xref: /freebsd/sys/cddl/contrib/opensolaris/uts/common/dtrace/dtrace.c (revision bf115203bb8a61bd03ba23931ff0b5bf931b7d1b)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2016, Joyent, Inc. All rights reserved.
25  * Copyright (c) 2012, 2014 by Delphix. All rights reserved.
26  */
27 
28 /*
29  * DTrace - Dynamic Tracing for Solaris
30  *
31  * This is the implementation of the Solaris Dynamic Tracing framework
32  * (DTrace).  The user-visible interface to DTrace is described at length in
33  * the "Solaris Dynamic Tracing Guide".  The interfaces between the libdtrace
34  * library, the in-kernel DTrace framework, and the DTrace providers are
35  * described in the block comments in the <sys/dtrace.h> header file.  The
36  * internal architecture of DTrace is described in the block comments in the
37  * <sys/dtrace_impl.h> header file.  The comments contained within the DTrace
38  * implementation very much assume mastery of all of these sources; if one has
39  * an unanswered question about the implementation, one should consult them
40  * first.
41  *
42  * The functions here are ordered roughly as follows:
43  *
44  *   - Probe context functions
45  *   - Probe hashing functions
46  *   - Non-probe context utility functions
47  *   - Matching functions
48  *   - Provider-to-Framework API functions
49  *   - Probe management functions
50  *   - DIF object functions
51  *   - Format functions
52  *   - Predicate functions
53  *   - ECB functions
54  *   - Buffer functions
55  *   - Enabling functions
56  *   - DOF functions
57  *   - Anonymous enabling functions
58  *   - Consumer state functions
59  *   - Helper functions
60  *   - Hook functions
61  *   - Driver cookbook functions
62  *
63  * Each group of functions begins with a block comment labelled the "DTrace
64  * [Group] Functions", allowing one to find each block by searching forward
65  * on capital-f functions.
66  */
67 #include <sys/errno.h>
68 #include <sys/param.h>
69 #include <sys/types.h>
70 #ifndef illumos
71 #include <sys/time.h>
72 #endif
73 #include <sys/stat.h>
74 #include <sys/conf.h>
75 #include <sys/systm.h>
76 #include <sys/endian.h>
77 #ifdef illumos
78 #include <sys/ddi.h>
79 #include <sys/sunddi.h>
80 #endif
81 #include <sys/cpuvar.h>
82 #include <sys/kmem.h>
83 #ifdef illumos
84 #include <sys/strsubr.h>
85 #endif
86 #include <sys/sysmacros.h>
87 #include <sys/dtrace_impl.h>
88 #include <sys/atomic.h>
89 #include <sys/cmn_err.h>
90 #ifdef illumos
91 #include <sys/mutex_impl.h>
92 #include <sys/rwlock_impl.h>
93 #endif
94 #include <sys/ctf_api.h>
95 #ifdef illumos
96 #include <sys/panic.h>
97 #include <sys/priv_impl.h>
98 #endif
99 #ifdef illumos
100 #include <sys/cred_impl.h>
101 #include <sys/procfs_isa.h>
102 #endif
103 #include <sys/taskq.h>
104 #ifdef illumos
105 #include <sys/mkdev.h>
106 #include <sys/kdi.h>
107 #endif
108 #include <sys/zone.h>
109 #include <sys/socket.h>
110 #include <netinet/in.h>
111 #include "strtolctype.h"
112 
113 /* FreeBSD includes: */
114 #ifndef illumos
115 #include <sys/callout.h>
116 #include <sys/ctype.h>
117 #include <sys/eventhandler.h>
118 #include <sys/limits.h>
119 #include <sys/linker.h>
120 #include <sys/kdb.h>
121 #include <sys/jail.h>
122 #include <sys/kernel.h>
123 #include <sys/malloc.h>
124 #include <sys/lock.h>
125 #include <sys/mutex.h>
126 #include <sys/ptrace.h>
127 #include <sys/random.h>
128 #include <sys/rwlock.h>
129 #include <sys/sx.h>
130 #include <sys/sysctl.h>
131 
132 
133 #include <sys/mount.h>
134 #undef AT_UID
135 #undef AT_GID
136 #include <sys/vnode.h>
137 #include <sys/cred.h>
138 
139 #include <sys/dtrace_bsd.h>
140 
141 #include <netinet/in.h>
142 
143 #include "dtrace_cddl.h"
144 #include "dtrace_debug.c"
145 #endif
146 
147 #include "dtrace_xoroshiro128_plus.h"
148 
149 /*
150  * DTrace Tunable Variables
151  *
152  * The following variables may be tuned by adding a line to /etc/system that
153  * includes both the name of the DTrace module ("dtrace") and the name of the
154  * variable.  For example:
155  *
156  *   set dtrace:dtrace_destructive_disallow = 1
157  *
158  * In general, the only variables that one should be tuning this way are those
159  * that affect system-wide DTrace behavior, and for which the default behavior
160  * is undesirable.  Most of these variables are tunable on a per-consumer
161  * basis using DTrace options, and need not be tuned on a system-wide basis.
162  * When tuning these variables, avoid pathological values; while some attempt
163  * is made to verify the integrity of these variables, they are not considered
164  * part of the supported interface to DTrace, and they are therefore not
165  * checked comprehensively.  Further, these variables should not be tuned
166  * dynamically via "mdb -kw" or other means; they should only be tuned via
167  * /etc/system.
168  */
169 int		dtrace_destructive_disallow = 0;
170 #ifndef illumos
171 /* Positive logic version of dtrace_destructive_disallow for loader tunable */
172 int		dtrace_allow_destructive = 1;
173 #endif
174 dtrace_optval_t	dtrace_nonroot_maxsize = (16 * 1024 * 1024);
175 size_t		dtrace_difo_maxsize = (256 * 1024);
176 dtrace_optval_t	dtrace_dof_maxsize = (8 * 1024 * 1024);
177 size_t		dtrace_statvar_maxsize = (16 * 1024);
178 size_t		dtrace_actions_max = (16 * 1024);
179 size_t		dtrace_retain_max = 1024;
180 dtrace_optval_t	dtrace_helper_actions_max = 128;
181 dtrace_optval_t	dtrace_helper_providers_max = 32;
182 dtrace_optval_t	dtrace_dstate_defsize = (1 * 1024 * 1024);
183 size_t		dtrace_strsize_default = 256;
184 dtrace_optval_t	dtrace_cleanrate_default = 9900990;		/* 101 hz */
185 dtrace_optval_t	dtrace_cleanrate_min = 200000;			/* 5000 hz */
186 dtrace_optval_t	dtrace_cleanrate_max = (uint64_t)60 * NANOSEC;	/* 1/minute */
187 dtrace_optval_t	dtrace_aggrate_default = NANOSEC;		/* 1 hz */
188 dtrace_optval_t	dtrace_statusrate_default = NANOSEC;		/* 1 hz */
189 dtrace_optval_t dtrace_statusrate_max = (hrtime_t)10 * NANOSEC;	 /* 6/minute */
190 dtrace_optval_t	dtrace_switchrate_default = NANOSEC;		/* 1 hz */
191 dtrace_optval_t	dtrace_nspec_default = 1;
192 dtrace_optval_t	dtrace_specsize_default = 32 * 1024;
193 dtrace_optval_t dtrace_stackframes_default = 20;
194 dtrace_optval_t dtrace_ustackframes_default = 20;
195 dtrace_optval_t dtrace_jstackframes_default = 50;
196 dtrace_optval_t dtrace_jstackstrsize_default = 512;
197 int		dtrace_msgdsize_max = 128;
198 hrtime_t	dtrace_chill_max = MSEC2NSEC(500);		/* 500 ms */
199 hrtime_t	dtrace_chill_interval = NANOSEC;		/* 1000 ms */
200 int		dtrace_devdepth_max = 32;
201 int		dtrace_err_verbose;
202 hrtime_t	dtrace_deadman_interval = NANOSEC;
203 hrtime_t	dtrace_deadman_timeout = (hrtime_t)10 * NANOSEC;
204 hrtime_t	dtrace_deadman_user = (hrtime_t)30 * NANOSEC;
205 hrtime_t	dtrace_unregister_defunct_reap = (hrtime_t)60 * NANOSEC;
206 #ifndef illumos
207 int		dtrace_memstr_max = 4096;
208 int		dtrace_bufsize_max_frac = 128;
209 #endif
210 
211 /*
212  * DTrace External Variables
213  *
214  * As dtrace(7D) is a kernel module, any DTrace variables are obviously
215  * available to DTrace consumers via the backtick (`) syntax.  One of these,
216  * dtrace_zero, is made deliberately so:  it is provided as a source of
217  * well-known, zero-filled memory.  While this variable is not documented,
218  * it is used by some translators as an implementation detail.
219  */
220 const char	dtrace_zero[256] = { 0 };	/* zero-filled memory */
221 
222 /*
223  * DTrace Internal Variables
224  */
225 #ifdef illumos
226 static dev_info_t	*dtrace_devi;		/* device info */
227 #endif
228 #ifdef illumos
229 static vmem_t		*dtrace_arena;		/* probe ID arena */
230 static vmem_t		*dtrace_minor;		/* minor number arena */
231 #else
232 static taskq_t		*dtrace_taskq;		/* task queue */
233 static struct unrhdr	*dtrace_arena;		/* Probe ID number.     */
234 #endif
235 static dtrace_probe_t	**dtrace_probes;	/* array of all probes */
236 static int		dtrace_nprobes;		/* number of probes */
237 static dtrace_provider_t *dtrace_provider;	/* provider list */
238 static dtrace_meta_t	*dtrace_meta_pid;	/* user-land meta provider */
239 static int		dtrace_opens;		/* number of opens */
240 static int		dtrace_helpers;		/* number of helpers */
241 static int		dtrace_getf;		/* number of unpriv getf()s */
242 #ifdef illumos
243 static void		*dtrace_softstate;	/* softstate pointer */
244 #endif
245 static dtrace_hash_t	*dtrace_bymod;		/* probes hashed by module */
246 static dtrace_hash_t	*dtrace_byfunc;		/* probes hashed by function */
247 static dtrace_hash_t	*dtrace_byname;		/* probes hashed by name */
248 static dtrace_toxrange_t *dtrace_toxrange;	/* toxic range array */
249 static int		dtrace_toxranges;	/* number of toxic ranges */
250 static int		dtrace_toxranges_max;	/* size of toxic range array */
251 static dtrace_anon_t	dtrace_anon;		/* anonymous enabling */
252 static kmem_cache_t	*dtrace_state_cache;	/* cache for dynamic state */
253 static uint64_t		dtrace_vtime_references; /* number of vtimestamp refs */
254 static kthread_t	*dtrace_panicked;	/* panicking thread */
255 static dtrace_ecb_t	*dtrace_ecb_create_cache; /* cached created ECB */
256 static dtrace_genid_t	dtrace_probegen;	/* current probe generation */
257 static dtrace_helpers_t *dtrace_deferred_pid;	/* deferred helper list */
258 static dtrace_enabling_t *dtrace_retained;	/* list of retained enablings */
259 static dtrace_genid_t	dtrace_retained_gen;	/* current retained enab gen */
260 static dtrace_dynvar_t	dtrace_dynhash_sink;	/* end of dynamic hash chains */
261 static int		dtrace_dynvar_failclean; /* dynvars failed to clean */
262 #ifndef illumos
263 static struct mtx	dtrace_unr_mtx;
264 MTX_SYSINIT(dtrace_unr_mtx, &dtrace_unr_mtx, "Unique resource identifier", MTX_DEF);
265 static eventhandler_tag	dtrace_kld_load_tag;
266 static eventhandler_tag	dtrace_kld_unload_try_tag;
267 #endif
268 
269 /*
270  * DTrace Locking
271  * DTrace is protected by three (relatively coarse-grained) locks:
272  *
273  * (1) dtrace_lock is required to manipulate essentially any DTrace state,
274  *     including enabling state, probes, ECBs, consumer state, helper state,
275  *     etc.  Importantly, dtrace_lock is _not_ required when in probe context;
276  *     probe context is lock-free -- synchronization is handled via the
277  *     dtrace_sync() cross call mechanism.
278  *
279  * (2) dtrace_provider_lock is required when manipulating provider state, or
280  *     when provider state must be held constant.
281  *
282  * (3) dtrace_meta_lock is required when manipulating meta provider state, or
283  *     when meta provider state must be held constant.
284  *
285  * The lock ordering between these three locks is dtrace_meta_lock before
286  * dtrace_provider_lock before dtrace_lock.  (In particular, there are
287  * several places where dtrace_provider_lock is held by the framework as it
288  * calls into the providers -- which then call back into the framework,
289  * grabbing dtrace_lock.)
290  *
291  * There are two other locks in the mix:  mod_lock and cpu_lock.  With respect
292  * to dtrace_provider_lock and dtrace_lock, cpu_lock continues its historical
293  * role as a coarse-grained lock; it is acquired before both of these locks.
294  * With respect to dtrace_meta_lock, its behavior is stranger:  cpu_lock must
295  * be acquired _between_ dtrace_meta_lock and any other DTrace locks.
296  * mod_lock is similar with respect to dtrace_provider_lock in that it must be
297  * acquired _between_ dtrace_provider_lock and dtrace_lock.
298  */
299 static kmutex_t		dtrace_lock;		/* probe state lock */
300 static kmutex_t		dtrace_provider_lock;	/* provider state lock */
301 static kmutex_t		dtrace_meta_lock;	/* meta-provider state lock */
302 
303 #ifndef illumos
304 /* XXX FreeBSD hacks. */
305 #define cr_suid		cr_svuid
306 #define cr_sgid		cr_svgid
307 #define	ipaddr_t	in_addr_t
308 #define mod_modname	pathname
309 #define vuprintf	vprintf
310 #ifndef crgetzoneid
311 #define crgetzoneid(_a)        0
312 #endif
313 #define ttoproc(_a)	((_a)->td_proc)
314 #define SNOCD		0
315 #define CPU_ON_INTR(_a)	0
316 
317 #define PRIV_EFFECTIVE		(1 << 0)
318 #define PRIV_DTRACE_KERNEL	(1 << 1)
319 #define PRIV_DTRACE_PROC	(1 << 2)
320 #define PRIV_DTRACE_USER	(1 << 3)
321 #define PRIV_PROC_OWNER		(1 << 4)
322 #define PRIV_PROC_ZONE		(1 << 5)
323 #define PRIV_ALL		~0
324 
325 SYSCTL_DECL(_debug_dtrace);
326 SYSCTL_DECL(_kern_dtrace);
327 #endif
328 
329 #ifdef illumos
330 #define curcpu	CPU->cpu_id
331 #endif
332 
333 
334 /*
335  * DTrace Provider Variables
336  *
337  * These are the variables relating to DTrace as a provider (that is, the
338  * provider of the BEGIN, END, and ERROR probes).
339  */
340 static dtrace_pattr_t	dtrace_provider_attr = {
341 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
342 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
343 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
344 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
345 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
346 };
347 
348 static void
dtrace_nullop(void)349 dtrace_nullop(void)
350 {}
351 
352 static dtrace_pops_t dtrace_provider_ops = {
353 	.dtps_provide =	(void (*)(void *, dtrace_probedesc_t *))dtrace_nullop,
354 	.dtps_provide_module =	(void (*)(void *, modctl_t *))dtrace_nullop,
355 	.dtps_enable =	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
356 	.dtps_disable =	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
357 	.dtps_suspend =	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
358 	.dtps_resume =	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
359 	.dtps_getargdesc =	NULL,
360 	.dtps_getargval =	NULL,
361 	.dtps_usermode =	NULL,
362 	.dtps_destroy =	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
363 };
364 
365 static dtrace_id_t	dtrace_probeid_begin;	/* special BEGIN probe */
366 static dtrace_id_t	dtrace_probeid_end;	/* special END probe */
367 dtrace_id_t		dtrace_probeid_error;	/* special ERROR probe */
368 
369 /*
370  * DTrace Helper Tracing Variables
371  *
372  * These variables should be set dynamically to enable helper tracing.  The
373  * only variables that should be set are dtrace_helptrace_enable (which should
374  * be set to a non-zero value to allocate helper tracing buffers on the next
375  * open of /dev/dtrace) and dtrace_helptrace_disable (which should be set to a
376  * non-zero value to deallocate helper tracing buffers on the next close of
377  * /dev/dtrace).  When (and only when) helper tracing is disabled, the
378  * buffer size may also be set via dtrace_helptrace_bufsize.
379  */
380 int			dtrace_helptrace_enable = 0;
381 int			dtrace_helptrace_disable = 0;
382 int			dtrace_helptrace_bufsize = 16 * 1024 * 1024;
383 uint32_t		dtrace_helptrace_nlocals;
384 static dtrace_helptrace_t *dtrace_helptrace_buffer;
385 static uint32_t		dtrace_helptrace_next = 0;
386 static int		dtrace_helptrace_wrapped = 0;
387 
388 /*
389  * DTrace Error Hashing
390  *
391  * On DEBUG kernels, DTrace will track the errors that has seen in a hash
392  * table.  This is very useful for checking coverage of tests that are
393  * expected to induce DIF or DOF processing errors, and may be useful for
394  * debugging problems in the DIF code generator or in DOF generation .  The
395  * error hash may be examined with the ::dtrace_errhash MDB dcmd.
396  */
397 #ifdef DEBUG
398 static dtrace_errhash_t	dtrace_errhash[DTRACE_ERRHASHSZ];
399 static const char *dtrace_errlast;
400 static kthread_t *dtrace_errthread;
401 static kmutex_t dtrace_errlock;
402 #endif
403 
404 /*
405  * DTrace Macros and Constants
406  *
407  * These are various macros that are useful in various spots in the
408  * implementation, along with a few random constants that have no meaning
409  * outside of the implementation.  There is no real structure to this cpp
410  * mishmash -- but is there ever?
411  */
412 #define	DTRACE_HASHSTR(hash, probe)	\
413 	dtrace_hash_str(*((char **)((uintptr_t)(probe) + (hash)->dth_stroffs)))
414 
415 #define	DTRACE_HASHNEXT(hash, probe)	\
416 	(dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_nextoffs)
417 
418 #define	DTRACE_HASHPREV(hash, probe)	\
419 	(dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_prevoffs)
420 
421 #define	DTRACE_HASHEQ(hash, lhs, rhs)	\
422 	(strcmp(*((char **)((uintptr_t)(lhs) + (hash)->dth_stroffs)), \
423 	    *((char **)((uintptr_t)(rhs) + (hash)->dth_stroffs))) == 0)
424 
425 #define	DTRACE_AGGHASHSIZE_SLEW		17
426 
427 #define	DTRACE_V4MAPPED_OFFSET		(sizeof (uint32_t) * 3)
428 
429 /*
430  * The key for a thread-local variable consists of the lower 61 bits of the
431  * t_did, plus the 3 bits of the highest active interrupt above LOCK_LEVEL.
432  * We add DIF_VARIABLE_MAX to t_did to assure that the thread key is never
433  * equal to a variable identifier.  This is necessary (but not sufficient) to
434  * assure that global associative arrays never collide with thread-local
435  * variables.  To guarantee that they cannot collide, we must also define the
436  * order for keying dynamic variables.  That order is:
437  *
438  *   [ key0 ] ... [ keyn ] [ variable-key ] [ tls-key ]
439  *
440  * Because the variable-key and the tls-key are in orthogonal spaces, there is
441  * no way for a global variable key signature to match a thread-local key
442  * signature.
443  */
444 #ifdef illumos
445 #define	DTRACE_TLS_THRKEY(where) { \
446 	uint_t intr = 0; \
447 	uint_t actv = CPU->cpu_intr_actv >> (LOCK_LEVEL + 1); \
448 	for (; actv; actv >>= 1) \
449 		intr++; \
450 	ASSERT(intr < (1 << 3)); \
451 	(where) = ((curthread->t_did + DIF_VARIABLE_MAX) & \
452 	    (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
453 }
454 #else
455 #define	DTRACE_TLS_THRKEY(where) { \
456 	solaris_cpu_t *_c = &solaris_cpu[curcpu]; \
457 	uint_t intr = 0; \
458 	uint_t actv = _c->cpu_intr_actv; \
459 	for (; actv; actv >>= 1) \
460 		intr++; \
461 	ASSERT(intr < (1 << 3)); \
462 	(where) = ((curthread->td_tid + DIF_VARIABLE_MAX) & \
463 	    (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
464 }
465 #endif
466 
467 #define	DT_BSWAP_8(x)	((x) & 0xff)
468 #define	DT_BSWAP_16(x)	((DT_BSWAP_8(x) << 8) | DT_BSWAP_8((x) >> 8))
469 #define	DT_BSWAP_32(x)	((DT_BSWAP_16(x) << 16) | DT_BSWAP_16((x) >> 16))
470 #define	DT_BSWAP_64(x)	((DT_BSWAP_32(x) << 32) | DT_BSWAP_32((x) >> 32))
471 
472 #define	DT_MASK_LO 0x00000000FFFFFFFFULL
473 
474 #define	DTRACE_STORE(type, tomax, offset, what) \
475 	*((type *)((uintptr_t)(tomax) + (size_t)offset)) = (type)(what);
476 
477 #if !defined(__x86) && !defined(__aarch64__)
478 #define	DTRACE_ALIGNCHECK(addr, size, flags)				\
479 	if (addr & (size - 1)) {					\
480 		*flags |= CPU_DTRACE_BADALIGN;				\
481 		cpu_core[curcpu].cpuc_dtrace_illval = addr;	\
482 		return (0);						\
483 	}
484 #else
485 #define	DTRACE_ALIGNCHECK(addr, size, flags)
486 #endif
487 
488 /*
489  * Test whether a range of memory starting at testaddr of size testsz falls
490  * within the range of memory described by addr, sz.  We take care to avoid
491  * problems with overflow and underflow of the unsigned quantities, and
492  * disallow all negative sizes.  Ranges of size 0 are allowed.
493  */
494 #define	DTRACE_INRANGE(testaddr, testsz, baseaddr, basesz) \
495 	((testaddr) - (uintptr_t)(baseaddr) < (basesz) && \
496 	(testaddr) + (testsz) - (uintptr_t)(baseaddr) <= (basesz) && \
497 	(testaddr) + (testsz) >= (testaddr))
498 
499 #define	DTRACE_RANGE_REMAIN(remp, addr, baseaddr, basesz)		\
500 do {									\
501 	if ((remp) != NULL) {						\
502 		*(remp) = (uintptr_t)(baseaddr) + (basesz) - (addr);	\
503 	}								\
504 } while (0)
505 
506 
507 /*
508  * Test whether alloc_sz bytes will fit in the scratch region.  We isolate
509  * alloc_sz on the righthand side of the comparison in order to avoid overflow
510  * or underflow in the comparison with it.  This is simpler than the INRANGE
511  * check above, because we know that the dtms_scratch_ptr is valid in the
512  * range.  Allocations of size zero are allowed.
513  */
514 #define	DTRACE_INSCRATCH(mstate, alloc_sz) \
515 	((mstate)->dtms_scratch_base + (mstate)->dtms_scratch_size - \
516 	(mstate)->dtms_scratch_ptr >= (alloc_sz))
517 
518 #define DTRACE_INSCRATCHPTR(mstate, ptr, howmany) \
519 	((ptr) >= (mstate)->dtms_scratch_base && \
520 	(ptr) <= \
521 	((mstate)->dtms_scratch_base + (mstate)->dtms_scratch_size - (howmany)))
522 
523 #define	DTRACE_LOADFUNC(bits)						\
524 /*CSTYLED*/								\
525 uint##bits##_t								\
526 dtrace_load##bits(uintptr_t addr)					\
527 {									\
528 	size_t size = bits / NBBY;					\
529 	/*CSTYLED*/							\
530 	uint##bits##_t rval;						\
531 	int i;								\
532 	volatile uint16_t *flags = (volatile uint16_t *)		\
533 	    &cpu_core[curcpu].cpuc_dtrace_flags;			\
534 									\
535 	DTRACE_ALIGNCHECK(addr, size, flags);				\
536 									\
537 	for (i = 0; i < dtrace_toxranges; i++) {			\
538 		if (addr >= dtrace_toxrange[i].dtt_limit)		\
539 			continue;					\
540 									\
541 		if (addr + size <= dtrace_toxrange[i].dtt_base)		\
542 			continue;					\
543 									\
544 		/*							\
545 		 * This address falls within a toxic region; return 0.	\
546 		 */							\
547 		*flags |= CPU_DTRACE_BADADDR;				\
548 		cpu_core[curcpu].cpuc_dtrace_illval = addr;		\
549 		return (0);						\
550 	}								\
551 									\
552 	__compiler_membar();						\
553 	*flags |= CPU_DTRACE_NOFAULT;					\
554 	/*CSTYLED*/							\
555 	rval = *((volatile uint##bits##_t *)addr);			\
556 	*flags &= ~CPU_DTRACE_NOFAULT;					\
557 	__compiler_membar();						\
558 									\
559 	return (!(*flags & CPU_DTRACE_FAULT) ? rval : 0);		\
560 }
561 
562 #ifdef _LP64
563 #define	dtrace_loadptr	dtrace_load64
564 #else
565 #define	dtrace_loadptr	dtrace_load32
566 #endif
567 
568 #define	DTRACE_DYNHASH_FREE	0
569 #define	DTRACE_DYNHASH_SINK	1
570 #define	DTRACE_DYNHASH_VALID	2
571 
572 #define	DTRACE_MATCH_NEXT	0
573 #define	DTRACE_MATCH_DONE	1
574 #define	DTRACE_ANCHORED(probe)	((probe)->dtpr_func[0] != '\0')
575 #define	DTRACE_STATE_ALIGN	64
576 
577 #define	DTRACE_FLAGS2FLT(flags)						\
578 	(((flags) & CPU_DTRACE_BADADDR) ? DTRACEFLT_BADADDR :		\
579 	((flags) & CPU_DTRACE_ILLOP) ? DTRACEFLT_ILLOP :		\
580 	((flags) & CPU_DTRACE_DIVZERO) ? DTRACEFLT_DIVZERO :		\
581 	((flags) & CPU_DTRACE_KPRIV) ? DTRACEFLT_KPRIV :		\
582 	((flags) & CPU_DTRACE_UPRIV) ? DTRACEFLT_UPRIV :		\
583 	((flags) & CPU_DTRACE_TUPOFLOW) ?  DTRACEFLT_TUPOFLOW :		\
584 	((flags) & CPU_DTRACE_BADALIGN) ?  DTRACEFLT_BADALIGN :		\
585 	((flags) & CPU_DTRACE_NOSCRATCH) ?  DTRACEFLT_NOSCRATCH :	\
586 	((flags) & CPU_DTRACE_BADSTACK) ?  DTRACEFLT_BADSTACK :		\
587 	DTRACEFLT_UNKNOWN)
588 
589 #define	DTRACEACT_ISSTRING(act)						\
590 	((act)->dta_kind == DTRACEACT_DIFEXPR &&			\
591 	(act)->dta_difo->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING)
592 
593 /* Function prototype definitions: */
594 static size_t dtrace_strlen(const char *, size_t);
595 static dtrace_probe_t *dtrace_probe_lookup_id(dtrace_id_t id);
596 static void dtrace_enabling_provide(dtrace_provider_t *);
597 static int dtrace_enabling_match(dtrace_enabling_t *, int *);
598 static void dtrace_enabling_matchall(void);
599 static void dtrace_enabling_matchall_task(void *);
600 static void dtrace_enabling_reap(void *);
601 static dtrace_state_t *dtrace_anon_grab(void);
602 static uint64_t dtrace_helper(int, dtrace_mstate_t *,
603     dtrace_state_t *, uint64_t, uint64_t);
604 static dtrace_helpers_t *dtrace_helpers_create(proc_t *);
605 static void dtrace_buffer_drop(dtrace_buffer_t *);
606 static int dtrace_buffer_consumed(dtrace_buffer_t *, hrtime_t when);
607 static ssize_t dtrace_buffer_reserve(dtrace_buffer_t *, size_t, size_t,
608     dtrace_state_t *, dtrace_mstate_t *);
609 static int dtrace_state_option(dtrace_state_t *, dtrace_optid_t,
610     dtrace_optval_t);
611 static int dtrace_ecb_create_enable(dtrace_probe_t *, void *);
612 static void dtrace_helper_provider_destroy(dtrace_helper_provider_t *);
613 uint16_t dtrace_load16(uintptr_t);
614 uint32_t dtrace_load32(uintptr_t);
615 uint64_t dtrace_load64(uintptr_t);
616 uint8_t dtrace_load8(uintptr_t);
617 void dtrace_dynvar_clean(dtrace_dstate_t *);
618 dtrace_dynvar_t *dtrace_dynvar(dtrace_dstate_t *, uint_t, dtrace_key_t *,
619     size_t, dtrace_dynvar_op_t, dtrace_mstate_t *, dtrace_vstate_t *);
620 uintptr_t dtrace_dif_varstr(uintptr_t, dtrace_state_t *, dtrace_mstate_t *);
621 static int dtrace_priv_proc(dtrace_state_t *);
622 static void dtrace_getf_barrier(void);
623 static int dtrace_canload_remains(uint64_t, size_t, size_t *,
624     dtrace_mstate_t *, dtrace_vstate_t *);
625 static int dtrace_canstore_remains(uint64_t, size_t, size_t *,
626     dtrace_mstate_t *, dtrace_vstate_t *);
627 
628 /*
629  * DTrace Probe Context Functions
630  *
631  * These functions are called from probe context.  Because probe context is
632  * any context in which C may be called, arbitrarily locks may be held,
633  * interrupts may be disabled, we may be in arbitrary dispatched state, etc.
634  * As a result, functions called from probe context may only call other DTrace
635  * support functions -- they may not interact at all with the system at large.
636  * (Note that the ASSERT macro is made probe-context safe by redefining it in
637  * terms of dtrace_assfail(), a probe-context safe function.) If arbitrary
638  * loads are to be performed from probe context, they _must_ be in terms of
639  * the safe dtrace_load*() variants.
640  *
641  * Some functions in this block are not actually called from probe context;
642  * for these functions, there will be a comment above the function reading
643  * "Note:  not called from probe context."
644  */
645 void
dtrace_panic(const char * format,...)646 dtrace_panic(const char *format, ...)
647 {
648 	va_list alist;
649 
650 	va_start(alist, format);
651 #ifdef __FreeBSD__
652 	vpanic(format, alist);
653 #else
654 	dtrace_vpanic(format, alist);
655 #endif
656 	va_end(alist);
657 }
658 
659 int
dtrace_assfail(const char * a,const char * f,int l)660 dtrace_assfail(const char *a, const char *f, int l)
661 {
662 	dtrace_panic("assertion failed: %s, file: %s, line: %d", a, f, l);
663 
664 	/*
665 	 * We just need something here that even the most clever compiler
666 	 * cannot optimize away.
667 	 */
668 	return (a[(uintptr_t)f]);
669 }
670 
671 /*
672  * Atomically increment a specified error counter from probe context.
673  */
674 static void
dtrace_error(uint32_t * counter)675 dtrace_error(uint32_t *counter)
676 {
677 	/*
678 	 * Most counters stored to in probe context are per-CPU counters.
679 	 * However, there are some error conditions that are sufficiently
680 	 * arcane that they don't merit per-CPU storage.  If these counters
681 	 * are incremented concurrently on different CPUs, scalability will be
682 	 * adversely affected -- but we don't expect them to be white-hot in a
683 	 * correctly constructed enabling...
684 	 */
685 	uint32_t oval, nval;
686 
687 	do {
688 		oval = *counter;
689 
690 		if ((nval = oval + 1) == 0) {
691 			/*
692 			 * If the counter would wrap, set it to 1 -- assuring
693 			 * that the counter is never zero when we have seen
694 			 * errors.  (The counter must be 32-bits because we
695 			 * aren't guaranteed a 64-bit compare&swap operation.)
696 			 * To save this code both the infamy of being fingered
697 			 * by a priggish news story and the indignity of being
698 			 * the target of a neo-puritan witch trial, we're
699 			 * carefully avoiding any colorful description of the
700 			 * likelihood of this condition -- but suffice it to
701 			 * say that it is only slightly more likely than the
702 			 * overflow of predicate cache IDs, as discussed in
703 			 * dtrace_predicate_create().
704 			 */
705 			nval = 1;
706 		}
707 	} while (dtrace_cas32(counter, oval, nval) != oval);
708 }
709 
710 void
dtrace_xcall(processorid_t cpu,dtrace_xcall_t func,void * arg)711 dtrace_xcall(processorid_t cpu, dtrace_xcall_t func, void *arg)
712 {
713 	cpuset_t cpus;
714 
715 	if (cpu == DTRACE_CPUALL)
716 		cpus = all_cpus;
717 	else
718 		CPU_SETOF(cpu, &cpus);
719 
720 	smp_rendezvous_cpus(cpus, smp_no_rendezvous_barrier, func,
721 	    smp_no_rendezvous_barrier, arg);
722 }
723 
724 static void
dtrace_sync_func(void)725 dtrace_sync_func(void)
726 {
727 }
728 
729 void
dtrace_sync(void)730 dtrace_sync(void)
731 {
732 	dtrace_xcall(DTRACE_CPUALL, (dtrace_xcall_t)dtrace_sync_func, NULL);
733 }
734 
735 /*
736  * Use the DTRACE_LOADFUNC macro to define functions for each of loading a
737  * uint8_t, a uint16_t, a uint32_t and a uint64_t.
738  */
739 /* BEGIN CSTYLED */
740 DTRACE_LOADFUNC(8)
741 DTRACE_LOADFUNC(16)
742 DTRACE_LOADFUNC(32)
743 DTRACE_LOADFUNC(64)
744 /* END CSTYLED */
745 
746 static int
dtrace_inscratch(uintptr_t dest,size_t size,dtrace_mstate_t * mstate)747 dtrace_inscratch(uintptr_t dest, size_t size, dtrace_mstate_t *mstate)
748 {
749 	if (dest < mstate->dtms_scratch_base)
750 		return (0);
751 
752 	if (dest + size < dest)
753 		return (0);
754 
755 	if (dest + size > mstate->dtms_scratch_ptr)
756 		return (0);
757 
758 	return (1);
759 }
760 
761 static int
dtrace_canstore_statvar(uint64_t addr,size_t sz,size_t * remain,dtrace_statvar_t ** svars,int nsvars)762 dtrace_canstore_statvar(uint64_t addr, size_t sz, size_t *remain,
763     dtrace_statvar_t **svars, int nsvars)
764 {
765 	int i;
766 	size_t maxglobalsize, maxlocalsize;
767 
768 	if (nsvars == 0)
769 		return (0);
770 
771 	maxglobalsize = dtrace_statvar_maxsize + sizeof (uint64_t);
772 	maxlocalsize = maxglobalsize * (mp_maxid + 1);
773 
774 	for (i = 0; i < nsvars; i++) {
775 		dtrace_statvar_t *svar = svars[i];
776 		uint8_t scope;
777 		size_t size;
778 
779 		if (svar == NULL || (size = svar->dtsv_size) == 0)
780 			continue;
781 
782 		scope = svar->dtsv_var.dtdv_scope;
783 
784 		/*
785 		 * We verify that our size is valid in the spirit of providing
786 		 * defense in depth:  we want to prevent attackers from using
787 		 * DTrace to escalate an orthogonal kernel heap corruption bug
788 		 * into the ability to store to arbitrary locations in memory.
789 		 */
790 		VERIFY((scope == DIFV_SCOPE_GLOBAL && size <= maxglobalsize) ||
791 		    (scope == DIFV_SCOPE_LOCAL && size <= maxlocalsize));
792 
793 		if (DTRACE_INRANGE(addr, sz, svar->dtsv_data,
794 		    svar->dtsv_size)) {
795 			DTRACE_RANGE_REMAIN(remain, addr, svar->dtsv_data,
796 			    svar->dtsv_size);
797 			return (1);
798 		}
799 	}
800 
801 	return (0);
802 }
803 
804 /*
805  * Check to see if the address is within a memory region to which a store may
806  * be issued.  This includes the DTrace scratch areas, and any DTrace variable
807  * region.  The caller of dtrace_canstore() is responsible for performing any
808  * alignment checks that are needed before stores are actually executed.
809  */
810 static int
dtrace_canstore(uint64_t addr,size_t sz,dtrace_mstate_t * mstate,dtrace_vstate_t * vstate)811 dtrace_canstore(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
812     dtrace_vstate_t *vstate)
813 {
814 	return (dtrace_canstore_remains(addr, sz, NULL, mstate, vstate));
815 }
816 
817 /*
818  * Implementation of dtrace_canstore which communicates the upper bound of the
819  * allowed memory region.
820  */
821 static int
dtrace_canstore_remains(uint64_t addr,size_t sz,size_t * remain,dtrace_mstate_t * mstate,dtrace_vstate_t * vstate)822 dtrace_canstore_remains(uint64_t addr, size_t sz, size_t *remain,
823     dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
824 {
825 	/*
826 	 * First, check to see if the address is in scratch space...
827 	 */
828 	if (DTRACE_INRANGE(addr, sz, mstate->dtms_scratch_base,
829 	    mstate->dtms_scratch_size)) {
830 		DTRACE_RANGE_REMAIN(remain, addr, mstate->dtms_scratch_base,
831 		    mstate->dtms_scratch_size);
832 		return (1);
833 	}
834 
835 	/*
836 	 * Now check to see if it's a dynamic variable.  This check will pick
837 	 * up both thread-local variables and any global dynamically-allocated
838 	 * variables.
839 	 */
840 	if (DTRACE_INRANGE(addr, sz, vstate->dtvs_dynvars.dtds_base,
841 	    vstate->dtvs_dynvars.dtds_size)) {
842 		dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
843 		uintptr_t base = (uintptr_t)dstate->dtds_base +
844 		    (dstate->dtds_hashsize * sizeof (dtrace_dynhash_t));
845 		uintptr_t chunkoffs;
846 		dtrace_dynvar_t *dvar;
847 
848 		/*
849 		 * Before we assume that we can store here, we need to make
850 		 * sure that it isn't in our metadata -- storing to our
851 		 * dynamic variable metadata would corrupt our state.  For
852 		 * the range to not include any dynamic variable metadata,
853 		 * it must:
854 		 *
855 		 *	(1) Start above the hash table that is at the base of
856 		 *	the dynamic variable space
857 		 *
858 		 *	(2) Have a starting chunk offset that is beyond the
859 		 *	dtrace_dynvar_t that is at the base of every chunk
860 		 *
861 		 *	(3) Not span a chunk boundary
862 		 *
863 		 *	(4) Not be in the tuple space of a dynamic variable
864 		 *
865 		 */
866 		if (addr < base)
867 			return (0);
868 
869 		chunkoffs = (addr - base) % dstate->dtds_chunksize;
870 
871 		if (chunkoffs < sizeof (dtrace_dynvar_t))
872 			return (0);
873 
874 		if (chunkoffs + sz > dstate->dtds_chunksize)
875 			return (0);
876 
877 		dvar = (dtrace_dynvar_t *)((uintptr_t)addr - chunkoffs);
878 
879 		if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE)
880 			return (0);
881 
882 		if (chunkoffs < sizeof (dtrace_dynvar_t) +
883 		    ((dvar->dtdv_tuple.dtt_nkeys - 1) * sizeof (dtrace_key_t)))
884 			return (0);
885 
886 		DTRACE_RANGE_REMAIN(remain, addr, dvar, dstate->dtds_chunksize);
887 		return (1);
888 	}
889 
890 	/*
891 	 * Finally, check the static local and global variables.  These checks
892 	 * take the longest, so we perform them last.
893 	 */
894 	if (dtrace_canstore_statvar(addr, sz, remain,
895 	    vstate->dtvs_locals, vstate->dtvs_nlocals))
896 		return (1);
897 
898 	if (dtrace_canstore_statvar(addr, sz, remain,
899 	    vstate->dtvs_globals, vstate->dtvs_nglobals))
900 		return (1);
901 
902 	return (0);
903 }
904 
905 
906 /*
907  * Convenience routine to check to see if the address is within a memory
908  * region in which a load may be issued given the user's privilege level;
909  * if not, it sets the appropriate error flags and loads 'addr' into the
910  * illegal value slot.
911  *
912  * DTrace subroutines (DIF_SUBR_*) should use this helper to implement
913  * appropriate memory access protection.
914  */
915 static int
dtrace_canload(uint64_t addr,size_t sz,dtrace_mstate_t * mstate,dtrace_vstate_t * vstate)916 dtrace_canload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
917     dtrace_vstate_t *vstate)
918 {
919 	return (dtrace_canload_remains(addr, sz, NULL, mstate, vstate));
920 }
921 
922 /*
923  * Implementation of dtrace_canload which communicates the uppoer bound of the
924  * allowed memory region.
925  */
926 static int
dtrace_canload_remains(uint64_t addr,size_t sz,size_t * remain,dtrace_mstate_t * mstate,dtrace_vstate_t * vstate)927 dtrace_canload_remains(uint64_t addr, size_t sz, size_t *remain,
928     dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
929 {
930 	volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval;
931 	file_t *fp;
932 
933 	/*
934 	 * If we hold the privilege to read from kernel memory, then
935 	 * everything is readable.
936 	 */
937 	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) {
938 		DTRACE_RANGE_REMAIN(remain, addr, addr, sz);
939 		return (1);
940 	}
941 
942 	/*
943 	 * You can obviously read that which you can store.
944 	 */
945 	if (dtrace_canstore_remains(addr, sz, remain, mstate, vstate))
946 		return (1);
947 
948 	/*
949 	 * We're allowed to read from our own string table.
950 	 */
951 	if (DTRACE_INRANGE(addr, sz, mstate->dtms_difo->dtdo_strtab,
952 	    mstate->dtms_difo->dtdo_strlen)) {
953 		DTRACE_RANGE_REMAIN(remain, addr,
954 		    mstate->dtms_difo->dtdo_strtab,
955 		    mstate->dtms_difo->dtdo_strlen);
956 		return (1);
957 	}
958 
959 	if (vstate->dtvs_state != NULL &&
960 	    dtrace_priv_proc(vstate->dtvs_state)) {
961 		proc_t *p;
962 
963 		/*
964 		 * When we have privileges to the current process, there are
965 		 * several context-related kernel structures that are safe to
966 		 * read, even absent the privilege to read from kernel memory.
967 		 * These reads are safe because these structures contain only
968 		 * state that (1) we're permitted to read, (2) is harmless or
969 		 * (3) contains pointers to additional kernel state that we're
970 		 * not permitted to read (and as such, do not present an
971 		 * opportunity for privilege escalation).  Finally (and
972 		 * critically), because of the nature of their relation with
973 		 * the current thread context, the memory associated with these
974 		 * structures cannot change over the duration of probe context,
975 		 * and it is therefore impossible for this memory to be
976 		 * deallocated and reallocated as something else while it's
977 		 * being operated upon.
978 		 */
979 		if (DTRACE_INRANGE(addr, sz, curthread, sizeof (kthread_t))) {
980 			DTRACE_RANGE_REMAIN(remain, addr, curthread,
981 			    sizeof (kthread_t));
982 			return (1);
983 		}
984 
985 		if ((p = curthread->t_procp) != NULL && DTRACE_INRANGE(addr,
986 		    sz, curthread->t_procp, sizeof (proc_t))) {
987 			DTRACE_RANGE_REMAIN(remain, addr, curthread->t_procp,
988 			    sizeof (proc_t));
989 			return (1);
990 		}
991 
992 		if (curthread->t_cred != NULL && DTRACE_INRANGE(addr, sz,
993 		    curthread->t_cred, sizeof (cred_t))) {
994 			DTRACE_RANGE_REMAIN(remain, addr, curthread->t_cred,
995 			    sizeof (cred_t));
996 			return (1);
997 		}
998 
999 #ifdef illumos
1000 		if (p != NULL && p->p_pidp != NULL && DTRACE_INRANGE(addr, sz,
1001 		    &(p->p_pidp->pid_id), sizeof (pid_t))) {
1002 			DTRACE_RANGE_REMAIN(remain, addr, &(p->p_pidp->pid_id),
1003 			    sizeof (pid_t));
1004 			return (1);
1005 		}
1006 
1007 		if (curthread->t_cpu != NULL && DTRACE_INRANGE(addr, sz,
1008 		    curthread->t_cpu, offsetof(cpu_t, cpu_pause_thread))) {
1009 			DTRACE_RANGE_REMAIN(remain, addr, curthread->t_cpu,
1010 			    offsetof(cpu_t, cpu_pause_thread));
1011 			return (1);
1012 		}
1013 #endif
1014 	}
1015 
1016 	if ((fp = mstate->dtms_getf) != NULL) {
1017 		uintptr_t psz = sizeof (void *);
1018 		vnode_t *vp;
1019 		vnodeops_t *op;
1020 
1021 		/*
1022 		 * When getf() returns a file_t, the enabling is implicitly
1023 		 * granted the (transient) right to read the returned file_t
1024 		 * as well as the v_path and v_op->vnop_name of the underlying
1025 		 * vnode.  These accesses are allowed after a successful
1026 		 * getf() because the members that they refer to cannot change
1027 		 * once set -- and the barrier logic in the kernel's closef()
1028 		 * path assures that the file_t and its referenced vode_t
1029 		 * cannot themselves be stale (that is, it impossible for
1030 		 * either dtms_getf itself or its f_vnode member to reference
1031 		 * freed memory).
1032 		 */
1033 		if (DTRACE_INRANGE(addr, sz, fp, sizeof (file_t))) {
1034 			DTRACE_RANGE_REMAIN(remain, addr, fp, sizeof (file_t));
1035 			return (1);
1036 		}
1037 
1038 		if ((vp = fp->f_vnode) != NULL) {
1039 			size_t slen;
1040 #ifdef illumos
1041 			if (DTRACE_INRANGE(addr, sz, &vp->v_path, psz)) {
1042 				DTRACE_RANGE_REMAIN(remain, addr, &vp->v_path,
1043 				    psz);
1044 				return (1);
1045 			}
1046 			slen = strlen(vp->v_path) + 1;
1047 			if (DTRACE_INRANGE(addr, sz, vp->v_path, slen)) {
1048 				DTRACE_RANGE_REMAIN(remain, addr, vp->v_path,
1049 				    slen);
1050 				return (1);
1051 			}
1052 #endif
1053 
1054 			if (DTRACE_INRANGE(addr, sz, &vp->v_op, psz)) {
1055 				DTRACE_RANGE_REMAIN(remain, addr, &vp->v_op,
1056 				    psz);
1057 				return (1);
1058 			}
1059 
1060 #ifdef illumos
1061 			if ((op = vp->v_op) != NULL &&
1062 			    DTRACE_INRANGE(addr, sz, &op->vnop_name, psz)) {
1063 				DTRACE_RANGE_REMAIN(remain, addr,
1064 				    &op->vnop_name, psz);
1065 				return (1);
1066 			}
1067 
1068 			if (op != NULL && op->vnop_name != NULL &&
1069 			    DTRACE_INRANGE(addr, sz, op->vnop_name,
1070 			    (slen = strlen(op->vnop_name) + 1))) {
1071 				DTRACE_RANGE_REMAIN(remain, addr,
1072 				    op->vnop_name, slen);
1073 				return (1);
1074 			}
1075 #endif
1076 		}
1077 	}
1078 
1079 	DTRACE_CPUFLAG_SET(CPU_DTRACE_KPRIV);
1080 	*illval = addr;
1081 	return (0);
1082 }
1083 
1084 /*
1085  * Convenience routine to check to see if a given string is within a memory
1086  * region in which a load may be issued given the user's privilege level;
1087  * this exists so that we don't need to issue unnecessary dtrace_strlen()
1088  * calls in the event that the user has all privileges.
1089  */
1090 static int
dtrace_strcanload(uint64_t addr,size_t sz,size_t * remain,dtrace_mstate_t * mstate,dtrace_vstate_t * vstate)1091 dtrace_strcanload(uint64_t addr, size_t sz, size_t *remain,
1092     dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
1093 {
1094 	size_t rsize;
1095 
1096 	/*
1097 	 * If we hold the privilege to read from kernel memory, then
1098 	 * everything is readable.
1099 	 */
1100 	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) {
1101 		DTRACE_RANGE_REMAIN(remain, addr, addr, sz);
1102 		return (1);
1103 	}
1104 
1105 	/*
1106 	 * Even if the caller is uninterested in querying the remaining valid
1107 	 * range, it is required to ensure that the access is allowed.
1108 	 */
1109 	if (remain == NULL) {
1110 		remain = &rsize;
1111 	}
1112 	if (dtrace_canload_remains(addr, 0, remain, mstate, vstate)) {
1113 		size_t strsz;
1114 		/*
1115 		 * Perform the strlen after determining the length of the
1116 		 * memory region which is accessible.  This prevents timing
1117 		 * information from being used to find NULs in memory which is
1118 		 * not accessible to the caller.
1119 		 */
1120 		strsz = 1 + dtrace_strlen((char *)(uintptr_t)addr,
1121 		    MIN(sz, *remain));
1122 		if (strsz <= *remain) {
1123 			return (1);
1124 		}
1125 	}
1126 
1127 	return (0);
1128 }
1129 
1130 /*
1131  * Convenience routine to check to see if a given variable is within a memory
1132  * region in which a load may be issued given the user's privilege level.
1133  */
1134 static int
dtrace_vcanload(void * src,dtrace_diftype_t * type,size_t * remain,dtrace_mstate_t * mstate,dtrace_vstate_t * vstate)1135 dtrace_vcanload(void *src, dtrace_diftype_t *type, size_t *remain,
1136     dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
1137 {
1138 	size_t sz;
1139 	ASSERT(type->dtdt_flags & DIF_TF_BYREF);
1140 
1141 	/*
1142 	 * Calculate the max size before performing any checks since even
1143 	 * DTRACE_ACCESS_KERNEL-credentialed callers expect that this function
1144 	 * return the max length via 'remain'.
1145 	 */
1146 	if (type->dtdt_kind == DIF_TYPE_STRING) {
1147 		dtrace_state_t *state = vstate->dtvs_state;
1148 
1149 		if (state != NULL) {
1150 			sz = state->dts_options[DTRACEOPT_STRSIZE];
1151 		} else {
1152 			/*
1153 			 * In helper context, we have a NULL state; fall back
1154 			 * to using the system-wide default for the string size
1155 			 * in this case.
1156 			 */
1157 			sz = dtrace_strsize_default;
1158 		}
1159 	} else {
1160 		sz = type->dtdt_size;
1161 	}
1162 
1163 	/*
1164 	 * If we hold the privilege to read from kernel memory, then
1165 	 * everything is readable.
1166 	 */
1167 	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) {
1168 		DTRACE_RANGE_REMAIN(remain, (uintptr_t)src, src, sz);
1169 		return (1);
1170 	}
1171 
1172 	if (type->dtdt_kind == DIF_TYPE_STRING) {
1173 		return (dtrace_strcanload((uintptr_t)src, sz, remain, mstate,
1174 		    vstate));
1175 	}
1176 	return (dtrace_canload_remains((uintptr_t)src, sz, remain, mstate,
1177 	    vstate));
1178 }
1179 
1180 /*
1181  * Convert a string to a signed integer using safe loads.
1182  *
1183  * NOTE: This function uses various macros from strtolctype.h to manipulate
1184  * digit values, etc -- these have all been checked to ensure they make
1185  * no additional function calls.
1186  */
1187 static int64_t
dtrace_strtoll(char * input,int base,size_t limit)1188 dtrace_strtoll(char *input, int base, size_t limit)
1189 {
1190 	uintptr_t pos = (uintptr_t)input;
1191 	int64_t val = 0;
1192 	int x;
1193 	boolean_t neg = B_FALSE;
1194 	char c, cc, ccc;
1195 	uintptr_t end = pos + limit;
1196 
1197 	/*
1198 	 * Consume any whitespace preceding digits.
1199 	 */
1200 	while ((c = dtrace_load8(pos)) == ' ' || c == '\t')
1201 		pos++;
1202 
1203 	/*
1204 	 * Handle an explicit sign if one is present.
1205 	 */
1206 	if (c == '-' || c == '+') {
1207 		if (c == '-')
1208 			neg = B_TRUE;
1209 		c = dtrace_load8(++pos);
1210 	}
1211 
1212 	/*
1213 	 * Check for an explicit hexadecimal prefix ("0x" or "0X") and skip it
1214 	 * if present.
1215 	 */
1216 	if (base == 16 && c == '0' && ((cc = dtrace_load8(pos + 1)) == 'x' ||
1217 	    cc == 'X') && isxdigit(ccc = dtrace_load8(pos + 2))) {
1218 		pos += 2;
1219 		c = ccc;
1220 	}
1221 
1222 	/*
1223 	 * Read in contiguous digits until the first non-digit character.
1224 	 */
1225 	for (; pos < end && c != '\0' && lisalnum(c) && (x = DIGIT(c)) < base;
1226 	    c = dtrace_load8(++pos))
1227 		val = val * base + x;
1228 
1229 	return (neg ? -val : val);
1230 }
1231 
1232 /*
1233  * Compare two strings using safe loads.
1234  */
1235 static int
dtrace_strncmp(char * s1,char * s2,size_t limit)1236 dtrace_strncmp(char *s1, char *s2, size_t limit)
1237 {
1238 	uint8_t c1, c2;
1239 	volatile uint16_t *flags;
1240 
1241 	if (s1 == s2 || limit == 0)
1242 		return (0);
1243 
1244 	flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags;
1245 
1246 	do {
1247 		if (s1 == NULL) {
1248 			c1 = '\0';
1249 		} else {
1250 			c1 = dtrace_load8((uintptr_t)s1++);
1251 		}
1252 
1253 		if (s2 == NULL) {
1254 			c2 = '\0';
1255 		} else {
1256 			c2 = dtrace_load8((uintptr_t)s2++);
1257 		}
1258 
1259 		if (c1 != c2)
1260 			return (c1 - c2);
1261 	} while (--limit && c1 != '\0' && !(*flags & CPU_DTRACE_FAULT));
1262 
1263 	return (0);
1264 }
1265 
1266 /*
1267  * Compute strlen(s) for a string using safe memory accesses.  The additional
1268  * len parameter is used to specify a maximum length to ensure completion.
1269  */
1270 static size_t
dtrace_strlen(const char * s,size_t lim)1271 dtrace_strlen(const char *s, size_t lim)
1272 {
1273 	uint_t len;
1274 
1275 	for (len = 0; len != lim; len++) {
1276 		if (dtrace_load8((uintptr_t)s++) == '\0')
1277 			break;
1278 	}
1279 
1280 	return (len);
1281 }
1282 
1283 /*
1284  * Check if an address falls within a toxic region.
1285  */
1286 static int
dtrace_istoxic(uintptr_t kaddr,size_t size)1287 dtrace_istoxic(uintptr_t kaddr, size_t size)
1288 {
1289 	uintptr_t taddr, tsize;
1290 	int i;
1291 
1292 	for (i = 0; i < dtrace_toxranges; i++) {
1293 		taddr = dtrace_toxrange[i].dtt_base;
1294 		tsize = dtrace_toxrange[i].dtt_limit - taddr;
1295 
1296 		if (kaddr - taddr < tsize) {
1297 			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
1298 			cpu_core[curcpu].cpuc_dtrace_illval = kaddr;
1299 			return (1);
1300 		}
1301 
1302 		if (taddr - kaddr < size) {
1303 			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
1304 			cpu_core[curcpu].cpuc_dtrace_illval = taddr;
1305 			return (1);
1306 		}
1307 	}
1308 
1309 	return (0);
1310 }
1311 
1312 /*
1313  * Copy src to dst using safe memory accesses.  The src is assumed to be unsafe
1314  * memory specified by the DIF program.  The dst is assumed to be safe memory
1315  * that we can store to directly because it is managed by DTrace.  As with
1316  * standard bcopy, overlapping copies are handled properly.
1317  */
1318 static void
dtrace_bcopy(const void * src,void * dst,size_t len)1319 dtrace_bcopy(const void *src, void *dst, size_t len)
1320 {
1321 	if (len != 0) {
1322 		uint8_t *s1 = dst;
1323 		const uint8_t *s2 = src;
1324 
1325 		if (s1 <= s2) {
1326 			do {
1327 				*s1++ = dtrace_load8((uintptr_t)s2++);
1328 			} while (--len != 0);
1329 		} else {
1330 			s2 += len;
1331 			s1 += len;
1332 
1333 			do {
1334 				*--s1 = dtrace_load8((uintptr_t)--s2);
1335 			} while (--len != 0);
1336 		}
1337 	}
1338 }
1339 
1340 /*
1341  * Copy src to dst using safe memory accesses, up to either the specified
1342  * length, or the point that a nul byte is encountered.  The src is assumed to
1343  * be unsafe memory specified by the DIF program.  The dst is assumed to be
1344  * safe memory that we can store to directly because it is managed by DTrace.
1345  * Unlike dtrace_bcopy(), overlapping regions are not handled.
1346  */
1347 static void
dtrace_strcpy(const void * src,void * dst,size_t len)1348 dtrace_strcpy(const void *src, void *dst, size_t len)
1349 {
1350 	if (len != 0) {
1351 		uint8_t *s1 = dst, c;
1352 		const uint8_t *s2 = src;
1353 
1354 		do {
1355 			*s1++ = c = dtrace_load8((uintptr_t)s2++);
1356 		} while (--len != 0 && c != '\0');
1357 	}
1358 }
1359 
1360 /*
1361  * Copy src to dst, deriving the size and type from the specified (BYREF)
1362  * variable type.  The src is assumed to be unsafe memory specified by the DIF
1363  * program.  The dst is assumed to be DTrace variable memory that is of the
1364  * specified type; we assume that we can store to directly.
1365  */
1366 static void
dtrace_vcopy(void * src,void * dst,dtrace_diftype_t * type,size_t limit)1367 dtrace_vcopy(void *src, void *dst, dtrace_diftype_t *type, size_t limit)
1368 {
1369 	ASSERT(type->dtdt_flags & DIF_TF_BYREF);
1370 
1371 	if (type->dtdt_kind == DIF_TYPE_STRING) {
1372 		dtrace_strcpy(src, dst, MIN(type->dtdt_size, limit));
1373 	} else {
1374 		dtrace_bcopy(src, dst, MIN(type->dtdt_size, limit));
1375 	}
1376 }
1377 
1378 /*
1379  * Compare s1 to s2 using safe memory accesses.  The s1 data is assumed to be
1380  * unsafe memory specified by the DIF program.  The s2 data is assumed to be
1381  * safe memory that we can access directly because it is managed by DTrace.
1382  */
1383 static int
dtrace_bcmp(const void * s1,const void * s2,size_t len)1384 dtrace_bcmp(const void *s1, const void *s2, size_t len)
1385 {
1386 	volatile uint16_t *flags;
1387 
1388 	flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags;
1389 
1390 	if (s1 == s2)
1391 		return (0);
1392 
1393 	if (s1 == NULL || s2 == NULL)
1394 		return (1);
1395 
1396 	if (s1 != s2 && len != 0) {
1397 		const uint8_t *ps1 = s1;
1398 		const uint8_t *ps2 = s2;
1399 
1400 		do {
1401 			if (dtrace_load8((uintptr_t)ps1++) != *ps2++)
1402 				return (1);
1403 		} while (--len != 0 && !(*flags & CPU_DTRACE_FAULT));
1404 	}
1405 	return (0);
1406 }
1407 
1408 /*
1409  * Zero the specified region using a simple byte-by-byte loop.  Note that this
1410  * is for safe DTrace-managed memory only.
1411  */
1412 static void
dtrace_bzero(void * dst,size_t len)1413 dtrace_bzero(void *dst, size_t len)
1414 {
1415 	uchar_t *cp;
1416 
1417 	for (cp = dst; len != 0; len--)
1418 		*cp++ = 0;
1419 }
1420 
1421 static void
dtrace_add_128(uint64_t * addend1,uint64_t * addend2,uint64_t * sum)1422 dtrace_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum)
1423 {
1424 	uint64_t result[2];
1425 
1426 	result[0] = addend1[0] + addend2[0];
1427 	result[1] = addend1[1] + addend2[1] +
1428 	    (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0);
1429 
1430 	sum[0] = result[0];
1431 	sum[1] = result[1];
1432 }
1433 
1434 /*
1435  * Shift the 128-bit value in a by b. If b is positive, shift left.
1436  * If b is negative, shift right.
1437  */
1438 static void
dtrace_shift_128(uint64_t * a,int b)1439 dtrace_shift_128(uint64_t *a, int b)
1440 {
1441 	uint64_t mask;
1442 
1443 	if (b == 0)
1444 		return;
1445 
1446 	if (b < 0) {
1447 		b = -b;
1448 		if (b >= 64) {
1449 			a[0] = a[1] >> (b - 64);
1450 			a[1] = 0;
1451 		} else {
1452 			a[0] >>= b;
1453 			mask = 1LL << (64 - b);
1454 			mask -= 1;
1455 			a[0] |= ((a[1] & mask) << (64 - b));
1456 			a[1] >>= b;
1457 		}
1458 	} else {
1459 		if (b >= 64) {
1460 			a[1] = a[0] << (b - 64);
1461 			a[0] = 0;
1462 		} else {
1463 			a[1] <<= b;
1464 			mask = a[0] >> (64 - b);
1465 			a[1] |= mask;
1466 			a[0] <<= b;
1467 		}
1468 	}
1469 }
1470 
1471 /*
1472  * The basic idea is to break the 2 64-bit values into 4 32-bit values,
1473  * use native multiplication on those, and then re-combine into the
1474  * resulting 128-bit value.
1475  *
1476  * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) =
1477  *     hi1 * hi2 << 64 +
1478  *     hi1 * lo2 << 32 +
1479  *     hi2 * lo1 << 32 +
1480  *     lo1 * lo2
1481  */
1482 static void
dtrace_multiply_128(uint64_t factor1,uint64_t factor2,uint64_t * product)1483 dtrace_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product)
1484 {
1485 	uint64_t hi1, hi2, lo1, lo2;
1486 	uint64_t tmp[2];
1487 
1488 	hi1 = factor1 >> 32;
1489 	hi2 = factor2 >> 32;
1490 
1491 	lo1 = factor1 & DT_MASK_LO;
1492 	lo2 = factor2 & DT_MASK_LO;
1493 
1494 	product[0] = lo1 * lo2;
1495 	product[1] = hi1 * hi2;
1496 
1497 	tmp[0] = hi1 * lo2;
1498 	tmp[1] = 0;
1499 	dtrace_shift_128(tmp, 32);
1500 	dtrace_add_128(product, tmp, product);
1501 
1502 	tmp[0] = hi2 * lo1;
1503 	tmp[1] = 0;
1504 	dtrace_shift_128(tmp, 32);
1505 	dtrace_add_128(product, tmp, product);
1506 }
1507 
1508 /*
1509  * This privilege check should be used by actions and subroutines to
1510  * verify that the user credentials of the process that enabled the
1511  * invoking ECB match the target credentials
1512  */
1513 static int
dtrace_priv_proc_common_user(dtrace_state_t * state)1514 dtrace_priv_proc_common_user(dtrace_state_t *state)
1515 {
1516 	cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1517 
1518 	/*
1519 	 * We should always have a non-NULL state cred here, since if cred
1520 	 * is null (anonymous tracing), we fast-path bypass this routine.
1521 	 */
1522 	ASSERT(s_cr != NULL);
1523 
1524 	if ((cr = CRED()) != NULL &&
1525 	    s_cr->cr_uid == cr->cr_uid &&
1526 	    s_cr->cr_uid == cr->cr_ruid &&
1527 	    s_cr->cr_uid == cr->cr_suid &&
1528 	    s_cr->cr_gid == cr->cr_gid &&
1529 	    s_cr->cr_gid == cr->cr_rgid &&
1530 	    s_cr->cr_gid == cr->cr_sgid)
1531 		return (1);
1532 
1533 	return (0);
1534 }
1535 
1536 /*
1537  * This privilege check should be used by actions and subroutines to
1538  * verify that the zone of the process that enabled the invoking ECB
1539  * matches the target credentials
1540  */
1541 static int
dtrace_priv_proc_common_zone(dtrace_state_t * state)1542 dtrace_priv_proc_common_zone(dtrace_state_t *state)
1543 {
1544 #ifdef illumos
1545 	cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1546 
1547 	/*
1548 	 * We should always have a non-NULL state cred here, since if cred
1549 	 * is null (anonymous tracing), we fast-path bypass this routine.
1550 	 */
1551 	ASSERT(s_cr != NULL);
1552 
1553 	if ((cr = CRED()) != NULL && s_cr->cr_zone == cr->cr_zone)
1554 		return (1);
1555 
1556 	return (0);
1557 #else
1558 	return (1);
1559 #endif
1560 }
1561 
1562 /*
1563  * This privilege check should be used by actions and subroutines to
1564  * verify that the process has not setuid or changed credentials.
1565  */
1566 static int
dtrace_priv_proc_common_nocd(void)1567 dtrace_priv_proc_common_nocd(void)
1568 {
1569 	proc_t *proc;
1570 
1571 	if ((proc = ttoproc(curthread)) != NULL &&
1572 	    !(proc->p_flag & SNOCD))
1573 		return (1);
1574 
1575 	return (0);
1576 }
1577 
1578 static int
dtrace_priv_proc_destructive(dtrace_state_t * state)1579 dtrace_priv_proc_destructive(dtrace_state_t *state)
1580 {
1581 	int action = state->dts_cred.dcr_action;
1582 
1583 	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE) == 0) &&
1584 	    dtrace_priv_proc_common_zone(state) == 0)
1585 		goto bad;
1586 
1587 	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER) == 0) &&
1588 	    dtrace_priv_proc_common_user(state) == 0)
1589 		goto bad;
1590 
1591 	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG) == 0) &&
1592 	    dtrace_priv_proc_common_nocd() == 0)
1593 		goto bad;
1594 
1595 	return (1);
1596 
1597 bad:
1598 	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1599 
1600 	return (0);
1601 }
1602 
1603 static int
dtrace_priv_proc_control(dtrace_state_t * state)1604 dtrace_priv_proc_control(dtrace_state_t *state)
1605 {
1606 	if (state->dts_cred.dcr_action & DTRACE_CRA_PROC_CONTROL)
1607 		return (1);
1608 
1609 	if (dtrace_priv_proc_common_zone(state) &&
1610 	    dtrace_priv_proc_common_user(state) &&
1611 	    dtrace_priv_proc_common_nocd())
1612 		return (1);
1613 
1614 	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1615 
1616 	return (0);
1617 }
1618 
1619 static int
dtrace_priv_proc(dtrace_state_t * state)1620 dtrace_priv_proc(dtrace_state_t *state)
1621 {
1622 	if (state->dts_cred.dcr_action & DTRACE_CRA_PROC)
1623 		return (1);
1624 
1625 	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1626 
1627 	return (0);
1628 }
1629 
1630 static int
dtrace_priv_kernel(dtrace_state_t * state)1631 dtrace_priv_kernel(dtrace_state_t *state)
1632 {
1633 	if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL)
1634 		return (1);
1635 
1636 	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1637 
1638 	return (0);
1639 }
1640 
1641 static int
dtrace_priv_kernel_destructive(dtrace_state_t * state)1642 dtrace_priv_kernel_destructive(dtrace_state_t *state)
1643 {
1644 	if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL_DESTRUCTIVE)
1645 		return (1);
1646 
1647 	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1648 
1649 	return (0);
1650 }
1651 
1652 /*
1653  * Determine if the dte_cond of the specified ECB allows for processing of
1654  * the current probe to continue.  Note that this routine may allow continued
1655  * processing, but with access(es) stripped from the mstate's dtms_access
1656  * field.
1657  */
1658 static int
dtrace_priv_probe(dtrace_state_t * state,dtrace_mstate_t * mstate,dtrace_ecb_t * ecb)1659 dtrace_priv_probe(dtrace_state_t *state, dtrace_mstate_t *mstate,
1660     dtrace_ecb_t *ecb)
1661 {
1662 	dtrace_probe_t *probe = ecb->dte_probe;
1663 	dtrace_provider_t *prov = probe->dtpr_provider;
1664 	dtrace_pops_t *pops = &prov->dtpv_pops;
1665 	int mode = DTRACE_MODE_NOPRIV_DROP;
1666 
1667 	ASSERT(ecb->dte_cond);
1668 
1669 #ifdef illumos
1670 	if (pops->dtps_mode != NULL) {
1671 		mode = pops->dtps_mode(prov->dtpv_arg,
1672 		    probe->dtpr_id, probe->dtpr_arg);
1673 
1674 		ASSERT((mode & DTRACE_MODE_USER) ||
1675 		    (mode & DTRACE_MODE_KERNEL));
1676 		ASSERT((mode & DTRACE_MODE_NOPRIV_RESTRICT) ||
1677 		    (mode & DTRACE_MODE_NOPRIV_DROP));
1678 	}
1679 
1680 	/*
1681 	 * If the dte_cond bits indicate that this consumer is only allowed to
1682 	 * see user-mode firings of this probe, call the provider's dtps_mode()
1683 	 * entry point to check that the probe was fired while in a user
1684 	 * context.  If that's not the case, use the policy specified by the
1685 	 * provider to determine if we drop the probe or merely restrict
1686 	 * operation.
1687 	 */
1688 	if (ecb->dte_cond & DTRACE_COND_USERMODE) {
1689 		ASSERT(mode != DTRACE_MODE_NOPRIV_DROP);
1690 
1691 		if (!(mode & DTRACE_MODE_USER)) {
1692 			if (mode & DTRACE_MODE_NOPRIV_DROP)
1693 				return (0);
1694 
1695 			mstate->dtms_access &= ~DTRACE_ACCESS_ARGS;
1696 		}
1697 	}
1698 #endif
1699 
1700 	/*
1701 	 * This is more subtle than it looks. We have to be absolutely certain
1702 	 * that CRED() isn't going to change out from under us so it's only
1703 	 * legit to examine that structure if we're in constrained situations.
1704 	 * Currently, the only times we'll this check is if a non-super-user
1705 	 * has enabled the profile or syscall providers -- providers that
1706 	 * allow visibility of all processes. For the profile case, the check
1707 	 * above will ensure that we're examining a user context.
1708 	 */
1709 	if (ecb->dte_cond & DTRACE_COND_OWNER) {
1710 		cred_t *cr;
1711 		cred_t *s_cr = state->dts_cred.dcr_cred;
1712 		proc_t *proc;
1713 
1714 		ASSERT(s_cr != NULL);
1715 
1716 		if ((cr = CRED()) == NULL ||
1717 		    s_cr->cr_uid != cr->cr_uid ||
1718 		    s_cr->cr_uid != cr->cr_ruid ||
1719 		    s_cr->cr_uid != cr->cr_suid ||
1720 		    s_cr->cr_gid != cr->cr_gid ||
1721 		    s_cr->cr_gid != cr->cr_rgid ||
1722 		    s_cr->cr_gid != cr->cr_sgid ||
1723 		    (proc = ttoproc(curthread)) == NULL ||
1724 		    (proc->p_flag & SNOCD)) {
1725 			if (mode & DTRACE_MODE_NOPRIV_DROP)
1726 				return (0);
1727 
1728 #ifdef illumos
1729 			mstate->dtms_access &= ~DTRACE_ACCESS_PROC;
1730 #endif
1731 		}
1732 	}
1733 
1734 #ifdef illumos
1735 	/*
1736 	 * If our dte_cond is set to DTRACE_COND_ZONEOWNER and we are not
1737 	 * in our zone, check to see if our mode policy is to restrict rather
1738 	 * than to drop; if to restrict, strip away both DTRACE_ACCESS_PROC
1739 	 * and DTRACE_ACCESS_ARGS
1740 	 */
1741 	if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) {
1742 		cred_t *cr;
1743 		cred_t *s_cr = state->dts_cred.dcr_cred;
1744 
1745 		ASSERT(s_cr != NULL);
1746 
1747 		if ((cr = CRED()) == NULL ||
1748 		    s_cr->cr_zone->zone_id != cr->cr_zone->zone_id) {
1749 			if (mode & DTRACE_MODE_NOPRIV_DROP)
1750 				return (0);
1751 
1752 			mstate->dtms_access &=
1753 			    ~(DTRACE_ACCESS_PROC | DTRACE_ACCESS_ARGS);
1754 		}
1755 	}
1756 #endif
1757 
1758 	return (1);
1759 }
1760 
1761 /*
1762  * Note:  not called from probe context.  This function is called
1763  * asynchronously (and at a regular interval) from outside of probe context to
1764  * clean the dirty dynamic variable lists on all CPUs.  Dynamic variable
1765  * cleaning is explained in detail in <sys/dtrace_impl.h>.
1766  */
1767 void
dtrace_dynvar_clean(dtrace_dstate_t * dstate)1768 dtrace_dynvar_clean(dtrace_dstate_t *dstate)
1769 {
1770 	dtrace_dynvar_t *dirty;
1771 	dtrace_dstate_percpu_t *dcpu;
1772 	dtrace_dynvar_t **rinsep;
1773 	int i, j, work = 0;
1774 
1775 	CPU_FOREACH(i) {
1776 		dcpu = &dstate->dtds_percpu[i];
1777 		rinsep = &dcpu->dtdsc_rinsing;
1778 
1779 		/*
1780 		 * If the dirty list is NULL, there is no dirty work to do.
1781 		 */
1782 		if (dcpu->dtdsc_dirty == NULL)
1783 			continue;
1784 
1785 		if (dcpu->dtdsc_rinsing != NULL) {
1786 			/*
1787 			 * If the rinsing list is non-NULL, then it is because
1788 			 * this CPU was selected to accept another CPU's
1789 			 * dirty list -- and since that time, dirty buffers
1790 			 * have accumulated.  This is a highly unlikely
1791 			 * condition, but we choose to ignore the dirty
1792 			 * buffers -- they'll be picked up a future cleanse.
1793 			 */
1794 			continue;
1795 		}
1796 
1797 		if (dcpu->dtdsc_clean != NULL) {
1798 			/*
1799 			 * If the clean list is non-NULL, then we're in a
1800 			 * situation where a CPU has done deallocations (we
1801 			 * have a non-NULL dirty list) but no allocations (we
1802 			 * also have a non-NULL clean list).  We can't simply
1803 			 * move the dirty list into the clean list on this
1804 			 * CPU, yet we also don't want to allow this condition
1805 			 * to persist, lest a short clean list prevent a
1806 			 * massive dirty list from being cleaned (which in
1807 			 * turn could lead to otherwise avoidable dynamic
1808 			 * drops).  To deal with this, we look for some CPU
1809 			 * with a NULL clean list, NULL dirty list, and NULL
1810 			 * rinsing list -- and then we borrow this CPU to
1811 			 * rinse our dirty list.
1812 			 */
1813 			CPU_FOREACH(j) {
1814 				dtrace_dstate_percpu_t *rinser;
1815 
1816 				rinser = &dstate->dtds_percpu[j];
1817 
1818 				if (rinser->dtdsc_rinsing != NULL)
1819 					continue;
1820 
1821 				if (rinser->dtdsc_dirty != NULL)
1822 					continue;
1823 
1824 				if (rinser->dtdsc_clean != NULL)
1825 					continue;
1826 
1827 				rinsep = &rinser->dtdsc_rinsing;
1828 				break;
1829 			}
1830 
1831 			if (j > mp_maxid) {
1832 				/*
1833 				 * We were unable to find another CPU that
1834 				 * could accept this dirty list -- we are
1835 				 * therefore unable to clean it now.
1836 				 */
1837 				dtrace_dynvar_failclean++;
1838 				continue;
1839 			}
1840 		}
1841 
1842 		work = 1;
1843 
1844 		/*
1845 		 * Atomically move the dirty list aside.
1846 		 */
1847 		do {
1848 			dirty = dcpu->dtdsc_dirty;
1849 
1850 			/*
1851 			 * Before we zap the dirty list, set the rinsing list.
1852 			 * (This allows for a potential assertion in
1853 			 * dtrace_dynvar():  if a free dynamic variable appears
1854 			 * on a hash chain, either the dirty list or the
1855 			 * rinsing list for some CPU must be non-NULL.)
1856 			 */
1857 			*rinsep = dirty;
1858 			dtrace_membar_producer();
1859 		} while (dtrace_casptr(&dcpu->dtdsc_dirty,
1860 		    dirty, NULL) != dirty);
1861 	}
1862 
1863 	if (!work) {
1864 		/*
1865 		 * We have no work to do; we can simply return.
1866 		 */
1867 		return;
1868 	}
1869 
1870 	dtrace_sync();
1871 
1872 	CPU_FOREACH(i) {
1873 		dcpu = &dstate->dtds_percpu[i];
1874 
1875 		if (dcpu->dtdsc_rinsing == NULL)
1876 			continue;
1877 
1878 		/*
1879 		 * We are now guaranteed that no hash chain contains a pointer
1880 		 * into this dirty list; we can make it clean.
1881 		 */
1882 		ASSERT(dcpu->dtdsc_clean == NULL);
1883 		dcpu->dtdsc_clean = dcpu->dtdsc_rinsing;
1884 		dcpu->dtdsc_rinsing = NULL;
1885 	}
1886 
1887 	/*
1888 	 * Before we actually set the state to be DTRACE_DSTATE_CLEAN, make
1889 	 * sure that all CPUs have seen all of the dtdsc_clean pointers.
1890 	 * This prevents a race whereby a CPU incorrectly decides that
1891 	 * the state should be something other than DTRACE_DSTATE_CLEAN
1892 	 * after dtrace_dynvar_clean() has completed.
1893 	 */
1894 	dtrace_sync();
1895 
1896 	dstate->dtds_state = DTRACE_DSTATE_CLEAN;
1897 }
1898 
1899 /*
1900  * Depending on the value of the op parameter, this function looks-up,
1901  * allocates or deallocates an arbitrarily-keyed dynamic variable.  If an
1902  * allocation is requested, this function will return a pointer to a
1903  * dtrace_dynvar_t corresponding to the allocated variable -- or NULL if no
1904  * variable can be allocated.  If NULL is returned, the appropriate counter
1905  * will be incremented.
1906  */
1907 dtrace_dynvar_t *
dtrace_dynvar(dtrace_dstate_t * dstate,uint_t nkeys,dtrace_key_t * key,size_t dsize,dtrace_dynvar_op_t op,dtrace_mstate_t * mstate,dtrace_vstate_t * vstate)1908 dtrace_dynvar(dtrace_dstate_t *dstate, uint_t nkeys,
1909     dtrace_key_t *key, size_t dsize, dtrace_dynvar_op_t op,
1910     dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
1911 {
1912 	uint64_t hashval = DTRACE_DYNHASH_VALID;
1913 	dtrace_dynhash_t *hash = dstate->dtds_hash;
1914 	dtrace_dynvar_t *free, *new_free, *next, *dvar, *start, *prev = NULL;
1915 	processorid_t me = curcpu, cpu = me;
1916 	dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[me];
1917 	size_t bucket, ksize;
1918 	size_t chunksize = dstate->dtds_chunksize;
1919 	uintptr_t kdata, lock, nstate;
1920 	uint_t i;
1921 
1922 	ASSERT(nkeys != 0);
1923 
1924 	/*
1925 	 * Hash the key.  As with aggregations, we use Jenkins' "One-at-a-time"
1926 	 * algorithm.  For the by-value portions, we perform the algorithm in
1927 	 * 16-bit chunks (as opposed to 8-bit chunks).  This speeds things up a
1928 	 * bit, and seems to have only a minute effect on distribution.  For
1929 	 * the by-reference data, we perform "One-at-a-time" iterating (safely)
1930 	 * over each referenced byte.  It's painful to do this, but it's much
1931 	 * better than pathological hash distribution.  The efficacy of the
1932 	 * hashing algorithm (and a comparison with other algorithms) may be
1933 	 * found by running the ::dtrace_dynstat MDB dcmd.
1934 	 */
1935 	for (i = 0; i < nkeys; i++) {
1936 		if (key[i].dttk_size == 0) {
1937 			uint64_t val = key[i].dttk_value;
1938 
1939 			hashval += (val >> 48) & 0xffff;
1940 			hashval += (hashval << 10);
1941 			hashval ^= (hashval >> 6);
1942 
1943 			hashval += (val >> 32) & 0xffff;
1944 			hashval += (hashval << 10);
1945 			hashval ^= (hashval >> 6);
1946 
1947 			hashval += (val >> 16) & 0xffff;
1948 			hashval += (hashval << 10);
1949 			hashval ^= (hashval >> 6);
1950 
1951 			hashval += val & 0xffff;
1952 			hashval += (hashval << 10);
1953 			hashval ^= (hashval >> 6);
1954 		} else {
1955 			/*
1956 			 * This is incredibly painful, but it beats the hell
1957 			 * out of the alternative.
1958 			 */
1959 			uint64_t j, size = key[i].dttk_size;
1960 			uintptr_t base = (uintptr_t)key[i].dttk_value;
1961 
1962 			if (!dtrace_canload(base, size, mstate, vstate))
1963 				break;
1964 
1965 			for (j = 0; j < size; j++) {
1966 				hashval += dtrace_load8(base + j);
1967 				hashval += (hashval << 10);
1968 				hashval ^= (hashval >> 6);
1969 			}
1970 		}
1971 	}
1972 
1973 	if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT))
1974 		return (NULL);
1975 
1976 	hashval += (hashval << 3);
1977 	hashval ^= (hashval >> 11);
1978 	hashval += (hashval << 15);
1979 
1980 	/*
1981 	 * There is a remote chance (ideally, 1 in 2^31) that our hashval
1982 	 * comes out to be one of our two sentinel hash values.  If this
1983 	 * actually happens, we set the hashval to be a value known to be a
1984 	 * non-sentinel value.
1985 	 */
1986 	if (hashval == DTRACE_DYNHASH_FREE || hashval == DTRACE_DYNHASH_SINK)
1987 		hashval = DTRACE_DYNHASH_VALID;
1988 
1989 	/*
1990 	 * Yes, it's painful to do a divide here.  If the cycle count becomes
1991 	 * important here, tricks can be pulled to reduce it.  (However, it's
1992 	 * critical that hash collisions be kept to an absolute minimum;
1993 	 * they're much more painful than a divide.)  It's better to have a
1994 	 * solution that generates few collisions and still keeps things
1995 	 * relatively simple.
1996 	 */
1997 	bucket = hashval % dstate->dtds_hashsize;
1998 
1999 	if (op == DTRACE_DYNVAR_DEALLOC) {
2000 		volatile uintptr_t *lockp = &hash[bucket].dtdh_lock;
2001 
2002 		for (;;) {
2003 			while ((lock = *lockp) & 1)
2004 				continue;
2005 
2006 			if (dtrace_casptr((volatile void *)lockp,
2007 			    (volatile void *)lock, (volatile void *)(lock + 1)) == (void *)lock)
2008 				break;
2009 		}
2010 
2011 		dtrace_membar_producer();
2012 	}
2013 
2014 top:
2015 	prev = NULL;
2016 	lock = hash[bucket].dtdh_lock;
2017 
2018 	dtrace_membar_consumer();
2019 
2020 	start = hash[bucket].dtdh_chain;
2021 	ASSERT(start != NULL && (start->dtdv_hashval == DTRACE_DYNHASH_SINK ||
2022 	    start->dtdv_hashval != DTRACE_DYNHASH_FREE ||
2023 	    op != DTRACE_DYNVAR_DEALLOC));
2024 
2025 	for (dvar = start; dvar != NULL; dvar = dvar->dtdv_next) {
2026 		dtrace_tuple_t *dtuple = &dvar->dtdv_tuple;
2027 		dtrace_key_t *dkey = &dtuple->dtt_key[0];
2028 
2029 		if (dvar->dtdv_hashval != hashval) {
2030 			if (dvar->dtdv_hashval == DTRACE_DYNHASH_SINK) {
2031 				/*
2032 				 * We've reached the sink, and therefore the
2033 				 * end of the hash chain; we can kick out of
2034 				 * the loop knowing that we have seen a valid
2035 				 * snapshot of state.
2036 				 */
2037 				ASSERT(dvar->dtdv_next == NULL);
2038 				ASSERT(dvar == &dtrace_dynhash_sink);
2039 				break;
2040 			}
2041 
2042 			if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) {
2043 				/*
2044 				 * We've gone off the rails:  somewhere along
2045 				 * the line, one of the members of this hash
2046 				 * chain was deleted.  Note that we could also
2047 				 * detect this by simply letting this loop run
2048 				 * to completion, as we would eventually hit
2049 				 * the end of the dirty list.  However, we
2050 				 * want to avoid running the length of the
2051 				 * dirty list unnecessarily (it might be quite
2052 				 * long), so we catch this as early as
2053 				 * possible by detecting the hash marker.  In
2054 				 * this case, we simply set dvar to NULL and
2055 				 * break; the conditional after the loop will
2056 				 * send us back to top.
2057 				 */
2058 				dvar = NULL;
2059 				break;
2060 			}
2061 
2062 			goto next;
2063 		}
2064 
2065 		if (dtuple->dtt_nkeys != nkeys)
2066 			goto next;
2067 
2068 		for (i = 0; i < nkeys; i++, dkey++) {
2069 			if (dkey->dttk_size != key[i].dttk_size)
2070 				goto next; /* size or type mismatch */
2071 
2072 			if (dkey->dttk_size != 0) {
2073 				if (dtrace_bcmp(
2074 				    (void *)(uintptr_t)key[i].dttk_value,
2075 				    (void *)(uintptr_t)dkey->dttk_value,
2076 				    dkey->dttk_size))
2077 					goto next;
2078 			} else {
2079 				if (dkey->dttk_value != key[i].dttk_value)
2080 					goto next;
2081 			}
2082 		}
2083 
2084 		if (op != DTRACE_DYNVAR_DEALLOC)
2085 			return (dvar);
2086 
2087 		ASSERT(dvar->dtdv_next == NULL ||
2088 		    dvar->dtdv_next->dtdv_hashval != DTRACE_DYNHASH_FREE);
2089 
2090 		if (prev != NULL) {
2091 			ASSERT(hash[bucket].dtdh_chain != dvar);
2092 			ASSERT(start != dvar);
2093 			ASSERT(prev->dtdv_next == dvar);
2094 			prev->dtdv_next = dvar->dtdv_next;
2095 		} else {
2096 			if (dtrace_casptr(&hash[bucket].dtdh_chain,
2097 			    start, dvar->dtdv_next) != start) {
2098 				/*
2099 				 * We have failed to atomically swing the
2100 				 * hash table head pointer, presumably because
2101 				 * of a conflicting allocation on another CPU.
2102 				 * We need to reread the hash chain and try
2103 				 * again.
2104 				 */
2105 				goto top;
2106 			}
2107 		}
2108 
2109 		dtrace_membar_producer();
2110 
2111 		/*
2112 		 * Now set the hash value to indicate that it's free.
2113 		 */
2114 		ASSERT(hash[bucket].dtdh_chain != dvar);
2115 		dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
2116 
2117 		dtrace_membar_producer();
2118 
2119 		/*
2120 		 * Set the next pointer to point at the dirty list, and
2121 		 * atomically swing the dirty pointer to the newly freed dvar.
2122 		 */
2123 		do {
2124 			next = dcpu->dtdsc_dirty;
2125 			dvar->dtdv_next = next;
2126 		} while (dtrace_casptr(&dcpu->dtdsc_dirty, next, dvar) != next);
2127 
2128 		/*
2129 		 * Finally, unlock this hash bucket.
2130 		 */
2131 		ASSERT(hash[bucket].dtdh_lock == lock);
2132 		ASSERT(lock & 1);
2133 		hash[bucket].dtdh_lock++;
2134 
2135 		return (NULL);
2136 next:
2137 		prev = dvar;
2138 		continue;
2139 	}
2140 
2141 	if (dvar == NULL) {
2142 		/*
2143 		 * If dvar is NULL, it is because we went off the rails:
2144 		 * one of the elements that we traversed in the hash chain
2145 		 * was deleted while we were traversing it.  In this case,
2146 		 * we assert that we aren't doing a dealloc (deallocs lock
2147 		 * the hash bucket to prevent themselves from racing with
2148 		 * one another), and retry the hash chain traversal.
2149 		 */
2150 		ASSERT(op != DTRACE_DYNVAR_DEALLOC);
2151 		goto top;
2152 	}
2153 
2154 	if (op != DTRACE_DYNVAR_ALLOC) {
2155 		/*
2156 		 * If we are not to allocate a new variable, we want to
2157 		 * return NULL now.  Before we return, check that the value
2158 		 * of the lock word hasn't changed.  If it has, we may have
2159 		 * seen an inconsistent snapshot.
