1 // SPDX-License-Identifier: CDDL-1.0
2 /*
3 * CDDL HEADER START
4 *
5 * The contents of this file are subject to the terms of the
6 * Common Development and Distribution License (the "License").
7 * You may not use this file except in compliance with the License.
8 *
9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10 * or https://opensource.org/licenses/CDDL-1.0.
11 * See the License for the specific language governing permissions
12 * and limitations under the License.
13 *
14 * When distributing Covered Code, include this CDDL HEADER in each
15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 * If applicable, add the following below this CDDL HEADER, with the
17 * fields enclosed by brackets "[]" replaced with your own identifying
18 * information: Portions Copyright [yyyy] [name of copyright owner]
19 *
20 * CDDL HEADER END
21 */
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
25 */
26
27 /* Portions Copyright 2010 Robert Milkowski */
28
29 #include <sys/types.h>
30 #include <sys/param.h>
31 #include <sys/sysmacros.h>
32 #include <sys/kmem.h>
33 #include <sys/pathname.h>
34 #include <sys/vnode.h>
35 #include <sys/vfs.h>
36 #include <sys/mntent.h>
37 #include <sys/cmn_err.h>
38 #include <sys/zfs_znode.h>
39 #include <sys/zfs_vnops.h>
40 #include <sys/zfs_dir.h>
41 #include <sys/zil.h>
42 #include <sys/fs/zfs.h>
43 #include <sys/dmu.h>
44 #include <sys/dsl_prop.h>
45 #include <sys/dsl_dataset.h>
46 #include <sys/dsl_deleg.h>
47 #include <sys/spa.h>
48 #include <sys/zap.h>
49 #include <sys/sa.h>
50 #include <sys/sa_impl.h>
51 #include <sys/policy.h>
52 #include <sys/atomic.h>
53 #include <sys/zfs_ioctl.h>
54 #include <sys/zfs_ctldir.h>
55 #include <sys/zfs_fuid.h>
56 #include <sys/zfs_quota.h>
57 #include <sys/sunddi.h>
58 #include <sys/dmu_objset.h>
59 #include <sys/dsl_dir.h>
60 #include <sys/objlist.h>
61 #include <sys/zfeature.h>
62 #include <sys/zpl.h>
63 #include <linux/vfs_compat.h>
64 #include <linux/fs.h>
65 #include "zfs_comutil.h"
66
67 enum {
68 TOKEN_RO,
69 TOKEN_RW,
70 TOKEN_SETUID,
71 TOKEN_NOSETUID,
72 TOKEN_EXEC,
73 TOKEN_NOEXEC,
74 TOKEN_DEVICES,
75 TOKEN_NODEVICES,
76 TOKEN_DIRXATTR,
77 TOKEN_SAXATTR,
78 TOKEN_XATTR,
79 TOKEN_NOXATTR,
80 TOKEN_ATIME,
81 TOKEN_NOATIME,
82 TOKEN_RELATIME,
83 TOKEN_NORELATIME,
84 TOKEN_NBMAND,
85 TOKEN_NONBMAND,
86 TOKEN_MNTPOINT,
87 TOKEN_LAST,
88 };
89
90 static const match_table_t zpl_tokens = {
91 { TOKEN_RO, MNTOPT_RO },
92 { TOKEN_RW, MNTOPT_RW },
93 { TOKEN_SETUID, MNTOPT_SETUID },
94 { TOKEN_NOSETUID, MNTOPT_NOSETUID },
95 { TOKEN_EXEC, MNTOPT_EXEC },
96 { TOKEN_NOEXEC, MNTOPT_NOEXEC },
97 { TOKEN_DEVICES, MNTOPT_DEVICES },
98 { TOKEN_NODEVICES, MNTOPT_NODEVICES },
99 { TOKEN_DIRXATTR, MNTOPT_DIRXATTR },
100 { TOKEN_SAXATTR, MNTOPT_SAXATTR },
101 { TOKEN_XATTR, MNTOPT_XATTR },
102 { TOKEN_NOXATTR, MNTOPT_NOXATTR },
103 { TOKEN_ATIME, MNTOPT_ATIME },
104 { TOKEN_NOATIME, MNTOPT_NOATIME },
105 { TOKEN_RELATIME, MNTOPT_RELATIME },
106 { TOKEN_NORELATIME, MNTOPT_NORELATIME },
107 { TOKEN_NBMAND, MNTOPT_NBMAND },
108 { TOKEN_NONBMAND, MNTOPT_NONBMAND },
109 { TOKEN_MNTPOINT, MNTOPT_MNTPOINT "=%s" },
110 { TOKEN_LAST, NULL },
111 };
112
113 static void
zfsvfs_vfs_free(vfs_t * vfsp)114 zfsvfs_vfs_free(vfs_t *vfsp)
115 {
116 if (vfsp != NULL) {
117 if (vfsp->vfs_mntpoint != NULL)
118 kmem_strfree(vfsp->vfs_mntpoint);
119 mutex_destroy(&vfsp->vfs_mntpt_lock);
120 kmem_free(vfsp, sizeof (vfs_t));
121 }
122 }
123
124 static int
zfsvfs_parse_option(char * option,int token,substring_t * args,vfs_t * vfsp)125 zfsvfs_parse_option(char *option, int token, substring_t *args, vfs_t *vfsp)
126 {
127 switch (token) {
128 case TOKEN_RO:
129 vfsp->vfs_readonly = B_TRUE;
130 vfsp->vfs_do_readonly = B_TRUE;
131 break;
132 case TOKEN_RW:
133 vfsp->vfs_readonly = B_FALSE;
134 vfsp->vfs_do_readonly = B_TRUE;
135 break;
136 case TOKEN_SETUID:
137 vfsp->vfs_setuid = B_TRUE;
138 vfsp->vfs_do_setuid = B_TRUE;
139 break;
140 case TOKEN_NOSETUID:
141 vfsp->vfs_setuid = B_FALSE;
142 vfsp->vfs_do_setuid = B_TRUE;
143 break;
144 case TOKEN_EXEC:
145 vfsp->vfs_exec = B_TRUE;
146 vfsp->vfs_do_exec = B_TRUE;
147 break;
148 case TOKEN_NOEXEC:
149 vfsp->vfs_exec = B_FALSE;
150 vfsp->vfs_do_exec = B_TRUE;
151 break;
152 case TOKEN_DEVICES:
153 vfsp->vfs_devices = B_TRUE;
154 vfsp->vfs_do_devices = B_TRUE;
155 break;
156 case TOKEN_NODEVICES:
157 vfsp->vfs_devices = B_FALSE;
158 vfsp->vfs_do_devices = B_TRUE;
159 break;
160 case TOKEN_DIRXATTR:
161 vfsp->vfs_xattr = ZFS_XATTR_DIR;
162 vfsp->vfs_do_xattr = B_TRUE;
163 break;
164 case TOKEN_SAXATTR:
165 vfsp->vfs_xattr = ZFS_XATTR_SA;
166 vfsp->vfs_do_xattr = B_TRUE;
167 break;
168 case TOKEN_XATTR:
169 vfsp->vfs_xattr = ZFS_XATTR_SA;
170 vfsp->vfs_do_xattr = B_TRUE;
171 break;
172 case TOKEN_NOXATTR:
173 vfsp->vfs_xattr = ZFS_XATTR_OFF;
174 vfsp->vfs_do_xattr = B_TRUE;
175 break;
176 case TOKEN_ATIME:
177 vfsp->vfs_atime = B_TRUE;
178 vfsp->vfs_do_atime = B_TRUE;
179 break;
180 case TOKEN_NOATIME:
181 vfsp->vfs_atime = B_FALSE;
182 vfsp->vfs_do_atime = B_TRUE;
183 break;
184 case TOKEN_RELATIME:
185 vfsp->vfs_relatime = B_TRUE;
186 vfsp->vfs_do_relatime = B_TRUE;
187 break;
188 case TOKEN_NORELATIME:
189 vfsp->vfs_relatime = B_FALSE;
190 vfsp->vfs_do_relatime = B_TRUE;
191 break;
192 case TOKEN_NBMAND:
193 vfsp->vfs_nbmand = B_TRUE;
194 vfsp->vfs_do_nbmand = B_TRUE;
195 break;
196 case TOKEN_NONBMAND:
197 vfsp->vfs_nbmand = B_FALSE;
198 vfsp->vfs_do_nbmand = B_TRUE;
199 break;
200 case TOKEN_MNTPOINT:
201 if (vfsp->vfs_mntpoint != NULL)
202 kmem_strfree(vfsp->vfs_mntpoint);
203 vfsp->vfs_mntpoint = match_strdup(&args[0]);
204 if (vfsp->vfs_mntpoint == NULL)
205 return (SET_ERROR(ENOMEM));
206 break;
207 default:
208 break;
209 }
210
211 return (0);
212 }
213
214 /*
215 * Parse the raw mntopts and return a vfs_t describing the options.
216 */
217 static int
zfsvfs_parse_options(char * mntopts,vfs_t ** vfsp)218 zfsvfs_parse_options(char *mntopts, vfs_t **vfsp)
219 {
220 vfs_t *tmp_vfsp;
221 int error;
222
223 tmp_vfsp = kmem_zalloc(sizeof (vfs_t), KM_SLEEP);
224 mutex_init(&tmp_vfsp->vfs_mntpt_lock, NULL, MUTEX_DEFAULT, NULL);
225
226 if (mntopts != NULL) {
227 substring_t args[MAX_OPT_ARGS];
228 char *tmp_mntopts, *p, *t;
229 int token;
230
231 tmp_mntopts = t = kmem_strdup(mntopts);
232 if (tmp_mntopts == NULL)
233 return (SET_ERROR(ENOMEM));
234
235 while ((p = strsep(&t, ",")) != NULL) {
236 if (!*p)
237 continue;
238
239 args[0].to = args[0].from = NULL;
240 token = match_token(p, zpl_tokens, args);
241 error = zfsvfs_parse_option(p, token, args, tmp_vfsp);
242 if (error) {
243 kmem_strfree(tmp_mntopts);
244 zfsvfs_vfs_free(tmp_vfsp);
245 return (error);
246 }
247 }
248
249 kmem_strfree(tmp_mntopts);
250 }
251
252 *vfsp = tmp_vfsp;
253
254 return (0);
255 }
256
257 boolean_t
zfs_is_readonly(zfsvfs_t * zfsvfs)258 zfs_is_readonly(zfsvfs_t *zfsvfs)
259 {
260 return (!!(zfsvfs->z_sb->s_flags & SB_RDONLY));
261 }
262
263 int
zfs_sync(struct super_block * sb,int wait,cred_t * cr)264 zfs_sync(struct super_block *sb, int wait, cred_t *cr)
265 {
266 (void) cr;
267 zfsvfs_t *zfsvfs = sb->s_fs_info;
268 ASSERT3P(zfsvfs, !=, NULL);
269
270 /*
271 * Semantically, the only requirement is that the sync be initiated.
