xref: /freebsd/stand/efi/loader/main.c (revision c8b87aa10d684111ec4f82b31a262850a28e5eb2)
1 /*-
2  * Copyright (c) 2008-2010 Rui Paulo
3  * Copyright (c) 2006 Marcel Moolenaar
4  * All rights reserved.
5  *
6  * Copyright (c) 2016-2019 Netflix, Inc. written by M. Warner Losh
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
23  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
27  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28  */
29 
30 #include <stand.h>
31 
32 #include <sys/disk.h>
33 #include <sys/param.h>
34 #include <sys/reboot.h>
35 #include <sys/boot.h>
36 #ifdef EFI_ZFS_BOOT
37 #include <sys/zfs_bootenv.h>
38 #endif
39 #include <paths.h>
40 #include <netinet/in.h>
41 #include <netinet/in_systm.h>
42 #include <stdint.h>
43 #include <string.h>
44 #include <setjmp.h>
45 #include <disk.h>
46 #include <dev_net.h>
47 #include <net.h>
48 #include <machine/_inttypes.h>
49 
50 #include <efi.h>
51 #include <efilib.h>
52 #include <efichar.h>
53 #include <efirng.h>
54 
55 #include <uuid.h>
56 
57 #include <bootstrap.h>
58 #include <smbios.h>
59 
60 #include <dev/random/fortuna.h>
61 #include <geom/eli/pkcs5v2.h>
62 
63 #include "efizfs.h"
64 #include "framebuffer.h"
65 
66 #include "platform/acfreebsd.h"
67 #include "acconfig.h"
68 #define ACPI_SYSTEM_XFACE
69 #include "actypes.h"
70 #include "actbl.h"
71 
72 #include <acpi_detect.h>
73 
74 #include "loader_efi.h"
75 
76 struct arch_switch archsw = {	/* MI/MD interface boundary */
77 	.arch_autoload = efi_autoload,
78 	.arch_getdev = efi_getdev,
79 	.arch_copyin = efi_copyin,
80 	.arch_copyout = efi_copyout,
81 #if defined(__amd64__) || defined(__i386__)
82 	.arch_hypervisor = x86_hypervisor,
83 #endif
84 	.arch_readin = efi_readin,
85 	.arch_zfs_probe = efi_zfs_probe,
86 };
87 
88 EFI_GUID devid = DEVICE_PATH_PROTOCOL;
89 EFI_GUID imgid = LOADED_IMAGE_PROTOCOL;
90 EFI_GUID mps = MPS_TABLE_GUID;
91 EFI_GUID netid = EFI_SIMPLE_NETWORK_PROTOCOL;
92 EFI_GUID smbios = SMBIOS_TABLE_GUID;
93 EFI_GUID smbios3 = SMBIOS3_TABLE_GUID;
94 EFI_GUID dxe = DXE_SERVICES_TABLE_GUID;
95 EFI_GUID hoblist = HOB_LIST_TABLE_GUID;
96 EFI_GUID lzmadecomp = LZMA_DECOMPRESSION_GUID;
97 EFI_GUID mpcore = ARM_MP_CORE_INFO_TABLE_GUID;
98 EFI_GUID esrt = ESRT_TABLE_GUID;
99 EFI_GUID memtype = MEMORY_TYPE_INFORMATION_TABLE_GUID;
100 EFI_GUID debugimg = DEBUG_IMAGE_INFO_TABLE_GUID;
101 EFI_GUID fdtdtb = FDT_TABLE_GUID;
102 EFI_GUID inputid = SIMPLE_TEXT_INPUT_PROTOCOL;
103 
104 /*
105  * Number of seconds to wait for a keystroke before exiting with failure
106  * in the event no currdev is found. -2 means always break, -1 means
107  * never break, 0 means poll once and then reboot, > 0 means wait for
108  * that many seconds. "fail_timeout" can be set in the environment as
109  * well.
110  */
111 static int fail_timeout = 5;
112 
113 /*
114  * Current boot variable
115  */
116 UINT16 boot_current;
117 
118 /*
119  * Image that we booted from.
120  */
121 EFI_LOADED_IMAGE *boot_img;
122 
123 static bool
has_keyboard(void)124 has_keyboard(void)
125 {
126 	EFI_STATUS status;
127 	EFI_DEVICE_PATH *path;
128 	EFI_HANDLE *hin, *hin_end, *walker;
129 	UINTN sz;
130 	bool retval = false;
131 
132 	/*
133 	 * Find all the handles that support the SIMPLE_TEXT_INPUT_PROTOCOL and
134 	 * do the typical dance to get the right sized buffer.
135 	 */
136 	sz = 0;
137 	hin = NULL;
138 	status = BS->LocateHandle(ByProtocol, &inputid, 0, &sz, 0);
139 	if (status == EFI_BUFFER_TOO_SMALL) {
140 		hin = (EFI_HANDLE *)malloc(sz);
141 		status = BS->LocateHandle(ByProtocol, &inputid, 0, &sz,
142 		    hin);
143 		if (EFI_ERROR(status))
144 			free(hin);
145 	}
146 	if (EFI_ERROR(status))
147 		return retval;
148 
149 	/*
150 	 * Look at each of the handles. If it supports the device path protocol,
151 	 * use it to get the device path for this handle. Then see if that
152 	 * device path matches either the USB device path for keyboards or the
153 	 * legacy device path for keyboards.
154 	 */
155 	hin_end = &hin[sz / sizeof(*hin)];
156 	for (walker = hin; walker < hin_end; walker++) {
157 		status = OpenProtocolByHandle(*walker, &devid, (void **)&path);
158 		if (EFI_ERROR(status))
159 			continue;
160 
161 		while (!IsDevicePathEnd(path)) {
162 			/*
163 			 * Check for the ACPI keyboard node. All PNP3xx nodes
164 			 * are keyboards of different flavors. Note: It is
165 			 * unclear of there's always a keyboard node when
166 			 * there's a keyboard controller, or if there's only one
167 			 * when a keyboard is detected at boot.
168 			 */
169 			if (DevicePathType(path) == ACPI_DEVICE_PATH &&
170 			    (DevicePathSubType(path) == ACPI_DP ||
171 				DevicePathSubType(path) == ACPI_EXTENDED_DP)) {
172 				ACPI_HID_DEVICE_PATH  *acpi;
173 
174 				acpi = (ACPI_HID_DEVICE_PATH *)(void *)path;
175 				if ((EISA_ID_TO_NUM(acpi->HID) & 0xff00) == 0x300 &&
176 				    (acpi->HID & 0xffff) == PNP_EISA_ID_CONST) {
177 					retval = true;
178 					goto out;
179 				}
180 			/*
181 			 * Check for USB keyboard node, if present. Unlike a
182 			 * PS/2 keyboard, these definitely only appear when
183 			 * connected to the system.
184 			 */
185 			} else if (DevicePathType(path) == MESSAGING_DEVICE_PATH &&
186 			    DevicePathSubType(path) == MSG_USB_CLASS_DP) {
187 				USB_CLASS_DEVICE_PATH *usb;
188 
189 				usb = (USB_CLASS_DEVICE_PATH *)(void *)path;
190 				if (usb->DeviceClass == 3 && /* HID */
191 				    usb->DeviceSubClass == 1 && /* Boot devices */
192 				    usb->DeviceProtocol == 1) { /* Boot keyboards */
193 					retval = true;
194 					goto out;
195 				}
196 			}
197 			path = NextDevicePathNode(path);
198 		}
199 	}
200 out:
201 	free(hin);
202 	return retval;
203 }
204 
205 static void
set_currdev_devdesc(struct devdesc * currdev)206 set_currdev_devdesc(struct devdesc *currdev)
207 {
208 	const char *devname;
209 
210 	devname = devformat(currdev);
211 	printf("Setting currdev to %s\n", devname);
212 	set_currdev(devname);
213 }
214 
215 static void
set_currdev_devsw(struct devsw * dev,int unit)216 set_currdev_devsw(struct devsw *dev, int unit)
217 {
218 	struct devdesc currdev;
219 
220 	currdev.d_dev = dev;
221 	currdev.d_unit = unit;
222 
223 	set_currdev_devdesc(&currdev);
224 }
225 
226 static void
set_currdev_pdinfo(pdinfo_t * dp)227 set_currdev_pdinfo(pdinfo_t *dp)
228 {
229 
230 	/*
231 	 * Disks are special: they have partitions. if the parent
232 	 * pointer is non-null, we're a partition not a full disk
233 	 * and we need to adjust currdev appropriately.
