1 /*-
2 * SPDX-License-Identifier: BSD-4-Clause
3 *
4 * Copyright (c) 2017 Dell EMC
5 * Copyright (c) 2009 Stanislav Sedov <stas@FreeBSD.org>
6 * Copyright (c) 1988, 1993
7 * The Regents of the University of California. All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed by the University of
20 * California, Berkeley and its contributors.
21 * 4. Neither the name of the University nor the names of its contributors
22 * may be used to endorse or promote products derived from this software
23 * without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 */
37
38 #include <sys/param.h>
39 #include <sys/elf.h>
40 #include <sys/time.h>
41 #include <sys/resourcevar.h>
42 #define _WANT_UCRED
43 #include <sys/ucred.h>
44 #undef _WANT_UCRED
45 #include <sys/proc.h>
46 #include <sys/user.h>
47 #include <sys/stat.h>
48 #include <sys/vnode.h>
49 #include <sys/socket.h>
50 #define _WANT_SOCKET
51 #include <sys/socketvar.h>
52 #include <sys/domain.h>
53 #define _WANT_PROTOSW
54 #include <sys/protosw.h>
55 #include <sys/un.h>
56 #define _WANT_UNPCB
57 #include <sys/unpcb.h>
58 #include <sys/sysctl.h>
59 #include <sys/tty.h>
60 #include <sys/filedesc.h>
61 #include <sys/queue.h>
62 #define _WANT_FILE
63 #include <sys/file.h>
64 #include <sys/conf.h>
65 #include <sys/ksem.h>
66 #include <sys/mman.h>
67 #include <sys/capsicum.h>
68 #include <sys/ptrace.h>
69 #define _WANT_MOUNT
70 #include <sys/mount.h>
71 #include <sys/filedesc.h>
72 #include <sys/pipe.h>
73 #include <fs/devfs/devfs.h>
74 #include <fs/devfs/devfs_int.h>
75 #include <nfs/nfsproto.h>
76 #include <nfsclient/nfs.h>
77 #include <nfsclient/nfsnode.h>
78
79 #include <vm/vm.h>
80 #include <vm/vm_map.h>
81 #include <vm/vm_object.h>
82
83 #include <net/route.h>
84 #include <netinet/in.h>
85 #include <netinet/in_systm.h>
86 #include <netinet/ip.h>
87
88 #include <assert.h>
89 #include <ctype.h>
90 #include <err.h>
91 #include <fcntl.h>
92 #include <kvm.h>
93 #include <libutil.h>
94 #include <limits.h>
95 #include <paths.h>
96 #include <pwd.h>
97 #include <stdio.h>
98 #include <stdlib.h>
99 #include <stddef.h>
100 #include <string.h>
101 #include <unistd.h>
102 #include <netdb.h>
103
104 #include <libprocstat.h>
105 #include "libprocstat_internal.h"
106 #include "common_kvm.h"
107 #include "core.h"
108
109 int statfs(const char *, struct statfs *); /* XXX */
110
111 #define PROCSTAT_KVM 1
112 #define PROCSTAT_SYSCTL 2
113 #define PROCSTAT_CORE 3
114
115 static char **getargv(struct procstat *procstat, struct kinfo_proc *kp,
116 size_t nchr, int env);
117 static char *getmnton(kvm_t *kd, struct mount *m);
118 static struct kinfo_vmentry * kinfo_getvmmap_core(struct procstat_core *core,
119 int *cntp);
120 static Elf_Auxinfo *procstat_getauxv_core(struct procstat_core *core,
121 unsigned int *cntp);
122 static Elf_Auxinfo *procstat_getauxv_sysctl(pid_t pid, unsigned int *cntp);
123 static struct filestat_list *procstat_getfiles_kvm(
124 struct procstat *procstat, struct kinfo_proc *kp, int mmapped);
125 static struct filestat_list *procstat_getfiles_sysctl(
126 struct procstat *procstat, struct kinfo_proc *kp, int mmapped);
127 static int procstat_get_pipe_info_sysctl(struct filestat *fst,
128 struct pipestat *pipe, char *errbuf);
129 static int procstat_get_pipe_info_kvm(kvm_t *kd, struct filestat *fst,
130 struct pipestat *pipe, char *errbuf);
131 static int procstat_get_pts_info_sysctl(struct filestat *fst,
132 struct ptsstat *pts, char *errbuf);
133 static int procstat_get_pts_info_kvm(kvm_t *kd, struct filestat *fst,
134 struct ptsstat *pts, char *errbuf);
135 static int procstat_get_sem_info_sysctl(struct filestat *fst,
136 struct semstat *sem, char *errbuf);
137 static int procstat_get_sem_info_kvm(kvm_t *kd, struct filestat *fst,
138 struct semstat *sem, char *errbuf);
139 static int procstat_get_shm_info_sysctl(struct filestat *fst,
140 struct shmstat *shm, char *errbuf);
141 static int procstat_get_shm_info_kvm(kvm_t *kd, struct filestat *fst,
142 struct shmstat *shm, char *errbuf);
143 static int procstat_get_socket_info_sysctl(struct filestat *fst,
144 struct sockstat *sock, char *errbuf);
145 static int procstat_get_socket_info_kvm(kvm_t *kd, struct filestat *fst,
146 struct sockstat *sock, char *errbuf);
147 static int to_filestat_flags(int flags);
148 static int procstat_get_vnode_info_kvm(kvm_t *kd, struct filestat *fst,
149 struct vnstat *vn, char *errbuf);
150 static int procstat_get_vnode_info_sysctl(struct filestat *fst,
151 struct vnstat *vn, char *errbuf);
152 static gid_t *procstat_getgroups_core(struct procstat_core *core,
153 unsigned int *count);
154 static gid_t * procstat_getgroups_kvm(kvm_t *kd, struct kinfo_proc *kp,
155 unsigned int *count);
156 static gid_t *procstat_getgroups_sysctl(pid_t pid, unsigned int *count);
157 static struct kinfo_kstack *procstat_getkstack_sysctl(pid_t pid,
158 int *cntp);
159 static int procstat_getosrel_core(struct procstat_core *core,
160 int *osrelp);
161 static int procstat_getosrel_kvm(kvm_t *kd, struct kinfo_proc *kp,
162 int *osrelp);
163 static int procstat_getosrel_sysctl(pid_t pid, int *osrelp);
164 static int procstat_getpathname_core(struct procstat_core *core,
165 char *pathname, size_t maxlen);
166 static int procstat_getpathname_sysctl(pid_t pid, char *pathname,
167 size_t maxlen);
168 static int procstat_getrlimit_core(struct procstat_core *core, int which,
169 struct rlimit* rlimit);
170 static int procstat_getrlimit_kvm(kvm_t *kd, struct kinfo_proc *kp,
171 int which, struct rlimit* rlimit);
172 static int procstat_getrlimit_sysctl(pid_t pid, int which,
173 struct rlimit* rlimit);
174 static int procstat_getumask_core(struct procstat_core *core,
175 unsigned short *maskp);
176 static int procstat_getumask_kvm(kvm_t *kd, struct kinfo_proc *kp,
177 unsigned short *maskp);
178 static int procstat_getumask_sysctl(pid_t pid, unsigned short *maskp);
179 static int vntype2psfsttype(int type);
180
181 void
procstat_close(struct procstat * procstat)182 procstat_close(struct procstat *procstat)
183 {
184
185 assert(procstat);
186 if (procstat->type == PROCSTAT_KVM)
187 kvm_close(procstat->kd);
188 else if (procstat->type == PROCSTAT_CORE)
189 procstat_core_close(procstat->core);
190 procstat_freeargv(procstat);
191 procstat_freeenvv(procstat);
192 free(procstat);
193 }
194
195 struct procstat *
procstat_open_sysctl(void)196 procstat_open_sysctl(void)
197 {
198 struct procstat *procstat;
199
200 procstat = calloc(1, sizeof(*procstat));
201 if (procstat == NULL) {
202 warn("malloc()");
203 return (NULL);
204 }
205 procstat->type = PROCSTAT_SYSCTL;
206 return (procstat);
207 }
208
209 struct procstat *
procstat_open_kvm(const char * nlistf,const char * memf)210 procstat_open_kvm(const char *nlistf, const char *memf)
211 {
212 struct procstat *procstat;
213 kvm_t *kd;
214 char buf[_POSIX2_LINE_MAX];
215
216 procstat = calloc(1, sizeof(*procstat));
217 if (procstat == NULL) {
218 warn("malloc()");
219 return (NULL);
220 }
221 kd = kvm_openfiles(nlistf, memf, NULL, O_RDONLY, buf);
222 if (kd == NULL) {
223 warnx("kvm_openfiles(): %s", buf);
224 free(procstat);
225 return (NULL);
226 }
227 procstat->type = PROCSTAT_KVM;
228 procstat->kd = kd;
229 return (procstat);
230 }
231
232 struct procstat *
procstat_open_core(const char * filename)233 procstat_open_core(const char *filename)
234 {
235 struct procstat *procstat;
236 struct procstat_core *core;
237
238 procstat = calloc(1, sizeof(*procstat));
239 if (procstat == NULL) {
240 warn("malloc()");
241 return (NULL);
242 }
243 core = procstat_core_open(filename);
244 if (core == NULL) {
245 free(procstat);
246 return (NULL);
247 }
248 procstat->type = PROCSTAT_CORE;
249 procstat->core = core;
250 return (procstat);
251 }
252
253 struct kinfo_proc *
procstat_getprocs(struct procstat * procstat,int what,int arg,unsigned int * count)254 procstat_getprocs(struct procstat *procstat, int what, int arg,
255 unsigned int *count)
256 {
257 struct kinfo_proc *p0, *p;
258 size_t len, olen;
259 int name[4];
260 int cnt;
261 int error;
262
263 assert(procstat);
264 assert(count);
265 p = NULL;
266 if (procstat->type == PROCSTAT_KVM) {
267 *count = 0;
268 p0 = kvm_getprocs(procstat->kd, what, arg, &cnt);
269 if (p0 == NULL || cnt <= 0)
270 return (NULL);
271 *count = cnt;
272 len = *count * sizeof(*p);
273 p = malloc(len);
274 if (p == NULL) {
275 warnx("malloc(%zu)", len);
276 goto fail;
277 }
278 bcopy(p0, p, len);
279 return (p);
280 } else if (procstat->type == PROCSTAT_SYSCTL) {
281 len = 0;
282 name[0] = CTL_KERN;
283 name[1] = KERN_PROC;
284 name[2] = what;
285 name[3] = arg;
286 error = sysctl(name, nitems(name), NULL, &len, NULL, 0);
287 if (error < 0 && errno != EPERM) {
288 warn("sysctl(kern.proc)");
289 goto fail;
290 }
291 if (len == 0) {
292 warnx("no processes?");
293 goto fail;
294 }
295 do {
296 len += len / 10;
297 p = reallocf(p, len);
298 if (p == NULL) {
299 warnx("reallocf(%zu)", len);
300 goto fail;
301 }
302 olen = len;
303 error = sysctl(name, nitems(name), p, &len, NULL, 0);
304 } while (error < 0 && errno == ENOMEM && olen == len);
305 if (error < 0 && errno != EPERM) {
306 warn("sysctl(kern.proc)");
307 goto fail;
308 }
309 /* Perform simple consistency checks. */
310 if ((len % sizeof(*p)) != 0 || p->ki_structsize != sizeof(*p)) {
311 warnx("kinfo_proc structure size mismatch (len = %zu)", len);
312 goto fail;
313 }
314 *count = len / sizeof(*p);
315 return (p);
316 } else if (procstat->type == PROCSTAT_CORE) {
317 p = procstat_core_get(procstat->core, PSC_TYPE_PROC, NULL,
318 &len);
319 if ((len % sizeof(*p)) != 0 || p->ki_structsize != sizeof(*p)) {
320 warnx("kinfo_proc structure size mismatch");
321 goto fail;
322 }
323 *count = len / sizeof(*p);
324 return (p);
325 } else {
326 warnx("unknown access method: %d", procstat->type);
327 return (NULL);
328 }
329 fail:
330 if (p)
331 free(p);
332 return (NULL);
333 }
334
335 void
procstat_freeprocs(struct procstat * procstat __unused,struct kinfo_proc * p)336 procstat_freeprocs(struct procstat *procstat __unused, struct kinfo_proc *p)
337 {
338
339 if (p != NULL)
340 free(p);
341 p = NULL;
342 }
343
344 struct filestat_list *
procstat_getfiles(struct procstat * procstat,struct kinfo_proc * kp,int mmapped)345 procstat_getfiles(struct procstat *procstat, struct kinfo_proc *kp, int mmapped)
346 {
347
348 switch (procstat->type) {
349 case PROCSTAT_KVM:
350 return (procstat_getfiles_kvm(procstat, kp, mmapped));
351 case PROCSTAT_SYSCTL:
352 case PROCSTAT_CORE:
353 return (procstat_getfiles_sysctl(procstat, kp, mmapped));
354 default:
355 warnx("unknown access method: %d", procstat->type);
356 return (NULL);
357 }
358 }
359
360 void
procstat_freefiles(struct procstat * procstat,struct filestat_list * head)361 procstat_freefiles(struct procstat *procstat, struct filestat_list *head)
362 {
363 struct filestat *fst, *tmp;
364
365 STAILQ_FOREACH_SAFE(fst, head, next, tmp) {
366 if (fst->fs_path != NULL)
367 free(fst->fs_path);
368 free(fst);
369 }
370 free(head);
371 if (procstat->vmentries != NULL) {
372 free(procstat->vmentries);
373 procstat->vmentries = NULL;
374 }
375 if (procstat->files != NULL) {
376 free(procstat->files);
377 procstat->files = NULL;
378 }
379 }
380
381 static struct filestat *
filestat_new_entry(void * typedep,int type,int fd,int fflags,int uflags,int refcount,off_t offset,char * path,cap_rights_t * cap_rightsp)382 filestat_new_entry(void *typedep, int type, int fd, int fflags, int uflags,
383 int refcount, off_t offset, char *path, cap_rights_t *cap_rightsp)
384 {
385 struct filestat *entry;
386
387 entry = calloc(1, sizeof(*entry));
388 if (entry == NULL) {
389 warn("malloc()");
390 return (NULL);
391 }
392 entry->fs_typedep = typedep;
393 entry->fs_fflags = fflags;
394 entry->fs_uflags = uflags;
395 entry->fs_fd = fd;
396 entry->fs_type = type;
397 entry->fs_ref_count = refcount;
398 entry->fs_offset = offset;
399 entry->fs_path = path;
400 if (cap_rightsp != NULL)
401 entry->fs_cap_rights = *cap_rightsp;
402 else
403 cap_rights_init(&entry->fs_cap_rights);
404 return (entry);
405 }
406
407 static struct vnode *
getctty(kvm_t * kd,struct kinfo_proc * kp)408 getctty(kvm_t *kd, struct kinfo_proc *kp)
409 {
410 struct pgrp pgrp;
411 struct proc proc;
412 struct session sess;
413 int error;
414
415 assert(kp);
416 error = kvm_read_all(kd, (unsigned long)kp->ki_paddr, &proc,
417 sizeof(proc));
418 if (error == 0) {
419 warnx("can't read proc struct at %p for pid %d",
420 kp->ki_paddr, kp->ki_pid);
421 return (NULL);
422 }
423 if (proc.p_pgrp == NULL)
424 return (NULL);
425 error = kvm_read_all(kd, (unsigned long)proc.p_pgrp, &pgrp,
426 sizeof(pgrp));
427 if (error == 0) {
428 warnx("can't read pgrp struct at %p for pid %d",
429 proc.p_pgrp, kp->ki_pid);
430 return (NULL);
431 }
432 error = kvm_read_all(kd, (unsigned long)pgrp.pg_session, &sess,
433 sizeof(sess));
434 if (error == 0) {
435 warnx("can't read session struct at %p for pid %d",
436 pgrp.pg_session, kp->ki_pid);
437 return (NULL);
438 }
439 return (sess.s_ttyvp);
440 }
441
442 static int
procstat_vm_map_reader(void * token,vm_map_entry_t addr,vm_map_entry_t dest)443 procstat_vm_map_reader(void *token, vm_map_entry_t addr, vm_map_entry_t dest)
444 {
445 kvm_t *kd;
446
447 kd = (kvm_t *)token;
448 return (kvm_read_all(kd, (unsigned long)addr, dest, sizeof(*dest)));
449 }
450
451 static struct filestat_list *
procstat_getfiles_kvm(struct procstat * procstat,struct kinfo_proc * kp,int mmapped)452 procstat_getfiles_kvm(struct procstat *procstat, struct kinfo_proc *kp, int mmapped)
453 {
454 struct file file;
455 struct filedesc filed;
456 struct pwddesc pathsd;
457 struct fdescenttbl *fdt;
458 struct pwd pwd;
459 unsigned long pwd_addr;
460 struct vm_map_entry vmentry;
461 struct vm_object object;
462 struct vmspace vmspace;
463 vm_map_entry_t entryp;
464 vm_object_t objp;
465 struct vnode *vp;
466 struct filestat *entry;
467 struct filestat_list *head;
468 kvm_t *kd;
469 void *data;
470 int fflags;
471 unsigned int i;
472 int prot, type;
473 size_t fdt_size;
474 unsigned int nfiles;
475 bool haspwd;
476
477 assert(procstat);
478 kd = procstat->kd;
479 if (kd == NULL)
480 return (NULL);
481 if (kp->ki_fd == NULL || kp->ki_pd == NULL)
482 return (NULL);
483 if (!kvm_read_all(kd, (unsigned long)kp->ki_fd, &filed,
484 sizeof(filed))) {
485 warnx("can't read filedesc at %p", (void *)kp->ki_fd);
486 return (NULL);
487 }
488 if (!kvm_read_all(kd, (unsigned long)kp->ki_pd, &pathsd,
489 sizeof(pathsd))) {
490 warnx("can't read pwddesc at %p", (void *)kp->ki_pd);
491 return (NULL);
492 }
493 haspwd = false;
494 pwd_addr = (unsigned long)(PWDDESC_KVM_LOAD_PWD(&pathsd));
495 if (pwd_addr != 0) {
496 if (!kvm_read_all(kd, pwd_addr, &pwd, sizeof(pwd))) {
497 warnx("can't read fd_pwd at %p", (void *)pwd_addr);
498 return (NULL);
499 }
500 haspwd = true;
501 }
502
503 /*
504 * Allocate list head.