2160 		 */
2161 		if (op == DTRACE_DYNVAR_NOALLOC) {
2162 			if (hash[bucket].dtdh_lock != lock)
2163 				goto top;
2164 		} else {
2165 			ASSERT(op == DTRACE_DYNVAR_DEALLOC);
2166 			ASSERT(hash[bucket].dtdh_lock == lock);
2167 			ASSERT(lock & 1);
2168 			hash[bucket].dtdh_lock++;
2169 		}
2170 
2171 		return (NULL);
2172 	}
2173 
2174 	/*
2175 	 * We need to allocate a new dynamic variable.  The size we need is the
2176 	 * size of dtrace_dynvar plus the size of nkeys dtrace_key_t's plus the
2177 	 * size of any auxiliary key data (rounded up to 8-byte alignment) plus
2178 	 * the size of any referred-to data (dsize).  We then round the final
2179 	 * size up to the chunksize for allocation.
2180 	 */
2181 	for (ksize = 0, i = 0; i < nkeys; i++)
2182 		ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
2183 
2184 	/*
2185 	 * This should be pretty much impossible, but could happen if, say,
2186 	 * strange DIF specified the tuple.  Ideally, this should be an
2187 	 * assertion and not an error condition -- but that requires that the
2188 	 * chunksize calculation in dtrace_difo_chunksize() be absolutely
2189 	 * bullet-proof.  (That is, it must not be able to be fooled by
2190 	 * malicious DIF.)  Given the lack of backwards branches in DIF,
2191 	 * solving this would presumably not amount to solving the Halting
2192 	 * Problem -- but it still seems awfully hard.
2193 	 */
2194 	if (sizeof (dtrace_dynvar_t) + sizeof (dtrace_key_t) * (nkeys - 1) +
2195 	    ksize + dsize > chunksize) {
2196 		dcpu->dtdsc_drops++;
2197 		return (NULL);
2198 	}
2199 
2200 	nstate = DTRACE_DSTATE_EMPTY;
2201 
2202 	do {
2203 retry:
2204 		free = dcpu->dtdsc_free;
2205 
2206 		if (free == NULL) {
2207 			dtrace_dynvar_t *clean = dcpu->dtdsc_clean;
2208 			void *rval;
2209 
2210 			if (clean == NULL) {
2211 				/*
2212 				 * We're out of dynamic variable space on
2213 				 * this CPU.  Unless we have tried all CPUs,
2214 				 * we'll try to allocate from a different
2215 				 * CPU.
2216 				 */
2217 				switch (dstate->dtds_state) {
2218 				case DTRACE_DSTATE_CLEAN: {
2219 					void *sp = &dstate->dtds_state;
2220 
2221 					if (++cpu > mp_maxid)
2222 						cpu = 0;
2223 
2224 					if (dcpu->dtdsc_dirty != NULL &&
2225 					    nstate == DTRACE_DSTATE_EMPTY)
2226 						nstate = DTRACE_DSTATE_DIRTY;
2227 
2228 					if (dcpu->dtdsc_rinsing != NULL)
2229 						nstate = DTRACE_DSTATE_RINSING;
2230 
2231 					dcpu = &dstate->dtds_percpu[cpu];
2232 
2233 					if (cpu != me)
2234 						goto retry;
2235 
2236 					(void) dtrace_cas32(sp,
2237 					    DTRACE_DSTATE_CLEAN, nstate);
2238 
2239 					/*
2240 					 * To increment the correct bean
2241 					 * counter, take another lap.
2242 					 */
2243 					goto retry;
2244 				}
2245 
2246 				case DTRACE_DSTATE_DIRTY:
2247 					dcpu->dtdsc_dirty_drops++;
2248 					break;
2249 
2250 				case DTRACE_DSTATE_RINSING:
2251 					dcpu->dtdsc_rinsing_drops++;
2252 					break;
2253 
2254 				case DTRACE_DSTATE_EMPTY:
2255 					dcpu->dtdsc_drops++;
2256 					break;
2257 				}
2258 
2259 				DTRACE_CPUFLAG_SET(CPU_DTRACE_DROP);
2260 				return (NULL);
2261 			}
2262 
2263 			/*
2264 			 * The clean list appears to be non-empty.  We want to
2265 			 * move the clean list to the free list; we start by
2266 			 * moving the clean pointer aside.
2267 			 */
2268 			if (dtrace_casptr(&dcpu->dtdsc_clean,
2269 			    clean, NULL) != clean) {
2270 				/*
2271 				 * We are in one of two situations:
2272 				 *
2273 				 *  (a)	The clean list was switched to the
2274 				 *	free list by another CPU.
2275 				 *
2276 				 *  (b)	The clean list was added to by the
2277 				 *	cleansing cyclic.
2278 				 *
2279 				 * In either of these situations, we can
2280 				 * just reattempt the free list allocation.
2281 				 */
2282 				goto retry;
2283 			}
2284 
2285 			ASSERT(clean->dtdv_hashval == DTRACE_DYNHASH_FREE);
2286 
2287 			/*
2288 			 * Now we'll move the clean list to our free list.
2289 			 * It's impossible for this to fail:  the only way
2290 			 * the free list can be updated is through this
2291 			 * code path, and only one CPU can own the clean list.
2292 			 * Thus, it would only be possible for this to fail if
2293 			 * this code were racing with dtrace_dynvar_clean().
2294 			 * (That is, if dtrace_dynvar_clean() updated the clean
2295 			 * list, and we ended up racing to update the free
2296 			 * list.)  This race is prevented by the dtrace_sync()
2297 			 * in dtrace_dynvar_clean() -- which flushes the
2298 			 * owners of the clean lists out before resetting
2299 			 * the clean lists.
2300 			 */
2301 			dcpu = &dstate->dtds_percpu[me];
2302 			rval = dtrace_casptr(&dcpu->dtdsc_free, NULL, clean);
2303 			ASSERT(rval == NULL);
2304 			goto retry;
2305 		}
2306 
2307 		dvar = free;
2308 		new_free = dvar->dtdv_next;
2309 	} while (dtrace_casptr(&dcpu->dtdsc_free, free, new_free) != free);
2310 
2311 	/*
2312 	 * We have now allocated a new chunk.  We copy the tuple keys into the
2313 	 * tuple array and copy any referenced key data into the data space
2314 	 * following the tuple array.  As we do this, we relocate dttk_value
2315 	 * in the final tuple to point to the key data address in the chunk.
2316 	 */
2317 	kdata = (uintptr_t)&dvar->dtdv_tuple.dtt_key[nkeys];
2318 	dvar->dtdv_data = (void *)(kdata + ksize);
2319 	dvar->dtdv_tuple.dtt_nkeys = nkeys;
2320 
2321 	for (i = 0; i < nkeys; i++) {
2322 		dtrace_key_t *dkey = &dvar->dtdv_tuple.dtt_key[i];
2323 		size_t kesize = key[i].dttk_size;
2324 
2325 		if (kesize != 0) {
2326 			dtrace_bcopy(
2327 			    (const void *)(uintptr_t)key[i].dttk_value,
2328 			    (void *)kdata, kesize);
2329 			dkey->dttk_value = kdata;
2330 			kdata += P2ROUNDUP(kesize, sizeof (uint64_t));
2331 		} else {
2332 			dkey->dttk_value = key[i].dttk_value;
2333 		}
2334 
2335 		dkey->dttk_size = kesize;
2336 	}
2337 
2338 	ASSERT(dvar->dtdv_hashval == DTRACE_DYNHASH_FREE);
2339 	dvar->dtdv_hashval = hashval;
2340 	dvar->dtdv_next = start;
2341 
2342 	if (dtrace_casptr(&hash[bucket].dtdh_chain, start, dvar) == start)
2343 		return (dvar);
2344 
2345 	/*
2346 	 * The cas has failed.  Either another CPU is adding an element to
2347 	 * this hash chain, or another CPU is deleting an element from this
2348 	 * hash chain.  The simplest way to deal with both of these cases
2349 	 * (though not necessarily the most efficient) is to free our
2350 	 * allocated block and re-attempt it all.  Note that the free is
2351 	 * to the dirty list and _not_ to the free list.  This is to prevent
2352 	 * races with allocators, above.
2353 	 */
2354 	dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
2355 
2356 	dtrace_membar_producer();
2357 
2358 	do {
2359 		free = dcpu->dtdsc_dirty;
2360 		dvar->dtdv_next = free;
2361 	} while (dtrace_casptr(&dcpu->dtdsc_dirty, free, dvar) != free);
2362 
2363 	goto top;
2364 }
2365 
2366 /*ARGSUSED*/
2367 static void
dtrace_aggregate_min(uint64_t * oval,uint64_t nval,uint64_t arg)2368 dtrace_aggregate_min(uint64_t *oval, uint64_t nval, uint64_t arg)
2369 {
2370 	if ((int64_t)nval < (int64_t)*oval)
2371 		*oval = nval;
2372 }
2373 
2374 /*ARGSUSED*/
2375 static void
dtrace_aggregate_max(uint64_t * oval,uint64_t nval,uint64_t arg)2376 dtrace_aggregate_max(uint64_t *oval, uint64_t nval, uint64_t arg)
2377 {
2378 	if ((int64_t)nval > (int64_t)*oval)
2379 		*oval = nval;
2380 }
2381 
2382 static void
dtrace_aggregate_quantize(uint64_t * quanta,uint64_t nval,uint64_t incr)2383 dtrace_aggregate_quantize(uint64_t *quanta, uint64_t nval, uint64_t incr)
2384 {
2385 	int i, zero = DTRACE_QUANTIZE_ZEROBUCKET;
2386 	int64_t val = (int64_t)nval;
2387 
2388 	if (val < 0) {
2389 		for (i = 0; i < zero; i++) {
2390 			if (val <= DTRACE_QUANTIZE_BUCKETVAL(i)) {
2391 				quanta[i] += incr;
2392 				return;
2393 			}
2394 		}
2395 	} else {
2396 		for (i = zero + 1; i < DTRACE_QUANTIZE_NBUCKETS; i++) {
2397 			if (val < DTRACE_QUANTIZE_BUCKETVAL(i)) {
2398 				quanta[i - 1] += incr;
2399 				return;
2400 			}
2401 		}
2402 
2403 		quanta[DTRACE_QUANTIZE_NBUCKETS - 1] += incr;
2404 		return;
2405 	}
2406 
2407 	ASSERT(0);
2408 }
2409 
2410 static void
dtrace_aggregate_lquantize(uint64_t * lquanta,uint64_t nval,uint64_t incr)2411 dtrace_aggregate_lquantize(uint64_t *lquanta, uint64_t nval, uint64_t incr)
2412 {
2413 	uint64_t arg = *lquanta++;
2414 	int32_t base = DTRACE_LQUANTIZE_BASE(arg);
2415 	uint16_t step = DTRACE_LQUANTIZE_STEP(arg);
2416 	uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg);
2417 	int32_t val = (int32_t)nval, level;
2418 
2419 	ASSERT(step != 0);
2420 	ASSERT(levels != 0);
2421 
2422 	if (val < base) {
2423 		/*
2424 		 * This is an underflow.
2425 		 */
2426 		lquanta[0] += incr;
2427 		return;
2428 	}
2429 
2430 	level = (val - base) / step;
2431 
2432 	if (level < levels) {
2433 		lquanta[level + 1] += incr;
2434 		return;
2435 	}
2436 
2437 	/*
2438 	 * This is an overflow.
2439 	 */
2440 	lquanta[levels + 1] += incr;
2441 }
2442 
2443 static int
dtrace_aggregate_llquantize_bucket(uint16_t factor,uint16_t low,uint16_t high,uint16_t nsteps,int64_t value)2444 dtrace_aggregate_llquantize_bucket(uint16_t factor, uint16_t low,
2445     uint16_t high, uint16_t nsteps, int64_t value)
2446 {
2447 	int64_t this = 1, last, next;
2448 	int base = 1, order;
2449 
2450 	ASSERT(factor <= nsteps);
2451 	ASSERT(nsteps % factor == 0);
2452 
2453 	for (order = 0; order < low; order++)
2454 		this *= factor;
2455 
2456 	/*
2457 	 * If our value is less than our factor taken to the power of the
2458 	 * low order of magnitude, it goes into the zeroth bucket.
2459 	 */
2460 	if (value < (last = this))
2461 		return (0);
2462 
2463 	for (this *= factor; order <= high; order++) {
2464 		int nbuckets = this > nsteps ? nsteps : this;
2465 
2466 		if ((next = this * factor) < this) {
2467 			/*
2468 			 * We should not generally get log/linear quantizations
2469 			 * with a high magnitude that allows 64-bits to
2470 			 * overflow, but we nonetheless protect against this
2471 			 * by explicitly checking for overflow, and clamping
2472 			 * our value accordingly.
2473 			 */
2474 			value = this - 1;
2475 		}
2476 
2477 		if (value < this) {
2478 			/*
2479 			 * If our value lies within this order of magnitude,
2480 			 * determine its position by taking the offset within
2481 			 * the order of magnitude, dividing by the bucket
2482 			 * width, and adding to our (accumulated) base.
2483 			 */
2484 			return (base + (value - last) / (this / nbuckets));
2485 		}
2486 
2487 		base += nbuckets - (nbuckets / factor);
2488 		last = this;
2489 		this = next;
2490 	}
2491 
2492 	/*
2493 	 * Our value is greater than or equal to our factor taken to the
2494 	 * power of one plus the high magnitude -- return the top bucket.
2495 	 */
2496 	return (base);
2497 }
2498 
2499 static void
dtrace_aggregate_llquantize(uint64_t * llquanta,uint64_t nval,uint64_t incr)2500 dtrace_aggregate_llquantize(uint64_t *llquanta, uint64_t nval, uint64_t incr)
2501 {
2502 	uint64_t arg = *llquanta++;
2503 	uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(arg);
2504 	uint16_t low = DTRACE_LLQUANTIZE_LOW(arg);
2505 	uint16_t high = DTRACE_LLQUANTIZE_HIGH(arg);
2506 	uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(arg);
2507 
2508 	llquanta[dtrace_aggregate_llquantize_bucket(factor,
2509 	    low, high, nsteps, nval)] += incr;
2510 }
2511 
2512 /*ARGSUSED*/
2513 static void
dtrace_aggregate_avg(uint64_t * data,uint64_t nval,uint64_t arg)2514 dtrace_aggregate_avg(uint64_t *data, uint64_t nval, uint64_t arg)
2515 {
2516 	data[0]++;
2517 	data[1] += nval;
2518 }
2519 
2520 /*ARGSUSED*/
2521 static void
dtrace_aggregate_stddev(uint64_t * data,uint64_t nval,uint64_t arg)2522 dtrace_aggregate_stddev(uint64_t *data, uint64_t nval, uint64_t arg)
2523 {
2524 	int64_t snval = (int64_t)nval;
2525 	uint64_t tmp[2];
2526 
2527 	data[0]++;
2528 	data[1] += nval;
2529 
2530 	/*
2531 	 * What we want to say here is:
2532 	 *
2533 	 * data[2] += nval * nval;
2534 	 *
2535 	 * But given that nval is 64-bit, we could easily overflow, so
2536 	 * we do this as 128-bit arithmetic.
2537 	 */
2538 	if (snval < 0)
2539 		snval = -snval;
2540 
2541 	dtrace_multiply_128((uint64_t)snval, (uint64_t)snval, tmp);
2542 	dtrace_add_128(data + 2, tmp, data + 2);
2543 }
2544 
2545 /*ARGSUSED*/
2546 static void
dtrace_aggregate_count(uint64_t * oval,uint64_t nval,uint64_t arg)2547 dtrace_aggregate_count(uint64_t *oval, uint64_t nval, uint64_t arg)
2548 {
2549 	*oval = *oval + 1;
2550 }
2551 
2552 /*ARGSUSED*/
2553 static void
dtrace_aggregate_sum(uint64_t * oval,uint64_t nval,uint64_t arg)2554 dtrace_aggregate_sum(uint64_t *oval, uint64_t nval, uint64_t arg)
2555 {
2556 	*oval += nval;
2557 }
2558 
2559 /*
2560  * Aggregate given the tuple in the principal data buffer, and the aggregating
2561  * action denoted by the specified dtrace_aggregation_t.  The aggregation
2562  * buffer is specified as the buf parameter.  This routine does not return
2563  * failure; if there is no space in the aggregation buffer, the data will be
2564  * dropped, and a corresponding counter incremented.
2565  */
2566 static void
dtrace_aggregate(dtrace_aggregation_t * agg,dtrace_buffer_t * dbuf,intptr_t offset,dtrace_buffer_t * buf,uint64_t expr,uint64_t arg)2567 dtrace_aggregate(dtrace_aggregation_t *agg, dtrace_buffer_t *dbuf,
2568     intptr_t offset, dtrace_buffer_t *buf, uint64_t expr, uint64_t arg)
2569 {
2570 	dtrace_recdesc_t *rec = &agg->dtag_action.dta_rec;
2571 	uint32_t i, ndx, size, fsize;
2572 	uint32_t align = sizeof (uint64_t) - 1;
2573 	dtrace_aggbuffer_t *agb;
2574 	dtrace_aggkey_t *key;
2575 	uint32_t hashval = 0, limit, isstr;
2576 	caddr_t tomax, data, kdata;
2577 	dtrace_actkind_t action;
2578 	dtrace_action_t *act;
2579 	size_t offs;
2580 
2581 	if (buf == NULL)
2582 		return;
2583 
2584 	if (!agg->dtag_hasarg) {
2585 		/*
2586 		 * Currently, only quantize() and lquantize() take additional
2587 		 * arguments, and they have the same semantics:  an increment
2588 		 * value that defaults to 1 when not present.  If additional
2589 		 * aggregating actions take arguments, the setting of the
2590 		 * default argument value will presumably have to become more
2591 		 * sophisticated...
2592 		 */
2593 		arg = 1;
2594 	}
2595 
2596 	action = agg->dtag_action.dta_kind - DTRACEACT_AGGREGATION;
2597 	size = rec->dtrd_offset - agg->dtag_base;
2598 	fsize = size + rec->dtrd_size;
2599 
2600 	ASSERT(dbuf->dtb_tomax != NULL);
2601 	data = dbuf->dtb_tomax + offset + agg->dtag_base;
2602 
2603 	if ((tomax = buf->dtb_tomax) == NULL) {
2604 		dtrace_buffer_drop(buf);
2605 		return;
2606 	}
2607 
2608 	/*
2609 	 * The metastructure is always at the bottom of the buffer.
2610 	 */
2611 	agb = (dtrace_aggbuffer_t *)(tomax + buf->dtb_size -
2612 	    sizeof (dtrace_aggbuffer_t));
2613 
2614 	if (buf->dtb_offset == 0) {
2615 		/*
2616 		 * We just kludge up approximately 1/8th of the size to be
2617 		 * buckets.  If this guess ends up being routinely
2618 		 * off-the-mark, we may need to dynamically readjust this
2619 		 * based on past performance.
2620 		 */
2621 		uintptr_t hashsize = (buf->dtb_size >> 3) / sizeof (uintptr_t);
2622 
2623 		if ((uintptr_t)agb - hashsize * sizeof (dtrace_aggkey_t *) <
2624 		    (uintptr_t)tomax || hashsize == 0) {
2625 			/*
2626 			 * We've been given a ludicrously small buffer;
2627 			 * increment our drop count and leave.
2628 			 */
2629 			dtrace_buffer_drop(buf);
2630 			return;
2631 		}
2632 
2633 		/*
2634 		 * And now, a pathetic attempt to try to get a an odd (or
2635 		 * perchance, a prime) hash size for better hash distribution.
2636 		 */
2637 		if (hashsize > (DTRACE_AGGHASHSIZE_SLEW << 3))
2638 			hashsize -= DTRACE_AGGHASHSIZE_SLEW;
2639 
2640 		agb->dtagb_hashsize = hashsize;
2641 		agb->dtagb_hash = (dtrace_aggkey_t **)((uintptr_t)agb -
2642 		    agb->dtagb_hashsize * sizeof (dtrace_aggkey_t *));
2643 		agb->dtagb_free = (uintptr_t)agb->dtagb_hash;
2644 
2645 		for (i = 0; i < agb->dtagb_hashsize; i++)
2646 			agb->dtagb_hash[i] = NULL;
2647 	}
2648 
2649 	ASSERT(agg->dtag_first != NULL);
2650 	ASSERT(agg->dtag_first->dta_intuple);
2651 
2652 	/*
2653 	 * Calculate the hash value based on the key.  Note that we _don't_
2654 	 * include the aggid in the hashing (but we will store it as part of
2655 	 * the key).  The hashing algorithm is Bob Jenkins' "One-at-a-time"
2656 	 * algorithm: a simple, quick algorithm that has no known funnels, and
2657 	 * gets good distribution in practice.  The efficacy of the hashing
2658 	 * algorithm (and a comparison with other algorithms) may be found by
2659 	 * running the ::dtrace_aggstat MDB dcmd.
2660 	 */
2661 	for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2662 		i = act->dta_rec.dtrd_offset - agg->dtag_base;
2663 		limit = i + act->dta_rec.dtrd_size;
2664 		ASSERT(limit <= size);
2665 		isstr = DTRACEACT_ISSTRING(act);
2666 
2667 		for (; i < limit; i++) {
2668 			hashval += data[i];
2669 			hashval += (hashval << 10);
2670 			hashval ^= (hashval >> 6);
2671 
2672 			if (isstr && data[i] == '\0')
2673 				break;
2674 		}
2675 	}
2676 
2677 	hashval += (hashval << 3);
2678 	hashval ^= (hashval >> 11);
2679 	hashval += (hashval << 15);
2680 
2681 	/*
2682 	 * Yes, the divide here is expensive -- but it's generally the least
2683 	 * of the performance issues given the amount of data that we iterate
2684 	 * over to compute hash values, compare data, etc.
2685 	 */
2686 	ndx = hashval % agb->dtagb_hashsize;
2687 
2688 	for (key = agb->dtagb_hash[ndx]; key != NULL; key = key->dtak_next) {
2689 		ASSERT((caddr_t)key >= tomax);
2690 		ASSERT((caddr_t)key < tomax + buf->dtb_size);
2691 
2692 		if (hashval != key->dtak_hashval || key->dtak_size != size)
2693 			continue;
2694 
2695 		kdata = key->dtak_data;
2696 		ASSERT(kdata >= tomax && kdata < tomax + buf->dtb_size);
2697 
2698 		for (act = agg->dtag_first; act->dta_intuple;
2699 		    act = act->dta_next) {
2700 			i = act->dta_rec.dtrd_offset - agg->dtag_base;
2701 			limit = i + act->dta_rec.dtrd_size;
2702 			ASSERT(limit <= size);
2703 			isstr = DTRACEACT_ISSTRING(act);
2704 
2705 			for (; i < limit; i++) {
2706 				if (kdata[i] != data[i])
2707 					goto next;
2708 
2709 				if (isstr && data[i] == '\0')
2710 					break;
2711 			}
2712 		}
2713 
2714 		if (action != key->dtak_action) {
2715 			/*
2716 			 * We are aggregating on the same value in the same
2717 			 * aggregation with two different aggregating actions.
2718 			 * (This should have been picked up in the compiler,
2719 			 * so we may be dealing with errant or devious DIF.)
2720 			 * This is an error condition; we indicate as much,
2721 			 * and return.
2722 			 */
2723 			DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
2724 			return;
2725 		}
2726 
2727 		/*
2728 		 * This is a hit:  we need to apply the aggregator to
2729 		 * the value at this key.
2730 		 */
2731 		agg->dtag_aggregate((uint64_t *)(kdata + size), expr, arg);
2732 		return;
2733 next:
2734 		continue;
2735 	}
2736 
2737 	/*
2738 	 * We didn't find it.  We need to allocate some zero-filled space,
2739 	 * link it into the hash table appropriately, and apply the aggregator
2740 	 * to the (zero-filled) value.
2741 	 */
2742 	offs = buf->dtb_offset;
2743 	while (offs & (align - 1))
2744 		offs += sizeof (uint32_t);
2745 
2746 	/*
2747 	 * If we don't have enough room to both allocate a new key _and_
2748 	 * its associated data, increment the drop count and return.
2749 	 */
2750 	if ((uintptr_t)tomax + offs + fsize >
2751 	    agb->dtagb_free - sizeof (dtrace_aggkey_t)) {
2752 		dtrace_buffer_drop(buf);
2753 		return;
2754 	}
2755 
2756 	/*CONSTCOND*/
2757 	ASSERT(!(sizeof (dtrace_aggkey_t) & (sizeof (uintptr_t) - 1)));
2758 	key = (dtrace_aggkey_t *)(agb->dtagb_free - sizeof (dtrace_aggkey_t));
2759 	agb->dtagb_free -= sizeof (dtrace_aggkey_t);
2760 
2761 	key->dtak_data = kdata = tomax + offs;
2762 	buf->dtb_offset = offs + fsize;
2763 
2764 	/*
2765 	 * Now copy the data across.
2766 	 */
2767 	*((dtrace_aggid_t *)kdata) = agg->dtag_id;
2768 
2769 	for (i = sizeof (dtrace_aggid_t); i < size; i++)
2770 		kdata[i] = data[i];
2771 
2772 	/*
2773 	 * Because strings are not zeroed out by default, we need to iterate
2774 	 * looking for actions that store strings, and we need to explicitly
2775 	 * pad these strings out with zeroes.
2776 	 */
2777 	for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2778 		int nul;
2779 
2780 		if (!DTRACEACT_ISSTRING(act))
2781 			continue;
2782 
2783 		i = act->dta_rec.dtrd_offset - agg->dtag_base;
2784 		limit = i + act->dta_rec.dtrd_size;
2785 		ASSERT(limit <= size);
2786 
2787 		for (nul = 0; i < limit; i++) {
2788 			if (nul) {
2789 				kdata[i] = '\0';
2790 				continue;
2791 			}
2792 
2793 			if (data[i] != '\0')
2794 				continue;
2795 
2796 			nul = 1;
2797 		}
2798 	}
2799 
2800 	for (i = size; i < fsize; i++)
2801 		kdata[i] = 0;
2802 
2803 	key->dtak_hashval = hashval;
2804 	key->dtak_size = size;
2805 	key->dtak_action = action;
2806 	key->dtak_next = agb->dtagb_hash[ndx];
2807 	agb->dtagb_hash[ndx] = key;
2808 
2809 	/*
2810 	 * Finally, apply the aggregator.
2811 	 */
2812 	*((uint64_t *)(key->dtak_data + size)) = agg->dtag_initial;
2813 	agg->dtag_aggregate((uint64_t *)(key->dtak_data + size), expr, arg);
2814 }
2815 
2816 /*
2817  * Given consumer state, this routine finds a speculation in the INACTIVE
2818  * state and transitions it into the ACTIVE state.  If there is no speculation
2819  * in the INACTIVE state, 0 is returned.  In this case, no error counter is
2820  * incremented -- it is up to the caller to take appropriate action.
2821  */
2822 static int
dtrace_speculation(dtrace_state_t * state)2823 dtrace_speculation(dtrace_state_t *state)
2824 {
2825 	int i = 0;
2826 	dtrace_speculation_state_t curstate;
2827 	uint32_t *stat = &state->dts_speculations_unavail, count;
2828 
2829 	while (i < state->dts_nspeculations) {
2830 		dtrace_speculation_t *spec = &state->dts_speculations[i];
2831 
2832 		curstate = spec->dtsp_state;
2833 
2834 		if (curstate != DTRACESPEC_INACTIVE) {
2835 			if (curstate == DTRACESPEC_COMMITTINGMANY ||
2836 			    curstate == DTRACESPEC_COMMITTING ||
2837 			    curstate == DTRACESPEC_DISCARDING)
2838 				stat = &state->dts_speculations_busy;
2839 			i++;
2840 			continue;
2841 		}
2842 
2843 		if (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2844 		    curstate, DTRACESPEC_ACTIVE) == curstate)
2845 			return (i + 1);
2846 	}
2847 
2848 	/*
2849 	 * We couldn't find a speculation.  If we found as much as a single
2850 	 * busy speculation buffer, we'll attribute this failure as "busy"
2851 	 * instead of "unavail".
2852 	 */
2853 	do {
2854 		count = *stat;
2855 	} while (dtrace_cas32(stat, count, count + 1) != count);
2856 
2857 	return (0);
2858 }
2859 
2860 /*
2861  * This routine commits an active speculation.  If the specified speculation
2862  * is not in a valid state to perform a commit(), this routine will silently do
2863  * nothing.  The state of the specified speculation is transitioned according
2864  * to the state transition diagram outlined in <sys/dtrace_impl.h>
2865  */
2866 static void
dtrace_speculation_commit(dtrace_state_t * state,processorid_t cpu,dtrace_specid_t which)2867 dtrace_speculation_commit(dtrace_state_t *state, processorid_t cpu,
2868     dtrace_specid_t which)
2869 {
2870 	dtrace_speculation_t *spec;
2871 	dtrace_buffer_t *src, *dest;
2872 	uintptr_t daddr, saddr, dlimit, slimit;
2873 	dtrace_speculation_state_t curstate, new = 0;
2874 	ssize_t offs;
2875 	uint64_t timestamp;
2876 
2877 	if (which == 0)
2878 		return;
2879 
2880 	if (which > state->dts_nspeculations) {
2881 		cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2882 		return;
2883 	}
2884 
2885 	spec = &state->dts_speculations[which - 1];
2886 	src = &spec->dtsp_buffer[cpu];
2887 	dest = &state->dts_buffer[cpu];
2888 
2889 	do {
2890 		curstate = spec->dtsp_state;
2891 
2892 		if (curstate == DTRACESPEC_COMMITTINGMANY)
2893 			break;
2894 
2895 		switch (curstate) {
2896 		case DTRACESPEC_INACTIVE:
2897 		case DTRACESPEC_DISCARDING:
2898 			return;
2899 
2900 		case DTRACESPEC_COMMITTING:
2901 			/*
2902 			 * This is only possible if we are (a) commit()'ing
2903 			 * without having done a prior speculate() on this CPU
2904 			 * and (b) racing with another commit() on a different
2905 			 * CPU.  There's nothing to do -- we just assert that
2906 			 * our offset is 0.
2907 			 */
2908 			ASSERT(src->dtb_offset == 0);
2909 			return;
2910 
2911 		case DTRACESPEC_ACTIVE:
2912 			new = DTRACESPEC_COMMITTING;
2913 			break;
2914 
2915 		case DTRACESPEC_ACTIVEONE:
2916 			/*
2917 			 * This speculation is active on one CPU.  If our
2918 			 * buffer offset is non-zero, we know that the one CPU
2919 			 * must be us.  Otherwise, we are committing on a
2920 			 * different CPU from the speculate(), and we must
2921 			 * rely on being asynchronously cleaned.
2922 			 */
2923 			if (src->dtb_offset != 0) {
2924 				new = DTRACESPEC_COMMITTING;
2925 				break;
2926 			}
2927 			/*FALLTHROUGH*/
2928 
2929 		case DTRACESPEC_ACTIVEMANY:
2930 			new = DTRACESPEC_COMMITTINGMANY;
2931 			break;
2932 
2933 		default:
2934 			ASSERT(0);
2935 		}
2936 	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2937 	    curstate, new) != curstate);
2938 
2939 	/*
2940 	 * We have set the state to indicate that we are committing this
2941 	 * speculation.  Now reserve the necessary space in the destination
2942 	 * buffer.
2943 	 */
2944 	if ((offs = dtrace_buffer_reserve(dest, src->dtb_offset,
2945 	    sizeof (uint64_t), state, NULL)) < 0) {
2946 		dtrace_buffer_drop(dest);
2947 		goto out;
2948 	}
2949 
2950 	/*
2951 	 * We have sufficient space to copy the speculative buffer into the
2952 	 * primary buffer.  First, modify the speculative buffer, filling
2953 	 * in the timestamp of all entries with the curstate time.  The data
2954 	 * must have the commit() time rather than the time it was traced,
2955 	 * so that all entries in the primary buffer are in timestamp order.
2956 	 */
2957 	timestamp = dtrace_gethrtime();
2958 	saddr = (uintptr_t)src->dtb_tomax;
2959 	slimit = saddr + src->dtb_offset;
2960 	while (saddr < slimit) {
2961 		size_t size;
2962 		dtrace_rechdr_t *dtrh = (dtrace_rechdr_t *)saddr;
2963 
2964 		if (dtrh->dtrh_epid == DTRACE_EPIDNONE) {
2965 			saddr += sizeof (dtrace_epid_t);
2966 			continue;
2967 		}
2968 		ASSERT3U(dtrh->dtrh_epid, <=, state->dts_necbs);
2969 		size = state->dts_ecbs[dtrh->dtrh_epid - 1]->dte_size;
2970 
2971 		ASSERT3U(saddr + size, <=, slimit);
2972 		ASSERT3U(size, >=, sizeof (dtrace_rechdr_t));
2973 		ASSERT3U(DTRACE_RECORD_LOAD_TIMESTAMP(dtrh), ==, UINT64_MAX);
2974 
2975 		DTRACE_RECORD_STORE_TIMESTAMP(dtrh, timestamp);
2976 
2977 		saddr += size;
2978 	}
2979 
2980 	/*
2981 	 * Copy the buffer across.  (Note that this is a
2982 	 * highly subobtimal bcopy(); in the unlikely event that this becomes
2983 	 * a serious performance issue, a high-performance DTrace-specific
2984 	 * bcopy() should obviously be invented.)
2985 	 */
2986 	daddr = (uintptr_t)dest->dtb_tomax + offs;
2987 	dlimit = daddr + src->dtb_offset;
2988 	saddr = (uintptr_t)src->dtb_tomax;
2989 
2990 	/*
2991 	 * First, the aligned portion.
2992 	 */
2993 	while (dlimit - daddr >= sizeof (uint64_t)) {
2994 		*((uint64_t *)daddr) = *((uint64_t *)saddr);
2995 
2996 		daddr += sizeof (uint64_t);
2997 		saddr += sizeof (uint64_t);
2998 	}
2999 
3000 	/*
3001 	 * Now any left-over bit...
3002 	 */
3003 	while (dlimit - daddr)
3004 		*((uint8_t *)daddr++) = *((uint8_t *)saddr++);
3005 
3006 	/*
3007 	 * Finally, commit the reserved space in the destination buffer.
3008 	 */
3009 	dest->dtb_offset = offs + src->dtb_offset;
3010 
3011 out:
3012 	/*
3013 	 * If we're lucky enough to be the only active CPU on this speculation
3014 	 * buffer, we can just set the state back to DTRACESPEC_INACTIVE.
3015 	 */
3016 	if (curstate == DTRACESPEC_ACTIVE ||
3017 	    (curstate == DTRACESPEC_ACTIVEONE && new == DTRACESPEC_COMMITTING)) {
3018 		uint32_t rval = dtrace_cas32((uint32_t *)&spec->dtsp_state,
3019 		    DTRACESPEC_COMMITTING, DTRACESPEC_INACTIVE);
3020 
3021 		ASSERT(rval == DTRACESPEC_COMMITTING);
3022 	}
3023 
3024 	src->dtb_offset = 0;
3025 	src->dtb_xamot_drops += src->dtb_drops;
3026 	src->dtb_drops = 0;
3027 }
3028 
3029 /*
3030  * This routine discards an active speculation.  If the specified speculation
3031  * is not in a valid state to perform a discard(), this routine will silently
3032  * do nothing.  The state of the specified speculation is transitioned
3033  * according to the state transition diagram outlined in <sys/dtrace_impl.h>
3034  */
3035 static void
dtrace_speculation_discard(dtrace_state_t * state,processorid_t cpu,dtrace_specid_t which)3036 dtrace_speculation_discard(dtrace_state_t *state, processorid_t cpu,
3037     dtrace_specid_t which)
3038 {
3039 	dtrace_speculation_t *spec;
3040 	dtrace_speculation_state_t curstate, new = 0;
3041 	dtrace_buffer_t *buf;
3042 
3043 	if (which == 0)
3044 		return;
3045 
3046 	if (which > state->dts_nspeculations) {
3047 		cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
3048 		return;
3049 	}
3050 
3051 	spec = &state->dts_speculations[which - 1];
3052 	buf = &spec->dtsp_buffer[cpu];
3053 
3054 	do {
3055 		curstate = spec->dtsp_state;
3056 
3057 		switch (curstate) {
3058 		case DTRACESPEC_INACTIVE:
3059 		case DTRACESPEC_COMMITTINGMANY:
3060 		case DTRACESPEC_COMMITTING:
3061 		case DTRACESPEC_DISCARDING:
3062 			return;
3063 
3064 		case DTRACESPEC_ACTIVE:
3065 		case DTRACESPEC_ACTIVEMANY:
3066 			new = DTRACESPEC_DISCARDING;
3067 			break;
3068 
3069 		case DTRACESPEC_ACTIVEONE:
3070 			if (buf->dtb_offset != 0) {
3071 				new = DTRACESPEC_INACTIVE;
3072 			} else {
3073 				new = DTRACESPEC_DISCARDING;
3074 			}
3075 			break;
3076 
3077 		default:
3078 			ASSERT(0);
3079 		}
3080 	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
3081 	    curstate, new) != curstate);
3082 
3083 	buf->dtb_offset = 0;
3084 	buf->dtb_drops = 0;
3085 }
3086 
3087 /*
3088  * Note:  not called from probe context.  This function is called
3089  * asynchronously from cross call context to clean any speculations that are
3090  * in the COMMITTINGMANY or DISCARDING states.  These speculations may not be
3091  * transitioned back to the INACTIVE state until all CPUs have cleaned the
3092  * speculation.
3093  */
3094 static void
dtrace_speculation_clean_here(dtrace_state_t * state)3095 dtrace_speculation_clean_here(dtrace_state_t *state)
3096 {
3097 	dtrace_icookie_t cookie;
3098 	processorid_t cpu = curcpu;
3099 	dtrace_buffer_t *dest = &state->dts_buffer[cpu];
3100 	dtrace_specid_t i;
3101 
3102 	cookie = dtrace_interrupt_disable();
3103 
3104 	if (dest->dtb_tomax == NULL) {
3105 		dtrace_interrupt_enable(cookie);
3106 		return;
3107 	}
3108 
3109 	for (i = 0; i < state->dts_nspeculations; i++) {
3110 		dtrace_speculation_t *spec = &state->dts_speculations[i];
3111 		dtrace_buffer_t *src = &spec->dtsp_buffer[cpu];
3112 
3113 		if (src->dtb_tomax == NULL)
3114 			continue;
3115 
3116 		if (spec->dtsp_state == DTRACESPEC_DISCARDING) {
3117 			src->dtb_offset = 0;
3118 			continue;
3119 		}
3120 
3121 		if (spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
3122 			continue;
3123 
3124 		if (src->dtb_offset == 0)
3125 			continue;
3126 
3127 		dtrace_speculation_commit(state, cpu, i + 1);
3128 	}
3129 
3130 	dtrace_interrupt_enable(cookie);
3131 }
3132 
3133 /*
3134  * Note:  not called from probe context.  This function is called
3135  * asynchronously (and at a regular interval) to clean any speculations that
3136  * are in the COMMITTINGMANY or DISCARDING states.  If it discovers that there
3137  * is work to be done, it cross calls all CPUs to perform that work;
3138  * COMMITMANY and DISCARDING speculations may not be transitioned back to the
3139  * INACTIVE state until they have been cleaned by all CPUs.
3140  */
3141 static void
dtrace_speculation_clean(dtrace_state_t * state)3142 dtrace_speculation_clean(dtrace_state_t *state)
3143 {
3144 	int work = 0, rv;
3145 	dtrace_specid_t i;
3146 
3147 	for (i = 0; i < state->dts_nspeculations; i++) {
3148 		dtrace_speculation_t *spec = &state->dts_speculations[i];
3149 
3150 		ASSERT(!spec->dtsp_cleaning);
3151 
3152 		if (spec->dtsp_state != DTRACESPEC_DISCARDING &&
3153 		    spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
3154 			continue;
3155 
3156 		work++;
3157 		spec->dtsp_cleaning = 1;
3158 	}
3159 
3160 	if (!work)
3161 		return;
3162 
3163 	dtrace_xcall(DTRACE_CPUALL,
3164 	    (dtrace_xcall_t)dtrace_speculation_clean_here, state);
3165 
3166 	/*
3167 	 * We now know that all CPUs have committed or discarded their
3168 	 * speculation buffers, as appropriate.  We can now set the state
3169 	 * to inactive.
3170 	 */
3171 	for (i = 0; i < state->dts_nspeculations; i++) {
3172 		dtrace_speculation_t *spec = &state->dts_speculations[i];
3173 		dtrace_speculation_state_t curstate, new;
3174 
3175 		if (!spec->dtsp_cleaning)
3176 			continue;
3177 
3178 		curstate = spec->dtsp_state;
3179 		ASSERT(curstate == DTRACESPEC_DISCARDING ||
3180 		    curstate == DTRACESPEC_COMMITTINGMANY);
3181 
3182 		new = DTRACESPEC_INACTIVE;
3183 
3184 		rv = dtrace_cas32((uint32_t *)&spec->dtsp_state, curstate, new);
3185 		ASSERT(rv == curstate);
3186 		spec->dtsp_cleaning = 0;
3187 	}
3188 }
3189 
3190 /*
3191  * Called as part of a speculate() to get the speculative buffer associated
3192  * with a given speculation.  Returns NULL if the specified speculation is not
3193  * in an ACTIVE state.  If the speculation is in the ACTIVEONE state -- and
3194  * the active CPU is not the specified CPU -- the speculation will be
3195  * atomically transitioned into the ACTIVEMANY state.
3196  */
3197 static dtrace_buffer_t *
dtrace_speculation_buffer(dtrace_state_t * state,processorid_t cpuid,dtrace_specid_t which)3198 dtrace_speculation_buffer(dtrace_state_t *state, processorid_t cpuid,
3199     dtrace_specid_t which)
3200 {
3201 	dtrace_speculation_t *spec;
3202 	dtrace_speculation_state_t curstate, new = 0;
3203 	dtrace_buffer_t *buf;
3204 
3205 	if (which == 0)
3206 		return (NULL);
3207 
3208 	if (which > state->dts_nspeculations) {
3209 		cpu_core[cpuid].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
3210 		return (NULL);
3211 	}
3212 
3213 	spec = &state->dts_speculations[which - 1];
3214 	buf = &spec->dtsp_buffer[cpuid];
3215 
3216 	do {
3217 		curstate = spec->dtsp_state;
3218 
3219 		switch (curstate) {
3220 		case DTRACESPEC_INACTIVE:
3221 		case DTRACESPEC_COMMITTINGMANY:
3222 		case DTRACESPEC_DISCARDING:
3223 			return (NULL);
3224 
3225 		case DTRACESPEC_COMMITTING:
3226 			ASSERT(buf->dtb_offset == 0);
3227 			return (NULL);
3228 
3229 		case DTRACESPEC_ACTIVEONE:
3230 			/*
3231 			 * This speculation is currently active on one CPU.
3232 			 * Check the offset in the buffer; if it's non-zero,
3233 			 * that CPU must be us (and we leave the state alone).
3234 			 * If it's zero, assume that we're starting on a new
3235 			 * CPU -- and change the state to indicate that the
3236 			 * speculation is active on more than one CPU.
3237 			 */
3238 			if (buf->dtb_offset != 0)
3239 				return (buf);
3240 
3241 			new = DTRACESPEC_ACTIVEMANY;
3242 			break;
3243 
3244 		case DTRACESPEC_ACTIVEMANY:
3245 			return (buf);
3246 
3247 		case DTRACESPEC_ACTIVE:
3248 			new = DTRACESPEC_ACTIVEONE;
3249 			break;
3250 
3251 		default:
3252 			ASSERT(0);
3253 		}
3254 	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
3255 	    curstate, new) != curstate);
3256 
3257 	ASSERT(new == DTRACESPEC_ACTIVEONE || new == DTRACESPEC_ACTIVEMANY);
3258 	return (buf);
3259 }
3260 
3261 /*
3262  * Return a string.  In the event that the user lacks the privilege to access
3263  * arbitrary kernel memory, we copy the string out to scratch memory so that we
3264  * don't fail access checking.
3265  *
3266  * dtrace_dif_variable() uses this routine as a helper for various
3267  * builtin values such as 'execname' and 'probefunc.'
3268  */
3269 uintptr_t
dtrace_dif_varstr(uintptr_t addr,dtrace_state_t * state,dtrace_mstate_t * mstate)3270 dtrace_dif_varstr(uintptr_t addr, dtrace_state_t *state,
3271     dtrace_mstate_t *mstate)
3272 {
3273 	uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3274 	uintptr_t ret;
3275 	size_t strsz;
3276 
3277 	/*
3278 	 * The easy case: this probe is allowed to read all of memory, so
3279 	 * we can just return this as a vanilla pointer.
3280 	 */
3281 	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
3282 		return (addr);
3283 
3284 	/*
3285 	 * This is the tougher case: we copy the string in question from
3286 	 * kernel memory into scratch memory and return it that way: this
3287 	 * ensures that we won't trip up when access checking tests the
3288 	 * BYREF return value.
3289 	 */
3290 	strsz = dtrace_strlen((char *)addr, size) + 1;
3291 
3292 	if (mstate->dtms_scratch_ptr + strsz >
3293 	    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
3294 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3295 		return (0);
3296 	}
3297 
3298 	dtrace_strcpy((const void *)addr, (void *)mstate->dtms_scratch_ptr,
3299 	    strsz);
3300 	ret = mstate->dtms_scratch_ptr;
3301 	mstate->dtms_scratch_ptr += strsz;
3302 	return (ret);
3303 }
3304 
3305 /*
3306  * Return a string from a memoy address which is known to have one or
3307  * more concatenated, individually zero terminated, sub-strings.
3308  * In the event that the user lacks the privilege to access
3309  * arbitrary kernel memory, we copy the string out to scratch memory so that we
3310  * don't fail access checking.
3311  *
3312  * dtrace_dif_variable() uses this routine as a helper for various
3313  * builtin values such as 'execargs'.
3314  */
3315 static uintptr_t
dtrace_dif_varstrz(uintptr_t addr,size_t strsz,dtrace_state_t * state,dtrace_mstate_t * mstate)3316 dtrace_dif_varstrz(uintptr_t addr, size_t strsz, dtrace_state_t *state,
3317     dtrace_mstate_t *mstate)
3318 {
3319 	char *p;
3320 	size_t i;
3321 	uintptr_t ret;
3322 
3323 	if (mstate->dtms_scratch_ptr + strsz >
3324 	    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
3325 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3326 		return (0);
3327 	}
3328 
3329 	dtrace_bcopy((const void *)addr, (void *)mstate->dtms_scratch_ptr,
3330 	    strsz);
3331 
3332 	/* Replace sub-string termination characters with a space. */
3333 	for (p = (char *) mstate->dtms_scratch_ptr, i = 0; i < strsz - 1;
3334 	    p++, i++)
3335 		if (*p == '\0')
3336 			*p = ' ';
3337 
3338 	ret = mstate->dtms_scratch_ptr;
3339 	mstate->dtms_scratch_ptr += strsz;
3340 	return (ret);
3341 }
3342 
3343 /*
3344  * This function implements the DIF emulator's variable lookups.  The emulator
3345  * passes a reserved variable identifier and optional built-in array index.
3346  */
3347 static uint64_t
dtrace_dif_variable(dtrace_mstate_t * mstate,dtrace_state_t * state,uint64_t v,uint64_t ndx)3348 dtrace_dif_variable(dtrace_mstate_t *mstate, dtrace_state_t *state, uint64_t v,
3349     uint64_t ndx)
3350 {
3351 	/*
3352 	 * If we're accessing one of the uncached arguments, we'll turn this
3353 	 * into a reference in the args array.
3354 	 */
3355 	if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) {
3356 		ndx = v - DIF_VAR_ARG0;
3357 		v = DIF_VAR_ARGS;
3358 	}
3359 
3360 	switch (v) {
3361 	case DIF_VAR_ARGS:
3362 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_ARGS);
3363 		if (ndx >= sizeof (mstate->dtms_arg) /
3364 		    sizeof (mstate->dtms_arg[0])) {
3365 			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
3366 			dtrace_provider_t *pv;
3367 			uint64_t val;
3368 
3369 			pv = mstate->dtms_probe->dtpr_provider;
3370 			if (pv->dtpv_pops.dtps_getargval != NULL)
3371 				val = pv->dtpv_pops.dtps_getargval(pv->dtpv_arg,
3372 				    mstate->dtms_probe->dtpr_id,
3373 				    mstate->dtms_probe->dtpr_arg, ndx, aframes);
3374 			else
3375 				val = dtrace_getarg(ndx, aframes);
3376 
3377 			/*
3378 			 * This is regrettably required to keep the compiler
3379 			 * from tail-optimizing the call to dtrace_getarg().
3380 			 * The condition always evaluates to true, but the
3381 			 * compiler has no way of figuring that out a priori.
3382 			 * (None of this would be necessary if the compiler
3383 			 * could be relied upon to _always_ tail-optimize
3384 			 * the call to dtrace_getarg() -- but it can't.)
3385 			 */
3386 			if (mstate->dtms_probe != NULL)
3387 				return (val);
3388 
3389 			ASSERT(0);
3390 		}
3391 
3392 		return (mstate->dtms_arg[ndx]);
3393 
3394 	case DIF_VAR_REGS:
3395 	case DIF_VAR_UREGS: {
3396 		struct trapframe *tframe;
3397 
3398 		if (!dtrace_priv_proc(state))
3399 			return (0);
3400 
3401 		if (v == DIF_VAR_REGS)
3402 			tframe = curthread->t_dtrace_trapframe;
3403 		else
3404 			tframe = curthread->td_frame;
3405 
3406 		if (tframe == NULL) {
3407 			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
3408 			cpu_core[curcpu].cpuc_dtrace_illval = 0;
3409 			return (0);
3410 		}
3411 
3412 		return (dtrace_getreg(tframe, ndx));
3413 	}
3414 
3415 	case DIF_VAR_CURTHREAD:
3416 		if (!dtrace_priv_proc(state))
3417 			return (0);
3418 		return ((uint64_t)(uintptr_t)curthread);
3419 
3420 	case DIF_VAR_TIMESTAMP:
3421 		if (!(mstate->dtms_present & DTRACE_MSTATE_TIMESTAMP)) {
3422 			mstate->dtms_timestamp = dtrace_gethrtime();
3423 			mstate->dtms_present |= DTRACE_MSTATE_TIMESTAMP;
3424 		}
3425 		return (mstate->dtms_timestamp);
3426 
3427 	case DIF_VAR_VTIMESTAMP:
3428 		ASSERT(dtrace_vtime_references != 0);
3429 		return (curthread->t_dtrace_vtime);
3430 
3431 	case DIF_VAR_WALLTIMESTAMP:
3432 		if (!(mstate->dtms_present & DTRACE_MSTATE_WALLTIMESTAMP)) {
3433 			mstate->dtms_walltimestamp = dtrace_gethrestime();
3434 			mstate->dtms_present |= DTRACE_MSTATE_WALLTIMESTAMP;
3435 		}
3436 		return (mstate->dtms_walltimestamp);
3437 
3438 #ifdef illumos
3439 	case DIF_VAR_IPL:
3440 		if (!dtrace_priv_kernel(state))
3441 			return (0);
3442 		if (!(mstate->dtms_present & DTRACE_MSTATE_IPL)) {
3443 			mstate->dtms_ipl = dtrace_getipl();
3444 			mstate->dtms_present |= DTRACE_MSTATE_IPL;
3445 		}
3446 		return (mstate->dtms_ipl);
3447 #endif
3448 
3449 	case DIF_VAR_EPID:
3450 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_EPID);
3451 		return (mstate->dtms_epid);
3452 
3453 	case DIF_VAR_ID:
3454 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3455 		return (mstate->dtms_probe->dtpr_id);
3456 
3457 	case DIF_VAR_STACKDEPTH:
3458 		if (!dtrace_priv_kernel(state))
3459 			return (0);
3460 		if (!(mstate->dtms_present & DTRACE_MSTATE_STACKDEPTH)) {
3461 			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
3462 
3463 			mstate->dtms_stackdepth = dtrace_getstackdepth(aframes);
3464 			mstate->dtms_present |= DTRACE_MSTATE_STACKDEPTH;
3465 		}
3466 		return (mstate->dtms_stackdepth);
3467 
3468 	case DIF_VAR_USTACKDEPTH:
3469 		if (!dtrace_priv_proc(state))
3470 			return (0);
3471 		if (!(mstate->dtms_present & DTRACE_MSTATE_USTACKDEPTH)) {
3472 			/*
3473 			 * See comment in DIF_VAR_PID.
3474 			 */
3475 			if (DTRACE_ANCHORED(mstate->dtms_probe) &&
3476 			    CPU_ON_INTR(CPU)) {
3477 				mstate->dtms_ustackdepth = 0;
3478 			} else {
3479 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3480 				mstate->dtms_ustackdepth =
3481 				    dtrace_getustackdepth();
3482 				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3483 			}
3484 			mstate->dtms_present |= DTRACE_MSTATE_USTACKDEPTH;
3485 		}
3486 		return (mstate->dtms_ustackdepth);
3487 
3488 	case DIF_VAR_CALLER:
3489 		if (!dtrace_priv_kernel(state))
3490 			return (0);
3491 		if (!(mstate->dtms_present & DTRACE_MSTATE_CALLER)) {
3492 			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
3493 
3494 			if (!DTRACE_ANCHORED(mstate->dtms_probe)) {
3495 				/*
3496 				 * If this is an unanchored probe, we are
3497 				 * required to go through the slow path:
3498 				 * dtrace_caller() only guarantees correct
3499 				 * results for anchored probes.
3500 				 */
3501 				pc_t caller[2] = {0, 0};
3502 
3503 				dtrace_getpcstack(caller, 2, aframes,
3504 				    (uint32_t *)(uintptr_t)mstate->dtms_arg[0]);
3505 				mstate->dtms_caller = caller[1];
3506 			} else if ((mstate->dtms_caller =
3507 			    dtrace_caller(aframes)) == -1) {
3508 				/*
3509 				 * We have failed to do this the quick way;
3510 				 * we must resort to the slower approach of
3511 				 * calling dtrace_getpcstack().
3512 				 */
3513 				pc_t caller = 0;
3514 
3515 				dtrace_getpcstack(&caller, 1, aframes, NULL);
3516 				mstate->dtms_caller = caller;
3517 			}
3518 
3519 			mstate->dtms_present |= DTRACE_MSTATE_CALLER;
3520 		}
3521 		return (mstate->dtms_caller);
3522 
3523 	case DIF_VAR_UCALLER:
3524 		if (!dtrace_priv_proc(state))
3525 			return (0);
3526 
3527 		if (!(mstate->dtms_present & DTRACE_MSTATE_UCALLER)) {
3528 			uint64_t ustack[3];
3529 
3530 			/*
3531 			 * dtrace_getupcstack() fills in the first uint64_t
3532 			 * with the current PID.  The second uint64_t will
3533 			 * be the program counter at user-level.  The third
3534 			 * uint64_t will contain the caller, which is what
3535 			 * we're after.
3536 			 */
3537 			ustack[2] = 0;
3538 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3539 			dtrace_getupcstack(ustack, 3);
3540 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3541 			mstate->dtms_ucaller = ustack[2];
3542 			mstate->dtms_present |= DTRACE_MSTATE_UCALLER;
3543 		}
3544 
3545 		return (mstate->dtms_ucaller);
3546 
3547 	case DIF_VAR_PROBEPROV:
3548 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3549 		return (dtrace_dif_varstr(
3550 		    (uintptr_t)mstate->dtms_probe->dtpr_provider->dtpv_name,
3551 		    state, mstate));
3552 
3553 	case DIF_VAR_PROBEMOD:
3554 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3555 		return (dtrace_dif_varstr(
3556 		    (uintptr_t)mstate->dtms_probe->dtpr_mod,
3557 		    state, mstate));
3558 
3559 	case DIF_VAR_PROBEFUNC:
3560 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3561 		return (dtrace_dif_varstr(
3562 		    (uintptr_t)mstate->dtms_probe->dtpr_func,
3563 		    state, mstate));
3564 
3565 	case DIF_VAR_PROBENAME:
3566 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3567 		return (dtrace_dif_varstr(
3568 		    (uintptr_t)mstate->dtms_probe->dtpr_name,
3569 		    state, mstate));
3570 
3571 	case DIF_VAR_PID:
3572 		if (!dtrace_priv_proc(state))
3573 			return (0);
3574 
3575 #ifdef illumos
3576 		/*
3577 		 * Note that we are assuming that an unanchored probe is
3578 		 * always due to a high-level interrupt.  (And we're assuming
3579 		 * that there is only a single high level interrupt.)
3580 		 */
3581 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3582 			return (pid0.pid_id);
3583 
3584 		/*
3585 		 * It is always safe to dereference one's own t_procp pointer:
3586 		 * it always points to a valid, allocated proc structure.
3587 		 * Further, it is always safe to dereference the p_pidp member
3588 		 * of one's own proc structure.  (These are truisms becuase
3589 		 * threads and processes don't clean up their own state --
3590 		 * they leave that task to whomever reaps them.)
3591 		 */
3592 		return ((uint64_t)curthread->t_procp->p_pidp->pid_id);
3593 #else
3594 		return ((uint64_t)curproc->p_pid);
3595 #endif
3596 
3597 	case DIF_VAR_PPID:
3598 		if (!dtrace_priv_proc(state))
3599 			return (0);
3600 
3601 #ifdef illumos
3602 		/*
3603 		 * See comment in DIF_VAR_PID.
3604 		 */
3605 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3606 			return (pid0.pid_id);
3607 
3608 		/*
3609 		 * It is always safe to dereference one's own t_procp pointer:
3610 		 * it always points to a valid, allocated proc structure.
3611 		 * (This is true because threads don't clean up their own
3612 		 * state -- they leave that task to whomever reaps them.)
3613 		 */
3614 		return ((uint64_t)curthread->t_procp->p_ppid);
3615 #else
3616 		if (curproc->p_pid == proc0.p_pid)
3617 			return (curproc->p_pid);
3618 		else
3619 			return (curproc->p_pptr->p_pid);
3620 #endif
3621 
3622 	case DIF_VAR_TID:
3623 #ifdef illumos
3624 		/*
3625 		 * See comment in DIF_VAR_PID.
3626 		 */
3627 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3628 			return (0);
3629 #endif
3630 
3631 		return ((uint64_t)curthread->t_tid);
3632 
3633 	case DIF_VAR_EXECARGS: {
3634 		struct pargs *p_args = curthread->td_proc->p_args;
3635 
3636 		if (p_args == NULL)
3637 			return(0);
3638 
3639 		return (dtrace_dif_varstrz(
3640 		    (uintptr_t) p_args->ar_args, p_args->ar_length, state, mstate));
3641 	}
3642 
3643 	case DIF_VAR_EXECNAME:
3644 #ifdef illumos
3645 		if (!dtrace_priv_proc(state))
3646 			return (0);
3647 
3648 		/*
3649 		 * See comment in DIF_VAR_PID.
3650 		 */
3651 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3652 			return ((uint64_t)(uintptr_t)p0.p_user.u_comm);
3653 
3654 		/*
3655 		 * It is always safe to dereference one's own t_procp pointer:
3656 		 * it always points to a valid, allocated proc structure.
3657 		 * (This is true because threads don't clean up their own
3658 		 * state -- they leave that task to whomever reaps them.)
3659 		 */
3660 		return (dtrace_dif_varstr(
3661 		    (uintptr_t)curthread->t_procp->p_user.u_comm,
3662 		    state, mstate));
3663 #else
3664 		return (dtrace_dif_varstr(
3665 		    (uintptr_t) curthread->td_proc->p_comm, state, mstate));
3666 #endif
3667 
3668 	case DIF_VAR_ZONENAME:
3669 #ifdef illumos
3670 		if (!dtrace_priv_proc(state))
3671 			return (0);
3672 
3673 		/*
3674 		 * See comment in DIF_VAR_PID.
3675 		 */
3676 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3677 			return ((uint64_t)(uintptr_t)p0.p_zone->zone_name);
3678 
3679 		/*
3680 		 * It is always safe to dereference one's own t_procp pointer:
3681 		 * it always points to a valid, allocated proc structure.
3682 		 * (This is true because threads don't clean up their own
3683 		 * state -- they leave that task to whomever reaps them.)
3684 		 */
3685 		return (dtrace_dif_varstr(
3686 		    (uintptr_t)curthread->t_procp->p_zone->zone_name,
3687 		    state, mstate));
3688 #elif defined(__FreeBSD__)
3689 	/*
3690 	 * On FreeBSD, we introduce compatibility to zonename by falling through
3691 	 * into jailname.
3692 	 */
3693 	case DIF_VAR_JAILNAME:
3694 		if (!dtrace_priv_kernel(state))
3695 			return (0);
3696 
3697 		return (dtrace_dif_varstr(
3698 		    (uintptr_t)curthread->td_ucred->cr_prison->pr_name,
3699 		    state, mstate));
3700 
3701 	case DIF_VAR_JID:
3702 		if (!dtrace_priv_kernel(state))
3703 			return (0);
3704 
3705 		return ((uint64_t)curthread->td_ucred->cr_prison->pr_id);
3706 #else
3707 		return (0);
3708 #endif
3709 
3710 	case DIF_VAR_UID:
3711 		if (!dtrace_priv_proc(state))
3712 			return (0);
3713 
3714 #ifdef illumos
3715 		/*
3716 		 * See comment in DIF_VAR_PID.
3717 		 */
3718 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3719 			return ((uint64_t)p0.p_cred->cr_uid);
3720 
3721 		/*
3722 		 * It is always safe to dereference one's own t_procp pointer:
3723 		 * it always points to a valid, allocated proc structure.
3724 		 * (This is true because threads don't clean up their own
3725 		 * state -- they leave that task to whomever reaps them.)
3726 		 *
3727 		 * Additionally, it is safe to dereference one's own process
3728 		 * credential, since this is never NULL after process birth.
3729 		 */
3730 		return ((uint64_t)curthread->t_procp->p_cred->cr_uid);
3731 #else
3732 		return ((uint64_t)curthread->td_ucred->cr_uid);
3733 #endif
3734 
3735 	case DIF_VAR_GID:
3736 		if (!dtrace_priv_proc(state))
3737 			return (0);
3738 
3739 #ifdef illumos
3740 		/*
3741 		 * See comment in DIF_VAR_PID.
3742 		 */
3743 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3744 			return ((uint64_t)p0.p_cred->cr_gid);
3745 
3746 		/*
3747 		 * It is always safe to dereference one's own t_procp pointer:
3748 		 * it always points to a valid, allocated proc structure.
3749 		 * (This is true because threads don't clean up their own
3750 		 * state -- they leave that task to whomever reaps them.)
3751 		 *
3752 		 * Additionally, it is safe to dereference one's own process
3753 		 * credential, since this is never NULL after process birth.
3754 		 */
3755 		return ((uint64_t)curthread->t_procp->p_cred->cr_gid);
3756 #else
3757 		return ((uint64_t)curthread->td_ucred->cr_gid);
3758 #endif
3759 
3760 	case DIF_VAR_ERRNO: {
3761 #ifdef illumos
3762 		klwp_t *lwp;
3763 		if (!dtrace_priv_proc(state))
3764 			return (0);
3765 
3766 		/*
3767 		 * See comment in DIF_VAR_PID.
3768 		 */
3769 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3770 			return (0);
3771 
3772 		/*
3773 		 * It is always safe to dereference one's own t_lwp pointer in
3774 		 * the event that this pointer is non-NULL.  (This is true
3775 		 * because threads and lwps don't clean up their own state --
3776 		 * they leave that task to whomever reaps them.)
3777 		 */
3778 		if ((lwp = curthread->t_lwp) == NULL)
3779 			return (0);
3780 
3781 		return ((uint64_t)lwp->lwp_errno);
3782 #else
3783 		return (curthread->td_errno);
3784 #endif
3785 	}
3786 #ifndef illumos
3787 	case DIF_VAR_CPU: {
3788 		return curcpu;
3789 	}
3790 #endif
3791 	default:
3792 		DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
3793 		return (0);
3794 	}
3795 }
3796 
3797 
3798 typedef enum dtrace_json_state {
3799 	DTRACE_JSON_REST = 1,
3800 	DTRACE_JSON_OBJECT,
3801 	DTRACE_JSON_STRING,
3802 	DTRACE_JSON_STRING_ESCAPE,
3803 	DTRACE_JSON_STRING_ESCAPE_UNICODE,
3804 	DTRACE_JSON_COLON,
3805 	DTRACE_JSON_COMMA,
3806 	DTRACE_JSON_VALUE,
3807 	DTRACE_JSON_IDENTIFIER,
3808 	DTRACE_JSON_NUMBER,
3809 	DTRACE_JSON_NUMBER_FRAC,
3810 	DTRACE_JSON_NUMBER_EXP,
3811 	DTRACE_JSON_COLLECT_OBJECT
3812 } dtrace_json_state_t;
3813 
3814 /*
3815  * This function possesses just enough knowledge about JSON to extract a single
3816  * value from a JSON string and store it in the scratch buffer.  It is able
3817  * to extract nested object values, and members of arrays by index.
3818  *
3819  * elemlist is a list of JSON keys, stored as packed NUL-terminated strings, to
3820  * be looked up as we descend into the object tree.  e.g.
3821  *
3822  *    foo[0].bar.baz[32] --> "foo" NUL "0" NUL "bar" NUL "baz" NUL "32" NUL
3823  *       with nelems = 5.
3824  *
3825  * The run time of this function must be bounded above by strsize to limit the
3826  * amount of work done in probe context.  As such, it is implemented as a
3827  * simple state machine, reading one character at a time using safe loads
3828  * until we find the requested element, hit a parsing error or run off the
3829  * end of the object or string.
3830  *
3831  * As there is no way for a subroutine to return an error without interrupting
3832  * clause execution, we simply return NULL in the event of a missing key or any
3833  * other error condition.  Each NULL return in this function is commented with
3834  * the error condition it represents -- parsing or otherwise.
3835  *
3836  * The set of states for the state machine closely matches the JSON
3837  * specification (http://json.org/).  Briefly:
3838  *
3839  *   DTRACE_JSON_REST:
3840  *     Skip whitespace until we find either a top-level Object, moving
3841  *     to DTRACE_JSON_OBJECT; or an Array, moving to DTRACE_JSON_VALUE.
3842  *
3843  *   DTRACE_JSON_OBJECT:
3844  *     Locate the next key String in an Object.  Sets a flag to denote
3845  *     the next String as a key string and moves to DTRACE_JSON_STRING.
3846  *
3847  *   DTRACE_JSON_COLON:
3848  *     Skip whitespace until we find the colon that separates key Strings
3849  *     from their values.  Once found, move to DTRACE_JSON_VALUE.
3850  *
3851  *   DTRACE_JSON_VALUE:
3852  *     Detects the type of the next value (String, Number, Identifier, Object
3853  *     or Array) and routes to the states that process that type.  Here we also
3854  *     deal with the element selector list if we are requested to traverse down
3855  *     into the object tree.
3856  *
3857  *   DTRACE_JSON_COMMA:
3858  *     Skip whitespace until we find the comma that separates key-value pairs
3859  *     in Objects (returning to DTRACE_JSON_OBJECT) or values in Arrays
3860  *     (similarly DTRACE_JSON_VALUE).  All following literal value processing
3861  *     states return to this state at the end of their value, unless otherwise
3862  *     noted.
3863  *
3864  *   DTRACE_JSON_NUMBER, DTRACE_JSON_NUMBER_FRAC, DTRACE_JSON_NUMBER_EXP:
3865  *     Processes a Number literal from the JSON, including any exponent
3866  *     component that may be present.  Numbers are returned as strings, which
3867  *     may be passed to strtoll() if an integer is required.
3868  *
3869  *   DTRACE_JSON_IDENTIFIER:
3870  *     Processes a "true", "false" or "null" literal in the JSON.
3871  *
3872  *   DTRACE_JSON_STRING, DTRACE_JSON_STRING_ESCAPE,
3873  *   DTRACE_JSON_STRING_ESCAPE_UNICODE:
3874  *     Processes a String literal from the JSON, whether the String denotes
3875  *     a key, a value or part of a larger Object.  Handles all escape sequences
3876  *     present in the specification, including four-digit unicode characters,
3877  *     but merely includes the escape sequence without converting it to the
3878  *     actual escaped character.  If the String is flagged as a key, we
3879  *     move to DTRACE_JSON_COLON rather than DTRACE_JSON_COMMA.
3880  *
3881  *   DTRACE_JSON_COLLECT_OBJECT:
3882  *     This state collects an entire Object (or Array), correctly handling
3883  *     embedded strings.  If the full element selector list matches this nested
3884  *     object, we return the Object in full as a string.  If not, we use this
3885  *     state to skip to the next value at this level and continue processing.
3886  *
3887  * NOTE: This function uses various macros from strtolctype.h to manipulate
3888  * digit values, etc -- these have all been checked to ensure they make
3889  * no additional function calls.
3890  */
3891 static char *
dtrace_json(uint64_t size,uintptr_t json,char * elemlist,int nelems,char * dest)3892 dtrace_json(uint64_t size, uintptr_t json, char *elemlist, int nelems,
3893     char *dest)
3894 {
3895 	dtrace_json_state_t state = DTRACE_JSON_REST;
3896 	int64_t array_elem = INT64_MIN;
3897 	int64_t array_pos = 0;
3898 	uint8_t escape_unicount = 0;
3899 	boolean_t string_is_key = B_FALSE;
3900 	boolean_t collect_object = B_FALSE;
3901 	boolean_t found_key = B_FALSE;
3902 	boolean_t in_array = B_FALSE;
3903 	uint32_t braces = 0, brackets = 0;
3904 	char *elem = elemlist;
3905 	char *dd = dest;
3906 	uintptr_t cur;
3907 
3908 	for (cur = json; cur < json + size; cur++) {
3909 		char cc = dtrace_load8(cur);
3910 		if (cc == '\0')
3911 			return (NULL);
3912 
3913 		switch (state) {
3914 		case DTRACE_JSON_REST:
3915 			if (isspace(cc))
3916 				break;
3917 
3918 			if (cc == '{') {
3919 				state = DTRACE_JSON_OBJECT;
3920 				break;
3921 			}
3922 
3923 			if (cc == '[') {
3924 				in_array = B_TRUE;
3925 				array_pos = 0;
3926 				array_elem = dtrace_strtoll(elem, 10, size);
3927 				found_key = array_elem == 0 ? B_TRUE : B_FALSE;
3928 				state = DTRACE_JSON_VALUE;
3929 				break;
3930 			}
3931 
3932 			/*
3933 			 * ERROR: expected to find a top-level object or array.
3934 			 */
3935 			return (NULL);
3936 		case DTRACE_JSON_OBJECT:
3937 			if (isspace(cc))
3938 				break;
3939 
3940 			if (cc == '"') {
3941 				state = DTRACE_JSON_STRING;
3942 				string_is_key = B_TRUE;
3943 				break;
3944 			}
3945 
3946 			/*
3947 			 * ERROR: either the object did not start with a key
3948 			 * string, or we've run off the end of the object
3949 			 * without finding the requested key.
3950 			 */
3951 			return (NULL);
3952 		case DTRACE_JSON_STRING:
3953 			if (cc == '\\') {
3954 				*dd++ = '\\';
3955 				state = DTRACE_JSON_STRING_ESCAPE;
3956 				break;
3957 			}
3958 
3959 			if (cc == '"') {
3960 				if (collect_object) {
3961 					/*
3962 					 * We don't reset the dest here, as
3963 					 * the string is part of a larger
3964 					 * object being collected.
3965 					 */
3966 					*dd++ = cc;
3967 					collect_object = B_FALSE;
3968 					state = DTRACE_JSON_COLLECT_OBJECT;
3969 					break;
3970 				}
3971 				*dd = '\0';
3972 				dd = dest; /* reset string buffer */
3973 				if (string_is_key) {
3974 					if (dtrace_strncmp(dest, elem,
3975 					    size) == 0)
3976 						found_key = B_TRUE;
3977 				} else if (found_key) {
3978 					if (nelems > 1) {
3979 						/*
3980 						 * We expected an object, not
3981 						 * this string.
3982 						 */
3983 						return (NULL);
3984 					}
3985 					return (dest);
3986 				}
3987 				state = string_is_key ? DTRACE_JSON_COLON :
3988 				    DTRACE_JSON_COMMA;
3989 				string_is_key = B_FALSE;
3990 				break;
3991 			}
3992 
3993 			*dd++ = cc;
3994 			break;
3995 		case DTRACE_JSON_STRING_ESCAPE:
3996 			*dd++ = cc;
3997 			if (cc == 'u') {
3998 				escape_unicount = 0;
3999 				state = DTRACE_JSON_STRING_ESCAPE_UNICODE;
4000 			} else {
4001 				state = DTRACE_JSON_STRING;
4002 			}
4003 			break;
4004 		case DTRACE_JSON_STRING_ESCAPE_UNICODE:
4005 			if (!isxdigit(cc)) {
4006 				/*
4007 				 * ERROR: invalid unicode escape, expected
4008 				 * four valid hexidecimal digits.
4009 				 */
4010 				return (NULL);
4011 			}
4012 
4013 			*dd++ = cc;
4014 			if (++escape_unicount == 4)
4015 				state = DTRACE_JSON_STRING;
4016 			break;
4017 		case DTRACE_JSON_COLON:
4018 			if (isspace(cc))
4019 				break;
4020 
4021 			if (cc == ':') {
4022 				state = DTRACE_JSON_VALUE;
4023 				break;
4024 			}
4025 
4026 			/*
4027 			 * ERROR: expected a colon.
4028 			 */
4029 			return (NULL);
4030 		case DTRACE_JSON_COMMA:
4031 			if (isspace(cc))
4032 				break;
4033 
4034 			if (cc == ',') {
4035 				if (in_array) {
4036 					state = DTRACE_JSON_VALUE;
4037 					if (++array_pos == array_elem)
4038 						found_key = B_TRUE;
4039 				} else {
4040 					state = DTRACE_JSON_OBJECT;
4041 				}
4042 				break;
4043 			}
4044 
4045 			/*
4046 			 * ERROR: either we hit an unexpected character, or
4047 			 * we reached the end of the object or array without
4048 			 * finding the requested key.
4049 			 */
4050 			return (NULL);
4051 		case DTRACE_JSON_IDENTIFIER:
4052 			if (islower(cc)) {
4053 				*dd++ = cc;
4054 				break;
4055 			}
4056 
4057 			*dd = '\0';
4058 			dd = dest; /* reset string buffer */
4059 
4060 			if (dtrace_strncmp(dest, "true", 5) == 0 ||
4061 			    dtrace_strncmp(dest, "false", 6) == 0 ||
4062 			    dtrace_strncmp(dest, "null", 5) == 0) {
4063 				if (found_key) {
4064 					if (nelems > 1) {
4065 						/*
4066 						 * ERROR: We expected an object,
4067 						 * not this identifier.
4068 						 */
4069 						return (NULL);
4070 					}
4071 					return (dest);
4072 				} else {
4073 					cur--;
4074 					state = DTRACE_JSON_COMMA;
4075 					break;
4076 				}
4077 			}
4078 
4079 			/*
4080 			 * ERROR: we did not recognise the identifier as one
4081 			 * of those in the JSON specification.
4082 			 */
4083 			return (NULL);
4084 		case DTRACE_JSON_NUMBER:
4085 			if (cc == '.') {
4086 				*dd++ = cc;
4087 				state = DTRACE_JSON_NUMBER_FRAC;
4088 				break;
4089 			}
4090 
4091 			if (cc == 'x' || cc == 'X') {
4092 				/*
4093 				 * ERROR: specification explicitly excludes
4094 				 * hexidecimal or octal numbers.
4095 				 */
4096 				return (NULL);
4097 			}
4098 
4099 			/* FALLTHRU */
4100 		case DTRACE_JSON_NUMBER_FRAC:
4101 			if (cc == 'e' || cc == 'E') {
4102 				*dd++ = cc;
4103 				state = DTRACE_JSON_NUMBER_EXP;
4104 				break;
4105 			}
4106 
4107 			if (cc == '+' || cc == '-') {
4108 				/*
4109 				 * ERROR: expect sign as part of exponent only.
4110 				 */
4111 				return (NULL);
4112 			}
4113 			/* FALLTHRU */
4114 		case DTRACE_JSON_NUMBER_EXP:
4115 			if (isdigit(cc) || cc == '+' || cc == '-') {
4116 				*dd++ = cc;
4117 				break;
4118 			}
4119 
4120 			*dd = '\0';
4121 			dd = dest; /* reset string buffer */
4122 			if (found_key) {
4123 				if (nelems > 1) {
4124 					/*
4125 					 * ERROR: We expected an object, not
4126 					 * this number.
4127 					 */
4128 					return (NULL);
4129 				}
4130 				return (dest);
4131 			}
4132 
4133 			cur--;
4134 			state = DTRACE_JSON_COMMA;
4135 			break;
4136 		case DTRACE_JSON_VALUE:
4137 			if (isspace(cc))
4138 				break;
4139 
4140 			if (cc == '{' || cc == '[') {
4141 				if (nelems > 1 && found_key) {
4142 					in_array = cc == '[' ? B_TRUE : B_FALSE;
4143 					/*
4144 					 * If our element selector directs us
4145 					 * to descend into this nested object,
4146 					 * then move to the next selector
4147 					 * element in the list and restart the
4148 					 * state machine.
4149 					 */
4150 					while (*elem != '\0')
4151 						elem++;
4152 					elem++; /* skip the inter-element NUL */
4153 					nelems--;
4154 					dd = dest;
4155 					if (in_array) {
4156 						state = DTRACE_JSON_VALUE;
4157 						array_pos = 0;
4158 						array_elem = dtrace_strtoll(
4159 						    elem, 10, size);
4160 						found_key = array_elem == 0 ?
4161 						    B_TRUE : B_FALSE;
4162 					} else {
4163 						found_key = B_FALSE;
4164 						state = DTRACE_JSON_OBJECT;
4165 					}
4166 					break;
4167 				}
4168 
4169 				/*
4170 				 * Otherwise, we wish to either skip this
4171 				 * nested object or return it in full.
4172 				 */
4173 				if (cc == '[')
4174 					brackets = 1;
4175 				else
4176 					braces = 1;
4177 				*dd++ = cc;
4178 				state = DTRACE_JSON_COLLECT_OBJECT;
4179 				break;
4180 			}
4181 
4182 			if (cc == '"') {
4183 				state = DTRACE_JSON_STRING;
4184 				break;
4185 			}
4186 
4187 			if (islower(cc)) {
4188 				/*
4189 				 * Here we deal with true, false and null.
4190 				 */
4191 				*dd++ = cc;
4192 				state = DTRACE_JSON_IDENTIFIER;
4193 				break;
4194 			}
4195 
4196 			if (cc == '-' || isdigit(cc)) {
4197 				*dd++ = cc;
4198 				state = DTRACE_JSON_NUMBER;
4199 				break;
4200 			}
4201 
4202 			/*
4203 			 * ERROR: unexpected character at start of value.
4204 			 */
4205 			return (NULL);
4206 		case DTRACE_JSON_COLLECT_OBJECT:
4207 			if (cc == '\0')
4208 				/*
4209 				 * ERROR: unexpected end of input.
4210 				 */
4211 				return (NULL);
4212 
4213 			*dd++ = cc;
4214 			if (cc == '"') {
4215 				collect_object = B_TRUE;
4216 				state = DTRACE_JSON_STRING;
4217 				break;
4218 			}
4219 
4220 			if (cc == ']') {
4221 				if (brackets-- == 0) {
4222 					/*
4223 					 * ERROR: unbalanced brackets.
4224 					 */
4225 					return (NULL);
4226 				}
4227 			} else if (cc == '}') {
4228 				if (braces-- == 0) {
4229 					/*
4230 					 * ERROR: unbalanced braces.
4231 					 */
4232 					return (NULL);
4233 				}
4234 			} else if (cc == '{') {
4235 				braces++;
4236 			} else if (cc == '[') {
4237 				brackets++;
4238 			}
4239 
4240 			if (brackets == 0 && braces == 0) {
4241 				if (found_key) {
4242 					*dd = '\0';
4243 					return (dest);
4244 				}
4245 				dd = dest; /* reset string buffer */
4246 				state = DTRACE_JSON_COMMA;
4247 			}
4248 			break;
4249 		}
4250 	}
4251 	return (NULL);
4252 }
4253 
4254 /*
4255  * Emulate the execution of DTrace ID subroutines invoked by the call opcode.
4256  * Notice that we don't bother validating the proper number of arguments or
4257  * their types in the tuple stack.  This isn't needed because all argument
4258  * interpretation is safe because of our load safety -- the worst that can
4259  * happen is that a bogus program can obtain bogus results.
4260  */
4261 static void
dtrace_dif_subr(uint_t subr,uint_t rd,uint64_t * regs,dtrace_key_t * tupregs,int nargs,dtrace_mstate_t * mstate,dtrace_state_t * state)4262 dtrace_dif_subr(uint_t subr, uint_t rd, uint64_t *regs,
4263     dtrace_key_t *tupregs, int nargs,
4264     dtrace_mstate_t *mstate, dtrace_state_t *state)
4265 {
4266 	volatile uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
4267 	volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval;
4268 	dtrace_vstate_t *vstate = &state->dts_vstate;
4269 
4270 #ifdef illumos
4271 	union {
4272 		mutex_impl_t mi;
4273 		uint64_t mx;
4274 	} m;
4275 
4276 	union {
4277 		krwlock_t ri;
4278 		uintptr_t rw;
4279 	} r;
4280 #else
4281 	struct thread *lowner;
4282 	union {
4283 		struct lock_object *li;
4284 		uintptr_t lx;
4285 	} l;
4286 #endif
4287 
4288 	switch (subr) {
4289 	case DIF_SUBR_RAND:
4290 		regs[rd] = dtrace_xoroshiro128_plus_next(
4291 		    state->dts_rstate[curcpu]);
4292 		break;
4293 
4294 #ifdef illumos
4295 	case DIF_SUBR_MUTEX_OWNED:
4296 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
4297 		    mstate, vstate)) {
4298 			regs[rd] = 0;
4299 			break;
4300 		}
4301 
4302 		m.mx = dtrace_load64(tupregs[0].dttk_value);
4303 		if (MUTEX_TYPE_ADAPTIVE(&m.mi))
4304 			regs[rd] = MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER;
4305 		else
4306 			regs[rd] = LOCK_HELD(&m.mi.m_spin.m_spinlock);
4307 		break;
4308 
4309 	case DIF_SUBR_MUTEX_OWNER:
4310 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
4311 		    mstate, vstate)) {
4312 			regs[rd] = 0;
4313 			break;
4314 		}
4315 
4316 		m.mx = dtrace_load64(tupregs[0].dttk_value);
4317 		if (MUTEX_TYPE_ADAPTIVE(&m.mi) &&
4318 		    MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER)
4319 			regs[rd] = (uintptr_t)MUTEX_OWNER(&m.mi);
4320 		else
4321 			regs[rd] = 0;
4322 		break;
4323 
4324 	case DIF_SUBR_MUTEX_TYPE_ADAPTIVE:
4325 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
4326 		    mstate, vstate)) {
4327 			regs[rd] = 0;
4328 			break;
4329 		}
4330 
4331 		m.mx = dtrace_load64(tupregs[0].dttk_value);
4332 		regs[rd] = MUTEX_TYPE_ADAPTIVE(&m.mi);
4333 		break;
4334 
4335 	case DIF_SUBR_MUTEX_TYPE_SPIN:
4336 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
4337 		    mstate, vstate)) {
4338 			regs[rd] = 0;
4339 			break;
4340 		}
4341 
4342 		m.mx = dtrace_load64(tupregs[0].dttk_value);
4343 		regs[rd] = MUTEX_TYPE_SPIN(&m.mi);
4344 		break;
4345 
4346 	case DIF_SUBR_RW_READ_HELD: {
4347 		uintptr_t tmp;
4348 
4349 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
4350 		    mstate, vstate)) {
4351 			regs[rd] = 0;
4352 			break;
4353 		}
4354 
4355 		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
4356 		regs[rd] = _RW_READ_HELD(&r.ri, tmp);
4357 		break;
4358 	}
4359 
4360 	case DIF_SUBR_RW_WRITE_HELD:
4361 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
4362 		    mstate, vstate)) {
4363 			regs[rd] = 0;
4364 			break;
4365 		}
4366 
4367 		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
4368 		regs[rd] = _RW_WRITE_HELD(&r.ri);
4369 		break;
4370 
4371 	case DIF_SUBR_RW_ISWRITER:
4372 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
4373 		    mstate, vstate)) {
4374 			regs[rd] = 0;
4375 			break;
4376 		}
4377 
4378 		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
4379 		regs[rd] = _RW_ISWRITER(&r.ri);
4380 		break;
4381 
4382 #else /* !illumos */
4383 	case DIF_SUBR_MUTEX_OWNED:
4384 		if (!dtrace_canload(tupregs[0].dttk_value,
4385 			sizeof (struct lock_object), mstate, vstate)) {
4386 			regs[rd] = 0;
4387 			break;
4388 		}
4389 		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
4390 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4391 		regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner);
4392 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4393 		break;
4394 
4395 	case DIF_SUBR_MUTEX_OWNER:
4396 		if (!dtrace_canload(tupregs[0].dttk_value,
4397 			sizeof (struct lock_object), mstate, vstate)) {
4398 			regs[rd] = 0;
4399 			break;
4400 		}
4401 		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
4402 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4403 		LOCK_CLASS(l.li)->lc_owner(l.li, &lowner);
4404 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4405 		regs[rd] = (uintptr_t)lowner;
4406 		break;
4407 
4408 	case DIF_SUBR_MUTEX_TYPE_ADAPTIVE:
4409 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (struct mtx),
4410 		    mstate, vstate)) {
4411 			regs[rd] = 0;
4412 			break;
4413 		}
4414 		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
4415 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4416 		regs[rd] = (LOCK_CLASS(l.li)->lc_flags & LC_SLEEPLOCK) != 0;
4417 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4418 		break;
4419 
4420 	case DIF_SUBR_MUTEX_TYPE_SPIN:
4421 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (struct mtx),
4422 		    mstate, vstate)) {
4423 			regs[rd] = 0;
4424 			break;
4425 		}
4426 		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
4427 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4428 		regs[rd] = (LOCK_CLASS(l.li)->lc_flags & LC_SPINLOCK) != 0;
4429 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4430 		break;
4431 
4432 	case DIF_SUBR_RW_READ_HELD:
4433 	case DIF_SUBR_SX_SHARED_HELD:
4434 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
4435 		    mstate, vstate)) {
4436 			regs[rd] = 0;
4437 			break;
4438 		}
4439 		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
4440 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4441 		regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner) &&
4442 		    lowner == NULL;
4443 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4444 		break;
4445 
4446 	case DIF_SUBR_RW_WRITE_HELD:
4447 	case DIF_SUBR_SX_EXCLUSIVE_HELD:
4448 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
4449 		    mstate, vstate)) {
4450 			regs[rd] = 0;
4451 			break;
4452 		}
4453 		l.lx = dtrace_loadptr(tupregs[0].dttk_value);
4454 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4455 		regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner) &&
4456 		    lowner != NULL;
4457 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4458 		break;
4459 
4460 	case DIF_SUBR_RW_ISWRITER:
4461 	case DIF_SUBR_SX_ISEXCLUSIVE:
4462 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
4463 		    mstate, vstate)) {
4464 			regs[rd] = 0;
4465 			break;
4466 		}
4467 		l.lx = dtrace_loadptr(tupregs[0].dttk_value);
4468 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4469 		LOCK_CLASS(l.li)->lc_owner(l.li, &lowner);
4470 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4471 		regs[rd] = (lowner == curthread);
4472 		break;
4473 #endif /* illumos */
4474 
4475 	case DIF_SUBR_BCOPY: {
4476 		/*
4477 		 * We need to be sure that the destination is in the scratch
4478 		 * region -- no other region is allowed.