234 	 */
235 	if (dp->pd_devsw->dv_type == DEVT_DISK) {
236 		struct disk_devdesc currdev;
237 
238 		currdev.dd.d_dev = dp->pd_devsw;
239 		if (dp->pd_parent == NULL) {
240 			currdev.dd.d_unit = dp->pd_unit;
241 			currdev.d_slice = D_SLICENONE;
242 			currdev.d_partition = D_PARTNONE;
243 		} else {
244 			currdev.dd.d_unit = dp->pd_parent->pd_unit;
245 			currdev.d_slice = dp->pd_unit;
246 			currdev.d_partition = D_PARTISGPT; /* XXX Assumes GPT */
247 		}
248 		set_currdev_devdesc((struct devdesc *)&currdev);
249 	} else {
250 		set_currdev_devsw(dp->pd_devsw, dp->pd_unit);
251 	}
252 }
253 
254 static bool
sanity_check_currdev(void)255 sanity_check_currdev(void)
256 {
257 	struct stat st;
258 
259 	return (stat(PATH_DEFAULTS_LOADER_CONF, &st) == 0 ||
260 #ifdef PATH_BOOTABLE_TOKEN
261 	    stat(PATH_BOOTABLE_TOKEN, &st) == 0 || /* non-standard layout */
262 #endif
263 	    stat(PATH_KERNEL, &st) == 0);
264 }
265 
266 #ifdef EFI_ZFS_BOOT
267 static bool
probe_zfs_currdev(uint64_t guid)268 probe_zfs_currdev(uint64_t guid)
269 {
270 	char buf[VDEV_PAD_SIZE];
271 	char *devname;
272 	struct zfs_devdesc currdev;
273 
274 	currdev.dd.d_dev = &zfs_dev;
275 	currdev.dd.d_unit = 0;
276 	currdev.pool_guid = guid;
277 	currdev.root_guid = 0;
278 	devname = devformat(&currdev.dd);
279 	set_currdev(devname);
280 	printf("Setting currdev to %s\n", devname);
281 	init_zfs_boot_options(devname);
282 
283 	if (zfs_get_bootonce(&currdev, OS_BOOTONCE, buf, sizeof(buf)) == 0) {
284 		printf("zfs bootonce: %s\n", buf);
285 		set_currdev(buf);
286 		setenv("zfs-bootonce", buf, 1);
287 	}
288 	(void)zfs_attach_nvstore(&currdev);
289 
290 	return (sanity_check_currdev());
291 }
292 #endif
293 
294 #ifdef MD_IMAGE_SIZE
295 extern struct devsw md_dev;
296 
297 static bool
probe_md_currdev(void)298 probe_md_currdev(void)
299 {
300 	bool rv;
301 
302 	set_currdev_devsw(&md_dev, 0);
303 	rv = sanity_check_currdev();
304 	if (!rv)
305 		printf("MD not present\n");
306 	return (rv);
307 }
308 #endif
309 
310 static bool
try_as_currdev(pdinfo_t * hd,pdinfo_t * pp)311 try_as_currdev(pdinfo_t *hd, pdinfo_t *pp)
312 {
313 #ifdef EFI_ZFS_BOOT
314 	uint64_t guid;
315 
316 	/*
317 	 * If there's a zpool on this device, try it as a ZFS
318 	 * filesystem, which has somewhat different setup than all
319 	 * other types of fs due to imperfect loader integration.
320 	 * This all stems from ZFS being both a device (zpool) and
321 	 * a filesystem, plus the boot env feature.
322 	 */
323 	if (efizfs_get_guid_by_handle(pp->pd_handle, &guid))
324 		return (probe_zfs_currdev(guid));
325 #endif
326 	/*
327 	 * All other filesystems just need the pdinfo
328 	 * initialized in the standard way.
329 	 */
330 	set_currdev_pdinfo(pp);
331 	return (sanity_check_currdev());
332 }
333 
334 /*
335  * Sometimes we get filenames that are all upper case
336  * and/or have backslashes in them. Filter all this out
337  * if it looks like we need to do so.
338  */
339 static void
fix_dosisms(char * p)340 fix_dosisms(char *p)
341 {
342 	while (*p) {
343 		if (isupper(*p))
344 			*p = tolower(*p);
345 		else if (*p == '\\')
346 			*p = '/';
347 		p++;
348 	}
349 }
350 
351 #define SIZE(dp, edp) (size_t)((intptr_t)(void *)edp - (intptr_t)(void *)dp)
352 
353 enum { BOOT_INFO_OK = 0, BAD_CHOICE = 1, NOT_SPECIFIC = 2  };
354 static int
match_boot_info(char * boot_info,size_t bisz)355 match_boot_info(char *boot_info, size_t bisz)
356 {
357 	uint32_t attr;
358 	uint16_t fplen;
359 	size_t len;
360 	char *walker, *ep;
361 	EFI_DEVICE_PATH *dp, *edp, *first_dp, *last_dp;
362 	pdinfo_t *pp;
363 	CHAR16 *descr;
364 	char *kernel = NULL;
365 	FILEPATH_DEVICE_PATH  *fp;
366 	struct stat st;
367 	CHAR16 *text;
368 
369 	/*
370 	 * FreeBSD encodes its boot loading path into the boot loader
371 	 * BootXXXX variable. We look for the last one in the path
372 	 * and use that to load the kernel. However, if we only find
373 	 * one DEVICE_PATH, then there's nothing specific and we should
374 	 * fall back.
375 	 *
376 	 * In an ideal world, we'd look at the image handle we were
377 	 * passed, match up with the loader we are and then return the
378 	 * next one in the path. This would be most flexible and cover
379 	 * many chain booting scenarios where you need to use this
380 	 * boot loader to get to the next boot loader. However, that
381 	 * doesn't work. We rarely have the path to the image booted
382 	 * (just the device) so we can't count on that. So, we do the
383 	 * next best thing: we look through the device path(s) passed
384 	 * in the BootXXXX variable. If there's only one, we return
385 	 * NOT_SPECIFIC. Otherwise, we look at the last one and try to
386 	 * load that. If we can, we return BOOT_INFO_OK. Otherwise we
387 	 * return BAD_CHOICE for the caller to sort out.
388 	 */
389 	if (bisz < sizeof(attr) + sizeof(fplen) + sizeof(CHAR16))
390 		return NOT_SPECIFIC;
391 	walker = boot_info;
392 	ep = walker + bisz;
393 	memcpy(&attr, walker, sizeof(attr));
394 	walker += sizeof(attr);
395 	memcpy(&fplen, walker, sizeof(fplen));
396 	walker += sizeof(fplen);
397 	descr = (CHAR16 *)(intptr_t)walker;
398 	len = ucs2len(descr);
399 	walker += (len + 1) * sizeof(CHAR16);
400 	last_dp = first_dp = dp = (EFI_DEVICE_PATH *)walker;
401 	edp = (EFI_DEVICE_PATH *)(walker + fplen);
402 	if ((char *)edp > ep)
403 		return NOT_SPECIFIC;
404 	while (dp < edp && SIZE(dp, edp) > sizeof(EFI_DEVICE_PATH)) {
405 		text = efi_devpath_name(dp);
406 		if (text != NULL) {
407 			printf("   BootInfo Path: %S\n", text);
408 			efi_free_devpath_name(text);
409 		}
410 		last_dp = dp;
411 		dp = (EFI_DEVICE_PATH *)((char *)dp + efi_devpath_length(dp));
412 	}
413 
414 	/*
415 	 * If there's only one item in the list, then nothing was
416 	 * specified. Or if the last path doesn't have a media
417 	 * path in it. Those show up as various VenHw() nodes
418 	 * which are basically opaque to us. Don't count those
419 	 * as something specifc.
420 	 */
421 	if (last_dp == first_dp) {
422 		printf("Ignoring Boot%04x: Only one DP found\n", boot_current);
423 		return NOT_SPECIFIC;
424 	}
425 	if (efi_devpath_to_media_path(last_dp) == NULL) {
426 		printf("Ignoring Boot%04x: No Media Path\n", boot_current);
427 		return NOT_SPECIFIC;
428 	}
429 
430 	/*
431 	 * OK. At this point we either have a good path or a bad one.
432 	 * Let's check.
433 	 */
434 	pp = efiblk_get_pdinfo_by_device_path(last_dp);
435 	if (pp == NULL) {
436 		printf("Ignoring Boot%04x: Device Path not found\n", boot_current);
437 		return BAD_CHOICE;
438 	}
439 	set_currdev_pdinfo(pp);
440 	if (!sanity_check_currdev()) {
441 		printf("Ignoring Boot%04x: sanity check failed\n", boot_current);
442 		return BAD_CHOICE;
443 	}
444 
445 	/*
446 	 * OK. We've found a device that matches, next we need to check the last
447 	 * component of the path. If it's a file, then we set the default kernel
448 	 * to that. Otherwise, just use this as the default root.
449 	 *
450 	 * Reminder: we're running very early, before we've parsed the defaults
451 	 * file, so we may need to have a hack override.
452 	 */
453 	dp = efi_devpath_last_node(last_dp);
454 	if (DevicePathType(dp) !=  MEDIA_DEVICE_PATH ||
455 	    DevicePathSubType(dp) != MEDIA_FILEPATH_DP) {
456 		printf("Using Boot%04x for root partition\n", boot_current);
457 		return (BOOT_INFO_OK);		/* use currdir, default kernel */
458 	}
459 	fp = (FILEPATH_DEVICE_PATH *)dp;
460 	ucs2_to_utf8(fp->PathName, &kernel);
461 	if (kernel == NULL) {
462 		printf("Not using Boot%04x: can't decode kernel\n", boot_current);
463 		return (BAD_CHOICE);
464 	}
465 	if (*kernel == '\\' || isupper(*kernel))
466 		fix_dosisms(kernel);
467 	if (stat(kernel, &st) != 0) {
468 		free(kernel);
469 		printf("Not using Boot%04x: can't find %s\n", boot_current,
470 		    kernel);
471 		return (BAD_CHOICE);
472 	}
473 	setenv("kernel", kernel, 1);
474 	free(kernel);
475 	text = efi_devpath_name(last_dp);
476 	if (text) {
477 		printf("Using Boot%04x %S + %s\n", boot_current, text,
478 		    kernel);
479 		efi_free_devpath_name(text);
480 	}
481 
482 	return (BOOT_INFO_OK);
483 }
484 
485 /*
486  * Look at the passed-in boot_info, if any. If we find it then we need
487  * to see if we can find ourselves in the boot chain. If we can, and
488  * there's another specified thing to boot next, assume that the file
489  * is loaded from / and use that for the root filesystem. If can't
490  * find the specified thing, we must fail the boot. If we're last on
491  * the list, then we fallback to looking for the first available /
492  * candidate (ZFS, if there's a bootable zpool, otherwise a UFS
493  * partition that has either /boot/defaults/loader.conf on it or
494  * /boot/kernel/kernel (the default kernel) that we can use.
495  *
496  * We always fail if we can't find the right thing. However, as
497  * a concession to buggy UEFI implementations, like u-boot, if
498  * we have determined that the host is violating the UEFI boot
499  * manager protocol, we'll signal the rest of the program that
500  * a drop to the OK boot loader prompt is possible.
