1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * drivers/net/phy/micrel.c
4 *
5 * Driver for Micrel PHYs
6 *
7 * Author: David J. Choi
8 *
9 * Copyright (c) 2010-2013 Micrel, Inc.
10 * Copyright (c) 2014 Johan Hovold <johan@kernel.org>
11 *
12 * Support : Micrel Phys:
13 * Giga phys: ksz9021, ksz9031, ksz9131, lan8841, lan8814
14 * 100/10 Phys : ksz8001, ksz8721, ksz8737, ksz8041
15 * ksz8021, ksz8031, ksz8051,
16 * ksz8081, ksz8091,
17 * ksz8061,
18 * Switch : ksz8873, ksz886x
19 * ksz9477, lan8804
20 */
21
22 #include <linux/bitfield.h>
23 #include <linux/ethtool_netlink.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/phy.h>
27 #include <linux/micrel_phy.h>
28 #include <linux/of.h>
29 #include <linux/clk.h>
30 #include <linux/delay.h>
31 #include <linux/ptp_clock_kernel.h>
32 #include <linux/ptp_clock.h>
33 #include <linux/ptp_classify.h>
34 #include <linux/net_tstamp.h>
35 #include <linux/gpio/consumer.h>
36
37 #include "phylib.h"
38
39 /* Operation Mode Strap Override */
40 #define MII_KSZPHY_OMSO 0x16
41 #define KSZPHY_OMSO_FACTORY_TEST BIT(15)
42 #define KSZPHY_OMSO_B_CAST_OFF BIT(9)
43 #define KSZPHY_OMSO_NAND_TREE_ON BIT(5)
44 #define KSZPHY_OMSO_RMII_OVERRIDE BIT(1)
45 #define KSZPHY_OMSO_MII_OVERRIDE BIT(0)
46
47 /* general Interrupt control/status reg in vendor specific block. */
48 #define MII_KSZPHY_INTCS 0x1B
49 #define KSZPHY_INTCS_JABBER BIT(15)
50 #define KSZPHY_INTCS_RECEIVE_ERR BIT(14)
51 #define KSZPHY_INTCS_PAGE_RECEIVE BIT(13)
52 #define KSZPHY_INTCS_PARELLEL BIT(12)
53 #define KSZPHY_INTCS_LINK_PARTNER_ACK BIT(11)
54 #define KSZPHY_INTCS_LINK_DOWN BIT(10)
55 #define KSZPHY_INTCS_REMOTE_FAULT BIT(9)
56 #define KSZPHY_INTCS_LINK_UP BIT(8)
57 #define KSZPHY_INTCS_ALL (KSZPHY_INTCS_LINK_UP |\
58 KSZPHY_INTCS_LINK_DOWN)
59 #define KSZPHY_INTCS_LINK_DOWN_STATUS BIT(2)
60 #define KSZPHY_INTCS_LINK_UP_STATUS BIT(0)
61 #define KSZPHY_INTCS_STATUS (KSZPHY_INTCS_LINK_DOWN_STATUS |\
62 KSZPHY_INTCS_LINK_UP_STATUS)
63
64 /* LinkMD Control/Status */
65 #define KSZ8081_LMD 0x1d
66 #define KSZ8081_LMD_ENABLE_TEST BIT(15)
67 #define KSZ8081_LMD_STAT_NORMAL 0
68 #define KSZ8081_LMD_STAT_OPEN 1
69 #define KSZ8081_LMD_STAT_SHORT 2
70 #define KSZ8081_LMD_STAT_FAIL 3
71 #define KSZ8081_LMD_STAT_MASK GENMASK(14, 13)
72 /* Short cable (<10 meter) has been detected by LinkMD */
73 #define KSZ8081_LMD_SHORT_INDICATOR BIT(12)
74 #define KSZ8081_LMD_DELTA_TIME_MASK GENMASK(8, 0)
75
76 #define KSZ9x31_LMD 0x12
77 #define KSZ9x31_LMD_VCT_EN BIT(15)
78 #define KSZ9x31_LMD_VCT_DIS_TX BIT(14)
79 #define KSZ9x31_LMD_VCT_PAIR(n) (((n) & 0x3) << 12)
80 #define KSZ9x31_LMD_VCT_SEL_RESULT 0
81 #define KSZ9x31_LMD_VCT_SEL_THRES_HI BIT(10)
82 #define KSZ9x31_LMD_VCT_SEL_THRES_LO BIT(11)
83 #define KSZ9x31_LMD_VCT_SEL_MASK GENMASK(11, 10)
84 #define KSZ9x31_LMD_VCT_ST_NORMAL 0
85 #define KSZ9x31_LMD_VCT_ST_OPEN 1
86 #define KSZ9x31_LMD_VCT_ST_SHORT 2
87 #define KSZ9x31_LMD_VCT_ST_FAIL 3
88 #define KSZ9x31_LMD_VCT_ST_MASK GENMASK(9, 8)
89 #define KSZ9x31_LMD_VCT_DATA_REFLECTED_INVALID BIT(7)
90 #define KSZ9x31_LMD_VCT_DATA_SIG_WAIT_TOO_LONG BIT(6)
91 #define KSZ9x31_LMD_VCT_DATA_MASK100 BIT(5)
92 #define KSZ9x31_LMD_VCT_DATA_NLP_FLP BIT(4)
93 #define KSZ9x31_LMD_VCT_DATA_LO_PULSE_MASK GENMASK(3, 2)
94 #define KSZ9x31_LMD_VCT_DATA_HI_PULSE_MASK GENMASK(1, 0)
95 #define KSZ9x31_LMD_VCT_DATA_MASK GENMASK(7, 0)
96
97 #define KSZPHY_WIRE_PAIR_MASK 0x3
98
99 #define LAN8814_CABLE_DIAG 0x12
100 #define LAN8814_CABLE_DIAG_STAT_MASK GENMASK(9, 8)
101 #define LAN8814_CABLE_DIAG_VCT_DATA_MASK GENMASK(7, 0)
102 #define LAN8814_PAIR_BIT_SHIFT 12
103
104 #define LAN8814_WIRE_PAIR_MASK 0xF
105
106 /* Lan8814 general Interrupt control/status reg in GPHY specific block. */
107 #define LAN8814_INTC 0x18
108 #define LAN8814_INTS 0x1B
109
110 #define LAN8814_INT_LINK_DOWN BIT(2)
111 #define LAN8814_INT_LINK_UP BIT(0)
112 #define LAN8814_INT_LINK (LAN8814_INT_LINK_UP |\
113 LAN8814_INT_LINK_DOWN)
114
115 #define LAN8814_INTR_CTRL_REG 0x34
116 #define LAN8814_INTR_CTRL_REG_POLARITY BIT(1)
117 #define LAN8814_INTR_CTRL_REG_INTR_ENABLE BIT(0)
118
119 #define LAN8814_EEE_STATE 0x38
120 #define LAN8814_EEE_STATE_MASK2P5P BIT(10)
121
122 #define LAN8814_PD_CONTROLS 0x9d
123 #define LAN8814_PD_CONTROLS_PD_MEAS_TIME_MASK GENMASK(3, 0)
124 #define LAN8814_PD_CONTROLS_PD_MEAS_TIME_VAL 0xb
125
126 /* Represents 1ppm adjustment in 2^32 format with
127 * each nsec contains 4 clock cycles.
128 * The value is calculated as following: (1/1000000)/((2^-32)/4)
129 */
130 #define LAN8814_1PPM_FORMAT 17179
131
132 /* Represents 1ppm adjustment in 2^32 format with
133 * each nsec contains 8 clock cycles.
134 * The value is calculated as following: (1/1000000)/((2^-32)/8)
135 */
136 #define LAN8841_1PPM_FORMAT 34360
137
138 #define PTP_RX_VERSION 0x0248
139 #define PTP_TX_VERSION 0x0288
140 #define PTP_MAX_VERSION(x) (((x) & GENMASK(7, 0)) << 8)
141 #define PTP_MIN_VERSION(x) ((x) & GENMASK(7, 0))
142
143 #define PTP_RX_MOD 0x024F
144 #define PTP_RX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_ BIT(3)
145 #define PTP_RX_TIMESTAMP_EN 0x024D
146 #define PTP_TX_TIMESTAMP_EN 0x028D
147
148 #define PTP_TIMESTAMP_EN_SYNC_ BIT(0)
149 #define PTP_TIMESTAMP_EN_DREQ_ BIT(1)
150 #define PTP_TIMESTAMP_EN_PDREQ_ BIT(2)
151 #define PTP_TIMESTAMP_EN_PDRES_ BIT(3)
152
153 #define PTP_TX_PARSE_L2_ADDR_EN 0x0284
154 #define PTP_RX_PARSE_L2_ADDR_EN 0x0244
155
156 #define PTP_TX_PARSE_IP_ADDR_EN 0x0285
157 #define PTP_RX_PARSE_IP_ADDR_EN 0x0245
158 #define LTC_HARD_RESET 0x023F
159 #define LTC_HARD_RESET_ BIT(0)
160
161 #define TSU_HARD_RESET 0x02C1
162 #define TSU_HARD_RESET_ BIT(0)
163
164 #define PTP_CMD_CTL 0x0200
165 #define PTP_CMD_CTL_PTP_DISABLE_ BIT(0)
166 #define PTP_CMD_CTL_PTP_ENABLE_ BIT(1)
167 #define PTP_CMD_CTL_PTP_CLOCK_READ_ BIT(3)
168 #define PTP_CMD_CTL_PTP_CLOCK_LOAD_ BIT(4)
169 #define PTP_CMD_CTL_PTP_LTC_STEP_SEC_ BIT(5)
170 #define PTP_CMD_CTL_PTP_LTC_STEP_NSEC_ BIT(6)
171
172 #define PTP_COMMON_INT_ENA 0x0204
173 #define PTP_COMMON_INT_ENA_GPIO_CAP_EN BIT(2)
174
175 #define PTP_CLOCK_SET_SEC_HI 0x0205
176 #define PTP_CLOCK_SET_SEC_MID 0x0206
177 #define PTP_CLOCK_SET_SEC_LO 0x0207
178 #define PTP_CLOCK_SET_NS_HI 0x0208
179 #define PTP_CLOCK_SET_NS_LO 0x0209
180
181 #define PTP_CLOCK_READ_SEC_HI 0x0229
182 #define PTP_CLOCK_READ_SEC_MID 0x022A
183 #define PTP_CLOCK_READ_SEC_LO 0x022B
184 #define PTP_CLOCK_READ_NS_HI 0x022C
185 #define PTP_CLOCK_READ_NS_LO 0x022D
186
187 #define PTP_GPIO_SEL 0x0230
188 #define PTP_GPIO_SEL_GPIO_SEL(pin) ((pin) << 8)
189 #define PTP_GPIO_CAP_MAP_LO 0x0232
190
191 #define PTP_GPIO_CAP_EN 0x0233
192 #define PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(gpio) BIT(gpio)
193 #define PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(gpio) (BIT(gpio) << 8)
194
195 #define PTP_GPIO_RE_LTC_SEC_HI_CAP 0x0235
196 #define PTP_GPIO_RE_LTC_SEC_LO_CAP 0x0236
197 #define PTP_GPIO_RE_LTC_NS_HI_CAP 0x0237
198 #define PTP_GPIO_RE_LTC_NS_LO_CAP 0x0238
199 #define PTP_GPIO_FE_LTC_SEC_HI_CAP 0x0239
200 #define PTP_GPIO_FE_LTC_SEC_LO_CAP 0x023A
201 #define PTP_GPIO_FE_LTC_NS_HI_CAP 0x023B
202 #define PTP_GPIO_FE_LTC_NS_LO_CAP 0x023C
203
204 #define PTP_GPIO_CAP_STS 0x023D
205 #define PTP_GPIO_CAP_STS_PTP_GPIO_RE_STS(gpio) BIT(gpio)
206 #define PTP_GPIO_CAP_STS_PTP_GPIO_FE_STS(gpio) (BIT(gpio) << 8)
207
208 #define PTP_OPERATING_MODE 0x0241
209 #define PTP_OPERATING_MODE_STANDALONE_ BIT(0)
210
211 #define PTP_TX_MOD 0x028F
212 #define PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_ BIT(12)
213 #define PTP_TX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_ BIT(3)
214
215 #define PTP_RX_PARSE_CONFIG 0x0242
216 #define PTP_RX_PARSE_CONFIG_LAYER2_EN_ BIT(0)
217 #define PTP_RX_PARSE_CONFIG_IPV4_EN_ BIT(1)
218 #define PTP_RX_PARSE_CONFIG_IPV6_EN_ BIT(2)
219
220 #define PTP_TX_PARSE_CONFIG 0x0282
221 #define PTP_TX_PARSE_CONFIG_LAYER2_EN_ BIT(0)
222 #define PTP_TX_PARSE_CONFIG_IPV4_EN_ BIT(1)
223 #define PTP_TX_PARSE_CONFIG_IPV6_EN_ BIT(2)
224
225 #define PTP_CLOCK_RATE_ADJ_HI 0x020C
226 #define PTP_CLOCK_RATE_ADJ_LO 0x020D
227 #define PTP_CLOCK_RATE_ADJ_DIR_ BIT(15)
228
229 #define PTP_LTC_STEP_ADJ_HI 0x0212
230 #define PTP_LTC_STEP_ADJ_LO 0x0213
231 #define PTP_LTC_STEP_ADJ_DIR_ BIT(15)
232
233 #define LAN8814_INTR_STS_REG 0x0033
234 #define LAN8814_INTR_STS_REG_1588_TSU0_ BIT(0)
235 #define LAN8814_INTR_STS_REG_1588_TSU1_ BIT(1)
236 #define LAN8814_INTR_STS_REG_1588_TSU2_ BIT(2)
237 #define LAN8814_INTR_STS_REG_1588_TSU3_ BIT(3)
238
239 #define PTP_CAP_INFO 0x022A
240 #define PTP_CAP_INFO_TX_TS_CNT_GET_(reg_val) (((reg_val) & 0x0f00) >> 8)
241 #define PTP_CAP_INFO_RX_TS_CNT_GET_(reg_val) ((reg_val) & 0x000f)
242
243 #define PTP_TX_EGRESS_SEC_HI 0x0296
244 #define PTP_TX_EGRESS_SEC_LO 0x0297
245 #define PTP_TX_EGRESS_NS_HI 0x0294
246 #define PTP_TX_EGRESS_NS_LO 0x0295
247 #define PTP_TX_MSG_HEADER2 0x0299
248
249 #define PTP_RX_INGRESS_SEC_HI 0x0256
250 #define PTP_RX_INGRESS_SEC_LO 0x0257
251 #define PTP_RX_INGRESS_NS_HI 0x0254
252 #define PTP_RX_INGRESS_NS_LO 0x0255
253 #define PTP_RX_MSG_HEADER2 0x0259
254
255 #define PTP_TSU_INT_EN 0x0200
256 #define PTP_TSU_INT_EN_PTP_TX_TS_OVRFL_EN_ BIT(3)
257 #define PTP_TSU_INT_EN_PTP_TX_TS_EN_ BIT(2)
258 #define PTP_TSU_INT_EN_PTP_RX_TS_OVRFL_EN_ BIT(1)
259 #define PTP_TSU_INT_EN_PTP_RX_TS_EN_ BIT(0)
260
261 #define PTP_TSU_INT_STS 0x0201
262 #define PTP_TSU_INT_STS_PTP_TX_TS_OVRFL_INT_ BIT(3)
263 #define PTP_TSU_INT_STS_PTP_TX_TS_EN_ BIT(2)
264 #define PTP_TSU_INT_STS_PTP_RX_TS_OVRFL_INT_ BIT(1)
265 #define PTP_TSU_INT_STS_PTP_RX_TS_EN_ BIT(0)
266
267 #define LAN8814_LED_CTRL_1 0x0
268 #define LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_ BIT(6)
269
270 /* PHY Control 1 */
271 #define MII_KSZPHY_CTRL_1 0x1e
272 #define KSZ8081_CTRL1_MDIX_STAT BIT(4)
273
274 /* PHY Control 2 / PHY Control (if no PHY Control 1) */
275 #define MII_KSZPHY_CTRL_2 0x1f
276 #define MII_KSZPHY_CTRL MII_KSZPHY_CTRL_2
277 /* bitmap of PHY register to set interrupt mode */
278 #define KSZ8081_CTRL2_HP_MDIX BIT(15)
279 #define KSZ8081_CTRL2_MDI_MDI_X_SELECT BIT(14)
280 #define KSZ8081_CTRL2_DISABLE_AUTO_MDIX BIT(13)
281 #define KSZ8081_CTRL2_FORCE_LINK BIT(11)
282 #define KSZ8081_CTRL2_POWER_SAVING BIT(10)
283 #define KSZPHY_CTRL_INT_ACTIVE_HIGH BIT(9)
284 #define KSZPHY_RMII_REF_CLK_SEL BIT(7)
285
286 /* Write/read to/from extended registers */
287 #define MII_KSZPHY_EXTREG 0x0b
288 #define KSZPHY_EXTREG_WRITE 0x8000
289
290 #define MII_KSZPHY_EXTREG_WRITE 0x0c
291 #define MII_KSZPHY_EXTREG_READ 0x0d
292
293 /* Extended registers */
294 #define MII_KSZPHY_CLK_CONTROL_PAD_SKEW 0x104
295 #define MII_KSZPHY_RX_DATA_PAD_SKEW 0x105
296 #define MII_KSZPHY_TX_DATA_PAD_SKEW 0x106
297
298 #define PS_TO_REG 200
299 #define FIFO_SIZE 8
300
301 #define LAN8814_PTP_GPIO_NUM 24
302 #define LAN8814_PTP_PEROUT_NUM 2
303 #define LAN8814_PTP_EXTTS_NUM 3
304
305 #define LAN8814_BUFFER_TIME 2
306
307 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS 13
308 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS 12
309 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS 11
310 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS 10
311 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS 9
312 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS 8
313 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US 7
314 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US 6
315 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US 5
316 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US 4
317 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US 3
318 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US 2
319 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS 1
320 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS 0
321
322 #define LAN8814_GPIO_EN1 0x20
323 #define LAN8814_GPIO_EN2 0x21
324 #define LAN8814_GPIO_DIR1 0x22
325 #define LAN8814_GPIO_DIR2 0x23
326 #define LAN8814_GPIO_BUF1 0x24
327 #define LAN8814_GPIO_BUF2 0x25
328
329 #define LAN8814_GPIO_EN_ADDR(pin) \
330 ((pin) > 15 ? LAN8814_GPIO_EN1 : LAN8814_GPIO_EN2)
331 #define LAN8814_GPIO_EN_BIT(pin) BIT(pin)
332 #define LAN8814_GPIO_DIR_ADDR(pin) \
333 ((pin) > 15 ? LAN8814_GPIO_DIR1 : LAN8814_GPIO_DIR2)
334 #define LAN8814_GPIO_DIR_BIT(pin) BIT(pin)
335 #define LAN8814_GPIO_BUF_ADDR(pin) \
336 ((pin) > 15 ? LAN8814_GPIO_BUF1 : LAN8814_GPIO_BUF2)
337 #define LAN8814_GPIO_BUF_BIT(pin) BIT(pin)
338
339 #define LAN8814_EVENT_A 0
340 #define LAN8814_EVENT_B 1
341
342 #define LAN8814_PTP_GENERAL_CONFIG 0x0201
343 #define LAN8814_PTP_GENERAL_CONFIG_LTC_EVENT_MASK(event) \
344 ((event) ? GENMASK(11, 8) : GENMASK(7, 4))
345 #define LAN8814_PTP_GENERAL_CONFIG_LTC_EVENT_SET(event, value) \
346 (((value) & GENMASK(3, 0)) << (4 + ((event) << 2)))
347 #define LAN8814_PTP_GENERAL_CONFIG_RELOAD_ADD_X(event) \
348 ((event) ? BIT(2) : BIT(0))
349 #define LAN8814_PTP_GENERAL_CONFIG_POLARITY_X(event) \
350 ((event) ? BIT(3) : BIT(1))
351
352 #define LAN8814_PTP_CLOCK_TARGET_SEC_HI(event) ((event) ? 0x21F : 0x215)
353 #define LAN8814_PTP_CLOCK_TARGET_SEC_LO(event) ((event) ? 0x220 : 0x216)
354 #define LAN8814_PTP_CLOCK_TARGET_NS_HI(event) ((event) ? 0x221 : 0x217)
355 #define LAN8814_PTP_CLOCK_TARGET_NS_LO(event) ((event) ? 0x222 : 0x218)
356
357 #define LAN8814_PTP_CLOCK_TARGET_RELOAD_SEC_HI(event) ((event) ? 0x223 : 0x219)
358 #define LAN8814_PTP_CLOCK_TARGET_RELOAD_SEC_LO(event) ((event) ? 0x224 : 0x21A)
359 #define LAN8814_PTP_CLOCK_TARGET_RELOAD_NS_HI(event) ((event) ? 0x225 : 0x21B)
360 #define LAN8814_PTP_CLOCK_TARGET_RELOAD_NS_LO(event) ((event) ? 0x226 : 0x21C)
361
362 /* Delay used to get the second part from the LTC */
363 #define LAN8841_GET_SEC_LTC_DELAY (500 * NSEC_PER_MSEC)
364
365 struct kszphy_hw_stat {
366 const char *string;
367 u8 reg;
368 u8 bits;
369 };
370
371 static struct kszphy_hw_stat kszphy_hw_stats[] = {
372 { "phy_receive_errors", 21, 16},
373 { "phy_idle_errors", 10, 8 },
374 };
375
376 struct kszphy_type {
377 u32 led_mode_reg;
378 u16 interrupt_level_mask;
379 u16 cable_diag_reg;
380 unsigned long pair_mask;
381 u16 disable_dll_tx_bit;
382 u16 disable_dll_rx_bit;
383 u16 disable_dll_mask;
384 bool has_broadcast_disable;
385 bool has_nand_tree_disable;
386 bool has_rmii_ref_clk_sel;
387 };
388
389 /* Shared structure between the PHYs of the same package. */
390 struct lan8814_shared_priv {
391 struct phy_device *phydev;
392 struct ptp_clock *ptp_clock;
393 struct ptp_clock_info ptp_clock_info;
394 struct ptp_pin_desc *pin_config;
395
396 /* Lock for ptp_clock */
397 struct mutex shared_lock;
398 };
399
400 struct lan8814_ptp_rx_ts {
401 struct list_head list;
402 u32 seconds;
403 u32 nsec;
404 u16 seq_id;
405 };
406
407 struct kszphy_ptp_priv {
408 struct mii_timestamper mii_ts;
409 struct phy_device *phydev;
410
411 struct sk_buff_head tx_queue;
412 struct sk_buff_head rx_queue;
413
414 struct list_head rx_ts_list;
415 /* Lock for Rx ts fifo */
416 spinlock_t rx_ts_lock;
417
418 int hwts_tx_type;
419 enum hwtstamp_rx_filters rx_filter;
420 int layer;
421 int version;
422
423 struct ptp_clock *ptp_clock;
424 struct ptp_clock_info ptp_clock_info;
425 /* Lock for ptp_clock */
426 struct mutex ptp_lock;
427 struct ptp_pin_desc *pin_config;
428
429 s64 seconds;
430 /* Lock for accessing seconds */
431 spinlock_t seconds_lock;
432 };
433
434 struct kszphy_priv {
435 struct kszphy_ptp_priv ptp_priv;
436 const struct kszphy_type *type;
437 struct clk *clk;
438 int led_mode;
439 u16 vct_ctrl1000;
440 bool rmii_ref_clk_sel;
441 bool rmii_ref_clk_sel_val;
442 bool clk_enable;
443 u64 stats[ARRAY_SIZE(kszphy_hw_stats)];
444 };
445
446 static const struct kszphy_type lan8814_type = {
447 .led_mode_reg = ~LAN8814_LED_CTRL_1,
448 .cable_diag_reg = LAN8814_CABLE_DIAG,
449 .pair_mask = LAN8814_WIRE_PAIR_MASK,
450 };
451
452 static const struct kszphy_type ksz886x_type = {
453 .cable_diag_reg = KSZ8081_LMD,
454 .pair_mask = KSZPHY_WIRE_PAIR_MASK,
455 };
456
457 static const struct kszphy_type ksz8021_type = {
458 .led_mode_reg = MII_KSZPHY_CTRL_2,
459 .has_broadcast_disable = true,
460 .has_nand_tree_disable = true,
461 .has_rmii_ref_clk_sel = true,
462 };
463
464 static const struct kszphy_type ksz8041_type = {
465 .led_mode_reg = MII_KSZPHY_CTRL_1,
466 };
467
468 static const struct kszphy_type ksz8051_type = {
469 .led_mode_reg = MII_KSZPHY_CTRL_2,
470 .has_nand_tree_disable = true,
471 };
472
473 static const struct kszphy_type ksz8081_type = {
474 .led_mode_reg = MII_KSZPHY_CTRL_2,
475 .has_broadcast_disable = true,
476 .has_nand_tree_disable = true,
477 .has_rmii_ref_clk_sel = true,
478 };
479
480 static const struct kszphy_type ks8737_type = {
481 .interrupt_level_mask = BIT(14),
482 };
483
484 static const struct kszphy_type ksz9021_type = {
485 .interrupt_level_mask = BIT(14),
486 };
487
488 static const struct kszphy_type ksz9131_type = {
489 .interrupt_level_mask = BIT(14),
490 .disable_dll_tx_bit = BIT(12),
491 .disable_dll_rx_bit = BIT(12),
492 .disable_dll_mask = BIT_MASK(12),
493 };
494
495 static const struct kszphy_type lan8841_type = {
496 .disable_dll_tx_bit = BIT(14),
497 .disable_dll_rx_bit = BIT(14),
498 .disable_dll_mask = BIT_MASK(14),
499 .cable_diag_reg = LAN8814_CABLE_DIAG,
500 .pair_mask = LAN8814_WIRE_PAIR_MASK,
501 };
502
kszphy_extended_write(struct phy_device * phydev,u32 regnum,u16 val)503 static int kszphy_extended_write(struct phy_device *phydev,
504 u32 regnum, u16 val)
505 {
506 phy_write(phydev, MII_KSZPHY_EXTREG, KSZPHY_EXTREG_WRITE | regnum);
507 return phy_write(phydev, MII_KSZPHY_EXTREG_WRITE, val);
508 }
509
kszphy_extended_read(struct phy_device * phydev,u32 regnum)510 static int kszphy_extended_read(struct phy_device *phydev,
511 u32 regnum)
512 {
513 phy_write(phydev, MII_KSZPHY_EXTREG, regnum);
514 return phy_read(phydev, MII_KSZPHY_EXTREG_READ);
515 }
516
kszphy_ack_interrupt(struct phy_device * phydev)517 static int kszphy_ack_interrupt(struct phy_device *phydev)
518 {
519 /* bit[7..0] int status, which is a read and clear register. */
520 int rc;
521
522 rc = phy_read(phydev, MII_KSZPHY_INTCS);
523
524 return (rc < 0) ? rc : 0;
525 }
526
kszphy_config_intr(struct phy_device * phydev)527 static int kszphy_config_intr(struct phy_device *phydev)
528 {
529 const struct kszphy_type *type = phydev->drv->driver_data;
530 int temp, err;
531 u16 mask;
532
533 if (type && type->interrupt_level_mask)
534 mask = type->interrupt_level_mask;
535 else
536 mask = KSZPHY_CTRL_INT_ACTIVE_HIGH;
537
538 /* set the interrupt pin active low */
539 temp = phy_read(phydev, MII_KSZPHY_CTRL);
540 if (temp < 0)
541 return temp;
542 temp &= ~mask;
543 phy_write(phydev, MII_KSZPHY_CTRL, temp);
544
545 /* enable / disable interrupts */
546 if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
547 err = kszphy_ack_interrupt(phydev);
548 if (err)
549 return err;
550
551 err = phy_write(phydev, MII_KSZPHY_INTCS, KSZPHY_INTCS_ALL);
552 } else {
553 err = phy_write(phydev, MII_KSZPHY_INTCS, 0);
554 if (err)
555 return err;
556
557 err = kszphy_ack_interrupt(phydev);
558 }
559
560 return err;
561 }
562
kszphy_handle_interrupt(struct phy_device * phydev)563 static irqreturn_t kszphy_handle_interrupt(struct phy_device *phydev)
564 {
565 int irq_status;
566
567 irq_status = phy_read(phydev, MII_KSZPHY_INTCS);
568 if (irq_status < 0) {
569 phy_error(phydev);
570 return IRQ_NONE;
571 }
572
573 if (!(irq_status & KSZPHY_INTCS_STATUS))
574 return IRQ_NONE;
575
576 phy_trigger_machine(phydev);
577
578 return IRQ_HANDLED;
579 }
580
kszphy_rmii_clk_sel(struct phy_device * phydev,bool val)581 static int kszphy_rmii_clk_sel(struct phy_device *phydev, bool val)
582 {
583 int ctrl;
584
585 ctrl = phy_read(phydev, MII_KSZPHY_CTRL);
586 if (ctrl < 0)
587 return ctrl;
588
589 if (val)
590 ctrl |= KSZPHY_RMII_REF_CLK_SEL;
591 else
592 ctrl &= ~KSZPHY_RMII_REF_CLK_SEL;
593
594 return phy_write(phydev, MII_KSZPHY_CTRL, ctrl);
595 }
596
kszphy_setup_led(struct phy_device * phydev,u32 reg,int val)597 static int kszphy_setup_led(struct phy_device *phydev, u32 reg, int val)
598 {
599 int rc, temp, shift;
600
601 switch (reg) {
602 case MII_KSZPHY_CTRL_1:
603 shift = 14;
604 break;
605 case MII_KSZPHY_CTRL_2:
606 shift = 4;
607 break;
608 default:
609 return -EINVAL;
610 }
611
612 temp = phy_read(phydev, reg);
613 if (temp < 0) {
614 rc = temp;
615 goto out;
616 }
617
618 temp &= ~(3 << shift);
619 temp |= val << shift;
620 rc = phy_write(phydev, reg, temp);
621 out:
622 if (rc < 0)
623 phydev_err(phydev, "failed to set led mode\n");
624
625 return rc;
626 }
627
628 /* Disable PHY address 0 as the broadcast address, so that it can be used as a
629 * unique (non-broadcast) address on a shared bus.
