1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * drivers/base/core.c - core driver model code (device registration, etc)
4 *
5 * Copyright (c) 2002-3 Patrick Mochel
6 * Copyright (c) 2002-3 Open Source Development Labs
7 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
8 * Copyright (c) 2006 Novell, Inc.
9 */
10
11 #include <linux/acpi.h>
12 #include <linux/blkdev.h>
13 #include <linux/cleanup.h>
14 #include <linux/cpufreq.h>
15 #include <linux/device.h>
16 #include <linux/dma-map-ops.h> /* for dma_default_coherent */
17 #include <linux/err.h>
18 #include <linux/fwnode.h>
19 #include <linux/init.h>
20 #include <linux/kdev_t.h>
21 #include <linux/kstrtox.h>
22 #include <linux/module.h>
23 #include <linux/mutex.h>
24 #include <linux/netdevice.h>
25 #include <linux/notifier.h>
26 #include <linux/of.h>
27 #include <linux/of_device.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/sched/mm.h>
30 #include <linux/sched/signal.h>
31 #include <linux/slab.h>
32 #include <linux/string_helpers.h>
33 #include <linux/swiotlb.h>
34 #include <linux/sysfs.h>
35
36 #include "base.h"
37 #include "physical_location.h"
38 #include "power/power.h"
39
40 /* Device links support. */
41 static LIST_HEAD(deferred_sync);
42 static unsigned int defer_sync_state_count = 1;
43 static DEFINE_MUTEX(fwnode_link_lock);
44 static bool fw_devlink_is_permissive(void);
45 static void __fw_devlink_link_to_consumers(struct device *dev);
46 static bool fw_devlink_drv_reg_done;
47 static bool fw_devlink_best_effort;
48 static struct workqueue_struct *device_link_wq;
49
50 /**
51 * __fwnode_link_add - Create a link between two fwnode_handles.
52 * @con: Consumer end of the link.
53 * @sup: Supplier end of the link.
54 * @flags: Link flags.
55 *
56 * Create a fwnode link between fwnode handles @con and @sup. The fwnode link
57 * represents the detail that the firmware lists @sup fwnode as supplying a
58 * resource to @con.
59 *
60 * The driver core will use the fwnode link to create a device link between the
61 * two device objects corresponding to @con and @sup when they are created. The
62 * driver core will automatically delete the fwnode link between @con and @sup
63 * after doing that.
64 *
65 * Attempts to create duplicate links between the same pair of fwnode handles
66 * are ignored and there is no reference counting.
67 */
__fwnode_link_add(struct fwnode_handle * con,struct fwnode_handle * sup,u8 flags)68 static int __fwnode_link_add(struct fwnode_handle *con,
69 struct fwnode_handle *sup, u8 flags)
70 {
71 struct fwnode_link *link;
72
73 list_for_each_entry(link, &sup->consumers, s_hook)
74 if (link->consumer == con) {
75 link->flags |= flags;
76 return 0;
77 }
78
79 link = kzalloc(sizeof(*link), GFP_KERNEL);
80 if (!link)
81 return -ENOMEM;
82
83 link->supplier = sup;
84 INIT_LIST_HEAD(&link->s_hook);
85 link->consumer = con;
86 INIT_LIST_HEAD(&link->c_hook);
87 link->flags = flags;
88
89 list_add(&link->s_hook, &sup->consumers);
90 list_add(&link->c_hook, &con->suppliers);
91 pr_debug("%pfwf Linked as a fwnode consumer to %pfwf\n",
92 con, sup);
93
94 return 0;
95 }
96
fwnode_link_add(struct fwnode_handle * con,struct fwnode_handle * sup,u8 flags)97 int fwnode_link_add(struct fwnode_handle *con, struct fwnode_handle *sup,
98 u8 flags)
99 {
100 guard(mutex)(&fwnode_link_lock);
101
102 return __fwnode_link_add(con, sup, flags);
103 }
104
105 /**
106 * __fwnode_link_del - Delete a link between two fwnode_handles.
107 * @link: the fwnode_link to be deleted
108 *
109 * The fwnode_link_lock needs to be held when this function is called.
110 */
__fwnode_link_del(struct fwnode_link * link)111 static void __fwnode_link_del(struct fwnode_link *link)
112 {
113 pr_debug("%pfwf Dropping the fwnode link to %pfwf\n",
114 link->consumer, link->supplier);
115 list_del(&link->s_hook);
116 list_del(&link->c_hook);
117 kfree(link);
118 }
119
120 /**
121 * __fwnode_link_cycle - Mark a fwnode link as being part of a cycle.
122 * @link: the fwnode_link to be marked
123 *
124 * The fwnode_link_lock needs to be held when this function is called.
125 */
__fwnode_link_cycle(struct fwnode_link * link)126 static void __fwnode_link_cycle(struct fwnode_link *link)
127 {
128 pr_debug("%pfwf: cycle: depends on %pfwf\n",
129 link->consumer, link->supplier);
130 link->flags |= FWLINK_FLAG_CYCLE;
131 }
132
133 /**
134 * fwnode_links_purge_suppliers - Delete all supplier links of fwnode_handle.
