xref: /freebsd/libexec/rtld-elf/rtld.c (revision 7d6b5a918a5b09ae62a87c331092ffae0fd0fa7b)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra.
5  * Copyright 2003 Alexander Kabaev <kan@FreeBSD.ORG>.
6  * Copyright 2009-2013 Konstantin Belousov <kib@FreeBSD.ORG>.
7  * Copyright 2012 John Marino <draco@marino.st>.
8  * Copyright 2014-2017 The FreeBSD Foundation
9  * All rights reserved.
10  *
11  * Portions of this software were developed by Konstantin Belousov
12  * under sponsorship from the FreeBSD Foundation.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 /*
36  * Dynamic linker for ELF.
37  *
38  * John Polstra <jdp@polstra.com>.
39  */
40 
41 #include <sys/param.h>
42 #include <sys/ktrace.h>
43 #include <sys/mman.h>
44 #include <sys/mount.h>
45 #include <sys/stat.h>
46 #include <sys/sysctl.h>
47 #include <sys/uio.h>
48 #include <sys/utsname.h>
49 
50 #include <dlfcn.h>
51 #include <err.h>
52 #include <errno.h>
53 #include <fcntl.h>
54 #include <stdarg.h>
55 #include <stdio.h>
56 #include <stdlib.h>
57 #include <string.h>
58 #include <unistd.h>
59 
60 #include "debug.h"
61 #include "libmap.h"
62 #include "notes.h"
63 #include "rtld.h"
64 #include "rtld_libc.h"
65 #include "rtld_malloc.h"
66 #include "rtld_paths.h"
67 #include "rtld_printf.h"
68 #include "rtld_tls.h"
69 #include "rtld_utrace.h"
70 
71 /* Types. */
72 typedef void (*func_ptr_type)(void);
73 typedef void *(*path_enum_proc)(const char *path, size_t len, void *arg);
74 
75 /* Variables that cannot be static: */
76 extern struct r_debug r_debug; /* For GDB */
77 extern int _thread_autoinit_dummy_decl;
78 extern void (*__cleanup)(void);
79 
80 struct dlerror_save {
81 	int seen;
82 	char *msg;
83 };
84 
85 struct tcb_list_entry {
86 	TAILQ_ENTRY(tcb_list_entry)	next;
87 };
88 
89 /*
90  * Function declarations.
91  */
92 static bool allocate_tls_offset_common(size_t *offp, size_t tlssize,
93     size_t tlsalign, size_t tlspoffset);
94 static const char *basename(const char *);
95 static void digest_dynamic1(Obj_Entry *, int, const Elf_Dyn **,
96     const Elf_Dyn **, const Elf_Dyn **);
97 static bool digest_dynamic2(Obj_Entry *, const Elf_Dyn *, const Elf_Dyn *,
98     const Elf_Dyn *);
99 static bool digest_dynamic(Obj_Entry *, int);
100 static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *);
101 static void distribute_static_tls(Objlist *);
102 static Obj_Entry *dlcheck(void *);
103 static int dlclose_locked(void *, RtldLockState *);
104 static Obj_Entry *dlopen_object(const char *name, int fd, Obj_Entry *refobj,
105     int lo_flags, int mode, RtldLockState *lockstate);
106 static Obj_Entry *do_load_object(int, const char *, char *, struct stat *, int);
107 static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *);
108 static bool donelist_check(DoneList *, const Obj_Entry *);
109 static void dump_auxv(Elf_Auxinfo **aux_info);
110 static void errmsg_restore(struct dlerror_save *);
111 static struct dlerror_save *errmsg_save(void);
112 static void *fill_search_info(const char *, size_t, void *);
113 static char *find_library(const char *, const Obj_Entry *, int *);
114 static const char *gethints(bool);
115 static void hold_object(Obj_Entry *);
116 static void unhold_object(Obj_Entry *);
117 static void init_dag(Obj_Entry *);
118 static void init_marker(Obj_Entry *);
119 static void init_pagesizes(Elf_Auxinfo **aux_info);
120 static void init_rtld(caddr_t, Elf_Auxinfo **);
121 static void initlist_add_neededs(Needed_Entry *, Objlist *, Objlist *);
122 static void initlist_add_objects(Obj_Entry *, Obj_Entry *, Objlist *,
123     Objlist *);
124 static void initlist_for_loaded_obj(Obj_Entry *obj, Obj_Entry *tail,
125     Objlist *list);
126 static int initlist_objects_ifunc(Objlist *, bool, int, RtldLockState *);
127 static void linkmap_add(Obj_Entry *);
128 static void linkmap_delete(Obj_Entry *);
129 static void load_filtees(Obj_Entry *, int flags, RtldLockState *);
130 static void unload_filtees(Obj_Entry *, RtldLockState *);
131 static int load_needed_objects(Obj_Entry *, int);
132 static int load_preload_objects(const char *, bool);
133 static int load_kpreload(const void *addr);
134 static Obj_Entry *load_object(const char *, int fd, const Obj_Entry *, int);
135 static void map_stacks_exec(RtldLockState *);
136 static int obj_disable_relro(Obj_Entry *);
137 static int obj_enforce_relro(Obj_Entry *);
138 static void objlist_call_fini(Objlist *, Obj_Entry *, RtldLockState *);
139 static void objlist_call_init(Objlist *, RtldLockState *);
140 static void objlist_clear(Objlist *);
141 static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *);
142 static void objlist_init(Objlist *);
143 static void objlist_push_head(Objlist *, Obj_Entry *);
144 static void objlist_push_tail(Objlist *, Obj_Entry *);
145 static void objlist_put_after(Objlist *, Obj_Entry *, Obj_Entry *);
146 static void objlist_remove(Objlist *, Obj_Entry *);
147 static int open_binary_fd(const char *argv0, bool search_in_path,
148     const char **binpath_res);
149 static int parse_args(char *argv[], int argc, bool *use_pathp, int *fdp,
150     const char **argv0, bool *dir_ignore);
151 static int parse_integer(const char *);
152 static void *path_enumerate(const char *, path_enum_proc, const char *, void *);
153 static void print_usage(const char *argv0);
154 static void release_object(Obj_Entry *);
155 static int relocate_object_dag(Obj_Entry *root, bool bind_now,
156     Obj_Entry *rtldobj, int flags, RtldLockState *lockstate);
157 static int relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
158     int flags, RtldLockState *lockstate);
159 static int relocate_objects(Obj_Entry *, bool, Obj_Entry *, int,
160     RtldLockState *);
161 static int resolve_object_ifunc(Obj_Entry *, bool, int, RtldLockState *);
162 static int rtld_dirname(const char *, char *);
163 static int rtld_dirname_abs(const char *, char *);
164 static void *rtld_dlopen(const char *name, int fd, int mode);
165 static void rtld_exit(void);
166 static void rtld_nop_exit(void);
167 static char *search_library_path(const char *, const char *, const char *,
168     int *);
169 static char *search_library_pathfds(const char *, const char *, int *);
170 static const void **get_program_var_addr(const char *, RtldLockState *);
171 static void set_program_var(const char *, const void *);
172 static int symlook_default(SymLook *, const Obj_Entry *refobj);
173 static int symlook_global(SymLook *, DoneList *);
174 static void symlook_init_from_req(SymLook *, const SymLook *);
175 static int symlook_list(SymLook *, const Objlist *, DoneList *);
176 static int symlook_needed(SymLook *, const Needed_Entry *, DoneList *);
177 static int symlook_obj1_sysv(SymLook *, const Obj_Entry *);
178 static int symlook_obj1_gnu(SymLook *, const Obj_Entry *);
179 static void *tls_get_addr_slow(struct tcb *, int, size_t, bool) __noinline;
180 static void trace_loaded_objects(Obj_Entry *, bool);
181 static void unlink_object(Obj_Entry *);
182 static void unload_object(Obj_Entry *, RtldLockState *lockstate);
183 static void unref_dag(Obj_Entry *);
184 static void ref_dag(Obj_Entry *);
185 static char *origin_subst_one(Obj_Entry *, char *, const char *, const char *,
186     bool);
187 static char *origin_subst(Obj_Entry *, const char *);
188 static bool obj_resolve_origin(Obj_Entry *obj);
189 static void preinit_main(void);
190 static int rtld_verify_versions(const Objlist *);
191 static int rtld_verify_object_versions(Obj_Entry *);
192 static void object_add_name(Obj_Entry *, const char *);
193 static int object_match_name(const Obj_Entry *, const char *);
194 static void ld_utrace_log(int, void *, void *, size_t, int, const char *);
195 static void rtld_fill_dl_phdr_info(const Obj_Entry *obj,
196     struct dl_phdr_info *phdr_info);
197 static uint32_t gnu_hash(const char *);
198 static bool matched_symbol(SymLook *, const Obj_Entry *, Sym_Match_Result *,
199     const unsigned long);
200 
201 void r_debug_state(struct r_debug *, struct link_map *) __noinline __exported;
202 void _r_debug_postinit(struct link_map *) __noinline __exported;
203 
204 int __sys_openat(int, const char *, int, ...);
205 
206 /*
207  * Data declarations.
208  */
209 struct r_debug r_debug __exported;  /* for GDB; */
210 static bool libmap_disable;	    /* Disable libmap */
211 static bool ld_loadfltr;	    /* Immediate filters processing */
212 static const char *libmap_override; /* Maps to use in addition to libmap.conf */
213 static bool trust;		    /* False for setuid and setgid programs */
214 static bool dangerous_ld_env;	    /* True if environment variables have been
215 				       used to affect the libraries loaded */
216 bool ld_bind_not;		    /* Disable PLT update */
217 static const char *ld_bind_now; /* Environment variable for immediate binding */
218 static const char *ld_debug;	/* Environment variable for debugging */
219 static bool ld_dynamic_weak = true; /* True if non-weak definition overrides
220 				       weak definition */
221 static const char *ld_library_path; /* Environment variable for search path */
222 static const char
223     *ld_library_dirs; /* Environment variable for library descriptors */
224 static const char *ld_preload;	   /* Environment variable for libraries to
225 				      load first */
226 static const char *ld_preload_fds; /* Environment variable for libraries
227 				    represented by descriptors */
228 static const char
229     *ld_elf_hints_path; /* Environment variable for alternative hints path */
230 static const char *ld_tracing;	    /* Called from ldd to print libs */
231 static const char *ld_utrace;	    /* Use utrace() to log events. */
232 static struct obj_entry_q obj_list; /* Queue of all loaded objects */
233 static Obj_Entry *obj_main;	    /* The main program shared object */
234 static Obj_Entry obj_rtld;	    /* The dynamic linker shared object */
235 static unsigned int obj_count;	    /* Number of objects in obj_list */
236 static unsigned int obj_loads;	    /* Number of loads of objects (gen count) */
237 size_t ld_static_tls_extra =	    /* Static TLS extra space (bytes) */
238     RTLD_STATIC_TLS_EXTRA;
239 
240 static Objlist list_global = /* Objects dlopened with RTLD_GLOBAL */
241     STAILQ_HEAD_INITIALIZER(list_global);
242 static Objlist list_main = /* Objects loaded at program startup */
243     STAILQ_HEAD_INITIALIZER(list_main);
244 static Objlist list_fini = /* Objects needing fini() calls */
245     STAILQ_HEAD_INITIALIZER(list_fini);
246 
247 Elf_Sym sym_zero; /* For resolving undefined weak refs. */
248 
249 #define GDB_STATE(s, m)      \
250 	r_debug.r_state = s; \
251 	r_debug_state(&r_debug, m);
252 
253 extern Elf_Dyn _DYNAMIC;
254 #pragma weak _DYNAMIC
255 
256 int dlclose(void *) __exported;
257 char *dlerror(void) __exported;
258 void *dlopen(const char *, int) __exported;
259 void *fdlopen(int, int) __exported;
260 void *dlsym(void *, const char *) __exported;
261 dlfunc_t dlfunc(void *, const char *) __exported;
262 void *dlvsym(void *, const char *, const char *) __exported;
263 int dladdr(const void *, Dl_info *) __exported;
264 void dllockinit(void *, void *(*)(void *), void (*)(void *), void (*)(void *),
265     void (*)(void *), void (*)(void *), void (*)(void *)) __exported;
266 int dlinfo(void *, int, void *) __exported;
267 int _dl_iterate_phdr_locked(__dl_iterate_hdr_callback, void *) __exported;
268 int dl_iterate_phdr(__dl_iterate_hdr_callback, void *) __exported;
269 int _rtld_addr_phdr(const void *, struct dl_phdr_info *) __exported;
270 int _rtld_get_stack_prot(void) __exported;
271 int _rtld_is_dlopened(void *) __exported;
272 void _rtld_error(const char *, ...) __exported;
273 const char *rtld_get_var(const char *name) __exported;
274 int rtld_set_var(const char *name, const char *val) __exported;
275 
276 /* Only here to fix -Wmissing-prototypes warnings */
277 int __getosreldate(void);
278 func_ptr_type _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp);
279 Elf_Addr _rtld_bind(Obj_Entry *obj, Elf_Size reloff);
280 
281 int npagesizes;
282 static int osreldate;
283 size_t *pagesizes;
284 size_t page_size;
285 
286 static int stack_prot = PROT_READ | PROT_WRITE | PROT_EXEC;
287 static int max_stack_flags;
288 
289 /*
290  * Global declarations normally provided by crt1.  The dynamic linker is
291  * not built with crt1, so we have to provide them ourselves.
292  */
293 char *__progname;
294 char **environ;
295 
296 /*
297  * Used to pass argc, argv to init functions.
298  */
299 int main_argc;
300 char **main_argv;
301 
302 /*
303  * Globals to control TLS allocation.
304  */
305 size_t tls_last_offset;	 /* Static TLS offset of last module */
306 size_t tls_last_size;	 /* Static TLS size of last module */
307 size_t tls_static_space; /* Static TLS space allocated */
308 static size_t tls_static_max_align;
309 Elf_Addr tls_dtv_generation = 1; /* Used to detect when dtv size changes */
310 int tls_max_index = 1;		 /* Largest module index allocated */
311 
312 static TAILQ_HEAD(, tcb_list_entry) tcb_list =
313     TAILQ_HEAD_INITIALIZER(tcb_list);
314 static size_t tcb_list_entry_offset;
315 
316 static bool ld_library_path_rpath = false;
317 bool ld_fast_sigblock = false;
318 
319 /*
320  * Globals for path names, and such
321  */
322 const char *ld_elf_hints_default = _PATH_ELF_HINTS;
323 const char *ld_path_libmap_conf = _PATH_LIBMAP_CONF;
324 const char *ld_path_rtld = _PATH_RTLD;
325 const char *ld_standard_library_path = STANDARD_LIBRARY_PATH;
326 const char *ld_env_prefix = LD_;
327 
328 static void (*rtld_exit_ptr)(void);
329 
330 /*
331  * Fill in a DoneList with an allocation large enough to hold all of
332  * the currently-loaded objects.  Keep this as a macro since it calls
333  * alloca and we want that to occur within the scope of the caller.
334  */
335 #define donelist_init(dlp)                                             \
336 	((dlp)->objs = alloca(obj_count * sizeof(dlp)->objs[0]),       \
337 	    assert((dlp)->objs != NULL), (dlp)->num_alloc = obj_count, \
338 	    (dlp)->num_used = 0)
339 
340 #define LD_UTRACE(e, h, mb, ms, r, n)                      \
341 	do {                                               \
342 		if (ld_utrace != NULL)                     \
343 			ld_utrace_log(e, h, mb, ms, r, n); \
344 	} while (0)
345 
346 static void
ld_utrace_log(int event,void * handle,void * mapbase,size_t mapsize,int refcnt,const char * name)347 ld_utrace_log(int event, void *handle, void *mapbase, size_t mapsize,
348     int refcnt, const char *name)
349 {
350 	struct utrace_rtld ut;
351 	static const char rtld_utrace_sig[RTLD_UTRACE_SIG_SZ] = RTLD_UTRACE_SIG;
352 
353 	memset(&ut, 0, sizeof(ut));	/* clear holes */
354 	memcpy(ut.sig, rtld_utrace_sig, sizeof(ut.sig));
355 	ut.event = event;
356 	ut.handle = handle;
357 	ut.mapbase = mapbase;
358 	ut.mapsize = mapsize;
359 	ut.refcnt = refcnt;
360 	if (name != NULL)
361 		strlcpy(ut.name, name, sizeof(ut.name));
362 	utrace(&ut, sizeof(ut));
363 }
364 
365 struct ld_env_var_desc {
366 	const char *const n;
367 	const char *val;
368 	const bool unsecure : 1;
369 	const bool can_update : 1;
370 	const bool debug : 1;
371 	bool owned : 1;
372 };
373 #define LD_ENV_DESC(var, unsec, ...) \
374 	[LD_##var] = { .n = #var, .unsecure = unsec, __VA_ARGS__ }
375 
376 static struct ld_env_var_desc ld_env_vars[] = {
377 	LD_ENV_DESC(BIND_NOW, false),
378 	LD_ENV_DESC(PRELOAD, true),
379 	LD_ENV_DESC(LIBMAP, true),
380 	LD_ENV_DESC(LIBRARY_PATH, true, .can_update = true),
381 	LD_ENV_DESC(LIBRARY_PATH_FDS, true, .can_update = true),
382 	LD_ENV_DESC(LIBMAP_DISABLE, true),
383 	LD_ENV_DESC(BIND_NOT, true),
384 	LD_ENV_DESC(DEBUG, true, .can_update = true, .debug = true),
385 	LD_ENV_DESC(ELF_HINTS_PATH, true),
386 	LD_ENV_DESC(LOADFLTR, true),
387 	LD_ENV_DESC(LIBRARY_PATH_RPATH, true, .can_update = true),
388 	LD_ENV_DESC(PRELOAD_FDS, true),
389 	LD_ENV_DESC(DYNAMIC_WEAK, true, .can_update = true),
390 	LD_ENV_DESC(TRACE_LOADED_OBJECTS, false),
391 	LD_ENV_DESC(UTRACE, false, .can_update = true),
392 	LD_ENV_DESC(DUMP_REL_PRE, false, .can_update = true),
393 	LD_ENV_DESC(DUMP_REL_POST, false, .can_update = true),
394 	LD_ENV_DESC(TRACE_LOADED_OBJECTS_PROGNAME, false),
395 	LD_ENV_DESC(TRACE_LOADED_OBJECTS_FMT1, false),
396 	LD_ENV_DESC(TRACE_LOADED_OBJECTS_FMT2, false),
397 	LD_ENV_DESC(TRACE_LOADED_OBJECTS_ALL, false),
398 	LD_ENV_DESC(SHOW_AUXV, false),
399 	LD_ENV_DESC(STATIC_TLS_EXTRA, false),
400 	LD_ENV_DESC(NO_DL_ITERATE_PHDR_AFTER_FORK, false),
401 };
402 
403 const char *
ld_get_env_var(int idx)404 ld_get_env_var(int idx)
405 {
406 	return (ld_env_vars[idx].val);
407 }
408 
409 static const char *
rtld_get_env_val(char ** env,const char * name,size_t name_len)410 rtld_get_env_val(char **env, const char *name, size_t name_len)
411 {
412 	char **m, *n, *v;
413 
414 	for (m = env; *m != NULL; m++) {
415 		n = *m;
416 		v = strchr(n, '=');
417 		if (v == NULL) {
418 			/* corrupt environment? */
419 			continue;
420 		}
421 		if (v - n == (ptrdiff_t)name_len &&
422 		    strncmp(name, n, name_len) == 0)
423 			return (v + 1);
424 	}
425 	return (NULL);
426 }
427 
428 static void
rtld_init_env_vars_for_prefix(char ** env,const char * env_prefix)429 rtld_init_env_vars_for_prefix(char **env, const char *env_prefix)
430 {
431 	struct ld_env_var_desc *lvd;
432 	size_t prefix_len, nlen;
433 	char **m, *n, *v;
434 	int i;
435 
436 	prefix_len = strlen(env_prefix);
437 	for (m = env; *m != NULL; m++) {
438 		n = *m;
439 		if (strncmp(env_prefix, n, prefix_len) != 0) {
440 			/* Not a rtld environment variable. */
441 			continue;
442 		}
443 		n += prefix_len;
444 		v = strchr(n, '=');
445 		if (v == NULL) {
446 			/* corrupt environment? */
447 			continue;
448 		}
449 		for (i = 0; i < (int)nitems(ld_env_vars); i++) {
450 			lvd = &ld_env_vars[i];
451 			if (lvd->val != NULL) {
452 				/* Saw higher-priority variable name already. */
453 				continue;
454 			}
455 			nlen = strlen(lvd->n);
456 			if (v - n == (ptrdiff_t)nlen &&
457 			    strncmp(lvd->n, n, nlen) == 0) {
458 				lvd->val = v + 1;
459 				break;
460 			}
461 		}
462 	}
463 }
464 
465 static void
rtld_init_env_vars(char ** env)466 rtld_init_env_vars(char **env)
467 {
468 	rtld_init_env_vars_for_prefix(env, ld_env_prefix);
469 }
470 
471 static void
set_ld_elf_hints_path(void)472 set_ld_elf_hints_path(void)
473 {
474 	if (ld_elf_hints_path == NULL || strlen(ld_elf_hints_path) == 0)
475 		ld_elf_hints_path = ld_elf_hints_default;
476 }
477 
478 uintptr_t
rtld_round_page(uintptr_t x)479 rtld_round_page(uintptr_t x)
480 {
481 	return (roundup2(x, page_size));
482 }
483 
484 uintptr_t
rtld_trunc_page(uintptr_t x)485 rtld_trunc_page(uintptr_t x)
486 {
487 	return (rounddown2(x, page_size));
488 }
489 
490 /*
491  * Main entry point for dynamic linking.  The first argument is the
492  * stack pointer.  The stack is expected to be laid out as described
493  * in the SVR4 ABI specification, Intel 386 Processor Supplement.
494  * Specifically, the stack pointer points to a word containing
495  * ARGC.  Following that in the stack is a null-terminated sequence
496  * of pointers to argument strings.  Then comes a null-terminated
497  * sequence of pointers to environment strings.  Finally, there is a
498  * sequence of "auxiliary vector" entries.
499  *
500  * The second argument points to a place to store the dynamic linker's
501  * exit procedure pointer and the third to a place to store the main
502  * program's object.
503  *
504  * The return value is the main program's entry point.
505  */
506 func_ptr_type
_rtld(Elf_Addr * sp,func_ptr_type * exit_proc,Obj_Entry ** objp)507 _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp)
508 {
509 	Elf_Auxinfo *aux, *auxp, *auxpf, *aux_info[AT_COUNT], auxtmp;
510 	Objlist_Entry *entry;
511 	Obj_Entry *last_interposer, *obj, *preload_tail;
512 	const Elf_Phdr *phdr;
513 	Objlist initlist;
514 	RtldLockState lockstate;
515 	struct stat st;
516 	Elf_Addr *argcp;
517 	char **argv, **env, **envp, *kexecpath;
518 	const char *argv0, *binpath, *library_path_rpath, *static_tls_extra;
519 	struct ld_env_var_desc *lvd;
520 	caddr_t imgentry;
521 	char buf[MAXPATHLEN];
522 	int argc, fd, i, mib[4], old_osrel, osrel, phnum, rtld_argc;
523 	size_t sz;
524 #ifdef __powerpc__
525 	int old_auxv_format = 1;
526 #endif
527 	bool dir_enable, dir_ignore, direct_exec, explicit_fd, search_in_path;
528 
529 	/*
530 	 * On entry, the dynamic linker itself has not been relocated yet.
531 	 * Be very careful not to reference any global data until after
532 	 * init_rtld has returned.  It is OK to reference file-scope statics
533 	 * and string constants, and to call static and global functions.
534 	 */
535 
536 	/* Find the auxiliary vector on the stack. */
537 	argcp = sp;
538 	argc = *sp++;
539 	argv = (char **)sp;
540 	sp += argc + 1; /* Skip over arguments and NULL terminator */
541 	env = (char **)sp;
542 	while (*sp++ != 0) /* Skip over environment, and NULL terminator */
543 		;
544 	aux = (Elf_Auxinfo *)sp;
545 
546 	/* Digest the auxiliary vector. */
547 	for (i = 0; i < AT_COUNT; i++)
548 		aux_info[i] = NULL;
549 	for (auxp = aux; auxp->a_type != AT_NULL; auxp++) {
550 		if (auxp->a_type < AT_COUNT)
551 			aux_info[auxp->a_type] = auxp;
552 #ifdef __powerpc__
553 		if (auxp->a_type == 23) /* AT_STACKPROT */
554 			old_auxv_format = 0;
555 #endif
556 	}
557 
558 #ifdef __powerpc__
559 	if (old_auxv_format) {
560 		/* Remap from old-style auxv numbers. */
561 		aux_info[23] = aux_info[21]; /* AT_STACKPROT */
562 		aux_info[21] = aux_info[19]; /* AT_PAGESIZESLEN */
563 		aux_info[19] = aux_info[17]; /* AT_NCPUS */
564 		aux_info[17] = aux_info[15]; /* AT_CANARYLEN */
565 		aux_info[15] = aux_info[13]; /* AT_EXECPATH */
566 		aux_info[13] = NULL;	     /* AT_GID */
567 
568 		aux_info[20] = aux_info[18]; /* AT_PAGESIZES */
569 		aux_info[18] = aux_info[16]; /* AT_OSRELDATE */
570 		aux_info[16] = aux_info[14]; /* AT_CANARY */
571 		aux_info[14] = NULL;	     /* AT_EGID */
572 	}
573 #endif
574 
575 	/* Initialize and relocate ourselves. */
576 	assert(aux_info[AT_BASE] != NULL);
577 	init_rtld((caddr_t)aux_info[AT_BASE]->a_un.a_ptr, aux_info);
578 
579 	dlerror_dflt_init();
580 
581 	__progname = obj_rtld.path;
582 	argv0 = argv[0] != NULL ? argv[0] : "(null)";
583 	environ = env;
584 	main_argc = argc;
585 	main_argv = argv;
586 
587 	if (aux_info[AT_BSDFLAGS] != NULL &&
588 	    (aux_info[AT_BSDFLAGS]->a_un.a_val & ELF_BSDF_SIGFASTBLK) != 0)
589 		ld_fast_sigblock = true;
590 
591 	trust = !issetugid();
592 	direct_exec = false;
593 
594 	md_abi_variant_hook(aux_info);
595 	rtld_init_env_vars(env);
596 
597 	fd = -1;
598 	if (aux_info[AT_EXECFD] != NULL) {
599 		fd = aux_info[AT_EXECFD]->a_un.a_val;
600 	} else {
601 		assert(aux_info[AT_PHDR] != NULL);
602 		phdr = (const Elf_Phdr *)aux_info[AT_PHDR]->a_un.a_ptr;
603 		if (phdr == obj_rtld.phdr) {
604 			if (!trust) {
605 				_rtld_error(
606 				    "Tainted process refusing to run binary %s",
607 				    argv0);
608 				rtld_die();
609 			}
610 			direct_exec = true;
611 
612 			dbg("opening main program in direct exec mode");
613 			if (argc >= 2) {
614 				rtld_argc = parse_args(argv, argc,
615 				    &search_in_path, &fd, &argv0, &dir_ignore);
616 				explicit_fd = (fd != -1);
617 				binpath = NULL;
618 				if (!explicit_fd)
619 					fd = open_binary_fd(argv0,
620 					    search_in_path, &binpath);
621 				if (fstat(fd, &st) == -1) {
622 					_rtld_error(
623 					    "Failed to fstat FD %d (%s): %s",
624 					    fd,
625 					    explicit_fd ?
626 						"user-provided descriptor" :
627 						argv0,
628 					    rtld_strerror(errno));
629 					rtld_die();
630 				}
631 
632 				/*
633 				 * Rough emulation of the permission checks done
634 				 * by execve(2), only Unix DACs are checked,
635 				 * ACLs are ignored.  Preserve the semantic of
636 				 * disabling owner to execute if owner x bit is
637 				 * cleared, even if others x bit is enabled.
638 				 * mmap(2) does not allow to mmap with PROT_EXEC
639 				 * if binary' file comes from noexec mount.  We
640 				 * cannot set a text reference on the binary.
641 				 */
642 				dir_enable = false;
643 				if (st.st_uid == geteuid()) {
644 					if ((st.st_mode & S_IXUSR) != 0)
645 						dir_enable = true;
646 				} else if (st.st_gid == getegid()) {
647 					if ((st.st_mode & S_IXGRP) != 0)
648 						dir_enable = true;
649 				} else if ((st.st_mode & S_IXOTH) != 0) {
650 					dir_enable = true;
651 				}
652 				if (!dir_enable && !dir_ignore) {
653 					_rtld_error(
654 				    "No execute permission for binary %s",
655 					    argv0);
656 					rtld_die();
657 				}
658 
659 				/*
660 				 * For direct exec mode, argv[0] is the
661 				 * interpreter name, we must remove it and shift
662 				 * arguments left before invoking binary main.
663 				 * Since stack layout places environment
664 				 * pointers and aux vectors right after the
665 				 * terminating NULL, we must shift environment
666 				 * and aux as well.
667 				 */
668 				main_argc = argc - rtld_argc;
669 				for (i = 0; i <= main_argc; i++)
670 					argv[i] = argv[i + rtld_argc];
671 				*argcp -= rtld_argc;
672 				environ = env = envp = argv + main_argc + 1;
673 				dbg("move env from %p to %p", envp + rtld_argc,
674 				    envp);
675 				do {
676 					*envp = *(envp + rtld_argc);
677 				} while (*envp++ != NULL);
678 				aux = auxp = (Elf_Auxinfo *)envp;
679 				auxpf = (Elf_Auxinfo *)(envp + rtld_argc);
680 				dbg("move aux from %p to %p", auxpf, aux);
681 				/*
682 				 * XXXKIB insert place for AT_EXECPATH if not
683 				 * present
684 				 */
685 				for (;; auxp++, auxpf++) {
686 					/*
687 					 * NB: Use a temporary since *auxpf and
688 					 * *auxp overlap if rtld_argc is 1
689 					 */
690 					auxtmp = *auxpf;
691 					*auxp = auxtmp;
692 					if (auxp->a_type == AT_NULL)
693 						break;
694 				}
695 				/*
696 				 * Since the auxiliary vector has moved,
697 				 * redigest it.
698 				 */
699 				for (i = 0; i < AT_COUNT; i++)
700 					aux_info[i] = NULL;
701 				for (auxp = aux; auxp->a_type != AT_NULL;
702 				    auxp++) {
703 					if (auxp->a_type < AT_COUNT)
704 						aux_info[auxp->a_type] = auxp;
705 				}
706 
707 				/*
708 				 * Point AT_EXECPATH auxv and aux_info to the
709 				 * binary path.
710 				 */
711 				if (binpath == NULL) {
712 					aux_info[AT_EXECPATH] = NULL;
713 				} else {
714 					if (aux_info[AT_EXECPATH] == NULL) {
715 						aux_info[AT_EXECPATH] = xmalloc(
716 						    sizeof(Elf_Auxinfo));
717 						aux_info[AT_EXECPATH]->a_type =
718 						    AT_EXECPATH;
719 					}
720 					aux_info[AT_EXECPATH]->a_un.a_ptr =
721 					    __DECONST(void *, binpath);
722 				}
723 			} else {
724 				_rtld_error("No binary");
725 				rtld_die();
726 			}
727 		}
728 	}
729 
730 	ld_bind_now = ld_get_env_var(LD_BIND_NOW);
731 
732 	/*
733 	 * If the process is tainted, then we un-set the dangerous environment
734 	 * variables.  The process will be marked as tainted until setuid(2)
735 	 * is called.  If any child process calls setuid(2) we do not want any
736 	 * future processes to honor the potentially un-safe variables.
737 	 */
738 	if (!trust) {
739 		for (i = 0; i < (int)nitems(ld_env_vars); i++) {
740 			lvd = &ld_env_vars[i];
741 			if (lvd->unsecure)
742 				lvd->val = NULL;
743 		}
744 	}
745 
746 	ld_debug = ld_get_env_var(LD_DEBUG);
747 	if (ld_bind_now == NULL)
748 		ld_bind_not = ld_get_env_var(LD_BIND_NOT) != NULL;
749 	ld_dynamic_weak = ld_get_env_var(LD_DYNAMIC_WEAK) == NULL;
750 	libmap_disable = ld_get_env_var(LD_LIBMAP_DISABLE) != NULL;
751 	libmap_override = ld_get_env_var(LD_LIBMAP);
752 	ld_library_path = ld_get_env_var(LD_LIBRARY_PATH);
753 	ld_library_dirs = ld_get_env_var(LD_LIBRARY_PATH_FDS);
754 	ld_preload = ld_get_env_var(LD_PRELOAD);
755 	ld_preload_fds = ld_get_env_var(LD_PRELOAD_FDS);
756 	ld_elf_hints_path = ld_get_env_var(LD_ELF_HINTS_PATH);
757 	ld_loadfltr = ld_get_env_var(LD_LOADFLTR) != NULL;
758 	library_path_rpath = ld_get_env_var(LD_LIBRARY_PATH_RPATH);
759 	if (library_path_rpath != NULL) {
760 		if (library_path_rpath[0] == 'y' ||
761 		    library_path_rpath[0] == 'Y' ||
762 		    library_path_rpath[0] == '1')
763 			ld_library_path_rpath = true;
764 		else
765 			ld_library_path_rpath = false;
766 	}
767 	static_tls_extra = ld_get_env_var(LD_STATIC_TLS_EXTRA);
768 	if (static_tls_extra != NULL && static_tls_extra[0] != '\0') {
769 		sz = parse_integer(static_tls_extra);
770 		if (sz >= RTLD_STATIC_TLS_EXTRA && sz <= SIZE_T_MAX)
771 			ld_static_tls_extra = sz;
772 	}
773 	dangerous_ld_env = libmap_disable || libmap_override != NULL ||
774 	    ld_library_path != NULL || ld_preload != NULL ||
775 	    ld_elf_hints_path != NULL || ld_loadfltr || !ld_dynamic_weak ||
776 	    static_tls_extra != NULL;
777 	ld_tracing = ld_get_env_var(LD_TRACE_LOADED_OBJECTS);
778 	ld_utrace = ld_get_env_var(LD_UTRACE);
779 
780 	set_ld_elf_hints_path();
781 	if (ld_debug != NULL && *ld_debug != '\0')
782 		debug = 1;
783 	dbg("%s is initialized, base address = %p", __progname,
784 	    (caddr_t)aux_info[AT_BASE]->a_un.a_ptr);
785 	dbg("RTLD dynamic = %p", obj_rtld.dynamic);
786 	dbg("RTLD pltgot  = %p", obj_rtld.pltgot);
787 
788 	dbg("initializing thread locks");
789 	lockdflt_init();
790 
791 	/*
792 	 * Load the main program, or process its program header if it is
793 	 * already loaded.
