xref: /linux/arch/x86/virt/vmx/tdx/tdx.c (revision 9afe652958c3ee88f24df1e4a97f298afce89407)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright(c) 2023 Intel Corporation.
4  *
5  * Intel Trusted Domain Extensions (TDX) support
6  */
7 
8 #include "asm/page_types.h"
9 #define pr_fmt(fmt)	"virt/tdx: " fmt
10 
11 #include <linux/types.h>
12 #include <linux/cache.h>
13 #include <linux/init.h>
14 #include <linux/errno.h>
15 #include <linux/printk.h>
16 #include <linux/cpu.h>
17 #include <linux/spinlock.h>
18 #include <linux/percpu-defs.h>
19 #include <linux/mutex.h>
20 #include <linux/list.h>
21 #include <linux/memblock.h>
22 #include <linux/memory.h>
23 #include <linux/minmax.h>
24 #include <linux/sizes.h>
25 #include <linux/pfn.h>
26 #include <linux/align.h>
27 #include <linux/sort.h>
28 #include <linux/log2.h>
29 #include <linux/acpi.h>
30 #include <linux/suspend.h>
31 #include <linux/idr.h>
32 #include <asm/page.h>
33 #include <asm/special_insns.h>
34 #include <asm/msr-index.h>
35 #include <asm/msr.h>
36 #include <asm/cpufeature.h>
37 #include <asm/tdx.h>
38 #include <asm/cpu_device_id.h>
39 #include <asm/processor.h>
40 #include <asm/mce.h>
41 #include "tdx.h"
42 
43 static u32 tdx_global_keyid __ro_after_init;
44 static u32 tdx_guest_keyid_start __ro_after_init;
45 static u32 tdx_nr_guest_keyids __ro_after_init;
46 
47 static DEFINE_IDA(tdx_guest_keyid_pool);
48 
49 static DEFINE_PER_CPU(bool, tdx_lp_initialized);
50 
51 static struct tdmr_info_list tdx_tdmr_list;
52 
53 static enum tdx_module_status_t tdx_module_status;
54 static DEFINE_MUTEX(tdx_module_lock);
55 
56 /* All TDX-usable memory regions.  Protected by mem_hotplug_lock. */
57 static LIST_HEAD(tdx_memlist);
58 
59 static struct tdx_sys_info tdx_sysinfo;
60 
61 typedef void (*sc_err_func_t)(u64 fn, u64 err, struct tdx_module_args *args);
62 
seamcall_err(u64 fn,u64 err,struct tdx_module_args * args)63 static inline void seamcall_err(u64 fn, u64 err, struct tdx_module_args *args)
64 {
65 	pr_err("SEAMCALL (0x%016llx) failed: 0x%016llx\n", fn, err);
66 }
67 
seamcall_err_ret(u64 fn,u64 err,struct tdx_module_args * args)68 static inline void seamcall_err_ret(u64 fn, u64 err,
69 				    struct tdx_module_args *args)
70 {
71 	seamcall_err(fn, err, args);
72 	pr_err("RCX 0x%016llx RDX 0x%016llx R08 0x%016llx\n",
73 			args->rcx, args->rdx, args->r8);
74 	pr_err("R09 0x%016llx R10 0x%016llx R11 0x%016llx\n",
75 			args->r9, args->r10, args->r11);
76 }
77 
sc_retry_prerr(sc_func_t func,sc_err_func_t err_func,u64 fn,struct tdx_module_args * args)78 static __always_inline int sc_retry_prerr(sc_func_t func,
79 					  sc_err_func_t err_func,
80 					  u64 fn, struct tdx_module_args *args)
81 {
82 	u64 sret = sc_retry(func, fn, args);
83 
84 	if (sret == TDX_SUCCESS)
85 		return 0;
86 
87 	if (sret == TDX_SEAMCALL_VMFAILINVALID)
88 		return -ENODEV;
89 
90 	if (sret == TDX_SEAMCALL_GP)
91 		return -EOPNOTSUPP;
92 
93 	if (sret == TDX_SEAMCALL_UD)
94 		return -EACCES;
95 
96 	err_func(fn, sret, args);
97 	return -EIO;
98 }
99 
100 #define seamcall_prerr(__fn, __args)						\
101 	sc_retry_prerr(__seamcall, seamcall_err, (__fn), (__args))
102 
103 #define seamcall_prerr_ret(__fn, __args)					\
104 	sc_retry_prerr(__seamcall_ret, seamcall_err_ret, (__fn), (__args))
105 
106 /*
107  * Do the module global initialization once and return its result.
108  * It can be done on any cpu.  It's always called with interrupts
109  * disabled.
110  */
try_init_module_global(void)111 static int try_init_module_global(void)
112 {
113 	struct tdx_module_args args = {};
114 	static DEFINE_RAW_SPINLOCK(sysinit_lock);
115 	static bool sysinit_done;
116 	static int sysinit_ret;
117 
118 	lockdep_assert_irqs_disabled();
119 
120 	raw_spin_lock(&sysinit_lock);
121 
122 	if (sysinit_done)
123 		goto out;
124 
125 	/* RCX is module attributes and all bits are reserved */
126 	args.rcx = 0;
127 	sysinit_ret = seamcall_prerr(TDH_SYS_INIT, &args);
128 
129 	/*
130 	 * The first SEAMCALL also detects the TDX module, thus
131 	 * it can fail due to the TDX module is not loaded.
132 	 * Dump message to let the user know.
133 	 */
134 	if (sysinit_ret == -ENODEV)
135 		pr_err("module not loaded\n");
136 
137 	sysinit_done = true;
138 out:
139 	raw_spin_unlock(&sysinit_lock);
140 	return sysinit_ret;
141 }
142 
143 /**
144  * tdx_cpu_enable - Enable TDX on local cpu
145  *
146  * Do one-time TDX module per-cpu initialization SEAMCALL (and TDX module
147  * global initialization SEAMCALL if not done) on local cpu to make this
148  * cpu be ready to run any other SEAMCALLs.
149  *
150  * Always call this function via IPI function calls.
151  *
152  * Return 0 on success, otherwise errors.
153  */
tdx_cpu_enable(void)154 int tdx_cpu_enable(void)
155 {
156 	struct tdx_module_args args = {};
157 	int ret;
158 
159 	if (!boot_cpu_has(X86_FEATURE_TDX_HOST_PLATFORM))
160 		return -ENODEV;
161 
162 	lockdep_assert_irqs_disabled();
163 
164 	if (__this_cpu_read(tdx_lp_initialized))
165 		return 0;
166 
167 	/*
168 	 * The TDX module global initialization is the very first step
169 	 * to enable TDX.  Need to do it first (if hasn't been done)
170 	 * before the per-cpu initialization.
171 	 */
172 	ret = try_init_module_global();
173 	if (ret)
174 		return ret;
175 
176 	ret = seamcall_prerr(TDH_SYS_LP_INIT, &args);
177 	if (ret)
178 		return ret;
179 
180 	__this_cpu_write(tdx_lp_initialized, true);
181 
182 	return 0;
183 }
184 EXPORT_SYMBOL_GPL(tdx_cpu_enable);
185 
186 /*
187  * Add a memory region as a TDX memory block.  The caller must make sure
188  * all memory regions are added in address ascending order and don't
189  * overlap.
190  */
add_tdx_memblock(struct list_head * tmb_list,unsigned long start_pfn,unsigned long end_pfn,int nid)191 static int add_tdx_memblock(struct list_head *tmb_list, unsigned long start_pfn,
192 			    unsigned long end_pfn, int nid)
193 {
194 	struct tdx_memblock *tmb;
195 
196 	tmb = kmalloc(sizeof(*tmb), GFP_KERNEL);
197 	if (!tmb)
198 		return -ENOMEM;
199 
200 	INIT_LIST_HEAD(&tmb->list);
201 	tmb->start_pfn = start_pfn;
202 	tmb->end_pfn = end_pfn;
203 	tmb->nid = nid;
204 
205 	/* @tmb_list is protected by mem_hotplug_lock */
206 	list_add_tail(&tmb->list, tmb_list);
207 	return 0;
208 }
209 
free_tdx_memlist(struct list_head * tmb_list)210 static void free_tdx_memlist(struct list_head *tmb_list)
211 {
212 	/* @tmb_list is protected by mem_hotplug_lock */
213 	while (!list_empty(tmb_list)) {
214 		struct tdx_memblock *tmb = list_first_entry(tmb_list,
215 				struct tdx_memblock, list);
216 
217 		list_del(&tmb->list);
218 		kfree(tmb);
219 	}
220 }
221 
222 /*
223  * Ensure that all memblock memory regions are convertible to TDX
224  * memory.  Once this has been established, stash the memblock
225  * ranges off in a secondary structure because memblock is modified
226  * in memory hotplug while TDX memory regions are fixed.
227  */
build_tdx_memlist(struct list_head * tmb_list)228 static int build_tdx_memlist(struct list_head *tmb_list)
229 {
230 	unsigned long start_pfn, end_pfn;
231 	int i, nid, ret;
232 
233 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
234 		/*
235 		 * The first 1MB is not reported as TDX convertible memory.
236 		 * Although the first 1MB is always reserved and won't end up
237 		 * to the page allocator, it is still in memblock's memory
238 		 * regions.  Skip them manually to exclude them as TDX memory.
239 		 */
240 		start_pfn = max(start_pfn, PHYS_PFN(SZ_1M));
241 		if (start_pfn >= end_pfn)
242 			continue;
243 
244 		/*
245 		 * Add the memory regions as TDX memory.  The regions in
246 		 * memblock has already guaranteed they are in address
247 		 * ascending order and don't overlap.
