xref: /linux/drivers/usb/gadget/legacy/inode.c (revision cc8b10fa70682218c2a318fc44f71f3175a23cc0)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * inode.c -- user mode filesystem api for usb gadget controllers
4  *
5  * Copyright (C) 2003-2004 David Brownell
6  * Copyright (C) 2003 Agilent Technologies
7  */
8 
9 
10 /* #define VERBOSE_DEBUG */
11 
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/fs.h>
15 #include <linux/fs_context.h>
16 #include <linux/pagemap.h>
17 #include <linux/uts.h>
18 #include <linux/wait.h>
19 #include <linux/compiler.h>
20 #include <linux/uaccess.h>
21 #include <linux/sched.h>
22 #include <linux/slab.h>
23 #include <linux/string_choices.h>
24 #include <linux/poll.h>
25 #include <linux/kthread.h>
26 #include <linux/aio.h>
27 #include <linux/uio.h>
28 #include <linux/refcount.h>
29 #include <linux/delay.h>
30 #include <linux/device.h>
31 #include <linux/moduleparam.h>
32 
33 #include <linux/usb/gadgetfs.h>
34 #include <linux/usb/gadget.h>
35 #include <linux/usb/composite.h> /* for USB_GADGET_DELAYED_STATUS */
36 
37 /* Undef helpers from linux/usb/composite.h as gadgetfs redefines them */
38 #undef DBG
39 #undef ERROR
40 #undef INFO
41 
42 
43 /*
44  * The gadgetfs API maps each endpoint to a file descriptor so that you
45  * can use standard synchronous read/write calls for I/O.  There's some
46  * O_NONBLOCK and O_ASYNC/FASYNC style i/o support.  Example usermode
47  * drivers show how this works in practice.  You can also use AIO to
48  * eliminate I/O gaps between requests, to help when streaming data.
49  *
50  * Key parts that must be USB-specific are protocols defining how the
51  * read/write operations relate to the hardware state machines.  There
52  * are two types of files.  One type is for the device, implementing ep0.
53  * The other type is for each IN or OUT endpoint.  In both cases, the
54  * user mode driver must configure the hardware before using it.
55  *
56  * - First, dev_config() is called when /dev/gadget/$CHIP is configured
57  *   (by writing configuration and device descriptors).  Afterwards it
58  *   may serve as a source of device events, used to handle all control
59  *   requests other than basic enumeration.
60  *
61  * - Then, after a SET_CONFIGURATION control request, ep_config() is
62  *   called when each /dev/gadget/ep* file is configured (by writing
63  *   endpoint descriptors).  Afterwards these files are used to write()
64  *   IN data or to read() OUT data.  To halt the endpoint, a "wrong
65  *   direction" request is issued (like reading an IN endpoint).
66  *
67  * Unlike "usbfs" the only ioctl()s are for things that are rare, and maybe
68  * not possible on all hardware.  For example, precise fault handling with
69  * respect to data left in endpoint fifos after aborted operations; or
70  * selective clearing of endpoint halts, to implement SET_INTERFACE.
71  */
72 
73 #define	DRIVER_DESC	"USB Gadget filesystem"
74 #define	DRIVER_VERSION	"24 Aug 2004"
75 
76 static const char driver_desc [] = DRIVER_DESC;
77 static const char shortname [] = "gadgetfs";
78 
79 MODULE_DESCRIPTION (DRIVER_DESC);
80 MODULE_AUTHOR ("David Brownell");
81 MODULE_LICENSE ("GPL");
82 
83 static int ep_open(struct inode *, struct file *);
84 
85 
86 /*----------------------------------------------------------------------*/
87 
88 #define GADGETFS_MAGIC		0xaee71ee7
89 
90 /* /dev/gadget/$CHIP represents ep0 and the whole device */
91 enum ep0_state {
92 	/* DISABLED is the initial state. */
93 	STATE_DEV_DISABLED = 0,
94 
95 	/* Only one open() of /dev/gadget/$CHIP; only one file tracks
96 	 * ep0/device i/o modes and binding to the controller.  Driver
97 	 * must always write descriptors to initialize the device, then
98 	 * the device becomes UNCONNECTED until enumeration.
99 	 */
100 	STATE_DEV_OPENED,
101 
102 	/* From then on, ep0 fd is in either of two basic modes:
103 	 * - (UN)CONNECTED: read usb_gadgetfs_event(s) from it
104 	 * - SETUP: read/write will transfer control data and succeed;
105 	 *   or if "wrong direction", performs protocol stall
106 	 */
107 	STATE_DEV_UNCONNECTED,
108 	STATE_DEV_CONNECTED,
109 	STATE_DEV_SETUP,
110 
111 	/* UNBOUND means the driver closed ep0, so the device won't be
112 	 * accessible again (DEV_DISABLED) until all fds are closed.
113 	 */
114 	STATE_DEV_UNBOUND,
115 };
116 
117 /* enough for the whole queue: most events invalidate others */
118 #define	N_EVENT			5
119 
120 #define RBUF_SIZE		256
121 
122 struct dev_data {
123 	spinlock_t			lock;
124 	refcount_t			count;
125 	int				udc_usage;
126 	enum ep0_state			state;		/* P: lock */
127 	struct usb_gadgetfs_event	event [N_EVENT];
128 	unsigned			ev_next;
129 	struct fasync_struct		*fasync;
130 	u8				current_config;
131 
132 	/* drivers reading ep0 MUST handle control requests (SETUP)
133 	 * reported that way; else the host will time out.
134 	 */
135 	unsigned			usermode_setup : 1,
136 					setup_in : 1,
137 					setup_can_stall : 1,
138 					setup_out_ready : 1,
139 					setup_out_error : 1,
140 					setup_abort : 1,
141 					gadget_registered : 1;
142 	unsigned			setup_wLength;
143 
144 	/* the rest is basically write-once */
145 	struct usb_config_descriptor	*config, *hs_config;
146 	struct usb_device_descriptor	*dev;
147 	struct usb_request		*req;
148 	struct usb_gadget		*gadget;
149 	struct list_head		epfiles;
150 	void				*buf;
151 	wait_queue_head_t		wait;
152 	struct super_block		*sb;
153 	struct dentry			*dentry;
154 
155 	/* except this scratch i/o buffer for ep0 */
156 	u8				rbuf[RBUF_SIZE];
157 };
158 
159 static inline void get_dev (struct dev_data *data)
160 {
161 	refcount_inc (&data->count);
162 }
163 
164 static void put_dev (struct dev_data *data)
165 {
166 	if (likely (!refcount_dec_and_test (&data->count)))
167 		return;
168 	/* needs no more cleanup */
169 	BUG_ON (waitqueue_active (&data->wait));
170 	kfree (data);
171 }
172 
173 static struct dev_data *dev_new (void)
174 {
175 	struct dev_data		*dev;
176 
177 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
178 	if (!dev)
179 		return NULL;
180 	dev->state = STATE_DEV_DISABLED;
181 	refcount_set (&dev->count, 1);
182 	spin_lock_init (&dev->lock);
183 	INIT_LIST_HEAD (&dev->epfiles);
184 	init_waitqueue_head (&dev->wait);
185 	return dev;
186 }
187 
188 /*----------------------------------------------------------------------*/
189 
190 /* other /dev/gadget/$ENDPOINT files represent endpoints */
191 enum ep_state {
192 	STATE_EP_DISABLED = 0,
193 	STATE_EP_READY,
194 	STATE_EP_ENABLED,
195 	STATE_EP_UNBOUND,
196 };
197 
198 struct ep_data {
199 	struct mutex			lock;
200 	enum ep_state			state;
201 	refcount_t			count;
202 	struct dev_data			*dev;
203 	/* must hold dev->lock before accessing ep or req */
204 	struct usb_ep			*ep;
205 	struct usb_request		*req;
206 	ssize_t				status;
207 	char				name [16];
208 	struct usb_endpoint_descriptor	desc, hs_desc;
209 	struct list_head		epfiles;
210 	wait_queue_head_t		wait;
211 	struct dentry			*dentry;
212 };
213 
214 static inline void get_ep (struct ep_data *data)
215 {
216 	refcount_inc (&data->count);
217 }
218 
219 static void put_ep (struct ep_data *data)
220 {
221 	if (likely (!refcount_dec_and_test (&data->count)))
222 		return;
223 	put_dev (data->dev);
224 	/* needs no more cleanup */
225 	BUG_ON (!list_empty (&data->epfiles));
226 	BUG_ON (waitqueue_active (&data->wait));
227 	kfree (data);
228 }
229 
230 /*----------------------------------------------------------------------*/
231 
232 /* most "how to use the hardware" policy choices are in userspace:
233  * mapping endpoint roles (which the driver needs) to the capabilities
234  * which the usb controller has.  most of those capabilities are exposed
235  * implicitly, starting with the driver name and then endpoint names.
236  */
237 
238 static const char *CHIP;
239 static DEFINE_MUTEX(sb_mutex);		/* Serialize superblock operations */
240 
241 /*----------------------------------------------------------------------*/
242 
243 /* NOTE:  don't use dev_printk calls before binding to the gadget
244  * at the end of ep0 configuration, or after unbind.
245  */
246 
247 /* too wordy: dev_printk(level , &(d)->gadget->dev , fmt , ## args) */
248 #define xprintk(d,level,fmt,args...) \
249 	printk(level "%s: " fmt , shortname , ## args)
250 
251 #ifdef DEBUG
252 #define DBG(dev,fmt,args...) \
253 	xprintk(dev , KERN_DEBUG , fmt , ## args)
254 #else
255 #define DBG(dev,fmt,args...) \
256 	do { } while (0)
257 #endif /* DEBUG */
258 
259 #ifdef VERBOSE_DEBUG
260 #define VDEBUG	DBG
261 #else
262 #define VDEBUG(dev,fmt,args...) \
263 	do { } while (0)
264 #endif /* DEBUG */
265 
266 #define ERROR(dev,fmt,args...) \
267 	xprintk(dev , KERN_ERR , fmt , ## args)
268 #define INFO(dev,fmt,args...) \
269 	xprintk(dev , KERN_INFO , fmt , ## args)
270 
271 
272 /*----------------------------------------------------------------------*/
273 
274 /* SYNCHRONOUS ENDPOINT OPERATIONS (bulk/intr/iso)
275  *
276  * After opening, configure non-control endpoints.  Then use normal
277  * stream read() and write() requests; and maybe ioctl() to get more
278  * precise FIFO status when recovering from cancellation.