630 */
kszphy_broadcast_disable(struct phy_device * phydev)631 static int kszphy_broadcast_disable(struct phy_device *phydev)
632 {
633 int ret;
634
635 ret = phy_read(phydev, MII_KSZPHY_OMSO);
636 if (ret < 0)
637 goto out;
638
639 ret = phy_write(phydev, MII_KSZPHY_OMSO, ret | KSZPHY_OMSO_B_CAST_OFF);
640 out:
641 if (ret)
642 phydev_err(phydev, "failed to disable broadcast address\n");
643
644 return ret;
645 }
646
kszphy_nand_tree_disable(struct phy_device * phydev)647 static int kszphy_nand_tree_disable(struct phy_device *phydev)
648 {
649 int ret;
650
651 ret = phy_read(phydev, MII_KSZPHY_OMSO);
652 if (ret < 0)
653 goto out;
654
655 if (!(ret & KSZPHY_OMSO_NAND_TREE_ON))
656 return 0;
657
658 ret = phy_write(phydev, MII_KSZPHY_OMSO,
659 ret & ~KSZPHY_OMSO_NAND_TREE_ON);
660 out:
661 if (ret)
662 phydev_err(phydev, "failed to disable NAND tree mode\n");
663
664 return ret;
665 }
666
667 /* Some config bits need to be set again on resume, handle them here. */
kszphy_config_reset(struct phy_device * phydev)668 static int kszphy_config_reset(struct phy_device *phydev)
669 {
670 struct kszphy_priv *priv = phydev->priv;
671 int ret;
672
673 if (priv->rmii_ref_clk_sel) {
674 ret = kszphy_rmii_clk_sel(phydev, priv->rmii_ref_clk_sel_val);
675 if (ret) {
676 phydev_err(phydev,
677 "failed to set rmii reference clock\n");
678 return ret;
679 }
680 }
681
682 if (priv->type && priv->led_mode >= 0)
683 kszphy_setup_led(phydev, priv->type->led_mode_reg, priv->led_mode);
684
685 return 0;
686 }
687
kszphy_config_init(struct phy_device * phydev)688 static int kszphy_config_init(struct phy_device *phydev)
689 {
690 struct kszphy_priv *priv = phydev->priv;
691 const struct kszphy_type *type;
692
693 if (!priv)
694 return 0;
695
696 type = priv->type;
697
698 if (type && type->has_broadcast_disable)
699 kszphy_broadcast_disable(phydev);
700
701 if (type && type->has_nand_tree_disable)
702 kszphy_nand_tree_disable(phydev);
703
704 return kszphy_config_reset(phydev);
705 }
706
ksz8041_fiber_mode(struct phy_device * phydev)707 static int ksz8041_fiber_mode(struct phy_device *phydev)
708 {
709 struct device_node *of_node = phydev->mdio.dev.of_node;
710
711 return of_property_read_bool(of_node, "micrel,fiber-mode");
712 }
713
ksz8041_config_init(struct phy_device * phydev)714 static int ksz8041_config_init(struct phy_device *phydev)
715 {
716 __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
717
718 /* Limit supported and advertised modes in fiber mode */
719 if (ksz8041_fiber_mode(phydev)) {
720 phydev->dev_flags |= MICREL_PHY_FXEN;
721 linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT, mask);
722 linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Half_BIT, mask);
723
724 linkmode_and(phydev->supported, phydev->supported, mask);
725 linkmode_set_bit(ETHTOOL_LINK_MODE_FIBRE_BIT,
726 phydev->supported);
727 linkmode_and(phydev->advertising, phydev->advertising, mask);
728 linkmode_set_bit(ETHTOOL_LINK_MODE_FIBRE_BIT,
729 phydev->advertising);
730 phydev->autoneg = AUTONEG_DISABLE;
731 }
732
733 return kszphy_config_init(phydev);
734 }
735
ksz8041_config_aneg(struct phy_device * phydev)736 static int ksz8041_config_aneg(struct phy_device *phydev)
737 {
738 /* Skip auto-negotiation in fiber mode */
739 if (phydev->dev_flags & MICREL_PHY_FXEN) {
740 phydev->speed = SPEED_100;
741 return 0;
742 }
743
744 return genphy_config_aneg(phydev);
745 }
746
ksz8051_ksz8795_match_phy_device(struct phy_device * phydev,const bool ksz_8051)747 static int ksz8051_ksz8795_match_phy_device(struct phy_device *phydev,
748 const bool ksz_8051)
749 {
750 int ret;
751
752 if (!phy_id_compare(phydev->phy_id, PHY_ID_KSZ8051, MICREL_PHY_ID_MASK))
753 return 0;
754
755 ret = phy_read(phydev, MII_BMSR);
756 if (ret < 0)
757 return ret;
758
759 /* KSZ8051 PHY and KSZ8794/KSZ8795/KSZ8765 switch share the same
760 * exact PHY ID. However, they can be told apart by the extended
761 * capability registers presence. The KSZ8051 PHY has them while
762 * the switch does not.
763 */
764 ret &= BMSR_ERCAP;
765 if (ksz_8051)
766 return ret;
767 else
768 return !ret;
769 }
770
ksz8051_match_phy_device(struct phy_device * phydev,const struct phy_driver * phydrv)771 static int ksz8051_match_phy_device(struct phy_device *phydev,
772 const struct phy_driver *phydrv)
773 {
774 return ksz8051_ksz8795_match_phy_device(phydev, true);
775 }
776
ksz8081_config_init(struct phy_device * phydev)777 static int ksz8081_config_init(struct phy_device *phydev)
778 {
779 /* KSZPHY_OMSO_FACTORY_TEST is set at de-assertion of the reset line
780 * based on the RXER (KSZ8081RNA/RND) or TXC (KSZ8081MNX/RNB) pin. If a
781 * pull-down is missing, the factory test mode should be cleared by
782 * manually writing a 0.
783 */
784 phy_clear_bits(phydev, MII_KSZPHY_OMSO, KSZPHY_OMSO_FACTORY_TEST);
785
786 return kszphy_config_init(phydev);
787 }
788
ksz8081_config_mdix(struct phy_device * phydev,u8 ctrl)789 static int ksz8081_config_mdix(struct phy_device *phydev, u8 ctrl)
790 {
791 u16 val;
792
793 switch (ctrl) {
794 case ETH_TP_MDI:
795 val = KSZ8081_CTRL2_DISABLE_AUTO_MDIX;
796 break;
797 case ETH_TP_MDI_X:
798 val = KSZ8081_CTRL2_DISABLE_AUTO_MDIX |
799 KSZ8081_CTRL2_MDI_MDI_X_SELECT;
800 break;
801 case ETH_TP_MDI_AUTO:
802 val = 0;
803 break;
804 default:
805 return 0;
806 }
807
808 return phy_modify(phydev, MII_KSZPHY_CTRL_2,
809 KSZ8081_CTRL2_HP_MDIX |
810 KSZ8081_CTRL2_MDI_MDI_X_SELECT |
811 KSZ8081_CTRL2_DISABLE_AUTO_MDIX,
812 KSZ8081_CTRL2_HP_MDIX | val);
813 }
814
ksz8081_config_aneg(struct phy_device * phydev)815 static int ksz8081_config_aneg(struct phy_device *phydev)
816 {
817 int ret;
818
819 ret = genphy_config_aneg(phydev);
820 if (ret)
821 return ret;
822
823 /* The MDI-X configuration is automatically changed by the PHY after
824 * switching from autoneg off to on. So, take MDI-X configuration under
825 * own control and set it after autoneg configuration was done.
826 */
827 return ksz8081_config_mdix(phydev, phydev->mdix_ctrl);
828 }
829
ksz8081_mdix_update(struct phy_device * phydev)830 static int ksz8081_mdix_update(struct phy_device *phydev)
831 {
832 int ret;
833
834 ret = phy_read(phydev, MII_KSZPHY_CTRL_2);
835 if (ret < 0)
836 return ret;
837
838 if (ret & KSZ8081_CTRL2_DISABLE_AUTO_MDIX) {
839 if (ret & KSZ8081_CTRL2_MDI_MDI_X_SELECT)
840 phydev->mdix_ctrl = ETH_TP_MDI_X;
841 else
842 phydev->mdix_ctrl = ETH_TP_MDI;
843 } else {
844 phydev->mdix_ctrl = ETH_TP_MDI_AUTO;
845 }
846
847 ret = phy_read(phydev, MII_KSZPHY_CTRL_1);
848 if (ret < 0)
849 return ret;
850
851 if (ret & KSZ8081_CTRL1_MDIX_STAT)
852 phydev->mdix = ETH_TP_MDI;
853 else
854 phydev->mdix = ETH_TP_MDI_X;
855
856 return 0;
857 }
858
ksz8081_read_status(struct phy_device * phydev)859 static int ksz8081_read_status(struct phy_device *phydev)
860 {
861 int ret;
862
863 ret = ksz8081_mdix_update(phydev);
864 if (ret < 0)
865 return ret;
866
867 return genphy_read_status(phydev);
868 }
869
ksz8061_config_init(struct phy_device * phydev)870 static int ksz8061_config_init(struct phy_device *phydev)
871 {
872 int ret;
873
874 /* Chip can be powered down by the bootstrap code. */
875 ret = phy_read(phydev, MII_BMCR);
876 if (ret < 0)
877 return ret;
878 if (ret & BMCR_PDOWN) {
879 ret = phy_write(phydev, MII_BMCR, ret & ~BMCR_PDOWN);
880 if (ret < 0)
881 return ret;
882 usleep_range(1000, 2000);
883 }
884
885 ret = phy_write_mmd(phydev, MDIO_MMD_PMAPMD, MDIO_DEVID1, 0xB61A);
886 if (ret)
887 return ret;
888
889 return kszphy_config_init(phydev);
890 }
891
ksz8795_match_phy_device(struct phy_device * phydev,const struct phy_driver * phydrv)892 static int ksz8795_match_phy_device(struct phy_device *phydev,
893 const struct phy_driver *phydrv)
894 {
895 return ksz8051_ksz8795_match_phy_device(phydev, false);
896 }
897
ksz9021_load_values_from_of(struct phy_device * phydev,const struct device_node * of_node,u16 reg,const char * field1,const char * field2,const char * field3,const char * field4)898 static int ksz9021_load_values_from_of(struct phy_device *phydev,
899 const struct device_node *of_node,
900 u16 reg,
901 const char *field1, const char *field2,
902 const char *field3, const char *field4)
903 {
904 int val1 = -1;
905 int val2 = -2;
906 int val3 = -3;
907 int val4 = -4;
908 int newval;
909 int matches = 0;
910
911 if (!of_property_read_u32(of_node, field1, &val1))
912 matches++;
913
914 if (!of_property_read_u32(of_node, field2, &val2))
915 matches++;
916
917 if (!of_property_read_u32(of_node, field3, &val3))
918 matches++;
919
920 if (!of_property_read_u32(of_node, field4, &val4))
921 matches++;
922
923 if (!matches)
924 return 0;
925
926 if (matches < 4)
927 newval = kszphy_extended_read(phydev, reg);
928 else
929 newval = 0;
930
931 if (val1 != -1)
932 newval = ((newval & 0xfff0) | ((val1 / PS_TO_REG) & 0xf) << 0);
933
934 if (val2 != -2)
935 newval = ((newval & 0xff0f) | ((val2 / PS_TO_REG) & 0xf) << 4);
936
937 if (val3 != -3)
938 newval = ((newval & 0xf0ff) | ((val3 / PS_TO_REG) & 0xf) << 8);
939
940 if (val4 != -4)
941 newval = ((newval & 0x0fff) | ((val4 / PS_TO_REG) & 0xf) << 12);
942
943 return kszphy_extended_write(phydev, reg, newval);
944 }
945
ksz9021_config_init(struct phy_device * phydev)946 static int ksz9021_config_init(struct phy_device *phydev)
947 {
948 const struct device_node *of_node;
949 const struct device *dev_walker;
950
951 /* The Micrel driver has a deprecated option to place phy OF
952 * properties in the MAC node. Walk up the tree of devices to
953 * find a device with an OF node.
954 */
955 dev_walker = &phydev->mdio.dev;
956 do {
957 of_node = dev_walker->of_node;
958 dev_walker = dev_walker->parent;
959
960 } while (!of_node && dev_walker);
961
962 if (of_node) {
963 ksz9021_load_values_from_of(phydev, of_node,
964 MII_KSZPHY_CLK_CONTROL_PAD_SKEW,
965 "txen-skew-ps", "txc-skew-ps",
966 "rxdv-skew-ps", "rxc-skew-ps");
967 ksz9021_load_values_from_of(phydev, of_node,
968 MII_KSZPHY_RX_DATA_PAD_SKEW,
969 "rxd0-skew-ps", "rxd1-skew-ps",
970 "rxd2-skew-ps", "rxd3-skew-ps");
971 ksz9021_load_values_from_of(phydev, of_node,
972 MII_KSZPHY_TX_DATA_PAD_SKEW,
973 "txd0-skew-ps", "txd1-skew-ps",
974 "txd2-skew-ps", "txd3-skew-ps");
975 }
976 return 0;
977 }
978
979 #define KSZ9031_PS_TO_REG 60
980
981 /* Extended registers */
982 /* MMD Address 0x0 */
983 #define MII_KSZ9031RN_FLP_BURST_TX_LO 3
984 #define MII_KSZ9031RN_FLP_BURST_TX_HI 4
985
986 /* MMD Address 0x2 */
987 #define MII_KSZ9031RN_CONTROL_PAD_SKEW 4
988 #define MII_KSZ9031RN_RX_CTL_M GENMASK(7, 4)
989 #define MII_KSZ9031RN_TX_CTL_M GENMASK(3, 0)
990
991 #define MII_KSZ9031RN_RX_DATA_PAD_SKEW 5
992 #define MII_KSZ9031RN_RXD3 GENMASK(15, 12)
993 #define MII_KSZ9031RN_RXD2 GENMASK(11, 8)
994 #define MII_KSZ9031RN_RXD1 GENMASK(7, 4)
995 #define MII_KSZ9031RN_RXD0 GENMASK(3, 0)
996
997 #define MII_KSZ9031RN_TX_DATA_PAD_SKEW 6
998 #define MII_KSZ9031RN_TXD3 GENMASK(15, 12)
999 #define MII_KSZ9031RN_TXD2 GENMASK(11, 8)
1000 #define MII_KSZ9031RN_TXD1 GENMASK(7, 4)
1001 #define MII_KSZ9031RN_TXD0 GENMASK(3, 0)
1002
1003 #define MII_KSZ9031RN_CLK_PAD_SKEW 8
1004 #define MII_KSZ9031RN_GTX_CLK GENMASK(9, 5)
1005 #define MII_KSZ9031RN_RX_CLK GENMASK(4, 0)
1006
1007 /* KSZ9031 has internal RGMII_IDRX = 1.2ns and RGMII_IDTX = 0ns. To
1008 * provide different RGMII options we need to configure delay offset
1009 * for each pad relative to build in delay.
1010 */
1011 /* keep rx as "No delay adjustment" and set rx_clk to +0.60ns to get delays of
1012 * 1.80ns
1013 */
1014 #define RX_ID 0x7
1015 #define RX_CLK_ID 0x19
1016
1017 /* set rx to +0.30ns and rx_clk to -0.90ns to compensate the
1018 * internal 1.2ns delay.
1019 */
1020 #define RX_ND 0xc
1021 #define RX_CLK_ND 0x0
1022
1023 /* set tx to -0.42ns and tx_clk to +0.96ns to get 1.38ns delay */
1024 #define TX_ID 0x0
1025 #define TX_CLK_ID 0x1f
1026
1027 /* set tx and tx_clk to "No delay adjustment" to keep 0ns
1028 * dealy
1029 */
1030 #define TX_ND 0x7
1031 #define TX_CLK_ND 0xf
1032
1033 /* MMD Address 0x1C */
1034 #define MII_KSZ9031RN_EDPD 0x23
1035 #define MII_KSZ9031RN_EDPD_ENABLE BIT(0)
1036
ksz9031_set_loopback(struct phy_device * phydev,bool enable,int speed)1037 static int ksz9031_set_loopback(struct phy_device *phydev, bool enable,
1038 int speed)
1039 {
1040 u16 ctl = BMCR_LOOPBACK;
1041 int val;
1042
1043 if (!enable)
1044 return genphy_loopback(phydev, enable, 0);
1045
1046 if (speed == SPEED_10 || speed == SPEED_100 || speed == SPEED_1000)
1047 phydev->speed = speed;
1048 else if (speed)
1049 return -EINVAL;
1050 phydev->duplex = DUPLEX_FULL;
1051
1052 ctl |= mii_bmcr_encode_fixed(phydev->speed, phydev->duplex);
1053
1054 phy_write(phydev, MII_BMCR, ctl);
1055
1056 return phy_read_poll_timeout(phydev, MII_BMSR, val, val & BMSR_LSTATUS,
1057 5000, 500000, true);
1058 }
1059
ksz9031_of_load_skew_values(struct phy_device * phydev,const struct device_node * of_node,u16 reg,size_t field_sz,const char * field[],u8 numfields,bool * update)1060 static int ksz9031_of_load_skew_values(struct phy_device *phydev,
1061 const struct device_node *of_node,
1062 u16 reg, size_t field_sz,
1063 const char *field[], u8 numfields,
1064 bool *update)
1065 {
1066 int val[4] = {-1, -2, -3, -4};
1067 int matches = 0;
1068 u16 mask;
1069 u16 maxval;
1070 u16 newval;
1071 int i;
1072
1073 for (i = 0; i < numfields; i++)
1074 if (!of_property_read_u32(of_node, field[i], val + i))
1075 matches++;
1076
1077 if (!matches)
1078 return 0;
1079
1080 *update |= true;
1081
1082 if (matches < numfields)
1083 newval = phy_read_mmd(phydev, 2, reg);
1084 else
1085 newval = 0;
1086
1087 maxval = (field_sz == 4) ? 0xf : 0x1f;
1088 for (i = 0; i < numfields; i++)
1089 if (val[i] != -(i + 1)) {
1090 mask = 0xffff;
1091 mask ^= maxval << (field_sz * i);
1092 newval = (newval & mask) |
1093 (((val[i] / KSZ9031_PS_TO_REG) & maxval)
1094 << (field_sz * i));
1095 }
1096
1097 return phy_write_mmd(phydev, 2, reg, newval);
1098 }
1099
1100 /* Center KSZ9031RNX FLP timing at 16ms. */
ksz9031_center_flp_timing(struct phy_device * phydev)1101 static int ksz9031_center_flp_timing(struct phy_device *phydev)
1102 {
1103 int result;
1104
1105 result = phy_write_mmd(phydev, 0, MII_KSZ9031RN_FLP_BURST_TX_HI,
1106 0x0006);
1107 if (result)
1108 return result;
1109
1110 result = phy_write_mmd(phydev, 0, MII_KSZ9031RN_FLP_BURST_TX_LO,
1111 0x1A80);
1112 if (result)
1113 return result;
1114
1115 return genphy_restart_aneg(phydev);
1116 }
1117
1118 /* Enable energy-detect power-down mode */
ksz9031_enable_edpd(struct phy_device * phydev)1119 static int ksz9031_enable_edpd(struct phy_device *phydev)
1120 {
1121 int reg;
1122
1123 reg = phy_read_mmd(phydev, 0x1C, MII_KSZ9031RN_EDPD);
1124 if (reg < 0)
1125 return reg;
1126 return phy_write_mmd(phydev, 0x1C, MII_KSZ9031RN_EDPD,
1127 reg | MII_KSZ9031RN_EDPD_ENABLE);
1128 }
1129
ksz9031_config_rgmii_delay(struct phy_device * phydev)1130 static int ksz9031_config_rgmii_delay(struct phy_device *phydev)
1131 {
1132 u16 rx, tx, rx_clk, tx_clk;
1133 int ret;
1134
1135 switch (phydev->interface) {
1136 case PHY_INTERFACE_MODE_RGMII:
1137 tx = TX_ND;
1138 tx_clk = TX_CLK_ND;
1139 rx = RX_ND;
1140 rx_clk = RX_CLK_ND;
1141 break;
1142 case PHY_INTERFACE_MODE_RGMII_ID:
1143 tx = TX_ID;
1144 tx_clk = TX_CLK_ID;
1145 rx = RX_ID;
1146 rx_clk = RX_CLK_ID;
1147 break;
1148 case PHY_INTERFACE_MODE_RGMII_RXID:
1149 tx = TX_ND;
1150 tx_clk = TX_CLK_ND;
1151 rx = RX_ID;
1152 rx_clk = RX_CLK_ID;
1153 break;
1154 case PHY_INTERFACE_MODE_RGMII_TXID:
1155 tx = TX_ID;
1156 tx_clk = TX_CLK_ID;
1157 rx = RX_ND;
1158 rx_clk = RX_CLK_ND;
1159 break;
1160 default:
1161 return 0;
1162 }
1163
1164 ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_CONTROL_PAD_SKEW,
1165 FIELD_PREP(MII_KSZ9031RN_RX_CTL_M, rx) |
1166 FIELD_PREP(MII_KSZ9031RN_TX_CTL_M, tx));
1167 if (ret < 0)
1168 return ret;
1169
1170 ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_RX_DATA_PAD_SKEW,
1171 FIELD_PREP(MII_KSZ9031RN_RXD3, rx) |
1172 FIELD_PREP(MII_KSZ9031RN_RXD2, rx) |
1173 FIELD_PREP(MII_KSZ9031RN_RXD1, rx) |
1174 FIELD_PREP(MII_KSZ9031RN_RXD0, rx));
1175 if (ret < 0)
1176 return ret;
1177
1178 ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_TX_DATA_PAD_SKEW,
1179 FIELD_PREP(MII_KSZ9031RN_TXD3, tx) |
1180 FIELD_PREP(MII_KSZ9031RN_TXD2, tx) |
1181 FIELD_PREP(MII_KSZ9031RN_TXD1, tx) |
1182 FIELD_PREP(MII_KSZ9031RN_TXD0, tx));
1183 if (ret < 0)
1184 return ret;
1185
1186 return phy_write_mmd(phydev, 2, MII_KSZ9031RN_CLK_PAD_SKEW,
1187 FIELD_PREP(MII_KSZ9031RN_GTX_CLK, tx_clk) |
1188 FIELD_PREP(MII_KSZ9031RN_RX_CLK, rx_clk));
1189 }
1190
ksz9031_config_init(struct phy_device * phydev)1191 static int ksz9031_config_init(struct phy_device *phydev)
1192 {
1193 const struct device_node *of_node;
1194 static const char *clk_skews[2] = {"rxc-skew-ps", "txc-skew-ps"};
1195 static const char *rx_data_skews[4] = {
1196 "rxd0-skew-ps", "rxd1-skew-ps",
1197 "rxd2-skew-ps", "rxd3-skew-ps"
1198 };
1199 static const char *tx_data_skews[4] = {
1200 "txd0-skew-ps", "txd1-skew-ps",
1201 "txd2-skew-ps", "txd3-skew-ps"
1202 };
1203 static const char *control_skews[2] = {"txen-skew-ps", "rxdv-skew-ps"};
1204 const struct device *dev_walker;
1205 int result;
1206
1207 result = ksz9031_enable_edpd(phydev);
1208 if (result < 0)
1209 return result;
1210
1211 /* The Micrel driver has a deprecated option to place phy OF
1212 * properties in the MAC node. Walk up the tree of devices to
1213 * find a device with an OF node.
1214 */
1215 dev_walker = &phydev->mdio.dev;
1216 do {
1217 of_node = dev_walker->of_node;
1218 dev_walker = dev_walker->parent;
1219 } while (!of_node && dev_walker);
1220
1221 if (of_node) {
1222 bool update = false;
1223
1224 if (phy_interface_is_rgmii(phydev)) {
1225 result = ksz9031_config_rgmii_delay(phydev);
1226 if (result < 0)
1227 return result;
1228 }
1229
1230 ksz9031_of_load_skew_values(phydev, of_node,
1231 MII_KSZ9031RN_CLK_PAD_SKEW, 5,
1232 clk_skews, 2, &update);
1233
1234 ksz9031_of_load_skew_values(phydev, of_node,
1235 MII_KSZ9031RN_CONTROL_PAD_SKEW, 4,
1236 control_skews, 2, &update);
1237
1238 ksz9031_of_load_skew_values(phydev, of_node,
1239 MII_KSZ9031RN_RX_DATA_PAD_SKEW, 4,
1240 rx_data_skews, 4, &update);
1241
1242 ksz9031_of_load_skew_values(phydev, of_node,
1243 MII_KSZ9031RN_TX_DATA_PAD_SKEW, 4,
1244 tx_data_skews, 4, &update);
1245
1246 if (update && !phy_interface_is_rgmii(phydev))
1247 phydev_warn(phydev,
1248 "*-skew-ps values should be used only with RGMII PHY modes\n");
1249
1250 /* Silicon Errata Sheet (DS80000691D or DS80000692D):
1251 * When the device links in the 1000BASE-T slave mode only,
1252 * the optional 125MHz reference output clock (CLK125_NDO)
1253 * has wide duty cycle variation.
1254 *
1255 * The optional CLK125_NDO clock does not meet the RGMII
1256 * 45/55 percent (min/max) duty cycle requirement and therefore
1257 * cannot be used directly by the MAC side for clocking
1258 * applications that have setup/hold time requirements on
1259 * rising and falling clock edges.
1260 *
1261 * Workaround:
1262 * Force the phy to be the master to receive a stable clock
1263 * which meets the duty cycle requirement.
1264 */
1265 if (of_property_read_bool(of_node, "micrel,force-master")) {
1266 result = phy_read(phydev, MII_CTRL1000);
1267 if (result < 0)
1268 goto err_force_master;
1269
1270 /* enable master mode, config & prefer master */
1271 result |= CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER;
1272 result = phy_write(phydev, MII_CTRL1000, result);
1273 if (result < 0)
1274 goto err_force_master;
1275 }
1276 }
1277
1278 return ksz9031_center_flp_timing(phydev);
1279
1280 err_force_master:
1281 phydev_err(phydev, "failed to force the phy to master mode\n");
1282 return result;
1283 }
1284
1285 #define KSZ9131_SKEW_5BIT_MAX 2400
1286 #define KSZ9131_SKEW_4BIT_MAX 800
1287 #define KSZ9131_OFFSET 700
1288 #define KSZ9131_STEP 100
1289
ksz9131_of_load_skew_values(struct phy_device * phydev,struct device_node * of_node,u16 reg,size_t field_sz,char * field[],u8 numfields)1290 static int ksz9131_of_load_skew_values(struct phy_device *phydev,
1291 struct device_node *of_node,
1292 u16 reg, size_t field_sz,
1293 char *field[], u8 numfields)
1294 {
1295 int val[4] = {-(1 + KSZ9131_OFFSET), -(2 + KSZ9131_OFFSET),
1296 -(3 + KSZ9131_OFFSET), -(4 + KSZ9131_OFFSET)};
1297 int skewval, skewmax = 0;
1298 int matches = 0;
1299 u16 maxval;
1300 u16 newval;
1301 u16 mask;
1302 int i;
1303
1304 /* psec properties in dts should mean x pico seconds */
1305 if (field_sz == 5)
1306 skewmax = KSZ9131_SKEW_5BIT_MAX;
1307 else
1308 skewmax = KSZ9131_SKEW_4BIT_MAX;
1309
1310 for (i = 0; i < numfields; i++)
1311 if (!of_property_read_s32(of_node, field[i], &skewval)) {
1312 if (skewval < -KSZ9131_OFFSET)
1313 skewval = -KSZ9131_OFFSET;
1314 else if (skewval > skewmax)
1315 skewval = skewmax;
1316
1317 val[i] = skewval + KSZ9131_OFFSET;
1318 matches++;
1319 }
1320
1321 if (!matches)
1322 return 0;
1323
1324 if (matches < numfields)
1325 newval = phy_read_mmd(phydev, 2, reg);
1326 else
1327 newval = 0;
1328
1329 maxval = (field_sz == 4) ? 0xf : 0x1f;
1330 for (i = 0; i < numfields; i++)
1331 if (val[i] != -(i + 1 + KSZ9131_OFFSET)) {
1332 mask = 0xffff;
1333 mask ^= maxval << (field_sz * i);
1334 newval = (newval & mask) |
1335 (((val[i] / KSZ9131_STEP) & maxval)
1336 << (field_sz * i));
1337 }
1338
1339 return phy_write_mmd(phydev, 2, reg, newval);
1340 }
1341
1342 #define KSZ9131RN_MMD_COMMON_CTRL_REG 2
1343 #define KSZ9131RN_RXC_DLL_CTRL 76
1344 #define KSZ9131RN_TXC_DLL_CTRL 77
1345 #define KSZ9131RN_DLL_ENABLE_DELAY 0
1346
ksz9131_config_rgmii_delay(struct phy_device * phydev)1347 static int ksz9131_config_rgmii_delay(struct phy_device *phydev)
1348 {
1349 const struct kszphy_type *type = phydev->drv->driver_data;
1350 u16 rxcdll_val, txcdll_val;
1351 int ret;
1352
1353 switch (phydev->interface) {
1354 case PHY_INTERFACE_MODE_RGMII:
1355 rxcdll_val = type->disable_dll_rx_bit;
1356 txcdll_val = type->disable_dll_tx_bit;
1357 break;
1358 case PHY_INTERFACE_MODE_RGMII_ID:
1359 rxcdll_val = KSZ9131RN_DLL_ENABLE_DELAY;
1360 txcdll_val = KSZ9131RN_DLL_ENABLE_DELAY;
1361 break;
1362 case PHY_INTERFACE_MODE_RGMII_RXID:
1363 rxcdll_val = KSZ9131RN_DLL_ENABLE_DELAY;
1364 txcdll_val = type->disable_dll_tx_bit;
1365 break;
1366 case PHY_INTERFACE_MODE_RGMII_TXID:
1367 rxcdll_val = type->disable_dll_rx_bit;
1368 txcdll_val = KSZ9131RN_DLL_ENABLE_DELAY;
1369 break;
1370 default:
1371 return 0;
1372 }
1373
1374 ret = phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
1375 KSZ9131RN_RXC_DLL_CTRL, type->disable_dll_mask,
1376 rxcdll_val);
1377 if (ret < 0)
1378 return ret;
1379
1380 return phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
1381 KSZ9131RN_TXC_DLL_CTRL, type->disable_dll_mask,
1382 txcdll_val);
1383 }
1384
1385 /* Silicon Errata DS80000693B
1386 *
1387 * When LEDs are configured in Individual Mode, LED1 is ON in a no-link
1388 * condition. Workaround is to set register 0x1e, bit 9, this way LED1 behaves
1389 * according to the datasheet (off if there is no link).
