1 /*
2 * Copyright 2017-2024 The OpenSSL Project Authors. All Rights Reserved.
3 * Copyright 2015-2016 Cryptography Research, Inc.
4 *
5 * Licensed under the Apache License 2.0 (the "License"). You may not use
6 * this file except in compliance with the License. You can obtain a copy
7 * in the file LICENSE in the source distribution or at
8 * https://www.openssl.org/source/license.html
9 *
10 * Originally written by Mike Hamburg
11 */
12 #include <openssl/crypto.h>
13 #include "word.h"
14 #include "field.h"
15
16 #include "point_448.h"
17 #include "ed448.h"
18 #include "crypto/ecx.h"
19 #include "curve448_local.h"
20
21 #define COFACTOR 4
22
23 #define C448_WNAF_FIXED_TABLE_BITS 5
24 #define C448_WNAF_VAR_TABLE_BITS 3
25
26 #define EDWARDS_D (-39081)
27
28 static const curve448_scalar_t precomputed_scalarmul_adjustment = {
29 { { SC_LIMB(0xc873d6d54a7bb0cfULL), SC_LIMB(0xe933d8d723a70aadULL),
30 SC_LIMB(0xbb124b65129c96fdULL), SC_LIMB(0x00000008335dc163ULL) } }
31 };
32
33 #define TWISTED_D (EDWARDS_D - 1)
34
35 #define WBITS C448_WORD_BITS /* NB this may be different from ARCH_WORD_BITS */
36
37 /* Inverse. */
gf_invert(gf y,const gf x,int assert_nonzero)38 static void gf_invert(gf y, const gf x, int assert_nonzero)
39 {
40 mask_t ret;
41 gf t1, t2;
42
43 ossl_gf_sqr(t1, x); /* o^2 */
44 ret = gf_isr(t2, t1); /* +-1/sqrt(o^2) = +-1/o */
45 (void)ret;
46 if (assert_nonzero)
47 assert(ret);
48 ossl_gf_sqr(t1, t2);
49 ossl_gf_mul(t2, t1, x); /* not direct to y in case of alias. */
50 gf_copy(y, t2);
51 }
52
53 /** identity = (0,1) */
54 const curve448_point_t ossl_curve448_point_identity = {
55 { { { { 0 } } }, { { { 1 } } }, { { { 1 } } }, { { { 0 } } } }
56 };
57
point_double_internal(curve448_point_t p,const curve448_point_t q,int before_double)58 static void point_double_internal(curve448_point_t p, const curve448_point_t q,
59 int before_double)
60 {
61 gf a, b, c, d;
62
63 ossl_gf_sqr(c, q->x);
64 ossl_gf_sqr(a, q->y);
65 gf_add_nr(d, c, a); /* 2+e */
66 gf_add_nr(p->t, q->y, q->x); /* 2+e */
67 ossl_gf_sqr(b, p->t);
68 gf_subx_nr(b, b, d, 3); /* 4+e */
69 gf_sub_nr(p->t, a, c); /* 3+e */
70 ossl_gf_sqr(p->x, q->z);
71 gf_add_nr(p->z, p->x, p->x); /* 2+e */
72 gf_subx_nr(a, p->z, p->t, 4); /* 6+e */
73 if (GF_HEADROOM == 5)
74 gf_weak_reduce(a); /* or 1+e */
75 ossl_gf_mul(p->x, a, b);
76 ossl_gf_mul(p->z, p->t, a);
77 ossl_gf_mul(p->y, p->t, d);
78 if (!before_double)
79 ossl_gf_mul(p->t, b, d);
80 }
81
ossl_curve448_point_double(curve448_point_t p,const curve448_point_t q)82 void ossl_curve448_point_double(curve448_point_t p, const curve448_point_t q)
83 {
84 point_double_internal(p, q, 0);
85 }
86
87 /* Operations on [p]niels */
cond_neg_niels(niels_t n,mask_t neg)88 static ossl_inline void cond_neg_niels(niels_t n, mask_t neg)
89 {
90 gf_cond_swap(n->a, n->b, neg);
