xref: /linux/drivers/net/ethernet/sfc/net_driver.h (revision 1a9239bb4253f9076b5b4b2a1a4e8d7defd77a95)
1  /* SPDX-License-Identifier: GPL-2.0-only */
2  /****************************************************************************
3   * Driver for Solarflare network controllers and boards
4   * Copyright 2005-2006 Fen Systems Ltd.
5   * Copyright 2005-2013 Solarflare Communications Inc.
6   */
7  
8  /* Common definitions for all Efx net driver code */
9  
10  #ifndef EFX_NET_DRIVER_H
11  #define EFX_NET_DRIVER_H
12  
13  #include <linux/netdevice.h>
14  #include <linux/etherdevice.h>
15  #include <linux/ethtool.h>
16  #include <linux/if_vlan.h>
17  #include <linux/timer.h>
18  #include <linux/mii.h>
19  #include <linux/list.h>
20  #include <linux/pci.h>
21  #include <linux/device.h>
22  #include <linux/highmem.h>
23  #include <linux/workqueue.h>
24  #include <linux/mutex.h>
25  #include <linux/rwsem.h>
26  #include <linux/vmalloc.h>
27  #include <linux/mtd/mtd.h>
28  #include <net/busy_poll.h>
29  #include <net/xdp.h>
30  #include <net/netevent.h>
31  
32  #include "enum.h"
33  #include "bitfield.h"
34  #include "filter.h"
35  
36  /**************************************************************************
37   *
38   * Build definitions
39   *
40   **************************************************************************/
41  
42  #ifdef DEBUG
43  #define EFX_WARN_ON_ONCE_PARANOID(x) WARN_ON_ONCE(x)
44  #define EFX_WARN_ON_PARANOID(x) WARN_ON(x)
45  #else
46  #define EFX_WARN_ON_ONCE_PARANOID(x) do {} while (0)
47  #define EFX_WARN_ON_PARANOID(x) do {} while (0)
48  #endif
49  
50  /**************************************************************************
51   *
52   * Efx data structures
53   *
54   **************************************************************************/
55  
56  #define EFX_MAX_CHANNELS 32U
57  #define EFX_MAX_RX_QUEUES EFX_MAX_CHANNELS
58  #define EFX_EXTRA_CHANNEL_IOV	0
59  #define EFX_EXTRA_CHANNEL_PTP	1
60  #define EFX_EXTRA_CHANNEL_TC	2
61  #define EFX_MAX_EXTRA_CHANNELS	3U
62  
63  /* Checksum generation is a per-queue option in hardware, so each
64   * queue visible to the networking core is backed by two hardware TX
65   * queues. */
66  #define EFX_MAX_TX_TC		2
67  #define EFX_MAX_CORE_TX_QUEUES	(EFX_MAX_TX_TC * EFX_MAX_CHANNELS)
68  #define EFX_TXQ_TYPE_OUTER_CSUM	1	/* Outer checksum offload */
69  #define EFX_TXQ_TYPE_INNER_CSUM	2	/* Inner checksum offload */
70  #define EFX_TXQ_TYPES		4
71  #define EFX_MAX_TXQ_PER_CHANNEL	4
72  #define EFX_MAX_TX_QUEUES	(EFX_MAX_TXQ_PER_CHANNEL * EFX_MAX_CHANNELS)
73  
74  /* Maximum possible MTU the driver supports */
75  #define EFX_MAX_MTU (9 * 1024)
76  
77  /* Minimum MTU, from RFC791 (IP) */
78  #define EFX_MIN_MTU 68
79  
80  /* Maximum total header length for TSOv2 */
81  #define EFX_TSO2_MAX_HDRLEN	208
82  
83  /* Size of an RX scatter buffer.  Small enough to pack 2 into a 4K page,
84   * and should be a multiple of the cache line size.
85   */
86  #define EFX_RX_USR_BUF_SIZE	(2048 - 256)
87  
88  /* If possible, we should ensure cache line alignment at start and end
89   * of every buffer.  Otherwise, we just need to ensure 4-byte
90   * alignment of the network header.
91   */
92  #if NET_IP_ALIGN == 0
93  #define EFX_RX_BUF_ALIGNMENT	L1_CACHE_BYTES
94  #else
95  #define EFX_RX_BUF_ALIGNMENT	4
96  #endif
97  
98  /* Non-standard XDP_PACKET_HEADROOM and tailroom to satisfy XDP_REDIRECT and
99   * still fit two standard MTU size packets into a single 4K page.
100   */
101  #define EFX_XDP_HEADROOM	128
102  #define EFX_XDP_TAILROOM	SKB_DATA_ALIGN(sizeof(struct skb_shared_info))
103  
104  /* Forward declare Precision Time Protocol (PTP) support structure. */
105  struct efx_ptp_data;
106  struct hwtstamp_config;
107  
108  struct efx_self_tests;
109  
110  /**
111   * struct efx_buffer - A general-purpose DMA buffer
112   * @addr: host base address of the buffer
113   * @dma_addr: DMA base address of the buffer
114   * @len: Buffer length, in bytes
115   *
116   * The NIC uses these buffers for its interrupt status registers and
117   * MAC stats dumps.
118   */
119  struct efx_buffer {
120  	void *addr;
121  	dma_addr_t dma_addr;
122  	unsigned int len;
123  };
124  
125  /**
126   * struct efx_tx_buffer - buffer state for a TX descriptor
127   * @skb: When @flags & %EFX_TX_BUF_SKB, the associated socket buffer to be
128   *	freed when descriptor completes
129   * @xdpf: When @flags & %EFX_TX_BUF_XDP, the XDP frame information; its @data
130   *	member is the associated buffer to drop a page reference on.
131   * @option: When @flags & %EFX_TX_BUF_OPTION, an EF10-specific option
132   *	descriptor.
133   * @dma_addr: DMA address of the fragment.
134   * @flags: Flags for allocation and DMA mapping type
135   * @len: Length of this fragment.
136   *	This field is zero when the queue slot is empty.
137   * @unmap_len: Length of this fragment to unmap
138   * @dma_offset: Offset of @dma_addr from the address of the backing DMA mapping.
139   * Only valid if @unmap_len != 0.
140   */
141  struct efx_tx_buffer {
142  	union {
143  		const struct sk_buff *skb;
144  		struct xdp_frame *xdpf;
145  	};
146  	union {
147  		efx_qword_t option;    /* EF10 */
148  		dma_addr_t dma_addr;
149  	};
150  	unsigned short flags;
151  	unsigned short len;
152  	unsigned short unmap_len;
153  	unsigned short dma_offset;
154  };
155  #define EFX_TX_BUF_CONT		1	/* not last descriptor of packet */
156  #define EFX_TX_BUF_SKB		2	/* buffer is last part of skb */
157  #define EFX_TX_BUF_MAP_SINGLE	8	/* buffer was mapped with dma_map_single() */
158  #define EFX_TX_BUF_OPTION	0x10	/* empty buffer for option descriptor */
159  #define EFX_TX_BUF_XDP		0x20	/* buffer was sent with XDP */
160  #define EFX_TX_BUF_TSO_V3	0x40	/* empty buffer for a TSO_V3 descriptor */
161  #define EFX_TX_BUF_EFV		0x100	/* buffer was sent from representor */
162  
163  /**
164   * struct efx_tx_queue - An Efx TX queue
165   *
166   * This is a ring buffer of TX fragments.
167   * Since the TX completion path always executes on the same
168   * CPU and the xmit path can operate on different CPUs,
169   * performance is increased by ensuring that the completion
170   * path and the xmit path operate on different cache lines.
171   * This is particularly important if the xmit path is always
172   * executing on one CPU which is different from the completion
173   * path.  There is also a cache line for members which are
174   * read but not written on the fast path.
175   *
176   * @efx: The associated Efx NIC
177   * @queue: DMA queue number
178   * @label: Label for TX completion events.
179   *	Is our index within @channel->tx_queue array.
180   * @type: configuration type of this TX queue.  A bitmask of %EFX_TXQ_TYPE_* flags.
181   * @tso_version: Version of TSO in use for this queue.
182   * @tso_encap: Is encapsulated TSO supported? Supported in TSOv2 on 8000 series.
183   * @channel: The associated channel
184   * @core_txq: The networking core TX queue structure
185   * @buffer: The software buffer ring
186   * @cb_page: Array of pages of copy buffers.  Carved up according to
187   *	%EFX_TX_CB_ORDER into %EFX_TX_CB_SIZE-sized chunks.
188   * @txd: The hardware descriptor ring
189   * @ptr_mask: The size of the ring minus 1.
190   * @piobuf: PIO buffer region for this TX queue (shared with its partner).
191   *	Size of the region is efx_piobuf_size.
192   * @piobuf_offset: Buffer offset to be specified in PIO descriptors
193   * @initialised: Has hardware queue been initialised?
194   * @timestamping: Is timestamping enabled for this channel?
195   * @xdp_tx: Is this an XDP tx queue?
196   * @old_complete_packets: Value of @complete_packets as of last
197   *	efx_init_tx_queue()
198   * @old_complete_bytes: Value of @complete_bytes as of last
199   *	efx_init_tx_queue()
200   * @old_tso_bursts: Value of @tso_bursts as of last efx_init_tx_queue()
201   * @old_tso_packets: Value of @tso_packets as of last efx_init_tx_queue()
202   * @read_count: Current read pointer.
203   *	This is the number of buffers that have been removed from both rings.
204   * @old_write_count: The value of @write_count when last checked.
205   *	This is here for performance reasons.  The xmit path will
206   *	only get the up-to-date value of @write_count if this
207   *	variable indicates that the queue is empty.  This is to
208   *	avoid cache-line ping-pong between the xmit path and the
209   *	completion path.
210   * @merge_events: Number of TX merged completion events
211   * @bytes_compl: Number of bytes completed during this NAPI poll
212   *	(efx_process_channel()).  For BQL.
213   * @pkts_compl: Number of packets completed during this NAPI poll.
214   * @complete_packets: Number of packets completed since this struct was
215   *	created.  Only counts SKB packets, not XDP TX (it accumulates
216   *	the same values that are reported to BQL).
217   * @complete_bytes: Number of bytes completed since this struct was
218   *	created.  For TSO, counts the superframe size, not the sizes of
219   *	generated frames on the wire (i.e. the headers are only counted
220   *	once)
221   * @complete_xdp_packets: Number of XDP TX packets completed since this
222   *	struct was created.
223   * @complete_xdp_bytes: Number of XDP TX bytes completed since this
224   *	struct was created.
225   * @completed_timestamp_major: Top part of the most recent tx timestamp.
226   * @completed_timestamp_minor: Low part of the most recent tx timestamp.
227   * @insert_count: Current insert pointer
228   *	This is the number of buffers that have been added to the
229   *	software ring.
230   * @write_count: Current write pointer
231   *	This is the number of buffers that have been added to the
232   *	hardware ring.
233   * @packet_write_count: Completable write pointer
234   *	This is the write pointer of the last packet written.
235   *	Normally this will equal @write_count, but as option descriptors
236   *	don't produce completion events, they won't update this.
237   *	Filled in iff @efx->type->option_descriptors; only used for PIO.
238   *	Thus, this is only written and used on EF10.
239   * @old_read_count: The value of read_count when last checked.