272 * The DMU syncs out txgs frequently, so there's nothing to do.
273 */
274 if (!wait)
275 return (0);
276
277 int err = zfs_enter(zfsvfs, FTAG);
278 if (err != 0)
279 return (err);
280
281 /*
282 * If the pool is suspended, just return an error. This is to help
283 * with shutting down with pools suspended, as we don't want to block
284 * in that case.
285 */
286 if (spa_suspended(zfsvfs->z_os->os_spa)) {
287 zfs_exit(zfsvfs, FTAG);
288 return (SET_ERROR(EIO));
289 }
290
291 zil_commit(zfsvfs->z_log, 0);
292 zfs_exit(zfsvfs, FTAG);
293
294 return (0);
295 }
296
297 static void
atime_changed_cb(void * arg,uint64_t newval)298 atime_changed_cb(void *arg, uint64_t newval)
299 {
300 zfsvfs_t *zfsvfs = arg;
301 struct super_block *sb = zfsvfs->z_sb;
302
303 if (sb == NULL)
304 return;
305 /*
306 * Update SB_NOATIME bit in VFS super block. Since atime update is
307 * determined by atime_needs_update(), atime_needs_update() needs to
308 * return false if atime is turned off, and not unconditionally return
309 * false if atime is turned on.
310 */
311 if (newval)
312 sb->s_flags &= ~SB_NOATIME;
313 else
314 sb->s_flags |= SB_NOATIME;
315 }
316
317 static void
relatime_changed_cb(void * arg,uint64_t newval)318 relatime_changed_cb(void *arg, uint64_t newval)
319 {
320 ((zfsvfs_t *)arg)->z_relatime = newval;
321 }
322
323 static void
xattr_changed_cb(void * arg,uint64_t newval)324 xattr_changed_cb(void *arg, uint64_t newval)
325 {
326 zfsvfs_t *zfsvfs = arg;
327
328 if (newval == ZFS_XATTR_OFF) {
329 zfsvfs->z_flags &= ~ZSB_XATTR;
330 } else {
331 zfsvfs->z_flags |= ZSB_XATTR;
332
333 if (newval == ZFS_XATTR_SA)
334 zfsvfs->z_xattr_sa = B_TRUE;
335 else
336 zfsvfs->z_xattr_sa = B_FALSE;
337 }
338 }
339
340 static void
acltype_changed_cb(void * arg,uint64_t newval)341 acltype_changed_cb(void *arg, uint64_t newval)
342 {
343 zfsvfs_t *zfsvfs = arg;
344
345 switch (newval) {
346 case ZFS_ACLTYPE_NFSV4:
347 case ZFS_ACLTYPE_OFF:
348 zfsvfs->z_acl_type = ZFS_ACLTYPE_OFF;
349 zfsvfs->z_sb->s_flags &= ~SB_POSIXACL;
350 break;
351 case ZFS_ACLTYPE_POSIX:
352 #ifdef CONFIG_FS_POSIX_ACL
353 zfsvfs->z_acl_type = ZFS_ACLTYPE_POSIX;
354 zfsvfs->z_sb->s_flags |= SB_POSIXACL;
355 #else
356 zfsvfs->z_acl_type = ZFS_ACLTYPE_OFF;
357 zfsvfs->z_sb->s_flags &= ~SB_POSIXACL;
358 #endif /* CONFIG_FS_POSIX_ACL */
359 break;
360 default:
361 break;
362 }
363 }
364
365 static void
blksz_changed_cb(void * arg,uint64_t newval)366 blksz_changed_cb(void *arg, uint64_t newval)
367 {
368 zfsvfs_t *zfsvfs = arg;
369 ASSERT3U(newval, <=, spa_maxblocksize(dmu_objset_spa(zfsvfs->z_os)));
370 ASSERT3U(newval, >=, SPA_MINBLOCKSIZE);
371 ASSERT(ISP2(newval));
372
373 zfsvfs->z_max_blksz = newval;
374 }
375
376 static void
readonly_changed_cb(void * arg,uint64_t newval)377 readonly_changed_cb(void *arg, uint64_t newval)
378 {
379 zfsvfs_t *zfsvfs = arg;
380 struct super_block *sb = zfsvfs->z_sb;
381
382 if (sb == NULL)
383 return;
384
385 if (newval)
386 sb->s_flags |= SB_RDONLY;
387 else
388 sb->s_flags &= ~SB_RDONLY;
389 }
390
391 static void
devices_changed_cb(void * arg,uint64_t newval)392 devices_changed_cb(void *arg, uint64_t newval)
393 {
394 }
395
396 static void
setuid_changed_cb(void * arg,uint64_t newval)397 setuid_changed_cb(void *arg, uint64_t newval)
398 {
399 }
400
401 static void
exec_changed_cb(void * arg,uint64_t newval)402 exec_changed_cb(void *arg, uint64_t newval)
403 {
404 }
405
406 static void
nbmand_changed_cb(void * arg,uint64_t newval)407 nbmand_changed_cb(void *arg, uint64_t newval)
408 {
409 zfsvfs_t *zfsvfs = arg;
410 struct super_block *sb = zfsvfs->z_sb;
411
412 if (sb == NULL)
413 return;
414
415 if (newval == TRUE)
416 sb->s_flags |= SB_MANDLOCK;
417 else
418 sb->s_flags &= ~SB_MANDLOCK;
419 }
420
421 static void
snapdir_changed_cb(void * arg,uint64_t newval)422 snapdir_changed_cb(void *arg, uint64_t newval)
423 {
424 ((zfsvfs_t *)arg)->z_show_ctldir = newval;
425 }
426
427 static void
acl_mode_changed_cb(void * arg,uint64_t newval)428 acl_mode_changed_cb(void *arg, uint64_t newval)
429 {
430 zfsvfs_t *zfsvfs = arg;
431
432 zfsvfs->z_acl_mode = newval;
433 }
434
435 static void
acl_inherit_changed_cb(void * arg,uint64_t newval)436 acl_inherit_changed_cb(void *arg, uint64_t newval)
437 {
438 ((zfsvfs_t *)arg)->z_acl_inherit = newval;
439 }
440
441 static void
longname_changed_cb(void * arg,uint64_t newval)442 longname_changed_cb(void *arg, uint64_t newval)
443 {
444 ((zfsvfs_t *)arg)->z_longname = newval;
445 }
446
447 static int
zfs_register_callbacks(vfs_t * vfsp)448 zfs_register_callbacks(vfs_t *vfsp)
449 {
450 struct dsl_dataset *ds = NULL;
451 objset_t *os = NULL;
452 zfsvfs_t *zfsvfs = NULL;
453 int error = 0;
454
455 ASSERT(vfsp);
456 zfsvfs = vfsp->vfs_data;
457 ASSERT(zfsvfs);
458 os = zfsvfs->z_os;
459
460 /*
461 * The act of registering our callbacks will destroy any mount
462 * options we may have. In order to enable temporary overrides
463 * of mount options, we stash away the current values and
464 * restore them after we register the callbacks.
465 */
466 if (zfs_is_readonly(zfsvfs) || !spa_writeable(dmu_objset_spa(os))) {
467 vfsp->vfs_do_readonly = B_TRUE;
468 vfsp->vfs_readonly = B_TRUE;
469 }
470
471 /*
472 * Register property callbacks.
473 *
474 * It would probably be fine to just check for i/o error from
475 * the first prop_register(), but I guess I like to go
476 * overboard...
477 */
478 ds = dmu_objset_ds(os);
479 dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
480 error = dsl_prop_register(ds,
481 zfs_prop_to_name(ZFS_PROP_ATIME), atime_changed_cb, zfsvfs);
482 error = error ? error : dsl_prop_register(ds,
483 zfs_prop_to_name(ZFS_PROP_RELATIME), relatime_changed_cb, zfsvfs);
484 error = error ? error : dsl_prop_register(ds,
485 zfs_prop_to_name(ZFS_PROP_XATTR), xattr_changed_cb, zfsvfs);
486 error = error ? error : dsl_prop_register(ds,
487 zfs_prop_to_name(ZFS_PROP_RECORDSIZE), blksz_changed_cb, zfsvfs);
488 error = error ? error : dsl_prop_register(ds,
489 zfs_prop_to_name(ZFS_PROP_READONLY), readonly_changed_cb, zfsvfs);
490 error = error ? error : dsl_prop_register(ds,
491 zfs_prop_to_name(ZFS_PROP_DEVICES), devices_changed_cb, zfsvfs);
492 error = error ? error : dsl_prop_register(ds,
493 zfs_prop_to_name(ZFS_PROP_SETUID), setuid_changed_cb, zfsvfs);
494 error = error ? error : dsl_prop_register(ds,
495 zfs_prop_to_name(ZFS_PROP_EXEC), exec_changed_cb, zfsvfs);
496 error = error ? error : dsl_prop_register(ds,
497 zfs_prop_to_name(ZFS_PROP_SNAPDIR), snapdir_changed_cb, zfsvfs);
498 error = error ? error : dsl_prop_register(ds,
499 zfs_prop_to_name(ZFS_PROP_ACLTYPE), acltype_changed_cb, zfsvfs);
500 error = error ? error : dsl_prop_register(ds,
501 zfs_prop_to_name(ZFS_PROP_ACLMODE), acl_mode_changed_cb, zfsvfs);
502 error = error ? error : dsl_prop_register(ds,
503 zfs_prop_to_name(ZFS_PROP_ACLINHERIT), acl_inherit_changed_cb,
504 zfsvfs);
505 error = error ? error : dsl_prop_register(ds,
506 zfs_prop_to_name(ZFS_PROP_NBMAND), nbmand_changed_cb, zfsvfs);
507 error = error ? error : dsl_prop_register(ds,
508 zfs_prop_to_name(ZFS_PROP_LONGNAME), longname_changed_cb, zfsvfs);
509 dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
510 if (error)
511 goto unregister;
512
513 /*
514 * Invoke our callbacks to restore temporary mount options.
515 */
516 if (vfsp->vfs_do_readonly)
517 readonly_changed_cb(zfsvfs, vfsp->vfs_readonly);
518 if (vfsp->vfs_do_setuid)
519 setuid_changed_cb(zfsvfs, vfsp->vfs_setuid);
520 if (vfsp->vfs_do_exec)
521 exec_changed_cb(zfsvfs, vfsp->vfs_exec);
522 if (vfsp->vfs_do_devices)
523 devices_changed_cb(zfsvfs, vfsp->vfs_devices);
524 if (vfsp->vfs_do_xattr)
525 xattr_changed_cb(zfsvfs, vfsp->vfs_xattr);
526 if (vfsp->vfs_do_atime)
527 atime_changed_cb(zfsvfs, vfsp->vfs_atime);
528 if (vfsp->vfs_do_relatime)
529 relatime_changed_cb(zfsvfs, vfsp->vfs_relatime);
530 if (vfsp->vfs_do_nbmand)
531 nbmand_changed_cb(zfsvfs, vfsp->vfs_nbmand);
532
533 return (0);
534
535 unregister:
536 dsl_prop_unregister_all(ds, zfsvfs);
537 return (error);
538 }
539
540 /*
541 * Takes a dataset, a property, a value and that value's setpoint as
542 * found in the ZAP. Checks if the property has been changed in the vfs.
