1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2016, Joyent, Inc. All rights reserved.
25 * Copyright (c) 2012, 2014 by Delphix. All rights reserved.
26 */
27
28 /*
29 * DTrace - Dynamic Tracing for Solaris
30 *
31 * This is the implementation of the Solaris Dynamic Tracing framework
32 * (DTrace). The user-visible interface to DTrace is described at length in
33 * the "Solaris Dynamic Tracing Guide". The interfaces between the libdtrace
34 * library, the in-kernel DTrace framework, and the DTrace providers are
35 * described in the block comments in the <sys/dtrace.h> header file. The
36 * internal architecture of DTrace is described in the block comments in the
37 * <sys/dtrace_impl.h> header file. The comments contained within the DTrace
38 * implementation very much assume mastery of all of these sources; if one has
39 * an unanswered question about the implementation, one should consult them
40 * first.
41 *
42 * The functions here are ordered roughly as follows:
43 *
44 * - Probe context functions
45 * - Probe hashing functions
46 * - Non-probe context utility functions
47 * - Matching functions
48 * - Provider-to-Framework API functions
49 * - Probe management functions
50 * - DIF object functions
51 * - Format functions
52 * - Predicate functions
53 * - ECB functions
54 * - Buffer functions
55 * - Enabling functions
56 * - DOF functions
57 * - Anonymous enabling functions
58 * - Consumer state functions
59 * - Helper functions
60 * - Hook functions
61 * - Driver cookbook functions
62 *
63 * Each group of functions begins with a block comment labelled the "DTrace
64 * [Group] Functions", allowing one to find each block by searching forward
65 * on capital-f functions.
66 */
67 #include <sys/errno.h>
68 #include <sys/param.h>
69 #include <sys/types.h>
70 #ifndef illumos
71 #include <sys/time.h>
72 #endif
73 #include <sys/stat.h>
74 #include <sys/conf.h>
75 #include <sys/systm.h>
76 #include <sys/endian.h>
77 #ifdef illumos
78 #include <sys/ddi.h>
79 #include <sys/sunddi.h>
80 #endif
81 #include <sys/cpuvar.h>
82 #include <sys/kmem.h>
83 #ifdef illumos
84 #include <sys/strsubr.h>
85 #endif
86 #include <sys/sysmacros.h>
87 #include <sys/dtrace_impl.h>
88 #include <sys/atomic.h>
89 #include <sys/cmn_err.h>
90 #ifdef illumos
91 #include <sys/mutex_impl.h>
92 #include <sys/rwlock_impl.h>
93 #endif
94 #include <sys/ctf_api.h>
95 #ifdef illumos
96 #include <sys/panic.h>
97 #include <sys/priv_impl.h>
98 #endif
99 #ifdef illumos
100 #include <sys/cred_impl.h>
101 #include <sys/procfs_isa.h>
102 #endif
103 #include <sys/taskq.h>
104 #ifdef illumos
105 #include <sys/mkdev.h>
106 #include <sys/kdi.h>
107 #endif
108 #include <sys/zone.h>
109 #include <sys/socket.h>
110 #include <netinet/in.h>
111 #include "strtolctype.h"
112
113 /* FreeBSD includes: */
114 #ifndef illumos
115 #include <sys/callout.h>
116 #include <sys/ctype.h>
117 #include <sys/eventhandler.h>
118 #include <sys/limits.h>
119 #include <sys/linker.h>
120 #include <sys/kdb.h>
121 #include <sys/jail.h>
122 #include <sys/kernel.h>
123 #include <sys/malloc.h>
124 #include <sys/lock.h>
125 #include <sys/mutex.h>
126 #include <sys/ptrace.h>
127 #include <sys/random.h>
128 #include <sys/rwlock.h>
129 #include <sys/sx.h>
130 #include <sys/sysctl.h>
131
132
133 #include <sys/mount.h>
134 #undef AT_UID
135 #undef AT_GID
136 #include <sys/vnode.h>
137 #include <sys/cred.h>
138
139 #include <sys/dtrace_bsd.h>
140
141 #include <netinet/in.h>
142
143 #include "dtrace_cddl.h"
144 #include "dtrace_debug.c"
145 #endif
146
147 #include "dtrace_xoroshiro128_plus.h"
148
149 /*
150 * DTrace Tunable Variables
151 *
152 * The following variables may be tuned by adding a line to /etc/system that
153 * includes both the name of the DTrace module ("dtrace") and the name of the
154 * variable. For example:
155 *
156 * set dtrace:dtrace_destructive_disallow = 1
157 *
158 * In general, the only variables that one should be tuning this way are those
159 * that affect system-wide DTrace behavior, and for which the default behavior
160 * is undesirable. Most of these variables are tunable on a per-consumer
161 * basis using DTrace options, and need not be tuned on a system-wide basis.
162 * When tuning these variables, avoid pathological values; while some attempt
163 * is made to verify the integrity of these variables, they are not considered
164 * part of the supported interface to DTrace, and they are therefore not
165 * checked comprehensively. Further, these variables should not be tuned
166 * dynamically via "mdb -kw" or other means; they should only be tuned via
167 * /etc/system.
168 */
169 int dtrace_destructive_disallow = 0;
170 #ifndef illumos
171 /* Positive logic version of dtrace_destructive_disallow for loader tunable */
172 int dtrace_allow_destructive = 1;
173 #endif
174 dtrace_optval_t dtrace_nonroot_maxsize = (16 * 1024 * 1024);
175 size_t dtrace_difo_maxsize = (256 * 1024);
176 dtrace_optval_t dtrace_dof_maxsize = (8 * 1024 * 1024);
177 size_t dtrace_statvar_maxsize = (16 * 1024);
178 size_t dtrace_actions_max = (16 * 1024);
179 size_t dtrace_retain_max = 1024;
180 dtrace_optval_t dtrace_helper_actions_max = 128;
181 dtrace_optval_t dtrace_helper_providers_max = 32;
182 dtrace_optval_t dtrace_dstate_defsize = (1 * 1024 * 1024);
183 size_t dtrace_strsize_default = 256;
184 dtrace_optval_t dtrace_cleanrate_default = 9900990; /* 101 hz */
185 dtrace_optval_t dtrace_cleanrate_min = 200000; /* 5000 hz */
186 dtrace_optval_t dtrace_cleanrate_max = (uint64_t)60 * NANOSEC; /* 1/minute */
187 dtrace_optval_t dtrace_aggrate_default = NANOSEC; /* 1 hz */
188 dtrace_optval_t dtrace_statusrate_default = NANOSEC; /* 1 hz */
189 dtrace_optval_t dtrace_statusrate_max = (hrtime_t)10 * NANOSEC; /* 6/minute */
190 dtrace_optval_t dtrace_switchrate_default = NANOSEC; /* 1 hz */
191 dtrace_optval_t dtrace_nspec_default = 1;
192 dtrace_optval_t dtrace_specsize_default = 32 * 1024;
193 dtrace_optval_t dtrace_stackframes_default = 20;
194 dtrace_optval_t dtrace_ustackframes_default = 20;
195 dtrace_optval_t dtrace_jstackframes_default = 50;
196 dtrace_optval_t dtrace_jstackstrsize_default = 512;
197 int dtrace_msgdsize_max = 128;
198 hrtime_t dtrace_chill_max = MSEC2NSEC(500); /* 500 ms */
199 hrtime_t dtrace_chill_interval = NANOSEC; /* 1000 ms */
200 int dtrace_devdepth_max = 32;
201 int dtrace_err_verbose;
202 hrtime_t dtrace_deadman_interval = NANOSEC;
203 hrtime_t dtrace_deadman_timeout = (hrtime_t)10 * NANOSEC;
204 hrtime_t dtrace_deadman_user = (hrtime_t)30 * NANOSEC;
205 hrtime_t dtrace_unregister_defunct_reap = (hrtime_t)60 * NANOSEC;
206 #ifndef illumos
207 int dtrace_memstr_max = 4096;
208 int dtrace_bufsize_max_frac = 128;
209 #endif
210
211 /*
212 * DTrace External Variables
213 *
214 * As dtrace(7D) is a kernel module, any DTrace variables are obviously
215 * available to DTrace consumers via the backtick (`) syntax. One of these,
216 * dtrace_zero, is made deliberately so: it is provided as a source of
217 * well-known, zero-filled memory. While this variable is not documented,
218 * it is used by some translators as an implementation detail.
219 */
220 const char dtrace_zero[256] = { 0 }; /* zero-filled memory */
221
222 /*
223 * DTrace Internal Variables
224 */
225 #ifdef illumos
226 static dev_info_t *dtrace_devi; /* device info */
227 #endif
228 #ifdef illumos
229 static vmem_t *dtrace_arena; /* probe ID arena */
230 static vmem_t *dtrace_minor; /* minor number arena */
231 #else
232 static taskq_t *dtrace_taskq; /* task queue */
233 static struct unrhdr *dtrace_arena; /* Probe ID number. */
234 #endif
235 static dtrace_probe_t **dtrace_probes; /* array of all probes */
236 static int dtrace_nprobes; /* number of probes */
237 static dtrace_provider_t *dtrace_provider; /* provider list */
238 static dtrace_meta_t *dtrace_meta_pid; /* user-land meta provider */
239 static int dtrace_opens; /* number of opens */
240 static int dtrace_helpers; /* number of helpers */
241 static int dtrace_getf; /* number of unpriv getf()s */
242 #ifdef illumos
243 static void *dtrace_softstate; /* softstate pointer */
244 #endif
245 static dtrace_hash_t *dtrace_bymod; /* probes hashed by module */
246 static dtrace_hash_t *dtrace_byfunc; /* probes hashed by function */
247 static dtrace_hash_t *dtrace_byname; /* probes hashed by name */
248 static dtrace_toxrange_t *dtrace_toxrange; /* toxic range array */
249 static int dtrace_toxranges; /* number of toxic ranges */
250 static int dtrace_toxranges_max; /* size of toxic range array */
251 static dtrace_anon_t dtrace_anon; /* anonymous enabling */
252 static kmem_cache_t *dtrace_state_cache; /* cache for dynamic state */
253 static uint64_t dtrace_vtime_references; /* number of vtimestamp refs */
254 static kthread_t *dtrace_panicked; /* panicking thread */
255 static dtrace_ecb_t *dtrace_ecb_create_cache; /* cached created ECB */
256 static dtrace_genid_t dtrace_probegen; /* current probe generation */
257 static dtrace_helpers_t *dtrace_deferred_pid; /* deferred helper list */
258 static dtrace_enabling_t *dtrace_retained; /* list of retained enablings */
259 static dtrace_genid_t dtrace_retained_gen; /* current retained enab gen */
260 static dtrace_dynvar_t dtrace_dynhash_sink; /* end of dynamic hash chains */
261 static int dtrace_dynvar_failclean; /* dynvars failed to clean */
262 #ifndef illumos
263 static struct mtx dtrace_unr_mtx;
264 MTX_SYSINIT(dtrace_unr_mtx, &dtrace_unr_mtx, "Unique resource identifier", MTX_DEF);
265 static eventhandler_tag dtrace_kld_load_tag;
266 static eventhandler_tag dtrace_kld_unload_try_tag;
267 #endif
268
269 /*
270 * DTrace Locking
271 * DTrace is protected by three (relatively coarse-grained) locks:
272 *
273 * (1) dtrace_lock is required to manipulate essentially any DTrace state,
274 * including enabling state, probes, ECBs, consumer state, helper state,
275 * etc. Importantly, dtrace_lock is _not_ required when in probe context;
276 * probe context is lock-free -- synchronization is handled via the
277 * dtrace_sync() cross call mechanism.
278 *
279 * (2) dtrace_provider_lock is required when manipulating provider state, or
280 * when provider state must be held constant.
281 *
282 * (3) dtrace_meta_lock is required when manipulating meta provider state, or
283 * when meta provider state must be held constant.
284 *
285 * The lock ordering between these three locks is dtrace_meta_lock before
286 * dtrace_provider_lock before dtrace_lock. (In particular, there are
287 * several places where dtrace_provider_lock is held by the framework as it
288 * calls into the providers -- which then call back into the framework,
289 * grabbing dtrace_lock.)
290 *
291 * There are two other locks in the mix: mod_lock and cpu_lock. With respect
292 * to dtrace_provider_lock and dtrace_lock, cpu_lock continues its historical
293 * role as a coarse-grained lock; it is acquired before both of these locks.
294 * With respect to dtrace_meta_lock, its behavior is stranger: cpu_lock must
295 * be acquired _between_ dtrace_meta_lock and any other DTrace locks.
296 * mod_lock is similar with respect to dtrace_provider_lock in that it must be
297 * acquired _between_ dtrace_provider_lock and dtrace_lock.
298 */
299 static kmutex_t dtrace_lock; /* probe state lock */
300 static kmutex_t dtrace_provider_lock; /* provider state lock */
301 static kmutex_t dtrace_meta_lock; /* meta-provider state lock */
302
303 #ifndef illumos
304 /* XXX FreeBSD hacks. */
305 #define cr_suid cr_svuid
306 #define cr_sgid cr_svgid
307 #define ipaddr_t in_addr_t
308 #define mod_modname pathname
309 #define vuprintf vprintf
310 #ifndef crgetzoneid
311 #define crgetzoneid(_a) 0
312 #endif
313 #define ttoproc(_a) ((_a)->td_proc)
314 #define SNOCD 0
315 #define CPU_ON_INTR(_a) 0
316
317 #define PRIV_EFFECTIVE (1 << 0)
318 #define PRIV_DTRACE_KERNEL (1 << 1)
319 #define PRIV_DTRACE_PROC (1 << 2)
320 #define PRIV_DTRACE_USER (1 << 3)
321 #define PRIV_PROC_OWNER (1 << 4)
322 #define PRIV_PROC_ZONE (1 << 5)
323 #define PRIV_ALL ~0
324
325 SYSCTL_DECL(_debug_dtrace);
326 SYSCTL_DECL(_kern_dtrace);
327 #endif
328
329 #ifdef illumos
330 #define curcpu CPU->cpu_id
331 #endif
332
333
334 /*
335 * DTrace Provider Variables
336 *
337 * These are the variables relating to DTrace as a provider (that is, the
338 * provider of the BEGIN, END, and ERROR probes).
339 */
340 static dtrace_pattr_t dtrace_provider_attr = {
341 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
342 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
343 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
344 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
345 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
346 };
347
348 static void
dtrace_nullop(void)349 dtrace_nullop(void)
350 {}
351
352 static dtrace_pops_t dtrace_provider_ops = {
353 .dtps_provide = (void (*)(void *, dtrace_probedesc_t *))dtrace_nullop,
354 .dtps_provide_module = (void (*)(void *, modctl_t *))dtrace_nullop,
355 .dtps_enable = (void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
356 .dtps_disable = (void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
357 .dtps_suspend = (void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
358 .dtps_resume = (void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
359 .dtps_getargdesc = NULL,
360 .dtps_getargval = NULL,
361 .dtps_usermode = NULL,
362 .dtps_destroy = (void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
363 };
364
365 static dtrace_id_t dtrace_probeid_begin; /* special BEGIN probe */
366 static dtrace_id_t dtrace_probeid_end; /* special END probe */
367 dtrace_id_t dtrace_probeid_error; /* special ERROR probe */
368
369 /*
370 * DTrace Helper Tracing Variables
371 *
372 * These variables should be set dynamically to enable helper tracing. The
373 * only variables that should be set are dtrace_helptrace_enable (which should
374 * be set to a non-zero value to allocate helper tracing buffers on the next
375 * open of /dev/dtrace) and dtrace_helptrace_disable (which should be set to a
376 * non-zero value to deallocate helper tracing buffers on the next close of
377 * /dev/dtrace). When (and only when) helper tracing is disabled, the
378 * buffer size may also be set via dtrace_helptrace_bufsize.
379 */
380 int dtrace_helptrace_enable = 0;
381 int dtrace_helptrace_disable = 0;
382 int dtrace_helptrace_bufsize = 16 * 1024 * 1024;
383 uint32_t dtrace_helptrace_nlocals;
384 static dtrace_helptrace_t *dtrace_helptrace_buffer;
385 static uint32_t dtrace_helptrace_next = 0;
386 static int dtrace_helptrace_wrapped = 0;
387
388 /*
389 * DTrace Error Hashing
390 *
391 * On DEBUG kernels, DTrace will track the errors that has seen in a hash
392 * table. This is very useful for checking coverage of tests that are
393 * expected to induce DIF or DOF processing errors, and may be useful for
394 * debugging problems in the DIF code generator or in DOF generation . The
395 * error hash may be examined with the ::dtrace_errhash MDB dcmd.
396 */
397 #ifdef DEBUG
398 static dtrace_errhash_t dtrace_errhash[DTRACE_ERRHASHSZ];
399 static const char *dtrace_errlast;
400 static kthread_t *dtrace_errthread;
401 static kmutex_t dtrace_errlock;
402 #endif
403
404 /*
405 * DTrace Macros and Constants
406 *
407 * These are various macros that are useful in various spots in the
408 * implementation, along with a few random constants that have no meaning
409 * outside of the implementation. There is no real structure to this cpp
410 * mishmash -- but is there ever?
411 */
412 #define DTRACE_HASHSTR(hash, probe) \
413 dtrace_hash_str(*((char **)((uintptr_t)(probe) + (hash)->dth_stroffs)))
414
415 #define DTRACE_HASHNEXT(hash, probe) \
416 (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_nextoffs)
417
418 #define DTRACE_HASHPREV(hash, probe) \
419 (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_prevoffs)
420
421 #define DTRACE_HASHEQ(hash, lhs, rhs) \
422 (strcmp(*((char **)((uintptr_t)(lhs) + (hash)->dth_stroffs)), \
423 *((char **)((uintptr_t)(rhs) + (hash)->dth_stroffs))) == 0)
424
425 #define DTRACE_AGGHASHSIZE_SLEW 17
426
427 #define DTRACE_V4MAPPED_OFFSET (sizeof (uint32_t) * 3)
428
429 /*
430 * The key for a thread-local variable consists of the lower 61 bits of the
431 * t_did, plus the 3 bits of the highest active interrupt above LOCK_LEVEL.
432 * We add DIF_VARIABLE_MAX to t_did to assure that the thread key is never
433 * equal to a variable identifier. This is necessary (but not sufficient) to
434 * assure that global associative arrays never collide with thread-local
435 * variables. To guarantee that they cannot collide, we must also define the
436 * order for keying dynamic variables. That order is:
437 *
438 * [ key0 ] ... [ keyn ] [ variable-key ] [ tls-key ]
439 *
440 * Because the variable-key and the tls-key are in orthogonal spaces, there is
441 * no way for a global variable key signature to match a thread-local key
442 * signature.
443 */
444 #ifdef illumos
445 #define DTRACE_TLS_THRKEY(where) { \
446 uint_t intr = 0; \
447 uint_t actv = CPU->cpu_intr_actv >> (LOCK_LEVEL + 1); \
448 for (; actv; actv >>= 1) \
449 intr++; \
450 ASSERT(intr < (1 << 3)); \
451 (where) = ((curthread->t_did + DIF_VARIABLE_MAX) & \
452 (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
453 }
454 #else
455 #define DTRACE_TLS_THRKEY(where) { \
456 solaris_cpu_t *_c = &solaris_cpu[curcpu]; \
457 uint_t intr = 0; \
458 uint_t actv = _c->cpu_intr_actv; \
459 for (; actv; actv >>= 1) \
460 intr++; \
461 ASSERT(intr < (1 << 3)); \
462 (where) = ((curthread->td_tid + DIF_VARIABLE_MAX) & \
463 (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
464 }
465 #endif
466
467 #define DT_BSWAP_8(x) ((x) & 0xff)
468 #define DT_BSWAP_16(x) ((DT_BSWAP_8(x) << 8) | DT_BSWAP_8((x) >> 8))
469 #define DT_BSWAP_32(x) ((DT_BSWAP_16(x) << 16) | DT_BSWAP_16((x) >> 16))
470 #define DT_BSWAP_64(x) ((DT_BSWAP_32(x) << 32) | DT_BSWAP_32((x) >> 32))
471
472 #define DT_MASK_LO 0x00000000FFFFFFFFULL
473
474 #define DTRACE_STORE(type, tomax, offset, what) \
475 *((type *)((uintptr_t)(tomax) + (size_t)offset)) = (type)(what);
476
477 #if !defined(__x86) && !defined(__aarch64__)
478 #define DTRACE_ALIGNCHECK(addr, size, flags) \
479 if (addr & (size - 1)) { \
480 *flags |= CPU_DTRACE_BADALIGN; \
481 cpu_core[curcpu].cpuc_dtrace_illval = addr; \
482 return (0); \
483 }
484 #else
485 #define DTRACE_ALIGNCHECK(addr, size, flags)
486 #endif
487
488 /*
489 * Test whether a range of memory starting at testaddr of size testsz falls
490 * within the range of memory described by addr, sz. We take care to avoid
491 * problems with overflow and underflow of the unsigned quantities, and
492 * disallow all negative sizes. Ranges of size 0 are allowed.
493 */
494 #define DTRACE_INRANGE(testaddr, testsz, baseaddr, basesz) \
495 ((testaddr) - (uintptr_t)(baseaddr) < (basesz) && \
496 (testaddr) + (testsz) - (uintptr_t)(baseaddr) <= (basesz) && \
497 (testaddr) + (testsz) >= (testaddr))
498
499 #define DTRACE_RANGE_REMAIN(remp, addr, baseaddr, basesz) \
500 do { \
501 if ((remp) != NULL) { \
502 *(remp) = (uintptr_t)(baseaddr) + (basesz) - (addr); \
503 } \
504 } while (0)
505
506
507 /*
508 * Test whether alloc_sz bytes will fit in the scratch region. We isolate
509 * alloc_sz on the righthand side of the comparison in order to avoid overflow
510 * or underflow in the comparison with it. This is simpler than the INRANGE
511 * check above, because we know that the dtms_scratch_ptr is valid in the
512 * range. Allocations of size zero are allowed.
513 */
514 #define DTRACE_INSCRATCH(mstate, alloc_sz) \
515 ((mstate)->dtms_scratch_base + (mstate)->dtms_scratch_size - \
516 (mstate)->dtms_scratch_ptr >= (alloc_sz))
517
518 #define DTRACE_INSCRATCHPTR(mstate, ptr, howmany) \
519 ((ptr) >= (mstate)->dtms_scratch_base && \
520 (ptr) <= \
521 ((mstate)->dtms_scratch_base + (mstate)->dtms_scratch_size - (howmany)))
522
523 #define DTRACE_LOADFUNC(bits) \
524 /*CSTYLED*/ \
525 uint##bits##_t \
526 dtrace_load##bits(uintptr_t addr) \
527 { \
528 size_t size = bits / NBBY; \
529 /*CSTYLED*/ \
530 uint##bits##_t rval; \
531 int i; \
532 volatile uint16_t *flags = (volatile uint16_t *) \
533 &cpu_core[curcpu].cpuc_dtrace_flags; \
534 \
535 DTRACE_ALIGNCHECK(addr, size, flags); \
536 \
537 for (i = 0; i < dtrace_toxranges; i++) { \
538 if (addr >= dtrace_toxrange[i].dtt_limit) \
539 continue; \
540 \
541 if (addr + size <= dtrace_toxrange[i].dtt_base) \
542 continue; \
543 \
544 /* \
545 * This address falls within a toxic region; return 0. \
546 */ \
547 *flags |= CPU_DTRACE_BADADDR; \
548 cpu_core[curcpu].cpuc_dtrace_illval = addr; \
549 return (0); \
550 } \
551 \
552 __compiler_membar(); \
553 *flags |= CPU_DTRACE_NOFAULT; \
554 /*CSTYLED*/ \
555 rval = *((volatile uint##bits##_t *)addr); \
556 *flags &= ~CPU_DTRACE_NOFAULT; \
557 __compiler_membar(); \
558 \
559 return (!(*flags & CPU_DTRACE_FAULT) ? rval : 0); \
560 }
561
562 #ifdef _LP64
563 #define dtrace_loadptr dtrace_load64
564 #else
565 #define dtrace_loadptr dtrace_load32
566 #endif
567
568 #define DTRACE_DYNHASH_FREE 0
569 #define DTRACE_DYNHASH_SINK 1
570 #define DTRACE_DYNHASH_VALID 2
571
572 #define DTRACE_MATCH_NEXT 0
573 #define DTRACE_MATCH_DONE 1
574 #define DTRACE_ANCHORED(probe) ((probe)->dtpr_func[0] != '\0')
575 #define DTRACE_STATE_ALIGN 64
576
577 #define DTRACE_FLAGS2FLT(flags) \
578 (((flags) & CPU_DTRACE_BADADDR) ? DTRACEFLT_BADADDR : \
579 ((flags) & CPU_DTRACE_ILLOP) ? DTRACEFLT_ILLOP : \
580 ((flags) & CPU_DTRACE_DIVZERO) ? DTRACEFLT_DIVZERO : \
581 ((flags) & CPU_DTRACE_KPRIV) ? DTRACEFLT_KPRIV : \
582 ((flags) & CPU_DTRACE_UPRIV) ? DTRACEFLT_UPRIV : \
583 ((flags) & CPU_DTRACE_TUPOFLOW) ? DTRACEFLT_TUPOFLOW : \
584 ((flags) & CPU_DTRACE_BADALIGN) ? DTRACEFLT_BADALIGN : \
585 ((flags) & CPU_DTRACE_NOSCRATCH) ? DTRACEFLT_NOSCRATCH : \
586 ((flags) & CPU_DTRACE_BADSTACK) ? DTRACEFLT_BADSTACK : \
587 DTRACEFLT_UNKNOWN)
588
589 #define DTRACEACT_ISSTRING(act) \
590 ((act)->dta_kind == DTRACEACT_DIFEXPR && \
591 (act)->dta_difo->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING)
592
593 /* Function prototype definitions: */
594 static size_t dtrace_strlen(const char *, size_t);
595 static dtrace_probe_t *dtrace_probe_lookup_id(dtrace_id_t id);
596 static void dtrace_enabling_provide(dtrace_provider_t *);
597 static int dtrace_enabling_match(dtrace_enabling_t *, int *);
598 static void dtrace_enabling_matchall(void);
599 static void dtrace_enabling_matchall_task(void *);
600 static void dtrace_enabling_reap(void *);
601 static dtrace_state_t *dtrace_anon_grab(void);
602 static uint64_t dtrace_helper(int, dtrace_mstate_t *,
603 dtrace_state_t *, uint64_t, uint64_t);
604 static dtrace_helpers_t *dtrace_helpers_create(proc_t *);
605 static void dtrace_buffer_drop(dtrace_buffer_t *);
606 static int dtrace_buffer_consumed(dtrace_buffer_t *, hrtime_t when);
607 static ssize_t dtrace_buffer_reserve(dtrace_buffer_t *, size_t, size_t,
608 dtrace_state_t *, dtrace_mstate_t *);
609 static int dtrace_state_option(dtrace_state_t *, dtrace_optid_t,
610 dtrace_optval_t);
611 static int dtrace_ecb_create_enable(dtrace_probe_t *, void *);
612 static void dtrace_helper_provider_destroy(dtrace_helper_provider_t *);
613 uint16_t dtrace_load16(uintptr_t);
614 uint32_t dtrace_load32(uintptr_t);
615 uint64_t dtrace_load64(uintptr_t);
616 uint8_t dtrace_load8(uintptr_t);
617 void dtrace_dynvar_clean(dtrace_dstate_t *);
618 dtrace_dynvar_t *dtrace_dynvar(dtrace_dstate_t *, uint_t, dtrace_key_t *,
619 size_t, dtrace_dynvar_op_t, dtrace_mstate_t *, dtrace_vstate_t *);
620 uintptr_t dtrace_dif_varstr(uintptr_t, dtrace_state_t *, dtrace_mstate_t *);
621 static int dtrace_priv_proc(dtrace_state_t *);
622 static void dtrace_getf_barrier(void);
623 static int dtrace_canload_remains(uint64_t, size_t, size_t *,
624 dtrace_mstate_t *, dtrace_vstate_t *);
625 static int dtrace_canstore_remains(uint64_t, size_t, size_t *,
626 dtrace_mstate_t *, dtrace_vstate_t *);
627
628 /*
629 * DTrace Probe Context Functions
630 *
631 * These functions are called from probe context. Because probe context is
632 * any context in which C may be called, arbitrarily locks may be held,
633 * interrupts may be disabled, we may be in arbitrary dispatched state, etc.
634 * As a result, functions called from probe context may only call other DTrace
635 * support functions -- they may not interact at all with the system at large.
636 * (Note that the ASSERT macro is made probe-context safe by redefining it in
637 * terms of dtrace_assfail(), a probe-context safe function.) If arbitrary
638 * loads are to be performed from probe context, they _must_ be in terms of
639 * the safe dtrace_load*() variants.
640 *
641 * Some functions in this block are not actually called from probe context;
642 * for these functions, there will be a comment above the function reading
643 * "Note: not called from probe context."
644 */
645 void
dtrace_panic(const char * format,...)646 dtrace_panic(const char *format, ...)
647 {
648 va_list alist;
649
650 va_start(alist, format);
651 #ifdef __FreeBSD__
652 vpanic(format, alist);
653 #else
654 dtrace_vpanic(format, alist);
655 #endif
656 va_end(alist);
657 }
658
659 int
dtrace_assfail(const char * a,const char * f,int l)660 dtrace_assfail(const char *a, const char *f, int l)
661 {
662 dtrace_panic("assertion failed: %s, file: %s, line: %d", a, f, l);
663
664 /*
665 * We just need something here that even the most clever compiler
666 * cannot optimize away.
667 */
668 return (a[(uintptr_t)f]);
669 }
670
671 /*
672 * Atomically increment a specified error counter from probe context.
673 */
674 static void
dtrace_error(uint32_t * counter)675 dtrace_error(uint32_t *counter)
676 {
677 /*
678 * Most counters stored to in probe context are per-CPU counters.
679 * However, there are some error conditions that are sufficiently
680 * arcane that they don't merit per-CPU storage. If these counters
681 * are incremented concurrently on different CPUs, scalability will be
682 * adversely affected -- but we don't expect them to be white-hot in a
683 * correctly constructed enabling...
684 */
685 uint32_t oval, nval;
686
687 do {
688 oval = *counter;
689
690 if ((nval = oval + 1) == 0) {
691 /*
692 * If the counter would wrap, set it to 1 -- assuring
693 * that the counter is never zero when we have seen
694 * errors. (The counter must be 32-bits because we
695 * aren't guaranteed a 64-bit compare&swap operation.)
696 * To save this code both the infamy of being fingered
697 * by a priggish news story and the indignity of being
698 * the target of a neo-puritan witch trial, we're
699 * carefully avoiding any colorful description of the
700 * likelihood of this condition -- but suffice it to
701 * say that it is only slightly more likely than the
702 * overflow of predicate cache IDs, as discussed in
703 * dtrace_predicate_create().
704 */
705 nval = 1;
706 }
707 } while (dtrace_cas32(counter, oval, nval) != oval);
708 }
709
710 /*
711 * Use the DTRACE_LOADFUNC macro to define functions for each of loading a
712 * uint8_t, a uint16_t, a uint32_t and a uint64_t.
713 */
714 /* BEGIN CSTYLED */
715 DTRACE_LOADFUNC(8)
716 DTRACE_LOADFUNC(16)
717 DTRACE_LOADFUNC(32)
718 DTRACE_LOADFUNC(64)
719 /* END CSTYLED */
720
721 static int
dtrace_inscratch(uintptr_t dest,size_t size,dtrace_mstate_t * mstate)722 dtrace_inscratch(uintptr_t dest, size_t size, dtrace_mstate_t *mstate)
723 {
724 if (dest < mstate->dtms_scratch_base)
725 return (0);
726
727 if (dest + size < dest)
728 return (0);
729
730 if (dest + size > mstate->dtms_scratch_ptr)
731 return (0);
732
733 return (1);
734 }
735
736 static int
dtrace_canstore_statvar(uint64_t addr,size_t sz,size_t * remain,dtrace_statvar_t ** svars,int nsvars)737 dtrace_canstore_statvar(uint64_t addr, size_t sz, size_t *remain,
738 dtrace_statvar_t **svars, int nsvars)
739 {
740 int i;
741 size_t maxglobalsize, maxlocalsize;
742
743 if (nsvars == 0)
744 return (0);
745
746 maxglobalsize = dtrace_statvar_maxsize + sizeof (uint64_t);
747 maxlocalsize = maxglobalsize * (mp_maxid + 1);
748
749 for (i = 0; i < nsvars; i++) {
750 dtrace_statvar_t *svar = svars[i];
751 uint8_t scope;
752 size_t size;
753
754 if (svar == NULL || (size = svar->dtsv_size) == 0)
755 continue;
756
757 scope = svar->dtsv_var.dtdv_scope;
758
759 /*
760 * We verify that our size is valid in the spirit of providing
761 * defense in depth: we want to prevent attackers from using
762 * DTrace to escalate an orthogonal kernel heap corruption bug
763 * into the ability to store to arbitrary locations in memory.
764 */
765 VERIFY((scope == DIFV_SCOPE_GLOBAL && size <= maxglobalsize) ||
766 (scope == DIFV_SCOPE_LOCAL && size <= maxlocalsize));
767
768 if (DTRACE_INRANGE(addr, sz, svar->dtsv_data,
769 svar->dtsv_size)) {
770 DTRACE_RANGE_REMAIN(remain, addr, svar->dtsv_data,
771 svar->dtsv_size);
772 return (1);
773 }
774 }
775
776 return (0);
777 }
778
779 /*
780 * Check to see if the address is within a memory region to which a store may
781 * be issued. This includes the DTrace scratch areas, and any DTrace variable
782 * region. The caller of dtrace_canstore() is responsible for performing any
783 * alignment checks that are needed before stores are actually executed.
784 */
785 static int
dtrace_canstore(uint64_t addr,size_t sz,dtrace_mstate_t * mstate,dtrace_vstate_t * vstate)786 dtrace_canstore(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
787 dtrace_vstate_t *vstate)
788 {
789 return (dtrace_canstore_remains(addr, sz, NULL, mstate, vstate));
790 }
791
792 /*
793 * Implementation of dtrace_canstore which communicates the upper bound of the
794 * allowed memory region.
795 */
796 static int
dtrace_canstore_remains(uint64_t addr,size_t sz,size_t * remain,dtrace_mstate_t * mstate,dtrace_vstate_t * vstate)797 dtrace_canstore_remains(uint64_t addr, size_t sz, size_t *remain,
798 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
799 {
800 /*
801 * First, check to see if the address is in scratch space...
802 */
803 if (DTRACE_INRANGE(addr, sz, mstate->dtms_scratch_base,
804 mstate->dtms_scratch_size)) {
805 DTRACE_RANGE_REMAIN(remain, addr, mstate->dtms_scratch_base,
806 mstate->dtms_scratch_size);
807 return (1);
808 }
809
810 /*
811 * Now check to see if it's a dynamic variable. This check will pick
812 * up both thread-local variables and any global dynamically-allocated
813 * variables.
814 */
815 if (DTRACE_INRANGE(addr, sz, vstate->dtvs_dynvars.dtds_base,
816 vstate->dtvs_dynvars.dtds_size)) {
817 dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
818 uintptr_t base = (uintptr_t)dstate->dtds_base +
819 (dstate->dtds_hashsize * sizeof (dtrace_dynhash_t));
820 uintptr_t chunkoffs;
821 dtrace_dynvar_t *dvar;
822
823 /*
824 * Before we assume that we can store here, we need to make
825 * sure that it isn't in our metadata -- storing to our
826 * dynamic variable metadata would corrupt our state. For
827 * the range to not include any dynamic variable metadata,
828 * it must:
829 *
830 * (1) Start above the hash table that is at the base of
831 * the dynamic variable space
832 *
833 * (2) Have a starting chunk offset that is beyond the
834 * dtrace_dynvar_t that is at the base of every chunk
835 *
836 * (3) Not span a chunk boundary
837 *
838 * (4) Not be in the tuple space of a dynamic variable
839 *
840 */
841 if (addr < base)
842 return (0);
843
844 chunkoffs = (addr - base) % dstate->dtds_chunksize;
845
846 if (chunkoffs < sizeof (dtrace_dynvar_t))
847 return (0);
848
849 if (chunkoffs + sz > dstate->dtds_chunksize)
850 return (0);
851
852 dvar = (dtrace_dynvar_t *)((uintptr_t)addr - chunkoffs);
853
854 if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE)
855 return (0);
856
857 if (chunkoffs < sizeof (dtrace_dynvar_t) +
858 ((dvar->dtdv_tuple.dtt_nkeys - 1) * sizeof (dtrace_key_t)))
859 return (0);
860
861 DTRACE_RANGE_REMAIN(remain, addr, dvar, dstate->dtds_chunksize);
862 return (1);
863 }
864
865 /*
866 * Finally, check the static local and global variables. These checks
867 * take the longest, so we perform them last.
868 */
869 if (dtrace_canstore_statvar(addr, sz, remain,
870 vstate->dtvs_locals, vstate->dtvs_nlocals))
871 return (1);
872
873 if (dtrace_canstore_statvar(addr, sz, remain,
874 vstate->dtvs_globals, vstate->dtvs_nglobals))
875 return (1);
876
877 return (0);
878 }
879
880
881 /*
882 * Convenience routine to check to see if the address is within a memory
883 * region in which a load may be issued given the user's privilege level;
884 * if not, it sets the appropriate error flags and loads 'addr' into the
885 * illegal value slot.
886 *
887 * DTrace subroutines (DIF_SUBR_*) should use this helper to implement
888 * appropriate memory access protection.
889 */
890 static int
dtrace_canload(uint64_t addr,size_t sz,dtrace_mstate_t * mstate,dtrace_vstate_t * vstate)891 dtrace_canload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
892 dtrace_vstate_t *vstate)
893 {
894 return (dtrace_canload_remains(addr, sz, NULL, mstate, vstate));
895 }
896
897 /*
898 * Implementation of dtrace_canload which communicates the uppoer bound of the
899 * allowed memory region.
900 */
901 static int
dtrace_canload_remains(uint64_t addr,size_t sz,size_t * remain,dtrace_mstate_t * mstate,dtrace_vstate_t * vstate)902 dtrace_canload_remains(uint64_t addr, size_t sz, size_t *remain,
903 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
904 {
905 volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval;
906 file_t *fp;
907
908 /*
909 * If we hold the privilege to read from kernel memory, then
910 * everything is readable.
911 */
912 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) {
913 DTRACE_RANGE_REMAIN(remain, addr, addr, sz);
914 return (1);
915 }
916
917 /*
918 * You can obviously read that which you can store.
919 */
920 if (dtrace_canstore_remains(addr, sz, remain, mstate, vstate))
921 return (1);
922
923 /*
924 * We're allowed to read from our own string table.
925 */
926 if (DTRACE_INRANGE(addr, sz, mstate->dtms_difo->dtdo_strtab,
927 mstate->dtms_difo->dtdo_strlen)) {
928 DTRACE_RANGE_REMAIN(remain, addr,
929 mstate->dtms_difo->dtdo_strtab,
930 mstate->dtms_difo->dtdo_strlen);
931 return (1);
932 }
933
934 if (vstate->dtvs_state != NULL &&
935 dtrace_priv_proc(vstate->dtvs_state)) {
936 proc_t *p;
937
938 /*
939 * When we have privileges to the current process, there are
940 * several context-related kernel structures that are safe to
941 * read, even absent the privilege to read from kernel memory.
942 * These reads are safe because these structures contain only
943 * state that (1) we're permitted to read, (2) is harmless or
944 * (3) contains pointers to additional kernel state that we're
945 * not permitted to read (and as such, do not present an
946 * opportunity for privilege escalation). Finally (and
947 * critically), because of the nature of their relation with
948 * the current thread context, the memory associated with these
949 * structures cannot change over the duration of probe context,
950 * and it is therefore impossible for this memory to be
951 * deallocated and reallocated as something else while it's
952 * being operated upon.
953 */
954 if (DTRACE_INRANGE(addr, sz, curthread, sizeof (kthread_t))) {
955 DTRACE_RANGE_REMAIN(remain, addr, curthread,
956 sizeof (kthread_t));
957 return (1);
958 }
959
960 if ((p = curthread->t_procp) != NULL && DTRACE_INRANGE(addr,
961 sz, curthread->t_procp, sizeof (proc_t))) {
962 DTRACE_RANGE_REMAIN(remain, addr, curthread->t_procp,
963 sizeof (proc_t));
964 return (1);
965 }
966
967 if (curthread->t_cred != NULL && DTRACE_INRANGE(addr, sz,
968 curthread->t_cred, sizeof (cred_t))) {
969 DTRACE_RANGE_REMAIN(remain, addr, curthread->t_cred,
970 sizeof (cred_t));
971 return (1);
972 }
973
974 #ifdef illumos
975 if (p != NULL && p->p_pidp != NULL && DTRACE_INRANGE(addr, sz,
976 &(p->p_pidp->pid_id), sizeof (pid_t))) {
977 DTRACE_RANGE_REMAIN(remain, addr, &(p->p_pidp->pid_id),
978 sizeof (pid_t));
979 return (1);
980 }
981
982 if (curthread->t_cpu != NULL && DTRACE_INRANGE(addr, sz,
983 curthread->t_cpu, offsetof(cpu_t, cpu_pause_thread))) {
984 DTRACE_RANGE_REMAIN(remain, addr, curthread->t_cpu,
985 offsetof(cpu_t, cpu_pause_thread));
986 return (1);
987 }
988 #endif
989 }
990
991 if ((fp = mstate->dtms_getf) != NULL) {
992 uintptr_t psz = sizeof (void *);
993 vnode_t *vp;
994 vnodeops_t *op;
995
996 /*
997 * When getf() returns a file_t, the enabling is implicitly
998 * granted the (transient) right to read the returned file_t
999 * as well as the v_path and v_op->vnop_name of the underlying
1000 * vnode. These accesses are allowed after a successful
1001 * getf() because the members that they refer to cannot change
1002 * once set -- and the barrier logic in the kernel's closef()
1003 * path assures that the file_t and its referenced vode_t
1004 * cannot themselves be stale (that is, it impossible for
1005 * either dtms_getf itself or its f_vnode member to reference
1006 * freed memory).
1007 */
1008 if (DTRACE_INRANGE(addr, sz, fp, sizeof (file_t))) {
1009 DTRACE_RANGE_REMAIN(remain, addr, fp, sizeof (file_t));
1010 return (1);
1011 }
1012
1013 if ((vp = fp->f_vnode) != NULL) {
1014 size_t slen;
1015 #ifdef illumos
1016 if (DTRACE_INRANGE(addr, sz, &vp->v_path, psz)) {
1017 DTRACE_RANGE_REMAIN(remain, addr, &vp->v_path,
1018 psz);
1019 return (1);
1020 }
1021 slen = strlen(vp->v_path) + 1;
1022 if (DTRACE_INRANGE(addr, sz, vp->v_path, slen)) {
1023 DTRACE_RANGE_REMAIN(remain, addr, vp->v_path,
1024 slen);
1025 return (1);
1026 }
1027 #endif
1028
1029 if (DTRACE_INRANGE(addr, sz, &vp->v_op, psz)) {
1030 DTRACE_RANGE_REMAIN(remain, addr, &vp->v_op,
1031 psz);
1032 return (1);
1033 }
1034
1035 #ifdef illumos
1036 if ((op = vp->v_op) != NULL &&
1037 DTRACE_INRANGE(addr, sz, &op->vnop_name, psz)) {
1038 DTRACE_RANGE_REMAIN(remain, addr,
1039 &op->vnop_name, psz);
1040 return (1);
1041 }
1042
1043 if (op != NULL && op->vnop_name != NULL &&
1044 DTRACE_INRANGE(addr, sz, op->vnop_name,
1045 (slen = strlen(op->vnop_name) + 1))) {
1046 DTRACE_RANGE_REMAIN(remain, addr,
1047 op->vnop_name, slen);
1048 return (1);
1049 }
1050 #endif
1051 }
1052 }
1053
1054 DTRACE_CPUFLAG_SET(CPU_DTRACE_KPRIV);
1055 *illval = addr;
1056 return (0);
1057 }
1058
1059 /*
1060 * Convenience routine to check to see if a given string is within a memory
1061 * region in which a load may be issued given the user's privilege level;
1062 * this exists so that we don't need to issue unnecessary dtrace_strlen()
1063 * calls in the event that the user has all privileges.
1064 */
1065 static int
dtrace_strcanload(uint64_t addr,size_t sz,size_t * remain,dtrace_mstate_t * mstate,dtrace_vstate_t * vstate)1066 dtrace_strcanload(uint64_t addr, size_t sz, size_t *remain,
1067 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
1068 {
1069 size_t rsize;
1070
1071 /*
1072 * If we hold the privilege to read from kernel memory, then
1073 * everything is readable.
1074 */
1075 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) {
1076 DTRACE_RANGE_REMAIN(remain, addr, addr, sz);
1077 return (1);
1078 }
1079
1080 /*
1081 * Even if the caller is uninterested in querying the remaining valid
1082 * range, it is required to ensure that the access is allowed.
1083 */
1084 if (remain == NULL) {
1085 remain = &rsize;
1086 }
1087 if (dtrace_canload_remains(addr, 0, remain, mstate, vstate)) {
1088 size_t strsz;
1089 /*
1090 * Perform the strlen after determining the length of the
1091 * memory region which is accessible. This prevents timing
1092 * information from being used to find NULs in memory which is
1093 * not accessible to the caller.
1094 */
1095 strsz = 1 + dtrace_strlen((char *)(uintptr_t)addr,
1096 MIN(sz, *remain));
1097 if (strsz <= *remain) {
1098 return (1);
1099 }
1100 }
1101
1102 return (0);
1103 }
1104
1105 /*
1106 * Convenience routine to check to see if a given variable is within a memory
1107 * region in which a load may be issued given the user's privilege level.
1108 */
1109 static int
dtrace_vcanload(void * src,dtrace_diftype_t * type,size_t * remain,dtrace_mstate_t * mstate,dtrace_vstate_t * vstate)1110 dtrace_vcanload(void *src, dtrace_diftype_t *type, size_t *remain,
1111 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
1112 {
1113 size_t sz;
1114 ASSERT(type->dtdt_flags & DIF_TF_BYREF);
1115
1116 /*
1117 * Calculate the max size before performing any checks since even
1118 * DTRACE_ACCESS_KERNEL-credentialed callers expect that this function
1119 * return the max length via 'remain'.
1120 */
1121 if (type->dtdt_kind == DIF_TYPE_STRING) {
1122 dtrace_state_t *state = vstate->dtvs_state;
1123
1124 if (state != NULL) {
1125 sz = state->dts_options[DTRACEOPT_STRSIZE];
1126 } else {
1127 /*
1128 * In helper context, we have a NULL state; fall back
1129 * to using the system-wide default for the string size
1130 * in this case.
1131 */
1132 sz = dtrace_strsize_default;
1133 }
1134 } else {
1135 sz = type->dtdt_size;
1136 }
1137
1138 /*
1139 * If we hold the privilege to read from kernel memory, then
1140 * everything is readable.
1141 */
1142 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) {
1143 DTRACE_RANGE_REMAIN(remain, (uintptr_t)src, src, sz);
1144 return (1);
1145 }
1146
1147 if (type->dtdt_kind == DIF_TYPE_STRING) {
1148 return (dtrace_strcanload((uintptr_t)src, sz, remain, mstate,
1149 vstate));
1150 }
1151 return (dtrace_canload_remains((uintptr_t)src, sz, remain, mstate,
1152 vstate));
1153 }
1154
1155 /*
1156 * Convert a string to a signed integer using safe loads.
1157 *
1158 * NOTE: This function uses various macros from strtolctype.h to manipulate
1159 * digit values, etc -- these have all been checked to ensure they make
1160 * no additional function calls.
1161 */
1162 static int64_t
dtrace_strtoll(char * input,int base,size_t limit)1163 dtrace_strtoll(char *input, int base, size_t limit)
1164 {
1165 uintptr_t pos = (uintptr_t)input;
1166 int64_t val = 0;
1167 int x;
1168 boolean_t neg = B_FALSE;
1169 char c, cc, ccc;
1170 uintptr_t end = pos + limit;
1171
1172 /*
1173 * Consume any whitespace preceding digits.
1174 */
1175 while ((c = dtrace_load8(pos)) == ' ' || c == '\t')
1176 pos++;
1177
1178 /*
1179 * Handle an explicit sign if one is present.
1180 */
1181 if (c == '-' || c == '+') {
1182 if (c == '-')
1183 neg = B_TRUE;
1184 c = dtrace_load8(++pos);
1185 }
1186
1187 /*
1188 * Check for an explicit hexadecimal prefix ("0x" or "0X") and skip it
1189 * if present.
1190 */
1191 if (base == 16 && c == '0' && ((cc = dtrace_load8(pos + 1)) == 'x' ||
1192 cc == 'X') && isxdigit(ccc = dtrace_load8(pos + 2))) {
1193 pos += 2;
1194 c = ccc;
1195 }
1196
1197 /*
1198 * Read in contiguous digits until the first non-digit character.
1199 */
1200 for (; pos < end && c != '\0' && lisalnum(c) && (x = DIGIT(c)) < base;
1201 c = dtrace_load8(++pos))
1202 val = val * base + x;
1203
1204 return (neg ? -val : val);
1205 }
1206
1207 /*
1208 * Compare two strings using safe loads.
1209 */
1210 static int
dtrace_strncmp(char * s1,char * s2,size_t limit)1211 dtrace_strncmp(char *s1, char *s2, size_t limit)
1212 {
1213 uint8_t c1, c2;
1214 volatile uint16_t *flags;
1215
1216 if (s1 == s2 || limit == 0)
1217 return (0);
1218
1219 flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags;
1220
1221 do {
1222 if (s1 == NULL) {
1223 c1 = '\0';
1224 } else {
1225 c1 = dtrace_load8((uintptr_t)s1++);
1226 }
1227
1228 if (s2 == NULL) {
1229 c2 = '\0';
1230 } else {
1231 c2 = dtrace_load8((uintptr_t)s2++);
1232 }
1233
1234 if (c1 != c2)
1235 return (c1 - c2);
1236 } while (--limit && c1 != '\0' && !(*flags & CPU_DTRACE_FAULT));
1237
1238 return (0);
1239 }
1240
1241 /*
1242 * Compute strlen(s) for a string using safe memory accesses. The additional
1243 * len parameter is used to specify a maximum length to ensure completion.
1244 */
1245 static size_t
dtrace_strlen(const char * s,size_t lim)1246 dtrace_strlen(const char *s, size_t lim)
1247 {
1248 uint_t len;
1249
1250 for (len = 0; len != lim; len++) {
1251 if (dtrace_load8((uintptr_t)s++) == '\0')
1252 break;
1253 }
1254
1255 return (len);
1256 }
1257
1258 /*
1259 * Check if an address falls within a toxic region.
1260 */
1261 static int
dtrace_istoxic(uintptr_t kaddr,size_t size)1262 dtrace_istoxic(uintptr_t kaddr, size_t size)
1263 {
1264 uintptr_t taddr, tsize;
1265 int i;
1266
1267 for (i = 0; i < dtrace_toxranges; i++) {
1268 taddr = dtrace_toxrange[i].dtt_base;
1269 tsize = dtrace_toxrange[i].dtt_limit - taddr;
1270
1271 if (kaddr - taddr < tsize) {
1272 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
1273 cpu_core[curcpu].cpuc_dtrace_illval = kaddr;
1274 return (1);
1275 }
1276
1277 if (taddr - kaddr < size) {
1278 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
1279 cpu_core[curcpu].cpuc_dtrace_illval = taddr;
1280 return (1);
1281 }
1282 }
1283
1284 return (0);
1285 }
1286
1287 /*
1288 * Copy src to dst using safe memory accesses. The src is assumed to be unsafe
1289 * memory specified by the DIF program. The dst is assumed to be safe memory
1290 * that we can store to directly because it is managed by DTrace. As with
1291 * standard bcopy, overlapping copies are handled properly.
1292 */
1293 static void
dtrace_bcopy(const void * src,void * dst,size_t len)1294 dtrace_bcopy(const void *src, void *dst, size_t len)
1295 {
1296 if (len != 0) {
1297 uint8_t *s1 = dst;
1298 const uint8_t *s2 = src;
1299
1300 if (s1 <= s2) {
1301 do {
1302 *s1++ = dtrace_load8((uintptr_t)s2++);
1303 } while (--len != 0);
1304 } else {
1305 s2 += len;
1306 s1 += len;
1307
1308 do {
1309 *--s1 = dtrace_load8((uintptr_t)--s2);
1310 } while (--len != 0);
1311 }
1312 }
1313 }
1314
1315 /*
1316 * Copy src to dst using safe memory accesses, up to either the specified
1317 * length, or the point that a nul byte is encountered. The src is assumed to
1318 * be unsafe memory specified by the DIF program. The dst is assumed to be
1319 * safe memory that we can store to directly because it is managed by DTrace.
1320 * Unlike dtrace_bcopy(), overlapping regions are not handled.
1321 */
1322 static void
dtrace_strcpy(const void * src,void * dst,size_t len)1323 dtrace_strcpy(const void *src, void *dst, size_t len)
1324 {
1325 if (len != 0) {
1326 uint8_t *s1 = dst, c;
1327 const uint8_t *s2 = src;
1328
1329 do {
1330 *s1++ = c = dtrace_load8((uintptr_t)s2++);
1331 } while (--len != 0 && c != '\0');
1332 }
1333 }
1334
1335 /*
1336 * Copy src to dst, deriving the size and type from the specified (BYREF)
1337 * variable type. The src is assumed to be unsafe memory specified by the DIF
1338 * program. The dst is assumed to be DTrace variable memory that is of the
1339 * specified type; we assume that we can store to directly.
1340 */
1341 static void
dtrace_vcopy(void * src,void * dst,dtrace_diftype_t * type,size_t limit)1342 dtrace_vcopy(void *src, void *dst, dtrace_diftype_t *type, size_t limit)
1343 {
1344 ASSERT(type->dtdt_flags & DIF_TF_BYREF);
1345
1346 if (type->dtdt_kind == DIF_TYPE_STRING) {
1347 dtrace_strcpy(src, dst, MIN(type->dtdt_size, limit));
1348 } else {
1349 dtrace_bcopy(src, dst, MIN(type->dtdt_size, limit));
1350 }
1351 }
1352
1353 /*
1354 * Compare s1 to s2 using safe memory accesses. The s1 data is assumed to be
1355 * unsafe memory specified by the DIF program. The s2 data is assumed to be
1356 * safe memory that we can access directly because it is managed by DTrace.
1357 */
1358 static int
dtrace_bcmp(const void * s1,const void * s2,size_t len)1359 dtrace_bcmp(const void *s1, const void *s2, size_t len)
1360 {
1361 volatile uint16_t *flags;
1362
1363 flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags;
1364
1365 if (s1 == s2)
1366 return (0);
1367
1368 if (s1 == NULL || s2 == NULL)
1369 return (1);
1370
1371 if (s1 != s2 && len != 0) {
1372 const uint8_t *ps1 = s1;
1373 const uint8_t *ps2 = s2;
1374
1375 do {
1376 if (dtrace_load8((uintptr_t)ps1++) != *ps2++)
1377 return (1);
1378 } while (--len != 0 && !(*flags & CPU_DTRACE_FAULT));
1379 }
1380 return (0);
1381 }
1382
1383 /*
1384 * Zero the specified region using a simple byte-by-byte loop. Note that this
1385 * is for safe DTrace-managed memory only.
1386 */
1387 static void
dtrace_bzero(void * dst,size_t len)1388 dtrace_bzero(void *dst, size_t len)
1389 {
1390 uchar_t *cp;
1391
1392 for (cp = dst; len != 0; len--)
1393 *cp++ = 0;
1394 }
1395
1396 static void
dtrace_add_128(uint64_t * addend1,uint64_t * addend2,uint64_t * sum)1397 dtrace_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum)
1398 {
1399 uint64_t result[2];
1400
1401 result[0] = addend1[0] + addend2[0];
1402 result[1] = addend1[1] + addend2[1] +
1403 (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0);
1404
1405 sum[0] = result[0];
1406 sum[1] = result[1];
1407 }
1408
1409 /*
1410 * Shift the 128-bit value in a by b. If b is positive, shift left.
1411 * If b is negative, shift right.
1412 */
1413 static void
dtrace_shift_128(uint64_t * a,int b)1414 dtrace_shift_128(uint64_t *a, int b)
1415 {
1416 uint64_t mask;
1417
1418 if (b == 0)
1419 return;
1420
1421 if (b < 0) {
1422 b = -b;
1423 if (b >= 64) {
1424 a[0] = a[1] >> (b - 64);
1425 a[1] = 0;
1426 } else {
1427 a[0] >>= b;
1428 mask = 1LL << (64 - b);
1429 mask -= 1;
1430 a[0] |= ((a[1] & mask) << (64 - b));
1431 a[1] >>= b;
1432 }
1433 } else {
1434 if (b >= 64) {
1435 a[1] = a[0] << (b - 64);
1436 a[0] = 0;
1437 } else {
1438 a[1] <<= b;
1439 mask = a[0] >> (64 - b);
1440 a[1] |= mask;
1441 a[0] <<= b;
1442 }
1443 }
1444 }
1445
1446 /*
1447 * The basic idea is to break the 2 64-bit values into 4 32-bit values,
1448 * use native multiplication on those, and then re-combine into the
1449 * resulting 128-bit value.
1450 *
1451 * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) =
1452 * hi1 * hi2 << 64 +
1453 * hi1 * lo2 << 32 +
1454 * hi2 * lo1 << 32 +
1455 * lo1 * lo2
1456 */
1457 static void
dtrace_multiply_128(uint64_t factor1,uint64_t factor2,uint64_t * product)1458 dtrace_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product)
1459 {
1460 uint64_t hi1, hi2, lo1, lo2;
1461 uint64_t tmp[2];
1462
1463 hi1 = factor1 >> 32;
1464 hi2 = factor2 >> 32;
1465
1466 lo1 = factor1 & DT_MASK_LO;
1467 lo2 = factor2 & DT_MASK_LO;
1468
1469 product[0] = lo1 * lo2;
1470 product[1] = hi1 * hi2;
1471
1472 tmp[0] = hi1 * lo2;
1473 tmp[1] = 0;
1474 dtrace_shift_128(tmp, 32);
1475 dtrace_add_128(product, tmp, product);
1476
1477 tmp[0] = hi2 * lo1;
1478 tmp[1] = 0;
1479 dtrace_shift_128(tmp, 32);
1480 dtrace_add_128(product, tmp, product);
1481 }
1482
1483 /*
1484 * This privilege check should be used by actions and subroutines to
1485 * verify that the user credentials of the process that enabled the
1486 * invoking ECB match the target credentials
1487 */
1488 static int
dtrace_priv_proc_common_user(dtrace_state_t * state)1489 dtrace_priv_proc_common_user(dtrace_state_t *state)
1490 {
1491 cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1492
1493 /*
1494 * We should always have a non-NULL state cred here, since if cred
1495 * is null (anonymous tracing), we fast-path bypass this routine.
1496 */
1497 ASSERT(s_cr != NULL);
1498
1499 if ((cr = CRED()) != NULL &&
1500 s_cr->cr_uid == cr->cr_uid &&
1501 s_cr->cr_uid == cr->cr_ruid &&
1502 s_cr->cr_uid == cr->cr_suid &&
1503 s_cr->cr_gid == cr->cr_gid &&
1504 s_cr->cr_gid == cr->cr_rgid &&
1505 s_cr->cr_gid == cr->cr_sgid)
1506 return (1);
1507
1508 return (0);
1509 }
1510
1511 /*
1512 * This privilege check should be used by actions and subroutines to
1513 * verify that the zone of the process that enabled the invoking ECB
1514 * matches the target credentials
1515 */
1516 static int
dtrace_priv_proc_common_zone(dtrace_state_t * state)1517 dtrace_priv_proc_common_zone(dtrace_state_t *state)
1518 {
1519 #ifdef illumos
1520 cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1521
1522 /*
1523 * We should always have a non-NULL state cred here, since if cred
1524 * is null (anonymous tracing), we fast-path bypass this routine.
1525 */
1526 ASSERT(s_cr != NULL);
1527
1528 if ((cr = CRED()) != NULL && s_cr->cr_zone == cr->cr_zone)
1529 return (1);
1530
1531 return (0);
1532 #else
1533 return (1);
1534 #endif
1535 }
1536
1537 /*
1538 * This privilege check should be used by actions and subroutines to
1539 * verify that the process has not setuid or changed credentials.
1540 */
1541 static int
dtrace_priv_proc_common_nocd(void)1542 dtrace_priv_proc_common_nocd(void)
1543 {
1544 proc_t *proc;
1545
1546 if ((proc = ttoproc(curthread)) != NULL &&
1547 !(proc->p_flag & SNOCD))
1548 return (1);
1549
1550 return (0);
1551 }
1552
1553 static int
dtrace_priv_proc_destructive(dtrace_state_t * state)1554 dtrace_priv_proc_destructive(dtrace_state_t *state)
1555 {
1556 int action = state->dts_cred.dcr_action;
1557
1558 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE) == 0) &&
1559 dtrace_priv_proc_common_zone(state) == 0)
1560 goto bad;
1561
1562 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER) == 0) &&
1563 dtrace_priv_proc_common_user(state) == 0)
1564 goto bad;
1565
1566 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG) == 0) &&
1567 dtrace_priv_proc_common_nocd() == 0)
1568 goto bad;
1569
1570 return (1);
1571
1572 bad:
1573 cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1574
1575 return (0);
1576 }
1577
1578 static int
dtrace_priv_proc_control(dtrace_state_t * state)1579 dtrace_priv_proc_control(dtrace_state_t *state)
1580 {
1581 if (state->dts_cred.dcr_action & DTRACE_CRA_PROC_CONTROL)
1582 return (1);
1583
1584 if (dtrace_priv_proc_common_zone(state) &&
1585 dtrace_priv_proc_common_user(state) &&
1586 dtrace_priv_proc_common_nocd())
1587 return (1);
1588
1589 cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1590
1591 return (0);
1592 }
1593
1594 static int
dtrace_priv_proc(dtrace_state_t * state)1595 dtrace_priv_proc(dtrace_state_t *state)
1596 {
1597 if (state->dts_cred.dcr_action & DTRACE_CRA_PROC)
1598 return (1);
1599
1600 cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1601
1602 return (0);
1603 }
1604
1605 static int
dtrace_priv_kernel(dtrace_state_t * state)1606 dtrace_priv_kernel(dtrace_state_t *state)
1607 {
1608 if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL)
1609 return (1);
1610
1611 cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1612
1613 return (0);
1614 }
1615
1616 static int
dtrace_priv_kernel_destructive(dtrace_state_t * state)1617 dtrace_priv_kernel_destructive(dtrace_state_t *state)
1618 {
1619 if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL_DESTRUCTIVE)
1620 return (1);
1621
1622 cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1623
1624 return (0);
1625 }
1626
1627 /*
1628 * Determine if the dte_cond of the specified ECB allows for processing of
1629 * the current probe to continue. Note that this routine may allow continued
1630 * processing, but with access(es) stripped from the mstate's dtms_access
1631 * field.
1632 */
1633 static int
dtrace_priv_probe(dtrace_state_t * state,dtrace_mstate_t * mstate,dtrace_ecb_t * ecb)1634 dtrace_priv_probe(dtrace_state_t *state, dtrace_mstate_t *mstate,
1635 dtrace_ecb_t *ecb)
1636 {
1637 dtrace_probe_t *probe = ecb->dte_probe;
1638 dtrace_provider_t *prov = probe->dtpr_provider;
1639 dtrace_pops_t *pops = &prov->dtpv_pops;
1640 int mode = DTRACE_MODE_NOPRIV_DROP;
1641
1642 ASSERT(ecb->dte_cond);
1643
1644 #ifdef illumos
1645 if (pops->dtps_mode != NULL) {
1646 mode = pops->dtps_mode(prov->dtpv_arg,
1647 probe->dtpr_id, probe->dtpr_arg);
1648
1649 ASSERT((mode & DTRACE_MODE_USER) ||
1650 (mode & DTRACE_MODE_KERNEL));
1651 ASSERT((mode & DTRACE_MODE_NOPRIV_RESTRICT) ||
1652 (mode & DTRACE_MODE_NOPRIV_DROP));
1653 }
1654
1655 /*
1656 * If the dte_cond bits indicate that this consumer is only allowed to
1657 * see user-mode firings of this probe, call the provider's dtps_mode()
1658 * entry point to check that the probe was fired while in a user
1659 * context. If that's not the case, use the policy specified by the
1660 * provider to determine if we drop the probe or merely restrict
1661 * operation.
1662 */
1663 if (ecb->dte_cond & DTRACE_COND_USERMODE) {
1664 ASSERT(mode != DTRACE_MODE_NOPRIV_DROP);
1665
1666 if (!(mode & DTRACE_MODE_USER)) {
1667 if (mode & DTRACE_MODE_NOPRIV_DROP)
1668 return (0);
1669
1670 mstate->dtms_access &= ~DTRACE_ACCESS_ARGS;
1671 }
1672 }
1673 #endif
1674
1675 /*
1676 * This is more subtle than it looks. We have to be absolutely certain
1677 * that CRED() isn't going to change out from under us so it's only
1678 * legit to examine that structure if we're in constrained situations.
1679 * Currently, the only times we'll this check is if a non-super-user
1680 * has enabled the profile or syscall providers -- providers that
1681 * allow visibility of all processes. For the profile case, the check
1682 * above will ensure that we're examining a user context.
1683 */
1684 if (ecb->dte_cond & DTRACE_COND_OWNER) {
1685 cred_t *cr;
1686 cred_t *s_cr = state->dts_cred.dcr_cred;
1687 proc_t *proc;
1688
1689 ASSERT(s_cr != NULL);
1690
1691 if ((cr = CRED()) == NULL ||
1692 s_cr->cr_uid != cr->cr_uid ||
1693 s_cr->cr_uid != cr->cr_ruid ||
1694 s_cr->cr_uid != cr->cr_suid ||
1695 s_cr->cr_gid != cr->cr_gid ||
1696 s_cr->cr_gid != cr->cr_rgid ||
1697 s_cr->cr_gid != cr->cr_sgid ||
1698 (proc = ttoproc(curthread)) == NULL ||
1699 (proc->p_flag & SNOCD)) {
1700 if (mode & DTRACE_MODE_NOPRIV_DROP)
1701 return (0);
1702
1703 #ifdef illumos
1704 mstate->dtms_access &= ~DTRACE_ACCESS_PROC;
1705 #endif
1706 }
1707 }
1708
1709 #ifdef illumos
1710 /*
1711 * If our dte_cond is set to DTRACE_COND_ZONEOWNER and we are not
1712 * in our zone, check to see if our mode policy is to restrict rather
1713 * than to drop; if to restrict, strip away both DTRACE_ACCESS_PROC
1714 * and DTRACE_ACCESS_ARGS
1715 */
1716 if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) {
1717 cred_t *cr;
1718 cred_t *s_cr = state->dts_cred.dcr_cred;
1719
1720 ASSERT(s_cr != NULL);
1721
1722 if ((cr = CRED()) == NULL ||
1723 s_cr->cr_zone->zone_id != cr->cr_zone->zone_id) {
1724 if (mode & DTRACE_MODE_NOPRIV_DROP)
1725 return (0);
1726
1727 mstate->dtms_access &=
1728 ~(DTRACE_ACCESS_PROC | DTRACE_ACCESS_ARGS);
1729 }
1730 }
1731 #endif
1732
1733 return (1);
1734 }
1735
1736 /*
1737 * Note: not called from probe context. This function is called
1738 * asynchronously (and at a regular interval) from outside of probe context to
1739 * clean the dirty dynamic variable lists on all CPUs. Dynamic variable
1740 * cleaning is explained in detail in <sys/dtrace_impl.h>.
1741 */
1742 void
dtrace_dynvar_clean(dtrace_dstate_t * dstate)1743 dtrace_dynvar_clean(dtrace_dstate_t *dstate)
1744 {
1745 dtrace_dynvar_t *dirty;
1746 dtrace_dstate_percpu_t *dcpu;
1747 dtrace_dynvar_t **rinsep;
1748 int i, j, work = 0;
1749
1750 CPU_FOREACH(i) {
1751 dcpu = &dstate->dtds_percpu[i];
1752 rinsep = &dcpu->dtdsc_rinsing;
1753
1754 /*
1755 * If the dirty list is NULL, there is no dirty work to do.
1756 */
1757 if (dcpu->dtdsc_dirty == NULL)
1758 continue;
1759
1760 if (dcpu->dtdsc_rinsing != NULL) {
1761 /*
1762 * If the rinsing list is non-NULL, then it is because
1763 * this CPU was selected to accept another CPU's
1764 * dirty list -- and since that time, dirty buffers
1765 * have accumulated. This is a highly unlikely
1766 * condition, but we choose to ignore the dirty
1767 * buffers -- they'll be picked up a future cleanse.
1768 */
1769 continue;
1770 }
1771
1772 if (dcpu->dtdsc_clean != NULL) {
1773 /*
1774 * If the clean list is non-NULL, then we're in a
1775 * situation where a CPU has done deallocations (we
1776 * have a non-NULL dirty list) but no allocations (we
1777 * also have a non-NULL clean list). We can't simply
1778 * move the dirty list into the clean list on this
1779 * CPU, yet we also don't want to allow this condition
1780 * to persist, lest a short clean list prevent a
1781 * massive dirty list from being cleaned (which in
1782 * turn could lead to otherwise avoidable dynamic
1783 * drops). To deal with this, we look for some CPU
1784 * with a NULL clean list, NULL dirty list, and NULL
1785 * rinsing list -- and then we borrow this CPU to
1786 * rinse our dirty list.
1787 */
1788 CPU_FOREACH(j) {
1789 dtrace_dstate_percpu_t *rinser;
1790
1791 rinser = &dstate->dtds_percpu[j];
1792
1793 if (rinser->dtdsc_rinsing != NULL)
1794 continue;
1795
1796 if (rinser->dtdsc_dirty != NULL)
1797 continue;
1798
1799 if (rinser->dtdsc_clean != NULL)
1800 continue;
1801
1802 rinsep = &rinser->dtdsc_rinsing;
1803 break;
1804 }
1805
1806 if (j > mp_maxid) {
1807 /*
1808 * We were unable to find another CPU that
1809 * could accept this dirty list -- we are
1810 * therefore unable to clean it now.
1811 */
1812 dtrace_dynvar_failclean++;
1813 continue;
1814 }
1815 }
1816
1817 work = 1;
1818
1819 /*
1820 * Atomically move the dirty list aside.
1821 */
1822 do {
1823 dirty = dcpu->dtdsc_dirty;
1824
1825 /*
1826 * Before we zap the dirty list, set the rinsing list.
1827 * (This allows for a potential assertion in
1828 * dtrace_dynvar(): if a free dynamic variable appears
1829 * on a hash chain, either the dirty list or the
1830 * rinsing list for some CPU must be non-NULL.)
1831 */
1832 *rinsep = dirty;
1833 dtrace_membar_producer();
1834 } while (dtrace_casptr(&dcpu->dtdsc_dirty,
1835 dirty, NULL) != dirty);
1836 }
1837
1838 if (!work) {
1839 /*
1840 * We have no work to do; we can simply return.
1841 */
1842 return;
1843 }
1844
1845 dtrace_sync();
1846
1847 CPU_FOREACH(i) {
1848 dcpu = &dstate->dtds_percpu[i];
1849
1850 if (dcpu->dtdsc_rinsing == NULL)
1851 continue;
1852
1853 /*
1854 * We are now guaranteed that no hash chain contains a pointer
1855 * into this dirty list; we can make it clean.
1856 */
1857 ASSERT(dcpu->dtdsc_clean == NULL);
1858 dcpu->dtdsc_clean = dcpu->dtdsc_rinsing;
1859 dcpu->dtdsc_rinsing = NULL;
1860 }
1861
1862 /*
1863 * Before we actually set the state to be DTRACE_DSTATE_CLEAN, make
1864 * sure that all CPUs have seen all of the dtdsc_clean pointers.
1865 * This prevents a race whereby a CPU incorrectly decides that
1866 * the state should be something other than DTRACE_DSTATE_CLEAN
1867 * after dtrace_dynvar_clean() has completed.
1868 */
1869 dtrace_sync();
1870
1871 dstate->dtds_state = DTRACE_DSTATE_CLEAN;
1872 }
1873
1874 /*
1875 * Depending on the value of the op parameter, this function looks-up,
1876 * allocates or deallocates an arbitrarily-keyed dynamic variable. If an
1877 * allocation is requested, this function will return a pointer to a
1878 * dtrace_dynvar_t corresponding to the allocated variable -- or NULL if no
1879 * variable can be allocated. If NULL is returned, the appropriate counter
1880 * will be incremented.
1881 */
1882 dtrace_dynvar_t *
dtrace_dynvar(dtrace_dstate_t * dstate,uint_t nkeys,dtrace_key_t * key,size_t dsize,dtrace_dynvar_op_t op,dtrace_mstate_t * mstate,dtrace_vstate_t * vstate)1883 dtrace_dynvar(dtrace_dstate_t *dstate, uint_t nkeys,
1884 dtrace_key_t *key, size_t dsize, dtrace_dynvar_op_t op,
1885 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
1886 {
1887 uint64_t hashval = DTRACE_DYNHASH_VALID;
1888 dtrace_dynhash_t *hash = dstate->dtds_hash;
1889 dtrace_dynvar_t *free, *new_free, *next, *dvar, *start, *prev = NULL;
1890 processorid_t me = curcpu, cpu = me;
1891 dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[me];
1892 size_t bucket, ksize;
1893 size_t chunksize = dstate->dtds_chunksize;
1894 uintptr_t kdata, lock, nstate;
1895 uint_t i;
1896
1897 ASSERT(nkeys != 0);
1898
1899 /*
1900 * Hash the key. As with aggregations, we use Jenkins' "One-at-a-time"
1901 * algorithm. For the by-value portions, we perform the algorithm in
1902 * 16-bit chunks (as opposed to 8-bit chunks). This speeds things up a
1903 * bit, and seems to have only a minute effect on distribution. For
1904 * the by-reference data, we perform "One-at-a-time" iterating (safely)
1905 * over each referenced byte. It's painful to do this, but it's much
1906 * better than pathological hash distribution. The efficacy of the
1907 * hashing algorithm (and a comparison with other algorithms) may be
1908 * found by running the ::dtrace_dynstat MDB dcmd.
1909 */
1910 for (i = 0; i < nkeys; i++) {
1911 if (key[i].dttk_size == 0) {
1912 uint64_t val = key[i].dttk_value;
1913
1914 hashval += (val >> 48) & 0xffff;
1915 hashval += (hashval << 10);
1916 hashval ^= (hashval >> 6);
1917
1918 hashval += (val >> 32) & 0xffff;
1919 hashval += (hashval << 10);
1920 hashval ^= (hashval >> 6);
1921
1922 hashval += (val >> 16) & 0xffff;
1923 hashval += (hashval << 10);
1924 hashval ^= (hashval >> 6);
1925
1926 hashval += val & 0xffff;
1927 hashval += (hashval << 10);
1928 hashval ^= (hashval >> 6);
1929 } else {
1930 /*
1931 * This is incredibly painful, but it beats the hell
1932 * out of the alternative.
1933 */
1934 uint64_t j, size = key[i].dttk_size;
1935 uintptr_t base = (uintptr_t)key[i].dttk_value;
1936
1937 if (!dtrace_canload(base, size, mstate, vstate))
1938 break;
1939
1940 for (j = 0; j < size; j++) {
1941 hashval += dtrace_load8(base + j);
1942 hashval += (hashval << 10);
1943 hashval ^= (hashval >> 6);
1944 }
1945 }
1946 }
1947
1948 if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT))
1949 return (NULL);
1950
1951 hashval += (hashval << 3);
1952 hashval ^= (hashval >> 11);
1953 hashval += (hashval << 15);
1954
1955 /*
1956 * There is a remote chance (ideally, 1 in 2^31) that our hashval
1957 * comes out to be one of our two sentinel hash values. If this
1958 * actually happens, we set the hashval to be a value known to be a
1959 * non-sentinel value.
1960 */
1961 if (hashval == DTRACE_DYNHASH_FREE || hashval == DTRACE_DYNHASH_SINK)
1962 hashval = DTRACE_DYNHASH_VALID;
1963
1964 /*
1965 * Yes, it's painful to do a divide here. If the cycle count becomes
1966 * important here, tricks can be pulled to reduce it. (However, it's
1967 * critical that hash collisions be kept to an absolute minimum;
1968 * they're much more painful than a divide.) It's better to have a
1969 * solution that generates few collisions and still keeps things
1970 * relatively simple.
1971 */
1972 bucket = hashval % dstate->dtds_hashsize;
1973
1974 if (op == DTRACE_DYNVAR_DEALLOC) {
1975 volatile uintptr_t *lockp = &hash[bucket].dtdh_lock;
1976
1977 for (;;) {
1978 while ((lock = *lockp) & 1)
1979 continue;
1980
1981 if (dtrace_casptr((volatile void *)lockp,
1982 (volatile void *)lock, (volatile void *)(lock + 1)) == (void *)lock)
1983 break;
1984 }
1985
1986 dtrace_membar_producer();
1987 }
1988
1989 top:
1990 prev = NULL;
1991 lock = hash[bucket].dtdh_lock;
1992
1993 dtrace_membar_consumer();
1994
1995 start = hash[bucket].dtdh_chain;
1996 ASSERT(start != NULL && (start->dtdv_hashval == DTRACE_DYNHASH_SINK ||
1997 start->dtdv_hashval != DTRACE_DYNHASH_FREE ||
1998 op != DTRACE_DYNVAR_DEALLOC));
1999
2000 for (dvar = start; dvar != NULL; dvar = dvar->dtdv_next) {
2001 dtrace_tuple_t *dtuple = &dvar->dtdv_tuple;
2002 dtrace_key_t *dkey = &dtuple->dtt_key[0];
2003
2004 if (dvar->dtdv_hashval != hashval) {
2005 if (dvar->dtdv_hashval == DTRACE_DYNHASH_SINK) {
2006 /*
2007 * We've reached the sink, and therefore the
2008 * end of the hash chain; we can kick out of
2009 * the loop knowing that we have seen a valid
2010 * snapshot of state.
2011 */
2012 ASSERT(dvar->dtdv_next == NULL);
2013 ASSERT(dvar == &dtrace_dynhash_sink);
2014 break;
2015 }
2016
2017 if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) {
2018 /*
2019 * We've gone off the rails: somewhere along
2020 * the line, one of the members of this hash
2021 * chain was deleted. Note that we could also
2022 * detect this by simply letting this loop run
2023 * to completion, as we would eventually hit
2024 * the end of the dirty list. However, we
2025 * want to avoid running the length of the
2026 * dirty list unnecessarily (it might be quite
2027 * long), so we catch this as early as
2028 * possible by detecting the hash marker. In
2029 * this case, we simply set dvar to NULL and
2030 * break; the conditional after the loop will
2031 * send us back to top.
2032 */
2033 dvar = NULL;
2034 break;
2035 }
2036
2037 goto next;
2038 }
2039
2040 if (dtuple->dtt_nkeys != nkeys)
2041 goto next;
2042
2043 for (i = 0; i < nkeys; i++, dkey++) {
2044 if (dkey->dttk_size != key[i].dttk_size)
2045 goto next; /* size or type mismatch */
2046
2047 if (dkey->dttk_size != 0) {
2048 if (dtrace_bcmp(
2049 (void *)(uintptr_t)key[i].dttk_value,
2050 (void *)(uintptr_t)dkey->dttk_value,
2051 dkey->dttk_size))
2052 goto next;
2053 } else {
2054 if (dkey->dttk_value != key[i].dttk_value)
2055 goto next;
2056 }
2057 }
2058
2059 if (op != DTRACE_DYNVAR_DEALLOC)
2060 return (dvar);
2061
2062 ASSERT(dvar->dtdv_next == NULL ||
2063 dvar->dtdv_next->dtdv_hashval != DTRACE_DYNHASH_FREE);
2064
2065 if (prev != NULL) {
2066 ASSERT(hash[bucket].dtdh_chain != dvar);
2067 ASSERT(start != dvar);
2068 ASSERT(prev->dtdv_next == dvar);
2069 prev->dtdv_next = dvar->dtdv_next;
2070 } else {
2071 if (dtrace_casptr(&hash[bucket].dtdh_chain,
2072 start, dvar->dtdv_next) != start) {
2073 /*
2074 * We have failed to atomically swing the
2075 * hash table head pointer, presumably because
2076 * of a conflicting allocation on another CPU.
2077 * We need to reread the hash chain and try
2078 * again.
2079 */
2080 goto top;
2081 }
2082 }
2083
2084 dtrace_membar_producer();
2085
2086 /*
2087 * Now set the hash value to indicate that it's free.
2088 */
2089 ASSERT(hash[bucket].dtdh_chain != dvar);
2090 dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
2091
2092 dtrace_membar_producer();
2093
2094 /*
2095 * Set the next pointer to point at the dirty list, and
2096 * atomically swing the dirty pointer to the newly freed dvar.
2097 */
2098 do {
2099 next = dcpu->dtdsc_dirty;
2100 dvar->dtdv_next = next;
2101 } while (dtrace_casptr(&dcpu->dtdsc_dirty, next, dvar) != next);
2102
2103 /*
2104 * Finally, unlock this hash bucket.
2105 */
2106 ASSERT(hash[bucket].dtdh_lock == lock);
2107 ASSERT(lock & 1);
2108 hash[bucket].dtdh_lock++;
2109
2110 return (NULL);
2111 next:
2112 prev = dvar;
2113 continue;
2114 }
2115
2116 if (dvar == NULL) {
2117 /*
2118 * If dvar is NULL, it is because we went off the rails:
2119 * one of the elements that we traversed in the hash chain
2120 * was deleted while we were traversing it. In this case,
2121 * we assert that we aren't doing a dealloc (deallocs lock
2122 * the hash bucket to prevent themselves from racing with
2123 * one another), and retry the hash chain traversal.
2124 */
2125 ASSERT(op != DTRACE_DYNVAR_DEALLOC);
2126 goto top;
2127 }
2128
2129 if (op != DTRACE_DYNVAR_ALLOC) {
2130 /*
2131 * If we are not to allocate a new variable, we want to
2132 * return NULL now. Before we return, check that the value
2133 * of the lock word hasn't changed. If it has, we may have
2134 * seen an inconsistent snapshot.