240   *	This is here for performance reasons.  The xmit path will
241   *	only get the up-to-date value of read_count if this
242   *	variable indicates that the queue is full.  This is to
243   *	avoid cache-line ping-pong between the xmit path and the
244   *	completion path.
245   * @tso_bursts: Number of times TSO xmit invoked by kernel
246   * @tso_long_headers: Number of packets with headers too long for standard
247   *	blocks
248   * @tso_packets: Number of packets via the TSO xmit path
249   * @tso_fallbacks: Number of times TSO fallback used
250   * @pushes: Number of times the TX push feature has been used
251   * @pio_packets: Number of times the TX PIO feature has been used
252   * @xmit_pending: Are any packets waiting to be pushed to the NIC
253   * @cb_packets: Number of times the TX copybreak feature has been used
254   * @notify_count: Count of notified descriptors to the NIC
255   * @tx_packets: Number of packets sent since this struct was created
256   * @empty_read_count: If the completion path has seen the queue as empty
257   *	and the transmission path has not yet checked this, the value of
258   *	@read_count bitwise-added to %EFX_EMPTY_COUNT_VALID; otherwise 0.
259   */
260  struct efx_tx_queue {
261  	/* Members which don't change on the fast path */
262  	struct efx_nic *efx ____cacheline_aligned_in_smp;
263  	unsigned int queue;
264  	unsigned int label;
265  	unsigned int type;
266  	unsigned int tso_version;
267  	bool tso_encap;
268  	struct efx_channel *channel;
269  	struct netdev_queue *core_txq;
270  	struct efx_tx_buffer *buffer;
271  	struct efx_buffer *cb_page;
272  	struct efx_buffer txd;
273  	unsigned int ptr_mask;
274  	void __iomem *piobuf;
275  	unsigned int piobuf_offset;
276  	bool initialised;
277  	bool timestamping;
278  	bool xdp_tx;
279  	unsigned long old_complete_packets;
280  	unsigned long old_complete_bytes;
281  	unsigned int old_tso_bursts;
282  	unsigned int old_tso_packets;
283  
284  	/* Members used mainly on the completion path */
285  	unsigned int read_count ____cacheline_aligned_in_smp;
286  	unsigned int old_write_count;
287  	unsigned int merge_events;
288  	unsigned int bytes_compl;
289  	unsigned int pkts_compl;
290  	unsigned long complete_packets;
291  	unsigned long complete_bytes;
292  	unsigned long complete_xdp_packets;
293  	unsigned long complete_xdp_bytes;
294  	u32 completed_timestamp_major;
295  	u32 completed_timestamp_minor;
296  
297  	/* Members used only on the xmit path */
298  	unsigned int insert_count ____cacheline_aligned_in_smp;
299  	unsigned int write_count;
300  	unsigned int packet_write_count;
301  	unsigned int old_read_count;
302  	unsigned int tso_bursts;
303  	unsigned int tso_long_headers;
304  	unsigned int tso_packets;
305  	unsigned int tso_fallbacks;
306  	unsigned int pushes;
307  	unsigned int pio_packets;
308  	bool xmit_pending;
309  	unsigned int cb_packets;
310  	unsigned int notify_count;
311  	/* Statistics to supplement MAC stats */
312  	unsigned long tx_packets;
313  
314  	/* Members shared between paths and sometimes updated */
315  	unsigned int empty_read_count ____cacheline_aligned_in_smp;
316  #define EFX_EMPTY_COUNT_VALID 0x80000000
317  	atomic_t flush_outstanding;
318  };
319  
320  #define EFX_TX_CB_ORDER	7
321  #define EFX_TX_CB_SIZE	(1 << EFX_TX_CB_ORDER) - NET_IP_ALIGN
322  
323  /**
324   * struct efx_rx_buffer - An Efx RX data buffer
325   * @dma_addr: DMA base address of the buffer
326   * @page: The associated page buffer.
327   *	Will be %NULL if the buffer slot is currently free.
328   * @page_offset: If pending: offset in @page of DMA base address.
329   *	If completed: offset in @page of Ethernet header.
330   * @len: If pending: length for DMA descriptor.
331   *	If completed: received length, excluding hash prefix.
332   * @flags: Flags for buffer and packet state.  These are only set on the
333   *	first buffer of a scattered packet.
334   */
335  struct efx_rx_buffer {
336  	dma_addr_t dma_addr;
337  	struct page *page;
338  	u16 page_offset;
339  	u16 len;
340  	u16 flags;
341  };
342  #define EFX_RX_BUF_LAST_IN_PAGE	0x0001
343  #define EFX_RX_PKT_CSUMMED	0x0002
344  #define EFX_RX_PKT_DISCARD	0x0004
345  #define EFX_RX_PKT_TCP		0x0040
346  #define EFX_RX_PKT_PREFIX_LEN	0x0080	/* length is in prefix only */
347  #define EFX_RX_PKT_CSUM_LEVEL	0x0200
348  
349  /**
350   * struct efx_rx_page_state - Page-based rx buffer state
351   *
352   * Inserted at the start of every page allocated for receive buffers.
353   * Used to facilitate sharing dma mappings between recycled rx buffers
354   * and those passed up to the kernel.
355   *
356   * @dma_addr: The dma address of this page.
357   */
358  struct efx_rx_page_state {
359  	dma_addr_t dma_addr;
360  
361  	unsigned int __pad[] ____cacheline_aligned;
362  };
363  
364  /**
365   * struct efx_rx_queue - An Efx RX queue
366   * @efx: The associated Efx NIC
367   * @core_index:  Index of network core RX queue.  Will be >= 0 iff this
368   *	is associated with a real RX queue.
369   * @buffer: The software buffer ring
370   * @rxd: The hardware descriptor ring
371   * @ptr_mask: The size of the ring minus 1.
372   * @refill_enabled: Enable refill whenever fill level is low
373   * @flush_pending: Set when a RX flush is pending. Has the same lifetime as
374   *	@rxq_flush_pending.
375   * @grant_credits: Posted RX descriptors need to be granted to the MAE with
376   *	%MC_CMD_MAE_COUNTERS_STREAM_GIVE_CREDITS.  For %EFX_EXTRA_CHANNEL_TC,
377   *	and only supported on EF100.
378   * @added_count: Number of buffers added to the receive queue.
379   * @notified_count: Number of buffers given to NIC (<= @added_count).
380   * @granted_count: Number of buffers granted to the MAE (<= @notified_count).
381   * @removed_count: Number of buffers removed from the receive queue.
382   * @scatter_n: Used by NIC specific receive code.
383   * @scatter_len: Used by NIC specific receive code.
384   * @page_ring: The ring to store DMA mapped pages for reuse.
385   * @page_add: Counter to calculate the write pointer for the recycle ring.
386   * @page_remove: Counter to calculate the read pointer for the recycle ring.
387   * @page_recycle_count: The number of pages that have been recycled.
388   * @page_recycle_failed: The number of pages that couldn't be recycled because
389   *      the kernel still held a reference to them.
390   * @page_recycle_full: The number of pages that were released because the
391   *      recycle ring was full.
392   * @page_ptr_mask: The number of pages in the RX recycle ring minus 1.
393   * @max_fill: RX descriptor maximum fill level (<= ring size)
394   * @fast_fill_trigger: RX descriptor fill level that will trigger a fast fill
395   *	(<= @max_fill)
396   * @min_fill: RX descriptor minimum non-zero fill level.
397   *	This records the minimum fill level observed when a ring
398   *	refill was triggered.
399   * @recycle_count: RX buffer recycle counter.
400   * @slow_fill: Timer used to defer efx_nic_generate_fill_event().
401   * @grant_work: workitem used to grant credits to the MAE if @grant_credits
402   * @rx_packets: Number of packets received since this struct was created
403   * @rx_bytes: Number of bytes received since this struct was created
404   * @old_rx_packets: Value of @rx_packets as of last efx_init_rx_queue()
405   * @old_rx_bytes: Value of @rx_bytes as of last efx_init_rx_queue()
406   * @xdp_rxq_info: XDP specific RX queue information.
407   * @xdp_rxq_info_valid: Is xdp_rxq_info valid data?.
408   */
409  struct efx_rx_queue {
410  	struct efx_nic *efx;
411  	int core_index;
412  	struct efx_rx_buffer *buffer;
413  	struct efx_buffer rxd;
414  	unsigned int ptr_mask;
415  	bool refill_enabled;
416  	bool flush_pending;
417  	bool grant_credits;
418  
419  	unsigned int added_count;
420  	unsigned int notified_count;
421  	unsigned int granted_count;
422  	unsigned int removed_count;
423  	unsigned int scatter_n;
424  	unsigned int scatter_len;
425  	struct page **page_ring;
426  	unsigned int page_add;
427  	unsigned int page_remove;
428  	unsigned int page_recycle_count;
429  	unsigned int page_recycle_failed;
430  	unsigned int page_recycle_full;
431  	unsigned int page_ptr_mask;
432  	unsigned int max_fill;
433  	unsigned int fast_fill_trigger;
434  	unsigned int min_fill;
435  	unsigned int min_overfill;
436  	unsigned int recycle_count;
437  	struct timer_list slow_fill;
438  	unsigned int slow_fill_count;
439  	struct work_struct grant_work;
440  	/* Statistics to supplement MAC stats */
441  	unsigned long rx_packets;
442  	unsigned long rx_bytes;
443  	unsigned long old_rx_packets;
444  	unsigned long old_rx_bytes;
445  	struct xdp_rxq_info xdp_rxq_info;
446  	bool xdp_rxq_info_valid;
447  };
448  
449  enum efx_sync_events_state {
450  	SYNC_EVENTS_DISABLED = 0,
451  	SYNC_EVENTS_QUIESCENT,
452  	SYNC_EVENTS_REQUESTED,
453  	SYNC_EVENTS_VALID,
454  };
455  
456  /**
457   * struct efx_channel - An Efx channel
458   *
459   * A channel comprises an event queue, at least one TX queue, at least
460   * one RX queue, and an associated tasklet for processing the event
461   * queue.