279  */
280 
281 static void epio_complete (struct usb_ep *ep, struct usb_request *req)
282 {
283 	struct ep_data	*epdata = ep->driver_data;
284 
285 	if (!req->context)
286 		return;
287 	if (req->status)
288 		epdata->status = req->status;
289 	else
290 		epdata->status = req->actual;
291 	complete ((struct completion *)req->context);
292 }
293 
294 /* tasklock endpoint, returning when it's connected.
295  * still need dev->lock to use epdata->ep.
296  */
297 static int
298 get_ready_ep (unsigned f_flags, struct ep_data *epdata, bool is_write)
299 {
300 	int	val;
301 
302 	if (f_flags & O_NONBLOCK) {
303 		if (!mutex_trylock(&epdata->lock))
304 			goto nonblock;
305 		if (epdata->state != STATE_EP_ENABLED &&
306 		    (!is_write || epdata->state != STATE_EP_READY)) {
307 			mutex_unlock(&epdata->lock);
308 nonblock:
309 			val = -EAGAIN;
310 		} else
311 			val = 0;
312 		return val;
313 	}
314 
315 	val = mutex_lock_interruptible(&epdata->lock);
316 	if (val < 0)
317 		return val;
318 
319 	switch (epdata->state) {
320 	case STATE_EP_ENABLED:
321 		return 0;
322 	case STATE_EP_READY:			/* not configured yet */
323 		if (is_write)
324 			return 0;
325 		fallthrough;
326 	case STATE_EP_UNBOUND:			/* clean disconnect */
327 		break;
328 	// case STATE_EP_DISABLED:		/* "can't happen" */
329 	default:				/* error! */
330 		pr_debug ("%s: ep %p not available, state %d\n",
331 				shortname, epdata, epdata->state);
332 	}
333 	mutex_unlock(&epdata->lock);
334 	return -ENODEV;
335 }
336 
337 static ssize_t
338 ep_io (struct ep_data *epdata, void *buf, unsigned len)
339 {
340 	DECLARE_COMPLETION_ONSTACK (done);
341 	int value;
342 
343 	spin_lock_irq (&epdata->dev->lock);
344 	if (likely (epdata->ep != NULL)) {
345 		struct usb_request	*req = epdata->req;
346 
347 		req->context = &done;
348 		req->complete = epio_complete;
349 		req->buf = buf;
350 		req->length = len;
351 		value = usb_ep_queue (epdata->ep, req, GFP_ATOMIC);
352 	} else
353 		value = -ENODEV;
354 	spin_unlock_irq (&epdata->dev->lock);
355 
356 	if (likely (value == 0)) {
357 		value = wait_for_completion_interruptible(&done);
358 		if (value != 0) {
359 			spin_lock_irq (&epdata->dev->lock);
360 			if (likely (epdata->ep != NULL)) {
361 				DBG (epdata->dev, "%s i/o interrupted\n",
362 						epdata->name);
363 				usb_ep_dequeue (epdata->ep, epdata->req);
364 				spin_unlock_irq (&epdata->dev->lock);
365 
366 				wait_for_completion(&done);
367 				if (epdata->status == -ECONNRESET)
368 					epdata->status = -EINTR;
369 			} else {
370 				spin_unlock_irq (&epdata->dev->lock);
371 
372 				DBG (epdata->dev, "endpoint gone\n");
373 				wait_for_completion(&done);
374 				epdata->status = -ENODEV;
375 			}
376 		}
377 		return epdata->status;
378 	}
379 	return value;
380 }
381 
382 static int
383 ep_release (struct inode *inode, struct file *fd)
384 {
385 	struct ep_data		*data = fd->private_data;
386 	int value;
387 
388 	value = mutex_lock_interruptible(&data->lock);
389 	if (value < 0)
390 		return value;
391 
392 	/* clean up if this can be reopened */
393 	if (data->state != STATE_EP_UNBOUND) {
394 		data->state = STATE_EP_DISABLED;
395 		data->desc.bDescriptorType = 0;
396 		data->hs_desc.bDescriptorType = 0;
397 		usb_ep_disable(data->ep);
398 	}
399 	mutex_unlock(&data->lock);
400 	put_ep (data);
401 	return 0;
402 }
403 
404 static long ep_ioctl(struct file *fd, unsigned code, unsigned long value)
405 {
406 	struct ep_data		*data = fd->private_data;
407 	int			status;
408 
409 	if ((status = get_ready_ep (fd->f_flags, data, false)) < 0)
410 		return status;
411 
412 	spin_lock_irq (&data->dev->lock);
413 	if (likely (data->ep != NULL)) {
414 		switch (code) {
415 		case GADGETFS_FIFO_STATUS:
416 			status = usb_ep_fifo_status (data->ep);
417 			break;
418 		case GADGETFS_FIFO_FLUSH:
419 			usb_ep_fifo_flush (data->ep);
420 			break;
421 		case GADGETFS_CLEAR_HALT:
422 			status = usb_ep_clear_halt (data->ep);
423 			break;
424 		default:
425 			status = -ENOTTY;
426 		}
427 	} else
428 		status = -ENODEV;
429 	spin_unlock_irq (&data->dev->lock);
430 	mutex_unlock(&data->lock);
431 	return status;
432 }
433 
434 /*----------------------------------------------------------------------*/
435 
436 /* ASYNCHRONOUS ENDPOINT I/O OPERATIONS (bulk/intr/iso) */
437 
438 struct kiocb_priv {
439 	struct usb_request	*req;
440 	struct ep_data		*epdata;
441 	struct kiocb		*iocb;
442 	struct mm_struct	*mm;
443 	struct work_struct	work;
444 	void			*buf;
445 	struct iov_iter		to;
446 	const void		*to_free;
447 	unsigned		actual;
448 };
449 
450 static int ep_aio_cancel(struct kiocb *iocb)
451 {
452 	struct kiocb_priv	*priv = iocb->private;
453 	struct ep_data		*epdata;
454 	int			value;
455 
456 	local_irq_disable();
457 	epdata = priv->epdata;
458 	// spin_lock(&epdata->dev->lock);
459 	if (likely(epdata && epdata->ep && priv->req))
460 		value = usb_ep_dequeue (epdata->ep, priv->req);
461 	else
462 		value = -EINVAL;
463 	// spin_unlock(&epdata->dev->lock);
464 	local_irq_enable();
465 
466 	return value;
467 }
468 
469 static void ep_user_copy_worker(struct work_struct *work)
470 {
471 	struct kiocb_priv *priv = container_of(work, struct kiocb_priv, work);
472 	struct mm_struct *mm = priv->mm;
473 	struct kiocb *iocb = priv->iocb;
474 	size_t ret;
475 
476 	kthread_use_mm(mm);
477 	ret = copy_to_iter(priv->buf, priv->actual, &priv->to);
478 	kthread_unuse_mm(mm);
479 	if (!ret)
480 		ret = -EFAULT;
481 
482 	/* completing the iocb can drop the ctx and mm, don't touch mm after */
483 	iocb->ki_complete(iocb, ret);
484 
485 	kfree(priv->buf);
486 	kfree(priv->to_free);
487 	kfree(priv);
488 }
489 
490 static void ep_aio_complete(struct usb_ep *ep, struct usb_request *req)
491 {
492 	struct kiocb		*iocb = req->context;
493 	struct kiocb_priv	*priv = iocb->private;
494 	struct ep_data		*epdata = priv->epdata;
495 
496 	/* lock against disconnect (and ideally, cancel) */
497 	spin_lock(&epdata->dev->lock);
498 	priv->req = NULL;
499 	priv->epdata = NULL;
500 
501 	/* if this was a write or a read returning no data then we
502 	 * don't need to copy anything to userspace, so we can
503 	 * complete the aio request immediately.
504 	 */
505 	if (priv->to_free == NULL || unlikely(req->actual == 0)) {
506 		kfree(req->buf);
507 		kfree(priv->to_free);
508 		kfree(priv);
509 		iocb->private = NULL;
510 		iocb->ki_complete(iocb,
511 				req->actual ? req->actual : (long)req->status);
512 	} else {
513 		/* ep_copy_to_user() won't report both; we hide some faults */
514 		if (unlikely(0 != req->status))
515 			DBG(epdata->dev, "%s fault %d len %d\n",
516 				ep->name, req->status, req->actual);
517 
518 		priv->buf = req->buf;
519 		priv->actual = req->actual;
520 		INIT_WORK(&priv->work, ep_user_copy_worker);
521 		schedule_work(&priv->work);
522 	}
523 
524 	usb_ep_free_request(ep, req);
525 	spin_unlock(&epdata->dev->lock);
526 	put_ep(epdata);
527 }
528 
529 static ssize_t ep_aio(struct kiocb *iocb,
530 		      struct kiocb_priv *priv,
531 		      struct ep_data *epdata,
532 		      char *buf,
533 		      size_t len)
534 {
535 	struct usb_request *req;
536 	ssize_t value;
537 
538 	iocb->private = priv;
539 	priv->iocb = iocb;
540 
541 	kiocb_set_cancel_fn(iocb, ep_aio_cancel);
542 	get_ep(epdata);
543 	priv->epdata = epdata;
544 	priv->actual = 0;
545 	priv->mm = current->mm; /* mm teardown waits for iocbs in exit_aio() */
546 
547 	/* each kiocb is coupled to one usb_request, but we can't
548 	 * allocate or submit those if the host disconnected.