135 * @fwnode: fwnode whose supplier links need to be deleted
136 *
137 * Deletes all supplier links connecting directly to @fwnode.
138 */
fwnode_links_purge_suppliers(struct fwnode_handle * fwnode)139 static void fwnode_links_purge_suppliers(struct fwnode_handle *fwnode)
140 {
141 struct fwnode_link *link, *tmp;
142
143 guard(mutex)(&fwnode_link_lock);
144
145 list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook)
146 __fwnode_link_del(link);
147 }
148
149 /**
150 * fwnode_links_purge_consumers - Delete all consumer links of fwnode_handle.
151 * @fwnode: fwnode whose consumer links need to be deleted
152 *
153 * Deletes all consumer links connecting directly to @fwnode.
154 */
fwnode_links_purge_consumers(struct fwnode_handle * fwnode)155 static void fwnode_links_purge_consumers(struct fwnode_handle *fwnode)
156 {
157 struct fwnode_link *link, *tmp;
158
159 guard(mutex)(&fwnode_link_lock);
160
161 list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook)
162 __fwnode_link_del(link);
163 }
164
165 /**
166 * fwnode_links_purge - Delete all links connected to a fwnode_handle.
167 * @fwnode: fwnode whose links needs to be deleted
168 *
169 * Deletes all links connecting directly to a fwnode.
170 */
fwnode_links_purge(struct fwnode_handle * fwnode)171 void fwnode_links_purge(struct fwnode_handle *fwnode)
172 {
173 fwnode_links_purge_suppliers(fwnode);
174 fwnode_links_purge_consumers(fwnode);
175 }
176
fw_devlink_purge_absent_suppliers(struct fwnode_handle * fwnode)177 void fw_devlink_purge_absent_suppliers(struct fwnode_handle *fwnode)
178 {
179 struct fwnode_handle *child;
180
181 /* Don't purge consumer links of an added child */
182 if (fwnode->dev)
183 return;
184
185 fwnode->flags |= FWNODE_FLAG_NOT_DEVICE;
186 fwnode_links_purge_consumers(fwnode);
187
188 fwnode_for_each_available_child_node(fwnode, child)
189 fw_devlink_purge_absent_suppliers(child);
190 }
191 EXPORT_SYMBOL_GPL(fw_devlink_purge_absent_suppliers);
192
193 /**
194 * __fwnode_links_move_consumers - Move consumer from @from to @to fwnode_handle
195 * @from: move consumers away from this fwnode
196 * @to: move consumers to this fwnode
197 *
198 * Move all consumer links from @from fwnode to @to fwnode.
199 */
__fwnode_links_move_consumers(struct fwnode_handle * from,struct fwnode_handle * to)200 static void __fwnode_links_move_consumers(struct fwnode_handle *from,
201 struct fwnode_handle *to)
202 {
203 struct fwnode_link *link, *tmp;
204
205 list_for_each_entry_safe(link, tmp, &from->consumers, s_hook) {
206 __fwnode_link_add(link->consumer, to, link->flags);
207 __fwnode_link_del(link);
208 }
209 }
210
211 /**
212 * __fw_devlink_pickup_dangling_consumers - Pick up dangling consumers
213 * @fwnode: fwnode from which to pick up dangling consumers
214 * @new_sup: fwnode of new supplier
215 *
216 * If the @fwnode has a corresponding struct device and the device supports
217 * probing (that is, added to a bus), then we want to let fw_devlink create
218 * MANAGED device links to this device, so leave @fwnode and its descendant's
219 * fwnode links alone.
220 *
221 * Otherwise, move its consumers to the new supplier @new_sup.
