xref: /illumos-gate/usr/src/cmd/mdb/common/mdb/mdb_print.c (revision 33efde4275d24731ef87927237b0ffb0630b6b2d)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * Copyright (c) 2012, 2014 by Delphix. All rights reserved.
28  * Copyright 2020 Joyent, Inc.
29  * Copyright (c) 2014 Nexenta Systems, Inc. All rights reserved.
30  * Copyright 2025 Oxide Computer Company
31  */
32 
33 #include <mdb/mdb_modapi.h>
34 #include <mdb/mdb_target.h>
35 #include <mdb/mdb_argvec.h>
36 #include <mdb/mdb_string.h>
37 #include <mdb/mdb_stdlib.h>
38 #include <mdb/mdb_err.h>
39 #include <mdb/mdb_debug.h>
40 #include <mdb/mdb_fmt.h>
41 #include <mdb/mdb_ctf.h>
42 #include <mdb/mdb_ctf_impl.h>
43 #include <mdb/mdb.h>
44 #include <mdb/mdb_tab.h>
45 
46 #include <sys/isa_defs.h>
47 #include <sys/param.h>
48 #include <sys/sysmacros.h>
49 #include <netinet/in.h>
50 #include <strings.h>
51 #include <libctf.h>
52 #include <ctype.h>
53 
54 typedef struct holeinfo {
55 	ulong_t hi_offset;		/* expected offset */
56 	uchar_t hi_isunion;		/* represents a union */
57 } holeinfo_t;
58 
59 typedef struct printarg {
60 	mdb_tgt_t *pa_tgt;		/* current target */
61 	mdb_tgt_t *pa_realtgt;		/* real target (for -i) */
62 	mdb_tgt_t *pa_immtgt;		/* immediate target (for -i) */
63 	mdb_tgt_as_t pa_as;		/* address space to use for i/o */
64 	mdb_tgt_addr_t pa_addr;		/* base address for i/o */
65 	ulong_t pa_armemlim;		/* limit on array elements to print */
66 	ulong_t pa_arstrlim;		/* limit on array chars to print */
67 	const char *pa_delim;		/* element delimiter string */
68 	const char *pa_prefix;		/* element prefix string */
69 	const char *pa_suffix;		/* element suffix string */
70 	holeinfo_t *pa_holes;		/* hole detection information */
71 	int pa_nholes;			/* size of holes array */
72 	int pa_flags;			/* formatting flags (see below) */
73 	int pa_depth;			/* previous depth */
74 	int pa_nest;			/* array nesting depth */
75 	int pa_tab;			/* tabstop width */
76 	uint_t pa_maxdepth;		/* Limit max depth */
77 	uint_t pa_nooutdepth;		/* don't print output past this depth */
78 } printarg_t;
79 
80 #define	PA_SHOWTYPE	0x001		/* print type name */
81 #define	PA_SHOWBASETYPE	0x002		/* print base type name */
82 #define	PA_SHOWNAME	0x004		/* print member name */
83 #define	PA_SHOWADDR	0x008		/* print address */
84 #define	PA_SHOWVAL	0x010		/* print value */
85 #define	PA_SHOWHOLES	0x020		/* print holes in structs */
86 #define	PA_INTHEX	0x040		/* print integer values in hex */
87 #define	PA_INTDEC	0x080		/* print integer values in decimal */
88 #define	PA_NOSYMBOLIC	0x100		/* don't print ptrs as func+offset */
89 
90 #define	IS_CHAR(e) \
91 	(((e).cte_format & (CTF_INT_CHAR | CTF_INT_SIGNED)) == \
92 	(CTF_INT_CHAR | CTF_INT_SIGNED) && (e).cte_bits == NBBY)
93 
94 #define	COMPOSITE_MASK	((1 << CTF_K_STRUCT) | \
95 			(1 << CTF_K_UNION) | (1 << CTF_K_ARRAY))
96 #define	IS_COMPOSITE(k)	(((1 << k) & COMPOSITE_MASK) != 0)
97 
98 #define	SOU_MASK	((1 << CTF_K_STRUCT) | (1 << CTF_K_UNION))
99 #define	IS_SOU(k)	(((1 << k) & SOU_MASK) != 0)
100 
101 #define	MEMBER_DELIM_ERR	-1
102 #define	MEMBER_DELIM_DONE	0
103 #define	MEMBER_DELIM_PTR	1
104 #define	MEMBER_DELIM_DOT	2
105 #define	MEMBER_DELIM_LBR	3
106 
107 typedef int printarg_f(const char *, const char *,
108     mdb_ctf_id_t, mdb_ctf_id_t, ulong_t, printarg_t *);
109 
110 static int elt_print(const char *, mdb_ctf_id_t, mdb_ctf_id_t, ulong_t, int,
111     void *);
112 static void print_close_sou(printarg_t *, int);
113 
114 /*
115  * Given an address, look up the symbol ID of the specified symbol in its
116  * containing module.  We only support lookups for exact matches.
117  */
118 static const char *
addr_to_sym(mdb_tgt_t * t,uintptr_t addr,char * name,size_t namelen,GElf_Sym * symp,mdb_syminfo_t * sip)119 addr_to_sym(mdb_tgt_t *t, uintptr_t addr, char *name, size_t namelen,
120     GElf_Sym *symp, mdb_syminfo_t *sip)
121 {
122 	const mdb_map_t *mp;
123 	const char *p;
124 
125 	if (mdb_tgt_lookup_by_addr(t, addr, MDB_TGT_SYM_EXACT, name,
126 	    namelen, NULL, NULL) == -1)
127 		return (NULL); /* address does not exactly match a symbol */
128 
129 	if ((p = strrsplit(name, '`')) != NULL) {
130 		if (mdb_tgt_lookup_by_name(t, name, p, symp, sip) == -1)
131 			return (NULL);
132 		return (p);
133 	}
134 
135 	if ((mp = mdb_tgt_addr_to_map(t, addr)) == NULL)
136 		return (NULL); /* address does not fall within a mapping */
137 
138 	if (mdb_tgt_lookup_by_name(t, mp->map_name, name, symp, sip) == -1)
139 		return (NULL);
140 
141 	return (name);
142 }
143 
144 /*
145  * This lets dcmds be a little fancy with their processing of type arguments
146  * while still treating them more or less as a single argument.
147  * For example, if a command is invokes like this:
148  *
149  *   ::<dcmd> proc_t ...
150  *
151  * this function will just copy "proc_t" into the provided buffer. If the
152  * command is instead invoked like this:
153  *
154  *   ::<dcmd> struct proc ...
155  *
156  * this function will place the string "struct proc" into the provided buffer
157  * and increment the caller's argv and argc. This allows the caller to still
158  * treat the type argument logically as it would an other atomic argument.
159  */
160 int
args_to_typename(int * argcp,const mdb_arg_t ** argvp,char * buf,size_t len)161 args_to_typename(int *argcp, const mdb_arg_t **argvp, char *buf, size_t len)
162 {
163 	int argc = *argcp;
164 	const mdb_arg_t *argv = *argvp;
165 
166 	if (argc < 1 || argv->a_type != MDB_TYPE_STRING)
167 		return (DCMD_USAGE);
168 
169 	if (strcmp(argv->a_un.a_str, "struct") == 0 ||
170 	    strcmp(argv->a_un.a_str, "enum") == 0 ||
171 	    strcmp(argv->a_un.a_str, "union") == 0) {
172 		if (argc <= 1) {
173 			mdb_warn("%s is not a valid type\n", argv->a_un.a_str);
174 			return (DCMD_ABORT);
175 		}
176 
177 		if (argv[1].a_type != MDB_TYPE_STRING)
178 			return (DCMD_USAGE);
179 
180 		(void) mdb_snprintf(buf, len, "%s %s",
181 		    argv[0].a_un.a_str, argv[1].a_un.a_str);
182 
183 		*argcp = argc - 1;
184 		*argvp = argv + 1;
185 	} else {
186 		(void) mdb_snprintf(buf, len, "%s", argv[0].a_un.a_str);
187 	}
188 
189 	return (0);
190 }
191 
192 /*ARGSUSED*/
193 int
cmd_sizeof(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)194 cmd_sizeof(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
195 {
196 	mdb_ctf_id_t id;
197 	char tn[MDB_SYM_NAMLEN];
198 	int ret;
199 
200 	if (flags & DCMD_ADDRSPEC)
201 		return (DCMD_USAGE);
202 
203 	if ((ret = args_to_typename(&argc, &argv, tn, sizeof (tn))) != 0)
204 		return (ret);
205 
206 	if (argc != 1)
207 		return (DCMD_USAGE);
208 
209 	if (mdb_ctf_lookup_by_name(tn, &id) != 0) {
210 		mdb_warn("failed to look up type %s", tn);
211 		return (DCMD_ERR);
212 	}
213 
214 	if (flags & DCMD_PIPE_OUT)
215 		mdb_printf("%#lr\n", mdb_ctf_type_size(id));
216 	else
217 		mdb_printf("sizeof (%s) = %#lr\n", tn, mdb_ctf_type_size(id));
218 
219 	return (DCMD_OK);
220 }
221 
222 int
cmd_sizeof_tab(mdb_tab_cookie_t * mcp,uint_t flags,int argc,const mdb_arg_t * argv)223 cmd_sizeof_tab(mdb_tab_cookie_t *mcp, uint_t flags, int argc,
224     const mdb_arg_t *argv)
225 {
226 	char tn[MDB_SYM_NAMLEN];
227 	int ret;
228 
229 	if (argc == 0 && !(flags & DCMD_TAB_SPACE))
230 		return (0);
231 
232 	if (argc == 0 && (flags & DCMD_TAB_SPACE))
233 		return (mdb_tab_complete_type(mcp, NULL, MDB_TABC_NOPOINT));
234 
235 	if ((ret = mdb_tab_typename(&argc, &argv, tn, sizeof (tn))) < 0)
236 		return (ret);
237 
238 	if (argc == 1)
239 		return (mdb_tab_complete_type(mcp, tn, MDB_TABC_NOPOINT));
240 
241 	return (0);
242 }
243 
244 /*ARGSUSED*/
245 int
cmd_offsetof(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)246 cmd_offsetof(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
247 {
248 	const char *member;
249 	mdb_ctf_id_t id;
250 	ulong_t off;
251 	char tn[MDB_SYM_NAMLEN];
252 	ssize_t sz;
253 	int ret;
254 
255 	if (flags & DCMD_ADDRSPEC)
256 		return (DCMD_USAGE);
257 
258 	if ((ret = args_to_typename(&argc, &argv, tn, sizeof (tn))) != 0)
259 		return (ret);
260 
261 	if (argc != 2 || argv[1].a_type != MDB_TYPE_STRING)
262 		return (DCMD_USAGE);
263 
264 	if (mdb_ctf_lookup_by_name(tn, &id) != 0) {
265 		mdb_warn("failed to look up type %s", tn);
266 		return (DCMD_ERR);
267 	}
268 
269 	member = argv[1].a_un.a_str;
270 
271 	if (mdb_ctf_member_info(id, member, &off, &id) != 0) {
272 		mdb_warn("failed to find member %s of type %s", member, tn);
273 		return (DCMD_ERR);
274 	}
275 
276 	if (flags & DCMD_PIPE_OUT) {
277 		if (off % NBBY != 0) {
278 			mdb_warn("member %s of type %s is not byte-aligned\n",
279 			    member, tn);
280 			return (DCMD_ERR);
281 		}
282 		mdb_printf("%#lr", off / NBBY);
283 		return (DCMD_OK);
284 	}
285 
286 	mdb_printf("offsetof (%s, %s) = %#lr",
287 	    tn, member, off / NBBY);
288 	if (off % NBBY != 0)
289 		mdb_printf(".%lr", off % NBBY);
290 
291 	if ((sz = mdb_ctf_type_size(id)) > 0)
292 		mdb_printf(", sizeof (...->%s) = %#lr", member, sz);
293 
294 	mdb_printf("\n");
295 
296 	return (DCMD_OK);
297 }
298 
299 /*ARGSUSED*/
300 static int
enum_prefix_scan_cb(const char * name,int value,void * arg)301 enum_prefix_scan_cb(const char *name, int value, void *arg)
302 {
303 	char *str = arg;
304 
305 	/*
306 	 * This function is called with every name in the enum.  We make
307 	 * "arg" be the common prefix, if any.