2135 */
2136 if (op == DTRACE_DYNVAR_NOALLOC) {
2137 if (hash[bucket].dtdh_lock != lock)
2138 goto top;
2139 } else {
2140 ASSERT(op == DTRACE_DYNVAR_DEALLOC);
2141 ASSERT(hash[bucket].dtdh_lock == lock);
2142 ASSERT(lock & 1);
2143 hash[bucket].dtdh_lock++;
2144 }
2145
2146 return (NULL);
2147 }
2148
2149 /*
2150 * We need to allocate a new dynamic variable. The size we need is the
2151 * size of dtrace_dynvar plus the size of nkeys dtrace_key_t's plus the
2152 * size of any auxiliary key data (rounded up to 8-byte alignment) plus
2153 * the size of any referred-to data (dsize). We then round the final
2154 * size up to the chunksize for allocation.
2155 */
2156 for (ksize = 0, i = 0; i < nkeys; i++)
2157 ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
2158
2159 /*
2160 * This should be pretty much impossible, but could happen if, say,
2161 * strange DIF specified the tuple. Ideally, this should be an
2162 * assertion and not an error condition -- but that requires that the
2163 * chunksize calculation in dtrace_difo_chunksize() be absolutely
2164 * bullet-proof. (That is, it must not be able to be fooled by
2165 * malicious DIF.) Given the lack of backwards branches in DIF,
2166 * solving this would presumably not amount to solving the Halting
2167 * Problem -- but it still seems awfully hard.
2168 */
2169 if (sizeof (dtrace_dynvar_t) + sizeof (dtrace_key_t) * (nkeys - 1) +
2170 ksize + dsize > chunksize) {
2171 dcpu->dtdsc_drops++;
2172 return (NULL);
2173 }
2174
2175 nstate = DTRACE_DSTATE_EMPTY;
2176
2177 do {
2178 retry:
2179 free = dcpu->dtdsc_free;
2180
2181 if (free == NULL) {
2182 dtrace_dynvar_t *clean = dcpu->dtdsc_clean;
2183 void *rval;
2184
2185 if (clean == NULL) {
2186 /*
2187 * We're out of dynamic variable space on
2188 * this CPU. Unless we have tried all CPUs,
2189 * we'll try to allocate from a different
2190 * CPU.
2191 */
2192 switch (dstate->dtds_state) {
2193 case DTRACE_DSTATE_CLEAN: {
2194 void *sp = &dstate->dtds_state;
2195
2196 if (++cpu > mp_maxid)
2197 cpu = 0;
2198
2199 if (dcpu->dtdsc_dirty != NULL &&
2200 nstate == DTRACE_DSTATE_EMPTY)
2201 nstate = DTRACE_DSTATE_DIRTY;
2202
2203 if (dcpu->dtdsc_rinsing != NULL)
2204 nstate = DTRACE_DSTATE_RINSING;
2205
2206 dcpu = &dstate->dtds_percpu[cpu];
2207
2208 if (cpu != me)
2209 goto retry;
2210
2211 (void) dtrace_cas32(sp,
2212 DTRACE_DSTATE_CLEAN, nstate);
2213
2214 /*
2215 * To increment the correct bean
2216 * counter, take another lap.
2217 */
2218 goto retry;
2219 }
2220
2221 case DTRACE_DSTATE_DIRTY:
2222 dcpu->dtdsc_dirty_drops++;
2223 break;
2224
2225 case DTRACE_DSTATE_RINSING:
2226 dcpu->dtdsc_rinsing_drops++;
2227 break;
2228
2229 case DTRACE_DSTATE_EMPTY:
2230 dcpu->dtdsc_drops++;
2231 break;
2232 }
2233
2234 DTRACE_CPUFLAG_SET(CPU_DTRACE_DROP);
2235 return (NULL);
2236 }
2237
2238 /*
2239 * The clean list appears to be non-empty. We want to
2240 * move the clean list to the free list; we start by
2241 * moving the clean pointer aside.
2242 */
2243 if (dtrace_casptr(&dcpu->dtdsc_clean,
2244 clean, NULL) != clean) {
2245 /*
2246 * We are in one of two situations:
2247 *
2248 * (a) The clean list was switched to the
2249 * free list by another CPU.
2250 *
2251 * (b) The clean list was added to by the
2252 * cleansing cyclic.
2253 *
2254 * In either of these situations, we can
2255 * just reattempt the free list allocation.
2256 */
2257 goto retry;
2258 }
2259
2260 ASSERT(clean->dtdv_hashval == DTRACE_DYNHASH_FREE);
2261
2262 /*
2263 * Now we'll move the clean list to our free list.
2264 * It's impossible for this to fail: the only way
2265 * the free list can be updated is through this
2266 * code path, and only one CPU can own the clean list.
2267 * Thus, it would only be possible for this to fail if
2268 * this code were racing with dtrace_dynvar_clean().
2269 * (That is, if dtrace_dynvar_clean() updated the clean
2270 * list, and we ended up racing to update the free
2271 * list.) This race is prevented by the dtrace_sync()
2272 * in dtrace_dynvar_clean() -- which flushes the
2273 * owners of the clean lists out before resetting
2274 * the clean lists.
2275 */
2276 dcpu = &dstate->dtds_percpu[me];
2277 rval = dtrace_casptr(&dcpu->dtdsc_free, NULL, clean);
2278 ASSERT(rval == NULL);
2279 goto retry;
2280 }
2281
2282 dvar = free;
2283 new_free = dvar->dtdv_next;
2284 } while (dtrace_casptr(&dcpu->dtdsc_free, free, new_free) != free);
2285
2286 /*
2287 * We have now allocated a new chunk. We copy the tuple keys into the
2288 * tuple array and copy any referenced key data into the data space
2289 * following the tuple array. As we do this, we relocate dttk_value
2290 * in the final tuple to point to the key data address in the chunk.
2291 */
2292 kdata = (uintptr_t)&dvar->dtdv_tuple.dtt_key[nkeys];
2293 dvar->dtdv_data = (void *)(kdata + ksize);
2294 dvar->dtdv_tuple.dtt_nkeys = nkeys;
2295
2296 for (i = 0; i < nkeys; i++) {
2297 dtrace_key_t *dkey = &dvar->dtdv_tuple.dtt_key[i];
2298 size_t kesize = key[i].dttk_size;
2299
2300 if (kesize != 0) {
2301 dtrace_bcopy(
2302 (const void *)(uintptr_t)key[i].dttk_value,
2303 (void *)kdata, kesize);
2304 dkey->dttk_value = kdata;
2305 kdata += P2ROUNDUP(kesize, sizeof (uint64_t));
2306 } else {
2307 dkey->dttk_value = key[i].dttk_value;
2308 }
2309
2310 dkey->dttk_size = kesize;
2311 }
2312
2313 ASSERT(dvar->dtdv_hashval == DTRACE_DYNHASH_FREE);
2314 dvar->dtdv_hashval = hashval;
2315 dvar->dtdv_next = start;
2316
2317 if (dtrace_casptr(&hash[bucket].dtdh_chain, start, dvar) == start)
2318 return (dvar);
2319
2320 /*
2321 * The cas has failed. Either another CPU is adding an element to
2322 * this hash chain, or another CPU is deleting an element from this
2323 * hash chain. The simplest way to deal with both of these cases
2324 * (though not necessarily the most efficient) is to free our
2325 * allocated block and re-attempt it all. Note that the free is
2326 * to the dirty list and _not_ to the free list. This is to prevent
2327 * races with allocators, above.
2328 */
2329 dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
2330
2331 dtrace_membar_producer();
2332
2333 do {
2334 free = dcpu->dtdsc_dirty;
2335 dvar->dtdv_next = free;
2336 } while (dtrace_casptr(&dcpu->dtdsc_dirty, free, dvar) != free);
2337
2338 goto top;
2339 }
2340
2341 /*ARGSUSED*/
2342 static void
dtrace_aggregate_min(uint64_t * oval,uint64_t nval,uint64_t arg)2343 dtrace_aggregate_min(uint64_t *oval, uint64_t nval, uint64_t arg)
2344 {
2345 if ((int64_t)nval < (int64_t)*oval)
2346 *oval = nval;
2347 }
2348
2349 /*ARGSUSED*/
2350 static void
dtrace_aggregate_max(uint64_t * oval,uint64_t nval,uint64_t arg)2351 dtrace_aggregate_max(uint64_t *oval, uint64_t nval, uint64_t arg)
2352 {
2353 if ((int64_t)nval > (int64_t)*oval)
2354 *oval = nval;
2355 }
2356
2357 static void
dtrace_aggregate_quantize(uint64_t * quanta,uint64_t nval,uint64_t incr)2358 dtrace_aggregate_quantize(uint64_t *quanta, uint64_t nval, uint64_t incr)
2359 {
2360 int i, zero = DTRACE_QUANTIZE_ZEROBUCKET;
2361 int64_t val = (int64_t)nval;
2362
2363 if (val < 0) {
2364 for (i = 0; i < zero; i++) {
2365 if (val <= DTRACE_QUANTIZE_BUCKETVAL(i)) {
2366 quanta[i] += incr;
2367 return;
2368 }
2369 }
2370 } else {
2371 for (i = zero + 1; i < DTRACE_QUANTIZE_NBUCKETS; i++) {
2372 if (val < DTRACE_QUANTIZE_BUCKETVAL(i)) {
2373 quanta[i - 1] += incr;
2374 return;
2375 }
2376 }
2377
2378 quanta[DTRACE_QUANTIZE_NBUCKETS - 1] += incr;
2379 return;
2380 }
2381
2382 ASSERT(0);
2383 }
2384
2385 static void
dtrace_aggregate_lquantize(uint64_t * lquanta,uint64_t nval,uint64_t incr)2386 dtrace_aggregate_lquantize(uint64_t *lquanta, uint64_t nval, uint64_t incr)
2387 {
2388 uint64_t arg = *lquanta++;
2389 int32_t base = DTRACE_LQUANTIZE_BASE(arg);
2390 uint16_t step = DTRACE_LQUANTIZE_STEP(arg);
2391 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg);
2392 int32_t val = (int32_t)nval, level;
2393
2394 ASSERT(step != 0);
2395 ASSERT(levels != 0);
2396
2397 if (val < base) {
2398 /*
2399 * This is an underflow.
2400 */
2401 lquanta[0] += incr;
2402 return;
2403 }
2404
2405 level = (val - base) / step;
2406
2407 if (level < levels) {
2408 lquanta[level + 1] += incr;
2409 return;
2410 }
2411
2412 /*
2413 * This is an overflow.
2414 */
2415 lquanta[levels + 1] += incr;
2416 }
2417
2418 static int
dtrace_aggregate_llquantize_bucket(uint16_t factor,uint16_t low,uint16_t high,uint16_t nsteps,int64_t value)2419 dtrace_aggregate_llquantize_bucket(uint16_t factor, uint16_t low,
2420 uint16_t high, uint16_t nsteps, int64_t value)
2421 {
2422 int64_t this = 1, last, next;
2423 int base = 1, order;
2424
2425 ASSERT(factor <= nsteps);
2426 ASSERT(nsteps % factor == 0);
2427
2428 for (order = 0; order < low; order++)
2429 this *= factor;
2430
2431 /*
2432 * If our value is less than our factor taken to the power of the
2433 * low order of magnitude, it goes into the zeroth bucket.
2434 */
2435 if (value < (last = this))
2436 return (0);
2437
2438 for (this *= factor; order <= high; order++) {
2439 int nbuckets = this > nsteps ? nsteps : this;
2440
2441 if ((next = this * factor) < this) {
2442 /*
2443 * We should not generally get log/linear quantizations
2444 * with a high magnitude that allows 64-bits to
2445 * overflow, but we nonetheless protect against this
2446 * by explicitly checking for overflow, and clamping
2447 * our value accordingly.
2448 */
2449 value = this - 1;
2450 }
2451
2452 if (value < this) {
2453 /*
2454 * If our value lies within this order of magnitude,
2455 * determine its position by taking the offset within
2456 * the order of magnitude, dividing by the bucket
2457 * width, and adding to our (accumulated) base.
2458 */
2459 return (base + (value - last) / (this / nbuckets));
2460 }
2461
2462 base += nbuckets - (nbuckets / factor);
2463 last = this;
2464 this = next;
2465 }
2466
2467 /*
2468 * Our value is greater than or equal to our factor taken to the
2469 * power of one plus the high magnitude -- return the top bucket.
2470 */
2471 return (base);
2472 }
2473
2474 static void
dtrace_aggregate_llquantize(uint64_t * llquanta,uint64_t nval,uint64_t incr)2475 dtrace_aggregate_llquantize(uint64_t *llquanta, uint64_t nval, uint64_t incr)
2476 {
2477 uint64_t arg = *llquanta++;
2478 uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(arg);
2479 uint16_t low = DTRACE_LLQUANTIZE_LOW(arg);
2480 uint16_t high = DTRACE_LLQUANTIZE_HIGH(arg);
2481 uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(arg);
2482
2483 llquanta[dtrace_aggregate_llquantize_bucket(factor,
2484 low, high, nsteps, nval)] += incr;
2485 }
2486
2487 /*ARGSUSED*/
2488 static void
dtrace_aggregate_avg(uint64_t * data,uint64_t nval,uint64_t arg)2489 dtrace_aggregate_avg(uint64_t *data, uint64_t nval, uint64_t arg)
2490 {
2491 data[0]++;
2492 data[1] += nval;
2493 }
2494
2495 /*ARGSUSED*/
2496 static void
dtrace_aggregate_stddev(uint64_t * data,uint64_t nval,uint64_t arg)2497 dtrace_aggregate_stddev(uint64_t *data, uint64_t nval, uint64_t arg)
2498 {
2499 int64_t snval = (int64_t)nval;
2500 uint64_t tmp[2];
2501
2502 data[0]++;
2503 data[1] += nval;
2504
2505 /*
2506 * What we want to say here is:
2507 *
2508 * data[2] += nval * nval;
2509 *
2510 * But given that nval is 64-bit, we could easily overflow, so
2511 * we do this as 128-bit arithmetic.
2512 */
2513 if (snval < 0)
2514 snval = -snval;
2515
2516 dtrace_multiply_128((uint64_t)snval, (uint64_t)snval, tmp);
2517 dtrace_add_128(data + 2, tmp, data + 2);
2518 }
2519
2520 /*ARGSUSED*/
2521 static void
dtrace_aggregate_count(uint64_t * oval,uint64_t nval,uint64_t arg)2522 dtrace_aggregate_count(uint64_t *oval, uint64_t nval, uint64_t arg)
2523 {
2524 *oval = *oval + 1;
2525 }
2526
2527 /*ARGSUSED*/
2528 static void
dtrace_aggregate_sum(uint64_t * oval,uint64_t nval,uint64_t arg)2529 dtrace_aggregate_sum(uint64_t *oval, uint64_t nval, uint64_t arg)
2530 {
2531 *oval += nval;
2532 }
2533
2534 /*
2535 * Aggregate given the tuple in the principal data buffer, and the aggregating
2536 * action denoted by the specified dtrace_aggregation_t. The aggregation
2537 * buffer is specified as the buf parameter. This routine does not return
2538 * failure; if there is no space in the aggregation buffer, the data will be
2539 * dropped, and a corresponding counter incremented.
2540 */
2541 static void
dtrace_aggregate(dtrace_aggregation_t * agg,dtrace_buffer_t * dbuf,intptr_t offset,dtrace_buffer_t * buf,uint64_t expr,uint64_t arg)2542 dtrace_aggregate(dtrace_aggregation_t *agg, dtrace_buffer_t *dbuf,
2543 intptr_t offset, dtrace_buffer_t *buf, uint64_t expr, uint64_t arg)
2544 {
2545 dtrace_recdesc_t *rec = &agg->dtag_action.dta_rec;
2546 uint32_t i, ndx, size, fsize;
2547 uint32_t align = sizeof (uint64_t) - 1;
2548 dtrace_aggbuffer_t *agb;
2549 dtrace_aggkey_t *key;
2550 uint32_t hashval = 0, limit, isstr;
2551 caddr_t tomax, data, kdata;
2552 dtrace_actkind_t action;
2553 dtrace_action_t *act;
2554 size_t offs;
2555
2556 if (buf == NULL)
2557 return;
2558
2559 if (!agg->dtag_hasarg) {
2560 /*
2561 * Currently, only quantize() and lquantize() take additional
2562 * arguments, and they have the same semantics: an increment
2563 * value that defaults to 1 when not present. If additional
2564 * aggregating actions take arguments, the setting of the
2565 * default argument value will presumably have to become more
2566 * sophisticated...
2567 */
2568 arg = 1;
2569 }
2570
2571 action = agg->dtag_action.dta_kind - DTRACEACT_AGGREGATION;
2572 size = rec->dtrd_offset - agg->dtag_base;
2573 fsize = size + rec->dtrd_size;
2574
2575 ASSERT(dbuf->dtb_tomax != NULL);
2576 data = dbuf->dtb_tomax + offset + agg->dtag_base;
2577
2578 if ((tomax = buf->dtb_tomax) == NULL) {
2579 dtrace_buffer_drop(buf);
2580 return;
2581 }
2582
2583 /*
2584 * The metastructure is always at the bottom of the buffer.
2585 */
2586 agb = (dtrace_aggbuffer_t *)(tomax + buf->dtb_size -
2587 sizeof (dtrace_aggbuffer_t));
2588
2589 if (buf->dtb_offset == 0) {
2590 /*
2591 * We just kludge up approximately 1/8th of the size to be
2592 * buckets. If this guess ends up being routinely
2593 * off-the-mark, we may need to dynamically readjust this
2594 * based on past performance.
2595 */
2596 uintptr_t hashsize = (buf->dtb_size >> 3) / sizeof (uintptr_t);
2597
2598 if ((uintptr_t)agb - hashsize * sizeof (dtrace_aggkey_t *) <
2599 (uintptr_t)tomax || hashsize == 0) {
2600 /*
2601 * We've been given a ludicrously small buffer;
2602 * increment our drop count and leave.
2603 */
2604 dtrace_buffer_drop(buf);
2605 return;
2606 }
2607
2608 /*
2609 * And now, a pathetic attempt to try to get a an odd (or
2610 * perchance, a prime) hash size for better hash distribution.
2611 */
2612 if (hashsize > (DTRACE_AGGHASHSIZE_SLEW << 3))
2613 hashsize -= DTRACE_AGGHASHSIZE_SLEW;
2614
2615 agb->dtagb_hashsize = hashsize;
2616 agb->dtagb_hash = (dtrace_aggkey_t **)((uintptr_t)agb -
2617 agb->dtagb_hashsize * sizeof (dtrace_aggkey_t *));
2618 agb->dtagb_free = (uintptr_t)agb->dtagb_hash;
2619
2620 for (i = 0; i < agb->dtagb_hashsize; i++)
2621 agb->dtagb_hash[i] = NULL;
2622 }
2623
2624 ASSERT(agg->dtag_first != NULL);
2625 ASSERT(agg->dtag_first->dta_intuple);
2626
2627 /*
2628 * Calculate the hash value based on the key. Note that we _don't_
2629 * include the aggid in the hashing (but we will store it as part of
2630 * the key). The hashing algorithm is Bob Jenkins' "One-at-a-time"
2631 * algorithm: a simple, quick algorithm that has no known funnels, and
2632 * gets good distribution in practice. The efficacy of the hashing
2633 * algorithm (and a comparison with other algorithms) may be found by
2634 * running the ::dtrace_aggstat MDB dcmd.
2635 */
2636 for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2637 i = act->dta_rec.dtrd_offset - agg->dtag_base;
2638 limit = i + act->dta_rec.dtrd_size;
2639 ASSERT(limit <= size);
2640 isstr = DTRACEACT_ISSTRING(act);
2641
2642 for (; i < limit; i++) {
2643 hashval += data[i];
2644 hashval += (hashval << 10);
2645 hashval ^= (hashval >> 6);
2646
2647 if (isstr && data[i] == '\0')
2648 break;
2649 }
2650 }
2651
2652 hashval += (hashval << 3);
2653 hashval ^= (hashval >> 11);
2654 hashval += (hashval << 15);
2655
2656 /*
2657 * Yes, the divide here is expensive -- but it's generally the least
2658 * of the performance issues given the amount of data that we iterate
2659 * over to compute hash values, compare data, etc.
2660 */
2661 ndx = hashval % agb->dtagb_hashsize;
2662
2663 for (key = agb->dtagb_hash[ndx]; key != NULL; key = key->dtak_next) {
2664 ASSERT((caddr_t)key >= tomax);
2665 ASSERT((caddr_t)key < tomax + buf->dtb_size);
2666
2667 if (hashval != key->dtak_hashval || key->dtak_size != size)
2668 continue;
2669
2670 kdata = key->dtak_data;
2671 ASSERT(kdata >= tomax && kdata < tomax + buf->dtb_size);
2672
2673 for (act = agg->dtag_first; act->dta_intuple;
2674 act = act->dta_next) {
2675 i = act->dta_rec.dtrd_offset - agg->dtag_base;
2676 limit = i + act->dta_rec.dtrd_size;
2677 ASSERT(limit <= size);
2678 isstr = DTRACEACT_ISSTRING(act);
2679
2680 for (; i < limit; i++) {
2681 if (kdata[i] != data[i])
2682 goto next;
2683
2684 if (isstr && data[i] == '\0')
2685 break;
2686 }
2687 }
2688
2689 if (action != key->dtak_action) {
2690 /*
2691 * We are aggregating on the same value in the same
2692 * aggregation with two different aggregating actions.
2693 * (This should have been picked up in the compiler,
2694 * so we may be dealing with errant or devious DIF.)
2695 * This is an error condition; we indicate as much,
2696 * and return.
2697 */
2698 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
2699 return;
2700 }
2701
2702 /*
2703 * This is a hit: we need to apply the aggregator to
2704 * the value at this key.
2705 */
2706 agg->dtag_aggregate((uint64_t *)(kdata + size), expr, arg);
2707 return;
2708 next:
2709 continue;
2710 }
2711
2712 /*
2713 * We didn't find it. We need to allocate some zero-filled space,
2714 * link it into the hash table appropriately, and apply the aggregator
2715 * to the (zero-filled) value.
2716 */
2717 offs = buf->dtb_offset;
2718 while (offs & (align - 1))
2719 offs += sizeof (uint32_t);
2720
2721 /*
2722 * If we don't have enough room to both allocate a new key _and_
2723 * its associated data, increment the drop count and return.
2724 */
2725 if ((uintptr_t)tomax + offs + fsize >
2726 agb->dtagb_free - sizeof (dtrace_aggkey_t)) {
2727 dtrace_buffer_drop(buf);
2728 return;
2729 }
2730
2731 /*CONSTCOND*/
2732 ASSERT(!(sizeof (dtrace_aggkey_t) & (sizeof (uintptr_t) - 1)));
2733 key = (dtrace_aggkey_t *)(agb->dtagb_free - sizeof (dtrace_aggkey_t));
2734 agb->dtagb_free -= sizeof (dtrace_aggkey_t);
2735
2736 key->dtak_data = kdata = tomax + offs;
2737 buf->dtb_offset = offs + fsize;
2738
2739 /*
2740 * Now copy the data across.
2741 */
2742 *((dtrace_aggid_t *)kdata) = agg->dtag_id;
2743
2744 for (i = sizeof (dtrace_aggid_t); i < size; i++)
2745 kdata[i] = data[i];
2746
2747 /*
2748 * Because strings are not zeroed out by default, we need to iterate
2749 * looking for actions that store strings, and we need to explicitly
2750 * pad these strings out with zeroes.
2751 */
2752 for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2753 int nul;
2754
2755 if (!DTRACEACT_ISSTRING(act))
2756 continue;
2757
2758 i = act->dta_rec.dtrd_offset - agg->dtag_base;
2759 limit = i + act->dta_rec.dtrd_size;
2760 ASSERT(limit <= size);
2761
2762 for (nul = 0; i < limit; i++) {
2763 if (nul) {
2764 kdata[i] = '\0';
2765 continue;
2766 }
2767
2768 if (data[i] != '\0')
2769 continue;
2770
2771 nul = 1;
2772 }
2773 }
2774
2775 for (i = size; i < fsize; i++)
2776 kdata[i] = 0;
2777
2778 key->dtak_hashval = hashval;
2779 key->dtak_size = size;
2780 key->dtak_action = action;
2781 key->dtak_next = agb->dtagb_hash[ndx];
2782 agb->dtagb_hash[ndx] = key;
2783
2784 /*
2785 * Finally, apply the aggregator.
2786 */
2787 *((uint64_t *)(key->dtak_data + size)) = agg->dtag_initial;
2788 agg->dtag_aggregate((uint64_t *)(key->dtak_data + size), expr, arg);
2789 }
2790
2791 /*
2792 * Given consumer state, this routine finds a speculation in the INACTIVE
2793 * state and transitions it into the ACTIVE state. If there is no speculation
2794 * in the INACTIVE state, 0 is returned. In this case, no error counter is
2795 * incremented -- it is up to the caller to take appropriate action.
2796 */
2797 static int
dtrace_speculation(dtrace_state_t * state)2798 dtrace_speculation(dtrace_state_t *state)
2799 {
2800 int i = 0;
2801 dtrace_speculation_state_t curstate;
2802 uint32_t *stat = &state->dts_speculations_unavail, count;
2803
2804 while (i < state->dts_nspeculations) {
2805 dtrace_speculation_t *spec = &state->dts_speculations[i];
2806
2807 curstate = spec->dtsp_state;
2808
2809 if (curstate != DTRACESPEC_INACTIVE) {
2810 if (curstate == DTRACESPEC_COMMITTINGMANY ||
2811 curstate == DTRACESPEC_COMMITTING ||
2812 curstate == DTRACESPEC_DISCARDING)
2813 stat = &state->dts_speculations_busy;
2814 i++;
2815 continue;
2816 }
2817
2818 if (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2819 curstate, DTRACESPEC_ACTIVE) == curstate)
2820 return (i + 1);
2821 }
2822
2823 /*
2824 * We couldn't find a speculation. If we found as much as a single
2825 * busy speculation buffer, we'll attribute this failure as "busy"
2826 * instead of "unavail".
2827 */
2828 do {
2829 count = *stat;
2830 } while (dtrace_cas32(stat, count, count + 1) != count);
2831
2832 return (0);
2833 }
2834
2835 /*
2836 * This routine commits an active speculation. If the specified speculation
2837 * is not in a valid state to perform a commit(), this routine will silently do
2838 * nothing. The state of the specified speculation is transitioned according
2839 * to the state transition diagram outlined in <sys/dtrace_impl.h>
2840 */
2841 static void
dtrace_speculation_commit(dtrace_state_t * state,processorid_t cpu,dtrace_specid_t which)2842 dtrace_speculation_commit(dtrace_state_t *state, processorid_t cpu,
2843 dtrace_specid_t which)
2844 {
2845 dtrace_speculation_t *spec;
2846 dtrace_buffer_t *src, *dest;
2847 uintptr_t daddr, saddr, dlimit, slimit;
2848 dtrace_speculation_state_t curstate, new = 0;
2849 ssize_t offs;
2850 uint64_t timestamp;
2851
2852 if (which == 0)
2853 return;
2854
2855 if (which > state->dts_nspeculations) {
2856 cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2857 return;
2858 }
2859
2860 spec = &state->dts_speculations[which - 1];
2861 src = &spec->dtsp_buffer[cpu];
2862 dest = &state->dts_buffer[cpu];
2863
2864 do {
2865 curstate = spec->dtsp_state;
2866
2867 if (curstate == DTRACESPEC_COMMITTINGMANY)
2868 break;
2869
2870 switch (curstate) {
2871 case DTRACESPEC_INACTIVE:
2872 case DTRACESPEC_DISCARDING:
2873 return;
2874
2875 case DTRACESPEC_COMMITTING:
2876 /*
2877 * This is only possible if we are (a) commit()'ing
2878 * without having done a prior speculate() on this CPU
2879 * and (b) racing with another commit() on a different
2880 * CPU. There's nothing to do -- we just assert that
2881 * our offset is 0.
2882 */
2883 ASSERT(src->dtb_offset == 0);
2884 return;
2885
2886 case DTRACESPEC_ACTIVE:
2887 new = DTRACESPEC_COMMITTING;
2888 break;
2889
2890 case DTRACESPEC_ACTIVEONE:
2891 /*
2892 * This speculation is active on one CPU. If our
2893 * buffer offset is non-zero, we know that the one CPU
2894 * must be us. Otherwise, we are committing on a
2895 * different CPU from the speculate(), and we must
2896 * rely on being asynchronously cleaned.
2897 */
2898 if (src->dtb_offset != 0) {
2899 new = DTRACESPEC_COMMITTING;
2900 break;
2901 }
2902 /*FALLTHROUGH*/
2903
2904 case DTRACESPEC_ACTIVEMANY:
2905 new = DTRACESPEC_COMMITTINGMANY;
2906 break;
2907
2908 default:
2909 ASSERT(0);
2910 }
2911 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2912 curstate, new) != curstate);
2913
2914 /*
2915 * We have set the state to indicate that we are committing this
2916 * speculation. Now reserve the necessary space in the destination
2917 * buffer.
2918 */
2919 if ((offs = dtrace_buffer_reserve(dest, src->dtb_offset,
2920 sizeof (uint64_t), state, NULL)) < 0) {
2921 dtrace_buffer_drop(dest);
2922 goto out;
2923 }
2924
2925 /*
2926 * We have sufficient space to copy the speculative buffer into the
2927 * primary buffer. First, modify the speculative buffer, filling
2928 * in the timestamp of all entries with the curstate time. The data
2929 * must have the commit() time rather than the time it was traced,
2930 * so that all entries in the primary buffer are in timestamp order.
2931 */
2932 timestamp = dtrace_gethrtime();
2933 saddr = (uintptr_t)src->dtb_tomax;
2934 slimit = saddr + src->dtb_offset;
2935 while (saddr < slimit) {
2936 size_t size;
2937 dtrace_rechdr_t *dtrh = (dtrace_rechdr_t *)saddr;
2938
2939 if (dtrh->dtrh_epid == DTRACE_EPIDNONE) {
2940 saddr += sizeof (dtrace_epid_t);
2941 continue;
2942 }
2943 ASSERT3U(dtrh->dtrh_epid, <=, state->dts_necbs);
2944 size = state->dts_ecbs[dtrh->dtrh_epid - 1]->dte_size;
2945
2946 ASSERT3U(saddr + size, <=, slimit);
2947 ASSERT3U(size, >=, sizeof (dtrace_rechdr_t));
2948 ASSERT3U(DTRACE_RECORD_LOAD_TIMESTAMP(dtrh), ==, UINT64_MAX);
2949
2950 DTRACE_RECORD_STORE_TIMESTAMP(dtrh, timestamp);
2951
2952 saddr += size;
2953 }
2954
2955 /*
2956 * Copy the buffer across. (Note that this is a
2957 * highly subobtimal bcopy(); in the unlikely event that this becomes
2958 * a serious performance issue, a high-performance DTrace-specific
2959 * bcopy() should obviously be invented.)
2960 */
2961 daddr = (uintptr_t)dest->dtb_tomax + offs;
2962 dlimit = daddr + src->dtb_offset;
2963 saddr = (uintptr_t)src->dtb_tomax;
2964
2965 /*
2966 * First, the aligned portion.
2967 */
2968 while (dlimit - daddr >= sizeof (uint64_t)) {
2969 *((uint64_t *)daddr) = *((uint64_t *)saddr);
2970
2971 daddr += sizeof (uint64_t);
2972 saddr += sizeof (uint64_t);
2973 }
2974
2975 /*
2976 * Now any left-over bit...
2977 */
2978 while (dlimit - daddr)
2979 *((uint8_t *)daddr++) = *((uint8_t *)saddr++);
2980
2981 /*
2982 * Finally, commit the reserved space in the destination buffer.
2983 */
2984 dest->dtb_offset = offs + src->dtb_offset;
2985
2986 out:
2987 /*
2988 * If we're lucky enough to be the only active CPU on this speculation
2989 * buffer, we can just set the state back to DTRACESPEC_INACTIVE.
2990 */
2991 if (curstate == DTRACESPEC_ACTIVE ||
2992 (curstate == DTRACESPEC_ACTIVEONE && new == DTRACESPEC_COMMITTING)) {
2993 uint32_t rval = dtrace_cas32((uint32_t *)&spec->dtsp_state,
2994 DTRACESPEC_COMMITTING, DTRACESPEC_INACTIVE);
2995
2996 ASSERT(rval == DTRACESPEC_COMMITTING);
2997 }
2998
2999 src->dtb_offset = 0;
3000 src->dtb_xamot_drops += src->dtb_drops;
3001 src->dtb_drops = 0;
3002 }
3003
3004 /*
3005 * This routine discards an active speculation. If the specified speculation
3006 * is not in a valid state to perform a discard(), this routine will silently
3007 * do nothing. The state of the specified speculation is transitioned
3008 * according to the state transition diagram outlined in <sys/dtrace_impl.h>
3009 */
3010 static void
dtrace_speculation_discard(dtrace_state_t * state,processorid_t cpu,dtrace_specid_t which)3011 dtrace_speculation_discard(dtrace_state_t *state, processorid_t cpu,
3012 dtrace_specid_t which)
3013 {
3014 dtrace_speculation_t *spec;
3015 dtrace_speculation_state_t curstate, new = 0;
3016 dtrace_buffer_t *buf;
3017
3018 if (which == 0)
3019 return;
3020
3021 if (which > state->dts_nspeculations) {
3022 cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
3023 return;
3024 }
3025
3026 spec = &state->dts_speculations[which - 1];
3027 buf = &spec->dtsp_buffer[cpu];
3028
3029 do {
3030 curstate = spec->dtsp_state;
3031
3032 switch (curstate) {
3033 case DTRACESPEC_INACTIVE:
3034 case DTRACESPEC_COMMITTINGMANY:
3035 case DTRACESPEC_COMMITTING:
3036 case DTRACESPEC_DISCARDING:
3037 return;
3038
3039 case DTRACESPEC_ACTIVE:
3040 case DTRACESPEC_ACTIVEMANY:
3041 new = DTRACESPEC_DISCARDING;
3042 break;
3043
3044 case DTRACESPEC_ACTIVEONE:
3045 if (buf->dtb_offset != 0) {
3046 new = DTRACESPEC_INACTIVE;
3047 } else {
3048 new = DTRACESPEC_DISCARDING;
3049 }
3050 break;
3051
3052 default:
3053 ASSERT(0);
3054 }
3055 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
3056 curstate, new) != curstate);
3057
3058 buf->dtb_offset = 0;
3059 buf->dtb_drops = 0;
3060 }
3061
3062 /*
3063 * Note: not called from probe context. This function is called
3064 * asynchronously from cross call context to clean any speculations that are
3065 * in the COMMITTINGMANY or DISCARDING states. These speculations may not be
3066 * transitioned back to the INACTIVE state until all CPUs have cleaned the
3067 * speculation.
3068 */
3069 static void
dtrace_speculation_clean_here(dtrace_state_t * state)3070 dtrace_speculation_clean_here(dtrace_state_t *state)
3071 {
3072 dtrace_icookie_t cookie;
3073 processorid_t cpu = curcpu;
3074 dtrace_buffer_t *dest = &state->dts_buffer[cpu];
3075 dtrace_specid_t i;
3076
3077 cookie = dtrace_interrupt_disable();
3078
3079 if (dest->dtb_tomax == NULL) {
3080 dtrace_interrupt_enable(cookie);
3081 return;
3082 }
3083
3084 for (i = 0; i < state->dts_nspeculations; i++) {
3085 dtrace_speculation_t *spec = &state->dts_speculations[i];
3086 dtrace_buffer_t *src = &spec->dtsp_buffer[cpu];
3087
3088 if (src->dtb_tomax == NULL)
3089 continue;
3090
3091 if (spec->dtsp_state == DTRACESPEC_DISCARDING) {
3092 src->dtb_offset = 0;
3093 continue;
3094 }
3095
3096 if (spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
3097 continue;
3098
3099 if (src->dtb_offset == 0)
3100 continue;
3101
3102 dtrace_speculation_commit(state, cpu, i + 1);
3103 }
3104
3105 dtrace_interrupt_enable(cookie);
3106 }
3107
3108 /*
3109 * Note: not called from probe context. This function is called
3110 * asynchronously (and at a regular interval) to clean any speculations that
3111 * are in the COMMITTINGMANY or DISCARDING states. If it discovers that there
3112 * is work to be done, it cross calls all CPUs to perform that work;
3113 * COMMITMANY and DISCARDING speculations may not be transitioned back to the
3114 * INACTIVE state until they have been cleaned by all CPUs.
3115 */
3116 static void
dtrace_speculation_clean(dtrace_state_t * state)3117 dtrace_speculation_clean(dtrace_state_t *state)
3118 {
3119 int work = 0, rv;
3120 dtrace_specid_t i;
3121
3122 for (i = 0; i < state->dts_nspeculations; i++) {
3123 dtrace_speculation_t *spec = &state->dts_speculations[i];
3124
3125 ASSERT(!spec->dtsp_cleaning);
3126
3127 if (spec->dtsp_state != DTRACESPEC_DISCARDING &&
3128 spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
3129 continue;
3130
3131 work++;
3132 spec->dtsp_cleaning = 1;
3133 }
3134
3135 if (!work)
3136 return;
3137
3138 dtrace_xcall(DTRACE_CPUALL,
3139 (dtrace_xcall_t)dtrace_speculation_clean_here, state);
3140
3141 /*
3142 * We now know that all CPUs have committed or discarded their
3143 * speculation buffers, as appropriate. We can now set the state
3144 * to inactive.
3145 */
3146 for (i = 0; i < state->dts_nspeculations; i++) {
3147 dtrace_speculation_t *spec = &state->dts_speculations[i];
3148 dtrace_speculation_state_t curstate, new;
3149
3150 if (!spec->dtsp_cleaning)
3151 continue;
3152
3153 curstate = spec->dtsp_state;
3154 ASSERT(curstate == DTRACESPEC_DISCARDING ||
3155 curstate == DTRACESPEC_COMMITTINGMANY);
3156
3157 new = DTRACESPEC_INACTIVE;
3158
3159 rv = dtrace_cas32((uint32_t *)&spec->dtsp_state, curstate, new);
3160 ASSERT(rv == curstate);
3161 spec->dtsp_cleaning = 0;
3162 }
3163 }
3164
3165 /*
3166 * Called as part of a speculate() to get the speculative buffer associated
3167 * with a given speculation. Returns NULL if the specified speculation is not
3168 * in an ACTIVE state. If the speculation is in the ACTIVEONE state -- and
3169 * the active CPU is not the specified CPU -- the speculation will be
3170 * atomically transitioned into the ACTIVEMANY state.
3171 */
3172 static dtrace_buffer_t *
dtrace_speculation_buffer(dtrace_state_t * state,processorid_t cpuid,dtrace_specid_t which)3173 dtrace_speculation_buffer(dtrace_state_t *state, processorid_t cpuid,
3174 dtrace_specid_t which)
3175 {
3176 dtrace_speculation_t *spec;
3177 dtrace_speculation_state_t curstate, new = 0;
3178 dtrace_buffer_t *buf;
3179
3180 if (which == 0)
3181 return (NULL);
3182
3183 if (which > state->dts_nspeculations) {
3184 cpu_core[cpuid].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
3185 return (NULL);
3186 }
3187
3188 spec = &state->dts_speculations[which - 1];
3189 buf = &spec->dtsp_buffer[cpuid];
3190
3191 do {
3192 curstate = spec->dtsp_state;
3193
3194 switch (curstate) {
3195 case DTRACESPEC_INACTIVE:
3196 case DTRACESPEC_COMMITTINGMANY:
3197 case DTRACESPEC_DISCARDING:
3198 return (NULL);
3199
3200 case DTRACESPEC_COMMITTING:
3201 ASSERT(buf->dtb_offset == 0);
3202 return (NULL);
3203
3204 case DTRACESPEC_ACTIVEONE:
3205 /*
3206 * This speculation is currently active on one CPU.
3207 * Check the offset in the buffer; if it's non-zero,
3208 * that CPU must be us (and we leave the state alone).
3209 * If it's zero, assume that we're starting on a new
3210 * CPU -- and change the state to indicate that the
3211 * speculation is active on more than one CPU.
3212 */
3213 if (buf->dtb_offset != 0)
3214 return (buf);
3215
3216 new = DTRACESPEC_ACTIVEMANY;
3217 break;
3218
3219 case DTRACESPEC_ACTIVEMANY:
3220 return (buf);
3221
3222 case DTRACESPEC_ACTIVE:
3223 new = DTRACESPEC_ACTIVEONE;
3224 break;
3225
3226 default:
3227 ASSERT(0);
3228 }
3229 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
3230 curstate, new) != curstate);
3231
3232 ASSERT(new == DTRACESPEC_ACTIVEONE || new == DTRACESPEC_ACTIVEMANY);
3233 return (buf);
3234 }
3235
3236 /*
3237 * Return a string. In the event that the user lacks the privilege to access
3238 * arbitrary kernel memory, we copy the string out to scratch memory so that we
3239 * don't fail access checking.
3240 *
3241 * dtrace_dif_variable() uses this routine as a helper for various
3242 * builtin values such as 'execname' and 'probefunc.'
3243 */
3244 uintptr_t
dtrace_dif_varstr(uintptr_t addr,dtrace_state_t * state,dtrace_mstate_t * mstate)3245 dtrace_dif_varstr(uintptr_t addr, dtrace_state_t *state,
3246 dtrace_mstate_t *mstate)
3247 {
3248 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3249 uintptr_t ret;
3250 size_t strsz;
3251
3252 /*
3253 * The easy case: this probe is allowed to read all of memory, so
3254 * we can just return this as a vanilla pointer.
3255 */
3256 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
3257 return (addr);
3258
3259 /*
3260 * This is the tougher case: we copy the string in question from
3261 * kernel memory into scratch memory and return it that way: this
3262 * ensures that we won't trip up when access checking tests the
3263 * BYREF return value.
3264 */
3265 strsz = dtrace_strlen((char *)addr, size) + 1;
3266
3267 if (mstate->dtms_scratch_ptr + strsz >
3268 mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
3269 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3270 return (0);
3271 }
3272
3273 dtrace_strcpy((const void *)addr, (void *)mstate->dtms_scratch_ptr,
3274 strsz);
3275 ret = mstate->dtms_scratch_ptr;
3276 mstate->dtms_scratch_ptr += strsz;
3277 return (ret);
3278 }
3279
3280 /*
3281 * Return a string from a memoy address which is known to have one or
3282 * more concatenated, individually zero terminated, sub-strings.
3283 * In the event that the user lacks the privilege to access
3284 * arbitrary kernel memory, we copy the string out to scratch memory so that we
3285 * don't fail access checking.
3286 *
3287 * dtrace_dif_variable() uses this routine as a helper for various
3288 * builtin values such as 'execargs'.
3289 */
3290 static uintptr_t
dtrace_dif_varstrz(uintptr_t addr,size_t strsz,dtrace_state_t * state,dtrace_mstate_t * mstate)3291 dtrace_dif_varstrz(uintptr_t addr, size_t strsz, dtrace_state_t *state,
3292 dtrace_mstate_t *mstate)
3293 {
3294 char *p;
3295 size_t i;
3296 uintptr_t ret;
3297
3298 if (mstate->dtms_scratch_ptr + strsz >
3299 mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
3300 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3301 return (0);
3302 }
3303
3304 dtrace_bcopy((const void *)addr, (void *)mstate->dtms_scratch_ptr,
3305 strsz);
3306
3307 /* Replace sub-string termination characters with a space. */
3308 for (p = (char *) mstate->dtms_scratch_ptr, i = 0; i < strsz - 1;
3309 p++, i++)
3310 if (*p == '\0')
3311 *p = ' ';
3312
3313 ret = mstate->dtms_scratch_ptr;
3314 mstate->dtms_scratch_ptr += strsz;
3315 return (ret);
3316 }
3317
3318 /*
3319 * This function implements the DIF emulator's variable lookups. The emulator
3320 * passes a reserved variable identifier and optional built-in array index.
3321 */
3322 static uint64_t
dtrace_dif_variable(dtrace_mstate_t * mstate,dtrace_state_t * state,uint64_t v,uint64_t ndx)3323 dtrace_dif_variable(dtrace_mstate_t *mstate, dtrace_state_t *state, uint64_t v,
3324 uint64_t ndx)
3325 {
3326 /*
3327 * If we're accessing one of the uncached arguments, we'll turn this
3328 * into a reference in the args array.
3329 */
3330 if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) {
3331 ndx = v - DIF_VAR_ARG0;
3332 v = DIF_VAR_ARGS;
3333 }
3334
3335 switch (v) {
3336 case DIF_VAR_ARGS:
3337 ASSERT(mstate->dtms_present & DTRACE_MSTATE_ARGS);
3338 if (ndx >= sizeof (mstate->dtms_arg) /
3339 sizeof (mstate->dtms_arg[0])) {
3340 int aframes = mstate->dtms_probe->dtpr_aframes + 2;
3341 dtrace_provider_t *pv;
3342 uint64_t val;
3343
3344 pv = mstate->dtms_probe->dtpr_provider;
3345 if (pv->dtpv_pops.dtps_getargval != NULL)
3346 val = pv->dtpv_pops.dtps_getargval(pv->dtpv_arg,
3347 mstate->dtms_probe->dtpr_id,
3348 mstate->dtms_probe->dtpr_arg, ndx, aframes);
3349 else
3350 val = dtrace_getarg(ndx, aframes);
3351
3352 /*
3353 * This is regrettably required to keep the compiler
3354 * from tail-optimizing the call to dtrace_getarg().
3355 * The condition always evaluates to true, but the
3356 * compiler has no way of figuring that out a priori.
3357 * (None of this would be necessary if the compiler
3358 * could be relied upon to _always_ tail-optimize
3359 * the call to dtrace_getarg() -- but it can't.)
3360 */
3361 if (mstate->dtms_probe != NULL)
3362 return (val);
3363
3364 ASSERT(0);
3365 }
3366
3367 return (mstate->dtms_arg[ndx]);
3368
3369 case DIF_VAR_REGS:
3370 case DIF_VAR_UREGS: {
3371 struct trapframe *tframe;
3372
3373 if (!dtrace_priv_proc(state))
3374 return (0);
3375
3376 if (v == DIF_VAR_REGS)
3377 tframe = curthread->t_dtrace_trapframe;
3378 else
3379 tframe = curthread->td_frame;
3380
3381 if (tframe == NULL) {
3382 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
3383 cpu_core[curcpu].cpuc_dtrace_illval = 0;
3384 return (0);
3385 }
3386
3387 return (dtrace_getreg(tframe, ndx));
3388 }
3389
3390 case DIF_VAR_CURTHREAD:
3391 if (!dtrace_priv_proc(state))
3392 return (0);
3393 return ((uint64_t)(uintptr_t)curthread);
3394
3395 case DIF_VAR_TIMESTAMP:
3396 if (!(mstate->dtms_present & DTRACE_MSTATE_TIMESTAMP)) {
3397 mstate->dtms_timestamp = dtrace_gethrtime();
3398 mstate->dtms_present |= DTRACE_MSTATE_TIMESTAMP;
3399 }
3400 return (mstate->dtms_timestamp);
3401
3402 case DIF_VAR_VTIMESTAMP:
3403 ASSERT(dtrace_vtime_references != 0);
3404 return (curthread->t_dtrace_vtime);
3405
3406 case DIF_VAR_WALLTIMESTAMP:
3407 if (!(mstate->dtms_present & DTRACE_MSTATE_WALLTIMESTAMP)) {
3408 mstate->dtms_walltimestamp = dtrace_gethrestime();
3409 mstate->dtms_present |= DTRACE_MSTATE_WALLTIMESTAMP;
3410 }
3411 return (mstate->dtms_walltimestamp);
3412
3413 #ifdef illumos
3414 case DIF_VAR_IPL:
3415 if (!dtrace_priv_kernel(state))
3416 return (0);
3417 if (!(mstate->dtms_present & DTRACE_MSTATE_IPL)) {
3418 mstate->dtms_ipl = dtrace_getipl();
3419 mstate->dtms_present |= DTRACE_MSTATE_IPL;
3420 }
3421 return (mstate->dtms_ipl);
3422 #endif
3423
3424 case DIF_VAR_EPID:
3425 ASSERT(mstate->dtms_present & DTRACE_MSTATE_EPID);
3426 return (mstate->dtms_epid);
3427
3428 case DIF_VAR_ID:
3429 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3430 return (mstate->dtms_probe->dtpr_id);
3431
3432 case DIF_VAR_STACKDEPTH:
3433 if (!dtrace_priv_kernel(state))
3434 return (0);
3435 if (!(mstate->dtms_present & DTRACE_MSTATE_STACKDEPTH)) {
3436 int aframes = mstate->dtms_probe->dtpr_aframes + 2;
3437
3438 mstate->dtms_stackdepth = dtrace_getstackdepth(aframes);
3439 mstate->dtms_present |= DTRACE_MSTATE_STACKDEPTH;
3440 }
3441 return (mstate->dtms_stackdepth);
3442
3443 case DIF_VAR_USTACKDEPTH:
3444 if (!dtrace_priv_proc(state))
3445 return (0);
3446 if (!(mstate->dtms_present & DTRACE_MSTATE_USTACKDEPTH)) {
3447 /*
3448 * See comment in DIF_VAR_PID.
3449 */
3450 if (DTRACE_ANCHORED(mstate->dtms_probe) &&
3451 CPU_ON_INTR(CPU)) {
3452 mstate->dtms_ustackdepth = 0;
3453 } else {
3454 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3455 mstate->dtms_ustackdepth =
3456 dtrace_getustackdepth();
3457 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3458 }
3459 mstate->dtms_present |= DTRACE_MSTATE_USTACKDEPTH;
3460 }
3461 return (mstate->dtms_ustackdepth);
3462
3463 case DIF_VAR_CALLER:
3464 if (!dtrace_priv_kernel(state))
3465 return (0);
3466 if (!(mstate->dtms_present & DTRACE_MSTATE_CALLER)) {
3467 int aframes = mstate->dtms_probe->dtpr_aframes + 2;
3468
3469 if (!DTRACE_ANCHORED(mstate->dtms_probe)) {
3470 /*
3471 * If this is an unanchored probe, we are
3472 * required to go through the slow path:
3473 * dtrace_caller() only guarantees correct
3474 * results for anchored probes.
3475 */
3476 pc_t caller[2] = {0, 0};
3477
3478 dtrace_getpcstack(caller, 2, aframes,
3479 (uint32_t *)(uintptr_t)mstate->dtms_arg[0]);
3480 mstate->dtms_caller = caller[1];
3481 } else if ((mstate->dtms_caller =
3482 dtrace_caller(aframes)) == -1) {
3483 /*
3484 * We have failed to do this the quick way;
3485 * we must resort to the slower approach of
3486 * calling dtrace_getpcstack().
3487 */
3488 pc_t caller = 0;
3489
3490 dtrace_getpcstack(&caller, 1, aframes, NULL);
3491 mstate->dtms_caller = caller;
3492 }
3493
3494 mstate->dtms_present |= DTRACE_MSTATE_CALLER;
3495 }
3496 return (mstate->dtms_caller);
3497
3498 case DIF_VAR_UCALLER:
3499 if (!dtrace_priv_proc(state))
3500 return (0);
3501
3502 if (!(mstate->dtms_present & DTRACE_MSTATE_UCALLER)) {
3503 uint64_t ustack[3];
3504
3505 /*
3506 * dtrace_getupcstack() fills in the first uint64_t
3507 * with the current PID. The second uint64_t will
3508 * be the program counter at user-level. The third
3509 * uint64_t will contain the caller, which is what
3510 * we're after.
3511 */
3512 ustack[2] = 0;
3513 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3514 dtrace_getupcstack(ustack, 3);
3515 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3516 mstate->dtms_ucaller = ustack[2];
3517 mstate->dtms_present |= DTRACE_MSTATE_UCALLER;
3518 }
3519
3520 return (mstate->dtms_ucaller);
3521
3522 case DIF_VAR_PROBEPROV:
3523 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3524 return (dtrace_dif_varstr(
3525 (uintptr_t)mstate->dtms_probe->dtpr_provider->dtpv_name,
3526 state, mstate));
3527
3528 case DIF_VAR_PROBEMOD:
3529 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3530 return (dtrace_dif_varstr(
3531 (uintptr_t)mstate->dtms_probe->dtpr_mod,
3532 state, mstate));
3533
3534 case DIF_VAR_PROBEFUNC:
3535 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3536 return (dtrace_dif_varstr(
3537 (uintptr_t)mstate->dtms_probe->dtpr_func,
3538 state, mstate));
3539
3540 case DIF_VAR_PROBENAME:
3541 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3542 return (dtrace_dif_varstr(
3543 (uintptr_t)mstate->dtms_probe->dtpr_name,
3544 state, mstate));
3545
3546 case DIF_VAR_PID:
3547 if (!dtrace_priv_proc(state))
3548 return (0);
3549
3550 #ifdef illumos
3551 /*
3552 * Note that we are assuming that an unanchored probe is
3553 * always due to a high-level interrupt. (And we're assuming
3554 * that there is only a single high level interrupt.)
3555 */
3556 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3557 return (pid0.pid_id);
3558
3559 /*
3560 * It is always safe to dereference one's own t_procp pointer:
3561 * it always points to a valid, allocated proc structure.
3562 * Further, it is always safe to dereference the p_pidp member
3563 * of one's own proc structure. (These are truisms becuase
3564 * threads and processes don't clean up their own state --
3565 * they leave that task to whomever reaps them.)
3566 */
3567 return ((uint64_t)curthread->t_procp->p_pidp->pid_id);
3568 #else
3569 return ((uint64_t)curproc->p_pid);
3570 #endif
3571
3572 case DIF_VAR_PPID:
3573 if (!dtrace_priv_proc(state))
3574 return (0);
3575
3576 #ifdef illumos
3577 /*
3578 * See comment in DIF_VAR_PID.
3579 */
3580 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3581 return (pid0.pid_id);
3582
3583 /*
3584 * It is always safe to dereference one's own t_procp pointer:
3585 * it always points to a valid, allocated proc structure.
3586 * (This is true because threads don't clean up their own
3587 * state -- they leave that task to whomever reaps them.)
3588 */
3589 return ((uint64_t)curthread->t_procp->p_ppid);
3590 #else
3591 if (curproc->p_pid == proc0.p_pid)
3592 return (curproc->p_pid);
3593 else
3594 return (curproc->p_pptr->p_pid);
3595 #endif
3596
3597 case DIF_VAR_TID:
3598 #ifdef illumos
3599 /*
3600 * See comment in DIF_VAR_PID.
3601 */
3602 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3603 return (0);
3604 #endif
3605
3606 return ((uint64_t)curthread->t_tid);
3607
3608 case DIF_VAR_EXECARGS: {
3609 struct pargs *p_args = curthread->td_proc->p_args;
3610
3611 if (p_args == NULL)
3612 return(0);
3613
3614 return (dtrace_dif_varstrz(
3615 (uintptr_t) p_args->ar_args, p_args->ar_length, state, mstate));
3616 }
3617
3618 case DIF_VAR_EXECNAME:
3619 #ifdef illumos
3620 if (!dtrace_priv_proc(state))
3621 return (0);
3622
3623 /*
3624 * See comment in DIF_VAR_PID.
3625 */
3626 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3627 return ((uint64_t)(uintptr_t)p0.p_user.u_comm);
3628
3629 /*
3630 * It is always safe to dereference one's own t_procp pointer:
3631 * it always points to a valid, allocated proc structure.
3632 * (This is true because threads don't clean up their own
3633 * state -- they leave that task to whomever reaps them.)
3634 */
3635 return (dtrace_dif_varstr(
3636 (uintptr_t)curthread->t_procp->p_user.u_comm,
3637 state, mstate));
3638 #else
3639 return (dtrace_dif_varstr(
3640 (uintptr_t) curthread->td_proc->p_comm, state, mstate));
3641 #endif
3642
3643 case DIF_VAR_ZONENAME:
3644 #ifdef illumos
3645 if (!dtrace_priv_proc(state))
3646 return (0);
3647
3648 /*
3649 * See comment in DIF_VAR_PID.
3650 */
3651 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3652 return ((uint64_t)(uintptr_t)p0.p_zone->zone_name);
3653
3654 /*
3655 * It is always safe to dereference one's own t_procp pointer:
3656 * it always points to a valid, allocated proc structure.
3657 * (This is true because threads don't clean up their own
3658 * state -- they leave that task to whomever reaps them.)
3659 */
3660 return (dtrace_dif_varstr(
3661 (uintptr_t)curthread->t_procp->p_zone->zone_name,
3662 state, mstate));
3663 #elif defined(__FreeBSD__)
3664 /*
3665 * On FreeBSD, we introduce compatibility to zonename by falling through
3666 * into jailname.
3667 */
3668 case DIF_VAR_JAILNAME:
3669 if (!dtrace_priv_kernel(state))
3670 return (0);
3671
3672 return (dtrace_dif_varstr(
3673 (uintptr_t)curthread->td_ucred->cr_prison->pr_name,
3674 state, mstate));
3675
3676 case DIF_VAR_JID:
3677 if (!dtrace_priv_kernel(state))
3678 return (0);
3679
3680 return ((uint64_t)curthread->td_ucred->cr_prison->pr_id);
3681 #else
3682 return (0);
3683 #endif
3684
3685 case DIF_VAR_UID:
3686 if (!dtrace_priv_proc(state))
3687 return (0);
3688
3689 #ifdef illumos
3690 /*
3691 * See comment in DIF_VAR_PID.
3692 */
3693 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3694 return ((uint64_t)p0.p_cred->cr_uid);
3695
3696 /*
3697 * It is always safe to dereference one's own t_procp pointer:
3698 * it always points to a valid, allocated proc structure.
3699 * (This is true because threads don't clean up their own
3700 * state -- they leave that task to whomever reaps them.)
3701 *
3702 * Additionally, it is safe to dereference one's own process
3703 * credential, since this is never NULL after process birth.
3704 */
3705 return ((uint64_t)curthread->t_procp->p_cred->cr_uid);
3706 #else
3707 return ((uint64_t)curthread->td_ucred->cr_uid);
3708 #endif
3709
3710 case DIF_VAR_GID:
3711 if (!dtrace_priv_proc(state))
3712 return (0);
3713
3714 #ifdef illumos
3715 /*
3716 * See comment in DIF_VAR_PID.
3717 */
3718 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3719 return ((uint64_t)p0.p_cred->cr_gid);
3720
3721 /*
3722 * It is always safe to dereference one's own t_procp pointer:
3723 * it always points to a valid, allocated proc structure.
3724 * (This is true because threads don't clean up their own
3725 * state -- they leave that task to whomever reaps them.)
3726 *
3727 * Additionally, it is safe to dereference one's own process
3728 * credential, since this is never NULL after process birth.
3729 */
3730 return ((uint64_t)curthread->t_procp->p_cred->cr_gid);
3731 #else
3732 return ((uint64_t)curthread->td_ucred->cr_gid);
3733 #endif
3734
3735 case DIF_VAR_ERRNO: {
3736 #ifdef illumos
3737 klwp_t *lwp;
3738 if (!dtrace_priv_proc(state))
3739 return (0);
3740
3741 /*
3742 * See comment in DIF_VAR_PID.
3743 */
3744 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3745 return (0);
3746
3747 /*
3748 * It is always safe to dereference one's own t_lwp pointer in
3749 * the event that this pointer is non-NULL. (This is true
3750 * because threads and lwps don't clean up their own state --
3751 * they leave that task to whomever reaps them.)
3752 */
3753 if ((lwp = curthread->t_lwp) == NULL)
3754 return (0);
3755
3756 return ((uint64_t)lwp->lwp_errno);
3757 #else
3758 return (curthread->td_errno);
3759 #endif
3760 }
3761 #ifndef illumos
3762 case DIF_VAR_CPU: {
3763 return curcpu;
3764 }
3765 #endif
3766 default:
3767 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
3768 return (0);
3769 }
3770 }
3771
3772
3773 typedef enum dtrace_json_state {
3774 DTRACE_JSON_REST = 1,
3775 DTRACE_JSON_OBJECT,
3776 DTRACE_JSON_STRING,
3777 DTRACE_JSON_STRING_ESCAPE,
3778 DTRACE_JSON_STRING_ESCAPE_UNICODE,
3779 DTRACE_JSON_COLON,
3780 DTRACE_JSON_COMMA,
3781 DTRACE_JSON_VALUE,
3782 DTRACE_JSON_IDENTIFIER,
3783 DTRACE_JSON_NUMBER,
3784 DTRACE_JSON_NUMBER_FRAC,
3785 DTRACE_JSON_NUMBER_EXP,
3786 DTRACE_JSON_COLLECT_OBJECT
3787 } dtrace_json_state_t;
3788
3789 /*
3790 * This function possesses just enough knowledge about JSON to extract a single
3791 * value from a JSON string and store it in the scratch buffer. It is able
3792 * to extract nested object values, and members of arrays by index.
3793 *
3794 * elemlist is a list of JSON keys, stored as packed NUL-terminated strings, to
3795 * be looked up as we descend into the object tree. e.g.
3796 *
3797 * foo[0].bar.baz[32] --> "foo" NUL "0" NUL "bar" NUL "baz" NUL "32" NUL
3798 * with nelems = 5.
3799 *
3800 * The run time of this function must be bounded above by strsize to limit the
3801 * amount of work done in probe context. As such, it is implemented as a
3802 * simple state machine, reading one character at a time using safe loads
3803 * until we find the requested element, hit a parsing error or run off the
3804 * end of the object or string.
3805 *
3806 * As there is no way for a subroutine to return an error without interrupting
3807 * clause execution, we simply return NULL in the event of a missing key or any
3808 * other error condition. Each NULL return in this function is commented with
3809 * the error condition it represents -- parsing or otherwise.
3810 *
3811 * The set of states for the state machine closely matches the JSON
3812 * specification (http://json.org/). Briefly:
3813 *
3814 * DTRACE_JSON_REST:
3815 * Skip whitespace until we find either a top-level Object, moving
3816 * to DTRACE_JSON_OBJECT; or an Array, moving to DTRACE_JSON_VALUE.
3817 *
3818 * DTRACE_JSON_OBJECT:
3819 * Locate the next key String in an Object. Sets a flag to denote
3820 * the next String as a key string and moves to DTRACE_JSON_STRING.
3821 *
3822 * DTRACE_JSON_COLON:
3823 * Skip whitespace until we find the colon that separates key Strings
3824 * from their values. Once found, move to DTRACE_JSON_VALUE.
3825 *
3826 * DTRACE_JSON_VALUE:
3827 * Detects the type of the next value (String, Number, Identifier, Object
3828 * or Array) and routes to the states that process that type. Here we also
3829 * deal with the element selector list if we are requested to traverse down
3830 * into the object tree.
3831 *
3832 * DTRACE_JSON_COMMA:
3833 * Skip whitespace until we find the comma that separates key-value pairs
3834 * in Objects (returning to DTRACE_JSON_OBJECT) or values in Arrays
3835 * (similarly DTRACE_JSON_VALUE). All following literal value processing
3836 * states return to this state at the end of their value, unless otherwise
3837 * noted.
3838 *
3839 * DTRACE_JSON_NUMBER, DTRACE_JSON_NUMBER_FRAC, DTRACE_JSON_NUMBER_EXP:
3840 * Processes a Number literal from the JSON, including any exponent
3841 * component that may be present. Numbers are returned as strings, which
3842 * may be passed to strtoll() if an integer is required.
3843 *
3844 * DTRACE_JSON_IDENTIFIER:
3845 * Processes a "true", "false" or "null" literal in the JSON.
3846 *
3847 * DTRACE_JSON_STRING, DTRACE_JSON_STRING_ESCAPE,
3848 * DTRACE_JSON_STRING_ESCAPE_UNICODE:
3849 * Processes a String literal from the JSON, whether the String denotes
3850 * a key, a value or part of a larger Object. Handles all escape sequences
3851 * present in the specification, including four-digit unicode characters,
3852 * but merely includes the escape sequence without converting it to the
3853 * actual escaped character. If the String is flagged as a key, we
3854 * move to DTRACE_JSON_COLON rather than DTRACE_JSON_COMMA.
3855 *
3856 * DTRACE_JSON_COLLECT_OBJECT:
3857 * This state collects an entire Object (or Array), correctly handling
3858 * embedded strings. If the full element selector list matches this nested
3859 * object, we return the Object in full as a string. If not, we use this
3860 * state to skip to the next value at this level and continue processing.
3861 *
3862 * NOTE: This function uses various macros from strtolctype.h to manipulate
3863 * digit values, etc -- these have all been checked to ensure they make
3864 * no additional function calls.
3865 */
3866 static char *
dtrace_json(uint64_t size,uintptr_t json,char * elemlist,int nelems,char * dest)3867 dtrace_json(uint64_t size, uintptr_t json, char *elemlist, int nelems,
3868 char *dest)
3869 {
3870 dtrace_json_state_t state = DTRACE_JSON_REST;
3871 int64_t array_elem = INT64_MIN;
3872 int64_t array_pos = 0;
3873 uint8_t escape_unicount = 0;
3874 boolean_t string_is_key = B_FALSE;
3875 boolean_t collect_object = B_FALSE;
3876 boolean_t found_key = B_FALSE;
3877 boolean_t in_array = B_FALSE;
3878 uint32_t braces = 0, brackets = 0;
3879 char *elem = elemlist;
3880 char *dd = dest;
3881 uintptr_t cur;
3882
3883 for (cur = json; cur < json + size; cur++) {
3884 char cc = dtrace_load8(cur);
3885 if (cc == '\0')
3886 return (NULL);
3887
3888 switch (state) {
3889 case DTRACE_JSON_REST:
3890 if (isspace(cc))
3891 break;
3892
3893 if (cc == '{') {
3894 state = DTRACE_JSON_OBJECT;
3895 break;
3896 }
3897
3898 if (cc == '[') {
3899 in_array = B_TRUE;
3900 array_pos = 0;
3901 array_elem = dtrace_strtoll(elem, 10, size);
3902 found_key = array_elem == 0 ? B_TRUE : B_FALSE;
3903 state = DTRACE_JSON_VALUE;
3904 break;
3905 }
3906
3907 /*
3908 * ERROR: expected to find a top-level object or array.
3909 */
3910 return (NULL);
3911 case DTRACE_JSON_OBJECT:
3912 if (isspace(cc))
3913 break;
3914
3915 if (cc == '"') {
3916 state = DTRACE_JSON_STRING;
3917 string_is_key = B_TRUE;
3918 break;
3919 }
3920
3921 /*
3922 * ERROR: either the object did not start with a key
3923 * string, or we've run off the end of the object
3924 * without finding the requested key.
3925 */
3926 return (NULL);
3927 case DTRACE_JSON_STRING:
3928 if (cc == '\\') {
3929 *dd++ = '\\';
3930 state = DTRACE_JSON_STRING_ESCAPE;
3931 break;
3932 }
3933
3934 if (cc == '"') {
3935 if (collect_object) {
3936 /*
3937 * We don't reset the dest here, as
3938 * the string is part of a larger
3939 * object being collected.
3940 */
3941 *dd++ = cc;
3942 collect_object = B_FALSE;
3943 state = DTRACE_JSON_COLLECT_OBJECT;
3944 break;
3945 }
3946 *dd = '\0';
3947 dd = dest; /* reset string buffer */
3948 if (string_is_key) {
3949 if (dtrace_strncmp(dest, elem,
3950 size) == 0)
3951 found_key = B_TRUE;
3952 } else if (found_key) {
3953 if (nelems > 1) {
3954 /*
3955 * We expected an object, not
3956 * this string.
3957 */
3958 return (NULL);
3959 }
3960 return (dest);
3961 }
3962 state = string_is_key ? DTRACE_JSON_COLON :
3963 DTRACE_JSON_COMMA;
3964 string_is_key = B_FALSE;
3965 break;
3966 }
3967
3968 *dd++ = cc;
3969 break;
3970 case DTRACE_JSON_STRING_ESCAPE:
3971 *dd++ = cc;
3972 if (cc == 'u') {
3973 escape_unicount = 0;
3974 state = DTRACE_JSON_STRING_ESCAPE_UNICODE;
3975 } else {
3976 state = DTRACE_JSON_STRING;
3977 }
3978 break;
3979 case DTRACE_JSON_STRING_ESCAPE_UNICODE:
3980 if (!isxdigit(cc)) {
3981 /*
3982 * ERROR: invalid unicode escape, expected
3983 * four valid hexidecimal digits.
3984 */
3985 return (NULL);
3986 }
3987
3988 *dd++ = cc;
3989 if (++escape_unicount == 4)
3990 state = DTRACE_JSON_STRING;
3991 break;
3992 case DTRACE_JSON_COLON:
3993 if (isspace(cc))
3994 break;
3995
3996 if (cc == ':') {
3997 state = DTRACE_JSON_VALUE;
3998 break;
3999 }
4000
4001 /*
4002 * ERROR: expected a colon.
4003 */
4004 return (NULL);
4005 case DTRACE_JSON_COMMA:
4006 if (isspace(cc))
4007 break;
4008
4009 if (cc == ',') {
4010 if (in_array) {
4011 state = DTRACE_JSON_VALUE;
4012 if (++array_pos == array_elem)
4013 found_key = B_TRUE;
4014 } else {
4015 state = DTRACE_JSON_OBJECT;
4016 }
4017 break;
4018 }
4019
4020 /*
4021 * ERROR: either we hit an unexpected character, or
4022 * we reached the end of the object or array without
4023 * finding the requested key.
4024 */
4025 return (NULL);
4026 case DTRACE_JSON_IDENTIFIER:
4027 if (islower(cc)) {
4028 *dd++ = cc;
4029 break;
4030 }
4031
4032 *dd = '\0';
4033 dd = dest; /* reset string buffer */
4034
4035 if (dtrace_strncmp(dest, "true", 5) == 0 ||
4036 dtrace_strncmp(dest, "false", 6) == 0 ||
4037 dtrace_strncmp(dest, "null", 5) == 0) {
4038 if (found_key) {
4039 if (nelems > 1) {
4040 /*
4041 * ERROR: We expected an object,
4042 * not this identifier.
4043 */
4044 return (NULL);
4045 }
4046 return (dest);
4047 } else {
4048 cur--;
4049 state = DTRACE_JSON_COMMA;
4050 break;
4051 }
4052 }
4053
4054 /*
4055 * ERROR: we did not recognise the identifier as one
4056 * of those in the JSON specification.
4057 */
4058 return (NULL);
4059 case DTRACE_JSON_NUMBER:
4060 if (cc == '.') {
4061 *dd++ = cc;
4062 state = DTRACE_JSON_NUMBER_FRAC;
4063 break;
4064 }
4065
4066 if (cc == 'x' || cc == 'X') {
4067 /*
4068 * ERROR: specification explicitly excludes
4069 * hexidecimal or octal numbers.
4070 */
4071 return (NULL);
4072 }
4073
4074 /* FALLTHRU */
4075 case DTRACE_JSON_NUMBER_FRAC:
4076 if (cc == 'e' || cc == 'E') {
4077 *dd++ = cc;
4078 state = DTRACE_JSON_NUMBER_EXP;
4079 break;
4080 }
4081
4082 if (cc == '+' || cc == '-') {
4083 /*
4084 * ERROR: expect sign as part of exponent only.
4085 */
4086 return (NULL);
4087 }
4088 /* FALLTHRU */
4089 case DTRACE_JSON_NUMBER_EXP:
4090 if (isdigit(cc) || cc == '+' || cc == '-') {
4091 *dd++ = cc;
4092 break;
4093 }
4094
4095 *dd = '\0';
4096 dd = dest; /* reset string buffer */
4097 if (found_key) {
4098 if (nelems > 1) {
4099 /*
4100 * ERROR: We expected an object, not
4101 * this number.
4102 */
4103 return (NULL);
4104 }
4105 return (dest);
4106 }
4107
4108 cur--;
4109 state = DTRACE_JSON_COMMA;
4110 break;
4111 case DTRACE_JSON_VALUE:
4112 if (isspace(cc))
4113 break;
4114
4115 if (cc == '{' || cc == '[') {
4116 if (nelems > 1 && found_key) {
4117 in_array = cc == '[' ? B_TRUE : B_FALSE;
4118 /*
4119 * If our element selector directs us
4120 * to descend into this nested object,
4121 * then move to the next selector
4122 * element in the list and restart the
4123 * state machine.
4124 */
4125 while (*elem != '\0')
4126 elem++;
4127 elem++; /* skip the inter-element NUL */
4128 nelems--;
4129 dd = dest;
4130 if (in_array) {
4131 state = DTRACE_JSON_VALUE;
4132 array_pos = 0;
4133 array_elem = dtrace_strtoll(
4134 elem, 10, size);
4135 found_key = array_elem == 0 ?
4136 B_TRUE : B_FALSE;
4137 } else {
4138 found_key = B_FALSE;
4139 state = DTRACE_JSON_OBJECT;
4140 }
4141 break;
4142 }
4143
4144 /*
4145 * Otherwise, we wish to either skip this
4146 * nested object or return it in full.
4147 */
4148 if (cc == '[')
4149 brackets = 1;
4150 else
4151 braces = 1;
4152 *dd++ = cc;
4153 state = DTRACE_JSON_COLLECT_OBJECT;
4154 break;
4155 }
4156
4157 if (cc == '"') {
4158 state = DTRACE_JSON_STRING;
4159 break;
4160 }
4161
4162 if (islower(cc)) {
4163 /*
4164 * Here we deal with true, false and null.
4165 */
4166 *dd++ = cc;
4167 state = DTRACE_JSON_IDENTIFIER;
4168 break;
4169 }
4170
4171 if (cc == '-' || isdigit(cc)) {
4172 *dd++ = cc;
4173 state = DTRACE_JSON_NUMBER;
4174 break;
4175 }
4176
4177 /*
4178 * ERROR: unexpected character at start of value.
4179 */
4180 return (NULL);
4181 case DTRACE_JSON_COLLECT_OBJECT:
4182 if (cc == '\0')
4183 /*
4184 * ERROR: unexpected end of input.
4185 */
4186 return (NULL);
4187
4188 *dd++ = cc;
4189 if (cc == '"') {
4190 collect_object = B_TRUE;
4191 state = DTRACE_JSON_STRING;
4192 break;
4193 }
4194
4195 if (cc == ']') {
4196 if (brackets-- == 0) {
4197 /*
4198 * ERROR: unbalanced brackets.
4199 */
4200 return (NULL);
4201 }
4202 } else if (cc == '}') {
4203 if (braces-- == 0) {
4204 /*
4205 * ERROR: unbalanced braces.
4206 */
4207 return (NULL);
4208 }
4209 } else if (cc == '{') {
4210 braces++;
4211 } else if (cc == '[') {
4212 brackets++;
4213 }
4214
4215 if (brackets == 0 && braces == 0) {
4216 if (found_key) {
4217 *dd = '\0';
4218 return (dest);
4219 }
4220 dd = dest; /* reset string buffer */
4221 state = DTRACE_JSON_COMMA;
4222 }
4223 break;
4224 }
4225 }
4226 return (NULL);
4227 }
4228
4229 /*
4230 * Emulate the execution of DTrace ID subroutines invoked by the call opcode.
4231 * Notice that we don't bother validating the proper number of arguments or
4232 * their types in the tuple stack. This isn't needed because all argument
4233 * interpretation is safe because of our load safety -- the worst that can
4234 * happen is that a bogus program can obtain bogus results.
4235 */
4236 static void
dtrace_dif_subr(uint_t subr,uint_t rd,uint64_t * regs,dtrace_key_t * tupregs,int nargs,dtrace_mstate_t * mstate,dtrace_state_t * state)4237 dtrace_dif_subr(uint_t subr, uint_t rd, uint64_t *regs,
4238 dtrace_key_t *tupregs, int nargs,
4239 dtrace_mstate_t *mstate, dtrace_state_t *state)
4240 {
4241 volatile uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
4242 volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval;
4243 dtrace_vstate_t *vstate = &state->dts_vstate;
4244
4245 #ifdef illumos
4246 union {
4247 mutex_impl_t mi;
4248 uint64_t mx;
4249 } m;
4250
4251 union {
4252 krwlock_t ri;
4253 uintptr_t rw;
4254 } r;
4255 #else
4256 struct thread *lowner;
4257 union {
4258 struct lock_object *li;
4259 uintptr_t lx;
4260 } l;
4261 #endif
4262
4263 switch (subr) {
4264 case DIF_SUBR_RAND:
4265 regs[rd] = dtrace_xoroshiro128_plus_next(
4266 state->dts_rstate[curcpu]);
4267 break;
4268
4269 #ifdef illumos
4270 case DIF_SUBR_MUTEX_OWNED:
4271 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
4272 mstate, vstate)) {
4273 regs[rd] = 0;
4274 break;
4275 }
4276
4277 m.mx = dtrace_load64(tupregs[0].dttk_value);
4278 if (MUTEX_TYPE_ADAPTIVE(&m.mi))
4279 regs[rd] = MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER;
4280 else
4281 regs[rd] = LOCK_HELD(&m.mi.m_spin.m_spinlock);
4282 break;
4283
4284 case DIF_SUBR_MUTEX_OWNER:
4285 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
4286 mstate, vstate)) {
4287 regs[rd] = 0;
4288 break;
4289 }
4290
4291 m.mx = dtrace_load64(tupregs[0].dttk_value);
4292 if (MUTEX_TYPE_ADAPTIVE(&m.mi) &&
4293 MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER)
4294 regs[rd] = (uintptr_t)MUTEX_OWNER(&m.mi);
4295 else
4296 regs[rd] = 0;
4297 break;
4298
4299 case DIF_SUBR_MUTEX_TYPE_ADAPTIVE:
4300 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
4301 mstate, vstate)) {
4302 regs[rd] = 0;
4303 break;
4304 }
4305
4306 m.mx = dtrace_load64(tupregs[0].dttk_value);
4307 regs[rd] = MUTEX_TYPE_ADAPTIVE(&m.mi);
4308 break;
4309
4310 case DIF_SUBR_MUTEX_TYPE_SPIN:
4311 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
4312 mstate, vstate)) {
4313 regs[rd] = 0;
4314 break;
4315 }
4316
4317 m.mx = dtrace_load64(tupregs[0].dttk_value);
4318 regs[rd] = MUTEX_TYPE_SPIN(&m.mi);
4319 break;
4320
4321 case DIF_SUBR_RW_READ_HELD: {
4322 uintptr_t tmp;
4323
4324 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
4325 mstate, vstate)) {
4326 regs[rd] = 0;
4327 break;
4328 }
4329
4330 r.rw = dtrace_loadptr(tupregs[0].dttk_value);
4331 regs[rd] = _RW_READ_HELD(&r.ri, tmp);
4332 break;
4333 }
4334
4335 case DIF_SUBR_RW_WRITE_HELD:
4336 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
4337 mstate, vstate)) {
4338 regs[rd] = 0;
4339 break;
4340 }
4341
4342 r.rw = dtrace_loadptr(tupregs[0].dttk_value);
4343 regs[rd] = _RW_WRITE_HELD(&r.ri);
4344 break;
4345
4346 case DIF_SUBR_RW_ISWRITER:
4347 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
4348 mstate, vstate)) {
4349 regs[rd] = 0;
4350 break;
4351 }
4352
4353 r.rw = dtrace_loadptr(tupregs[0].dttk_value);
4354 regs[rd] = _RW_ISWRITER(&r.ri);
4355 break;
4356
4357 #else /* !illumos */
4358 case DIF_SUBR_MUTEX_OWNED:
4359 if (!dtrace_canload(tupregs[0].dttk_value,
4360 sizeof (struct lock_object), mstate, vstate)) {
4361 regs[rd] = 0;
4362 break;
4363 }
4364 l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
4365 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4366 regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner);
4367 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4368 break;
4369
4370 case DIF_SUBR_MUTEX_OWNER:
4371 if (!dtrace_canload(tupregs[0].dttk_value,
4372 sizeof (struct lock_object), mstate, vstate)) {
4373 regs[rd] = 0;
4374 break;
4375 }
4376 l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
4377 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4378 LOCK_CLASS(l.li)->lc_owner(l.li, &lowner);
4379 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4380 regs[rd] = (uintptr_t)lowner;
4381 break;
4382
4383 case DIF_SUBR_MUTEX_TYPE_ADAPTIVE:
4384 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (struct mtx),
4385 mstate, vstate)) {
4386 regs[rd] = 0;
4387 break;
4388 }
4389 l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
4390 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4391 regs[rd] = (LOCK_CLASS(l.li)->lc_flags & LC_SLEEPLOCK) != 0;
4392 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4393 break;
4394
4395 case DIF_SUBR_MUTEX_TYPE_SPIN:
4396 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (struct mtx),
4397 mstate, vstate)) {
4398 regs[rd] = 0;
4399 break;
4400 }
4401 l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
4402 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4403 regs[rd] = (LOCK_CLASS(l.li)->lc_flags & LC_SPINLOCK) != 0;
4404 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4405 break;
4406
4407 case DIF_SUBR_RW_READ_HELD:
4408 case DIF_SUBR_SX_SHARED_HELD:
4409 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
4410 mstate, vstate)) {
4411 regs[rd] = 0;
4412 break;
4413 }
4414 l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
4415 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4416 regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner) &&
4417 lowner == NULL;
4418 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4419 break;
4420
4421 case DIF_SUBR_RW_WRITE_HELD:
4422 case DIF_SUBR_SX_EXCLUSIVE_HELD:
4423 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
4424 mstate, vstate)) {
4425 regs[rd] = 0;
4426 break;
4427 }
4428 l.lx = dtrace_loadptr(tupregs[0].dttk_value);
4429 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4430 regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner) &&
4431 lowner != NULL;
4432 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4433 break;
4434
4435 case DIF_SUBR_RW_ISWRITER:
4436 case DIF_SUBR_SX_ISEXCLUSIVE:
4437 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
4438 mstate, vstate)) {
4439 regs[rd] = 0;
4440 break;
4441 }
4442 l.lx = dtrace_loadptr(tupregs[0].dttk_value);
4443 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4444 LOCK_CLASS(l.li)->lc_owner(l.li, &lowner);
4445 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4446 regs[rd] = (lowner == curthread);
4447 break;
4448 #endif /* illumos */
4449
4450 case DIF_SUBR_BCOPY: {
4451 /*
4452 * We need to be sure that the destination is in the scratch
4453 * region -- no other region is allowed.
