xref: /freebsd/crypto/openssl/crypto/ec/curve448/curve448.c (revision f25b8c9fb4f58cf61adb47d7570abe7caa6d385d)
1 /*
2  * Copyright 2017-2024 The OpenSSL Project Authors. All Rights Reserved.
3  * Copyright 2015-2016 Cryptography Research, Inc.
4  *
5  * Licensed under the Apache License 2.0 (the "License").  You may not use
6  * this file except in compliance with the License.  You can obtain a copy
7  * in the file LICENSE in the source distribution or at
8  * https://www.openssl.org/source/license.html
9  *
10  * Originally written by Mike Hamburg
11  */
12 #include <openssl/crypto.h>
13 #include "word.h"
14 #include "field.h"
15 
16 #include "point_448.h"
17 #include "ed448.h"
18 #include "crypto/ecx.h"
19 #include "curve448_local.h"
20 
21 #define COFACTOR 4
22 
23 #define C448_WNAF_FIXED_TABLE_BITS 5
24 #define C448_WNAF_VAR_TABLE_BITS 3
25 
26 #define EDWARDS_D (-39081)
27 
28 static const curve448_scalar_t precomputed_scalarmul_adjustment = {
29     { { SC_LIMB(0xc873d6d54a7bb0cfULL), SC_LIMB(0xe933d8d723a70aadULL),
30         SC_LIMB(0xbb124b65129c96fdULL), SC_LIMB(0x00000008335dc163ULL) } }
31 };
32 
33 #define TWISTED_D (EDWARDS_D - 1)
34 
35 #define WBITS C448_WORD_BITS /* NB this may be different from ARCH_WORD_BITS */
36 
37 /* Inverse. */
gf_invert(gf y,const gf x,int assert_nonzero)38 static void gf_invert(gf y, const gf x, int assert_nonzero)
39 {
40     mask_t ret;
41     gf t1, t2;
42 
43     ossl_gf_sqr(t1, x); /* o^2 */
44     ret = gf_isr(t2, t1); /* +-1/sqrt(o^2) = +-1/o */
45     (void)ret;
46     if (assert_nonzero)
47         assert(ret);
48     ossl_gf_sqr(t1, t2);
49     ossl_gf_mul(t2, t1, x); /* not direct to y in case of alias. */
50     gf_copy(y, t2);
51 }
52 
53 /** identity = (0,1) */
54 const curve448_point_t ossl_curve448_point_identity = {
55     { { { { 0 } } }, { { { 1 } } }, { { { 1 } } }, { { { 0 } } } }
56 };
57 
point_double_internal(curve448_point_t p,const curve448_point_t q,int before_double)58 static void point_double_internal(curve448_point_t p, const curve448_point_t q,
59     int before_double)
60 {
61     gf a, b, c, d;
62 
63     ossl_gf_sqr(c, q->x);
64     ossl_gf_sqr(a, q->y);
65     gf_add_nr(d, c, a); /* 2+e */
66     gf_add_nr(p->t, q->y, q->x); /* 2+e */
67     ossl_gf_sqr(b, p->t);
68     gf_subx_nr(b, b, d, 3); /* 4+e */
69     gf_sub_nr(p->t, a, c); /* 3+e */
70     ossl_gf_sqr(p->x, q->z);
71     gf_add_nr(p->z, p->x, p->x); /* 2+e */
72     gf_subx_nr(a, p->z, p->t, 4); /* 6+e */
73     if (GF_HEADROOM == 5)
74         gf_weak_reduce(a); /* or 1+e */
75     ossl_gf_mul(p->x, a, b);
76     ossl_gf_mul(p->z, p->t, a);
77     ossl_gf_mul(p->y, p->t, d);
78     if (!before_double)
79         ossl_gf_mul(p->t, b, d);
80 }
81 
ossl_curve448_point_double(curve448_point_t p,const curve448_point_t q)82 void ossl_curve448_point_double(curve448_point_t p, const curve448_point_t q)
83 {
84     point_double_internal(p, q, 0);
85 }
86 
87 /* Operations on [p]niels */
cond_neg_niels(niels_t n,mask_t neg)88 static ossl_inline void cond_neg_niels(niels_t n, mask_t neg)
89 {
90     gf_cond_swap(n->a, n->b, neg);
91     gf_cond_neg(n->c, neg);
92 }
93 
pt_to_pniels(pniels_t b,const curve448_point_t a)94 static void pt_to_pniels(pniels_t b, const curve448_point_t a)
95 {
