xref: /linux/drivers/thermal/mediatek/lvts_thermal.c (revision e30fc090828e5761defe345b7bfb61bfc46be5bd)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2023 MediaTek Inc.
4  * Author: Balsam CHIHI <bchihi@baylibre.com>
5  */
6 
7 #include <linux/clk.h>
8 #include <linux/clk-provider.h>
9 #include <linux/delay.h>
10 #include <linux/debugfs.h>
11 #include <linux/init.h>
12 #include <linux/interrupt.h>
13 #include <linux/iopoll.h>
14 #include <linux/kernel.h>
15 #include <linux/nvmem-consumer.h>
16 #include <linux/of.h>
17 #include <linux/platform_device.h>
18 #include <linux/reset.h>
19 #include <linux/thermal.h>
20 #include <dt-bindings/thermal/mediatek,lvts-thermal.h>
21 
22 #include "../thermal_hwmon.h"
23 
24 #define LVTS_MONCTL0(__base)	(__base + 0x0000)
25 #define LVTS_MONCTL1(__base)	(__base + 0x0004)
26 #define LVTS_MONCTL2(__base)	(__base + 0x0008)
27 #define LVTS_MONINT(__base)		(__base + 0x000C)
28 #define LVTS_MONINTSTS(__base)	(__base + 0x0010)
29 #define LVTS_MONIDET0(__base)	(__base + 0x0014)
30 #define LVTS_MONIDET1(__base)	(__base + 0x0018)
31 #define LVTS_MONIDET2(__base)	(__base + 0x001C)
32 #define LVTS_MONIDET3(__base)	(__base + 0x0020)
33 #define LVTS_H2NTHRE(__base)	(__base + 0x0024)
34 #define LVTS_HTHRE(__base)		(__base + 0x0028)
35 #define LVTS_OFFSETH(__base)	(__base + 0x0030)
36 #define LVTS_OFFSETL(__base)	(__base + 0x0034)
37 #define LVTS_MSRCTL0(__base)	(__base + 0x0038)
38 #define LVTS_MSRCTL1(__base)	(__base + 0x003C)
39 #define LVTS_TSSEL(__base)		(__base + 0x0040)
40 #define LVTS_CALSCALE(__base)	(__base + 0x0048)
41 #define LVTS_ID(__base)			(__base + 0x004C)
42 #define LVTS_CONFIG(__base)		(__base + 0x0050)
43 #define LVTS_EDATA00(__base)	(__base + 0x0054)
44 #define LVTS_EDATA01(__base)	(__base + 0x0058)
45 #define LVTS_EDATA02(__base)	(__base + 0x005C)
46 #define LVTS_EDATA03(__base)	(__base + 0x0060)
47 #define LVTS_MSR0(__base)		(__base + 0x0090)
48 #define LVTS_MSR1(__base)		(__base + 0x0094)
49 #define LVTS_MSR2(__base)		(__base + 0x0098)
50 #define LVTS_MSR3(__base)		(__base + 0x009C)
51 #define LVTS_IMMD0(__base)		(__base + 0x00A0)
52 #define LVTS_IMMD1(__base)		(__base + 0x00A4)
53 #define LVTS_IMMD2(__base)		(__base + 0x00A8)
54 #define LVTS_IMMD3(__base)		(__base + 0x00AC)
55 #define LVTS_PROTCTL(__base)	(__base + 0x00C0)
56 #define LVTS_PROTTA(__base)		(__base + 0x00C4)
57 #define LVTS_PROTTB(__base)		(__base + 0x00C8)
58 #define LVTS_PROTTC(__base)		(__base + 0x00CC)
59 #define LVTS_CLKEN(__base)		(__base + 0x00E4)
60 
61 #define LVTS_PERIOD_UNIT			0
62 #define LVTS_GROUP_INTERVAL			0
63 #define LVTS_FILTER_INTERVAL		0
64 #define LVTS_SENSOR_INTERVAL		0
65 #define LVTS_HW_FILTER				0x0
66 #define LVTS_TSSEL_CONF				0x13121110
67 #define LVTS_CALSCALE_CONF			0x300
68 
69 #define LVTS_MONINT_OFFSET_HIGH_INTEN_SENSOR0		BIT(3)
70 #define LVTS_MONINT_OFFSET_HIGH_INTEN_SENSOR1		BIT(8)
71 #define LVTS_MONINT_OFFSET_HIGH_INTEN_SENSOR2		BIT(13)
72 #define LVTS_MONINT_OFFSET_HIGH_INTEN_SENSOR3		BIT(25)
73 #define LVTS_MONINT_OFFSET_LOW_INTEN_SENSOR0		BIT(2)
74 #define LVTS_MONINT_OFFSET_LOW_INTEN_SENSOR1		BIT(7)
75 #define LVTS_MONINT_OFFSET_LOW_INTEN_SENSOR2		BIT(12)
76 #define LVTS_MONINT_OFFSET_LOW_INTEN_SENSOR3		BIT(24)
77 
78 #define LVTS_INT_SENSOR0			0x0009001F
79 #define LVTS_INT_SENSOR1			0x001203E0
80 #define LVTS_INT_SENSOR2			0x00247C00
81 #define LVTS_INT_SENSOR3			0x1FC00000
82 
83 #define LVTS_SENSOR_MAX				4
84 #define LVTS_GOLDEN_TEMP_MAX		62
85 #define LVTS_GOLDEN_TEMP_DEFAULT	50
86 #define LVTS_COEFF_A_MT8195			-250460
87 #define LVTS_COEFF_B_MT8195			250460
88 #define LVTS_COEFF_A_MT7988			-204650
89 #define LVTS_COEFF_B_MT7988			204650
90 
91 #define LVTS_MSR_IMMEDIATE_MODE		0
92 #define LVTS_MSR_FILTERED_MODE		1
93 
94 #define LVTS_MSR_READ_TIMEOUT_US	400
95 #define LVTS_MSR_READ_WAIT_US		(LVTS_MSR_READ_TIMEOUT_US / 2)
96 
97 #define LVTS_MINIMUM_THRESHOLD		20000
98 
99 static int golden_temp = LVTS_GOLDEN_TEMP_DEFAULT;
100 static int golden_temp_offset;
101 
102 struct lvts_sensor_data {
103 	int dt_id;
104 	u8 cal_offsets[3];
105 };
106 
107 struct lvts_ctrl_data {
108 	struct lvts_sensor_data lvts_sensor[LVTS_SENSOR_MAX];
109 	u8 valid_sensor_mask;
110 	int offset;
111 	int mode;
112 };
113 
114 #define VALID_SENSOR_MAP(s0, s1, s2, s3) \
115 	.valid_sensor_mask = (((s0) ? BIT(0) : 0) | \
116 			      ((s1) ? BIT(1) : 0) | \
117 			      ((s2) ? BIT(2) : 0) | \
118 			      ((s3) ? BIT(3) : 0))
119 
120 #define lvts_for_each_valid_sensor(i, lvts_ctrl) \
121 	for ((i) = 0; (i) < LVTS_SENSOR_MAX; (i)++) \
122 		if (!((lvts_ctrl)->valid_sensor_mask & BIT(i))) \
123 			continue; \
124 		else
125 
126 struct lvts_data {
127 	const struct lvts_ctrl_data *lvts_ctrl;
128 	const u32 *conn_cmd;
129 	const u32 *init_cmd;
130 	int num_lvts_ctrl;
131 	int num_conn_cmd;
132 	int num_init_cmd;
133 	int temp_factor;
134 	int temp_offset;
135 	int gt_calib_bit_offset;
136 	unsigned int def_calibration;
137 };
138 
139 struct lvts_sensor {
140 	struct thermal_zone_device *tz;
141 	void __iomem *msr;
142 	void __iomem *base;
143 	int id;
144 	int dt_id;
145 	int low_thresh;
146 	int high_thresh;
147 };
148 
149 struct lvts_ctrl {
150 	struct lvts_sensor sensors[LVTS_SENSOR_MAX];
151 	const struct lvts_data *lvts_data;
152 	u32 calibration[LVTS_SENSOR_MAX];
153 	u8 valid_sensor_mask;
154 	int mode;
155 	void __iomem *base;
156 	int low_thresh;
157 	int high_thresh;
158 };
159 
160 struct lvts_domain {
161 	struct lvts_ctrl *lvts_ctrl;
162 	struct reset_control *reset;
163 	struct clk *clk;
164 	int num_lvts_ctrl;
165 	void __iomem *base;
166 	size_t calib_len;
167 	u8 *calib;
168 #ifdef CONFIG_DEBUG_FS
169 	struct dentry *dom_dentry;
170 #endif
171 };
172 
173 #ifdef CONFIG_MTK_LVTS_THERMAL_DEBUGFS
174 
175 #define LVTS_DEBUG_FS_REGS(__reg)		\
176 {						\
177 	.name = __stringify(__reg),		\
178 	.offset = __reg(0),			\
179 }
180 
181 static const struct debugfs_reg32 lvts_regs[] = {
182 	LVTS_DEBUG_FS_REGS(LVTS_MONCTL0),
183 	LVTS_DEBUG_FS_REGS(LVTS_MONCTL1),
184 	LVTS_DEBUG_FS_REGS(LVTS_MONCTL2),
185 	LVTS_DEBUG_FS_REGS(LVTS_MONINT),
186 	LVTS_DEBUG_FS_REGS(LVTS_MONINTSTS),
187 	LVTS_DEBUG_FS_REGS(LVTS_MONIDET0),
188 	LVTS_DEBUG_FS_REGS(LVTS_MONIDET1),
189 	LVTS_DEBUG_FS_REGS(LVTS_MONIDET2),
190 	LVTS_DEBUG_FS_REGS(LVTS_MONIDET3),
191 	LVTS_DEBUG_FS_REGS(LVTS_H2NTHRE),
192 	LVTS_DEBUG_FS_REGS(LVTS_HTHRE),
193 	LVTS_DEBUG_FS_REGS(LVTS_OFFSETH),
194 	LVTS_DEBUG_FS_REGS(LVTS_OFFSETL),
195 	LVTS_DEBUG_FS_REGS(LVTS_MSRCTL0),
196 	LVTS_DEBUG_FS_REGS(LVTS_MSRCTL1),
197 	LVTS_DEBUG_FS_REGS(LVTS_TSSEL),
198 	LVTS_DEBUG_FS_REGS(LVTS_CALSCALE),
199 	LVTS_DEBUG_FS_REGS(LVTS_ID),
200 	LVTS_DEBUG_FS_REGS(LVTS_CONFIG),
201 	LVTS_DEBUG_FS_REGS(LVTS_EDATA00),
202 	LVTS_DEBUG_FS_REGS(LVTS_EDATA01),
203 	LVTS_DEBUG_FS_REGS(LVTS_EDATA02),
204 	LVTS_DEBUG_FS_REGS(LVTS_EDATA03),
205 	LVTS_DEBUG_FS_REGS(LVTS_MSR0),
206 	LVTS_DEBUG_FS_REGS(LVTS_MSR1),
207 	LVTS_DEBUG_FS_REGS(LVTS_MSR2),
208 	LVTS_DEBUG_FS_REGS(LVTS_MSR3),
209 	LVTS_DEBUG_FS_REGS(LVTS_IMMD0),
210 	LVTS_DEBUG_FS_REGS(LVTS_IMMD1),
211 	LVTS_DEBUG_FS_REGS(LVTS_IMMD2),
212 	LVTS_DEBUG_FS_REGS(LVTS_IMMD3),
213 	LVTS_DEBUG_FS_REGS(LVTS_PROTCTL),
214 	LVTS_DEBUG_FS_REGS(LVTS_PROTTA),
215 	LVTS_DEBUG_FS_REGS(LVTS_PROTTB),
216 	LVTS_DEBUG_FS_REGS(LVTS_PROTTC),
217 	LVTS_DEBUG_FS_REGS(LVTS_CLKEN),
218 };
219 
lvts_debugfs_exit(void * data)220 static void lvts_debugfs_exit(void *data)
221 {
222 	struct lvts_domain *lvts_td = data;
223 
224 	debugfs_remove_recursive(lvts_td->dom_dentry);
225 }
226 
lvts_debugfs_init(struct device * dev,struct lvts_domain * lvts_td)227 static int lvts_debugfs_init(struct device *dev, struct lvts_domain *lvts_td)
228 {
229 	struct debugfs_regset32 *regset;
230 	struct lvts_ctrl *lvts_ctrl;
231 	struct dentry *dentry;
232 	char name[64];
233 	int i;
234 
235 	lvts_td->dom_dentry = debugfs_create_dir(dev_name(dev), NULL);
236 	if (IS_ERR(lvts_td->dom_dentry))
237 		return 0;
238 
239 	for (i = 0; i < lvts_td->num_lvts_ctrl; i++) {
240 
241 		lvts_ctrl = &lvts_td->lvts_ctrl[i];
242 
243 		sprintf(name, "controller%d", i);
244 		dentry = debugfs_create_dir(name, lvts_td->dom_dentry);
245 		if (IS_ERR(dentry))
246 			continue;
247 
248 		regset = devm_kzalloc(dev, sizeof(*regset), GFP_KERNEL);
249 		if (!regset)
250 			continue;
251 
252 		regset->base = lvts_ctrl->base;
253 		regset->regs = lvts_regs;
254 		regset->nregs = ARRAY_SIZE(lvts_regs);
255 
256 		debugfs_create_regset32("registers", 0400, dentry, regset);