4454 */
4455 uintptr_t src = tupregs[0].dttk_value;
4456 uintptr_t dest = tupregs[1].dttk_value;
4457 size_t size = tupregs[2].dttk_value;
4458
4459 if (!dtrace_inscratch(dest, size, mstate)) {
4460 *flags |= CPU_DTRACE_BADADDR;
4461 *illval = regs[rd];
4462 break;
4463 }
4464
4465 if (!dtrace_canload(src, size, mstate, vstate)) {
4466 regs[rd] = 0;
4467 break;
4468 }
4469
4470 dtrace_bcopy((void *)src, (void *)dest, size);
4471 break;
4472 }
4473
4474 case DIF_SUBR_ALLOCA:
4475 case DIF_SUBR_COPYIN: {
4476 uintptr_t dest = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
4477 uint64_t size =
4478 tupregs[subr == DIF_SUBR_ALLOCA ? 0 : 1].dttk_value;
4479 size_t scratch_size = (dest - mstate->dtms_scratch_ptr) + size;
4480
4481 /*
4482 * This action doesn't require any credential checks since
4483 * probes will not activate in user contexts to which the
4484 * enabling user does not have permissions.
4485 */
4486
4487 /*
4488 * Rounding up the user allocation size could have overflowed
4489 * a large, bogus allocation (like -1ULL) to 0.
4490 */
4491 if (scratch_size < size ||
4492 !DTRACE_INSCRATCH(mstate, scratch_size)) {
4493 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4494 regs[rd] = 0;
4495 break;
4496 }
4497
4498 if (subr == DIF_SUBR_COPYIN) {
4499 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4500 dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
4501 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4502 }
4503
4504 mstate->dtms_scratch_ptr += scratch_size;
4505 regs[rd] = dest;
4506 break;
4507 }
4508
4509 case DIF_SUBR_COPYINTO: {
4510 uint64_t size = tupregs[1].dttk_value;
4511 uintptr_t dest = tupregs[2].dttk_value;
4512
4513 /*
4514 * This action doesn't require any credential checks since
4515 * probes will not activate in user contexts to which the
4516 * enabling user does not have permissions.
4517 */
4518 if (!dtrace_inscratch(dest, size, mstate)) {
4519 *flags |= CPU_DTRACE_BADADDR;
4520 *illval = regs[rd];
4521 break;
4522 }
4523
4524 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4525 dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
4526 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4527 break;
4528 }
4529
4530 case DIF_SUBR_COPYINSTR: {
4531 uintptr_t dest = mstate->dtms_scratch_ptr;
4532 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4533
4534 if (nargs > 1 && tupregs[1].dttk_value < size)
4535 size = tupregs[1].dttk_value + 1;
4536
4537 /*
4538 * This action doesn't require any credential checks since
4539 * probes will not activate in user contexts to which the
4540 * enabling user does not have permissions.
4541 */
4542 if (!DTRACE_INSCRATCH(mstate, size)) {
4543 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4544 regs[rd] = 0;
4545 break;
4546 }
4547
4548 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4549 dtrace_copyinstr(tupregs[0].dttk_value, dest, size, flags);
4550 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4551
4552 ((char *)dest)[size - 1] = '\0';
4553 mstate->dtms_scratch_ptr += size;
4554 regs[rd] = dest;
4555 break;
4556 }
4557
4558 #ifdef illumos
4559 case DIF_SUBR_MSGSIZE:
4560 case DIF_SUBR_MSGDSIZE: {
4561 uintptr_t baddr = tupregs[0].dttk_value, daddr;
4562 uintptr_t wptr, rptr;
4563 size_t count = 0;
4564 int cont = 0;
4565
4566 while (baddr != 0 && !(*flags & CPU_DTRACE_FAULT)) {
4567
4568 if (!dtrace_canload(baddr, sizeof (mblk_t), mstate,
4569 vstate)) {
4570 regs[rd] = 0;
4571 break;
4572 }
4573
4574 wptr = dtrace_loadptr(baddr +
4575 offsetof(mblk_t, b_wptr));
4576
4577 rptr = dtrace_loadptr(baddr +
4578 offsetof(mblk_t, b_rptr));
4579
4580 if (wptr < rptr) {
4581 *flags |= CPU_DTRACE_BADADDR;
4582 *illval = tupregs[0].dttk_value;
4583 break;
4584 }
4585
4586 daddr = dtrace_loadptr(baddr +
4587 offsetof(mblk_t, b_datap));
4588
4589 baddr = dtrace_loadptr(baddr +
4590 offsetof(mblk_t, b_cont));
4591
4592 /*
4593 * We want to prevent against denial-of-service here,
4594 * so we're only going to search the list for
4595 * dtrace_msgdsize_max mblks.
4596 */
4597 if (cont++ > dtrace_msgdsize_max) {
4598 *flags |= CPU_DTRACE_ILLOP;
4599 break;
4600 }
4601
4602 if (subr == DIF_SUBR_MSGDSIZE) {
4603 if (dtrace_load8(daddr +
4604 offsetof(dblk_t, db_type)) != M_DATA)
4605 continue;
4606 }
4607
4608 count += wptr - rptr;
4609 }
4610
4611 if (!(*flags & CPU_DTRACE_FAULT))
4612 regs[rd] = count;
4613
4614 break;
4615 }
4616 #endif
4617
4618 case DIF_SUBR_PROGENYOF: {
4619 pid_t pid = tupregs[0].dttk_value;
4620 proc_t *p;
4621 int rval = 0;
4622
4623 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4624
4625 for (p = curthread->t_procp; p != NULL; p = p->p_parent) {
4626 #ifdef illumos
4627 if (p->p_pidp->pid_id == pid) {
4628 #else
4629 if (p->p_pid == pid) {
4630 #endif
4631 rval = 1;
4632 break;
4633 }
4634 }
4635
4636 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4637
4638 regs[rd] = rval;
4639 break;
4640 }
4641
4642 case DIF_SUBR_SPECULATION:
4643 regs[rd] = dtrace_speculation(state);
4644 break;
4645
4646 case DIF_SUBR_COPYOUT: {
4647 uintptr_t kaddr = tupregs[0].dttk_value;
4648 uintptr_t uaddr = tupregs[1].dttk_value;
4649 uint64_t size = tupregs[2].dttk_value;
4650
4651 if (!dtrace_destructive_disallow &&
4652 dtrace_priv_proc_control(state) &&
4653 !dtrace_istoxic(kaddr, size) &&
4654 dtrace_canload(kaddr, size, mstate, vstate)) {
4655 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4656 dtrace_copyout(kaddr, uaddr, size, flags);
4657 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4658 }
4659 break;
4660 }
4661
4662 case DIF_SUBR_COPYOUTSTR: {
4663 uintptr_t kaddr = tupregs[0].dttk_value;
4664 uintptr_t uaddr = tupregs[1].dttk_value;
4665 uint64_t size = tupregs[2].dttk_value;
4666 size_t lim;
4667
4668 if (!dtrace_destructive_disallow &&
4669 dtrace_priv_proc_control(state) &&
4670 !dtrace_istoxic(kaddr, size) &&
4671 dtrace_strcanload(kaddr, size, &lim, mstate, vstate)) {
4672 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4673 dtrace_copyoutstr(kaddr, uaddr, lim, flags);
4674 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4675 }
4676 break;
4677 }
4678
4679 case DIF_SUBR_STRLEN: {
4680 size_t size = state->dts_options[DTRACEOPT_STRSIZE];
4681 uintptr_t addr = (uintptr_t)tupregs[0].dttk_value;
4682 size_t lim;
4683
4684 if (!dtrace_strcanload(addr, size, &lim, mstate, vstate)) {
4685 regs[rd] = 0;
4686 break;
4687 }
4688
4689 regs[rd] = dtrace_strlen((char *)addr, lim);
4690 break;
4691 }
4692
4693 case DIF_SUBR_STRCHR:
4694 case DIF_SUBR_STRRCHR: {
4695 /*
4696 * We're going to iterate over the string looking for the
4697 * specified character. We will iterate until we have reached
4698 * the string length or we have found the character. If this
4699 * is DIF_SUBR_STRRCHR, we will look for the last occurrence
4700 * of the specified character instead of the first.
4701 */
4702 uintptr_t addr = tupregs[0].dttk_value;
4703 uintptr_t addr_limit;
4704 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4705 size_t lim;
4706 char c, target = (char)tupregs[1].dttk_value;
4707
4708 if (!dtrace_strcanload(addr, size, &lim, mstate, vstate)) {
4709 regs[rd] = 0;
4710 break;
4711 }
4712 addr_limit = addr + lim;
4713
4714 for (regs[rd] = 0; addr < addr_limit; addr++) {
4715 if ((c = dtrace_load8(addr)) == target) {
4716 regs[rd] = addr;
4717
4718 if (subr == DIF_SUBR_STRCHR)
4719 break;
4720 }
4721
4722 if (c == '\0')
4723 break;
4724 }
4725 break;
4726 }
4727
4728 case DIF_SUBR_STRSTR:
4729 case DIF_SUBR_INDEX:
4730 case DIF_SUBR_RINDEX: {
4731 /*
4732 * We're going to iterate over the string looking for the
4733 * specified string. We will iterate until we have reached
4734 * the string length or we have found the string. (Yes, this
4735 * is done in the most naive way possible -- but considering
4736 * that the string we're searching for is likely to be
4737 * relatively short, the complexity of Rabin-Karp or similar
4738 * hardly seems merited.)
4739 */
4740 char *addr = (char *)(uintptr_t)tupregs[0].dttk_value;
4741 char *substr = (char *)(uintptr_t)tupregs[1].dttk_value;
4742 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4743 size_t len = dtrace_strlen(addr, size);
4744 size_t sublen = dtrace_strlen(substr, size);
4745 char *limit = addr + len, *orig = addr;
4746 int notfound = subr == DIF_SUBR_STRSTR ? 0 : -1;
4747 int inc = 1;
4748
4749 regs[rd] = notfound;
4750
4751 if (!dtrace_canload((uintptr_t)addr, len + 1, mstate, vstate)) {
4752 regs[rd] = 0;
4753 break;
4754 }
4755
4756 if (!dtrace_canload((uintptr_t)substr, sublen + 1, mstate,
4757 vstate)) {
4758 regs[rd] = 0;
4759 break;
4760 }
4761
4762 /*
4763 * strstr() and index()/rindex() have similar semantics if
4764 * both strings are the empty string: strstr() returns a
4765 * pointer to the (empty) string, and index() and rindex()
4766 * both return index 0 (regardless of any position argument).
4767 */
4768 if (sublen == 0 && len == 0) {
4769 if (subr == DIF_SUBR_STRSTR)
4770 regs[rd] = (uintptr_t)addr;
4771 else
4772 regs[rd] = 0;
4773 break;
4774 }
4775
4776 if (subr != DIF_SUBR_STRSTR) {
4777 if (subr == DIF_SUBR_RINDEX) {
4778 limit = orig - 1;
4779 addr += len;
4780 inc = -1;
4781 }
4782
4783 /*
4784 * Both index() and rindex() take an optional position
4785 * argument that denotes the starting position.
4786 */
4787 if (nargs == 3) {
4788 int64_t pos = (int64_t)tupregs[2].dttk_value;
4789
4790 /*
4791 * If the position argument to index() is
4792 * negative, Perl implicitly clamps it at
4793 * zero. This semantic is a little surprising
4794 * given the special meaning of negative
4795 * positions to similar Perl functions like
4796 * substr(), but it appears to reflect a
4797 * notion that index() can start from a
4798 * negative index and increment its way up to
4799 * the string. Given this notion, Perl's
4800 * rindex() is at least self-consistent in
4801 * that it implicitly clamps positions greater
4802 * than the string length to be the string
4803 * length. Where Perl completely loses
4804 * coherence, however, is when the specified
4805 * substring is the empty string (""). In
4806 * this case, even if the position is
4807 * negative, rindex() returns 0 -- and even if
4808 * the position is greater than the length,
4809 * index() returns the string length. These
4810 * semantics violate the notion that index()
4811 * should never return a value less than the
4812 * specified position and that rindex() should
4813 * never return a value greater than the
4814 * specified position. (One assumes that
4815 * these semantics are artifacts of Perl's
4816 * implementation and not the results of
4817 * deliberate design -- it beggars belief that
4818 * even Larry Wall could desire such oddness.)
4819 * While in the abstract one would wish for
4820 * consistent position semantics across
4821 * substr(), index() and rindex() -- or at the
4822 * very least self-consistent position
4823 * semantics for index() and rindex() -- we
4824 * instead opt to keep with the extant Perl
4825 * semantics, in all their broken glory. (Do
4826 * we have more desire to maintain Perl's
4827 * semantics than Perl does? Probably.)
4828 */
4829 if (subr == DIF_SUBR_RINDEX) {
4830 if (pos < 0) {
4831 if (sublen == 0)
4832 regs[rd] = 0;
4833 break;
4834 }
4835
4836 if (pos > len)
4837 pos = len;
4838 } else {
4839 if (pos < 0)
4840 pos = 0;
4841
4842 if (pos >= len) {
4843 if (sublen == 0)
4844 regs[rd] = len;
4845 break;
4846 }
4847 }
4848
4849 addr = orig + pos;
4850 }
4851 }
4852
4853 for (regs[rd] = notfound; addr != limit; addr += inc) {
4854 if (dtrace_strncmp(addr, substr, sublen) == 0) {
4855 if (subr != DIF_SUBR_STRSTR) {
4856 /*
4857 * As D index() and rindex() are
4858 * modeled on Perl (and not on awk),
4859 * we return a zero-based (and not a
4860 * one-based) index. (For you Perl
4861 * weenies: no, we're not going to add
4862 * $[ -- and shouldn't you be at a con
4863 * or something?)
4864 */
4865 regs[rd] = (uintptr_t)(addr - orig);
4866 break;
4867 }
4868
4869 ASSERT(subr == DIF_SUBR_STRSTR);
4870 regs[rd] = (uintptr_t)addr;
4871 break;
4872 }
4873 }
4874
4875 break;
4876 }
4877
4878 case DIF_SUBR_STRTOK: {
4879 uintptr_t addr = tupregs[0].dttk_value;
4880 uintptr_t tokaddr = tupregs[1].dttk_value;
4881 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4882 uintptr_t limit, toklimit;
4883 size_t clim;
4884 uint8_t c = 0, tokmap[32]; /* 256 / 8 */
4885 char *dest = (char *)mstate->dtms_scratch_ptr;
4886 int i;
4887
4888 /*
4889 * Check both the token buffer and (later) the input buffer,
4890 * since both could be non-scratch addresses.
4891 */
4892 if (!dtrace_strcanload(tokaddr, size, &clim, mstate, vstate)) {
4893 regs[rd] = 0;
4894 break;
4895 }
4896 toklimit = tokaddr + clim;
4897
4898 if (!DTRACE_INSCRATCH(mstate, size)) {
4899 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4900 regs[rd] = 0;
4901 break;
4902 }
4903
4904 if (addr == 0) {
4905 /*
4906 * If the address specified is NULL, we use our saved
4907 * strtok pointer from the mstate. Note that this
4908 * means that the saved strtok pointer is _only_
4909 * valid within multiple enablings of the same probe --
4910 * it behaves like an implicit clause-local variable.
4911 */
4912 addr = mstate->dtms_strtok;
4913 limit = mstate->dtms_strtok_limit;
4914 } else {
4915 /*
4916 * If the user-specified address is non-NULL we must
4917 * access check it. This is the only time we have
4918 * a chance to do so, since this address may reside
4919 * in the string table of this clause-- future calls
4920 * (when we fetch addr from mstate->dtms_strtok)
4921 * would fail this access check.
4922 */
4923 if (!dtrace_strcanload(addr, size, &clim, mstate,
4924 vstate)) {
4925 regs[rd] = 0;
4926 break;
4927 }
4928 limit = addr + clim;
4929 }
4930
4931 /*
4932 * First, zero the token map, and then process the token
4933 * string -- setting a bit in the map for every character
4934 * found in the token string.
4935 */
4936 for (i = 0; i < sizeof (tokmap); i++)
4937 tokmap[i] = 0;
4938
4939 for (; tokaddr < toklimit; tokaddr++) {
4940 if ((c = dtrace_load8(tokaddr)) == '\0')
4941 break;
4942
4943 ASSERT((c >> 3) < sizeof (tokmap));
4944 tokmap[c >> 3] |= (1 << (c & 0x7));
4945 }
4946
4947 for (; addr < limit; addr++) {
4948 /*
4949 * We're looking for a character that is _not_
4950 * contained in the token string.
4951 */
4952 if ((c = dtrace_load8(addr)) == '\0')
4953 break;
4954
4955 if (!(tokmap[c >> 3] & (1 << (c & 0x7))))
4956 break;
4957 }
4958
4959 if (c == '\0') {
4960 /*
4961 * We reached the end of the string without finding
4962 * any character that was not in the token string.
4963 * We return NULL in this case, and we set the saved
4964 * address to NULL as well.
4965 */
4966 regs[rd] = 0;
4967 mstate->dtms_strtok = 0;
4968 mstate->dtms_strtok_limit = 0;
4969 break;
4970 }
4971
4972 /*
4973 * From here on, we're copying into the destination string.
4974 */
4975 for (i = 0; addr < limit && i < size - 1; addr++) {
4976 if ((c = dtrace_load8(addr)) == '\0')
4977 break;
4978
4979 if (tokmap[c >> 3] & (1 << (c & 0x7)))
4980 break;
4981
4982 ASSERT(i < size);
4983 dest[i++] = c;
4984 }
4985
4986 ASSERT(i < size);
4987 dest[i] = '\0';
4988 regs[rd] = (uintptr_t)dest;
4989 mstate->dtms_scratch_ptr += size;
4990 mstate->dtms_strtok = addr;
4991 mstate->dtms_strtok_limit = limit;
4992 break;
4993 }
4994
4995 case DIF_SUBR_SUBSTR: {
4996 uintptr_t s = tupregs[0].dttk_value;
4997 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4998 char *d = (char *)mstate->dtms_scratch_ptr;
4999 int64_t index = (int64_t)tupregs[1].dttk_value;
5000 int64_t remaining = (int64_t)tupregs[2].dttk_value;
5001 size_t len = dtrace_strlen((char *)s, size);
5002 int64_t i;
5003
5004 if (!dtrace_canload(s, len + 1, mstate, vstate)) {
5005 regs[rd] = 0;
5006 break;
5007 }
5008
5009 if (!DTRACE_INSCRATCH(mstate, size)) {
5010 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5011 regs[rd] = 0;
5012 break;
5013 }
5014
5015 if (nargs <= 2)
5016 remaining = (int64_t)size;
5017
5018 if (index < 0) {
5019 index += len;
5020
5021 if (index < 0 && index + remaining > 0) {
5022 remaining += index;
5023 index = 0;
5024 }
5025 }
5026
5027 if (index >= len || index < 0) {
5028 remaining = 0;
5029 } else if (remaining < 0) {
5030 remaining += len - index;
5031 } else if (index + remaining > size) {
5032 remaining = size - index;
5033 }
5034
5035 for (i = 0; i < remaining; i++) {
5036 if ((d[i] = dtrace_load8(s + index + i)) == '\0')
5037 break;
5038 }
5039
5040 d[i] = '\0';
5041
5042 mstate->dtms_scratch_ptr += size;
5043 regs[rd] = (uintptr_t)d;
5044 break;
5045 }
5046
5047 case DIF_SUBR_JSON: {
5048 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5049 uintptr_t json = tupregs[0].dttk_value;
5050 size_t jsonlen = dtrace_strlen((char *)json, size);
5051 uintptr_t elem = tupregs[1].dttk_value;
5052 size_t elemlen = dtrace_strlen((char *)elem, size);
5053
5054 char *dest = (char *)mstate->dtms_scratch_ptr;
5055 char *elemlist = (char *)mstate->dtms_scratch_ptr + jsonlen + 1;
5056 char *ee = elemlist;
5057 int nelems = 1;
5058 uintptr_t cur;
5059
5060 if (!dtrace_canload(json, jsonlen + 1, mstate, vstate) ||
5061 !dtrace_canload(elem, elemlen + 1, mstate, vstate)) {
5062 regs[rd] = 0;
5063 break;
5064 }
5065
5066 if (!DTRACE_INSCRATCH(mstate, jsonlen + 1 + elemlen + 1)) {
5067 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5068 regs[rd] = 0;
5069 break;
5070 }
5071
5072 /*
5073 * Read the element selector and split it up into a packed list
5074 * of strings.
5075 */
5076 for (cur = elem; cur < elem + elemlen; cur++) {
5077 char cc = dtrace_load8(cur);
5078
5079 if (cur == elem && cc == '[') {
5080 /*
5081 * If the first element selector key is
5082 * actually an array index then ignore the
5083 * bracket.
5084 */
5085 continue;
5086 }
5087
5088 if (cc == ']')
5089 continue;
5090
5091 if (cc == '.' || cc == '[') {
5092 nelems++;
5093 cc = '\0';
5094 }
5095
5096 *ee++ = cc;
5097 }
5098 *ee++ = '\0';
5099
5100 if ((regs[rd] = (uintptr_t)dtrace_json(size, json, elemlist,
5101 nelems, dest)) != 0)
5102 mstate->dtms_scratch_ptr += jsonlen + 1;
5103 break;
5104 }
5105
5106 case DIF_SUBR_TOUPPER:
5107 case DIF_SUBR_TOLOWER: {
5108 uintptr_t s = tupregs[0].dttk_value;
5109 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5110 char *dest = (char *)mstate->dtms_scratch_ptr, c;
5111 size_t len = dtrace_strlen((char *)s, size);
5112 char lower, upper, convert;
5113 int64_t i;
5114
5115 if (subr == DIF_SUBR_TOUPPER) {
5116 lower = 'a';
5117 upper = 'z';
5118 convert = 'A';
5119 } else {
5120 lower = 'A';
5121 upper = 'Z';
5122 convert = 'a';
5123 }
5124
5125 if (!dtrace_canload(s, len + 1, mstate, vstate)) {
5126 regs[rd] = 0;
5127 break;
5128 }
5129
5130 if (!DTRACE_INSCRATCH(mstate, size)) {
5131 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5132 regs[rd] = 0;
5133 break;
5134 }
5135
5136 for (i = 0; i < size - 1; i++) {
5137 if ((c = dtrace_load8(s + i)) == '\0')
5138 break;
5139
5140 if (c >= lower && c <= upper)
5141 c = convert + (c - lower);
5142
5143 dest[i] = c;
5144 }
5145
5146 ASSERT(i < size);
5147 dest[i] = '\0';
5148 regs[rd] = (uintptr_t)dest;
5149 mstate->dtms_scratch_ptr += size;
5150 break;
5151 }
5152
5153 #ifdef illumos
5154 case DIF_SUBR_GETMAJOR:
5155 #ifdef _LP64
5156 regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR64) & MAXMAJ64;
5157 #else
5158 regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR) & MAXMAJ;
5159 #endif
5160 break;
5161
5162 case DIF_SUBR_GETMINOR:
5163 #ifdef _LP64
5164 regs[rd] = tupregs[0].dttk_value & MAXMIN64;
5165 #else
5166 regs[rd] = tupregs[0].dttk_value & MAXMIN;
5167 #endif
5168 break;
5169
5170 case DIF_SUBR_DDI_PATHNAME: {
5171 /*
5172 * This one is a galactic mess. We are going to roughly
5173 * emulate ddi_pathname(), but it's made more complicated
5174 * by the fact that we (a) want to include the minor name and
5175 * (b) must proceed iteratively instead of recursively.
5176 */
5177 uintptr_t dest = mstate->dtms_scratch_ptr;
5178 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5179 char *start = (char *)dest, *end = start + size - 1;
5180 uintptr_t daddr = tupregs[0].dttk_value;
5181 int64_t minor = (int64_t)tupregs[1].dttk_value;
5182 char *s;
5183 int i, len, depth = 0;
5184
5185 /*
5186 * Due to all the pointer jumping we do and context we must
5187 * rely upon, we just mandate that the user must have kernel
5188 * read privileges to use this routine.
5189 */
5190 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) == 0) {
5191 *flags |= CPU_DTRACE_KPRIV;
5192 *illval = daddr;
5193 regs[rd] = 0;
5194 }
5195
5196 if (!DTRACE_INSCRATCH(mstate, size)) {
5197 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5198 regs[rd] = 0;
5199 break;
5200 }
5201
5202 *end = '\0';
5203
5204 /*
5205 * We want to have a name for the minor. In order to do this,
5206 * we need to walk the minor list from the devinfo. We want
5207 * to be sure that we don't infinitely walk a circular list,
5208 * so we check for circularity by sending a scout pointer
5209 * ahead two elements for every element that we iterate over;
5210 * if the list is circular, these will ultimately point to the
5211 * same element. You may recognize this little trick as the
5212 * answer to a stupid interview question -- one that always
5213 * seems to be asked by those who had to have it laboriously
5214 * explained to them, and who can't even concisely describe
5215 * the conditions under which one would be forced to resort to
5216 * this technique. Needless to say, those conditions are
5217 * found here -- and probably only here. Is this the only use
5218 * of this infamous trick in shipping, production code? If it
5219 * isn't, it probably should be...
5220 */
5221 if (minor != -1) {
5222 uintptr_t maddr = dtrace_loadptr(daddr +
5223 offsetof(struct dev_info, devi_minor));
5224
5225 uintptr_t next = offsetof(struct ddi_minor_data, next);
5226 uintptr_t name = offsetof(struct ddi_minor_data,
5227 d_minor) + offsetof(struct ddi_minor, name);
5228 uintptr_t dev = offsetof(struct ddi_minor_data,
5229 d_minor) + offsetof(struct ddi_minor, dev);
5230 uintptr_t scout;
5231
5232 if (maddr != NULL)
5233 scout = dtrace_loadptr(maddr + next);
5234
5235 while (maddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
5236 uint64_t m;
5237 #ifdef _LP64
5238 m = dtrace_load64(maddr + dev) & MAXMIN64;
5239 #else
5240 m = dtrace_load32(maddr + dev) & MAXMIN;
5241 #endif
5242 if (m != minor) {
5243 maddr = dtrace_loadptr(maddr + next);
5244
5245 if (scout == NULL)
5246 continue;
5247
5248 scout = dtrace_loadptr(scout + next);
5249
5250 if (scout == NULL)
5251 continue;
5252
5253 scout = dtrace_loadptr(scout + next);
5254
5255 if (scout == NULL)
5256 continue;
5257
5258 if (scout == maddr) {
5259 *flags |= CPU_DTRACE_ILLOP;
5260 break;
5261 }
5262
5263 continue;
5264 }
5265
5266 /*
5267 * We have the minor data. Now we need to
5268 * copy the minor's name into the end of the
5269 * pathname.
5270 */
5271 s = (char *)dtrace_loadptr(maddr + name);
5272 len = dtrace_strlen(s, size);
5273
5274 if (*flags & CPU_DTRACE_FAULT)
5275 break;
5276
5277 if (len != 0) {
5278 if ((end -= (len + 1)) < start)
5279 break;
5280
5281 *end = ':';
5282 }
5283
5284 for (i = 1; i <= len; i++)
5285 end[i] = dtrace_load8((uintptr_t)s++);
5286 break;
5287 }
5288 }
5289
5290 while (daddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
5291 ddi_node_state_t devi_state;
5292
5293 devi_state = dtrace_load32(daddr +
5294 offsetof(struct dev_info, devi_node_state));
5295
5296 if (*flags & CPU_DTRACE_FAULT)
5297 break;
5298
5299 if (devi_state >= DS_INITIALIZED) {
5300 s = (char *)dtrace_loadptr(daddr +
5301 offsetof(struct dev_info, devi_addr));
5302 len = dtrace_strlen(s, size);
5303
5304 if (*flags & CPU_DTRACE_FAULT)
5305 break;
5306
5307 if (len != 0) {
5308 if ((end -= (len + 1)) < start)
5309 break;
5310
5311 *end = '@';
5312 }
5313
5314 for (i = 1; i <= len; i++)
5315 end[i] = dtrace_load8((uintptr_t)s++);
5316 }
5317
5318 /*
5319 * Now for the node name...
5320 */
5321 s = (char *)dtrace_loadptr(daddr +
5322 offsetof(struct dev_info, devi_node_name));
5323
5324 daddr = dtrace_loadptr(daddr +
5325 offsetof(struct dev_info, devi_parent));
5326
5327 /*
5328 * If our parent is NULL (that is, if we're the root
5329 * node), we're going to use the special path
5330 * "devices".
5331 */
5332 if (daddr == 0)
5333 s = "devices";
5334
5335 len = dtrace_strlen(s, size);
5336 if (*flags & CPU_DTRACE_FAULT)
5337 break;
5338
5339 if ((end -= (len + 1)) < start)
5340 break;
5341
5342 for (i = 1; i <= len; i++)
5343 end[i] = dtrace_load8((uintptr_t)s++);
5344 *end = '/';
5345
5346 if (depth++ > dtrace_devdepth_max) {
5347 *flags |= CPU_DTRACE_ILLOP;
5348 break;
5349 }
5350 }
5351
5352 if (end < start)
5353 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5354
5355 if (daddr == 0) {
5356 regs[rd] = (uintptr_t)end;
5357 mstate->dtms_scratch_ptr += size;
5358 }
5359
5360 break;
5361 }
5362 #endif
5363
5364 case DIF_SUBR_STRJOIN: {
5365 char *d = (char *)mstate->dtms_scratch_ptr;
5366 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5367 uintptr_t s1 = tupregs[0].dttk_value;
5368 uintptr_t s2 = tupregs[1].dttk_value;
5369 int i = 0, j = 0;
5370 size_t lim1, lim2;
5371 char c;
5372
5373 if (!dtrace_strcanload(s1, size, &lim1, mstate, vstate) ||
5374 !dtrace_strcanload(s2, size, &lim2, mstate, vstate)) {
5375 regs[rd] = 0;
5376 break;
5377 }
5378
5379 if (!DTRACE_INSCRATCH(mstate, size)) {
5380 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5381 regs[rd] = 0;
5382 break;
5383 }
5384
5385 for (;;) {
5386 if (i >= size) {
5387 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5388 regs[rd] = 0;
5389 break;
5390 }
5391 c = (i >= lim1) ? '\0' : dtrace_load8(s1++);
5392 if ((d[i++] = c) == '\0') {
5393 i--;
5394 break;
5395 }
5396 }
5397
5398 for (;;) {
5399 if (i >= size) {
5400 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5401 regs[rd] = 0;
5402 break;
5403 }
5404
5405 c = (j++ >= lim2) ? '\0' : dtrace_load8(s2++);
5406 if ((d[i++] = c) == '\0')
5407 break;
5408 }
5409
5410 if (i < size) {
5411 mstate->dtms_scratch_ptr += i;
5412 regs[rd] = (uintptr_t)d;
5413 }
5414
5415 break;
5416 }
5417
5418 case DIF_SUBR_STRTOLL: {
5419 uintptr_t s = tupregs[0].dttk_value;
5420 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5421 size_t lim;
5422 int base = 10;
5423
5424 if (nargs > 1) {
5425 if ((base = tupregs[1].dttk_value) <= 1 ||
5426 base > ('z' - 'a' + 1) + ('9' - '0' + 1)) {
5427 *flags |= CPU_DTRACE_ILLOP;
5428 break;
5429 }
5430 }
5431
5432 if (!dtrace_strcanload(s, size, &lim, mstate, vstate)) {
5433 regs[rd] = INT64_MIN;
5434 break;
5435 }
5436
5437 regs[rd] = dtrace_strtoll((char *)s, base, lim);
5438 break;
5439 }
5440
5441 case DIF_SUBR_LLTOSTR: {
5442 int64_t i = (int64_t)tupregs[0].dttk_value;
5443 uint64_t val, digit;
5444 uint64_t size = 65; /* enough room for 2^64 in binary */
5445 char *end = (char *)mstate->dtms_scratch_ptr + size - 1;
5446 int base = 10;
5447
5448 if (nargs > 1) {
5449 if ((base = tupregs[1].dttk_value) <= 1 ||
5450 base > ('z' - 'a' + 1) + ('9' - '0' + 1)) {
5451 *flags |= CPU_DTRACE_ILLOP;
5452 break;
5453 }
5454 }
5455
5456 val = (base == 10 && i < 0) ? i * -1 : i;
5457
5458 if (!DTRACE_INSCRATCH(mstate, size)) {
5459 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5460 regs[rd] = 0;
5461 break;
5462 }
5463
5464 for (*end-- = '\0'; val; val /= base) {
5465 if ((digit = val % base) <= '9' - '0') {
5466 *end-- = '0' + digit;
5467 } else {
5468 *end-- = 'a' + (digit - ('9' - '0') - 1);
5469 }
5470 }
5471
5472 if (i == 0 && base == 16)
5473 *end-- = '0';
5474
5475 if (base == 16)
5476 *end-- = 'x';
5477
5478 if (i == 0 || base == 8 || base == 16)
5479 *end-- = '0';
5480
5481 if (i < 0 && base == 10)
5482 *end-- = '-';
5483
5484 regs[rd] = (uintptr_t)end + 1;
5485 mstate->dtms_scratch_ptr += size;
5486 break;
5487 }
5488
5489 case DIF_SUBR_HTONS:
5490 case DIF_SUBR_NTOHS:
5491 #if BYTE_ORDER == BIG_ENDIAN
5492 regs[rd] = (uint16_t)tupregs[0].dttk_value;
5493 #else
5494 regs[rd] = DT_BSWAP_16((uint16_t)tupregs[0].dttk_value);
5495 #endif
5496 break;
5497
5498
5499 case DIF_SUBR_HTONL:
5500 case DIF_SUBR_NTOHL:
5501 #if BYTE_ORDER == BIG_ENDIAN
5502 regs[rd] = (uint32_t)tupregs[0].dttk_value;
5503 #else
5504 regs[rd] = DT_BSWAP_32((uint32_t)tupregs[0].dttk_value);
5505 #endif
5506 break;
5507
5508
5509 case DIF_SUBR_HTONLL:
5510 case DIF_SUBR_NTOHLL:
5511 #if BYTE_ORDER == BIG_ENDIAN
5512 regs[rd] = (uint64_t)tupregs[0].dttk_value;
5513 #else
5514 regs[rd] = DT_BSWAP_64((uint64_t)tupregs[0].dttk_value);
5515 #endif
5516 break;
5517
5518
5519 case DIF_SUBR_DIRNAME:
5520 case DIF_SUBR_BASENAME: {
5521 char *dest = (char *)mstate->dtms_scratch_ptr;
5522 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5523 uintptr_t src = tupregs[0].dttk_value;
5524 int i, j, len = dtrace_strlen((char *)src, size);
5525 int lastbase = -1, firstbase = -1, lastdir = -1;
5526 int start, end;
5527
5528 if (!dtrace_canload(src, len + 1, mstate, vstate)) {
5529 regs[rd] = 0;
5530 break;
5531 }
5532
5533 if (!DTRACE_INSCRATCH(mstate, size)) {
5534 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5535 regs[rd] = 0;
5536 break;
5537 }
5538
5539 /*
5540 * The basename and dirname for a zero-length string is
5541 * defined to be "."
5542 */
5543 if (len == 0) {
5544 len = 1;
5545 src = (uintptr_t)".";
5546 }
5547
5548 /*
5549 * Start from the back of the string, moving back toward the
5550 * front until we see a character that isn't a slash. That
5551 * character is the last character in the basename.
5552 */
5553 for (i = len - 1; i >= 0; i--) {
5554 if (dtrace_load8(src + i) != '/')
5555 break;
5556 }
5557
5558 if (i >= 0)
5559 lastbase = i;
5560
5561 /*
5562 * Starting from the last character in the basename, move
5563 * towards the front until we find a slash. The character
5564 * that we processed immediately before that is the first
5565 * character in the basename.
5566 */
5567 for (; i >= 0; i--) {
5568 if (dtrace_load8(src + i) == '/')
5569 break;
5570 }
5571
5572 if (i >= 0)
5573 firstbase = i + 1;
5574
5575 /*
5576 * Now keep going until we find a non-slash character. That
5577 * character is the last character in the dirname.
5578 */
5579 for (; i >= 0; i--) {
5580 if (dtrace_load8(src + i) != '/')
5581 break;
5582 }
5583
5584 if (i >= 0)
5585 lastdir = i;
5586
5587 ASSERT(!(lastbase == -1 && firstbase != -1));
5588 ASSERT(!(firstbase == -1 && lastdir != -1));
5589
5590 if (lastbase == -1) {
5591 /*
5592 * We didn't find a non-slash character. We know that
5593 * the length is non-zero, so the whole string must be
5594 * slashes. In either the dirname or the basename
5595 * case, we return '/'.
5596 */
5597 ASSERT(firstbase == -1);
5598 firstbase = lastbase = lastdir = 0;
5599 }
5600
5601 if (firstbase == -1) {
5602 /*
5603 * The entire string consists only of a basename
5604 * component. If we're looking for dirname, we need
5605 * to change our string to be just "."; if we're
5606 * looking for a basename, we'll just set the first
5607 * character of the basename to be 0.
5608 */
5609 if (subr == DIF_SUBR_DIRNAME) {
5610 ASSERT(lastdir == -1);
5611 src = (uintptr_t)".";
5612 lastdir = 0;
5613 } else {
5614 firstbase = 0;
5615 }
5616 }
5617
5618 if (subr == DIF_SUBR_DIRNAME) {
5619 if (lastdir == -1) {
5620 /*
5621 * We know that we have a slash in the name --
5622 * or lastdir would be set to 0, above. And
5623 * because lastdir is -1, we know that this
5624 * slash must be the first character. (That
5625 * is, the full string must be of the form
5626 * "/basename".) In this case, the last
5627 * character of the directory name is 0.
5628 */
5629 lastdir = 0;
5630 }
5631
5632 start = 0;
5633 end = lastdir;
5634 } else {
5635 ASSERT(subr == DIF_SUBR_BASENAME);
5636 ASSERT(firstbase != -1 && lastbase != -1);
5637 start = firstbase;
5638 end = lastbase;
5639 }
5640
5641 for (i = start, j = 0; i <= end && j < size - 1; i++, j++)
5642 dest[j] = dtrace_load8(src + i);
5643
5644 dest[j] = '\0';
5645 regs[rd] = (uintptr_t)dest;
5646 mstate->dtms_scratch_ptr += size;
5647 break;
5648 }
5649
5650 case DIF_SUBR_GETF: {
5651 uintptr_t fd = tupregs[0].dttk_value;
5652 struct filedesc *fdp;
5653 file_t *fp;
5654
5655 if (!dtrace_priv_proc(state)) {
5656 regs[rd] = 0;
5657 break;
5658 }
5659 fdp = curproc->p_fd;
5660 FILEDESC_SLOCK(fdp);
5661 /*
5662 * XXXMJG this looks broken as no ref is taken.
5663 */
5664 fp = fget_noref(fdp, fd);
5665 mstate->dtms_getf = fp;
5666 regs[rd] = (uintptr_t)fp;
5667 FILEDESC_SUNLOCK(fdp);
5668 break;
5669 }
5670
5671 case DIF_SUBR_CLEANPATH: {
5672 char *dest = (char *)mstate->dtms_scratch_ptr, c;
5673 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5674 uintptr_t src = tupregs[0].dttk_value;
5675 size_t lim;
5676 int i = 0, j = 0;
5677 #ifdef illumos
5678 zone_t *z;
5679 #endif
5680
5681 if (!dtrace_strcanload(src, size, &lim, mstate, vstate)) {
5682 regs[rd] = 0;
5683 break;
5684 }
5685
5686 if (!DTRACE_INSCRATCH(mstate, size)) {
5687 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5688 regs[rd] = 0;
5689 break;
5690 }
5691
5692 /*
5693 * Move forward, loading each character.
5694 */
5695 do {
5696 c = (i >= lim) ? '\0' : dtrace_load8(src + i++);
5697 next:
5698 if (j + 5 >= size) /* 5 = strlen("/..c\0") */
5699 break;
5700
5701 if (c != '/') {
5702 dest[j++] = c;
5703 continue;
5704 }
5705
5706 c = (i >= lim) ? '\0' : dtrace_load8(src + i++);
5707
5708 if (c == '/') {
5709 /*
5710 * We have two slashes -- we can just advance
5711 * to the next character.
5712 */
5713 goto next;
5714 }
5715
5716 if (c != '.') {
5717 /*
5718 * This is not "." and it's not ".." -- we can
5719 * just store the "/" and this character and
5720 * drive on.
5721 */
5722 dest[j++] = '/';
5723 dest[j++] = c;
5724 continue;
5725 }
5726
5727 c = (i >= lim) ? '\0' : dtrace_load8(src + i++);
5728
5729 if (c == '/') {
5730 /*
5731 * This is a "/./" component. We're not going
5732 * to store anything in the destination buffer;
5733 * we're just going to go to the next component.
5734 */
5735 goto next;
5736 }
5737
5738 if (c != '.') {
5739 /*
5740 * This is not ".." -- we can just store the
5741 * "/." and this character and continue
5742 * processing.
5743 */
5744 dest[j++] = '/';
5745 dest[j++] = '.';
5746 dest[j++] = c;
5747 continue;
5748 }
5749
5750 c = (i >= lim) ? '\0' : dtrace_load8(src + i++);
5751
5752 if (c != '/' && c != '\0') {
5753 /*
5754 * This is not ".." -- it's "..[mumble]".
5755 * We'll store the "/.." and this character
5756 * and continue processing.
5757 */
5758 dest[j++] = '/';
5759 dest[j++] = '.';
5760 dest[j++] = '.';
5761 dest[j++] = c;
5762 continue;
5763 }
5764
5765 /*
5766 * This is "/../" or "/..\0". We need to back up
5767 * our destination pointer until we find a "/".
5768 */
5769 i--;
5770 while (j != 0 && dest[--j] != '/')
5771 continue;
5772
5773 if (c == '\0')
5774 dest[++j] = '/';
5775 } while (c != '\0');
5776
5777 dest[j] = '\0';
5778
5779 #ifdef illumos
5780 if (mstate->dtms_getf != NULL &&
5781 !(mstate->dtms_access & DTRACE_ACCESS_KERNEL) &&
5782 (z = state->dts_cred.dcr_cred->cr_zone) != kcred->cr_zone) {
5783 /*
5784 * If we've done a getf() as a part of this ECB and we
5785 * don't have kernel access (and we're not in the global
5786 * zone), check if the path we cleaned up begins with
5787 * the zone's root path, and trim it off if so. Note
5788 * that this is an output cleanliness issue, not a
5789 * security issue: knowing one's zone root path does
5790 * not enable privilege escalation.
5791 */
5792 if (strstr(dest, z->zone_rootpath) == dest)
5793 dest += strlen(z->zone_rootpath) - 1;
5794 }
5795 #endif
5796
5797 regs[rd] = (uintptr_t)dest;
5798 mstate->dtms_scratch_ptr += size;
5799 break;
5800 }
5801
5802 case DIF_SUBR_INET_NTOA:
5803 case DIF_SUBR_INET_NTOA6:
5804 case DIF_SUBR_INET_NTOP: {
5805 size_t size;
5806 int af, argi, i;
5807 char *base, *end;
5808
5809 if (subr == DIF_SUBR_INET_NTOP) {
5810 af = (int)tupregs[0].dttk_value;
5811 argi = 1;
5812 } else {
5813 af = subr == DIF_SUBR_INET_NTOA ? AF_INET: AF_INET6;
5814 argi = 0;
5815 }
5816
5817 if (af == AF_INET) {
5818 ipaddr_t ip4;
5819 uint8_t *ptr8, val;
5820
5821 if (!dtrace_canload(tupregs[argi].dttk_value,
5822 sizeof (ipaddr_t), mstate, vstate)) {
5823 regs[rd] = 0;
5824 break;
5825 }
5826
5827 /*
5828 * Safely load the IPv4 address.
5829 */
5830 ip4 = dtrace_load32(tupregs[argi].dttk_value);
5831
5832 /*
5833 * Check an IPv4 string will fit in scratch.
5834 */
5835 size = INET_ADDRSTRLEN;
5836 if (!DTRACE_INSCRATCH(mstate, size)) {
5837 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5838 regs[rd] = 0;
5839 break;
5840 }
5841 base = (char *)mstate->dtms_scratch_ptr;
5842 end = (char *)mstate->dtms_scratch_ptr + size - 1;
5843
5844 /*
5845 * Stringify as a dotted decimal quad.
5846 */
5847 *end-- = '\0';
5848 ptr8 = (uint8_t *)&ip4;
5849 for (i = 3; i >= 0; i--) {
5850 val = ptr8[i];
5851
5852 if (val == 0) {
5853 *end-- = '0';
5854 } else {
5855 for (; val; val /= 10) {
5856 *end-- = '0' + (val % 10);
5857 }
5858 }
5859
5860 if (i > 0)
5861 *end-- = '.';
5862 }
5863 ASSERT(end + 1 >= base);
5864
5865 } else if (af == AF_INET6) {
5866 struct in6_addr ip6;
5867 int firstzero, tryzero, numzero, v6end;
5868 uint16_t val;
5869 const char digits[] = "0123456789abcdef";
5870
5871 /*
5872 * Stringify using RFC 1884 convention 2 - 16 bit
5873 * hexadecimal values with a zero-run compression.
5874 * Lower case hexadecimal digits are used.
5875 * eg, fe80::214:4fff:fe0b:76c8.
5876 * The IPv4 embedded form is returned for inet_ntop,
5877 * just the IPv4 string is returned for inet_ntoa6.
5878 */
5879
5880 if (!dtrace_canload(tupregs[argi].dttk_value,
5881 sizeof (struct in6_addr), mstate, vstate)) {
5882 regs[rd] = 0;
5883 break;
5884 }
5885
5886 /*
5887 * Safely load the IPv6 address.
5888 */
5889 dtrace_bcopy(
5890 (void *)(uintptr_t)tupregs[argi].dttk_value,
5891 (void *)(uintptr_t)&ip6, sizeof (struct in6_addr));
5892
5893 /*
5894 * Check an IPv6 string will fit in scratch.
5895 */
5896 size = INET6_ADDRSTRLEN;
5897 if (!DTRACE_INSCRATCH(mstate, size)) {
5898 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5899 regs[rd] = 0;
5900 break;
5901 }
5902 base = (char *)mstate->dtms_scratch_ptr;
5903 end = (char *)mstate->dtms_scratch_ptr + size - 1;
5904 *end-- = '\0';
5905
5906 /*
5907 * Find the longest run of 16 bit zero values
5908 * for the single allowed zero compression - "::".
5909 */
5910 firstzero = -1;
5911 tryzero = -1;
5912 numzero = 1;
5913 for (i = 0; i < sizeof (struct in6_addr); i++) {
5914 #ifdef illumos
5915 if (ip6._S6_un._S6_u8[i] == 0 &&
5916 #else
5917 if (ip6.__u6_addr.__u6_addr8[i] == 0 &&
5918 #endif
5919 tryzero == -1 && i % 2 == 0) {
5920 tryzero = i;
5921 continue;
5922 }
5923
5924 if (tryzero != -1 &&
5925 #ifdef illumos
5926 (ip6._S6_un._S6_u8[i] != 0 ||
5927 #else
5928 (ip6.__u6_addr.__u6_addr8[i] != 0 ||
5929 #endif
5930 i == sizeof (struct in6_addr) - 1)) {
5931
5932 if (i - tryzero <= numzero) {
5933 tryzero = -1;
5934 continue;
5935 }
5936
5937 firstzero = tryzero;
5938 numzero = i - i % 2 - tryzero;
5939 tryzero = -1;
5940
5941 #ifdef illumos
5942 if (ip6._S6_un._S6_u8[i] == 0 &&
5943 #else
5944 if (ip6.__u6_addr.__u6_addr8[i] == 0 &&
5945 #endif
5946 i == sizeof (struct in6_addr) - 1)
5947 numzero += 2;
5948 }
5949 }
5950 ASSERT(firstzero + numzero <= sizeof (struct in6_addr));
5951
5952 /*
5953 * Check for an IPv4 embedded address.
5954 */
5955 v6end = sizeof (struct in6_addr) - 2;
5956 if (IN6_IS_ADDR_V4MAPPED(&ip6) ||
5957 IN6_IS_ADDR_V4COMPAT(&ip6)) {
5958 for (i = sizeof (struct in6_addr) - 1;
5959 i >= DTRACE_V4MAPPED_OFFSET; i--) {
5960 ASSERT(end >= base);
5961
5962 #ifdef illumos
5963 val = ip6._S6_un._S6_u8[i];
5964 #else
5965 val = ip6.__u6_addr.__u6_addr8[i];
5966 #endif
5967
5968 if (val == 0) {
5969 *end-- = '0';
5970 } else {
5971 for (; val; val /= 10) {
5972 *end-- = '0' + val % 10;
5973 }
5974 }
5975
5976 if (i > DTRACE_V4MAPPED_OFFSET)
5977 *end-- = '.';
5978 }
5979
5980 if (subr == DIF_SUBR_INET_NTOA6)
5981 goto inetout;
5982
5983 /*
5984 * Set v6end to skip the IPv4 address that
5985 * we have already stringified.
5986 */
5987 v6end = 10;
5988 }
5989
5990 /*
5991 * Build the IPv6 string by working through the
5992 * address in reverse.
5993 */
5994 for (i = v6end; i >= 0; i -= 2) {
5995 ASSERT(end >= base);
5996
5997 if (i == firstzero + numzero - 2) {
5998 *end-- = ':';
5999 *end-- = ':';
6000 i -= numzero - 2;
6001 continue;
6002 }
6003
6004 if (i < 14 && i != firstzero - 2)
6005 *end-- = ':';
6006
6007 #ifdef illumos
6008 val = (ip6._S6_un._S6_u8[i] << 8) +
6009 ip6._S6_un._S6_u8[i + 1];
6010 #else
6011 val = (ip6.__u6_addr.__u6_addr8[i] << 8) +
6012 ip6.__u6_addr.__u6_addr8[i + 1];
6013 #endif
6014
6015 if (val == 0) {
6016 *end-- = '0';
6017 } else {
6018 for (; val; val /= 16) {
6019 *end-- = digits[val % 16];
6020 }
6021 }
6022 }
6023 ASSERT(end + 1 >= base);
6024
6025 } else {
6026 /*
6027 * The user didn't use AH_INET or AH_INET6.
6028 */
6029 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
6030 regs[rd] = 0;
6031 break;
6032 }
6033
6034 inetout: regs[rd] = (uintptr_t)end + 1;
6035 mstate->dtms_scratch_ptr += size;
6036 break;
6037 }
6038
6039 case DIF_SUBR_MEMREF: {
6040 uintptr_t size = 2 * sizeof(uintptr_t);
6041 uintptr_t *memref = (uintptr_t *) P2ROUNDUP(mstate->dtms_scratch_ptr, sizeof(uintptr_t));
6042 size_t scratch_size = ((uintptr_t) memref - mstate->dtms_scratch_ptr) + size;
6043
6044 /* address and length */
6045 memref[0] = tupregs[0].dttk_value;
6046 memref[1] = tupregs[1].dttk_value;
6047
6048 regs[rd] = (uintptr_t) memref;
6049 mstate->dtms_scratch_ptr += scratch_size;
6050 break;
6051 }
6052
6053 #ifndef illumos
6054 case DIF_SUBR_MEMSTR: {
6055 char *str = (char *)mstate->dtms_scratch_ptr;
6056 uintptr_t mem = tupregs[0].dttk_value;
6057 char c = tupregs[1].dttk_value;
6058 size_t size = tupregs[2].dttk_value;
6059 uint8_t n;
6060 int i;
6061
6062 regs[rd] = 0;
6063
6064 if (size == 0)
6065 break;
6066
6067 if (!dtrace_canload(mem, size - 1, mstate, vstate))
6068 break;
6069
6070 if (!DTRACE_INSCRATCH(mstate, size)) {
6071 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
6072 break;
6073 }
6074
6075 if (dtrace_memstr_max != 0 && size > dtrace_memstr_max) {
6076 *flags |= CPU_DTRACE_ILLOP;
6077 break;
6078 }
6079
6080 for (i = 0; i < size - 1; i++) {
6081 n = dtrace_load8(mem++);
6082 str[i] = (n == 0) ? c : n;
6083 }
6084 str[size - 1] = 0;
6085
6086 regs[rd] = (uintptr_t)str;
6087 mstate->dtms_scratch_ptr += size;
6088 break;
6089 }
6090 #endif
6091 }
6092 }
6093
6094 /*
6095 * Emulate the execution of DTrace IR instructions specified by the given
6096 * DIF object. This function is deliberately void of assertions as all of
6097 * the necessary checks are handled by a call to dtrace_difo_validate().
6098 */
6099 static uint64_t
6100 dtrace_dif_emulate(dtrace_difo_t *difo, dtrace_mstate_t *mstate,
6101 dtrace_vstate_t *vstate, dtrace_state_t *state)
6102 {
6103 const dif_instr_t *text = difo->dtdo_buf;
6104 const uint_t textlen = difo->dtdo_len;
6105 const char *strtab = difo->dtdo_strtab;
6106 const uint64_t *inttab = difo->dtdo_inttab;
6107
6108 uint64_t rval = 0;
6109 dtrace_statvar_t *svar;
6110 dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
6111 dtrace_difv_t *v;
6112 volatile uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
6113 volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval;
6114
6115 dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
6116 uint64_t regs[DIF_DIR_NREGS];
6117 uint64_t *tmp;
6118
6119 uint8_t cc_n = 0, cc_z = 0, cc_v = 0, cc_c = 0;
6120 int64_t cc_r;
6121 uint_t pc = 0, id, opc = 0;
6122 uint8_t ttop = 0;
6123 dif_instr_t instr;
6124 uint_t r1, r2, rd;
6125
6126 /*
6127 * We stash the current DIF object into the machine state: we need it
6128 * for subsequent access checking.
6129 */
6130 mstate->dtms_difo = difo;
6131
6132 regs[DIF_REG_R0] = 0; /* %r0 is fixed at zero */
6133
6134 while (pc < textlen && !(*flags & CPU_DTRACE_FAULT)) {
6135 opc = pc;
6136
6137 instr = text[pc++];
6138 r1 = DIF_INSTR_R1(instr);
6139 r2 = DIF_INSTR_R2(instr);
6140 rd = DIF_INSTR_RD(instr);
6141
6142 switch (DIF_INSTR_OP(instr)) {
6143 case DIF_OP_OR:
6144 regs[rd] = regs[r1] | regs[r2];
6145 break;
6146 case DIF_OP_XOR:
6147 regs[rd] = regs[r1] ^ regs[r2];
6148 break;
6149 case DIF_OP_AND:
6150 regs[rd] = regs[r1] & regs[r2];
6151 break;
6152 case DIF_OP_SLL:
6153 regs[rd] = regs[r1] << regs[r2];
6154 break;
6155 case DIF_OP_SRL:
6156 regs[rd] = regs[r1] >> regs[r2];
6157 break;
6158 case DIF_OP_SUB:
6159 regs[rd] = regs[r1] - regs[r2];
6160 break;
6161 case DIF_OP_ADD:
6162 regs[rd] = regs[r1] + regs[r2];
6163 break;
6164 case DIF_OP_MUL:
6165 regs[rd] = regs[r1] * regs[r2];
6166 break;
6167 case DIF_OP_SDIV:
6168 if (regs[r2] == 0) {
6169 regs[rd] = 0;
6170 *flags |= CPU_DTRACE_DIVZERO;
6171 } else {
6172 regs[rd] = (int64_t)regs[r1] /
6173 (int64_t)regs[r2];
6174 }
6175 break;
6176
6177 case DIF_OP_UDIV:
6178 if (regs[r2] == 0) {
6179 regs[rd] = 0;
6180 *flags |= CPU_DTRACE_DIVZERO;
6181 } else {
6182 regs[rd] = regs[r1] / regs[r2];
6183 }
6184 break;
6185
6186 case DIF_OP_SREM:
6187 if (regs[r2] == 0) {
6188 regs[rd] = 0;
6189 *flags |= CPU_DTRACE_DIVZERO;
6190 } else {
6191 regs[rd] = (int64_t)regs[r1] %
6192 (int64_t)regs[r2];
6193 }
6194 break;
6195
6196 case DIF_OP_UREM:
6197 if (regs[r2] == 0) {
6198 regs[rd] = 0;
6199 *flags |= CPU_DTRACE_DIVZERO;
6200 } else {
6201 regs[rd] = regs[r1] % regs[r2];
6202 }
6203 break;
6204
6205 case DIF_OP_NOT:
6206 regs[rd] = ~regs[r1];
6207 break;
6208 case DIF_OP_MOV:
6209 regs[rd] = regs[r1];
6210 break;
6211 case DIF_OP_CMP:
6212 cc_r = regs[r1] - regs[r2];
6213 cc_n = cc_r < 0;
6214 cc_z = cc_r == 0;
6215 cc_v = 0;
6216 cc_c = regs[r1] < regs[r2];
6217 break;
6218 case DIF_OP_TST:
6219 cc_n = cc_v = cc_c = 0;
6220 cc_z = regs[r1] == 0;
6221 break;
6222 case DIF_OP_BA:
6223 pc = DIF_INSTR_LABEL(instr);
6224 break;
6225 case DIF_OP_BE:
6226 if (cc_z)
6227 pc = DIF_INSTR_LABEL(instr);
6228 break;
6229 case DIF_OP_BNE:
6230 if (cc_z == 0)
6231 pc = DIF_INSTR_LABEL(instr);
6232 break;
6233 case DIF_OP_BG:
6234 if ((cc_z | (cc_n ^ cc_v)) == 0)
6235 pc = DIF_INSTR_LABEL(instr);
6236 break;
6237 case DIF_OP_BGU:
6238 if ((cc_c | cc_z) == 0)
6239 pc = DIF_INSTR_LABEL(instr);
6240 break;
6241 case DIF_OP_BGE:
6242 if ((cc_n ^ cc_v) == 0)
6243 pc = DIF_INSTR_LABEL(instr);
6244 break;
6245 case DIF_OP_BGEU:
6246 if (cc_c == 0)
6247 pc = DIF_INSTR_LABEL(instr);
6248 break;
6249 case DIF_OP_BL:
6250 if (cc_n ^ cc_v)
6251 pc = DIF_INSTR_LABEL(instr);
6252 break;
6253 case DIF_OP_BLU:
6254 if (cc_c)
6255 pc = DIF_INSTR_LABEL(instr);
6256 break;
6257 case DIF_OP_BLE:
6258 if (cc_z | (cc_n ^ cc_v))
6259 pc = DIF_INSTR_LABEL(instr);
6260 break;
6261 case DIF_OP_BLEU:
6262 if (cc_c | cc_z)
6263 pc = DIF_INSTR_LABEL(instr);
6264 break;
6265 case DIF_OP_RLDSB:
6266 if (!dtrace_canload(regs[r1], 1, mstate, vstate))
6267 break;
6268 /*FALLTHROUGH*/
6269 case DIF_OP_LDSB:
6270 regs[rd] = (int8_t)dtrace_load8(regs[r1]);
6271 break;
6272 case DIF_OP_RLDSH:
6273 if (!dtrace_canload(regs[r1], 2, mstate, vstate))
6274 break;
6275 /*FALLTHROUGH*/
6276 case DIF_OP_LDSH:
6277 regs[rd] = (int16_t)dtrace_load16(regs[r1]);
6278 break;
6279 case DIF_OP_RLDSW:
6280 if (!dtrace_canload(regs[r1], 4, mstate, vstate))
6281 break;
6282 /*FALLTHROUGH*/
6283 case DIF_OP_LDSW:
6284 regs[rd] = (int32_t)dtrace_load32(regs[r1]);
6285 break;
6286 case DIF_OP_RLDUB:
6287 if (!dtrace_canload(regs[r1], 1, mstate, vstate))
6288 break;
6289 /*FALLTHROUGH*/
6290 case DIF_OP_LDUB:
6291 regs[rd] = dtrace_load8(regs[r1]);
6292 break;
6293 case DIF_OP_RLDUH:
6294 if (!dtrace_canload(regs[r1], 2, mstate, vstate))
6295 break;
6296 /*FALLTHROUGH*/
6297 case DIF_OP_LDUH:
6298 regs[rd] = dtrace_load16(regs[r1]);
6299 break;
6300 case DIF_OP_RLDUW:
6301 if (!dtrace_canload(regs[r1], 4, mstate, vstate))
6302 break;
6303 /*FALLTHROUGH*/
6304 case DIF_OP_LDUW:
6305 regs[rd] = dtrace_load32(regs[r1]);
6306 break;
6307 case DIF_OP_RLDX:
6308 if (!dtrace_canload(regs[r1], 8, mstate, vstate))
6309 break;
6310 /*FALLTHROUGH*/
6311 case DIF_OP_LDX:
6312 regs[rd] = dtrace_load64(regs[r1]);
6313 break;
6314 case DIF_OP_ULDSB:
6315 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6316 regs[rd] = (int8_t)
6317 dtrace_fuword8((void *)(uintptr_t)regs[r1]);
6318 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6319 break;
6320 case DIF_OP_ULDSH:
6321 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6322 regs[rd] = (int16_t)
6323 dtrace_fuword16((void *)(uintptr_t)regs[r1]);
6324 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6325 break;
6326 case DIF_OP_ULDSW:
6327 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6328 regs[rd] = (int32_t)
6329 dtrace_fuword32((void *)(uintptr_t)regs[r1]);
6330 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6331 break;
6332 case DIF_OP_ULDUB:
6333 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6334 regs[rd] =
6335 dtrace_fuword8((void *)(uintptr_t)regs[r1]);
6336 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6337 break;
6338 case DIF_OP_ULDUH:
6339 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6340 regs[rd] =
6341 dtrace_fuword16((void *)(uintptr_t)regs[r1]);
6342 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6343 break;
6344 case DIF_OP_ULDUW:
6345 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6346 regs[rd] =
6347 dtrace_fuword32((void *)(uintptr_t)regs[r1]);
6348 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6349 break;
6350 case DIF_OP_ULDX:
6351 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6352 regs[rd] =
6353 dtrace_fuword64((void *)(uintptr_t)regs[r1]);
6354 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6355 break;
6356 case DIF_OP_RET:
6357 rval = regs[rd];
6358 pc = textlen;
6359 break;
6360 case DIF_OP_NOP:
6361 break;
6362 case DIF_OP_SETX:
6363 regs[rd] = inttab[DIF_INSTR_INTEGER(instr)];
6364 break;
6365 case DIF_OP_SETS:
6366 regs[rd] = (uint64_t)(uintptr_t)
6367 (strtab + DIF_INSTR_STRING(instr));
6368 break;
6369 case DIF_OP_SCMP: {
6370 size_t sz = state->dts_options[DTRACEOPT_STRSIZE];
6371 uintptr_t s1 = regs[r1];
6372 uintptr_t s2 = regs[r2];
6373 size_t lim1, lim2;
6374
6375 /*
6376 * If one of the strings is NULL then the limit becomes
6377 * 0 which compares 0 characters in dtrace_strncmp()
6378 * resulting in a false positive. dtrace_strncmp()
6379 * treats a NULL as an empty 1-char string.
6380 */
6381 lim1 = lim2 = 1;
6382
6383 if (s1 != 0 &&
6384 !dtrace_strcanload(s1, sz, &lim1, mstate, vstate))
6385 break;
6386 if (s2 != 0 &&
6387 !dtrace_strcanload(s2, sz, &lim2, mstate, vstate))
6388 break;
6389
6390 cc_r = dtrace_strncmp((char *)s1, (char *)s2,
6391 MIN(lim1, lim2));
6392
6393 cc_n = cc_r < 0;
6394 cc_z = cc_r == 0;
6395 cc_v = cc_c = 0;
6396 break;
6397 }
6398 case DIF_OP_LDGA:
6399 regs[rd] = dtrace_dif_variable(mstate, state,
6400 r1, regs[r2]);
6401 break;
6402 case DIF_OP_LDGS:
6403 id = DIF_INSTR_VAR(instr);
6404
6405 if (id >= DIF_VAR_OTHER_UBASE) {
6406 uintptr_t a;
6407
6408 id -= DIF_VAR_OTHER_UBASE;
6409 svar = vstate->dtvs_globals[id];
6410 ASSERT(svar != NULL);
6411 v = &svar->dtsv_var;
6412
6413 if (!(v->dtdv_type.dtdt_flags & DIF_TF_BYREF)) {
6414 regs[rd] = svar->dtsv_data;
6415 break;
6416 }
6417
6418 a = (uintptr_t)svar->dtsv_data;
6419
6420 if (*(uint8_t *)a == UINT8_MAX) {
6421 /*
6422 * If the 0th byte is set to UINT8_MAX
6423 * then this is to be treated as a
6424 * reference to a NULL variable.
6425 */
6426 regs[rd] = 0;
6427 } else {
6428 regs[rd] = a + sizeof (uint64_t);
6429 }
6430
6431 break;
6432 }
6433
6434 regs[rd] = dtrace_dif_variable(mstate, state, id, 0);
6435 break;
6436
6437 case DIF_OP_STGS:
6438 id = DIF_INSTR_VAR(instr);
6439
6440 ASSERT(id >= DIF_VAR_OTHER_UBASE);
6441 id -= DIF_VAR_OTHER_UBASE;
6442
6443 VERIFY(id < vstate->dtvs_nglobals);
6444 svar = vstate->dtvs_globals[id];
6445 ASSERT(svar != NULL);
6446 v = &svar->dtsv_var;
6447
6448 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6449 uintptr_t a = (uintptr_t)svar->dtsv_data;
6450 size_t lim;
6451
6452 ASSERT(a != 0);
6453 ASSERT(svar->dtsv_size != 0);
6454
6455 if (regs[rd] == 0) {
6456 *(uint8_t *)a = UINT8_MAX;
6457 break;
6458 } else {
6459 *(uint8_t *)a = 0;
6460 a += sizeof (uint64_t);
6461 }
6462 if (!dtrace_vcanload(
6463 (void *)(uintptr_t)regs[rd], &v->dtdv_type,
6464 &lim, mstate, vstate))
6465 break;
6466
6467 dtrace_vcopy((void *)(uintptr_t)regs[rd],
6468 (void *)a, &v->dtdv_type, lim);
6469 break;
6470 }
6471
6472 svar->dtsv_data = regs[rd];
6473 break;
6474
6475 case DIF_OP_LDTA:
6476 /*
6477 * There are no DTrace built-in thread-local arrays at
6478 * present. This opcode is saved for future work.
6479 */
6480 *flags |= CPU_DTRACE_ILLOP;
6481 regs[rd] = 0;
6482 break;
6483
6484 case DIF_OP_LDLS:
6485 id = DIF_INSTR_VAR(instr);
6486
6487 if (id < DIF_VAR_OTHER_UBASE) {
6488 /*
6489 * For now, this has no meaning.
6490 */
6491 regs[rd] = 0;
6492 break;
6493 }
6494
6495 id -= DIF_VAR_OTHER_UBASE;
6496
6497 ASSERT(id < vstate->dtvs_nlocals);
6498 ASSERT(vstate->dtvs_locals != NULL);
6499
6500 svar = vstate->dtvs_locals[id];
6501 ASSERT(svar != NULL);
6502 v = &svar->dtsv_var;
6503
6504 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6505 uintptr_t a = (uintptr_t)svar->dtsv_data;
6506 size_t sz = v->dtdv_type.dtdt_size;
6507 size_t lim;
6508
6509 sz += sizeof (uint64_t);
6510 ASSERT(svar->dtsv_size == (mp_maxid + 1) * sz);
6511 a += curcpu * sz;
6512
6513 if (*(uint8_t *)a == UINT8_MAX) {
6514 /*
6515 * If the 0th byte is set to UINT8_MAX
6516 * then this is to be treated as a
6517 * reference to a NULL variable.
6518 */
6519 regs[rd] = 0;
6520 } else {
6521 regs[rd] = a + sizeof (uint64_t);
6522 }
6523
6524 break;
6525 }
6526
6527 ASSERT(svar->dtsv_size ==
6528 (mp_maxid + 1) * sizeof (uint64_t));
6529 tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
6530 regs[rd] = tmp[curcpu];
6531 break;
6532
6533 case DIF_OP_STLS:
6534 id = DIF_INSTR_VAR(instr);
6535
6536 ASSERT(id >= DIF_VAR_OTHER_UBASE);
6537 id -= DIF_VAR_OTHER_UBASE;
6538 VERIFY(id < vstate->dtvs_nlocals);
6539
6540 ASSERT(vstate->dtvs_locals != NULL);
6541 svar = vstate->dtvs_locals[id];
6542 ASSERT(svar != NULL);
6543 v = &svar->dtsv_var;
6544
6545 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6546 uintptr_t a = (uintptr_t)svar->dtsv_data;
6547 size_t sz = v->dtdv_type.dtdt_size;
6548 size_t lim;
6549
6550 sz += sizeof (uint64_t);
6551 ASSERT(svar->dtsv_size == (mp_maxid + 1) * sz);
6552 a += curcpu * sz;
6553
6554 if (regs[rd] == 0) {
6555 *(uint8_t *)a = UINT8_MAX;
6556 break;
6557 } else {
6558 *(uint8_t *)a = 0;
6559 a += sizeof (uint64_t);
6560 }
6561
6562 if (!dtrace_vcanload(
6563 (void *)(uintptr_t)regs[rd], &v->dtdv_type,
6564 &lim, mstate, vstate))
6565 break;
6566
6567 dtrace_vcopy((void *)(uintptr_t)regs[rd],
6568 (void *)a, &v->dtdv_type, lim);
6569 break;
6570 }
6571
6572 ASSERT(svar->dtsv_size ==
6573 (mp_maxid + 1) * sizeof (uint64_t));
6574 tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
6575 tmp[curcpu] = regs[rd];
6576 break;
6577
6578 case DIF_OP_LDTS: {
6579 dtrace_dynvar_t *dvar;
6580 dtrace_key_t *key;
6581
6582 id = DIF_INSTR_VAR(instr);
6583 ASSERT(id >= DIF_VAR_OTHER_UBASE);
6584 id -= DIF_VAR_OTHER_UBASE;
6585 v = &vstate->dtvs_tlocals[id];
6586
6587 key = &tupregs[DIF_DTR_NREGS];
6588 key[0].dttk_value = (uint64_t)id;
6589 key[0].dttk_size = 0;
6590 DTRACE_TLS_THRKEY(key[1].dttk_value);
6591 key[1].dttk_size = 0;
6592
6593 dvar = dtrace_dynvar(dstate, 2, key,
6594 sizeof (uint64_t), DTRACE_DYNVAR_NOALLOC,
6595 mstate, vstate);
6596
6597 if (dvar == NULL) {
6598 regs[rd] = 0;
6599 break;
6600 }
6601
6602 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6603 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
6604 } else {
6605 regs[rd] = *((uint64_t *)dvar->dtdv_data);
6606 }
6607
6608 break;
6609 }
6610
6611 case DIF_OP_STTS: {
6612 dtrace_dynvar_t *dvar;
6613 dtrace_key_t *key;
6614
6615 id = DIF_INSTR_VAR(instr);
6616 ASSERT(id >= DIF_VAR_OTHER_UBASE);
6617 id -= DIF_VAR_OTHER_UBASE;
6618 VERIFY(id < vstate->dtvs_ntlocals);
6619
6620 key = &tupregs[DIF_DTR_NREGS];
6621 key[0].dttk_value = (uint64_t)id;
6622 key[0].dttk_size = 0;
6623 DTRACE_TLS_THRKEY(key[1].dttk_value);
6624 key[1].dttk_size = 0;
6625 v = &vstate->dtvs_tlocals[id];
6626
6627 dvar = dtrace_dynvar(dstate, 2, key,
6628 v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
6629 v->dtdv_type.dtdt_size : sizeof (uint64_t),
6630 regs[rd] ? DTRACE_DYNVAR_ALLOC :
6631 DTRACE_DYNVAR_DEALLOC, mstate, vstate);
6632
6633 /*
6634 * Given that we're storing to thread-local data,
6635 * we need to flush our predicate cache.
6636 */
6637 curthread->t_predcache = 0;
6638
6639 if (dvar == NULL)
6640 break;
6641
6642 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6643 size_t lim;
6644
6645 if (!dtrace_vcanload(
6646 (void *)(uintptr_t)regs[rd],
6647 &v->dtdv_type, &lim, mstate, vstate))
6648 break;
6649
6650 dtrace_vcopy((void *)(uintptr_t)regs[rd],
6651 dvar->dtdv_data, &v->dtdv_type, lim);
6652 } else {
6653 *((uint64_t *)dvar->dtdv_data) = regs[rd];
6654 }
6655
6656 break;
6657 }
6658
6659 case DIF_OP_SRA:
6660 regs[rd] = (int64_t)regs[r1] >> regs[r2];
6661 break;
6662
6663 case DIF_OP_CALL:
6664 dtrace_dif_subr(DIF_INSTR_SUBR(instr), rd,
6665 regs, tupregs, ttop, mstate, state);
6666 break;
6667
6668 case DIF_OP_PUSHTR:
6669 if (ttop == DIF_DTR_NREGS) {
6670 *flags |= CPU_DTRACE_TUPOFLOW;
6671 break;
6672 }
6673
6674 if (r1 == DIF_TYPE_STRING) {
6675 /*
6676 * If this is a string type and the size is 0,
6677 * we'll use the system-wide default string
6678 * size. Note that we are _not_ looking at
6679 * the value of the DTRACEOPT_STRSIZE option;
6680 * had this been set, we would expect to have
6681 * a non-zero size value in the "pushtr".
6682 */
6683 tupregs[ttop].dttk_size =
6684 dtrace_strlen((char *)(uintptr_t)regs[rd],
6685 regs[r2] ? regs[r2] :
6686 dtrace_strsize_default) + 1;
6687 } else {
6688 if (regs[r2] > LONG_MAX) {
6689 *flags |= CPU_DTRACE_ILLOP;
6690 break;
6691 }
6692
6693 tupregs[ttop].dttk_size = regs[r2];
6694 }
6695
6696 tupregs[ttop++].dttk_value = regs[rd];
6697 break;
6698
6699 case DIF_OP_PUSHTV:
6700 if (ttop == DIF_DTR_NREGS) {
6701 *flags |= CPU_DTRACE_TUPOFLOW;
6702 break;
6703 }
6704
6705 tupregs[ttop].dttk_value = regs[rd];
6706 tupregs[ttop++].dttk_size = 0;
6707 break;
6708
6709 case DIF_OP_POPTS:
6710 if (ttop != 0)
6711 ttop--;
6712 break;
6713
6714 case DIF_OP_FLUSHTS:
6715 ttop = 0;
6716 break;
6717
6718 case DIF_OP_LDGAA:
6719 case DIF_OP_LDTAA: {
6720 dtrace_dynvar_t *dvar;
6721 dtrace_key_t *key = tupregs;
6722 uint_t nkeys = ttop;
6723
6724 id = DIF_INSTR_VAR(instr);
6725 ASSERT(id >= DIF_VAR_OTHER_UBASE);
6726 id -= DIF_VAR_OTHER_UBASE;
6727
6728 key[nkeys].dttk_value = (uint64_t)id;
6729 key[nkeys++].dttk_size = 0;
6730
6731 if (DIF_INSTR_OP(instr) == DIF_OP_LDTAA) {
6732 DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
6733 key[nkeys++].dttk_size = 0;
6734 VERIFY(id < vstate->dtvs_ntlocals);
6735 v = &vstate->dtvs_tlocals[id];
6736 } else {
6737 VERIFY(id < vstate->dtvs_nglobals);
6738 v = &vstate->dtvs_globals[id]->dtsv_var;
6739 }
6740
6741 dvar = dtrace_dynvar(dstate, nkeys, key,
6742 v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
6743 v->dtdv_type.dtdt_size : sizeof (uint64_t),
6744 DTRACE_DYNVAR_NOALLOC, mstate, vstate);
6745
6746 if (dvar == NULL) {
6747 regs[rd] = 0;
6748 break;
6749 }
6750
6751 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6752 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
6753 } else {
6754 regs[rd] = *((uint64_t *)dvar->dtdv_data);
6755 }
6756
6757 break;
6758 }
6759
6760 case DIF_OP_STGAA:
6761 case DIF_OP_STTAA: {
6762 dtrace_dynvar_t *dvar;
6763 dtrace_key_t *key = tupregs;
6764 uint_t nkeys = ttop;
6765
6766 id = DIF_INSTR_VAR(instr);
6767 ASSERT(id >= DIF_VAR_OTHER_UBASE);
6768 id -= DIF_VAR_OTHER_UBASE;
6769
6770 key[nkeys].dttk_value = (uint64_t)id;
6771 key[nkeys++].dttk_size = 0;
6772
6773 if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) {
6774 DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
6775 key[nkeys++].dttk_size = 0;
6776 VERIFY(id < vstate->dtvs_ntlocals);
6777 v = &vstate->dtvs_tlocals[id];
6778 } else {
6779 VERIFY(id < vstate->dtvs_nglobals);
6780 v = &vstate->dtvs_globals[id]->dtsv_var;
6781 }
6782
6783 dvar = dtrace_dynvar(dstate, nkeys, key,
6784 v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
6785 v->dtdv_type.dtdt_size : sizeof (uint64_t),
6786 regs[rd] ? DTRACE_DYNVAR_ALLOC :
6787 DTRACE_DYNVAR_DEALLOC, mstate, vstate);
6788
6789 if (dvar == NULL)
6790 break;
6791
6792 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6793 size_t lim;
6794
6795 if (!dtrace_vcanload(
6796 (void *)(uintptr_t)regs[rd], &v->dtdv_type,
6797 &lim, mstate, vstate))
6798 break;
6799
6800 dtrace_vcopy((void *)(uintptr_t)regs[rd],
6801 dvar->dtdv_data, &v->dtdv_type, lim);
6802 } else {
6803 *((uint64_t *)dvar->dtdv_data) = regs[rd];
6804 }
6805
6806 break;
6807 }
6808
6809 case DIF_OP_ALLOCS: {
6810 uintptr_t ptr = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
6811 size_t size = ptr - mstate->dtms_scratch_ptr + regs[r1];
6812
6813 /*
6814 * Rounding up the user allocation size could have
6815 * overflowed large, bogus allocations (like -1ULL) to
6816 * 0.
6817 */
6818 if (size < regs[r1] ||
6819 !DTRACE_INSCRATCH(mstate, size)) {
6820 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
6821 regs[rd] = 0;
6822 break;
6823 }
6824
6825 dtrace_bzero((void *) mstate->dtms_scratch_ptr, size);
6826 mstate->dtms_scratch_ptr += size;
6827 regs[rd] = ptr;
6828 break;
6829 }
6830
6831 case DIF_OP_COPYS:
6832 if (!dtrace_canstore(regs[rd], regs[r2],
6833 mstate, vstate)) {
6834 *flags |= CPU_DTRACE_BADADDR;
6835 *illval = regs[rd];
6836 break;
6837 }
6838
6839 if (!dtrace_canload(regs[r1], regs[r2], mstate, vstate))
6840 break;
6841
6842 dtrace_bcopy((void *)(uintptr_t)regs[r1],
6843 (void *)(uintptr_t)regs[rd], (size_t)regs[r2]);
6844 break;
6845
6846 case DIF_OP_STB:
6847 if (!dtrace_canstore(regs[rd], 1, mstate, vstate)) {
6848 *flags |= CPU_DTRACE_BADADDR;
6849 *illval = regs[rd];
6850 break;
6851 }
6852 *((uint8_t *)(uintptr_t)regs[rd]) = (uint8_t)regs[r1];
6853 break;
6854
6855 case DIF_OP_STH:
6856 if (!dtrace_canstore(regs[rd], 2, mstate, vstate)) {
6857 *flags |= CPU_DTRACE_BADADDR;
6858 *illval = regs[rd];
6859 break;
6860 }
6861 if (regs[rd] & 1) {
6862 *flags |= CPU_DTRACE_BADALIGN;
6863 *illval = regs[rd];
6864 break;
6865 }
6866 *((uint16_t *)(uintptr_t)regs[rd]) = (uint16_t)regs[r1];
6867 break;
6868
6869 case DIF_OP_STW:
6870 if (!dtrace_canstore(regs[rd], 4, mstate, vstate)) {
6871 *flags |= CPU_DTRACE_BADADDR;
6872 *illval = regs[rd];
6873 break;
6874 }
6875 if (regs[rd] & 3) {
6876 *flags |= CPU_DTRACE_BADALIGN;
6877 *illval = regs[rd];
6878 break;
6879 }
6880 *((uint32_t *)(uintptr_t)regs[rd]) = (uint32_t)regs[r1];
6881 break;
6882
6883 case DIF_OP_STX:
6884 if (!dtrace_canstore(regs[rd], 8, mstate, vstate)) {
6885 *flags |= CPU_DTRACE_BADADDR;
6886 *illval = regs[rd];
6887 break;
6888 }
6889 if (regs[rd] & 7) {
6890 *flags |= CPU_DTRACE_BADALIGN;
6891 *illval = regs[rd];
6892 break;
6893 }
6894 *((uint64_t *)(uintptr_t)regs[rd]) = regs[r1];
6895 break;
6896 }
6897 }
6898
6899 if (!(*flags & CPU_DTRACE_FAULT))
6900 return (rval);
6901
6902 mstate->dtms_fltoffs = opc * sizeof (dif_instr_t);
6903 mstate->dtms_present |= DTRACE_MSTATE_FLTOFFS;
6904
6905 return (0);
6906 }
6907
6908 static void
6909 dtrace_action_breakpoint(dtrace_ecb_t *ecb)
6910 {
6911 dtrace_probe_t *probe = ecb->dte_probe;
6912 dtrace_provider_t *prov = probe->dtpr_provider;
6913 char c[DTRACE_FULLNAMELEN + 80], *str;
6914 char *msg = "dtrace: breakpoint action at probe ";
6915 char *ecbmsg = " (ecb ";
6916 uintptr_t val = (uintptr_t)ecb;
6917 int shift = (sizeof (uintptr_t) * NBBY) - 4, i = 0;
6918
6919 if (dtrace_destructive_disallow)
6920 return;
6921
6922 /*
6923 * It's impossible to be taking action on the NULL probe.
6924 */
6925 ASSERT(probe != NULL);
6926
6927 /*
6928 * This is a poor man's (destitute man's?) sprintf(): we want to
6929 * print the provider name, module name, function name and name of
6930 * the probe, along with the hex address of the ECB with the breakpoint
6931 * action -- all of which we must place in the character buffer by
6932 * hand.