96     gf_sub(b->n->a, a->y, a->x);
97     gf_add(b->n->b, a->x, a->y);
98     gf_mulw(b->n->c, a->t, 2 * TWISTED_D);
99     gf_add(b->z, a->z, a->z);
100 }
101 
pniels_to_pt(curve448_point_t e,const pniels_t d)102 static void pniels_to_pt(curve448_point_t e, const pniels_t d)
103 {
104     gf eu;
105 
106     gf_add(eu, d->n->b, d->n->a);
107     gf_sub(e->y, d->n->b, d->n->a);
108     ossl_gf_mul(e->t, e->y, eu);
109     ossl_gf_mul(e->x, d->z, e->y);
110     ossl_gf_mul(e->y, d->z, eu);
111     ossl_gf_sqr(e->z, d->z);
112 }
113 
niels_to_pt(curve448_point_t e,const niels_t n)114 static void niels_to_pt(curve448_point_t e, const niels_t n)
115 {
116     gf_add(e->y, n->b, n->a);
117     gf_sub(e->x, n->b, n->a);
118     ossl_gf_mul(e->t, e->y, e->x);
119     gf_copy(e->z, ONE);
120 }
121 
add_niels_to_pt(curve448_point_t d,const niels_t e,int before_double)122 static void add_niels_to_pt(curve448_point_t d, const niels_t e,
123     int before_double)
124 {
125     gf a, b, c;
126 
127     gf_sub_nr(b, d->y, d->x); /* 3+e */
128     ossl_gf_mul(a, e->a, b);
129     gf_add_nr(b, d->x, d->y); /* 2+e */
130     ossl_gf_mul(d->y, e->b, b);
131     ossl_gf_mul(d->x, e->c, d->t);
132     gf_add_nr(c, a, d->y); /* 2+e */
133     gf_sub_nr(b, d->y, a); /* 3+e */
134     gf_sub_nr(d->y, d->z, d->x); /* 3+e */
135     gf_add_nr(a, d->x, d->z); /* 2+e */
136     ossl_gf_mul(d->z, a, d->y);
137     ossl_gf_mul(d->x, d->y, b);
138     ossl_gf_mul(d->y, a, c);
139     if (!before_double)
140         ossl_gf_mul(d->t, b, c);
141 }
142 
sub_niels_from_pt(curve448_point_t d,const niels_t e,int before_double)143 static void sub_niels_from_pt(curve448_point_t d, const niels_t e,
144     int before_double)
145 {
146     gf a, b, c;
147 
148     gf_sub_nr(b, d->y, d->x); /* 3+e */
149     ossl_gf_mul(a, e->b, b);
150     gf_add_nr(b, d->x, d->y); /* 2+e */
151     ossl_gf_mul(d->y, e->a, b);
152     ossl_gf_mul(d->x, e->c, d->t);
153     gf_add_nr(c, a, d->y); /* 2+e */
154     gf_sub_nr(b, d->y, a); /* 3+e */
155     gf_add_nr(d->y, d->z, d->x); /* 2+e */
156     gf_sub_nr(a, d->z, d->x); /* 3+e */
157     ossl_gf_mul(d->z, a, d->y);
158     ossl_gf_mul(d->x, d->y, b);
159     ossl_gf_mul(d->y, a, c);
160     if (!before_double)
161         ossl_gf_mul(d->t, b, c);
162 }
163 
add_pniels_to_pt(curve448_point_t p,const pniels_t pn,int before_double)164 static void add_pniels_to_pt(curve448_point_t p, const pniels_t pn,
165     int before_double)
166 {
167     gf L0;
168 
169     ossl_gf_mul(L0, p->z, pn->z);
170     gf_copy(p->z, L0);
171     add_niels_to_pt(p, pn->n, before_double);
172 }
173 
sub_pniels_from_pt(curve448_point_t p,const pniels_t pn,int before_double)174 static void sub_pniels_from_pt(curve448_point_t p, const pniels_t pn,
175     int before_double)
176 {
177     gf L0;
178 
179     ossl_gf_mul(L0, p->z, pn->z);
180     gf_copy(p->z, L0);
181     sub_niels_from_pt(p, pn->n, before_double);
182 }
183 
184 c448_bool_t
ossl_curve448_point_eq(const curve448_point_t p,const curve448_point_t q)185 ossl_curve448_point_eq(const curve448_point_t p,
186     const curve448_point_t q)
187 {
188     mask_t succ;
189     gf a, b;
190 
191     /* equality mod 2-torsion compares x/y */
192     ossl_gf_mul(a, p->y, q->x);