794 	 */
795 	if (fd != -1) { /* Load the main program. */
796 		dbg("loading main program");
797 		obj_main = map_object(fd, argv0, NULL, true);
798 		close(fd);
799 		if (obj_main == NULL)
800 			rtld_die();
801 		max_stack_flags = obj_main->stack_flags;
802 	} else { /* Main program already loaded. */
803 		dbg("processing main program's program header");
804 		assert(aux_info[AT_PHDR] != NULL);
805 		phdr = (const Elf_Phdr *)aux_info[AT_PHDR]->a_un.a_ptr;
806 		assert(aux_info[AT_PHNUM] != NULL);
807 		phnum = aux_info[AT_PHNUM]->a_un.a_val;
808 		assert(aux_info[AT_PHENT] != NULL);
809 		assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr));
810 		assert(aux_info[AT_ENTRY] != NULL);
811 		imgentry = (caddr_t)aux_info[AT_ENTRY]->a_un.a_ptr;
812 		if ((obj_main = digest_phdr(phdr, phnum, imgentry, argv0)) ==
813 		    NULL)
814 			rtld_die();
815 	}
816 
817 	if (aux_info[AT_EXECPATH] != NULL && fd == -1) {
818 		kexecpath = aux_info[AT_EXECPATH]->a_un.a_ptr;
819 		dbg("AT_EXECPATH %p %s", kexecpath, kexecpath);
820 		if (kexecpath[0] == '/')
821 			obj_main->path = kexecpath;
822 		else if (getcwd(buf, sizeof(buf)) == NULL ||
823 		    strlcat(buf, "/", sizeof(buf)) >= sizeof(buf) ||
824 		    strlcat(buf, kexecpath, sizeof(buf)) >= sizeof(buf))
825 			obj_main->path = xstrdup(argv0);
826 		else
827 			obj_main->path = xstrdup(buf);
828 	} else {
829 		dbg("No AT_EXECPATH or direct exec");
830 		obj_main->path = xstrdup(argv0);
831 	}
832 	dbg("obj_main path %s", obj_main->path);
833 	obj_main->mainprog = true;
834 
835 	if (aux_info[AT_STACKPROT] != NULL &&
836 	    aux_info[AT_STACKPROT]->a_un.a_val != 0)
837 		stack_prot = aux_info[AT_STACKPROT]->a_un.a_val;
838 
839 #ifndef COMPAT_libcompat
840 	/*
841 	 * Get the actual dynamic linker pathname from the executable if
842 	 * possible.  (It should always be possible.)  That ensures that
843 	 * gdb will find the right dynamic linker even if a non-standard
844 	 * one is being used.
845 	 */
846 	if (obj_main->interp != NULL &&
847 	    strcmp(obj_main->interp, obj_rtld.path) != 0) {
848 		free(obj_rtld.path);
849 		obj_rtld.path = xstrdup(obj_main->interp);
850 		__progname = obj_rtld.path;
851 	}
852 #endif
853 
854 	if (!digest_dynamic(obj_main, 0))
855 		rtld_die();
856 	dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d",
857 	    obj_main->path, obj_main->valid_hash_sysv, obj_main->valid_hash_gnu,
858 	    obj_main->dynsymcount);
859 
860 	linkmap_add(obj_main);
861 	linkmap_add(&obj_rtld);
862 	LD_UTRACE(UTRACE_LOAD_OBJECT, obj_main, obj_main->mapbase,
863 	    obj_main->mapsize, 0, obj_main->path);
864 	LD_UTRACE(UTRACE_LOAD_OBJECT, &obj_rtld, obj_rtld.mapbase,
865 	    obj_rtld.mapsize, 0, obj_rtld.path);
866 
867 	/* Link the main program into the list of objects. */
868 	TAILQ_INSERT_HEAD(&obj_list, obj_main, next);
869 	obj_count++;
870 	obj_loads++;
871 
872 	/* Initialize a fake symbol for resolving undefined weak references. */
873 	sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
874 	sym_zero.st_shndx = SHN_UNDEF;
875 	sym_zero.st_value = -(uintptr_t)obj_main->relocbase;
876 
877 	if (!libmap_disable)
878 		libmap_disable = (bool)lm_init(libmap_override);
879 
880 	if (aux_info[AT_KPRELOAD] != NULL &&
881 	    aux_info[AT_KPRELOAD]->a_un.a_ptr != NULL) {
882 		dbg("loading kernel vdso");
883 		if (load_kpreload(aux_info[AT_KPRELOAD]->a_un.a_ptr) == -1)
884 			rtld_die();
885 	}
886 
887 	dbg("loading LD_PRELOAD_FDS libraries");
888 	if (load_preload_objects(ld_preload_fds, true) == -1)
889 		rtld_die();
890 
891 	dbg("loading LD_PRELOAD libraries");
892 	if (load_preload_objects(ld_preload, false) == -1)
893 		rtld_die();
894 	preload_tail = globallist_curr(TAILQ_LAST(&obj_list, obj_entry_q));
895 
896 	dbg("loading needed objects");
897 	if (load_needed_objects(obj_main,
898 		ld_tracing != NULL ? RTLD_LO_TRACE : 0) == -1)
899 		rtld_die();
900 
901 	/* Make a list of all objects loaded at startup. */
902 	last_interposer = obj_main;
903 	TAILQ_FOREACH(obj, &obj_list, next) {
904 		if (obj->marker)
905 			continue;
906 		if (obj->z_interpose && obj != obj_main) {
907 			objlist_put_after(&list_main, last_interposer, obj);
908 			last_interposer = obj;
909 		} else {
910 			objlist_push_tail(&list_main, obj);
911 		}
912 		obj->refcount++;
913 	}
914 
915 	dbg("checking for required versions");
916 	if (rtld_verify_versions(&list_main) == -1 && !ld_tracing)
917 		rtld_die();
918 
919 	if (ld_get_env_var(LD_SHOW_AUXV) != NULL)
920 		dump_auxv(aux_info);
921 
922 	if (ld_tracing) { /* We're done */
923 		trace_loaded_objects(obj_main, true);
924 		exit(0);
925 	}
926 
927 	if (ld_get_env_var(LD_DUMP_REL_PRE) != NULL) {
928 		dump_relocations(obj_main);
929 		exit(0);
930 	}
931 
932 	/*
933 	 * Processing tls relocations requires having the tls offsets
934 	 * initialized.  Prepare offsets before starting initial
935 	 * relocation processing.
936 	 */
937 	dbg("initializing initial thread local storage offsets");
938 	STAILQ_FOREACH(entry, &list_main, link) {
939 		/*
940 		 * Allocate all the initial objects out of the static TLS
941 		 * block even if they didn't ask for it.
942 		 */
943 		allocate_tls_offset(entry->obj);
944 	}
945 
946 	if (!allocate_tls_offset_common(&tcb_list_entry_offset,
947 	    sizeof(struct tcb_list_entry), _Alignof(struct tcb_list_entry),
948 	    0)) {
949 		/*
950 		 * This should be impossible as the static block size is not
951 		 * yet fixed, but catch and diagnose it failing if that ever
952 		 * changes or somehow turns out to be false.
953 		 */
954 		_rtld_error("Could not allocate offset for tcb_list_entry");
955 		rtld_die();
956 	}
957 	dbg("tcb_list_entry_offset %zu", tcb_list_entry_offset);
958 
959 	if (relocate_objects(obj_main,
960 		ld_bind_now != NULL && *ld_bind_now != '\0', &obj_rtld,
961 		SYMLOOK_EARLY, NULL) == -1)
962 		rtld_die();
963 
964 	dbg("doing copy relocations");
965 	if (do_copy_relocations(obj_main) == -1)
966 		rtld_die();
967 
968 	if (ld_get_env_var(LD_DUMP_REL_POST) != NULL) {
969 		dump_relocations(obj_main);
970 		exit(0);
971 	}
972 
973 	ifunc_init(aux_info);
974 
975 	/*
976 	 * Setup TLS for main thread.  This must be done after the
977 	 * relocations are processed, since tls initialization section
978 	 * might be the subject for relocations.
979 	 */
980 	dbg("initializing initial thread local storage");
981 	allocate_initial_tls(globallist_curr(TAILQ_FIRST(&obj_list)));
982 
983 	dbg("initializing key program variables");
984 	set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : "");
985 	set_program_var("environ", env);
986 	set_program_var("__elf_aux_vector", aux);
987 
988 	/* Make a list of init functions to call. */
989 	objlist_init(&initlist);
990 	initlist_for_loaded_obj(globallist_curr(TAILQ_FIRST(&obj_list)),
991 	    preload_tail, &initlist);
992 
993 	r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */
994 
995 	map_stacks_exec(NULL);
996 
997 	if (!obj_main->crt_no_init) {
998 		/*
999 		 * Make sure we don't call the main program's init and fini
1000 		 * functions for binaries linked with old crt1 which calls
1001 		 * _init itself.
1002 		 */
1003 		obj_main->init = obj_main->fini = (Elf_Addr)NULL;
1004 		obj_main->preinit_array = obj_main->init_array =
1005 		    obj_main->fini_array = (Elf_Addr)NULL;
1006 	}
1007 
1008 	if (direct_exec) {
1009 		/* Set osrel for direct-execed binary */
1010 		mib[0] = CTL_KERN;
1011 		mib[1] = KERN_PROC;
1012 		mib[2] = KERN_PROC_OSREL;
1013 		mib[3] = getpid();
1014 		osrel = obj_main->osrel;
1015 		sz = sizeof(old_osrel);
1016 		dbg("setting osrel to %d", osrel);
1017 		(void)sysctl(mib, 4, &old_osrel, &sz, &osrel, sizeof(osrel));
1018 	}
1019 
1020 	wlock_acquire(rtld_bind_lock, &lockstate);
1021 
1022 	dbg("resolving ifuncs");
1023 	if (initlist_objects_ifunc(&initlist,
1024 		ld_bind_now != NULL && *ld_bind_now != '\0', SYMLOOK_EARLY,
1025 		&lockstate) == -1)
1026 		rtld_die();
1027 
1028 	rtld_exit_ptr = rtld_exit;
1029 	if (obj_main->crt_no_init)
1030 		preinit_main();
1031 	objlist_call_init(&initlist, &lockstate);
1032 	_r_debug_postinit(&obj_main->linkmap);
1033 	objlist_clear(&initlist);
1034 	dbg("loading filtees");
1035 	TAILQ_FOREACH(obj, &obj_list, next) {
1036 		if (obj->marker)
1037 			continue;
1038 		if (ld_loadfltr || obj->z_loadfltr)
1039 			load_filtees(obj, 0, &lockstate);
1040 	}
1041 
1042 	dbg("enforcing main obj relro");
1043 	if (obj_enforce_relro(obj_main) == -1)
1044 		rtld_die();
1045 
1046 	lock_release(rtld_bind_lock, &lockstate);
1047 
1048 	dbg("transferring control to program entry point = %p",
1049 	    obj_main->entry);
1050 
1051 	/* Return the exit procedure and the program entry point. */
1052 	*exit_proc = rtld_exit_ptr;
1053 	*objp = obj_main;
1054 	return ((func_ptr_type)obj_main->entry);
1055 }
1056 
1057 void *
rtld_resolve_ifunc(const Obj_Entry * obj,const Elf_Sym * def)1058 rtld_resolve_ifunc(const Obj_Entry *obj, const Elf_Sym *def)
1059 {
1060 	void *ptr;
1061 	Elf_Addr target;
1062 
1063 	ptr = (void *)make_function_pointer(def, obj);
1064 	target = call_ifunc_resolver(ptr);
1065 	return ((void *)target);
1066 }
1067 
1068 Elf_Addr
_rtld_bind(Obj_Entry * obj,Elf_Size reloff)1069 _rtld_bind(Obj_Entry *obj, Elf_Size reloff)
1070 {
1071 	const Elf_Rel *rel;
1072 	const Elf_Sym *def;
1073 	const Obj_Entry *defobj;
1074 	Elf_Addr *where;
1075 	Elf_Addr target;
1076 	RtldLockState lockstate;
1077 
1078 relock:
1079 	rlock_acquire(rtld_bind_lock, &lockstate);
1080 	if (sigsetjmp(lockstate.env, 0) != 0)
1081 		lock_upgrade(rtld_bind_lock, &lockstate);
1082 	if (obj->pltrel)
1083 		rel = (const Elf_Rel *)((const char *)obj->pltrel + reloff);
1084 	else
1085 		rel = (const Elf_Rel *)((const char *)obj->pltrela + reloff);
1086 
1087 	where = (Elf_Addr *)(obj->relocbase + rel->r_offset);
1088 	def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, SYMLOOK_IN_PLT,
1089 	    NULL, &lockstate);
1090 	if (def == NULL)
1091 		rtld_die();
1092 	if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC) {
1093 		if (lockstate_wlocked(&lockstate)) {
1094 			lock_release(rtld_bind_lock, &lockstate);
1095 			goto relock;
1096 		}
1097 		target = (Elf_Addr)rtld_resolve_ifunc(defobj, def);
1098 	} else {
1099 		target = (Elf_Addr)(defobj->relocbase + def->st_value);
1100 	}
1101 
1102 	dbg("\"%s\" in \"%s\" ==> %p in \"%s\"", defobj->strtab + def->st_name,
1103 	    obj->path == NULL ? NULL : basename(obj->path), (void *)target,
1104 	    defobj->path == NULL ? NULL : basename(defobj->path));
1105 
1106 	/*
1107 	 * Write the new contents for the jmpslot. Note that depending on
1108 	 * architecture, the value which we need to return back to the
1109 	 * lazy binding trampoline may or may not be the target
1110 	 * address. The value returned from reloc_jmpslot() is the value
1111 	 * that the trampoline needs.
1112 	 */
1113 	target = reloc_jmpslot(where, target, defobj, obj, rel);
1114 	lock_release(rtld_bind_lock, &lockstate);
1115 	return (target);
1116 }
1117 
1118 /*
1119  * Error reporting function.  Use it like printf.  If formats the message
1120  * into a buffer, and sets things up so that the next call to dlerror()
1121  * will return the message.
1122  */
1123 void
_rtld_error(const char * fmt,...)1124 _rtld_error(const char *fmt, ...)
1125 {
1126 	va_list ap;
1127 
1128 	va_start(ap, fmt);
1129 	rtld_vsnprintf(lockinfo.dlerror_loc(), lockinfo.dlerror_loc_sz, fmt,
1130 	    ap);
1131 	va_end(ap);
1132 	*lockinfo.dlerror_seen() = 0;
1133 	dbg("rtld_error: %s", lockinfo.dlerror_loc());
1134 	LD_UTRACE(UTRACE_RTLD_ERROR, NULL, NULL, 0, 0, lockinfo.dlerror_loc());
1135 }
1136 
1137 /*
1138  * Return a dynamically-allocated copy of the current error message, if any.
1139  */
1140 static struct dlerror_save *
errmsg_save(void)1141 errmsg_save(void)
1142 {
1143 	struct dlerror_save *res;
1144 
1145 	res = xmalloc(sizeof(*res));
1146 	res->seen = *lockinfo.dlerror_seen();
1147 	if (res->seen == 0)
1148 		res->msg = xstrdup(lockinfo.dlerror_loc());
1149 	return (res);
1150 }
1151 
1152 /*
1153  * Restore the current error message from a copy which was previously saved
1154  * by errmsg_save().  The copy is freed.
1155  */
1156 static void
errmsg_restore(struct dlerror_save * saved_msg)1157 errmsg_restore(struct dlerror_save *saved_msg)
1158 {
1159 	if (saved_msg == NULL || saved_msg->seen == 1) {
1160 		*lockinfo.dlerror_seen() = 1;
1161 	} else {
1162 		*lockinfo.dlerror_seen() = 0;
1163 		strlcpy(lockinfo.dlerror_loc(), saved_msg->msg,
1164 		    lockinfo.dlerror_loc_sz);
1165 		free(saved_msg->msg);
1166 	}
1167 	free(saved_msg);
1168 }
1169 
1170 static const char *
basename(const char * name)1171 basename(const char *name)
1172 {
1173 	const char *p;
1174 
1175 	p = strrchr(name, '/');
1176 	return (p != NULL ? p + 1 : name);
1177 }
1178 
1179 static struct utsname uts;
1180 
1181 static char *
origin_subst_one(Obj_Entry * obj,char * real,const char * kw,const char * subst,bool may_free)1182 origin_subst_one(Obj_Entry *obj, char *real, const char *kw, const char *subst,
1183     bool may_free)
1184 {
1185 	char *p, *p1, *res, *resp;
1186 	int subst_len, kw_len, subst_count, old_len, new_len;
1187 
1188 	kw_len = strlen(kw);
1189 
1190 	/*
1191 	 * First, count the number of the keyword occurrences, to
1192 	 * preallocate the final string.
1193 	 */
1194 	for (p = real, subst_count = 0;; p = p1 + kw_len, subst_count++) {
1195 		p1 = strstr(p, kw);
1196 		if (p1 == NULL)
1197 			break;
1198 	}
1199 
1200 	/*
1201 	 * If the keyword is not found, just return.
1202 	 *
1203 	 * Return non-substituted string if resolution failed.  We
1204 	 * cannot do anything more reasonable, the failure mode of the
1205 	 * caller is unresolved library anyway.
1206 	 */
1207 	if (subst_count == 0 || (obj != NULL && !obj_resolve_origin(obj)))
1208 		return (may_free ? real : xstrdup(real));
1209 	if (obj != NULL)
1210 		subst = obj->origin_path;
1211 
1212 	/*
1213 	 * There is indeed something to substitute.  Calculate the
1214 	 * length of the resulting string, and allocate it.
1215 	 */
1216 	subst_len = strlen(subst);
1217 	old_len = strlen(real);
1218 	new_len = old_len + (subst_len - kw_len) * subst_count;
1219 	res = xmalloc(new_len + 1);
1220 
1221 	/*
1222 	 * Now, execute the substitution loop.
1223 	 */
1224 	for (p = real, resp = res, *resp = '\0';;) {
1225 		p1 = strstr(p, kw);
1226 		if (p1 != NULL) {
1227 			/* Copy the prefix before keyword. */
1228 			memcpy(resp, p, p1 - p);
1229 			resp += p1 - p;
1230 			/* Keyword replacement. */
1231 			memcpy(resp, subst, subst_len);
1232 			resp += subst_len;
1233 			*resp = '\0';
1234 			p = p1 + kw_len;
1235 		} else
1236 			break;
1237 	}
1238 
1239 	/* Copy to the end of string and finish. */
1240 	strcat(resp, p);
1241 	if (may_free)
1242 		free(real);
1243 	return (res);
1244 }
1245 
1246 static const struct {
1247 	const char *kw;
1248 	bool pass_obj;
1249 	const char *subst;
1250 } tokens[] = {
1251 	{ .kw = "$ORIGIN", .pass_obj = true, .subst = NULL },
1252 	{ .kw = "${ORIGIN}", .pass_obj = true, .subst = NULL },
1253 	{ .kw = "$OSNAME", .pass_obj = false, .subst = uts.sysname },
1254 	{ .kw = "${OSNAME}", .pass_obj = false, .subst = uts.sysname },
1255 	{ .kw = "$OSREL", .pass_obj = false, .subst = uts.release },
1256 	{ .kw = "${OSREL}", .pass_obj = false, .subst = uts.release },
1257 	{ .kw = "$PLATFORM", .pass_obj = false, .subst = uts.machine },
1258 	{ .kw = "${PLATFORM}", .pass_obj = false, .subst = uts.machine },
1259 	{ .kw = "$LIB", .pass_obj = false, .subst = TOKEN_LIB },
1260 	{ .kw = "${LIB}", .pass_obj = false, .subst = TOKEN_LIB },
1261 };
1262 
1263 static char *
origin_subst(Obj_Entry * obj,const char * real)1264 origin_subst(Obj_Entry *obj, const char *real)
1265 {
1266 	char *res;
1267 	int i;
1268 
1269 	if (obj == NULL || !trust)
1270 		return (xstrdup(real));
1271 	if (uts.sysname[0] == '\0') {
1272 		if (uname(&uts) != 0) {
1273 			_rtld_error("utsname failed: %d", errno);
1274 			return (NULL);
1275 		}
1276 	}
1277 
1278 	/* __DECONST is safe here since without may_free real is unchanged */
1279 	res = __DECONST(char *, real);
1280 	for (i = 0; i < (int)nitems(tokens); i++) {
1281 		res = origin_subst_one(tokens[i].pass_obj ? obj : NULL, res,
1282 		    tokens[i].kw, tokens[i].subst, i != 0);
1283 	}
1284 	return (res);
1285 }
1286 
1287 void
rtld_die(void)1288 rtld_die(void)
1289 {
1290 	const char *msg = dlerror();
1291 
1292 	if (msg == NULL)
1293 		msg = "Fatal error";
1294 	rtld_fdputstr(STDERR_FILENO, _BASENAME_RTLD ": ");
1295 	rtld_fdputstr(STDERR_FILENO, msg);
1296 	rtld_fdputchar(STDERR_FILENO, '\n');
1297 	_exit(1);
1298 }
1299 
1300 /*
1301  * Process a shared object's DYNAMIC section, and save the important
1302  * information in its Obj_Entry structure.
1303  */
1304 static void
digest_dynamic1(Obj_Entry * obj,int early,const Elf_Dyn ** dyn_rpath,const Elf_Dyn ** dyn_soname,const Elf_Dyn ** dyn_runpath)1305 digest_dynamic1(Obj_Entry *obj, int early, const Elf_Dyn **dyn_rpath,
1306     const Elf_Dyn **dyn_soname, const Elf_Dyn **dyn_runpath)
1307 {
1308 	const Elf_Dyn *dynp;
1309 	Needed_Entry **needed_tail = &obj->needed;
1310 	Needed_Entry **needed_filtees_tail = &obj->needed_filtees;
1311 	Needed_Entry **needed_aux_filtees_tail = &obj->needed_aux_filtees;
1312 	const Elf_Hashelt *hashtab;
1313 	const Elf32_Word *hashval;
1314 	Elf32_Word bkt, nmaskwords;
1315 	int bloom_size32;
1316 	int plttype = DT_REL;
1317 
1318 	*dyn_rpath = NULL;
1319 	*dyn_soname = NULL;
1320 	*dyn_runpath = NULL;
1321 
1322 	obj->bind_now = false;
1323 	dynp = obj->dynamic;
1324 	if (dynp == NULL)
1325 		return;
1326 	for (; dynp->d_tag != DT_NULL; dynp++) {
1327 		switch (dynp->d_tag) {
1328 		case DT_REL:
1329 			obj->rel = (const Elf_Rel *)(obj->relocbase +
1330 			    dynp->d_un.d_ptr);
1331 			break;
1332 
1333 		case DT_RELSZ:
1334 			obj->relsize = dynp->d_un.d_val;
1335 			break;
1336 
1337 		case DT_RELENT:
1338 			assert(dynp->d_un.d_val == sizeof(Elf_Rel));
1339 			break;
1340 
1341 		case DT_JMPREL:
1342 			obj->pltrel = (const Elf_Rel *)(obj->relocbase +
1343 			    dynp->d_un.d_ptr);
1344 			break;
1345 
1346 		case DT_PLTRELSZ:
1347 			obj->pltrelsize = dynp->d_un.d_val;
1348 			break;
1349 
1350 		case DT_RELA:
1351 			obj->rela = (const Elf_Rela *)(obj->relocbase +
1352 			    dynp->d_un.d_ptr);
1353 			break;
1354 
1355 		case DT_RELASZ:
1356 			obj->relasize = dynp->d_un.d_val;
1357 			break;
1358 
1359 		case DT_RELAENT:
1360 			assert(dynp->d_un.d_val == sizeof(Elf_Rela));
1361 			break;
1362 
1363 		case DT_RELR:
1364 			obj->relr = (const Elf_Relr *)(obj->relocbase +
1365 			    dynp->d_un.d_ptr);
1366 			break;
1367 
1368 		case DT_RELRSZ:
1369 			obj->relrsize = dynp->d_un.d_val;
1370 			break;
1371 
1372 		case DT_RELRENT:
1373 			assert(dynp->d_un.d_val == sizeof(Elf_Relr));
1374 			break;
1375 
1376 		case DT_PLTREL:
1377 			plttype = dynp->d_un.d_val;
1378 			assert(
1379 			    dynp->d_un.d_val == DT_REL || plttype == DT_RELA);
1380 			break;
1381 
1382 		case DT_SYMTAB:
1383 			obj->symtab = (const Elf_Sym *)(obj->relocbase +
1384 			    dynp->d_un.d_ptr);
1385 			break;
1386 
1387 		case DT_SYMENT:
1388 			assert(dynp->d_un.d_val == sizeof(Elf_Sym));
1389 			break;
1390 
1391 		case DT_STRTAB:
1392 			obj->strtab = (const char *)(obj->relocbase +
1393 			    dynp->d_un.d_ptr);
1394 			break;
1395 
1396 		case DT_STRSZ:
1397 			obj->strsize = dynp->d_un.d_val;
1398 			break;
1399 
1400 		case DT_VERNEED:
1401 			obj->verneed = (const Elf_Verneed *)(obj->relocbase +
1402 			    dynp->d_un.d_val);
1403 			break;
1404 
1405 		case DT_VERNEEDNUM:
1406 			obj->verneednum = dynp->d_un.d_val;
1407 			break;
1408 
1409 		case DT_VERDEF:
1410 			obj->verdef = (const Elf_Verdef *)(obj->relocbase +
1411 			    dynp->d_un.d_val);
1412 			break;
1413 
1414 		case DT_VERDEFNUM:
1415 			obj->verdefnum = dynp->d_un.d_val;
1416 			break;
1417 
1418 		case DT_VERSYM:
1419 			obj->versyms = (const Elf_Versym *)(obj->relocbase +
1420 			    dynp->d_un.d_val);
1421 			break;
1422 
1423 		case DT_HASH: {
1424 			hashtab = (const Elf_Hashelt *)(obj->relocbase +
1425 			    dynp->d_un.d_ptr);
1426 			obj->nbuckets = hashtab[0];
1427 			obj->nchains = hashtab[1];
1428 			obj->buckets = hashtab + 2;
1429 			obj->chains = obj->buckets + obj->nbuckets;
1430 			obj->valid_hash_sysv = obj->nbuckets > 0 &&
1431 			    obj->nchains > 0 && obj->buckets != NULL;
1432 		} break;
1433 
1434 		case DT_GNU_HASH: {
1435 			hashtab = (const Elf_Hashelt *)(obj->relocbase +
1436 			    dynp->d_un.d_ptr);
1437 			obj->nbuckets_gnu = hashtab[0];
1438 			obj->symndx_gnu = hashtab[1];
1439 			nmaskwords = hashtab[2];
1440 			bloom_size32 = (__ELF_WORD_SIZE / 32) * nmaskwords;
1441 			obj->maskwords_bm_gnu = nmaskwords - 1;
1442 			obj->shift2_gnu = hashtab[3];
1443 			obj->bloom_gnu = (const Elf_Addr *)(hashtab + 4);
1444 			obj->buckets_gnu = hashtab + 4 + bloom_size32;
1445 			obj->chain_zero_gnu = obj->buckets_gnu +
1446 			    obj->nbuckets_gnu - obj->symndx_gnu;
1447 			/* Number of bitmask words is required to be power of 2
1448 			 */
1449 			obj->valid_hash_gnu = powerof2(nmaskwords) &&
1450 			    obj->nbuckets_gnu > 0 && obj->buckets_gnu != NULL;
1451 		} break;
1452 
1453 		case DT_NEEDED:
1454 			if (!obj->rtld) {
1455 				Needed_Entry *nep = NEW(Needed_Entry);
1456 				nep->name = dynp->d_un.d_val;
1457 				nep->obj = NULL;
1458 				nep->next = NULL;
1459 
1460 				*needed_tail = nep;
1461 				needed_tail = &nep->next;
1462 			}
1463 			break;
1464 
1465 		case DT_FILTER:
1466 			if (!obj->rtld) {
1467 				Needed_Entry *nep = NEW(Needed_Entry);
1468 				nep->name = dynp->d_un.d_val;
1469 				nep->obj = NULL;
1470 				nep->next = NULL;
1471 
1472 				*needed_filtees_tail = nep;
1473 				needed_filtees_tail = &nep->next;
1474 
1475 				if (obj->linkmap.l_refname == NULL)
1476 					obj->linkmap.l_refname =
1477 					    (char *)dynp->d_un.d_val;
1478 			}
1479 			break;
1480 
1481 		case DT_AUXILIARY:
1482 			if (!obj->rtld) {
1483 				Needed_Entry *nep = NEW(Needed_Entry);
1484 				nep->name = dynp->d_un.d_val;
1485 				nep->obj = NULL;
1486 				nep->next = NULL;
1487 
1488 				*needed_aux_filtees_tail = nep;
1489 				needed_aux_filtees_tail = &nep->next;
1490 			}
1491 			break;
1492 
1493 		case DT_PLTGOT:
1494 			obj->pltgot = (Elf_Addr *)(obj->relocbase +
1495 			    dynp->d_un.d_ptr);
1496 			break;
1497 
1498 		case DT_TEXTREL:
1499 			obj->textrel = true;
1500 			break;
1501 
1502 		case DT_SYMBOLIC:
1503 			obj->symbolic = true;
1504 			break;
1505 
1506 		case DT_RPATH:
1507 			/*
1508 			 * We have to wait until later to process this, because
1509 			 * we might not have gotten the address of the string
1510 			 * table yet.
1511 			 */
1512 			*dyn_rpath = dynp;
1513 			break;
1514 
1515 		case DT_SONAME:
1516 			*dyn_soname = dynp;
1517 			break;
1518 
1519 		case DT_RUNPATH:
1520 			*dyn_runpath = dynp;
1521 			break;
1522 
1523 		case DT_INIT:
1524 			obj->init = (Elf_Addr)(obj->relocbase +
1525 			    dynp->d_un.d_ptr);
1526 			break;
1527 
1528 		case DT_PREINIT_ARRAY:
1529 			obj->preinit_array = (Elf_Addr)(obj->relocbase +
1530 			    dynp->d_un.d_ptr);
1531 			break;
1532 
1533 		case DT_PREINIT_ARRAYSZ:
1534 			obj->preinit_array_num = dynp->d_un.d_val /
1535 			    sizeof(Elf_Addr);
1536 			break;
1537 
1538 		case DT_INIT_ARRAY:
1539 			obj->init_array = (Elf_Addr)(obj->relocbase +
1540 			    dynp->d_un.d_ptr);
1541 			break;
1542 
1543 		case DT_INIT_ARRAYSZ:
1544 			obj->init_array_num = dynp->d_un.d_val /
1545 			    sizeof(Elf_Addr);
1546 			break;
1547 
1548 		case DT_FINI:
1549 			obj->fini = (Elf_Addr)(obj->relocbase +
1550 			    dynp->d_un.d_ptr);
1551 			break;
1552 
1553 		case DT_FINI_ARRAY:
1554 			obj->fini_array = (Elf_Addr)(obj->relocbase +
1555 			    dynp->d_un.d_ptr);
1556 			break;
1557 
1558 		case DT_FINI_ARRAYSZ:
1559 			obj->fini_array_num = dynp->d_un.d_val /
1560 			    sizeof(Elf_Addr);
1561 			break;
1562 
1563 		case DT_DEBUG:
1564 			if (!early)
1565 				dbg("Filling in DT_DEBUG entry");
1566 			(__DECONST(Elf_Dyn *, dynp))->d_un.d_ptr =
1567 			    (Elf_Addr)&r_debug;
1568 			break;
1569 
1570 		case DT_FLAGS:
1571 			if (dynp->d_un.d_val & DF_ORIGIN)
1572 				obj->z_origin = true;
1573 			if (dynp->d_un.d_val & DF_SYMBOLIC)
1574 				obj->symbolic = true;
1575 			if (dynp->d_un.d_val & DF_TEXTREL)
1576 				obj->textrel = true;
1577 			if (dynp->d_un.d_val & DF_BIND_NOW)
1578 				obj->bind_now = true;
1579 			if (dynp->d_un.d_val & DF_STATIC_TLS)
1580 				obj->static_tls = true;
1581 			break;
1582 
1583 		case DT_FLAGS_1:
1584 			if (dynp->d_un.d_val & DF_1_NOOPEN)
1585 				obj->z_noopen = true;
1586 			if (dynp->d_un.d_val & DF_1_ORIGIN)
1587 				obj->z_origin = true;
1588 			if (dynp->d_un.d_val & DF_1_GLOBAL)
1589 				obj->z_global = true;
1590 			if (dynp->d_un.d_val & DF_1_BIND_NOW)
1591 				obj->bind_now = true;
1592 			if (dynp->d_un.d_val & DF_1_NODELETE)
1593 				obj->z_nodelete = true;
1594 			if (dynp->d_un.d_val & DF_1_LOADFLTR)
1595 				obj->z_loadfltr = true;
1596 			if (dynp->d_un.d_val & DF_1_INTERPOSE)
1597 				obj->z_interpose = true;
1598 			if (dynp->d_un.d_val & DF_1_NODEFLIB)
1599 				obj->z_nodeflib = true;
1600 			if (dynp->d_un.d_val & DF_1_PIE)
1601 				obj->z_pie = true;
1602 			if (dynp->d_un.d_val & DF_1_INITFIRST)
1603 				obj->z_initfirst = true;
1604 			break;
1605 
1606 		default:
1607 			if (arch_digest_dynamic(obj, dynp))
1608 				break;
1609 
1610 			if (!early) {
1611 				dbg("Ignoring d_tag %ld = %#lx",
1612 				    (long)dynp->d_tag, (long)dynp->d_tag);
1613 			}
1614 			break;
1615 		}
1616 	}
1617 
1618 	obj->traced = false;
1619 
1620 	if (plttype == DT_RELA) {
1621 		obj->pltrela = (const Elf_Rela *)obj->pltrel;
1622 		obj->pltrel = NULL;
1623 		obj->pltrelasize = obj->pltrelsize;
1624 		obj->pltrelsize = 0;
1625 	}
1626 
1627 	/* Determine size of dynsym table (equal to nchains of sysv hash) */
1628 	if (obj->valid_hash_sysv)
1629 		obj->dynsymcount = obj->nchains;
1630 	else if (obj->valid_hash_gnu) {
1631 		obj->dynsymcount = 0;
1632 		for (bkt = 0; bkt < obj->nbuckets_gnu; bkt++) {
1633 			if (obj->buckets_gnu[bkt] == 0)
1634 				continue;
1635 			hashval = &obj->chain_zero_gnu[obj->buckets_gnu[bkt]];
1636 			do
1637 				obj->dynsymcount++;
1638 			while ((*hashval++ & 1u) == 0);
1639 		}
1640 		obj->dynsymcount += obj->symndx_gnu;
1641 	}
1642 
1643 	if (obj->linkmap.l_refname != NULL)
1644 		obj->linkmap.l_refname = obj->strtab +
1645 		    (unsigned long)obj->linkmap.l_refname;
1646 }
1647 
1648 static bool
obj_resolve_origin(Obj_Entry * obj)1649 obj_resolve_origin(Obj_Entry *obj)
1650 {
1651 	if (obj->origin_path != NULL)
1652 		return (true);
1653 	obj->origin_path = xmalloc(PATH_MAX);
1654 	return (rtld_dirname_abs(obj->path, obj->origin_path) != -1);
1655 }
1656 
1657 static bool
digest_dynamic2(Obj_Entry * obj,const Elf_Dyn * dyn_rpath,const Elf_Dyn * dyn_soname,const Elf_Dyn * dyn_runpath)1658 digest_dynamic2(Obj_Entry *obj, const Elf_Dyn *dyn_rpath,
1659     const Elf_Dyn *dyn_soname, const Elf_Dyn *dyn_runpath)
1660 {
1661 	if (obj->z_origin && !obj_resolve_origin(obj))
1662 		return (false);
1663 
1664 	if (dyn_runpath != NULL) {
1665 		obj->runpath = (const char *)obj->strtab +
1666 		    dyn_runpath->d_un.d_val;
1667 		obj->runpath = origin_subst(obj, obj->runpath);
1668 	} else if (dyn_rpath != NULL) {
1669 		obj->rpath = (const char *)obj->strtab + dyn_rpath->d_un.d_val;
1670 		obj->rpath = origin_subst(obj, obj->rpath);
1671 	}
1672 	if (dyn_soname != NULL)
1673 		object_add_name(obj, obj->strtab + dyn_soname->d_un.d_val);
1674 	return (true);
1675 }
1676 
1677 static bool
digest_dynamic(Obj_Entry * obj,int early)1678 digest_dynamic(Obj_Entry *obj, int early)
1679 {
1680 	const Elf_Dyn *dyn_rpath;
1681 	const Elf_Dyn *dyn_soname;
1682 	const Elf_Dyn *dyn_runpath;
1683 
1684 	digest_dynamic1(obj, early, &dyn_rpath, &dyn_soname, &dyn_runpath);
1685 	return (digest_dynamic2(obj, dyn_rpath, dyn_soname, dyn_runpath));
1686 }
1687 
1688 /*
1689  * Process a shared object's program header.  This is used only for the
1690  * main program, when the kernel has already loaded the main program
1691  * into memory before calling the dynamic linker.  It creates and
1692  * returns an Obj_Entry structure.