91 gf_cond_neg(n->c, neg);
92 }
93
pt_to_pniels(pniels_t b,const curve448_point_t a)94 static void pt_to_pniels(pniels_t b, const curve448_point_t a)
95 {
96 gf_sub(b->n->a, a->y, a->x);
97 gf_add(b->n->b, a->x, a->y);
98 gf_mulw(b->n->c, a->t, 2 * TWISTED_D);
99 gf_add(b->z, a->z, a->z);
100 }
101
pniels_to_pt(curve448_point_t e,const pniels_t d)102 static void pniels_to_pt(curve448_point_t e, const pniels_t d)
103 {
104 gf eu;
105
106 gf_add(eu, d->n->b, d->n->a);
107 gf_sub(e->y, d->n->b, d->n->a);
108 ossl_gf_mul(e->t, e->y, eu);
109 ossl_gf_mul(e->x, d->z, e->y);
110 ossl_gf_mul(e->y, d->z, eu);
111 ossl_gf_sqr(e->z, d->z);
112 }
113
niels_to_pt(curve448_point_t e,const niels_t n)114 static void niels_to_pt(curve448_point_t e, const niels_t n)
115 {
116 gf_add(e->y, n->b, n->a);
117 gf_sub(e->x, n->b, n->a);
118 ossl_gf_mul(e->t, e->y, e->x);
119 gf_copy(e->z, ONE);
120 }
121
add_niels_to_pt(curve448_point_t d,const niels_t e,int before_double)122 static void add_niels_to_pt(curve448_point_t d, const niels_t e,
123 int before_double)
124 {
125 gf a, b, c;
126
127 gf_sub_nr(b, d->y, d->x); /* 3+e */
128 ossl_gf_mul(a, e->a, b);
129 gf_add_nr(b, d->x, d->y); /* 2+e */
130 ossl_gf_mul(d->y, e->b, b);
131 ossl_gf_mul(d->x, e->c, d->t);
132 gf_add_nr(c, a, d->y); /* 2+e */
133 gf_sub_nr(b, d->y, a); /* 3+e */
134 gf_sub_nr(d->y, d->z, d->x); /* 3+e */
135 gf_add_nr(a, d->x, d->z); /* 2+e */
136 ossl_gf_mul(d->z, a, d->y);
137 ossl_gf_mul(d->x, d->y, b);
138 ossl_gf_mul(d->y, a, c);
139 if (!before_double)
140 ossl_gf_mul(d->t, b, c);
141 }
142
sub_niels_from_pt(curve448_point_t d,const niels_t e,int before_double)143 static void sub_niels_from_pt(curve448_point_t d, const niels_t e,
144 int before_double)
145 {
146 gf a, b, c;
147
148 gf_sub_nr(b, d->y, d->x); /* 3+e */
149 ossl_gf_mul(a, e->b, b);
150 gf_add_nr(b, d->x, d->y); /* 2+e */
151 ossl_gf_mul(d->y, e->a, b);
152 ossl_gf_mul(d->x, e->c, d->t);
153 gf_add_nr(c, a, d->y); /* 2+e */
154 gf_sub_nr(b, d->y, a); /* 3+e */
155 gf_add_nr(d->y, d->z, d->x); /* 2+e */
156 gf_sub_nr(a, d->z, d->x); /* 3+e */
157 ossl_gf_mul(d->z, a, d->y);
158 ossl_gf_mul(d->x, d->y, b);
159 ossl_gf_mul(d->y, a, c);
160 if (!before_double)
161 ossl_gf_mul(d->t, b, c);
162 }
163
add_pniels_to_pt(curve448_point_t p,const pniels_t pn,int before_double)164 static void add_pniels_to_pt(curve448_point_t p, const pniels_t pn,
165 int before_double)
166 {
167 gf L0;
168
169 ossl_gf_mul(L0, p->z, pn->z);
170 gf_copy(p->z, L0);
171 add_niels_to_pt(p, pn->n, before_double);
172 }
173
sub_pniels_from_pt(curve448_point_t p,const pniels_t pn,int before_double)174 static void sub_pniels_from_pt(curve448_point_t p, const pniels_t pn,
175 int before_double)
176 {
177 gf L0;
178
179 ossl_gf_mul(L0, p->z, pn->z);
180 gf_copy(p->z, L0);