193     ossl_gf_mul(b, q->y, p->x);
194     succ = gf_eq(a, b);
195 
196     return mask_to_bool(succ);
197 }
198 
199 c448_bool_t
ossl_curve448_point_valid(const curve448_point_t p)200 ossl_curve448_point_valid(const curve448_point_t p)
201 {
202     mask_t out;
203     gf a, b, c;
204 
205     ossl_gf_mul(a, p->x, p->y);
206     ossl_gf_mul(b, p->z, p->t);
207     out = gf_eq(a, b);
208     ossl_gf_sqr(a, p->x);
209     ossl_gf_sqr(b, p->y);
210     gf_sub(a, b, a);
211     ossl_gf_sqr(b, p->t);
212     gf_mulw(c, b, TWISTED_D);
213     ossl_gf_sqr(b, p->z);
214     gf_add(b, b, c);
215     out &= gf_eq(a, b);
216     out &= ~gf_eq(p->z, ZERO);
217     return mask_to_bool(out);
218 }
219 
constant_time_lookup_niels(niels_s * RESTRICT ni,const niels_t * table,int nelts,int idx)220 static ossl_inline void constant_time_lookup_niels(niels_s *RESTRICT ni,
221     const niels_t *table,
222     int nelts, int idx)
223 {
224     constant_time_lookup(ni, table, sizeof(niels_s), nelts, idx);
225 }
226 
ossl_curve448_precomputed_scalarmul(curve448_point_t out,const curve448_precomputed_s * table,const curve448_scalar_t scalar)227 void ossl_curve448_precomputed_scalarmul(curve448_point_t out,
228     const curve448_precomputed_s *table,
229     const curve448_scalar_t scalar)
230 {
231     unsigned int i, j, k;
232     const unsigned int n = COMBS_N, t = COMBS_T, s = COMBS_S;
233     niels_t ni;
234     curve448_scalar_t scalar1x;
235 
236     ossl_curve448_scalar_add(scalar1x, scalar, precomputed_scalarmul_adjustment);
237     ossl_curve448_scalar_halve(scalar1x, scalar1x);
238 
239     for (i = s; i > 0; i--) {
240         if (i != s)
241             point_double_internal(out, out, 0);
242 
243         for (j = 0; j < n; j++) {
244             int tab = 0;
245             mask_t invert;
246 
247             for (k = 0; k < t; k++) {
248                 unsigned int bit = (i - 1) + s * (k + j * t);
249 
250                 if (bit < C448_SCALAR_BITS)
251                     tab |= (scalar1x->limb[bit / WBITS] >> (bit % WBITS) & 1) << k;
252             }
253 
254             invert = (tab >> (t - 1)) - 1;
255             tab ^= invert;
256             tab &= (1 << (t - 1)) - 1;
257 
258             constant_time_lookup_niels(ni, &table->table[j << (t - 1)],
259                 1 << (t - 1), tab);
260 
261             cond_neg_niels(ni, invert);
262             if ((i != s) || j != 0)
263                 add_niels_to_pt(out, ni, j == n - 1 && i != 1);
264             else
265                 niels_to_pt(out, ni);
266         }
267     }
268 
269     OPENSSL_cleanse(ni, sizeof(ni));
270     OPENSSL_cleanse(scalar1x, sizeof(scalar1x));
271 }
272 
ossl_curve448_point_mul_by_ratio_and_encode_like_eddsa(uint8_t enc[EDDSA_448_PUBLIC_BYTES],const curve448_point_t p)273 void ossl_curve448_point_mul_by_ratio_and_encode_like_eddsa(
274     uint8_t enc[EDDSA_448_PUBLIC_BYTES],
275     const curve448_point_t p)
276 {
277     gf x, y, z, t;
278     curve448_point_t q;
279 
280     /* The point is now on the twisted curve.  Move it to untwisted. */
281     curve448_point_copy(q, p);
282 
283     {
284         /* 4-isogeny: 2xy/(y^+x^2), (y^2-x^2)/(2z^2-y^2+x^2) */
285         gf u;
286 
287         ossl_gf_sqr(x, q->x);
288         ossl_gf_sqr(t, q->y);