257 	}
258 
259 	return devm_add_action_or_reset(dev, lvts_debugfs_exit, lvts_td);
260 }
261 
262 #else
263 
lvts_debugfs_init(struct device * dev,struct lvts_domain * lvts_td)264 static inline int lvts_debugfs_init(struct device *dev,
265 				    struct lvts_domain *lvts_td)
266 {
267 	return 0;
268 }
269 
270 #endif
271 
lvts_raw_to_temp(u32 raw_temp,int temp_factor)272 static int lvts_raw_to_temp(u32 raw_temp, int temp_factor)
273 {
274 	int temperature;
275 
276 	temperature = ((s64)(raw_temp & 0xFFFF) * temp_factor) >> 14;
277 	temperature += golden_temp_offset;
278 
279 	return temperature;
280 }
281 
lvts_temp_to_raw(int temperature,int temp_factor)282 static u32 lvts_temp_to_raw(int temperature, int temp_factor)
283 {
284 	u32 raw_temp = ((s64)(golden_temp_offset - temperature)) << 14;
285 
286 	raw_temp = div_s64(raw_temp, -temp_factor);
287 
288 	return raw_temp;
289 }
290 
lvts_get_temp(struct thermal_zone_device * tz,int * temp)291 static int lvts_get_temp(struct thermal_zone_device *tz, int *temp)
292 {
293 	struct lvts_sensor *lvts_sensor = thermal_zone_device_priv(tz);
294 	struct lvts_ctrl *lvts_ctrl = container_of(lvts_sensor, struct lvts_ctrl,
295 						   sensors[lvts_sensor->id]);
296 	const struct lvts_data *lvts_data = lvts_ctrl->lvts_data;
297 	void __iomem *msr = lvts_sensor->msr;
298 	u32 value;
299 	int rc;
300 
301 	/*
302 	 * Measurement registers:
303 	 *
304 	 * LVTS_MSR[0-3] / LVTS_IMMD[0-3]
305 	 *
306 	 * Bits:
307 	 *
308 	 * 32-17: Unused
309 	 * 16	: Valid temperature
310 	 * 15-0	: Raw temperature
311 	 */
312 	rc = readl_poll_timeout(msr, value, value & BIT(16),
313 				LVTS_MSR_READ_WAIT_US, LVTS_MSR_READ_TIMEOUT_US);
314 
315 	/*
316 	 * As the thermal zone temperature will read before the
317 	 * hardware sensor is fully initialized, we have to check the
318 	 * validity of the temperature returned when reading the
319 	 * measurement register. The thermal controller will set the
320 	 * valid bit temperature only when it is totally initialized.
321 	 *
322 	 * Otherwise, we may end up with garbage values out of the
323 	 * functionning temperature and directly jump to a system
324 	 * shutdown.
325 	 */
326 	if (rc)
327 		return -EAGAIN;
328 
329 	*temp = lvts_raw_to_temp(value & 0xFFFF, lvts_data->temp_factor);
330 
331 	return 0;
332 }
333 
lvts_update_irq_mask(struct lvts_ctrl * lvts_ctrl)334 static void lvts_update_irq_mask(struct lvts_ctrl *lvts_ctrl)
335 {
336 	static const u32 high_offset_inten_masks[] = {
337 		LVTS_MONINT_OFFSET_HIGH_INTEN_SENSOR0,
338 		LVTS_MONINT_OFFSET_HIGH_INTEN_SENSOR1,
339 		LVTS_MONINT_OFFSET_HIGH_INTEN_SENSOR2,
340 		LVTS_MONINT_OFFSET_HIGH_INTEN_SENSOR3,
341 	};
342 	static const u32 low_offset_inten_masks[] = {
343 		LVTS_MONINT_OFFSET_LOW_INTEN_SENSOR0,
344 		LVTS_MONINT_OFFSET_LOW_INTEN_SENSOR1,
345 		LVTS_MONINT_OFFSET_LOW_INTEN_SENSOR2,
346 		LVTS_MONINT_OFFSET_LOW_INTEN_SENSOR3,
347 	};
348 	u32 value = 0;
349 	int i;
350 
351 	value = readl(LVTS_MONINT(lvts_ctrl->base));
352 
353 	lvts_for_each_valid_sensor(i, lvts_ctrl) {
354 		if (lvts_ctrl->sensors[i].high_thresh == lvts_ctrl->high_thresh
355 		    && lvts_ctrl->sensors[i].low_thresh == lvts_ctrl->low_thresh) {
356 			/*
357 			 * The minimum threshold needs to be configured in the
358 			 * OFFSETL register to get working interrupts, but we
359 			 * don't actually want to generate interrupts when
360 			 * crossing it.
361 			 */
362 			if (lvts_ctrl->low_thresh == -INT_MAX) {
363 				value &= ~low_offset_inten_masks[i];
364 				value |= high_offset_inten_masks[i];
365 			} else {
366 				value |= low_offset_inten_masks[i] | high_offset_inten_masks[i];
367 			}
368 		} else {
369 			value &= ~(low_offset_inten_masks[i] | high_offset_inten_masks[i]);
370 		}
371 	}
372 
373 	writel(value, LVTS_MONINT(lvts_ctrl->base));
374 }
375 
lvts_should_update_thresh(struct lvts_ctrl * lvts_ctrl,int high)376 static bool lvts_should_update_thresh(struct lvts_ctrl *lvts_ctrl, int high)
377 {
378 	int i;
379 
380 	if (high > lvts_ctrl->high_thresh)
381 		return true;
382 
383 	lvts_for_each_valid_sensor(i, lvts_ctrl)
384 		if (lvts_ctrl->sensors[i].high_thresh == lvts_ctrl->high_thresh
385 		    && lvts_ctrl->sensors[i].low_thresh == lvts_ctrl->low_thresh)
386 			return false;
387 
388 	return true;
389 }
390 
lvts_set_trips(struct thermal_zone_device * tz,int low,int high)391 static int lvts_set_trips(struct thermal_zone_device *tz, int low, int high)
392 {
393 	struct lvts_sensor *lvts_sensor = thermal_zone_device_priv(tz);
394 	struct lvts_ctrl *lvts_ctrl = container_of(lvts_sensor, struct lvts_ctrl,
395 						   sensors[lvts_sensor->id]);
396 	const struct lvts_data *lvts_data = lvts_ctrl->lvts_data;
397 	void __iomem *base = lvts_sensor->base;
398 	u32 raw_low = lvts_temp_to_raw(low != -INT_MAX ? low : LVTS_MINIMUM_THRESHOLD,
399 				       lvts_data->temp_factor);
400 	u32 raw_high = lvts_temp_to_raw(high, lvts_data->temp_factor);
401 	bool should_update_thresh;
402 
403 	lvts_sensor->low_thresh = low;
404 	lvts_sensor->high_thresh = high;
405 
406 	should_update_thresh = lvts_should_update_thresh(lvts_ctrl, high);
407 	if (should_update_thresh) {
408 		lvts_ctrl->high_thresh = high;
409 		lvts_ctrl->low_thresh = low;
410 	}
411 	lvts_update_irq_mask(lvts_ctrl);
412 
413 	if (!should_update_thresh)
414 		return 0;
415 
416 	/*
417 	 * Low offset temperature threshold
418 	 *
419 	 * LVTS_OFFSETL
420 	 *
421 	 * Bits:
422 	 *
423 	 * 14-0 : Raw temperature for threshold
424 	 */
425 	pr_debug("%s: Setting low limit temperature interrupt: %d\n",
426 		 thermal_zone_device_type(tz), low);
427 	writel(raw_low, LVTS_OFFSETL(base));
428 
429 	/*
430 	 * High offset temperature threshold
431 	 *
432 	 * LVTS_OFFSETH
433 	 *
434 	 * Bits:
435 	 *
436 	 * 14-0 : Raw temperature for threshold
437 	 */
438 	pr_debug("%s: Setting high limit temperature interrupt: %d\n",
439 		 thermal_zone_device_type(tz), high);
440 	writel(raw_high, LVTS_OFFSETH(base));
441 
442 	return 0;
443 }
444 
lvts_ctrl_irq_handler(struct lvts_ctrl * lvts_ctrl)445 static irqreturn_t lvts_ctrl_irq_handler(struct lvts_ctrl *lvts_ctrl)
446 {
447 	irqreturn_t iret = IRQ_NONE;
448 	u32 value;
449 	static const u32 masks[] = {
450 		LVTS_INT_SENSOR0,
451 		LVTS_INT_SENSOR1,
452 		LVTS_INT_SENSOR2,
453 		LVTS_INT_SENSOR3
454 	};
455 	int i;
456 
457 	/*
458 	 * Interrupt monitoring status
459 	 *
460 	 * LVTS_MONINTST
461 	 *
462 	 * Bits:
463 	 *
464 	 * 31 : Interrupt for stage 3
465 	 * 30 : Interrupt for stage 2
466 	 * 29 : Interrupt for state 1
467 	 * 28 : Interrupt using filter on sensor 3
468 	 *
469 	 * 27 : Interrupt using immediate on sensor 3
470 	 * 26 : Interrupt normal to hot on sensor 3
471 	 * 25 : Interrupt high offset on sensor 3
472 	 * 24 : Interrupt low offset on sensor 3
473 	 *
474 	 * 23 : Interrupt hot threshold on sensor 3
475 	 * 22 : Interrupt cold threshold on sensor 3
476 	 * 21 : Interrupt using filter on sensor 2
477 	 * 20 : Interrupt using filter on sensor 1
478 	 *
479 	 * 19 : Interrupt using filter on sensor 0
480 	 * 18 : Interrupt using immediate on sensor 2
481 	 * 17 : Interrupt using immediate on sensor 1
482 	 * 16 : Interrupt using immediate on sensor 0
483 	 *
484 	 * 15 : Interrupt device access timeout interrupt
485 	 * 14 : Interrupt normal to hot on sensor 2
486 	 * 13 : Interrupt high offset interrupt on sensor 2
487 	 * 12 : Interrupt low offset interrupt on sensor 2
488 	 *
489 	 * 11 : Interrupt hot threshold on sensor 2
490 	 * 10 : Interrupt cold threshold on sensor 2
491 	 *  9 : Interrupt normal to hot on sensor 1
492 	 *  8 : Interrupt high offset interrupt on sensor 1
493 	 *
494 	 *  7 : Interrupt low offset interrupt on sensor 1
495 	 *  6 : Interrupt hot threshold on sensor 1
496 	 *  5 : Interrupt cold threshold on sensor 1
497 	 *  4 : Interrupt normal to hot on sensor 0
498 	 *
499 	 *  3 : Interrupt high offset interrupt on sensor 0
500 	 *  2 : Interrupt low offset interrupt on sensor 0
501 	 *  1 : Interrupt hot threshold on sensor 0
502 	 *  0 : Interrupt cold threshold on sensor 0
503 	 *
504 	 * We are interested in the sensor(s) responsible of the
505 	 * interrupt event. We update the thermal framework with the
506 	 * thermal zone associated with the sensor. The framework will
507 	 * take care of the rest whatever the kind of interrupt, we
508 	 * are only interested in which sensor raised the interrupt.