181 sub_niels_from_pt(p, pn->n, before_double);
182 }
183
184 c448_bool_t
ossl_curve448_point_eq(const curve448_point_t p,const curve448_point_t q)185 ossl_curve448_point_eq(const curve448_point_t p,
186 const curve448_point_t q)
187 {
188 mask_t succ;
189 gf a, b;
190
191 /* equality mod 2-torsion compares x/y */
192 ossl_gf_mul(a, p->y, q->x);
193 ossl_gf_mul(b, q->y, p->x);
194 succ = gf_eq(a, b);
195
196 return mask_to_bool(succ);
197 }
198
199 c448_bool_t
ossl_curve448_point_valid(const curve448_point_t p)200 ossl_curve448_point_valid(const curve448_point_t p)
201 {
202 mask_t out;
203 gf a, b, c;
204
205 ossl_gf_mul(a, p->x, p->y);
206 ossl_gf_mul(b, p->z, p->t);
207 out = gf_eq(a, b);
208 ossl_gf_sqr(a, p->x);
209 ossl_gf_sqr(b, p->y);
210 gf_sub(a, b, a);
211 ossl_gf_sqr(b, p->t);
212 gf_mulw(c, b, TWISTED_D);
213 ossl_gf_sqr(b, p->z);
214 gf_add(b, b, c);
215 out &= gf_eq(a, b);
216 out &= ~gf_eq(p->z, ZERO);
217 return mask_to_bool(out);
218 }
219
constant_time_lookup_niels(niels_s * RESTRICT ni,const niels_t * table,int nelts,int idx)220 static ossl_inline void constant_time_lookup_niels(niels_s *RESTRICT ni,
221 const niels_t *table,
222 int nelts, int idx)
223 {
224 constant_time_lookup(ni, table, sizeof(niels_s), nelts, idx);
225 }
226
ossl_curve448_precomputed_scalarmul(curve448_point_t out,const curve448_precomputed_s * table,const curve448_scalar_t scalar)227 void ossl_curve448_precomputed_scalarmul(curve448_point_t out,
228 const curve448_precomputed_s *table,
229 const curve448_scalar_t scalar)
230 {
231 unsigned int i, j, k;
232 const unsigned int n = COMBS_N, t = COMBS_T, s = COMBS_S;
233 niels_t ni;
234 curve448_scalar_t scalar1x;
235
236 ossl_curve448_scalar_add(scalar1x, scalar, precomputed_scalarmul_adjustment);
237 ossl_curve448_scalar_halve(scalar1x, scalar1x);
238
239 for (i = s; i > 0; i--) {
240 if (i != s)
241 point_double_internal(out, out, 0);
242
243 for (j = 0; j < n; j++) {
244 int tab = 0;
245 mask_t invert;
246
247 for (k = 0; k < t; k++) {
248 unsigned int bit = (i - 1) + s * (k + j * t);
249
250 if (bit < C448_SCALAR_BITS)
251 tab |= (scalar1x->limb[bit / WBITS] >> (bit % WBITS) & 1) << k;
252 }
253
254 invert = (tab >> (t - 1)) - 1;
255 tab ^= invert;
256 tab &= (1 << (t - 1)) - 1;
257
258 constant_time_lookup_niels(ni, &table->table[j << (t - 1)],
259 1 << (t - 1), tab);
260
261 cond_neg_niels(ni, invert);
262 if ((i != s) || j != 0)
263 add_niels_to_pt(out, ni, j == n - 1 && i != 1);
264 else
265 niels_to_pt(out, ni);
266 }
267 }
268
269 OPENSSL_cleanse(ni, sizeof(ni));
270 OPENSSL_cleanse(scalar1x, sizeof(scalar1x));
271 }
272
ossl_curve448_point_mul_by_ratio_and_encode_like_eddsa(uint8_t enc[EDDSA_448_PUBLIC_BYTES],const curve448_point_t p)273 void ossl_curve448_point_mul_by_ratio_and_encode_like_eddsa(
274 uint8_t enc[EDDSA_448_PUBLIC_BYTES],