308 	 */
309 	if (str[0] == 0) {
310 		if (strlcpy(arg, name, MDB_SYM_NAMLEN) >= MDB_SYM_NAMLEN)
311 			return (1);
312 		return (0);
313 	}
314 
315 	while (*name == *str) {
316 		if (*str == 0) {
317 			if (str != arg) {
318 				str--;	/* don't smother a name completely */
319 			}
320 			break;
321 		}
322 		name++;
323 		str++;
324 	}
325 	*str = 0;
326 
327 	return (str == arg);	/* only continue if prefix is non-empty */
328 }
329 
330 struct enum_p2_info {
331 	intmax_t e_value;	/* value we're processing */
332 	char	*e_buf;		/* buffer for holding names */
333 	size_t	e_size;		/* size of buffer */
334 	size_t	e_prefix;	/* length of initial prefix */
335 	uint_t	e_allprefix;	/* apply prefix to first guy, too */
336 	uint_t	e_bits;		/* bits seen */
337 	uint8_t	e_found;	/* have we seen anything? */
338 	uint8_t	e_first;	/* does buf contain the first one? */
339 	uint8_t	e_zero;		/* have we seen a zero value? */
340 };
341 
342 static int
enum_p2_cb(const char * name,int bit_arg,void * arg)343 enum_p2_cb(const char *name, int bit_arg, void *arg)
344 {
345 	struct enum_p2_info *eiip = arg;
346 	uintmax_t bit = bit_arg;
347 
348 	if (bit != 0 && !ISP2(bit))
349 		return (1);	/* non-power-of-2; abort processing */
350 
351 	if ((bit == 0 && eiip->e_zero) ||
352 	    (bit != 0 && (eiip->e_bits & bit) != 0)) {
353 		return (0);	/* already seen this value */
354 	}
355 
356 	if (bit == 0)
357 		eiip->e_zero = 1;
358 	else
359 		eiip->e_bits |= bit;
360 
361 	if (eiip->e_buf != NULL && (eiip->e_value & bit) != 0) {
362 		char *buf = eiip->e_buf;
363 		size_t prefix = eiip->e_prefix;
364 
365 		if (eiip->e_found) {
366 			(void) strlcat(buf, "|", eiip->e_size);
367 
368 			if (eiip->e_first && !eiip->e_allprefix && prefix > 0) {
369 				char c1 = buf[prefix];
370 				char c2 = buf[prefix + 1];
371 				buf[prefix] = '{';
372 				buf[prefix + 1] = 0;
373 				mdb_printf("%s", buf);
374 				buf[prefix] = c1;
375 				buf[prefix + 1] = c2;
376 				mdb_printf("%s", buf + prefix);
377 			} else {
378 				mdb_printf("%s", buf);
379 			}
380 
381 		}
382 		/* skip the common prefix as necessary */
383 		if ((eiip->e_found || eiip->e_allprefix) &&
384 		    strlen(name) > prefix)
385 			name += prefix;
386 
387 		(void) strlcpy(eiip->e_buf, name, eiip->e_size);
388 		eiip->e_first = !eiip->e_found;
389 		eiip->e_found = 1;
390 	}
391 	return (0);
392 }
393 
394 static int
enum_is_p2(mdb_ctf_id_t id)395 enum_is_p2(mdb_ctf_id_t id)
396 {
397 	struct enum_p2_info eii;
398 	bzero(&eii, sizeof (eii));
399 
400 	return (mdb_ctf_type_kind(id) == CTF_K_ENUM &&
401 	    mdb_ctf_enum_iter(id, enum_p2_cb, &eii) == 0 &&
402 	    eii.e_bits != 0);
403 }
404 
405 static int
enum_value_print_p2(mdb_ctf_id_t id,intmax_t value,uint_t allprefix)406 enum_value_print_p2(mdb_ctf_id_t id, intmax_t value, uint_t allprefix)
407 {
408 	struct enum_p2_info eii;
409 	char prefix[MDB_SYM_NAMLEN + 2];
410 	intmax_t missed;
411 
412 	bzero(&eii, sizeof (eii));
413 
414 	eii.e_value = value;
415 	eii.e_buf = prefix;
416 	eii.e_size = sizeof (prefix);
417 	eii.e_allprefix = allprefix;
418 
419 	prefix[0] = 0;
420 	if (mdb_ctf_enum_iter(id, enum_prefix_scan_cb, prefix) == 0)
421 		eii.e_prefix = strlen(prefix);
422 
423 	if (mdb_ctf_enum_iter(id, enum_p2_cb, &eii) != 0 || eii.e_bits == 0)
424 		return (-1);
425 
426 	missed = (value & ~(intmax_t)eii.e_bits);
427 
428 	if (eii.e_found) {
429 		/* push out any final value, with a | if we missed anything */
430 		if (!eii.e_first)
431 			(void) strlcat(prefix, "}", sizeof (prefix));
432 		if (missed != 0)
433 			(void) strlcat(prefix, "|", sizeof (prefix));
434 
435 		mdb_printf("%s", prefix);
436 	}
437 
438 	if (!eii.e_found || missed) {
439 		mdb_printf("%#llx", missed);
440 	}
441 
442 	return (0);
443 }
444 
445 struct enum_cbinfo {
446 	uint_t		e_flags;
447 	const char	*e_string;	/* NULL for value searches */
448 	size_t		e_prefix;
449 	intmax_t	e_value;
450 	uint_t		e_found;
451 	mdb_ctf_id_t	e_id;
452 };
453 #define	E_PRETTY		0x01
454 #define	E_HEX			0x02
455 #define	E_SEARCH_STRING		0x04
456 #define	E_SEARCH_VALUE		0x08
457 #define	E_ELIDE_PREFIX		0x10
458 
459 static void
enum_print(struct enum_cbinfo * info,const char * name,int value)460 enum_print(struct enum_cbinfo *info, const char *name, int value)
461 {
462 	uint_t flags = info->e_flags;
463 	uint_t elide_prefix = (info->e_flags & E_ELIDE_PREFIX);
464 
465 	if (name != NULL && info->e_prefix && strlen(name) > info->e_prefix)
466 		name += info->e_prefix;
467 
468 	if (flags & E_PRETTY) {
469 		uint_t indent = 5 + ((flags & E_HEX) ? 8 : 11);
470 
471 		mdb_printf((flags & E_HEX)? "%8x " : "%11d ", value);
472 		(void) mdb_inc_indent(indent);
473 		if (name != NULL) {
474 			mdb_iob_puts(mdb.m_out, name);
475 		} else {
476 			(void) enum_value_print_p2(info->e_id, value,
477 			    elide_prefix);
478 		}
479 		(void) mdb_dec_indent(indent);
480 		mdb_printf("\n");
481 	} else {
482 		mdb_printf("%#r\n", value);
483 	}
484 }
485 
486 static int
enum_cb(const char * name,int value,void * arg)487 enum_cb(const char *name, int value, void *arg)
488 {
489 	struct enum_cbinfo *info = arg;
490 	uint_t flags = info->e_flags;
491 
492 	if (flags & E_SEARCH_STRING) {
493 		if (strcmp(name, info->e_string) != 0)
494 			return (0);
495 
496 	} else if (flags & E_SEARCH_VALUE) {
497 		if (value != info->e_value)
498 			return (0);
499 	}
500 
501 	enum_print(info, name, value);
502 
503 	info->e_found = 1;
504 	return (0);
505 }
506 
507 void
enum_help(void)508 enum_help(void)
509 {
510 	mdb_printf("%s",
511 "Without an address and name, print all values for the enumeration \"enum\".\n"
512 "With an address, look up a particular value in \"enum\".  With a name, look\n"
513 "up a particular name in \"enum\".\n");
514 
515 	(void) mdb_dec_indent(2);
516 	mdb_printf("\n%<b>OPTIONS%</b>\n");
517 	(void) mdb_inc_indent(2);
518 
519 	mdb_printf("%s",
520 "   -e    remove common prefixes from enum names\n"
521 "   -x    report enum values in hexadecimal\n");
522 }
523 
524 /*ARGSUSED*/
525 int
cmd_enum(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)526 cmd_enum(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
527 {
528 	struct enum_cbinfo info;
529 
530 	char type[MDB_SYM_NAMLEN + sizeof ("enum ")];
531 	char tn2[MDB_SYM_NAMLEN + sizeof ("enum ")];
532 	char prefix[MDB_SYM_NAMLEN];
533 	mdb_ctf_id_t id;
534 	mdb_ctf_id_t idr;
535 
536 	int i;
537 	intmax_t search = 0;
538 	uint_t isp2;
539 
540 	info.e_flags = (flags & DCMD_PIPE_OUT)? 0 : E_PRETTY;
541 	info.e_string = NULL;
542 	info.e_value = 0;
543 	info.e_found = 0;
544 
545 	i = mdb_getopts(argc, argv,
546 	    'e', MDB_OPT_SETBITS, E_ELIDE_PREFIX, &info.e_flags,
547 	    'x', MDB_OPT_SETBITS, E_HEX, &info.e_flags,
548 	    NULL);
549 
550 	argc -= i;
551 	argv += i;
552 
553 	if ((i = args_to_typename(&argc, &argv, type, MDB_SYM_NAMLEN)) != 0)
554 		return (i);
555 
556 	if (strchr(type, ' ') == NULL) {
557 		/*
558 		 * Check as an enumeration tag first, and fall back
559 		 * to checking for a typedef.  Yes, this means that
560 		 * anonymous enumerations whose typedefs conflict with
561 		 * an enum tag can't be accessed.  Don't do that.
562 		 */
563 		(void) mdb_snprintf(tn2, sizeof (tn2), "enum %s", type);
564 
565 		if (mdb_ctf_lookup_by_name(tn2, &id) == 0) {
566 			(void) strcpy(type, tn2);
567 		} else if (mdb_ctf_lookup_by_name(type, &id) != 0) {
568 			mdb_warn("types '%s', '%s'", tn2, type);
569 			return (DCMD_ERR);
570 		}
571 	} else {
572 		if (mdb_ctf_lookup_by_name(type, &id) != 0) {
573 			mdb_warn("'%s'", type);
574 			return (DCMD_ERR);
575 		}
576 	}
577 
578 	/* resolve it, and make sure we're looking at an enumeration */
579 	if (mdb_ctf_type_resolve(id, &idr) == -1) {
580 		mdb_warn("unable to resolve '%s'", type);
581 		return (DCMD_ERR);
582 	}
583 	if (mdb_ctf_type_kind(idr) != CTF_K_ENUM) {
584 		mdb_warn("'%s': not an enumeration\n", type);
585 		return (DCMD_ERR);
586 	}
587 
588 	info.e_id = idr;
589 
590 	if (argc > 2)
591 		return (DCMD_USAGE);
592 
593 	if (argc == 2) {
594 		if (flags & DCMD_ADDRSPEC) {
595 			mdb_warn("may only specify one of: name, address\n");
596 			return (DCMD_USAGE);
597 		}
598 
599 		if (argv[1].a_type == MDB_TYPE_STRING) {
600 			info.e_flags |= E_SEARCH_STRING;
601 			info.e_string = argv[1].a_un.a_str;
602 		} else if (argv[1].a_type == MDB_TYPE_IMMEDIATE) {
603 			info.e_flags |= E_SEARCH_VALUE;
604 			search = argv[1].a_un.a_val;
605 		} else {
606 			return (DCMD_USAGE);
607 		}
608 	}
609 
610 	if (flags & DCMD_ADDRSPEC) {
611 		info.e_flags |= E_SEARCH_VALUE;
612 		search = mdb_get_dot();
613 	}
614 
615 	if (info.e_flags & E_SEARCH_VALUE) {
616 		if ((int)search != search) {
617 			mdb_warn("value '%lld' out of enumeration range\n",
618 			    search);
619 		}
620 		info.e_value = search;
621 	}
622 
623 	isp2 = enum_is_p2(idr);
624 	if (isp2)
625 		info.e_flags |= E_HEX;
626 
627 	if (DCMD_HDRSPEC(flags) && (info.e_flags & E_PRETTY)) {
628 		if (info.e_flags & E_HEX)
629 			mdb_printf("%<u>%8s %-64s%</u>\n", "VALUE", "NAME");
630 		else
631 			mdb_printf("%<u>%11s %-64s%</u>\n", "VALUE", "NAME");
632 	}
633 
634 	/* if the enum is a power-of-two one, process it that way */
635 	if ((info.e_flags & E_SEARCH_VALUE) && isp2) {
636 		enum_print(&info, NULL, info.e_value);
637 		return (DCMD_OK);
638 	}
639 
640 	prefix[0] = 0;
641 	if ((info.e_flags & E_ELIDE_PREFIX) &&
642 	    mdb_ctf_enum_iter(id, enum_prefix_scan_cb, prefix) == 0)
643 		info.e_prefix = strlen(prefix);
644 
645 	if (mdb_ctf_enum_iter(idr, enum_cb, &info) == -1) {
646 		mdb_warn("cannot walk '%s' as enum", type);
647 		return (DCMD_ERR);
648 	}
649 
650 	if (info.e_found == 0 &&
651 	    (info.e_flags & (E_SEARCH_STRING | E_SEARCH_VALUE)) != 0) {
652 		if (info.e_flags & E_SEARCH_STRING)
653 			mdb_warn("name \"%s\" not in '%s'\n", info.e_string,
654 			    type);
655 		else
656 			mdb_warn("value %#lld not in '%s'\n", info.e_value,
657 			    type);
658 
659 		return (DCMD_ERR);
660 	}
661 
662 	return (DCMD_OK);
663 }
664 
665 static int
setup_vcb(const char * name,uintptr_t addr)666 setup_vcb(const char *name, uintptr_t addr)
667 {
668 	const char *p;
669 	mdb_var_t *v;
670 
671 	if ((v = mdb_nv_lookup(&mdb.m_nv, name)) == NULL) {
672 		if ((p = strbadid(name)) != NULL) {
673 			mdb_warn("'%c' may not be used in a variable "
674 			    "name\n", *p);
675 			return (DCMD_ABORT);
676 		}
677 
678 		if ((v = mdb_nv_insert(&mdb.m_nv, name, NULL, addr, 0)) == NULL)
679 			return (DCMD_ERR);
680 	} else {
681 		if (v->v_flags & MDB_NV_RDONLY) {
682 			mdb_warn("variable %s is read-only\n", name);
683 			return (DCMD_ABORT);
684 		}
685 	}
686 
687 	/*
688 	 * If there already exists a vcb for this variable, we may be
689 	 * calling the dcmd in a loop.  We only create a vcb for this
690 	 * variable on the first invocation.
691 	 */
692 	if (mdb_vcb_find(v, mdb.m_frame) == NULL)
693 		mdb_vcb_insert(mdb_vcb_create(v), mdb.m_frame);
694 
695 	return (0);
696 }
697 
698 /*ARGSUSED*/
699 int
cmd_list(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)700 cmd_list(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
701 {
702 	int offset;
703 	uintptr_t a, tmp;
704 	int ret;
705 
706 	if (!(flags & DCMD_ADDRSPEC) || argc == 0)
707 		return (DCMD_USAGE);
708 
709 	if (argv->a_type != MDB_TYPE_STRING) {
710 		/*
711 		 * We are being given a raw offset in lieu of a type and
712 		 * member; confirm the number of arguments and argument
713 		 * type.
714 		 */
715 		if (argc != 1 || argv->a_type != MDB_TYPE_IMMEDIATE)
716 			return (DCMD_USAGE);
717 
718 		offset = argv->a_un.a_val;
719 
720 		argv++;
721 		argc--;
722 
723 		if (offset % sizeof (uintptr_t)) {
724 			mdb_warn("offset must fall on a word boundary\n");
725 			return (DCMD_ABORT);
726 		}
727 	} else {
728 		const char *member;
729 		char buf[MDB_SYM_NAMLEN];
730 		int ret;
731 
732 		ret = args_to_typename(&argc, &argv, buf, sizeof (buf));
733 		if (ret != 0)
734 			return (ret);
735 
736 		argv++;
737 		argc--;
738 
739 		/*
740 		 * If we make it here, we were provided a type name. We should
741 		 * only continue if we still have arguments left (e.g. member
742 		 * name and potentially a variable name).
743 		 */
744 		if (argc == 0)
745 			return (DCMD_USAGE);
746 
747 		member = argv->a_un.a_str;
748 		offset = mdb_ctf_offsetof_by_name(buf, member);
749 		if (offset == -1)
750 			return (DCMD_ABORT);
751 
752 		argv++;
753 		argc--;
754 
755 		if (offset % (sizeof (uintptr_t)) != 0) {
756 			mdb_warn("%s is not a word-aligned member\n", member);
757 			return (DCMD_ABORT);
758 		}
759 	}
760 
761 	/*
762 	 * If we have any unchewed arguments, a variable name must be present.
763 	 */
764 	if (argc == 1) {
765 		if (argv->a_type != MDB_TYPE_STRING)
766 			return (DCMD_USAGE);
767 
768 		if ((ret = setup_vcb(argv->a_un.a_str, addr)) != 0)
769 			return (ret);
770 
771 	} else if (argc != 0) {
772 		return (DCMD_USAGE);
773 	}
774 
775 	a = addr;
776 
777 	do {
778 		mdb_printf("%lr\n", a);
779 
780 		if (mdb_vread(&tmp, sizeof (tmp), a + offset) == -1) {
781 			mdb_warn("failed to read next pointer from object %p",
782 			    a);
783 			return (DCMD_ERR);
784 		}
785 
786 		a = tmp;
787 	} while (a != addr && a != 0);
788 
789 	return (DCMD_OK);
790 }
791 
792 int
cmd_array(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)793 cmd_array(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
794 {
795 	mdb_ctf_id_t id;
796 	ssize_t elemsize = 0;
797 	char tn[MDB_SYM_NAMLEN];
798 	int ret, nelem = -1;
799 
800 	mdb_tgt_t *t = mdb.m_target;
801 	GElf_Sym sym;
802 	mdb_ctf_arinfo_t ar;
803 	mdb_syminfo_t s_info;
804 
805 	if (!(flags & DCMD_ADDRSPEC))
806 		return (DCMD_USAGE);
807 
808 	if (argc >= 2) {
809 		ret = args_to_typename(&argc, &argv, tn, sizeof (tn));
810 		if (ret != 0)
811 			return (ret);
812 
813 		if (argc == 1)	/* unquoted compound type without count */
814 			return (DCMD_USAGE);
815 
816 		if (mdb_ctf_lookup_by_name(tn, &id) != 0) {
817 			mdb_warn("failed to look up type %s", tn);
818 			return (DCMD_ABORT);
819 		}
820 
821 		nelem = (int)mdb_argtoull(&argv[1]);
822 
823 		elemsize = mdb_ctf_type_size(id);
824 	} else if (addr_to_sym(t, addr, tn, sizeof (tn), &sym, &s_info)
825 	    != NULL &&
826 	    mdb_ctf_lookup_by_symbol(&sym, &s_info, &id) == 0 &&
827 	    mdb_ctf_type_kind(id) == CTF_K_ARRAY &&
828 	    mdb_ctf_array_info(id, &ar) != -1) {
829 		if (ar.mta_nelems == 0) {
830 			mdb_warn("array has 0 elements\n");
831 			return (DCMD_ERR);
832 		}
833 		elemsize = mdb_ctf_type_size(id) / ar.mta_nelems;
834 		nelem = ar.mta_nelems;
835 	} else {
836 		mdb_warn("no symbol information for %a", addr);
837 		return (DCMD_ERR);
838 	}
839 
840 	if (argc == 3 || argc == 1) {
841 		if (argv[argc - 1].a_type != MDB_TYPE_STRING)
842 			return (DCMD_USAGE);
843 
844 		if ((ret = setup_vcb(argv[argc - 1].a_un.a_str, addr)) != 0)
845 			return (ret);
846 
847 	} else if (argc > 3) {
848 		return (DCMD_USAGE);
849 	}
850 
851 	for (; nelem > 0; nelem--) {
852 		mdb_printf("%lr\n", addr);
853 		addr = addr + elemsize;
854 	}
855 
856 	return (DCMD_OK);
857 }
858 
859 /*
860  * This is a shared implementation to determine if we should treat a type as a
861  * bitfield. The parameters are the CTF encoding and the bit offset of the
862  * integer. This also exists in mdb_print.c. We consider something a bitfield
863  * if:
864  *
865  *  o The type is more than 8 bytes. This is a bit of a historical choice from
866  *    mdb and is a stranger one. The normal integer handling code generally
867  *    doesn't handle integers more than 64-bits in size. Of course neither does
868  *    the bitfield code...
869  *  o The bit count is not a multiple of 8.
870  *  o The size in bytes is not a power of 2.
871  *  o The offset is not a multiple of 8.