222 */
__fw_devlink_pickup_dangling_consumers(struct fwnode_handle * fwnode,struct fwnode_handle * new_sup)223 static void __fw_devlink_pickup_dangling_consumers(struct fwnode_handle *fwnode,
224 struct fwnode_handle *new_sup)
225 {
226 struct fwnode_handle *child;
227
228 if (fwnode->dev && fwnode->dev->bus)
229 return;
230
231 fwnode->flags |= FWNODE_FLAG_NOT_DEVICE;
232 __fwnode_links_move_consumers(fwnode, new_sup);
233
234 fwnode_for_each_available_child_node(fwnode, child)
235 __fw_devlink_pickup_dangling_consumers(child, new_sup);
236 }
237
238 static DEFINE_MUTEX(device_links_lock);
239 DEFINE_STATIC_SRCU(device_links_srcu);
240
device_links_write_lock(void)241 static inline void device_links_write_lock(void)
242 {
243 mutex_lock(&device_links_lock);
244 }
245
device_links_write_unlock(void)246 static inline void device_links_write_unlock(void)
247 {
248 mutex_unlock(&device_links_lock);
249 }
250
device_links_read_lock(void)251 int device_links_read_lock(void) __acquires(&device_links_srcu)
252 {
253 return srcu_read_lock(&device_links_srcu);
254 }
255
device_links_read_unlock(int idx)256 void device_links_read_unlock(int idx) __releases(&device_links_srcu)
257 {
258 srcu_read_unlock(&device_links_srcu, idx);
259 }
260
device_links_read_lock_held(void)261 int device_links_read_lock_held(void)
262 {
263 return srcu_read_lock_held(&device_links_srcu);
264 }
265
device_link_synchronize_removal(void)266 static void device_link_synchronize_removal(void)
267 {
268 synchronize_srcu(&device_links_srcu);
269 }
270
device_link_remove_from_lists(struct device_link * link)271 static void device_link_remove_from_lists(struct device_link *link)
272 {
273 list_del_rcu(&link->s_node);
274 list_del_rcu(&link->c_node);
275 }
276
device_is_ancestor(struct device * dev,struct device * target)277 static bool device_is_ancestor(struct device *dev, struct device *target)
278 {
279 while (target->parent) {
280 target = target->parent;
281 if (dev == target)
282 return true;
283 }
284 return false;
285 }
286
287 #define DL_MARKER_FLAGS (DL_FLAG_INFERRED | \
288 DL_FLAG_CYCLE | \
289 DL_FLAG_MANAGED)
device_link_flag_is_sync_state_only(u32 flags)290 static inline bool device_link_flag_is_sync_state_only(u32 flags)
291 {
292 return (flags & ~DL_MARKER_FLAGS) == DL_FLAG_SYNC_STATE_ONLY;
293 }
294
295 /**
296 * device_is_dependent - Check if one device depends on another one
297 * @dev: Device to check dependencies for.
298 * @target: Device to check against.
299 *
300 * Check if @target depends on @dev or any device dependent on it (its child or
301 * its consumer etc). Return 1 if that is the case or 0 otherwise.
302 */
device_is_dependent(struct device * dev,void * target)303 static int device_is_dependent(struct device *dev, void *target)
304 {
305 struct device_link *link;
306 int ret;
307
308 /*
309 * The "ancestors" check is needed to catch the case when the target
310 * device has not been completely initialized yet and it is still
311 * missing from the list of children of its parent device.
312 */
313 if (dev == target || device_is_ancestor(dev, target))
314 return 1;
315
316 ret = device_for_each_child(dev, target, device_is_dependent);
317 if (ret)
318 return ret;
319
320 list_for_each_entry(link, &dev->links.consumers, s_node) {
321 if (device_link_flag_is_sync_state_only(link->flags))
322 continue;
323
324 if (link->consumer == target)
325 return 1;
326
327 ret = device_is_dependent(link->consumer, target);
328 if (ret)
329 break;
330 }
331 return ret;
332 }
333
device_link_init_status(struct device_link * link,struct device * consumer,struct device * supplier)334 static void device_link_init_status(struct device_link *link,
335 struct device *consumer,
336 struct device *supplier)
337 {
338 switch (supplier->links.status) {
339 case DL_DEV_PROBING:
340 switch (consumer->links.status) {
341 case DL_DEV_PROBING:
342 /*
343 * A consumer driver can create a link to a supplier
344 * that has not completed its probing yet as long as it
345 * knows that the supplier is already functional (for
346 * example, it has just acquired some resources from the
347 * supplier).
348 */
349 link->status = DL_STATE_CONSUMER_PROBE;
350 break;
351 default:
352 link->status = DL_STATE_DORMANT;
353 break;
354 }
355 break;
356 case DL_DEV_DRIVER_BOUND:
357 switch (consumer->links.status) {
358 case DL_DEV_PROBING:
359 link->status = DL_STATE_CONSUMER_PROBE;
360 break;
361 case DL_DEV_DRIVER_BOUND:
362 link->status = DL_STATE_ACTIVE;
363 break;
364 default:
365 link->status = DL_STATE_AVAILABLE;
366 break;
367 }
368 break;
369 case DL_DEV_UNBINDING:
370 link->status = DL_STATE_SUPPLIER_UNBIND;
371 break;
372 default:
373 link->status = DL_STATE_DORMANT;
374 break;
375 }
376 }
377
device_reorder_to_tail(struct device * dev,void * not_used)378 static int device_reorder_to_tail(struct device *dev, void *not_used)
379 {
380 struct device_link *link;
381
382 /*
383 * Devices that have not been registered yet will be put to the ends
384 * of the lists during the registration, so skip them here.
385 */
386 if (device_is_registered(dev))
387 devices_kset_move_last(dev);
388
389 if (device_pm_initialized(dev))
390 device_pm_move_last(dev);
391
392 device_for_each_child(dev, NULL, device_reorder_to_tail);
393 list_for_each_entry(link, &dev->links.consumers, s_node) {
394 if (device_link_flag_is_sync_state_only(link->flags))
395 continue;
396 device_reorder_to_tail(link->consumer, NULL);
397 }
398
399 return 0;
400 }
401
402 /**
403 * device_pm_move_to_tail - Move set of devices to the end of device lists
404 * @dev: Device to move
405 *
406 * This is a device_reorder_to_tail() wrapper taking the requisite locks.