275 const curve448_point_t p)
276 {
277 gf x, y, z, t;
278 curve448_point_t q;
279
280 /* The point is now on the twisted curve. Move it to untwisted. */
281 curve448_point_copy(q, p);
282
283 {
284 /* 4-isogeny: 2xy/(y^+x^2), (y^2-x^2)/(2z^2-y^2+x^2) */
285 gf u;
286
287 ossl_gf_sqr(x, q->x);
288 ossl_gf_sqr(t, q->y);
289 gf_add(u, x, t);
290 gf_add(z, q->y, q->x);
291 ossl_gf_sqr(y, z);
292 gf_sub(y, y, u);
293 gf_sub(z, t, x);
294 ossl_gf_sqr(x, q->z);
295 gf_add(t, x, x);
296 gf_sub(t, t, z);
297 ossl_gf_mul(x, t, y);
298 ossl_gf_mul(y, z, u);
299 ossl_gf_mul(z, u, t);
300 OPENSSL_cleanse(u, sizeof(u));
301 }
302
303 /* Affinize */
304 gf_invert(z, z, 1);
305 ossl_gf_mul(t, x, z);
306 ossl_gf_mul(x, y, z);
307
308 /* Encode */
309 enc[EDDSA_448_PRIVATE_BYTES - 1] = 0;
310 gf_serialize(enc, x, 1);
311 enc[EDDSA_448_PRIVATE_BYTES - 1] |= 0x80 & gf_lobit(t);
312
313 OPENSSL_cleanse(x, sizeof(x));
314 OPENSSL_cleanse(y, sizeof(y));
315 OPENSSL_cleanse(z, sizeof(z));
316 OPENSSL_cleanse(t, sizeof(t));
317 ossl_curve448_point_destroy(q);
318 }
319
320 c448_error_t
ossl_curve448_point_decode_like_eddsa_and_mul_by_ratio(curve448_point_t p,const uint8_t enc[EDDSA_448_PUBLIC_BYTES])321 ossl_curve448_point_decode_like_eddsa_and_mul_by_ratio(
322 curve448_point_t p,
323 const uint8_t enc[EDDSA_448_PUBLIC_BYTES])
324 {
325 uint8_t enc2[EDDSA_448_PUBLIC_BYTES];
326 mask_t low;
327 mask_t succ;
328
329 memcpy(enc2, enc, sizeof(enc2));
330
331 low = ~word_is_zero(enc2[EDDSA_448_PRIVATE_BYTES - 1] & 0x80);
332 enc2[EDDSA_448_PRIVATE_BYTES - 1] &= ~0x80;
333
334 succ = gf_deserialize(p->y, enc2, 1, 0);
335 succ &= word_is_zero(enc2[EDDSA_448_PRIVATE_BYTES - 1]);
336
337 ossl_gf_sqr(p->x, p->y);
338 gf_sub(p->z, ONE, p->x); /* num = 1-y^2 */
339 gf_mulw(p->t, p->x, EDWARDS_D); /* dy^2 */
340 gf_sub(p->t, ONE, p->t); /* denom = 1-dy^2 or 1-d + dy^2 */
341
342 ossl_gf_mul(p->x, p->z, p->t);
343 succ &= gf_isr(p->t, p->x); /* 1/sqrt(num * denom) */
344
345 ossl_gf_mul(p->x, p->t, p->z); /* sqrt(num / denom) */
346 gf_cond_neg(p->x, gf_lobit(p->x) ^ low);
347 gf_copy(p->z, ONE);
348
349 {
350 gf a, b, c, d;
351
352 /* 4-isogeny 2xy/(y^2-ax^2), (y^2+ax^2)/(2-y^2-ax^2) */
353 ossl_gf_sqr(c, p->x);
354 ossl_gf_sqr(a, p->y);
355 gf_add(d, c, a);
356 gf_add(p->t, p->y, p->x);
357 ossl_gf_sqr(b, p->t);
358 gf_sub(b, b, d);
359 gf_sub(p->t, a, c);
360 ossl_gf_sqr(p->x, p->z);
361 gf_add(p->z, p->x, p->x);
362 gf_sub(a, p->z, d);
363 ossl_gf_mul(p->x, a, b);
364 ossl_gf_mul(p->z, p->t, a);
365 ossl_gf_mul(p->y, p->t, d);
366 ossl_gf_mul(p->t, b, d);
367 OPENSSL_cleanse(a, sizeof(a));
368 OPENSSL_cleanse(b, sizeof(b));
369 OPENSSL_cleanse(c, sizeof(c));
370 OPENSSL_cleanse(d, sizeof(d));
371 }
372
373 OPENSSL_cleanse(enc2, sizeof(enc2));
374 assert(ossl_curve448_point_valid(p) || ~succ);
375