248 		 */
249 		ret = add_tdx_memblock(tmb_list, start_pfn, end_pfn, nid);
250 		if (ret)
251 			goto err;
252 	}
253 
254 	return 0;
255 err:
256 	free_tdx_memlist(tmb_list);
257 	return ret;
258 }
259 
read_sys_metadata_field(u64 field_id,u64 * data)260 static int read_sys_metadata_field(u64 field_id, u64 *data)
261 {
262 	struct tdx_module_args args = {};
263 	int ret;
264 
265 	/*
266 	 * TDH.SYS.RD -- reads one global metadata field
267 	 *  - RDX (in): the field to read
268 	 *  - R8 (out): the field data
269 	 */
270 	args.rdx = field_id;
271 	ret = seamcall_prerr_ret(TDH_SYS_RD, &args);
272 	if (ret)
273 		return ret;
274 
275 	*data = args.r8;
276 
277 	return 0;
278 }
279 
280 #include "tdx_global_metadata.c"
281 
check_features(struct tdx_sys_info * sysinfo)282 static int check_features(struct tdx_sys_info *sysinfo)
283 {
284 	u64 tdx_features0 = sysinfo->features.tdx_features0;
285 
286 	if (!(tdx_features0 & TDX_FEATURES0_NO_RBP_MOD)) {
287 		pr_err("frame pointer (RBP) clobber bug present, upgrade TDX module\n");
288 		return -EINVAL;
289 	}
290 
291 	return 0;
292 }
293 
294 /* Calculate the actual TDMR size */
tdmr_size_single(u16 max_reserved_per_tdmr)295 static int tdmr_size_single(u16 max_reserved_per_tdmr)
296 {
297 	int tdmr_sz;
298 
299 	/*
300 	 * The actual size of TDMR depends on the maximum
301 	 * number of reserved areas.
302 	 */
303 	tdmr_sz = sizeof(struct tdmr_info);
304 	tdmr_sz += sizeof(struct tdmr_reserved_area) * max_reserved_per_tdmr;
305 
306 	return ALIGN(tdmr_sz, TDMR_INFO_ALIGNMENT);
307 }
308 
alloc_tdmr_list(struct tdmr_info_list * tdmr_list,struct tdx_sys_info_tdmr * sysinfo_tdmr)309 static int alloc_tdmr_list(struct tdmr_info_list *tdmr_list,
310 			   struct tdx_sys_info_tdmr *sysinfo_tdmr)
311 {
312 	size_t tdmr_sz, tdmr_array_sz;
313 	void *tdmr_array;
314 
315 	tdmr_sz = tdmr_size_single(sysinfo_tdmr->max_reserved_per_tdmr);
316 	tdmr_array_sz = tdmr_sz * sysinfo_tdmr->max_tdmrs;
317 
318 	/*
319 	 * To keep things simple, allocate all TDMRs together.
320 	 * The buffer needs to be physically contiguous to make
321 	 * sure each TDMR is physically contiguous.
322 	 */
323 	tdmr_array = alloc_pages_exact(tdmr_array_sz,
324 			GFP_KERNEL | __GFP_ZERO);
325 	if (!tdmr_array)
326 		return -ENOMEM;
327 
328 	tdmr_list->tdmrs = tdmr_array;
329 
330 	/*
331 	 * Keep the size of TDMR to find the target TDMR
332 	 * at a given index in the TDMR list.
333 	 */
334 	tdmr_list->tdmr_sz = tdmr_sz;
335 	tdmr_list->max_tdmrs = sysinfo_tdmr->max_tdmrs;
336 	tdmr_list->nr_consumed_tdmrs = 0;
337 
338 	return 0;
339 }
340 
free_tdmr_list(struct tdmr_info_list * tdmr_list)341 static void free_tdmr_list(struct tdmr_info_list *tdmr_list)
342 {
343 	free_pages_exact(tdmr_list->tdmrs,
344 			tdmr_list->max_tdmrs * tdmr_list->tdmr_sz);
345 }
346 
347 /* Get the TDMR from the list at the given index. */
tdmr_entry(struct tdmr_info_list * tdmr_list,int idx)348 static struct tdmr_info *tdmr_entry(struct tdmr_info_list *tdmr_list,
349 				    int idx)
350 {
351 	int tdmr_info_offset = tdmr_list->tdmr_sz * idx;
352 
353 	return (void *)tdmr_list->tdmrs + tdmr_info_offset;
354 }
355 
356 #define TDMR_ALIGNMENT		SZ_1G
357 #define TDMR_ALIGN_DOWN(_addr)	ALIGN_DOWN((_addr), TDMR_ALIGNMENT)
358 #define TDMR_ALIGN_UP(_addr)	ALIGN((_addr), TDMR_ALIGNMENT)
359 
tdmr_end(struct tdmr_info * tdmr)360 static inline u64 tdmr_end(struct tdmr_info *tdmr)
361 {
362 	return tdmr->base + tdmr->size;
363 }
364 
365 /*
366  * Take the memory referenced in @tmb_list and populate the
367  * preallocated @tdmr_list, following all the special alignment
368  * and size rules for TDMR.
369  */
fill_out_tdmrs(struct list_head * tmb_list,struct tdmr_info_list * tdmr_list)370 static int fill_out_tdmrs(struct list_head *tmb_list,
371 			  struct tdmr_info_list *tdmr_list)
372 {
373 	struct tdx_memblock *tmb;
374 	int tdmr_idx = 0;
375 
376 	/*
377 	 * Loop over TDX memory regions and fill out TDMRs to cover them.
378 	 * To keep it simple, always try to use one TDMR to cover one
379 	 * memory region.
380 	 *
381 	 * In practice TDX supports at least 64 TDMRs.  A 2-socket system
382 	 * typically only consumes less than 10 of those.  This code is
383 	 * dumb and simple and may use more TMDRs than is strictly
384 	 * required.
385 	 */
386 	list_for_each_entry(tmb, tmb_list, list) {
387 		struct tdmr_info *tdmr = tdmr_entry(tdmr_list, tdmr_idx);
388 		u64 start, end;
389 
390 		start = TDMR_ALIGN_DOWN(PFN_PHYS(tmb->start_pfn));
391 		end   = TDMR_ALIGN_UP(PFN_PHYS(tmb->end_pfn));
392 
393 		/*
394 		 * A valid size indicates the current TDMR has already
395 		 * been filled out to cover the previous memory region(s).
396 		 */
397 		if (tdmr->size) {
398 			/*
399 			 * Loop to the next if the current memory region
400 			 * has already been fully covered.
401 			 */
402 			if (end <= tdmr_end(tdmr))
403 				continue;
404 
405 			/* Otherwise, skip the already covered part. */
406 			if (start < tdmr_end(tdmr))
407 				start = tdmr_end(tdmr);
408 
409 			/*
410 			 * Create a new TDMR to cover the current memory
411 			 * region, or the remaining part of it.
412 			 */
413 			tdmr_idx++;
414 			if (tdmr_idx >= tdmr_list->max_tdmrs) {
415 				pr_warn("initialization failed: TDMRs exhausted.\n");
416 				return -ENOSPC;
417 			}
418 
419 			tdmr = tdmr_entry(tdmr_list, tdmr_idx);
420 		}
421 
422 		tdmr->base = start;
423 		tdmr->size = end - start;
424 	}
425 
426 	/* @tdmr_idx is always the index of the last valid TDMR. */
427 	tdmr_list->nr_consumed_tdmrs = tdmr_idx + 1;
428 
429 	/*
430 	 * Warn early that kernel is about to run out of TDMRs.
431 	 *
432 	 * This is an indication that TDMR allocation has to be
433 	 * reworked to be smarter to not run into an issue.
434 	 */
435 	if (tdmr_list->max_tdmrs - tdmr_list->nr_consumed_tdmrs < TDMR_NR_WARN)
436 		pr_warn("consumed TDMRs reaching limit: %d used out of %d\n",
437 				tdmr_list->nr_consumed_tdmrs,
438 				tdmr_list->max_tdmrs);
439 
440 	return 0;
441 }
442 
443 /*
444  * Calculate PAMT size given a TDMR and a page size.  The returned
445  * PAMT size is always aligned up to 4K page boundary.
446  */
tdmr_get_pamt_sz(struct tdmr_info * tdmr,int pgsz,u16 pamt_entry_size)447 static unsigned long tdmr_get_pamt_sz(struct tdmr_info *tdmr, int pgsz,
448 				      u16 pamt_entry_size)
449 {
450 	unsigned long pamt_sz, nr_pamt_entries;
451 
452 	switch (pgsz) {
453 	case TDX_PS_4K:
454 		nr_pamt_entries = tdmr->size >> PAGE_SHIFT;
455 		break;
456 	case TDX_PS_2M:
457 		nr_pamt_entries = tdmr->size >> PMD_SHIFT;
458 		break;
459 	case TDX_PS_1G:
460 		nr_pamt_entries = tdmr->size >> PUD_SHIFT;
461 		break;
462 	default:
463 		WARN_ON_ONCE(1);
464 		return 0;
465 	}
466 
467 	pamt_sz = nr_pamt_entries * pamt_entry_size;
468 	/* TDX requires PAMT size must be 4K aligned */
469 	pamt_sz = ALIGN(pamt_sz, PAGE_SIZE);
470 
471 	return pamt_sz;
472 }
473 
474 /*
475  * Locate a NUMA node which should hold the allocation of the @tdmr
476  * PAMT.  This node will have some memory covered by the TDMR.  The
477  * relative amount of memory covered is not considered.
478  */
tdmr_get_nid(struct tdmr_info * tdmr,struct list_head * tmb_list)479 static int tdmr_get_nid(struct tdmr_info *tdmr, struct list_head *tmb_list)
480 {
481 	struct tdx_memblock *tmb;
482 
483 	/*
484 	 * A TDMR must cover at least part of one TMB.  That TMB will end
485 	 * after the TDMR begins.  But, that TMB may have started before
486 	 * the TDMR.  Find the next 'tmb' that _ends_ after this TDMR
487 	 * begins.  Ignore 'tmb' start addresses.  They are irrelevant.
488 	 */
489 	list_for_each_entry(tmb, tmb_list, list) {
490 		if (tmb->end_pfn > PHYS_PFN(tdmr->base))
491 			return tmb->nid;
492 	}
493 
494 	/*
495 	 * Fall back to allocating the TDMR's metadata from node 0 when
496 	 * no TDX memory block can be found.  This should never happen
497 	 * since TDMRs originate from TDX memory blocks.