1693  */
1694 static Obj_Entry *
digest_phdr(const Elf_Phdr * phdr,int phnum,caddr_t entry,const char * path)1695 digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path)
1696 {
1697 	Obj_Entry *obj;
1698 	const Elf_Phdr *phlimit = phdr + phnum;
1699 	const Elf_Phdr *ph;
1700 	Elf_Addr note_start, note_end;
1701 	int nsegs = 0;
1702 
1703 	obj = obj_new();
1704 	for (ph = phdr; ph < phlimit; ph++) {
1705 		if (ph->p_type != PT_PHDR)
1706 			continue;
1707 
1708 		obj->phdr = phdr;
1709 		obj->phsize = ph->p_memsz;
1710 		obj->relocbase = __DECONST(char *, phdr) - ph->p_vaddr;
1711 		break;
1712 	}
1713 
1714 	obj->stack_flags = PF_X | PF_R | PF_W;
1715 
1716 	for (ph = phdr; ph < phlimit; ph++) {
1717 		switch (ph->p_type) {
1718 		case PT_INTERP:
1719 			obj->interp = (const char *)(ph->p_vaddr +
1720 			    obj->relocbase);
1721 			break;
1722 
1723 		case PT_LOAD:
1724 			if (nsegs == 0) { /* First load segment */
1725 				obj->vaddrbase = rtld_trunc_page(ph->p_vaddr);
1726 				obj->mapbase = obj->vaddrbase + obj->relocbase;
1727 			} else { /* Last load segment */
1728 				obj->mapsize = rtld_round_page(
1729 				    ph->p_vaddr + ph->p_memsz) -
1730 				    obj->vaddrbase;
1731 			}
1732 			nsegs++;
1733 			break;
1734 
1735 		case PT_DYNAMIC:
1736 			obj->dynamic = (const Elf_Dyn *)(ph->p_vaddr +
1737 			    obj->relocbase);
1738 			break;
1739 
1740 		case PT_TLS:
1741 			obj->tlsindex = 1;
1742 			obj->tlssize = ph->p_memsz;
1743 			obj->tlsalign = ph->p_align;
1744 			obj->tlsinitsize = ph->p_filesz;
1745 			obj->tlsinit = (void *)(ph->p_vaddr + obj->relocbase);
1746 			obj->tlspoffset = ph->p_offset;
1747 			break;
1748 
1749 		case PT_GNU_STACK:
1750 			obj->stack_flags = ph->p_flags;
1751 			break;
1752 
1753 		case PT_NOTE:
1754 			note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr;
1755 			note_end = note_start + ph->p_filesz;
1756 			digest_notes(obj, note_start, note_end);
1757 			break;
1758 		}
1759 	}
1760 	if (nsegs < 1) {
1761 		_rtld_error("%s: too few PT_LOAD segments", path);
1762 		return (NULL);
1763 	}
1764 
1765 	obj->entry = entry;
1766 	return (obj);
1767 }
1768 
1769 void
digest_notes(Obj_Entry * obj,Elf_Addr note_start,Elf_Addr note_end)1770 digest_notes(Obj_Entry *obj, Elf_Addr note_start, Elf_Addr note_end)
1771 {
1772 	const Elf_Note *note;
1773 	const char *note_name;
1774 	uintptr_t p;
1775 
1776 	for (note = (const Elf_Note *)note_start; (Elf_Addr)note < note_end;
1777 	    note = (const Elf_Note *)((const char *)(note + 1) +
1778 		roundup2(note->n_namesz, sizeof(Elf32_Addr)) +
1779 		roundup2(note->n_descsz, sizeof(Elf32_Addr)))) {
1780 		if (arch_digest_note(obj, note))
1781 			continue;
1782 
1783 		if (note->n_namesz != sizeof(NOTE_FREEBSD_VENDOR) ||
1784 		    note->n_descsz != sizeof(int32_t))
1785 			continue;
1786 		if (note->n_type != NT_FREEBSD_ABI_TAG &&
1787 		    note->n_type != NT_FREEBSD_FEATURE_CTL &&
1788 		    note->n_type != NT_FREEBSD_NOINIT_TAG)
1789 			continue;
1790 		note_name = (const char *)(note + 1);
1791 		if (strncmp(NOTE_FREEBSD_VENDOR, note_name,
1792 			sizeof(NOTE_FREEBSD_VENDOR)) != 0)
1793 			continue;
1794 		switch (note->n_type) {
1795 		case NT_FREEBSD_ABI_TAG:
1796 			/* FreeBSD osrel note */
1797 			p = (uintptr_t)(note + 1);
1798 			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1799 			obj->osrel = *(const int32_t *)(p);
1800 			dbg("note osrel %d", obj->osrel);
1801 			break;
1802 		case NT_FREEBSD_FEATURE_CTL:
1803 			/* FreeBSD ABI feature control note */
1804 			p = (uintptr_t)(note + 1);
1805 			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1806 			obj->fctl0 = *(const uint32_t *)(p);
1807 			dbg("note fctl0 %#x", obj->fctl0);
1808 			break;
1809 		case NT_FREEBSD_NOINIT_TAG:
1810 			/* FreeBSD 'crt does not call init' note */
1811 			obj->crt_no_init = true;
1812 			dbg("note crt_no_init");
1813 			break;
1814 		}
1815 	}
1816 }
1817 
1818 static Obj_Entry *
dlcheck(void * handle)1819 dlcheck(void *handle)
1820 {
1821 	Obj_Entry *obj;
1822 
1823 	TAILQ_FOREACH(obj, &obj_list, next) {
1824 		if (obj == (Obj_Entry *)handle)
1825 			break;
1826 	}
1827 
1828 	if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) {
1829 		_rtld_error("Invalid shared object handle %p", handle);
1830 		return (NULL);
1831 	}
1832 	return (obj);
1833 }
1834 
1835 /*
1836  * If the given object is already in the donelist, return true.  Otherwise
1837  * add the object to the list and return false.
1838  */
1839 static bool
donelist_check(DoneList * dlp,const Obj_Entry * obj)1840 donelist_check(DoneList *dlp, const Obj_Entry *obj)
1841 {
1842 	unsigned int i;
1843 
1844 	for (i = 0; i < dlp->num_used; i++)
1845 		if (dlp->objs[i] == obj)
1846 			return (true);
1847 	/*
1848 	 * Our donelist allocation should always be sufficient.  But if
1849 	 * our threads locking isn't working properly, more shared objects
1850 	 * could have been loaded since we allocated the list.  That should
1851 	 * never happen, but we'll handle it properly just in case it does.
1852 	 */
1853 	if (dlp->num_used < dlp->num_alloc)
1854 		dlp->objs[dlp->num_used++] = obj;
1855 	return (false);
1856 }
1857 
1858 /*
1859  * SysV hash function for symbol table lookup.  It is a slightly optimized
1860  * version of the hash specified by the System V ABI.
1861  */
1862 Elf32_Word
elf_hash(const char * name)1863 elf_hash(const char *name)
1864 {
1865 	const unsigned char *p = (const unsigned char *)name;
1866 	Elf32_Word h = 0;
1867 
1868 	while (*p != '\0') {
1869 		h = (h << 4) + *p++;
1870 		h ^= (h >> 24) & 0xf0;
1871 	}
1872 	return (h & 0x0fffffff);
1873 }
1874 
1875 /*
1876  * The GNU hash function is the Daniel J. Bernstein hash clipped to 32 bits
1877  * unsigned in case it's implemented with a wider type.
1878  */
1879 static uint32_t
gnu_hash(const char * s)1880 gnu_hash(const char *s)
1881 {
1882 	uint32_t h;
1883 	unsigned char c;
1884 
1885 	h = 5381;
1886 	for (c = *s; c != '\0'; c = *++s)
1887 		h = h * 33 + c;
1888 	return (h & 0xffffffff);
1889 }
1890 
1891 /*
1892  * Find the library with the given name, and return its full pathname.
1893  * The returned string is dynamically allocated.  Generates an error
1894  * message and returns NULL if the library cannot be found.
1895  *
1896  * If the second argument is non-NULL, then it refers to an already-
1897  * loaded shared object, whose library search path will be searched.
1898  *
1899  * If a library is successfully located via LD_LIBRARY_PATH_FDS, its
1900  * descriptor (which is close-on-exec) will be passed out via the third
1901  * argument.
1902  *
1903  * The search order is:
1904  *   DT_RPATH in the referencing file _unless_ DT_RUNPATH is present (1)
1905  *   DT_RPATH of the main object if DSO without defined DT_RUNPATH (1)
1906  *   LD_LIBRARY_PATH
1907  *   DT_RUNPATH in the referencing file
1908  *   ldconfig hints (if -z nodefaultlib, filter out default library directories
1909  *	 from list)
1910  *   /lib:/usr/lib _unless_ the referencing file is linked with -z nodefaultlib
1911  *
1912  * (1) Handled in digest_dynamic2 - rpath left NULL if runpath defined.
1913  */
1914 static char *
find_library(const char * xname,const Obj_Entry * refobj,int * fdp)1915 find_library(const char *xname, const Obj_Entry *refobj, int *fdp)
1916 {
1917 	char *pathname, *refobj_path;
1918 	const char *name;
1919 	bool nodeflib, objgiven;
1920 
1921 	objgiven = refobj != NULL;
1922 
1923 	if (libmap_disable || !objgiven ||
1924 	    (name = lm_find(refobj->path, xname)) == NULL)
1925 		name = xname;
1926 
1927 	if (strchr(name, '/') != NULL) { /* Hard coded pathname */
1928 		if (name[0] != '/' && !trust) {
1929 			_rtld_error(
1930 		    "Absolute pathname required for shared object \"%s\"",
1931 			    name);
1932 			return (NULL);
1933 		}
1934 		return (origin_subst(__DECONST(Obj_Entry *, refobj),
1935 		    __DECONST(char *, name)));
1936 	}
1937 
1938 	dbg(" Searching for \"%s\"", name);
1939 	refobj_path = objgiven ? refobj->path : NULL;
1940 
1941 	/*
1942 	 * If refobj->rpath != NULL, then refobj->runpath is NULL.  Fall
1943 	 * back to pre-conforming behaviour if user requested so with
1944 	 * LD_LIBRARY_PATH_RPATH environment variable and ignore -z
1945 	 * nodeflib.
1946 	 */
1947 	if (objgiven && refobj->rpath != NULL && ld_library_path_rpath) {
1948 		pathname = search_library_path(name, ld_library_path,
1949 		    refobj_path, fdp);
1950 		if (pathname != NULL)
1951 			return (pathname);
1952 		if (refobj != NULL) {
1953 			pathname = search_library_path(name, refobj->rpath,
1954 			    refobj_path, fdp);
1955 			if (pathname != NULL)
1956 				return (pathname);
1957 		}
1958 		pathname = search_library_pathfds(name, ld_library_dirs, fdp);
1959 		if (pathname != NULL)
1960 			return (pathname);
1961 		pathname = search_library_path(name, gethints(false),
1962 		    refobj_path, fdp);
1963 		if (pathname != NULL)
1964 			return (pathname);
1965 		pathname = search_library_path(name, ld_standard_library_path,
1966 		    refobj_path, fdp);
1967 		if (pathname != NULL)
1968 			return (pathname);
1969 	} else {
1970 		nodeflib = objgiven ? refobj->z_nodeflib : false;
1971 		if (objgiven) {
1972 			pathname = search_library_path(name, refobj->rpath,
1973 			    refobj->path, fdp);
1974 			if (pathname != NULL)
1975 				return (pathname);
1976 		}
1977 		if (objgiven && refobj->runpath == NULL && refobj != obj_main) {
1978 			pathname = search_library_path(name, obj_main->rpath,
1979 			    refobj_path, fdp);
1980 			if (pathname != NULL)
1981 				return (pathname);
1982 		}
1983 		pathname = search_library_path(name, ld_library_path,
1984 		    refobj_path, fdp);
1985 		if (pathname != NULL)
1986 			return (pathname);
1987 		if (objgiven) {
1988 			pathname = search_library_path(name, refobj->runpath,
1989 			    refobj_path, fdp);
1990 			if (pathname != NULL)
1991 				return (pathname);
1992 		}
1993 		pathname = search_library_pathfds(name, ld_library_dirs, fdp);
1994 		if (pathname != NULL)
1995 			return (pathname);
1996 		pathname = search_library_path(name, gethints(nodeflib),
1997 		    refobj_path, fdp);
1998 		if (pathname != NULL)
1999 			return (pathname);
2000 		if (objgiven && !nodeflib) {
2001 			pathname = search_library_path(name,
2002 			    ld_standard_library_path, refobj_path, fdp);
2003 			if (pathname != NULL)
2004 				return (pathname);
2005 		}
2006 	}
2007 
2008 	if (objgiven && refobj->path != NULL) {
2009 		_rtld_error(
2010 	    "Shared object \"%s\" not found, required by \"%s\"",
2011 		    name, basename(refobj->path));
2012 	} else {
2013 		_rtld_error("Shared object \"%s\" not found", name);
2014 	}
2015 	return (NULL);
2016 }
2017 
2018 /*
2019  * Given a symbol number in a referencing object, find the corresponding
2020  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
2021  * no definition was found.  Returns a pointer to the Obj_Entry of the
2022  * defining object via the reference parameter DEFOBJ_OUT.
2023  */
2024 const Elf_Sym *
find_symdef(unsigned long symnum,const Obj_Entry * refobj,const Obj_Entry ** defobj_out,int flags,SymCache * cache,RtldLockState * lockstate)2025 find_symdef(unsigned long symnum, const Obj_Entry *refobj,
2026     const Obj_Entry **defobj_out, int flags, SymCache *cache,
2027     RtldLockState *lockstate)
2028 {
2029 	const Elf_Sym *ref;
2030 	const Elf_Sym *def;
2031 	const Obj_Entry *defobj;
2032 	const Ver_Entry *ve;
2033 	SymLook req;
2034 	const char *name;
2035 	int res;
2036 
2037 	/*
2038 	 * If we have already found this symbol, get the information from
2039 	 * the cache.
2040 	 */
2041 	if (symnum >= refobj->dynsymcount)
2042 		return (NULL); /* Bad object */
2043 	if (cache != NULL && cache[symnum].sym != NULL) {
2044 		*defobj_out = cache[symnum].obj;
2045 		return (cache[symnum].sym);
2046 	}
2047 
2048 	ref = refobj->symtab + symnum;
2049 	name = refobj->strtab + ref->st_name;
2050 	def = NULL;
2051 	defobj = NULL;
2052 	ve = NULL;
2053 
2054 	/*
2055 	 * We don't have to do a full scale lookup if the symbol is local.
2056 	 * We know it will bind to the instance in this load module; to
2057 	 * which we already have a pointer (ie ref). By not doing a lookup,
2058 	 * we not only improve performance, but it also avoids unresolvable
2059 	 * symbols when local symbols are not in the hash table. This has
2060 	 * been seen with the ia64 toolchain.
2061 	 */
2062 	if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) {
2063 		if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) {
2064 			_rtld_error("%s: Bogus symbol table entry %lu",
2065 			    refobj->path, symnum);
2066 		}
2067 		symlook_init(&req, name);
2068 		req.flags = flags;
2069 		ve = req.ventry = fetch_ventry(refobj, symnum);
2070 		req.lockstate = lockstate;
2071 		res = symlook_default(&req, refobj);
2072 		if (res == 0) {
2073 			def = req.sym_out;
2074 			defobj = req.defobj_out;
2075 		}
2076 	} else {
2077 		def = ref;
2078 		defobj = refobj;
2079 	}
2080 
2081 	/*
2082 	 * If we found no definition and the reference is weak, treat the
2083 	 * symbol as having the value zero.
2084 	 */
2085 	if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) {
2086 		def = &sym_zero;
2087 		defobj = obj_main;
2088 	}
2089 
2090 	if (def != NULL) {
2091 		*defobj_out = defobj;
2092 		/*
2093 		 * Record the information in the cache to avoid subsequent
2094 		 * lookups.
2095 		 */
2096 		if (cache != NULL) {
2097 			cache[symnum].sym = def;
2098 			cache[symnum].obj = defobj;
2099 		}
2100 	} else {
2101 		if (refobj != &obj_rtld)
2102 			_rtld_error("%s: Undefined symbol \"%s%s%s\"",
2103 			    refobj->path, name, ve != NULL ? "@" : "",
2104 			    ve != NULL ? ve->name : "");
2105 	}
2106 	return (def);
2107 }
2108 
2109 /* Convert between native byte order and forced little resp. big endian. */
2110 #define COND_SWAP(n) (is_le ? le32toh(n) : be32toh(n))
2111 
2112 /*
2113  * Return the search path from the ldconfig hints file, reading it if
2114  * necessary.  If nostdlib is true, then the default search paths are
2115  * not added to result.
2116  *
2117  * Returns NULL if there are problems with the hints file,
2118  * or if the search path there is empty.
2119  */
2120 static const char *
gethints(bool nostdlib)2121 gethints(bool nostdlib)
2122 {
2123 	static char *filtered_path;
2124 	static const char *hints;
2125 	static struct elfhints_hdr hdr;
2126 	struct fill_search_info_args sargs, hargs;
2127 	struct dl_serinfo smeta, hmeta, *SLPinfo, *hintinfo;
2128 	struct dl_serpath *SLPpath, *hintpath;
2129 	char *p;
2130 	struct stat hint_stat;
2131 	unsigned int SLPndx, hintndx, fndx, fcount;
2132 	int fd;
2133 	size_t flen;
2134 	uint32_t dl;
2135 	uint32_t magic;	     /* Magic number */
2136 	uint32_t version;    /* File version (1) */
2137 	uint32_t strtab;     /* Offset of string table in file */
2138 	uint32_t dirlist;    /* Offset of directory list in string table */
2139 	uint32_t dirlistlen; /* strlen(dirlist) */
2140 	bool is_le;	     /* Does the hints file use little endian */
2141 	bool skip;
2142 
2143 	/* First call, read the hints file */
2144 	if (hints == NULL) {
2145 		/* Keep from trying again in case the hints file is bad. */
2146 		hints = "";
2147 
2148 		if ((fd = open(ld_elf_hints_path, O_RDONLY | O_CLOEXEC)) ==
2149 		    -1) {
2150 			dbg("failed to open hints file \"%s\"",
2151 			    ld_elf_hints_path);
2152 			return (NULL);
2153 		}
2154 
2155 		/*
2156 		 * Check of hdr.dirlistlen value against type limit
2157 		 * intends to pacify static analyzers.  Further
2158 		 * paranoia leads to checks that dirlist is fully
2159 		 * contained in the file range.
2160 		 */
2161 		if (read(fd, &hdr, sizeof hdr) != sizeof hdr) {
2162 			dbg("failed to read %lu bytes from hints file \"%s\"",
2163 			    (u_long)sizeof hdr, ld_elf_hints_path);
2164 cleanup1:
2165 			close(fd);
2166 			hdr.dirlistlen = 0;
2167 			return (NULL);
2168 		}
2169 		dbg("host byte-order: %s-endian",
2170 		    le32toh(1) == 1 ? "little" : "big");
2171 		dbg("hints file byte-order: %s-endian",
2172 		    hdr.magic == htole32(ELFHINTS_MAGIC) ? "little" : "big");
2173 		is_le = /*htole32(1) == 1 || */ hdr.magic ==
2174 		    htole32(ELFHINTS_MAGIC);
2175 		magic = COND_SWAP(hdr.magic);
2176 		version = COND_SWAP(hdr.version);
2177 		strtab = COND_SWAP(hdr.strtab);
2178 		dirlist = COND_SWAP(hdr.dirlist);
2179 		dirlistlen = COND_SWAP(hdr.dirlistlen);
2180 		if (magic != ELFHINTS_MAGIC) {
2181 			dbg("invalid magic number %#08x (expected: %#08x)",
2182 			    magic, ELFHINTS_MAGIC);
2183 			goto cleanup1;
2184 		}
2185 		if (version != 1) {
2186 			dbg("hints file version %d (expected: 1)", version);
2187 			goto cleanup1;
2188 		}
2189 		if (dirlistlen > UINT_MAX / 2) {
2190 			dbg("directory list is to long: %d > %d", dirlistlen,
2191 			    UINT_MAX / 2);
2192 			goto cleanup1;
2193 		}
2194 		if (fstat(fd, &hint_stat) == -1) {
2195 			dbg("failed to find length of hints file \"%s\"",
2196 			    ld_elf_hints_path);
2197 			goto cleanup1;
2198 		}
2199 		dl = strtab;
2200 		if (dl + dirlist < dl) {
2201 			dbg("invalid string table position %d", dl);
2202 			goto cleanup1;
2203 		}
2204 		dl += dirlist;
2205 		if (dl + dirlistlen < dl) {
2206 			dbg("invalid directory list offset %d", dirlist);
2207 			goto cleanup1;
2208 		}
2209 		dl += dirlistlen;
2210 		if (dl > hint_stat.st_size) {
2211 			dbg("hints file \"%s\" is truncated (%d vs. %jd bytes)",
2212 			    ld_elf_hints_path, dl,
2213 			    (uintmax_t)hint_stat.st_size);
2214 			goto cleanup1;
2215 		}
2216 		p = xmalloc(dirlistlen + 1);
2217 		if (pread(fd, p, dirlistlen + 1, strtab + dirlist) !=
2218 		    (ssize_t)dirlistlen + 1 || p[dirlistlen] != '\0') {
2219 			free(p);
2220 			dbg(
2221 	    "failed to read %d bytes starting at %d from hints file \"%s\"",
2222 			    dirlistlen + 1, strtab + dirlist,
2223 			    ld_elf_hints_path);
2224 			goto cleanup1;
2225 		}
2226 		hints = p;
2227 		close(fd);
2228 	}
2229 
2230 	/*
2231 	 * If caller agreed to receive list which includes the default
2232 	 * paths, we are done. Otherwise, if we still did not
2233 	 * calculated filtered result, do it now.
2234 	 */
2235 	if (!nostdlib)
2236 		return (hints[0] != '\0' ? hints : NULL);
2237 	if (filtered_path != NULL)
2238 		goto filt_ret;
2239 
2240 	/*
2241 	 * Obtain the list of all configured search paths, and the
2242 	 * list of the default paths.
2243 	 *
2244 	 * First estimate the size of the results.
2245 	 */
2246 	smeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
2247 	smeta.dls_cnt = 0;
2248 	hmeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
2249 	hmeta.dls_cnt = 0;
2250 
2251 	sargs.request = RTLD_DI_SERINFOSIZE;
2252 	sargs.serinfo = &smeta;
2253 	hargs.request = RTLD_DI_SERINFOSIZE;
2254 	hargs.serinfo = &hmeta;
2255 
2256 	path_enumerate(ld_standard_library_path, fill_search_info, NULL,
2257 	    &sargs);
2258 	path_enumerate(hints, fill_search_info, NULL, &hargs);
2259 
2260 	SLPinfo = xmalloc(smeta.dls_size);
2261 	hintinfo = xmalloc(hmeta.dls_size);
2262 
2263 	/*
2264 	 * Next fetch both sets of paths.
2265 	 */
2266 	sargs.request = RTLD_DI_SERINFO;
2267 	sargs.serinfo = SLPinfo;
2268 	sargs.serpath = &SLPinfo->dls_serpath[0];
2269 	sargs.strspace = (char *)&SLPinfo->dls_serpath[smeta.dls_cnt];
2270 
2271 	hargs.request = RTLD_DI_SERINFO;
2272 	hargs.serinfo = hintinfo;
2273 	hargs.serpath = &hintinfo->dls_serpath[0];
2274 	hargs.strspace = (char *)&hintinfo->dls_serpath[hmeta.dls_cnt];
2275 
2276 	path_enumerate(ld_standard_library_path, fill_search_info, NULL,
2277 	    &sargs);
2278 	path_enumerate(hints, fill_search_info, NULL, &hargs);
2279 
2280 	/*
2281 	 * Now calculate the difference between two sets, by excluding
2282 	 * standard paths from the full set.
2283 	 */
2284 	fndx = 0;
2285 	fcount = 0;
2286 	filtered_path = xmalloc(dirlistlen + 1);
2287 	hintpath = &hintinfo->dls_serpath[0];
2288 	for (hintndx = 0; hintndx < hmeta.dls_cnt; hintndx++, hintpath++) {
2289 		skip = false;
2290 		SLPpath = &SLPinfo->dls_serpath[0];
2291 		/*
2292 		 * Check each standard path against current.
2293 		 */
2294 		for (SLPndx = 0; SLPndx < smeta.dls_cnt; SLPndx++, SLPpath++) {
2295 			/* matched, skip the path */
2296 			if (!strcmp(hintpath->dls_name, SLPpath->dls_name)) {
2297 				skip = true;
2298 				break;
2299 			}
2300 		}
2301 		if (skip)
2302 			continue;
2303 		/*
2304 		 * Not matched against any standard path, add the path
2305 		 * to result. Separate consequtive paths with ':'.
2306 		 */
2307 		if (fcount > 0) {
2308 			filtered_path[fndx] = ':';
2309 			fndx++;
2310 		}
2311 		fcount++;
2312 		flen = strlen(hintpath->dls_name);
2313 		strncpy((filtered_path + fndx), hintpath->dls_name, flen);
2314 		fndx += flen;
2315 	}
2316 	filtered_path[fndx] = '\0';
2317 
2318 	free(SLPinfo);
2319 	free(hintinfo);
2320 
2321 filt_ret:
2322 	return (filtered_path[0] != '\0' ? filtered_path : NULL);
2323 }
2324 
2325 static void
init_dag(Obj_Entry * root)2326 init_dag(Obj_Entry *root)
2327 {
2328 	const Needed_Entry *needed;
2329 	const Objlist_Entry *elm;
2330 	DoneList donelist;
2331 
2332 	if (root->dag_inited)
2333 		return;
2334 	donelist_init(&donelist);
2335 
2336 	/* Root object belongs to own DAG. */
2337 	objlist_push_tail(&root->dldags, root);
2338 	objlist_push_tail(&root->dagmembers, root);
2339 	donelist_check(&donelist, root);
2340 
2341 	/*
2342 	 * Add dependencies of root object to DAG in breadth order
2343 	 * by exploiting the fact that each new object get added
2344 	 * to the tail of the dagmembers list.
2345 	 */
2346 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
2347 		for (needed = elm->obj->needed; needed != NULL;
2348 		    needed = needed->next) {
2349 			if (needed->obj == NULL ||
2350 			    donelist_check(&donelist, needed->obj))
2351 				continue;
2352 			objlist_push_tail(&needed->obj->dldags, root);
2353 			objlist_push_tail(&root->dagmembers, needed->obj);
2354 		}
2355 	}
2356 	root->dag_inited = true;
2357 }
2358 
2359 static void
init_marker(Obj_Entry * marker)2360 init_marker(Obj_Entry *marker)
2361 {
2362 	bzero(marker, sizeof(*marker));
2363 	marker->marker = true;
2364 }
2365 
2366 Obj_Entry *
globallist_curr(const Obj_Entry * obj)2367 globallist_curr(const Obj_Entry *obj)
2368 {
2369 	for (;;) {
2370 		if (obj == NULL)
2371 			return (NULL);
2372 		if (!obj->marker)
2373 			return (__DECONST(Obj_Entry *, obj));
2374 		obj = TAILQ_PREV(obj, obj_entry_q, next);
2375 	}
2376 }
2377 
2378 Obj_Entry *
globallist_next(const Obj_Entry * obj)2379 globallist_next(const Obj_Entry *obj)
2380 {
2381 	for (;;) {
2382 		obj = TAILQ_NEXT(obj, next);
2383 		if (obj == NULL)
2384 			return (NULL);
2385 		if (!obj->marker)
2386 			return (__DECONST(Obj_Entry *, obj));
2387 	}
2388 }
2389 
2390 /* Prevent the object from being unmapped while the bind lock is dropped. */
2391 static void
hold_object(Obj_Entry * obj)2392 hold_object(Obj_Entry *obj)
2393 {
2394 	obj->holdcount++;
2395 }
2396 
2397 static void
unhold_object(Obj_Entry * obj)2398 unhold_object(Obj_Entry *obj)
2399 {
2400 	assert(obj->holdcount > 0);
2401 	if (--obj->holdcount == 0 && obj->unholdfree)
2402 		release_object(obj);
2403 }
2404 
2405 static void
process_z(Obj_Entry * root)2406 process_z(Obj_Entry *root)
2407 {
2408 	const Objlist_Entry *elm;
2409 	Obj_Entry *obj;
2410 
2411 	/*
2412 	 * Walk over object DAG and process every dependent object
2413 	 * that is marked as DF_1_NODELETE or DF_1_GLOBAL. They need
2414 	 * to grow their own DAG.
2415 	 *
2416 	 * For DF_1_GLOBAL, DAG is required for symbol lookups in
2417 	 * symlook_global() to work.
2418 	 *
2419 	 * For DF_1_NODELETE, the DAG should have its reference upped.
2420 	 */
2421 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
2422 		obj = elm->obj;
2423 		if (obj == NULL)
2424 			continue;
2425 		if (obj->z_nodelete && !obj->ref_nodel) {
2426 			dbg("obj %s -z nodelete", obj->path);
2427 			init_dag(obj);
2428 			ref_dag(obj);
2429 			obj->ref_nodel = true;
2430 		}
2431 		if (obj->z_global && objlist_find(&list_global, obj) == NULL) {
2432 			dbg("obj %s -z global", obj->path);
2433 			objlist_push_tail(&list_global, obj);
2434 			init_dag(obj);
2435 		}
2436 	}
2437 }
2438 
2439 static void
parse_rtld_phdr(Obj_Entry * obj)2440 parse_rtld_phdr(Obj_Entry *obj)
2441 {
2442 	const Elf_Phdr *ph;
2443 	Elf_Addr note_start, note_end;
2444 	bool first_seg;
2445 
2446 	first_seg = true;
2447 	obj->stack_flags = PF_X | PF_R | PF_W;
2448 	for (ph = obj->phdr;
2449 	    (const char *)ph < (const char *)obj->phdr + obj->phsize; ph++) {
2450 		switch (ph->p_type) {
2451 		case PT_LOAD:
2452 			if (first_seg) {
2453 				obj->vaddrbase = rtld_trunc_page(ph->p_vaddr);
2454 				first_seg = false;
2455 			}
2456 			obj->mapsize = rtld_round_page(ph->p_vaddr +
2457 			    ph->p_memsz) - obj->vaddrbase;
2458 			break;
2459 		case PT_GNU_STACK:
2460 			obj->stack_flags = ph->p_flags;
2461 			break;
2462 		case PT_NOTE:
2463 			note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr;
2464 			note_end = note_start + ph->p_filesz;
2465 			digest_notes(obj, note_start, note_end);
2466 			break;
2467 		}
2468 	}
2469 }
2470 
2471 /*
2472  * Initialize the dynamic linker.  The argument is the address at which
2473  * the dynamic linker has been mapped into memory.  The primary task of
2474  * this function is to relocate the dynamic linker.