289         gf_add(u, x, t);
290         gf_add(z, q->y, q->x);
291         ossl_gf_sqr(y, z);
292         gf_sub(y, y, u);
293         gf_sub(z, t, x);
294         ossl_gf_sqr(x, q->z);
295         gf_add(t, x, x);
296         gf_sub(t, t, z);
297         ossl_gf_mul(x, t, y);
298         ossl_gf_mul(y, z, u);
299         ossl_gf_mul(z, u, t);
300         OPENSSL_cleanse(u, sizeof(u));
301     }
302 
303     /* Affinize */
304     gf_invert(z, z, 1);
305     ossl_gf_mul(t, x, z);
306     ossl_gf_mul(x, y, z);
307 
308     /* Encode */
309     enc[EDDSA_448_PRIVATE_BYTES - 1] = 0;
310     gf_serialize(enc, x, 1);
311     enc[EDDSA_448_PRIVATE_BYTES - 1] |= 0x80 & gf_lobit(t);
312 
313     OPENSSL_cleanse(x, sizeof(x));
314     OPENSSL_cleanse(y, sizeof(y));
315     OPENSSL_cleanse(z, sizeof(z));
316     OPENSSL_cleanse(t, sizeof(t));
317     ossl_curve448_point_destroy(q);
318 }
319 
320 c448_error_t
ossl_curve448_point_decode_like_eddsa_and_mul_by_ratio(curve448_point_t p,const uint8_t enc[EDDSA_448_PUBLIC_BYTES])321 ossl_curve448_point_decode_like_eddsa_and_mul_by_ratio(
322     curve448_point_t p,
323     const uint8_t enc[EDDSA_448_PUBLIC_BYTES])
324 {
325     uint8_t enc2[EDDSA_448_PUBLIC_BYTES];
326     mask_t low;
327     mask_t succ;
328 
329     memcpy(enc2, enc, sizeof(enc2));
330 
331     low = ~word_is_zero(enc2[EDDSA_448_PRIVATE_BYTES - 1] & 0x80);
332     enc2[EDDSA_448_PRIVATE_BYTES - 1] &= ~0x80;
333 
334     succ = gf_deserialize(p->y, enc2, 1, 0);
335     succ &= word_is_zero(enc2[EDDSA_448_PRIVATE_BYTES - 1]);
336 
337     ossl_gf_sqr(p->x, p->y);
338     gf_sub(p->z, ONE, p->x); /* num = 1-y^2 */
339     gf_mulw(p->t, p->x, EDWARDS_D); /* dy^2 */
340     gf_sub(p->t, ONE, p->t); /* denom = 1-dy^2 or 1-d + dy^2 */
341 
342     ossl_gf_mul(p->x, p->z, p->t);
343     succ &= gf_isr(p->t, p->x); /* 1/sqrt(num * denom) */
344 
345     ossl_gf_mul(p->x, p->t, p->z); /* sqrt(num / denom) */
346     gf_cond_neg(p->x, gf_lobit(p->x) ^ low);
347     gf_copy(p->z, ONE);
348 
349     {
350         gf a, b, c, d;
351 
352         /* 4-isogeny 2xy/(y^2-ax^2), (y^2+ax^2)/(2-y^2-ax^2) */
353         ossl_gf_sqr(c, p->x);
354         ossl_gf_sqr(a, p->y);
355         gf_add(d, c, a);
356         gf_add(p->t, p->y, p->x);
357         ossl_gf_sqr(b, p->t);
358         gf_sub(b, b, d);
359         gf_sub(p->t, a, c);
360         ossl_gf_sqr(p->x, p->z);
361         gf_add(p->z, p->x, p->x);
362         gf_sub(a, p->z, d);
363         ossl_gf_mul(p->x, a, b);
364         ossl_gf_mul(p->z, p->t, a);
365         ossl_gf_mul(p->y, p->t, d);
366         ossl_gf_mul(p->t, b, d);
367         OPENSSL_cleanse(a, sizeof(a));
368         OPENSSL_cleanse(b, sizeof(b));
369         OPENSSL_cleanse(c, sizeof(c));
370         OPENSSL_cleanse(d, sizeof(d));
371     }
372 
373     OPENSSL_cleanse(enc2, sizeof(enc2));
374     assert(ossl_curve448_point_valid(p) || ~succ);
375 
376     return c448_succeed_if(mask_to_bool(succ));
377 }
378 
379 c448_error_t
ossl_x448_int(uint8_t out[X_PUBLIC_BYTES],const uint8_t base[X_PUBLIC_BYTES],const uint8_t scalar[X_PRIVATE_BYTES])380 ossl_x448_int(uint8_t out[X_PUBLIC_BYTES],
381     const uint8_t base[X_PUBLIC_BYTES],
382     const uint8_t scalar[X_PRIVATE_BYTES])
383 {