4479 		 */
4480 		uintptr_t src = tupregs[0].dttk_value;
4481 		uintptr_t dest = tupregs[1].dttk_value;
4482 		size_t size = tupregs[2].dttk_value;
4483 
4484 		if (!dtrace_inscratch(dest, size, mstate)) {
4485 			*flags |= CPU_DTRACE_BADADDR;
4486 			*illval = regs[rd];
4487 			break;
4488 		}
4489 
4490 		if (!dtrace_canload(src, size, mstate, vstate)) {
4491 			regs[rd] = 0;
4492 			break;
4493 		}
4494 
4495 		dtrace_bcopy((void *)src, (void *)dest, size);
4496 		break;
4497 	}
4498 
4499 	case DIF_SUBR_ALLOCA:
4500 	case DIF_SUBR_COPYIN: {
4501 		uintptr_t dest = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
4502 		uint64_t size =
4503 		    tupregs[subr == DIF_SUBR_ALLOCA ? 0 : 1].dttk_value;
4504 		size_t scratch_size = (dest - mstate->dtms_scratch_ptr) + size;
4505 
4506 		/*
4507 		 * This action doesn't require any credential checks since
4508 		 * probes will not activate in user contexts to which the
4509 		 * enabling user does not have permissions.
4510 		 */
4511 
4512 		/*
4513 		 * Rounding up the user allocation size could have overflowed
4514 		 * a large, bogus allocation (like -1ULL) to 0.
4515 		 */
4516 		if (scratch_size < size ||
4517 		    !DTRACE_INSCRATCH(mstate, scratch_size)) {
4518 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4519 			regs[rd] = 0;
4520 			break;
4521 		}
4522 
4523 		if (subr == DIF_SUBR_COPYIN) {
4524 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4525 			dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
4526 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4527 		}
4528 
4529 		mstate->dtms_scratch_ptr += scratch_size;
4530 		regs[rd] = dest;
4531 		break;
4532 	}
4533 
4534 	case DIF_SUBR_COPYINTO: {
4535 		uint64_t size = tupregs[1].dttk_value;
4536 		uintptr_t dest = tupregs[2].dttk_value;
4537 
4538 		/*
4539 		 * This action doesn't require any credential checks since
4540 		 * probes will not activate in user contexts to which the
4541 		 * enabling user does not have permissions.
4542 		 */
4543 		if (!dtrace_inscratch(dest, size, mstate)) {
4544 			*flags |= CPU_DTRACE_BADADDR;
4545 			*illval = regs[rd];
4546 			break;
4547 		}
4548 
4549 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4550 		dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
4551 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4552 		break;
4553 	}
4554 
4555 	case DIF_SUBR_COPYINSTR: {
4556 		uintptr_t dest = mstate->dtms_scratch_ptr;
4557 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4558 
4559 		if (nargs > 1 && tupregs[1].dttk_value < size)
4560 			size = tupregs[1].dttk_value + 1;
4561 
4562 		/*
4563 		 * This action doesn't require any credential checks since
4564 		 * probes will not activate in user contexts to which the
4565 		 * enabling user does not have permissions.
4566 		 */
4567 		if (!DTRACE_INSCRATCH(mstate, size)) {
4568 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4569 			regs[rd] = 0;
4570 			break;
4571 		}
4572 
4573 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4574 		dtrace_copyinstr(tupregs[0].dttk_value, dest, size, flags);
4575 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4576 
4577 		((char *)dest)[size - 1] = '\0';
4578 		mstate->dtms_scratch_ptr += size;
4579 		regs[rd] = dest;
4580 		break;
4581 	}
4582 
4583 #ifdef illumos
4584 	case DIF_SUBR_MSGSIZE:
4585 	case DIF_SUBR_MSGDSIZE: {
4586 		uintptr_t baddr = tupregs[0].dttk_value, daddr;
4587 		uintptr_t wptr, rptr;
4588 		size_t count = 0;
4589 		int cont = 0;
4590 
4591 		while (baddr != 0 && !(*flags & CPU_DTRACE_FAULT)) {
4592 
4593 			if (!dtrace_canload(baddr, sizeof (mblk_t), mstate,
4594 			    vstate)) {
4595 				regs[rd] = 0;
4596 				break;
4597 			}
4598 
4599 			wptr = dtrace_loadptr(baddr +
4600 			    offsetof(mblk_t, b_wptr));
4601 
4602 			rptr = dtrace_loadptr(baddr +
4603 			    offsetof(mblk_t, b_rptr));
4604 
4605 			if (wptr < rptr) {
4606 				*flags |= CPU_DTRACE_BADADDR;
4607 				*illval = tupregs[0].dttk_value;
4608 				break;
4609 			}
4610 
4611 			daddr = dtrace_loadptr(baddr +
4612 			    offsetof(mblk_t, b_datap));
4613 
4614 			baddr = dtrace_loadptr(baddr +
4615 			    offsetof(mblk_t, b_cont));
4616 
4617 			/*
4618 			 * We want to prevent against denial-of-service here,
4619 			 * so we're only going to search the list for
4620 			 * dtrace_msgdsize_max mblks.
4621 			 */
4622 			if (cont++ > dtrace_msgdsize_max) {
4623 				*flags |= CPU_DTRACE_ILLOP;
4624 				break;
4625 			}
4626 
4627 			if (subr == DIF_SUBR_MSGDSIZE) {
4628 				if (dtrace_load8(daddr +
4629 				    offsetof(dblk_t, db_type)) != M_DATA)
4630 					continue;
4631 			}
4632 
4633 			count += wptr - rptr;
4634 		}
4635 
4636 		if (!(*flags & CPU_DTRACE_FAULT))
4637 			regs[rd] = count;
4638 
4639 		break;
4640 	}
4641 #endif
4642 
4643 	case DIF_SUBR_PROGENYOF: {
4644 		pid_t pid = tupregs[0].dttk_value;
4645 		proc_t *p;
4646 		int rval = 0;
4647 
4648 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4649 
4650 		for (p = curthread->t_procp; p != NULL; p = p->p_parent) {
4651 #ifdef illumos
4652 			if (p->p_pidp->pid_id == pid) {
4653 #else
4654 			if (p->p_pid == pid) {
4655 #endif
4656 				rval = 1;
4657 				break;
4658 			}
4659 		}
4660 
4661 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4662 
4663 		regs[rd] = rval;
4664 		break;
4665 	}
4666 
4667 	case DIF_SUBR_SPECULATION:
4668 		regs[rd] = dtrace_speculation(state);
4669 		break;
4670 
4671 	case DIF_SUBR_COPYOUT: {
4672 		uintptr_t kaddr = tupregs[0].dttk_value;
4673 		uintptr_t uaddr = tupregs[1].dttk_value;
4674 		uint64_t size = tupregs[2].dttk_value;
4675 
4676 		if (!dtrace_destructive_disallow &&
4677 		    dtrace_priv_proc_control(state) &&
4678 		    !dtrace_istoxic(kaddr, size) &&
4679 		    dtrace_canload(kaddr, size, mstate, vstate)) {
4680 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4681 			dtrace_copyout(kaddr, uaddr, size, flags);
4682 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4683 		}
4684 		break;
4685 	}
4686 
4687 	case DIF_SUBR_COPYOUTSTR: {
4688 		uintptr_t kaddr = tupregs[0].dttk_value;
4689 		uintptr_t uaddr = tupregs[1].dttk_value;
4690 		uint64_t size = tupregs[2].dttk_value;
4691 		size_t lim;
4692 
4693 		if (!dtrace_destructive_disallow &&
4694 		    dtrace_priv_proc_control(state) &&
4695 		    !dtrace_istoxic(kaddr, size) &&
4696 		    dtrace_strcanload(kaddr, size, &lim, mstate, vstate)) {
4697 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4698 			dtrace_copyoutstr(kaddr, uaddr, lim, flags);
4699 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4700 		}
4701 		break;
4702 	}
4703 
4704 	case DIF_SUBR_STRLEN: {
4705 		size_t size = state->dts_options[DTRACEOPT_STRSIZE];
4706 		uintptr_t addr = (uintptr_t)tupregs[0].dttk_value;
4707 		size_t lim;
4708 
4709 		if (!dtrace_strcanload(addr, size, &lim, mstate, vstate)) {
4710 			regs[rd] = 0;
4711 			break;
4712 		}
4713 
4714 		regs[rd] = dtrace_strlen((char *)addr, lim);
4715 		break;
4716 	}
4717 
4718 	case DIF_SUBR_STRCHR:
4719 	case DIF_SUBR_STRRCHR: {
4720 		/*
4721 		 * We're going to iterate over the string looking for the
4722 		 * specified character.  We will iterate until we have reached
4723 		 * the string length or we have found the character.  If this
4724 		 * is DIF_SUBR_STRRCHR, we will look for the last occurrence
4725 		 * of the specified character instead of the first.
4726 		 */
4727 		uintptr_t addr = tupregs[0].dttk_value;
4728 		uintptr_t addr_limit;
4729 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4730 		size_t lim;
4731 		char c, target = (char)tupregs[1].dttk_value;
4732 
4733 		if (!dtrace_strcanload(addr, size, &lim, mstate, vstate)) {
4734 			regs[rd] = 0;
4735 			break;
4736 		}
4737 		addr_limit = addr + lim;
4738 
4739 		for (regs[rd] = 0; addr < addr_limit; addr++) {
4740 			if ((c = dtrace_load8(addr)) == target) {
4741 				regs[rd] = addr;
4742 
4743 				if (subr == DIF_SUBR_STRCHR)
4744 					break;
4745 			}
4746 
4747 			if (c == '\0')
4748 				break;
4749 		}
4750 		break;
4751 	}
4752 
4753 	case DIF_SUBR_STRSTR:
4754 	case DIF_SUBR_INDEX:
4755 	case DIF_SUBR_RINDEX: {
4756 		/*
4757 		 * We're going to iterate over the string looking for the
4758 		 * specified string.  We will iterate until we have reached
4759 		 * the string length or we have found the string.  (Yes, this
4760 		 * is done in the most naive way possible -- but considering
4761 		 * that the string we're searching for is likely to be
4762 		 * relatively short, the complexity of Rabin-Karp or similar
4763 		 * hardly seems merited.)
4764 		 */
4765 		char *addr = (char *)(uintptr_t)tupregs[0].dttk_value;
4766 		char *substr = (char *)(uintptr_t)tupregs[1].dttk_value;
4767 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4768 		size_t len = dtrace_strlen(addr, size);
4769 		size_t sublen = dtrace_strlen(substr, size);
4770 		char *limit = addr + len, *orig = addr;
4771 		int notfound = subr == DIF_SUBR_STRSTR ? 0 : -1;
4772 		int inc = 1;
4773 
4774 		regs[rd] = notfound;
4775 
4776 		if (!dtrace_canload((uintptr_t)addr, len + 1, mstate, vstate)) {
4777 			regs[rd] = 0;
4778 			break;
4779 		}
4780 
4781 		if (!dtrace_canload((uintptr_t)substr, sublen + 1, mstate,
4782 		    vstate)) {
4783 			regs[rd] = 0;
4784 			break;
4785 		}
4786 
4787 		/*
4788 		 * strstr() and index()/rindex() have similar semantics if
4789 		 * both strings are the empty string: strstr() returns a
4790 		 * pointer to the (empty) string, and index() and rindex()
4791 		 * both return index 0 (regardless of any position argument).
4792 		 */
4793 		if (sublen == 0 && len == 0) {
4794 			if (subr == DIF_SUBR_STRSTR)
4795 				regs[rd] = (uintptr_t)addr;
4796 			else
4797 				regs[rd] = 0;
4798 			break;
4799 		}
4800 
4801 		if (subr != DIF_SUBR_STRSTR) {
4802 			if (subr == DIF_SUBR_RINDEX) {
4803 				limit = orig - 1;
4804 				addr += len;
4805 				inc = -1;
4806 			}
4807 
4808 			/*
4809 			 * Both index() and rindex() take an optional position
4810 			 * argument that denotes the starting position.
4811 			 */
4812 			if (nargs == 3) {
4813 				int64_t pos = (int64_t)tupregs[2].dttk_value;
4814 
4815 				/*
4816 				 * If the position argument to index() is
4817 				 * negative, Perl implicitly clamps it at
4818 				 * zero.  This semantic is a little surprising
4819 				 * given the special meaning of negative
4820 				 * positions to similar Perl functions like
4821 				 * substr(), but it appears to reflect a
4822 				 * notion that index() can start from a
4823 				 * negative index and increment its way up to
4824 				 * the string.  Given this notion, Perl's
4825 				 * rindex() is at least self-consistent in
4826 				 * that it implicitly clamps positions greater
4827 				 * than the string length to be the string
4828 				 * length.  Where Perl completely loses
4829 				 * coherence, however, is when the specified
4830 				 * substring is the empty string ("").  In
4831 				 * this case, even if the position is
4832 				 * negative, rindex() returns 0 -- and even if
4833 				 * the position is greater than the length,
4834 				 * index() returns the string length.  These
4835 				 * semantics violate the notion that index()
4836 				 * should never return a value less than the
4837 				 * specified position and that rindex() should
4838 				 * never return a value greater than the
4839 				 * specified position.  (One assumes that
4840 				 * these semantics are artifacts of Perl's
4841 				 * implementation and not the results of
4842 				 * deliberate design -- it beggars belief that
4843 				 * even Larry Wall could desire such oddness.)
4844 				 * While in the abstract one would wish for
4845 				 * consistent position semantics across
4846 				 * substr(), index() and rindex() -- or at the
4847 				 * very least self-consistent position
4848 				 * semantics for index() and rindex() -- we
4849 				 * instead opt to keep with the extant Perl
4850 				 * semantics, in all their broken glory.  (Do
4851 				 * we have more desire to maintain Perl's
4852 				 * semantics than Perl does?  Probably.)
4853 				 */
4854 				if (subr == DIF_SUBR_RINDEX) {
4855 					if (pos < 0) {
4856 						if (sublen == 0)
4857 							regs[rd] = 0;
4858 						break;
4859 					}
4860 
4861 					if (pos > len)
4862 						pos = len;
4863 				} else {
4864 					if (pos < 0)
4865 						pos = 0;
4866 
4867 					if (pos >= len) {
4868 						if (sublen == 0)
4869 							regs[rd] = len;
4870 						break;
4871 					}
4872 				}
4873 
4874 				addr = orig + pos;
4875 			}
4876 		}
4877 
4878 		for (regs[rd] = notfound; addr != limit; addr += inc) {
4879 			if (dtrace_strncmp(addr, substr, sublen) == 0) {
4880 				if (subr != DIF_SUBR_STRSTR) {
4881 					/*
4882 					 * As D index() and rindex() are
4883 					 * modeled on Perl (and not on awk),
4884 					 * we return a zero-based (and not a
4885 					 * one-based) index.  (For you Perl
4886 					 * weenies: no, we're not going to add
4887 					 * $[ -- and shouldn't you be at a con
4888 					 * or something?)
4889 					 */
4890 					regs[rd] = (uintptr_t)(addr - orig);
4891 					break;
4892 				}
4893 
4894 				ASSERT(subr == DIF_SUBR_STRSTR);
4895 				regs[rd] = (uintptr_t)addr;
4896 				break;
4897 			}
4898 		}
4899 
4900 		break;
4901 	}
4902 
4903 	case DIF_SUBR_STRTOK: {
4904 		uintptr_t addr = tupregs[0].dttk_value;
4905 		uintptr_t tokaddr = tupregs[1].dttk_value;
4906 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4907 		uintptr_t limit, toklimit;
4908 		size_t clim;
4909 		uint8_t c = 0, tokmap[32];	 /* 256 / 8 */
4910 		char *dest = (char *)mstate->dtms_scratch_ptr;
4911 		int i;
4912 
4913 		/*
4914 		 * Check both the token buffer and (later) the input buffer,
4915 		 * since both could be non-scratch addresses.
4916 		 */
4917 		if (!dtrace_strcanload(tokaddr, size, &clim, mstate, vstate)) {
4918 			regs[rd] = 0;
4919 			break;
4920 		}
4921 		toklimit = tokaddr + clim;
4922 
4923 		if (!DTRACE_INSCRATCH(mstate, size)) {
4924 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4925 			regs[rd] = 0;
4926 			break;
4927 		}
4928 
4929 		if (addr == 0) {
4930 			/*
4931 			 * If the address specified is NULL, we use our saved
4932 			 * strtok pointer from the mstate.  Note that this
4933 			 * means that the saved strtok pointer is _only_
4934 			 * valid within multiple enablings of the same probe --
4935 			 * it behaves like an implicit clause-local variable.
4936 			 */
4937 			addr = mstate->dtms_strtok;
4938 			limit = mstate->dtms_strtok_limit;
4939 		} else {
4940 			/*
4941 			 * If the user-specified address is non-NULL we must
4942 			 * access check it.  This is the only time we have
4943 			 * a chance to do so, since this address may reside
4944 			 * in the string table of this clause-- future calls
4945 			 * (when we fetch addr from mstate->dtms_strtok)
4946 			 * would fail this access check.
4947 			 */
4948 			if (!dtrace_strcanload(addr, size, &clim, mstate,
4949 			    vstate)) {
4950 				regs[rd] = 0;
4951 				break;
4952 			}
4953 			limit = addr + clim;
4954 		}
4955 
4956 		/*
4957 		 * First, zero the token map, and then process the token
4958 		 * string -- setting a bit in the map for every character
4959 		 * found in the token string.
4960 		 */
4961 		for (i = 0; i < sizeof (tokmap); i++)
4962 			tokmap[i] = 0;
4963 
4964 		for (; tokaddr < toklimit; tokaddr++) {
4965 			if ((c = dtrace_load8(tokaddr)) == '\0')
4966 				break;
4967 
4968 			ASSERT((c >> 3) < sizeof (tokmap));
4969 			tokmap[c >> 3] |= (1 << (c & 0x7));
4970 		}
4971 
4972 		for (; addr < limit; addr++) {
4973 			/*
4974 			 * We're looking for a character that is _not_
4975 			 * contained in the token string.
4976 			 */
4977 			if ((c = dtrace_load8(addr)) == '\0')
4978 				break;
4979 
4980 			if (!(tokmap[c >> 3] & (1 << (c & 0x7))))
4981 				break;
4982 		}
4983 
4984 		if (c == '\0') {
4985 			/*
4986 			 * We reached the end of the string without finding
4987 			 * any character that was not in the token string.
4988 			 * We return NULL in this case, and we set the saved
4989 			 * address to NULL as well.
4990 			 */
4991 			regs[rd] = 0;
4992 			mstate->dtms_strtok = 0;
4993 			mstate->dtms_strtok_limit = 0;
4994 			break;
4995 		}
4996 
4997 		/*
4998 		 * From here on, we're copying into the destination string.
4999 		 */
5000 		for (i = 0; addr < limit && i < size - 1; addr++) {
5001 			if ((c = dtrace_load8(addr)) == '\0')
5002 				break;
5003 
5004 			if (tokmap[c >> 3] & (1 << (c & 0x7)))
5005 				break;
5006 
5007 			ASSERT(i < size);
5008 			dest[i++] = c;
5009 		}
5010 
5011 		ASSERT(i < size);
5012 		dest[i] = '\0';
5013 		regs[rd] = (uintptr_t)dest;
5014 		mstate->dtms_scratch_ptr += size;
5015 		mstate->dtms_strtok = addr;
5016 		mstate->dtms_strtok_limit = limit;
5017 		break;
5018 	}
5019 
5020 	case DIF_SUBR_SUBSTR: {
5021 		uintptr_t s = tupregs[0].dttk_value;
5022 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5023 		char *d = (char *)mstate->dtms_scratch_ptr;
5024 		int64_t index = (int64_t)tupregs[1].dttk_value;
5025 		int64_t remaining = (int64_t)tupregs[2].dttk_value;
5026 		size_t len = dtrace_strlen((char *)s, size);
5027 		int64_t i;
5028 
5029 		if (!dtrace_canload(s, len + 1, mstate, vstate)) {
5030 			regs[rd] = 0;
5031 			break;
5032 		}
5033 
5034 		if (!DTRACE_INSCRATCH(mstate, size)) {
5035 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5036 			regs[rd] = 0;
5037 			break;
5038 		}
5039 
5040 		if (nargs <= 2)
5041 			remaining = (int64_t)size;
5042 
5043 		if (index < 0) {
5044 			index += len;
5045 
5046 			if (index < 0 && index + remaining > 0) {
5047 				remaining += index;
5048 				index = 0;
5049 			}
5050 		}
5051 
5052 		if (index >= len || index < 0) {
5053 			remaining = 0;
5054 		} else if (remaining < 0) {
5055 			remaining += len - index;
5056 		} else if (index + remaining > size) {
5057 			remaining = size - index;
5058 		}
5059 
5060 		for (i = 0; i < remaining; i++) {
5061 			if ((d[i] = dtrace_load8(s + index + i)) == '\0')
5062 				break;
5063 		}
5064 
5065 		d[i] = '\0';
5066 
5067 		mstate->dtms_scratch_ptr += size;
5068 		regs[rd] = (uintptr_t)d;
5069 		break;
5070 	}
5071 
5072 	case DIF_SUBR_JSON: {
5073 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5074 		uintptr_t json = tupregs[0].dttk_value;
5075 		size_t jsonlen = dtrace_strlen((char *)json, size);
5076 		uintptr_t elem = tupregs[1].dttk_value;
5077 		size_t elemlen = dtrace_strlen((char *)elem, size);
5078 
5079 		char *dest = (char *)mstate->dtms_scratch_ptr;
5080 		char *elemlist = (char *)mstate->dtms_scratch_ptr + jsonlen + 1;
5081 		char *ee = elemlist;
5082 		int nelems = 1;
5083 		uintptr_t cur;
5084 
5085 		if (!dtrace_canload(json, jsonlen + 1, mstate, vstate) ||
5086 		    !dtrace_canload(elem, elemlen + 1, mstate, vstate)) {
5087 			regs[rd] = 0;
5088 			break;
5089 		}
5090 
5091 		if (!DTRACE_INSCRATCH(mstate, jsonlen + 1 + elemlen + 1)) {
5092 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5093 			regs[rd] = 0;
5094 			break;
5095 		}
5096 
5097 		/*
5098 		 * Read the element selector and split it up into a packed list
5099 		 * of strings.
5100 		 */
5101 		for (cur = elem; cur < elem + elemlen; cur++) {
5102 			char cc = dtrace_load8(cur);
5103 
5104 			if (cur == elem && cc == '[') {
5105 				/*
5106 				 * If the first element selector key is
5107 				 * actually an array index then ignore the
5108 				 * bracket.
5109 				 */
5110 				continue;
5111 			}
5112 
5113 			if (cc == ']')
5114 				continue;
5115 
5116 			if (cc == '.' || cc == '[') {
5117 				nelems++;
5118 				cc = '\0';
5119 			}
5120 
5121 			*ee++ = cc;
5122 		}
5123 		*ee++ = '\0';
5124 
5125 		if ((regs[rd] = (uintptr_t)dtrace_json(size, json, elemlist,
5126 		    nelems, dest)) != 0)
5127 			mstate->dtms_scratch_ptr += jsonlen + 1;
5128 		break;
5129 	}
5130 
5131 	case DIF_SUBR_TOUPPER:
5132 	case DIF_SUBR_TOLOWER: {
5133 		uintptr_t s = tupregs[0].dttk_value;
5134 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5135 		char *dest = (char *)mstate->dtms_scratch_ptr, c;
5136 		size_t len = dtrace_strlen((char *)s, size);
5137 		char lower, upper, convert;
5138 		int64_t i;
5139 
5140 		if (subr == DIF_SUBR_TOUPPER) {
5141 			lower = 'a';
5142 			upper = 'z';
5143 			convert = 'A';
5144 		} else {
5145 			lower = 'A';
5146 			upper = 'Z';
5147 			convert = 'a';
5148 		}
5149 
5150 		if (!dtrace_canload(s, len + 1, mstate, vstate)) {
5151 			regs[rd] = 0;
5152 			break;
5153 		}
5154 
5155 		if (!DTRACE_INSCRATCH(mstate, size)) {
5156 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5157 			regs[rd] = 0;
5158 			break;
5159 		}
5160 
5161 		for (i = 0; i < size - 1; i++) {
5162 			if ((c = dtrace_load8(s + i)) == '\0')
5163 				break;
5164 
5165 			if (c >= lower && c <= upper)
5166 				c = convert + (c - lower);
5167 
5168 			dest[i] = c;
5169 		}
5170 
5171 		ASSERT(i < size);
5172 		dest[i] = '\0';
5173 		regs[rd] = (uintptr_t)dest;
5174 		mstate->dtms_scratch_ptr += size;
5175 		break;
5176 	}
5177 
5178 #ifdef illumos
5179 	case DIF_SUBR_GETMAJOR:
5180 #ifdef _LP64
5181 		regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR64) & MAXMAJ64;
5182 #else
5183 		regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR) & MAXMAJ;
5184 #endif
5185 		break;
5186 
5187 	case DIF_SUBR_GETMINOR:
5188 #ifdef _LP64
5189 		regs[rd] = tupregs[0].dttk_value & MAXMIN64;
5190 #else
5191 		regs[rd] = tupregs[0].dttk_value & MAXMIN;
5192 #endif
5193 		break;
5194 
5195 	case DIF_SUBR_DDI_PATHNAME: {
5196 		/*
5197 		 * This one is a galactic mess.  We are going to roughly
5198 		 * emulate ddi_pathname(), but it's made more complicated
5199 		 * by the fact that we (a) want to include the minor name and
5200 		 * (b) must proceed iteratively instead of recursively.
5201 		 */
5202 		uintptr_t dest = mstate->dtms_scratch_ptr;
5203 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5204 		char *start = (char *)dest, *end = start + size - 1;
5205 		uintptr_t daddr = tupregs[0].dttk_value;
5206 		int64_t minor = (int64_t)tupregs[1].dttk_value;
5207 		char *s;
5208 		int i, len, depth = 0;
5209 
5210 		/*
5211 		 * Due to all the pointer jumping we do and context we must
5212 		 * rely upon, we just mandate that the user must have kernel
5213 		 * read privileges to use this routine.
5214 		 */
5215 		if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) == 0) {
5216 			*flags |= CPU_DTRACE_KPRIV;
5217 			*illval = daddr;
5218 			regs[rd] = 0;
5219 		}
5220 
5221 		if (!DTRACE_INSCRATCH(mstate, size)) {
5222 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5223 			regs[rd] = 0;
5224 			break;
5225 		}
5226 
5227 		*end = '\0';
5228 
5229 		/*
5230 		 * We want to have a name for the minor.  In order to do this,
5231 		 * we need to walk the minor list from the devinfo.  We want
5232 		 * to be sure that we don't infinitely walk a circular list,
5233 		 * so we check for circularity by sending a scout pointer
5234 		 * ahead two elements for every element that we iterate over;
5235 		 * if the list is circular, these will ultimately point to the
5236 		 * same element.  You may recognize this little trick as the
5237 		 * answer to a stupid interview question -- one that always
5238 		 * seems to be asked by those who had to have it laboriously
5239 		 * explained to them, and who can't even concisely describe
5240 		 * the conditions under which one would be forced to resort to
5241 		 * this technique.  Needless to say, those conditions are
5242 		 * found here -- and probably only here.  Is this the only use
5243 		 * of this infamous trick in shipping, production code?  If it
5244 		 * isn't, it probably should be...
5245 		 */
5246 		if (minor != -1) {
5247 			uintptr_t maddr = dtrace_loadptr(daddr +
5248 			    offsetof(struct dev_info, devi_minor));
5249 
5250 			uintptr_t next = offsetof(struct ddi_minor_data, next);
5251 			uintptr_t name = offsetof(struct ddi_minor_data,
5252 			    d_minor) + offsetof(struct ddi_minor, name);
5253 			uintptr_t dev = offsetof(struct ddi_minor_data,
5254 			    d_minor) + offsetof(struct ddi_minor, dev);
5255 			uintptr_t scout;
5256 
5257 			if (maddr != NULL)
5258 				scout = dtrace_loadptr(maddr + next);
5259 
5260 			while (maddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
5261 				uint64_t m;
5262 #ifdef _LP64
5263 				m = dtrace_load64(maddr + dev) & MAXMIN64;
5264 #else
5265 				m = dtrace_load32(maddr + dev) & MAXMIN;
5266 #endif
5267 				if (m != minor) {
5268 					maddr = dtrace_loadptr(maddr + next);
5269 
5270 					if (scout == NULL)
5271 						continue;
5272 
5273 					scout = dtrace_loadptr(scout + next);
5274 
5275 					if (scout == NULL)
5276 						continue;
5277 
5278 					scout = dtrace_loadptr(scout + next);
5279 
5280 					if (scout == NULL)
5281 						continue;
5282 
5283 					if (scout == maddr) {
5284 						*flags |= CPU_DTRACE_ILLOP;
5285 						break;
5286 					}
5287 
5288 					continue;
5289 				}
5290 
5291 				/*
5292 				 * We have the minor data.  Now we need to
5293 				 * copy the minor's name into the end of the
5294 				 * pathname.
5295 				 */
5296 				s = (char *)dtrace_loadptr(maddr + name);
5297 				len = dtrace_strlen(s, size);
5298 
5299 				if (*flags & CPU_DTRACE_FAULT)
5300 					break;
5301 
5302 				if (len != 0) {
5303 					if ((end -= (len + 1)) < start)
5304 						break;
5305 
5306 					*end = ':';
5307 				}
5308 
5309 				for (i = 1; i <= len; i++)
5310 					end[i] = dtrace_load8((uintptr_t)s++);
5311 				break;
5312 			}
5313 		}
5314 
5315 		while (daddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
5316 			ddi_node_state_t devi_state;
5317 
5318 			devi_state = dtrace_load32(daddr +
5319 			    offsetof(struct dev_info, devi_node_state));
5320 
5321 			if (*flags & CPU_DTRACE_FAULT)
5322 				break;
5323 
5324 			if (devi_state >= DS_INITIALIZED) {
5325 				s = (char *)dtrace_loadptr(daddr +
5326 				    offsetof(struct dev_info, devi_addr));
5327 				len = dtrace_strlen(s, size);
5328 
5329 				if (*flags & CPU_DTRACE_FAULT)
5330 					break;
5331 
5332 				if (len != 0) {
5333 					if ((end -= (len + 1)) < start)
5334 						break;
5335 
5336 					*end = '@';
5337 				}
5338 
5339 				for (i = 1; i <= len; i++)
5340 					end[i] = dtrace_load8((uintptr_t)s++);
5341 			}
5342 
5343 			/*
5344 			 * Now for the node name...
5345 			 */
5346 			s = (char *)dtrace_loadptr(daddr +
5347 			    offsetof(struct dev_info, devi_node_name));
5348 
5349 			daddr = dtrace_loadptr(daddr +
5350 			    offsetof(struct dev_info, devi_parent));
5351 
5352 			/*
5353 			 * If our parent is NULL (that is, if we're the root
5354 			 * node), we're going to use the special path
5355 			 * "devices".
5356 			 */
5357 			if (daddr == 0)
5358 				s = "devices";
5359 
5360 			len = dtrace_strlen(s, size);
5361 			if (*flags & CPU_DTRACE_FAULT)
5362 				break;
5363 
5364 			if ((end -= (len + 1)) < start)
5365 				break;
5366 
5367 			for (i = 1; i <= len; i++)
5368 				end[i] = dtrace_load8((uintptr_t)s++);
5369 			*end = '/';
5370 
5371 			if (depth++ > dtrace_devdepth_max) {
5372 				*flags |= CPU_DTRACE_ILLOP;
5373 				break;
5374 			}
5375 		}
5376 
5377 		if (end < start)
5378 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5379 
5380 		if (daddr == 0) {
5381 			regs[rd] = (uintptr_t)end;
5382 			mstate->dtms_scratch_ptr += size;
5383 		}
5384 
5385 		break;
5386 	}
5387 #endif
5388 
5389 	case DIF_SUBR_STRJOIN: {
5390 		char *d = (char *)mstate->dtms_scratch_ptr;
5391 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5392 		uintptr_t s1 = tupregs[0].dttk_value;
5393 		uintptr_t s2 = tupregs[1].dttk_value;
5394 		int i = 0, j = 0;
5395 		size_t lim1, lim2;
5396 		char c;
5397 
5398 		if (!dtrace_strcanload(s1, size, &lim1, mstate, vstate) ||
5399 		    !dtrace_strcanload(s2, size, &lim2, mstate, vstate)) {
5400 			regs[rd] = 0;
5401 			break;
5402 		}
5403 
5404 		if (!DTRACE_INSCRATCH(mstate, size)) {
5405 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5406 			regs[rd] = 0;
5407 			break;
5408 		}
5409 
5410 		for (;;) {
5411 			if (i >= size) {
5412 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5413 				regs[rd] = 0;
5414 				break;
5415 			}
5416 			c = (i >= lim1) ? '\0' : dtrace_load8(s1++);
5417 			if ((d[i++] = c) == '\0') {
5418 				i--;
5419 				break;
5420 			}
5421 		}
5422 
5423 		for (;;) {
5424 			if (i >= size) {
5425 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5426 				regs[rd] = 0;
5427 				break;
5428 			}
5429 
5430 			c = (j++ >= lim2) ? '\0' : dtrace_load8(s2++);
5431 			if ((d[i++] = c) == '\0')
5432 				break;
5433 		}
5434 
5435 		if (i < size) {
5436 			mstate->dtms_scratch_ptr += i;
5437 			regs[rd] = (uintptr_t)d;
5438 		}
5439 
5440 		break;
5441 	}
5442 
5443 	case DIF_SUBR_STRTOLL: {
5444 		uintptr_t s = tupregs[0].dttk_value;
5445 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5446 		size_t lim;
5447 		int base = 10;
5448 
5449 		if (nargs > 1) {
5450 			if ((base = tupregs[1].dttk_value) <= 1 ||
5451 			    base > ('z' - 'a' + 1) + ('9' - '0' + 1)) {
5452 				*flags |= CPU_DTRACE_ILLOP;
5453 				break;
5454 			}
5455 		}
5456 
5457 		if (!dtrace_strcanload(s, size, &lim, mstate, vstate)) {
5458 			regs[rd] = INT64_MIN;
5459 			break;
5460 		}
5461 
5462 		regs[rd] = dtrace_strtoll((char *)s, base, lim);
5463 		break;
5464 	}
5465 
5466 	case DIF_SUBR_LLTOSTR: {
5467 		int64_t i = (int64_t)tupregs[0].dttk_value;
5468 		uint64_t val, digit;
5469 		uint64_t size = 65;	/* enough room for 2^64 in binary */
5470 		char *end = (char *)mstate->dtms_scratch_ptr + size - 1;
5471 		int base = 10;
5472 
5473 		if (nargs > 1) {
5474 			if ((base = tupregs[1].dttk_value) <= 1 ||
5475 			    base > ('z' - 'a' + 1) + ('9' - '0' + 1)) {
5476 				*flags |= CPU_DTRACE_ILLOP;
5477 				break;
5478 			}
5479 		}
5480 
5481 		val = (base == 10 && i < 0) ? i * -1 : i;
5482 
5483 		if (!DTRACE_INSCRATCH(mstate, size)) {
5484 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5485 			regs[rd] = 0;
5486 			break;
5487 		}
5488 
5489 		for (*end-- = '\0'; val; val /= base) {
5490 			if ((digit = val % base) <= '9' - '0') {
5491 				*end-- = '0' + digit;
5492 			} else {
5493 				*end-- = 'a' + (digit - ('9' - '0') - 1);
5494 			}
5495 		}
5496 
5497 		if (i == 0 && base == 16)
5498 			*end-- = '0';
5499 
5500 		if (base == 16)
5501 			*end-- = 'x';
5502 
5503 		if (i == 0 || base == 8 || base == 16)
5504 			*end-- = '0';
5505 
5506 		if (i < 0 && base == 10)
5507 			*end-- = '-';
5508 
5509 		regs[rd] = (uintptr_t)end + 1;
5510 		mstate->dtms_scratch_ptr += size;
5511 		break;
5512 	}
5513 
5514 	case DIF_SUBR_HTONS:
5515 	case DIF_SUBR_NTOHS:
5516 #if BYTE_ORDER == BIG_ENDIAN
5517 		regs[rd] = (uint16_t)tupregs[0].dttk_value;
5518 #else
5519 		regs[rd] = DT_BSWAP_16((uint16_t)tupregs[0].dttk_value);
5520 #endif
5521 		break;
5522 
5523 
5524 	case DIF_SUBR_HTONL:
5525 	case DIF_SUBR_NTOHL:
5526 #if BYTE_ORDER == BIG_ENDIAN
5527 		regs[rd] = (uint32_t)tupregs[0].dttk_value;
5528 #else
5529 		regs[rd] = DT_BSWAP_32((uint32_t)tupregs[0].dttk_value);
5530 #endif
5531 		break;
5532 
5533 
5534 	case DIF_SUBR_HTONLL:
5535 	case DIF_SUBR_NTOHLL:
5536 #if BYTE_ORDER == BIG_ENDIAN
5537 		regs[rd] = (uint64_t)tupregs[0].dttk_value;
5538 #else
5539 		regs[rd] = DT_BSWAP_64((uint64_t)tupregs[0].dttk_value);
5540 #endif
5541 		break;
5542 
5543 
5544 	case DIF_SUBR_DIRNAME:
5545 	case DIF_SUBR_BASENAME: {
5546 		char *dest = (char *)mstate->dtms_scratch_ptr;
5547 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5548 		uintptr_t src = tupregs[0].dttk_value;
5549 		int i, j, len = dtrace_strlen((char *)src, size);
5550 		int lastbase = -1, firstbase = -1, lastdir = -1;
5551 		int start, end;
5552 
5553 		if (!dtrace_canload(src, len + 1, mstate, vstate)) {
5554 			regs[rd] = 0;
5555 			break;
5556 		}
5557 
5558 		if (!DTRACE_INSCRATCH(mstate, size)) {
5559 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5560 			regs[rd] = 0;
5561 			break;
5562 		}
5563 
5564 		/*
5565 		 * The basename and dirname for a zero-length string is
5566 		 * defined to be "."
5567 		 */
5568 		if (len == 0) {
5569 			len = 1;
5570 			src = (uintptr_t)".";
5571 		}
5572 
5573 		/*
5574 		 * Start from the back of the string, moving back toward the
5575 		 * front until we see a character that isn't a slash.  That
5576 		 * character is the last character in the basename.
5577 		 */
5578 		for (i = len - 1; i >= 0; i--) {
5579 			if (dtrace_load8(src + i) != '/')
5580 				break;
5581 		}
5582 
5583 		if (i >= 0)
5584 			lastbase = i;
5585 
5586 		/*
5587 		 * Starting from the last character in the basename, move
5588 		 * towards the front until we find a slash.  The character
5589 		 * that we processed immediately before that is the first
5590 		 * character in the basename.
5591 		 */
5592 		for (; i >= 0; i--) {
5593 			if (dtrace_load8(src + i) == '/')
5594 				break;
5595 		}
5596 
5597 		if (i >= 0)
5598 			firstbase = i + 1;
5599 
5600 		/*
5601 		 * Now keep going until we find a non-slash character.  That
5602 		 * character is the last character in the dirname.
5603 		 */
5604 		for (; i >= 0; i--) {
5605 			if (dtrace_load8(src + i) != '/')
5606 				break;
5607 		}
5608 
5609 		if (i >= 0)
5610 			lastdir = i;
5611 
5612 		ASSERT(!(lastbase == -1 && firstbase != -1));
5613 		ASSERT(!(firstbase == -1 && lastdir != -1));
5614 
5615 		if (lastbase == -1) {
5616 			/*
5617 			 * We didn't find a non-slash character.  We know that
5618 			 * the length is non-zero, so the whole string must be
5619 			 * slashes.  In either the dirname or the basename
5620 			 * case, we return '/'.
5621 			 */
5622 			ASSERT(firstbase == -1);
5623 			firstbase = lastbase = lastdir = 0;
5624 		}
5625 
5626 		if (firstbase == -1) {
5627 			/*
5628 			 * The entire string consists only of a basename
5629 			 * component.  If we're looking for dirname, we need
5630 			 * to change our string to be just "."; if we're
5631 			 * looking for a basename, we'll just set the first
5632 			 * character of the basename to be 0.
5633 			 */
5634 			if (subr == DIF_SUBR_DIRNAME) {
5635 				ASSERT(lastdir == -1);
5636 				src = (uintptr_t)".";
5637 				lastdir = 0;
5638 			} else {
5639 				firstbase = 0;
5640 			}
5641 		}
5642 
5643 		if (subr == DIF_SUBR_DIRNAME) {
5644 			if (lastdir == -1) {
5645 				/*
5646 				 * We know that we have a slash in the name --
5647 				 * or lastdir would be set to 0, above.  And
5648 				 * because lastdir is -1, we know that this
5649 				 * slash must be the first character.  (That
5650 				 * is, the full string must be of the form
5651 				 * "/basename".)  In this case, the last
5652 				 * character of the directory name is 0.
5653 				 */
5654 				lastdir = 0;
5655 			}
5656 
5657 			start = 0;
5658 			end = lastdir;
5659 		} else {
5660 			ASSERT(subr == DIF_SUBR_BASENAME);
5661 			ASSERT(firstbase != -1 && lastbase != -1);
5662 			start = firstbase;
5663 			end = lastbase;
5664 		}
5665 
5666 		for (i = start, j = 0; i <= end && j < size - 1; i++, j++)
5667 			dest[j] = dtrace_load8(src + i);
5668 
5669 		dest[j] = '\0';
5670 		regs[rd] = (uintptr_t)dest;
5671 		mstate->dtms_scratch_ptr += size;
5672 		break;
5673 	}
5674 
5675 	case DIF_SUBR_GETF: {
5676 		uintptr_t fd = tupregs[0].dttk_value;
5677 		struct filedesc *fdp;
5678 		file_t *fp;
5679 
5680 		if (!dtrace_priv_proc(state)) {
5681 			regs[rd] = 0;
5682 			break;
5683 		}
5684 		fdp = curproc->p_fd;
5685 		FILEDESC_SLOCK(fdp);
5686 		/*
5687 		 * XXXMJG this looks broken as no ref is taken.
5688 		 */
5689 		fp = fget_noref(fdp, fd);
5690 		mstate->dtms_getf = fp;
5691 		regs[rd] = (uintptr_t)fp;
5692 		FILEDESC_SUNLOCK(fdp);
5693 		break;
5694 	}
5695 
5696 	case DIF_SUBR_CLEANPATH: {
5697 		char *dest = (char *)mstate->dtms_scratch_ptr, c;
5698 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5699 		uintptr_t src = tupregs[0].dttk_value;
5700 		size_t lim;
5701 		int i = 0, j = 0;
5702 #ifdef illumos
5703 		zone_t *z;
5704 #endif
5705 
5706 		if (!dtrace_strcanload(src, size, &lim, mstate, vstate)) {
5707 			regs[rd] = 0;
5708 			break;
5709 		}
5710 
5711 		if (!DTRACE_INSCRATCH(mstate, size)) {
5712 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5713 			regs[rd] = 0;
5714 			break;
5715 		}
5716 
5717 		/*
5718 		 * Move forward, loading each character.
5719 		 */
5720 		do {
5721 			c = (i >= lim) ? '\0' : dtrace_load8(src + i++);
5722 next:
5723 			if (j + 5 >= size)	/* 5 = strlen("/..c\0") */
5724 				break;
5725 
5726 			if (c != '/') {
5727 				dest[j++] = c;
5728 				continue;
5729 			}
5730 
5731 			c = (i >= lim) ? '\0' : dtrace_load8(src + i++);
5732 
5733 			if (c == '/') {
5734 				/*
5735 				 * We have two slashes -- we can just advance
5736 				 * to the next character.
5737 				 */
5738 				goto next;
5739 			}
5740 
5741 			if (c != '.') {
5742 				/*
5743 				 * This is not "." and it's not ".." -- we can
5744 				 * just store the "/" and this character and
5745 				 * drive on.
5746 				 */
5747 				dest[j++] = '/';
5748 				dest[j++] = c;
5749 				continue;
5750 			}
5751 
5752 			c = (i >= lim) ? '\0' : dtrace_load8(src + i++);
5753 
5754 			if (c == '/') {
5755 				/*
5756 				 * This is a "/./" component.  We're not going
5757 				 * to store anything in the destination buffer;
5758 				 * we're just going to go to the next component.
5759 				 */
5760 				goto next;
5761 			}
5762 
5763 			if (c != '.') {
5764 				/*
5765 				 * This is not ".." -- we can just store the
5766 				 * "/." and this character and continue
5767 				 * processing.
5768 				 */
5769 				dest[j++] = '/';
5770 				dest[j++] = '.';
5771 				dest[j++] = c;
5772 				continue;
5773 			}
5774 
5775 			c = (i >= lim) ? '\0' : dtrace_load8(src + i++);
5776 
5777 			if (c != '/' && c != '\0') {
5778 				/*
5779 				 * This is not ".." -- it's "..[mumble]".
5780 				 * We'll store the "/.." and this character
5781 				 * and continue processing.
5782 				 */
5783 				dest[j++] = '/';
5784 				dest[j++] = '.';
5785 				dest[j++] = '.';
5786 				dest[j++] = c;
5787 				continue;
5788 			}
5789 
5790 			/*
5791 			 * This is "/../" or "/..\0".  We need to back up
5792 			 * our destination pointer until we find a "/".
5793 			 */
5794 			i--;
5795 			while (j != 0 && dest[--j] != '/')
5796 				continue;
5797 
5798 			if (c == '\0')
5799 				dest[++j] = '/';
5800 		} while (c != '\0');
5801 
5802 		dest[j] = '\0';
5803 
5804 #ifdef illumos
5805 		if (mstate->dtms_getf != NULL &&
5806 		    !(mstate->dtms_access & DTRACE_ACCESS_KERNEL) &&
5807 		    (z = state->dts_cred.dcr_cred->cr_zone) != kcred->cr_zone) {
5808 			/*
5809 			 * If we've done a getf() as a part of this ECB and we
5810 			 * don't have kernel access (and we're not in the global
5811 			 * zone), check if the path we cleaned up begins with
5812 			 * the zone's root path, and trim it off if so.  Note
5813 			 * that this is an output cleanliness issue, not a
5814 			 * security issue: knowing one's zone root path does
5815 			 * not enable privilege escalation.
5816 			 */
5817 			if (strstr(dest, z->zone_rootpath) == dest)
5818 				dest += strlen(z->zone_rootpath) - 1;
5819 		}
5820 #endif
5821 
5822 		regs[rd] = (uintptr_t)dest;
5823 		mstate->dtms_scratch_ptr += size;
5824 		break;
5825 	}
5826 
5827 	case DIF_SUBR_INET_NTOA:
5828 	case DIF_SUBR_INET_NTOA6:
5829 	case DIF_SUBR_INET_NTOP: {
5830 		size_t size;
5831 		int af, argi, i;
5832 		char *base, *end;
5833 
5834 		if (subr == DIF_SUBR_INET_NTOP) {
5835 			af = (int)tupregs[0].dttk_value;
5836 			argi = 1;
5837 		} else {
5838 			af = subr == DIF_SUBR_INET_NTOA ? AF_INET: AF_INET6;
5839 			argi = 0;
5840 		}
5841 
5842 		if (af == AF_INET) {
5843 			ipaddr_t ip4;
5844 			uint8_t *ptr8, val;
5845 
5846 			if (!dtrace_canload(tupregs[argi].dttk_value,
5847 			    sizeof (ipaddr_t), mstate, vstate)) {
5848 				regs[rd] = 0;
5849 				break;
5850 			}
5851 
5852 			/*
5853 			 * Safely load the IPv4 address.
5854 			 */
5855 			ip4 = dtrace_load32(tupregs[argi].dttk_value);
5856 
5857 			/*
5858 			 * Check an IPv4 string will fit in scratch.
5859 			 */
5860 			size = INET_ADDRSTRLEN;
5861 			if (!DTRACE_INSCRATCH(mstate, size)) {
5862 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5863 				regs[rd] = 0;
5864 				break;
5865 			}
5866 			base = (char *)mstate->dtms_scratch_ptr;
5867 			end = (char *)mstate->dtms_scratch_ptr + size - 1;
5868 
5869 			/*
5870 			 * Stringify as a dotted decimal quad.
5871 			 */
5872 			*end-- = '\0';
5873 			ptr8 = (uint8_t *)&ip4;
5874 			for (i = 3; i >= 0; i--) {
5875 				val = ptr8[i];
5876 
5877 				if (val == 0) {
5878 					*end-- = '0';
5879 				} else {
5880 					for (; val; val /= 10) {
5881 						*end-- = '0' + (val % 10);
5882 					}
5883 				}
5884 
5885 				if (i > 0)
5886 					*end-- = '.';
5887 			}
5888 			ASSERT(end + 1 >= base);
5889 
5890 		} else if (af == AF_INET6) {
5891 			struct in6_addr ip6;
5892 			int firstzero, tryzero, numzero, v6end;
5893 			uint16_t val;
5894 			const char digits[] = "0123456789abcdef";
5895 
5896 			/*
5897 			 * Stringify using RFC 1884 convention 2 - 16 bit
5898 			 * hexadecimal values with a zero-run compression.
5899 			 * Lower case hexadecimal digits are used.
5900 			 * 	eg, fe80::214:4fff:fe0b:76c8.
5901 			 * The IPv4 embedded form is returned for inet_ntop,
5902 			 * just the IPv4 string is returned for inet_ntoa6.
5903 			 */
5904 
5905 			if (!dtrace_canload(tupregs[argi].dttk_value,
5906 			    sizeof (struct in6_addr), mstate, vstate)) {
5907 				regs[rd] = 0;
5908 				break;
5909 			}
5910 
5911 			/*
5912 			 * Safely load the IPv6 address.
5913 			 */
5914 			dtrace_bcopy(
5915 			    (void *)(uintptr_t)tupregs[argi].dttk_value,
5916 			    (void *)(uintptr_t)&ip6, sizeof (struct in6_addr));
5917 
5918 			/*
5919 			 * Check an IPv6 string will fit in scratch.
5920 			 */
5921 			size = INET6_ADDRSTRLEN;
5922 			if (!DTRACE_INSCRATCH(mstate, size)) {
5923 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5924 				regs[rd] = 0;
5925 				break;
5926 			}
5927 			base = (char *)mstate->dtms_scratch_ptr;
5928 			end = (char *)mstate->dtms_scratch_ptr + size - 1;
5929 			*end-- = '\0';
5930 
5931 			/*
5932 			 * Find the longest run of 16 bit zero values
5933 			 * for the single allowed zero compression - "::".
5934 			 */
5935 			firstzero = -1;
5936 			tryzero = -1;
5937 			numzero = 1;
5938 			for (i = 0; i < sizeof (struct in6_addr); i++) {
5939 #ifdef illumos
5940 				if (ip6._S6_un._S6_u8[i] == 0 &&
5941 #else
5942 				if (ip6.__u6_addr.__u6_addr8[i] == 0 &&
5943 #endif
5944 				    tryzero == -1 && i % 2 == 0) {
5945 					tryzero = i;
5946 					continue;
5947 				}
5948 
5949 				if (tryzero != -1 &&
5950 #ifdef illumos
5951 				    (ip6._S6_un._S6_u8[i] != 0 ||
5952 #else
5953 				    (ip6.__u6_addr.__u6_addr8[i] != 0 ||
5954 #endif
5955 				    i == sizeof (struct in6_addr) - 1)) {
5956 
5957 					if (i - tryzero <= numzero) {
5958 						tryzero = -1;
5959 						continue;
5960 					}
5961 
5962 					firstzero = tryzero;
5963 					numzero = i - i % 2 - tryzero;
5964 					tryzero = -1;
5965 
5966 #ifdef illumos
5967 					if (ip6._S6_un._S6_u8[i] == 0 &&
5968 #else
5969 					if (ip6.__u6_addr.__u6_addr8[i] == 0 &&
5970 #endif
5971 					    i == sizeof (struct in6_addr) - 1)
5972 						numzero += 2;
5973 				}
5974 			}
5975 			ASSERT(firstzero + numzero <= sizeof (struct in6_addr));
5976 
5977 			/*
5978 			 * Check for an IPv4 embedded address.
5979 			 */
5980 			v6end = sizeof (struct in6_addr) - 2;
5981 			if (IN6_IS_ADDR_V4MAPPED(&ip6) ||
5982 			    IN6_IS_ADDR_V4COMPAT(&ip6)) {
5983 				for (i = sizeof (struct in6_addr) - 1;
5984 				    i >= DTRACE_V4MAPPED_OFFSET; i--) {
5985 					ASSERT(end >= base);
5986 
5987 #ifdef illumos
5988 					val = ip6._S6_un._S6_u8[i];
5989 #else
5990 					val = ip6.__u6_addr.__u6_addr8[i];
5991 #endif
5992 
5993 					if (val == 0) {
5994 						*end-- = '0';
5995 					} else {
5996 						for (; val; val /= 10) {
5997 							*end-- = '0' + val % 10;
5998 						}
5999 					}
6000 
6001 					if (i > DTRACE_V4MAPPED_OFFSET)
6002 						*end-- = '.';
6003 				}
6004 
6005 				if (subr == DIF_SUBR_INET_NTOA6)
6006 					goto inetout;
6007 
6008 				/*
6009 				 * Set v6end to skip the IPv4 address that
6010 				 * we have already stringified.
6011 				 */
6012 				v6end = 10;
6013 			}
6014 
6015 			/*
6016 			 * Build the IPv6 string by working through the
6017 			 * address in reverse.
6018 			 */
6019 			for (i = v6end; i >= 0; i -= 2) {
6020 				ASSERT(end >= base);
6021 
6022 				if (i == firstzero + numzero - 2) {
6023 					*end-- = ':';
6024 					*end-- = ':';
6025 					i -= numzero - 2;
6026 					continue;
6027 				}
6028 
6029 				if (i < 14 && i != firstzero - 2)
6030 					*end-- = ':';
6031 
6032 #ifdef illumos
6033 				val = (ip6._S6_un._S6_u8[i] << 8) +
6034 				    ip6._S6_un._S6_u8[i + 1];
6035 #else
6036 				val = (ip6.__u6_addr.__u6_addr8[i] << 8) +
6037 				    ip6.__u6_addr.__u6_addr8[i + 1];
6038 #endif
6039 
6040 				if (val == 0) {
6041 					*end-- = '0';
6042 				} else {
6043 					for (; val; val /= 16) {
6044 						*end-- = digits[val % 16];
6045 					}
6046 				}
6047 			}
6048 			ASSERT(end + 1 >= base);
6049 
6050 		} else {
6051 			/*
6052 			 * The user didn't use AH_INET or AH_INET6.
6053 			 */
6054 			DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
6055 			regs[rd] = 0;
6056 			break;
6057 		}
6058 
6059 inetout:	regs[rd] = (uintptr_t)end + 1;
6060 		mstate->dtms_scratch_ptr += size;
6061 		break;
6062 	}
6063 
6064 	case DIF_SUBR_MEMREF: {
6065 		uintptr_t size = 2 * sizeof(uintptr_t);
6066 		uintptr_t *memref = (uintptr_t *) P2ROUNDUP(mstate->dtms_scratch_ptr, sizeof(uintptr_t));
6067 		size_t scratch_size = ((uintptr_t) memref - mstate->dtms_scratch_ptr) + size;
6068 
6069 		/* address and length */
6070 		memref[0] = tupregs[0].dttk_value;
6071 		memref[1] = tupregs[1].dttk_value;
6072 
6073 		regs[rd] = (uintptr_t) memref;
6074 		mstate->dtms_scratch_ptr += scratch_size;
6075 		break;
6076 	}
6077 
6078 #ifndef illumos
6079 	case DIF_SUBR_MEMSTR: {
6080 		char *str = (char *)mstate->dtms_scratch_ptr;
6081 		uintptr_t mem = tupregs[0].dttk_value;
6082 		char c = tupregs[1].dttk_value;
6083 		size_t size = tupregs[2].dttk_value;
6084 		uint8_t n;
6085 		int i;
6086 
6087 		regs[rd] = 0;
6088 
6089 		if (size == 0)
6090 			break;
6091 
6092 		if (!dtrace_canload(mem, size - 1, mstate, vstate))
6093 			break;
6094 
6095 		if (!DTRACE_INSCRATCH(mstate, size)) {
6096 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
6097 			break;
6098 		}
6099 
6100 		if (dtrace_memstr_max != 0 && size > dtrace_memstr_max) {
6101 			*flags |= CPU_DTRACE_ILLOP;
6102 			break;
6103 		}
6104 
6105 		for (i = 0; i < size - 1; i++) {
6106 			n = dtrace_load8(mem++);
6107 			str[i] = (n == 0) ? c : n;
6108 		}
6109 		str[size - 1] = 0;
6110 
6111 		regs[rd] = (uintptr_t)str;
6112 		mstate->dtms_scratch_ptr += size;
6113 		break;
6114 	}
6115 #endif
6116 	}
6117 }
6118 
6119 /*
6120  * Emulate the execution of DTrace IR instructions specified by the given
6121  * DIF object.  This function is deliberately void of assertions as all of
6122  * the necessary checks are handled by a call to dtrace_difo_validate().
6123  */
6124 static uint64_t
6125 dtrace_dif_emulate(dtrace_difo_t *difo, dtrace_mstate_t *mstate,
6126     dtrace_vstate_t *vstate, dtrace_state_t *state)
6127 {
6128 	const dif_instr_t *text = difo->dtdo_buf;
6129 	const uint_t textlen = difo->dtdo_len;
6130 	const char *strtab = difo->dtdo_strtab;
6131 	const uint64_t *inttab = difo->dtdo_inttab;
6132 
6133 	uint64_t rval = 0;
6134 	dtrace_statvar_t *svar;
6135 	dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
6136 	dtrace_difv_t *v;
6137 	volatile uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
6138 	volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval;
6139 
6140 	dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
6141 	uint64_t regs[DIF_DIR_NREGS];
6142 	uint64_t *tmp;
6143 
6144 	uint8_t cc_n = 0, cc_z = 0, cc_v = 0, cc_c = 0;
6145 	int64_t cc_r;
6146 	uint_t pc = 0, id, opc = 0;
6147 	uint8_t ttop = 0;
6148 	dif_instr_t instr;
6149 	uint_t r1, r2, rd;
6150 
6151 	/*
6152 	 * We stash the current DIF object into the machine state: we need it
6153 	 * for subsequent access checking.
6154 	 */
6155 	mstate->dtms_difo = difo;
6156 
6157 	regs[DIF_REG_R0] = 0; 		/* %r0 is fixed at zero */
6158 
6159 	while (pc < textlen && !(*flags & CPU_DTRACE_FAULT)) {
6160 		opc = pc;
6161 
6162 		instr = text[pc++];
6163 		r1 = DIF_INSTR_R1(instr);
6164 		r2 = DIF_INSTR_R2(instr);
6165 		rd = DIF_INSTR_RD(instr);
6166 
6167 		switch (DIF_INSTR_OP(instr)) {
6168 		case DIF_OP_OR:
6169 			regs[rd] = regs[r1] | regs[r2];
6170 			break;
6171 		case DIF_OP_XOR:
6172 			regs[rd] = regs[r1] ^ regs[r2];
6173 			break;
6174 		case DIF_OP_AND:
6175 			regs[rd] = regs[r1] & regs[r2];
6176 			break;
6177 		case DIF_OP_SLL:
6178 			regs[rd] = regs[r1] << regs[r2];
6179 			break;
6180 		case DIF_OP_SRL:
6181 			regs[rd] = regs[r1] >> regs[r2];
6182 			break;
6183 		case DIF_OP_SUB:
6184 			regs[rd] = regs[r1] - regs[r2];
6185 			break;
6186 		case DIF_OP_ADD:
6187 			regs[rd] = regs[r1] + regs[r2];
6188 			break;
6189 		case DIF_OP_MUL:
6190 			regs[rd] = regs[r1] * regs[r2];
6191 			break;
6192 		case DIF_OP_SDIV:
6193 			if (regs[r2] == 0) {
6194 				regs[rd] = 0;
6195 				*flags |= CPU_DTRACE_DIVZERO;
6196 			} else {
6197 				regs[rd] = (int64_t)regs[r1] /
6198 				    (int64_t)regs[r2];
6199 			}
6200 			break;
6201 
6202 		case DIF_OP_UDIV:
6203 			if (regs[r2] == 0) {
6204 				regs[rd] = 0;
6205 				*flags |= CPU_DTRACE_DIVZERO;
6206 			} else {
6207 				regs[rd] = regs[r1] / regs[r2];
6208 			}
6209 			break;
6210 
6211 		case DIF_OP_SREM:
6212 			if (regs[r2] == 0) {
6213 				regs[rd] = 0;
6214 				*flags |= CPU_DTRACE_DIVZERO;
6215 			} else {
6216 				regs[rd] = (int64_t)regs[r1] %
6217 				    (int64_t)regs[r2];
6218 			}
6219 			break;
6220 
6221 		case DIF_OP_UREM:
6222 			if (regs[r2] == 0) {
6223 				regs[rd] = 0;
6224 				*flags |= CPU_DTRACE_DIVZERO;
6225 			} else {
6226 				regs[rd] = regs[r1] % regs[r2];
6227 			}
6228 			break;
6229 
6230 		case DIF_OP_NOT:
6231 			regs[rd] = ~regs[r1];
6232 			break;
6233 		case DIF_OP_MOV:
6234 			regs[rd] = regs[r1];
6235 			break;
6236 		case DIF_OP_CMP:
6237 			cc_r = regs[r1] - regs[r2];
6238 			cc_n = cc_r < 0;
6239 			cc_z = cc_r == 0;
6240 			cc_v = 0;
6241 			cc_c = regs[r1] < regs[r2];
6242 			break;
6243 		case DIF_OP_TST:
6244 			cc_n = cc_v = cc_c = 0;
6245 			cc_z = regs[r1] == 0;
6246 			break;
6247 		case DIF_OP_BA:
6248 			pc = DIF_INSTR_LABEL(instr);
6249 			break;
6250 		case DIF_OP_BE:
6251 			if (cc_z)
6252 				pc = DIF_INSTR_LABEL(instr);
6253 			break;
6254 		case DIF_OP_BNE:
6255 			if (cc_z == 0)
6256 				pc = DIF_INSTR_LABEL(instr);
6257 			break;
6258 		case DIF_OP_BG:
6259 			if ((cc_z | (cc_n ^ cc_v)) == 0)
6260 				pc = DIF_INSTR_LABEL(instr);
6261 			break;
6262 		case DIF_OP_BGU:
6263 			if ((cc_c | cc_z) == 0)
6264 				pc = DIF_INSTR_LABEL(instr);
6265 			break;
6266 		case DIF_OP_BGE:
6267 			if ((cc_n ^ cc_v) == 0)
6268 				pc = DIF_INSTR_LABEL(instr);
6269 			break;
6270 		case DIF_OP_BGEU:
6271 			if (cc_c == 0)
6272 				pc = DIF_INSTR_LABEL(instr);
6273 			break;
6274 		case DIF_OP_BL:
6275 			if (cc_n ^ cc_v)
6276 				pc = DIF_INSTR_LABEL(instr);
6277 			break;
6278 		case DIF_OP_BLU:
6279 			if (cc_c)
6280 				pc = DIF_INSTR_LABEL(instr);
6281 			break;
6282 		case DIF_OP_BLE:
6283 			if (cc_z | (cc_n ^ cc_v))
6284 				pc = DIF_INSTR_LABEL(instr);
6285 			break;
6286 		case DIF_OP_BLEU:
6287 			if (cc_c | cc_z)
6288 				pc = DIF_INSTR_LABEL(instr);
6289 			break;
6290 		case DIF_OP_RLDSB:
6291 			if (!dtrace_canload(regs[r1], 1, mstate, vstate))
6292 				break;
6293 			/*FALLTHROUGH*/
6294 		case DIF_OP_LDSB:
6295 			regs[rd] = (int8_t)dtrace_load8(regs[r1]);
6296 			break;
6297 		case DIF_OP_RLDSH:
6298 			if (!dtrace_canload(regs[r1], 2, mstate, vstate))
6299 				break;
6300 			/*FALLTHROUGH*/
6301 		case DIF_OP_LDSH:
6302 			regs[rd] = (int16_t)dtrace_load16(regs[r1]);
6303 			break;
6304 		case DIF_OP_RLDSW:
6305 			if (!dtrace_canload(regs[r1], 4, mstate, vstate))
6306 				break;
6307 			/*FALLTHROUGH*/
6308 		case DIF_OP_LDSW:
6309 			regs[rd] = (int32_t)dtrace_load32(regs[r1]);
6310 			break;
6311 		case DIF_OP_RLDUB:
6312 			if (!dtrace_canload(regs[r1], 1, mstate, vstate))
6313 				break;
6314 			/*FALLTHROUGH*/
6315 		case DIF_OP_LDUB:
6316 			regs[rd] = dtrace_load8(regs[r1]);
6317 			break;
6318 		case DIF_OP_RLDUH:
6319 			if (!dtrace_canload(regs[r1], 2, mstate, vstate))
6320 				break;
6321 			/*FALLTHROUGH*/
6322 		case DIF_OP_LDUH:
6323 			regs[rd] = dtrace_load16(regs[r1]);
6324 			break;
6325 		case DIF_OP_RLDUW:
6326 			if (!dtrace_canload(regs[r1], 4, mstate, vstate))
6327 				break;
6328 			/*FALLTHROUGH*/
6329 		case DIF_OP_LDUW:
6330 			regs[rd] = dtrace_load32(regs[r1]);
6331 			break;
6332 		case DIF_OP_RLDX:
6333 			if (!dtrace_canload(regs[r1], 8, mstate, vstate))
6334 				break;
6335 			/*FALLTHROUGH*/
6336 		case DIF_OP_LDX:
6337 			regs[rd] = dtrace_load64(regs[r1]);
6338 			break;
6339 		case DIF_OP_ULDSB:
6340 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6341 			regs[rd] = (int8_t)
6342 			    dtrace_fuword8((void *)(uintptr_t)regs[r1]);
6343 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6344 			break;
6345 		case DIF_OP_ULDSH:
6346 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6347 			regs[rd] = (int16_t)
6348 			    dtrace_fuword16((void *)(uintptr_t)regs[r1]);
6349 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6350 			break;
6351 		case DIF_OP_ULDSW:
6352 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6353 			regs[rd] = (int32_t)
6354 			    dtrace_fuword32((void *)(uintptr_t)regs[r1]);
6355 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6356 			break;
6357 		case DIF_OP_ULDUB:
6358 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6359 			regs[rd] =
6360 			    dtrace_fuword8((void *)(uintptr_t)regs[r1]);
6361 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6362 			break;
6363 		case DIF_OP_ULDUH:
6364 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6365 			regs[rd] =
6366 			    dtrace_fuword16((void *)(uintptr_t)regs[r1]);
6367 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6368 			break;
6369 		case DIF_OP_ULDUW:
6370 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6371 			regs[rd] =
6372 			    dtrace_fuword32((void *)(uintptr_t)regs[r1]);
6373 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6374 			break;
6375 		case DIF_OP_ULDX:
6376 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6377 			regs[rd] =
6378 			    dtrace_fuword64((void *)(uintptr_t)regs[r1]);
6379 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6380 			break;
6381 		case DIF_OP_RET:
6382 			rval = regs[rd];
6383 			pc = textlen;
6384 			break;
6385 		case DIF_OP_NOP:
6386 			break;
6387 		case DIF_OP_SETX:
6388 			regs[rd] = inttab[DIF_INSTR_INTEGER(instr)];
6389 			break;
6390 		case DIF_OP_SETS:
6391 			regs[rd] = (uint64_t)(uintptr_t)
6392 			    (strtab + DIF_INSTR_STRING(instr));
6393 			break;
6394 		case DIF_OP_SCMP: {
6395 			size_t sz = state->dts_options[DTRACEOPT_STRSIZE];
6396 			uintptr_t s1 = regs[r1];
6397 			uintptr_t s2 = regs[r2];
6398 			size_t lim1, lim2;
6399 
6400 			/*
6401 			 * If one of the strings is NULL then the limit becomes
6402 			 * 0 which compares 0 characters in dtrace_strncmp()
6403 			 * resulting in a false positive.  dtrace_strncmp()
6404 			 * treats a NULL as an empty 1-char string.
6405 			 */
6406 			lim1 = lim2 = 1;
6407 
6408 			if (s1 != 0 &&
6409 			    !dtrace_strcanload(s1, sz, &lim1, mstate, vstate))
6410 				break;
6411 			if (s2 != 0 &&
6412 			    !dtrace_strcanload(s2, sz, &lim2, mstate, vstate))
6413 				break;
6414 
6415 			cc_r = dtrace_strncmp((char *)s1, (char *)s2,
6416 			    MIN(lim1, lim2));
6417 
6418 			cc_n = cc_r < 0;
6419 			cc_z = cc_r == 0;
6420 			cc_v = cc_c = 0;
6421 			break;
6422 		}
6423 		case DIF_OP_LDGA:
6424 			regs[rd] = dtrace_dif_variable(mstate, state,
6425 			    r1, regs[r2]);
6426 			break;
6427 		case DIF_OP_LDGS:
6428 			id = DIF_INSTR_VAR(instr);
6429 
6430 			if (id >= DIF_VAR_OTHER_UBASE) {
6431 				uintptr_t a;
6432 
6433 				id -= DIF_VAR_OTHER_UBASE;
6434 				svar = vstate->dtvs_globals[id];
6435 				ASSERT(svar != NULL);
6436 				v = &svar->dtsv_var;
6437 
6438 				if (!(v->dtdv_type.dtdt_flags & DIF_TF_BYREF)) {
6439 					regs[rd] = svar->dtsv_data;
6440 					break;
6441 				}
6442 
6443 				a = (uintptr_t)svar->dtsv_data;
6444 
6445 				if (*(uint8_t *)a == UINT8_MAX) {
6446 					/*
6447 					 * If the 0th byte is set to UINT8_MAX
6448 					 * then this is to be treated as a
6449 					 * reference to a NULL variable.
6450 					 */
6451 					regs[rd] = 0;
6452 				} else {
6453 					regs[rd] = a + sizeof (uint64_t);
6454 				}
6455 
6456 				break;
6457 			}
6458 
6459 			regs[rd] = dtrace_dif_variable(mstate, state, id, 0);
6460 			break;
6461 
6462 		case DIF_OP_STGS:
6463 			id = DIF_INSTR_VAR(instr);
6464 
6465 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
6466 			id -= DIF_VAR_OTHER_UBASE;
6467 
6468 			VERIFY(id < vstate->dtvs_nglobals);
6469 			svar = vstate->dtvs_globals[id];
6470 			ASSERT(svar != NULL);
6471 			v = &svar->dtsv_var;
6472 
6473 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6474 				uintptr_t a = (uintptr_t)svar->dtsv_data;
6475 				size_t lim;
6476 
6477 				ASSERT(a != 0);
6478 				ASSERT(svar->dtsv_size != 0);
6479 
6480 				if (regs[rd] == 0) {
6481 					*(uint8_t *)a = UINT8_MAX;
6482 					break;
6483 				} else {
6484 					*(uint8_t *)a = 0;
6485 					a += sizeof (uint64_t);
6486 				}
6487 				if (!dtrace_vcanload(
6488 				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
6489 				    &lim, mstate, vstate))
6490 					break;
6491 
6492 				dtrace_vcopy((void *)(uintptr_t)regs[rd],
6493 				    (void *)a, &v->dtdv_type, lim);
6494 				break;
6495 			}
6496 
6497 			svar->dtsv_data = regs[rd];
6498 			break;
6499 
6500 		case DIF_OP_LDTA:
6501 			/*
6502 			 * There are no DTrace built-in thread-local arrays at
6503 			 * present.  This opcode is saved for future work.
6504 			 */
6505 			*flags |= CPU_DTRACE_ILLOP;
6506 			regs[rd] = 0;
6507 			break;
6508 
6509 		case DIF_OP_LDLS:
6510 			id = DIF_INSTR_VAR(instr);
6511 
6512 			if (id < DIF_VAR_OTHER_UBASE) {
6513 				/*
6514 				 * For now, this has no meaning.
6515 				 */
6516 				regs[rd] = 0;
6517 				break;
6518 			}
6519 
6520 			id -= DIF_VAR_OTHER_UBASE;
6521 
6522 			ASSERT(id < vstate->dtvs_nlocals);
6523 			ASSERT(vstate->dtvs_locals != NULL);
6524 
6525 			svar = vstate->dtvs_locals[id];
6526 			ASSERT(svar != NULL);
6527 			v = &svar->dtsv_var;
6528 
6529 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6530 				uintptr_t a = (uintptr_t)svar->dtsv_data;
6531 				size_t sz = v->dtdv_type.dtdt_size;
6532 				size_t lim;
6533 
6534 				sz += sizeof (uint64_t);
6535 				ASSERT(svar->dtsv_size == (mp_maxid + 1) * sz);
6536 				a += curcpu * sz;
6537 
6538 				if (*(uint8_t *)a == UINT8_MAX) {
6539 					/*
6540 					 * If the 0th byte is set to UINT8_MAX
6541 					 * then this is to be treated as a
6542 					 * reference to a NULL variable.
6543 					 */
6544 					regs[rd] = 0;
6545 				} else {
6546 					regs[rd] = a + sizeof (uint64_t);
6547 				}
6548 
6549 				break;
6550 			}
6551 
6552 			ASSERT(svar->dtsv_size ==
6553 			    (mp_maxid + 1) * sizeof (uint64_t));
6554 			tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
6555 			regs[rd] = tmp[curcpu];
6556 			break;
6557 
6558 		case DIF_OP_STLS:
6559 			id = DIF_INSTR_VAR(instr);
6560 
6561 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
6562 			id -= DIF_VAR_OTHER_UBASE;
6563 			VERIFY(id < vstate->dtvs_nlocals);
6564 
6565 			ASSERT(vstate->dtvs_locals != NULL);
6566 			svar = vstate->dtvs_locals[id];
6567 			ASSERT(svar != NULL);
6568 			v = &svar->dtsv_var;
6569 
6570 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6571 				uintptr_t a = (uintptr_t)svar->dtsv_data;
6572 				size_t sz = v->dtdv_type.dtdt_size;
6573 				size_t lim;
6574 
6575 				sz += sizeof (uint64_t);
6576 				ASSERT(svar->dtsv_size == (mp_maxid + 1) * sz);
6577 				a += curcpu * sz;
6578 
6579 				if (regs[rd] == 0) {
6580 					*(uint8_t *)a = UINT8_MAX;
6581 					break;
6582 				} else {
6583 					*(uint8_t *)a = 0;
6584 					a += sizeof (uint64_t);
6585 				}
6586 
6587 				if (!dtrace_vcanload(
6588 				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
6589 				    &lim, mstate, vstate))
6590 					break;
6591 
6592 				dtrace_vcopy((void *)(uintptr_t)regs[rd],
6593 				    (void *)a, &v->dtdv_type, lim);
6594 				break;
6595 			}
6596 
6597 			ASSERT(svar->dtsv_size ==
6598 			    (mp_maxid + 1) * sizeof (uint64_t));
6599 			tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
6600 			tmp[curcpu] = regs[rd];
6601 			break;
6602 
6603 		case DIF_OP_LDTS: {
6604 			dtrace_dynvar_t *dvar;
6605 			dtrace_key_t *key;
6606 
6607 			id = DIF_INSTR_VAR(instr);
6608 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
6609 			id -= DIF_VAR_OTHER_UBASE;
6610 			v = &vstate->dtvs_tlocals[id];
6611 
6612 			key = &tupregs[DIF_DTR_NREGS];
6613 			key[0].dttk_value = (uint64_t)id;
6614 			key[0].dttk_size = 0;
6615 			DTRACE_TLS_THRKEY(key[1].dttk_value);
6616 			key[1].dttk_size = 0;
6617 
6618 			dvar = dtrace_dynvar(dstate, 2, key,
6619 			    sizeof (uint64_t), DTRACE_DYNVAR_NOALLOC,
6620 			    mstate, vstate);
6621 
6622 			if (dvar == NULL) {
6623 				regs[rd] = 0;
6624 				break;
6625 			}
6626 
6627 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6628 				regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
6629 			} else {
6630 				regs[rd] = *((uint64_t *)dvar->dtdv_data);
6631 			}
6632 
6633 			break;
6634 		}
6635 
6636 		case DIF_OP_STTS: {
6637 			dtrace_dynvar_t *dvar;
6638 			dtrace_key_t *key;
6639 
6640 			id = DIF_INSTR_VAR(instr);
6641 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
6642 			id -= DIF_VAR_OTHER_UBASE;
6643 			VERIFY(id < vstate->dtvs_ntlocals);
6644 
6645 			key = &tupregs[DIF_DTR_NREGS];
6646 			key[0].dttk_value = (uint64_t)id;
6647 			key[0].dttk_size = 0;
6648 			DTRACE_TLS_THRKEY(key[1].dttk_value);
6649 			key[1].dttk_size = 0;
6650 			v = &vstate->dtvs_tlocals[id];
6651 
6652 			dvar = dtrace_dynvar(dstate, 2, key,
6653 			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
6654 			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
6655 			    regs[rd] ? DTRACE_DYNVAR_ALLOC :
6656 			    DTRACE_DYNVAR_DEALLOC, mstate, vstate);
6657 
6658 			/*
6659 			 * Given that we're storing to thread-local data,
6660 			 * we need to flush our predicate cache.
6661 			 */
6662 			curthread->t_predcache = 0;
6663 
6664 			if (dvar == NULL)
6665 				break;
6666 
6667 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6668 				size_t lim;
6669 
6670 				if (!dtrace_vcanload(
6671 				    (void *)(uintptr_t)regs[rd],
6672 				    &v->dtdv_type, &lim, mstate, vstate))
6673 					break;
6674 
6675 				dtrace_vcopy((void *)(uintptr_t)regs[rd],
6676 				    dvar->dtdv_data, &v->dtdv_type, lim);
6677 			} else {
6678 				*((uint64_t *)dvar->dtdv_data) = regs[rd];
6679 			}
6680 
6681 			break;
6682 		}
6683 
6684 		case DIF_OP_SRA:
6685 			regs[rd] = (int64_t)regs[r1] >> regs[r2];
6686 			break;
6687 
6688 		case DIF_OP_CALL:
6689 			dtrace_dif_subr(DIF_INSTR_SUBR(instr), rd,
6690 			    regs, tupregs, ttop, mstate, state);
6691 			break;
6692 
6693 		case DIF_OP_PUSHTR:
6694 			if (ttop == DIF_DTR_NREGS) {
6695 				*flags |= CPU_DTRACE_TUPOFLOW;
6696 				break;
6697 			}
6698 
6699 			if (r1 == DIF_TYPE_STRING) {
6700 				/*
6701 				 * If this is a string type and the size is 0,
6702 				 * we'll use the system-wide default string
6703 				 * size.  Note that we are _not_ looking at
6704 				 * the value of the DTRACEOPT_STRSIZE option;
6705 				 * had this been set, we would expect to have
6706 				 * a non-zero size value in the "pushtr".
6707 				 */
6708 				tupregs[ttop].dttk_size =
6709 				    dtrace_strlen((char *)(uintptr_t)regs[rd],
6710 				    regs[r2] ? regs[r2] :
6711 				    dtrace_strsize_default) + 1;
6712 			} else {
6713 				if (regs[r2] > LONG_MAX) {
6714 					*flags |= CPU_DTRACE_ILLOP;
6715 					break;
6716 				}
6717 
6718 				tupregs[ttop].dttk_size = regs[r2];
6719 			}
6720 
6721 			tupregs[ttop++].dttk_value = regs[rd];
6722 			break;
6723 
6724 		case DIF_OP_PUSHTV:
6725 			if (ttop == DIF_DTR_NREGS) {
6726 				*flags |= CPU_DTRACE_TUPOFLOW;
6727 				break;
6728 			}
6729 
6730 			tupregs[ttop].dttk_value = regs[rd];
6731 			tupregs[ttop++].dttk_size = 0;
6732 			break;
6733 
6734 		case DIF_OP_POPTS:
6735 			if (ttop != 0)
6736 				ttop--;
6737 			break;
6738 
6739 		case DIF_OP_FLUSHTS:
6740 			ttop = 0;
6741 			break;
6742 
6743 		case DIF_OP_LDGAA:
6744 		case DIF_OP_LDTAA: {
6745 			dtrace_dynvar_t *dvar;
6746 			dtrace_key_t *key = tupregs;
6747 			uint_t nkeys = ttop;
6748 
6749 			id = DIF_INSTR_VAR(instr);
6750 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
6751 			id -= DIF_VAR_OTHER_UBASE;
6752 
6753 			key[nkeys].dttk_value = (uint64_t)id;
6754 			key[nkeys++].dttk_size = 0;
6755 
6756 			if (DIF_INSTR_OP(instr) == DIF_OP_LDTAA) {
6757 				DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
6758 				key[nkeys++].dttk_size = 0;
6759 				VERIFY(id < vstate->dtvs_ntlocals);
6760 				v = &vstate->dtvs_tlocals[id];
6761 			} else {
6762 				VERIFY(id < vstate->dtvs_nglobals);
6763 				v = &vstate->dtvs_globals[id]->dtsv_var;
6764 			}
6765 
6766 			dvar = dtrace_dynvar(dstate, nkeys, key,
6767 			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
6768 			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
6769 			    DTRACE_DYNVAR_NOALLOC, mstate, vstate);
6770 
6771 			if (dvar == NULL) {
6772 				regs[rd] = 0;
6773 				break;
6774 			}
6775 
6776 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6777 				regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
6778 			} else {
6779 				regs[rd] = *((uint64_t *)dvar->dtdv_data);
6780 			}
6781 
6782 			break;
6783 		}
6784 
6785 		case DIF_OP_STGAA:
6786 		case DIF_OP_STTAA: {
6787 			dtrace_dynvar_t *dvar;
6788 			dtrace_key_t *key = tupregs;
6789 			uint_t nkeys = ttop;
6790 
6791 			id = DIF_INSTR_VAR(instr);
6792 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
6793 			id -= DIF_VAR_OTHER_UBASE;
6794 
6795 			key[nkeys].dttk_value = (uint64_t)id;
6796 			key[nkeys++].dttk_size = 0;
6797 
6798 			if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) {
6799 				DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
6800 				key[nkeys++].dttk_size = 0;
6801 				VERIFY(id < vstate->dtvs_ntlocals);
6802 				v = &vstate->dtvs_tlocals[id];
6803 			} else {
6804 				VERIFY(id < vstate->dtvs_nglobals);
6805 				v = &vstate->dtvs_globals[id]->dtsv_var;
6806 			}
6807 
6808 			dvar = dtrace_dynvar(dstate, nkeys, key,
6809 			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
6810 			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
6811 			    regs[rd] ? DTRACE_DYNVAR_ALLOC :
6812 			    DTRACE_DYNVAR_DEALLOC, mstate, vstate);
6813 
6814 			if (dvar == NULL)
6815 				break;
6816 
6817 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6818 				size_t lim;
6819 
6820 				if (!dtrace_vcanload(
6821 				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
6822 				    &lim, mstate, vstate))
6823 					break;
6824 
6825 				dtrace_vcopy((void *)(uintptr_t)regs[rd],
6826 				    dvar->dtdv_data, &v->dtdv_type, lim);
6827 			} else {
6828 				*((uint64_t *)dvar->dtdv_data) = regs[rd];
6829 			}
6830 
6831 			break;
6832 		}
6833 
6834 		case DIF_OP_ALLOCS: {
6835 			uintptr_t ptr = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
6836 			size_t size = ptr - mstate->dtms_scratch_ptr + regs[r1];
6837 
6838 			/*
6839 			 * Rounding up the user allocation size could have
6840 			 * overflowed large, bogus allocations (like -1ULL) to
6841 			 * 0.
6842 			 */
6843 			if (size < regs[r1] ||
6844 			    !DTRACE_INSCRATCH(mstate, size)) {
6845 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
6846 				regs[rd] = 0;
6847 				break;
6848 			}
6849 
6850 			dtrace_bzero((void *) mstate->dtms_scratch_ptr, size);
6851 			mstate->dtms_scratch_ptr += size;
6852 			regs[rd] = ptr;
6853 			break;
6854 		}
6855 
6856 		case DIF_OP_COPYS:
6857 			if (!dtrace_canstore(regs[rd], regs[r2],
6858 			    mstate, vstate)) {
6859 				*flags |= CPU_DTRACE_BADADDR;
6860 				*illval = regs[rd];
6861 				break;
6862 			}
6863 
6864 			if (!dtrace_canload(regs[r1], regs[r2], mstate, vstate))
6865 				break;
6866 
6867 			dtrace_bcopy((void *)(uintptr_t)regs[r1],
6868 			    (void *)(uintptr_t)regs[rd], (size_t)regs[r2]);
6869 			break;
6870 
6871 		case DIF_OP_STB:
6872 			if (!dtrace_canstore(regs[rd], 1, mstate, vstate)) {
6873 				*flags |= CPU_DTRACE_BADADDR;
6874 				*illval = regs[rd];
6875 				break;
6876 			}
6877 			*((uint8_t *)(uintptr_t)regs[rd]) = (uint8_t)regs[r1];
6878 			break;
6879 
6880 		case DIF_OP_STH:
6881 			if (!dtrace_canstore(regs[rd], 2, mstate, vstate)) {
6882 				*flags |= CPU_DTRACE_BADADDR;
6883 				*illval = regs[rd];
6884 				break;
6885 			}
6886 			if (regs[rd] & 1) {
6887 				*flags |= CPU_DTRACE_BADALIGN;
6888 				*illval = regs[rd];
6889 				break;
6890 			}
6891 			*((uint16_t *)(uintptr_t)regs[rd]) = (uint16_t)regs[r1];
6892 			break;
6893 
6894 		case DIF_OP_STW:
6895 			if (!dtrace_canstore(regs[rd], 4, mstate, vstate)) {
6896 				*flags |= CPU_DTRACE_BADADDR;
6897 				*illval = regs[rd];
6898 				break;
6899 			}
6900 			if (regs[rd] & 3) {
6901 				*flags |= CPU_DTRACE_BADALIGN;
6902 				*illval = regs[rd];
6903 				break;
6904 			}
6905 			*((uint32_t *)(uintptr_t)regs[rd]) = (uint32_t)regs[r1];
6906 			break;
6907 
6908 		case DIF_OP_STX:
6909 			if (!dtrace_canstore(regs[rd], 8, mstate, vstate)) {
6910 				*flags |= CPU_DTRACE_BADADDR;
6911 				*illval = regs[rd];
6912 				break;
6913 			}
6914 			if (regs[rd] & 7) {
6915 				*flags |= CPU_DTRACE_BADALIGN;
6916 				*illval = regs[rd];
6917 				break;
6918 			}
6919 			*((uint64_t *)(uintptr_t)regs[rd]) = regs[r1];
6920 			break;
6921 		}
6922 	}
6923 
6924 	if (!(*flags & CPU_DTRACE_FAULT))
6925 		return (rval);
6926 
6927 	mstate->dtms_fltoffs = opc * sizeof (dif_instr_t);
6928 	mstate->dtms_present |= DTRACE_MSTATE_FLTOFFS;
6929 
6930 	return (0);
6931 }
6932 
6933 static void
6934 dtrace_action_breakpoint(dtrace_ecb_t *ecb)
6935 {
6936 	dtrace_probe_t *probe = ecb->dte_probe;
6937 	dtrace_provider_t *prov = probe->dtpr_provider;
6938 	char c[DTRACE_FULLNAMELEN + 80], *str;
6939 	char *msg = "dtrace: breakpoint action at probe ";
6940 	char *ecbmsg = " (ecb ";
6941 	uintptr_t val = (uintptr_t)ecb;
6942 	int shift = (sizeof (uintptr_t) * NBBY) - 4, i = 0;
6943 
6944 	if (dtrace_destructive_disallow)
6945 		return;
6946 
6947 	/*
6948 	 * It's impossible to be taking action on the NULL probe.
6949 	 */
6950 	ASSERT(probe != NULL);
6951 
6952 	/*
6953 	 * This is a poor man's (destitute man's?) sprintf():  we want to
6954 	 * print the provider name, module name, function name and name of
6955 	 * the probe, along with the hex address of the ECB with the breakpoint
6956 	 * action -- all of which we must place in the character buffer by
6957 	 * hand.
