, VMEXIT_COUNT, 1);
1177 		if (excp_type == EXCP_TYPE_MAINT_IRQ)
1178 			continue;
1179 
1180 		vme->pc = hypctx->tf.tf_elr;
1181 		vme->inst_length = INSN_SIZE;
1182 		vme->u.hyp.exception_nr = excp_type;
1183 		vme->u.hyp.esr_el2 = hypctx->tf.tf_esr;
1184 		vme->u.hyp.far_el2 = hypctx->exit_info.far_el2;
1185 		vme->u.hyp.hpfar_el2 = hypctx->exit_info.hpfar_el2;
1186 
1187 		handled = arm64_handle_world_switch(hypctx, excp_type, vme,
1188 		    pmap);
1189 		if (handled == UNHANDLED)
1190 			/* Exit loop to emulate instruction. */
1191 			break;
1192 		else
1193 			/* Resume guest execution from the next instruction. */
1194 			hypctx->tf.tf_elr += vme->inst_length;
1195 	}
1196 
1197 	return (0);
1198 }
1199 
1200 static void
arm_pcpu_vmcleanup(void * arg)1201 arm_pcpu_vmcleanup(void *arg)
1202 {
1203 	struct hyp *hyp;
1204 	int i, maxcpus;
1205 
1206 	hyp = arg;
1207 	maxcpus = vm_get_maxcpus(hyp->vm);
1208 	for (i = 0; i < maxcpus; i++) {
1209 		if (arm64_get_active_vcpu() == hyp->ctx[i]) {
1210 			arm64_set_active_vcpu(NULL);
1211 			break;
1212 		}
1213 	}
1214 }
1215 
1216 void
vmmops_vcpu_cleanup(void * vcpui)1217 vmmops_vcpu_cleanup(void *vcpui)
1218 {
1219 	struct hypctx *hypctx = vcpui;
1220 
1221 	vtimer_cpucleanup(hypctx);
1222 	vgic_cpucleanup(hypctx);
1223 
1224 	if (!in_vhe())
1225 		vmmpmap_remove(hypctx->el2_addr, el2_hypctx_size(), true);
1226 
1227 	free(hypctx, M_HYP);
1228 }
1229 
1230 void
vmmops_cleanup(void * vmi)1231 vmmops_cleanup(void *vmi)
1232 {
1233 	struct hyp *hyp = vmi;
1234 
1235 	vtimer_vmcleanup(hyp);
1236 	vgic_vmcleanup(hyp);
1237 
1238 	smp_rendezvous(NULL, arm_pcpu_vmcleanup, NULL, hyp);
1239 
1240 	if (!in_vhe())
1241 		vmmpmap_remove(hyp->el2_addr, el2_hyp_size(hyp->vm), true);
1242 
1243 	free(hyp, M_HYP);
1244 }
1245 
1246 /*
1247  * Return register value. Registers have different sizes and an explicit cast
1248  * must be made to ensure proper conversion.
1249  */
1250 static uint64_t *
hypctx_regptr(struct hypctx * hypctx,int reg)1251 hypctx_regptr(struct hypctx *hypctx, int reg)
1252 {
1253 	switch (reg) {
1254 	case VM_REG_GUEST_X0 ... VM_REG_GUEST_X29:
1255 		return (&hypctx->tf.tf_x[reg]);
1256 	case VM_REG_GUEST_LR:
1257 		return (&hypctx->tf.tf_lr);
1258 	case VM_REG_GUEST_SP:
1259 		return (&hypctx->tf.tf_sp);
1260 	case VM_REG_GUEST_CPSR:
1261 		return (&hypctx->tf.tf_spsr);
1262 	case VM_REG_GUEST_PC:
1263 		return (&hypctx->tf.tf_elr);
1264 	case VM_REG_GUEST_SCTLR_EL1:
1265 		return (&hypctx->sctlr_el1);
1266 	case VM_REG_GUEST_TTBR0_EL1:
1267 		return (&hypctx->ttbr0_el1);
1268 	case VM_REG_GUEST_TTBR1_EL1:
1269 		return (&hypctx->ttbr1_el1);
1270 	case VM_REG_GUEST_TCR_EL1:
1271 		return (&hypctx->tcr_el1);
1272 	case VM_REG_GUEST_TCR2_EL1:
1273 		return (&hypctx->tcr2_el1);
1274 	case VM_REG_GUEST_MPIDR_EL1:
1275 		return (&hypctx->vmpidr_el2);
1276 	default:
1277 		break;
1278 	}
1279 	return (NULL);
1280 }
1281 
1282 int
vmmops_getreg(void * vcpui,int reg,uint64_t * retval)1283 vmmops_getreg(void *vcpui, int reg, uint64_t *retval)
1284 {
1285 	uint64_t *regp;
1286 	int running, hostcpu;
1287 	struct hypctx *hypctx = vcpui;
1288 
1289 	running = vcpu_is_running(hypctx->vcpu, &hostcpu);
1290 	if (running && hostcpu != curcpu)
1291 		panic("arm_getreg: %s%d is running", vm_name(hypctx->hyp->vm),
1292 		    vcpu_vcpuid(hypctx->vcpu));
1293 
1294 	regp = hypctx_regptr(hypctx, reg);
1295 	if (regp == NULL)
1296 		return (EINVAL);
1297 
1298 	*retval = *regp;
1299 	return (0);
1300 }
1301 
1302 int
vmmops_setreg(void * vcpui,int reg,uint64_t val)1303 vmmops_setreg(void *vcpui, int reg, uint64_t val)