6933 */
6934 while (*msg != '\0')
6935 c[i++] = *msg++;
6936
6937 for (str = prov->dtpv_name; *str != '\0'; str++)
6938 c[i++] = *str;
6939 c[i++] = ':';
6940
6941 for (str = probe->dtpr_mod; *str != '\0'; str++)
6942 c[i++] = *str;
6943 c[i++] = ':';
6944
6945 for (str = probe->dtpr_func; *str != '\0'; str++)
6946 c[i++] = *str;
6947 c[i++] = ':';
6948
6949 for (str = probe->dtpr_name; *str != '\0'; str++)
6950 c[i++] = *str;
6951
6952 while (*ecbmsg != '\0')
6953 c[i++] = *ecbmsg++;
6954
6955 while (shift >= 0) {
6956 size_t mask = (size_t)0xf << shift;
6957
6958 if (val >= ((size_t)1 << shift))
6959 c[i++] = "0123456789abcdef"[(val & mask) >> shift];
6960 shift -= 4;
6961 }
6962
6963 c[i++] = ')';
6964 c[i] = '\0';
6965
6966 #ifdef illumos
6967 debug_enter(c);
6968 #else
6969 kdb_enter(KDB_WHY_DTRACE, "breakpoint action");
6970 #endif
6971 }
6972
6973 static void
6974 dtrace_action_panic(dtrace_ecb_t *ecb)
6975 {
6976 dtrace_probe_t *probe = ecb->dte_probe;
6977
6978 /*
6979 * It's impossible to be taking action on the NULL probe.
6980 */
6981 ASSERT(probe != NULL);
6982
6983 if (dtrace_destructive_disallow)
6984 return;
6985
6986 if (dtrace_panicked != NULL)
6987 return;
6988
6989 if (dtrace_casptr(&dtrace_panicked, NULL, curthread) != NULL)
6990 return;
6991
6992 /*
6993 * We won the right to panic. (We want to be sure that only one
6994 * thread calls panic() from dtrace_probe(), and that panic() is
6995 * called exactly once.)
6996 */
6997 dtrace_panic("dtrace: panic action at probe %s:%s:%s:%s (ecb %p)",
6998 probe->dtpr_provider->dtpv_name, probe->dtpr_mod,
6999 probe->dtpr_func, probe->dtpr_name, (void *)ecb);
7000 }
7001
7002 static void
7003 dtrace_action_raise(uint64_t sig)
7004 {
7005 if (dtrace_destructive_disallow)
7006 return;
7007
7008 if (sig >= NSIG) {
7009 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
7010 return;
7011 }
7012
7013 #ifdef illumos
7014 /*
7015 * raise() has a queue depth of 1 -- we ignore all subsequent
7016 * invocations of the raise() action.
7017 */
7018 if (curthread->t_dtrace_sig == 0)
7019 curthread->t_dtrace_sig = (uint8_t)sig;
7020
7021 curthread->t_sig_check = 1;
7022 aston(curthread);
7023 #else
7024 struct proc *p = curproc;
7025 PROC_LOCK(p);
7026 kern_psignal(p, sig);
7027 PROC_UNLOCK(p);
7028 #endif
7029 }
7030
7031 static void
7032 dtrace_action_stop(void)
7033 {
7034 if (dtrace_destructive_disallow)
7035 return;
7036
7037 #ifdef illumos
7038 if (!curthread->t_dtrace_stop) {
7039 curthread->t_dtrace_stop = 1;
7040 curthread->t_sig_check = 1;
7041 aston(curthread);
7042 }
7043 #else
7044 struct proc *p = curproc;
7045 PROC_LOCK(p);
7046 kern_psignal(p, SIGSTOP);
7047 PROC_UNLOCK(p);
7048 #endif
7049 }
7050
7051 static void
7052 dtrace_action_chill(dtrace_mstate_t *mstate, hrtime_t val)
7053 {
7054 hrtime_t now;
7055 volatile uint16_t *flags;
7056 #ifdef illumos
7057 cpu_t *cpu = CPU;
7058 #else
7059 cpu_t *cpu = &solaris_cpu[curcpu];
7060 #endif
7061
7062 if (dtrace_destructive_disallow)
7063 return;
7064
7065 flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags;
7066
7067 now = dtrace_gethrtime();
7068
7069 if (now - cpu->cpu_dtrace_chillmark > dtrace_chill_interval) {
7070 /*
7071 * We need to advance the mark to the current time.
7072 */
7073 cpu->cpu_dtrace_chillmark = now;
7074 cpu->cpu_dtrace_chilled = 0;
7075 }
7076
7077 /*
7078 * Now check to see if the requested chill time would take us over
7079 * the maximum amount of time allowed in the chill interval. (Or
7080 * worse, if the calculation itself induces overflow.)
7081 */
7082 if (cpu->cpu_dtrace_chilled + val > dtrace_chill_max ||
7083 cpu->cpu_dtrace_chilled + val < cpu->cpu_dtrace_chilled) {
7084 *flags |= CPU_DTRACE_ILLOP;
7085 return;
7086 }
7087
7088 while (dtrace_gethrtime() - now < val)
7089 continue;
7090
7091 /*
7092 * Normally, we assure that the value of the variable "timestamp" does
7093 * not change within an ECB. The presence of chill() represents an
7094 * exception to this rule, however.
7095 */
7096 mstate->dtms_present &= ~DTRACE_MSTATE_TIMESTAMP;
7097 cpu->cpu_dtrace_chilled += val;
7098 }
7099
7100 static void
7101 dtrace_action_ustack(dtrace_mstate_t *mstate, dtrace_state_t *state,
7102 uint64_t *buf, uint64_t arg)
7103 {
7104 int nframes = DTRACE_USTACK_NFRAMES(arg);
7105 int strsize = DTRACE_USTACK_STRSIZE(arg);
7106 uint64_t *pcs = &buf[1], *fps;
7107 char *str = (char *)&pcs[nframes];
7108 int size, offs = 0, i, j;
7109 size_t rem;
7110 uintptr_t old = mstate->dtms_scratch_ptr, saved;
7111 uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
7112 char *sym;
7113
7114 /*
7115 * Should be taking a faster path if string space has not been
7116 * allocated.
7117 */
7118 ASSERT(strsize != 0);
7119
7120 /*
7121 * We will first allocate some temporary space for the frame pointers.
7122 */
7123 fps = (uint64_t *)P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
7124 size = (uintptr_t)fps - mstate->dtms_scratch_ptr +
7125 (nframes * sizeof (uint64_t));
7126
7127 if (!DTRACE_INSCRATCH(mstate, size)) {
7128 /*
7129 * Not enough room for our frame pointers -- need to indicate
7130 * that we ran out of scratch space.
7131 */
7132 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
7133 return;
7134 }
7135
7136 mstate->dtms_scratch_ptr += size;
7137 saved = mstate->dtms_scratch_ptr;
7138
7139 /*
7140 * Now get a stack with both program counters and frame pointers.
7141 */
7142 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
7143 dtrace_getufpstack(buf, fps, nframes + 1);
7144 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
7145
7146 /*
7147 * If that faulted, we're cooked.
7148 */
7149 if (*flags & CPU_DTRACE_FAULT)
7150 goto out;
7151
7152 /*
7153 * Now we want to walk up the stack, calling the USTACK helper. For
7154 * each iteration, we restore the scratch pointer.
7155 */
7156 for (i = 0; i < nframes; i++) {
7157 mstate->dtms_scratch_ptr = saved;
7158
7159 if (offs >= strsize)
7160 break;
7161
7162 sym = (char *)(uintptr_t)dtrace_helper(
7163 DTRACE_HELPER_ACTION_USTACK,
7164 mstate, state, pcs[i], fps[i]);
7165
7166 /*
7167 * If we faulted while running the helper, we're going to
7168 * clear the fault and null out the corresponding string.
7169 */
7170 if (*flags & CPU_DTRACE_FAULT) {
7171 *flags &= ~CPU_DTRACE_FAULT;
7172 str[offs++] = '\0';
7173 continue;
7174 }
7175
7176 if (sym == NULL) {
7177 str[offs++] = '\0';
7178 continue;
7179 }
7180
7181 if (!dtrace_strcanload((uintptr_t)sym, strsize, &rem, mstate,
7182 &(state->dts_vstate))) {
7183 str[offs++] = '\0';
7184 continue;
7185 }
7186
7187 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
7188
7189 /*
7190 * Now copy in the string that the helper returned to us.
7191 */
7192 for (j = 0; offs + j < strsize && j < rem; j++) {
7193 if ((str[offs + j] = sym[j]) == '\0')
7194 break;
7195 }
7196
7197 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
7198
7199 offs += j + 1;
7200 }
7201
7202 if (offs >= strsize) {
7203 /*
7204 * If we didn't have room for all of the strings, we don't
7205 * abort processing -- this needn't be a fatal error -- but we
7206 * still want to increment a counter (dts_stkstroverflows) to
7207 * allow this condition to be warned about. (If this is from
7208 * a jstack() action, it is easily tuned via jstackstrsize.)
7209 */
7210 dtrace_error(&state->dts_stkstroverflows);
7211 }
7212
7213 while (offs < strsize)
7214 str[offs++] = '\0';
7215
7216 out:
7217 mstate->dtms_scratch_ptr = old;
7218 }
7219
7220 static void
7221 dtrace_store_by_ref(dtrace_difo_t *dp, caddr_t tomax, size_t size,
7222 size_t *valoffsp, uint64_t *valp, uint64_t end, int intuple, int dtkind)
7223 {
7224 volatile uint16_t *flags;
7225 uint64_t val = *valp;
7226 size_t valoffs = *valoffsp;
7227
7228 flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags;
7229 ASSERT(dtkind == DIF_TF_BYREF || dtkind == DIF_TF_BYUREF);
7230
7231 /*
7232 * If this is a string, we're going to only load until we find the zero
7233 * byte -- after which we'll store zero bytes.
7234 */
7235 if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) {
7236 char c = '\0' + 1;
7237 size_t s;
7238
7239 for (s = 0; s < size; s++) {
7240 if (c != '\0' && dtkind == DIF_TF_BYREF) {
7241 c = dtrace_load8(val++);
7242 } else if (c != '\0' && dtkind == DIF_TF_BYUREF) {
7243 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
7244 c = dtrace_fuword8((void *)(uintptr_t)val++);
7245 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
7246 if (*flags & CPU_DTRACE_FAULT)
7247 break;
7248 }
7249
7250 DTRACE_STORE(uint8_t, tomax, valoffs++, c);
7251
7252 if (c == '\0' && intuple)
7253 break;
7254 }
7255 } else {
7256 uint8_t c;
7257 while (valoffs < end) {
7258 if (dtkind == DIF_TF_BYREF) {
7259 c = dtrace_load8(val++);
7260 } else if (dtkind == DIF_TF_BYUREF) {
7261 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
7262 c = dtrace_fuword8((void *)(uintptr_t)val++);
7263 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
7264 if (*flags & CPU_DTRACE_FAULT)
7265 break;
7266 }
7267
7268 DTRACE_STORE(uint8_t, tomax,
7269 valoffs++, c);
7270 }
7271 }
7272
7273 *valp = val;
7274 *valoffsp = valoffs;
7275 }
7276
7277 /*
7278 * Disables interrupts and sets the per-thread inprobe flag. When DEBUG is
7279 * defined, we also assert that we are not recursing unless the probe ID is an
7280 * error probe.
7281 */
7282 static dtrace_icookie_t
7283 dtrace_probe_enter(dtrace_id_t id)
7284 {
7285 dtrace_icookie_t cookie;
7286
7287 cookie = dtrace_interrupt_disable();
7288
7289 /*
7290 * Unless this is an ERROR probe, we are not allowed to recurse in
7291 * dtrace_probe(). Recursing into DTrace probe usually means that a
7292 * function is instrumented that should not have been instrumented or
7293 * that the ordering guarantee of the records will be violated,
7294 * resulting in unexpected output. If there is an exception to this
7295 * assertion, a new case should be added.
7296 */
7297 ASSERT(curthread->t_dtrace_inprobe == 0 ||
7298 id == dtrace_probeid_error);
7299 curthread->t_dtrace_inprobe = 1;
7300
7301 return (cookie);
7302 }
7303
7304 /*
7305 * Clears the per-thread inprobe flag and enables interrupts.
7306 */
7307 static void
7308 dtrace_probe_exit(dtrace_icookie_t cookie)
7309 {
7310
7311 curthread->t_dtrace_inprobe = 0;
7312 dtrace_interrupt_enable(cookie);
7313 }
7314
7315 /*
7316 * If you're looking for the epicenter of DTrace, you just found it. This
7317 * is the function called by the provider to fire a probe -- from which all
7318 * subsequent probe-context DTrace activity emanates.
7319 */
7320 void
7321 dtrace_probe(dtrace_id_t id, uintptr_t arg0, uintptr_t arg1,
7322 uintptr_t arg2, uintptr_t arg3, uintptr_t arg4)
7323 {
7324 processorid_t cpuid;
7325 dtrace_icookie_t cookie;
7326 dtrace_probe_t *probe;
7327 dtrace_mstate_t mstate;
7328 dtrace_ecb_t *ecb;
7329 dtrace_action_t *act;
7330 intptr_t offs;
7331 size_t size;
7332 int vtime, onintr;
7333 volatile uint16_t *flags;
7334 hrtime_t now;
7335
7336 if (KERNEL_PANICKED())
7337 return;
7338
7339 #ifdef illumos
7340 /*
7341 * Kick out immediately if this CPU is still being born (in which case
7342 * curthread will be set to -1) or the current thread can't allow
7343 * probes in its current context.
7344 */
7345 if (((uintptr_t)curthread & 1) || (curthread->t_flag & T_DONTDTRACE))
7346 return;
7347 #endif
7348
7349 cookie = dtrace_probe_enter(id);
7350 probe = dtrace_probes[id - 1];
7351 cpuid = curcpu;
7352 onintr = CPU_ON_INTR(CPU);
7353
7354 if (!onintr && probe->dtpr_predcache != DTRACE_CACHEIDNONE &&
7355 probe->dtpr_predcache == curthread->t_predcache) {
7356 /*
7357 * We have hit in the predicate cache; we know that
7358 * this predicate would evaluate to be false.
7359 */
7360 dtrace_probe_exit(cookie);
7361 return;
7362 }
7363
7364 #ifdef illumos
7365 if (panic_quiesce) {
7366 #else
7367 if (KERNEL_PANICKED()) {
7368 #endif
7369 /*
7370 * We don't trace anything if we're panicking.
7371 */
7372 dtrace_probe_exit(cookie);
7373 return;
7374 }
7375
7376 now = mstate.dtms_timestamp = dtrace_gethrtime();
7377 mstate.dtms_present = DTRACE_MSTATE_TIMESTAMP;
7378 vtime = dtrace_vtime_references != 0;
7379
7380 if (vtime && curthread->t_dtrace_start)
7381 curthread->t_dtrace_vtime += now - curthread->t_dtrace_start;
7382
7383 mstate.dtms_difo = NULL;
7384 mstate.dtms_probe = probe;
7385 mstate.dtms_strtok = 0;
7386 mstate.dtms_arg[0] = arg0;
7387 mstate.dtms_arg[1] = arg1;
7388 mstate.dtms_arg[2] = arg2;
7389 mstate.dtms_arg[3] = arg3;
7390 mstate.dtms_arg[4] = arg4;
7391
7392 flags = (volatile uint16_t *)&cpu_core[cpuid].cpuc_dtrace_flags;
7393
7394 for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
7395 dtrace_predicate_t *pred = ecb->dte_predicate;
7396 dtrace_state_t *state = ecb->dte_state;
7397 dtrace_buffer_t *buf = &state->dts_buffer[cpuid];
7398 dtrace_buffer_t *aggbuf = &state->dts_aggbuffer[cpuid];
7399 dtrace_vstate_t *vstate = &state->dts_vstate;
7400 dtrace_provider_t *prov = probe->dtpr_provider;
7401 uint64_t tracememsize = 0;
7402 int committed = 0;
7403 caddr_t tomax;
7404
7405 /*
7406 * A little subtlety with the following (seemingly innocuous)
7407 * declaration of the automatic 'val': by looking at the
7408 * code, you might think that it could be declared in the
7409 * action processing loop, below. (That is, it's only used in
7410 * the action processing loop.) However, it must be declared
7411 * out of that scope because in the case of DIF expression
7412 * arguments to aggregating actions, one iteration of the
7413 * action loop will use the last iteration's value.
7414 */
7415 uint64_t val = 0;
7416
7417 mstate.dtms_present = DTRACE_MSTATE_ARGS | DTRACE_MSTATE_PROBE;
7418 mstate.dtms_getf = NULL;
7419
7420 *flags &= ~CPU_DTRACE_ERROR;
7421
7422 if (prov == dtrace_provider) {
7423 /*
7424 * If dtrace itself is the provider of this probe,
7425 * we're only going to continue processing the ECB if
7426 * arg0 (the dtrace_state_t) is equal to the ECB's
7427 * creating state. (This prevents disjoint consumers
7428 * from seeing one another's metaprobes.)
7429 */
7430 if (arg0 != (uint64_t)(uintptr_t)state)
7431 continue;
7432 }
7433
7434 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) {
7435 /*
7436 * We're not currently active. If our provider isn't
7437 * the dtrace pseudo provider, we're not interested.
7438 */
7439 if (prov != dtrace_provider)
7440 continue;
7441
7442 /*
7443 * Now we must further check if we are in the BEGIN
7444 * probe. If we are, we will only continue processing
7445 * if we're still in WARMUP -- if one BEGIN enabling
7446 * has invoked the exit() action, we don't want to
7447 * evaluate subsequent BEGIN enablings.
7448 */
7449 if (probe->dtpr_id == dtrace_probeid_begin &&
7450 state->dts_activity != DTRACE_ACTIVITY_WARMUP) {
7451 ASSERT(state->dts_activity ==
7452 DTRACE_ACTIVITY_DRAINING);
7453 continue;
7454 }
7455 }
7456
7457 if (ecb->dte_cond) {
7458 /*
7459 * If the dte_cond bits indicate that this
7460 * consumer is only allowed to see user-mode firings
7461 * of this probe, call the provider's dtps_usermode()
7462 * entry point to check that the probe was fired
7463 * while in a user context. Skip this ECB if that's
7464 * not the case.
7465 */
7466 if ((ecb->dte_cond & DTRACE_COND_USERMODE) &&
7467 prov->dtpv_pops.dtps_usermode(prov->dtpv_arg,
7468 probe->dtpr_id, probe->dtpr_arg) == 0)
7469 continue;
7470
7471 #ifdef illumos
7472 /*
7473 * This is more subtle than it looks. We have to be
7474 * absolutely certain that CRED() isn't going to
7475 * change out from under us so it's only legit to
7476 * examine that structure if we're in constrained
7477 * situations. Currently, the only times we'll this
7478 * check is if a non-super-user has enabled the
7479 * profile or syscall providers -- providers that
7480 * allow visibility of all processes. For the
7481 * profile case, the check above will ensure that
7482 * we're examining a user context.
7483 */
7484 if (ecb->dte_cond & DTRACE_COND_OWNER) {
7485 cred_t *cr;
7486 cred_t *s_cr =
7487 ecb->dte_state->dts_cred.dcr_cred;
7488 proc_t *proc;
7489
7490 ASSERT(s_cr != NULL);
7491
7492 if ((cr = CRED()) == NULL ||
7493 s_cr->cr_uid != cr->cr_uid ||
7494 s_cr->cr_uid != cr->cr_ruid ||
7495 s_cr->cr_uid != cr->cr_suid ||
7496 s_cr->cr_gid != cr->cr_gid ||
7497 s_cr->cr_gid != cr->cr_rgid ||
7498 s_cr->cr_gid != cr->cr_sgid ||
7499 (proc = ttoproc(curthread)) == NULL ||
7500 (proc->p_flag & SNOCD))
7501 continue;
7502 }
7503
7504 if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) {
7505 cred_t *cr;
7506 cred_t *s_cr =
7507 ecb->dte_state->dts_cred.dcr_cred;
7508
7509 ASSERT(s_cr != NULL);
7510
7511 if ((cr = CRED()) == NULL ||
7512 s_cr->cr_zone->zone_id !=
7513 cr->cr_zone->zone_id)
7514 continue;
7515 }
7516 #endif
7517 }
7518
7519 if (now - state->dts_alive > dtrace_deadman_timeout) {
7520 /*
7521 * We seem to be dead. Unless we (a) have kernel
7522 * destructive permissions (b) have explicitly enabled
7523 * destructive actions and (c) destructive actions have
7524 * not been disabled, we're going to transition into
7525 * the KILLED state, from which no further processing
7526 * on this state will be performed.
7527 */
7528 if (!dtrace_priv_kernel_destructive(state) ||
7529 !state->dts_cred.dcr_destructive ||
7530 dtrace_destructive_disallow) {
7531 void *activity = &state->dts_activity;
7532 dtrace_activity_t curstate;
7533
7534 do {
7535 curstate = state->dts_activity;
7536 } while (dtrace_cas32(activity, curstate,
7537 DTRACE_ACTIVITY_KILLED) != curstate);
7538
7539 continue;
7540 }
7541 }
7542
7543 if ((offs = dtrace_buffer_reserve(buf, ecb->dte_needed,
7544 ecb->dte_alignment, state, &mstate)) < 0)
7545 continue;
7546
7547 tomax = buf->dtb_tomax;
7548 ASSERT(tomax != NULL);
7549
7550 if (ecb->dte_size != 0) {
7551 dtrace_rechdr_t dtrh;
7552 if (!(mstate.dtms_present & DTRACE_MSTATE_TIMESTAMP)) {
7553 mstate.dtms_timestamp = dtrace_gethrtime();
7554 mstate.dtms_present |= DTRACE_MSTATE_TIMESTAMP;
7555 }
7556 ASSERT3U(ecb->dte_size, >=, sizeof (dtrace_rechdr_t));
7557 dtrh.dtrh_epid = ecb->dte_epid;
7558 DTRACE_RECORD_STORE_TIMESTAMP(&dtrh,
7559 mstate.dtms_timestamp);
7560 *((dtrace_rechdr_t *)(tomax + offs)) = dtrh;
7561 }
7562
7563 mstate.dtms_epid = ecb->dte_epid;
7564 mstate.dtms_present |= DTRACE_MSTATE_EPID;
7565
7566 if (state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)
7567 mstate.dtms_access = DTRACE_ACCESS_KERNEL;
7568 else
7569 mstate.dtms_access = 0;
7570
7571 if (pred != NULL) {
7572 dtrace_difo_t *dp = pred->dtp_difo;
7573 uint64_t rval;
7574
7575 rval = dtrace_dif_emulate(dp, &mstate, vstate, state);
7576
7577 if (!(*flags & CPU_DTRACE_ERROR) && !rval) {
7578 dtrace_cacheid_t cid = probe->dtpr_predcache;
7579
7580 if (cid != DTRACE_CACHEIDNONE && !onintr) {
7581 /*
7582 * Update the predicate cache...
7583 */
7584 ASSERT(cid == pred->dtp_cacheid);
7585 curthread->t_predcache = cid;
7586 }
7587
7588 continue;
7589 }
7590 }
7591
7592 for (act = ecb->dte_action; !(*flags & CPU_DTRACE_ERROR) &&
7593 act != NULL; act = act->dta_next) {
7594 size_t valoffs;
7595 dtrace_difo_t *dp;
7596 dtrace_recdesc_t *rec = &act->dta_rec;
7597
7598 size = rec->dtrd_size;
7599 valoffs = offs + rec->dtrd_offset;
7600
7601 if (DTRACEACT_ISAGG(act->dta_kind)) {
7602 uint64_t v = 0xbad;
7603 dtrace_aggregation_t *agg;
7604
7605 agg = (dtrace_aggregation_t *)act;
7606
7607 if ((dp = act->dta_difo) != NULL)
7608 v = dtrace_dif_emulate(dp,
7609 &mstate, vstate, state);
7610
7611 if (*flags & CPU_DTRACE_ERROR)
7612 continue;
7613
7614 /*
7615 * Note that we always pass the expression
7616 * value from the previous iteration of the
7617 * action loop. This value will only be used
7618 * if there is an expression argument to the
7619 * aggregating action, denoted by the
7620 * dtag_hasarg field.
7621 */
7622 dtrace_aggregate(agg, buf,
7623 offs, aggbuf, v, val);
7624 continue;
7625 }
7626
7627 switch (act->dta_kind) {
7628 case DTRACEACT_STOP:
7629 if (dtrace_priv_proc_destructive(state))
7630 dtrace_action_stop();
7631 continue;
7632
7633 case DTRACEACT_BREAKPOINT:
7634 if (dtrace_priv_kernel_destructive(state))
7635 dtrace_action_breakpoint(ecb);
7636 continue;
7637
7638 case DTRACEACT_PANIC:
7639 if (dtrace_priv_kernel_destructive(state))
7640 dtrace_action_panic(ecb);
7641 continue;
7642
7643 case DTRACEACT_STACK:
7644 if (!dtrace_priv_kernel(state))
7645 continue;
7646
7647 dtrace_getpcstack((pc_t *)(tomax + valoffs),
7648 size / sizeof (pc_t), probe->dtpr_aframes,
7649 DTRACE_ANCHORED(probe) ? NULL :
7650 (uint32_t *)arg0);
7651 continue;
7652
7653 case DTRACEACT_JSTACK:
7654 case DTRACEACT_USTACK:
7655 if (!dtrace_priv_proc(state))
7656 continue;
7657
7658 /*
7659 * See comment in DIF_VAR_PID.
7660 */
7661 if (DTRACE_ANCHORED(mstate.dtms_probe) &&
7662 CPU_ON_INTR(CPU)) {
7663 int depth = DTRACE_USTACK_NFRAMES(
7664 rec->dtrd_arg) + 1;
7665
7666 dtrace_bzero((void *)(tomax + valoffs),
7667 DTRACE_USTACK_STRSIZE(rec->dtrd_arg)
7668 + depth * sizeof (uint64_t));
7669
7670 continue;
7671 }
7672
7673 if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0 &&
7674 curproc->p_dtrace_helpers != NULL) {
7675 /*
7676 * This is the slow path -- we have
7677 * allocated string space, and we're
7678 * getting the stack of a process that
7679 * has helpers. Call into a separate
7680 * routine to perform this processing.
7681 */
7682 dtrace_action_ustack(&mstate, state,
7683 (uint64_t *)(tomax + valoffs),
7684 rec->dtrd_arg);
7685 continue;
7686 }
7687
7688 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
7689 dtrace_getupcstack((uint64_t *)
7690 (tomax + valoffs),
7691 DTRACE_USTACK_NFRAMES(rec->dtrd_arg) + 1);
7692 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
7693 continue;
7694
7695 default:
7696 break;
7697 }
7698
7699 dp = act->dta_difo;
7700 ASSERT(dp != NULL);
7701
7702 val = dtrace_dif_emulate(dp, &mstate, vstate, state);
7703
7704 if (*flags & CPU_DTRACE_ERROR)
7705 continue;
7706
7707 switch (act->dta_kind) {
7708 case DTRACEACT_SPECULATE: {
7709 dtrace_rechdr_t *dtrh;
7710
7711 ASSERT(buf == &state->dts_buffer[cpuid]);
7712 buf = dtrace_speculation_buffer(state,
7713 cpuid, val);
7714
7715 if (buf == NULL) {
7716 *flags |= CPU_DTRACE_DROP;
7717 continue;
7718 }
7719
7720 offs = dtrace_buffer_reserve(buf,
7721 ecb->dte_needed, ecb->dte_alignment,
7722 state, NULL);
7723
7724 if (offs < 0) {
7725 *flags |= CPU_DTRACE_DROP;
7726 continue;
7727 }
7728
7729 tomax = buf->dtb_tomax;
7730 ASSERT(tomax != NULL);
7731
7732 if (ecb->dte_size == 0)
7733 continue;
7734
7735 ASSERT3U(ecb->dte_size, >=,
7736 sizeof (dtrace_rechdr_t));
7737 dtrh = ((void *)(tomax + offs));
7738 dtrh->dtrh_epid = ecb->dte_epid;
7739 /*
7740 * When the speculation is committed, all of
7741 * the records in the speculative buffer will
7742 * have their timestamps set to the commit
7743 * time. Until then, it is set to a sentinel
7744 * value, for debugability.
7745 */
7746 DTRACE_RECORD_STORE_TIMESTAMP(dtrh, UINT64_MAX);
7747 continue;
7748 }
7749
7750 case DTRACEACT_PRINTM: {
7751 /*
7752 * printm() assumes that the DIF returns a
7753 * pointer returned by memref(). memref() is a
7754 * subroutine that is used to get around the
7755 * single-valued returns of DIF and is assumed
7756 * to always be allocated in the scratch space.
7757 * Therefore, we need to validate that the
7758 * pointer given to printm() is in the scratch
7759 * space in order to avoid a potential panic.
7760 */
7761 uintptr_t *memref = (uintptr_t *)(uintptr_t) val;
7762
7763 if (!DTRACE_INSCRATCHPTR(&mstate,
7764 (uintptr_t) memref,
7765 sizeof (uintptr_t) + sizeof (size_t))) {
7766 *flags |= CPU_DTRACE_BADADDR;
7767 continue;
7768 }
7769
7770 /* Get the size from the memref. */
7771 size = memref[1];
7772
7773 /*
7774 * Check if the size exceeds the allocated
7775 * buffer size.
7776 */
7777 if (size + sizeof (size_t) >
7778 dp->dtdo_rtype.dtdt_size) {
7779 /* Flag a drop! */
7780 *flags |= CPU_DTRACE_DROP;
7781 continue;
7782 }
7783
7784 /* Store the size in the buffer first. */
7785 DTRACE_STORE(size_t, tomax, valoffs, size);
7786
7787 /*
7788 * Offset the buffer address to the start
7789 * of the data.
7790 */
7791 valoffs += sizeof(size_t);
7792
7793 /*
7794 * Reset to the memory address rather than
7795 * the memref array, then let the BYREF
7796 * code below do the work to store the
7797 * memory data in the buffer.
7798 */
7799 val = memref[0];
7800 break;
7801 }
7802
7803 case DTRACEACT_CHILL:
7804 if (dtrace_priv_kernel_destructive(state))
7805 dtrace_action_chill(&mstate, val);
7806 continue;
7807
7808 case DTRACEACT_RAISE:
7809 if (dtrace_priv_proc_destructive(state))
7810 dtrace_action_raise(val);
7811 continue;
7812
7813 case DTRACEACT_COMMIT:
7814 ASSERT(!committed);
7815
7816 /*
7817 * We need to commit our buffer state.
7818 */
7819 if (ecb->dte_size)
7820 buf->dtb_offset = offs + ecb->dte_size;
7821 buf = &state->dts_buffer[cpuid];
7822 dtrace_speculation_commit(state, cpuid, val);
7823 committed = 1;
7824 continue;
7825
7826 case DTRACEACT_DISCARD:
7827 dtrace_speculation_discard(state, cpuid, val);
7828 continue;
7829
7830 case DTRACEACT_DIFEXPR:
7831 case DTRACEACT_LIBACT:
7832 case DTRACEACT_PRINTF:
7833 case DTRACEACT_PRINTA:
7834 case DTRACEACT_SYSTEM:
7835 case DTRACEACT_FREOPEN:
7836 case DTRACEACT_TRACEMEM:
7837 break;
7838
7839 case DTRACEACT_TRACEMEM_DYNSIZE:
7840 tracememsize = val;
7841 break;
7842
7843 case DTRACEACT_SYM:
7844 case DTRACEACT_MOD:
7845 if (!dtrace_priv_kernel(state))
7846 continue;
7847 break;
7848
7849 case DTRACEACT_USYM:
7850 case DTRACEACT_UMOD:
7851 case DTRACEACT_UADDR: {
7852 #ifdef illumos
7853 struct pid *pid = curthread->t_procp->p_pidp;
7854 #endif
7855
7856 if (!dtrace_priv_proc(state))
7857 continue;
7858
7859 DTRACE_STORE(uint64_t, tomax,
7860 #ifdef illumos
7861 valoffs, (uint64_t)pid->pid_id);
7862 #else
7863 valoffs, (uint64_t) curproc->p_pid);
7864 #endif
7865 DTRACE_STORE(uint64_t, tomax,
7866 valoffs + sizeof (uint64_t), val);
7867
7868 continue;
7869 }
7870
7871 case DTRACEACT_EXIT: {
7872 /*
7873 * For the exit action, we are going to attempt
7874 * to atomically set our activity to be
7875 * draining. If this fails (either because
7876 * another CPU has beat us to the exit action,
7877 * or because our current activity is something
7878 * other than ACTIVE or WARMUP), we will
7879 * continue. This assures that the exit action
7880 * can be successfully recorded at most once
7881 * when we're in the ACTIVE state. If we're
7882 * encountering the exit() action while in
7883 * COOLDOWN, however, we want to honor the new
7884 * status code. (We know that we're the only
7885 * thread in COOLDOWN, so there is no race.)
7886 */
7887 void *activity = &state->dts_activity;
7888 dtrace_activity_t curstate = state->dts_activity;
7889
7890 if (curstate == DTRACE_ACTIVITY_COOLDOWN)
7891 break;
7892
7893 if (curstate != DTRACE_ACTIVITY_WARMUP)
7894 curstate = DTRACE_ACTIVITY_ACTIVE;
7895
7896 if (dtrace_cas32(activity, curstate,
7897 DTRACE_ACTIVITY_DRAINING) != curstate) {
7898 *flags |= CPU_DTRACE_DROP;
7899 continue;
7900 }
7901
7902 break;
7903 }
7904
7905 default:
7906 ASSERT(0);
7907 }
7908
7909 if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF ||
7910 dp->dtdo_rtype.dtdt_flags & DIF_TF_BYUREF) {
7911 uintptr_t end = valoffs + size;
7912
7913 if (tracememsize != 0 &&
7914 valoffs + tracememsize < end) {
7915 end = valoffs + tracememsize;
7916 tracememsize = 0;
7917 }
7918
7919 if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF &&
7920 !dtrace_vcanload((void *)(uintptr_t)val,
7921 &dp->dtdo_rtype, NULL, &mstate, vstate))
7922 continue;
7923
7924 dtrace_store_by_ref(dp, tomax, size, &valoffs,
7925 &val, end, act->dta_intuple,
7926 dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF ?
7927 DIF_TF_BYREF: DIF_TF_BYUREF);
7928 continue;
7929 }
7930
7931 switch (size) {
7932 case 0:
7933 break;
7934
7935 case sizeof (uint8_t):
7936 DTRACE_STORE(uint8_t, tomax, valoffs, val);
7937 break;
7938 case sizeof (uint16_t):
7939 DTRACE_STORE(uint16_t, tomax, valoffs, val);
7940 break;
7941 case sizeof (uint32_t):
7942 DTRACE_STORE(uint32_t, tomax, valoffs, val);
7943 break;
7944 case sizeof (uint64_t):
7945 DTRACE_STORE(uint64_t, tomax, valoffs, val);
7946 break;
7947 default:
7948 /*
7949 * Any other size should have been returned by
7950 * reference, not by value.
7951 */
7952 ASSERT(0);
7953 break;
7954 }
7955 }
7956
7957 if (*flags & CPU_DTRACE_DROP)
7958 continue;
7959
7960 if (*flags & CPU_DTRACE_FAULT) {
7961 int ndx;
7962 dtrace_action_t *err;
7963
7964 buf->dtb_errors++;
7965
7966 if (probe->dtpr_id == dtrace_probeid_error) {
7967 /*
7968 * There's nothing we can do -- we had an
7969 * error on the error probe. We bump an
7970 * error counter to at least indicate that
7971 * this condition happened.
7972 */
7973 dtrace_error(&state->dts_dblerrors);
7974 continue;
7975 }
7976
7977 if (vtime) {
7978 /*
7979 * Before recursing on dtrace_probe(), we
7980 * need to explicitly clear out our start
7981 * time to prevent it from being accumulated
7982 * into t_dtrace_vtime.
7983 */
7984 curthread->t_dtrace_start = 0;
7985 }
7986
7987 /*
7988 * Iterate over the actions to figure out which action
7989 * we were processing when we experienced the error.
7990 * Note that act points _past_ the faulting action; if
7991 * act is ecb->dte_action, the fault was in the
7992 * predicate, if it's ecb->dte_action->dta_next it's
7993 * in action #1, and so on.
7994 */
7995 for (err = ecb->dte_action, ndx = 0;
7996 err != act; err = err->dta_next, ndx++)
7997 continue;
7998
7999 dtrace_probe_error(state, ecb->dte_epid, ndx,
8000 (mstate.dtms_present & DTRACE_MSTATE_FLTOFFS) ?
8001 mstate.dtms_fltoffs : -1, DTRACE_FLAGS2FLT(*flags),
8002 cpu_core[cpuid].cpuc_dtrace_illval);
8003
8004 continue;
8005 }
8006
8007 if (!committed)
8008 buf->dtb_offset = offs + ecb->dte_size;
8009 }
8010
8011 if (vtime)
8012 curthread->t_dtrace_start = dtrace_gethrtime();
8013
8014 dtrace_probe_exit(cookie);
8015 }
8016
8017 /*
8018 * DTrace Probe Hashing Functions
8019 *
8020 * The functions in this section (and indeed, the functions in remaining
8021 * sections) are not _called_ from probe context. (Any exceptions to this are
8022 * marked with a "Note:".) Rather, they are called from elsewhere in the
8023 * DTrace framework to look-up probes in, add probes to and remove probes from
8024 * the DTrace probe hashes. (Each probe is hashed by each element of the
8025 * probe tuple -- allowing for fast lookups, regardless of what was
8026 * specified.)
8027 */
8028 static uint_t
8029 dtrace_hash_str(const char *p)
8030 {
8031 unsigned int g;
8032 uint_t hval = 0;
8033
8034 while (*p) {
8035 hval = (hval << 4) + *p++;
8036 if ((g = (hval & 0xf0000000)) != 0)
8037 hval ^= g >> 24;
8038 hval &= ~g;
8039 }
8040 return (hval);
8041 }
8042
8043 static dtrace_hash_t *
8044 dtrace_hash_create(size_t stroffs, size_t nextoffs, size_t prevoffs)
8045 {
8046 dtrace_hash_t *hash = kmem_zalloc(sizeof (dtrace_hash_t), KM_SLEEP);
8047
8048 hash->dth_stroffs = stroffs;
8049 hash->dth_nextoffs = nextoffs;
8050 hash->dth_prevoffs = prevoffs;
8051
8052 hash->dth_size = 1;
8053 hash->dth_mask = hash->dth_size - 1;
8054
8055 hash->dth_tab = kmem_zalloc(hash->dth_size *
8056 sizeof (dtrace_hashbucket_t *), KM_SLEEP);
8057
8058 return (hash);
8059 }
8060
8061 static void
8062 dtrace_hash_destroy(dtrace_hash_t *hash)
8063 {
8064 #ifdef DEBUG
8065 int i;
8066
8067 for (i = 0; i < hash->dth_size; i++)
8068 ASSERT(hash->dth_tab[i] == NULL);
8069 #endif
8070
8071 kmem_free(hash->dth_tab,
8072 hash->dth_size * sizeof (dtrace_hashbucket_t *));
8073 kmem_free(hash, sizeof (dtrace_hash_t));
8074 }
8075
8076 static void
8077 dtrace_hash_resize(dtrace_hash_t *hash)
8078 {
8079 int size = hash->dth_size, i, ndx;
8080 int new_size = hash->dth_size << 1;
8081 int new_mask = new_size - 1;
8082 dtrace_hashbucket_t **new_tab, *bucket, *next;
8083
8084 ASSERT((new_size & new_mask) == 0);
8085
8086 new_tab = kmem_zalloc(new_size * sizeof (void *), KM_SLEEP);
8087
8088 for (i = 0; i < size; i++) {
8089 for (bucket = hash->dth_tab[i]; bucket != NULL; bucket = next) {
8090 dtrace_probe_t *probe = bucket->dthb_chain;
8091
8092 ASSERT(probe != NULL);
8093 ndx = DTRACE_HASHSTR(hash, probe) & new_mask;
8094
8095 next = bucket->dthb_next;
8096 bucket->dthb_next = new_tab[ndx];
8097 new_tab[ndx] = bucket;
8098 }
8099 }
8100
8101 kmem_free(hash->dth_tab, hash->dth_size * sizeof (void *));
8102 hash->dth_tab = new_tab;
8103 hash->dth_size = new_size;
8104 hash->dth_mask = new_mask;
8105 }
8106
8107 static void
8108 dtrace_hash_add(dtrace_hash_t *hash, dtrace_probe_t *new)
8109 {
8110 int hashval = DTRACE_HASHSTR(hash, new);
8111 int ndx = hashval & hash->dth_mask;
8112 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
8113 dtrace_probe_t **nextp, **prevp;
8114
8115 for (; bucket != NULL; bucket = bucket->dthb_next) {
8116 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, new))
8117 goto add;
8118 }
8119
8120 if ((hash->dth_nbuckets >> 1) > hash->dth_size) {
8121 dtrace_hash_resize(hash);
8122 dtrace_hash_add(hash, new);
8123 return;
8124 }
8125
8126 bucket = kmem_zalloc(sizeof (dtrace_hashbucket_t), KM_SLEEP);
8127 bucket->dthb_next = hash->dth_tab[ndx];
8128 hash->dth_tab[ndx] = bucket;
8129 hash->dth_nbuckets++;
8130
8131 add:
8132 nextp = DTRACE_HASHNEXT(hash, new);
8133 ASSERT(*nextp == NULL && *(DTRACE_HASHPREV(hash, new)) == NULL);
8134 *nextp = bucket->dthb_chain;
8135
8136 if (bucket->dthb_chain != NULL) {
8137 prevp = DTRACE_HASHPREV(hash, bucket->dthb_chain);
8138 ASSERT(*prevp == NULL);
8139 *prevp = new;
8140 }
8141
8142 bucket->dthb_chain = new;
8143 bucket->dthb_len++;
8144 }
8145
8146 static dtrace_probe_t *
8147 dtrace_hash_lookup(dtrace_hash_t *hash, dtrace_probe_t *template)
8148 {
8149 int hashval = DTRACE_HASHSTR(hash, template);
8150 int ndx = hashval & hash->dth_mask;
8151 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
8152
8153 for (; bucket != NULL; bucket = bucket->dthb_next) {
8154 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
8155 return (bucket->dthb_chain);
8156 }
8157
8158 return (NULL);
8159 }
8160
8161 static int
8162 dtrace_hash_collisions(dtrace_hash_t *hash, dtrace_probe_t *template)
8163 {
8164 int hashval = DTRACE_HASHSTR(hash, template);
8165 int ndx = hashval & hash->dth_mask;
8166 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
8167
8168 for (; bucket != NULL; bucket = bucket->dthb_next) {
8169 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
8170 return (bucket->dthb_len);
8171 }
8172
8173 return (0);
8174 }
8175
8176 static void
8177 dtrace_hash_remove(dtrace_hash_t *hash, dtrace_probe_t *probe)
8178 {
8179 int ndx = DTRACE_HASHSTR(hash, probe) & hash->dth_mask;
8180 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
8181
8182 dtrace_probe_t **prevp = DTRACE_HASHPREV(hash, probe);
8183 dtrace_probe_t **nextp = DTRACE_HASHNEXT(hash, probe);
8184
8185 /*
8186 * Find the bucket that we're removing this probe from.
8187 */
8188 for (; bucket != NULL; bucket = bucket->dthb_next) {
8189 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, probe))
8190 break;
8191 }
8192
8193 ASSERT(bucket != NULL);
8194
8195 if (*prevp == NULL) {
8196 if (*nextp == NULL) {
8197 /*
8198 * The removed probe was the only probe on this
8199 * bucket; we need to remove the bucket.
8200 */
8201 dtrace_hashbucket_t *b = hash->dth_tab[ndx];
8202
8203 ASSERT(bucket->dthb_chain == probe);
8204 ASSERT(b != NULL);
8205
8206 if (b == bucket) {
8207 hash->dth_tab[ndx] = bucket->dthb_next;
8208 } else {
8209 while (b->dthb_next != bucket)
8210 b = b->dthb_next;
8211 b->dthb_next = bucket->dthb_next;
8212 }
8213
8214 ASSERT(hash->dth_nbuckets > 0);
8215 hash->dth_nbuckets--;
8216 kmem_free(bucket, sizeof (dtrace_hashbucket_t));
8217 return;
8218 }
8219
8220 bucket->dthb_chain = *nextp;
8221 } else {
8222 *(DTRACE_HASHNEXT(hash, *prevp)) = *nextp;
8223 }
8224
8225 if (*nextp != NULL)
8226 *(DTRACE_HASHPREV(hash, *nextp)) = *prevp;
8227 }
8228
8229 /*
8230 * DTrace Utility Functions
8231 *
8232 * These are random utility functions that are _not_ called from probe context.
8233 */
8234 static int
8235 dtrace_badattr(const dtrace_attribute_t *a)
8236 {
8237 return (a->dtat_name > DTRACE_STABILITY_MAX ||
8238 a->dtat_data > DTRACE_STABILITY_MAX ||
8239 a->dtat_class > DTRACE_CLASS_MAX);
8240 }
8241
8242 /*
8243 * Return a duplicate copy of a string. If the specified string is NULL,
8244 * this function returns a zero-length string.
8245 */
8246 static char *
8247 dtrace_strdup(const char *str)
8248 {
8249 char *new = kmem_zalloc((str != NULL ? strlen(str) : 0) + 1, KM_SLEEP);
8250
8251 if (str != NULL)
8252 (void) strcpy(new, str);
8253
8254 return (new);
8255 }
8256
8257 #define DTRACE_ISALPHA(c) \
8258 (((c) >= 'a' && (c) <= 'z') || ((c) >= 'A' && (c) <= 'Z'))
8259
8260 static int
8261 dtrace_badname(const char *s)
8262 {
8263 char c;
8264
8265 if (s == NULL || (c = *s++) == '\0')
8266 return (0);
8267
8268 if (!DTRACE_ISALPHA(c) && c != '-' && c != '_' && c != '.')
8269 return (1);
8270
8271 while ((c = *s++) != '\0') {
8272 if (!DTRACE_ISALPHA(c) && (c < '0' || c > '9') &&
8273 c != '-' && c != '_' && c != '.' && c != '`')
8274 return (1);
8275 }
8276
8277 return (0);
8278 }
8279
8280 static void
8281 dtrace_cred2priv(cred_t *cr, uint32_t *privp, uid_t *uidp, zoneid_t *zoneidp)
8282 {
8283 uint32_t priv;
8284
8285 #ifdef illumos
8286 if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
8287 /*
8288 * For DTRACE_PRIV_ALL, the uid and zoneid don't matter.
8289 */
8290 priv = DTRACE_PRIV_ALL;
8291 } else {
8292 *uidp = crgetuid(cr);
8293 *zoneidp = crgetzoneid(cr);
8294
8295 priv = 0;
8296 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE))
8297 priv |= DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER;
8298 else if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE))
8299 priv |= DTRACE_PRIV_USER;
8300 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE))
8301 priv |= DTRACE_PRIV_PROC;
8302 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
8303 priv |= DTRACE_PRIV_OWNER;
8304 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
8305 priv |= DTRACE_PRIV_ZONEOWNER;
8306 }
8307 #else
8308 priv = DTRACE_PRIV_ALL;
8309 #endif
8310
8311 *privp = priv;
8312 }
8313
8314 #ifdef DTRACE_ERRDEBUG
8315 static void
8316 dtrace_errdebug(const char *str)
8317 {
8318 int hval = dtrace_hash_str(str) % DTRACE_ERRHASHSZ;
8319 int occupied = 0;
8320
8321 mutex_enter(&dtrace_errlock);
8322 dtrace_errlast = str;
8323 dtrace_errthread = curthread;
8324
8325 while (occupied++ < DTRACE_ERRHASHSZ) {
8326 if (dtrace_errhash[hval].dter_msg == str) {
8327 dtrace_errhash[hval].dter_count++;
8328 goto out;
8329 }
8330
8331 if (dtrace_errhash[hval].dter_msg != NULL) {
8332 hval = (hval + 1) % DTRACE_ERRHASHSZ;
8333 continue;
8334 }
8335
8336 dtrace_errhash[hval].dter_msg = str;
8337 dtrace_errhash[hval].dter_count = 1;
8338 goto out;
8339 }
8340
8341 panic("dtrace: undersized error hash");
8342 out:
8343 mutex_exit(&dtrace_errlock);
8344 }
8345 #endif
8346
8347 /*
8348 * DTrace Matching Functions
8349 *
8350 * These functions are used to match groups of probes, given some elements of
8351 * a probe tuple, or some globbed expressions for elements of a probe tuple.
8352 */
8353 static int
8354 dtrace_match_priv(const dtrace_probe_t *prp, uint32_t priv, uid_t uid,
8355 zoneid_t zoneid)
8356 {
8357 if (priv != DTRACE_PRIV_ALL) {
8358 uint32_t ppriv = prp->dtpr_provider->dtpv_priv.dtpp_flags;
8359 uint32_t match = priv & ppriv;
8360
8361 /*
8362 * No PRIV_DTRACE_* privileges...
8363 */
8364 if ((priv & (DTRACE_PRIV_PROC | DTRACE_PRIV_USER |
8365 DTRACE_PRIV_KERNEL)) == 0)
8366 return (0);
8367
8368 /*
8369 * No matching bits, but there were bits to match...
8370 */
8371 if (match == 0 && ppriv != 0)
8372 return (0);
8373
8374 /*
8375 * Need to have permissions to the process, but don't...
8376 */
8377 if (((ppriv & ~match) & DTRACE_PRIV_OWNER) != 0 &&
8378 uid != prp->dtpr_provider->dtpv_priv.dtpp_uid) {
8379 return (0);
8380 }
8381
8382 /*
8383 * Need to be in the same zone unless we possess the
8384 * privilege to examine all zones.
8385 */
8386 if (((ppriv & ~match) & DTRACE_PRIV_ZONEOWNER) != 0 &&
8387 zoneid != prp->dtpr_provider->dtpv_priv.dtpp_zoneid) {
8388 return (0);
8389 }
8390 }
8391
8392 return (1);
8393 }
8394
8395 /*
8396 * dtrace_match_probe compares a dtrace_probe_t to a pre-compiled key, which
8397 * consists of input pattern strings and an ops-vector to evaluate them.
8398 * This function returns >0 for match, 0 for no match, and <0 for error.
8399 */
8400 static int
8401 dtrace_match_probe(const dtrace_probe_t *prp, const dtrace_probekey_t *pkp,
8402 uint32_t priv, uid_t uid, zoneid_t zoneid)
8403 {
8404 dtrace_provider_t *pvp = prp->dtpr_provider;
8405 int rv;
8406
8407 if (pvp->dtpv_defunct)
8408 return (0);
8409
8410 if ((rv = pkp->dtpk_pmatch(pvp->dtpv_name, pkp->dtpk_prov, 0)) <= 0)
8411 return (rv);
8412
8413 if ((rv = pkp->dtpk_mmatch(prp->dtpr_mod, pkp->dtpk_mod, 0)) <= 0)
8414 return (rv);
8415
8416 if ((rv = pkp->dtpk_fmatch(prp->dtpr_func, pkp->dtpk_func, 0)) <= 0)
8417 return (rv);
8418
8419 if ((rv = pkp->dtpk_nmatch(prp->dtpr_name, pkp->dtpk_name, 0)) <= 0)
8420 return (rv);
8421
8422 if (dtrace_match_priv(prp, priv, uid, zoneid) == 0)
8423 return (0);
8424
8425 return (rv);
8426 }
8427
8428 /*
8429 * dtrace_match_glob() is a safe kernel implementation of the gmatch(3GEN)
8430 * interface for matching a glob pattern 'p' to an input string 's'. Unlike
8431 * libc's version, the kernel version only applies to 8-bit ASCII strings.
8432 * In addition, all of the recursion cases except for '*' matching have been
8433 * unwound. For '*', we still implement recursive evaluation, but a depth
8434 * counter is maintained and matching is aborted if we recurse too deep.
8435 * The function returns 0 if no match, >0 if match, and <0 if recursion error.
8436 */
8437 static int
8438 dtrace_match_glob(const char *s, const char *p, int depth)
8439 {
8440 const char *olds;
8441 char s1, c;
8442 int gs;
8443
8444 if (depth > DTRACE_PROBEKEY_MAXDEPTH)
8445 return (-1);
8446
8447 if (s == NULL)
8448 s = ""; /* treat NULL as empty string */
8449
8450 top:
8451 olds = s;
8452 s1 = *s++;
8453
8454 if (p == NULL)
8455 return (0);
8456
8457 if ((c = *p++) == '\0')
8458 return (s1 == '\0');
8459
8460 switch (c) {
8461 case '[': {
8462 int ok = 0, notflag = 0;
8463 char lc = '\0';
8464
8465 if (s1 == '\0')
8466 return (0);
8467
8468 if (*p == '!') {
8469 notflag = 1;
8470 p++;
8471 }
8472
8473 if ((c = *p++) == '\0')
8474 return (0);
8475
8476 do {
8477 if (c == '-' && lc != '\0' && *p != ']') {
8478 if ((c = *p++) == '\0')
8479 return (0);
8480 if (c == '\\' && (c = *p++) == '\0')
8481 return (0);
8482
8483 if (notflag) {
8484 if (s1 < lc || s1 > c)
8485 ok++;
8486 else
8487 return (0);
8488 } else if (lc <= s1 && s1 <= c)
8489 ok++;
8490
8491 } else if (c == '\\' && (c = *p++) == '\0')
8492 return (0);
8493
8494 lc = c; /* save left-hand 'c' for next iteration */
8495
8496 if (notflag) {
8497 if (s1 != c)
8498 ok++;
8499 else
8500 return (0);
8501 } else if (s1 == c)
8502 ok++;
8503
8504 if ((c = *p++) == '\0')
8505 return (0);
8506
8507 } while (c != ']');
8508
8509 if (ok)
8510 goto top;
8511
8512 return (0);
8513 }
8514
8515 case '\\':
8516 if ((c = *p++) == '\0')
8517 return (0);
8518 /*FALLTHRU*/
8519
8520 default:
8521 if (c != s1)
8522 return (0);
8523 /*FALLTHRU*/
8524
8525 case '?':
8526 if (s1 != '\0')
8527 goto top;
8528 return (0);
8529
8530 case '*':
8531 while (*p == '*')
8532 p++; /* consecutive *'s are identical to a single one */
8533
8534 if (*p == '\0')
8535 return (1);
8536
8537 for (s = olds; *s != '\0'; s++) {
8538 if ((gs = dtrace_match_glob(s, p, depth + 1)) != 0)
8539 return (gs);
8540 }
8541
8542 return (0);
8543 }
8544 }
8545
8546 /*ARGSUSED*/
8547 static int
8548 dtrace_match_string(const char *s, const char *p, int depth)
8549 {
8550 return (s != NULL && strcmp(s, p) == 0);
8551 }
8552
8553 /*ARGSUSED*/
8554 static int
8555 dtrace_match_nul(const char *s, const char *p, int depth)
8556 {
8557 return (1); /* always match the empty pattern */
8558 }
8559
8560 /*ARGSUSED*/
8561 static int
8562 dtrace_match_nonzero(const char *s, const char *p, int depth)
8563 {
8564 return (s != NULL && s[0] != '\0');
8565 }
8566
8567 static int
8568 dtrace_match(const dtrace_probekey_t *pkp, uint32_t priv, uid_t uid,
8569 zoneid_t zoneid, int (*matched)(dtrace_probe_t *, void *), void *arg)
8570 {
8571 dtrace_probe_t template, *probe;
8572 dtrace_hash_t *hash = NULL;
8573 int len, best = INT_MAX, nmatched = 0;
8574 dtrace_id_t i;
8575
8576 ASSERT(MUTEX_HELD(&dtrace_lock));
8577
8578 /*
8579 * If the probe ID is specified in the key, just lookup by ID and
8580 * invoke the match callback once if a matching probe is found.
8581 */
8582 if (pkp->dtpk_id != DTRACE_IDNONE) {
8583 if ((probe = dtrace_probe_lookup_id(pkp->dtpk_id)) != NULL &&
8584 dtrace_match_probe(probe, pkp, priv, uid, zoneid) > 0) {
8585 (void) (*matched)(probe, arg);
8586 nmatched++;
8587 }
8588 return (nmatched);
8589 }
8590
8591 template.dtpr_mod = (char *)pkp->dtpk_mod;
8592 template.dtpr_func = (char *)pkp->dtpk_func;
8593 template.dtpr_name = (char *)pkp->dtpk_name;
8594
8595 /*
8596 * We want to find the most distinct of the module name, function
8597 * name, and name. So for each one that is not a glob pattern or
8598 * empty string, we perform a lookup in the corresponding hash and
8599 * use the hash table with the fewest collisions to do our search.
8600 */
8601 if (pkp->dtpk_mmatch == &dtrace_match_string &&
8602 (len = dtrace_hash_collisions(dtrace_bymod, &template)) < best) {
8603 best = len;
8604 hash = dtrace_bymod;
8605 }
8606
8607 if (pkp->dtpk_fmatch == &dtrace_match_string &&
8608 (len = dtrace_hash_collisions(dtrace_byfunc, &template)) < best) {
8609 best = len;
8610 hash = dtrace_byfunc;
8611 }
8612
8613 if (pkp->dtpk_nmatch == &dtrace_match_string &&
8614 (len = dtrace_hash_collisions(dtrace_byname, &template)) < best) {
8615 best = len;
8616 hash = dtrace_byname;
8617 }
8618
8619 /*
8620 * If we did not select a hash table, iterate over every probe and
8621 * invoke our callback for each one that matches our input probe key.
8622 */
8623 if (hash == NULL) {
8624 for (i = 0; i < dtrace_nprobes; i++) {
8625 if ((probe = dtrace_probes[i]) == NULL ||
8626 dtrace_match_probe(probe, pkp, priv, uid,
8627 zoneid) <= 0)
8628 continue;
8629
8630 nmatched++;
8631
8632 if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT)
8633 break;
8634 }
8635
8636 return (nmatched);
8637 }
8638
8639 /*
8640 * If we selected a hash table, iterate over each probe of the same key
8641 * name and invoke the callback for every probe that matches the other
8642 * attributes of our input probe key.
8643 */
8644 for (probe = dtrace_hash_lookup(hash, &template); probe != NULL;
8645 probe = *(DTRACE_HASHNEXT(hash, probe))) {
8646
8647 if (dtrace_match_probe(probe, pkp, priv, uid, zoneid) <= 0)
8648 continue;
8649
8650 nmatched++;
8651
8652 if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT)
8653 break;
8654 }
8655
8656 return (nmatched);
8657 }
8658
8659 /*
8660 * Return the function pointer dtrace_probecmp() should use to compare the
8661 * specified pattern with a string. For NULL or empty patterns, we select
8662 * dtrace_match_nul(). For glob pattern strings, we use dtrace_match_glob().
8663 * For non-empty non-glob strings, we use dtrace_match_string().
8664 */
8665 static dtrace_probekey_f *
8666 dtrace_probekey_func(const char *p)
8667 {
8668 char c;
8669
8670 if (p == NULL || *p == '\0')
8671 return (&dtrace_match_nul);
8672
8673 while ((c = *p++) != '\0') {
8674 if (c == '[' || c == '?' || c == '*' || c == '\\')
8675 return (&dtrace_match_glob);
8676 }
8677
8678 return (&dtrace_match_string);
8679 }
8680
8681 /*
8682 * Build a probe comparison key for use with dtrace_match_probe() from the
8683 * given probe description. By convention, a null key only matches anchored
8684 * probes: if each field is the empty string, reset dtpk_fmatch to
8685 * dtrace_match_nonzero().
8686 */
8687 static void
8688 dtrace_probekey(dtrace_probedesc_t *pdp, dtrace_probekey_t *pkp)
8689 {
8690 pkp->dtpk_prov = pdp->dtpd_provider;
8691 pkp->dtpk_pmatch = dtrace_probekey_func(pdp->dtpd_provider);
8692
8693 pkp->dtpk_mod = pdp->dtpd_mod;
8694 pkp->dtpk_mmatch = dtrace_probekey_func(pdp->dtpd_mod);
8695
8696 pkp->dtpk_func = pdp->dtpd_func;
8697 pkp->dtpk_fmatch = dtrace_probekey_func(pdp->dtpd_func);
8698
8699 pkp->dtpk_name = pdp->dtpd_name;
8700 pkp->dtpk_nmatch = dtrace_probekey_func(pdp->dtpd_name);
8701
8702 pkp->dtpk_id = pdp->dtpd_id;
8703
8704 if (pkp->dtpk_id == DTRACE_IDNONE &&
8705 pkp->dtpk_pmatch == &dtrace_match_nul &&
8706 pkp->dtpk_mmatch == &dtrace_match_nul &&
8707 pkp->dtpk_fmatch == &dtrace_match_nul &&
8708 pkp->dtpk_nmatch == &dtrace_match_nul)
8709 pkp->dtpk_fmatch = &dtrace_match_nonzero;
8710 }
8711
8712 /*
8713 * DTrace Provider-to-Framework API Functions
8714 *
8715 * These functions implement much of the Provider-to-Framework API, as
8716 * described in <sys/dtrace.h>. The parts of the API not in this section are
8717 * the functions in the API for probe management (found below), and
8718 * dtrace_probe() itself (found above).
8719 */
8720
8721 /*
8722 * Register the calling provider with the DTrace framework. This should
8723 * generally be called by DTrace providers in their attach(9E) entry point.
8724 */
8725 int
8726 dtrace_register(const char *name, const dtrace_pattr_t *pap, uint32_t priv,
8727 cred_t *cr, const dtrace_pops_t *pops, void *arg, dtrace_provider_id_t *idp)
8728 {
8729 dtrace_provider_t *provider;
8730
8731 if (name == NULL || pap == NULL || pops == NULL || idp == NULL) {
8732 cmn_err(CE_WARN, "failed to register provider '%s': invalid "
8733 "arguments", name ? name : "<NULL>");
8734 return (EINVAL);
8735 }
8736
8737 if (name[0] == '\0' || dtrace_badname(name)) {
8738 cmn_err(CE_WARN, "failed to register provider '%s': invalid "
8739 "provider name", name);
8740 return (EINVAL);
8741 }
8742
8743 if ((pops->dtps_provide == NULL && pops->dtps_provide_module == NULL) ||
8744 pops->dtps_enable == NULL || pops->dtps_disable == NULL ||
8745 pops->dtps_destroy == NULL ||
8746 ((pops->dtps_resume == NULL) != (pops->dtps_suspend == NULL))) {
8747 cmn_err(CE_WARN, "failed to register provider '%s': invalid "
8748 "provider ops", name);
8749 return (EINVAL);
8750 }
8751
8752 if (dtrace_badattr(&pap->dtpa_provider) ||
8753 dtrace_badattr(&pap->dtpa_mod) ||
8754 dtrace_badattr(&pap->dtpa_func) ||
8755 dtrace_badattr(&pap->dtpa_name) ||
8756 dtrace_badattr(&pap->dtpa_args)) {
8757 cmn_err(CE_WARN, "failed to register provider '%s': invalid "
8758 "provider attributes", name);
8759 return (EINVAL);
8760 }
8761
8762 if (priv & ~DTRACE_PRIV_ALL) {
8763 cmn_err(CE_WARN, "failed to register provider '%s': invalid "
8764 "privilege attributes", name);
8765 return (EINVAL);
8766 }
8767
8768 if ((priv & DTRACE_PRIV_KERNEL) &&
8769 (priv & (DTRACE_PRIV_USER | DTRACE_PRIV_OWNER)) &&
8770 pops->dtps_usermode == NULL) {
8771 cmn_err(CE_WARN, "failed to register provider '%s': need "
8772 "dtps_usermode() op for given privilege attributes", name);
8773 return (EINVAL);
8774 }
8775
8776 provider = kmem_zalloc(sizeof (dtrace_provider_t), KM_SLEEP);
8777 provider->dtpv_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
8778 (void) strcpy(provider->dtpv_name, name);
8779
8780 provider->dtpv_attr = *pap;
8781 provider->dtpv_priv.dtpp_flags = priv;
8782 if (cr != NULL) {
8783 provider->dtpv_priv.dtpp_uid = crgetuid(cr);
8784 provider->dtpv_priv.dtpp_zoneid = crgetzoneid(cr);
8785 }
8786 provider->dtpv_pops = *pops;
8787
8788 if (pops->dtps_provide == NULL) {
8789 ASSERT(pops->dtps_provide_module != NULL);
8790 provider->dtpv_pops.dtps_provide =
8791 (void (*)(void *, dtrace_probedesc_t *))dtrace_nullop;
8792 }
8793
8794 if (pops->dtps_provide_module == NULL) {
8795 ASSERT(pops->dtps_provide != NULL);
8796 provider->dtpv_pops.dtps_provide_module =
8797 (void (*)(void *, modctl_t *))dtrace_nullop;
8798 }
8799
8800 if (pops->dtps_suspend == NULL) {
8801 ASSERT(pops->dtps_resume == NULL);
8802 provider->dtpv_pops.dtps_suspend =
8803 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
8804 provider->dtpv_pops.dtps_resume =
8805 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
8806 }
8807
8808 provider->dtpv_arg = arg;
8809 *idp = (dtrace_provider_id_t)provider;
8810
8811 if (pops == &dtrace_provider_ops) {
8812 ASSERT(MUTEX_HELD(&dtrace_provider_lock));
8813 ASSERT(MUTEX_HELD(&dtrace_lock));
8814 ASSERT(dtrace_anon.dta_enabling == NULL);
8815
8816 /*
8817 * We make sure that the DTrace provider is at the head of
8818 * the provider chain.
8819 */
8820 provider->dtpv_next = dtrace_provider;
8821 dtrace_provider = provider;
8822 return (0);
8823 }
8824
8825 mutex_enter(&dtrace_provider_lock);
8826 mutex_enter(&dtrace_lock);
8827
8828 /*
8829 * If there is at least one provider registered, we'll add this
8830 * provider after the first provider.
8831 */
8832 if (dtrace_provider != NULL) {
8833 provider->dtpv_next = dtrace_provider->dtpv_next;
8834 dtrace_provider->dtpv_next = provider;
8835 } else {
8836 dtrace_provider = provider;
8837 }
8838
8839 if (dtrace_retained != NULL) {
8840 dtrace_enabling_provide(provider);
8841
8842 /*
8843 * Now we need to call dtrace_enabling_matchall() -- which
8844 * will acquire cpu_lock and dtrace_lock. We therefore need
8845 * to drop all of our locks before calling into it...
8846 */
8847 mutex_exit(&dtrace_lock);
8848 mutex_exit(&dtrace_provider_lock);
8849 dtrace_enabling_matchall();
8850
8851 return (0);
8852 }
8853
8854 mutex_exit(&dtrace_lock);
8855 mutex_exit(&dtrace_provider_lock);
8856
8857 return (0);
8858 }
8859
8860 /*
8861 * Unregister the specified provider from the DTrace framework. This should
8862 * generally be called by DTrace providers in their detach(9E) entry point.
8863 */
8864 int
8865 dtrace_unregister(dtrace_provider_id_t id)
8866 {
8867 dtrace_provider_t *old = (dtrace_provider_t *)id;
8868 dtrace_provider_t *prev = NULL;
8869 int i, self = 0, noreap = 0;
8870 dtrace_probe_t *probe, *first = NULL;
8871
8872 if (old->dtpv_pops.dtps_enable ==
8873 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop) {
8874 /*
8875 * If DTrace itself is the provider, we're called with locks
8876 * already held.
8877 */
8878 ASSERT(old == dtrace_provider);
8879 #ifdef illumos
8880 ASSERT(dtrace_devi != NULL);
8881 #endif
8882 ASSERT(MUTEX_HELD(&dtrace_provider_lock));
8883 ASSERT(MUTEX_HELD(&dtrace_lock));
8884 self = 1;
8885
8886 if (dtrace_provider->dtpv_next != NULL) {
8887 /*
8888 * There's another provider here; return failure.
8889 */
8890 return (EBUSY);
8891 }
8892 } else {
8893 mutex_enter(&dtrace_provider_lock);
8894 #ifdef illumos
8895 mutex_enter(&mod_lock);
8896 #endif
8897 mutex_enter(&dtrace_lock);
8898 }
8899
8900 /*
8901 * If anyone has /dev/dtrace open, or if there are anonymous enabled
8902 * probes, we refuse to let providers slither away, unless this
8903 * provider has already been explicitly invalidated.
8904 */
8905 if (!old->dtpv_defunct &&
8906 (dtrace_opens || (dtrace_anon.dta_state != NULL &&
8907 dtrace_anon.dta_state->dts_necbs > 0))) {
8908 if (!self) {
8909 mutex_exit(&dtrace_lock);
8910 #ifdef illumos
8911 mutex_exit(&mod_lock);
8912 #endif
8913 mutex_exit(&dtrace_provider_lock);
8914 }
8915 return (EBUSY);
8916 }
8917
8918 /*
8919 * Attempt to destroy the probes associated with this provider.
8920 */
8921 for (i = 0; i < dtrace_nprobes; i++) {
8922 if ((probe = dtrace_probes[i]) == NULL)
8923 continue;
8924
8925 if (probe->dtpr_provider != old)
8926 continue;
8927
8928 if (probe->dtpr_ecb == NULL)
8929 continue;
8930
8931 /*
8932 * If we are trying to unregister a defunct provider, and the
8933 * provider was made defunct within the interval dictated by
8934 * dtrace_unregister_defunct_reap, we'll (asynchronously)
8935 * attempt to reap our enablings. To denote that the provider
8936 * should reattempt to unregister itself at some point in the
8937 * future, we will return a differentiable error code (EAGAIN
8938 * instead of EBUSY) in this case.
8939 */
8940 if (dtrace_gethrtime() - old->dtpv_defunct >
8941 dtrace_unregister_defunct_reap)
8942 noreap = 1;
8943
8944 if (!self) {
8945 mutex_exit(&dtrace_lock);
8946 #ifdef illumos
8947 mutex_exit(&mod_lock);
8948 #endif
8949 mutex_exit(&dtrace_provider_lock);
8950 }
8951
8952 if (noreap)
8953 return (EBUSY);
8954
8955 (void) taskq_dispatch(dtrace_taskq,
8956 (task_func_t *)dtrace_enabling_reap, NULL, TQ_SLEEP);
8957
8958 return (EAGAIN);
8959 }
8960
8961 /*
8962 * All of the probes for this provider are disabled; we can safely
8963 * remove all of them from their hash chains and from the probe array.
8964 */
8965 for (i = 0; i < dtrace_nprobes; i++) {
8966 if ((probe = dtrace_probes[i]) == NULL)
8967 continue;
8968
8969 if (probe->dtpr_provider != old)
8970 continue;
8971
8972 dtrace_probes[i] = NULL;
8973
8974 dtrace_hash_remove(dtrace_bymod, probe);
8975 dtrace_hash_remove(dtrace_byfunc, probe);
8976 dtrace_hash_remove(dtrace_byname, probe);
8977
8978 if (first == NULL) {
8979 first = probe;
8980 probe->dtpr_nextmod = NULL;
8981 } else {
8982 probe->dtpr_nextmod = first;
8983 first = probe;
8984 }
8985 }
8986
8987 /*
8988 * The provider's probes have been removed from the hash chains and
8989 * from the probe array. Now issue a dtrace_sync() to be sure that
8990 * everyone has cleared out from any probe array processing.
8991 */
8992 dtrace_sync();
8993
8994 for (probe = first; probe != NULL; probe = first) {
8995 first = probe->dtpr_nextmod;
8996
8997 old->dtpv_pops.dtps_destroy(old->dtpv_arg, probe->dtpr_id,
8998 probe->dtpr_arg);
8999 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
9000 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
9001 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
9002 #ifdef illumos
9003 vmem_free(dtrace_arena, (void *)(uintptr_t)(probe->dtpr_id), 1);
9004 #else
9005 free_unr(dtrace_arena, probe->dtpr_id);
9006 #endif
9007 kmem_free(probe, sizeof (dtrace_probe_t));
9008 }
9009
9010 if ((prev = dtrace_provider) == old) {
9011 #ifdef illumos
9012 ASSERT(self || dtrace_devi == NULL);
9013 ASSERT(old->dtpv_next == NULL || dtrace_devi == NULL);
9014 #endif
9015 dtrace_provider = old->dtpv_next;
9016 } else {
9017 while (prev != NULL && prev->dtpv_next != old)
9018 prev = prev->dtpv_next;
9019
9020 if (prev == NULL) {
9021 panic("attempt to unregister non-existent "
9022 "dtrace provider %p\n", (void *)id);
9023 }
9024
9025 prev->dtpv_next = old->dtpv_next;
9026 }
9027
9028 if (!self) {
9029 mutex_exit(&dtrace_lock);
9030 #ifdef illumos
9031 mutex_exit(&mod_lock);
9032 #endif
9033 mutex_exit(&dtrace_provider_lock);
9034 }
9035
9036 kmem_free(old->dtpv_name, strlen(old->dtpv_name) + 1);
9037 kmem_free(old, sizeof (dtrace_provider_t));
9038
9039 return (0);
9040 }
9041
9042 /*
9043 * Invalidate the specified provider. All subsequent probe lookups for the
9044 * specified provider will fail, but its probes will not be removed.
9045 */
9046 void
9047 dtrace_invalidate(dtrace_provider_id_t id)
9048 {
9049 dtrace_provider_t *pvp = (dtrace_provider_t *)id;
9050
9051 ASSERT(pvp->dtpv_pops.dtps_enable !=
9052 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop);
9053
9054 mutex_enter(&dtrace_provider_lock);
9055 mutex_enter(&dtrace_lock);
9056
9057 pvp->dtpv_defunct = dtrace_gethrtime();
9058
9059 mutex_exit(&dtrace_lock);
9060 mutex_exit(&dtrace_provider_lock);
9061 }
9062
9063 /*
9064 * Indicate whether or not DTrace has attached.
9065 */
9066 int
9067 dtrace_attached(void)
9068 {
9069 /*
9070 * dtrace_provider will be non-NULL iff the DTrace driver has
9071 * attached. (It's non-NULL because DTrace is always itself a
9072 * provider.)
9073 */
9074 return (dtrace_provider != NULL);
9075 }
9076
9077 /*
9078 * Remove all the unenabled probes for the given provider. This function is
9079 * not unlike dtrace_unregister(), except that it doesn't remove the provider
9080 * -- just as many of its associated probes as it can.
9081 */
9082 int
9083 dtrace_condense(dtrace_provider_id_t id)
9084 {
9085 dtrace_provider_t *prov = (dtrace_provider_t *)id;
9086 int i;
9087 dtrace_probe_t *probe;
9088
9089 /*
9090 * Make sure this isn't the dtrace provider itself.
9091 */
9092 ASSERT(prov->dtpv_pops.dtps_enable !=
9093 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop);
9094
9095 mutex_enter(&dtrace_provider_lock);
9096 mutex_enter(&dtrace_lock);
9097
9098 /*
9099 * Attempt to destroy the probes associated with this provider.
9100 */
9101 for (i = 0; i < dtrace_nprobes; i++) {
9102 if ((probe = dtrace_probes[i]) == NULL)
9103 continue;
9104
9105 if (probe->dtpr_provider != prov)
9106 continue;
9107
9108 if (probe->dtpr_ecb != NULL)
9109 continue;
9110
9111 dtrace_probes[i] = NULL;
9112
9113 dtrace_hash_remove(dtrace_bymod, probe);
9114 dtrace_hash_remove(dtrace_byfunc, probe);
9115 dtrace_hash_remove(dtrace_byname, probe);
9116
9117 prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, i + 1,
9118 probe->dtpr_arg);
9119 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
9120 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
9121 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
9122 kmem_free(probe, sizeof (dtrace_probe_t));
9123 #ifdef illumos
9124 vmem_free(dtrace_arena, (void *)((uintptr_t)i + 1), 1);
9125 #else
9126 free_unr(dtrace_arena, i + 1);
9127 #endif
9128 }
9129
9130 mutex_exit(&dtrace_lock);
9131 mutex_exit(&dtrace_provider_lock);
9132
9133 return (0);
9134 }
9135
9136 /*
9137 * DTrace Probe Management Functions
9138 *
9139 * The functions in this section perform the DTrace probe management,
9140 * including functions to create probes, look-up probes, and call into the
9141 * providers to request that probes be provided. Some of these functions are
9142 * in the Provider-to-Framework API; these functions can be identified by the
9143 * fact that they are not declared "static".
9144 */
9145
9146 /*
9147 * Create a probe with the specified module name, function name, and name.
9148 */
9149 dtrace_id_t
9150 dtrace_probe_create(dtrace_provider_id_t prov, const char *mod,
9151 const char *func, const char *name, int aframes, void *arg)
9152 {
9153 dtrace_probe_t *probe, **probes;
9154 dtrace_provider_t *provider = (dtrace_provider_t *)prov;
9155 dtrace_id_t id;
9156
9157 if (provider == dtrace_provider) {
9158 ASSERT(MUTEX_HELD(&dtrace_lock));
9159 } else {
9160 mutex_enter(&dtrace_lock);
9161 }
9162
9163 #ifdef illumos
9164 id = (dtrace_id_t)(uintptr_t)vmem_alloc(dtrace_arena, 1,
9165 VM_BESTFIT | VM_SLEEP);
9166 #else
9167 id = alloc_unr(dtrace_arena);
9168 #endif
9169 probe = kmem_zalloc(sizeof (dtrace_probe_t), KM_SLEEP);
9170
9171 probe->dtpr_id = id;
9172 probe->dtpr_gen = dtrace_probegen++;
9173 probe->dtpr_mod = dtrace_strdup(mod);
9174 probe->dtpr_func = dtrace_strdup(func);
9175 probe->dtpr_name = dtrace_strdup(name);
9176 probe->dtpr_arg = arg;
9177 probe->dtpr_aframes = aframes;
9178 probe->dtpr_provider = provider;
9179
9180 dtrace_hash_add(dtrace_bymod, probe);
9181 dtrace_hash_add(dtrace_byfunc, probe);
9182 dtrace_hash_add(dtrace_byname, probe);
9183
9184 if (id - 1 >= dtrace_nprobes) {
9185 size_t osize = dtrace_nprobes * sizeof (dtrace_probe_t *);
9186 size_t nsize = osize << 1;
9187
9188 if (nsize == 0) {
9189 ASSERT(osize == 0);
9190 ASSERT(dtrace_probes == NULL);
9191 nsize = sizeof (dtrace_probe_t *);
9192 }
9193
9194 probes = kmem_zalloc(nsize, KM_SLEEP);
9195
9196 if (dtrace_probes == NULL) {
9197 ASSERT(osize == 0);
9198 dtrace_probes = probes;
9199 dtrace_nprobes = 1;
9200 } else {
9201 dtrace_probe_t **oprobes = dtrace_probes;
9202
9203 bcopy(oprobes, probes, osize);
9204 dtrace_membar_producer();
9205 dtrace_probes = probes;
9206
9207 dtrace_sync();
9208
9209 /*
9210 * All CPUs are now seeing the new probes array; we can
9211 * safely free the old array.
9212 */
9213 kmem_free(oprobes, osize);
9214 dtrace_nprobes <<= 1;
9215 }
9216
9217 ASSERT(id - 1 < dtrace_nprobes);
9218 }
9219
9220 ASSERT(dtrace_probes[id - 1] == NULL);
9221 dtrace_probes[id - 1] = probe;
9222
9223 if (provider != dtrace_provider)
9224 mutex_exit(&dtrace_lock);
9225
9226 return (id);
9227 }
9228
9229 static dtrace_probe_t *
9230 dtrace_probe_lookup_id(dtrace_id_t id)
9231 {
9232 ASSERT(MUTEX_HELD(&dtrace_lock));
9233
9234 if (id == 0 || id > dtrace_nprobes)
9235 return (NULL);
9236
9237 return (dtrace_probes[id - 1]);
9238 }
9239
9240 static int
9241 dtrace_probe_lookup_match(dtrace_probe_t *probe, void *arg)
9242 {
9243 *((dtrace_id_t *)arg) = probe->dtpr_id;
9244
9245 return (DTRACE_MATCH_DONE);
9246 }
9247
9248 /*
9249 * Look up a probe based on provider and one or more of module name, function
9250 * name and probe name.
9251 */
9252 dtrace_id_t
9253 dtrace_probe_lookup(dtrace_provider_id_t prid, char *mod,
9254 char *func, char *name)
9255 {
9256 dtrace_probekey_t pkey;
9257 dtrace_id_t id;
9258 int match;
9259
9260 pkey.dtpk_prov = ((dtrace_provider_t *)prid)->dtpv_name;
9261 pkey.dtpk_pmatch = &dtrace_match_string;
9262 pkey.dtpk_mod = mod;
9263 pkey.dtpk_mmatch = mod ? &dtrace_match_string : &dtrace_match_nul;
9264 pkey.dtpk_func = func;
9265 pkey.dtpk_fmatch = func ? &dtrace_match_string : &dtrace_match_nul;
9266 pkey.dtpk_name = name;
9267 pkey.dtpk_nmatch = name ? &dtrace_match_string : &dtrace_match_nul;
9268 pkey.dtpk_id = DTRACE_IDNONE;
9269
9270 mutex_enter(&dtrace_lock);
9271 match = dtrace_match(&pkey, DTRACE_PRIV_ALL, 0, 0,
9272 dtrace_probe_lookup_match, &id);
9273 mutex_exit(&dtrace_lock);
9274
9275 ASSERT(match == 1 || match == 0);
9276 return (match ? id : 0);
9277 }
9278
9279 /*
9280 * Returns the probe argument associated with the specified probe.
9281 */
9282 void *
9283 dtrace_probe_arg(dtrace_provider_id_t id, dtrace_id_t pid)
9284 {
9285 dtrace_probe_t *probe;
9286 void *rval = NULL;
9287
9288 mutex_enter(&dtrace_lock);
9289
9290 if ((probe = dtrace_probe_lookup_id(pid)) != NULL &&
9291 probe->dtpr_provider == (dtrace_provider_t *)id)
9292 rval = probe->dtpr_arg;
9293
9294 mutex_exit(&dtrace_lock);
9295
9296 return (rval);
9297 }
9298
9299 /*
9300 * Copy a probe into a probe description.
9301 */
9302 static void
9303 dtrace_probe_description(const dtrace_probe_t *prp, dtrace_probedesc_t *pdp)
9304 {
9305 bzero(pdp, sizeof (dtrace_probedesc_t));
9306 pdp->dtpd_id = prp->dtpr_id;
9307
9308 (void) strncpy(pdp->dtpd_provider,
9309 prp->dtpr_provider->dtpv_name, DTRACE_PROVNAMELEN - 1);
9310
9311 (void) strncpy(pdp->dtpd_mod, prp->dtpr_mod, DTRACE_MODNAMELEN - 1);
9312 (void) strncpy(pdp->dtpd_func, prp->dtpr_func, DTRACE_FUNCNAMELEN - 1);
9313 (void) strncpy(pdp->dtpd_name, prp->dtpr_name, DTRACE_NAMELEN - 1);
9314 }
9315
9316 /*
9317 * Called to indicate that a probe -- or probes -- should be provided by a
9318 * specfied provider. If the specified description is NULL, the provider will
9319 * be told to provide all of its probes. (This is done whenever a new
9320 * consumer comes along, or whenever a retained enabling is to be matched.) If
9321 * the specified description is non-NULL, the provider is given the
9322 * opportunity to dynamically provide the specified probe, allowing providers
9323 * to support the creation of probes on-the-fly. (So-called _autocreated_
9324 * probes.) If the provider is NULL, the operations will be applied to all
9325 * providers; if the provider is non-NULL the operations will only be applied
9326 * to the specified provider. The dtrace_provider_lock must be held, and the
9327 * dtrace_lock must _not_ be held -- the provider's dtps_provide() operation
9328 * will need to grab the dtrace_lock when it reenters the framework through
9329 * dtrace_probe_lookup(), dtrace_probe_create(), etc.