6958 	 */
6959 	while (*msg != '\0')
6960 		c[i++] = *msg++;
6961 
6962 	for (str = prov->dtpv_name; *str != '\0'; str++)
6963 		c[i++] = *str;
6964 	c[i++] = ':';
6965 
6966 	for (str = probe->dtpr_mod; *str != '\0'; str++)
6967 		c[i++] = *str;
6968 	c[i++] = ':';
6969 
6970 	for (str = probe->dtpr_func; *str != '\0'; str++)
6971 		c[i++] = *str;
6972 	c[i++] = ':';
6973 
6974 	for (str = probe->dtpr_name; *str != '\0'; str++)
6975 		c[i++] = *str;
6976 
6977 	while (*ecbmsg != '\0')
6978 		c[i++] = *ecbmsg++;
6979 
6980 	while (shift >= 0) {
6981 		size_t mask = (size_t)0xf << shift;
6982 
6983 		if (val >= ((size_t)1 << shift))
6984 			c[i++] = "0123456789abcdef"[(val & mask) >> shift];
6985 		shift -= 4;
6986 	}
6987 
6988 	c[i++] = ')';
6989 	c[i] = '\0';
6990 
6991 #ifdef illumos
6992 	debug_enter(c);
6993 #else
6994 	kdb_enter(KDB_WHY_DTRACE, "breakpoint action");
6995 #endif
6996 }
6997 
6998 static void
6999 dtrace_action_panic(dtrace_ecb_t *ecb)
7000 {
7001 	dtrace_probe_t *probe = ecb->dte_probe;
7002 
7003 	/*
7004 	 * It's impossible to be taking action on the NULL probe.
7005 	 */
7006 	ASSERT(probe != NULL);
7007 
7008 	if (dtrace_destructive_disallow)
7009 		return;
7010 
7011 	if (dtrace_panicked != NULL)
7012 		return;
7013 
7014 	if (dtrace_casptr(&dtrace_panicked, NULL, curthread) != NULL)
7015 		return;
7016 
7017 	/*
7018 	 * We won the right to panic.  (We want to be sure that only one
7019 	 * thread calls panic() from dtrace_probe(), and that panic() is
7020 	 * called exactly once.)
7021 	 */
7022 	dtrace_panic("dtrace: panic action at probe %s:%s:%s:%s (ecb %p)",
7023 	    probe->dtpr_provider->dtpv_name, probe->dtpr_mod,
7024 	    probe->dtpr_func, probe->dtpr_name, (void *)ecb);
7025 }
7026 
7027 static void
7028 dtrace_action_raise(uint64_t sig)
7029 {
7030 	if (dtrace_destructive_disallow)
7031 		return;
7032 
7033 	if (sig >= NSIG) {
7034 		DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
7035 		return;
7036 	}
7037 
7038 #ifdef illumos
7039 	/*
7040 	 * raise() has a queue depth of 1 -- we ignore all subsequent
7041 	 * invocations of the raise() action.
7042 	 */
7043 	if (curthread->t_dtrace_sig == 0)
7044 		curthread->t_dtrace_sig = (uint8_t)sig;
7045 
7046 	curthread->t_sig_check = 1;
7047 	aston(curthread);
7048 #else
7049 	struct proc *p = curproc;
7050 	PROC_LOCK(p);
7051 	kern_psignal(p, sig);
7052 	PROC_UNLOCK(p);
7053 #endif
7054 }
7055 
7056 static void
7057 dtrace_action_stop(void)
7058 {
7059 	if (dtrace_destructive_disallow)
7060 		return;
7061 
7062 #ifdef illumos
7063 	if (!curthread->t_dtrace_stop) {
7064 		curthread->t_dtrace_stop = 1;
7065 		curthread->t_sig_check = 1;
7066 		aston(curthread);
7067 	}
7068 #else
7069 	struct proc *p = curproc;
7070 	PROC_LOCK(p);
7071 	kern_psignal(p, SIGSTOP);
7072 	PROC_UNLOCK(p);
7073 #endif
7074 }
7075 
7076 static void
7077 dtrace_action_chill(dtrace_mstate_t *mstate, hrtime_t val)
7078 {
7079 	hrtime_t now;
7080 	volatile uint16_t *flags;
7081 #ifdef illumos
7082 	cpu_t *cpu = CPU;
7083 #else
7084 	cpu_t *cpu = &solaris_cpu[curcpu];
7085 #endif
7086 
7087 	if (dtrace_destructive_disallow)
7088 		return;
7089 
7090 	flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags;
7091 
7092 	now = dtrace_gethrtime();
7093 
7094 	if (now - cpu->cpu_dtrace_chillmark > dtrace_chill_interval) {
7095 		/*
7096 		 * We need to advance the mark to the current time.
7097 		 */
7098 		cpu->cpu_dtrace_chillmark = now;
7099 		cpu->cpu_dtrace_chilled = 0;
7100 	}
7101 
7102 	/*
7103 	 * Now check to see if the requested chill time would take us over
7104 	 * the maximum amount of time allowed in the chill interval.  (Or
7105 	 * worse, if the calculation itself induces overflow.)
7106 	 */
7107 	if (cpu->cpu_dtrace_chilled + val > dtrace_chill_max ||
7108 	    cpu->cpu_dtrace_chilled + val < cpu->cpu_dtrace_chilled) {
7109 		*flags |= CPU_DTRACE_ILLOP;
7110 		return;
7111 	}
7112 
7113 	while (dtrace_gethrtime() - now < val)
7114 		continue;
7115 
7116 	/*
7117 	 * Normally, we assure that the value of the variable "timestamp" does
7118 	 * not change within an ECB.  The presence of chill() represents an
7119 	 * exception to this rule, however.
7120 	 */
7121 	mstate->dtms_present &= ~DTRACE_MSTATE_TIMESTAMP;
7122 	cpu->cpu_dtrace_chilled += val;
7123 }
7124 
7125 static void
7126 dtrace_action_ustack(dtrace_mstate_t *mstate, dtrace_state_t *state,
7127     uint64_t *buf, uint64_t arg)
7128 {
7129 	int nframes = DTRACE_USTACK_NFRAMES(arg);
7130 	int strsize = DTRACE_USTACK_STRSIZE(arg);
7131 	uint64_t *pcs = &buf[1], *fps;
7132 	char *str = (char *)&pcs[nframes];
7133 	int size, offs = 0, i, j;
7134 	size_t rem;
7135 	uintptr_t old = mstate->dtms_scratch_ptr, saved;
7136 	uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
7137 	char *sym;
7138 
7139 	/*
7140 	 * Should be taking a faster path if string space has not been
7141 	 * allocated.
7142 	 */
7143 	ASSERT(strsize != 0);
7144 
7145 	/*
7146 	 * We will first allocate some temporary space for the frame pointers.
7147 	 */
7148 	fps = (uint64_t *)P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
7149 	size = (uintptr_t)fps - mstate->dtms_scratch_ptr +
7150 	    (nframes * sizeof (uint64_t));
7151 
7152 	if (!DTRACE_INSCRATCH(mstate, size)) {
7153 		/*
7154 		 * Not enough room for our frame pointers -- need to indicate
7155 		 * that we ran out of scratch space.
7156 		 */
7157 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
7158 		return;
7159 	}
7160 
7161 	mstate->dtms_scratch_ptr += size;
7162 	saved = mstate->dtms_scratch_ptr;
7163 
7164 	/*
7165 	 * Now get a stack with both program counters and frame pointers.
7166 	 */
7167 	DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
7168 	dtrace_getufpstack(buf, fps, nframes + 1);
7169 	DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
7170 
7171 	/*
7172 	 * If that faulted, we're cooked.
7173 	 */
7174 	if (*flags & CPU_DTRACE_FAULT)
7175 		goto out;
7176 
7177 	/*
7178 	 * Now we want to walk up the stack, calling the USTACK helper.  For
7179 	 * each iteration, we restore the scratch pointer.
7180 	 */
7181 	for (i = 0; i < nframes; i++) {
7182 		mstate->dtms_scratch_ptr = saved;
7183 
7184 		if (offs >= strsize)
7185 			break;
7186 
7187 		sym = (char *)(uintptr_t)dtrace_helper(
7188 		    DTRACE_HELPER_ACTION_USTACK,
7189 		    mstate, state, pcs[i], fps[i]);
7190 
7191 		/*
7192 		 * If we faulted while running the helper, we're going to
7193 		 * clear the fault and null out the corresponding string.
7194 		 */
7195 		if (*flags & CPU_DTRACE_FAULT) {
7196 			*flags &= ~CPU_DTRACE_FAULT;
7197 			str[offs++] = '\0';
7198 			continue;
7199 		}
7200 
7201 		if (sym == NULL) {
7202 			str[offs++] = '\0';
7203 			continue;
7204 		}
7205 
7206 		if (!dtrace_strcanload((uintptr_t)sym, strsize, &rem, mstate,
7207 		    &(state->dts_vstate))) {
7208 			str[offs++] = '\0';
7209 			continue;
7210 		}
7211 
7212 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
7213 
7214 		/*
7215 		 * Now copy in the string that the helper returned to us.
7216 		 */
7217 		for (j = 0; offs + j < strsize && j < rem; j++) {
7218 			if ((str[offs + j] = sym[j]) == '\0')
7219 				break;
7220 		}
7221 
7222 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
7223 
7224 		offs += j + 1;
7225 	}
7226 
7227 	if (offs >= strsize) {
7228 		/*
7229 		 * If we didn't have room for all of the strings, we don't
7230 		 * abort processing -- this needn't be a fatal error -- but we
7231 		 * still want to increment a counter (dts_stkstroverflows) to
7232 		 * allow this condition to be warned about.  (If this is from
7233 		 * a jstack() action, it is easily tuned via jstackstrsize.)
7234 		 */
7235 		dtrace_error(&state->dts_stkstroverflows);
7236 	}
7237 
7238 	while (offs < strsize)
7239 		str[offs++] = '\0';
7240 
7241 out:
7242 	mstate->dtms_scratch_ptr = old;
7243 }
7244 
7245 static void
7246 dtrace_store_by_ref(dtrace_difo_t *dp, caddr_t tomax, size_t size,
7247     size_t *valoffsp, uint64_t *valp, uint64_t end, int intuple, int dtkind)
7248 {
7249 	volatile uint16_t *flags;
7250 	uint64_t val = *valp;
7251 	size_t valoffs = *valoffsp;
7252 
7253 	flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags;
7254 	ASSERT(dtkind == DIF_TF_BYREF || dtkind == DIF_TF_BYUREF);
7255 
7256 	/*
7257 	 * If this is a string, we're going to only load until we find the zero
7258 	 * byte -- after which we'll store zero bytes.
7259 	 */
7260 	if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) {
7261 		char c = '\0' + 1;
7262 		size_t s;
7263 
7264 		for (s = 0; s < size; s++) {
7265 			if (c != '\0' && dtkind == DIF_TF_BYREF) {
7266 				c = dtrace_load8(val++);
7267 			} else if (c != '\0' && dtkind == DIF_TF_BYUREF) {
7268 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
7269 				c = dtrace_fuword8((void *)(uintptr_t)val++);
7270 				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
7271 				if (*flags & CPU_DTRACE_FAULT)
7272 					break;
7273 			}
7274 
7275 			DTRACE_STORE(uint8_t, tomax, valoffs++, c);
7276 
7277 			if (c == '\0' && intuple)
7278 				break;
7279 		}
7280 	} else {
7281 		uint8_t c;
7282 		while (valoffs < end) {
7283 			if (dtkind == DIF_TF_BYREF) {
7284 				c = dtrace_load8(val++);
7285 			} else if (dtkind == DIF_TF_BYUREF) {
7286 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
7287 				c = dtrace_fuword8((void *)(uintptr_t)val++);
7288 				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
7289 				if (*flags & CPU_DTRACE_FAULT)
7290 					break;
7291 			}
7292 
7293 			DTRACE_STORE(uint8_t, tomax,
7294 			    valoffs++, c);
7295 		}
7296 	}
7297 
7298 	*valp = val;
7299 	*valoffsp = valoffs;
7300 }
7301 
7302 /*
7303  * Disables interrupts and sets the per-thread inprobe flag. When DEBUG is
7304  * defined, we also assert that we are not recursing unless the probe ID is an
7305  * error probe.
7306  */
7307 static dtrace_icookie_t
7308 dtrace_probe_enter(dtrace_id_t id)
7309 {
7310 	dtrace_icookie_t cookie;
7311 
7312 	cookie = dtrace_interrupt_disable();
7313 
7314 	/*
7315 	 * Unless this is an ERROR probe, we are not allowed to recurse in
7316 	 * dtrace_probe(). Recursing into DTrace probe usually means that a
7317 	 * function is instrumented that should not have been instrumented or
7318 	 * that the ordering guarantee of the records will be violated,
7319 	 * resulting in unexpected output. If there is an exception to this
7320 	 * assertion, a new case should be added.
7321 	 */
7322 	ASSERT(curthread->t_dtrace_inprobe == 0 ||
7323 	    id == dtrace_probeid_error);
7324 	curthread->t_dtrace_inprobe = 1;
7325 
7326 	return (cookie);
7327 }
7328 
7329 /*
7330  * Clears the per-thread inprobe flag and enables interrupts.
7331  */
7332 static void
7333 dtrace_probe_exit(dtrace_icookie_t cookie)
7334 {
7335 
7336 	curthread->t_dtrace_inprobe = 0;
7337 	dtrace_interrupt_enable(cookie);
7338 }
7339 
7340 /*
7341  * If you're looking for the epicenter of DTrace, you just found it.  This
7342  * is the function called by the provider to fire a probe -- from which all
7343  * subsequent probe-context DTrace activity emanates.
7344  */
7345 void
7346 dtrace_probe(dtrace_id_t id, uintptr_t arg0, uintptr_t arg1,
7347     uintptr_t arg2, uintptr_t arg3, uintptr_t arg4)
7348 {
7349 	processorid_t cpuid;
7350 	dtrace_icookie_t cookie;
7351 	dtrace_probe_t *probe;
7352 	dtrace_mstate_t mstate;
7353 	dtrace_ecb_t *ecb;
7354 	dtrace_action_t *act;
7355 	intptr_t offs;
7356 	size_t size;
7357 	int vtime, onintr;
7358 	volatile uint16_t *flags;
7359 	hrtime_t now;
7360 
7361 	if (KERNEL_PANICKED())
7362 		return;
7363 
7364 #ifdef illumos
7365 	/*
7366 	 * Kick out immediately if this CPU is still being born (in which case
7367 	 * curthread will be set to -1) or the current thread can't allow
7368 	 * probes in its current context.
7369 	 */
7370 	if (((uintptr_t)curthread & 1) || (curthread->t_flag & T_DONTDTRACE))
7371 		return;
7372 #endif
7373 
7374 	cookie = dtrace_probe_enter(id);
7375 	probe = dtrace_probes[id - 1];
7376 	cpuid = curcpu;
7377 	onintr = CPU_ON_INTR(CPU);
7378 
7379 	if (!onintr && probe->dtpr_predcache != DTRACE_CACHEIDNONE &&
7380 	    probe->dtpr_predcache == curthread->t_predcache) {
7381 		/*
7382 		 * We have hit in the predicate cache; we know that
7383 		 * this predicate would evaluate to be false.
7384 		 */
7385 		dtrace_probe_exit(cookie);
7386 		return;
7387 	}
7388 
7389 #ifdef illumos
7390 	if (panic_quiesce) {
7391 #else
7392 	if (KERNEL_PANICKED()) {
7393 #endif
7394 		/*
7395 		 * We don't trace anything if we're panicking.
7396 		 */
7397 		dtrace_probe_exit(cookie);
7398 		return;
7399 	}
7400 
7401 	now = mstate.dtms_timestamp = dtrace_gethrtime();
7402 	mstate.dtms_present = DTRACE_MSTATE_TIMESTAMP;
7403 	vtime = dtrace_vtime_references != 0;
7404 
7405 	if (vtime && curthread->t_dtrace_start)
7406 		curthread->t_dtrace_vtime += now - curthread->t_dtrace_start;
7407 
7408 	mstate.dtms_difo = NULL;
7409 	mstate.dtms_probe = probe;
7410 	mstate.dtms_strtok = 0;
7411 	mstate.dtms_arg[0] = arg0;
7412 	mstate.dtms_arg[1] = arg1;
7413 	mstate.dtms_arg[2] = arg2;
7414 	mstate.dtms_arg[3] = arg3;
7415 	mstate.dtms_arg[4] = arg4;
7416 
7417 	flags = (volatile uint16_t *)&cpu_core[cpuid].cpuc_dtrace_flags;
7418 
7419 	for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
7420 		dtrace_predicate_t *pred = ecb->dte_predicate;
7421 		dtrace_state_t *state = ecb->dte_state;
7422 		dtrace_buffer_t *buf = &state->dts_buffer[cpuid];
7423 		dtrace_buffer_t *aggbuf = &state->dts_aggbuffer[cpuid];
7424 		dtrace_vstate_t *vstate = &state->dts_vstate;
7425 		dtrace_provider_t *prov = probe->dtpr_provider;
7426 		uint64_t tracememsize = 0;
7427 		int committed = 0;
7428 		caddr_t tomax;
7429 
7430 		/*
7431 		 * A little subtlety with the following (seemingly innocuous)
7432 		 * declaration of the automatic 'val':  by looking at the
7433 		 * code, you might think that it could be declared in the
7434 		 * action processing loop, below.  (That is, it's only used in
7435 		 * the action processing loop.)  However, it must be declared
7436 		 * out of that scope because in the case of DIF expression
7437 		 * arguments to aggregating actions, one iteration of the
7438 		 * action loop will use the last iteration's value.
7439 		 */
7440 		uint64_t val = 0;
7441 
7442 		mstate.dtms_present = DTRACE_MSTATE_ARGS | DTRACE_MSTATE_PROBE;
7443 		mstate.dtms_getf = NULL;
7444 
7445 		*flags &= ~CPU_DTRACE_ERROR;
7446 
7447 		if (prov == dtrace_provider) {
7448 			/*
7449 			 * If dtrace itself is the provider of this probe,
7450 			 * we're only going to continue processing the ECB if
7451 			 * arg0 (the dtrace_state_t) is equal to the ECB's
7452 			 * creating state.  (This prevents disjoint consumers
7453 			 * from seeing one another's metaprobes.)
7454 			 */
7455 			if (arg0 != (uint64_t)(uintptr_t)state)
7456 				continue;
7457 		}
7458 
7459 		if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) {
7460 			/*
7461 			 * We're not currently active.  If our provider isn't
7462 			 * the dtrace pseudo provider, we're not interested.
7463 			 */
7464 			if (prov != dtrace_provider)
7465 				continue;
7466 
7467 			/*
7468 			 * Now we must further check if we are in the BEGIN
7469 			 * probe.  If we are, we will only continue processing
7470 			 * if we're still in WARMUP -- if one BEGIN enabling
7471 			 * has invoked the exit() action, we don't want to
7472 			 * evaluate subsequent BEGIN enablings.
7473 			 */
7474 			if (probe->dtpr_id == dtrace_probeid_begin &&
7475 			    state->dts_activity != DTRACE_ACTIVITY_WARMUP) {
7476 				ASSERT(state->dts_activity ==
7477 				    DTRACE_ACTIVITY_DRAINING);
7478 				continue;
7479 			}
7480 		}
7481 
7482 		if (ecb->dte_cond) {
7483 			/*
7484 			 * If the dte_cond bits indicate that this
7485 			 * consumer is only allowed to see user-mode firings
7486 			 * of this probe, call the provider's dtps_usermode()
7487 			 * entry point to check that the probe was fired
7488 			 * while in a user context. Skip this ECB if that's
7489 			 * not the case.
7490 			 */
7491 			if ((ecb->dte_cond & DTRACE_COND_USERMODE) &&
7492 			    prov->dtpv_pops.dtps_usermode(prov->dtpv_arg,
7493 			    probe->dtpr_id, probe->dtpr_arg) == 0)
7494 				continue;
7495 
7496 #ifdef illumos
7497 			/*
7498 			 * This is more subtle than it looks. We have to be
7499 			 * absolutely certain that CRED() isn't going to
7500 			 * change out from under us so it's only legit to
7501 			 * examine that structure if we're in constrained
7502 			 * situations. Currently, the only times we'll this
7503 			 * check is if a non-super-user has enabled the
7504 			 * profile or syscall providers -- providers that
7505 			 * allow visibility of all processes. For the
7506 			 * profile case, the check above will ensure that
7507 			 * we're examining a user context.
7508 			 */
7509 			if (ecb->dte_cond & DTRACE_COND_OWNER) {
7510 				cred_t *cr;
7511 				cred_t *s_cr =
7512 				    ecb->dte_state->dts_cred.dcr_cred;
7513 				proc_t *proc;
7514 
7515 				ASSERT(s_cr != NULL);
7516 
7517 				if ((cr = CRED()) == NULL ||
7518 				    s_cr->cr_uid != cr->cr_uid ||
7519 				    s_cr->cr_uid != cr->cr_ruid ||
7520 				    s_cr->cr_uid != cr->cr_suid ||
7521 				    s_cr->cr_gid != cr->cr_gid ||
7522 				    s_cr->cr_gid != cr->cr_rgid ||
7523 				    s_cr->cr_gid != cr->cr_sgid ||
7524 				    (proc = ttoproc(curthread)) == NULL ||
7525 				    (proc->p_flag & SNOCD))
7526 					continue;
7527 			}
7528 
7529 			if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) {
7530 				cred_t *cr;
7531 				cred_t *s_cr =
7532 				    ecb->dte_state->dts_cred.dcr_cred;
7533 
7534 				ASSERT(s_cr != NULL);
7535 
7536 				if ((cr = CRED()) == NULL ||
7537 				    s_cr->cr_zone->zone_id !=
7538 				    cr->cr_zone->zone_id)
7539 					continue;
7540 			}
7541 #endif
7542 		}
7543 
7544 		if (now - state->dts_alive > dtrace_deadman_timeout) {
7545 			/*
7546 			 * We seem to be dead.  Unless we (a) have kernel
7547 			 * destructive permissions (b) have explicitly enabled
7548 			 * destructive actions and (c) destructive actions have
7549 			 * not been disabled, we're going to transition into
7550 			 * the KILLED state, from which no further processing
7551 			 * on this state will be performed.
7552 			 */
7553 			if (!dtrace_priv_kernel_destructive(state) ||
7554 			    !state->dts_cred.dcr_destructive ||
7555 			    dtrace_destructive_disallow) {
7556 				void *activity = &state->dts_activity;
7557 				dtrace_activity_t curstate;
7558 
7559 				do {
7560 					curstate = state->dts_activity;
7561 				} while (dtrace_cas32(activity, curstate,
7562 				    DTRACE_ACTIVITY_KILLED) != curstate);
7563 
7564 				continue;
7565 			}
7566 		}
7567 
7568 		if ((offs = dtrace_buffer_reserve(buf, ecb->dte_needed,
7569 		    ecb->dte_alignment, state, &mstate)) < 0)
7570 			continue;
7571 
7572 		tomax = buf->dtb_tomax;
7573 		ASSERT(tomax != NULL);
7574 
7575 		if (ecb->dte_size != 0) {
7576 			dtrace_rechdr_t dtrh;
7577 			if (!(mstate.dtms_present & DTRACE_MSTATE_TIMESTAMP)) {
7578 				mstate.dtms_timestamp = dtrace_gethrtime();
7579 				mstate.dtms_present |= DTRACE_MSTATE_TIMESTAMP;
7580 			}
7581 			ASSERT3U(ecb->dte_size, >=, sizeof (dtrace_rechdr_t));
7582 			dtrh.dtrh_epid = ecb->dte_epid;
7583 			DTRACE_RECORD_STORE_TIMESTAMP(&dtrh,
7584 			    mstate.dtms_timestamp);
7585 			*((dtrace_rechdr_t *)(tomax + offs)) = dtrh;
7586 		}
7587 
7588 		mstate.dtms_epid = ecb->dte_epid;
7589 		mstate.dtms_present |= DTRACE_MSTATE_EPID;
7590 
7591 		if (state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)
7592 			mstate.dtms_access = DTRACE_ACCESS_KERNEL;
7593 		else
7594 			mstate.dtms_access = 0;
7595 
7596 		if (pred != NULL) {
7597 			dtrace_difo_t *dp = pred->dtp_difo;
7598 			uint64_t rval;
7599 
7600 			rval = dtrace_dif_emulate(dp, &mstate, vstate, state);
7601 
7602 			if (!(*flags & CPU_DTRACE_ERROR) && !rval) {
7603 				dtrace_cacheid_t cid = probe->dtpr_predcache;
7604 
7605 				if (cid != DTRACE_CACHEIDNONE && !onintr) {
7606 					/*
7607 					 * Update the predicate cache...
7608 					 */
7609 					ASSERT(cid == pred->dtp_cacheid);
7610 					curthread->t_predcache = cid;
7611 				}
7612 
7613 				continue;
7614 			}
7615 		}
7616 
7617 		for (act = ecb->dte_action; !(*flags & CPU_DTRACE_ERROR) &&
7618 		    act != NULL; act = act->dta_next) {
7619 			size_t valoffs;
7620 			dtrace_difo_t *dp;
7621 			dtrace_recdesc_t *rec = &act->dta_rec;
7622 
7623 			size = rec->dtrd_size;
7624 			valoffs = offs + rec->dtrd_offset;
7625 
7626 			if (DTRACEACT_ISAGG(act->dta_kind)) {
7627 				uint64_t v = 0xbad;
7628 				dtrace_aggregation_t *agg;
7629 
7630 				agg = (dtrace_aggregation_t *)act;
7631 
7632 				if ((dp = act->dta_difo) != NULL)
7633 					v = dtrace_dif_emulate(dp,
7634 					    &mstate, vstate, state);
7635 
7636 				if (*flags & CPU_DTRACE_ERROR)
7637 					continue;
7638 
7639 				/*
7640 				 * Note that we always pass the expression
7641 				 * value from the previous iteration of the
7642 				 * action loop.  This value will only be used
7643 				 * if there is an expression argument to the
7644 				 * aggregating action, denoted by the
7645 				 * dtag_hasarg field.
7646 				 */
7647 				dtrace_aggregate(agg, buf,
7648 				    offs, aggbuf, v, val);
7649 				continue;
7650 			}
7651 
7652 			switch (act->dta_kind) {
7653 			case DTRACEACT_STOP:
7654 				if (dtrace_priv_proc_destructive(state))
7655 					dtrace_action_stop();
7656 				continue;
7657 
7658 			case DTRACEACT_BREAKPOINT:
7659 				if (dtrace_priv_kernel_destructive(state))
7660 					dtrace_action_breakpoint(ecb);
7661 				continue;
7662 
7663 			case DTRACEACT_PANIC:
7664 				if (dtrace_priv_kernel_destructive(state))
7665 					dtrace_action_panic(ecb);
7666 				continue;
7667 
7668 			case DTRACEACT_STACK:
7669 				if (!dtrace_priv_kernel(state))
7670 					continue;
7671 
7672 				dtrace_getpcstack((pc_t *)(tomax + valoffs),
7673 				    size / sizeof (pc_t), probe->dtpr_aframes,
7674 				    DTRACE_ANCHORED(probe) ? NULL :
7675 				    (uint32_t *)arg0);
7676 				continue;
7677 
7678 			case DTRACEACT_JSTACK:
7679 			case DTRACEACT_USTACK:
7680 				if (!dtrace_priv_proc(state))
7681 					continue;
7682 
7683 				/*
7684 				 * See comment in DIF_VAR_PID.
7685 				 */
7686 				if (DTRACE_ANCHORED(mstate.dtms_probe) &&
7687 				    CPU_ON_INTR(CPU)) {
7688 					int depth = DTRACE_USTACK_NFRAMES(
7689 					    rec->dtrd_arg) + 1;
7690 
7691 					dtrace_bzero((void *)(tomax + valoffs),
7692 					    DTRACE_USTACK_STRSIZE(rec->dtrd_arg)
7693 					    + depth * sizeof (uint64_t));
7694 
7695 					continue;
7696 				}
7697 
7698 				if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0 &&
7699 				    curproc->p_dtrace_helpers != NULL) {
7700 					/*
7701 					 * This is the slow path -- we have
7702 					 * allocated string space, and we're
7703 					 * getting the stack of a process that
7704 					 * has helpers.  Call into a separate
7705 					 * routine to perform this processing.
7706 					 */
7707 					dtrace_action_ustack(&mstate, state,
7708 					    (uint64_t *)(tomax + valoffs),
7709 					    rec->dtrd_arg);
7710 					continue;
7711 				}
7712 
7713 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
7714 				dtrace_getupcstack((uint64_t *)
7715 				    (tomax + valoffs),
7716 				    DTRACE_USTACK_NFRAMES(rec->dtrd_arg) + 1);
7717 				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
7718 				continue;
7719 
7720 			default:
7721 				break;
7722 			}
7723 
7724 			dp = act->dta_difo;
7725 			ASSERT(dp != NULL);
7726 
7727 			val = dtrace_dif_emulate(dp, &mstate, vstate, state);
7728 
7729 			if (*flags & CPU_DTRACE_ERROR)
7730 				continue;
7731 
7732 			switch (act->dta_kind) {
7733 			case DTRACEACT_SPECULATE: {
7734 				dtrace_rechdr_t *dtrh;
7735 
7736 				ASSERT(buf == &state->dts_buffer[cpuid]);
7737 				buf = dtrace_speculation_buffer(state,
7738 				    cpuid, val);
7739 
7740 				if (buf == NULL) {
7741 					*flags |= CPU_DTRACE_DROP;
7742 					continue;
7743 				}
7744 
7745 				offs = dtrace_buffer_reserve(buf,
7746 				    ecb->dte_needed, ecb->dte_alignment,
7747 				    state, NULL);
7748 
7749 				if (offs < 0) {
7750 					*flags |= CPU_DTRACE_DROP;
7751 					continue;
7752 				}
7753 
7754 				tomax = buf->dtb_tomax;
7755 				ASSERT(tomax != NULL);
7756 
7757 				if (ecb->dte_size == 0)
7758 					continue;
7759 
7760 				ASSERT3U(ecb->dte_size, >=,
7761 				    sizeof (dtrace_rechdr_t));
7762 				dtrh = ((void *)(tomax + offs));
7763 				dtrh->dtrh_epid = ecb->dte_epid;
7764 				/*
7765 				 * When the speculation is committed, all of
7766 				 * the records in the speculative buffer will
7767 				 * have their timestamps set to the commit
7768 				 * time.  Until then, it is set to a sentinel
7769 				 * value, for debugability.
7770 				 */
7771 				DTRACE_RECORD_STORE_TIMESTAMP(dtrh, UINT64_MAX);
7772 				continue;
7773 			}
7774 
7775 			case DTRACEACT_PRINTM: {
7776 				/*
7777 				 * printm() assumes that the DIF returns a
7778 				 * pointer returned by memref(). memref() is a
7779 				 * subroutine that is used to get around the
7780 				 * single-valued returns of DIF and is assumed
7781 				 * to always be allocated in the scratch space.
7782 				 * Therefore, we need to validate that the
7783 				 * pointer given to printm() is in the scratch
7784 				 * space in order to avoid a potential panic.
7785 				 */
7786 				uintptr_t *memref = (uintptr_t *)(uintptr_t) val;
7787 
7788 				if (!DTRACE_INSCRATCHPTR(&mstate,
7789 				    (uintptr_t) memref,
7790 				    sizeof (uintptr_t) + sizeof (size_t))) {
7791 					*flags |= CPU_DTRACE_BADADDR;
7792 					continue;
7793 				}
7794 
7795 				/* Get the size from the memref. */
7796 				size = memref[1];
7797 
7798 				/*
7799 				 * Check if the size exceeds the allocated
7800 				 * buffer size.
7801 				 */
7802 				if (size + sizeof (size_t) >
7803 				    dp->dtdo_rtype.dtdt_size) {
7804 					/* Flag a drop! */
7805 					*flags |= CPU_DTRACE_DROP;
7806 					continue;
7807 				}
7808 
7809 				/* Store the size in the buffer first. */
7810 				DTRACE_STORE(size_t, tomax, valoffs, size);
7811 
7812 				/*
7813 				 * Offset the buffer address to the start
7814 				 * of the data.
7815 				 */
7816 				valoffs += sizeof(size_t);
7817 
7818 				/*
7819 				 * Reset to the memory address rather than
7820 				 * the memref array, then let the BYREF
7821 				 * code below do the work to store the
7822 				 * memory data in the buffer.
7823 				 */
7824 				val = memref[0];
7825 				break;
7826 			}
7827 
7828 			case DTRACEACT_CHILL:
7829 				if (dtrace_priv_kernel_destructive(state))
7830 					dtrace_action_chill(&mstate, val);
7831 				continue;
7832 
7833 			case DTRACEACT_RAISE:
7834 				if (dtrace_priv_proc_destructive(state))
7835 					dtrace_action_raise(val);
7836 				continue;
7837 
7838 			case DTRACEACT_COMMIT:
7839 				ASSERT(!committed);
7840 
7841 				/*
7842 				 * We need to commit our buffer state.
7843 				 */
7844 				if (ecb->dte_size)
7845 					buf->dtb_offset = offs + ecb->dte_size;
7846 				buf = &state->dts_buffer[cpuid];
7847 				dtrace_speculation_commit(state, cpuid, val);
7848 				committed = 1;
7849 				continue;
7850 
7851 			case DTRACEACT_DISCARD:
7852 				dtrace_speculation_discard(state, cpuid, val);
7853 				continue;
7854 
7855 			case DTRACEACT_DIFEXPR:
7856 			case DTRACEACT_LIBACT:
7857 			case DTRACEACT_PRINTF:
7858 			case DTRACEACT_PRINTA:
7859 			case DTRACEACT_SYSTEM:
7860 			case DTRACEACT_FREOPEN:
7861 			case DTRACEACT_TRACEMEM:
7862 				break;
7863 
7864 			case DTRACEACT_TRACEMEM_DYNSIZE:
7865 				tracememsize = val;
7866 				break;
7867 
7868 			case DTRACEACT_SYM:
7869 			case DTRACEACT_MOD:
7870 				if (!dtrace_priv_kernel(state))
7871 					continue;
7872 				break;
7873 
7874 			case DTRACEACT_USYM:
7875 			case DTRACEACT_UMOD:
7876 			case DTRACEACT_UADDR: {
7877 #ifdef illumos
7878 				struct pid *pid = curthread->t_procp->p_pidp;
7879 #endif
7880 
7881 				if (!dtrace_priv_proc(state))
7882 					continue;
7883 
7884 				DTRACE_STORE(uint64_t, tomax,
7885 #ifdef illumos
7886 				    valoffs, (uint64_t)pid->pid_id);
7887 #else
7888 				    valoffs, (uint64_t) curproc->p_pid);
7889 #endif
7890 				DTRACE_STORE(uint64_t, tomax,
7891 				    valoffs + sizeof (uint64_t), val);
7892 
7893 				continue;
7894 			}
7895 
7896 			case DTRACEACT_EXIT: {
7897 				/*
7898 				 * For the exit action, we are going to attempt
7899 				 * to atomically set our activity to be
7900 				 * draining.  If this fails (either because
7901 				 * another CPU has beat us to the exit action,
7902 				 * or because our current activity is something
7903 				 * other than ACTIVE or WARMUP), we will
7904 				 * continue.  This assures that the exit action
7905 				 * can be successfully recorded at most once
7906 				 * when we're in the ACTIVE state.  If we're
7907 				 * encountering the exit() action while in
7908 				 * COOLDOWN, however, we want to honor the new
7909 				 * status code.  (We know that we're the only
7910 				 * thread in COOLDOWN, so there is no race.)
7911 				 */
7912 				void *activity = &state->dts_activity;
7913 				dtrace_activity_t curstate = state->dts_activity;
7914 
7915 				if (curstate == DTRACE_ACTIVITY_COOLDOWN)
7916 					break;
7917 
7918 				if (curstate != DTRACE_ACTIVITY_WARMUP)
7919 					curstate = DTRACE_ACTIVITY_ACTIVE;
7920 
7921 				if (dtrace_cas32(activity, curstate,
7922 				    DTRACE_ACTIVITY_DRAINING) != curstate) {
7923 					*flags |= CPU_DTRACE_DROP;
7924 					continue;
7925 				}
7926 
7927 				break;
7928 			}
7929 
7930 			default:
7931 				ASSERT(0);
7932 			}
7933 
7934 			if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF ||
7935 			    dp->dtdo_rtype.dtdt_flags & DIF_TF_BYUREF) {
7936 				uintptr_t end = valoffs + size;
7937 
7938 				if (tracememsize != 0 &&
7939 				    valoffs + tracememsize < end) {
7940 					end = valoffs + tracememsize;
7941 					tracememsize = 0;
7942 				}
7943 
7944 				if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF &&
7945 				    !dtrace_vcanload((void *)(uintptr_t)val,
7946 				    &dp->dtdo_rtype, NULL, &mstate, vstate))
7947 					continue;
7948 
7949 				dtrace_store_by_ref(dp, tomax, size, &valoffs,
7950 				    &val, end, act->dta_intuple,
7951 				    dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF ?
7952 				    DIF_TF_BYREF: DIF_TF_BYUREF);
7953 				continue;
7954 			}
7955 
7956 			switch (size) {
7957 			case 0:
7958 				break;
7959 
7960 			case sizeof (uint8_t):
7961 				DTRACE_STORE(uint8_t, tomax, valoffs, val);
7962 				break;
7963 			case sizeof (uint16_t):
7964 				DTRACE_STORE(uint16_t, tomax, valoffs, val);
7965 				break;
7966 			case sizeof (uint32_t):
7967 				DTRACE_STORE(uint32_t, tomax, valoffs, val);
7968 				break;
7969 			case sizeof (uint64_t):
7970 				DTRACE_STORE(uint64_t, tomax, valoffs, val);
7971 				break;
7972 			default:
7973 				/*
7974 				 * Any other size should have been returned by
7975 				 * reference, not by value.
7976 				 */
7977 				ASSERT(0);
7978 				break;
7979 			}
7980 		}
7981 
7982 		if (*flags & CPU_DTRACE_DROP)
7983 			continue;
7984 
7985 		if (*flags & CPU_DTRACE_FAULT) {
7986 			int ndx;
7987 			dtrace_action_t *err;
7988 
7989 			buf->dtb_errors++;
7990 
7991 			if (probe->dtpr_id == dtrace_probeid_error) {
7992 				/*
7993 				 * There's nothing we can do -- we had an
7994 				 * error on the error probe.  We bump an
7995 				 * error counter to at least indicate that
7996 				 * this condition happened.
7997 				 */
7998 				dtrace_error(&state->dts_dblerrors);
7999 				continue;
8000 			}
8001 
8002 			if (vtime) {
8003 				/*
8004 				 * Before recursing on dtrace_probe(), we
8005 				 * need to explicitly clear out our start
8006 				 * time to prevent it from being accumulated
8007 				 * into t_dtrace_vtime.
8008 				 */
8009 				curthread->t_dtrace_start = 0;
8010 			}
8011 
8012 			/*
8013 			 * Iterate over the actions to figure out which action
8014 			 * we were processing when we experienced the error.
8015 			 * Note that act points _past_ the faulting action; if
8016 			 * act is ecb->dte_action, the fault was in the
8017 			 * predicate, if it's ecb->dte_action->dta_next it's
8018 			 * in action #1, and so on.
8019 			 */
8020 			for (err = ecb->dte_action, ndx = 0;
8021 			    err != act; err = err->dta_next, ndx++)
8022 				continue;
8023 
8024 			dtrace_probe_error(state, ecb->dte_epid, ndx,
8025 			    (mstate.dtms_present & DTRACE_MSTATE_FLTOFFS) ?
8026 			    mstate.dtms_fltoffs : -1, DTRACE_FLAGS2FLT(*flags),
8027 			    cpu_core[cpuid].cpuc_dtrace_illval);
8028 
8029 			continue;
8030 		}
8031 
8032 		if (!committed)
8033 			buf->dtb_offset = offs + ecb->dte_size;
8034 	}
8035 
8036 	if (vtime)
8037 		curthread->t_dtrace_start = dtrace_gethrtime();
8038 
8039 	dtrace_probe_exit(cookie);
8040 }
8041 
8042 /*
8043  * DTrace Probe Hashing Functions
8044  *
8045  * The functions in this section (and indeed, the functions in remaining
8046  * sections) are not _called_ from probe context.  (Any exceptions to this are
8047  * marked with a "Note:".)  Rather, they are called from elsewhere in the
8048  * DTrace framework to look-up probes in, add probes to and remove probes from
8049  * the DTrace probe hashes.  (Each probe is hashed by each element of the
8050  * probe tuple -- allowing for fast lookups, regardless of what was
8051  * specified.)
8052  */
8053 static uint_t
8054 dtrace_hash_str(const char *p)
8055 {
8056 	unsigned int g;
8057 	uint_t hval = 0;
8058 
8059 	while (*p) {
8060 		hval = (hval << 4) + *p++;
8061 		if ((g = (hval & 0xf0000000)) != 0)
8062 			hval ^= g >> 24;
8063 		hval &= ~g;
8064 	}
8065 	return (hval);
8066 }
8067 
8068 static dtrace_hash_t *
8069 dtrace_hash_create(size_t stroffs, size_t nextoffs, size_t prevoffs)
8070 {
8071 	dtrace_hash_t *hash = kmem_zalloc(sizeof (dtrace_hash_t), KM_SLEEP);
8072 
8073 	hash->dth_stroffs = stroffs;
8074 	hash->dth_nextoffs = nextoffs;
8075 	hash->dth_prevoffs = prevoffs;
8076 
8077 	hash->dth_size = 1;
8078 	hash->dth_mask = hash->dth_size - 1;
8079 
8080 	hash->dth_tab = kmem_zalloc(hash->dth_size *
8081 	    sizeof (dtrace_hashbucket_t *), KM_SLEEP);
8082 
8083 	return (hash);
8084 }
8085 
8086 static void
8087 dtrace_hash_destroy(dtrace_hash_t *hash)
8088 {
8089 #ifdef DEBUG
8090 	int i;
8091 
8092 	for (i = 0; i < hash->dth_size; i++)
8093 		ASSERT(hash->dth_tab[i] == NULL);
8094 #endif
8095 
8096 	kmem_free(hash->dth_tab,
8097 	    hash->dth_size * sizeof (dtrace_hashbucket_t *));
8098 	kmem_free(hash, sizeof (dtrace_hash_t));
8099 }
8100 
8101 static void
8102 dtrace_hash_resize(dtrace_hash_t *hash)
8103 {
8104 	int size = hash->dth_size, i, ndx;
8105 	int new_size = hash->dth_size << 1;
8106 	int new_mask = new_size - 1;
8107 	dtrace_hashbucket_t **new_tab, *bucket, *next;
8108 
8109 	ASSERT((new_size & new_mask) == 0);
8110 
8111 	new_tab = kmem_zalloc(new_size * sizeof (void *), KM_SLEEP);
8112 
8113 	for (i = 0; i < size; i++) {
8114 		for (bucket = hash->dth_tab[i]; bucket != NULL; bucket = next) {
8115 			dtrace_probe_t *probe = bucket->dthb_chain;
8116 
8117 			ASSERT(probe != NULL);
8118 			ndx = DTRACE_HASHSTR(hash, probe) & new_mask;
8119 
8120 			next = bucket->dthb_next;
8121 			bucket->dthb_next = new_tab[ndx];
8122 			new_tab[ndx] = bucket;
8123 		}
8124 	}
8125 
8126 	kmem_free(hash->dth_tab, hash->dth_size * sizeof (void *));
8127 	hash->dth_tab = new_tab;
8128 	hash->dth_size = new_size;
8129 	hash->dth_mask = new_mask;
8130 }
8131 
8132 static void
8133 dtrace_hash_add(dtrace_hash_t *hash, dtrace_probe_t *new)
8134 {
8135 	int hashval = DTRACE_HASHSTR(hash, new);
8136 	int ndx = hashval & hash->dth_mask;
8137 	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
8138 	dtrace_probe_t **nextp, **prevp;
8139 
8140 	for (; bucket != NULL; bucket = bucket->dthb_next) {
8141 		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, new))
8142 			goto add;
8143 	}
8144 
8145 	if ((hash->dth_nbuckets >> 1) > hash->dth_size) {
8146 		dtrace_hash_resize(hash);
8147 		dtrace_hash_add(hash, new);
8148 		return;
8149 	}
8150 
8151 	bucket = kmem_zalloc(sizeof (dtrace_hashbucket_t), KM_SLEEP);
8152 	bucket->dthb_next = hash->dth_tab[ndx];
8153 	hash->dth_tab[ndx] = bucket;
8154 	hash->dth_nbuckets++;
8155 
8156 add:
8157 	nextp = DTRACE_HASHNEXT(hash, new);
8158 	ASSERT(*nextp == NULL && *(DTRACE_HASHPREV(hash, new)) == NULL);
8159 	*nextp = bucket->dthb_chain;
8160 
8161 	if (bucket->dthb_chain != NULL) {
8162 		prevp = DTRACE_HASHPREV(hash, bucket->dthb_chain);
8163 		ASSERT(*prevp == NULL);
8164 		*prevp = new;
8165 	}
8166 
8167 	bucket->dthb_chain = new;
8168 	bucket->dthb_len++;
8169 }
8170 
8171 static dtrace_probe_t *
8172 dtrace_hash_lookup(dtrace_hash_t *hash, dtrace_probe_t *template)
8173 {
8174 	int hashval = DTRACE_HASHSTR(hash, template);
8175 	int ndx = hashval & hash->dth_mask;
8176 	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
8177 
8178 	for (; bucket != NULL; bucket = bucket->dthb_next) {
8179 		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
8180 			return (bucket->dthb_chain);
8181 	}
8182 
8183 	return (NULL);
8184 }
8185 
8186 static int
8187 dtrace_hash_collisions(dtrace_hash_t *hash, dtrace_probe_t *template)
8188 {
8189 	int hashval = DTRACE_HASHSTR(hash, template);
8190 	int ndx = hashval & hash->dth_mask;
8191 	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
8192 
8193 	for (; bucket != NULL; bucket = bucket->dthb_next) {
8194 		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
8195 			return (bucket->dthb_len);
8196 	}
8197 
8198 	return (0);
8199 }
8200 
8201 static void
8202 dtrace_hash_remove(dtrace_hash_t *hash, dtrace_probe_t *probe)
8203 {
8204 	int ndx = DTRACE_HASHSTR(hash, probe) & hash->dth_mask;
8205 	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
8206 
8207 	dtrace_probe_t **prevp = DTRACE_HASHPREV(hash, probe);
8208 	dtrace_probe_t **nextp = DTRACE_HASHNEXT(hash, probe);
8209 
8210 	/*
8211 	 * Find the bucket that we're removing this probe from.
8212 	 */
8213 	for (; bucket != NULL; bucket = bucket->dthb_next) {
8214 		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, probe))
8215 			break;
8216 	}
8217 
8218 	ASSERT(bucket != NULL);
8219 
8220 	if (*prevp == NULL) {
8221 		if (*nextp == NULL) {
8222 			/*
8223 			 * The removed probe was the only probe on this
8224 			 * bucket; we need to remove the bucket.
8225 			 */
8226 			dtrace_hashbucket_t *b = hash->dth_tab[ndx];
8227 
8228 			ASSERT(bucket->dthb_chain == probe);
8229 			ASSERT(b != NULL);
8230 
8231 			if (b == bucket) {
8232 				hash->dth_tab[ndx] = bucket->dthb_next;
8233 			} else {
8234 				while (b->dthb_next != bucket)
8235 					b = b->dthb_next;
8236 				b->dthb_next = bucket->dthb_next;
8237 			}
8238 
8239 			ASSERT(hash->dth_nbuckets > 0);
8240 			hash->dth_nbuckets--;
8241 			kmem_free(bucket, sizeof (dtrace_hashbucket_t));
8242 			return;
8243 		}
8244 
8245 		bucket->dthb_chain = *nextp;
8246 	} else {
8247 		*(DTRACE_HASHNEXT(hash, *prevp)) = *nextp;
8248 	}
8249 
8250 	if (*nextp != NULL)
8251 		*(DTRACE_HASHPREV(hash, *nextp)) = *prevp;
8252 }
8253 
8254 /*
8255  * DTrace Utility Functions
8256  *
8257  * These are random utility functions that are _not_ called from probe context.
8258  */
8259 static int
8260 dtrace_badattr(const dtrace_attribute_t *a)
8261 {
8262 	return (a->dtat_name > DTRACE_STABILITY_MAX ||
8263 	    a->dtat_data > DTRACE_STABILITY_MAX ||
8264 	    a->dtat_class > DTRACE_CLASS_MAX);
8265 }
8266 
8267 /*
8268  * Return a duplicate copy of a string.  If the specified string is NULL,
8269  * this function returns a zero-length string.
8270  */
8271 static char *
8272 dtrace_strdup(const char *str)
8273 {
8274 	char *new = kmem_zalloc((str != NULL ? strlen(str) : 0) + 1, KM_SLEEP);
8275 
8276 	if (str != NULL)
8277 		(void) strcpy(new, str);
8278 
8279 	return (new);
8280 }
8281 
8282 #define	DTRACE_ISALPHA(c)	\
8283 	(((c) >= 'a' && (c) <= 'z') || ((c) >= 'A' && (c) <= 'Z'))
8284 
8285 static int
8286 dtrace_badname(const char *s)
8287 {
8288 	char c;
8289 
8290 	if (s == NULL || (c = *s++) == '\0')
8291 		return (0);
8292 
8293 	if (!DTRACE_ISALPHA(c) && c != '-' && c != '_' && c != '.')
8294 		return (1);
8295 
8296 	while ((c = *s++) != '\0') {
8297 		if (!DTRACE_ISALPHA(c) && (c < '0' || c > '9') &&
8298 		    c != '-' && c != '_' && c != '.' && c != '`')
8299 			return (1);
8300 	}
8301 
8302 	return (0);
8303 }
8304 
8305 static void
8306 dtrace_cred2priv(cred_t *cr, uint32_t *privp, uid_t *uidp, zoneid_t *zoneidp)
8307 {
8308 	uint32_t priv;
8309 
8310 #ifdef illumos
8311 	if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
8312 		/*
8313 		 * For DTRACE_PRIV_ALL, the uid and zoneid don't matter.
8314 		 */
8315 		priv = DTRACE_PRIV_ALL;
8316 	} else {
8317 		*uidp = crgetuid(cr);
8318 		*zoneidp = crgetzoneid(cr);
8319 
8320 		priv = 0;
8321 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE))
8322 			priv |= DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER;
8323 		else if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE))
8324 			priv |= DTRACE_PRIV_USER;
8325 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE))
8326 			priv |= DTRACE_PRIV_PROC;
8327 		if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
8328 			priv |= DTRACE_PRIV_OWNER;
8329 		if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
8330 			priv |= DTRACE_PRIV_ZONEOWNER;
8331 	}
8332 #else
8333 	priv = DTRACE_PRIV_ALL;
8334 #endif
8335 
8336 	*privp = priv;
8337 }
8338 
8339 #ifdef DTRACE_ERRDEBUG
8340 static void
8341 dtrace_errdebug(const char *str)
8342 {
8343 	int hval = dtrace_hash_str(str) % DTRACE_ERRHASHSZ;
8344 	int occupied = 0;
8345 
8346 	mutex_enter(&dtrace_errlock);
8347 	dtrace_errlast = str;
8348 	dtrace_errthread = curthread;
8349 
8350 	while (occupied++ < DTRACE_ERRHASHSZ) {
8351 		if (dtrace_errhash[hval].dter_msg == str) {
8352 			dtrace_errhash[hval].dter_count++;
8353 			goto out;
8354 		}
8355 
8356 		if (dtrace_errhash[hval].dter_msg != NULL) {
8357 			hval = (hval + 1) % DTRACE_ERRHASHSZ;
8358 			continue;
8359 		}
8360 
8361 		dtrace_errhash[hval].dter_msg = str;
8362 		dtrace_errhash[hval].dter_count = 1;
8363 		goto out;
8364 	}
8365 
8366 	panic("dtrace: undersized error hash");
8367 out:
8368 	mutex_exit(&dtrace_errlock);
8369 }
8370 #endif
8371 
8372 /*
8373  * DTrace Matching Functions
8374  *
8375  * These functions are used to match groups of probes, given some elements of
8376  * a probe tuple, or some globbed expressions for elements of a probe tuple.
8377  */
8378 static int
8379 dtrace_match_priv(const dtrace_probe_t *prp, uint32_t priv, uid_t uid,
8380     zoneid_t zoneid)
8381 {
8382 	if (priv != DTRACE_PRIV_ALL) {
8383 		uint32_t ppriv = prp->dtpr_provider->dtpv_priv.dtpp_flags;
8384 		uint32_t match = priv & ppriv;
8385 
8386 		/*
8387 		 * No PRIV_DTRACE_* privileges...
8388 		 */
8389 		if ((priv & (DTRACE_PRIV_PROC | DTRACE_PRIV_USER |
8390 		    DTRACE_PRIV_KERNEL)) == 0)
8391 			return (0);
8392 
8393 		/*
8394 		 * No matching bits, but there were bits to match...
8395 		 */
8396 		if (match == 0 && ppriv != 0)
8397 			return (0);
8398 
8399 		/*
8400 		 * Need to have permissions to the process, but don't...
8401 		 */
8402 		if (((ppriv & ~match) & DTRACE_PRIV_OWNER) != 0 &&
8403 		    uid != prp->dtpr_provider->dtpv_priv.dtpp_uid) {
8404 			return (0);
8405 		}
8406 
8407 		/*
8408 		 * Need to be in the same zone unless we possess the
8409 		 * privilege to examine all zones.
8410 		 */
8411 		if (((ppriv & ~match) & DTRACE_PRIV_ZONEOWNER) != 0 &&
8412 		    zoneid != prp->dtpr_provider->dtpv_priv.dtpp_zoneid) {
8413 			return (0);
8414 		}
8415 	}
8416 
8417 	return (1);
8418 }
8419 
8420 /*
8421  * dtrace_match_probe compares a dtrace_probe_t to a pre-compiled key, which
8422  * consists of input pattern strings and an ops-vector to evaluate them.
8423  * This function returns >0 for match, 0 for no match, and <0 for error.
8424  */
8425 static int
8426 dtrace_match_probe(const dtrace_probe_t *prp, const dtrace_probekey_t *pkp,
8427     uint32_t priv, uid_t uid, zoneid_t zoneid)
8428 {
8429 	dtrace_provider_t *pvp = prp->dtpr_provider;
8430 	int rv;
8431 
8432 	if (pvp->dtpv_defunct)
8433 		return (0);
8434 
8435 	if ((rv = pkp->dtpk_pmatch(pvp->dtpv_name, pkp->dtpk_prov, 0)) <= 0)
8436 		return (rv);
8437 
8438 	if ((rv = pkp->dtpk_mmatch(prp->dtpr_mod, pkp->dtpk_mod, 0)) <= 0)
8439 		return (rv);
8440 
8441 	if ((rv = pkp->dtpk_fmatch(prp->dtpr_func, pkp->dtpk_func, 0)) <= 0)
8442 		return (rv);
8443 
8444 	if ((rv = pkp->dtpk_nmatch(prp->dtpr_name, pkp->dtpk_name, 0)) <= 0)
8445 		return (rv);
8446 
8447 	if (dtrace_match_priv(prp, priv, uid, zoneid) == 0)
8448 		return (0);
8449 
8450 	return (rv);
8451 }
8452 
8453 /*
8454  * dtrace_match_glob() is a safe kernel implementation of the gmatch(3GEN)
8455  * interface for matching a glob pattern 'p' to an input string 's'.  Unlike
8456  * libc's version, the kernel version only applies to 8-bit ASCII strings.
8457  * In addition, all of the recursion cases except for '*' matching have been
8458  * unwound.  For '*', we still implement recursive evaluation, but a depth
8459  * counter is maintained and matching is aborted if we recurse too deep.
8460  * The function returns 0 if no match, >0 if match, and <0 if recursion error.
8461  */
8462 static int
8463 dtrace_match_glob(const char *s, const char *p, int depth)
8464 {
8465 	const char *olds;
8466 	char s1, c;
8467 	int gs;
8468 
8469 	if (depth > DTRACE_PROBEKEY_MAXDEPTH)
8470 		return (-1);
8471 
8472 	if (s == NULL)
8473 		s = ""; /* treat NULL as empty string */
8474 
8475 top:
8476 	olds = s;
8477 	s1 = *s++;
8478 
8479 	if (p == NULL)
8480 		return (0);
8481 
8482 	if ((c = *p++) == '\0')
8483 		return (s1 == '\0');
8484 
8485 	switch (c) {
8486 	case '[': {
8487 		int ok = 0, notflag = 0;
8488 		char lc = '\0';
8489 
8490 		if (s1 == '\0')
8491 			return (0);
8492 
8493 		if (*p == '!') {
8494 			notflag = 1;
8495 			p++;
8496 		}
8497 
8498 		if ((c = *p++) == '\0')
8499 			return (0);
8500 
8501 		do {
8502 			if (c == '-' && lc != '\0' && *p != ']') {
8503 				if ((c = *p++) == '\0')
8504 					return (0);
8505 				if (c == '\\' && (c = *p++) == '\0')
8506 					return (0);
8507 
8508 				if (notflag) {
8509 					if (s1 < lc || s1 > c)
8510 						ok++;
8511 					else
8512 						return (0);
8513 				} else if (lc <= s1 && s1 <= c)
8514 					ok++;
8515 
8516 			} else if (c == '\\' && (c = *p++) == '\0')
8517 				return (0);
8518 
8519 			lc = c; /* save left-hand 'c' for next iteration */
8520 
8521 			if (notflag) {
8522 				if (s1 != c)
8523 					ok++;
8524 				else
8525 					return (0);
8526 			} else if (s1 == c)
8527 				ok++;
8528 
8529 			if ((c = *p++) == '\0')
8530 				return (0);
8531 
8532 		} while (c != ']');
8533 
8534 		if (ok)
8535 			goto top;
8536 
8537 		return (0);
8538 	}
8539 
8540 	case '\\':
8541 		if ((c = *p++) == '\0')
8542 			return (0);
8543 		/*FALLTHRU*/
8544 
8545 	default:
8546 		if (c != s1)
8547 			return (0);
8548 		/*FALLTHRU*/
8549 
8550 	case '?':
8551 		if (s1 != '\0')
8552 			goto top;
8553 		return (0);
8554 
8555 	case '*':
8556 		while (*p == '*')
8557 			p++; /* consecutive *'s are identical to a single one */
8558 
8559 		if (*p == '\0')
8560 			return (1);
8561 
8562 		for (s = olds; *s != '\0'; s++) {
8563 			if ((gs = dtrace_match_glob(s, p, depth + 1)) != 0)
8564 				return (gs);
8565 		}
8566 
8567 		return (0);
8568 	}
8569 }
8570 
8571 /*ARGSUSED*/
8572 static int
8573 dtrace_match_string(const char *s, const char *p, int depth)
8574 {
8575 	return (s != NULL && strcmp(s, p) == 0);
8576 }
8577 
8578 /*ARGSUSED*/
8579 static int
8580 dtrace_match_nul(const char *s, const char *p, int depth)
8581 {
8582 	return (1); /* always match the empty pattern */
8583 }
8584 
8585 /*ARGSUSED*/
8586 static int
8587 dtrace_match_nonzero(const char *s, const char *p, int depth)
8588 {
8589 	return (s != NULL && s[0] != '\0');
8590 }
8591 
8592 static int
8593 dtrace_match(const dtrace_probekey_t *pkp, uint32_t priv, uid_t uid,
8594     zoneid_t zoneid, int (*matched)(dtrace_probe_t *, void *), void *arg)
8595 {
8596 	dtrace_probe_t template, *probe;
8597 	dtrace_hash_t *hash = NULL;
8598 	int len, best = INT_MAX, nmatched = 0;
8599 	dtrace_id_t i;
8600 
8601 	ASSERT(MUTEX_HELD(&dtrace_lock));
8602 
8603 	/*
8604 	 * If the probe ID is specified in the key, just lookup by ID and
8605 	 * invoke the match callback once if a matching probe is found.
8606 	 */
8607 	if (pkp->dtpk_id != DTRACE_IDNONE) {
8608 		if ((probe = dtrace_probe_lookup_id(pkp->dtpk_id)) != NULL &&
8609 		    dtrace_match_probe(probe, pkp, priv, uid, zoneid) > 0) {
8610 			(void) (*matched)(probe, arg);
8611 			nmatched++;
8612 		}
8613 		return (nmatched);
8614 	}
8615 
8616 	template.dtpr_mod = (char *)pkp->dtpk_mod;
8617 	template.dtpr_func = (char *)pkp->dtpk_func;
8618 	template.dtpr_name = (char *)pkp->dtpk_name;
8619 
8620 	/*
8621 	 * We want to find the most distinct of the module name, function
8622 	 * name, and name.  So for each one that is not a glob pattern or
8623 	 * empty string, we perform a lookup in the corresponding hash and
8624 	 * use the hash table with the fewest collisions to do our search.
8625 	 */
8626 	if (pkp->dtpk_mmatch == &dtrace_match_string &&
8627 	    (len = dtrace_hash_collisions(dtrace_bymod, &template)) < best) {
8628 		best = len;
8629 		hash = dtrace_bymod;
8630 	}
8631 
8632 	if (pkp->dtpk_fmatch == &dtrace_match_string &&
8633 	    (len = dtrace_hash_collisions(dtrace_byfunc, &template)) < best) {
8634 		best = len;
8635 		hash = dtrace_byfunc;
8636 	}
8637 
8638 	if (pkp->dtpk_nmatch == &dtrace_match_string &&
8639 	    (len = dtrace_hash_collisions(dtrace_byname, &template)) < best) {
8640 		best = len;
8641 		hash = dtrace_byname;
8642 	}
8643 
8644 	/*
8645 	 * If we did not select a hash table, iterate over every probe and
8646 	 * invoke our callback for each one that matches our input probe key.
8647 	 */
8648 	if (hash == NULL) {
8649 		for (i = 0; i < dtrace_nprobes; i++) {
8650 			if ((probe = dtrace_probes[i]) == NULL ||
8651 			    dtrace_match_probe(probe, pkp, priv, uid,
8652 			    zoneid) <= 0)
8653 				continue;
8654 
8655 			nmatched++;
8656 
8657 			if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT)
8658 				break;
8659 		}
8660 
8661 		return (nmatched);
8662 	}
8663 
8664 	/*
8665 	 * If we selected a hash table, iterate over each probe of the same key
8666 	 * name and invoke the callback for every probe that matches the other
8667 	 * attributes of our input probe key.
8668 	 */
8669 	for (probe = dtrace_hash_lookup(hash, &template); probe != NULL;
8670 	    probe = *(DTRACE_HASHNEXT(hash, probe))) {
8671 
8672 		if (dtrace_match_probe(probe, pkp, priv, uid, zoneid) <= 0)
8673 			continue;
8674 
8675 		nmatched++;
8676 
8677 		if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT)
8678 			break;
8679 	}
8680 
8681 	return (nmatched);
8682 }
8683 
8684 /*
8685  * Return the function pointer dtrace_probecmp() should use to compare the
8686  * specified pattern with a string.  For NULL or empty patterns, we select
8687  * dtrace_match_nul().  For glob pattern strings, we use dtrace_match_glob().
8688  * For non-empty non-glob strings, we use dtrace_match_string().
8689  */
8690 static dtrace_probekey_f *
8691 dtrace_probekey_func(const char *p)
8692 {
8693 	char c;
8694 
8695 	if (p == NULL || *p == '\0')
8696 		return (&dtrace_match_nul);
8697 
8698 	while ((c = *p++) != '\0') {
8699 		if (c == '[' || c == '?' || c == '*' || c == '\\')
8700 			return (&dtrace_match_glob);
8701 	}
8702 
8703 	return (&dtrace_match_string);
8704 }
8705 
8706 /*
8707  * Build a probe comparison key for use with dtrace_match_probe() from the
8708  * given probe description.  By convention, a null key only matches anchored
8709  * probes: if each field is the empty string, reset dtpk_fmatch to
8710  * dtrace_match_nonzero().
8711  */
8712 static void
8713 dtrace_probekey(dtrace_probedesc_t *pdp, dtrace_probekey_t *pkp)
8714 {
8715 	pkp->dtpk_prov = pdp->dtpd_provider;
8716 	pkp->dtpk_pmatch = dtrace_probekey_func(pdp->dtpd_provider);
8717 
8718 	pkp->dtpk_mod = pdp->dtpd_mod;
8719 	pkp->dtpk_mmatch = dtrace_probekey_func(pdp->dtpd_mod);
8720 
8721 	pkp->dtpk_func = pdp->dtpd_func;
8722 	pkp->dtpk_fmatch = dtrace_probekey_func(pdp->dtpd_func);
8723 
8724 	pkp->dtpk_name = pdp->dtpd_name;
8725 	pkp->dtpk_nmatch = dtrace_probekey_func(pdp->dtpd_name);
8726 
8727 	pkp->dtpk_id = pdp->dtpd_id;
8728 
8729 	if (pkp->dtpk_id == DTRACE_IDNONE &&
8730 	    pkp->dtpk_pmatch == &dtrace_match_nul &&
8731 	    pkp->dtpk_mmatch == &dtrace_match_nul &&
8732 	    pkp->dtpk_fmatch == &dtrace_match_nul &&
8733 	    pkp->dtpk_nmatch == &dtrace_match_nul)
8734 		pkp->dtpk_fmatch = &dtrace_match_nonzero;
8735 }
8736 
8737 /*
8738  * DTrace Provider-to-Framework API Functions
8739  *
8740  * These functions implement much of the Provider-to-Framework API, as
8741  * described in <sys/dtrace.h>.  The parts of the API not in this section are
8742  * the functions in the API for probe management (found below), and
8743  * dtrace_probe() itself (found above).
8744  */
8745 
8746 /*
8747  * Register the calling provider with the DTrace framework.  This should
8748  * generally be called by DTrace providers in their attach(9E) entry point.
8749  */
8750 int
8751 dtrace_register(const char *name, const dtrace_pattr_t *pap, uint32_t priv,
8752     cred_t *cr, const dtrace_pops_t *pops, void *arg, dtrace_provider_id_t *idp)
8753 {
8754 	dtrace_provider_t *provider;
8755 
8756 	if (name == NULL || pap == NULL || pops == NULL || idp == NULL) {
8757 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
8758 		    "arguments", name ? name : "<NULL>");
8759 		return (EINVAL);
8760 	}
8761 
8762 	if (name[0] == '\0' || dtrace_badname(name)) {
8763 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
8764 		    "provider name", name);
8765 		return (EINVAL);
8766 	}
8767 
8768 	if ((pops->dtps_provide == NULL && pops->dtps_provide_module == NULL) ||
8769 	    pops->dtps_enable == NULL || pops->dtps_disable == NULL ||
8770 	    pops->dtps_destroy == NULL ||
8771 	    ((pops->dtps_resume == NULL) != (pops->dtps_suspend == NULL))) {
8772 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
8773 		    "provider ops", name);
8774 		return (EINVAL);
8775 	}
8776 
8777 	if (dtrace_badattr(&pap->dtpa_provider) ||
8778 	    dtrace_badattr(&pap->dtpa_mod) ||
8779 	    dtrace_badattr(&pap->dtpa_func) ||
8780 	    dtrace_badattr(&pap->dtpa_name) ||
8781 	    dtrace_badattr(&pap->dtpa_args)) {
8782 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
8783 		    "provider attributes", name);
8784 		return (EINVAL);
8785 	}
8786 
8787 	if (priv & ~DTRACE_PRIV_ALL) {
8788 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
8789 		    "privilege attributes", name);
8790 		return (EINVAL);
8791 	}
8792 
8793 	if ((priv & DTRACE_PRIV_KERNEL) &&
8794 	    (priv & (DTRACE_PRIV_USER | DTRACE_PRIV_OWNER)) &&
8795 	    pops->dtps_usermode == NULL) {
8796 		cmn_err(CE_WARN, "failed to register provider '%s': need "
8797 		    "dtps_usermode() op for given privilege attributes", name);
8798 		return (EINVAL);
8799 	}
8800 
8801 	provider = kmem_zalloc(sizeof (dtrace_provider_t), KM_SLEEP);
8802 	provider->dtpv_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
8803 	(void) strcpy(provider->dtpv_name, name);
8804 
8805 	provider->dtpv_attr = *pap;
8806 	provider->dtpv_priv.dtpp_flags = priv;
8807 	if (cr != NULL) {
8808 		provider->dtpv_priv.dtpp_uid = crgetuid(cr);
8809 		provider->dtpv_priv.dtpp_zoneid = crgetzoneid(cr);
8810 	}
8811 	provider->dtpv_pops = *pops;
8812 
8813 	if (pops->dtps_provide == NULL) {
8814 		ASSERT(pops->dtps_provide_module != NULL);
8815 		provider->dtpv_pops.dtps_provide =
8816 		    (void (*)(void *, dtrace_probedesc_t *))dtrace_nullop;
8817 	}
8818 
8819 	if (pops->dtps_provide_module == NULL) {
8820 		ASSERT(pops->dtps_provide != NULL);
8821 		provider->dtpv_pops.dtps_provide_module =
8822 		    (void (*)(void *, modctl_t *))dtrace_nullop;
8823 	}
8824 
8825 	if (pops->dtps_suspend == NULL) {
8826 		ASSERT(pops->dtps_resume == NULL);
8827 		provider->dtpv_pops.dtps_suspend =
8828 		    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
8829 		provider->dtpv_pops.dtps_resume =
8830 		    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
8831 	}
8832 
8833 	provider->dtpv_arg = arg;
8834 	*idp = (dtrace_provider_id_t)provider;
8835 
8836 	if (pops == &dtrace_provider_ops) {
8837 		ASSERT(MUTEX_HELD(&dtrace_provider_lock));
8838 		ASSERT(MUTEX_HELD(&dtrace_lock));
8839 		ASSERT(dtrace_anon.dta_enabling == NULL);
8840 
8841 		/*
8842 		 * We make sure that the DTrace provider is at the head of
8843 		 * the provider chain.
8844 		 */
8845 		provider->dtpv_next = dtrace_provider;
8846 		dtrace_provider = provider;
8847 		return (0);
8848 	}
8849 
8850 	mutex_enter(&dtrace_provider_lock);
8851 	mutex_enter(&dtrace_lock);
8852 
8853 	/*
8854 	 * If there is at least one provider registered, we'll add this
8855 	 * provider after the first provider.
8856 	 */
8857 	if (dtrace_provider != NULL) {
8858 		provider->dtpv_next = dtrace_provider->dtpv_next;
8859 		dtrace_provider->dtpv_next = provider;
8860 	} else {
8861 		dtrace_provider = provider;
8862 	}
8863 
8864 	if (dtrace_retained != NULL) {
8865 		dtrace_enabling_provide(provider);
8866 
8867 		/*
8868 		 * Now we need to call dtrace_enabling_matchall() -- which
8869 		 * will acquire cpu_lock and dtrace_lock.  We therefore need
8870 		 * to drop all of our locks before calling into it...
8871 		 */
8872 		mutex_exit(&dtrace_lock);
8873 		mutex_exit(&dtrace_provider_lock);
8874 		dtrace_enabling_matchall();
8875 
8876 		return (0);
8877 	}
8878 
8879 	mutex_exit(&dtrace_lock);
8880 	mutex_exit(&dtrace_provider_lock);
8881 
8882 	return (0);
8883 }
8884 
8885 /*
8886  * Unregister the specified provider from the DTrace framework.  This should
8887  * generally be called by DTrace providers in their detach(9E) entry point.
8888  */
8889 int
8890 dtrace_unregister(dtrace_provider_id_t id)
8891 {
8892 	dtrace_provider_t *old = (dtrace_provider_t *)id;
8893 	dtrace_provider_t *prev = NULL;
8894 	int i, self = 0, noreap = 0;
8895 	dtrace_probe_t *probe, *first = NULL;
8896 
8897 	if (old->dtpv_pops.dtps_enable ==
8898 	    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop) {
8899 		/*
8900 		 * If DTrace itself is the provider, we're called with locks
8901 		 * already held.
8902 		 */
8903 		ASSERT(old == dtrace_provider);
8904 #ifdef illumos
8905 		ASSERT(dtrace_devi != NULL);
8906 #endif
8907 		ASSERT(MUTEX_HELD(&dtrace_provider_lock));
8908 		ASSERT(MUTEX_HELD(&dtrace_lock));
8909 		self = 1;
8910 
8911 		if (dtrace_provider->dtpv_next != NULL) {
8912 			/*
8913 			 * There's another provider here; return failure.
8914 			 */
8915 			return (EBUSY);
8916 		}
8917 	} else {
8918 		mutex_enter(&dtrace_provider_lock);
8919 #ifdef illumos
8920 		mutex_enter(&mod_lock);
8921 #endif
8922 		mutex_enter(&dtrace_lock);
8923 	}
8924 
8925 	/*
8926 	 * If anyone has /dev/dtrace open, or if there are anonymous enabled
8927 	 * probes, we refuse to let providers slither away, unless this
8928 	 * provider has already been explicitly invalidated.
8929 	 */
8930 	if (!old->dtpv_defunct &&
8931 	    (dtrace_opens || (dtrace_anon.dta_state != NULL &&
8932 	    dtrace_anon.dta_state->dts_necbs > 0))) {
8933 		if (!self) {
8934 			mutex_exit(&dtrace_lock);
8935 #ifdef illumos
8936 			mutex_exit(&mod_lock);
8937 #endif
8938 			mutex_exit(&dtrace_provider_lock);
8939 		}
8940 		return (EBUSY);
8941 	}
8942 
8943 	/*
8944 	 * Attempt to destroy the probes associated with this provider.
8945 	 */
8946 	for (i = 0; i < dtrace_nprobes; i++) {
8947 		if ((probe = dtrace_probes[i]) == NULL)
8948 			continue;
8949 
8950 		if (probe->dtpr_provider != old)
8951 			continue;
8952 
8953 		if (probe->dtpr_ecb == NULL)
8954 			continue;
8955 
8956 		/*
8957 		 * If we are trying to unregister a defunct provider, and the
8958 		 * provider was made defunct within the interval dictated by
8959 		 * dtrace_unregister_defunct_reap, we'll (asynchronously)
8960 		 * attempt to reap our enablings.  To denote that the provider
8961 		 * should reattempt to unregister itself at some point in the
8962 		 * future, we will return a differentiable error code (EAGAIN
8963 		 * instead of EBUSY) in this case.
8964 		 */
8965 		if (dtrace_gethrtime() - old->dtpv_defunct >
8966 		    dtrace_unregister_defunct_reap)
8967 			noreap = 1;
8968 
8969 		if (!self) {
8970 			mutex_exit(&dtrace_lock);
8971 #ifdef illumos
8972 			mutex_exit(&mod_lock);
8973 #endif
8974 			mutex_exit(&dtrace_provider_lock);
8975 		}
8976 
8977 		if (noreap)
8978 			return (EBUSY);
8979 
8980 		(void) taskq_dispatch(dtrace_taskq,
8981 		    (task_func_t *)dtrace_enabling_reap, NULL, TQ_SLEEP);
8982 
8983 		return (EAGAIN);
8984 	}
8985 
8986 	/*
8987 	 * All of the probes for this provider are disabled; we can safely
8988 	 * remove all of them from their hash chains and from the probe array.
8989 	 */
8990 	for (i = 0; i < dtrace_nprobes; i++) {
8991 		if ((probe = dtrace_probes[i]) == NULL)
8992 			continue;
8993 
8994 		if (probe->dtpr_provider != old)
8995 			continue;
8996 
8997 		dtrace_probes[i] = NULL;
8998 
8999 		dtrace_hash_remove(dtrace_bymod, probe);
9000 		dtrace_hash_remove(dtrace_byfunc, probe);
9001 		dtrace_hash_remove(dtrace_byname, probe);
9002 
9003 		if (first == NULL) {
9004 			first = probe;
9005 			probe->dtpr_nextmod = NULL;
9006 		} else {
9007 			probe->dtpr_nextmod = first;
9008 			first = probe;
9009 		}
9010 	}
9011 
9012 	/*
9013 	 * The provider's probes have been removed from the hash chains and
9014 	 * from the probe array.  Now issue a dtrace_sync() to be sure that
9015 	 * everyone has cleared out from any probe array processing.
9016 	 */
9017 	dtrace_sync();
9018 
9019 	for (probe = first; probe != NULL; probe = first) {
9020 		first = probe->dtpr_nextmod;
9021 
9022 		old->dtpv_pops.dtps_destroy(old->dtpv_arg, probe->dtpr_id,
9023 		    probe->dtpr_arg);
9024 		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
9025 		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
9026 		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
9027 #ifdef illumos
9028 		vmem_free(dtrace_arena, (void *)(uintptr_t)(probe->dtpr_id), 1);
9029 #else
9030 		free_unr(dtrace_arena, probe->dtpr_id);
9031 #endif
9032 		kmem_free(probe, sizeof (dtrace_probe_t));
9033 	}
9034 
9035 	if ((prev = dtrace_provider) == old) {
9036 #ifdef illumos
9037 		ASSERT(self || dtrace_devi == NULL);
9038 		ASSERT(old->dtpv_next == NULL || dtrace_devi == NULL);
9039 #endif
9040 		dtrace_provider = old->dtpv_next;
9041 	} else {
9042 		while (prev != NULL && prev->dtpv_next != old)
9043 			prev = prev->dtpv_next;
9044 
9045 		if (prev == NULL) {
9046 			panic("attempt to unregister non-existent "
9047 			    "dtrace provider %p\n", (void *)id);
9048 		}
9049 
9050 		prev->dtpv_next = old->dtpv_next;
9051 	}
9052 
9053 	if (!self) {
9054 		mutex_exit(&dtrace_lock);
9055 #ifdef illumos
9056 		mutex_exit(&mod_lock);
9057 #endif
9058 		mutex_exit(&dtrace_provider_lock);
9059 	}
9060 
9061 	kmem_free(old->dtpv_name, strlen(old->dtpv_name) + 1);
9062 	kmem_free(old, sizeof (dtrace_provider_t));
9063 
9064 	return (0);
9065 }
9066 
9067 /*
9068  * Invalidate the specified provider.  All subsequent probe lookups for the
9069  * specified provider will fail, but its probes will not be removed.
9070  */
9071 void
9072 dtrace_invalidate(dtrace_provider_id_t id)
9073 {
9074 	dtrace_provider_t *pvp = (dtrace_provider_t *)id;
9075 
9076 	ASSERT(pvp->dtpv_pops.dtps_enable !=
9077 	    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop);
9078 
9079 	mutex_enter(&dtrace_provider_lock);
9080 	mutex_enter(&dtrace_lock);
9081 
9082 	pvp->dtpv_defunct = dtrace_gethrtime();
9083 
9084 	mutex_exit(&dtrace_lock);
9085 	mutex_exit(&dtrace_provider_lock);
9086 }
9087 
9088 /*
9089  * Indicate whether or not DTrace has attached.
9090  */
9091 int
9092 dtrace_attached(void)
9093 {
9094 	/*
9095 	 * dtrace_provider will be non-NULL iff the DTrace driver has
9096 	 * attached.  (It's non-NULL because DTrace is always itself a
9097 	 * provider.)
9098 	 */
9099 	return (dtrace_provider != NULL);
9100 }
9101 
9102 /*
9103  * Remove all the unenabled probes for the given provider.  This function is
9104  * not unlike dtrace_unregister(), except that it doesn't remove the provider
9105  * -- just as many of its associated probes as it can.
9106  */
9107 int
9108 dtrace_condense(dtrace_provider_id_t id)
9109 {
9110 	dtrace_provider_t *prov = (dtrace_provider_t *)id;
9111 	int i;
9112 	dtrace_probe_t *probe;
9113 
9114 	/*
9115 	 * Make sure this isn't the dtrace provider itself.
9116 	 */
9117 	ASSERT(prov->dtpv_pops.dtps_enable !=
9118 	    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop);
9119 
9120 	mutex_enter(&dtrace_provider_lock);
9121 	mutex_enter(&dtrace_lock);
9122 
9123 	/*
9124 	 * Attempt to destroy the probes associated with this provider.
9125 	 */
9126 	for (i = 0; i < dtrace_nprobes; i++) {
9127 		if ((probe = dtrace_probes[i]) == NULL)
9128 			continue;
9129 
9130 		if (probe->dtpr_provider != prov)
9131 			continue;
9132 
9133 		if (probe->dtpr_ecb != NULL)
9134 			continue;
9135 
9136 		dtrace_probes[i] = NULL;
9137 
9138 		dtrace_hash_remove(dtrace_bymod, probe);
9139 		dtrace_hash_remove(dtrace_byfunc, probe);
9140 		dtrace_hash_remove(dtrace_byname, probe);
9141 
9142 		prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, i + 1,
9143 		    probe->dtpr_arg);
9144 		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
9145 		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
9146 		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
9147 		kmem_free(probe, sizeof (dtrace_probe_t));
9148 #ifdef illumos
9149 		vmem_free(dtrace_arena, (void *)((uintptr_t)i + 1), 1);
9150 #else
9151 		free_unr(dtrace_arena, i + 1);
9152 #endif
9153 	}
9154 
9155 	mutex_exit(&dtrace_lock);
9156 	mutex_exit(&dtrace_provider_lock);
9157 
9158 	return (0);
9159 }
9160 
9161 /*
9162  * DTrace Probe Management Functions
9163  *
9164  * The functions in this section perform the DTrace probe management,
9165  * including functions to create probes, look-up probes, and call into the
9166  * providers to request that probes be provided.  Some of these functions are
9167  * in the Provider-to-Framework API; these functions can be identified by the
9168  * fact that they are not declared "static".
9169  */
9170 
9171 /*
9172  * Create a probe with the specified module name, function name, and name.
9173  */
9174 dtrace_id_t
9175 dtrace_probe_create(dtrace_provider_id_t prov, const char *mod,
9176     const char *func, const char *name, int aframes, void *arg)
9177 {
9178 	dtrace_probe_t *probe, **probes;
9179 	dtrace_provider_t *provider = (dtrace_provider_t *)prov;
9180 	dtrace_id_t id;
9181 
9182 	if (provider == dtrace_provider) {
9183 		ASSERT(MUTEX_HELD(&dtrace_lock));
9184 	} else {
9185 		mutex_enter(&dtrace_lock);
9186 	}
9187 
9188 #ifdef illumos
9189 	id = (dtrace_id_t)(uintptr_t)vmem_alloc(dtrace_arena, 1,
9190 	    VM_BESTFIT | VM_SLEEP);
9191 #else
9192 	id = alloc_unr(dtrace_arena);
9193 #endif
9194 	probe = kmem_zalloc(sizeof (dtrace_probe_t), KM_SLEEP);
9195 
9196 	probe->dtpr_id = id;
9197 	probe->dtpr_gen = dtrace_probegen++;
9198 	probe->dtpr_mod = dtrace_strdup(mod);
9199 	probe->dtpr_func = dtrace_strdup(func);
9200 	probe->dtpr_name = dtrace_strdup(name);
9201 	probe->dtpr_arg = arg;
9202 	probe->dtpr_aframes = aframes;
9203 	probe->dtpr_provider = provider;
9204 
9205 	dtrace_hash_add(dtrace_bymod, probe);
9206 	dtrace_hash_add(dtrace_byfunc, probe);
9207 	dtrace_hash_add(dtrace_byname, probe);
9208 
9209 	if (id - 1 >= dtrace_nprobes) {
9210 		size_t osize = dtrace_nprobes * sizeof (dtrace_probe_t *);
9211 		size_t nsize = osize << 1;
9212 
9213 		if (nsize == 0) {
9214 			ASSERT(osize == 0);
9215 			ASSERT(dtrace_probes == NULL);
9216 			nsize = sizeof (dtrace_probe_t *);
9217 		}
9218 
9219 		probes = kmem_zalloc(nsize, KM_SLEEP);
9220 
9221 		if (dtrace_probes == NULL) {
9222 			ASSERT(osize == 0);
9223 			dtrace_probes = probes;
9224 			dtrace_nprobes = 1;
9225 		} else {
9226 			dtrace_probe_t **oprobes = dtrace_probes;
9227 
9228 			bcopy(oprobes, probes, osize);
9229 			dtrace_membar_producer();
9230 			dtrace_probes = probes;
9231 
9232 			dtrace_sync();
9233 
9234 			/*
9235 			 * All CPUs are now seeing the new probes array; we can
9236 			 * safely free the old array.
9237 			 */
9238 			kmem_free(oprobes, osize);
9239 			dtrace_nprobes <<= 1;
9240 		}
9241 
9242 		ASSERT(id - 1 < dtrace_nprobes);
9243 	}
9244 
9245 	ASSERT(dtrace_probes[id - 1] == NULL);
9246 	dtrace_probes[id - 1] = probe;
9247 
9248 	if (provider != dtrace_provider)
9249 		mutex_exit(&dtrace_lock);
9250 
9251 	return (id);
9252 }
9253 
9254 static dtrace_probe_t *
9255 dtrace_probe_lookup_id(dtrace_id_t id)
9256 {
9257 	ASSERT(MUTEX_HELD(&dtrace_lock));
9258 
9259 	if (id == 0 || id > dtrace_nprobes)
9260 		return (NULL);
9261 
9262 	return (dtrace_probes[id - 1]);
9263 }
9264 
9265 static int
9266 dtrace_probe_lookup_match(dtrace_probe_t *probe, void *arg)
9267 {
9268 	*((dtrace_id_t *)arg) = probe->dtpr_id;
9269 
9270 	return (DTRACE_MATCH_DONE);
9271 }
9272 
9273 /*
9274  * Look up a probe based on provider and one or more of module name, function
9275  * name and probe name.
9276  */
9277 dtrace_id_t
9278 dtrace_probe_lookup(dtrace_provider_id_t prid, char *mod,
9279     char *func, char *name)
9280 {
9281 	dtrace_probekey_t pkey;
9282 	dtrace_id_t id;
9283 	int match;
9284 
9285 	pkey.dtpk_prov = ((dtrace_provider_t *)prid)->dtpv_name;
9286 	pkey.dtpk_pmatch = &dtrace_match_string;
9287 	pkey.dtpk_mod = mod;
9288 	pkey.dtpk_mmatch = mod ? &dtrace_match_string : &dtrace_match_nul;
9289 	pkey.dtpk_func = func;
9290 	pkey.dtpk_fmatch = func ? &dtrace_match_string : &dtrace_match_nul;
9291 	pkey.dtpk_name = name;
9292 	pkey.dtpk_nmatch = name ? &dtrace_match_string : &dtrace_match_nul;
9293 	pkey.dtpk_id = DTRACE_IDNONE;
9294 
9295 	mutex_enter(&dtrace_lock);
9296 	match = dtrace_match(&pkey, DTRACE_PRIV_ALL, 0, 0,
9297 	    dtrace_probe_lookup_match, &id);
9298 	mutex_exit(&dtrace_lock);
9299 
9300 	ASSERT(match == 1 || match == 0);
9301 	return (match ? id : 0);
9302 }
9303 
9304 /*
9305  * Returns the probe argument associated with the specified probe.
9306  */
9307 void *
9308 dtrace_probe_arg(dtrace_provider_id_t id, dtrace_id_t pid)
9309 {
9310 	dtrace_probe_t *probe;
9311 	void *rval = NULL;
9312 
9313 	mutex_enter(&dtrace_lock);
9314 
9315 	if ((probe = dtrace_probe_lookup_id(pid)) != NULL &&
9316 	    probe->dtpr_provider == (dtrace_provider_t *)id)
9317 		rval = probe->dtpr_arg;
9318 
9319 	mutex_exit(&dtrace_lock);
9320 
9321 	return (rval);
9322 }
9323 
9324 /*
9325  * Copy a probe into a probe description.
9326  */
9327 static void
9328 dtrace_probe_description(const dtrace_probe_t *prp, dtrace_probedesc_t *pdp)
9329 {
9330 	bzero(pdp, sizeof (dtrace_probedesc_t));
9331 	pdp->dtpd_id = prp->dtpr_id;
9332 
9333 	(void) strncpy(pdp->dtpd_provider,
9334 	    prp->dtpr_provider->dtpv_name, DTRACE_PROVNAMELEN - 1);
9335 
9336 	(void) strncpy(pdp->dtpd_mod, prp->dtpr_mod, DTRACE_MODNAMELEN - 1);
9337 	(void) strncpy(pdp->dtpd_func, prp->dtpr_func, DTRACE_FUNCNAMELEN - 1);
9338 	(void) strncpy(pdp->dtpd_name, prp->dtpr_name, DTRACE_NAMELEN - 1);
9339 }
9340 
9341 /*
9342  * Called to indicate that a probe -- or probes -- should be provided by a
9343  * specfied provider.  If the specified description is NULL, the provider will
9344  * be told to provide all of its probes.  (This is done whenever a new
9345  * consumer comes along, or whenever a retained enabling is to be matched.) If
9346  * the specified description is non-NULL, the provider is given the
9347  * opportunity to dynamically provide the specified probe, allowing providers
9348  * to support the creation of probes on-the-fly.  (So-called _autocreated_
9349  * probes.)  If the provider is NULL, the operations will be applied to all
9350  * providers; if the provider is non-NULL the operations will only be applied
9351  * to the specified provider.  The dtrace_provider_lock must be held, and the
9352  * dtrace_lock must _not_ be held -- the provider's dtps_provide() operation
9353  * will need to grab the dtrace_lock when it reenters the framework through
9354  * dtrace_probe_lookup(), dtrace_probe_create(), etc.