1390 */
ksz9131_led_errata(struct phy_device * phydev)1391 static int ksz9131_led_errata(struct phy_device *phydev)
1392 {
1393 int reg;
1394
1395 reg = phy_read_mmd(phydev, 2, 0);
1396 if (reg < 0)
1397 return reg;
1398
1399 if (!(reg & BIT(4)))
1400 return 0;
1401
1402 return phy_set_bits(phydev, 0x1e, BIT(9));
1403 }
1404
ksz9131_config_init(struct phy_device * phydev)1405 static int ksz9131_config_init(struct phy_device *phydev)
1406 {
1407 struct device_node *of_node;
1408 char *clk_skews[2] = {"rxc-skew-psec", "txc-skew-psec"};
1409 char *rx_data_skews[4] = {
1410 "rxd0-skew-psec", "rxd1-skew-psec",
1411 "rxd2-skew-psec", "rxd3-skew-psec"
1412 };
1413 char *tx_data_skews[4] = {
1414 "txd0-skew-psec", "txd1-skew-psec",
1415 "txd2-skew-psec", "txd3-skew-psec"
1416 };
1417 char *control_skews[2] = {"txen-skew-psec", "rxdv-skew-psec"};
1418 const struct device *dev_walker;
1419 int ret;
1420
1421 phydev->mdix_ctrl = ETH_TP_MDI_AUTO;
1422
1423 dev_walker = &phydev->mdio.dev;
1424 do {
1425 of_node = dev_walker->of_node;
1426 dev_walker = dev_walker->parent;
1427 } while (!of_node && dev_walker);
1428
1429 if (!of_node)
1430 return 0;
1431
1432 if (phy_interface_is_rgmii(phydev)) {
1433 ret = ksz9131_config_rgmii_delay(phydev);
1434 if (ret < 0)
1435 return ret;
1436 }
1437
1438 ret = ksz9131_of_load_skew_values(phydev, of_node,
1439 MII_KSZ9031RN_CLK_PAD_SKEW, 5,
1440 clk_skews, 2);
1441 if (ret < 0)
1442 return ret;
1443
1444 ret = ksz9131_of_load_skew_values(phydev, of_node,
1445 MII_KSZ9031RN_CONTROL_PAD_SKEW, 4,
1446 control_skews, 2);
1447 if (ret < 0)
1448 return ret;
1449
1450 ret = ksz9131_of_load_skew_values(phydev, of_node,
1451 MII_KSZ9031RN_RX_DATA_PAD_SKEW, 4,
1452 rx_data_skews, 4);
1453 if (ret < 0)
1454 return ret;
1455
1456 ret = ksz9131_of_load_skew_values(phydev, of_node,
1457 MII_KSZ9031RN_TX_DATA_PAD_SKEW, 4,
1458 tx_data_skews, 4);
1459 if (ret < 0)
1460 return ret;
1461
1462 ret = ksz9131_led_errata(phydev);
1463 if (ret < 0)
1464 return ret;
1465
1466 return 0;
1467 }
1468
1469 #define MII_KSZ9131_AUTO_MDIX 0x1C
1470 #define MII_KSZ9131_AUTO_MDI_SET BIT(7)
1471 #define MII_KSZ9131_AUTO_MDIX_SWAP_OFF BIT(6)
1472 #define MII_KSZ9131_DIG_AXAN_STS 0x14
1473 #define MII_KSZ9131_DIG_AXAN_STS_LINK_DET BIT(14)
1474 #define MII_KSZ9131_DIG_AXAN_STS_A_SELECT BIT(12)
1475
ksz9131_mdix_update(struct phy_device * phydev)1476 static int ksz9131_mdix_update(struct phy_device *phydev)
1477 {
1478 int ret;
1479
1480 if (phydev->mdix_ctrl != ETH_TP_MDI_AUTO) {
1481 phydev->mdix = phydev->mdix_ctrl;
1482 } else {
1483 ret = phy_read(phydev, MII_KSZ9131_DIG_AXAN_STS);
1484 if (ret < 0)
1485 return ret;
1486
1487 if (ret & MII_KSZ9131_DIG_AXAN_STS_LINK_DET) {
1488 if (ret & MII_KSZ9131_DIG_AXAN_STS_A_SELECT)
1489 phydev->mdix = ETH_TP_MDI;
1490 else
1491 phydev->mdix = ETH_TP_MDI_X;
1492 } else {
1493 phydev->mdix = ETH_TP_MDI_INVALID;
1494 }
1495 }
1496
1497 return 0;
1498 }
1499
ksz9131_config_mdix(struct phy_device * phydev,u8 ctrl)1500 static int ksz9131_config_mdix(struct phy_device *phydev, u8 ctrl)
1501 {
1502 u16 val;
1503
1504 switch (ctrl) {
1505 case ETH_TP_MDI:
1506 val = MII_KSZ9131_AUTO_MDIX_SWAP_OFF |
1507 MII_KSZ9131_AUTO_MDI_SET;
1508 break;
1509 case ETH_TP_MDI_X:
1510 val = MII_KSZ9131_AUTO_MDIX_SWAP_OFF;
1511 break;
1512 case ETH_TP_MDI_AUTO:
1513 val = 0;
1514 break;
1515 default:
1516 return 0;
1517 }
1518
1519 return phy_modify(phydev, MII_KSZ9131_AUTO_MDIX,
1520 MII_KSZ9131_AUTO_MDIX_SWAP_OFF |
1521 MII_KSZ9131_AUTO_MDI_SET, val);
1522 }
1523
ksz9131_read_status(struct phy_device * phydev)1524 static int ksz9131_read_status(struct phy_device *phydev)
1525 {
1526 int ret;
1527
1528 ret = ksz9131_mdix_update(phydev);
1529 if (ret < 0)
1530 return ret;
1531
1532 return genphy_read_status(phydev);
1533 }
1534
ksz9131_config_aneg(struct phy_device * phydev)1535 static int ksz9131_config_aneg(struct phy_device *phydev)
1536 {
1537 int ret;
1538
1539 ret = ksz9131_config_mdix(phydev, phydev->mdix_ctrl);
1540 if (ret)
1541 return ret;
1542
1543 return genphy_config_aneg(phydev);
1544 }
1545
ksz9477_get_features(struct phy_device * phydev)1546 static int ksz9477_get_features(struct phy_device *phydev)
1547 {
1548 int ret;
1549
1550 ret = genphy_read_abilities(phydev);
1551 if (ret)
1552 return ret;
1553
1554 /* The "EEE control and capability 1" (Register 3.20) seems to be
1555 * influenced by the "EEE advertisement 1" (Register 7.60). Changes
1556 * on the 7.60 will affect 3.20. So, we need to construct our own list
1557 * of caps.
1558 * KSZ8563R should have 100BaseTX/Full only.
1559 */
1560 linkmode_and(phydev->supported_eee, phydev->supported,
1561 PHY_EEE_CAP1_FEATURES);
1562
1563 return 0;
1564 }
1565
1566 #define KSZ8873MLL_GLOBAL_CONTROL_4 0x06
1567 #define KSZ8873MLL_GLOBAL_CONTROL_4_DUPLEX BIT(6)
1568 #define KSZ8873MLL_GLOBAL_CONTROL_4_SPEED BIT(4)
ksz8873mll_read_status(struct phy_device * phydev)1569 static int ksz8873mll_read_status(struct phy_device *phydev)
1570 {
1571 int regval;
1572
1573 /* dummy read */
1574 regval = phy_read(phydev, KSZ8873MLL_GLOBAL_CONTROL_4);
1575
1576 regval = phy_read(phydev, KSZ8873MLL_GLOBAL_CONTROL_4);
1577
1578 if (regval & KSZ8873MLL_GLOBAL_CONTROL_4_DUPLEX)
1579 phydev->duplex = DUPLEX_HALF;
1580 else
1581 phydev->duplex = DUPLEX_FULL;
1582
1583 if (regval & KSZ8873MLL_GLOBAL_CONTROL_4_SPEED)
1584 phydev->speed = SPEED_10;
1585 else
1586 phydev->speed = SPEED_100;
1587
1588 phydev->link = 1;
1589 phydev->pause = phydev->asym_pause = 0;
1590
1591 return 0;
1592 }
1593
ksz9031_get_features(struct phy_device * phydev)1594 static int ksz9031_get_features(struct phy_device *phydev)
1595 {
1596 int ret;
1597
1598 ret = genphy_read_abilities(phydev);
1599 if (ret < 0)
1600 return ret;
1601
1602 /* Silicon Errata Sheet (DS80000691D or DS80000692D):
1603 * Whenever the device's Asymmetric Pause capability is set to 1,
1604 * link-up may fail after a link-up to link-down transition.
1605 *
1606 * The Errata Sheet is for ksz9031, but ksz9021 has the same issue
1607 *
1608 * Workaround:
1609 * Do not enable the Asymmetric Pause capability bit.
1610 */
1611 linkmode_clear_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported);
1612
1613 /* We force setting the Pause capability as the core will force the
1614 * Asymmetric Pause capability to 1 otherwise.
1615 */
1616 linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported);
1617
1618 return 0;
1619 }
1620
ksz9031_read_status(struct phy_device * phydev)1621 static int ksz9031_read_status(struct phy_device *phydev)
1622 {
1623 int err;
1624 int regval;
1625
1626 err = genphy_read_status(phydev);
1627 if (err)
1628 return err;
1629
1630 /* Make sure the PHY is not broken. Read idle error count,
1631 * and reset the PHY if it is maxed out.
1632 */
1633 regval = phy_read(phydev, MII_STAT1000);
1634 if ((regval & 0xFF) == 0xFF) {
1635 phy_init_hw(phydev);
1636 phydev->link = 0;
1637 if (phydev->drv->config_intr && phy_interrupt_is_valid(phydev))
1638 phydev->drv->config_intr(phydev);
1639 return genphy_config_aneg(phydev);
1640 }
1641
1642 return 0;
1643 }
1644
ksz9x31_cable_test_start(struct phy_device * phydev)1645 static int ksz9x31_cable_test_start(struct phy_device *phydev)
1646 {
1647 struct kszphy_priv *priv = phydev->priv;
1648 int ret;
1649
1650 /* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic
1651 * Prior to running the cable diagnostics, Auto-negotiation should
1652 * be disabled, full duplex set and the link speed set to 1000Mbps
1653 * via the Basic Control Register.
1654 */
1655 ret = phy_modify(phydev, MII_BMCR,
1656 BMCR_SPEED1000 | BMCR_FULLDPLX |
1657 BMCR_ANENABLE | BMCR_SPEED100,
1658 BMCR_SPEED1000 | BMCR_FULLDPLX);
1659 if (ret)
1660 return ret;
1661
1662 /* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic
1663 * The Master-Slave configuration should be set to Slave by writing
1664 * a value of 0x1000 to the Auto-Negotiation Master Slave Control
1665 * Register.
1666 */
1667 ret = phy_read(phydev, MII_CTRL1000);
1668 if (ret < 0)
1669 return ret;
1670
1671 /* Cache these bits, they need to be restored once LinkMD finishes. */
1672 priv->vct_ctrl1000 = ret & (CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER);
1673 ret &= ~(CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER);
1674 ret |= CTL1000_ENABLE_MASTER;
1675
1676 return phy_write(phydev, MII_CTRL1000, ret);
1677 }
1678
ksz9x31_cable_test_result_trans(u16 status)1679 static int ksz9x31_cable_test_result_trans(u16 status)
1680 {
1681 switch (FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status)) {
1682 case KSZ9x31_LMD_VCT_ST_NORMAL:
1683 return ETHTOOL_A_CABLE_RESULT_CODE_OK;
1684 case KSZ9x31_LMD_VCT_ST_OPEN:
1685 return ETHTOOL_A_CABLE_RESULT_CODE_OPEN;
1686 case KSZ9x31_LMD_VCT_ST_SHORT:
1687 return ETHTOOL_A_CABLE_RESULT_CODE_SAME_SHORT;
1688 case KSZ9x31_LMD_VCT_ST_FAIL:
1689 fallthrough;
1690 default:
1691 return ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC;
1692 }
1693 }
1694
ksz9x31_cable_test_failed(u16 status)1695 static bool ksz9x31_cable_test_failed(u16 status)
1696 {
1697 int stat = FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status);
1698
1699 return stat == KSZ9x31_LMD_VCT_ST_FAIL;
1700 }
1701
ksz9x31_cable_test_fault_length_valid(u16 status)1702 static bool ksz9x31_cable_test_fault_length_valid(u16 status)
1703 {
1704 switch (FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status)) {
1705 case KSZ9x31_LMD_VCT_ST_OPEN:
1706 fallthrough;
1707 case KSZ9x31_LMD_VCT_ST_SHORT:
1708 return true;
1709 }
1710 return false;
1711 }
1712
ksz9x31_cable_test_fault_length(struct phy_device * phydev,u16 stat)1713 static int ksz9x31_cable_test_fault_length(struct phy_device *phydev, u16 stat)
1714 {
1715 int dt = FIELD_GET(KSZ9x31_LMD_VCT_DATA_MASK, stat);
1716
1717 /* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic
1718 *
1719 * distance to fault = (VCT_DATA - 22) * 4 / cable propagation velocity
1720 */
1721 if (phydev_id_compare(phydev, PHY_ID_KSZ9131))
1722 dt = clamp(dt - 22, 0, 255);
1723
1724 return (dt * 400) / 10;
1725 }
1726
ksz9x31_cable_test_wait_for_completion(struct phy_device * phydev)1727 static int ksz9x31_cable_test_wait_for_completion(struct phy_device *phydev)
1728 {
1729 int val, ret;
1730
1731 ret = phy_read_poll_timeout(phydev, KSZ9x31_LMD, val,
1732 !(val & KSZ9x31_LMD_VCT_EN),
1733 30000, 100000, true);
1734
1735 return ret < 0 ? ret : 0;
1736 }
1737
ksz9x31_cable_test_get_pair(int pair)1738 static int ksz9x31_cable_test_get_pair(int pair)
1739 {
1740 static const int ethtool_pair[] = {
1741 ETHTOOL_A_CABLE_PAIR_A,
1742 ETHTOOL_A_CABLE_PAIR_B,
1743 ETHTOOL_A_CABLE_PAIR_C,
1744 ETHTOOL_A_CABLE_PAIR_D,
1745 };
1746
1747 return ethtool_pair[pair];
1748 }
1749
ksz9x31_cable_test_one_pair(struct phy_device * phydev,int pair)1750 static int ksz9x31_cable_test_one_pair(struct phy_device *phydev, int pair)
1751 {
1752 int ret, val;
1753
1754 /* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic
1755 * To test each individual cable pair, set the cable pair in the Cable
1756 * Diagnostics Test Pair (VCT_PAIR[1:0]) field of the LinkMD Cable
1757 * Diagnostic Register, along with setting the Cable Diagnostics Test
1758 * Enable (VCT_EN) bit. The Cable Diagnostics Test Enable (VCT_EN) bit
1759 * will self clear when the test is concluded.
1760 */
1761 ret = phy_write(phydev, KSZ9x31_LMD,
1762 KSZ9x31_LMD_VCT_EN | KSZ9x31_LMD_VCT_PAIR(pair));
1763 if (ret)
1764 return ret;
1765
1766 ret = ksz9x31_cable_test_wait_for_completion(phydev);
1767 if (ret)
1768 return ret;
1769
1770 val = phy_read(phydev, KSZ9x31_LMD);
1771 if (val < 0)
1772 return val;
1773
1774 if (ksz9x31_cable_test_failed(val))
1775 return -EAGAIN;
1776
1777 ret = ethnl_cable_test_result(phydev,
1778 ksz9x31_cable_test_get_pair(pair),
1779 ksz9x31_cable_test_result_trans(val));
1780 if (ret)
1781 return ret;
1782
1783 if (!ksz9x31_cable_test_fault_length_valid(val))
1784 return 0;
1785
1786 return ethnl_cable_test_fault_length(phydev,
1787 ksz9x31_cable_test_get_pair(pair),
1788 ksz9x31_cable_test_fault_length(phydev, val));
1789 }
1790
ksz9x31_cable_test_get_status(struct phy_device * phydev,bool * finished)1791 static int ksz9x31_cable_test_get_status(struct phy_device *phydev,
1792 bool *finished)
1793 {
1794 struct kszphy_priv *priv = phydev->priv;
1795 unsigned long pair_mask = 0xf;
1796 int retries = 20;
1797 int pair, ret, rv;
1798
1799 *finished = false;
1800
1801 /* Try harder if link partner is active */
1802 while (pair_mask && retries--) {
1803 for_each_set_bit(pair, &pair_mask, 4) {
1804 ret = ksz9x31_cable_test_one_pair(phydev, pair);
1805 if (ret == -EAGAIN)
1806 continue;
1807 if (ret < 0)
1808 return ret;
1809 clear_bit(pair, &pair_mask);
1810 }
1811 /* If link partner is in autonegotiation mode it will send 2ms
1812 * of FLPs with at least 6ms of silence.
1813 * Add 2ms sleep to have better chances to hit this silence.
1814 */
1815 if (pair_mask)
1816 usleep_range(2000, 3000);
1817 }
1818
1819 /* Report remaining unfinished pair result as unknown. */
1820 for_each_set_bit(pair, &pair_mask, 4) {
1821 ret = ethnl_cable_test_result(phydev,
1822 ksz9x31_cable_test_get_pair(pair),
1823 ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC);
1824 }
1825
1826 *finished = true;
1827
1828 /* Restore cached bits from before LinkMD got started. */
1829 rv = phy_modify(phydev, MII_CTRL1000,
1830 CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER,
1831 priv->vct_ctrl1000);
1832 if (rv)
1833 return rv;
1834
1835 return ret;
1836 }
1837
ksz8873mll_config_aneg(struct phy_device * phydev)1838 static int ksz8873mll_config_aneg(struct phy_device *phydev)
1839 {
1840 return 0;
1841 }
1842
ksz886x_config_mdix(struct phy_device * phydev,u8 ctrl)1843 static int ksz886x_config_mdix(struct phy_device *phydev, u8 ctrl)
1844 {
1845 u16 val;
1846
1847 switch (ctrl) {
1848 case ETH_TP_MDI:
1849 val = KSZ886X_BMCR_DISABLE_AUTO_MDIX;
1850 break;
1851 case ETH_TP_MDI_X:
1852 /* Note: The naming of the bit KSZ886X_BMCR_FORCE_MDI is bit
1853 * counter intuitive, the "-X" in "1 = Force MDI" in the data
1854 * sheet seems to be missing:
1855 * 1 = Force MDI (sic!) (transmit on RX+/RX- pins)
1856 * 0 = Normal operation (transmit on TX+/TX- pins)
1857 */
1858 val = KSZ886X_BMCR_DISABLE_AUTO_MDIX | KSZ886X_BMCR_FORCE_MDI;
1859 break;
1860 case ETH_TP_MDI_AUTO:
1861 val = 0;
1862 break;
1863 default:
1864 return 0;
1865 }
1866
1867 return phy_modify(phydev, MII_BMCR,
1868 KSZ886X_BMCR_HP_MDIX | KSZ886X_BMCR_FORCE_MDI |
1869 KSZ886X_BMCR_DISABLE_AUTO_MDIX,
1870 KSZ886X_BMCR_HP_MDIX | val);
1871 }
1872
ksz886x_config_aneg(struct phy_device * phydev)1873 static int ksz886x_config_aneg(struct phy_device *phydev)
1874 {
1875 int ret;
1876
1877 ret = genphy_config_aneg(phydev);
1878 if (ret)
1879 return ret;
1880
1881 if (phydev->autoneg != AUTONEG_ENABLE) {
1882 /* When autonegotation is disabled, we need to manually force
1883 * the link state. If we don't do this, the PHY will keep
1884 * sending Fast Link Pulses (FLPs) which are part of the
1885 * autonegotiation process. This is not desired when
1886 * autonegotiation is off.
1887 */
1888 ret = phy_set_bits(phydev, MII_KSZPHY_CTRL,
1889 KSZ886X_CTRL_FORCE_LINK);
1890 if (ret)
1891 return ret;
1892 } else {
1893 /* If we had previously forced the link state, we need to
1894 * clear KSZ886X_CTRL_FORCE_LINK bit now. Otherwise, the PHY
1895 * will not perform autonegotiation.
1896 */
1897 ret = phy_clear_bits(phydev, MII_KSZPHY_CTRL,
1898 KSZ886X_CTRL_FORCE_LINK);
1899 if (ret)
1900 return ret;
1901 }
1902
1903 /* The MDI-X configuration is automatically changed by the PHY after
1904 * switching from autoneg off to on. So, take MDI-X configuration under
1905 * own control and set it after autoneg configuration was done.
1906 */
1907 return ksz886x_config_mdix(phydev, phydev->mdix_ctrl);
1908 }
1909
ksz886x_mdix_update(struct phy_device * phydev)1910 static int ksz886x_mdix_update(struct phy_device *phydev)
1911 {
1912 int ret;
1913
1914 ret = phy_read(phydev, MII_BMCR);
1915 if (ret < 0)
1916 return ret;
1917
1918 if (ret & KSZ886X_BMCR_DISABLE_AUTO_MDIX) {
1919 if (ret & KSZ886X_BMCR_FORCE_MDI)
1920 phydev->mdix_ctrl = ETH_TP_MDI_X;
1921 else
1922 phydev->mdix_ctrl = ETH_TP_MDI;
1923 } else {
1924 phydev->mdix_ctrl = ETH_TP_MDI_AUTO;
1925 }
1926
1927 ret = phy_read(phydev, MII_KSZPHY_CTRL);
1928 if (ret < 0)
1929 return ret;
1930
1931 /* Same reverse logic as KSZ886X_BMCR_FORCE_MDI */
1932 if (ret & KSZ886X_CTRL_MDIX_STAT)
1933 phydev->mdix = ETH_TP_MDI_X;
1934 else
1935 phydev->mdix = ETH_TP_MDI;
1936
1937 return 0;
1938 }
1939
ksz886x_read_status(struct phy_device * phydev)1940 static int ksz886x_read_status(struct phy_device *phydev)
1941 {
1942 int ret;
1943
1944 ret = ksz886x_mdix_update(phydev);
1945 if (ret < 0)
1946 return ret;
1947
1948 return genphy_read_status(phydev);
1949 }
1950
1951 struct ksz9477_errata_write {
1952 u8 dev_addr;
1953 u8 reg_addr;
1954 u16 val;
1955 };
1956
1957 static const struct ksz9477_errata_write ksz9477_errata_writes[] = {
1958 /* Register settings are needed to improve PHY receive performance */
1959 {0x01, 0x6f, 0xdd0b},
1960 {0x01, 0x8f, 0x6032},
1961 {0x01, 0x9d, 0x248c},
1962 {0x01, 0x75, 0x0060},
1963 {0x01, 0xd3, 0x7777},
1964 {0x1c, 0x06, 0x3008},
1965 {0x1c, 0x08, 0x2000},
1966
1967 /* Transmit waveform amplitude can be improved (1000BASE-T, 100BASE-TX, 10BASE-Te) */
1968 {0x1c, 0x04, 0x00d0},
1969
1970 /* Register settings are required to meet data sheet supply current specifications */
1971 {0x1c, 0x13, 0x6eff},
1972 {0x1c, 0x14, 0xe6ff},
1973 {0x1c, 0x15, 0x6eff},
1974 {0x1c, 0x16, 0xe6ff},
1975 {0x1c, 0x17, 0x00ff},
1976 {0x1c, 0x18, 0x43ff},
1977 {0x1c, 0x19, 0xc3ff},
1978 {0x1c, 0x1a, 0x6fff},
1979 {0x1c, 0x1b, 0x07ff},
1980 {0x1c, 0x1c, 0x0fff},
1981 {0x1c, 0x1d, 0xe7ff},
1982 {0x1c, 0x1e, 0xefff},
1983 {0x1c, 0x20, 0xeeee},
1984 };
1985
ksz9477_phy_errata(struct phy_device * phydev)1986 static int ksz9477_phy_errata(struct phy_device *phydev)
1987 {
1988 int err;
1989 int i;
1990
1991 /* Apply PHY settings to address errata listed in
1992 * KSZ9477, KSZ9897, KSZ9896, KSZ9567, KSZ8565
1993 * Silicon Errata and Data Sheet Clarification documents.
1994 *
1995 * Document notes: Before configuring the PHY MMD registers, it is
1996 * necessary to set the PHY to 100 Mbps speed with auto-negotiation
1997 * disabled by writing to register 0xN100-0xN101. After writing the
1998 * MMD registers, and after all errata workarounds that involve PHY
1999 * register settings, write register 0xN100-0xN101 again to enable
2000 * and restart auto-negotiation.
2001 */
2002 err = phy_write(phydev, MII_BMCR, BMCR_SPEED100 | BMCR_FULLDPLX);
2003 if (err)
2004 return err;
2005
2006 for (i = 0; i < ARRAY_SIZE(ksz9477_errata_writes); ++i) {
2007 const struct ksz9477_errata_write *errata = &ksz9477_errata_writes[i];
2008
2009 err = phy_write_mmd(phydev, errata->dev_addr, errata->reg_addr, errata->val);
2010 if (err)
2011 return err;
2012 }
2013
2014 err = genphy_restart_aneg(phydev);
2015 if (err)
2016 return err;
2017
2018 return err;
2019 }
2020
ksz9477_config_init(struct phy_device * phydev)2021 static int ksz9477_config_init(struct phy_device *phydev)
2022 {
2023 int err;
2024
2025 /* Only KSZ9897 family of switches needs this fix. */
2026 if ((phydev->phy_id & 0xf) == 1) {
2027 err = ksz9477_phy_errata(phydev);
2028 if (err)
2029 return err;
2030 }
2031
2032 return kszphy_config_init(phydev);
2033 }
2034
kszphy_get_sset_count(struct phy_device * phydev)2035 static int kszphy_get_sset_count(struct phy_device *phydev)
2036 {
2037 return ARRAY_SIZE(kszphy_hw_stats);
2038 }
2039
kszphy_get_strings(struct phy_device * phydev,u8 * data)2040 static void kszphy_get_strings(struct phy_device *phydev, u8 *data)
2041 {
2042 int i;
2043
2044 for (i = 0; i < ARRAY_SIZE(kszphy_hw_stats); i++)
2045 ethtool_puts(&data, kszphy_hw_stats[i].string);
2046 }
2047
kszphy_get_stat(struct phy_device * phydev,int i)2048 static u64 kszphy_get_stat(struct phy_device *phydev, int i)
2049 {
2050 struct kszphy_hw_stat stat = kszphy_hw_stats[i];
2051 struct kszphy_priv *priv = phydev->priv;
2052 int val;
2053 u64 ret;
2054
2055 val = phy_read(phydev, stat.reg);
2056 if (val < 0) {
2057 ret = U64_MAX;
2058 } else {
2059 val = val & ((1 << stat.bits) - 1);
2060 priv->stats[i] += val;
2061 ret = priv->stats[i];
2062 }
2063
2064 return ret;
2065 }
2066
kszphy_get_stats(struct phy_device * phydev,struct ethtool_stats * stats,u64 * data)2067 static void kszphy_get_stats(struct phy_device *phydev,
2068 struct ethtool_stats *stats, u64 *data)
2069 {
2070 int i;
2071
2072 for (i = 0; i < ARRAY_SIZE(kszphy_hw_stats); i++)
2073 data[i] = kszphy_get_stat(phydev, i);
2074 }
2075
kszphy_enable_clk(struct phy_device * phydev)2076 static void kszphy_enable_clk(struct phy_device *phydev)
2077 {
2078 struct kszphy_priv *priv = phydev->priv;
2079
2080 if (!priv->clk_enable && priv->clk) {
2081 clk_prepare_enable(priv->clk);
2082 priv->clk_enable = true;
2083 }
2084 }
2085
kszphy_disable_clk(struct phy_device * phydev)2086 static void kszphy_disable_clk(struct phy_device *phydev)
2087 {
2088 struct kszphy_priv *priv = phydev->priv;
2089
2090 if (priv->clk_enable && priv->clk) {
2091 clk_disable_unprepare(priv->clk);
2092 priv->clk_enable = false;
2093 }
2094 }
2095
kszphy_generic_resume(struct phy_device * phydev)2096 static int kszphy_generic_resume(struct phy_device *phydev)
2097 {
2098 kszphy_enable_clk(phydev);
2099
2100 return genphy_resume(phydev);
2101 }
2102
kszphy_generic_suspend(struct phy_device * phydev)2103 static int kszphy_generic_suspend(struct phy_device *phydev)
2104 {
2105 int ret;
2106
2107 ret = genphy_suspend(phydev);
2108 if (ret)
2109 return ret;
2110
2111 kszphy_disable_clk(phydev);
2112
2113 return 0;
2114 }
2115
kszphy_suspend(struct phy_device * phydev)2116 static int kszphy_suspend(struct phy_device *phydev)
2117 {
2118 /* Disable PHY Interrupts */
2119 if (phy_interrupt_is_valid(phydev)) {
2120 phydev->interrupts = PHY_INTERRUPT_DISABLED;
2121 if (phydev->drv->config_intr)
2122 phydev->drv->config_intr(phydev);
2123 }
2124
2125 return kszphy_generic_suspend(phydev);
2126 }
2127
kszphy_parse_led_mode(struct phy_device * phydev)2128 static void kszphy_parse_led_mode(struct phy_device *phydev)
2129 {
2130 const struct kszphy_type *type = phydev->drv->driver_data;
2131 const struct device_node *np = phydev->mdio.dev.of_node;
2132 struct kszphy_priv *priv = phydev->priv;
2133 int ret;
2134
2135 if (type && type->led_mode_reg) {
2136 ret = of_property_read_u32(np, "micrel,led-mode",
2137 &priv->led_mode);
2138
2139 if (ret)
2140 priv->led_mode = -1;
2141
2142 if (priv->led_mode > 3) {
2143 phydev_err(phydev, "invalid led mode: 0x%02x\n",
2144 priv->led_mode);
2145 priv->led_mode = -1;
2146 }
2147 } else {
2148 priv->led_mode = -1;
2149 }
2150 }
2151
kszphy_resume(struct phy_device * phydev)2152 static int kszphy_resume(struct phy_device *phydev)
2153 {
2154 int ret;
2155
2156 ret = kszphy_generic_resume(phydev);
2157 if (ret)
2158 return ret;
2159
2160 /* After switching from power-down to normal mode, an internal global
2161 * reset is automatically generated. Wait a minimum of 1 ms before
2162 * read/write access to the PHY registers.
2163 */
2164 usleep_range(1000, 2000);
2165
2166 ret = kszphy_config_reset(phydev);
2167 if (ret)
2168 return ret;
2169
2170 /* Enable PHY Interrupts */
2171 if (phy_interrupt_is_valid(phydev)) {
2172 phydev->interrupts = PHY_INTERRUPT_ENABLED;
2173 if (phydev->drv->config_intr)
2174 phydev->drv->config_intr(phydev);
2175 }
2176
2177 return 0;
2178 }
2179
2180 /* Because of errata DS80000700A, receiver error following software
2181 * power down. Suspend and resume callbacks only disable and enable
2182 * external rmii reference clock.
2183 */
ksz8041_resume(struct phy_device * phydev)2184 static int ksz8041_resume(struct phy_device *phydev)
2185 {
2186 kszphy_enable_clk(phydev);
2187
2188 return 0;
2189 }
2190
ksz8041_suspend(struct phy_device * phydev)2191 static int ksz8041_suspend(struct phy_device *phydev)
2192 {
2193 kszphy_disable_clk(phydev);
2194
2195 return 0;
2196 }
2197
ksz9477_resume(struct phy_device * phydev)2198 static int ksz9477_resume(struct phy_device *phydev)
2199 {
2200 int ret;
2201
2202 /* No need to initialize registers if not powered down. */
2203 ret = phy_read(phydev, MII_BMCR);
2204 if (ret < 0)
2205 return ret;
2206 if (!(ret & BMCR_PDOWN))
2207 return 0;
2208
2209 genphy_resume(phydev);
2210
2211 /* After switching from power-down to normal mode, an internal global
2212 * reset is automatically generated. Wait a minimum of 1 ms before
2213 * read/write access to the PHY registers.