872  */
873 boolean_t
is_bitfield(const ctf_encoding_t * ep,ulong_t off)874 is_bitfield(const ctf_encoding_t *ep, ulong_t off)
875 {
876 	size_t bsize = ep->cte_bits / NBBY;
877 	return (bsize > 8 || (ep->cte_bits % NBBY) != 0 ||
878 	    (bsize & (bsize - 1)) != 0 || (off % NBBY) != 0);
879 }
880 
881 /*
882  * Print an integer bitfield in hexadecimal by reading the enclosing byte(s)
883  * and then shifting and masking the data in the lower bits of a uint64_t.
884  */
885 static int
print_bitfield(ulong_t off,printarg_t * pap,ctf_encoding_t * ep)886 print_bitfield(ulong_t off, printarg_t *pap, ctf_encoding_t *ep)
887 {
888 	mdb_tgt_addr_t addr = pap->pa_addr + off / NBBY;
889 	uint64_t mask = (1ULL << ep->cte_bits) - 1;
890 	uint64_t value = 0;
891 	uint8_t *buf = (uint8_t *)&value;
892 	uint8_t shift;
893 	const char *format;
894 
895 	/*
896 	 * Our bitfield may straddle a byte boundary. We explicitly take the
897 	 * offset of the bitfield within its byte into account when determining
898 	 * the overall amount of data to copy and mask off from the underlying
899 	 * data.
900 	 */
901 	uint_t nbits = ep->cte_bits + (off % NBBY);
902 	size_t size = P2ROUNDUP(nbits, NBBY) / NBBY;
903 
904 	if (!(pap->pa_flags & PA_SHOWVAL))
905 		return (0);
906 
907 	if (ep->cte_bits > sizeof (value) * NBBY - 1) {
908 		mdb_printf("??? (invalid bitfield size %u)", ep->cte_bits);
909 		return (0);
910 	}
911 
912 	if (size > sizeof (value)) {
913 		mdb_printf("??? (total bitfield too large after alignment");
914 		return (0);
915 	}
916 
917 	/*
918 	 * On big-endian machines, we need to adjust the buf pointer to refer
919 	 * to the lowest 'size' bytes in 'value', and we need shift based on
920 	 * the offset from the end of the data, not the offset of the start.
921 	 */
922 #ifdef _BIG_ENDIAN
923 	buf += sizeof (value) - size;
924 	off += ep->cte_bits;
925 #endif
926 
927 	if (mdb_tgt_aread(pap->pa_tgt, pap->pa_as, buf, size, addr) != size) {
928 		mdb_warn("failed to read %lu bytes at %llx",
929 		    (ulong_t)size, addr);
930 		return (1);
931 	}
932 
933 	shift = off % NBBY;
934 
935 	/*
936 	 * Offsets are counted from opposite ends on little- and
937 	 * big-endian machines.
938 	 */
939 #ifdef _BIG_ENDIAN
940 	shift = NBBY - shift;
941 #endif
942 
943 	/*
944 	 * If the bits we want do not begin on a byte boundary, shift the data
945 	 * right so that the value is in the lowest 'cte_bits' of 'value'.
946 	 */
947 	if (off % NBBY != 0)
948 		value >>= shift;
949 	value &= mask;
950 
951 	/*
952 	 * We default to printing signed bitfields as decimals,
953 	 * and unsigned bitfields in hexadecimal.  If they specify
954 	 * hexadecimal, we treat the field as unsigned.
955 	 */
956 	if ((pap->pa_flags & PA_INTHEX) ||
957 	    !(ep->cte_format & CTF_INT_SIGNED)) {
958 		format = (pap->pa_flags & PA_INTDEC)? "%#llu" : "%#llx";
959 	} else {
960 		int sshift = sizeof (value) * NBBY - ep->cte_bits;
961 
962 		/* sign-extend value, and print as a signed decimal */
963 		value = ((int64_t)value << sshift) >> sshift;
964 		format = "%#lld";
965 	}
966 	mdb_printf(format, value);
967 
968 	return (0);
969 }
970 
971 /*
972  * We want to print an escaped char as e.g. '\0'. We don't use mdb_fmt_print()
973  * as it won't get auto-wrap right here (although even now, we don't include any
974  * trailing comma).
975  */
976 static int
print_char_val(mdb_tgt_addr_t addr,printarg_t * pap)977 print_char_val(mdb_tgt_addr_t addr, printarg_t *pap)
978 {
979 	char cval;
980 	char *s;
981 
982 	if (mdb_tgt_aread(pap->pa_tgt, pap->pa_as, &cval, 1, addr) != 1)
983 		return (1);
984 
985 	if (mdb.m_flags & MDB_FL_ADB)
986 		s = strchr2adb(&cval, 1);
987 	else
988 		s = strchr2esc(&cval, 1);
989 
990 	mdb_printf("'%s'", s);
991 	strfree(s);
992 	return (0);
993 }
994 
995 /*
996  * Print out a character or integer value.  We use some simple heuristics,
997  * described below, to determine the appropriate radix to use for output.
998  */
999 static int
print_int_val(const char * type,ctf_encoding_t * ep,ulong_t off,printarg_t * pap)1000 print_int_val(const char *type, ctf_encoding_t *ep, ulong_t off,
1001     printarg_t *pap)
1002 {
1003 	static const char *const sformat[] = { "%#d", "%#d", "%#d", "%#lld" };
1004 	static const char *const uformat[] = { "%#u", "%#u", "%#u", "%#llu" };
1005 	static const char *const xformat[] = { "%#x", "%#x", "%#x", "%#llx" };
1006 
1007 	mdb_tgt_addr_t addr = pap->pa_addr + off / NBBY;
1008 	const char *const *fsp;
1009 	size_t size;
1010 
1011 	union {
1012 		uint64_t i8;
1013 		uint32_t i4;
1014 		uint16_t i2;
1015 		uint8_t i1;
1016 		time_t t;
1017 		ipaddr_t I;
1018 	} u;
1019 
1020 	if (!(pap->pa_flags & PA_SHOWVAL))
1021 		return (0);
1022 
1023 	if (ep->cte_format & CTF_INT_VARARGS) {
1024 		mdb_printf("...\n");
1025 		return (0);
1026 	}
1027 
1028 	size = ep->cte_bits / NBBY;
1029 	if (is_bitfield(ep, off)) {
1030 		return (print_bitfield(off, pap, ep));
1031 	}
1032 
1033 	if (IS_CHAR(*ep))
1034 		return (print_char_val(addr, pap));
1035 
1036 	if (mdb_tgt_aread(pap->pa_tgt, pap->pa_as, &u.i8, size, addr) != size) {
1037 		mdb_warn("failed to read %lu bytes at %llx",
1038 		    (ulong_t)size, addr);
1039 		return (1);
1040 	}
1041 
1042 	/*
1043 	 * We pretty-print some integer based types.  time_t values are
1044 	 * printed as a calendar date and time, and IPv4 addresses as human
1045 	 * readable dotted quads.
1046 	 */
1047 	if (!(pap->pa_flags & (PA_INTHEX | PA_INTDEC))) {
1048 		if (strcmp(type, "time_t") == 0 && u.t != 0) {
1049 			mdb_printf("%Y", u.t);
1050 			return (0);
1051 		}
1052 		if (strcmp(type, "ipaddr_t") == 0 ||
1053 		    strcmp(type, "in_addr_t") == 0) {
1054 			mdb_printf("%I", u.I);
1055 			return (0);
1056 		}
1057 	}
1058 
1059 	/*
1060 	 * The default format is hexadecimal.
1061 	 */
1062 	if (!(pap->pa_flags & PA_INTDEC))
1063 		fsp = xformat;
1064 	else if (ep->cte_format & CTF_INT_SIGNED)
1065 		fsp = sformat;
1066 	else
1067 		fsp = uformat;
1068 
1069 	switch (size) {
1070 	case sizeof (uint8_t):
1071 		mdb_printf(fsp[0], u.i1);
1072 		break;
1073 	case sizeof (uint16_t):
1074 		mdb_printf(fsp[1], u.i2);
1075 		break;
1076 	case sizeof (uint32_t):
1077 		mdb_printf(fsp[2], u.i4);
1078 		break;
1079 	case sizeof (uint64_t):
1080 		mdb_printf(fsp[3], u.i8);
1081 		break;
1082 	}
1083 	return (0);
1084 }
1085 
1086 /*ARGSUSED*/
1087 static int
print_int(const char * type,const char * name,mdb_ctf_id_t id,mdb_ctf_id_t base,ulong_t off,printarg_t * pap)1088 print_int(const char *type, const char *name, mdb_ctf_id_t id,
1089     mdb_ctf_id_t base, ulong_t off, printarg_t *pap)
1090 {
1091 	ctf_encoding_t e;
1092 
1093 	if (!(pap->pa_flags & PA_SHOWVAL))
1094 		return (0);
1095 
1096 	if (mdb_ctf_type_encoding(base, &e) != 0) {
1097 		mdb_printf("??? (%s)", mdb_strerror(errno));
1098 		return (0);
1099 	}
1100 
1101 	return (print_int_val(type, &e, off, pap));
1102 }
1103 
1104 /*
1105  * Print out a floating point value.  We only provide support for floats in
1106  * the ANSI-C float, double, and long double formats.
1107  */
1108 /*ARGSUSED*/
1109 static int
print_float(const char * type,const char * name,mdb_ctf_id_t id,mdb_ctf_id_t base,ulong_t off,printarg_t * pap)1110 print_float(const char *type, const char *name, mdb_ctf_id_t id,
1111     mdb_ctf_id_t base, ulong_t off, printarg_t *pap)
1112 {
1113 #ifndef _KMDB
1114 	mdb_tgt_addr_t addr = pap->pa_addr + off / NBBY;
1115 	ctf_encoding_t e;
1116 
1117 	union {
1118 		float f;
1119 		double d;
1120 		long double ld;
1121 	} u;
1122 
1123 	if (!(pap->pa_flags & PA_SHOWVAL))
1124 		return (0);
1125 
1126 	if (mdb_ctf_type_encoding(base, &e) == 0) {
1127 		if (e.cte_format == CTF_FP_SINGLE &&
1128 		    e.cte_bits == sizeof (float) * NBBY) {
1129 			if (mdb_tgt_aread(pap->pa_tgt, pap->pa_as, &u.f,
1130 			    sizeof (u.f), addr) != sizeof (u.f)) {
1131 				mdb_warn("failed to read float at %llx", addr);
1132 				return (1);
1133 			}
1134 			mdb_printf("%s", doubletos(u.f, 7, 'e'));
1135 
1136 		} else if (e.cte_format == CTF_FP_DOUBLE &&
1137 		    e.cte_bits == sizeof (double) * NBBY) {
1138 			if (mdb_tgt_aread(pap->pa_tgt, pap->pa_as, &u.d,
1139 			    sizeof (u.d), addr) != sizeof (u.d)) {
1140 				mdb_warn("failed to read float at %llx", addr);
1141 				return (1);
1142 			}
1143 			mdb_printf("%s", doubletos(u.d, 7, 'e'));
1144 
1145 		} else if (e.cte_format == CTF_FP_LDOUBLE &&
1146 		    e.cte_bits == sizeof (long double) * NBBY) {
1147 			if (mdb_tgt_aread(pap->pa_tgt, pap->pa_as, &u.ld,
1148 			    sizeof (u.ld), addr) != sizeof (u.ld)) {
1149 				mdb_warn("failed to read float at %llx", addr);
1150 				return (1);
1151 			}
1152 			mdb_printf("%s", longdoubletos(&u.ld, 16, 'e'));
1153 
1154 		} else {
1155 			mdb_printf("??? (unsupported FP format %u / %u bits\n",
1156 			    e.cte_format, e.cte_bits);
1157 		}
1158 	} else
1159 		mdb_printf("??? (%s)", mdb_strerror(errno));
1160 #else
1161 	mdb_printf("<FLOAT>");
1162 #endif
1163 	return (0);
1164 }
1165 
1166 
1167 /*
1168  * Print out a pointer value as a symbol name + offset or a hexadecimal value.
1169  * If the pointer itself is a char *, we attempt to read a bit of the data
1170  * referenced by the pointer and display it if it is a printable ASCII string.
1171  */
1172 /*ARGSUSED*/
1173 static int
print_ptr(const char * type,const char * name,mdb_ctf_id_t id,mdb_ctf_id_t base,ulong_t off,printarg_t * pap)1174 print_ptr(const char *type, const char *name, mdb_ctf_id_t id,
1175     mdb_ctf_id_t base, ulong_t off, printarg_t *pap)
1176 {
1177 	mdb_tgt_addr_t addr = pap->pa_addr + off / NBBY;
1178 	ctf_encoding_t e;
1179 	uintptr_t value;
1180 	char buf[256];
1181 	ssize_t len;
1182 
1183 	if (!(pap->pa_flags & PA_SHOWVAL))
1184 		return (0);
1185 
1186 	if (mdb_tgt_aread(pap->pa_tgt, pap->pa_as,
1187 	    &value, sizeof (value), addr) != sizeof (value)) {
1188 		mdb_warn("failed to read %s pointer at %llx", name, addr);
1189 		return (1);
1190 	}
1191 
1192 	if (pap->pa_flags & PA_NOSYMBOLIC) {
1193 		mdb_printf("%#lx", value);
1194 		return (0);
1195 	}
1196 
1197 	mdb_printf("%a", value);
1198 
1199 	if (value == 0 || strcmp(type, "caddr_t") == 0)
1200 		return (0);
1201 
1202 	if (mdb_ctf_type_kind(base) == CTF_K_POINTER &&
1203 	    mdb_ctf_type_reference(base, &base) != -1 &&
1204 	    mdb_ctf_type_resolve(base, &base) != -1 &&
1205 	    mdb_ctf_type_encoding(base, &e) == 0 && IS_CHAR(e)) {
1206 		if ((len = mdb_tgt_readstr(pap->pa_realtgt, pap->pa_as,
1207 		    buf, sizeof (buf), value)) >= 0 && strisprint(buf)) {
1208 			if (len == sizeof (buf))
1209 				(void) strabbr(buf, sizeof (buf));
1210 			mdb_printf(" \"%s\"", buf);
1211 		}
1212 	}
1213 
1214 	return (0);
1215 }
1216 
1217 
1218 /*
1219  * Print out a fixed-size array.  We special-case arrays of characters
1220  * and attempt to print them out as ASCII strings if possible.  For other
1221  * arrays, we iterate over a maximum of pa_armemlim members and call
1222  * mdb_ctf_type_visit() again on each element to print its value.
1223  */
1224 /*ARGSUSED*/
1225 static int
print_array(const char * type,const char * name,mdb_ctf_id_t id,mdb_ctf_id_t base,ulong_t off,printarg_t * pap)1226 print_array(const char *type, const char *name, mdb_ctf_id_t id,
1227     mdb_ctf_id_t base, ulong_t off, printarg_t *pap)
1228 {
1229 	mdb_tgt_addr_t addr = pap->pa_addr + off / NBBY;
1230 	printarg_t pa = *pap;
1231 	ssize_t eltsize;
1232 	mdb_ctf_arinfo_t r;
1233 	ctf_encoding_t e;
1234 	uint_t i, kind, limit;
1235 	int d, sou;
1236 	char buf[8];
1237 	char *str;
1238 
1239 	if (!(pap->pa_flags & PA_SHOWVAL))
1240 		return (0);
1241 
1242 	if (pap->pa_depth == pap->pa_maxdepth) {
1243 		mdb_printf("[ ... ]");
1244 		return (0);
1245 	}
1246 
1247 	/*
1248 	 * Determine the base type and size of the array's content.  If this
1249 	 * fails, we cannot print anything and just give up.
1250 	 */
1251 	if (mdb_ctf_array_info(base, &r) == -1 ||
1252 	    mdb_ctf_type_resolve(r.mta_contents, &base) == -1 ||
1253 	    (eltsize = mdb_ctf_type_size(base)) == -1) {
1254 		mdb_printf("[ ??? ] (%s)", mdb_strerror(errno));
1255 		return (0);
1256 	}
1257 
1258 	/*
1259 	 * Read a few bytes and determine if the content appears to be
1260 	 * printable ASCII characters.  If so, read the entire array and
1261 	 * attempt to display it as a string if it is printable.