509 	 *
510 	 * sensor 3 interrupt: 0001 1111 1100 0000 0000 0000 0000 0000
511 	 *                  => 0x1FC00000
512 	 * sensor 2 interrupt: 0000 0000 0010 0100 0111 1100 0000 0000
513 	 *                  => 0x00247C00
514 	 * sensor 1 interrupt: 0000 0000 0001 0010 0000 0011 1110 0000
515 	 *                  => 0X001203E0
516 	 * sensor 0 interrupt: 0000 0000 0000 1001 0000 0000 0001 1111
517 	 *                  => 0x0009001F
518 	 */
519 	value = readl(LVTS_MONINTSTS(lvts_ctrl->base));
520 
521 	/*
522 	 * Let's figure out which sensors raised the interrupt
523 	 *
524 	 * NOTE: the masks array must be ordered with the index
525 	 * corresponding to the sensor id eg. index=0, mask for
526 	 * sensor0.
527 	 */
528 	for (i = 0; i < ARRAY_SIZE(masks); i++) {
529 
530 		if (!(value & masks[i]))
531 			continue;
532 
533 		thermal_zone_device_update(lvts_ctrl->sensors[i].tz,
534 					   THERMAL_TRIP_VIOLATED);
535 		iret = IRQ_HANDLED;
536 	}
537 
538 	/*
539 	 * Write back to clear the interrupt status (W1C)
540 	 */
541 	writel(value, LVTS_MONINTSTS(lvts_ctrl->base));
542 
543 	return iret;
544 }
545 
546 /*
547  * Temperature interrupt handler. Even if the driver supports more
548  * interrupt modes, we use the interrupt when the temperature crosses
549  * the hot threshold the way up and the way down (modulo the
550  * hysteresis).
551  *
552  * Each thermal domain has a couple of interrupts, one for hardware
553  * reset and another one for all the thermal events happening on the
554  * different sensors.
555  *
556  * The interrupt is configured for thermal events when crossing the
557  * hot temperature limit. At each interrupt, we check in every
558  * controller if there is an interrupt pending.
559  */
lvts_irq_handler(int irq,void * data)560 static irqreturn_t lvts_irq_handler(int irq, void *data)
561 {
562 	struct lvts_domain *lvts_td = data;
563 	irqreturn_t aux, iret = IRQ_NONE;
564 	int i;
565 
566 	for (i = 0; i < lvts_td->num_lvts_ctrl; i++) {
567 
568 		aux = lvts_ctrl_irq_handler(&lvts_td->lvts_ctrl[i]);
569 		if (aux != IRQ_HANDLED)
570 			continue;
571 
572 		iret = IRQ_HANDLED;
573 	}
574 
575 	return iret;
576 }
577 
578 static const struct thermal_zone_device_ops lvts_ops = {
579 	.get_temp = lvts_get_temp,
580 	.set_trips = lvts_set_trips,
581 };
582 
lvts_sensor_init(struct device * dev,struct lvts_ctrl * lvts_ctrl,const struct lvts_ctrl_data * lvts_ctrl_data)583 static int lvts_sensor_init(struct device *dev, struct lvts_ctrl *lvts_ctrl,
584 					const struct lvts_ctrl_data *lvts_ctrl_data)
585 {
586 	struct lvts_sensor *lvts_sensor = lvts_ctrl->sensors;
587 
588 	void __iomem *msr_regs[] = {
589 		LVTS_MSR0(lvts_ctrl->base),
590 		LVTS_MSR1(lvts_ctrl->base),
591 		LVTS_MSR2(lvts_ctrl->base),
592 		LVTS_MSR3(lvts_ctrl->base)
593 	};
594 
595 	void __iomem *imm_regs[] = {
596 		LVTS_IMMD0(lvts_ctrl->base),
597 		LVTS_IMMD1(lvts_ctrl->base),
598 		LVTS_IMMD2(lvts_ctrl->base),
599 		LVTS_IMMD3(lvts_ctrl->base)
600 	};
601 
602 	int i;
603 
604 	lvts_for_each_valid_sensor(i, lvts_ctrl_data) {
605 
606 		int dt_id = lvts_ctrl_data->lvts_sensor[i].dt_id;
607 
608 		/*
609 		 * At this point, we don't know which id matches which
610 		 * sensor. Let's set arbitrally the id from the index.
611 		 */
612 		lvts_sensor[i].id = i;
613 
614 		/*
615 		 * The thermal zone registration will set the trip
616 		 * point interrupt in the thermal controller
617 		 * register. But this one will be reset in the
618 		 * initialization after. So we need to post pone the
619 		 * thermal zone creation after the controller is
620 		 * setup. For this reason, we store the device tree
621 		 * node id from the data in the sensor structure
622 		 */
623 		lvts_sensor[i].dt_id = dt_id;
624 
625 		/*
626 		 * We assign the base address of the thermal
627 		 * controller as a back pointer. So it will be
628 		 * accessible from the different thermal framework ops
629 		 * as we pass the lvts_sensor pointer as thermal zone
630 		 * private data.
631 		 */
632 		lvts_sensor[i].base = lvts_ctrl->base;
633 
634 		/*
635 		 * Each sensor has its own register address to read from.
636 		 */
637 		lvts_sensor[i].msr = lvts_ctrl_data->mode == LVTS_MSR_IMMEDIATE_MODE ?
638 			imm_regs[i] : msr_regs[i];
639 
640 		lvts_sensor[i].low_thresh = INT_MIN;
641 		lvts_sensor[i].high_thresh = INT_MIN;
642 	};
643 
644 	lvts_ctrl->valid_sensor_mask = lvts_ctrl_data->valid_sensor_mask;
645 
646 	return 0;
647 }
648 
649 /*
650  * The efuse blob values follows the sensor enumeration per thermal
651  * controller. The decoding of the stream is as follow:
652  *
653  * MT8192 :
654  * Stream index map for MCU Domain mt8192 :
655  *
656  * <-----mcu-tc#0-----> <-----sensor#0----->        <-----sensor#1----->
657  *  0x01 | 0x02 | 0x03 | 0x04 | 0x05 | 0x06 | 0x07 | 0x08 | 0x09 | 0x0A | 0x0B
658  *
659  * <-----sensor#2----->        <-----sensor#3----->
660  *  0x0C | 0x0D | 0x0E | 0x0F | 0x10 | 0x11 | 0x12 | 0x13
661  *
662  * <-----sensor#4----->        <-----sensor#5----->        <-----sensor#6----->        <-----sensor#7----->
663  *  0x14 | 0x15 | 0x16 | 0x17 | 0x18 | 0x19 | 0x1A | 0x1B | 0x1C | 0x1D | 0x1E | 0x1F | 0x20 | 0x21 | 0x22 | 0x23
664  *
665  * Stream index map for AP Domain mt8192 :
666  *
667  * <-----sensor#0----->        <-----sensor#1----->
668  *  0x24 | 0x25 | 0x26 | 0x27 | 0x28 | 0x29 | 0x2A | 0x2B
669  *
670  * <-----sensor#2----->        <-----sensor#3----->
671  *  0x2C | 0x2D | 0x2E | 0x2F | 0x30 | 0x31 | 0x32 | 0x33
672  *
673  * <-----sensor#4----->        <-----sensor#5----->
674  *  0x34 | 0x35 | 0x36 | 0x37 | 0x38 | 0x39 | 0x3A | 0x3B
675  *
676  * <-----sensor#6----->        <-----sensor#7----->        <-----sensor#8----->
677  *  0x3C | 0x3D | 0x3E | 0x3F | 0x40 | 0x41 | 0x42 | 0x43 | 0x44 | 0x45 | 0x46 | 0x47
678  *
679  * MT8195 :
680  * Stream index map for MCU Domain mt8195 :
681  *
682  * <-----mcu-tc#0-----> <-----sensor#0-----> <-----sensor#1----->
683  *  0x01 | 0x02 | 0x03 | 0x04 | 0x05 | 0x06 | 0x07 | 0x08 | 0x09
684  *
685  * <-----mcu-tc#1-----> <-----sensor#2-----> <-----sensor#3----->
686  *  0x0A | 0x0B | 0x0C | 0x0D | 0x0E | 0x0F | 0x10 | 0x11 | 0x12
687  *
688  * <-----mcu-tc#2-----> <-----sensor#4-----> <-----sensor#5-----> <-----sensor#6-----> <-----sensor#7----->
689  *  0x13 | 0x14 | 0x15 | 0x16 | 0x17 | 0x18 | 0x19 | 0x1A | 0x1B | 0x1C | 0x1D | 0x1E | 0x1F | 0x20 | 0x21
690  *
691  * Stream index map for AP Domain mt8195 :
692  *
693  * <-----ap--tc#0-----> <-----sensor#0-----> <-----sensor#1----->
694  *  0x22 | 0x23 | 0x24 | 0x25 | 0x26 | 0x27 | 0x28 | 0x29 | 0x2A
695  *
696  * <-----ap--tc#1-----> <-----sensor#2-----> <-----sensor#3----->
697  *  0x2B | 0x2C | 0x2D | 0x2E | 0x2F | 0x30 | 0x31 | 0x32 | 0x33
698  *
699  * <-----ap--tc#2-----> <-----sensor#4-----> <-----sensor#5-----> <-----sensor#6----->
700  *  0x34 | 0x35 | 0x36 | 0x37 | 0x38 | 0x39 | 0x3A | 0x3B | 0x3C | 0x3D | 0x3E | 0x3F
701  *
702  * <-----ap--tc#3-----> <-----sensor#7-----> <-----sensor#8----->
703  *  0x40 | 0x41 | 0x42 | 0x43 | 0x44 | 0x45 | 0x46 | 0x47 | 0x48
704  *
705  * Note: In some cases, values don't strictly follow a little endian ordering.
