xref: /linux/drivers/iommu/exynos-iommu.c (revision 53564f400572b1b8d9ee5bafb9c226eb1d38600a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2011,2016 Samsung Electronics Co., Ltd.
4  *		http://www.samsung.com
5  */
6 
7 #ifdef CONFIG_EXYNOS_IOMMU_DEBUG
8 #define DEBUG
9 #endif
10 
11 #include <linux/clk.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/err.h>
14 #include <linux/io.h>
15 #include <linux/iommu.h>
16 #include <linux/interrupt.h>
17 #include <linux/kmemleak.h>
18 #include <linux/list.h>
19 #include <linux/of.h>
20 #include <linux/of_platform.h>
21 #include <linux/platform_device.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/slab.h>
24 
25 #include "dma-iommu.h"
26 #include "iommu-pages.h"
27 
28 typedef u32 sysmmu_iova_t;
29 typedef u32 sysmmu_pte_t;
30 static struct iommu_domain exynos_identity_domain;
31 
32 /* We do not consider super section mapping (16MB) */
33 #define SECT_ORDER 20
34 #define LPAGE_ORDER 16
35 #define SPAGE_ORDER 12
36 
37 #define SECT_SIZE (1 << SECT_ORDER)
38 #define LPAGE_SIZE (1 << LPAGE_ORDER)
39 #define SPAGE_SIZE (1 << SPAGE_ORDER)
40 
41 #define SECT_MASK (~(SECT_SIZE - 1))
42 #define LPAGE_MASK (~(LPAGE_SIZE - 1))
43 #define SPAGE_MASK (~(SPAGE_SIZE - 1))
44 
45 #define lv1ent_fault(sent) ((*(sent) == ZERO_LV2LINK) || \
46 			   ((*(sent) & 3) == 0) || ((*(sent) & 3) == 3))
47 #define lv1ent_zero(sent) (*(sent) == ZERO_LV2LINK)
48 #define lv1ent_page_zero(sent) ((*(sent) & 3) == 1)
49 #define lv1ent_page(sent) ((*(sent) != ZERO_LV2LINK) && \
50 			  ((*(sent) & 3) == 1))
51 #define lv1ent_section(sent) ((*(sent) & 3) == 2)
52 
53 #define lv2ent_fault(pent) ((*(pent) & 3) == 0)
54 #define lv2ent_small(pent) ((*(pent) & 2) == 2)
55 #define lv2ent_large(pent) ((*(pent) & 3) == 1)
56 
57 /*
58  * v1.x - v3.x SYSMMU supports 32bit physical and 32bit virtual address spaces
59  * v5.0 introduced support for 36bit physical address space by shifting
60  * all page entry values by 4 bits.
61  * All SYSMMU controllers in the system support the address spaces of the same
62  * size, so PG_ENT_SHIFT can be initialized on first SYSMMU probe to proper
63  * value (0 or 4).
64  */
65 static short PG_ENT_SHIFT = -1;
66 #define SYSMMU_PG_ENT_SHIFT 0
67 #define SYSMMU_V5_PG_ENT_SHIFT 4
68 
69 static const sysmmu_pte_t *LV1_PROT;
70 static const sysmmu_pte_t SYSMMU_LV1_PROT[] = {
71 	((0 << 15) | (0 << 10)), /* no access */
72 	((1 << 15) | (1 << 10)), /* IOMMU_READ only */
73 	((0 << 15) | (1 << 10)), /* IOMMU_WRITE not supported, use read/write */
74 	((0 << 15) | (1 << 10)), /* IOMMU_READ | IOMMU_WRITE */
75 };
76 static const sysmmu_pte_t SYSMMU_V5_LV1_PROT[] = {
77 	(0 << 4), /* no access */
78 	(1 << 4), /* IOMMU_READ only */
79 	(2 << 4), /* IOMMU_WRITE only */
80 	(3 << 4), /* IOMMU_READ | IOMMU_WRITE */
81 };
82 
83 static const sysmmu_pte_t *LV2_PROT;
84 static const sysmmu_pte_t SYSMMU_LV2_PROT[] = {
85 	((0 << 9) | (0 << 4)), /* no access */
86 	((1 << 9) | (1 << 4)), /* IOMMU_READ only */
87 	((0 << 9) | (1 << 4)), /* IOMMU_WRITE not supported, use read/write */
88 	((0 << 9) | (1 << 4)), /* IOMMU_READ | IOMMU_WRITE */
89 };
90 static const sysmmu_pte_t SYSMMU_V5_LV2_PROT[] = {
91 	(0 << 2), /* no access */
92 	(1 << 2), /* IOMMU_READ only */
93 	(2 << 2), /* IOMMU_WRITE only */
94 	(3 << 2), /* IOMMU_READ | IOMMU_WRITE */
95 };
96 
97 #define SYSMMU_SUPPORTED_PROT_BITS (IOMMU_READ | IOMMU_WRITE)
98 
99 #define sect_to_phys(ent) (((phys_addr_t) ent) << PG_ENT_SHIFT)
100 #define section_phys(sent) (sect_to_phys(*(sent)) & SECT_MASK)
101 #define section_offs(iova) (iova & (SECT_SIZE - 1))
102 #define lpage_phys(pent) (sect_to_phys(*(pent)) & LPAGE_MASK)
103 #define lpage_offs(iova) (iova & (LPAGE_SIZE - 1))
104 #define spage_phys(pent) (sect_to_phys(*(pent)) & SPAGE_MASK)
105 #define spage_offs(iova) (iova & (SPAGE_SIZE - 1))
106 
107 #define NUM_LV1ENTRIES 4096
108 #define NUM_LV2ENTRIES (SECT_SIZE / SPAGE_SIZE)
109 
lv1ent_offset(sysmmu_iova_t iova)110 static u32 lv1ent_offset(sysmmu_iova_t iova)
111 {
112 	return iova >> SECT_ORDER;
113 }
114 
lv2ent_offset(sysmmu_iova_t iova)115 static u32 lv2ent_offset(sysmmu_iova_t iova)
116 {
117 	return (iova >> SPAGE_ORDER) & (NUM_LV2ENTRIES - 1);
118 }
119 
120 #define LV1TABLE_SIZE (NUM_LV1ENTRIES * sizeof(sysmmu_pte_t))
121 #define LV2TABLE_SIZE (NUM_LV2ENTRIES * sizeof(sysmmu_pte_t))
122 
123 #define SPAGES_PER_LPAGE (LPAGE_SIZE / SPAGE_SIZE)
124 #define lv2table_base(sent) (sect_to_phys(*(sent) & 0xFFFFFFC0))
125 
126 #define mk_lv1ent_sect(pa, prot) ((pa >> PG_ENT_SHIFT) | LV1_PROT[prot] | 2)
127 #define mk_lv1ent_page(pa) ((pa >> PG_ENT_SHIFT) | 1)
128 #define mk_lv2ent_lpage(pa, prot) ((pa >> PG_ENT_SHIFT) | LV2_PROT[prot] | 1)
129 #define mk_lv2ent_spage(pa, prot) ((pa >> PG_ENT_SHIFT) | LV2_PROT[prot] | 2)
130 
131 #define CTRL_ENABLE	0x5
132 #define CTRL_BLOCK	0x7
133 #define CTRL_DISABLE	0x0
134 
135 #define CFG_LRU		0x1
136 #define CFG_EAP		(1 << 2)
137 #define CFG_QOS(n)	((n & 0xF) << 7)
138 #define CFG_ACGEN	(1 << 24) /* System MMU 3.3 only */
139 #define CFG_SYSSEL	(1 << 22) /* System MMU 3.2 only */
140 #define CFG_FLPDCACHE	(1 << 20) /* System MMU 3.2+ only */
141 
142 #define CTRL_VM_ENABLE			BIT(0)
143 #define CTRL_VM_FAULT_MODE_STALL	BIT(3)
144 #define CAPA0_CAPA1_EXIST		BIT(11)
145 #define CAPA1_VCR_ENABLED		BIT(14)
146 
147 /* common registers */
148 #define REG_MMU_CTRL		0x000
149 #define REG_MMU_CFG		0x004
150 #define REG_MMU_STATUS		0x008