1262 	 */
1263 	if ((pap->pa_arstrlim == MDB_ARR_NOLIMIT ||
1264 	    r.mta_nelems <= pap->pa_arstrlim) &&
1265 	    mdb_ctf_type_encoding(base, &e) == 0 && IS_CHAR(e) &&
1266 	    mdb_tgt_readstr(pap->pa_tgt, pap->pa_as, buf,
1267 	    MIN(sizeof (buf), r.mta_nelems), addr) > 0 && strisprint(buf)) {
1268 
1269 		str = mdb_alloc(r.mta_nelems + 1, UM_SLEEP | UM_GC);
1270 		str[r.mta_nelems] = '\0';
1271 
1272 		if (mdb_tgt_aread(pap->pa_tgt, pap->pa_as, str,
1273 		    r.mta_nelems, addr) != r.mta_nelems) {
1274 			mdb_warn("failed to read char array at %llx", addr);
1275 			return (1);
1276 		}
1277 
1278 		if (strisprint(str)) {
1279 			mdb_printf("[ \"%s\" ]", str);
1280 			return (0);
1281 		}
1282 	}
1283 
1284 	if (pap->pa_armemlim != MDB_ARR_NOLIMIT)
1285 		limit = MIN(r.mta_nelems, pap->pa_armemlim);
1286 	else
1287 		limit = r.mta_nelems;
1288 
1289 	if (limit == 0) {
1290 		mdb_printf("[ ... ]");
1291 		return (0);
1292 	}
1293 
1294 	kind = mdb_ctf_type_kind(base);
1295 	sou = IS_COMPOSITE(kind);
1296 
1297 	pa.pa_addr = addr;		/* set base address to start of array */
1298 	pa.pa_maxdepth = pa.pa_maxdepth - pa.pa_depth - 1;
1299 	pa.pa_nest += pa.pa_depth + 1;	/* nesting level is current depth + 1 */
1300 	pa.pa_depth = 0;		/* reset depth to 0 for new scope */
1301 	pa.pa_prefix = NULL;
1302 
1303 	if (sou) {
1304 		pa.pa_delim = "\n";
1305 		mdb_printf("[\n");
1306 	} else {
1307 		pa.pa_flags &= ~(PA_SHOWTYPE | PA_SHOWNAME | PA_SHOWADDR);
1308 		pa.pa_delim = ", ";
1309 		mdb_printf("[ ");
1310 	}
1311 
1312 	for (i = 0; i < limit; i++, pa.pa_addr += eltsize) {
1313 		if (i == limit - 1 && !sou) {
1314 			if (limit < r.mta_nelems)
1315 				pa.pa_delim = ", ... ]";
1316 			else
1317 				pa.pa_delim = " ]";
1318 		}
1319 
1320 		if (mdb_ctf_type_visit(r.mta_contents, elt_print, &pa) == -1) {
1321 			mdb_warn("failed to print array data");
1322 			return (1);
1323 		}
1324 	}
1325 
1326 	if (sou) {
1327 		for (d = pa.pa_depth - 1; d >= 0; d--)
1328 			print_close_sou(&pa, d);
1329 
1330 		if (limit < r.mta_nelems) {
1331 			mdb_printf("%*s... ]",
1332 			    (pap->pa_depth + pap->pa_nest) * pap->pa_tab, "");
1333 		} else {
1334 			mdb_printf("%*s]",
1335 			    (pap->pa_depth + pap->pa_nest) * pap->pa_tab, "");
1336 		}
1337 	}
1338 
1339 	/* copy the hole array info, since it may have been grown */
1340 	pap->pa_holes = pa.pa_holes;
1341 	pap->pa_nholes = pa.pa_nholes;
1342 
1343 	return (0);
1344 }
1345 
1346 /*
1347  * Print out a struct or union header.  We need only print the open brace
1348  * because mdb_ctf_type_visit() itself will automatically recurse through
1349  * all members of the given struct or union.
1350  */
1351 /*ARGSUSED*/
1352 static int
print_sou(const char * type,const char * name,mdb_ctf_id_t id,mdb_ctf_id_t base,ulong_t off,printarg_t * pap)1353 print_sou(const char *type, const char *name, mdb_ctf_id_t id,
1354     mdb_ctf_id_t base, ulong_t off, printarg_t *pap)
1355 {
1356 	mdb_tgt_addr_t addr = pap->pa_addr + off / NBBY;
1357 
1358 	/*
1359 	 * We have pretty-printing for some structures where displaying
1360 	 * structure contents has no value.
1361 	 */
1362 	if (pap->pa_flags & PA_SHOWVAL) {
1363 		if (strcmp(type, "in6_addr_t") == 0 ||
1364 		    strcmp(type, "struct in6_addr") == 0) {
1365 			in6_addr_t in6addr;
1366 
1367 			if (mdb_tgt_aread(pap->pa_tgt, pap->pa_as, &in6addr,
1368 			    sizeof (in6addr), addr) != sizeof (in6addr)) {
1369 				mdb_warn("failed to read %s pointer at %llx",
1370 				    name, addr);
1371 				return (1);
1372 			}
1373 			mdb_printf("%N", &in6addr);
1374 			/*
1375 			 * Don't print anything further down in the
1376 			 * structure.
1377 			 */
1378 			pap->pa_nooutdepth = pap->pa_depth;
1379 			return (0);
1380 		}
1381 		if (strcmp(type, "struct in_addr") == 0) {
1382 			in_addr_t inaddr;
1383 
1384 			if (mdb_tgt_aread(pap->pa_tgt, pap->pa_as, &inaddr,
1385 			    sizeof (inaddr), addr) != sizeof (inaddr)) {
1386 				mdb_warn("failed to read %s pointer at %llx",
1387 				    name, addr);
1388 				return (1);
1389 			}
1390 			mdb_printf("%I", inaddr);
1391 			pap->pa_nooutdepth = pap->pa_depth;
1392 			return (0);
1393 		}
1394 	}
1395 
1396 	if (pap->pa_depth == pap->pa_maxdepth)
1397 		mdb_printf("{ ... }");
1398 	else
1399 		mdb_printf("{");
1400 	pap->pa_delim = "\n";
1401 	return (0);
1402 }
1403 
1404 /*
1405  * Print an enum value.  We attempt to convert the value to the corresponding
1406  * enum name and print that if possible.
1407  */
1408 /*ARGSUSED*/
1409 static int
print_enum(const char * type,const char * name,mdb_ctf_id_t id,mdb_ctf_id_t base,ulong_t off,printarg_t * pap)1410 print_enum(const char *type, const char *name, mdb_ctf_id_t id,
1411     mdb_ctf_id_t base, ulong_t off, printarg_t *pap)
1412 {
1413 	mdb_tgt_addr_t addr = pap->pa_addr + off / NBBY;
1414 	const char *ename;
1415 	int value;
1416 	int isp2 = enum_is_p2(base);
1417 	int flags = pap->pa_flags | (isp2 ? PA_INTHEX : 0);
1418 
1419 	if (!(flags & PA_SHOWVAL))
1420 		return (0);
1421 
1422 	if (mdb_tgt_aread(pap->pa_tgt, pap->pa_as,
1423 	    &value, sizeof (value), addr) != sizeof (value)) {
1424 		mdb_warn("failed to read %s integer at %llx", name, addr);
1425 		return (1);
1426 	}
1427 
1428 	if (flags & PA_INTHEX)
1429 		mdb_printf("%#x", value);
1430 	else
1431 		mdb_printf("%#d", value);
1432 
1433 	(void) mdb_inc_indent(8);
1434 	mdb_printf(" (");
1435 
1436 	if (!isp2 || enum_value_print_p2(base, value, 0) != 0) {
1437 		ename = mdb_ctf_enum_name(base, value);
1438 		if (ename == NULL) {
1439 			ename = "???";
1440 		}
1441 		mdb_printf("%s", ename);
1442 	}
1443 	mdb_printf(")");
1444 	(void) mdb_dec_indent(8);
1445 
1446 	return (0);
1447 }
1448 
1449 /*
1450  * This will only get called if the structure isn't found in any available CTF
1451  * data.
1452  */
1453 /*ARGSUSED*/
1454 static int
print_tag(const char * type,const char * name,mdb_ctf_id_t id,mdb_ctf_id_t base,ulong_t off,printarg_t * pap)1455 print_tag(const char *type, const char *name, mdb_ctf_id_t id,
1456     mdb_ctf_id_t base, ulong_t off, printarg_t *pap)
1457 {
1458 	char basename[MDB_SYM_NAMLEN];
1459 
1460 	if (pap->pa_flags & PA_SHOWVAL)
1461 		mdb_printf("; ");
1462 
1463 	if (mdb_ctf_type_name(base, basename, sizeof (basename)) != NULL)
1464 		mdb_printf("<forward declaration of %s>", basename);
1465 	else
1466 		mdb_printf("<forward declaration of unknown type>");
1467 
1468 	return (0);
1469 }
1470 
1471 static void
print_hole(printarg_t * pap,int depth,ulong_t off,ulong_t endoff)1472 print_hole(printarg_t *pap, int depth, ulong_t off, ulong_t endoff)
1473 {
1474 	ulong_t bits = endoff - off;
1475 	ulong_t size = bits / NBBY;
1476 	ctf_encoding_t e;
1477 
1478 	static const char *const name = "<<HOLE>>";
1479 	char type[MDB_SYM_NAMLEN];
1480 
1481 	int bitfield =
1482 	    (off % NBBY != 0 ||
1483 	    bits % NBBY != 0 ||
1484 	    size > 8 ||
1485 	    (size & (size - 1)) != 0);
1486 
1487 	ASSERT(off < endoff);
1488 
1489 	if (bits > NBBY * sizeof (uint64_t)) {
1490 		ulong_t end;
1491 
1492 		/*
1493 		 * The hole is larger than the largest integer type.  To
1494 		 * handle this, we split up the hole at 8-byte-aligned
1495 		 * boundaries, recursing to print each subsection.  For
1496 		 * normal C structures, we'll loop at most twice.
1497 		 */
1498 		for (; off < endoff; off = end) {
1499 			end = P2END(off, NBBY * sizeof (uint64_t));
1500 			if (end > endoff)
1501 				end = endoff;
1502 
1503 			ASSERT((end - off) <= NBBY * sizeof (uint64_t));
1504 			print_hole(pap, depth, off, end);
1505 		}
1506 		ASSERT(end == endoff);
1507 
1508 		return;
1509 	}
1510 
1511 	if (bitfield)
1512 		(void) mdb_snprintf(type, sizeof (type), "unsigned");
1513 	else
1514 		(void) mdb_snprintf(type, sizeof (type), "uint%d_t", bits);
1515 
1516 	if (pap->pa_flags & (PA_SHOWTYPE | PA_SHOWNAME | PA_SHOWADDR))
1517 		mdb_printf("%*s", (depth + pap->pa_nest) * pap->pa_tab, "");
1518 
1519 	if (pap->pa_flags & PA_SHOWADDR) {
1520 		if (off % NBBY == 0)
1521 			mdb_printf("%llx ", pap->pa_addr + off / NBBY);
1522 		else
1523 			mdb_printf("%llx.%lx ",
1524 			    pap->pa_addr + off / NBBY, off % NBBY);
1525 	}
1526 
1527 	if (pap->pa_flags & PA_SHOWTYPE)
1528 		mdb_printf("%s ", type);
1529 
1530 	if (pap->pa_flags & PA_SHOWNAME)
1531 		mdb_printf("%s", name);
1532 
1533 	if (bitfield && (pap->pa_flags & PA_SHOWTYPE))
1534 		mdb_printf(" :%d", bits);
1535 
1536 	mdb_printf("%s ", (pap->pa_flags & PA_SHOWVAL)? " =" : "");
1537 
1538 	/*
1539 	 * We fake up a ctf_encoding_t, and use print_int_val() to print
1540 	 * the value.  Holes are always processed as unsigned integers.
1541 	 */
1542 	bzero(&e, sizeof (e));
1543 	e.cte_format = 0;
1544 	e.cte_offset = 0;
1545 	e.cte_bits = bits;
1546 
1547 	if (print_int_val(type, &e, off, pap) != 0)
1548 		mdb_iob_discard(mdb.m_out);
1549 	else
1550 		mdb_iob_puts(mdb.m_out, pap->pa_delim);
1551 }
1552 
1553 /*
1554  * The print_close_sou() function is called for each structure or union
1555  * which has been completed.  For structures, we detect and print any holes
1556  * before printing the closing brace.
1557  */
1558 static void
print_close_sou(printarg_t * pap,int newdepth)1559 print_close_sou(printarg_t *pap, int newdepth)
1560 {
1561 	int d = newdepth + pap->pa_nest;
1562 
1563 	if ((pap->pa_flags & PA_SHOWHOLES) && !pap->pa_holes[d].hi_isunion) {
1564 		ulong_t end = pap->pa_holes[d + 1].hi_offset;
1565 		ulong_t expected = pap->pa_holes[d].hi_offset;
1566 
1567 		if (end < expected)
1568 			print_hole(pap, newdepth + 1, end, expected);
1569 	}
1570 	/* if the struct is an array element, print a comma after the } */
1571 	mdb_printf("%*s}%s\n", d * pap->pa_tab, "",
1572 	    (newdepth == 0 && pap->pa_nest > 0)? "," : "");
1573 }
1574 
1575 static printarg_f *const printfuncs[] = {
1576 	print_int,	/* CTF_K_INTEGER */
1577 	print_float,	/* CTF_K_FLOAT */
1578 	print_ptr,	/* CTF_K_POINTER */
1579 	print_array,	/* CTF_K_ARRAY */
1580 	print_ptr,	/* CTF_K_FUNCTION */
1581 	print_sou,	/* CTF_K_STRUCT */
1582 	print_sou,	/* CTF_K_UNION */
1583 	print_enum,	/* CTF_K_ENUM */
1584 	print_tag	/* CTF_K_FORWARD */
1585 };
1586 
1587 /*
1588  * The elt_print function is used as the mdb_ctf_type_visit callback.  For
1589  * each element, we print an appropriate name prefix and then call the
1590  * print subroutine for this type class in the array above.
1591  */
1592 static int
elt_print(const char * name,mdb_ctf_id_t id,mdb_ctf_id_t base,ulong_t off,int depth,void * data)1593 elt_print(const char *name, mdb_ctf_id_t id, mdb_ctf_id_t base,
1594     ulong_t off, int depth, void *data)
1595 {
1596 	char type[MDB_SYM_NAMLEN + sizeof (" <<12345678...>>")];
1597 	int kind, rc, d;
1598 	printarg_t *pap = data;
1599 
1600 	for (d = pap->pa_depth - 1; d >= depth; d--) {
1601 		if (d < pap->pa_nooutdepth)
1602 			print_close_sou(pap, d);
1603 	}
1604 
1605 	/*
1606 	 * Reset pa_nooutdepth if we've come back out of the structure we
1607 	 * didn't want to print.
1608 	 */
1609 	if (depth <= pap->pa_nooutdepth)
1610 		pap->pa_nooutdepth = (uint_t)-1;
1611 
1612 	if (depth > pap->pa_maxdepth || depth > pap->pa_nooutdepth)
1613 		return (0);
1614 
1615 	if (!mdb_ctf_type_valid(base) ||
1616 	    (kind = mdb_ctf_type_kind(base)) == -1)
1617 		return (-1); /* errno is set for us */
1618 
1619 	if (mdb_ctf_type_name(id, type, MDB_SYM_NAMLEN) == NULL)
1620 		(void) strcpy(type, "(?)");
1621 
1622 	if (pap->pa_flags & PA_SHOWBASETYPE) {
1623 		/*
1624 		 * If basetype is different and informative, concatenate
1625 		 * <<basetype>> (or <<baset...>> if it doesn't fit)
1626 		 *
1627 		 * We just use the end of the buffer to store the type name, and
1628 		 * only connect it up if that's necessary.