376 return c448_succeed_if(mask_to_bool(succ));
377 }
378
379 c448_error_t
ossl_x448_int(uint8_t out[X_PUBLIC_BYTES],const uint8_t base[X_PUBLIC_BYTES],const uint8_t scalar[X_PRIVATE_BYTES])380 ossl_x448_int(uint8_t out[X_PUBLIC_BYTES],
381 const uint8_t base[X_PUBLIC_BYTES],
382 const uint8_t scalar[X_PRIVATE_BYTES])
383 {
384 gf x1, x2, z2, x3, z3, t1, t2;
385 int t;
386 mask_t swap = 0;
387 mask_t nz;
388
389 (void)gf_deserialize(x1, base, 1, 0);
390 gf_copy(x2, ONE);
391 gf_copy(z2, ZERO);
392 gf_copy(x3, x1);
393 gf_copy(z3, ONE);
394
395 for (t = X_PRIVATE_BITS - 1; t >= 0; t--) {
396 uint8_t sb = scalar[t / 8];
397 mask_t k_t;
398
399 /* Scalar conditioning */
400 if (t / 8 == 0)
401 sb &= -(uint8_t)COFACTOR;
402 else if (t == X_PRIVATE_BITS - 1)
403 sb = -1;
404
405 k_t = (sb >> (t % 8)) & 1;
406 k_t = 0 - k_t; /* set to all 0s or all 1s */
407
408 swap ^= k_t;
409 gf_cond_swap(x2, x3, swap);
410 gf_cond_swap(z2, z3, swap);
411 swap = k_t;
412
413 /*
414 * The "_nr" below skips coefficient reduction. In the following
415 * comments, "2+e" is saying that the coefficients are at most 2+epsilon
416 * times the reduction limit.
417 */
418 gf_add_nr(t1, x2, z2); /* A = x2 + z2 */ /* 2+e */
419 gf_sub_nr(t2, x2, z2); /* B = x2 - z2 */ /* 3+e */
420 gf_sub_nr(z2, x3, z3); /* D = x3 - z3 */ /* 3+e */
421 ossl_gf_mul(x2, t1, z2); /* DA */
422 gf_add_nr(z2, z3, x3); /* C = x3 + z3 */ /* 2+e */
423 ossl_gf_mul(x3, t2, z2); /* CB */
424 gf_sub_nr(z3, x2, x3); /* DA-CB */ /* 3+e */
425 ossl_gf_sqr(z2, z3); /* (DA-CB)^2 */
426 ossl_gf_mul(z3, x1, z2); /* z3 = x1(DA-CB)^2 */
427 gf_add_nr(z2, x2, x3); /* (DA+CB) */ /* 2+e */
428 ossl_gf_sqr(x3, z2); /* x3 = (DA+CB)^2 */
429
430 ossl_gf_sqr(z2, t1); /* AA = A^2 */
431 ossl_gf_sqr(t1, t2); /* BB = B^2 */
432 ossl_gf_mul(x2, z2, t1); /* x2 = AA*BB */
433 gf_sub_nr(t2, z2, t1); /* E = AA-BB */ /* 3+e */
434
435 gf_mulw(t1, t2, -EDWARDS_D); /* E*-d = a24*E */
436 gf_add_nr(t1, t1, z2); /* AA + a24*E */ /* 2+e */
437 ossl_gf_mul(z2, t2, t1); /* z2 = E(AA+a24*E) */
438 }
439
440 /* Finish */
441 gf_cond_swap(x2, x3, swap);
442 gf_cond_swap(z2, z3, swap);
443 gf_invert(z2, z2, 0);
444 ossl_gf_mul(x1, x2, z2);
445 gf_serialize(out, x1, 1);
446 nz = ~gf_eq(x1, ZERO);
447
448 OPENSSL_cleanse(x1, sizeof(x1));
449 OPENSSL_cleanse(x2, sizeof(x2));
450 OPENSSL_cleanse(z2, sizeof(z2));
451 OPENSSL_cleanse(x3, sizeof(x3));
452 OPENSSL_cleanse(z3, sizeof(z3));
453 OPENSSL_cleanse(t1, sizeof(t1));
454 OPENSSL_cleanse(t2, sizeof(t2));
455
456 return c448_succeed_if(mask_to_bool(nz));
457 }
458
ossl_curve448_point_mul_by_ratio_and_encode_like_x448(uint8_t out[X_PUBLIC_BYTES],const curve448_point_t p)459 void ossl_curve448_point_mul_by_ratio_and_encode_like_x448(uint8_t
460 out[X_PUBLIC_BYTES],
461 const curve448_point_t p)
462 {
463 curve448_point_t q;
464