549 	 */
550 	spin_lock_irq(&epdata->dev->lock);
551 	value = -ENODEV;
552 	if (unlikely(epdata->ep == NULL))
553 		goto fail;
554 
555 	req = usb_ep_alloc_request(epdata->ep, GFP_ATOMIC);
556 	value = -ENOMEM;
557 	if (unlikely(!req))
558 		goto fail;
559 
560 	priv->req = req;
561 	req->buf = buf;
562 	req->length = len;
563 	req->complete = ep_aio_complete;
564 	req->context = iocb;
565 	value = usb_ep_queue(epdata->ep, req, GFP_ATOMIC);
566 	if (unlikely(0 != value)) {
567 		usb_ep_free_request(epdata->ep, req);
568 		goto fail;
569 	}
570 	spin_unlock_irq(&epdata->dev->lock);
571 	return -EIOCBQUEUED;
572 
573 fail:
574 	spin_unlock_irq(&epdata->dev->lock);
575 	kfree(priv->to_free);
576 	kfree(priv);
577 	put_ep(epdata);
578 	return value;
579 }
580 
581 static ssize_t
582 ep_read_iter(struct kiocb *iocb, struct iov_iter *to)
583 {
584 	struct file *file = iocb->ki_filp;
585 	struct ep_data *epdata = file->private_data;
586 	size_t len = iov_iter_count(to);
587 	ssize_t value;
588 	char *buf;
589 
590 	if ((value = get_ready_ep(file->f_flags, epdata, false)) < 0)
591 		return value;
592 
593 	/* halt any endpoint by doing a "wrong direction" i/o call */
594 	if (usb_endpoint_dir_in(&epdata->desc)) {
595 		if (usb_endpoint_xfer_isoc(&epdata->desc) ||
596 		    !is_sync_kiocb(iocb)) {
597 			mutex_unlock(&epdata->lock);
598 			return -EINVAL;
599 		}
600 		DBG (epdata->dev, "%s halt\n", epdata->name);
601 		spin_lock_irq(&epdata->dev->lock);
602 		if (likely(epdata->ep != NULL))
603 			usb_ep_set_halt(epdata->ep);
604 		spin_unlock_irq(&epdata->dev->lock);
605 		mutex_unlock(&epdata->lock);
606 		return -EBADMSG;
607 	}
608 
609 	buf = kmalloc(len, GFP_KERNEL);
610 	if (unlikely(!buf)) {
611 		mutex_unlock(&epdata->lock);
612 		return -ENOMEM;
613 	}
614 	if (is_sync_kiocb(iocb)) {
615 		value = ep_io(epdata, buf, len);
616 		if (value >= 0 && (copy_to_iter(buf, value, to) != value))
617 			value = -EFAULT;
618 	} else {
619 		struct kiocb_priv *priv = kzalloc(sizeof *priv, GFP_KERNEL);
620 		value = -ENOMEM;
621 		if (!priv)
622 			goto fail;
623 		priv->to_free = dup_iter(&priv->to, to, GFP_KERNEL);
624 		if (!iter_is_ubuf(&priv->to) && !priv->to_free) {
625 			kfree(priv);
626 			goto fail;
627 		}
628 		value = ep_aio(iocb, priv, epdata, buf, len);
629 		if (value == -EIOCBQUEUED)
630 			buf = NULL;
631 	}
632 fail:
633 	kfree(buf);
634 	mutex_unlock(&epdata->lock);
635 	return value;
636 }
637 
638 static ssize_t ep_config(struct ep_data *, const char *, size_t);
639 
640 static ssize_t
641 ep_write_iter(struct kiocb *iocb, struct iov_iter *from)
642 {
643 	struct file *file = iocb->ki_filp;
644 	struct ep_data *epdata = file->private_data;
645 	size_t len = iov_iter_count(from);
646 	bool configured;
647 	ssize_t value;
648 	char *buf;
649 
650 	if ((value = get_ready_ep(file->f_flags, epdata, true)) < 0)
651 		return value;
652 
653 	configured = epdata->state == STATE_EP_ENABLED;
654 
655 	/* halt any endpoint by doing a "wrong direction" i/o call */
656 	if (configured && !usb_endpoint_dir_in(&epdata->desc)) {
657 		if (usb_endpoint_xfer_isoc(&epdata->desc) ||
658 		    !is_sync_kiocb(iocb)) {
659 			mutex_unlock(&epdata->lock);
660 			return -EINVAL;
661 		}
662 		DBG (epdata->dev, "%s halt\n", epdata->name);
663 		spin_lock_irq(&epdata->dev->lock);
664 		if (likely(epdata->ep != NULL))
665 			usb_ep_set_halt(epdata->ep);
666 		spin_unlock_irq(&epdata->dev->lock);
667 		mutex_unlock(&epdata->lock);
668 		return -EBADMSG;
669 	}
670 
671 	buf = kmalloc(len, GFP_KERNEL);
672 	if (unlikely(!buf)) {
673 		mutex_unlock(&epdata->lock);
674 		return -ENOMEM;
675 	}
676 
677 	if (unlikely(!copy_from_iter_full(buf, len, from))) {
678 		value = -EFAULT;
679 		goto out;
680 	}
681 
682 	if (unlikely(!configured)) {
683 		value = ep_config(epdata, buf, len);
684 	} else if (is_sync_kiocb(iocb)) {
685 		value = ep_io(epdata, buf, len);
686 	} else {
687 		struct kiocb_priv *priv = kzalloc(sizeof *priv, GFP_KERNEL);
688 		value = -ENOMEM;
689 		if (priv) {
690 			value = ep_aio(iocb, priv, epdata, buf, len);
691 			if (value == -EIOCBQUEUED)
692 				buf = NULL;
693 		}
694 	}
695 out:
696 	kfree(buf);
697 	mutex_unlock(&epdata->lock);
698 	return value;
699 }
700 
701 /*----------------------------------------------------------------------*/
702 
703 /* used after endpoint configuration */
704 static const struct file_operations ep_io_operations = {
705 	.owner =	THIS_MODULE,
706 
707 	.open =		ep_open,
708 	.release =	ep_release,
709 	.unlocked_ioctl = ep_ioctl,
710 	.read_iter =	ep_read_iter,
711 	.write_iter =	ep_write_iter,
712 };
713 
714 /* ENDPOINT INITIALIZATION
715  *
716  *     fd = open ("/dev/gadget/$ENDPOINT", O_RDWR)
717  *     status = write (fd, descriptors, sizeof descriptors)
718  *
719  * That write establishes the endpoint configuration, configuring
720  * the controller to process bulk, interrupt, or isochronous transfers
721  * at the right maxpacket size, and so on.
722  *
723  * The descriptors are message type 1, identified by a host order u32
724  * at the beginning of what's written.  Descriptor order is: full/low
725  * speed descriptor, then optional high speed descriptor.
726  */
727 static ssize_t
728 ep_config (struct ep_data *data, const char *buf, size_t len)
729 {
730 	struct usb_ep		*ep;
731 	u32			tag;
732 	int			value, length = len;
733 
734 	if (data->state != STATE_EP_READY) {
735 		value = -EL2HLT;
736 		goto fail;
737 	}
738 
739 	value = len;
740 	if (len < USB_DT_ENDPOINT_SIZE + 4)
741 		goto fail0;
742 
743 	/* we might need to change message format someday */
744 	memcpy(&tag, buf, 4);
745 	if (tag != 1) {
746 		DBG(data->dev, "config %s, bad tag %d\n", data->name, tag);
747 		goto fail0;
748 	}
749 	buf += 4;
750 	len -= 4;
751 
752 	/* NOTE:  audio endpoint extensions not accepted here;
753 	 * just don't include the extra bytes.
754 	 */
755 
756 	/* full/low speed descriptor, then high speed */
757 	memcpy(&data->desc, buf, USB_DT_ENDPOINT_SIZE);
758 	if (data->desc.bLength != USB_DT_ENDPOINT_SIZE
759 			|| data->desc.bDescriptorType != USB_DT_ENDPOINT)
760 		goto fail0;
761 	if (len != USB_DT_ENDPOINT_SIZE) {
762 		if (len != 2 * USB_DT_ENDPOINT_SIZE)
763 			goto fail0;
764 		memcpy(&data->hs_desc, buf + USB_DT_ENDPOINT_SIZE,
765 			USB_DT_ENDPOINT_SIZE);
766 		if (data->hs_desc.bLength != USB_DT_ENDPOINT_SIZE
767 				|| data->hs_desc.bDescriptorType
768 					!= USB_DT_ENDPOINT) {
769 			DBG(data->dev, "config %s, bad hs length or type\n",
770 					data->name);
771 			goto fail0;
772 		}
773 	}
774 
775 	spin_lock_irq (&data->dev->lock);
776 	if (data->dev->state == STATE_DEV_UNBOUND) {
777 		value = -ENOENT;
778 		goto gone;
779 	} else {
780 		ep = data->ep;
781 		if (ep == NULL) {
782 			value = -ENODEV;
783 			goto gone;
784 		}
785 	}
786 	switch (data->dev->gadget->speed) {
787 	case USB_SPEED_LOW:
788 	case USB_SPEED_FULL:
789 		ep->desc = &data->desc;
790 		break;
791 	case USB_SPEED_HIGH:
792 		/* fails if caller didn't provide that descriptor... */
793 		ep->desc = &data->hs_desc;
794 		break;
795 	default:
796 		DBG(data->dev, "unconnected, %s init abandoned\n",
797 				data->name);
798 		value = -EINVAL;
799 		goto gone;
800 	}
801 	value = usb_ep_enable(ep);
802 	if (value == 0) {
803 		data->state = STATE_EP_ENABLED;
804 		value = length;
805 	}
806 gone:
807 	spin_unlock_irq (&data->dev->lock);
808 	if (value < 0) {
809 fail:
810 		data->desc.bDescriptorType = 0;
811 		data->hs_desc.bDescriptorType = 0;
812 	}
813 	return value;
814 fail0:
815 	value = -EINVAL;
816 	goto fail;
817 }
818 
819 static int
820 ep_open (struct inode *inode, struct file *fd)
821 {
822 	struct ep_data		*data = inode->i_private;
823 	int			value = -EBUSY;
824 
825 	if (mutex_lock_interruptible(&data->lock) != 0)
826 		return -EINTR;
827 	spin_lock_irq (&data->dev->lock);
828 	if (data->dev->state == STATE_DEV_UNBOUND)
829 		value = -ENOENT;
830 	else if (data->state == STATE_EP_DISABLED) {
831 		value = 0;
832 		data->state = STATE_EP_READY;
833 		get_ep (data);
834 		fd->private_data = data;
835 		VDEBUG (data->dev, "%s ready\n", data->name);
836 	} else
837 		DBG (data->dev, "%s state %d\n",
838 			data->name, data->state);
839 	spin_unlock_irq (&data->dev->lock);
840 	mutex_unlock(&data->lock);
841 	return value;
842 }
843 
844 /*----------------------------------------------------------------------*/
845 
846 /* EP0 IMPLEMENTATION can be partly in userspace.