384     gf x1, x2, z2, x3, z3, t1, t2;
385     int t;
386     mask_t swap = 0;
387     mask_t nz;
388 
389     (void)gf_deserialize(x1, base, 1, 0);
390     gf_copy(x2, ONE);
391     gf_copy(z2, ZERO);
392     gf_copy(x3, x1);
393     gf_copy(z3, ONE);
394 
395     for (t = X_PRIVATE_BITS - 1; t >= 0; t--) {
396         uint8_t sb = scalar[t / 8];
397         mask_t k_t;
398 
399         /* Scalar conditioning */
400         if (t / 8 == 0)
401             sb &= -(uint8_t)COFACTOR;
402         else if (t == X_PRIVATE_BITS - 1)
403             sb = -1;
404 
405         k_t = (sb >> (t % 8)) & 1;
406         k_t = 0 - k_t; /* set to all 0s or all 1s */
407 
408         swap ^= k_t;
409         gf_cond_swap(x2, x3, swap);
410         gf_cond_swap(z2, z3, swap);
411         swap = k_t;
412 
413         /*
414          * The "_nr" below skips coefficient reduction. In the following
415          * comments, "2+e" is saying that the coefficients are at most 2+epsilon
416          * times the reduction limit.
417          */
418         gf_add_nr(t1, x2, z2); /* A = x2 + z2 */ /* 2+e */
419         gf_sub_nr(t2, x2, z2); /* B = x2 - z2 */ /* 3+e */
420         gf_sub_nr(z2, x3, z3); /* D = x3 - z3 */ /* 3+e */
421         ossl_gf_mul(x2, t1, z2); /* DA */
422         gf_add_nr(z2, z3, x3); /* C = x3 + z3 */ /* 2+e */
423         ossl_gf_mul(x3, t2, z2); /* CB */
424         gf_sub_nr(z3, x2, x3); /* DA-CB */ /* 3+e */
425         ossl_gf_sqr(z2, z3); /* (DA-CB)^2 */
426         ossl_gf_mul(z3, x1, z2); /* z3 = x1(DA-CB)^2 */
427         gf_add_nr(z2, x2, x3); /* (DA+CB) */ /* 2+e */
428         ossl_gf_sqr(x3, z2); /* x3 = (DA+CB)^2 */
429 
430         ossl_gf_sqr(z2, t1); /* AA = A^2 */
431         ossl_gf_sqr(t1, t2); /* BB = B^2 */
432         ossl_gf_mul(x2, z2, t1); /* x2 = AA*BB */
433         gf_sub_nr(t2, z2, t1); /* E = AA-BB */ /* 3+e */
434 
435         gf_mulw(t1, t2, -EDWARDS_D); /* E*-d = a24*E */
436         gf_add_nr(t1, t1, z2); /* AA + a24*E */ /* 2+e */
437         ossl_gf_mul(z2, t2, t1); /* z2 = E(AA+a24*E) */
438     }
439 
440     /* Finish */
441     gf_cond_swap(x2, x3, swap);
442     gf_cond_swap(z2, z3, swap);
443     gf_invert(z2, z2, 0);
444     ossl_gf_mul(x1, x2, z2);
445     gf_serialize(out, x1, 1);
446     nz = ~gf_eq(x1, ZERO);
447 
448     OPENSSL_cleanse(x1, sizeof(x1));
449     OPENSSL_cleanse(x2, sizeof(x2));
450     OPENSSL_cleanse(z2, sizeof(z2));
451     OPENSSL_cleanse(x3, sizeof(x3));
452     OPENSSL_cleanse(z3, sizeof(z3));
453     OPENSSL_cleanse(t1, sizeof(t1));
454     OPENSSL_cleanse(t2, sizeof(t2));
455 
456     return c448_succeed_if(mask_to_bool(nz));
457 }
458 
ossl_curve448_point_mul_by_ratio_and_encode_like_x448(uint8_t out[X_PUBLIC_BYTES],const curve448_point_t p)459 void ossl_curve448_point_mul_by_ratio_and_encode_like_x448(uint8_t
460                                                                out[X_PUBLIC_BYTES],
461     const curve448_point_t p)
462 {
463     curve448_point_t q;
464 
465     curve448_point_copy(q, p);
466     gf_invert(q->t, q->x, 0); /* 1/x */
467     ossl_gf_mul(q->z, q->t, q->y); /* y/x */
468     ossl_gf_sqr(q->y, q->z); /* (y/x)^2 */
469     gf_serialize(out, q->y, 1);
470     ossl_curve448_point_destroy(q);
471 }
472 