498 	 */
499 	pr_warn("TDMR [0x%llx, 0x%llx): unable to find local NUMA node for PAMT allocation, fallback to use node 0.\n",
500 			tdmr->base, tdmr_end(tdmr));
501 	return 0;
502 }
503 
504 /*
505  * Allocate PAMTs from the local NUMA node of some memory in @tmb_list
506  * within @tdmr, and set up PAMTs for @tdmr.
507  */
tdmr_set_up_pamt(struct tdmr_info * tdmr,struct list_head * tmb_list,u16 pamt_entry_size[])508 static int tdmr_set_up_pamt(struct tdmr_info *tdmr,
509 			    struct list_head *tmb_list,
510 			    u16 pamt_entry_size[])
511 {
512 	unsigned long pamt_base[TDX_PS_NR];
513 	unsigned long pamt_size[TDX_PS_NR];
514 	unsigned long tdmr_pamt_base;
515 	unsigned long tdmr_pamt_size;
516 	struct page *pamt;
517 	int pgsz, nid;
518 
519 	nid = tdmr_get_nid(tdmr, tmb_list);
520 
521 	/*
522 	 * Calculate the PAMT size for each TDX supported page size
523 	 * and the total PAMT size.
524 	 */
525 	tdmr_pamt_size = 0;
526 	for (pgsz = TDX_PS_4K; pgsz < TDX_PS_NR; pgsz++) {
527 		pamt_size[pgsz] = tdmr_get_pamt_sz(tdmr, pgsz,
528 					pamt_entry_size[pgsz]);
529 		tdmr_pamt_size += pamt_size[pgsz];
530 	}
531 
532 	/*
533 	 * Allocate one chunk of physically contiguous memory for all
534 	 * PAMTs.  This helps minimize the PAMT's use of reserved areas
535 	 * in overlapped TDMRs.
536 	 */
537 	pamt = alloc_contig_pages(tdmr_pamt_size >> PAGE_SHIFT, GFP_KERNEL,
538 			nid, &node_online_map);
539 	if (!pamt)
540 		return -ENOMEM;
541 
542 	/*
543 	 * Break the contiguous allocation back up into the
544 	 * individual PAMTs for each page size.
545 	 */
546 	tdmr_pamt_base = page_to_pfn(pamt) << PAGE_SHIFT;
547 	for (pgsz = TDX_PS_4K; pgsz < TDX_PS_NR; pgsz++) {
548 		pamt_base[pgsz] = tdmr_pamt_base;
549 		tdmr_pamt_base += pamt_size[pgsz];
550 	}
551 
552 	tdmr->pamt_4k_base = pamt_base[TDX_PS_4K];
553 	tdmr->pamt_4k_size = pamt_size[TDX_PS_4K];
554 	tdmr->pamt_2m_base = pamt_base[TDX_PS_2M];
555 	tdmr->pamt_2m_size = pamt_size[TDX_PS_2M];
556 	tdmr->pamt_1g_base = pamt_base[TDX_PS_1G];
557 	tdmr->pamt_1g_size = pamt_size[TDX_PS_1G];
558 
559 	return 0;
560 }
561 
tdmr_get_pamt(struct tdmr_info * tdmr,unsigned long * pamt_base,unsigned long * pamt_size)562 static void tdmr_get_pamt(struct tdmr_info *tdmr, unsigned long *pamt_base,
563 			  unsigned long *pamt_size)
564 {
565 	unsigned long pamt_bs, pamt_sz;
566 
567 	/*
568 	 * The PAMT was allocated in one contiguous unit.  The 4K PAMT
569 	 * should always point to the beginning of that allocation.
570 	 */
571 	pamt_bs = tdmr->pamt_4k_base;
572 	pamt_sz = tdmr->pamt_4k_size + tdmr->pamt_2m_size + tdmr->pamt_1g_size;
573 
574 	WARN_ON_ONCE((pamt_bs & ~PAGE_MASK) || (pamt_sz & ~PAGE_MASK));
575 
576 	*pamt_base = pamt_bs;
577 	*pamt_size = pamt_sz;
578 }
579 
tdmr_do_pamt_func(struct tdmr_info * tdmr,void (* pamt_func)(unsigned long base,unsigned long size))580 static void tdmr_do_pamt_func(struct tdmr_info *tdmr,
581 		void (*pamt_func)(unsigned long base, unsigned long size))
582 {
583 	unsigned long pamt_base, pamt_size;
584 
585 	tdmr_get_pamt(tdmr, &pamt_base, &pamt_size);
586 
587 	/* Do nothing if PAMT hasn't been allocated for this TDMR */
588 	if (!pamt_size)
589 		return;
590 
591 	if (WARN_ON_ONCE(!pamt_base))
592 		return;
593 
594 	pamt_func(pamt_base, pamt_size);
595 }
596 
free_pamt(unsigned long pamt_base,unsigned long pamt_size)597 static void free_pamt(unsigned long pamt_base, unsigned long pamt_size)
598 {
599 	free_contig_range(pamt_base >> PAGE_SHIFT, pamt_size >> PAGE_SHIFT);
600 }
601 
tdmr_free_pamt(struct tdmr_info * tdmr)602 static void tdmr_free_pamt(struct tdmr_info *tdmr)
603 {
604 	tdmr_do_pamt_func(tdmr, free_pamt);
605 }
606 
tdmrs_free_pamt_all(struct tdmr_info_list * tdmr_list)607 static void tdmrs_free_pamt_all(struct tdmr_info_list *tdmr_list)
608 {
609 	int i;
610 
611 	for (i = 0; i < tdmr_list->nr_consumed_tdmrs; i++)
612 		tdmr_free_pamt(tdmr_entry(tdmr_list, i));
613 }
614 
615 /* Allocate and set up PAMTs for all TDMRs */
tdmrs_set_up_pamt_all(struct tdmr_info_list * tdmr_list,struct list_head * tmb_list,u16 pamt_entry_size[])616 static int tdmrs_set_up_pamt_all(struct tdmr_info_list *tdmr_list,
617 				 struct list_head *tmb_list,
618 				 u16 pamt_entry_size[])
619 {
620 	int i, ret = 0;
621 
622 	for (i = 0; i < tdmr_list->nr_consumed_tdmrs; i++) {
623 		ret = tdmr_set_up_pamt(tdmr_entry(tdmr_list, i), tmb_list,
624 				pamt_entry_size);
625 		if (ret)
626 			goto err;
627 	}
628 
629 	return 0;
630 err:
631 	tdmrs_free_pamt_all(tdmr_list);
632 	return ret;
633 }
634 
635 /*
636  * Convert TDX private pages back to normal by using MOVDIR64B to
637  * clear these pages.  Note this function doesn't flush cache of
638  * these TDX private pages.  The caller should make sure of that.
639  */
reset_tdx_pages(unsigned long base,unsigned long size)640 static void reset_tdx_pages(unsigned long base, unsigned long size)
641 {
642 	const void *zero_page = (const void *)page_address(ZERO_PAGE(0));
643 	unsigned long phys, end;
644 
645 	end = base + size;
646 	for (phys = base; phys < end; phys += 64)
647 		movdir64b(__va(phys), zero_page);
648 
649 	/*
650 	 * MOVDIR64B uses WC protocol.  Use memory barrier to
651 	 * make sure any later user of these pages sees the
652 	 * updated data.
653 	 */
654 	mb();
655 }
656 
tdmr_reset_pamt(struct tdmr_info * tdmr)657 static void tdmr_reset_pamt(struct tdmr_info *tdmr)
658 {
659 	tdmr_do_pamt_func(tdmr, reset_tdx_pages);
660 }
661 
tdmrs_reset_pamt_all(struct tdmr_info_list * tdmr_list)662 static void tdmrs_reset_pamt_all(struct tdmr_info_list *tdmr_list)
663 {
664 	int i;
665 
666 	for (i = 0; i < tdmr_list->nr_consumed_tdmrs; i++)
667 		tdmr_reset_pamt(tdmr_entry(tdmr_list, i));
668 }
669 
tdmrs_count_pamt_kb(struct tdmr_info_list * tdmr_list)670 static unsigned long tdmrs_count_pamt_kb(struct tdmr_info_list *tdmr_list)
671 {
672 	unsigned long pamt_size = 0;
673 	int i;
674 
675 	for (i = 0; i < tdmr_list->nr_consumed_tdmrs; i++) {
676 		unsigned long base, size;
677 
678 		tdmr_get_pamt(tdmr_entry(tdmr_list, i), &base, &size);
679 		pamt_size += size;
680 	}
681 
682 	return pamt_size / 1024;
683 }
684 
tdmr_add_rsvd_area(struct tdmr_info * tdmr,int * p_idx,u64 addr,u64 size,u16 max_reserved_per_tdmr)685 static int tdmr_add_rsvd_area(struct tdmr_info *tdmr, int *p_idx, u64 addr,
686 			      u64 size, u16 max_reserved_per_tdmr)
687 {
688 	struct tdmr_reserved_area *rsvd_areas = tdmr->reserved_areas;
689 	int idx = *p_idx;
690 
691 	/* Reserved area must be 4K aligned in offset and size */
692 	if (WARN_ON(addr & ~PAGE_MASK || size & ~PAGE_MASK))
693 		return -EINVAL;
694 
695 	if (idx >= max_reserved_per_tdmr) {
696 		pr_warn("initialization failed: TDMR [0x%llx, 0x%llx): reserved areas exhausted.\n",
697 				tdmr->base, tdmr_end(tdmr));
698 		return -ENOSPC;
699 	}
700 
701 	/*
702 	 * Consume one reserved area per call.  Make no effort to
703 	 * optimize or reduce the number of reserved areas which are
704 	 * consumed by contiguous reserved areas, for instance.