543 * If so, val and setpoint will be overwritten with updated content.
544 * Otherwise, they are left unchanged.
545 */
546 int
zfs_get_temporary_prop(dsl_dataset_t * ds,zfs_prop_t zfs_prop,uint64_t * val,char * setpoint)547 zfs_get_temporary_prop(dsl_dataset_t *ds, zfs_prop_t zfs_prop, uint64_t *val,
548 char *setpoint)
549 {
550 int error;
551 zfsvfs_t *zfvp;
552 vfs_t *vfsp;
553 objset_t *os;
554 uint64_t tmp = *val;
555
556 error = dmu_objset_from_ds(ds, &os);
557 if (error != 0)
558 return (error);
559
560 if (dmu_objset_type(os) != DMU_OST_ZFS)
561 return (EINVAL);
562
563 mutex_enter(&os->os_user_ptr_lock);
564 zfvp = dmu_objset_get_user(os);
565 mutex_exit(&os->os_user_ptr_lock);
566 if (zfvp == NULL)
567 return (ESRCH);
568
569 vfsp = zfvp->z_vfs;
570
571 switch (zfs_prop) {
572 case ZFS_PROP_ATIME:
573 if (vfsp->vfs_do_atime)
574 tmp = vfsp->vfs_atime;
575 break;
576 case ZFS_PROP_RELATIME:
577 if (vfsp->vfs_do_relatime)
578 tmp = vfsp->vfs_relatime;
579 break;
580 case ZFS_PROP_DEVICES:
581 if (vfsp->vfs_do_devices)
582 tmp = vfsp->vfs_devices;
583 break;
584 case ZFS_PROP_EXEC:
585 if (vfsp->vfs_do_exec)
586 tmp = vfsp->vfs_exec;
587 break;
588 case ZFS_PROP_SETUID:
589 if (vfsp->vfs_do_setuid)
590 tmp = vfsp->vfs_setuid;
591 break;
592 case ZFS_PROP_READONLY:
593 if (vfsp->vfs_do_readonly)
594 tmp = vfsp->vfs_readonly;
595 break;
596 case ZFS_PROP_XATTR:
597 if (vfsp->vfs_do_xattr)
598 tmp = vfsp->vfs_xattr;
599 break;
600 case ZFS_PROP_NBMAND:
601 if (vfsp->vfs_do_nbmand)
602 tmp = vfsp->vfs_nbmand;
603 break;
604 default:
605 return (ENOENT);
606 }
607
608 if (tmp != *val) {
609 if (setpoint)
610 (void) strcpy(setpoint, "temporary");
611 *val = tmp;
612 }
613 return (0);
614 }
615
616 /*
617 * Associate this zfsvfs with the given objset, which must be owned.
618 * This will cache a bunch of on-disk state from the objset in the
619 * zfsvfs.
620 */
621 static int
zfsvfs_init(zfsvfs_t * zfsvfs,objset_t * os)622 zfsvfs_init(zfsvfs_t *zfsvfs, objset_t *os)
623 {
624 int error;
625 uint64_t val;
626
627 zfsvfs->z_max_blksz = SPA_OLD_MAXBLOCKSIZE;
628 zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE;
629 zfsvfs->z_os = os;
630
631 error = zfs_get_zplprop(os, ZFS_PROP_VERSION, &zfsvfs->z_version);
632 if (error != 0)
633 return (error);
634 if (zfsvfs->z_version >
635 zfs_zpl_version_map(spa_version(dmu_objset_spa(os)))) {
636 (void) printk("Can't mount a version %lld file system "
637 "on a version %lld pool\n. Pool must be upgraded to mount "
638 "this file system.\n", (u_longlong_t)zfsvfs->z_version,
639 (u_longlong_t)spa_version(dmu_objset_spa(os)));
640 return (SET_ERROR(ENOTSUP));
641 }
642 error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &val);
643 if (error != 0)
644 return (error);
645 zfsvfs->z_norm = (int)val;
646
647 error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &val);
648 if (error != 0)
649 return (error);
650 zfsvfs->z_utf8 = (val != 0);
651
652 error = zfs_get_zplprop(os, ZFS_PROP_CASE, &val);
653 if (error != 0)
654 return (error);
655 zfsvfs->z_case = (uint_t)val;
656
657 if ((error = zfs_get_zplprop(os, ZFS_PROP_ACLTYPE, &val)) != 0)
658 return (error);
659 zfsvfs->z_acl_type = (uint_t)val;
660
661 /*
662 * Fold case on file systems that are always or sometimes case
663 * insensitive.
664 */
665 if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
666 zfsvfs->z_case == ZFS_CASE_MIXED)
667 zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER;
668
669 zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
670 zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os);
671
672 uint64_t sa_obj = 0;
673 if (zfsvfs->z_use_sa) {
674 /* should either have both of these objects or none */
675 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1,
676 &sa_obj);
677 if (error != 0)
678 return (error);
679
680 error = zfs_get_zplprop(os, ZFS_PROP_XATTR, &val);
681 if ((error == 0) && (val == ZFS_XATTR_SA))
682 zfsvfs->z_xattr_sa = B_TRUE;
683 }
684
685 error = zfs_get_zplprop(os, ZFS_PROP_DEFAULTUSERQUOTA,
686 &zfsvfs->z_defaultuserquota);
687 if (error != 0)
688 return (error);
689
690 error = zfs_get_zplprop(os, ZFS_PROP_DEFAULTGROUPQUOTA,
691 &zfsvfs->z_defaultgroupquota);
692 if (error != 0)
693 return (error);
694
695 error = zfs_get_zplprop(os, ZFS_PROP_DEFAULTPROJECTQUOTA,
696 &zfsvfs->z_defaultprojectquota);
697 if (error != 0)
698 return (error);
699
700 error = zfs_get_zplprop(os, ZFS_PROP_DEFAULTUSEROBJQUOTA,
701 &zfsvfs->z_defaultuserobjquota);
702 if (error != 0)
703 return (error);
704
705 error = zfs_get_zplprop(os, ZFS_PROP_DEFAULTGROUPOBJQUOTA,
706 &zfsvfs->z_defaultgroupobjquota);
707 if (error != 0)
708 return (error);
709
710 error = zfs_get_zplprop(os, ZFS_PROP_DEFAULTPROJECTOBJQUOTA,
711 &zfsvfs->z_defaultprojectobjquota);
712 if (error != 0)
713 return (error);
714
715 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1,
716 &zfsvfs->z_root);
717 if (error != 0)
718 return (error);
719 ASSERT(zfsvfs->z_root != 0);
720
721 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1,
722 &zfsvfs->z_unlinkedobj);
723 if (error != 0)
724 return (error);
725
726 error = zap_lookup(os, MASTER_NODE_OBJ,
727 zfs_userquota_prop_prefixes[ZFS_PROP_USERQUOTA],
728 8, 1, &zfsvfs->z_userquota_obj);
729 if (error == ENOENT)
730 zfsvfs->z_userquota_obj = 0;
731 else if (error != 0)
732 return (error);
733
734 error = zap_lookup(os, MASTER_NODE_OBJ,
735 zfs_userquota_prop_prefixes[ZFS_PROP_GROUPQUOTA],
736 8, 1, &zfsvfs->z_groupquota_obj);
737 if (error == ENOENT)
738 zfsvfs->z_groupquota_obj = 0;
739 else if (error != 0)
740 return (error);
741
742 error = zap_lookup(os, MASTER_NODE_OBJ,
743 zfs_userquota_prop_prefixes[ZFS_PROP_PROJECTQUOTA],
744 8, 1, &zfsvfs->z_projectquota_obj);
745 if (error == ENOENT)
746 zfsvfs->z_projectquota_obj = 0;
747 else if (error != 0)
748 return (error);
749
750 error = zap_lookup(os, MASTER_NODE_OBJ,
751 zfs_userquota_prop_prefixes[ZFS_PROP_USEROBJQUOTA],
752 8, 1, &zfsvfs->z_userobjquota_obj);
753 if (error == ENOENT)
754 zfsvfs->z_userobjquota_obj = 0;
755 else if (error != 0)
756 return (error);
757
758 error = zap_lookup(os, MASTER_NODE_OBJ,
759 zfs_userquota_prop_prefixes[ZFS_PROP_GROUPOBJQUOTA],
760 8, 1, &zfsvfs->z_groupobjquota_obj);
761 if (error == ENOENT)
762 zfsvfs->z_groupobjquota_obj = 0;
763 else if (error != 0)
764 return (error);
765
766 error = zap_lookup(os, MASTER_NODE_OBJ,
767 zfs_userquota_prop_prefixes[ZFS_PROP_PROJECTOBJQUOTA],
768 8, 1, &zfsvfs->z_projectobjquota_obj);
769 if (error == ENOENT)
770 zfsvfs->z_projectobjquota_obj = 0;
771 else if (error != 0)
772 return (error);
773
774 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1,
775 &zfsvfs->z_fuid_obj);
776 if (error == ENOENT)
777 zfsvfs->z_fuid_obj = 0;
778 else if (error != 0)
779 return (error);
780
781 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SHARES_DIR, 8, 1,
782 &zfsvfs->z_shares_dir);
783 if (error == ENOENT)
784 zfsvfs->z_shares_dir = 0;
785 else if (error != 0)
786 return (error);
787
788 error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END,
789 &zfsvfs->z_attr_table);
790 if (error != 0)
791 return (error);
792
793 if (zfsvfs->z_version >= ZPL_VERSION_SA)
794 sa_register_update_callback(os, zfs_sa_upgrade);
795
796 return (0);
797 }
798
799 int
zfsvfs_create(const char * osname,boolean_t readonly,zfsvfs_t ** zfvp)800 zfsvfs_create(const char *osname, boolean_t readonly, zfsvfs_t **zfvp)
801 {
802 objset_t *os;
803 zfsvfs_t *zfsvfs;
804 int error;
805 boolean_t ro = (readonly || (strchr(osname, '@') != NULL));
806
807 zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP);
808
809 error = dmu_objset_own(osname, DMU_OST_ZFS, ro, B_TRUE, zfsvfs, &os);
810 if (error != 0) {
811 kmem_free(zfsvfs, sizeof (zfsvfs_t));
812 return (error);
813 }
814
815 error = zfsvfs_create_impl(zfvp, zfsvfs, os);
816
817 return (error);
818 }
819
820
821 /*
822 * Note: zfsvfs is assumed to be malloc'd, and will be freed by this function
823 * on a failure. Do not pass in a statically allocated zfsvfs.