9330 */
9331 static void
9332 dtrace_probe_provide(dtrace_probedesc_t *desc, dtrace_provider_t *prv)
9333 {
9334 #ifdef illumos
9335 modctl_t *ctl;
9336 #endif
9337 int all = 0;
9338
9339 ASSERT(MUTEX_HELD(&dtrace_provider_lock));
9340
9341 if (prv == NULL) {
9342 all = 1;
9343 prv = dtrace_provider;
9344 }
9345
9346 do {
9347 /*
9348 * First, call the blanket provide operation.
9349 */
9350 prv->dtpv_pops.dtps_provide(prv->dtpv_arg, desc);
9351
9352 #ifdef illumos
9353 /*
9354 * Now call the per-module provide operation. We will grab
9355 * mod_lock to prevent the list from being modified. Note
9356 * that this also prevents the mod_busy bits from changing.
9357 * (mod_busy can only be changed with mod_lock held.)
9358 */
9359 mutex_enter(&mod_lock);
9360
9361 ctl = &modules;
9362 do {
9363 if (ctl->mod_busy || ctl->mod_mp == NULL)
9364 continue;
9365
9366 prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
9367
9368 } while ((ctl = ctl->mod_next) != &modules);
9369
9370 mutex_exit(&mod_lock);
9371 #endif
9372 } while (all && (prv = prv->dtpv_next) != NULL);
9373 }
9374
9375 #ifdef illumos
9376 /*
9377 * Iterate over each probe, and call the Framework-to-Provider API function
9378 * denoted by offs.
9379 */
9380 static void
9381 dtrace_probe_foreach(uintptr_t offs)
9382 {
9383 dtrace_provider_t *prov;
9384 void (*func)(void *, dtrace_id_t, void *);
9385 dtrace_probe_t *probe;
9386 dtrace_icookie_t cookie;
9387 int i;
9388
9389 /*
9390 * We disable interrupts to walk through the probe array. This is
9391 * safe -- the dtrace_sync() in dtrace_unregister() assures that we
9392 * won't see stale data.
9393 */
9394 cookie = dtrace_interrupt_disable();
9395
9396 for (i = 0; i < dtrace_nprobes; i++) {
9397 if ((probe = dtrace_probes[i]) == NULL)
9398 continue;
9399
9400 if (probe->dtpr_ecb == NULL) {
9401 /*
9402 * This probe isn't enabled -- don't call the function.
9403 */
9404 continue;
9405 }
9406
9407 prov = probe->dtpr_provider;
9408 func = *((void(**)(void *, dtrace_id_t, void *))
9409 ((uintptr_t)&prov->dtpv_pops + offs));
9410
9411 func(prov->dtpv_arg, i + 1, probe->dtpr_arg);
9412 }
9413
9414 dtrace_interrupt_enable(cookie);
9415 }
9416 #endif
9417
9418 static int
9419 dtrace_probe_enable(dtrace_probedesc_t *desc, dtrace_enabling_t *enab)
9420 {
9421 dtrace_probekey_t pkey;
9422 uint32_t priv;
9423 uid_t uid;
9424 zoneid_t zoneid;
9425
9426 ASSERT(MUTEX_HELD(&dtrace_lock));
9427 dtrace_ecb_create_cache = NULL;
9428
9429 if (desc == NULL) {
9430 /*
9431 * If we're passed a NULL description, we're being asked to
9432 * create an ECB with a NULL probe.
9433 */
9434 (void) dtrace_ecb_create_enable(NULL, enab);
9435 return (0);
9436 }
9437
9438 dtrace_probekey(desc, &pkey);
9439 dtrace_cred2priv(enab->dten_vstate->dtvs_state->dts_cred.dcr_cred,
9440 &priv, &uid, &zoneid);
9441
9442 return (dtrace_match(&pkey, priv, uid, zoneid, dtrace_ecb_create_enable,
9443 enab));
9444 }
9445
9446 /*
9447 * DTrace Helper Provider Functions
9448 */
9449 static void
9450 dtrace_dofattr2attr(dtrace_attribute_t *attr, const dof_attr_t dofattr)
9451 {
9452 attr->dtat_name = DOF_ATTR_NAME(dofattr);
9453 attr->dtat_data = DOF_ATTR_DATA(dofattr);
9454 attr->dtat_class = DOF_ATTR_CLASS(dofattr);
9455 }
9456
9457 static void
9458 dtrace_dofprov2hprov(dtrace_helper_provdesc_t *hprov,
9459 const dof_provider_t *dofprov, char *strtab)
9460 {
9461 hprov->dthpv_provname = strtab + dofprov->dofpv_name;
9462 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_provider,
9463 dofprov->dofpv_provattr);
9464 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_mod,
9465 dofprov->dofpv_modattr);
9466 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_func,
9467 dofprov->dofpv_funcattr);
9468 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_name,
9469 dofprov->dofpv_nameattr);
9470 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_args,
9471 dofprov->dofpv_argsattr);
9472 }
9473
9474 static void
9475 dtrace_helper_provide_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
9476 {
9477 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
9478 dof_hdr_t *dof = (dof_hdr_t *)daddr;
9479 dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
9480 dof_provider_t *provider;
9481 dof_probe_t *probe;
9482 uint32_t *off, *enoff;
9483 uint8_t *arg;
9484 char *strtab;
9485 uint_t i, nprobes;
9486 dtrace_helper_provdesc_t dhpv;
9487 dtrace_helper_probedesc_t dhpb;
9488 dtrace_meta_t *meta = dtrace_meta_pid;
9489 dtrace_mops_t *mops = &meta->dtm_mops;
9490 void *parg;
9491
9492 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
9493 str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
9494 provider->dofpv_strtab * dof->dofh_secsize);
9495 prb_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
9496 provider->dofpv_probes * dof->dofh_secsize);
9497 arg_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
9498 provider->dofpv_prargs * dof->dofh_secsize);
9499 off_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
9500 provider->dofpv_proffs * dof->dofh_secsize);
9501
9502 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
9503 off = (uint32_t *)(uintptr_t)(daddr + off_sec->dofs_offset);
9504 arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
9505 enoff = NULL;
9506
9507 /*
9508 * See dtrace_helper_provider_validate().
9509 */
9510 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
9511 provider->dofpv_prenoffs != DOF_SECT_NONE) {
9512 enoff_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
9513 provider->dofpv_prenoffs * dof->dofh_secsize);
9514 enoff = (uint32_t *)(uintptr_t)(daddr + enoff_sec->dofs_offset);
9515 }
9516
9517 nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
9518
9519 /*
9520 * Create the provider.
9521 */
9522 dtrace_dofprov2hprov(&dhpv, provider, strtab);
9523
9524 if ((parg = mops->dtms_provide_pid(meta->dtm_arg, &dhpv, pid)) == NULL)
9525 return;
9526
9527 meta->dtm_count++;
9528
9529 /*
9530 * Create the probes.
9531 */
9532 for (i = 0; i < nprobes; i++) {
9533 probe = (dof_probe_t *)(uintptr_t)(daddr +
9534 prb_sec->dofs_offset + i * prb_sec->dofs_entsize);
9535
9536 /* See the check in dtrace_helper_provider_validate(). */
9537 if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN)
9538 continue;
9539
9540 dhpb.dthpb_mod = dhp->dofhp_mod;
9541 dhpb.dthpb_func = strtab + probe->dofpr_func;
9542 dhpb.dthpb_name = strtab + probe->dofpr_name;
9543 dhpb.dthpb_base = probe->dofpr_addr;
9544 dhpb.dthpb_offs = off + probe->dofpr_offidx;
9545 dhpb.dthpb_noffs = probe->dofpr_noffs;
9546 if (enoff != NULL) {
9547 dhpb.dthpb_enoffs = enoff + probe->dofpr_enoffidx;
9548 dhpb.dthpb_nenoffs = probe->dofpr_nenoffs;
9549 } else {
9550 dhpb.dthpb_enoffs = NULL;
9551 dhpb.dthpb_nenoffs = 0;
9552 }
9553 dhpb.dthpb_args = arg + probe->dofpr_argidx;
9554 dhpb.dthpb_nargc = probe->dofpr_nargc;
9555 dhpb.dthpb_xargc = probe->dofpr_xargc;
9556 dhpb.dthpb_ntypes = strtab + probe->dofpr_nargv;
9557 dhpb.dthpb_xtypes = strtab + probe->dofpr_xargv;
9558
9559 mops->dtms_create_probe(meta->dtm_arg, parg, &dhpb);
9560 }
9561 }
9562
9563 static void
9564 dtrace_helper_provide(dof_helper_t *dhp, pid_t pid)
9565 {
9566 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
9567 dof_hdr_t *dof = (dof_hdr_t *)daddr;
9568 int i;
9569
9570 ASSERT(MUTEX_HELD(&dtrace_meta_lock));
9571
9572 for (i = 0; i < dof->dofh_secnum; i++) {
9573 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
9574 dof->dofh_secoff + i * dof->dofh_secsize);
9575
9576 if (sec->dofs_type != DOF_SECT_PROVIDER)
9577 continue;
9578
9579 dtrace_helper_provide_one(dhp, sec, pid);
9580 }
9581
9582 /*
9583 * We may have just created probes, so we must now rematch against
9584 * any retained enablings. Note that this call will acquire both
9585 * cpu_lock and dtrace_lock; the fact that we are holding
9586 * dtrace_meta_lock now is what defines the ordering with respect to
9587 * these three locks.
9588 */
9589 dtrace_enabling_matchall();
9590 }
9591
9592 static void
9593 dtrace_helper_provider_remove_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
9594 {
9595 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
9596 dof_hdr_t *dof = (dof_hdr_t *)daddr;
9597 dof_sec_t *str_sec;
9598 dof_provider_t *provider;
9599 char *strtab;
9600 dtrace_helper_provdesc_t dhpv;
9601 dtrace_meta_t *meta = dtrace_meta_pid;
9602 dtrace_mops_t *mops = &meta->dtm_mops;
9603
9604 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
9605 str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
9606 provider->dofpv_strtab * dof->dofh_secsize);
9607
9608 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
9609
9610 /*
9611 * Create the provider.
9612 */
9613 dtrace_dofprov2hprov(&dhpv, provider, strtab);
9614
9615 mops->dtms_remove_pid(meta->dtm_arg, &dhpv, pid);
9616
9617 meta->dtm_count--;
9618 }
9619
9620 static void
9621 dtrace_helper_provider_remove(dof_helper_t *dhp, pid_t pid)
9622 {
9623 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
9624 dof_hdr_t *dof = (dof_hdr_t *)daddr;
9625 int i;
9626
9627 ASSERT(MUTEX_HELD(&dtrace_meta_lock));
9628
9629 for (i = 0; i < dof->dofh_secnum; i++) {
9630 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
9631 dof->dofh_secoff + i * dof->dofh_secsize);
9632
9633 if (sec->dofs_type != DOF_SECT_PROVIDER)
9634 continue;
9635
9636 dtrace_helper_provider_remove_one(dhp, sec, pid);
9637 }
9638 }
9639
9640 /*
9641 * DTrace Meta Provider-to-Framework API Functions
9642 *
9643 * These functions implement the Meta Provider-to-Framework API, as described
9644 * in <sys/dtrace.h>.
9645 */
9646 int
9647 dtrace_meta_register(const char *name, const dtrace_mops_t *mops, void *arg,
9648 dtrace_meta_provider_id_t *idp)
9649 {
9650 dtrace_meta_t *meta;
9651 dtrace_helpers_t *help, *next;
9652 int i;
9653
9654 *idp = DTRACE_METAPROVNONE;
9655
9656 /*
9657 * We strictly don't need the name, but we hold onto it for
9658 * debuggability. All hail error queues!
9659 */
9660 if (name == NULL) {
9661 cmn_err(CE_WARN, "failed to register meta-provider: "
9662 "invalid name");
9663 return (EINVAL);
9664 }
9665
9666 if (mops == NULL ||
9667 mops->dtms_create_probe == NULL ||
9668 mops->dtms_provide_pid == NULL ||
9669 mops->dtms_remove_pid == NULL) {
9670 cmn_err(CE_WARN, "failed to register meta-register %s: "
9671 "invalid ops", name);
9672 return (EINVAL);
9673 }
9674
9675 meta = kmem_zalloc(sizeof (dtrace_meta_t), KM_SLEEP);
9676 meta->dtm_mops = *mops;
9677 meta->dtm_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
9678 (void) strcpy(meta->dtm_name, name);
9679 meta->dtm_arg = arg;
9680
9681 mutex_enter(&dtrace_meta_lock);
9682 mutex_enter(&dtrace_lock);
9683
9684 if (dtrace_meta_pid != NULL) {
9685 mutex_exit(&dtrace_lock);
9686 mutex_exit(&dtrace_meta_lock);
9687 cmn_err(CE_WARN, "failed to register meta-register %s: "
9688 "user-land meta-provider exists", name);
9689 kmem_free(meta->dtm_name, strlen(meta->dtm_name) + 1);
9690 kmem_free(meta, sizeof (dtrace_meta_t));
9691 return (EINVAL);
9692 }
9693
9694 dtrace_meta_pid = meta;
9695 *idp = (dtrace_meta_provider_id_t)meta;
9696
9697 /*
9698 * If there are providers and probes ready to go, pass them
9699 * off to the new meta provider now.
9700 */
9701
9702 help = dtrace_deferred_pid;
9703 dtrace_deferred_pid = NULL;
9704
9705 mutex_exit(&dtrace_lock);
9706
9707 while (help != NULL) {
9708 for (i = 0; i < help->dthps_nprovs; i++) {
9709 dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
9710 help->dthps_pid);
9711 }
9712
9713 next = help->dthps_next;
9714 help->dthps_next = NULL;
9715 help->dthps_prev = NULL;
9716 help->dthps_deferred = 0;
9717 help = next;
9718 }
9719
9720 mutex_exit(&dtrace_meta_lock);
9721
9722 return (0);
9723 }
9724
9725 int
9726 dtrace_meta_unregister(dtrace_meta_provider_id_t id)
9727 {
9728 dtrace_meta_t **pp, *old = (dtrace_meta_t *)id;
9729
9730 mutex_enter(&dtrace_meta_lock);
9731 mutex_enter(&dtrace_lock);
9732
9733 if (old == dtrace_meta_pid) {
9734 pp = &dtrace_meta_pid;
9735 } else {
9736 panic("attempt to unregister non-existent "
9737 "dtrace meta-provider %p\n", (void *)old);
9738 }
9739
9740 if (old->dtm_count != 0) {
9741 mutex_exit(&dtrace_lock);
9742 mutex_exit(&dtrace_meta_lock);
9743 return (EBUSY);
9744 }
9745
9746 *pp = NULL;
9747
9748 mutex_exit(&dtrace_lock);
9749 mutex_exit(&dtrace_meta_lock);
9750
9751 kmem_free(old->dtm_name, strlen(old->dtm_name) + 1);
9752 kmem_free(old, sizeof (dtrace_meta_t));
9753
9754 return (0);
9755 }
9756
9757
9758 /*
9759 * DTrace DIF Object Functions
9760 */
9761 static int
9762 dtrace_difo_err(uint_t pc, const char *format, ...)
9763 {
9764 if (dtrace_err_verbose) {
9765 va_list alist;
9766
9767 (void) uprintf("dtrace DIF object error: [%u]: ", pc);
9768 va_start(alist, format);
9769 (void) vuprintf(format, alist);
9770 va_end(alist);
9771 }
9772
9773 #ifdef DTRACE_ERRDEBUG
9774 dtrace_errdebug(format);
9775 #endif
9776 return (1);
9777 }
9778
9779 /*
9780 * Validate a DTrace DIF object by checking the IR instructions. The following
9781 * rules are currently enforced by dtrace_difo_validate():
9782 *
9783 * 1. Each instruction must have a valid opcode
9784 * 2. Each register, string, variable, or subroutine reference must be valid
9785 * 3. No instruction can modify register %r0 (must be zero)
9786 * 4. All instruction reserved bits must be set to zero
9787 * 5. The last instruction must be a "ret" instruction
9788 * 6. All branch targets must reference a valid instruction _after_ the branch
9789 */
9790 static int
9791 dtrace_difo_validate(dtrace_difo_t *dp, dtrace_vstate_t *vstate, uint_t nregs,
9792 cred_t *cr)
9793 {
9794 int err = 0, i;
9795 int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
9796 int kcheckload;
9797 uint_t pc;
9798 int maxglobal = -1, maxlocal = -1, maxtlocal = -1;
9799
9800 kcheckload = cr == NULL ||
9801 (vstate->dtvs_state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) == 0;
9802
9803 dp->dtdo_destructive = 0;
9804
9805 for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) {
9806 dif_instr_t instr = dp->dtdo_buf[pc];
9807
9808 uint_t r1 = DIF_INSTR_R1(instr);
9809 uint_t r2 = DIF_INSTR_R2(instr);
9810 uint_t rd = DIF_INSTR_RD(instr);
9811 uint_t rs = DIF_INSTR_RS(instr);
9812 uint_t label = DIF_INSTR_LABEL(instr);
9813 uint_t v = DIF_INSTR_VAR(instr);
9814 uint_t subr = DIF_INSTR_SUBR(instr);
9815 uint_t type = DIF_INSTR_TYPE(instr);
9816 uint_t op = DIF_INSTR_OP(instr);
9817
9818 switch (op) {
9819 case DIF_OP_OR:
9820 case DIF_OP_XOR:
9821 case DIF_OP_AND:
9822 case DIF_OP_SLL:
9823 case DIF_OP_SRL:
9824 case DIF_OP_SRA:
9825 case DIF_OP_SUB:
9826 case DIF_OP_ADD:
9827 case DIF_OP_MUL:
9828 case DIF_OP_SDIV:
9829 case DIF_OP_UDIV:
9830 case DIF_OP_SREM:
9831 case DIF_OP_UREM:
9832 case DIF_OP_COPYS:
9833 if (r1 >= nregs)
9834 err += efunc(pc, "invalid register %u\n", r1);
9835 if (r2 >= nregs)
9836 err += efunc(pc, "invalid register %u\n", r2);
9837 if (rd >= nregs)
9838 err += efunc(pc, "invalid register %u\n", rd);
9839 if (rd == 0)
9840 err += efunc(pc, "cannot write to %%r0\n");
9841 break;
9842 case DIF_OP_NOT:
9843 case DIF_OP_MOV:
9844 case DIF_OP_ALLOCS:
9845 if (r1 >= nregs)
9846 err += efunc(pc, "invalid register %u\n", r1);
9847 if (r2 != 0)
9848 err += efunc(pc, "non-zero reserved bits\n");
9849 if (rd >= nregs)
9850 err += efunc(pc, "invalid register %u\n", rd);
9851 if (rd == 0)
9852 err += efunc(pc, "cannot write to %%r0\n");
9853 break;
9854 case DIF_OP_LDSB:
9855 case DIF_OP_LDSH:
9856 case DIF_OP_LDSW:
9857 case DIF_OP_LDUB:
9858 case DIF_OP_LDUH:
9859 case DIF_OP_LDUW:
9860 case DIF_OP_LDX:
9861 if (r1 >= nregs)
9862 err += efunc(pc, "invalid register %u\n", r1);
9863 if (r2 != 0)
9864 err += efunc(pc, "non-zero reserved bits\n");
9865 if (rd >= nregs)
9866 err += efunc(pc, "invalid register %u\n", rd);
9867 if (rd == 0)
9868 err += efunc(pc, "cannot write to %%r0\n");
9869 if (kcheckload)
9870 dp->dtdo_buf[pc] = DIF_INSTR_LOAD(op +
9871 DIF_OP_RLDSB - DIF_OP_LDSB, r1, rd);
9872 break;
9873 case DIF_OP_RLDSB:
9874 case DIF_OP_RLDSH:
9875 case DIF_OP_RLDSW:
9876 case DIF_OP_RLDUB:
9877 case DIF_OP_RLDUH:
9878 case DIF_OP_RLDUW:
9879 case DIF_OP_RLDX:
9880 if (r1 >= nregs)
9881 err += efunc(pc, "invalid register %u\n", r1);
9882 if (r2 != 0)
9883 err += efunc(pc, "non-zero reserved bits\n");
9884 if (rd >= nregs)
9885 err += efunc(pc, "invalid register %u\n", rd);
9886 if (rd == 0)
9887 err += efunc(pc, "cannot write to %%r0\n");
9888 break;
9889 case DIF_OP_ULDSB:
9890 case DIF_OP_ULDSH:
9891 case DIF_OP_ULDSW:
9892 case DIF_OP_ULDUB:
9893 case DIF_OP_ULDUH:
9894 case DIF_OP_ULDUW:
9895 case DIF_OP_ULDX:
9896 if (r1 >= nregs)
9897 err += efunc(pc, "invalid register %u\n", r1);
9898 if (r2 != 0)
9899 err += efunc(pc, "non-zero reserved bits\n");
9900 if (rd >= nregs)
9901 err += efunc(pc, "invalid register %u\n", rd);
9902 if (rd == 0)
9903 err += efunc(pc, "cannot write to %%r0\n");
9904 break;
9905 case DIF_OP_STB:
9906 case DIF_OP_STH:
9907 case DIF_OP_STW:
9908 case DIF_OP_STX:
9909 if (r1 >= nregs)
9910 err += efunc(pc, "invalid register %u\n", r1);
9911 if (r2 != 0)
9912 err += efunc(pc, "non-zero reserved bits\n");
9913 if (rd >= nregs)
9914 err += efunc(pc, "invalid register %u\n", rd);
9915 if (rd == 0)
9916 err += efunc(pc, "cannot write to 0 address\n");
9917 break;
9918 case DIF_OP_CMP:
9919 case DIF_OP_SCMP:
9920 if (r1 >= nregs)
9921 err += efunc(pc, "invalid register %u\n", r1);
9922 if (r2 >= nregs)
9923 err += efunc(pc, "invalid register %u\n", r2);
9924 if (rd != 0)
9925 err += efunc(pc, "non-zero reserved bits\n");
9926 break;
9927 case DIF_OP_TST:
9928 if (r1 >= nregs)
9929 err += efunc(pc, "invalid register %u\n", r1);
9930 if (r2 != 0 || rd != 0)
9931 err += efunc(pc, "non-zero reserved bits\n");
9932 break;
9933 case DIF_OP_BA:
9934 case DIF_OP_BE:
9935 case DIF_OP_BNE:
9936 case DIF_OP_BG:
9937 case DIF_OP_BGU:
9938 case DIF_OP_BGE:
9939 case DIF_OP_BGEU:
9940 case DIF_OP_BL:
9941 case DIF_OP_BLU:
9942 case DIF_OP_BLE:
9943 case DIF_OP_BLEU:
9944 if (label >= dp->dtdo_len) {
9945 err += efunc(pc, "invalid branch target %u\n",
9946 label);
9947 }
9948 if (label <= pc) {
9949 err += efunc(pc, "backward branch to %u\n",
9950 label);
9951 }
9952 break;
9953 case DIF_OP_RET:
9954 if (r1 != 0 || r2 != 0)
9955 err += efunc(pc, "non-zero reserved bits\n");
9956 if (rd >= nregs)
9957 err += efunc(pc, "invalid register %u\n", rd);
9958 break;
9959 case DIF_OP_NOP:
9960 case DIF_OP_POPTS:
9961 case DIF_OP_FLUSHTS:
9962 if (r1 != 0 || r2 != 0 || rd != 0)
9963 err += efunc(pc, "non-zero reserved bits\n");
9964 break;
9965 case DIF_OP_SETX:
9966 if (DIF_INSTR_INTEGER(instr) >= dp->dtdo_intlen) {
9967 err += efunc(pc, "invalid integer ref %u\n",
9968 DIF_INSTR_INTEGER(instr));
9969 }
9970 if (rd >= nregs)
9971 err += efunc(pc, "invalid register %u\n", rd);
9972 if (rd == 0)
9973 err += efunc(pc, "cannot write to %%r0\n");
9974 break;
9975 case DIF_OP_SETS:
9976 if (DIF_INSTR_STRING(instr) >= dp->dtdo_strlen) {
9977 err += efunc(pc, "invalid string ref %u\n",
9978 DIF_INSTR_STRING(instr));
9979 }
9980 if (rd >= nregs)
9981 err += efunc(pc, "invalid register %u\n", rd);
9982 if (rd == 0)
9983 err += efunc(pc, "cannot write to %%r0\n");
9984 break;
9985 case DIF_OP_LDGA:
9986 case DIF_OP_LDTA:
9987 if (r1 > DIF_VAR_ARRAY_MAX)
9988 err += efunc(pc, "invalid array %u\n", r1);
9989 if (r2 >= nregs)
9990 err += efunc(pc, "invalid register %u\n", r2);
9991 if (rd >= nregs)
9992 err += efunc(pc, "invalid register %u\n", rd);
9993 if (rd == 0)
9994 err += efunc(pc, "cannot write to %%r0\n");
9995 break;
9996 case DIF_OP_LDGS:
9997 case DIF_OP_LDTS:
9998 case DIF_OP_LDLS:
9999 case DIF_OP_LDGAA:
10000 case DIF_OP_LDTAA:
10001 if (v < DIF_VAR_OTHER_MIN || v > DIF_VAR_OTHER_MAX)
10002 err += efunc(pc, "invalid variable %u\n", v);
10003 if (rd >= nregs)
10004 err += efunc(pc, "invalid register %u\n", rd);
10005 if (rd == 0)
10006 err += efunc(pc, "cannot write to %%r0\n");
10007 break;
10008 case DIF_OP_STGS:
10009 case DIF_OP_STTS:
10010 case DIF_OP_STLS:
10011 case DIF_OP_STGAA:
10012 case DIF_OP_STTAA:
10013 if (v < DIF_VAR_OTHER_UBASE || v > DIF_VAR_OTHER_MAX)
10014 err += efunc(pc, "invalid variable %u\n", v);
10015 if (rs >= nregs)
10016 err += efunc(pc, "invalid register %u\n", rd);
10017 break;
10018 case DIF_OP_CALL:
10019 if (subr > DIF_SUBR_MAX)
10020 err += efunc(pc, "invalid subr %u\n", subr);
10021 if (rd >= nregs)
10022 err += efunc(pc, "invalid register %u\n", rd);
10023 if (rd == 0)
10024 err += efunc(pc, "cannot write to %%r0\n");
10025
10026 if (subr == DIF_SUBR_COPYOUT ||
10027 subr == DIF_SUBR_COPYOUTSTR) {
10028 dp->dtdo_destructive = 1;
10029 }
10030
10031 if (subr == DIF_SUBR_GETF) {
10032 #ifdef __FreeBSD__
10033 err += efunc(pc, "getf() not supported");
10034 #else
10035 /*
10036 * If we have a getf() we need to record that
10037 * in our state. Note that our state can be
10038 * NULL if this is a helper -- but in that
10039 * case, the call to getf() is itself illegal,
10040 * and will be caught (slightly later) when
10041 * the helper is validated.
10042 */
10043 if (vstate->dtvs_state != NULL)
10044 vstate->dtvs_state->dts_getf++;
10045 #endif
10046 }
10047
10048 break;
10049 case DIF_OP_PUSHTR:
10050 if (type != DIF_TYPE_STRING && type != DIF_TYPE_CTF)
10051 err += efunc(pc, "invalid ref type %u\n", type);
10052 if (r2 >= nregs)
10053 err += efunc(pc, "invalid register %u\n", r2);
10054 if (rs >= nregs)
10055 err += efunc(pc, "invalid register %u\n", rs);
10056 break;
10057 case DIF_OP_PUSHTV:
10058 if (type != DIF_TYPE_CTF)
10059 err += efunc(pc, "invalid val type %u\n", type);
10060 if (r2 >= nregs)
10061 err += efunc(pc, "invalid register %u\n", r2);
10062 if (rs >= nregs)
10063 err += efunc(pc, "invalid register %u\n", rs);
10064 break;
10065 default:
10066 err += efunc(pc, "invalid opcode %u\n",
10067 DIF_INSTR_OP(instr));
10068 }
10069 }
10070
10071 if (dp->dtdo_len != 0 &&
10072 DIF_INSTR_OP(dp->dtdo_buf[dp->dtdo_len - 1]) != DIF_OP_RET) {
10073 err += efunc(dp->dtdo_len - 1,
10074 "expected 'ret' as last DIF instruction\n");
10075 }
10076
10077 if (!(dp->dtdo_rtype.dtdt_flags & (DIF_TF_BYREF | DIF_TF_BYUREF))) {
10078 /*
10079 * If we're not returning by reference, the size must be either
10080 * 0 or the size of one of the base types.
10081 */
10082 switch (dp->dtdo_rtype.dtdt_size) {
10083 case 0:
10084 case sizeof (uint8_t):
10085 case sizeof (uint16_t):
10086 case sizeof (uint32_t):
10087 case sizeof (uint64_t):
10088 break;
10089
10090 default:
10091 err += efunc(dp->dtdo_len - 1, "bad return size\n");
10092 }
10093 }
10094
10095 for (i = 0; i < dp->dtdo_varlen && err == 0; i++) {
10096 dtrace_difv_t *v = &dp->dtdo_vartab[i], *existing = NULL;
10097 dtrace_diftype_t *vt, *et;
10098 uint_t id, ndx;
10099
10100 if (v->dtdv_scope != DIFV_SCOPE_GLOBAL &&
10101 v->dtdv_scope != DIFV_SCOPE_THREAD &&
10102 v->dtdv_scope != DIFV_SCOPE_LOCAL) {
10103 err += efunc(i, "unrecognized variable scope %d\n",
10104 v->dtdv_scope);
10105 break;
10106 }
10107
10108 if (v->dtdv_kind != DIFV_KIND_ARRAY &&
10109 v->dtdv_kind != DIFV_KIND_SCALAR) {
10110 err += efunc(i, "unrecognized variable type %d\n",
10111 v->dtdv_kind);
10112 break;
10113 }
10114
10115 if ((id = v->dtdv_id) > DIF_VARIABLE_MAX) {
10116 err += efunc(i, "%d exceeds variable id limit\n", id);
10117 break;
10118 }
10119
10120 if (id < DIF_VAR_OTHER_UBASE)
10121 continue;
10122
10123 /*
10124 * For user-defined variables, we need to check that this
10125 * definition is identical to any previous definition that we
10126 * encountered.
10127 */
10128 ndx = id - DIF_VAR_OTHER_UBASE;
10129
10130 switch (v->dtdv_scope) {
10131 case DIFV_SCOPE_GLOBAL:
10132 if (maxglobal == -1 || ndx > maxglobal)
10133 maxglobal = ndx;
10134
10135 if (ndx < vstate->dtvs_nglobals) {
10136 dtrace_statvar_t *svar;
10137
10138 if ((svar = vstate->dtvs_globals[ndx]) != NULL)
10139 existing = &svar->dtsv_var;
10140 }
10141
10142 break;
10143
10144 case DIFV_SCOPE_THREAD:
10145 if (maxtlocal == -1 || ndx > maxtlocal)
10146 maxtlocal = ndx;
10147
10148 if (ndx < vstate->dtvs_ntlocals)
10149 existing = &vstate->dtvs_tlocals[ndx];
10150 break;
10151
10152 case DIFV_SCOPE_LOCAL:
10153 if (maxlocal == -1 || ndx > maxlocal)
10154 maxlocal = ndx;
10155
10156 if (ndx < vstate->dtvs_nlocals) {
10157 dtrace_statvar_t *svar;
10158
10159 if ((svar = vstate->dtvs_locals[ndx]) != NULL)
10160 existing = &svar->dtsv_var;
10161 }
10162
10163 break;
10164 }
10165
10166 vt = &v->dtdv_type;
10167
10168 if (vt->dtdt_flags & DIF_TF_BYREF) {
10169 if (vt->dtdt_size == 0) {
10170 err += efunc(i, "zero-sized variable\n");
10171 break;
10172 }
10173
10174 if ((v->dtdv_scope == DIFV_SCOPE_GLOBAL ||
10175 v->dtdv_scope == DIFV_SCOPE_LOCAL) &&
10176 vt->dtdt_size > dtrace_statvar_maxsize) {
10177 err += efunc(i, "oversized by-ref static\n");
10178 break;
10179 }
10180 }
10181
10182 if (existing == NULL || existing->dtdv_id == 0)
10183 continue;
10184
10185 ASSERT(existing->dtdv_id == v->dtdv_id);
10186 ASSERT(existing->dtdv_scope == v->dtdv_scope);
10187
10188 if (existing->dtdv_kind != v->dtdv_kind)
10189 err += efunc(i, "%d changed variable kind\n", id);
10190
10191 et = &existing->dtdv_type;
10192
10193 if (vt->dtdt_flags != et->dtdt_flags) {
10194 err += efunc(i, "%d changed variable type flags\n", id);
10195 break;
10196 }
10197
10198 if (vt->dtdt_size != 0 && vt->dtdt_size != et->dtdt_size) {
10199 err += efunc(i, "%d changed variable type size\n", id);
10200 break;
10201 }
10202 }
10203
10204 for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) {
10205 dif_instr_t instr = dp->dtdo_buf[pc];
10206
10207 uint_t v = DIF_INSTR_VAR(instr);
10208 uint_t op = DIF_INSTR_OP(instr);
10209
10210 switch (op) {
10211 case DIF_OP_LDGS:
10212 case DIF_OP_LDGAA:
10213 case DIF_OP_STGS:
10214 case DIF_OP_STGAA:
10215 if (v > DIF_VAR_OTHER_UBASE + maxglobal)
10216 err += efunc(pc, "invalid variable %u\n", v);
10217 break;
10218 case DIF_OP_LDTS:
10219 case DIF_OP_LDTAA:
10220 case DIF_OP_STTS:
10221 case DIF_OP_STTAA:
10222 if (v > DIF_VAR_OTHER_UBASE + maxtlocal)
10223 err += efunc(pc, "invalid variable %u\n", v);
10224 break;
10225 case DIF_OP_LDLS:
10226 case DIF_OP_STLS:
10227 if (v > DIF_VAR_OTHER_UBASE + maxlocal)
10228 err += efunc(pc, "invalid variable %u\n", v);
10229 break;
10230 default:
10231 break;
10232 }
10233 }
10234
10235 return (err);
10236 }
10237
10238 /*
10239 * Validate a DTrace DIF object that it is to be used as a helper. Helpers
10240 * are much more constrained than normal DIFOs. Specifically, they may
10241 * not:
10242 *
10243 * 1. Make calls to subroutines other than copyin(), copyinstr() or
10244 * miscellaneous string routines
10245 * 2. Access DTrace variables other than the args[] array, and the
10246 * curthread, pid, ppid, tid, execname, zonename, uid and gid variables.
10247 * 3. Have thread-local variables.
10248 * 4. Have dynamic variables.
10249 */
10250 static int
10251 dtrace_difo_validate_helper(dtrace_difo_t *dp)
10252 {
10253 int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
10254 int err = 0;
10255 uint_t pc;
10256
10257 for (pc = 0; pc < dp->dtdo_len; pc++) {
10258 dif_instr_t instr = dp->dtdo_buf[pc];
10259
10260 uint_t v = DIF_INSTR_VAR(instr);
10261 uint_t subr = DIF_INSTR_SUBR(instr);
10262 uint_t op = DIF_INSTR_OP(instr);
10263
10264 switch (op) {
10265 case DIF_OP_OR:
10266 case DIF_OP_XOR:
10267 case DIF_OP_AND:
10268 case DIF_OP_SLL:
10269 case DIF_OP_SRL:
10270 case DIF_OP_SRA:
10271 case DIF_OP_SUB:
10272 case DIF_OP_ADD:
10273 case DIF_OP_MUL:
10274 case DIF_OP_SDIV:
10275 case DIF_OP_UDIV:
10276 case DIF_OP_SREM:
10277 case DIF_OP_UREM:
10278 case DIF_OP_COPYS:
10279 case DIF_OP_NOT:
10280 case DIF_OP_MOV:
10281 case DIF_OP_RLDSB:
10282 case DIF_OP_RLDSH:
10283 case DIF_OP_RLDSW:
10284 case DIF_OP_RLDUB:
10285 case DIF_OP_RLDUH:
10286 case DIF_OP_RLDUW:
10287 case DIF_OP_RLDX:
10288 case DIF_OP_ULDSB:
10289 case DIF_OP_ULDSH:
10290 case DIF_OP_ULDSW:
10291 case DIF_OP_ULDUB:
10292 case DIF_OP_ULDUH:
10293 case DIF_OP_ULDUW:
10294 case DIF_OP_ULDX:
10295 case DIF_OP_STB:
10296 case DIF_OP_STH:
10297 case DIF_OP_STW:
10298 case DIF_OP_STX:
10299 case DIF_OP_ALLOCS:
10300 case DIF_OP_CMP:
10301 case DIF_OP_SCMP:
10302 case DIF_OP_TST:
10303 case DIF_OP_BA:
10304 case DIF_OP_BE:
10305 case DIF_OP_BNE:
10306 case DIF_OP_BG:
10307 case DIF_OP_BGU:
10308 case DIF_OP_BGE:
10309 case DIF_OP_BGEU:
10310 case DIF_OP_BL:
10311 case DIF_OP_BLU:
10312 case DIF_OP_BLE:
10313 case DIF_OP_BLEU:
10314 case DIF_OP_RET:
10315 case DIF_OP_NOP:
10316 case DIF_OP_POPTS:
10317 case DIF_OP_FLUSHTS:
10318 case DIF_OP_SETX:
10319 case DIF_OP_SETS:
10320 case DIF_OP_LDGA:
10321 case DIF_OP_LDLS:
10322 case DIF_OP_STGS:
10323 case DIF_OP_STLS:
10324 case DIF_OP_PUSHTR:
10325 case DIF_OP_PUSHTV:
10326 break;
10327
10328 case DIF_OP_LDGS:
10329 if (v >= DIF_VAR_OTHER_UBASE)
10330 break;
10331
10332 if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9)
10333 break;
10334
10335 if (v == DIF_VAR_CURTHREAD || v == DIF_VAR_PID ||
10336 v == DIF_VAR_PPID || v == DIF_VAR_TID ||
10337 v == DIF_VAR_EXECARGS ||
10338 v == DIF_VAR_EXECNAME || v == DIF_VAR_ZONENAME ||
10339 v == DIF_VAR_UID || v == DIF_VAR_GID)
10340 break;
10341
10342 err += efunc(pc, "illegal variable %u\n", v);
10343 break;
10344
10345 case DIF_OP_LDTA:
10346 case DIF_OP_LDTS:
10347 case DIF_OP_LDGAA:
10348 case DIF_OP_LDTAA:
10349 err += efunc(pc, "illegal dynamic variable load\n");
10350 break;
10351
10352 case DIF_OP_STTS:
10353 case DIF_OP_STGAA:
10354 case DIF_OP_STTAA:
10355 err += efunc(pc, "illegal dynamic variable store\n");
10356 break;
10357
10358 case DIF_OP_CALL:
10359 if (subr == DIF_SUBR_ALLOCA ||
10360 subr == DIF_SUBR_BCOPY ||
10361 subr == DIF_SUBR_COPYIN ||
10362 subr == DIF_SUBR_COPYINTO ||
10363 subr == DIF_SUBR_COPYINSTR ||
10364 subr == DIF_SUBR_INDEX ||
10365 subr == DIF_SUBR_INET_NTOA ||
10366 subr == DIF_SUBR_INET_NTOA6 ||
10367 subr == DIF_SUBR_INET_NTOP ||
10368 subr == DIF_SUBR_JSON ||
10369 subr == DIF_SUBR_LLTOSTR ||
10370 subr == DIF_SUBR_STRTOLL ||
10371 subr == DIF_SUBR_RINDEX ||
10372 subr == DIF_SUBR_STRCHR ||
10373 subr == DIF_SUBR_STRJOIN ||
10374 subr == DIF_SUBR_STRRCHR ||
10375 subr == DIF_SUBR_STRSTR ||
10376 subr == DIF_SUBR_HTONS ||
10377 subr == DIF_SUBR_HTONL ||
10378 subr == DIF_SUBR_HTONLL ||
10379 subr == DIF_SUBR_NTOHS ||
10380 subr == DIF_SUBR_NTOHL ||
10381 subr == DIF_SUBR_NTOHLL ||
10382 subr == DIF_SUBR_MEMREF)
10383 break;
10384 #ifdef __FreeBSD__
10385 if (subr == DIF_SUBR_MEMSTR)
10386 break;
10387 #endif
10388
10389 err += efunc(pc, "invalid subr %u\n", subr);
10390 break;
10391
10392 default:
10393 err += efunc(pc, "invalid opcode %u\n",
10394 DIF_INSTR_OP(instr));
10395 }
10396 }
10397
10398 return (err);
10399 }
10400
10401 /*
10402 * Returns 1 if the expression in the DIF object can be cached on a per-thread
10403 * basis; 0 if not.
10404 */
10405 static int
10406 dtrace_difo_cacheable(dtrace_difo_t *dp)
10407 {
10408 int i;
10409
10410 if (dp == NULL)
10411 return (0);
10412
10413 for (i = 0; i < dp->dtdo_varlen; i++) {
10414 dtrace_difv_t *v = &dp->dtdo_vartab[i];
10415
10416 if (v->dtdv_scope != DIFV_SCOPE_GLOBAL)
10417 continue;
10418
10419 switch (v->dtdv_id) {
10420 case DIF_VAR_CURTHREAD:
10421 case DIF_VAR_PID:
10422 case DIF_VAR_TID:
10423 case DIF_VAR_EXECARGS:
10424 case DIF_VAR_EXECNAME:
10425 case DIF_VAR_ZONENAME:
10426 break;
10427
10428 default:
10429 return (0);
10430 }
10431 }
10432
10433 /*
10434 * This DIF object may be cacheable. Now we need to look for any
10435 * array loading instructions, any memory loading instructions, or
10436 * any stores to thread-local variables.
10437 */
10438 for (i = 0; i < dp->dtdo_len; i++) {
10439 uint_t op = DIF_INSTR_OP(dp->dtdo_buf[i]);
10440
10441 if ((op >= DIF_OP_LDSB && op <= DIF_OP_LDX) ||
10442 (op >= DIF_OP_ULDSB && op <= DIF_OP_ULDX) ||
10443 (op >= DIF_OP_RLDSB && op <= DIF_OP_RLDX) ||
10444 op == DIF_OP_LDGA || op == DIF_OP_STTS)
10445 return (0);
10446 }
10447
10448 return (1);
10449 }
10450
10451 static void
10452 dtrace_difo_hold(dtrace_difo_t *dp)
10453 {
10454 int i;
10455
10456 ASSERT(MUTEX_HELD(&dtrace_lock));
10457
10458 dp->dtdo_refcnt++;
10459 ASSERT(dp->dtdo_refcnt != 0);
10460
10461 /*
10462 * We need to check this DIF object for references to the variable
10463 * DIF_VAR_VTIMESTAMP.
10464 */
10465 for (i = 0; i < dp->dtdo_varlen; i++) {
10466 dtrace_difv_t *v = &dp->dtdo_vartab[i];
10467
10468 if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
10469 continue;
10470
10471 if (dtrace_vtime_references++ == 0)
10472 dtrace_vtime_enable();
10473 }
10474 }
10475
10476 /*
10477 * This routine calculates the dynamic variable chunksize for a given DIF
10478 * object. The calculation is not fool-proof, and can probably be tricked by
10479 * malicious DIF -- but it works for all compiler-generated DIF. Because this
10480 * calculation is likely imperfect, dtrace_dynvar() is able to gracefully fail
10481 * if a dynamic variable size exceeds the chunksize.
10482 */
10483 static void
10484 dtrace_difo_chunksize(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
10485 {
10486 uint64_t sval = 0;
10487 dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
10488 const dif_instr_t *text = dp->dtdo_buf;
10489 uint_t pc, srd = 0;
10490 uint_t ttop = 0;
10491 size_t size, ksize;
10492 uint_t id, i;
10493
10494 for (pc = 0; pc < dp->dtdo_len; pc++) {
10495 dif_instr_t instr = text[pc];
10496 uint_t op = DIF_INSTR_OP(instr);
10497 uint_t rd = DIF_INSTR_RD(instr);
10498 uint_t r1 = DIF_INSTR_R1(instr);
10499 uint_t nkeys = 0;
10500 uchar_t scope = 0;
10501
10502 dtrace_key_t *key = tupregs;
10503
10504 switch (op) {
10505 case DIF_OP_SETX:
10506 sval = dp->dtdo_inttab[DIF_INSTR_INTEGER(instr)];
10507 srd = rd;
10508 continue;
10509
10510 case DIF_OP_STTS:
10511 key = &tupregs[DIF_DTR_NREGS];
10512 key[0].dttk_size = 0;
10513 key[1].dttk_size = 0;
10514 nkeys = 2;
10515 scope = DIFV_SCOPE_THREAD;
10516 break;
10517
10518 case DIF_OP_STGAA:
10519 case DIF_OP_STTAA:
10520 nkeys = ttop;
10521
10522 if (DIF_INSTR_OP(instr) == DIF_OP_STTAA)
10523 key[nkeys++].dttk_size = 0;
10524
10525 key[nkeys++].dttk_size = 0;
10526
10527 if (op == DIF_OP_STTAA) {
10528 scope = DIFV_SCOPE_THREAD;
10529 } else {
10530 scope = DIFV_SCOPE_GLOBAL;
10531 }
10532
10533 break;
10534
10535 case DIF_OP_PUSHTR:
10536 if (ttop == DIF_DTR_NREGS)
10537 return;
10538
10539 if ((srd == 0 || sval == 0) && r1 == DIF_TYPE_STRING) {
10540 /*
10541 * If the register for the size of the "pushtr"
10542 * is %r0 (or the value is 0) and the type is
10543 * a string, we'll use the system-wide default
10544 * string size.
10545 */
10546 tupregs[ttop++].dttk_size =
10547 dtrace_strsize_default;
10548 } else {
10549 if (srd == 0)
10550 return;
10551
10552 if (sval > LONG_MAX)
10553 return;
10554
10555 tupregs[ttop++].dttk_size = sval;
10556 }
10557
10558 break;
10559
10560 case DIF_OP_PUSHTV:
10561 if (ttop == DIF_DTR_NREGS)
10562 return;
10563
10564 tupregs[ttop++].dttk_size = 0;
10565 break;
10566
10567 case DIF_OP_FLUSHTS:
10568 ttop = 0;
10569 break;
10570
10571 case DIF_OP_POPTS:
10572 if (ttop != 0)
10573 ttop--;
10574 break;
10575 }
10576
10577 sval = 0;
10578 srd = 0;
10579
10580 if (nkeys == 0)
10581 continue;
10582
10583 /*
10584 * We have a dynamic variable allocation; calculate its size.
10585 */
10586 for (ksize = 0, i = 0; i < nkeys; i++)
10587 ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
10588
10589 size = sizeof (dtrace_dynvar_t);
10590 size += sizeof (dtrace_key_t) * (nkeys - 1);
10591 size += ksize;
10592
10593 /*
10594 * Now we need to determine the size of the stored data.
10595 */
10596 id = DIF_INSTR_VAR(instr);
10597
10598 for (i = 0; i < dp->dtdo_varlen; i++) {
10599 dtrace_difv_t *v = &dp->dtdo_vartab[i];
10600
10601 if (v->dtdv_id == id && v->dtdv_scope == scope) {
10602 size += v->dtdv_type.dtdt_size;
10603 break;
10604 }
10605 }
10606
10607 if (i == dp->dtdo_varlen)
10608 return;
10609
10610 /*
10611 * We have the size. If this is larger than the chunk size
10612 * for our dynamic variable state, reset the chunk size.
10613 */
10614 size = P2ROUNDUP(size, sizeof (uint64_t));
10615
10616 /*
10617 * Before setting the chunk size, check that we're not going
10618 * to set it to a negative value...
10619 */
10620 if (size > LONG_MAX)
10621 return;
10622
10623 /*
10624 * ...and make certain that we didn't badly overflow.
10625 */
10626 if (size < ksize || size < sizeof (dtrace_dynvar_t))
10627 return;
10628
10629 if (size > vstate->dtvs_dynvars.dtds_chunksize)
10630 vstate->dtvs_dynvars.dtds_chunksize = size;
10631 }
10632 }
10633
10634 static void
10635 dtrace_difo_init(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
10636 {
10637 int i, oldsvars, osz, nsz, otlocals, ntlocals;
10638 uint_t id;
10639
10640 ASSERT(MUTEX_HELD(&dtrace_lock));
10641 ASSERT(dp->dtdo_buf != NULL && dp->dtdo_len != 0);
10642
10643 for (i = 0; i < dp->dtdo_varlen; i++) {
10644 dtrace_difv_t *v = &dp->dtdo_vartab[i];
10645 dtrace_statvar_t *svar, ***svarp = NULL;
10646 size_t dsize = 0;
10647 uint8_t scope = v->dtdv_scope;
10648 int *np = NULL;
10649
10650 if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
10651 continue;
10652
10653 id -= DIF_VAR_OTHER_UBASE;
10654
10655 switch (scope) {
10656 case DIFV_SCOPE_THREAD:
10657 while (id >= (otlocals = vstate->dtvs_ntlocals)) {
10658 dtrace_difv_t *tlocals;
10659
10660 if ((ntlocals = (otlocals << 1)) == 0)
10661 ntlocals = 1;
10662
10663 osz = otlocals * sizeof (dtrace_difv_t);
10664 nsz = ntlocals * sizeof (dtrace_difv_t);
10665
10666 tlocals = kmem_zalloc(nsz, KM_SLEEP);
10667
10668 if (osz != 0) {
10669 bcopy(vstate->dtvs_tlocals,
10670 tlocals, osz);
10671 kmem_free(vstate->dtvs_tlocals, osz);
10672 }
10673
10674 vstate->dtvs_tlocals = tlocals;
10675 vstate->dtvs_ntlocals = ntlocals;
10676 }
10677
10678 vstate->dtvs_tlocals[id] = *v;
10679 continue;
10680
10681 case DIFV_SCOPE_LOCAL:
10682 np = &vstate->dtvs_nlocals;
10683 svarp = &vstate->dtvs_locals;
10684
10685 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
10686 dsize = (mp_maxid + 1) *
10687 (v->dtdv_type.dtdt_size +
10688 sizeof (uint64_t));
10689 else
10690 dsize = (mp_maxid + 1) * sizeof (uint64_t);
10691
10692 break;
10693
10694 case DIFV_SCOPE_GLOBAL:
10695 np = &vstate->dtvs_nglobals;
10696 svarp = &vstate->dtvs_globals;
10697
10698 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
10699 dsize = v->dtdv_type.dtdt_size +
10700 sizeof (uint64_t);
10701
10702 break;
10703
10704 default:
10705 ASSERT(0);
10706 }
10707
10708 while (id >= (oldsvars = *np)) {
10709 dtrace_statvar_t **statics;
10710 int newsvars, oldsize, newsize;
10711
10712 if ((newsvars = (oldsvars << 1)) == 0)
10713 newsvars = 1;
10714
10715 oldsize = oldsvars * sizeof (dtrace_statvar_t *);
10716 newsize = newsvars * sizeof (dtrace_statvar_t *);
10717
10718 statics = kmem_zalloc(newsize, KM_SLEEP);
10719
10720 if (oldsize != 0) {
10721 bcopy(*svarp, statics, oldsize);
10722 kmem_free(*svarp, oldsize);
10723 }
10724
10725 *svarp = statics;
10726 *np = newsvars;
10727 }
10728
10729 if ((svar = (*svarp)[id]) == NULL) {
10730 svar = kmem_zalloc(sizeof (dtrace_statvar_t), KM_SLEEP);
10731 svar->dtsv_var = *v;
10732
10733 if ((svar->dtsv_size = dsize) != 0) {
10734 svar->dtsv_data = (uint64_t)(uintptr_t)
10735 kmem_zalloc(dsize, KM_SLEEP);
10736 }
10737
10738 (*svarp)[id] = svar;
10739 }
10740
10741 svar->dtsv_refcnt++;
10742 }
10743
10744 dtrace_difo_chunksize(dp, vstate);
10745 dtrace_difo_hold(dp);
10746 }
10747
10748 static dtrace_difo_t *
10749 dtrace_difo_duplicate(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
10750 {
10751 dtrace_difo_t *new;
10752 size_t sz;
10753
10754 ASSERT(dp->dtdo_buf != NULL);
10755 ASSERT(dp->dtdo_refcnt != 0);
10756
10757 new = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
10758
10759 ASSERT(dp->dtdo_buf != NULL);
10760 sz = dp->dtdo_len * sizeof (dif_instr_t);
10761 new->dtdo_buf = kmem_alloc(sz, KM_SLEEP);
10762 bcopy(dp->dtdo_buf, new->dtdo_buf, sz);
10763 new->dtdo_len = dp->dtdo_len;
10764
10765 if (dp->dtdo_strtab != NULL) {
10766 ASSERT(dp->dtdo_strlen != 0);
10767 new->dtdo_strtab = kmem_alloc(dp->dtdo_strlen, KM_SLEEP);
10768 bcopy(dp->dtdo_strtab, new->dtdo_strtab, dp->dtdo_strlen);
10769 new->dtdo_strlen = dp->dtdo_strlen;
10770 }
10771
10772 if (dp->dtdo_inttab != NULL) {
10773 ASSERT(dp->dtdo_intlen != 0);
10774 sz = dp->dtdo_intlen * sizeof (uint64_t);
10775 new->dtdo_inttab = kmem_alloc(sz, KM_SLEEP);
10776 bcopy(dp->dtdo_inttab, new->dtdo_inttab, sz);
10777 new->dtdo_intlen = dp->dtdo_intlen;
10778 }
10779
10780 if (dp->dtdo_vartab != NULL) {
10781 ASSERT(dp->dtdo_varlen != 0);
10782 sz = dp->dtdo_varlen * sizeof (dtrace_difv_t);
10783 new->dtdo_vartab = kmem_alloc(sz, KM_SLEEP);
10784 bcopy(dp->dtdo_vartab, new->dtdo_vartab, sz);
10785 new->dtdo_varlen = dp->dtdo_varlen;
10786 }
10787
10788 dtrace_difo_init(new, vstate);
10789 return (new);
10790 }
10791
10792 static void
10793 dtrace_difo_destroy(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
10794 {
10795 int i;
10796
10797 ASSERT(dp->dtdo_refcnt == 0);
10798
10799 for (i = 0; i < dp->dtdo_varlen; i++) {
10800 dtrace_difv_t *v = &dp->dtdo_vartab[i];
10801 dtrace_statvar_t *svar, **svarp = NULL;
10802 uint_t id;
10803 uint8_t scope = v->dtdv_scope;
10804 int *np = NULL;
10805
10806 switch (scope) {
10807 case DIFV_SCOPE_THREAD:
10808 continue;
10809
10810 case DIFV_SCOPE_LOCAL:
10811 np = &vstate->dtvs_nlocals;
10812 svarp = vstate->dtvs_locals;
10813 break;
10814
10815 case DIFV_SCOPE_GLOBAL:
10816 np = &vstate->dtvs_nglobals;
10817 svarp = vstate->dtvs_globals;
10818 break;
10819
10820 default:
10821 ASSERT(0);
10822 }
10823
10824 if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
10825 continue;
10826
10827 id -= DIF_VAR_OTHER_UBASE;
10828 ASSERT(id < *np);
10829
10830 svar = svarp[id];
10831 ASSERT(svar != NULL);
10832 ASSERT(svar->dtsv_refcnt > 0);
10833
10834 if (--svar->dtsv_refcnt > 0)
10835 continue;
10836
10837 if (svar->dtsv_size != 0) {
10838 ASSERT(svar->dtsv_data != 0);
10839 kmem_free((void *)(uintptr_t)svar->dtsv_data,
10840 svar->dtsv_size);
10841 }
10842
10843 kmem_free(svar, sizeof (dtrace_statvar_t));
10844 svarp[id] = NULL;
10845 }
10846
10847 if (dp->dtdo_buf != NULL)
10848 kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
10849 if (dp->dtdo_inttab != NULL)
10850 kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
10851 if (dp->dtdo_strtab != NULL)
10852 kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
10853 if (dp->dtdo_vartab != NULL)
10854 kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
10855
10856 kmem_free(dp, sizeof (dtrace_difo_t));
10857 }
10858
10859 static void
10860 dtrace_difo_release(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
10861 {
10862 int i;
10863
10864 ASSERT(MUTEX_HELD(&dtrace_lock));
10865 ASSERT(dp->dtdo_refcnt != 0);
10866
10867 for (i = 0; i < dp->dtdo_varlen; i++) {
10868 dtrace_difv_t *v = &dp->dtdo_vartab[i];
10869
10870 if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
10871 continue;
10872
10873 ASSERT(dtrace_vtime_references > 0);
10874 if (--dtrace_vtime_references == 0)
10875 dtrace_vtime_disable();
10876 }
10877
10878 if (--dp->dtdo_refcnt == 0)
10879 dtrace_difo_destroy(dp, vstate);
10880 }
10881
10882 /*
10883 * DTrace Format Functions
10884 */
10885 static uint16_t
10886 dtrace_format_add(dtrace_state_t *state, char *str)
10887 {
10888 char *fmt, **new;
10889 uint16_t ndx, len = strlen(str) + 1;
10890
10891 fmt = kmem_zalloc(len, KM_SLEEP);
10892 bcopy(str, fmt, len);
10893
10894 for (ndx = 0; ndx < state->dts_nformats; ndx++) {
10895 if (state->dts_formats[ndx] == NULL) {
10896 state->dts_formats[ndx] = fmt;
10897 return (ndx + 1);
10898 }
10899 }
10900
10901 if (state->dts_nformats == USHRT_MAX) {
10902 /*
10903 * This is only likely if a denial-of-service attack is being
10904 * attempted. As such, it's okay to fail silently here.
10905 */
10906 kmem_free(fmt, len);
10907 return (0);
10908 }
10909
10910 /*
10911 * For simplicity, we always resize the formats array to be exactly the
10912 * number of formats.
10913 */
10914 ndx = state->dts_nformats++;
10915 new = kmem_alloc((ndx + 1) * sizeof (char *), KM_SLEEP);
10916
10917 if (state->dts_formats != NULL) {
10918 ASSERT(ndx != 0);
10919 bcopy(state->dts_formats, new, ndx * sizeof (char *));
10920 kmem_free(state->dts_formats, ndx * sizeof (char *));
10921 }
10922
10923 state->dts_formats = new;
10924 state->dts_formats[ndx] = fmt;
10925
10926 return (ndx + 1);
10927 }
10928
10929 static void
10930 dtrace_format_remove(dtrace_state_t *state, uint16_t format)
10931 {
10932 char *fmt;
10933
10934 ASSERT(state->dts_formats != NULL);
10935 ASSERT(format <= state->dts_nformats);
10936 ASSERT(state->dts_formats[format - 1] != NULL);
10937
10938 fmt = state->dts_formats[format - 1];
10939 kmem_free(fmt, strlen(fmt) + 1);
10940 state->dts_formats[format - 1] = NULL;
10941 }
10942
10943 static void
10944 dtrace_format_destroy(dtrace_state_t *state)
10945 {
10946 int i;
10947
10948 if (state->dts_nformats == 0) {
10949 ASSERT(state->dts_formats == NULL);
10950 return;
10951 }
10952
10953 ASSERT(state->dts_formats != NULL);
10954
10955 for (i = 0; i < state->dts_nformats; i++) {
10956 char *fmt = state->dts_formats[i];
10957
10958 if (fmt == NULL)
10959 continue;
10960
10961 kmem_free(fmt, strlen(fmt) + 1);
10962 }
10963
10964 kmem_free(state->dts_formats, state->dts_nformats * sizeof (char *));
10965 state->dts_nformats = 0;
10966 state->dts_formats = NULL;
10967 }
10968
10969 /*
10970 * DTrace Predicate Functions
10971 */
10972 static dtrace_predicate_t *
10973 dtrace_predicate_create(dtrace_difo_t *dp)
10974 {
10975 dtrace_predicate_t *pred;
10976
10977 ASSERT(MUTEX_HELD(&dtrace_lock));
10978 ASSERT(dp->dtdo_refcnt != 0);
10979
10980 pred = kmem_zalloc(sizeof (dtrace_predicate_t), KM_SLEEP);
10981 pred->dtp_difo = dp;
10982 pred->dtp_refcnt = 1;
10983
10984 if (!dtrace_difo_cacheable(dp))
10985 return (pred);
10986
10987 if (dtrace_predcache_id == DTRACE_CACHEIDNONE) {
10988 /*
10989 * This is only theoretically possible -- we have had 2^32
10990 * cacheable predicates on this machine. We cannot allow any
10991 * more predicates to become cacheable: as unlikely as it is,
10992 * there may be a thread caching a (now stale) predicate cache
10993 * ID. (N.B.: the temptation is being successfully resisted to
10994 * have this cmn_err() "Holy shit -- we executed this code!")
10995 */
10996 return (pred);
10997 }
10998
10999 pred->dtp_cacheid = dtrace_predcache_id++;
11000
11001 return (pred);
11002 }
11003
11004 static void
11005 dtrace_predicate_hold(dtrace_predicate_t *pred)
11006 {
11007 ASSERT(MUTEX_HELD(&dtrace_lock));
11008 ASSERT(pred->dtp_difo != NULL && pred->dtp_difo->dtdo_refcnt != 0);
11009 ASSERT(pred->dtp_refcnt > 0);
11010
11011 pred->dtp_refcnt++;
11012 }
11013
11014 static void
11015 dtrace_predicate_release(dtrace_predicate_t *pred, dtrace_vstate_t *vstate)
11016 {
11017 dtrace_difo_t *dp = pred->dtp_difo;
11018
11019 ASSERT(MUTEX_HELD(&dtrace_lock));
11020 ASSERT(dp != NULL && dp->dtdo_refcnt != 0);
11021 ASSERT(pred->dtp_refcnt > 0);
11022
11023 if (--pred->dtp_refcnt == 0) {
11024 dtrace_difo_release(pred->dtp_difo, vstate);
11025 kmem_free(pred, sizeof (dtrace_predicate_t));
11026 }
11027 }
11028
11029 /*
11030 * DTrace Action Description Functions
11031 */
11032 static dtrace_actdesc_t *
11033 dtrace_actdesc_create(dtrace_actkind_t kind, uint32_t ntuple,
11034 uint64_t uarg, uint64_t arg)
11035 {
11036 dtrace_actdesc_t *act;
11037
11038 #ifdef illumos
11039 ASSERT(!DTRACEACT_ISPRINTFLIKE(kind) || (arg != NULL &&
11040 arg >= KERNELBASE) || (arg == NULL && kind == DTRACEACT_PRINTA));
11041 #endif
11042
11043 act = kmem_zalloc(sizeof (dtrace_actdesc_t), KM_SLEEP);
11044 act->dtad_kind = kind;
11045 act->dtad_ntuple = ntuple;
11046 act->dtad_uarg = uarg;
11047 act->dtad_arg = arg;
11048 act->dtad_refcnt = 1;
11049
11050 return (act);
11051 }
11052
11053 static void
11054 dtrace_actdesc_hold(dtrace_actdesc_t *act)
11055 {
11056 ASSERT(act->dtad_refcnt >= 1);
11057 act->dtad_refcnt++;
11058 }
11059
11060 static void
11061 dtrace_actdesc_release(dtrace_actdesc_t *act, dtrace_vstate_t *vstate)
11062 {
11063 dtrace_actkind_t kind = act->dtad_kind;
11064 dtrace_difo_t *dp;
11065
11066 ASSERT(act->dtad_refcnt >= 1);
11067
11068 if (--act->dtad_refcnt != 0)
11069 return;
11070
11071 if ((dp = act->dtad_difo) != NULL)
11072 dtrace_difo_release(dp, vstate);
11073
11074 if (DTRACEACT_ISPRINTFLIKE(kind)) {
11075 char *str = (char *)(uintptr_t)act->dtad_arg;
11076
11077 #ifdef illumos
11078 ASSERT((str != NULL && (uintptr_t)str >= KERNELBASE) ||
11079 (str == NULL && act->dtad_kind == DTRACEACT_PRINTA));
11080 #endif
11081
11082 if (str != NULL)
11083 kmem_free(str, strlen(str) + 1);
11084 }
11085
11086 kmem_free(act, sizeof (dtrace_actdesc_t));
11087 }
11088
11089 /*
11090 * DTrace ECB Functions
11091 */
11092 static dtrace_ecb_t *
11093 dtrace_ecb_add(dtrace_state_t *state, dtrace_probe_t *probe)
11094 {
11095 dtrace_ecb_t *ecb;
11096 dtrace_epid_t epid;
11097
11098 ASSERT(MUTEX_HELD(&dtrace_lock));
11099
11100 ecb = kmem_zalloc(sizeof (dtrace_ecb_t), KM_SLEEP);
11101 ecb->dte_predicate = NULL;
11102 ecb->dte_probe = probe;
11103
11104 /*
11105 * The default size is the size of the default action: recording
11106 * the header.
11107 */
11108 ecb->dte_size = ecb->dte_needed = sizeof (dtrace_rechdr_t);
11109 ecb->dte_alignment = sizeof (dtrace_epid_t);
11110
11111 epid = state->dts_epid++;
11112
11113 if (epid - 1 >= state->dts_necbs) {
11114 dtrace_ecb_t **oecbs = state->dts_ecbs, **ecbs;
11115 int necbs = state->dts_necbs << 1;
11116
11117 ASSERT(epid == state->dts_necbs + 1);
11118
11119 if (necbs == 0) {
11120 ASSERT(oecbs == NULL);
11121 necbs = 1;
11122 }
11123
11124 ecbs = kmem_zalloc(necbs * sizeof (*ecbs), KM_SLEEP);
11125
11126 if (oecbs != NULL)
11127 bcopy(oecbs, ecbs, state->dts_necbs * sizeof (*ecbs));
11128
11129 dtrace_membar_producer();
11130 state->dts_ecbs = ecbs;
11131
11132 if (oecbs != NULL) {
11133 /*
11134 * If this state is active, we must dtrace_sync()
11135 * before we can free the old dts_ecbs array: we're
11136 * coming in hot, and there may be active ring
11137 * buffer processing (which indexes into the dts_ecbs
11138 * array) on another CPU.
11139 */
11140 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
11141 dtrace_sync();
11142
11143 kmem_free(oecbs, state->dts_necbs * sizeof (*ecbs));
11144 }
11145
11146 dtrace_membar_producer();
11147 state->dts_necbs = necbs;
11148 }
11149
11150 ecb->dte_state = state;
11151
11152 ASSERT(state->dts_ecbs[epid - 1] == NULL);
11153 dtrace_membar_producer();
11154 state->dts_ecbs[(ecb->dte_epid = epid) - 1] = ecb;
11155
11156 return (ecb);
11157 }
11158
11159 static void
11160 dtrace_ecb_enable(dtrace_ecb_t *ecb)
11161 {
11162 dtrace_probe_t *probe = ecb->dte_probe;
11163
11164 ASSERT(MUTEX_HELD(&cpu_lock));
11165 ASSERT(MUTEX_HELD(&dtrace_lock));
11166 ASSERT(ecb->dte_next == NULL);
11167
11168 if (probe == NULL) {
11169 /*
11170 * This is the NULL probe -- there's nothing to do.
11171 */
11172 return;
11173 }
11174
11175 if (probe->dtpr_ecb == NULL) {
11176 dtrace_provider_t *prov = probe->dtpr_provider;
11177
11178 /*
11179 * We're the first ECB on this probe.
11180 */
11181 probe->dtpr_ecb = probe->dtpr_ecb_last = ecb;
11182
11183 if (ecb->dte_predicate != NULL)
11184 probe->dtpr_predcache = ecb->dte_predicate->dtp_cacheid;
11185
11186 prov->dtpv_pops.dtps_enable(prov->dtpv_arg,
11187 probe->dtpr_id, probe->dtpr_arg);
11188 } else {
11189 /*
11190 * This probe is already active. Swing the last pointer to
11191 * point to the new ECB, and issue a dtrace_sync() to assure
11192 * that all CPUs have seen the change.
11193 */
11194 ASSERT(probe->dtpr_ecb_last != NULL);
11195 probe->dtpr_ecb_last->dte_next = ecb;
11196 probe->dtpr_ecb_last = ecb;
11197 probe->dtpr_predcache = 0;
11198
11199 dtrace_sync();
11200 }
11201 }
11202
11203 static int
11204 dtrace_ecb_resize(dtrace_ecb_t *ecb)
11205 {
11206 dtrace_action_t *act;
11207 uint32_t curneeded = UINT32_MAX;
11208 uint32_t aggbase = UINT32_MAX;
11209
11210 /*
11211 * If we record anything, we always record the dtrace_rechdr_t. (And
11212 * we always record it first.)
11213 */
11214 ecb->dte_size = sizeof (dtrace_rechdr_t);
11215 ecb->dte_alignment = sizeof (dtrace_epid_t);
11216
11217 for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
11218 dtrace_recdesc_t *rec = &act->dta_rec;
11219 ASSERT(rec->dtrd_size > 0 || rec->dtrd_alignment == 1);
11220
11221 ecb->dte_alignment = MAX(ecb->dte_alignment,
11222 rec->dtrd_alignment);
11223
11224 if (DTRACEACT_ISAGG(act->dta_kind)) {
11225 dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
11226
11227 ASSERT(rec->dtrd_size != 0);
11228 ASSERT(agg->dtag_first != NULL);
11229 ASSERT(act->dta_prev->dta_intuple);
11230 ASSERT(aggbase != UINT32_MAX);
11231 ASSERT(curneeded != UINT32_MAX);
11232
11233 agg->dtag_base = aggbase;
11234
11235 curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment);
11236 rec->dtrd_offset = curneeded;
11237 if (curneeded + rec->dtrd_size < curneeded)
11238 return (EINVAL);
11239 curneeded += rec->dtrd_size;
11240 ecb->dte_needed = MAX(ecb->dte_needed, curneeded);
11241
11242 aggbase = UINT32_MAX;
11243 curneeded = UINT32_MAX;
11244 } else if (act->dta_intuple) {
11245 if (curneeded == UINT32_MAX) {
11246 /*
11247 * This is the first record in a tuple. Align
11248 * curneeded to be at offset 4 in an 8-byte
11249 * aligned block.
11250 */
11251 ASSERT(act->dta_prev == NULL ||
11252 !act->dta_prev->dta_intuple);
11253 ASSERT3U(aggbase, ==, UINT32_MAX);
11254 curneeded = P2PHASEUP(ecb->dte_size,
11255 sizeof (uint64_t), sizeof (dtrace_aggid_t));
11256
11257 aggbase = curneeded - sizeof (dtrace_aggid_t);
11258 ASSERT(IS_P2ALIGNED(aggbase,
11259 sizeof (uint64_t)));
11260 }
11261 curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment);
11262 rec->dtrd_offset = curneeded;
11263 if (curneeded + rec->dtrd_size < curneeded)
11264 return (EINVAL);
11265 curneeded += rec->dtrd_size;
11266 } else {
11267 /* tuples must be followed by an aggregation */
11268 ASSERT(act->dta_prev == NULL ||
11269 !act->dta_prev->dta_intuple);
11270
11271 ecb->dte_size = P2ROUNDUP(ecb->dte_size,
11272 rec->dtrd_alignment);
11273 rec->dtrd_offset = ecb->dte_size;
11274 if (ecb->dte_size + rec->dtrd_size < ecb->dte_size)
11275 return (EINVAL);
11276 ecb->dte_size += rec->dtrd_size;
11277 ecb->dte_needed = MAX(ecb->dte_needed, ecb->dte_size);
11278 }
11279 }
11280
11281 if ((act = ecb->dte_action) != NULL &&
11282 !(act->dta_kind == DTRACEACT_SPECULATE && act->dta_next == NULL) &&
11283 ecb->dte_size == sizeof (dtrace_rechdr_t)) {
11284 /*
11285 * If the size is still sizeof (dtrace_rechdr_t), then all
11286 * actions store no data; set the size to 0.
11287 */
11288 ecb->dte_size = 0;
11289 }
11290
11291 ecb->dte_size = P2ROUNDUP(ecb->dte_size, sizeof (dtrace_epid_t));
11292 ecb->dte_needed = P2ROUNDUP(ecb->dte_needed, (sizeof (dtrace_epid_t)));
11293 ecb->dte_state->dts_needed = MAX(ecb->dte_state->dts_needed,
11294 ecb->dte_needed);
11295 return (0);
11296 }
11297
11298 static dtrace_action_t *
11299 dtrace_ecb_aggregation_create(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
11300 {
11301 dtrace_aggregation_t *agg;
11302 size_t size = sizeof (uint64_t);
11303 int ntuple = desc->dtad_ntuple;
11304 dtrace_action_t *act;
11305 dtrace_recdesc_t *frec;
11306 dtrace_aggid_t aggid;
11307 dtrace_state_t *state = ecb->dte_state;
11308
11309 agg = kmem_zalloc(sizeof (dtrace_aggregation_t), KM_SLEEP);
11310 agg->dtag_ecb = ecb;
11311
11312 ASSERT(DTRACEACT_ISAGG(desc->dtad_kind));
11313
11314 switch (desc->dtad_kind) {
11315 case DTRACEAGG_MIN:
11316 agg->dtag_initial = INT64_MAX;
11317 agg->dtag_aggregate = dtrace_aggregate_min;
11318 break;
11319
11320 case DTRACEAGG_MAX:
11321 agg->dtag_initial = INT64_MIN;
11322 agg->dtag_aggregate = dtrace_aggregate_max;
11323 break;
11324
11325 case DTRACEAGG_COUNT:
11326 agg->dtag_aggregate = dtrace_aggregate_count;
11327 break;
11328
11329 case DTRACEAGG_QUANTIZE:
11330 agg->dtag_aggregate = dtrace_aggregate_quantize;
11331 size = (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) *
11332 sizeof (uint64_t);
11333 break;
11334
11335 case DTRACEAGG_LQUANTIZE: {
11336 uint16_t step = DTRACE_LQUANTIZE_STEP(desc->dtad_arg);
11337 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(desc->dtad_arg);
11338
11339 agg->dtag_initial = desc->dtad_arg;
11340 agg->dtag_aggregate = dtrace_aggregate_lquantize;
11341
11342 if (step == 0 || levels == 0)
11343 goto err;
11344
11345 size = levels * sizeof (uint64_t) + 3 * sizeof (uint64_t);
11346 break;
11347 }
11348
11349 case DTRACEAGG_LLQUANTIZE: {
11350 uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(desc->dtad_arg);
11351 uint16_t low = DTRACE_LLQUANTIZE_LOW(desc->dtad_arg);
11352 uint16_t high = DTRACE_LLQUANTIZE_HIGH(desc->dtad_arg);
11353 uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(desc->dtad_arg);
11354 int64_t v;
11355
11356 agg->dtag_initial = desc->dtad_arg;
11357 agg->dtag_aggregate = dtrace_aggregate_llquantize;
11358
11359 if (factor < 2 || low >= high || nsteps < factor)
11360 goto err;
11361
11362 /*
11363 * Now check that the number of steps evenly divides a power
11364 * of the factor. (This assures both integer bucket size and
11365 * linearity within each magnitude.)
11366 */
11367 for (v = factor; v < nsteps; v *= factor)
11368 continue;
11369
11370 if ((v % nsteps) || (nsteps % factor))
11371 goto err;
11372
11373 size = (dtrace_aggregate_llquantize_bucket(factor,
11374 low, high, nsteps, INT64_MAX) + 2) * sizeof (uint64_t);
11375 break;
11376 }
11377
11378 case DTRACEAGG_AVG:
11379 agg->dtag_aggregate = dtrace_aggregate_avg;
11380 size = sizeof (uint64_t) * 2;
11381 break;
11382
11383 case DTRACEAGG_STDDEV:
11384 agg->dtag_aggregate = dtrace_aggregate_stddev;
11385 size = sizeof (uint64_t) * 4;
11386 break;
11387
11388 case DTRACEAGG_SUM:
11389 agg->dtag_aggregate = dtrace_aggregate_sum;
11390 break;
11391
11392 default:
11393 goto err;
11394 }
11395
11396 agg->dtag_action.dta_rec.dtrd_size = size;
11397
11398 if (ntuple == 0)
11399 goto err;
11400
11401 /*
11402 * We must make sure that we have enough actions for the n-tuple.
11403 */
11404 for (act = ecb->dte_action_last; act != NULL; act = act->dta_prev) {
11405 if (DTRACEACT_ISAGG(act->dta_kind))
11406 break;
11407
11408 if (--ntuple == 0) {
11409 /*
11410 * This is the action with which our n-tuple begins.
11411 */
11412 agg->dtag_first = act;
11413 goto success;
11414 }
11415 }
11416
11417 /*
11418 * This n-tuple is short by ntuple elements. Return failure.
11419 */
11420 ASSERT(ntuple != 0);
11421 err:
11422 kmem_free(agg, sizeof (dtrace_aggregation_t));
11423 return (NULL);
11424
11425 success:
11426 /*
11427 * If the last action in the tuple has a size of zero, it's actually
11428 * an expression argument for the aggregating action.
11429 */
11430 ASSERT(ecb->dte_action_last != NULL);
11431 act = ecb->dte_action_last;
11432
11433 if (act->dta_kind == DTRACEACT_DIFEXPR) {
11434 ASSERT(act->dta_difo != NULL);
11435
11436 if (act->dta_difo->dtdo_rtype.dtdt_size == 0)
11437 agg->dtag_hasarg = 1;
11438 }
11439
11440 /*
11441 * We need to allocate an id for this aggregation.
11442 */
11443 #ifdef illumos
11444 aggid = (dtrace_aggid_t)(uintptr_t)vmem_alloc(state->dts_aggid_arena, 1,
11445 VM_BESTFIT | VM_SLEEP);
11446 #else
11447 aggid = alloc_unr(state->dts_aggid_arena);
11448 #endif
11449
11450 if (aggid - 1 >= state->dts_naggregations) {
11451 dtrace_aggregation_t **oaggs = state->dts_aggregations;
11452 dtrace_aggregation_t **aggs;
11453 int naggs = state->dts_naggregations << 1;
11454 int onaggs = state->dts_naggregations;
11455
11456 ASSERT(aggid == state->dts_naggregations + 1);
11457
11458 if (naggs == 0) {
11459 ASSERT(oaggs == NULL);
11460 naggs = 1;
11461 }
11462
11463 aggs = kmem_zalloc(naggs * sizeof (*aggs), KM_SLEEP);
11464
11465 if (oaggs != NULL) {
11466 bcopy(oaggs, aggs, onaggs * sizeof (*aggs));
11467 kmem_free(oaggs, onaggs * sizeof (*aggs));
11468 }
11469
11470 state->dts_aggregations = aggs;
11471 state->dts_naggregations = naggs;
11472 }
11473
11474 ASSERT(state->dts_aggregations[aggid - 1] == NULL);
11475 state->dts_aggregations[(agg->dtag_id = aggid) - 1] = agg;
11476
11477 frec = &agg->dtag_first->dta_rec;
11478 if (frec->dtrd_alignment < sizeof (dtrace_aggid_t))
11479 frec->dtrd_alignment = sizeof (dtrace_aggid_t);
11480
11481 for (act = agg->dtag_first; act != NULL; act = act->dta_next) {
11482 ASSERT(!act->dta_intuple);
11483 act->dta_intuple = 1;
11484 }
11485
11486 return (&agg->dtag_action);
11487 }
11488
11489 static void
11490 dtrace_ecb_aggregation_destroy(dtrace_ecb_t *ecb, dtrace_action_t *act)
11491 {
11492 dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
11493 dtrace_state_t *state = ecb->dte_state;
11494 dtrace_aggid_t aggid = agg->dtag_id;
11495
11496 ASSERT(DTRACEACT_ISAGG(act->dta_kind));
11497 #ifdef illumos
11498 vmem_free(state->dts_aggid_arena, (void *)(uintptr_t)aggid, 1);
11499 #else
11500 free_unr(state->dts_aggid_arena, aggid);
11501 #endif
11502
11503 ASSERT(state->dts_aggregations[aggid - 1] == agg);
11504 state->dts_aggregations[aggid - 1] = NULL;
11505
11506 kmem_free(agg, sizeof (dtrace_aggregation_t));
11507 }
11508
11509 static int
11510 dtrace_ecb_action_add(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
11511 {
11512 dtrace_action_t *action, *last;
11513 dtrace_difo_t *dp = desc->dtad_difo;
11514 uint32_t size = 0, align = sizeof (uint8_t), mask;
11515 uint16_t format = 0;
11516 dtrace_recdesc_t *rec;
11517 dtrace_state_t *state = ecb->dte_state;
11518 dtrace_optval_t *opt = state->dts_options, nframes = 0, strsize;
11519 uint64_t arg = desc->dtad_arg;
11520
11521 ASSERT(MUTEX_HELD(&dtrace_lock));
11522 ASSERT(ecb->dte_action == NULL || ecb->dte_action->dta_refcnt == 1);
11523
11524 if (DTRACEACT_ISAGG(desc->dtad_kind)) {
11525 /*
11526 * If this is an aggregating action, there must be neither
11527 * a speculate nor a commit on the action chain.
11528 */
11529 dtrace_action_t *act;
11530
11531 for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
11532 if (act->dta_kind == DTRACEACT_COMMIT)
11533 return (EINVAL);
11534
11535 if (act->dta_kind == DTRACEACT_SPECULATE)
11536 return (EINVAL);
11537 }
11538
11539 action = dtrace_ecb_aggregation_create(ecb, desc);
11540
11541 if (action == NULL)
11542 return (EINVAL);
11543 } else {
11544 if (DTRACEACT_ISDESTRUCTIVE(desc->dtad_kind) ||
11545 (desc->dtad_kind == DTRACEACT_DIFEXPR &&
11546 dp != NULL && dp->dtdo_destructive)) {
11547 state->dts_destructive = 1;
11548 }
11549
11550 switch (desc->dtad_kind) {
11551 case DTRACEACT_PRINTF:
11552 case DTRACEACT_PRINTA:
11553 case DTRACEACT_SYSTEM:
11554 case DTRACEACT_FREOPEN:
11555 case DTRACEACT_DIFEXPR:
11556 /*
11557 * We know that our arg is a string -- turn it into a
11558 * format.