407 *
408 * It moves the @dev along with all of its children and all of its consumers
409 * to the ends of the device_kset and dpm_list, recursively.
410 */
device_pm_move_to_tail(struct device * dev)411 void device_pm_move_to_tail(struct device *dev)
412 {
413 int idx;
414
415 idx = device_links_read_lock();
416 device_pm_lock();
417 device_reorder_to_tail(dev, NULL);
418 device_pm_unlock();
419 device_links_read_unlock(idx);
420 }
421
422 #define to_devlink(dev) container_of((dev), struct device_link, link_dev)
423
status_show(struct device * dev,struct device_attribute * attr,char * buf)424 static ssize_t status_show(struct device *dev,
425 struct device_attribute *attr, char *buf)
426 {
427 const char *output;
428
429 switch (to_devlink(dev)->status) {
430 case DL_STATE_NONE:
431 output = "not tracked";
432 break;
433 case DL_STATE_DORMANT:
434 output = "dormant";
435 break;
436 case DL_STATE_AVAILABLE:
437 output = "available";
438 break;
439 case DL_STATE_CONSUMER_PROBE:
440 output = "consumer probing";
441 break;
442 case DL_STATE_ACTIVE:
443 output = "active";
444 break;
445 case DL_STATE_SUPPLIER_UNBIND:
446 output = "supplier unbinding";
447 break;
448 default:
449 output = "unknown";
450 break;
451 }
452
453 return sysfs_emit(buf, "%s\n", output);
454 }
455 static DEVICE_ATTR_RO(status);
456
auto_remove_on_show(struct device * dev,struct device_attribute * attr,char * buf)457 static ssize_t auto_remove_on_show(struct device *dev,
458 struct device_attribute *attr, char *buf)
459 {
460 struct device_link *link = to_devlink(dev);
461 const char *output;
462
463 if (link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
464 output = "supplier unbind";
465 else if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER)
466 output = "consumer unbind";
467 else
468 output = "never";
469
470 return sysfs_emit(buf, "%s\n", output);
471 }
472 static DEVICE_ATTR_RO(auto_remove_on);
473
runtime_pm_show(struct device * dev,struct device_attribute * attr,char * buf)474 static ssize_t runtime_pm_show(struct device *dev,
475 struct device_attribute *attr, char *buf)
476 {
477 struct device_link *link = to_devlink(dev);
478
479 return sysfs_emit(buf, "%d\n", !!(link->flags & DL_FLAG_PM_RUNTIME));
480 }
481 static DEVICE_ATTR_RO(runtime_pm);
482
sync_state_only_show(struct device * dev,struct device_attribute * attr,char * buf)483 static ssize_t sync_state_only_show(struct device *dev,
484 struct device_attribute *attr, char *buf)
485 {
486 struct device_link *link = to_devlink(dev);
487
488 return sysfs_emit(buf, "%d\n",
489 !!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
490 }
491 static DEVICE_ATTR_RO(sync_state_only);
492
493 static struct attribute *devlink_attrs[] = {
494 &dev_attr_status.attr,
495 &dev_attr_auto_remove_on.attr,
496 &dev_attr_runtime_pm.attr,
497 &dev_attr_sync_state_only.attr,
498 NULL,
499 };
500 ATTRIBUTE_GROUPS(devlink);
501
device_link_release_fn(struct work_struct * work)502 static void device_link_release_fn(struct work_struct *work)
503 {
504 struct device_link *link = container_of(work, struct device_link, rm_work);
505
506 /* Ensure that all references to the link object have been dropped. */
507 device_link_synchronize_removal();
508
509 pm_runtime_release_supplier(link);
510 /*
511 * If supplier_preactivated is set, the link has been dropped between
512 * the pm_runtime_get_suppliers() and pm_runtime_put_suppliers() calls
513 * in __driver_probe_device(). In that case, drop the supplier's
514 * PM-runtime usage counter to remove the reference taken by
515 * pm_runtime_get_suppliers().
516 */
517 if (link->supplier_preactivated)
518 pm_runtime_put_noidle(link->supplier);
519
520 pm_request_idle(link->supplier);
521
522 put_device(link->consumer);
523 put_device(link->supplier);
524 kfree(link);
525 }
526
devlink_dev_release(struct device * dev)527 static void devlink_dev_release(struct device *dev)
528 {
529 struct device_link *link = to_devlink(dev);
530
531 INIT_WORK(&link->rm_work, device_link_release_fn);
532 /*
533 * It may take a while to complete this work because of the SRCU
534 * synchronization in device_link_release_fn() and if the consumer or
535 * supplier devices get deleted when it runs, so put it into the
536 * dedicated workqueue.
537 */
538 queue_work(device_link_wq, &link->rm_work);
539 }
540
541 /**
542 * device_link_wait_removal - Wait for ongoing devlink removal jobs to terminate
543 */
device_link_wait_removal(void)544 void device_link_wait_removal(void)
545 {
546 /*
547 * devlink removal jobs are queued in the dedicated work queue.
548 * To be sure that all removal jobs are terminated, ensure that any
549 * scheduled work has run to completion.