2214 */
2215 usleep_range(1000, 2000);
2216
2217 /* Only KSZ9897 family of switches needs this fix. */
2218 if ((phydev->phy_id & 0xf) == 1) {
2219 ret = ksz9477_phy_errata(phydev);
2220 if (ret)
2221 return ret;
2222 }
2223
2224 /* Enable PHY Interrupts */
2225 if (phy_interrupt_is_valid(phydev)) {
2226 phydev->interrupts = PHY_INTERRUPT_ENABLED;
2227 if (phydev->drv->config_intr)
2228 phydev->drv->config_intr(phydev);
2229 }
2230
2231 return 0;
2232 }
2233
ksz8061_resume(struct phy_device * phydev)2234 static int ksz8061_resume(struct phy_device *phydev)
2235 {
2236 int ret;
2237
2238 /* This function can be called twice when the Ethernet device is on. */
2239 ret = phy_read(phydev, MII_BMCR);
2240 if (ret < 0)
2241 return ret;
2242 if (!(ret & BMCR_PDOWN))
2243 return 0;
2244
2245 ret = kszphy_generic_resume(phydev);
2246 if (ret)
2247 return ret;
2248
2249 usleep_range(1000, 2000);
2250
2251 /* Re-program the value after chip is reset. */
2252 ret = phy_write_mmd(phydev, MDIO_MMD_PMAPMD, MDIO_DEVID1, 0xB61A);
2253 if (ret)
2254 return ret;
2255
2256 /* Enable PHY Interrupts */
2257 if (phy_interrupt_is_valid(phydev)) {
2258 phydev->interrupts = PHY_INTERRUPT_ENABLED;
2259 if (phydev->drv->config_intr)
2260 phydev->drv->config_intr(phydev);
2261 }
2262
2263 return 0;
2264 }
2265
ksz8061_suspend(struct phy_device * phydev)2266 static int ksz8061_suspend(struct phy_device *phydev)
2267 {
2268 return kszphy_suspend(phydev);
2269 }
2270
kszphy_probe(struct phy_device * phydev)2271 static int kszphy_probe(struct phy_device *phydev)
2272 {
2273 const struct kszphy_type *type = phydev->drv->driver_data;
2274 const struct device_node *np = phydev->mdio.dev.of_node;
2275 struct kszphy_priv *priv;
2276 struct clk *clk;
2277
2278 priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL);
2279 if (!priv)
2280 return -ENOMEM;
2281
2282 phydev->priv = priv;
2283
2284 priv->type = type;
2285
2286 kszphy_parse_led_mode(phydev);
2287
2288 clk = devm_clk_get_optional_enabled(&phydev->mdio.dev, "rmii-ref");
2289 /* NOTE: clk may be NULL if building without CONFIG_HAVE_CLK */
2290 if (!IS_ERR_OR_NULL(clk)) {
2291 unsigned long rate = clk_get_rate(clk);
2292 bool rmii_ref_clk_sel_25_mhz;
2293
2294 if (type)
2295 priv->rmii_ref_clk_sel = type->has_rmii_ref_clk_sel;
2296 rmii_ref_clk_sel_25_mhz = of_property_read_bool(np,
2297 "micrel,rmii-reference-clock-select-25-mhz");
2298
2299 if (rate > 24500000 && rate < 25500000) {
2300 priv->rmii_ref_clk_sel_val = rmii_ref_clk_sel_25_mhz;
2301 } else if (rate > 49500000 && rate < 50500000) {
2302 priv->rmii_ref_clk_sel_val = !rmii_ref_clk_sel_25_mhz;
2303 } else {
2304 phydev_err(phydev, "Clock rate out of range: %ld\n",
2305 rate);
2306 return -EINVAL;
2307 }
2308 } else if (!clk) {
2309 /* unnamed clock from the generic ethernet-phy binding */
2310 clk = devm_clk_get_optional_enabled(&phydev->mdio.dev, NULL);
2311 }
2312
2313 if (IS_ERR(clk))
2314 return PTR_ERR(clk);
2315
2316 clk_disable_unprepare(clk);
2317 priv->clk = clk;
2318
2319 if (ksz8041_fiber_mode(phydev))
2320 phydev->port = PORT_FIBRE;
2321
2322 /* Support legacy board-file configuration */
2323 if (phydev->dev_flags & MICREL_PHY_50MHZ_CLK) {
2324 priv->rmii_ref_clk_sel = true;
2325 priv->rmii_ref_clk_sel_val = true;
2326 }
2327
2328 return 0;
2329 }
2330
lan8814_cable_test_start(struct phy_device * phydev)2331 static int lan8814_cable_test_start(struct phy_device *phydev)
2332 {
2333 /* If autoneg is enabled, we won't be able to test cross pair
2334 * short. In this case, the PHY will "detect" a link and
2335 * confuse the internal state machine - disable auto neg here.
2336 * Set the speed to 1000mbit and full duplex.
2337 */
2338 return phy_modify(phydev, MII_BMCR, BMCR_ANENABLE | BMCR_SPEED100,
2339 BMCR_SPEED1000 | BMCR_FULLDPLX);
2340 }
2341
ksz886x_cable_test_start(struct phy_device * phydev)2342 static int ksz886x_cable_test_start(struct phy_device *phydev)
2343 {
2344 if (phydev->dev_flags & MICREL_KSZ8_P1_ERRATA)
2345 return -EOPNOTSUPP;
2346
2347 /* If autoneg is enabled, we won't be able to test cross pair
2348 * short. In this case, the PHY will "detect" a link and
2349 * confuse the internal state machine - disable auto neg here.
2350 * If autoneg is disabled, we should set the speed to 10mbit.
2351 */
2352 return phy_clear_bits(phydev, MII_BMCR, BMCR_ANENABLE | BMCR_SPEED100);
2353 }
2354
ksz886x_cable_test_result_trans(u16 status,u16 mask)2355 static __always_inline int ksz886x_cable_test_result_trans(u16 status, u16 mask)
2356 {
2357 switch (FIELD_GET(mask, status)) {
2358 case KSZ8081_LMD_STAT_NORMAL:
2359 return ETHTOOL_A_CABLE_RESULT_CODE_OK;
2360 case KSZ8081_LMD_STAT_SHORT:
2361 return ETHTOOL_A_CABLE_RESULT_CODE_SAME_SHORT;
2362 case KSZ8081_LMD_STAT_OPEN:
2363 return ETHTOOL_A_CABLE_RESULT_CODE_OPEN;
2364 case KSZ8081_LMD_STAT_FAIL:
2365 fallthrough;
2366 default:
2367 return ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC;
2368 }
2369 }
2370
ksz886x_cable_test_failed(u16 status,u16 mask)2371 static __always_inline bool ksz886x_cable_test_failed(u16 status, u16 mask)
2372 {
2373 return FIELD_GET(mask, status) ==
2374 KSZ8081_LMD_STAT_FAIL;
2375 }
2376
ksz886x_cable_test_fault_length_valid(u16 status,u16 mask)2377 static __always_inline bool ksz886x_cable_test_fault_length_valid(u16 status, u16 mask)
2378 {
2379 switch (FIELD_GET(mask, status)) {
2380 case KSZ8081_LMD_STAT_OPEN:
2381 fallthrough;
2382 case KSZ8081_LMD_STAT_SHORT:
2383 return true;
2384 }
2385 return false;
2386 }
2387
ksz886x_cable_test_fault_length(struct phy_device * phydev,u16 status,u16 data_mask)2388 static __always_inline int ksz886x_cable_test_fault_length(struct phy_device *phydev,
2389 u16 status, u16 data_mask)
2390 {
2391 int dt;
2392
2393 /* According to the data sheet the distance to the fault is
2394 * DELTA_TIME * 0.4 meters for ksz phys.
2395 * (DELTA_TIME - 22) * 0.8 for lan8814 phy.
2396 */
2397 dt = FIELD_GET(data_mask, status);
2398
2399 if (phydev_id_compare(phydev, PHY_ID_LAN8814))
2400 return ((dt - 22) * 800) / 10;
2401 else
2402 return (dt * 400) / 10;
2403 }
2404
ksz886x_cable_test_wait_for_completion(struct phy_device * phydev)2405 static int ksz886x_cable_test_wait_for_completion(struct phy_device *phydev)
2406 {
2407 const struct kszphy_type *type = phydev->drv->driver_data;
2408 int val, ret;
2409
2410 ret = phy_read_poll_timeout(phydev, type->cable_diag_reg, val,
2411 !(val & KSZ8081_LMD_ENABLE_TEST),
2412 30000, 100000, true);
2413
2414 return ret < 0 ? ret : 0;
2415 }
2416
lan8814_cable_test_one_pair(struct phy_device * phydev,int pair)2417 static int lan8814_cable_test_one_pair(struct phy_device *phydev, int pair)
2418 {
2419 static const int ethtool_pair[] = { ETHTOOL_A_CABLE_PAIR_A,
2420 ETHTOOL_A_CABLE_PAIR_B,
2421 ETHTOOL_A_CABLE_PAIR_C,
2422 ETHTOOL_A_CABLE_PAIR_D,
2423 };
2424 u32 fault_length;
2425 int ret;
2426 int val;
2427
2428 val = KSZ8081_LMD_ENABLE_TEST;
2429 val = val | (pair << LAN8814_PAIR_BIT_SHIFT);
2430
2431 ret = phy_write(phydev, LAN8814_CABLE_DIAG, val);
2432 if (ret < 0)
2433 return ret;
2434
2435 ret = ksz886x_cable_test_wait_for_completion(phydev);
2436 if (ret)
2437 return ret;
2438
2439 val = phy_read(phydev, LAN8814_CABLE_DIAG);
2440 if (val < 0)
2441 return val;
2442
2443 if (ksz886x_cable_test_failed(val, LAN8814_CABLE_DIAG_STAT_MASK))
2444 return -EAGAIN;
2445
2446 ret = ethnl_cable_test_result(phydev, ethtool_pair[pair],
2447 ksz886x_cable_test_result_trans(val,
2448 LAN8814_CABLE_DIAG_STAT_MASK
2449 ));
2450 if (ret)
2451 return ret;
2452
2453 if (!ksz886x_cable_test_fault_length_valid(val, LAN8814_CABLE_DIAG_STAT_MASK))
2454 return 0;
2455
2456 fault_length = ksz886x_cable_test_fault_length(phydev, val,
2457 LAN8814_CABLE_DIAG_VCT_DATA_MASK);
2458
2459 return ethnl_cable_test_fault_length(phydev, ethtool_pair[pair], fault_length);
2460 }
2461
ksz886x_cable_test_one_pair(struct phy_device * phydev,int pair)2462 static int ksz886x_cable_test_one_pair(struct phy_device *phydev, int pair)
2463 {
2464 static const int ethtool_pair[] = {
2465 ETHTOOL_A_CABLE_PAIR_A,
2466 ETHTOOL_A_CABLE_PAIR_B,
2467 };
2468 int ret, val, mdix;
2469 u32 fault_length;
2470
2471 /* There is no way to choice the pair, like we do one ksz9031.
2472 * We can workaround this limitation by using the MDI-X functionality.
2473 */
2474 if (pair == 0)
2475 mdix = ETH_TP_MDI;
2476 else
2477 mdix = ETH_TP_MDI_X;
2478
2479 switch (phydev->phy_id & MICREL_PHY_ID_MASK) {
2480 case PHY_ID_KSZ8081:
2481 ret = ksz8081_config_mdix(phydev, mdix);
2482 break;
2483 case PHY_ID_KSZ886X:
2484 ret = ksz886x_config_mdix(phydev, mdix);
2485 break;
2486 default:
2487 ret = -ENODEV;
2488 }
2489
2490 if (ret)
2491 return ret;
2492
2493 /* Now we are ready to fire. This command will send a 100ns pulse
2494 * to the pair.
2495 */
2496 ret = phy_write(phydev, KSZ8081_LMD, KSZ8081_LMD_ENABLE_TEST);
2497 if (ret)
2498 return ret;
2499
2500 ret = ksz886x_cable_test_wait_for_completion(phydev);
2501 if (ret)
2502 return ret;
2503
2504 val = phy_read(phydev, KSZ8081_LMD);
2505 if (val < 0)
2506 return val;
2507
2508 if (ksz886x_cable_test_failed(val, KSZ8081_LMD_STAT_MASK))
2509 return -EAGAIN;
2510
2511 ret = ethnl_cable_test_result(phydev, ethtool_pair[pair],
2512 ksz886x_cable_test_result_trans(val, KSZ8081_LMD_STAT_MASK));
2513 if (ret)
2514 return ret;
2515
2516 if (!ksz886x_cable_test_fault_length_valid(val, KSZ8081_LMD_STAT_MASK))
2517 return 0;
2518
2519 fault_length = ksz886x_cable_test_fault_length(phydev, val, KSZ8081_LMD_DELTA_TIME_MASK);
2520
2521 return ethnl_cable_test_fault_length(phydev, ethtool_pair[pair], fault_length);
2522 }
2523
ksz886x_cable_test_get_status(struct phy_device * phydev,bool * finished)2524 static int ksz886x_cable_test_get_status(struct phy_device *phydev,
2525 bool *finished)
2526 {
2527 const struct kszphy_type *type = phydev->drv->driver_data;
2528 unsigned long pair_mask = type->pair_mask;
2529 int retries = 20;
2530 int ret = 0;
2531 int pair;
2532
2533 *finished = false;
2534
2535 /* Try harder if link partner is active */
2536 while (pair_mask && retries--) {
2537 for_each_set_bit(pair, &pair_mask, 4) {
2538 if (type->cable_diag_reg == LAN8814_CABLE_DIAG)
2539 ret = lan8814_cable_test_one_pair(phydev, pair);
2540 else
2541 ret = ksz886x_cable_test_one_pair(phydev, pair);
2542 if (ret == -EAGAIN)
2543 continue;
2544 if (ret < 0)
2545 return ret;
2546 clear_bit(pair, &pair_mask);
2547 }
2548 /* If link partner is in autonegotiation mode it will send 2ms
2549 * of FLPs with at least 6ms of silence.
2550 * Add 2ms sleep to have better chances to hit this silence.
2551 */
2552 if (pair_mask)
2553 msleep(2);
2554 }
2555
2556 *finished = true;
2557
2558 return ret;
2559 }
2560
2561 #define LAN_EXT_PAGE_ACCESS_CONTROL 0x16
2562 #define LAN_EXT_PAGE_ACCESS_ADDRESS_DATA 0x17
2563 #define LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC 0x4000
2564
2565 #define LAN8814_QSGMII_SOFT_RESET 0x43
2566 #define LAN8814_QSGMII_SOFT_RESET_BIT BIT(0)
2567 #define LAN8814_QSGMII_PCS1G_ANEG_CONFIG 0x13
2568 #define LAN8814_QSGMII_PCS1G_ANEG_CONFIG_ANEG_ENA BIT(3)
2569 #define LAN8814_ALIGN_SWAP 0x4a
2570 #define LAN8814_ALIGN_TX_A_B_SWAP 0x1
2571 #define LAN8814_ALIGN_TX_A_B_SWAP_MASK GENMASK(2, 0)
2572
2573 #define LAN8804_ALIGN_SWAP 0x4a
2574 #define LAN8804_ALIGN_TX_A_B_SWAP 0x1
2575 #define LAN8804_ALIGN_TX_A_B_SWAP_MASK GENMASK(2, 0)
2576 #define LAN8814_CLOCK_MANAGEMENT 0xd
2577 #define LAN8814_LINK_QUALITY 0x8e
2578
lanphy_read_page_reg(struct phy_device * phydev,int page,u32 addr)2579 static int lanphy_read_page_reg(struct phy_device *phydev, int page, u32 addr)
2580 {
2581 int data;
2582
2583 phy_lock_mdio_bus(phydev);
2584 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, page);
2585 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, addr);
2586 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL,
2587 (page | LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC));
2588 data = __phy_read(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA);
2589 phy_unlock_mdio_bus(phydev);
2590
2591 return data;
2592 }
2593
lanphy_write_page_reg(struct phy_device * phydev,int page,u16 addr,u16 val)2594 static int lanphy_write_page_reg(struct phy_device *phydev, int page, u16 addr,
2595 u16 val)
2596 {
2597 phy_lock_mdio_bus(phydev);
2598 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, page);
2599 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, addr);
2600 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL,
2601 page | LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC);
2602
2603 val = __phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, val);
2604 if (val != 0)
2605 phydev_err(phydev, "Error: phy_write has returned error %d\n",
2606 val);
2607 phy_unlock_mdio_bus(phydev);
2608 return val;
2609 }
2610
lan8814_config_ts_intr(struct phy_device * phydev,bool enable)2611 static int lan8814_config_ts_intr(struct phy_device *phydev, bool enable)
2612 {
2613 u16 val = 0;
2614
2615 if (enable)
2616 val = PTP_TSU_INT_EN_PTP_TX_TS_EN_ |
2617 PTP_TSU_INT_EN_PTP_TX_TS_OVRFL_EN_ |
2618 PTP_TSU_INT_EN_PTP_RX_TS_EN_ |
2619 PTP_TSU_INT_EN_PTP_RX_TS_OVRFL_EN_;
2620
2621 return lanphy_write_page_reg(phydev, 5, PTP_TSU_INT_EN, val);
2622 }
2623
lan8814_ptp_rx_ts_get(struct phy_device * phydev,u32 * seconds,u32 * nano_seconds,u16 * seq_id)2624 static void lan8814_ptp_rx_ts_get(struct phy_device *phydev,
2625 u32 *seconds, u32 *nano_seconds, u16 *seq_id)
2626 {
2627 *seconds = lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_SEC_HI);
2628 *seconds = (*seconds << 16) |
2629 lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_SEC_LO);
2630
2631 *nano_seconds = lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_NS_HI);
2632 *nano_seconds = ((*nano_seconds & 0x3fff) << 16) |
2633 lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_NS_LO);
2634
2635 *seq_id = lanphy_read_page_reg(phydev, 5, PTP_RX_MSG_HEADER2);
2636 }
2637
lan8814_ptp_tx_ts_get(struct phy_device * phydev,u32 * seconds,u32 * nano_seconds,u16 * seq_id)2638 static void lan8814_ptp_tx_ts_get(struct phy_device *phydev,
2639 u32 *seconds, u32 *nano_seconds, u16 *seq_id)
2640 {
2641 *seconds = lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_SEC_HI);
2642 *seconds = *seconds << 16 |
2643 lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_SEC_LO);
2644
2645 *nano_seconds = lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_NS_HI);
2646 *nano_seconds = ((*nano_seconds & 0x3fff) << 16) |
2647 lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_NS_LO);
2648
2649 *seq_id = lanphy_read_page_reg(phydev, 5, PTP_TX_MSG_HEADER2);
2650 }
2651
lan8814_ts_info(struct mii_timestamper * mii_ts,struct kernel_ethtool_ts_info * info)2652 static int lan8814_ts_info(struct mii_timestamper *mii_ts, struct kernel_ethtool_ts_info *info)
2653 {
2654 struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
2655 struct lan8814_shared_priv *shared = phy_package_get_priv(ptp_priv->phydev);
2656
2657 info->so_timestamping = SOF_TIMESTAMPING_TX_HARDWARE |
2658 SOF_TIMESTAMPING_RX_HARDWARE |
2659 SOF_TIMESTAMPING_RAW_HARDWARE;
2660
2661 info->phc_index = ptp_clock_index(shared->ptp_clock);
2662
2663 info->tx_types =
2664 (1 << HWTSTAMP_TX_OFF) |
2665 (1 << HWTSTAMP_TX_ON) |
2666 (1 << HWTSTAMP_TX_ONESTEP_SYNC);
2667
2668 info->rx_filters =
2669 (1 << HWTSTAMP_FILTER_NONE) |
2670 (1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT) |
2671 (1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT) |
2672 (1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
2673 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
2674
2675 return 0;
2676 }
2677
lan8814_flush_fifo(struct phy_device * phydev,bool egress)2678 static void lan8814_flush_fifo(struct phy_device *phydev, bool egress)
2679 {
2680 int i;
2681
2682 for (i = 0; i < FIFO_SIZE; ++i)
2683 lanphy_read_page_reg(phydev, 5,
2684 egress ? PTP_TX_MSG_HEADER2 : PTP_RX_MSG_HEADER2);
2685
2686 /* Read to clear overflow status bit */
2687 lanphy_read_page_reg(phydev, 5, PTP_TSU_INT_STS);
2688 }
2689
lan8814_hwtstamp(struct mii_timestamper * mii_ts,struct kernel_hwtstamp_config * config,struct netlink_ext_ack * extack)2690 static int lan8814_hwtstamp(struct mii_timestamper *mii_ts,
2691 struct kernel_hwtstamp_config *config,
2692 struct netlink_ext_ack *extack)
2693 {
2694 struct kszphy_ptp_priv *ptp_priv =
2695 container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
2696 struct lan8814_ptp_rx_ts *rx_ts, *tmp;
2697 int txcfg = 0, rxcfg = 0;
2698 int pkt_ts_enable;
2699 int tx_mod;
2700
2701 ptp_priv->hwts_tx_type = config->tx_type;
2702 ptp_priv->rx_filter = config->rx_filter;
2703
2704 switch (config->rx_filter) {
2705 case HWTSTAMP_FILTER_NONE:
2706 ptp_priv->layer = 0;
2707 ptp_priv->version = 0;
2708 break;
2709 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
2710 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
2711 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
2712 ptp_priv->layer = PTP_CLASS_L4;
2713 ptp_priv->version = PTP_CLASS_V2;
2714 break;
2715 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
2716 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
2717 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
2718 ptp_priv->layer = PTP_CLASS_L2;
2719 ptp_priv->version = PTP_CLASS_V2;
2720 break;
2721 case HWTSTAMP_FILTER_PTP_V2_EVENT:
2722 case HWTSTAMP_FILTER_PTP_V2_SYNC:
2723 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
2724 ptp_priv->layer = PTP_CLASS_L4 | PTP_CLASS_L2;
2725 ptp_priv->version = PTP_CLASS_V2;
2726 break;
2727 default:
2728 return -ERANGE;
2729 }
2730
2731 if (ptp_priv->layer & PTP_CLASS_L2) {
2732 rxcfg = PTP_RX_PARSE_CONFIG_LAYER2_EN_;
2733 txcfg = PTP_TX_PARSE_CONFIG_LAYER2_EN_;
2734 } else if (ptp_priv->layer & PTP_CLASS_L4) {
2735 rxcfg |= PTP_RX_PARSE_CONFIG_IPV4_EN_ | PTP_RX_PARSE_CONFIG_IPV6_EN_;
2736 txcfg |= PTP_TX_PARSE_CONFIG_IPV4_EN_ | PTP_TX_PARSE_CONFIG_IPV6_EN_;
2737 }
2738 lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_RX_PARSE_CONFIG, rxcfg);
2739 lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_PARSE_CONFIG, txcfg);
2740
2741 pkt_ts_enable = PTP_TIMESTAMP_EN_SYNC_ | PTP_TIMESTAMP_EN_DREQ_ |
2742 PTP_TIMESTAMP_EN_PDREQ_ | PTP_TIMESTAMP_EN_PDRES_;
2743 lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_RX_TIMESTAMP_EN, pkt_ts_enable);
2744 lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_TIMESTAMP_EN, pkt_ts_enable);
2745
2746 tx_mod = lanphy_read_page_reg(ptp_priv->phydev, 5, PTP_TX_MOD);
2747 if (ptp_priv->hwts_tx_type == HWTSTAMP_TX_ONESTEP_SYNC) {
2748 lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_MOD,
2749 tx_mod | PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_);
2750 } else if (ptp_priv->hwts_tx_type == HWTSTAMP_TX_ON) {
2751 lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_MOD,
2752 tx_mod & ~PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_);
2753 }
2754
2755 if (config->rx_filter != HWTSTAMP_FILTER_NONE)
2756 lan8814_config_ts_intr(ptp_priv->phydev, true);
2757 else
2758 lan8814_config_ts_intr(ptp_priv->phydev, false);
2759
2760 /* In case of multiple starts and stops, these needs to be cleared */
2761 list_for_each_entry_safe(rx_ts, tmp, &ptp_priv->rx_ts_list, list) {
2762 list_del(&rx_ts->list);
2763 kfree(rx_ts);
2764 }
2765 skb_queue_purge(&ptp_priv->rx_queue);
2766 skb_queue_purge(&ptp_priv->tx_queue);
2767
2768 lan8814_flush_fifo(ptp_priv->phydev, false);
2769 lan8814_flush_fifo(ptp_priv->phydev, true);
2770
2771 return 0;
2772 }
2773
lan8814_txtstamp(struct mii_timestamper * mii_ts,struct sk_buff * skb,int type)2774 static void lan8814_txtstamp(struct mii_timestamper *mii_ts,
2775 struct sk_buff *skb, int type)
2776 {
2777 struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
2778
2779 switch (ptp_priv->hwts_tx_type) {
2780 case HWTSTAMP_TX_ONESTEP_SYNC:
2781 if (ptp_msg_is_sync(skb, type)) {
2782 kfree_skb(skb);
2783 return;
2784 }
2785 fallthrough;
2786 case HWTSTAMP_TX_ON:
2787 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2788 skb_queue_tail(&ptp_priv->tx_queue, skb);
2789 break;
2790 case HWTSTAMP_TX_OFF:
2791 default:
2792 kfree_skb(skb);
2793 break;
2794 }
2795 }
2796
lan8814_get_sig_rx(struct sk_buff * skb,u16 * sig)2797 static bool lan8814_get_sig_rx(struct sk_buff *skb, u16 *sig)
2798 {
2799 struct ptp_header *ptp_header;
2800 u32 type;
2801
2802 skb_push(skb, ETH_HLEN);
2803 type = ptp_classify_raw(skb);
2804 ptp_header = ptp_parse_header(skb, type);
2805 skb_pull_inline(skb, ETH_HLEN);
2806
2807 if (!ptp_header)
2808 return false;
2809
2810 *sig = (__force u16)(ntohs(ptp_header->sequence_id));
2811 return true;
2812 }
2813
lan8814_match_rx_skb(struct kszphy_ptp_priv * ptp_priv,struct sk_buff * skb)2814 static bool lan8814_match_rx_skb(struct kszphy_ptp_priv *ptp_priv,
2815 struct sk_buff *skb)
2816 {
2817 struct skb_shared_hwtstamps *shhwtstamps;
2818 struct lan8814_ptp_rx_ts *rx_ts, *tmp;
2819 unsigned long flags;
2820 bool ret = false;
2821 u16 skb_sig;
2822
2823 if (!lan8814_get_sig_rx(skb, &skb_sig))
2824 return ret;
2825
2826 /* Iterate over all RX timestamps and match it with the received skbs */
2827 spin_lock_irqsave(&ptp_priv->rx_ts_lock, flags);
2828 list_for_each_entry_safe(rx_ts, tmp, &ptp_priv->rx_ts_list, list) {
2829 /* Check if we found the signature we were looking for. */
2830 if (memcmp(&skb_sig, &rx_ts->seq_id, sizeof(rx_ts->seq_id)))
2831 continue;
2832
2833 shhwtstamps = skb_hwtstamps(skb);
2834 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2835 shhwtstamps->hwtstamp = ktime_set(rx_ts->seconds,
2836 rx_ts->nsec);
2837 list_del(&rx_ts->list);
2838 kfree(rx_ts);
2839
2840 ret = true;
2841 break;
2842 }
2843 spin_unlock_irqrestore(&ptp_priv->rx_ts_lock, flags);
2844
2845 if (ret)
2846 netif_rx(skb);
2847 return ret;
2848 }
2849
lan8814_rxtstamp(struct mii_timestamper * mii_ts,struct sk_buff * skb,int type)2850 static bool lan8814_rxtstamp(struct mii_timestamper *mii_ts, struct sk_buff *skb, int type)
2851 {
2852 struct kszphy_ptp_priv *ptp_priv =
2853 container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
2854
2855 if (ptp_priv->rx_filter == HWTSTAMP_FILTER_NONE ||
2856 type == PTP_CLASS_NONE)
2857 return false;
2858
2859 if ((type & ptp_priv->version) == 0 || (type & ptp_priv->layer) == 0)
2860 return false;
2861
2862 /* If we failed to match then add it to the queue for when the timestamp
2863 * will come
2864 */
2865 if (!lan8814_match_rx_skb(ptp_priv, skb))
2866 skb_queue_tail(&ptp_priv->rx_queue, skb);
2867
2868 return true;
2869 }
2870
lan8814_ptp_clock_set(struct phy_device * phydev,time64_t sec,u32 nsec)2871 static void lan8814_ptp_clock_set(struct phy_device *phydev,
2872 time64_t sec, u32 nsec)
2873 {
2874 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_SEC_LO, lower_16_bits(sec));
2875 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_SEC_MID, upper_16_bits(sec));
2876 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_SEC_HI, upper_32_bits(sec));
2877 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_NS_LO, lower_16_bits(nsec));
2878 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_NS_HI, upper_16_bits(nsec));
2879
2880 lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL, PTP_CMD_CTL_PTP_CLOCK_LOAD_);
2881 }
2882
lan8814_ptp_clock_get(struct phy_device * phydev,time64_t * sec,u32 * nsec)2883 static void lan8814_ptp_clock_get(struct phy_device *phydev,
2884 time64_t *sec, u32 *nsec)
2885 {
2886 lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL, PTP_CMD_CTL_PTP_CLOCK_READ_);
2887
2888 *sec = lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_SEC_HI);
2889 *sec <<= 16;
2890 *sec |= lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_SEC_MID);
2891 *sec <<= 16;
2892 *sec |= lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_SEC_LO);
2893
2894 *nsec = lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_NS_HI);
2895 *nsec <<= 16;
2896 *nsec |= lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_NS_LO);
2897 }
2898
lan8814_ptpci_gettime64(struct ptp_clock_info * ptpci,struct timespec64 * ts)2899 static int lan8814_ptpci_gettime64(struct ptp_clock_info *ptpci,
2900 struct timespec64 *ts)
2901 {