847  *
848  * Drivers that use this facility receive various events, including
849  * control requests the kernel doesn't handle.  Drivers that don't
850  * use this facility may be too simple-minded for real applications.
851  */
852 
853 static inline void ep0_readable (struct dev_data *dev)
854 {
855 	wake_up (&dev->wait);
856 	kill_fasync (&dev->fasync, SIGIO, POLL_IN);
857 }
858 
859 static void clean_req (struct usb_ep *ep, struct usb_request *req)
860 {
861 	struct dev_data		*dev = ep->driver_data;
862 
863 	if (req->buf != dev->rbuf) {
864 		kfree(req->buf);
865 		req->buf = dev->rbuf;
866 	}
867 	req->complete = epio_complete;
868 	dev->setup_out_ready = 0;
869 }
870 
871 static void ep0_complete (struct usb_ep *ep, struct usb_request *req)
872 {
873 	struct dev_data		*dev = ep->driver_data;
874 	unsigned long		flags;
875 	int			free = 1;
876 
877 	/* for control OUT, data must still get to userspace */
878 	spin_lock_irqsave(&dev->lock, flags);
879 	if (!dev->setup_in) {
880 		dev->setup_out_error = (req->status != 0);
881 		if (!dev->setup_out_error)
882 			free = 0;
883 		dev->setup_out_ready = 1;
884 		ep0_readable (dev);
885 	}
886 
887 	/* clean up as appropriate */
888 	if (free && req->buf != &dev->rbuf)
889 		clean_req (ep, req);
890 	req->complete = epio_complete;
891 	spin_unlock_irqrestore(&dev->lock, flags);
892 }
893 
894 static int setup_req (struct usb_ep *ep, struct usb_request *req, u16 len)
895 {
896 	struct dev_data	*dev = ep->driver_data;
897 
898 	if (dev->setup_out_ready) {
899 		DBG (dev, "ep0 request busy!\n");
900 		return -EBUSY;
901 	}
902 	if (len > sizeof (dev->rbuf))
903 		req->buf = kmalloc(len, GFP_ATOMIC);
904 	if (req->buf == NULL) {
905 		req->buf = dev->rbuf;
906 		return -ENOMEM;
907 	}
908 	req->complete = ep0_complete;
909 	req->length = len;
910 	req->zero = 0;
911 	return 0;
912 }
913 
914 static ssize_t
915 ep0_read (struct file *fd, char __user *buf, size_t len, loff_t *ptr)
916 {
917 	struct dev_data			*dev = fd->private_data;
918 	ssize_t				retval;
919 	enum ep0_state			state;
920 
921 	spin_lock_irq (&dev->lock);
922 	if (dev->state <= STATE_DEV_OPENED) {
923 		retval = -EINVAL;
924 		goto done;
925 	}
926 
927 	/* report fd mode change before acting on it */
928 	if (dev->setup_abort) {
929 		dev->setup_abort = 0;
930 		retval = -EIDRM;
931 		goto done;
932 	}
933 
934 	/* control DATA stage */
935 	if ((state = dev->state) == STATE_DEV_SETUP) {
936 
937 		if (dev->setup_in) {		/* stall IN */
938 			VDEBUG(dev, "ep0in stall\n");
939 			(void) usb_ep_set_halt (dev->gadget->ep0);
940 			retval = -EL2HLT;
941 			dev->state = STATE_DEV_CONNECTED;
942 
943 		} else if (len == 0) {		/* ack SET_CONFIGURATION etc */
944 			struct usb_ep		*ep = dev->gadget->ep0;
945 			struct usb_request	*req = dev->req;
946 
947 			if ((retval = setup_req (ep, req, 0)) == 0) {
948 				++dev->udc_usage;
949 				spin_unlock_irq (&dev->lock);
950 				retval = usb_ep_queue (ep, req, GFP_KERNEL);
951 				spin_lock_irq (&dev->lock);
952 				--dev->udc_usage;
953 			}
954 			dev->state = STATE_DEV_CONNECTED;
955 
956 			/* assume that was SET_CONFIGURATION */
957 			if (dev->current_config) {
958 				unsigned power;
959 
960 				if (gadget_is_dualspeed(dev->gadget)
961 						&& (dev->gadget->speed
962 							== USB_SPEED_HIGH))
963 					power = dev->hs_config->bMaxPower;
964 				else
965 					power = dev->config->bMaxPower;
966 				usb_gadget_vbus_draw(dev->gadget, 2 * power);
967 			}
968 
969 		} else {			/* collect OUT data */
970 			if ((fd->f_flags & O_NONBLOCK) != 0
971 					&& !dev->setup_out_ready) {
972 				retval = -EAGAIN;
973 				goto done;
974 			}
975 			spin_unlock_irq (&dev->lock);
976 			retval = wait_event_interruptible (dev->wait,
977 					dev->setup_out_ready != 0);
978 
979 			/* FIXME state could change from under us */
980 			spin_lock_irq (&dev->lock);
981 			if (retval)
982 				goto done;
983 
984 			if (dev->state != STATE_DEV_SETUP) {
985 				retval = -ECANCELED;
986 				goto done;
987 			}
988 			dev->state = STATE_DEV_CONNECTED;
989 
990 			if (dev->setup_out_error)
991 				retval = -EIO;
992 			else {
993 				len = min (len, (size_t)dev->req->actual);
994 				++dev->udc_usage;
995 				spin_unlock_irq(&dev->lock);
996 				if (copy_to_user (buf, dev->req->buf, len))
997 					retval = -EFAULT;
998 				else
999 					retval = len;
1000 				spin_lock_irq(&dev->lock);
1001 				--dev->udc_usage;
1002 				clean_req (dev->gadget->ep0, dev->req);
1003 				/* NOTE userspace can't yet choose to stall */
1004 			}
1005 		}
1006 		goto done;
1007 	}
1008 
1009 	/* else normal: return event data */
1010 	if (len < sizeof dev->event [0]) {
1011 		retval = -EINVAL;
1012 		goto done;
1013 	}
1014 	len -= len % sizeof (struct usb_gadgetfs_event);
1015 	dev->usermode_setup = 1;
1016 
1017 scan:
1018 	/* return queued events right away */
1019 	if (dev->ev_next != 0) {
1020 		unsigned		i, n;
1021 
1022 		n = len / sizeof (struct usb_gadgetfs_event);
1023 		if (dev->ev_next < n)
1024 			n = dev->ev_next;
1025 
1026 		/* ep0 i/o has special semantics during STATE_DEV_SETUP */
1027 		for (i = 0; i < n; i++) {
1028 			if (dev->event [i].type == GADGETFS_SETUP) {
1029 				dev->state = STATE_DEV_SETUP;
1030 				n = i + 1;
1031 				break;
1032 			}
1033 		}
1034 		spin_unlock_irq (&dev->lock);
1035 		len = n * sizeof (struct usb_gadgetfs_event);
1036 		if (copy_to_user (buf, &dev->event, len))
1037 			retval = -EFAULT;
1038 		else
1039 			retval = len;
1040 		if (len > 0) {
1041 			/* NOTE this doesn't guard against broken drivers;
1042 			 * concurrent ep0 readers may lose events.