505 */
506 head = malloc(sizeof(*head));
507 if (head == NULL)
508 return (NULL);
509 STAILQ_INIT(head);
510
511 /* root directory vnode, if one. */
512 if (haspwd) {
513 if (pwd.pwd_rdir) {
514 entry = filestat_new_entry(pwd.pwd_rdir, PS_FST_TYPE_VNODE, -1,
515 PS_FST_FFLAG_READ, PS_FST_UFLAG_RDIR, 0, 0, NULL, NULL);
516 if (entry != NULL)
517 STAILQ_INSERT_TAIL(head, entry, next);
518 }
519 /* current working directory vnode. */
520 if (pwd.pwd_cdir) {
521 entry = filestat_new_entry(pwd.pwd_cdir, PS_FST_TYPE_VNODE, -1,
522 PS_FST_FFLAG_READ, PS_FST_UFLAG_CDIR, 0, 0, NULL, NULL);
523 if (entry != NULL)
524 STAILQ_INSERT_TAIL(head, entry, next);
525 }
526 /* jail root, if any. */
527 if (pwd.pwd_jdir) {
528 entry = filestat_new_entry(pwd.pwd_jdir, PS_FST_TYPE_VNODE, -1,
529 PS_FST_FFLAG_READ, PS_FST_UFLAG_JAIL, 0, 0, NULL, NULL);
530 if (entry != NULL)
531 STAILQ_INSERT_TAIL(head, entry, next);
532 }
533 }
534 /* ktrace vnode, if one */
535 if (kp->ki_tracep) {
536 entry = filestat_new_entry(kp->ki_tracep, PS_FST_TYPE_VNODE, -1,
537 PS_FST_FFLAG_READ | PS_FST_FFLAG_WRITE,
538 PS_FST_UFLAG_TRACE, 0, 0, NULL, NULL);
539 if (entry != NULL)
540 STAILQ_INSERT_TAIL(head, entry, next);
541 }
542 /* text vnode, if one */
543 if (kp->ki_textvp) {
544 entry = filestat_new_entry(kp->ki_textvp, PS_FST_TYPE_VNODE, -1,
545 PS_FST_FFLAG_READ, PS_FST_UFLAG_TEXT, 0, 0, NULL, NULL);
546 if (entry != NULL)
547 STAILQ_INSERT_TAIL(head, entry, next);
548 }
549 /* Controlling terminal. */
550 if ((vp = getctty(kd, kp)) != NULL) {
551 entry = filestat_new_entry(vp, PS_FST_TYPE_VNODE, -1,
552 PS_FST_FFLAG_READ | PS_FST_FFLAG_WRITE,
553 PS_FST_UFLAG_CTTY, 0, 0, NULL, NULL);
554 if (entry != NULL)
555 STAILQ_INSERT_TAIL(head, entry, next);
556 }
557
558 if (!kvm_read_all(kd, (unsigned long)filed.fd_files, &nfiles,
559 sizeof(nfiles))) {
560 warnx("can't read fd_files at %p", (void *)filed.fd_files);
561 return (NULL);
562 }
563
564 fdt_size = sizeof(*fdt) + nfiles * sizeof(struct filedescent);
565 fdt = malloc(fdt_size);
566 if (fdt == NULL) {
567 warn("malloc(%zu)", fdt_size);
568 goto do_mmapped;
569 }
570 if (!kvm_read_all(kd, (unsigned long)filed.fd_files, fdt, fdt_size)) {
571 warnx("cannot read file structures at %p", (void *)filed.fd_files);
572 free(fdt);
573 goto do_mmapped;
574 }
575 for (i = 0; i < nfiles; i++) {
576 if (fdt->fdt_ofiles[i].fde_file == NULL) {
577 continue;
578 }
579 if (!kvm_read_all(kd, (unsigned long)fdt->fdt_ofiles[i].fde_file, &file,
580 sizeof(struct file))) {
581 warnx("can't read file %d at %p", i,
582 (void *)fdt->fdt_ofiles[i].fde_file);
583 continue;
584 }
585 switch (file.f_type) {
586 case DTYPE_VNODE:
587 type = PS_FST_TYPE_VNODE;
588 data = file.f_vnode;
589 break;
590 case DTYPE_SOCKET:
591 type = PS_FST_TYPE_SOCKET;
592 data = file.f_data;
593 break;
594 case DTYPE_PIPE:
595 type = PS_FST_TYPE_PIPE;
596 data = file.f_data;
597 break;
598 case DTYPE_FIFO:
599 type = PS_FST_TYPE_FIFO;
600 data = file.f_vnode;
601 break;
602 #ifdef DTYPE_PTS
603 case DTYPE_PTS:
604 type = PS_FST_TYPE_PTS;
605 data = file.f_data;
606 break;
607 #endif
608 case DTYPE_SEM:
609 type = PS_FST_TYPE_SEM;
610 data = file.f_data;
611 break;
612 case DTYPE_SHM:
613 type = PS_FST_TYPE_SHM;
614 data = file.f_data;
615 break;
616 case DTYPE_PROCDESC:
617 type = PS_FST_TYPE_PROCDESC;
618 data = file.f_data;
619 break;
620 case DTYPE_DEV:
621 type = PS_FST_TYPE_DEV;
622 data = file.f_data;
623 break;
624 case DTYPE_EVENTFD:
625 type = PS_FST_TYPE_EVENTFD;
626 data = file.f_data;
627 break;
628 case DTYPE_INOTIFY:
629 type = PS_FST_TYPE_INOTIFY;
630 data = file.f_data;
631 break;
632 default:
633 continue;
634 }
635 /* XXXRW: No capability rights support for kvm yet. */
636 entry = filestat_new_entry(data, type, i,
637 to_filestat_flags(file.f_flag), 0, 0, 0, NULL, NULL);
638 if (entry != NULL)
639 STAILQ_INSERT_TAIL(head, entry, next);
640 }
641 free(fdt);
642
643 do_mmapped:
644
645 /*
646 * Process mmapped files if requested.
647 */
648 if (mmapped) {
649 if (!kvm_read_all(kd, (unsigned long)kp->ki_vmspace, &vmspace,
650 sizeof(vmspace))) {
651 warnx("can't read vmspace at %p",
652 (void *)kp->ki_vmspace);
653 goto exit;
654 }
655
656 vmentry = vmspace.vm_map.header;
657 for (entryp = vm_map_entry_read_succ(kd, &vmentry, procstat_vm_map_reader);
658 entryp != NULL && entryp != &kp->ki_vmspace->vm_map.header;
659 entryp = vm_map_entry_read_succ(kd, &vmentry, procstat_vm_map_reader)) {
660 if (vmentry.eflags & MAP_ENTRY_IS_SUB_MAP)
661 continue;
662 if ((objp = vmentry.object.vm_object) == NULL)
663 continue;
664 for (; objp; objp = object.backing_object) {
665 if (!kvm_read_all(kd, (unsigned long)objp,
666 &object, sizeof(object))) {
667 warnx("can't read vm_object at %p",
668 (void *)objp);
669 break;
670 }
671 }
672
673 /* We want only vnode objects. */
674 if (object.type != OBJT_VNODE)
675 continue;
676
677 prot = vmentry.protection;
678 fflags = 0;
679 if (prot & VM_PROT_READ)
680 fflags = PS_FST_FFLAG_READ;
681 if ((vmentry.eflags & MAP_ENTRY_COW) == 0 &&
682 prot & VM_PROT_WRITE)
683 fflags |= PS_FST_FFLAG_WRITE;
684
685 /*
686 * Create filestat entry.
687 */
688 entry = filestat_new_entry(object.handle,
689 PS_FST_TYPE_VNODE, -1, fflags,
690 PS_FST_UFLAG_MMAP, 0, 0, NULL, NULL);
691 if (entry != NULL)
692 STAILQ_INSERT_TAIL(head, entry, next);
693 }
694 if (entryp == NULL)
695 warnx("can't read vm_map_entry");
696 }
697 exit:
698 return (head);
699 }
700
701 /*
702 * kinfo types to filestat translation.
703 */
704 static int
kinfo_type2fst(int kftype)705 kinfo_type2fst(int kftype)
706 {
707 static struct {
708 int kf_type;
709 int fst_type;
710 } kftypes2fst[] = {
711 { KF_TYPE_PROCDESC, PS_FST_TYPE_PROCDESC },
712 { KF_TYPE_DEV, PS_FST_TYPE_DEV },
713 { KF_TYPE_FIFO, PS_FST_TYPE_FIFO },
714 { KF_TYPE_KQUEUE, PS_FST_TYPE_KQUEUE },
715 { KF_TYPE_MQUEUE, PS_FST_TYPE_MQUEUE },
716 { KF_TYPE_NONE, PS_FST_TYPE_NONE },
717 { KF_TYPE_PIPE, PS_FST_TYPE_PIPE },
718 { KF_TYPE_PTS, PS_FST_TYPE_PTS },
719 { KF_TYPE_SEM, PS_FST_TYPE_SEM },
720 { KF_TYPE_SHM, PS_FST_TYPE_SHM },
721 { KF_TYPE_SOCKET, PS_FST_TYPE_SOCKET },
722 { KF_TYPE_VNODE, PS_FST_TYPE_VNODE },
723 { KF_TYPE_EVENTFD, PS_FST_TYPE_EVENTFD },
724 { KF_TYPE_INOTIFY, PS_FST_TYPE_INOTIFY },
725 { KF_TYPE_UNKNOWN, PS_FST_TYPE_UNKNOWN }
726 };
727 #define NKFTYPES (sizeof(kftypes2fst) / sizeof(*kftypes2fst))
728 unsigned int i;
729
730 for (i = 0; i < NKFTYPES; i++)
731 if (kftypes2fst[i].kf_type == kftype)
732 break;
733 if (i == NKFTYPES)
734 return (PS_FST_TYPE_UNKNOWN);
735 return (kftypes2fst[i].fst_type);
736 }
737
738 /*
739 * kinfo flags to filestat translation.