705 	 */
706 	rsvd_areas[idx].offset = addr - tdmr->base;
707 	rsvd_areas[idx].size = size;
708 
709 	*p_idx = idx + 1;
710 
711 	return 0;
712 }
713 
714 /*
715  * Go through @tmb_list to find holes between memory areas.  If any of
716  * those holes fall within @tdmr, set up a TDMR reserved area to cover
717  * the hole.
718  */
tdmr_populate_rsvd_holes(struct list_head * tmb_list,struct tdmr_info * tdmr,int * rsvd_idx,u16 max_reserved_per_tdmr)719 static int tdmr_populate_rsvd_holes(struct list_head *tmb_list,
720 				    struct tdmr_info *tdmr,
721 				    int *rsvd_idx,
722 				    u16 max_reserved_per_tdmr)
723 {
724 	struct tdx_memblock *tmb;
725 	u64 prev_end;
726 	int ret;
727 
728 	/*
729 	 * Start looking for reserved blocks at the
730 	 * beginning of the TDMR.
731 	 */
732 	prev_end = tdmr->base;
733 	list_for_each_entry(tmb, tmb_list, list) {
734 		u64 start, end;
735 
736 		start = PFN_PHYS(tmb->start_pfn);
737 		end   = PFN_PHYS(tmb->end_pfn);
738 
739 		/* Break if this region is after the TDMR */
740 		if (start >= tdmr_end(tdmr))
741 			break;
742 
743 		/* Exclude regions before this TDMR */
744 		if (end < tdmr->base)
745 			continue;
746 
747 		/*
748 		 * Skip over memory areas that
749 		 * have already been dealt with.
750 		 */
751 		if (start <= prev_end) {
752 			prev_end = end;
753 			continue;
754 		}
755 
756 		/* Add the hole before this region */
757 		ret = tdmr_add_rsvd_area(tdmr, rsvd_idx, prev_end,
758 				start - prev_end,
759 				max_reserved_per_tdmr);
760 		if (ret)
761 			return ret;
762 
763 		prev_end = end;
764 	}
765 
766 	/* Add the hole after the last region if it exists. */
767 	if (prev_end < tdmr_end(tdmr)) {
768 		ret = tdmr_add_rsvd_area(tdmr, rsvd_idx, prev_end,
769 				tdmr_end(tdmr) - prev_end,
770 				max_reserved_per_tdmr);
771 		if (ret)
772 			return ret;
773 	}
774 
775 	return 0;
776 }
777 
778 /*
779  * Go through @tdmr_list to find all PAMTs.  If any of those PAMTs
780  * overlaps with @tdmr, set up a TDMR reserved area to cover the
781  * overlapping part.
782  */
tdmr_populate_rsvd_pamts(struct tdmr_info_list * tdmr_list,struct tdmr_info * tdmr,int * rsvd_idx,u16 max_reserved_per_tdmr)783 static int tdmr_populate_rsvd_pamts(struct tdmr_info_list *tdmr_list,
784 				    struct tdmr_info *tdmr,
785 				    int *rsvd_idx,
786 				    u16 max_reserved_per_tdmr)
787 {
788 	int i, ret;
789 
790 	for (i = 0; i < tdmr_list->nr_consumed_tdmrs; i++) {
791 		struct tdmr_info *tmp = tdmr_entry(tdmr_list, i);
792 		unsigned long pamt_base, pamt_size, pamt_end;
793 
794 		tdmr_get_pamt(tmp, &pamt_base, &pamt_size);
795 		/* Each TDMR must already have PAMT allocated */
796 		WARN_ON_ONCE(!pamt_size || !pamt_base);
797 
798 		pamt_end = pamt_base + pamt_size;
799 		/* Skip PAMTs outside of the given TDMR */
800 		if ((pamt_end <= tdmr->base) ||
801 				(pamt_base >= tdmr_end(tdmr)))
802 			continue;
803 
804 		/* Only mark the part within the TDMR as reserved */
805 		if (pamt_base < tdmr->base)
806 			pamt_base = tdmr->base;
807 		if (pamt_end > tdmr_end(tdmr))
808 			pamt_end = tdmr_end(tdmr);
809 
810 		ret = tdmr_add_rsvd_area(tdmr, rsvd_idx, pamt_base,
811 				pamt_end - pamt_base,
812 				max_reserved_per_tdmr);
813 		if (ret)
814 			return ret;
815 	}
816 
817 	return 0;
818 }
819 
820 /* Compare function called by sort() for TDMR reserved areas */
rsvd_area_cmp_func(const void * a,const void * b)821 static int rsvd_area_cmp_func(const void *a, const void *b)
822 {
823 	struct tdmr_reserved_area *r1 = (struct tdmr_reserved_area *)a;
824 	struct tdmr_reserved_area *r2 = (struct tdmr_reserved_area *)b;
825 
826 	if (r1->offset + r1->size <= r2->offset)
827 		return -1;
828 	if (r1->offset >= r2->offset + r2->size)
829 		return 1;
830 
831 	/* Reserved areas cannot overlap.  The caller must guarantee. */
832 	WARN_ON_ONCE(1);
833 	return -1;
834 }
835 
836 /*
837  * Populate reserved areas for the given @tdmr, including memory holes
838  * (via @tmb_list) and PAMTs (via @tdmr_list).
839  */
tdmr_populate_rsvd_areas(struct tdmr_info * tdmr,struct list_head * tmb_list,struct tdmr_info_list * tdmr_list,u16 max_reserved_per_tdmr)840 static int tdmr_populate_rsvd_areas(struct tdmr_info *tdmr,
841 				    struct list_head *tmb_list,
842 				    struct tdmr_info_list *tdmr_list,
843 				    u16 max_reserved_per_tdmr)
844 {
845 	int ret, rsvd_idx = 0;
846 
847 	ret = tdmr_populate_rsvd_holes(tmb_list, tdmr, &rsvd_idx,
848 			max_reserved_per_tdmr);
849 	if (ret)
850 		return ret;
851 
852 	ret = tdmr_populate_rsvd_pamts(tdmr_list, tdmr, &rsvd_idx,
853 			max_reserved_per_tdmr);
854 	if (ret)
855 		return ret;
856 
857 	/* TDX requires reserved areas listed in address ascending order */
858 	sort(tdmr->reserved_areas, rsvd_idx, sizeof(struct tdmr_reserved_area),
859 			rsvd_area_cmp_func, NULL);
860 
861 	return 0;
862 }
863 
864 /*
865  * Populate reserved areas for all TDMRs in @tdmr_list, including memory
866  * holes (via @tmb_list) and PAMTs.
867  */
tdmrs_populate_rsvd_areas_all(struct tdmr_info_list * tdmr_list,struct list_head * tmb_list,u16 max_reserved_per_tdmr)868 static int tdmrs_populate_rsvd_areas_all(struct tdmr_info_list *tdmr_list,
869 					 struct list_head *tmb_list,
870 					 u16 max_reserved_per_tdmr)
871 {
872 	int i;
873 
874 	for (i = 0; i < tdmr_list->nr_consumed_tdmrs; i++) {
875 		int ret;
876 
877 		ret = tdmr_populate_rsvd_areas(tdmr_entry(tdmr_list, i),
878 				tmb_list, tdmr_list, max_reserved_per_tdmr);
879 		if (ret)
880 			return ret;
881 	}
882 
883 	return 0;
884 }
885 
886 /*
887  * Construct a list of TDMRs on the preallocated space in @tdmr_list
888  * to cover all TDX memory regions in @tmb_list based on the TDX module
889  * TDMR global information in @sysinfo_tdmr.
890  */
construct_tdmrs(struct list_head * tmb_list,struct tdmr_info_list * tdmr_list,struct tdx_sys_info_tdmr * sysinfo_tdmr)891 static int construct_tdmrs(struct list_head *tmb_list,
892 			   struct tdmr_info_list *tdmr_list,
893 			   struct tdx_sys_info_tdmr *sysinfo_tdmr)
894 {
895 	u16 pamt_entry_size[TDX_PS_NR] = {
896 		sysinfo_tdmr->pamt_4k_entry_size,
897 		sysinfo_tdmr->pamt_2m_entry_size,
898 		sysinfo_tdmr->pamt_1g_entry_size,
899 	};
900 	int ret;
901 
902 	ret = fill_out_tdmrs(tmb_list, tdmr_list);
903 	if (ret)
904 		return ret;
905 
906 	ret = tdmrs_set_up_pamt_all(tdmr_list, tmb_list, pamt_entry_size);
907 	if (ret)
908 		return ret;
909 
910 	ret = tdmrs_populate_rsvd_areas_all(tdmr_list, tmb_list,
911 			sysinfo_tdmr->max_reserved_per_tdmr);
912 	if (ret)
913 		tdmrs_free_pamt_all(tdmr_list);
914 
915 	/*
916 	 * The tdmr_info_list is read-only from here on out.
917 	 * Ensure that these writes are seen by other CPUs.
918 	 * Pairs with a smp_rmb() in is_pamt_page().
919 	 */
920 	smp_wmb();
921 
922 	return ret;
923 }
924 
config_tdx_module(struct tdmr_info_list * tdmr_list,u64 global_keyid)925 static int config_tdx_module(struct tdmr_info_list *tdmr_list, u64 global_keyid)
926 {
927 	struct tdx_module_args args = {};
928 	u64 *tdmr_pa_array;
929 	size_t array_sz;
930 	int i, ret;
931 
932 	/*
933 	 * TDMRs are passed to the TDX module via an array of physical
934 	 * addresses of each TDMR.  The array itself also has certain
935 	 * alignment requirement.