501  */
502 static int
find_currdev(bool do_bootmgr,char * boot_info,size_t boot_info_sz)503 find_currdev(bool do_bootmgr, char *boot_info, size_t boot_info_sz)
504 {
505 	pdinfo_t *dp, *pp;
506 	EFI_DEVICE_PATH *devpath, *copy;
507 	EFI_HANDLE h;
508 	CHAR16 *text;
509 	struct devsw *dev;
510 	int unit;
511 	uint64_t extra;
512 	int rv;
513 	char *rootdev;
514 
515 	/*
516 	 * First choice: if rootdev is already set, use that, even if
517 	 * it's wrong.
518 	 */
519 	rootdev = getenv("rootdev");
520 	if (rootdev != NULL && *rootdev != '\0') {
521 		printf("    Setting currdev to configured rootdev %s\n",
522 		    rootdev);
523 		set_currdev(rootdev);
524 		return (0);
525 	}
526 
527 	/*
528 	 * Second choice: If uefi_rootdev is set, translate that UEFI device
529 	 * path to the loader's internal name and use that.
530 	 */
531 	do {
532 		rootdev = getenv("uefi_rootdev");
533 		if (rootdev == NULL)
534 			break;
535 		devpath = efi_name_to_devpath(rootdev);
536 		if (devpath == NULL)
537 			break;
538 		dp = efiblk_get_pdinfo_by_device_path(devpath);
539 		efi_devpath_free(devpath);
540 		if (dp == NULL)
541 			break;
542 		printf("    Setting currdev to UEFI path %s\n",
543 		    rootdev);
544 		set_currdev_pdinfo(dp);
545 		return (0);
546 	} while (0);
547 
548 	/*
549 	 * Third choice: If we can find out image boot_info, and there's
550 	 * a follow-on boot image in that boot_info, use that. In this
551 	 * case root will be the partition specified in that image and
552 	 * we'll load the kernel specified by the file path. Should there
553 	 * not be a filepath, we use the default. This filepath overrides
554 	 * loader.conf.
555 	 */
556 	if (do_bootmgr) {
557 		rv = match_boot_info(boot_info, boot_info_sz);
558 		switch (rv) {
559 		case BOOT_INFO_OK:	/* We found it */
560 			return (0);
561 		case BAD_CHOICE:	/* specified file not found -> error */
562 			/* XXX do we want to have an escape hatch for last in boot order? */
563 			return (ENOENT);
564 		} /* Nothing specified, try normal match */
565 	}
566 
567 #ifdef EFI_ZFS_BOOT
568 	/*
569 	 * Did efi_zfs_probe() detect the boot pool? If so, use the zpool
570 	 * it found, if it's sane. ZFS is the only thing that looks for
571 	 * disks and pools to boot. This may change in the future, however,
572 	 * if we allow specifying which pool to boot from via UEFI variables
573 	 * rather than the bootenv stuff that FreeBSD uses today.
574 	 */
575 	if (pool_guid != 0) {
576 		printf("Trying ZFS pool\n");
577 		if (probe_zfs_currdev(pool_guid))
578 			return (0);
579 	}
580 #endif /* EFI_ZFS_BOOT */
581 
582 #ifdef MD_IMAGE_SIZE
583 	/*
584 	 * If there is an embedded MD, try to use that.
585 	 */
586 	printf("Trying MD\n");
587 	if (probe_md_currdev())
588 		return (0);
589 #endif /* MD_IMAGE_SIZE */
590 
591 	/*
592 	 * Try to find the block device by its handle based on the
593 	 * image we're booting. If we can't find a sane partition,
594 	 * search all the other partitions of the disk. We do not
595 	 * search other disks because it's a violation of the UEFI
596 	 * boot protocol to do so. We fail and let UEFI go on to
597 	 * the next candidate.
598 	 */
599 	dp = efiblk_get_pdinfo_by_handle(boot_img->DeviceHandle);
600 	if (dp != NULL) {
601 		text = efi_devpath_name(dp->pd_devpath);
602 		if (text != NULL) {
603 			printf("Trying ESP: %S\n", text);
604 			efi_free_devpath_name(text);
605 		}
606 		set_currdev_pdinfo(dp);
607 		if (sanity_check_currdev())
608 			return (0);
609 		if (dp->pd_parent != NULL) {
610 			pdinfo_t *espdp = dp;
611 			dp = dp->pd_parent;
612 			STAILQ_FOREACH(pp, &dp->pd_part, pd_link) {
613 				/* Already tried the ESP */
614 				if (espdp == pp)
615 					continue;
616 				/*
617 				 * Roll up the ZFS special case
618 				 * for those partitions that have
619 				 * zpools on them.
620 				 */
621 				text = efi_devpath_name(pp->pd_devpath);
622 				if (text != NULL) {
623 					printf("Trying: %S\n", text);
624 					efi_free_devpath_name(text);
625 				}
626 				if (try_as_currdev(dp, pp))
627 					return (0);
628 			}
629 		}
630 	}
631 
632 	/*
633 	 * Try the device handle from our loaded image first.  If that
634 	 * fails, use the device path from the loaded image and see if
635 	 * any of the nodes in that path match one of the enumerated
636 	 * handles. Currently, this handle list is only for netboot.
637 	 */
638 	if (efi_handle_lookup(boot_img->DeviceHandle, &dev, &unit, &extra) == 0) {
639 		set_currdev_devsw(dev, unit);
640 		if (sanity_check_currdev())
641 			return (0);
642 	}
643 
644 	copy = NULL;
645 	devpath = efi_lookup_image_devpath(IH);
646 	while (devpath != NULL) {
647 		h = efi_devpath_handle(devpath);
648 		if (h == NULL)
649 			break;
650 
651 		free(copy);
652 		copy = NULL;
653 
654 		if (efi_handle_lookup(h, &dev, &unit, &extra) == 0) {
655 			set_currdev_devsw(dev, unit);
656 			if (sanity_check_currdev())
657 				return (0);
658 		}
659 
660 		devpath = efi_lookup_devpath(h);
661 		if (devpath != NULL) {
662 			copy = efi_devpath_trim(devpath);
663 			devpath = copy;
664 		}
665 	}
666 	free(copy);
667 
668 	return (ENOENT);
669 }
670 
671 static bool
interactive_interrupt(const char * msg)672 interactive_interrupt(const char *msg)
673 {
674 	time_t now, then, last;
675 
676 	last = 0;
677 	now = then = getsecs();
678 	printf("%s\n", msg);
679 	if (fail_timeout == -2)		/* Always break to OK */
680 		return (true);
681 	if (fail_timeout == -1)		/* Never break to OK */
682 		return (false);
683 	do {
684 		if (last != now) {
685 			printf("press any key to interrupt reboot in %d seconds\r",
686 			    fail_timeout - (int)(now - then));
687 			last = now;
688 		}
689 
690 		/* XXX no pause or timeout wait for char */
691 		if (ischar())
692 			return (true);
693 		now = getsecs();
694 	} while (now - then < fail_timeout);
695 	return (false);
696 }
697 
698 static int
parse_args(int argc,CHAR16 * argv[])699 parse_args(int argc, CHAR16 *argv[])
700 {
701 	int i, howto;
702 	char var[128];
703 
704 	/*
705 	 * Parse the args to set the console settings, etc
706 	 * boot1.efi passes these in, if it can read /boot.config or /boot/config
707 	 * or iPXE may be setup to pass these in. Or the optional argument in the
708 	 * boot environment was used to pass these arguments in (in which case
709 	 * neither /boot.config nor /boot/config are consulted).
710 	 *
711 	 * Loop through the args, and for each one that contains an '=' that is
712 	 * not the first character, add it to the environment.  This allows
713 	 * loader and kernel env vars to be passed on the command line.  Convert
714 	 * args from UCS-2 to ASCII (16 to 8 bit) as they are copied (though this
715 	 * method is flawed for non-ASCII characters).
716 	 */
717 	howto = 0;
718 	for (i = 0; i < argc; i++) {
719 		cpy16to8(argv[i], var, sizeof(var));
720 		howto |= boot_parse_arg(var);
721 	}
722 
723 	return (howto);
724 }
725 
726 static void
setenv_int(const char * key,int val)727 setenv_int(const char *key, int val)
728 {
729 	char buf[20];
730 
731 	snprintf(buf, sizeof(buf), "%d", val);
732 	setenv(key, buf, 1);
733 }
734 
735 static void *
acpi_map_sdt(vm_offset_t addr)736 acpi_map_sdt(vm_offset_t addr)
737 {
738 	/* PA == VA */
739 	return ((void *)addr);
740 }
741 
742 static int
acpi_checksum(void * p,size_t length)743 acpi_checksum(void *p, size_t length)
744 {
745 	uint8_t *bp;
746 	uint8_t sum;
747 
748 	bp = p;
749 	sum = 0;
750 	while (length--)
751 		sum += *bp++;
752 
753 	return (sum);
754 }
755 
756 static void *
acpi_find_table(uint8_t * sig)757 acpi_find_table(uint8_t *sig)
758 {
759 	int entries, i, addr_size;
760 	ACPI_TABLE_HEADER *sdp;
761 	ACPI_TABLE_RSDT *rsdt;
762 	ACPI_TABLE_XSDT *xsdt;
763 	vm_offset_t addr;
764 
765 	if (rsdp == NULL)
766 		return (NULL);
767 
768 	rsdt = (ACPI_TABLE_RSDT *)(uintptr_t)rsdp->RsdtPhysicalAddress;
769 	xsdt = (ACPI_TABLE_XSDT *)(uintptr_t)rsdp->XsdtPhysicalAddress;
770 	if (rsdp->Revision < 2) {
771 		sdp = (ACPI_TABLE_HEADER *)rsdt;
772 		addr_size = sizeof(uint32_t);
773 	} else {
774 		sdp = (ACPI_TABLE_HEADER *)xsdt;
775 		addr_size = sizeof(uint64_t);
776 	}
777 	entries = (sdp->Length - sizeof(ACPI_TABLE_HEADER)) / addr_size;
778 	for (i = 0; i < entries; i++) {
779 		if (addr_size == 4)
780 			addr = le32toh(rsdt->TableOffsetEntry[i]);
781 		else
782 			addr = le64toh(xsdt->TableOffsetEntry[i]);
783 		if (addr == 0)
784 			continue;
785 		sdp = (ACPI_TABLE_HEADER *)acpi_map_sdt(addr);
786 		if (acpi_checksum(sdp, sdp->Length)) {
787 			printf("RSDT entry %d (sig %.4s) is corrupt", i,
788 			    sdp->Signature);
789 			continue;
790 		}
791 		if (memcmp(sig, sdp->Signature, 4) == 0)
792 			return (sdp);
793 	}
794 	return (NULL);
795 }
796 
797 /*
798  * Convert the InterfaceType in the SPCR. These are encoded the same for DBG2
799  * tables as well (though we don't parse those here).