2475  */
2476 static void
init_rtld(caddr_t mapbase,Elf_Auxinfo ** aux_info)2477 init_rtld(caddr_t mapbase, Elf_Auxinfo **aux_info)
2478 {
2479 	Obj_Entry objtmp; /* Temporary rtld object */
2480 	const Elf_Ehdr *ehdr;
2481 	const Elf_Dyn *dyn_rpath;
2482 	const Elf_Dyn *dyn_soname;
2483 	const Elf_Dyn *dyn_runpath;
2484 
2485 	/*
2486 	 * Conjure up an Obj_Entry structure for the dynamic linker.
2487 	 *
2488 	 * The "path" member can't be initialized yet because string constants
2489 	 * cannot yet be accessed. Below we will set it correctly.
2490 	 */
2491 	memset(&objtmp, 0, sizeof(objtmp));
2492 	objtmp.path = NULL;
2493 	objtmp.rtld = true;
2494 	objtmp.mapbase = mapbase;
2495 #ifdef PIC
2496 	objtmp.relocbase = mapbase;
2497 #endif
2498 
2499 	objtmp.dynamic = rtld_dynamic(&objtmp);
2500 	digest_dynamic1(&objtmp, 1, &dyn_rpath, &dyn_soname, &dyn_runpath);
2501 	assert(objtmp.needed == NULL);
2502 	assert(!objtmp.textrel);
2503 	/*
2504 	 * Temporarily put the dynamic linker entry into the object list, so
2505 	 * that symbols can be found.
2506 	 */
2507 	relocate_objects(&objtmp, true, &objtmp, 0, NULL);
2508 
2509 	ehdr = (Elf_Ehdr *)mapbase;
2510 	objtmp.phdr = (Elf_Phdr *)((char *)mapbase + ehdr->e_phoff);
2511 	objtmp.phsize = ehdr->e_phnum * sizeof(objtmp.phdr[0]);
2512 
2513 	/* Initialize the object list. */
2514 	TAILQ_INIT(&obj_list);
2515 
2516 	/* Now that non-local variables can be accesses, copy out obj_rtld. */
2517 	memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld));
2518 
2519 	/* The page size is required by the dynamic memory allocator. */
2520 	init_pagesizes(aux_info);
2521 
2522 	if (aux_info[AT_OSRELDATE] != NULL)
2523 		osreldate = aux_info[AT_OSRELDATE]->a_un.a_val;
2524 
2525 	digest_dynamic2(&obj_rtld, dyn_rpath, dyn_soname, dyn_runpath);
2526 
2527 	/* Replace the path with a dynamically allocated copy. */
2528 	obj_rtld.path = xstrdup(ld_path_rtld);
2529 
2530 	parse_rtld_phdr(&obj_rtld);
2531 	if (obj_enforce_relro(&obj_rtld) == -1)
2532 		rtld_die();
2533 
2534 	r_debug.r_version = R_DEBUG_VERSION;
2535 	r_debug.r_brk = r_debug_state;
2536 	r_debug.r_state = RT_CONSISTENT;
2537 	r_debug.r_ldbase = obj_rtld.relocbase;
2538 }
2539 
2540 /*
2541  * Retrieve the array of supported page sizes.  The kernel provides the page
2542  * sizes in increasing order.
2543  */
2544 static void
init_pagesizes(Elf_Auxinfo ** aux_info)2545 init_pagesizes(Elf_Auxinfo **aux_info)
2546 {
2547 	static size_t psa[MAXPAGESIZES];
2548 	int mib[2];
2549 	size_t len, size;
2550 
2551 	if (aux_info[AT_PAGESIZES] != NULL &&
2552 	    aux_info[AT_PAGESIZESLEN] != NULL) {
2553 		size = aux_info[AT_PAGESIZESLEN]->a_un.a_val;
2554 		pagesizes = aux_info[AT_PAGESIZES]->a_un.a_ptr;
2555 	} else {
2556 		len = 2;
2557 		if (sysctlnametomib("hw.pagesizes", mib, &len) == 0)
2558 			size = sizeof(psa);
2559 		else {
2560 			/* As a fallback, retrieve the base page size. */
2561 			size = sizeof(psa[0]);
2562 			if (aux_info[AT_PAGESZ] != NULL) {
2563 				psa[0] = aux_info[AT_PAGESZ]->a_un.a_val;
2564 				goto psa_filled;
2565 			} else {
2566 				mib[0] = CTL_HW;
2567 				mib[1] = HW_PAGESIZE;
2568 				len = 2;
2569 			}
2570 		}
2571 		if (sysctl(mib, len, psa, &size, NULL, 0) == -1) {
2572 			_rtld_error("sysctl for hw.pagesize(s) failed");
2573 			rtld_die();
2574 		}
2575 	psa_filled:
2576 		pagesizes = psa;
2577 	}
2578 	npagesizes = size / sizeof(pagesizes[0]);
2579 	/* Discard any invalid entries at the end of the array. */
2580 	while (npagesizes > 0 && pagesizes[npagesizes - 1] == 0)
2581 		npagesizes--;
2582 
2583 	page_size = pagesizes[0];
2584 }
2585 
2586 /*
2587  * Add the init functions from a needed object list (and its recursive
2588  * needed objects) to "list".  This is not used directly; it is a helper
2589  * function for initlist_add_objects().  The write lock must be held
2590  * when this function is called.
2591  */
2592 static void
initlist_add_neededs(Needed_Entry * needed,Objlist * list,Objlist * iflist)2593 initlist_add_neededs(Needed_Entry *needed, Objlist *list, Objlist *iflist)
2594 {
2595 	/* Recursively process the successor needed objects. */
2596 	if (needed->next != NULL)
2597 		initlist_add_neededs(needed->next, list, iflist);
2598 
2599 	/* Process the current needed object. */
2600 	if (needed->obj != NULL)
2601 		initlist_add_objects(needed->obj, needed->obj, list, iflist);
2602 }
2603 
2604 /*
2605  * Scan all of the DAGs rooted in the range of objects from "obj" to
2606  * "tail" and add their init functions to "list".  This recurses over
2607  * the DAGs and ensure the proper init ordering such that each object's
2608  * needed libraries are initialized before the object itself.  At the
2609  * same time, this function adds the objects to the global finalization
2610  * list "list_fini" in the opposite order.  The write lock must be
2611  * held when this function is called.
2612  */
2613 static void
initlist_for_loaded_obj(Obj_Entry * obj,Obj_Entry * tail,Objlist * list)2614 initlist_for_loaded_obj(Obj_Entry *obj, Obj_Entry *tail, Objlist *list)
2615 {
2616 	Objlist iflist;		/* initfirst objs and their needed */
2617 	Objlist_Entry *tmp;
2618 
2619 	objlist_init(&iflist);
2620 	initlist_add_objects(obj, tail, list, &iflist);
2621 
2622 	STAILQ_FOREACH(tmp, &iflist, link) {
2623 		Obj_Entry *tobj = tmp->obj;
2624 
2625 		if ((tobj->fini != (Elf_Addr)NULL ||
2626 		    tobj->fini_array != (Elf_Addr)NULL) &&
2627 		    !tobj->on_fini_list) {
2628 			objlist_push_tail(&list_fini, tobj);
2629 			tobj->on_fini_list = true;
2630 		}
2631 	}
2632 
2633 	/*
2634 	 * This might result in the same object appearing more
2635 	 * than once on the init list.  objlist_call_init()
2636 	 * uses obj->init_scanned to avoid dup calls.
2637 	 */
2638 	STAILQ_REVERSE(&iflist, Struct_Objlist_Entry, link);
2639 	STAILQ_FOREACH(tmp, &iflist, link)
2640 		objlist_push_head(list, tmp->obj);
2641 
2642 	objlist_clear(&iflist);
2643 }
2644 
2645 static void
initlist_add_objects(Obj_Entry * obj,Obj_Entry * tail,Objlist * list,Objlist * iflist)2646 initlist_add_objects(Obj_Entry *obj, Obj_Entry *tail, Objlist *list,
2647     Objlist *iflist)
2648 {
2649 	Obj_Entry *nobj;
2650 
2651 	if (obj->init_done)
2652 		return;
2653 
2654 	if (obj->z_initfirst || list == NULL) {
2655 		/*
2656 		 * Ignore obj->init_scanned.  The object might indeed
2657 		 * already be on the init list, but due to being
2658 		 * needed by an initfirst object, we must put it at
2659 		 * the head of the init list.  obj->init_done protects
2660 		 * against double-initialization.
2661 		 */
2662 		if (obj->needed != NULL)
2663 			initlist_add_neededs(obj->needed, NULL, iflist);
2664 		if (obj->needed_filtees != NULL)
2665 			initlist_add_neededs(obj->needed_filtees, NULL,
2666 			    iflist);
2667 		if (obj->needed_aux_filtees != NULL)
2668 			initlist_add_neededs(obj->needed_aux_filtees,
2669 			    NULL, iflist);
2670 		objlist_push_tail(iflist, obj);
2671 	} else {
2672 		if (obj->init_scanned)
2673 			return;
2674 		obj->init_scanned = true;
2675 
2676 		/* Recursively process the successor objects. */
2677 		nobj = globallist_next(obj);
2678 		if (nobj != NULL && obj != tail)
2679 			initlist_add_objects(nobj, tail, list, iflist);
2680 
2681 		/* Recursively process the needed objects. */
2682 		if (obj->needed != NULL)
2683 			initlist_add_neededs(obj->needed, list, iflist);
2684 		if (obj->needed_filtees != NULL)
2685 			initlist_add_neededs(obj->needed_filtees, list,
2686 			    iflist);
2687 		if (obj->needed_aux_filtees != NULL)
2688 			initlist_add_neededs(obj->needed_aux_filtees, list,
2689 			    iflist);
2690 
2691 		/* Add the object to the init list. */
2692 		objlist_push_tail(list, obj);
2693 
2694 		/*
2695 		 * Add the object to the global fini list in the
2696 		 * reverse order.
2697 		 */
2698 		if ((obj->fini != (Elf_Addr)NULL ||
2699 		    obj->fini_array != (Elf_Addr)NULL) &&
2700 		    !obj->on_fini_list) {
2701 			objlist_push_head(&list_fini, obj);
2702 			obj->on_fini_list = true;
2703 		}
2704 	}
2705 }
2706 
2707 static void
free_needed_filtees(Needed_Entry * n,RtldLockState * lockstate)2708 free_needed_filtees(Needed_Entry *n, RtldLockState *lockstate)
2709 {
2710 	Needed_Entry *needed, *needed1;
2711 
2712 	for (needed = n; needed != NULL; needed = needed->next) {
2713 		if (needed->obj != NULL) {
2714 			dlclose_locked(needed->obj, lockstate);
2715 			needed->obj = NULL;
2716 		}
2717 	}
2718 	for (needed = n; needed != NULL; needed = needed1) {
2719 		needed1 = needed->next;
2720 		free(needed);
2721 	}
2722 }
2723 
2724 static void
unload_filtees(Obj_Entry * obj,RtldLockState * lockstate)2725 unload_filtees(Obj_Entry *obj, RtldLockState *lockstate)
2726 {
2727 	free_needed_filtees(obj->needed_filtees, lockstate);
2728 	obj->needed_filtees = NULL;
2729 	free_needed_filtees(obj->needed_aux_filtees, lockstate);
2730 	obj->needed_aux_filtees = NULL;
2731 	obj->filtees_loaded = false;
2732 }
2733 
2734 static void
load_filtee1(Obj_Entry * obj,Needed_Entry * needed,int flags,RtldLockState * lockstate)2735 load_filtee1(Obj_Entry *obj, Needed_Entry *needed, int flags,
2736     RtldLockState *lockstate)
2737 {
2738 	for (; needed != NULL; needed = needed->next) {
2739 		needed->obj = dlopen_object(obj->strtab + needed->name, -1, obj,
2740 		    flags, ((ld_loadfltr || obj->z_loadfltr) ? RTLD_NOW :
2741 		    RTLD_LAZY) | RTLD_LOCAL, lockstate);
2742 	}
2743 }
2744 
2745 static void
load_filtees(Obj_Entry * obj,int flags,RtldLockState * lockstate)2746 load_filtees(Obj_Entry *obj, int flags, RtldLockState *lockstate)
2747 {
2748 	if (obj->filtees_loaded || obj->filtees_loading)
2749 		return;
2750 	lock_restart_for_upgrade(lockstate);
2751 	obj->filtees_loading = true;
2752 	load_filtee1(obj, obj->needed_filtees, flags, lockstate);
2753 	load_filtee1(obj, obj->needed_aux_filtees, flags, lockstate);
2754 	obj->filtees_loaded = true;
2755 	obj->filtees_loading = false;
2756 }
2757 
2758 static int
process_needed(Obj_Entry * obj,Needed_Entry * needed,int flags)2759 process_needed(Obj_Entry *obj, Needed_Entry *needed, int flags)
2760 {
2761 	Obj_Entry *obj1;
2762 
2763 	for (; needed != NULL; needed = needed->next) {
2764 		obj1 = needed->obj = load_object(obj->strtab + needed->name, -1,
2765 		    obj, flags & ~RTLD_LO_NOLOAD);
2766 		if (obj1 == NULL && !ld_tracing &&
2767 		    (flags & RTLD_LO_FILTEES) == 0)
2768 			return (-1);
2769 	}
2770 	return (0);
2771 }
2772 
2773 /*
2774  * Given a shared object, traverse its list of needed objects, and load
2775  * each of them.  Returns 0 on success.  Generates an error message and
2776  * returns -1 on failure.
2777  */
2778 static int
load_needed_objects(Obj_Entry * first,int flags)2779 load_needed_objects(Obj_Entry *first, int flags)
2780 {
2781 	Obj_Entry *obj;
2782 
2783 	for (obj = first; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
2784 		if (obj->marker)
2785 			continue;
2786 		if (process_needed(obj, obj->needed, flags) == -1)
2787 			return (-1);
2788 	}
2789 	return (0);
2790 }
2791 
2792 static int
load_preload_objects(const char * penv,bool isfd)2793 load_preload_objects(const char *penv, bool isfd)
2794 {
2795 	Obj_Entry *obj;
2796 	const char *name;
2797 	size_t len;
2798 	char savech, *p, *psave;
2799 	int fd;
2800 	static const char delim[] = " \t:;";
2801 
2802 	if (penv == NULL)
2803 		return (0);
2804 
2805 	p = psave = xstrdup(penv);
2806 	p += strspn(p, delim);
2807 	while (*p != '\0') {
2808 		len = strcspn(p, delim);
2809 
2810 		savech = p[len];
2811 		p[len] = '\0';
2812 		if (isfd) {
2813 			name = NULL;
2814 			fd = parse_integer(p);
2815 			if (fd == -1) {
2816 				free(psave);
2817 				return (-1);
2818 			}
2819 		} else {
2820 			name = p;
2821 			fd = -1;
2822 		}
2823 
2824 		obj = load_object(name, fd, NULL, 0);
2825 		if (obj == NULL) {
2826 			free(psave);
2827 			return (-1); /* XXX - cleanup */
2828 		}
2829 		obj->z_interpose = true;
2830 		p[len] = savech;
2831 		p += len;
2832 		p += strspn(p, delim);
2833 	}
2834 	LD_UTRACE(UTRACE_PRELOAD_FINISHED, NULL, NULL, 0, 0, NULL);
2835 
2836 	free(psave);
2837 	return (0);
2838 }
2839 
2840 static const char *
printable_path(const char * path)2841 printable_path(const char *path)
2842 {
2843 	return (path == NULL ? "<unknown>" : path);
2844 }
2845 
2846 /*
2847  * Load a shared object into memory, if it is not already loaded.  The
2848  * object may be specified by name or by user-supplied file descriptor
2849  * fd_u. In the later case, the fd_u descriptor is not closed, but its
2850  * duplicate is.
2851  *
2852  * Returns a pointer to the Obj_Entry for the object.  Returns NULL
2853  * on failure.
2854  */
2855 static Obj_Entry *
load_object(const char * name,int fd_u,const Obj_Entry * refobj,int flags)2856 load_object(const char *name, int fd_u, const Obj_Entry *refobj, int flags)
2857 {
2858 	Obj_Entry *obj;
2859 	int fd;
2860 	struct stat sb;
2861 	char *path;
2862 
2863 	fd = -1;
2864 	if (name != NULL) {
2865 		TAILQ_FOREACH(obj, &obj_list, next) {
2866 			if (obj->marker || obj->doomed)
2867 				continue;
2868 			if (object_match_name(obj, name))
2869 				return (obj);
2870 		}
2871 
2872 		path = find_library(name, refobj, &fd);
2873 		if (path == NULL)
2874 			return (NULL);
2875 	} else
2876 		path = NULL;
2877 
2878 	if (fd >= 0) {
2879 		/*
2880 		 * search_library_pathfds() opens a fresh file descriptor for
2881 		 * the library, so there is no need to dup().
2882 		 */
2883 	} else if (fd_u == -1) {
2884 		/*
2885 		 * If we didn't find a match by pathname, or the name is not
2886 		 * supplied, open the file and check again by device and inode.
2887 		 * This avoids false mismatches caused by multiple links or ".."
2888 		 * in pathnames.
2889 		 *
2890 		 * To avoid a race, we open the file and use fstat() rather than
2891 		 * using stat().
2892 		 */
2893 		if ((fd = open(path, O_RDONLY | O_CLOEXEC | O_VERIFY)) == -1) {
2894 			_rtld_error("Cannot open \"%s\"", path);
2895 			free(path);
2896 			return (NULL);
2897 		}
2898 	} else {
2899 		fd = fcntl(fd_u, F_DUPFD_CLOEXEC, 0);
2900 		if (fd == -1) {
2901 			_rtld_error("Cannot dup fd");
2902 			free(path);
2903 			return (NULL);
2904 		}
2905 	}
2906 	if (fstat(fd, &sb) == -1) {
2907 		_rtld_error("Cannot fstat \"%s\"", printable_path(path));
2908 		close(fd);
2909 		free(path);
2910 		return (NULL);
2911 	}
2912 	TAILQ_FOREACH(obj, &obj_list, next) {
2913 		if (obj->marker || obj->doomed)
2914 			continue;
2915 		if (obj->ino == sb.st_ino && obj->dev == sb.st_dev)
2916 			break;
2917 	}
2918 	if (obj != NULL) {
2919 		if (name != NULL)
2920 			object_add_name(obj, name);
2921 		free(path);
2922 		close(fd);
2923 		return (obj);
2924 	}
2925 	if (flags & RTLD_LO_NOLOAD) {
2926 		free(path);
2927 		close(fd);
2928 		return (NULL);
2929 	}
2930 
2931 	/* First use of this object, so we must map it in */
2932 	obj = do_load_object(fd, name, path, &sb, flags);
2933 	if (obj == NULL)
2934 		free(path);
2935 	close(fd);
2936 
2937 	return (obj);
2938 }
2939 
2940 static Obj_Entry *
do_load_object(int fd,const char * name,char * path,struct stat * sbp,int flags)2941 do_load_object(int fd, const char *name, char *path, struct stat *sbp,
2942     int flags)
2943 {
2944 	Obj_Entry *obj;
2945 	struct statfs fs;
2946 
2947 	/*
2948 	 * First, make sure that environment variables haven't been
2949 	 * used to circumvent the noexec flag on a filesystem.
2950 	 * We ignore fstatfs(2) failures, since fd might reference
2951 	 * not a file, e.g. shmfd.
2952 	 */
2953 	if (dangerous_ld_env && fstatfs(fd, &fs) == 0 &&
2954 	    (fs.f_flags & MNT_NOEXEC) != 0) {
2955 		_rtld_error("Cannot execute objects on %s", fs.f_mntonname);
2956 		return (NULL);
2957 	}
2958 
2959 	dbg("loading \"%s\"", printable_path(path));
2960 	obj = map_object(fd, printable_path(path), sbp, false);
2961 	if (obj == NULL)
2962 		return (NULL);
2963 
2964 	/*
2965 	 * If DT_SONAME is present in the object, digest_dynamic2 already
2966 	 * added it to the object names.
2967 	 */
2968 	if (name != NULL)
2969 		object_add_name(obj, name);
2970 	obj->path = path;
2971 	if (!digest_dynamic(obj, 0))
2972 		goto errp;
2973 	dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d", obj->path,
2974 	    obj->valid_hash_sysv, obj->valid_hash_gnu, obj->dynsymcount);
2975 	if (obj->z_pie && (flags & RTLD_LO_TRACE) == 0) {
2976 		dbg("refusing to load PIE executable \"%s\"", obj->path);
2977 		_rtld_error("Cannot load PIE binary %s as DSO", obj->path);
2978 		goto errp;
2979 	}
2980 	if (obj->z_noopen &&
2981 	    (flags & (RTLD_LO_DLOPEN | RTLD_LO_TRACE)) == RTLD_LO_DLOPEN) {
2982 		dbg("refusing to load non-loadable \"%s\"", obj->path);
2983 		_rtld_error("Cannot dlopen non-loadable %s", obj->path);
2984 		goto errp;
2985 	}
2986 
2987 	obj->dlopened = (flags & RTLD_LO_DLOPEN) != 0;
2988 	TAILQ_INSERT_TAIL(&obj_list, obj, next);
2989 	obj_count++;
2990 	obj_loads++;
2991 	linkmap_add(obj); /* for GDB & dlinfo() */
2992 	max_stack_flags |= obj->stack_flags;
2993 
2994 	dbg("  %p .. %p: %s", obj->mapbase, obj->mapbase + obj->mapsize - 1,
2995 	    obj->path);
2996 	if (obj->textrel)
2997 		dbg("  WARNING: %s has impure text", obj->path);
2998 	LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
2999 	    obj->path);
3000 
3001 	return (obj);
3002 
3003 errp:
3004 	munmap(obj->mapbase, obj->mapsize);
3005 	obj_free(obj);
3006 	return (NULL);
3007 }
3008 
3009 static int
load_kpreload(const void * addr)3010 load_kpreload(const void *addr)
3011 {
3012 	Obj_Entry *obj;
3013 	const Elf_Ehdr *ehdr;
3014 	const Elf_Phdr *phdr, *phlimit, *phdyn, *seg0, *segn;
3015 	static const char kname[] = "[vdso]";
3016 
3017 	ehdr = addr;
3018 	if (!check_elf_headers(ehdr, "kpreload"))
3019 		return (-1);
3020 	obj = obj_new();
3021 	phdr = (const Elf_Phdr *)((const char *)addr + ehdr->e_phoff);
3022 	obj->phdr = phdr;
3023 	obj->phsize = ehdr->e_phnum * sizeof(*phdr);
3024 	phlimit = phdr + ehdr->e_phnum;
3025 	seg0 = segn = NULL;
3026 
3027 	for (; phdr < phlimit; phdr++) {
3028 		switch (phdr->p_type) {
3029 		case PT_DYNAMIC:
3030 			phdyn = phdr;
3031 			break;
3032 		case PT_GNU_STACK:
3033 			/* Absense of PT_GNU_STACK implies stack_flags == 0. */
3034 			obj->stack_flags = phdr->p_flags;
3035 			break;
3036 		case PT_LOAD:
3037 			if (seg0 == NULL || seg0->p_vaddr > phdr->p_vaddr)
3038 				seg0 = phdr;
3039 			if (segn == NULL ||
3040 			    segn->p_vaddr + segn->p_memsz <
3041 				phdr->p_vaddr + phdr->p_memsz)
3042 				segn = phdr;
3043 			break;
3044 		}
3045 	}
3046 
3047 	obj->mapbase = __DECONST(caddr_t, addr);
3048 	obj->mapsize = segn->p_vaddr + segn->p_memsz;
3049 	obj->vaddrbase = 0;
3050 	obj->relocbase = obj->mapbase;
3051 
3052 	object_add_name(obj, kname);
3053 	obj->path = xstrdup(kname);
3054 	obj->dynamic = (const Elf_Dyn *)(obj->relocbase + phdyn->p_vaddr);
3055 
3056 	if (!digest_dynamic(obj, 0)) {
3057 		obj_free(obj);
3058 		return (-1);
3059 	}
3060 
3061 	/*
3062 	 * We assume that kernel-preloaded object does not need
3063 	 * relocation.  It is currently written into read-only page,
3064 	 * handling relocations would mean we need to allocate at
3065 	 * least one additional page per AS.
3066 	 */
3067 	dbg("%s mapbase %p phdrs %p PT_LOAD phdr %p vaddr %p dynamic %p",
3068 	    obj->path, obj->mapbase, obj->phdr, seg0,
3069 	    obj->relocbase + seg0->p_vaddr, obj->dynamic);
3070 
3071 	TAILQ_INSERT_TAIL(&obj_list, obj, next);
3072 	obj_count++;
3073 	obj_loads++;
3074 	linkmap_add(obj); /* for GDB & dlinfo() */
3075 	max_stack_flags |= obj->stack_flags;
3076 
3077 	LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
3078 	    obj->path);
3079 	return (0);
3080 }
3081 
3082 Obj_Entry *
obj_from_addr(const void * addr)3083 obj_from_addr(const void *addr)
3084 {
3085 	Obj_Entry *obj;
3086 
3087 	TAILQ_FOREACH(obj, &obj_list, next) {
3088 		if (obj->marker)
3089 			continue;
3090 		if (addr < (void *)obj->mapbase)
3091 			continue;
3092 		if (addr < (void *)(obj->mapbase + obj->mapsize))
3093 			return obj;
3094 	}
3095 	return (NULL);
3096 }
3097 
3098 static void
preinit_main(void)3099 preinit_main(void)
3100 {
3101 	Elf_Addr *preinit_addr;
3102 	int index;
3103 
3104 	preinit_addr = (Elf_Addr *)obj_main->preinit_array;
3105 	if (preinit_addr == NULL)
3106 		return;
3107 
3108 	for (index = 0; index < obj_main->preinit_array_num; index++) {
3109 		if (preinit_addr[index] != 0 && preinit_addr[index] != 1) {
3110 			dbg("calling preinit function for %s at %p",
3111 			    obj_main->path, (void *)preinit_addr[index]);
3112 			LD_UTRACE(UTRACE_INIT_CALL, obj_main,
3113 			    (void *)preinit_addr[index], 0, 0, obj_main->path);
3114 			call_init_pointer(obj_main, preinit_addr[index]);
3115 		}
3116 	}
3117 }
3118 
3119 /*
3120  * Call the finalization functions for each of the objects in "list"
3121  * belonging to the DAG of "root" and referenced once. If NULL "root"
3122  * is specified, every finalization function will be called regardless
3123  * of the reference count and the list elements won't be freed. All of
3124  * the objects are expected to have non-NULL fini functions.
3125  */
3126 static void
objlist_call_fini(Objlist * list,Obj_Entry * root,RtldLockState * lockstate)3127 objlist_call_fini(Objlist *list, Obj_Entry *root, RtldLockState *lockstate)
3128 {
3129 	Objlist_Entry *elm;
3130 	struct dlerror_save *saved_msg;
3131 	Elf_Addr *fini_addr;
3132 	int index;
3133 
3134 	assert(root == NULL || root->refcount == 1);
3135 
3136 	if (root != NULL)
3137 		root->doomed = true;
3138 
3139 	/*
3140 	 * Preserve the current error message since a fini function might
3141 	 * call into the dynamic linker and overwrite it.
3142 	 */
3143 	saved_msg = errmsg_save();
3144 	do {
3145 		STAILQ_FOREACH(elm, list, link) {
3146 			if (root != NULL &&
3147 			    (elm->obj->refcount != 1 ||
3148 				objlist_find(&root->dagmembers, elm->obj) ==
3149 				    NULL))
3150 				continue;
3151 			/* Remove object from fini list to prevent recursive
3152 			 * invocation. */
3153 			STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
3154 			/* Ensure that new references cannot be acquired. */
3155 			elm->obj->doomed = true;
3156 
3157 			hold_object(elm->obj);
3158 			lock_release(rtld_bind_lock, lockstate);
3159 			/*
3160 			 * It is legal to have both DT_FINI and DT_FINI_ARRAY
3161 			 * defined. When this happens, DT_FINI_ARRAY is
3162 			 * processed first.
3163 			 */
3164 			fini_addr = (Elf_Addr *)elm->obj->fini_array;
3165 			if (fini_addr != NULL && elm->obj->fini_array_num > 0) {
3166 				for (index = elm->obj->fini_array_num - 1;
3167 				    index >= 0; index--) {
3168 					if (fini_addr[index] != 0 &&
3169 					    fini_addr[index] != 1) {
3170 				dbg("calling fini function for %s at %p",
3171 						    elm->obj->path,
3172 						    (void *)fini_addr[index]);
3173 						LD_UTRACE(UTRACE_FINI_CALL,
3174 						    elm->obj,
3175 						    (void *)fini_addr[index], 0,
3176 						    0, elm->obj->path);
3177 						call_initfini_pointer(elm->obj,
3178 						    fini_addr[index]);
3179 					}
3180 				}
3181 			}
3182 			if (elm->obj->fini != (Elf_Addr)NULL) {
3183 				dbg("calling fini function for %s at %p",
3184 				    elm->obj->path, (void *)elm->obj->fini);
3185 				LD_UTRACE(UTRACE_FINI_CALL, elm->obj,
3186 				    (void *)elm->obj->fini, 0, 0,
3187 				    elm->obj->path);
3188 				call_initfini_pointer(elm->obj, elm->obj->fini);
3189 			}
3190 			wlock_acquire(rtld_bind_lock, lockstate);
3191 			unhold_object(elm->obj);
3192 			/* No need to free anything if process is going down. */
3193 			if (root != NULL)
3194 				free(elm);
3195 			/*
3196 			 * We must restart the list traversal after every fini
3197 			 * call because a dlclose() call from the fini function
3198 			 * or from another thread might have modified the
3199 			 * reference counts.
3200 			 */
3201 			break;
3202 		}
3203 	} while (elm != NULL);
3204 	errmsg_restore(saved_msg);
3205 }
3206 
3207 /*
3208  * Call the initialization functions for each of the objects in
3209  * "list".  All of the objects are expected to have non-NULL init
3210  * functions.
3211  */
3212 static void
objlist_call_init(Objlist * list,RtldLockState * lockstate)3213 objlist_call_init(Objlist *list, RtldLockState *lockstate)
3214 {
3215 	Objlist_Entry *elm;
3216 	Obj_Entry *obj;
3217 	struct dlerror_save *saved_msg;
3218 	Elf_Addr *init_addr;
3219 	void (*reg)(void (*)(void));
3220 	int index;
3221 
3222 	/*
3223 	 * Clean init_scanned flag so that objects can be rechecked and
3224 	 * possibly initialized earlier if any of vectors called below
3225 	 * cause the change by using dlopen.
3226 	 */
3227 	TAILQ_FOREACH(obj, &obj_list, next) {
3228 		if (obj->marker)
3229 			continue;
3230 		obj->init_scanned = false;
3231 	}
3232 
3233 	/*
3234 	 * Preserve the current error message since an init function might
3235 	 * call into the dynamic linker and overwrite it.
3236 	 */
3237 	saved_msg = errmsg_save();
3238 	STAILQ_FOREACH(elm, list, link) {
3239 		if (elm->obj->init_done) /* Initialized early. */
3240 			continue;
3241 		/*
3242 		 * Race: other thread might try to use this object before
3243 		 * current one completes the initialization. Not much can be
3244 		 * done here without better locking.
3245 		 */
3246 		elm->obj->init_done = true;
3247 		hold_object(elm->obj);
3248 		reg = NULL;
3249 		if (elm->obj == obj_main && obj_main->crt_no_init) {
3250 			reg = (void (*)(void (*)(void)))
3251 			    get_program_var_addr("__libc_atexit", lockstate);
3252 		}
3253 		lock_release(rtld_bind_lock, lockstate);
3254 		if (reg != NULL) {
3255 			reg(rtld_exit);
3256 			rtld_exit_ptr = rtld_nop_exit;
3257 		}
3258 
3259 		/*
3260 		 * It is legal to have both DT_INIT and DT_INIT_ARRAY defined.
3261 		 * When this happens, DT_INIT is processed first.