936 	 */
937 	array_sz = tdmr_list->nr_consumed_tdmrs * sizeof(u64);
938 	array_sz = roundup_pow_of_two(array_sz);
939 	if (array_sz < TDMR_INFO_PA_ARRAY_ALIGNMENT)
940 		array_sz = TDMR_INFO_PA_ARRAY_ALIGNMENT;
941 
942 	tdmr_pa_array = kzalloc(array_sz, GFP_KERNEL);
943 	if (!tdmr_pa_array)
944 		return -ENOMEM;
945 
946 	for (i = 0; i < tdmr_list->nr_consumed_tdmrs; i++)
947 		tdmr_pa_array[i] = __pa(tdmr_entry(tdmr_list, i));
948 
949 	args.rcx = __pa(tdmr_pa_array);
950 	args.rdx = tdmr_list->nr_consumed_tdmrs;
951 	args.r8 = global_keyid;
952 	ret = seamcall_prerr(TDH_SYS_CONFIG, &args);
953 
954 	/* Free the array as it is not required anymore. */
955 	kfree(tdmr_pa_array);
956 
957 	return ret;
958 }
959 
do_global_key_config(void * unused)960 static int do_global_key_config(void *unused)
961 {
962 	struct tdx_module_args args = {};
963 
964 	return seamcall_prerr(TDH_SYS_KEY_CONFIG, &args);
965 }
966 
967 /*
968  * Attempt to configure the global KeyID on all physical packages.
969  *
970  * This requires running code on at least one CPU in each package.
971  * TDMR initialization) will fail will fail if any package in the
972  * system has no online CPUs.
973  *
974  * This code takes no affirmative steps to online CPUs.  Callers (aka.
975  * KVM) can ensure success by ensuring sufficient CPUs are online and
976  * can run SEAMCALLs.
977  */
config_global_keyid(void)978 static int config_global_keyid(void)
979 {
980 	cpumask_var_t packages;
981 	int cpu, ret = -EINVAL;
982 
983 	if (!zalloc_cpumask_var(&packages, GFP_KERNEL))
984 		return -ENOMEM;
985 
986 	/*
987 	 * Hardware doesn't guarantee cache coherency across different
988 	 * KeyIDs.  The kernel needs to flush PAMT's dirty cachelines
989 	 * (associated with KeyID 0) before the TDX module can use the
990 	 * global KeyID to access the PAMT.  Given PAMTs are potentially
991 	 * large (~1/256th of system RAM), just use WBINVD.
992 	 */
993 	wbinvd_on_all_cpus();
994 
995 	for_each_online_cpu(cpu) {
996 		/*
997 		 * The key configuration only needs to be done once per
998 		 * package and will return an error if configured more
999 		 * than once.  Avoid doing it multiple times per package.
1000 		 */
1001 		if (cpumask_test_and_set_cpu(topology_physical_package_id(cpu),
1002 					packages))
1003 			continue;
1004 
1005 		/*
1006 		 * TDH.SYS.KEY.CONFIG cannot run concurrently on
1007 		 * different cpus.  Do it one by one.
1008 		 */
1009 		ret = smp_call_on_cpu(cpu, do_global_key_config, NULL, true);
1010 		if (ret)
1011 			break;
1012 	}
1013 
1014 	free_cpumask_var(packages);
1015 	return ret;
1016 }
1017 
init_tdmr(struct tdmr_info * tdmr)1018 static int init_tdmr(struct tdmr_info *tdmr)
1019 {
1020 	u64 next;
1021 
1022 	/*
1023 	 * Initializing a TDMR can be time consuming.  To avoid long
1024 	 * SEAMCALLs, the TDX module may only initialize a part of the
1025 	 * TDMR in each call.
1026 	 */
1027 	do {
1028 		struct tdx_module_args args = {
1029 			.rcx = tdmr->base,
1030 		};
1031 		int ret;
1032 
1033 		ret = seamcall_prerr_ret(TDH_SYS_TDMR_INIT, &args);
1034 		if (ret)
1035 			return ret;
1036 		/*
1037 		 * RDX contains 'next-to-initialize' address if
1038 		 * TDH.SYS.TDMR.INIT did not fully complete and
1039 		 * should be retried.
1040 		 */
1041 		next = args.rdx;
1042 		cond_resched();
1043 		/* Keep making SEAMCALLs until the TDMR is done */
1044 	} while (next < tdmr->base + tdmr->size);
1045 
1046 	return 0;
1047 }
1048 
init_tdmrs(struct tdmr_info_list * tdmr_list)1049 static int init_tdmrs(struct tdmr_info_list *tdmr_list)
1050 {
1051 	int i;
1052 
1053 	/*
1054 	 * This operation is costly.  It can be parallelized,
1055 	 * but keep it simple for now.
1056 	 */
1057 	for (i = 0; i < tdmr_list->nr_consumed_tdmrs; i++) {
1058 		int ret;
1059 
1060 		ret = init_tdmr(tdmr_entry(tdmr_list, i));
1061 		if (ret)
1062 			return ret;
1063 	}
1064 
1065 	return 0;
1066 }
1067 
init_tdx_module(void)1068 static int init_tdx_module(void)
1069 {
1070 	int ret;
1071 
1072 	ret = get_tdx_sys_info(&tdx_sysinfo);
1073 	if (ret)
1074 		return ret;
1075 
1076 	/* Check whether the kernel can support this module */
1077 	ret = check_features(&tdx_sysinfo);
1078 	if (ret)
1079 		return ret;
1080 
1081 	/*
1082 	 * To keep things simple, assume that all TDX-protected memory
1083 	 * will come from the page allocator.  Make sure all pages in the
1084 	 * page allocator are TDX-usable memory.
1085 	 *
1086 	 * Build the list of "TDX-usable" memory regions which cover all
1087 	 * pages in the page allocator to guarantee that.  Do it while
1088 	 * holding mem_hotplug_lock read-lock as the memory hotplug code
1089 	 * path reads the @tdx_memlist to reject any new memory.
1090 	 */
1091 	get_online_mems();
1092 
1093 	ret = build_tdx_memlist(&tdx_memlist);
1094 	if (ret)
1095 		goto out_put_tdxmem;
1096 
1097 	/* Allocate enough space for constructing TDMRs */
1098 	ret = alloc_tdmr_list(&tdx_tdmr_list, &tdx_sysinfo.tdmr);
1099 	if (ret)
1100 		goto err_free_tdxmem;
1101 
1102 	/* Cover all TDX-usable memory regions in TDMRs */
1103 	ret = construct_tdmrs(&tdx_memlist, &tdx_tdmr_list, &tdx_sysinfo.tdmr);
1104 	if (ret)
1105 		goto err_free_tdmrs;
1106 
1107 	/* Pass the TDMRs and the global KeyID to the TDX module */
1108 	ret = config_tdx_module(&tdx_tdmr_list, tdx_global_keyid);
1109 	if (ret)
1110 		goto err_free_pamts;
1111 
1112 	/* Config the key of global KeyID on all packages */
1113 	ret = config_global_keyid();
1114 	if (ret)
1115 		goto err_reset_pamts;
1116 
1117 	/* Initialize TDMRs to complete the TDX module initialization */
1118 	ret = init_tdmrs(&tdx_tdmr_list);
1119 	if (ret)
1120 		goto err_reset_pamts;
1121 
1122 	pr_info("%lu KB allocated for PAMT\n", tdmrs_count_pamt_kb(&tdx_tdmr_list));
1123 
1124 out_put_tdxmem:
1125 	/*
1126 	 * @tdx_memlist is written here and read at memory hotplug time.
1127 	 * Lock out memory hotplug code while building it.
1128 	 */
1129 	put_online_mems();
1130 	return ret;
1131 
1132 err_reset_pamts:
1133 	/*
1134 	 * Part of PAMTs may already have been initialized by the
1135 	 * TDX module.  Flush cache before returning PAMTs back
1136 	 * to the kernel.
1137 	 */
1138 	wbinvd_on_all_cpus();
1139 	/*
1140 	 * According to the TDX hardware spec, if the platform
1141 	 * doesn't have the "partial write machine check"
1142 	 * erratum, any kernel read/write will never cause #MC
1143 	 * in kernel space, thus it's OK to not convert PAMTs
1144 	 * back to normal.  But do the conversion anyway here
1145 	 * as suggested by the TDX spec.
1146 	 */
1147 	tdmrs_reset_pamt_all(&tdx_tdmr_list);
1148 err_free_pamts:
1149 	tdmrs_free_pamt_all(&tdx_tdmr_list);
1150 err_free_tdmrs:
1151 	free_tdmr_list(&tdx_tdmr_list);
1152 err_free_tdxmem:
1153 	free_tdx_memlist(&tdx_memlist);
1154 	goto out_put_tdxmem;
1155 }
1156 
__tdx_enable(void)1157 static int __tdx_enable(void)
1158 {
1159 	int ret;
1160 
1161 	ret = init_tdx_module();
1162 	if (ret) {
1163 		pr_err("module initialization failed (%d)\n", ret);
1164 		tdx_module_status = TDX_MODULE_ERROR;
1165 		return ret;
1166 	}
1167 
1168 	pr_info("module initialized\n");
1169 	tdx_module_status = TDX_MODULE_INITIALIZED;
1170 
1171 	return 0;
1172 }
1173 
1174 /**
1175  * tdx_enable - Enable TDX module to make it ready to run TDX guests
1176  *
1177  * This function assumes the caller has: 1) held read lock of CPU hotplug
1178  * lock to prevent any new cpu from becoming online; 2) done both VMXON
1179  * and tdx_cpu_enable() on all online cpus.
1180  *
1181  * This function requires there's at least one online cpu for each CPU
1182  * package to succeed.
1183  *
1184  * This function can be called in parallel by multiple callers.
1185  *
1186  * Return 0 if TDX is enabled successfully, otherwise error.