465 curve448_point_copy(q, p);
466 gf_invert(q->t, q->x, 0); /* 1/x */
467 ossl_gf_mul(q->z, q->t, q->y); /* y/x */
468 ossl_gf_sqr(q->y, q->z); /* (y/x)^2 */
469 gf_serialize(out, q->y, 1);
470 ossl_curve448_point_destroy(q);
471 }
472
ossl_x448_derive_public_key(uint8_t out[X_PUBLIC_BYTES],const uint8_t scalar[X_PRIVATE_BYTES])473 void ossl_x448_derive_public_key(uint8_t out[X_PUBLIC_BYTES],
474 const uint8_t scalar[X_PRIVATE_BYTES])
475 {
476 /* Scalar conditioning */
477 uint8_t scalar2[X_PRIVATE_BYTES];
478 curve448_scalar_t the_scalar;
479 curve448_point_t p;
480 unsigned int i;
481
482 memcpy(scalar2, scalar, sizeof(scalar2));
483 scalar2[0] &= -(uint8_t)COFACTOR;
484
485 scalar2[X_PRIVATE_BYTES - 1] &= ~((0u - 1u) << ((X_PRIVATE_BITS + 7) % 8));
486 scalar2[X_PRIVATE_BYTES - 1] |= 1 << ((X_PRIVATE_BITS + 7) % 8);
487
488 ossl_curve448_scalar_decode_long(the_scalar, scalar2, sizeof(scalar2));
489
490 /* Compensate for the encoding ratio */
491 for (i = 1; i < X448_ENCODE_RATIO; i <<= 1)
492 ossl_curve448_scalar_halve(the_scalar, the_scalar);
493
494 ossl_curve448_precomputed_scalarmul(p, ossl_curve448_precomputed_base,
495 the_scalar);
496 ossl_curve448_point_mul_by_ratio_and_encode_like_x448(out, p);
497 ossl_curve448_point_destroy(p);
498 }
499
500 /* Control for variable-time scalar multiply algorithms. */
501 struct smvt_control {
502 int power, addend;
503 };
504
505 #if defined(__GNUC__) && (__GNUC__ > 3 || (__GNUC__ == 3 && __GNUC_MINOR__ > 3))
506 #define NUMTRAILINGZEROS __builtin_ctz
507 #else
508 #define NUMTRAILINGZEROS numtrailingzeros
numtrailingzeros(uint32_t i)509 static uint32_t numtrailingzeros(uint32_t i)
510 {
511 uint32_t tmp;
512 uint32_t num = 31;
513
514 if (i == 0)
515 return 32;
516
517 tmp = i << 16;
518 if (tmp != 0) {
519 i = tmp;
520 num -= 16;
521 }
522 tmp = i << 8;
523 if (tmp != 0) {
524 i = tmp;
525 num -= 8;
526 }
527 tmp = i << 4;
528 if (tmp != 0) {
529 i = tmp;
530 num -= 4;
531 }
532 tmp = i << 2;
533 if (tmp != 0) {
534 i = tmp;
535 num -= 2;
536 }
537 tmp = i << 1;
538 if (tmp != 0)
539 num--;
540
541 return num;
542 }
543 #endif
544
recode_wnaf(struct smvt_control * control,const curve448_scalar_t scalar,unsigned int table_bits)545 static int recode_wnaf(struct smvt_control *control,
546 /* [nbits/(table_bits + 1) + 3] */
547 const curve448_scalar_t scalar,
548 unsigned int table_bits)
549 {
550 unsigned int table_size = C448_SCALAR_BITS / (table_bits + 1) + 3;
551 int position = table_size - 1; /* at the end */
552 uint64_t current = scalar->limb[0] & 0xFFFF;
553 uint32_t mask = (1 << (table_bits + 1)) - 1;
554 unsigned int w;
555 const unsigned int B_OVER_16 = sizeof(scalar->limb[0]) / 2;
556 unsigned int n, i;
557
558 /* place the end marker */
559 control[position].power = -1;
560 control[position].addend = 0;
561 position--;