1629 		 */
1630 
1631 		char *type_end = type + strlen(type);
1632 		char *basetype;
1633 		size_t sz;
1634 
1635 		(void) strlcat(type, " <<", sizeof (type));
1636 
1637 		basetype = type + strlen(type);
1638 		sz = sizeof (type) - (basetype - type);
1639 
1640 		*type_end = '\0'; /* restore the end of type for strcmp() */
1641 
1642 		if (mdb_ctf_type_name(base, basetype, sz) != NULL &&
1643 		    strcmp(basetype, type) != 0 &&
1644 		    strcmp(basetype, "struct ") != 0 &&
1645 		    strcmp(basetype, "enum ") != 0 &&
1646 		    strcmp(basetype, "union ") != 0) {
1647 			type_end[0] = ' ';	/* reconnect */
1648 			if (strlcat(type, ">>", sizeof (type)) >= sizeof (type))
1649 				(void) strlcpy(
1650 				    type + sizeof (type) - 6, "...>>", 6);
1651 		}
1652 	}
1653 
1654 	if (pap->pa_flags & PA_SHOWHOLES) {
1655 		ctf_encoding_t e;
1656 		ssize_t nsize;
1657 		ulong_t newoff;
1658 		holeinfo_t *hole;
1659 		int extra = IS_COMPOSITE(kind)? 1 : 0;
1660 
1661 		/*
1662 		 * grow the hole array, if necessary
1663 		 */
1664 		if (pap->pa_nest + depth + extra >= pap->pa_nholes) {
1665 			int new = MAX(MAX(8, pap->pa_nholes * 2),
1666 			    pap->pa_nest + depth + extra + 1);
1667 
1668 			holeinfo_t *nhi = mdb_zalloc(
1669 			    sizeof (*nhi) * new, UM_NOSLEEP | UM_GC);
1670 
1671 			bcopy(pap->pa_holes, nhi,
1672 			    pap->pa_nholes * sizeof (*nhi));
1673 
1674 			pap->pa_holes = nhi;
1675 			pap->pa_nholes = new;
1676 		}
1677 
1678 		hole = &pap->pa_holes[depth + pap->pa_nest];
1679 
1680 		if (depth != 0 && off > hole->hi_offset)
1681 			print_hole(pap, depth, hole->hi_offset, off);
1682 
1683 		/* compute the next expected offset */
1684 		if (kind == CTF_K_INTEGER &&
1685 		    mdb_ctf_type_encoding(base, &e) == 0)
1686 			newoff = off + e.cte_bits;
1687 		else if ((nsize = mdb_ctf_type_size(base)) >= 0)
1688 			newoff = off + nsize * NBBY;
1689 		else {
1690 			/* something bad happened, disable hole checking */
1691 			newoff = -1UL;		/* ULONG_MAX */
1692 		}
1693 
1694 		hole->hi_offset = newoff;
1695 
1696 		if (IS_COMPOSITE(kind)) {
1697 			hole->hi_isunion = (kind == CTF_K_UNION);
1698 			hole++;
1699 			hole->hi_offset = off;
1700 		}
1701 	}
1702 
1703 	if (pap->pa_flags & (PA_SHOWTYPE | PA_SHOWNAME | PA_SHOWADDR))
1704 		mdb_printf("%*s", (depth + pap->pa_nest) * pap->pa_tab, "");
1705 
1706 	if (pap->pa_flags & PA_SHOWADDR) {
1707 		if (off % NBBY == 0)
1708 			mdb_printf("%llx ", pap->pa_addr + off / NBBY);
1709 		else
1710 			mdb_printf("%llx.%lx ",
1711 			    pap->pa_addr + off / NBBY, off % NBBY);
1712 	}
1713 
1714 	if ((pap->pa_flags & PA_SHOWTYPE)) {
1715 		mdb_printf("%s", type);
1716 		/*
1717 		 * We want to avoid printing a trailing space when
1718 		 * dealing with pointers in a structure, so we end
1719 		 * up with:
1720 		 *
1721 		 *	label_t *t_onfault = 0
1722 		 *
1723 		 * If depth is zero, always print the trailing space unless
1724 		 * we also have a prefix.
1725 		 */
1726 		if (type[strlen(type) - 1] != '*' ||
1727 		    (depth == 0 && (!(pap->pa_flags & PA_SHOWNAME) ||
1728 		    pap->pa_prefix == NULL)))
1729 			mdb_printf(" ");
1730 	}
1731 
1732 	if (pap->pa_flags & PA_SHOWNAME) {
1733 		if (pap->pa_prefix != NULL && depth <= 1)
1734 			mdb_printf("%s%s", pap->pa_prefix,
1735 			    (depth == 0) ? "" : pap->pa_suffix);
1736 
1737 		/*
1738 		 * Figure out if we're printing an anonymous struct or union. If
1739 		 * so, indicate that this is anonymous.
1740 		 */
1741 		if (depth != 0 && *name == '\0' && (kind == CTF_K_STRUCT ||
1742 		    kind == CTF_K_UNION)) {
1743 			name = "<anon>";
1744 		}
1745 
1746 		mdb_printf("%s", name);
1747 	}
1748 
1749 	if ((pap->pa_flags & PA_SHOWTYPE) && kind == CTF_K_INTEGER) {
1750 		ctf_encoding_t e;
1751 
1752 		if (mdb_ctf_type_encoding(base, &e) == 0) {
1753 			ulong_t bits = e.cte_bits;
1754 			ulong_t size = bits / NBBY;
1755 
1756 			if (bits % NBBY != 0 ||
1757 			    off % NBBY != 0 ||
1758 			    size > 8 ||
1759 			    size != mdb_ctf_type_size(base))
1760 				mdb_printf(" :%d", bits);
1761 		}
1762 	}
1763 
1764 	if (depth != 0 ||
1765 	    ((pap->pa_flags & PA_SHOWNAME) && pap->pa_prefix != NULL))
1766 		mdb_printf("%s ", pap->pa_flags & PA_SHOWVAL ? " =" : "");
1767 
1768 	if (depth == 0 && pap->pa_prefix != NULL)
1769 		name = pap->pa_prefix;
1770 
1771 	pap->pa_depth = depth;
1772 	if (kind <= CTF_K_UNKNOWN || kind >= CTF_K_TYPEDEF) {
1773 		mdb_warn("unknown ctf for %s type %s kind %d\n",
1774 		    name, type, kind);
1775 		return (-1);
1776 	}
1777 	rc = printfuncs[kind - 1](type, name, id, base, off, pap);
1778 
1779 	if (rc != 0)
1780 		mdb_iob_discard(mdb.m_out);
1781 	else
1782 		mdb_iob_puts(mdb.m_out, pap->pa_delim);
1783 
1784 	return (rc);
1785 }
1786 
1787 /*
1788  * Special semantics for pipelines.
1789  */
1790 static int
pipe_print(mdb_ctf_id_t id,ulong_t off,void * data)1791 pipe_print(mdb_ctf_id_t id, ulong_t off, void *data)
1792 {
1793 	printarg_t *pap = data;
1794 	size_t size;
1795 	static const char *const fsp[] = { "%#r", "%#r", "%#r", "%#llr" };
1796 	uintptr_t value;
1797 	uintptr_t addr = pap->pa_addr + off / NBBY;
1798 	mdb_ctf_id_t base;
1799 	int enum_value;
1800 	ctf_encoding_t e;
1801 
1802 	union {
1803 		uint64_t i8;
1804 		uint32_t i4;
1805 		uint16_t i2;
1806 		uint8_t i1;
1807 	} u;
1808 
1809 	if (mdb_ctf_type_resolve(id, &base) == -1) {
1810 		mdb_warn("could not resolve type");
1811 		return (-1);
1812 	}
1813 
1814 	/*
1815 	 * If the user gives -a, then always print out the address of the
1816 	 * member.
1817 	 */
1818 	if ((pap->pa_flags & PA_SHOWADDR)) {
1819 		mdb_printf("%#lr\n", addr);
1820 		return (0);
1821 	}
1822 
1823 	switch (mdb_ctf_type_kind(base)) {
1824 	case CTF_K_POINTER:
1825 		if (mdb_tgt_aread(pap->pa_tgt, pap->pa_as,
1826 		    &value, sizeof (value), addr) != sizeof (value)) {
1827 			mdb_warn("failed to read pointer at %p", addr);
1828 			return (-1);
1829 		}
1830 		mdb_printf("%#lr\n", value);
1831 		break;
1832 
1833 	case CTF_K_ENUM:
1834 		if (mdb_tgt_aread(pap->pa_tgt, pap->pa_as, &enum_value,
1835 		    sizeof (enum_value), addr) != sizeof (enum_value)) {
1836 			mdb_warn("failed to read enum at %llx", addr);
1837 			return (-1);
1838 		}
1839 		mdb_printf("%#r\n", enum_value);
1840 		break;
1841 
1842 	case CTF_K_INTEGER:
1843 		if (mdb_ctf_type_encoding(base, &e) != 0) {
1844 			mdb_warn("could not get type encoding\n");
1845 			return (-1);
1846 		}
1847 
1848 		/*
1849 		 * For immediate values, we just print out the value.
1850 		 */
1851 		size = e.cte_bits / NBBY;
1852 		if (is_bitfield(&e, off)) {
1853 			return (print_bitfield(off, pap, &e));
1854 		}
1855 
1856 		if (mdb_tgt_aread(pap->pa_tgt, pap->pa_as, &u.i8, size,
1857 		    addr) != (size_t)size) {
1858 			mdb_warn("failed to read %lu bytes at %p",
1859 			    (ulong_t)size, pap->pa_addr);
1860 			return (-1);
1861 		}
1862 
1863 		switch (size) {
1864 		case sizeof (uint8_t):
1865 			mdb_printf(fsp[0], u.i1);
1866 			break;
1867 		case sizeof (uint16_t):
1868 			mdb_printf(fsp[1], u.i2);
1869 			break;
1870 		case sizeof (uint32_t):
1871 			mdb_printf(fsp[2], u.i4);
1872 			break;
1873 		case sizeof (uint64_t):
1874 			mdb_printf(fsp[3], u.i8);
1875 			break;
1876 		}
1877 		mdb_printf("\n");
1878 		break;
1879 
1880 	case CTF_K_FUNCTION:
1881 	case CTF_K_FLOAT:
1882 	case CTF_K_ARRAY:
1883 	case CTF_K_UNKNOWN:
1884 	case CTF_K_STRUCT:
1885 	case CTF_K_UNION:
1886 	case CTF_K_FORWARD:
1887 		/*
1888 		 * For these types, always print the address of the member
1889 		 */
1890 		mdb_printf("%#lr\n", addr);
1891 		break;
1892 
1893 	default:
1894 		mdb_warn("unknown type %d", mdb_ctf_type_kind(base));
1895 		break;
1896 	}
1897 
1898 	return (0);
1899 }
1900 
1901 static int
parse_delimiter(char ** strp)1902 parse_delimiter(char **strp)
1903 {
1904 	switch (**strp) {
1905 	case '\0':
1906 		return (MEMBER_DELIM_DONE);
1907 
1908 	case '.':
1909 		*strp = *strp + 1;
1910 		return (MEMBER_DELIM_DOT);
1911 
1912 	case '[':
1913 		*strp = *strp + 1;
1914 		return (MEMBER_DELIM_LBR);
1915 
1916 	case '-':
1917 		*strp = *strp + 1;
1918 		if (**strp == '>') {
1919 			*strp = *strp + 1;
1920 			return (MEMBER_DELIM_PTR);
1921 		}
1922 		*strp = *strp - 1;
1923 		/*FALLTHROUGH*/
1924 	default:
1925 		return (MEMBER_DELIM_ERR);
1926 	}
1927 }
1928 
1929 static int
deref(printarg_t * pap,size_t size)1930 deref(printarg_t *pap, size_t size)
1931 {
1932 	uint32_t a32;
1933 	mdb_tgt_as_t as = pap->pa_as;
1934 	mdb_tgt_addr_t *ap = &pap->pa_addr;
1935 
1936 	if (size == sizeof (mdb_tgt_addr_t)) {
1937 		if (mdb_tgt_aread(mdb.m_target, as, ap, size, *ap) == -1) {
1938 			mdb_warn("could not dereference pointer %llx\n", *ap);
1939 			return (-1);
1940 		}
1941 	} else {
1942 		if (mdb_tgt_aread(mdb.m_target, as, &a32, size, *ap) == -1) {
1943 			mdb_warn("could not dereference pointer %x\n", *ap);
1944 			return (-1);
1945 		}
1946 
1947 		*ap = (mdb_tgt_addr_t)a32;
1948 	}
1949 
1950 	/*
1951 	 * We've dereferenced at least once, we must be on the real
1952 	 * target. If we were in the immediate target, reset to the real
1953 	 * target; it's reset as needed when we return to the print
1954 	 * routines.
1955 	 */
1956 	if (pap->pa_tgt == pap->pa_immtgt)
1957 		pap->pa_tgt = pap->pa_realtgt;
1958 
1959 	return (0);
1960 }
1961 
1962 static int
parse_member(printarg_t * pap,const char * str,mdb_ctf_id_t id,mdb_ctf_id_t * idp,ulong_t * offp,int * last_deref)1963 parse_member(printarg_t *pap, const char *str, mdb_ctf_id_t id,
1964     mdb_ctf_id_t *idp, ulong_t *offp, int *last_deref)
1965 {
1966 	int delim;
1967 	char member[64];
1968 	char buf[128];
1969 	uint_t index;
1970 	char *start = (char *)str;
1971 	char *end;
1972 	ulong_t off = 0;
1973 	mdb_ctf_arinfo_t ar;
1974 	mdb_ctf_id_t rid;
1975 	int kind;
1976 	ssize_t size;
1977 	int non_array = FALSE;
1978 
1979 	/*
1980 	 * id always has the unresolved type for printing error messages
1981 	 * that include the type; rid always has the resolved type for
1982 	 * use in mdb_ctf_* calls.  It is possible for this command to fail,
1983 	 * however, if the resolved type is in the parent and it is currently
1984 	 * unavailable.  Note that we also can't print out the name of the
1985 	 * type, since that would also rely on looking up the resolved name.
1986 	 */
1987 	if (mdb_ctf_type_resolve(id, &rid) != 0) {
1988 		mdb_warn("failed to resolve type");
1989 		return (-1);
1990 	}
1991 
1992 	delim = parse_delimiter(&start);
1993 	/*
1994 	 * If the user fails to specify an initial delimiter, guess -> for
1995 	 * pointer types and . for non-pointer types.
1996 	 */
1997 	if (delim == MEMBER_DELIM_ERR)
1998 		delim = (mdb_ctf_type_kind(rid) == CTF_K_POINTER) ?
1999 		    MEMBER_DELIM_PTR : MEMBER_DELIM_DOT;
2000 
2001 	*last_deref = FALSE;
2002 
2003 	while (delim != MEMBER_DELIM_DONE) {
2004 		switch (delim) {
2005 		case MEMBER_DELIM_PTR:
2006 			kind = mdb_ctf_type_kind(rid);
2007 			if (kind != CTF_K_POINTER) {
2008 				mdb_warn("%s is not a pointer type\n",
2009 				    mdb_ctf_type_name(id, buf, sizeof (buf)));
2010 				return (-1);
2011 			}
2012 
2013 			size = mdb_ctf_type_size(id);
2014 			if (deref(pap, size) != 0)
2015 				return (-1);
2016 
2017 			(void) mdb_ctf_type_reference(rid, &id);
2018 			(void) mdb_ctf_type_resolve(id, &rid);
2019 
2020 			off = 0;
2021 			break;
2022 
2023 		case MEMBER_DELIM_DOT:
2024 			kind = mdb_ctf_type_kind(rid);
2025 			if (kind != CTF_K_STRUCT && kind != CTF_K_UNION) {
2026 				mdb_warn("%s is not a struct or union type\n",
2027 				    mdb_ctf_type_name(id, buf, sizeof (buf)));
2028 				return (-1);
2029 			}
2030 			break;
2031 
2032 		case MEMBER_DELIM_LBR:
2033 			end = strchr(start, ']');
2034 			if (end == NULL) {
2035 				mdb_warn("no trailing ']'\n");
2036 				return (-1);
2037 			}
2038 
2039 			(void) mdb_snprintf(member, end - start + 1, "%s",
2040 			    start);
2041 
2042 			index = mdb_strtoull(member);
2043 
2044 			switch (mdb_ctf_type_kind(rid)) {
2045 			case CTF_K_POINTER:
2046 				size = mdb_ctf_type_size(rid);
2047 
2048 				if (deref(pap, size) != 0)
2049 					return (-1);
2050 
2051 				(void) mdb_ctf_type_reference(rid, &id);
2052 				(void) mdb_ctf_type_resolve(id, &rid);
2053 
2054 				size = mdb_ctf_type_size(id);
2055 				if (size <= 0) {
2056 					mdb_warn("cannot dereference void "
2057 					    "type\n");
2058 					return (-1);
2059 				}
2060 
2061 				pap->pa_addr += index * size;
2062 				off = 0;
2063 
2064 				if (index == 0 && non_array)
2065 					*last_deref = TRUE;
2066 				break;
2067 
2068 			case CTF_K_ARRAY:
2069 				(void) mdb_ctf_array_info(rid, &ar);
2070 
2071 				if (index >= ar.mta_nelems) {
2072 					mdb_warn("index %r is outside of "
2073 					    "array bounds [0 .. %r]\n",
2074 					    index, ar.mta_nelems - 1);
2075 				}
2076 
2077 				id = ar.mta_contents;
2078 				(void) mdb_ctf_type_resolve(id, &rid);
2079 
2080 				size = mdb_ctf_type_size(id);
2081 				if (size <= 0) {
2082 					mdb_warn("cannot dereference void "
2083 					    "type\n");
2084 					return (-1);
2085 				}
2086 
2087 				pap->pa_addr += index * size;
2088 				off = 0;
2089 				break;
2090 
2091 			default:
2092 				mdb_warn("cannot index into non-array, "
2093 				    "non-pointer type\n");
2094 				return (-1);
2095 			}
2096 
2097 			start = end + 1;
2098 			delim = parse_delimiter(&start);
2099 			continue;
2100 
2101 		case MEMBER_DELIM_ERR:
2102 		default:
2103 			mdb_warn("'%c' is not a valid delimiter\n", *start);
2104 			return (-1);
2105 		}
2106 
2107 		*last_deref = FALSE;
2108 		non_array = TRUE;
2109 
2110 		/*
2111 		 * Find the end of the member name; assume that a member
2112 		 * name is at least one character long.