740 */
741 static int
kinfo_fflags2fst(int kfflags)742 kinfo_fflags2fst(int kfflags)
743 {
744 static struct {
745 int kf_flag;
746 int fst_flag;
747 } kfflags2fst[] = {
748 { KF_FLAG_APPEND, PS_FST_FFLAG_APPEND },
749 { KF_FLAG_ASYNC, PS_FST_FFLAG_ASYNC },
750 { KF_FLAG_CREAT, PS_FST_FFLAG_CREAT },
751 { KF_FLAG_DIRECT, PS_FST_FFLAG_DIRECT },
752 { KF_FLAG_EXCL, PS_FST_FFLAG_EXCL },
753 { KF_FLAG_EXEC, PS_FST_FFLAG_EXEC },
754 { KF_FLAG_EXLOCK, PS_FST_FFLAG_EXLOCK },
755 { KF_FLAG_FSYNC, PS_FST_FFLAG_SYNC },
756 { KF_FLAG_HASLOCK, PS_FST_FFLAG_HASLOCK },
757 { KF_FLAG_NOFOLLOW, PS_FST_FFLAG_NOFOLLOW },
758 { KF_FLAG_NONBLOCK, PS_FST_FFLAG_NONBLOCK },
759 { KF_FLAG_READ, PS_FST_FFLAG_READ },
760 { KF_FLAG_SHLOCK, PS_FST_FFLAG_SHLOCK },
761 { KF_FLAG_TRUNC, PS_FST_FFLAG_TRUNC },
762 { KF_FLAG_WRITE, PS_FST_FFLAG_WRITE }
763 };
764 #define NKFFLAGS (sizeof(kfflags2fst) / sizeof(*kfflags2fst))
765 unsigned int i;
766 int flags;
767
768 flags = 0;
769 for (i = 0; i < NKFFLAGS; i++)
770 if ((kfflags & kfflags2fst[i].kf_flag) != 0)
771 flags |= kfflags2fst[i].fst_flag;
772 return (flags);
773 }
774
775 static int
kinfo_uflags2fst(int fd)776 kinfo_uflags2fst(int fd)
777 {
778
779 switch (fd) {
780 case KF_FD_TYPE_CTTY:
781 return (PS_FST_UFLAG_CTTY);
782 case KF_FD_TYPE_CWD:
783 return (PS_FST_UFLAG_CDIR);
784 case KF_FD_TYPE_JAIL:
785 return (PS_FST_UFLAG_JAIL);
786 case KF_FD_TYPE_TEXT:
787 return (PS_FST_UFLAG_TEXT);
788 case KF_FD_TYPE_TRACE:
789 return (PS_FST_UFLAG_TRACE);
790 case KF_FD_TYPE_ROOT:
791 return (PS_FST_UFLAG_RDIR);
792 }
793 return (0);
794 }
795
796 static struct kinfo_file *
kinfo_getfile_core(struct procstat_core * core,int * cntp)797 kinfo_getfile_core(struct procstat_core *core, int *cntp)
798 {
799 int cnt;
800 size_t len;
801 char *buf, *bp, *eb;
802 struct kinfo_file *kif, *kp, *kf;
803
804 buf = procstat_core_get(core, PSC_TYPE_FILES, NULL, &len);
805 if (buf == NULL)
806 return (NULL);
807 /*
808 * XXXMG: The code below is just copy&past from libutil.
809 * The code duplication can be avoided if libutil
810 * is extended to provide something like:
811 * struct kinfo_file *kinfo_getfile_from_buf(const char *buf,
812 * size_t len, int *cntp);
813 */
814
815 /* Pass 1: count items */
816 cnt = 0;
817 bp = buf;
818 eb = buf + len;
819 while (bp < eb) {
820 kf = (struct kinfo_file *)(uintptr_t)bp;
821 if (kf->kf_structsize == 0)
822 break;
823 bp += kf->kf_structsize;
824 cnt++;
825 }
826
827 kif = calloc(cnt, sizeof(*kif));
828 if (kif == NULL) {
829 free(buf);
830 return (NULL);
831 }
832 bp = buf;
833 eb = buf + len;
834 kp = kif;
835 /* Pass 2: unpack */
836 while (bp < eb) {
837 kf = (struct kinfo_file *)(uintptr_t)bp;
838 if (kf->kf_structsize == 0)
839 break;
840 /* Copy/expand into pre-zeroed buffer */
841 memcpy(kp, kf, kf->kf_structsize);
842 /* Advance to next packed record */
843 bp += kf->kf_structsize;
844 /* Set field size to fixed length, advance */
845 kp->kf_structsize = sizeof(*kp);
846 kp++;
847 }
848 free(buf);
849 *cntp = cnt;
850 return (kif); /* Caller must free() return value */
851 }
852
853 static struct filestat_list *
procstat_getfiles_sysctl(struct procstat * procstat,struct kinfo_proc * kp,int mmapped)854 procstat_getfiles_sysctl(struct procstat *procstat, struct kinfo_proc *kp,
855 int mmapped)
856 {
857 struct kinfo_file *kif, *files;
858 struct kinfo_vmentry *kve, *vmentries;
859 struct filestat_list *head;
860 struct filestat *entry;
861 char *path;
862 off_t offset;
863 int cnt, fd, fflags;
864 int i, type, uflags;
865 int refcount;
866 cap_rights_t cap_rights;
867
868 assert(kp);
869 switch (procstat->type) {
870 case PROCSTAT_SYSCTL:
871 files = kinfo_getfile(kp->ki_pid, &cnt);
872 break;
873 case PROCSTAT_CORE:
874 files = kinfo_getfile_core(procstat->core, &cnt);
875 break;
876 default:
877 assert(!"invalid type");
878 }
879 if (files == NULL && errno != EPERM) {
880 warn("kinfo_getfile()");
881 return (NULL);
882 }
883 procstat->files = files;
884
885 /*
886 * Allocate list head.
887 */
888 head = malloc(sizeof(*head));
889 if (head == NULL)
890 return (NULL);
891 STAILQ_INIT(head);
892 for (i = 0; i < cnt; i++) {
893 kif = &files[i];
894
895 type = kinfo_type2fst(kif->kf_type);
896 fd = kif->kf_fd >= 0 ? kif->kf_fd : -1;
897 fflags = kinfo_fflags2fst(kif->kf_flags);
898 uflags = kinfo_uflags2fst(kif->kf_fd);
899 refcount = kif->kf_ref_count;
900 offset = kif->kf_offset;
901 if (*kif->kf_path != '\0')
902 path = strdup(kif->kf_path);
903 else
904 path = NULL;
905 cap_rights = kif->kf_cap_rights;
906
907 /*
908 * Create filestat entry.
909 */
910 entry = filestat_new_entry(kif, type, fd, fflags, uflags,
911 refcount, offset, path, &cap_rights);
912 if (entry != NULL)
913 STAILQ_INSERT_TAIL(head, entry, next);
914 }
915 if (mmapped != 0) {
916 vmentries = procstat_getvmmap(procstat, kp, &cnt);
917 procstat->vmentries = vmentries;
918 if (vmentries == NULL || cnt == 0)
919 goto fail;
920 for (i = 0; i < cnt; i++) {
921 kve = &vmentries[i];
922 if (kve->kve_type != KVME_TYPE_VNODE)
923 continue;
924 fflags = 0;
925 if (kve->kve_protection & KVME_PROT_READ)
926 fflags = PS_FST_FFLAG_READ;
927 if ((kve->kve_flags & KVME_FLAG_COW) == 0 &&
928 kve->kve_protection & KVME_PROT_WRITE)
929 fflags |= PS_FST_FFLAG_WRITE;
930 offset = kve->kve_offset;
931 refcount = kve->kve_ref_count;
932 if (*kve->kve_path != '\0')
933 path = strdup(kve->kve_path);
934 else
935 path = NULL;
936 entry = filestat_new_entry(kve, PS_FST_TYPE_VNODE, -1,
937 fflags, PS_FST_UFLAG_MMAP, refcount, offset, path,
938 NULL);
939 if (entry != NULL)
940 STAILQ_INSERT_TAIL(head, entry, next);
941 }
942 }
943 fail:
944 return (head);
945 }
946
947 int
procstat_get_pipe_info(struct procstat * procstat,struct filestat * fst,struct pipestat * ps,char * errbuf)948 procstat_get_pipe_info(struct procstat *procstat, struct filestat *fst,
949 struct pipestat *ps, char *errbuf)
950 {
951
952 assert(ps);
953 if (procstat->type == PROCSTAT_KVM) {
954 return (procstat_get_pipe_info_kvm(procstat->kd, fst, ps,
955 errbuf));
956 } else if (procstat->type == PROCSTAT_SYSCTL ||
957 procstat->type == PROCSTAT_CORE) {
958 return (procstat_get_pipe_info_sysctl(fst, ps, errbuf));
959 } else {
960 warnx("unknown access method: %d", procstat->type);
961 if (errbuf != NULL)
962 snprintf(errbuf, _POSIX2_LINE_MAX, "error");
963 return (1);
964 }
965 }
966
967 static int
procstat_get_pipe_info_kvm(kvm_t * kd,struct filestat * fst,struct pipestat * ps,char * errbuf)968 procstat_get_pipe_info_kvm(kvm_t *kd, struct filestat *fst,
969 struct pipestat *ps, char *errbuf)
970 {
971 struct pipe pi;
972 void *pipep;
973
974 assert(kd);
975 assert(ps);
976 assert(fst);
977 bzero(ps, sizeof(*ps));
978 pipep = fst->fs_typedep;
979 if (pipep == NULL)
980 goto fail;
981 if (!kvm_read_all(kd, (unsigned long)pipep, &pi, sizeof(struct pipe))) {
982 warnx("can't read pipe at %p", (void *)pipep);
983 goto fail;
984 }
985 ps->addr = (uintptr_t)pipep;
986 ps->peer = (uintptr_t)pi.pipe_peer;
987 ps->buffer_cnt = pi.pipe_buffer.cnt;
988 return (0);
989
990 fail:
991 if (errbuf != NULL)
992 snprintf(errbuf, _POSIX2_LINE_MAX, "error");
993 return (1);
994 }
995
996 static int
procstat_get_pipe_info_sysctl(struct filestat * fst,struct pipestat * ps,char * errbuf __unused)997 procstat_get_pipe_info_sysctl(struct filestat *fst, struct pipestat *ps,
998 char *errbuf __unused)
999 {
1000 struct kinfo_file *kif;
1001
1002 assert(ps);
1003 assert(fst);
1004 bzero(ps, sizeof(*ps));
1005 kif = fst->fs_typedep;
1006 if (kif == NULL)
1007 return (1);
1008 ps->addr = kif->kf_un.kf_pipe.kf_pipe_addr;
1009 ps->peer = kif->kf_un.kf_pipe.kf_pipe_peer;
1010 ps->buffer_cnt = kif->kf_un.kf_pipe.kf_pipe_buffer_cnt;
1011 return (0);
1012 }
1013
1014 int
procstat_get_pts_info(struct procstat * procstat,struct filestat * fst,struct ptsstat * pts,char * errbuf)1015 procstat_get_pts_info(struct procstat *procstat, struct filestat *fst,
1016 struct ptsstat *pts, char *errbuf)
1017 {
1018
1019 assert(pts);
1020 if (procstat->type == PROCSTAT_KVM) {
1021 return (procstat_get_pts_info_kvm(procstat->kd, fst, pts,
1022 errbuf));
1023 } else if (procstat->type == PROCSTAT_SYSCTL ||
1024 procstat->type == PROCSTAT_CORE) {
1025 return (procstat_get_pts_info_sysctl(fst, pts, errbuf));
1026 } else {
1027 warnx("unknown access method: %d", procstat->type);
1028 if (errbuf != NULL)
1029 snprintf(errbuf, _POSIX2_LINE_MAX, "error");
1030 return (1);
1031 }
1032 }
1033
1034 static int
procstat_get_pts_info_kvm(kvm_t * kd,struct filestat * fst,struct ptsstat * pts,char * errbuf)1035 procstat_get_pts_info_kvm(kvm_t *kd, struct filestat *fst,
1036 struct ptsstat *pts, char *errbuf)
1037 {
1038 struct tty tty;
1039 void *ttyp;
1040
1041 assert(kd);
1042 assert(pts);
1043 assert(fst);
1044 bzero(pts, sizeof(*pts));
1045 ttyp = fst->fs_typedep;
1046 if (ttyp == NULL)
1047 goto fail;
1048 if (!kvm_read_all(kd, (unsigned long)ttyp, &tty, sizeof(struct tty))) {
1049 warnx("can't read tty at %p", (void *)ttyp);
1050 goto fail;
1051 }
1052 pts->dev = dev2udev(kd, tty.t_dev);
1053 (void)kdevtoname(kd, tty.t_dev, pts->devname);
1054 return (0);
1055
1056 fail:
1057 if (errbuf != NULL)
1058 snprintf(errbuf, _POSIX2_LINE_MAX, "error");
1059 return (1);
1060 }
1061
1062 static int
procstat_get_pts_info_sysctl(struct filestat * fst,struct ptsstat * pts,char * errbuf __unused)1063 procstat_get_pts_info_sysctl(struct filestat *fst, struct ptsstat *pts,
1064 char *errbuf __unused)
1065 {
1066 struct kinfo_file *kif;
1067
1068 assert(pts);
1069 assert(fst);
1070 bzero(pts, sizeof(*pts));
1071 kif = fst->fs_typedep;
1072 if (kif == NULL)
1073 return (0);
1074 pts->dev = kif->kf_un.kf_pts.kf_pts_dev;
1075 strlcpy(pts->devname, kif->kf_path, sizeof(pts->devname));
1076 return (0);
1077 }
1078
1079 int
procstat_get_sem_info(struct procstat * procstat,struct filestat * fst,struct semstat * sem,char * errbuf)1080 procstat_get_sem_info(struct procstat *procstat, struct filestat *fst,
1081 struct semstat *sem, char *errbuf)
1082 {
1083
1084 assert(sem);
1085 if (procstat->type == PROCSTAT_KVM) {
1086 return (procstat_get_sem_info_kvm(procstat->kd, fst, sem,
1087 errbuf));
1088 } else if (procstat->type == PROCSTAT_SYSCTL ||
1089 procstat->type == PROCSTAT_CORE) {
1090 return (procstat_get_sem_info_sysctl(fst, sem, errbuf));
1091 } else {
1092 warnx("unknown access method: %d", procstat->type);
1093 if (errbuf != NULL)
1094 snprintf(errbuf, _POSIX2_LINE_MAX, "error");
1095 return (1);
1096 }
1097 }
1098
1099 static int
procstat_get_sem_info_kvm(kvm_t * kd,struct filestat * fst,struct semstat * sem,char * errbuf)1100 procstat_get_sem_info_kvm(kvm_t *kd, struct filestat *fst,
1101 struct semstat *sem, char *errbuf)
1102 {
1103 struct ksem ksem;
1104 void *ksemp;
1105 char *path;
1106 int i;
1107
1108 assert(kd);
1109 assert(sem);
1110 assert(fst);
1111 bzero(sem, sizeof(*sem));
1112 ksemp = fst->fs_typedep;
1113 if (ksemp == NULL)
1114 goto fail;
1115 if (!kvm_read_all(kd, (unsigned long)ksemp, &ksem,
1116 sizeof(struct ksem))) {
1117 warnx("can't read ksem at %p", (void *)ksemp);
1118 goto fail;
1119 }
1120 sem->mode = S_IFREG | ksem.ks_mode;
1121 sem->value = ksem.ks_value;
1122 if (fst->fs_path == NULL && ksem.ks_path != NULL) {
1123 path = malloc(MAXPATHLEN);
1124 for (i = 0; i < MAXPATHLEN - 1; i++) {
1125 if (!kvm_read_all(kd, (unsigned long)ksem.ks_path + i,
1126 path + i, 1))
1127 break;
1128 if (path[i] == '\0')
1129 break;
1130 }
1131 path[i] = '\0';