824 */
825 int
zfsvfs_create_impl(zfsvfs_t ** zfvp,zfsvfs_t * zfsvfs,objset_t * os)826 zfsvfs_create_impl(zfsvfs_t **zfvp, zfsvfs_t *zfsvfs, objset_t *os)
827 {
828 int error;
829
830 zfsvfs->z_vfs = NULL;
831 zfsvfs->z_sb = NULL;
832 zfsvfs->z_parent = zfsvfs;
833
834 mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL);
835 mutex_init(&zfsvfs->z_lock, NULL, MUTEX_DEFAULT, NULL);
836 list_create(&zfsvfs->z_all_znodes, sizeof (znode_t),
837 offsetof(znode_t, z_link_node));
838 ZFS_TEARDOWN_INIT(zfsvfs);
839 rw_init(&zfsvfs->z_teardown_inactive_lock, NULL, RW_DEFAULT, NULL);
840 rw_init(&zfsvfs->z_fuid_lock, NULL, RW_DEFAULT, NULL);
841
842 int size = MIN(1 << (highbit64(zfs_object_mutex_size) - 1),
843 ZFS_OBJ_MTX_MAX);
844 zfsvfs->z_hold_size = size;
845 zfsvfs->z_hold_trees = vmem_zalloc(sizeof (avl_tree_t) * size,
846 KM_SLEEP);
847 zfsvfs->z_hold_locks = vmem_zalloc(sizeof (kmutex_t) * size, KM_SLEEP);
848 for (int i = 0; i != size; i++) {
849 avl_create(&zfsvfs->z_hold_trees[i], zfs_znode_hold_compare,
850 sizeof (znode_hold_t), offsetof(znode_hold_t, zh_node));
851 mutex_init(&zfsvfs->z_hold_locks[i], NULL, MUTEX_DEFAULT, NULL);
852 }
853
854 error = zfsvfs_init(zfsvfs, os);
855 if (error != 0) {
856 dmu_objset_disown(os, B_TRUE, zfsvfs);
857 *zfvp = NULL;
858 zfsvfs_free(zfsvfs);
859 return (error);
860 }
861
862 zfsvfs->z_drain_task = TASKQID_INVALID;
863 zfsvfs->z_draining = B_FALSE;
864 zfsvfs->z_drain_cancel = B_TRUE;
865
866 *zfvp = zfsvfs;
867 return (0);
868 }
869
870 static int
zfsvfs_setup(zfsvfs_t * zfsvfs,boolean_t mounting)871 zfsvfs_setup(zfsvfs_t *zfsvfs, boolean_t mounting)
872 {
873 int error;
874 boolean_t readonly = zfs_is_readonly(zfsvfs);
875
876 error = zfs_register_callbacks(zfsvfs->z_vfs);
877 if (error)
878 return (error);
879
880 /*
881 * If we are not mounting (ie: online recv), then we don't
882 * have to worry about replaying the log as we blocked all
883 * operations out since we closed the ZIL.
884 */
885 if (mounting) {
886 ASSERT3P(zfsvfs->z_kstat.dk_kstats, ==, NULL);
887 error = dataset_kstats_create(&zfsvfs->z_kstat, zfsvfs->z_os);
888 if (error)
889 return (error);
890 zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data,
891 &zfsvfs->z_kstat.dk_zil_sums);
892
893 /*
894 * During replay we remove the read only flag to
895 * allow replays to succeed.
896 */
897 if (readonly != 0) {
898 readonly_changed_cb(zfsvfs, B_FALSE);
899 } else {
900 zap_stats_t zs;
901 if (zap_get_stats(zfsvfs->z_os, zfsvfs->z_unlinkedobj,
902 &zs) == 0) {
903 dataset_kstats_update_nunlinks_kstat(
904 &zfsvfs->z_kstat, zs.zs_num_entries);
905 dprintf_ds(zfsvfs->z_os->os_dsl_dataset,
906 "num_entries in unlinked set: %llu",
907 zs.zs_num_entries);
908 }
909 zfs_unlinked_drain(zfsvfs);
910 dsl_dir_t *dd = zfsvfs->z_os->os_dsl_dataset->ds_dir;
911 dd->dd_activity_cancelled = B_FALSE;
912 }
913
914 /*
915 * Parse and replay the intent log.
916 *
917 * Because of ziltest, this must be done after
918 * zfs_unlinked_drain(). (Further note: ziltest
919 * doesn't use readonly mounts, where
920 * zfs_unlinked_drain() isn't called.) This is because
921 * ziltest causes spa_sync() to think it's committed,
922 * but actually it is not, so the intent log contains
923 * many txg's worth of changes.
924 *
925 * In particular, if object N is in the unlinked set in
926 * the last txg to actually sync, then it could be
927 * actually freed in a later txg and then reallocated
928 * in a yet later txg. This would write a "create
929 * object N" record to the intent log. Normally, this
930 * would be fine because the spa_sync() would have
931 * written out the fact that object N is free, before
932 * we could write the "create object N" intent log
933 * record.
934 *
935 * But when we are in ziltest mode, we advance the "open
936 * txg" without actually spa_sync()-ing the changes to
937 * disk. So we would see that object N is still
938 * allocated and in the unlinked set, and there is an
939 * intent log record saying to allocate it.
940 */
941 if (spa_writeable(dmu_objset_spa(zfsvfs->z_os))) {
942 if (zil_replay_disable) {
943 zil_destroy(zfsvfs->z_log, B_FALSE);
944 } else {
945 zfsvfs->z_replay = B_TRUE;
946 zil_replay(zfsvfs->z_os, zfsvfs,
947 zfs_replay_vector);
948 zfsvfs->z_replay = B_FALSE;
949 }
950 }
951
952 /* restore readonly bit */
953 if (readonly != 0)
954 readonly_changed_cb(zfsvfs, B_TRUE);
955 } else {
956 ASSERT3P(zfsvfs->z_kstat.dk_kstats, !=, NULL);
957 zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data,
958 &zfsvfs->z_kstat.dk_zil_sums);
959 }
960
961 /*
962 * Set the objset user_ptr to track its zfsvfs.
963 */
964 mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
965 dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
966 mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
967
968 return (0);
969 }
970
971 void
zfsvfs_free(zfsvfs_t * zfsvfs)972 zfsvfs_free(zfsvfs_t *zfsvfs)
973 {
974 int i, size = zfsvfs->z_hold_size;
975
976 zfs_fuid_destroy(zfsvfs);
977
978 mutex_destroy(&zfsvfs->z_znodes_lock);
979 mutex_destroy(&zfsvfs->z_lock);
980 list_destroy(&zfsvfs->z_all_znodes);
981 ZFS_TEARDOWN_DESTROY(zfsvfs);
982 rw_destroy(&zfsvfs->z_teardown_inactive_lock);
983 rw_destroy(&zfsvfs->z_fuid_lock);
984 for (i = 0; i != size; i++) {
985 avl_destroy(&zfsvfs->z_hold_trees[i]);
986 mutex_destroy(&zfsvfs->z_hold_locks[i]);
987 }
988 vmem_free(zfsvfs->z_hold_trees, sizeof (avl_tree_t) * size);
989 vmem_free(zfsvfs->z_hold_locks, sizeof (kmutex_t) * size);
990 zfsvfs_vfs_free(zfsvfs->z_vfs);
991 dataset_kstats_destroy(&zfsvfs->z_kstat);
992 kmem_free(zfsvfs, sizeof (zfsvfs_t));
993 }
994
995 static void
zfs_set_fuid_feature(zfsvfs_t * zfsvfs)996 zfs_set_fuid_feature(zfsvfs_t *zfsvfs)
997 {
998 zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
999 zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os);
1000 }
1001
1002 static void
zfs_unregister_callbacks(zfsvfs_t * zfsvfs)1003 zfs_unregister_callbacks(zfsvfs_t *zfsvfs)
1004 {
1005 objset_t *os = zfsvfs->z_os;
1006
1007 if (!dmu_objset_is_snapshot(os))
1008 dsl_prop_unregister_all(dmu_objset_ds(os), zfsvfs);
1009 }
1010
1011 #ifdef HAVE_MLSLABEL
1012 /*
1013 * Check that the hex label string is appropriate for the dataset being
1014 * mounted into the global_zone proper.
1015 *
1016 * Return an error if the hex label string is not default or
1017 * admin_low/admin_high. For admin_low labels, the corresponding
1018 * dataset must be readonly.
1019 */
1020 int
zfs_check_global_label(const char * dsname,const char * hexsl)1021 zfs_check_global_label(const char *dsname, const char *hexsl)
1022 {
1023 if (strcasecmp(hexsl, ZFS_MLSLABEL_DEFAULT) == 0)
1024 return (0);
1025 if (strcasecmp(hexsl, ADMIN_HIGH) == 0)
1026 return (0);
1027 if (strcasecmp(hexsl, ADMIN_LOW) == 0) {
1028 /* must be readonly */
1029 uint64_t rdonly;
1030
1031 if (dsl_prop_get_integer(dsname,
1032 zfs_prop_to_name(ZFS_PROP_READONLY), &rdonly, NULL))
1033 return (SET_ERROR(EACCES));
1034 return (rdonly ? 0 : SET_ERROR(EACCES));
1035 }
1036 return (SET_ERROR(EACCES));
1037 }
1038 #endif /* HAVE_MLSLABEL */
1039
1040 static int
zfs_statfs_project(zfsvfs_t * zfsvfs,znode_t * zp,struct kstatfs * statp,uint32_t bshift)1041 zfs_statfs_project(zfsvfs_t *zfsvfs, znode_t *zp, struct kstatfs *statp,
1042 uint32_t bshift)
1043 {
1044 char buf[20 + DMU_OBJACCT_PREFIX_LEN];
1045 uint64_t offset = DMU_OBJACCT_PREFIX_LEN;
1046 uint64_t quota;
1047 uint64_t used;
1048 int err;
1049
1050 strlcpy(buf, DMU_OBJACCT_PREFIX, DMU_OBJACCT_PREFIX_LEN + 1);
1051 err = zfs_id_to_fuidstr(zfsvfs, NULL, zp->z_projid, buf + offset,
1052 sizeof (buf) - offset, B_FALSE);
1053 if (err)
1054 return (err);
1055
1056 if (zfsvfs->z_projectquota_obj == 0) {
1057 if (zfsvfs->z_defaultprojectquota == 0)
1058 goto objs;
1059 quota = zfsvfs->z_defaultprojectquota;
1060 } else {
1061 err = zap_lookup(zfsvfs->z_os, zfsvfs->z_projectquota_obj,
1062 buf + offset, 8, 1, "a);
1063 if (err && (quota = zfsvfs->z_defaultprojectquota) == 0) {
1064 if (err == ENOENT)
1065 goto objs;
1066 return (err);
1067 }
1068 }
1069
1070 err = zap_lookup(zfsvfs->z_os, DMU_PROJECTUSED_OBJECT,
1071 buf + offset, 8, 1, &used);
1072 if (unlikely(err == ENOENT)) {
1073 uint32_t blksize;
1074 u_longlong_t nblocks;
1075
1076 /*
1077 * Quota accounting is async, so it is possible race case.