800  */
801 static const char *
acpi_uart_type(UINT8 t)802 acpi_uart_type(UINT8 t)
803 {
804 	static const char *types[] = {
805 		[0x00] = "ns8250",	/* Full 16550 */
806 		[0x01] = "ns8250",	/* DBGP Rev 1 16550 subset */
807 		[0x03] = "pl011",	/* Arm PL011 */
808 		[0x05] = "ns8250",	/* Nvidia 16550 */
809 		[0x0d] = "pl011",	/* Arm SBSA 32-bit width */
810 		[0x0e] = "pl011",	/* Arm SBSA generic */
811 		[0x12] = "ns8250",	/* 16550 defined in SerialPort */
812 	};
813 
814 	if (t >= nitems(types))
815 		return (NULL);
816 	return (types[t]);
817 }
818 
819 static int
acpi_uart_baud(UINT8 b)820 acpi_uart_baud(UINT8 b)
821 {
822 	static int baud[] = { 0, -1, -1, 9600, 19200, -1, 57600, 115200 };
823 
824 	if (b > 7)
825 		return (-1);
826 	return (baud[b]);
827 }
828 
829 static int
acpi_uart_regionwidth(UINT8 rw)830 acpi_uart_regionwidth(UINT8 rw)
831 {
832 	if (rw == 0)
833 		return (1);
834 	if (rw > 4)
835 		return (-1);
836 	return (1 << (rw - 1));
837 }
838 
839 static const char *
acpi_uart_parity(UINT8 p)840 acpi_uart_parity(UINT8 p)
841 {
842 	/* Some of these SPCR entires get this wrong, hard wire none */
843 	return ("none");
844 }
845 
846 /*
847  * See if we can find a SPCR ACPI table in the static tables. If so, then it
848  * describes the serial console that's been redirected to, so we know that at
849  * least there's a serial console. this is most important for embedded systems
850  * that don't have traidtional PC serial ports.
851  *
852  * All the two letter variables in this function correspond to their usage in
853  * the uart(4) console string. We use io == -1 to select between I/O ports and
854  * memory mapped addresses. Set both hw.uart.console and hw.uart.consol.extra
855  * to communicate settings from SPCR to the kernel.
856  */
857 static int
check_acpi_spcr(void)858 check_acpi_spcr(void)
859 {
860 	ACPI_TABLE_SPCR *spcr;
861 	int br, db, io, rs, rw, xo, pv, pd;
862 	uintmax_t mm;
863 	const char *dt, *pa;
864 	char *val = NULL;
865 
866 	spcr = acpi_find_table(ACPI_SIG_SPCR);
867 	if (spcr == NULL)
868 		return (0);
869 	dt = acpi_uart_type(spcr->InterfaceType);
870 	if (dt == NULL)	{ 	/* Kernel can't use unknown types */
871 		printf("UART Type %d not known\n", spcr->InterfaceType);
872 		return (0);
873 	}
874 
875 	/* I/O vs Memory mapped vs PCI device */
876 	io = -1;
877 	pv = spcr->PciVendorId;
878 	pd = spcr->PciDeviceId;
879 	if (pv == 0xffff && pd == 0xffff) {
880 		if (spcr->SerialPort.SpaceId == 1)
881 			io = spcr->SerialPort.Address;
882 		else {
883 			mm = spcr->SerialPort.Address;
884 			rs = ffs(spcr->SerialPort.BitWidth) - 4;
885 			rw = acpi_uart_regionwidth(spcr->SerialPort.AccessWidth);
886 		}
887 	} else {
888 		/* XXX todo: bus:device:function + flags and segment */
889 	}
890 
891 	/* Uart settings */
892 	pa = acpi_uart_parity(spcr->Parity);
893 	db = 8;
894 
895 	/*
896 	 * UartClkFreq is 3 and newer. We always use it then (it's only valid if
897 	 * it isn't 0, but if it is 0, we want to use 0 to have the kernel
898 	 * guess).
899 	 */
900 	if (spcr->Header.Revision <= 2)
901 		xo = 0;
902 	else
903 		xo = spcr->UartClkFreq;
904 
905 	/*
906 	 * PreciseBaudrate, when non-zero, is to be preferred. It's only valid,
907 	 * though, for rev 4 and newer. So when it's 0 or the version is too
908 	 * old, we do the old-style table lookup. Otherwise we believe it.
909 	 */
910 	if (spcr->Header.Revision <= 3 || spcr->PreciseBaudrate == 0)
911 		br = acpi_uart_baud(spcr->BaudRate);
912 	else
913 		br = spcr->PreciseBaudrate;
914 
915 	if (io != -1) {
916 		asprintf(&val, "db:%d,dt:%s,io:%#x,pa:%s,br:%d,xo=%d",
917 		    db, dt, io, pa, br, xo);
918 	} else if (pv != 0xffff && pd != 0xffff) {
919 		asprintf(&val, "db:%d,dt:%s,pv:%#x,pd:%#x,pa:%s,br:%d,xo=%d",
920 		    db, dt, pv, pd, pa, br, xo);
921 	} else {
922 		asprintf(&val, "db:%d,dt:%s,mm:%#jx,rs:%d,rw:%d,pa:%s,br:%d,xo=%d",
923 		    db, dt, mm, rs, rw, pa, br, xo);
924 	}
925 	env_setenv("hw.uart.console", EV_VOLATILE, val, NULL, NULL);
926 	free(val);
927 
928 	return (RB_SERIAL);
929 }
930 
931 
932 /*
933  * Parse ConOut (the list of consoles active) and see if we can find a serial
934  * port and/or a video port. It would be nice to also walk the ACPI DSDT to map
935  * the UID for the serial port to a port since there's no standard mapping. Also
936  * check for ConIn as well. This will be enough to determine if we have serial,
937  * and if we don't, we default to video. If there's a dual-console situation
938  * with only ConIn defined, this will currently fail.
939  */
940 int
parse_uefi_con_out(void)941 parse_uefi_con_out(void)
942 {
943 	int how, rv;
944 	int vid_seen = 0, com_seen = 0, seen = 0;
945 	size_t sz;
946 	char buf[4096], *ep;
947 	EFI_DEVICE_PATH *node;
948 	ACPI_HID_DEVICE_PATH  *acpi;
949 	UART_DEVICE_PATH  *uart;
950 	bool pci_pending;
951 
952 	/*
953 	 * A SPCR in the ACPI fixed tables documents a serial port used for the
954 	 * console. It may mirror a video console, or may be stand alone. If it
955 	 * is present, we return RB_SERIAL and will use it for the kernel.
956 	 */
957 	how = check_acpi_spcr();
958 	sz = sizeof(buf);
959 	rv = efi_global_getenv("ConOut", buf, &sz);
960 	if (rv != EFI_SUCCESS)
961 		rv = efi_global_getenv("ConOutDev", buf, &sz);
962 	if (rv != EFI_SUCCESS)
963 		rv = efi_global_getenv("ConIn", buf, &sz);
964 	if (rv != EFI_SUCCESS) {
965 		/*
966 		 * If we don't have any Con* variable use both. If we have GOP
967 		 * make video primary, otherwise set serial primary. In either
968 		 * case, try to use both the 'efi' console which will use the
969 		 * GOP, if present and serial. If there's an EFI BIOS that omits
970 		 * this, but has a serial port redirect, we'll unavioidably get
971 		 * doubled characters, but we'll be right in all the other more
972 		 * common cases.
973 		 */
974 		if (efi_has_gop())
975 			how |= RB_MULTIPLE;
976 		else
977 			how |= RB_MULTIPLE | RB_SERIAL;
978 		setenv("console", "efi,comconsole", 1);
979 		goto out;
980 	}
981 	ep = buf + sz;
982 	node = (EFI_DEVICE_PATH *)buf;
983 	while ((char *)node < ep) {
984 		if (IsDevicePathEndType(node)) {
985 			if (pci_pending && vid_seen == 0)
986 				vid_seen = ++seen;
987 		}
988 		pci_pending = false;
989 		if (DevicePathType(node) == ACPI_DEVICE_PATH &&
990 		    (DevicePathSubType(node) == ACPI_DP ||
991 		    DevicePathSubType(node) == ACPI_EXTENDED_DP)) {
992 			/* Check for Serial node */
993 			acpi = (void *)node;
994 			if (EISA_ID_TO_NUM(acpi->HID) == 0x501) {
995 				setenv_int("efi_8250_uid", acpi->UID);
996 				com_seen = ++seen;
997 			}
998 		} else if (DevicePathType(node) == MESSAGING_DEVICE_PATH &&
999 		    DevicePathSubType(node) == MSG_UART_DP) {
1000 			com_seen = ++seen;
1001 			uart = (void *)node;
1002 			setenv_int("efi_com_speed", uart->BaudRate);
1003 		} else if (DevicePathType(node) == ACPI_DEVICE_PATH &&
1004 		    DevicePathSubType(node) == ACPI_ADR_DP) {
1005 			/* Check for AcpiAdr() Node for video */
1006 			vid_seen = ++seen;
1007 		} else if (DevicePathType(node) == HARDWARE_DEVICE_PATH &&
1008 		    DevicePathSubType(node) == HW_PCI_DP) {
1009 			/*
1010 			 * Note, vmware fusion has a funky console device
1011 			 *	PciRoot(0x0)/Pci(0xf,0x0)
1012 			 * which we can only detect at the end since we also
1013 			 * have to cope with:
1014 			 *	PciRoot(0x0)/Pci(0x1f,0x0)/Serial(0x1)
1015 			 * so only match it if it's last.