706  * The data description gives byte offsets constituting each calibration value
707  * for each sensor.
708  */
lvts_calibration_init(struct device * dev,struct lvts_ctrl * lvts_ctrl,const struct lvts_ctrl_data * lvts_ctrl_data,u8 * efuse_calibration,size_t calib_len)709 static int lvts_calibration_init(struct device *dev, struct lvts_ctrl *lvts_ctrl,
710 					const struct lvts_ctrl_data *lvts_ctrl_data,
711 					u8 *efuse_calibration,
712 					size_t calib_len)
713 {
714 	int i;
715 	u32 gt;
716 
717 	/* A zero value for gt means that device has invalid efuse data */
718 	gt = (((u32 *)efuse_calibration)[0] >> lvts_ctrl->lvts_data->gt_calib_bit_offset) & 0xff;
719 
720 	lvts_for_each_valid_sensor(i, lvts_ctrl_data) {
721 		const struct lvts_sensor_data *sensor =
722 					&lvts_ctrl_data->lvts_sensor[i];
723 
724 		if (sensor->cal_offsets[0] >= calib_len ||
725 		    sensor->cal_offsets[1] >= calib_len ||
726 		    sensor->cal_offsets[2] >= calib_len)
727 			return -EINVAL;
728 
729 		if (gt) {
730 			lvts_ctrl->calibration[i] =
731 				(efuse_calibration[sensor->cal_offsets[0]] << 0) +
732 				(efuse_calibration[sensor->cal_offsets[1]] << 8) +
733 				(efuse_calibration[sensor->cal_offsets[2]] << 16);
734 		} else if (lvts_ctrl->lvts_data->def_calibration) {
735 			lvts_ctrl->calibration[i] = lvts_ctrl->lvts_data->def_calibration;
736 		} else {
737 			dev_err(dev, "efuse contains invalid calibration data and no default given.\n");
738 			return -ENODATA;
739 		}
740 	}
741 
742 	return 0;
743 }
744 
745 /*
746  * The efuse bytes stream can be split into different chunk of
747  * nvmems. This function reads and concatenate those into a single
748  * buffer so it can be read sequentially when initializing the
749  * calibration data.
750  */
lvts_calibration_read(struct device * dev,struct lvts_domain * lvts_td,const struct lvts_data * lvts_data)751 static int lvts_calibration_read(struct device *dev, struct lvts_domain *lvts_td,
752 					const struct lvts_data *lvts_data)
753 {
754 	struct device_node *np = dev_of_node(dev);
755 	struct nvmem_cell *cell;
756 	struct property *prop;
757 	const char *cell_name;
758 
759 	of_property_for_each_string(np, "nvmem-cell-names", prop, cell_name) {
760 		size_t len;
761 		u8 *efuse;
762 
763 		cell = of_nvmem_cell_get(np, cell_name);
764 		if (IS_ERR(cell)) {
765 			dev_err(dev, "Failed to get cell '%s'\n", cell_name);
766 			return PTR_ERR(cell);
767 		}
768 
769 		efuse = nvmem_cell_read(cell, &len);
770 
771 		nvmem_cell_put(cell);
772 
773 		if (IS_ERR(efuse)) {
774 			dev_err(dev, "Failed to read cell '%s'\n", cell_name);
775 			return PTR_ERR(efuse);
776 		}
777 
778 		lvts_td->calib = devm_krealloc(dev, lvts_td->calib,
779 					       lvts_td->calib_len + len, GFP_KERNEL);
780 		if (!lvts_td->calib) {
781 			kfree(efuse);
782 			return -ENOMEM;
783 		}
784 
785 		memcpy(lvts_td->calib + lvts_td->calib_len, efuse, len);
786 
787 		lvts_td->calib_len += len;
788 
789 		kfree(efuse);
790 	}
791 
792 	return 0;
793 }
794 
lvts_golden_temp_init(struct device * dev,u8 * calib,const struct lvts_data * lvts_data)795 static int lvts_golden_temp_init(struct device *dev, u8 *calib,
796 				 const struct lvts_data *lvts_data)
797 {
798 	u32 gt;
799 
800 	/*
801 	 * The golden temp information is contained in the first 32-bit
802 	 * word  of efuse data at a specific bit offset.
803 	 */
804 	gt = (((u32 *)calib)[0] >> lvts_data->gt_calib_bit_offset) & 0xff;
805 
806 	/* A zero value for gt means that device has invalid efuse data */
807 	if (gt && gt < LVTS_GOLDEN_TEMP_MAX)
808 		golden_temp = gt;
809 
810 	golden_temp_offset = golden_temp * 500 + lvts_data->temp_offset;
811 
812 	dev_info(dev, "%sgolden temp=%d\n", gt ? "" : "fake ", golden_temp);
813 
814 	return 0;
815 }
816 
lvts_ctrl_init(struct device * dev,struct lvts_domain * lvts_td,const struct lvts_data * lvts_data)817 static int lvts_ctrl_init(struct device *dev, struct lvts_domain *lvts_td,
818 					const struct lvts_data *lvts_data)
819 {
820 	size_t size = sizeof(*lvts_td->lvts_ctrl) * lvts_data->num_lvts_ctrl;
821 	struct lvts_ctrl *lvts_ctrl;
822 	int i, ret;
823 
824 	/*
825 	 * Create the calibration bytes stream from efuse data
826 	 */
827 	ret = lvts_calibration_read(dev, lvts_td, lvts_data);
828 	if (ret)
829 		return ret;
830 
831 	ret = lvts_golden_temp_init(dev, lvts_td->calib, lvts_data);
832 	if (ret)
833 		return ret;
834 
835 	lvts_ctrl = devm_kzalloc(dev, size, GFP_KERNEL);
836 	if (!lvts_ctrl)
837 		return -ENOMEM;
838 
839 	for (i = 0; i < lvts_data->num_lvts_ctrl; i++) {
840 
841 		lvts_ctrl[i].base = lvts_td->base + lvts_data->lvts_ctrl[i].offset;
842 		lvts_ctrl[i].lvts_data = lvts_data;
843 
844 		ret = lvts_sensor_init(dev, &lvts_ctrl[i],
845 				       &lvts_data->lvts_ctrl[i]);
846 		if (ret)
847 			return ret;
848 
849 		ret = lvts_calibration_init(dev, &lvts_ctrl[i],
850 					    &lvts_data->lvts_ctrl[i],
851 					    lvts_td->calib,
852 					    lvts_td->calib_len);
853 		if (ret)
854 			return ret;
855 
856 		/*
857 		 * The mode the ctrl will use to read the temperature
858 		 * (filtered or immediate)
859 		 */
860 		lvts_ctrl[i].mode = lvts_data->lvts_ctrl[i].mode;
861 
862 		lvts_ctrl[i].low_thresh = INT_MIN;
863 		lvts_ctrl[i].high_thresh = INT_MIN;
864 	}
865 
866 	/*
867 	 * We no longer need the efuse bytes stream, let's free it
868 	 */
869 	devm_kfree(dev, lvts_td->calib);
870 
871 	lvts_td->lvts_ctrl = lvts_ctrl;
872 	lvts_td->num_lvts_ctrl = lvts_data->num_lvts_ctrl;
873 
874 	return 0;
875 }
876 
lvts_ctrl_monitor_enable(struct device * dev,struct lvts_ctrl * lvts_ctrl,bool enable)877 static void lvts_ctrl_monitor_enable(struct device *dev, struct lvts_ctrl *lvts_ctrl, bool enable)
878 {
879 	/*
880 	 * Bitmaps to enable each sensor on filtered mode in the MONCTL0
881 	 * register.
882 	 */
883 	static const u8 sensor_filt_bitmap[] = { BIT(0), BIT(1), BIT(2), BIT(3) };
884 	u32 sensor_map = 0;
885 	int i;
886 
887 	if (lvts_ctrl->mode != LVTS_MSR_FILTERED_MODE)
888 		return;
889 
890 	if (enable) {
891 		lvts_for_each_valid_sensor(i, lvts_ctrl)
892 			sensor_map |= sensor_filt_bitmap[i];
893 	}
894 
895 	/*
896 	 * Bits:
897 	 *      9: Single point access flow
898 	 *    0-3: Enable sensing point 0-3
899 	 */
900 	writel(sensor_map | BIT(9), LVTS_MONCTL0(lvts_ctrl->base));
901 }
902 
903 /*
904  * At this point the configuration register is the only place in the
905  * driver where we write multiple values. Per hardware constraint,
906  * each write in the configuration register must be separated by a
907  * delay of 2 us.
908  */
lvts_write_config(struct lvts_ctrl * lvts_ctrl,const u32 * cmds,int nr_cmds)909 static void lvts_write_config(struct lvts_ctrl *lvts_ctrl, const u32 *cmds, int nr_cmds)
910 {
911 	int i;
912 
913 	/*
914 	 * Configuration register
915 	 */
916 	for (i = 0; i < nr_cmds; i++) {
917 		writel(cmds[i], LVTS_CONFIG(lvts_ctrl->base));
918 		usleep_range(2, 4);
919 	}
920 }
921 
lvts_irq_init(struct lvts_ctrl * lvts_ctrl)922 static int lvts_irq_init(struct lvts_ctrl *lvts_ctrl)
923 {
924 	/*
925 	 * LVTS_PROTCTL : Thermal Protection Sensor Selection
926 	 *
927 	 * Bits:
928 	 *
929 	 * 19-18 : Sensor to base the protection on
930 	 * 17-16 : Strategy:
931 	 *         00 : Average of 4 sensors
932 	 *         01 : Max of 4 sensors
933 	 *         10 : Selected sensor with bits 19-18
934 	 *         11 : Reserved
935 	 */
936 
937 	/*
938 	 * LVTS_PROTTA : Stage 1 temperature threshold
939 	 * LVTS_PROTTB : Stage 2 temperature threshold
940 	 * LVTS_PROTTC : Stage 3 temperature threshold
941 	 *
942 	 * Bits:
943 	 *
944 	 * 14-0: Raw temperature threshold
945 	 *
946 	 * writel(0x0, LVTS_PROTTA(lvts_ctrl->base));
947 	 * writel(0x0, LVTS_PROTTB(lvts_ctrl->base));
948 	 * writel(0x0, LVTS_PROTTC(lvts_ctrl->base));
949 	 */
950 
951 	/*
952 	 * LVTS_MONINT : Interrupt configuration register
953 	 *
954 	 * The LVTS_MONINT register layout is the same as the LVTS_MONINTSTS
955 	 * register, except we set the bits to enable the interrupt.