1132 if (i == 0)
1133 free(path);
1134 else
1135 fst->fs_path = path;
1136 }
1137 return (0);
1138
1139 fail:
1140 if (errbuf != NULL)
1141 snprintf(errbuf, _POSIX2_LINE_MAX, "error");
1142 return (1);
1143 }
1144
1145 static int
procstat_get_sem_info_sysctl(struct filestat * fst,struct semstat * sem,char * errbuf __unused)1146 procstat_get_sem_info_sysctl(struct filestat *fst, struct semstat *sem,
1147 char *errbuf __unused)
1148 {
1149 struct kinfo_file *kif;
1150
1151 assert(sem);
1152 assert(fst);
1153 bzero(sem, sizeof(*sem));
1154 kif = fst->fs_typedep;
1155 if (kif == NULL)
1156 return (0);
1157 sem->value = kif->kf_un.kf_sem.kf_sem_value;
1158 sem->mode = kif->kf_un.kf_sem.kf_sem_mode;
1159 return (0);
1160 }
1161
1162 int
procstat_get_shm_info(struct procstat * procstat,struct filestat * fst,struct shmstat * shm,char * errbuf)1163 procstat_get_shm_info(struct procstat *procstat, struct filestat *fst,
1164 struct shmstat *shm, char *errbuf)
1165 {
1166
1167 assert(shm);
1168 if (procstat->type == PROCSTAT_KVM) {
1169 return (procstat_get_shm_info_kvm(procstat->kd, fst, shm,
1170 errbuf));
1171 } else if (procstat->type == PROCSTAT_SYSCTL ||
1172 procstat->type == PROCSTAT_CORE) {
1173 return (procstat_get_shm_info_sysctl(fst, shm, errbuf));
1174 } else {
1175 warnx("unknown access method: %d", procstat->type);
1176 if (errbuf != NULL)
1177 snprintf(errbuf, _POSIX2_LINE_MAX, "error");
1178 return (1);
1179 }
1180 }
1181
1182 static int
procstat_get_shm_info_kvm(kvm_t * kd,struct filestat * fst,struct shmstat * shm,char * errbuf)1183 procstat_get_shm_info_kvm(kvm_t *kd, struct filestat *fst,
1184 struct shmstat *shm, char *errbuf)
1185 {
1186 struct shmfd shmfd;
1187 void *shmfdp;
1188 char *path;
1189 int i;
1190
1191 assert(kd);
1192 assert(shm);
1193 assert(fst);
1194 bzero(shm, sizeof(*shm));
1195 shmfdp = fst->fs_typedep;
1196 if (shmfdp == NULL)
1197 goto fail;
1198 if (!kvm_read_all(kd, (unsigned long)shmfdp, &shmfd,
1199 sizeof(struct shmfd))) {
1200 warnx("can't read shmfd at %p", (void *)shmfdp);
1201 goto fail;
1202 }
1203 shm->mode = S_IFREG | shmfd.shm_mode;
1204 shm->size = shmfd.shm_size;
1205 if (fst->fs_path == NULL && shmfd.shm_path != NULL) {
1206 path = malloc(MAXPATHLEN);
1207 for (i = 0; i < MAXPATHLEN - 1; i++) {
1208 if (!kvm_read_all(kd, (unsigned long)shmfd.shm_path + i,
1209 path + i, 1))
1210 break;
1211 if (path[i] == '\0')
1212 break;
1213 }
1214 path[i] = '\0';
1215 if (i == 0)
1216 free(path);
1217 else
1218 fst->fs_path = path;
1219 }
1220 return (0);
1221
1222 fail:
1223 if (errbuf != NULL)
1224 snprintf(errbuf, _POSIX2_LINE_MAX, "error");
1225 return (1);
1226 }
1227
1228 static int
procstat_get_shm_info_sysctl(struct filestat * fst,struct shmstat * shm,char * errbuf __unused)1229 procstat_get_shm_info_sysctl(struct filestat *fst, struct shmstat *shm,
1230 char *errbuf __unused)
1231 {
1232 struct kinfo_file *kif;
1233
1234 assert(shm);
1235 assert(fst);
1236 bzero(shm, sizeof(*shm));
1237 kif = fst->fs_typedep;
1238 if (kif == NULL)
1239 return (0);
1240 shm->size = kif->kf_un.kf_file.kf_file_size;
1241 shm->mode = kif->kf_un.kf_file.kf_file_mode;
1242 return (0);
1243 }
1244
1245 int
procstat_get_vnode_info(struct procstat * procstat,struct filestat * fst,struct vnstat * vn,char * errbuf)1246 procstat_get_vnode_info(struct procstat *procstat, struct filestat *fst,
1247 struct vnstat *vn, char *errbuf)
1248 {
1249
1250 assert(vn);
1251 if (procstat->type == PROCSTAT_KVM) {
1252 return (procstat_get_vnode_info_kvm(procstat->kd, fst, vn,
1253 errbuf));
1254 } else if (procstat->type == PROCSTAT_SYSCTL ||
1255 procstat->type == PROCSTAT_CORE) {
1256 return (procstat_get_vnode_info_sysctl(fst, vn, errbuf));
1257 } else {
1258 warnx("unknown access method: %d", procstat->type);
1259 if (errbuf != NULL)
1260 snprintf(errbuf, _POSIX2_LINE_MAX, "error");
1261 return (1);
1262 }
1263 }
1264
1265 static int
procstat_get_vnode_info_kvm(kvm_t * kd,struct filestat * fst,struct vnstat * vn,char * errbuf)1266 procstat_get_vnode_info_kvm(kvm_t *kd, struct filestat *fst,
1267 struct vnstat *vn, char *errbuf)
1268 {
1269 /* Filesystem specific handlers. */
1270 #define FSTYPE(fst) {#fst, fst##_filestat}
1271 struct {
1272 const char *tag;
1273 int (*handler)(kvm_t *kd, struct vnode *vp,
1274 struct vnstat *vn);
1275 } fstypes[] = {
1276 FSTYPE(devfs),
1277 FSTYPE(isofs),
1278 FSTYPE(msdosfs),
1279 FSTYPE(nfs),
1280 FSTYPE(smbfs),
1281 FSTYPE(udf),
1282 FSTYPE(ufs),
1283 #ifdef LIBPROCSTAT_ZFS
1284 FSTYPE(zfs),
1285 #endif
1286 };
1287 #define NTYPES (sizeof(fstypes) / sizeof(*fstypes))
1288 struct vnode vnode;
1289 char tagstr[12];
1290 void *vp;
1291 int error;
1292 unsigned int i;
1293
1294 assert(kd);
1295 assert(vn);
1296 assert(fst);
1297 vp = fst->fs_typedep;
1298 if (vp == NULL)
1299 goto fail;
1300 error = kvm_read_all(kd, (unsigned long)vp, &vnode, sizeof(vnode));
1301 if (error == 0) {
1302 warnx("can't read vnode at %p", (void *)vp);
1303 goto fail;
1304 }
1305 bzero(vn, sizeof(*vn));
1306 vn->vn_type = vntype2psfsttype(vnode.v_type);
1307 if (vnode.v_type == VNON || vnode.v_type == VBAD)
1308 return (0);
1309 error = kvm_read_all(kd, (unsigned long)vnode.v_lock.lock_object.lo_name,
1310 tagstr, sizeof(tagstr));
1311 if (error == 0) {
1312 warnx("can't read lo_name at %p", (void *)vp);
1313 goto fail;
1314 }
1315 tagstr[sizeof(tagstr) - 1] = '\0';
1316
1317 /*
1318 * Find appropriate handler.
1319 */
1320 for (i = 0; i < NTYPES; i++)
1321 if (!strcmp(fstypes[i].tag, tagstr)) {
1322 if (fstypes[i].handler(kd, &vnode, vn) != 0) {
1323 goto fail;
1324 }
1325 break;
1326 }
1327 if (i == NTYPES) {
1328 if (errbuf != NULL)
1329 snprintf(errbuf, _POSIX2_LINE_MAX, "?(%s)", tagstr);
1330 return (1);
1331 }
1332 vn->vn_mntdir = getmnton(kd, vnode.v_mount);
1333 if (VTYPE_ISDEV(vnode.v_type) && vnode.v_rdev != NULL) {
1334 vn->vn_dev = dev2udev(kd, vnode.v_rdev);
1335 (void)kdevtoname(kd, vnode.v_rdev, vn->vn_devname);
1336 } else {
1337 vn->vn_dev = -1;
1338 }
1339 return (0);
1340
1341 fail:
1342 if (errbuf != NULL)
1343 snprintf(errbuf, _POSIX2_LINE_MAX, "error");
1344 return (1);
1345 }
1346
1347 /*
1348 * kinfo vnode type to filestat translation.
1349 */
1350 static int
kinfo_vtype2fst(int kfvtype)1351 kinfo_vtype2fst(int kfvtype)
1352 {
1353 static struct {
1354 int kf_vtype;
1355 int fst_vtype;
1356 } kfvtypes2fst[] = {
1357 { KF_VTYPE_VBAD, PS_FST_VTYPE_VBAD },
1358 { KF_VTYPE_VBLK, PS_FST_VTYPE_VBLK },
1359 { KF_VTYPE_VCHR, PS_FST_VTYPE_VCHR },
1360 { KF_VTYPE_VDIR, PS_FST_VTYPE_VDIR },
1361 { KF_VTYPE_VFIFO, PS_FST_VTYPE_VFIFO },
1362 { KF_VTYPE_VLNK, PS_FST_VTYPE_VLNK },
1363 { KF_VTYPE_VNON, PS_FST_VTYPE_VNON },
1364 { KF_VTYPE_VREG, PS_FST_VTYPE_VREG },
1365 { KF_VTYPE_VSOCK, PS_FST_VTYPE_VSOCK }
1366 };
1367 #define NKFVTYPES (sizeof(kfvtypes2fst) / sizeof(*kfvtypes2fst))
1368 unsigned int i;
1369
1370 for (i = 0; i < NKFVTYPES; i++)
1371 if (kfvtypes2fst[i].kf_vtype == kfvtype)
1372 break;
1373 if (i == NKFVTYPES)
1374 return (PS_FST_VTYPE_UNKNOWN);
1375 return (kfvtypes2fst[i].fst_vtype);
1376 }
1377
1378 static int
procstat_get_vnode_info_sysctl(struct filestat * fst,struct vnstat * vn,char * errbuf)1379 procstat_get_vnode_info_sysctl(struct filestat *fst, struct vnstat *vn,
1380 char *errbuf)
1381 {
1382 struct statfs stbuf;
1383 struct kinfo_file *kif;
1384 struct kinfo_vmentry *kve;
1385 char *name, *path;
1386 uint64_t fileid;
1387 uint64_t size;
1388 uint64_t fsid;
1389 uint64_t rdev;
1390 uint16_t mode;
1391 int vntype;
1392 int status;
1393
1394 assert(fst);
1395 assert(vn);
1396 bzero(vn, sizeof(*vn));
1397 if (fst->fs_typedep == NULL)
1398 return (1);
1399 if (fst->fs_uflags & PS_FST_UFLAG_MMAP) {
1400 kve = fst->fs_typedep;
1401 fileid = kve->kve_vn_fileid;
1402 fsid = kve->kve_vn_fsid;
1403 mode = kve->kve_vn_mode;
1404 path = kve->kve_path;
1405 rdev = kve->kve_vn_rdev;
1406 size = kve->kve_vn_size;
1407 vntype = kinfo_vtype2fst(kve->kve_vn_type);
1408 status = kve->kve_status;
1409 } else {
1410 kif = fst->fs_typedep;
1411 fileid = kif->kf_un.kf_file.kf_file_fileid;
1412 fsid = kif->kf_un.kf_file.kf_file_fsid;
1413 mode = kif->kf_un.kf_file.kf_file_mode;
1414 path = kif->kf_path;
1415 rdev = kif->kf_un.kf_file.kf_file_rdev;
1416 size = kif->kf_un.kf_file.kf_file_size;
1417 vntype = kinfo_vtype2fst(kif->kf_vnode_type);
1418 status = kif->kf_status;
1419 }
1420 vn->vn_type = vntype;
1421 if (vntype == PS_FST_VTYPE_VNON || vntype == PS_FST_VTYPE_VBAD)
1422 return (0);
1423 if ((status & KF_ATTR_VALID) == 0) {
1424 if (errbuf != NULL) {
1425 snprintf(errbuf, _POSIX2_LINE_MAX,
1426 "? (no info available)");
1427 }
1428 return (1);
1429 }
1430 if (path && *path) {
1431 statfs(path, &stbuf);
1432 vn->vn_mntdir = strdup(stbuf.f_mntonname);
1433 } else
1434 vn->vn_mntdir = strdup("-");
1435 vn->vn_dev = rdev;
1436 if (vntype == PS_FST_VTYPE_VBLK) {
1437 name = devname(rdev, S_IFBLK);
1438 if (name != NULL)
1439 strlcpy(vn->vn_devname, name,
1440 sizeof(vn->vn_devname));
1441 } else if (vntype == PS_FST_VTYPE_VCHR) {
1442 name = devname(vn->vn_dev, S_IFCHR);
1443 if (name != NULL)
1444 strlcpy(vn->vn_devname, name,
1445 sizeof(vn->vn_devname));
1446 }
1447 vn->vn_fsid = fsid;
1448 vn->vn_fileid = fileid;
1449 vn->vn_size = size;
1450 vn->vn_mode = mode;
1451 return (0);
1452 }
1453
1454 int
procstat_get_socket_info(struct procstat * procstat,struct filestat * fst,struct sockstat * sock,char * errbuf)1455 procstat_get_socket_info(struct procstat *procstat, struct filestat *fst,
1456 struct sockstat *sock, char *errbuf)
1457 {
1458
1459 assert(sock);
1460 if (procstat->type == PROCSTAT_KVM) {
1461 return (procstat_get_socket_info_kvm(procstat->kd, fst, sock,
1462 errbuf));
1463 } else if (procstat->type == PROCSTAT_SYSCTL ||
1464 procstat->type == PROCSTAT_CORE) {
1465 return (procstat_get_socket_info_sysctl(fst, sock, errbuf));
1466 } else {
1467 warnx("unknown access method: %d", procstat->type);
1468 if (errbuf != NULL)
1469 snprintf(errbuf, _POSIX2_LINE_MAX, "error");
1470 return (1);
1471 }
1472 }
1473
1474 static int
procstat_get_socket_info_kvm(kvm_t * kd,struct filestat * fst,struct sockstat * sock,char * errbuf)1475 procstat_get_socket_info_kvm(kvm_t *kd, struct filestat *fst,
1476 struct sockstat *sock, char *errbuf)
1477 {
1478 struct domain dom;
1479 struct protosw proto;
1480 struct socket s;
1481 struct unpcb unpcb;
1482 ssize_t len;
1483 void *so;
1484
1485 assert(kd);
1486 assert(sock);
1487 assert(fst);
1488 bzero(sock, sizeof(*sock));
1489 so = fst->fs_typedep;
1490 if (so == NULL)
1491 goto fail;
1492 sock->so_addr = (uintptr_t)so;
1493 /* fill in socket */
1494 if (!kvm_read_all(kd, (unsigned long)so, &s,
1495 sizeof(struct socket))) {
1496 warnx("can't read sock at %p", (void *)so);
1497 goto fail;
1498 }
1499 /* fill in protosw entry */
1500 if (!kvm_read_all(kd, (unsigned long)s.so_proto, &proto,
1501 sizeof(struct protosw))) {
1502 warnx("can't read protosw at %p", (void *)s.so_proto);
1503 goto fail;
1504 }
1505 /* fill in domain */
1506 if (!kvm_read_all(kd, (unsigned long)proto.pr_domain, &dom,
1507 sizeof(struct domain))) {
1508 warnx("can't read domain at %p",
1509 (void *)proto.pr_domain);
1510 goto fail;
1511 }
1512 if ((len = kvm_read(kd, (unsigned long)dom.dom_name, sock->dname,
1513 sizeof(sock->dname) - 1)) < 0) {
1514 warnx("can't read domain name at %p", (void *)dom.dom_name);
1515 sock->dname[0] = '\0';
1516 }
1517 else
1518 sock->dname[len] = '\0';
1519
1520 /*
1521 * Fill in known data.