151 #define REG_MMU_VERSION		0x034
152 
153 #define MMU_MAJ_VER(val)	((val) >> 7)
154 #define MMU_MIN_VER(val)	((val) & 0x7F)
155 #define MMU_RAW_VER(reg)	(((reg) >> 21) & ((1 << 11) - 1)) /* 11 bits */
156 
157 #define MAKE_MMU_VER(maj, min)	((((maj) & 0xF) << 7) | ((min) & 0x7F))
158 
159 /* v1.x - v3.x registers */
160 #define REG_PAGE_FAULT_ADDR	0x024
161 #define REG_AW_FAULT_ADDR	0x028
162 #define REG_AR_FAULT_ADDR	0x02C
163 #define REG_DEFAULT_SLAVE_ADDR	0x030
164 
165 /* v5.x registers */
166 #define REG_V5_FAULT_AR_VA	0x070
167 #define REG_V5_FAULT_AW_VA	0x080
168 
169 /* v7.x registers */
170 #define REG_V7_CAPA0		0x870
171 #define REG_V7_CAPA1		0x874
172 #define REG_V7_CTRL_VM		0x8000
173 
174 #define has_sysmmu(dev)		(dev_iommu_priv_get(dev) != NULL)
175 
176 static struct device *dma_dev;
177 static struct kmem_cache *lv2table_kmem_cache;
178 static sysmmu_pte_t *zero_lv2_table;
179 #define ZERO_LV2LINK mk_lv1ent_page(virt_to_phys(zero_lv2_table))
180 
section_entry(sysmmu_pte_t * pgtable,sysmmu_iova_t iova)181 static sysmmu_pte_t *section_entry(sysmmu_pte_t *pgtable, sysmmu_iova_t iova)
182 {
183 	return pgtable + lv1ent_offset(iova);
184 }
185 
page_entry(sysmmu_pte_t * sent,sysmmu_iova_t iova)186 static sysmmu_pte_t *page_entry(sysmmu_pte_t *sent, sysmmu_iova_t iova)
187 {
188 	return (sysmmu_pte_t *)phys_to_virt(
189 				lv2table_base(sent)) + lv2ent_offset(iova);
190 }
191 
192 struct sysmmu_fault {
193 	sysmmu_iova_t addr;	/* IOVA address that caused fault */
194 	const char *name;	/* human readable fault name */
195 	unsigned int type;	/* fault type for report_iommu_fault() */
196 };
197 
198 struct sysmmu_v1_fault_info {
199 	unsigned short addr_reg; /* register to read IOVA fault address */
200 	const char *name;	/* human readable fault name */
201 	unsigned int type;	/* fault type for report_iommu_fault */
202 };
203 
204 static const struct sysmmu_v1_fault_info sysmmu_v1_faults[] = {
205 	{ REG_PAGE_FAULT_ADDR, "PAGE", IOMMU_FAULT_READ },
206 	{ REG_AR_FAULT_ADDR, "MULTI-HIT", IOMMU_FAULT_READ },
207 	{ REG_AW_FAULT_ADDR, "MULTI-HIT", IOMMU_FAULT_WRITE },
208 	{ REG_DEFAULT_SLAVE_ADDR, "BUS ERROR", IOMMU_FAULT_READ },
209 	{ REG_AR_FAULT_ADDR, "SECURITY PROTECTION", IOMMU_FAULT_READ },
210 	{ REG_AR_FAULT_ADDR, "ACCESS PROTECTION", IOMMU_FAULT_READ },
211 	{ REG_AW_FAULT_ADDR, "SECURITY PROTECTION", IOMMU_FAULT_WRITE },
212 	{ REG_AW_FAULT_ADDR, "ACCESS PROTECTION", IOMMU_FAULT_WRITE },
213 };
214 
215 /* SysMMU v5 has the same faults for AR (0..4 bits) and AW (16..20 bits) */
216 static const char * const sysmmu_v5_fault_names[] = {
217 	"PTW",
218 	"PAGE",
219 	"MULTI-HIT",
220 	"ACCESS PROTECTION",
221 	"SECURITY PROTECTION"
222 };
223 
224 static const char * const sysmmu_v7_fault_names[] = {
225 	"PTW",
226 	"PAGE",
227 	"ACCESS PROTECTION",
228 	"RESERVED"
229 };
230 
231 /*
232  * This structure is attached to dev->iommu->priv of the master device
233  * on device add, contains a list of SYSMMU controllers defined by device tree,
234  * which are bound to given master device. It is usually referenced by 'owner'
235  * pointer.
236 */
237 struct exynos_iommu_owner {
238 	struct list_head controllers;	/* list of sysmmu_drvdata.owner_node */
239 	struct iommu_domain *domain;	/* domain this device is attached */
240 	struct mutex rpm_lock;		/* for runtime pm of all sysmmus */
241 };
242 
243 /*
244  * This structure exynos specific generalization of struct iommu_domain.
245  * It contains list of SYSMMU controllers from all master devices, which has
246  * been attached to this domain and page tables of IO address space defined by
247  * it. It is usually referenced by 'domain' pointer.
248  */
249 struct exynos_iommu_domain {
250 	struct list_head clients; /* list of sysmmu_drvdata.domain_node */
251 	sysmmu_pte_t *pgtable;	/* lv1 page table, 16KB */
252 	short *lv2entcnt;	/* free lv2 entry counter for each section */
253 	spinlock_t lock;	/* lock for modifying list of clients */
254 	spinlock_t pgtablelock;	/* lock for modifying page table @ pgtable */
255 	struct iommu_domain domain; /* generic domain data structure */
256 };
257 
258 struct sysmmu_drvdata;
259 
260 /*
261  * SysMMU version specific data. Contains offsets for the registers which can
262  * be found in different SysMMU variants, but have different offset values.
263  * Also contains version specific callbacks to abstract the hardware.
264  */
265 struct sysmmu_variant {
266 	u32 pt_base;		/* page table base address (physical) */
267 	u32 flush_all;		/* invalidate all TLB entries */
268 	u32 flush_entry;	/* invalidate specific TLB entry */
269 	u32 flush_range;	/* invalidate TLB entries in specified range */
270 	u32 flush_start;	/* start address of range invalidation */
271 	u32 flush_end;		/* end address of range invalidation */
272 	u32 int_status;		/* interrupt status information */
273 	u32 int_clear;		/* clear the interrupt */
274 	u32 fault_va;		/* IOVA address that caused fault */
275 	u32 fault_info;		/* fault transaction info */
276 
277 	int (*get_fault_info)(struct sysmmu_drvdata *data, unsigned int itype,
278 			      struct sysmmu_fault *fault);
279 };
280 
281 /*
282  * This structure hold all data of a single SYSMMU controller, this includes
283  * hw resources like registers and clocks, pointers and list nodes to connect
284  * it to all other structures, internal state and parameters read from device
285  * tree. It is usually referenced by 'data' pointer.