11559 */
11560 if (arg == 0) {
11561 ASSERT(desc->dtad_kind == DTRACEACT_PRINTA ||
11562 desc->dtad_kind == DTRACEACT_DIFEXPR);
11563 format = 0;
11564 } else {
11565 ASSERT(arg != 0);
11566 #ifdef illumos
11567 ASSERT(arg > KERNELBASE);
11568 #endif
11569 format = dtrace_format_add(state,
11570 (char *)(uintptr_t)arg);
11571 }
11572
11573 /*FALLTHROUGH*/
11574 case DTRACEACT_LIBACT:
11575 case DTRACEACT_TRACEMEM:
11576 case DTRACEACT_TRACEMEM_DYNSIZE:
11577 if (dp == NULL)
11578 return (EINVAL);
11579
11580 if ((size = dp->dtdo_rtype.dtdt_size) != 0)
11581 break;
11582
11583 if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) {
11584 if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
11585 return (EINVAL);
11586
11587 size = opt[DTRACEOPT_STRSIZE];
11588 }
11589
11590 break;
11591
11592 case DTRACEACT_STACK:
11593 if ((nframes = arg) == 0) {
11594 nframes = opt[DTRACEOPT_STACKFRAMES];
11595 ASSERT(nframes > 0);
11596 arg = nframes;
11597 }
11598
11599 size = nframes * sizeof (pc_t);
11600 break;
11601
11602 case DTRACEACT_JSTACK:
11603 if ((strsize = DTRACE_USTACK_STRSIZE(arg)) == 0)
11604 strsize = opt[DTRACEOPT_JSTACKSTRSIZE];
11605
11606 if ((nframes = DTRACE_USTACK_NFRAMES(arg)) == 0)
11607 nframes = opt[DTRACEOPT_JSTACKFRAMES];
11608
11609 arg = DTRACE_USTACK_ARG(nframes, strsize);
11610
11611 /*FALLTHROUGH*/
11612 case DTRACEACT_USTACK:
11613 if (desc->dtad_kind != DTRACEACT_JSTACK &&
11614 (nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) {
11615 strsize = DTRACE_USTACK_STRSIZE(arg);
11616 nframes = opt[DTRACEOPT_USTACKFRAMES];
11617 ASSERT(nframes > 0);
11618 arg = DTRACE_USTACK_ARG(nframes, strsize);
11619 }
11620
11621 /*
11622 * Save a slot for the pid.
11623 */
11624 size = (nframes + 1) * sizeof (uint64_t);
11625 size += DTRACE_USTACK_STRSIZE(arg);
11626 size = P2ROUNDUP(size, (uint32_t)(sizeof (uintptr_t)));
11627
11628 break;
11629
11630 case DTRACEACT_SYM:
11631 case DTRACEACT_MOD:
11632 if (dp == NULL || ((size = dp->dtdo_rtype.dtdt_size) !=
11633 sizeof (uint64_t)) ||
11634 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
11635 return (EINVAL);
11636 break;
11637
11638 case DTRACEACT_USYM:
11639 case DTRACEACT_UMOD:
11640 case DTRACEACT_UADDR:
11641 if (dp == NULL ||
11642 (dp->dtdo_rtype.dtdt_size != sizeof (uint64_t)) ||
11643 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
11644 return (EINVAL);
11645
11646 /*
11647 * We have a slot for the pid, plus a slot for the
11648 * argument. To keep things simple (aligned with
11649 * bitness-neutral sizing), we store each as a 64-bit
11650 * quantity.
11651 */
11652 size = 2 * sizeof (uint64_t);
11653 break;
11654
11655 case DTRACEACT_STOP:
11656 case DTRACEACT_BREAKPOINT:
11657 case DTRACEACT_PANIC:
11658 break;
11659
11660 case DTRACEACT_CHILL:
11661 case DTRACEACT_DISCARD:
11662 case DTRACEACT_RAISE:
11663 if (dp == NULL)
11664 return (EINVAL);
11665 break;
11666
11667 case DTRACEACT_EXIT:
11668 if (dp == NULL ||
11669 (size = dp->dtdo_rtype.dtdt_size) != sizeof (int) ||
11670 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
11671 return (EINVAL);
11672 break;
11673
11674 case DTRACEACT_SPECULATE:
11675 if (ecb->dte_size > sizeof (dtrace_rechdr_t))
11676 return (EINVAL);
11677
11678 if (dp == NULL)
11679 return (EINVAL);
11680
11681 state->dts_speculates = 1;
11682 break;
11683
11684 case DTRACEACT_PRINTM:
11685 size = dp->dtdo_rtype.dtdt_size;
11686 break;
11687
11688 case DTRACEACT_COMMIT: {
11689 dtrace_action_t *act = ecb->dte_action;
11690
11691 for (; act != NULL; act = act->dta_next) {
11692 if (act->dta_kind == DTRACEACT_COMMIT)
11693 return (EINVAL);
11694 }
11695
11696 if (dp == NULL)
11697 return (EINVAL);
11698 break;
11699 }
11700
11701 default:
11702 return (EINVAL);
11703 }
11704
11705 if (size != 0 || desc->dtad_kind == DTRACEACT_SPECULATE) {
11706 /*
11707 * If this is a data-storing action or a speculate,
11708 * we must be sure that there isn't a commit on the
11709 * action chain.
11710 */
11711 dtrace_action_t *act = ecb->dte_action;
11712
11713 for (; act != NULL; act = act->dta_next) {
11714 if (act->dta_kind == DTRACEACT_COMMIT)
11715 return (EINVAL);
11716 }
11717 }
11718
11719 action = kmem_zalloc(sizeof (dtrace_action_t), KM_SLEEP);
11720 action->dta_rec.dtrd_size = size;
11721 }
11722
11723 action->dta_refcnt = 1;
11724 rec = &action->dta_rec;
11725 size = rec->dtrd_size;
11726
11727 for (mask = sizeof (uint64_t) - 1; size != 0 && mask > 0; mask >>= 1) {
11728 if (!(size & mask)) {
11729 align = mask + 1;
11730 break;
11731 }
11732 }
11733
11734 action->dta_kind = desc->dtad_kind;
11735
11736 if ((action->dta_difo = dp) != NULL)
11737 dtrace_difo_hold(dp);
11738
11739 rec->dtrd_action = action->dta_kind;
11740 rec->dtrd_arg = arg;
11741 rec->dtrd_uarg = desc->dtad_uarg;
11742 rec->dtrd_alignment = (uint16_t)align;
11743 rec->dtrd_format = format;
11744
11745 if ((last = ecb->dte_action_last) != NULL) {
11746 ASSERT(ecb->dte_action != NULL);
11747 action->dta_prev = last;
11748 last->dta_next = action;
11749 } else {
11750 ASSERT(ecb->dte_action == NULL);
11751 ecb->dte_action = action;
11752 }
11753
11754 ecb->dte_action_last = action;
11755
11756 return (0);
11757 }
11758
11759 static void
11760 dtrace_ecb_action_remove(dtrace_ecb_t *ecb)
11761 {
11762 dtrace_action_t *act = ecb->dte_action, *next;
11763 dtrace_vstate_t *vstate = &ecb->dte_state->dts_vstate;
11764 dtrace_difo_t *dp;
11765 uint16_t format;
11766
11767 if (act != NULL && act->dta_refcnt > 1) {
11768 ASSERT(act->dta_next == NULL || act->dta_next->dta_refcnt == 1);
11769 act->dta_refcnt--;
11770 } else {
11771 for (; act != NULL; act = next) {
11772 next = act->dta_next;
11773 ASSERT(next != NULL || act == ecb->dte_action_last);
11774 ASSERT(act->dta_refcnt == 1);
11775
11776 if ((format = act->dta_rec.dtrd_format) != 0)
11777 dtrace_format_remove(ecb->dte_state, format);
11778
11779 if ((dp = act->dta_difo) != NULL)
11780 dtrace_difo_release(dp, vstate);
11781
11782 if (DTRACEACT_ISAGG(act->dta_kind)) {
11783 dtrace_ecb_aggregation_destroy(ecb, act);
11784 } else {
11785 kmem_free(act, sizeof (dtrace_action_t));
11786 }
11787 }
11788 }
11789
11790 ecb->dte_action = NULL;
11791 ecb->dte_action_last = NULL;
11792 ecb->dte_size = 0;
11793 }
11794
11795 static void
11796 dtrace_ecb_disable(dtrace_ecb_t *ecb)
11797 {
11798 /*
11799 * We disable the ECB by removing it from its probe.
11800 */
11801 dtrace_ecb_t *pecb, *prev = NULL;
11802 dtrace_probe_t *probe = ecb->dte_probe;
11803
11804 ASSERT(MUTEX_HELD(&dtrace_lock));
11805
11806 if (probe == NULL) {
11807 /*
11808 * This is the NULL probe; there is nothing to disable.
11809 */
11810 return;
11811 }
11812
11813 for (pecb = probe->dtpr_ecb; pecb != NULL; pecb = pecb->dte_next) {
11814 if (pecb == ecb)
11815 break;
11816 prev = pecb;
11817 }
11818
11819 ASSERT(pecb != NULL);
11820
11821 if (prev == NULL) {
11822 probe->dtpr_ecb = ecb->dte_next;
11823 } else {
11824 prev->dte_next = ecb->dte_next;
11825 }
11826
11827 if (ecb == probe->dtpr_ecb_last) {
11828 ASSERT(ecb->dte_next == NULL);
11829 probe->dtpr_ecb_last = prev;
11830 }
11831
11832 /*
11833 * The ECB has been disconnected from the probe; now sync to assure
11834 * that all CPUs have seen the change before returning.
11835 */
11836 dtrace_sync();
11837
11838 if (probe->dtpr_ecb == NULL) {
11839 /*
11840 * That was the last ECB on the probe; clear the predicate
11841 * cache ID for the probe, disable it and sync one more time
11842 * to assure that we'll never hit it again.
11843 */
11844 dtrace_provider_t *prov = probe->dtpr_provider;
11845
11846 ASSERT(ecb->dte_next == NULL);
11847 ASSERT(probe->dtpr_ecb_last == NULL);
11848 probe->dtpr_predcache = DTRACE_CACHEIDNONE;
11849 prov->dtpv_pops.dtps_disable(prov->dtpv_arg,
11850 probe->dtpr_id, probe->dtpr_arg);
11851 dtrace_sync();
11852 } else {
11853 /*
11854 * There is at least one ECB remaining on the probe. If there
11855 * is _exactly_ one, set the probe's predicate cache ID to be
11856 * the predicate cache ID of the remaining ECB.
11857 */
11858 ASSERT(probe->dtpr_ecb_last != NULL);
11859 ASSERT(probe->dtpr_predcache == DTRACE_CACHEIDNONE);
11860
11861 if (probe->dtpr_ecb == probe->dtpr_ecb_last) {
11862 dtrace_predicate_t *p = probe->dtpr_ecb->dte_predicate;
11863
11864 ASSERT(probe->dtpr_ecb->dte_next == NULL);
11865
11866 if (p != NULL)
11867 probe->dtpr_predcache = p->dtp_cacheid;
11868 }
11869
11870 ecb->dte_next = NULL;
11871 }
11872 }
11873
11874 static void
11875 dtrace_ecb_destroy(dtrace_ecb_t *ecb)
11876 {
11877 dtrace_state_t *state = ecb->dte_state;
11878 dtrace_vstate_t *vstate = &state->dts_vstate;
11879 dtrace_predicate_t *pred;
11880 dtrace_epid_t epid = ecb->dte_epid;
11881
11882 ASSERT(MUTEX_HELD(&dtrace_lock));
11883 ASSERT(ecb->dte_next == NULL);
11884 ASSERT(ecb->dte_probe == NULL || ecb->dte_probe->dtpr_ecb != ecb);
11885
11886 if ((pred = ecb->dte_predicate) != NULL)
11887 dtrace_predicate_release(pred, vstate);
11888
11889 dtrace_ecb_action_remove(ecb);
11890
11891 ASSERT(state->dts_ecbs[epid - 1] == ecb);
11892 state->dts_ecbs[epid - 1] = NULL;
11893
11894 kmem_free(ecb, sizeof (dtrace_ecb_t));
11895 }
11896
11897 static dtrace_ecb_t *
11898 dtrace_ecb_create(dtrace_state_t *state, dtrace_probe_t *probe,
11899 dtrace_enabling_t *enab)
11900 {
11901 dtrace_ecb_t *ecb;
11902 dtrace_predicate_t *pred;
11903 dtrace_actdesc_t *act;
11904 dtrace_provider_t *prov;
11905 dtrace_ecbdesc_t *desc = enab->dten_current;
11906
11907 ASSERT(MUTEX_HELD(&dtrace_lock));
11908 ASSERT(state != NULL);
11909
11910 ecb = dtrace_ecb_add(state, probe);
11911 ecb->dte_uarg = desc->dted_uarg;
11912
11913 if ((pred = desc->dted_pred.dtpdd_predicate) != NULL) {
11914 dtrace_predicate_hold(pred);
11915 ecb->dte_predicate = pred;
11916 }
11917
11918 if (probe != NULL) {
11919 /*
11920 * If the provider shows more leg than the consumer is old
11921 * enough to see, we need to enable the appropriate implicit
11922 * predicate bits to prevent the ecb from activating at
11923 * revealing times.
11924 *
11925 * Providers specifying DTRACE_PRIV_USER at register time
11926 * are stating that they need the /proc-style privilege
11927 * model to be enforced, and this is what DTRACE_COND_OWNER
11928 * and DTRACE_COND_ZONEOWNER will then do at probe time.
11929 */
11930 prov = probe->dtpr_provider;
11931 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLPROC) &&
11932 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
11933 ecb->dte_cond |= DTRACE_COND_OWNER;
11934
11935 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLZONE) &&
11936 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
11937 ecb->dte_cond |= DTRACE_COND_ZONEOWNER;
11938
11939 /*
11940 * If the provider shows us kernel innards and the user
11941 * is lacking sufficient privilege, enable the
11942 * DTRACE_COND_USERMODE implicit predicate.
11943 */
11944 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) &&
11945 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_KERNEL))
11946 ecb->dte_cond |= DTRACE_COND_USERMODE;
11947 }
11948
11949 if (dtrace_ecb_create_cache != NULL) {
11950 /*
11951 * If we have a cached ecb, we'll use its action list instead
11952 * of creating our own (saving both time and space).
11953 */
11954 dtrace_ecb_t *cached = dtrace_ecb_create_cache;
11955 dtrace_action_t *act = cached->dte_action;
11956
11957 if (act != NULL) {
11958 ASSERT(act->dta_refcnt > 0);
11959 act->dta_refcnt++;
11960 ecb->dte_action = act;
11961 ecb->dte_action_last = cached->dte_action_last;
11962 ecb->dte_needed = cached->dte_needed;
11963 ecb->dte_size = cached->dte_size;
11964 ecb->dte_alignment = cached->dte_alignment;
11965 }
11966
11967 return (ecb);
11968 }
11969
11970 for (act = desc->dted_action; act != NULL; act = act->dtad_next) {
11971 if ((enab->dten_error = dtrace_ecb_action_add(ecb, act)) != 0) {
11972 dtrace_ecb_destroy(ecb);
11973 return (NULL);
11974 }
11975 }
11976
11977 if ((enab->dten_error = dtrace_ecb_resize(ecb)) != 0) {
11978 dtrace_ecb_destroy(ecb);
11979 return (NULL);
11980 }
11981
11982 return (dtrace_ecb_create_cache = ecb);
11983 }
11984
11985 static int
11986 dtrace_ecb_create_enable(dtrace_probe_t *probe, void *arg)
11987 {
11988 dtrace_ecb_t *ecb;
11989 dtrace_enabling_t *enab = arg;
11990 dtrace_state_t *state = enab->dten_vstate->dtvs_state;
11991
11992 ASSERT(state != NULL);
11993
11994 if (probe != NULL && probe->dtpr_gen < enab->dten_probegen) {
11995 /*
11996 * This probe was created in a generation for which this
11997 * enabling has previously created ECBs; we don't want to
11998 * enable it again, so just kick out.
11999 */
12000 return (DTRACE_MATCH_NEXT);
12001 }
12002
12003 if ((ecb = dtrace_ecb_create(state, probe, enab)) == NULL)
12004 return (DTRACE_MATCH_DONE);
12005
12006 dtrace_ecb_enable(ecb);
12007 return (DTRACE_MATCH_NEXT);
12008 }
12009
12010 static dtrace_ecb_t *
12011 dtrace_epid2ecb(dtrace_state_t *state, dtrace_epid_t id)
12012 {
12013 dtrace_ecb_t *ecb;
12014
12015 ASSERT(MUTEX_HELD(&dtrace_lock));
12016
12017 if (id == 0 || id > state->dts_necbs)
12018 return (NULL);
12019
12020 ASSERT(state->dts_necbs > 0 && state->dts_ecbs != NULL);
12021 ASSERT((ecb = state->dts_ecbs[id - 1]) == NULL || ecb->dte_epid == id);
12022
12023 return (state->dts_ecbs[id - 1]);
12024 }
12025
12026 static dtrace_aggregation_t *
12027 dtrace_aggid2agg(dtrace_state_t *state, dtrace_aggid_t id)
12028 {
12029 dtrace_aggregation_t *agg;
12030
12031 ASSERT(MUTEX_HELD(&dtrace_lock));
12032
12033 if (id == 0 || id > state->dts_naggregations)
12034 return (NULL);
12035
12036 ASSERT(state->dts_naggregations > 0 && state->dts_aggregations != NULL);
12037 ASSERT((agg = state->dts_aggregations[id - 1]) == NULL ||
12038 agg->dtag_id == id);
12039
12040 return (state->dts_aggregations[id - 1]);
12041 }
12042
12043 /*
12044 * DTrace Buffer Functions
12045 *
12046 * The following functions manipulate DTrace buffers. Most of these functions
12047 * are called in the context of establishing or processing consumer state;
12048 * exceptions are explicitly noted.
12049 */
12050
12051 /*
12052 * Note: called from cross call context. This function switches the two
12053 * buffers on a given CPU. The atomicity of this operation is assured by
12054 * disabling interrupts while the actual switch takes place; the disabling of
12055 * interrupts serializes the execution with any execution of dtrace_probe() on
12056 * the same CPU.
12057 */
12058 static void
12059 dtrace_buffer_switch(dtrace_buffer_t *buf)
12060 {
12061 caddr_t tomax = buf->dtb_tomax;
12062 caddr_t xamot = buf->dtb_xamot;
12063 dtrace_icookie_t cookie;
12064 hrtime_t now;
12065
12066 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
12067 ASSERT(!(buf->dtb_flags & DTRACEBUF_RING));
12068
12069 cookie = dtrace_interrupt_disable();
12070 now = dtrace_gethrtime();
12071 buf->dtb_tomax = xamot;
12072 buf->dtb_xamot = tomax;
12073 buf->dtb_xamot_drops = buf->dtb_drops;
12074 buf->dtb_xamot_offset = buf->dtb_offset;
12075 buf->dtb_xamot_errors = buf->dtb_errors;
12076 buf->dtb_xamot_flags = buf->dtb_flags;
12077 buf->dtb_offset = 0;
12078 buf->dtb_drops = 0;
12079 buf->dtb_errors = 0;
12080 buf->dtb_flags &= ~(DTRACEBUF_ERROR | DTRACEBUF_DROPPED);
12081 buf->dtb_interval = now - buf->dtb_switched;
12082 buf->dtb_switched = now;
12083 dtrace_interrupt_enable(cookie);
12084 }
12085
12086 /*
12087 * Note: called from cross call context. This function activates a buffer
12088 * on a CPU. As with dtrace_buffer_switch(), the atomicity of the operation
12089 * is guaranteed by the disabling of interrupts.
12090 */
12091 static void
12092 dtrace_buffer_activate(dtrace_state_t *state)
12093 {
12094 dtrace_buffer_t *buf;
12095 dtrace_icookie_t cookie = dtrace_interrupt_disable();
12096
12097 buf = &state->dts_buffer[curcpu];
12098
12099 if (buf->dtb_tomax != NULL) {
12100 /*
12101 * We might like to assert that the buffer is marked inactive,
12102 * but this isn't necessarily true: the buffer for the CPU
12103 * that processes the BEGIN probe has its buffer activated
12104 * manually. In this case, we take the (harmless) action
12105 * re-clearing the bit INACTIVE bit.
12106 */
12107 buf->dtb_flags &= ~DTRACEBUF_INACTIVE;
12108 }
12109
12110 dtrace_interrupt_enable(cookie);
12111 }
12112
12113 #ifdef __FreeBSD__
12114 /*
12115 * Activate the specified per-CPU buffer. This is used instead of
12116 * dtrace_buffer_activate() when APs have not yet started, i.e. when
12117 * activating anonymous state.
12118 */
12119 static void
12120 dtrace_buffer_activate_cpu(dtrace_state_t *state, int cpu)
12121 {
12122
12123 if (state->dts_buffer[cpu].dtb_tomax != NULL)
12124 state->dts_buffer[cpu].dtb_flags &= ~DTRACEBUF_INACTIVE;
12125 }
12126 #endif
12127
12128 static int
12129 dtrace_buffer_alloc(dtrace_buffer_t *bufs, size_t size, int flags,
12130 processorid_t cpu, int *factor)
12131 {
12132 #ifdef illumos
12133 cpu_t *cp;
12134 #endif
12135 dtrace_buffer_t *buf;
12136 int allocated = 0, desired = 0;
12137
12138 #ifdef illumos
12139 ASSERT(MUTEX_HELD(&cpu_lock));
12140 ASSERT(MUTEX_HELD(&dtrace_lock));
12141
12142 *factor = 1;
12143
12144 if (size > dtrace_nonroot_maxsize &&
12145 !PRIV_POLICY_CHOICE(CRED(), PRIV_ALL, B_FALSE))
12146 return (EFBIG);
12147
12148 cp = cpu_list;
12149
12150 do {
12151 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
12152 continue;
12153
12154 buf = &bufs[cp->cpu_id];
12155
12156 /*
12157 * If there is already a buffer allocated for this CPU, it
12158 * is only possible that this is a DR event. In this case,
12159 */
12160 if (buf->dtb_tomax != NULL) {
12161 ASSERT(buf->dtb_size == size);
12162 continue;
12163 }
12164
12165 ASSERT(buf->dtb_xamot == NULL);
12166
12167 if ((buf->dtb_tomax = kmem_zalloc(size,
12168 KM_NOSLEEP | KM_NORMALPRI)) == NULL)
12169 goto err;
12170
12171 buf->dtb_size = size;
12172 buf->dtb_flags = flags;
12173 buf->dtb_offset = 0;
12174 buf->dtb_drops = 0;
12175
12176 if (flags & DTRACEBUF_NOSWITCH)
12177 continue;
12178
12179 if ((buf->dtb_xamot = kmem_zalloc(size,
12180 KM_NOSLEEP | KM_NORMALPRI)) == NULL)
12181 goto err;
12182 } while ((cp = cp->cpu_next) != cpu_list);
12183
12184 return (0);
12185
12186 err:
12187 cp = cpu_list;
12188
12189 do {
12190 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
12191 continue;
12192
12193 buf = &bufs[cp->cpu_id];
12194 desired += 2;
12195
12196 if (buf->dtb_xamot != NULL) {
12197 ASSERT(buf->dtb_tomax != NULL);
12198 ASSERT(buf->dtb_size == size);
12199 kmem_free(buf->dtb_xamot, size);
12200 allocated++;
12201 }
12202
12203 if (buf->dtb_tomax != NULL) {
12204 ASSERT(buf->dtb_size == size);
12205 kmem_free(buf->dtb_tomax, size);
12206 allocated++;
12207 }
12208
12209 buf->dtb_tomax = NULL;
12210 buf->dtb_xamot = NULL;
12211 buf->dtb_size = 0;
12212 } while ((cp = cp->cpu_next) != cpu_list);
12213 #else
12214 int i;
12215
12216 *factor = 1;
12217 #if defined(__aarch64__) || defined(__amd64__) || defined(__arm__) || \
12218 defined(__mips__) || defined(__powerpc__) || defined(__riscv)
12219 /*
12220 * FreeBSD isn't good at limiting the amount of memory we
12221 * ask to malloc, so let's place a limit here before trying
12222 * to do something that might well end in tears at bedtime.
12223 */
12224 int bufsize_percpu_frac = dtrace_bufsize_max_frac * mp_ncpus;
12225 if (size > physmem * PAGE_SIZE / bufsize_percpu_frac)
12226 return (ENOMEM);
12227 #endif
12228
12229 ASSERT(MUTEX_HELD(&dtrace_lock));
12230 CPU_FOREACH(i) {
12231 if (cpu != DTRACE_CPUALL && cpu != i)
12232 continue;
12233
12234 buf = &bufs[i];
12235
12236 /*
12237 * If there is already a buffer allocated for this CPU, it
12238 * is only possible that this is a DR event. In this case,
12239 * the buffer size must match our specified size.
12240 */
12241 if (buf->dtb_tomax != NULL) {
12242 ASSERT(buf->dtb_size == size);
12243 continue;
12244 }
12245
12246 ASSERT(buf->dtb_xamot == NULL);
12247
12248 if ((buf->dtb_tomax = kmem_zalloc(size,
12249 KM_NOSLEEP | KM_NORMALPRI)) == NULL)
12250 goto err;
12251
12252 buf->dtb_size = size;
12253 buf->dtb_flags = flags;
12254 buf->dtb_offset = 0;
12255 buf->dtb_drops = 0;
12256
12257 if (flags & DTRACEBUF_NOSWITCH)
12258 continue;
12259
12260 if ((buf->dtb_xamot = kmem_zalloc(size,
12261 KM_NOSLEEP | KM_NORMALPRI)) == NULL)
12262 goto err;
12263 }
12264
12265 return (0);
12266
12267 err:
12268 /*
12269 * Error allocating memory, so free the buffers that were
12270 * allocated before the failed allocation.
12271 */
12272 CPU_FOREACH(i) {
12273 if (cpu != DTRACE_CPUALL && cpu != i)
12274 continue;
12275
12276 buf = &bufs[i];
12277 desired += 2;
12278
12279 if (buf->dtb_xamot != NULL) {
12280 ASSERT(buf->dtb_tomax != NULL);
12281 ASSERT(buf->dtb_size == size);
12282 kmem_free(buf->dtb_xamot, size);
12283 allocated++;
12284 }
12285
12286 if (buf->dtb_tomax != NULL) {
12287 ASSERT(buf->dtb_size == size);
12288 kmem_free(buf->dtb_tomax, size);
12289 allocated++;
12290 }
12291
12292 buf->dtb_tomax = NULL;
12293 buf->dtb_xamot = NULL;
12294 buf->dtb_size = 0;
12295
12296 }
12297 #endif
12298 *factor = desired / (allocated > 0 ? allocated : 1);
12299
12300 return (ENOMEM);
12301 }
12302
12303 /*
12304 * Note: called from probe context. This function just increments the drop
12305 * count on a buffer. It has been made a function to allow for the
12306 * possibility of understanding the source of mysterious drop counts. (A
12307 * problem for which one may be particularly disappointed that DTrace cannot
12308 * be used to understand DTrace.)
12309 */
12310 static void
12311 dtrace_buffer_drop(dtrace_buffer_t *buf)
12312 {
12313 buf->dtb_drops++;
12314 }
12315
12316 /*
12317 * Note: called from probe context. This function is called to reserve space
12318 * in a buffer. If mstate is non-NULL, sets the scratch base and size in the
12319 * mstate. Returns the new offset in the buffer, or a negative value if an
12320 * error has occurred.
12321 */
12322 static ssize_t
12323 dtrace_buffer_reserve(dtrace_buffer_t *buf, size_t needed, size_t align,
12324 dtrace_state_t *state, dtrace_mstate_t *mstate)
12325 {
12326 ssize_t offs = buf->dtb_offset, soffs;
12327 intptr_t woffs;
12328 caddr_t tomax;
12329 size_t total;
12330
12331 if (buf->dtb_flags & DTRACEBUF_INACTIVE)
12332 return (-1);
12333
12334 if ((tomax = buf->dtb_tomax) == NULL) {
12335 dtrace_buffer_drop(buf);
12336 return (-1);
12337 }
12338
12339 if (!(buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL))) {
12340 while (offs & (align - 1)) {
12341 /*
12342 * Assert that our alignment is off by a number which
12343 * is itself sizeof (uint32_t) aligned.
12344 */
12345 ASSERT(!((align - (offs & (align - 1))) &
12346 (sizeof (uint32_t) - 1)));
12347 DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
12348 offs += sizeof (uint32_t);
12349 }
12350
12351 if ((soffs = offs + needed) > buf->dtb_size) {
12352 dtrace_buffer_drop(buf);
12353 return (-1);
12354 }
12355
12356 if (mstate == NULL)
12357 return (offs);
12358
12359 mstate->dtms_scratch_base = (uintptr_t)tomax + soffs;
12360 mstate->dtms_scratch_size = buf->dtb_size - soffs;
12361 mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
12362
12363 return (offs);
12364 }
12365
12366 if (buf->dtb_flags & DTRACEBUF_FILL) {
12367 if (state->dts_activity != DTRACE_ACTIVITY_COOLDOWN &&
12368 (buf->dtb_flags & DTRACEBUF_FULL))
12369 return (-1);
12370 goto out;
12371 }
12372
12373 total = needed + (offs & (align - 1));
12374
12375 /*
12376 * For a ring buffer, life is quite a bit more complicated. Before
12377 * we can store any padding, we need to adjust our wrapping offset.
12378 * (If we've never before wrapped or we're not about to, no adjustment
12379 * is required.)
12380 */
12381 if ((buf->dtb_flags & DTRACEBUF_WRAPPED) ||
12382 offs + total > buf->dtb_size) {
12383 woffs = buf->dtb_xamot_offset;
12384
12385 if (offs + total > buf->dtb_size) {
12386 /*
12387 * We can't fit in the end of the buffer. First, a
12388 * sanity check that we can fit in the buffer at all.
12389 */
12390 if (total > buf->dtb_size) {
12391 dtrace_buffer_drop(buf);
12392 return (-1);
12393 }
12394
12395 /*
12396 * We're going to be storing at the top of the buffer,
12397 * so now we need to deal with the wrapped offset. We
12398 * only reset our wrapped offset to 0 if it is
12399 * currently greater than the current offset. If it
12400 * is less than the current offset, it is because a
12401 * previous allocation induced a wrap -- but the
12402 * allocation didn't subsequently take the space due
12403 * to an error or false predicate evaluation. In this
12404 * case, we'll just leave the wrapped offset alone: if
12405 * the wrapped offset hasn't been advanced far enough
12406 * for this allocation, it will be adjusted in the
12407 * lower loop.
12408 */
12409 if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
12410 if (woffs >= offs)
12411 woffs = 0;
12412 } else {
12413 woffs = 0;
12414 }
12415
12416 /*
12417 * Now we know that we're going to be storing to the
12418 * top of the buffer and that there is room for us
12419 * there. We need to clear the buffer from the current
12420 * offset to the end (there may be old gunk there).
12421 */
12422 while (offs < buf->dtb_size)
12423 tomax[offs++] = 0;
12424
12425 /*
12426 * We need to set our offset to zero. And because we
12427 * are wrapping, we need to set the bit indicating as
12428 * much. We can also adjust our needed space back
12429 * down to the space required by the ECB -- we know
12430 * that the top of the buffer is aligned.
12431 */
12432 offs = 0;
12433 total = needed;
12434 buf->dtb_flags |= DTRACEBUF_WRAPPED;
12435 } else {
12436 /*
12437 * There is room for us in the buffer, so we simply
12438 * need to check the wrapped offset.
12439 */
12440 if (woffs < offs) {
12441 /*
12442 * The wrapped offset is less than the offset.
12443 * This can happen if we allocated buffer space
12444 * that induced a wrap, but then we didn't
12445 * subsequently take the space due to an error
12446 * or false predicate evaluation. This is
12447 * okay; we know that _this_ allocation isn't
12448 * going to induce a wrap. We still can't
12449 * reset the wrapped offset to be zero,
12450 * however: the space may have been trashed in
12451 * the previous failed probe attempt. But at
12452 * least the wrapped offset doesn't need to
12453 * be adjusted at all...
12454 */
12455 goto out;
12456 }
12457 }
12458
12459 while (offs + total > woffs) {
12460 dtrace_epid_t epid = *(uint32_t *)(tomax + woffs);
12461 size_t size;
12462
12463 if (epid == DTRACE_EPIDNONE) {
12464 size = sizeof (uint32_t);
12465 } else {
12466 ASSERT3U(epid, <=, state->dts_necbs);
12467 ASSERT(state->dts_ecbs[epid - 1] != NULL);
12468
12469 size = state->dts_ecbs[epid - 1]->dte_size;
12470 }
12471
12472 ASSERT(woffs + size <= buf->dtb_size);
12473 ASSERT(size != 0);
12474
12475 if (woffs + size == buf->dtb_size) {
12476 /*
12477 * We've reached the end of the buffer; we want
12478 * to set the wrapped offset to 0 and break
12479 * out. However, if the offs is 0, then we're
12480 * in a strange edge-condition: the amount of
12481 * space that we want to reserve plus the size
12482 * of the record that we're overwriting is
12483 * greater than the size of the buffer. This
12484 * is problematic because if we reserve the
12485 * space but subsequently don't consume it (due
12486 * to a failed predicate or error) the wrapped
12487 * offset will be 0 -- yet the EPID at offset 0
12488 * will not be committed. This situation is
12489 * relatively easy to deal with: if we're in
12490 * this case, the buffer is indistinguishable
12491 * from one that hasn't wrapped; we need only
12492 * finish the job by clearing the wrapped bit,
12493 * explicitly setting the offset to be 0, and
12494 * zero'ing out the old data in the buffer.
12495 */
12496 if (offs == 0) {
12497 buf->dtb_flags &= ~DTRACEBUF_WRAPPED;
12498 buf->dtb_offset = 0;
12499 woffs = total;
12500
12501 while (woffs < buf->dtb_size)
12502 tomax[woffs++] = 0;
12503 }
12504
12505 woffs = 0;
12506 break;
12507 }
12508
12509 woffs += size;
12510 }
12511
12512 /*
12513 * We have a wrapped offset. It may be that the wrapped offset
12514 * has become zero -- that's okay.
12515 */
12516 buf->dtb_xamot_offset = woffs;
12517 }
12518
12519 out:
12520 /*
12521 * Now we can plow the buffer with any necessary padding.
12522 */
12523 while (offs & (align - 1)) {
12524 /*
12525 * Assert that our alignment is off by a number which
12526 * is itself sizeof (uint32_t) aligned.
12527 */
12528 ASSERT(!((align - (offs & (align - 1))) &
12529 (sizeof (uint32_t) - 1)));
12530 DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
12531 offs += sizeof (uint32_t);
12532 }
12533
12534 if (buf->dtb_flags & DTRACEBUF_FILL) {
12535 if (offs + needed > buf->dtb_size - state->dts_reserve) {
12536 buf->dtb_flags |= DTRACEBUF_FULL;
12537 return (-1);
12538 }
12539 }
12540
12541 if (mstate == NULL)
12542 return (offs);
12543
12544 /*
12545 * For ring buffers and fill buffers, the scratch space is always
12546 * the inactive buffer.
12547 */
12548 mstate->dtms_scratch_base = (uintptr_t)buf->dtb_xamot;
12549 mstate->dtms_scratch_size = buf->dtb_size;
12550 mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
12551
12552 return (offs);
12553 }
12554
12555 static void
12556 dtrace_buffer_polish(dtrace_buffer_t *buf)
12557 {
12558 ASSERT(buf->dtb_flags & DTRACEBUF_RING);
12559 ASSERT(MUTEX_HELD(&dtrace_lock));
12560
12561 if (!(buf->dtb_flags & DTRACEBUF_WRAPPED))
12562 return;
12563
12564 /*
12565 * We need to polish the ring buffer. There are three cases:
12566 *
12567 * - The first (and presumably most common) is that there is no gap
12568 * between the buffer offset and the wrapped offset. In this case,
12569 * there is nothing in the buffer that isn't valid data; we can
12570 * mark the buffer as polished and return.
12571 *
12572 * - The second (less common than the first but still more common
12573 * than the third) is that there is a gap between the buffer offset
12574 * and the wrapped offset, and the wrapped offset is larger than the
12575 * buffer offset. This can happen because of an alignment issue, or
12576 * can happen because of a call to dtrace_buffer_reserve() that
12577 * didn't subsequently consume the buffer space. In this case,
12578 * we need to zero the data from the buffer offset to the wrapped
12579 * offset.
12580 *
12581 * - The third (and least common) is that there is a gap between the
12582 * buffer offset and the wrapped offset, but the wrapped offset is
12583 * _less_ than the buffer offset. This can only happen because a
12584 * call to dtrace_buffer_reserve() induced a wrap, but the space
12585 * was not subsequently consumed. In this case, we need to zero the
12586 * space from the offset to the end of the buffer _and_ from the
12587 * top of the buffer to the wrapped offset.
12588 */
12589 if (buf->dtb_offset < buf->dtb_xamot_offset) {
12590 bzero(buf->dtb_tomax + buf->dtb_offset,
12591 buf->dtb_xamot_offset - buf->dtb_offset);
12592 }
12593
12594 if (buf->dtb_offset > buf->dtb_xamot_offset) {
12595 bzero(buf->dtb_tomax + buf->dtb_offset,
12596 buf->dtb_size - buf->dtb_offset);
12597 bzero(buf->dtb_tomax, buf->dtb_xamot_offset);
12598 }
12599 }
12600
12601 /*
12602 * This routine determines if data generated at the specified time has likely
12603 * been entirely consumed at user-level. This routine is called to determine
12604 * if an ECB on a defunct probe (but for an active enabling) can be safely
12605 * disabled and destroyed.
12606 */
12607 static int
12608 dtrace_buffer_consumed(dtrace_buffer_t *bufs, hrtime_t when)
12609 {
12610 int i;
12611
12612 CPU_FOREACH(i) {
12613 dtrace_buffer_t *buf = &bufs[i];
12614
12615 if (buf->dtb_size == 0)
12616 continue;
12617
12618 if (buf->dtb_flags & DTRACEBUF_RING)
12619 return (0);
12620
12621 if (!buf->dtb_switched && buf->dtb_offset != 0)
12622 return (0);
12623
12624 if (buf->dtb_switched - buf->dtb_interval < when)
12625 return (0);
12626 }
12627
12628 return (1);
12629 }
12630
12631 static void
12632 dtrace_buffer_free(dtrace_buffer_t *bufs)
12633 {
12634 int i;
12635
12636 CPU_FOREACH(i) {
12637 dtrace_buffer_t *buf = &bufs[i];
12638
12639 if (buf->dtb_tomax == NULL) {
12640 ASSERT(buf->dtb_xamot == NULL);
12641 ASSERT(buf->dtb_size == 0);
12642 continue;
12643 }
12644
12645 if (buf->dtb_xamot != NULL) {
12646 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
12647 kmem_free(buf->dtb_xamot, buf->dtb_size);
12648 }
12649
12650 kmem_free(buf->dtb_tomax, buf->dtb_size);
12651 buf->dtb_size = 0;
12652 buf->dtb_tomax = NULL;
12653 buf->dtb_xamot = NULL;
12654 }
12655 }
12656
12657 /*
12658 * DTrace Enabling Functions
12659 */
12660 static dtrace_enabling_t *
12661 dtrace_enabling_create(dtrace_vstate_t *vstate)
12662 {
12663 dtrace_enabling_t *enab;
12664
12665 enab = kmem_zalloc(sizeof (dtrace_enabling_t), KM_SLEEP);
12666 enab->dten_vstate = vstate;
12667
12668 return (enab);
12669 }
12670
12671 static void
12672 dtrace_enabling_add(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb)
12673 {
12674 dtrace_ecbdesc_t **ndesc;
12675 size_t osize, nsize;
12676
12677 /*
12678 * We can't add to enablings after we've enabled them, or after we've
12679 * retained them.
12680 */
12681 ASSERT(enab->dten_probegen == 0);
12682 ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
12683
12684 if (enab->dten_ndesc < enab->dten_maxdesc) {
12685 enab->dten_desc[enab->dten_ndesc++] = ecb;
12686 return;
12687 }
12688
12689 osize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
12690
12691 if (enab->dten_maxdesc == 0) {
12692 enab->dten_maxdesc = 1;
12693 } else {
12694 enab->dten_maxdesc <<= 1;
12695 }
12696
12697 ASSERT(enab->dten_ndesc < enab->dten_maxdesc);
12698
12699 nsize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
12700 ndesc = kmem_zalloc(nsize, KM_SLEEP);
12701 bcopy(enab->dten_desc, ndesc, osize);
12702 if (enab->dten_desc != NULL)
12703 kmem_free(enab->dten_desc, osize);
12704
12705 enab->dten_desc = ndesc;
12706 enab->dten_desc[enab->dten_ndesc++] = ecb;
12707 }
12708
12709 static void
12710 dtrace_enabling_addlike(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb,
12711 dtrace_probedesc_t *pd)
12712 {
12713 dtrace_ecbdesc_t *new;
12714 dtrace_predicate_t *pred;
12715 dtrace_actdesc_t *act;
12716
12717 /*
12718 * We're going to create a new ECB description that matches the
12719 * specified ECB in every way, but has the specified probe description.
12720 */
12721 new = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
12722
12723 if ((pred = ecb->dted_pred.dtpdd_predicate) != NULL)
12724 dtrace_predicate_hold(pred);
12725
12726 for (act = ecb->dted_action; act != NULL; act = act->dtad_next)
12727 dtrace_actdesc_hold(act);
12728
12729 new->dted_action = ecb->dted_action;
12730 new->dted_pred = ecb->dted_pred;
12731 new->dted_probe = *pd;
12732 new->dted_uarg = ecb->dted_uarg;
12733
12734 dtrace_enabling_add(enab, new);
12735 }
12736
12737 static void
12738 dtrace_enabling_dump(dtrace_enabling_t *enab)
12739 {
12740 int i;
12741
12742 for (i = 0; i < enab->dten_ndesc; i++) {
12743 dtrace_probedesc_t *desc = &enab->dten_desc[i]->dted_probe;
12744
12745 #ifdef __FreeBSD__
12746 printf("dtrace: enabling probe %d (%s:%s:%s:%s)\n", i,
12747 desc->dtpd_provider, desc->dtpd_mod,
12748 desc->dtpd_func, desc->dtpd_name);
12749 #else
12750 cmn_err(CE_NOTE, "enabling probe %d (%s:%s:%s:%s)", i,
12751 desc->dtpd_provider, desc->dtpd_mod,
12752 desc->dtpd_func, desc->dtpd_name);
12753 #endif
12754 }
12755 }
12756
12757 static void
12758 dtrace_enabling_destroy(dtrace_enabling_t *enab)
12759 {
12760 int i;
12761 dtrace_ecbdesc_t *ep;
12762 dtrace_vstate_t *vstate = enab->dten_vstate;
12763
12764 ASSERT(MUTEX_HELD(&dtrace_lock));
12765
12766 for (i = 0; i < enab->dten_ndesc; i++) {
12767 dtrace_actdesc_t *act, *next;
12768 dtrace_predicate_t *pred;
12769
12770 ep = enab->dten_desc[i];
12771
12772 if ((pred = ep->dted_pred.dtpdd_predicate) != NULL)
12773 dtrace_predicate_release(pred, vstate);
12774
12775 for (act = ep->dted_action; act != NULL; act = next) {
12776 next = act->dtad_next;
12777 dtrace_actdesc_release(act, vstate);
12778 }
12779
12780 kmem_free(ep, sizeof (dtrace_ecbdesc_t));
12781 }
12782
12783 if (enab->dten_desc != NULL)
12784 kmem_free(enab->dten_desc,
12785 enab->dten_maxdesc * sizeof (dtrace_enabling_t *));
12786
12787 /*
12788 * If this was a retained enabling, decrement the dts_nretained count
12789 * and take it off of the dtrace_retained list.
12790 */
12791 if (enab->dten_prev != NULL || enab->dten_next != NULL ||
12792 dtrace_retained == enab) {
12793 ASSERT(enab->dten_vstate->dtvs_state != NULL);
12794 ASSERT(enab->dten_vstate->dtvs_state->dts_nretained > 0);
12795 enab->dten_vstate->dtvs_state->dts_nretained--;
12796 dtrace_retained_gen++;
12797 }
12798
12799 if (enab->dten_prev == NULL) {
12800 if (dtrace_retained == enab) {
12801 dtrace_retained = enab->dten_next;
12802
12803 if (dtrace_retained != NULL)
12804 dtrace_retained->dten_prev = NULL;
12805 }
12806 } else {
12807 ASSERT(enab != dtrace_retained);
12808 ASSERT(dtrace_retained != NULL);
12809 enab->dten_prev->dten_next = enab->dten_next;
12810 }
12811
12812 if (enab->dten_next != NULL) {
12813 ASSERT(dtrace_retained != NULL);
12814 enab->dten_next->dten_prev = enab->dten_prev;
12815 }
12816
12817 kmem_free(enab, sizeof (dtrace_enabling_t));
12818 }
12819
12820 static int
12821 dtrace_enabling_retain(dtrace_enabling_t *enab)
12822 {
12823 dtrace_state_t *state;
12824
12825 ASSERT(MUTEX_HELD(&dtrace_lock));
12826 ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
12827 ASSERT(enab->dten_vstate != NULL);
12828
12829 state = enab->dten_vstate->dtvs_state;
12830 ASSERT(state != NULL);
12831
12832 /*
12833 * We only allow each state to retain dtrace_retain_max enablings.
12834 */
12835 if (state->dts_nretained >= dtrace_retain_max)
12836 return (ENOSPC);
12837
12838 state->dts_nretained++;
12839 dtrace_retained_gen++;
12840
12841 if (dtrace_retained == NULL) {
12842 dtrace_retained = enab;
12843 return (0);
12844 }
12845
12846 enab->dten_next = dtrace_retained;
12847 dtrace_retained->dten_prev = enab;
12848 dtrace_retained = enab;
12849
12850 return (0);
12851 }
12852
12853 static int
12854 dtrace_enabling_replicate(dtrace_state_t *state, dtrace_probedesc_t *match,
12855 dtrace_probedesc_t *create)
12856 {
12857 dtrace_enabling_t *new, *enab;
12858 int found = 0, err = ENOENT;
12859
12860 ASSERT(MUTEX_HELD(&dtrace_lock));
12861 ASSERT(strlen(match->dtpd_provider) < DTRACE_PROVNAMELEN);
12862 ASSERT(strlen(match->dtpd_mod) < DTRACE_MODNAMELEN);
12863 ASSERT(strlen(match->dtpd_func) < DTRACE_FUNCNAMELEN);
12864 ASSERT(strlen(match->dtpd_name) < DTRACE_NAMELEN);
12865
12866 new = dtrace_enabling_create(&state->dts_vstate);
12867
12868 /*
12869 * Iterate over all retained enablings, looking for enablings that
12870 * match the specified state.
12871 */
12872 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
12873 int i;
12874
12875 /*
12876 * dtvs_state can only be NULL for helper enablings -- and
12877 * helper enablings can't be retained.
12878 */
12879 ASSERT(enab->dten_vstate->dtvs_state != NULL);
12880
12881 if (enab->dten_vstate->dtvs_state != state)
12882 continue;
12883
12884 /*
12885 * Now iterate over each probe description; we're looking for
12886 * an exact match to the specified probe description.
12887 */
12888 for (i = 0; i < enab->dten_ndesc; i++) {
12889 dtrace_ecbdesc_t *ep = enab->dten_desc[i];
12890 dtrace_probedesc_t *pd = &ep->dted_probe;
12891
12892 if (strcmp(pd->dtpd_provider, match->dtpd_provider))
12893 continue;
12894
12895 if (strcmp(pd->dtpd_mod, match->dtpd_mod))
12896 continue;
12897
12898 if (strcmp(pd->dtpd_func, match->dtpd_func))
12899 continue;
12900
12901 if (strcmp(pd->dtpd_name, match->dtpd_name))
12902 continue;
12903
12904 /*
12905 * We have a winning probe! Add it to our growing
12906 * enabling.
12907 */
12908 found = 1;
12909 dtrace_enabling_addlike(new, ep, create);
12910 }
12911 }
12912
12913 if (!found || (err = dtrace_enabling_retain(new)) != 0) {
12914 dtrace_enabling_destroy(new);
12915 return (err);
12916 }
12917
12918 return (0);
12919 }
12920
12921 static void
12922 dtrace_enabling_retract(dtrace_state_t *state)
12923 {
12924 dtrace_enabling_t *enab, *next;
12925
12926 ASSERT(MUTEX_HELD(&dtrace_lock));
12927
12928 /*
12929 * Iterate over all retained enablings, destroy the enablings retained
12930 * for the specified state.
12931 */
12932 for (enab = dtrace_retained; enab != NULL; enab = next) {
12933 next = enab->dten_next;
12934
12935 /*
12936 * dtvs_state can only be NULL for helper enablings -- and
12937 * helper enablings can't be retained.
12938 */
12939 ASSERT(enab->dten_vstate->dtvs_state != NULL);
12940
12941 if (enab->dten_vstate->dtvs_state == state) {
12942 ASSERT(state->dts_nretained > 0);
12943 dtrace_enabling_destroy(enab);
12944 }
12945 }
12946
12947 ASSERT(state->dts_nretained == 0);
12948 }
12949
12950 static int
12951 dtrace_enabling_match(dtrace_enabling_t *enab, int *nmatched)
12952 {
12953 int i = 0;
12954 int matched = 0;
12955
12956 ASSERT(MUTEX_HELD(&cpu_lock));
12957 ASSERT(MUTEX_HELD(&dtrace_lock));
12958
12959 for (i = 0; i < enab->dten_ndesc; i++) {
12960 dtrace_ecbdesc_t *ep = enab->dten_desc[i];
12961
12962 enab->dten_current = ep;
12963 enab->dten_error = 0;
12964
12965 matched += dtrace_probe_enable(&ep->dted_probe, enab);
12966
12967 if (enab->dten_error != 0) {
12968 /*
12969 * If we get an error half-way through enabling the
12970 * probes, we kick out -- perhaps with some number of
12971 * them enabled. Leaving enabled probes enabled may
12972 * be slightly confusing for user-level, but we expect
12973 * that no one will attempt to actually drive on in
12974 * the face of such errors. If this is an anonymous
12975 * enabling (indicated with a NULL nmatched pointer),
12976 * we cmn_err() a message. We aren't expecting to
12977 * get such an error -- such as it can exist at all,
12978 * it would be a result of corrupted DOF in the driver
12979 * properties.
12980 */
12981 if (nmatched == NULL) {
12982 cmn_err(CE_WARN, "dtrace_enabling_match() "
12983 "error on %p: %d", (void *)ep,
12984 enab->dten_error);
12985 }
12986
12987 return (enab->dten_error);
12988 }
12989 }
12990
12991 enab->dten_probegen = dtrace_probegen;
12992 if (nmatched != NULL)
12993 *nmatched = matched;
12994
12995 return (0);
12996 }
12997
12998 static void
12999 dtrace_enabling_matchall_task(void *args __unused)
13000 {
13001 dtrace_enabling_matchall();
13002 }
13003
13004 static void
13005 dtrace_enabling_matchall(void)
13006 {
13007 dtrace_enabling_t *enab;
13008
13009 mutex_enter(&cpu_lock);
13010 mutex_enter(&dtrace_lock);
13011
13012 /*
13013 * Iterate over all retained enablings to see if any probes match
13014 * against them. We only perform this operation on enablings for which
13015 * we have sufficient permissions by virtue of being in the global zone
13016 * or in the same zone as the DTrace client. Because we can be called
13017 * after dtrace_detach() has been called, we cannot assert that there
13018 * are retained enablings. We can safely load from dtrace_retained,
13019 * however: the taskq_destroy() at the end of dtrace_detach() will
13020 * block pending our completion.
13021 */
13022 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
13023 #ifdef illumos
13024 cred_t *cr = enab->dten_vstate->dtvs_state->dts_cred.dcr_cred;
13025
13026 if (INGLOBALZONE(curproc) ||
13027 cr != NULL && getzoneid() == crgetzoneid(cr))
13028 #endif
13029 (void) dtrace_enabling_match(enab, NULL);
13030 }
13031
13032 mutex_exit(&dtrace_lock);
13033 mutex_exit(&cpu_lock);
13034 }
13035
13036 /*
13037 * If an enabling is to be enabled without having matched probes (that is, if
13038 * dtrace_state_go() is to be called on the underlying dtrace_state_t), the
13039 * enabling must be _primed_ by creating an ECB for every ECB description.
13040 * This must be done to assure that we know the number of speculations, the
13041 * number of aggregations, the minimum buffer size needed, etc. before we
13042 * transition out of DTRACE_ACTIVITY_INACTIVE. To do this without actually
13043 * enabling any probes, we create ECBs for every ECB decription, but with a
13044 * NULL probe -- which is exactly what this function does.
13045 */
13046 static void
13047 dtrace_enabling_prime(dtrace_state_t *state)
13048 {
13049 dtrace_enabling_t *enab;
13050 int i;
13051
13052 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
13053 ASSERT(enab->dten_vstate->dtvs_state != NULL);
13054
13055 if (enab->dten_vstate->dtvs_state != state)
13056 continue;
13057
13058 /*
13059 * We don't want to prime an enabling more than once, lest
13060 * we allow a malicious user to induce resource exhaustion.
13061 * (The ECBs that result from priming an enabling aren't
13062 * leaked -- but they also aren't deallocated until the
13063 * consumer state is destroyed.)
13064 */
13065 if (enab->dten_primed)
13066 continue;
13067
13068 for (i = 0; i < enab->dten_ndesc; i++) {
13069 enab->dten_current = enab->dten_desc[i];
13070 (void) dtrace_probe_enable(NULL, enab);
13071 }
13072
13073 enab->dten_primed = 1;
13074 }
13075 }
13076
13077 /*
13078 * Called to indicate that probes should be provided due to retained
13079 * enablings. This is implemented in terms of dtrace_probe_provide(), but it
13080 * must take an initial lap through the enabling calling the dtps_provide()
13081 * entry point explicitly to allow for autocreated probes.
13082 */
13083 static void
13084 dtrace_enabling_provide(dtrace_provider_t *prv)
13085 {
13086 int i, all = 0;
13087 dtrace_probedesc_t desc;
13088 dtrace_genid_t gen;
13089
13090 ASSERT(MUTEX_HELD(&dtrace_lock));
13091 ASSERT(MUTEX_HELD(&dtrace_provider_lock));
13092
13093 if (prv == NULL) {
13094 all = 1;
13095 prv = dtrace_provider;
13096 }
13097
13098 do {
13099 dtrace_enabling_t *enab;
13100 void *parg = prv->dtpv_arg;
13101
13102 retry:
13103 gen = dtrace_retained_gen;
13104 for (enab = dtrace_retained; enab != NULL;
13105 enab = enab->dten_next) {
13106 for (i = 0; i < enab->dten_ndesc; i++) {
13107 desc = enab->dten_desc[i]->dted_probe;
13108 mutex_exit(&dtrace_lock);
13109 prv->dtpv_pops.dtps_provide(parg, &desc);
13110 mutex_enter(&dtrace_lock);
13111 /*
13112 * Process the retained enablings again if
13113 * they have changed while we weren't holding
13114 * dtrace_lock.
13115 */
13116 if (gen != dtrace_retained_gen)
13117 goto retry;
13118 }
13119 }
13120 } while (all && (prv = prv->dtpv_next) != NULL);
13121
13122 mutex_exit(&dtrace_lock);
13123 dtrace_probe_provide(NULL, all ? NULL : prv);
13124 mutex_enter(&dtrace_lock);
13125 }
13126
13127 /*
13128 * Called to reap ECBs that are attached to probes from defunct providers.
13129 */
13130 static void
13131 dtrace_enabling_reap(void *args __unused)
13132 {
13133 dtrace_provider_t *prov;
13134 dtrace_probe_t *probe;
13135 dtrace_ecb_t *ecb;
13136 hrtime_t when;
13137 int i;
13138
13139 mutex_enter(&cpu_lock);
13140 mutex_enter(&dtrace_lock);
13141
13142 for (i = 0; i < dtrace_nprobes; i++) {
13143 if ((probe = dtrace_probes[i]) == NULL)
13144 continue;
13145
13146 if (probe->dtpr_ecb == NULL)
13147 continue;
13148
13149 prov = probe->dtpr_provider;
13150
13151 if ((when = prov->dtpv_defunct) == 0)
13152 continue;
13153
13154 /*
13155 * We have ECBs on a defunct provider: we want to reap these
13156 * ECBs to allow the provider to unregister. The destruction
13157 * of these ECBs must be done carefully: if we destroy the ECB
13158 * and the consumer later wishes to consume an EPID that
13159 * corresponds to the destroyed ECB (and if the EPID metadata
13160 * has not been previously consumed), the consumer will abort
13161 * processing on the unknown EPID. To reduce (but not, sadly,
13162 * eliminate) the possibility of this, we will only destroy an
13163 * ECB for a defunct provider if, for the state that
13164 * corresponds to the ECB:
13165 *
13166 * (a) There is no speculative tracing (which can effectively
13167 * cache an EPID for an arbitrary amount of time).
13168 *
13169 * (b) The principal buffers have been switched twice since the
13170 * provider became defunct.
13171 *
13172 * (c) The aggregation buffers are of zero size or have been
13173 * switched twice since the provider became defunct.
13174 *
13175 * We use dts_speculates to determine (a) and call a function
13176 * (dtrace_buffer_consumed()) to determine (b) and (c). Note
13177 * that as soon as we've been unable to destroy one of the ECBs
13178 * associated with the probe, we quit trying -- reaping is only
13179 * fruitful in as much as we can destroy all ECBs associated
13180 * with the defunct provider's probes.
13181 */
13182 while ((ecb = probe->dtpr_ecb) != NULL) {
13183 dtrace_state_t *state = ecb->dte_state;
13184 dtrace_buffer_t *buf = state->dts_buffer;
13185 dtrace_buffer_t *aggbuf = state->dts_aggbuffer;
13186
13187 if (state->dts_speculates)
13188 break;
13189
13190 if (!dtrace_buffer_consumed(buf, when))
13191 break;
13192
13193 if (!dtrace_buffer_consumed(aggbuf, when))
13194 break;
13195
13196 dtrace_ecb_disable(ecb);
13197 ASSERT(probe->dtpr_ecb != ecb);
13198 dtrace_ecb_destroy(ecb);
13199 }
13200 }
13201
13202 mutex_exit(&dtrace_lock);
13203 mutex_exit(&cpu_lock);
13204 }
13205
13206 /*
13207 * DTrace DOF Functions
13208 */
13209 /*ARGSUSED*/
13210 static void
13211 dtrace_dof_error(dof_hdr_t *dof, const char *str)
13212 {
13213 if (dtrace_err_verbose)
13214 cmn_err(CE_WARN, "failed to process DOF: %s", str);
13215
13216 #ifdef DTRACE_ERRDEBUG
13217 dtrace_errdebug(str);
13218 #endif
13219 }
13220
13221 /*
13222 * Create DOF out of a currently enabled state. Right now, we only create
13223 * DOF containing the run-time options -- but this could be expanded to create
13224 * complete DOF representing the enabled state.
13225 */
13226 static dof_hdr_t *
13227 dtrace_dof_create(dtrace_state_t *state)
13228 {
13229 dof_hdr_t *dof;
13230 dof_sec_t *sec;
13231 dof_optdesc_t *opt;
13232 int i, len = sizeof (dof_hdr_t) +
13233 roundup(sizeof (dof_sec_t), sizeof (uint64_t)) +
13234 sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
13235
13236 ASSERT(MUTEX_HELD(&dtrace_lock));
13237
13238 dof = kmem_zalloc(len, KM_SLEEP);
13239 dof->dofh_ident[DOF_ID_MAG0] = DOF_MAG_MAG0;
13240 dof->dofh_ident[DOF_ID_MAG1] = DOF_MAG_MAG1;
13241 dof->dofh_ident[DOF_ID_MAG2] = DOF_MAG_MAG2;
13242 dof->dofh_ident[DOF_ID_MAG3] = DOF_MAG_MAG3;
13243
13244 dof->dofh_ident[DOF_ID_MODEL] = DOF_MODEL_NATIVE;
13245 dof->dofh_ident[DOF_ID_ENCODING] = DOF_ENCODE_NATIVE;
13246 dof->dofh_ident[DOF_ID_VERSION] = DOF_VERSION;
13247 dof->dofh_ident[DOF_ID_DIFVERS] = DIF_VERSION;
13248 dof->dofh_ident[DOF_ID_DIFIREG] = DIF_DIR_NREGS;
13249 dof->dofh_ident[DOF_ID_DIFTREG] = DIF_DTR_NREGS;
13250
13251 dof->dofh_flags = 0;
13252 dof->dofh_hdrsize = sizeof (dof_hdr_t);
13253 dof->dofh_secsize = sizeof (dof_sec_t);
13254 dof->dofh_secnum = 1; /* only DOF_SECT_OPTDESC */
13255 dof->dofh_secoff = sizeof (dof_hdr_t);
13256 dof->dofh_loadsz = len;
13257 dof->dofh_filesz = len;
13258 dof->dofh_pad = 0;
13259
13260 /*
13261 * Fill in the option section header...
13262 */
13263 sec = (dof_sec_t *)((uintptr_t)dof + sizeof (dof_hdr_t));
13264 sec->dofs_type = DOF_SECT_OPTDESC;
13265 sec->dofs_align = sizeof (uint64_t);
13266 sec->dofs_flags = DOF_SECF_LOAD;
13267 sec->dofs_entsize = sizeof (dof_optdesc_t);
13268
13269 opt = (dof_optdesc_t *)((uintptr_t)sec +
13270 roundup(sizeof (dof_sec_t), sizeof (uint64_t)));
13271
13272 sec->dofs_offset = (uintptr_t)opt - (uintptr_t)dof;
13273 sec->dofs_size = sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
13274
13275 for (i = 0; i < DTRACEOPT_MAX; i++) {
13276 opt[i].dofo_option = i;
13277 opt[i].dofo_strtab = DOF_SECIDX_NONE;
13278 opt[i].dofo_value = state->dts_options[i];
13279 }
13280
13281 return (dof);
13282 }
13283
13284 static dof_hdr_t *
13285 dtrace_dof_copyin(uintptr_t uarg, int *errp)
13286 {
13287 dof_hdr_t hdr, *dof;
13288
13289 ASSERT(!MUTEX_HELD(&dtrace_lock));
13290
13291 /*
13292 * First, we're going to copyin() the sizeof (dof_hdr_t).
13293 */
13294 if (copyin((void *)uarg, &hdr, sizeof (hdr)) != 0) {
13295 dtrace_dof_error(NULL, "failed to copyin DOF header");
13296 *errp = EFAULT;
13297 return (NULL);
13298 }
13299
13300 /*
13301 * Now we'll allocate the entire DOF and copy it in -- provided
13302 * that the length isn't outrageous.
13303 */
13304 if (hdr.dofh_loadsz >= dtrace_dof_maxsize) {
13305 dtrace_dof_error(&hdr, "load size exceeds maximum");
13306 *errp = E2BIG;
13307 return (NULL);
13308 }
13309
13310 if (hdr.dofh_loadsz < sizeof (hdr)) {
13311 dtrace_dof_error(&hdr, "invalid load size");
13312 *errp = EINVAL;
13313 return (NULL);
13314 }
13315
13316 dof = kmem_alloc(hdr.dofh_loadsz, KM_SLEEP);
13317
13318 if (copyin((void *)uarg, dof, hdr.dofh_loadsz) != 0 ||
13319 dof->dofh_loadsz != hdr.dofh_loadsz) {
13320 kmem_free(dof, hdr.dofh_loadsz);
13321 *errp = EFAULT;
13322 return (NULL);
13323 }
13324
13325 return (dof);
13326 }
13327
13328 #ifdef __FreeBSD__
13329 static dof_hdr_t *
13330 dtrace_dof_copyin_proc(struct proc *p, uintptr_t uarg, int *errp)
13331 {
13332 dof_hdr_t hdr, *dof;
13333 struct thread *td;
13334 size_t loadsz;
13335
13336 ASSERT(!MUTEX_HELD(&dtrace_lock));
13337
13338 td = curthread;
13339
13340 /*
13341 * First, we're going to copyin() the sizeof (dof_hdr_t).
13342 */
13343 if (proc_readmem(td, p, uarg, &hdr, sizeof(hdr)) != sizeof(hdr)) {
13344 dtrace_dof_error(NULL, "failed to copyin DOF header");
13345 *errp = EFAULT;
13346 return (NULL);
13347 }
13348
13349 /*
13350 * Now we'll allocate the entire DOF and copy it in -- provided
13351 * that the length isn't outrageous.
13352 */
13353 if (hdr.dofh_loadsz >= dtrace_dof_maxsize) {
13354 dtrace_dof_error(&hdr, "load size exceeds maximum");
13355 *errp = E2BIG;
13356 return (NULL);
13357 }
13358 loadsz = (size_t)hdr.dofh_loadsz;
13359
13360 if (loadsz < sizeof (hdr)) {
13361 dtrace_dof_error(&hdr, "invalid load size");
13362 *errp = EINVAL;
13363 return (NULL);
13364 }
13365
13366 dof = kmem_alloc(loadsz, KM_SLEEP);
13367
13368 if (proc_readmem(td, p, uarg, dof, loadsz) != loadsz ||
13369 dof->dofh_loadsz != loadsz) {
13370 kmem_free(dof, hdr.dofh_loadsz);
13371 *errp = EFAULT;
13372 return (NULL);
13373 }
13374
13375 return (dof);
13376 }
13377
13378 static __inline uchar_t
13379 dtrace_dof_char(char c)
13380 {
13381
13382 switch (c) {
13383 case '0':
13384 case '1':
13385 case '2':
13386 case '3':
13387 case '4':
13388 case '5':
13389 case '6':
13390 case '7':
13391 case '8':
13392 case '9':
13393 return (c - '0');
13394 case 'A':
13395 case 'B':
13396 case 'C':
13397 case 'D':
13398 case 'E':
13399 case 'F':
13400 return (c - 'A' + 10);
13401 case 'a':
13402 case 'b':
13403 case 'c':
13404 case 'd':
13405 case 'e':
13406 case 'f':
13407 return (c - 'a' + 10);
13408 }
13409 /* Should not reach here. */
13410 return (UCHAR_MAX);
13411 }
13412 #endif /* __FreeBSD__ */
13413
13414 static dof_hdr_t *
13415 dtrace_dof_property(const char *name)
13416 {
13417 #ifdef __FreeBSD__
13418 uint8_t *dofbuf;
13419 u_char *data, *eol;
13420 caddr_t doffile;
13421 size_t bytes, len, i;
13422 dof_hdr_t *dof;
13423 u_char c1, c2;
13424
13425 dof = NULL;
13426
13427 doffile = preload_search_by_type("dtrace_dof");
13428 if (doffile == NULL)
13429 return (NULL);
13430
13431 data = preload_fetch_addr(doffile);
13432 len = preload_fetch_size(doffile);
13433 for (;;) {
13434 /* Look for the end of the line. All lines end in a newline. */
13435 eol = memchr(data, '\n', len);
13436 if (eol == NULL)
13437 return (NULL);
13438
13439 if (strncmp(name, data, strlen(name)) == 0)
13440 break;
13441
13442 eol++; /* skip past the newline */
13443 len -= eol - data;
13444 data = eol;
13445 }
13446
13447 /* We've found the data corresponding to the specified key. */
13448
13449 data += strlen(name) + 1; /* skip past the '=' */
13450 len = eol - data;
13451 if (len % 2 != 0) {
13452 dtrace_dof_error(NULL, "invalid DOF encoding length");
13453 goto doferr;
13454 }
13455 bytes = len / 2;
13456 if (bytes < sizeof(dof_hdr_t)) {
13457 dtrace_dof_error(NULL, "truncated header");
13458 goto doferr;
13459 }
13460
13461 /*
13462 * Each byte is represented by the two ASCII characters in its hex
13463 * representation.
13464 */
13465 dofbuf = malloc(bytes, M_SOLARIS, M_WAITOK);
13466 for (i = 0; i < bytes; i++) {
13467 c1 = dtrace_dof_char(data[i * 2]);
13468 c2 = dtrace_dof_char(data[i * 2 + 1]);
13469 if (c1 == UCHAR_MAX || c2 == UCHAR_MAX) {
13470 dtrace_dof_error(NULL, "invalid hex char in DOF");
13471 goto doferr;
13472 }
13473 dofbuf[i] = c1 * 16 + c2;
13474 }
13475
13476 dof = (dof_hdr_t *)dofbuf;
13477 if (bytes < dof->dofh_loadsz) {
13478 dtrace_dof_error(NULL, "truncated DOF");
13479 goto doferr;
13480 }
13481
13482 if (dof->dofh_loadsz >= dtrace_dof_maxsize) {
13483 dtrace_dof_error(NULL, "oversized DOF");
13484 goto doferr;
13485 }
13486
13487 return (dof);
13488
13489 doferr:
13490 free(dof, M_SOLARIS);
13491 return (NULL);
13492 #else /* __FreeBSD__ */
13493 uchar_t *buf;
13494 uint64_t loadsz;
13495 unsigned int len, i;
13496 dof_hdr_t *dof;
13497
13498 /*
13499 * Unfortunately, array of values in .conf files are always (and
13500 * only) interpreted to be integer arrays. We must read our DOF
13501 * as an integer array, and then squeeze it into a byte array.
13502 */
13503 if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dtrace_devi, 0,
13504 (char *)name, (int **)&buf, &len) != DDI_PROP_SUCCESS)
13505 return (NULL);
13506
13507 for (i = 0; i < len; i++)
13508 buf[i] = (uchar_t)(((int *)buf)[i]);
13509
13510 if (len < sizeof (dof_hdr_t)) {
13511 ddi_prop_free(buf);
13512 dtrace_dof_error(NULL, "truncated header");
13513 return (NULL);
13514 }
13515
13516 if (len < (loadsz = ((dof_hdr_t *)buf)->dofh_loadsz)) {
13517 ddi_prop_free(buf);
13518 dtrace_dof_error(NULL, "truncated DOF");
13519 return (NULL);
13520 }
13521
13522 if (loadsz >= dtrace_dof_maxsize) {
13523 ddi_prop_free(buf);
13524 dtrace_dof_error(NULL, "oversized DOF");
13525 return (NULL);
13526 }
13527
13528 dof = kmem_alloc(loadsz, KM_SLEEP);
13529 bcopy(buf, dof, loadsz);
13530 ddi_prop_free(buf);
13531
13532 return (dof);
13533 #endif /* !__FreeBSD__ */
13534 }
13535
13536 static void
13537 dtrace_dof_destroy(dof_hdr_t *dof)
13538 {
13539 kmem_free(dof, dof->dofh_loadsz);
13540 }
13541
13542 /*
13543 * Return the dof_sec_t pointer corresponding to a given section index. If the
13544 * index is not valid, dtrace_dof_error() is called and NULL is returned. If
13545 * a type other than DOF_SECT_NONE is specified, the header is checked against
13546 * this type and NULL is returned if the types do not match.
13547 */
13548 static dof_sec_t *
13549 dtrace_dof_sect(dof_hdr_t *dof, uint32_t type, dof_secidx_t i)
13550 {
13551 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)
13552 ((uintptr_t)dof + dof->dofh_secoff + i * dof->dofh_secsize);
13553
13554 if (i >= dof->dofh_secnum) {
13555 dtrace_dof_error(dof, "referenced section index is invalid");
13556 return (NULL);
13557 }
13558
13559 if (!(sec->dofs_flags & DOF_SECF_LOAD)) {
13560 dtrace_dof_error(dof, "referenced section is not loadable");
13561 return (NULL);
13562 }
13563
13564 if (type != DOF_SECT_NONE && type != sec->dofs_type) {
13565 dtrace_dof_error(dof, "referenced section is the wrong type");
13566 return (NULL);
13567 }
13568
13569 return (sec);
13570 }
13571
13572 static dtrace_probedesc_t *
13573 dtrace_dof_probedesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_probedesc_t *desc)
13574 {
13575 dof_probedesc_t *probe;
13576 dof_sec_t *strtab;
13577 uintptr_t daddr = (uintptr_t)dof;
13578 uintptr_t str;
13579 size_t size;
13580
13581 if (sec->dofs_type != DOF_SECT_PROBEDESC) {
13582 dtrace_dof_error(dof, "invalid probe section");
13583 return (NULL);
13584 }
13585
13586 if (sec->dofs_align != sizeof (dof_secidx_t)) {
13587 dtrace_dof_error(dof, "bad alignment in probe description");
13588 return (NULL);
13589 }
13590
13591 if (sec->dofs_offset + sizeof (dof_probedesc_t) > dof->dofh_loadsz) {
13592 dtrace_dof_error(dof, "truncated probe description");
13593 return (NULL);
13594 }
13595
13596 probe = (dof_probedesc_t *)(uintptr_t)(daddr + sec->dofs_offset);
13597 strtab = dtrace_dof_sect(dof, DOF_SECT_STRTAB, probe->dofp_strtab);
13598
13599 if (strtab == NULL)
13600 return (NULL);
13601
13602 str = daddr + strtab->dofs_offset;
13603 size = strtab->dofs_size;
13604
13605 if (probe->dofp_provider >= strtab->dofs_size) {
13606 dtrace_dof_error(dof, "corrupt probe provider");
13607 return (NULL);
13608 }
13609
13610 (void) strncpy(desc->dtpd_provider,
13611 (char *)(str + probe->dofp_provider),
13612 MIN(DTRACE_PROVNAMELEN - 1, size - probe->dofp_provider));
13613
13614 if (probe->dofp_mod >= strtab->dofs_size) {
13615 dtrace_dof_error(dof, "corrupt probe module");
13616 return (NULL);
13617 }
13618
13619 (void) strncpy(desc->dtpd_mod, (char *)(str + probe->dofp_mod),
13620 MIN(DTRACE_MODNAMELEN - 1, size - probe->dofp_mod));
13621
13622 if (probe->dofp_func >= strtab->dofs_size) {
13623 dtrace_dof_error(dof, "corrupt probe function");
13624 return (NULL);
13625 }
13626
13627 (void) strncpy(desc->dtpd_func, (char *)(str + probe->dofp_func),
13628 MIN(DTRACE_FUNCNAMELEN - 1, size - probe->dofp_func));
13629
13630 if (probe->dofp_name >= strtab->dofs_size) {
13631 dtrace_dof_error(dof, "corrupt probe name");
13632 return (NULL);
13633 }
13634
13635 (void) strncpy(desc->dtpd_name, (char *)(str + probe->dofp_name),
13636 MIN(DTRACE_NAMELEN - 1, size - probe->dofp_name));
13637
13638 return (desc);
13639 }
13640
13641 static dtrace_difo_t *
13642 dtrace_dof_difo(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
13643 cred_t *cr)
13644 {
13645 dtrace_difo_t *dp;
13646 size_t ttl = 0;
13647 dof_difohdr_t *dofd;
13648 uintptr_t daddr = (uintptr_t)dof;
13649 size_t max = dtrace_difo_maxsize;
13650 int i, l, n;
13651
13652 static const struct {
13653 int section;
13654 int bufoffs;
13655 int lenoffs;
13656 int entsize;
13657 int align;
13658 const char *msg;
13659 } difo[] = {
13660 { DOF_SECT_DIF, offsetof(dtrace_difo_t, dtdo_buf),
13661 offsetof(dtrace_difo_t, dtdo_len), sizeof (dif_instr_t),
13662 sizeof (dif_instr_t), "multiple DIF sections" },
13663
13664 { DOF_SECT_INTTAB, offsetof(dtrace_difo_t, dtdo_inttab),
13665 offsetof(dtrace_difo_t, dtdo_intlen), sizeof (uint64_t),
13666 sizeof (uint64_t), "multiple integer tables" },
13667
13668 { DOF_SECT_STRTAB, offsetof(dtrace_difo_t, dtdo_strtab),
13669 offsetof(dtrace_difo_t, dtdo_strlen), 0,
13670 sizeof (char), "multiple string tables" },
13671
13672 { DOF_SECT_VARTAB, offsetof(dtrace_difo_t, dtdo_vartab),
13673 offsetof(dtrace_difo_t, dtdo_varlen), sizeof (dtrace_difv_t),
13674 sizeof (uint_t), "multiple variable tables" },
13675
13676 { DOF_SECT_NONE, 0, 0, 0, 0, NULL }
13677 };
13678
13679 if (sec->dofs_type != DOF_SECT_DIFOHDR) {
13680 dtrace_dof_error(dof, "invalid DIFO header section");
13681 return (NULL);
13682 }
13683
13684 if (sec->dofs_align != sizeof (dof_secidx_t)) {
13685 dtrace_dof_error(dof, "bad alignment in DIFO header");
13686 return (NULL);
13687 }
13688
13689 if (sec->dofs_size < sizeof (dof_difohdr_t) ||
13690 sec->dofs_size % sizeof (dof_secidx_t)) {
13691 dtrace_dof_error(dof, "bad size in DIFO header");
13692 return (NULL);
13693 }
13694
13695 dofd = (dof_difohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
13696 n = (sec->dofs_size - sizeof (*dofd)) / sizeof (dof_secidx_t) + 1;
13697
13698 dp = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
13699 dp->dtdo_rtype = dofd->dofd_rtype;
13700
13701 for (l = 0; l < n; l++) {
13702 dof_sec_t *subsec;
13703 void **bufp;
13704 uint32_t *lenp;
13705
13706 if ((subsec = dtrace_dof_sect(dof, DOF_SECT_NONE,
13707 dofd->dofd_links[l])) == NULL)
13708 goto err; /* invalid section link */
13709
13710 if (ttl + subsec->dofs_size > max) {
13711 dtrace_dof_error(dof, "exceeds maximum size");
13712 goto err;
13713 }
13714
13715 ttl += subsec->dofs_size;
13716
13717 for (i = 0; difo[i].section != DOF_SECT_NONE; i++) {
13718 if (subsec->dofs_type != difo[i].section)
13719 continue;
13720
13721 if (!(subsec->dofs_flags & DOF_SECF_LOAD)) {
13722 dtrace_dof_error(dof, "section not loaded");
13723 goto err;
13724 }
13725
13726 if (subsec->dofs_align != difo[i].align) {
13727 dtrace_dof_error(dof, "bad alignment");
13728 goto err;
13729 }
13730
13731 bufp = (void **)((uintptr_t)dp + difo[i].bufoffs);
13732 lenp = (uint32_t *)((uintptr_t)dp + difo[i].lenoffs);
13733
13734 if (*bufp != NULL) {
13735 dtrace_dof_error(dof, difo[i].msg);
13736 goto err;
13737 }
13738
13739 if (difo[i].entsize != subsec->dofs_entsize) {
13740 dtrace_dof_error(dof, "entry size mismatch");
13741 goto err;
13742 }
13743
13744 if (subsec->dofs_entsize != 0 &&
13745 (subsec->dofs_size % subsec->dofs_entsize) != 0) {
13746 dtrace_dof_error(dof, "corrupt entry size");
13747 goto err;
13748 }
13749
13750 *lenp = subsec->dofs_size;
13751 *bufp = kmem_alloc(subsec->dofs_size, KM_SLEEP);
13752 bcopy((char *)(uintptr_t)(daddr + subsec->dofs_offset),
13753 *bufp, subsec->dofs_size);
13754
13755 if (subsec->dofs_entsize != 0)
13756 *lenp /= subsec->dofs_entsize;
13757
13758 break;
13759 }
13760
13761 /*
13762 * If we encounter a loadable DIFO sub-section that is not
13763 * known to us, assume this is a broken program and fail.
13764 */
13765 if (difo[i].section == DOF_SECT_NONE &&
13766 (subsec->dofs_flags & DOF_SECF_LOAD)) {
13767 dtrace_dof_error(dof, "unrecognized DIFO subsection");
13768 goto err;
13769 }
13770 }
13771
13772 if (dp->dtdo_buf == NULL) {
13773 /*
13774 * We can't have a DIF object without DIF text.
13775 */
13776 dtrace_dof_error(dof, "missing DIF text");
13777 goto err;
13778 }
13779
13780 /*
13781 * Before we validate the DIF object, run through the variable table
13782 * looking for the strings -- if any of their size are under, we'll set
13783 * their size to be the system-wide default string size. Note that
13784 * this should _not_ happen if the "strsize" option has been set --
13785 * in this case, the compiler should have set the size to reflect the
13786 * setting of the option.
13787 */
13788 for (i = 0; i < dp->dtdo_varlen; i++) {
13789 dtrace_difv_t *v = &dp->dtdo_vartab[i];
13790 dtrace_diftype_t *t = &v->dtdv_type;
13791
13792 if (v->dtdv_id < DIF_VAR_OTHER_UBASE)
13793 continue;
13794
13795 if (t->dtdt_kind == DIF_TYPE_STRING && t->dtdt_size == 0)
13796 t->dtdt_size = dtrace_strsize_default;
13797 }
13798
13799 if (dtrace_difo_validate(dp, vstate, DIF_DIR_NREGS, cr) != 0)
13800 goto err;
13801
13802 dtrace_difo_init(dp, vstate);
13803 return (dp);
13804
13805 err:
13806 kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
13807 kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
13808 kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
13809 kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
13810
13811 kmem_free(dp, sizeof (dtrace_difo_t));
13812 return (NULL);
13813 }
13814
13815 static dtrace_predicate_t *
13816 dtrace_dof_predicate(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
13817 cred_t *cr)
13818 {
13819 dtrace_difo_t *dp;
13820
13821 if ((dp = dtrace_dof_difo(dof, sec, vstate, cr)) == NULL)
13822 return (NULL);
13823
13824 return (dtrace_predicate_create(dp));
13825 }
13826
13827 static dtrace_actdesc_t *
13828 dtrace_dof_actdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
13829 cred_t *cr)
13830 {
13831 dtrace_actdesc_t *act, *first = NULL, *last = NULL, *next;
13832 dof_actdesc_t *desc;
13833 dof_sec_t *difosec;
13834 size_t offs;
13835 uintptr_t daddr = (uintptr_t)dof;
13836 uint64_t arg;
13837 dtrace_actkind_t kind;
13838
13839 if (sec->dofs_type != DOF_SECT_ACTDESC) {
13840 dtrace_dof_error(dof, "invalid action section");
13841 return (NULL);
13842 }
13843
13844 if (sec->dofs_offset + sizeof (dof_actdesc_t) > dof->dofh_loadsz) {
13845 dtrace_dof_error(dof, "truncated action description");
13846 return (NULL);
13847 }
13848
13849 if (sec->dofs_align != sizeof (uint64_t)) {
13850 dtrace_dof_error(dof, "bad alignment in action description");
13851 return (NULL);
13852 }
13853
13854 if (sec->dofs_size < sec->dofs_entsize) {
13855 dtrace_dof_error(dof, "section entry size exceeds total size");
13856 return (NULL);
13857 }
13858
13859 if (sec->dofs_entsize != sizeof (dof_actdesc_t)) {
13860 dtrace_dof_error(dof, "bad entry size in action description");
13861 return (NULL);
13862 }
13863
13864 if (sec->dofs_size / sec->dofs_entsize > dtrace_actions_max) {
13865 dtrace_dof_error(dof, "actions exceed dtrace_actions_max");
13866 return (NULL);
13867 }
13868
13869 for (offs = 0; offs < sec->dofs_size; offs += sec->dofs_entsize) {
13870 desc = (dof_actdesc_t *)(daddr +
13871 (uintptr_t)sec->dofs_offset + offs);
13872 kind = (dtrace_actkind_t)desc->dofa_kind;
13873
13874 if ((DTRACEACT_ISPRINTFLIKE(kind) &&
13875 (kind != DTRACEACT_PRINTA ||
13876 desc->dofa_strtab != DOF_SECIDX_NONE)) ||
13877 (kind == DTRACEACT_DIFEXPR &&
13878 desc->dofa_strtab != DOF_SECIDX_NONE)) {
13879 dof_sec_t *strtab;
13880 char *str, *fmt;
13881 uint64_t i;
13882
13883 /*
13884 * The argument to these actions is an index into the
13885 * DOF string table. For printf()-like actions, this
13886 * is the format string. For print(), this is the
13887 * CTF type of the expression result.