1078 * There is at least one object with the given project ID.
1079 */
1080 sa_object_size(zp->z_sa_hdl, &blksize, &nblocks);
1081 if (unlikely(zp->z_blksz == 0))
1082 blksize = zfsvfs->z_max_blksz;
1083
1084 used = blksize * nblocks;
1085 } else if (err) {
1086 return (err);
1087 }
1088
1089 statp->f_blocks = quota >> bshift;
1090 statp->f_bfree = (quota > used) ? ((quota - used) >> bshift) : 0;
1091 statp->f_bavail = statp->f_bfree;
1092
1093 objs:
1094
1095 if (zfsvfs->z_projectobjquota_obj == 0) {
1096 if (zfsvfs->z_defaultprojectobjquota == 0)
1097 return (0);
1098 quota = zfsvfs->z_defaultprojectobjquota;
1099 } else {
1100 err = zap_lookup(zfsvfs->z_os, zfsvfs->z_projectobjquota_obj,
1101 buf + offset, 8, 1, "a);
1102 if (err && (quota = zfsvfs->z_defaultprojectobjquota) == 0) {
1103 if (err == ENOENT)
1104 return (0);
1105 return (err);
1106 }
1107 }
1108
1109
1110 err = zap_lookup(zfsvfs->z_os, DMU_PROJECTUSED_OBJECT,
1111 buf, 8, 1, &used);
1112 if (unlikely(err == ENOENT)) {
1113 /*
1114 * Quota accounting is async, so it is possible race case.
1115 * There is at least one object with the given project ID.
1116 */
1117 used = 1;
1118 } else if (err) {
1119 return (err);
1120 }
1121
1122 statp->f_files = quota;
1123 statp->f_ffree = (quota > used) ? (quota - used) : 0;
1124
1125 return (0);
1126 }
1127
1128 int
zfs_statvfs(struct inode * ip,struct kstatfs * statp)1129 zfs_statvfs(struct inode *ip, struct kstatfs *statp)
1130 {
1131 zfsvfs_t *zfsvfs = ITOZSB(ip);
1132 uint64_t refdbytes, availbytes, usedobjs, availobjs;
1133 int err = 0;
1134
1135 if ((err = zfs_enter(zfsvfs, FTAG)) != 0)
1136 return (err);
1137
1138 dmu_objset_space(zfsvfs->z_os,
1139 &refdbytes, &availbytes, &usedobjs, &availobjs);
1140
1141 uint64_t fsid = dmu_objset_fsid_guid(zfsvfs->z_os);
1142 /*
1143 * The underlying storage pool actually uses multiple block
1144 * size. Under Solaris frsize (fragment size) is reported as
1145 * the smallest block size we support, and bsize (block size)
1146 * as the filesystem's maximum block size. Unfortunately,
1147 * under Linux the fragment size and block size are often used
1148 * interchangeably. Thus we are forced to report both of them
1149 * as the filesystem's maximum block size.
1150 */
1151 statp->f_frsize = zfsvfs->z_max_blksz;
1152 statp->f_bsize = zfsvfs->z_max_blksz;
1153 uint32_t bshift = fls(statp->f_bsize) - 1;
1154
1155 /*
1156 * The following report "total" blocks of various kinds in
1157 * the file system, but reported in terms of f_bsize - the
1158 * "preferred" size.
1159 */
1160
1161 /* Round up so we never have a filesystem using 0 blocks. */
1162 refdbytes = P2ROUNDUP(refdbytes, statp->f_bsize);
1163 statp->f_blocks = (refdbytes + availbytes) >> bshift;
1164 statp->f_bfree = availbytes >> bshift;
1165 statp->f_bavail = statp->f_bfree; /* no root reservation */
1166
1167 /*
1168 * statvfs() should really be called statufs(), because it assumes
1169 * static metadata. ZFS doesn't preallocate files, so the best
1170 * we can do is report the max that could possibly fit in f_files,
1171 * and that minus the number actually used in f_ffree.
1172 * For f_ffree, report the smaller of the number of objects available
1173 * and the number of blocks (each object will take at least a block).
1174 */
1175 statp->f_ffree = MIN(availobjs, availbytes >> DNODE_SHIFT);
1176 statp->f_files = statp->f_ffree + usedobjs;
1177 statp->f_fsid.val[0] = (uint32_t)fsid;
1178 statp->f_fsid.val[1] = (uint32_t)(fsid >> 32);
1179 statp->f_type = ZFS_SUPER_MAGIC;
1180 statp->f_namelen =
1181 zfsvfs->z_longname ? (ZAP_MAXNAMELEN_NEW - 1) : (MAXNAMELEN - 1);
1182
1183 /*
1184 * We have all of 40 characters to stuff a string here.
1185 * Is there anything useful we could/should provide?
1186 */
1187 memset(statp->f_spare, 0, sizeof (statp->f_spare));
1188
1189 if (dmu_objset_projectquota_enabled(zfsvfs->z_os) &&
1190 dmu_objset_projectquota_present(zfsvfs->z_os)) {
1191 znode_t *zp = ITOZ(ip);
1192
1193 if (zp->z_pflags & ZFS_PROJINHERIT && zp->z_projid &&
1194 zpl_is_valid_projid(zp->z_projid))
1195 err = zfs_statfs_project(zfsvfs, zp, statp, bshift);
1196 }
1197
1198 zfs_exit(zfsvfs, FTAG);
1199 return (err);
1200 }
1201
1202 static int
zfs_root(zfsvfs_t * zfsvfs,struct inode ** ipp)1203 zfs_root(zfsvfs_t *zfsvfs, struct inode **ipp)
1204 {
1205 znode_t *rootzp;
1206 int error;
1207
1208 if ((error = zfs_enter(zfsvfs, FTAG)) != 0)
1209 return (error);
1210
1211 error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp);
1212 if (error == 0)
1213 *ipp = ZTOI(rootzp);
1214
1215 zfs_exit(zfsvfs, FTAG);
1216 return (error);
1217 }
1218
1219 /*
1220 * The ARC has requested that the filesystem drop entries from the dentry
1221 * and inode caches. This can occur when the ARC needs to free meta data
1222 * blocks but can't because they are all pinned by entries in these caches.
1223 */
1224 #if defined(HAVE_SUPER_BLOCK_S_SHRINK)
1225 #define S_SHRINK(sb) (&(sb)->s_shrink)
1226 #elif defined(HAVE_SUPER_BLOCK_S_SHRINK_PTR)
1227 #define S_SHRINK(sb) ((sb)->s_shrink)
1228 #endif
1229
1230 int
zfs_prune(struct super_block * sb,unsigned long nr_to_scan,int * objects)1231 zfs_prune(struct super_block *sb, unsigned long nr_to_scan, int *objects)
1232 {
1233 zfsvfs_t *zfsvfs = sb->s_fs_info;
1234 int error = 0;
1235 struct shrinker *shrinker = S_SHRINK(sb);
1236 struct shrink_control sc = {
1237 .nr_to_scan = nr_to_scan,
1238 .gfp_mask = GFP_KERNEL,
1239 };
1240
1241 if ((error = zfs_enter(zfsvfs, FTAG)) != 0)
1242 return (error);
1243
1244 #ifdef SHRINKER_NUMA_AWARE
1245 if (shrinker->flags & SHRINKER_NUMA_AWARE) {
1246 long tc = 1;
1247 for_each_online_node(sc.nid) {
1248 long c = shrinker->count_objects(shrinker, &sc);
1249 if (c == 0 || c == SHRINK_EMPTY)
1250 continue;
1251 tc += c;
1252 }
1253 *objects = 0;
1254 for_each_online_node(sc.nid) {
1255 long c = shrinker->count_objects(shrinker, &sc);
1256 if (c == 0 || c == SHRINK_EMPTY)
1257 continue;
1258 if (c > tc)
1259 tc = c;
1260 sc.nr_to_scan = mult_frac(nr_to_scan, c, tc) + 1;
1261 *objects += (*shrinker->scan_objects)(shrinker, &sc);
1262 }
1263 } else {
1264 *objects = (*shrinker->scan_objects)(shrinker, &sc);
1265 }
1266 #else
1267 *objects = (*shrinker->scan_objects)(shrinker, &sc);
1268 #endif
1269
1270 zfs_exit(zfsvfs, FTAG);
1271
1272 dprintf_ds(zfsvfs->z_os->os_dsl_dataset,
1273 "pruning, nr_to_scan=%lu objects=%d error=%d\n",
1274 nr_to_scan, *objects, error);
1275
1276 return (error);
1277 }
1278
1279 /*
1280 * Teardown the zfsvfs_t.
1281 *
1282 * Note, if 'unmounting' is FALSE, we return with the 'z_teardown_lock'
1283 * and 'z_teardown_inactive_lock' held.
1284 */
1285 static int
zfsvfs_teardown(zfsvfs_t * zfsvfs,boolean_t unmounting)1286 zfsvfs_teardown(zfsvfs_t *zfsvfs, boolean_t unmounting)
1287 {
1288 znode_t *zp;
1289
1290 zfs_unlinked_drain_stop_wait(zfsvfs);
1291
1292 /*
1293 * If someone has not already unmounted this file system,
1294 * drain the zrele_taskq to ensure all active references to the
1295 * zfsvfs_t have been handled only then can it be safely destroyed.
1296 */
1297 if (zfsvfs->z_os) {
1298 /*
1299 * If we're unmounting we have to wait for the list to
1300 * drain completely.
1301 *
1302 * If we're not unmounting there's no guarantee the list
1303 * will drain completely, but iputs run from the taskq
1304 * may add the parents of dir-based xattrs to the taskq
1305 * so we want to wait for these.
1306 *
1307 * We can safely check z_all_znodes for being empty because the
1308 * VFS has already blocked operations which add to it.
1309 */
1310 int round = 0;
1311 while (!list_is_empty(&zfsvfs->z_all_znodes)) {
1312 taskq_wait_outstanding(dsl_pool_zrele_taskq(
1313 dmu_objset_pool(zfsvfs->z_os)), 0);
1314 if (++round > 1 && !unmounting)
1315 break;
1316 }
1317 }
1318
1319 ZFS_TEARDOWN_ENTER_WRITE(zfsvfs, FTAG);
1320
1321 if (!unmounting) {
1322 /*
1323 * We purge the parent filesystem's super block as the
1324 * parent filesystem and all of its snapshots have their
1325 * inode's super block set to the parent's filesystem's
1326 * super block. Note, 'z_parent' is self referential
1327 * for non-snapshots.
1328 */
1329 shrink_dcache_sb(zfsvfs->z_parent->z_sb);
1330 }
1331
1332 /*
1333 * Close the zil. NB: Can't close the zil while zfs_inactive
1334 * threads are blocked as zil_close can call zfs_inactive.