ossl_x448_derive_public_key(uint8_t out[X_PUBLIC_BYTES],const uint8_t scalar[X_PRIVATE_BYTES])473 void ossl_x448_derive_public_key(uint8_t out[X_PUBLIC_BYTES],
474     const uint8_t scalar[X_PRIVATE_BYTES])
475 {
476     /* Scalar conditioning */
477     uint8_t scalar2[X_PRIVATE_BYTES];
478     curve448_scalar_t the_scalar;
479     curve448_point_t p;
480     unsigned int i;
481 
482     memcpy(scalar2, scalar, sizeof(scalar2));
483     scalar2[0] &= -(uint8_t)COFACTOR;
484 
485     scalar2[X_PRIVATE_BYTES - 1] &= ~((0u - 1u) << ((X_PRIVATE_BITS + 7) % 8));
486     scalar2[X_PRIVATE_BYTES - 1] |= 1 << ((X_PRIVATE_BITS + 7) % 8);
487 
488     ossl_curve448_scalar_decode_long(the_scalar, scalar2, sizeof(scalar2));
489 
490     /* Compensate for the encoding ratio */
491     for (i = 1; i < X448_ENCODE_RATIO; i <<= 1)
492         ossl_curve448_scalar_halve(the_scalar, the_scalar);
493 
494     ossl_curve448_precomputed_scalarmul(p, ossl_curve448_precomputed_base,
495         the_scalar);
496     ossl_curve448_point_mul_by_ratio_and_encode_like_x448(out, p);
497     ossl_curve448_point_destroy(p);
498 }
499 
500 /* Control for variable-time scalar multiply algorithms. */
501 struct smvt_control {
502     int power, addend;
503 };
504 
505 #if defined(__GNUC__) && (__GNUC__ > 3 || (__GNUC__ == 3 && __GNUC_MINOR__ > 3))
506 #define NUMTRAILINGZEROS __builtin_ctz
507 #else
508 #define NUMTRAILINGZEROS numtrailingzeros
numtrailingzeros(uint32_t i)509 static uint32_t numtrailingzeros(uint32_t i)
510 {
511     uint32_t tmp;
512     uint32_t num = 31;
513 
514     if (i == 0)
515         return 32;
516 
517     tmp = i << 16;
518     if (tmp != 0) {
519         i = tmp;
520         num -= 16;
521     }
522     tmp = i << 8;
523     if (tmp != 0) {
524         i = tmp;
525         num -= 8;
526     }
527     tmp = i << 4;
528     if (tmp != 0) {
529         i = tmp;
530         num -= 4;
531     }
532     tmp = i << 2;
533     if (tmp != 0) {
534         i = tmp;
535         num -= 2;
536     }
537     tmp = i << 1;
538     if (tmp != 0)
539         num--;
540 
541     return num;
542 }
543 #endif
544 
recode_wnaf(struct smvt_control * control,const curve448_scalar_t scalar,unsigned int table_bits)545 static int recode_wnaf(struct smvt_control *control,
546     /* [nbits/(table_bits + 1) + 3] */
547     const curve448_scalar_t scalar,
548     unsigned int table_bits)
549 {
550     unsigned int table_size = C448_SCALAR_BITS / (table_bits + 1) + 3;
551     int position = table_size - 1; /* at the end */
552     uint64_t current = scalar->limb[0] & 0xFFFF;
553     uint32_t mask = (1 << (table_bits + 1)) - 1;
554     unsigned int w;
555     const unsigned int B_OVER_16 = sizeof(scalar->limb[0]) / 2;
556     unsigned int n, i;
557 
558     /* place the end marker */
559     control[position].power = -1;
560     control[position].addend = 0;
561     position--;
562 
563     /*
564      * PERF: Could negate scalar if it's large.  But then would need more cases
565      * in the actual code that uses it, all for an expected reduction of like
566      * 1/5 op. Probably not worth it.
567      */
568 
569     for (w = 1; w < (C448_SCALAR_BITS - 1) / 16 + 3; w++) {
570         if (w < (C448_SCALAR_BITS - 1) / 16 + 1) {
571             /* Refill the 16 high bits of current */