2902 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
2903 ptp_clock_info);
2904 struct phy_device *phydev = shared->phydev;
2905 u32 nano_seconds;
2906 time64_t seconds;
2907
2908 mutex_lock(&shared->shared_lock);
2909 lan8814_ptp_clock_get(phydev, &seconds, &nano_seconds);
2910 mutex_unlock(&shared->shared_lock);
2911 ts->tv_sec = seconds;
2912 ts->tv_nsec = nano_seconds;
2913
2914 return 0;
2915 }
2916
lan8814_ptpci_settime64(struct ptp_clock_info * ptpci,const struct timespec64 * ts)2917 static int lan8814_ptpci_settime64(struct ptp_clock_info *ptpci,
2918 const struct timespec64 *ts)
2919 {
2920 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
2921 ptp_clock_info);
2922 struct phy_device *phydev = shared->phydev;
2923
2924 mutex_lock(&shared->shared_lock);
2925 lan8814_ptp_clock_set(phydev, ts->tv_sec, ts->tv_nsec);
2926 mutex_unlock(&shared->shared_lock);
2927
2928 return 0;
2929 }
2930
lan8814_ptp_set_target(struct phy_device * phydev,int event,s64 start_sec,u32 start_nsec)2931 static void lan8814_ptp_set_target(struct phy_device *phydev, int event,
2932 s64 start_sec, u32 start_nsec)
2933 {
2934 /* Set the start time */
2935 lanphy_write_page_reg(phydev, 4, LAN8814_PTP_CLOCK_TARGET_SEC_LO(event),
2936 lower_16_bits(start_sec));
2937 lanphy_write_page_reg(phydev, 4, LAN8814_PTP_CLOCK_TARGET_SEC_HI(event),
2938 upper_16_bits(start_sec));
2939
2940 lanphy_write_page_reg(phydev, 4, LAN8814_PTP_CLOCK_TARGET_NS_LO(event),
2941 lower_16_bits(start_nsec));
2942 lanphy_write_page_reg(phydev, 4, LAN8814_PTP_CLOCK_TARGET_NS_HI(event),
2943 upper_16_bits(start_nsec) & 0x3fff);
2944 }
2945
lan8814_ptp_update_target(struct phy_device * phydev,time64_t sec)2946 static void lan8814_ptp_update_target(struct phy_device *phydev, time64_t sec)
2947 {
2948 lan8814_ptp_set_target(phydev, LAN8814_EVENT_A,
2949 sec + LAN8814_BUFFER_TIME, 0);
2950 lan8814_ptp_set_target(phydev, LAN8814_EVENT_B,
2951 sec + LAN8814_BUFFER_TIME, 0);
2952 }
2953
lan8814_ptp_clock_step(struct phy_device * phydev,s64 time_step_ns)2954 static void lan8814_ptp_clock_step(struct phy_device *phydev,
2955 s64 time_step_ns)
2956 {
2957 u32 nano_seconds_step;
2958 u64 abs_time_step_ns;
2959 time64_t set_seconds;
2960 u32 nano_seconds;
2961 u32 remainder;
2962 s32 seconds;
2963
2964 if (time_step_ns > 15000000000LL) {
2965 /* convert to clock set */
2966 lan8814_ptp_clock_get(phydev, &set_seconds, &nano_seconds);
2967 set_seconds += div_u64_rem(time_step_ns, 1000000000LL,
2968 &remainder);
2969 nano_seconds += remainder;
2970 if (nano_seconds >= 1000000000) {
2971 set_seconds++;
2972 nano_seconds -= 1000000000;
2973 }
2974 lan8814_ptp_clock_set(phydev, set_seconds, nano_seconds);
2975 lan8814_ptp_update_target(phydev, set_seconds);
2976 return;
2977 } else if (time_step_ns < -15000000000LL) {
2978 /* convert to clock set */
2979 time_step_ns = -time_step_ns;
2980
2981 lan8814_ptp_clock_get(phydev, &set_seconds, &nano_seconds);
2982 set_seconds -= div_u64_rem(time_step_ns, 1000000000LL,
2983 &remainder);
2984 nano_seconds_step = remainder;
2985 if (nano_seconds < nano_seconds_step) {
2986 set_seconds--;
2987 nano_seconds += 1000000000;
2988 }
2989 nano_seconds -= nano_seconds_step;
2990 lan8814_ptp_clock_set(phydev, set_seconds, nano_seconds);
2991 lan8814_ptp_update_target(phydev, set_seconds);
2992 return;
2993 }
2994
2995 /* do clock step */
2996 if (time_step_ns >= 0) {
2997 abs_time_step_ns = (u64)time_step_ns;
2998 seconds = (s32)div_u64_rem(abs_time_step_ns, 1000000000,
2999 &remainder);
3000 nano_seconds = remainder;
3001 } else {
3002 abs_time_step_ns = (u64)(-time_step_ns);
3003 seconds = -((s32)div_u64_rem(abs_time_step_ns, 1000000000,
3004 &remainder));
3005 nano_seconds = remainder;
3006 if (nano_seconds > 0) {
3007 /* subtracting nano seconds is not allowed
3008 * convert to subtracting from seconds,
3009 * and adding to nanoseconds
3010 */
3011 seconds--;
3012 nano_seconds = (1000000000 - nano_seconds);
3013 }
3014 }
3015
3016 if (nano_seconds > 0) {
3017 /* add 8 ns to cover the likely normal increment */
3018 nano_seconds += 8;
3019 }
3020
3021 if (nano_seconds >= 1000000000) {
3022 /* carry into seconds */
3023 seconds++;
3024 nano_seconds -= 1000000000;
3025 }
3026
3027 while (seconds) {
3028 u32 nsec;
3029
3030 if (seconds > 0) {
3031 u32 adjustment_value = (u32)seconds;
3032 u16 adjustment_value_lo, adjustment_value_hi;
3033
3034 if (adjustment_value > 0xF)
3035 adjustment_value = 0xF;
3036
3037 adjustment_value_lo = adjustment_value & 0xffff;
3038 adjustment_value_hi = (adjustment_value >> 16) & 0x3fff;
3039
3040 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_LO,
3041 adjustment_value_lo);
3042 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_HI,
3043 PTP_LTC_STEP_ADJ_DIR_ |
3044 adjustment_value_hi);
3045 seconds -= ((s32)adjustment_value);
3046
3047 lan8814_ptp_clock_get(phydev, &set_seconds, &nsec);
3048 set_seconds -= adjustment_value;
3049 lan8814_ptp_update_target(phydev, set_seconds);
3050 } else {
3051 u32 adjustment_value = (u32)(-seconds);
3052 u16 adjustment_value_lo, adjustment_value_hi;
3053
3054 if (adjustment_value > 0xF)
3055 adjustment_value = 0xF;
3056
3057 adjustment_value_lo = adjustment_value & 0xffff;
3058 adjustment_value_hi = (adjustment_value >> 16) & 0x3fff;
3059
3060 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_LO,
3061 adjustment_value_lo);
3062 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_HI,
3063 adjustment_value_hi);
3064 seconds += ((s32)adjustment_value);
3065
3066 lan8814_ptp_clock_get(phydev, &set_seconds, &nsec);
3067 set_seconds += adjustment_value;
3068 lan8814_ptp_update_target(phydev, set_seconds);
3069 }
3070 lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL,
3071 PTP_CMD_CTL_PTP_LTC_STEP_SEC_);
3072 }
3073 if (nano_seconds) {
3074 u16 nano_seconds_lo;
3075 u16 nano_seconds_hi;
3076
3077 nano_seconds_lo = nano_seconds & 0xffff;
3078 nano_seconds_hi = (nano_seconds >> 16) & 0x3fff;
3079
3080 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_LO,
3081 nano_seconds_lo);
3082 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_HI,
3083 PTP_LTC_STEP_ADJ_DIR_ |
3084 nano_seconds_hi);
3085 lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL,
3086 PTP_CMD_CTL_PTP_LTC_STEP_NSEC_);
3087 }
3088 }
3089
lan8814_ptpci_adjtime(struct ptp_clock_info * ptpci,s64 delta)3090 static int lan8814_ptpci_adjtime(struct ptp_clock_info *ptpci, s64 delta)
3091 {
3092 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
3093 ptp_clock_info);
3094 struct phy_device *phydev = shared->phydev;
3095
3096 mutex_lock(&shared->shared_lock);
3097 lan8814_ptp_clock_step(phydev, delta);
3098 mutex_unlock(&shared->shared_lock);
3099
3100 return 0;
3101 }
3102
lan8814_ptpci_adjfine(struct ptp_clock_info * ptpci,long scaled_ppm)3103 static int lan8814_ptpci_adjfine(struct ptp_clock_info *ptpci, long scaled_ppm)
3104 {
3105 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
3106 ptp_clock_info);
3107 struct phy_device *phydev = shared->phydev;
3108 u16 kszphy_rate_adj_lo, kszphy_rate_adj_hi;
3109 bool positive = true;
3110 u32 kszphy_rate_adj;
3111
3112 if (scaled_ppm < 0) {
3113 scaled_ppm = -scaled_ppm;
3114 positive = false;
3115 }
3116
3117 kszphy_rate_adj = LAN8814_1PPM_FORMAT * (scaled_ppm >> 16);
3118 kszphy_rate_adj += (LAN8814_1PPM_FORMAT * (0xffff & scaled_ppm)) >> 16;
3119
3120 kszphy_rate_adj_lo = kszphy_rate_adj & 0xffff;
3121 kszphy_rate_adj_hi = (kszphy_rate_adj >> 16) & 0x3fff;
3122
3123 if (positive)
3124 kszphy_rate_adj_hi |= PTP_CLOCK_RATE_ADJ_DIR_;
3125
3126 mutex_lock(&shared->shared_lock);
3127 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_RATE_ADJ_HI, kszphy_rate_adj_hi);
3128 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_RATE_ADJ_LO, kszphy_rate_adj_lo);
3129 mutex_unlock(&shared->shared_lock);
3130
3131 return 0;
3132 }
3133
lan8814_ptp_set_reload(struct phy_device * phydev,int event,s64 period_sec,u32 period_nsec)3134 static void lan8814_ptp_set_reload(struct phy_device *phydev, int event,
3135 s64 period_sec, u32 period_nsec)
3136 {
3137 lanphy_write_page_reg(phydev, 4,
3138 LAN8814_PTP_CLOCK_TARGET_RELOAD_SEC_LO(event),
3139 lower_16_bits(period_sec));
3140 lanphy_write_page_reg(phydev, 4,
3141 LAN8814_PTP_CLOCK_TARGET_RELOAD_SEC_HI(event),
3142 upper_16_bits(period_sec));
3143
3144 lanphy_write_page_reg(phydev, 4,
3145 LAN8814_PTP_CLOCK_TARGET_RELOAD_NS_LO(event),
3146 lower_16_bits(period_nsec));
3147 lanphy_write_page_reg(phydev, 4,
3148 LAN8814_PTP_CLOCK_TARGET_RELOAD_NS_HI(event),
3149 upper_16_bits(period_nsec) & 0x3fff);
3150 }
3151
lan8814_ptp_enable_event(struct phy_device * phydev,int event,int pulse_width)3152 static void lan8814_ptp_enable_event(struct phy_device *phydev, int event,
3153 int pulse_width)
3154 {
3155 u16 val;
3156
3157 val = lanphy_read_page_reg(phydev, 4, LAN8814_PTP_GENERAL_CONFIG);
3158 /* Set the pulse width of the event */
3159 val &= ~(LAN8814_PTP_GENERAL_CONFIG_LTC_EVENT_MASK(event));
3160 /* Make sure that the target clock will be incremented each time when
3161 * local time reaches or pass it
3162 */
3163 val |= LAN8814_PTP_GENERAL_CONFIG_LTC_EVENT_SET(event, pulse_width);
3164 val &= ~(LAN8814_PTP_GENERAL_CONFIG_RELOAD_ADD_X(event));
3165 /* Set the polarity high */
3166 val |= LAN8814_PTP_GENERAL_CONFIG_POLARITY_X(event);
3167 lanphy_write_page_reg(phydev, 4, LAN8814_PTP_GENERAL_CONFIG, val);
3168 }
3169
lan8814_ptp_disable_event(struct phy_device * phydev,int event)3170 static void lan8814_ptp_disable_event(struct phy_device *phydev, int event)
3171 {
3172 u16 val;
3173
3174 /* Set target to too far in the future, effectively disabling it */
3175 lan8814_ptp_set_target(phydev, event, 0xFFFFFFFF, 0);
3176
3177 /* And then reload once it recheas the target */
3178 val = lanphy_read_page_reg(phydev, 4, LAN8814_PTP_GENERAL_CONFIG);
3179 val |= LAN8814_PTP_GENERAL_CONFIG_RELOAD_ADD_X(event);
3180 lanphy_write_page_reg(phydev, 4, LAN8814_PTP_GENERAL_CONFIG, val);
3181 }
3182
lan8814_ptp_perout_off(struct phy_device * phydev,int pin)3183 static void lan8814_ptp_perout_off(struct phy_device *phydev, int pin)
3184 {
3185 u16 val;
3186
3187 /* Disable gpio alternate function,
3188 * 1: select as gpio,
3189 * 0: select alt func
3190 */
3191 val = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_EN_ADDR(pin));
3192 val |= LAN8814_GPIO_EN_BIT(pin);
3193 lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_EN_ADDR(pin), val);
3194
3195 val = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_DIR_ADDR(pin));
3196 val &= ~LAN8814_GPIO_DIR_BIT(pin);
3197 lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_DIR_ADDR(pin), val);
3198
3199 val = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_BUF_ADDR(pin));
3200 val &= ~LAN8814_GPIO_BUF_BIT(pin);
3201 lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_BUF_ADDR(pin), val);
3202 }
3203
lan8814_ptp_perout_on(struct phy_device * phydev,int pin)3204 static void lan8814_ptp_perout_on(struct phy_device *phydev, int pin)
3205 {
3206 int val;
3207
3208 /* Set as gpio output */
3209 val = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_DIR_ADDR(pin));
3210 val |= LAN8814_GPIO_DIR_BIT(pin);
3211 lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_DIR_ADDR(pin), val);
3212
3213 /* Enable gpio 0:for alternate function, 1:gpio */
3214 val = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_EN_ADDR(pin));
3215 val &= ~LAN8814_GPIO_EN_BIT(pin);
3216 lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_EN_ADDR(pin), val);
3217
3218 /* Set buffer type to push pull */
3219 val = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_BUF_ADDR(pin));
3220 val |= LAN8814_GPIO_BUF_BIT(pin);
3221 lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_BUF_ADDR(pin), val);
3222 }
3223
lan8814_ptp_perout(struct ptp_clock_info * ptpci,struct ptp_clock_request * rq,int on)3224 static int lan8814_ptp_perout(struct ptp_clock_info *ptpci,
3225 struct ptp_clock_request *rq, int on)
3226 {
3227 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
3228 ptp_clock_info);
3229 struct phy_device *phydev = shared->phydev;
3230 struct timespec64 ts_on, ts_period;
3231 s64 on_nsec, period_nsec;
3232 int pulse_width;
3233 int pin, event;
3234
3235 mutex_lock(&shared->shared_lock);
3236 event = rq->perout.index;
3237 pin = ptp_find_pin(shared->ptp_clock, PTP_PF_PEROUT, event);
3238 if (pin < 0 || pin >= LAN8814_PTP_PEROUT_NUM) {
3239 mutex_unlock(&shared->shared_lock);
3240 return -EBUSY;
3241 }
3242
3243 if (!on) {
3244 lan8814_ptp_perout_off(phydev, pin);
3245 lan8814_ptp_disable_event(phydev, event);
3246 mutex_unlock(&shared->shared_lock);
3247 return 0;
3248 }
3249
3250 ts_on.tv_sec = rq->perout.on.sec;
3251 ts_on.tv_nsec = rq->perout.on.nsec;
3252 on_nsec = timespec64_to_ns(&ts_on);
3253
3254 ts_period.tv_sec = rq->perout.period.sec;
3255 ts_period.tv_nsec = rq->perout.period.nsec;
3256 period_nsec = timespec64_to_ns(&ts_period);
3257
3258 if (period_nsec < 200) {
3259 pr_warn_ratelimited("%s: perout period too small, minimum is 200 nsec\n",
3260 phydev_name(phydev));
3261 mutex_unlock(&shared->shared_lock);
3262 return -EOPNOTSUPP;
3263 }
3264
3265 if (on_nsec >= period_nsec) {
3266 pr_warn_ratelimited("%s: pulse width must be smaller than period\n",
3267 phydev_name(phydev));
3268 mutex_unlock(&shared->shared_lock);
3269 return -EINVAL;
3270 }
3271
3272 switch (on_nsec) {
3273 case 200000000:
3274 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS;
3275 break;
3276 case 100000000:
3277 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS;
3278 break;
3279 case 50000000:
3280 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS;
3281 break;
3282 case 10000000:
3283 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS;
3284 break;
3285 case 5000000:
3286 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS;
3287 break;
3288 case 1000000:
3289 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS;
3290 break;
3291 case 500000:
3292 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US;
3293 break;
3294 case 100000:
3295 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US;
3296 break;
3297 case 50000:
3298 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US;
3299 break;
3300 case 10000:
3301 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US;
3302 break;
3303 case 5000:
3304 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US;
3305 break;
3306 case 1000:
3307 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US;
3308 break;
3309 case 500:
3310 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS;
3311 break;
3312 case 100:
3313 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS;
3314 break;
3315 default:
3316 pr_warn_ratelimited("%s: Use default duty cycle of 100ns\n",
3317 phydev_name(phydev));
3318 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS;
3319 break;
3320 }
3321
3322 /* Configure to pulse every period */
3323 lan8814_ptp_enable_event(phydev, event, pulse_width);
3324 lan8814_ptp_set_target(phydev, event, rq->perout.start.sec,
3325 rq->perout.start.nsec);
3326 lan8814_ptp_set_reload(phydev, event, rq->perout.period.sec,
3327 rq->perout.period.nsec);
3328 lan8814_ptp_perout_on(phydev, pin);
3329 mutex_unlock(&shared->shared_lock);
3330
3331 return 0;
3332 }
3333
lan8814_ptp_extts_on(struct phy_device * phydev,int pin,u32 flags)3334 static void lan8814_ptp_extts_on(struct phy_device *phydev, int pin, u32 flags)
3335 {
3336 u16 tmp;
3337
3338 /* Set as gpio input */
3339 tmp = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_DIR_ADDR(pin));
3340 tmp &= ~LAN8814_GPIO_DIR_BIT(pin);
3341 lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_DIR_ADDR(pin), tmp);
3342
3343 /* Map the pin to ltc pin 0 of the capture map registers */
3344 tmp = lanphy_read_page_reg(phydev, 4, PTP_GPIO_CAP_MAP_LO);
3345 tmp |= pin;
3346 lanphy_write_page_reg(phydev, 4, PTP_GPIO_CAP_MAP_LO, tmp);
3347
3348 /* Enable capture on the edges of the ltc pin */
3349 tmp = lanphy_read_page_reg(phydev, 4, PTP_GPIO_CAP_EN);
3350 if (flags & PTP_RISING_EDGE)
3351 tmp |= PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(0);
3352 if (flags & PTP_FALLING_EDGE)
3353 tmp |= PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(0);
3354 lanphy_write_page_reg(phydev, 4, PTP_GPIO_CAP_EN, tmp);
3355
3356 /* Enable interrupt top interrupt */
3357 tmp = lanphy_read_page_reg(phydev, 4, PTP_COMMON_INT_ENA);
3358 tmp |= PTP_COMMON_INT_ENA_GPIO_CAP_EN;
3359 lanphy_write_page_reg(phydev, 4, PTP_COMMON_INT_ENA, tmp);
3360 }
3361
lan8814_ptp_extts_off(struct phy_device * phydev,int pin)3362 static void lan8814_ptp_extts_off(struct phy_device *phydev, int pin)
3363 {
3364 u16 tmp;
3365
3366 /* Set as gpio out */
3367 tmp = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_DIR_ADDR(pin));
3368 tmp |= LAN8814_GPIO_DIR_BIT(pin);
3369 lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_DIR_ADDR(pin), tmp);
3370
3371 /* Enable alternate, 0:for alternate function, 1:gpio */
3372 tmp = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_EN_ADDR(pin));
3373 tmp &= ~LAN8814_GPIO_EN_BIT(pin);
3374 lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_EN_ADDR(pin), tmp);
3375
3376 /* Clear the mapping of pin to registers 0 of the capture registers */
3377 tmp = lanphy_read_page_reg(phydev, 4, PTP_GPIO_CAP_MAP_LO);
3378 tmp &= ~GENMASK(3, 0);
3379 lanphy_write_page_reg(phydev, 4, PTP_GPIO_CAP_MAP_LO, tmp);
3380
3381 /* Disable capture on both of the edges */
3382 tmp = lanphy_read_page_reg(phydev, 4, PTP_GPIO_CAP_EN);
3383 tmp &= ~PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(pin);
3384 tmp &= ~PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(pin);
3385 lanphy_write_page_reg(phydev, 4, PTP_GPIO_CAP_EN, tmp);
3386
3387 /* Disable interrupt top interrupt */
3388 tmp = lanphy_read_page_reg(phydev, 4, PTP_COMMON_INT_ENA);
3389 tmp &= ~PTP_COMMON_INT_ENA_GPIO_CAP_EN;
3390 lanphy_write_page_reg(phydev, 4, PTP_COMMON_INT_ENA, tmp);
3391 }
3392
lan8814_ptp_extts(struct ptp_clock_info * ptpci,struct ptp_clock_request * rq,int on)3393 static int lan8814_ptp_extts(struct ptp_clock_info *ptpci,
3394 struct ptp_clock_request *rq, int on)
3395 {
3396 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
3397 ptp_clock_info);
3398 struct phy_device *phydev = shared->phydev;
3399 int pin;
3400
3401 pin = ptp_find_pin(shared->ptp_clock, PTP_PF_EXTTS,
3402 rq->extts.index);
3403 if (pin == -1 || pin != LAN8814_PTP_EXTTS_NUM)
3404 return -EINVAL;
3405
3406 mutex_lock(&shared->shared_lock);
3407 if (on)
3408 lan8814_ptp_extts_on(phydev, pin, rq->extts.flags);
3409 else
3410 lan8814_ptp_extts_off(phydev, pin);
3411
3412 mutex_unlock(&shared->shared_lock);
3413
3414 return 0;
3415 }
3416
lan8814_ptpci_enable(struct ptp_clock_info * ptpci,struct ptp_clock_request * rq,int on)3417 static int lan8814_ptpci_enable(struct ptp_clock_info *ptpci,
3418 struct ptp_clock_request *rq, int on)
3419 {
3420 switch (rq->type) {
3421 case PTP_CLK_REQ_PEROUT:
3422 return lan8814_ptp_perout(ptpci, rq, on);
3423 case PTP_CLK_REQ_EXTTS:
3424 return lan8814_ptp_extts(ptpci, rq, on);
3425 default:
3426 return -EINVAL;
3427 }
3428 }
3429
lan8814_ptpci_verify(struct ptp_clock_info * ptp,unsigned int pin,enum ptp_pin_function func,unsigned int chan)3430 static int lan8814_ptpci_verify(struct ptp_clock_info *ptp, unsigned int pin,
3431 enum ptp_pin_function func, unsigned int chan)
3432 {
3433 switch (func) {
3434 case PTP_PF_NONE:
3435 case PTP_PF_PEROUT:
3436 /* Only pins 0 and 1 can generate perout signals. And for pin 0
3437 * there is only chan 0 (event A) and for pin 1 there is only
3438 * chan 1 (event B)
3439 */
3440 if (pin >= LAN8814_PTP_PEROUT_NUM || pin != chan)
3441 return -1;
3442 break;
3443 case PTP_PF_EXTTS:
3444 if (pin != LAN8814_PTP_EXTTS_NUM)
3445 return -1;
3446 break;
3447 default:
3448 return -1;
3449 }
3450
3451 return 0;
3452 }
3453
lan8814_get_sig_tx(struct sk_buff * skb,u16 * sig)3454 static bool lan8814_get_sig_tx(struct sk_buff *skb, u16 *sig)
3455 {
3456 struct ptp_header *ptp_header;
3457 u32 type;
3458
3459 type = ptp_classify_raw(skb);
3460 ptp_header = ptp_parse_header(skb, type);
3461
3462 if (!ptp_header)
3463 return false;
3464
3465 *sig = (__force u16)(ntohs(ptp_header->sequence_id));
3466 return true;
3467 }
3468
lan8814_match_tx_skb(struct kszphy_ptp_priv * ptp_priv,u32 seconds,u32 nsec,u16 seq_id)3469 static void lan8814_match_tx_skb(struct kszphy_ptp_priv *ptp_priv,
3470 u32 seconds, u32 nsec, u16 seq_id)
3471 {
3472 struct skb_shared_hwtstamps shhwtstamps;
3473 struct sk_buff *skb, *skb_tmp;
3474 unsigned long flags;
3475 bool ret = false;
3476 u16 skb_sig;
3477
3478 spin_lock_irqsave(&ptp_priv->tx_queue.lock, flags);
3479 skb_queue_walk_safe(&ptp_priv->tx_queue, skb, skb_tmp) {
3480 if (!lan8814_get_sig_tx(skb, &skb_sig))
3481 continue;
3482
3483 if (memcmp(&skb_sig, &seq_id, sizeof(seq_id)))
3484 continue;
3485
3486 __skb_unlink(skb, &ptp_priv->tx_queue);
3487 ret = true;
3488 break;
3489 }
3490 spin_unlock_irqrestore(&ptp_priv->tx_queue.lock, flags);
3491
3492 if (ret) {
3493 memset(&shhwtstamps, 0, sizeof(shhwtstamps));
3494 shhwtstamps.hwtstamp = ktime_set(seconds, nsec);
3495 skb_complete_tx_timestamp(skb, &shhwtstamps);
3496 }
3497 }
3498
lan8814_dequeue_tx_skb(struct kszphy_ptp_priv * ptp_priv)3499 static void lan8814_dequeue_tx_skb(struct kszphy_ptp_priv *ptp_priv)
3500 {
3501 struct phy_device *phydev = ptp_priv->phydev;
3502 u32 seconds, nsec;
3503 u16 seq_id;
3504
3505 lan8814_ptp_tx_ts_get(phydev, &seconds, &nsec, &seq_id);
3506 lan8814_match_tx_skb(ptp_priv, seconds, nsec, seq_id);
3507 }
3508
lan8814_get_tx_ts(struct kszphy_ptp_priv * ptp_priv)3509 static void lan8814_get_tx_ts(struct kszphy_ptp_priv *ptp_priv)
3510 {
3511 struct phy_device *phydev = ptp_priv->phydev;
3512 u32 reg;
3513
3514 do {
3515 lan8814_dequeue_tx_skb(ptp_priv);
3516
3517 /* If other timestamps are available in the FIFO,
3518 * process them.
3519 */
3520 reg = lanphy_read_page_reg(phydev, 5, PTP_CAP_INFO);
3521 } while (PTP_CAP_INFO_TX_TS_CNT_GET_(reg) > 0);
3522 }
3523
lan8814_match_skb(struct kszphy_ptp_priv * ptp_priv,struct lan8814_ptp_rx_ts * rx_ts)3524 static bool lan8814_match_skb(struct kszphy_ptp_priv *ptp_priv,
3525 struct lan8814_ptp_rx_ts *rx_ts)
3526 {
3527 struct skb_shared_hwtstamps *shhwtstamps;
3528 struct sk_buff *skb, *skb_tmp;
3529 unsigned long flags;
3530 bool ret = false;
3531 u16 skb_sig;
3532
3533 spin_lock_irqsave(&ptp_priv->rx_queue.lock, flags);
3534 skb_queue_walk_safe(&ptp_priv->rx_queue, skb, skb_tmp) {
3535 if (!lan8814_get_sig_rx(skb, &skb_sig))
3536 continue;
3537
3538 if (memcmp(&skb_sig, &rx_ts->seq_id, sizeof(rx_ts->seq_id)))
3539 continue;
3540
3541 __skb_unlink(skb, &ptp_priv->rx_queue);
3542
3543 ret = true;
3544 break;
3545 }
3546 spin_unlock_irqrestore(&ptp_priv->rx_queue.lock, flags);
3547
3548 if (ret) {
3549 shhwtstamps = skb_hwtstamps(skb);
3550 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
3551 shhwtstamps->hwtstamp = ktime_set(rx_ts->seconds, rx_ts->nsec);
3552 netif_rx(skb);
3553 }
3554
3555 return ret;
3556 }
3557
lan8814_match_rx_ts(struct kszphy_ptp_priv * ptp_priv,struct lan8814_ptp_rx_ts * rx_ts)3558 static void lan8814_match_rx_ts(struct kszphy_ptp_priv *ptp_priv,
3559 struct lan8814_ptp_rx_ts *rx_ts)
3560 {
3561 unsigned long flags;
3562
3563 /* If we failed to match the skb add it to the queue for when
3564 * the frame will come
3565 */
3566 if (!lan8814_match_skb(ptp_priv, rx_ts)) {
3567 spin_lock_irqsave(&ptp_priv->rx_ts_lock, flags);
3568 list_add(&rx_ts->list, &ptp_priv->rx_ts_list);
3569 spin_unlock_irqrestore(&ptp_priv->rx_ts_lock, flags);
3570 } else {
3571 kfree(rx_ts);
3572 }
3573 }
3574
lan8814_get_rx_ts(struct kszphy_ptp_priv * ptp_priv)3575 static void lan8814_get_rx_ts(struct kszphy_ptp_priv *ptp_priv)
3576 {
3577 struct phy_device *phydev = ptp_priv->phydev;
3578 struct lan8814_ptp_rx_ts *rx_ts;
3579 u32 reg;
3580
3581 do {
3582 rx_ts = kzalloc(sizeof(*rx_ts), GFP_KERNEL);
3583 if (!rx_ts)
3584 return;
3585
3586 lan8814_ptp_rx_ts_get(phydev, &rx_ts->seconds, &rx_ts->nsec,
3587 &rx_ts->seq_id);
3588 lan8814_match_rx_ts(ptp_priv, rx_ts);
3589
3590 /* If other timestamps are available in the FIFO,
3591 * process them.