1335 */
1336 if (zfsvfs->z_log) {
1337 zil_close(zfsvfs->z_log);
1338 zfsvfs->z_log = NULL;
1339 }
1340
1341 rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_WRITER);
1342
1343 /*
1344 * If we are not unmounting (ie: online recv) and someone already
1345 * unmounted this file system while we were doing the switcheroo,
1346 * or a reopen of z_os failed then just bail out now.
1347 */
1348 if (!unmounting && (zfsvfs->z_unmounted || zfsvfs->z_os == NULL)) {
1349 rw_exit(&zfsvfs->z_teardown_inactive_lock);
1350 ZFS_TEARDOWN_EXIT(zfsvfs, FTAG);
1351 return (SET_ERROR(EIO));
1352 }
1353
1354 /*
1355 * At this point there are no VFS ops active, and any new VFS ops
1356 * will fail with EIO since we have z_teardown_lock for writer (only
1357 * relevant for forced unmount).
1358 *
1359 * Release all holds on dbufs. We also grab an extra reference to all
1360 * the remaining inodes so that the kernel does not attempt to free
1361 * any inodes of a suspended fs. This can cause deadlocks since the
1362 * zfs_resume_fs() process may involve starting threads, which might
1363 * attempt to free unreferenced inodes to free up memory for the new
1364 * thread.
1365 */
1366 if (!unmounting) {
1367 mutex_enter(&zfsvfs->z_znodes_lock);
1368 for (zp = list_head(&zfsvfs->z_all_znodes); zp != NULL;
1369 zp = list_next(&zfsvfs->z_all_znodes, zp)) {
1370 if (zp->z_sa_hdl)
1371 zfs_znode_dmu_fini(zp);
1372 if (igrab(ZTOI(zp)) != NULL)
1373 zp->z_suspended = B_TRUE;
1374
1375 }
1376 mutex_exit(&zfsvfs->z_znodes_lock);
1377 }
1378
1379 /*
1380 * If we are unmounting, set the unmounted flag and let new VFS ops
1381 * unblock. zfs_inactive will have the unmounted behavior, and all
1382 * other VFS ops will fail with EIO.
1383 */
1384 if (unmounting) {
1385 zfsvfs->z_unmounted = B_TRUE;
1386 rw_exit(&zfsvfs->z_teardown_inactive_lock);
1387 ZFS_TEARDOWN_EXIT(zfsvfs, FTAG);
1388 }
1389
1390 /*
1391 * z_os will be NULL if there was an error in attempting to reopen
1392 * zfsvfs, so just return as the properties had already been
1393 *
1394 * unregistered and cached data had been evicted before.
1395 */
1396 if (zfsvfs->z_os == NULL)
1397 return (0);
1398
1399 /*
1400 * Unregister properties.
1401 */
1402 zfs_unregister_callbacks(zfsvfs);
1403
1404 /*
1405 * Evict cached data. We must write out any dirty data before
1406 * disowning the dataset.
1407 */
1408 objset_t *os = zfsvfs->z_os;
1409 boolean_t os_dirty = B_FALSE;
1410 for (int t = 0; t < TXG_SIZE; t++) {
1411 if (dmu_objset_is_dirty(os, t)) {
1412 os_dirty = B_TRUE;
1413 break;
1414 }
1415 }
1416 if (!zfs_is_readonly(zfsvfs) && os_dirty) {
1417 txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0);
1418 }
1419 dmu_objset_evict_dbufs(zfsvfs->z_os);
1420 dsl_dir_t *dd = os->os_dsl_dataset->ds_dir;
1421 dsl_dir_cancel_waiters(dd);
1422
1423 return (0);
1424 }
1425
1426 static atomic_long_t zfs_bdi_seq = ATOMIC_LONG_INIT(0);
1427
1428 int
zfs_domount(struct super_block * sb,zfs_mnt_t * zm,int silent)1429 zfs_domount(struct super_block *sb, zfs_mnt_t *zm, int silent)
1430 {
1431 const char *osname = zm->mnt_osname;
1432 struct inode *root_inode = NULL;
1433 uint64_t recordsize;
1434 int error = 0;
1435 zfsvfs_t *zfsvfs = NULL;
1436 vfs_t *vfs = NULL;
1437 int canwrite;
1438 int dataset_visible_zone;
1439
1440 ASSERT(zm);
1441 ASSERT(osname);
1442
1443 dataset_visible_zone = zone_dataset_visible(osname, &canwrite);
1444
1445 /*
1446 * Refuse to mount a filesystem if we are in a namespace and the
1447 * dataset is not visible or writable in that namespace.
1448 */
1449 if (!INGLOBALZONE(curproc) &&
1450 (!dataset_visible_zone || !canwrite)) {
1451 return (SET_ERROR(EPERM));
1452 }
1453
1454 error = zfsvfs_parse_options(zm->mnt_data, &vfs);
1455 if (error)
1456 return (error);
1457
1458 /*
1459 * If a non-writable filesystem is being mounted without the
1460 * read-only flag, pretend it was set, as done for snapshots.
1461 */
1462 if (!canwrite)
1463 vfs->vfs_readonly = B_TRUE;
1464
1465 error = zfsvfs_create(osname, vfs->vfs_readonly, &zfsvfs);
1466 if (error) {
1467 zfsvfs_vfs_free(vfs);
1468 goto out;
1469 }
1470
1471 if ((error = dsl_prop_get_integer(osname, "recordsize",
1472 &recordsize, NULL))) {
1473 zfsvfs_vfs_free(vfs);
1474 goto out;
1475 }
1476
1477 vfs->vfs_data = zfsvfs;
1478 zfsvfs->z_vfs = vfs;
1479 zfsvfs->z_sb = sb;
1480 sb->s_fs_info = zfsvfs;
1481 sb->s_magic = ZFS_SUPER_MAGIC;
1482 sb->s_maxbytes = MAX_LFS_FILESIZE;
1483 sb->s_time_gran = 1;
1484 sb->s_blocksize = recordsize;
1485 sb->s_blocksize_bits = ilog2(recordsize);
1486
1487 error = -super_setup_bdi_name(sb, "%.28s-%ld", "zfs",
1488 atomic_long_inc_return(&zfs_bdi_seq));
1489 if (error)
1490 goto out;
1491
1492 sb->s_bdi->ra_pages = 0;
1493
1494 /* Set callback operations for the file system. */
1495 sb->s_op = &zpl_super_operations;
1496 sb->s_xattr = zpl_xattr_handlers;
1497 sb->s_export_op = &zpl_export_operations;
1498
1499 /* Set features for file system. */
1500 zfs_set_fuid_feature(zfsvfs);
1501
1502 if (dmu_objset_is_snapshot(zfsvfs->z_os)) {
1503 uint64_t pval;
1504
1505 atime_changed_cb(zfsvfs, B_FALSE);
1506 readonly_changed_cb(zfsvfs, B_TRUE);
1507 if ((error = dsl_prop_get_integer(osname,
1508 "xattr", &pval, NULL)))
1509 goto out;
1510 xattr_changed_cb(zfsvfs, pval);
1511 if ((error = dsl_prop_get_integer(osname,
1512 "acltype", &pval, NULL)))
1513 goto out;
1514 acltype_changed_cb(zfsvfs, pval);
1515 zfsvfs->z_issnap = B_TRUE;
1516 zfsvfs->z_os->os_sync = ZFS_SYNC_DISABLED;
1517 zfsvfs->z_snap_defer_time = jiffies;
1518
1519 mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
1520 dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
1521 mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
1522 } else {
1523 if ((error = zfsvfs_setup(zfsvfs, B_TRUE)))
1524 goto out;
1525 }
1526
1527 /* Allocate a root inode for the filesystem. */
1528 error = zfs_root(zfsvfs, &root_inode);
1529 if (error) {
1530 (void) zfs_umount(sb);
1531 zfsvfs = NULL; /* avoid double-free; first in zfs_umount */
1532 goto out;
1533 }
1534
1535 /* Allocate a root dentry for the filesystem */
1536 sb->s_root = d_make_root(root_inode);
1537 if (sb->s_root == NULL) {
1538 (void) zfs_umount(sb);
1539 zfsvfs = NULL; /* avoid double-free; first in zfs_umount */
1540 error = SET_ERROR(ENOMEM);
1541 goto out;
1542 }
1543
1544 if (!zfsvfs->z_issnap)
1545 zfsctl_create(zfsvfs);
1546
1547 zfsvfs->z_arc_prune = arc_add_prune_callback(zpl_prune_sb, sb);
1548 out:
1549 if (error) {
1550 if (zfsvfs != NULL) {
1551 dmu_objset_disown(zfsvfs->z_os, B_TRUE, zfsvfs);
1552 zfsvfs_free(zfsvfs);
1553 }
1554 /*
1555 * make sure we don't have dangling sb->s_fs_info which
1556 * zfs_preumount will use.
1557 */
1558 sb->s_fs_info = NULL;
1559 }
1560
1561 return (error);
1562 }
1563
1564 /*
1565 * Called when an unmount is requested and certain sanity checks have
1566 * already passed. At this point no dentries or inodes have been reclaimed
1567 * from their respective caches. We drop the extra reference on the .zfs
1568 * control directory to allow everything to be reclaimed. All snapshots
1569 * must already have been unmounted to reach this point.
1570 */
1571 void
zfs_preumount(struct super_block * sb)1572 zfs_preumount(struct super_block *sb)
1573 {
1574 zfsvfs_t *zfsvfs = sb->s_fs_info;
1575
1576 /* zfsvfs is NULL when zfs_domount fails during mount */
1577 if (zfsvfs) {
1578 zfs_unlinked_drain_stop_wait(zfsvfs);
1579 zfsctl_destroy(sb->s_fs_info);
1580 /*
1581 * Wait for zrele_async before entering evict_inodes in
1582 * generic_shutdown_super. The reason we must finish before
1583 * evict_inodes is when lazytime is on, or when zfs_purgedir
1584 * calls zfs_zget, zrele would bump i_count from 0 to 1. This
1585 * would race with the i_count check in evict_inodes. This means
1586 * it could destroy the inode while we are still using it.
1587 *
1588 * We wait for two passes. xattr directories in the first pass
1589 * may add xattr entries in zfs_purgedir, so in the second pass
1590 * we wait for them. We don't use taskq_wait here because it is
1591 * a pool wide taskq. Other mounted filesystems can constantly
1592 * do zrele_async and there's no guarantee when taskq will be
1593 * empty.
1594 */
1595 taskq_wait_outstanding(dsl_pool_zrele_taskq(
1596 dmu_objset_pool(zfsvfs->z_os)), 0);
1597 taskq_wait_outstanding(dsl_pool_zrele_taskq(
1598 dmu_objset_pool(zfsvfs->z_os)), 0);
1599 }
1600 }
1601
1602 /*
1603 * Called once all other unmount released tear down has occurred.
1604 * It is our responsibility to release any remaining infrastructure.