956 	 */
957 	writel(0, LVTS_MONINT(lvts_ctrl->base));
958 
959 	return 0;
960 }
961 
lvts_domain_reset(struct device * dev,struct reset_control * reset)962 static int lvts_domain_reset(struct device *dev, struct reset_control *reset)
963 {
964 	int ret;
965 
966 	ret = reset_control_assert(reset);
967 	if (ret)
968 		return ret;
969 
970 	return reset_control_deassert(reset);
971 }
972 
973 /*
974  * Enable or disable the clocks of a specified thermal controller
975  */
lvts_ctrl_set_enable(struct lvts_ctrl * lvts_ctrl,int enable)976 static int lvts_ctrl_set_enable(struct lvts_ctrl *lvts_ctrl, int enable)
977 {
978 	/*
979 	 * LVTS_CLKEN : Internal LVTS clock
980 	 *
981 	 * Bits:
982 	 *
983 	 * 0 : enable / disable clock
984 	 */
985 	writel(enable, LVTS_CLKEN(lvts_ctrl->base));
986 
987 	return 0;
988 }
989 
lvts_ctrl_connect(struct device * dev,struct lvts_ctrl * lvts_ctrl)990 static int lvts_ctrl_connect(struct device *dev, struct lvts_ctrl *lvts_ctrl)
991 {
992 	const struct lvts_data *lvts_data = lvts_ctrl->lvts_data;
993 	u32 id;
994 
995 	lvts_write_config(lvts_ctrl, lvts_data->conn_cmd, lvts_data->num_conn_cmd);
996 
997 	/*
998 	 * LVTS_ID : Get ID and status of the thermal controller
999 	 *
1000 	 * Bits:
1001 	 *
1002 	 * 0-5	: thermal controller id
1003 	 *   7	: thermal controller connection is valid
1004 	 */
1005 	id = readl(LVTS_ID(lvts_ctrl->base));
1006 	if (!(id & BIT(7)))
1007 		return -EIO;
1008 
1009 	return 0;
1010 }
1011 
lvts_ctrl_initialize(struct device * dev,struct lvts_ctrl * lvts_ctrl)1012 static int lvts_ctrl_initialize(struct device *dev, struct lvts_ctrl *lvts_ctrl)
1013 {
1014 	const struct lvts_data *lvts_data = lvts_ctrl->lvts_data;
1015 
1016 	lvts_write_config(lvts_ctrl, lvts_data->init_cmd, lvts_data->num_init_cmd);
1017 
1018 	return 0;
1019 }
1020 
lvts_ctrl_calibrate(struct device * dev,struct lvts_ctrl * lvts_ctrl)1021 static int lvts_ctrl_calibrate(struct device *dev, struct lvts_ctrl *lvts_ctrl)
1022 {
1023 	int i;
1024 	void __iomem *lvts_edata[] = {
1025 		LVTS_EDATA00(lvts_ctrl->base),
1026 		LVTS_EDATA01(lvts_ctrl->base),
1027 		LVTS_EDATA02(lvts_ctrl->base),
1028 		LVTS_EDATA03(lvts_ctrl->base)
1029 	};
1030 
1031 	/*
1032 	 * LVTS_EDATA0X : Efuse calibration reference value for sensor X
1033 	 *
1034 	 * Bits:
1035 	 *
1036 	 * 20-0 : Efuse value for normalization data
1037 	 */
1038 	for (i = 0; i < LVTS_SENSOR_MAX; i++)
1039 		writel(lvts_ctrl->calibration[i], lvts_edata[i]);
1040 
1041 	return 0;
1042 }
1043 
lvts_ctrl_configure(struct device * dev,struct lvts_ctrl * lvts_ctrl)1044 static int lvts_ctrl_configure(struct device *dev, struct lvts_ctrl *lvts_ctrl)
1045 {
1046 	u32 value;
1047 
1048 	/*
1049 	 * LVTS_TSSEL : Sensing point index numbering
1050 	 *
1051 	 * Bits:
1052 	 *
1053 	 * 31-24: ADC Sense 3
1054 	 * 23-16: ADC Sense 2
1055 	 * 15-8	: ADC Sense 1
1056 	 * 7-0	: ADC Sense 0
1057 	 */
1058 	value = LVTS_TSSEL_CONF;
1059 	writel(value, LVTS_TSSEL(lvts_ctrl->base));
1060 
1061 	/*
1062 	 * LVTS_CALSCALE : ADC voltage round
1063 	 */
1064 	value = 0x300;
1065 	value = LVTS_CALSCALE_CONF;
1066 
1067 	/*
1068 	 * LVTS_MSRCTL0 : Sensor filtering strategy
1069 	 *
1070 	 * Filters:
1071 	 *
1072 	 * 000 : One sample
1073 	 * 001 : Avg 2 samples
1074 	 * 010 : 4 samples, drop min and max, avg 2 samples
1075 	 * 011 : 6 samples, drop min and max, avg 4 samples
1076 	 * 100 : 10 samples, drop min and max, avg 8 samples
1077 	 * 101 : 18 samples, drop min and max, avg 16 samples
1078 	 *
1079 	 * Bits:
1080 	 *
1081 	 * 0-2  : Sensor0 filter
1082 	 * 3-5  : Sensor1 filter
1083 	 * 6-8  : Sensor2 filter
1084 	 * 9-11 : Sensor3 filter
1085 	 */
1086 	value = LVTS_HW_FILTER << 9 |  LVTS_HW_FILTER << 6 |
1087 			LVTS_HW_FILTER << 3 | LVTS_HW_FILTER;
1088 	writel(value, LVTS_MSRCTL0(lvts_ctrl->base));
1089 
1090 	/*
1091 	 * LVTS_MONCTL1 : Period unit and group interval configuration
1092 	 *
1093 	 * The clock source of LVTS thermal controller is 26MHz.
1094 	 *
1095 	 * The period unit is a time base for all the interval delays
1096 	 * specified in the registers. By default we use 12. The time
1097 	 * conversion is done by multiplying by 256 and 1/26.10^6
1098 	 *
1099 	 * An interval delay multiplied by the period unit gives the
1100 	 * duration in seconds.
1101 	 *
1102 	 * - Filter interval delay is a delay between two samples of
1103 	 * the same sensor.
1104 	 *
1105 	 * - Sensor interval delay is a delay between two samples of
1106 	 * different sensors.
1107 	 *
1108 	 * - Group interval delay is a delay between different rounds.
1109 	 *
1110 	 * For example:
1111 	 *     If Period unit = C, filter delay = 1, sensor delay = 2, group delay = 1,
1112 	 *     and two sensors, TS1 and TS2, are in a LVTS thermal controller
1113 	 *     and then
1114 	 *     Period unit time = C * 1/26M * 256 = 12 * 38.46ns * 256 = 118.149us
1115 	 *     Filter interval delay = 1 * Period unit = 118.149us
1116 	 *     Sensor interval delay = 2 * Period unit = 236.298us
1117 	 *     Group interval delay = 1 * Period unit = 118.149us
1118 	 *
1119 	 *     TS1    TS1 ... TS1    TS2    TS2 ... TS2    TS1...
1120 	 *        <--> Filter interval delay
1121 	 *                       <--> Sensor interval delay
1122 	 *                                             <--> Group interval delay
1123 	 * Bits:
1124 	 *      29 - 20 : Group interval
1125 	 *      16 - 13 : Send a single interrupt when crossing the hot threshold (1)
1126 	 *                or an interrupt everytime the hot threshold is crossed (0)
1127 	 *       9 - 0  : Period unit
1128 	 *
1129 	 */
1130 	value = LVTS_GROUP_INTERVAL << 20 | LVTS_PERIOD_UNIT;
1131 	writel(value, LVTS_MONCTL1(lvts_ctrl->base));
1132 
1133 	/*
1134 	 * LVTS_MONCTL2 : Filtering and sensor interval
1135 	 *
1136 	 * Bits:
1137 	 *
1138 	 *      25-16 : Interval unit in PERIOD_UNIT between sample on
1139 	 *              the same sensor, filter interval
1140 	 *       9-0  : Interval unit in PERIOD_UNIT between each sensor
1141 	 *
1142 	 */
1143 	value = LVTS_FILTER_INTERVAL << 16 | LVTS_SENSOR_INTERVAL;
1144 	writel(value, LVTS_MONCTL2(lvts_ctrl->base));
1145 
1146 	return lvts_irq_init(lvts_ctrl);
1147 }
1148 
lvts_ctrl_start(struct device * dev,struct lvts_ctrl * lvts_ctrl)1149 static int lvts_ctrl_start(struct device *dev, struct lvts_ctrl *lvts_ctrl)
1150 {
1151 	struct lvts_sensor *lvts_sensors = lvts_ctrl->sensors;
1152 	struct thermal_zone_device *tz;
1153 	u32 sensor_map = 0;
1154 	int i;
1155 	/*
1156 	 * Bitmaps to enable each sensor on immediate and filtered modes, as
1157 	 * described in MSRCTL1 and MONCTL0 registers below, respectively.
1158 	 */
1159 	u32 sensor_imm_bitmap[] = { BIT(4), BIT(5), BIT(6), BIT(9) };
1160 	u32 sensor_filt_bitmap[] = { BIT(0), BIT(1), BIT(2), BIT(3) };
1161 
1162 	u32 *sensor_bitmap = lvts_ctrl->mode == LVTS_MSR_IMMEDIATE_MODE ?
1163 			     sensor_imm_bitmap : sensor_filt_bitmap;
1164 
1165 	lvts_for_each_valid_sensor(i, lvts_ctrl) {
1166 
1167 		int dt_id = lvts_sensors[i].dt_id;
1168 
1169 		tz = devm_thermal_of_zone_register(dev, dt_id, &lvts_sensors[i],
1170 						   &lvts_ops);
1171 		if (IS_ERR(tz)) {
1172 			/*
1173 			 * This thermal zone is not described in the
1174 			 * device tree. It is not an error from the
1175 			 * thermal OF code POV, we just continue.
1176 			 */
1177 			if (PTR_ERR(tz) == -ENODEV)
1178 				continue;
1179 
1180 			return PTR_ERR(tz);
1181 		}
1182 
1183 		devm_thermal_add_hwmon_sysfs(dev, tz);
1184 
1185 		/*
1186 		 * The thermal zone pointer will be needed in the
1187 		 * interrupt handler, we store it in the sensor
1188 		 * structure. The thermal domain structure will be
1189 		 * passed to the interrupt handler private data as the
1190 		 * interrupt is shared for all the controller
1191 		 * belonging to the thermal domain.
1192 		 */
1193 		lvts_sensors[i].tz = tz;
1194 
1195 		/*
1196 		 * This sensor was correctly associated with a thermal
1197 		 * zone, let's set the corresponding bit in the sensor
1198 		 * map, so we can enable the temperature monitoring in
1199 		 * the hardware thermal controller.
1200 		 */
1201 		sensor_map |= sensor_bitmap[i];
1202 	}
1203 
1204 	/*
1205 	 * The initialization of the thermal zones give us
1206 	 * which sensor point to enable. If any thermal zone
1207 	 * was not described in the device tree, it won't be
1208 	 * enabled here in the sensor map.