9355  */
9356 static void
9357 dtrace_probe_provide(dtrace_probedesc_t *desc, dtrace_provider_t *prv)
9358 {
9359 #ifdef illumos
9360 	modctl_t *ctl;
9361 #endif
9362 	int all = 0;
9363 
9364 	ASSERT(MUTEX_HELD(&dtrace_provider_lock));
9365 
9366 	if (prv == NULL) {
9367 		all = 1;
9368 		prv = dtrace_provider;
9369 	}
9370 
9371 	do {
9372 		/*
9373 		 * First, call the blanket provide operation.
9374 		 */
9375 		prv->dtpv_pops.dtps_provide(prv->dtpv_arg, desc);
9376 
9377 #ifdef illumos
9378 		/*
9379 		 * Now call the per-module provide operation.  We will grab
9380 		 * mod_lock to prevent the list from being modified.  Note
9381 		 * that this also prevents the mod_busy bits from changing.
9382 		 * (mod_busy can only be changed with mod_lock held.)
9383 		 */
9384 		mutex_enter(&mod_lock);
9385 
9386 		ctl = &modules;
9387 		do {
9388 			if (ctl->mod_busy || ctl->mod_mp == NULL)
9389 				continue;
9390 
9391 			prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
9392 
9393 		} while ((ctl = ctl->mod_next) != &modules);
9394 
9395 		mutex_exit(&mod_lock);
9396 #endif
9397 	} while (all && (prv = prv->dtpv_next) != NULL);
9398 }
9399 
9400 #ifdef illumos
9401 /*
9402  * Iterate over each probe, and call the Framework-to-Provider API function
9403  * denoted by offs.
9404  */
9405 static void
9406 dtrace_probe_foreach(uintptr_t offs)
9407 {
9408 	dtrace_provider_t *prov;
9409 	void (*func)(void *, dtrace_id_t, void *);
9410 	dtrace_probe_t *probe;
9411 	dtrace_icookie_t cookie;
9412 	int i;
9413 
9414 	/*
9415 	 * We disable interrupts to walk through the probe array.  This is
9416 	 * safe -- the dtrace_sync() in dtrace_unregister() assures that we
9417 	 * won't see stale data.
9418 	 */
9419 	cookie = dtrace_interrupt_disable();
9420 
9421 	for (i = 0; i < dtrace_nprobes; i++) {
9422 		if ((probe = dtrace_probes[i]) == NULL)
9423 			continue;
9424 
9425 		if (probe->dtpr_ecb == NULL) {
9426 			/*
9427 			 * This probe isn't enabled -- don't call the function.
9428 			 */
9429 			continue;
9430 		}
9431 
9432 		prov = probe->dtpr_provider;
9433 		func = *((void(**)(void *, dtrace_id_t, void *))
9434 		    ((uintptr_t)&prov->dtpv_pops + offs));
9435 
9436 		func(prov->dtpv_arg, i + 1, probe->dtpr_arg);
9437 	}
9438 
9439 	dtrace_interrupt_enable(cookie);
9440 }
9441 #endif
9442 
9443 static int
9444 dtrace_probe_enable(dtrace_probedesc_t *desc, dtrace_enabling_t *enab)
9445 {
9446 	dtrace_probekey_t pkey;
9447 	uint32_t priv;
9448 	uid_t uid;
9449 	zoneid_t zoneid;
9450 
9451 	ASSERT(MUTEX_HELD(&dtrace_lock));
9452 	dtrace_ecb_create_cache = NULL;
9453 
9454 	if (desc == NULL) {
9455 		/*
9456 		 * If we're passed a NULL description, we're being asked to
9457 		 * create an ECB with a NULL probe.
9458 		 */
9459 		(void) dtrace_ecb_create_enable(NULL, enab);
9460 		return (0);
9461 	}
9462 
9463 	dtrace_probekey(desc, &pkey);
9464 	dtrace_cred2priv(enab->dten_vstate->dtvs_state->dts_cred.dcr_cred,
9465 	    &priv, &uid, &zoneid);
9466 
9467 	return (dtrace_match(&pkey, priv, uid, zoneid, dtrace_ecb_create_enable,
9468 	    enab));
9469 }
9470 
9471 /*
9472  * DTrace Helper Provider Functions
9473  */
9474 static void
9475 dtrace_dofattr2attr(dtrace_attribute_t *attr, const dof_attr_t dofattr)
9476 {
9477 	attr->dtat_name = DOF_ATTR_NAME(dofattr);
9478 	attr->dtat_data = DOF_ATTR_DATA(dofattr);
9479 	attr->dtat_class = DOF_ATTR_CLASS(dofattr);
9480 }
9481 
9482 static void
9483 dtrace_dofprov2hprov(dtrace_helper_provdesc_t *hprov,
9484     const dof_provider_t *dofprov, char *strtab)
9485 {
9486 	hprov->dthpv_provname = strtab + dofprov->dofpv_name;
9487 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_provider,
9488 	    dofprov->dofpv_provattr);
9489 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_mod,
9490 	    dofprov->dofpv_modattr);
9491 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_func,
9492 	    dofprov->dofpv_funcattr);
9493 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_name,
9494 	    dofprov->dofpv_nameattr);
9495 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_args,
9496 	    dofprov->dofpv_argsattr);
9497 }
9498 
9499 static void
9500 dtrace_helper_provide_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
9501 {
9502 	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
9503 	dof_hdr_t *dof = (dof_hdr_t *)daddr;
9504 	dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
9505 	dof_provider_t *provider;
9506 	dof_probe_t *probe;
9507 	uint32_t *off, *enoff;
9508 	uint8_t *arg;
9509 	char *strtab;
9510 	uint_t i, nprobes;
9511 	dtrace_helper_provdesc_t dhpv;
9512 	dtrace_helper_probedesc_t dhpb;
9513 	dtrace_meta_t *meta = dtrace_meta_pid;
9514 	dtrace_mops_t *mops = &meta->dtm_mops;
9515 	void *parg;
9516 
9517 	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
9518 	str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
9519 	    provider->dofpv_strtab * dof->dofh_secsize);
9520 	prb_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
9521 	    provider->dofpv_probes * dof->dofh_secsize);
9522 	arg_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
9523 	    provider->dofpv_prargs * dof->dofh_secsize);
9524 	off_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
9525 	    provider->dofpv_proffs * dof->dofh_secsize);
9526 
9527 	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
9528 	off = (uint32_t *)(uintptr_t)(daddr + off_sec->dofs_offset);
9529 	arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
9530 	enoff = NULL;
9531 
9532 	/*
9533 	 * See dtrace_helper_provider_validate().
9534 	 */
9535 	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
9536 	    provider->dofpv_prenoffs != DOF_SECT_NONE) {
9537 		enoff_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
9538 		    provider->dofpv_prenoffs * dof->dofh_secsize);
9539 		enoff = (uint32_t *)(uintptr_t)(daddr + enoff_sec->dofs_offset);
9540 	}
9541 
9542 	nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
9543 
9544 	/*
9545 	 * Create the provider.
9546 	 */
9547 	dtrace_dofprov2hprov(&dhpv, provider, strtab);
9548 
9549 	if ((parg = mops->dtms_provide_pid(meta->dtm_arg, &dhpv, pid)) == NULL)
9550 		return;
9551 
9552 	meta->dtm_count++;
9553 
9554 	/*
9555 	 * Create the probes.
9556 	 */
9557 	for (i = 0; i < nprobes; i++) {
9558 		probe = (dof_probe_t *)(uintptr_t)(daddr +
9559 		    prb_sec->dofs_offset + i * prb_sec->dofs_entsize);
9560 
9561 		/* See the check in dtrace_helper_provider_validate(). */
9562 		if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN)
9563 			continue;
9564 
9565 		dhpb.dthpb_mod = dhp->dofhp_mod;
9566 		dhpb.dthpb_func = strtab + probe->dofpr_func;
9567 		dhpb.dthpb_name = strtab + probe->dofpr_name;
9568 		dhpb.dthpb_base = probe->dofpr_addr;
9569 		dhpb.dthpb_offs = off + probe->dofpr_offidx;
9570 		dhpb.dthpb_noffs = probe->dofpr_noffs;
9571 		if (enoff != NULL) {
9572 			dhpb.dthpb_enoffs = enoff + probe->dofpr_enoffidx;
9573 			dhpb.dthpb_nenoffs = probe->dofpr_nenoffs;
9574 		} else {
9575 			dhpb.dthpb_enoffs = NULL;
9576 			dhpb.dthpb_nenoffs = 0;
9577 		}
9578 		dhpb.dthpb_args = arg + probe->dofpr_argidx;
9579 		dhpb.dthpb_nargc = probe->dofpr_nargc;
9580 		dhpb.dthpb_xargc = probe->dofpr_xargc;
9581 		dhpb.dthpb_ntypes = strtab + probe->dofpr_nargv;
9582 		dhpb.dthpb_xtypes = strtab + probe->dofpr_xargv;
9583 
9584 		mops->dtms_create_probe(meta->dtm_arg, parg, &dhpb);
9585 	}
9586 }
9587 
9588 static void
9589 dtrace_helper_provide(dof_helper_t *dhp, pid_t pid)
9590 {
9591 	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
9592 	dof_hdr_t *dof = (dof_hdr_t *)daddr;
9593 	int i;
9594 
9595 	ASSERT(MUTEX_HELD(&dtrace_meta_lock));
9596 
9597 	for (i = 0; i < dof->dofh_secnum; i++) {
9598 		dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
9599 		    dof->dofh_secoff + i * dof->dofh_secsize);
9600 
9601 		if (sec->dofs_type != DOF_SECT_PROVIDER)
9602 			continue;
9603 
9604 		dtrace_helper_provide_one(dhp, sec, pid);
9605 	}
9606 
9607 	/*
9608 	 * We may have just created probes, so we must now rematch against
9609 	 * any retained enablings.  Note that this call will acquire both
9610 	 * cpu_lock and dtrace_lock; the fact that we are holding
9611 	 * dtrace_meta_lock now is what defines the ordering with respect to
9612 	 * these three locks.
9613 	 */
9614 	dtrace_enabling_matchall();
9615 }
9616 
9617 static void
9618 dtrace_helper_provider_remove_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
9619 {
9620 	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
9621 	dof_hdr_t *dof = (dof_hdr_t *)daddr;
9622 	dof_sec_t *str_sec;
9623 	dof_provider_t *provider;
9624 	char *strtab;
9625 	dtrace_helper_provdesc_t dhpv;
9626 	dtrace_meta_t *meta = dtrace_meta_pid;
9627 	dtrace_mops_t *mops = &meta->dtm_mops;
9628 
9629 	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
9630 	str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
9631 	    provider->dofpv_strtab * dof->dofh_secsize);
9632 
9633 	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
9634 
9635 	/*
9636 	 * Create the provider.
9637 	 */
9638 	dtrace_dofprov2hprov(&dhpv, provider, strtab);
9639 
9640 	mops->dtms_remove_pid(meta->dtm_arg, &dhpv, pid);
9641 
9642 	meta->dtm_count--;
9643 }
9644 
9645 static void
9646 dtrace_helper_provider_remove(dof_helper_t *dhp, pid_t pid)
9647 {
9648 	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
9649 	dof_hdr_t *dof = (dof_hdr_t *)daddr;
9650 	int i;
9651 
9652 	ASSERT(MUTEX_HELD(&dtrace_meta_lock));
9653 
9654 	for (i = 0; i < dof->dofh_secnum; i++) {
9655 		dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
9656 		    dof->dofh_secoff + i * dof->dofh_secsize);
9657 
9658 		if (sec->dofs_type != DOF_SECT_PROVIDER)
9659 			continue;
9660 
9661 		dtrace_helper_provider_remove_one(dhp, sec, pid);
9662 	}
9663 }
9664 
9665 /*
9666  * DTrace Meta Provider-to-Framework API Functions
9667  *
9668  * These functions implement the Meta Provider-to-Framework API, as described
9669  * in <sys/dtrace.h>.
9670  */
9671 int
9672 dtrace_meta_register(const char *name, const dtrace_mops_t *mops, void *arg,
9673     dtrace_meta_provider_id_t *idp)
9674 {
9675 	dtrace_meta_t *meta;
9676 	dtrace_helpers_t *help, *next;
9677 	int i;
9678 
9679 	*idp = DTRACE_METAPROVNONE;
9680 
9681 	/*
9682 	 * We strictly don't need the name, but we hold onto it for
9683 	 * debuggability. All hail error queues!
9684 	 */
9685 	if (name == NULL) {
9686 		cmn_err(CE_WARN, "failed to register meta-provider: "
9687 		    "invalid name");
9688 		return (EINVAL);
9689 	}
9690 
9691 	if (mops == NULL ||
9692 	    mops->dtms_create_probe == NULL ||
9693 	    mops->dtms_provide_pid == NULL ||
9694 	    mops->dtms_remove_pid == NULL) {
9695 		cmn_err(CE_WARN, "failed to register meta-register %s: "
9696 		    "invalid ops", name);
9697 		return (EINVAL);
9698 	}
9699 
9700 	meta = kmem_zalloc(sizeof (dtrace_meta_t), KM_SLEEP);
9701 	meta->dtm_mops = *mops;
9702 	meta->dtm_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
9703 	(void) strcpy(meta->dtm_name, name);
9704 	meta->dtm_arg = arg;
9705 
9706 	mutex_enter(&dtrace_meta_lock);
9707 	mutex_enter(&dtrace_lock);
9708 
9709 	if (dtrace_meta_pid != NULL) {
9710 		mutex_exit(&dtrace_lock);
9711 		mutex_exit(&dtrace_meta_lock);
9712 		cmn_err(CE_WARN, "failed to register meta-register %s: "
9713 		    "user-land meta-provider exists", name);
9714 		kmem_free(meta->dtm_name, strlen(meta->dtm_name) + 1);
9715 		kmem_free(meta, sizeof (dtrace_meta_t));
9716 		return (EINVAL);
9717 	}
9718 
9719 	dtrace_meta_pid = meta;
9720 	*idp = (dtrace_meta_provider_id_t)meta;
9721 
9722 	/*
9723 	 * If there are providers and probes ready to go, pass them
9724 	 * off to the new meta provider now.
9725 	 */
9726 
9727 	help = dtrace_deferred_pid;
9728 	dtrace_deferred_pid = NULL;
9729 
9730 	mutex_exit(&dtrace_lock);
9731 
9732 	while (help != NULL) {
9733 		for (i = 0; i < help->dthps_nprovs; i++) {
9734 			dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
9735 			    help->dthps_pid);
9736 		}
9737 
9738 		next = help->dthps_next;
9739 		help->dthps_next = NULL;
9740 		help->dthps_prev = NULL;
9741 		help->dthps_deferred = 0;
9742 		help = next;
9743 	}
9744 
9745 	mutex_exit(&dtrace_meta_lock);
9746 
9747 	return (0);
9748 }
9749 
9750 int
9751 dtrace_meta_unregister(dtrace_meta_provider_id_t id)
9752 {
9753 	dtrace_meta_t **pp, *old = (dtrace_meta_t *)id;
9754 
9755 	mutex_enter(&dtrace_meta_lock);
9756 	mutex_enter(&dtrace_lock);
9757 
9758 	if (old == dtrace_meta_pid) {
9759 		pp = &dtrace_meta_pid;
9760 	} else {
9761 		panic("attempt to unregister non-existent "
9762 		    "dtrace meta-provider %p\n", (void *)old);
9763 	}
9764 
9765 	if (old->dtm_count != 0) {
9766 		mutex_exit(&dtrace_lock);
9767 		mutex_exit(&dtrace_meta_lock);
9768 		return (EBUSY);
9769 	}
9770 
9771 	*pp = NULL;
9772 
9773 	mutex_exit(&dtrace_lock);
9774 	mutex_exit(&dtrace_meta_lock);
9775 
9776 	kmem_free(old->dtm_name, strlen(old->dtm_name) + 1);
9777 	kmem_free(old, sizeof (dtrace_meta_t));
9778 
9779 	return (0);
9780 }
9781 
9782 
9783 /*
9784  * DTrace DIF Object Functions
9785  */
9786 static int
9787 dtrace_difo_err(uint_t pc, const char *format, ...)
9788 {
9789 	if (dtrace_err_verbose) {
9790 		va_list alist;
9791 
9792 		(void) uprintf("dtrace DIF object error: [%u]: ", pc);
9793 		va_start(alist, format);
9794 		(void) vuprintf(format, alist);
9795 		va_end(alist);
9796 	}
9797 
9798 #ifdef DTRACE_ERRDEBUG
9799 	dtrace_errdebug(format);
9800 #endif
9801 	return (1);
9802 }
9803 
9804 /*
9805  * Validate a DTrace DIF object by checking the IR instructions.  The following
9806  * rules are currently enforced by dtrace_difo_validate():
9807  *
9808  * 1. Each instruction must have a valid opcode
9809  * 2. Each register, string, variable, or subroutine reference must be valid
9810  * 3. No instruction can modify register %r0 (must be zero)
9811  * 4. All instruction reserved bits must be set to zero
9812  * 5. The last instruction must be a "ret" instruction
9813  * 6. All branch targets must reference a valid instruction _after_ the branch
9814  */
9815 static int
9816 dtrace_difo_validate(dtrace_difo_t *dp, dtrace_vstate_t *vstate, uint_t nregs,
9817     cred_t *cr)
9818 {
9819 	int err = 0, i;
9820 	int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
9821 	int kcheckload;
9822 	uint_t pc;
9823 	int maxglobal = -1, maxlocal = -1, maxtlocal = -1;
9824 
9825 	kcheckload = cr == NULL ||
9826 	    (vstate->dtvs_state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) == 0;
9827 
9828 	dp->dtdo_destructive = 0;
9829 
9830 	for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) {
9831 		dif_instr_t instr = dp->dtdo_buf[pc];
9832 
9833 		uint_t r1 = DIF_INSTR_R1(instr);
9834 		uint_t r2 = DIF_INSTR_R2(instr);
9835 		uint_t rd = DIF_INSTR_RD(instr);
9836 		uint_t rs = DIF_INSTR_RS(instr);
9837 		uint_t label = DIF_INSTR_LABEL(instr);
9838 		uint_t v = DIF_INSTR_VAR(instr);
9839 		uint_t subr = DIF_INSTR_SUBR(instr);
9840 		uint_t type = DIF_INSTR_TYPE(instr);
9841 		uint_t op = DIF_INSTR_OP(instr);
9842 
9843 		switch (op) {
9844 		case DIF_OP_OR:
9845 		case DIF_OP_XOR:
9846 		case DIF_OP_AND:
9847 		case DIF_OP_SLL:
9848 		case DIF_OP_SRL:
9849 		case DIF_OP_SRA:
9850 		case DIF_OP_SUB:
9851 		case DIF_OP_ADD:
9852 		case DIF_OP_MUL:
9853 		case DIF_OP_SDIV:
9854 		case DIF_OP_UDIV:
9855 		case DIF_OP_SREM:
9856 		case DIF_OP_UREM:
9857 		case DIF_OP_COPYS:
9858 			if (r1 >= nregs)
9859 				err += efunc(pc, "invalid register %u\n", r1);
9860 			if (r2 >= nregs)
9861 				err += efunc(pc, "invalid register %u\n", r2);
9862 			if (rd >= nregs)
9863 				err += efunc(pc, "invalid register %u\n", rd);
9864 			if (rd == 0)
9865 				err += efunc(pc, "cannot write to %%r0\n");
9866 			break;
9867 		case DIF_OP_NOT:
9868 		case DIF_OP_MOV:
9869 		case DIF_OP_ALLOCS:
9870 			if (r1 >= nregs)
9871 				err += efunc(pc, "invalid register %u\n", r1);
9872 			if (r2 != 0)
9873 				err += efunc(pc, "non-zero reserved bits\n");
9874 			if (rd >= nregs)
9875 				err += efunc(pc, "invalid register %u\n", rd);
9876 			if (rd == 0)
9877 				err += efunc(pc, "cannot write to %%r0\n");
9878 			break;
9879 		case DIF_OP_LDSB:
9880 		case DIF_OP_LDSH:
9881 		case DIF_OP_LDSW:
9882 		case DIF_OP_LDUB:
9883 		case DIF_OP_LDUH:
9884 		case DIF_OP_LDUW:
9885 		case DIF_OP_LDX:
9886 			if (r1 >= nregs)
9887 				err += efunc(pc, "invalid register %u\n", r1);
9888 			if (r2 != 0)
9889 				err += efunc(pc, "non-zero reserved bits\n");
9890 			if (rd >= nregs)
9891 				err += efunc(pc, "invalid register %u\n", rd);
9892 			if (rd == 0)
9893 				err += efunc(pc, "cannot write to %%r0\n");
9894 			if (kcheckload)
9895 				dp->dtdo_buf[pc] = DIF_INSTR_LOAD(op +
9896 				    DIF_OP_RLDSB - DIF_OP_LDSB, r1, rd);
9897 			break;
9898 		case DIF_OP_RLDSB:
9899 		case DIF_OP_RLDSH:
9900 		case DIF_OP_RLDSW:
9901 		case DIF_OP_RLDUB:
9902 		case DIF_OP_RLDUH:
9903 		case DIF_OP_RLDUW:
9904 		case DIF_OP_RLDX:
9905 			if (r1 >= nregs)
9906 				err += efunc(pc, "invalid register %u\n", r1);
9907 			if (r2 != 0)
9908 				err += efunc(pc, "non-zero reserved bits\n");
9909 			if (rd >= nregs)
9910 				err += efunc(pc, "invalid register %u\n", rd);
9911 			if (rd == 0)
9912 				err += efunc(pc, "cannot write to %%r0\n");
9913 			break;
9914 		case DIF_OP_ULDSB:
9915 		case DIF_OP_ULDSH:
9916 		case DIF_OP_ULDSW:
9917 		case DIF_OP_ULDUB:
9918 		case DIF_OP_ULDUH:
9919 		case DIF_OP_ULDUW:
9920 		case DIF_OP_ULDX:
9921 			if (r1 >= nregs)
9922 				err += efunc(pc, "invalid register %u\n", r1);
9923 			if (r2 != 0)
9924 				err += efunc(pc, "non-zero reserved bits\n");
9925 			if (rd >= nregs)
9926 				err += efunc(pc, "invalid register %u\n", rd);
9927 			if (rd == 0)
9928 				err += efunc(pc, "cannot write to %%r0\n");
9929 			break;
9930 		case DIF_OP_STB:
9931 		case DIF_OP_STH:
9932 		case DIF_OP_STW:
9933 		case DIF_OP_STX:
9934 			if (r1 >= nregs)
9935 				err += efunc(pc, "invalid register %u\n", r1);
9936 			if (r2 != 0)
9937 				err += efunc(pc, "non-zero reserved bits\n");
9938 			if (rd >= nregs)
9939 				err += efunc(pc, "invalid register %u\n", rd);
9940 			if (rd == 0)
9941 				err += efunc(pc, "cannot write to 0 address\n");
9942 			break;
9943 		case DIF_OP_CMP:
9944 		case DIF_OP_SCMP:
9945 			if (r1 >= nregs)
9946 				err += efunc(pc, "invalid register %u\n", r1);
9947 			if (r2 >= nregs)
9948 				err += efunc(pc, "invalid register %u\n", r2);
9949 			if (rd != 0)
9950 				err += efunc(pc, "non-zero reserved bits\n");
9951 			break;
9952 		case DIF_OP_TST:
9953 			if (r1 >= nregs)
9954 				err += efunc(pc, "invalid register %u\n", r1);
9955 			if (r2 != 0 || rd != 0)
9956 				err += efunc(pc, "non-zero reserved bits\n");
9957 			break;
9958 		case DIF_OP_BA:
9959 		case DIF_OP_BE:
9960 		case DIF_OP_BNE:
9961 		case DIF_OP_BG:
9962 		case DIF_OP_BGU:
9963 		case DIF_OP_BGE:
9964 		case DIF_OP_BGEU:
9965 		case DIF_OP_BL:
9966 		case DIF_OP_BLU:
9967 		case DIF_OP_BLE:
9968 		case DIF_OP_BLEU:
9969 			if (label >= dp->dtdo_len) {
9970 				err += efunc(pc, "invalid branch target %u\n",
9971 				    label);
9972 			}
9973 			if (label <= pc) {
9974 				err += efunc(pc, "backward branch to %u\n",
9975 				    label);
9976 			}
9977 			break;
9978 		case DIF_OP_RET:
9979 			if (r1 != 0 || r2 != 0)
9980 				err += efunc(pc, "non-zero reserved bits\n");
9981 			if (rd >= nregs)
9982 				err += efunc(pc, "invalid register %u\n", rd);
9983 			break;
9984 		case DIF_OP_NOP:
9985 		case DIF_OP_POPTS:
9986 		case DIF_OP_FLUSHTS:
9987 			if (r1 != 0 || r2 != 0 || rd != 0)
9988 				err += efunc(pc, "non-zero reserved bits\n");
9989 			break;
9990 		case DIF_OP_SETX:
9991 			if (DIF_INSTR_INTEGER(instr) >= dp->dtdo_intlen) {
9992 				err += efunc(pc, "invalid integer ref %u\n",
9993 				    DIF_INSTR_INTEGER(instr));
9994 			}
9995 			if (rd >= nregs)
9996 				err += efunc(pc, "invalid register %u\n", rd);
9997 			if (rd == 0)
9998 				err += efunc(pc, "cannot write to %%r0\n");
9999 			break;
10000 		case DIF_OP_SETS:
10001 			if (DIF_INSTR_STRING(instr) >= dp->dtdo_strlen) {
10002 				err += efunc(pc, "invalid string ref %u\n",
10003 				    DIF_INSTR_STRING(instr));
10004 			}
10005 			if (rd >= nregs)
10006 				err += efunc(pc, "invalid register %u\n", rd);
10007 			if (rd == 0)
10008 				err += efunc(pc, "cannot write to %%r0\n");
10009 			break;
10010 		case DIF_OP_LDGA:
10011 		case DIF_OP_LDTA:
10012 			if (r1 > DIF_VAR_ARRAY_MAX)
10013 				err += efunc(pc, "invalid array %u\n", r1);
10014 			if (r2 >= nregs)
10015 				err += efunc(pc, "invalid register %u\n", r2);
10016 			if (rd >= nregs)
10017 				err += efunc(pc, "invalid register %u\n", rd);
10018 			if (rd == 0)
10019 				err += efunc(pc, "cannot write to %%r0\n");
10020 			break;
10021 		case DIF_OP_LDGS:
10022 		case DIF_OP_LDTS:
10023 		case DIF_OP_LDLS:
10024 		case DIF_OP_LDGAA:
10025 		case DIF_OP_LDTAA:
10026 			if (v < DIF_VAR_OTHER_MIN || v > DIF_VAR_OTHER_MAX)
10027 				err += efunc(pc, "invalid variable %u\n", v);
10028 			if (rd >= nregs)
10029 				err += efunc(pc, "invalid register %u\n", rd);
10030 			if (rd == 0)
10031 				err += efunc(pc, "cannot write to %%r0\n");
10032 			break;
10033 		case DIF_OP_STGS:
10034 		case DIF_OP_STTS:
10035 		case DIF_OP_STLS:
10036 		case DIF_OP_STGAA:
10037 		case DIF_OP_STTAA:
10038 			if (v < DIF_VAR_OTHER_UBASE || v > DIF_VAR_OTHER_MAX)
10039 				err += efunc(pc, "invalid variable %u\n", v);
10040 			if (rs >= nregs)
10041 				err += efunc(pc, "invalid register %u\n", rd);
10042 			break;
10043 		case DIF_OP_CALL:
10044 			if (subr > DIF_SUBR_MAX)
10045 				err += efunc(pc, "invalid subr %u\n", subr);
10046 			if (rd >= nregs)
10047 				err += efunc(pc, "invalid register %u\n", rd);
10048 			if (rd == 0)
10049 				err += efunc(pc, "cannot write to %%r0\n");
10050 
10051 			if (subr == DIF_SUBR_COPYOUT ||
10052 			    subr == DIF_SUBR_COPYOUTSTR) {
10053 				dp->dtdo_destructive = 1;
10054 			}
10055 
10056 			if (subr == DIF_SUBR_GETF) {
10057 #ifdef __FreeBSD__
10058 				err += efunc(pc, "getf() not supported");
10059 #else
10060 				/*
10061 				 * If we have a getf() we need to record that
10062 				 * in our state.  Note that our state can be
10063 				 * NULL if this is a helper -- but in that
10064 				 * case, the call to getf() is itself illegal,
10065 				 * and will be caught (slightly later) when
10066 				 * the helper is validated.
10067 				 */
10068 				if (vstate->dtvs_state != NULL)
10069 					vstate->dtvs_state->dts_getf++;
10070 #endif
10071 			}
10072 
10073 			break;
10074 		case DIF_OP_PUSHTR:
10075 			if (type != DIF_TYPE_STRING && type != DIF_TYPE_CTF)
10076 				err += efunc(pc, "invalid ref type %u\n", type);
10077 			if (r2 >= nregs)
10078 				err += efunc(pc, "invalid register %u\n", r2);
10079 			if (rs >= nregs)
10080 				err += efunc(pc, "invalid register %u\n", rs);
10081 			break;
10082 		case DIF_OP_PUSHTV:
10083 			if (type != DIF_TYPE_CTF)
10084 				err += efunc(pc, "invalid val type %u\n", type);
10085 			if (r2 >= nregs)
10086 				err += efunc(pc, "invalid register %u\n", r2);
10087 			if (rs >= nregs)
10088 				err += efunc(pc, "invalid register %u\n", rs);
10089 			break;
10090 		default:
10091 			err += efunc(pc, "invalid opcode %u\n",
10092 			    DIF_INSTR_OP(instr));
10093 		}
10094 	}
10095 
10096 	if (dp->dtdo_len != 0 &&
10097 	    DIF_INSTR_OP(dp->dtdo_buf[dp->dtdo_len - 1]) != DIF_OP_RET) {
10098 		err += efunc(dp->dtdo_len - 1,
10099 		    "expected 'ret' as last DIF instruction\n");
10100 	}
10101 
10102 	if (!(dp->dtdo_rtype.dtdt_flags & (DIF_TF_BYREF | DIF_TF_BYUREF))) {
10103 		/*
10104 		 * If we're not returning by reference, the size must be either
10105 		 * 0 or the size of one of the base types.
10106 		 */
10107 		switch (dp->dtdo_rtype.dtdt_size) {
10108 		case 0:
10109 		case sizeof (uint8_t):
10110 		case sizeof (uint16_t):
10111 		case sizeof (uint32_t):
10112 		case sizeof (uint64_t):
10113 			break;
10114 
10115 		default:
10116 			err += efunc(dp->dtdo_len - 1, "bad return size\n");
10117 		}
10118 	}
10119 
10120 	for (i = 0; i < dp->dtdo_varlen && err == 0; i++) {
10121 		dtrace_difv_t *v = &dp->dtdo_vartab[i], *existing = NULL;
10122 		dtrace_diftype_t *vt, *et;
10123 		uint_t id, ndx;
10124 
10125 		if (v->dtdv_scope != DIFV_SCOPE_GLOBAL &&
10126 		    v->dtdv_scope != DIFV_SCOPE_THREAD &&
10127 		    v->dtdv_scope != DIFV_SCOPE_LOCAL) {
10128 			err += efunc(i, "unrecognized variable scope %d\n",
10129 			    v->dtdv_scope);
10130 			break;
10131 		}
10132 
10133 		if (v->dtdv_kind != DIFV_KIND_ARRAY &&
10134 		    v->dtdv_kind != DIFV_KIND_SCALAR) {
10135 			err += efunc(i, "unrecognized variable type %d\n",
10136 			    v->dtdv_kind);
10137 			break;
10138 		}
10139 
10140 		if ((id = v->dtdv_id) > DIF_VARIABLE_MAX) {
10141 			err += efunc(i, "%d exceeds variable id limit\n", id);
10142 			break;
10143 		}
10144 
10145 		if (id < DIF_VAR_OTHER_UBASE)
10146 			continue;
10147 
10148 		/*
10149 		 * For user-defined variables, we need to check that this
10150 		 * definition is identical to any previous definition that we
10151 		 * encountered.
10152 		 */
10153 		ndx = id - DIF_VAR_OTHER_UBASE;
10154 
10155 		switch (v->dtdv_scope) {
10156 		case DIFV_SCOPE_GLOBAL:
10157 			if (maxglobal == -1 || ndx > maxglobal)
10158 				maxglobal = ndx;
10159 
10160 			if (ndx < vstate->dtvs_nglobals) {
10161 				dtrace_statvar_t *svar;
10162 
10163 				if ((svar = vstate->dtvs_globals[ndx]) != NULL)
10164 					existing = &svar->dtsv_var;
10165 			}
10166 
10167 			break;
10168 
10169 		case DIFV_SCOPE_THREAD:
10170 			if (maxtlocal == -1 || ndx > maxtlocal)
10171 				maxtlocal = ndx;
10172 
10173 			if (ndx < vstate->dtvs_ntlocals)
10174 				existing = &vstate->dtvs_tlocals[ndx];
10175 			break;
10176 
10177 		case DIFV_SCOPE_LOCAL:
10178 			if (maxlocal == -1 || ndx > maxlocal)
10179 				maxlocal = ndx;
10180 
10181 			if (ndx < vstate->dtvs_nlocals) {
10182 				dtrace_statvar_t *svar;
10183 
10184 				if ((svar = vstate->dtvs_locals[ndx]) != NULL)
10185 					existing = &svar->dtsv_var;
10186 			}
10187 
10188 			break;
10189 		}
10190 
10191 		vt = &v->dtdv_type;
10192 
10193 		if (vt->dtdt_flags & DIF_TF_BYREF) {
10194 			if (vt->dtdt_size == 0) {
10195 				err += efunc(i, "zero-sized variable\n");
10196 				break;
10197 			}
10198 
10199 			if ((v->dtdv_scope == DIFV_SCOPE_GLOBAL ||
10200 			    v->dtdv_scope == DIFV_SCOPE_LOCAL) &&
10201 			    vt->dtdt_size > dtrace_statvar_maxsize) {
10202 				err += efunc(i, "oversized by-ref static\n");
10203 				break;
10204 			}
10205 		}
10206 
10207 		if (existing == NULL || existing->dtdv_id == 0)
10208 			continue;
10209 
10210 		ASSERT(existing->dtdv_id == v->dtdv_id);
10211 		ASSERT(existing->dtdv_scope == v->dtdv_scope);
10212 
10213 		if (existing->dtdv_kind != v->dtdv_kind)
10214 			err += efunc(i, "%d changed variable kind\n", id);
10215 
10216 		et = &existing->dtdv_type;
10217 
10218 		if (vt->dtdt_flags != et->dtdt_flags) {
10219 			err += efunc(i, "%d changed variable type flags\n", id);
10220 			break;
10221 		}
10222 
10223 		if (vt->dtdt_size != 0 && vt->dtdt_size != et->dtdt_size) {
10224 			err += efunc(i, "%d changed variable type size\n", id);
10225 			break;
10226 		}
10227 	}
10228 
10229 	for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) {
10230 		dif_instr_t instr = dp->dtdo_buf[pc];
10231 
10232 		uint_t v = DIF_INSTR_VAR(instr);
10233 		uint_t op = DIF_INSTR_OP(instr);
10234 
10235 		switch (op) {
10236 		case DIF_OP_LDGS:
10237 		case DIF_OP_LDGAA:
10238 		case DIF_OP_STGS:
10239 		case DIF_OP_STGAA:
10240 			if (v > DIF_VAR_OTHER_UBASE + maxglobal)
10241 				err += efunc(pc, "invalid variable %u\n", v);
10242 			break;
10243 		case DIF_OP_LDTS:
10244 		case DIF_OP_LDTAA:
10245 		case DIF_OP_STTS:
10246 		case DIF_OP_STTAA:
10247 			if (v > DIF_VAR_OTHER_UBASE + maxtlocal)
10248 				err += efunc(pc, "invalid variable %u\n", v);
10249 			break;
10250 		case DIF_OP_LDLS:
10251 		case DIF_OP_STLS:
10252 			if (v > DIF_VAR_OTHER_UBASE + maxlocal)
10253 				err += efunc(pc, "invalid variable %u\n", v);
10254 			break;
10255 		default:
10256 			break;
10257 		}
10258 	}
10259 
10260 	return (err);
10261 }
10262 
10263 /*
10264  * Validate a DTrace DIF object that it is to be used as a helper.  Helpers
10265  * are much more constrained than normal DIFOs.  Specifically, they may
10266  * not:
10267  *
10268  * 1. Make calls to subroutines other than copyin(), copyinstr() or
10269  *    miscellaneous string routines
10270  * 2. Access DTrace variables other than the args[] array, and the
10271  *    curthread, pid, ppid, tid, execname, zonename, uid and gid variables.
10272  * 3. Have thread-local variables.
10273  * 4. Have dynamic variables.
10274  */
10275 static int
10276 dtrace_difo_validate_helper(dtrace_difo_t *dp)
10277 {
10278 	int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
10279 	int err = 0;
10280 	uint_t pc;
10281 
10282 	for (pc = 0; pc < dp->dtdo_len; pc++) {
10283 		dif_instr_t instr = dp->dtdo_buf[pc];
10284 
10285 		uint_t v = DIF_INSTR_VAR(instr);
10286 		uint_t subr = DIF_INSTR_SUBR(instr);
10287 		uint_t op = DIF_INSTR_OP(instr);
10288 
10289 		switch (op) {
10290 		case DIF_OP_OR:
10291 		case DIF_OP_XOR:
10292 		case DIF_OP_AND:
10293 		case DIF_OP_SLL:
10294 		case DIF_OP_SRL:
10295 		case DIF_OP_SRA:
10296 		case DIF_OP_SUB:
10297 		case DIF_OP_ADD:
10298 		case DIF_OP_MUL:
10299 		case DIF_OP_SDIV:
10300 		case DIF_OP_UDIV:
10301 		case DIF_OP_SREM:
10302 		case DIF_OP_UREM:
10303 		case DIF_OP_COPYS:
10304 		case DIF_OP_NOT:
10305 		case DIF_OP_MOV:
10306 		case DIF_OP_RLDSB:
10307 		case DIF_OP_RLDSH:
10308 		case DIF_OP_RLDSW:
10309 		case DIF_OP_RLDUB:
10310 		case DIF_OP_RLDUH:
10311 		case DIF_OP_RLDUW:
10312 		case DIF_OP_RLDX:
10313 		case DIF_OP_ULDSB:
10314 		case DIF_OP_ULDSH:
10315 		case DIF_OP_ULDSW:
10316 		case DIF_OP_ULDUB:
10317 		case DIF_OP_ULDUH:
10318 		case DIF_OP_ULDUW:
10319 		case DIF_OP_ULDX:
10320 		case DIF_OP_STB:
10321 		case DIF_OP_STH:
10322 		case DIF_OP_STW:
10323 		case DIF_OP_STX:
10324 		case DIF_OP_ALLOCS:
10325 		case DIF_OP_CMP:
10326 		case DIF_OP_SCMP:
10327 		case DIF_OP_TST:
10328 		case DIF_OP_BA:
10329 		case DIF_OP_BE:
10330 		case DIF_OP_BNE:
10331 		case DIF_OP_BG:
10332 		case DIF_OP_BGU:
10333 		case DIF_OP_BGE:
10334 		case DIF_OP_BGEU:
10335 		case DIF_OP_BL:
10336 		case DIF_OP_BLU:
10337 		case DIF_OP_BLE:
10338 		case DIF_OP_BLEU:
10339 		case DIF_OP_RET:
10340 		case DIF_OP_NOP:
10341 		case DIF_OP_POPTS:
10342 		case DIF_OP_FLUSHTS:
10343 		case DIF_OP_SETX:
10344 		case DIF_OP_SETS:
10345 		case DIF_OP_LDGA:
10346 		case DIF_OP_LDLS:
10347 		case DIF_OP_STGS:
10348 		case DIF_OP_STLS:
10349 		case DIF_OP_PUSHTR:
10350 		case DIF_OP_PUSHTV:
10351 			break;
10352 
10353 		case DIF_OP_LDGS:
10354 			if (v >= DIF_VAR_OTHER_UBASE)
10355 				break;
10356 
10357 			if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9)
10358 				break;
10359 
10360 			if (v == DIF_VAR_CURTHREAD || v == DIF_VAR_PID ||
10361 			    v == DIF_VAR_PPID || v == DIF_VAR_TID ||
10362 			    v == DIF_VAR_EXECARGS ||
10363 			    v == DIF_VAR_EXECNAME || v == DIF_VAR_ZONENAME ||
10364 			    v == DIF_VAR_UID || v == DIF_VAR_GID)
10365 				break;
10366 
10367 			err += efunc(pc, "illegal variable %u\n", v);
10368 			break;
10369 
10370 		case DIF_OP_LDTA:
10371 		case DIF_OP_LDTS:
10372 		case DIF_OP_LDGAA:
10373 		case DIF_OP_LDTAA:
10374 			err += efunc(pc, "illegal dynamic variable load\n");
10375 			break;
10376 
10377 		case DIF_OP_STTS:
10378 		case DIF_OP_STGAA:
10379 		case DIF_OP_STTAA:
10380 			err += efunc(pc, "illegal dynamic variable store\n");
10381 			break;
10382 
10383 		case DIF_OP_CALL:
10384 			if (subr == DIF_SUBR_ALLOCA ||
10385 			    subr == DIF_SUBR_BCOPY ||
10386 			    subr == DIF_SUBR_COPYIN ||
10387 			    subr == DIF_SUBR_COPYINTO ||
10388 			    subr == DIF_SUBR_COPYINSTR ||
10389 			    subr == DIF_SUBR_INDEX ||
10390 			    subr == DIF_SUBR_INET_NTOA ||
10391 			    subr == DIF_SUBR_INET_NTOA6 ||
10392 			    subr == DIF_SUBR_INET_NTOP ||
10393 			    subr == DIF_SUBR_JSON ||
10394 			    subr == DIF_SUBR_LLTOSTR ||
10395 			    subr == DIF_SUBR_STRTOLL ||
10396 			    subr == DIF_SUBR_RINDEX ||
10397 			    subr == DIF_SUBR_STRCHR ||
10398 			    subr == DIF_SUBR_STRJOIN ||
10399 			    subr == DIF_SUBR_STRRCHR ||
10400 			    subr == DIF_SUBR_STRSTR ||
10401 			    subr == DIF_SUBR_HTONS ||
10402 			    subr == DIF_SUBR_HTONL ||
10403 			    subr == DIF_SUBR_HTONLL ||
10404 			    subr == DIF_SUBR_NTOHS ||
10405 			    subr == DIF_SUBR_NTOHL ||
10406 			    subr == DIF_SUBR_NTOHLL ||
10407 			    subr == DIF_SUBR_MEMREF)
10408 				break;
10409 #ifdef __FreeBSD__
10410 			if (subr == DIF_SUBR_MEMSTR)
10411 				break;
10412 #endif
10413 
10414 			err += efunc(pc, "invalid subr %u\n", subr);
10415 			break;
10416 
10417 		default:
10418 			err += efunc(pc, "invalid opcode %u\n",
10419 			    DIF_INSTR_OP(instr));
10420 		}
10421 	}
10422 
10423 	return (err);
10424 }
10425 
10426 /*
10427  * Returns 1 if the expression in the DIF object can be cached on a per-thread
10428  * basis; 0 if not.
10429  */
10430 static int
10431 dtrace_difo_cacheable(dtrace_difo_t *dp)
10432 {
10433 	int i;
10434 
10435 	if (dp == NULL)
10436 		return (0);
10437 
10438 	for (i = 0; i < dp->dtdo_varlen; i++) {
10439 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
10440 
10441 		if (v->dtdv_scope != DIFV_SCOPE_GLOBAL)
10442 			continue;
10443 
10444 		switch (v->dtdv_id) {
10445 		case DIF_VAR_CURTHREAD:
10446 		case DIF_VAR_PID:
10447 		case DIF_VAR_TID:
10448 		case DIF_VAR_EXECARGS:
10449 		case DIF_VAR_EXECNAME:
10450 		case DIF_VAR_ZONENAME:
10451 			break;
10452 
10453 		default:
10454 			return (0);
10455 		}
10456 	}
10457 
10458 	/*
10459 	 * This DIF object may be cacheable.  Now we need to look for any
10460 	 * array loading instructions, any memory loading instructions, or
10461 	 * any stores to thread-local variables.
10462 	 */
10463 	for (i = 0; i < dp->dtdo_len; i++) {
10464 		uint_t op = DIF_INSTR_OP(dp->dtdo_buf[i]);
10465 
10466 		if ((op >= DIF_OP_LDSB && op <= DIF_OP_LDX) ||
10467 		    (op >= DIF_OP_ULDSB && op <= DIF_OP_ULDX) ||
10468 		    (op >= DIF_OP_RLDSB && op <= DIF_OP_RLDX) ||
10469 		    op == DIF_OP_LDGA || op == DIF_OP_STTS)
10470 			return (0);
10471 	}
10472 
10473 	return (1);
10474 }
10475 
10476 static void
10477 dtrace_difo_hold(dtrace_difo_t *dp)
10478 {
10479 	int i;
10480 
10481 	ASSERT(MUTEX_HELD(&dtrace_lock));
10482 
10483 	dp->dtdo_refcnt++;
10484 	ASSERT(dp->dtdo_refcnt != 0);
10485 
10486 	/*
10487 	 * We need to check this DIF object for references to the variable
10488 	 * DIF_VAR_VTIMESTAMP.
10489 	 */
10490 	for (i = 0; i < dp->dtdo_varlen; i++) {
10491 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
10492 
10493 		if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
10494 			continue;
10495 
10496 		if (dtrace_vtime_references++ == 0)
10497 			dtrace_vtime_enable();
10498 	}
10499 }
10500 
10501 /*
10502  * This routine calculates the dynamic variable chunksize for a given DIF
10503  * object.  The calculation is not fool-proof, and can probably be tricked by
10504  * malicious DIF -- but it works for all compiler-generated DIF.  Because this
10505  * calculation is likely imperfect, dtrace_dynvar() is able to gracefully fail
10506  * if a dynamic variable size exceeds the chunksize.
10507  */
10508 static void
10509 dtrace_difo_chunksize(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
10510 {
10511 	uint64_t sval = 0;
10512 	dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
10513 	const dif_instr_t *text = dp->dtdo_buf;
10514 	uint_t pc, srd = 0;
10515 	uint_t ttop = 0;
10516 	size_t size, ksize;
10517 	uint_t id, i;
10518 
10519 	for (pc = 0; pc < dp->dtdo_len; pc++) {
10520 		dif_instr_t instr = text[pc];
10521 		uint_t op = DIF_INSTR_OP(instr);
10522 		uint_t rd = DIF_INSTR_RD(instr);
10523 		uint_t r1 = DIF_INSTR_R1(instr);
10524 		uint_t nkeys = 0;
10525 		uchar_t scope = 0;
10526 
10527 		dtrace_key_t *key = tupregs;
10528 
10529 		switch (op) {
10530 		case DIF_OP_SETX:
10531 			sval = dp->dtdo_inttab[DIF_INSTR_INTEGER(instr)];
10532 			srd = rd;
10533 			continue;
10534 
10535 		case DIF_OP_STTS:
10536 			key = &tupregs[DIF_DTR_NREGS];
10537 			key[0].dttk_size = 0;
10538 			key[1].dttk_size = 0;
10539 			nkeys = 2;
10540 			scope = DIFV_SCOPE_THREAD;
10541 			break;
10542 
10543 		case DIF_OP_STGAA:
10544 		case DIF_OP_STTAA:
10545 			nkeys = ttop;
10546 
10547 			if (DIF_INSTR_OP(instr) == DIF_OP_STTAA)
10548 				key[nkeys++].dttk_size = 0;
10549 
10550 			key[nkeys++].dttk_size = 0;
10551 
10552 			if (op == DIF_OP_STTAA) {
10553 				scope = DIFV_SCOPE_THREAD;
10554 			} else {
10555 				scope = DIFV_SCOPE_GLOBAL;
10556 			}
10557 
10558 			break;
10559 
10560 		case DIF_OP_PUSHTR:
10561 			if (ttop == DIF_DTR_NREGS)
10562 				return;
10563 
10564 			if ((srd == 0 || sval == 0) && r1 == DIF_TYPE_STRING) {
10565 				/*
10566 				 * If the register for the size of the "pushtr"
10567 				 * is %r0 (or the value is 0) and the type is
10568 				 * a string, we'll use the system-wide default
10569 				 * string size.
10570 				 */
10571 				tupregs[ttop++].dttk_size =
10572 				    dtrace_strsize_default;
10573 			} else {
10574 				if (srd == 0)
10575 					return;
10576 
10577 				if (sval > LONG_MAX)
10578 					return;
10579 
10580 				tupregs[ttop++].dttk_size = sval;
10581 			}
10582 
10583 			break;
10584 
10585 		case DIF_OP_PUSHTV:
10586 			if (ttop == DIF_DTR_NREGS)
10587 				return;
10588 
10589 			tupregs[ttop++].dttk_size = 0;
10590 			break;
10591 
10592 		case DIF_OP_FLUSHTS:
10593 			ttop = 0;
10594 			break;
10595 
10596 		case DIF_OP_POPTS:
10597 			if (ttop != 0)
10598 				ttop--;
10599 			break;
10600 		}
10601 
10602 		sval = 0;
10603 		srd = 0;
10604 
10605 		if (nkeys == 0)
10606 			continue;
10607 
10608 		/*
10609 		 * We have a dynamic variable allocation; calculate its size.
10610 		 */
10611 		for (ksize = 0, i = 0; i < nkeys; i++)
10612 			ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
10613 
10614 		size = sizeof (dtrace_dynvar_t);
10615 		size += sizeof (dtrace_key_t) * (nkeys - 1);
10616 		size += ksize;
10617 
10618 		/*
10619 		 * Now we need to determine the size of the stored data.
10620 		 */
10621 		id = DIF_INSTR_VAR(instr);
10622 
10623 		for (i = 0; i < dp->dtdo_varlen; i++) {
10624 			dtrace_difv_t *v = &dp->dtdo_vartab[i];
10625 
10626 			if (v->dtdv_id == id && v->dtdv_scope == scope) {
10627 				size += v->dtdv_type.dtdt_size;
10628 				break;
10629 			}
10630 		}
10631 
10632 		if (i == dp->dtdo_varlen)
10633 			return;
10634 
10635 		/*
10636 		 * We have the size.  If this is larger than the chunk size
10637 		 * for our dynamic variable state, reset the chunk size.
10638 		 */
10639 		size = P2ROUNDUP(size, sizeof (uint64_t));
10640 
10641 		/*
10642 		 * Before setting the chunk size, check that we're not going
10643 		 * to set it to a negative value...
10644 		 */
10645 		if (size > LONG_MAX)
10646 			return;
10647 
10648 		/*
10649 		 * ...and make certain that we didn't badly overflow.
10650 		 */
10651 		if (size < ksize || size < sizeof (dtrace_dynvar_t))
10652 			return;
10653 
10654 		if (size > vstate->dtvs_dynvars.dtds_chunksize)
10655 			vstate->dtvs_dynvars.dtds_chunksize = size;
10656 	}
10657 }
10658 
10659 static void
10660 dtrace_difo_init(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
10661 {
10662 	int i, oldsvars, osz, nsz, otlocals, ntlocals;
10663 	uint_t id;
10664 
10665 	ASSERT(MUTEX_HELD(&dtrace_lock));
10666 	ASSERT(dp->dtdo_buf != NULL && dp->dtdo_len != 0);
10667 
10668 	for (i = 0; i < dp->dtdo_varlen; i++) {
10669 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
10670 		dtrace_statvar_t *svar, ***svarp = NULL;
10671 		size_t dsize = 0;
10672 		uint8_t scope = v->dtdv_scope;
10673 		int *np = NULL;
10674 
10675 		if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
10676 			continue;
10677 
10678 		id -= DIF_VAR_OTHER_UBASE;
10679 
10680 		switch (scope) {
10681 		case DIFV_SCOPE_THREAD:
10682 			while (id >= (otlocals = vstate->dtvs_ntlocals)) {
10683 				dtrace_difv_t *tlocals;
10684 
10685 				if ((ntlocals = (otlocals << 1)) == 0)
10686 					ntlocals = 1;
10687 
10688 				osz = otlocals * sizeof (dtrace_difv_t);
10689 				nsz = ntlocals * sizeof (dtrace_difv_t);
10690 
10691 				tlocals = kmem_zalloc(nsz, KM_SLEEP);
10692 
10693 				if (osz != 0) {
10694 					bcopy(vstate->dtvs_tlocals,
10695 					    tlocals, osz);
10696 					kmem_free(vstate->dtvs_tlocals, osz);
10697 				}
10698 
10699 				vstate->dtvs_tlocals = tlocals;
10700 				vstate->dtvs_ntlocals = ntlocals;
10701 			}
10702 
10703 			vstate->dtvs_tlocals[id] = *v;
10704 			continue;
10705 
10706 		case DIFV_SCOPE_LOCAL:
10707 			np = &vstate->dtvs_nlocals;
10708 			svarp = &vstate->dtvs_locals;
10709 
10710 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
10711 				dsize = (mp_maxid + 1) *
10712 				    (v->dtdv_type.dtdt_size +
10713 				    sizeof (uint64_t));
10714 			else
10715 				dsize = (mp_maxid + 1) * sizeof (uint64_t);
10716 
10717 			break;
10718 
10719 		case DIFV_SCOPE_GLOBAL:
10720 			np = &vstate->dtvs_nglobals;
10721 			svarp = &vstate->dtvs_globals;
10722 
10723 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
10724 				dsize = v->dtdv_type.dtdt_size +
10725 				    sizeof (uint64_t);
10726 
10727 			break;
10728 
10729 		default:
10730 			ASSERT(0);
10731 		}
10732 
10733 		while (id >= (oldsvars = *np)) {
10734 			dtrace_statvar_t **statics;
10735 			int newsvars, oldsize, newsize;
10736 
10737 			if ((newsvars = (oldsvars << 1)) == 0)
10738 				newsvars = 1;
10739 
10740 			oldsize = oldsvars * sizeof (dtrace_statvar_t *);
10741 			newsize = newsvars * sizeof (dtrace_statvar_t *);
10742 
10743 			statics = kmem_zalloc(newsize, KM_SLEEP);
10744 
10745 			if (oldsize != 0) {
10746 				bcopy(*svarp, statics, oldsize);
10747 				kmem_free(*svarp, oldsize);
10748 			}
10749 
10750 			*svarp = statics;
10751 			*np = newsvars;
10752 		}
10753 
10754 		if ((svar = (*svarp)[id]) == NULL) {
10755 			svar = kmem_zalloc(sizeof (dtrace_statvar_t), KM_SLEEP);
10756 			svar->dtsv_var = *v;
10757 
10758 			if ((svar->dtsv_size = dsize) != 0) {
10759 				svar->dtsv_data = (uint64_t)(uintptr_t)
10760 				    kmem_zalloc(dsize, KM_SLEEP);
10761 			}
10762 
10763 			(*svarp)[id] = svar;
10764 		}
10765 
10766 		svar->dtsv_refcnt++;
10767 	}
10768 
10769 	dtrace_difo_chunksize(dp, vstate);
10770 	dtrace_difo_hold(dp);
10771 }
10772 
10773 static dtrace_difo_t *
10774 dtrace_difo_duplicate(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
10775 {
10776 	dtrace_difo_t *new;
10777 	size_t sz;
10778 
10779 	ASSERT(dp->dtdo_buf != NULL);
10780 	ASSERT(dp->dtdo_refcnt != 0);
10781 
10782 	new = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
10783 
10784 	ASSERT(dp->dtdo_buf != NULL);
10785 	sz = dp->dtdo_len * sizeof (dif_instr_t);
10786 	new->dtdo_buf = kmem_alloc(sz, KM_SLEEP);
10787 	bcopy(dp->dtdo_buf, new->dtdo_buf, sz);
10788 	new->dtdo_len = dp->dtdo_len;
10789 
10790 	if (dp->dtdo_strtab != NULL) {
10791 		ASSERT(dp->dtdo_strlen != 0);
10792 		new->dtdo_strtab = kmem_alloc(dp->dtdo_strlen, KM_SLEEP);
10793 		bcopy(dp->dtdo_strtab, new->dtdo_strtab, dp->dtdo_strlen);
10794 		new->dtdo_strlen = dp->dtdo_strlen;
10795 	}
10796 
10797 	if (dp->dtdo_inttab != NULL) {
10798 		ASSERT(dp->dtdo_intlen != 0);
10799 		sz = dp->dtdo_intlen * sizeof (uint64_t);
10800 		new->dtdo_inttab = kmem_alloc(sz, KM_SLEEP);
10801 		bcopy(dp->dtdo_inttab, new->dtdo_inttab, sz);
10802 		new->dtdo_intlen = dp->dtdo_intlen;
10803 	}
10804 
10805 	if (dp->dtdo_vartab != NULL) {
10806 		ASSERT(dp->dtdo_varlen != 0);
10807 		sz = dp->dtdo_varlen * sizeof (dtrace_difv_t);
10808 		new->dtdo_vartab = kmem_alloc(sz, KM_SLEEP);
10809 		bcopy(dp->dtdo_vartab, new->dtdo_vartab, sz);
10810 		new->dtdo_varlen = dp->dtdo_varlen;
10811 	}
10812 
10813 	dtrace_difo_init(new, vstate);
10814 	return (new);
10815 }
10816 
10817 static void
10818 dtrace_difo_destroy(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
10819 {
10820 	int i;
10821 
10822 	ASSERT(dp->dtdo_refcnt == 0);
10823 
10824 	for (i = 0; i < dp->dtdo_varlen; i++) {
10825 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
10826 		dtrace_statvar_t *svar, **svarp = NULL;
10827 		uint_t id;
10828 		uint8_t scope = v->dtdv_scope;
10829 		int *np = NULL;
10830 
10831 		switch (scope) {
10832 		case DIFV_SCOPE_THREAD:
10833 			continue;
10834 
10835 		case DIFV_SCOPE_LOCAL:
10836 			np = &vstate->dtvs_nlocals;
10837 			svarp = vstate->dtvs_locals;
10838 			break;
10839 
10840 		case DIFV_SCOPE_GLOBAL:
10841 			np = &vstate->dtvs_nglobals;
10842 			svarp = vstate->dtvs_globals;
10843 			break;
10844 
10845 		default:
10846 			ASSERT(0);
10847 		}
10848 
10849 		if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
10850 			continue;
10851 
10852 		id -= DIF_VAR_OTHER_UBASE;
10853 		ASSERT(id < *np);
10854 
10855 		svar = svarp[id];
10856 		ASSERT(svar != NULL);
10857 		ASSERT(svar->dtsv_refcnt > 0);
10858 
10859 		if (--svar->dtsv_refcnt > 0)
10860 			continue;
10861 
10862 		if (svar->dtsv_size != 0) {
10863 			ASSERT(svar->dtsv_data != 0);
10864 			kmem_free((void *)(uintptr_t)svar->dtsv_data,
10865 			    svar->dtsv_size);
10866 		}
10867 
10868 		kmem_free(svar, sizeof (dtrace_statvar_t));
10869 		svarp[id] = NULL;
10870 	}
10871 
10872 	if (dp->dtdo_buf != NULL)
10873 		kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
10874 	if (dp->dtdo_inttab != NULL)
10875 		kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
10876 	if (dp->dtdo_strtab != NULL)
10877 		kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
10878 	if (dp->dtdo_vartab != NULL)
10879 		kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
10880 
10881 	kmem_free(dp, sizeof (dtrace_difo_t));
10882 }
10883 
10884 static void
10885 dtrace_difo_release(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
10886 {
10887 	int i;
10888 
10889 	ASSERT(MUTEX_HELD(&dtrace_lock));
10890 	ASSERT(dp->dtdo_refcnt != 0);
10891 
10892 	for (i = 0; i < dp->dtdo_varlen; i++) {
10893 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
10894 
10895 		if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
10896 			continue;
10897 
10898 		ASSERT(dtrace_vtime_references > 0);
10899 		if (--dtrace_vtime_references == 0)
10900 			dtrace_vtime_disable();
10901 	}
10902 
10903 	if (--dp->dtdo_refcnt == 0)
10904 		dtrace_difo_destroy(dp, vstate);
10905 }
10906 
10907 /*
10908  * DTrace Format Functions
10909  */
10910 static uint16_t
10911 dtrace_format_add(dtrace_state_t *state, char *str)
10912 {
10913 	char *fmt, **new;
10914 	uint16_t ndx, len = strlen(str) + 1;
10915 
10916 	fmt = kmem_zalloc(len, KM_SLEEP);
10917 	bcopy(str, fmt, len);
10918 
10919 	for (ndx = 0; ndx < state->dts_nformats; ndx++) {
10920 		if (state->dts_formats[ndx] == NULL) {
10921 			state->dts_formats[ndx] = fmt;
10922 			return (ndx + 1);
10923 		}
10924 	}
10925 
10926 	if (state->dts_nformats == USHRT_MAX) {
10927 		/*
10928 		 * This is only likely if a denial-of-service attack is being
10929 		 * attempted.  As such, it's okay to fail silently here.
10930 		 */
10931 		kmem_free(fmt, len);
10932 		return (0);
10933 	}
10934 
10935 	/*
10936 	 * For simplicity, we always resize the formats array to be exactly the
10937 	 * number of formats.
10938 	 */
10939 	ndx = state->dts_nformats++;
10940 	new = kmem_alloc((ndx + 1) * sizeof (char *), KM_SLEEP);
10941 
10942 	if (state->dts_formats != NULL) {
10943 		ASSERT(ndx != 0);
10944 		bcopy(state->dts_formats, new, ndx * sizeof (char *));
10945 		kmem_free(state->dts_formats, ndx * sizeof (char *));
10946 	}
10947 
10948 	state->dts_formats = new;
10949 	state->dts_formats[ndx] = fmt;
10950 
10951 	return (ndx + 1);
10952 }
10953 
10954 static void
10955 dtrace_format_remove(dtrace_state_t *state, uint16_t format)
10956 {
10957 	char *fmt;
10958 
10959 	ASSERT(state->dts_formats != NULL);
10960 	ASSERT(format <= state->dts_nformats);
10961 	ASSERT(state->dts_formats[format - 1] != NULL);
10962 
10963 	fmt = state->dts_formats[format - 1];
10964 	kmem_free(fmt, strlen(fmt) + 1);
10965 	state->dts_formats[format - 1] = NULL;
10966 }
10967 
10968 static void
10969 dtrace_format_destroy(dtrace_state_t *state)
10970 {
10971 	int i;
10972 
10973 	if (state->dts_nformats == 0) {
10974 		ASSERT(state->dts_formats == NULL);
10975 		return;
10976 	}
10977 
10978 	ASSERT(state->dts_formats != NULL);
10979 
10980 	for (i = 0; i < state->dts_nformats; i++) {
10981 		char *fmt = state->dts_formats[i];
10982 
10983 		if (fmt == NULL)
10984 			continue;
10985 
10986 		kmem_free(fmt, strlen(fmt) + 1);
10987 	}
10988 
10989 	kmem_free(state->dts_formats, state->dts_nformats * sizeof (char *));
10990 	state->dts_nformats = 0;
10991 	state->dts_formats = NULL;
10992 }
10993 
10994 /*
10995  * DTrace Predicate Functions
10996  */
10997 static dtrace_predicate_t *
10998 dtrace_predicate_create(dtrace_difo_t *dp)
10999 {
11000 	dtrace_predicate_t *pred;
11001 
11002 	ASSERT(MUTEX_HELD(&dtrace_lock));
11003 	ASSERT(dp->dtdo_refcnt != 0);
11004 
11005 	pred = kmem_zalloc(sizeof (dtrace_predicate_t), KM_SLEEP);
11006 	pred->dtp_difo = dp;
11007 	pred->dtp_refcnt = 1;
11008 
11009 	if (!dtrace_difo_cacheable(dp))
11010 		return (pred);
11011 
11012 	if (dtrace_predcache_id == DTRACE_CACHEIDNONE) {
11013 		/*
11014 		 * This is only theoretically possible -- we have had 2^32
11015 		 * cacheable predicates on this machine.  We cannot allow any
11016 		 * more predicates to become cacheable:  as unlikely as it is,
11017 		 * there may be a thread caching a (now stale) predicate cache
11018 		 * ID. (N.B.: the temptation is being successfully resisted to
11019 		 * have this cmn_err() "Holy shit -- we executed this code!")
11020 		 */
11021 		return (pred);
11022 	}
11023 
11024 	pred->dtp_cacheid = dtrace_predcache_id++;
11025 
11026 	return (pred);
11027 }
11028 
11029 static void
11030 dtrace_predicate_hold(dtrace_predicate_t *pred)
11031 {
11032 	ASSERT(MUTEX_HELD(&dtrace_lock));
11033 	ASSERT(pred->dtp_difo != NULL && pred->dtp_difo->dtdo_refcnt != 0);
11034 	ASSERT(pred->dtp_refcnt > 0);
11035 
11036 	pred->dtp_refcnt++;
11037 }
11038 
11039 static void
11040 dtrace_predicate_release(dtrace_predicate_t *pred, dtrace_vstate_t *vstate)
11041 {
11042 	dtrace_difo_t *dp = pred->dtp_difo;
11043 
11044 	ASSERT(MUTEX_HELD(&dtrace_lock));
11045 	ASSERT(dp != NULL && dp->dtdo_refcnt != 0);
11046 	ASSERT(pred->dtp_refcnt > 0);
11047 
11048 	if (--pred->dtp_refcnt == 0) {
11049 		dtrace_difo_release(pred->dtp_difo, vstate);
11050 		kmem_free(pred, sizeof (dtrace_predicate_t));
11051 	}
11052 }
11053 
11054 /*
11055  * DTrace Action Description Functions
11056  */
11057 static dtrace_actdesc_t *
11058 dtrace_actdesc_create(dtrace_actkind_t kind, uint32_t ntuple,
11059     uint64_t uarg, uint64_t arg)
11060 {
11061 	dtrace_actdesc_t *act;
11062 
11063 #ifdef illumos
11064 	ASSERT(!DTRACEACT_ISPRINTFLIKE(kind) || (arg != NULL &&
11065 	    arg >= KERNELBASE) || (arg == NULL && kind == DTRACEACT_PRINTA));
11066 #endif
11067 
11068 	act = kmem_zalloc(sizeof (dtrace_actdesc_t), KM_SLEEP);
11069 	act->dtad_kind = kind;
11070 	act->dtad_ntuple = ntuple;
11071 	act->dtad_uarg = uarg;
11072 	act->dtad_arg = arg;
11073 	act->dtad_refcnt = 1;
11074 
11075 	return (act);
11076 }
11077 
11078 static void
11079 dtrace_actdesc_hold(dtrace_actdesc_t *act)
11080 {
11081 	ASSERT(act->dtad_refcnt >= 1);
11082 	act->dtad_refcnt++;
11083 }
11084 
11085 static void
11086 dtrace_actdesc_release(dtrace_actdesc_t *act, dtrace_vstate_t *vstate)
11087 {
11088 	dtrace_actkind_t kind = act->dtad_kind;
11089 	dtrace_difo_t *dp;
11090 
11091 	ASSERT(act->dtad_refcnt >= 1);
11092 
11093 	if (--act->dtad_refcnt != 0)
11094 		return;
11095 
11096 	if ((dp = act->dtad_difo) != NULL)
11097 		dtrace_difo_release(dp, vstate);
11098 
11099 	if (DTRACEACT_ISPRINTFLIKE(kind)) {
11100 		char *str = (char *)(uintptr_t)act->dtad_arg;
11101 
11102 #ifdef illumos
11103 		ASSERT((str != NULL && (uintptr_t)str >= KERNELBASE) ||
11104 		    (str == NULL && act->dtad_kind == DTRACEACT_PRINTA));
11105 #endif
11106 
11107 		if (str != NULL)
11108 			kmem_free(str, strlen(str) + 1);
11109 	}
11110 
11111 	kmem_free(act, sizeof (dtrace_actdesc_t));
11112 }
11113 
11114 /*
11115  * DTrace ECB Functions
11116  */
11117 static dtrace_ecb_t *
11118 dtrace_ecb_add(dtrace_state_t *state, dtrace_probe_t *probe)
11119 {
11120 	dtrace_ecb_t *ecb;
11121 	dtrace_epid_t epid;
11122 
11123 	ASSERT(MUTEX_HELD(&dtrace_lock));
11124 
11125 	ecb = kmem_zalloc(sizeof (dtrace_ecb_t), KM_SLEEP);
11126 	ecb->dte_predicate = NULL;
11127 	ecb->dte_probe = probe;
11128 
11129 	/*
11130 	 * The default size is the size of the default action: recording
11131 	 * the header.
11132 	 */
11133 	ecb->dte_size = ecb->dte_needed = sizeof (dtrace_rechdr_t);
11134 	ecb->dte_alignment = sizeof (dtrace_epid_t);
11135 
11136 	epid = state->dts_epid++;
11137 
11138 	if (epid - 1 >= state->dts_necbs) {
11139 		dtrace_ecb_t **oecbs = state->dts_ecbs, **ecbs;
11140 		int necbs = state->dts_necbs << 1;
11141 
11142 		ASSERT(epid == state->dts_necbs + 1);
11143 
11144 		if (necbs == 0) {
11145 			ASSERT(oecbs == NULL);
11146 			necbs = 1;
11147 		}
11148 
11149 		ecbs = kmem_zalloc(necbs * sizeof (*ecbs), KM_SLEEP);
11150 
11151 		if (oecbs != NULL)
11152 			bcopy(oecbs, ecbs, state->dts_necbs * sizeof (*ecbs));
11153 
11154 		dtrace_membar_producer();
11155 		state->dts_ecbs = ecbs;
11156 
11157 		if (oecbs != NULL) {
11158 			/*
11159 			 * If this state is active, we must dtrace_sync()
11160 			 * before we can free the old dts_ecbs array:  we're
11161 			 * coming in hot, and there may be active ring
11162 			 * buffer processing (which indexes into the dts_ecbs
11163 			 * array) on another CPU.
11164 			 */
11165 			if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
11166 				dtrace_sync();
11167 
11168 			kmem_free(oecbs, state->dts_necbs * sizeof (*ecbs));
11169 		}
11170 
11171 		dtrace_membar_producer();
11172 		state->dts_necbs = necbs;
11173 	}
11174 
11175 	ecb->dte_state = state;
11176 
11177 	ASSERT(state->dts_ecbs[epid - 1] == NULL);
11178 	dtrace_membar_producer();
11179 	state->dts_ecbs[(ecb->dte_epid = epid) - 1] = ecb;
11180 
11181 	return (ecb);
11182 }
11183 
11184 static void
11185 dtrace_ecb_enable(dtrace_ecb_t *ecb)
11186 {
11187 	dtrace_probe_t *probe = ecb->dte_probe;
11188 
11189 	ASSERT(MUTEX_HELD(&cpu_lock));
11190 	ASSERT(MUTEX_HELD(&dtrace_lock));
11191 	ASSERT(ecb->dte_next == NULL);
11192 
11193 	if (probe == NULL) {
11194 		/*
11195 		 * This is the NULL probe -- there's nothing to do.
11196 		 */
11197 		return;
11198 	}
11199 
11200 	if (probe->dtpr_ecb == NULL) {
11201 		dtrace_provider_t *prov = probe->dtpr_provider;
11202 
11203 		/*
11204 		 * We're the first ECB on this probe.
11205 		 */
11206 		probe->dtpr_ecb = probe->dtpr_ecb_last = ecb;
11207 
11208 		if (ecb->dte_predicate != NULL)
11209 			probe->dtpr_predcache = ecb->dte_predicate->dtp_cacheid;
11210 
11211 		prov->dtpv_pops.dtps_enable(prov->dtpv_arg,
11212 		    probe->dtpr_id, probe->dtpr_arg);
11213 	} else {
11214 		/*
11215 		 * This probe is already active.  Swing the last pointer to
11216 		 * point to the new ECB, and issue a dtrace_sync() to assure
11217 		 * that all CPUs have seen the change.
11218 		 */
11219 		ASSERT(probe->dtpr_ecb_last != NULL);
11220 		probe->dtpr_ecb_last->dte_next = ecb;
11221 		probe->dtpr_ecb_last = ecb;
11222 		probe->dtpr_predcache = 0;
11223 
11224 		dtrace_sync();
11225 	}
11226 }
11227 
11228 static int
11229 dtrace_ecb_resize(dtrace_ecb_t *ecb)
11230 {
11231 	dtrace_action_t *act;
11232 	uint32_t curneeded = UINT32_MAX;
11233 	uint32_t aggbase = UINT32_MAX;
11234 
11235 	/*
11236 	 * If we record anything, we always record the dtrace_rechdr_t.  (And
11237 	 * we always record it first.)
11238 	 */
11239 	ecb->dte_size = sizeof (dtrace_rechdr_t);
11240 	ecb->dte_alignment = sizeof (dtrace_epid_t);
11241 
11242 	for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
11243 		dtrace_recdesc_t *rec = &act->dta_rec;
11244 		ASSERT(rec->dtrd_size > 0 || rec->dtrd_alignment == 1);
11245 
11246 		ecb->dte_alignment = MAX(ecb->dte_alignment,
11247 		    rec->dtrd_alignment);
11248 
11249 		if (DTRACEACT_ISAGG(act->dta_kind)) {
11250 			dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
11251 
11252 			ASSERT(rec->dtrd_size != 0);
11253 			ASSERT(agg->dtag_first != NULL);
11254 			ASSERT(act->dta_prev->dta_intuple);
11255 			ASSERT(aggbase != UINT32_MAX);
11256 			ASSERT(curneeded != UINT32_MAX);
11257 
11258 			agg->dtag_base = aggbase;
11259 
11260 			curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment);
11261 			rec->dtrd_offset = curneeded;
11262 			if (curneeded + rec->dtrd_size < curneeded)
11263 				return (EINVAL);
11264 			curneeded += rec->dtrd_size;
11265 			ecb->dte_needed = MAX(ecb->dte_needed, curneeded);
11266 
11267 			aggbase = UINT32_MAX;
11268 			curneeded = UINT32_MAX;
11269 		} else if (act->dta_intuple) {
11270 			if (curneeded == UINT32_MAX) {
11271 				/*
11272 				 * This is the first record in a tuple.  Align
11273 				 * curneeded to be at offset 4 in an 8-byte
11274 				 * aligned block.
11275 				 */
11276 				ASSERT(act->dta_prev == NULL ||
11277 				    !act->dta_prev->dta_intuple);
11278 				ASSERT3U(aggbase, ==, UINT32_MAX);
11279 				curneeded = P2PHASEUP(ecb->dte_size,
11280 				    sizeof (uint64_t), sizeof (dtrace_aggid_t));
11281 
11282 				aggbase = curneeded - sizeof (dtrace_aggid_t);
11283 				ASSERT(IS_P2ALIGNED(aggbase,
11284 				    sizeof (uint64_t)));
11285 			}
11286 			curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment);
11287 			rec->dtrd_offset = curneeded;
11288 			if (curneeded + rec->dtrd_size < curneeded)
11289 				return (EINVAL);
11290 			curneeded += rec->dtrd_size;
11291 		} else {
11292 			/* tuples must be followed by an aggregation */
11293 			ASSERT(act->dta_prev == NULL ||
11294 			    !act->dta_prev->dta_intuple);
11295 
11296 			ecb->dte_size = P2ROUNDUP(ecb->dte_size,
11297 			    rec->dtrd_alignment);
11298 			rec->dtrd_offset = ecb->dte_size;
11299 			if (ecb->dte_size + rec->dtrd_size < ecb->dte_size)
11300 				return (EINVAL);
11301 			ecb->dte_size += rec->dtrd_size;
11302 			ecb->dte_needed = MAX(ecb->dte_needed, ecb->dte_size);
11303 		}
11304 	}
11305 
11306 	if ((act = ecb->dte_action) != NULL &&
11307 	    !(act->dta_kind == DTRACEACT_SPECULATE && act->dta_next == NULL) &&
11308 	    ecb->dte_size == sizeof (dtrace_rechdr_t)) {
11309 		/*
11310 		 * If the size is still sizeof (dtrace_rechdr_t), then all
11311 		 * actions store no data; set the size to 0.
11312 		 */
11313 		ecb->dte_size = 0;
11314 	}
11315 
11316 	ecb->dte_size = P2ROUNDUP(ecb->dte_size, sizeof (dtrace_epid_t));
11317 	ecb->dte_needed = P2ROUNDUP(ecb->dte_needed, (sizeof (dtrace_epid_t)));
11318 	ecb->dte_state->dts_needed = MAX(ecb->dte_state->dts_needed,
11319 	    ecb->dte_needed);
11320 	return (0);
11321 }
11322 
11323 static dtrace_action_t *
11324 dtrace_ecb_aggregation_create(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
11325 {
11326 	dtrace_aggregation_t *agg;
11327 	size_t size = sizeof (uint64_t);
11328 	int ntuple = desc->dtad_ntuple;
11329 	dtrace_action_t *act;
11330 	dtrace_recdesc_t *frec;
11331 	dtrace_aggid_t aggid;
11332 	dtrace_state_t *state = ecb->dte_state;
11333 
11334 	agg = kmem_zalloc(sizeof (dtrace_aggregation_t), KM_SLEEP);
11335 	agg->dtag_ecb = ecb;
11336 
11337 	ASSERT(DTRACEACT_ISAGG(desc->dtad_kind));
11338 
11339 	switch (desc->dtad_kind) {
11340 	case DTRACEAGG_MIN:
11341 		agg->dtag_initial = INT64_MAX;
11342 		agg->dtag_aggregate = dtrace_aggregate_min;
11343 		break;
11344 
11345 	case DTRACEAGG_MAX:
11346 		agg->dtag_initial = INT64_MIN;
11347 		agg->dtag_aggregate = dtrace_aggregate_max;
11348 		break;
11349 
11350 	case DTRACEAGG_COUNT:
11351 		agg->dtag_aggregate = dtrace_aggregate_count;
11352 		break;
11353 
11354 	case DTRACEAGG_QUANTIZE:
11355 		agg->dtag_aggregate = dtrace_aggregate_quantize;
11356 		size = (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) *
11357 		    sizeof (uint64_t);
11358 		break;
11359 
11360 	case DTRACEAGG_LQUANTIZE: {
11361 		uint16_t step = DTRACE_LQUANTIZE_STEP(desc->dtad_arg);
11362 		uint16_t levels = DTRACE_LQUANTIZE_LEVELS(desc->dtad_arg);
11363 
11364 		agg->dtag_initial = desc->dtad_arg;
11365 		agg->dtag_aggregate = dtrace_aggregate_lquantize;
11366 
11367 		if (step == 0 || levels == 0)
11368 			goto err;
11369 
11370 		size = levels * sizeof (uint64_t) + 3 * sizeof (uint64_t);
11371 		break;
11372 	}
11373 
11374 	case DTRACEAGG_LLQUANTIZE: {
11375 		uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(desc->dtad_arg);
11376 		uint16_t low = DTRACE_LLQUANTIZE_LOW(desc->dtad_arg);
11377 		uint16_t high = DTRACE_LLQUANTIZE_HIGH(desc->dtad_arg);
11378 		uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(desc->dtad_arg);
11379 		int64_t v;
11380 
11381 		agg->dtag_initial = desc->dtad_arg;
11382 		agg->dtag_aggregate = dtrace_aggregate_llquantize;
11383 
11384 		if (factor < 2 || low >= high || nsteps < factor)
11385 			goto err;
11386 
11387 		/*
11388 		 * Now check that the number of steps evenly divides a power
11389 		 * of the factor.  (This assures both integer bucket size and
11390 		 * linearity within each magnitude.)
11391 		 */
11392 		for (v = factor; v < nsteps; v *= factor)
11393 			continue;
11394 
11395 		if ((v % nsteps) || (nsteps % factor))
11396 			goto err;
11397 
11398 		size = (dtrace_aggregate_llquantize_bucket(factor,
11399 		    low, high, nsteps, INT64_MAX) + 2) * sizeof (uint64_t);
11400 		break;
11401 	}
11402 
11403 	case DTRACEAGG_AVG:
11404 		agg->dtag_aggregate = dtrace_aggregate_avg;
11405 		size = sizeof (uint64_t) * 2;
11406 		break;
11407 
11408 	case DTRACEAGG_STDDEV:
11409 		agg->dtag_aggregate = dtrace_aggregate_stddev;
11410 		size = sizeof (uint64_t) * 4;
11411 		break;
11412 
11413 	case DTRACEAGG_SUM:
11414 		agg->dtag_aggregate = dtrace_aggregate_sum;
11415 		break;
11416 
11417 	default:
11418 		goto err;
11419 	}
11420 
11421 	agg->dtag_action.dta_rec.dtrd_size = size;
11422 
11423 	if (ntuple == 0)
11424 		goto err;
11425 
11426 	/*
11427 	 * We must make sure that we have enough actions for the n-tuple.
11428 	 */
11429 	for (act = ecb->dte_action_last; act != NULL; act = act->dta_prev) {
11430 		if (DTRACEACT_ISAGG(act->dta_kind))
11431 			break;
11432 
11433 		if (--ntuple == 0) {
11434 			/*
11435 			 * This is the action with which our n-tuple begins.
11436 			 */
11437 			agg->dtag_first = act;
11438 			goto success;
11439 		}
11440 	}
11441 
11442 	/*
11443 	 * This n-tuple is short by ntuple elements.  Return failure.
11444 	 */
11445 	ASSERT(ntuple != 0);
11446 err:
11447 	kmem_free(agg, sizeof (dtrace_aggregation_t));
11448 	return (NULL);
11449 
11450 success:
11451 	/*
11452 	 * If the last action in the tuple has a size of zero, it's actually
11453 	 * an expression argument for the aggregating action.
11454 	 */
11455 	ASSERT(ecb->dte_action_last != NULL);
11456 	act = ecb->dte_action_last;
11457 
11458 	if (act->dta_kind == DTRACEACT_DIFEXPR) {
11459 		ASSERT(act->dta_difo != NULL);
11460 
11461 		if (act->dta_difo->dtdo_rtype.dtdt_size == 0)
11462 			agg->dtag_hasarg = 1;
11463 	}
11464 
11465 	/*
11466 	 * We need to allocate an id for this aggregation.
11467 	 */
11468 #ifdef illumos
11469 	aggid = (dtrace_aggid_t)(uintptr_t)vmem_alloc(state->dts_aggid_arena, 1,
11470 	    VM_BESTFIT | VM_SLEEP);
11471 #else
11472 	aggid = alloc_unr(state->dts_aggid_arena);
11473 #endif
11474 
11475 	if (aggid - 1 >= state->dts_naggregations) {
11476 		dtrace_aggregation_t **oaggs = state->dts_aggregations;
11477 		dtrace_aggregation_t **aggs;
11478 		int naggs = state->dts_naggregations << 1;
11479 		int onaggs = state->dts_naggregations;
11480 
11481 		ASSERT(aggid == state->dts_naggregations + 1);
11482 
11483 		if (naggs == 0) {
11484 			ASSERT(oaggs == NULL);
11485 			naggs = 1;
11486 		}
11487 
11488 		aggs = kmem_zalloc(naggs * sizeof (*aggs), KM_SLEEP);
11489 
11490 		if (oaggs != NULL) {
11491 			bcopy(oaggs, aggs, onaggs * sizeof (*aggs));
11492 			kmem_free(oaggs, onaggs * sizeof (*aggs));
11493 		}
11494 
11495 		state->dts_aggregations = aggs;
11496 		state->dts_naggregations = naggs;
11497 	}
11498 
11499 	ASSERT(state->dts_aggregations[aggid - 1] == NULL);
11500 	state->dts_aggregations[(agg->dtag_id = aggid) - 1] = agg;
11501 
11502 	frec = &agg->dtag_first->dta_rec;
11503 	if (frec->dtrd_alignment < sizeof (dtrace_aggid_t))
11504 		frec->dtrd_alignment = sizeof (dtrace_aggid_t);
11505 
11506 	for (act = agg->dtag_first; act != NULL; act = act->dta_next) {
11507 		ASSERT(!act->dta_intuple);
11508 		act->dta_intuple = 1;
11509 	}
11510 
11511 	return (&agg->dtag_action);
11512 }
11513 
11514 static void
11515 dtrace_ecb_aggregation_destroy(dtrace_ecb_t *ecb, dtrace_action_t *act)
11516 {
11517 	dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
11518 	dtrace_state_t *state = ecb->dte_state;
11519 	dtrace_aggid_t aggid = agg->dtag_id;
11520 
11521 	ASSERT(DTRACEACT_ISAGG(act->dta_kind));
11522 #ifdef illumos
11523 	vmem_free(state->dts_aggid_arena, (void *)(uintptr_t)aggid, 1);
11524 #else
11525 	free_unr(state->dts_aggid_arena, aggid);
11526 #endif
11527 
11528 	ASSERT(state->dts_aggregations[aggid - 1] == agg);
11529 	state->dts_aggregations[aggid - 1] = NULL;
11530 
11531 	kmem_free(agg, sizeof (dtrace_aggregation_t));
11532 }
11533 
11534 static int
11535 dtrace_ecb_action_add(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
11536 {
11537 	dtrace_action_t *action, *last;
11538 	dtrace_difo_t *dp = desc->dtad_difo;
11539 	uint32_t size = 0, align = sizeof (uint8_t), mask;
11540 	uint16_t format = 0;
11541 	dtrace_recdesc_t *rec;
11542 	dtrace_state_t *state = ecb->dte_state;
11543 	dtrace_optval_t *opt = state->dts_options, nframes = 0, strsize;
11544 	uint64_t arg = desc->dtad_arg;
11545 
11546 	ASSERT(MUTEX_HELD(&dtrace_lock));
11547 	ASSERT(ecb->dte_action == NULL || ecb->dte_action->dta_refcnt == 1);
11548 
11549 	if (DTRACEACT_ISAGG(desc->dtad_kind)) {
11550 		/*
11551 		 * If this is an aggregating action, there must be neither
11552 		 * a speculate nor a commit on the action chain.
11553 		 */
11554 		dtrace_action_t *act;
11555 
11556 		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
11557 			if (act->dta_kind == DTRACEACT_COMMIT)
11558 				return (EINVAL);
11559 
11560 			if (act->dta_kind == DTRACEACT_SPECULATE)
11561 				return (EINVAL);
11562 		}
11563 
11564 		action = dtrace_ecb_aggregation_create(ecb, desc);
11565 
11566 		if (action == NULL)
11567 			return (EINVAL);
11568 	} else {
11569 		if (DTRACEACT_ISDESTRUCTIVE(desc->dtad_kind) ||
11570 		    (desc->dtad_kind == DTRACEACT_DIFEXPR &&
11571 		    dp != NULL && dp->dtdo_destructive)) {
11572 			state->dts_destructive = 1;
11573 		}
11574 
11575 		switch (desc->dtad_kind) {
11576 		case DTRACEACT_PRINTF:
11577 		case DTRACEACT_PRINTA:
11578 		case DTRACEACT_SYSTEM:
11579 		case DTRACEACT_FREOPEN:
11580 		case DTRACEACT_DIFEXPR:
11581 			/*
11582 			 * We know that our arg is a string -- turn it into a
11583 			 * format.