1187  */
tdx_enable(void)1188 int tdx_enable(void)
1189 {
1190 	int ret;
1191 
1192 	if (!boot_cpu_has(X86_FEATURE_TDX_HOST_PLATFORM))
1193 		return -ENODEV;
1194 
1195 	lockdep_assert_cpus_held();
1196 
1197 	mutex_lock(&tdx_module_lock);
1198 
1199 	switch (tdx_module_status) {
1200 	case TDX_MODULE_UNINITIALIZED:
1201 		ret = __tdx_enable();
1202 		break;
1203 	case TDX_MODULE_INITIALIZED:
1204 		/* Already initialized, great, tell the caller. */
1205 		ret = 0;
1206 		break;
1207 	default:
1208 		/* Failed to initialize in the previous attempts */
1209 		ret = -EINVAL;
1210 		break;
1211 	}
1212 
1213 	mutex_unlock(&tdx_module_lock);
1214 
1215 	return ret;
1216 }
1217 EXPORT_SYMBOL_GPL(tdx_enable);
1218 
is_pamt_page(unsigned long phys)1219 static bool is_pamt_page(unsigned long phys)
1220 {
1221 	struct tdmr_info_list *tdmr_list = &tdx_tdmr_list;
1222 	int i;
1223 
1224 	/* Ensure that all remote 'tdmr_list' writes are visible: */
1225 	smp_rmb();
1226 
1227 	/*
1228 	 * The TDX module is no longer returning TDX_SYS_NOT_READY and
1229 	 * is initialized.  The 'tdmr_list' was initialized long ago
1230 	 * and is now read-only.
1231 	 */
1232 	for (i = 0; i < tdmr_list->nr_consumed_tdmrs; i++) {
1233 		unsigned long base, size;
1234 
1235 		tdmr_get_pamt(tdmr_entry(tdmr_list, i), &base, &size);
1236 
1237 		if (phys >= base && phys < (base + size))
1238 			return true;
1239 	}
1240 
1241 	return false;
1242 }
1243 
1244 /*
1245  * Return whether the memory page at the given physical address is TDX
1246  * private memory or not.
1247  *
1248  * This can be imprecise for two known reasons:
1249  * 1. PAMTs are private memory and exist before the TDX module is
1250  *    ready and TDH_PHYMEM_PAGE_RDMD works.  This is a relatively
1251  *    short window that occurs once per boot.
1252  * 2. TDH_PHYMEM_PAGE_RDMD reflects the TDX module's knowledge of the
1253  *    page.  However, the page can still cause #MC until it has been
1254  *    fully converted to shared using 64-byte writes like MOVDIR64B.
1255  *    Buggy hosts might still leave #MC-causing memory in place which
1256  *    this function can not detect.
1257  */
paddr_is_tdx_private(unsigned long phys)1258 static bool paddr_is_tdx_private(unsigned long phys)
1259 {
1260 	struct tdx_module_args args = {
1261 		.rcx = phys & PAGE_MASK,
1262 	};
1263 	u64 sret;
1264 
1265 	if (!boot_cpu_has(X86_FEATURE_TDX_HOST_PLATFORM))
1266 		return false;
1267 
1268 	/* Get page type from the TDX module */
1269 	sret = __seamcall_ret(TDH_PHYMEM_PAGE_RDMD, &args);
1270 
1271 	/*
1272 	 * The SEAMCALL will not return success unless there is a
1273 	 * working, "ready" TDX module.  Assume an absence of TDX
1274 	 * private pages until SEAMCALL is working.
1275 	 */
1276 	if (sret)
1277 		return false;
1278 
1279 	/*
1280 	 * SEAMCALL was successful -- read page type (via RCX):
1281 	 *
1282 	 *  - PT_NDA:	Page is not used by the TDX module
1283 	 *  - PT_RSVD:	Reserved for Non-TDX use
1284 	 *  - Others:	Page is used by the TDX module
1285 	 *
1286 	 * Note PAMT pages are marked as PT_RSVD but they are also TDX
1287 	 * private memory.
1288 	 */
1289 	switch (args.rcx) {
1290 	case PT_NDA:
1291 		return false;
1292 	case PT_RSVD:
1293 		return is_pamt_page(phys);
1294 	default:
1295 		return true;
1296 	}
1297 }
1298 
1299 /*
1300  * Some TDX-capable CPUs have an erratum.  A write to TDX private
1301  * memory poisons that memory, and a subsequent read of that memory
1302  * triggers #MC.
1303  *
1304  * Help distinguish erratum-triggered #MCs from a normal hardware one.
1305  * Just print additional message to show such #MC may be result of the
1306  * erratum.
1307  */
tdx_dump_mce_info(struct mce * m)1308 const char *tdx_dump_mce_info(struct mce *m)
1309 {
1310 	if (!m || !mce_is_memory_error(m) || !mce_usable_address(m))
1311 		return NULL;
1312 
1313 	if (!paddr_is_tdx_private(m->addr))
1314 		return NULL;
1315 
1316 	return "TDX private memory error. Possible kernel bug.";
1317 }
1318 
record_keyid_partitioning(u32 * tdx_keyid_start,u32 * nr_tdx_keyids)1319 static __init int record_keyid_partitioning(u32 *tdx_keyid_start,
1320 					    u32 *nr_tdx_keyids)
1321 {
1322 	u32 _nr_mktme_keyids, _tdx_keyid_start, _nr_tdx_keyids;
1323 	int ret;
1324 
1325 	/*
1326 	 * IA32_MKTME_KEYID_PARTIONING:
1327 	 *   Bit [31:0]:	Number of MKTME KeyIDs.
1328 	 *   Bit [63:32]:	Number of TDX private KeyIDs.
1329 	 */
1330 	ret = rdmsr_safe(MSR_IA32_MKTME_KEYID_PARTITIONING, &_nr_mktme_keyids,
1331 			&_nr_tdx_keyids);
1332 	if (ret || !_nr_tdx_keyids)
1333 		return -EINVAL;
1334 
1335 	/* TDX KeyIDs start after the last MKTME KeyID. */
1336 	_tdx_keyid_start = _nr_mktme_keyids + 1;
1337 
1338 	*tdx_keyid_start = _tdx_keyid_start;
1339 	*nr_tdx_keyids = _nr_tdx_keyids;
1340 
1341 	return 0;
1342 }
1343 
is_tdx_memory(unsigned long start_pfn,unsigned long end_pfn)1344 static bool is_tdx_memory(unsigned long start_pfn, unsigned long end_pfn)
1345 {
1346 	struct tdx_memblock *tmb;
1347 
1348 	/*
1349 	 * This check assumes that the start_pfn<->end_pfn range does not
1350 	 * cross multiple @tdx_memlist entries.  A single memory online
1351 	 * event across multiple memblocks (from which @tdx_memlist
1352 	 * entries are derived at the time of module initialization) is
1353 	 * not possible.  This is because memory offline/online is done
1354 	 * on granularity of 'struct memory_block', and the hotpluggable
1355 	 * memory region (one memblock) must be multiple of memory_block.
1356 	 */
1357 	list_for_each_entry(tmb, &tdx_memlist, list) {
1358 		if (start_pfn >= tmb->start_pfn && end_pfn <= tmb->end_pfn)
1359 			return true;
1360 	}
1361 	return false;
1362 }
1363 
tdx_memory_notifier(struct notifier_block * nb,unsigned long action,void * v)1364 static int tdx_memory_notifier(struct notifier_block *nb, unsigned long action,
1365 			       void *v)
1366 {
1367 	struct memory_notify *mn = v;
1368 
1369 	if (action != MEM_GOING_ONLINE)
1370 		return NOTIFY_OK;
1371 
1372 	/*
1373 	 * Empty list means TDX isn't enabled.  Allow any memory
1374 	 * to go online.
1375 	 */
1376 	if (list_empty(&tdx_memlist))
1377 		return NOTIFY_OK;
1378 
1379 	/*
1380 	 * The TDX memory configuration is static and can not be
1381 	 * changed.  Reject onlining any memory which is outside of
1382 	 * the static configuration whether it supports TDX or not.
1383 	 */
1384 	if (is_tdx_memory(mn->start_pfn, mn->start_pfn + mn->nr_pages))
1385 		return NOTIFY_OK;
1386 
1387 	return NOTIFY_BAD;
1388 }
1389 
1390 static struct notifier_block tdx_memory_nb = {
1391 	.notifier_call = tdx_memory_notifier,
1392 };
1393 
check_tdx_erratum(void)1394 static void __init check_tdx_erratum(void)
1395 {
1396 	/*
1397 	 * These CPUs have an erratum.  A partial write from non-TD
1398 	 * software (e.g. via MOVNTI variants or UC/WC mapping) to TDX
1399 	 * private memory poisons that memory, and a subsequent read of
1400 	 * that memory triggers #MC.
1401 	 */
1402 	switch (boot_cpu_data.x86_vfm) {
1403 	case INTEL_SAPPHIRERAPIDS_X:
1404 	case INTEL_EMERALDRAPIDS_X:
1405 		setup_force_cpu_bug(X86_BUG_TDX_PW_MCE);
1406 	}
1407 }
1408 
tdx_init(void)1409 void __init tdx_init(void)
1410 {
1411 	u32 tdx_keyid_start, nr_tdx_keyids;
1412 	int err;
1413 
1414 	err = record_keyid_partitioning(&tdx_keyid_start, &nr_tdx_keyids);
1415 	if (err)
1416 		return;
1417 
1418 	pr_info("BIOS enabled: private KeyID range [%u, %u)\n",
1419 			tdx_keyid_start, tdx_keyid_start + nr_tdx_keyids);
1420 
1421 	/*
1422 	 * The TDX module itself requires one 'global KeyID' to protect
1423 	 * its metadata.  If there's only one TDX KeyID, there won't be
1424 	 * any left for TDX guests thus there's no point to enable TDX
1425 	 * at all.
1426 	 */
1427 	if (nr_tdx_keyids < 2) {
1428 		pr_err("initialization failed: too few private KeyIDs available.\n");
1429 		return;
1430 	}
1431 
1432 	/*
1433 	 * At this point, hibernation_available() indicates whether or
1434 	 * not hibernation support has been permanently disabled.
1435 	 */
1436 	if (hibernation_available()) {
1437 		pr_err("initialization failed: Hibernation support is enabled\n");
1438 		return;
1439 	}
1440 
1441 	err = register_memory_notifier(&tdx_memory_nb);
1442 	if (err) {
1443 		pr_err("initialization failed: register_memory_notifier() failed (%d)\n",
1444 				err);
1445 		return;
1446 	}
1447 
1448 #if defined(CONFIG_ACPI) && defined(CONFIG_SUSPEND)
1449 	pr_info("Disable ACPI S3. Turn off TDX in the BIOS to use ACPI S3.\n");
1450 	acpi_suspend_lowlevel = NULL;
1451 #endif
1452 
1453 	/*
1454 	 * Just use the first TDX KeyID as the 'global KeyID' and
1455 	 * leave the rest for TDX guests.