1605 */
1606 int
zfs_umount(struct super_block * sb)1607 zfs_umount(struct super_block *sb)
1608 {
1609 zfsvfs_t *zfsvfs = sb->s_fs_info;
1610 objset_t *os;
1611
1612 if (zfsvfs->z_arc_prune != NULL)
1613 arc_remove_prune_callback(zfsvfs->z_arc_prune);
1614 VERIFY(zfsvfs_teardown(zfsvfs, B_TRUE) == 0);
1615 os = zfsvfs->z_os;
1616
1617 /*
1618 * z_os will be NULL if there was an error in
1619 * attempting to reopen zfsvfs.
1620 */
1621 if (os != NULL) {
1622 /*
1623 * Unset the objset user_ptr.
1624 */
1625 mutex_enter(&os->os_user_ptr_lock);
1626 dmu_objset_set_user(os, NULL);
1627 mutex_exit(&os->os_user_ptr_lock);
1628
1629 /*
1630 * Finally release the objset
1631 */
1632 dmu_objset_disown(os, B_TRUE, zfsvfs);
1633 }
1634
1635 zfsvfs_free(zfsvfs);
1636 sb->s_fs_info = NULL;
1637 return (0);
1638 }
1639
1640 int
zfs_remount(struct super_block * sb,int * flags,zfs_mnt_t * zm)1641 zfs_remount(struct super_block *sb, int *flags, zfs_mnt_t *zm)
1642 {
1643 zfsvfs_t *zfsvfs = sb->s_fs_info;
1644 vfs_t *vfsp;
1645 boolean_t issnap = dmu_objset_is_snapshot(zfsvfs->z_os);
1646 int error;
1647
1648 if ((issnap || !spa_writeable(dmu_objset_spa(zfsvfs->z_os))) &&
1649 !(*flags & SB_RDONLY)) {
1650 *flags |= SB_RDONLY;
1651 return (EROFS);
1652 }
1653
1654 error = zfsvfs_parse_options(zm->mnt_data, &vfsp);
1655 if (error)
1656 return (error);
1657
1658 if (!zfs_is_readonly(zfsvfs) && (*flags & SB_RDONLY))
1659 txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0);
1660
1661 zfs_unregister_callbacks(zfsvfs);
1662 zfsvfs_vfs_free(zfsvfs->z_vfs);
1663
1664 vfsp->vfs_data = zfsvfs;
1665 zfsvfs->z_vfs = vfsp;
1666 if (!issnap)
1667 (void) zfs_register_callbacks(vfsp);
1668
1669 return (error);
1670 }
1671
1672 int
zfs_vget(struct super_block * sb,struct inode ** ipp,fid_t * fidp)1673 zfs_vget(struct super_block *sb, struct inode **ipp, fid_t *fidp)
1674 {
1675 zfsvfs_t *zfsvfs = sb->s_fs_info;
1676 znode_t *zp;
1677 uint64_t object = 0;
1678 uint64_t fid_gen = 0;
1679 uint64_t gen_mask;
1680 uint64_t zp_gen;
1681 int i, err;
1682
1683 *ipp = NULL;
1684
1685 if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) {
1686 zfid_short_t *zfid = (zfid_short_t *)fidp;
1687
1688 for (i = 0; i < sizeof (zfid->zf_object); i++)
1689 object |= ((uint64_t)zfid->zf_object[i]) << (8 * i);
1690
1691 for (i = 0; i < sizeof (zfid->zf_gen); i++)
1692 fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i);
1693 } else {
1694 return (SET_ERROR(EINVAL));
1695 }
1696
1697 /* LONG_FID_LEN means snapdirs */
1698 if (fidp->fid_len == LONG_FID_LEN) {
1699 zfid_long_t *zlfid = (zfid_long_t *)fidp;
1700 uint64_t objsetid = 0;
1701 uint64_t setgen = 0;
1702
1703 for (i = 0; i < sizeof (zlfid->zf_setid); i++)
1704 objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i);
1705
1706 for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
1707 setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i);
1708
1709 if (objsetid != ZFSCTL_INO_SNAPDIRS - object) {
1710 dprintf("snapdir fid: objsetid (%llu) != "
1711 "ZFSCTL_INO_SNAPDIRS (%llu) - object (%llu)\n",
1712 objsetid, ZFSCTL_INO_SNAPDIRS, object);
1713
1714 return (SET_ERROR(EINVAL));
1715 }
1716
1717 if (fid_gen > 1 || setgen != 0) {
1718 dprintf("snapdir fid: fid_gen (%llu) and setgen "
1719 "(%llu)\n", fid_gen, setgen);
1720 return (SET_ERROR(EINVAL));
1721 }
1722
1723 return (zfsctl_snapdir_vget(sb, objsetid, fid_gen, ipp));
1724 }
1725
1726 if ((err = zfs_enter(zfsvfs, FTAG)) != 0)
1727 return (err);
1728 /* A zero fid_gen means we are in the .zfs control directories */
1729 if (fid_gen == 0 &&
1730 (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) {
1731 if (zfsvfs->z_show_ctldir == ZFS_SNAPDIR_DISABLED) {
1732 zfs_exit(zfsvfs, FTAG);
1733 return (SET_ERROR(ENOENT));
1734 }
1735
1736 *ipp = zfsvfs->z_ctldir;
1737 ASSERT(*ipp != NULL);
1738
1739 if (object == ZFSCTL_INO_SNAPDIR) {
1740 VERIFY(zfsctl_root_lookup(*ipp, "snapshot", ipp,
1741 0, kcred, NULL, NULL) == 0);
1742 } else {
1743 /*
1744 * Must have an existing ref, so igrab()
1745 * cannot return NULL
1746 */
1747 VERIFY3P(igrab(*ipp), !=, NULL);
1748 }
1749 zfs_exit(zfsvfs, FTAG);
1750 return (0);
1751 }
1752
1753 gen_mask = -1ULL >> (64 - 8 * i);
1754
1755 dprintf("getting %llu [%llu mask %llx]\n", object, fid_gen, gen_mask);
1756 if ((err = zfs_zget(zfsvfs, object, &zp))) {
1757 zfs_exit(zfsvfs, FTAG);
1758 return (err);
1759 }
1760
1761 /* Don't export xattr stuff */
1762 if (zp->z_pflags & ZFS_XATTR) {
1763 zrele(zp);
1764 zfs_exit(zfsvfs, FTAG);
1765 return (SET_ERROR(ENOENT));
1766 }
1767
1768 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), &zp_gen,
1769 sizeof (uint64_t));
1770 zp_gen = zp_gen & gen_mask;
1771 if (zp_gen == 0)
1772 zp_gen = 1;
1773 if ((fid_gen == 0) && (zfsvfs->z_root == object))
1774 fid_gen = zp_gen;
1775 if (zp->z_unlinked || zp_gen != fid_gen) {
1776 dprintf("znode gen (%llu) != fid gen (%llu)\n", zp_gen,
1777 fid_gen);
1778 zrele(zp);
1779 zfs_exit(zfsvfs, FTAG);
1780 return (SET_ERROR(ENOENT));
1781 }
1782
1783 *ipp = ZTOI(zp);
1784 if (*ipp)
1785 zfs_znode_update_vfs(ITOZ(*ipp));
1786
1787 zfs_exit(zfsvfs, FTAG);
1788 return (0);
1789 }
1790
1791 /*
1792 * Block out VFS ops and close zfsvfs_t
1793 *
1794 * Note, if successful, then we return with the 'z_teardown_lock' and
1795 * 'z_teardown_inactive_lock' write held. We leave ownership of the underlying
1796 * dataset and objset intact so that they can be atomically handed off during
1797 * a subsequent rollback or recv operation and the resume thereafter.
1798 */
1799 int
zfs_suspend_fs(zfsvfs_t * zfsvfs)1800 zfs_suspend_fs(zfsvfs_t *zfsvfs)
1801 {
1802 int error;
1803
1804 if ((error = zfsvfs_teardown(zfsvfs, B_FALSE)) != 0)
1805 return (error);
1806
1807 return (0);
1808 }
1809
1810 /*
1811 * Rebuild SA and release VOPs. Note that ownership of the underlying dataset
1812 * is an invariant across any of the operations that can be performed while the
1813 * filesystem was suspended. Whether it succeeded or failed, the preconditions
1814 * are the same: the relevant objset and associated dataset are owned by
1815 * zfsvfs, held, and long held on entry.
1816 */
1817 int
zfs_resume_fs(zfsvfs_t * zfsvfs,dsl_dataset_t * ds)1818 zfs_resume_fs(zfsvfs_t *zfsvfs, dsl_dataset_t *ds)
1819 {
1820 int err, err2;
1821 znode_t *zp;
1822
1823 ASSERT(ZFS_TEARDOWN_WRITE_HELD(zfsvfs));
1824 ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock));
1825
1826 /*
1827 * We already own this, so just update the objset_t, as the one we
1828 * had before may have been evicted.
1829 */
1830 objset_t *os;
1831 VERIFY3P(ds->ds_owner, ==, zfsvfs);
1832 VERIFY(dsl_dataset_long_held(ds));
1833 dsl_pool_t *dp = spa_get_dsl(dsl_dataset_get_spa(ds));
1834 dsl_pool_config_enter(dp, FTAG);
1835 VERIFY0(dmu_objset_from_ds(ds, &os));
1836 dsl_pool_config_exit(dp, FTAG);
1837
1838 err = zfsvfs_init(zfsvfs, os);
1839 if (err != 0)
1840 goto bail;
1841
1842 ds->ds_dir->dd_activity_cancelled = B_FALSE;
1843 VERIFY(zfsvfs_setup(zfsvfs, B_FALSE) == 0);
1844
1845 zfs_set_fuid_feature(zfsvfs);
1846 zfsvfs->z_rollback_time = jiffies;
1847
1848 /*
1849 * Attempt to re-establish all the active inodes with their
1850 * dbufs. If a zfs_rezget() fails, then we unhash the inode
1851 * and mark it stale. This prevents a collision if a new
1852 * inode/object is created which must use the same inode
1853 * number. The stale inode will be be released when the
1854 * VFS prunes the dentry holding the remaining references
1855 * on the stale inode.
1856 */
1857 mutex_enter(&zfsvfs->z_znodes_lock);
1858 for (zp = list_head(&zfsvfs->z_all_znodes); zp;
1859 zp = list_next(&zfsvfs->z_all_znodes, zp)) {
1860 err2 = zfs_rezget(zp);
1861 if (err2) {
1862 zpl_d_drop_aliases(ZTOI(zp));
1863 remove_inode_hash(ZTOI(zp));
1864 }
1865
1866 /* see comment in zfs_suspend_fs() */
1867 if (zp->z_suspended) {
1868 zfs_zrele_async(zp);
1869 zp->z_suspended = B_FALSE;
1870 }
1871 }
1872 mutex_exit(&zfsvfs->z_znodes_lock);
1873
1874 if (!zfs_is_readonly(zfsvfs) && !zfsvfs->z_unmounted) {
1875 /*
1876 * zfs_suspend_fs() could have interrupted freeing
1877 * of dnodes. We need to restart this freeing so
1878 * that we don't "leak" the space.