2113 		 */
2114 		for (end = start + 1; isalnum(*end) || *end == '_'; end++)
2115 			continue;
2116 
2117 		(void) mdb_snprintf(member, end - start + 1, "%s", start);
2118 
2119 		if (mdb_ctf_member_info(rid, member, &off, &id) != 0) {
2120 			mdb_warn("failed to find member %s of %s", member,
2121 			    mdb_ctf_type_name(id, buf, sizeof (buf)));
2122 			return (-1);
2123 		}
2124 		(void) mdb_ctf_type_resolve(id, &rid);
2125 
2126 		pap->pa_addr += off / NBBY;
2127 
2128 		start = end;
2129 		delim = parse_delimiter(&start);
2130 	}
2131 
2132 	*idp = id;
2133 	*offp = off;
2134 
2135 	return (0);
2136 }
2137 
2138 static int
cmd_print_tab_common(mdb_tab_cookie_t * mcp,uint_t flags,int argc,const mdb_arg_t * argv)2139 cmd_print_tab_common(mdb_tab_cookie_t *mcp, uint_t flags, int argc,
2140     const mdb_arg_t *argv)
2141 {
2142 	char tn[MDB_SYM_NAMLEN];
2143 	char member[64];
2144 	int delim, kind;
2145 	int ret = 0;
2146 	mdb_ctf_id_t id, rid;
2147 	mdb_ctf_arinfo_t ar;
2148 	char *start, *end;
2149 	ulong_t dul;
2150 
2151 	if (argc == 0 && !(flags & DCMD_TAB_SPACE))
2152 		return (0);
2153 
2154 	if (argc == 0 && (flags & DCMD_TAB_SPACE))
2155 		return (mdb_tab_complete_type(mcp, NULL, MDB_TABC_NOPOINT |
2156 		    MDB_TABC_NOARRAY));
2157 
2158 	if ((ret = mdb_tab_typename(&argc, &argv, tn, sizeof (tn))) < 0)
2159 		return (ret);
2160 
2161 	if (argc == 1 && (!(flags & DCMD_TAB_SPACE) || ret == 1))
2162 		return (mdb_tab_complete_type(mcp, tn, MDB_TABC_NOPOINT |
2163 		    MDB_TABC_NOARRAY));
2164 
2165 	if (argc == 1 && (flags & DCMD_TAB_SPACE))
2166 		return (mdb_tab_complete_member(mcp, tn, NULL));
2167 
2168 	/*
2169 	 * This is the reason that tab completion was created. We're going to go
2170 	 * along and walk the delimiters until we find something a member that
2171 	 * we don't recognize, at which point we'll try and tab complete it.
2172 	 * Note that ::print takes multiple args, so this is going to operate on
2173 	 * whatever the last arg that we have is.
2174 	 */
2175 	if (mdb_ctf_lookup_by_name(tn, &id) != 0)
2176 		return (1);
2177 
2178 	(void) mdb_ctf_type_resolve(id, &rid);
2179 	start = (char *)argv[argc-1].a_un.a_str;
2180 	delim = parse_delimiter(&start);
2181 
2182 	/*
2183 	 * If we hit the case where we actually have no delimiters, than we need
2184 	 * to make sure that we properly set up the fields the loops would.
2185 	 */
2186 	if (delim == MEMBER_DELIM_DONE)
2187 		(void) mdb_snprintf(member, sizeof (member), "%s", start);
2188 
2189 	while (delim != MEMBER_DELIM_DONE) {
2190 		switch (delim) {
2191 		case MEMBER_DELIM_PTR:
2192 			kind = mdb_ctf_type_kind(rid);
2193 			if (kind != CTF_K_POINTER)
2194 				return (1);
2195 
2196 			(void) mdb_ctf_type_reference(rid, &id);
2197 			(void) mdb_ctf_type_resolve(id, &rid);
2198 			break;
2199 		case MEMBER_DELIM_DOT:
2200 			kind = mdb_ctf_type_kind(rid);
2201 			if (kind != CTF_K_STRUCT && kind != CTF_K_UNION)
2202 				return (1);
2203 			break;
2204 		case MEMBER_DELIM_LBR:
2205 			end = strchr(start, ']');
2206 			/*
2207 			 * We're not going to try and tab complete the indexes
2208 			 * here. So for now, punt on it. Also, we're not going
2209 			 * to try and validate you're within the bounds, just
2210 			 * that you get the type you asked for.
2211 			 */
2212 			if (end == NULL)
2213 				return (1);
2214 
2215 			switch (mdb_ctf_type_kind(rid)) {
2216 			case CTF_K_POINTER:
2217 				(void) mdb_ctf_type_reference(rid, &id);
2218 				(void) mdb_ctf_type_resolve(id, &rid);
2219 				break;
2220 			case CTF_K_ARRAY:
2221 				(void) mdb_ctf_array_info(rid, &ar);
2222 				id = ar.mta_contents;
2223 				(void) mdb_ctf_type_resolve(id, &rid);
2224 				break;
2225 			default:
2226 				return (1);
2227 			}
2228 
2229 			start = end + 1;
2230 			delim = parse_delimiter(&start);
2231 			break;
2232 		case MEMBER_DELIM_ERR:
2233 		default:
2234 			break;
2235 		}
2236 
2237 		for (end = start + 1; isalnum(*end) || *end == '_'; end++)
2238 			continue;
2239 
2240 		(void) mdb_snprintf(member, end - start + 1, start);
2241 
2242 		/*
2243 		 * We are going to try to resolve this name as a member. There
2244 		 * are a few two different questions that we need to answer. The
2245 		 * first is do we recognize this member. The second is are we at
2246 		 * the end of the string. If we encounter a member that we don't
2247 		 * recognize before the end, then we have to error out and can't
2248 		 * complete it. But if there are no more delimiters then we can
2249 		 * try and complete it.
2250 		 */
2251 		ret = mdb_ctf_member_info(rid, member, &dul, &id);
2252 		start = end;
2253 		delim = parse_delimiter(&start);
2254 		if (ret != 0 && errno == EMDB_CTFNOMEMB) {
2255 			if (delim != MEMBER_DELIM_DONE)
2256 				return (1);
2257 			continue;
2258 		} else if (ret != 0)
2259 			return (1);
2260 
2261 		if (delim == MEMBER_DELIM_DONE)
2262 			return (mdb_tab_complete_member_by_id(mcp, rid,
2263 			    member));
2264 
2265 		(void) mdb_ctf_type_resolve(id, &rid);
2266 	}
2267 
2268 	/*
2269 	 * If we've reached here, then we need to try and tab complete the last
2270 	 * field, which is currently member, based on the ctf type id that we
2271 	 * already have in rid.
2272 	 */
2273 	return (mdb_tab_complete_member_by_id(mcp, rid, member));
2274 }
2275 
2276 int
cmd_print_tab(mdb_tab_cookie_t * mcp,uint_t flags,int argc,const mdb_arg_t * argv)2277 cmd_print_tab(mdb_tab_cookie_t *mcp, uint_t flags, int argc,
2278     const mdb_arg_t *argv)
2279 {
2280 	int i, dummy;
2281 
2282 	/*
2283 	 * This getopts is only here to make the tab completion work better when
2284 	 * including options in the ::print arguments. None of the values should
2285 	 * be used. This should only be updated with additional arguments, if
2286 	 * they are added to cmd_print.
2287 	 */
2288 	i = mdb_getopts(argc, argv,
2289 	    'a', MDB_OPT_SETBITS, PA_SHOWADDR, &dummy,
2290 	    'C', MDB_OPT_SETBITS, TRUE, &dummy,
2291 	    'c', MDB_OPT_UINTPTR, &dummy,
2292 	    'd', MDB_OPT_SETBITS, PA_INTDEC, &dummy,
2293 	    'h', MDB_OPT_SETBITS, PA_SHOWHOLES, &dummy,
2294 	    'i', MDB_OPT_SETBITS, TRUE, &dummy,
2295 	    'L', MDB_OPT_SETBITS, TRUE, &dummy,
2296 	    'l', MDB_OPT_UINTPTR, &dummy,
2297 	    'n', MDB_OPT_SETBITS, PA_NOSYMBOLIC, &dummy,
2298 	    'p', MDB_OPT_SETBITS, TRUE, &dummy,
2299 	    's', MDB_OPT_UINTPTR, &dummy,
2300 	    'T', MDB_OPT_SETBITS, PA_SHOWTYPE | PA_SHOWBASETYPE, &dummy,
2301 	    't', MDB_OPT_SETBITS, PA_SHOWTYPE, &dummy,
2302 	    'x', MDB_OPT_SETBITS, PA_INTHEX, &dummy,
2303 	    NULL);
2304 
2305 	argc -= i;
2306 	argv += i;
2307 
2308 	return (cmd_print_tab_common(mcp, flags, argc, argv));
2309 }
2310 
2311 /*
2312  * Recursively descend a print a given data structure.  We create a struct of
2313  * the relevant print arguments and then call mdb_ctf_type_visit() to do the
2314  * traversal, using elt_print() as the callback for each element.
2315  */
2316 /*ARGSUSED*/
2317 int
cmd_print(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)2318 cmd_print(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
2319 {
2320 	uintptr_t opt_c = MDB_ARR_NOLIMIT, opt_l = MDB_ARR_NOLIMIT;
2321 	uint_t opt_C = FALSE, opt_L = FALSE, opt_p = FALSE, opt_i = FALSE;
2322 	uintptr_t opt_s = (uintptr_t)-1ul;
2323 	int uflags = (flags & DCMD_ADDRSPEC) ? PA_SHOWVAL : 0;
2324 	mdb_ctf_id_t id;
2325 	int err = DCMD_OK;
2326 
2327 	mdb_tgt_t *t = mdb.m_target;
2328 	printarg_t pa;
2329 	int d, i;
2330 
2331 	char s_name[MDB_SYM_NAMLEN];
2332 	mdb_syminfo_t s_info;
2333 	GElf_Sym sym;
2334 
2335 	/*
2336 	 * If a new option is added, make sure the getopts above in
2337 	 * cmd_print_tab is also updated.
2338 	 */
2339 	i = mdb_getopts(argc, argv,
2340 	    'a', MDB_OPT_SETBITS, PA_SHOWADDR, &uflags,
2341 	    'C', MDB_OPT_SETBITS, TRUE, &opt_C,
2342 	    'c', MDB_OPT_UINTPTR, &opt_c,
2343 	    'd', MDB_OPT_SETBITS, PA_INTDEC, &uflags,
2344 	    'h', MDB_OPT_SETBITS, PA_SHOWHOLES, &uflags,
2345 	    'i', MDB_OPT_SETBITS, TRUE, &opt_i,
2346 	    'L', MDB_OPT_SETBITS, TRUE, &opt_L,
2347 	    'l', MDB_OPT_UINTPTR, &opt_l,
2348 	    'n', MDB_OPT_SETBITS, PA_NOSYMBOLIC, &uflags,
2349 	    'p', MDB_OPT_SETBITS, TRUE, &opt_p,
2350 	    's', MDB_OPT_UINTPTR, &opt_s,
2351 	    'T', MDB_OPT_SETBITS, PA_SHOWTYPE | PA_SHOWBASETYPE, &uflags,
2352 	    't', MDB_OPT_SETBITS, PA_SHOWTYPE, &uflags,
2353 	    'x', MDB_OPT_SETBITS, PA_INTHEX, &uflags,
2354 	    NULL);
2355 
2356 	if (uflags & PA_INTHEX)
2357 		uflags &= ~PA_INTDEC;	/* -x and -d are mutually exclusive */
2358 
2359 	uflags |= PA_SHOWNAME;
2360 
2361 	if (opt_p && opt_i) {
2362 		mdb_warn("-p and -i options are incompatible\n");
2363 		return (DCMD_ERR);
2364 	}
2365 
2366 	argc -= i;
2367 	argv += i;
2368 
2369 	if (argc != 0 && argv->a_type == MDB_TYPE_STRING) {
2370 		const char *t_name = s_name;
2371 		int ret;
2372 
2373 		if (strchr("+-", argv->a_un.a_str[0]) != NULL)
2374 			return (DCMD_USAGE);
2375 
2376 		if ((ret = args_to_typename(&argc, &argv, s_name,
2377 		    sizeof (s_name))) != 0)
2378 			return (ret);
2379 
2380 		if (mdb_ctf_lookup_by_name(t_name, &id) != 0) {
2381 			if (!(flags & DCMD_ADDRSPEC) || opt_i ||
2382 			    addr_to_sym(t, addr, s_name, sizeof (s_name),
2383 			    &sym, &s_info) == NULL ||
2384 			    mdb_ctf_lookup_by_symbol(&sym, &s_info, &id) != 0) {
2385 
2386 				mdb_warn("failed to look up type %s", t_name);
2387 				return (DCMD_ABORT);
2388 			}
2389 		} else {
2390 			argc--;
2391 			argv++;
2392 		}
2393 
2394 	} else if (!(flags & DCMD_ADDRSPEC) || opt_i) {
2395 		return (DCMD_USAGE);
2396 
2397 	} else if (addr_to_sym(t, addr, s_name, sizeof (s_name),
2398 	    &sym, &s_info) == NULL) {
2399 		mdb_warn("no symbol information for %a", addr);
2400 		return (DCMD_ERR);
2401 
2402 	} else if (mdb_ctf_lookup_by_symbol(&sym, &s_info, &id) != 0) {
2403 		mdb_warn("no type data available for %a [%u]", addr,
2404 		    s_info.sym_id);
2405 		return (DCMD_ERR);
2406 	}
2407 
2408 	pa.pa_tgt = mdb.m_target;
2409 	pa.pa_realtgt = pa.pa_tgt;
2410 	pa.pa_immtgt = NULL;
2411 	pa.pa_as = opt_p ? MDB_TGT_AS_PHYS : MDB_TGT_AS_VIRT;
2412 	pa.pa_armemlim = mdb.m_armemlim;
2413 	pa.pa_arstrlim = mdb.m_arstrlim;
2414 	pa.pa_delim = "\n";
2415 	pa.pa_flags = uflags;
2416 	pa.pa_nest = 0;
2417 	pa.pa_tab = 4;
2418 	pa.pa_prefix = NULL;
2419 	pa.pa_suffix = NULL;
2420 	pa.pa_holes = NULL;
2421 	pa.pa_nholes = 0;
2422 	pa.pa_depth = 0;
2423 	pa.pa_maxdepth = opt_s;
2424 	pa.pa_nooutdepth = (uint_t)-1;
2425 
2426 	if ((flags & DCMD_ADDRSPEC) && !opt_i)
2427 		pa.pa_addr = opt_p ? mdb_get_dot() : addr;
2428 	else
2429 		pa.pa_addr = 0;
2430 
2431 	if (opt_i) {
2432 		const char *vargv[2];
2433 		uintmax_t dot = mdb_get_dot();
2434 		size_t outsize = mdb_ctf_type_size(id);
2435 		vargv[0] = (const char *)&dot;
2436 		vargv[1] = (const char *)&outsize;
2437 		pa.pa_immtgt = mdb_tgt_create(mdb_value_tgt_create,
2438 		    0, 2, vargv);
2439 		pa.pa_tgt = pa.pa_immtgt;
2440 	}
2441 
2442 	if (opt_c != MDB_ARR_NOLIMIT)
2443 		pa.pa_arstrlim = opt_c;
2444 	if (opt_C)
2445 		pa.pa_arstrlim = MDB_ARR_NOLIMIT;
2446 	if (opt_l != MDB_ARR_NOLIMIT)
2447 		pa.pa_armemlim = opt_l;
2448 	if (opt_L)
2449 		pa.pa_armemlim = MDB_ARR_NOLIMIT;
2450 
2451 	if (argc > 0) {
2452 		for (i = 0; i < argc; i++) {
2453 			mdb_ctf_id_t mid;
2454 			int last_deref;
2455 			ulong_t off;
2456 			int kind;
2457 			char buf[MDB_SYM_NAMLEN];
2458 
2459 			mdb_tgt_t *oldtgt = pa.pa_tgt;
2460 			mdb_tgt_as_t oldas = pa.pa_as;
2461 			mdb_tgt_addr_t oldaddr = pa.pa_addr;
2462 
2463 			if (argv->a_type == MDB_TYPE_STRING) {
2464 				const char *member = argv[i].a_un.a_str;
2465 				mdb_ctf_id_t rid;
2466 
2467 				if (parse_member(&pa, member, id, &mid,
2468 				    &off, &last_deref) != 0) {
2469 					err = DCMD_ABORT;
2470 					goto out;
2471 				}
2472 
2473 				/*
2474 				 * If the member string ends with a "[0]"
2475 				 * (last_deref * is true) and the type is a
2476 				 * structure or union, * print "->" rather
2477 				 * than "[0]." in elt_print.