1522 */
1523 sock->type = s.so_type;
1524 sock->proto = proto.pr_protocol;
1525 sock->dom_family = dom.dom_family;
1526 sock->so_pcb = (uintptr_t)s.so_pcb;
1527 sock->sendq = s.so_snd.sb_ccc;
1528 sock->recvq = s.so_rcv.sb_ccc;
1529 sock->so_rcv_sb_state = s.so_rcv.sb_state;
1530 sock->so_snd_sb_state = s.so_snd.sb_state;
1531
1532 /*
1533 * Protocol specific data.
1534 */
1535 switch (dom.dom_family) {
1536 case AF_UNIX:
1537 if (s.so_pcb) {
1538 if (kvm_read(kd, (u_long)s.so_pcb, (char *)&unpcb,
1539 sizeof(struct unpcb)) != sizeof(struct unpcb)){
1540 warnx("can't read unpcb at %p",
1541 (void *)s.so_pcb);
1542 } else if (unpcb.unp_conn) {
1543 sock->unp_conn = (uintptr_t)unpcb.unp_conn;
1544 }
1545 }
1546 break;
1547 default:
1548 break;
1549 }
1550 return (0);
1551
1552 fail:
1553 if (errbuf != NULL)
1554 snprintf(errbuf, _POSIX2_LINE_MAX, "error");
1555 return (1);
1556 }
1557
1558 static int
procstat_get_socket_info_sysctl(struct filestat * fst,struct sockstat * sock,char * errbuf __unused)1559 procstat_get_socket_info_sysctl(struct filestat *fst, struct sockstat *sock,
1560 char *errbuf __unused)
1561 {
1562 struct kinfo_file *kif;
1563
1564 assert(sock);
1565 assert(fst);
1566 bzero(sock, sizeof(*sock));
1567 kif = fst->fs_typedep;
1568 if (kif == NULL)
1569 return (0);
1570
1571 /*
1572 * Fill in known data.
1573 */
1574 sock->type = kif->kf_sock_type;
1575 sock->proto = kif->kf_sock_protocol;
1576 sock->dom_family = kif->kf_sock_domain;
1577 sock->so_pcb = kif->kf_un.kf_sock.kf_sock_pcb;
1578 strlcpy(sock->dname, kif->kf_path, sizeof(sock->dname));
1579 bcopy(&kif->kf_un.kf_sock.kf_sa_local, &sock->sa_local,
1580 kif->kf_un.kf_sock.kf_sa_local.ss_len);
1581 bcopy(&kif->kf_un.kf_sock.kf_sa_peer, &sock->sa_peer,
1582 kif->kf_un.kf_sock.kf_sa_peer.ss_len);
1583
1584 /*
1585 * Protocol specific data.
1586 */
1587 switch (sock->dom_family) {
1588 case AF_INET:
1589 case AF_INET6:
1590 if (sock->proto == IPPROTO_TCP) {
1591 sock->sendq = kif->kf_un.kf_sock.kf_sock_sendq;
1592 sock->recvq = kif->kf_un.kf_sock.kf_sock_recvq;
1593 }
1594 break;
1595 case AF_UNIX:
1596 if (kif->kf_un.kf_sock.kf_sock_unpconn != 0) {
1597 sock->so_rcv_sb_state =
1598 kif->kf_un.kf_sock.kf_sock_rcv_sb_state;
1599 sock->so_snd_sb_state =
1600 kif->kf_un.kf_sock.kf_sock_snd_sb_state;
1601 sock->unp_conn =
1602 kif->kf_un.kf_sock.kf_sock_unpconn;
1603 sock->sendq = kif->kf_un.kf_sock.kf_sock_sendq;
1604 sock->recvq = kif->kf_un.kf_sock.kf_sock_recvq;
1605 }
1606 break;
1607 default:
1608 break;
1609 }
1610 return (0);
1611 }
1612
1613 /*
1614 * Descriptor flags to filestat translation.
1615 */
1616 static int
to_filestat_flags(int flags)1617 to_filestat_flags(int flags)
1618 {
1619 static struct {
1620 int flag;
1621 int fst_flag;
1622 } fstflags[] = {
1623 { FREAD, PS_FST_FFLAG_READ },
1624 { FWRITE, PS_FST_FFLAG_WRITE },
1625 { O_APPEND, PS_FST_FFLAG_APPEND },
1626 { O_ASYNC, PS_FST_FFLAG_ASYNC },
1627 { O_CREAT, PS_FST_FFLAG_CREAT },
1628 { O_DIRECT, PS_FST_FFLAG_DIRECT },
1629 { O_EXCL, PS_FST_FFLAG_EXCL },
1630 { O_EXEC, PS_FST_FFLAG_EXEC },
1631 { O_EXLOCK, PS_FST_FFLAG_EXLOCK },
1632 { O_NOFOLLOW, PS_FST_FFLAG_NOFOLLOW },
1633 { O_NONBLOCK, PS_FST_FFLAG_NONBLOCK },
1634 { O_SHLOCK, PS_FST_FFLAG_SHLOCK },
1635 { O_SYNC, PS_FST_FFLAG_SYNC },
1636 { O_TRUNC, PS_FST_FFLAG_TRUNC }
1637 };
1638 #define NFSTFLAGS (sizeof(fstflags) / sizeof(*fstflags))
1639 int fst_flags;
1640 unsigned int i;
1641
1642 fst_flags = 0;
1643 for (i = 0; i < NFSTFLAGS; i++)
1644 if (flags & fstflags[i].flag)
1645 fst_flags |= fstflags[i].fst_flag;
1646 return (fst_flags);
1647 }
1648
1649 /*
1650 * Vnode type to filestate translation.
1651 */
1652 static int
vntype2psfsttype(int type)1653 vntype2psfsttype(int type)
1654 {
1655 static struct {
1656 int vtype;
1657 int fst_vtype;
1658 } vt2fst[] = {
1659 { VBAD, PS_FST_VTYPE_VBAD },
1660 { VBLK, PS_FST_VTYPE_VBLK },
1661 { VCHR, PS_FST_VTYPE_VCHR },
1662 { VDIR, PS_FST_VTYPE_VDIR },
1663 { VFIFO, PS_FST_VTYPE_VFIFO },
1664 { VLNK, PS_FST_VTYPE_VLNK },
1665 { VNON, PS_FST_VTYPE_VNON },
1666 { VREG, PS_FST_VTYPE_VREG },
1667 { VSOCK, PS_FST_VTYPE_VSOCK }
1668 };
1669 #define NVFTYPES (sizeof(vt2fst) / sizeof(*vt2fst))
1670 unsigned int i, fst_type;
1671
1672 fst_type = PS_FST_VTYPE_UNKNOWN;
1673 for (i = 0; i < NVFTYPES; i++) {
1674 if (type == vt2fst[i].vtype) {
1675 fst_type = vt2fst[i].fst_vtype;
1676 break;
1677 }
1678 }
1679 return (fst_type);
1680 }
1681
1682 static char *
getmnton(kvm_t * kd,struct mount * m)1683 getmnton(kvm_t *kd, struct mount *m)
1684 {
1685 struct mount mnt;
1686 static struct mtab {
1687 struct mtab *next;
1688 struct mount *m;
1689 char mntonname[MNAMELEN + 1];
1690 } *mhead = NULL;
1691 struct mtab *mt;
1692
1693 for (mt = mhead; mt != NULL; mt = mt->next)
1694 if (m == mt->m)
1695 return (mt->mntonname);
1696 if (!kvm_read_all(kd, (unsigned long)m, &mnt, sizeof(struct mount))) {
1697 warnx("can't read mount table at %p", (void *)m);
1698 return (NULL);
1699 }
1700 if ((mt = malloc(sizeof (struct mtab))) == NULL)
1701 err(1, NULL);
1702 mt->m = m;
1703 bcopy(&mnt.mnt_stat.f_mntonname[0], &mt->mntonname[0], MNAMELEN);
1704 mt->mntonname[MNAMELEN] = '\0';
1705 mt->next = mhead;
1706 mhead = mt;
1707 return (mt->mntonname);
1708 }
1709
1710 /*
1711 * Auxiliary structures and functions to get process environment or
1712 * command line arguments.
1713 */
1714 struct argvec {
1715 char *buf;
1716 size_t bufsize;
1717 char **argv;
1718 size_t argc;
1719 };
1720
1721 static struct argvec *
argvec_alloc(size_t bufsize)1722 argvec_alloc(size_t bufsize)
1723 {
1724 struct argvec *av;
1725
1726 av = malloc(sizeof(*av));
1727 if (av == NULL)
1728 return (NULL);
1729 av->bufsize = bufsize;
1730 av->buf = malloc(av->bufsize);
1731 if (av->buf == NULL) {
1732 free(av);
1733 return (NULL);
1734 }
1735 av->argc = 32;
1736 av->argv = malloc(sizeof(char *) * av->argc);
1737 if (av->argv == NULL) {
1738 free(av->buf);
1739 free(av);
1740 return (NULL);
1741 }
1742 return av;
1743 }
1744
1745 static void
argvec_free(struct argvec * av)1746 argvec_free(struct argvec * av)
1747 {
1748
1749 free(av->argv);
1750 free(av->buf);
1751 free(av);
1752 }
1753
1754 static char **
getargv(struct procstat * procstat,struct kinfo_proc * kp,size_t nchr,int env)1755 getargv(struct procstat *procstat, struct kinfo_proc *kp, size_t nchr, int env)
1756 {
1757 int error, name[4], argc, i;
1758 struct argvec *av, **avp;
1759 enum psc_type type;
1760 size_t len;
1761 char *p, **argv;
1762
1763 assert(procstat);
1764 assert(kp);
1765 if (procstat->type == PROCSTAT_KVM) {
1766 warnx("can't use kvm access method");
1767 return (NULL);
1768 }
1769 if (procstat->type != PROCSTAT_SYSCTL &&
1770 procstat->type != PROCSTAT_CORE) {
1771 warnx("unknown access method: %d", procstat->type);
1772 return (NULL);
1773 }
1774
1775 if (nchr == 0 || nchr > ARG_MAX)
1776 nchr = ARG_MAX;
1777
1778 avp = (struct argvec **)(env ? &procstat->argv : &procstat->envv);
1779 av = *avp;
1780
1781 if (av == NULL)
1782 {
1783 av = argvec_alloc(nchr);
1784 if (av == NULL)
1785 {
1786 warn("malloc(%zu)", nchr);
1787 return (NULL);
1788 }
1789 *avp = av;
1790 } else if (av->bufsize < nchr) {
1791 av->buf = reallocf(av->buf, nchr);
1792 if (av->buf == NULL) {
1793 warn("malloc(%zu)", nchr);
1794 return (NULL);
1795 }
1796 }
1797 if (procstat->type == PROCSTAT_SYSCTL) {
1798 name[0] = CTL_KERN;
1799 name[1] = KERN_PROC;
1800 name[2] = env ? KERN_PROC_ENV : KERN_PROC_ARGS;
1801 name[3] = kp->ki_pid;
1802 len = nchr;
1803 error = sysctl(name, nitems(name), av->buf, &len, NULL, 0);
1804 if (error != 0 && errno != ESRCH && errno != EPERM)
1805 warn("sysctl(kern.proc.%s)", env ? "env" : "args");
1806 if (error != 0 || len == 0)
1807 return (NULL);
1808 } else /* procstat->type == PROCSTAT_CORE */ {
1809 type = env ? PSC_TYPE_ENVV : PSC_TYPE_ARGV;
1810 len = nchr;
1811 if (procstat_core_get(procstat->core, type, av->buf, &len)
1812 == NULL) {
1813 return (NULL);
1814 }
1815 }
1816
1817 argv = av->argv;
1818 argc = av->argc;
1819 i = 0;
1820 for (p = av->buf; p < av->buf + len; p += strlen(p) + 1) {
1821 argv[i++] = p;
1822 if (i < argc)
1823 continue;
1824 /* Grow argv. */
1825 argc += argc;
1826 argv = realloc(argv, sizeof(char *) * argc);
1827 if (argv == NULL) {
1828 warn("malloc(%zu)", sizeof(char *) * argc);
1829 return (NULL);
1830 }
1831 av->argv = argv;
1832 av->argc = argc;
1833 }
1834 argv[i] = NULL;
1835
1836 return (argv);
1837 }
1838
1839 /*
1840 * Return process command line arguments.