1043 			 */
1044 			spin_lock_irq (&dev->lock);
1045 			if (dev->ev_next > n) {
1046 				memmove(&dev->event[0], &dev->event[n],
1047 					sizeof (struct usb_gadgetfs_event)
1048 						* (dev->ev_next - n));
1049 			}
1050 			dev->ev_next -= n;
1051 			spin_unlock_irq (&dev->lock);
1052 		}
1053 		return retval;
1054 	}
1055 	if (fd->f_flags & O_NONBLOCK) {
1056 		retval = -EAGAIN;
1057 		goto done;
1058 	}
1059 
1060 	switch (state) {
1061 	default:
1062 		DBG (dev, "fail %s, state %d\n", __func__, state);
1063 		retval = -ESRCH;
1064 		break;
1065 	case STATE_DEV_UNCONNECTED:
1066 	case STATE_DEV_CONNECTED:
1067 		spin_unlock_irq (&dev->lock);
1068 		DBG (dev, "%s wait\n", __func__);
1069 
1070 		/* wait for events */
1071 		retval = wait_event_interruptible (dev->wait,
1072 				dev->ev_next != 0);
1073 		if (retval < 0)
1074 			return retval;
1075 		spin_lock_irq (&dev->lock);
1076 		goto scan;
1077 	}
1078 
1079 done:
1080 	spin_unlock_irq (&dev->lock);
1081 	return retval;
1082 }
1083 
1084 static struct usb_gadgetfs_event *
1085 next_event (struct dev_data *dev, enum usb_gadgetfs_event_type type)
1086 {
1087 	struct usb_gadgetfs_event	*event;
1088 	unsigned			i;
1089 
1090 	switch (type) {
1091 	/* these events purge the queue */
1092 	case GADGETFS_DISCONNECT:
1093 		if (dev->state == STATE_DEV_SETUP)
1094 			dev->setup_abort = 1;
1095 		fallthrough;
1096 	case GADGETFS_CONNECT:
1097 		dev->ev_next = 0;
1098 		break;
1099 	case GADGETFS_SETUP:		/* previous request timed out */
1100 	case GADGETFS_SUSPEND:		/* same effect */
1101 		/* these events can't be repeated */
1102 		for (i = 0; i != dev->ev_next; i++) {
1103 			if (dev->event [i].type != type)
1104 				continue;
1105 			DBG(dev, "discard old event[%d] %d\n", i, type);
1106 			dev->ev_next--;
1107 			if (i == dev->ev_next)
1108 				break;
1109 			/* indices start at zero, for simplicity */
1110 			memmove (&dev->event [i], &dev->event [i + 1],
1111 				sizeof (struct usb_gadgetfs_event)
1112 					* (dev->ev_next - i));
1113 		}
1114 		break;
1115 	default:
1116 		BUG ();
1117 	}
1118 	VDEBUG(dev, "event[%d] = %d\n", dev->ev_next, type);
1119 	event = &dev->event [dev->ev_next++];
1120 	BUG_ON (dev->ev_next > N_EVENT);
1121 	memset (event, 0, sizeof *event);
1122 	event->type = type;
1123 	return event;
1124 }
1125 
1126 static ssize_t
1127 ep0_write (struct file *fd, const char __user *buf, size_t len, loff_t *ptr)
1128 {
1129 	struct dev_data		*dev = fd->private_data;
1130 	ssize_t			retval = -ESRCH;
1131 
1132 	/* report fd mode change before acting on it */
1133 	if (dev->setup_abort) {
1134 		dev->setup_abort = 0;
1135 		retval = -EIDRM;
1136 
1137 	/* data and/or status stage for control request */
1138 	} else if (dev->state == STATE_DEV_SETUP) {
1139 
1140 		len = min_t(size_t, len, dev->setup_wLength);
1141 		if (dev->setup_in) {
1142 			retval = setup_req (dev->gadget->ep0, dev->req, len);
1143 			if (retval == 0) {
1144 				dev->state = STATE_DEV_CONNECTED;
1145 				++dev->udc_usage;
1146 				spin_unlock_irq (&dev->lock);
1147 				if (copy_from_user (dev->req->buf, buf, len))
1148 					retval = -EFAULT;
1149 				else {
1150 					if (len < dev->setup_wLength)
1151 						dev->req->zero = 1;
1152 					retval = usb_ep_queue (
1153 						dev->gadget->ep0, dev->req,
1154 						GFP_KERNEL);
1155 				}
1156 				spin_lock_irq(&dev->lock);
1157 				--dev->udc_usage;
1158 				if (retval < 0) {
1159 					clean_req (dev->gadget->ep0, dev->req);
1160 				} else
1161 					retval = len;
1162 
1163 				return retval;
1164 			}
1165 
1166 		/* can stall some OUT transfers */
1167 		} else if (dev->setup_can_stall) {
1168 			VDEBUG(dev, "ep0out stall\n");
1169 			(void) usb_ep_set_halt (dev->gadget->ep0);
1170 			retval = -EL2HLT;
1171 			dev->state = STATE_DEV_CONNECTED;
1172 		} else {
1173 			DBG(dev, "bogus ep0out stall!\n");
1174 		}
1175 	} else
1176 		DBG (dev, "fail %s, state %d\n", __func__, dev->state);
1177 
1178 	return retval;
1179 }
1180 
1181 static int
1182 ep0_fasync (int f, struct file *fd, int on)
1183 {
1184 	struct dev_data		*dev = fd->private_data;
1185 	// caller must F_SETOWN before signal delivery happens
1186 	VDEBUG(dev, "%s %s\n", __func__, str_on_off(on));
1187 	return fasync_helper (f, fd, on, &dev->fasync);
1188 }
1189 
1190 static struct usb_gadget_driver gadgetfs_driver;
1191 
1192 static int
1193 dev_release (struct inode *inode, struct file *fd)
1194 {
1195 	struct dev_data		*dev = fd->private_data;
1196 
1197 	/* closing ep0 === shutdown all */
1198 
1199 	if (dev->gadget_registered) {
1200 		usb_gadget_unregister_driver (&gadgetfs_driver);
1201 		dev->gadget_registered = false;
1202 	}
1203 
1204 	/* at this point "good" hardware has disconnected the
1205 	 * device from USB; the host won't see it any more.
1206 	 * alternatively, all host requests will time out.
1207 	 */
1208 
1209 	kfree (dev->buf);
1210 	dev->buf = NULL;
1211 
1212 	/* other endpoints were all decoupled from this device */
1213 	spin_lock_irq(&dev->lock);
1214 	dev->state = STATE_DEV_DISABLED;
1215 	spin_unlock_irq(&dev->lock);
1216 
1217 	put_dev (dev);
1218 	return 0;
1219 }
1220 
1221 static __poll_t
1222 ep0_poll (struct file *fd, poll_table *wait)
1223 {
1224 	struct dev_data         *dev = fd->private_data;
1225 	__poll_t                mask = 0;
1226 
1227 	if (dev->state <= STATE_DEV_OPENED)
1228 		return DEFAULT_POLLMASK;
1229 
1230 	poll_wait(fd, &dev->wait, wait);
1231 
1232 	spin_lock_irq(&dev->lock);
1233 
1234 	/* report fd mode change before acting on it */
1235 	if (dev->setup_abort) {
1236 		dev->setup_abort = 0;
1237 		mask = EPOLLHUP;
1238 		goto out;
1239 	}
1240 
1241 	if (dev->state == STATE_DEV_SETUP) {
1242 		if (dev->setup_in || dev->setup_can_stall)
1243 			mask = EPOLLOUT;
1244 	} else {
1245 		if (dev->ev_next != 0)
1246 			mask = EPOLLIN;
1247 	}
1248 out:
1249 	spin_unlock_irq(&dev->lock);
1250 	return mask;
1251 }
1252 
1253 static long gadget_dev_ioctl (struct file *fd, unsigned code, unsigned long value)
1254 {
1255 	struct dev_data		*dev = fd->private_data;
1256 	struct usb_gadget	*gadget = dev->gadget;
1257 	long ret = -ENOTTY;
1258 
1259 	spin_lock_irq(&dev->lock);
1260 	if (dev->state == STATE_DEV_OPENED ||
1261 			dev->state == STATE_DEV_UNBOUND) {
1262 		/* Not bound to a UDC */
1263 	} else if (gadget->ops->ioctl) {
1264 		++dev->udc_usage;
1265 		spin_unlock_irq(&dev->lock);
1266 
1267 		ret = gadget->ops->ioctl (gadget, code, value);
1268 
1269 		spin_lock_irq(&dev->lock);
1270 		--dev->udc_usage;
1271 	}
1272 	spin_unlock_irq(&dev->lock);
1273 
1274 	return ret;
1275 }
1276 
1277 /*----------------------------------------------------------------------*/
1278 
1279 /* The in-kernel gadget driver handles most ep0 issues, in particular
1280  * enumerating the single configuration (as provided from user space).
1281  *
1282  * Unrecognized ep0 requests may be handled in user space.
1283  */
1284 
1285 static void make_qualifier (struct dev_data *dev)
1286 {
1287 	struct usb_qualifier_descriptor		qual;
1288 	struct usb_device_descriptor		*desc;
1289 
1290 	qual.bLength = sizeof qual;
1291 	qual.bDescriptorType = USB_DT_DEVICE_QUALIFIER;
1292 	qual.bcdUSB = cpu_to_le16 (0x0200);
1293 
1294 	desc = dev->dev;
1295 	qual.bDeviceClass = desc->bDeviceClass;
1296 	qual.bDeviceSubClass = desc->bDeviceSubClass;
1297 	qual.bDeviceProtocol = desc->bDeviceProtocol;
1298 
1299 	/* assumes ep0 uses the same value for both speeds ... */
1300 	qual.bMaxPacketSize0 = dev->gadget->ep0->maxpacket;
1301 
1302 	qual.bNumConfigurations = 1;
1303 	qual.bRESERVED = 0;
1304 
1305 	memcpy (dev->rbuf, &qual, sizeof qual);
1306 }
1307 
1308 static int
1309 config_buf (struct dev_data *dev, u8 type, unsigned index)
1310 {
1311 	int		len;
1312 	int		hs = 0;
1313 
1314 	/* only one configuration */
1315 	if (index > 0)
1316 		return -EINVAL;
1317 
1318 	if (gadget_is_dualspeed(dev->gadget)) {
1319 		hs = (dev->gadget->speed == USB_SPEED_HIGH);
1320 		if (type == USB_DT_OTHER_SPEED_CONFIG)
1321 			hs = !hs;
1322 	}
1323 	if (hs) {
1324 		dev->req->buf = dev->hs_config;
1325 		len = le16_to_cpu(dev->hs_config->wTotalLength);
1326 	} else {
1327 		dev->req->buf = dev->config;
1328 		len = le16_to_cpu(dev->config->wTotalLength);
1329 	}
1330 	((u8 *)dev->req->buf) [1] = type;
1331 	return len;
1332 }
1333 
1334 static int
1335 gadgetfs_setup (struct usb_gadget *gadget, const struct usb_ctrlrequest *ctrl)
1336 {
1337 	struct dev_data			*dev = get_gadget_data (gadget);
1338 	struct usb_request		*req = dev->req;
1339 	int				value = -EOPNOTSUPP;
1340 	struct usb_gadgetfs_event	*event;
1341 	u16				w_value = le16_to_cpu(ctrl->wValue);
1342 	u16				w_length = le16_to_cpu(ctrl->wLength);
1343 
1344 	if (w_length > RBUF_SIZE) {
1345 		if (ctrl->bRequestType & USB_DIR_IN) {
1346 			/* Cast away the const, we are going to overwrite on purpose. */
1347 			__le16 *temp = (__le16 *)&ctrl->wLength;
1348 
1349 			*temp = cpu_to_le16(RBUF_SIZE);
1350 			w_length = RBUF_SIZE;
1351 		} else {
1352 			return value;
1353 		}
1354 	}
1355 
1356 	spin_lock (&dev->lock);
1357 	dev->setup_abort = 0;
1358 	if (dev->state == STATE_DEV_UNCONNECTED) {
1359 		if (gadget_is_dualspeed(gadget)
1360 				&& gadget->speed == USB_SPEED_HIGH
1361 				&& dev->hs_config == NULL) {
1362 			spin_unlock(&dev->lock);
1363 			ERROR (dev, "no high speed config??\n");
1364 			return -EINVAL;
1365 		}
1366 
1367 		dev->state = STATE_DEV_CONNECTED;
1368 
1369 		INFO (dev, "connected\n");
1370 		event = next_event (dev, GADGETFS_CONNECT);
1371 		event->u.speed = gadget->speed;
1372 		ep0_readable (dev);
1373 
1374 	/* host may have given up waiting for response.  we can miss control
1375 	 * requests handled lower down (device/endpoint status and features);
1376 	 * then ep0_{read,write} will report the wrong status. controller
1377 	 * driver will have aborted pending i/o.