2478 				 */
2479 				(void) mdb_ctf_type_resolve(mid, &rid);
2480 				kind = mdb_ctf_type_kind(rid);
2481 				if (last_deref && IS_SOU(kind)) {
2482 					char *end;
2483 					(void) mdb_snprintf(buf, sizeof (buf),
2484 					    "%s", member);
2485 					end = strrchr(buf, '[');
2486 					*end = '\0';
2487 					pa.pa_suffix = "->";
2488 					member = &buf[0];
2489 				} else if (IS_SOU(kind)) {
2490 					pa.pa_suffix = ".";
2491 				} else {
2492 					pa.pa_suffix = "";
2493 				}
2494 
2495 				pa.pa_prefix = member;
2496 			} else {
2497 				ulong_t moff;
2498 
2499 				moff = (ulong_t)argv[i].a_un.a_val;
2500 
2501 				if (mdb_ctf_offset_to_name(id, moff * NBBY,
2502 				    buf, sizeof (buf), 0, &mid, &off) == -1) {
2503 					mdb_warn("invalid offset %lx\n", moff);
2504 					err = DCMD_ABORT;
2505 					goto out;
2506 				}
2507 
2508 				pa.pa_prefix = buf;
2509 				pa.pa_addr += moff - off / NBBY;
2510 				pa.pa_suffix = strlen(buf) == 0 ? "" : ".";
2511 			}
2512 
2513 			off %= NBBY;
2514 			if (flags & DCMD_PIPE_OUT) {
2515 				if (pipe_print(mid, off, &pa) != 0) {
2516 					mdb_warn("failed to print type");
2517 					err = DCMD_ERR;
2518 					goto out;
2519 				}
2520 			} else if (off != 0) {
2521 				mdb_ctf_id_t base;
2522 				(void) mdb_ctf_type_resolve(mid, &base);
2523 
2524 				if (elt_print("", mid, base, off, 0,
2525 				    &pa) != 0) {
2526 					mdb_warn("failed to print type");
2527 					err = DCMD_ERR;
2528 					goto out;
2529 				}
2530 			} else {
2531 				if (mdb_ctf_type_visit(mid, elt_print,
2532 				    &pa) == -1) {
2533 					mdb_warn("failed to print type");
2534 					err = DCMD_ERR;
2535 					goto out;
2536 				}
2537 
2538 				for (d = pa.pa_depth - 1; d >= 0; d--)
2539 					print_close_sou(&pa, d);
2540 			}
2541 
2542 			pa.pa_depth = 0;
2543 			pa.pa_tgt = oldtgt;
2544 			pa.pa_as = oldas;
2545 			pa.pa_addr = oldaddr;
2546 			pa.pa_delim = "\n";
2547 		}
2548 
2549 	} else if (flags & DCMD_PIPE_OUT) {
2550 		if (pipe_print(id, 0, &pa) != 0) {
2551 			mdb_warn("failed to print type");
2552 			err = DCMD_ERR;
2553 			goto out;
2554 		}
2555 	} else {
2556 		if (mdb_ctf_type_visit(id, elt_print, &pa) == -1) {
2557 			mdb_warn("failed to print type");
2558 			err = DCMD_ERR;
2559 			goto out;
2560 		}
2561 
2562 		for (d = pa.pa_depth - 1; d >= 0; d--)
2563 			print_close_sou(&pa, d);
2564 	}
2565 
2566 	mdb_set_dot(addr + mdb_ctf_type_size(id));
2567 	err = DCMD_OK;
2568 out:
2569 	if (pa.pa_immtgt)
2570 		mdb_tgt_destroy(pa.pa_immtgt);
2571 	return (err);
2572 }
2573 
2574 void
print_help(void)2575 print_help(void)
2576 {
2577 	mdb_printf(
2578 	    "-a         show address of object\n"
2579 	    "-C         unlimit the length of character arrays\n"
2580 	    "-c limit   limit the length of character arrays\n"
2581 	    "-d         output values in decimal\n"
2582 	    "-h         print holes in structures\n"
2583 	    "-i         interpret address as data of the given type\n"
2584 	    "-L         unlimit the length of standard arrays\n"
2585 	    "-l limit   limit the length of standard arrays\n"
2586 	    "-n         don't print pointers as symbol offsets\n"
2587 	    "-p         interpret address as a physical memory address\n"
2588 	    "-s depth   limit the recursion depth\n"
2589 	    "-T         show type and <<base type>> of object\n"
2590 	    "-t         show type of object\n"
2591 	    "-x         output values in hexadecimal\n"
2592 	    "\n"
2593 	    "type may be omitted if the C type of addr can be inferred.\n"
2594 	    "\n"
2595 	    "Members may be specified with standard C syntax using the\n"
2596 	    "array indexing operator \"[index]\", structure member\n"
2597 	    "operator \".\", or structure pointer operator \"->\".\n"
2598 	    "\n"
2599 	    "Offsets must use the $[ expression ] syntax\n");
2600 }
2601 
2602 static int
printf_signed(mdb_ctf_id_t id,uintptr_t addr,ulong_t off,char * fmt,boolean_t sign)2603 printf_signed(mdb_ctf_id_t id, uintptr_t addr, ulong_t off, char *fmt,
2604     boolean_t sign)
2605 {
2606 	size_t size;
2607 	mdb_ctf_id_t base;
2608 	ctf_encoding_t e;
2609 
2610 	union {
2611 		uint64_t ui8;
2612 		uint32_t ui4;
2613 		uint16_t ui2;
2614 		uint8_t ui1;
2615 		int64_t i8;
2616 		int32_t i4;
2617 		int16_t i2;
2618 		int8_t i1;
2619 	} u;
2620 
2621 	if (mdb_ctf_type_resolve(id, &base) == -1) {
2622 		mdb_warn("could not resolve type");
2623 		return (DCMD_ABORT);
2624 	}
2625 
2626 	switch (mdb_ctf_type_kind(base)) {
2627 		case CTF_K_ENUM:
2628 			e.cte_format = CTF_INT_SIGNED;
2629 			e.cte_offset = 0;
2630 			e.cte_bits = mdb_ctf_type_size(id) * NBBY;
2631 			break;
2632 		case CTF_K_INTEGER:
2633 			if (mdb_ctf_type_encoding(base, &e) != 0) {
2634 				mdb_warn("could not get type encoding");
2635 				return (DCMD_ABORT);
2636 			}
2637 			break;
2638 		default:
2639 			mdb_warn("expected integer type\n");
2640 			return (DCMD_ABORT);
2641 	}
2642 
2643 	if (sign)
2644 		sign = e.cte_format & CTF_INT_SIGNED;
2645 
2646 	size = e.cte_bits / NBBY;
2647 
2648 	/*
2649 	 * Check to see if our life has been complicated by the presence of
2650 	 * a bitfield.  If it has, we will print it using logic that is only
2651 	 * slightly different than that found in print_bitfield(), above.  (In
2652 	 * particular, see the comments there for an explanation of the
2653 	 * endianness differences in this code.)
2654 	 */
2655 	if (is_bitfield(&e, off)) {
2656 		uint64_t mask = (1ULL << e.cte_bits) - 1;
2657 		uint64_t value = 0;
2658 		uint8_t *buf = (uint8_t *)&value;
2659 		uint8_t shift;
2660 		uint_t nbits;
2661 
2662 		/*
2663 		 * Our bitfield may straddle a byte boundary. We explicitly take
2664 		 * the offset of the bitfield within its byte into account when
2665 		 * determining the overall amount of data to copy and mask off
2666 		 * from the underlying data.
2667 		 */
2668 		nbits = e.cte_bits + (off % NBBY);
2669 		size = P2ROUNDUP(nbits, NBBY) / NBBY;
2670 
2671 		if (e.cte_bits > sizeof (value) * NBBY - 1) {
2672 			mdb_printf("invalid bitfield size %u", e.cte_bits);
2673 			return (DCMD_ABORT);
2674 		}
2675 
2676 		/*
2677 		 * Our bitfield may straddle a byte boundary, if so, the
2678 		 * calculation of size may not correctly capture that. However,
2679 		 * off is relative to the entire bitfield, so we first have to
2680 		 * make that relative to the byte.
2681 		 */
2682 		if ((off % NBBY) + e.cte_bits > NBBY * size) {
2683 			size++;
2684 		}
2685 
2686 		if (size > sizeof (value)) {
2687 			mdb_warn("??? (total bitfield too large after "
2688 			    "alignment\n");
2689 			return (DCMD_ABORT);
2690 		}
2691 
2692 #ifdef _BIG_ENDIAN
2693 		buf += sizeof (value) - size;
2694 		off += e.cte_bits;
2695 #endif
2696 
2697 		if (mdb_vread(buf, size, addr) == -1) {
2698 			mdb_warn("failed to read %lu bytes at %p", size, addr);
2699 			return (DCMD_ERR);
2700 		}
2701 
2702 		shift = off % NBBY;
2703 #ifdef _BIG_ENDIAN
2704 		shift = NBBY - shift;
2705 #endif
2706 
2707 		/*
2708 		 * If we have a bit offset within the byte, shift it down.
2709 		 */
2710 		if (off % NBBY != 0)
2711 			value >>= shift;
2712 		value &= mask;
2713 
2714 		if (sign) {
2715 			int sshift = sizeof (value) * NBBY - e.cte_bits;
2716 			value = ((int64_t)value << sshift) >> sshift;
2717 		}
2718 
2719 		mdb_printf(fmt, value);
2720 		return (0);
2721 	}
2722 
2723 	if (mdb_vread(&u.i8, size, addr) == -1) {
2724 		mdb_warn("failed to read %lu bytes at %p", (ulong_t)size, addr);
2725 		return (DCMD_ERR);
2726 	}
2727 
2728 	switch (size) {
2729 	case sizeof (uint8_t):
2730 		mdb_printf(fmt, (uint64_t)(sign ? u.i1 : u.ui1));
2731 		break;
2732 	case sizeof (uint16_t):
2733 		mdb_printf(fmt, (uint64_t)(sign ? u.i2 : u.ui2));
2734 		break;
2735 	case sizeof (uint32_t):
2736 		mdb_printf(fmt, (uint64_t)(sign ? u.i4 : u.ui4));
2737 		break;
2738 	case sizeof (uint64_t):
2739 		mdb_printf(fmt, (uint64_t)(sign ? u.i8 : u.ui8));
2740 		break;
2741 	}
2742 
2743 	return (0);
2744 }
2745 
2746 static int
printf_int(mdb_ctf_id_t id,uintptr_t addr,ulong_t off,char * fmt)2747 printf_int(mdb_ctf_id_t id, uintptr_t addr, ulong_t off, char *fmt)
2748 {
2749 	return (printf_signed(id, addr, off, fmt, B_TRUE));
2750 }
2751 
2752 static int
printf_uint(mdb_ctf_id_t id,uintptr_t addr,ulong_t off,char * fmt)2753 printf_uint(mdb_ctf_id_t id, uintptr_t addr, ulong_t off, char *fmt)
2754 {
2755 	return (printf_signed(id, addr, off, fmt, B_FALSE));
2756 }
2757 
2758 /*ARGSUSED*/
2759 static int
printf_uint32(mdb_ctf_id_t id,uintptr_t addr,ulong_t off,char * fmt)2760 printf_uint32(mdb_ctf_id_t id, uintptr_t addr, ulong_t off, char *fmt)
2761 {
2762 	mdb_ctf_id_t base;
2763 	ctf_encoding_t e;
2764 	uint32_t value;
2765 
2766 	if (mdb_ctf_type_resolve(id, &base) == -1) {
2767 		mdb_warn("could not resolve type\n");
2768 		return (DCMD_ABORT);
2769 	}
2770 
2771 	if (mdb_ctf_type_kind(base) != CTF_K_INTEGER ||
2772 	    mdb_ctf_type_encoding(base, &e) != 0 ||
2773 	    e.cte_bits / NBBY != sizeof (value)) {
2774 		mdb_warn("expected 32-bit integer type\n");
2775 		return (DCMD_ABORT);
2776 	}
2777 
2778 	if (mdb_vread(&value, sizeof (value), addr) == -1) {
2779 		mdb_warn("failed to read 32-bit value at %p", addr);
2780 		return (DCMD_ERR);
2781 	}
2782 
2783 	mdb_printf(fmt, value);
2784 
2785 	return (0);
2786 }
2787 
2788 /*ARGSUSED*/
2789 static int
printf_ptr(mdb_ctf_id_t id,uintptr_t addr,ulong_t off,char * fmt)2790 printf_ptr(mdb_ctf_id_t id, uintptr_t addr, ulong_t off, char *fmt)
2791 {
2792 	uintptr_t value;
2793 	mdb_ctf_id_t base;
2794 
2795 	if (mdb_ctf_type_resolve(id, &base) == -1) {
2796 		mdb_warn("could not resolve type\n");
2797 		return (DCMD_ABORT);
2798 	}
2799 
2800 	if (mdb_ctf_type_kind(base) != CTF_K_POINTER) {
2801 		mdb_warn("expected pointer type\n");
2802 		return (DCMD_ABORT);
2803 	}
2804 
2805 	if (mdb_vread(&value, sizeof (value), addr) == -1) {
2806 		mdb_warn("failed to read pointer at %llx", addr);
2807 		return (DCMD_ERR);
2808 	}
2809 
2810 	mdb_printf(fmt, value);
2811 
2812 	return (0);
2813 }
2814 
2815 /*ARGSUSED*/
2816 static int
printf_string(mdb_ctf_id_t id,uintptr_t addr,ulong_t off,char * fmt)2817 printf_string(mdb_ctf_id_t id, uintptr_t addr, ulong_t off, char *fmt)
2818 {
2819 	mdb_ctf_id_t base;
2820 	mdb_ctf_arinfo_t r;
2821 	char buf[1024];
2822 	ssize_t size;
2823 
2824 	if (mdb_ctf_type_resolve(id, &base) == -1) {
2825 		mdb_warn("could not resolve type");
2826 		return (DCMD_ABORT);
2827 	}
2828 
2829 	if (mdb_ctf_type_kind(base) == CTF_K_POINTER) {
2830 		uintptr_t value;
2831 
2832 		if (mdb_vread(&value, sizeof (value), addr) == -1) {
2833 			mdb_warn("failed to read pointer at %llx", addr);
2834 			return (DCMD_ERR);
2835 		}
2836 
2837 		if (mdb_readstr(buf, sizeof (buf) - 1, value) < 0) {
2838 			mdb_warn("failed to read string at %llx", value);
2839 			return (DCMD_ERR);
2840 		}
2841 
2842 		mdb_printf(fmt, buf);
2843 		return (0);
2844 	}
2845 
2846 	if (mdb_ctf_type_kind(base) == CTF_K_ENUM) {
2847 		const char *strval;
2848 		int value;
2849 
2850 		if (mdb_vread(&value, sizeof (value), addr) == -1) {
2851 			mdb_warn("failed to read pointer at %llx", addr);
2852 			return (DCMD_ERR);
2853 		}
2854 
2855 		if ((strval = mdb_ctf_enum_name(id, value))) {
2856 			mdb_printf(fmt, strval);
2857 		} else {
2858 			(void) mdb_snprintf(buf, sizeof (buf), "<%d>", value);
2859 			mdb_printf(fmt, buf);
2860 		}
2861 
2862 		return (0);
2863 	}
2864 
2865 	if (mdb_ctf_type_kind(base) != CTF_K_ARRAY) {
2866 		mdb_warn("exepected pointer or array type\n");
2867 		return (DCMD_ABORT);
2868 	}
2869 
2870 	if (mdb_ctf_array_info(base, &r) == -1 ||
2871 	    mdb_ctf_type_resolve(r.mta_contents, &base) == -1 ||
2872 	    (size = mdb_ctf_type_size(base)) == -1) {
2873 		mdb_warn("can't determine array type");
2874 		return (DCMD_ABORT);
2875 	}
2876 
2877 	if (size != 1) {
2878 		mdb_warn("string format specifier requires "
2879 		    "an array of characters\n");
2880 		return (DCMD_ABORT);
2881 	}
2882 
2883 	bzero(buf, sizeof (buf));
2884 
2885 	if (r.mta_nelems != 0) {
2886 		const size_t read_sz = MIN(r.mta_nelems, sizeof (buf) - 1);
2887 		if (mdb_vread(buf, read_sz, addr) == -1) {
2888 			mdb_warn("failed to read array at %p", addr);
2889 			return (DCMD_ERR);
2890 		}
2891 	} else {
2892 		/*
2893 		 * If the element count is zero, assume that the input is a
2894 		 * flexible length array which is NUL terminated.