562
563 /*
564 * PERF: Could negate scalar if it's large. But then would need more cases
565 * in the actual code that uses it, all for an expected reduction of like
566 * 1/5 op. Probably not worth it.
567 */
568
569 for (w = 1; w < (C448_SCALAR_BITS - 1) / 16 + 3; w++) {
570 if (w < (C448_SCALAR_BITS - 1) / 16 + 1) {
571 /* Refill the 16 high bits of current */
572 current += (uint32_t)((scalar->limb[w / B_OVER_16]
573 >> (16 * (w % B_OVER_16)))
574 << 16);
575 }
576
577 while (current & 0xFFFF) {
578 uint32_t pos = NUMTRAILINGZEROS((uint32_t)current);
579 uint32_t odd = (uint32_t)current >> pos;
580 int32_t delta = odd & mask;
581
582 assert(position >= 0);
583 if (odd & (1 << (table_bits + 1)))
584 delta -= (1 << (table_bits + 1));
585 /*
586 * Coverity gets confused by the value of pos, thinking it might be
587 * 32. This would require current & 0xFFFF to be zero which isn't
588 * possible. Suppress this false positive, since adding a check
589 * isn't desirable.
590 */
591 /* coverity[overflow_before_widen] */
592 current -= delta * (1 << pos);
593 control[position].power = pos + 16 * (w - 1);
594 control[position].addend = delta;
595 position--;
596 }
597 current >>= 16;
598 }
599 assert(current == 0);
600
601 position++;
602 n = table_size - position;
603 for (i = 0; i < n; i++)
604 control[i] = control[i + position];
605
606 return n - 1;
607 }
608
prepare_wnaf_table(pniels_t * output,const curve448_point_t working,unsigned int tbits)609 static void prepare_wnaf_table(pniels_t *output,
610 const curve448_point_t working,
611 unsigned int tbits)
612 {
613 curve448_point_t tmp;
614 int i;
615 pniels_t twop;
616
617 pt_to_pniels(output[0], working);
618
619 if (tbits == 0)
620 return;
621
622 ossl_curve448_point_double(tmp, working);
623 pt_to_pniels(twop, tmp);
624
625 add_pniels_to_pt(tmp, output[0], 0);
626 pt_to_pniels(output[1], tmp);
627
628 for (i = 2; i < 1 << tbits; i++) {
629 add_pniels_to_pt(tmp, twop, 0);
630 pt_to_pniels(output[i], tmp);
631 }
632
633 ossl_curve448_point_destroy(tmp);
634 OPENSSL_cleanse(twop, sizeof(twop));
635 }
636
ossl_curve448_base_double_scalarmul_non_secret(curve448_point_t combo,const curve448_scalar_t scalar1,const curve448_point_t base2,const curve448_scalar_t scalar2)637 void ossl_curve448_base_double_scalarmul_non_secret(curve448_point_t combo,
638 const curve448_scalar_t scalar1,
639 const curve448_point_t base2,
640 const curve448_scalar_t scalar2)
641 {
642 const int table_bits_var = C448_WNAF_VAR_TABLE_BITS;
643 const int table_bits_pre = C448_WNAF_FIXED_TABLE_BITS;
644 struct smvt_control control_var[C448_SCALAR_BITS / (C448_WNAF_VAR_TABLE_BITS + 1) + 3];
645 struct smvt_control control_pre[C448_SCALAR_BITS / (C448_WNAF_FIXED_TABLE_BITS + 1) + 3];
646 int ncb_pre = recode_wnaf(control_pre, scalar1, table_bits_pre);