11584 			 */
11585 			if (arg == 0) {
11586 				ASSERT(desc->dtad_kind == DTRACEACT_PRINTA ||
11587 				    desc->dtad_kind == DTRACEACT_DIFEXPR);
11588 				format = 0;
11589 			} else {
11590 				ASSERT(arg != 0);
11591 #ifdef illumos
11592 				ASSERT(arg > KERNELBASE);
11593 #endif
11594 				format = dtrace_format_add(state,
11595 				    (char *)(uintptr_t)arg);
11596 			}
11597 
11598 			/*FALLTHROUGH*/
11599 		case DTRACEACT_LIBACT:
11600 		case DTRACEACT_TRACEMEM:
11601 		case DTRACEACT_TRACEMEM_DYNSIZE:
11602 			if (dp == NULL)
11603 				return (EINVAL);
11604 
11605 			if ((size = dp->dtdo_rtype.dtdt_size) != 0)
11606 				break;
11607 
11608 			if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) {
11609 				if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
11610 					return (EINVAL);
11611 
11612 				size = opt[DTRACEOPT_STRSIZE];
11613 			}
11614 
11615 			break;
11616 
11617 		case DTRACEACT_STACK:
11618 			if ((nframes = arg) == 0) {
11619 				nframes = opt[DTRACEOPT_STACKFRAMES];
11620 				ASSERT(nframes > 0);
11621 				arg = nframes;
11622 			}
11623 
11624 			size = nframes * sizeof (pc_t);
11625 			break;
11626 
11627 		case DTRACEACT_JSTACK:
11628 			if ((strsize = DTRACE_USTACK_STRSIZE(arg)) == 0)
11629 				strsize = opt[DTRACEOPT_JSTACKSTRSIZE];
11630 
11631 			if ((nframes = DTRACE_USTACK_NFRAMES(arg)) == 0)
11632 				nframes = opt[DTRACEOPT_JSTACKFRAMES];
11633 
11634 			arg = DTRACE_USTACK_ARG(nframes, strsize);
11635 
11636 			/*FALLTHROUGH*/
11637 		case DTRACEACT_USTACK:
11638 			if (desc->dtad_kind != DTRACEACT_JSTACK &&
11639 			    (nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) {
11640 				strsize = DTRACE_USTACK_STRSIZE(arg);
11641 				nframes = opt[DTRACEOPT_USTACKFRAMES];
11642 				ASSERT(nframes > 0);
11643 				arg = DTRACE_USTACK_ARG(nframes, strsize);
11644 			}
11645 
11646 			/*
11647 			 * Save a slot for the pid.
11648 			 */
11649 			size = (nframes + 1) * sizeof (uint64_t);
11650 			size += DTRACE_USTACK_STRSIZE(arg);
11651 			size = P2ROUNDUP(size, (uint32_t)(sizeof (uintptr_t)));
11652 
11653 			break;
11654 
11655 		case DTRACEACT_SYM:
11656 		case DTRACEACT_MOD:
11657 			if (dp == NULL || ((size = dp->dtdo_rtype.dtdt_size) !=
11658 			    sizeof (uint64_t)) ||
11659 			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
11660 				return (EINVAL);
11661 			break;
11662 
11663 		case DTRACEACT_USYM:
11664 		case DTRACEACT_UMOD:
11665 		case DTRACEACT_UADDR:
11666 			if (dp == NULL ||
11667 			    (dp->dtdo_rtype.dtdt_size != sizeof (uint64_t)) ||
11668 			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
11669 				return (EINVAL);
11670 
11671 			/*
11672 			 * We have a slot for the pid, plus a slot for the
11673 			 * argument.  To keep things simple (aligned with
11674 			 * bitness-neutral sizing), we store each as a 64-bit
11675 			 * quantity.
11676 			 */
11677 			size = 2 * sizeof (uint64_t);
11678 			break;
11679 
11680 		case DTRACEACT_STOP:
11681 		case DTRACEACT_BREAKPOINT:
11682 		case DTRACEACT_PANIC:
11683 			break;
11684 
11685 		case DTRACEACT_CHILL:
11686 		case DTRACEACT_DISCARD:
11687 		case DTRACEACT_RAISE:
11688 			if (dp == NULL)
11689 				return (EINVAL);
11690 			break;
11691 
11692 		case DTRACEACT_EXIT:
11693 			if (dp == NULL ||
11694 			    (size = dp->dtdo_rtype.dtdt_size) != sizeof (int) ||
11695 			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
11696 				return (EINVAL);
11697 			break;
11698 
11699 		case DTRACEACT_SPECULATE:
11700 			if (ecb->dte_size > sizeof (dtrace_rechdr_t))
11701 				return (EINVAL);
11702 
11703 			if (dp == NULL)
11704 				return (EINVAL);
11705 
11706 			state->dts_speculates = 1;
11707 			break;
11708 
11709 		case DTRACEACT_PRINTM:
11710 		    	size = dp->dtdo_rtype.dtdt_size;
11711 			break;
11712 
11713 		case DTRACEACT_COMMIT: {
11714 			dtrace_action_t *act = ecb->dte_action;
11715 
11716 			for (; act != NULL; act = act->dta_next) {
11717 				if (act->dta_kind == DTRACEACT_COMMIT)
11718 					return (EINVAL);
11719 			}
11720 
11721 			if (dp == NULL)
11722 				return (EINVAL);
11723 			break;
11724 		}
11725 
11726 		default:
11727 			return (EINVAL);
11728 		}
11729 
11730 		if (size != 0 || desc->dtad_kind == DTRACEACT_SPECULATE) {
11731 			/*
11732 			 * If this is a data-storing action or a speculate,
11733 			 * we must be sure that there isn't a commit on the
11734 			 * action chain.
11735 			 */
11736 			dtrace_action_t *act = ecb->dte_action;
11737 
11738 			for (; act != NULL; act = act->dta_next) {
11739 				if (act->dta_kind == DTRACEACT_COMMIT)
11740 					return (EINVAL);
11741 			}
11742 		}
11743 
11744 		action = kmem_zalloc(sizeof (dtrace_action_t), KM_SLEEP);
11745 		action->dta_rec.dtrd_size = size;
11746 	}
11747 
11748 	action->dta_refcnt = 1;
11749 	rec = &action->dta_rec;
11750 	size = rec->dtrd_size;
11751 
11752 	for (mask = sizeof (uint64_t) - 1; size != 0 && mask > 0; mask >>= 1) {
11753 		if (!(size & mask)) {
11754 			align = mask + 1;
11755 			break;
11756 		}
11757 	}
11758 
11759 	action->dta_kind = desc->dtad_kind;
11760 
11761 	if ((action->dta_difo = dp) != NULL)
11762 		dtrace_difo_hold(dp);
11763 
11764 	rec->dtrd_action = action->dta_kind;
11765 	rec->dtrd_arg = arg;
11766 	rec->dtrd_uarg = desc->dtad_uarg;
11767 	rec->dtrd_alignment = (uint16_t)align;
11768 	rec->dtrd_format = format;
11769 
11770 	if ((last = ecb->dte_action_last) != NULL) {
11771 		ASSERT(ecb->dte_action != NULL);
11772 		action->dta_prev = last;
11773 		last->dta_next = action;
11774 	} else {
11775 		ASSERT(ecb->dte_action == NULL);
11776 		ecb->dte_action = action;
11777 	}
11778 
11779 	ecb->dte_action_last = action;
11780 
11781 	return (0);
11782 }
11783 
11784 static void
11785 dtrace_ecb_action_remove(dtrace_ecb_t *ecb)
11786 {
11787 	dtrace_action_t *act = ecb->dte_action, *next;
11788 	dtrace_vstate_t *vstate = &ecb->dte_state->dts_vstate;
11789 	dtrace_difo_t *dp;
11790 	uint16_t format;
11791 
11792 	if (act != NULL && act->dta_refcnt > 1) {
11793 		ASSERT(act->dta_next == NULL || act->dta_next->dta_refcnt == 1);
11794 		act->dta_refcnt--;
11795 	} else {
11796 		for (; act != NULL; act = next) {
11797 			next = act->dta_next;
11798 			ASSERT(next != NULL || act == ecb->dte_action_last);
11799 			ASSERT(act->dta_refcnt == 1);
11800 
11801 			if ((format = act->dta_rec.dtrd_format) != 0)
11802 				dtrace_format_remove(ecb->dte_state, format);
11803 
11804 			if ((dp = act->dta_difo) != NULL)
11805 				dtrace_difo_release(dp, vstate);
11806 
11807 			if (DTRACEACT_ISAGG(act->dta_kind)) {
11808 				dtrace_ecb_aggregation_destroy(ecb, act);
11809 			} else {
11810 				kmem_free(act, sizeof (dtrace_action_t));
11811 			}
11812 		}
11813 	}
11814 
11815 	ecb->dte_action = NULL;
11816 	ecb->dte_action_last = NULL;
11817 	ecb->dte_size = 0;
11818 }
11819 
11820 static void
11821 dtrace_ecb_disable(dtrace_ecb_t *ecb)
11822 {
11823 	/*
11824 	 * We disable the ECB by removing it from its probe.
11825 	 */
11826 	dtrace_ecb_t *pecb, *prev = NULL;
11827 	dtrace_probe_t *probe = ecb->dte_probe;
11828 
11829 	ASSERT(MUTEX_HELD(&dtrace_lock));
11830 
11831 	if (probe == NULL) {
11832 		/*
11833 		 * This is the NULL probe; there is nothing to disable.
11834 		 */
11835 		return;
11836 	}
11837 
11838 	for (pecb = probe->dtpr_ecb; pecb != NULL; pecb = pecb->dte_next) {
11839 		if (pecb == ecb)
11840 			break;
11841 		prev = pecb;
11842 	}
11843 
11844 	ASSERT(pecb != NULL);
11845 
11846 	if (prev == NULL) {
11847 		probe->dtpr_ecb = ecb->dte_next;
11848 	} else {
11849 		prev->dte_next = ecb->dte_next;
11850 	}
11851 
11852 	if (ecb == probe->dtpr_ecb_last) {
11853 		ASSERT(ecb->dte_next == NULL);
11854 		probe->dtpr_ecb_last = prev;
11855 	}
11856 
11857 	/*
11858 	 * The ECB has been disconnected from the probe; now sync to assure
11859 	 * that all CPUs have seen the change before returning.
11860 	 */
11861 	dtrace_sync();
11862 
11863 	if (probe->dtpr_ecb == NULL) {
11864 		/*
11865 		 * That was the last ECB on the probe; clear the predicate
11866 		 * cache ID for the probe, disable it and sync one more time
11867 		 * to assure that we'll never hit it again.
11868 		 */
11869 		dtrace_provider_t *prov = probe->dtpr_provider;
11870 
11871 		ASSERT(ecb->dte_next == NULL);
11872 		ASSERT(probe->dtpr_ecb_last == NULL);
11873 		probe->dtpr_predcache = DTRACE_CACHEIDNONE;
11874 		prov->dtpv_pops.dtps_disable(prov->dtpv_arg,
11875 		    probe->dtpr_id, probe->dtpr_arg);
11876 		dtrace_sync();
11877 	} else {
11878 		/*
11879 		 * There is at least one ECB remaining on the probe.  If there
11880 		 * is _exactly_ one, set the probe's predicate cache ID to be
11881 		 * the predicate cache ID of the remaining ECB.
11882 		 */
11883 		ASSERT(probe->dtpr_ecb_last != NULL);
11884 		ASSERT(probe->dtpr_predcache == DTRACE_CACHEIDNONE);
11885 
11886 		if (probe->dtpr_ecb == probe->dtpr_ecb_last) {
11887 			dtrace_predicate_t *p = probe->dtpr_ecb->dte_predicate;
11888 
11889 			ASSERT(probe->dtpr_ecb->dte_next == NULL);
11890 
11891 			if (p != NULL)
11892 				probe->dtpr_predcache = p->dtp_cacheid;
11893 		}
11894 
11895 		ecb->dte_next = NULL;
11896 	}
11897 }
11898 
11899 static void
11900 dtrace_ecb_destroy(dtrace_ecb_t *ecb)
11901 {
11902 	dtrace_state_t *state = ecb->dte_state;
11903 	dtrace_vstate_t *vstate = &state->dts_vstate;
11904 	dtrace_predicate_t *pred;
11905 	dtrace_epid_t epid = ecb->dte_epid;
11906 
11907 	ASSERT(MUTEX_HELD(&dtrace_lock));
11908 	ASSERT(ecb->dte_next == NULL);
11909 	ASSERT(ecb->dte_probe == NULL || ecb->dte_probe->dtpr_ecb != ecb);
11910 
11911 	if ((pred = ecb->dte_predicate) != NULL)
11912 		dtrace_predicate_release(pred, vstate);
11913 
11914 	dtrace_ecb_action_remove(ecb);
11915 
11916 	ASSERT(state->dts_ecbs[epid - 1] == ecb);
11917 	state->dts_ecbs[epid - 1] = NULL;
11918 
11919 	kmem_free(ecb, sizeof (dtrace_ecb_t));
11920 }
11921 
11922 static dtrace_ecb_t *
11923 dtrace_ecb_create(dtrace_state_t *state, dtrace_probe_t *probe,
11924     dtrace_enabling_t *enab)
11925 {
11926 	dtrace_ecb_t *ecb;
11927 	dtrace_predicate_t *pred;
11928 	dtrace_actdesc_t *act;
11929 	dtrace_provider_t *prov;
11930 	dtrace_ecbdesc_t *desc = enab->dten_current;
11931 
11932 	ASSERT(MUTEX_HELD(&dtrace_lock));
11933 	ASSERT(state != NULL);
11934 
11935 	ecb = dtrace_ecb_add(state, probe);
11936 	ecb->dte_uarg = desc->dted_uarg;
11937 
11938 	if ((pred = desc->dted_pred.dtpdd_predicate) != NULL) {
11939 		dtrace_predicate_hold(pred);
11940 		ecb->dte_predicate = pred;
11941 	}
11942 
11943 	if (probe != NULL) {
11944 		/*
11945 		 * If the provider shows more leg than the consumer is old
11946 		 * enough to see, we need to enable the appropriate implicit
11947 		 * predicate bits to prevent the ecb from activating at
11948 		 * revealing times.
11949 		 *
11950 		 * Providers specifying DTRACE_PRIV_USER at register time
11951 		 * are stating that they need the /proc-style privilege
11952 		 * model to be enforced, and this is what DTRACE_COND_OWNER
11953 		 * and DTRACE_COND_ZONEOWNER will then do at probe time.
11954 		 */
11955 		prov = probe->dtpr_provider;
11956 		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLPROC) &&
11957 		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
11958 			ecb->dte_cond |= DTRACE_COND_OWNER;
11959 
11960 		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLZONE) &&
11961 		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
11962 			ecb->dte_cond |= DTRACE_COND_ZONEOWNER;
11963 
11964 		/*
11965 		 * If the provider shows us kernel innards and the user
11966 		 * is lacking sufficient privilege, enable the
11967 		 * DTRACE_COND_USERMODE implicit predicate.
11968 		 */
11969 		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) &&
11970 		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_KERNEL))
11971 			ecb->dte_cond |= DTRACE_COND_USERMODE;
11972 	}
11973 
11974 	if (dtrace_ecb_create_cache != NULL) {
11975 		/*
11976 		 * If we have a cached ecb, we'll use its action list instead
11977 		 * of creating our own (saving both time and space).
11978 		 */
11979 		dtrace_ecb_t *cached = dtrace_ecb_create_cache;
11980 		dtrace_action_t *act = cached->dte_action;
11981 
11982 		if (act != NULL) {
11983 			ASSERT(act->dta_refcnt > 0);
11984 			act->dta_refcnt++;
11985 			ecb->dte_action = act;
11986 			ecb->dte_action_last = cached->dte_action_last;
11987 			ecb->dte_needed = cached->dte_needed;
11988 			ecb->dte_size = cached->dte_size;
11989 			ecb->dte_alignment = cached->dte_alignment;
11990 		}
11991 
11992 		return (ecb);
11993 	}
11994 
11995 	for (act = desc->dted_action; act != NULL; act = act->dtad_next) {
11996 		if ((enab->dten_error = dtrace_ecb_action_add(ecb, act)) != 0) {
11997 			dtrace_ecb_destroy(ecb);
11998 			return (NULL);
11999 		}
12000 	}
12001 
12002 	if ((enab->dten_error = dtrace_ecb_resize(ecb)) != 0) {
12003 		dtrace_ecb_destroy(ecb);
12004 		return (NULL);
12005 	}
12006 
12007 	return (dtrace_ecb_create_cache = ecb);
12008 }
12009 
12010 static int
12011 dtrace_ecb_create_enable(dtrace_probe_t *probe, void *arg)
12012 {
12013 	dtrace_ecb_t *ecb;
12014 	dtrace_enabling_t *enab = arg;
12015 	dtrace_state_t *state = enab->dten_vstate->dtvs_state;
12016 
12017 	ASSERT(state != NULL);
12018 
12019 	if (probe != NULL && probe->dtpr_gen < enab->dten_probegen) {
12020 		/*
12021 		 * This probe was created in a generation for which this
12022 		 * enabling has previously created ECBs; we don't want to
12023 		 * enable it again, so just kick out.
12024 		 */
12025 		return (DTRACE_MATCH_NEXT);
12026 	}
12027 
12028 	if ((ecb = dtrace_ecb_create(state, probe, enab)) == NULL)
12029 		return (DTRACE_MATCH_DONE);
12030 
12031 	dtrace_ecb_enable(ecb);
12032 	return (DTRACE_MATCH_NEXT);
12033 }
12034 
12035 static dtrace_ecb_t *
12036 dtrace_epid2ecb(dtrace_state_t *state, dtrace_epid_t id)
12037 {
12038 	dtrace_ecb_t *ecb;
12039 
12040 	ASSERT(MUTEX_HELD(&dtrace_lock));
12041 
12042 	if (id == 0 || id > state->dts_necbs)
12043 		return (NULL);
12044 
12045 	ASSERT(state->dts_necbs > 0 && state->dts_ecbs != NULL);
12046 	ASSERT((ecb = state->dts_ecbs[id - 1]) == NULL || ecb->dte_epid == id);
12047 
12048 	return (state->dts_ecbs[id - 1]);
12049 }
12050 
12051 static dtrace_aggregation_t *
12052 dtrace_aggid2agg(dtrace_state_t *state, dtrace_aggid_t id)
12053 {
12054 	dtrace_aggregation_t *agg;
12055 
12056 	ASSERT(MUTEX_HELD(&dtrace_lock));
12057 
12058 	if (id == 0 || id > state->dts_naggregations)
12059 		return (NULL);
12060 
12061 	ASSERT(state->dts_naggregations > 0 && state->dts_aggregations != NULL);
12062 	ASSERT((agg = state->dts_aggregations[id - 1]) == NULL ||
12063 	    agg->dtag_id == id);
12064 
12065 	return (state->dts_aggregations[id - 1]);
12066 }
12067 
12068 /*
12069  * DTrace Buffer Functions
12070  *
12071  * The following functions manipulate DTrace buffers.  Most of these functions
12072  * are called in the context of establishing or processing consumer state;
12073  * exceptions are explicitly noted.
12074  */
12075 
12076 /*
12077  * Note:  called from cross call context.  This function switches the two
12078  * buffers on a given CPU.  The atomicity of this operation is assured by
12079  * disabling interrupts while the actual switch takes place; the disabling of
12080  * interrupts serializes the execution with any execution of dtrace_probe() on
12081  * the same CPU.
12082  */
12083 static void
12084 dtrace_buffer_switch(dtrace_buffer_t *buf)
12085 {
12086 	caddr_t tomax = buf->dtb_tomax;
12087 	caddr_t xamot = buf->dtb_xamot;
12088 	dtrace_icookie_t cookie;
12089 	hrtime_t now;
12090 
12091 	ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
12092 	ASSERT(!(buf->dtb_flags & DTRACEBUF_RING));
12093 
12094 	cookie = dtrace_interrupt_disable();
12095 	now = dtrace_gethrtime();
12096 	buf->dtb_tomax = xamot;
12097 	buf->dtb_xamot = tomax;
12098 	buf->dtb_xamot_drops = buf->dtb_drops;
12099 	buf->dtb_xamot_offset = buf->dtb_offset;
12100 	buf->dtb_xamot_errors = buf->dtb_errors;
12101 	buf->dtb_xamot_flags = buf->dtb_flags;
12102 	buf->dtb_offset = 0;
12103 	buf->dtb_drops = 0;
12104 	buf->dtb_errors = 0;
12105 	buf->dtb_flags &= ~(DTRACEBUF_ERROR | DTRACEBUF_DROPPED);
12106 	buf->dtb_interval = now - buf->dtb_switched;
12107 	buf->dtb_switched = now;
12108 	dtrace_interrupt_enable(cookie);
12109 }
12110 
12111 /*
12112  * Note:  called from cross call context.  This function activates a buffer
12113  * on a CPU.  As with dtrace_buffer_switch(), the atomicity of the operation
12114  * is guaranteed by the disabling of interrupts.
12115  */
12116 static void
12117 dtrace_buffer_activate(dtrace_state_t *state)
12118 {
12119 	dtrace_buffer_t *buf;
12120 	dtrace_icookie_t cookie = dtrace_interrupt_disable();
12121 
12122 	buf = &state->dts_buffer[curcpu];
12123 
12124 	if (buf->dtb_tomax != NULL) {
12125 		/*
12126 		 * We might like to assert that the buffer is marked inactive,
12127 		 * but this isn't necessarily true:  the buffer for the CPU
12128 		 * that processes the BEGIN probe has its buffer activated
12129 		 * manually.  In this case, we take the (harmless) action
12130 		 * re-clearing the bit INACTIVE bit.
12131 		 */
12132 		buf->dtb_flags &= ~DTRACEBUF_INACTIVE;
12133 	}
12134 
12135 	dtrace_interrupt_enable(cookie);
12136 }
12137 
12138 #ifdef __FreeBSD__
12139 /*
12140  * Activate the specified per-CPU buffer.  This is used instead of
12141  * dtrace_buffer_activate() when APs have not yet started, i.e. when
12142  * activating anonymous state.
12143  */
12144 static void
12145 dtrace_buffer_activate_cpu(dtrace_state_t *state, int cpu)
12146 {
12147 
12148 	if (state->dts_buffer[cpu].dtb_tomax != NULL)
12149 		state->dts_buffer[cpu].dtb_flags &= ~DTRACEBUF_INACTIVE;
12150 }
12151 #endif
12152 
12153 static int
12154 dtrace_buffer_alloc(dtrace_buffer_t *bufs, size_t size, int flags,
12155     processorid_t cpu, int *factor)
12156 {
12157 #ifdef illumos
12158 	cpu_t *cp;
12159 #endif
12160 	dtrace_buffer_t *buf;
12161 	int allocated = 0, desired = 0;
12162 
12163 #ifdef illumos
12164 	ASSERT(MUTEX_HELD(&cpu_lock));
12165 	ASSERT(MUTEX_HELD(&dtrace_lock));
12166 
12167 	*factor = 1;
12168 
12169 	if (size > dtrace_nonroot_maxsize &&
12170 	    !PRIV_POLICY_CHOICE(CRED(), PRIV_ALL, B_FALSE))
12171 		return (EFBIG);
12172 
12173 	cp = cpu_list;
12174 
12175 	do {
12176 		if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
12177 			continue;
12178 
12179 		buf = &bufs[cp->cpu_id];
12180 
12181 		/*
12182 		 * If there is already a buffer allocated for this CPU, it
12183 		 * is only possible that this is a DR event.  In this case,
12184 		 */
12185 		if (buf->dtb_tomax != NULL) {
12186 			ASSERT(buf->dtb_size == size);
12187 			continue;
12188 		}
12189 
12190 		ASSERT(buf->dtb_xamot == NULL);
12191 
12192 		if ((buf->dtb_tomax = kmem_zalloc(size,
12193 		    KM_NOSLEEP | KM_NORMALPRI)) == NULL)
12194 			goto err;
12195 
12196 		buf->dtb_size = size;
12197 		buf->dtb_flags = flags;
12198 		buf->dtb_offset = 0;
12199 		buf->dtb_drops = 0;
12200 
12201 		if (flags & DTRACEBUF_NOSWITCH)
12202 			continue;
12203 
12204 		if ((buf->dtb_xamot = kmem_zalloc(size,
12205 		    KM_NOSLEEP | KM_NORMALPRI)) == NULL)
12206 			goto err;
12207 	} while ((cp = cp->cpu_next) != cpu_list);
12208 
12209 	return (0);
12210 
12211 err:
12212 	cp = cpu_list;
12213 
12214 	do {
12215 		if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
12216 			continue;
12217 
12218 		buf = &bufs[cp->cpu_id];
12219 		desired += 2;
12220 
12221 		if (buf->dtb_xamot != NULL) {
12222 			ASSERT(buf->dtb_tomax != NULL);
12223 			ASSERT(buf->dtb_size == size);
12224 			kmem_free(buf->dtb_xamot, size);
12225 			allocated++;
12226 		}
12227 
12228 		if (buf->dtb_tomax != NULL) {
12229 			ASSERT(buf->dtb_size == size);
12230 			kmem_free(buf->dtb_tomax, size);
12231 			allocated++;
12232 		}
12233 
12234 		buf->dtb_tomax = NULL;
12235 		buf->dtb_xamot = NULL;
12236 		buf->dtb_size = 0;
12237 	} while ((cp = cp->cpu_next) != cpu_list);
12238 #else
12239 	int i;
12240 
12241 	*factor = 1;
12242 #if defined(__aarch64__) || defined(__amd64__) || defined(__arm__) || \
12243     defined(__mips__) || defined(__powerpc__) || defined(__riscv)
12244 	/*
12245 	 * FreeBSD isn't good at limiting the amount of memory we
12246 	 * ask to malloc, so let's place a limit here before trying
12247 	 * to do something that might well end in tears at bedtime.
12248 	 */
12249 	int bufsize_percpu_frac = dtrace_bufsize_max_frac * mp_ncpus;
12250 	if (size > physmem * PAGE_SIZE / bufsize_percpu_frac)
12251 		return (ENOMEM);
12252 #endif
12253 
12254 	ASSERT(MUTEX_HELD(&dtrace_lock));
12255 	CPU_FOREACH(i) {
12256 		if (cpu != DTRACE_CPUALL && cpu != i)
12257 			continue;
12258 
12259 		buf = &bufs[i];
12260 
12261 		/*
12262 		 * If there is already a buffer allocated for this CPU, it
12263 		 * is only possible that this is a DR event.  In this case,
12264 		 * the buffer size must match our specified size.
12265 		 */
12266 		if (buf->dtb_tomax != NULL) {
12267 			ASSERT(buf->dtb_size == size);
12268 			continue;
12269 		}
12270 
12271 		ASSERT(buf->dtb_xamot == NULL);
12272 
12273 		if ((buf->dtb_tomax = kmem_zalloc(size,
12274 		    KM_NOSLEEP | KM_NORMALPRI)) == NULL)
12275 			goto err;
12276 
12277 		buf->dtb_size = size;
12278 		buf->dtb_flags = flags;
12279 		buf->dtb_offset = 0;
12280 		buf->dtb_drops = 0;
12281 
12282 		if (flags & DTRACEBUF_NOSWITCH)
12283 			continue;
12284 
12285 		if ((buf->dtb_xamot = kmem_zalloc(size,
12286 		    KM_NOSLEEP | KM_NORMALPRI)) == NULL)
12287 			goto err;
12288 	}
12289 
12290 	return (0);
12291 
12292 err:
12293 	/*
12294 	 * Error allocating memory, so free the buffers that were
12295 	 * allocated before the failed allocation.
12296 	 */
12297 	CPU_FOREACH(i) {
12298 		if (cpu != DTRACE_CPUALL && cpu != i)
12299 			continue;
12300 
12301 		buf = &bufs[i];
12302 		desired += 2;
12303 
12304 		if (buf->dtb_xamot != NULL) {
12305 			ASSERT(buf->dtb_tomax != NULL);
12306 			ASSERT(buf->dtb_size == size);
12307 			kmem_free(buf->dtb_xamot, size);
12308 			allocated++;
12309 		}
12310 
12311 		if (buf->dtb_tomax != NULL) {
12312 			ASSERT(buf->dtb_size == size);
12313 			kmem_free(buf->dtb_tomax, size);
12314 			allocated++;
12315 		}
12316 
12317 		buf->dtb_tomax = NULL;
12318 		buf->dtb_xamot = NULL;
12319 		buf->dtb_size = 0;
12320 
12321 	}
12322 #endif
12323 	*factor = desired / (allocated > 0 ? allocated : 1);
12324 
12325 	return (ENOMEM);
12326 }
12327 
12328 /*
12329  * Note:  called from probe context.  This function just increments the drop
12330  * count on a buffer.  It has been made a function to allow for the
12331  * possibility of understanding the source of mysterious drop counts.  (A
12332  * problem for which one may be particularly disappointed that DTrace cannot
12333  * be used to understand DTrace.)
12334  */
12335 static void
12336 dtrace_buffer_drop(dtrace_buffer_t *buf)
12337 {
12338 	buf->dtb_drops++;
12339 }
12340 
12341 /*
12342  * Note:  called from probe context.  This function is called to reserve space
12343  * in a buffer.  If mstate is non-NULL, sets the scratch base and size in the
12344  * mstate.  Returns the new offset in the buffer, or a negative value if an
12345  * error has occurred.
12346  */
12347 static ssize_t
12348 dtrace_buffer_reserve(dtrace_buffer_t *buf, size_t needed, size_t align,
12349     dtrace_state_t *state, dtrace_mstate_t *mstate)
12350 {
12351 	ssize_t offs = buf->dtb_offset, soffs;
12352 	intptr_t woffs;
12353 	caddr_t tomax;
12354 	size_t total;
12355 
12356 	if (buf->dtb_flags & DTRACEBUF_INACTIVE)
12357 		return (-1);
12358 
12359 	if ((tomax = buf->dtb_tomax) == NULL) {
12360 		dtrace_buffer_drop(buf);
12361 		return (-1);
12362 	}
12363 
12364 	if (!(buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL))) {
12365 		while (offs & (align - 1)) {
12366 			/*
12367 			 * Assert that our alignment is off by a number which
12368 			 * is itself sizeof (uint32_t) aligned.
12369 			 */
12370 			ASSERT(!((align - (offs & (align - 1))) &
12371 			    (sizeof (uint32_t) - 1)));
12372 			DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
12373 			offs += sizeof (uint32_t);
12374 		}
12375 
12376 		if ((soffs = offs + needed) > buf->dtb_size) {
12377 			dtrace_buffer_drop(buf);
12378 			return (-1);
12379 		}
12380 
12381 		if (mstate == NULL)
12382 			return (offs);
12383 
12384 		mstate->dtms_scratch_base = (uintptr_t)tomax + soffs;
12385 		mstate->dtms_scratch_size = buf->dtb_size - soffs;
12386 		mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
12387 
12388 		return (offs);
12389 	}
12390 
12391 	if (buf->dtb_flags & DTRACEBUF_FILL) {
12392 		if (state->dts_activity != DTRACE_ACTIVITY_COOLDOWN &&
12393 		    (buf->dtb_flags & DTRACEBUF_FULL))
12394 			return (-1);
12395 		goto out;
12396 	}
12397 
12398 	total = needed + (offs & (align - 1));
12399 
12400 	/*
12401 	 * For a ring buffer, life is quite a bit more complicated.  Before
12402 	 * we can store any padding, we need to adjust our wrapping offset.
12403 	 * (If we've never before wrapped or we're not about to, no adjustment
12404 	 * is required.)
12405 	 */
12406 	if ((buf->dtb_flags & DTRACEBUF_WRAPPED) ||
12407 	    offs + total > buf->dtb_size) {
12408 		woffs = buf->dtb_xamot_offset;
12409 
12410 		if (offs + total > buf->dtb_size) {
12411 			/*
12412 			 * We can't fit in the end of the buffer.  First, a
12413 			 * sanity check that we can fit in the buffer at all.
12414 			 */
12415 			if (total > buf->dtb_size) {
12416 				dtrace_buffer_drop(buf);
12417 				return (-1);
12418 			}
12419 
12420 			/*
12421 			 * We're going to be storing at the top of the buffer,
12422 			 * so now we need to deal with the wrapped offset.  We
12423 			 * only reset our wrapped offset to 0 if it is
12424 			 * currently greater than the current offset.  If it
12425 			 * is less than the current offset, it is because a
12426 			 * previous allocation induced a wrap -- but the
12427 			 * allocation didn't subsequently take the space due
12428 			 * to an error or false predicate evaluation.  In this
12429 			 * case, we'll just leave the wrapped offset alone: if
12430 			 * the wrapped offset hasn't been advanced far enough
12431 			 * for this allocation, it will be adjusted in the
12432 			 * lower loop.
12433 			 */
12434 			if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
12435 				if (woffs >= offs)
12436 					woffs = 0;
12437 			} else {
12438 				woffs = 0;
12439 			}
12440 
12441 			/*
12442 			 * Now we know that we're going to be storing to the
12443 			 * top of the buffer and that there is room for us
12444 			 * there.  We need to clear the buffer from the current
12445 			 * offset to the end (there may be old gunk there).
12446 			 */
12447 			while (offs < buf->dtb_size)
12448 				tomax[offs++] = 0;
12449 
12450 			/*
12451 			 * We need to set our offset to zero.  And because we
12452 			 * are wrapping, we need to set the bit indicating as
12453 			 * much.  We can also adjust our needed space back
12454 			 * down to the space required by the ECB -- we know
12455 			 * that the top of the buffer is aligned.
12456 			 */
12457 			offs = 0;
12458 			total = needed;
12459 			buf->dtb_flags |= DTRACEBUF_WRAPPED;
12460 		} else {
12461 			/*
12462 			 * There is room for us in the buffer, so we simply
12463 			 * need to check the wrapped offset.
12464 			 */
12465 			if (woffs < offs) {
12466 				/*
12467 				 * The wrapped offset is less than the offset.
12468 				 * This can happen if we allocated buffer space
12469 				 * that induced a wrap, but then we didn't
12470 				 * subsequently take the space due to an error
12471 				 * or false predicate evaluation.  This is
12472 				 * okay; we know that _this_ allocation isn't
12473 				 * going to induce a wrap.  We still can't
12474 				 * reset the wrapped offset to be zero,
12475 				 * however: the space may have been trashed in
12476 				 * the previous failed probe attempt.  But at
12477 				 * least the wrapped offset doesn't need to
12478 				 * be adjusted at all...
12479 				 */
12480 				goto out;
12481 			}
12482 		}
12483 
12484 		while (offs + total > woffs) {
12485 			dtrace_epid_t epid = *(uint32_t *)(tomax + woffs);
12486 			size_t size;
12487 
12488 			if (epid == DTRACE_EPIDNONE) {
12489 				size = sizeof (uint32_t);
12490 			} else {
12491 				ASSERT3U(epid, <=, state->dts_necbs);
12492 				ASSERT(state->dts_ecbs[epid - 1] != NULL);
12493 
12494 				size = state->dts_ecbs[epid - 1]->dte_size;
12495 			}
12496 
12497 			ASSERT(woffs + size <= buf->dtb_size);
12498 			ASSERT(size != 0);
12499 
12500 			if (woffs + size == buf->dtb_size) {
12501 				/*
12502 				 * We've reached the end of the buffer; we want
12503 				 * to set the wrapped offset to 0 and break
12504 				 * out.  However, if the offs is 0, then we're
12505 				 * in a strange edge-condition:  the amount of
12506 				 * space that we want to reserve plus the size
12507 				 * of the record that we're overwriting is
12508 				 * greater than the size of the buffer.  This
12509 				 * is problematic because if we reserve the
12510 				 * space but subsequently don't consume it (due
12511 				 * to a failed predicate or error) the wrapped
12512 				 * offset will be 0 -- yet the EPID at offset 0
12513 				 * will not be committed.  This situation is
12514 				 * relatively easy to deal with:  if we're in
12515 				 * this case, the buffer is indistinguishable
12516 				 * from one that hasn't wrapped; we need only
12517 				 * finish the job by clearing the wrapped bit,
12518 				 * explicitly setting the offset to be 0, and
12519 				 * zero'ing out the old data in the buffer.
12520 				 */
12521 				if (offs == 0) {
12522 					buf->dtb_flags &= ~DTRACEBUF_WRAPPED;
12523 					buf->dtb_offset = 0;
12524 					woffs = total;
12525 
12526 					while (woffs < buf->dtb_size)
12527 						tomax[woffs++] = 0;
12528 				}
12529 
12530 				woffs = 0;
12531 				break;
12532 			}
12533 
12534 			woffs += size;
12535 		}
12536 
12537 		/*
12538 		 * We have a wrapped offset.  It may be that the wrapped offset
12539 		 * has become zero -- that's okay.
12540 		 */
12541 		buf->dtb_xamot_offset = woffs;
12542 	}
12543 
12544 out:
12545 	/*
12546 	 * Now we can plow the buffer with any necessary padding.
12547 	 */
12548 	while (offs & (align - 1)) {
12549 		/*
12550 		 * Assert that our alignment is off by a number which
12551 		 * is itself sizeof (uint32_t) aligned.
12552 		 */
12553 		ASSERT(!((align - (offs & (align - 1))) &
12554 		    (sizeof (uint32_t) - 1)));
12555 		DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
12556 		offs += sizeof (uint32_t);
12557 	}
12558 
12559 	if (buf->dtb_flags & DTRACEBUF_FILL) {
12560 		if (offs + needed > buf->dtb_size - state->dts_reserve) {
12561 			buf->dtb_flags |= DTRACEBUF_FULL;
12562 			return (-1);
12563 		}
12564 	}
12565 
12566 	if (mstate == NULL)
12567 		return (offs);
12568 
12569 	/*
12570 	 * For ring buffers and fill buffers, the scratch space is always
12571 	 * the inactive buffer.
12572 	 */
12573 	mstate->dtms_scratch_base = (uintptr_t)buf->dtb_xamot;
12574 	mstate->dtms_scratch_size = buf->dtb_size;
12575 	mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
12576 
12577 	return (offs);
12578 }
12579 
12580 static void
12581 dtrace_buffer_polish(dtrace_buffer_t *buf)
12582 {
12583 	ASSERT(buf->dtb_flags & DTRACEBUF_RING);
12584 	ASSERT(MUTEX_HELD(&dtrace_lock));
12585 
12586 	if (!(buf->dtb_flags & DTRACEBUF_WRAPPED))
12587 		return;
12588 
12589 	/*
12590 	 * We need to polish the ring buffer.  There are three cases:
12591 	 *
12592 	 * - The first (and presumably most common) is that there is no gap
12593 	 *   between the buffer offset and the wrapped offset.  In this case,
12594 	 *   there is nothing in the buffer that isn't valid data; we can
12595 	 *   mark the buffer as polished and return.
12596 	 *
12597 	 * - The second (less common than the first but still more common
12598 	 *   than the third) is that there is a gap between the buffer offset
12599 	 *   and the wrapped offset, and the wrapped offset is larger than the
12600 	 *   buffer offset.  This can happen because of an alignment issue, or
12601 	 *   can happen because of a call to dtrace_buffer_reserve() that
12602 	 *   didn't subsequently consume the buffer space.  In this case,
12603 	 *   we need to zero the data from the buffer offset to the wrapped
12604 	 *   offset.
12605 	 *
12606 	 * - The third (and least common) is that there is a gap between the
12607 	 *   buffer offset and the wrapped offset, but the wrapped offset is
12608 	 *   _less_ than the buffer offset.  This can only happen because a
12609 	 *   call to dtrace_buffer_reserve() induced a wrap, but the space
12610 	 *   was not subsequently consumed.  In this case, we need to zero the
12611 	 *   space from the offset to the end of the buffer _and_ from the
12612 	 *   top of the buffer to the wrapped offset.
12613 	 */
12614 	if (buf->dtb_offset < buf->dtb_xamot_offset) {
12615 		bzero(buf->dtb_tomax + buf->dtb_offset,
12616 		    buf->dtb_xamot_offset - buf->dtb_offset);
12617 	}
12618 
12619 	if (buf->dtb_offset > buf->dtb_xamot_offset) {
12620 		bzero(buf->dtb_tomax + buf->dtb_offset,
12621 		    buf->dtb_size - buf->dtb_offset);
12622 		bzero(buf->dtb_tomax, buf->dtb_xamot_offset);
12623 	}
12624 }
12625 
12626 /*
12627  * This routine determines if data generated at the specified time has likely
12628  * been entirely consumed at user-level.  This routine is called to determine
12629  * if an ECB on a defunct probe (but for an active enabling) can be safely
12630  * disabled and destroyed.
12631  */
12632 static int
12633 dtrace_buffer_consumed(dtrace_buffer_t *bufs, hrtime_t when)
12634 {
12635 	int i;
12636 
12637 	CPU_FOREACH(i) {
12638 		dtrace_buffer_t *buf = &bufs[i];
12639 
12640 		if (buf->dtb_size == 0)
12641 			continue;
12642 
12643 		if (buf->dtb_flags & DTRACEBUF_RING)
12644 			return (0);
12645 
12646 		if (!buf->dtb_switched && buf->dtb_offset != 0)
12647 			return (0);
12648 
12649 		if (buf->dtb_switched - buf->dtb_interval < when)
12650 			return (0);
12651 	}
12652 
12653 	return (1);
12654 }
12655 
12656 static void
12657 dtrace_buffer_free(dtrace_buffer_t *bufs)
12658 {
12659 	int i;
12660 
12661 	CPU_FOREACH(i) {
12662 		dtrace_buffer_t *buf = &bufs[i];
12663 
12664 		if (buf->dtb_tomax == NULL) {
12665 			ASSERT(buf->dtb_xamot == NULL);
12666 			ASSERT(buf->dtb_size == 0);
12667 			continue;
12668 		}
12669 
12670 		if (buf->dtb_xamot != NULL) {
12671 			ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
12672 			kmem_free(buf->dtb_xamot, buf->dtb_size);
12673 		}
12674 
12675 		kmem_free(buf->dtb_tomax, buf->dtb_size);
12676 		buf->dtb_size = 0;
12677 		buf->dtb_tomax = NULL;
12678 		buf->dtb_xamot = NULL;
12679 	}
12680 }
12681 
12682 /*
12683  * DTrace Enabling Functions
12684  */
12685 static dtrace_enabling_t *
12686 dtrace_enabling_create(dtrace_vstate_t *vstate)
12687 {
12688 	dtrace_enabling_t *enab;
12689 
12690 	enab = kmem_zalloc(sizeof (dtrace_enabling_t), KM_SLEEP);
12691 	enab->dten_vstate = vstate;
12692 
12693 	return (enab);
12694 }
12695 
12696 static void
12697 dtrace_enabling_add(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb)
12698 {
12699 	dtrace_ecbdesc_t **ndesc;
12700 	size_t osize, nsize;
12701 
12702 	/*
12703 	 * We can't add to enablings after we've enabled them, or after we've
12704 	 * retained them.
12705 	 */
12706 	ASSERT(enab->dten_probegen == 0);
12707 	ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
12708 
12709 	if (enab->dten_ndesc < enab->dten_maxdesc) {
12710 		enab->dten_desc[enab->dten_ndesc++] = ecb;
12711 		return;
12712 	}
12713 
12714 	osize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
12715 
12716 	if (enab->dten_maxdesc == 0) {
12717 		enab->dten_maxdesc = 1;
12718 	} else {
12719 		enab->dten_maxdesc <<= 1;
12720 	}
12721 
12722 	ASSERT(enab->dten_ndesc < enab->dten_maxdesc);
12723 
12724 	nsize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
12725 	ndesc = kmem_zalloc(nsize, KM_SLEEP);
12726 	bcopy(enab->dten_desc, ndesc, osize);
12727 	if (enab->dten_desc != NULL)
12728 		kmem_free(enab->dten_desc, osize);
12729 
12730 	enab->dten_desc = ndesc;
12731 	enab->dten_desc[enab->dten_ndesc++] = ecb;
12732 }
12733 
12734 static void
12735 dtrace_enabling_addlike(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb,
12736     dtrace_probedesc_t *pd)
12737 {
12738 	dtrace_ecbdesc_t *new;
12739 	dtrace_predicate_t *pred;
12740 	dtrace_actdesc_t *act;
12741 
12742 	/*
12743 	 * We're going to create a new ECB description that matches the
12744 	 * specified ECB in every way, but has the specified probe description.
12745 	 */
12746 	new = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
12747 
12748 	if ((pred = ecb->dted_pred.dtpdd_predicate) != NULL)
12749 		dtrace_predicate_hold(pred);
12750 
12751 	for (act = ecb->dted_action; act != NULL; act = act->dtad_next)
12752 		dtrace_actdesc_hold(act);
12753 
12754 	new->dted_action = ecb->dted_action;
12755 	new->dted_pred = ecb->dted_pred;
12756 	new->dted_probe = *pd;
12757 	new->dted_uarg = ecb->dted_uarg;
12758 
12759 	dtrace_enabling_add(enab, new);
12760 }
12761 
12762 static void
12763 dtrace_enabling_dump(dtrace_enabling_t *enab)
12764 {
12765 	int i;
12766 
12767 	for (i = 0; i < enab->dten_ndesc; i++) {
12768 		dtrace_probedesc_t *desc = &enab->dten_desc[i]->dted_probe;
12769 
12770 #ifdef __FreeBSD__
12771 		printf("dtrace: enabling probe %d (%s:%s:%s:%s)\n", i,
12772 		    desc->dtpd_provider, desc->dtpd_mod,
12773 		    desc->dtpd_func, desc->dtpd_name);
12774 #else
12775 		cmn_err(CE_NOTE, "enabling probe %d (%s:%s:%s:%s)", i,
12776 		    desc->dtpd_provider, desc->dtpd_mod,
12777 		    desc->dtpd_func, desc->dtpd_name);
12778 #endif
12779 	}
12780 }
12781 
12782 static void
12783 dtrace_enabling_destroy(dtrace_enabling_t *enab)
12784 {
12785 	int i;
12786 	dtrace_ecbdesc_t *ep;
12787 	dtrace_vstate_t *vstate = enab->dten_vstate;
12788 
12789 	ASSERT(MUTEX_HELD(&dtrace_lock));
12790 
12791 	for (i = 0; i < enab->dten_ndesc; i++) {
12792 		dtrace_actdesc_t *act, *next;
12793 		dtrace_predicate_t *pred;
12794 
12795 		ep = enab->dten_desc[i];
12796 
12797 		if ((pred = ep->dted_pred.dtpdd_predicate) != NULL)
12798 			dtrace_predicate_release(pred, vstate);
12799 
12800 		for (act = ep->dted_action; act != NULL; act = next) {
12801 			next = act->dtad_next;
12802 			dtrace_actdesc_release(act, vstate);
12803 		}
12804 
12805 		kmem_free(ep, sizeof (dtrace_ecbdesc_t));
12806 	}
12807 
12808 	if (enab->dten_desc != NULL)
12809 		kmem_free(enab->dten_desc,
12810 		    enab->dten_maxdesc * sizeof (dtrace_enabling_t *));
12811 
12812 	/*
12813 	 * If this was a retained enabling, decrement the dts_nretained count
12814 	 * and take it off of the dtrace_retained list.
12815 	 */
12816 	if (enab->dten_prev != NULL || enab->dten_next != NULL ||
12817 	    dtrace_retained == enab) {
12818 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
12819 		ASSERT(enab->dten_vstate->dtvs_state->dts_nretained > 0);
12820 		enab->dten_vstate->dtvs_state->dts_nretained--;
12821 		dtrace_retained_gen++;
12822 	}
12823 
12824 	if (enab->dten_prev == NULL) {
12825 		if (dtrace_retained == enab) {
12826 			dtrace_retained = enab->dten_next;
12827 
12828 			if (dtrace_retained != NULL)
12829 				dtrace_retained->dten_prev = NULL;
12830 		}
12831 	} else {
12832 		ASSERT(enab != dtrace_retained);
12833 		ASSERT(dtrace_retained != NULL);
12834 		enab->dten_prev->dten_next = enab->dten_next;
12835 	}
12836 
12837 	if (enab->dten_next != NULL) {
12838 		ASSERT(dtrace_retained != NULL);
12839 		enab->dten_next->dten_prev = enab->dten_prev;
12840 	}
12841 
12842 	kmem_free(enab, sizeof (dtrace_enabling_t));
12843 }
12844 
12845 static int
12846 dtrace_enabling_retain(dtrace_enabling_t *enab)
12847 {
12848 	dtrace_state_t *state;
12849 
12850 	ASSERT(MUTEX_HELD(&dtrace_lock));
12851 	ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
12852 	ASSERT(enab->dten_vstate != NULL);
12853 
12854 	state = enab->dten_vstate->dtvs_state;
12855 	ASSERT(state != NULL);
12856 
12857 	/*
12858 	 * We only allow each state to retain dtrace_retain_max enablings.
12859 	 */
12860 	if (state->dts_nretained >= dtrace_retain_max)
12861 		return (ENOSPC);
12862 
12863 	state->dts_nretained++;
12864 	dtrace_retained_gen++;
12865 
12866 	if (dtrace_retained == NULL) {
12867 		dtrace_retained = enab;
12868 		return (0);
12869 	}
12870 
12871 	enab->dten_next = dtrace_retained;
12872 	dtrace_retained->dten_prev = enab;
12873 	dtrace_retained = enab;
12874 
12875 	return (0);
12876 }
12877 
12878 static int
12879 dtrace_enabling_replicate(dtrace_state_t *state, dtrace_probedesc_t *match,
12880     dtrace_probedesc_t *create)
12881 {
12882 	dtrace_enabling_t *new, *enab;
12883 	int found = 0, err = ENOENT;
12884 
12885 	ASSERT(MUTEX_HELD(&dtrace_lock));
12886 	ASSERT(strlen(match->dtpd_provider) < DTRACE_PROVNAMELEN);
12887 	ASSERT(strlen(match->dtpd_mod) < DTRACE_MODNAMELEN);
12888 	ASSERT(strlen(match->dtpd_func) < DTRACE_FUNCNAMELEN);
12889 	ASSERT(strlen(match->dtpd_name) < DTRACE_NAMELEN);
12890 
12891 	new = dtrace_enabling_create(&state->dts_vstate);
12892 
12893 	/*
12894 	 * Iterate over all retained enablings, looking for enablings that
12895 	 * match the specified state.
12896 	 */
12897 	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
12898 		int i;
12899 
12900 		/*
12901 		 * dtvs_state can only be NULL for helper enablings -- and
12902 		 * helper enablings can't be retained.
12903 		 */
12904 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
12905 
12906 		if (enab->dten_vstate->dtvs_state != state)
12907 			continue;
12908 
12909 		/*
12910 		 * Now iterate over each probe description; we're looking for
12911 		 * an exact match to the specified probe description.
12912 		 */
12913 		for (i = 0; i < enab->dten_ndesc; i++) {
12914 			dtrace_ecbdesc_t *ep = enab->dten_desc[i];
12915 			dtrace_probedesc_t *pd = &ep->dted_probe;
12916 
12917 			if (strcmp(pd->dtpd_provider, match->dtpd_provider))
12918 				continue;
12919 
12920 			if (strcmp(pd->dtpd_mod, match->dtpd_mod))
12921 				continue;
12922 
12923 			if (strcmp(pd->dtpd_func, match->dtpd_func))
12924 				continue;
12925 
12926 			if (strcmp(pd->dtpd_name, match->dtpd_name))
12927 				continue;
12928 
12929 			/*
12930 			 * We have a winning probe!  Add it to our growing
12931 			 * enabling.
12932 			 */
12933 			found = 1;
12934 			dtrace_enabling_addlike(new, ep, create);
12935 		}
12936 	}
12937 
12938 	if (!found || (err = dtrace_enabling_retain(new)) != 0) {
12939 		dtrace_enabling_destroy(new);
12940 		return (err);
12941 	}
12942 
12943 	return (0);
12944 }
12945 
12946 static void
12947 dtrace_enabling_retract(dtrace_state_t *state)
12948 {
12949 	dtrace_enabling_t *enab, *next;
12950 
12951 	ASSERT(MUTEX_HELD(&dtrace_lock));
12952 
12953 	/*
12954 	 * Iterate over all retained enablings, destroy the enablings retained
12955 	 * for the specified state.
12956 	 */
12957 	for (enab = dtrace_retained; enab != NULL; enab = next) {
12958 		next = enab->dten_next;
12959 
12960 		/*
12961 		 * dtvs_state can only be NULL for helper enablings -- and
12962 		 * helper enablings can't be retained.
12963 		 */
12964 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
12965 
12966 		if (enab->dten_vstate->dtvs_state == state) {
12967 			ASSERT(state->dts_nretained > 0);
12968 			dtrace_enabling_destroy(enab);
12969 		}
12970 	}
12971 
12972 	ASSERT(state->dts_nretained == 0);
12973 }
12974 
12975 static int
12976 dtrace_enabling_match(dtrace_enabling_t *enab, int *nmatched)
12977 {
12978 	int i = 0;
12979 	int matched = 0;
12980 
12981 	ASSERT(MUTEX_HELD(&cpu_lock));
12982 	ASSERT(MUTEX_HELD(&dtrace_lock));
12983 
12984 	for (i = 0; i < enab->dten_ndesc; i++) {
12985 		dtrace_ecbdesc_t *ep = enab->dten_desc[i];
12986 
12987 		enab->dten_current = ep;
12988 		enab->dten_error = 0;
12989 
12990 		matched += dtrace_probe_enable(&ep->dted_probe, enab);
12991 
12992 		if (enab->dten_error != 0) {
12993 			/*
12994 			 * If we get an error half-way through enabling the
12995 			 * probes, we kick out -- perhaps with some number of
12996 			 * them enabled.  Leaving enabled probes enabled may
12997 			 * be slightly confusing for user-level, but we expect
12998 			 * that no one will attempt to actually drive on in
12999 			 * the face of such errors.  If this is an anonymous
13000 			 * enabling (indicated with a NULL nmatched pointer),
13001 			 * we cmn_err() a message.  We aren't expecting to
13002 			 * get such an error -- such as it can exist at all,
13003 			 * it would be a result of corrupted DOF in the driver
13004 			 * properties.
13005 			 */
13006 			if (nmatched == NULL) {
13007 				cmn_err(CE_WARN, "dtrace_enabling_match() "
13008 				    "error on %p: %d", (void *)ep,
13009 				    enab->dten_error);
13010 			}
13011 
13012 			return (enab->dten_error);
13013 		}
13014 	}
13015 
13016 	enab->dten_probegen = dtrace_probegen;
13017 	if (nmatched != NULL)
13018 		*nmatched = matched;
13019 
13020 	return (0);
13021 }
13022 
13023 static void
13024 dtrace_enabling_matchall_task(void *args __unused)
13025 {
13026 	dtrace_enabling_matchall();
13027 }
13028 
13029 static void
13030 dtrace_enabling_matchall(void)
13031 {
13032 	dtrace_enabling_t *enab;
13033 
13034 	mutex_enter(&cpu_lock);
13035 	mutex_enter(&dtrace_lock);
13036 
13037 	/*
13038 	 * Iterate over all retained enablings to see if any probes match
13039 	 * against them.  We only perform this operation on enablings for which
13040 	 * we have sufficient permissions by virtue of being in the global zone
13041 	 * or in the same zone as the DTrace client.  Because we can be called
13042 	 * after dtrace_detach() has been called, we cannot assert that there
13043 	 * are retained enablings.  We can safely load from dtrace_retained,
13044 	 * however:  the taskq_destroy() at the end of dtrace_detach() will
13045 	 * block pending our completion.
13046 	 */
13047 	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
13048 #ifdef illumos
13049 		cred_t *cr = enab->dten_vstate->dtvs_state->dts_cred.dcr_cred;
13050 
13051 		if (INGLOBALZONE(curproc) ||
13052 		    cr != NULL && getzoneid() == crgetzoneid(cr))
13053 #endif
13054 			(void) dtrace_enabling_match(enab, NULL);
13055 	}
13056 
13057 	mutex_exit(&dtrace_lock);
13058 	mutex_exit(&cpu_lock);
13059 }
13060 
13061 /*
13062  * If an enabling is to be enabled without having matched probes (that is, if
13063  * dtrace_state_go() is to be called on the underlying dtrace_state_t), the
13064  * enabling must be _primed_ by creating an ECB for every ECB description.
13065  * This must be done to assure that we know the number of speculations, the
13066  * number of aggregations, the minimum buffer size needed, etc. before we
13067  * transition out of DTRACE_ACTIVITY_INACTIVE.  To do this without actually
13068  * enabling any probes, we create ECBs for every ECB decription, but with a
13069  * NULL probe -- which is exactly what this function does.
13070  */
13071 static void
13072 dtrace_enabling_prime(dtrace_state_t *state)
13073 {
13074 	dtrace_enabling_t *enab;
13075 	int i;
13076 
13077 	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
13078 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
13079 
13080 		if (enab->dten_vstate->dtvs_state != state)
13081 			continue;
13082 
13083 		/*
13084 		 * We don't want to prime an enabling more than once, lest
13085 		 * we allow a malicious user to induce resource exhaustion.
13086 		 * (The ECBs that result from priming an enabling aren't
13087 		 * leaked -- but they also aren't deallocated until the
13088 		 * consumer state is destroyed.)
13089 		 */
13090 		if (enab->dten_primed)
13091 			continue;
13092 
13093 		for (i = 0; i < enab->dten_ndesc; i++) {
13094 			enab->dten_current = enab->dten_desc[i];
13095 			(void) dtrace_probe_enable(NULL, enab);
13096 		}
13097 
13098 		enab->dten_primed = 1;
13099 	}
13100 }
13101 
13102 /*
13103  * Called to indicate that probes should be provided due to retained
13104  * enablings.  This is implemented in terms of dtrace_probe_provide(), but it
13105  * must take an initial lap through the enabling calling the dtps_provide()
13106  * entry point explicitly to allow for autocreated probes.
13107  */
13108 static void
13109 dtrace_enabling_provide(dtrace_provider_t *prv)
13110 {
13111 	int i, all = 0;
13112 	dtrace_probedesc_t desc;
13113 	dtrace_genid_t gen;
13114 
13115 	ASSERT(MUTEX_HELD(&dtrace_lock));
13116 	ASSERT(MUTEX_HELD(&dtrace_provider_lock));
13117 
13118 	if (prv == NULL) {
13119 		all = 1;
13120 		prv = dtrace_provider;
13121 	}
13122 
13123 	do {
13124 		dtrace_enabling_t *enab;
13125 		void *parg = prv->dtpv_arg;
13126 
13127 retry:
13128 		gen = dtrace_retained_gen;
13129 		for (enab = dtrace_retained; enab != NULL;
13130 		    enab = enab->dten_next) {
13131 			for (i = 0; i < enab->dten_ndesc; i++) {
13132 				desc = enab->dten_desc[i]->dted_probe;
13133 				mutex_exit(&dtrace_lock);
13134 				prv->dtpv_pops.dtps_provide(parg, &desc);
13135 				mutex_enter(&dtrace_lock);
13136 				/*
13137 				 * Process the retained enablings again if
13138 				 * they have changed while we weren't holding
13139 				 * dtrace_lock.
13140 				 */
13141 				if (gen != dtrace_retained_gen)
13142 					goto retry;
13143 			}
13144 		}
13145 	} while (all && (prv = prv->dtpv_next) != NULL);
13146 
13147 	mutex_exit(&dtrace_lock);
13148 	dtrace_probe_provide(NULL, all ? NULL : prv);
13149 	mutex_enter(&dtrace_lock);
13150 }
13151 
13152 /*
13153  * Called to reap ECBs that are attached to probes from defunct providers.
13154  */
13155 static void
13156 dtrace_enabling_reap(void *args __unused)
13157 {
13158 	dtrace_provider_t *prov;
13159 	dtrace_probe_t *probe;
13160 	dtrace_ecb_t *ecb;
13161 	hrtime_t when;
13162 	int i;
13163 
13164 	mutex_enter(&cpu_lock);
13165 	mutex_enter(&dtrace_lock);
13166 
13167 	for (i = 0; i < dtrace_nprobes; i++) {
13168 		if ((probe = dtrace_probes[i]) == NULL)
13169 			continue;
13170 
13171 		if (probe->dtpr_ecb == NULL)
13172 			continue;
13173 
13174 		prov = probe->dtpr_provider;
13175 
13176 		if ((when = prov->dtpv_defunct) == 0)
13177 			continue;
13178 
13179 		/*
13180 		 * We have ECBs on a defunct provider:  we want to reap these
13181 		 * ECBs to allow the provider to unregister.  The destruction
13182 		 * of these ECBs must be done carefully:  if we destroy the ECB
13183 		 * and the consumer later wishes to consume an EPID that
13184 		 * corresponds to the destroyed ECB (and if the EPID metadata
13185 		 * has not been previously consumed), the consumer will abort
13186 		 * processing on the unknown EPID.  To reduce (but not, sadly,
13187 		 * eliminate) the possibility of this, we will only destroy an
13188 		 * ECB for a defunct provider if, for the state that
13189 		 * corresponds to the ECB:
13190 		 *
13191 		 *  (a)	There is no speculative tracing (which can effectively
13192 		 *	cache an EPID for an arbitrary amount of time).
13193 		 *
13194 		 *  (b)	The principal buffers have been switched twice since the
13195 		 *	provider became defunct.
13196 		 *
13197 		 *  (c)	The aggregation buffers are of zero size or have been
13198 		 *	switched twice since the provider became defunct.
13199 		 *
13200 		 * We use dts_speculates to determine (a) and call a function
13201 		 * (dtrace_buffer_consumed()) to determine (b) and (c).  Note
13202 		 * that as soon as we've been unable to destroy one of the ECBs
13203 		 * associated with the probe, we quit trying -- reaping is only
13204 		 * fruitful in as much as we can destroy all ECBs associated
13205 		 * with the defunct provider's probes.
13206 		 */
13207 		while ((ecb = probe->dtpr_ecb) != NULL) {
13208 			dtrace_state_t *state = ecb->dte_state;
13209 			dtrace_buffer_t *buf = state->dts_buffer;
13210 			dtrace_buffer_t *aggbuf = state->dts_aggbuffer;
13211 
13212 			if (state->dts_speculates)
13213 				break;
13214 
13215 			if (!dtrace_buffer_consumed(buf, when))
13216 				break;
13217 
13218 			if (!dtrace_buffer_consumed(aggbuf, when))
13219 				break;
13220 
13221 			dtrace_ecb_disable(ecb);
13222 			ASSERT(probe->dtpr_ecb != ecb);
13223 			dtrace_ecb_destroy(ecb);
13224 		}
13225 	}
13226 
13227 	mutex_exit(&dtrace_lock);
13228 	mutex_exit(&cpu_lock);
13229 }
13230 
13231 /*
13232  * DTrace DOF Functions
13233  */
13234 /*ARGSUSED*/
13235 static void
13236 dtrace_dof_error(dof_hdr_t *dof, const char *str)
13237 {
13238 	if (dtrace_err_verbose)
13239 		cmn_err(CE_WARN, "failed to process DOF: %s", str);
13240 
13241 #ifdef DTRACE_ERRDEBUG
13242 	dtrace_errdebug(str);
13243 #endif
13244 }
13245 
13246 /*
13247  * Create DOF out of a currently enabled state.  Right now, we only create
13248  * DOF containing the run-time options -- but this could be expanded to create
13249  * complete DOF representing the enabled state.
13250  */
13251 static dof_hdr_t *
13252 dtrace_dof_create(dtrace_state_t *state)
13253 {
13254 	dof_hdr_t *dof;
13255 	dof_sec_t *sec;
13256 	dof_optdesc_t *opt;
13257 	int i, len = sizeof (dof_hdr_t) +
13258 	    roundup(sizeof (dof_sec_t), sizeof (uint64_t)) +
13259 	    sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
13260 
13261 	ASSERT(MUTEX_HELD(&dtrace_lock));
13262 
13263 	dof = kmem_zalloc(len, KM_SLEEP);
13264 	dof->dofh_ident[DOF_ID_MAG0] = DOF_MAG_MAG0;
13265 	dof->dofh_ident[DOF_ID_MAG1] = DOF_MAG_MAG1;
13266 	dof->dofh_ident[DOF_ID_MAG2] = DOF_MAG_MAG2;
13267 	dof->dofh_ident[DOF_ID_MAG3] = DOF_MAG_MAG3;
13268 
13269 	dof->dofh_ident[DOF_ID_MODEL] = DOF_MODEL_NATIVE;
13270 	dof->dofh_ident[DOF_ID_ENCODING] = DOF_ENCODE_NATIVE;
13271 	dof->dofh_ident[DOF_ID_VERSION] = DOF_VERSION;
13272 	dof->dofh_ident[DOF_ID_DIFVERS] = DIF_VERSION;
13273 	dof->dofh_ident[DOF_ID_DIFIREG] = DIF_DIR_NREGS;
13274 	dof->dofh_ident[DOF_ID_DIFTREG] = DIF_DTR_NREGS;
13275 
13276 	dof->dofh_flags = 0;
13277 	dof->dofh_hdrsize = sizeof (dof_hdr_t);
13278 	dof->dofh_secsize = sizeof (dof_sec_t);
13279 	dof->dofh_secnum = 1;	/* only DOF_SECT_OPTDESC */
13280 	dof->dofh_secoff = sizeof (dof_hdr_t);
13281 	dof->dofh_loadsz = len;
13282 	dof->dofh_filesz = len;
13283 	dof->dofh_pad = 0;
13284 
13285 	/*
13286 	 * Fill in the option section header...
13287 	 */
13288 	sec = (dof_sec_t *)((uintptr_t)dof + sizeof (dof_hdr_t));
13289 	sec->dofs_type = DOF_SECT_OPTDESC;
13290 	sec->dofs_align = sizeof (uint64_t);
13291 	sec->dofs_flags = DOF_SECF_LOAD;
13292 	sec->dofs_entsize = sizeof (dof_optdesc_t);
13293 
13294 	opt = (dof_optdesc_t *)((uintptr_t)sec +
13295 	    roundup(sizeof (dof_sec_t), sizeof (uint64_t)));
13296 
13297 	sec->dofs_offset = (uintptr_t)opt - (uintptr_t)dof;
13298 	sec->dofs_size = sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
13299 
13300 	for (i = 0; i < DTRACEOPT_MAX; i++) {
13301 		opt[i].dofo_option = i;
13302 		opt[i].dofo_strtab = DOF_SECIDX_NONE;
13303 		opt[i].dofo_value = state->dts_options[i];
13304 	}
13305 
13306 	return (dof);
13307 }
13308 
13309 static dof_hdr_t *
13310 dtrace_dof_copyin(uintptr_t uarg, int *errp)
13311 {
13312 	dof_hdr_t hdr, *dof;
13313 
13314 	ASSERT(!MUTEX_HELD(&dtrace_lock));
13315 
13316 	/*
13317 	 * First, we're going to copyin() the sizeof (dof_hdr_t).
13318 	 */
13319 	if (copyin((void *)uarg, &hdr, sizeof (hdr)) != 0) {
13320 		dtrace_dof_error(NULL, "failed to copyin DOF header");
13321 		*errp = EFAULT;
13322 		return (NULL);
13323 	}
13324 
13325 	/*
13326 	 * Now we'll allocate the entire DOF and copy it in -- provided
13327 	 * that the length isn't outrageous.
13328 	 */
13329 	if (hdr.dofh_loadsz >= dtrace_dof_maxsize) {
13330 		dtrace_dof_error(&hdr, "load size exceeds maximum");
13331 		*errp = E2BIG;
13332 		return (NULL);
13333 	}
13334 
13335 	if (hdr.dofh_loadsz < sizeof (hdr)) {
13336 		dtrace_dof_error(&hdr, "invalid load size");
13337 		*errp = EINVAL;
13338 		return (NULL);
13339 	}
13340 
13341 	dof = kmem_alloc(hdr.dofh_loadsz, KM_SLEEP);
13342 
13343 	if (copyin((void *)uarg, dof, hdr.dofh_loadsz) != 0 ||
13344 	    dof->dofh_loadsz != hdr.dofh_loadsz) {
13345 		kmem_free(dof, hdr.dofh_loadsz);
13346 		*errp = EFAULT;
13347 		return (NULL);
13348 	}
13349 
13350 	return (dof);
13351 }
13352 
13353 #ifdef __FreeBSD__
13354 static dof_hdr_t *
13355 dtrace_dof_copyin_proc(struct proc *p, uintptr_t uarg, int *errp)
13356 {
13357 	dof_hdr_t hdr, *dof;
13358 	struct thread *td;
13359 	size_t loadsz;
13360 
13361 	ASSERT(!MUTEX_HELD(&dtrace_lock));
13362 
13363 	td = curthread;
13364 
13365 	/*
13366 	 * First, we're going to copyin() the sizeof (dof_hdr_t).
13367 	 */
13368 	if (proc_readmem(td, p, uarg, &hdr, sizeof(hdr)) != sizeof(hdr)) {
13369 		dtrace_dof_error(NULL, "failed to copyin DOF header");
13370 		*errp = EFAULT;
13371 		return (NULL);
13372 	}
13373 
13374 	/*
13375 	 * Now we'll allocate the entire DOF and copy it in -- provided
13376 	 * that the length isn't outrageous.
13377 	 */
13378 	if (hdr.dofh_loadsz >= dtrace_dof_maxsize) {
13379 		dtrace_dof_error(&hdr, "load size exceeds maximum");
13380 		*errp = E2BIG;
13381 		return (NULL);
13382 	}
13383 	loadsz = (size_t)hdr.dofh_loadsz;
13384 
13385 	if (loadsz < sizeof (hdr)) {
13386 		dtrace_dof_error(&hdr, "invalid load size");
13387 		*errp = EINVAL;
13388 		return (NULL);
13389 	}
13390 
13391 	dof = kmem_alloc(loadsz, KM_SLEEP);
13392 
13393 	if (proc_readmem(td, p, uarg, dof, loadsz) != loadsz ||
13394 	    dof->dofh_loadsz != loadsz) {
13395 		kmem_free(dof, hdr.dofh_loadsz);
13396 		*errp = EFAULT;
13397 		return (NULL);
13398 	}
13399 
13400 	return (dof);
13401 }
13402 
13403 static __inline uchar_t
13404 dtrace_dof_char(char c)
13405 {
13406 
13407 	switch (c) {
13408 	case '0':
13409 	case '1':
13410 	case '2':
13411 	case '3':
13412 	case '4':
13413 	case '5':
13414 	case '6':
13415 	case '7':
13416 	case '8':
13417 	case '9':
13418 		return (c - '0');
13419 	case 'A':
13420 	case 'B':
13421 	case 'C':
13422 	case 'D':
13423 	case 'E':
13424 	case 'F':
13425 		return (c - 'A' + 10);
13426 	case 'a':
13427 	case 'b':
13428 	case 'c':
13429 	case 'd':
13430 	case 'e':
13431 	case 'f':
13432 		return (c - 'a' + 10);
13433 	}
13434 	/* Should not reach here. */
13435 	return (UCHAR_MAX);
13436 }
13437 #endif /* __FreeBSD__ */
13438 
13439 static dof_hdr_t *
13440 dtrace_dof_property(const char *name)
13441 {
13442 #ifdef __FreeBSD__
13443 	uint8_t *dofbuf;
13444 	u_char *data, *eol;
13445 	caddr_t doffile;
13446 	size_t bytes, len, i;
13447 	dof_hdr_t *dof;
13448 	u_char c1, c2;
13449 
13450 	dof = NULL;
13451 
13452 	doffile = preload_search_by_type("dtrace_dof");
13453 	if (doffile == NULL)
13454 		return (NULL);
13455 
13456 	data = preload_fetch_addr(doffile);
13457 	len = preload_fetch_size(doffile);
13458 	for (;;) {
13459 		/* Look for the end of the line. All lines end in a newline. */
13460 		eol = memchr(data, '\n', len);
13461 		if (eol == NULL)
13462 			return (NULL);
13463 
13464 		if (strncmp(name, data, strlen(name)) == 0)
13465 			break;
13466 
13467 		eol++; /* skip past the newline */
13468 		len -= eol - data;
13469 		data = eol;
13470 	}
13471 
13472 	/* We've found the data corresponding to the specified key. */
13473 
13474 	data += strlen(name) + 1; /* skip past the '=' */
13475 	len = eol - data;
13476 	if (len % 2 != 0) {
13477 		dtrace_dof_error(NULL, "invalid DOF encoding length");
13478 		goto doferr;
13479 	}
13480 	bytes = len / 2;
13481 	if (bytes < sizeof(dof_hdr_t)) {
13482 		dtrace_dof_error(NULL, "truncated header");
13483 		goto doferr;
13484 	}
13485 
13486 	/*
13487 	 * Each byte is represented by the two ASCII characters in its hex
13488 	 * representation.
13489 	 */
13490 	dofbuf = malloc(bytes, M_SOLARIS, M_WAITOK);
13491 	for (i = 0; i < bytes; i++) {
13492 		c1 = dtrace_dof_char(data[i * 2]);
13493 		c2 = dtrace_dof_char(data[i * 2 + 1]);
13494 		if (c1 == UCHAR_MAX || c2 == UCHAR_MAX) {
13495 			dtrace_dof_error(NULL, "invalid hex char in DOF");
13496 			goto doferr;
13497 		}
13498 		dofbuf[i] = c1 * 16 + c2;
13499 	}
13500 
13501 	dof = (dof_hdr_t *)dofbuf;
13502 	if (bytes < dof->dofh_loadsz) {
13503 		dtrace_dof_error(NULL, "truncated DOF");
13504 		goto doferr;
13505 	}
13506 
13507 	if (dof->dofh_loadsz >= dtrace_dof_maxsize) {
13508 		dtrace_dof_error(NULL, "oversized DOF");
13509 		goto doferr;
13510 	}
13511 
13512 	return (dof);
13513 
13514 doferr:
13515 	free(dof, M_SOLARIS);
13516 	return (NULL);
13517 #else /* __FreeBSD__ */
13518 	uchar_t *buf;
13519 	uint64_t loadsz;
13520 	unsigned int len, i;
13521 	dof_hdr_t *dof;
13522 
13523 	/*
13524 	 * Unfortunately, array of values in .conf files are always (and
13525 	 * only) interpreted to be integer arrays.  We must read our DOF
13526 	 * as an integer array, and then squeeze it into a byte array.
13527 	 */
13528 	if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dtrace_devi, 0,
13529 	    (char *)name, (int **)&buf, &len) != DDI_PROP_SUCCESS)
13530 		return (NULL);
13531 
13532 	for (i = 0; i < len; i++)
13533 		buf[i] = (uchar_t)(((int *)buf)[i]);
13534 
13535 	if (len < sizeof (dof_hdr_t)) {
13536 		ddi_prop_free(buf);
13537 		dtrace_dof_error(NULL, "truncated header");
13538 		return (NULL);
13539 	}
13540 
13541 	if (len < (loadsz = ((dof_hdr_t *)buf)->dofh_loadsz)) {
13542 		ddi_prop_free(buf);
13543 		dtrace_dof_error(NULL, "truncated DOF");
13544 		return (NULL);
13545 	}
13546 
13547 	if (loadsz >= dtrace_dof_maxsize) {
13548 		ddi_prop_free(buf);
13549 		dtrace_dof_error(NULL, "oversized DOF");
13550 		return (NULL);
13551 	}
13552 
13553 	dof = kmem_alloc(loadsz, KM_SLEEP);
13554 	bcopy(buf, dof, loadsz);
13555 	ddi_prop_free(buf);
13556 
13557 	return (dof);
13558 #endif /* !__FreeBSD__ */
13559 }
13560 
13561 static void
13562 dtrace_dof_destroy(dof_hdr_t *dof)
13563 {
13564 	kmem_free(dof, dof->dofh_loadsz);
13565 }
13566 
13567 /*
13568  * Return the dof_sec_t pointer corresponding to a given section index.  If the
13569  * index is not valid, dtrace_dof_error() is called and NULL is returned.  If
13570  * a type other than DOF_SECT_NONE is specified, the header is checked against
13571  * this type and NULL is returned if the types do not match.
13572  */
13573 static dof_sec_t *
13574 dtrace_dof_sect(dof_hdr_t *dof, uint32_t type, dof_secidx_t i)
13575 {
13576 	dof_sec_t *sec = (dof_sec_t *)(uintptr_t)
13577 	    ((uintptr_t)dof + dof->dofh_secoff + i * dof->dofh_secsize);
13578 
13579 	if (i >= dof->dofh_secnum) {
13580 		dtrace_dof_error(dof, "referenced section index is invalid");
13581 		return (NULL);
13582 	}
13583 
13584 	if (!(sec->dofs_flags & DOF_SECF_LOAD)) {
13585 		dtrace_dof_error(dof, "referenced section is not loadable");
13586 		return (NULL);
13587 	}
13588 
13589 	if (type != DOF_SECT_NONE && type != sec->dofs_type) {
13590 		dtrace_dof_error(dof, "referenced section is the wrong type");
13591 		return (NULL);
13592 	}
13593 
13594 	return (sec);
13595 }
13596 
13597 static dtrace_probedesc_t *
13598 dtrace_dof_probedesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_probedesc_t *desc)
13599 {
13600 	dof_probedesc_t *probe;
13601 	dof_sec_t *strtab;
13602 	uintptr_t daddr = (uintptr_t)dof;
13603 	uintptr_t str;
13604 	size_t size;
13605 
13606 	if (sec->dofs_type != DOF_SECT_PROBEDESC) {
13607 		dtrace_dof_error(dof, "invalid probe section");
13608 		return (NULL);
13609 	}
13610 
13611 	if (sec->dofs_align != sizeof (dof_secidx_t)) {
13612 		dtrace_dof_error(dof, "bad alignment in probe description");
13613 		return (NULL);
13614 	}
13615 
13616 	if (sec->dofs_offset + sizeof (dof_probedesc_t) > dof->dofh_loadsz) {
13617 		dtrace_dof_error(dof, "truncated probe description");
13618 		return (NULL);
13619 	}
13620 
13621 	probe = (dof_probedesc_t *)(uintptr_t)(daddr + sec->dofs_offset);
13622 	strtab = dtrace_dof_sect(dof, DOF_SECT_STRTAB, probe->dofp_strtab);
13623 
13624 	if (strtab == NULL)
13625 		return (NULL);
13626 
13627 	str = daddr + strtab->dofs_offset;
13628 	size = strtab->dofs_size;
13629 
13630 	if (probe->dofp_provider >= strtab->dofs_size) {
13631 		dtrace_dof_error(dof, "corrupt probe provider");
13632 		return (NULL);
13633 	}
13634 
13635 	(void) strncpy(desc->dtpd_provider,
13636 	    (char *)(str + probe->dofp_provider),
13637 	    MIN(DTRACE_PROVNAMELEN - 1, size - probe->dofp_provider));
13638 
13639 	if (probe->dofp_mod >= strtab->dofs_size) {
13640 		dtrace_dof_error(dof, "corrupt probe module");
13641 		return (NULL);
13642 	}
13643 
13644 	(void) strncpy(desc->dtpd_mod, (char *)(str + probe->dofp_mod),
13645 	    MIN(DTRACE_MODNAMELEN - 1, size - probe->dofp_mod));
13646 
13647 	if (probe->dofp_func >= strtab->dofs_size) {
13648 		dtrace_dof_error(dof, "corrupt probe function");
13649 		return (NULL);
13650 	}
13651 
13652 	(void) strncpy(desc->dtpd_func, (char *)(str + probe->dofp_func),
13653 	    MIN(DTRACE_FUNCNAMELEN - 1, size - probe->dofp_func));
13654 
13655 	if (probe->dofp_name >= strtab->dofs_size) {
13656 		dtrace_dof_error(dof, "corrupt probe name");
13657 		return (NULL);
13658 	}
13659 
13660 	(void) strncpy(desc->dtpd_name, (char *)(str + probe->dofp_name),
13661 	    MIN(DTRACE_NAMELEN - 1, size - probe->dofp_name));
13662 
13663 	return (desc);
13664 }
13665 
13666 static dtrace_difo_t *
13667 dtrace_dof_difo(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
13668     cred_t *cr)
13669 {
13670 	dtrace_difo_t *dp;
13671 	size_t ttl = 0;
13672 	dof_difohdr_t *dofd;
13673 	uintptr_t daddr = (uintptr_t)dof;
13674 	size_t max = dtrace_difo_maxsize;
13675 	int i, l, n;
13676 
13677 	static const struct {
13678 		int section;
13679 		int bufoffs;
13680 		int lenoffs;
13681 		int entsize;
13682 		int align;
13683 		const char *msg;
13684 	} difo[] = {
13685 		{ DOF_SECT_DIF, offsetof(dtrace_difo_t, dtdo_buf),
13686 		offsetof(dtrace_difo_t, dtdo_len), sizeof (dif_instr_t),
13687 		sizeof (dif_instr_t), "multiple DIF sections" },
13688 
13689 		{ DOF_SECT_INTTAB, offsetof(dtrace_difo_t, dtdo_inttab),
13690 		offsetof(dtrace_difo_t, dtdo_intlen), sizeof (uint64_t),
13691 		sizeof (uint64_t), "multiple integer tables" },
13692 
13693 		{ DOF_SECT_STRTAB, offsetof(dtrace_difo_t, dtdo_strtab),
13694 		offsetof(dtrace_difo_t, dtdo_strlen), 0,
13695 		sizeof (char), "multiple string tables" },
13696 
13697 		{ DOF_SECT_VARTAB, offsetof(dtrace_difo_t, dtdo_vartab),
13698 		offsetof(dtrace_difo_t, dtdo_varlen), sizeof (dtrace_difv_t),
13699 		sizeof (uint_t), "multiple variable tables" },
13700 
13701 		{ DOF_SECT_NONE, 0, 0, 0, 0, NULL }
13702 	};
13703 
13704 	if (sec->dofs_type != DOF_SECT_DIFOHDR) {
13705 		dtrace_dof_error(dof, "invalid DIFO header section");
13706 		return (NULL);
13707 	}
13708 
13709 	if (sec->dofs_align != sizeof (dof_secidx_t)) {
13710 		dtrace_dof_error(dof, "bad alignment in DIFO header");
13711 		return (NULL);
13712 	}
13713 
13714 	if (sec->dofs_size < sizeof (dof_difohdr_t) ||
13715 	    sec->dofs_size % sizeof (dof_secidx_t)) {
13716 		dtrace_dof_error(dof, "bad size in DIFO header");
13717 		return (NULL);
13718 	}
13719 
13720 	dofd = (dof_difohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
13721 	n = (sec->dofs_size - sizeof (*dofd)) / sizeof (dof_secidx_t) + 1;
13722 
13723 	dp = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
13724 	dp->dtdo_rtype = dofd->dofd_rtype;
13725 
13726 	for (l = 0; l < n; l++) {
13727 		dof_sec_t *subsec;
13728 		void **bufp;
13729 		uint32_t *lenp;
13730 
13731 		if ((subsec = dtrace_dof_sect(dof, DOF_SECT_NONE,
13732 		    dofd->dofd_links[l])) == NULL)
13733 			goto err; /* invalid section link */
13734 
13735 		if (ttl + subsec->dofs_size > max) {
13736 			dtrace_dof_error(dof, "exceeds maximum size");
13737 			goto err;
13738 		}
13739 
13740 		ttl += subsec->dofs_size;
13741 
13742 		for (i = 0; difo[i].section != DOF_SECT_NONE; i++) {
13743 			if (subsec->dofs_type != difo[i].section)
13744 				continue;
13745 
13746 			if (!(subsec->dofs_flags & DOF_SECF_LOAD)) {
13747 				dtrace_dof_error(dof, "section not loaded");
13748 				goto err;
13749 			}
13750 
13751 			if (subsec->dofs_align != difo[i].align) {
13752 				dtrace_dof_error(dof, "bad alignment");
13753 				goto err;
13754 			}
13755 
13756 			bufp = (void **)((uintptr_t)dp + difo[i].bufoffs);
13757 			lenp = (uint32_t *)((uintptr_t)dp + difo[i].lenoffs);
13758 
13759 			if (*bufp != NULL) {
13760 				dtrace_dof_error(dof, difo[i].msg);
13761 				goto err;
13762 			}
13763 
13764 			if (difo[i].entsize != subsec->dofs_entsize) {
13765 				dtrace_dof_error(dof, "entry size mismatch");
13766 				goto err;
13767 			}
13768 
13769 			if (subsec->dofs_entsize != 0 &&
13770 			    (subsec->dofs_size % subsec->dofs_entsize) != 0) {
13771 				dtrace_dof_error(dof, "corrupt entry size");
13772 				goto err;
13773 			}
13774 
13775 			*lenp = subsec->dofs_size;
13776 			*bufp = kmem_alloc(subsec->dofs_size, KM_SLEEP);
13777 			bcopy((char *)(uintptr_t)(daddr + subsec->dofs_offset),
13778 			    *bufp, subsec->dofs_size);
13779 
13780 			if (subsec->dofs_entsize != 0)
13781 				*lenp /= subsec->dofs_entsize;
13782 
13783 			break;
13784 		}
13785 
13786 		/*
13787 		 * If we encounter a loadable DIFO sub-section that is not
13788 		 * known to us, assume this is a broken program and fail.
13789 		 */
13790 		if (difo[i].section == DOF_SECT_NONE &&
13791 		    (subsec->dofs_flags & DOF_SECF_LOAD)) {
13792 			dtrace_dof_error(dof, "unrecognized DIFO subsection");
13793 			goto err;
13794 		}
13795 	}
13796 
13797 	if (dp->dtdo_buf == NULL) {
13798 		/*
13799 		 * We can't have a DIF object without DIF text.
13800 		 */
13801 		dtrace_dof_error(dof, "missing DIF text");
13802 		goto err;
13803 	}
13804 
13805 	/*
13806 	 * Before we validate the DIF object, run through the variable table
13807 	 * looking for the strings -- if any of their size are under, we'll set
13808 	 * their size to be the system-wide default string size.  Note that
13809 	 * this should _not_ happen if the "strsize" option has been set --
13810 	 * in this case, the compiler should have set the size to reflect the
13811 	 * setting of the option.
13812 	 */
13813 	for (i = 0; i < dp->dtdo_varlen; i++) {
13814 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
13815 		dtrace_diftype_t *t = &v->dtdv_type;
13816 
13817 		if (v->dtdv_id < DIF_VAR_OTHER_UBASE)
13818 			continue;
13819 
13820 		if (t->dtdt_kind == DIF_TYPE_STRING && t->dtdt_size == 0)
13821 			t->dtdt_size = dtrace_strsize_default;
13822 	}
13823 
13824 	if (dtrace_difo_validate(dp, vstate, DIF_DIR_NREGS, cr) != 0)
13825 		goto err;
13826 
13827 	dtrace_difo_init(dp, vstate);
13828 	return (dp);
13829 
13830 err:
13831 	kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
13832 	kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
13833 	kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
13834 	kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
13835 
13836 	kmem_free(dp, sizeof (dtrace_difo_t));
13837 	return (NULL);
13838 }
13839 
13840 static dtrace_predicate_t *
13841 dtrace_dof_predicate(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
13842     cred_t *cr)
13843 {
13844 	dtrace_difo_t *dp;
13845 
13846 	if ((dp = dtrace_dof_difo(dof, sec, vstate, cr)) == NULL)
13847 		return (NULL);
13848 
13849 	return (dtrace_predicate_create(dp));
13850 }
13851 
13852 static dtrace_actdesc_t *
13853 dtrace_dof_actdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
13854     cred_t *cr)
13855 {
13856 	dtrace_actdesc_t *act, *first = NULL, *last = NULL, *next;
13857 	dof_actdesc_t *desc;
13858 	dof_sec_t *difosec;
13859 	size_t offs;
13860 	uintptr_t daddr = (uintptr_t)dof;
13861 	uint64_t arg;
13862 	dtrace_actkind_t kind;
13863 
13864 	if (sec->dofs_type != DOF_SECT_ACTDESC) {
13865 		dtrace_dof_error(dof, "invalid action section");
13866 		return (NULL);
13867 	}
13868 
13869 	if (sec->dofs_offset + sizeof (dof_actdesc_t) > dof->dofh_loadsz) {
13870 		dtrace_dof_error(dof, "truncated action description");
13871 		return (NULL);
13872 	}
13873 
13874 	if (sec->dofs_align != sizeof (uint64_t)) {
13875 		dtrace_dof_error(dof, "bad alignment in action description");
13876 		return (NULL);
13877 	}
13878 
13879 	if (sec->dofs_size < sec->dofs_entsize) {
13880 		dtrace_dof_error(dof, "section entry size exceeds total size");
13881 		return (NULL);
13882 	}
13883 
13884 	if (sec->dofs_entsize != sizeof (dof_actdesc_t)) {
13885 		dtrace_dof_error(dof, "bad entry size in action description");
13886 		return (NULL);
13887 	}
13888 
13889 	if (sec->dofs_size / sec->dofs_entsize > dtrace_actions_max) {
13890 		dtrace_dof_error(dof, "actions exceed dtrace_actions_max");
13891 		return (NULL);
13892 	}
13893 
13894 	for (offs = 0; offs < sec->dofs_size; offs += sec->dofs_entsize) {
13895 		desc = (dof_actdesc_t *)(daddr +
13896 		    (uintptr_t)sec->dofs_offset + offs);
13897 		kind = (dtrace_actkind_t)desc->dofa_kind;
13898 
13899 		if ((DTRACEACT_ISPRINTFLIKE(kind) &&
13900 		    (kind != DTRACEACT_PRINTA ||
13901 		    desc->dofa_strtab != DOF_SECIDX_NONE)) ||
13902 		    (kind == DTRACEACT_DIFEXPR &&
13903 		    desc->dofa_strtab != DOF_SECIDX_NONE)) {
13904 			dof_sec_t *strtab;
13905 			char *str, *fmt;
13906 			uint64_t i;
13907 
13908 			/*
13909 			 * The argument to these actions is an index into the
13910 			 * DOF string table.  For printf()-like actions, this
13911 			 * is the format string.  For print(), this is the
13912 			 * CTF type of the expression result.