1378 	 */
1379 	} else if (dev->state == STATE_DEV_SETUP)
1380 		dev->setup_abort = 1;
1381 
1382 	req->buf = dev->rbuf;
1383 	req->context = NULL;
1384 	switch (ctrl->bRequest) {
1385 
1386 	case USB_REQ_GET_DESCRIPTOR:
1387 		if (ctrl->bRequestType != USB_DIR_IN)
1388 			goto unrecognized;
1389 		switch (w_value >> 8) {
1390 
1391 		case USB_DT_DEVICE:
1392 			value = min (w_length, (u16) sizeof *dev->dev);
1393 			dev->dev->bMaxPacketSize0 = dev->gadget->ep0->maxpacket;
1394 			req->buf = dev->dev;
1395 			break;
1396 		case USB_DT_DEVICE_QUALIFIER:
1397 			if (!dev->hs_config)
1398 				break;
1399 			value = min (w_length, (u16)
1400 				sizeof (struct usb_qualifier_descriptor));
1401 			make_qualifier (dev);
1402 			break;
1403 		case USB_DT_OTHER_SPEED_CONFIG:
1404 		case USB_DT_CONFIG:
1405 			value = config_buf (dev,
1406 					w_value >> 8,
1407 					w_value & 0xff);
1408 			if (value >= 0)
1409 				value = min (w_length, (u16) value);
1410 			break;
1411 		case USB_DT_STRING:
1412 			goto unrecognized;
1413 
1414 		default:		// all others are errors
1415 			break;
1416 		}
1417 		break;
1418 
1419 	/* currently one config, two speeds */
1420 	case USB_REQ_SET_CONFIGURATION:
1421 		if (ctrl->bRequestType != 0)
1422 			goto unrecognized;
1423 		if (0 == (u8) w_value) {
1424 			value = 0;
1425 			dev->current_config = 0;
1426 			usb_gadget_vbus_draw(gadget, 8 /* mA */ );
1427 			// user mode expected to disable endpoints
1428 		} else {
1429 			u8	config, power;
1430 
1431 			if (gadget_is_dualspeed(gadget)
1432 					&& gadget->speed == USB_SPEED_HIGH) {
1433 				config = dev->hs_config->bConfigurationValue;
1434 				power = dev->hs_config->bMaxPower;
1435 			} else {
1436 				config = dev->config->bConfigurationValue;
1437 				power = dev->config->bMaxPower;
1438 			}
1439 
1440 			if (config == (u8) w_value) {
1441 				value = 0;
1442 				dev->current_config = config;
1443 				usb_gadget_vbus_draw(gadget, 2 * power);
1444 			}
1445 		}
1446 
1447 		/* report SET_CONFIGURATION like any other control request,
1448 		 * except that usermode may not stall this.  the next
1449 		 * request mustn't be allowed start until this finishes:
1450 		 * endpoints and threads set up, etc.
1451 		 *
1452 		 * NOTE:  older PXA hardware (before PXA 255: without UDCCFR)
1453 		 * has bad/racey automagic that prevents synchronizing here.
1454 		 * even kernel mode drivers often miss them.
1455 		 */
1456 		if (value == 0) {
1457 			INFO (dev, "configuration #%d\n", dev->current_config);
1458 			usb_gadget_set_state(gadget, USB_STATE_CONFIGURED);
1459 			if (dev->usermode_setup) {
1460 				dev->setup_can_stall = 0;
1461 				goto delegate;
1462 			}
1463 		}
1464 		break;
1465 
1466 #ifndef	CONFIG_USB_PXA25X
1467 	/* PXA automagically handles this request too */
1468 	case USB_REQ_GET_CONFIGURATION:
1469 		if (ctrl->bRequestType != 0x80)
1470 			goto unrecognized;
1471 		*(u8 *)req->buf = dev->current_config;
1472 		value = min (w_length, (u16) 1);
1473 		break;
1474 #endif
1475 
1476 	default:
1477 unrecognized:
1478 		VDEBUG (dev, "%s req%02x.%02x v%04x i%04x l%d\n",
1479 			dev->usermode_setup ? "delegate" : "fail",
1480 			ctrl->bRequestType, ctrl->bRequest,
1481 			w_value, le16_to_cpu(ctrl->wIndex), w_length);
1482 
1483 		/* if there's an ep0 reader, don't stall */
1484 		if (dev->usermode_setup) {
1485 			dev->setup_can_stall = 1;
1486 delegate:
1487 			dev->setup_in = (ctrl->bRequestType & USB_DIR_IN)
1488 						? 1 : 0;
1489 			dev->setup_wLength = w_length;
1490 			dev->setup_out_ready = 0;
1491 			dev->setup_out_error = 0;
1492 
1493 			/* read DATA stage for OUT right away */
1494 			if (unlikely (!dev->setup_in && w_length)) {
1495 				value = setup_req (gadget->ep0, dev->req,
1496 							w_length);
1497 				if (value < 0)
1498 					break;
1499 
1500 				++dev->udc_usage;
1501 				spin_unlock (&dev->lock);
1502 				value = usb_ep_queue (gadget->ep0, dev->req,
1503 							GFP_KERNEL);
1504 				spin_lock (&dev->lock);
1505 				--dev->udc_usage;
1506 				if (value < 0) {
1507 					clean_req (gadget->ep0, dev->req);
1508 					break;
1509 				}
1510 
1511 				/* we can't currently stall these */
1512 				dev->setup_can_stall = 0;
1513 			}
1514 
1515 			/* state changes when reader collects event */
1516 			event = next_event (dev, GADGETFS_SETUP);
1517 			event->u.setup = *ctrl;
1518 			ep0_readable (dev);
1519 			spin_unlock (&dev->lock);
1520 			/*
1521 			 * Return USB_GADGET_DELAYED_STATUS as a workaround to
1522 			 * stop some UDC drivers (e.g. dwc3) from automatically
1523 			 * proceeding with the status stage for 0-length
1524 			 * transfers.
1525 			 * Should be removed once all UDC drivers are fixed to
1526 			 * always delay the status stage until a response is
1527 			 * queued to EP0.
1528 			 */
1529 			return w_length == 0 ? USB_GADGET_DELAYED_STATUS : 0;
1530 		}
1531 	}
1532 
1533 	/* proceed with data transfer and status phases? */
1534 	if (value >= 0 && dev->state != STATE_DEV_SETUP) {
1535 		req->length = value;
1536 		req->zero = value < w_length;
1537 
1538 		++dev->udc_usage;
1539 		spin_unlock (&dev->lock);
1540 		value = usb_ep_queue (gadget->ep0, req, GFP_KERNEL);
1541 		spin_lock(&dev->lock);
1542 		--dev->udc_usage;
1543 		spin_unlock(&dev->lock);
1544 		if (value < 0) {
1545 			DBG (dev, "ep_queue --> %d\n", value);
1546 			req->status = 0;
1547 		}
1548 		return value;
1549 	}
1550 
1551 	/* device stalls when value < 0 */
1552 	spin_unlock (&dev->lock);
1553 	return value;
1554 }
1555 
1556 static void destroy_ep_files (struct dev_data *dev)
1557 {
1558 	DBG (dev, "%s %d\n", __func__, dev->state);
1559 
1560 	/* dev->state must prevent interference */
1561 	spin_lock_irq (&dev->lock);
1562 	while (!list_empty(&dev->epfiles)) {
1563 		struct ep_data	*ep;
1564 		struct inode	*parent;
1565 		struct dentry	*dentry;
1566 
1567 		/* break link to FS */
1568 		ep = list_first_entry (&dev->epfiles, struct ep_data, epfiles);
1569 		list_del_init (&ep->epfiles);
1570 		spin_unlock_irq (&dev->lock);
1571 
1572 		dentry = ep->dentry;
1573 		ep->dentry = NULL;
1574 		parent = d_inode(dentry->d_parent);
1575 
1576 		/* break link to controller */
1577 		mutex_lock(&ep->lock);
1578 		if (ep->state == STATE_EP_ENABLED)
1579 			(void) usb_ep_disable (ep->ep);
1580 		ep->state = STATE_EP_UNBOUND;
1581 		usb_ep_free_request (ep->ep, ep->req);
1582 		ep->ep = NULL;
1583 		mutex_unlock(&ep->lock);
1584 
1585 		wake_up (&ep->wait);
1586 		put_ep (ep);
1587 
1588 		/* break link to dcache */
1589 		inode_lock(parent);
1590 		d_delete (dentry);
1591 		dput (dentry);
1592 		inode_unlock(parent);
1593 
1594 		spin_lock_irq (&dev->lock);
1595 	}
1596 	spin_unlock_irq (&dev->lock);
1597 }
1598 
1599 
1600 static struct dentry *
1601 gadgetfs_create_file (struct super_block *sb, char const *name,
1602 		void *data, const struct file_operations *fops);
1603 
1604 static int activate_ep_files (struct dev_data *dev)
1605 {
1606 	struct usb_ep	*ep;
1607 	struct ep_data	*data;
1608 
1609 	gadget_for_each_ep (ep, dev->gadget) {
1610 
1611 		data = kzalloc(sizeof(*data), GFP_KERNEL);
1612 		if (!data)
1613 			goto enomem0;
1614 		data->state = STATE_EP_DISABLED;
1615 		mutex_init(&data->lock);
1616 		init_waitqueue_head (&data->wait);
1617 
1618 		strncpy (data->name, ep->name, sizeof (data->name) - 1);
1619 		refcount_set (&data->count, 1);
1620 		data->dev = dev;
1621 		get_dev (dev);
1622 
1623 		data->ep = ep;
1624 		ep->driver_data = data;
1625 
1626 		data->req = usb_ep_alloc_request (ep, GFP_KERNEL);
1627 		if (!data->req)
1628 			goto enomem1;
1629 
1630 		data->dentry = gadgetfs_create_file (dev->sb, data->name,
1631 				data, &ep_io_operations);
1632 		if (!data->dentry)
1633 			goto enomem2;
1634 		list_add_tail (&data->epfiles, &dev->epfiles);
1635 	}
1636 	return 0;
1637 
1638 enomem2:
1639 	usb_ep_free_request (ep, data->req);
1640 enomem1:
1641 	put_dev (dev);
1642 	kfree (data);
1643 enomem0:
1644 	DBG (dev, "%s enomem\n", __func__);
1645 	destroy_ep_files (dev);
1646 	return -ENOMEM;