572             current += (uint32_t)((scalar->limb[w / B_OVER_16]
573                                       >> (16 * (w % B_OVER_16)))
574                 << 16);
575         }
576 
577         while (current & 0xFFFF) {
578             uint32_t pos = NUMTRAILINGZEROS((uint32_t)current);
579             uint32_t odd = (uint32_t)current >> pos;
580             int32_t delta = odd & mask;
581 
582             assert(position >= 0);
583             if (odd & (1 << (table_bits + 1)))
584                 delta -= (1 << (table_bits + 1));
585             /*
586              * Coverity gets confused by the value of pos, thinking it might be
587              * 32.  This would require current & 0xFFFF to be zero which isn't
588              * possible.  Suppress this false positive, since adding a check
589              * isn't desirable.
590              */
591             /* coverity[overflow_before_widen] */
592             current -= delta * (1 << pos);
593             control[position].power = pos + 16 * (w - 1);
594             control[position].addend = delta;
595             position--;
596         }
597         current >>= 16;
598     }
599     assert(current == 0);
600 
601     position++;
602     n = table_size - position;
603     for (i = 0; i < n; i++)
604         control[i] = control[i + position];
605 
606     return n - 1;
607 }
608 
prepare_wnaf_table(pniels_t * output,const curve448_point_t working,unsigned int tbits)609 static void prepare_wnaf_table(pniels_t *output,
610     const curve448_point_t working,
611     unsigned int tbits)
612 {
613     curve448_point_t tmp;
614     int i;
615     pniels_t twop;
616 
617     pt_to_pniels(output[0], working);
618 
619     if (tbits == 0)
620         return;
621 
622     ossl_curve448_point_double(tmp, working);
623     pt_to_pniels(twop, tmp);
624 
625     add_pniels_to_pt(tmp, output[0], 0);
626     pt_to_pniels(output[1], tmp);
627 
628     for (i = 2; i < 1 << tbits; i++) {
629         add_pniels_to_pt(tmp, twop, 0);
630         pt_to_pniels(output[i], tmp);
631     }
632 
633     ossl_curve448_point_destroy(tmp);
634     OPENSSL_cleanse(twop, sizeof(twop));
635 }
636 
ossl_curve448_base_double_scalarmul_non_secret(curve448_point_t combo,const curve448_scalar_t scalar1,const curve448_point_t base2,const curve448_scalar_t scalar2)637 void ossl_curve448_base_double_scalarmul_non_secret(curve448_point_t combo,
638     const curve448_scalar_t scalar1,
639     const curve448_point_t base2,
640     const curve448_scalar_t scalar2)
641 {
642     const int table_bits_var = C448_WNAF_VAR_TABLE_BITS;
643     const int table_bits_pre = C448_WNAF_FIXED_TABLE_BITS;
644     struct smvt_control control_var[C448_SCALAR_BITS / (C448_WNAF_VAR_TABLE_BITS + 1) + 3];
645     struct smvt_control control_pre[C448_SCALAR_BITS / (C448_WNAF_FIXED_TABLE_BITS + 1) + 3];
646     int ncb_pre = recode_wnaf(control_pre, scalar1, table_bits_pre);
647     int ncb_var = recode_wnaf(control_var, scalar2, table_bits_var);
648     pniels_t precmp_var[1 << C448_WNAF_VAR_TABLE_BITS];
649     int contp = 0, contv = 0, i;
650 
651     prepare_wnaf_table(precmp_var, base2, table_bits_var);
652     i = control_var[0].power;
653 
654     if (i < 0) {
655         curve448_point_copy(combo, ossl_curve448_point_identity);