462   *
463   * @efx: Associated Efx NIC
464   * @channel: Channel instance number
465   * @type: Channel type definition
466   * @eventq_init: Event queue initialised flag
467   * @enabled: Channel enabled indicator
468   * @irq: IRQ number (MSI and MSI-X only)
469   * @irq_moderation_us: IRQ moderation value (in microseconds)
470   * @napi_dev: Net device used with NAPI
471   * @napi_str: NAPI control structure
472   * @state: state for NAPI vs busy polling
473   * @state_lock: lock protecting @state
474   * @eventq: Event queue buffer
475   * @eventq_mask: Event queue pointer mask
476   * @eventq_read_ptr: Event queue read pointer
477   * @event_test_cpu: Last CPU to handle interrupt or test event for this channel
478   * @irq_count: Number of IRQs since last adaptive moderation decision
479   * @irq_mod_score: IRQ moderation score
480   * @rfs_filter_count: number of accelerated RFS filters currently in place;
481   *	equals the count of @rps_flow_id slots filled
482   * @rfs_last_expiry: value of jiffies last time some accelerated RFS filters
483   *	were checked for expiry
484   * @rfs_expire_index: next accelerated RFS filter ID to check for expiry
485   * @n_rfs_succeeded: number of successful accelerated RFS filter insertions
486   * @n_rfs_failed: number of failed accelerated RFS filter insertions
487   * @filter_work: Work item for efx_filter_rfs_expire()
488   * @rps_flow_id: Flow IDs of filters allocated for accelerated RFS,
489   *      indexed by filter ID
490   * @n_rx_ip_hdr_chksum_err: Count of RX IP header checksum errors
491   * @n_rx_tcp_udp_chksum_err: Count of RX TCP and UDP checksum errors
492   * @n_rx_frm_trunc: Count of RX_FRM_TRUNC errors
493   * @n_rx_overlength: Count of RX_OVERLENGTH errors
494   * @n_skbuff_leaks: Count of skbuffs leaked due to RX overrun
495   * @n_rx_nodesc_trunc: Number of RX packets truncated and then dropped due to
496   *	lack of descriptors
497   * @n_rx_merge_events: Number of RX merged completion events
498   * @n_rx_merge_packets: Number of RX packets completed by merged events
499   * @n_rx_xdp_drops: Count of RX packets intentionally dropped due to XDP
500   * @n_rx_xdp_bad_drops: Count of RX packets dropped due to XDP errors
501   * @n_rx_xdp_tx: Count of RX packets retransmitted due to XDP
502   * @n_rx_xdp_redirect: Count of RX packets redirected to a different NIC by XDP
503   * @n_rx_mport_bad: Count of RX packets dropped because their ingress mport was
504   *	not recognised
505   * @old_n_rx_hw_drops: Count of all RX packets dropped for any reason as of last
506   *	efx_start_channels()
507   * @old_n_rx_hw_drop_overruns: Value of @n_rx_nodesc_trunc as of last
508   *	efx_start_channels()
509   * @rx_pkt_n_frags: Number of fragments in next packet to be delivered by
510   *	__efx_rx_packet(), or zero if there is none
511   * @rx_pkt_index: Ring index of first buffer for next packet to be delivered
512   *	by __efx_rx_packet(), if @rx_pkt_n_frags != 0
513   * @rx_list: list of SKBs from current RX, awaiting processing
514   * @rx_queue: RX queue for this channel
515   * @tx_queue: TX queues for this channel
516   * @tx_queue_by_type: pointers into @tx_queue, or %NULL, indexed by txq type
517   * @sync_events_state: Current state of sync events on this channel
518   * @sync_timestamp_major: Major part of the last ptp sync event
519   * @sync_timestamp_minor: Minor part of the last ptp sync event
520   */
521  struct efx_channel {
522  	struct efx_nic *efx;
523  	int channel;
524  	const struct efx_channel_type *type;
525  	bool eventq_init;
526  	bool enabled;
527  	int irq;
528  	unsigned int irq_moderation_us;
529  	struct net_device *napi_dev;
530  	struct napi_struct napi_str;
531  #ifdef CONFIG_NET_RX_BUSY_POLL
532  	unsigned long busy_poll_state;
533  #endif
534  	struct efx_buffer eventq;
535  	unsigned int eventq_mask;
536  	unsigned int eventq_read_ptr;
537  	int event_test_cpu;
538  
539  	unsigned int irq_count;
540  	unsigned int irq_mod_score;
541  #ifdef CONFIG_RFS_ACCEL
542  	unsigned int rfs_filter_count;
543  	unsigned int rfs_last_expiry;
544  	unsigned int rfs_expire_index;
545  	unsigned int n_rfs_succeeded;
546  	unsigned int n_rfs_failed;
547  	struct delayed_work filter_work;
548  #define RPS_FLOW_ID_INVALID 0xFFFFFFFF
549  	u32 *rps_flow_id;
550  #endif
551  
552  	unsigned int n_rx_ip_hdr_chksum_err;
553  	unsigned int n_rx_tcp_udp_chksum_err;
554  	unsigned int n_rx_outer_ip_hdr_chksum_err;
555  	unsigned int n_rx_outer_tcp_udp_chksum_err;
556  	unsigned int n_rx_inner_ip_hdr_chksum_err;
557  	unsigned int n_rx_inner_tcp_udp_chksum_err;
558  	unsigned int n_rx_eth_crc_err;
559  	unsigned int n_rx_frm_trunc;
560  	unsigned int n_rx_overlength;
561  	unsigned int n_skbuff_leaks;
562  	unsigned int n_rx_nodesc_trunc;
563  	unsigned int n_rx_merge_events;
564  	unsigned int n_rx_merge_packets;
565  	unsigned int n_rx_xdp_drops;
566  	unsigned int n_rx_xdp_bad_drops;
567  	unsigned int n_rx_xdp_tx;
568  	unsigned int n_rx_xdp_redirect;
569  	unsigned int n_rx_mport_bad;
570  
571  	unsigned int old_n_rx_hw_drops;
572  	unsigned int old_n_rx_hw_drop_overruns;
573  
574  	unsigned int rx_pkt_n_frags;
575  	unsigned int rx_pkt_index;
576  
577  	struct list_head *rx_list;
578  
579  	struct efx_rx_queue rx_queue;
580  	struct efx_tx_queue tx_queue[EFX_MAX_TXQ_PER_CHANNEL];
581  	struct efx_tx_queue *tx_queue_by_type[EFX_TXQ_TYPES];
582  
583  	enum efx_sync_events_state sync_events_state;
584  	u32 sync_timestamp_major;
585  	u32 sync_timestamp_minor;
586  };
587  
588  /**
589   * struct efx_msi_context - Context for each MSI
590   * @efx: The associated NIC
591   * @index: Index of the channel/IRQ
592   * @name: Name of the channel/IRQ
593   *
594   * Unlike &struct efx_channel, this is never reallocated and is always
595   * safe for the IRQ handler to access.
596   */
597  struct efx_msi_context {
598  	struct efx_nic *efx;
599  	unsigned int index;
600  	char name[IFNAMSIZ + 6];
601  };
602  
603  /**
604   * struct efx_channel_type - distinguishes traffic and extra channels
605   * @handle_no_channel: Handle failure to allocate an extra channel
606   * @pre_probe: Set up extra state prior to initialisation
607   * @start: called early in efx_start_channels()
608   * @stop: called early in efx_stop_channels()
609   * @post_remove: Tear down extra state after finalisation, if allocated.
610   *	May be called on channels that have not been probed.
611   * @get_name: Generate the channel's name (used for its IRQ handler)
612   * @copy: Copy the channel state prior to reallocation.  May be %NULL if
613   *	reallocation is not supported.
614   * @receive_skb: Handle an skb ready to be passed to netif_receive_skb()
615   * @receive_raw: Handle an RX buffer ready to be passed to __efx_rx_packet()
616   * @want_txqs: Determine whether this channel should have TX queues
617   *	created.  If %NULL, TX queues are not created.
618   * @keep_eventq: Flag for whether event queue should be kept initialised
619   *	while the device is stopped
620   * @want_pio: Flag for whether PIO buffers should be linked to this
621   *	channel's TX queues.
622   */
623  struct efx_channel_type {
624  	void (*handle_no_channel)(struct efx_nic *);
625  	int (*pre_probe)(struct efx_channel *);
626  	int (*start)(struct efx_channel *);
627  	void (*stop)(struct efx_channel *);
628  	void (*post_remove)(struct efx_channel *);
629  	void (*get_name)(struct efx_channel *, char *buf, size_t len);
630  	struct efx_channel *(*copy)(const struct efx_channel *);
631  	bool (*receive_skb)(struct efx_channel *, struct sk_buff *);
632  	bool (*receive_raw)(struct efx_rx_queue *, u32);
633  	bool (*want_txqs)(struct efx_channel *);
634  	bool keep_eventq;
635  	bool want_pio;
636  };
637  
638  enum efx_led_mode {
639  	EFX_LED_OFF	= 0,
640  	EFX_LED_ON	= 1,
641  	EFX_LED_DEFAULT	= 2
642  };
643  
644  #define STRING_TABLE_LOOKUP(val, member) \
645  	((val) < member ## _max) ? member ## _names[val] : "(invalid)"
646  
647  extern const char *const efx_loopback_mode_names[];
648  extern const unsigned int efx_loopback_mode_max;
649  #define LOOPBACK_MODE(efx) \
650  	STRING_TABLE_LOOKUP((efx)->loopback_mode, efx_loopback_mode)
651  
652  enum efx_int_mode {
653  	/* Be careful if altering to correct macro below */
654  	EFX_INT_MODE_MSIX = 0,
655  	EFX_INT_MODE_MSI = 1,
656  	EFX_INT_MODE_LEGACY = 2,
657  	EFX_INT_MODE_MAX	/* Insert any new items before this */
658  };
659  #define EFX_INT_MODE_USE_MSI(x) (((x)->interrupt_mode) <= EFX_INT_MODE_MSI)
660  
661  enum nic_state {
662  	STATE_UNINIT = 0,	/* device being probed/removed */
663  	STATE_PROBED,		/* hardware probed */
664  	STATE_NET_DOWN,		/* netdev registered */
665  	STATE_NET_UP,		/* ready for traffic */
666  	STATE_DISABLED,		/* device disabled due to hardware errors */
667  
668  	STATE_RECOVERY = 0x100,/* recovering from PCI error */
669  	STATE_FROZEN = 0x200,	/* frozen by power management */
670  };
671  
efx_net_active(enum nic_state state)672  static inline bool efx_net_active(enum nic_state state)
673  {
674  	return state == STATE_NET_DOWN || state == STATE_NET_UP;
675  }
676  
efx_frozen(enum nic_state state)677  static inline bool efx_frozen(enum nic_state state)
678  {
679  	return state & STATE_FROZEN;
680  }
681  
efx_recovering(enum nic_state state)682  static inline bool efx_recovering(enum nic_state state)
683  {
684  	return state & STATE_RECOVERY;
685  }
686  
efx_freeze(enum nic_state state)687  static inline enum nic_state efx_freeze(enum nic_state state)
688  {
689  	WARN_ON(!efx_net_active(state));
690  	return state | STATE_FROZEN;
691  }
692  
efx_thaw(enum nic_state state)693  static inline enum nic_state efx_thaw(enum nic_state state)
694  {
695  	WARN_ON(!efx_frozen(state));
696  	return state & ~STATE_FROZEN;
697  }
698  
efx_recover(enum nic_state state)699  static inline enum nic_state efx_recover(enum nic_state state)
700  {
701  	WARN_ON(!efx_net_active(state));
702  	return state | STATE_RECOVERY;
703  }
704  
efx_recovered(enum nic_state state)705  static inline enum nic_state efx_recovered(enum nic_state state)
706  {
707  	WARN_ON(!efx_recovering(state));
708  	return state & ~STATE_RECOVERY;
709  }
710  
711  /* Forward declaration */
712  struct efx_nic;
713  
714  /* Pseudo bit-mask flow control field */
715  #define EFX_FC_RX	FLOW_CTRL_RX
716  #define EFX_FC_TX	FLOW_CTRL_TX
717  #define EFX_FC_AUTO	4
718  
719  /**
720   * struct efx_link_state - Current state of the link
721   * @up: Link is up
722   * @fd: Link is full-duplex
723   * @fc: Actual flow control flags
724   * @speed: Link speed (Mbps)
725   */
726  struct efx_link_state {
727  	bool up;
728  	bool fd;
729  	u8 fc;
730  	unsigned int speed;
731  };
732  
efx_link_state_equal(const struct efx_link_state * left,const struct efx_link_state * right)733  static inline bool efx_link_state_equal(const struct efx_link_state *left,
734  					const struct efx_link_state *right)
735  {
736  	return left->up == right->up && left->fd == right->fd &&
737  		left->fc == right->fc && left->speed == right->speed;
738  }
739  
740  /**
741   * enum efx_phy_mode - PHY operating mode flags
742   * @PHY_MODE_NORMAL: on and should pass traffic
743   * @PHY_MODE_TX_DISABLED: on with TX disabled
744   * @PHY_MODE_LOW_POWER: set to low power through MDIO
745   * @PHY_MODE_OFF: switched off through external control
746   * @PHY_MODE_SPECIAL: on but will not pass traffic
747   */
748  enum efx_phy_mode {
749  	PHY_MODE_NORMAL		= 0,
750  	PHY_MODE_TX_DISABLED	= 1,
751  	PHY_MODE_LOW_POWER	= 2,
752  	PHY_MODE_OFF		= 4,
753  	PHY_MODE_SPECIAL	= 8,
754  };
755  
efx_phy_mode_disabled(enum efx_phy_mode mode)756  static inline bool efx_phy_mode_disabled(enum efx_phy_mode mode)
757  {
758  	return !!(mode & ~PHY_MODE_TX_DISABLED);
759  }
760  
761  /**
762   * struct efx_hw_stat_desc - Description of a hardware statistic
763   * @name: Name of the statistic as visible through ethtool, or %NULL if
764   *	it should not be exposed
765   * @dma_width: Width in bits (0 for non-DMA statistics)
766   * @offset: Offset within stats (ignored for non-DMA statistics)
767   */
768  struct efx_hw_stat_desc {
769  	const char *name;
770  	u16 dma_width;
771  	u16 offset;
772  };
773  
774  struct vfdi_status;
775  
776  /* The reserved RSS context value */
777  #define EFX_MCDI_RSS_CONTEXT_INVALID	0xffffffff
778  /**
779   * struct efx_rss_context_priv - driver private data for an RSS context
780   * @context_id: the RSS_CONTEXT_ID returned by MC firmware, or
781   *	%EFX_MCDI_RSS_CONTEXT_INVALID if this context is not present on the NIC.