647 int ncb_var = recode_wnaf(control_var, scalar2, table_bits_var);
648 pniels_t precmp_var[1 << C448_WNAF_VAR_TABLE_BITS];
649 int contp = 0, contv = 0, i;
650
651 prepare_wnaf_table(precmp_var, base2, table_bits_var);
652 i = control_var[0].power;
653
654 if (i < 0) {
655 curve448_point_copy(combo, ossl_curve448_point_identity);
656 return;
657 }
658 if (i > control_pre[0].power) {
659 pniels_to_pt(combo, precmp_var[control_var[0].addend >> 1]);
660 contv++;
661 } else if (i == control_pre[0].power && i >= 0) {
662 pniels_to_pt(combo, precmp_var[control_var[0].addend >> 1]);
663 add_niels_to_pt(combo,
664 ossl_curve448_wnaf_base[control_pre[0].addend >> 1],
665 i);
666 contv++;
667 contp++;
668 } else {
669 i = control_pre[0].power;
670 niels_to_pt(combo, ossl_curve448_wnaf_base[control_pre[0].addend >> 1]);
671 contp++;
672 }
673
674 for (i--; i >= 0; i--) {
675 int cv = (i == control_var[contv].power);
676 int cp = (i == control_pre[contp].power);
677
678 point_double_internal(combo, combo, i && !(cv || cp));
679
680 if (cv) {
681 assert(control_var[contv].addend);
682
683 if (control_var[contv].addend > 0)
684 add_pniels_to_pt(combo,
685 precmp_var[control_var[contv].addend >> 1],
686 i && !cp);
687 else
688 sub_pniels_from_pt(combo,
689 precmp_var[(-control_var[contv].addend)
690 >> 1],
691 i && !cp);
692 contv++;
693 }
694
695 if (cp) {
696 assert(control_pre[contp].addend);
697
698 if (control_pre[contp].addend > 0)
699 add_niels_to_pt(combo,
700 ossl_curve448_wnaf_base[control_pre[contp].addend
701 >> 1],
702 i);
703 else
704 sub_niels_from_pt(combo,
705 ossl_curve448_wnaf_base[(-control_pre
706 [contp]
707 .addend)
708 >> 1],
709 i);
710 contp++;
711 }
712 }
713
714 /* This function is non-secret, but whatever this is cheap. */
715 OPENSSL_cleanse(control_var, sizeof(control_var));
716 OPENSSL_cleanse(control_pre, sizeof(control_pre));
717 OPENSSL_cleanse(precmp_var, sizeof(precmp_var));
718
719 assert(contv == ncb_var);
720 (void)ncb_var;
721 assert(contp == ncb_pre);
722 (void)ncb_pre;
723 }
724
ossl_curve448_point_destroy(curve448_point_t point)725 void ossl_curve448_point_destroy(curve448_point_t point)
726 {
727 OPENSSL_cleanse(point, sizeof(curve448_point_t));
728 }
729
ossl_x448(uint8_t out_shared_key[56],const uint8_t private_key[56],const uint8_t peer_public_value[56])730 int ossl_x448(uint8_t out_shared_key[56], const uint8_t private_key[56],
731 const uint8_t peer_public_value[56])
732 {
733 return ossl_x448_int(out_shared_key, peer_public_value, private_key)
734 == C448_SUCCESS;
735 }
736
ossl_x448_public_from_private(uint8_t out_public_value[56],const uint8_t private_key[56])737 void ossl_x448_public_from_private(uint8_t out_public_value[56],
738 const uint8_t private_key[56])
739 {
740 ossl_x448_derive_public_key(out_public_value, private_key);
741 }
742