3262 		 */
3263 		if (elm->obj->init != (Elf_Addr)NULL) {
3264 			dbg("calling init function for %s at %p",
3265 			    elm->obj->path, (void *)elm->obj->init);
3266 			LD_UTRACE(UTRACE_INIT_CALL, elm->obj,
3267 			    (void *)elm->obj->init, 0, 0, elm->obj->path);
3268 			call_init_pointer(elm->obj, elm->obj->init);
3269 		}
3270 		init_addr = (Elf_Addr *)elm->obj->init_array;
3271 		if (init_addr != NULL) {
3272 			for (index = 0; index < elm->obj->init_array_num;
3273 			    index++) {
3274 				if (init_addr[index] != 0 &&
3275 				    init_addr[index] != 1) {
3276 				dbg("calling init function for %s at %p",
3277 					    elm->obj->path,
3278 					    (void *)init_addr[index]);
3279 					LD_UTRACE(UTRACE_INIT_CALL, elm->obj,
3280 					    (void *)init_addr[index], 0, 0,
3281 					    elm->obj->path);
3282 					call_init_pointer(elm->obj,
3283 					    init_addr[index]);
3284 				}
3285 			}
3286 		}
3287 		wlock_acquire(rtld_bind_lock, lockstate);
3288 		unhold_object(elm->obj);
3289 	}
3290 	errmsg_restore(saved_msg);
3291 }
3292 
3293 static void
objlist_clear(Objlist * list)3294 objlist_clear(Objlist *list)
3295 {
3296 	Objlist_Entry *elm;
3297 
3298 	while (!STAILQ_EMPTY(list)) {
3299 		elm = STAILQ_FIRST(list);
3300 		STAILQ_REMOVE_HEAD(list, link);
3301 		free(elm);
3302 	}
3303 }
3304 
3305 static Objlist_Entry *
objlist_find(Objlist * list,const Obj_Entry * obj)3306 objlist_find(Objlist *list, const Obj_Entry *obj)
3307 {
3308 	Objlist_Entry *elm;
3309 
3310 	STAILQ_FOREACH(elm, list, link)
3311 		if (elm->obj == obj)
3312 			return elm;
3313 	return (NULL);
3314 }
3315 
3316 static void
objlist_init(Objlist * list)3317 objlist_init(Objlist *list)
3318 {
3319 	STAILQ_INIT(list);
3320 }
3321 
3322 static void
objlist_push_head(Objlist * list,Obj_Entry * obj)3323 objlist_push_head(Objlist *list, Obj_Entry *obj)
3324 {
3325 	Objlist_Entry *elm;
3326 
3327 	elm = NEW(Objlist_Entry);
3328 	elm->obj = obj;
3329 	STAILQ_INSERT_HEAD(list, elm, link);
3330 }
3331 
3332 static void
objlist_push_tail(Objlist * list,Obj_Entry * obj)3333 objlist_push_tail(Objlist *list, Obj_Entry *obj)
3334 {
3335 	Objlist_Entry *elm;
3336 
3337 	elm = NEW(Objlist_Entry);
3338 	elm->obj = obj;
3339 	STAILQ_INSERT_TAIL(list, elm, link);
3340 }
3341 
3342 static void
objlist_put_after(Objlist * list,Obj_Entry * listobj,Obj_Entry * obj)3343 objlist_put_after(Objlist *list, Obj_Entry *listobj, Obj_Entry *obj)
3344 {
3345 	Objlist_Entry *elm, *listelm;
3346 
3347 	STAILQ_FOREACH(listelm, list, link) {
3348 		if (listelm->obj == listobj)
3349 			break;
3350 	}
3351 	elm = NEW(Objlist_Entry);
3352 	elm->obj = obj;
3353 	if (listelm != NULL)
3354 		STAILQ_INSERT_AFTER(list, listelm, elm, link);
3355 	else
3356 		STAILQ_INSERT_TAIL(list, elm, link);
3357 }
3358 
3359 static void
objlist_remove(Objlist * list,Obj_Entry * obj)3360 objlist_remove(Objlist *list, Obj_Entry *obj)
3361 {
3362 	Objlist_Entry *elm;
3363 
3364 	if ((elm = objlist_find(list, obj)) != NULL) {
3365 		STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
3366 		free(elm);
3367 	}
3368 }
3369 
3370 /*
3371  * Relocate dag rooted in the specified object.
3372  * Returns 0 on success, or -1 on failure.
3373  */
3374 
3375 static int
relocate_object_dag(Obj_Entry * root,bool bind_now,Obj_Entry * rtldobj,int flags,RtldLockState * lockstate)3376 relocate_object_dag(Obj_Entry *root, bool bind_now, Obj_Entry *rtldobj,
3377     int flags, RtldLockState *lockstate)
3378 {
3379 	Objlist_Entry *elm;
3380 	int error;
3381 
3382 	error = 0;
3383 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
3384 		error = relocate_object(elm->obj, bind_now, rtldobj, flags,
3385 		    lockstate);
3386 		if (error == -1)
3387 			break;
3388 	}
3389 	return (error);
3390 }
3391 
3392 /*
3393  * Prepare for, or clean after, relocating an object marked with
3394  * DT_TEXTREL or DF_TEXTREL.  Before relocating, all read-only
3395  * segments are remapped read-write.  After relocations are done, the
3396  * segment's permissions are returned back to the modes specified in
3397  * the phdrs.  If any relocation happened, or always for wired
3398  * program, COW is triggered.
3399  */
3400 static int
reloc_textrel_prot(Obj_Entry * obj,bool before)3401 reloc_textrel_prot(Obj_Entry *obj, bool before)
3402 {
3403 	const Elf_Phdr *ph;
3404 	void *base;
3405 	size_t l, sz;
3406 	int prot;
3407 
3408 	for (l = obj->phsize / sizeof(*ph), ph = obj->phdr; l > 0; l--, ph++) {
3409 		if (ph->p_type != PT_LOAD || (ph->p_flags & PF_W) != 0)
3410 			continue;
3411 		base = obj->relocbase + rtld_trunc_page(ph->p_vaddr);
3412 		sz = rtld_round_page(ph->p_vaddr + ph->p_filesz) -
3413 		    rtld_trunc_page(ph->p_vaddr);
3414 		prot = before ? (PROT_READ | PROT_WRITE) :
3415 		    convert_prot(ph->p_flags);
3416 		if (mprotect(base, sz, prot) == -1) {
3417 			_rtld_error("%s: Cannot write-%sable text segment: %s",
3418 			    obj->path, before ? "en" : "dis",
3419 			    rtld_strerror(errno));
3420 			return (-1);
3421 		}
3422 	}
3423 	return (0);
3424 }
3425 
3426 /* Process RELR relative relocations. */
3427 static void
reloc_relr(Obj_Entry * obj)3428 reloc_relr(Obj_Entry *obj)
3429 {
3430 	const Elf_Relr *relr, *relrlim;
3431 	Elf_Addr *where;
3432 
3433 	relrlim = (const Elf_Relr *)((const char *)obj->relr + obj->relrsize);
3434 	for (relr = obj->relr; relr < relrlim; relr++) {
3435 		Elf_Relr entry = *relr;
3436 
3437 		if ((entry & 1) == 0) {
3438 			where = (Elf_Addr *)(obj->relocbase + entry);
3439 			*where++ += (Elf_Addr)obj->relocbase;
3440 		} else {
3441 			for (long i = 0; (entry >>= 1) != 0; i++)
3442 				if ((entry & 1) != 0)
3443 					where[i] += (Elf_Addr)obj->relocbase;
3444 			where += CHAR_BIT * sizeof(Elf_Relr) - 1;
3445 		}
3446 	}
3447 }
3448 
3449 /*
3450  * Relocate single object.
3451  * Returns 0 on success, or -1 on failure.
3452  */
3453 static int
relocate_object(Obj_Entry * obj,bool bind_now,Obj_Entry * rtldobj,int flags,RtldLockState * lockstate)3454 relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj, int flags,
3455     RtldLockState *lockstate)
3456 {
3457 	if (obj->relocated)
3458 		return (0);
3459 	obj->relocated = true;
3460 	if (obj != rtldobj)
3461 		dbg("relocating \"%s\"", obj->path);
3462 
3463 	if (obj->symtab == NULL || obj->strtab == NULL ||
3464 	    !(obj->valid_hash_sysv || obj->valid_hash_gnu))
3465 		dbg("object %s has no run-time symbol table", obj->path);
3466 
3467 	/* There are relocations to the write-protected text segment. */
3468 	if (obj->textrel && reloc_textrel_prot(obj, true) != 0)
3469 		return (-1);
3470 
3471 	/* Process the non-PLT non-IFUNC relocations. */
3472 	if (reloc_non_plt(obj, rtldobj, flags, lockstate))
3473 		return (-1);
3474 	reloc_relr(obj);
3475 
3476 	/* Re-protected the text segment. */
3477 	if (obj->textrel && reloc_textrel_prot(obj, false) != 0)
3478 		return (-1);
3479 
3480 	/* Set the special PLT or GOT entries. */
3481 	init_pltgot(obj);
3482 
3483 	/* Process the PLT relocations. */
3484 	if (reloc_plt(obj, flags, lockstate) == -1)
3485 		return (-1);
3486 	/* Relocate the jump slots if we are doing immediate binding. */
3487 	if ((obj->bind_now || bind_now) &&
3488 	    reloc_jmpslots(obj, flags, lockstate) == -1)
3489 		return (-1);
3490 
3491 	if (obj != rtldobj && !obj->mainprog && obj_enforce_relro(obj) == -1)
3492 		return (-1);
3493 
3494 	/*
3495 	 * Set up the magic number and version in the Obj_Entry.  These
3496 	 * were checked in the crt1.o from the original ElfKit, so we
3497 	 * set them for backward compatibility.
3498 	 */
3499 	obj->magic = RTLD_MAGIC;
3500 	obj->version = RTLD_VERSION;
3501 
3502 	return (0);
3503 }
3504 
3505 /*
3506  * Relocate newly-loaded shared objects.  The argument is a pointer to
3507  * the Obj_Entry for the first such object.  All objects from the first
3508  * to the end of the list of objects are relocated.  Returns 0 on success,
3509  * or -1 on failure.
3510  */
3511 static int
relocate_objects(Obj_Entry * first,bool bind_now,Obj_Entry * rtldobj,int flags,RtldLockState * lockstate)3512 relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj, int flags,
3513     RtldLockState *lockstate)
3514 {
3515 	Obj_Entry *obj;
3516 	int error;
3517 
3518 	for (error = 0, obj = first; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
3519 		if (obj->marker)
3520 			continue;
3521 		error = relocate_object(obj, bind_now, rtldobj, flags,
3522 		    lockstate);
3523 		if (error == -1)
3524 			break;
3525 	}
3526 	return (error);
3527 }
3528 
3529 /*
3530  * The handling of R_MACHINE_IRELATIVE relocations and jumpslots
3531  * referencing STT_GNU_IFUNC symbols is postponed till the other
3532  * relocations are done.  The indirect functions specified as
3533  * ifunc are allowed to call other symbols, so we need to have
3534  * objects relocated before asking for resolution from indirects.
3535  *
3536  * The R_MACHINE_IRELATIVE slots are resolved in greedy fashion,
3537  * instead of the usual lazy handling of PLT slots.  It is
3538  * consistent with how GNU does it.
3539  */
3540 static int
resolve_object_ifunc(Obj_Entry * obj,bool bind_now,int flags,RtldLockState * lockstate)3541 resolve_object_ifunc(Obj_Entry *obj, bool bind_now, int flags,
3542     RtldLockState *lockstate)
3543 {
3544 	if (obj->ifuncs_resolved)
3545 		return (0);
3546 	obj->ifuncs_resolved = true;
3547 	if (!obj->irelative && !obj->irelative_nonplt &&
3548 	    !((obj->bind_now || bind_now) && obj->gnu_ifunc) &&
3549 	    !obj->non_plt_gnu_ifunc)
3550 		return (0);
3551 	if (obj_disable_relro(obj) == -1 ||
3552 	    (obj->irelative && reloc_iresolve(obj, lockstate) == -1) ||
3553 	    (obj->irelative_nonplt &&
3554 	    reloc_iresolve_nonplt(obj, lockstate) == -1) ||
3555 	    ((obj->bind_now || bind_now) && obj->gnu_ifunc &&
3556 	    reloc_gnu_ifunc(obj, flags, lockstate) == -1) ||
3557 	    (obj->non_plt_gnu_ifunc &&
3558 	    reloc_non_plt(obj, &obj_rtld, flags | SYMLOOK_IFUNC,
3559 	    lockstate) == -1) ||
3560 	    obj_enforce_relro(obj) == -1)
3561 		return (-1);
3562 	return (0);
3563 }
3564 
3565 static int
initlist_objects_ifunc(Objlist * list,bool bind_now,int flags,RtldLockState * lockstate)3566 initlist_objects_ifunc(Objlist *list, bool bind_now, int flags,
3567     RtldLockState *lockstate)
3568 {
3569 	Objlist_Entry *elm;
3570 	Obj_Entry *obj;
3571 
3572 	STAILQ_FOREACH(elm, list, link) {
3573 		obj = elm->obj;
3574 		if (obj->marker)
3575 			continue;
3576 		if (resolve_object_ifunc(obj, bind_now, flags, lockstate) == -1)
3577 			return (-1);
3578 	}
3579 	return (0);
3580 }
3581 
3582 /*
3583  * Cleanup procedure.  It will be called (by the atexit mechanism) just
3584  * before the process exits.
3585  */
3586 static void
rtld_exit(void)3587 rtld_exit(void)
3588 {
3589 	RtldLockState lockstate;
3590 
3591 	wlock_acquire(rtld_bind_lock, &lockstate);
3592 	dbg("rtld_exit()");
3593 	objlist_call_fini(&list_fini, NULL, &lockstate);
3594 	/* No need to remove the items from the list, since we are exiting. */
3595 	if (!libmap_disable)
3596 		lm_fini();
3597 	lock_release(rtld_bind_lock, &lockstate);
3598 }
3599 
3600 static void
rtld_nop_exit(void)3601 rtld_nop_exit(void)
3602 {
3603 }
3604 
3605 /*
3606  * Iterate over a search path, translate each element, and invoke the
3607  * callback on the result.
3608  */
3609 static void *
path_enumerate(const char * path,path_enum_proc callback,const char * refobj_path,void * arg)3610 path_enumerate(const char *path, path_enum_proc callback,
3611     const char *refobj_path, void *arg)
3612 {
3613 	const char *trans;
3614 	if (path == NULL)
3615 		return (NULL);
3616 
3617 	path += strspn(path, ":;");
3618 	while (*path != '\0') {
3619 		size_t len;
3620 		char *res;
3621 
3622 		len = strcspn(path, ":;");
3623 		trans = lm_findn(refobj_path, path, len);
3624 		if (trans)
3625 			res = callback(trans, strlen(trans), arg);
3626 		else
3627 			res = callback(path, len, arg);
3628 
3629 		if (res != NULL)
3630 			return (res);
3631 
3632 		path += len;
3633 		path += strspn(path, ":;");
3634 	}
3635 
3636 	return (NULL);
3637 }
3638 
3639 struct try_library_args {
3640 	const char *name;
3641 	size_t namelen;
3642 	char *buffer;
3643 	size_t buflen;
3644 	int fd;
3645 };
3646 
3647 static void *
try_library_path(const char * dir,size_t dirlen,void * param)3648 try_library_path(const char *dir, size_t dirlen, void *param)
3649 {
3650 	struct try_library_args *arg;
3651 	int fd;
3652 
3653 	arg = param;
3654 	if (*dir == '/' || trust) {
3655 		char *pathname;
3656 
3657 		if (dirlen + 1 + arg->namelen + 1 > arg->buflen)
3658 			return (NULL);
3659 
3660 		pathname = arg->buffer;
3661 		strncpy(pathname, dir, dirlen);
3662 		pathname[dirlen] = '/';
3663 		strcpy(pathname + dirlen + 1, arg->name);
3664 
3665 		dbg("  Trying \"%s\"", pathname);
3666 		fd = open(pathname, O_RDONLY | O_CLOEXEC | O_VERIFY);
3667 		if (fd >= 0) {
3668 			dbg("  Opened \"%s\", fd %d", pathname, fd);
3669 			pathname = xmalloc(dirlen + 1 + arg->namelen + 1);
3670 			strcpy(pathname, arg->buffer);
3671 			arg->fd = fd;
3672 			return (pathname);
3673 		} else {
3674 			dbg("  Failed to open \"%s\": %s", pathname,
3675 			    rtld_strerror(errno));
3676 		}
3677 	}
3678 	return (NULL);
3679 }
3680 
3681 static char *
search_library_path(const char * name,const char * path,const char * refobj_path,int * fdp)3682 search_library_path(const char *name, const char *path, const char *refobj_path,
3683     int *fdp)
3684 {
3685 	char *p;
3686 	struct try_library_args arg;
3687 
3688 	if (path == NULL)
3689 		return (NULL);
3690 
3691 	arg.name = name;
3692 	arg.namelen = strlen(name);
3693 	arg.buffer = xmalloc(PATH_MAX);
3694 	arg.buflen = PATH_MAX;
3695 	arg.fd = -1;
3696 
3697 	p = path_enumerate(path, try_library_path, refobj_path, &arg);
3698 	*fdp = arg.fd;
3699 
3700 	free(arg.buffer);
3701 
3702 	return (p);
3703 }
3704 
3705 /*
3706  * Finds the library with the given name using the directory descriptors
3707  * listed in the LD_LIBRARY_PATH_FDS environment variable.
3708  *
3709  * Returns a freshly-opened close-on-exec file descriptor for the library,
3710  * or -1 if the library cannot be found.
3711  */
3712 static char *
search_library_pathfds(const char * name,const char * path,int * fdp)3713 search_library_pathfds(const char *name, const char *path, int *fdp)
3714 {
3715 	char *envcopy, *fdstr, *found, *last_token;
3716 	size_t len;
3717 	int dirfd, fd;
3718 
3719 	dbg("%s('%s', '%s', fdp)", __func__, name, path);
3720 
3721 	/* Don't load from user-specified libdirs into setuid binaries. */
3722 	if (!trust)
3723 		return (NULL);
3724 
3725 	/* We can't do anything if LD_LIBRARY_PATH_FDS isn't set. */
3726 	if (path == NULL)
3727 		return (NULL);
3728 
3729 	/* LD_LIBRARY_PATH_FDS only works with relative paths. */
3730 	if (name[0] == '/') {
3731 		dbg("Absolute path (%s) passed to %s", name, __func__);
3732 		return (NULL);
3733 	}
3734 
3735 	/*
3736 	 * Use strtok_r() to walk the FD:FD:FD list.  This requires a local
3737 	 * copy of the path, as strtok_r rewrites separator tokens
3738 	 * with '\0'.
3739 	 */
3740 	found = NULL;
3741 	envcopy = xstrdup(path);
3742 	for (fdstr = strtok_r(envcopy, ":", &last_token); fdstr != NULL;
3743 	    fdstr = strtok_r(NULL, ":", &last_token)) {
3744 		dirfd = parse_integer(fdstr);
3745 		if (dirfd < 0) {
3746 			_rtld_error("failed to parse directory FD: '%s'",
3747 			    fdstr);
3748 			break;
3749 		}
3750 		fd = __sys_openat(dirfd, name, O_RDONLY | O_CLOEXEC | O_VERIFY);
3751 		if (fd >= 0) {
3752 			*fdp = fd;
3753 			len = strlen(fdstr) + strlen(name) + 3;
3754 			found = xmalloc(len);
3755 			if (rtld_snprintf(found, len, "#%d/%s", dirfd, name) <
3756 			    0) {
3757 				_rtld_error("error generating '%d/%s'", dirfd,
3758 				    name);
3759 				rtld_die();
3760 			}
3761 			dbg("open('%s') => %d", found, fd);
3762 			break;
3763 		}
3764 	}
3765 	free(envcopy);
3766 
3767 	return (found);
3768 }
3769 
3770 int
dlclose(void * handle)3771 dlclose(void *handle)
3772 {
3773 	RtldLockState lockstate;
3774 	int error;
3775 
3776 	wlock_acquire(rtld_bind_lock, &lockstate);
3777 	error = dlclose_locked(handle, &lockstate);
3778 	lock_release(rtld_bind_lock, &lockstate);
3779 	return (error);
3780 }
3781 
3782 static int
dlclose_locked(void * handle,RtldLockState * lockstate)3783 dlclose_locked(void *handle, RtldLockState *lockstate)
3784 {
3785 	Obj_Entry *root;
3786 
3787 	root = dlcheck(handle);
3788 	if (root == NULL)
3789 		return (-1);
3790 	LD_UTRACE(UTRACE_DLCLOSE_START, handle, NULL, 0, root->dl_refcount,
3791 	    root->path);
3792 
3793 	/* Unreference the object and its dependencies. */
3794 	root->dl_refcount--;
3795 
3796 	if (root->refcount == 1) {
3797 		/*
3798 		 * The object will be no longer referenced, so we must unload
3799 		 * it. First, call the fini functions.
3800 		 */
3801 		objlist_call_fini(&list_fini, root, lockstate);
3802 
3803 		unref_dag(root);
3804 
3805 		/* Finish cleaning up the newly-unreferenced objects. */
3806 		GDB_STATE(RT_DELETE, &root->linkmap);
3807 		unload_object(root, lockstate);
3808 		GDB_STATE(RT_CONSISTENT, NULL);
3809 	} else
3810 		unref_dag(root);
3811 
3812 	LD_UTRACE(UTRACE_DLCLOSE_STOP, handle, NULL, 0, 0, NULL);
3813 	return (0);
3814 }
3815 
3816 char *
dlerror(void)3817 dlerror(void)
3818 {
3819 	if (*(lockinfo.dlerror_seen()) != 0)
3820 		return (NULL);
3821 	*lockinfo.dlerror_seen() = 1;
3822 	return (lockinfo.dlerror_loc());
3823 }
3824 
3825 /*
3826  * This function is deprecated and has no effect.
3827  */
3828 void
dllockinit(void * context,void * (* _lock_create)(void * context)__unused,void (* _rlock_acquire)(void * lock)__unused,void (* _wlock_acquire)(void * lock)__unused,void (* _lock_release)(void * lock)__unused,void (* _lock_destroy)(void * lock)__unused,void (* context_destroy)(void * context))3829 dllockinit(void *context, void *(*_lock_create)(void *context)__unused,
3830     void (*_rlock_acquire)(void *lock) __unused,
3831     void (*_wlock_acquire)(void *lock) __unused,
3832     void (*_lock_release)(void *lock) __unused,
3833     void (*_lock_destroy)(void *lock) __unused,
3834     void (*context_destroy)(void *context))
3835 {
3836 	static void *cur_context;
3837 	static void (*cur_context_destroy)(void *);
3838 
3839 	/* Just destroy the context from the previous call, if necessary. */
3840 	if (cur_context_destroy != NULL)
3841 		cur_context_destroy(cur_context);
3842 	cur_context = context;
3843 	cur_context_destroy = context_destroy;
3844 }
3845 
3846 void *
dlopen(const char * name,int mode)3847 dlopen(const char *name, int mode)
3848 {
3849 	return (rtld_dlopen(name, -1, mode));
3850 }
3851 
3852 void *
fdlopen(int fd,int mode)3853 fdlopen(int fd, int mode)
3854 {
3855 	return (rtld_dlopen(NULL, fd, mode));
3856 }
3857 
3858 static void *
rtld_dlopen(const char * name,int fd,int mode)3859 rtld_dlopen(const char *name, int fd, int mode)
3860 {
3861 	RtldLockState lockstate;
3862 	int lo_flags;
3863 
3864 	LD_UTRACE(UTRACE_DLOPEN_START, NULL, NULL, 0, mode, name);
3865 	ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1";
3866 	if (ld_tracing != NULL) {
3867 		rlock_acquire(rtld_bind_lock, &lockstate);
3868 		if (sigsetjmp(lockstate.env, 0) != 0)
3869 			lock_upgrade(rtld_bind_lock, &lockstate);
3870 		environ = __DECONST(char **,
3871 		    *get_program_var_addr("environ", &lockstate));
3872 		lock_release(rtld_bind_lock, &lockstate);
3873 	}
3874 	lo_flags = RTLD_LO_DLOPEN;
3875 	if (mode & RTLD_NODELETE)
3876 		lo_flags |= RTLD_LO_NODELETE;
3877 	if (mode & RTLD_NOLOAD)
3878 		lo_flags |= RTLD_LO_NOLOAD;
3879 	if (mode & RTLD_DEEPBIND)
3880 		lo_flags |= RTLD_LO_DEEPBIND;
3881 	if (ld_tracing != NULL)
3882 		lo_flags |= RTLD_LO_TRACE | RTLD_LO_IGNSTLS;
3883 
3884 	return (dlopen_object(name, fd, obj_main, lo_flags,
3885 	    mode & (RTLD_MODEMASK | RTLD_GLOBAL), NULL));
3886 }
3887 
3888 static void
dlopen_cleanup(Obj_Entry * obj,RtldLockState * lockstate)3889 dlopen_cleanup(Obj_Entry *obj, RtldLockState *lockstate)
3890 {
3891 	obj->dl_refcount--;
3892 	unref_dag(obj);
3893 	if (obj->refcount == 0)
3894 		unload_object(obj, lockstate);
3895 }
3896 
3897 static Obj_Entry *
dlopen_object(const char * name,int fd,Obj_Entry * refobj,int lo_flags,int mode,RtldLockState * lockstate)3898 dlopen_object(const char *name, int fd, Obj_Entry *refobj, int lo_flags,
3899     int mode, RtldLockState *lockstate)
3900 {
3901 	Obj_Entry *obj;
3902 	Objlist initlist;
3903 	RtldLockState mlockstate;
3904 	int result;
3905 
3906 	dbg(
3907     "dlopen_object name \"%s\" fd %d refobj \"%s\" lo_flags %#x mode %#x",
3908 	    name != NULL ? name : "<null>", fd,
3909 	    refobj == NULL ? "<null>" : refobj->path, lo_flags, mode);
3910 	objlist_init(&initlist);
3911 
3912 	if (lockstate == NULL && !(lo_flags & RTLD_LO_EARLY)) {
3913 		wlock_acquire(rtld_bind_lock, &mlockstate);
3914 		lockstate = &mlockstate;
3915 	}
3916 	GDB_STATE(RT_ADD, NULL);
3917 
3918 	obj = NULL;
3919 	if (name == NULL && fd == -1) {
3920 		obj = obj_main;
3921 		obj->refcount++;
3922 	} else {
3923 		obj = load_object(name, fd, refobj, lo_flags);
3924 	}
3925 
3926 	if (obj != NULL) {
3927 		obj->dl_refcount++;
3928 		if ((mode & RTLD_GLOBAL) != 0 &&
3929 		    objlist_find(&list_global, obj) == NULL)
3930 			objlist_push_tail(&list_global, obj);
3931 
3932 		if (!obj->init_done) {
3933 			/* We loaded something new and have to init something.
3934 			 */
3935 			if ((lo_flags & RTLD_LO_DEEPBIND) != 0)
3936 				obj->deepbind = true;
3937 			result = 0;
3938 			if ((lo_flags & (RTLD_LO_EARLY |
3939 			    RTLD_LO_IGNSTLS)) == 0 &&
3940 			    obj->static_tls && !allocate_tls_offset(obj)) {
3941 				_rtld_error(
3942 		    "%s: No space available for static Thread Local Storage",
3943 				    obj->path);
3944 				result = -1;
3945 			}
3946 			if (result != -1)
3947 				result = load_needed_objects(obj,
3948 				    lo_flags & (RTLD_LO_DLOPEN | RTLD_LO_EARLY |
3949 				    RTLD_LO_IGNSTLS | RTLD_LO_TRACE));
3950 			init_dag(obj);
3951 			ref_dag(obj);
3952 			if (result != -1)
3953 				result = rtld_verify_versions(&obj->dagmembers);
3954 			if (result != -1 && ld_tracing)
3955 				goto trace;
3956 			if (result == -1 || relocate_object_dag(obj,
3957 			    (mode & RTLD_MODEMASK) == RTLD_NOW, &obj_rtld,
3958 			    (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3959 			    lockstate) == -1) {
3960 				dlopen_cleanup(obj, lockstate);
3961 				obj = NULL;
3962 			} else if ((lo_flags & RTLD_LO_EARLY) != 0) {
3963 				/*
3964 				 * Do not call the init functions for early
3965 				 * loaded filtees.  The image is still not
3966 				 * initialized enough for them to work.
3967 				 *
3968 				 * Our object is found by the global object list
3969 				 * and will be ordered among all init calls done
3970 				 * right before transferring control to main.
3971 				 */
3972 			} else {
3973 				/* Make list of init functions to call. */
3974 				initlist_for_loaded_obj(obj, obj, &initlist);
3975 			}
3976 			/*
3977 			 * Process all no_delete or global objects here, given
3978 			 * them own DAGs to prevent their dependencies from
3979 			 * being unloaded.  This has to be done after we have
3980 			 * loaded all of the dependencies, so that we do not
3981 			 * miss any.
3982 			 */
3983 			if (obj != NULL)
3984 				process_z(obj);
3985 		} else {
3986 			/*
3987 			 * Bump the reference counts for objects on this DAG. If
3988 			 * this is the first dlopen() call for the object that
3989 			 * was already loaded as a dependency, initialize the
3990 			 * dag starting at it.
3991 			 */
3992 			init_dag(obj);
3993 			ref_dag(obj);
3994 
3995 			if ((lo_flags & RTLD_LO_TRACE) != 0)
3996 				goto trace;
3997 		}
3998 		if (obj != NULL &&
3999 		    ((lo_flags & RTLD_LO_NODELETE) != 0 || obj->z_nodelete) &&
4000 		    !obj->ref_nodel) {
4001 			dbg("obj %s nodelete", obj->path);
4002 			ref_dag(obj);
4003 			obj->z_nodelete = obj->ref_nodel = true;
4004 		}
4005 	}
4006 
4007 	LD_UTRACE(UTRACE_DLOPEN_STOP, obj, NULL, 0, obj ? obj->dl_refcount : 0,
4008 	    name);
4009 	GDB_STATE(RT_CONSISTENT, obj ? &obj->linkmap : NULL);
4010 
4011 	if ((lo_flags & RTLD_LO_EARLY) == 0) {
4012 		map_stacks_exec(lockstate);
4013 		if (obj != NULL)
4014 			distribute_static_tls(&initlist);
4015 	}
4016 
4017 	if (initlist_objects_ifunc(&initlist, (mode & RTLD_MODEMASK) ==
4018 	    RTLD_NOW, (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
4019 	    lockstate) == -1) {
4020 		objlist_clear(&initlist);
4021 		dlopen_cleanup(obj, lockstate);
4022 		if (lockstate == &mlockstate)
4023 			lock_release(rtld_bind_lock, lockstate);
4024 		return (NULL);
4025 	}
4026 
4027 	if ((lo_flags & RTLD_LO_EARLY) == 0) {
4028 		/* Call the init functions. */
4029 		objlist_call_init(&initlist, lockstate);
4030 	}
4031 	objlist_clear(&initlist);
4032 	if (lockstate == &mlockstate)
4033 		lock_release(rtld_bind_lock, lockstate);
4034 	return (obj);
4035 trace:
4036 	trace_loaded_objects(obj, false);
4037 	if (lockstate == &mlockstate)
4038 		lock_release(rtld_bind_lock, lockstate);
4039 	exit(0);
4040 }
4041 
4042 static void *
do_dlsym(void * handle,const char * name,void * retaddr,const Ver_Entry * ve,int flags)4043 do_dlsym(void *handle, const char *name, void *retaddr, const Ver_Entry *ve,
4044     int flags)
4045 {
4046 	DoneList donelist;
4047 	const Obj_Entry *obj, *defobj;
4048 	const Elf_Sym *def;
4049 	SymLook req;
4050 	RtldLockState lockstate;
4051 	tls_index ti;
4052 	void *sym;
4053 	int res;
4054 
4055 	def = NULL;
4056 	defobj = NULL;
4057 	symlook_init(&req, name);
4058 	req.ventry = ve;
4059 	req.flags = flags | SYMLOOK_IN_PLT;
4060 	req.lockstate = &lockstate;
4061 
4062 	LD_UTRACE(UTRACE_DLSYM_START, handle, NULL, 0, 0, name);
4063 	rlock_acquire(rtld_bind_lock, &lockstate);
4064 	if (sigsetjmp(lockstate.env, 0) != 0)
4065 		lock_upgrade(rtld_bind_lock, &lockstate);
4066 	if (handle == NULL || handle == RTLD_NEXT || handle == RTLD_DEFAULT ||
4067 	    handle == RTLD_SELF) {
4068 		if ((obj = obj_from_addr(retaddr)) == NULL) {
4069 			_rtld_error("Cannot determine caller's shared object");
4070 			lock_release(rtld_bind_lock, &lockstate);
4071 			LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
4072 			return (NULL);
4073 		}
4074 		if (handle == NULL) { /* Just the caller's shared object. */
4075 			res = symlook_obj(&req, obj);
4076 			if (res == 0) {
4077 				def = req.sym_out;
4078 				defobj = req.defobj_out;
4079 			}
4080 		} else if (handle == RTLD_NEXT || /* Objects after caller's */
4081 		    handle == RTLD_SELF) {	  /* ... caller included */
4082 			if (handle == RTLD_NEXT)
4083 				obj = globallist_next(obj);
4084 			for (; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
4085 				if (obj->marker)
4086 					continue;
4087 				res = symlook_obj(&req, obj);
4088 				if (res == 0) {
4089 					if (def == NULL ||
4090 					    (ld_dynamic_weak &&
4091 						ELF_ST_BIND(
4092 						    req.sym_out->st_info) !=
4093 						    STB_WEAK)) {
4094 						def = req.sym_out;
4095 						defobj = req.defobj_out;
4096 						if (!ld_dynamic_weak ||
4097 						    ELF_ST_BIND(def->st_info) !=
4098 							STB_WEAK)
4099 							break;
4100 					}
4101 				}
4102 			}
4103 			/*
4104 			 * Search the dynamic linker itself, and possibly
4105 			 * resolve the symbol from there.  This is how the
4106 			 * application links to dynamic linker services such as
4107 			 * dlopen. Note that we ignore ld_dynamic_weak == false
4108 			 * case, always overriding weak symbols by rtld
4109 			 * definitions.
4110 			 */
4111 			if (def == NULL ||
4112 			    ELF_ST_BIND(def->st_info) == STB_WEAK) {
4113 				res = symlook_obj(&req, &obj_rtld);
4114 				if (res == 0) {
4115 					def = req.sym_out;
4116 					defobj = req.defobj_out;
4117 				}
4118 			}
4119 		} else {
4120 			assert(handle == RTLD_DEFAULT);
4121 			res = symlook_default(&req, obj);
4122 			if (res == 0) {
4123 				defobj = req.defobj_out;
4124 				def = req.sym_out;
4125 			}
4126 		}
4127 	} else {
4128 		if ((obj = dlcheck(handle)) == NULL) {
4129 			lock_release(rtld_bind_lock, &lockstate);
4130 			LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
4131 			return (NULL);
4132 		}
4133 
4134 		donelist_init(&donelist);
4135 		if (obj->mainprog) {
4136 			/* Handle obtained by dlopen(NULL, ...) implies global
4137 			 * scope. */
4138 			res = symlook_global(&req, &donelist);
4139 			if (res == 0) {
4140 				def = req.sym_out;
4141 				defobj = req.defobj_out;
4142 			}
4143 			/*
4144 			 * Search the dynamic linker itself, and possibly
4145 			 * resolve the symbol from there.  This is how the
4146 			 * application links to dynamic linker services such as
4147 			 * dlopen.