656         return;
657     }
658     if (i > control_pre[0].power) {
659         pniels_to_pt(combo, precmp_var[control_var[0].addend >> 1]);
660         contv++;
661     } else if (i == control_pre[0].power && i >= 0) {
662         pniels_to_pt(combo, precmp_var[control_var[0].addend >> 1]);
663         add_niels_to_pt(combo,
664             ossl_curve448_wnaf_base[control_pre[0].addend >> 1],
665             i);
666         contv++;
667         contp++;
668     } else {
669         i = control_pre[0].power;
670         niels_to_pt(combo, ossl_curve448_wnaf_base[control_pre[0].addend >> 1]);
671         contp++;
672     }
673 
674     for (i--; i >= 0; i--) {
675         int cv = (i == control_var[contv].power);
676         int cp = (i == control_pre[contp].power);
677 
678         point_double_internal(combo, combo, i && !(cv || cp));
679 
680         if (cv) {
681             assert(control_var[contv].addend);
682 
683             if (control_var[contv].addend > 0)
684                 add_pniels_to_pt(combo,
685                     precmp_var[control_var[contv].addend >> 1],
686                     i && !cp);
687             else
688                 sub_pniels_from_pt(combo,
689                     precmp_var[(-control_var[contv].addend)
690                         >> 1],
691                     i && !cp);
692             contv++;
693         }
694 
695         if (cp) {
696             assert(control_pre[contp].addend);
697 
698             if (control_pre[contp].addend > 0)
699                 add_niels_to_pt(combo,
700                     ossl_curve448_wnaf_base[control_pre[contp].addend
701                         >> 1],
702                     i);
703             else
704                 sub_niels_from_pt(combo,
705                     ossl_curve448_wnaf_base[(-control_pre
706                                                     [contp]
707                                                         .addend)
708                         >> 1],
709                     i);
710             contp++;
711         }
712     }
713 
714     /* This function is non-secret, but whatever this is cheap. */
715     OPENSSL_cleanse(control_var, sizeof(control_var));
716     OPENSSL_cleanse(control_pre, sizeof(control_pre));
717     OPENSSL_cleanse(precmp_var, sizeof(precmp_var));
718 
719     assert(contv == ncb_var);
720     (void)ncb_var;
721     assert(contp == ncb_pre);
722     (void)ncb_pre;
723 }
724 
ossl_curve448_point_destroy(curve448_point_t point)725 void ossl_curve448_point_destroy(curve448_point_t point)
726 {
727     OPENSSL_cleanse(point, sizeof(curve448_point_t));
728 }
729 
ossl_x448(uint8_t out_shared_key[56],const uint8_t private_key[56],const uint8_t peer_public_value[56])730 int ossl_x448(uint8_t out_shared_key[56], const uint8_t private_key[56],
731     const uint8_t peer_public_value[56])
732 {
733     return ossl_x448_int(out_shared_key, peer_public_value, private_key)
734         == C448_SUCCESS;
735 }
736 
ossl_x448_public_from_private(uint8_t out_public_value[56],const uint8_t private_key[56])737 void ossl_x448_public_from_private(uint8_t out_public_value[56],
738     const uint8_t private_key[56])
739 {
740     ossl_x448_derive_public_key(out_public_value, private_key);
741 }
742