13913 			 */
13914 			if ((strtab = dtrace_dof_sect(dof,
13915 			    DOF_SECT_STRTAB, desc->dofa_strtab)) == NULL)
13916 				goto err;
13917 
13918 			str = (char *)((uintptr_t)dof +
13919 			    (uintptr_t)strtab->dofs_offset);
13920 
13921 			for (i = desc->dofa_arg; i < strtab->dofs_size; i++) {
13922 				if (str[i] == '\0')
13923 					break;
13924 			}
13925 
13926 			if (i >= strtab->dofs_size) {
13927 				dtrace_dof_error(dof, "bogus format string");
13928 				goto err;
13929 			}
13930 
13931 			if (i == desc->dofa_arg) {
13932 				dtrace_dof_error(dof, "empty format string");
13933 				goto err;
13934 			}
13935 
13936 			i -= desc->dofa_arg;
13937 			fmt = kmem_alloc(i + 1, KM_SLEEP);
13938 			bcopy(&str[desc->dofa_arg], fmt, i + 1);
13939 			arg = (uint64_t)(uintptr_t)fmt;
13940 		} else {
13941 			if (kind == DTRACEACT_PRINTA) {
13942 				ASSERT(desc->dofa_strtab == DOF_SECIDX_NONE);
13943 				arg = 0;
13944 			} else {
13945 				arg = desc->dofa_arg;
13946 			}
13947 		}
13948 
13949 		act = dtrace_actdesc_create(kind, desc->dofa_ntuple,
13950 		    desc->dofa_uarg, arg);
13951 
13952 		if (last != NULL) {
13953 			last->dtad_next = act;
13954 		} else {
13955 			first = act;
13956 		}
13957 
13958 		last = act;
13959 
13960 		if (desc->dofa_difo == DOF_SECIDX_NONE)
13961 			continue;
13962 
13963 		if ((difosec = dtrace_dof_sect(dof,
13964 		    DOF_SECT_DIFOHDR, desc->dofa_difo)) == NULL)
13965 			goto err;
13966 
13967 		act->dtad_difo = dtrace_dof_difo(dof, difosec, vstate, cr);
13968 
13969 		if (act->dtad_difo == NULL)
13970 			goto err;
13971 	}
13972 
13973 	ASSERT(first != NULL);
13974 	return (first);
13975 
13976 err:
13977 	for (act = first; act != NULL; act = next) {
13978 		next = act->dtad_next;
13979 		dtrace_actdesc_release(act, vstate);
13980 	}
13981 
13982 	return (NULL);
13983 }
13984 
13985 static dtrace_ecbdesc_t *
13986 dtrace_dof_ecbdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
13987     cred_t *cr)
13988 {
13989 	dtrace_ecbdesc_t *ep;
13990 	dof_ecbdesc_t *ecb;
13991 	dtrace_probedesc_t *desc;
13992 	dtrace_predicate_t *pred = NULL;
13993 
13994 	if (sec->dofs_size < sizeof (dof_ecbdesc_t)) {
13995 		dtrace_dof_error(dof, "truncated ECB description");
13996 		return (NULL);
13997 	}
13998 
13999 	if (sec->dofs_align != sizeof (uint64_t)) {
14000 		dtrace_dof_error(dof, "bad alignment in ECB description");
14001 		return (NULL);
14002 	}
14003 
14004 	ecb = (dof_ecbdesc_t *)((uintptr_t)dof + (uintptr_t)sec->dofs_offset);
14005 	sec = dtrace_dof_sect(dof, DOF_SECT_PROBEDESC, ecb->dofe_probes);
14006 
14007 	if (sec == NULL)
14008 		return (NULL);
14009 
14010 	ep = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
14011 	ep->dted_uarg = ecb->dofe_uarg;
14012 	desc = &ep->dted_probe;
14013 
14014 	if (dtrace_dof_probedesc(dof, sec, desc) == NULL)
14015 		goto err;
14016 
14017 	if (ecb->dofe_pred != DOF_SECIDX_NONE) {
14018 		if ((sec = dtrace_dof_sect(dof,
14019 		    DOF_SECT_DIFOHDR, ecb->dofe_pred)) == NULL)
14020 			goto err;
14021 
14022 		if ((pred = dtrace_dof_predicate(dof, sec, vstate, cr)) == NULL)
14023 			goto err;
14024 
14025 		ep->dted_pred.dtpdd_predicate = pred;
14026 	}
14027 
14028 	if (ecb->dofe_actions != DOF_SECIDX_NONE) {
14029 		if ((sec = dtrace_dof_sect(dof,
14030 		    DOF_SECT_ACTDESC, ecb->dofe_actions)) == NULL)
14031 			goto err;
14032 
14033 		ep->dted_action = dtrace_dof_actdesc(dof, sec, vstate, cr);
14034 
14035 		if (ep->dted_action == NULL)
14036 			goto err;
14037 	}
14038 
14039 	return (ep);
14040 
14041 err:
14042 	if (pred != NULL)
14043 		dtrace_predicate_release(pred, vstate);
14044 	kmem_free(ep, sizeof (dtrace_ecbdesc_t));
14045 	return (NULL);
14046 }
14047 
14048 /*
14049  * Apply the relocations from the specified 'sec' (a DOF_SECT_URELHDR) to the
14050  * specified DOF.  SETX relocations are computed using 'ubase', the base load
14051  * address of the object containing the DOF, and DOFREL relocations are relative
14052  * to the relocation offset within the DOF.
14053  */
14054 static int
14055 dtrace_dof_relocate(dof_hdr_t *dof, dof_sec_t *sec, uint64_t ubase,
14056     uint64_t udaddr)
14057 {
14058 	uintptr_t daddr = (uintptr_t)dof;
14059 	uintptr_t ts_end;
14060 	dof_relohdr_t *dofr =
14061 	    (dof_relohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
14062 	dof_sec_t *ss, *rs, *ts;
14063 	dof_relodesc_t *r;
14064 	uint_t i, n;
14065 
14066 	if (sec->dofs_size < sizeof (dof_relohdr_t) ||
14067 	    sec->dofs_align != sizeof (dof_secidx_t)) {
14068 		dtrace_dof_error(dof, "invalid relocation header");
14069 		return (-1);
14070 	}
14071 
14072 	ss = dtrace_dof_sect(dof, DOF_SECT_STRTAB, dofr->dofr_strtab);
14073 	rs = dtrace_dof_sect(dof, DOF_SECT_RELTAB, dofr->dofr_relsec);
14074 	ts = dtrace_dof_sect(dof, DOF_SECT_NONE, dofr->dofr_tgtsec);
14075 	ts_end = (uintptr_t)ts + sizeof (dof_sec_t);
14076 
14077 	if (ss == NULL || rs == NULL || ts == NULL)
14078 		return (-1); /* dtrace_dof_error() has been called already */
14079 
14080 	if (rs->dofs_entsize < sizeof (dof_relodesc_t) ||
14081 	    rs->dofs_align != sizeof (uint64_t)) {
14082 		dtrace_dof_error(dof, "invalid relocation section");
14083 		return (-1);
14084 	}
14085 
14086 	r = (dof_relodesc_t *)(uintptr_t)(daddr + rs->dofs_offset);
14087 	n = rs->dofs_size / rs->dofs_entsize;
14088 
14089 	for (i = 0; i < n; i++) {
14090 		uintptr_t taddr = daddr + ts->dofs_offset + r->dofr_offset;
14091 
14092 		switch (r->dofr_type) {
14093 		case DOF_RELO_NONE:
14094 			break;
14095 		case DOF_RELO_SETX:
14096 		case DOF_RELO_DOFREL:
14097 			if (r->dofr_offset >= ts->dofs_size || r->dofr_offset +
14098 			    sizeof (uint64_t) > ts->dofs_size) {
14099 				dtrace_dof_error(dof, "bad relocation offset");
14100 				return (-1);
14101 			}
14102 
14103 			if (taddr >= (uintptr_t)ts && taddr < ts_end) {
14104 				dtrace_dof_error(dof, "bad relocation offset");
14105 				return (-1);
14106 			}
14107 
14108 			if (!IS_P2ALIGNED(taddr, sizeof (uint64_t))) {
14109 				dtrace_dof_error(dof, "misaligned setx relo");
14110 				return (-1);
14111 			}
14112 
14113 			if (r->dofr_type == DOF_RELO_SETX)
14114 				*(uint64_t *)taddr += ubase;
14115 			else
14116 				*(uint64_t *)taddr +=
14117 				    udaddr + ts->dofs_offset + r->dofr_offset;
14118 			break;
14119 		default:
14120 			dtrace_dof_error(dof, "invalid relocation type");
14121 			return (-1);
14122 		}
14123 
14124 		r = (dof_relodesc_t *)((uintptr_t)r + rs->dofs_entsize);
14125 	}
14126 
14127 	return (0);
14128 }
14129 
14130 /*
14131  * The dof_hdr_t passed to dtrace_dof_slurp() should be a partially validated
14132  * header:  it should be at the front of a memory region that is at least
14133  * sizeof (dof_hdr_t) in size -- and then at least dof_hdr.dofh_loadsz in
14134  * size.  It need not be validated in any other way.
14135  */
14136 static int
14137 dtrace_dof_slurp(dof_hdr_t *dof, dtrace_vstate_t *vstate, cred_t *cr,
14138     dtrace_enabling_t **enabp, uint64_t ubase, uint64_t udaddr, int noprobes)
14139 {
14140 	uint64_t len = dof->dofh_loadsz, seclen;
14141 	uintptr_t daddr = (uintptr_t)dof;
14142 	dtrace_ecbdesc_t *ep;
14143 	dtrace_enabling_t *enab;
14144 	uint_t i;
14145 
14146 	ASSERT(MUTEX_HELD(&dtrace_lock));
14147 	ASSERT(dof->dofh_loadsz >= sizeof (dof_hdr_t));
14148 
14149 	/*
14150 	 * Check the DOF header identification bytes.  In addition to checking
14151 	 * valid settings, we also verify that unused bits/bytes are zeroed so
14152 	 * we can use them later without fear of regressing existing binaries.
14153 	 */
14154 	if (bcmp(&dof->dofh_ident[DOF_ID_MAG0],
14155 	    DOF_MAG_STRING, DOF_MAG_STRLEN) != 0) {
14156 		dtrace_dof_error(dof, "DOF magic string mismatch");
14157 		return (-1);
14158 	}
14159 
14160 	if (dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_ILP32 &&
14161 	    dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_LP64) {
14162 		dtrace_dof_error(dof, "DOF has invalid data model");
14163 		return (-1);
14164 	}
14165 
14166 	if (dof->dofh_ident[DOF_ID_ENCODING] != DOF_ENCODE_NATIVE) {
14167 		dtrace_dof_error(dof, "DOF encoding mismatch");
14168 		return (-1);
14169 	}
14170 
14171 	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
14172 	    dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_2) {
14173 		dtrace_dof_error(dof, "DOF version mismatch");
14174 		return (-1);
14175 	}
14176 
14177 	if (dof->dofh_ident[DOF_ID_DIFVERS] != DIF_VERSION_2) {
14178 		dtrace_dof_error(dof, "DOF uses unsupported instruction set");
14179 		return (-1);
14180 	}
14181 
14182 	if (dof->dofh_ident[DOF_ID_DIFIREG] > DIF_DIR_NREGS) {
14183 		dtrace_dof_error(dof, "DOF uses too many integer registers");
14184 		return (-1);
14185 	}
14186 
14187 	if (dof->dofh_ident[DOF_ID_DIFTREG] > DIF_DTR_NREGS) {
14188 		dtrace_dof_error(dof, "DOF uses too many tuple registers");
14189 		return (-1);
14190 	}
14191 
14192 	for (i = DOF_ID_PAD; i < DOF_ID_SIZE; i++) {
14193 		if (dof->dofh_ident[i] != 0) {
14194 			dtrace_dof_error(dof, "DOF has invalid ident byte set");
14195 			return (-1);
14196 		}
14197 	}
14198 
14199 	if (dof->dofh_flags & ~DOF_FL_VALID) {
14200 		dtrace_dof_error(dof, "DOF has invalid flag bits set");
14201 		return (-1);
14202 	}
14203 
14204 	if (dof->dofh_secsize == 0) {
14205 		dtrace_dof_error(dof, "zero section header size");
14206 		return (-1);
14207 	}
14208 
14209 	/*
14210 	 * Check that the section headers don't exceed the amount of DOF
14211 	 * data.  Note that we cast the section size and number of sections
14212 	 * to uint64_t's to prevent possible overflow in the multiplication.
14213 	 */
14214 	seclen = (uint64_t)dof->dofh_secnum * (uint64_t)dof->dofh_secsize;
14215 
14216 	if (dof->dofh_secoff > len || seclen > len ||
14217 	    dof->dofh_secoff + seclen > len) {
14218 		dtrace_dof_error(dof, "truncated section headers");
14219 		return (-1);
14220 	}
14221 
14222 	if (!IS_P2ALIGNED(dof->dofh_secoff, sizeof (uint64_t))) {
14223 		dtrace_dof_error(dof, "misaligned section headers");
14224 		return (-1);
14225 	}
14226 
14227 	if (!IS_P2ALIGNED(dof->dofh_secsize, sizeof (uint64_t))) {
14228 		dtrace_dof_error(dof, "misaligned section size");
14229 		return (-1);
14230 	}
14231 
14232 	/*
14233 	 * Take an initial pass through the section headers to be sure that
14234 	 * the headers don't have stray offsets.  If the 'noprobes' flag is
14235 	 * set, do not permit sections relating to providers, probes, or args.
14236 	 */
14237 	for (i = 0; i < dof->dofh_secnum; i++) {
14238 		dof_sec_t *sec = (dof_sec_t *)(daddr +
14239 		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
14240 
14241 		if (noprobes) {
14242 			switch (sec->dofs_type) {
14243 			case DOF_SECT_PROVIDER:
14244 			case DOF_SECT_PROBES:
14245 			case DOF_SECT_PRARGS:
14246 			case DOF_SECT_PROFFS:
14247 				dtrace_dof_error(dof, "illegal sections "
14248 				    "for enabling");
14249 				return (-1);
14250 			}
14251 		}
14252 
14253 		if (DOF_SEC_ISLOADABLE(sec->dofs_type) &&
14254 		    !(sec->dofs_flags & DOF_SECF_LOAD)) {
14255 			dtrace_dof_error(dof, "loadable section with load "
14256 			    "flag unset");
14257 			return (-1);
14258 		}
14259 
14260 		if (!(sec->dofs_flags & DOF_SECF_LOAD))
14261 			continue; /* just ignore non-loadable sections */
14262 
14263 		if (!ISP2(sec->dofs_align)) {
14264 			dtrace_dof_error(dof, "bad section alignment");
14265 			return (-1);
14266 		}
14267 
14268 		if (sec->dofs_offset & (sec->dofs_align - 1)) {
14269 			dtrace_dof_error(dof, "misaligned section");
14270 			return (-1);
14271 		}
14272 
14273 		if (sec->dofs_offset > len || sec->dofs_size > len ||
14274 		    sec->dofs_offset + sec->dofs_size > len) {
14275 			dtrace_dof_error(dof, "corrupt section header");
14276 			return (-1);
14277 		}
14278 
14279 		if (sec->dofs_type == DOF_SECT_STRTAB && *((char *)daddr +
14280 		    sec->dofs_offset + sec->dofs_size - 1) != '\0') {
14281 			dtrace_dof_error(dof, "non-terminating string table");
14282 			return (-1);
14283 		}
14284 	}
14285 
14286 	/*
14287 	 * Take a second pass through the sections and locate and perform any
14288 	 * relocations that are present.  We do this after the first pass to
14289 	 * be sure that all sections have had their headers validated.
14290 	 */
14291 	for (i = 0; i < dof->dofh_secnum; i++) {
14292 		dof_sec_t *sec = (dof_sec_t *)(daddr +
14293 		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
14294 
14295 		if (!(sec->dofs_flags & DOF_SECF_LOAD))
14296 			continue; /* skip sections that are not loadable */
14297 
14298 		switch (sec->dofs_type) {
14299 		case DOF_SECT_URELHDR:
14300 			if (dtrace_dof_relocate(dof, sec, ubase, udaddr) != 0)
14301 				return (-1);
14302 			break;
14303 		}
14304 	}
14305 
14306 	if ((enab = *enabp) == NULL)
14307 		enab = *enabp = dtrace_enabling_create(vstate);
14308 
14309 	for (i = 0; i < dof->dofh_secnum; i++) {
14310 		dof_sec_t *sec = (dof_sec_t *)(daddr +
14311 		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
14312 
14313 		if (sec->dofs_type != DOF_SECT_ECBDESC)
14314 			continue;
14315 
14316 		if ((ep = dtrace_dof_ecbdesc(dof, sec, vstate, cr)) == NULL) {
14317 			dtrace_enabling_destroy(enab);
14318 			*enabp = NULL;
14319 			return (-1);
14320 		}
14321 
14322 		dtrace_enabling_add(enab, ep);
14323 	}
14324 
14325 	return (0);
14326 }
14327 
14328 /*
14329  * Process DOF for any options.  This routine assumes that the DOF has been
14330  * at least processed by dtrace_dof_slurp().
14331  */
14332 static int
14333 dtrace_dof_options(dof_hdr_t *dof, dtrace_state_t *state)
14334 {
14335 	int i, rval;
14336 	uint32_t entsize;
14337 	size_t offs;
14338 	dof_optdesc_t *desc;
14339 
14340 	for (i = 0; i < dof->dofh_secnum; i++) {
14341 		dof_sec_t *sec = (dof_sec_t *)((uintptr_t)dof +
14342 		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
14343 
14344 		if (sec->dofs_type != DOF_SECT_OPTDESC)
14345 			continue;
14346 
14347 		if (sec->dofs_align != sizeof (uint64_t)) {
14348 			dtrace_dof_error(dof, "bad alignment in "
14349 			    "option description");
14350 			return (EINVAL);
14351 		}
14352 
14353 		if ((entsize = sec->dofs_entsize) == 0) {
14354 			dtrace_dof_error(dof, "zeroed option entry size");
14355 			return (EINVAL);
14356 		}
14357 
14358 		if (entsize < sizeof (dof_optdesc_t)) {
14359 			dtrace_dof_error(dof, "bad option entry size");
14360 			return (EINVAL);
14361 		}
14362 
14363 		for (offs = 0; offs < sec->dofs_size; offs += entsize) {
14364 			desc = (dof_optdesc_t *)((uintptr_t)dof +
14365 			    (uintptr_t)sec->dofs_offset + offs);
14366 
14367 			if (desc->dofo_strtab != DOF_SECIDX_NONE) {
14368 				dtrace_dof_error(dof, "non-zero option string");
14369 				return (EINVAL);
14370 			}
14371 
14372 			if (desc->dofo_value == DTRACEOPT_UNSET) {
14373 				dtrace_dof_error(dof, "unset option");
14374 				return (EINVAL);
14375 			}
14376 
14377 			if ((rval = dtrace_state_option(state,
14378 			    desc->dofo_option, desc->dofo_value)) != 0) {
14379 				dtrace_dof_error(dof, "rejected option");
14380 				return (rval);
14381 			}
14382 		}
14383 	}
14384 
14385 	return (0);
14386 }
14387 
14388 /*
14389  * DTrace Consumer State Functions
14390  */
14391 static int
14392 dtrace_dstate_init(dtrace_dstate_t *dstate, size_t size)
14393 {
14394 	size_t hashsize, maxper, min, chunksize = dstate->dtds_chunksize;
14395 	void *base;
14396 	uintptr_t limit;
14397 	dtrace_dynvar_t *dvar, *next, *start;
14398 	int i;
14399 
14400 	ASSERT(MUTEX_HELD(&dtrace_lock));
14401 	ASSERT(dstate->dtds_base == NULL && dstate->dtds_percpu == NULL);
14402 
14403 	bzero(dstate, sizeof (dtrace_dstate_t));
14404 
14405 	if ((dstate->dtds_chunksize = chunksize) == 0)
14406 		dstate->dtds_chunksize = DTRACE_DYNVAR_CHUNKSIZE;
14407 
14408 	VERIFY(dstate->dtds_chunksize < LONG_MAX);
14409 
14410 	if (size < (min = dstate->dtds_chunksize + sizeof (dtrace_dynhash_t)))
14411 		size = min;
14412 
14413 	if ((base = kmem_zalloc(size, KM_NOSLEEP | KM_NORMALPRI)) == NULL)
14414 		return (ENOMEM);
14415 
14416 	dstate->dtds_size = size;
14417 	dstate->dtds_base = base;
14418 	dstate->dtds_percpu = kmem_cache_alloc(dtrace_state_cache, KM_SLEEP);
14419 	bzero(dstate->dtds_percpu,
14420 	    (mp_maxid + 1) * sizeof (dtrace_dstate_percpu_t));
14421 
14422 	hashsize = size / (dstate->dtds_chunksize + sizeof (dtrace_dynhash_t));
14423 
14424 	if (hashsize != 1 && (hashsize & 1))
14425 		hashsize--;
14426 
14427 	dstate->dtds_hashsize = hashsize;
14428 	dstate->dtds_hash = dstate->dtds_base;
14429 
14430 	/*
14431 	 * Set all of our hash buckets to point to the single sink, and (if
14432 	 * it hasn't already been set), set the sink's hash value to be the
14433 	 * sink sentinel value.  The sink is needed for dynamic variable
14434 	 * lookups to know that they have iterated over an entire, valid hash
14435 	 * chain.
14436 	 */
14437 	for (i = 0; i < hashsize; i++)
14438 		dstate->dtds_hash[i].dtdh_chain = &dtrace_dynhash_sink;
14439 
14440 	if (dtrace_dynhash_sink.dtdv_hashval != DTRACE_DYNHASH_SINK)
14441 		dtrace_dynhash_sink.dtdv_hashval = DTRACE_DYNHASH_SINK;
14442 
14443 	/*
14444 	 * Determine number of active CPUs.  Divide free list evenly among
14445 	 * active CPUs.
14446 	 */
14447 	start = (dtrace_dynvar_t *)
14448 	    ((uintptr_t)base + hashsize * sizeof (dtrace_dynhash_t));
14449 	limit = (uintptr_t)base + size;
14450 
14451 	VERIFY((uintptr_t)start < limit);
14452 	VERIFY((uintptr_t)start >= (uintptr_t)base);
14453 
14454 	maxper = (limit - (uintptr_t)start) / (mp_maxid + 1);
14455 	maxper = (maxper / dstate->dtds_chunksize) * dstate->dtds_chunksize;
14456 
14457 	CPU_FOREACH(i) {
14458 		dstate->dtds_percpu[i].dtdsc_free = dvar = start;
14459 
14460 		/*
14461 		 * If we don't even have enough chunks to make it once through
14462 		 * NCPUs, we're just going to allocate everything to the first
14463 		 * CPU.  And if we're on the last CPU, we're going to allocate
14464 		 * whatever is left over.  In either case, we set the limit to
14465 		 * be the limit of the dynamic variable space.
14466 		 */
14467 		if (maxper == 0 || i == mp_maxid) {
14468 			limit = (uintptr_t)base + size;
14469 			start = NULL;
14470 		} else {
14471 			limit = (uintptr_t)start + maxper;
14472 			start = (dtrace_dynvar_t *)limit;
14473 		}
14474 
14475 		VERIFY(limit <= (uintptr_t)base + size);
14476 
14477 		for (;;) {
14478 			next = (dtrace_dynvar_t *)((uintptr_t)dvar +
14479 			    dstate->dtds_chunksize);
14480 
14481 			if ((uintptr_t)next + dstate->dtds_chunksize >= limit)
14482 				break;
14483 
14484 			VERIFY((uintptr_t)dvar >= (uintptr_t)base &&
14485 			    (uintptr_t)dvar <= (uintptr_t)base + size);
14486 			dvar->dtdv_next = next;
14487 			dvar = next;
14488 		}
14489 
14490 		if (maxper == 0)
14491 			break;
14492 	}
14493 
14494 	return (0);
14495 }
14496 
14497 static void
14498 dtrace_dstate_fini(dtrace_dstate_t *dstate)
14499 {
14500 	ASSERT(MUTEX_HELD(&cpu_lock));
14501 
14502 	if (dstate->dtds_base == NULL)
14503 		return;
14504 
14505 	kmem_free(dstate->dtds_base, dstate->dtds_size);
14506 	kmem_cache_free(dtrace_state_cache, dstate->dtds_percpu);
14507 }
14508 
14509 static void
14510 dtrace_vstate_fini(dtrace_vstate_t *vstate)
14511 {
14512 	/*
14513 	 * Logical XOR, where are you?
14514 	 */
14515 	ASSERT((vstate->dtvs_nglobals == 0) ^ (vstate->dtvs_globals != NULL));
14516 
14517 	if (vstate->dtvs_nglobals > 0) {
14518 		kmem_free(vstate->dtvs_globals, vstate->dtvs_nglobals *
14519 		    sizeof (dtrace_statvar_t *));
14520 	}
14521 
14522 	if (vstate->dtvs_ntlocals > 0) {
14523 		kmem_free(vstate->dtvs_tlocals, vstate->dtvs_ntlocals *
14524 		    sizeof (dtrace_difv_t));
14525 	}
14526 
14527 	ASSERT((vstate->dtvs_nlocals == 0) ^ (vstate->dtvs_locals != NULL));
14528 
14529 	if (vstate->dtvs_nlocals > 0) {
14530 		kmem_free(vstate->dtvs_locals, vstate->dtvs_nlocals *
14531 		    sizeof (dtrace_statvar_t *));
14532 	}
14533 }
14534 
14535 #ifdef illumos
14536 static void
14537 dtrace_state_clean(dtrace_state_t *state)
14538 {
14539 	if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE)
14540 		return;
14541 
14542 	dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars);
14543 	dtrace_speculation_clean(state);
14544 }
14545 
14546 static void
14547 dtrace_state_deadman(dtrace_state_t *state)
14548 {
14549 	hrtime_t now;
14550 
14551 	dtrace_sync();
14552 
14553 	now = dtrace_gethrtime();
14554 
14555 	if (state != dtrace_anon.dta_state &&
14556 	    now - state->dts_laststatus >= dtrace_deadman_user)
14557 		return;
14558 
14559 	/*
14560 	 * We must be sure that dts_alive never appears to be less than the
14561 	 * value upon entry to dtrace_state_deadman(), and because we lack a
14562 	 * dtrace_cas64(), we cannot store to it atomically.  We thus instead
14563 	 * store INT64_MAX to it, followed by a memory barrier, followed by
14564 	 * the new value.  This assures that dts_alive never appears to be
14565 	 * less than its true value, regardless of the order in which the
14566 	 * stores to the underlying storage are issued.
14567 	 */
14568 	state->dts_alive = INT64_MAX;
14569 	dtrace_membar_producer();
14570 	state->dts_alive = now;
14571 }
14572 #else	/* !illumos */
14573 static void
14574 dtrace_state_clean(void *arg)
14575 {
14576 	dtrace_state_t *state = arg;
14577 	dtrace_optval_t *opt = state->dts_options;
14578 
14579 	if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE)
14580 		return;
14581 
14582 	dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars);
14583 	dtrace_speculation_clean(state);
14584 
14585 	callout_reset(&state->dts_cleaner, hz * opt[DTRACEOPT_CLEANRATE] / NANOSEC,
14586 	    dtrace_state_clean, state);
14587 }
14588 
14589 static void
14590 dtrace_state_deadman(void *arg)
14591 {
14592 	dtrace_state_t *state = arg;
14593 	hrtime_t now;
14594 
14595 	dtrace_sync();
14596 
14597 	dtrace_debug_output();
14598 
14599 	now = dtrace_gethrtime();
14600 
14601 	if (state != dtrace_anon.dta_state &&
14602 	    now - state->dts_laststatus >= dtrace_deadman_user)
14603 		return;
14604 
14605 	/*
14606 	 * We must be sure that dts_alive never appears to be less than the
14607 	 * value upon entry to dtrace_state_deadman(), and because we lack a
14608 	 * dtrace_cas64(), we cannot store to it atomically.  We thus instead
14609 	 * store INT64_MAX to it, followed by a memory barrier, followed by
14610 	 * the new value.  This assures that dts_alive never appears to be
14611 	 * less than its true value, regardless of the order in which the
14612 	 * stores to the underlying storage are issued.
14613 	 */
14614 	state->dts_alive = INT64_MAX;
14615 	dtrace_membar_producer();
14616 	state->dts_alive = now;
14617 
14618 	callout_reset(&state->dts_deadman, hz * dtrace_deadman_interval / NANOSEC,
14619 	    dtrace_state_deadman, state);
14620 }
14621 #endif	/* illumos */
14622 
14623 static dtrace_state_t *
14624 #ifdef illumos
14625 dtrace_state_create(dev_t *devp, cred_t *cr)
14626 #else
14627 dtrace_state_create(struct cdev *dev, struct ucred *cred __unused)
14628 #endif
14629 {
14630 #ifdef illumos
14631 	minor_t minor;
14632 	major_t major;
14633 #else
14634 	cred_t *cr = NULL;
14635 	int m = 0;
14636 #endif
14637 	char c[30];
14638 	dtrace_state_t *state;
14639 	dtrace_optval_t *opt;
14640 	int bufsize = (mp_maxid + 1) * sizeof (dtrace_buffer_t), i;
14641 	int cpu_it;
14642 
14643 	ASSERT(MUTEX_HELD(&dtrace_lock));
14644 	ASSERT(MUTEX_HELD(&cpu_lock));
14645 
14646 #ifdef illumos
14647 	minor = (minor_t)(uintptr_t)vmem_alloc(dtrace_minor, 1,
14648 	    VM_BESTFIT | VM_SLEEP);
14649 
14650 	if (ddi_soft_state_zalloc(dtrace_softstate, minor) != DDI_SUCCESS) {
14651 		vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
14652 		return (NULL);
14653 	}
14654 
14655 	state = ddi_get_soft_state(dtrace_softstate, minor);
14656 #else
14657 	if (dev != NULL) {
14658 		cr = dev->si_cred;
14659 		m = dev2unit(dev);
14660 	}
14661 
14662 	/* Allocate memory for the state. */
14663 	state = kmem_zalloc(sizeof(dtrace_state_t), KM_SLEEP);
14664 #endif
14665 
14666 	state->dts_epid = DTRACE_EPIDNONE + 1;
14667 
14668 	(void) snprintf(c, sizeof (c), "dtrace_aggid_%d", m);
14669 #ifdef illumos
14670 	state->dts_aggid_arena = vmem_create(c, (void *)1, UINT32_MAX, 1,
14671 	    NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
14672 
14673 	if (devp != NULL) {
14674 		major = getemajor(*devp);
14675 	} else {
14676 		major = ddi_driver_major(dtrace_devi);
14677 	}
14678 
14679 	state->dts_dev = makedevice(major, minor);
14680 
14681 	if (devp != NULL)
14682 		*devp = state->dts_dev;
14683 #else
14684 	state->dts_aggid_arena = new_unrhdr(1, INT_MAX, &dtrace_unr_mtx);
14685 	state->dts_dev = dev;
14686 #endif
14687 
14688 	state->dts_buffer = kmem_zalloc(bufsize, KM_SLEEP);
14689 	state->dts_aggbuffer = kmem_zalloc(bufsize, KM_SLEEP);
14690 
14691 	/*
14692          * Allocate and initialise the per-process per-CPU random state.
14693 	 * SI_SUB_RANDOM < SI_SUB_DTRACE_ANON therefore entropy device is
14694          * assumed to be seeded at this point (if from Fortuna seed file).
14695 	 */
14696 	arc4random_buf(&state->dts_rstate[0], 2 * sizeof(uint64_t));
14697 	for (cpu_it = 1; cpu_it <= mp_maxid; cpu_it++) {
14698 		/*
14699 		 * Each CPU is assigned a 2^64 period, non-overlapping
14700 		 * subsequence.
14701 		 */
14702 		dtrace_xoroshiro128_plus_jump(state->dts_rstate[cpu_it - 1],
14703 		    state->dts_rstate[cpu_it]);
14704 	}
14705 
14706 #ifdef illumos
14707 	state->dts_cleaner = CYCLIC_NONE;
14708 	state->dts_deadman = CYCLIC_NONE;
14709 #else
14710 	callout_init(&state->dts_cleaner, 1);
14711 	callout_init(&state->dts_deadman, 1);
14712 #endif
14713 	state->dts_vstate.dtvs_state = state;
14714 
14715 	for (i = 0; i < DTRACEOPT_MAX; i++)
14716 		state->dts_options[i] = DTRACEOPT_UNSET;
14717 
14718 	/*
14719 	 * Set the default options.
14720 	 */
14721 	opt = state->dts_options;
14722 	opt[DTRACEOPT_BUFPOLICY] = DTRACEOPT_BUFPOLICY_SWITCH;
14723 	opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_AUTO;
14724 	opt[DTRACEOPT_NSPEC] = dtrace_nspec_default;
14725 	opt[DTRACEOPT_SPECSIZE] = dtrace_specsize_default;
14726 	opt[DTRACEOPT_CPU] = (dtrace_optval_t)DTRACE_CPUALL;
14727 	opt[DTRACEOPT_STRSIZE] = dtrace_strsize_default;
14728 	opt[DTRACEOPT_STACKFRAMES] = dtrace_stackframes_default;
14729 	opt[DTRACEOPT_USTACKFRAMES] = dtrace_ustackframes_default;
14730 	opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_default;
14731 	opt[DTRACEOPT_AGGRATE] = dtrace_aggrate_default;
14732 	opt[DTRACEOPT_SWITCHRATE] = dtrace_switchrate_default;
14733 	opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_default;
14734 	opt[DTRACEOPT_JSTACKFRAMES] = dtrace_jstackframes_default;
14735 	opt[DTRACEOPT_JSTACKSTRSIZE] = dtrace_jstackstrsize_default;
14736 
14737 	state->dts_activity = DTRACE_ACTIVITY_INACTIVE;
14738 
14739 	/*
14740 	 * Depending on the user credentials, we set flag bits which alter probe
14741 	 * visibility or the amount of destructiveness allowed.  In the case of
14742 	 * actual anonymous tracing, or the possession of all privileges, all of
14743 	 * the normal checks are bypassed.
14744 	 */
14745 	if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
14746 		state->dts_cred.dcr_visible = DTRACE_CRV_ALL;
14747 		state->dts_cred.dcr_action = DTRACE_CRA_ALL;
14748 	} else {
14749 		/*
14750 		 * Set up the credentials for this instantiation.  We take a
14751 		 * hold on the credential to prevent it from disappearing on
14752 		 * us; this in turn prevents the zone_t referenced by this
14753 		 * credential from disappearing.  This means that we can
14754 		 * examine the credential and the zone from probe context.
14755 		 */
14756 		crhold(cr);
14757 		state->dts_cred.dcr_cred = cr;
14758 
14759 		/*
14760 		 * CRA_PROC means "we have *some* privilege for dtrace" and
14761 		 * unlocks the use of variables like pid, zonename, etc.
14762 		 */
14763 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE) ||
14764 		    PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
14765 			state->dts_cred.dcr_action |= DTRACE_CRA_PROC;
14766 		}
14767 
14768 		/*
14769 		 * dtrace_user allows use of syscall and profile providers.
14770 		 * If the user also has proc_owner and/or proc_zone, we
14771 		 * extend the scope to include additional visibility and
14772 		 * destructive power.
14773 		 */
14774 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) {
14775 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) {
14776 				state->dts_cred.dcr_visible |=
14777 				    DTRACE_CRV_ALLPROC;
14778 
14779 				state->dts_cred.dcr_action |=
14780 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
14781 			}
14782 
14783 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) {
14784 				state->dts_cred.dcr_visible |=
14785 				    DTRACE_CRV_ALLZONE;
14786 
14787 				state->dts_cred.dcr_action |=
14788 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
14789 			}
14790 
14791 			/*
14792 			 * If we have all privs in whatever zone this is,
14793 			 * we can do destructive things to processes which
14794 			 * have altered credentials.
14795 			 */
14796 #ifdef illumos
14797 			if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
14798 			    cr->cr_zone->zone_privset)) {
14799 				state->dts_cred.dcr_action |=
14800 				    DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
14801 			}
14802 #endif
14803 		}
14804 
14805 		/*
14806 		 * Holding the dtrace_kernel privilege also implies that
14807 		 * the user has the dtrace_user privilege from a visibility
14808 		 * perspective.  But without further privileges, some
14809 		 * destructive actions are not available.
14810 		 */
14811 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) {
14812 			/*
14813 			 * Make all probes in all zones visible.  However,
14814 			 * this doesn't mean that all actions become available
14815 			 * to all zones.
14816 			 */
14817 			state->dts_cred.dcr_visible |= DTRACE_CRV_KERNEL |
14818 			    DTRACE_CRV_ALLPROC | DTRACE_CRV_ALLZONE;
14819 
14820 			state->dts_cred.dcr_action |= DTRACE_CRA_KERNEL |
14821 			    DTRACE_CRA_PROC;
14822 			/*
14823 			 * Holding proc_owner means that destructive actions
14824 			 * for *this* zone are allowed.
14825 			 */
14826 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
14827 				state->dts_cred.dcr_action |=
14828 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
14829 
14830 			/*
14831 			 * Holding proc_zone means that destructive actions
14832 			 * for this user/group ID in all zones is allowed.
14833 			 */
14834 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
14835 				state->dts_cred.dcr_action |=
14836 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
14837 
14838 #ifdef illumos
14839 			/*
14840 			 * If we have all privs in whatever zone this is,
14841 			 * we can do destructive things to processes which
14842 			 * have altered credentials.
14843 			 */
14844 			if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
14845 			    cr->cr_zone->zone_privset)) {
14846 				state->dts_cred.dcr_action |=
14847 				    DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
14848 			}
14849 #endif
14850 		}
14851 
14852 		/*
14853 		 * Holding the dtrace_proc privilege gives control over fasttrap
14854 		 * and pid providers.  We need to grant wider destructive
14855 		 * privileges in the event that the user has proc_owner and/or
14856 		 * proc_zone.
14857 		 */
14858 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
14859 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
14860 				state->dts_cred.dcr_action |=
14861 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
14862 
14863 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
14864 				state->dts_cred.dcr_action |=
14865 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
14866 		}
14867 	}
14868 
14869 	return (state);
14870 }
14871 
14872 static int
14873 dtrace_state_buffer(dtrace_state_t *state, dtrace_buffer_t *buf, int which)
14874 {
14875 	dtrace_optval_t *opt = state->dts_options, size;
14876 	processorid_t cpu = 0;
14877 	int flags = 0, rval, factor, divisor = 1;
14878 
14879 	ASSERT(MUTEX_HELD(&dtrace_lock));
14880 	ASSERT(MUTEX_HELD(&cpu_lock));
14881 	ASSERT(which < DTRACEOPT_MAX);
14882 	ASSERT(state->dts_activity == DTRACE_ACTIVITY_INACTIVE ||
14883 	    (state == dtrace_anon.dta_state &&
14884 	    state->dts_activity == DTRACE_ACTIVITY_ACTIVE));
14885 
14886 	if (opt[which] == DTRACEOPT_UNSET || opt[which] == 0)
14887 		return (0);
14888 
14889 	if (opt[DTRACEOPT_CPU] != DTRACEOPT_UNSET)
14890 		cpu = opt[DTRACEOPT_CPU];
14891 
14892 	if (which == DTRACEOPT_SPECSIZE)
14893 		flags |= DTRACEBUF_NOSWITCH;
14894 
14895 	if (which == DTRACEOPT_BUFSIZE) {
14896 		if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_RING)
14897 			flags |= DTRACEBUF_RING;
14898 
14899 		if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_FILL)
14900 			flags |= DTRACEBUF_FILL;
14901 
14902 		if (state != dtrace_anon.dta_state ||
14903 		    state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
14904 			flags |= DTRACEBUF_INACTIVE;
14905 	}
14906 
14907 	for (size = opt[which]; size >= sizeof (uint64_t); size /= divisor) {
14908 		/*
14909 		 * The size must be 8-byte aligned.  If the size is not 8-byte
14910 		 * aligned, drop it down by the difference.
14911 		 */
14912 		if (size & (sizeof (uint64_t) - 1))
14913 			size -= size & (sizeof (uint64_t) - 1);
14914 
14915 		if (size < state->dts_reserve) {
14916 			/*
14917 			 * Buffers always must be large enough to accommodate
14918 			 * their prereserved space.  We return E2BIG instead
14919 			 * of ENOMEM in this case to allow for user-level
14920 			 * software to differentiate the cases.
14921 			 */
14922 			return (E2BIG);
14923 		}
14924 
14925 		rval = dtrace_buffer_alloc(buf, size, flags, cpu, &factor);
14926 
14927 		if (rval != ENOMEM) {
14928 			opt[which] = size;
14929 			return (rval);
14930 		}
14931 
14932 		if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
14933 			return (rval);
14934 
14935 		for (divisor = 2; divisor < factor; divisor <<= 1)
14936 			continue;
14937 	}
14938 
14939 	return (ENOMEM);
14940 }
14941 
14942 static int
14943 dtrace_state_buffers(dtrace_state_t *state)
14944 {
14945 	dtrace_speculation_t *spec = state->dts_speculations;
14946 	int rval, i;
14947 
14948 	if ((rval = dtrace_state_buffer(state, state->dts_buffer,
14949 	    DTRACEOPT_BUFSIZE)) != 0)
14950 		return (rval);
14951 
14952 	if ((rval = dtrace_state_buffer(state, state->dts_aggbuffer,
14953 	    DTRACEOPT_AGGSIZE)) != 0)
14954 		return (rval);
14955 
14956 	for (i = 0; i < state->dts_nspeculations; i++) {
14957 		if ((rval = dtrace_state_buffer(state,
14958 		    spec[i].dtsp_buffer, DTRACEOPT_SPECSIZE)) != 0)
14959 			return (rval);
14960 	}
14961 
14962 	return (0);
14963 }
14964 
14965 static void
14966 dtrace_state_prereserve(dtrace_state_t *state)
14967 {
14968 	dtrace_ecb_t *ecb;
14969 	dtrace_probe_t *probe;
14970 
14971 	state->dts_reserve = 0;
14972 
14973 	if (state->dts_options[DTRACEOPT_BUFPOLICY] != DTRACEOPT_BUFPOLICY_FILL)
14974 		return;
14975 
14976 	/*
14977 	 * If our buffer policy is a "fill" buffer policy, we need to set the
14978 	 * prereserved space to be the space required by the END probes.
14979 	 */
14980 	probe = dtrace_probes[dtrace_probeid_end - 1];
14981 	ASSERT(probe != NULL);
14982 
14983 	for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
14984 		if (ecb->dte_state != state)
14985 			continue;
14986 
14987 		state->dts_reserve += ecb->dte_needed + ecb->dte_alignment;
14988 	}
14989 }
14990 
14991 static int
14992 dtrace_state_go(dtrace_state_t *state, processorid_t *cpu)
14993 {
14994 	dtrace_optval_t *opt = state->dts_options, sz, nspec;
14995 	dtrace_speculation_t *spec;
14996 	dtrace_buffer_t *buf;
14997 #ifdef illumos
14998 	cyc_handler_t hdlr;
14999 	cyc_time_t when;
15000 #endif
15001 	int rval = 0, i, bufsize = (mp_maxid + 1) * sizeof (dtrace_buffer_t);
15002 	dtrace_icookie_t cookie;
15003 
15004 	mutex_enter(&cpu_lock);
15005 	mutex_enter(&dtrace_lock);
15006 
15007 	if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
15008 		rval = EBUSY;
15009 		goto out;
15010 	}
15011 
15012 	/*
15013 	 * Before we can perform any checks, we must prime all of the
15014 	 * retained enablings that correspond to this state.
15015 	 */
15016 	dtrace_enabling_prime(state);
15017 
15018 	if (state->dts_destructive && !state->dts_cred.dcr_destructive) {
15019 		rval = EACCES;
15020 		goto out;
15021 	}
15022 
15023 	dtrace_state_prereserve(state);
15024 
15025 	/*
15026 	 * Now we want to do is try to allocate our speculations.
15027 	 * We do not automatically resize the number of speculations; if
15028 	 * this fails, we will fail the operation.
15029 	 */
15030 	nspec = opt[DTRACEOPT_NSPEC];
15031 	ASSERT(nspec != DTRACEOPT_UNSET);
15032 
15033 	if (nspec > INT_MAX) {
15034 		rval = ENOMEM;
15035 		goto out;
15036 	}
15037 
15038 	spec = kmem_zalloc(nspec * sizeof (dtrace_speculation_t),
15039 	    KM_NOSLEEP | KM_NORMALPRI);
15040 
15041 	if (spec == NULL) {
15042 		rval = ENOMEM;
15043 		goto out;
15044 	}
15045 
15046 	state->dts_speculations = spec;
15047 	state->dts_nspeculations = (int)nspec;
15048 
15049 	for (i = 0; i < nspec; i++) {
15050 		if ((buf = kmem_zalloc(bufsize,
15051 		    KM_NOSLEEP | KM_NORMALPRI)) == NULL) {
15052 			rval = ENOMEM;
15053 			goto err;
15054 		}
15055 
15056 		spec[i].dtsp_buffer = buf;
15057 	}
15058 
15059 	if (opt[DTRACEOPT_GRABANON] != DTRACEOPT_UNSET) {
15060 		if (dtrace_anon.dta_state == NULL) {
15061 			rval = ENOENT;
15062 			goto out;
15063 		}
15064 
15065 		if (state->dts_necbs != 0) {
15066 			rval = EALREADY;
15067 			goto out;
15068 		}
15069 
15070 		state->dts_anon = dtrace_anon_grab();
15071 		ASSERT(state->dts_anon != NULL);
15072 		state = state->dts_anon;
15073 
15074 		/*
15075 		 * We want "grabanon" to be set in the grabbed state, so we'll
15076 		 * copy that option value from the grabbing state into the
15077 		 * grabbed state.
15078 		 */
15079 		state->dts_options[DTRACEOPT_GRABANON] =
15080 		    opt[DTRACEOPT_GRABANON];
15081 
15082 		*cpu = dtrace_anon.dta_beganon;
15083 
15084 		/*
15085 		 * If the anonymous state is active (as it almost certainly
15086 		 * is if the anonymous enabling ultimately matched anything),
15087 		 * we don't allow any further option processing -- but we
15088 		 * don't return failure.
15089 		 */
15090 		if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
15091 			goto out;
15092 	}
15093 
15094 	if (opt[DTRACEOPT_AGGSIZE] != DTRACEOPT_UNSET &&
15095 	    opt[DTRACEOPT_AGGSIZE] != 0) {
15096 		if (state->dts_aggregations == NULL) {
15097 			/*
15098 			 * We're not going to create an aggregation buffer
15099 			 * because we don't have any ECBs that contain
15100 			 * aggregations -- set this option to 0.
15101 			 */
15102 			opt[DTRACEOPT_AGGSIZE] = 0;
15103 		} else {
15104 			/*
15105 			 * If we have an aggregation buffer, we must also have
15106 			 * a buffer to use as scratch.
15107 			 */
15108 			if (opt[DTRACEOPT_BUFSIZE] == DTRACEOPT_UNSET ||
15109 			    opt[DTRACEOPT_BUFSIZE] < state->dts_needed) {
15110 				opt[DTRACEOPT_BUFSIZE] = state->dts_needed;
15111 			}
15112 		}
15113 	}
15114 
15115 	if (opt[DTRACEOPT_SPECSIZE] != DTRACEOPT_UNSET &&
15116 	    opt[DTRACEOPT_SPECSIZE] != 0) {
15117 		if (!state->dts_speculates) {
15118 			/*
15119 			 * We're not going to create speculation buffers
15120 			 * because we don't have any ECBs that actually
15121 			 * speculate -- set the speculation size to 0.
15122 			 */
15123 			opt[DTRACEOPT_SPECSIZE] = 0;
15124 		}
15125 	}
15126 
15127 	/*
15128 	 * The bare minimum size for any buffer that we're actually going to
15129 	 * do anything to is sizeof (uint64_t).
15130 	 */
15131 	sz = sizeof (uint64_t);
15132 
15133 	if ((state->dts_needed != 0 && opt[DTRACEOPT_BUFSIZE] < sz) ||
15134 	    (state->dts_speculates && opt[DTRACEOPT_SPECSIZE] < sz) ||
15135 	    (state->dts_aggregations != NULL && opt[DTRACEOPT_AGGSIZE] < sz)) {
15136 		/*
15137 		 * A buffer size has been explicitly set to 0 (or to a size
15138 		 * that will be adjusted to 0) and we need the space -- we
15139 		 * need to return failure.  We return ENOSPC to differentiate
15140 		 * it from failing to allocate a buffer due to failure to meet
15141 		 * the reserve (for which we return E2BIG).
15142 		 */
15143 		rval = ENOSPC;
15144 		goto out;
15145 	}
15146 
15147 	if ((rval = dtrace_state_buffers(state)) != 0)
15148 		goto err;
15149 
15150 	if ((sz = opt[DTRACEOPT_DYNVARSIZE]) == DTRACEOPT_UNSET)
15151 		sz = dtrace_dstate_defsize;
15152 
15153 	do {
15154 		rval = dtrace_dstate_init(&state->dts_vstate.dtvs_dynvars, sz);
15155 
15156 		if (rval == 0)
15157 			break;
15158 
15159 		if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
15160 			goto err;
15161 	} while (sz >>= 1);
15162 
15163 	opt[DTRACEOPT_DYNVARSIZE] = sz;
15164 
15165 	if (rval != 0)
15166 		goto err;
15167 
15168 	if (opt[DTRACEOPT_STATUSRATE] > dtrace_statusrate_max)
15169 		opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_max;
15170 
15171 	if (opt[DTRACEOPT_CLEANRATE] == 0)
15172 		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
15173 
15174 	if (opt[DTRACEOPT_CLEANRATE] < dtrace_cleanrate_min)
15175 		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_min;
15176 
15177 	if (opt[DTRACEOPT_CLEANRATE] > dtrace_cleanrate_max)
15178 		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
15179 
15180 	state->dts_alive = state->dts_laststatus = dtrace_gethrtime();
15181 #ifdef illumos
15182 	hdlr.cyh_func = (cyc_func_t)dtrace_state_clean;
15183 	hdlr.cyh_arg = state;
15184 	hdlr.cyh_level = CY_LOW_LEVEL;
15185 
15186 	when.cyt_when = 0;
15187 	when.cyt_interval = opt[DTRACEOPT_CLEANRATE];
15188 
15189 	state->dts_cleaner = cyclic_add(&hdlr, &when);
15190 
15191 	hdlr.cyh_func = (cyc_func_t)dtrace_state_deadman;
15192 	hdlr.cyh_arg = state;
15193 	hdlr.cyh_level = CY_LOW_LEVEL;
15194 
15195 	when.cyt_when = 0;
15196 	when.cyt_interval = dtrace_deadman_interval;
15197 
15198 	state->dts_deadman = cyclic_add(&hdlr, &when);
15199 #else
15200 	callout_reset(&state->dts_cleaner, hz * opt[DTRACEOPT_CLEANRATE] / NANOSEC,
15201 	    dtrace_state_clean, state);
15202 	callout_reset(&state->dts_deadman, hz * dtrace_deadman_interval / NANOSEC,
15203 	    dtrace_state_deadman, state);
15204 #endif
15205 
15206 	state->dts_activity = DTRACE_ACTIVITY_WARMUP;
15207 
15208 #ifdef illumos
15209 	if (state->dts_getf != 0 &&
15210 	    !(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)) {
15211 		/*
15212 		 * We don't have kernel privs but we have at least one call
15213 		 * to getf(); we need to bump our zone's count, and (if
15214 		 * this is the first enabling to have an unprivileged call
15215 		 * to getf()) we need to hook into closef().
15216 		 */
15217 		state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf++;
15218 
15219 		if (dtrace_getf++ == 0) {
15220 			ASSERT(dtrace_closef == NULL);
15221 			dtrace_closef = dtrace_getf_barrier;
15222 		}
15223 	}
15224 #endif
15225 
15226 	/*
15227 	 * Now it's time to actually fire the BEGIN probe.  We need to disable
15228 	 * interrupts here both to record the CPU on which we fired the BEGIN
15229 	 * probe (the data from this CPU will be processed first at user
15230 	 * level) and to manually activate the buffer for this CPU.
15231 	 */
15232 	cookie = dtrace_interrupt_disable();
15233 	*cpu = curcpu;
15234 	ASSERT(state->dts_buffer[*cpu].dtb_flags & DTRACEBUF_INACTIVE);
15235 	state->dts_buffer[*cpu].dtb_flags &= ~DTRACEBUF_INACTIVE;
15236 
15237 	dtrace_probe(dtrace_probeid_begin,
15238 	    (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
15239 	dtrace_interrupt_enable(cookie);
15240 	/*
15241 	 * We may have had an exit action from a BEGIN probe; only change our
15242 	 * state to ACTIVE if we're still in WARMUP.
15243 	 */
15244 	ASSERT(state->dts_activity == DTRACE_ACTIVITY_WARMUP ||
15245 	    state->dts_activity == DTRACE_ACTIVITY_DRAINING);
15246 
15247 	if (state->dts_activity == DTRACE_ACTIVITY_WARMUP)
15248 		state->dts_activity = DTRACE_ACTIVITY_ACTIVE;
15249 
15250 #ifdef __FreeBSD__
15251 	/*
15252 	 * We enable anonymous tracing before APs are started, so we must
15253 	 * activate buffers using the current CPU.
15254 	 */
15255 	if (state == dtrace_anon.dta_state) {
15256 		CPU_FOREACH(i)
15257 			dtrace_buffer_activate_cpu(state, i);
15258 	} else
15259 		dtrace_xcall(DTRACE_CPUALL,
15260 		    (dtrace_xcall_t)dtrace_buffer_activate, state);
15261 #else
15262 	/*
15263 	 * Regardless of whether or not now we're in ACTIVE or DRAINING, we
15264 	 * want each CPU to transition its principal buffer out of the
15265 	 * INACTIVE state.  Doing this assures that no CPU will suddenly begin
15266 	 * processing an ECB halfway down a probe's ECB chain; all CPUs will
15267 	 * atomically transition from processing none of a state's ECBs to
15268 	 * processing all of them.
15269 	 */
15270 	dtrace_xcall(DTRACE_CPUALL,
15271 	    (dtrace_xcall_t)dtrace_buffer_activate, state);
15272 #endif
15273 	goto out;
15274 
15275 err:
15276 	dtrace_buffer_free(state->dts_buffer);
15277 	dtrace_buffer_free(state->dts_aggbuffer);
15278 
15279 	if ((nspec = state->dts_nspeculations) == 0) {
15280 		ASSERT(state->dts_speculations == NULL);
15281 		goto out;
15282 	}
15283 
15284 	spec = state->dts_speculations;
15285 	ASSERT(spec != NULL);
15286 
15287 	for (i = 0; i < state->dts_nspeculations; i++) {
15288 		if ((buf = spec[i].dtsp_buffer) == NULL)
15289 			break;
15290 
15291 		dtrace_buffer_free(buf);
15292 		kmem_free(buf, bufsize);
15293 	}
15294 
15295 	kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
15296 	state->dts_nspeculations = 0;
15297 	state->dts_speculations = NULL;
15298 
15299 out:
15300 	mutex_exit(&dtrace_lock);
15301 	mutex_exit(&cpu_lock);
15302 
15303 	return (rval);
15304 }
15305 
15306 static int
15307 dtrace_state_stop(dtrace_state_t *state, processorid_t *cpu)
15308 {
15309 	dtrace_icookie_t cookie;
15310 
15311 	ASSERT(MUTEX_HELD(&dtrace_lock));
15312 
15313 	if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE &&
15314 	    state->dts_activity != DTRACE_ACTIVITY_DRAINING)
15315 		return (EINVAL);
15316 
15317 	/*
15318 	 * We'll set the activity to DTRACE_ACTIVITY_DRAINING, and issue a sync
15319 	 * to be sure that every CPU has seen it.  See below for the details
15320 	 * on why this is done.
15321 	 */
15322 	state->dts_activity = DTRACE_ACTIVITY_DRAINING;
15323 	dtrace_sync();
15324 
15325 	/*
15326 	 * By this point, it is impossible for any CPU to be still processing
15327 	 * with DTRACE_ACTIVITY_ACTIVE.  We can thus set our activity to
15328 	 * DTRACE_ACTIVITY_COOLDOWN and know that we're not racing with any
15329 	 * other CPU in dtrace_buffer_reserve().  This allows dtrace_probe()
15330 	 * and callees to know that the activity is DTRACE_ACTIVITY_COOLDOWN
15331 	 * iff we're in the END probe.
15332 	 */
15333 	state->dts_activity = DTRACE_ACTIVITY_COOLDOWN;
15334 	dtrace_sync();
15335 	ASSERT(state->dts_activity == DTRACE_ACTIVITY_COOLDOWN);
15336 
15337 	/*
15338 	 * Finally, we can release the reserve and call the END probe.  We
15339 	 * disable interrupts across calling the END probe to allow us to
15340 	 * return the CPU on which we actually called the END probe.  This
15341 	 * allows user-land to be sure that this CPU's principal buffer is
15342 	 * processed last.
15343 	 */
15344 	state->dts_reserve = 0;
15345 
15346 	cookie = dtrace_interrupt_disable();
15347 	*cpu = curcpu;
15348 	dtrace_probe(dtrace_probeid_end,
15349 	    (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
15350 	dtrace_interrupt_enable(cookie);
15351 
15352 	state->dts_activity = DTRACE_ACTIVITY_STOPPED;
15353 	dtrace_sync();
15354 
15355 #ifdef illumos
15356 	if (state->dts_getf != 0 &&
15357 	    !(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)) {
15358 		/*
15359 		 * We don't have kernel privs but we have at least one call
15360 		 * to getf(); we need to lower our zone's count, and (if
15361 		 * this is the last enabling to have an unprivileged call
15362 		 * to getf()) we need to clear the closef() hook.
15363 		 */
15364 		ASSERT(state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf > 0);
15365 		ASSERT(dtrace_closef == dtrace_getf_barrier);
15366 		ASSERT(dtrace_getf > 0);
15367 
15368 		state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf--;
15369 
15370 		if (--dtrace_getf == 0)
15371 			dtrace_closef = NULL;
15372 	}
15373 #endif
15374 
15375 	return (0);
15376 }
15377 
15378 static int
15379 dtrace_state_option(dtrace_state_t *state, dtrace_optid_t option,
15380     dtrace_optval_t val)
15381 {
15382 	ASSERT(MUTEX_HELD(&dtrace_lock));
15383 
15384 	if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
15385 		return (EBUSY);
15386 
15387 	if (option >= DTRACEOPT_MAX)
15388 		return (EINVAL);
15389 
15390 	if (option != DTRACEOPT_CPU && val < 0)
15391 		return (EINVAL);
15392 
15393 	switch (option) {
15394 	case DTRACEOPT_DESTRUCTIVE:
15395 		if (dtrace_destructive_disallow)
15396 			return (EACCES);
15397 
15398 		state->dts_cred.dcr_destructive = 1;
15399 		break;
15400 
15401 	case DTRACEOPT_BUFSIZE:
15402 	case DTRACEOPT_DYNVARSIZE:
15403 	case DTRACEOPT_AGGSIZE:
15404 	case DTRACEOPT_SPECSIZE:
15405 	case DTRACEOPT_STRSIZE:
15406 		if (val < 0)
15407 			return (EINVAL);
15408 
15409 		if (val >= LONG_MAX) {
15410 			/*
15411 			 * If this is an otherwise negative value, set it to
15412 			 * the highest multiple of 128m less than LONG_MAX.
15413 			 * Technically, we're adjusting the size without
15414 			 * regard to the buffer resizing policy, but in fact,
15415 			 * this has no effect -- if we set the buffer size to
15416 			 * ~LONG_MAX and the buffer policy is ultimately set to
15417 			 * be "manual", the buffer allocation is guaranteed to
15418 			 * fail, if only because the allocation requires two
15419 			 * buffers.  (We set the the size to the highest
15420 			 * multiple of 128m because it ensures that the size
15421 			 * will remain a multiple of a megabyte when
15422 			 * repeatedly halved -- all the way down to 15m.)
15423 			 */
15424 			val = LONG_MAX - (1 << 27) + 1;
15425 		}
15426 	}
15427 
15428 	state->dts_options[option] = val;
15429 
15430 	return (0);
15431 }
15432 
15433 static void
15434 dtrace_state_destroy(dtrace_state_t *state)
15435 {
15436 	dtrace_ecb_t *ecb;
15437 	dtrace_vstate_t *vstate = &state->dts_vstate;
15438 #ifdef illumos
15439 	minor_t minor = getminor(state->dts_dev);
15440 #endif
15441 	int i, bufsize = (mp_maxid + 1) * sizeof (dtrace_buffer_t);
15442 	dtrace_speculation_t *spec = state->dts_speculations;
15443 	int nspec = state->dts_nspeculations;
15444 	uint32_t match;
15445 
15446 	ASSERT(MUTEX_HELD(&dtrace_lock));
15447 	ASSERT(MUTEX_HELD(&cpu_lock));
15448 
15449 	/*
15450 	 * First, retract any retained enablings for this state.
15451 	 */
15452 	dtrace_enabling_retract(state);
15453 	ASSERT(state->dts_nretained == 0);
15454 
15455 	if (state->dts_activity == DTRACE_ACTIVITY_ACTIVE ||
15456 	    state->dts_activity == DTRACE_ACTIVITY_DRAINING) {
15457 		/*
15458 		 * We have managed to come into dtrace_state_destroy() on a
15459 		 * hot enabling -- almost certainly because of a disorderly
15460 		 * shutdown of a consumer.  (That is, a consumer that is
15461 		 * exiting without having called dtrace_stop().) In this case,
15462 		 * we're going to set our activity to be KILLED, and then
15463 		 * issue a sync to be sure that everyone is out of probe
15464 		 * context before we start blowing away ECBs.
15465 		 */
15466 		state->dts_activity = DTRACE_ACTIVITY_KILLED;
15467 		dtrace_sync();
15468 	}
15469 
15470 	/*
15471 	 * Release the credential hold we took in dtrace_state_create().
15472 	 */
15473 	if (state->dts_cred.dcr_cred != NULL)
15474 		crfree(state->dts_cred.dcr_cred);
15475 
15476 	/*
15477 	 * Now we can safely disable and destroy any enabled probes.  Because
15478 	 * any DTRACE_PRIV_KERNEL probes may actually be slowing our progress
15479 	 * (especially if they're all enabled), we take two passes through the
15480 	 * ECBs:  in the first, we disable just DTRACE_PRIV_KERNEL probes, and
15481 	 * in the second we disable whatever is left over.
15482 	 */
15483 	for (match = DTRACE_PRIV_KERNEL; ; match = 0) {
15484 		for (i = 0; i < state->dts_necbs; i++) {
15485 			if ((ecb = state->dts_ecbs[i]) == NULL)
15486 				continue;
15487 
15488 			if (match && ecb->dte_probe != NULL) {
15489 				dtrace_probe_t *probe = ecb->dte_probe;
15490 				dtrace_provider_t *prov = probe->dtpr_provider;
15491 
15492 				if (!(prov->dtpv_priv.dtpp_flags & match))
15493 					continue;
15494 			}
15495 
15496 			dtrace_ecb_disable(ecb);
15497 			dtrace_ecb_destroy(ecb);
15498 		}
15499 
15500 		if (!match)
15501 			break;
15502 	}
15503 
15504 	/*
15505 	 * Before we free the buffers, perform one more sync to assure that
15506 	 * every CPU is out of probe context.
15507 	 */
15508 	dtrace_sync();
15509 
15510 	dtrace_buffer_free(state->dts_buffer);
15511 	dtrace_buffer_free(state->dts_aggbuffer);
15512 
15513 	for (i = 0; i < nspec; i++)
15514 		dtrace_buffer_free(spec[i].dtsp_buffer);
15515 
15516 #ifdef illumos
15517 	if (state->dts_cleaner != CYCLIC_NONE)
15518 		cyclic_remove(state->dts_cleaner);
15519 
15520 	if (state->dts_deadman != CYCLIC_NONE)
15521 		cyclic_remove(state->dts_deadman);
15522 #else
15523 	callout_stop(&state->dts_cleaner);
15524 	callout_drain(&state->dts_cleaner);
15525 	callout_stop(&state->dts_deadman);
15526 	callout_drain(&state->dts_deadman);
15527 #endif
15528 
15529 	dtrace_dstate_fini(&vstate->dtvs_dynvars);
15530 	dtrace_vstate_fini(vstate);
15531 	if (state->dts_ecbs != NULL)
15532 		kmem_free(state->dts_ecbs, state->dts_necbs * sizeof (dtrace_ecb_t *));
15533 
15534 	if (state->dts_aggregations != NULL) {
15535 #ifdef DEBUG
15536 		for (i = 0; i < state->dts_naggregations; i++)
15537 			ASSERT(state->dts_aggregations[i] == NULL);
15538 #endif
15539 		ASSERT(state->dts_naggregations > 0);
15540 		kmem_free(state->dts_aggregations,
15541 		    state->dts_naggregations * sizeof (dtrace_aggregation_t *));
15542 	}
15543 
15544 	kmem_free(state->dts_buffer, bufsize);
15545 	kmem_free(state->dts_aggbuffer, bufsize);
15546 
15547 	for (i = 0; i < nspec; i++)
15548 		kmem_free(spec[i].dtsp_buffer, bufsize);
15549 
15550 	if (spec != NULL)
15551 		kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
15552 
15553 	dtrace_format_destroy(state);
15554 
15555 	if (state->dts_aggid_arena != NULL) {
15556 #ifdef illumos
15557 		vmem_destroy(state->dts_aggid_arena);
15558 #else
15559 		delete_unrhdr(state->dts_aggid_arena);
15560 #endif
15561 		state->dts_aggid_arena = NULL;
15562 	}
15563 #ifdef illumos
15564 	ddi_soft_state_free(dtrace_softstate, minor);
15565 	vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
15566 #endif
15567 }
15568 
15569 /*
15570  * DTrace Anonymous Enabling Functions
15571  */
15572 static dtrace_state_t *
15573 dtrace_anon_grab(void)
15574 {
15575 	dtrace_state_t *state;
15576 
15577 	ASSERT(MUTEX_HELD(&dtrace_lock));
15578 
15579 	if ((state = dtrace_anon.dta_state) == NULL) {
15580 		ASSERT(dtrace_anon.dta_enabling == NULL);
15581 		return (NULL);
15582 	}
15583 
15584 	ASSERT(dtrace_anon.dta_enabling != NULL);
15585 	ASSERT(dtrace_retained != NULL);
15586 
15587 	dtrace_enabling_destroy(dtrace_anon.dta_enabling);
15588 	dtrace_anon.dta_enabling = NULL;
15589 	dtrace_anon.dta_state = NULL;
15590 
15591 	return (state);
15592 }
15593 
15594 static void
15595 dtrace_anon_property(void)
15596 {
15597 	int i, rv;
15598 	dtrace_state_t *state;
15599 	dof_hdr_t *dof;
15600 	char c[32];		/* enough for "dof-data-" + digits */
15601 
15602 	ASSERT(MUTEX_HELD(&dtrace_lock));
15603 	ASSERT(MUTEX_HELD(&cpu_lock));
15604 
15605 	for (i = 0; ; i++) {
15606 		(void) snprintf(c, sizeof (c), "dof-data-%d", i);
15607 
15608 		dtrace_err_verbose = 1;
15609 
15610 		if ((dof = dtrace_dof_property(c)) == NULL) {
15611 			dtrace_err_verbose = 0;
15612 			break;
15613 		}
15614 
15615 #ifdef illumos
15616 		/*
15617 		 * We want to create anonymous state, so we need to transition
15618 		 * the kernel debugger to indicate that DTrace is active.  If
15619 		 * this fails (e.g. because the debugger has modified text in
15620 		 * some way), we won't continue with the processing.
15621 		 */
15622 		if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
15623 			cmn_err(CE_NOTE, "kernel debugger active; anonymous "
15624 			    "enabling ignored.");
15625 			dtrace_dof_destroy(dof);
15626 			break;
15627 		}
15628 #endif
15629 
15630 		/*
15631 		 * If we haven't allocated an anonymous state, we'll do so now.
15632 		 */
15633 		if ((state = dtrace_anon.dta_state) == NULL) {
15634 			state = dtrace_state_create(NULL, NULL);
15635 			dtrace_anon.dta_state = state;
15636 
15637 			if (state == NULL) {
15638 				/*
15639 				 * This basically shouldn't happen:  the only
15640 				 * failure mode from dtrace_state_create() is a
15641 				 * failure of ddi_soft_state_zalloc() that
15642 				 * itself should never happen.  Still, the
15643 				 * interface allows for a failure mode, and
15644 				 * we want to fail as gracefully as possible:
15645 				 * we'll emit an error message and cease
15646 				 * processing anonymous state in this case.
15647 				 */
15648 				cmn_err(CE_WARN, "failed to create "
15649 				    "anonymous state");
15650 				dtrace_dof_destroy(dof);
15651 				break;
15652 			}
15653 		}
15654 
15655 		rv = dtrace_dof_slurp(dof, &state->dts_vstate, CRED(),
15656 		    &dtrace_anon.dta_enabling, 0, 0, B_TRUE);
15657 
15658 		if (rv == 0)
15659 			rv = dtrace_dof_options(dof, state);
15660 
15661 		dtrace_err_verbose = 0;
15662 		dtrace_dof_destroy(dof);
15663 
15664 		if (rv != 0) {
15665 			/*
15666 			 * This is malformed DOF; chuck any anonymous state
15667 			 * that we created.
15668 			 */
15669 			ASSERT(dtrace_anon.dta_enabling == NULL);
15670 			dtrace_state_destroy(state);
15671 			dtrace_anon.dta_state = NULL;
15672 			break;
15673 		}
15674 
15675 		ASSERT(dtrace_anon.dta_enabling != NULL);
15676 	}
15677 
15678 	if (dtrace_anon.dta_enabling != NULL) {
15679 		int rval;
15680 
15681 		/*
15682 		 * dtrace_enabling_retain() can only fail because we are
15683 		 * trying to retain more enablings than are allowed -- but
15684 		 * we only have one anonymous enabling, and we are guaranteed
15685 		 * to be allowed at least one retained enabling; we assert
15686 		 * that dtrace_enabling_retain() returns success.
15687 		 */
15688 		rval = dtrace_enabling_retain(dtrace_anon.dta_enabling);
15689 		ASSERT(rval == 0);
15690 
15691 		dtrace_enabling_dump(dtrace_anon.dta_enabling);
15692 	}
15693 }
15694 
15695 /*
15696  * DTrace Helper Functions
15697  */
15698 static void
15699 dtrace_helper_trace(dtrace_helper_action_t *helper,
15700     dtrace_mstate_t *mstate, dtrace_vstate_t *vstate, int where)
15701 {
15702 	uint32_t size, next, nnext, i;
15703 	dtrace_helptrace_t *ent, *buffer;
15704 	uint16_t flags = cpu_core[curcpu].cpuc_dtrace_flags;
15705 
15706 	if ((buffer = dtrace_helptrace_buffer) == NULL)
15707 		return;
15708 
15709 	ASSERT(vstate->dtvs_nlocals <= dtrace_helptrace_nlocals);
15710 
15711 	/*
15712 	 * What would a tracing framework be without its own tracing
15713 	 * framework?  (Well, a hell of a lot simpler, for starters...)
15714 	 */
15715 	size = sizeof (dtrace_helptrace_t) + dtrace_helptrace_nlocals *
15716 	    sizeof (uint64_t) - sizeof (uint64_t);
15717 
15718 	/*
15719 	 * Iterate until we can allocate a slot in the trace buffer.
15720 	 */
15721 	do {
15722 		next = dtrace_helptrace_next;
15723 
15724 		if (next + size < dtrace_helptrace_bufsize) {
15725 			nnext = next + size;
15726 		} else {
15727 			nnext = size;
15728 		}
15729 	} while (dtrace_cas32(&dtrace_helptrace_next, next, nnext) != next);
15730 
15731 	/*
15732 	 * We have our slot; fill it in.
15733 	 */
15734 	if (nnext == size) {
15735 		dtrace_helptrace_wrapped++;
15736 		next = 0;
15737 	}
15738 
15739 	ent = (dtrace_helptrace_t *)((uintptr_t)buffer + next);
15740 	ent->dtht_helper = helper;
15741 	ent->dtht_where = where;
15742 	ent->dtht_nlocals = vstate->dtvs_nlocals;
15743 
15744 	ent->dtht_fltoffs = (mstate->dtms_present & DTRACE_MSTATE_FLTOFFS) ?
15745 	    mstate->dtms_fltoffs : -1;
15746 	ent->dtht_fault = DTRACE_FLAGS2FLT(flags);
15747 	ent->dtht_illval = cpu_core[curcpu].cpuc_dtrace_illval;
15748 
15749 	for (i = 0; i < vstate->dtvs_nlocals; i++) {
15750 		dtrace_statvar_t *svar;
15751 
15752 		if ((svar = vstate->dtvs_locals[i]) == NULL)
15753 			continue;
15754 
15755 		ASSERT(svar->dtsv_size >= (mp_maxid + 1) * sizeof (uint64_t));
15756 		ent->dtht_locals[i] =
15757 		    ((uint64_t *)(uintptr_t)svar->dtsv_data)[curcpu];
15758 	}
15759 }
15760 
15761 static uint64_t
15762 dtrace_helper(int which, dtrace_mstate_t *mstate,
15763     dtrace_state_t *state, uint64_t arg0, uint64_t arg1)
15764 {
15765 	uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
15766 	uint64_t sarg0 = mstate->dtms_arg[0];
15767 	uint64_t sarg1 = mstate->dtms_arg[1];
15768 	uint64_t rval = 0;
15769 	dtrace_helpers_t *helpers = curproc->p_dtrace_helpers;
15770 	dtrace_helper_action_t *helper;
15771 	dtrace_vstate_t *vstate;
15772 	dtrace_difo_t *pred;
15773 	int i, trace = dtrace_helptrace_buffer != NULL;
15774 
15775 	ASSERT(which >= 0 && which < DTRACE_NHELPER_ACTIONS);
15776 
15777 	if (helpers == NULL)
15778 		return (0);
15779 
15780 	if ((helper = helpers->dthps_actions[which]) == NULL)
15781 		return (0);
15782 
15783 	vstate = &helpers->dthps_vstate;
15784 	mstate->dtms_arg[0] = arg0;
15785 	mstate->dtms_arg[1] = arg1;
15786 
15787 	/*
15788 	 * Now iterate over each helper.  If its predicate evaluates to 'true',
15789 	 * we'll call the corresponding actions.  Note that the below calls
15790 	 * to dtrace_dif_emulate() may set faults in machine state.  This is
15791 	 * okay:  our caller (the outer dtrace_dif_emulate()) will simply plow
15792 	 * the stored DIF offset with its own (which is the desired behavior).
15793 	 * Also, note the calls to dtrace_dif_emulate() may allocate scratch
15794 	 * from machine state; this is okay, too.
15795 	 */
15796 	for (; helper != NULL; helper = helper->dtha_next) {
15797 		if ((pred = helper->dtha_predicate) != NULL) {
15798 			if (trace)
15799 				dtrace_helper_trace(helper, mstate, vstate, 0);
15800 
15801 			if (!dtrace_dif_emulate(pred, mstate, vstate, state))
15802 				goto next;
15803 
15804 			if (*flags & CPU_DTRACE_FAULT)
15805 				goto err;
15806 		}
15807 
15808 		for (i = 0; i < helper->dtha_nactions; i++) {
15809 			if (trace)
15810 				dtrace_helper_trace(helper,
15811 				    mstate, vstate, i + 1);
15812 
15813 			rval = dtrace_dif_emulate(helper->dtha_actions[i],
15814 			    mstate, vstate, state);
15815 
15816 			if (*flags & CPU_DTRACE_FAULT)
15817 				goto err;
15818 		}
15819 
15820 next:
15821 		if (trace)
15822 			dtrace_helper_trace(helper, mstate, vstate,
15823 			    DTRACE_HELPTRACE_NEXT);
15824 	}
15825 
15826 	if (trace)
15827 		dtrace_helper_trace(helper, mstate, vstate,
15828 		    DTRACE_HELPTRACE_DONE);
15829 
15830 	/*
15831 	 * Restore the arg0 that we saved upon entry.
15832 	 */
15833 	mstate->dtms_arg[0] = sarg0;
15834 	mstate->dtms_arg[1] = sarg1;
15835 
15836 	return (rval);
15837 
15838 err:
15839 	if (trace)
15840 		dtrace_helper_trace(helper, mstate, vstate,
15841 		    DTRACE_HELPTRACE_ERR);
15842 
15843 	/*
15844 	 * Restore the arg0 that we saved upon entry.
15845 	 */
15846 	mstate->dtms_arg[0] = sarg0;
15847 	mstate->dtms_arg[1] = sarg1;
15848 
15849 	return (0);
15850 }
15851 
15852 static void
15853 dtrace_helper_action_destroy(dtrace_helper_action_t *helper,
15854     dtrace_vstate_t *vstate)
15855 {
15856 	int i;
15857 
15858 	if (helper->dtha_predicate != NULL)
15859 		dtrace_difo_release(helper->dtha_predicate, vstate);
15860 
15861 	for (i = 0; i < helper->dtha_nactions; i++) {
15862 		ASSERT(helper->dtha_actions[i] != NULL);
15863 		dtrace_difo_release(helper->dtha_actions[i], vstate);
15864 	}
15865 
15866 	kmem_free(helper->dtha_actions,
15867 	    helper->dtha_nactions * sizeof (dtrace_difo_t *));
15868 	kmem_free(helper, sizeof (dtrace_helper_action_t));
15869 }
15870 
15871 static int
15872 dtrace_helper_destroygen(dtrace_helpers_t *help, int gen)
15873 {
15874 	proc_t *p = curproc;
15875 	dtrace_vstate_t *vstate;
15876 	int i;
15877 
15878 	if (help == NULL)
15879 		help = p->p_dtrace_helpers;
15880 
15881 	ASSERT(MUTEX_HELD(&dtrace_lock));
15882 
15883 	if (help == NULL || gen > help->dthps_generation)
15884 		return (EINVAL);
15885 
15886 	vstate = &help->dthps_vstate;
15887 
15888 	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
15889 		dtrace_helper_action_t *last = NULL, *h, *next;
15890 
15891 		for (h = help->dthps_actions[i]; h != NULL; h = next) {
15892 			next = h->dtha_next;
15893 
15894 			if (h->dtha_generation == gen) {
15895 				if (last != NULL) {
15896 					last->dtha_next = next;
15897 				} else {
15898 					help->dthps_actions[i] = next;
15899 				}
15900 
15901 				dtrace_helper_action_destroy(h, vstate);
15902 			} else {
15903 				last = h;
15904 			}
15905 		}
15906 	}
15907 
15908 	/*
15909 	 * Interate until we've cleared out all helper providers with the
15910 	 * given generation number.
15911 	 */
15912 	for (;;) {
15913 		dtrace_helper_provider_t *prov;
15914 
15915 		/*
15916 		 * Look for a helper provider with the right generation. We
15917 		 * have to start back at the beginning of the list each time
15918 		 * because we drop dtrace_lock. It's unlikely that we'll make
15919 		 * more than two passes.
15920 		 */
15921 		for (i = 0; i < help->dthps_nprovs; i++) {
15922 			prov = help->dthps_provs[i];
15923 
15924 			if (prov->dthp_generation == gen)
15925 				break;
15926 		}
15927 
15928 		/*
15929 		 * If there were no matches, we're done.
15930 		 */
15931 		if (i == help->dthps_nprovs)
15932 			break;
15933 
15934 		/*
15935 		 * Move the last helper provider into this slot.
15936 		 */
15937 		help->dthps_nprovs--;
15938 		help->dthps_provs[i] = help->dthps_provs[help->dthps_nprovs];
15939 		help->dthps_provs[help->dthps_nprovs] = NULL;
15940 
15941 		mutex_exit(&dtrace_lock);
15942 
15943 		/*
15944 		 * If we have a meta provider, remove this helper provider.
15945 		 */
15946 		mutex_enter(&dtrace_meta_lock);
15947 		if (dtrace_meta_pid != NULL) {
15948 			ASSERT(dtrace_deferred_pid == NULL);
15949 			dtrace_helper_provider_remove(&prov->dthp_prov,
15950 			    p->p_pid);
15951 		}
15952 		mutex_exit(&dtrace_meta_lock);
15953 
15954 		dtrace_helper_provider_destroy(prov);
15955 
15956 		mutex_enter(&dtrace_lock);
15957 	}
15958 
15959 	return (0);
15960 }
15961 
15962 static int
15963 dtrace_helper_validate(dtrace_helper_action_t *helper)
15964 {
15965 	int err = 0, i;
15966 	dtrace_difo_t *dp;
15967 
15968 	if ((dp = helper->dtha_predicate) != NULL)
15969 		err += dtrace_difo_validate_helper(dp);
15970 
15971 	for (i = 0; i < helper->dtha_nactions; i++)
15972 		err += dtrace_difo_validate_helper(helper->dtha_actions[i]);
15973 
15974 	return (err == 0);
15975 }
15976 
15977 static int
15978 dtrace_helper_action_add(int which, dtrace_ecbdesc_t *ep,
15979     dtrace_helpers_t *help)
15980 {
15981 	dtrace_helper_action_t *helper, *last;
15982 	dtrace_actdesc_t *act;
15983 	dtrace_vstate_t *vstate;
15984 	dtrace_predicate_t *pred;
15985 	int count = 0, nactions = 0, i;
15986 
15987 	if (which < 0 || which >= DTRACE_NHELPER_ACTIONS)
15988 		return (EINVAL);
15989 
15990 	last = help->dthps_actions[which];
15991 	vstate = &help->dthps_vstate;
15992 
15993 	for (count = 0; last != NULL; last = last->dtha_next) {
15994 		count++;
15995 		if (last->dtha_next == NULL)
15996 			break;
15997 	}
15998 
15999 	/*
16000 	 * If we already have dtrace_helper_actions_max helper actions for this
16001 	 * helper action type, we'll refuse to add a new one.
16002 	 */
16003 	if (count >= dtrace_helper_actions_max)
16004 		return (ENOSPC);
16005 
16006 	helper = kmem_zalloc(sizeof (dtrace_helper_action_t), KM_SLEEP);
16007 	helper->dtha_generation = help->dthps_generation;
16008 
16009 	if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) {
16010 		ASSERT(pred->dtp_difo != NULL);
16011 		dtrace_difo_hold(pred->dtp_difo);
16012 		helper->dtha_predicate = pred->dtp_difo;
16013 	}
16014 
16015 	for (act = ep->dted_action; act != NULL; act = act->dtad_next) {
16016 		if (act->dtad_kind != DTRACEACT_DIFEXPR)
16017 			goto err;
16018 
16019 		if (act->dtad_difo == NULL)
16020 			goto err;
16021 
16022 		nactions++;
16023 	}
16024 
16025 	helper->dtha_actions = kmem_zalloc(sizeof (dtrace_difo_t *) *
16026 	    (helper->dtha_nactions = nactions), KM_SLEEP);
16027 
16028 	for (act = ep->dted_action, i = 0; act != NULL; act = act->dtad_next) {
16029 		dtrace_difo_hold(act->dtad_difo);
16030 		helper->dtha_actions[i++] = act->dtad_difo;
16031 	}
16032 
16033 	if (!dtrace_helper_validate(helper))
16034 		goto err;
16035 
16036 	if (last == NULL) {
16037 		help->dthps_actions[which] = helper;
16038 	} else {
16039 		last->dtha_next = helper;
16040 	}
16041 
16042 	if (vstate->dtvs_nlocals > dtrace_helptrace_nlocals) {
16043 		dtrace_helptrace_nlocals = vstate->dtvs_nlocals;
16044 		dtrace_helptrace_next = 0;
16045 	}
16046 
16047 	return (0);
16048 err:
16049 	dtrace_helper_action_destroy(helper, vstate);
16050 	return (EINVAL);
16051 }
16052 
16053 static void
16054 dtrace_helper_provider_register(proc_t *p, dtrace_helpers_t *help,
16055     dof_helper_t *dofhp)
16056 {
16057 	ASSERT(MUTEX_NOT_HELD(&dtrace_lock));
16058 
16059 	mutex_enter(&dtrace_meta_lock);
16060 	mutex_enter(&dtrace_lock);
16061 
16062 	if (!dtrace_attached() || dtrace_meta_pid == NULL) {
16063 		/*
16064 		 * If the dtrace module is loaded but not attached, or if
16065 		 * there aren't isn't a meta provider registered to deal with
16066 		 * these provider descriptions, we need to postpone creating
16067 		 * the actual providers until later.
16068 		 */
16069 
16070 		if (help->dthps_next == NULL && help->dthps_prev == NULL &&
16071 		    dtrace_deferred_pid != help) {
16072 			help->dthps_deferred = 1;
16073 			help->dthps_pid = p->p_pid;
16074 			help->dthps_next = dtrace_deferred_pid;
16075 			help->dthps_prev = NULL;
16076 			if (dtrace_deferred_pid != NULL)
16077 				dtrace_deferred_pid->dthps_prev = help;
16078 			dtrace_deferred_pid = help;
16079 		}
16080 
16081 		mutex_exit(&dtrace_lock);
16082 
16083 	} else if (dofhp != NULL) {
16084 		/*
16085 		 * If the dtrace module is loaded and we have a particular
16086 		 * helper provider description, pass that off to the
16087 		 * meta provider.
16088 		 */
16089 
16090 		mutex_exit(&dtrace_lock);
16091 
16092 		dtrace_helper_provide(dofhp, p->p_pid);
16093 
16094 	} else {
16095 		/*
16096 		 * Otherwise, just pass all the helper provider descriptions
16097 		 * off to the meta provider.
16098 		 */
16099 
16100 		int i;
16101 		mutex_exit(&dtrace_lock);
16102 
16103 		for (i = 0; i < help->dthps_nprovs; i++) {
16104 			dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
16105 			    p->p_pid);
16106 		}
16107 	}
16108 
16109 	mutex_exit(&dtrace_meta_lock);
16110 }
16111 
16112 static int
16113 dtrace_helper_provider_add(dof_helper_t *dofhp, dtrace_helpers_t *help, int gen)
16114 {
16115 	dtrace_helper_provider_t *hprov, **tmp_provs;
16116 	uint_t tmp_maxprovs, i;
16117 
16118 	ASSERT(MUTEX_HELD(&dtrace_lock));
16119 	ASSERT(help != NULL);
16120 
16121 	/*
16122 	 * If we already have dtrace_helper_providers_max helper providers,
16123 	 * we're refuse to add a new one.
16124 	 */
16125 	if (help->dthps_nprovs >= dtrace_helper_providers_max)
16126 		return (ENOSPC);
16127 
16128 	/*
16129 	 * Check to make sure this isn't a duplicate.