1647 }
1648 
1649 static void
1650 gadgetfs_unbind (struct usb_gadget *gadget)
1651 {
1652 	struct dev_data		*dev = get_gadget_data (gadget);
1653 
1654 	DBG (dev, "%s\n", __func__);
1655 
1656 	spin_lock_irq (&dev->lock);
1657 	dev->state = STATE_DEV_UNBOUND;
1658 	while (dev->udc_usage > 0) {
1659 		spin_unlock_irq(&dev->lock);
1660 		usleep_range(1000, 2000);
1661 		spin_lock_irq(&dev->lock);
1662 	}
1663 	spin_unlock_irq (&dev->lock);
1664 
1665 	destroy_ep_files (dev);
1666 	gadget->ep0->driver_data = NULL;
1667 	set_gadget_data (gadget, NULL);
1668 
1669 	/* we've already been disconnected ... no i/o is active */
1670 	if (dev->req)
1671 		usb_ep_free_request (gadget->ep0, dev->req);
1672 	DBG (dev, "%s done\n", __func__);
1673 	put_dev (dev);
1674 }
1675 
1676 static struct dev_data		*the_device;
1677 
1678 static int gadgetfs_bind(struct usb_gadget *gadget,
1679 		struct usb_gadget_driver *driver)
1680 {
1681 	struct dev_data		*dev = the_device;
1682 
1683 	if (!dev)
1684 		return -ESRCH;
1685 	if (0 != strcmp (CHIP, gadget->name)) {
1686 		pr_err("%s expected %s controller not %s\n",
1687 			shortname, CHIP, gadget->name);
1688 		return -ENODEV;
1689 	}
1690 
1691 	set_gadget_data (gadget, dev);
1692 	dev->gadget = gadget;
1693 	gadget->ep0->driver_data = dev;
1694 
1695 	/* preallocate control response and buffer */
1696 	dev->req = usb_ep_alloc_request (gadget->ep0, GFP_KERNEL);
1697 	if (!dev->req)
1698 		goto enomem;
1699 	dev->req->context = NULL;
1700 	dev->req->complete = epio_complete;
1701 
1702 	if (activate_ep_files (dev) < 0)
1703 		goto enomem;
1704 
1705 	INFO (dev, "bound to %s driver\n", gadget->name);
1706 	spin_lock_irq(&dev->lock);
1707 	dev->state = STATE_DEV_UNCONNECTED;
1708 	spin_unlock_irq(&dev->lock);
1709 	get_dev (dev);
1710 	return 0;
1711 
1712 enomem:
1713 	gadgetfs_unbind (gadget);
1714 	return -ENOMEM;
1715 }
1716 
1717 static void
1718 gadgetfs_disconnect (struct usb_gadget *gadget)
1719 {
1720 	struct dev_data		*dev = get_gadget_data (gadget);
1721 	unsigned long		flags;
1722 
1723 	spin_lock_irqsave (&dev->lock, flags);
1724 	if (dev->state == STATE_DEV_UNCONNECTED)
1725 		goto exit;
1726 	dev->state = STATE_DEV_UNCONNECTED;
1727 
1728 	INFO (dev, "disconnected\n");
1729 	next_event (dev, GADGETFS_DISCONNECT);
1730 	ep0_readable (dev);
1731 exit:
1732 	spin_unlock_irqrestore (&dev->lock, flags);
1733 }
1734 
1735 static void
1736 gadgetfs_suspend (struct usb_gadget *gadget)
1737 {
1738 	struct dev_data		*dev = get_gadget_data (gadget);
1739 	unsigned long		flags;
1740 
1741 	INFO (dev, "suspended from state %d\n", dev->state);
1742 	spin_lock_irqsave(&dev->lock, flags);
1743 	switch (dev->state) {
1744 	case STATE_DEV_SETUP:		// VERY odd... host died??
1745 	case STATE_DEV_CONNECTED:
1746 	case STATE_DEV_UNCONNECTED:
1747 		next_event (dev, GADGETFS_SUSPEND);
1748 		ep0_readable (dev);
1749 		fallthrough;
1750 	default:
1751 		break;
1752 	}
1753 	spin_unlock_irqrestore(&dev->lock, flags);
1754 }
1755 
1756 static struct usb_gadget_driver gadgetfs_driver = {
1757 	.function	= (char *) driver_desc,
1758 	.bind		= gadgetfs_bind,
1759 	.unbind		= gadgetfs_unbind,
1760 	.setup		= gadgetfs_setup,
1761 	.reset		= gadgetfs_disconnect,
1762 	.disconnect	= gadgetfs_disconnect,
1763 	.suspend	= gadgetfs_suspend,
1764 
1765 	.driver	= {
1766 		.name		= shortname,
1767 	},
1768 };
1769 
1770 /*----------------------------------------------------------------------*/
1771 /* DEVICE INITIALIZATION
1772  *
1773  *     fd = open ("/dev/gadget/$CHIP", O_RDWR)
1774  *     status = write (fd, descriptors, sizeof descriptors)
1775  *
1776  * That write establishes the device configuration, so the kernel can
1777  * bind to the controller ... guaranteeing it can handle enumeration
1778  * at all necessary speeds.  Descriptor order is:
1779  *
1780  * . message tag (u32, host order) ... for now, must be zero; it
1781  *	would change to support features like multi-config devices
1782  * . full/low speed config ... all wTotalLength bytes (with interface,
1783  *	class, altsetting, endpoint, and other descriptors)
1784  * . high speed config ... all descriptors, for high speed operation;
1785  *	this one's optional except for high-speed hardware
1786  * . device descriptor
1787  *
1788  * Endpoints are not yet enabled. Drivers must wait until device
1789  * configuration and interface altsetting changes create
1790  * the need to configure (or unconfigure) them.
1791  *
1792  * After initialization, the device stays active for as long as that
1793  * $CHIP file is open.  Events must then be read from that descriptor,
1794  * such as configuration notifications.
1795  */
1796 
1797 static int is_valid_config(struct usb_config_descriptor *config,
1798 		unsigned int total)
1799 {
1800 	return config->bDescriptorType == USB_DT_CONFIG
1801 		&& config->bLength == USB_DT_CONFIG_SIZE
1802 		&& total >= USB_DT_CONFIG_SIZE
1803 		&& config->bConfigurationValue != 0
1804 		&& (config->bmAttributes & USB_CONFIG_ATT_ONE) != 0
1805 		&& (config->bmAttributes & USB_CONFIG_ATT_WAKEUP) == 0;
1806 	/* FIXME if gadget->is_otg, _must_ include an otg descriptor */
1807 	/* FIXME check lengths: walk to end */
1808 }
1809 
1810 static ssize_t
1811 dev_config (struct file *fd, const char __user *buf, size_t len, loff_t *ptr)
1812 {
1813 	struct dev_data		*dev = fd->private_data;
1814 	ssize_t			value, length = len;
1815 	unsigned		total;
1816 	u32			tag;
1817 	char			*kbuf;
1818 
1819 	spin_lock_irq(&dev->lock);
1820 	if (dev->state > STATE_DEV_OPENED) {
1821 		value = ep0_write(fd, buf, len, ptr);
1822 		spin_unlock_irq(&dev->lock);
1823 		return value;
1824 	}
1825 	spin_unlock_irq(&dev->lock);
1826 
1827 	if ((len < (USB_DT_CONFIG_SIZE + USB_DT_DEVICE_SIZE + 4)) ||
1828 	    (len > PAGE_SIZE * 4))
1829 		return -EINVAL;
1830 
1831 	/* we might need to change message format someday */
1832 	if (copy_from_user (&tag, buf, 4))
1833 		return -EFAULT;
1834 	if (tag != 0)
1835 		return -EINVAL;
1836 	buf += 4;
1837 	length -= 4;
1838 
1839 	kbuf = memdup_user(buf, length);
1840 	if (IS_ERR(kbuf))
1841 		return PTR_ERR(kbuf);
1842 
1843 	spin_lock_irq (&dev->lock);
1844 	value = -EINVAL;
1845 	if (dev->buf) {
1846 		spin_unlock_irq(&dev->lock);
1847 		kfree(kbuf);
1848 		return value;
1849 	}
1850 	dev->buf = kbuf;
1851 
1852 	/* full or low speed config */
1853 	dev->config = (void *) kbuf;
1854 	total = le16_to_cpu(dev->config->wTotalLength);
1855 	if (!is_valid_config(dev->config, total) ||
1856 			total > length - USB_DT_DEVICE_SIZE)
1857 		goto fail;
1858 	kbuf += total;
1859 	length -= total;
1860 
1861 	/* optional high speed config */
1862 	if (kbuf [1] == USB_DT_CONFIG) {
1863 		dev->hs_config = (void *) kbuf;
1864 		total = le16_to_cpu(dev->hs_config->wTotalLength);
1865 		if (!is_valid_config(dev->hs_config, total) ||
1866 				total > length - USB_DT_DEVICE_SIZE)
1867 			goto fail;
1868 		kbuf += total;
1869 		length -= total;
1870 	} else {
1871 		dev->hs_config = NULL;
1872 	}
1873 
1874 	/* could support multiple configs, using another encoding! */
1875 
1876 	/* device descriptor (tweaked for paranoia) */
1877 	if (length != USB_DT_DEVICE_SIZE)
1878 		goto fail;
1879 	dev->dev = (void *)kbuf;
1880 	if (dev->dev->bLength != USB_DT_DEVICE_SIZE
1881 			|| dev->dev->bDescriptorType != USB_DT_DEVICE
1882 			|| dev->dev->bNumConfigurations != 1)
1883 		goto fail;
1884 	dev->dev->bcdUSB = cpu_to_le16 (0x0200);
1885 
1886 	/* triggers gadgetfs_bind(); then we can enumerate. */
1887 	spin_unlock_irq (&dev->lock);
1888 	if (dev->hs_config)
1889 		gadgetfs_driver.max_speed = USB_SPEED_HIGH;
1890 	else
1891 		gadgetfs_driver.max_speed = USB_SPEED_FULL;
1892 
1893 	value = usb_gadget_register_driver(&gadgetfs_driver);
1894 	if (value != 0) {
1895 		spin_lock_irq(&dev->lock);
1896 		goto fail;
1897 	} else {
1898 		/* at this point "good" hardware has for the first time
1899 		 * let the USB the host see us.  alternatively, if users
1900 		 * unplug/replug that will clear all the error state.