4148 			 */
4149 			if (def == NULL ||
4150 			    ELF_ST_BIND(def->st_info) == STB_WEAK) {
4151 				res = symlook_obj(&req, &obj_rtld);
4152 				if (res == 0) {
4153 					def = req.sym_out;
4154 					defobj = req.defobj_out;
4155 				}
4156 			}
4157 		} else {
4158 			/* Search the whole DAG rooted at the given object. */
4159 			res = symlook_list(&req, &obj->dagmembers, &donelist);
4160 			if (res == 0) {
4161 				def = req.sym_out;
4162 				defobj = req.defobj_out;
4163 			}
4164 		}
4165 	}
4166 
4167 	if (def != NULL) {
4168 		lock_release(rtld_bind_lock, &lockstate);
4169 
4170 		/*
4171 		 * The value required by the caller is derived from the value
4172 		 * of the symbol. this is simply the relocated value of the
4173 		 * symbol.
4174 		 */
4175 		if (ELF_ST_TYPE(def->st_info) == STT_FUNC)
4176 			sym = make_function_pointer(def, defobj);
4177 		else if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
4178 			sym = rtld_resolve_ifunc(defobj, def);
4179 		else if (ELF_ST_TYPE(def->st_info) == STT_TLS) {
4180 			ti.ti_module = defobj->tlsindex;
4181 			ti.ti_offset = def->st_value - TLS_DTV_OFFSET;
4182 			sym = __tls_get_addr(&ti);
4183 		} else
4184 			sym = defobj->relocbase + def->st_value;
4185 		LD_UTRACE(UTRACE_DLSYM_STOP, handle, sym, 0, 0, name);
4186 		return (sym);
4187 	}
4188 
4189 	_rtld_error("Undefined symbol \"%s%s%s\"", name, ve != NULL ? "@" : "",
4190 	    ve != NULL ? ve->name : "");
4191 	lock_release(rtld_bind_lock, &lockstate);
4192 	LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
4193 	return (NULL);
4194 }
4195 
4196 void *
dlsym(void * handle,const char * name)4197 dlsym(void *handle, const char *name)
4198 {
4199 	return (do_dlsym(handle, name, __builtin_return_address(0), NULL,
4200 	    SYMLOOK_DLSYM));
4201 }
4202 
4203 dlfunc_t
dlfunc(void * handle,const char * name)4204 dlfunc(void *handle, const char *name)
4205 {
4206 	union {
4207 		void *d;
4208 		dlfunc_t f;
4209 	} rv;
4210 
4211 	rv.d = do_dlsym(handle, name, __builtin_return_address(0), NULL,
4212 	    SYMLOOK_DLSYM);
4213 	return (rv.f);
4214 }
4215 
4216 void *
dlvsym(void * handle,const char * name,const char * version)4217 dlvsym(void *handle, const char *name, const char *version)
4218 {
4219 	Ver_Entry ventry;
4220 
4221 	ventry.name = version;
4222 	ventry.file = NULL;
4223 	ventry.hash = elf_hash(version);
4224 	ventry.flags = 0;
4225 	return (do_dlsym(handle, name, __builtin_return_address(0), &ventry,
4226 	    SYMLOOK_DLSYM));
4227 }
4228 
4229 int
_rtld_addr_phdr(const void * addr,struct dl_phdr_info * phdr_info)4230 _rtld_addr_phdr(const void *addr, struct dl_phdr_info *phdr_info)
4231 {
4232 	const Obj_Entry *obj;
4233 	RtldLockState lockstate;
4234 
4235 	rlock_acquire(rtld_bind_lock, &lockstate);
4236 	obj = obj_from_addr(addr);
4237 	if (obj == NULL) {
4238 		_rtld_error("No shared object contains address");
4239 		lock_release(rtld_bind_lock, &lockstate);
4240 		return (0);
4241 	}
4242 	rtld_fill_dl_phdr_info(obj, phdr_info);
4243 	lock_release(rtld_bind_lock, &lockstate);
4244 	return (1);
4245 }
4246 
4247 int
dladdr(const void * addr,Dl_info * info)4248 dladdr(const void *addr, Dl_info *info)
4249 {
4250 	const Obj_Entry *obj;
4251 	const Elf_Sym *def;
4252 	void *symbol_addr;
4253 	unsigned long symoffset;
4254 	RtldLockState lockstate;
4255 
4256 	rlock_acquire(rtld_bind_lock, &lockstate);
4257 	obj = obj_from_addr(addr);
4258 	if (obj == NULL) {
4259 		_rtld_error("No shared object contains address");
4260 		lock_release(rtld_bind_lock, &lockstate);
4261 		return (0);
4262 	}
4263 	info->dli_fname = obj->path;
4264 	info->dli_fbase = obj->mapbase;
4265 	info->dli_saddr = (void *)0;
4266 	info->dli_sname = NULL;
4267 
4268 	/*
4269 	 * Walk the symbol list looking for the symbol whose address is
4270 	 * closest to the address sent in.
4271 	 */
4272 	for (symoffset = 0; symoffset < obj->dynsymcount; symoffset++) {
4273 		def = obj->symtab + symoffset;
4274 
4275 		/*
4276 		 * For skip the symbol if st_shndx is either SHN_UNDEF or
4277 		 * SHN_COMMON.
4278 		 */
4279 		if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON)
4280 			continue;
4281 
4282 		/*
4283 		 * If the symbol is greater than the specified address, or if it
4284 		 * is further away from addr than the current nearest symbol,
4285 		 * then reject it.
4286 		 */
4287 		symbol_addr = obj->relocbase + def->st_value;
4288 		if (symbol_addr > addr || symbol_addr < info->dli_saddr)
4289 			continue;
4290 
4291 		/* Update our idea of the nearest symbol. */
4292 		info->dli_sname = obj->strtab + def->st_name;
4293 		info->dli_saddr = symbol_addr;
4294 
4295 		/* Exact match? */
4296 		if (info->dli_saddr == addr)
4297 			break;
4298 	}
4299 	lock_release(rtld_bind_lock, &lockstate);
4300 	return (1);
4301 }
4302 
4303 int
dlinfo(void * handle,int request,void * p)4304 dlinfo(void *handle, int request, void *p)
4305 {
4306 	const Obj_Entry *obj;
4307 	RtldLockState lockstate;
4308 	int error;
4309 
4310 	rlock_acquire(rtld_bind_lock, &lockstate);
4311 
4312 	if (handle == NULL || handle == RTLD_SELF) {
4313 		void *retaddr;
4314 
4315 		retaddr = __builtin_return_address(0); /* __GNUC__ only */
4316 		if ((obj = obj_from_addr(retaddr)) == NULL)
4317 			_rtld_error("Cannot determine caller's shared object");
4318 	} else
4319 		obj = dlcheck(handle);
4320 
4321 	if (obj == NULL) {
4322 		lock_release(rtld_bind_lock, &lockstate);
4323 		return (-1);
4324 	}
4325 
4326 	error = 0;
4327 	switch (request) {
4328 	case RTLD_DI_LINKMAP:
4329 		*((struct link_map const **)p) = &obj->linkmap;
4330 		break;
4331 	case RTLD_DI_ORIGIN:
4332 		error = rtld_dirname(obj->path, p);
4333 		break;
4334 
4335 	case RTLD_DI_SERINFOSIZE:
4336 	case RTLD_DI_SERINFO:
4337 		error = do_search_info(obj, request, (struct dl_serinfo *)p);
4338 		break;
4339 
4340 	default:
4341 		_rtld_error("Invalid request %d passed to dlinfo()", request);
4342 		error = -1;
4343 	}
4344 
4345 	lock_release(rtld_bind_lock, &lockstate);
4346 
4347 	return (error);
4348 }
4349 
4350 static void
rtld_fill_dl_phdr_info(const Obj_Entry * obj,struct dl_phdr_info * phdr_info)4351 rtld_fill_dl_phdr_info(const Obj_Entry *obj, struct dl_phdr_info *phdr_info)
4352 {
4353 	phdr_info->dlpi_addr = (Elf_Addr)obj->relocbase;
4354 	phdr_info->dlpi_name = obj->path;
4355 	phdr_info->dlpi_phdr = obj->phdr;
4356 	phdr_info->dlpi_phnum = obj->phsize / sizeof(obj->phdr[0]);
4357 	phdr_info->dlpi_tls_modid = obj->tlsindex;
4358 	phdr_info->dlpi_tls_data = (char *)tls_get_addr_slow(_tcb_get(),
4359 	    obj->tlsindex, 0, true);
4360 	phdr_info->dlpi_adds = obj_loads;
4361 	phdr_info->dlpi_subs = obj_loads - obj_count;
4362 }
4363 
4364 /*
4365  * It's completely UB to actually use this, so extreme caution is advised.  It's
4366  * probably not what you want.
4367  */
4368 int
_dl_iterate_phdr_locked(__dl_iterate_hdr_callback callback,void * param)4369 _dl_iterate_phdr_locked(__dl_iterate_hdr_callback callback, void *param)
4370 {
4371 	struct dl_phdr_info phdr_info;
4372 	Obj_Entry *obj;
4373 	int error;
4374 
4375 	for (obj = globallist_curr(TAILQ_FIRST(&obj_list)); obj != NULL;
4376 	    obj = globallist_next(obj)) {
4377 		rtld_fill_dl_phdr_info(obj, &phdr_info);
4378 		error = callback(&phdr_info, sizeof(phdr_info), param);
4379 		if (error != 0)
4380 			return (error);
4381 	}
4382 
4383 	rtld_fill_dl_phdr_info(&obj_rtld, &phdr_info);
4384 	return (callback(&phdr_info, sizeof(phdr_info), param));
4385 }
4386 
4387 int
dl_iterate_phdr(__dl_iterate_hdr_callback callback,void * param)4388 dl_iterate_phdr(__dl_iterate_hdr_callback callback, void *param)
4389 {
4390 	struct dl_phdr_info phdr_info;
4391 	Obj_Entry *obj, marker;
4392 	RtldLockState bind_lockstate, phdr_lockstate;
4393 	int error;
4394 
4395 	init_marker(&marker);
4396 	error = 0;
4397 
4398 	wlock_acquire(rtld_phdr_lock, &phdr_lockstate);
4399 	wlock_acquire(rtld_bind_lock, &bind_lockstate);
4400 	for (obj = globallist_curr(TAILQ_FIRST(&obj_list)); obj != NULL;) {
4401 		TAILQ_INSERT_AFTER(&obj_list, obj, &marker, next);
4402 		rtld_fill_dl_phdr_info(obj, &phdr_info);
4403 		hold_object(obj);
4404 		lock_release(rtld_bind_lock, &bind_lockstate);
4405 
4406 		error = callback(&phdr_info, sizeof phdr_info, param);
4407 
4408 		wlock_acquire(rtld_bind_lock, &bind_lockstate);
4409 		unhold_object(obj);
4410 		obj = globallist_next(&marker);
4411 		TAILQ_REMOVE(&obj_list, &marker, next);
4412 		if (error != 0) {
4413 			lock_release(rtld_bind_lock, &bind_lockstate);
4414 			lock_release(rtld_phdr_lock, &phdr_lockstate);
4415 			return (error);
4416 		}
4417 	}
4418 
4419 	if (error == 0) {
4420 		rtld_fill_dl_phdr_info(&obj_rtld, &phdr_info);
4421 		lock_release(rtld_bind_lock, &bind_lockstate);
4422 		error = callback(&phdr_info, sizeof(phdr_info), param);
4423 	}
4424 	lock_release(rtld_phdr_lock, &phdr_lockstate);
4425 	return (error);
4426 }
4427 
4428 static void *
fill_search_info(const char * dir,size_t dirlen,void * param)4429 fill_search_info(const char *dir, size_t dirlen, void *param)
4430 {
4431 	struct fill_search_info_args *arg;
4432 
4433 	arg = param;
4434 
4435 	if (arg->request == RTLD_DI_SERINFOSIZE) {
4436 		arg->serinfo->dls_cnt++;
4437 		arg->serinfo->dls_size += sizeof(struct dl_serpath) + dirlen +
4438 		    1;
4439 	} else {
4440 		struct dl_serpath *s_entry;
4441 
4442 		s_entry = arg->serpath;
4443 		s_entry->dls_name = arg->strspace;
4444 		s_entry->dls_flags = arg->flags;
4445 
4446 		strncpy(arg->strspace, dir, dirlen);
4447 		arg->strspace[dirlen] = '\0';
4448 
4449 		arg->strspace += dirlen + 1;
4450 		arg->serpath++;
4451 	}
4452 
4453 	return (NULL);
4454 }
4455 
4456 static int
do_search_info(const Obj_Entry * obj,int request,struct dl_serinfo * info)4457 do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info)
4458 {
4459 	struct dl_serinfo _info;
4460 	struct fill_search_info_args args;
4461 
4462 	args.request = RTLD_DI_SERINFOSIZE;
4463 	args.serinfo = &_info;
4464 
4465 	_info.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
4466 	_info.dls_cnt = 0;
4467 
4468 	path_enumerate(obj->rpath, fill_search_info, NULL, &args);
4469 	path_enumerate(ld_library_path, fill_search_info, NULL, &args);
4470 	path_enumerate(obj->runpath, fill_search_info, NULL, &args);
4471 	path_enumerate(gethints(obj->z_nodeflib), fill_search_info, NULL,
4472 	    &args);
4473 	if (!obj->z_nodeflib)
4474 		path_enumerate(ld_standard_library_path, fill_search_info, NULL,
4475 		    &args);
4476 
4477 	if (request == RTLD_DI_SERINFOSIZE) {
4478 		info->dls_size = _info.dls_size;
4479 		info->dls_cnt = _info.dls_cnt;
4480 		return (0);
4481 	}
4482 
4483 	if (info->dls_cnt != _info.dls_cnt ||
4484 	    info->dls_size != _info.dls_size) {
4485 		_rtld_error(
4486 		    "Uninitialized Dl_serinfo struct passed to dlinfo()");
4487 		return (-1);
4488 	}
4489 
4490 	args.request = RTLD_DI_SERINFO;
4491 	args.serinfo = info;
4492 	args.serpath = &info->dls_serpath[0];
4493 	args.strspace = (char *)&info->dls_serpath[_info.dls_cnt];
4494 
4495 	args.flags = LA_SER_RUNPATH;
4496 	if (path_enumerate(obj->rpath, fill_search_info, NULL, &args) != NULL)
4497 		return (-1);
4498 
4499 	args.flags = LA_SER_LIBPATH;
4500 	if (path_enumerate(ld_library_path, fill_search_info, NULL, &args) !=
4501 	    NULL)
4502 		return (-1);
4503 
4504 	args.flags = LA_SER_RUNPATH;
4505 	if (path_enumerate(obj->runpath, fill_search_info, NULL, &args) != NULL)
4506 		return (-1);
4507 
4508 	args.flags = LA_SER_CONFIG;
4509 	if (path_enumerate(gethints(obj->z_nodeflib), fill_search_info, NULL,
4510 		&args) != NULL)
4511 		return (-1);
4512 
4513 	args.flags = LA_SER_DEFAULT;
4514 	if (!obj->z_nodeflib &&
4515 	    path_enumerate(ld_standard_library_path, fill_search_info, NULL,
4516 		&args) != NULL)
4517 		return (-1);
4518 	return (0);
4519 }
4520 
4521 static int
rtld_dirname(const char * path,char * bname)4522 rtld_dirname(const char *path, char *bname)
4523 {
4524 	const char *endp;
4525 
4526 	/* Empty or NULL string gets treated as "." */
4527 	if (path == NULL || *path == '\0') {
4528 		bname[0] = '.';
4529 		bname[1] = '\0';
4530 		return (0);
4531 	}
4532 
4533 	/* Strip trailing slashes */
4534 	endp = path + strlen(path) - 1;
4535 	while (endp > path && *endp == '/')
4536 		endp--;
4537 
4538 	/* Find the start of the dir */
4539 	while (endp > path && *endp != '/')
4540 		endp--;
4541 
4542 	/* Either the dir is "/" or there are no slashes */
4543 	if (endp == path) {
4544 		bname[0] = *endp == '/' ? '/' : '.';
4545 		bname[1] = '\0';
4546 		return (0);
4547 	} else {
4548 		do {
4549 			endp--;
4550 		} while (endp > path && *endp == '/');
4551 	}
4552 
4553 	if (endp - path + 2 > PATH_MAX) {
4554 		_rtld_error("Filename is too long: %s", path);
4555 		return (-1);
4556 	}
4557 
4558 	strncpy(bname, path, endp - path + 1);
4559 	bname[endp - path + 1] = '\0';
4560 	return (0);
4561 }
4562 
4563 static int
rtld_dirname_abs(const char * path,char * base)4564 rtld_dirname_abs(const char *path, char *base)
4565 {
4566 	char *last;
4567 
4568 	if (realpath(path, base) == NULL) {
4569 		_rtld_error("realpath \"%s\" failed (%s)", path,
4570 		    rtld_strerror(errno));
4571 		return (-1);
4572 	}
4573 	dbg("%s -> %s", path, base);
4574 	last = strrchr(base, '/');
4575 	if (last == NULL) {
4576 		_rtld_error("non-abs result from realpath \"%s\"", path);
4577 		return (-1);
4578 	}
4579 	if (last != base)
4580 		*last = '\0';
4581 	return (0);
4582 }
4583 
4584 static void
linkmap_add(Obj_Entry * obj)4585 linkmap_add(Obj_Entry *obj)
4586 {
4587 	struct link_map *l, *prev;
4588 
4589 	l = &obj->linkmap;
4590 	l->l_name = obj->path;
4591 	l->l_base = obj->mapbase;
4592 	l->l_ld = obj->dynamic;
4593 	l->l_addr = obj->relocbase;
4594 
4595 	if (r_debug.r_map == NULL) {
4596 		r_debug.r_map = l;
4597 		return;
4598 	}
4599 
4600 	/*
4601 	 * Scan to the end of the list, but not past the entry for the
4602 	 * dynamic linker, which we want to keep at the very end.
4603 	 */
4604 	for (prev = r_debug.r_map;
4605 	    prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap;
4606 	    prev = prev->l_next)
4607 		;
4608 
4609 	/* Link in the new entry. */
4610 	l->l_prev = prev;
4611 	l->l_next = prev->l_next;
4612 	if (l->l_next != NULL)
4613 		l->l_next->l_prev = l;
4614 	prev->l_next = l;
4615 }
4616 
4617 static void
linkmap_delete(Obj_Entry * obj)4618 linkmap_delete(Obj_Entry *obj)
4619 {
4620 	struct link_map *l;
4621 
4622 	l = &obj->linkmap;
4623 	if (l->l_prev == NULL) {
4624 		if ((r_debug.r_map = l->l_next) != NULL)
4625 			l->l_next->l_prev = NULL;
4626 		return;
4627 	}
4628 
4629 	if ((l->l_prev->l_next = l->l_next) != NULL)
4630 		l->l_next->l_prev = l->l_prev;
4631 }
4632 
4633 /*
4634  * Function for the debugger to set a breakpoint on to gain control.
4635  *
4636  * The two parameters allow the debugger to easily find and determine
4637  * what the runtime loader is doing and to whom it is doing it.
4638  *
4639  * When the loadhook trap is hit (r_debug_state, set at program
4640  * initialization), the arguments can be found on the stack:
4641  *
4642  *  +8   struct link_map *m
4643  *  +4   struct r_debug  *rd
4644  *  +0   RetAddr
4645  */
4646 void
r_debug_state(struct r_debug * rd __unused,struct link_map * m __unused)4647 r_debug_state(struct r_debug *rd __unused, struct link_map *m __unused)
4648 {
4649 	/*
4650 	 * The following is a hack to force the compiler to emit calls to
4651 	 * this function, even when optimizing.  If the function is empty,
4652 	 * the compiler is not obliged to emit any code for calls to it,
4653 	 * even when marked __noinline.  However, gdb depends on those
4654 	 * calls being made.
4655 	 */
4656 	__compiler_membar();
4657 }
4658 
4659 /*
4660  * A function called after init routines have completed. This can be used to
4661  * break before a program's entry routine is called, and can be used when
4662  * main is not available in the symbol table.
4663  */
4664 void
_r_debug_postinit(struct link_map * m __unused)4665 _r_debug_postinit(struct link_map *m __unused)
4666 {
4667 	/* See r_debug_state(). */
4668 	__compiler_membar();
4669 }
4670 
4671 static void
release_object(Obj_Entry * obj)4672 release_object(Obj_Entry *obj)
4673 {
4674 	if (obj->holdcount > 0) {
4675 		obj->unholdfree = true;
4676 		return;
4677 	}
4678 	munmap(obj->mapbase, obj->mapsize);
4679 	linkmap_delete(obj);
4680 	obj_free(obj);
4681 }
4682 
4683 /*
4684  * Get address of the pointer variable in the main program.
4685  * Prefer non-weak symbol over the weak one.
4686  */
4687 static const void **
get_program_var_addr(const char * name,RtldLockState * lockstate)4688 get_program_var_addr(const char *name, RtldLockState *lockstate)
4689 {
4690 	SymLook req;
4691 	DoneList donelist;
4692 
4693 	symlook_init(&req, name);
4694 	req.lockstate = lockstate;
4695 	donelist_init(&donelist);
4696 	if (symlook_global(&req, &donelist) != 0)
4697 		return (NULL);
4698 	if (ELF_ST_TYPE(req.sym_out->st_info) == STT_FUNC)
4699 		return ((const void **)make_function_pointer(req.sym_out,
4700 		    req.defobj_out));
4701 	else if (ELF_ST_TYPE(req.sym_out->st_info) == STT_GNU_IFUNC)
4702 		return ((const void **)rtld_resolve_ifunc(req.defobj_out,
4703 		    req.sym_out));
4704 	else
4705 		return ((const void **)(req.defobj_out->relocbase +
4706 		    req.sym_out->st_value));
4707 }
4708 
4709 /*
4710  * Set a pointer variable in the main program to the given value.  This
4711  * is used to set key variables such as "environ" before any of the
4712  * init functions are called.
4713  */
4714 static void
set_program_var(const char * name,const void * value)4715 set_program_var(const char *name, const void *value)
4716 {
4717 	const void **addr;
4718 
4719 	if ((addr = get_program_var_addr(name, NULL)) != NULL) {
4720 		dbg("\"%s\": *%p <-- %p", name, addr, value);
4721 		*addr = value;
4722 	}
4723 }
4724 
4725 /*
4726  * Search the global objects, including dependencies and main object,
4727  * for the given symbol.
4728  */
4729 static int
symlook_global(SymLook * req,DoneList * donelist)4730 symlook_global(SymLook *req, DoneList *donelist)
4731 {
4732 	SymLook req1;
4733 	const Objlist_Entry *elm;
4734 	int res;
4735 
4736 	symlook_init_from_req(&req1, req);
4737 
4738 	/* Search all objects loaded at program start up. */
4739 	if (req->defobj_out == NULL || (ld_dynamic_weak &&
4740 	    ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK)) {
4741 		res = symlook_list(&req1, &list_main, donelist);
4742 		if (res == 0 && (!ld_dynamic_weak || req->defobj_out == NULL ||
4743 		    ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4744 			req->sym_out = req1.sym_out;
4745 			req->defobj_out = req1.defobj_out;
4746 			assert(req->defobj_out != NULL);
4747 		}
4748 	}
4749 
4750 	/* Search all DAGs whose roots are RTLD_GLOBAL objects. */
4751 	STAILQ_FOREACH(elm, &list_global, link) {
4752 		if (req->defobj_out != NULL && (!ld_dynamic_weak ||
4753 		    ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK))
4754 			break;
4755 		res = symlook_list(&req1, &elm->obj->dagmembers, donelist);
4756 		if (res == 0 && (req->defobj_out == NULL ||
4757 		    ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4758 			req->sym_out = req1.sym_out;
4759 			req->defobj_out = req1.defobj_out;
4760 			assert(req->defobj_out != NULL);
4761 		}
4762 	}
4763 
4764 	return (req->sym_out != NULL ? 0 : ESRCH);
4765 }
4766 
4767 /*
4768  * Given a symbol name in a referencing object, find the corresponding
4769  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
4770  * no definition was found.  Returns a pointer to the Obj_Entry of the
4771  * defining object via the reference parameter DEFOBJ_OUT.
4772  */
4773 static int
symlook_default(SymLook * req,const Obj_Entry * refobj)4774 symlook_default(SymLook *req, const Obj_Entry *refobj)
4775 {
4776 	DoneList donelist;
4777 	const Objlist_Entry *elm;
4778 	SymLook req1;
4779 	int res;
4780 
4781 	donelist_init(&donelist);
4782 	symlook_init_from_req(&req1, req);
4783 
4784 	/*
4785 	 * Look first in the referencing object if linked symbolically,
4786 	 * and similarly handle protected symbols.
4787 	 */
4788 	res = symlook_obj(&req1, refobj);
4789 	if (res == 0 && (refobj->symbolic ||
4790 	    ELF_ST_VISIBILITY(req1.sym_out->st_other) == STV_PROTECTED ||
4791 	    refobj->deepbind)) {
4792 		req->sym_out = req1.sym_out;
4793 		req->defobj_out = req1.defobj_out;
4794 		assert(req->defobj_out != NULL);
4795 	}
4796 	if (refobj->symbolic || req->defobj_out != NULL || refobj->deepbind)
4797 		donelist_check(&donelist, refobj);
4798 
4799 	if (!refobj->deepbind)
4800 		symlook_global(req, &donelist);
4801 
4802 	/* Search all dlopened DAGs containing the referencing object. */
4803 	STAILQ_FOREACH(elm, &refobj->dldags, link) {
4804 		if (req->sym_out != NULL && (!ld_dynamic_weak ||
4805 		    ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK))
4806 			break;
4807 		res = symlook_list(&req1, &elm->obj->dagmembers, &donelist);
4808 		if (res == 0 && (req->sym_out == NULL ||
4809 		    ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4810 			req->sym_out = req1.sym_out;
4811 			req->defobj_out = req1.defobj_out;
4812 			assert(req->defobj_out != NULL);
4813 		}
4814 	}
4815 
4816 	if (refobj->deepbind)
4817 		symlook_global(req, &donelist);
4818 
4819 	/*
4820 	 * Search the dynamic linker itself, and possibly resolve the
4821 	 * symbol from there.  This is how the application links to
4822 	 * dynamic linker services such as dlopen.
4823 	 */
4824 	if (req->sym_out == NULL ||
4825 	    ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
4826 		res = symlook_obj(&req1, &obj_rtld);
4827 		if (res == 0) {
4828 			req->sym_out = req1.sym_out;
4829 			req->defobj_out = req1.defobj_out;
4830 			assert(req->defobj_out != NULL);
4831 		}
4832 	}
4833 
4834 	return (req->sym_out != NULL ? 0 : ESRCH);
4835 }
4836 
4837 static int
symlook_list(SymLook * req,const Objlist * objlist,DoneList * dlp)4838 symlook_list(SymLook *req, const Objlist *objlist, DoneList *dlp)
4839 {
4840 	const Elf_Sym *def;
4841 	const Obj_Entry *defobj;
4842 	const Objlist_Entry *elm;
4843 	SymLook req1;
4844 	int res;
4845 
4846 	def = NULL;
4847 	defobj = NULL;
4848 	STAILQ_FOREACH(elm, objlist, link) {
4849 		if (donelist_check(dlp, elm->obj))
4850 			continue;
4851 		symlook_init_from_req(&req1, req);
4852 		if ((res = symlook_obj(&req1, elm->obj)) == 0) {
4853 			if (def == NULL || (ld_dynamic_weak &&
4854 			    ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4855 				def = req1.sym_out;
4856 				defobj = req1.defobj_out;
4857 				if (!ld_dynamic_weak ||
4858 				    ELF_ST_BIND(def->st_info) != STB_WEAK)
4859 					break;
4860 			}
4861 		}
4862 	}
4863 	if (def != NULL) {
4864 		req->sym_out = def;
4865 		req->defobj_out = defobj;
4866 		return (0);
4867 	}
4868 	return (ESRCH);
4869 }
4870 
4871 /*
4872  * Search the chain of DAGS cointed to by the given Needed_Entry
4873  * for a symbol of the given name.  Each DAG is scanned completely
4874  * before advancing to the next one.  Returns a pointer to the symbol,
4875  * or NULL if no definition was found.
4876  */
4877 static int
symlook_needed(SymLook * req,const Needed_Entry * needed,DoneList * dlp)4878 symlook_needed(SymLook *req, const Needed_Entry *needed, DoneList *dlp)
4879 {
4880 	const Elf_Sym *def;
4881 	const Needed_Entry *n;
4882 	const Obj_Entry *defobj;
4883 	SymLook req1;
4884 	int res;
4885 
4886 	def = NULL;
4887 	defobj = NULL;
4888 	symlook_init_from_req(&req1, req);
4889 	for (n = needed; n != NULL; n = n->next) {
4890 		if (n->obj == NULL || (res = symlook_list(&req1,
4891 		    &n->obj->dagmembers, dlp)) != 0)
4892 			continue;
4893 		if (def == NULL || (ld_dynamic_weak &&
4894 		    ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4895 			def = req1.sym_out;
4896 			defobj = req1.defobj_out;
4897 			if (!ld_dynamic_weak ||
4898 			    ELF_ST_BIND(def->st_info) != STB_WEAK)
4899 				break;
4900 		}
4901 	}
4902 	if (def != NULL) {
4903 		req->sym_out = def;
4904 		req->defobj_out = defobj;
4905 		return (0);
4906 	}
4907 	return (ESRCH);
4908 }
4909 
4910 static int
symlook_obj_load_filtees(SymLook * req,SymLook * req1,const Obj_Entry * obj,Needed_Entry * needed)4911 symlook_obj_load_filtees(SymLook *req, SymLook *req1, const Obj_Entry *obj,
4912     Needed_Entry *needed)
4913 {
4914 	DoneList donelist;
4915 	int flags;
4916 
4917 	flags = (req->flags & SYMLOOK_EARLY) != 0 ? RTLD_LO_EARLY : 0;
4918 	load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
4919 	donelist_init(&donelist);
4920 	symlook_init_from_req(req1, req);
4921 	return (symlook_needed(req1, needed, &donelist));
4922 }
4923 
4924 /*
4925  * Search the symbol table of a single shared object for a symbol of
4926  * the given name and version, if requested.  Returns a pointer to the
4927  * symbol, or NULL if no definition was found.  If the object is
4928  * filter, return filtered symbol from filtee.
4929  *
4930  * The symbol's hash value is passed in for efficiency reasons; that
4931  * eliminates many recomputations of the hash value.
4932  */
4933 int
symlook_obj(SymLook * req,const Obj_Entry * obj)4934 symlook_obj(SymLook *req, const Obj_Entry *obj)
4935 {
4936 	SymLook req1;
4937 	int res, mres;
4938 
4939 	/*
4940 	 * If there is at least one valid hash at this point, we prefer to
4941 	 * use the faster GNU version if available.
4942 	 */
4943 	if (obj->valid_hash_gnu)
4944 		mres = symlook_obj1_gnu(req, obj);
4945 	else if (obj->valid_hash_sysv)
4946 		mres = symlook_obj1_sysv(req, obj);
4947 	else
4948 		return (EINVAL);
4949 
4950 	if (mres == 0) {
4951 		if (obj->needed_filtees != NULL) {
4952 			res = symlook_obj_load_filtees(req, &req1, obj,
4953 			    obj->needed_filtees);
4954 			if (res == 0) {
4955 				req->sym_out = req1.sym_out;
4956 				req->defobj_out = req1.defobj_out;
4957 			}
4958 			return (res);
4959 		}
4960 		if (obj->needed_aux_filtees != NULL) {
4961 			res = symlook_obj_load_filtees(req, &req1, obj,
4962 			    obj->needed_aux_filtees);
4963 			if (res == 0) {
4964 				req->sym_out = req1.sym_out;
4965 				req->defobj_out = req1.defobj_out;
4966 				return (res);
4967 			}
4968 		}
4969 	}
4970 	return (mres);
4971 }
4972 
4973 /* Symbol match routine common to both hash functions */
4974 static bool
matched_symbol(SymLook * req,const Obj_Entry * obj,Sym_Match_Result * result,const unsigned long symnum)4975 matched_symbol(SymLook *req, const Obj_Entry *obj, Sym_Match_Result *result,
4976     const unsigned long symnum)
4977 {
4978 	Elf_Versym verndx;
4979 	const Elf_Sym *symp;
4980 	const char *strp;
4981 
4982 	symp = obj->symtab + symnum;
4983 	strp = obj->strtab + symp->st_name;
4984 
4985 	switch (ELF_ST_TYPE(symp->st_info)) {
4986 	case STT_FUNC:
4987 	case STT_NOTYPE:
4988 	case STT_OBJECT:
4989 	case STT_COMMON:
4990 	case STT_GNU_IFUNC:
4991 		if (symp->st_value == 0)
4992 			return (false);
4993 		/* fallthrough */
4994 	case STT_TLS:
4995 		if (symp->st_shndx != SHN_UNDEF)
4996 			break;
4997 		else if (((req->flags & SYMLOOK_IN_PLT) == 0) &&
4998 		    (ELF_ST_TYPE(symp->st_info) == STT_FUNC))
4999 			break;
5000 		/* fallthrough */
5001 	default:
5002 		return (false);
5003 	}
5004 	if (req->name[0] != strp[0] || strcmp(req->name, strp) != 0)
5005 		return (false);
5006 
5007 	if (req->ventry == NULL) {
5008 		if (obj->versyms != NULL) {
5009 			verndx = VER_NDX(obj->versyms[symnum]);
5010 			if (verndx > obj->vernum) {
5011 				_rtld_error(
5012 				    "%s: symbol %s references wrong version %d",
5013 				    obj->path, obj->strtab + symnum, verndx);
5014 				return (false);
5015 			}
5016 			/*
5017 			 * If we are not called from dlsym (i.e. this
5018 			 * is a normal relocation from unversioned
5019 			 * binary), accept the symbol immediately if
5020 			 * it happens to have first version after this
5021 			 * shared object became versioned.  Otherwise,
5022 			 * if symbol is versioned and not hidden,
5023 			 * remember it. If it is the only symbol with
5024 			 * this name exported by the shared object, it
5025 			 * will be returned as a match by the calling
5026 			 * function. If symbol is global (verndx < 2)
5027 			 * accept it unconditionally.