550 */
551 flush_workqueue(device_link_wq);
552 }
553 EXPORT_SYMBOL_GPL(device_link_wait_removal);
554
555 static const struct class devlink_class = {
556 .name = "devlink",
557 .dev_groups = devlink_groups,
558 .dev_release = devlink_dev_release,
559 };
560
devlink_add_symlinks(struct device * dev)561 static int devlink_add_symlinks(struct device *dev)
562 {
563 char *buf_con __free(kfree) = NULL, *buf_sup __free(kfree) = NULL;
564 int ret;
565 struct device_link *link = to_devlink(dev);
566 struct device *sup = link->supplier;
567 struct device *con = link->consumer;
568
569 ret = sysfs_create_link(&link->link_dev.kobj, &sup->kobj, "supplier");
570 if (ret)
571 goto out;
572
573 ret = sysfs_create_link(&link->link_dev.kobj, &con->kobj, "consumer");
574 if (ret)
575 goto err_con;
576
577 buf_con = kasprintf(GFP_KERNEL, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
578 if (!buf_con) {
579 ret = -ENOMEM;
580 goto err_con_dev;
581 }
582
583 ret = sysfs_create_link(&sup->kobj, &link->link_dev.kobj, buf_con);
584 if (ret)
585 goto err_con_dev;
586
587 buf_sup = kasprintf(GFP_KERNEL, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
588 if (!buf_sup) {
589 ret = -ENOMEM;
590 goto err_sup_dev;
591 }
592
593 ret = sysfs_create_link(&con->kobj, &link->link_dev.kobj, buf_sup);
594 if (ret)
595 goto err_sup_dev;
596
597 goto out;
598
599 err_sup_dev:
600 sysfs_remove_link(&sup->kobj, buf_con);
601 err_con_dev:
602 sysfs_remove_link(&link->link_dev.kobj, "consumer");
603 err_con:
604 sysfs_remove_link(&link->link_dev.kobj, "supplier");
605 out:
606 return ret;
607 }
608
devlink_remove_symlinks(struct device * dev)609 static void devlink_remove_symlinks(struct device *dev)
610 {
611 char *buf_con __free(kfree) = NULL, *buf_sup __free(kfree) = NULL;
612 struct device_link *link = to_devlink(dev);
613 struct device *sup = link->supplier;
614 struct device *con = link->consumer;
615
616 sysfs_remove_link(&link->link_dev.kobj, "consumer");
617 sysfs_remove_link(&link->link_dev.kobj, "supplier");
618
619 if (device_is_registered(con)) {
620 buf_sup = kasprintf(GFP_KERNEL, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
621 if (!buf_sup)
622 goto out;
623 sysfs_remove_link(&con->kobj, buf_sup);
624 }
625
626 buf_con = kasprintf(GFP_KERNEL, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
627 if (!buf_con)
628 goto out;
629 sysfs_remove_link(&sup->kobj, buf_con);
630
631 return;
632
633 out:
634 WARN(1, "Unable to properly free device link symlinks!\n");
635 }
636
637 static struct class_interface devlink_class_intf = {
638 .class = &devlink_class,
639 .add_dev = devlink_add_symlinks,
640 .remove_dev = devlink_remove_symlinks,
641 };
642
devlink_class_init(void)643 static int __init devlink_class_init(void)
644 {
645 int ret;
646
647 ret = class_register(&devlink_class);
648 if (ret)
649 return ret;
650
651 ret = class_interface_register(&devlink_class_intf);
652 if (ret)
653 class_unregister(&devlink_class);
654
655 return ret;
656 }
657 postcore_initcall(devlink_class_init);
658
659 #define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \
660 DL_FLAG_AUTOREMOVE_SUPPLIER | \
661 DL_FLAG_AUTOPROBE_CONSUMER | \
662 DL_FLAG_SYNC_STATE_ONLY | \
663 DL_FLAG_INFERRED | \
664 DL_FLAG_CYCLE)
665
666 #define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \
667 DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE)
668
669 /**
670 * device_link_add - Create a link between two devices.
671 * @consumer: Consumer end of the link.
672 * @supplier: Supplier end of the link.
673 * @flags: Link flags.
674 *
675 * Return: On success, a device_link struct will be returned.
676 * On error or invalid flag settings, NULL will be returned.
677 *
678 * The caller is responsible for the proper synchronization of the link creation
679 * with runtime PM. First, setting the DL_FLAG_PM_RUNTIME flag will cause the
680 * runtime PM framework to take the link into account. Second, if the
681 * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
682 * be forced into the active meta state and reference-counted upon the creation
683 * of the link. If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
684 * ignored.
685 *
686 * If DL_FLAG_STATELESS is set in @flags, the caller of this function is
687 * expected to release the link returned by it directly with the help of either
688 * device_link_del() or device_link_remove().