3592 */
3593 reg = lanphy_read_page_reg(phydev, 5, PTP_CAP_INFO);
3594 } while (PTP_CAP_INFO_RX_TS_CNT_GET_(reg) > 0);
3595 }
3596
lan8814_handle_ptp_interrupt(struct phy_device * phydev,u16 status)3597 static void lan8814_handle_ptp_interrupt(struct phy_device *phydev, u16 status)
3598 {
3599 struct kszphy_priv *priv = phydev->priv;
3600 struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv;
3601
3602 if (status & PTP_TSU_INT_STS_PTP_TX_TS_EN_)
3603 lan8814_get_tx_ts(ptp_priv);
3604
3605 if (status & PTP_TSU_INT_STS_PTP_RX_TS_EN_)
3606 lan8814_get_rx_ts(ptp_priv);
3607
3608 if (status & PTP_TSU_INT_STS_PTP_TX_TS_OVRFL_INT_) {
3609 lan8814_flush_fifo(phydev, true);
3610 skb_queue_purge(&ptp_priv->tx_queue);
3611 }
3612
3613 if (status & PTP_TSU_INT_STS_PTP_RX_TS_OVRFL_INT_) {
3614 lan8814_flush_fifo(phydev, false);
3615 skb_queue_purge(&ptp_priv->rx_queue);
3616 }
3617 }
3618
lan8814_gpio_process_cap(struct lan8814_shared_priv * shared)3619 static int lan8814_gpio_process_cap(struct lan8814_shared_priv *shared)
3620 {
3621 struct phy_device *phydev = shared->phydev;
3622 struct ptp_clock_event ptp_event = {0};
3623 unsigned long nsec;
3624 s64 sec;
3625 u16 tmp;
3626
3627 /* This is 0 because whatever was the input pin it was mapped it to
3628 * ltc gpio pin 0
3629 */
3630 tmp = lanphy_read_page_reg(phydev, 4, PTP_GPIO_SEL);
3631 tmp |= PTP_GPIO_SEL_GPIO_SEL(0);
3632 lanphy_write_page_reg(phydev, 4, PTP_GPIO_SEL, tmp);
3633
3634 tmp = lanphy_read_page_reg(phydev, 4, PTP_GPIO_CAP_STS);
3635 if (!(tmp & PTP_GPIO_CAP_STS_PTP_GPIO_RE_STS(0)) &&
3636 !(tmp & PTP_GPIO_CAP_STS_PTP_GPIO_FE_STS(0)))
3637 return -1;
3638
3639 if (tmp & BIT(0)) {
3640 sec = lanphy_read_page_reg(phydev, 4, PTP_GPIO_RE_LTC_SEC_HI_CAP);
3641 sec <<= 16;
3642 sec |= lanphy_read_page_reg(phydev, 4, PTP_GPIO_RE_LTC_SEC_LO_CAP);
3643
3644 nsec = lanphy_read_page_reg(phydev, 4, PTP_GPIO_RE_LTC_NS_HI_CAP) & 0x3fff;
3645 nsec <<= 16;
3646 nsec |= lanphy_read_page_reg(phydev, 4, PTP_GPIO_RE_LTC_NS_LO_CAP);
3647 } else {
3648 sec = lanphy_read_page_reg(phydev, 4, PTP_GPIO_FE_LTC_SEC_HI_CAP);
3649 sec <<= 16;
3650 sec |= lanphy_read_page_reg(phydev, 4, PTP_GPIO_FE_LTC_SEC_LO_CAP);
3651
3652 nsec = lanphy_read_page_reg(phydev, 4, PTP_GPIO_FE_LTC_NS_HI_CAP) & 0x3fff;
3653 nsec <<= 16;
3654 nsec |= lanphy_read_page_reg(phydev, 4, PTP_GPIO_RE_LTC_NS_LO_CAP);
3655 }
3656
3657 ptp_event.index = 0;
3658 ptp_event.timestamp = ktime_set(sec, nsec);
3659 ptp_event.type = PTP_CLOCK_EXTTS;
3660 ptp_clock_event(shared->ptp_clock, &ptp_event);
3661
3662 return 0;
3663 }
3664
lan8814_handle_gpio_interrupt(struct phy_device * phydev,u16 status)3665 static int lan8814_handle_gpio_interrupt(struct phy_device *phydev, u16 status)
3666 {
3667 struct lan8814_shared_priv *shared = phy_package_get_priv(phydev);
3668 int ret;
3669
3670 mutex_lock(&shared->shared_lock);
3671 ret = lan8814_gpio_process_cap(shared);
3672 mutex_unlock(&shared->shared_lock);
3673
3674 return ret;
3675 }
3676
lan8804_config_init(struct phy_device * phydev)3677 static int lan8804_config_init(struct phy_device *phydev)
3678 {
3679 int val;
3680
3681 /* MDI-X setting for swap A,B transmit */
3682 val = lanphy_read_page_reg(phydev, 2, LAN8804_ALIGN_SWAP);
3683 val &= ~LAN8804_ALIGN_TX_A_B_SWAP_MASK;
3684 val |= LAN8804_ALIGN_TX_A_B_SWAP;
3685 lanphy_write_page_reg(phydev, 2, LAN8804_ALIGN_SWAP, val);
3686
3687 /* Make sure that the PHY will not stop generating the clock when the
3688 * link partner goes down
3689 */
3690 lanphy_write_page_reg(phydev, 31, LAN8814_CLOCK_MANAGEMENT, 0x27e);
3691 lanphy_read_page_reg(phydev, 1, LAN8814_LINK_QUALITY);
3692
3693 return 0;
3694 }
3695
lan8804_handle_interrupt(struct phy_device * phydev)3696 static irqreturn_t lan8804_handle_interrupt(struct phy_device *phydev)
3697 {
3698 int status;
3699
3700 status = phy_read(phydev, LAN8814_INTS);
3701 if (status < 0) {
3702 phy_error(phydev);
3703 return IRQ_NONE;
3704 }
3705
3706 if (status > 0)
3707 phy_trigger_machine(phydev);
3708
3709 return IRQ_HANDLED;
3710 }
3711
3712 #define LAN8804_OUTPUT_CONTROL 25
3713 #define LAN8804_OUTPUT_CONTROL_INTR_BUFFER BIT(14)
3714 #define LAN8804_CONTROL 31
3715 #define LAN8804_CONTROL_INTR_POLARITY BIT(14)
3716
lan8804_config_intr(struct phy_device * phydev)3717 static int lan8804_config_intr(struct phy_device *phydev)
3718 {
3719 int err;
3720
3721 /* This is an internal PHY of lan966x and is not possible to change the
3722 * polarity on the GIC found in lan966x, therefore change the polarity
3723 * of the interrupt in the PHY from being active low instead of active
3724 * high.
3725 */
3726 phy_write(phydev, LAN8804_CONTROL, LAN8804_CONTROL_INTR_POLARITY);
3727
3728 /* By default interrupt buffer is open-drain in which case the interrupt
3729 * can be active only low. Therefore change the interrupt buffer to be
3730 * push-pull to be able to change interrupt polarity
3731 */
3732 phy_write(phydev, LAN8804_OUTPUT_CONTROL,
3733 LAN8804_OUTPUT_CONTROL_INTR_BUFFER);
3734
3735 if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
3736 err = phy_read(phydev, LAN8814_INTS);
3737 if (err < 0)
3738 return err;
3739
3740 err = phy_write(phydev, LAN8814_INTC, LAN8814_INT_LINK);
3741 if (err)
3742 return err;
3743 } else {
3744 err = phy_write(phydev, LAN8814_INTC, 0);
3745 if (err)
3746 return err;
3747
3748 err = phy_read(phydev, LAN8814_INTS);
3749 if (err < 0)
3750 return err;
3751 }
3752
3753 return 0;
3754 }
3755
lan8814_handle_interrupt(struct phy_device * phydev)3756 static irqreturn_t lan8814_handle_interrupt(struct phy_device *phydev)
3757 {
3758 int ret = IRQ_NONE;
3759 int irq_status;
3760
3761 irq_status = phy_read(phydev, LAN8814_INTS);
3762 if (irq_status < 0) {
3763 phy_error(phydev);
3764 return IRQ_NONE;
3765 }
3766
3767 if (irq_status & LAN8814_INT_LINK) {
3768 phy_trigger_machine(phydev);
3769 ret = IRQ_HANDLED;
3770 }
3771
3772 while (true) {
3773 irq_status = lanphy_read_page_reg(phydev, 5, PTP_TSU_INT_STS);
3774 if (!irq_status)
3775 break;
3776
3777 lan8814_handle_ptp_interrupt(phydev, irq_status);
3778 ret = IRQ_HANDLED;
3779 }
3780
3781 if (!lan8814_handle_gpio_interrupt(phydev, irq_status))
3782 ret = IRQ_HANDLED;
3783
3784 return ret;
3785 }
3786
lan8814_ack_interrupt(struct phy_device * phydev)3787 static int lan8814_ack_interrupt(struct phy_device *phydev)
3788 {
3789 /* bit[12..0] int status, which is a read and clear register. */
3790 int rc;
3791
3792 rc = phy_read(phydev, LAN8814_INTS);
3793
3794 return (rc < 0) ? rc : 0;
3795 }
3796
lan8814_config_intr(struct phy_device * phydev)3797 static int lan8814_config_intr(struct phy_device *phydev)
3798 {
3799 int err;
3800
3801 lanphy_write_page_reg(phydev, 4, LAN8814_INTR_CTRL_REG,
3802 LAN8814_INTR_CTRL_REG_POLARITY |
3803 LAN8814_INTR_CTRL_REG_INTR_ENABLE);
3804
3805 /* enable / disable interrupts */
3806 if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
3807 err = lan8814_ack_interrupt(phydev);
3808 if (err)
3809 return err;
3810
3811 err = phy_write(phydev, LAN8814_INTC, LAN8814_INT_LINK);
3812 } else {
3813 err = phy_write(phydev, LAN8814_INTC, 0);
3814 if (err)
3815 return err;
3816
3817 err = lan8814_ack_interrupt(phydev);
3818 }
3819
3820 return err;
3821 }
3822
lan8814_ptp_init(struct phy_device * phydev)3823 static void lan8814_ptp_init(struct phy_device *phydev)
3824 {
3825 struct kszphy_priv *priv = phydev->priv;
3826 struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv;
3827 u32 temp;
3828
3829 if (!IS_ENABLED(CONFIG_PTP_1588_CLOCK) ||
3830 !IS_ENABLED(CONFIG_NETWORK_PHY_TIMESTAMPING))
3831 return;
3832
3833 lanphy_write_page_reg(phydev, 5, TSU_HARD_RESET, TSU_HARD_RESET_);
3834
3835 temp = lanphy_read_page_reg(phydev, 5, PTP_TX_MOD);
3836 temp |= PTP_TX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_;
3837 lanphy_write_page_reg(phydev, 5, PTP_TX_MOD, temp);
3838
3839 temp = lanphy_read_page_reg(phydev, 5, PTP_RX_MOD);
3840 temp |= PTP_RX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_;
3841 lanphy_write_page_reg(phydev, 5, PTP_RX_MOD, temp);
3842
3843 lanphy_write_page_reg(phydev, 5, PTP_RX_PARSE_CONFIG, 0);
3844 lanphy_write_page_reg(phydev, 5, PTP_TX_PARSE_CONFIG, 0);
3845
3846 /* Removing default registers configs related to L2 and IP */
3847 lanphy_write_page_reg(phydev, 5, PTP_TX_PARSE_L2_ADDR_EN, 0);
3848 lanphy_write_page_reg(phydev, 5, PTP_RX_PARSE_L2_ADDR_EN, 0);
3849 lanphy_write_page_reg(phydev, 5, PTP_TX_PARSE_IP_ADDR_EN, 0);
3850 lanphy_write_page_reg(phydev, 5, PTP_RX_PARSE_IP_ADDR_EN, 0);
3851
3852 /* Disable checking for minorVersionPTP field */
3853 lanphy_write_page_reg(phydev, 5, PTP_RX_VERSION,
3854 PTP_MAX_VERSION(0xff) | PTP_MIN_VERSION(0x0));
3855 lanphy_write_page_reg(phydev, 5, PTP_TX_VERSION,
3856 PTP_MAX_VERSION(0xff) | PTP_MIN_VERSION(0x0));
3857
3858 skb_queue_head_init(&ptp_priv->tx_queue);
3859 skb_queue_head_init(&ptp_priv->rx_queue);
3860 INIT_LIST_HEAD(&ptp_priv->rx_ts_list);
3861 spin_lock_init(&ptp_priv->rx_ts_lock);
3862
3863 ptp_priv->phydev = phydev;
3864
3865 ptp_priv->mii_ts.rxtstamp = lan8814_rxtstamp;
3866 ptp_priv->mii_ts.txtstamp = lan8814_txtstamp;
3867 ptp_priv->mii_ts.hwtstamp = lan8814_hwtstamp;
3868 ptp_priv->mii_ts.ts_info = lan8814_ts_info;
3869
3870 phydev->mii_ts = &ptp_priv->mii_ts;
3871
3872 /* Timestamp selected by default to keep legacy API */
3873 phydev->default_timestamp = true;
3874 }
3875
lan8814_ptp_probe_once(struct phy_device * phydev)3876 static int lan8814_ptp_probe_once(struct phy_device *phydev)
3877 {
3878 struct lan8814_shared_priv *shared = phy_package_get_priv(phydev);
3879
3880 /* Initialise shared lock for clock*/
3881 mutex_init(&shared->shared_lock);
3882
3883 shared->pin_config = devm_kmalloc_array(&phydev->mdio.dev,
3884 LAN8814_PTP_GPIO_NUM,
3885 sizeof(*shared->pin_config),
3886 GFP_KERNEL);
3887 if (!shared->pin_config)
3888 return -ENOMEM;
3889
3890 for (int i = 0; i < LAN8814_PTP_GPIO_NUM; i++) {
3891 struct ptp_pin_desc *ptp_pin = &shared->pin_config[i];
3892
3893 memset(ptp_pin, 0, sizeof(*ptp_pin));
3894 snprintf(ptp_pin->name,
3895 sizeof(ptp_pin->name), "lan8814_ptp_pin_%02d", i);
3896 ptp_pin->index = i;
3897 ptp_pin->func = PTP_PF_NONE;
3898 }
3899
3900 shared->ptp_clock_info.owner = THIS_MODULE;
3901 snprintf(shared->ptp_clock_info.name, 30, "%s", phydev->drv->name);
3902 shared->ptp_clock_info.max_adj = 31249999;
3903 shared->ptp_clock_info.n_alarm = 0;
3904 shared->ptp_clock_info.n_ext_ts = LAN8814_PTP_EXTTS_NUM;
3905 shared->ptp_clock_info.n_pins = LAN8814_PTP_GPIO_NUM;
3906 shared->ptp_clock_info.pps = 0;
3907 shared->ptp_clock_info.supported_extts_flags = PTP_RISING_EDGE |
3908 PTP_FALLING_EDGE |
3909 PTP_STRICT_FLAGS;
3910 shared->ptp_clock_info.supported_perout_flags = PTP_PEROUT_DUTY_CYCLE;
3911 shared->ptp_clock_info.pin_config = shared->pin_config;
3912 shared->ptp_clock_info.n_per_out = LAN8814_PTP_PEROUT_NUM;
3913 shared->ptp_clock_info.adjfine = lan8814_ptpci_adjfine;
3914 shared->ptp_clock_info.adjtime = lan8814_ptpci_adjtime;
3915 shared->ptp_clock_info.gettime64 = lan8814_ptpci_gettime64;
3916 shared->ptp_clock_info.settime64 = lan8814_ptpci_settime64;
3917 shared->ptp_clock_info.getcrosststamp = NULL;
3918 shared->ptp_clock_info.enable = lan8814_ptpci_enable;
3919 shared->ptp_clock_info.verify = lan8814_ptpci_verify;
3920
3921 shared->ptp_clock = ptp_clock_register(&shared->ptp_clock_info,
3922 &phydev->mdio.dev);
3923 if (IS_ERR(shared->ptp_clock)) {
3924 phydev_err(phydev, "ptp_clock_register failed %lu\n",
3925 PTR_ERR(shared->ptp_clock));
3926 return -EINVAL;
3927 }
3928
3929 /* Check if PHC support is missing at the configuration level */
3930 if (!shared->ptp_clock)
3931 return 0;
3932
3933 phydev_dbg(phydev, "successfully registered ptp clock\n");
3934
3935 shared->phydev = phydev;
3936
3937 /* The EP.4 is shared between all the PHYs in the package and also it
3938 * can be accessed by any of the PHYs
3939 */
3940 lanphy_write_page_reg(phydev, 4, LTC_HARD_RESET, LTC_HARD_RESET_);
3941 lanphy_write_page_reg(phydev, 4, PTP_OPERATING_MODE,
3942 PTP_OPERATING_MODE_STANDALONE_);
3943
3944 /* Enable ptp to run LTC clock for ptp and gpio 1PPS operation */
3945 lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL, PTP_CMD_CTL_PTP_ENABLE_);
3946
3947 return 0;
3948 }
3949
lan8814_setup_led(struct phy_device * phydev,int val)3950 static void lan8814_setup_led(struct phy_device *phydev, int val)
3951 {
3952 int temp;
3953
3954 temp = lanphy_read_page_reg(phydev, 5, LAN8814_LED_CTRL_1);
3955
3956 if (val)
3957 temp |= LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_;
3958 else
3959 temp &= ~LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_;
3960
3961 lanphy_write_page_reg(phydev, 5, LAN8814_LED_CTRL_1, temp);
3962 }
3963
lan8814_config_init(struct phy_device * phydev)3964 static int lan8814_config_init(struct phy_device *phydev)
3965 {
3966 struct kszphy_priv *lan8814 = phydev->priv;
3967 int val;
3968
3969 /* Reset the PHY */
3970 val = lanphy_read_page_reg(phydev, 4, LAN8814_QSGMII_SOFT_RESET);
3971 val |= LAN8814_QSGMII_SOFT_RESET_BIT;
3972 lanphy_write_page_reg(phydev, 4, LAN8814_QSGMII_SOFT_RESET, val);
3973
3974 /* Disable ANEG with QSGMII PCS Host side */
3975 val = lanphy_read_page_reg(phydev, 5, LAN8814_QSGMII_PCS1G_ANEG_CONFIG);
3976 val &= ~LAN8814_QSGMII_PCS1G_ANEG_CONFIG_ANEG_ENA;
3977 lanphy_write_page_reg(phydev, 5, LAN8814_QSGMII_PCS1G_ANEG_CONFIG, val);
3978
3979 /* MDI-X setting for swap A,B transmit */
3980 val = lanphy_read_page_reg(phydev, 2, LAN8814_ALIGN_SWAP);
3981 val &= ~LAN8814_ALIGN_TX_A_B_SWAP_MASK;
3982 val |= LAN8814_ALIGN_TX_A_B_SWAP;
3983 lanphy_write_page_reg(phydev, 2, LAN8814_ALIGN_SWAP, val);
3984
3985 if (lan8814->led_mode >= 0)
3986 lan8814_setup_led(phydev, lan8814->led_mode);
3987
3988 return 0;
3989 }
3990
3991 /* It is expected that there will not be any 'lan8814_take_coma_mode'
3992 * function called in suspend. Because the GPIO line can be shared, so if one of
3993 * the phys goes back in coma mode, then all the other PHYs will go, which is
3994 * wrong.
3995 */
lan8814_release_coma_mode(struct phy_device * phydev)3996 static int lan8814_release_coma_mode(struct phy_device *phydev)
3997 {
3998 struct gpio_desc *gpiod;
3999
4000 gpiod = devm_gpiod_get_optional(&phydev->mdio.dev, "coma-mode",
4001 GPIOD_OUT_HIGH_OPEN_DRAIN |
4002 GPIOD_FLAGS_BIT_NONEXCLUSIVE);
4003 if (IS_ERR(gpiod))
4004 return PTR_ERR(gpiod);
4005
4006 gpiod_set_consumer_name(gpiod, "LAN8814 coma mode");
4007 gpiod_set_value_cansleep(gpiod, 0);
4008
4009 return 0;
4010 }
4011
lan8814_clear_2psp_bit(struct phy_device * phydev)4012 static void lan8814_clear_2psp_bit(struct phy_device *phydev)
4013 {
4014 u16 val;
4015
4016 /* It was noticed that when traffic is passing through the PHY and the
4017 * cable is removed then the LED was still one even though there is no
4018 * link
4019 */
4020 val = lanphy_read_page_reg(phydev, 2, LAN8814_EEE_STATE);
4021 val &= ~LAN8814_EEE_STATE_MASK2P5P;
4022 lanphy_write_page_reg(phydev, 2, LAN8814_EEE_STATE, val);
4023 }
4024
lan8814_update_meas_time(struct phy_device * phydev)4025 static void lan8814_update_meas_time(struct phy_device *phydev)
4026 {
4027 u16 val;
4028
4029 /* By setting the measure time to a value of 0xb this will allow cables
4030 * longer than 100m to be used. This configuration can be used
4031 * regardless of the mode of operation of the PHY
4032 */
4033 val = lanphy_read_page_reg(phydev, 1, LAN8814_PD_CONTROLS);
4034 val &= ~LAN8814_PD_CONTROLS_PD_MEAS_TIME_MASK;
4035 val |= LAN8814_PD_CONTROLS_PD_MEAS_TIME_VAL;
4036 lanphy_write_page_reg(phydev, 1, LAN8814_PD_CONTROLS, val);
4037 }
4038
lan8814_probe(struct phy_device * phydev)4039 static int lan8814_probe(struct phy_device *phydev)
4040 {
4041 const struct kszphy_type *type = phydev->drv->driver_data;
4042 struct kszphy_priv *priv;
4043 u16 addr;
4044 int err;
4045
4046 priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL);
4047 if (!priv)
4048 return -ENOMEM;
4049
4050 phydev->priv = priv;
4051
4052 priv->type = type;
4053
4054 kszphy_parse_led_mode(phydev);
4055
4056 /* Strap-in value for PHY address, below register read gives starting
4057 * phy address value
4058 */
4059 addr = lanphy_read_page_reg(phydev, 4, 0) & 0x1F;
4060 devm_phy_package_join(&phydev->mdio.dev, phydev,
4061 addr, sizeof(struct lan8814_shared_priv));
4062
4063 if (phy_package_init_once(phydev)) {
4064 err = lan8814_release_coma_mode(phydev);
4065 if (err)
4066 return err;
4067
4068 err = lan8814_ptp_probe_once(phydev);
4069 if (err)
4070 return err;
4071 }
4072
4073 lan8814_ptp_init(phydev);
4074
4075 /* Errata workarounds */
4076 lan8814_clear_2psp_bit(phydev);
4077 lan8814_update_meas_time(phydev);
4078
4079 return 0;
4080 }
4081
4082 #define LAN8841_MMD_TIMER_REG 0
4083 #define LAN8841_MMD0_REGISTER_17 17
4084 #define LAN8841_MMD0_REGISTER_17_DROP_OPT(x) ((x) & 0x3)
4085 #define LAN8841_MMD0_REGISTER_17_XMIT_TOG_TX_DIS BIT(3)
4086 #define LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG 2
4087 #define LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG_MAGJACK BIT(14)
4088 #define LAN8841_MMD_ANALOG_REG 28
4089 #define LAN8841_ANALOG_CONTROL_1 1
4090 #define LAN8841_ANALOG_CONTROL_1_PLL_TRIM(x) (((x) & 0x3) << 5)
4091 #define LAN8841_ANALOG_CONTROL_10 13
4092 #define LAN8841_ANALOG_CONTROL_10_PLL_DIV(x) ((x) & 0x3)
4093 #define LAN8841_ANALOG_CONTROL_11 14
4094 #define LAN8841_ANALOG_CONTROL_11_LDO_REF(x) (((x) & 0x7) << 12)
4095 #define LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT 69
4096 #define LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT_VAL 0xbffc
4097 #define LAN8841_BTRX_POWER_DOWN 70
4098 #define LAN8841_BTRX_POWER_DOWN_QBIAS_CH_A BIT(0)
4099 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_A BIT(1)
4100 #define LAN8841_BTRX_POWER_DOWN_QBIAS_CH_B BIT(2)
4101 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_B BIT(3)
4102 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_C BIT(5)
4103 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_D BIT(7)
4104 #define LAN8841_ADC_CHANNEL_MASK 198
4105 #define LAN8841_PTP_RX_PARSE_L2_ADDR_EN 370
4106 #define LAN8841_PTP_RX_PARSE_IP_ADDR_EN 371
4107 #define LAN8841_PTP_RX_VERSION 374
4108 #define LAN8841_PTP_TX_PARSE_L2_ADDR_EN 434
4109 #define LAN8841_PTP_TX_PARSE_IP_ADDR_EN 435
4110 #define LAN8841_PTP_TX_VERSION 438
4111 #define LAN8841_PTP_CMD_CTL 256
4112 #define LAN8841_PTP_CMD_CTL_PTP_ENABLE BIT(2)
4113 #define LAN8841_PTP_CMD_CTL_PTP_DISABLE BIT(1)
4114 #define LAN8841_PTP_CMD_CTL_PTP_RESET BIT(0)
4115 #define LAN8841_PTP_RX_PARSE_CONFIG 368
4116 #define LAN8841_PTP_TX_PARSE_CONFIG 432
4117 #define LAN8841_PTP_RX_MODE 381
4118 #define LAN8841_PTP_INSERT_TS_EN BIT(0)
4119 #define LAN8841_PTP_INSERT_TS_32BIT BIT(1)
4120
lan8841_config_init(struct phy_device * phydev)4121 static int lan8841_config_init(struct phy_device *phydev)
4122 {
4123 int ret;
4124
4125 ret = ksz9131_config_init(phydev);
4126 if (ret)
4127 return ret;
4128
4129 /* Initialize the HW by resetting everything */
4130 phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4131 LAN8841_PTP_CMD_CTL,
4132 LAN8841_PTP_CMD_CTL_PTP_RESET,
4133 LAN8841_PTP_CMD_CTL_PTP_RESET);
4134
4135 phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4136 LAN8841_PTP_CMD_CTL,
4137 LAN8841_PTP_CMD_CTL_PTP_ENABLE,
4138 LAN8841_PTP_CMD_CTL_PTP_ENABLE);
4139
4140 /* Don't process any frames */
4141 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4142 LAN8841_PTP_RX_PARSE_CONFIG, 0);
4143 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4144 LAN8841_PTP_TX_PARSE_CONFIG, 0);
4145 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4146 LAN8841_PTP_TX_PARSE_L2_ADDR_EN, 0);
4147 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4148 LAN8841_PTP_RX_PARSE_L2_ADDR_EN, 0);
4149 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4150 LAN8841_PTP_TX_PARSE_IP_ADDR_EN, 0);
4151 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4152 LAN8841_PTP_RX_PARSE_IP_ADDR_EN, 0);
4153
4154 /* Disable checking for minorVersionPTP field */
4155 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4156 LAN8841_PTP_RX_VERSION, 0xff00);
4157 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4158 LAN8841_PTP_TX_VERSION, 0xff00);
4159
4160 /* 100BT Clause 40 improvenent errata */
4161 phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG,
4162 LAN8841_ANALOG_CONTROL_1,
4163 LAN8841_ANALOG_CONTROL_1_PLL_TRIM(0x2));
4164 phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG,
4165 LAN8841_ANALOG_CONTROL_10,
4166 LAN8841_ANALOG_CONTROL_10_PLL_DIV(0x1));
4167
4168 /* 10M/100M Ethernet Signal Tuning Errata for Shorted-Center Tap
4169 * Magnetics
4170 */
4171 ret = phy_read_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4172 LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG);
4173 if (ret & LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG_MAGJACK) {
4174 phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG,
4175 LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT,
4176 LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT_VAL);
4177 phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG,
4178 LAN8841_BTRX_POWER_DOWN,
4179 LAN8841_BTRX_POWER_DOWN_QBIAS_CH_A |
4180 LAN8841_BTRX_POWER_DOWN_BTRX_CH_A |
4181 LAN8841_BTRX_POWER_DOWN_QBIAS_CH_B |
4182 LAN8841_BTRX_POWER_DOWN_BTRX_CH_B |
4183 LAN8841_BTRX_POWER_DOWN_BTRX_CH_C |
4184 LAN8841_BTRX_POWER_DOWN_BTRX_CH_D);
4185 }
4186
4187 /* LDO Adjustment errata */
4188 phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG,
4189 LAN8841_ANALOG_CONTROL_11,
4190 LAN8841_ANALOG_CONTROL_11_LDO_REF(1));
4191
4192 /* 100BT RGMII latency tuning errata */
4193 phy_write_mmd(phydev, MDIO_MMD_PMAPMD,
4194 LAN8841_ADC_CHANNEL_MASK, 0x0);
4195 phy_write_mmd(phydev, LAN8841_MMD_TIMER_REG,
4196 LAN8841_MMD0_REGISTER_17,
4197 LAN8841_MMD0_REGISTER_17_DROP_OPT(2) |
4198 LAN8841_MMD0_REGISTER_17_XMIT_TOG_TX_DIS);
4199
4200 return 0;
4201 }
4202
4203 #define LAN8841_OUTPUT_CTRL 25
4204 #define LAN8841_OUTPUT_CTRL_INT_BUFFER BIT(14)
4205 #define LAN8841_INT_PTP BIT(9)
4206
lan8841_config_intr(struct phy_device * phydev)4207 static int lan8841_config_intr(struct phy_device *phydev)
4208 {
4209 int err;
4210
4211 phy_modify(phydev, LAN8841_OUTPUT_CTRL,
4212 LAN8841_OUTPUT_CTRL_INT_BUFFER, 0);
4213
4214 if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
4215 err = phy_read(phydev, LAN8814_INTS);
4216 if (err < 0)
4217 return err;
4218
4219 /* Enable / disable interrupts. It is OK to enable PTP interrupt
4220 * even if it PTP is not enabled. Because the underneath blocks
4221 * will not enable the PTP so we will never get the PTP
4222 * interrupt.
4223 */
4224 err = phy_write(phydev, LAN8814_INTC,
4225 LAN8814_INT_LINK | LAN8841_INT_PTP);
4226 } else {
4227 err = phy_write(phydev, LAN8814_INTC, 0);
4228 if (err)
4229 return err;
4230
4231 err = phy_read(phydev, LAN8814_INTS);
4232 if (err < 0)
4233 return err;
4234
4235 /* Getting a positive value doesn't mean that is an error, it
4236 * just indicates what was the status. Therefore make sure to
4237 * clear the value and say that there is no error.