286  */
287 struct sysmmu_drvdata {
288 	struct device *sysmmu;		/* SYSMMU controller device */
289 	struct device *master;		/* master device (owner) */
290 	struct device_link *link;	/* runtime PM link to master */
291 	void __iomem *sfrbase;		/* our registers */
292 	struct clk *clk;		/* SYSMMU's clock */
293 	struct clk *aclk;		/* SYSMMU's aclk clock */
294 	struct clk *pclk;		/* SYSMMU's pclk clock */
295 	struct clk *clk_master;		/* master's device clock */
296 	spinlock_t lock;		/* lock for modifying state */
297 	bool active;			/* current status */
298 	struct exynos_iommu_domain *domain; /* domain we belong to */
299 	struct list_head domain_node;	/* node for domain clients list */
300 	struct list_head owner_node;	/* node for owner controllers list */
301 	phys_addr_t pgtable;		/* assigned page table structure */
302 	unsigned int version;		/* our version */
303 
304 	struct iommu_device iommu;	/* IOMMU core handle */
305 	const struct sysmmu_variant *variant; /* version specific data */
306 
307 	/* v7 fields */
308 	bool has_vcr;			/* virtual machine control register */
309 };
310 
311 #define SYSMMU_REG(data, reg) ((data)->sfrbase + (data)->variant->reg)
312 
exynos_sysmmu_v1_get_fault_info(struct sysmmu_drvdata * data,unsigned int itype,struct sysmmu_fault * fault)313 static int exynos_sysmmu_v1_get_fault_info(struct sysmmu_drvdata *data,
314 					   unsigned int itype,
315 					   struct sysmmu_fault *fault)
316 {
317 	const struct sysmmu_v1_fault_info *finfo;
318 
319 	if (itype >= ARRAY_SIZE(sysmmu_v1_faults))
320 		return -ENXIO;
321 
322 	finfo = &sysmmu_v1_faults[itype];
323 	fault->addr = readl(data->sfrbase + finfo->addr_reg);
324 	fault->name = finfo->name;
325 	fault->type = finfo->type;
326 
327 	return 0;
328 }
329 
exynos_sysmmu_v5_get_fault_info(struct sysmmu_drvdata * data,unsigned int itype,struct sysmmu_fault * fault)330 static int exynos_sysmmu_v5_get_fault_info(struct sysmmu_drvdata *data,
331 					   unsigned int itype,
332 					   struct sysmmu_fault *fault)
333 {
334 	unsigned int addr_reg;
335 
336 	if (itype < ARRAY_SIZE(sysmmu_v5_fault_names)) {
337 		fault->type = IOMMU_FAULT_READ;
338 		addr_reg = REG_V5_FAULT_AR_VA;
339 	} else if (itype >= 16 && itype <= 20) {
340 		fault->type = IOMMU_FAULT_WRITE;
341 		addr_reg = REG_V5_FAULT_AW_VA;
342 		itype -= 16;
343 	} else {
344 		return -ENXIO;
345 	}
346 
347 	fault->name = sysmmu_v5_fault_names[itype];
348 	fault->addr = readl(data->sfrbase + addr_reg);
349 
350 	return 0;
351 }
352 
exynos_sysmmu_v7_get_fault_info(struct sysmmu_drvdata * data,unsigned int itype,struct sysmmu_fault * fault)353 static int exynos_sysmmu_v7_get_fault_info(struct sysmmu_drvdata *data,
354 					   unsigned int itype,
355 					   struct sysmmu_fault *fault)
356 {
357 	u32 info = readl(SYSMMU_REG(data, fault_info));
358 
359 	fault->addr = readl(SYSMMU_REG(data, fault_va));
360 	fault->name = sysmmu_v7_fault_names[itype % 4];
361 	fault->type = (info & BIT(20)) ? IOMMU_FAULT_WRITE : IOMMU_FAULT_READ;
362 
363 	return 0;
364 }
365 
366 /* SysMMU v1..v3 */
367 static const struct sysmmu_variant sysmmu_v1_variant = {
368 	.flush_all	= 0x0c,
369 	.flush_entry	= 0x10,
370 	.pt_base	= 0x14,
371 	.int_status	= 0x18,
372 	.int_clear	= 0x1c,
373 
374 	.get_fault_info	= exynos_sysmmu_v1_get_fault_info,
375 };
376 
377 /* SysMMU v5 */
378 static const struct sysmmu_variant sysmmu_v5_variant = {
379 	.pt_base	= 0x0c,
380 	.flush_all	= 0x10,
381 	.flush_entry	= 0x14,
382 	.flush_range	= 0x18,
383 	.flush_start	= 0x20,
384 	.flush_end	= 0x24,
385 	.int_status	= 0x60,
386 	.int_clear	= 0x64,
387 
388 	.get_fault_info	= exynos_sysmmu_v5_get_fault_info,
389 };
390 
391 /* SysMMU v7: non-VM capable register layout */
392 static const struct sysmmu_variant sysmmu_v7_variant = {
393 	.pt_base	= 0x0c,
394 	.flush_all	= 0x10,
395 	.flush_entry	= 0x14,
396 	.flush_range	= 0x18,
397 	.flush_start	= 0x20,
398 	.flush_end	= 0x24,
399 	.int_status	= 0x60,
400 	.int_clear	= 0x64,
401 	.fault_va	= 0x70,
402 	.fault_info	= 0x78,
403 
404 	.get_fault_info	= exynos_sysmmu_v7_get_fault_info,
405 };
406 
407 /* SysMMU v7: VM capable register layout */
408 static const struct sysmmu_variant sysmmu_v7_vm_variant = {
409 	.pt_base	= 0x800c,
410 	.flush_all	= 0x8010,
411 	.flush_entry	= 0x8014,
412 	.flush_range	= 0x8018,
413 	.flush_start	= 0x8020,
414 	.flush_end	= 0x8024,
415 	.int_status	= 0x60,
416 	.int_clear	= 0x64,
417 	.fault_va	= 0x1000,
418 	.fault_info	= 0x1004,
419 
420 	.get_fault_info	= exynos_sysmmu_v7_get_fault_info,
421 };
422 
to_exynos_domain(struct iommu_domain * dom)423 static struct exynos_iommu_domain *to_exynos_domain(struct iommu_domain *dom)
424 {
425 	return container_of(dom, struct exynos_iommu_domain, domain);
426 }
427 
sysmmu_unblock(struct sysmmu_drvdata * data)428 static void sysmmu_unblock(struct sysmmu_drvdata *data)
429 {
430 	writel(CTRL_ENABLE, data->sfrbase + REG_MMU_CTRL);
431 }
432 
sysmmu_block(struct sysmmu_drvdata * data)433 static bool sysmmu_block(struct sysmmu_drvdata *data)
434 {
435 	int i = 120;
436 
437 	writel(CTRL_BLOCK, data->sfrbase + REG_MMU_CTRL);
438 	while ((i > 0) && !(readl(data->sfrbase + REG_MMU_STATUS) & 1))
439 		--i;
440 
441 	if (!(readl(data->sfrbase + REG_MMU_STATUS) & 1)) {
442 		sysmmu_unblock(data);
443 		return false;
444 	}
445 
446 	return true;
447 }
448 
__sysmmu_tlb_invalidate(struct sysmmu_drvdata * data)449 static void __sysmmu_tlb_invalidate(struct sysmmu_drvdata *data)
450 {
451 	writel(0x1, SYSMMU_REG(data, flush_all));
452 }
453 
__sysmmu_tlb_invalidate_entry(struct sysmmu_drvdata * data,sysmmu_iova_t iova,unsigned int num_inv)454 static void __sysmmu_tlb_invalidate_entry(struct sysmmu_drvdata *data,
455 				sysmmu_iova_t iova, unsigned int num_inv)
456 {
457 	unsigned int i;
458 
459 	if (MMU_MAJ_VER(data->version) < 5 || num_inv == 1) {
460 		for (i = 0; i < num_inv; i++) {
461 			writel((iova & SPAGE_MASK) | 1,
462 			       SYSMMU_REG(data, flush_entry));
463 			iova += SPAGE_SIZE;
464 		}
465 	} else {
466 		writel(iova & SPAGE_MASK, SYSMMU_REG(data, flush_start));
467 		writel((iova & SPAGE_MASK) + (num_inv - 1) * SPAGE_SIZE,
468 		       SYSMMU_REG(data, flush_end));
469 		writel(0x1, SYSMMU_REG(data, flush_range));
470 	}
471 }
472 
__sysmmu_set_ptbase(struct sysmmu_drvdata * data,phys_addr_t pgd)473 static void __sysmmu_set_ptbase(struct sysmmu_drvdata *data, phys_addr_t pgd)
474 {
475 	u32 pt_base;
476 
477 	if (MMU_MAJ_VER(data->version) < 5)
478 		pt_base = pgd;
479 	else
480 		pt_base = pgd >> SPAGE_ORDER;
481 
482 	writel(pt_base, SYSMMU_REG(data, pt_base));
483 	__sysmmu_tlb_invalidate(data);
484 }
485 
__sysmmu_enable_clocks(struct sysmmu_drvdata * data)486 static void __sysmmu_enable_clocks(struct sysmmu_drvdata *data)
487 {
488 	BUG_ON(clk_prepare_enable(data->clk_master));
489 	BUG_ON(clk_prepare_enable(data->clk));
490 	BUG_ON(clk_prepare_enable(data->pclk));
491 	BUG_ON(clk_prepare_enable(data->aclk));
492 }
493 
__sysmmu_disable_clocks(struct sysmmu_drvdata * data)494 static void __sysmmu_disable_clocks(struct sysmmu_drvdata *data)
495 {