1456 	 */
1457 	tdx_global_keyid = tdx_keyid_start;
1458 	tdx_guest_keyid_start = tdx_keyid_start + 1;
1459 	tdx_nr_guest_keyids = nr_tdx_keyids - 1;
1460 
1461 	setup_force_cpu_cap(X86_FEATURE_TDX_HOST_PLATFORM);
1462 
1463 	check_tdx_erratum();
1464 }
1465 
tdx_get_sysinfo(void)1466 const struct tdx_sys_info *tdx_get_sysinfo(void)
1467 {
1468 	const struct tdx_sys_info *p = NULL;
1469 
1470 	/* Make sure all fields in @tdx_sysinfo have been populated */
1471 	mutex_lock(&tdx_module_lock);
1472 	if (tdx_module_status == TDX_MODULE_INITIALIZED)
1473 		p = (const struct tdx_sys_info *)&tdx_sysinfo;
1474 	mutex_unlock(&tdx_module_lock);
1475 
1476 	return p;
1477 }
1478 EXPORT_SYMBOL_GPL(tdx_get_sysinfo);
1479 
tdx_get_nr_guest_keyids(void)1480 u32 tdx_get_nr_guest_keyids(void)
1481 {
1482 	return tdx_nr_guest_keyids;
1483 }
1484 EXPORT_SYMBOL_GPL(tdx_get_nr_guest_keyids);
1485 
tdx_guest_keyid_alloc(void)1486 int tdx_guest_keyid_alloc(void)
1487 {
1488 	return ida_alloc_range(&tdx_guest_keyid_pool, tdx_guest_keyid_start,
1489 			       tdx_guest_keyid_start + tdx_nr_guest_keyids - 1,
1490 			       GFP_KERNEL);
1491 }
1492 EXPORT_SYMBOL_GPL(tdx_guest_keyid_alloc);
1493 
tdx_guest_keyid_free(unsigned int keyid)1494 void tdx_guest_keyid_free(unsigned int keyid)
1495 {
1496 	ida_free(&tdx_guest_keyid_pool, keyid);
1497 }
1498 EXPORT_SYMBOL_GPL(tdx_guest_keyid_free);
1499 
tdx_tdr_pa(struct tdx_td * td)1500 static inline u64 tdx_tdr_pa(struct tdx_td *td)
1501 {
1502 	return page_to_phys(td->tdr_page);
1503 }
1504 
tdx_tdvpr_pa(struct tdx_vp * td)1505 static inline u64 tdx_tdvpr_pa(struct tdx_vp *td)
1506 {
1507 	return page_to_phys(td->tdvpr_page);
1508 }
1509 
1510 /*
1511  * The TDX module exposes a CLFLUSH_BEFORE_ALLOC bit to specify whether
1512  * a CLFLUSH of pages is required before handing them to the TDX module.
1513  * Be conservative and make the code simpler by doing the CLFLUSH
1514  * unconditionally.
1515  */
tdx_clflush_page(struct page * page)1516 static void tdx_clflush_page(struct page *page)
1517 {
1518 	clflush_cache_range(page_to_virt(page), PAGE_SIZE);
1519 }
1520 
tdh_vp_enter(struct tdx_vp * td,struct tdx_module_args * args)1521 noinstr __flatten u64 tdh_vp_enter(struct tdx_vp *td, struct tdx_module_args *args)
1522 {
1523 	args->rcx = tdx_tdvpr_pa(td);
1524 
1525 	return __seamcall_saved_ret(TDH_VP_ENTER, args);
1526 }
1527 EXPORT_SYMBOL_GPL(tdh_vp_enter);
1528 
tdh_mng_addcx(struct tdx_td * td,struct page * tdcs_page)1529 u64 tdh_mng_addcx(struct tdx_td *td, struct page *tdcs_page)
1530 {
1531 	struct tdx_module_args args = {
1532 		.rcx = page_to_phys(tdcs_page),
1533 		.rdx = tdx_tdr_pa(td),
1534 	};
1535 
1536 	tdx_clflush_page(tdcs_page);
1537 	return seamcall(TDH_MNG_ADDCX, &args);
1538 }
1539 EXPORT_SYMBOL_GPL(tdh_mng_addcx);
1540 
tdh_mem_page_add(struct tdx_td * td,u64 gpa,struct page * page,struct page * source,u64 * ext_err1,u64 * ext_err2)1541 u64 tdh_mem_page_add(struct tdx_td *td, u64 gpa, struct page *page, struct page *source, u64 *ext_err1, u64 *ext_err2)
1542 {
1543 	struct tdx_module_args args = {
1544 		.rcx = gpa,
1545 		.rdx = tdx_tdr_pa(td),
1546 		.r8 = page_to_phys(page),
1547 		.r9 = page_to_phys(source),
1548 	};
1549 	u64 ret;
1550 
1551 	tdx_clflush_page(page);
1552 	ret = seamcall_ret(TDH_MEM_PAGE_ADD, &args);
1553 
1554 	*ext_err1 = args.rcx;
1555 	*ext_err2 = args.rdx;
1556 
1557 	return ret;
1558 }
1559 EXPORT_SYMBOL_GPL(tdh_mem_page_add);
1560 
tdh_mem_sept_add(struct tdx_td * td,u64 gpa,int level,struct page * page,u64 * ext_err1,u64 * ext_err2)1561 u64 tdh_mem_sept_add(struct tdx_td *td, u64 gpa, int level, struct page *page, u64 *ext_err1, u64 *ext_err2)
1562 {
1563 	struct tdx_module_args args = {
1564 		.rcx = gpa | level,
1565 		.rdx = tdx_tdr_pa(td),
1566 		.r8 = page_to_phys(page),
1567 	};
1568 	u64 ret;
1569 
1570 	tdx_clflush_page(page);
1571 	ret = seamcall_ret(TDH_MEM_SEPT_ADD, &args);
1572 
1573 	*ext_err1 = args.rcx;
1574 	*ext_err2 = args.rdx;
1575 
1576 	return ret;
1577 }
1578 EXPORT_SYMBOL_GPL(tdh_mem_sept_add);
1579 
tdh_vp_addcx(struct tdx_vp * vp,struct page * tdcx_page)1580 u64 tdh_vp_addcx(struct tdx_vp *vp, struct page *tdcx_page)
1581 {
1582 	struct tdx_module_args args = {
1583 		.rcx = page_to_phys(tdcx_page),
1584 		.rdx = tdx_tdvpr_pa(vp),
1585 	};
1586 
1587 	tdx_clflush_page(tdcx_page);
1588 	return seamcall(TDH_VP_ADDCX, &args);
1589 }
1590 EXPORT_SYMBOL_GPL(tdh_vp_addcx);
1591 
tdh_mem_page_aug(struct tdx_td * td,u64 gpa,int level,struct page * page,u64 * ext_err1,u64 * ext_err2)1592 u64 tdh_mem_page_aug(struct tdx_td *td, u64 gpa, int level, struct page *page, u64 *ext_err1, u64 *ext_err2)
1593 {
1594 	struct tdx_module_args args = {
1595 		.rcx = gpa | level,
1596 		.rdx = tdx_tdr_pa(td),
1597 		.r8 = page_to_phys(page),
1598 	};
1599 	u64 ret;
1600 
1601 	tdx_clflush_page(page);
1602 	ret = seamcall_ret(TDH_MEM_PAGE_AUG, &args);
1603 
1604 	*ext_err1 = args.rcx;
1605 	*ext_err2 = args.rdx;
1606 
1607 	return ret;
1608 }
1609 EXPORT_SYMBOL_GPL(tdh_mem_page_aug);
1610 
tdh_mem_range_block(struct tdx_td * td,u64 gpa,int level,u64 * ext_err1,u64 * ext_err2)1611 u64 tdh_mem_range_block(struct tdx_td *td, u64 gpa, int level, u64 *ext_err1, u64 *ext_err2)
1612 {
1613 	struct tdx_module_args args = {
1614 		.rcx = gpa | level,
1615 		.rdx = tdx_tdr_pa(td),
1616 	};
1617 	u64 ret;
1618 
1619 	ret = seamcall_ret(TDH_MEM_RANGE_BLOCK, &args);
1620 
1621 	*ext_err1 = args.rcx;
1622 	*ext_err2 = args.rdx;
1623 
1624 	return ret;
1625 }
1626 EXPORT_SYMBOL_GPL(tdh_mem_range_block);
1627 
tdh_mng_key_config(struct tdx_td * td)1628 u64 tdh_mng_key_config(struct tdx_td *td)
1629 {
1630 	struct tdx_module_args args = {
1631 		.rcx = tdx_tdr_pa(td),
1632 	};
1633 
1634 	return seamcall(TDH_MNG_KEY_CONFIG, &args);
1635 }
1636 EXPORT_SYMBOL_GPL(tdh_mng_key_config);
1637 
tdh_mng_create(struct tdx_td * td,u16 hkid)1638 u64 tdh_mng_create(struct tdx_td *td, u16 hkid)
1639 {
1640 	struct tdx_module_args args = {
1641 		.rcx = tdx_tdr_pa(td),
1642 		.rdx = hkid,
1643 	};
1644 
1645 	tdx_clflush_page(td->tdr_page);
1646 	return seamcall(TDH_MNG_CREATE, &args);
1647 }
1648 EXPORT_SYMBOL_GPL(tdh_mng_create);
1649 
tdh_vp_create(struct tdx_td * td,struct tdx_vp * vp)1650 u64 tdh_vp_create(struct tdx_td *td, struct tdx_vp *vp)
1651 {
1652 	struct tdx_module_args args = {
1653 		.rcx = tdx_tdvpr_pa(vp),