4238 */
4239 err = 0;
4240 }
4241
4242 return err;
4243 }
4244
4245 #define LAN8841_PTP_TX_EGRESS_SEC_LO 453
4246 #define LAN8841_PTP_TX_EGRESS_SEC_HI 452
4247 #define LAN8841_PTP_TX_EGRESS_NS_LO 451
4248 #define LAN8841_PTP_TX_EGRESS_NS_HI 450
4249 #define LAN8841_PTP_TX_EGRESS_NSEC_HI_VALID BIT(15)
4250 #define LAN8841_PTP_TX_MSG_HEADER2 455
4251
lan8841_ptp_get_tx_ts(struct kszphy_ptp_priv * ptp_priv,u32 * sec,u32 * nsec,u16 * seq)4252 static bool lan8841_ptp_get_tx_ts(struct kszphy_ptp_priv *ptp_priv,
4253 u32 *sec, u32 *nsec, u16 *seq)
4254 {
4255 struct phy_device *phydev = ptp_priv->phydev;
4256
4257 *nsec = phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_NS_HI);
4258 if (!(*nsec & LAN8841_PTP_TX_EGRESS_NSEC_HI_VALID))
4259 return false;
4260
4261 *nsec = ((*nsec & 0x3fff) << 16);
4262 *nsec = *nsec | phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_NS_LO);
4263
4264 *sec = phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_SEC_HI);
4265 *sec = *sec << 16;
4266 *sec = *sec | phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_SEC_LO);
4267
4268 *seq = phy_read_mmd(phydev, 2, LAN8841_PTP_TX_MSG_HEADER2);
4269
4270 return true;
4271 }
4272
lan8841_ptp_process_tx_ts(struct kszphy_ptp_priv * ptp_priv)4273 static void lan8841_ptp_process_tx_ts(struct kszphy_ptp_priv *ptp_priv)
4274 {
4275 u32 sec, nsec;
4276 u16 seq;
4277
4278 while (lan8841_ptp_get_tx_ts(ptp_priv, &sec, &nsec, &seq))
4279 lan8814_match_tx_skb(ptp_priv, sec, nsec, seq);
4280 }
4281
4282 #define LAN8841_PTP_INT_STS 259
4283 #define LAN8841_PTP_INT_STS_PTP_TX_TS_OVRFL_INT BIT(13)
4284 #define LAN8841_PTP_INT_STS_PTP_TX_TS_INT BIT(12)
4285 #define LAN8841_PTP_INT_STS_PTP_GPIO_CAP_INT BIT(2)
4286
lan8841_ptp_flush_fifo(struct kszphy_ptp_priv * ptp_priv)4287 static void lan8841_ptp_flush_fifo(struct kszphy_ptp_priv *ptp_priv)
4288 {
4289 struct phy_device *phydev = ptp_priv->phydev;
4290 int i;
4291
4292 for (i = 0; i < FIFO_SIZE; ++i)
4293 phy_read_mmd(phydev, 2, LAN8841_PTP_TX_MSG_HEADER2);
4294
4295 phy_read_mmd(phydev, 2, LAN8841_PTP_INT_STS);
4296 }
4297
4298 #define LAN8841_PTP_GPIO_CAP_STS 506
4299 #define LAN8841_PTP_GPIO_SEL 327
4300 #define LAN8841_PTP_GPIO_SEL_GPIO_SEL(gpio) ((gpio) << 8)
4301 #define LAN8841_PTP_GPIO_RE_LTC_SEC_HI_CAP 498
4302 #define LAN8841_PTP_GPIO_RE_LTC_SEC_LO_CAP 499
4303 #define LAN8841_PTP_GPIO_RE_LTC_NS_HI_CAP 500
4304 #define LAN8841_PTP_GPIO_RE_LTC_NS_LO_CAP 501
4305 #define LAN8841_PTP_GPIO_FE_LTC_SEC_HI_CAP 502
4306 #define LAN8841_PTP_GPIO_FE_LTC_SEC_LO_CAP 503
4307 #define LAN8841_PTP_GPIO_FE_LTC_NS_HI_CAP 504
4308 #define LAN8841_PTP_GPIO_FE_LTC_NS_LO_CAP 505
4309
lan8841_gpio_process_cap(struct kszphy_ptp_priv * ptp_priv)4310 static void lan8841_gpio_process_cap(struct kszphy_ptp_priv *ptp_priv)
4311 {
4312 struct phy_device *phydev = ptp_priv->phydev;
4313 struct ptp_clock_event ptp_event = {0};
4314 int pin, ret, tmp;
4315 s32 sec, nsec;
4316
4317 pin = ptp_find_pin_unlocked(ptp_priv->ptp_clock, PTP_PF_EXTTS, 0);
4318 if (pin == -1)
4319 return;
4320
4321 tmp = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_CAP_STS);
4322 if (tmp < 0)
4323 return;
4324
4325 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_GPIO_SEL,
4326 LAN8841_PTP_GPIO_SEL_GPIO_SEL(pin));
4327 if (ret)
4328 return;
4329
4330 mutex_lock(&ptp_priv->ptp_lock);
4331 if (tmp & BIT(pin)) {
4332 sec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_SEC_HI_CAP);
4333 sec <<= 16;
4334 sec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_SEC_LO_CAP);
4335
4336 nsec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_NS_HI_CAP) & 0x3fff;
4337 nsec <<= 16;
4338 nsec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_NS_LO_CAP);
4339 } else {
4340 sec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_SEC_HI_CAP);
4341 sec <<= 16;
4342 sec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_SEC_LO_CAP);
4343
4344 nsec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_NS_HI_CAP) & 0x3fff;
4345 nsec <<= 16;
4346 nsec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_NS_LO_CAP);
4347 }
4348 mutex_unlock(&ptp_priv->ptp_lock);
4349 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_GPIO_SEL, 0);
4350 if (ret)
4351 return;
4352
4353 ptp_event.index = 0;
4354 ptp_event.timestamp = ktime_set(sec, nsec);
4355 ptp_event.type = PTP_CLOCK_EXTTS;
4356 ptp_clock_event(ptp_priv->ptp_clock, &ptp_event);
4357 }
4358
lan8841_handle_ptp_interrupt(struct phy_device * phydev)4359 static void lan8841_handle_ptp_interrupt(struct phy_device *phydev)
4360 {
4361 struct kszphy_priv *priv = phydev->priv;
4362 struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv;
4363 u16 status;
4364
4365 do {
4366 status = phy_read_mmd(phydev, 2, LAN8841_PTP_INT_STS);
4367
4368 if (status & LAN8841_PTP_INT_STS_PTP_TX_TS_INT)
4369 lan8841_ptp_process_tx_ts(ptp_priv);
4370
4371 if (status & LAN8841_PTP_INT_STS_PTP_GPIO_CAP_INT)
4372 lan8841_gpio_process_cap(ptp_priv);
4373
4374 if (status & LAN8841_PTP_INT_STS_PTP_TX_TS_OVRFL_INT) {
4375 lan8841_ptp_flush_fifo(ptp_priv);
4376 skb_queue_purge(&ptp_priv->tx_queue);
4377 }
4378
4379 } while (status & (LAN8841_PTP_INT_STS_PTP_TX_TS_INT |
4380 LAN8841_PTP_INT_STS_PTP_GPIO_CAP_INT |
4381 LAN8841_PTP_INT_STS_PTP_TX_TS_OVRFL_INT));
4382 }
4383
4384 #define LAN8841_INTS_PTP BIT(9)
4385
lan8841_handle_interrupt(struct phy_device * phydev)4386 static irqreturn_t lan8841_handle_interrupt(struct phy_device *phydev)
4387 {
4388 irqreturn_t ret = IRQ_NONE;
4389 int irq_status;
4390
4391 irq_status = phy_read(phydev, LAN8814_INTS);
4392 if (irq_status < 0) {
4393 phy_error(phydev);
4394 return IRQ_NONE;
4395 }
4396
4397 if (irq_status & LAN8814_INT_LINK) {
4398 phy_trigger_machine(phydev);
4399 ret = IRQ_HANDLED;
4400 }
4401
4402 if (irq_status & LAN8841_INTS_PTP) {
4403 lan8841_handle_ptp_interrupt(phydev);
4404 ret = IRQ_HANDLED;
4405 }
4406
4407 return ret;
4408 }
4409
lan8841_ts_info(struct mii_timestamper * mii_ts,struct kernel_ethtool_ts_info * info)4410 static int lan8841_ts_info(struct mii_timestamper *mii_ts,
4411 struct kernel_ethtool_ts_info *info)
4412 {
4413 struct kszphy_ptp_priv *ptp_priv;
4414
4415 ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
4416
4417 info->phc_index = ptp_priv->ptp_clock ?
4418 ptp_clock_index(ptp_priv->ptp_clock) : -1;
4419 if (info->phc_index == -1)
4420 return 0;
4421
4422 info->so_timestamping = SOF_TIMESTAMPING_TX_HARDWARE |
4423 SOF_TIMESTAMPING_RX_HARDWARE |
4424 SOF_TIMESTAMPING_RAW_HARDWARE;
4425
4426 info->tx_types = (1 << HWTSTAMP_TX_OFF) |
4427 (1 << HWTSTAMP_TX_ON) |
4428 (1 << HWTSTAMP_TX_ONESTEP_SYNC);
4429
4430 info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
4431 (1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT) |
4432 (1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
4433 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
4434
4435 return 0;
4436 }
4437
4438 #define LAN8841_PTP_INT_EN 260
4439 #define LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN BIT(13)
4440 #define LAN8841_PTP_INT_EN_PTP_TX_TS_EN BIT(12)
4441
lan8841_ptp_enable_processing(struct kszphy_ptp_priv * ptp_priv,bool enable)4442 static void lan8841_ptp_enable_processing(struct kszphy_ptp_priv *ptp_priv,
4443 bool enable)
4444 {
4445 struct phy_device *phydev = ptp_priv->phydev;
4446
4447 if (enable) {
4448 /* Enable interrupts on the TX side */
4449 phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN,
4450 LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN |
4451 LAN8841_PTP_INT_EN_PTP_TX_TS_EN,
4452 LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN |
4453 LAN8841_PTP_INT_EN_PTP_TX_TS_EN);
4454
4455 /* Enable the modification of the frame on RX side,
4456 * this will add the ns and 2 bits of sec in the reserved field
4457 * of the PTP header
4458 */
4459 phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4460 LAN8841_PTP_RX_MODE,
4461 LAN8841_PTP_INSERT_TS_EN |
4462 LAN8841_PTP_INSERT_TS_32BIT,
4463 LAN8841_PTP_INSERT_TS_EN |
4464 LAN8841_PTP_INSERT_TS_32BIT);
4465
4466 ptp_schedule_worker(ptp_priv->ptp_clock, 0);
4467 } else {
4468 /* Disable interrupts on the TX side */
4469 phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN,
4470 LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN |
4471 LAN8841_PTP_INT_EN_PTP_TX_TS_EN, 0);
4472
4473 /* Disable modification of the RX frames */
4474 phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4475 LAN8841_PTP_RX_MODE,
4476 LAN8841_PTP_INSERT_TS_EN |
4477 LAN8841_PTP_INSERT_TS_32BIT, 0);
4478
4479 ptp_cancel_worker_sync(ptp_priv->ptp_clock);
4480 }
4481 }
4482
4483 #define LAN8841_PTP_RX_TIMESTAMP_EN 379
4484 #define LAN8841_PTP_TX_TIMESTAMP_EN 443
4485 #define LAN8841_PTP_TX_MOD 445
4486
lan8841_hwtstamp(struct mii_timestamper * mii_ts,struct kernel_hwtstamp_config * config,struct netlink_ext_ack * extack)4487 static int lan8841_hwtstamp(struct mii_timestamper *mii_ts,
4488 struct kernel_hwtstamp_config *config,
4489 struct netlink_ext_ack *extack)
4490 {
4491 struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
4492 struct phy_device *phydev = ptp_priv->phydev;
4493 int txcfg = 0, rxcfg = 0;
4494 int pkt_ts_enable;
4495
4496 ptp_priv->hwts_tx_type = config->tx_type;
4497 ptp_priv->rx_filter = config->rx_filter;
4498
4499 switch (config->rx_filter) {
4500 case HWTSTAMP_FILTER_NONE:
4501 ptp_priv->layer = 0;
4502 ptp_priv->version = 0;
4503 break;
4504 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
4505 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
4506 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
4507 ptp_priv->layer = PTP_CLASS_L4;
4508 ptp_priv->version = PTP_CLASS_V2;
4509 break;
4510 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
4511 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
4512 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
4513 ptp_priv->layer = PTP_CLASS_L2;
4514 ptp_priv->version = PTP_CLASS_V2;
4515 break;
4516 case HWTSTAMP_FILTER_PTP_V2_EVENT:
4517 case HWTSTAMP_FILTER_PTP_V2_SYNC:
4518 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
4519 ptp_priv->layer = PTP_CLASS_L4 | PTP_CLASS_L2;
4520 ptp_priv->version = PTP_CLASS_V2;
4521 break;
4522 default:
4523 return -ERANGE;
4524 }
4525
4526 /* Setup parsing of the frames and enable the timestamping for ptp
4527 * frames
4528 */
4529 if (ptp_priv->layer & PTP_CLASS_L2) {
4530 rxcfg |= PTP_RX_PARSE_CONFIG_LAYER2_EN_;
4531 txcfg |= PTP_TX_PARSE_CONFIG_LAYER2_EN_;
4532 } else if (ptp_priv->layer & PTP_CLASS_L4) {
4533 rxcfg |= PTP_RX_PARSE_CONFIG_IPV4_EN_ | PTP_RX_PARSE_CONFIG_IPV6_EN_;
4534 txcfg |= PTP_TX_PARSE_CONFIG_IPV4_EN_ | PTP_TX_PARSE_CONFIG_IPV6_EN_;
4535 }
4536
4537 phy_write_mmd(phydev, 2, LAN8841_PTP_RX_PARSE_CONFIG, rxcfg);
4538 phy_write_mmd(phydev, 2, LAN8841_PTP_TX_PARSE_CONFIG, txcfg);
4539
4540 pkt_ts_enable = PTP_TIMESTAMP_EN_SYNC_ | PTP_TIMESTAMP_EN_DREQ_ |
4541 PTP_TIMESTAMP_EN_PDREQ_ | PTP_TIMESTAMP_EN_PDRES_;
4542 phy_write_mmd(phydev, 2, LAN8841_PTP_RX_TIMESTAMP_EN, pkt_ts_enable);
4543 phy_write_mmd(phydev, 2, LAN8841_PTP_TX_TIMESTAMP_EN, pkt_ts_enable);
4544
4545 /* Enable / disable of the TX timestamp in the SYNC frames */
4546 phy_modify_mmd(phydev, 2, LAN8841_PTP_TX_MOD,
4547 PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_,
4548 ptp_priv->hwts_tx_type == HWTSTAMP_TX_ONESTEP_SYNC ?
4549 PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_ : 0);
4550
4551 /* Now enable/disable the timestamping */
4552 lan8841_ptp_enable_processing(ptp_priv,
4553 config->rx_filter != HWTSTAMP_FILTER_NONE);
4554
4555 skb_queue_purge(&ptp_priv->tx_queue);
4556
4557 lan8841_ptp_flush_fifo(ptp_priv);
4558
4559 return 0;
4560 }
4561
lan8841_rxtstamp(struct mii_timestamper * mii_ts,struct sk_buff * skb,int type)4562 static bool lan8841_rxtstamp(struct mii_timestamper *mii_ts,
4563 struct sk_buff *skb, int type)
4564 {
4565 struct kszphy_ptp_priv *ptp_priv =
4566 container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
4567 struct ptp_header *header = ptp_parse_header(skb, type);
4568 struct skb_shared_hwtstamps *shhwtstamps;
4569 struct timespec64 ts;
4570 unsigned long flags;
4571 u32 ts_header;
4572
4573 if (!header)
4574 return false;
4575
4576 if (ptp_priv->rx_filter == HWTSTAMP_FILTER_NONE ||
4577 type == PTP_CLASS_NONE)
4578 return false;
4579
4580 if ((type & ptp_priv->version) == 0 || (type & ptp_priv->layer) == 0)
4581 return false;
4582
4583 spin_lock_irqsave(&ptp_priv->seconds_lock, flags);
4584 ts.tv_sec = ptp_priv->seconds;
4585 spin_unlock_irqrestore(&ptp_priv->seconds_lock, flags);
4586 ts_header = __be32_to_cpu(header->reserved2);
4587
4588 shhwtstamps = skb_hwtstamps(skb);
4589 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
4590
4591 /* Check for any wrap arounds for the second part */
4592 if ((ts.tv_sec & GENMASK(1, 0)) == 0 && (ts_header >> 30) == 3)
4593 ts.tv_sec -= GENMASK(1, 0) + 1;
4594 else if ((ts.tv_sec & GENMASK(1, 0)) == 3 && (ts_header >> 30) == 0)
4595 ts.tv_sec += 1;
4596
4597 shhwtstamps->hwtstamp =
4598 ktime_set((ts.tv_sec & ~(GENMASK(1, 0))) | ts_header >> 30,
4599 ts_header & GENMASK(29, 0));
4600 header->reserved2 = 0;
4601
4602 netif_rx(skb);
4603
4604 return true;
4605 }
4606
4607 #define LAN8841_EVENT_A 0
4608 #define LAN8841_EVENT_B 1
4609 #define LAN8841_PTP_LTC_TARGET_SEC_HI(event) ((event) == LAN8841_EVENT_A ? 278 : 288)
4610 #define LAN8841_PTP_LTC_TARGET_SEC_LO(event) ((event) == LAN8841_EVENT_A ? 279 : 289)
4611 #define LAN8841_PTP_LTC_TARGET_NS_HI(event) ((event) == LAN8841_EVENT_A ? 280 : 290)
4612 #define LAN8841_PTP_LTC_TARGET_NS_LO(event) ((event) == LAN8841_EVENT_A ? 281 : 291)
4613
lan8841_ptp_set_target(struct kszphy_ptp_priv * ptp_priv,u8 event,s64 sec,u32 nsec)4614 static int lan8841_ptp_set_target(struct kszphy_ptp_priv *ptp_priv, u8 event,
4615 s64 sec, u32 nsec)
4616 {
4617 struct phy_device *phydev = ptp_priv->phydev;
4618 int ret;
4619
4620 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_SEC_HI(event),
4621 upper_16_bits(sec));
4622 if (ret)
4623 return ret;
4624
4625 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_SEC_LO(event),
4626 lower_16_bits(sec));
4627 if (ret)
4628 return ret;
4629
4630 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_NS_HI(event) & 0x3fff,
4631 upper_16_bits(nsec));
4632 if (ret)
4633 return ret;
4634
4635 return phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_NS_LO(event),
4636 lower_16_bits(nsec));
4637 }
4638
4639 #define LAN8841_BUFFER_TIME 2
4640
lan8841_ptp_update_target(struct kszphy_ptp_priv * ptp_priv,const struct timespec64 * ts)4641 static int lan8841_ptp_update_target(struct kszphy_ptp_priv *ptp_priv,
4642 const struct timespec64 *ts)
4643 {
4644 return lan8841_ptp_set_target(ptp_priv, LAN8841_EVENT_A,
4645 ts->tv_sec + LAN8841_BUFFER_TIME, 0);
4646 }
4647
4648 #define LAN8841_PTP_LTC_TARGET_RELOAD_SEC_HI(event) ((event) == LAN8841_EVENT_A ? 282 : 292)
4649 #define LAN8841_PTP_LTC_TARGET_RELOAD_SEC_LO(event) ((event) == LAN8841_EVENT_A ? 283 : 293)
4650 #define LAN8841_PTP_LTC_TARGET_RELOAD_NS_HI(event) ((event) == LAN8841_EVENT_A ? 284 : 294)
4651 #define LAN8841_PTP_LTC_TARGET_RELOAD_NS_LO(event) ((event) == LAN8841_EVENT_A ? 285 : 295)
4652
lan8841_ptp_set_reload(struct kszphy_ptp_priv * ptp_priv,u8 event,s64 sec,u32 nsec)4653 static int lan8841_ptp_set_reload(struct kszphy_ptp_priv *ptp_priv, u8 event,
4654 s64 sec, u32 nsec)
4655 {
4656 struct phy_device *phydev = ptp_priv->phydev;
4657 int ret;
4658
4659 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_SEC_HI(event),
4660 upper_16_bits(sec));
4661 if (ret)
4662 return ret;
4663
4664 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_SEC_LO(event),
4665 lower_16_bits(sec));
4666 if (ret)
4667 return ret;
4668
4669 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_NS_HI(event) & 0x3fff,
4670 upper_16_bits(nsec));
4671 if (ret)
4672 return ret;
4673
4674 return phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_NS_LO(event),
4675 lower_16_bits(nsec));
4676 }
4677
4678 #define LAN8841_PTP_LTC_SET_SEC_HI 262
4679 #define LAN8841_PTP_LTC_SET_SEC_MID 263
4680 #define LAN8841_PTP_LTC_SET_SEC_LO 264
4681 #define LAN8841_PTP_LTC_SET_NS_HI 265
4682 #define LAN8841_PTP_LTC_SET_NS_LO 266
4683 #define LAN8841_PTP_CMD_CTL_PTP_LTC_LOAD BIT(4)
4684
lan8841_ptp_settime64(struct ptp_clock_info * ptp,const struct timespec64 * ts)4685 static int lan8841_ptp_settime64(struct ptp_clock_info *ptp,
4686 const struct timespec64 *ts)
4687 {
4688 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
4689 ptp_clock_info);
4690 struct phy_device *phydev = ptp_priv->phydev;
4691 unsigned long flags;
4692 int ret;
4693
4694 /* Set the value to be stored */
4695 mutex_lock(&ptp_priv->ptp_lock);
4696 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_SEC_LO, lower_16_bits(ts->tv_sec));
4697 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_SEC_MID, upper_16_bits(ts->tv_sec));
4698 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_SEC_HI, upper_32_bits(ts->tv_sec) & 0xffff);
4699 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_NS_LO, lower_16_bits(ts->tv_nsec));
4700 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_NS_HI, upper_16_bits(ts->tv_nsec) & 0x3fff);
4701
4702 /* Set the command to load the LTC */
4703 phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL,
4704 LAN8841_PTP_CMD_CTL_PTP_LTC_LOAD);
4705 ret = lan8841_ptp_update_target(ptp_priv, ts);
4706 mutex_unlock(&ptp_priv->ptp_lock);
4707
4708 spin_lock_irqsave(&ptp_priv->seconds_lock, flags);
4709 ptp_priv->seconds = ts->tv_sec;
4710 spin_unlock_irqrestore(&ptp_priv->seconds_lock, flags);
4711
4712 return ret;
4713 }
4714
4715 #define LAN8841_PTP_LTC_RD_SEC_HI 358
4716 #define LAN8841_PTP_LTC_RD_SEC_MID 359
4717 #define LAN8841_PTP_LTC_RD_SEC_LO 360
4718 #define LAN8841_PTP_LTC_RD_NS_HI 361
4719 #define LAN8841_PTP_LTC_RD_NS_LO 362
4720 #define LAN8841_PTP_CMD_CTL_PTP_LTC_READ BIT(3)
4721
lan8841_ptp_gettime64(struct ptp_clock_info * ptp,struct timespec64 * ts)4722 static int lan8841_ptp_gettime64(struct ptp_clock_info *ptp,
4723 struct timespec64 *ts)
4724 {
4725 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
4726 ptp_clock_info);
4727 struct phy_device *phydev = ptp_priv->phydev;
4728 time64_t s;
4729 s64 ns;
4730
4731 mutex_lock(&ptp_priv->ptp_lock);
4732 /* Issue the command to read the LTC */
4733 phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL,
4734 LAN8841_PTP_CMD_CTL_PTP_LTC_READ);
4735
4736 /* Read the LTC */
4737 s = phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_HI);
4738 s <<= 16;
4739 s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_MID);
4740 s <<= 16;
4741 s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_LO);
4742
4743 ns = phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_NS_HI) & 0x3fff;
4744 ns <<= 16;
4745 ns |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_NS_LO);
4746 mutex_unlock(&ptp_priv->ptp_lock);
4747
4748 set_normalized_timespec64(ts, s, ns);
4749 return 0;
4750 }
4751
lan8841_ptp_getseconds(struct ptp_clock_info * ptp,struct timespec64 * ts)4752 static void lan8841_ptp_getseconds(struct ptp_clock_info *ptp,
4753 struct timespec64 *ts)
4754 {
4755 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
4756 ptp_clock_info);
4757 struct phy_device *phydev = ptp_priv->phydev;
4758 time64_t s;
4759
4760 mutex_lock(&ptp_priv->ptp_lock);
4761 /* Issue the command to read the LTC */
4762 phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL,
4763 LAN8841_PTP_CMD_CTL_PTP_LTC_READ);
4764
4765 /* Read the LTC */
4766 s = phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_HI);
4767 s <<= 16;
4768 s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_MID);
4769 s <<= 16;
4770 s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_LO);
4771 mutex_unlock(&ptp_priv->ptp_lock);
4772
4773 set_normalized_timespec64(ts, s, 0);
4774 }
4775
4776 #define LAN8841_PTP_LTC_STEP_ADJ_LO 276
4777 #define LAN8841_PTP_LTC_STEP_ADJ_HI 275
4778 #define LAN8841_PTP_LTC_STEP_ADJ_DIR BIT(15)
4779 #define LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_SECONDS BIT(5)
4780 #define LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_NANOSECONDS BIT(6)
4781
lan8841_ptp_adjtime(struct ptp_clock_info * ptp,s64 delta)4782 static int lan8841_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
4783 {
4784 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
4785 ptp_clock_info);
4786 struct phy_device *phydev = ptp_priv->phydev;
4787 struct timespec64 ts;
4788 bool add = true;
4789 u32 nsec;
4790 s32 sec;
4791 int ret;
4792
4793 /* The HW allows up to 15 sec to adjust the time, but here we limit to
4794 * 10 sec the adjustment. The reason is, in case the adjustment is 14
4795 * sec and 999999999 nsec, then we add 8ns to compansate the actual
4796 * increment so the value can be bigger than 15 sec. Therefore limit the
4797 * possible adjustments so we will not have these corner cases
4798 */
4799 if (delta > 10000000000LL || delta < -10000000000LL) {
4800 /* The timeadjustment is too big, so fall back using set time */
4801 u64 now;
4802
4803 ptp->gettime64(ptp, &ts);
4804
4805 now = ktime_to_ns(timespec64_to_ktime(ts));
4806 ts = ns_to_timespec64(now + delta);
4807
4808 ptp->settime64(ptp, &ts);
4809 return 0;
4810 }
4811
4812 sec = div_u64_rem(delta < 0 ? -delta : delta, NSEC_PER_SEC, &nsec);
4813 if (delta < 0 && nsec != 0) {
4814 /* It is not allowed to adjust low the nsec part, therefore
4815 * subtract more from second part and add to nanosecond such
4816 * that would roll over, so the second part will increase
4817 */
4818 sec--;
4819 nsec = NSEC_PER_SEC - nsec;
4820 }
4821
4822 /* Calculate the adjustments and the direction */
4823 if (delta < 0)
4824 add = false;
4825
4826 if (nsec > 0)
4827 /* add 8 ns to cover the likely normal increment */
4828 nsec += 8;
4829
4830 if (nsec >= NSEC_PER_SEC) {
4831 /* carry into seconds */
4832 sec++;
4833 nsec -= NSEC_PER_SEC;
4834 }
4835
4836 mutex_lock(&ptp_priv->ptp_lock);
4837 if (sec) {
4838 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_LO, sec);
4839 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_HI,
4840 add ? LAN8841_PTP_LTC_STEP_ADJ_DIR : 0);
4841 phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL,
4842 LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_SECONDS);
4843 }
4844
4845 if (nsec) {
4846 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_LO,
4847 nsec & 0xffff);
4848 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_HI,
4849 (nsec >> 16) & 0x3fff);
4850 phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL,
4851 LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_NANOSECONDS);
4852 }
4853 mutex_unlock(&ptp_priv->ptp_lock);
4854
4855 /* Update the target clock */
4856 ptp->gettime64(ptp, &ts);
4857 mutex_lock(&ptp_priv->ptp_lock);
4858 ret = lan8841_ptp_update_target(ptp_priv, &ts);
4859 mutex_unlock(&ptp_priv->ptp_lock);
4860
4861 return ret;
4862 }
4863
4864 #define LAN8841_PTP_LTC_RATE_ADJ_HI 269
4865 #define LAN8841_PTP_LTC_RATE_ADJ_HI_DIR BIT(15)
4866 #define LAN8841_PTP_LTC_RATE_ADJ_LO 270
4867
lan8841_ptp_adjfine(struct ptp_clock_info * ptp,long scaled_ppm)4868 static int lan8841_ptp_adjfine(struct ptp_clock_info *ptp, long scaled_ppm)
4869 {
4870 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
4871 ptp_clock_info);
4872 struct phy_device *phydev = ptp_priv->phydev;
4873 bool faster = true;
4874 u32 rate;
4875
4876 if (!scaled_ppm)
4877 return 0;
4878
4879 if (scaled_ppm < 0) {
4880 scaled_ppm = -scaled_ppm;
4881 faster = false;
4882 }
4883
4884 rate = LAN8841_1PPM_FORMAT * (upper_16_bits(scaled_ppm));
4885 rate += (LAN8841_1PPM_FORMAT * (lower_16_bits(scaled_ppm))) >> 16;
4886
4887 mutex_lock(&ptp_priv->ptp_lock);
4888 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_RATE_ADJ_HI,
4889 faster ? LAN8841_PTP_LTC_RATE_ADJ_HI_DIR | (upper_16_bits(rate) & 0x3fff)
4890 : upper_16_bits(rate) & 0x3fff);
4891 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_RATE_ADJ_LO, lower_16_bits(rate));
4892 mutex_unlock(&ptp_priv->ptp_lock);
4893
4894 return 0;
4895 }
4896
lan8841_ptp_verify(struct ptp_clock_info * ptp,unsigned int pin,enum ptp_pin_function func,unsigned int chan)4897 static int lan8841_ptp_verify(struct ptp_clock_info *ptp, unsigned int pin,
4898 enum ptp_pin_function func, unsigned int chan)
4899 {
4900 switch (func) {
4901 case PTP_PF_NONE:
4902 case PTP_PF_PEROUT:
4903 case PTP_PF_EXTTS:
4904 break;
4905 default:
4906 return -1;
4907 }
4908
4909 return 0;
4910 }
4911
4912 #define LAN8841_PTP_GPIO_NUM 10
4913 #define LAN8841_GPIO_EN 128
4914 #define LAN8841_GPIO_DIR 129
4915 #define LAN8841_GPIO_BUF 130
4916
lan8841_ptp_perout_off(struct kszphy_ptp_priv * ptp_priv,int pin)4917 static int lan8841_ptp_perout_off(struct kszphy_ptp_priv *ptp_priv, int pin)
4918 {
4919 struct phy_device *phydev = ptp_priv->phydev;
4920 int ret;
4921
4922 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin));
4923 if (ret)
4924 return ret;
4925
4926 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_DIR, BIT(pin));
4927 if (ret)
4928 return ret;
4929
4930 return phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin));
4931 }
4932
lan8841_ptp_perout_on(struct kszphy_ptp_priv * ptp_priv,int pin)4933 static int lan8841_ptp_perout_on(struct kszphy_ptp_priv *ptp_priv, int pin)
4934 {
4935 struct phy_device *phydev = ptp_priv->phydev;
4936 int ret;
4937
4938 ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin));
4939 if (ret)
4940 return ret;
4941
4942 ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_DIR, BIT(pin));
4943 if (ret)
4944 return ret;
4945
4946 return phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin));
4947 }
4948
4949 #define LAN8841_GPIO_DATA_SEL1 131
4950 #define LAN8841_GPIO_DATA_SEL2 132
4951 #define LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_MASK GENMASK(2, 0)
4952 #define LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_A 1
4953 #define LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_B 2
4954 #define LAN8841_PTP_GENERAL_CONFIG 257
4955 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A BIT(1)
4956 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B BIT(3)
4957 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A_MASK GENMASK(7, 4)
4958 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B_MASK GENMASK(11, 8)
4959 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A 4
4960 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B 7
4961
lan8841_ptp_remove_event(struct kszphy_ptp_priv * ptp_priv,int pin,u8 event)4962 static int lan8841_ptp_remove_event(struct kszphy_ptp_priv *ptp_priv, int pin,
4963 u8 event)
4964 {
4965 struct phy_device *phydev = ptp_priv->phydev;
4966 u16 tmp;
4967 int ret;
4968
4969 /* Now remove pin from the event. GPIO_DATA_SEL1 contains the GPIO