782   * @rx_hash_udp_4tuple: UDP 4-tuple hashing enabled
783   */
784  struct efx_rss_context_priv {
785  	u32 context_id;
786  	bool rx_hash_udp_4tuple;
787  };
788  
789  /**
790   * struct efx_rss_context - an RSS context
791   * @priv: hardware-specific state
792   * @rx_hash_key: Toeplitz hash key for this RSS context
793   * @indir_table: Indirection table for this RSS context
794   */
795  struct efx_rss_context {
796  	struct efx_rss_context_priv priv;
797  	u8 rx_hash_key[40];
798  	u32 rx_indir_table[128];
799  };
800  
801  #ifdef CONFIG_RFS_ACCEL
802  /* Order of these is important, since filter_id >= %EFX_ARFS_FILTER_ID_PENDING
803   * is used to test if filter does or will exist.
804   */
805  #define EFX_ARFS_FILTER_ID_PENDING	-1
806  #define EFX_ARFS_FILTER_ID_ERROR	-2
807  #define EFX_ARFS_FILTER_ID_REMOVING	-3
808  /**
809   * struct efx_arfs_rule - record of an ARFS filter and its IDs
810   * @node: linkage into hash table
811   * @spec: details of the filter (used as key for hash table).  Use efx->type to
812   *	determine which member to use.
813   * @rxq_index: channel to which the filter will steer traffic.
814   * @arfs_id: filter ID which was returned to ARFS
815   * @filter_id: index in software filter table.  May be
816   *	%EFX_ARFS_FILTER_ID_PENDING if filter was not inserted yet,
817   *	%EFX_ARFS_FILTER_ID_ERROR if filter insertion failed, or
818   *	%EFX_ARFS_FILTER_ID_REMOVING if expiry is currently removing the filter.
819   */
820  struct efx_arfs_rule {
821  	struct hlist_node node;
822  	struct efx_filter_spec spec;
823  	u16 rxq_index;
824  	u16 arfs_id;
825  	s32 filter_id;
826  };
827  
828  /* Size chosen so that the table is one page (4kB) */
829  #define EFX_ARFS_HASH_TABLE_SIZE	512
830  
831  /**
832   * struct efx_async_filter_insertion - Request to asynchronously insert a filter
833   * @net_dev: Reference to the netdevice
834   * @net_dev_tracker: reference tracker entry for @net_dev
835   * @spec: The filter to insert
836   * @work: Workitem for this request
837   * @rxq_index: Identifies the channel for which this request was made
838   * @flow_id: Identifies the kernel-side flow for which this request was made
839   */
840  struct efx_async_filter_insertion {
841  	struct net_device *net_dev;
842  	netdevice_tracker net_dev_tracker;
843  	struct efx_filter_spec spec;
844  	struct work_struct work;
845  	u16 rxq_index;
846  	u32 flow_id;
847  };
848  
849  /* Maximum number of ARFS workitems that may be in flight on an efx_nic */
850  #define EFX_RPS_MAX_IN_FLIGHT	8
851  #endif /* CONFIG_RFS_ACCEL */
852  
853  enum efx_xdp_tx_queues_mode {
854  	EFX_XDP_TX_QUEUES_DEDICATED,	/* one queue per core, locking not needed */
855  	EFX_XDP_TX_QUEUES_SHARED,	/* each queue used by more than 1 core */
856  	EFX_XDP_TX_QUEUES_BORROWED	/* queues borrowed from net stack */
857  };
858  
859  struct efx_mae;
860  
861  /**
862   * struct efx_nic - an Efx NIC
863   * @name: Device name (net device name or bus id before net device registered)
864   * @pci_dev: The PCI device
865   * @node: List node for maintaning primary/secondary function lists
866   * @primary: &struct efx_nic instance for the primary function of this
867   *	controller.  May be the same structure, and may be %NULL if no
868   *	primary function is bound.  Serialised by rtnl_lock.
869   * @secondary_list: List of &struct efx_nic instances for the secondary PCI
870   *	functions of the controller, if this is for the primary function.
871   *	Serialised by rtnl_lock.
872   * @type: Controller type attributes
873   * @legacy_irq: IRQ number
874   * @workqueue: Workqueue for port reconfigures and the HW monitor.
875   *	Work items do not hold and must not acquire RTNL.
876   * @workqueue_name: Name of workqueue
877   * @reset_work: Scheduled reset workitem
878   * @membase_phys: Memory BAR value as physical address
879   * @membase: Memory BAR value
880   * @vi_stride: step between per-VI registers / memory regions
881   * @interrupt_mode: Interrupt mode
882   * @timer_quantum_ns: Interrupt timer quantum, in nanoseconds
883   * @timer_max_ns: Interrupt timer maximum value, in nanoseconds
884   * @irq_rx_adaptive: Adaptive IRQ moderation enabled for RX event queues
885   * @irqs_hooked: Channel interrupts are hooked
886   * @irq_rx_mod_step_us: Step size for IRQ moderation for RX event queues
887   * @irq_rx_moderation_us: IRQ moderation time for RX event queues
888   * @msg_enable: Log message enable flags
889   * @state: Device state number (%STATE_*). Serialised by the rtnl_lock.
890   * @reset_pending: Bitmask for pending resets
891   * @tx_queue: TX DMA queues
892   * @rx_queue: RX DMA queues
893   * @channel: Channels
894   * @msi_context: Context for each MSI
895   * @extra_channel_types: Types of extra (non-traffic) channels that
896   *	should be allocated for this NIC
897   * @mae: Details of the Match Action Engine
898   * @xdp_tx_queue_count: Number of entries in %xdp_tx_queues.
899   * @xdp_tx_queues: Array of pointers to tx queues used for XDP transmit.
900   * @xdp_txq_queues_mode: XDP TX queues sharing strategy.
901   * @rxq_entries: Size of receive queues requested by user.
902   * @txq_entries: Size of transmit queues requested by user.
903   * @txq_stop_thresh: TX queue fill level at or above which we stop it.
904   * @txq_wake_thresh: TX queue fill level at or below which we wake it.
905   * @tx_dc_base: Base qword address in SRAM of TX queue descriptor caches
906   * @rx_dc_base: Base qword address in SRAM of RX queue descriptor caches
907   * @sram_lim_qw: Qword address limit of SRAM
908   * @n_channels: Number of channels in use
909   * @n_rx_channels: Number of channels used for RX (= number of RX queues)
910   * @n_tx_channels: Number of channels used for TX
911   * @n_extra_tx_channels: Number of extra channels with TX queues
912   * @tx_queues_per_channel: number of TX queues probed on each channel
913   * @n_xdp_channels: Number of channels used for XDP TX
914   * @xdp_channel_offset: Offset of zeroth channel used for XPD TX.
915   * @xdp_tx_per_channel: Max number of TX queues on an XDP TX channel.
916   * @rx_ip_align: RX DMA address offset to have IP header aligned in
917   *	in accordance with NET_IP_ALIGN
918   * @rx_dma_len: Current maximum RX DMA length
919   * @rx_buffer_order: Order (log2) of number of pages for each RX buffer
920   * @rx_buffer_truesize: Amortised allocation size of an RX buffer,
921   *	for use in sk_buff::truesize
922   * @rx_prefix_size: Size of RX prefix before packet data
923   * @rx_packet_hash_offset: Offset of RX flow hash from start of packet data
924   *	(valid only if @rx_prefix_size != 0; always negative)
925   * @rx_packet_len_offset: Offset of RX packet length from start of packet data
926   *	(valid only for NICs that set %EFX_RX_PKT_PREFIX_LEN; always negative)
927   * @rx_packet_ts_offset: Offset of timestamp from start of packet data
928   *	(valid only if channel->sync_timestamps_enabled; always negative)
929   * @rx_scatter: Scatter mode enabled for receives
930   * @rss_context: Main RSS context.
931   * @vport_id: The function's vport ID, only relevant for PFs
932   * @int_error_count: Number of internal errors seen recently
933   * @int_error_expire: Time at which error count will be expired
934   * @must_realloc_vis: Flag: VIs have yet to be reallocated after MC reboot
935   * @irq_soft_enabled: Are IRQs soft-enabled? If not, IRQ handler will
936   *	acknowledge but do nothing else.
937   * @irq_status: Interrupt status buffer
938   * @irq_zero_count: Number of legacy IRQs seen with queue flags == 0
939   * @irq_level: IRQ level/index for IRQs not triggered by an event queue
940   * @selftest_work: Work item for asynchronous self-test
941   * @mtd_list: List of MTDs attached to the NIC
942   * @nic_data: Hardware dependent state
943   * @mcdi: Management-Controller-to-Driver Interface state
944   * @mac_lock: MAC access lock. Protects @port_enabled, @phy_mode,
945   *	efx_monitor() and efx_reconfigure_port()
946   * @port_enabled: Port enabled indicator.
947   *	Serialises efx_stop_all(), efx_start_all(), efx_monitor() and
948   *	efx_mac_work() with kernel interfaces. Safe to read under any
949   *	one of the rtnl_lock, mac_lock, or netif_tx_lock, but all three must
950   *	be held to modify it.
951   * @port_initialized: Port initialized?