1654 		.rdx = tdx_tdr_pa(td),
1655 	};
1656 
1657 	tdx_clflush_page(vp->tdvpr_page);
1658 	return seamcall(TDH_VP_CREATE, &args);
1659 }
1660 EXPORT_SYMBOL_GPL(tdh_vp_create);
1661 
tdh_mng_rd(struct tdx_td * td,u64 field,u64 * data)1662 u64 tdh_mng_rd(struct tdx_td *td, u64 field, u64 *data)
1663 {
1664 	struct tdx_module_args args = {
1665 		.rcx = tdx_tdr_pa(td),
1666 		.rdx = field,
1667 	};
1668 	u64 ret;
1669 
1670 	ret = seamcall_ret(TDH_MNG_RD, &args);
1671 
1672 	/* R8: Content of the field, or 0 in case of error. */
1673 	*data = args.r8;
1674 
1675 	return ret;
1676 }
1677 EXPORT_SYMBOL_GPL(tdh_mng_rd);
1678 
tdh_mr_extend(struct tdx_td * td,u64 gpa,u64 * ext_err1,u64 * ext_err2)1679 u64 tdh_mr_extend(struct tdx_td *td, u64 gpa, u64 *ext_err1, u64 *ext_err2)
1680 {
1681 	struct tdx_module_args args = {
1682 		.rcx = gpa,
1683 		.rdx = tdx_tdr_pa(td),
1684 	};
1685 	u64 ret;
1686 
1687 	ret = seamcall_ret(TDH_MR_EXTEND, &args);
1688 
1689 	*ext_err1 = args.rcx;
1690 	*ext_err2 = args.rdx;
1691 
1692 	return ret;
1693 }
1694 EXPORT_SYMBOL_GPL(tdh_mr_extend);
1695 
tdh_mr_finalize(struct tdx_td * td)1696 u64 tdh_mr_finalize(struct tdx_td *td)
1697 {
1698 	struct tdx_module_args args = {
1699 		.rcx = tdx_tdr_pa(td),
1700 	};
1701 
1702 	return seamcall(TDH_MR_FINALIZE, &args);
1703 }
1704 EXPORT_SYMBOL_GPL(tdh_mr_finalize);
1705 
tdh_vp_flush(struct tdx_vp * vp)1706 u64 tdh_vp_flush(struct tdx_vp *vp)
1707 {
1708 	struct tdx_module_args args = {
1709 		.rcx = tdx_tdvpr_pa(vp),
1710 	};
1711 
1712 	return seamcall(TDH_VP_FLUSH, &args);
1713 }
1714 EXPORT_SYMBOL_GPL(tdh_vp_flush);
1715 
tdh_mng_vpflushdone(struct tdx_td * td)1716 u64 tdh_mng_vpflushdone(struct tdx_td *td)
1717 {
1718 	struct tdx_module_args args = {
1719 		.rcx = tdx_tdr_pa(td),
1720 	};
1721 
1722 	return seamcall(TDH_MNG_VPFLUSHDONE, &args);
1723 }
1724 EXPORT_SYMBOL_GPL(tdh_mng_vpflushdone);
1725 
tdh_mng_key_freeid(struct tdx_td * td)1726 u64 tdh_mng_key_freeid(struct tdx_td *td)
1727 {
1728 	struct tdx_module_args args = {
1729 		.rcx = tdx_tdr_pa(td),
1730 	};
1731 
1732 	return seamcall(TDH_MNG_KEY_FREEID, &args);
1733 }
1734 EXPORT_SYMBOL_GPL(tdh_mng_key_freeid);
1735 
tdh_mng_init(struct tdx_td * td,u64 td_params,u64 * extended_err)1736 u64 tdh_mng_init(struct tdx_td *td, u64 td_params, u64 *extended_err)
1737 {
1738 	struct tdx_module_args args = {
1739 		.rcx = tdx_tdr_pa(td),
1740 		.rdx = td_params,
1741 	};
1742 	u64 ret;
1743 
1744 	ret = seamcall_ret(TDH_MNG_INIT, &args);
1745 
1746 	*extended_err = args.rcx;
1747 
1748 	return ret;
1749 }
1750 EXPORT_SYMBOL_GPL(tdh_mng_init);
1751 
tdh_vp_rd(struct tdx_vp * vp,u64 field,u64 * data)1752 u64 tdh_vp_rd(struct tdx_vp *vp, u64 field, u64 *data)
1753 {
1754 	struct tdx_module_args args = {
1755 		.rcx = tdx_tdvpr_pa(vp),
1756 		.rdx = field,
1757 	};
1758 	u64 ret;
1759 
1760 	ret = seamcall_ret(TDH_VP_RD, &args);
1761 
1762 	/* R8: Content of the field, or 0 in case of error. */
1763 	*data = args.r8;
1764 
1765 	return ret;
1766 }
1767 EXPORT_SYMBOL_GPL(tdh_vp_rd);
1768 
tdh_vp_wr(struct tdx_vp * vp,u64 field,u64 data,u64 mask)1769 u64 tdh_vp_wr(struct tdx_vp *vp, u64 field, u64 data, u64 mask)
1770 {
1771 	struct tdx_module_args args = {
1772 		.rcx = tdx_tdvpr_pa(vp),
1773 		.rdx = field,
1774 		.r8 = data,
1775 		.r9 = mask,
1776 	};
1777 
1778 	return seamcall(TDH_VP_WR, &args);
1779 }
1780 EXPORT_SYMBOL_GPL(tdh_vp_wr);
1781 
tdh_vp_init(struct tdx_vp * vp,u64 initial_rcx,u32 x2apicid)1782 u64 tdh_vp_init(struct tdx_vp *vp, u64 initial_rcx, u32 x2apicid)
1783 {
1784 	struct tdx_module_args args = {
1785 		.rcx = tdx_tdvpr_pa(vp),
1786 		.rdx = initial_rcx,
1787 		.r8 = x2apicid,
1788 	};
1789 
1790 	/* apicid requires version == 1. */
1791 	return seamcall(TDH_VP_INIT | (1ULL << TDX_VERSION_SHIFT), &args);
1792 }
1793 EXPORT_SYMBOL_GPL(tdh_vp_init);
1794 
1795 /*
1796  * TDX ABI defines output operands as PT, OWNER and SIZE. These are TDX defined fomats.
1797  * So despite the names, they must be interpted specially as described by the spec. Return
1798  * them only for error reporting purposes.
1799  */
tdh_phymem_page_reclaim(struct page * page,u64 * tdx_pt,u64 * tdx_owner,u64 * tdx_size)1800 u64 tdh_phymem_page_reclaim(struct page *page, u64 *tdx_pt, u64 *tdx_owner, u64 *tdx_size)
1801 {
1802 	struct tdx_module_args args = {
1803 		.rcx = page_to_phys(page),
1804 	};
1805 	u64 ret;
1806 
1807 	ret = seamcall_ret(TDH_PHYMEM_PAGE_RECLAIM, &args);
1808 
1809 	*tdx_pt = args.rcx;
1810 	*tdx_owner = args.rdx;
1811 	*tdx_size = args.r8;
1812 
1813 	return ret;
1814 }
1815 EXPORT_SYMBOL_GPL(tdh_phymem_page_reclaim);
1816 
tdh_mem_track(struct tdx_td * td)1817 u64 tdh_mem_track(struct tdx_td *td)
1818 {
1819 	struct tdx_module_args args = {
1820 		.rcx = tdx_tdr_pa(td),
1821 	};
1822 
1823 	return seamcall(TDH_MEM_TRACK, &args);
1824 }
1825 EXPORT_SYMBOL_GPL(tdh_mem_track);
1826 
tdh_mem_page_remove(struct tdx_td * td,u64 gpa,u64 level,u64 * ext_err1,u64 * ext_err2)1827 u64 tdh_mem_page_remove(struct tdx_td *td, u64 gpa, u64 level, u64 *ext_err1, u64 *ext_err2)
1828 {
1829 	struct tdx_module_args args = {
1830 		.rcx = gpa | level,
1831 		.rdx = tdx_tdr_pa(td),
1832 	};
1833 	u64 ret;
1834 
1835 	ret = seamcall_ret(TDH_MEM_PAGE_REMOVE, &args);
1836 
1837 	*ext_err1 = args.rcx;
1838 	*ext_err2 = args.rdx;
1839 
1840 	return ret;
1841 }
1842 EXPORT_SYMBOL_GPL(tdh_mem_page_remove);
1843 
tdh_phymem_cache_wb(bool resume)1844 u64 tdh_phymem_cache_wb(bool resume)
1845 {
1846 	struct tdx_module_args args = {
1847 		.rcx = resume ? 1 : 0,
1848 	};
1849 
1850 	return seamcall(TDH_PHYMEM_CACHE_WB, &args);
1851 }
1852 EXPORT_SYMBOL_GPL(tdh_phymem_cache_wb);
1853 
tdh_phymem_page_wbinvd_tdr(struct tdx_td * td)1854 u64 tdh_phymem_page_wbinvd_tdr(struct tdx_td *td)
1855 {
1856 	struct tdx_module_args args = {};
1857 
1858 	args.rcx = mk_keyed_paddr(tdx_global_keyid, td->tdr_page);
1859 
1860 	return seamcall(TDH_PHYMEM_PAGE_WBINVD, &args);
1861 }
1862 EXPORT_SYMBOL_GPL(tdh_phymem_page_wbinvd_tdr);
1863 
tdh_phymem_page_wbinvd_hkid(u64 hkid,struct page * page)1864 u64 tdh_phymem_page_wbinvd_hkid(u64 hkid, struct page *page)
1865 {
1866 	struct tdx_module_args args = {};
1867 
1868 	args.rcx = mk_keyed_paddr(hkid, page);
1869 
1870 	return seamcall(TDH_PHYMEM_PAGE_WBINVD, &args);
1871 }
1872 EXPORT_SYMBOL_GPL(tdh_phymem_page_wbinvd_hkid);
1873