13888 */
13889 if ((strtab = dtrace_dof_sect(dof,
13890 DOF_SECT_STRTAB, desc->dofa_strtab)) == NULL)
13891 goto err;
13892
13893 str = (char *)((uintptr_t)dof +
13894 (uintptr_t)strtab->dofs_offset);
13895
13896 for (i = desc->dofa_arg; i < strtab->dofs_size; i++) {
13897 if (str[i] == '\0')
13898 break;
13899 }
13900
13901 if (i >= strtab->dofs_size) {
13902 dtrace_dof_error(dof, "bogus format string");
13903 goto err;
13904 }
13905
13906 if (i == desc->dofa_arg) {
13907 dtrace_dof_error(dof, "empty format string");
13908 goto err;
13909 }
13910
13911 i -= desc->dofa_arg;
13912 fmt = kmem_alloc(i + 1, KM_SLEEP);
13913 bcopy(&str[desc->dofa_arg], fmt, i + 1);
13914 arg = (uint64_t)(uintptr_t)fmt;
13915 } else {
13916 if (kind == DTRACEACT_PRINTA) {
13917 ASSERT(desc->dofa_strtab == DOF_SECIDX_NONE);
13918 arg = 0;
13919 } else {
13920 arg = desc->dofa_arg;
13921 }
13922 }
13923
13924 act = dtrace_actdesc_create(kind, desc->dofa_ntuple,
13925 desc->dofa_uarg, arg);
13926
13927 if (last != NULL) {
13928 last->dtad_next = act;
13929 } else {
13930 first = act;
13931 }
13932
13933 last = act;
13934
13935 if (desc->dofa_difo == DOF_SECIDX_NONE)
13936 continue;
13937
13938 if ((difosec = dtrace_dof_sect(dof,
13939 DOF_SECT_DIFOHDR, desc->dofa_difo)) == NULL)
13940 goto err;
13941
13942 act->dtad_difo = dtrace_dof_difo(dof, difosec, vstate, cr);
13943
13944 if (act->dtad_difo == NULL)
13945 goto err;
13946 }
13947
13948 ASSERT(first != NULL);
13949 return (first);
13950
13951 err:
13952 for (act = first; act != NULL; act = next) {
13953 next = act->dtad_next;
13954 dtrace_actdesc_release(act, vstate);
13955 }
13956
13957 return (NULL);
13958 }
13959
13960 static dtrace_ecbdesc_t *
13961 dtrace_dof_ecbdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
13962 cred_t *cr)
13963 {
13964 dtrace_ecbdesc_t *ep;
13965 dof_ecbdesc_t *ecb;
13966 dtrace_probedesc_t *desc;
13967 dtrace_predicate_t *pred = NULL;
13968
13969 if (sec->dofs_size < sizeof (dof_ecbdesc_t)) {
13970 dtrace_dof_error(dof, "truncated ECB description");
13971 return (NULL);
13972 }
13973
13974 if (sec->dofs_align != sizeof (uint64_t)) {
13975 dtrace_dof_error(dof, "bad alignment in ECB description");
13976 return (NULL);
13977 }
13978
13979 ecb = (dof_ecbdesc_t *)((uintptr_t)dof + (uintptr_t)sec->dofs_offset);
13980 sec = dtrace_dof_sect(dof, DOF_SECT_PROBEDESC, ecb->dofe_probes);
13981
13982 if (sec == NULL)
13983 return (NULL);
13984
13985 ep = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
13986 ep->dted_uarg = ecb->dofe_uarg;
13987 desc = &ep->dted_probe;
13988
13989 if (dtrace_dof_probedesc(dof, sec, desc) == NULL)
13990 goto err;
13991
13992 if (ecb->dofe_pred != DOF_SECIDX_NONE) {
13993 if ((sec = dtrace_dof_sect(dof,
13994 DOF_SECT_DIFOHDR, ecb->dofe_pred)) == NULL)
13995 goto err;
13996
13997 if ((pred = dtrace_dof_predicate(dof, sec, vstate, cr)) == NULL)
13998 goto err;
13999
14000 ep->dted_pred.dtpdd_predicate = pred;
14001 }
14002
14003 if (ecb->dofe_actions != DOF_SECIDX_NONE) {
14004 if ((sec = dtrace_dof_sect(dof,
14005 DOF_SECT_ACTDESC, ecb->dofe_actions)) == NULL)
14006 goto err;
14007
14008 ep->dted_action = dtrace_dof_actdesc(dof, sec, vstate, cr);
14009
14010 if (ep->dted_action == NULL)
14011 goto err;
14012 }
14013
14014 return (ep);
14015
14016 err:
14017 if (pred != NULL)
14018 dtrace_predicate_release(pred, vstate);
14019 kmem_free(ep, sizeof (dtrace_ecbdesc_t));
14020 return (NULL);
14021 }
14022
14023 /*
14024 * Apply the relocations from the specified 'sec' (a DOF_SECT_URELHDR) to the
14025 * specified DOF. SETX relocations are computed using 'ubase', the base load
14026 * address of the object containing the DOF, and DOFREL relocations are relative
14027 * to the relocation offset within the DOF.
14028 */
14029 static int
14030 dtrace_dof_relocate(dof_hdr_t *dof, dof_sec_t *sec, uint64_t ubase,
14031 uint64_t udaddr)
14032 {
14033 uintptr_t daddr = (uintptr_t)dof;
14034 uintptr_t ts_end;
14035 dof_relohdr_t *dofr =
14036 (dof_relohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
14037 dof_sec_t *ss, *rs, *ts;
14038 dof_relodesc_t *r;
14039 uint_t i, n;
14040
14041 if (sec->dofs_size < sizeof (dof_relohdr_t) ||
14042 sec->dofs_align != sizeof (dof_secidx_t)) {
14043 dtrace_dof_error(dof, "invalid relocation header");
14044 return (-1);
14045 }
14046
14047 ss = dtrace_dof_sect(dof, DOF_SECT_STRTAB, dofr->dofr_strtab);
14048 rs = dtrace_dof_sect(dof, DOF_SECT_RELTAB, dofr->dofr_relsec);
14049 ts = dtrace_dof_sect(dof, DOF_SECT_NONE, dofr->dofr_tgtsec);
14050 ts_end = (uintptr_t)ts + sizeof (dof_sec_t);
14051
14052 if (ss == NULL || rs == NULL || ts == NULL)
14053 return (-1); /* dtrace_dof_error() has been called already */
14054
14055 if (rs->dofs_entsize < sizeof (dof_relodesc_t) ||
14056 rs->dofs_align != sizeof (uint64_t)) {
14057 dtrace_dof_error(dof, "invalid relocation section");
14058 return (-1);
14059 }
14060
14061 r = (dof_relodesc_t *)(uintptr_t)(daddr + rs->dofs_offset);
14062 n = rs->dofs_size / rs->dofs_entsize;
14063
14064 for (i = 0; i < n; i++) {
14065 uintptr_t taddr = daddr + ts->dofs_offset + r->dofr_offset;
14066
14067 switch (r->dofr_type) {
14068 case DOF_RELO_NONE:
14069 break;
14070 case DOF_RELO_SETX:
14071 case DOF_RELO_DOFREL:
14072 if (r->dofr_offset >= ts->dofs_size || r->dofr_offset +
14073 sizeof (uint64_t) > ts->dofs_size) {
14074 dtrace_dof_error(dof, "bad relocation offset");
14075 return (-1);
14076 }
14077
14078 if (taddr >= (uintptr_t)ts && taddr < ts_end) {
14079 dtrace_dof_error(dof, "bad relocation offset");
14080 return (-1);
14081 }
14082
14083 if (!IS_P2ALIGNED(taddr, sizeof (uint64_t))) {
14084 dtrace_dof_error(dof, "misaligned setx relo");
14085 return (-1);
14086 }
14087
14088 if (r->dofr_type == DOF_RELO_SETX)
14089 *(uint64_t *)taddr += ubase;
14090 else
14091 *(uint64_t *)taddr +=
14092 udaddr + ts->dofs_offset + r->dofr_offset;
14093 break;
14094 default:
14095 dtrace_dof_error(dof, "invalid relocation type");
14096 return (-1);
14097 }
14098
14099 r = (dof_relodesc_t *)((uintptr_t)r + rs->dofs_entsize);
14100 }
14101
14102 return (0);
14103 }
14104
14105 /*
14106 * The dof_hdr_t passed to dtrace_dof_slurp() should be a partially validated
14107 * header: it should be at the front of a memory region that is at least
14108 * sizeof (dof_hdr_t) in size -- and then at least dof_hdr.dofh_loadsz in
14109 * size. It need not be validated in any other way.
14110 */
14111 static int
14112 dtrace_dof_slurp(dof_hdr_t *dof, dtrace_vstate_t *vstate, cred_t *cr,
14113 dtrace_enabling_t **enabp, uint64_t ubase, uint64_t udaddr, int noprobes)
14114 {
14115 uint64_t len = dof->dofh_loadsz, seclen;
14116 uintptr_t daddr = (uintptr_t)dof;
14117 dtrace_ecbdesc_t *ep;
14118 dtrace_enabling_t *enab;
14119 uint_t i;
14120
14121 ASSERT(MUTEX_HELD(&dtrace_lock));
14122 ASSERT(dof->dofh_loadsz >= sizeof (dof_hdr_t));
14123
14124 /*
14125 * Check the DOF header identification bytes. In addition to checking
14126 * valid settings, we also verify that unused bits/bytes are zeroed so
14127 * we can use them later without fear of regressing existing binaries.
14128 */
14129 if (bcmp(&dof->dofh_ident[DOF_ID_MAG0],
14130 DOF_MAG_STRING, DOF_MAG_STRLEN) != 0) {
14131 dtrace_dof_error(dof, "DOF magic string mismatch");
14132 return (-1);
14133 }
14134
14135 if (dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_ILP32 &&
14136 dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_LP64) {
14137 dtrace_dof_error(dof, "DOF has invalid data model");
14138 return (-1);
14139 }
14140
14141 if (dof->dofh_ident[DOF_ID_ENCODING] != DOF_ENCODE_NATIVE) {
14142 dtrace_dof_error(dof, "DOF encoding mismatch");
14143 return (-1);
14144 }
14145
14146 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
14147 dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_2) {
14148 dtrace_dof_error(dof, "DOF version mismatch");
14149 return (-1);
14150 }
14151
14152 if (dof->dofh_ident[DOF_ID_DIFVERS] != DIF_VERSION_2) {
14153 dtrace_dof_error(dof, "DOF uses unsupported instruction set");
14154 return (-1);
14155 }
14156
14157 if (dof->dofh_ident[DOF_ID_DIFIREG] > DIF_DIR_NREGS) {
14158 dtrace_dof_error(dof, "DOF uses too many integer registers");
14159 return (-1);
14160 }
14161
14162 if (dof->dofh_ident[DOF_ID_DIFTREG] > DIF_DTR_NREGS) {
14163 dtrace_dof_error(dof, "DOF uses too many tuple registers");
14164 return (-1);
14165 }
14166
14167 for (i = DOF_ID_PAD; i < DOF_ID_SIZE; i++) {
14168 if (dof->dofh_ident[i] != 0) {
14169 dtrace_dof_error(dof, "DOF has invalid ident byte set");
14170 return (-1);
14171 }
14172 }
14173
14174 if (dof->dofh_flags & ~DOF_FL_VALID) {
14175 dtrace_dof_error(dof, "DOF has invalid flag bits set");
14176 return (-1);
14177 }
14178
14179 if (dof->dofh_secsize == 0) {
14180 dtrace_dof_error(dof, "zero section header size");
14181 return (-1);
14182 }
14183
14184 /*
14185 * Check that the section headers don't exceed the amount of DOF
14186 * data. Note that we cast the section size and number of sections
14187 * to uint64_t's to prevent possible overflow in the multiplication.
14188 */
14189 seclen = (uint64_t)dof->dofh_secnum * (uint64_t)dof->dofh_secsize;
14190
14191 if (dof->dofh_secoff > len || seclen > len ||
14192 dof->dofh_secoff + seclen > len) {
14193 dtrace_dof_error(dof, "truncated section headers");
14194 return (-1);
14195 }
14196
14197 if (!IS_P2ALIGNED(dof->dofh_secoff, sizeof (uint64_t))) {
14198 dtrace_dof_error(dof, "misaligned section headers");
14199 return (-1);
14200 }
14201
14202 if (!IS_P2ALIGNED(dof->dofh_secsize, sizeof (uint64_t))) {
14203 dtrace_dof_error(dof, "misaligned section size");
14204 return (-1);
14205 }
14206
14207 /*
14208 * Take an initial pass through the section headers to be sure that
14209 * the headers don't have stray offsets. If the 'noprobes' flag is
14210 * set, do not permit sections relating to providers, probes, or args.
14211 */
14212 for (i = 0; i < dof->dofh_secnum; i++) {
14213 dof_sec_t *sec = (dof_sec_t *)(daddr +
14214 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
14215
14216 if (noprobes) {
14217 switch (sec->dofs_type) {
14218 case DOF_SECT_PROVIDER:
14219 case DOF_SECT_PROBES:
14220 case DOF_SECT_PRARGS:
14221 case DOF_SECT_PROFFS:
14222 dtrace_dof_error(dof, "illegal sections "
14223 "for enabling");
14224 return (-1);
14225 }
14226 }
14227
14228 if (DOF_SEC_ISLOADABLE(sec->dofs_type) &&
14229 !(sec->dofs_flags & DOF_SECF_LOAD)) {
14230 dtrace_dof_error(dof, "loadable section with load "
14231 "flag unset");
14232 return (-1);
14233 }
14234
14235 if (!(sec->dofs_flags & DOF_SECF_LOAD))
14236 continue; /* just ignore non-loadable sections */
14237
14238 if (!ISP2(sec->dofs_align)) {
14239 dtrace_dof_error(dof, "bad section alignment");
14240 return (-1);
14241 }
14242
14243 if (sec->dofs_offset & (sec->dofs_align - 1)) {
14244 dtrace_dof_error(dof, "misaligned section");
14245 return (-1);
14246 }
14247
14248 if (sec->dofs_offset > len || sec->dofs_size > len ||
14249 sec->dofs_offset + sec->dofs_size > len) {
14250 dtrace_dof_error(dof, "corrupt section header");
14251 return (-1);
14252 }
14253
14254 if (sec->dofs_type == DOF_SECT_STRTAB && *((char *)daddr +
14255 sec->dofs_offset + sec->dofs_size - 1) != '\0') {
14256 dtrace_dof_error(dof, "non-terminating string table");
14257 return (-1);
14258 }
14259 }
14260
14261 /*
14262 * Take a second pass through the sections and locate and perform any
14263 * relocations that are present. We do this after the first pass to
14264 * be sure that all sections have had their headers validated.
14265 */
14266 for (i = 0; i < dof->dofh_secnum; i++) {
14267 dof_sec_t *sec = (dof_sec_t *)(daddr +
14268 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
14269
14270 if (!(sec->dofs_flags & DOF_SECF_LOAD))
14271 continue; /* skip sections that are not loadable */
14272
14273 switch (sec->dofs_type) {
14274 case DOF_SECT_URELHDR:
14275 if (dtrace_dof_relocate(dof, sec, ubase, udaddr) != 0)
14276 return (-1);
14277 break;
14278 }
14279 }
14280
14281 if ((enab = *enabp) == NULL)
14282 enab = *enabp = dtrace_enabling_create(vstate);
14283
14284 for (i = 0; i < dof->dofh_secnum; i++) {
14285 dof_sec_t *sec = (dof_sec_t *)(daddr +
14286 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
14287
14288 if (sec->dofs_type != DOF_SECT_ECBDESC)
14289 continue;
14290
14291 if ((ep = dtrace_dof_ecbdesc(dof, sec, vstate, cr)) == NULL) {
14292 dtrace_enabling_destroy(enab);
14293 *enabp = NULL;
14294 return (-1);
14295 }
14296
14297 dtrace_enabling_add(enab, ep);
14298 }
14299
14300 return (0);
14301 }
14302
14303 /*
14304 * Process DOF for any options. This routine assumes that the DOF has been
14305 * at least processed by dtrace_dof_slurp().
14306 */
14307 static int
14308 dtrace_dof_options(dof_hdr_t *dof, dtrace_state_t *state)
14309 {
14310 int i, rval;
14311 uint32_t entsize;
14312 size_t offs;
14313 dof_optdesc_t *desc;
14314
14315 for (i = 0; i < dof->dofh_secnum; i++) {
14316 dof_sec_t *sec = (dof_sec_t *)((uintptr_t)dof +
14317 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
14318
14319 if (sec->dofs_type != DOF_SECT_OPTDESC)
14320 continue;
14321
14322 if (sec->dofs_align != sizeof (uint64_t)) {
14323 dtrace_dof_error(dof, "bad alignment in "
14324 "option description");
14325 return (EINVAL);
14326 }
14327
14328 if ((entsize = sec->dofs_entsize) == 0) {
14329 dtrace_dof_error(dof, "zeroed option entry size");
14330 return (EINVAL);
14331 }
14332
14333 if (entsize < sizeof (dof_optdesc_t)) {
14334 dtrace_dof_error(dof, "bad option entry size");
14335 return (EINVAL);
14336 }
14337
14338 for (offs = 0; offs < sec->dofs_size; offs += entsize) {
14339 desc = (dof_optdesc_t *)((uintptr_t)dof +
14340 (uintptr_t)sec->dofs_offset + offs);
14341
14342 if (desc->dofo_strtab != DOF_SECIDX_NONE) {
14343 dtrace_dof_error(dof, "non-zero option string");
14344 return (EINVAL);
14345 }
14346
14347 if (desc->dofo_value == DTRACEOPT_UNSET) {
14348 dtrace_dof_error(dof, "unset option");
14349 return (EINVAL);
14350 }
14351
14352 if ((rval = dtrace_state_option(state,
14353 desc->dofo_option, desc->dofo_value)) != 0) {
14354 dtrace_dof_error(dof, "rejected option");
14355 return (rval);
14356 }
14357 }
14358 }
14359
14360 return (0);
14361 }
14362
14363 /*
14364 * DTrace Consumer State Functions
14365 */
14366 static int
14367 dtrace_dstate_init(dtrace_dstate_t *dstate, size_t size)
14368 {
14369 size_t hashsize, maxper, min, chunksize = dstate->dtds_chunksize;
14370 void *base;
14371 uintptr_t limit;
14372 dtrace_dynvar_t *dvar, *next, *start;
14373 int i;
14374
14375 ASSERT(MUTEX_HELD(&dtrace_lock));
14376 ASSERT(dstate->dtds_base == NULL && dstate->dtds_percpu == NULL);
14377
14378 bzero(dstate, sizeof (dtrace_dstate_t));
14379
14380 if ((dstate->dtds_chunksize = chunksize) == 0)
14381 dstate->dtds_chunksize = DTRACE_DYNVAR_CHUNKSIZE;
14382
14383 VERIFY(dstate->dtds_chunksize < LONG_MAX);
14384
14385 if (size < (min = dstate->dtds_chunksize + sizeof (dtrace_dynhash_t)))
14386 size = min;
14387
14388 if ((base = kmem_zalloc(size, KM_NOSLEEP | KM_NORMALPRI)) == NULL)
14389 return (ENOMEM);
14390
14391 dstate->dtds_size = size;
14392 dstate->dtds_base = base;
14393 dstate->dtds_percpu = kmem_cache_alloc(dtrace_state_cache, KM_SLEEP);
14394 bzero(dstate->dtds_percpu,
14395 (mp_maxid + 1) * sizeof (dtrace_dstate_percpu_t));
14396
14397 hashsize = size / (dstate->dtds_chunksize + sizeof (dtrace_dynhash_t));
14398
14399 if (hashsize != 1 && (hashsize & 1))
14400 hashsize--;
14401
14402 dstate->dtds_hashsize = hashsize;
14403 dstate->dtds_hash = dstate->dtds_base;
14404
14405 /*
14406 * Set all of our hash buckets to point to the single sink, and (if
14407 * it hasn't already been set), set the sink's hash value to be the
14408 * sink sentinel value. The sink is needed for dynamic variable
14409 * lookups to know that they have iterated over an entire, valid hash
14410 * chain.
14411 */
14412 for (i = 0; i < hashsize; i++)
14413 dstate->dtds_hash[i].dtdh_chain = &dtrace_dynhash_sink;
14414
14415 if (dtrace_dynhash_sink.dtdv_hashval != DTRACE_DYNHASH_SINK)
14416 dtrace_dynhash_sink.dtdv_hashval = DTRACE_DYNHASH_SINK;
14417
14418 /*
14419 * Determine number of active CPUs. Divide free list evenly among
14420 * active CPUs.
14421 */
14422 start = (dtrace_dynvar_t *)
14423 ((uintptr_t)base + hashsize * sizeof (dtrace_dynhash_t));
14424 limit = (uintptr_t)base + size;
14425
14426 VERIFY((uintptr_t)start < limit);
14427 VERIFY((uintptr_t)start >= (uintptr_t)base);
14428
14429 maxper = (limit - (uintptr_t)start) / (mp_maxid + 1);
14430 maxper = (maxper / dstate->dtds_chunksize) * dstate->dtds_chunksize;
14431
14432 CPU_FOREACH(i) {
14433 dstate->dtds_percpu[i].dtdsc_free = dvar = start;
14434
14435 /*
14436 * If we don't even have enough chunks to make it once through
14437 * NCPUs, we're just going to allocate everything to the first
14438 * CPU. And if we're on the last CPU, we're going to allocate
14439 * whatever is left over. In either case, we set the limit to
14440 * be the limit of the dynamic variable space.
14441 */
14442 if (maxper == 0 || i == mp_maxid) {
14443 limit = (uintptr_t)base + size;
14444 start = NULL;
14445 } else {
14446 limit = (uintptr_t)start + maxper;
14447 start = (dtrace_dynvar_t *)limit;
14448 }
14449
14450 VERIFY(limit <= (uintptr_t)base + size);
14451
14452 for (;;) {
14453 next = (dtrace_dynvar_t *)((uintptr_t)dvar +
14454 dstate->dtds_chunksize);
14455
14456 if ((uintptr_t)next + dstate->dtds_chunksize >= limit)
14457 break;
14458
14459 VERIFY((uintptr_t)dvar >= (uintptr_t)base &&
14460 (uintptr_t)dvar <= (uintptr_t)base + size);
14461 dvar->dtdv_next = next;
14462 dvar = next;
14463 }
14464
14465 if (maxper == 0)
14466 break;
14467 }
14468
14469 return (0);
14470 }
14471
14472 static void
14473 dtrace_dstate_fini(dtrace_dstate_t *dstate)
14474 {
14475 ASSERT(MUTEX_HELD(&cpu_lock));
14476
14477 if (dstate->dtds_base == NULL)
14478 return;
14479
14480 kmem_free(dstate->dtds_base, dstate->dtds_size);
14481 kmem_cache_free(dtrace_state_cache, dstate->dtds_percpu);
14482 }
14483
14484 static void
14485 dtrace_vstate_fini(dtrace_vstate_t *vstate)
14486 {
14487 /*
14488 * Logical XOR, where are you?
14489 */
14490 ASSERT((vstate->dtvs_nglobals == 0) ^ (vstate->dtvs_globals != NULL));
14491
14492 if (vstate->dtvs_nglobals > 0) {
14493 kmem_free(vstate->dtvs_globals, vstate->dtvs_nglobals *
14494 sizeof (dtrace_statvar_t *));
14495 }
14496
14497 if (vstate->dtvs_ntlocals > 0) {
14498 kmem_free(vstate->dtvs_tlocals, vstate->dtvs_ntlocals *
14499 sizeof (dtrace_difv_t));
14500 }
14501
14502 ASSERT((vstate->dtvs_nlocals == 0) ^ (vstate->dtvs_locals != NULL));
14503
14504 if (vstate->dtvs_nlocals > 0) {
14505 kmem_free(vstate->dtvs_locals, vstate->dtvs_nlocals *
14506 sizeof (dtrace_statvar_t *));
14507 }
14508 }
14509
14510 #ifdef illumos
14511 static void
14512 dtrace_state_clean(dtrace_state_t *state)
14513 {
14514 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE)
14515 return;
14516
14517 dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars);
14518 dtrace_speculation_clean(state);
14519 }
14520
14521 static void
14522 dtrace_state_deadman(dtrace_state_t *state)
14523 {
14524 hrtime_t now;
14525
14526 dtrace_sync();
14527
14528 now = dtrace_gethrtime();
14529
14530 if (state != dtrace_anon.dta_state &&
14531 now - state->dts_laststatus >= dtrace_deadman_user)
14532 return;
14533
14534 /*
14535 * We must be sure that dts_alive never appears to be less than the
14536 * value upon entry to dtrace_state_deadman(), and because we lack a
14537 * dtrace_cas64(), we cannot store to it atomically. We thus instead
14538 * store INT64_MAX to it, followed by a memory barrier, followed by
14539 * the new value. This assures that dts_alive never appears to be
14540 * less than its true value, regardless of the order in which the
14541 * stores to the underlying storage are issued.
14542 */
14543 state->dts_alive = INT64_MAX;
14544 dtrace_membar_producer();
14545 state->dts_alive = now;
14546 }
14547 #else /* !illumos */
14548 static void
14549 dtrace_state_clean(void *arg)
14550 {
14551 dtrace_state_t *state = arg;
14552 dtrace_optval_t *opt = state->dts_options;
14553
14554 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE)
14555 return;
14556
14557 dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars);
14558 dtrace_speculation_clean(state);
14559
14560 callout_reset(&state->dts_cleaner, hz * opt[DTRACEOPT_CLEANRATE] / NANOSEC,
14561 dtrace_state_clean, state);
14562 }
14563
14564 static void
14565 dtrace_state_deadman(void *arg)
14566 {
14567 dtrace_state_t *state = arg;
14568 hrtime_t now;
14569
14570 dtrace_sync();
14571
14572 dtrace_debug_output();
14573
14574 now = dtrace_gethrtime();
14575
14576 if (state != dtrace_anon.dta_state &&
14577 now - state->dts_laststatus >= dtrace_deadman_user)
14578 return;
14579
14580 /*
14581 * We must be sure that dts_alive never appears to be less than the
14582 * value upon entry to dtrace_state_deadman(), and because we lack a
14583 * dtrace_cas64(), we cannot store to it atomically. We thus instead
14584 * store INT64_MAX to it, followed by a memory barrier, followed by
14585 * the new value. This assures that dts_alive never appears to be
14586 * less than its true value, regardless of the order in which the
14587 * stores to the underlying storage are issued.
14588 */
14589 state->dts_alive = INT64_MAX;
14590 dtrace_membar_producer();
14591 state->dts_alive = now;
14592
14593 callout_reset(&state->dts_deadman, hz * dtrace_deadman_interval / NANOSEC,
14594 dtrace_state_deadman, state);
14595 }
14596 #endif /* illumos */
14597
14598 static dtrace_state_t *
14599 #ifdef illumos
14600 dtrace_state_create(dev_t *devp, cred_t *cr)
14601 #else
14602 dtrace_state_create(struct cdev *dev, struct ucred *cred __unused)
14603 #endif
14604 {
14605 #ifdef illumos
14606 minor_t minor;
14607 major_t major;
14608 #else
14609 cred_t *cr = NULL;
14610 int m = 0;
14611 #endif
14612 char c[30];
14613 dtrace_state_t *state;
14614 dtrace_optval_t *opt;
14615 int bufsize = (mp_maxid + 1) * sizeof (dtrace_buffer_t), i;
14616 int cpu_it;
14617
14618 ASSERT(MUTEX_HELD(&dtrace_lock));
14619 ASSERT(MUTEX_HELD(&cpu_lock));
14620
14621 #ifdef illumos
14622 minor = (minor_t)(uintptr_t)vmem_alloc(dtrace_minor, 1,
14623 VM_BESTFIT | VM_SLEEP);
14624
14625 if (ddi_soft_state_zalloc(dtrace_softstate, minor) != DDI_SUCCESS) {
14626 vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
14627 return (NULL);
14628 }
14629
14630 state = ddi_get_soft_state(dtrace_softstate, minor);
14631 #else
14632 if (dev != NULL) {
14633 cr = dev->si_cred;
14634 m = dev2unit(dev);
14635 }
14636
14637 /* Allocate memory for the state. */
14638 state = kmem_zalloc(sizeof(dtrace_state_t), KM_SLEEP);
14639 #endif
14640
14641 state->dts_epid = DTRACE_EPIDNONE + 1;
14642
14643 (void) snprintf(c, sizeof (c), "dtrace_aggid_%d", m);
14644 #ifdef illumos
14645 state->dts_aggid_arena = vmem_create(c, (void *)1, UINT32_MAX, 1,
14646 NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
14647
14648 if (devp != NULL) {
14649 major = getemajor(*devp);
14650 } else {
14651 major = ddi_driver_major(dtrace_devi);
14652 }
14653
14654 state->dts_dev = makedevice(major, minor);
14655
14656 if (devp != NULL)
14657 *devp = state->dts_dev;
14658 #else
14659 state->dts_aggid_arena = new_unrhdr(1, INT_MAX, &dtrace_unr_mtx);
14660 state->dts_dev = dev;
14661 #endif
14662
14663 state->dts_buffer = kmem_zalloc(bufsize, KM_SLEEP);
14664 state->dts_aggbuffer = kmem_zalloc(bufsize, KM_SLEEP);
14665
14666 /*
14667 * Allocate and initialise the per-process per-CPU random state.
14668 * SI_SUB_RANDOM < SI_SUB_DTRACE_ANON therefore entropy device is
14669 * assumed to be seeded at this point (if from Fortuna seed file).
14670 */
14671 arc4random_buf(&state->dts_rstate[0], 2 * sizeof(uint64_t));
14672 for (cpu_it = 1; cpu_it <= mp_maxid; cpu_it++) {
14673 /*
14674 * Each CPU is assigned a 2^64 period, non-overlapping
14675 * subsequence.
14676 */
14677 dtrace_xoroshiro128_plus_jump(state->dts_rstate[cpu_it - 1],
14678 state->dts_rstate[cpu_it]);
14679 }
14680
14681 #ifdef illumos
14682 state->dts_cleaner = CYCLIC_NONE;
14683 state->dts_deadman = CYCLIC_NONE;
14684 #else
14685 callout_init(&state->dts_cleaner, 1);
14686 callout_init(&state->dts_deadman, 1);
14687 #endif
14688 state->dts_vstate.dtvs_state = state;
14689
14690 for (i = 0; i < DTRACEOPT_MAX; i++)
14691 state->dts_options[i] = DTRACEOPT_UNSET;
14692
14693 /*
14694 * Set the default options.
14695 */
14696 opt = state->dts_options;
14697 opt[DTRACEOPT_BUFPOLICY] = DTRACEOPT_BUFPOLICY_SWITCH;
14698 opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_AUTO;
14699 opt[DTRACEOPT_NSPEC] = dtrace_nspec_default;
14700 opt[DTRACEOPT_SPECSIZE] = dtrace_specsize_default;
14701 opt[DTRACEOPT_CPU] = (dtrace_optval_t)DTRACE_CPUALL;
14702 opt[DTRACEOPT_STRSIZE] = dtrace_strsize_default;
14703 opt[DTRACEOPT_STACKFRAMES] = dtrace_stackframes_default;
14704 opt[DTRACEOPT_USTACKFRAMES] = dtrace_ustackframes_default;
14705 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_default;
14706 opt[DTRACEOPT_AGGRATE] = dtrace_aggrate_default;
14707 opt[DTRACEOPT_SWITCHRATE] = dtrace_switchrate_default;
14708 opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_default;
14709 opt[DTRACEOPT_JSTACKFRAMES] = dtrace_jstackframes_default;
14710 opt[DTRACEOPT_JSTACKSTRSIZE] = dtrace_jstackstrsize_default;
14711
14712 state->dts_activity = DTRACE_ACTIVITY_INACTIVE;
14713
14714 /*
14715 * Depending on the user credentials, we set flag bits which alter probe
14716 * visibility or the amount of destructiveness allowed. In the case of
14717 * actual anonymous tracing, or the possession of all privileges, all of
14718 * the normal checks are bypassed.
14719 */
14720 if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
14721 state->dts_cred.dcr_visible = DTRACE_CRV_ALL;
14722 state->dts_cred.dcr_action = DTRACE_CRA_ALL;
14723 } else {
14724 /*
14725 * Set up the credentials for this instantiation. We take a
14726 * hold on the credential to prevent it from disappearing on
14727 * us; this in turn prevents the zone_t referenced by this
14728 * credential from disappearing. This means that we can
14729 * examine the credential and the zone from probe context.
14730 */
14731 crhold(cr);
14732 state->dts_cred.dcr_cred = cr;
14733
14734 /*
14735 * CRA_PROC means "we have *some* privilege for dtrace" and
14736 * unlocks the use of variables like pid, zonename, etc.
14737 */
14738 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE) ||
14739 PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
14740 state->dts_cred.dcr_action |= DTRACE_CRA_PROC;
14741 }
14742
14743 /*
14744 * dtrace_user allows use of syscall and profile providers.
14745 * If the user also has proc_owner and/or proc_zone, we
14746 * extend the scope to include additional visibility and
14747 * destructive power.
14748 */
14749 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) {
14750 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) {
14751 state->dts_cred.dcr_visible |=
14752 DTRACE_CRV_ALLPROC;
14753
14754 state->dts_cred.dcr_action |=
14755 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
14756 }
14757
14758 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) {
14759 state->dts_cred.dcr_visible |=
14760 DTRACE_CRV_ALLZONE;
14761
14762 state->dts_cred.dcr_action |=
14763 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
14764 }
14765
14766 /*
14767 * If we have all privs in whatever zone this is,
14768 * we can do destructive things to processes which
14769 * have altered credentials.
14770 */
14771 #ifdef illumos
14772 if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
14773 cr->cr_zone->zone_privset)) {
14774 state->dts_cred.dcr_action |=
14775 DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
14776 }
14777 #endif
14778 }
14779
14780 /*
14781 * Holding the dtrace_kernel privilege also implies that
14782 * the user has the dtrace_user privilege from a visibility
14783 * perspective. But without further privileges, some
14784 * destructive actions are not available.
14785 */
14786 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) {
14787 /*
14788 * Make all probes in all zones visible. However,
14789 * this doesn't mean that all actions become available
14790 * to all zones.
14791 */
14792 state->dts_cred.dcr_visible |= DTRACE_CRV_KERNEL |
14793 DTRACE_CRV_ALLPROC | DTRACE_CRV_ALLZONE;
14794
14795 state->dts_cred.dcr_action |= DTRACE_CRA_KERNEL |
14796 DTRACE_CRA_PROC;
14797 /*
14798 * Holding proc_owner means that destructive actions
14799 * for *this* zone are allowed.
14800 */
14801 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
14802 state->dts_cred.dcr_action |=
14803 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
14804
14805 /*
14806 * Holding proc_zone means that destructive actions
14807 * for this user/group ID in all zones is allowed.
14808 */
14809 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
14810 state->dts_cred.dcr_action |=
14811 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
14812
14813 #ifdef illumos
14814 /*
14815 * If we have all privs in whatever zone this is,
14816 * we can do destructive things to processes which
14817 * have altered credentials.
14818 */
14819 if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
14820 cr->cr_zone->zone_privset)) {
14821 state->dts_cred.dcr_action |=
14822 DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
14823 }
14824 #endif
14825 }
14826
14827 /*
14828 * Holding the dtrace_proc privilege gives control over fasttrap
14829 * and pid providers. We need to grant wider destructive
14830 * privileges in the event that the user has proc_owner and/or
14831 * proc_zone.
14832 */
14833 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
14834 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
14835 state->dts_cred.dcr_action |=
14836 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
14837
14838 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
14839 state->dts_cred.dcr_action |=
14840 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
14841 }
14842 }
14843
14844 return (state);
14845 }
14846
14847 static int
14848 dtrace_state_buffer(dtrace_state_t *state, dtrace_buffer_t *buf, int which)
14849 {
14850 dtrace_optval_t *opt = state->dts_options, size;
14851 processorid_t cpu = 0;
14852 int flags = 0, rval, factor, divisor = 1;
14853
14854 ASSERT(MUTEX_HELD(&dtrace_lock));
14855 ASSERT(MUTEX_HELD(&cpu_lock));
14856 ASSERT(which < DTRACEOPT_MAX);
14857 ASSERT(state->dts_activity == DTRACE_ACTIVITY_INACTIVE ||
14858 (state == dtrace_anon.dta_state &&
14859 state->dts_activity == DTRACE_ACTIVITY_ACTIVE));
14860
14861 if (opt[which] == DTRACEOPT_UNSET || opt[which] == 0)
14862 return (0);
14863
14864 if (opt[DTRACEOPT_CPU] != DTRACEOPT_UNSET)
14865 cpu = opt[DTRACEOPT_CPU];
14866
14867 if (which == DTRACEOPT_SPECSIZE)
14868 flags |= DTRACEBUF_NOSWITCH;
14869
14870 if (which == DTRACEOPT_BUFSIZE) {
14871 if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_RING)
14872 flags |= DTRACEBUF_RING;
14873
14874 if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_FILL)
14875 flags |= DTRACEBUF_FILL;
14876
14877 if (state != dtrace_anon.dta_state ||
14878 state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
14879 flags |= DTRACEBUF_INACTIVE;
14880 }
14881
14882 for (size = opt[which]; size >= sizeof (uint64_t); size /= divisor) {
14883 /*
14884 * The size must be 8-byte aligned. If the size is not 8-byte
14885 * aligned, drop it down by the difference.
14886 */
14887 if (size & (sizeof (uint64_t) - 1))
14888 size -= size & (sizeof (uint64_t) - 1);
14889
14890 if (size < state->dts_reserve) {
14891 /*
14892 * Buffers always must be large enough to accommodate
14893 * their prereserved space. We return E2BIG instead
14894 * of ENOMEM in this case to allow for user-level
14895 * software to differentiate the cases.
14896 */
14897 return (E2BIG);
14898 }
14899
14900 rval = dtrace_buffer_alloc(buf, size, flags, cpu, &factor);
14901
14902 if (rval != ENOMEM) {
14903 opt[which] = size;
14904 return (rval);
14905 }
14906
14907 if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
14908 return (rval);
14909
14910 for (divisor = 2; divisor < factor; divisor <<= 1)
14911 continue;
14912 }
14913
14914 return (ENOMEM);
14915 }
14916
14917 static int
14918 dtrace_state_buffers(dtrace_state_t *state)
14919 {
14920 dtrace_speculation_t *spec = state->dts_speculations;
14921 int rval, i;
14922
14923 if ((rval = dtrace_state_buffer(state, state->dts_buffer,
14924 DTRACEOPT_BUFSIZE)) != 0)
14925 return (rval);
14926
14927 if ((rval = dtrace_state_buffer(state, state->dts_aggbuffer,
14928 DTRACEOPT_AGGSIZE)) != 0)
14929 return (rval);
14930
14931 for (i = 0; i < state->dts_nspeculations; i++) {
14932 if ((rval = dtrace_state_buffer(state,
14933 spec[i].dtsp_buffer, DTRACEOPT_SPECSIZE)) != 0)
14934 return (rval);
14935 }
14936
14937 return (0);
14938 }
14939
14940 static void
14941 dtrace_state_prereserve(dtrace_state_t *state)
14942 {
14943 dtrace_ecb_t *ecb;
14944 dtrace_probe_t *probe;
14945
14946 state->dts_reserve = 0;
14947
14948 if (state->dts_options[DTRACEOPT_BUFPOLICY] != DTRACEOPT_BUFPOLICY_FILL)
14949 return;
14950
14951 /*
14952 * If our buffer policy is a "fill" buffer policy, we need to set the
14953 * prereserved space to be the space required by the END probes.
14954 */
14955 probe = dtrace_probes[dtrace_probeid_end - 1];
14956 ASSERT(probe != NULL);
14957
14958 for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
14959 if (ecb->dte_state != state)
14960 continue;
14961
14962 state->dts_reserve += ecb->dte_needed + ecb->dte_alignment;
14963 }
14964 }
14965
14966 static int
14967 dtrace_state_go(dtrace_state_t *state, processorid_t *cpu)
14968 {
14969 dtrace_optval_t *opt = state->dts_options, sz, nspec;
14970 dtrace_speculation_t *spec;
14971 dtrace_buffer_t *buf;
14972 #ifdef illumos
14973 cyc_handler_t hdlr;
14974 cyc_time_t when;
14975 #endif
14976 int rval = 0, i, bufsize = (mp_maxid + 1) * sizeof (dtrace_buffer_t);
14977 dtrace_icookie_t cookie;
14978
14979 mutex_enter(&cpu_lock);
14980 mutex_enter(&dtrace_lock);
14981
14982 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
14983 rval = EBUSY;
14984 goto out;
14985 }
14986
14987 /*
14988 * Before we can perform any checks, we must prime all of the
14989 * retained enablings that correspond to this state.
14990 */
14991 dtrace_enabling_prime(state);
14992
14993 if (state->dts_destructive && !state->dts_cred.dcr_destructive) {
14994 rval = EACCES;
14995 goto out;
14996 }
14997
14998 dtrace_state_prereserve(state);
14999
15000 /*
15001 * Now we want to do is try to allocate our speculations.
15002 * We do not automatically resize the number of speculations; if
15003 * this fails, we will fail the operation.
15004 */
15005 nspec = opt[DTRACEOPT_NSPEC];
15006 ASSERT(nspec != DTRACEOPT_UNSET);
15007
15008 if (nspec > INT_MAX) {
15009 rval = ENOMEM;
15010 goto out;
15011 }
15012
15013 spec = kmem_zalloc(nspec * sizeof (dtrace_speculation_t),
15014 KM_NOSLEEP | KM_NORMALPRI);
15015
15016 if (spec == NULL) {
15017 rval = ENOMEM;
15018 goto out;
15019 }
15020
15021 state->dts_speculations = spec;
15022 state->dts_nspeculations = (int)nspec;
15023
15024 for (i = 0; i < nspec; i++) {
15025 if ((buf = kmem_zalloc(bufsize,
15026 KM_NOSLEEP | KM_NORMALPRI)) == NULL) {
15027 rval = ENOMEM;
15028 goto err;
15029 }
15030
15031 spec[i].dtsp_buffer = buf;
15032 }
15033
15034 if (opt[DTRACEOPT_GRABANON] != DTRACEOPT_UNSET) {
15035 if (dtrace_anon.dta_state == NULL) {
15036 rval = ENOENT;
15037 goto out;
15038 }
15039
15040 if (state->dts_necbs != 0) {
15041 rval = EALREADY;
15042 goto out;
15043 }
15044
15045 state->dts_anon = dtrace_anon_grab();
15046 ASSERT(state->dts_anon != NULL);
15047 state = state->dts_anon;
15048
15049 /*
15050 * We want "grabanon" to be set in the grabbed state, so we'll
15051 * copy that option value from the grabbing state into the
15052 * grabbed state.
15053 */
15054 state->dts_options[DTRACEOPT_GRABANON] =
15055 opt[DTRACEOPT_GRABANON];
15056
15057 *cpu = dtrace_anon.dta_beganon;
15058
15059 /*
15060 * If the anonymous state is active (as it almost certainly
15061 * is if the anonymous enabling ultimately matched anything),
15062 * we don't allow any further option processing -- but we
15063 * don't return failure.
15064 */
15065 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
15066 goto out;
15067 }
15068
15069 if (opt[DTRACEOPT_AGGSIZE] != DTRACEOPT_UNSET &&
15070 opt[DTRACEOPT_AGGSIZE] != 0) {
15071 if (state->dts_aggregations == NULL) {
15072 /*
15073 * We're not going to create an aggregation buffer
15074 * because we don't have any ECBs that contain
15075 * aggregations -- set this option to 0.
15076 */
15077 opt[DTRACEOPT_AGGSIZE] = 0;
15078 } else {
15079 /*
15080 * If we have an aggregation buffer, we must also have
15081 * a buffer to use as scratch.
15082 */
15083 if (opt[DTRACEOPT_BUFSIZE] == DTRACEOPT_UNSET ||
15084 opt[DTRACEOPT_BUFSIZE] < state->dts_needed) {
15085 opt[DTRACEOPT_BUFSIZE] = state->dts_needed;
15086 }
15087 }
15088 }
15089
15090 if (opt[DTRACEOPT_SPECSIZE] != DTRACEOPT_UNSET &&
15091 opt[DTRACEOPT_SPECSIZE] != 0) {
15092 if (!state->dts_speculates) {
15093 /*
15094 * We're not going to create speculation buffers
15095 * because we don't have any ECBs that actually
15096 * speculate -- set the speculation size to 0.
15097 */
15098 opt[DTRACEOPT_SPECSIZE] = 0;
15099 }
15100 }
15101
15102 /*
15103 * The bare minimum size for any buffer that we're actually going to
15104 * do anything to is sizeof (uint64_t).
15105 */
15106 sz = sizeof (uint64_t);
15107
15108 if ((state->dts_needed != 0 && opt[DTRACEOPT_BUFSIZE] < sz) ||
15109 (state->dts_speculates && opt[DTRACEOPT_SPECSIZE] < sz) ||
15110 (state->dts_aggregations != NULL && opt[DTRACEOPT_AGGSIZE] < sz)) {
15111 /*
15112 * A buffer size has been explicitly set to 0 (or to a size
15113 * that will be adjusted to 0) and we need the space -- we
15114 * need to return failure. We return ENOSPC to differentiate
15115 * it from failing to allocate a buffer due to failure to meet
15116 * the reserve (for which we return E2BIG).
15117 */
15118 rval = ENOSPC;
15119 goto out;
15120 }
15121
15122 if ((rval = dtrace_state_buffers(state)) != 0)
15123 goto err;
15124
15125 if ((sz = opt[DTRACEOPT_DYNVARSIZE]) == DTRACEOPT_UNSET)
15126 sz = dtrace_dstate_defsize;
15127
15128 do {
15129 rval = dtrace_dstate_init(&state->dts_vstate.dtvs_dynvars, sz);
15130
15131 if (rval == 0)
15132 break;
15133
15134 if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
15135 goto err;
15136 } while (sz >>= 1);
15137
15138 opt[DTRACEOPT_DYNVARSIZE] = sz;
15139
15140 if (rval != 0)
15141 goto err;
15142
15143 if (opt[DTRACEOPT_STATUSRATE] > dtrace_statusrate_max)
15144 opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_max;
15145
15146 if (opt[DTRACEOPT_CLEANRATE] == 0)
15147 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
15148
15149 if (opt[DTRACEOPT_CLEANRATE] < dtrace_cleanrate_min)
15150 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_min;
15151
15152 if (opt[DTRACEOPT_CLEANRATE] > dtrace_cleanrate_max)
15153 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
15154
15155 state->dts_alive = state->dts_laststatus = dtrace_gethrtime();
15156 #ifdef illumos
15157 hdlr.cyh_func = (cyc_func_t)dtrace_state_clean;
15158 hdlr.cyh_arg = state;
15159 hdlr.cyh_level = CY_LOW_LEVEL;
15160
15161 when.cyt_when = 0;
15162 when.cyt_interval = opt[DTRACEOPT_CLEANRATE];
15163
15164 state->dts_cleaner = cyclic_add(&hdlr, &when);
15165
15166 hdlr.cyh_func = (cyc_func_t)dtrace_state_deadman;
15167 hdlr.cyh_arg = state;
15168 hdlr.cyh_level = CY_LOW_LEVEL;
15169
15170 when.cyt_when = 0;
15171 when.cyt_interval = dtrace_deadman_interval;
15172
15173 state->dts_deadman = cyclic_add(&hdlr, &when);
15174 #else
15175 callout_reset(&state->dts_cleaner, hz * opt[DTRACEOPT_CLEANRATE] / NANOSEC,
15176 dtrace_state_clean, state);
15177 callout_reset(&state->dts_deadman, hz * dtrace_deadman_interval / NANOSEC,
15178 dtrace_state_deadman, state);
15179 #endif
15180
15181 state->dts_activity = DTRACE_ACTIVITY_WARMUP;
15182
15183 #ifdef illumos
15184 if (state->dts_getf != 0 &&
15185 !(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)) {
15186 /*
15187 * We don't have kernel privs but we have at least one call
15188 * to getf(); we need to bump our zone's count, and (if
15189 * this is the first enabling to have an unprivileged call
15190 * to getf()) we need to hook into closef().
15191 */
15192 state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf++;
15193
15194 if (dtrace_getf++ == 0) {
15195 ASSERT(dtrace_closef == NULL);
15196 dtrace_closef = dtrace_getf_barrier;
15197 }
15198 }
15199 #endif
15200
15201 /*
15202 * Now it's time to actually fire the BEGIN probe. We need to disable
15203 * interrupts here both to record the CPU on which we fired the BEGIN
15204 * probe (the data from this CPU will be processed first at user
15205 * level) and to manually activate the buffer for this CPU.
15206 */
15207 cookie = dtrace_interrupt_disable();
15208 *cpu = curcpu;
15209 ASSERT(state->dts_buffer[*cpu].dtb_flags & DTRACEBUF_INACTIVE);
15210 state->dts_buffer[*cpu].dtb_flags &= ~DTRACEBUF_INACTIVE;
15211
15212 dtrace_probe(dtrace_probeid_begin,
15213 (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
15214 dtrace_interrupt_enable(cookie);
15215 /*
15216 * We may have had an exit action from a BEGIN probe; only change our
15217 * state to ACTIVE if we're still in WARMUP.
15218 */
15219 ASSERT(state->dts_activity == DTRACE_ACTIVITY_WARMUP ||
15220 state->dts_activity == DTRACE_ACTIVITY_DRAINING);
15221
15222 if (state->dts_activity == DTRACE_ACTIVITY_WARMUP)
15223 state->dts_activity = DTRACE_ACTIVITY_ACTIVE;
15224
15225 #ifdef __FreeBSD__
15226 /*
15227 * We enable anonymous tracing before APs are started, so we must
15228 * activate buffers using the current CPU.
15229 */
15230 if (state == dtrace_anon.dta_state) {
15231 CPU_FOREACH(i)
15232 dtrace_buffer_activate_cpu(state, i);
15233 } else
15234 dtrace_xcall(DTRACE_CPUALL,
15235 (dtrace_xcall_t)dtrace_buffer_activate, state);
15236 #else
15237 /*
15238 * Regardless of whether or not now we're in ACTIVE or DRAINING, we
15239 * want each CPU to transition its principal buffer out of the
15240 * INACTIVE state. Doing this assures that no CPU will suddenly begin
15241 * processing an ECB halfway down a probe's ECB chain; all CPUs will
15242 * atomically transition from processing none of a state's ECBs to
15243 * processing all of them.
15244 */
15245 dtrace_xcall(DTRACE_CPUALL,
15246 (dtrace_xcall_t)dtrace_buffer_activate, state);
15247 #endif
15248 goto out;
15249
15250 err:
15251 dtrace_buffer_free(state->dts_buffer);
15252 dtrace_buffer_free(state->dts_aggbuffer);
15253
15254 if ((nspec = state->dts_nspeculations) == 0) {
15255 ASSERT(state->dts_speculations == NULL);
15256 goto out;
15257 }
15258
15259 spec = state->dts_speculations;
15260 ASSERT(spec != NULL);
15261
15262 for (i = 0; i < state->dts_nspeculations; i++) {
15263 if ((buf = spec[i].dtsp_buffer) == NULL)
15264 break;
15265
15266 dtrace_buffer_free(buf);
15267 kmem_free(buf, bufsize);
15268 }
15269
15270 kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
15271 state->dts_nspeculations = 0;
15272 state->dts_speculations = NULL;
15273
15274 out:
15275 mutex_exit(&dtrace_lock);
15276 mutex_exit(&cpu_lock);
15277
15278 return (rval);
15279 }
15280
15281 static int
15282 dtrace_state_stop(dtrace_state_t *state, processorid_t *cpu)
15283 {
15284 dtrace_icookie_t cookie;
15285
15286 ASSERT(MUTEX_HELD(&dtrace_lock));
15287
15288 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE &&
15289 state->dts_activity != DTRACE_ACTIVITY_DRAINING)
15290 return (EINVAL);
15291
15292 /*
15293 * We'll set the activity to DTRACE_ACTIVITY_DRAINING, and issue a sync
15294 * to be sure that every CPU has seen it. See below for the details
15295 * on why this is done.
15296 */
15297 state->dts_activity = DTRACE_ACTIVITY_DRAINING;
15298 dtrace_sync();
15299
15300 /*
15301 * By this point, it is impossible for any CPU to be still processing
15302 * with DTRACE_ACTIVITY_ACTIVE. We can thus set our activity to
15303 * DTRACE_ACTIVITY_COOLDOWN and know that we're not racing with any
15304 * other CPU in dtrace_buffer_reserve(). This allows dtrace_probe()
15305 * and callees to know that the activity is DTRACE_ACTIVITY_COOLDOWN
15306 * iff we're in the END probe.
15307 */
15308 state->dts_activity = DTRACE_ACTIVITY_COOLDOWN;
15309 dtrace_sync();
15310 ASSERT(state->dts_activity == DTRACE_ACTIVITY_COOLDOWN);
15311
15312 /*
15313 * Finally, we can release the reserve and call the END probe. We
15314 * disable interrupts across calling the END probe to allow us to
15315 * return the CPU on which we actually called the END probe. This
15316 * allows user-land to be sure that this CPU's principal buffer is
15317 * processed last.
15318 */
15319 state->dts_reserve = 0;
15320
15321 cookie = dtrace_interrupt_disable();
15322 *cpu = curcpu;
15323 dtrace_probe(dtrace_probeid_end,
15324 (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
15325 dtrace_interrupt_enable(cookie);
15326
15327 state->dts_activity = DTRACE_ACTIVITY_STOPPED;
15328 dtrace_sync();
15329
15330 #ifdef illumos
15331 if (state->dts_getf != 0 &&
15332 !(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)) {
15333 /*
15334 * We don't have kernel privs but we have at least one call
15335 * to getf(); we need to lower our zone's count, and (if
15336 * this is the last enabling to have an unprivileged call
15337 * to getf()) we need to clear the closef() hook.
15338 */
15339 ASSERT(state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf > 0);
15340 ASSERT(dtrace_closef == dtrace_getf_barrier);
15341 ASSERT(dtrace_getf > 0);
15342
15343 state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf--;
15344
15345 if (--dtrace_getf == 0)
15346 dtrace_closef = NULL;
15347 }
15348 #endif
15349
15350 return (0);
15351 }
15352
15353 static int
15354 dtrace_state_option(dtrace_state_t *state, dtrace_optid_t option,
15355 dtrace_optval_t val)
15356 {
15357 ASSERT(MUTEX_HELD(&dtrace_lock));
15358
15359 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
15360 return (EBUSY);
15361
15362 if (option >= DTRACEOPT_MAX)
15363 return (EINVAL);
15364
15365 if (option != DTRACEOPT_CPU && val < 0)
15366 return (EINVAL);
15367
15368 switch (option) {
15369 case DTRACEOPT_DESTRUCTIVE:
15370 if (dtrace_destructive_disallow)
15371 return (EACCES);
15372
15373 state->dts_cred.dcr_destructive = 1;
15374 break;
15375
15376 case DTRACEOPT_BUFSIZE:
15377 case DTRACEOPT_DYNVARSIZE:
15378 case DTRACEOPT_AGGSIZE:
15379 case DTRACEOPT_SPECSIZE:
15380 case DTRACEOPT_STRSIZE:
15381 if (val < 0)
15382 return (EINVAL);
15383
15384 if (val >= LONG_MAX) {
15385 /*
15386 * If this is an otherwise negative value, set it to
15387 * the highest multiple of 128m less than LONG_MAX.
15388 * Technically, we're adjusting the size without
15389 * regard to the buffer resizing policy, but in fact,
15390 * this has no effect -- if we set the buffer size to
15391 * ~LONG_MAX and the buffer policy is ultimately set to
15392 * be "manual", the buffer allocation is guaranteed to
15393 * fail, if only because the allocation requires two
15394 * buffers. (We set the the size to the highest
15395 * multiple of 128m because it ensures that the size
15396 * will remain a multiple of a megabyte when
15397 * repeatedly halved -- all the way down to 15m.)
15398 */
15399 val = LONG_MAX - (1 << 27) + 1;
15400 }
15401 }
15402
15403 state->dts_options[option] = val;
15404
15405 return (0);
15406 }
15407
15408 static void
15409 dtrace_state_destroy(dtrace_state_t *state)
15410 {
15411 dtrace_ecb_t *ecb;
15412 dtrace_vstate_t *vstate = &state->dts_vstate;
15413 #ifdef illumos
15414 minor_t minor = getminor(state->dts_dev);
15415 #endif
15416 int i, bufsize = (mp_maxid + 1) * sizeof (dtrace_buffer_t);
15417 dtrace_speculation_t *spec = state->dts_speculations;
15418 int nspec = state->dts_nspeculations;
15419 uint32_t match;
15420
15421 ASSERT(MUTEX_HELD(&dtrace_lock));
15422 ASSERT(MUTEX_HELD(&cpu_lock));
15423
15424 /*
15425 * First, retract any retained enablings for this state.
15426 */
15427 dtrace_enabling_retract(state);
15428 ASSERT(state->dts_nretained == 0);
15429
15430 if (state->dts_activity == DTRACE_ACTIVITY_ACTIVE ||
15431 state->dts_activity == DTRACE_ACTIVITY_DRAINING) {
15432 /*
15433 * We have managed to come into dtrace_state_destroy() on a
15434 * hot enabling -- almost certainly because of a disorderly
15435 * shutdown of a consumer. (That is, a consumer that is
15436 * exiting without having called dtrace_stop().) In this case,
15437 * we're going to set our activity to be KILLED, and then
15438 * issue a sync to be sure that everyone is out of probe
15439 * context before we start blowing away ECBs.
15440 */
15441 state->dts_activity = DTRACE_ACTIVITY_KILLED;
15442 dtrace_sync();
15443 }
15444
15445 /*
15446 * Release the credential hold we took in dtrace_state_create().
15447 */
15448 if (state->dts_cred.dcr_cred != NULL)
15449 crfree(state->dts_cred.dcr_cred);
15450
15451 /*
15452 * Now we can safely disable and destroy any enabled probes. Because
15453 * any DTRACE_PRIV_KERNEL probes may actually be slowing our progress
15454 * (especially if they're all enabled), we take two passes through the
15455 * ECBs: in the first, we disable just DTRACE_PRIV_KERNEL probes, and
15456 * in the second we disable whatever is left over.
15457 */
15458 for (match = DTRACE_PRIV_KERNEL; ; match = 0) {
15459 for (i = 0; i < state->dts_necbs; i++) {
15460 if ((ecb = state->dts_ecbs[i]) == NULL)
15461 continue;
15462
15463 if (match && ecb->dte_probe != NULL) {
15464 dtrace_probe_t *probe = ecb->dte_probe;
15465 dtrace_provider_t *prov = probe->dtpr_provider;
15466
15467 if (!(prov->dtpv_priv.dtpp_flags & match))
15468 continue;
15469 }
15470
15471 dtrace_ecb_disable(ecb);
15472 dtrace_ecb_destroy(ecb);
15473 }
15474
15475 if (!match)
15476 break;
15477 }
15478
15479 /*
15480 * Before we free the buffers, perform one more sync to assure that
15481 * every CPU is out of probe context.
15482 */
15483 dtrace_sync();
15484
15485 dtrace_buffer_free(state->dts_buffer);
15486 dtrace_buffer_free(state->dts_aggbuffer);
15487
15488 for (i = 0; i < nspec; i++)
15489 dtrace_buffer_free(spec[i].dtsp_buffer);
15490
15491 #ifdef illumos
15492 if (state->dts_cleaner != CYCLIC_NONE)
15493 cyclic_remove(state->dts_cleaner);
15494
15495 if (state->dts_deadman != CYCLIC_NONE)
15496 cyclic_remove(state->dts_deadman);
15497 #else
15498 callout_stop(&state->dts_cleaner);
15499 callout_drain(&state->dts_cleaner);
15500 callout_stop(&state->dts_deadman);
15501 callout_drain(&state->dts_deadman);
15502 #endif
15503
15504 dtrace_dstate_fini(&vstate->dtvs_dynvars);
15505 dtrace_vstate_fini(vstate);
15506 if (state->dts_ecbs != NULL)
15507 kmem_free(state->dts_ecbs, state->dts_necbs * sizeof (dtrace_ecb_t *));
15508
15509 if (state->dts_aggregations != NULL) {
15510 #ifdef DEBUG
15511 for (i = 0; i < state->dts_naggregations; i++)
15512 ASSERT(state->dts_aggregations[i] == NULL);
15513 #endif
15514 ASSERT(state->dts_naggregations > 0);
15515 kmem_free(state->dts_aggregations,
15516 state->dts_naggregations * sizeof (dtrace_aggregation_t *));
15517 }
15518
15519 kmem_free(state->dts_buffer, bufsize);
15520 kmem_free(state->dts_aggbuffer, bufsize);
15521
15522 for (i = 0; i < nspec; i++)
15523 kmem_free(spec[i].dtsp_buffer, bufsize);
15524
15525 if (spec != NULL)
15526 kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
15527
15528 dtrace_format_destroy(state);
15529
15530 if (state->dts_aggid_arena != NULL) {
15531 #ifdef illumos
15532 vmem_destroy(state->dts_aggid_arena);
15533 #else
15534 delete_unrhdr(state->dts_aggid_arena);
15535 #endif
15536 state->dts_aggid_arena = NULL;
15537 }
15538 #ifdef illumos
15539 ddi_soft_state_free(dtrace_softstate, minor);
15540 vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
15541 #endif
15542 }
15543
15544 /*
15545 * DTrace Anonymous Enabling Functions
15546 */
15547 static dtrace_state_t *
15548 dtrace_anon_grab(void)
15549 {
15550 dtrace_state_t *state;
15551
15552 ASSERT(MUTEX_HELD(&dtrace_lock));
15553
15554 if ((state = dtrace_anon.dta_state) == NULL) {
15555 ASSERT(dtrace_anon.dta_enabling == NULL);
15556 return (NULL);
15557 }
15558
15559 ASSERT(dtrace_anon.dta_enabling != NULL);
15560 ASSERT(dtrace_retained != NULL);
15561
15562 dtrace_enabling_destroy(dtrace_anon.dta_enabling);
15563 dtrace_anon.dta_enabling = NULL;
15564 dtrace_anon.dta_state = NULL;
15565
15566 return (state);
15567 }
15568
15569 static void
15570 dtrace_anon_property(void)
15571 {
15572 int i, rv;
15573 dtrace_state_t *state;
15574 dof_hdr_t *dof;
15575 char c[32]; /* enough for "dof-data-" + digits */
15576
15577 ASSERT(MUTEX_HELD(&dtrace_lock));
15578 ASSERT(MUTEX_HELD(&cpu_lock));
15579
15580 for (i = 0; ; i++) {
15581 (void) snprintf(c, sizeof (c), "dof-data-%d", i);
15582
15583 dtrace_err_verbose = 1;
15584
15585 if ((dof = dtrace_dof_property(c)) == NULL) {
15586 dtrace_err_verbose = 0;
15587 break;
15588 }
15589
15590 #ifdef illumos
15591 /*
15592 * We want to create anonymous state, so we need to transition
15593 * the kernel debugger to indicate that DTrace is active. If
15594 * this fails (e.g. because the debugger has modified text in
15595 * some way), we won't continue with the processing.
15596 */
15597 if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
15598 cmn_err(CE_NOTE, "kernel debugger active; anonymous "
15599 "enabling ignored.");
15600 dtrace_dof_destroy(dof);
15601 break;
15602 }
15603 #endif
15604
15605 /*
15606 * If we haven't allocated an anonymous state, we'll do so now.
15607 */
15608 if ((state = dtrace_anon.dta_state) == NULL) {
15609 state = dtrace_state_create(NULL, NULL);
15610 dtrace_anon.dta_state = state;
15611
15612 if (state == NULL) {
15613 /*
15614 * This basically shouldn't happen: the only
15615 * failure mode from dtrace_state_create() is a
15616 * failure of ddi_soft_state_zalloc() that
15617 * itself should never happen. Still, the
15618 * interface allows for a failure mode, and
15619 * we want to fail as gracefully as possible:
15620 * we'll emit an error message and cease
15621 * processing anonymous state in this case.
15622 */
15623 cmn_err(CE_WARN, "failed to create "
15624 "anonymous state");
15625 dtrace_dof_destroy(dof);
15626 break;
15627 }
15628 }
15629
15630 rv = dtrace_dof_slurp(dof, &state->dts_vstate, CRED(),
15631 &dtrace_anon.dta_enabling, 0, 0, B_TRUE);
15632
15633 if (rv == 0)
15634 rv = dtrace_dof_options(dof, state);
15635
15636 dtrace_err_verbose = 0;
15637 dtrace_dof_destroy(dof);
15638
15639 if (rv != 0) {
15640 /*
15641 * This is malformed DOF; chuck any anonymous state
15642 * that we created.
15643 */
15644 ASSERT(dtrace_anon.dta_enabling == NULL);
15645 dtrace_state_destroy(state);
15646 dtrace_anon.dta_state = NULL;
15647 break;
15648 }
15649
15650 ASSERT(dtrace_anon.dta_enabling != NULL);
15651 }
15652
15653 if (dtrace_anon.dta_enabling != NULL) {
15654 int rval;
15655
15656 /*
15657 * dtrace_enabling_retain() can only fail because we are
15658 * trying to retain more enablings than are allowed -- but
15659 * we only have one anonymous enabling, and we are guaranteed
15660 * to be allowed at least one retained enabling; we assert
15661 * that dtrace_enabling_retain() returns success.
15662 */
15663 rval = dtrace_enabling_retain(dtrace_anon.dta_enabling);
15664 ASSERT(rval == 0);
15665
15666 dtrace_enabling_dump(dtrace_anon.dta_enabling);
15667 }
15668 }
15669
15670 /*
15671 * DTrace Helper Functions
15672 */
15673 static void
15674 dtrace_helper_trace(dtrace_helper_action_t *helper,
15675 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate, int where)
15676 {
15677 uint32_t size, next, nnext, i;
15678 dtrace_helptrace_t *ent, *buffer;
15679 uint16_t flags = cpu_core[curcpu].cpuc_dtrace_flags;
15680
15681 if ((buffer = dtrace_helptrace_buffer) == NULL)
15682 return;
15683
15684 ASSERT(vstate->dtvs_nlocals <= dtrace_helptrace_nlocals);
15685
15686 /*
15687 * What would a tracing framework be without its own tracing
15688 * framework? (Well, a hell of a lot simpler, for starters...)
15689 */
15690 size = sizeof (dtrace_helptrace_t) + dtrace_helptrace_nlocals *
15691 sizeof (uint64_t) - sizeof (uint64_t);
15692
15693 /*
15694 * Iterate until we can allocate a slot in the trace buffer.
15695 */
15696 do {
15697 next = dtrace_helptrace_next;
15698
15699 if (next + size < dtrace_helptrace_bufsize) {
15700 nnext = next + size;
15701 } else {
15702 nnext = size;
15703 }
15704 } while (dtrace_cas32(&dtrace_helptrace_next, next, nnext) != next);
15705
15706 /*
15707 * We have our slot; fill it in.
15708 */
15709 if (nnext == size) {
15710 dtrace_helptrace_wrapped++;
15711 next = 0;
15712 }
15713
15714 ent = (dtrace_helptrace_t *)((uintptr_t)buffer + next);
15715 ent->dtht_helper = helper;
15716 ent->dtht_where = where;
15717 ent->dtht_nlocals = vstate->dtvs_nlocals;
15718
15719 ent->dtht_fltoffs = (mstate->dtms_present & DTRACE_MSTATE_FLTOFFS) ?
15720 mstate->dtms_fltoffs : -1;
15721 ent->dtht_fault = DTRACE_FLAGS2FLT(flags);
15722 ent->dtht_illval = cpu_core[curcpu].cpuc_dtrace_illval;
15723
15724 for (i = 0; i < vstate->dtvs_nlocals; i++) {
15725 dtrace_statvar_t *svar;
15726
15727 if ((svar = vstate->dtvs_locals[i]) == NULL)
15728 continue;
15729
15730 ASSERT(svar->dtsv_size >= (mp_maxid + 1) * sizeof (uint64_t));
15731 ent->dtht_locals[i] =
15732 ((uint64_t *)(uintptr_t)svar->dtsv_data)[curcpu];
15733 }
15734 }
15735
15736 static uint64_t
15737 dtrace_helper(int which, dtrace_mstate_t *mstate,
15738 dtrace_state_t *state, uint64_t arg0, uint64_t arg1)
15739 {
15740 uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
15741 uint64_t sarg0 = mstate->dtms_arg[0];
15742 uint64_t sarg1 = mstate->dtms_arg[1];
15743 uint64_t rval = 0;
15744 dtrace_helpers_t *helpers = curproc->p_dtrace_helpers;
15745 dtrace_helper_action_t *helper;
15746 dtrace_vstate_t *vstate;
15747 dtrace_difo_t *pred;
15748 int i, trace = dtrace_helptrace_buffer != NULL;
15749
15750 ASSERT(which >= 0 && which < DTRACE_NHELPER_ACTIONS);
15751
15752 if (helpers == NULL)
15753 return (0);
15754
15755 if ((helper = helpers->dthps_actions[which]) == NULL)
15756 return (0);
15757
15758 vstate = &helpers->dthps_vstate;
15759 mstate->dtms_arg[0] = arg0;
15760 mstate->dtms_arg[1] = arg1;
15761
15762 /*
15763 * Now iterate over each helper. If its predicate evaluates to 'true',
15764 * we'll call the corresponding actions. Note that the below calls
15765 * to dtrace_dif_emulate() may set faults in machine state. This is
15766 * okay: our caller (the outer dtrace_dif_emulate()) will simply plow
15767 * the stored DIF offset with its own (which is the desired behavior).
15768 * Also, note the calls to dtrace_dif_emulate() may allocate scratch
15769 * from machine state; this is okay, too.
15770 */
15771 for (; helper != NULL; helper = helper->dtha_next) {
15772 if ((pred = helper->dtha_predicate) != NULL) {
15773 if (trace)
15774 dtrace_helper_trace(helper, mstate, vstate, 0);
15775
15776 if (!dtrace_dif_emulate(pred, mstate, vstate, state))
15777 goto next;
15778
15779 if (*flags & CPU_DTRACE_FAULT)
15780 goto err;
15781 }
15782
15783 for (i = 0; i < helper->dtha_nactions; i++) {
15784 if (trace)
15785 dtrace_helper_trace(helper,
15786 mstate, vstate, i + 1);
15787
15788 rval = dtrace_dif_emulate(helper->dtha_actions[i],
15789 mstate, vstate, state);
15790
15791 if (*flags & CPU_DTRACE_FAULT)
15792 goto err;
15793 }
15794
15795 next:
15796 if (trace)
15797 dtrace_helper_trace(helper, mstate, vstate,
15798 DTRACE_HELPTRACE_NEXT);
15799 }
15800
15801 if (trace)
15802 dtrace_helper_trace(helper, mstate, vstate,
15803 DTRACE_HELPTRACE_DONE);
15804
15805 /*
15806 * Restore the arg0 that we saved upon entry.
15807 */
15808 mstate->dtms_arg[0] = sarg0;
15809 mstate->dtms_arg[1] = sarg1;
15810
15811 return (rval);
15812
15813 err:
15814 if (trace)
15815 dtrace_helper_trace(helper, mstate, vstate,
15816 DTRACE_HELPTRACE_ERR);
15817
15818 /*
15819 * Restore the arg0 that we saved upon entry.
15820 */
15821 mstate->dtms_arg[0] = sarg0;
15822 mstate->dtms_arg[1] = sarg1;
15823
15824 return (0);
15825 }
15826
15827 static void
15828 dtrace_helper_action_destroy(dtrace_helper_action_t *helper,
15829 dtrace_vstate_t *vstate)
15830 {
15831 int i;
15832
15833 if (helper->dtha_predicate != NULL)
15834 dtrace_difo_release(helper->dtha_predicate, vstate);
15835
15836 for (i = 0; i < helper->dtha_nactions; i++) {
15837 ASSERT(helper->dtha_actions[i] != NULL);
15838 dtrace_difo_release(helper->dtha_actions[i], vstate);
15839 }
15840
15841 kmem_free(helper->dtha_actions,
15842 helper->dtha_nactions * sizeof (dtrace_difo_t *));
15843 kmem_free(helper, sizeof (dtrace_helper_action_t));
15844 }
15845
15846 static int
15847 dtrace_helper_destroygen(dtrace_helpers_t *help, int gen)
15848 {
15849 proc_t *p = curproc;
15850 dtrace_vstate_t *vstate;
15851 int i;
15852
15853 if (help == NULL)
15854 help = p->p_dtrace_helpers;
15855
15856 ASSERT(MUTEX_HELD(&dtrace_lock));
15857
15858 if (help == NULL || gen > help->dthps_generation)
15859 return (EINVAL);
15860
15861 vstate = &help->dthps_vstate;
15862
15863 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
15864 dtrace_helper_action_t *last = NULL, *h, *next;
15865
15866 for (h = help->dthps_actions[i]; h != NULL; h = next) {
15867 next = h->dtha_next;
15868
15869 if (h->dtha_generation == gen) {
15870 if (last != NULL) {
15871 last->dtha_next = next;
15872 } else {
15873 help->dthps_actions[i] = next;
15874 }
15875
15876 dtrace_helper_action_destroy(h, vstate);
15877 } else {
15878 last = h;
15879 }
15880 }
15881 }
15882
15883 /*
15884 * Interate until we've cleared out all helper providers with the
15885 * given generation number.
15886 */
15887 for (;;) {
15888 dtrace_helper_provider_t *prov;
15889
15890 /*
15891 * Look for a helper provider with the right generation. We
15892 * have to start back at the beginning of the list each time
15893 * because we drop dtrace_lock. It's unlikely that we'll make
15894 * more than two passes.
15895 */
15896 for (i = 0; i < help->dthps_nprovs; i++) {
15897 prov = help->dthps_provs[i];
15898
15899 if (prov->dthp_generation == gen)
15900 break;
15901 }
15902
15903 /*
15904 * If there were no matches, we're done.
15905 */
15906 if (i == help->dthps_nprovs)
15907 break;
15908
15909 /*
15910 * Move the last helper provider into this slot.
15911 */
15912 help->dthps_nprovs--;
15913 help->dthps_provs[i] = help->dthps_provs[help->dthps_nprovs];
15914 help->dthps_provs[help->dthps_nprovs] = NULL;
15915
15916 mutex_exit(&dtrace_lock);
15917
15918 /*
15919 * If we have a meta provider, remove this helper provider.
15920 */
15921 mutex_enter(&dtrace_meta_lock);
15922 if (dtrace_meta_pid != NULL) {
15923 ASSERT(dtrace_deferred_pid == NULL);
15924 dtrace_helper_provider_remove(&prov->dthp_prov,
15925 p->p_pid);
15926 }
15927 mutex_exit(&dtrace_meta_lock);
15928
15929 dtrace_helper_provider_destroy(prov);
15930
15931 mutex_enter(&dtrace_lock);
15932 }
15933
15934 return (0);
15935 }
15936
15937 static int
15938 dtrace_helper_validate(dtrace_helper_action_t *helper)
15939 {
15940 int err = 0, i;
15941 dtrace_difo_t *dp;
15942
15943 if ((dp = helper->dtha_predicate) != NULL)
15944 err += dtrace_difo_validate_helper(dp);
15945
15946 for (i = 0; i < helper->dtha_nactions; i++)
15947 err += dtrace_difo_validate_helper(helper->dtha_actions[i]);
15948
15949 return (err == 0);
15950 }
15951
15952 static int
15953 dtrace_helper_action_add(int which, dtrace_ecbdesc_t *ep,
15954 dtrace_helpers_t *help)
15955 {
15956 dtrace_helper_action_t *helper, *last;
15957 dtrace_actdesc_t *act;
15958 dtrace_vstate_t *vstate;
15959 dtrace_predicate_t *pred;
15960 int count = 0, nactions = 0, i;
15961
15962 if (which < 0 || which >= DTRACE_NHELPER_ACTIONS)
15963 return (EINVAL);
15964
15965 last = help->dthps_actions[which];
15966 vstate = &help->dthps_vstate;
15967
15968 for (count = 0; last != NULL; last = last->dtha_next) {
15969 count++;
15970 if (last->dtha_next == NULL)
15971 break;
15972 }
15973
15974 /*
15975 * If we already have dtrace_helper_actions_max helper actions for this
15976 * helper action type, we'll refuse to add a new one.
15977 */
15978 if (count >= dtrace_helper_actions_max)
15979 return (ENOSPC);
15980
15981 helper = kmem_zalloc(sizeof (dtrace_helper_action_t), KM_SLEEP);
15982 helper->dtha_generation = help->dthps_generation;
15983
15984 if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) {
15985 ASSERT(pred->dtp_difo != NULL);
15986 dtrace_difo_hold(pred->dtp_difo);
15987 helper->dtha_predicate = pred->dtp_difo;
15988 }
15989
15990 for (act = ep->dted_action; act != NULL; act = act->dtad_next) {
15991 if (act->dtad_kind != DTRACEACT_DIFEXPR)
15992 goto err;
15993
15994 if (act->dtad_difo == NULL)
15995 goto err;
15996
15997 nactions++;
15998 }
15999
16000 helper->dtha_actions = kmem_zalloc(sizeof (dtrace_difo_t *) *
16001 (helper->dtha_nactions = nactions), KM_SLEEP);
16002
16003 for (act = ep->dted_action, i = 0; act != NULL; act = act->dtad_next) {
16004 dtrace_difo_hold(act->dtad_difo);
16005 helper->dtha_actions[i++] = act->dtad_difo;
16006 }
16007
16008 if (!dtrace_helper_validate(helper))
16009 goto err;
16010
16011 if (last == NULL) {
16012 help->dthps_actions[which] = helper;
16013 } else {
16014 last->dtha_next = helper;
16015 }
16016
16017 if (vstate->dtvs_nlocals > dtrace_helptrace_nlocals) {
16018 dtrace_helptrace_nlocals = vstate->dtvs_nlocals;
16019 dtrace_helptrace_next = 0;
16020 }
16021
16022 return (0);
16023 err:
16024 dtrace_helper_action_destroy(helper, vstate);
16025 return (EINVAL);
16026 }
16027
16028 static void
16029 dtrace_helper_provider_register(proc_t *p, dtrace_helpers_t *help,
16030 dof_helper_t *dofhp)
16031 {
16032 ASSERT(MUTEX_NOT_HELD(&dtrace_lock));
16033
16034 mutex_enter(&dtrace_meta_lock);
16035 mutex_enter(&dtrace_lock);
16036
16037 if (!dtrace_attached() || dtrace_meta_pid == NULL) {
16038 /*
16039 * If the dtrace module is loaded but not attached, or if
16040 * there aren't isn't a meta provider registered to deal with
16041 * these provider descriptions, we need to postpone creating
16042 * the actual providers until later.
16043 */
16044
16045 if (help->dthps_next == NULL && help->dthps_prev == NULL &&
16046 dtrace_deferred_pid != help) {
16047 help->dthps_deferred = 1;
16048 help->dthps_pid = p->p_pid;
16049 help->dthps_next = dtrace_deferred_pid;
16050 help->dthps_prev = NULL;
16051 if (dtrace_deferred_pid != NULL)
16052 dtrace_deferred_pid->dthps_prev = help;
16053 dtrace_deferred_pid = help;
16054 }
16055
16056 mutex_exit(&dtrace_lock);
16057
16058 } else if (dofhp != NULL) {
16059 /*
16060 * If the dtrace module is loaded and we have a particular
16061 * helper provider description, pass that off to the
16062 * meta provider.
16063 */
16064
16065 mutex_exit(&dtrace_lock);
16066
16067 dtrace_helper_provide(dofhp, p->p_pid);
16068
16069 } else {
16070 /*
16071 * Otherwise, just pass all the helper provider descriptions
16072 * off to the meta provider.
16073 */
16074
16075 int i;
16076 mutex_exit(&dtrace_lock);
16077
16078 for (i = 0; i < help->dthps_nprovs; i++) {
16079 dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
16080 p->p_pid);
16081 }
16082 }
16083
16084 mutex_exit(&dtrace_meta_lock);
16085 }
16086
16087 static int
16088 dtrace_helper_provider_add(dof_helper_t *dofhp, dtrace_helpers_t *help, int gen)
16089 {
16090 dtrace_helper_provider_t *hprov, **tmp_provs;
16091 uint_t tmp_maxprovs, i;
16092
16093 ASSERT(MUTEX_HELD(&dtrace_lock));
16094 ASSERT(help != NULL);
16095
16096 /*
16097 * If we already have dtrace_helper_providers_max helper providers,
16098 * we're refuse to add a new one.