1016 			 */
1017 			pci_pending = true;
1018 		}
1019 		node = NextDevicePathNode(node);
1020 	}
1021 
1022 	/*
1023 	 * Truth table for RB_MULTIPLE | RB_SERIAL
1024 	 * Value		Result
1025 	 * 0			Use only video console
1026 	 * RB_SERIAL		Use only serial console
1027 	 * RB_MULTIPLE		Use both video and serial console
1028 	 *			(but video is primary so gets rc messages)
1029 	 * both			Use both video and serial console
1030 	 *			(but serial is primary so gets rc messages)
1031 	 *
1032 	 * Try to honor this as best we can. If only one of serial / video
1033 	 * found, then use that. Otherwise, use the first one we found.
1034 	 * This also implies if we found nothing, default to video.
1035 	 */
1036 	how = 0;
1037 	if (vid_seen && com_seen) {
1038 		how |= RB_MULTIPLE;
1039 		if (com_seen < vid_seen)
1040 			how |= RB_SERIAL;
1041 	} else if (com_seen)
1042 		how |= RB_SERIAL;
1043 out:
1044 	return (how);
1045 }
1046 
1047 void
parse_loader_efi_config(EFI_HANDLE h,const char * env_fn)1048 parse_loader_efi_config(EFI_HANDLE h, const char *env_fn)
1049 {
1050 	pdinfo_t *dp;
1051 	struct stat st;
1052 	int fd = -1;
1053 	char *env = NULL;
1054 
1055 	dp = efiblk_get_pdinfo_by_handle(h);
1056 	if (dp == NULL)
1057 		return;
1058 	set_currdev_pdinfo(dp);
1059 	if (stat(env_fn, &st) != 0)
1060 		return;
1061 	fd = open(env_fn, O_RDONLY);
1062 	if (fd == -1)
1063 		return;
1064 	env = malloc(st.st_size + 1);
1065 	if (env == NULL)
1066 		goto out;
1067 	if (read(fd, env, st.st_size) != st.st_size)
1068 		goto out;
1069 	env[st.st_size] = '\0';
1070 	boot_parse_cmdline(env);
1071 out:
1072 	free(env);
1073 	close(fd);
1074 }
1075 
1076 static void
read_loader_env(const char * name,char * def_fn,bool once)1077 read_loader_env(const char *name, char *def_fn, bool once)
1078 {
1079 	UINTN len;
1080 	char *fn, *freeme = NULL;
1081 
1082 	len = 0;
1083 	fn = def_fn;
1084 	if (efi_freebsd_getenv(name, NULL, &len) == EFI_BUFFER_TOO_SMALL) {
1085 		freeme = fn = malloc(len + 1);
1086 		if (fn != NULL) {
1087 			if (efi_freebsd_getenv(name, fn, &len) != EFI_SUCCESS) {
1088 				free(fn);
1089 				fn = NULL;
1090 				printf(
1091 			    "Can't fetch FreeBSD::%s we know is there\n", name);
1092 			} else {
1093 				/*
1094 				 * if tagged as 'once' delete the env variable so we
1095 				 * only use it once.
1096 				 */
1097 				if (once)
1098 					efi_freebsd_delenv(name);
1099 				/*
1100 				 * We malloced 1 more than len above, then redid the call.
1101 				 * so now we have room at the end of the string to NUL terminate
1102 				 * it here, even if the typical idium would have '- 1' here to
1103 				 * not overflow. len should be the same on return both times.
1104 				 */
1105 				fn[len] = '\0';
1106 			}
1107 		} else {
1108 			printf(
1109 		    "Can't allocate %d bytes to fetch FreeBSD::%s env var\n",
1110 			    len, name);
1111 		}
1112 	}
1113 	if (fn) {
1114 		printf("    Reading loader env vars from %s\n", fn);
1115 		parse_loader_efi_config(boot_img->DeviceHandle, fn);
1116 	}
1117 
1118 	free(freeme);
1119 }
1120 
1121 caddr_t
ptov(uintptr_t x)1122 ptov(uintptr_t x)
1123 {
1124 	return ((caddr_t)x);
1125 }
1126 
1127 static void
efi_smbios_detect(void)1128 efi_smbios_detect(void)
1129 {
1130 	VOID *smbios_v2_ptr = NULL;
1131 	UINTN k;
1132 
1133 	for (k = 0; k < ST->NumberOfTableEntries; k++) {
1134 		EFI_GUID *guid;
1135 		VOID *const VT = ST->ConfigurationTable[k].VendorTable;
1136 		char buf[40];
1137 		bool is_smbios_v2, is_smbios_v3;
1138 
1139 		guid = &ST->ConfigurationTable[k].VendorGuid;
1140 		is_smbios_v2 = memcmp(guid, &smbios, sizeof(*guid)) == 0;
1141 		is_smbios_v3 = memcmp(guid, &smbios3, sizeof(*guid)) == 0;
1142 
1143 		if (!is_smbios_v2 && !is_smbios_v3)
1144 			continue;
1145 
1146 		snprintf(buf, sizeof(buf), "%p", VT);
1147 		setenv("hint.smbios.0.mem", buf, 1);
1148 		if (is_smbios_v2)
1149 			/*
1150 			 * We will parse a v2 table only if we don't find a v3
1151 			 * table.  In the meantime, store the address.
1152 			 */
1153 			smbios_v2_ptr = VT;
1154 		else if (smbios_detect(VT) != NULL)
1155 			/* v3 parsing succeeded, we are done. */
1156 			return;
1157 	}
1158 	if (smbios_v2_ptr != NULL)
1159 		(void)smbios_detect(smbios_v2_ptr);
1160 }
1161 
1162 EFI_STATUS
main(int argc,CHAR16 * argv[])1163 main(int argc, CHAR16 *argv[])
1164 {
1165 	int howto, i, uhowto;
1166 	bool has_kbd;
1167 	char *s;
1168 	EFI_DEVICE_PATH *imgpath;
1169 	CHAR16 *text;
1170 	EFI_STATUS rv;
1171 	size_t sz, bisz = 0;
1172 	UINT16 boot_order[100];
1173 	char boot_info[4096];
1174 	char buf[32];
1175 	bool uefi_boot_mgr;
1176 
1177 #if !defined(__arm__)
1178 	efi_smbios_detect();
1179 #endif
1180 
1181         /* Get our loaded image protocol interface structure. */
1182 	(void) OpenProtocolByHandle(IH, &imgid, (void **)&boot_img);
1183 
1184 	/* Report the RSDP early. */
1185 	acpi_detect();
1186 
1187 	/*
1188 	 * Chicken-and-egg problem; we want to have console output early, but
1189 	 * some console attributes may depend on reading from eg. the boot
1190 	 * device, which we can't do yet.  We can use printf() etc. once this is
1191 	 * done. So, we set it to the efi console, then call console init. This
1192 	 * gets us printf early, but also primes the pump for all future console
1193 	 * changes to take effect, regardless of where they come from.
1194 	 */
1195 	setenv("console", "efi", 1);
1196 	uhowto = parse_uefi_con_out();
1197 #if defined(__riscv)
1198 	/*
1199 	 * This workaround likely is papering over a real issue
1200 	 */
1201 	if ((uhowto & RB_SERIAL) != 0)
1202 		setenv("console", "comconsole", 1);
1203 #endif
1204 	cons_probe();
1205 
1206 	/* Set print_delay variable to have hooks in place. */
1207 	env_setenv("print_delay", EV_VOLATILE, "", setprint_delay, env_nounset);
1208 
1209 	/* Set up currdev variable to have hooks in place. */
1210 	env_setenv("currdev", EV_VOLATILE, "", gen_setcurrdev, env_nounset);
1211 
1212 	/* Init the time source */
1213 	efi_time_init();
1214 
1215 	/*
1216 	 * Initialise the block cache. Set the upper limit.
1217 	 */
1218 	bcache_init(32768, 512);
1219 
1220 	/*
1221 	 * Scan the BLOCK IO MEDIA handles then
1222 	 * march through the device switch probing for things.
1223 	 */
1224 	i = efipart_inithandles();
1225 	if (i != 0 && i != ENOENT) {
1226 		printf("efipart_inithandles failed with ERRNO %d, expect "
1227 		    "failures\n", i);
1228 	}
1229 
1230 	devinit();
1231 
1232 	/*
1233 	 * Detect console settings two different ways: one via the command
1234 	 * args (eg -h) or via the UEFI ConOut variable.
1235 	 */
1236 	has_kbd = has_keyboard();
1237 	howto = parse_args(argc, argv);
1238 	if (!has_kbd && (howto & RB_PROBE))
1239 		howto |= RB_SERIAL | RB_MULTIPLE;
1240 	howto &= ~RB_PROBE;
1241 
1242 	/*
1243 	 * Read additional environment variables from the boot device's
1244 	 * "LoaderEnv" file. Any boot loader environment variable may be set
1245 	 * there, which are subtly different than loader.conf variables. Only
1246 	 * the 'simple' ones may be set so things like foo_load="YES" won't work
1247 	 * for two reasons.  First, the parser is simplistic and doesn't grok
1248 	 * quotes.  Second, because the variables that cause an action to happen
1249 	 * are parsed by the lua, 4th or whatever code that's not yet
1250 	 * loaded. This is relative to the root directory when loader.efi is
1251 	 * loaded off the UFS root drive (when chain booted), or from the ESP
1252 	 * when directly loaded by the BIOS.
1253 	 *
1254 	 * We also read in NextLoaderEnv if it was specified. This allows next boot
1255 	 * functionality to be implemented and to override anything in LoaderEnv.
1256 	 */
1257 	read_loader_env("LoaderEnv", "/efi/freebsd/loader.env", false);
1258 	read_loader_env("NextLoaderEnv", NULL, true);
1259 
1260 	/*
1261 	 * We now have two notions of console. howto should be viewed as
1262 	 * overrides. If console is already set, don't set it again.