2895 		 */
2896 		if (mdb_readstr(buf, sizeof (buf), addr) < 0) {
2897 			mdb_warn("failed to read string at %llx", addr);
2898 			return (DCMD_ERR);
2899 		}
2900 	}
2901 
2902 	mdb_printf(fmt, buf);
2903 
2904 	return (0);
2905 }
2906 
2907 /*ARGSUSED*/
2908 static int
printf_ipv6(mdb_ctf_id_t id,uintptr_t addr,ulong_t off,char * fmt)2909 printf_ipv6(mdb_ctf_id_t id, uintptr_t addr, ulong_t off, char *fmt)
2910 {
2911 	mdb_ctf_id_t base;
2912 	mdb_ctf_id_t ipv6_type, ipv6_base;
2913 	in6_addr_t ipv6;
2914 
2915 	if (mdb_ctf_lookup_by_name("in6_addr_t", &ipv6_type) == -1) {
2916 		mdb_warn("could not resolve in6_addr_t type\n");
2917 		return (DCMD_ABORT);
2918 	}
2919 
2920 	if (mdb_ctf_type_resolve(id, &base) == -1) {
2921 		mdb_warn("could not resolve type\n");
2922 		return (DCMD_ABORT);
2923 	}
2924 
2925 	if (mdb_ctf_type_resolve(ipv6_type, &ipv6_base) == -1) {
2926 		mdb_warn("could not resolve in6_addr_t type\n");
2927 		return (DCMD_ABORT);
2928 	}
2929 
2930 	if (mdb_ctf_type_cmp(base, ipv6_base) != 0) {
2931 		mdb_warn("requires argument of type in6_addr_t\n");
2932 		return (DCMD_ABORT);
2933 	}
2934 
2935 	if (mdb_vread(&ipv6, sizeof (ipv6), addr) == -1) {
2936 		mdb_warn("couldn't read in6_addr_t at %p", addr);
2937 		return (DCMD_ERR);
2938 	}
2939 
2940 	mdb_printf(fmt, &ipv6);
2941 
2942 	return (0);
2943 }
2944 
2945 /*
2946  * To validate the format string specified to ::printf, we run the format
2947  * string through a very simple state machine that restricts us to a subset
2948  * of mdb_printf() functionality.
2949  */
2950 enum {
2951 	PRINTF_NOFMT = 1,		/* no current format specifier */
2952 	PRINTF_PERC,			/* processed '%' */
2953 	PRINTF_FMT,			/* processing format specifier */
2954 	PRINTF_LEFT,			/* processed '-', expecting width */
2955 	PRINTF_WIDTH,			/* processing width */
2956 	PRINTF_QUES			/* processed '?', expecting format */
2957 };
2958 
2959 int
cmd_printf_tab(mdb_tab_cookie_t * mcp,uint_t flags,int argc,const mdb_arg_t * argv)2960 cmd_printf_tab(mdb_tab_cookie_t *mcp, uint_t flags, int argc,
2961     const mdb_arg_t *argv)
2962 {
2963 	int ii;
2964 	char *f;
2965 
2966 	/*
2967 	 * If argc doesn't have more than what should be the format string,
2968 	 * ignore it.
2969 	 */
2970 	if (argc <= 1)
2971 		return (0);
2972 
2973 	/*
2974 	 * Because we aren't leveraging the lex and yacc engine, we have to
2975 	 * manually walk the arguments to find both the first and last
2976 	 * open/close quote of the format string.
2977 	 */
2978 	f = strchr(argv[0].a_un.a_str, '"');
2979 	if (f == NULL)
2980 		return (0);
2981 
2982 	f = strchr(f + 1, '"');
2983 	if (f != NULL) {
2984 		ii = 0;
2985 	} else {
2986 		for (ii = 1; ii < argc; ii++) {
2987 			if (argv[ii].a_type != MDB_TYPE_STRING)
2988 				continue;
2989 			f = strchr(argv[ii].a_un.a_str, '"');
2990 			if (f != NULL)
2991 				break;
2992 		}
2993 		/* Never found */
2994 		if (ii == argc)
2995 			return (0);
2996 	}
2997 
2998 	ii++;
2999 	argc -= ii;
3000 	argv += ii;
3001 
3002 	return (cmd_print_tab_common(mcp, flags, argc, argv));
3003 }
3004 
3005 int
cmd_printf(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)3006 cmd_printf(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3007 {
3008 	char type[MDB_SYM_NAMLEN];
3009 	int i, nfmts = 0, ret;
3010 	mdb_ctf_id_t id;
3011 	const char *fmt, *member;
3012 	char **fmts, *last, *dest, f;
3013 	int (**funcs)(mdb_ctf_id_t, uintptr_t, ulong_t, char *);
3014 	int state = PRINTF_NOFMT;
3015 	printarg_t pa;
3016 
3017 	if (!(flags & DCMD_ADDRSPEC))
3018 		return (DCMD_USAGE);
3019 
3020 	bzero(&pa, sizeof (pa));
3021 	pa.pa_as = MDB_TGT_AS_VIRT;
3022 	pa.pa_realtgt = pa.pa_tgt = mdb.m_target;
3023 
3024 	if (argc == 0 || argv[0].a_type != MDB_TYPE_STRING) {
3025 		mdb_warn("expected a format string\n");
3026 		return (DCMD_USAGE);
3027 	}
3028 
3029 	/*
3030 	 * Our first argument is a format string; rip it apart and run it
3031 	 * through our state machine to validate that our input is within the
3032 	 * subset of mdb_printf() format strings that we allow.
3033 	 */
3034 	fmt = argv[0].a_un.a_str;
3035 	/*
3036 	 * 'dest' must be large enough to hold a copy of the format string,
3037 	 * plus a NUL and up to 2 additional characters for each conversion
3038 	 * in the format string.  This gives us a bloat factor of 5/2 ~= 3.
3039 	 *   e.g. "%d" (strlen of 2) --> "%lld\0" (need 5 bytes)
3040 	 */
3041 	dest = mdb_zalloc(strlen(fmt) * 3, UM_SLEEP | UM_GC);
3042 	fmts = mdb_zalloc(strlen(fmt) * sizeof (char *), UM_SLEEP | UM_GC);
3043 	funcs = mdb_zalloc(strlen(fmt) * sizeof (void *), UM_SLEEP | UM_GC);
3044 	last = dest;
3045 
3046 	for (i = 0; fmt[i] != '\0'; i++) {
3047 		*dest++ = f = fmt[i];
3048 
3049 		switch (state) {
3050 		case PRINTF_NOFMT:
3051 			state = f == '%' ? PRINTF_PERC : PRINTF_NOFMT;
3052 			break;
3053 
3054 		case PRINTF_PERC:
3055 			state = f == '-' ? PRINTF_LEFT :
3056 			    f >= '0' && f <= '9' ? PRINTF_WIDTH :
3057 			    f == '?' ? PRINTF_QUES :
3058 			    f == '%' ? PRINTF_NOFMT : PRINTF_FMT;
3059 			break;
3060 
3061 		case PRINTF_LEFT:
3062 			state = f >= '0' && f <= '9' ? PRINTF_WIDTH :
3063 			    f == '?' ? PRINTF_QUES : PRINTF_FMT;
3064 			break;
3065 
3066 		case PRINTF_WIDTH:
3067 			state = f >= '0' && f <= '9' ? PRINTF_WIDTH :
3068 			    PRINTF_FMT;
3069 			break;
3070 
3071 		case PRINTF_QUES:
3072 			state = PRINTF_FMT;
3073 			break;
3074 		}
3075 
3076 		if (state != PRINTF_FMT)
3077 			continue;
3078 
3079 		dest--;
3080 
3081 		/*
3082 		 * Now check that we have one of our valid format characters.
3083 		 */
3084 		switch (f) {
3085 		case 'a':
3086 		case 'A':
3087 		case 'p':
3088 			funcs[nfmts] = printf_ptr;
3089 			break;
3090 
3091 		case 'd':
3092 		case 'q':
3093 		case 'R':
3094 			funcs[nfmts] = printf_int;
3095 			*dest++ = 'l';
3096 			*dest++ = 'l';
3097 			break;
3098 
3099 		case 'I':
3100 			funcs[nfmts] = printf_uint32;
3101 			break;
3102 
3103 		case 'N':
3104 			funcs[nfmts] = printf_ipv6;
3105 			break;
3106 
3107 		case 'H':
3108 		case 'o':
3109 		case 'r':
3110 		case 'u':
3111 		case 'x':
3112 		case 'X':
3113 			funcs[nfmts] = printf_uint;
3114 			*dest++ = 'l';
3115 			*dest++ = 'l';
3116 			break;
3117 
3118 		case 's':
3119 			funcs[nfmts] = printf_string;
3120 			break;
3121 
3122 		case 'Y':
3123 			funcs[nfmts] = sizeof (time_t) == sizeof (int) ?
3124 			    printf_uint32 : printf_uint;
3125 			break;
3126 
3127 		default:
3128 			mdb_warn("illegal format string at or near "
3129 			    "'%c' (position %d)\n", f, i + 1);
3130 			return (DCMD_ABORT);
3131 		}
3132 
3133 		*dest++ = f;
3134 		*dest++ = '\0';
3135 		fmts[nfmts++] = last;
3136 		last = dest;
3137 		state = PRINTF_NOFMT;
3138 	}
3139 
3140 	argc--;
3141 	argv++;
3142 
3143 	/*
3144 	 * Now we expect a type name.
3145 	 */
3146 	if ((ret = args_to_typename(&argc, &argv, type, sizeof (type))) != 0)
3147 		return (ret);
3148 
3149 	argv++;
3150 	argc--;
3151 
3152 	if (mdb_ctf_lookup_by_name(type, &id) != 0) {
3153 		mdb_warn("failed to look up type %s", type);
3154 		return (DCMD_ABORT);
3155 	}
3156 
3157 	if (argc == 0) {
3158 		mdb_warn("at least one member must be specified\n");
3159 		return (DCMD_USAGE);
3160 	}
3161 
3162 	if (argc != nfmts) {
3163 		mdb_warn("%s format specifiers (found %d, expected %d)\n",
3164 		    argc > nfmts ? "missing" : "extra", nfmts, argc);
3165 		return (DCMD_ABORT);
3166 	}
3167 
3168 	for (i = 0; i < argc; i++) {
3169 		mdb_ctf_id_t mid;
3170 		ulong_t off;
3171 		int ignored;
3172 
3173 		if (argv[i].a_type != MDB_TYPE_STRING) {
3174 			mdb_warn("expected only type member arguments\n");
3175 			return (DCMD_ABORT);
3176 		}
3177 
3178 		if (strcmp((member = argv[i].a_un.a_str), ".") == 0) {
3179 			/*
3180 			 * We allow "." to be specified to denote the current
3181 			 * value of dot.
3182 			 */
3183 			if (funcs[i] != printf_ptr && funcs[i] != printf_uint &&
3184 			    funcs[i] != printf_int) {
3185 				mdb_warn("expected integer or pointer format "
3186 				    "specifier for '.'\n");
3187 				return (DCMD_ABORT);
3188 			}
3189 
3190 			mdb_printf(fmts[i], mdb_get_dot());
3191 			continue;
3192 		}
3193 
3194 		pa.pa_addr = addr;
3195 
3196 		if (parse_member(&pa, member, id, &mid, &off, &ignored) != 0)
3197 			return (DCMD_ABORT);
3198 
3199 		if ((ret = funcs[i](mid, pa.pa_addr, off, fmts[i])) != 0) {
3200 			mdb_warn("failed to print member '%s'\n", member);
3201 			return (ret);
3202 		}
3203 	}
3204 
3205 	mdb_printf("%s", last);
3206 	mdb_set_dot(addr + mdb_ctf_type_size(id));
3207 
3208 	return (DCMD_OK);
3209 }
3210 
3211 static char _mdb_printf_help[] =
3212 "The format string argument is a printf(3C)-like format string that is a\n"
3213 "subset of the format strings supported by mdb_printf().  The type argument\n"
3214 "is the name of a type to be used to interpret the memory referenced by dot.\n"
3215 "The member should either be a field in the specified structure, or the\n"
3216 "special member '.', denoting the value of dot (and treated as a pointer).\n"
3217 "The number of members must match the number of format specifiers in the\n"
3218 "format string.\n"
3219 "\n"
3220 "The following format specifiers are recognized by ::printf:\n"
3221 "\n"
3222 "  %%    Prints the '%' symbol.\n"
3223 "  %a    Prints the member in symbolic form.\n"
3224 "  %d    Prints the member as a decimal integer.  If the member is a signed\n"
3225 "        integer type, the output will be signed.\n"
3226 "  %H    Prints the member as a human-readable size.\n"
3227 "  %I    Prints the member as an IPv4 address (must be 32-bit integer type).\n"
3228 "  %N    Prints the member as an IPv6 address (must be of type in6_addr_t).\n"
3229 "  %o    Prints the member as an unsigned octal integer.\n"
3230 "  %p    Prints the member as a pointer, in hexadecimal.\n"
3231 "  %q    Prints the member in signed octal.  Honk if you ever use this!\n"
3232 "  %r    Prints the member as an unsigned value in the current output radix.\n"
3233 "  %R    Prints the member as a signed value in the current output radix.\n"
3234 "  %s    Prints the member as a string (requires a pointer or an array of\n"
3235 "        characters).\n"
3236 "  %u    Prints the member as an unsigned decimal integer.\n"
3237 "  %x    Prints the member in hexadecimal.\n"
3238 "  %X    Prints the member in hexadecimal, using the characters A-F as the\n"
3239 "        digits for the values 10-15.\n"
3240 "  %Y    Prints the member as a time_t as the string "
3241 	    "'year month day HH:MM:SS'.\n"
3242 "\n"
3243 "The following field width specifiers are recognized by ::printf:\n"
3244 "\n"
3245 "  %n    Field width is set to the specified decimal value.\n"
3246 "  %?    Field width is set to the maximum width of a hexadecimal pointer\n"
3247 "        value.  This is 8 in an ILP32 environment, and 16 in an LP64\n"
3248 "        environment.\n"
3249 "\n"
3250 "The following flag specifers are recognized by ::printf:\n"
3251 "\n"
3252 "  %-    Left-justify the output within the specified field width.  If the\n"
3253 "        width of the output is less than the specified field width, the\n"
3254 "        output will be padded with blanks on the right-hand side.  Without\n"
3255 "        %-, values are right-justified by default.\n"
3256 "\n"
3257 "  %0    Zero-fill the output field if the output is right-justified and the\n"
3258 "        width of the output is less than the specified field width.  Without\n"
3259 "        %0, right-justified values are prepended with blanks in order to\n"
3260 "        fill the field.\n"
3261 "\n"
3262 "Examples: \n"
3263 "\n"
3264 "  ::walk proc | "
3265 	"::printf \"%-6d %s\\n\" proc_t p_pidp->pid_id p_user.u_psargs\n"
3266 "  ::walk thread | "
3267 	"::printf \"%?p %3d %a\\n\" kthread_t . t_pri t_startpc\n"
3268 "  ::walk zone | "
3269 	"::printf \"%-40s %20s\\n\" zone_t zone_name zone_nodename\n"
3270 "  ::walk ire | "
3271 	"::printf \"%Y %I\\n\" ire_t ire_create_time ire_u.ire4_u.ire4_addr\n"
3272 "\n";
3273 
3274 void
printf_help(void)3275 printf_help(void)
3276 {
3277 	mdb_printf("%s", _mdb_printf_help);
3278 }
3279