952   * @net_dev: Operating system network device. Consider holding the rtnl lock
953   * @fixed_features: Features which cannot be turned off
954   * @num_mac_stats: Number of MAC stats reported by firmware (MAC_STATS_NUM_STATS
955   *	field of %MC_CMD_GET_CAPABILITIES_V4 response, or %MC_CMD_MAC_NSTATS)
956   * @stats_buffer: DMA buffer for statistics
957   * @phy_type: PHY type
958   * @phy_data: PHY private data (including PHY-specific stats)
959   * @phy_mode: PHY operating mode. Serialised by @mac_lock.
960   * @link_advertising: Autonegotiation advertising flags
961   * @fec_config: Forward Error Correction configuration flags.  For bit positions
962   *	see &enum ethtool_fec_config_bits.
963   * @link_state: Current state of the link
964   * @n_link_state_changes: Number of times the link has changed state
965   * @wanted_fc: Wanted flow control flags
966   * @fc_disable: When non-zero flow control is disabled. Typically used to
967   *	ensure that network back pressure doesn't delay dma queue flushes.
968   *	Serialised by the rtnl lock.
969   * @mac_work: Work item for changing MAC promiscuity and multicast hash
970   * @loopback_mode: Loopback status
971   * @loopback_modes: Supported loopback mode bitmask
972   * @loopback_selftest: Offline self-test private state
973   * @xdp_prog: Current XDP programme for this interface
974   * @filter_sem: Filter table rw_semaphore, protects existence of @filter_state
975   * @filter_state: Architecture-dependent filter table state
976   * @rps_mutex: Protects RPS state of all channels
977   * @rps_slot_map: bitmap of in-flight entries in @rps_slot
978   * @rps_slot: array of ARFS insertion requests for efx_filter_rfs_work()
979   * @rps_hash_lock: Protects ARFS filter mapping state (@rps_hash_table and
980   *	@rps_next_id).
981   * @rps_hash_table: Mapping between ARFS filters and their various IDs
982   * @rps_next_id: next arfs_id for an ARFS filter
983   * @active_queues: Count of RX and TX queues that haven't been flushed and drained.
984   * @rxq_flush_pending: Count of number of receive queues that need to be flushed.
985   *	Decremented when the efx_flush_rx_queue() is called.
986   * @rxq_flush_outstanding: Count of number of RX flushes started but not yet
987   *	completed (either success or failure). Not used when MCDI is used to
988   *	flush receive queues.
989   * @flush_wq: wait queue used by efx_nic_flush_queues() to wait for flush completions.
990   * @vf_count: Number of VFs intended to be enabled.
991   * @vf_init_count: Number of VFs that have been fully initialised.
992   * @vi_scale: log2 number of vnics per VF.
993   * @vf_reps_lock: Protects vf_reps list
994   * @vf_reps: local VF reps
995   * @ptp_data: PTP state data
996   * @ptp_warned: has this NIC seen and warned about unexpected PTP events?
997   * @vpd_sn: Serial number read from VPD
998   * @xdp_rxq_info_failed: Have any of the rx queues failed to initialise their
999   *      xdp_rxq_info structures?
1000   * @netdev_notifier: Netdevice notifier.
1001   * @netevent_notifier: Netevent notifier (for neighbour updates).
1002   * @tc: state for TC offload (EF100).
1003   * @devlink: reference to devlink structure owned by this device
1004   * @dl_port: devlink port associated with the PF
1005   * @mem_bar: The BAR that is mapped into membase.
1006   * @reg_base: Offset from the start of the bar to the function control window.
1007   * @reflash_mutex: Mutex for serialising firmware reflash operations.
1008   * @monitor_work: Hardware monitor workitem
1009   * @biu_lock: BIU (bus interface unit) lock
1010   * @last_irq_cpu: Last CPU to handle a possible test interrupt.  This
1011   *	field is used by efx_test_interrupts() to verify that an
1012   *	interrupt has occurred.
1013   * @stats_lock: Statistics update lock. Must be held when calling
1014   *	efx_nic_type::{update,start,stop}_stats.
1015   * @n_rx_noskb_drops: Count of RX packets dropped due to failure to allocate an skb
1016   *
1017   * This is stored in the private area of the &struct net_device.
1018   */
1019  struct efx_nic {
1020  	/* The following fields should be written very rarely */
1021  
1022  	char name[IFNAMSIZ];
1023  	struct list_head node;
1024  	struct efx_nic *primary;
1025  	struct list_head secondary_list;
1026  	struct pci_dev *pci_dev;
1027  	unsigned int port_num;
1028  	const struct efx_nic_type *type;
1029  	int legacy_irq;
1030  	bool eeh_disabled_legacy_irq;
1031  	struct workqueue_struct *workqueue;
1032  	char workqueue_name[16];
1033  	struct work_struct reset_work;
1034  	resource_size_t membase_phys;
1035  	void __iomem *membase;
1036  
1037  	unsigned int vi_stride;
1038  
1039  	enum efx_int_mode interrupt_mode;
1040  	unsigned int timer_quantum_ns;
1041  	unsigned int timer_max_ns;
1042  	bool irq_rx_adaptive;
1043  	bool irqs_hooked;
1044  	unsigned int irq_mod_step_us;
1045  	unsigned int irq_rx_moderation_us;
1046  	u32 msg_enable;
1047  
1048  	enum nic_state state;
1049  	unsigned long reset_pending;
1050  
1051  	struct efx_channel *channel[EFX_MAX_CHANNELS];
1052  	struct efx_msi_context msi_context[EFX_MAX_CHANNELS];
1053  	const struct efx_channel_type *
1054  	extra_channel_type[EFX_MAX_EXTRA_CHANNELS];
1055  	struct efx_mae *mae;
1056  
1057  	unsigned int xdp_tx_queue_count;
1058  	struct efx_tx_queue **xdp_tx_queues;
1059  	enum efx_xdp_tx_queues_mode xdp_txq_queues_mode;
1060  
1061  	unsigned rxq_entries;
1062  	unsigned txq_entries;
1063  	unsigned int txq_stop_thresh;
1064  	unsigned int txq_wake_thresh;
1065  
1066  	unsigned tx_dc_base;
1067  	unsigned rx_dc_base;
1068  	unsigned sram_lim_qw;
1069  
1070  	unsigned int max_channels;
1071  	unsigned int max_vis;
1072  	unsigned int max_tx_channels;
1073  	unsigned n_channels;
1074  	unsigned n_rx_channels;
1075  	unsigned rss_spread;
1076  	unsigned tx_channel_offset;
1077  	unsigned n_tx_channels;
1078  	unsigned n_extra_tx_channels;
1079  	unsigned int tx_queues_per_channel;
1080  	unsigned int n_xdp_channels;
1081  	unsigned int xdp_channel_offset;
1082  	unsigned int xdp_tx_per_channel;
1083  	unsigned int rx_ip_align;
1084  	unsigned int rx_dma_len;
1085  	unsigned int rx_buffer_order;
1086  	unsigned int rx_buffer_truesize;
1087  	unsigned int rx_page_buf_step;
1088  	unsigned int rx_bufs_per_page;
1089  	unsigned int rx_pages_per_batch;
1090  	unsigned int rx_prefix_size;
1091  	int rx_packet_hash_offset;
1092  	int rx_packet_len_offset;
1093  	int rx_packet_ts_offset;
1094  	bool rx_scatter;
1095  	struct efx_rss_context rss_context;
1096  	u32 vport_id;
1097  
1098  	unsigned int_error_count;
1099  	unsigned long int_error_expire;
1100  
1101  	bool must_realloc_vis;
1102  	bool irq_soft_enabled;
1103  	struct efx_buffer irq_status;
1104  	unsigned irq_zero_count;
1105  	unsigned irq_level;
1106  	struct delayed_work selftest_work;
1107  
1108  #ifdef CONFIG_SFC_MTD
1109  	struct list_head mtd_list;
1110  #endif
1111  
1112  	void *nic_data;
1113  	struct efx_mcdi_data *mcdi;
1114  
1115  	struct mutex mac_lock;
1116  	struct work_struct mac_work;
1117  	bool port_enabled;
1118  
1119  	bool mc_bist_for_other_fn;
1120  	bool port_initialized;
1121  	struct net_device *net_dev;
1122  
1123  	netdev_features_t fixed_features;
1124  
1125  	u16 num_mac_stats;
1126  	struct efx_buffer stats_buffer;
1127  	u64 rx_nodesc_drops_total;
1128  	u64 rx_nodesc_drops_while_down;
1129  	bool rx_nodesc_drops_prev_state;
1130  
1131  	unsigned int phy_type;
1132  	void *phy_data;
1133  	enum efx_phy_mode phy_mode;
1134  
1135  	__ETHTOOL_DECLARE_LINK_MODE_MASK(link_advertising);
1136  	u32 fec_config;
1137  	struct efx_link_state link_state;
1138  	unsigned int n_link_state_changes;
1139  
1140  	u8 wanted_fc;
1141  	unsigned fc_disable;
1142  
1143  	atomic_t rx_reset;
1144  	enum efx_loopback_mode loopback_mode;
1145  	u64 loopback_modes;
1146  
1147  	void *loopback_selftest;
1148  	/* We access loopback_selftest immediately before running XDP,
1149  	 * so we want them next to each other.
1150  	 */
1151  	struct bpf_prog __rcu *xdp_prog;
1152  
1153  	struct rw_semaphore filter_sem;
1154  	void *filter_state;
1155  #ifdef CONFIG_RFS_ACCEL
1156  	struct mutex rps_mutex;
1157  	unsigned long rps_slot_map;
1158  	struct efx_async_filter_insertion rps_slot[EFX_RPS_MAX_IN_FLIGHT];
1159  	spinlock_t rps_hash_lock;
1160  	struct hlist_head *rps_hash_table;
1161  	u32 rps_next_id;
1162  #endif
1163  
1164  	atomic_t active_queues;
1165  	atomic_t rxq_flush_pending;
1166  	atomic_t rxq_flush_outstanding;
1167  	wait_queue_head_t flush_wq;
1168  
1169  #ifdef CONFIG_SFC_SRIOV
1170  	unsigned vf_count;
1171  	unsigned vf_init_count;
1172  	unsigned vi_scale;
1173  #endif
1174  	spinlock_t vf_reps_lock;
1175  	struct list_head vf_reps;
1176  
1177  	struct efx_ptp_data *ptp_data;
1178  	bool ptp_warned;
1179  
1180  	char *vpd_sn;
1181  	bool xdp_rxq_info_failed;
1182  
1183  	struct notifier_block netdev_notifier;
1184  	struct notifier_block netevent_notifier;
1185  	struct efx_tc_state *tc;
1186  
1187  	struct devlink *devlink;
1188  	struct devlink_port *dl_port;
1189  	unsigned int mem_bar;
1190  	u32 reg_base;
1191  	struct mutex reflash_mutex;
1192  
1193  	/* The following fields may be written more often */
1194  
1195  	struct delayed_work monitor_work ____cacheline_aligned_in_smp;
1196  	spinlock_t biu_lock;
1197  	int last_irq_cpu;
1198  	spinlock_t stats_lock;
1199  	atomic_t n_rx_noskb_drops;
1200  };
1201  
1202  /**
1203   * struct efx_probe_data - State after hardware probe
1204   * @pci_dev: The PCI device
1205   * @efx: Efx NIC details
1206   */
1207  struct efx_probe_data {
1208  	struct pci_dev *pci_dev;
1209  	struct efx_nic efx;
1210  };
1211  
efx_netdev_priv(struct net_device * dev)1212  static inline struct efx_nic *efx_netdev_priv(struct net_device *dev)
1213  {
1214  	struct efx_probe_data **probe_ptr = netdev_priv(dev);
1215  	struct efx_probe_data *probe_data = *probe_ptr;
1216  
1217  	return &probe_data->efx;
1218  }
1219  
efx_dev_registered(struct efx_nic * efx)1220  static inline int efx_dev_registered(struct efx_nic *efx)
1221  {
1222  	return efx->net_dev->reg_state == NETREG_REGISTERED;
1223  }
1224  
efx_port_num(struct efx_nic * efx)1225  static inline unsigned int efx_port_num(struct efx_nic *efx)
1226  {
1227  	return efx->port_num;
1228  }
1229  
1230  struct efx_mtd_partition {
1231  	struct list_head node;
1232  	struct mtd_info mtd;
1233  	const char *dev_type_name;
1234  	const char *type_name;
1235  	char name[IFNAMSIZ + 20];
1236  };
1237  
1238  struct efx_udp_tunnel {
1239  #define TUNNEL_ENCAP_UDP_PORT_ENTRY_INVALID	0xffff
1240  	u16 type; /* TUNNEL_ENCAP_UDP_PORT_ENTRY_foo, see mcdi_pcol.h */
1241  	__be16 port;
1242  };
1243  
1244  /**
1245   * struct efx_nic_type - Efx device type definition
1246   * @mem_bar: Get the memory BAR
1247   * @mem_map_size: Get memory BAR mapped size
1248   * @probe: Probe the controller
1249   * @remove: Free resources allocated by probe()
1250   * @init: Initialise the controller
1251   * @dimension_resources: Dimension controller resources (buffer table,
1252   *	and VIs once the available interrupt resources are clear)
1253   * @fini: Shut down the controller
1254   * @monitor: Periodic function for polling link state and hardware monitor
1255   * @map_reset_reason: Map ethtool reset reason to a reset method
1256   * @map_reset_flags: Map ethtool reset flags to a reset method, if possible
1257   * @reset: Reset the controller hardware and possibly the PHY.  This will
1258   *	be called while the controller is uninitialised.