1209 	 */
1210 	if (lvts_ctrl->mode == LVTS_MSR_IMMEDIATE_MODE) {
1211 		/*
1212 		 * LVTS_MSRCTL1 : Measurement control
1213 		 *
1214 		 * Bits:
1215 		 *
1216 		 * 9: Ignore MSRCTL0 config and do immediate measurement on sensor3
1217 		 * 6: Ignore MSRCTL0 config and do immediate measurement on sensor2
1218 		 * 5: Ignore MSRCTL0 config and do immediate measurement on sensor1
1219 		 * 4: Ignore MSRCTL0 config and do immediate measurement on sensor0
1220 		 *
1221 		 * That configuration will ignore the filtering and the delays
1222 		 * introduced in MONCTL1 and MONCTL2
1223 		 */
1224 		writel(sensor_map, LVTS_MSRCTL1(lvts_ctrl->base));
1225 	} else {
1226 		/*
1227 		 * Bits:
1228 		 *      9: Single point access flow
1229 		 *    0-3: Enable sensing point 0-3
1230 		 */
1231 		writel(sensor_map | BIT(9), LVTS_MONCTL0(lvts_ctrl->base));
1232 	}
1233 
1234 	return 0;
1235 }
1236 
lvts_domain_init(struct device * dev,struct lvts_domain * lvts_td,const struct lvts_data * lvts_data)1237 static int lvts_domain_init(struct device *dev, struct lvts_domain *lvts_td,
1238 					const struct lvts_data *lvts_data)
1239 {
1240 	struct lvts_ctrl *lvts_ctrl;
1241 	int i, ret;
1242 
1243 	ret = lvts_ctrl_init(dev, lvts_td, lvts_data);
1244 	if (ret)
1245 		return ret;
1246 
1247 	ret = lvts_domain_reset(dev, lvts_td->reset);
1248 	if (ret) {
1249 		dev_dbg(dev, "Failed to reset domain");
1250 		return ret;
1251 	}
1252 
1253 	for (i = 0; i < lvts_td->num_lvts_ctrl; i++) {
1254 
1255 		lvts_ctrl = &lvts_td->lvts_ctrl[i];
1256 
1257 		/*
1258 		 * Initialization steps:
1259 		 *
1260 		 * - Enable the clock
1261 		 * - Connect to the LVTS
1262 		 * - Initialize the LVTS
1263 		 * - Prepare the calibration data
1264 		 * - Select monitored sensors
1265 		 * [ Configure sampling ]
1266 		 * [ Configure the interrupt ]
1267 		 * - Start measurement
1268 		 */
1269 		ret = lvts_ctrl_set_enable(lvts_ctrl, true);
1270 		if (ret) {
1271 			dev_dbg(dev, "Failed to enable LVTS clock");
1272 			return ret;
1273 		}
1274 
1275 		ret = lvts_ctrl_connect(dev, lvts_ctrl);
1276 		if (ret) {
1277 			dev_dbg(dev, "Failed to connect to LVTS controller");
1278 			return ret;
1279 		}
1280 
1281 		ret = lvts_ctrl_initialize(dev, lvts_ctrl);
1282 		if (ret) {
1283 			dev_dbg(dev, "Failed to initialize controller");
1284 			return ret;
1285 		}
1286 
1287 		ret = lvts_ctrl_calibrate(dev, lvts_ctrl);
1288 		if (ret) {
1289 			dev_dbg(dev, "Failed to calibrate controller");
1290 			return ret;
1291 		}
1292 
1293 		ret = lvts_ctrl_configure(dev, lvts_ctrl);
1294 		if (ret) {
1295 			dev_dbg(dev, "Failed to configure controller");
1296 			return ret;
1297 		}
1298 
1299 		ret = lvts_ctrl_start(dev, lvts_ctrl);
1300 		if (ret) {
1301 			dev_dbg(dev, "Failed to start controller");
1302 			return ret;
1303 		}
1304 	}
1305 
1306 	return lvts_debugfs_init(dev, lvts_td);
1307 }
1308 
lvts_probe(struct platform_device * pdev)1309 static int lvts_probe(struct platform_device *pdev)
1310 {
1311 	const struct lvts_data *lvts_data;
1312 	struct lvts_domain *lvts_td;
1313 	struct device *dev = &pdev->dev;
1314 	struct resource *res;
1315 	int irq, ret;
1316 
1317 	lvts_td = devm_kzalloc(dev, sizeof(*lvts_td), GFP_KERNEL);
1318 	if (!lvts_td)
1319 		return -ENOMEM;
1320 
1321 	lvts_data = of_device_get_match_data(dev);
1322 	if (!lvts_data)
1323 		return -ENODEV;
1324 
1325 	lvts_td->clk = devm_clk_get_enabled(dev, NULL);
1326 	if (IS_ERR(lvts_td->clk))
1327 		return dev_err_probe(dev, PTR_ERR(lvts_td->clk), "Failed to retrieve clock\n");
1328 
1329 	res = platform_get_mem_or_io(pdev, 0);
1330 	if (!res)
1331 		return dev_err_probe(dev, (-ENXIO), "No IO resource\n");
1332 
1333 	lvts_td->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
1334 	if (IS_ERR(lvts_td->base))
1335 		return dev_err_probe(dev, PTR_ERR(lvts_td->base), "Failed to map io resource\n");
1336 
1337 	lvts_td->reset = devm_reset_control_get_by_index(dev, 0);
1338 	if (IS_ERR(lvts_td->reset))
1339 		return dev_err_probe(dev, PTR_ERR(lvts_td->reset), "Failed to get reset control\n");
1340 
1341 	irq = platform_get_irq(pdev, 0);
1342 	if (irq < 0)
1343 		return irq;
1344 
1345 	golden_temp_offset = lvts_data->temp_offset;
1346 
1347 	ret = lvts_domain_init(dev, lvts_td, lvts_data);
1348 	if (ret)
1349 		return dev_err_probe(dev, ret, "Failed to initialize the lvts domain\n");
1350 
1351 	/*
1352 	 * At this point the LVTS is initialized and enabled. We can
1353 	 * safely enable the interrupt.
1354 	 */
1355 	ret = devm_request_threaded_irq(dev, irq, NULL, lvts_irq_handler,
1356 					IRQF_ONESHOT, dev_name(dev), lvts_td);
1357 	if (ret)
1358 		return dev_err_probe(dev, ret, "Failed to request interrupt\n");
1359 
1360 	platform_set_drvdata(pdev, lvts_td);
1361 
1362 	return 0;
1363 }
1364 
lvts_remove(struct platform_device * pdev)1365 static void lvts_remove(struct platform_device *pdev)
1366 {
1367 	struct lvts_domain *lvts_td;
1368 	int i;
1369 
1370 	lvts_td = platform_get_drvdata(pdev);
1371 
1372 	for (i = 0; i < lvts_td->num_lvts_ctrl; i++)
1373 		lvts_ctrl_set_enable(&lvts_td->lvts_ctrl[i], false);
1374 }
1375 
1376 static const struct lvts_ctrl_data mt7988_lvts_ap_data_ctrl[] = {
1377 	{
1378 		.lvts_sensor = {
1379 			{ .dt_id = MT7988_CPU_0,
1380 			  .cal_offsets = { 0x00, 0x01, 0x02 } },
1381 			{ .dt_id = MT7988_CPU_1,
1382 			  .cal_offsets = { 0x04, 0x05, 0x06 } },
1383 			{ .dt_id = MT7988_ETH2P5G_0,
1384 			  .cal_offsets = { 0x08, 0x09, 0x0a } },
1385 			{ .dt_id = MT7988_ETH2P5G_1,
1386 			  .cal_offsets = { 0x0c, 0x0d, 0x0e } }
1387 		},
1388 		VALID_SENSOR_MAP(1, 1, 1, 1),
1389 		.offset = 0x0,
1390 	},
1391 	{
1392 		.lvts_sensor = {
1393 			{ .dt_id = MT7988_TOPS_0,
1394 			   .cal_offsets = { 0x14, 0x15, 0x16 } },
1395 			{ .dt_id = MT7988_TOPS_1,
1396 			   .cal_offsets = { 0x18, 0x19, 0x1a } },
1397 			{ .dt_id = MT7988_ETHWARP_0,
1398 			   .cal_offsets = { 0x1c, 0x1d, 0x1e } },
1399 			{ .dt_id = MT7988_ETHWARP_1,
1400 			   .cal_offsets = { 0x20, 0x21, 0x22 } }
1401 		},
1402 		VALID_SENSOR_MAP(1, 1, 1, 1),
1403 		.offset = 0x100,
1404 	}
1405 };
1406 
lvts_suspend(struct device * dev)1407 static int lvts_suspend(struct device *dev)
1408 {
1409 	struct lvts_domain *lvts_td;
1410 	int i;
1411 
1412 	lvts_td = dev_get_drvdata(dev);
1413 
1414 	for (i = 0; i < lvts_td->num_lvts_ctrl; i++) {
1415 		lvts_ctrl_monitor_enable(dev, &lvts_td->lvts_ctrl[i], false);
1416 		usleep_range(100, 200);
1417 		lvts_ctrl_set_enable(&lvts_td->lvts_ctrl[i], false);
1418 	}
1419 
1420 	clk_disable_unprepare(lvts_td->clk);
1421 
1422 	return 0;
1423 }
1424 
lvts_resume(struct device * dev)1425 static int lvts_resume(struct device *dev)
1426 {
1427 	struct lvts_domain *lvts_td;
1428 	int i, ret;
1429 
1430 	lvts_td = dev_get_drvdata(dev);
1431 
1432 	ret = clk_prepare_enable(lvts_td->clk);
1433 	if (ret)
1434 		return ret;
1435 
1436 	for (i = 0; i < lvts_td->num_lvts_ctrl; i++) {
1437 		lvts_ctrl_set_enable(&lvts_td->lvts_ctrl[i], true);
1438 		usleep_range(100, 200);
1439 		lvts_ctrl_monitor_enable(dev, &lvts_td->lvts_ctrl[i], true);
1440 	}
1441 
1442 	return 0;
1443 }
1444 
1445 static const u32 default_conn_cmds[] = { 0xC103FFFF, 0xC502FF55 };
1446 static const u32 mt7988_conn_cmds[] = { 0xC103FFFF, 0xC502FC55 };
1447 
1448 /*
1449  * Write device mask: 0xC1030000
1450  */
1451 static const u32 default_init_cmds[] = {
1452 	0xC1030E01, 0xC1030CFC, 0xC1030A8C, 0xC103098D, 0xC10308F1,
1453 	0xC10307A6, 0xC10306B8, 0xC1030500, 0xC1030420, 0xC1030300,
1454 	0xC1030030, 0xC10300F6, 0xC1030050, 0xC1030060, 0xC10300AC,
1455 	0xC10300FC, 0xC103009D, 0xC10300F1, 0xC10300E1
1456 };
1457 
1458 static const u32 mt7988_init_cmds[] = {
1459 	0xC1030300, 0xC1030420, 0xC1030500, 0xC10307A6, 0xC1030CFC,
1460 	0xC1030A8C, 0xC103098D, 0xC10308F1, 0xC1030B04, 0xC1030E01,
1461 	0xC10306B8
1462 };
1463 
1464 /*
1465  * The MT8186 calibration data is stored as packed 3-byte little-endian
1466  * values using a weird layout that makes sense only when viewed as a 32-bit
1467  * hexadecimal word dump. Let's suppose SxBy where x = sensor number and
1468  * y = byte number where the LSB is y=0. We then have:
1469  *
1470  *   [S0B2-S0B1-S0B0-S1B2] [S1B1-S1B0-S2B2-S2B1] [S2B0-S3B2-S3B1-S3B0]
1471  *
1472  * However, when considering a byte stream, those appear as follows:
1473  *
1474  *   [S1B2] [S0B0[ [S0B1] [S0B2] [S2B1] [S2B2] [S1B0] [S1B1] [S3B0] [S3B1] [S3B2] [S2B0]
1475  *
1476  * Hence the rather confusing offsets provided below.