496 	clk_disable_unprepare(data->aclk);
497 	clk_disable_unprepare(data->pclk);
498 	clk_disable_unprepare(data->clk);
499 	clk_disable_unprepare(data->clk_master);
500 }
501 
__sysmmu_has_capa1(struct sysmmu_drvdata * data)502 static bool __sysmmu_has_capa1(struct sysmmu_drvdata *data)
503 {
504 	u32 capa0 = readl(data->sfrbase + REG_V7_CAPA0);
505 
506 	return capa0 & CAPA0_CAPA1_EXIST;
507 }
508 
__sysmmu_get_vcr(struct sysmmu_drvdata * data)509 static void __sysmmu_get_vcr(struct sysmmu_drvdata *data)
510 {
511 	u32 capa1 = readl(data->sfrbase + REG_V7_CAPA1);
512 
513 	data->has_vcr = capa1 & CAPA1_VCR_ENABLED;
514 }
515 
__sysmmu_get_version(struct sysmmu_drvdata * data)516 static void __sysmmu_get_version(struct sysmmu_drvdata *data)
517 {
518 	u32 ver;
519 
520 	__sysmmu_enable_clocks(data);
521 
522 	ver = readl(data->sfrbase + REG_MMU_VERSION);
523 
524 	/* controllers on some SoCs don't report proper version */
525 	if (ver == 0x80000001u)
526 		data->version = MAKE_MMU_VER(1, 0);
527 	else
528 		data->version = MMU_RAW_VER(ver);
529 
530 	dev_dbg(data->sysmmu, "hardware version: %d.%d\n",
531 		MMU_MAJ_VER(data->version), MMU_MIN_VER(data->version));
532 
533 	if (MMU_MAJ_VER(data->version) < 5) {
534 		data->variant = &sysmmu_v1_variant;
535 	} else if (MMU_MAJ_VER(data->version) < 7) {
536 		data->variant = &sysmmu_v5_variant;
537 	} else {
538 		if (__sysmmu_has_capa1(data))
539 			__sysmmu_get_vcr(data);
540 		if (data->has_vcr)
541 			data->variant = &sysmmu_v7_vm_variant;
542 		else
543 			data->variant = &sysmmu_v7_variant;
544 	}
545 
546 	__sysmmu_disable_clocks(data);
547 }
548 
show_fault_information(struct sysmmu_drvdata * data,const struct sysmmu_fault * fault)549 static void show_fault_information(struct sysmmu_drvdata *data,
550 				   const struct sysmmu_fault *fault)
551 {
552 	sysmmu_pte_t *ent;
553 
554 	dev_err(data->sysmmu, "%s: [%s] %s FAULT occurred at %#x\n",
555 		dev_name(data->master),
556 		fault->type == IOMMU_FAULT_READ ? "READ" : "WRITE",
557 		fault->name, fault->addr);
558 	dev_dbg(data->sysmmu, "Page table base: %pa\n", &data->pgtable);
559 	ent = section_entry(phys_to_virt(data->pgtable), fault->addr);
560 	dev_dbg(data->sysmmu, "\tLv1 entry: %#x\n", *ent);
561 	if (lv1ent_page(ent)) {
562 		ent = page_entry(ent, fault->addr);
563 		dev_dbg(data->sysmmu, "\t Lv2 entry: %#x\n", *ent);
564 	}
565 }
566 
exynos_sysmmu_irq(int irq,void * dev_id)567 static irqreturn_t exynos_sysmmu_irq(int irq, void *dev_id)
568 {
569 	struct sysmmu_drvdata *data = dev_id;
570 	unsigned int itype;
571 	struct sysmmu_fault fault;
572 	int ret = -ENOSYS;
573 
574 	WARN_ON(!data->active);
575 
576 	spin_lock(&data->lock);
577 	clk_enable(data->clk_master);
578 
579 	itype = __ffs(readl(SYSMMU_REG(data, int_status)));
580 	ret = data->variant->get_fault_info(data, itype, &fault);
581 	if (ret) {
582 		dev_err(data->sysmmu, "Unhandled interrupt bit %u\n", itype);
583 		goto out;
584 	}
585 	show_fault_information(data, &fault);
586 
587 	if (data->domain) {
588 		ret = report_iommu_fault(&data->domain->domain, data->master,
589 					 fault.addr, fault.type);
590 	}
591 	if (ret)
592 		panic("Unrecoverable System MMU Fault!");
593 
594 out:
595 	writel(1 << itype, SYSMMU_REG(data, int_clear));
596 
597 	/* SysMMU is in blocked state when interrupt occurred */
598 	sysmmu_unblock(data);
599 	clk_disable(data->clk_master);
600 	spin_unlock(&data->lock);
601 
602 	return IRQ_HANDLED;
603 }
604 
__sysmmu_disable(struct sysmmu_drvdata * data)605 static void __sysmmu_disable(struct sysmmu_drvdata *data)
606 {
607 	unsigned long flags;
608 
609 	clk_enable(data->clk_master);
610 
611 	spin_lock_irqsave(&data->lock, flags);
612 	writel(CTRL_DISABLE, data->sfrbase + REG_MMU_CTRL);
613 	writel(0, data->sfrbase + REG_MMU_CFG);
614 	data->active = false;
615 	spin_unlock_irqrestore(&data->lock, flags);
616 
617 	__sysmmu_disable_clocks(data);
618 }
619 
__sysmmu_init_config(struct sysmmu_drvdata * data)620 static void __sysmmu_init_config(struct sysmmu_drvdata *data)
621 {
622 	unsigned int cfg;
623 
624 	if (data->version <= MAKE_MMU_VER(3, 1))
625 		cfg = CFG_LRU | CFG_QOS(15);
626 	else if (data->version <= MAKE_MMU_VER(3, 2))
627 		cfg = CFG_LRU | CFG_QOS(15) | CFG_FLPDCACHE | CFG_SYSSEL;
628 	else
629 		cfg = CFG_QOS(15) | CFG_FLPDCACHE | CFG_ACGEN;
630 
631 	cfg |= CFG_EAP; /* enable access protection bits check */
632 
633 	writel(cfg, data->sfrbase + REG_MMU_CFG);
634 }
635 
__sysmmu_enable_vid(struct sysmmu_drvdata * data)636 static void __sysmmu_enable_vid(struct sysmmu_drvdata *data)
637 {
638 	u32 ctrl;
639 
640 	if (MMU_MAJ_VER(data->version) < 7 || !data->has_vcr)
641 		return;
642 
643 	ctrl = readl(data->sfrbase + REG_V7_CTRL_VM);
644 	ctrl |= CTRL_VM_ENABLE | CTRL_VM_FAULT_MODE_STALL;
645 	writel(ctrl, data->sfrbase + REG_V7_CTRL_VM);
646 }
647 
__sysmmu_enable(struct sysmmu_drvdata * data)648 static void __sysmmu_enable(struct sysmmu_drvdata *data)
649 {
650 	unsigned long flags;
651 
652 	__sysmmu_enable_clocks(data);
653 
654 	spin_lock_irqsave(&data->lock, flags);
655 	writel(CTRL_BLOCK, data->sfrbase + REG_MMU_CTRL);
656 	__sysmmu_init_config(data);
657 	__sysmmu_set_ptbase(data, data->pgtable);
658 	__sysmmu_enable_vid(data);
659 	writel(CTRL_ENABLE, data->sfrbase + REG_MMU_CTRL);
660 	data->active = true;
661 	spin_unlock_irqrestore(&data->lock, flags);
662 
663 	/*
664 	 * SYSMMU driver keeps master's clock enabled only for the short
665 	 * time, while accessing the registers. For performing address
666 	 * translation during DMA transaction it relies on the client
667 	 * driver to enable it.
668 	 */
669 	clk_disable(data->clk_master);
670 }
671 
sysmmu_tlb_invalidate_flpdcache(struct sysmmu_drvdata * data,sysmmu_iova_t iova)672 static void sysmmu_tlb_invalidate_flpdcache(struct sysmmu_drvdata *data,
673 					    sysmmu_iova_t iova)
674 {
675 	unsigned long flags;
676 
677 	spin_lock_irqsave(&data->lock, flags);
678 	if (data->active && data->version >= MAKE_MMU_VER(3, 3)) {
679 		clk_enable(data->clk_master);
680 		if (sysmmu_block(data)) {
681 			if (data->version >= MAKE_MMU_VER(5, 0))
682 				__sysmmu_tlb_invalidate(data);
683 			else
684 				__sysmmu_tlb_invalidate_entry(data, iova, 1);
685 			sysmmu_unblock(data);
686 		}
687 		clk_disable(data->clk_master);
688 	}
689 	spin_unlock_irqrestore(&data->lock, flags);
690 }
691 
sysmmu_tlb_invalidate_entry(struct sysmmu_drvdata * data,sysmmu_iova_t iova,size_t size)692 static void sysmmu_tlb_invalidate_entry(struct sysmmu_drvdata *data,
693 					sysmmu_iova_t iova, size_t size)
694 {
695 	unsigned long flags;
696 
697 	spin_lock_irqsave(&data->lock, flags);
698 	if (data->active) {
699 		unsigned int num_inv = 1;
700 
701 		clk_enable(data->clk_master);
702 
703 		/*
704 		 * L2TLB invalidation required
705 		 * 4KB page: 1 invalidation
706 		 * 64KB page: 16 invalidations
707 		 * 1MB page: 64 invalidations
708 		 * because it is set-associative TLB
709 		 * with 8-way and 64 sets.
710 		 * 1MB page can be cached in one of all sets.
711 		 * 64KB page can be one of 16 consecutive sets.