16130 	 */
16131 	for (i = 0; i < help->dthps_nprovs; i++) {
16132 		if (dofhp->dofhp_addr ==
16133 		    help->dthps_provs[i]->dthp_prov.dofhp_addr)
16134 			return (EALREADY);
16135 	}
16136 
16137 	hprov = kmem_zalloc(sizeof (dtrace_helper_provider_t), KM_SLEEP);
16138 	hprov->dthp_prov = *dofhp;
16139 	hprov->dthp_ref = 1;
16140 	hprov->dthp_generation = gen;
16141 
16142 	/*
16143 	 * Allocate a bigger table for helper providers if it's already full.
16144 	 */
16145 	if (help->dthps_maxprovs == help->dthps_nprovs) {
16146 		tmp_maxprovs = help->dthps_maxprovs;
16147 		tmp_provs = help->dthps_provs;
16148 
16149 		if (help->dthps_maxprovs == 0)
16150 			help->dthps_maxprovs = 2;
16151 		else
16152 			help->dthps_maxprovs *= 2;
16153 		if (help->dthps_maxprovs > dtrace_helper_providers_max)
16154 			help->dthps_maxprovs = dtrace_helper_providers_max;
16155 
16156 		ASSERT(tmp_maxprovs < help->dthps_maxprovs);
16157 
16158 		help->dthps_provs = kmem_zalloc(help->dthps_maxprovs *
16159 		    sizeof (dtrace_helper_provider_t *), KM_SLEEP);
16160 
16161 		if (tmp_provs != NULL) {
16162 			bcopy(tmp_provs, help->dthps_provs, tmp_maxprovs *
16163 			    sizeof (dtrace_helper_provider_t *));
16164 			kmem_free(tmp_provs, tmp_maxprovs *
16165 			    sizeof (dtrace_helper_provider_t *));
16166 		}
16167 	}
16168 
16169 	help->dthps_provs[help->dthps_nprovs] = hprov;
16170 	help->dthps_nprovs++;
16171 
16172 	return (0);
16173 }
16174 
16175 static void
16176 dtrace_helper_provider_destroy(dtrace_helper_provider_t *hprov)
16177 {
16178 	mutex_enter(&dtrace_lock);
16179 
16180 	if (--hprov->dthp_ref == 0) {
16181 		dof_hdr_t *dof;
16182 		mutex_exit(&dtrace_lock);
16183 		dof = (dof_hdr_t *)(uintptr_t)hprov->dthp_prov.dofhp_dof;
16184 		dtrace_dof_destroy(dof);
16185 		kmem_free(hprov, sizeof (dtrace_helper_provider_t));
16186 	} else {
16187 		mutex_exit(&dtrace_lock);
16188 	}
16189 }
16190 
16191 static int
16192 dtrace_helper_provider_validate(dof_hdr_t *dof, dof_sec_t *sec)
16193 {
16194 	uintptr_t daddr = (uintptr_t)dof;
16195 	dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
16196 	dof_provider_t *provider;
16197 	dof_probe_t *probe;
16198 	uint8_t *arg;
16199 	char *strtab, *typestr;
16200 	dof_stridx_t typeidx;
16201 	size_t typesz;
16202 	uint_t nprobes, j, k;
16203 
16204 	ASSERT(sec->dofs_type == DOF_SECT_PROVIDER);
16205 
16206 	if (sec->dofs_offset & (sizeof (uint_t) - 1)) {
16207 		dtrace_dof_error(dof, "misaligned section offset");
16208 		return (-1);
16209 	}
16210 
16211 	/*
16212 	 * The section needs to be large enough to contain the DOF provider
16213 	 * structure appropriate for the given version.
16214 	 */
16215 	if (sec->dofs_size <
16216 	    ((dof->dofh_ident[DOF_ID_VERSION] == DOF_VERSION_1) ?
16217 	    offsetof(dof_provider_t, dofpv_prenoffs) :
16218 	    sizeof (dof_provider_t))) {
16219 		dtrace_dof_error(dof, "provider section too small");
16220 		return (-1);
16221 	}
16222 
16223 	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
16224 	str_sec = dtrace_dof_sect(dof, DOF_SECT_STRTAB, provider->dofpv_strtab);
16225 	prb_sec = dtrace_dof_sect(dof, DOF_SECT_PROBES, provider->dofpv_probes);
16226 	arg_sec = dtrace_dof_sect(dof, DOF_SECT_PRARGS, provider->dofpv_prargs);
16227 	off_sec = dtrace_dof_sect(dof, DOF_SECT_PROFFS, provider->dofpv_proffs);
16228 
16229 	if (str_sec == NULL || prb_sec == NULL ||
16230 	    arg_sec == NULL || off_sec == NULL)
16231 		return (-1);
16232 
16233 	enoff_sec = NULL;
16234 
16235 	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
16236 	    provider->dofpv_prenoffs != DOF_SECT_NONE &&
16237 	    (enoff_sec = dtrace_dof_sect(dof, DOF_SECT_PRENOFFS,
16238 	    provider->dofpv_prenoffs)) == NULL)
16239 		return (-1);
16240 
16241 	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
16242 
16243 	if (provider->dofpv_name >= str_sec->dofs_size ||
16244 	    strlen(strtab + provider->dofpv_name) >= DTRACE_PROVNAMELEN) {
16245 		dtrace_dof_error(dof, "invalid provider name");
16246 		return (-1);
16247 	}
16248 
16249 	if (prb_sec->dofs_entsize == 0 ||
16250 	    prb_sec->dofs_entsize > prb_sec->dofs_size) {
16251 		dtrace_dof_error(dof, "invalid entry size");
16252 		return (-1);
16253 	}
16254 
16255 	if (prb_sec->dofs_entsize & (sizeof (uintptr_t) - 1)) {
16256 		dtrace_dof_error(dof, "misaligned entry size");
16257 		return (-1);
16258 	}
16259 
16260 	if (off_sec->dofs_entsize != sizeof (uint32_t)) {
16261 		dtrace_dof_error(dof, "invalid entry size");
16262 		return (-1);
16263 	}
16264 
16265 	if (off_sec->dofs_offset & (sizeof (uint32_t) - 1)) {
16266 		dtrace_dof_error(dof, "misaligned section offset");
16267 		return (-1);
16268 	}
16269 
16270 	if (arg_sec->dofs_entsize != sizeof (uint8_t)) {
16271 		dtrace_dof_error(dof, "invalid entry size");
16272 		return (-1);
16273 	}
16274 
16275 	arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
16276 
16277 	nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
16278 
16279 	/*
16280 	 * Take a pass through the probes to check for errors.
16281 	 */
16282 	for (j = 0; j < nprobes; j++) {
16283 		probe = (dof_probe_t *)(uintptr_t)(daddr +
16284 		    prb_sec->dofs_offset + j * prb_sec->dofs_entsize);
16285 
16286 		if (probe->dofpr_func >= str_sec->dofs_size) {
16287 			dtrace_dof_error(dof, "invalid function name");
16288 			return (-1);
16289 		}
16290 
16291 		if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) {
16292 			dtrace_dof_error(dof, "function name too long");
16293 			/*
16294 			 * Keep going if the function name is too long.
16295 			 * Unlike provider and probe names, we cannot reasonably
16296 			 * impose restrictions on function names, since they're
16297 			 * a property of the code being instrumented. We will
16298 			 * skip this probe in dtrace_helper_provide_one().
16299 			 */
16300 		}
16301 
16302 		if (probe->dofpr_name >= str_sec->dofs_size ||
16303 		    strlen(strtab + probe->dofpr_name) >= DTRACE_NAMELEN) {
16304 			dtrace_dof_error(dof, "invalid probe name");
16305 			return (-1);
16306 		}
16307 
16308 		/*
16309 		 * The offset count must not wrap the index, and the offsets
16310 		 * must also not overflow the section's data.
16311 		 */
16312 		if (probe->dofpr_offidx + probe->dofpr_noffs <
16313 		    probe->dofpr_offidx ||
16314 		    (probe->dofpr_offidx + probe->dofpr_noffs) *
16315 		    off_sec->dofs_entsize > off_sec->dofs_size) {
16316 			dtrace_dof_error(dof, "invalid probe offset");
16317 			return (-1);
16318 		}
16319 
16320 		if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1) {
16321 			/*
16322 			 * If there's no is-enabled offset section, make sure
16323 			 * there aren't any is-enabled offsets. Otherwise
16324 			 * perform the same checks as for probe offsets
16325 			 * (immediately above).
16326 			 */
16327 			if (enoff_sec == NULL) {
16328 				if (probe->dofpr_enoffidx != 0 ||
16329 				    probe->dofpr_nenoffs != 0) {
16330 					dtrace_dof_error(dof, "is-enabled "
16331 					    "offsets with null section");
16332 					return (-1);
16333 				}
16334 			} else if (probe->dofpr_enoffidx +
16335 			    probe->dofpr_nenoffs < probe->dofpr_enoffidx ||
16336 			    (probe->dofpr_enoffidx + probe->dofpr_nenoffs) *
16337 			    enoff_sec->dofs_entsize > enoff_sec->dofs_size) {
16338 				dtrace_dof_error(dof, "invalid is-enabled "
16339 				    "offset");
16340 				return (-1);
16341 			}
16342 
16343 			if (probe->dofpr_noffs + probe->dofpr_nenoffs == 0) {
16344 				dtrace_dof_error(dof, "zero probe and "
16345 				    "is-enabled offsets");
16346 				return (-1);
16347 			}
16348 		} else if (probe->dofpr_noffs == 0) {
16349 			dtrace_dof_error(dof, "zero probe offsets");
16350 			return (-1);
16351 		}
16352 
16353 		if (probe->dofpr_argidx + probe->dofpr_xargc <
16354 		    probe->dofpr_argidx ||
16355 		    (probe->dofpr_argidx + probe->dofpr_xargc) *
16356 		    arg_sec->dofs_entsize > arg_sec->dofs_size) {
16357 			dtrace_dof_error(dof, "invalid args");
16358 			return (-1);
16359 		}
16360 
16361 		typeidx = probe->dofpr_nargv;
16362 		typestr = strtab + probe->dofpr_nargv;
16363 		for (k = 0; k < probe->dofpr_nargc; k++) {
16364 			if (typeidx >= str_sec->dofs_size) {
16365 				dtrace_dof_error(dof, "bad "
16366 				    "native argument type");
16367 				return (-1);
16368 			}
16369 
16370 			typesz = strlen(typestr) + 1;
16371 			if (typesz > DTRACE_ARGTYPELEN) {
16372 				dtrace_dof_error(dof, "native "
16373 				    "argument type too long");
16374 				return (-1);
16375 			}
16376 			typeidx += typesz;
16377 			typestr += typesz;
16378 		}
16379 
16380 		typeidx = probe->dofpr_xargv;
16381 		typestr = strtab + probe->dofpr_xargv;
16382 		for (k = 0; k < probe->dofpr_xargc; k++) {
16383 			if (arg[probe->dofpr_argidx + k] > probe->dofpr_nargc) {
16384 				dtrace_dof_error(dof, "bad "
16385 				    "native argument index");
16386 				return (-1);
16387 			}
16388 
16389 			if (typeidx >= str_sec->dofs_size) {
16390 				dtrace_dof_error(dof, "bad "
16391 				    "translated argument type");
16392 				return (-1);
16393 			}
16394 
16395 			typesz = strlen(typestr) + 1;
16396 			if (typesz > DTRACE_ARGTYPELEN) {
16397 				dtrace_dof_error(dof, "translated argument "
16398 				    "type too long");
16399 				return (-1);
16400 			}
16401 
16402 			typeidx += typesz;
16403 			typestr += typesz;
16404 		}
16405 	}
16406 
16407 	return (0);
16408 }
16409 
16410 static int
16411 dtrace_helper_slurp(dof_hdr_t *dof, dof_helper_t *dhp, struct proc *p)
16412 {
16413 	dtrace_helpers_t *help;
16414 	dtrace_vstate_t *vstate;
16415 	dtrace_enabling_t *enab = NULL;
16416 	int i, gen, rv, nhelpers = 0, nprovs = 0, destroy = 1;
16417 	uintptr_t daddr = (uintptr_t)dof;
16418 
16419 	ASSERT(MUTEX_HELD(&dtrace_lock));
16420 
16421 	if ((help = p->p_dtrace_helpers) == NULL)
16422 		help = dtrace_helpers_create(p);
16423 
16424 	vstate = &help->dthps_vstate;
16425 
16426 	if ((rv = dtrace_dof_slurp(dof, vstate, NULL, &enab, dhp->dofhp_addr,
16427 	    dhp->dofhp_dof, B_FALSE)) != 0) {
16428 		dtrace_dof_destroy(dof);
16429 		return (rv);
16430 	}
16431 
16432 	/*
16433 	 * Look for helper providers and validate their descriptions.
16434 	 */
16435 	for (i = 0; i < dof->dofh_secnum; i++) {
16436 		dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
16437 		    dof->dofh_secoff + i * dof->dofh_secsize);
16438 
16439 		if (sec->dofs_type != DOF_SECT_PROVIDER)
16440 			continue;
16441 
16442 		if (dtrace_helper_provider_validate(dof, sec) != 0) {
16443 			dtrace_enabling_destroy(enab);
16444 			dtrace_dof_destroy(dof);
16445 			return (-1);
16446 		}
16447 
16448 		nprovs++;
16449 	}
16450 
16451 	/*
16452 	 * Now we need to walk through the ECB descriptions in the enabling.
16453 	 */
16454 	for (i = 0; i < enab->dten_ndesc; i++) {
16455 		dtrace_ecbdesc_t *ep = enab->dten_desc[i];
16456 		dtrace_probedesc_t *desc = &ep->dted_probe;
16457 
16458 		if (strcmp(desc->dtpd_provider, "dtrace") != 0)
16459 			continue;
16460 
16461 		if (strcmp(desc->dtpd_mod, "helper") != 0)
16462 			continue;
16463 
16464 		if (strcmp(desc->dtpd_func, "ustack") != 0)
16465 			continue;
16466 
16467 		if ((rv = dtrace_helper_action_add(DTRACE_HELPER_ACTION_USTACK,
16468 		    ep, help)) != 0) {
16469 			/*
16470 			 * Adding this helper action failed -- we are now going
16471 			 * to rip out the entire generation and return failure.
16472 			 */
16473 			(void) dtrace_helper_destroygen(help,
16474 			    help->dthps_generation);
16475 			dtrace_enabling_destroy(enab);
16476 			dtrace_dof_destroy(dof);
16477 			return (-1);
16478 		}
16479 
16480 		nhelpers++;
16481 	}
16482 
16483 	if (nhelpers < enab->dten_ndesc)
16484 		dtrace_dof_error(dof, "unmatched helpers");
16485 
16486 	gen = help->dthps_generation++;
16487 	dtrace_enabling_destroy(enab);
16488 
16489 	if (nprovs > 0) {
16490 		/*
16491 		 * Now that this is in-kernel, we change the sense of the
16492 		 * members:  dofhp_dof denotes the in-kernel copy of the DOF
16493 		 * and dofhp_addr denotes the address at user-level.
16494 		 */
16495 		dhp->dofhp_addr = dhp->dofhp_dof;
16496 		dhp->dofhp_dof = (uint64_t)(uintptr_t)dof;
16497 
16498 		if (dtrace_helper_provider_add(dhp, help, gen) == 0) {
16499 			mutex_exit(&dtrace_lock);
16500 			dtrace_helper_provider_register(p, help, dhp);
16501 			mutex_enter(&dtrace_lock);
16502 
16503 			destroy = 0;
16504 		}
16505 	}
16506 
16507 	if (destroy)
16508 		dtrace_dof_destroy(dof);
16509 
16510 	return (gen);
16511 }
16512 
16513 static dtrace_helpers_t *
16514 dtrace_helpers_create(proc_t *p)
16515 {
16516 	dtrace_helpers_t *help;
16517 
16518 	ASSERT(MUTEX_HELD(&dtrace_lock));
16519 	ASSERT(p->p_dtrace_helpers == NULL);
16520 
16521 	help = kmem_zalloc(sizeof (dtrace_helpers_t), KM_SLEEP);
16522 	help->dthps_actions = kmem_zalloc(sizeof (dtrace_helper_action_t *) *
16523 	    DTRACE_NHELPER_ACTIONS, KM_SLEEP);
16524 
16525 	p->p_dtrace_helpers = help;
16526 	dtrace_helpers++;
16527 
16528 	return (help);
16529 }
16530 
16531 #ifdef illumos
16532 static
16533 #endif
16534 void
16535 dtrace_helpers_destroy(proc_t *p)
16536 {
16537 	dtrace_helpers_t *help;
16538 	dtrace_vstate_t *vstate;
16539 #ifdef illumos
16540 	proc_t *p = curproc;
16541 #endif
16542 	int i;
16543 
16544 	mutex_enter(&dtrace_lock);
16545 
16546 	ASSERT(p->p_dtrace_helpers != NULL);
16547 	ASSERT(dtrace_helpers > 0);
16548 
16549 	help = p->p_dtrace_helpers;
16550 	vstate = &help->dthps_vstate;
16551 
16552 	/*
16553 	 * We're now going to lose the help from this process.
16554 	 */
16555 	p->p_dtrace_helpers = NULL;
16556 	dtrace_sync();
16557 
16558 	/*
16559 	 * Destory the helper actions.
16560 	 */
16561 	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
16562 		dtrace_helper_action_t *h, *next;
16563 
16564 		for (h = help->dthps_actions[i]; h != NULL; h = next) {
16565 			next = h->dtha_next;
16566 			dtrace_helper_action_destroy(h, vstate);
16567 			h = next;
16568 		}
16569 	}
16570 
16571 	mutex_exit(&dtrace_lock);
16572 
16573 	/*
16574 	 * Destroy the helper providers.
16575 	 */
16576 	if (help->dthps_maxprovs > 0) {
16577 		mutex_enter(&dtrace_meta_lock);
16578 		if (dtrace_meta_pid != NULL) {
16579 			ASSERT(dtrace_deferred_pid == NULL);
16580 
16581 			for (i = 0; i < help->dthps_nprovs; i++) {
16582 				dtrace_helper_provider_remove(
16583 				    &help->dthps_provs[i]->dthp_prov, p->p_pid);
16584 			}
16585 		} else {
16586 			mutex_enter(&dtrace_lock);
16587 			ASSERT(help->dthps_deferred == 0 ||
16588 			    help->dthps_next != NULL ||
16589 			    help->dthps_prev != NULL ||
16590 			    help == dtrace_deferred_pid);
16591 
16592 			/*
16593 			 * Remove the helper from the deferred list.
16594 			 */
16595 			if (help->dthps_next != NULL)
16596 				help->dthps_next->dthps_prev = help->dthps_prev;
16597 			if (help->dthps_prev != NULL)
16598 				help->dthps_prev->dthps_next = help->dthps_next;
16599 			if (dtrace_deferred_pid == help) {
16600 				dtrace_deferred_pid = help->dthps_next;
16601 				ASSERT(help->dthps_prev == NULL);
16602 			}
16603 
16604 			mutex_exit(&dtrace_lock);
16605 		}
16606 
16607 		mutex_exit(&dtrace_meta_lock);
16608 
16609 		for (i = 0; i < help->dthps_nprovs; i++) {
16610 			dtrace_helper_provider_destroy(help->dthps_provs[i]);
16611 		}
16612 
16613 		kmem_free(help->dthps_provs, help->dthps_maxprovs *
16614 		    sizeof (dtrace_helper_provider_t *));
16615 	}
16616 
16617 	mutex_enter(&dtrace_lock);
16618 
16619 	dtrace_vstate_fini(&help->dthps_vstate);
16620 	kmem_free(help->dthps_actions,
16621 	    sizeof (dtrace_helper_action_t *) * DTRACE_NHELPER_ACTIONS);
16622 	kmem_free(help, sizeof (dtrace_helpers_t));
16623 
16624 	--dtrace_helpers;
16625 	mutex_exit(&dtrace_lock);
16626 }
16627 
16628 #ifdef illumos
16629 static
16630 #endif
16631 void
16632 dtrace_helpers_duplicate(proc_t *from, proc_t *to)
16633 {
16634 	dtrace_helpers_t *help, *newhelp;
16635 	dtrace_helper_action_t *helper, *new, *last;
16636 	dtrace_difo_t *dp;
16637 	dtrace_vstate_t *vstate;
16638 	int i, j, sz, hasprovs = 0;
16639 
16640 	mutex_enter(&dtrace_lock);
16641 	ASSERT(from->p_dtrace_helpers != NULL);
16642 	ASSERT(dtrace_helpers > 0);
16643 
16644 	help = from->p_dtrace_helpers;
16645 	newhelp = dtrace_helpers_create(to);
16646 	ASSERT(to->p_dtrace_helpers != NULL);
16647 
16648 	newhelp->dthps_generation = help->dthps_generation;
16649 	vstate = &newhelp->dthps_vstate;
16650 
16651 	/*
16652 	 * Duplicate the helper actions.
16653 	 */
16654 	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
16655 		if ((helper = help->dthps_actions[i]) == NULL)
16656 			continue;
16657 
16658 		for (last = NULL; helper != NULL; helper = helper->dtha_next) {
16659 			new = kmem_zalloc(sizeof (dtrace_helper_action_t),
16660 			    KM_SLEEP);
16661 			new->dtha_generation = helper->dtha_generation;
16662 
16663 			if ((dp = helper->dtha_predicate) != NULL) {
16664 				dp = dtrace_difo_duplicate(dp, vstate);
16665 				new->dtha_predicate = dp;
16666 			}
16667 
16668 			new->dtha_nactions = helper->dtha_nactions;
16669 			sz = sizeof (dtrace_difo_t *) * new->dtha_nactions;
16670 			new->dtha_actions = kmem_alloc(sz, KM_SLEEP);
16671 
16672 			for (j = 0; j < new->dtha_nactions; j++) {
16673 				dtrace_difo_t *dp = helper->dtha_actions[j];
16674 
16675 				ASSERT(dp != NULL);
16676 				dp = dtrace_difo_duplicate(dp, vstate);
16677 				new->dtha_actions[j] = dp;
16678 			}
16679 
16680 			if (last != NULL) {
16681 				last->dtha_next = new;
16682 			} else {
16683 				newhelp->dthps_actions[i] = new;
16684 			}
16685 
16686 			last = new;
16687 		}
16688 	}
16689 
16690 	/*
16691 	 * Duplicate the helper providers and register them with the
16692 	 * DTrace framework.
16693 	 */
16694 	if (help->dthps_nprovs > 0) {
16695 		newhelp->dthps_nprovs = help->dthps_nprovs;
16696 		newhelp->dthps_maxprovs = help->dthps_nprovs;
16697 		newhelp->dthps_provs = kmem_alloc(newhelp->dthps_nprovs *
16698 		    sizeof (dtrace_helper_provider_t *), KM_SLEEP);
16699 		for (i = 0; i < newhelp->dthps_nprovs; i++) {
16700 			newhelp->dthps_provs[i] = help->dthps_provs[i];
16701 			newhelp->dthps_provs[i]->dthp_ref++;
16702 		}
16703 
16704 		hasprovs = 1;
16705 	}
16706 
16707 	mutex_exit(&dtrace_lock);
16708 
16709 	if (hasprovs)
16710 		dtrace_helper_provider_register(to, newhelp, NULL);
16711 }
16712 
16713 /*
16714  * DTrace Hook Functions
16715  */
16716 static void
16717 dtrace_module_loaded(modctl_t *ctl)
16718 {
16719 	dtrace_provider_t *prv;
16720 
16721 	mutex_enter(&dtrace_provider_lock);
16722 #ifdef illumos
16723 	mutex_enter(&mod_lock);
16724 #endif
16725 
16726 #ifdef illumos
16727 	ASSERT(ctl->mod_busy);
16728 #endif
16729 
16730 	/*
16731 	 * We're going to call each providers per-module provide operation
16732 	 * specifying only this module.
16733 	 */
16734 	for (prv = dtrace_provider; prv != NULL; prv = prv->dtpv_next)
16735 		prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
16736 
16737 #ifdef illumos
16738 	mutex_exit(&mod_lock);
16739 #endif
16740 	mutex_exit(&dtrace_provider_lock);
16741 
16742 	/*
16743 	 * If we have any retained enablings, we need to match against them.
16744 	 * Enabling probes requires that cpu_lock be held, and we cannot hold
16745 	 * cpu_lock here -- it is legal for cpu_lock to be held when loading a
16746 	 * module.  (In particular, this happens when loading scheduling
16747 	 * classes.)  So if we have any retained enablings, we need to dispatch
16748 	 * our task queue to do the match for us.
16749 	 */
16750 	mutex_enter(&dtrace_lock);
16751 
16752 	if (dtrace_retained == NULL) {
16753 		mutex_exit(&dtrace_lock);
16754 		return;
16755 	}
16756 
16757 	(void)taskq_dispatch(dtrace_taskq,
16758 	    (task_func_t *)dtrace_enabling_matchall_task, NULL, TQ_SLEEP);
16759 
16760 	mutex_exit(&dtrace_lock);
16761 
16762 	/*
16763 	 * And now, for a little heuristic sleaze:  in general, we want to
16764 	 * match modules as soon as they load.  However, we cannot guarantee
16765 	 * this, because it would lead us to the lock ordering violation
16766 	 * outlined above.  The common case, of course, is that cpu_lock is
16767 	 * _not_ held -- so we delay here for a clock tick, hoping that that's
16768 	 * long enough for the task queue to do its work.  If it's not, it's
16769 	 * not a serious problem -- it just means that the module that we
16770 	 * just loaded may not be immediately instrumentable.
16771 	 */
16772 	delay(1);
16773 }
16774 
16775 static void
16776 #ifdef illumos
16777 dtrace_module_unloaded(modctl_t *ctl)
16778 #else
16779 dtrace_module_unloaded(modctl_t *ctl, int *error)
16780 #endif
16781 {
16782 	dtrace_probe_t template, *probe, *first, *next;
16783 	dtrace_provider_t *prov;
16784 #ifndef illumos
16785 	char modname[DTRACE_MODNAMELEN];
16786 	size_t len;
16787 #endif
16788 
16789 #ifdef illumos
16790 	template.dtpr_mod = ctl->mod_modname;
16791 #else
16792 	/* Handle the fact that ctl->filename may end in ".ko". */
16793 	strlcpy(modname, ctl->filename, sizeof(modname));
16794 	len = strlen(ctl->filename);
16795 	if (len > 3 && strcmp(modname + len - 3, ".ko") == 0)
16796 		modname[len - 3] = '\0';
16797 	template.dtpr_mod = modname;
16798 #endif
16799 
16800 	mutex_enter(&dtrace_provider_lock);
16801 #ifdef illumos
16802 	mutex_enter(&mod_lock);
16803 #endif
16804 	mutex_enter(&dtrace_lock);
16805 
16806 #ifndef illumos
16807 	if (ctl->nenabled > 0) {
16808 		/* Don't allow unloads if a probe is enabled. */
16809 		mutex_exit(&dtrace_provider_lock);
16810 		mutex_exit(&dtrace_lock);
16811 		*error = -1;
16812 		printf(
16813 	"kldunload: attempt to unload module that has DTrace probes enabled\n");
16814 		return;
16815 	}
16816 #endif
16817 
16818 	if (dtrace_bymod == NULL) {
16819 		/*
16820 		 * The DTrace module is loaded (obviously) but not attached;
16821 		 * we don't have any work to do.
16822 		 */
16823 		mutex_exit(&dtrace_provider_lock);
16824 #ifdef illumos
16825 		mutex_exit(&mod_lock);
16826 #endif
16827 		mutex_exit(&dtrace_lock);
16828 		return;
16829 	}
16830 
16831 	for (probe = first = dtrace_hash_lookup(dtrace_bymod, &template);
16832 	    probe != NULL; probe = probe->dtpr_nextmod) {
16833 		if (probe->dtpr_ecb != NULL) {
16834 			mutex_exit(&dtrace_provider_lock);
16835 #ifdef illumos
16836 			mutex_exit(&mod_lock);
16837 #endif
16838 			mutex_exit(&dtrace_lock);
16839 
16840 			/*
16841 			 * This shouldn't _actually_ be possible -- we're
16842 			 * unloading a module that has an enabled probe in it.
16843 			 * (It's normally up to the provider to make sure that
16844 			 * this can't happen.)  However, because dtps_enable()
16845 			 * doesn't have a failure mode, there can be an
16846 			 * enable/unload race.  Upshot:  we don't want to
16847 			 * assert, but we're not going to disable the
16848 			 * probe, either.
16849 			 */
16850 			if (dtrace_err_verbose) {
16851 #ifdef illumos
16852 				cmn_err(CE_WARN, "unloaded module '%s' had "
16853 				    "enabled probes", ctl->mod_modname);
16854 #else
16855 				cmn_err(CE_WARN, "unloaded module '%s' had "
16856 				    "enabled probes", modname);
16857 #endif
16858 			}
16859 
16860 			return;
16861 		}
16862 	}
16863 
16864 	probe = first;
16865 
16866 	for (first = NULL; probe != NULL; probe = next) {
16867 		ASSERT(dtrace_probes[probe->dtpr_id - 1] == probe);
16868 
16869 		dtrace_probes[probe->dtpr_id - 1] = NULL;
16870 
16871 		next = probe->dtpr_nextmod;
16872 		dtrace_hash_remove(dtrace_bymod, probe);
16873 		dtrace_hash_remove(dtrace_byfunc, probe);
16874 		dtrace_hash_remove(dtrace_byname, probe);
16875 
16876 		if (first == NULL) {
16877 			first = probe;
16878 			probe->dtpr_nextmod = NULL;
16879 		} else {
16880 			probe->dtpr_nextmod = first;
16881 			first = probe;
16882 		}
16883 	}
16884 
16885 	/*
16886 	 * We've removed all of the module's probes from the hash chains and
16887 	 * from the probe array.  Now issue a dtrace_sync() to be sure that
16888 	 * everyone has cleared out from any probe array processing.
16889 	 */
16890 	dtrace_sync();
16891 
16892 	for (probe = first; probe != NULL; probe = first) {
16893 		first = probe->dtpr_nextmod;
16894 		prov = probe->dtpr_provider;
16895 		prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, probe->dtpr_id,
16896 		    probe->dtpr_arg);
16897 		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
16898 		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
16899 		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
16900 #ifdef illumos
16901 		vmem_free(dtrace_arena, (void *)(uintptr_t)probe->dtpr_id, 1);
16902 #else
16903 		free_unr(dtrace_arena, probe->dtpr_id);
16904 #endif
16905 		kmem_free(probe, sizeof (dtrace_probe_t));
16906 	}
16907 
16908 	mutex_exit(&dtrace_lock);
16909 #ifdef illumos
16910 	mutex_exit(&mod_lock);
16911 #endif
16912 	mutex_exit(&dtrace_provider_lock);
16913 }
16914 
16915 #ifndef illumos
16916 static void
16917 dtrace_kld_load(void *arg __unused, linker_file_t lf)
16918 {
16919 
16920 	dtrace_module_loaded(lf);
16921 }
16922 
16923 static void
16924 dtrace_kld_unload_try(void *arg __unused, linker_file_t lf, int *error)
16925 {
16926 
16927 	if (*error != 0)
16928 		/* We already have an error, so don't do anything. */
16929 		return;
16930 	dtrace_module_unloaded(lf, error);
16931 }
16932 #endif
16933 
16934 #ifdef illumos
16935 static void
16936 dtrace_suspend(void)
16937 {
16938 	dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_suspend));
16939 }
16940 
16941 static void
16942 dtrace_resume(void)
16943 {
16944 	dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_resume));
16945 }
16946 #endif
16947 
16948 static int
16949 dtrace_cpu_setup(cpu_setup_t what, processorid_t cpu)
16950 {
16951 	ASSERT(MUTEX_HELD(&cpu_lock));
16952 	mutex_enter(&dtrace_lock);
16953 
16954 	switch (what) {
16955 	case CPU_CONFIG: {
16956 		dtrace_state_t *state;
16957 		dtrace_optval_t *opt, rs, c;
16958 
16959 		/*
16960 		 * For now, we only allocate a new buffer for anonymous state.
16961 		 */
16962 		if ((state = dtrace_anon.dta_state) == NULL)
16963 			break;
16964 
16965 		if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
16966 			break;
16967 
16968 		opt = state->dts_options;
16969 		c = opt[DTRACEOPT_CPU];
16970 
16971 		if (c != DTRACE_CPUALL && c != DTRACEOPT_UNSET && c != cpu)
16972 			break;
16973 
16974 		/*
16975 		 * Regardless of what the actual policy is, we're going to
16976 		 * temporarily set our resize policy to be manual.  We're
16977 		 * also going to temporarily set our CPU option to denote
16978 		 * the newly configured CPU.
16979 		 */
16980 		rs = opt[DTRACEOPT_BUFRESIZE];
16981 		opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_MANUAL;
16982 		opt[DTRACEOPT_CPU] = (dtrace_optval_t)cpu;
16983 
16984 		(void) dtrace_state_buffers(state);
16985 
16986 		opt[DTRACEOPT_BUFRESIZE] = rs;
16987 		opt[DTRACEOPT_CPU] = c;
16988 
16989 		break;
16990 	}
16991 
16992 	case CPU_UNCONFIG:
16993 		/*
16994 		 * We don't free the buffer in the CPU_UNCONFIG case.  (The
16995 		 * buffer will be freed when the consumer exits.)
16996 		 */
16997 		break;
16998 
16999 	default:
17000 		break;
17001 	}
17002 
17003 	mutex_exit(&dtrace_lock);
17004 	return (0);
17005 }
17006 
17007 #ifdef illumos
17008 static void
17009 dtrace_cpu_setup_initial(processorid_t cpu)
17010 {
17011 	(void) dtrace_cpu_setup(CPU_CONFIG, cpu);
17012 }
17013 #endif
17014 
17015 static void
17016 dtrace_toxrange_add(uintptr_t base, uintptr_t limit)
17017 {
17018 	if (dtrace_toxranges >= dtrace_toxranges_max) {
17019 		int osize, nsize;
17020 		dtrace_toxrange_t *range;
17021 
17022 		osize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
17023 
17024 		if (osize == 0) {
17025 			ASSERT(dtrace_toxrange == NULL);
17026 			ASSERT(dtrace_toxranges_max == 0);
17027 			dtrace_toxranges_max = 1;
17028 		} else {
17029 			dtrace_toxranges_max <<= 1;
17030 		}
17031 
17032 		nsize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
17033 		range = kmem_zalloc(nsize, KM_SLEEP);
17034 
17035 		if (dtrace_toxrange != NULL) {
17036 			ASSERT(osize != 0);
17037 			bcopy(dtrace_toxrange, range, osize);
17038 			kmem_free(dtrace_toxrange, osize);
17039 		}
17040 
17041 		dtrace_toxrange = range;
17042 	}
17043 
17044 	ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_base == 0);
17045 	ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_limit == 0);
17046 
17047 	dtrace_toxrange[dtrace_toxranges].dtt_base = base;
17048 	dtrace_toxrange[dtrace_toxranges].dtt_limit = limit;
17049 	dtrace_toxranges++;
17050 }
17051 
17052 static void
17053 dtrace_getf_barrier(void)
17054 {
17055 #ifdef illumos
17056 	/*
17057 	 * When we have unprivileged (that is, non-DTRACE_CRV_KERNEL) enablings
17058 	 * that contain calls to getf(), this routine will be called on every
17059 	 * closef() before either the underlying vnode is released or the
17060 	 * file_t itself is freed.  By the time we are here, it is essential
17061 	 * that the file_t can no longer be accessed from a call to getf()
17062 	 * in probe context -- that assures that a dtrace_sync() can be used
17063 	 * to clear out any enablings referring to the old structures.
17064 	 */
17065 	if (curthread->t_procp->p_zone->zone_dtrace_getf != 0 ||
17066 	    kcred->cr_zone->zone_dtrace_getf != 0)
17067 		dtrace_sync();
17068 #endif
17069 }
17070 
17071 /*
17072  * DTrace Driver Cookbook Functions
17073  */
17074 #ifdef illumos
17075 /*ARGSUSED*/
17076 static int
17077 dtrace_attach(dev_info_t *devi, ddi_attach_cmd_t cmd)
17078 {
17079 	dtrace_provider_id_t id;
17080 	dtrace_state_t *state = NULL;
17081 	dtrace_enabling_t *enab;
17082 
17083 	mutex_enter(&cpu_lock);
17084 	mutex_enter(&dtrace_provider_lock);
17085 	mutex_enter(&dtrace_lock);
17086 
17087 	if (ddi_soft_state_init(&dtrace_softstate,
17088 	    sizeof (dtrace_state_t), 0) != 0) {
17089 		cmn_err(CE_NOTE, "/dev/dtrace failed to initialize soft state");
17090 		mutex_exit(&cpu_lock);
17091 		mutex_exit(&dtrace_provider_lock);
17092 		mutex_exit(&dtrace_lock);
17093 		return (DDI_FAILURE);
17094 	}
17095 
17096 	if (ddi_create_minor_node(devi, DTRACEMNR_DTRACE, S_IFCHR,
17097 	    DTRACEMNRN_DTRACE, DDI_PSEUDO, NULL) == DDI_FAILURE ||
17098 	    ddi_create_minor_node(devi, DTRACEMNR_HELPER, S_IFCHR,
17099 	    DTRACEMNRN_HELPER, DDI_PSEUDO, NULL) == DDI_FAILURE) {
17100 		cmn_err(CE_NOTE, "/dev/dtrace couldn't create minor nodes");
17101 		ddi_remove_minor_node(devi, NULL);
17102 		ddi_soft_state_fini(&dtrace_softstate);
17103 		mutex_exit(&cpu_lock);
17104 		mutex_exit(&dtrace_provider_lock);
17105 		mutex_exit(&dtrace_lock);
17106 		return (DDI_FAILURE);
17107 	}
17108 
17109 	ddi_report_dev(devi);
17110 	dtrace_devi = devi;
17111 
17112 	dtrace_modload = dtrace_module_loaded;
17113 	dtrace_modunload = dtrace_module_unloaded;
17114 	dtrace_cpu_init = dtrace_cpu_setup_initial;
17115 	dtrace_helpers_cleanup = dtrace_helpers_destroy;
17116 	dtrace_helpers_fork = dtrace_helpers_duplicate;
17117 	dtrace_cpustart_init = dtrace_suspend;
17118 	dtrace_cpustart_fini = dtrace_resume;
17119 	dtrace_debugger_init = dtrace_suspend;
17120 	dtrace_debugger_fini = dtrace_resume;
17121 
17122 	register_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
17123 
17124 	ASSERT(MUTEX_HELD(&cpu_lock));
17125 
17126 	dtrace_arena = vmem_create("dtrace", (void *)1, UINT32_MAX, 1,
17127 	    NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
17128 	dtrace_minor = vmem_create("dtrace_minor", (void *)DTRACEMNRN_CLONE,
17129 	    UINT32_MAX - DTRACEMNRN_CLONE, 1, NULL, NULL, NULL, 0,
17130 	    VM_SLEEP | VMC_IDENTIFIER);
17131 	dtrace_taskq = taskq_create("dtrace_taskq", 1, maxclsyspri,
17132 	    1, INT_MAX, 0);
17133 
17134 	dtrace_state_cache = kmem_cache_create("dtrace_state_cache",
17135 	    sizeof (dtrace_dstate_percpu_t) * NCPU, DTRACE_STATE_ALIGN,
17136 	    NULL, NULL, NULL, NULL, NULL, 0);
17137 
17138 	ASSERT(MUTEX_HELD(&cpu_lock));
17139 	dtrace_bymod = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_mod),
17140 	    offsetof(dtrace_probe_t, dtpr_nextmod),
17141 	    offsetof(dtrace_probe_t, dtpr_prevmod));
17142 
17143 	dtrace_byfunc = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_func),
17144 	    offsetof(dtrace_probe_t, dtpr_nextfunc),
17145 	    offsetof(dtrace_probe_t, dtpr_prevfunc));
17146 
17147 	dtrace_byname = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_name),
17148 	    offsetof(dtrace_probe_t, dtpr_nextname),
17149 	    offsetof(dtrace_probe_t, dtpr_prevname));
17150 
17151 	if (dtrace_retain_max < 1) {
17152 		cmn_err(CE_WARN, "illegal value (%zu) for dtrace_retain_max; "
17153 		    "setting to 1", dtrace_retain_max);
17154 		dtrace_retain_max = 1;
17155 	}
17156 
17157 	/*
17158 	 * Now discover our toxic ranges.
17159 	 */
17160 	dtrace_toxic_ranges(dtrace_toxrange_add);
17161 
17162 	/*
17163 	 * Before we register ourselves as a provider to our own framework,
17164 	 * we would like to assert that dtrace_provider is NULL -- but that's
17165 	 * not true if we were loaded as a dependency of a DTrace provider.
17166 	 * Once we've registered, we can assert that dtrace_provider is our
17167 	 * pseudo provider.
17168 	 */
17169 	(void) dtrace_register("dtrace", &dtrace_provider_attr,
17170 	    DTRACE_PRIV_NONE, 0, &dtrace_provider_ops, NULL, &id);
17171 
17172 	ASSERT(dtrace_provider != NULL);
17173 	ASSERT((dtrace_provider_id_t)dtrace_provider == id);
17174 
17175 	dtrace_probeid_begin = dtrace_probe_create((dtrace_provider_id_t)
17176 	    dtrace_provider, NULL, NULL, "BEGIN", 0, NULL);
17177 	dtrace_probeid_end = dtrace_probe_create((dtrace_provider_id_t)
17178 	    dtrace_provider, NULL, NULL, "END", 0, NULL);
17179 	dtrace_probeid_error = dtrace_probe_create((dtrace_provider_id_t)
17180 	    dtrace_provider, NULL, NULL, "ERROR", 1, NULL);
17181 
17182 	dtrace_anon_property();
17183 	mutex_exit(&cpu_lock);
17184 
17185 	/*
17186 	 * If there are already providers, we must ask them to provide their
17187 	 * probes, and then match any anonymous enabling against them.  Note
17188 	 * that there should be no other retained enablings at this time:
17189 	 * the only retained enablings at this time should be the anonymous
17190 	 * enabling.
17191 	 */
17192 	if (dtrace_anon.dta_enabling != NULL) {
17193 		ASSERT(dtrace_retained == dtrace_anon.dta_enabling);
17194 
17195 		dtrace_enabling_provide(NULL);
17196 		state = dtrace_anon.dta_state;
17197 
17198 		/*
17199 		 * We couldn't hold cpu_lock across the above call to
17200 		 * dtrace_enabling_provide(), but we must hold it to actually
17201 		 * enable the probes.  We have to drop all of our locks, pick
17202 		 * up cpu_lock, and regain our locks before matching the
17203 		 * retained anonymous enabling.
17204 		 */
17205 		mutex_exit(&dtrace_lock);
17206 		mutex_exit(&dtrace_provider_lock);
17207 
17208 		mutex_enter(&cpu_lock);
17209 		mutex_enter(&dtrace_provider_lock);
17210 		mutex_enter(&dtrace_lock);
17211 
17212 		if ((enab = dtrace_anon.dta_enabling) != NULL)
17213 			(void) dtrace_enabling_match(enab, NULL);
17214 
17215 		mutex_exit(&cpu_lock);
17216 	}
17217 
17218 	mutex_exit(&dtrace_lock);
17219 	mutex_exit(&dtrace_provider_lock);
17220 
17221 	if (state != NULL) {
17222 		/*
17223 		 * If we created any anonymous state, set it going now.
17224 		 */
17225 		(void) dtrace_state_go(state, &dtrace_anon.dta_beganon);
17226 	}
17227 
17228 	return (DDI_SUCCESS);
17229 }
17230 #endif	/* illumos */
17231 
17232 #ifndef illumos
17233 static void dtrace_dtr(void *);
17234 #endif
17235 
17236 /*ARGSUSED*/
17237 static int
17238 #ifdef illumos
17239 dtrace_open(dev_t *devp, int flag, int otyp, cred_t *cred_p)
17240 #else
17241 dtrace_open(struct cdev *dev, int oflags, int devtype, struct thread *td)
17242 #endif
17243 {
17244 	dtrace_state_t *state;
17245 	uint32_t priv;
17246 	uid_t uid;
17247 	zoneid_t zoneid;
17248 
17249 #ifdef illumos
17250 	if (getminor(*devp) == DTRACEMNRN_HELPER)
17251 		return (0);
17252 
17253 	/*
17254 	 * If this wasn't an open with the "helper" minor, then it must be
17255 	 * the "dtrace" minor.
17256 	 */
17257 	if (getminor(*devp) == DTRACEMNRN_DTRACE)
17258 		return (ENXIO);
17259 #else
17260 	cred_t *cred_p = NULL;
17261 	cred_p = dev->si_cred;
17262 
17263 	/*
17264 	 * If no DTRACE_PRIV_* bits are set in the credential, then the
17265 	 * caller lacks sufficient permission to do anything with DTrace.
17266 	 */
17267 	dtrace_cred2priv(cred_p, &priv, &uid, &zoneid);
17268 	if (priv == DTRACE_PRIV_NONE) {
17269 #endif
17270 
17271 		return (EACCES);
17272 	}
17273 
17274 	/*
17275 	 * Ask all providers to provide all their probes.
17276 	 */
17277 	mutex_enter(&dtrace_provider_lock);
17278 	dtrace_probe_provide(NULL, NULL);
17279 	mutex_exit(&dtrace_provider_lock);
17280 
17281 	mutex_enter(&cpu_lock);
17282 	mutex_enter(&dtrace_lock);
17283 	dtrace_opens++;
17284 	dtrace_membar_producer();
17285 
17286 #ifdef illumos
17287 	/*
17288 	 * If the kernel debugger is active (that is, if the kernel debugger
17289 	 * modified text in some way), we won't allow the open.
17290 	 */
17291 	if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
17292 		dtrace_opens--;
17293 		mutex_exit(&cpu_lock);
17294 		mutex_exit(&dtrace_lock);
17295 		return (EBUSY);
17296 	}
17297 
17298 	if (dtrace_helptrace_enable && dtrace_helptrace_buffer == NULL) {
17299 		/*
17300 		 * If DTrace helper tracing is enabled, we need to allocate the
17301 		 * trace buffer and initialize the values.
17302 		 */
17303 		dtrace_helptrace_buffer =
17304 		    kmem_zalloc(dtrace_helptrace_bufsize, KM_SLEEP);
17305 		dtrace_helptrace_next = 0;
17306 		dtrace_helptrace_wrapped = 0;
17307 		dtrace_helptrace_enable = 0;
17308 	}
17309 
17310 	state = dtrace_state_create(devp, cred_p);
17311 #else
17312 	state = dtrace_state_create(dev, NULL);
17313 	devfs_set_cdevpriv(state, dtrace_dtr);
17314 #endif
17315 
17316 	mutex_exit(&cpu_lock);
17317 
17318 	if (state == NULL) {
17319 #ifdef illumos
17320 		if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL)
17321 			(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
17322 #else
17323 		--dtrace_opens;
17324 #endif
17325 		mutex_exit(&dtrace_lock);
17326 		return (EAGAIN);
17327 	}
17328 
17329 	mutex_exit(&dtrace_lock);
17330 
17331 	return (0);
17332 }
17333 
17334 /*ARGSUSED*/
17335 #ifdef illumos
17336 static int
17337 dtrace_close(dev_t dev, int flag, int otyp, cred_t *cred_p)
17338 #else
17339 static void
17340 dtrace_dtr(void *data)
17341 #endif
17342 {
17343 #ifdef illumos
17344 	minor_t minor = getminor(dev);
17345 	dtrace_state_t *state;
17346 #endif
17347 	dtrace_helptrace_t *buf = NULL;
17348 
17349 #ifdef illumos
17350 	if (minor == DTRACEMNRN_HELPER)
17351 		return (0);
17352 
17353 	state = ddi_get_soft_state(dtrace_softstate, minor);
17354 #else
17355 	dtrace_state_t *state = data;
17356 #endif
17357 
17358 	mutex_enter(&cpu_lock);
17359 	mutex_enter(&dtrace_lock);
17360 
17361 #ifdef illumos
17362 	if (state->dts_anon)
17363 #else
17364 	if (state != NULL && state->dts_anon)
17365 #endif
17366 	{
17367 		/*
17368 		 * There is anonymous state. Destroy that first.
17369 		 */
17370 		ASSERT(dtrace_anon.dta_state == NULL);
17371 		dtrace_state_destroy(state->dts_anon);
17372 	}
17373 
17374 	if (dtrace_helptrace_disable) {
17375 		/*
17376 		 * If we have been told to disable helper tracing, set the
17377 		 * buffer to NULL before calling into dtrace_state_destroy();
17378 		 * we take advantage of its dtrace_sync() to know that no
17379 		 * CPU is in probe context with enabled helper tracing
17380 		 * after it returns.
17381 		 */
17382 		buf = dtrace_helptrace_buffer;
17383 		dtrace_helptrace_buffer = NULL;
17384 	}
17385 
17386 #ifdef illumos
17387 	dtrace_state_destroy(state);
17388 #else
17389 	if (state != NULL) {
17390 		dtrace_state_destroy(state);
17391 		kmem_free(state, 0);
17392 	}
17393 #endif
17394 	ASSERT(dtrace_opens > 0);
17395 
17396 #ifdef illumos
17397 	/*
17398 	 * Only relinquish control of the kernel debugger interface when there
17399 	 * are no consumers and no anonymous enablings.
17400 	 */
17401 	if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL)
17402 		(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
17403 #else
17404 	--dtrace_opens;
17405 #endif
17406 
17407 	if (buf != NULL) {
17408 		kmem_free(buf, dtrace_helptrace_bufsize);
17409 		dtrace_helptrace_disable = 0;
17410 	}
17411 
17412 	mutex_exit(&dtrace_lock);
17413 	mutex_exit(&cpu_lock);
17414 
17415 #ifdef illumos
17416 	return (0);
17417 #endif
17418 }
17419 
17420 #ifdef illumos
17421 /*ARGSUSED*/
17422 static int
17423 dtrace_ioctl_helper(int cmd, intptr_t arg, int *rv)
17424 {
17425 	int rval;
17426 	dof_helper_t help, *dhp = NULL;
17427 
17428 	switch (cmd) {
17429 	case DTRACEHIOC_ADDDOF:
17430 		if (copyin((void *)arg, &help, sizeof (help)) != 0) {
17431 			dtrace_dof_error(NULL, "failed to copyin DOF helper");
17432 			return (EFAULT);
17433 		}
17434 
17435 		dhp = &help;
17436 		arg = (intptr_t)help.dofhp_dof;
17437 		/*FALLTHROUGH*/
17438 
17439 	case DTRACEHIOC_ADD: {
17440 		dof_hdr_t *dof = dtrace_dof_copyin(arg, &rval);
17441 
17442 		if (dof == NULL)
17443 			return (rval);
17444 
17445 		mutex_enter(&dtrace_lock);
17446 
17447 		/*
17448 		 * dtrace_helper_slurp() takes responsibility for the dof --
17449 		 * it may free it now or it may save it and free it later.
17450 		 */
17451 		if ((rval = dtrace_helper_slurp(dof, dhp)) != -1) {
17452 			*rv = rval;
17453 			rval = 0;
17454 		} else {
17455 			rval = EINVAL;
17456 		}
17457 
17458 		mutex_exit(&dtrace_lock);
17459 		return (rval);
17460 	}
17461 
17462 	case DTRACEHIOC_REMOVE: {
17463 		mutex_enter(&dtrace_lock);
17464 		rval = dtrace_helper_destroygen(NULL, arg);
17465 		mutex_exit(&dtrace_lock);
17466 
17467 		return (rval);
17468 	}
17469 
17470 	default:
17471 		break;
17472 	}
17473 
17474 	return (ENOTTY);
17475 }
17476 
17477 /*ARGSUSED*/
17478 static int
17479 dtrace_ioctl(dev_t dev, int cmd, intptr_t arg, int md, cred_t *cr, int *rv)
17480 {
17481 	minor_t minor = getminor(dev);
17482 	dtrace_state_t *state;
17483 	int rval;
17484 
17485 	if (minor == DTRACEMNRN_HELPER)
17486 		return (dtrace_ioctl_helper(cmd, arg, rv));
17487 
17488 	state = ddi_get_soft_state(dtrace_softstate, minor);
17489 
17490 	if (state->dts_anon) {
17491 		ASSERT(dtrace_anon.dta_state == NULL);
17492 		state = state->dts_anon;
17493 	}
17494 
17495 	switch (cmd) {
17496 	case DTRACEIOC_PROVIDER: {
17497 		dtrace_providerdesc_t pvd;
17498 		dtrace_provider_t *pvp;
17499 
17500 		if (copyin((void *)arg, &pvd, sizeof (pvd)) != 0)
17501 			return (EFAULT);
17502 
17503 		pvd.dtvd_name[DTRACE_PROVNAMELEN - 1] = '\0';
17504 		mutex_enter(&dtrace_provider_lock);
17505 
17506 		for (pvp = dtrace_provider; pvp != NULL; pvp = pvp->dtpv_next) {
17507 			if (strcmp(pvp->dtpv_name, pvd.dtvd_name) == 0)
17508 				break;
17509 		}
17510 
17511 		mutex_exit(&dtrace_provider_lock);
17512 
17513 		if (pvp == NULL)
17514 			return (ESRCH);
17515 
17516 		bcopy(&pvp->dtpv_priv, &pvd.dtvd_priv, sizeof (dtrace_ppriv_t));
17517 		bcopy(&pvp->dtpv_attr, &pvd.dtvd_attr, sizeof (dtrace_pattr_t));
17518 
17519 		if (copyout(&pvd, (void *)arg, sizeof (pvd)) != 0)
17520 			return (EFAULT);
17521 
17522 		return (0);
17523 	}
17524 
17525 	case DTRACEIOC_EPROBE: {
17526 		dtrace_eprobedesc_t epdesc;
17527 		dtrace_ecb_t *ecb;
17528 		dtrace_action_t *act;
17529 		void *buf;
17530 		size_t size;
17531 		uintptr_t dest;
17532 		int nrecs;
17533 
17534 		if (copyin((void *)arg, &epdesc, sizeof (epdesc)) != 0)
17535 			return (EFAULT);
17536 
17537 		mutex_enter(&dtrace_lock);
17538 
17539 		if ((ecb = dtrace_epid2ecb(state, epdesc.dtepd_epid)) == NULL) {
17540 			mutex_exit(&dtrace_lock);
17541 			return (EINVAL);
17542 		}
17543 
17544 		if (ecb->dte_probe == NULL) {
17545 			mutex_exit(&dtrace_lock);
17546 			return (EINVAL);
17547 		}
17548 
17549 		epdesc.dtepd_probeid = ecb->dte_probe->dtpr_id;
17550 		epdesc.dtepd_uarg = ecb->dte_uarg;
17551 		epdesc.dtepd_size = ecb->dte_size;
17552 
17553 		nrecs = epdesc.dtepd_nrecs;
17554 		epdesc.dtepd_nrecs = 0;
17555 		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
17556 			if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
17557 				continue;
17558 
17559 			epdesc.dtepd_nrecs++;
17560 		}
17561 
17562 		/*
17563 		 * Now that we have the size, we need to allocate a temporary
17564 		 * buffer in which to store the complete description.  We need
17565 		 * the temporary buffer to be able to drop dtrace_lock()
17566 		 * across the copyout(), below.
17567 		 */
17568 		size = sizeof (dtrace_eprobedesc_t) +
17569 		    (epdesc.dtepd_nrecs * sizeof (dtrace_recdesc_t));
17570 
17571 		buf = kmem_alloc(size, KM_SLEEP);
17572 		dest = (uintptr_t)buf;
17573 
17574 		bcopy(&epdesc, (void *)dest, sizeof (epdesc));
17575 		dest += offsetof(dtrace_eprobedesc_t, dtepd_rec[0]);
17576 
17577 		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
17578 			if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
17579 				continue;
17580 
17581 			if (nrecs-- == 0)
17582 				break;
17583 
17584 			bcopy(&act->dta_rec, (void *)dest,
17585 			    sizeof (dtrace_recdesc_t));
17586 			dest += sizeof (dtrace_recdesc_t);
17587 		}
17588 
17589 		mutex_exit(&dtrace_lock);
17590 
17591 		if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
17592 			kmem_free(buf, size);
17593 			return (EFAULT);
17594 		}
17595 
17596 		kmem_free(buf, size);
17597 		return (0);
17598 	}
17599 
17600 	case DTRACEIOC_AGGDESC: {
17601 		dtrace_aggdesc_t aggdesc;
17602 		dtrace_action_t *act;
17603 		dtrace_aggregation_t *agg;
17604 		int nrecs;
17605 		uint32_t offs;
17606 		dtrace_recdesc_t *lrec;
17607 		void *buf;
17608 		size_t size;
17609 		uintptr_t dest;
17610 
17611 		if (copyin((void *)arg, &aggdesc, sizeof (aggdesc)) != 0)
17612 			return (EFAULT);
17613 
17614 		mutex_enter(&dtrace_lock);
17615 
17616 		if ((agg = dtrace_aggid2agg(state, aggdesc.dtagd_id)) == NULL) {
17617 			mutex_exit(&dtrace_lock);
17618 			return (EINVAL);
17619 		}
17620 
17621 		aggdesc.dtagd_epid = agg->dtag_ecb->dte_epid;
17622 
17623 		nrecs = aggdesc.dtagd_nrecs;
17624 		aggdesc.dtagd_nrecs = 0;
17625 
17626 		offs = agg->dtag_base;
17627 		lrec = &agg->dtag_action.dta_rec;
17628 		aggdesc.dtagd_size = lrec->dtrd_offset + lrec->dtrd_size - offs;
17629 
17630 		for (act = agg->dtag_first; ; act = act->dta_next) {
17631 			ASSERT(act->dta_intuple ||
17632 			    DTRACEACT_ISAGG(act->dta_kind));
17633 
17634 			/*
17635 			 * If this action has a record size of zero, it
17636 			 * denotes an argument to the aggregating action.
17637 			 * Because the presence of this record doesn't (or
17638 			 * shouldn't) affect the way the data is interpreted,
17639 			 * we don't copy it out to save user-level the
17640 			 * confusion of dealing with a zero-length record.
17641 			 */
17642 			if (act->dta_rec.dtrd_size == 0) {
17643 				ASSERT(agg->dtag_hasarg);
17644 				continue;
17645 			}
17646 
17647 			aggdesc.dtagd_nrecs++;
17648 
17649 			if (act == &agg->dtag_action)
17650 				break;
17651 		}
17652 
17653 		/*
17654 		 * Now that we have the size, we need to allocate a temporary
17655 		 * buffer in which to store the complete description.  We need
17656 		 * the temporary buffer to be able to drop dtrace_lock()
17657 		 * across the copyout(), below.
17658 		 */
17659 		size = sizeof (dtrace_aggdesc_t) +
17660 		    (aggdesc.dtagd_nrecs * sizeof (dtrace_recdesc_t));
17661 
17662 		buf = kmem_alloc(size, KM_SLEEP);
17663 		dest = (uintptr_t)buf;
17664 
17665 		bcopy(&aggdesc, (void *)dest, sizeof (aggdesc));
17666 		dest += offsetof(dtrace_aggdesc_t, dtagd_rec[0]);
17667 
17668 		for (act = agg->dtag_first; ; act = act->dta_next) {
17669 			dtrace_recdesc_t rec = act->dta_rec;
17670 
17671 			/*
17672 			 * See the comment in the above loop for why we pass
17673 			 * over zero-length records.
17674 			 */
17675 			if (rec.dtrd_size == 0) {
17676 				ASSERT(agg->dtag_hasarg);
17677 				continue;
17678 			}
17679 
17680 			if (nrecs-- == 0)
17681 				break;
17682 
17683 			rec.dtrd_offset -= offs;
17684 			bcopy(&rec, (void *)dest, sizeof (rec));
17685 			dest += sizeof (dtrace_recdesc_t);
17686 
17687 			if (act == &agg->dtag_action)
17688 				break;
17689 		}
17690 
17691 		mutex_exit(&dtrace_lock);
17692 
17693 		if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
17694 			kmem_free(buf, size);
17695 			return (EFAULT);
17696 		}
17697 
17698 		kmem_free(buf, size);
17699 		return (0);
17700 	}
17701 
17702 	case DTRACEIOC_ENABLE: {
17703 		dof_hdr_t *dof;
17704 		dtrace_enabling_t *enab = NULL;
17705 		dtrace_vstate_t *vstate;
17706 		int err = 0;
17707 
17708 		*rv = 0;
17709 
17710 		/*
17711 		 * If a NULL argument has been passed, we take this as our
17712 		 * cue to reevaluate our enablings.
17713 		 */
17714 		if (arg == NULL) {
17715 			dtrace_enabling_matchall();
17716 
17717 			return (0);
17718 		}
17719 
17720 		if ((dof = dtrace_dof_copyin(arg, &rval)) == NULL)
17721 			return (rval);
17722 
17723 		mutex_enter(&cpu_lock);
17724 		mutex_enter(&dtrace_lock);
17725 		vstate = &state->dts_vstate;
17726 
17727 		if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
17728 			mutex_exit(&dtrace_lock);
17729 			mutex_exit(&cpu_lock);
17730 			dtrace_dof_destroy(dof);
17731 			return (EBUSY);
17732 		}
17733 
17734 		if (dtrace_dof_slurp(dof, vstate, cr, &enab, 0, B_TRUE) != 0) {
17735 			mutex_exit(&dtrace_lock);
17736 			mutex_exit(&cpu_lock);
17737 			dtrace_dof_destroy(dof);
17738 			return (EINVAL);
17739 		}
17740 
17741 		if ((rval = dtrace_dof_options(dof, state)) != 0) {
17742 			dtrace_enabling_destroy(enab);
17743 			mutex_exit(&dtrace_lock);
17744 			mutex_exit(&cpu_lock);
17745 			dtrace_dof_destroy(dof);
17746 			return (rval);
17747 		}
17748 
17749 		if ((err = dtrace_enabling_match(enab, rv)) == 0) {
17750 			err = dtrace_enabling_retain(enab);
17751 		} else {
17752 			dtrace_enabling_destroy(enab);
17753 		}
17754 
17755 		mutex_exit(&cpu_lock);
17756 		mutex_exit(&dtrace_lock);
17757 		dtrace_dof_destroy(dof);
17758 
17759 		return (err);
17760 	}
17761 
17762 	case DTRACEIOC_REPLICATE: {
17763 		dtrace_repldesc_t desc;
17764 		dtrace_probedesc_t *match = &desc.dtrpd_match;
17765 		dtrace_probedesc_t *create = &desc.dtrpd_create;
17766 		int err;
17767 
17768 		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
17769 			return (EFAULT);
17770 
17771 		match->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
17772 		match->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
17773 		match->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
17774 		match->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
17775 
17776 		create->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
17777 		create->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
17778 		create->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
17779 		create->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
17780 
17781 		mutex_enter(&dtrace_lock);
17782 		err = dtrace_enabling_replicate(state, match, create);
17783 		mutex_exit(&dtrace_lock);
17784 
17785 		return (err);
17786 	}
17787 
17788 	case DTRACEIOC_PROBEMATCH:
17789 	case DTRACEIOC_PROBES: {
17790 		dtrace_probe_t *probe = NULL;
17791 		dtrace_probedesc_t desc;
17792 		dtrace_probekey_t pkey;
17793 		dtrace_id_t i;
17794 		int m = 0;
17795 		uint32_t priv;
17796 		uid_t uid;
17797 		zoneid_t zoneid;
17798 
17799 		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
17800 			return (EFAULT);
17801 
17802 		desc.dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
17803 		desc.dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
17804 		desc.dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
17805 		desc.dtpd_name[DTRACE_NAMELEN - 1] = '\0';
17806 
17807 		/*
17808 		 * Before we attempt to match this probe, we want to give
17809 		 * all providers the opportunity to provide it.
17810 		 */
17811 		if (desc.dtpd_id == DTRACE_IDNONE) {
17812 			mutex_enter(&dtrace_provider_lock);
17813 			dtrace_probe_provide(&desc, NULL);
17814 			mutex_exit(&dtrace_provider_lock);
17815 			desc.dtpd_id++;
17816 		}
17817 
17818 		if (cmd == DTRACEIOC_PROBEMATCH)  {
17819 			dtrace_probekey(&desc, &pkey);
17820 			pkey.dtpk_id = DTRACE_IDNONE;
17821 		}
17822 
17823 		dtrace_cred2priv(cr, &priv, &uid, &zoneid);
17824 
17825 		mutex_enter(&dtrace_lock);
17826 
17827 		if (cmd == DTRACEIOC_PROBEMATCH) {
17828 			for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
17829 				if ((probe = dtrace_probes[i - 1]) != NULL &&
17830 				    (m = dtrace_match_probe(probe, &pkey,
17831 				    priv, uid, zoneid)) != 0)
17832 					break;
17833 			}
17834 
17835 			if (m < 0) {
17836 				mutex_exit(&dtrace_lock);
17837 				return (EINVAL);
17838 			}
17839 
17840 		} else {
17841 			for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
17842 				if ((probe = dtrace_probes[i - 1]) != NULL &&
17843 				    dtrace_match_priv(probe, priv, uid, zoneid))
17844 					break;
17845 			}
17846 		}
17847 
17848 		if (probe == NULL) {
17849 			mutex_exit(&dtrace_lock);
17850 			return (ESRCH);
17851 		}
17852 
17853 		dtrace_probe_description(probe, &desc);
17854 		mutex_exit(&dtrace_lock);
17855 
17856 		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
17857 			return (EFAULT);
17858 
17859 		return (0);
17860 	}
17861 
17862 	case DTRACEIOC_PROBEARG: {
17863 		dtrace_argdesc_t desc;
17864 		dtrace_probe_t *probe;
17865 		dtrace_provider_t *prov;
17866 
17867 		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
17868 			return (EFAULT);
17869 
17870 		if (desc.dtargd_id == DTRACE_IDNONE)
17871 			return (EINVAL);
17872 
17873 		if (desc.dtargd_ndx == DTRACE_ARGNONE)
17874 			return (EINVAL);
17875 
17876 		mutex_enter(&dtrace_provider_lock);
17877 		mutex_enter(&mod_lock);
17878 		mutex_enter(&dtrace_lock);
17879 
17880 		if (desc.dtargd_id > dtrace_nprobes) {
17881 			mutex_exit(&dtrace_lock);
17882 			mutex_exit(&mod_lock);
17883 			mutex_exit(&dtrace_provider_lock);
17884 			return (EINVAL);
17885 		}
17886 
17887 		if ((probe = dtrace_probes[desc.dtargd_id - 1]) == NULL) {
17888 			mutex_exit(&dtrace_lock);
17889 			mutex_exit(&mod_lock);
17890 			mutex_exit(&dtrace_provider_lock);
17891 			return (EINVAL);
17892 		}
17893 
17894 		mutex_exit(&dtrace_lock);
17895 
17896 		prov = probe->dtpr_provider;
17897 
17898 		if (prov->dtpv_pops.dtps_getargdesc == NULL) {
17899 			/*
17900 			 * There isn't any typed information for this probe.
17901 			 * Set the argument number to DTRACE_ARGNONE.
17902 			 */
17903 			desc.dtargd_ndx = DTRACE_ARGNONE;
17904 		} else {
17905 			desc.dtargd_native[0] = '\0';
17906 			desc.dtargd_xlate[0] = '\0';
17907 			desc.dtargd_mapping = desc.dtargd_ndx;
17908 
17909 			prov->dtpv_pops.dtps_getargdesc(prov->dtpv_arg,
17910 			    probe->dtpr_id, probe->dtpr_arg, &desc);
17911 		}
17912 
17913 		mutex_exit(&mod_lock);
17914 		mutex_exit(&dtrace_provider_lock);
17915 
17916 		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
17917 			return (EFAULT);
17918 
17919 		return (0);
17920 	}
17921 
17922 	case DTRACEIOC_GO: {
17923 		processorid_t cpuid;
17924 		rval = dtrace_state_go(state, &cpuid);
17925 
17926 		if (rval != 0)
17927 			return (rval);
17928 
17929 		if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
17930 			return (EFAULT);
17931 
17932 		return (0);
17933 	}
17934 
17935 	case DTRACEIOC_STOP: {
17936 		processorid_t cpuid;
17937 
17938 		mutex_enter(&dtrace_lock);
17939 		rval = dtrace_state_stop(state, &cpuid);
17940 		mutex_exit(&dtrace_lock);
17941 
17942 		if (rval != 0)
17943 			return (rval);
17944 
17945 		if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
17946 			return (EFAULT);
17947 
17948 		return (0);
17949 	}
17950 
17951 	case DTRACEIOC_DOFGET: {
17952 		dof_hdr_t hdr, *dof;
17953 		uint64_t len;
17954 
17955 		if (copyin((void *)arg, &hdr, sizeof (hdr)) != 0)
17956 			return (EFAULT);
17957 
17958 		mutex_enter(&dtrace_lock);
17959 		dof = dtrace_dof_create(state);
17960 		mutex_exit(&dtrace_lock);
17961 
17962 		len = MIN(hdr.dofh_loadsz, dof->dofh_loadsz);
17963 		rval = copyout(dof, (void *)arg, len);
17964 		dtrace_dof_destroy(dof);
17965 
17966 		return (rval == 0 ? 0 : EFAULT);
17967 	}
17968 
17969 	case DTRACEIOC_AGGSNAP:
17970 	case DTRACEIOC_BUFSNAP: {
17971 		dtrace_bufdesc_t desc;
17972 		caddr_t cached;
17973 		dtrace_buffer_t *buf;
17974 
17975 		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
17976 			return (EFAULT);
17977 
17978 		if (desc.dtbd_cpu < 0 || desc.dtbd_cpu >= NCPU)
17979 			return (EINVAL);
17980 
17981 		mutex_enter(&dtrace_lock);
17982 
17983 		if (cmd == DTRACEIOC_BUFSNAP) {
17984 			buf = &state->dts_buffer[desc.dtbd_cpu];
17985 		} else {
17986 			buf = &state->dts_aggbuffer[desc.dtbd_cpu];
17987 		}
17988 
17989 		if (buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL)) {
17990 			size_t sz = buf->dtb_offset;
17991 
17992 			if (state->dts_activity != DTRACE_ACTIVITY_STOPPED) {
17993 				mutex_exit(&dtrace_lock);
17994 				return (EBUSY);
17995 			}
17996 
17997 			/*
17998 			 * If this buffer has already been consumed, we're
17999 			 * going to indicate that there's nothing left here
18000 			 * to consume.
18001 			 */
18002 			if (buf->dtb_flags & DTRACEBUF_CONSUMED) {
18003 				mutex_exit(&dtrace_lock);
18004 
18005 				desc.dtbd_size = 0;
18006 				desc.dtbd_drops = 0;
18007 				desc.dtbd_errors = 0;
18008 				desc.dtbd_oldest = 0;
18009 				sz = sizeof (desc);
18010 
18011 				if (copyout(&desc, (void *)arg, sz) != 0)
18012 					return (EFAULT);
18013 
18014 				return (0);
18015 			}
18016 
18017 			/*
18018 			 * If this is a ring buffer that has wrapped, we want
18019 			 * to copy the whole thing out.
18020 			 */
18021 			if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
18022 				dtrace_buffer_polish(buf);
18023 				sz = buf->dtb_size;
18024 			}
18025 
18026 			if (copyout(buf->dtb_tomax, desc.dtbd_data, sz) != 0) {
18027 				mutex_exit(&dtrace_lock);
18028 				return (EFAULT);
18029 			}
18030 
18031 			desc.dtbd_size = sz;
18032 			desc.dtbd_drops = buf->dtb_drops;
18033 			desc.dtbd_errors = buf->dtb_errors;
18034 			desc.dtbd_oldest = buf->dtb_xamot_offset;
18035 			desc.dtbd_timestamp = dtrace_gethrtime();
18036 
18037 			mutex_exit(&dtrace_lock);
18038 
18039 			if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
18040 				return (EFAULT);
18041 
18042 			buf->dtb_flags |= DTRACEBUF_CONSUMED;
18043 
18044 			return (0);
18045 		}
18046 
18047 		if (buf->dtb_tomax == NULL) {
18048 			ASSERT(buf->dtb_xamot == NULL);
18049 			mutex_exit(&dtrace_lock);
18050 			return (ENOENT);
18051 		}
18052 
18053 		cached = buf->dtb_tomax;
18054 		ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
18055 
18056 		dtrace_xcall(desc.dtbd_cpu,
18057 		    (dtrace_xcall_t)dtrace_buffer_switch, buf);
18058 
18059 		state->dts_errors += buf->dtb_xamot_errors;
18060 
18061 		/*
18062 		 * If the buffers did not actually switch, then the cross call
18063 		 * did not take place -- presumably because the given CPU is
18064 		 * not in the ready set.  If this is the case, we'll return
18065 		 * ENOENT.
18066 		 */
18067 		if (buf->dtb_tomax == cached) {
18068 			ASSERT(buf->dtb_xamot != cached);
18069 			mutex_exit(&dtrace_lock);
18070 			return (ENOENT);
18071 		}
18072 
18073 		ASSERT(cached == buf->dtb_xamot);
18074 
18075 		/*
18076 		 * We have our snapshot; now copy it out.
18077 		 */
18078 		if (copyout(buf->dtb_xamot, desc.dtbd_data,
18079 		    buf->dtb_xamot_offset) != 0) {
18080 			mutex_exit(&dtrace_lock);
18081 			return (EFAULT);
18082 		}
18083 
18084 		desc.dtbd_size = buf->dtb_xamot_offset;
18085 		desc.dtbd_drops = buf->dtb_xamot_drops;
18086 		desc.dtbd_errors = buf->dtb_xamot_errors;
18087 		desc.dtbd_oldest = 0;
18088 		desc.dtbd_timestamp = buf->dtb_switched;
18089 
18090 		mutex_exit(&dtrace_lock);
18091 
18092 		/*
18093 		 * Finally, copy out the buffer description.
18094 		 */
18095 		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
18096 			return (EFAULT);
18097 
18098 		return (0);
18099 	}
18100 
18101 	case DTRACEIOC_CONF: {
18102 		dtrace_conf_t conf;
18103 
18104 		bzero(&conf, sizeof (conf));
18105 		conf.dtc_difversion = DIF_VERSION;
18106 		conf.dtc_difintregs = DIF_DIR_NREGS;
18107 		conf.dtc_diftupregs = DIF_DTR_NREGS;
18108 		conf.dtc_ctfmodel = CTF_MODEL_NATIVE;
18109 
18110 		if (copyout(&conf, (void *)arg, sizeof (conf)) != 0)
18111 			return (EFAULT);
18112 
18113 		return (0);
18114 	}
18115 
18116 	case DTRACEIOC_STATUS: {
18117 		dtrace_status_t stat;
18118 		dtrace_dstate_t *dstate;
18119 		int i, j;
18120 		uint64_t nerrs;
18121 
18122 		/*
18123 		 * See the comment in dtrace_state_deadman() for the reason
18124 		 * for setting dts_laststatus to INT64_MAX before setting
18125 		 * it to the correct value.
18126 		 */
18127 		state->dts_laststatus = INT64_MAX;
18128 		dtrace_membar_producer();
18129 		state->dts_laststatus = dtrace_gethrtime();
18130 
18131 		bzero(&stat, sizeof (stat));
18132 
18133 		mutex_enter(&dtrace_lock);
18134 
18135 		if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) {
18136 			mutex_exit(&dtrace_lock);
18137 			return (ENOENT);
18138 		}
18139 
18140 		if (state->dts_activity == DTRACE_ACTIVITY_DRAINING)
18141 			stat.dtst_exiting = 1;
18142 
18143 		nerrs = state->dts_errors;
18144 		dstate = &state->dts_vstate.dtvs_dynvars;
18145 
18146 		for (i = 0; i < NCPU; i++) {
18147 			dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[i];
18148 
18149 			stat.dtst_dyndrops += dcpu->dtdsc_drops;
18150 			stat.dtst_dyndrops_dirty += dcpu->dtdsc_dirty_drops;
18151 			stat.dtst_dyndrops_rinsing += dcpu->dtdsc_rinsing_drops;
18152 
18153 			if (state->dts_buffer[i].dtb_flags & DTRACEBUF_FULL)
18154 				stat.dtst_filled++;
18155 
18156 			nerrs += state->dts_buffer[i].dtb_errors;
18157 
18158 			for (j = 0; j < state->dts_nspeculations; j++) {
18159 				dtrace_speculation_t *spec;
18160 				dtrace_buffer_t *buf;
18161 
18162 				spec = &state->dts_speculations[j];
18163 				buf = &spec->dtsp_buffer[i];
18164 				stat.dtst_specdrops += buf->dtb_xamot_drops;
18165 			}
18166 		}
18167 
18168 		stat.dtst_specdrops_busy = state->dts_speculations_busy;
18169 		stat.dtst_specdrops_unavail = state->dts_speculations_unavail;
18170 		stat.dtst_stkstroverflows = state->dts_stkstroverflows;
18171 		stat.dtst_dblerrors = state->dts_dblerrors;
18172 		stat.dtst_killed =
18173 		    (state->dts_activity == DTRACE_ACTIVITY_KILLED);
18174 		stat.dtst_errors = nerrs;
18175 
18176 		mutex_exit(&dtrace_lock);
18177 
18178 		if (copyout(&stat, (void *)arg, sizeof (stat)) != 0)
18179 			return (EFAULT);
18180 
18181 		return (0);
18182 	}
18183 
18184 	case DTRACEIOC_FORMAT: {
18185 		dtrace_fmtdesc_t fmt;
18186 		char *str;
18187 		int len;
18188 
18189 		if (copyin((void *)arg, &fmt, sizeof (fmt)) != 0)
18190 			return (EFAULT);
18191 
18192 		mutex_enter(&dtrace_lock);
18193 
18194 		if (fmt.dtfd_format == 0 ||
18195 		    fmt.dtfd_format > state->dts_nformats) {
18196 			mutex_exit(&dtrace_lock);
18197 			return (EINVAL);
18198 		}
18199 
18200 		/*
18201 		 * Format strings are allocated contiguously and they are
18202 		 * never freed; if a format index is less than the number
18203 		 * of formats, we can assert that the format map is non-NULL
18204 		 * and that the format for the specified index is non-NULL.
18205 		 */
18206 		ASSERT(state->dts_formats != NULL);
18207 		str = state->dts_formats[fmt.dtfd_format - 1];
18208 		ASSERT(str != NULL);
18209 
18210 		len = strlen(str) + 1;
18211 
18212 		if (len > fmt.dtfd_length) {
18213 			fmt.dtfd_length = len;
18214 
18215 			if (copyout(&fmt, (void *)arg, sizeof (fmt)) != 0) {
18216 				mutex_exit(&dtrace_lock);
18217 				return (EINVAL);
18218 			}
18219 		} else {
18220 			if (copyout(str, fmt.dtfd_string, len) != 0) {
18221 				mutex_exit(&dtrace_lock);
18222 				return (EINVAL);
18223 			}
18224 		}
18225 
18226 		mutex_exit(&dtrace_lock);
18227 		return (0);
18228 	}
18229 
18230 	default:
18231 		break;
18232 	}
18233 
18234 	return (ENOTTY);
18235 }
18236 
18237 /*ARGSUSED*/
18238 static int
18239 dtrace_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
18240 {
18241 	dtrace_state_t *state;
18242 
18243 	switch (cmd) {
18244 	case DDI_DETACH:
18245 		break;
18246 
18247 	case DDI_SUSPEND:
18248 		return (DDI_SUCCESS);
18249 
18250 	default:
18251 		return (DDI_FAILURE);
18252 	}
18253 
18254 	mutex_enter(&cpu_lock);
18255 	mutex_enter(&dtrace_provider_lock);
18256 	mutex_enter(&dtrace_lock);
18257 
18258 	ASSERT(dtrace_opens == 0);
18259 
18260 	if (dtrace_helpers > 0) {
18261 		mutex_exit(&dtrace_provider_lock);
18262 		mutex_exit(&dtrace_lock);
18263 		mutex_exit(&cpu_lock);
18264 		return (DDI_FAILURE);
18265 	}
18266 
18267 	if (dtrace_unregister((dtrace_provider_id_t)dtrace_provider) != 0) {
18268 		mutex_exit(&dtrace_provider_lock);
18269 		mutex_exit(&dtrace_lock);
18270 		mutex_exit(&cpu_lock);
18271 		return (DDI_FAILURE);
18272 	}
18273 
18274 	dtrace_provider = NULL;
18275 
18276 	if ((state = dtrace_anon_grab()) != NULL) {
18277 		/*
18278 		 * If there were ECBs on this state, the provider should
18279 		 * have not been allowed to detach; assert that there is
18280 		 * none.
18281 		 */
18282 		ASSERT(state->dts_necbs == 0);
18283 		dtrace_state_destroy(state);
18284 
18285 		/*
18286 		 * If we're being detached with anonymous state, we need to
18287 		 * indicate to the kernel debugger that DTrace is now inactive.
18288 		 */
18289 		(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
18290 	}
18291 
18292 	bzero(&dtrace_anon, sizeof (dtrace_anon_t));
18293 	unregister_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
18294 	dtrace_cpu_init = NULL;
18295 	dtrace_helpers_cleanup = NULL;
18296 	dtrace_helpers_fork = NULL;
18297 	dtrace_cpustart_init = NULL;
18298 	dtrace_cpustart_fini = NULL;
18299 	dtrace_debugger_init = NULL;
18300 	dtrace_debugger_fini = NULL;
18301 	dtrace_modload = NULL;
18302 	dtrace_modunload = NULL;
18303 
18304 	ASSERT(dtrace_getf == 0);
18305 	ASSERT(dtrace_closef == NULL);
18306 
18307 	mutex_exit(&cpu_lock);
18308 
18309 	kmem_free(dtrace_probes, dtrace_nprobes * sizeof (dtrace_probe_t *));
18310 	dtrace_probes = NULL;
18311 	dtrace_nprobes = 0;
18312 
18313 	dtrace_hash_destroy(dtrace_bymod);
18314 	dtrace_hash_destroy(dtrace_byfunc);
18315 	dtrace_hash_destroy(dtrace_byname);
18316 	dtrace_bymod = NULL;
18317 	dtrace_byfunc = NULL;
18318 	dtrace_byname = NULL;
18319 
18320 	kmem_cache_destroy(dtrace_state_cache);
18321 	vmem_destroy(dtrace_minor);
18322 	vmem_destroy(dtrace_arena);
18323 
18324 	if (dtrace_toxrange != NULL) {
18325 		kmem_free(dtrace_toxrange,
18326 		    dtrace_toxranges_max * sizeof (dtrace_toxrange_t));
18327 		dtrace_toxrange = NULL;
18328 		dtrace_toxranges = 0;
18329 		dtrace_toxranges_max = 0;
18330 	}
18331 
18332 	ddi_remove_minor_node(dtrace_devi, NULL);
18333 	dtrace_devi = NULL;
18334 
18335 	ddi_soft_state_fini(&dtrace_softstate);
18336 
18337 	ASSERT(dtrace_vtime_references == 0);
18338 	ASSERT(dtrace_opens == 0);
18339 	ASSERT(dtrace_retained == NULL);
18340 
18341 	mutex_exit(&dtrace_lock);
18342 	mutex_exit(&dtrace_provider_lock);
18343 
18344 	/*
18345 	 * We don't destroy the task queue until after we have dropped our
18346 	 * locks (taskq_destroy() may block on running tasks).  To prevent
18347 	 * attempting to do work after we have effectively detached but before
18348 	 * the task queue has been destroyed, all tasks dispatched via the
18349 	 * task queue must check that DTrace is still attached before
18350 	 * performing any operation.
18351 	 */
18352 	taskq_destroy(dtrace_taskq);
18353 	dtrace_taskq = NULL;
18354 
18355 	return (DDI_SUCCESS);
18356 }
18357 #endif
18358 
18359 #ifdef illumos
18360 /*ARGSUSED*/
18361 static int
18362 dtrace_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
18363 {
18364 	int error;
18365 
18366 	switch (infocmd) {
18367 	case DDI_INFO_DEVT2DEVINFO:
18368 		*result = (void *)dtrace_devi;
18369 		error = DDI_SUCCESS;
18370 		break;
18371 	case DDI_INFO_DEVT2INSTANCE:
18372 		*result = (void *)0;
18373 		error = DDI_SUCCESS;
18374 		break;
18375 	default:
18376 		error = DDI_FAILURE;
18377 	}
18378 	return (error);
18379 }
18380 #endif
18381 
18382 #ifdef illumos
18383 static struct cb_ops dtrace_cb_ops = {
18384 	dtrace_open,		/* open */
18385 	dtrace_close,		/* close */
18386 	nulldev,		/* strategy */
18387 	nulldev,		/* print */
18388 	nodev,			/* dump */
18389 	nodev,			/* read */
18390 	nodev,			/* write */
18391 	dtrace_ioctl,		/* ioctl */
18392 	nodev,			/* devmap */
18393 	nodev,			/* mmap */
18394 	nodev,			/* segmap */
18395 	nochpoll,		/* poll */
18396 	ddi_prop_op,		/* cb_prop_op */
18397 	0,			/* streamtab  */
18398 	D_NEW | D_MP		/* Driver compatibility flag */
18399 };
18400 
18401 static struct dev_ops dtrace_ops = {
18402 	DEVO_REV,		/* devo_rev */
18403 	0,			/* refcnt */
18404 	dtrace_info,		/* get_dev_info */
18405 	nulldev,		/* identify */
18406 	nulldev,		/* probe */
18407 	dtrace_attach,		/* attach */
18408 	dtrace_detach,		/* detach */
18409 	nodev,			/* reset */
18410 	&dtrace_cb_ops,		/* driver operations */
18411 	NULL,			/* bus operations */
18412 	nodev			/* dev power */
18413 };
18414 
18415 static struct modldrv modldrv = {
18416 	&mod_driverops,		/* module type (this is a pseudo driver) */
18417 	"Dynamic Tracing",	/* name of module */
18418 	&dtrace_ops,		/* driver ops */
18419 };
18420 
18421 static struct modlinkage modlinkage = {
18422 	MODREV_1,
18423 	(void *)&modldrv,
18424 	NULL
18425 };
18426 
18427 int
18428 _init(void)
18429 {
18430 	return (mod_install(&modlinkage));
18431 }
18432 
18433 int
18434 _info(struct modinfo *modinfop)
18435 {
18436 	return (mod_info(&modlinkage, modinfop));
18437 }
18438 
18439 int
18440 _fini(void)
18441 {
18442 	return (mod_remove(&modlinkage));
18443 }
18444 #else
18445 
18446 static d_ioctl_t	dtrace_ioctl;
18447 static d_ioctl_t	dtrace_ioctl_helper;
18448 static void		dtrace_load(void *);
18449 static int		dtrace_unload(void);
18450 static struct cdev	*dtrace_dev;
18451 static struct cdev	*helper_dev;
18452 
18453 void dtrace_invop_init(void);
18454 void dtrace_invop_uninit(void);
18455 
18456 static struct cdevsw dtrace_cdevsw = {
18457 	.d_version	= D_VERSION,
18458 	.d_ioctl	= dtrace_ioctl,
18459 	.d_open		= dtrace_open,
18460 	.d_name		= "dtrace",
18461 };
18462 
18463 static struct cdevsw helper_cdevsw = {
18464 	.d_version	= D_VERSION,
18465 	.d_ioctl	= dtrace_ioctl_helper,
18466 	.d_name		= "helper",
18467 };
18468 
18469 #include <dtrace_anon.c>
18470 #include <dtrace_ioctl.c>
18471 #include <dtrace_load.c>
18472 #include <dtrace_modevent.c>
18473 #include <dtrace_sysctl.c>
18474 #include <dtrace_unload.c>
18475 #include <dtrace_vtime.c>
18476 #include <dtrace_hacks.c>
18477 
18478 SYSINIT(dtrace_load, SI_SUB_DTRACE, SI_ORDER_FIRST, dtrace_load, NULL);
18479 SYSUNINIT(dtrace_unload, SI_SUB_DTRACE, SI_ORDER_FIRST, dtrace_unload, NULL);
18480 SYSINIT(dtrace_anon_init, SI_SUB_DTRACE_ANON, SI_ORDER_FIRST, dtrace_anon_init, NULL);
18481 
18482 DEV_MODULE(dtrace, dtrace_modevent, NULL);
18483 MODULE_VERSION(dtrace, 1);
18484 MODULE_DEPEND(dtrace, opensolaris, 1, 1, 1);
18485 #endif
18486