1841 */
1842 char **
procstat_getargv(struct procstat * procstat,struct kinfo_proc * p,size_t nchr)1843 procstat_getargv(struct procstat *procstat, struct kinfo_proc *p, size_t nchr)
1844 {
1845
1846 return (getargv(procstat, p, nchr, 0));
1847 }
1848
1849 /*
1850 * Free the buffer allocated by procstat_getargv().
1851 */
1852 void
procstat_freeargv(struct procstat * procstat)1853 procstat_freeargv(struct procstat *procstat)
1854 {
1855
1856 if (procstat->argv != NULL) {
1857 argvec_free(procstat->argv);
1858 procstat->argv = NULL;
1859 }
1860 }
1861
1862 /*
1863 * Return process environment.
1864 */
1865 char **
procstat_getenvv(struct procstat * procstat,struct kinfo_proc * p,size_t nchr)1866 procstat_getenvv(struct procstat *procstat, struct kinfo_proc *p, size_t nchr)
1867 {
1868
1869 return (getargv(procstat, p, nchr, 1));
1870 }
1871
1872 /*
1873 * Free the buffer allocated by procstat_getenvv().
1874 */
1875 void
procstat_freeenvv(struct procstat * procstat)1876 procstat_freeenvv(struct procstat *procstat)
1877 {
1878 if (procstat->envv != NULL) {
1879 argvec_free(procstat->envv);
1880 procstat->envv = NULL;
1881 }
1882 }
1883
1884 static struct kinfo_vmentry *
kinfo_getvmmap_core(struct procstat_core * core,int * cntp)1885 kinfo_getvmmap_core(struct procstat_core *core, int *cntp)
1886 {
1887 int cnt;
1888 size_t len;
1889 char *buf, *bp, *eb;
1890 struct kinfo_vmentry *kiv, *kp, *kv;
1891
1892 buf = procstat_core_get(core, PSC_TYPE_VMMAP, NULL, &len);
1893 if (buf == NULL)
1894 return (NULL);
1895
1896 /*
1897 * XXXMG: The code below is just copy&past from libutil.
1898 * The code duplication can be avoided if libutil
1899 * is extended to provide something like:
1900 * struct kinfo_vmentry *kinfo_getvmmap_from_buf(const char *buf,
1901 * size_t len, int *cntp);
1902 */
1903
1904 /* Pass 1: count items */
1905 cnt = 0;
1906 bp = buf;
1907 eb = buf + len;
1908 while (bp < eb) {
1909 kv = (struct kinfo_vmentry *)(uintptr_t)bp;
1910 if (kv->kve_structsize == 0)
1911 break;
1912 bp += kv->kve_structsize;
1913 cnt++;
1914 }
1915
1916 kiv = calloc(cnt, sizeof(*kiv));
1917 if (kiv == NULL) {
1918 free(buf);
1919 return (NULL);
1920 }
1921 bp = buf;
1922 eb = buf + len;
1923 kp = kiv;
1924 /* Pass 2: unpack */
1925 while (bp < eb) {
1926 kv = (struct kinfo_vmentry *)(uintptr_t)bp;
1927 if (kv->kve_structsize == 0)
1928 break;
1929 /* Copy/expand into pre-zeroed buffer */
1930 memcpy(kp, kv, kv->kve_structsize);
1931 /* Advance to next packed record */
1932 bp += kv->kve_structsize;
1933 /* Set field size to fixed length, advance */
1934 kp->kve_structsize = sizeof(*kp);
1935 kp++;
1936 }
1937 free(buf);
1938 *cntp = cnt;
1939 return (kiv); /* Caller must free() return value */
1940 }
1941
1942 struct kinfo_vmentry *
procstat_getvmmap(struct procstat * procstat,struct kinfo_proc * kp,unsigned int * cntp)1943 procstat_getvmmap(struct procstat *procstat, struct kinfo_proc *kp,
1944 unsigned int *cntp)
1945 {
1946
1947 switch (procstat->type) {
1948 case PROCSTAT_KVM:
1949 warnx("kvm method is not supported");
1950 return (NULL);
1951 case PROCSTAT_SYSCTL:
1952 return (kinfo_getvmmap(kp->ki_pid, cntp));
1953 case PROCSTAT_CORE:
1954 return (kinfo_getvmmap_core(procstat->core, cntp));
1955 default:
1956 warnx("unknown access method: %d", procstat->type);
1957 return (NULL);
1958 }
1959 }
1960
1961 void
procstat_freevmmap(struct procstat * procstat __unused,struct kinfo_vmentry * vmmap)1962 procstat_freevmmap(struct procstat *procstat __unused,
1963 struct kinfo_vmentry *vmmap)
1964 {
1965
1966 free(vmmap);
1967 }
1968
1969 static gid_t *
procstat_getgroups_kvm(kvm_t * kd,struct kinfo_proc * kp,unsigned int * cntp)1970 procstat_getgroups_kvm(kvm_t *kd, struct kinfo_proc *kp, unsigned int *cntp)
1971 {
1972 struct proc proc;
1973 struct ucred ucred;
1974 gid_t *groups;
1975 size_t len;
1976
1977 assert(kd != NULL);
1978 assert(kp != NULL);
1979 if (!kvm_read_all(kd, (unsigned long)kp->ki_paddr, &proc,
1980 sizeof(proc))) {
1981 warnx("can't read proc struct at %p for pid %d",
1982 kp->ki_paddr, kp->ki_pid);
1983 return (NULL);
1984 }
1985 if (proc.p_ucred == NOCRED)
1986 return (NULL);
1987 if (!kvm_read_all(kd, (unsigned long)proc.p_ucred, &ucred,
1988 sizeof(ucred))) {
1989 warnx("can't read ucred struct at %p for pid %d",
1990 proc.p_ucred, kp->ki_pid);
1991 return (NULL);
1992 }
1993 len = ucred.cr_ngroups * sizeof(gid_t);
1994 groups = malloc(len);
1995 if (groups == NULL) {
1996 warn("malloc(%zu)", len);
1997 return (NULL);
1998 }
1999 if (!kvm_read_all(kd, (unsigned long)ucred.cr_groups, groups, len)) {
2000 warnx("can't read groups at %p for pid %d",
2001 ucred.cr_groups, kp->ki_pid);
2002 free(groups);
2003 return (NULL);
2004 }
2005 *cntp = ucred.cr_ngroups;
2006 return (groups);
2007 }
2008
2009 static gid_t *
procstat_getgroups_sysctl(pid_t pid,unsigned int * cntp)2010 procstat_getgroups_sysctl(pid_t pid, unsigned int *cntp)
2011 {
2012 int mib[4];
2013 size_t len;
2014 gid_t *groups;
2015
2016 mib[0] = CTL_KERN;
2017 mib[1] = KERN_PROC;
2018 mib[2] = KERN_PROC_GROUPS;
2019 mib[3] = pid;
2020 len = (sysconf(_SC_NGROUPS_MAX) + 1) * sizeof(gid_t);
2021 groups = malloc(len);
2022 if (groups == NULL) {
2023 warn("malloc(%zu)", len);
2024 return (NULL);
2025 }
2026 if (sysctl(mib, nitems(mib), groups, &len, NULL, 0) == -1) {
2027 warn("sysctl: kern.proc.groups: %d", pid);
2028 free(groups);
2029 return (NULL);
2030 }
2031 *cntp = len / sizeof(gid_t);
2032 return (groups);
2033 }
2034
2035 static gid_t *
procstat_getgroups_core(struct procstat_core * core,unsigned int * cntp)2036 procstat_getgroups_core(struct procstat_core *core, unsigned int *cntp)
2037 {
2038 size_t len;
2039 gid_t *groups;
2040
2041 groups = procstat_core_get(core, PSC_TYPE_GROUPS, NULL, &len);
2042 if (groups == NULL)
2043 return (NULL);
2044 *cntp = len / sizeof(gid_t);
2045 return (groups);
2046 }
2047
2048 gid_t *
procstat_getgroups(struct procstat * procstat,struct kinfo_proc * kp,unsigned int * cntp)2049 procstat_getgroups(struct procstat *procstat, struct kinfo_proc *kp,
2050 unsigned int *cntp)
2051 {
2052 switch (procstat->type) {
2053 case PROCSTAT_KVM:
2054 return (procstat_getgroups_kvm(procstat->kd, kp, cntp));
2055 case PROCSTAT_SYSCTL:
2056 return (procstat_getgroups_sysctl(kp->ki_pid, cntp));
2057 case PROCSTAT_CORE:
2058 return (procstat_getgroups_core(procstat->core, cntp));
2059 default:
2060 warnx("unknown access method: %d", procstat->type);
2061 return (NULL);
2062 }
2063 }
2064
2065 void
procstat_freegroups(struct procstat * procstat __unused,gid_t * groups)2066 procstat_freegroups(struct procstat *procstat __unused, gid_t *groups)
2067 {
2068
2069 free(groups);
2070 }
2071
2072 static int
procstat_getumask_kvm(kvm_t * kd,struct kinfo_proc * kp,unsigned short * maskp)2073 procstat_getumask_kvm(kvm_t *kd, struct kinfo_proc *kp, unsigned short *maskp)
2074 {
2075 struct pwddesc pd;
2076
2077 assert(kd != NULL);
2078 assert(kp != NULL);
2079 if (kp->ki_pd == NULL)
2080 return (-1);
2081 if (!kvm_read_all(kd, (unsigned long)kp->ki_pd, &pd, sizeof(pd))) {
2082 warnx("can't read pwddesc at %p for pid %d", kp->ki_pd,
2083 kp->ki_pid);
2084 return (-1);
2085 }
2086 *maskp = pd.pd_cmask;
2087 return (0);
2088 }
2089
2090 static int
procstat_getumask_sysctl(pid_t pid,unsigned short * maskp)2091 procstat_getumask_sysctl(pid_t pid, unsigned short *maskp)
2092 {
2093 int error;
2094 int mib[4];
2095 size_t len;
2096
2097 mib[0] = CTL_KERN;
2098 mib[1] = KERN_PROC;
2099 mib[2] = KERN_PROC_UMASK;
2100 mib[3] = pid;
2101 len = sizeof(*maskp);
2102 error = sysctl(mib, nitems(mib), maskp, &len, NULL, 0);
2103 if (error != 0 && errno != ESRCH && errno != EPERM)
2104 warn("sysctl: kern.proc.umask: %d", pid);
2105 return (error);
2106 }
2107
2108 static int
procstat_getumask_core(struct procstat_core * core,unsigned short * maskp)2109 procstat_getumask_core(struct procstat_core *core, unsigned short *maskp)
2110 {
2111 size_t len;
2112 unsigned short *buf;
2113
2114 buf = procstat_core_get(core, PSC_TYPE_UMASK, NULL, &len);
2115 if (buf == NULL)
2116 return (-1);
2117 if (len < sizeof(*maskp)) {
2118 free(buf);
2119 return (-1);
2120 }
2121 *maskp = *buf;
2122 free(buf);
2123 return (0);
2124 }
2125
2126 int
procstat_getumask(struct procstat * procstat,struct kinfo_proc * kp,unsigned short * maskp)2127 procstat_getumask(struct procstat *procstat, struct kinfo_proc *kp,
2128 unsigned short *maskp)
2129 {
2130 switch (procstat->type) {
2131 case PROCSTAT_KVM:
2132 return (procstat_getumask_kvm(procstat->kd, kp, maskp));
2133 case PROCSTAT_SYSCTL:
2134 return (procstat_getumask_sysctl(kp->ki_pid, maskp));
2135 case PROCSTAT_CORE:
2136 return (procstat_getumask_core(procstat->core, maskp));
2137 default:
2138 warnx("unknown access method: %d", procstat->type);
2139 return (-1);
2140 }
2141 }
2142
2143 static int
procstat_getrlimit_kvm(kvm_t * kd,struct kinfo_proc * kp,int which,struct rlimit * rlimit)2144 procstat_getrlimit_kvm(kvm_t *kd, struct kinfo_proc *kp, int which,