16099 */
16100 if (help->dthps_nprovs >= dtrace_helper_providers_max)
16101 return (ENOSPC);
16102
16103 /*
16104 * Check to make sure this isn't a duplicate.
16105 */
16106 for (i = 0; i < help->dthps_nprovs; i++) {
16107 if (dofhp->dofhp_addr ==
16108 help->dthps_provs[i]->dthp_prov.dofhp_addr)
16109 return (EALREADY);
16110 }
16111
16112 hprov = kmem_zalloc(sizeof (dtrace_helper_provider_t), KM_SLEEP);
16113 hprov->dthp_prov = *dofhp;
16114 hprov->dthp_ref = 1;
16115 hprov->dthp_generation = gen;
16116
16117 /*
16118 * Allocate a bigger table for helper providers if it's already full.
16119 */
16120 if (help->dthps_maxprovs == help->dthps_nprovs) {
16121 tmp_maxprovs = help->dthps_maxprovs;
16122 tmp_provs = help->dthps_provs;
16123
16124 if (help->dthps_maxprovs == 0)
16125 help->dthps_maxprovs = 2;
16126 else
16127 help->dthps_maxprovs *= 2;
16128 if (help->dthps_maxprovs > dtrace_helper_providers_max)
16129 help->dthps_maxprovs = dtrace_helper_providers_max;
16130
16131 ASSERT(tmp_maxprovs < help->dthps_maxprovs);
16132
16133 help->dthps_provs = kmem_zalloc(help->dthps_maxprovs *
16134 sizeof (dtrace_helper_provider_t *), KM_SLEEP);
16135
16136 if (tmp_provs != NULL) {
16137 bcopy(tmp_provs, help->dthps_provs, tmp_maxprovs *
16138 sizeof (dtrace_helper_provider_t *));
16139 kmem_free(tmp_provs, tmp_maxprovs *
16140 sizeof (dtrace_helper_provider_t *));
16141 }
16142 }
16143
16144 help->dthps_provs[help->dthps_nprovs] = hprov;
16145 help->dthps_nprovs++;
16146
16147 return (0);
16148 }
16149
16150 static void
16151 dtrace_helper_provider_destroy(dtrace_helper_provider_t *hprov)
16152 {
16153 mutex_enter(&dtrace_lock);
16154
16155 if (--hprov->dthp_ref == 0) {
16156 dof_hdr_t *dof;
16157 mutex_exit(&dtrace_lock);
16158 dof = (dof_hdr_t *)(uintptr_t)hprov->dthp_prov.dofhp_dof;
16159 dtrace_dof_destroy(dof);
16160 kmem_free(hprov, sizeof (dtrace_helper_provider_t));
16161 } else {
16162 mutex_exit(&dtrace_lock);
16163 }
16164 }
16165
16166 static int
16167 dtrace_helper_provider_validate(dof_hdr_t *dof, dof_sec_t *sec)
16168 {
16169 uintptr_t daddr = (uintptr_t)dof;
16170 dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
16171 dof_provider_t *provider;
16172 dof_probe_t *probe;
16173 uint8_t *arg;
16174 char *strtab, *typestr;
16175 dof_stridx_t typeidx;
16176 size_t typesz;
16177 uint_t nprobes, j, k;
16178
16179 ASSERT(sec->dofs_type == DOF_SECT_PROVIDER);
16180
16181 if (sec->dofs_offset & (sizeof (uint_t) - 1)) {
16182 dtrace_dof_error(dof, "misaligned section offset");
16183 return (-1);
16184 }
16185
16186 /*
16187 * The section needs to be large enough to contain the DOF provider
16188 * structure appropriate for the given version.
16189 */
16190 if (sec->dofs_size <
16191 ((dof->dofh_ident[DOF_ID_VERSION] == DOF_VERSION_1) ?
16192 offsetof(dof_provider_t, dofpv_prenoffs) :
16193 sizeof (dof_provider_t))) {
16194 dtrace_dof_error(dof, "provider section too small");
16195 return (-1);
16196 }
16197
16198 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
16199 str_sec = dtrace_dof_sect(dof, DOF_SECT_STRTAB, provider->dofpv_strtab);
16200 prb_sec = dtrace_dof_sect(dof, DOF_SECT_PROBES, provider->dofpv_probes);
16201 arg_sec = dtrace_dof_sect(dof, DOF_SECT_PRARGS, provider->dofpv_prargs);
16202 off_sec = dtrace_dof_sect(dof, DOF_SECT_PROFFS, provider->dofpv_proffs);
16203
16204 if (str_sec == NULL || prb_sec == NULL ||
16205 arg_sec == NULL || off_sec == NULL)
16206 return (-1);
16207
16208 enoff_sec = NULL;
16209
16210 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
16211 provider->dofpv_prenoffs != DOF_SECT_NONE &&
16212 (enoff_sec = dtrace_dof_sect(dof, DOF_SECT_PRENOFFS,
16213 provider->dofpv_prenoffs)) == NULL)
16214 return (-1);
16215
16216 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
16217
16218 if (provider->dofpv_name >= str_sec->dofs_size ||
16219 strlen(strtab + provider->dofpv_name) >= DTRACE_PROVNAMELEN) {
16220 dtrace_dof_error(dof, "invalid provider name");
16221 return (-1);
16222 }
16223
16224 if (prb_sec->dofs_entsize == 0 ||
16225 prb_sec->dofs_entsize > prb_sec->dofs_size) {
16226 dtrace_dof_error(dof, "invalid entry size");
16227 return (-1);
16228 }
16229
16230 if (prb_sec->dofs_entsize & (sizeof (uintptr_t) - 1)) {
16231 dtrace_dof_error(dof, "misaligned entry size");
16232 return (-1);
16233 }
16234
16235 if (off_sec->dofs_entsize != sizeof (uint32_t)) {
16236 dtrace_dof_error(dof, "invalid entry size");
16237 return (-1);
16238 }
16239
16240 if (off_sec->dofs_offset & (sizeof (uint32_t) - 1)) {
16241 dtrace_dof_error(dof, "misaligned section offset");
16242 return (-1);
16243 }
16244
16245 if (arg_sec->dofs_entsize != sizeof (uint8_t)) {
16246 dtrace_dof_error(dof, "invalid entry size");
16247 return (-1);
16248 }
16249
16250 arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
16251
16252 nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
16253
16254 /*
16255 * Take a pass through the probes to check for errors.
16256 */
16257 for (j = 0; j < nprobes; j++) {
16258 probe = (dof_probe_t *)(uintptr_t)(daddr +
16259 prb_sec->dofs_offset + j * prb_sec->dofs_entsize);
16260
16261 if (probe->dofpr_func >= str_sec->dofs_size) {
16262 dtrace_dof_error(dof, "invalid function name");
16263 return (-1);
16264 }
16265
16266 if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) {
16267 dtrace_dof_error(dof, "function name too long");
16268 /*
16269 * Keep going if the function name is too long.
16270 * Unlike provider and probe names, we cannot reasonably
16271 * impose restrictions on function names, since they're
16272 * a property of the code being instrumented. We will
16273 * skip this probe in dtrace_helper_provide_one().
16274 */
16275 }
16276
16277 if (probe->dofpr_name >= str_sec->dofs_size ||
16278 strlen(strtab + probe->dofpr_name) >= DTRACE_NAMELEN) {
16279 dtrace_dof_error(dof, "invalid probe name");
16280 return (-1);
16281 }
16282
16283 /*
16284 * The offset count must not wrap the index, and the offsets
16285 * must also not overflow the section's data.
16286 */
16287 if (probe->dofpr_offidx + probe->dofpr_noffs <
16288 probe->dofpr_offidx ||
16289 (probe->dofpr_offidx + probe->dofpr_noffs) *
16290 off_sec->dofs_entsize > off_sec->dofs_size) {
16291 dtrace_dof_error(dof, "invalid probe offset");
16292 return (-1);
16293 }
16294
16295 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1) {
16296 /*
16297 * If there's no is-enabled offset section, make sure
16298 * there aren't any is-enabled offsets. Otherwise
16299 * perform the same checks as for probe offsets
16300 * (immediately above).
16301 */
16302 if (enoff_sec == NULL) {
16303 if (probe->dofpr_enoffidx != 0 ||
16304 probe->dofpr_nenoffs != 0) {
16305 dtrace_dof_error(dof, "is-enabled "
16306 "offsets with null section");
16307 return (-1);
16308 }
16309 } else if (probe->dofpr_enoffidx +
16310 probe->dofpr_nenoffs < probe->dofpr_enoffidx ||
16311 (probe->dofpr_enoffidx + probe->dofpr_nenoffs) *
16312 enoff_sec->dofs_entsize > enoff_sec->dofs_size) {
16313 dtrace_dof_error(dof, "invalid is-enabled "
16314 "offset");
16315 return (-1);
16316 }
16317
16318 if (probe->dofpr_noffs + probe->dofpr_nenoffs == 0) {
16319 dtrace_dof_error(dof, "zero probe and "
16320 "is-enabled offsets");
16321 return (-1);
16322 }
16323 } else if (probe->dofpr_noffs == 0) {
16324 dtrace_dof_error(dof, "zero probe offsets");
16325 return (-1);
16326 }
16327
16328 if (probe->dofpr_argidx + probe->dofpr_xargc <
16329 probe->dofpr_argidx ||
16330 (probe->dofpr_argidx + probe->dofpr_xargc) *
16331 arg_sec->dofs_entsize > arg_sec->dofs_size) {
16332 dtrace_dof_error(dof, "invalid args");
16333 return (-1);
16334 }
16335
16336 typeidx = probe->dofpr_nargv;
16337 typestr = strtab + probe->dofpr_nargv;
16338 for (k = 0; k < probe->dofpr_nargc; k++) {
16339 if (typeidx >= str_sec->dofs_size) {
16340 dtrace_dof_error(dof, "bad "
16341 "native argument type");
16342 return (-1);
16343 }
16344
16345 typesz = strlen(typestr) + 1;
16346 if (typesz > DTRACE_ARGTYPELEN) {
16347 dtrace_dof_error(dof, "native "
16348 "argument type too long");
16349 return (-1);
16350 }
16351 typeidx += typesz;
16352 typestr += typesz;
16353 }
16354
16355 typeidx = probe->dofpr_xargv;
16356 typestr = strtab + probe->dofpr_xargv;
16357 for (k = 0; k < probe->dofpr_xargc; k++) {
16358 if (arg[probe->dofpr_argidx + k] > probe->dofpr_nargc) {
16359 dtrace_dof_error(dof, "bad "
16360 "native argument index");
16361 return (-1);
16362 }
16363
16364 if (typeidx >= str_sec->dofs_size) {
16365 dtrace_dof_error(dof, "bad "
16366 "translated argument type");
16367 return (-1);
16368 }
16369
16370 typesz = strlen(typestr) + 1;
16371 if (typesz > DTRACE_ARGTYPELEN) {
16372 dtrace_dof_error(dof, "translated argument "
16373 "type too long");
16374 return (-1);
16375 }
16376
16377 typeidx += typesz;
16378 typestr += typesz;
16379 }
16380 }
16381
16382 return (0);
16383 }
16384
16385 static int
16386 dtrace_helper_slurp(dof_hdr_t *dof, dof_helper_t *dhp, struct proc *p)
16387 {
16388 dtrace_helpers_t *help;
16389 dtrace_vstate_t *vstate;
16390 dtrace_enabling_t *enab = NULL;
16391 int i, gen, rv, nhelpers = 0, nprovs = 0, destroy = 1;
16392 uintptr_t daddr = (uintptr_t)dof;
16393
16394 ASSERT(MUTEX_HELD(&dtrace_lock));
16395
16396 if ((help = p->p_dtrace_helpers) == NULL)
16397 help = dtrace_helpers_create(p);
16398
16399 vstate = &help->dthps_vstate;
16400
16401 if ((rv = dtrace_dof_slurp(dof, vstate, NULL, &enab, dhp->dofhp_addr,
16402 dhp->dofhp_dof, B_FALSE)) != 0) {
16403 dtrace_dof_destroy(dof);
16404 return (rv);
16405 }
16406
16407 /*
16408 * Look for helper providers and validate their descriptions.
16409 */
16410 for (i = 0; i < dof->dofh_secnum; i++) {
16411 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
16412 dof->dofh_secoff + i * dof->dofh_secsize);
16413
16414 if (sec->dofs_type != DOF_SECT_PROVIDER)
16415 continue;
16416
16417 if (dtrace_helper_provider_validate(dof, sec) != 0) {
16418 dtrace_enabling_destroy(enab);
16419 dtrace_dof_destroy(dof);
16420 return (-1);
16421 }
16422
16423 nprovs++;
16424 }
16425
16426 /*
16427 * Now we need to walk through the ECB descriptions in the enabling.
16428 */
16429 for (i = 0; i < enab->dten_ndesc; i++) {
16430 dtrace_ecbdesc_t *ep = enab->dten_desc[i];
16431 dtrace_probedesc_t *desc = &ep->dted_probe;
16432
16433 if (strcmp(desc->dtpd_provider, "dtrace") != 0)
16434 continue;
16435
16436 if (strcmp(desc->dtpd_mod, "helper") != 0)
16437 continue;
16438
16439 if (strcmp(desc->dtpd_func, "ustack") != 0)
16440 continue;
16441
16442 if ((rv = dtrace_helper_action_add(DTRACE_HELPER_ACTION_USTACK,
16443 ep, help)) != 0) {
16444 /*
16445 * Adding this helper action failed -- we are now going
16446 * to rip out the entire generation and return failure.
16447 */
16448 (void) dtrace_helper_destroygen(help,
16449 help->dthps_generation);
16450 dtrace_enabling_destroy(enab);
16451 dtrace_dof_destroy(dof);
16452 return (-1);
16453 }
16454
16455 nhelpers++;
16456 }
16457
16458 if (nhelpers < enab->dten_ndesc)
16459 dtrace_dof_error(dof, "unmatched helpers");
16460
16461 gen = help->dthps_generation++;
16462 dtrace_enabling_destroy(enab);
16463
16464 if (nprovs > 0) {
16465 /*
16466 * Now that this is in-kernel, we change the sense of the
16467 * members: dofhp_dof denotes the in-kernel copy of the DOF
16468 * and dofhp_addr denotes the address at user-level.
16469 */
16470 dhp->dofhp_addr = dhp->dofhp_dof;
16471 dhp->dofhp_dof = (uint64_t)(uintptr_t)dof;
16472
16473 if (dtrace_helper_provider_add(dhp, help, gen) == 0) {
16474 mutex_exit(&dtrace_lock);
16475 dtrace_helper_provider_register(p, help, dhp);
16476 mutex_enter(&dtrace_lock);
16477
16478 destroy = 0;
16479 }
16480 }
16481
16482 if (destroy)
16483 dtrace_dof_destroy(dof);
16484
16485 return (gen);
16486 }
16487
16488 static dtrace_helpers_t *
16489 dtrace_helpers_create(proc_t *p)
16490 {
16491 dtrace_helpers_t *help;
16492
16493 ASSERT(MUTEX_HELD(&dtrace_lock));
16494 ASSERT(p->p_dtrace_helpers == NULL);
16495
16496 help = kmem_zalloc(sizeof (dtrace_helpers_t), KM_SLEEP);
16497 help->dthps_actions = kmem_zalloc(sizeof (dtrace_helper_action_t *) *
16498 DTRACE_NHELPER_ACTIONS, KM_SLEEP);
16499
16500 p->p_dtrace_helpers = help;
16501 dtrace_helpers++;
16502
16503 return (help);
16504 }
16505
16506 #ifdef illumos
16507 static
16508 #endif
16509 void
16510 dtrace_helpers_destroy(proc_t *p)
16511 {
16512 dtrace_helpers_t *help;
16513 dtrace_vstate_t *vstate;
16514 #ifdef illumos
16515 proc_t *p = curproc;
16516 #endif
16517 int i;
16518
16519 mutex_enter(&dtrace_lock);
16520
16521 ASSERT(p->p_dtrace_helpers != NULL);
16522 ASSERT(dtrace_helpers > 0);
16523
16524 help = p->p_dtrace_helpers;
16525 vstate = &help->dthps_vstate;
16526
16527 /*
16528 * We're now going to lose the help from this process.
16529 */
16530 p->p_dtrace_helpers = NULL;
16531 dtrace_sync();
16532
16533 /*
16534 * Destory the helper actions.
16535 */
16536 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
16537 dtrace_helper_action_t *h, *next;
16538
16539 for (h = help->dthps_actions[i]; h != NULL; h = next) {
16540 next = h->dtha_next;
16541 dtrace_helper_action_destroy(h, vstate);
16542 h = next;
16543 }
16544 }
16545
16546 mutex_exit(&dtrace_lock);
16547
16548 /*
16549 * Destroy the helper providers.
16550 */
16551 if (help->dthps_maxprovs > 0) {
16552 mutex_enter(&dtrace_meta_lock);
16553 if (dtrace_meta_pid != NULL) {
16554 ASSERT(dtrace_deferred_pid == NULL);
16555
16556 for (i = 0; i < help->dthps_nprovs; i++) {
16557 dtrace_helper_provider_remove(
16558 &help->dthps_provs[i]->dthp_prov, p->p_pid);
16559 }
16560 } else {
16561 mutex_enter(&dtrace_lock);
16562 ASSERT(help->dthps_deferred == 0 ||
16563 help->dthps_next != NULL ||
16564 help->dthps_prev != NULL ||
16565 help == dtrace_deferred_pid);
16566
16567 /*
16568 * Remove the helper from the deferred list.
16569 */
16570 if (help->dthps_next != NULL)
16571 help->dthps_next->dthps_prev = help->dthps_prev;
16572 if (help->dthps_prev != NULL)
16573 help->dthps_prev->dthps_next = help->dthps_next;
16574 if (dtrace_deferred_pid == help) {
16575 dtrace_deferred_pid = help->dthps_next;
16576 ASSERT(help->dthps_prev == NULL);
16577 }
16578
16579 mutex_exit(&dtrace_lock);
16580 }
16581
16582 mutex_exit(&dtrace_meta_lock);
16583
16584 for (i = 0; i < help->dthps_nprovs; i++) {
16585 dtrace_helper_provider_destroy(help->dthps_provs[i]);
16586 }
16587
16588 kmem_free(help->dthps_provs, help->dthps_maxprovs *
16589 sizeof (dtrace_helper_provider_t *));
16590 }
16591
16592 mutex_enter(&dtrace_lock);
16593
16594 dtrace_vstate_fini(&help->dthps_vstate);
16595 kmem_free(help->dthps_actions,
16596 sizeof (dtrace_helper_action_t *) * DTRACE_NHELPER_ACTIONS);
16597 kmem_free(help, sizeof (dtrace_helpers_t));
16598
16599 --dtrace_helpers;
16600 mutex_exit(&dtrace_lock);
16601 }
16602
16603 #ifdef illumos
16604 static
16605 #endif
16606 void
16607 dtrace_helpers_duplicate(proc_t *from, proc_t *to)
16608 {
16609 dtrace_helpers_t *help, *newhelp;
16610 dtrace_helper_action_t *helper, *new, *last;
16611 dtrace_difo_t *dp;
16612 dtrace_vstate_t *vstate;
16613 int i, j, sz, hasprovs = 0;
16614
16615 mutex_enter(&dtrace_lock);
16616 ASSERT(from->p_dtrace_helpers != NULL);
16617 ASSERT(dtrace_helpers > 0);
16618
16619 help = from->p_dtrace_helpers;
16620 newhelp = dtrace_helpers_create(to);
16621 ASSERT(to->p_dtrace_helpers != NULL);
16622
16623 newhelp->dthps_generation = help->dthps_generation;
16624 vstate = &newhelp->dthps_vstate;
16625
16626 /*
16627 * Duplicate the helper actions.
16628 */
16629 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
16630 if ((helper = help->dthps_actions[i]) == NULL)
16631 continue;
16632
16633 for (last = NULL; helper != NULL; helper = helper->dtha_next) {
16634 new = kmem_zalloc(sizeof (dtrace_helper_action_t),
16635 KM_SLEEP);
16636 new->dtha_generation = helper->dtha_generation;
16637
16638 if ((dp = helper->dtha_predicate) != NULL) {
16639 dp = dtrace_difo_duplicate(dp, vstate);
16640 new->dtha_predicate = dp;
16641 }
16642
16643 new->dtha_nactions = helper->dtha_nactions;
16644 sz = sizeof (dtrace_difo_t *) * new->dtha_nactions;
16645 new->dtha_actions = kmem_alloc(sz, KM_SLEEP);
16646
16647 for (j = 0; j < new->dtha_nactions; j++) {
16648 dtrace_difo_t *dp = helper->dtha_actions[j];
16649
16650 ASSERT(dp != NULL);
16651 dp = dtrace_difo_duplicate(dp, vstate);
16652 new->dtha_actions[j] = dp;
16653 }
16654
16655 if (last != NULL) {
16656 last->dtha_next = new;
16657 } else {
16658 newhelp->dthps_actions[i] = new;
16659 }
16660
16661 last = new;
16662 }
16663 }
16664
16665 /*
16666 * Duplicate the helper providers and register them with the
16667 * DTrace framework.
16668 */
16669 if (help->dthps_nprovs > 0) {
16670 newhelp->dthps_nprovs = help->dthps_nprovs;
16671 newhelp->dthps_maxprovs = help->dthps_nprovs;
16672 newhelp->dthps_provs = kmem_alloc(newhelp->dthps_nprovs *
16673 sizeof (dtrace_helper_provider_t *), KM_SLEEP);
16674 for (i = 0; i < newhelp->dthps_nprovs; i++) {
16675 newhelp->dthps_provs[i] = help->dthps_provs[i];
16676 newhelp->dthps_provs[i]->dthp_ref++;
16677 }
16678
16679 hasprovs = 1;
16680 }
16681
16682 mutex_exit(&dtrace_lock);
16683
16684 if (hasprovs)
16685 dtrace_helper_provider_register(to, newhelp, NULL);
16686 }
16687
16688 /*
16689 * DTrace Hook Functions
16690 */
16691 static void
16692 dtrace_module_loaded(modctl_t *ctl)
16693 {
16694 dtrace_provider_t *prv;
16695
16696 mutex_enter(&dtrace_provider_lock);
16697 #ifdef illumos
16698 mutex_enter(&mod_lock);
16699 #endif
16700
16701 #ifdef illumos
16702 ASSERT(ctl->mod_busy);
16703 #endif
16704
16705 /*
16706 * We're going to call each providers per-module provide operation
16707 * specifying only this module.
16708 */
16709 for (prv = dtrace_provider; prv != NULL; prv = prv->dtpv_next)
16710 prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
16711
16712 #ifdef illumos
16713 mutex_exit(&mod_lock);
16714 #endif
16715 mutex_exit(&dtrace_provider_lock);
16716
16717 /*
16718 * If we have any retained enablings, we need to match against them.
16719 * Enabling probes requires that cpu_lock be held, and we cannot hold
16720 * cpu_lock here -- it is legal for cpu_lock to be held when loading a
16721 * module. (In particular, this happens when loading scheduling
16722 * classes.) So if we have any retained enablings, we need to dispatch
16723 * our task queue to do the match for us.
16724 */
16725 mutex_enter(&dtrace_lock);
16726
16727 if (dtrace_retained == NULL) {
16728 mutex_exit(&dtrace_lock);
16729 return;
16730 }
16731
16732 (void)taskq_dispatch(dtrace_taskq,
16733 (task_func_t *)dtrace_enabling_matchall_task, NULL, TQ_SLEEP);
16734
16735 mutex_exit(&dtrace_lock);
16736
16737 /*
16738 * And now, for a little heuristic sleaze: in general, we want to
16739 * match modules as soon as they load. However, we cannot guarantee
16740 * this, because it would lead us to the lock ordering violation
16741 * outlined above. The common case, of course, is that cpu_lock is
16742 * _not_ held -- so we delay here for a clock tick, hoping that that's
16743 * long enough for the task queue to do its work. If it's not, it's
16744 * not a serious problem -- it just means that the module that we
16745 * just loaded may not be immediately instrumentable.
16746 */
16747 delay(1);
16748 }
16749
16750 static void
16751 #ifdef illumos
16752 dtrace_module_unloaded(modctl_t *ctl)
16753 #else
16754 dtrace_module_unloaded(modctl_t *ctl, int *error)
16755 #endif
16756 {
16757 dtrace_probe_t template, *probe, *first, *next;
16758 dtrace_provider_t *prov;
16759 #ifndef illumos
16760 char modname[DTRACE_MODNAMELEN];
16761 size_t len;
16762 #endif
16763
16764 #ifdef illumos
16765 template.dtpr_mod = ctl->mod_modname;
16766 #else
16767 /* Handle the fact that ctl->filename may end in ".ko". */
16768 strlcpy(modname, ctl->filename, sizeof(modname));
16769 len = strlen(ctl->filename);
16770 if (len > 3 && strcmp(modname + len - 3, ".ko") == 0)
16771 modname[len - 3] = '\0';
16772 template.dtpr_mod = modname;
16773 #endif
16774
16775 mutex_enter(&dtrace_provider_lock);
16776 #ifdef illumos
16777 mutex_enter(&mod_lock);
16778 #endif
16779 mutex_enter(&dtrace_lock);
16780
16781 #ifndef illumos
16782 if (ctl->nenabled > 0) {
16783 /* Don't allow unloads if a probe is enabled. */
16784 mutex_exit(&dtrace_provider_lock);
16785 mutex_exit(&dtrace_lock);
16786 *error = -1;
16787 printf(
16788 "kldunload: attempt to unload module that has DTrace probes enabled\n");
16789 return;
16790 }
16791 #endif
16792
16793 if (dtrace_bymod == NULL) {
16794 /*
16795 * The DTrace module is loaded (obviously) but not attached;
16796 * we don't have any work to do.
16797 */
16798 mutex_exit(&dtrace_provider_lock);
16799 #ifdef illumos
16800 mutex_exit(&mod_lock);
16801 #endif
16802 mutex_exit(&dtrace_lock);
16803 return;
16804 }
16805
16806 for (probe = first = dtrace_hash_lookup(dtrace_bymod, &template);
16807 probe != NULL; probe = probe->dtpr_nextmod) {
16808 if (probe->dtpr_ecb != NULL) {
16809 mutex_exit(&dtrace_provider_lock);
16810 #ifdef illumos
16811 mutex_exit(&mod_lock);
16812 #endif
16813 mutex_exit(&dtrace_lock);
16814
16815 /*
16816 * This shouldn't _actually_ be possible -- we're
16817 * unloading a module that has an enabled probe in it.
16818 * (It's normally up to the provider to make sure that
16819 * this can't happen.) However, because dtps_enable()
16820 * doesn't have a failure mode, there can be an
16821 * enable/unload race. Upshot: we don't want to
16822 * assert, but we're not going to disable the
16823 * probe, either.
16824 */
16825 if (dtrace_err_verbose) {
16826 #ifdef illumos
16827 cmn_err(CE_WARN, "unloaded module '%s' had "
16828 "enabled probes", ctl->mod_modname);
16829 #else
16830 cmn_err(CE_WARN, "unloaded module '%s' had "
16831 "enabled probes", modname);
16832 #endif
16833 }
16834
16835 return;
16836 }
16837 }
16838
16839 probe = first;
16840
16841 for (first = NULL; probe != NULL; probe = next) {
16842 ASSERT(dtrace_probes[probe->dtpr_id - 1] == probe);
16843
16844 dtrace_probes[probe->dtpr_id - 1] = NULL;
16845
16846 next = probe->dtpr_nextmod;
16847 dtrace_hash_remove(dtrace_bymod, probe);
16848 dtrace_hash_remove(dtrace_byfunc, probe);
16849 dtrace_hash_remove(dtrace_byname, probe);
16850
16851 if (first == NULL) {
16852 first = probe;
16853 probe->dtpr_nextmod = NULL;
16854 } else {
16855 probe->dtpr_nextmod = first;
16856 first = probe;
16857 }
16858 }
16859
16860 /*
16861 * We've removed all of the module's probes from the hash chains and
16862 * from the probe array. Now issue a dtrace_sync() to be sure that
16863 * everyone has cleared out from any probe array processing.
16864 */
16865 dtrace_sync();
16866
16867 for (probe = first; probe != NULL; probe = first) {
16868 first = probe->dtpr_nextmod;
16869 prov = probe->dtpr_provider;
16870 prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, probe->dtpr_id,
16871 probe->dtpr_arg);
16872 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
16873 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
16874 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
16875 #ifdef illumos
16876 vmem_free(dtrace_arena, (void *)(uintptr_t)probe->dtpr_id, 1);
16877 #else
16878 free_unr(dtrace_arena, probe->dtpr_id);
16879 #endif
16880 kmem_free(probe, sizeof (dtrace_probe_t));
16881 }
16882
16883 mutex_exit(&dtrace_lock);
16884 #ifdef illumos
16885 mutex_exit(&mod_lock);
16886 #endif
16887 mutex_exit(&dtrace_provider_lock);
16888 }
16889
16890 #ifndef illumos
16891 static void
16892 dtrace_kld_load(void *arg __unused, linker_file_t lf)
16893 {
16894
16895 dtrace_module_loaded(lf);
16896 }
16897
16898 static void
16899 dtrace_kld_unload_try(void *arg __unused, linker_file_t lf, int *error)
16900 {
16901
16902 if (*error != 0)
16903 /* We already have an error, so don't do anything. */
16904 return;
16905 dtrace_module_unloaded(lf, error);
16906 }
16907 #endif
16908
16909 #ifdef illumos
16910 static void
16911 dtrace_suspend(void)
16912 {
16913 dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_suspend));
16914 }
16915
16916 static void
16917 dtrace_resume(void)
16918 {
16919 dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_resume));
16920 }
16921 #endif
16922
16923 static int
16924 dtrace_cpu_setup(cpu_setup_t what, processorid_t cpu)
16925 {
16926 ASSERT(MUTEX_HELD(&cpu_lock));
16927 mutex_enter(&dtrace_lock);
16928
16929 switch (what) {
16930 case CPU_CONFIG: {
16931 dtrace_state_t *state;
16932 dtrace_optval_t *opt, rs, c;
16933
16934 /*
16935 * For now, we only allocate a new buffer for anonymous state.
16936 */
16937 if ((state = dtrace_anon.dta_state) == NULL)
16938 break;
16939
16940 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
16941 break;
16942
16943 opt = state->dts_options;
16944 c = opt[DTRACEOPT_CPU];
16945
16946 if (c != DTRACE_CPUALL && c != DTRACEOPT_UNSET && c != cpu)
16947 break;
16948
16949 /*
16950 * Regardless of what the actual policy is, we're going to
16951 * temporarily set our resize policy to be manual. We're
16952 * also going to temporarily set our CPU option to denote
16953 * the newly configured CPU.
16954 */
16955 rs = opt[DTRACEOPT_BUFRESIZE];
16956 opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_MANUAL;
16957 opt[DTRACEOPT_CPU] = (dtrace_optval_t)cpu;
16958
16959 (void) dtrace_state_buffers(state);
16960
16961 opt[DTRACEOPT_BUFRESIZE] = rs;
16962 opt[DTRACEOPT_CPU] = c;
16963
16964 break;
16965 }
16966
16967 case CPU_UNCONFIG:
16968 /*
16969 * We don't free the buffer in the CPU_UNCONFIG case. (The
16970 * buffer will be freed when the consumer exits.)
16971 */
16972 break;
16973
16974 default:
16975 break;
16976 }
16977
16978 mutex_exit(&dtrace_lock);
16979 return (0);
16980 }
16981
16982 #ifdef illumos
16983 static void
16984 dtrace_cpu_setup_initial(processorid_t cpu)
16985 {
16986 (void) dtrace_cpu_setup(CPU_CONFIG, cpu);
16987 }
16988 #endif
16989
16990 static void
16991 dtrace_toxrange_add(uintptr_t base, uintptr_t limit)
16992 {
16993 if (dtrace_toxranges >= dtrace_toxranges_max) {
16994 int osize, nsize;
16995 dtrace_toxrange_t *range;
16996
16997 osize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
16998
16999 if (osize == 0) {
17000 ASSERT(dtrace_toxrange == NULL);
17001 ASSERT(dtrace_toxranges_max == 0);
17002 dtrace_toxranges_max = 1;
17003 } else {
17004 dtrace_toxranges_max <<= 1;
17005 }
17006
17007 nsize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
17008 range = kmem_zalloc(nsize, KM_SLEEP);
17009
17010 if (dtrace_toxrange != NULL) {
17011 ASSERT(osize != 0);
17012 bcopy(dtrace_toxrange, range, osize);
17013 kmem_free(dtrace_toxrange, osize);
17014 }
17015
17016 dtrace_toxrange = range;
17017 }
17018
17019 ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_base == 0);
17020 ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_limit == 0);
17021
17022 dtrace_toxrange[dtrace_toxranges].dtt_base = base;
17023 dtrace_toxrange[dtrace_toxranges].dtt_limit = limit;
17024 dtrace_toxranges++;
17025 }
17026
17027 static void
17028 dtrace_getf_barrier(void)
17029 {
17030 #ifdef illumos
17031 /*
17032 * When we have unprivileged (that is, non-DTRACE_CRV_KERNEL) enablings
17033 * that contain calls to getf(), this routine will be called on every
17034 * closef() before either the underlying vnode is released or the
17035 * file_t itself is freed. By the time we are here, it is essential
17036 * that the file_t can no longer be accessed from a call to getf()
17037 * in probe context -- that assures that a dtrace_sync() can be used
17038 * to clear out any enablings referring to the old structures.
17039 */
17040 if (curthread->t_procp->p_zone->zone_dtrace_getf != 0 ||
17041 kcred->cr_zone->zone_dtrace_getf != 0)
17042 dtrace_sync();
17043 #endif
17044 }
17045
17046 /*
17047 * DTrace Driver Cookbook Functions
17048 */
17049 #ifdef illumos
17050 /*ARGSUSED*/
17051 static int
17052 dtrace_attach(dev_info_t *devi, ddi_attach_cmd_t cmd)
17053 {
17054 dtrace_provider_id_t id;
17055 dtrace_state_t *state = NULL;
17056 dtrace_enabling_t *enab;
17057
17058 mutex_enter(&cpu_lock);
17059 mutex_enter(&dtrace_provider_lock);
17060 mutex_enter(&dtrace_lock);
17061
17062 if (ddi_soft_state_init(&dtrace_softstate,
17063 sizeof (dtrace_state_t), 0) != 0) {
17064 cmn_err(CE_NOTE, "/dev/dtrace failed to initialize soft state");
17065 mutex_exit(&cpu_lock);
17066 mutex_exit(&dtrace_provider_lock);
17067 mutex_exit(&dtrace_lock);
17068 return (DDI_FAILURE);
17069 }
17070
17071 if (ddi_create_minor_node(devi, DTRACEMNR_DTRACE, S_IFCHR,
17072 DTRACEMNRN_DTRACE, DDI_PSEUDO, NULL) == DDI_FAILURE ||
17073 ddi_create_minor_node(devi, DTRACEMNR_HELPER, S_IFCHR,
17074 DTRACEMNRN_HELPER, DDI_PSEUDO, NULL) == DDI_FAILURE) {
17075 cmn_err(CE_NOTE, "/dev/dtrace couldn't create minor nodes");
17076 ddi_remove_minor_node(devi, NULL);
17077 ddi_soft_state_fini(&dtrace_softstate);
17078 mutex_exit(&cpu_lock);
17079 mutex_exit(&dtrace_provider_lock);
17080 mutex_exit(&dtrace_lock);
17081 return (DDI_FAILURE);
17082 }
17083
17084 ddi_report_dev(devi);
17085 dtrace_devi = devi;
17086
17087 dtrace_modload = dtrace_module_loaded;
17088 dtrace_modunload = dtrace_module_unloaded;
17089 dtrace_cpu_init = dtrace_cpu_setup_initial;
17090 dtrace_helpers_cleanup = dtrace_helpers_destroy;
17091 dtrace_helpers_fork = dtrace_helpers_duplicate;
17092 dtrace_cpustart_init = dtrace_suspend;
17093 dtrace_cpustart_fini = dtrace_resume;
17094 dtrace_debugger_init = dtrace_suspend;
17095 dtrace_debugger_fini = dtrace_resume;
17096
17097 register_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
17098
17099 ASSERT(MUTEX_HELD(&cpu_lock));
17100
17101 dtrace_arena = vmem_create("dtrace", (void *)1, UINT32_MAX, 1,
17102 NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
17103 dtrace_minor = vmem_create("dtrace_minor", (void *)DTRACEMNRN_CLONE,
17104 UINT32_MAX - DTRACEMNRN_CLONE, 1, NULL, NULL, NULL, 0,
17105 VM_SLEEP | VMC_IDENTIFIER);
17106 dtrace_taskq = taskq_create("dtrace_taskq", 1, maxclsyspri,
17107 1, INT_MAX, 0);
17108
17109 dtrace_state_cache = kmem_cache_create("dtrace_state_cache",
17110 sizeof (dtrace_dstate_percpu_t) * NCPU, DTRACE_STATE_ALIGN,
17111 NULL, NULL, NULL, NULL, NULL, 0);
17112
17113 ASSERT(MUTEX_HELD(&cpu_lock));
17114 dtrace_bymod = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_mod),
17115 offsetof(dtrace_probe_t, dtpr_nextmod),
17116 offsetof(dtrace_probe_t, dtpr_prevmod));
17117
17118 dtrace_byfunc = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_func),
17119 offsetof(dtrace_probe_t, dtpr_nextfunc),
17120 offsetof(dtrace_probe_t, dtpr_prevfunc));
17121
17122 dtrace_byname = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_name),
17123 offsetof(dtrace_probe_t, dtpr_nextname),
17124 offsetof(dtrace_probe_t, dtpr_prevname));
17125
17126 if (dtrace_retain_max < 1) {
17127 cmn_err(CE_WARN, "illegal value (%zu) for dtrace_retain_max; "
17128 "setting to 1", dtrace_retain_max);
17129 dtrace_retain_max = 1;
17130 }
17131
17132 /*
17133 * Now discover our toxic ranges.
17134 */
17135 dtrace_toxic_ranges(dtrace_toxrange_add);
17136
17137 /*
17138 * Before we register ourselves as a provider to our own framework,
17139 * we would like to assert that dtrace_provider is NULL -- but that's
17140 * not true if we were loaded as a dependency of a DTrace provider.
17141 * Once we've registered, we can assert that dtrace_provider is our
17142 * pseudo provider.
17143 */
17144 (void) dtrace_register("dtrace", &dtrace_provider_attr,
17145 DTRACE_PRIV_NONE, 0, &dtrace_provider_ops, NULL, &id);
17146
17147 ASSERT(dtrace_provider != NULL);
17148 ASSERT((dtrace_provider_id_t)dtrace_provider == id);
17149
17150 dtrace_probeid_begin = dtrace_probe_create((dtrace_provider_id_t)
17151 dtrace_provider, NULL, NULL, "BEGIN", 0, NULL);
17152 dtrace_probeid_end = dtrace_probe_create((dtrace_provider_id_t)
17153 dtrace_provider, NULL, NULL, "END", 0, NULL);
17154 dtrace_probeid_error = dtrace_probe_create((dtrace_provider_id_t)
17155 dtrace_provider, NULL, NULL, "ERROR", 1, NULL);
17156
17157 dtrace_anon_property();
17158 mutex_exit(&cpu_lock);
17159
17160 /*
17161 * If there are already providers, we must ask them to provide their
17162 * probes, and then match any anonymous enabling against them. Note
17163 * that there should be no other retained enablings at this time:
17164 * the only retained enablings at this time should be the anonymous
17165 * enabling.
17166 */
17167 if (dtrace_anon.dta_enabling != NULL) {
17168 ASSERT(dtrace_retained == dtrace_anon.dta_enabling);
17169
17170 dtrace_enabling_provide(NULL);
17171 state = dtrace_anon.dta_state;
17172
17173 /*
17174 * We couldn't hold cpu_lock across the above call to
17175 * dtrace_enabling_provide(), but we must hold it to actually
17176 * enable the probes. We have to drop all of our locks, pick
17177 * up cpu_lock, and regain our locks before matching the
17178 * retained anonymous enabling.
17179 */
17180 mutex_exit(&dtrace_lock);
17181 mutex_exit(&dtrace_provider_lock);
17182
17183 mutex_enter(&cpu_lock);
17184 mutex_enter(&dtrace_provider_lock);
17185 mutex_enter(&dtrace_lock);
17186
17187 if ((enab = dtrace_anon.dta_enabling) != NULL)
17188 (void) dtrace_enabling_match(enab, NULL);
17189
17190 mutex_exit(&cpu_lock);
17191 }
17192
17193 mutex_exit(&dtrace_lock);
17194 mutex_exit(&dtrace_provider_lock);
17195
17196 if (state != NULL) {
17197 /*
17198 * If we created any anonymous state, set it going now.
17199 */
17200 (void) dtrace_state_go(state, &dtrace_anon.dta_beganon);
17201 }
17202
17203 return (DDI_SUCCESS);
17204 }
17205 #endif /* illumos */
17206
17207 #ifndef illumos
17208 static void dtrace_dtr(void *);
17209 #endif
17210
17211 /*ARGSUSED*/
17212 static int
17213 #ifdef illumos
17214 dtrace_open(dev_t *devp, int flag, int otyp, cred_t *cred_p)
17215 #else
17216 dtrace_open(struct cdev *dev, int oflags, int devtype, struct thread *td)
17217 #endif
17218 {
17219 dtrace_state_t *state;
17220 uint32_t priv;
17221 uid_t uid;
17222 zoneid_t zoneid;
17223
17224 #ifdef illumos
17225 if (getminor(*devp) == DTRACEMNRN_HELPER)
17226 return (0);
17227
17228 /*
17229 * If this wasn't an open with the "helper" minor, then it must be
17230 * the "dtrace" minor.
17231 */
17232 if (getminor(*devp) == DTRACEMNRN_DTRACE)
17233 return (ENXIO);
17234 #else
17235 cred_t *cred_p = NULL;
17236 cred_p = dev->si_cred;
17237
17238 /*
17239 * If no DTRACE_PRIV_* bits are set in the credential, then the
17240 * caller lacks sufficient permission to do anything with DTrace.
17241 */
17242 dtrace_cred2priv(cred_p, &priv, &uid, &zoneid);
17243 if (priv == DTRACE_PRIV_NONE) {
17244 #endif
17245
17246 return (EACCES);
17247 }
17248
17249 /*
17250 * Ask all providers to provide all their probes.
17251 */
17252 mutex_enter(&dtrace_provider_lock);
17253 dtrace_probe_provide(NULL, NULL);
17254 mutex_exit(&dtrace_provider_lock);
17255
17256 mutex_enter(&cpu_lock);
17257 mutex_enter(&dtrace_lock);
17258 dtrace_opens++;
17259 dtrace_membar_producer();
17260
17261 #ifdef illumos
17262 /*
17263 * If the kernel debugger is active (that is, if the kernel debugger
17264 * modified text in some way), we won't allow the open.
17265 */
17266 if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
17267 dtrace_opens--;
17268 mutex_exit(&cpu_lock);
17269 mutex_exit(&dtrace_lock);
17270 return (EBUSY);
17271 }
17272
17273 if (dtrace_helptrace_enable && dtrace_helptrace_buffer == NULL) {
17274 /*
17275 * If DTrace helper tracing is enabled, we need to allocate the
17276 * trace buffer and initialize the values.
17277 */
17278 dtrace_helptrace_buffer =
17279 kmem_zalloc(dtrace_helptrace_bufsize, KM_SLEEP);
17280 dtrace_helptrace_next = 0;
17281 dtrace_helptrace_wrapped = 0;
17282 dtrace_helptrace_enable = 0;
17283 }
17284
17285 state = dtrace_state_create(devp, cred_p);
17286 #else
17287 state = dtrace_state_create(dev, NULL);
17288 devfs_set_cdevpriv(state, dtrace_dtr);
17289 #endif
17290
17291 mutex_exit(&cpu_lock);
17292
17293 if (state == NULL) {
17294 #ifdef illumos
17295 if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL)
17296 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
17297 #else
17298 --dtrace_opens;
17299 #endif
17300 mutex_exit(&dtrace_lock);
17301 return (EAGAIN);
17302 }
17303
17304 mutex_exit(&dtrace_lock);
17305
17306 return (0);
17307 }
17308
17309 /*ARGSUSED*/
17310 #ifdef illumos
17311 static int
17312 dtrace_close(dev_t dev, int flag, int otyp, cred_t *cred_p)
17313 #else
17314 static void
17315 dtrace_dtr(void *data)
17316 #endif
17317 {
17318 #ifdef illumos
17319 minor_t minor = getminor(dev);
17320 dtrace_state_t *state;
17321 #endif
17322 dtrace_helptrace_t *buf = NULL;
17323
17324 #ifdef illumos
17325 if (minor == DTRACEMNRN_HELPER)
17326 return (0);
17327
17328 state = ddi_get_soft_state(dtrace_softstate, minor);
17329 #else
17330 dtrace_state_t *state = data;
17331 #endif
17332
17333 mutex_enter(&cpu_lock);
17334 mutex_enter(&dtrace_lock);
17335
17336 #ifdef illumos
17337 if (state->dts_anon)
17338 #else
17339 if (state != NULL && state->dts_anon)
17340 #endif
17341 {
17342 /*
17343 * There is anonymous state. Destroy that first.
17344 */
17345 ASSERT(dtrace_anon.dta_state == NULL);
17346 dtrace_state_destroy(state->dts_anon);
17347 }
17348
17349 if (dtrace_helptrace_disable) {
17350 /*
17351 * If we have been told to disable helper tracing, set the
17352 * buffer to NULL before calling into dtrace_state_destroy();
17353 * we take advantage of its dtrace_sync() to know that no
17354 * CPU is in probe context with enabled helper tracing
17355 * after it returns.
17356 */
17357 buf = dtrace_helptrace_buffer;
17358 dtrace_helptrace_buffer = NULL;
17359 }
17360
17361 #ifdef illumos
17362 dtrace_state_destroy(state);
17363 #else
17364 if (state != NULL) {
17365 dtrace_state_destroy(state);
17366 kmem_free(state, 0);
17367 }
17368 #endif
17369 ASSERT(dtrace_opens > 0);
17370
17371 #ifdef illumos
17372 /*
17373 * Only relinquish control of the kernel debugger interface when there
17374 * are no consumers and no anonymous enablings.
17375 */
17376 if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL)
17377 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
17378 #else
17379 --dtrace_opens;
17380 #endif
17381
17382 if (buf != NULL) {
17383 kmem_free(buf, dtrace_helptrace_bufsize);
17384 dtrace_helptrace_disable = 0;
17385 }
17386
17387 mutex_exit(&dtrace_lock);
17388 mutex_exit(&cpu_lock);
17389
17390 #ifdef illumos
17391 return (0);
17392 #endif
17393 }
17394
17395 #ifdef illumos
17396 /*ARGSUSED*/
17397 static int
17398 dtrace_ioctl_helper(int cmd, intptr_t arg, int *rv)
17399 {
17400 int rval;
17401 dof_helper_t help, *dhp = NULL;
17402
17403 switch (cmd) {
17404 case DTRACEHIOC_ADDDOF:
17405 if (copyin((void *)arg, &help, sizeof (help)) != 0) {
17406 dtrace_dof_error(NULL, "failed to copyin DOF helper");
17407 return (EFAULT);
17408 }
17409
17410 dhp = &help;
17411 arg = (intptr_t)help.dofhp_dof;
17412 /*FALLTHROUGH*/
17413
17414 case DTRACEHIOC_ADD: {
17415 dof_hdr_t *dof = dtrace_dof_copyin(arg, &rval);
17416
17417 if (dof == NULL)
17418 return (rval);
17419
17420 mutex_enter(&dtrace_lock);
17421
17422 /*
17423 * dtrace_helper_slurp() takes responsibility for the dof --
17424 * it may free it now or it may save it and free it later.
17425 */
17426 if ((rval = dtrace_helper_slurp(dof, dhp)) != -1) {
17427 *rv = rval;
17428 rval = 0;
17429 } else {
17430 rval = EINVAL;
17431 }
17432
17433 mutex_exit(&dtrace_lock);
17434 return (rval);
17435 }
17436
17437 case DTRACEHIOC_REMOVE: {
17438 mutex_enter(&dtrace_lock);
17439 rval = dtrace_helper_destroygen(NULL, arg);
17440 mutex_exit(&dtrace_lock);
17441
17442 return (rval);
17443 }
17444
17445 default:
17446 break;
17447 }
17448
17449 return (ENOTTY);
17450 }
17451
17452 /*ARGSUSED*/
17453 static int
17454 dtrace_ioctl(dev_t dev, int cmd, intptr_t arg, int md, cred_t *cr, int *rv)
17455 {
17456 minor_t minor = getminor(dev);
17457 dtrace_state_t *state;
17458 int rval;
17459
17460 if (minor == DTRACEMNRN_HELPER)
17461 return (dtrace_ioctl_helper(cmd, arg, rv));
17462
17463 state = ddi_get_soft_state(dtrace_softstate, minor);
17464
17465 if (state->dts_anon) {
17466 ASSERT(dtrace_anon.dta_state == NULL);
17467 state = state->dts_anon;
17468 }
17469
17470 switch (cmd) {
17471 case DTRACEIOC_PROVIDER: {
17472 dtrace_providerdesc_t pvd;
17473 dtrace_provider_t *pvp;
17474
17475 if (copyin((void *)arg, &pvd, sizeof (pvd)) != 0)
17476 return (EFAULT);
17477
17478 pvd.dtvd_name[DTRACE_PROVNAMELEN - 1] = '\0';
17479 mutex_enter(&dtrace_provider_lock);
17480
17481 for (pvp = dtrace_provider; pvp != NULL; pvp = pvp->dtpv_next) {
17482 if (strcmp(pvp->dtpv_name, pvd.dtvd_name) == 0)
17483 break;
17484 }
17485
17486 mutex_exit(&dtrace_provider_lock);
17487
17488 if (pvp == NULL)
17489 return (ESRCH);
17490
17491 bcopy(&pvp->dtpv_priv, &pvd.dtvd_priv, sizeof (dtrace_ppriv_t));
17492 bcopy(&pvp->dtpv_attr, &pvd.dtvd_attr, sizeof (dtrace_pattr_t));
17493
17494 if (copyout(&pvd, (void *)arg, sizeof (pvd)) != 0)
17495 return (EFAULT);
17496
17497 return (0);
17498 }
17499
17500 case DTRACEIOC_EPROBE: {
17501 dtrace_eprobedesc_t epdesc;
17502 dtrace_ecb_t *ecb;
17503 dtrace_action_t *act;
17504 void *buf;
17505 size_t size;
17506 uintptr_t dest;
17507 int nrecs;
17508
17509 if (copyin((void *)arg, &epdesc, sizeof (epdesc)) != 0)
17510 return (EFAULT);
17511
17512 mutex_enter(&dtrace_lock);
17513
17514 if ((ecb = dtrace_epid2ecb(state, epdesc.dtepd_epid)) == NULL) {
17515 mutex_exit(&dtrace_lock);
17516 return (EINVAL);
17517 }
17518
17519 if (ecb->dte_probe == NULL) {
17520 mutex_exit(&dtrace_lock);
17521 return (EINVAL);
17522 }
17523
17524 epdesc.dtepd_probeid = ecb->dte_probe->dtpr_id;
17525 epdesc.dtepd_uarg = ecb->dte_uarg;
17526 epdesc.dtepd_size = ecb->dte_size;
17527
17528 nrecs = epdesc.dtepd_nrecs;
17529 epdesc.dtepd_nrecs = 0;
17530 for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
17531 if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
17532 continue;
17533
17534 epdesc.dtepd_nrecs++;
17535 }
17536
17537 /*
17538 * Now that we have the size, we need to allocate a temporary
17539 * buffer in which to store the complete description. We need
17540 * the temporary buffer to be able to drop dtrace_lock()
17541 * across the copyout(), below.
17542 */
17543 size = sizeof (dtrace_eprobedesc_t) +
17544 (epdesc.dtepd_nrecs * sizeof (dtrace_recdesc_t));
17545
17546 buf = kmem_alloc(size, KM_SLEEP);
17547 dest = (uintptr_t)buf;
17548
17549 bcopy(&epdesc, (void *)dest, sizeof (epdesc));
17550 dest += offsetof(dtrace_eprobedesc_t, dtepd_rec[0]);
17551
17552 for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
17553 if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
17554 continue;
17555
17556 if (nrecs-- == 0)
17557 break;
17558
17559 bcopy(&act->dta_rec, (void *)dest,
17560 sizeof (dtrace_recdesc_t));
17561 dest += sizeof (dtrace_recdesc_t);
17562 }
17563
17564 mutex_exit(&dtrace_lock);
17565
17566 if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
17567 kmem_free(buf, size);
17568 return (EFAULT);
17569 }
17570
17571 kmem_free(buf, size);
17572 return (0);
17573 }
17574
17575 case DTRACEIOC_AGGDESC: {
17576 dtrace_aggdesc_t aggdesc;
17577 dtrace_action_t *act;
17578 dtrace_aggregation_t *agg;
17579 int nrecs;
17580 uint32_t offs;
17581 dtrace_recdesc_t *lrec;
17582 void *buf;
17583 size_t size;
17584 uintptr_t dest;
17585
17586 if (copyin((void *)arg, &aggdesc, sizeof (aggdesc)) != 0)
17587 return (EFAULT);
17588
17589 mutex_enter(&dtrace_lock);
17590
17591 if ((agg = dtrace_aggid2agg(state, aggdesc.dtagd_id)) == NULL) {
17592 mutex_exit(&dtrace_lock);
17593 return (EINVAL);
17594 }
17595
17596 aggdesc.dtagd_epid = agg->dtag_ecb->dte_epid;
17597
17598 nrecs = aggdesc.dtagd_nrecs;
17599 aggdesc.dtagd_nrecs = 0;
17600
17601 offs = agg->dtag_base;
17602 lrec = &agg->dtag_action.dta_rec;
17603 aggdesc.dtagd_size = lrec->dtrd_offset + lrec->dtrd_size - offs;
17604
17605 for (act = agg->dtag_first; ; act = act->dta_next) {
17606 ASSERT(act->dta_intuple ||
17607 DTRACEACT_ISAGG(act->dta_kind));
17608
17609 /*
17610 * If this action has a record size of zero, it
17611 * denotes an argument to the aggregating action.
17612 * Because the presence of this record doesn't (or
17613 * shouldn't) affect the way the data is interpreted,
17614 * we don't copy it out to save user-level the
17615 * confusion of dealing with a zero-length record.
17616 */
17617 if (act->dta_rec.dtrd_size == 0) {
17618 ASSERT(agg->dtag_hasarg);
17619 continue;
17620 }
17621
17622 aggdesc.dtagd_nrecs++;
17623
17624 if (act == &agg->dtag_action)
17625 break;
17626 }
17627
17628 /*
17629 * Now that we have the size, we need to allocate a temporary
17630 * buffer in which to store the complete description. We need
17631 * the temporary buffer to be able to drop dtrace_lock()
17632 * across the copyout(), below.
17633 */
17634 size = sizeof (dtrace_aggdesc_t) +
17635 (aggdesc.dtagd_nrecs * sizeof (dtrace_recdesc_t));
17636
17637 buf = kmem_alloc(size, KM_SLEEP);
17638 dest = (uintptr_t)buf;
17639
17640 bcopy(&aggdesc, (void *)dest, sizeof (aggdesc));
17641 dest += offsetof(dtrace_aggdesc_t, dtagd_rec[0]);
17642
17643 for (act = agg->dtag_first; ; act = act->dta_next) {
17644 dtrace_recdesc_t rec = act->dta_rec;
17645
17646 /*
17647 * See the comment in the above loop for why we pass
17648 * over zero-length records.
17649 */
17650 if (rec.dtrd_size == 0) {
17651 ASSERT(agg->dtag_hasarg);
17652 continue;
17653 }
17654
17655 if (nrecs-- == 0)
17656 break;
17657
17658 rec.dtrd_offset -= offs;
17659 bcopy(&rec, (void *)dest, sizeof (rec));
17660 dest += sizeof (dtrace_recdesc_t);
17661
17662 if (act == &agg->dtag_action)
17663 break;
17664 }
17665
17666 mutex_exit(&dtrace_lock);
17667
17668 if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
17669 kmem_free(buf, size);
17670 return (EFAULT);
17671 }
17672
17673 kmem_free(buf, size);
17674 return (0);
17675 }
17676
17677 case DTRACEIOC_ENABLE: {
17678 dof_hdr_t *dof;
17679 dtrace_enabling_t *enab = NULL;
17680 dtrace_vstate_t *vstate;
17681 int err = 0;
17682
17683 *rv = 0;
17684
17685 /*
17686 * If a NULL argument has been passed, we take this as our
17687 * cue to reevaluate our enablings.
17688 */
17689 if (arg == NULL) {
17690 dtrace_enabling_matchall();
17691
17692 return (0);
17693 }
17694
17695 if ((dof = dtrace_dof_copyin(arg, &rval)) == NULL)
17696 return (rval);
17697
17698 mutex_enter(&cpu_lock);
17699 mutex_enter(&dtrace_lock);
17700 vstate = &state->dts_vstate;
17701
17702 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
17703 mutex_exit(&dtrace_lock);
17704 mutex_exit(&cpu_lock);
17705 dtrace_dof_destroy(dof);
17706 return (EBUSY);
17707 }
17708
17709 if (dtrace_dof_slurp(dof, vstate, cr, &enab, 0, B_TRUE) != 0) {
17710 mutex_exit(&dtrace_lock);
17711 mutex_exit(&cpu_lock);
17712 dtrace_dof_destroy(dof);
17713 return (EINVAL);
17714 }
17715
17716 if ((rval = dtrace_dof_options(dof, state)) != 0) {
17717 dtrace_enabling_destroy(enab);
17718 mutex_exit(&dtrace_lock);
17719 mutex_exit(&cpu_lock);
17720 dtrace_dof_destroy(dof);
17721 return (rval);
17722 }
17723
17724 if ((err = dtrace_enabling_match(enab, rv)) == 0) {
17725 err = dtrace_enabling_retain(enab);
17726 } else {
17727 dtrace_enabling_destroy(enab);
17728 }
17729
17730 mutex_exit(&cpu_lock);
17731 mutex_exit(&dtrace_lock);
17732 dtrace_dof_destroy(dof);
17733
17734 return (err);
17735 }
17736
17737 case DTRACEIOC_REPLICATE: {
17738 dtrace_repldesc_t desc;
17739 dtrace_probedesc_t *match = &desc.dtrpd_match;
17740 dtrace_probedesc_t *create = &desc.dtrpd_create;
17741 int err;
17742
17743 if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
17744 return (EFAULT);
17745
17746 match->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
17747 match->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
17748 match->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
17749 match->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
17750
17751 create->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
17752 create->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
17753 create->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
17754 create->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
17755
17756 mutex_enter(&dtrace_lock);
17757 err = dtrace_enabling_replicate(state, match, create);
17758 mutex_exit(&dtrace_lock);
17759
17760 return (err);
17761 }
17762
17763 case DTRACEIOC_PROBEMATCH:
17764 case DTRACEIOC_PROBES: {
17765 dtrace_probe_t *probe = NULL;
17766 dtrace_probedesc_t desc;
17767 dtrace_probekey_t pkey;
17768 dtrace_id_t i;
17769 int m = 0;
17770 uint32_t priv;
17771 uid_t uid;
17772 zoneid_t zoneid;
17773
17774 if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
17775 return (EFAULT);
17776
17777 desc.dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
17778 desc.dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
17779 desc.dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
17780 desc.dtpd_name[DTRACE_NAMELEN - 1] = '\0';
17781
17782 /*
17783 * Before we attempt to match this probe, we want to give
17784 * all providers the opportunity to provide it.
17785 */
17786 if (desc.dtpd_id == DTRACE_IDNONE) {
17787 mutex_enter(&dtrace_provider_lock);
17788 dtrace_probe_provide(&desc, NULL);
17789 mutex_exit(&dtrace_provider_lock);
17790 desc.dtpd_id++;
17791 }
17792
17793 if (cmd == DTRACEIOC_PROBEMATCH) {
17794 dtrace_probekey(&desc, &pkey);
17795 pkey.dtpk_id = DTRACE_IDNONE;
17796 }
17797
17798 dtrace_cred2priv(cr, &priv, &uid, &zoneid);
17799
17800 mutex_enter(&dtrace_lock);
17801
17802 if (cmd == DTRACEIOC_PROBEMATCH) {
17803 for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
17804 if ((probe = dtrace_probes[i - 1]) != NULL &&
17805 (m = dtrace_match_probe(probe, &pkey,
17806 priv, uid, zoneid)) != 0)
17807 break;
17808 }
17809
17810 if (m < 0) {
17811 mutex_exit(&dtrace_lock);
17812 return (EINVAL);
17813 }
17814
17815 } else {
17816 for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
17817 if ((probe = dtrace_probes[i - 1]) != NULL &&
17818 dtrace_match_priv(probe, priv, uid, zoneid))
17819 break;
17820 }
17821 }
17822
17823 if (probe == NULL) {
17824 mutex_exit(&dtrace_lock);
17825 return (ESRCH);
17826 }
17827
17828 dtrace_probe_description(probe, &desc);
17829 mutex_exit(&dtrace_lock);
17830
17831 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
17832 return (EFAULT);
17833
17834 return (0);
17835 }
17836
17837 case DTRACEIOC_PROBEARG: {
17838 dtrace_argdesc_t desc;
17839 dtrace_probe_t *probe;
17840 dtrace_provider_t *prov;
17841
17842 if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
17843 return (EFAULT);
17844
17845 if (desc.dtargd_id == DTRACE_IDNONE)
17846 return (EINVAL);
17847
17848 if (desc.dtargd_ndx == DTRACE_ARGNONE)
17849 return (EINVAL);
17850
17851 mutex_enter(&dtrace_provider_lock);
17852 mutex_enter(&mod_lock);
17853 mutex_enter(&dtrace_lock);
17854
17855 if (desc.dtargd_id > dtrace_nprobes) {
17856 mutex_exit(&dtrace_lock);
17857 mutex_exit(&mod_lock);
17858 mutex_exit(&dtrace_provider_lock);
17859 return (EINVAL);
17860 }
17861
17862 if ((probe = dtrace_probes[desc.dtargd_id - 1]) == NULL) {
17863 mutex_exit(&dtrace_lock);
17864 mutex_exit(&mod_lock);
17865 mutex_exit(&dtrace_provider_lock);
17866 return (EINVAL);
17867 }
17868
17869 mutex_exit(&dtrace_lock);
17870
17871 prov = probe->dtpr_provider;
17872
17873 if (prov->dtpv_pops.dtps_getargdesc == NULL) {
17874 /*
17875 * There isn't any typed information for this probe.
17876 * Set the argument number to DTRACE_ARGNONE.
17877 */
17878 desc.dtargd_ndx = DTRACE_ARGNONE;
17879 } else {
17880 desc.dtargd_native[0] = '\0';
17881 desc.dtargd_xlate[0] = '\0';
17882 desc.dtargd_mapping = desc.dtargd_ndx;
17883
17884 prov->dtpv_pops.dtps_getargdesc(prov->dtpv_arg,
17885 probe->dtpr_id, probe->dtpr_arg, &desc);
17886 }
17887
17888 mutex_exit(&mod_lock);
17889 mutex_exit(&dtrace_provider_lock);
17890
17891 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
17892 return (EFAULT);
17893
17894 return (0);
17895 }
17896
17897 case DTRACEIOC_GO: {
17898 processorid_t cpuid;
17899 rval = dtrace_state_go(state, &cpuid);
17900
17901 if (rval != 0)
17902 return (rval);
17903
17904 if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
17905 return (EFAULT);
17906
17907 return (0);
17908 }
17909
17910 case DTRACEIOC_STOP: {
17911 processorid_t cpuid;
17912
17913 mutex_enter(&dtrace_lock);
17914 rval = dtrace_state_stop(state, &cpuid);
17915 mutex_exit(&dtrace_lock);
17916
17917 if (rval != 0)
17918 return (rval);
17919
17920 if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
17921 return (EFAULT);
17922
17923 return (0);
17924 }
17925
17926 case DTRACEIOC_DOFGET: {
17927 dof_hdr_t hdr, *dof;
17928 uint64_t len;
17929
17930 if (copyin((void *)arg, &hdr, sizeof (hdr)) != 0)
17931 return (EFAULT);
17932
17933 mutex_enter(&dtrace_lock);
17934 dof = dtrace_dof_create(state);
17935 mutex_exit(&dtrace_lock);
17936
17937 len = MIN(hdr.dofh_loadsz, dof->dofh_loadsz);
17938 rval = copyout(dof, (void *)arg, len);
17939 dtrace_dof_destroy(dof);
17940
17941 return (rval == 0 ? 0 : EFAULT);
17942 }
17943
17944 case DTRACEIOC_AGGSNAP:
17945 case DTRACEIOC_BUFSNAP: {
17946 dtrace_bufdesc_t desc;
17947 caddr_t cached;
17948 dtrace_buffer_t *buf;
17949
17950 if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
17951 return (EFAULT);
17952
17953 if (desc.dtbd_cpu < 0 || desc.dtbd_cpu >= NCPU)
17954 return (EINVAL);
17955
17956 mutex_enter(&dtrace_lock);
17957
17958 if (cmd == DTRACEIOC_BUFSNAP) {
17959 buf = &state->dts_buffer[desc.dtbd_cpu];
17960 } else {
17961 buf = &state->dts_aggbuffer[desc.dtbd_cpu];
17962 }
17963
17964 if (buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL)) {
17965 size_t sz = buf->dtb_offset;
17966
17967 if (state->dts_activity != DTRACE_ACTIVITY_STOPPED) {
17968 mutex_exit(&dtrace_lock);
17969 return (EBUSY);
17970 }
17971
17972 /*
17973 * If this buffer has already been consumed, we're
17974 * going to indicate that there's nothing left here
17975 * to consume.
17976 */
17977 if (buf->dtb_flags & DTRACEBUF_CONSUMED) {
17978 mutex_exit(&dtrace_lock);
17979
17980 desc.dtbd_size = 0;
17981 desc.dtbd_drops = 0;
17982 desc.dtbd_errors = 0;
17983 desc.dtbd_oldest = 0;
17984 sz = sizeof (desc);
17985
17986 if (copyout(&desc, (void *)arg, sz) != 0)
17987 return (EFAULT);
17988
17989 return (0);
17990 }
17991
17992 /*
17993 * If this is a ring buffer that has wrapped, we want
17994 * to copy the whole thing out.
17995 */
17996 if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
17997 dtrace_buffer_polish(buf);
17998 sz = buf->dtb_size;
17999 }
18000
18001 if (copyout(buf->dtb_tomax, desc.dtbd_data, sz) != 0) {
18002 mutex_exit(&dtrace_lock);
18003 return (EFAULT);
18004 }
18005
18006 desc.dtbd_size = sz;
18007 desc.dtbd_drops = buf->dtb_drops;
18008 desc.dtbd_errors = buf->dtb_errors;
18009 desc.dtbd_oldest = buf->dtb_xamot_offset;
18010 desc.dtbd_timestamp = dtrace_gethrtime();
18011
18012 mutex_exit(&dtrace_lock);
18013
18014 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
18015 return (EFAULT);
18016
18017 buf->dtb_flags |= DTRACEBUF_CONSUMED;
18018
18019 return (0);
18020 }
18021
18022 if (buf->dtb_tomax == NULL) {
18023 ASSERT(buf->dtb_xamot == NULL);
18024 mutex_exit(&dtrace_lock);
18025 return (ENOENT);
18026 }
18027
18028 cached = buf->dtb_tomax;
18029 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
18030
18031 dtrace_xcall(desc.dtbd_cpu,
18032 (dtrace_xcall_t)dtrace_buffer_switch, buf);
18033
18034 state->dts_errors += buf->dtb_xamot_errors;
18035
18036 /*
18037 * If the buffers did not actually switch, then the cross call
18038 * did not take place -- presumably because the given CPU is
18039 * not in the ready set. If this is the case, we'll return
18040 * ENOENT.
18041 */
18042 if (buf->dtb_tomax == cached) {
18043 ASSERT(buf->dtb_xamot != cached);
18044 mutex_exit(&dtrace_lock);
18045 return (ENOENT);
18046 }
18047
18048 ASSERT(cached == buf->dtb_xamot);
18049
18050 /*
18051 * We have our snapshot; now copy it out.
18052 */
18053 if (copyout(buf->dtb_xamot, desc.dtbd_data,
18054 buf->dtb_xamot_offset) != 0) {
18055 mutex_exit(&dtrace_lock);
18056 return (EFAULT);
18057 }
18058
18059 desc.dtbd_size = buf->dtb_xamot_offset;
18060 desc.dtbd_drops = buf->dtb_xamot_drops;
18061 desc.dtbd_errors = buf->dtb_xamot_errors;
18062 desc.dtbd_oldest = 0;
18063 desc.dtbd_timestamp = buf->dtb_switched;
18064
18065 mutex_exit(&dtrace_lock);
18066
18067 /*
18068 * Finally, copy out the buffer description.
18069 */
18070 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
18071 return (EFAULT);
18072
18073 return (0);
18074 }
18075
18076 case DTRACEIOC_CONF: {
18077 dtrace_conf_t conf;
18078
18079 bzero(&conf, sizeof (conf));
18080 conf.dtc_difversion = DIF_VERSION;
18081 conf.dtc_difintregs = DIF_DIR_NREGS;
18082 conf.dtc_diftupregs = DIF_DTR_NREGS;
18083 conf.dtc_ctfmodel = CTF_MODEL_NATIVE;
18084
18085 if (copyout(&conf, (void *)arg, sizeof (conf)) != 0)
18086 return (EFAULT);
18087
18088 return (0);
18089 }
18090
18091 case DTRACEIOC_STATUS: {
18092 dtrace_status_t stat;
18093 dtrace_dstate_t *dstate;
18094 int i, j;
18095 uint64_t nerrs;
18096
18097 /*
18098 * See the comment in dtrace_state_deadman() for the reason
18099 * for setting dts_laststatus to INT64_MAX before setting
18100 * it to the correct value.
18101 */
18102 state->dts_laststatus = INT64_MAX;
18103 dtrace_membar_producer();
18104 state->dts_laststatus = dtrace_gethrtime();
18105
18106 bzero(&stat, sizeof (stat));
18107
18108 mutex_enter(&dtrace_lock);
18109
18110 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) {
18111 mutex_exit(&dtrace_lock);
18112 return (ENOENT);
18113 }
18114
18115 if (state->dts_activity == DTRACE_ACTIVITY_DRAINING)
18116 stat.dtst_exiting = 1;
18117
18118 nerrs = state->dts_errors;
18119 dstate = &state->dts_vstate.dtvs_dynvars;
18120
18121 for (i = 0; i < NCPU; i++) {
18122 dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[i];
18123
18124 stat.dtst_dyndrops += dcpu->dtdsc_drops;
18125 stat.dtst_dyndrops_dirty += dcpu->dtdsc_dirty_drops;
18126 stat.dtst_dyndrops_rinsing += dcpu->dtdsc_rinsing_drops;
18127
18128 if (state->dts_buffer[i].dtb_flags & DTRACEBUF_FULL)
18129 stat.dtst_filled++;
18130
18131 nerrs += state->dts_buffer[i].dtb_errors;
18132
18133 for (j = 0; j < state->dts_nspeculations; j++) {
18134 dtrace_speculation_t *spec;
18135 dtrace_buffer_t *buf;
18136
18137 spec = &state->dts_speculations[j];
18138 buf = &spec->dtsp_buffer[i];
18139 stat.dtst_specdrops += buf->dtb_xamot_drops;
18140 }
18141 }
18142
18143 stat.dtst_specdrops_busy = state->dts_speculations_busy;
18144 stat.dtst_specdrops_unavail = state->dts_speculations_unavail;
18145 stat.dtst_stkstroverflows = state->dts_stkstroverflows;
18146 stat.dtst_dblerrors = state->dts_dblerrors;
18147 stat.dtst_killed =
18148 (state->dts_activity == DTRACE_ACTIVITY_KILLED);
18149 stat.dtst_errors = nerrs;
18150
18151 mutex_exit(&dtrace_lock);
18152
18153 if (copyout(&stat, (void *)arg, sizeof (stat)) != 0)
18154 return (EFAULT);
18155
18156 return (0);
18157 }
18158
18159 case DTRACEIOC_FORMAT: {
18160 dtrace_fmtdesc_t fmt;
18161 char *str;
18162 int len;
18163
18164 if (copyin((void *)arg, &fmt, sizeof (fmt)) != 0)
18165 return (EFAULT);
18166
18167 mutex_enter(&dtrace_lock);
18168
18169 if (fmt.dtfd_format == 0 ||
18170 fmt.dtfd_format > state->dts_nformats) {
18171 mutex_exit(&dtrace_lock);
18172 return (EINVAL);
18173 }
18174
18175 /*
18176 * Format strings are allocated contiguously and they are
18177 * never freed; if a format index is less than the number
18178 * of formats, we can assert that the format map is non-NULL
18179 * and that the format for the specified index is non-NULL.
18180 */
18181 ASSERT(state->dts_formats != NULL);
18182 str = state->dts_formats[fmt.dtfd_format - 1];
18183 ASSERT(str != NULL);
18184
18185 len = strlen(str) + 1;
18186
18187 if (len > fmt.dtfd_length) {
18188 fmt.dtfd_length = len;
18189
18190 if (copyout(&fmt, (void *)arg, sizeof (fmt)) != 0) {
18191 mutex_exit(&dtrace_lock);
18192 return (EINVAL);
18193 }
18194 } else {
18195 if (copyout(str, fmt.dtfd_string, len) != 0) {
18196 mutex_exit(&dtrace_lock);
18197 return (EINVAL);
18198 }
18199 }
18200
18201 mutex_exit(&dtrace_lock);
18202 return (0);
18203 }
18204
18205 default:
18206 break;
18207 }
18208
18209 return (ENOTTY);
18210 }
18211
18212 /*ARGSUSED*/
18213 static int
18214 dtrace_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
18215 {
18216 dtrace_state_t *state;
18217
18218 switch (cmd) {
18219 case DDI_DETACH:
18220 break;
18221
18222 case DDI_SUSPEND:
18223 return (DDI_SUCCESS);
18224
18225 default:
18226 return (DDI_FAILURE);
18227 }
18228
18229 mutex_enter(&cpu_lock);
18230 mutex_enter(&dtrace_provider_lock);
18231 mutex_enter(&dtrace_lock);
18232
18233 ASSERT(dtrace_opens == 0);
18234
18235 if (dtrace_helpers > 0) {
18236 mutex_exit(&dtrace_provider_lock);
18237 mutex_exit(&dtrace_lock);
18238 mutex_exit(&cpu_lock);
18239 return (DDI_FAILURE);
18240 }
18241
18242 if (dtrace_unregister((dtrace_provider_id_t)dtrace_provider) != 0) {
18243 mutex_exit(&dtrace_provider_lock);
18244 mutex_exit(&dtrace_lock);
18245 mutex_exit(&cpu_lock);
18246 return (DDI_FAILURE);
18247 }
18248
18249 dtrace_provider = NULL;
18250
18251 if ((state = dtrace_anon_grab()) != NULL) {
18252 /*
18253 * If there were ECBs on this state, the provider should
18254 * have not been allowed to detach; assert that there is
18255 * none.
18256 */
18257 ASSERT(state->dts_necbs == 0);
18258 dtrace_state_destroy(state);
18259
18260 /*
18261 * If we're being detached with anonymous state, we need to
18262 * indicate to the kernel debugger that DTrace is now inactive.
18263 */
18264 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
18265 }
18266
18267 bzero(&dtrace_anon, sizeof (dtrace_anon_t));
18268 unregister_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
18269 dtrace_cpu_init = NULL;
18270 dtrace_helpers_cleanup = NULL;
18271 dtrace_helpers_fork = NULL;
18272 dtrace_cpustart_init = NULL;
18273 dtrace_cpustart_fini = NULL;
18274 dtrace_debugger_init = NULL;
18275 dtrace_debugger_fini = NULL;
18276 dtrace_modload = NULL;
18277 dtrace_modunload = NULL;
18278
18279 ASSERT(dtrace_getf == 0);
18280 ASSERT(dtrace_closef == NULL);
18281
18282 mutex_exit(&cpu_lock);
18283
18284 kmem_free(dtrace_probes, dtrace_nprobes * sizeof (dtrace_probe_t *));
18285 dtrace_probes = NULL;
18286 dtrace_nprobes = 0;
18287
18288 dtrace_hash_destroy(dtrace_bymod);
18289 dtrace_hash_destroy(dtrace_byfunc);
18290 dtrace_hash_destroy(dtrace_byname);
18291 dtrace_bymod = NULL;
18292 dtrace_byfunc = NULL;
18293 dtrace_byname = NULL;
18294
18295 kmem_cache_destroy(dtrace_state_cache);
18296 vmem_destroy(dtrace_minor);
18297 vmem_destroy(dtrace_arena);
18298
18299 if (dtrace_toxrange != NULL) {
18300 kmem_free(dtrace_toxrange,
18301 dtrace_toxranges_max * sizeof (dtrace_toxrange_t));
18302 dtrace_toxrange = NULL;
18303 dtrace_toxranges = 0;
18304 dtrace_toxranges_max = 0;
18305 }
18306
18307 ddi_remove_minor_node(dtrace_devi, NULL);
18308 dtrace_devi = NULL;
18309
18310 ddi_soft_state_fini(&dtrace_softstate);
18311
18312 ASSERT(dtrace_vtime_references == 0);
18313 ASSERT(dtrace_opens == 0);
18314 ASSERT(dtrace_retained == NULL);
18315
18316 mutex_exit(&dtrace_lock);
18317 mutex_exit(&dtrace_provider_lock);
18318
18319 /*
18320 * We don't destroy the task queue until after we have dropped our
18321 * locks (taskq_destroy() may block on running tasks). To prevent
18322 * attempting to do work after we have effectively detached but before
18323 * the task queue has been destroyed, all tasks dispatched via the
18324 * task queue must check that DTrace is still attached before
18325 * performing any operation.
18326 */
18327 taskq_destroy(dtrace_taskq);
18328 dtrace_taskq = NULL;
18329
18330 return (DDI_SUCCESS);
18331 }
18332 #endif
18333
18334 #ifdef illumos
18335 /*ARGSUSED*/
18336 static int
18337 dtrace_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
18338 {
18339 int error;
18340
18341 switch (infocmd) {
18342 case DDI_INFO_DEVT2DEVINFO:
18343 *result = (void *)dtrace_devi;
18344 error = DDI_SUCCESS;
18345 break;
18346 case DDI_INFO_DEVT2INSTANCE:
18347 *result = (void *)0;
18348 error = DDI_SUCCESS;
18349 break;
18350 default:
18351 error = DDI_FAILURE;
18352 }
18353 return (error);
18354 }
18355 #endif
18356
18357 #ifdef illumos
18358 static struct cb_ops dtrace_cb_ops = {
18359 dtrace_open, /* open */
18360 dtrace_close, /* close */
18361 nulldev, /* strategy */
18362 nulldev, /* print */
18363 nodev, /* dump */
18364 nodev, /* read */
18365 nodev, /* write */
18366 dtrace_ioctl, /* ioctl */
18367 nodev, /* devmap */
18368 nodev, /* mmap */
18369 nodev, /* segmap */
18370 nochpoll, /* poll */
18371 ddi_prop_op, /* cb_prop_op */
18372 0, /* streamtab */
18373 D_NEW | D_MP /* Driver compatibility flag */
18374 };
18375
18376 static struct dev_ops dtrace_ops = {
18377 DEVO_REV, /* devo_rev */
18378 0, /* refcnt */
18379 dtrace_info, /* get_dev_info */
18380 nulldev, /* identify */
18381 nulldev, /* probe */
18382 dtrace_attach, /* attach */
18383 dtrace_detach, /* detach */
18384 nodev, /* reset */
18385 &dtrace_cb_ops, /* driver operations */
18386 NULL, /* bus operations */
18387 nodev /* dev power */
18388 };
18389
18390 static struct modldrv modldrv = {
18391 &mod_driverops, /* module type (this is a pseudo driver) */
18392 "Dynamic Tracing", /* name of module */
18393 &dtrace_ops, /* driver ops */
18394 };
18395
18396 static struct modlinkage modlinkage = {
18397 MODREV_1,
18398 (void *)&modldrv,
18399 NULL
18400 };
18401
18402 int
18403 _init(void)
18404 {
18405 return (mod_install(&modlinkage));
18406 }
18407
18408 int
18409 _info(struct modinfo *modinfop)
18410 {
18411 return (mod_info(&modlinkage, modinfop));
18412 }
18413
18414 int
18415 _fini(void)
18416 {
18417 return (mod_remove(&modlinkage));
18418 }
18419 #else
18420
18421 static d_ioctl_t dtrace_ioctl;
18422 static d_ioctl_t dtrace_ioctl_helper;
18423 static void dtrace_load(void *);
18424 static int dtrace_unload(void);
18425 static struct cdev *dtrace_dev;
18426 static struct cdev *helper_dev;
18427
18428 void dtrace_invop_init(void);
18429 void dtrace_invop_uninit(void);
18430
18431 static struct cdevsw dtrace_cdevsw = {
18432 .d_version = D_VERSION,
18433 .d_ioctl = dtrace_ioctl,
18434 .d_open = dtrace_open,
18435 .d_name = "dtrace",
18436 };
18437
18438 static struct cdevsw helper_cdevsw = {
18439 .d_version = D_VERSION,
18440 .d_ioctl = dtrace_ioctl_helper,
18441 .d_name = "helper",
18442 };
18443
18444 #include <dtrace_anon.c>
18445 #include <dtrace_ioctl.c>
18446 #include <dtrace_load.c>
18447 #include <dtrace_modevent.c>
18448 #include <dtrace_sysctl.c>
18449 #include <dtrace_unload.c>
18450 #include <dtrace_vtime.c>
18451 #include <dtrace_hacks.c>
18452
18453 SYSINIT(dtrace_load, SI_SUB_DTRACE, SI_ORDER_FIRST, dtrace_load, NULL);
18454 SYSUNINIT(dtrace_unload, SI_SUB_DTRACE, SI_ORDER_FIRST, dtrace_unload, NULL);
18455 SYSINIT(dtrace_anon_init, SI_SUB_DTRACE_ANON, SI_ORDER_FIRST, dtrace_anon_init, NULL);
18456
18457 DEV_MODULE(dtrace, dtrace_modevent, NULL);
18458 MODULE_VERSION(dtrace, 1);
18459 MODULE_DEPEND(dtrace, opensolaris, 1, 1, 1);
18460 #endif
18461