1263 	 */
1264 #define	VIDEO_ONLY	0
1265 #define	SERIAL_ONLY	RB_SERIAL
1266 #define	VID_SER_BOTH	RB_MULTIPLE
1267 #define	SER_VID_BOTH	(RB_SERIAL | RB_MULTIPLE)
1268 #define	CON_MASK	(RB_SERIAL | RB_MULTIPLE)
1269 	if (strcmp(getenv("console"), "efi") == 0) {
1270 		if ((howto & CON_MASK) == 0) {
1271 			/* No override, uhowto is controlling and efi cons is perfect */
1272 			howto = howto | (uhowto & CON_MASK);
1273 		} else if ((howto & CON_MASK) == (uhowto & CON_MASK)) {
1274 			/* override matches what UEFI told us, efi console is perfect */
1275 		} else if ((uhowto & (CON_MASK)) != 0) {
1276 			/*
1277 			 * We detected a serial console on ConOut. All possible
1278 			 * overrides include serial. We can't really override what efi
1279 			 * gives us, so we use it knowing it's the best choice.
1280 			 */
1281 			/* Do nothing */
1282 		} else {
1283 			/*
1284 			 * We detected some kind of serial in the override, but ConOut
1285 			 * has no serial, so we have to sort out which case it really is.
1286 			 */
1287 			switch (howto & CON_MASK) {
1288 			case SERIAL_ONLY:
1289 				setenv("console", "comconsole", 1);
1290 				break;
1291 			case VID_SER_BOTH:
1292 				setenv("console", "efi comconsole", 1);
1293 				break;
1294 			case SER_VID_BOTH:
1295 				setenv("console", "comconsole efi", 1);
1296 				break;
1297 				/* case VIDEO_ONLY can't happen -- it's the first if above */
1298 			}
1299 		}
1300 	}
1301 
1302 	/*
1303 	 * howto is set now how we want to export the flags to the kernel, so
1304 	 * set the env based on it.
1305 	 */
1306 	boot_howto_to_env(howto);
1307 
1308 	if (efi_copy_init())
1309 		return (EFI_BUFFER_TOO_SMALL);
1310 
1311 	if ((s = getenv("fail_timeout")) != NULL)
1312 		fail_timeout = strtol(s, NULL, 10);
1313 
1314 	printf("%s\n", bootprog_info);
1315 	printf("   Command line arguments:");
1316 	for (i = 0; i < argc; i++)
1317 		printf(" %S", argv[i]);
1318 	printf("\n");
1319 
1320 	printf("   Image base: 0x%lx\n", (unsigned long)boot_img->ImageBase);
1321 	printf("   EFI version: %d.%02d\n", ST->Hdr.Revision >> 16,
1322 	    ST->Hdr.Revision & 0xffff);
1323 	printf("   EFI Firmware: %S (rev %d.%02d)\n", ST->FirmwareVendor,
1324 	    ST->FirmwareRevision >> 16, ST->FirmwareRevision & 0xffff);
1325 	printf("   Console: %s (%#x)\n", getenv("console"), howto);
1326 
1327 	/* Determine the devpath of our image so we can prefer it. */
1328 	text = efi_devpath_name(boot_img->FilePath);
1329 	if (text != NULL) {
1330 		printf("   Load Path: %S\n", text);
1331 		efi_setenv_freebsd_wcs("LoaderPath", text);
1332 		efi_free_devpath_name(text);
1333 	}
1334 
1335 	rv = OpenProtocolByHandle(boot_img->DeviceHandle, &devid,
1336 	    (void **)&imgpath);
1337 	if (rv == EFI_SUCCESS) {
1338 		text = efi_devpath_name(imgpath);
1339 		if (text != NULL) {
1340 			printf("   Load Device: %S\n", text);
1341 			efi_setenv_freebsd_wcs("LoaderDev", text);
1342 			efi_free_devpath_name(text);
1343 		}
1344 	}
1345 
1346 	if (getenv("uefi_ignore_boot_mgr") != NULL) {
1347 		printf("    Ignoring UEFI boot manager\n");
1348 		uefi_boot_mgr = false;
1349 	} else {
1350 		uefi_boot_mgr = true;
1351 		boot_current = 0;
1352 		sz = sizeof(boot_current);
1353 		rv = efi_global_getenv("BootCurrent", &boot_current, &sz);
1354 		if (rv == EFI_SUCCESS)
1355 			printf("   BootCurrent: %04x\n", boot_current);
1356 		else {
1357 			boot_current = 0xffff;
1358 			uefi_boot_mgr = false;
1359 		}
1360 
1361 		sz = sizeof(boot_order);
1362 		rv = efi_global_getenv("BootOrder", &boot_order, &sz);
1363 		if (rv == EFI_SUCCESS) {
1364 			printf("   BootOrder:");
1365 			for (i = 0; i < sz / sizeof(boot_order[0]); i++)
1366 				printf(" %04x%s", boot_order[i],
1367 				    boot_order[i] == boot_current ? "[*]" : "");
1368 			printf("\n");
1369 		} else if (uefi_boot_mgr) {
1370 			/*
1371 			 * u-boot doesn't set BootOrder, but otherwise participates in the
1372 			 * boot manager protocol. So we fake it here and don't consider it
1373 			 * a failure.
1374 			 */
1375 			boot_order[0] = boot_current;
1376 		}
1377 	}
1378 
1379 	/*
1380 	 * Next, find the boot info structure the UEFI boot manager is
1381 	 * supposed to setup. We need this so we can walk through it to
1382 	 * find where we are in the booting process and what to try to
1383 	 * boot next.
1384 	 */
1385 	if (uefi_boot_mgr) {
1386 		snprintf(buf, sizeof(buf), "Boot%04X", boot_current);
1387 		sz = sizeof(boot_info);
1388 		rv = efi_global_getenv(buf, &boot_info, &sz);
1389 		if (rv == EFI_SUCCESS)
1390 			bisz = sz;
1391 		else
1392 			uefi_boot_mgr = false;
1393 	}
1394 
1395 	/*
1396 	 * Disable the watchdog timer. By default the boot manager sets
1397 	 * the timer to 5 minutes before invoking a boot option. If we
1398 	 * want to return to the boot manager, we have to disable the
1399 	 * watchdog timer and since we're an interactive program, we don't
1400 	 * want to wait until the user types "quit". The timer may have
1401 	 * fired by then. We don't care if this fails. It does not prevent
1402 	 * normal functioning in any way...
1403 	 */
1404 	BS->SetWatchdogTimer(0, 0, 0, NULL);
1405 
1406 	/*
1407 	 * Initialize the trusted/forbidden certificates from UEFI.
1408 	 * They will be later used to verify the manifest(s),
1409 	 * which should contain hashes of verified files.
1410 	 * This needs to be initialized before any configuration files
1411 	 * are loaded.
1412 	 */
1413 #ifdef EFI_SECUREBOOT
1414 	ve_efi_init();
1415 #endif
1416 
1417 	/*
1418 	 * Try and find a good currdev based on the image that was booted.
1419 	 * It might be desirable here to have a short pause to allow falling
1420 	 * through to the boot loader instead of returning instantly to follow
1421 	 * the boot protocol and also allow an escape hatch for users wishing
1422 	 * to try something different.
1423 	 */
1424 	if (find_currdev(uefi_boot_mgr, boot_info, bisz) != 0)
1425 		if (uefi_boot_mgr &&
1426 		    !interactive_interrupt("Failed to find bootable partition"))
1427 			return (EFI_NOT_FOUND);
1428 
1429 	autoload_font(false);	/* Set up the font list for console. */
1430 	efi_init_environment();
1431 
1432 	interact();			/* doesn't return */
1433 
1434 	return (EFI_SUCCESS);		/* keep compiler happy */
1435 }
1436 
1437 COMMAND_SET(efi_seed_entropy, "efi-seed-entropy", "try to get entropy from the EFI RNG", command_seed_entropy);
1438 
1439 static int
command_seed_entropy(int argc,char * argv[])1440 command_seed_entropy(int argc, char *argv[])
1441 {
1442 	EFI_STATUS status;
1443 	EFI_RNG_PROTOCOL *rng;
1444 	unsigned int size_efi = RANDOM_FORTUNA_DEFPOOLSIZE * RANDOM_FORTUNA_NPOOLS;
1445 	unsigned int size = RANDOM_FORTUNA_DEFPOOLSIZE * RANDOM_FORTUNA_NPOOLS;
1446 	void *buf_efi;
1447 	void *buf;
1448 
1449 	if (argc > 1) {
1450 		size_efi = strtol(argv[1], NULL, 0);
1451 
1452 		/* Don't *compress* the entropy we get from EFI. */
1453 		if (size_efi > size)
1454 			size = size_efi;
1455 
1456 		/*
1457 		 * If the amount of entropy we get from EFI is less than the
1458 		 * size of a single Fortuna pool -- i.e. not enough to ensure
1459 		 * that Fortuna is safely seeded -- don't expand it since we
1460 		 * don't want to trick Fortuna into thinking that it has been
1461 		 * safely seeded when it has not.