712 		 */
713 		if (MMU_MAJ_VER(data->version) == 2)
714 			num_inv = min_t(unsigned int, size / SPAGE_SIZE, 64);
715 
716 		if (sysmmu_block(data)) {
717 			__sysmmu_tlb_invalidate_entry(data, iova, num_inv);
718 			sysmmu_unblock(data);
719 		}
720 		clk_disable(data->clk_master);
721 	}
722 	spin_unlock_irqrestore(&data->lock, flags);
723 }
724 
725 static const struct iommu_ops exynos_iommu_ops;
726 
exynos_sysmmu_probe(struct platform_device * pdev)727 static int exynos_sysmmu_probe(struct platform_device *pdev)
728 {
729 	int irq, ret;
730 	struct device *dev = &pdev->dev;
731 	struct sysmmu_drvdata *data;
732 	struct resource *res;
733 
734 	data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
735 	if (!data)
736 		return -ENOMEM;
737 
738 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
739 	data->sfrbase = devm_ioremap_resource(dev, res);
740 	if (IS_ERR(data->sfrbase))
741 		return PTR_ERR(data->sfrbase);
742 
743 	irq = platform_get_irq(pdev, 0);
744 	if (irq <= 0)
745 		return irq;
746 
747 	ret = devm_request_irq(dev, irq, exynos_sysmmu_irq, 0,
748 				dev_name(dev), data);
749 	if (ret) {
750 		dev_err(dev, "Unable to register handler of irq %d\n", irq);
751 		return ret;
752 	}
753 
754 	data->clk = devm_clk_get_optional(dev, "sysmmu");
755 	if (IS_ERR(data->clk))
756 		return PTR_ERR(data->clk);
757 
758 	data->aclk = devm_clk_get_optional(dev, "aclk");
759 	if (IS_ERR(data->aclk))
760 		return PTR_ERR(data->aclk);
761 
762 	data->pclk = devm_clk_get_optional(dev, "pclk");
763 	if (IS_ERR(data->pclk))
764 		return PTR_ERR(data->pclk);
765 
766 	if (!data->clk && (!data->aclk || !data->pclk)) {
767 		dev_err(dev, "Failed to get device clock(s)!\n");
768 		return -ENOSYS;
769 	}
770 
771 	data->clk_master = devm_clk_get_optional(dev, "master");
772 	if (IS_ERR(data->clk_master))
773 		return PTR_ERR(data->clk_master);
774 
775 	data->sysmmu = dev;
776 	spin_lock_init(&data->lock);
777 
778 	__sysmmu_get_version(data);
779 
780 	ret = iommu_device_sysfs_add(&data->iommu, &pdev->dev, NULL,
781 				     dev_name(data->sysmmu));
782 	if (ret)
783 		return ret;
784 
785 	platform_set_drvdata(pdev, data);
786 
787 	if (PG_ENT_SHIFT < 0) {
788 		if (MMU_MAJ_VER(data->version) < 5) {
789 			PG_ENT_SHIFT = SYSMMU_PG_ENT_SHIFT;
790 			LV1_PROT = SYSMMU_LV1_PROT;
791 			LV2_PROT = SYSMMU_LV2_PROT;
792 		} else {
793 			PG_ENT_SHIFT = SYSMMU_V5_PG_ENT_SHIFT;
794 			LV1_PROT = SYSMMU_V5_LV1_PROT;
795 			LV2_PROT = SYSMMU_V5_LV2_PROT;
796 		}
797 	}
798 
799 	if (MMU_MAJ_VER(data->version) >= 5) {
800 		ret = dma_set_mask(dev, DMA_BIT_MASK(36));
801 		if (ret) {
802 			dev_err(dev, "Unable to set DMA mask: %d\n", ret);
803 			goto err_dma_set_mask;
804 		}
805 	}
806 
807 	/*
808 	 * use the first registered sysmmu device for performing
809 	 * dma mapping operations on iommu page tables (cpu cache flush)
810 	 */
811 	if (!dma_dev)
812 		dma_dev = &pdev->dev;
813 
814 	pm_runtime_enable(dev);
815 
816 	ret = iommu_device_register(&data->iommu, &exynos_iommu_ops, dev);
817 	if (ret)
818 		goto err_dma_set_mask;
819 
820 	return 0;
821 
822 err_dma_set_mask:
823 	iommu_device_sysfs_remove(&data->iommu);
824 	return ret;
825 }
826 
exynos_sysmmu_suspend(struct device * dev)827 static int __maybe_unused exynos_sysmmu_suspend(struct device *dev)
828 {
829 	struct sysmmu_drvdata *data = dev_get_drvdata(dev);
830 	struct device *master = data->master;
831 
832 	if (master) {
833 		struct exynos_iommu_owner *owner = dev_iommu_priv_get(master);
834 
835 		mutex_lock(&owner->rpm_lock);
836 		if (data->domain) {
837 			dev_dbg(data->sysmmu, "saving state\n");
838 			__sysmmu_disable(data);
839 		}
840 		mutex_unlock(&owner->rpm_lock);
841 	}
842 	return 0;
843 }
844 
exynos_sysmmu_resume(struct device * dev)845 static int __maybe_unused exynos_sysmmu_resume(struct device *dev)
846 {
847 	struct sysmmu_drvdata *data = dev_get_drvdata(dev);
848 	struct device *master = data->master;
849 
850 	if (master) {
851 		struct exynos_iommu_owner *owner = dev_iommu_priv_get(master);
852 
853 		mutex_lock(&owner->rpm_lock);
854 		if (data->domain) {
855 			dev_dbg(data->sysmmu, "restoring state\n");
856 			__sysmmu_enable(data);
857 		}
858 		mutex_unlock(&owner->rpm_lock);
859 	}
860 	return 0;
861 }
862 
863 static const struct dev_pm_ops sysmmu_pm_ops = {
864 	SET_RUNTIME_PM_OPS(exynos_sysmmu_suspend, exynos_sysmmu_resume, NULL)
865 	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
866 				pm_runtime_force_resume)
867 };
868 
869 static const struct of_device_id sysmmu_of_match[] = {
870 	{ .compatible	= "samsung,exynos-sysmmu", },
871 	{ },
872 };
873 
874 static struct platform_driver exynos_sysmmu_driver __refdata = {
875 	.probe	= exynos_sysmmu_probe,
876 	.driver	= {
877 		.name		= "exynos-sysmmu",
878 		.of_match_table	= sysmmu_of_match,
879 		.pm		= &sysmmu_pm_ops,
880 		.suppress_bind_attrs = true,
881 	}
882 };
883 
exynos_iommu_set_pte(sysmmu_pte_t * ent,sysmmu_pte_t val)884 static inline void exynos_iommu_set_pte(sysmmu_pte_t *ent, sysmmu_pte_t val)
885 {
886 	dma_sync_single_for_cpu(dma_dev, virt_to_phys(ent), sizeof(*ent),
887 				DMA_TO_DEVICE);
888 	*ent = cpu_to_le32(val);
889 	dma_sync_single_for_device(dma_dev, virt_to_phys(ent), sizeof(*ent),
890 				   DMA_TO_DEVICE);
891 }
892 
exynos_iommu_domain_alloc_paging(struct device * dev)893 static struct iommu_domain *exynos_iommu_domain_alloc_paging(struct device *dev)
894 {
895 	struct exynos_iommu_domain *domain;
896 	dma_addr_t handle;
897 	int i;
898 
899 	/* Check if correct PTE offsets are initialized */
900 	BUG_ON(PG_ENT_SHIFT < 0 || !dma_dev);
901 
902 	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
903 	if (!domain)
904 		return NULL;
905 
906 	domain->pgtable = iommu_alloc_pages_sz(GFP_KERNEL, SZ_16K);
907 	if (!domain->pgtable)
908 		goto err_pgtable;
909 
910 	domain->lv2entcnt = iommu_alloc_pages_sz(GFP_KERNEL, SZ_8K);
911 	if (!domain->lv2entcnt)
912 		goto err_counter;
913 
914 	/* Workaround for System MMU v3.3 to prevent caching 1MiB mapping */
915 	for (i = 0; i < NUM_LV1ENTRIES; i++)
916 		domain->pgtable[i] = ZERO_LV2LINK;
917 
918 	handle = dma_map_single(dma_dev, domain->pgtable, LV1TABLE_SIZE,
919 				DMA_TO_DEVICE);
920 	/* For mapping page table entries we rely on dma == phys */
921 	BUG_ON(handle != virt_to_phys(domain->pgtable));
922 	if (dma_mapping_error(dma_dev, handle))
923 		goto err_lv2ent;
924 
925 	spin_lock_init(&domain->lock);
926 	spin_lock_init(&domain->pgtablelock);
927 	INIT_LIST_HEAD(&domain->clients);
928 
929 	domain->domain.pgsize_bitmap = SECT_SIZE | LPAGE_SIZE | SPAGE_SIZE;
930 
931 	domain->domain.geometry.aperture_start = 0;