1879 */
1880 zfs_unlinked_drain(zfsvfs);
1881 }
1882
1883 /*
1884 * Most of the time zfs_suspend_fs is used for changing the contents
1885 * of the underlying dataset. ZFS rollback and receive operations
1886 * might create files for which negative dentries are present in
1887 * the cache. Since walking the dcache would require a lot of GPL-only
1888 * code duplication, it's much easier on these rather rare occasions
1889 * just to flush the whole dcache for the given dataset/filesystem.
1890 */
1891 shrink_dcache_sb(zfsvfs->z_sb);
1892
1893 bail:
1894 if (err != 0)
1895 zfsvfs->z_unmounted = B_TRUE;
1896
1897 /* release the VFS ops */
1898 rw_exit(&zfsvfs->z_teardown_inactive_lock);
1899 ZFS_TEARDOWN_EXIT(zfsvfs, FTAG);
1900
1901 if (err != 0) {
1902 /*
1903 * Since we couldn't setup the sa framework, try to force
1904 * unmount this file system.
1905 */
1906 if (zfsvfs->z_os)
1907 (void) zfs_umount(zfsvfs->z_sb);
1908 }
1909 return (err);
1910 }
1911
1912 /*
1913 * Release VOPs and unmount a suspended filesystem.
1914 */
1915 int
zfs_end_fs(zfsvfs_t * zfsvfs,dsl_dataset_t * ds)1916 zfs_end_fs(zfsvfs_t *zfsvfs, dsl_dataset_t *ds)
1917 {
1918 ASSERT(ZFS_TEARDOWN_WRITE_HELD(zfsvfs));
1919 ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock));
1920
1921 /*
1922 * We already own this, so just hold and rele it to update the
1923 * objset_t, as the one we had before may have been evicted.
1924 */
1925 objset_t *os;
1926 VERIFY3P(ds->ds_owner, ==, zfsvfs);
1927 VERIFY(dsl_dataset_long_held(ds));
1928 dsl_pool_t *dp = spa_get_dsl(dsl_dataset_get_spa(ds));
1929 dsl_pool_config_enter(dp, FTAG);
1930 VERIFY0(dmu_objset_from_ds(ds, &os));
1931 dsl_pool_config_exit(dp, FTAG);
1932 zfsvfs->z_os = os;
1933
1934 /* release the VOPs */
1935 rw_exit(&zfsvfs->z_teardown_inactive_lock);
1936 ZFS_TEARDOWN_EXIT(zfsvfs, FTAG);
1937
1938 /*
1939 * Try to force unmount this file system.
1940 */
1941 (void) zfs_umount(zfsvfs->z_sb);
1942 zfsvfs->z_unmounted = B_TRUE;
1943 return (0);
1944 }
1945
1946 /*
1947 * Automounted snapshots rely on periodic revalidation
1948 * to defer snapshots from being automatically unmounted.
1949 */
1950
1951 inline void
zfs_exit_fs(zfsvfs_t * zfsvfs)1952 zfs_exit_fs(zfsvfs_t *zfsvfs)
1953 {
1954 if (!zfsvfs->z_issnap)
1955 return;
1956
1957 if (time_after(jiffies, zfsvfs->z_snap_defer_time +
1958 MAX(zfs_expire_snapshot * HZ / 2, HZ))) {
1959 zfsvfs->z_snap_defer_time = jiffies;
1960 zfsctl_snapshot_unmount_delay(zfsvfs->z_os->os_spa,
1961 dmu_objset_id(zfsvfs->z_os),
1962 zfs_expire_snapshot);
1963 }
1964 }
1965
1966 int
zfs_set_version(zfsvfs_t * zfsvfs,uint64_t newvers)1967 zfs_set_version(zfsvfs_t *zfsvfs, uint64_t newvers)
1968 {
1969 int error;
1970 objset_t *os = zfsvfs->z_os;
1971 dmu_tx_t *tx;
1972
1973 if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION)
1974 return (SET_ERROR(EINVAL));
1975
1976 if (newvers < zfsvfs->z_version)
1977 return (SET_ERROR(EINVAL));
1978
1979 if (zfs_spa_version_map(newvers) >
1980 spa_version(dmu_objset_spa(zfsvfs->z_os)))
1981 return (SET_ERROR(ENOTSUP));
1982
1983 tx = dmu_tx_create(os);
1984 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_FALSE, ZPL_VERSION_STR);
1985 if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) {
1986 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
1987 ZFS_SA_ATTRS);
1988 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
1989 }
1990 error = dmu_tx_assign(tx, DMU_TX_WAIT);
1991 if (error) {
1992 dmu_tx_abort(tx);
1993 return (error);
1994 }
1995
1996 error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR,
1997 8, 1, &newvers, tx);
1998
1999 if (error) {
2000 dmu_tx_commit(tx);
2001 return (error);
2002 }
2003
2004 if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) {
2005 uint64_t sa_obj;
2006
2007 ASSERT3U(spa_version(dmu_objset_spa(zfsvfs->z_os)), >=,
2008 SPA_VERSION_SA);
2009 sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE,
2010 DMU_OT_NONE, 0, tx);
2011
2012 error = zap_add(os, MASTER_NODE_OBJ,
2013 ZFS_SA_ATTRS, 8, 1, &sa_obj, tx);
2014 ASSERT0(error);
2015
2016 VERIFY(0 == sa_set_sa_object(os, sa_obj));
2017 sa_register_update_callback(os, zfs_sa_upgrade);
2018 }
2019
2020 spa_history_log_internal_ds(dmu_objset_ds(os), "upgrade", tx,
2021 "from %llu to %llu", zfsvfs->z_version, newvers);
2022
2023 dmu_tx_commit(tx);
2024
2025 zfsvfs->z_version = newvers;
2026 os->os_version = newvers;
2027
2028 zfs_set_fuid_feature(zfsvfs);
2029
2030 return (0);
2031 }
2032
2033 int
zfs_set_default_quota(zfsvfs_t * zfsvfs,zfs_prop_t prop,uint64_t quota)2034 zfs_set_default_quota(zfsvfs_t *zfsvfs, zfs_prop_t prop, uint64_t quota)
2035 {
2036 int error;
2037 objset_t *os = zfsvfs->z_os;
2038 const char *propstr = zfs_prop_to_name(prop);
2039 dmu_tx_t *tx;
2040
2041 tx = dmu_tx_create(os);
2042 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_FALSE, propstr);
2043 error = dmu_tx_assign(tx, DMU_TX_WAIT);
2044 if (error) {
2045 dmu_tx_abort(tx);
2046 return (error);
2047 }
2048
2049 if (quota == 0) {
2050 error = zap_remove(os, MASTER_NODE_OBJ, propstr, tx);
2051 if (error == ENOENT)
2052 error = 0;
2053 } else {
2054 error = zap_update(os, MASTER_NODE_OBJ, propstr, 8, 1,
2055 "a, tx);
2056 }
2057
2058 if (error)
2059 goto out;
2060
2061 switch (prop) {
2062 case ZFS_PROP_DEFAULTUSERQUOTA:
2063 zfsvfs->z_defaultuserquota = quota;
2064 break;
2065 case ZFS_PROP_DEFAULTGROUPQUOTA:
2066 zfsvfs->z_defaultgroupquota = quota;
2067 break;
2068 case ZFS_PROP_DEFAULTPROJECTQUOTA:
2069 zfsvfs->z_defaultprojectquota = quota;
2070 break;
2071 case ZFS_PROP_DEFAULTUSEROBJQUOTA:
2072 zfsvfs->z_defaultuserobjquota = quota;
2073 break;
2074 case ZFS_PROP_DEFAULTGROUPOBJQUOTA:
2075 zfsvfs->z_defaultgroupobjquota = quota;
2076 break;
2077 case ZFS_PROP_DEFAULTPROJECTOBJQUOTA:
2078 zfsvfs->z_defaultprojectobjquota = quota;
2079 break;
2080 default:
2081 break;
2082 }
2083
2084 out:
2085 dmu_tx_commit(tx);
2086 return (error);
2087 }
2088
2089 /*
2090 * Return true if the corresponding vfs's unmounted flag is set.
2091 * Otherwise return false.
2092 * If this function returns true we know VFS unmount has been initiated.
2093 */
2094 boolean_t
zfs_get_vfs_flag_unmounted(objset_t * os)2095 zfs_get_vfs_flag_unmounted(objset_t *os)
2096 {
2097 zfsvfs_t *zfvp;
2098 boolean_t unmounted = B_FALSE;
2099
2100 ASSERT(dmu_objset_type(os) == DMU_OST_ZFS);
2101
2102 mutex_enter(&os->os_user_ptr_lock);
2103 zfvp = dmu_objset_get_user(os);
2104 if (zfvp != NULL && zfvp->z_unmounted)
2105 unmounted = B_TRUE;
2106 mutex_exit(&os->os_user_ptr_lock);
2107
2108 return (unmounted);
2109 }
2110
2111 void
zfsvfs_update_fromname(const char * oldname,const char * newname)2112 zfsvfs_update_fromname(const char *oldname, const char *newname)
2113 {
2114 /*
2115 * We don't need to do anything here, the devname is always current by
2116 * virtue of zfsvfs->z_sb->s_op->show_devname.
2117 */
2118 (void) oldname, (void) newname;
2119 }
2120
2121 void
zfs_init(void)2122 zfs_init(void)
2123 {
2124 zfsctl_init();
2125 zfs_znode_init();
2126 dmu_objset_register_type(DMU_OST_ZFS, zpl_get_file_info);
2127 register_filesystem(&zpl_fs_type);
2128 }
2129
2130 void
zfs_fini(void)2131 zfs_fini(void)
2132 {
2133 /*
2134 * we don't use outstanding because zpl_posix_acl_free might add more.
2135 */
2136 taskq_wait(system_delay_taskq);
2137 taskq_wait(system_taskq);
2138 unregister_filesystem(&zpl_fs_type);
2139 zfs_znode_fini();
2140 zfsctl_fini();
2141 }
2142
2143 #if defined(_KERNEL)
2144 EXPORT_SYMBOL(zfs_suspend_fs);
2145 EXPORT_SYMBOL(zfs_resume_fs);
2146 EXPORT_SYMBOL(zfs_set_version);
2147 EXPORT_SYMBOL(zfsvfs_create);
2148 EXPORT_SYMBOL(zfsvfs_free);
2149 EXPORT_SYMBOL(zfs_is_readonly);
2150 EXPORT_SYMBOL(zfs_domount);
2151 EXPORT_SYMBOL(zfs_preumount);
2152 EXPORT_SYMBOL(zfs_umount);
2153 EXPORT_SYMBOL(zfs_remount);
2154 EXPORT_SYMBOL(zfs_statvfs);
2155 EXPORT_SYMBOL(zfs_vget);
2156 EXPORT_SYMBOL(zfs_prune);
2157 EXPORT_SYMBOL(zfs_set_default_quota);
2158 #endif
2159