1462 		 */
1463 		if (size_efi < RANDOM_FORTUNA_DEFPOOLSIZE)
1464 			size = size_efi;
1465 	}
1466 
1467 	status = BS->LocateProtocol(&rng_guid, NULL, (VOID **)&rng);
1468 	if (status != EFI_SUCCESS) {
1469 		command_errmsg = "RNG protocol not found";
1470 		return (CMD_ERROR);
1471 	}
1472 
1473 	if ((buf = malloc(size)) == NULL) {
1474 		command_errmsg = "out of memory";
1475 		return (CMD_ERROR);
1476 	}
1477 
1478 	if ((buf_efi = malloc(size_efi)) == NULL) {
1479 		free(buf);
1480 		command_errmsg = "out of memory";
1481 		return (CMD_ERROR);
1482 	}
1483 
1484 	TSENTER2("rng->GetRNG");
1485 	status = rng->GetRNG(rng, NULL, size_efi, (UINT8 *)buf_efi);
1486 	TSEXIT();
1487 	if (status != EFI_SUCCESS) {
1488 		free(buf_efi);
1489 		free(buf);
1490 		command_errmsg = "GetRNG failed";
1491 		return (CMD_ERROR);
1492 	}
1493 	if (size_efi < size)
1494 		pkcs5v2_genkey_raw(buf, size, "", 0, buf_efi, size_efi, 1);
1495 	else
1496 		memcpy(buf, buf_efi, size);
1497 
1498 	if (file_addbuf("efi_rng_seed", "boot_entropy_platform", size, buf) != 0) {
1499 		free(buf_efi);
1500 		free(buf);
1501 		return (CMD_ERROR);
1502 	}
1503 
1504 	explicit_bzero(buf_efi, size_efi);
1505 	free(buf_efi);
1506 	free(buf);
1507 	return (CMD_OK);
1508 }
1509 
1510 COMMAND_SET(poweroff, "poweroff", "power off the system", command_poweroff);
1511 COMMAND_SET(halt, "halt", "power off the system", command_poweroff);
1512 
1513 static int
command_poweroff(int argc __unused,char * argv[]__unused)1514 command_poweroff(int argc __unused, char *argv[] __unused)
1515 {
1516 	int i;
1517 
1518 	for (i = 0; devsw[i] != NULL; ++i)
1519 		if (devsw[i]->dv_cleanup != NULL)
1520 			(devsw[i]->dv_cleanup)();
1521 
1522 	RS->ResetSystem(EfiResetShutdown, EFI_SUCCESS, 0, NULL);
1523 
1524 	/* NOTREACHED */
1525 	return (CMD_ERROR);
1526 }
1527 
1528 COMMAND_SET(reboot, "reboot", "reboot the system", command_reboot);
1529 
1530 static int
command_reboot(int argc,char * argv[])1531 command_reboot(int argc, char *argv[])
1532 {
1533 	int i;
1534 
1535 	for (i = 0; devsw[i] != NULL; ++i)
1536 		if (devsw[i]->dv_cleanup != NULL)
1537 			(devsw[i]->dv_cleanup)();
1538 
1539 	RS->ResetSystem(EfiResetCold, EFI_SUCCESS, 0, NULL);
1540 
1541 	/* NOTREACHED */
1542 	return (CMD_ERROR);
1543 }
1544 
1545 COMMAND_SET(memmap, "memmap", "print memory map", command_memmap);
1546 
1547 static int
command_memmap(int argc __unused,char * argv[]__unused)1548 command_memmap(int argc __unused, char *argv[] __unused)
1549 {
1550 	UINTN sz;
1551 	EFI_MEMORY_DESCRIPTOR *map, *p;
1552 	UINTN key, dsz;
1553 	UINT32 dver;
1554 	EFI_STATUS status;
1555 	int i, ndesc;
1556 	char line[80];
1557 
1558 	sz = 0;
1559 	status = BS->GetMemoryMap(&sz, 0, &key, &dsz, &dver);
1560 	if (status != EFI_BUFFER_TOO_SMALL) {
1561 		printf("Can't determine memory map size\n");
1562 		return (CMD_ERROR);
1563 	}
1564 	map = malloc(sz);
1565 	status = BS->GetMemoryMap(&sz, map, &key, &dsz, &dver);
1566 	if (EFI_ERROR(status)) {
1567 		printf("Can't read memory map\n");
1568 		return (CMD_ERROR);
1569 	}
1570 
1571 	ndesc = sz / dsz;
1572 	snprintf(line, sizeof(line), "%23s %12s %12s %8s %4s\n",
1573 	    "Type", "Physical", "Virtual", "#Pages", "Attr");
1574 	pager_open();
1575 	if (pager_output(line)) {
1576 		pager_close();
1577 		return (CMD_OK);
1578 	}
1579 
1580 	for (i = 0, p = map; i < ndesc;
1581 	     i++, p = NextMemoryDescriptor(p, dsz)) {
1582 		snprintf(line, sizeof(line), "%23s %012jx %012jx %08jx ",
1583 		    efi_memory_type(p->Type), (uintmax_t)p->PhysicalStart,
1584 		    (uintmax_t)p->VirtualStart, (uintmax_t)p->NumberOfPages);
1585 		if (pager_output(line))
1586 			break;
1587 
1588 		if (p->Attribute & EFI_MEMORY_UC)
1589 			printf("UC ");
1590 		if (p->Attribute & EFI_MEMORY_WC)
1591 			printf("WC ");
1592 		if (p->Attribute & EFI_MEMORY_WT)
1593 			printf("WT ");
1594 		if (p->Attribute & EFI_MEMORY_WB)
1595 			printf("WB ");
1596 		if (p->Attribute & EFI_MEMORY_UCE)
1597 			printf("UCE ");
1598 		if (p->Attribute & EFI_MEMORY_WP)
1599 			printf("WP ");
1600 		if (p->Attribute & EFI_MEMORY_RP)
1601 			printf("RP ");
1602 		if (p->Attribute & EFI_MEMORY_XP)
1603 			printf("XP ");
1604 		if (p->Attribute & EFI_MEMORY_NV)
1605 			printf("NV ");
1606 		if (p->Attribute & EFI_MEMORY_MORE_RELIABLE)
1607 			printf("MR ");
1608 		if (p->Attribute & EFI_MEMORY_RO)
1609 			printf("RO ");
1610 		if (pager_output("\n"))
1611 			break;
1612 	}
1613 
1614 	pager_close();
1615 	return (CMD_OK);
1616 }
1617 
1618 COMMAND_SET(configuration, "configuration", "print configuration tables",
1619     command_configuration);
1620 
1621 static int
command_configuration(int argc,char * argv[])1622 command_configuration(int argc, char *argv[])
1623 {
1624 	UINTN i;
1625 	char *name;
1626 
1627 	printf("NumberOfTableEntries=%lu\n",
1628 		(unsigned long)ST->NumberOfTableEntries);
1629 
1630 	for (i = 0; i < ST->NumberOfTableEntries; i++) {
1631 		EFI_GUID *guid;
1632 
1633 		printf("  ");
1634 		guid = &ST->ConfigurationTable[i].VendorGuid;
1635 
1636 		if (efi_guid_to_name(guid, &name) == true) {
1637 			printf(name);
1638 			free(name);
1639 		} else {
1640 			printf("Error while translating UUID to name");
1641 		}
1642 		printf(" at %p\n", ST->ConfigurationTable[i].VendorTable);
1643 	}
1644 
1645 	return (CMD_OK);
1646 }
1647 
1648 
1649 COMMAND_SET(mode, "mode", "change or display EFI text modes", command_mode);
1650 
1651 static int
command_mode(int argc,char * argv[])1652 command_mode(int argc, char *argv[])
1653 {
1654 	UINTN cols, rows;
1655 	unsigned int mode;
1656 	int i;
1657 	char *cp;
1658 	EFI_STATUS status;
1659 	SIMPLE_TEXT_OUTPUT_INTERFACE *conout;
1660 
1661 	conout = ST->ConOut;
1662 
1663 	if (argc > 1) {
1664 		mode = strtol(argv[1], &cp, 0);
1665 		if (cp[0] != '\0') {
1666 			printf("Invalid mode\n");
1667 			return (CMD_ERROR);
1668 		}
1669 		status = conout->QueryMode(conout, mode, &cols, &rows);
1670 		if (EFI_ERROR(status)) {
1671 			printf("invalid mode %d\n", mode);
1672 			return (CMD_ERROR);
1673 		}
1674 		status = conout->SetMode(conout, mode);
1675 		if (EFI_ERROR(status)) {
1676 			printf("couldn't set mode %d\n", mode);
1677 			return (CMD_ERROR);
1678 		}
1679 		(void) cons_update_mode(true);
1680 		return (CMD_OK);
1681 	}
1682 
1683 	printf("Current mode: %d\n", conout->Mode->Mode);
1684 	for (i = 0; i <= conout->Mode->MaxMode; i++) {
1685 		status = conout->QueryMode(conout, i, &cols, &rows);
1686 		if (EFI_ERROR(status))
1687 			continue;
1688 		printf("Mode %d: %u columns, %u rows\n", i, (unsigned)cols,
1689 		    (unsigned)rows);
1690 	}
1691 
1692 	if (i != 0)
1693 		printf("Select a mode with the command \"mode <number>\"\n");
1694 
1695 	return (CMD_OK);
1696 }
1697 
1698 COMMAND_SET(lsefi, "lsefi", "list EFI handles", command_lsefi);
1699 
1700 static void
lsefi_print_handle_info(EFI_HANDLE handle)1701 lsefi_print_handle_info(EFI_HANDLE handle)
1702 {
1703 	EFI_DEVICE_PATH *devpath;
1704 	EFI_DEVICE_PATH *imagepath;
1705 	CHAR16 *dp_name;
1706 
1707 	imagepath = efi_lookup_image_devpath(handle);
1708 	if (imagepath != NULL) {
1709 		dp_name = efi_devpath_name(imagepath);
1710 		printf("Handle for image %S", dp_name);
1711 		efi_free_devpath_name(dp_name);
1712 		return;
1713 	}
1714 	devpath = efi_lookup_devpath(handle);
1715 	if (devpath != NULL) {
1716 		dp_name = efi_devpath_name(devpath);
1717 		printf("Handle for device %S", dp_name);
1718 		efi_free_devpath_name(dp_name);
1719 		return;
1720 	}
1721 	printf("Handle %p", handle);
1722 }
1723 
1724 static int
command_lsefi(int argc __unused,char * argv[]__unused)1725 command_lsefi(int argc __unused, char *argv[] __unused)
1726 {
1727 	char *name;
1728 	EFI_HANDLE *buffer = NULL;
1729 	EFI_HANDLE handle;
1730 	UINTN bufsz = 0, i, j;
1731 	EFI_STATUS status;
1732 	int ret = 0;
1733 
1734 	status = BS->LocateHandle(AllHandles, NULL, NULL, &bufsz, buffer);
1735 	if (status != EFI_BUFFER_TOO_SMALL) {
1736 		snprintf(command_errbuf, sizeof (command_errbuf),
1737 		    "unexpected error: %lld", (long long)status);
1738 		return (CMD_ERROR);
1739 	}
1740 	if ((buffer = malloc(bufsz)) == NULL) {
1741 		sprintf(command_errbuf, "out of memory");
1742 		return (CMD_ERROR);
1743 	}
1744 
1745 	status = BS->LocateHandle(AllHandles, NULL, NULL, &bufsz, buffer);
1746 	if (EFI_ERROR(status)) {
1747 		free(buffer);
1748 		snprintf(command_errbuf, sizeof (command_errbuf),
1749 		    "LocateHandle() error: %lld", (long long)status);
1750 		return (CMD_ERROR);
1751 	}
1752 
1753 	pager_open();
1754 	for (i = 0; i < (bufsz / sizeof (EFI_HANDLE)); i++) {
1755 		UINTN nproto = 0;
1756 		EFI_GUID **protocols = NULL;
1757 
1758 		handle = buffer[i];
1759 		lsefi_print_handle_info(handle);
1760 		if (pager_output("\n"))
1761 			break;
1762 		/* device path */
1763 
1764 		status = BS->ProtocolsPerHandle(handle, &protocols, &nproto);
1765 		if (EFI_ERROR(status)) {
1766 			snprintf(command_errbuf, sizeof (command_errbuf),
1767 			    "ProtocolsPerHandle() error: %lld",
1768 			    (long long)status);
1769 			continue;
1770 		}
1771 
1772 		for (j = 0; j < nproto; j++) {
1773 			if (efi_guid_to_name(protocols[j], &name) == true) {
1774 				printf("  %s", name);
1775 				free(name);
1776 			} else {
1777 				printf("Error while translating UUID to name");
1778 			}
1779 			if ((ret = pager_output("\n")) != 0)
1780 				break;
1781 		}
1782 		BS->FreePool(protocols);
1783 		if (ret != 0)
1784 			break;
1785 	}
1786 	pager_close();
1787 	free(buffer);
1788 	return (CMD_OK);
1789 }
1790 
1791 #ifdef LOADER_FDT_SUPPORT
1792 extern int command_fdt_internal(int argc, char *argv[]);
1793 
1794 /*
1795  * Since proper fdt command handling function is defined in fdt_loader_cmd.c,
1796  * and declaring it as extern is in contradiction with COMMAND_SET() macro
1797  * (which uses static pointer), we're defining wrapper function, which
1798  * calls the proper fdt handling routine.