5028 			 */
5029 			if ((req->flags & SYMLOOK_DLSYM) == 0 &&
5030 			    verndx == VER_NDX_GIVEN) {
5031 				result->sym_out = symp;
5032 				return (true);
5033 			} else if (verndx >= VER_NDX_GIVEN) {
5034 				if ((obj->versyms[symnum] & VER_NDX_HIDDEN) ==
5035 				    0) {
5036 					if (result->vsymp == NULL)
5037 						result->vsymp = symp;
5038 					result->vcount++;
5039 				}
5040 				return (false);
5041 			}
5042 		}
5043 		result->sym_out = symp;
5044 		return (true);
5045 	}
5046 	if (obj->versyms == NULL) {
5047 		if (object_match_name(obj, req->ventry->name)) {
5048 			_rtld_error(
5049 		    "%s: object %s should provide version %s for symbol %s",
5050 			    obj_rtld.path, obj->path, req->ventry->name,
5051 			    obj->strtab + symnum);
5052 			return (false);
5053 		}
5054 	} else {
5055 		verndx = VER_NDX(obj->versyms[symnum]);
5056 		if (verndx > obj->vernum) {
5057 			_rtld_error("%s: symbol %s references wrong version %d",
5058 			    obj->path, obj->strtab + symnum, verndx);
5059 			return (false);
5060 		}
5061 		if (obj->vertab[verndx].hash != req->ventry->hash ||
5062 		    strcmp(obj->vertab[verndx].name, req->ventry->name)) {
5063 			/*
5064 			 * Version does not match. Look if this is a
5065 			 * global symbol and if it is not hidden. If
5066 			 * global symbol (verndx < 2) is available,
5067 			 * use it. Do not return symbol if we are
5068 			 * called by dlvsym, because dlvsym looks for
5069 			 * a specific version and default one is not
5070 			 * what dlvsym wants.
5071 			 */
5072 			if ((req->flags & SYMLOOK_DLSYM) ||
5073 			    (verndx >= VER_NDX_GIVEN) ||
5074 			    (obj->versyms[symnum] & VER_NDX_HIDDEN))
5075 				return (false);
5076 		}
5077 	}
5078 	result->sym_out = symp;
5079 	return (true);
5080 }
5081 
5082 /*
5083  * Search for symbol using SysV hash function.
5084  * obj->buckets is known not to be NULL at this point; the test for this was
5085  * performed with the obj->valid_hash_sysv assignment.
5086  */
5087 static int
symlook_obj1_sysv(SymLook * req,const Obj_Entry * obj)5088 symlook_obj1_sysv(SymLook *req, const Obj_Entry *obj)
5089 {
5090 	unsigned long symnum;
5091 	Sym_Match_Result matchres;
5092 
5093 	matchres.sym_out = NULL;
5094 	matchres.vsymp = NULL;
5095 	matchres.vcount = 0;
5096 
5097 	for (symnum = obj->buckets[req->hash % obj->nbuckets];
5098 	    symnum != STN_UNDEF; symnum = obj->chains[symnum]) {
5099 		if (symnum >= obj->nchains)
5100 			return (ESRCH); /* Bad object */
5101 
5102 		if (matched_symbol(req, obj, &matchres, symnum)) {
5103 			req->sym_out = matchres.sym_out;
5104 			req->defobj_out = obj;
5105 			return (0);
5106 		}
5107 	}
5108 	if (matchres.vcount == 1) {
5109 		req->sym_out = matchres.vsymp;
5110 		req->defobj_out = obj;
5111 		return (0);
5112 	}
5113 	return (ESRCH);
5114 }
5115 
5116 /* Search for symbol using GNU hash function */
5117 static int
symlook_obj1_gnu(SymLook * req,const Obj_Entry * obj)5118 symlook_obj1_gnu(SymLook *req, const Obj_Entry *obj)
5119 {
5120 	Elf_Addr bloom_word;
5121 	const Elf32_Word *hashval;
5122 	Elf32_Word bucket;
5123 	Sym_Match_Result matchres;
5124 	unsigned int h1, h2;
5125 	unsigned long symnum;
5126 
5127 	matchres.sym_out = NULL;
5128 	matchres.vsymp = NULL;
5129 	matchres.vcount = 0;
5130 
5131 	/* Pick right bitmask word from Bloom filter array */
5132 	bloom_word = obj->bloom_gnu[(req->hash_gnu / __ELF_WORD_SIZE) &
5133 	    obj->maskwords_bm_gnu];
5134 
5135 	/* Calculate modulus word size of gnu hash and its derivative */
5136 	h1 = req->hash_gnu & (__ELF_WORD_SIZE - 1);
5137 	h2 = ((req->hash_gnu >> obj->shift2_gnu) & (__ELF_WORD_SIZE - 1));
5138 
5139 	/* Filter out the "definitely not in set" queries */
5140 	if (((bloom_word >> h1) & (bloom_word >> h2) & 1) == 0)
5141 		return (ESRCH);
5142 
5143 	/* Locate hash chain and corresponding value element*/
5144 	bucket = obj->buckets_gnu[req->hash_gnu % obj->nbuckets_gnu];
5145 	if (bucket == 0)
5146 		return (ESRCH);
5147 	hashval = &obj->chain_zero_gnu[bucket];
5148 	do {
5149 		if (((*hashval ^ req->hash_gnu) >> 1) == 0) {
5150 			symnum = hashval - obj->chain_zero_gnu;
5151 			if (matched_symbol(req, obj, &matchres, symnum)) {
5152 				req->sym_out = matchres.sym_out;
5153 				req->defobj_out = obj;
5154 				return (0);
5155 			}
5156 		}
5157 	} while ((*hashval++ & 1) == 0);
5158 	if (matchres.vcount == 1) {
5159 		req->sym_out = matchres.vsymp;
5160 		req->defobj_out = obj;
5161 		return (0);
5162 	}
5163 	return (ESRCH);
5164 }
5165 
5166 static void
trace_calc_fmts(const char ** main_local,const char ** fmt1,const char ** fmt2)5167 trace_calc_fmts(const char **main_local, const char **fmt1, const char **fmt2)
5168 {
5169 	*main_local = ld_get_env_var(LD_TRACE_LOADED_OBJECTS_PROGNAME);
5170 	if (*main_local == NULL)
5171 		*main_local = "";
5172 
5173 	*fmt1 = ld_get_env_var(LD_TRACE_LOADED_OBJECTS_FMT1);
5174 	if (*fmt1 == NULL)
5175 		*fmt1 = "\t%o => %p (%x)\n";
5176 
5177 	*fmt2 = ld_get_env_var(LD_TRACE_LOADED_OBJECTS_FMT2);
5178 	if (*fmt2 == NULL)
5179 		*fmt2 = "\t%o (%x)\n";
5180 }
5181 
5182 static void
trace_print_obj(Obj_Entry * obj,const char * name,const char * path,const char * main_local,const char * fmt1,const char * fmt2)5183 trace_print_obj(Obj_Entry *obj, const char *name, const char *path,
5184     const char *main_local, const char *fmt1, const char *fmt2)
5185 {
5186 	const char *fmt;
5187 	int c;
5188 
5189 	if (fmt1 == NULL)
5190 		fmt = fmt2;
5191 	else
5192 		/* XXX bogus */
5193 		fmt = strncmp(name, "lib", 3) == 0 ? fmt1 : fmt2;
5194 
5195 	while ((c = *fmt++) != '\0') {
5196 		switch (c) {
5197 		default:
5198 			rtld_putchar(c);
5199 			continue;
5200 		case '\\':
5201 			switch (c = *fmt) {
5202 			case '\0':
5203 				continue;
5204 			case 'n':
5205 				rtld_putchar('\n');
5206 				break;
5207 			case 't':
5208 				rtld_putchar('\t');
5209 				break;
5210 			}
5211 			break;
5212 		case '%':
5213 			switch (c = *fmt) {
5214 			case '\0':
5215 				continue;
5216 			case '%':
5217 			default:
5218 				rtld_putchar(c);
5219 				break;
5220 			case 'A':
5221 				rtld_putstr(main_local);
5222 				break;
5223 			case 'a':
5224 				rtld_putstr(obj_main->path);
5225 				break;
5226 			case 'o':
5227 				rtld_putstr(name);
5228 				break;
5229 			case 'p':
5230 				rtld_putstr(path);
5231 				break;
5232 			case 'x':
5233 				rtld_printf("%p",
5234 				    obj != NULL ? obj->mapbase : NULL);
5235 				break;
5236 			}
5237 			break;
5238 		}
5239 		++fmt;
5240 	}
5241 }
5242 
5243 static void
trace_loaded_objects(Obj_Entry * obj,bool show_preload)5244 trace_loaded_objects(Obj_Entry *obj, bool show_preload)
5245 {
5246 	const char *fmt1, *fmt2, *main_local;
5247 	const char *name, *path;
5248 	bool first_spurious, list_containers;
5249 
5250 	trace_calc_fmts(&main_local, &fmt1, &fmt2);
5251 	list_containers = ld_get_env_var(LD_TRACE_LOADED_OBJECTS_ALL) != NULL;
5252 
5253 	for (; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
5254 		Needed_Entry *needed;
5255 
5256 		if (obj->marker)
5257 			continue;
5258 		if (list_containers && obj->needed != NULL)
5259 			rtld_printf("%s:\n", obj->path);
5260 		for (needed = obj->needed; needed; needed = needed->next) {
5261 			if (needed->obj != NULL) {
5262 				if (needed->obj->traced && !list_containers)
5263 					continue;
5264 				needed->obj->traced = true;
5265 				path = needed->obj->path;
5266 			} else
5267 				path = "not found";
5268 
5269 			name = obj->strtab + needed->name;
5270 			trace_print_obj(needed->obj, name, path, main_local,
5271 			    fmt1, fmt2);
5272 		}
5273 	}
5274 
5275 	if (show_preload) {
5276 		if (ld_get_env_var(LD_TRACE_LOADED_OBJECTS_FMT2) == NULL)
5277 			fmt2 = "\t%p (%x)\n";
5278 		first_spurious = true;
5279 
5280 		TAILQ_FOREACH(obj, &obj_list, next) {
5281 			if (obj->marker || obj == obj_main || obj->traced)
5282 				continue;
5283 
5284 			if (list_containers && first_spurious) {
5285 				rtld_printf("[preloaded]\n");
5286 				first_spurious = false;
5287 			}
5288 
5289 			Name_Entry *fname = STAILQ_FIRST(&obj->names);
5290 			name = fname == NULL ? "<unknown>" : fname->name;
5291 			trace_print_obj(obj, name, obj->path, main_local, NULL,
5292 			    fmt2);
5293 		}
5294 	}
5295 }
5296 
5297 /*
5298  * Unload a dlopened object and its dependencies from memory and from
5299  * our data structures.  It is assumed that the DAG rooted in the
5300  * object has already been unreferenced, and that the object has a
5301  * reference count of 0.
5302  */
5303 static void
unload_object(Obj_Entry * root,RtldLockState * lockstate)5304 unload_object(Obj_Entry *root, RtldLockState *lockstate)
5305 {
5306 	Obj_Entry marker, *obj, *next;
5307 
5308 	assert(root->refcount == 0);
5309 
5310 	/*
5311 	 * Pass over the DAG removing unreferenced objects from
5312 	 * appropriate lists.
5313 	 */
5314 	unlink_object(root);
5315 
5316 	/* Unmap all objects that are no longer referenced. */
5317 	for (obj = TAILQ_FIRST(&obj_list); obj != NULL; obj = next) {
5318 		next = TAILQ_NEXT(obj, next);
5319 		if (obj->marker || obj->refcount != 0)
5320 			continue;
5321 		LD_UTRACE(UTRACE_UNLOAD_OBJECT, obj, obj->mapbase, obj->mapsize,
5322 		    0, obj->path);
5323 		dbg("unloading \"%s\"", obj->path);
5324 		/*
5325 		 * Unlink the object now to prevent new references from
5326 		 * being acquired while the bind lock is dropped in
5327 		 * recursive dlclose() invocations.
5328 		 */
5329 		TAILQ_REMOVE(&obj_list, obj, next);
5330 		obj_count--;
5331 
5332 		if (obj->filtees_loaded) {
5333 			if (next != NULL) {
5334 				init_marker(&marker);
5335 				TAILQ_INSERT_BEFORE(next, &marker, next);
5336 				unload_filtees(obj, lockstate);
5337 				next = TAILQ_NEXT(&marker, next);
5338 				TAILQ_REMOVE(&obj_list, &marker, next);
5339 			} else
5340 				unload_filtees(obj, lockstate);
5341 		}
5342 		release_object(obj);
5343 	}
5344 }
5345 
5346 static void
unlink_object(Obj_Entry * root)5347 unlink_object(Obj_Entry *root)
5348 {
5349 	Objlist_Entry *elm;
5350 
5351 	if (root->refcount == 0) {
5352 		/* Remove the object from the RTLD_GLOBAL list. */
5353 		objlist_remove(&list_global, root);
5354 
5355 		/* Remove the object from all objects' DAG lists. */
5356 		STAILQ_FOREACH(elm, &root->dagmembers, link) {
5357 			objlist_remove(&elm->obj->dldags, root);
5358 			if (elm->obj != root)
5359 				unlink_object(elm->obj);
5360 		}
5361 	}
5362 }
5363 
5364 static void
ref_dag(Obj_Entry * root)5365 ref_dag(Obj_Entry *root)
5366 {
5367 	Objlist_Entry *elm;
5368 
5369 	assert(root->dag_inited);
5370 	STAILQ_FOREACH(elm, &root->dagmembers, link)
5371 		elm->obj->refcount++;
5372 }
5373 
5374 static void
unref_dag(Obj_Entry * root)5375 unref_dag(Obj_Entry *root)
5376 {
5377 	Objlist_Entry *elm;
5378 
5379 	assert(root->dag_inited);
5380 	STAILQ_FOREACH(elm, &root->dagmembers, link)
5381 		elm->obj->refcount--;
5382 }
5383 
5384 /*
5385  * Common code for MD __tls_get_addr().
5386  */
5387 static void *
tls_get_addr_slow(struct tcb * tcb,int index,size_t offset,bool locked)5388 tls_get_addr_slow(struct tcb *tcb, int index, size_t offset, bool locked)
5389 {
5390 	struct dtv *newdtv, *dtv;
5391 	RtldLockState lockstate;
5392 	int to_copy;
5393 
5394 	dtv = tcb->tcb_dtv;
5395 	/* Check dtv generation in case new modules have arrived */
5396 	if (dtv->dtv_gen != tls_dtv_generation) {
5397 		if (!locked)
5398 			wlock_acquire(rtld_bind_lock, &lockstate);
5399 		newdtv = xcalloc(1, sizeof(struct dtv) + tls_max_index *
5400 		    sizeof(struct dtv_slot));
5401 		to_copy = dtv->dtv_size;
5402 		if (to_copy > tls_max_index)
5403 			to_copy = tls_max_index;
5404 		memcpy(newdtv->dtv_slots, dtv->dtv_slots, to_copy *
5405 		    sizeof(struct dtv_slot));
5406 		newdtv->dtv_gen = tls_dtv_generation;
5407 		newdtv->dtv_size = tls_max_index;
5408 		free(dtv);
5409 		if (!locked)
5410 			lock_release(rtld_bind_lock, &lockstate);
5411 		dtv = tcb->tcb_dtv = newdtv;
5412 	}
5413 
5414 	/* Dynamically allocate module TLS if necessary */
5415 	if (dtv->dtv_slots[index - 1].dtvs_tls == 0) {
5416 		/* Signal safe, wlock will block out signals. */
5417 		if (!locked)
5418 			wlock_acquire(rtld_bind_lock, &lockstate);
5419 		if (!dtv->dtv_slots[index - 1].dtvs_tls)
5420 			dtv->dtv_slots[index - 1].dtvs_tls =
5421 			    allocate_module_tls(tcb, index);
5422 		if (!locked)
5423 			lock_release(rtld_bind_lock, &lockstate);
5424 	}
5425 	return (dtv->dtv_slots[index - 1].dtvs_tls + offset);
5426 }
5427 
5428 void *
tls_get_addr_common(struct tcb * tcb,int index,size_t offset)5429 tls_get_addr_common(struct tcb *tcb, int index, size_t offset)
5430 {
5431 	struct dtv *dtv;
5432 
5433 	dtv = tcb->tcb_dtv;
5434 	/* Check dtv generation in case new modules have arrived */
5435 	if (__predict_true(dtv->dtv_gen == tls_dtv_generation &&
5436 	    dtv->dtv_slots[index - 1].dtvs_tls != 0))
5437 		return (dtv->dtv_slots[index - 1].dtvs_tls + offset);
5438 	return (tls_get_addr_slow(tcb, index, offset, false));
5439 }
5440 
5441 static struct tcb *
tcb_from_tcb_list_entry(struct tcb_list_entry * tcbelm)5442 tcb_from_tcb_list_entry(struct tcb_list_entry *tcbelm)
5443 {
5444 #ifdef TLS_VARIANT_I
5445 	return ((struct tcb *)((char *)tcbelm - tcb_list_entry_offset));
5446 #else
5447 	return ((struct tcb *)((char *)tcbelm + tcb_list_entry_offset));
5448 #endif
5449 }
5450 
5451 static struct tcb_list_entry *
tcb_list_entry_from_tcb(struct tcb * tcb)5452 tcb_list_entry_from_tcb(struct tcb *tcb)
5453 {
5454 #ifdef TLS_VARIANT_I
5455 	return ((struct tcb_list_entry *)((char *)tcb + tcb_list_entry_offset));
5456 #else
5457 	return ((struct tcb_list_entry *)((char *)tcb - tcb_list_entry_offset));
5458 #endif
5459 }
5460 
5461 static void
tcb_list_insert(struct tcb * tcb)5462 tcb_list_insert(struct tcb *tcb)
5463 {
5464 	struct tcb_list_entry *tcbelm;
5465 
5466 	tcbelm = tcb_list_entry_from_tcb(tcb);
5467 	TAILQ_INSERT_TAIL(&tcb_list, tcbelm, next);
5468 }
5469 
5470 static void
tcb_list_remove(struct tcb * tcb)5471 tcb_list_remove(struct tcb *tcb)
5472 {
5473 	struct tcb_list_entry *tcbelm;
5474 
5475 	tcbelm = tcb_list_entry_from_tcb(tcb);
5476 	TAILQ_REMOVE(&tcb_list, tcbelm, next);
5477 }
5478 
5479 #ifdef TLS_VARIANT_I
5480 
5481 /*
5482  * Return pointer to allocated TLS block
5483  */
5484 static void *
get_tls_block_ptr(void * tcb,size_t tcbsize)5485 get_tls_block_ptr(void *tcb, size_t tcbsize)
5486 {
5487 	size_t extra_size, post_size, pre_size, tls_block_size;
5488 	size_t tls_init_align;
5489 
5490 	tls_init_align = MAX(obj_main->tlsalign, 1);
5491 
5492 	/* Compute fragments sizes. */
5493 	extra_size = tcbsize - TLS_TCB_SIZE;
5494 	post_size = calculate_tls_post_size(tls_init_align);
5495 	tls_block_size = tcbsize + post_size;
5496 	pre_size = roundup2(tls_block_size, tls_init_align) - tls_block_size;
5497 
5498 	return ((char *)tcb - pre_size - extra_size);
5499 }
5500 
5501 /*
5502  * Allocate Static TLS using the Variant I method.
5503  *
5504  * For details on the layout, see lib/libc/gen/tls.c.
5505  *
5506  * NB: rtld's tls_static_space variable includes TLS_TCB_SIZE and post_size as
5507  *     it is based on tls_last_offset, and TLS offsets here are really TCB
5508  *     offsets, whereas libc's tls_static_space is just the executable's static
5509  *     TLS segment.
5510  *
5511  * NB: This differs from NetBSD's ld.elf_so, where TLS offsets are relative to
5512  *     the end of the TCB.
5513  */
5514 void *
allocate_tls(Obj_Entry * objs,void * oldtcb,size_t tcbsize,size_t tcbalign)5515 allocate_tls(Obj_Entry *objs, void *oldtcb, size_t tcbsize, size_t tcbalign)
5516 {
5517 	Obj_Entry *obj;
5518 	char *tls_block;
5519 	struct dtv *dtv;
5520 	struct tcb *tcb;
5521 	char *addr;
5522 	size_t i;
5523 	size_t extra_size, maxalign, post_size, pre_size, tls_block_size;
5524 	size_t tls_init_align, tls_init_offset;
5525 
5526 	if (oldtcb != NULL && tcbsize == TLS_TCB_SIZE)
5527 		return (oldtcb);
5528 
5529 	assert(tcbsize >= TLS_TCB_SIZE);
5530 	maxalign = MAX(tcbalign, tls_static_max_align);
5531 	tls_init_align = MAX(obj_main->tlsalign, 1);
5532 
5533 	/* Compute fragments sizes. */
5534 	extra_size = tcbsize - TLS_TCB_SIZE;
5535 	post_size = calculate_tls_post_size(tls_init_align);
5536 	tls_block_size = tcbsize + post_size;
5537 	pre_size = roundup2(tls_block_size, tls_init_align) - tls_block_size;
5538 	tls_block_size += pre_size + tls_static_space - TLS_TCB_SIZE -
5539 	    post_size;
5540 
5541 	/* Allocate whole TLS block */
5542 	tls_block = xmalloc_aligned(tls_block_size, maxalign, 0);
5543 	tcb = (struct tcb *)(tls_block + pre_size + extra_size);
5544 
5545 	if (oldtcb != NULL) {
5546 		memcpy(tls_block, get_tls_block_ptr(oldtcb, tcbsize),
5547 		    tls_static_space);
5548 		free(get_tls_block_ptr(oldtcb, tcbsize));
5549 
5550 		/* Adjust the DTV. */
5551 		dtv = tcb->tcb_dtv;
5552 		for (i = 0; i < dtv->dtv_size; i++) {
5553 			if ((uintptr_t)dtv->dtv_slots[i].dtvs_tls >=
5554 			    (uintptr_t)oldtcb &&
5555 			    (uintptr_t)dtv->dtv_slots[i].dtvs_tls <
5556 			    (uintptr_t)oldtcb + tls_static_space) {
5557 				dtv->dtv_slots[i].dtvs_tls = (char *)tcb +
5558 				    (dtv->dtv_slots[i].dtvs_tls -
5559 				    (char *)oldtcb);
5560 			}
5561 		}
5562 	} else {
5563 		dtv = xcalloc(1, sizeof(struct dtv) + tls_max_index *
5564 		    sizeof(struct dtv_slot));
5565 		tcb->tcb_dtv = dtv;
5566 		dtv->dtv_gen = tls_dtv_generation;
5567 		dtv->dtv_size = tls_max_index;
5568 
5569 		for (obj = globallist_curr(objs); obj != NULL;
5570 		    obj = globallist_next(obj)) {
5571 			if (obj->tlsoffset == 0)
5572 				continue;
5573 			tls_init_offset = obj->tlspoffset & (obj->tlsalign - 1);
5574 			addr = (char *)tcb + obj->tlsoffset;
5575 			if (tls_init_offset > 0)
5576 				memset(addr, 0, tls_init_offset);
5577 			if (obj->tlsinitsize > 0) {
5578 				memcpy(addr + tls_init_offset, obj->tlsinit,
5579 				    obj->tlsinitsize);
5580 			}
5581 			if (obj->tlssize > obj->tlsinitsize) {
5582 				memset(addr + tls_init_offset +
5583 				    obj->tlsinitsize,
5584 				    0,
5585 				    obj->tlssize - obj->tlsinitsize -
5586 					tls_init_offset);
5587 			}
5588 			dtv->dtv_slots[obj->tlsindex - 1].dtvs_tls = addr;
5589 		}
5590 	}
5591 
5592 	tcb_list_insert(tcb);
5593 	return (tcb);
5594 }
5595 
5596 void
free_tls(void * tcb,size_t tcbsize,size_t tcbalign __unused)5597 free_tls(void *tcb, size_t tcbsize, size_t tcbalign __unused)
5598 {
5599 	struct dtv *dtv;
5600 	uintptr_t tlsstart, tlsend;
5601 	size_t post_size;
5602 	size_t i, tls_init_align __unused;
5603 
5604 	tcb_list_remove(tcb);
5605 
5606 	assert(tcbsize >= TLS_TCB_SIZE);
5607 	tls_init_align = MAX(obj_main->tlsalign, 1);
5608 
5609 	/* Compute fragments sizes. */
5610 	post_size = calculate_tls_post_size(tls_init_align);
5611 
5612 	tlsstart = (uintptr_t)tcb + TLS_TCB_SIZE + post_size;
5613 	tlsend = (uintptr_t)tcb + tls_static_space;
5614 
5615 	dtv = ((struct tcb *)tcb)->tcb_dtv;
5616 	for (i = 0; i < dtv->dtv_size; i++) {
5617 		if (dtv->dtv_slots[i].dtvs_tls != NULL &&
5618 		    ((uintptr_t)dtv->dtv_slots[i].dtvs_tls < tlsstart ||
5619 		    (uintptr_t)dtv->dtv_slots[i].dtvs_tls >= tlsend)) {
5620 			free(dtv->dtv_slots[i].dtvs_tls);
5621 		}
5622 	}
5623 	free(dtv);
5624 	free(get_tls_block_ptr(tcb, tcbsize));
5625 }
5626 
5627 #endif /* TLS_VARIANT_I */
5628 
5629 #ifdef TLS_VARIANT_II
5630 
5631 /*
5632  * Allocate Static TLS using the Variant II method.
5633  */
5634 void *
allocate_tls(Obj_Entry * objs,void * oldtcb,size_t tcbsize,size_t tcbalign)5635 allocate_tls(Obj_Entry *objs, void *oldtcb, size_t tcbsize, size_t tcbalign)
5636 {
5637 	Obj_Entry *obj;
5638 	size_t size, ralign;
5639 	char *tls_block;
5640 	struct dtv *dtv, *olddtv;
5641 	struct tcb *tcb;
5642 	char *addr;
5643 	size_t i;
5644 
5645 	ralign = tcbalign;
5646 	if (tls_static_max_align > ralign)
5647 		ralign = tls_static_max_align;
5648 	size = roundup(tls_static_space, ralign) + roundup(tcbsize, ralign);
5649 
5650 	assert(tcbsize >= 2 * sizeof(uintptr_t));
5651 	tls_block = xmalloc_aligned(size, ralign, 0 /* XXX */);
5652 	dtv = xcalloc(1, sizeof(struct dtv) + tls_max_index *
5653 	    sizeof(struct dtv_slot));
5654 
5655 	tcb = (struct tcb *)(tls_block + roundup(tls_static_space, ralign));
5656 	tcb->tcb_self = tcb;
5657 	tcb->tcb_dtv = dtv;
5658 
5659 	dtv->dtv_gen = tls_dtv_generation;
5660 	dtv->dtv_size = tls_max_index;
5661 
5662 	if (oldtcb != NULL) {
5663 		/*
5664 		 * Copy the static TLS block over whole.
5665 		 */
5666 		memcpy((char *)tcb - tls_static_space,
5667 		    (const char *)oldtcb - tls_static_space,
5668 		    tls_static_space);
5669 
5670 		/*
5671 		 * If any dynamic TLS blocks have been created tls_get_addr(),
5672 		 * move them over.
5673 		 */
5674 		olddtv = ((struct tcb *)oldtcb)->tcb_dtv;
5675 		for (i = 0; i < olddtv->dtv_size; i++) {
5676 			if ((uintptr_t)olddtv->dtv_slots[i].dtvs_tls <
5677 			    (uintptr_t)oldtcb - size ||
5678 			    (uintptr_t)olddtv->dtv_slots[i].dtvs_tls >
5679 			    (uintptr_t)oldtcb) {
5680 				dtv->dtv_slots[i].dtvs_tls =
5681 				    olddtv->dtv_slots[i].dtvs_tls;
5682 				olddtv->dtv_slots[i].dtvs_tls = NULL;
5683 			}
5684 		}
5685 
5686 		/*
5687 		 * We assume that this block was the one we created with
5688 		 * allocate_initial_tls().
5689 		 */
5690 		free_tls(oldtcb, 2 * sizeof(uintptr_t), sizeof(uintptr_t));
5691 	} else {
5692 		for (obj = objs; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
5693 			if (obj->marker || obj->tlsoffset == 0)
5694 				continue;
5695 			addr = (char *)tcb - obj->tlsoffset;
5696 			memset(addr + obj->tlsinitsize, 0, obj->tlssize -
5697 			    obj->tlsinitsize);
5698 			if (obj->tlsinit) {
5699 				memcpy(addr, obj->tlsinit, obj->tlsinitsize);
5700 				obj->static_tls_copied = true;
5701 			}
5702 			dtv->dtv_slots[obj->tlsindex - 1].dtvs_tls = addr;
5703 		}
5704 	}
5705 
5706 	tcb_list_insert(tcb);
5707 	return (tcb);
5708 }
5709 
5710 void
free_tls(void * tcb,size_t tcbsize __unused,size_t tcbalign)5711 free_tls(void *tcb, size_t tcbsize __unused, size_t tcbalign)
5712 {
5713 	struct dtv *dtv;
5714 	size_t size, ralign;
5715 	size_t i;
5716 	uintptr_t tlsstart, tlsend;
5717 
5718 	tcb_list_remove(tcb);
5719 
5720 	/*
5721 	 * Figure out the size of the initial TLS block so that we can
5722 	 * find stuff which ___tls_get_addr() allocated dynamically.
5723 	 */
5724 	ralign = tcbalign;
5725 	if (tls_static_max_align > ralign)
5726 		ralign = tls_static_max_align;
5727 	size = roundup(tls_static_space, ralign);
5728 
5729 	dtv = ((struct tcb *)tcb)->tcb_dtv;
5730 	tlsend = (uintptr_t)tcb;
5731 	tlsstart = tlsend - size;
5732 	for (i = 0; i < dtv->dtv_size; i++) {
5733 		if (dtv->dtv_slots[i].dtvs_tls != NULL &&
5734 		    ((uintptr_t)dtv->dtv_slots[i].dtvs_tls < tlsstart ||
5735 		    (uintptr_t)dtv->dtv_slots[i].dtvs_tls > tlsend)) {
5736 			free(dtv->dtv_slots[i].dtvs_tls);
5737 		}
5738 	}
5739 
5740 	free((void *)tlsstart);
5741 	free(dtv);
5742 }
5743 
5744 #endif /* TLS_VARIANT_II */
5745 
5746 /*
5747  * Allocate TLS block for module with given index.
5748  */
5749 void *
allocate_module_tls(struct tcb * tcb,int index)5750 allocate_module_tls(struct tcb *tcb, int index)
5751 {
5752 	Obj_Entry *obj;
5753 	char *p;
5754 
5755 	TAILQ_FOREACH(obj, &obj_list, next) {
5756 		if (obj->marker)
5757 			continue;
5758 		if (obj->tlsindex == index)
5759 			break;
5760 	}
5761 	if (obj == NULL) {
5762 		_rtld_error("Can't find module with TLS index %d", index);
5763 		rtld_die();
5764 	}
5765 
5766 	if (obj->tls_static) {
5767 #ifdef TLS_VARIANT_I
5768 		p = (char *)tcb + obj->tlsoffset;
5769 #else
5770 		p = (char *)tcb - obj->tlsoffset;
5771 #endif
5772 		return (p);
5773 	}
5774 
5775 	obj->tls_dynamic = true;
5776 
5777 	p = xmalloc_aligned(obj->tlssize, obj->tlsalign, obj->tlspoffset);
5778 	memcpy(p, obj->tlsinit, obj->tlsinitsize);
5779 	memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize);
5780 	return (p);
5781 }
5782 
5783 static bool
allocate_tls_offset_common(size_t * offp,size_t tlssize,size_t tlsalign,size_t tlspoffset __unused)5784 allocate_tls_offset_common(size_t *offp, size_t tlssize, size_t tlsalign,
5785     size_t tlspoffset __unused)
5786 {
5787 	size_t off;
5788 
5789 	if (tls_last_offset == 0)
5790 		off = calculate_first_tls_offset(tlssize, tlsalign,
5791 		    tlspoffset);
5792 	else
5793 		off = calculate_tls_offset(tls_last_offset, tls_last_size,
5794 		    tlssize, tlsalign, tlspoffset);
5795 
5796 	*offp = off;
5797 #ifdef TLS_VARIANT_I
5798 	off += tlssize;
5799 #endif
5800 
5801 	/*
5802 	 * If we have already fixed the size of the static TLS block, we
5803 	 * must stay within that size. When allocating the static TLS, we
5804 	 * leave a small amount of space spare to be used for dynamically
5805 	 * loading modules which use static TLS.
5806 	 */
5807 	if (tls_static_space != 0) {
5808 		if (off > tls_static_space)
5809 			return (false);
5810 	} else if (tlsalign > tls_static_max_align) {
5811 		tls_static_max_align = tlsalign;
5812 	}
5813 
5814 	tls_last_offset = off;
5815 	tls_last_size = tlssize;
5816 
5817 	return (true);
5818 }
5819 
5820 bool
allocate_tls_offset(Obj_Entry * obj)5821 allocate_tls_offset(Obj_Entry *obj)
5822 {
5823 	if (obj->tls_dynamic)
5824 		return (false);
5825 
5826 	if (obj->tls_static)
5827 		return (true);
5828 
5829 	if (obj->tlssize == 0) {
5830 		obj->tls_static = true;
5831 		return (true);
5832 	}
5833 
5834 	if (!allocate_tls_offset_common(&obj->tlsoffset, obj->tlssize,
5835 	    obj->tlsalign, obj->tlspoffset))
5836 		return (false);
5837 
5838 	obj->tls_static = true;
5839 
5840 	return (true);
5841 }
5842 
5843 void
free_tls_offset(Obj_Entry * obj)5844 free_tls_offset(Obj_Entry *obj)
5845 {
5846 	/*
5847 	 * If we were the last thing to allocate out of the static TLS
5848 	 * block, we give our space back to the 'allocator'. This is a
5849 	 * simplistic workaround to allow libGL.so.1 to be loaded and
5850 	 * unloaded multiple times.