4970 * pins 0-4 while GPIO_DATA_SEL2 contains GPIO pins 5-9, therefore
4971 * depending on the pin, it requires to read a different register
4972 */
4973 if (pin < 5) {
4974 tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_MASK << (3 * pin);
4975 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL1, tmp);
4976 } else {
4977 tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_MASK << (3 * (pin - 5));
4978 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL2, tmp);
4979 }
4980 if (ret)
4981 return ret;
4982
4983 /* Disable the event */
4984 if (event == LAN8841_EVENT_A)
4985 tmp = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A |
4986 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A_MASK;
4987 else
4988 tmp = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B |
4989 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B_MASK;
4990 return phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_EN, tmp);
4991 }
4992
lan8841_ptp_enable_event(struct kszphy_ptp_priv * ptp_priv,int pin,u8 event,int pulse_width)4993 static int lan8841_ptp_enable_event(struct kszphy_ptp_priv *ptp_priv, int pin,
4994 u8 event, int pulse_width)
4995 {
4996 struct phy_device *phydev = ptp_priv->phydev;
4997 u16 tmp;
4998 int ret;
4999
5000 /* Enable the event */
5001 if (event == LAN8841_EVENT_A)
5002 ret = phy_modify_mmd(phydev, 2, LAN8841_PTP_GENERAL_CONFIG,
5003 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A |
5004 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A_MASK,
5005 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A |
5006 pulse_width << LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A);
5007 else
5008 ret = phy_modify_mmd(phydev, 2, LAN8841_PTP_GENERAL_CONFIG,
5009 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B |
5010 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B_MASK,
5011 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B |
5012 pulse_width << LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B);
5013 if (ret)
5014 return ret;
5015
5016 /* Now connect the pin to the event. GPIO_DATA_SEL1 contains the GPIO
5017 * pins 0-4 while GPIO_DATA_SEL2 contains GPIO pins 5-9, therefore
5018 * depending on the pin, it requires to read a different register
5019 */
5020 if (event == LAN8841_EVENT_A)
5021 tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_A;
5022 else
5023 tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_B;
5024
5025 if (pin < 5)
5026 ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL1,
5027 tmp << (3 * pin));
5028 else
5029 ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL2,
5030 tmp << (3 * (pin - 5)));
5031
5032 return ret;
5033 }
5034
5035 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS 13
5036 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS 12
5037 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS 11
5038 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS 10
5039 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS 9
5040 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS 8
5041 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US 7
5042 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US 6
5043 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US 5
5044 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US 4
5045 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US 3
5046 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US 2
5047 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS 1
5048 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS 0
5049
lan8841_ptp_perout(struct ptp_clock_info * ptp,struct ptp_clock_request * rq,int on)5050 static int lan8841_ptp_perout(struct ptp_clock_info *ptp,
5051 struct ptp_clock_request *rq, int on)
5052 {
5053 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
5054 ptp_clock_info);
5055 struct phy_device *phydev = ptp_priv->phydev;
5056 struct timespec64 ts_on, ts_period;
5057 s64 on_nsec, period_nsec;
5058 int pulse_width;
5059 int pin;
5060 int ret;
5061
5062 pin = ptp_find_pin(ptp_priv->ptp_clock, PTP_PF_PEROUT, rq->perout.index);
5063 if (pin == -1 || pin >= LAN8841_PTP_GPIO_NUM)
5064 return -EINVAL;
5065
5066 if (!on) {
5067 ret = lan8841_ptp_perout_off(ptp_priv, pin);
5068 if (ret)
5069 return ret;
5070
5071 return lan8841_ptp_remove_event(ptp_priv, LAN8841_EVENT_A, pin);
5072 }
5073
5074 ts_on.tv_sec = rq->perout.on.sec;
5075 ts_on.tv_nsec = rq->perout.on.nsec;
5076 on_nsec = timespec64_to_ns(&ts_on);
5077
5078 ts_period.tv_sec = rq->perout.period.sec;
5079 ts_period.tv_nsec = rq->perout.period.nsec;
5080 period_nsec = timespec64_to_ns(&ts_period);
5081
5082 if (period_nsec < 200) {
5083 pr_warn_ratelimited("%s: perout period too small, minimum is 200 nsec\n",
5084 phydev_name(phydev));
5085 return -EOPNOTSUPP;
5086 }
5087
5088 if (on_nsec >= period_nsec) {
5089 pr_warn_ratelimited("%s: pulse width must be smaller than period\n",
5090 phydev_name(phydev));
5091 return -EINVAL;
5092 }
5093
5094 switch (on_nsec) {
5095 case 200000000:
5096 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS;
5097 break;
5098 case 100000000:
5099 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS;
5100 break;
5101 case 50000000:
5102 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS;
5103 break;
5104 case 10000000:
5105 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS;
5106 break;
5107 case 5000000:
5108 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS;
5109 break;
5110 case 1000000:
5111 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS;
5112 break;
5113 case 500000:
5114 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US;
5115 break;
5116 case 100000:
5117 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US;
5118 break;
5119 case 50000:
5120 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US;
5121 break;
5122 case 10000:
5123 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US;
5124 break;
5125 case 5000:
5126 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US;
5127 break;
5128 case 1000:
5129 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US;
5130 break;
5131 case 500:
5132 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS;
5133 break;
5134 case 100:
5135 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS;
5136 break;
5137 default:
5138 pr_warn_ratelimited("%s: Use default duty cycle of 100ns\n",
5139 phydev_name(phydev));
5140 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS;
5141 break;
5142 }
5143
5144 mutex_lock(&ptp_priv->ptp_lock);
5145 ret = lan8841_ptp_set_target(ptp_priv, LAN8841_EVENT_A, rq->perout.start.sec,
5146 rq->perout.start.nsec);
5147 mutex_unlock(&ptp_priv->ptp_lock);
5148 if (ret)
5149 return ret;
5150
5151 ret = lan8841_ptp_set_reload(ptp_priv, LAN8841_EVENT_A, rq->perout.period.sec,
5152 rq->perout.period.nsec);
5153 if (ret)
5154 return ret;
5155
5156 ret = lan8841_ptp_enable_event(ptp_priv, pin, LAN8841_EVENT_A,
5157 pulse_width);
5158 if (ret)
5159 return ret;
5160
5161 ret = lan8841_ptp_perout_on(ptp_priv, pin);
5162 if (ret)
5163 lan8841_ptp_remove_event(ptp_priv, pin, LAN8841_EVENT_A);
5164
5165 return ret;
5166 }
5167
5168 #define LAN8841_PTP_GPIO_CAP_EN 496
5169 #define LAN8841_PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(gpio) (BIT(gpio))
5170 #define LAN8841_PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(gpio) (BIT(gpio) << 8)
5171 #define LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN BIT(2)
5172
lan8841_ptp_extts_on(struct kszphy_ptp_priv * ptp_priv,int pin,u32 flags)5173 static int lan8841_ptp_extts_on(struct kszphy_ptp_priv *ptp_priv, int pin,
5174 u32 flags)
5175 {
5176 struct phy_device *phydev = ptp_priv->phydev;
5177 u16 tmp = 0;
5178 int ret;
5179
5180 /* Set GPIO to be intput */
5181 ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin));
5182 if (ret)
5183 return ret;
5184
5185 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin));
5186 if (ret)
5187 return ret;
5188
5189 /* Enable capture on the edges of the pin */
5190 if (flags & PTP_RISING_EDGE)
5191 tmp |= LAN8841_PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(pin);
5192 if (flags & PTP_FALLING_EDGE)
5193 tmp |= LAN8841_PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(pin);
5194 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_GPIO_CAP_EN, tmp);
5195 if (ret)
5196 return ret;
5197
5198 /* Enable interrupt */
5199 return phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN,
5200 LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN,
5201 LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN);
5202 }
5203
lan8841_ptp_extts_off(struct kszphy_ptp_priv * ptp_priv,int pin)5204 static int lan8841_ptp_extts_off(struct kszphy_ptp_priv *ptp_priv, int pin)
5205 {
5206 struct phy_device *phydev = ptp_priv->phydev;
5207 int ret;
5208
5209 /* Set GPIO to be output */
5210 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin));
5211 if (ret)
5212 return ret;
5213
5214 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin));
5215 if (ret)
5216 return ret;
5217
5218 /* Disable capture on both of the edges */
5219 ret = phy_modify_mmd(phydev, 2, LAN8841_PTP_GPIO_CAP_EN,
5220 LAN8841_PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(pin) |
5221 LAN8841_PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(pin),
5222 0);
5223 if (ret)
5224 return ret;
5225
5226 /* Disable interrupt */
5227 return phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN,
5228 LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN,
5229 0);
5230 }
5231
lan8841_ptp_extts(struct ptp_clock_info * ptp,struct ptp_clock_request * rq,int on)5232 static int lan8841_ptp_extts(struct ptp_clock_info *ptp,
5233 struct ptp_clock_request *rq, int on)
5234 {
5235 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
5236 ptp_clock_info);
5237 int pin;
5238 int ret;
5239
5240 /* Reject requests with unsupported flags */
5241 if (rq->extts.flags & ~(PTP_ENABLE_FEATURE |
5242 PTP_EXTTS_EDGES |
5243 PTP_STRICT_FLAGS))
5244 return -EOPNOTSUPP;
5245
5246 pin = ptp_find_pin(ptp_priv->ptp_clock, PTP_PF_EXTTS, rq->extts.index);
5247 if (pin == -1 || pin >= LAN8841_PTP_GPIO_NUM)
5248 return -EINVAL;
5249
5250 mutex_lock(&ptp_priv->ptp_lock);
5251 if (on)
5252 ret = lan8841_ptp_extts_on(ptp_priv, pin, rq->extts.flags);
5253 else
5254 ret = lan8841_ptp_extts_off(ptp_priv, pin);
5255 mutex_unlock(&ptp_priv->ptp_lock);
5256
5257 return ret;
5258 }
5259
lan8841_ptp_enable(struct ptp_clock_info * ptp,struct ptp_clock_request * rq,int on)5260 static int lan8841_ptp_enable(struct ptp_clock_info *ptp,
5261 struct ptp_clock_request *rq, int on)
5262 {
5263 switch (rq->type) {
5264 case PTP_CLK_REQ_EXTTS:
5265 return lan8841_ptp_extts(ptp, rq, on);
5266 case PTP_CLK_REQ_PEROUT:
5267 return lan8841_ptp_perout(ptp, rq, on);
5268 default:
5269 return -EOPNOTSUPP;
5270 }
5271
5272 return 0;
5273 }
5274
lan8841_ptp_do_aux_work(struct ptp_clock_info * ptp)5275 static long lan8841_ptp_do_aux_work(struct ptp_clock_info *ptp)
5276 {
5277 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
5278 ptp_clock_info);
5279 struct timespec64 ts;
5280 unsigned long flags;
5281
5282 lan8841_ptp_getseconds(&ptp_priv->ptp_clock_info, &ts);
5283
5284 spin_lock_irqsave(&ptp_priv->seconds_lock, flags);
5285 ptp_priv->seconds = ts.tv_sec;
5286 spin_unlock_irqrestore(&ptp_priv->seconds_lock, flags);
5287
5288 return nsecs_to_jiffies(LAN8841_GET_SEC_LTC_DELAY);
5289 }
5290
5291 static struct ptp_clock_info lan8841_ptp_clock_info = {
5292 .owner = THIS_MODULE,
5293 .name = "lan8841 ptp",
5294 .max_adj = 31249999,
5295 .gettime64 = lan8841_ptp_gettime64,
5296 .settime64 = lan8841_ptp_settime64,
5297 .adjtime = lan8841_ptp_adjtime,
5298 .adjfine = lan8841_ptp_adjfine,
5299 .verify = lan8841_ptp_verify,
5300 .enable = lan8841_ptp_enable,
5301 .do_aux_work = lan8841_ptp_do_aux_work,
5302 .n_per_out = LAN8841_PTP_GPIO_NUM,
5303 .n_ext_ts = LAN8841_PTP_GPIO_NUM,
5304 .n_pins = LAN8841_PTP_GPIO_NUM,
5305 .supported_perout_flags = PTP_PEROUT_DUTY_CYCLE,
5306 };
5307
5308 #define LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER 3
5309 #define LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER_STRAP_RGMII_EN BIT(0)
5310
lan8841_probe(struct phy_device * phydev)5311 static int lan8841_probe(struct phy_device *phydev)
5312 {
5313 struct kszphy_ptp_priv *ptp_priv;
5314 struct kszphy_priv *priv;
5315 int err;
5316
5317 err = kszphy_probe(phydev);
5318 if (err)
5319 return err;
5320
5321 if (phy_read_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
5322 LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER) &
5323 LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER_STRAP_RGMII_EN)
5324 phydev->interface = PHY_INTERFACE_MODE_RGMII_RXID;
5325
5326 /* Register the clock */
5327 if (!IS_ENABLED(CONFIG_NETWORK_PHY_TIMESTAMPING))
5328 return 0;
5329
5330 priv = phydev->priv;
5331 ptp_priv = &priv->ptp_priv;
5332
5333 ptp_priv->pin_config = devm_kcalloc(&phydev->mdio.dev,
5334 LAN8841_PTP_GPIO_NUM,
5335 sizeof(*ptp_priv->pin_config),
5336 GFP_KERNEL);
5337 if (!ptp_priv->pin_config)
5338 return -ENOMEM;
5339
5340 for (int i = 0; i < LAN8841_PTP_GPIO_NUM; ++i) {
5341 struct ptp_pin_desc *p = &ptp_priv->pin_config[i];
5342
5343 snprintf(p->name, sizeof(p->name), "pin%d", i);
5344 p->index = i;
5345 p->func = PTP_PF_NONE;
5346 }
5347
5348 ptp_priv->ptp_clock_info = lan8841_ptp_clock_info;
5349 ptp_priv->ptp_clock_info.pin_config = ptp_priv->pin_config;
5350 ptp_priv->ptp_clock = ptp_clock_register(&ptp_priv->ptp_clock_info,
5351 &phydev->mdio.dev);
5352 if (IS_ERR(ptp_priv->ptp_clock)) {
5353 phydev_err(phydev, "ptp_clock_register failed: %lu\n",
5354 PTR_ERR(ptp_priv->ptp_clock));
5355 return -EINVAL;
5356 }
5357
5358 if (!ptp_priv->ptp_clock)
5359 return 0;
5360
5361 /* Initialize the SW */
5362 skb_queue_head_init(&ptp_priv->tx_queue);
5363 ptp_priv->phydev = phydev;
5364 mutex_init(&ptp_priv->ptp_lock);
5365 spin_lock_init(&ptp_priv->seconds_lock);
5366
5367 ptp_priv->mii_ts.rxtstamp = lan8841_rxtstamp;
5368 ptp_priv->mii_ts.txtstamp = lan8814_txtstamp;
5369 ptp_priv->mii_ts.hwtstamp = lan8841_hwtstamp;
5370 ptp_priv->mii_ts.ts_info = lan8841_ts_info;
5371
5372 phydev->mii_ts = &ptp_priv->mii_ts;
5373
5374 /* Timestamp selected by default to keep legacy API */
5375 phydev->default_timestamp = true;
5376
5377 return 0;
5378 }
5379
lan8804_resume(struct phy_device * phydev)5380 static int lan8804_resume(struct phy_device *phydev)
5381 {
5382 return kszphy_resume(phydev);
5383 }
5384
lan8804_suspend(struct phy_device * phydev)5385 static int lan8804_suspend(struct phy_device *phydev)
5386 {
5387 return kszphy_generic_suspend(phydev);
5388 }
5389
lan8841_resume(struct phy_device * phydev)5390 static int lan8841_resume(struct phy_device *phydev)
5391 {
5392 return kszphy_generic_resume(phydev);
5393 }
5394
lan8841_suspend(struct phy_device * phydev)5395 static int lan8841_suspend(struct phy_device *phydev)
5396 {
5397 struct kszphy_priv *priv = phydev->priv;
5398 struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv;
5399
5400 if (ptp_priv->ptp_clock)
5401 ptp_cancel_worker_sync(ptp_priv->ptp_clock);
5402
5403 return kszphy_generic_suspend(phydev);
5404 }
5405
5406 static struct phy_driver ksphy_driver[] = {
5407 {
5408 .phy_id = PHY_ID_KS8737,
5409 .phy_id_mask = MICREL_PHY_ID_MASK,
5410 .name = "Micrel KS8737",
5411 /* PHY_BASIC_FEATURES */
5412 .driver_data = &ks8737_type,
5413 .probe = kszphy_probe,
5414 .config_init = kszphy_config_init,
5415 .config_intr = kszphy_config_intr,
5416 .handle_interrupt = kszphy_handle_interrupt,
5417 .suspend = kszphy_suspend,
5418 .resume = kszphy_resume,
5419 }, {
5420 .phy_id = PHY_ID_KSZ8021,
5421 .phy_id_mask = 0x00ffffff,
5422 .name = "Micrel KSZ8021 or KSZ8031",
5423 /* PHY_BASIC_FEATURES */
5424 .driver_data = &ksz8021_type,
5425 .probe = kszphy_probe,
5426 .config_init = kszphy_config_init,
5427 .config_intr = kszphy_config_intr,
5428 .handle_interrupt = kszphy_handle_interrupt,
5429 .get_sset_count = kszphy_get_sset_count,
5430 .get_strings = kszphy_get_strings,
5431 .get_stats = kszphy_get_stats,
5432 .suspend = kszphy_suspend,
5433 .resume = kszphy_resume,
5434 }, {
5435 .phy_id = PHY_ID_KSZ8031,
5436 .phy_id_mask = 0x00ffffff,
5437 .name = "Micrel KSZ8031",
5438 /* PHY_BASIC_FEATURES */
5439 .driver_data = &ksz8021_type,
5440 .probe = kszphy_probe,
5441 .config_init = kszphy_config_init,
5442 .config_intr = kszphy_config_intr,
5443 .handle_interrupt = kszphy_handle_interrupt,
5444 .get_sset_count = kszphy_get_sset_count,
5445 .get_strings = kszphy_get_strings,
5446 .get_stats = kszphy_get_stats,
5447 .suspend = kszphy_suspend,
5448 .resume = kszphy_resume,
5449 }, {
5450 .phy_id = PHY_ID_KSZ8041,
5451 .phy_id_mask = MICREL_PHY_ID_MASK,
5452 .name = "Micrel KSZ8041",
5453 /* PHY_BASIC_FEATURES */
5454 .driver_data = &ksz8041_type,
5455 .probe = kszphy_probe,
5456 .config_init = ksz8041_config_init,
5457 .config_aneg = ksz8041_config_aneg,
5458 .config_intr = kszphy_config_intr,
5459 .handle_interrupt = kszphy_handle_interrupt,
5460 .get_sset_count = kszphy_get_sset_count,
5461 .get_strings = kszphy_get_strings,
5462 .get_stats = kszphy_get_stats,
5463 .suspend = ksz8041_suspend,
5464 .resume = ksz8041_resume,
5465 }, {
5466 .phy_id = PHY_ID_KSZ8041RNLI,
5467 .phy_id_mask = MICREL_PHY_ID_MASK,
5468 .name = "Micrel KSZ8041RNLI",
5469 /* PHY_BASIC_FEATURES */
5470 .driver_data = &ksz8041_type,
5471 .probe = kszphy_probe,
5472 .config_init = kszphy_config_init,
5473 .config_intr = kszphy_config_intr,
5474 .handle_interrupt = kszphy_handle_interrupt,
5475 .get_sset_count = kszphy_get_sset_count,
5476 .get_strings = kszphy_get_strings,
5477 .get_stats = kszphy_get_stats,
5478 .suspend = kszphy_suspend,
5479 .resume = kszphy_resume,
5480 }, {
5481 .name = "Micrel KSZ8051",
5482 /* PHY_BASIC_FEATURES */
5483 .driver_data = &ksz8051_type,
5484 .probe = kszphy_probe,
5485 .config_init = kszphy_config_init,
5486 .config_intr = kszphy_config_intr,
5487 .handle_interrupt = kszphy_handle_interrupt,
5488 .get_sset_count = kszphy_get_sset_count,
5489 .get_strings = kszphy_get_strings,
5490 .get_stats = kszphy_get_stats,
5491 .match_phy_device = ksz8051_match_phy_device,
5492 .suspend = kszphy_suspend,
5493 .resume = kszphy_resume,
5494 }, {
5495 .phy_id = PHY_ID_KSZ8001,
5496 .name = "Micrel KSZ8001 or KS8721",
5497 .phy_id_mask = 0x00fffffc,
5498 /* PHY_BASIC_FEATURES */
5499 .driver_data = &ksz8041_type,
5500 .probe = kszphy_probe,
5501 .config_init = kszphy_config_init,
5502 .config_intr = kszphy_config_intr,
5503 .handle_interrupt = kszphy_handle_interrupt,
5504 .get_sset_count = kszphy_get_sset_count,
5505 .get_strings = kszphy_get_strings,
5506 .get_stats = kszphy_get_stats,
5507 .suspend = kszphy_suspend,
5508 .resume = kszphy_resume,
5509 }, {
5510 .phy_id = PHY_ID_KSZ8081,
5511 .name = "Micrel KSZ8081 or KSZ8091",
5512 .phy_id_mask = MICREL_PHY_ID_MASK,
5513 .flags = PHY_POLL_CABLE_TEST,
5514 /* PHY_BASIC_FEATURES */
5515 .driver_data = &ksz8081_type,
5516 .probe = kszphy_probe,
5517 .config_init = ksz8081_config_init,
5518 .soft_reset = genphy_soft_reset,
5519 .config_aneg = ksz8081_config_aneg,
5520 .read_status = ksz8081_read_status,
5521 .config_intr = kszphy_config_intr,
5522 .handle_interrupt = kszphy_handle_interrupt,
5523 .get_sset_count = kszphy_get_sset_count,
5524 .get_strings = kszphy_get_strings,
5525 .get_stats = kszphy_get_stats,
5526 .suspend = kszphy_suspend,
5527 .resume = kszphy_resume,
5528 .cable_test_start = ksz886x_cable_test_start,
5529 .cable_test_get_status = ksz886x_cable_test_get_status,
5530 }, {
5531 .phy_id = PHY_ID_KSZ8061,
5532 .name = "Micrel KSZ8061",
5533 .phy_id_mask = MICREL_PHY_ID_MASK,
5534 /* PHY_BASIC_FEATURES */
5535 .probe = kszphy_probe,
5536 .config_init = ksz8061_config_init,
5537 .soft_reset = genphy_soft_reset,
5538 .config_intr = kszphy_config_intr,
5539 .handle_interrupt = kszphy_handle_interrupt,
5540 .suspend = ksz8061_suspend,
5541 .resume = ksz8061_resume,
5542 }, {
5543 .phy_id = PHY_ID_KSZ9021,
5544 .phy_id_mask = 0x000ffffe,
5545 .name = "Micrel KSZ9021 Gigabit PHY",
5546 /* PHY_GBIT_FEATURES */
5547 .driver_data = &ksz9021_type,
5548 .probe = kszphy_probe,
5549 .get_features = ksz9031_get_features,
5550 .config_init = ksz9021_config_init,
5551 .config_intr = kszphy_config_intr,
5552 .handle_interrupt = kszphy_handle_interrupt,
5553 .get_sset_count = kszphy_get_sset_count,
5554 .get_strings = kszphy_get_strings,
5555 .get_stats = kszphy_get_stats,
5556 .suspend = kszphy_suspend,
5557 .resume = kszphy_resume,
5558 .read_mmd = genphy_read_mmd_unsupported,
5559 .write_mmd = genphy_write_mmd_unsupported,
5560 }, {
5561 .phy_id = PHY_ID_KSZ9031,
5562 .phy_id_mask = MICREL_PHY_ID_MASK,
5563 .name = "Micrel KSZ9031 Gigabit PHY",
5564 .flags = PHY_POLL_CABLE_TEST,
5565 .driver_data = &ksz9021_type,
5566 .probe = kszphy_probe,
5567 .get_features = ksz9031_get_features,
5568 .config_init = ksz9031_config_init,
5569 .soft_reset = genphy_soft_reset,
5570 .read_status = ksz9031_read_status,
5571 .config_intr = kszphy_config_intr,
5572 .handle_interrupt = kszphy_handle_interrupt,
5573 .get_sset_count = kszphy_get_sset_count,
5574 .get_strings = kszphy_get_strings,
5575 .get_stats = kszphy_get_stats,
5576 .suspend = kszphy_suspend,
5577 .resume = kszphy_resume,
5578 .cable_test_start = ksz9x31_cable_test_start,
5579 .cable_test_get_status = ksz9x31_cable_test_get_status,
5580 .set_loopback = ksz9031_set_loopback,
5581 }, {
5582 .phy_id = PHY_ID_LAN8814,
5583 .phy_id_mask = MICREL_PHY_ID_MASK,
5584 .name = "Microchip INDY Gigabit Quad PHY",
5585 .flags = PHY_POLL_CABLE_TEST,
5586 .config_init = lan8814_config_init,
5587 .driver_data = &lan8814_type,
5588 .probe = lan8814_probe,
5589 .soft_reset = genphy_soft_reset,
5590 .read_status = ksz9031_read_status,
5591 .get_sset_count = kszphy_get_sset_count,
5592 .get_strings = kszphy_get_strings,
5593 .get_stats = kszphy_get_stats,
5594 .suspend = genphy_suspend,
5595 .resume = kszphy_resume,
5596 .config_intr = lan8814_config_intr,
5597 .handle_interrupt = lan8814_handle_interrupt,
5598 .cable_test_start = lan8814_cable_test_start,
5599 .cable_test_get_status = ksz886x_cable_test_get_status,
5600 }, {
5601 .phy_id = PHY_ID_LAN8804,
5602 .phy_id_mask = MICREL_PHY_ID_MASK,
5603 .name = "Microchip LAN966X Gigabit PHY",
5604 .config_init = lan8804_config_init,
5605 .driver_data = &ksz9021_type,
5606 .probe = kszphy_probe,
5607 .soft_reset = genphy_soft_reset,
5608 .read_status = ksz9031_read_status,
5609 .get_sset_count = kszphy_get_sset_count,
5610 .get_strings = kszphy_get_strings,
5611 .get_stats = kszphy_get_stats,
5612 .suspend = lan8804_suspend,
5613 .resume = lan8804_resume,
5614 .config_intr = lan8804_config_intr,
5615 .handle_interrupt = lan8804_handle_interrupt,
5616 }, {
5617 .phy_id = PHY_ID_LAN8841,
5618 .phy_id_mask = MICREL_PHY_ID_MASK,
5619 .name = "Microchip LAN8841 Gigabit PHY",
5620 .flags = PHY_POLL_CABLE_TEST,
5621 .driver_data = &lan8841_type,
5622 .config_init = lan8841_config_init,
5623 .probe = lan8841_probe,
5624 .soft_reset = genphy_soft_reset,
5625 .config_intr = lan8841_config_intr,
5626 .handle_interrupt = lan8841_handle_interrupt,
5627 .get_sset_count = kszphy_get_sset_count,
5628 .get_strings = kszphy_get_strings,
5629 .get_stats = kszphy_get_stats,
5630 .suspend = lan8841_suspend,
5631 .resume = lan8841_resume,
5632 .cable_test_start = lan8814_cable_test_start,
5633 .cable_test_get_status = ksz886x_cable_test_get_status,
5634 }, {
5635 .phy_id = PHY_ID_KSZ9131,
5636 .phy_id_mask = MICREL_PHY_ID_MASK,
5637 .name = "Microchip KSZ9131 Gigabit PHY",
5638 /* PHY_GBIT_FEATURES */
5639 .flags = PHY_POLL_CABLE_TEST,
5640 .driver_data = &ksz9131_type,
5641 .probe = kszphy_probe,
5642 .soft_reset = genphy_soft_reset,
5643 .config_init = ksz9131_config_init,
5644 .config_intr = kszphy_config_intr,
5645 .config_aneg = ksz9131_config_aneg,
5646 .read_status = ksz9131_read_status,
5647 .handle_interrupt = kszphy_handle_interrupt,
5648 .get_sset_count = kszphy_get_sset_count,
5649 .get_strings = kszphy_get_strings,
5650 .get_stats = kszphy_get_stats,
5651 .suspend = kszphy_suspend,
5652 .resume = kszphy_resume,
5653 .cable_test_start = ksz9x31_cable_test_start,
5654 .cable_test_get_status = ksz9x31_cable_test_get_status,
5655 .get_features = ksz9477_get_features,
5656 }, {
5657 .phy_id = PHY_ID_KSZ8873MLL,
5658 .phy_id_mask = MICREL_PHY_ID_MASK,
5659 .name = "Micrel KSZ8873MLL Switch",
5660 /* PHY_BASIC_FEATURES */
5661 .config_init = kszphy_config_init,
5662 .config_aneg = ksz8873mll_config_aneg,
5663 .read_status = ksz8873mll_read_status,
5664 .suspend = genphy_suspend,
5665 .resume = genphy_resume,
5666 }, {
5667 .phy_id = PHY_ID_KSZ886X,
5668 .phy_id_mask = MICREL_PHY_ID_MASK,
5669 .name = "Micrel KSZ8851 Ethernet MAC or KSZ886X Switch",
5670 .driver_data = &ksz886x_type,
5671 /* PHY_BASIC_FEATURES */
5672 .flags = PHY_POLL_CABLE_TEST,
5673 .config_init = kszphy_config_init,
5674 .config_aneg = ksz886x_config_aneg,
5675 .read_status = ksz886x_read_status,
5676 .suspend = genphy_suspend,
5677 .resume = genphy_resume,
5678 .cable_test_start = ksz886x_cable_test_start,
5679 .cable_test_get_status = ksz886x_cable_test_get_status,
5680 }, {
5681 .name = "Micrel KSZ87XX Switch",
5682 /* PHY_BASIC_FEATURES */
5683 .config_init = kszphy_config_init,
5684 .match_phy_device = ksz8795_match_phy_device,
5685 .suspend = genphy_suspend,
5686 .resume = genphy_resume,
5687 }, {
5688 .phy_id = PHY_ID_KSZ9477,
5689 .phy_id_mask = MICREL_PHY_ID_MASK,
5690 .name = "Microchip KSZ9477",
5691 /* PHY_GBIT_FEATURES */
5692 .config_init = ksz9477_config_init,
5693 .config_intr = kszphy_config_intr,
5694 .handle_interrupt = kszphy_handle_interrupt,
5695 .suspend = genphy_suspend,
5696 .resume = ksz9477_resume,
5697 } };
5698
5699 module_phy_driver(ksphy_driver);
5700
5701 MODULE_DESCRIPTION("Micrel PHY driver");
5702 MODULE_AUTHOR("David J. Choi");
5703 MODULE_LICENSE("GPL");
5704
5705 static const struct mdio_device_id __maybe_unused micrel_tbl[] = {
5706 { PHY_ID_KSZ9021, 0x000ffffe },
5707 { PHY_ID_KSZ9031, MICREL_PHY_ID_MASK },
5708 { PHY_ID_KSZ9131, MICREL_PHY_ID_MASK },
5709 { PHY_ID_KSZ8001, 0x00fffffc },
5710 { PHY_ID_KS8737, MICREL_PHY_ID_MASK },
5711 { PHY_ID_KSZ8021, 0x00ffffff },
5712 { PHY_ID_KSZ8031, 0x00ffffff },
5713 { PHY_ID_KSZ8041, MICREL_PHY_ID_MASK },
5714 { PHY_ID_KSZ8051, MICREL_PHY_ID_MASK },
5715 { PHY_ID_KSZ8061, MICREL_PHY_ID_MASK },
5716 { PHY_ID_KSZ8081, MICREL_PHY_ID_MASK },
5717 { PHY_ID_KSZ8873MLL, MICREL_PHY_ID_MASK },
5718 { PHY_ID_KSZ886X, MICREL_PHY_ID_MASK },
5719 { PHY_ID_KSZ9477, MICREL_PHY_ID_MASK },
5720 { PHY_ID_LAN8814, MICREL_PHY_ID_MASK },
5721 { PHY_ID_LAN8804, MICREL_PHY_ID_MASK },
5722 { PHY_ID_LAN8841, MICREL_PHY_ID_MASK },
5723 { }
5724 };
5725
5726 MODULE_DEVICE_TABLE(mdio, micrel_tbl);
5727