1901 		 *
1902 		 * note:  everything running before here was guaranteed
1903 		 * to choke driver model style diagnostics.  from here
1904 		 * on, they can work ... except in cleanup paths that
1905 		 * kick in after the ep0 descriptor is closed.
1906 		 */
1907 		value = len;
1908 		dev->gadget_registered = true;
1909 	}
1910 	return value;
1911 
1912 fail:
1913 	dev->config = NULL;
1914 	dev->hs_config = NULL;
1915 	dev->dev = NULL;
1916 	spin_unlock_irq (&dev->lock);
1917 	pr_debug ("%s: %s fail %zd, %p\n", shortname, __func__, value, dev);
1918 	kfree (dev->buf);
1919 	dev->buf = NULL;
1920 	return value;
1921 }
1922 
1923 static int
1924 gadget_dev_open (struct inode *inode, struct file *fd)
1925 {
1926 	struct dev_data		*dev = inode->i_private;
1927 	int			value = -EBUSY;
1928 
1929 	spin_lock_irq(&dev->lock);
1930 	if (dev->state == STATE_DEV_DISABLED) {
1931 		dev->ev_next = 0;
1932 		dev->state = STATE_DEV_OPENED;
1933 		fd->private_data = dev;
1934 		get_dev (dev);
1935 		value = 0;
1936 	}
1937 	spin_unlock_irq(&dev->lock);
1938 	return value;
1939 }
1940 
1941 static const struct file_operations ep0_operations = {
1942 
1943 	.open =		gadget_dev_open,
1944 	.read =		ep0_read,
1945 	.write =	dev_config,
1946 	.fasync =	ep0_fasync,
1947 	.poll =		ep0_poll,
1948 	.unlocked_ioctl = gadget_dev_ioctl,
1949 	.release =	dev_release,
1950 };
1951 
1952 /*----------------------------------------------------------------------*/
1953 
1954 /* FILESYSTEM AND SUPERBLOCK OPERATIONS
1955  *
1956  * Mounting the filesystem creates a controller file, used first for
1957  * device configuration then later for event monitoring.
1958  */
1959 
1960 
1961 /* FIXME PAM etc could set this security policy without mount options
1962  * if epfiles inherited ownership and permissons from ep0 ...
1963  */
1964 
1965 static unsigned default_uid;
1966 static unsigned default_gid;
1967 static unsigned default_perm = S_IRUSR | S_IWUSR;
1968 
1969 module_param (default_uid, uint, 0644);
1970 module_param (default_gid, uint, 0644);
1971 module_param (default_perm, uint, 0644);
1972 
1973 
1974 static struct inode *
1975 gadgetfs_make_inode (struct super_block *sb,
1976 		void *data, const struct file_operations *fops,
1977 		int mode)
1978 {
1979 	struct inode *inode = new_inode (sb);
1980 
1981 	if (inode) {
1982 		inode->i_ino = get_next_ino();
1983 		inode->i_mode = mode;
1984 		inode->i_uid = make_kuid(&init_user_ns, default_uid);
1985 		inode->i_gid = make_kgid(&init_user_ns, default_gid);
1986 		simple_inode_init_ts(inode);
1987 		inode->i_private = data;
1988 		inode->i_fop = fops;
1989 	}
1990 	return inode;
1991 }
1992 
1993 /* creates in fs root directory, so non-renamable and non-linkable.
1994  * so inode and dentry are paired, until device reconfig.
1995  */
1996 static struct dentry *
1997 gadgetfs_create_file (struct super_block *sb, char const *name,
1998 		void *data, const struct file_operations *fops)
1999 {
2000 	struct dentry	*dentry;
2001 	struct inode	*inode;
2002 
2003 	dentry = d_alloc_name(sb->s_root, name);
2004 	if (!dentry)
2005 		return NULL;
2006 
2007 	inode = gadgetfs_make_inode (sb, data, fops,
2008 			S_IFREG | (default_perm & S_IRWXUGO));
2009 	if (!inode) {
2010 		dput(dentry);
2011 		return NULL;
2012 	}
2013 	d_add (dentry, inode);
2014 	return dentry;
2015 }
2016 
2017 static const struct super_operations gadget_fs_operations = {
2018 	.statfs =	simple_statfs,
2019 	.drop_inode =	generic_delete_inode,
2020 };
2021 
2022 static int
2023 gadgetfs_fill_super (struct super_block *sb, struct fs_context *fc)
2024 {
2025 	struct inode	*inode;
2026 	struct dev_data	*dev;
2027 	int		rc;
2028 
2029 	mutex_lock(&sb_mutex);
2030 
2031 	if (the_device) {
2032 		rc = -ESRCH;
2033 		goto Done;
2034 	}
2035 
2036 	CHIP = usb_get_gadget_udc_name();
2037 	if (!CHIP) {
2038 		rc = -ENODEV;
2039 		goto Done;
2040 	}
2041 
2042 	/* superblock */
2043 	sb->s_blocksize = PAGE_SIZE;
2044 	sb->s_blocksize_bits = PAGE_SHIFT;
2045 	sb->s_magic = GADGETFS_MAGIC;
2046 	sb->s_op = &gadget_fs_operations;
2047 	sb->s_time_gran = 1;
2048 
2049 	/* root inode */
2050 	inode = gadgetfs_make_inode (sb,
2051 			NULL, &simple_dir_operations,
2052 			S_IFDIR | S_IRUGO | S_IXUGO);
2053 	if (!inode)
2054 		goto Enomem;
2055 	inode->i_op = &simple_dir_inode_operations;
2056 	if (!(sb->s_root = d_make_root (inode)))
2057 		goto Enomem;
2058 
2059 	/* the ep0 file is named after the controller we expect;
2060 	 * user mode code can use it for sanity checks, like we do.
2061 	 */
2062 	dev = dev_new ();
2063 	if (!dev)
2064 		goto Enomem;
2065 
2066 	dev->sb = sb;
2067 	dev->dentry = gadgetfs_create_file(sb, CHIP, dev, &ep0_operations);
2068 	if (!dev->dentry) {
2069 		put_dev(dev);
2070 		goto Enomem;
2071 	}
2072 
2073 	/* other endpoint files are available after hardware setup,
2074 	 * from binding to a controller.
2075 	 */
2076 	the_device = dev;
2077 	rc = 0;
2078 	goto Done;
2079 
2080  Enomem:
2081 	kfree(CHIP);
2082 	CHIP = NULL;
2083 	rc = -ENOMEM;
2084 
2085  Done:
2086 	mutex_unlock(&sb_mutex);
2087 	return rc;
2088 }
2089 
2090 /* "mount -t gadgetfs path /dev/gadget" ends up here */
2091 static int gadgetfs_get_tree(struct fs_context *fc)
2092 {
2093 	return get_tree_single(fc, gadgetfs_fill_super);
2094 }
2095 
2096 static const struct fs_context_operations gadgetfs_context_ops = {
2097 	.get_tree	= gadgetfs_get_tree,
2098 };
2099 
2100 static int gadgetfs_init_fs_context(struct fs_context *fc)
2101 {
2102 	fc->ops = &gadgetfs_context_ops;
2103 	return 0;
2104 }
2105 
2106 static void
2107 gadgetfs_kill_sb (struct super_block *sb)
2108 {
2109 	mutex_lock(&sb_mutex);
2110 	kill_litter_super (sb);
2111 	if (the_device) {
2112 		put_dev (the_device);
2113 		the_device = NULL;
2114 	}
2115 	kfree(CHIP);
2116 	CHIP = NULL;
2117 	mutex_unlock(&sb_mutex);
2118 }
2119 
2120 /*----------------------------------------------------------------------*/
2121 
2122 static struct file_system_type gadgetfs_type = {
2123 	.owner		= THIS_MODULE,
2124 	.name		= shortname,
2125 	.init_fs_context = gadgetfs_init_fs_context,
2126 	.kill_sb	= gadgetfs_kill_sb,
2127 };
2128 MODULE_ALIAS_FS("gadgetfs");
2129 
2130 /*----------------------------------------------------------------------*/
2131 
2132 static int __init gadgetfs_init (void)
2133 {
2134 	int status;
2135 
2136 	status = register_filesystem (&gadgetfs_type);
2137 	if (status == 0)
2138 		pr_info ("%s: %s, version " DRIVER_VERSION "\n",
2139 			shortname, driver_desc);
2140 	return status;
2141 }
2142 module_init (gadgetfs_init);
2143 
2144 static void __exit gadgetfs_cleanup (void)
2145 {
2146 	pr_debug ("unregister %s\n", shortname);
2147 	unregister_filesystem (&gadgetfs_type);
2148 }
2149 module_exit (gadgetfs_cleanup);
2150 
2151