689 *
690 * If that flag is not set, however, the caller of this function is handing the
691 * management of the link over to the driver core entirely and its return value
692 * can only be used to check whether or not the link is present. In that case,
693 * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link
694 * flags can be used to indicate to the driver core when the link can be safely
695 * deleted. Namely, setting one of them in @flags indicates to the driver core
696 * that the link is not going to be used (by the given caller of this function)
697 * after unbinding the consumer or supplier driver, respectively, from its
698 * device, so the link can be deleted at that point. If none of them is set,
699 * the link will be maintained until one of the devices pointed to by it (either
700 * the consumer or the supplier) is unregistered.
701 *
702 * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and
703 * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent
704 * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can
705 * be used to request the driver core to automatically probe for a consumer
706 * driver after successfully binding a driver to the supplier device.
707 *
708 * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER,
709 * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at
710 * the same time is invalid and will cause NULL to be returned upfront.
711 * However, if a device link between the given @consumer and @supplier pair
712 * exists already when this function is called for them, the existing link will
713 * be returned regardless of its current type and status (the link's flags may
714 * be modified then). The caller of this function is then expected to treat
715 * the link as though it has just been created, so (in particular) if
716 * DL_FLAG_STATELESS was passed in @flags, the link needs to be released
717 * explicitly when not needed any more (as stated above).
718 *
719 * A side effect of the link creation is re-ordering of dpm_list and the
720 * devices_kset list by moving the consumer device and all devices depending
721 * on it to the ends of these lists (that does not happen to devices that have
722 * not been registered when this function is called).
723 *
724 * The supplier device is required to be registered when this function is called
725 * and NULL will be returned if that is not the case. The consumer device need
726 * not be registered, however.
727 */
device_link_add(struct device * consumer,struct device * supplier,u32 flags)728 struct device_link *device_link_add(struct device *consumer,
729 struct device *supplier, u32 flags)
730 {
731 struct device_link *link;
732
733 if (!consumer || !supplier || consumer == supplier ||
734 flags & ~DL_ADD_VALID_FLAGS ||
735 (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) ||
736 (flags & DL_FLAG_AUTOPROBE_CONSUMER &&
737 flags & (DL_FLAG_AUTOREMOVE_CONSUMER |
738 DL_FLAG_AUTOREMOVE_SUPPLIER)))
739 return NULL;
740
741 if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) {
742 if (pm_runtime_get_sync(supplier) < 0) {
743 pm_runtime_put_noidle(supplier);
744 return NULL;
745 }
746 }
747
748 if (!(flags & DL_FLAG_STATELESS))
749 flags |= DL_FLAG_MANAGED;
750
751 if (flags & DL_FLAG_SYNC_STATE_ONLY &&
752 !device_link_flag_is_sync_state_only(flags))
753 return NULL;
754
755 device_links_write_lock();
756 device_pm_lock();
757
758 /*
759 * If the supplier has not been fully registered yet or there is a
760 * reverse (non-SYNC_STATE_ONLY) dependency between the consumer and
761 * the supplier already in the graph, return NULL. If the link is a
762 * SYNC_STATE_ONLY link, we don't check for reverse dependencies
763 * because it only affects sync_state() callbacks.
764 */
765 if (!device_pm_initialized(supplier)
766 || (!(flags & DL_FLAG_SYNC_STATE_ONLY) &&
767 device_is_dependent(consumer, supplier))) {
768 link = NULL;
769 goto out;
770 }
771
772 /*
773 * SYNC_STATE_ONLY links are useless once a consumer device has probed.
774 * So, only create it if the consumer hasn't probed yet.
775 */
776 if (flags & DL_FLAG_SYNC_STATE_ONLY &&
777 consumer->links.status != DL_DEV_NO_DRIVER &&
778 consumer->links.status != DL_DEV_PROBING) {
779 link = NULL;
780 goto out;
781 }
782
783 /*
784 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed
785 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both
786 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER.
787 */
788 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
789 flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
790
791 list_for_each_entry(link, &supplier->links.consumers, s_node) {
792 if (link->consumer != consumer)
793 continue;
794
795 if (link->flags & DL_FLAG_INFERRED &&
796 !(flags & DL_FLAG_INFERRED))
797 link->flags &= ~DL_FLAG_INFERRED;
798
799 if (flags & DL_FLAG_PM_RUNTIME) {
800 if (!(link->flags & DL_FLAG_PM_RUNTIME)) {
801 pm_runtime_new_link(consumer);
802 link->flags |= DL_FLAG_PM_RUNTIME;
803 }
804 if (flags & DL_FLAG_RPM_ACTIVE)
805 refcount_inc(&link->rpm_active);
806 }
807
808 if (flags & DL_FLAG_STATELESS) {
809 kref_get(&link->kref);
810 if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
811 !(link->flags & DL_FLAG_STATELESS)) {
812 link->flags |= DL_FLAG_STATELESS;
813 goto reorder;
814 } else {
815 link->flags |= DL_FLAG_STATELESS;
816 goto out;
817 }
818 }
819
820 /*
821 * If the life time of the link following from the new flags is
822 * longer than indicated by the flags of the existing link,
823 * update the existing link to stay around longer.