5851 	 */
5852 	size_t off = obj->tlsoffset;
5853 
5854 #ifdef TLS_VARIANT_I
5855 	off += obj->tlssize;
5856 #endif
5857 	if (off == tls_last_offset) {
5858 		tls_last_offset -= obj->tlssize;
5859 		tls_last_size = 0;
5860 	}
5861 }
5862 
5863 void *
_rtld_allocate_tls(void * oldtcb,size_t tcbsize,size_t tcbalign)5864 _rtld_allocate_tls(void *oldtcb, size_t tcbsize, size_t tcbalign)
5865 {
5866 	void *ret;
5867 	RtldLockState lockstate;
5868 
5869 	wlock_acquire(rtld_bind_lock, &lockstate);
5870 	ret = allocate_tls(globallist_curr(TAILQ_FIRST(&obj_list)), oldtcb,
5871 	    tcbsize, tcbalign);
5872 	lock_release(rtld_bind_lock, &lockstate);
5873 	return (ret);
5874 }
5875 
5876 void
_rtld_free_tls(void * tcb,size_t tcbsize,size_t tcbalign)5877 _rtld_free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
5878 {
5879 	RtldLockState lockstate;
5880 
5881 	wlock_acquire(rtld_bind_lock, &lockstate);
5882 	free_tls(tcb, tcbsize, tcbalign);
5883 	lock_release(rtld_bind_lock, &lockstate);
5884 }
5885 
5886 static void
object_add_name(Obj_Entry * obj,const char * name)5887 object_add_name(Obj_Entry *obj, const char *name)
5888 {
5889 	Name_Entry *entry;
5890 	size_t len;
5891 
5892 	len = strlen(name);
5893 	entry = malloc(sizeof(Name_Entry) + len);
5894 
5895 	if (entry != NULL) {
5896 		strcpy(entry->name, name);
5897 		STAILQ_INSERT_TAIL(&obj->names, entry, link);
5898 	}
5899 }
5900 
5901 static int
object_match_name(const Obj_Entry * obj,const char * name)5902 object_match_name(const Obj_Entry *obj, const char *name)
5903 {
5904 	Name_Entry *entry;
5905 
5906 	STAILQ_FOREACH(entry, &obj->names, link) {
5907 		if (strcmp(name, entry->name) == 0)
5908 			return (1);
5909 	}
5910 	return (0);
5911 }
5912 
5913 static Obj_Entry *
locate_dependency(const Obj_Entry * obj,const char * name)5914 locate_dependency(const Obj_Entry *obj, const char *name)
5915 {
5916 	const Objlist_Entry *entry;
5917 	const Needed_Entry *needed;
5918 
5919 	STAILQ_FOREACH(entry, &list_main, link) {
5920 		if (object_match_name(entry->obj, name))
5921 			return (entry->obj);
5922 	}
5923 
5924 	for (needed = obj->needed; needed != NULL; needed = needed->next) {
5925 		if (strcmp(obj->strtab + needed->name, name) == 0 ||
5926 		    (needed->obj != NULL && object_match_name(needed->obj,
5927 		    name))) {
5928 			/*
5929 			 * If there is DT_NEEDED for the name we are looking
5930 			 * for, we are all set.  Note that object might not be
5931 			 * found if dependency was not loaded yet, so the
5932 			 * function can return NULL here.  This is expected and
5933 			 * handled properly by the caller.
5934 			 */
5935 			return (needed->obj);
5936 		}
5937 	}
5938 	_rtld_error("%s: Unexpected inconsistency: dependency %s not found",
5939 	    obj->path, name);
5940 	rtld_die();
5941 }
5942 
5943 static int
check_object_provided_version(Obj_Entry * refobj,const Obj_Entry * depobj,const Elf_Vernaux * vna)5944 check_object_provided_version(Obj_Entry *refobj, const Obj_Entry *depobj,
5945     const Elf_Vernaux *vna)
5946 {
5947 	const Elf_Verdef *vd;
5948 	const char *vername;
5949 
5950 	vername = refobj->strtab + vna->vna_name;
5951 	vd = depobj->verdef;
5952 	if (vd == NULL) {
5953 		_rtld_error("%s: version %s required by %s not defined",
5954 		    depobj->path, vername, refobj->path);
5955 		return (-1);
5956 	}
5957 	for (;;) {
5958 		if (vd->vd_version != VER_DEF_CURRENT) {
5959 			_rtld_error(
5960 			    "%s: Unsupported version %d of Elf_Verdef entry",
5961 			    depobj->path, vd->vd_version);
5962 			return (-1);
5963 		}
5964 		if (vna->vna_hash == vd->vd_hash) {
5965 			const Elf_Verdaux *aux =
5966 			    (const Elf_Verdaux *)((const char *)vd +
5967 				vd->vd_aux);
5968 			if (strcmp(vername, depobj->strtab + aux->vda_name) ==
5969 			    0)
5970 				return (0);
5971 		}
5972 		if (vd->vd_next == 0)
5973 			break;
5974 		vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
5975 	}
5976 	if (vna->vna_flags & VER_FLG_WEAK)
5977 		return (0);
5978 	_rtld_error("%s: version %s required by %s not found", depobj->path,
5979 	    vername, refobj->path);
5980 	return (-1);
5981 }
5982 
5983 static int
rtld_verify_object_versions(Obj_Entry * obj)5984 rtld_verify_object_versions(Obj_Entry *obj)
5985 {
5986 	const Elf_Verneed *vn;
5987 	const Elf_Verdef *vd;
5988 	const Elf_Verdaux *vda;
5989 	const Elf_Vernaux *vna;
5990 	const Obj_Entry *depobj;
5991 	int maxvernum, vernum;
5992 
5993 	if (obj->ver_checked)
5994 		return (0);
5995 	obj->ver_checked = true;
5996 
5997 	maxvernum = 0;
5998 	/*
5999 	 * Walk over defined and required version records and figure out
6000 	 * max index used by any of them. Do very basic sanity checking
6001 	 * while there.
6002 	 */
6003 	vn = obj->verneed;
6004 	while (vn != NULL) {
6005 		if (vn->vn_version != VER_NEED_CURRENT) {
6006 			_rtld_error(
6007 			    "%s: Unsupported version %d of Elf_Verneed entry",
6008 			    obj->path, vn->vn_version);
6009 			return (-1);
6010 		}
6011 		vna = (const Elf_Vernaux *)((const char *)vn + vn->vn_aux);
6012 		for (;;) {
6013 			vernum = VER_NEED_IDX(vna->vna_other);
6014 			if (vernum > maxvernum)
6015 				maxvernum = vernum;
6016 			if (vna->vna_next == 0)
6017 				break;
6018 			vna = (const Elf_Vernaux *)((const char *)vna +
6019 			    vna->vna_next);
6020 		}
6021 		if (vn->vn_next == 0)
6022 			break;
6023 		vn = (const Elf_Verneed *)((const char *)vn + vn->vn_next);
6024 	}
6025 
6026 	vd = obj->verdef;
6027 	while (vd != NULL) {
6028 		if (vd->vd_version != VER_DEF_CURRENT) {
6029 			_rtld_error(
6030 			    "%s: Unsupported version %d of Elf_Verdef entry",
6031 			    obj->path, vd->vd_version);
6032 			return (-1);
6033 		}
6034 		vernum = VER_DEF_IDX(vd->vd_ndx);
6035 		if (vernum > maxvernum)
6036 			maxvernum = vernum;
6037 		if (vd->vd_next == 0)
6038 			break;
6039 		vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
6040 	}
6041 
6042 	if (maxvernum == 0)
6043 		return (0);
6044 
6045 	/*
6046 	 * Store version information in array indexable by version index.
6047 	 * Verify that object version requirements are satisfied along the
6048 	 * way.
6049 	 */
6050 	obj->vernum = maxvernum + 1;
6051 	obj->vertab = xcalloc(obj->vernum, sizeof(Ver_Entry));
6052 
6053 	vd = obj->verdef;
6054 	while (vd != NULL) {
6055 		if ((vd->vd_flags & VER_FLG_BASE) == 0) {
6056 			vernum = VER_DEF_IDX(vd->vd_ndx);
6057 			assert(vernum <= maxvernum);
6058 			vda = (const Elf_Verdaux *)((const char *)vd +
6059 			    vd->vd_aux);
6060 			obj->vertab[vernum].hash = vd->vd_hash;
6061 			obj->vertab[vernum].name = obj->strtab + vda->vda_name;
6062 			obj->vertab[vernum].file = NULL;
6063 			obj->vertab[vernum].flags = 0;
6064 		}
6065 		if (vd->vd_next == 0)
6066 			break;
6067 		vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
6068 	}
6069 
6070 	vn = obj->verneed;
6071 	while (vn != NULL) {
6072 		depobj = locate_dependency(obj, obj->strtab + vn->vn_file);
6073 		if (depobj == NULL)
6074 			return (-1);
6075 		vna = (const Elf_Vernaux *)((const char *)vn + vn->vn_aux);
6076 		for (;;) {
6077 			if (check_object_provided_version(obj, depobj, vna))
6078 				return (-1);
6079 			vernum = VER_NEED_IDX(vna->vna_other);
6080 			assert(vernum <= maxvernum);
6081 			obj->vertab[vernum].hash = vna->vna_hash;
6082 			obj->vertab[vernum].name = obj->strtab + vna->vna_name;
6083 			obj->vertab[vernum].file = obj->strtab + vn->vn_file;
6084 			obj->vertab[vernum].flags = (vna->vna_other &
6085 			    VER_NEED_HIDDEN) != 0 ? VER_INFO_HIDDEN : 0;
6086 			if (vna->vna_next == 0)
6087 				break;
6088 			vna = (const Elf_Vernaux *)((const char *)vna +
6089 			    vna->vna_next);
6090 		}
6091 		if (vn->vn_next == 0)
6092 			break;
6093 		vn = (const Elf_Verneed *)((const char *)vn + vn->vn_next);
6094 	}
6095 	return (0);
6096 }
6097 
6098 static int
rtld_verify_versions(const Objlist * objlist)6099 rtld_verify_versions(const Objlist *objlist)
6100 {
6101 	Objlist_Entry *entry;
6102 	int rc;
6103 
6104 	rc = 0;
6105 	STAILQ_FOREACH(entry, objlist, link) {
6106 		/*
6107 		 * Skip dummy objects or objects that have their version
6108 		 * requirements already checked.
6109 		 */
6110 		if (entry->obj->strtab == NULL || entry->obj->vertab != NULL)
6111 			continue;
6112 		if (rtld_verify_object_versions(entry->obj) == -1) {
6113 			rc = -1;
6114 			if (ld_tracing == NULL)
6115 				break;
6116 		}
6117 	}
6118 	if (rc == 0 || ld_tracing != NULL)
6119 		rc = rtld_verify_object_versions(&obj_rtld);
6120 	return (rc);
6121 }
6122 
6123 const Ver_Entry *
fetch_ventry(const Obj_Entry * obj,unsigned long symnum)6124 fetch_ventry(const Obj_Entry *obj, unsigned long symnum)
6125 {
6126 	Elf_Versym vernum;
6127 
6128 	if (obj->vertab) {
6129 		vernum = VER_NDX(obj->versyms[symnum]);
6130 		if (vernum >= obj->vernum) {
6131 			_rtld_error("%s: symbol %s has wrong verneed value %d",
6132 			    obj->path, obj->strtab + symnum, vernum);
6133 		} else if (obj->vertab[vernum].hash != 0) {
6134 			return (&obj->vertab[vernum]);
6135 		}
6136 	}
6137 	return (NULL);
6138 }
6139 
6140 int
_rtld_get_stack_prot(void)6141 _rtld_get_stack_prot(void)
6142 {
6143 	return (stack_prot);
6144 }
6145 
6146 int
_rtld_is_dlopened(void * arg)6147 _rtld_is_dlopened(void *arg)
6148 {
6149 	Obj_Entry *obj;
6150 	RtldLockState lockstate;
6151 	int res;
6152 
6153 	rlock_acquire(rtld_bind_lock, &lockstate);
6154 	obj = dlcheck(arg);
6155 	if (obj == NULL)
6156 		obj = obj_from_addr(arg);
6157 	if (obj == NULL) {
6158 		_rtld_error("No shared object contains address");
6159 		lock_release(rtld_bind_lock, &lockstate);
6160 		return (-1);
6161 	}
6162 	res = obj->dlopened ? 1 : 0;
6163 	lock_release(rtld_bind_lock, &lockstate);
6164 	return (res);
6165 }
6166 
6167 static int
obj_remap_relro(Obj_Entry * obj,int prot)6168 obj_remap_relro(Obj_Entry *obj, int prot)
6169 {
6170 	const Elf_Phdr *ph;
6171 	caddr_t relro_page;
6172 	size_t relro_size;
6173 
6174 	for (ph = obj->phdr; (const char *)ph < (const char *)obj->phdr +
6175 	    obj->phsize; ph++) {
6176 		if (ph->p_type != PT_GNU_RELRO)
6177 			continue;
6178 		relro_page = obj->relocbase + rtld_trunc_page(ph->p_vaddr);
6179 		relro_size = rtld_round_page(ph->p_vaddr + ph->p_memsz) -
6180 		    rtld_trunc_page(ph->p_vaddr);
6181 		if (mprotect(relro_page, relro_size, prot) == -1) {
6182 			_rtld_error(
6183 			    "%s: Cannot set relro protection to %#x: %s",
6184 			    obj->path, prot, rtld_strerror(errno));
6185 			return (-1);
6186 		}
6187 		break;
6188 	}
6189 	return (0);
6190 }
6191 
6192 static int
obj_disable_relro(Obj_Entry * obj)6193 obj_disable_relro(Obj_Entry *obj)
6194 {
6195 	return (obj_remap_relro(obj, PROT_READ | PROT_WRITE));
6196 }
6197 
6198 static int
obj_enforce_relro(Obj_Entry * obj)6199 obj_enforce_relro(Obj_Entry *obj)
6200 {
6201 	return (obj_remap_relro(obj, PROT_READ));
6202 }
6203 
6204 static void
map_stacks_exec(RtldLockState * lockstate)6205 map_stacks_exec(RtldLockState *lockstate)
6206 {
6207 	void (*thr_map_stacks_exec)(void);
6208 
6209 	if ((max_stack_flags & PF_X) == 0 || (stack_prot & PROT_EXEC) != 0)
6210 		return;
6211 	thr_map_stacks_exec = (void (*)(void))(
6212 	    uintptr_t)get_program_var_addr("__pthread_map_stacks_exec",
6213 	    lockstate);
6214 	if (thr_map_stacks_exec != NULL) {
6215 		stack_prot |= PROT_EXEC;
6216 		thr_map_stacks_exec();
6217 	}
6218 }
6219 
6220 static void
distribute_static_tls(Objlist * list)6221 distribute_static_tls(Objlist *list)
6222 {
6223 	struct tcb_list_entry *tcbelm;
6224 	Objlist_Entry *objelm;
6225 	struct tcb *tcb;
6226 	Obj_Entry *obj;
6227 	char *tlsbase;
6228 
6229 	STAILQ_FOREACH(objelm, list, link) {
6230 		obj = objelm->obj;
6231 		if (obj->marker || !obj->tls_static || obj->static_tls_copied)
6232 			continue;
6233 		TAILQ_FOREACH(tcbelm, &tcb_list, next) {
6234 			tcb = tcb_from_tcb_list_entry(tcbelm);
6235 #ifdef TLS_VARIANT_I
6236 			tlsbase = (char *)tcb + obj->tlsoffset;
6237 #else
6238 			tlsbase = (char *)tcb - obj->tlsoffset;
6239 #endif
6240 			memcpy(tlsbase, obj->tlsinit, obj->tlsinitsize);
6241 			memset(tlsbase + obj->tlsinitsize, 0,
6242 			    obj->tlssize - obj->tlsinitsize);
6243 		}
6244 		obj->static_tls_copied = true;
6245 	}
6246 }
6247 
6248 void
symlook_init(SymLook * dst,const char * name)6249 symlook_init(SymLook *dst, const char *name)
6250 {
6251 	bzero(dst, sizeof(*dst));
6252 	dst->name = name;
6253 	dst->hash = elf_hash(name);
6254 	dst->hash_gnu = gnu_hash(name);
6255 }
6256 
6257 static void
symlook_init_from_req(SymLook * dst,const SymLook * src)6258 symlook_init_from_req(SymLook *dst, const SymLook *src)
6259 {
6260 	dst->name = src->name;
6261 	dst->hash = src->hash;
6262 	dst->hash_gnu = src->hash_gnu;
6263 	dst->ventry = src->ventry;
6264 	dst->flags = src->flags;
6265 	dst->defobj_out = NULL;
6266 	dst->sym_out = NULL;
6267 	dst->lockstate = src->lockstate;
6268 }
6269 
6270 static int
open_binary_fd(const char * argv0,bool search_in_path,const char ** binpath_res)6271 open_binary_fd(const char *argv0, bool search_in_path, const char **binpath_res)
6272 {
6273 	char *binpath, *pathenv, *pe, *res1;
6274 	const char *res;
6275 	int fd;
6276 
6277 	binpath = NULL;
6278 	res = NULL;
6279 	if (search_in_path && strchr(argv0, '/') == NULL) {
6280 		binpath = xmalloc(PATH_MAX);
6281 		pathenv = getenv("PATH");
6282 		if (pathenv == NULL) {
6283 			_rtld_error("-p and no PATH environment variable");
6284 			rtld_die();
6285 		}
6286 		pathenv = strdup(pathenv);
6287 		if (pathenv == NULL) {
6288 			_rtld_error("Cannot allocate memory");
6289 			rtld_die();
6290 		}
6291 		fd = -1;
6292 		errno = ENOENT;
6293 		while ((pe = strsep(&pathenv, ":")) != NULL) {
6294 			if (strlcpy(binpath, pe, PATH_MAX) >= PATH_MAX)
6295 				continue;
6296 			if (binpath[0] != '\0' &&
6297 			    strlcat(binpath, "/", PATH_MAX) >= PATH_MAX)
6298 				continue;
6299 			if (strlcat(binpath, argv0, PATH_MAX) >= PATH_MAX)
6300 				continue;
6301 			fd = open(binpath, O_RDONLY | O_CLOEXEC | O_VERIFY);
6302 			if (fd != -1 || errno != ENOENT) {
6303 				res = binpath;
6304 				break;
6305 			}
6306 		}
6307 		free(pathenv);
6308 	} else {
6309 		fd = open(argv0, O_RDONLY | O_CLOEXEC | O_VERIFY);
6310 		res = argv0;
6311 	}
6312 
6313 	if (fd == -1) {
6314 		_rtld_error("Cannot open %s: %s", argv0, rtld_strerror(errno));
6315 		rtld_die();
6316 	}
6317 	if (res != NULL && res[0] != '/') {
6318 		res1 = xmalloc(PATH_MAX);
6319 		if (realpath(res, res1) != NULL) {
6320 			if (res != argv0)
6321 				free(__DECONST(char *, res));
6322 			res = res1;
6323 		} else {
6324 			free(res1);
6325 		}
6326 	}
6327 	*binpath_res = res;
6328 	return (fd);
6329 }
6330 
6331 /*
6332  * Parse a set of command-line arguments.
6333  */
6334 static int
parse_args(char * argv[],int argc,bool * use_pathp,int * fdp,const char ** argv0,bool * dir_ignore)6335 parse_args(char *argv[], int argc, bool *use_pathp, int *fdp,
6336     const char **argv0, bool *dir_ignore)
6337 {
6338 	const char *arg;
6339 	char machine[64];
6340 	size_t sz;
6341 	int arglen, fd, i, j, mib[2];
6342 	char opt;
6343 	bool seen_b, seen_f;
6344 
6345 	dbg("Parsing command-line arguments");
6346 	*use_pathp = false;
6347 	*fdp = -1;
6348 	*dir_ignore = false;
6349 	seen_b = seen_f = false;
6350 
6351 	for (i = 1; i < argc; i++) {
6352 		arg = argv[i];
6353 		dbg("argv[%d]: '%s'", i, arg);
6354 
6355 		/*
6356 		 * rtld arguments end with an explicit "--" or with the first
6357 		 * non-prefixed argument.
6358 		 */
6359 		if (strcmp(arg, "--") == 0) {
6360 			i++;
6361 			break;
6362 		}
6363 		if (arg[0] != '-')
6364 			break;
6365 
6366 		/*
6367 		 * All other arguments are single-character options that can
6368 		 * be combined, so we need to search through `arg` for them.
6369 		 */
6370 		arglen = strlen(arg);
6371 		for (j = 1; j < arglen; j++) {
6372 			opt = arg[j];
6373 			if (opt == 'h') {
6374 				print_usage(argv[0]);
6375 				_exit(0);
6376 			} else if (opt == 'b') {
6377 				if (seen_f) {
6378 					_rtld_error("Both -b and -f specified");
6379 					rtld_die();
6380 				}
6381 				if (j != arglen - 1) {
6382 					_rtld_error("Invalid options: %s", arg);
6383 					rtld_die();
6384 				}
6385 				i++;
6386 				*argv0 = argv[i];
6387 				seen_b = true;
6388 				break;
6389 			} else if (opt == 'd') {
6390 				*dir_ignore = true;
6391 			} else if (opt == 'f') {
6392 				if (seen_b) {
6393 					_rtld_error("Both -b and -f specified");
6394 					rtld_die();
6395 				}
6396 
6397 				/*
6398 				 * -f XX can be used to specify a
6399 				 * descriptor for the binary named at
6400 				 * the command line (i.e., the later
6401 				 * argument will specify the process
6402 				 * name but the descriptor is what
6403 				 * will actually be executed).
6404 				 *
6405 				 * -f must be the last option in the
6406 				 * group, e.g., -abcf <fd>.
6407 				 */
6408 				if (j != arglen - 1) {
6409 					_rtld_error("Invalid options: %s", arg);
6410 					rtld_die();
6411 				}
6412 				i++;
6413 				fd = parse_integer(argv[i]);
6414 				if (fd == -1) {
6415 					_rtld_error(
6416 					    "Invalid file descriptor: '%s'",
6417 					    argv[i]);
6418 					rtld_die();
6419 				}
6420 				*fdp = fd;
6421 				seen_f = true;
6422 				break;
6423 			} else if (opt == 'o') {
6424 				struct ld_env_var_desc *l;
6425 				char *n, *v;
6426 				u_int ll;
6427 
6428 				if (j != arglen - 1) {
6429 					_rtld_error("Invalid options: %s", arg);
6430 					rtld_die();
6431 				}
6432 				i++;
6433 				n = argv[i];
6434 				v = strchr(n, '=');
6435 				if (v == NULL) {
6436 					_rtld_error("No '=' in -o parameter");
6437 					rtld_die();
6438 				}
6439 				for (ll = 0; ll < nitems(ld_env_vars); ll++) {
6440 					l = &ld_env_vars[ll];
6441 					if (v - n == (ptrdiff_t)strlen(l->n) &&
6442 					    strncmp(n, l->n, v - n) == 0) {
6443 						l->val = v + 1;
6444 						break;
6445 					}
6446 				}
6447 				if (ll == nitems(ld_env_vars)) {
6448 					_rtld_error("Unknown LD_ option %s", n);
6449 					rtld_die();
6450 				}
6451 			} else if (opt == 'p') {
6452 				*use_pathp = true;
6453 			} else if (opt == 'u') {
6454 				u_int ll;
6455 
6456 				for (ll = 0; ll < nitems(ld_env_vars); ll++)
6457 					ld_env_vars[ll].val = NULL;
6458 			} else if (opt == 'v') {
6459 				machine[0] = '\0';
6460 				mib[0] = CTL_HW;
6461 				mib[1] = HW_MACHINE;
6462 				sz = sizeof(machine);
6463 				sysctl(mib, nitems(mib), machine, &sz, NULL, 0);
6464 				ld_elf_hints_path = ld_get_env_var(
6465 				    LD_ELF_HINTS_PATH);
6466 				set_ld_elf_hints_path();
6467 				rtld_printf(
6468 				    "FreeBSD ld-elf.so.1 %s\n"
6469 				    "FreeBSD_version %d\n"
6470 				    "Default lib path %s\n"
6471 				    "Hints lib path %s\n"
6472 				    "Env prefix %s\n"
6473 				    "Default hint file %s\n"
6474 				    "Hint file %s\n"
6475 				    "libmap file %s\n"
6476 				    "Optional static TLS size %zd bytes\n",
6477 				    machine, __FreeBSD_version,
6478 				    ld_standard_library_path, gethints(false),
6479 				    ld_env_prefix, ld_elf_hints_default,
6480 				    ld_elf_hints_path, ld_path_libmap_conf,
6481 				    ld_static_tls_extra);
6482 				_exit(0);
6483 			} else {
6484 				_rtld_error("Invalid argument: '%s'", arg);
6485 				print_usage(argv[0]);
6486 				rtld_die();
6487 			}
6488 		}
6489 	}
6490 
6491 	if (!seen_b)
6492 		*argv0 = argv[i];
6493 	return (i);
6494 }
6495 
6496 /*
6497  * Parse a file descriptor number without pulling in more of libc (e.g. atoi).
6498  */
6499 static int
parse_integer(const char * str)6500 parse_integer(const char *str)
6501 {
6502 	static const int RADIX = 10; /* XXXJA: possibly support hex? */
6503 	const char *orig;
6504 	int n;
6505 	char c;
6506 
6507 	orig = str;
6508 	n = 0;
6509 	for (c = *str; c != '\0'; c = *++str) {
6510 		if (c < '0' || c > '9')
6511 			return (-1);
6512 
6513 		n *= RADIX;
6514 		n += c - '0';
6515 	}
6516 
6517 	/* Make sure we actually parsed something. */
6518 	if (str == orig)
6519 		return (-1);
6520 	return (n);
6521 }
6522 
6523 static void
print_usage(const char * argv0)6524 print_usage(const char *argv0)
6525 {
6526 	rtld_printf(
6527 	    "Usage: %s [-h] [-b <exe>] [-d] [-f <FD>] [-p] [--] <binary> [<args>]\n"
6528 	    "\n"
6529 	    "Options:\n"
6530 	    "  -h        Display this help message\n"
6531 	    "  -b <exe>  Execute <exe> instead of <binary>, arg0 is <binary>\n"
6532 	    "  -d        Ignore lack of exec permissions for the binary\n"
6533 	    "  -f <FD>   Execute <FD> instead of searching for <binary>\n"
6534 	    "  -o <OPT>=<VAL> Set LD_<OPT> to <VAL>, without polluting env\n"
6535 	    "  -p        Search in PATH for named binary\n"
6536 	    "  -u        Ignore LD_ environment variables\n"
6537 	    "  -v        Display identification information\n"
6538 	    "  --        End of RTLD options\n"
6539 	    "  <binary>  Name of process to execute\n"
6540 	    "  <args>    Arguments to the executed process\n",
6541 	    argv0);
6542 }
6543 
6544 #define AUXFMT(at, xfmt) [at] = { .name = #at, .fmt = xfmt }
6545 static const struct auxfmt {
6546 	const char *name;
6547 	const char *fmt;
6548 } auxfmts[] = {
6549 	AUXFMT(AT_NULL, NULL),
6550 	AUXFMT(AT_IGNORE, NULL),
6551 	AUXFMT(AT_EXECFD, "%ld"),
6552 	AUXFMT(AT_PHDR, "%p"),
6553 	AUXFMT(AT_PHENT, "%lu"),
6554 	AUXFMT(AT_PHNUM, "%lu"),
6555 	AUXFMT(AT_PAGESZ, "%lu"),
6556 	AUXFMT(AT_BASE, "%#lx"),
6557 	AUXFMT(AT_FLAGS, "%#lx"),
6558 	AUXFMT(AT_ENTRY, "%p"),
6559 	AUXFMT(AT_NOTELF, NULL),
6560 	AUXFMT(AT_UID, "%ld"),
6561 	AUXFMT(AT_EUID, "%ld"),
6562 	AUXFMT(AT_GID, "%ld"),
6563 	AUXFMT(AT_EGID, "%ld"),
6564 	AUXFMT(AT_EXECPATH, "%s"),
6565 	AUXFMT(AT_CANARY, "%p"),
6566 	AUXFMT(AT_CANARYLEN, "%lu"),
6567 	AUXFMT(AT_OSRELDATE, "%lu"),
6568 	AUXFMT(AT_NCPUS, "%lu"),
6569 	AUXFMT(AT_PAGESIZES, "%p"),
6570 	AUXFMT(AT_PAGESIZESLEN, "%lu"),
6571 	AUXFMT(AT_TIMEKEEP, "%p"),
6572 	AUXFMT(AT_STACKPROT, "%#lx"),
6573 	AUXFMT(AT_EHDRFLAGS, "%#lx"),
6574 	AUXFMT(AT_HWCAP, "%#lx"),
6575 	AUXFMT(AT_HWCAP2, "%#lx"),
6576 	AUXFMT(AT_BSDFLAGS, "%#lx"),
6577 	AUXFMT(AT_ARGC, "%lu"),
6578 	AUXFMT(AT_ARGV, "%p"),
6579 	AUXFMT(AT_ENVC, "%p"),
6580 	AUXFMT(AT_ENVV, "%p"),
6581 	AUXFMT(AT_PS_STRINGS, "%p"),
6582 	AUXFMT(AT_FXRNG, "%p"),
6583 	AUXFMT(AT_KPRELOAD, "%p"),
6584 	AUXFMT(AT_USRSTACKBASE, "%#lx"),
6585 	AUXFMT(AT_USRSTACKLIM, "%#lx"),
6586 	/* AT_CHERI_STATS */
6587 	AUXFMT(AT_HWCAP3, "%#lx"),
6588 	AUXFMT(AT_HWCAP4, "%#lx"),
6589 
6590 };
6591 
6592 static bool
is_ptr_fmt(const char * fmt)6593 is_ptr_fmt(const char *fmt)
6594 {
6595 	char last;
6596 
6597 	last = fmt[strlen(fmt) - 1];
6598 	return (last == 'p' || last == 's');
6599 }
6600 
6601 static void
dump_auxv(Elf_Auxinfo ** aux_info)6602 dump_auxv(Elf_Auxinfo **aux_info)
6603 {
6604 	Elf_Auxinfo *auxp;
6605 	const struct auxfmt *fmt;
6606 	int i;
6607 
6608 	for (i = 0; i < AT_COUNT; i++) {
6609 		auxp = aux_info[i];
6610 		if (auxp == NULL)
6611 			continue;
6612 		fmt = &auxfmts[i];
6613 		if (fmt->fmt == NULL)
6614 			continue;
6615 		rtld_fdprintf(STDOUT_FILENO, "%s:\t", fmt->name);
6616 		if (is_ptr_fmt(fmt->fmt)) {
6617 			rtld_fdprintfx(STDOUT_FILENO, fmt->fmt,
6618 			    auxp->a_un.a_ptr);
6619 		} else {
6620 			rtld_fdprintfx(STDOUT_FILENO, fmt->fmt,
6621 			    auxp->a_un.a_val);
6622 		}
6623 		rtld_fdprintf(STDOUT_FILENO, "\n");
6624 	}
6625 }
6626 
6627 const char *
rtld_get_var(const char * name)6628 rtld_get_var(const char *name)
6629 {
6630 	const struct ld_env_var_desc *lvd;
6631 	u_int i;
6632 
6633 	for (i = 0; i < nitems(ld_env_vars); i++) {
6634 		lvd = &ld_env_vars[i];
6635 		if (strcmp(lvd->n, name) == 0)
6636 			return (lvd->val);
6637 	}
6638 	return (NULL);
6639 }
6640 
6641 int
rtld_set_var(const char * name,const char * val)6642 rtld_set_var(const char *name, const char *val)
6643 {
6644 	struct ld_env_var_desc *lvd;
6645 	u_int i;
6646 
6647 	for (i = 0; i < nitems(ld_env_vars); i++) {
6648 		lvd = &ld_env_vars[i];
6649 		if (strcmp(lvd->n, name) != 0)
6650 			continue;
6651 		if (!lvd->can_update || (lvd->unsecure && !trust))
6652 			return (EPERM);
6653 		if (lvd->owned)
6654 			free(__DECONST(char *, lvd->val));
6655 		if (val != NULL)
6656 			lvd->val = xstrdup(val);
6657 		else
6658 			lvd->val = NULL;
6659 		lvd->owned = true;
6660 		if (lvd->debug)
6661 			debug = lvd->val != NULL && *lvd->val != '\0';
6662 		return (0);
6663 	}
6664 	return (ENOENT);
6665 }
6666 
6667 /*
6668  * Overrides for libc_pic-provided functions.
6669  */
6670 
6671 int
__getosreldate(void)6672 __getosreldate(void)
6673 {
6674 	size_t len;
6675 	int oid[2];
6676 	int error, osrel;
6677 
6678 	if (osreldate != 0)
6679 		return (osreldate);
6680 
6681 	oid[0] = CTL_KERN;
6682 	oid[1] = KERN_OSRELDATE;
6683 	osrel = 0;
6684 	len = sizeof(osrel);
6685 	error = sysctl(oid, 2, &osrel, &len, NULL, 0);
6686 	if (error == 0 && osrel > 0 && len == sizeof(osrel))
6687 		osreldate = osrel;
6688 	return (osreldate);
6689 }
6690 const char *
rtld_strerror(int errnum)6691 rtld_strerror(int errnum)
6692 {
6693 	if (errnum < 0 || errnum >= sys_nerr)
6694 		return ("Unknown error");
6695 	return (sys_errlist[errnum]);
6696 }
6697 
6698 char *
getenv(const char * name)6699 getenv(const char *name)
6700 {
6701 	return (__DECONST(char *, rtld_get_env_val(environ, name,
6702 	    strlen(name))));
6703 }
6704 
6705 /* malloc */
6706 void *
malloc(size_t nbytes)6707 malloc(size_t nbytes)
6708 {
6709 	return (__crt_malloc(nbytes));
6710 }
6711 
6712 void *
calloc(size_t num,size_t size)6713 calloc(size_t num, size_t size)
6714 {
6715 	return (__crt_calloc(num, size));
6716 }
6717 
6718 void
free(void * cp)6719 free(void *cp)
6720 {
6721 	__crt_free(cp);
6722 }
6723 
6724 void *
realloc(void * cp,size_t nbytes)6725 realloc(void *cp, size_t nbytes)
6726 {
6727 	return (__crt_realloc(cp, nbytes));
6728 }
6729 
6730 extern int _rtld_version__FreeBSD_version __exported;
6731 int _rtld_version__FreeBSD_version = __FreeBSD_version;
6732 
6733 extern char _rtld_version_laddr_offset __exported;
6734 char _rtld_version_laddr_offset;
6735 
6736 extern char _rtld_version_dlpi_tls_data __exported;
6737 char _rtld_version_dlpi_tls_data;
6738