1799  */
1800 static int
command_fdt(int argc,char * argv[])1801 command_fdt(int argc, char *argv[])
1802 {
1803 
1804 	return (command_fdt_internal(argc, argv));
1805 }
1806 
1807 COMMAND_SET(fdt, "fdt", "flattened device tree handling", command_fdt);
1808 #endif
1809 
1810 /*
1811  * Chain load another efi loader.
1812  */
1813 static int
command_chain(int argc,char * argv[])1814 command_chain(int argc, char *argv[])
1815 {
1816 	EFI_GUID LoadedImageGUID = LOADED_IMAGE_PROTOCOL;
1817 	EFI_HANDLE loaderhandle;
1818 	EFI_LOADED_IMAGE *loaded_image;
1819 	UINTN ExitDataSize;
1820 	CHAR16 *ExitData = NULL;
1821 	EFI_STATUS status;
1822 	struct stat st;
1823 	struct devdesc *dev;
1824 	char *name, *path;
1825 	void *buf;
1826 	int fd;
1827 
1828 	if (argc < 2) {
1829 		command_errmsg = "wrong number of arguments";
1830 		return (CMD_ERROR);
1831 	}
1832 
1833 	name = argv[1];
1834 
1835 	if ((fd = open(name, O_RDONLY)) < 0) {
1836 		command_errmsg = "no such file";
1837 		return (CMD_ERROR);
1838 	}
1839 
1840 #ifdef LOADER_VERIEXEC
1841 	if (verify_file(fd, name, 0, VE_MUST, __func__) < 0) {
1842 		sprintf(command_errbuf, "can't verify: %s", name);
1843 		close(fd);
1844 		return (CMD_ERROR);
1845 	}
1846 #endif
1847 
1848 	if (fstat(fd, &st) < -1) {
1849 		command_errmsg = "stat failed";
1850 		close(fd);
1851 		return (CMD_ERROR);
1852 	}
1853 
1854 	status = BS->AllocatePool(EfiLoaderCode, (UINTN)st.st_size, &buf);
1855 	if (status != EFI_SUCCESS) {
1856 		command_errmsg = "failed to allocate buffer";
1857 		close(fd);
1858 		return (CMD_ERROR);
1859 	}
1860 	if (read(fd, buf, st.st_size) != st.st_size) {
1861 		command_errmsg = "error while reading the file";
1862 		(void)BS->FreePool(buf);
1863 		close(fd);
1864 		return (CMD_ERROR);
1865 	}
1866 	close(fd);
1867 	status = BS->LoadImage(FALSE, IH, NULL, buf, st.st_size, &loaderhandle);
1868 	(void)BS->FreePool(buf);
1869 	if (status != EFI_SUCCESS) {
1870 		command_errmsg = "LoadImage failed";
1871 		return (CMD_ERROR);
1872 	}
1873 	status = OpenProtocolByHandle(loaderhandle, &LoadedImageGUID,
1874 	    (void **)&loaded_image);
1875 
1876 	if (argc > 2) {
1877 		int i, len = 0;
1878 		CHAR16 *argp;
1879 
1880 		for (i = 2; i < argc; i++)
1881 			len += strlen(argv[i]) + 1;
1882 
1883 		len *= sizeof (*argp);
1884 		loaded_image->LoadOptions = argp = malloc (len);
1885 		loaded_image->LoadOptionsSize = len;
1886 		for (i = 2; i < argc; i++) {
1887 			char *ptr = argv[i];
1888 			while (*ptr)
1889 				*(argp++) = *(ptr++);
1890 			*(argp++) = ' ';
1891 		}
1892 		*(--argv) = 0;
1893 	}
1894 
1895 	if (efi_getdev((void **)&dev, name, (const char **)&path) == 0) {
1896 #ifdef EFI_ZFS_BOOT
1897 		struct zfs_devdesc *z_dev;
1898 #endif
1899 		struct disk_devdesc *d_dev;
1900 		pdinfo_t *hd, *pd;
1901 
1902 		switch (dev->d_dev->dv_type) {
1903 #ifdef EFI_ZFS_BOOT
1904 		case DEVT_ZFS:
1905 			z_dev = (struct zfs_devdesc *)dev;
1906 			loaded_image->DeviceHandle =
1907 			    efizfs_get_handle_by_guid(z_dev->pool_guid);
1908 			break;
1909 #endif
1910 		case DEVT_NET:
1911 			loaded_image->DeviceHandle =
1912 			    efi_find_handle(dev->d_dev, dev->d_unit);
1913 			break;
1914 		default:
1915 			hd = efiblk_get_pdinfo(dev);
1916 			if (STAILQ_EMPTY(&hd->pd_part)) {
1917 				loaded_image->DeviceHandle = hd->pd_handle;
1918 				break;
1919 			}
1920 			d_dev = (struct disk_devdesc *)dev;
1921 			STAILQ_FOREACH(pd, &hd->pd_part, pd_link) {
1922 				/*
1923 				 * d_partition should be 255
1924 				 */
1925 				if (pd->pd_unit == (uint32_t)d_dev->d_slice) {
1926 					loaded_image->DeviceHandle =
1927 					    pd->pd_handle;
1928 					break;
1929 				}
1930 			}
1931 			break;
1932 		}
1933 	}
1934 
1935 	dev_cleanup();
1936 
1937 	status = BS->StartImage(loaderhandle, &ExitDataSize, &ExitData);
1938 	if (status != EFI_SUCCESS) {
1939 		printf("StartImage failed (%lu)", EFI_ERROR_CODE(status));
1940 		if (ExitData != NULL) {
1941 			printf(": %S", ExitData);
1942 			BS->FreePool(ExitData);
1943 		}
1944 		putchar('\n');
1945 		command_errmsg = "";
1946 		free(loaded_image->LoadOptions);
1947 		loaded_image->LoadOptions = NULL;
1948 		status = BS->UnloadImage(loaded_image);
1949 		return (CMD_ERROR);
1950 	}
1951 
1952 	return (CMD_ERROR);	/* not reached */
1953 }
1954 
1955 COMMAND_SET(chain, "chain", "chain load file", command_chain);
1956 
1957 #if defined(LOADER_NET_SUPPORT)
1958 extern struct in_addr servip;
1959 static int
command_netserver(int argc,char * argv[])1960 command_netserver(int argc, char *argv[])
1961 {
1962 	char *proto;
1963 	n_long rootaddr;
1964 
1965 	if (argc > 2) {
1966 		command_errmsg = "wrong number of arguments";
1967 		return (CMD_ERROR);
1968 	}
1969 	if (argc < 2) {
1970 		proto = netproto == NET_TFTP ? "tftp://" : "nfs://";
1971 		printf("Netserver URI: %s%s%s\n", proto, intoa(rootip.s_addr),
1972 		    rootpath);
1973 		return (CMD_OK);
1974 	}
1975 	if (argc == 2) {
1976 		strncpy(rootpath, argv[1], sizeof(rootpath));
1977 		rootpath[sizeof(rootpath) -1] = '\0';
1978 		if ((rootaddr = net_parse_rootpath()) != INADDR_NONE)
1979 			servip.s_addr = rootip.s_addr = rootaddr;
1980 		return (CMD_OK);
1981 	}
1982 	return (CMD_ERROR);	/* not reached */
1983 
1984 }
1985 
1986 COMMAND_SET(netserver, "netserver", "change or display netserver URI",
1987     command_netserver);
1988 #endif
1989