824 */
825 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) {
826 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
827 link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
828 link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER;
829 }
830 } else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) {
831 link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER |
832 DL_FLAG_AUTOREMOVE_SUPPLIER);
833 }
834 if (!(link->flags & DL_FLAG_MANAGED)) {
835 kref_get(&link->kref);
836 link->flags |= DL_FLAG_MANAGED;
837 device_link_init_status(link, consumer, supplier);
838 }
839 if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
840 !(flags & DL_FLAG_SYNC_STATE_ONLY)) {
841 link->flags &= ~DL_FLAG_SYNC_STATE_ONLY;
842 goto reorder;
843 }
844
845 goto out;
846 }
847
848 link = kzalloc(sizeof(*link), GFP_KERNEL);
849 if (!link)
850 goto out;
851
852 refcount_set(&link->rpm_active, 1);
853
854 get_device(supplier);
855 link->supplier = supplier;
856 INIT_LIST_HEAD(&link->s_node);
857 get_device(consumer);
858 link->consumer = consumer;
859 INIT_LIST_HEAD(&link->c_node);
860 link->flags = flags;
861 kref_init(&link->kref);
862
863 link->link_dev.class = &devlink_class;
864 device_set_pm_not_required(&link->link_dev);
865 dev_set_name(&link->link_dev, "%s:%s--%s:%s",
866 dev_bus_name(supplier), dev_name(supplier),
867 dev_bus_name(consumer), dev_name(consumer));
868 if (device_register(&link->link_dev)) {
869 put_device(&link->link_dev);
870 link = NULL;
871 goto out;
872 }
873
874 if (flags & DL_FLAG_PM_RUNTIME) {
875 if (flags & DL_FLAG_RPM_ACTIVE)
876 refcount_inc(&link->rpm_active);
877
878 pm_runtime_new_link(consumer);
879 }
880
881 /* Determine the initial link state. */
882 if (flags & DL_FLAG_STATELESS)
883 link->status = DL_STATE_NONE;
884 else
885 device_link_init_status(link, consumer, supplier);
886
887 /*
888 * Some callers expect the link creation during consumer driver probe to
889 * resume the supplier even without DL_FLAG_RPM_ACTIVE.
890 */
891 if (link->status == DL_STATE_CONSUMER_PROBE &&
892 flags & DL_FLAG_PM_RUNTIME)
893 pm_runtime_resume(supplier);
894
895 list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
896 list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
897
898 if (flags & DL_FLAG_SYNC_STATE_ONLY) {
899 dev_dbg(consumer,
900 "Linked as a sync state only consumer to %s\n",
901 dev_name(supplier));
902 goto out;
903 }
904
905 reorder:
906 /*
907 * Move the consumer and all of the devices depending on it to the end
908 * of dpm_list and the devices_kset list.
909 *
910 * It is necessary to hold dpm_list locked throughout all that or else
911 * we may end up suspending with a wrong ordering of it.
912 */
913 device_reorder_to_tail(consumer, NULL);
914
915 dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
916
917 out:
918 device_pm_unlock();
919 device_links_write_unlock();
920
921 if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link)
922 pm_runtime_put(supplier);
923
924 return link;
925 }
926 EXPORT_SYMBOL_GPL(device_link_add);
927
__device_link_del(struct kref * kref)928 static void __device_link_del(struct kref *kref)
929 {
930 struct device_link *link = container_of(kref, struct device_link, kref);
931
932 dev_dbg(link->consumer, "Dropping the link to %s\n",
933 dev_name(link->supplier));
934
935 pm_runtime_drop_link(link);
936
937 device_link_remove_from_lists(link);
938 device_unregister(&link->link_dev);
939 }
940
device_link_put_kref(struct device_link * link)941 static void device_link_put_kref(struct device_link *link)
942 {
943 if (link->flags & DL_FLAG_STATELESS)
944 kref_put(&link->kref, __device_link_del);
945 else if (!device_is_registered(link->consumer))
946 __device_link_del(&link->kref);
947 else
948 WARN(1, "Unable to drop a managed device link reference\n");
949 }
950
951 /**
952 * device_link_del - Delete a stateless link between two devices.
953 * @link: Device link to delete.
954 *
955 * The caller must ensure proper synchronization of this function with runtime
956 * PM. If the link was added multiple times, it needs to be deleted as often.
957 * Care is required for hotplugged devices: Their links are purged on removal
958 * and calling device_link_del() is then no longer allowed.
959 */
device_link_del(struct device_link * link)960 void device_link_del(struct device_link *link)
961 {
962 device_links_write_lock();
963 device_link_put_kref(link);
964 device_links_write_unlock();
965 }
966 EXPORT_SYMBOL_GPL(device_link_del);
967
968 /**
969 * device_link_remove - Delete a stateless link between two devices.
970 * @consumer: Consumer end of the link.
971 * @supplier: Supplier end of the link.
972 *
973 * The caller must ensure proper synchronization of this function with runtime
974 * PM.