1259   * @probe_port: Probe the MAC and PHY
1260   * @remove_port: Free resources allocated by probe_port()
1261   * @handle_global_event: Handle a "global" event (may be %NULL)
1262   * @fini_dmaq: Flush and finalise DMA queues (RX and TX queues)
1263   * @prepare_flr: Prepare for an FLR
1264   * @finish_flr: Clean up after an FLR
1265   * @describe_stats: Describe statistics for ethtool
1266   * @update_stats: Update statistics not provided by event handling.
1267   *	Either argument may be %NULL.
1268   * @update_stats_atomic: Update statistics while in atomic context, if that
1269   *	is more limiting than @update_stats.  Otherwise, leave %NULL and
1270   *	driver core will call @update_stats.
1271   * @start_stats: Start the regular fetching of statistics
1272   * @pull_stats: Pull stats from the NIC and wait until they arrive.
1273   * @stop_stats: Stop the regular fetching of statistics
1274   * @push_irq_moderation: Apply interrupt moderation value
1275   * @reconfigure_port: Push loopback/power/txdis changes to the MAC and PHY
1276   * @prepare_enable_fc_tx: Prepare MAC to enable pause frame TX (may be %NULL)
1277   * @reconfigure_mac: Push MAC address, MTU, flow control and filter settings
1278   *	to the hardware.  Serialised by the mac_lock.
1279   * @check_mac_fault: Check MAC fault state. True if fault present.
1280   * @get_wol: Get WoL configuration from driver state
1281   * @set_wol: Push WoL configuration to the NIC
1282   * @resume_wol: Synchronise WoL state between driver and MC (e.g. after resume)
1283   * @get_fec_stats: Get standard FEC statistics.
1284   * @test_chip: Test registers. This is expected to reset the NIC.
1285   * @test_nvram: Test validity of NVRAM contents
1286   * @mcdi_request: Send an MCDI request with the given header and SDU.
1287   *	The SDU length may be any value from 0 up to the protocol-
1288   *	defined maximum, but its buffer will be padded to a multiple
1289   *	of 4 bytes.
1290   * @mcdi_poll_response: Test whether an MCDI response is available.
1291   * @mcdi_read_response: Read the MCDI response PDU.  The offset will
1292   *	be a multiple of 4.  The length may not be, but the buffer
1293   *	will be padded so it is safe to round up.
1294   * @mcdi_poll_reboot: Test whether the MCDI has rebooted.  If so,
1295   *	return an appropriate error code for aborting any current
1296   *	request; otherwise return 0.
1297   * @irq_enable_master: Enable IRQs on the NIC.  Each event queue must
1298   *	be separately enabled after this.
1299   * @irq_test_generate: Generate a test IRQ
1300   * @irq_disable_non_ev: Disable non-event IRQs on the NIC.  Each event
1301   *	queue must be separately disabled before this.
1302   * @irq_handle_msi: Handle MSI for a channel.  The @dev_id argument is
1303   *	a pointer to the &struct efx_msi_context for the channel.
1304   * @irq_handle_legacy: Handle legacy interrupt.  The @dev_id argument
1305   *	is a pointer to the &struct efx_nic.
1306   * @tx_probe: Allocate resources for TX queue (and select TXQ type)
1307   * @tx_init: Initialise TX queue on the NIC
1308   * @tx_remove: Free resources for TX queue
1309   * @tx_write: Write TX descriptors and doorbell
1310   * @tx_enqueue: Add an SKB to TX queue
1311   * @rx_push_rss_config: Write RSS hash key and indirection table to the NIC
1312   * @rx_pull_rss_config: Read RSS hash key and indirection table back from the NIC
1313   * @rx_push_rss_context_config: Write RSS hash key and indirection table for
1314   *	user RSS context to the NIC
1315   * @rx_pull_rss_context_config: Read RSS hash key and indirection table for user
1316   *	RSS context back from the NIC
1317   * @rx_probe: Allocate resources for RX queue
1318   * @rx_init: Initialise RX queue on the NIC
1319   * @rx_remove: Free resources for RX queue
1320   * @rx_write: Write RX descriptors and doorbell
1321   * @rx_defer_refill: Generate a refill reminder event
1322   * @rx_packet: Receive the queued RX buffer on a channel
1323   * @rx_buf_hash_valid: Determine whether the RX prefix contains a valid hash
1324   * @ev_probe: Allocate resources for event queue
1325   * @ev_init: Initialise event queue on the NIC
1326   * @ev_fini: Deinitialise event queue on the NIC
1327   * @ev_remove: Free resources for event queue
1328   * @ev_process: Process events for a queue, up to the given NAPI quota
1329   * @ev_read_ack: Acknowledge read events on a queue, rearming its IRQ
1330   * @ev_test_generate: Generate a test event
1331   * @filter_table_probe: Probe filter capabilities and set up filter software state
1332   * @filter_table_restore: Restore filters removed from hardware
1333   * @filter_table_remove: Remove filters from hardware and tear down software state
1334   * @filter_update_rx_scatter: Update filters after change to rx scatter setting
1335   * @filter_insert: add or replace a filter
1336   * @filter_remove_safe: remove a filter by ID, carefully
1337   * @filter_get_safe: retrieve a filter by ID, carefully
1338   * @filter_clear_rx: Remove all RX filters whose priority is less than or
1339   *	equal to the given priority and is not %EFX_FILTER_PRI_AUTO
1340   * @filter_count_rx_used: Get the number of filters in use at a given priority
1341   * @filter_get_rx_id_limit: Get maximum value of a filter id, plus 1
1342   * @filter_get_rx_ids: Get list of RX filters at a given priority
1343   * @filter_rfs_expire_one: Consider expiring a filter inserted for RFS.
1344   *	This must check whether the specified table entry is used by RFS
1345   *	and that rps_may_expire_flow() returns true for it.
1346   * @mtd_probe: Probe and add MTD partitions associated with this net device,
1347   *	 using efx_mtd_add()
1348   * @mtd_rename: Set an MTD partition name using the net device name
1349   * @mtd_read: Read from an MTD partition
1350   * @mtd_erase: Erase part of an MTD partition
1351   * @mtd_write: Write to an MTD partition
1352   * @mtd_sync: Wait for write-back to complete on MTD partition.  This
1353   *	also notifies the driver that a writer has finished using this
1354   *	partition.
1355   * @ptp_write_host_time: Send host time to MC as part of sync protocol
1356   * @ptp_set_ts_sync_events: Enable or disable sync events for inline RX
1357   *	timestamping, possibly only temporarily for the purposes of a reset.
1358   * @ptp_set_ts_config: Set hardware timestamp configuration.  The flags
1359   *	and tx_type will already have been validated but this operation
1360   *	must validate and update rx_filter.
1361   * @get_phys_port_id: Get the underlying physical port id.
1362   * @set_mac_address: Set the MAC address of the device
1363   * @tso_versions: Returns mask of firmware-assisted TSO versions supported.
1364   *	If %NULL, then device does not support any TSO version.
1365   * @udp_tnl_push_ports: Push the list of UDP tunnel ports to the NIC if required.
1366   * @udp_tnl_has_port: Check if a port has been added as UDP tunnel
1367   * @print_additional_fwver: Dump NIC-specific additional FW version info
1368   * @sensor_event: Handle a sensor event from MCDI
1369   * @rx_recycle_ring_size: Size of the RX recycle ring
1370   * @revision: Hardware architecture revision
1371   * @txd_ptr_tbl_base: TX descriptor ring base address
1372   * @rxd_ptr_tbl_base: RX descriptor ring base address
1373   * @buf_tbl_base: Buffer table base address
1374   * @evq_ptr_tbl_base: Event queue pointer table base address
1375   * @evq_rptr_tbl_base: Event queue read-pointer table base address
1376   * @max_dma_mask: Maximum possible DMA mask
1377   * @rx_prefix_size: Size of RX prefix before packet data
1378   * @rx_hash_offset: Offset of RX flow hash within prefix
1379   * @rx_ts_offset: Offset of timestamp within prefix
1380   * @rx_buffer_padding: Size of padding at end of RX packet
1381   * @can_rx_scatter: NIC is able to scatter packets to multiple buffers
1382   * @always_rx_scatter: NIC will always scatter packets to multiple buffers
1383   * @option_descriptors: NIC supports TX option descriptors
1384   * @flash_auto_partition: firmware flash uses AUTO partition, driver does
1385   *	not need to perform image parsing
1386   * @min_interrupt_mode: Lowest capability interrupt mode supported
1387   *	from &enum efx_int_mode.