932 	domain->domain.geometry.aperture_end   = ~0UL;
933 	domain->domain.geometry.force_aperture = true;
934 
935 	return &domain->domain;
936 
937 err_lv2ent:
938 	iommu_free_pages(domain->lv2entcnt);
939 err_counter:
940 	iommu_free_pages(domain->pgtable);
941 err_pgtable:
942 	kfree(domain);
943 	return NULL;
944 }
945 
exynos_iommu_domain_free(struct iommu_domain * iommu_domain)946 static void exynos_iommu_domain_free(struct iommu_domain *iommu_domain)
947 {
948 	struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
949 	struct sysmmu_drvdata *data, *next;
950 	unsigned long flags;
951 	int i;
952 
953 	WARN_ON(!list_empty(&domain->clients));
954 
955 	spin_lock_irqsave(&domain->lock, flags);
956 
957 	list_for_each_entry_safe(data, next, &domain->clients, domain_node) {
958 		spin_lock(&data->lock);
959 		__sysmmu_disable(data);
960 		data->pgtable = 0;
961 		data->domain = NULL;
962 		list_del_init(&data->domain_node);
963 		spin_unlock(&data->lock);
964 	}
965 
966 	spin_unlock_irqrestore(&domain->lock, flags);
967 
968 	dma_unmap_single(dma_dev, virt_to_phys(domain->pgtable), LV1TABLE_SIZE,
969 			 DMA_TO_DEVICE);
970 
971 	for (i = 0; i < NUM_LV1ENTRIES; i++)
972 		if (lv1ent_page(domain->pgtable + i)) {
973 			phys_addr_t base = lv2table_base(domain->pgtable + i);
974 
975 			dma_unmap_single(dma_dev, base, LV2TABLE_SIZE,
976 					 DMA_TO_DEVICE);
977 			kmem_cache_free(lv2table_kmem_cache,
978 					phys_to_virt(base));
979 		}
980 
981 	iommu_free_pages(domain->pgtable);
982 	iommu_free_pages(domain->lv2entcnt);
983 	kfree(domain);
984 }
985 
exynos_iommu_identity_attach(struct iommu_domain * identity_domain,struct device * dev)986 static int exynos_iommu_identity_attach(struct iommu_domain *identity_domain,
987 					struct device *dev)
988 {
989 	struct exynos_iommu_owner *owner = dev_iommu_priv_get(dev);
990 	struct exynos_iommu_domain *domain;
991 	phys_addr_t pagetable;
992 	struct sysmmu_drvdata *data, *next;
993 	unsigned long flags;
994 
995 	if (owner->domain == identity_domain)
996 		return 0;
997 
998 	domain = to_exynos_domain(owner->domain);
999 	pagetable = virt_to_phys(domain->pgtable);
1000 
1001 	mutex_lock(&owner->rpm_lock);
1002 
1003 	list_for_each_entry(data, &owner->controllers, owner_node) {
1004 		pm_runtime_get_noresume(data->sysmmu);
1005 		if (pm_runtime_active(data->sysmmu))
1006 			__sysmmu_disable(data);
1007 		pm_runtime_put(data->sysmmu);
1008 	}
1009 
1010 	spin_lock_irqsave(&domain->lock, flags);
1011 	list_for_each_entry_safe(data, next, &domain->clients, domain_node) {
1012 		spin_lock(&data->lock);
1013 		data->pgtable = 0;
1014 		data->domain = NULL;
1015 		list_del_init(&data->domain_node);
1016 		spin_unlock(&data->lock);
1017 	}
1018 	owner->domain = identity_domain;
1019 	spin_unlock_irqrestore(&domain->lock, flags);
1020 
1021 	mutex_unlock(&owner->rpm_lock);
1022 
1023 	dev_dbg(dev, "%s: Restored IOMMU to IDENTITY from pgtable %pa\n",
1024 		__func__, &pagetable);
1025 	return 0;
1026 }
1027 
1028 static struct iommu_domain_ops exynos_identity_ops = {
1029 	.attach_dev = exynos_iommu_identity_attach,
1030 };
1031 
1032 static struct iommu_domain exynos_identity_domain = {
1033 	.type = IOMMU_DOMAIN_IDENTITY,
1034 	.ops = &exynos_identity_ops,
1035 };
1036 
exynos_iommu_attach_device(struct iommu_domain * iommu_domain,struct device * dev)1037 static int exynos_iommu_attach_device(struct iommu_domain *iommu_domain,
1038 				   struct device *dev)
1039 {
1040 	struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
1041 	struct exynos_iommu_owner *owner = dev_iommu_priv_get(dev);
1042 	struct sysmmu_drvdata *data;
1043 	phys_addr_t pagetable = virt_to_phys(domain->pgtable);
1044 	unsigned long flags;
1045 	int err;
1046 
1047 	err = exynos_iommu_identity_attach(&exynos_identity_domain, dev);
1048 	if (err)
1049 		return err;
1050 
1051 	mutex_lock(&owner->rpm_lock);
1052 
1053 	spin_lock_irqsave(&domain->lock, flags);
1054 	list_for_each_entry(data, &owner->controllers, owner_node) {
1055 		spin_lock(&data->lock);
1056 		data->pgtable = pagetable;
1057 		data->domain = domain;
1058 		list_add_tail(&data->domain_node, &domain->clients);
1059 		spin_unlock(&data->lock);
1060 	}
1061 	owner->domain = iommu_domain;
1062 	spin_unlock_irqrestore(&domain->lock, flags);
1063 
1064 	list_for_each_entry(data, &owner->controllers, owner_node) {
1065 		pm_runtime_get_noresume(data->sysmmu);
1066 		if (pm_runtime_active(data->sysmmu))
1067 			__sysmmu_enable(data);
1068 		pm_runtime_put(data->sysmmu);
1069 	}
1070 
1071 	mutex_unlock(&owner->rpm_lock);
1072 
1073 	dev_dbg(dev, "%s: Attached IOMMU with pgtable %pa\n", __func__,
1074 		&pagetable);
1075 
1076 	return 0;
1077 }
1078 
alloc_lv2entry(struct exynos_iommu_domain * domain,sysmmu_pte_t * sent,sysmmu_iova_t iova,short * pgcounter)1079 static sysmmu_pte_t *alloc_lv2entry(struct exynos_iommu_domain *domain,
1080 		sysmmu_pte_t *sent, sysmmu_iova_t iova, short *pgcounter)
1081 {
1082 	if (lv1ent_section(sent)) {
1083 		WARN(1, "Trying mapping on %#08x mapped with 1MiB page", iova);
1084 		return ERR_PTR(-EADDRINUSE);
1085 	}
1086 
1087 	if (lv1ent_fault(sent)) {
1088 		dma_addr_t handle;
1089 		sysmmu_pte_t *pent;
1090 		bool need_flush_flpd_cache = lv1ent_zero(sent);
1091 
1092 		pent = kmem_cache_zalloc(lv2table_kmem_cache, GFP_ATOMIC);
1093 		BUG_ON((uintptr_t)pent & (LV2TABLE_SIZE - 1));
1094 		if (!pent)
1095 			return ERR_PTR(-ENOMEM);
1096 
1097 		exynos_iommu_set_pte(sent, mk_lv1ent_page(virt_to_phys(pent)));
1098 		kmemleak_ignore(pent);
1099 		*pgcounter = NUM_LV2ENTRIES;
1100 		handle = dma_map_single(dma_dev, pent, LV2TABLE_SIZE,
1101 					DMA_TO_DEVICE);
1102 		if (dma_mapping_error(dma_dev, handle)) {
1103 			kmem_cache_free(lv2table_kmem_cache, pent);
1104 			return ERR_PTR(-EADDRINUSE);
1105 		}
1106 
1107 		/*
1108 		 * If pre-fetched SLPD is a faulty SLPD in zero_l2_table,
1109 		 * FLPD cache may cache the address of zero_l2_table. This
1110 		 * function replaces the zero_l2_table with new L2 page table
1111 		 * to write valid mappings.
1112 		 * Accessing the valid area may cause page fault since FLPD
1113 		 * cache may still cache zero_l2_table for the valid area
1114 		 * instead of new L2 page table that has the mapping
1115 		 * information of the valid area.
1116 		 * Thus any replacement of zero_l2_table with other valid L2
1117 		 * page table must involve FLPD cache invalidation for System
1118 		 * MMU v3.3.
1119 		 * FLPD cache invalidation is performed with TLB invalidation
1120 		 * by VPN without blocking. It is safe to invalidate TLB without
1121 		 * blocking because the target address of TLB invalidation is
1122 		 * not currently mapped.