2145 struct rlimit* rlimit)
2146 {
2147 struct proc proc;
2148 unsigned long offset;
2149
2150 assert(kd != NULL);
2151 assert(kp != NULL);
2152 assert(which >= 0 && which < RLIM_NLIMITS);
2153 if (!kvm_read_all(kd, (unsigned long)kp->ki_paddr, &proc,
2154 sizeof(proc))) {
2155 warnx("can't read proc struct at %p for pid %d",
2156 kp->ki_paddr, kp->ki_pid);
2157 return (-1);
2158 }
2159 if (proc.p_limit == NULL)
2160 return (-1);
2161 offset = (unsigned long)proc.p_limit + sizeof(struct rlimit) * which;
2162 if (!kvm_read_all(kd, offset, rlimit, sizeof(*rlimit))) {
2163 warnx("can't read rlimit struct at %p for pid %d",
2164 (void *)offset, kp->ki_pid);
2165 return (-1);
2166 }
2167 return (0);
2168 }
2169
2170 static int
procstat_getrlimit_sysctl(pid_t pid,int which,struct rlimit * rlimit)2171 procstat_getrlimit_sysctl(pid_t pid, int which, struct rlimit* rlimit)
2172 {
2173 int error, name[5];
2174 size_t len;
2175
2176 name[0] = CTL_KERN;
2177 name[1] = KERN_PROC;
2178 name[2] = KERN_PROC_RLIMIT;
2179 name[3] = pid;
2180 name[4] = which;
2181 len = sizeof(struct rlimit);
2182 error = sysctl(name, nitems(name), rlimit, &len, NULL, 0);
2183 if (error < 0 && errno != ESRCH) {
2184 warn("sysctl: kern.proc.rlimit: %d", pid);
2185 return (-1);
2186 }
2187 if (error < 0 || len != sizeof(struct rlimit))
2188 return (-1);
2189 return (0);
2190 }
2191
2192 static int
procstat_getrlimit_core(struct procstat_core * core,int which,struct rlimit * rlimit)2193 procstat_getrlimit_core(struct procstat_core *core, int which,
2194 struct rlimit* rlimit)
2195 {
2196 size_t len;
2197 struct rlimit* rlimits;
2198
2199 if (which < 0 || which >= RLIM_NLIMITS) {
2200 errno = EINVAL;
2201 warn("getrlimit: which");
2202 return (-1);
2203 }
2204 rlimits = procstat_core_get(core, PSC_TYPE_RLIMIT, NULL, &len);
2205 if (rlimits == NULL)
2206 return (-1);
2207 if (len < sizeof(struct rlimit) * RLIM_NLIMITS) {
2208 free(rlimits);
2209 return (-1);
2210 }
2211 *rlimit = rlimits[which];
2212 free(rlimits);
2213 return (0);
2214 }
2215
2216 int
procstat_getrlimit(struct procstat * procstat,struct kinfo_proc * kp,int which,struct rlimit * rlimit)2217 procstat_getrlimit(struct procstat *procstat, struct kinfo_proc *kp, int which,
2218 struct rlimit* rlimit)
2219 {
2220 switch (procstat->type) {
2221 case PROCSTAT_KVM:
2222 return (procstat_getrlimit_kvm(procstat->kd, kp, which,
2223 rlimit));
2224 case PROCSTAT_SYSCTL:
2225 return (procstat_getrlimit_sysctl(kp->ki_pid, which, rlimit));
2226 case PROCSTAT_CORE:
2227 return (procstat_getrlimit_core(procstat->core, which, rlimit));
2228 default:
2229 warnx("unknown access method: %d", procstat->type);
2230 return (-1);
2231 }
2232 }
2233
2234 static int
procstat_getpathname_sysctl(pid_t pid,char * pathname,size_t maxlen)2235 procstat_getpathname_sysctl(pid_t pid, char *pathname, size_t maxlen)
2236 {
2237 int error, name[4];
2238 size_t len;
2239
2240 name[0] = CTL_KERN;
2241 name[1] = KERN_PROC;
2242 name[2] = KERN_PROC_PATHNAME;
2243 name[3] = pid;
2244 len = maxlen;
2245 error = sysctl(name, nitems(name), pathname, &len, NULL, 0);
2246 if (error != 0 && errno != ESRCH)
2247 warn("sysctl: kern.proc.pathname: %d", pid);
2248 if (len == 0)
2249 pathname[0] = '\0';
2250 return (error);
2251 }
2252
2253 static int
procstat_getpathname_core(struct procstat_core * core,char * pathname,size_t maxlen)2254 procstat_getpathname_core(struct procstat_core *core, char *pathname,
2255 size_t maxlen)
2256 {
2257 struct kinfo_file *files;
2258 int cnt, i, result;
2259
2260 files = kinfo_getfile_core(core, &cnt);
2261 if (files == NULL)
2262 return (-1);
2263 result = -1;
2264 for (i = 0; i < cnt; i++) {
2265 if (files[i].kf_fd != KF_FD_TYPE_TEXT)
2266 continue;
2267 strncpy(pathname, files[i].kf_path, maxlen);
2268 result = 0;
2269 break;
2270 }
2271 free(files);
2272 return (result);
2273 }
2274
2275 int
procstat_getpathname(struct procstat * procstat,struct kinfo_proc * kp,char * pathname,size_t maxlen)2276 procstat_getpathname(struct procstat *procstat, struct kinfo_proc *kp,
2277 char *pathname, size_t maxlen)
2278 {
2279 switch (procstat->type) {
2280 case PROCSTAT_KVM:
2281 /* XXX: Return empty string. */
2282 if (maxlen > 0)
2283 pathname[0] = '\0';
2284 return (0);
2285 case PROCSTAT_SYSCTL:
2286 return (procstat_getpathname_sysctl(kp->ki_pid, pathname,
2287 maxlen));
2288 case PROCSTAT_CORE:
2289 return (procstat_getpathname_core(procstat->core, pathname,
2290 maxlen));
2291 default:
2292 warnx("unknown access method: %d", procstat->type);
2293 return (-1);
2294 }
2295 }
2296
2297 static int
procstat_getosrel_kvm(kvm_t * kd,struct kinfo_proc * kp,int * osrelp)2298 procstat_getosrel_kvm(kvm_t *kd, struct kinfo_proc *kp, int *osrelp)
2299 {
2300 struct proc proc;
2301
2302 assert(kd != NULL);
2303 assert(kp != NULL);
2304 if (!kvm_read_all(kd, (unsigned long)kp->ki_paddr, &proc,
2305 sizeof(proc))) {
2306 warnx("can't read proc struct at %p for pid %d",
2307 kp->ki_paddr, kp->ki_pid);
2308 return (-1);
2309 }
2310 *osrelp = proc.p_osrel;
2311 return (0);
2312 }
2313
2314 static int
procstat_getosrel_sysctl(pid_t pid,int * osrelp)2315 procstat_getosrel_sysctl(pid_t pid, int *osrelp)
2316 {
2317 int error, name[4];
2318 size_t len;
2319
2320 name[0] = CTL_KERN;
2321 name[1] = KERN_PROC;
2322 name[2] = KERN_PROC_OSREL;
2323 name[3] = pid;
2324 len = sizeof(*osrelp);
2325 error = sysctl(name, nitems(name), osrelp, &len, NULL, 0);
2326 if (error != 0 && errno != ESRCH)
2327 warn("sysctl: kern.proc.osrel: %d", pid);
2328 return (error);
2329 }
2330
2331 static int
procstat_getosrel_core(struct procstat_core * core,int * osrelp)2332 procstat_getosrel_core(struct procstat_core *core, int *osrelp)
2333 {
2334 size_t len;
2335 int *buf;
2336
2337 buf = procstat_core_get(core, PSC_TYPE_OSREL, NULL, &len);
2338 if (buf == NULL)
2339 return (-1);
2340 if (len < sizeof(*osrelp)) {
2341 free(buf);
2342 return (-1);
2343 }
2344 *osrelp = *buf;
2345 free(buf);
2346 return (0);
2347 }
2348
2349 int
procstat_getosrel(struct procstat * procstat,struct kinfo_proc * kp,int * osrelp)2350 procstat_getosrel(struct procstat *procstat, struct kinfo_proc *kp, int *osrelp)
2351 {
2352 switch (procstat->type) {
2353 case PROCSTAT_KVM:
2354 return (procstat_getosrel_kvm(procstat->kd, kp, osrelp));
2355 case PROCSTAT_SYSCTL:
2356 return (procstat_getosrel_sysctl(kp->ki_pid, osrelp));
2357 case PROCSTAT_CORE:
2358 return (procstat_getosrel_core(procstat->core, osrelp));
2359 default:
2360 warnx("unknown access method: %d", procstat->type);
2361 return (-1);
2362 }
2363 }
2364
2365 #define PROC_AUXV_MAX 256
2366
2367 #ifdef PS_ARCH_HAS_FREEBSD32
2368 static const char *elf32_sv_names[] = {
2369 "Linux ELF32",
2370 "FreeBSD ELF32",
2371 };
2372
2373 static int
is_elf32_sysctl(pid_t pid)2374 is_elf32_sysctl(pid_t pid)
2375 {
2376 int error, name[4];
2377 size_t len, i;
2378 char sv_name[32];
2379
2380 name[0] = CTL_KERN;
2381 name[1] = KERN_PROC;
2382 name[2] = KERN_PROC_SV_NAME;
2383 name[3] = pid;
2384 len = sizeof(sv_name);
2385 error = sysctl(name, nitems(name), sv_name, &len, NULL, 0);
2386 if (error != 0 || len == 0)
2387 return (0);
2388 for (i = 0; i < sizeof(elf32_sv_names) / sizeof(*elf32_sv_names); i++) {
2389 if (strncmp(sv_name, elf32_sv_names[i], sizeof(sv_name)) == 0)
2390 return (1);
2391 }
2392 return (0);
2393 }
2394
2395 static Elf_Auxinfo *
procstat_getauxv32_sysctl(pid_t pid,unsigned int * cntp)2396 procstat_getauxv32_sysctl(pid_t pid, unsigned int *cntp)
2397 {
2398 Elf_Auxinfo *auxv;
2399 Elf32_Auxinfo *auxv32;
2400 size_t len;
2401 unsigned int i, count;
2402 int name[4];
2403
2404 name[0] = CTL_KERN;
2405 name[1] = KERN_PROC;
2406 name[2] = KERN_PROC_AUXV;
2407 name[3] = pid;
2408 len = PROC_AUXV_MAX * sizeof(Elf32_Auxinfo);
2409 auxv = NULL;
2410 auxv32 = malloc(len);
2411 if (auxv32 == NULL) {
2412 warn("malloc(%zu)", len);
2413 goto out;
2414 }
2415 if (sysctl(name, nitems(name), auxv32, &len, NULL, 0) == -1) {
2416 if (errno != ESRCH && errno != EPERM)
2417 warn("sysctl: kern.proc.auxv: %d: %d", pid, errno);
2418 goto out;
2419 }
2420 count = len / sizeof(Elf32_Auxinfo);
2421 auxv = malloc(count * sizeof(Elf_Auxinfo));
2422 if (auxv == NULL) {
2423 warn("malloc(%zu)", count * sizeof(Elf_Auxinfo));
2424 goto out;
2425 }
2426 for (i = 0; i < count; i++) {
2427 /*
2428 * XXX: We expect that values for a_type on a 32-bit platform
2429 * are directly mapped to values on 64-bit one, which is not
2430 * necessarily true.
2431 */
2432 auxv[i].a_type = auxv32[i].a_type;
2433 /*
2434 * Don't sign extend values. Existing entries are positive
2435 * integers or pointers. Under freebsd32, programs typically
2436 * have a full [0, 2^32) address space (perhaps minus the last
2437 * page) and treating this as a signed integer would be
2438 * confusing since these are not kernel pointers.
2439 *
2440 * XXX: A more complete translation would be ABI and
2441 * type-aware.