1477  */
1478 static const struct lvts_ctrl_data mt8186_lvts_data_ctrl[] = {
1479 	{
1480 		.lvts_sensor = {
1481 			{ .dt_id = MT8186_LITTLE_CPU0,
1482 			  .cal_offsets = { 5, 6, 7 } },
1483 			{ .dt_id = MT8186_LITTLE_CPU1,
1484 			  .cal_offsets = { 10, 11, 4 } },
1485 			{ .dt_id = MT8186_LITTLE_CPU2,
1486 			  .cal_offsets = { 15, 8, 9 } },
1487 			{ .dt_id = MT8186_CAM,
1488 			  .cal_offsets = { 12, 13, 14 } }
1489 		},
1490 		VALID_SENSOR_MAP(1, 1, 1, 1),
1491 		.offset = 0x0,
1492 	},
1493 	{
1494 		.lvts_sensor = {
1495 			{ .dt_id = MT8186_BIG_CPU0,
1496 			  .cal_offsets = { 22, 23, 16 } },
1497 			{ .dt_id = MT8186_BIG_CPU1,
1498 			  .cal_offsets = { 27, 20, 21 } }
1499 		},
1500 		VALID_SENSOR_MAP(1, 1, 0, 0),
1501 		.offset = 0x100,
1502 	},
1503 	{
1504 		.lvts_sensor = {
1505 			{ .dt_id = MT8186_NNA,
1506 			  .cal_offsets = { 29, 30, 31 } },
1507 			{ .dt_id = MT8186_ADSP,
1508 			  .cal_offsets = { 34, 35, 28 } },
1509 			{ .dt_id = MT8186_GPU,
1510 			  .cal_offsets = { 39, 32, 33 } }
1511 		},
1512 		VALID_SENSOR_MAP(1, 1, 1, 0),
1513 		.offset = 0x200,
1514 	}
1515 };
1516 
1517 static const struct lvts_ctrl_data mt8188_lvts_mcu_data_ctrl[] = {
1518 	{
1519 		.lvts_sensor = {
1520 			{ .dt_id = MT8188_MCU_LITTLE_CPU0,
1521 			  .cal_offsets = { 22, 23, 24 } },
1522 			{ .dt_id = MT8188_MCU_LITTLE_CPU1,
1523 			  .cal_offsets = { 25, 26, 27 } },
1524 			{ .dt_id = MT8188_MCU_LITTLE_CPU2,
1525 			  .cal_offsets = { 28, 29, 30 } },
1526 			{ .dt_id = MT8188_MCU_LITTLE_CPU3,
1527 			  .cal_offsets = { 31, 32, 33 } },
1528 		},
1529 		VALID_SENSOR_MAP(1, 1, 1, 1),
1530 		.offset = 0x0,
1531 	},
1532 	{
1533 		.lvts_sensor = {
1534 			{ .dt_id = MT8188_MCU_BIG_CPU0,
1535 			  .cal_offsets = { 34, 35, 36 } },
1536 			{ .dt_id = MT8188_MCU_BIG_CPU1,
1537 			  .cal_offsets = { 37, 38, 39 } },
1538 		},
1539 		VALID_SENSOR_MAP(1, 1, 0, 0),
1540 		.offset = 0x100,
1541 	}
1542 };
1543 
1544 static const struct lvts_ctrl_data mt8188_lvts_ap_data_ctrl[] = {
1545 	{
1546 		.lvts_sensor = {
1547 
1548 			{ /* unused */ },
1549 			{ .dt_id = MT8188_AP_APU,
1550 			  .cal_offsets = { 40, 41, 42 } },
1551 		},
1552 		VALID_SENSOR_MAP(0, 1, 0, 0),
1553 		.offset = 0x0,
1554 	},
1555 	{
1556 		.lvts_sensor = {
1557 			{ .dt_id = MT8188_AP_GPU0,
1558 			  .cal_offsets = { 43, 44, 45 } },
1559 			{ .dt_id = MT8188_AP_GPU1,
1560 			  .cal_offsets = { 46, 47, 48 } },
1561 			{ .dt_id = MT8188_AP_ADSP,
1562 			  .cal_offsets = { 49, 50, 51 } },
1563 		},
1564 		VALID_SENSOR_MAP(1, 1, 1, 0),
1565 		.offset = 0x100,
1566 	},
1567 	{
1568 		.lvts_sensor = {
1569 			{ .dt_id = MT8188_AP_VDO,
1570 			  .cal_offsets = { 52, 53, 54 } },
1571 			{ .dt_id = MT8188_AP_INFRA,
1572 			  .cal_offsets = { 55, 56, 57 } },
1573 		},
1574 		VALID_SENSOR_MAP(1, 1, 0, 0),
1575 		.offset = 0x200,
1576 	},
1577 	{
1578 		.lvts_sensor = {
1579 			{ .dt_id = MT8188_AP_CAM1,
1580 			  .cal_offsets = { 58, 59, 60 } },
1581 			{ .dt_id = MT8188_AP_CAM2,
1582 			  .cal_offsets = { 61, 62, 63 } },
1583 		},
1584 		VALID_SENSOR_MAP(1, 1, 0, 0),
1585 		.offset = 0x300,
1586 	}
1587 };
1588 
1589 static const struct lvts_ctrl_data mt8192_lvts_mcu_data_ctrl[] = {
1590 	{
1591 		.lvts_sensor = {
1592 			{ .dt_id = MT8192_MCU_BIG_CPU0,
1593 			  .cal_offsets = { 0x04, 0x05, 0x06 } },
1594 			{ .dt_id = MT8192_MCU_BIG_CPU1,
1595 			  .cal_offsets = { 0x08, 0x09, 0x0a } }
1596 		},
1597 		VALID_SENSOR_MAP(1, 1, 0, 0),
1598 		.offset = 0x0,
1599 		.mode = LVTS_MSR_FILTERED_MODE,
1600 	},
1601 	{
1602 		.lvts_sensor = {
1603 			{ .dt_id = MT8192_MCU_BIG_CPU2,
1604 			  .cal_offsets = { 0x0c, 0x0d, 0x0e } },
1605 			{ .dt_id = MT8192_MCU_BIG_CPU3,
1606 			  .cal_offsets = { 0x10, 0x11, 0x12 } }
1607 		},
1608 		VALID_SENSOR_MAP(1, 1, 0, 0),
1609 		.offset = 0x100,
1610 		.mode = LVTS_MSR_FILTERED_MODE,
1611 	},
1612 	{
1613 		.lvts_sensor = {
1614 			{ .dt_id = MT8192_MCU_LITTLE_CPU0,
1615 			  .cal_offsets = { 0x14, 0x15, 0x16 } },
1616 			{ .dt_id = MT8192_MCU_LITTLE_CPU1,
1617 			  .cal_offsets = { 0x18, 0x19, 0x1a } },
1618 			{ .dt_id = MT8192_MCU_LITTLE_CPU2,
1619 			  .cal_offsets = { 0x1c, 0x1d, 0x1e } },
1620 			{ .dt_id = MT8192_MCU_LITTLE_CPU3,
1621 			  .cal_offsets = { 0x20, 0x21, 0x22 } }
1622 		},
1623 		VALID_SENSOR_MAP(1, 1, 1, 1),
1624 		.offset = 0x200,
1625 		.mode = LVTS_MSR_FILTERED_MODE,
1626 	}
1627 };
1628 
1629 static const struct lvts_ctrl_data mt8192_lvts_ap_data_ctrl[] = {
1630 	{
1631 		.lvts_sensor = {
1632 			{ .dt_id = MT8192_AP_VPU0,
1633 			  .cal_offsets = { 0x24, 0x25, 0x26 } },
1634 			{ .dt_id = MT8192_AP_VPU1,
1635 			  .cal_offsets = { 0x28, 0x29, 0x2a } }
1636 		},
1637 		VALID_SENSOR_MAP(1, 1, 0, 0),
1638 		.offset = 0x0,
1639 	},
1640 	{
1641 		.lvts_sensor = {
1642 			{ .dt_id = MT8192_AP_GPU0,
1643 			  .cal_offsets = { 0x2c, 0x2d, 0x2e } },
1644 			{ .dt_id = MT8192_AP_GPU1,
1645 			  .cal_offsets = { 0x30, 0x31, 0x32 } }
1646 		},
1647 		VALID_SENSOR_MAP(1, 1, 0, 0),
1648 		.offset = 0x100,
1649 	},
1650 	{
1651 		.lvts_sensor = {
1652 			{ .dt_id = MT8192_AP_INFRA,
1653 			  .cal_offsets = { 0x34, 0x35, 0x36 } },
1654 			{ .dt_id = MT8192_AP_CAM,
1655 			  .cal_offsets = { 0x38, 0x39, 0x3a } },
1656 		},
1657 		VALID_SENSOR_MAP(1, 1, 0, 0),
1658 		.offset = 0x200,
1659 	},
1660 	{
1661 		.lvts_sensor = {
1662 			{ .dt_id = MT8192_AP_MD0,
1663 			  .cal_offsets = { 0x3c, 0x3d, 0x3e } },
1664 			{ .dt_id = MT8192_AP_MD1,
1665 			  .cal_offsets = { 0x40, 0x41, 0x42 } },
1666 			{ .dt_id = MT8192_AP_MD2,
1667 			  .cal_offsets = { 0x44, 0x45, 0x46 } }
1668 		},
1669 		VALID_SENSOR_MAP(1, 1, 1, 0),
1670 		.offset = 0x300,
1671 	}
1672 };
1673 
1674 static const struct lvts_ctrl_data mt8195_lvts_mcu_data_ctrl[] = {
1675 	{
1676 		.lvts_sensor = {
1677 			{ .dt_id = MT8195_MCU_BIG_CPU0,
1678 			  .cal_offsets = { 0x04, 0x05, 0x06 } },
1679 			{ .dt_id = MT8195_MCU_BIG_CPU1,
1680 			  .cal_offsets = { 0x07, 0x08, 0x09 } }
1681 		},
1682 		VALID_SENSOR_MAP(1, 1, 0, 0),
1683 		.offset = 0x0,
1684 	},
1685 	{
1686 		.lvts_sensor = {
1687 			{ .dt_id = MT8195_MCU_BIG_CPU2,
1688 			  .cal_offsets = { 0x0d, 0x0e, 0x0f } },
1689 			{ .dt_id = MT8195_MCU_BIG_CPU3,
1690 			  .cal_offsets = { 0x10, 0x11, 0x12 } }
1691 		},
1692 		VALID_SENSOR_MAP(1, 1, 0, 0),
1693 		.offset = 0x100,
1694 	},
1695 	{
1696 		.lvts_sensor = {
1697 			{ .dt_id = MT8195_MCU_LITTLE_CPU0,
1698 			  .cal_offsets = { 0x16, 0x17, 0x18 } },
1699 			{ .dt_id = MT8195_MCU_LITTLE_CPU1,
1700 			  .cal_offsets = { 0x19, 0x1a, 0x1b } },
1701 			{ .dt_id = MT8195_MCU_LITTLE_CPU2,
1702 			  .cal_offsets = { 0x1c, 0x1d, 0x1e } },
1703 			{ .dt_id = MT8195_MCU_LITTLE_CPU3,
1704 			  .cal_offsets = { 0x1f, 0x20, 0x21 } }
1705 		},