1123 		 */
1124 		if (need_flush_flpd_cache) {
1125 			struct sysmmu_drvdata *data;
1126 
1127 			spin_lock(&domain->lock);
1128 			list_for_each_entry(data, &domain->clients, domain_node)
1129 				sysmmu_tlb_invalidate_flpdcache(data, iova);
1130 			spin_unlock(&domain->lock);
1131 		}
1132 	}
1133 
1134 	return page_entry(sent, iova);
1135 }
1136 
lv1set_section(struct exynos_iommu_domain * domain,sysmmu_pte_t * sent,sysmmu_iova_t iova,phys_addr_t paddr,int prot,short * pgcnt)1137 static int lv1set_section(struct exynos_iommu_domain *domain,
1138 			  sysmmu_pte_t *sent, sysmmu_iova_t iova,
1139 			  phys_addr_t paddr, int prot, short *pgcnt)
1140 {
1141 	if (lv1ent_section(sent)) {
1142 		WARN(1, "Trying mapping on 1MiB@%#08x that is mapped",
1143 			iova);
1144 		return -EADDRINUSE;
1145 	}
1146 
1147 	if (lv1ent_page(sent)) {
1148 		if (*pgcnt != NUM_LV2ENTRIES) {
1149 			WARN(1, "Trying mapping on 1MiB@%#08x that is mapped",
1150 				iova);
1151 			return -EADDRINUSE;
1152 		}
1153 
1154 		kmem_cache_free(lv2table_kmem_cache, page_entry(sent, 0));
1155 		*pgcnt = 0;
1156 	}
1157 
1158 	exynos_iommu_set_pte(sent, mk_lv1ent_sect(paddr, prot));
1159 
1160 	spin_lock(&domain->lock);
1161 	if (lv1ent_page_zero(sent)) {
1162 		struct sysmmu_drvdata *data;
1163 		/*
1164 		 * Flushing FLPD cache in System MMU v3.3 that may cache a FLPD
1165 		 * entry by speculative prefetch of SLPD which has no mapping.
1166 		 */
1167 		list_for_each_entry(data, &domain->clients, domain_node)
1168 			sysmmu_tlb_invalidate_flpdcache(data, iova);
1169 	}
1170 	spin_unlock(&domain->lock);
1171 
1172 	return 0;
1173 }
1174 
lv2set_page(sysmmu_pte_t * pent,phys_addr_t paddr,size_t size,int prot,short * pgcnt)1175 static int lv2set_page(sysmmu_pte_t *pent, phys_addr_t paddr, size_t size,
1176 		       int prot, short *pgcnt)
1177 {
1178 	if (size == SPAGE_SIZE) {
1179 		if (WARN_ON(!lv2ent_fault(pent)))
1180 			return -EADDRINUSE;
1181 
1182 		exynos_iommu_set_pte(pent, mk_lv2ent_spage(paddr, prot));
1183 		*pgcnt -= 1;
1184 	} else { /* size == LPAGE_SIZE */
1185 		int i;
1186 		dma_addr_t pent_base = virt_to_phys(pent);
1187 
1188 		dma_sync_single_for_cpu(dma_dev, pent_base,
1189 					sizeof(*pent) * SPAGES_PER_LPAGE,
1190 					DMA_TO_DEVICE);
1191 		for (i = 0; i < SPAGES_PER_LPAGE; i++, pent++) {
1192 			if (WARN_ON(!lv2ent_fault(pent))) {
1193 				if (i > 0)
1194 					memset(pent - i, 0, sizeof(*pent) * i);
1195 				return -EADDRINUSE;
1196 			}
1197 
1198 			*pent = mk_lv2ent_lpage(paddr, prot);
1199 		}
1200 		dma_sync_single_for_device(dma_dev, pent_base,
1201 					   sizeof(*pent) * SPAGES_PER_LPAGE,
1202 					   DMA_TO_DEVICE);
1203 		*pgcnt -= SPAGES_PER_LPAGE;
1204 	}
1205 
1206 	return 0;
1207 }
1208 
1209 /*
1210  * *CAUTION* to the I/O virtual memory managers that support exynos-iommu:
1211  *
1212  * System MMU v3.x has advanced logic to improve address translation
1213  * performance with caching more page table entries by a page table walk.
1214  * However, the logic has a bug that while caching faulty page table entries,
1215  * System MMU reports page fault if the cached fault entry is hit even though
1216  * the fault entry is updated to a valid entry after the entry is cached.
1217  * To prevent caching faulty page table entries which may be updated to valid
1218  * entries later, the virtual memory manager should care about the workaround
1219  * for the problem. The following describes the workaround.
1220  *
1221  * Any two consecutive I/O virtual address regions must have a hole of 128KiB
1222  * at maximum to prevent misbehavior of System MMU 3.x (workaround for h/w bug).
1223  *
1224  * Precisely, any start address of I/O virtual region must be aligned with
1225  * the following sizes for System MMU v3.1 and v3.2.
1226  * System MMU v3.1: 128KiB
1227  * System MMU v3.2: 256KiB
1228  *
1229  * Because System MMU v3.3 caches page table entries more aggressively, it needs
1230  * more workarounds.
1231  * - Any two consecutive I/O virtual regions must have a hole of size larger
1232  *   than or equal to 128KiB.
1233  * - Start address of an I/O virtual region must be aligned by 128KiB.
1234  */
exynos_iommu_map(struct iommu_domain * iommu_domain,unsigned long l_iova,phys_addr_t paddr,size_t size,size_t count,int prot,gfp_t gfp,size_t * mapped)1235 static int exynos_iommu_map(struct iommu_domain *iommu_domain,
1236 			    unsigned long l_iova, phys_addr_t paddr, size_t size,
1237 			    size_t count, int prot, gfp_t gfp, size_t *mapped)
1238 {
1239 	struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
1240 	sysmmu_pte_t *entry;
1241 	sysmmu_iova_t iova = (sysmmu_iova_t)l_iova;
1242 	unsigned long flags;
1243 	int ret = -ENOMEM;
1244 
1245 	BUG_ON(domain->pgtable == NULL);
1246 	prot &= SYSMMU_SUPPORTED_PROT_BITS;
1247 
1248 	spin_lock_irqsave(&domain->pgtablelock, flags);
1249 
1250 	entry = section_entry(domain->pgtable, iova);
1251 
1252 	if (size == SECT_SIZE) {
1253 		ret = lv1set_section(domain, entry, iova, paddr, prot,
1254 				     &domain->lv2entcnt[lv1ent_offset(iova)]);
1255 	} else {
1256 		sysmmu_pte_t *pent;
1257 
1258 		pent = alloc_lv2entry(domain, entry, iova,
1259 				      &domain->lv2entcnt[lv1ent_offset(iova)]);
1260 
1261 		if (IS_ERR(pent))
1262 			ret = PTR_ERR(pent);
1263 		else
1264 			ret = lv2set_page(pent, paddr, size, prot,
1265 				       &domain->lv2entcnt[lv1ent_offset(iova)]);
1266 	}
1267 
1268 	if (ret)
1269 		pr_err("%s: Failed(%d) to map %#zx bytes @ %#x\n",
1270 			__func__, ret, size, iova);
1271 	else
1272 		*mapped = size;
1273 
1274 	spin_unlock_irqrestore(&domain->pgtablelock, flags);
1275 
1276 	return ret;
1277 }
1278 
exynos_iommu_tlb_invalidate_entry(struct exynos_iommu_domain * domain,sysmmu_iova_t iova,size_t size)1279 static void exynos_iommu_tlb_invalidate_entry(struct exynos_iommu_domain *domain,
1280 					      sysmmu_iova_t iova, size_t size)
1281 {
1282 	struct sysmmu_drvdata *data;
1283 	unsigned long flags;
1284 
1285 	spin_lock_irqsave(&domain->lock, flags);
1286 
1287 	list_for_each_entry(data, &domain->clients, domain_node)
1288 		sysmmu_tlb_invalidate_entry(data, iova, size);
1289 
1290 	spin_unlock_irqrestore(&domain->lock, flags);
1291 }
1292 
exynos_iommu_unmap(struct iommu_domain * iommu_domain,unsigned long l_iova,size_t size,size_t count,struct iommu_iotlb_gather * gather)1293 static size_t exynos_iommu_unmap(struct iommu_domain *iommu_domain,
1294 				 unsigned long l_iova, size_t size, size_t count,
1295 				 struct iommu_iotlb_gather *gather)
1296 {
1297 	struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
1298 	sysmmu_iova_t iova = (sysmmu_iova_t)l_iova;
1299 	sysmmu_pte_t *ent;
1300 	size_t err_pgsize;
1301 	unsigned long flags;
1302 
1303 	BUG_ON(domain->pgtable == NULL);
1304 
1305 	spin_lock_irqsave(&domain->pgtablelock, flags);
1306 
1307 	ent = section_entry(domain->pgtable, iova);
1308 
1309 	if (lv1ent_section(ent)) {
1310 		if (WARN_ON(size < SECT_SIZE)) {