2442 */
2443 auxv[i].a_un.a_val = (uint32_t)auxv32[i].a_un.a_val;
2444 }
2445 *cntp = count;
2446 out:
2447 free(auxv32);
2448 return (auxv);
2449 }
2450 #endif /* PS_ARCH_HAS_FREEBSD32 */
2451
2452 static Elf_Auxinfo *
procstat_getauxv_sysctl(pid_t pid,unsigned int * cntp)2453 procstat_getauxv_sysctl(pid_t pid, unsigned int *cntp)
2454 {
2455 Elf_Auxinfo *auxv;
2456 int name[4];
2457 size_t len;
2458
2459 #ifdef PS_ARCH_HAS_FREEBSD32
2460 if (is_elf32_sysctl(pid))
2461 return (procstat_getauxv32_sysctl(pid, cntp));
2462 #endif
2463 name[0] = CTL_KERN;
2464 name[1] = KERN_PROC;
2465 name[2] = KERN_PROC_AUXV;
2466 name[3] = pid;
2467 len = PROC_AUXV_MAX * sizeof(Elf_Auxinfo);
2468 auxv = malloc(len);
2469 if (auxv == NULL) {
2470 warn("malloc(%zu)", len);
2471 return (NULL);
2472 }
2473 if (sysctl(name, nitems(name), auxv, &len, NULL, 0) == -1) {
2474 if (errno != ESRCH && errno != EPERM)
2475 warn("sysctl: kern.proc.auxv: %d: %d", pid, errno);
2476 free(auxv);
2477 return (NULL);
2478 }
2479 *cntp = len / sizeof(Elf_Auxinfo);
2480 return (auxv);
2481 }
2482
2483 static Elf_Auxinfo *
procstat_getauxv_core(struct procstat_core * core,unsigned int * cntp)2484 procstat_getauxv_core(struct procstat_core *core, unsigned int *cntp)
2485 {
2486 Elf_Auxinfo *auxv;
2487 size_t len;
2488
2489 auxv = procstat_core_get(core, PSC_TYPE_AUXV, NULL, &len);
2490 if (auxv == NULL)
2491 return (NULL);
2492 *cntp = len / sizeof(Elf_Auxinfo);
2493 return (auxv);
2494 }
2495
2496 Elf_Auxinfo *
procstat_getauxv(struct procstat * procstat,struct kinfo_proc * kp,unsigned int * cntp)2497 procstat_getauxv(struct procstat *procstat, struct kinfo_proc *kp,
2498 unsigned int *cntp)
2499 {
2500 switch (procstat->type) {
2501 case PROCSTAT_KVM:
2502 warnx("kvm method is not supported");
2503 return (NULL);
2504 case PROCSTAT_SYSCTL:
2505 return (procstat_getauxv_sysctl(kp->ki_pid, cntp));
2506 case PROCSTAT_CORE:
2507 return (procstat_getauxv_core(procstat->core, cntp));
2508 default:
2509 warnx("unknown access method: %d", procstat->type);
2510 return (NULL);
2511 }
2512 }
2513
2514 void
procstat_freeauxv(struct procstat * procstat __unused,Elf_Auxinfo * auxv)2515 procstat_freeauxv(struct procstat *procstat __unused, Elf_Auxinfo *auxv)
2516 {
2517
2518 free(auxv);
2519 }
2520
2521 static struct ptrace_lwpinfo *
procstat_getptlwpinfo_core(struct procstat_core * core,unsigned int * cntp)2522 procstat_getptlwpinfo_core(struct procstat_core *core, unsigned int *cntp)
2523 {
2524 void *buf;
2525 struct ptrace_lwpinfo *pl;
2526 unsigned int cnt;
2527 size_t len;
2528
2529 cnt = procstat_core_note_count(core, PSC_TYPE_PTLWPINFO);
2530 if (cnt == 0)
2531 return (NULL);
2532
2533 len = cnt * sizeof(*pl);
2534 buf = calloc(1, len);
2535 pl = procstat_core_get(core, PSC_TYPE_PTLWPINFO, buf, &len);
2536 if (pl == NULL) {
2537 free(buf);
2538 return (NULL);
2539 }
2540 *cntp = len / sizeof(*pl);
2541 return (pl);
2542 }
2543
2544 struct ptrace_lwpinfo *
procstat_getptlwpinfo(struct procstat * procstat,unsigned int * cntp)2545 procstat_getptlwpinfo(struct procstat *procstat, unsigned int *cntp)
2546 {
2547 switch (procstat->type) {
2548 case PROCSTAT_KVM:
2549 warnx("kvm method is not supported");
2550 return (NULL);
2551 case PROCSTAT_SYSCTL:
2552 warnx("sysctl method is not supported");
2553 return (NULL);
2554 case PROCSTAT_CORE:
2555 return (procstat_getptlwpinfo_core(procstat->core, cntp));
2556 default:
2557 warnx("unknown access method: %d", procstat->type);
2558 return (NULL);
2559 }
2560 }
2561
2562 void
procstat_freeptlwpinfo(struct procstat * procstat __unused,struct ptrace_lwpinfo * pl)2563 procstat_freeptlwpinfo(struct procstat *procstat __unused,
2564 struct ptrace_lwpinfo *pl)
2565 {
2566 free(pl);
2567 }
2568
2569 static struct kinfo_kstack *
procstat_getkstack_sysctl(pid_t pid,int * cntp)2570 procstat_getkstack_sysctl(pid_t pid, int *cntp)
2571 {
2572 struct kinfo_kstack *kkstp;
2573 int error, name[4];
2574 size_t len;
2575
2576 name[0] = CTL_KERN;
2577 name[1] = KERN_PROC;
2578 name[2] = KERN_PROC_KSTACK;
2579 name[3] = pid;
2580
2581 len = 0;
2582 error = sysctl(name, nitems(name), NULL, &len, NULL, 0);
2583 if (error < 0 && errno != ESRCH && errno != EPERM && errno != ENOENT) {
2584 warn("sysctl: kern.proc.kstack: %d", pid);
2585 return (NULL);
2586 }
2587 if (error == -1 && errno == ENOENT) {
2588 warnx("sysctl: kern.proc.kstack unavailable"
2589 " (options DDB or options STACK required in kernel)");
2590 return (NULL);
2591 }
2592 if (error == -1)
2593 return (NULL);
2594 kkstp = malloc(len);
2595 if (kkstp == NULL) {
2596 warn("malloc(%zu)", len);
2597 return (NULL);
2598 }
2599 if (sysctl(name, nitems(name), kkstp, &len, NULL, 0) == -1 &&
2600 errno != ENOMEM) {
2601 warn("sysctl: kern.proc.pid: %d", pid);
2602 free(kkstp);
2603 return (NULL);
2604 }
2605 *cntp = len / sizeof(*kkstp);
2606
2607 return (kkstp);
2608 }
2609
2610 struct kinfo_kstack *
procstat_getkstack(struct procstat * procstat,struct kinfo_proc * kp,unsigned int * cntp)2611 procstat_getkstack(struct procstat *procstat, struct kinfo_proc *kp,
2612 unsigned int *cntp)
2613 {
2614 switch (procstat->type) {
2615 case PROCSTAT_KVM:
2616 warnx("kvm method is not supported");
2617 return (NULL);
2618 case PROCSTAT_SYSCTL:
2619 return (procstat_getkstack_sysctl(kp->ki_pid, cntp));
2620 case PROCSTAT_CORE:
2621 warnx("core method is not supported");
2622 return (NULL);
2623 default:
2624 warnx("unknown access method: %d", procstat->type);
2625 return (NULL);
2626 }
2627 }
2628
2629 void
procstat_freekstack(struct procstat * procstat __unused,struct kinfo_kstack * kkstp)2630 procstat_freekstack(struct procstat *procstat __unused,
2631 struct kinfo_kstack *kkstp)
2632 {
2633
2634 free(kkstp);
2635 }
2636
2637 static struct advlock_list *
procstat_getadvlock_sysctl(struct procstat * procstat __unused)2638 procstat_getadvlock_sysctl(struct procstat *procstat __unused)
2639 {
2640 struct advlock_list *res;
2641 struct advlock *a;
2642 void *buf;
2643 char *c;
2644 struct kinfo_lockf *kl;
2645 size_t buf_len;
2646 int error;
2647 static const int kl_name[] = { CTL_KERN, KERN_LOCKF };
2648
2649 res = malloc(sizeof(*res));
2650 if (res == NULL)
2651 return (NULL);
2652 STAILQ_INIT(res);
2653 buf = NULL;
2654
2655 buf_len = 0;
2656 error = sysctl(kl_name, nitems(kl_name), NULL, &buf_len, NULL, 0);
2657 if (error != 0) {
2658 warn("sysctl KERN_LOCKF size");
2659 goto fail;
2660 }
2661 buf_len *= 2;
2662 buf = malloc(buf_len);
2663 if (buf == NULL) {
2664 warn("malloc");
2665 goto fail;
2666 }
2667 error = sysctl(kl_name, nitems(kl_name), buf, &buf_len, NULL, 0);
2668 if (error != 0) {
2669 warn("sysctl KERN_LOCKF data");
2670 goto fail;
2671 }
2672
2673 for (c = buf; (char *)c < (char *)buf + buf_len;
2674 c += kl->kl_structsize) {
2675 kl = (struct kinfo_lockf *)(void *)c;
2676 if (sizeof(*kl) < (size_t)kl->kl_structsize) {
2677 warn("ABI broken");
2678 goto fail;
2679 }
2680 a = malloc(sizeof(*a));
2681 if (a == NULL) {
2682 warn("malloc advlock");
2683 goto fail;
2684 }
2685 switch (kl->kl_rw) {
2686 case KLOCKF_RW_READ:
2687 a->rw = PS_ADVLOCK_RO;
2688 break;
2689 case KLOCKF_RW_WRITE:
2690 a->rw = PS_ADVLOCK_RW;
2691 break;
2692 default:
2693 warn("ABI broken");
2694 free(a);
2695 goto fail;
2696 }
2697 switch (kl->kl_type) {
2698 case KLOCKF_TYPE_FLOCK:
2699 a->type = PS_ADVLOCK_TYPE_FLOCK;
2700 break;
2701 case KLOCKF_TYPE_PID:
2702 a->type = PS_ADVLOCK_TYPE_PID;
2703 break;
2704 case KLOCKF_TYPE_REMOTE:
2705 a->type = PS_ADVLOCK_TYPE_REMOTE;
2706 break;
2707 default:
2708 warn("ABI broken");
2709 free(a);
2710 goto fail;
2711 }
2712 a->pid = kl->kl_pid;
2713 a->sysid = kl->kl_sysid;
2714 a->file_fsid = kl->kl_file_fsid;
2715 a->file_rdev = kl->kl_file_rdev;
2716 a->file_fileid = kl->kl_file_fileid;
2717 a->start = kl->kl_start;
2718 a->len = kl->kl_len;
2719 if (kl->kl_path[0] != '\0') {
2720 a->path = strdup(kl->kl_path);
2721 if (a->path == NULL) {
2722 warn("malloc");
2723 free(a);
2724 goto fail;
2725 }
2726 } else
2727 a->path = NULL;
2728 STAILQ_INSERT_TAIL(res, a, next);
2729 }
2730
2731 free(buf);
2732 return (res);
2733
2734 fail:
2735 free(buf);
2736 procstat_freeadvlock(procstat, res);
2737 return (NULL);
2738 }
2739
2740 struct advlock_list *
procstat_getadvlock(struct procstat * procstat)2741 procstat_getadvlock(struct procstat *procstat)
2742 {
2743 switch (procstat->type) {
2744 case PROCSTAT_KVM:
2745 warnx("kvm method is not supported");
2746 return (NULL);
2747 case PROCSTAT_SYSCTL:
2748 return (procstat_getadvlock_sysctl(procstat));
2749 case PROCSTAT_CORE:
2750 warnx("core method is not supported");
2751 return (NULL);
2752 default:
2753 warnx("unknown access method: %d", procstat->type);
2754 return (NULL);
2755 }
2756 }
2757
2758 void
procstat_freeadvlock(struct procstat * procstat __unused,struct advlock_list * lst)2759 procstat_freeadvlock(struct procstat *procstat __unused,
2760 struct advlock_list *lst)
2761 {
2762 struct advlock *a, *a1;
2763
2764 STAILQ_FOREACH_SAFE(a, lst, next, a1) {
2765 free(__DECONST(char *, a->path));
2766 free(a);
2767 }
2768 free(lst);
2769 }
2770
2771 static rlim_t *
procstat_getrlimitusage_sysctl(pid_t pid,unsigned * cntp)2772 procstat_getrlimitusage_sysctl(pid_t pid, unsigned *cntp)
2773 {
2774 int error, name[4];
2775 rlim_t *val;
2776 size_t len;
2777
2778 name[0] = CTL_KERN;
2779 name[1] = KERN_PROC;
2780 name[2] = KERN_PROC_RLIMIT_USAGE;
2781 name[3] = pid;
2782
2783 len = 0;
2784 error = sysctl(name, nitems(name), NULL, &len, NULL, 0);
2785 if (error == -1)
2786 return (NULL);
2787 val = malloc(len);
2788 if (val == NULL)
2789 return (NULL);
2790
2791 error = sysctl(name, nitems(name), val, &len, NULL, 0);
2792 if (error == -1) {
2793 free(val);
2794 return (NULL);
2795 }
2796 *cntp = len / sizeof(rlim_t);
2797 return (val);
2798 }
2799
2800 rlim_t *
procstat_getrlimitusage(struct procstat * procstat,struct kinfo_proc * kp,unsigned int * cntp)2801 procstat_getrlimitusage(struct procstat *procstat, struct kinfo_proc *kp,
2802 unsigned int *cntp)
2803 {
2804 switch (procstat->type) {
2805 case PROCSTAT_KVM:
2806 warnx("kvm method is not supported");
2807 return (NULL);
2808 case PROCSTAT_SYSCTL:
2809 return (procstat_getrlimitusage_sysctl(kp->ki_pid, cntp));
2810 case PROCSTAT_CORE:
2811 warnx("core method is not supported");
2812 return (NULL);
2813 default:
2814 warnx("unknown access method: %d", procstat->type);
2815 return (NULL);
2816 }
2817 }
2818
2819 void
procstat_freerlimitusage(struct procstat * procstat __unused,rlim_t * resusage)2820 procstat_freerlimitusage(struct procstat *procstat __unused, rlim_t *resusage)
2821 {
2822 free(resusage);
2823 }
2824
2825 static struct kinfo_knote *
procstat_get_kqueue_info_sysctl(pid_t pid,int kqfd,unsigned int * cntp,char * errbuf)2826 procstat_get_kqueue_info_sysctl(pid_t pid, int kqfd, unsigned int *cntp,
2827 char *errbuf)
2828 {
2829 int error, name[5];
2830 struct kinfo_knote *val;
2831 size_t len;
2832
2833 name[0] = CTL_KERN;
2834 name[1] = KERN_PROC;
2835 name[2] = KERN_PROC_KQUEUE;
2836 name[3] = pid;
2837 name[4] = kqfd;
2838
2839 len = 0;
2840 error = sysctl(name, nitems(name), NULL, &len, NULL, 0);
2841 if (error == -1) {
2842 snprintf(errbuf, _POSIX2_LINE_MAX,
2843 "KERN_PROC_KQUEUE.pid<%d>.kq<%d> (size q) failed: %s",
2844 pid, kqfd, strerror(errno));
2845 return (NULL);
2846 }
2847 val = malloc(len);
2848 if (val == NULL) {
2849 snprintf(errbuf, _POSIX2_LINE_MAX, "no memory");
2850 return (NULL);
2851 }
2852
2853 error = sysctl(name, nitems(name), val, &len, NULL, 0);
2854 if (error == -1) {
2855 snprintf(errbuf, _POSIX2_LINE_MAX,
2856 "KERN_PROC_KQUEUE.pid<%d>.kq<%d> failed: %s",
2857 pid, kqfd, strerror(errno));
2858 free(val);
2859 return (NULL);
2860 }
2861 *cntp = len / sizeof(*val);
2862 return (val);
2863 }
2864
2865 struct kinfo_knote *
procstat_get_kqueue_info(struct procstat * procstat,struct kinfo_proc * kp,int kqfd,unsigned int * count,char * errbuf)2866 procstat_get_kqueue_info(struct procstat *procstat,
2867 struct kinfo_proc *kp, int kqfd, unsigned int *count, char *errbuf)
2868 {
2869 struct kinfo_knote *kn, *k, *res, *rn;
2870 size_t len, kqn;
2871
2872 switch (procstat->type) {
2873 case PROCSTAT_KVM:
2874 warnx("kvm method is not supported");
2875 return (NULL);
2876 case PROCSTAT_SYSCTL:
2877 return (procstat_get_kqueue_info_sysctl(kp->ki_pid, kqfd,
2878 count, errbuf));
2879 case PROCSTAT_CORE:
2880 k = procstat_core_get(procstat->core, PSC_TYPE_KQUEUES,
2881 NULL, &len);
2882 if (k == NULL) {
2883 snprintf(errbuf, _POSIX2_LINE_MAX,
2884 "getting NT_PROCSTAT_KQUEUES note failed");
2885 *count = 0;
2886 return (NULL);
2887 }
2888 for (kqn = 0, kn = k; kn < k + len / sizeof(*kn); kn++) {
2889 if (kn->knt_kq_fd == kqfd)
2890 kqn++;
2891 }
2892 res = calloc(kqn, sizeof(*res));
2893 if (res == NULL) {
2894 free(k);
2895 snprintf(errbuf, _POSIX2_LINE_MAX,
2896 "no memory");
2897 return (NULL);
2898 }
2899 for (kn = k, rn = res; kn < k + len / sizeof(*kn); kn++) {
2900 if (kn->knt_kq_fd != kqfd)
2901 continue;
2902 *rn = *kn;
2903 rn++;
2904 }
2905 *count = kqn;
2906 free(k);
2907 return (res);
2908 default:
2909 warnx("unknown access method: %d", procstat->type);
2910 return (NULL);
2911 }
2912 }
2913
2914 void
procstat_freekqinfo(struct procstat * procstat __unused,struct kinfo_knote * v)2915 procstat_freekqinfo(struct procstat *procstat __unused, struct kinfo_knote *v)
2916 {
2917 free(v);
2918 }
2919