1706 		VALID_SENSOR_MAP(1, 1, 1, 1),
1707 		.offset = 0x200,
1708 	}
1709 };
1710 
1711 static const struct lvts_ctrl_data mt8195_lvts_ap_data_ctrl[] = {
1712 	{
1713 		.lvts_sensor = {
1714 			{ .dt_id = MT8195_AP_VPU0,
1715 			  .cal_offsets = { 0x25, 0x26, 0x27 } },
1716 			{ .dt_id = MT8195_AP_VPU1,
1717 			  .cal_offsets = { 0x28, 0x29, 0x2a } }
1718 		},
1719 		VALID_SENSOR_MAP(1, 1, 0, 0),
1720 		.offset = 0x0,
1721 	},
1722 	{
1723 		.lvts_sensor = {
1724 			{ .dt_id = MT8195_AP_GPU0,
1725 			  .cal_offsets = { 0x2e, 0x2f, 0x30 } },
1726 			{ .dt_id = MT8195_AP_GPU1,
1727 			  .cal_offsets = { 0x31, 0x32, 0x33 } }
1728 		},
1729 		VALID_SENSOR_MAP(1, 1, 0, 0),
1730 		.offset = 0x100,
1731 	},
1732 	{
1733 		.lvts_sensor = {
1734 			{ .dt_id = MT8195_AP_VDEC,
1735 			  .cal_offsets = { 0x37, 0x38, 0x39 } },
1736 			{ .dt_id = MT8195_AP_IMG,
1737 			  .cal_offsets = { 0x3a, 0x3b, 0x3c } },
1738 			{ .dt_id = MT8195_AP_INFRA,
1739 			  .cal_offsets = { 0x3d, 0x3e, 0x3f } }
1740 		},
1741 		VALID_SENSOR_MAP(1, 1, 1, 0),
1742 		.offset = 0x200,
1743 	},
1744 	{
1745 		.lvts_sensor = {
1746 			{ .dt_id = MT8195_AP_CAM0,
1747 			  .cal_offsets = { 0x43, 0x44, 0x45 } },
1748 			{ .dt_id = MT8195_AP_CAM1,
1749 			  .cal_offsets = { 0x46, 0x47, 0x48 } }
1750 		},
1751 		VALID_SENSOR_MAP(1, 1, 0, 0),
1752 		.offset = 0x300,
1753 	}
1754 };
1755 
1756 static const struct lvts_data mt7988_lvts_ap_data = {
1757 	.lvts_ctrl	= mt7988_lvts_ap_data_ctrl,
1758 	.conn_cmd	= mt7988_conn_cmds,
1759 	.init_cmd	= mt7988_init_cmds,
1760 	.num_lvts_ctrl	= ARRAY_SIZE(mt7988_lvts_ap_data_ctrl),
1761 	.num_conn_cmd	= ARRAY_SIZE(mt7988_conn_cmds),
1762 	.num_init_cmd	= ARRAY_SIZE(mt7988_init_cmds),
1763 	.temp_factor	= LVTS_COEFF_A_MT7988,
1764 	.temp_offset	= LVTS_COEFF_B_MT7988,
1765 	.gt_calib_bit_offset = 24,
1766 };
1767 
1768 static const struct lvts_data mt8186_lvts_data = {
1769 	.lvts_ctrl	= mt8186_lvts_data_ctrl,
1770 	.conn_cmd	= default_conn_cmds,
1771 	.init_cmd	= default_init_cmds,
1772 	.num_lvts_ctrl	= ARRAY_SIZE(mt8186_lvts_data_ctrl),
1773 	.num_conn_cmd	= ARRAY_SIZE(default_conn_cmds),
1774 	.num_init_cmd	= ARRAY_SIZE(default_init_cmds),
1775 	.temp_factor	= LVTS_COEFF_A_MT7988,
1776 	.temp_offset	= LVTS_COEFF_B_MT7988,
1777 	.gt_calib_bit_offset = 24,
1778 	.def_calibration = 19000,
1779 };
1780 
1781 static const struct lvts_data mt8188_lvts_mcu_data = {
1782 	.lvts_ctrl	= mt8188_lvts_mcu_data_ctrl,
1783 	.conn_cmd	= default_conn_cmds,
1784 	.init_cmd	= default_init_cmds,
1785 	.num_lvts_ctrl	= ARRAY_SIZE(mt8188_lvts_mcu_data_ctrl),
1786 	.num_conn_cmd	= ARRAY_SIZE(default_conn_cmds),
1787 	.num_init_cmd	= ARRAY_SIZE(default_init_cmds),
1788 	.temp_factor	= LVTS_COEFF_A_MT8195,
1789 	.temp_offset	= LVTS_COEFF_B_MT8195,
1790 	.gt_calib_bit_offset = 20,
1791 	.def_calibration = 35000,
1792 };
1793 
1794 static const struct lvts_data mt8188_lvts_ap_data = {
1795 	.lvts_ctrl	= mt8188_lvts_ap_data_ctrl,
1796 	.conn_cmd	= default_conn_cmds,
1797 	.init_cmd	= default_init_cmds,
1798 	.num_lvts_ctrl	= ARRAY_SIZE(mt8188_lvts_ap_data_ctrl),
1799 	.num_conn_cmd	= ARRAY_SIZE(default_conn_cmds),
1800 	.num_init_cmd	= ARRAY_SIZE(default_init_cmds),
1801 	.temp_factor	= LVTS_COEFF_A_MT8195,
1802 	.temp_offset	= LVTS_COEFF_B_MT8195,
1803 	.gt_calib_bit_offset = 20,
1804 	.def_calibration = 35000,
1805 };
1806 
1807 static const struct lvts_data mt8192_lvts_mcu_data = {
1808 	.lvts_ctrl	= mt8192_lvts_mcu_data_ctrl,
1809 	.conn_cmd	= default_conn_cmds,
1810 	.init_cmd	= default_init_cmds,
1811 	.num_lvts_ctrl	= ARRAY_SIZE(mt8192_lvts_mcu_data_ctrl),
1812 	.num_conn_cmd	= ARRAY_SIZE(default_conn_cmds),
1813 	.num_init_cmd	= ARRAY_SIZE(default_init_cmds),
1814 	.temp_factor	= LVTS_COEFF_A_MT8195,
1815 	.temp_offset	= LVTS_COEFF_B_MT8195,
1816 	.gt_calib_bit_offset = 24,
1817 	.def_calibration = 35000,
1818 };
1819 
1820 static const struct lvts_data mt8192_lvts_ap_data = {
1821 	.lvts_ctrl	= mt8192_lvts_ap_data_ctrl,
1822 	.conn_cmd	= default_conn_cmds,
1823 	.init_cmd	= default_init_cmds,
1824 	.num_lvts_ctrl	= ARRAY_SIZE(mt8192_lvts_ap_data_ctrl),
1825 	.num_conn_cmd	= ARRAY_SIZE(default_conn_cmds),
1826 	.num_init_cmd	= ARRAY_SIZE(default_init_cmds),
1827 	.temp_factor	= LVTS_COEFF_A_MT8195,
1828 	.temp_offset	= LVTS_COEFF_B_MT8195,
1829 	.gt_calib_bit_offset = 24,
1830 	.def_calibration = 35000,
1831 };
1832 
1833 static const struct lvts_data mt8195_lvts_mcu_data = {
1834 	.lvts_ctrl	= mt8195_lvts_mcu_data_ctrl,
1835 	.conn_cmd	= default_conn_cmds,
1836 	.init_cmd	= default_init_cmds,
1837 	.num_lvts_ctrl	= ARRAY_SIZE(mt8195_lvts_mcu_data_ctrl),
1838 	.num_conn_cmd	= ARRAY_SIZE(default_conn_cmds),
1839 	.num_init_cmd	= ARRAY_SIZE(default_init_cmds),
1840 	.temp_factor	= LVTS_COEFF_A_MT8195,
1841 	.temp_offset	= LVTS_COEFF_B_MT8195,
1842 	.gt_calib_bit_offset = 24,
1843 	.def_calibration = 35000,
1844 };
1845 
1846 static const struct lvts_data mt8195_lvts_ap_data = {
1847 	.lvts_ctrl	= mt8195_lvts_ap_data_ctrl,
1848 	.conn_cmd	= default_conn_cmds,
1849 	.init_cmd	= default_init_cmds,
1850 	.num_lvts_ctrl	= ARRAY_SIZE(mt8195_lvts_ap_data_ctrl),
1851 	.num_conn_cmd	= ARRAY_SIZE(default_conn_cmds),
1852 	.num_init_cmd	= ARRAY_SIZE(default_init_cmds),
1853 	.temp_factor	= LVTS_COEFF_A_MT8195,
1854 	.temp_offset	= LVTS_COEFF_B_MT8195,
1855 	.gt_calib_bit_offset = 24,
1856 	.def_calibration = 35000,
1857 };
1858 
1859 static const struct of_device_id lvts_of_match[] = {
1860 	{ .compatible = "mediatek,mt7988-lvts-ap", .data = &mt7988_lvts_ap_data },
1861 	{ .compatible = "mediatek,mt8186-lvts", .data = &mt8186_lvts_data },
1862 	{ .compatible = "mediatek,mt8188-lvts-mcu", .data = &mt8188_lvts_mcu_data },
1863 	{ .compatible = "mediatek,mt8188-lvts-ap", .data = &mt8188_lvts_ap_data },
1864 	{ .compatible = "mediatek,mt8192-lvts-mcu", .data = &mt8192_lvts_mcu_data },
1865 	{ .compatible = "mediatek,mt8192-lvts-ap", .data = &mt8192_lvts_ap_data },
1866 	{ .compatible = "mediatek,mt8195-lvts-mcu", .data = &mt8195_lvts_mcu_data },
1867 	{ .compatible = "mediatek,mt8195-lvts-ap", .data = &mt8195_lvts_ap_data },
1868 	{},
1869 };
1870 MODULE_DEVICE_TABLE(of, lvts_of_match);
1871 
1872 static const struct dev_pm_ops lvts_pm_ops = {
1873 	NOIRQ_SYSTEM_SLEEP_PM_OPS(lvts_suspend, lvts_resume)
1874 };
1875 
1876 static struct platform_driver lvts_driver = {
1877 	.probe = lvts_probe,
1878 	.remove = lvts_remove,
1879 	.driver = {
1880 		.name = "mtk-lvts-thermal",
1881 		.of_match_table = lvts_of_match,
1882 		.pm = &lvts_pm_ops,
1883 	},
1884 };
1885 module_platform_driver(lvts_driver);
1886 
1887 MODULE_AUTHOR("Balsam CHIHI <bchihi@baylibre.com>");
1888 MODULE_DESCRIPTION("MediaTek LVTS Thermal Driver");
1889 MODULE_LICENSE("GPL");
1890