1311 			err_pgsize = SECT_SIZE;
1312 			goto err;
1313 		}
1314 
1315 		/* workaround for h/w bug in System MMU v3.3 */
1316 		exynos_iommu_set_pte(ent, ZERO_LV2LINK);
1317 		size = SECT_SIZE;
1318 		goto done;
1319 	}
1320 
1321 	if (unlikely(lv1ent_fault(ent))) {
1322 		if (size > SECT_SIZE)
1323 			size = SECT_SIZE;
1324 		goto done;
1325 	}
1326 
1327 	/* lv1ent_page(sent) == true here */
1328 
1329 	ent = page_entry(ent, iova);
1330 
1331 	if (unlikely(lv2ent_fault(ent))) {
1332 		size = SPAGE_SIZE;
1333 		goto done;
1334 	}
1335 
1336 	if (lv2ent_small(ent)) {
1337 		exynos_iommu_set_pte(ent, 0);
1338 		size = SPAGE_SIZE;
1339 		domain->lv2entcnt[lv1ent_offset(iova)] += 1;
1340 		goto done;
1341 	}
1342 
1343 	/* lv1ent_large(ent) == true here */
1344 	if (WARN_ON(size < LPAGE_SIZE)) {
1345 		err_pgsize = LPAGE_SIZE;
1346 		goto err;
1347 	}
1348 
1349 	dma_sync_single_for_cpu(dma_dev, virt_to_phys(ent),
1350 				sizeof(*ent) * SPAGES_PER_LPAGE,
1351 				DMA_TO_DEVICE);
1352 	memset(ent, 0, sizeof(*ent) * SPAGES_PER_LPAGE);
1353 	dma_sync_single_for_device(dma_dev, virt_to_phys(ent),
1354 				   sizeof(*ent) * SPAGES_PER_LPAGE,
1355 				   DMA_TO_DEVICE);
1356 	size = LPAGE_SIZE;
1357 	domain->lv2entcnt[lv1ent_offset(iova)] += SPAGES_PER_LPAGE;
1358 done:
1359 	spin_unlock_irqrestore(&domain->pgtablelock, flags);
1360 
1361 	exynos_iommu_tlb_invalidate_entry(domain, iova, size);
1362 
1363 	return size;
1364 err:
1365 	spin_unlock_irqrestore(&domain->pgtablelock, flags);
1366 
1367 	pr_err("%s: Failed: size(%#zx) @ %#x is smaller than page size %#zx\n",
1368 		__func__, size, iova, err_pgsize);
1369 
1370 	return 0;
1371 }
1372 
exynos_iommu_iova_to_phys(struct iommu_domain * iommu_domain,dma_addr_t iova)1373 static phys_addr_t exynos_iommu_iova_to_phys(struct iommu_domain *iommu_domain,
1374 					  dma_addr_t iova)
1375 {
1376 	struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
1377 	sysmmu_pte_t *entry;
1378 	unsigned long flags;
1379 	phys_addr_t phys = 0;
1380 
1381 	spin_lock_irqsave(&domain->pgtablelock, flags);
1382 
1383 	entry = section_entry(domain->pgtable, iova);
1384 
1385 	if (lv1ent_section(entry)) {
1386 		phys = section_phys(entry) + section_offs(iova);
1387 	} else if (lv1ent_page(entry)) {
1388 		entry = page_entry(entry, iova);
1389 
1390 		if (lv2ent_large(entry))
1391 			phys = lpage_phys(entry) + lpage_offs(iova);
1392 		else if (lv2ent_small(entry))
1393 			phys = spage_phys(entry) + spage_offs(iova);
1394 	}
1395 
1396 	spin_unlock_irqrestore(&domain->pgtablelock, flags);
1397 
1398 	return phys;
1399 }
1400 
exynos_iommu_probe_device(struct device * dev)1401 static struct iommu_device *exynos_iommu_probe_device(struct device *dev)
1402 {
1403 	struct exynos_iommu_owner *owner = dev_iommu_priv_get(dev);
1404 	struct sysmmu_drvdata *data;
1405 
1406 	if (!has_sysmmu(dev))
1407 		return ERR_PTR(-ENODEV);
1408 
1409 	list_for_each_entry(data, &owner->controllers, owner_node) {
1410 		/*
1411 		 * SYSMMU will be runtime activated via device link
1412 		 * (dependency) to its master device, so there are no
1413 		 * direct calls to pm_runtime_get/put in this driver.
1414 		 */
1415 		data->link = device_link_add(dev, data->sysmmu,
1416 					     DL_FLAG_STATELESS |
1417 					     DL_FLAG_PM_RUNTIME);
1418 	}
1419 
1420 	/* There is always at least one entry, see exynos_iommu_of_xlate() */
1421 	data = list_first_entry(&owner->controllers,
1422 				struct sysmmu_drvdata, owner_node);
1423 
1424 	return &data->iommu;
1425 }
1426 
exynos_iommu_release_device(struct device * dev)1427 static void exynos_iommu_release_device(struct device *dev)
1428 {
1429 	struct exynos_iommu_owner *owner = dev_iommu_priv_get(dev);
1430 	struct sysmmu_drvdata *data;
1431 
1432 	WARN_ON(exynos_iommu_identity_attach(&exynos_identity_domain, dev));
1433 
1434 	list_for_each_entry(data, &owner->controllers, owner_node)
1435 		device_link_del(data->link);
1436 }
1437 
exynos_iommu_of_xlate(struct device * dev,const struct of_phandle_args * spec)1438 static int exynos_iommu_of_xlate(struct device *dev,
1439 				 const struct of_phandle_args *spec)
1440 {
1441 	struct platform_device *sysmmu = of_find_device_by_node(spec->np);
1442 	struct exynos_iommu_owner *owner = dev_iommu_priv_get(dev);
1443 	struct sysmmu_drvdata *data, *entry;
1444 
1445 	if (!sysmmu)
1446 		return -ENODEV;
1447 
1448 	data = platform_get_drvdata(sysmmu);
1449 	if (!data) {
1450 		put_device(&sysmmu->dev);
1451 		return -ENODEV;
1452 	}
1453 
1454 	if (!owner) {
1455 		owner = kzalloc(sizeof(*owner), GFP_KERNEL);
1456 		if (!owner) {
1457 			put_device(&sysmmu->dev);
1458 			return -ENOMEM;
1459 		}
1460 
1461 		INIT_LIST_HEAD(&owner->controllers);
1462 		mutex_init(&owner->rpm_lock);
1463 		owner->domain = &exynos_identity_domain;
1464 		dev_iommu_priv_set(dev, owner);
1465 	}
1466 
1467 	list_for_each_entry(entry, &owner->controllers, owner_node)
1468 		if (entry == data)
1469 			return 0;
1470 
1471 	list_add_tail(&data->owner_node, &owner->controllers);
1472 	data->master = dev;
1473 
1474 	return 0;
1475 }
1476 
1477 static const struct iommu_ops exynos_iommu_ops = {
1478 	.identity_domain = &exynos_identity_domain,
1479 	.domain_alloc_paging = exynos_iommu_domain_alloc_paging,
1480 	.device_group = generic_device_group,
1481 	.probe_device = exynos_iommu_probe_device,
1482 	.release_device = exynos_iommu_release_device,
1483 	.get_resv_regions = iommu_dma_get_resv_regions,
1484 	.of_xlate = exynos_iommu_of_xlate,
1485 	.default_domain_ops = &(const struct iommu_domain_ops) {
1486 		.attach_dev	= exynos_iommu_attach_device,
1487 		.map_pages	= exynos_iommu_map,
1488 		.unmap_pages	= exynos_iommu_unmap,
1489 		.iova_to_phys	= exynos_iommu_iova_to_phys,
1490 		.free		= exynos_iommu_domain_free,
1491 	}
1492 };
1493 
exynos_iommu_init(void)1494 static int __init exynos_iommu_init(void)
1495 {
1496 	struct device_node *np;
1497 	int ret;
1498 
1499 	np = of_find_matching_node(NULL, sysmmu_of_match);
1500 	if (!np)
1501 		return 0;
1502 
1503 	of_node_put(np);
1504 
1505 	lv2table_kmem_cache = kmem_cache_create("exynos-iommu-lv2table",
1506 				LV2TABLE_SIZE, LV2TABLE_SIZE, 0, NULL);
1507 	if (!lv2table_kmem_cache) {
1508 		pr_err("%s: Failed to create kmem cache\n", __func__);
1509 		return -ENOMEM;
1510 	}
1511 
1512 	zero_lv2_table = kmem_cache_zalloc(lv2table_kmem_cache, GFP_KERNEL);
1513 	if (zero_lv2_table == NULL) {
1514 		pr_err("%s: Failed to allocate zero level2 page table\n",
1515 			__func__);
1516 		ret = -ENOMEM;
1517 		goto err_zero_lv2;
1518 	}
1519 
1520 	ret = platform_driver_register(&exynos_sysmmu_driver);
1521 	if (ret) {
1522 		pr_err("%s: Failed to register driver\n", __func__);
1523 		goto err_reg_driver;
1524 	}
1525 
1526 	return 0;
1527 err_reg_driver:
1528 	kmem_cache_free(lv2table_kmem_cache, zero_lv2_table);
1529 err_zero_lv2:
1530 	kmem_cache_destroy(lv2table_kmem_cache);
1531 	return ret;
1532 }
1533 core_initcall(exynos_iommu_init);
1534