1388   * @timer_period_max: Maximum period of interrupt timer (in ticks)
1389   * @offload_features: net_device feature flags for protocol offload
1390   *	features implemented in hardware
1391   * @mcdi_max_ver: Maximum MCDI version supported
1392   * @hwtstamp_filters: Mask of hardware timestamp filter types supported
1393   */
1394  struct efx_nic_type {
1395  	bool is_vf;
1396  	unsigned int (*mem_bar)(struct efx_nic *efx);
1397  	unsigned int (*mem_map_size)(struct efx_nic *efx);
1398  	int (*probe)(struct efx_nic *efx);
1399  	void (*remove)(struct efx_nic *efx);
1400  	int (*init)(struct efx_nic *efx);
1401  	int (*dimension_resources)(struct efx_nic *efx);
1402  	void (*fini)(struct efx_nic *efx);
1403  	void (*monitor)(struct efx_nic *efx);
1404  	enum reset_type (*map_reset_reason)(enum reset_type reason);
1405  	int (*map_reset_flags)(u32 *flags);
1406  	int (*reset)(struct efx_nic *efx, enum reset_type method);
1407  	int (*probe_port)(struct efx_nic *efx);
1408  	void (*remove_port)(struct efx_nic *efx);
1409  	bool (*handle_global_event)(struct efx_channel *channel, efx_qword_t *);
1410  	int (*fini_dmaq)(struct efx_nic *efx);
1411  	void (*prepare_flr)(struct efx_nic *efx);
1412  	void (*finish_flr)(struct efx_nic *efx);
1413  	size_t (*describe_stats)(struct efx_nic *efx, u8 **names);
1414  	size_t (*update_stats)(struct efx_nic *efx, u64 *full_stats,
1415  			       struct rtnl_link_stats64 *core_stats);
1416  	size_t (*update_stats_atomic)(struct efx_nic *efx, u64 *full_stats,
1417  				      struct rtnl_link_stats64 *core_stats);
1418  	void (*start_stats)(struct efx_nic *efx);
1419  	void (*pull_stats)(struct efx_nic *efx);
1420  	void (*stop_stats)(struct efx_nic *efx);
1421  	void (*push_irq_moderation)(struct efx_channel *channel);
1422  	int (*reconfigure_port)(struct efx_nic *efx);
1423  	void (*prepare_enable_fc_tx)(struct efx_nic *efx);
1424  	int (*reconfigure_mac)(struct efx_nic *efx, bool mtu_only);
1425  	bool (*check_mac_fault)(struct efx_nic *efx);
1426  	void (*get_wol)(struct efx_nic *efx, struct ethtool_wolinfo *wol);
1427  	int (*set_wol)(struct efx_nic *efx, u32 type);
1428  	void (*resume_wol)(struct efx_nic *efx);
1429  	void (*get_fec_stats)(struct efx_nic *efx,
1430  			      struct ethtool_fec_stats *fec_stats);
1431  	unsigned int (*check_caps)(const struct efx_nic *efx,
1432  				   u8 flag,
1433  				   u32 offset);
1434  	int (*test_chip)(struct efx_nic *efx, struct efx_self_tests *tests);
1435  	int (*test_nvram)(struct efx_nic *efx);
1436  	void (*mcdi_request)(struct efx_nic *efx,
1437  			     const efx_dword_t *hdr, size_t hdr_len,
1438  			     const efx_dword_t *sdu, size_t sdu_len);
1439  	bool (*mcdi_poll_response)(struct efx_nic *efx);
1440  	void (*mcdi_read_response)(struct efx_nic *efx, efx_dword_t *pdu,
1441  				   size_t pdu_offset, size_t pdu_len);
1442  	int (*mcdi_poll_reboot)(struct efx_nic *efx);
1443  	void (*mcdi_reboot_detected)(struct efx_nic *efx);
1444  	void (*irq_enable_master)(struct efx_nic *efx);
1445  	int (*irq_test_generate)(struct efx_nic *efx);
1446  	void (*irq_disable_non_ev)(struct efx_nic *efx);
1447  	irqreturn_t (*irq_handle_msi)(int irq, void *dev_id);
1448  	irqreturn_t (*irq_handle_legacy)(int irq, void *dev_id);
1449  	int (*tx_probe)(struct efx_tx_queue *tx_queue);
1450  	void (*tx_init)(struct efx_tx_queue *tx_queue);
1451  	void (*tx_remove)(struct efx_tx_queue *tx_queue);
1452  	void (*tx_write)(struct efx_tx_queue *tx_queue);
1453  	netdev_tx_t (*tx_enqueue)(struct efx_tx_queue *tx_queue, struct sk_buff *skb);
1454  	unsigned int (*tx_limit_len)(struct efx_tx_queue *tx_queue,
1455  				     dma_addr_t dma_addr, unsigned int len);
1456  	int (*rx_push_rss_config)(struct efx_nic *efx, bool user,
1457  				  const u32 *rx_indir_table, const u8 *key);
1458  	int (*rx_pull_rss_config)(struct efx_nic *efx);
1459  	int (*rx_push_rss_context_config)(struct efx_nic *efx,
1460  					  struct efx_rss_context_priv *ctx,
1461  					  const u32 *rx_indir_table,
1462  					  const u8 *key, bool delete);
1463  	int (*rx_pull_rss_context_config)(struct efx_nic *efx,
1464  					  struct efx_rss_context *ctx);
1465  	void (*rx_restore_rss_contexts)(struct efx_nic *efx);
1466  	int (*rx_probe)(struct efx_rx_queue *rx_queue);
1467  	void (*rx_init)(struct efx_rx_queue *rx_queue);
1468  	void (*rx_remove)(struct efx_rx_queue *rx_queue);
1469  	void (*rx_write)(struct efx_rx_queue *rx_queue);
1470  	void (*rx_defer_refill)(struct efx_rx_queue *rx_queue);
1471  	void (*rx_packet)(struct efx_channel *channel);
1472  	bool (*rx_buf_hash_valid)(const u8 *prefix);
1473  	int (*ev_probe)(struct efx_channel *channel);
1474  	int (*ev_init)(struct efx_channel *channel);
1475  	void (*ev_fini)(struct efx_channel *channel);
1476  	void (*ev_remove)(struct efx_channel *channel);
1477  	int (*ev_process)(struct efx_channel *channel, int quota);
1478  	void (*ev_read_ack)(struct efx_channel *channel);
1479  	void (*ev_test_generate)(struct efx_channel *channel);
1480  	int (*filter_table_probe)(struct efx_nic *efx);
1481  	void (*filter_table_restore)(struct efx_nic *efx);
1482  	void (*filter_table_remove)(struct efx_nic *efx);
1483  	void (*filter_update_rx_scatter)(struct efx_nic *efx);
1484  	s32 (*filter_insert)(struct efx_nic *efx,
1485  			     struct efx_filter_spec *spec, bool replace);
1486  	int (*filter_remove_safe)(struct efx_nic *efx,
1487  				  enum efx_filter_priority priority,
1488  				  u32 filter_id);
1489  	int (*filter_get_safe)(struct efx_nic *efx,
1490  			       enum efx_filter_priority priority,
1491  			       u32 filter_id, struct efx_filter_spec *);
1492  	int (*filter_clear_rx)(struct efx_nic *efx,
1493  			       enum efx_filter_priority priority);
1494  	u32 (*filter_count_rx_used)(struct efx_nic *efx,
1495  				    enum efx_filter_priority priority);
1496  	u32 (*filter_get_rx_id_limit)(struct efx_nic *efx);
1497  	s32 (*filter_get_rx_ids)(struct efx_nic *efx,
1498  				 enum efx_filter_priority priority,
1499  				 u32 *buf, u32 size);
1500  #ifdef CONFIG_RFS_ACCEL
1501  	bool (*filter_rfs_expire_one)(struct efx_nic *efx, u32 flow_id,
1502  				      unsigned int index);
1503  #endif
1504  #ifdef CONFIG_SFC_MTD
1505  	int (*mtd_probe)(struct efx_nic *efx);
1506  	void (*mtd_rename)(struct efx_mtd_partition *part);
1507  	int (*mtd_read)(struct mtd_info *mtd, loff_t start, size_t len,
1508  			size_t *retlen, u8 *buffer);
1509  	int (*mtd_erase)(struct mtd_info *mtd, loff_t start, size_t len);
1510  	int (*mtd_write)(struct mtd_info *mtd, loff_t start, size_t len,
1511  			 size_t *retlen, const u8 *buffer);
1512  	int (*mtd_sync)(struct mtd_info *mtd);
1513  #endif
1514  	void (*ptp_write_host_time)(struct efx_nic *efx, u32 host_time);
1515  	int (*ptp_set_ts_sync_events)(struct efx_nic *efx, bool en, bool temp);
1516  	int (*ptp_set_ts_config)(struct efx_nic *efx,
1517  				 struct kernel_hwtstamp_config *init);
1518  	int (*sriov_configure)(struct efx_nic *efx, int num_vfs);
1519  	int (*vlan_rx_add_vid)(struct efx_nic *efx, __be16 proto, u16 vid);
1520  	int (*vlan_rx_kill_vid)(struct efx_nic *efx, __be16 proto, u16 vid);
1521  	int (*get_phys_port_id)(struct efx_nic *efx,
1522  				struct netdev_phys_item_id *ppid);
1523  	int (*sriov_init)(struct efx_nic *efx);
1524  	void (*sriov_fini)(struct efx_nic *efx);
1525  	bool (*sriov_wanted)(struct efx_nic *efx);
1526  	int (*sriov_set_vf_mac)(struct efx_nic *efx, int vf_i, const u8 *mac);
1527  	int (*sriov_set_vf_vlan)(struct efx_nic *efx, int vf_i, u16 vlan,
1528  				 u8 qos);
1529  	int (*sriov_set_vf_spoofchk)(struct efx_nic *efx, int vf_i,
1530  				     bool spoofchk);
1531  	int (*sriov_get_vf_config)(struct efx_nic *efx, int vf_i,
1532  				   struct ifla_vf_info *ivi);
1533  	int (*sriov_set_vf_link_state)(struct efx_nic *efx, int vf_i,
1534  				       int link_state);
1535  	int (*vswitching_probe)(struct efx_nic *efx);
1536  	int (*vswitching_restore)(struct efx_nic *efx);
1537  	void (*vswitching_remove)(struct efx_nic *efx);
1538  	int (*get_mac_address)(struct efx_nic *efx, unsigned char *perm_addr);
1539  	int (*set_mac_address)(struct efx_nic *efx);
1540  	u32 (*tso_versions)(struct efx_nic *efx);
1541  	int (*udp_tnl_push_ports)(struct efx_nic *efx);
1542  	bool (*udp_tnl_has_port)(struct efx_nic *efx, __be16 port);
1543  	size_t (*print_additional_fwver)(struct efx_nic *efx, char *buf,
1544  					 size_t len);
1545  	void (*sensor_event)(struct efx_nic *efx, efx_qword_t *ev);
1546  	unsigned int (*rx_recycle_ring_size)(const struct efx_nic *efx);
1547  
1548  	int revision;
1549  	unsigned int txd_ptr_tbl_base;
1550  	unsigned int rxd_ptr_tbl_base;
1551  	unsigned int buf_tbl_base;
1552  	unsigned int evq_ptr_tbl_base;
1553  	unsigned int evq_rptr_tbl_base;
1554  	u64 max_dma_mask;
1555  	unsigned int rx_prefix_size;
1556  	unsigned int rx_hash_offset;
1557  	unsigned int rx_ts_offset;
1558  	unsigned int rx_buffer_padding;
1559  	bool can_rx_scatter;
1560  	bool always_rx_scatter;
1561  	bool option_descriptors;
1562  	bool flash_auto_partition;
1563  	unsigned int min_interrupt_mode;
1564  	unsigned int timer_period_max;
1565  	netdev_features_t offload_features;
1566  	int mcdi_max_ver;
1567  	unsigned int max_rx_ip_filters;
1568  	u32 hwtstamp_filters;
1569  	unsigned int rx_hash_key_size;
1570  };
1571  
1572  /**************************************************************************
1573   *
1574   * Prototypes and inline functions
1575   *
1576   *************************************************************************/