1304 {
1305 	uint64_t *regp;
1306 	struct hypctx *hypctx = vcpui;
1307 	int running, hostcpu;
1308 
1309 	running = vcpu_is_running(hypctx->vcpu, &hostcpu);
1310 	if (running && hostcpu != curcpu)
1311 		panic("arm_setreg: %s%d is running", vm_name(hypctx->hyp->vm),
1312 		    vcpu_vcpuid(hypctx->vcpu));
1313 
1314 	regp = hypctx_regptr(hypctx, reg);
1315 	if (regp == NULL)
1316 		return (EINVAL);
1317 
1318 	*regp = val;
1319 	return (0);
1320 }
1321 
1322 int
vmmops_exception(void * vcpui,uint64_t esr,uint64_t far)1323 vmmops_exception(void *vcpui, uint64_t esr, uint64_t far)
1324 {
1325 	struct hypctx *hypctx = vcpui;
1326 	int running, hostcpu;
1327 
1328 	running = vcpu_is_running(hypctx->vcpu, &hostcpu);
1329 	if (running && hostcpu != curcpu)
1330 		panic("%s: %s%d is running", __func__, vm_name(hypctx->hyp->vm),
1331 		    vcpu_vcpuid(hypctx->vcpu));
1332 
1333 	hypctx->far_el1 = far;
1334 	hypctx->esr_el1 = esr;
1335 	hypctx->has_exception = true;
1336 
1337 	return (0);
1338 }
1339 
1340 int
vmmops_getcap(void * vcpui,int num,int * retval)1341 vmmops_getcap(void *vcpui, int num, int *retval)
1342 {
1343 	struct hypctx *hypctx = vcpui;
1344 	int ret;
1345 
1346 	ret = ENOENT;
1347 
1348 	switch (num) {
1349 	case VM_CAP_UNRESTRICTED_GUEST:
1350 		*retval = 1;
1351 		ret = 0;
1352 		break;
1353 	case VM_CAP_BRK_EXIT:
1354 	case VM_CAP_SS_EXIT:
1355 	case VM_CAP_MASK_HWINTR:
1356 		*retval = (hypctx->setcaps & (1ul << num)) != 0;
1357 		break;
1358 	default:
1359 		break;
1360 	}
1361 
1362 	return (ret);
1363 }
1364 
1365 int
vmmops_setcap(void * vcpui,int num,int val)1366 vmmops_setcap(void *vcpui, int num, int val)
1367 {
1368 	struct hypctx *hypctx = vcpui;
1369 	int ret;
1370 
1371 	ret = 0;
1372 
1373 	switch (num) {
1374 	case VM_CAP_BRK_EXIT:
1375 		if ((val != 0) == ((hypctx->setcaps & (1ul << num)) != 0))
1376 			break;
1377 		if (val != 0)
1378 			hypctx->mdcr_el2 |= MDCR_EL2_TDE;
1379 		else if ((hypctx->setcaps & (1ul << VM_CAP_SS_EXIT)) == 0)
1380 			hypctx->mdcr_el2 &= ~MDCR_EL2_TDE;
1381 		break;
1382 	case VM_CAP_SS_EXIT:
1383 		if ((val != 0) == ((hypctx->setcaps & (1ul << num)) != 0))
1384 			break;
1385 
1386 		if (val != 0) {
1387 			hypctx->debug_spsr |= (hypctx->tf.tf_spsr & PSR_SS);
1388 			hypctx->debug_mdscr |= (hypctx->mdscr_el1 & MDSCR_SS);
1389 
1390 			hypctx->tf.tf_spsr |= PSR_SS;
1391 			hypctx->mdscr_el1 |= MDSCR_SS;
1392 			hypctx->mdcr_el2 |= MDCR_EL2_TDE;
1393 		} else {
1394 			hypctx->tf.tf_spsr &= ~PSR_SS;
1395 			hypctx->tf.tf_spsr |= hypctx->debug_spsr;
1396 			hypctx->debug_spsr &= ~PSR_SS;
1397 			hypctx->mdscr_el1 &= ~MDSCR_SS;
1398 			hypctx->mdscr_el1 |= hypctx->debug_mdscr;
1399 			hypctx->debug_mdscr &= ~MDSCR_SS;
1400 			if ((hypctx->setcaps & (1ul << VM_CAP_BRK_EXIT)) == 0)
1401 				hypctx->mdcr_el2 &= ~MDCR_EL2_TDE;
1402 		}
1403 		break;
1404 	case VM_CAP_MASK_HWINTR:
1405 		if ((val != 0) == ((hypctx->setcaps & (1ul << num)) != 0))
1406 			break;
1407 
1408 		if (val != 0) {
1409 			hypctx->debug_spsr |= (hypctx->tf.tf_spsr &
1410 			    (PSR_I | PSR_F));
1411 			hypctx->tf.tf_spsr |= PSR_I | PSR_F;
1412 		} else {
1413 			hypctx->tf.tf_spsr &= ~(PSR_I | PSR_F);
1414 			hypctx->tf.tf_spsr |= (hypctx->debug_spsr &
1415 			    (PSR_I | PSR_F));
1416 			hypctx->debug_spsr &= ~(PSR_I | PSR_F);
1417 		}
1418 		break;
1419 	default:
1420 		ret = ENOENT;
1421 		break;
1422 	}
1423 
1424 	if (ret == 0) {
1425 		if (val == 0)
1426 			hypctx->setcaps &= ~(1ul << num);
1427 		else
1428 			hypctx->setcaps |= (1ul << num);
1429 	}
1430 
1431 	return (ret);
1432 }
1433