1577  
1578  static inline struct efx_channel *
efx_get_channel(struct efx_nic * efx,unsigned index)1579  efx_get_channel(struct efx_nic *efx, unsigned index)
1580  {
1581  	EFX_WARN_ON_ONCE_PARANOID(index >= efx->n_channels);
1582  	return efx->channel[index];
1583  }
1584  
1585  /* Iterate over all used channels */
1586  #define efx_for_each_channel(_channel, _efx)				\
1587  	for (_channel = (_efx)->channel[0];				\
1588  	     _channel;							\
1589  	     _channel = (_channel->channel + 1 < (_efx)->n_channels) ?	\
1590  		     (_efx)->channel[_channel->channel + 1] : NULL)
1591  
1592  /* Iterate over all used channels in reverse */
1593  #define efx_for_each_channel_rev(_channel, _efx)			\
1594  	for (_channel = (_efx)->channel[(_efx)->n_channels - 1];	\
1595  	     _channel;							\
1596  	     _channel = _channel->channel ?				\
1597  		     (_efx)->channel[_channel->channel - 1] : NULL)
1598  
1599  static inline struct efx_channel *
efx_get_tx_channel(struct efx_nic * efx,unsigned int index)1600  efx_get_tx_channel(struct efx_nic *efx, unsigned int index)
1601  {
1602  	EFX_WARN_ON_ONCE_PARANOID(index >= efx->n_tx_channels);
1603  	return efx->channel[efx->tx_channel_offset + index];
1604  }
1605  
1606  static inline struct efx_channel *
efx_get_xdp_channel(struct efx_nic * efx,unsigned int index)1607  efx_get_xdp_channel(struct efx_nic *efx, unsigned int index)
1608  {
1609  	EFX_WARN_ON_ONCE_PARANOID(index >= efx->n_xdp_channels);
1610  	return efx->channel[efx->xdp_channel_offset + index];
1611  }
1612  
efx_channel_is_xdp_tx(struct efx_channel * channel)1613  static inline bool efx_channel_is_xdp_tx(struct efx_channel *channel)
1614  {
1615  	return channel->channel - channel->efx->xdp_channel_offset <
1616  	       channel->efx->n_xdp_channels;
1617  }
1618  
efx_channel_has_tx_queues(struct efx_channel * channel)1619  static inline bool efx_channel_has_tx_queues(struct efx_channel *channel)
1620  {
1621  	return channel && channel->channel >= channel->efx->tx_channel_offset;
1622  }
1623  
efx_channel_num_tx_queues(struct efx_channel * channel)1624  static inline unsigned int efx_channel_num_tx_queues(struct efx_channel *channel)
1625  {
1626  	if (efx_channel_is_xdp_tx(channel))
1627  		return channel->efx->xdp_tx_per_channel;
1628  	return channel->efx->tx_queues_per_channel;
1629  }
1630  
1631  static inline struct efx_tx_queue *
efx_channel_get_tx_queue(struct efx_channel * channel,unsigned int type)1632  efx_channel_get_tx_queue(struct efx_channel *channel, unsigned int type)
1633  {
1634  	EFX_WARN_ON_ONCE_PARANOID(type >= EFX_TXQ_TYPES);
1635  	return channel->tx_queue_by_type[type];
1636  }
1637  
1638  static inline struct efx_tx_queue *
efx_get_tx_queue(struct efx_nic * efx,unsigned int index,unsigned int type)1639  efx_get_tx_queue(struct efx_nic *efx, unsigned int index, unsigned int type)
1640  {
1641  	struct efx_channel *channel = efx_get_tx_channel(efx, index);
1642  
1643  	return efx_channel_get_tx_queue(channel, type);
1644  }
1645  
1646  /* Iterate over all TX queues belonging to a channel */
1647  #define efx_for_each_channel_tx_queue(_tx_queue, _channel)		\
1648  	if (!efx_channel_has_tx_queues(_channel))			\
1649  		;							\
1650  	else								\
1651  		for (_tx_queue = (_channel)->tx_queue;			\
1652  		     _tx_queue < (_channel)->tx_queue +			\
1653  				 efx_channel_num_tx_queues(_channel);		\
1654  		     _tx_queue++)
1655  
efx_channel_has_rx_queue(struct efx_channel * channel)1656  static inline bool efx_channel_has_rx_queue(struct efx_channel *channel)
1657  {
1658  	return channel->rx_queue.core_index >= 0;
1659  }
1660  
1661  static inline struct efx_rx_queue *
efx_channel_get_rx_queue(struct efx_channel * channel)1662  efx_channel_get_rx_queue(struct efx_channel *channel)
1663  {
1664  	EFX_WARN_ON_ONCE_PARANOID(!efx_channel_has_rx_queue(channel));
1665  	return &channel->rx_queue;
1666  }
1667  
1668  /* Iterate over all RX queues belonging to a channel */
1669  #define efx_for_each_channel_rx_queue(_rx_queue, _channel)		\
1670  	if (!efx_channel_has_rx_queue(_channel))			\
1671  		;							\
1672  	else								\
1673  		for (_rx_queue = &(_channel)->rx_queue;			\
1674  		     _rx_queue;						\
1675  		     _rx_queue = NULL)
1676  
1677  static inline struct efx_channel *
efx_rx_queue_channel(struct efx_rx_queue * rx_queue)1678  efx_rx_queue_channel(struct efx_rx_queue *rx_queue)
1679  {
1680  	return container_of(rx_queue, struct efx_channel, rx_queue);
1681  }
1682  
efx_rx_queue_index(struct efx_rx_queue * rx_queue)1683  static inline int efx_rx_queue_index(struct efx_rx_queue *rx_queue)
1684  {
1685  	return efx_rx_queue_channel(rx_queue)->channel;
1686  }
1687  
1688  /* Returns a pointer to the specified receive buffer in the RX
1689   * descriptor queue.
1690   */
efx_rx_buffer(struct efx_rx_queue * rx_queue,unsigned int index)1691  static inline struct efx_rx_buffer *efx_rx_buffer(struct efx_rx_queue *rx_queue,
1692  						  unsigned int index)
1693  {
1694  	return &rx_queue->buffer[index];
1695  }
1696  
1697  static inline struct efx_rx_buffer *
efx_rx_buf_next(struct efx_rx_queue * rx_queue,struct efx_rx_buffer * rx_buf)1698  efx_rx_buf_next(struct efx_rx_queue *rx_queue, struct efx_rx_buffer *rx_buf)
1699  {
1700  	if (unlikely(rx_buf == efx_rx_buffer(rx_queue, rx_queue->ptr_mask)))
1701  		return efx_rx_buffer(rx_queue, 0);
1702  	else
1703  		return rx_buf + 1;
1704  }
1705  
1706  /**
1707   * EFX_MAX_FRAME_LEN - calculate maximum frame length
1708   *
1709   * This calculates the maximum frame length that will be used for a
1710   * given MTU.  The frame length will be equal to the MTU plus a
1711   * constant amount of header space and padding.  This is the quantity
1712   * that the net driver will program into the MAC as the maximum frame
1713   * length.
1714   *
1715   * The 10G MAC requires 8-byte alignment on the frame
1716   * length, so we round up to the nearest 8.
1717   *
1718   * Re-clocking by the XGXS on RX can reduce an IPG to 32 bits (half an
1719   * XGMII cycle).  If the frame length reaches the maximum value in the
1720   * same cycle, the XMAC can miss the IPG altogether.  We work around
1721   * this by adding a further 16 bytes.
1722   */
1723  #define EFX_FRAME_PAD	16
1724  #define EFX_MAX_FRAME_LEN(mtu) \
1725  	(ALIGN(((mtu) + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN + EFX_FRAME_PAD), 8))
1726  
efx_xmit_with_hwtstamp(struct sk_buff * skb)1727  static inline bool efx_xmit_with_hwtstamp(struct sk_buff *skb)
1728  {
1729  	return skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP;
1730  }
efx_xmit_hwtstamp_pending(struct sk_buff * skb)1731  static inline void efx_xmit_hwtstamp_pending(struct sk_buff *skb)
1732  {
1733  	skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1734  }
1735  
1736  /* Get the max fill level of the TX queues on this channel */
1737  static inline unsigned int
efx_channel_tx_fill_level(struct efx_channel * channel)1738  efx_channel_tx_fill_level(struct efx_channel *channel)
1739  {
1740  	struct efx_tx_queue *tx_queue;
1741  	unsigned int fill_level = 0;
1742  
1743  	efx_for_each_channel_tx_queue(tx_queue, channel)
1744  		fill_level = max(fill_level,
1745  				 tx_queue->insert_count - tx_queue->read_count);
1746  
1747  	return fill_level;
1748  }
1749  
1750  /* Conservative approximation of efx_channel_tx_fill_level using cached value */
1751  static inline unsigned int
efx_channel_tx_old_fill_level(struct efx_channel * channel)1752  efx_channel_tx_old_fill_level(struct efx_channel *channel)
1753  {
1754  	struct efx_tx_queue *tx_queue;
1755  	unsigned int fill_level = 0;
1756  
1757  	efx_for_each_channel_tx_queue(tx_queue, channel)
1758  		fill_level = max(fill_level,
1759  				 tx_queue->insert_count - tx_queue->old_read_count);
1760  
1761  	return fill_level;
1762  }
1763  
1764  /* Get all supported features.
1765   * If a feature is not fixed, it is present in hw_features.
1766   * If a feature is fixed, it does not present in hw_features, but
1767   * always in features.
1768   */
efx_supported_features(const struct efx_nic * efx)1769  static inline netdev_features_t efx_supported_features(const struct efx_nic *efx)
1770  {
1771  	const struct net_device *net_dev = efx->net_dev;
1772  
1773  	return net_dev->features | net_dev->hw_features;
1774  }
1775  
1776  /* Get the current TX queue insert index. */
1777  static inline unsigned int
efx_tx_queue_get_insert_index(const struct efx_tx_queue * tx_queue)1778  efx_tx_queue_get_insert_index(const struct efx_tx_queue *tx_queue)
1779  {
1780  	return tx_queue->insert_count & tx_queue->ptr_mask;
1781  }
1782  
1783  /* Get a TX buffer. */
1784  static inline struct efx_tx_buffer *
__efx_tx_queue_get_insert_buffer(const struct efx_tx_queue * tx_queue)1785  __efx_tx_queue_get_insert_buffer(const struct efx_tx_queue *tx_queue)
1786  {
1787  	return &tx_queue->buffer[efx_tx_queue_get_insert_index(tx_queue)];
1788  }
1789  
1790  /* Get a TX buffer, checking it's not currently in use. */
1791  static inline struct efx_tx_buffer *
efx_tx_queue_get_insert_buffer(const struct efx_tx_queue * tx_queue)1792  efx_tx_queue_get_insert_buffer(const struct efx_tx_queue *tx_queue)
1793  {
1794  	struct efx_tx_buffer *buffer =
1795  		__efx_tx_queue_get_insert_buffer(tx_queue);
1796  
1797  	EFX_WARN_ON_ONCE_PARANOID(buffer->len);
1798  	EFX_WARN_ON_ONCE_PARANOID(buffer->flags);
1799  	EFX_WARN_ON_ONCE_PARANOID(buffer->unmap_len);
1800  
1801  	return buffer;
1802  }
1803  
1804  #endif /* EFX_NET_DRIVER_H */
1805