975 */
device_link_remove(void * consumer,struct device * supplier)976 void device_link_remove(void *consumer, struct device *supplier)
977 {
978 struct device_link *link;
979
980 if (WARN_ON(consumer == supplier))
981 return;
982
983 device_links_write_lock();
984
985 list_for_each_entry(link, &supplier->links.consumers, s_node) {
986 if (link->consumer == consumer) {
987 device_link_put_kref(link);
988 break;
989 }
990 }
991
992 device_links_write_unlock();
993 }
994 EXPORT_SYMBOL_GPL(device_link_remove);
995
device_links_missing_supplier(struct device * dev)996 static void device_links_missing_supplier(struct device *dev)
997 {
998 struct device_link *link;
999
1000 list_for_each_entry(link, &dev->links.suppliers, c_node) {
1001 if (link->status != DL_STATE_CONSUMER_PROBE)
1002 continue;
1003
1004 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
1005 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1006 } else {
1007 WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
1008 WRITE_ONCE(link->status, DL_STATE_DORMANT);
1009 }
1010 }
1011 }
1012
dev_is_best_effort(struct device * dev)1013 static bool dev_is_best_effort(struct device *dev)
1014 {
1015 return (fw_devlink_best_effort && dev->can_match) ||
1016 (dev->fwnode && (dev->fwnode->flags & FWNODE_FLAG_BEST_EFFORT));
1017 }
1018
fwnode_links_check_suppliers(struct fwnode_handle * fwnode)1019 static struct fwnode_handle *fwnode_links_check_suppliers(
1020 struct fwnode_handle *fwnode)
1021 {
1022 struct fwnode_link *link;
1023
1024 if (!fwnode || fw_devlink_is_permissive())
1025 return NULL;
1026
1027 list_for_each_entry(link, &fwnode->suppliers, c_hook)
1028 if (!(link->flags &
1029 (FWLINK_FLAG_CYCLE | FWLINK_FLAG_IGNORE)))
1030 return link->supplier;
1031
1032 return NULL;
1033 }
1034
1035 /**
1036 * device_links_check_suppliers - Check presence of supplier drivers.
1037 * @dev: Consumer device.
1038 *
1039 * Check links from this device to any suppliers. Walk the list of the device's
1040 * links to suppliers and see if all of them are available. If not, simply
1041 * return -EPROBE_DEFER.
1042 *
1043 * We need to guarantee that the supplier will not go away after the check has
1044 * been positive here. It only can go away in __device_release_driver() and
1045 * that function checks the device's links to consumers. This means we need to
1046 * mark the link as "consumer probe in progress" to make the supplier removal
1047 * wait for us to complete (or bad things may happen).
1048 *
1049 * Links without the DL_FLAG_MANAGED flag set are ignored.
1050 */
device_links_check_suppliers(struct device * dev)1051 int device_links_check_suppliers(struct device *dev)
1052 {
1053 struct device_link *link;
1054 int ret = 0, fwnode_ret = 0;
1055 struct fwnode_handle *sup_fw;
1056
1057 /*
1058 * Device waiting for supplier to become available is not allowed to
1059 * probe.
1060 */
1061 scoped_guard(mutex, &fwnode_link_lock) {
1062 sup_fw = fwnode_links_check_suppliers(dev->fwnode);
1063 if (sup_fw) {
1064 if (dev_is_best_effort(dev))
1065 fwnode_ret = -EAGAIN;
1066 else
1067 return dev_err_probe(dev, -EPROBE_DEFER,
1068 "wait for supplier %pfwf\n", sup_fw);
1069 }
1070 }
1071
1072 device_links_write_lock();
1073
1074 list_for_each_entry(link, &dev->links.suppliers, c_node) {
1075 if (!(link->flags & DL_FLAG_MANAGED))
1076 continue;
1077
1078 if (link->status != DL_STATE_AVAILABLE &&
1079 !(link->flags & DL_FLAG_SYNC_STATE_ONLY)) {
1080
1081 if (dev_is_best_effort(dev) &&
1082 link->flags & DL_FLAG_INFERRED &&
1083 !link->supplier->can_match) {
1084 ret = -EAGAIN;
1085 continue;
1086 }
1087
1088 device_links_missing_supplier(dev);
1089 ret = dev_err_probe(dev, -EPROBE_DEFER,
1090 "supplier %s not ready\n", dev_name(link->supplier));
1091 break;
1092 }
1093 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
1094 }
1095 dev->links.status = DL_DEV_PROBING;
1096
1097 device_links_write_unlock();
1098
1099 return ret ? ret : fwnode_ret;
1100 }
1101
1102 /**
1103 * __device_links_queue_sync_state - Queue a device for sync_state() callback
1104 * @dev: Device to call sync_state() on
1105 * @list: List head to queue the @dev on
1106 *
1107 * Queues a device for a sync_state() callback when the device links write lock
1108 * isn't held. This allows the sync_state() execution flow to use device links
1109 * APIs. The caller must ensure this function is called with
1110 * device_links_write_lock() held.
1111 *
1112 * This function does a get_device() to make sure the device is not freed while
1113 * on this list.
1114 *
1115 * So the caller must also ensure that device_links_flush_sync_list() is called
1116 * as soon as the caller releases device_links_write_lock(). This is necessary
1117 * to make sure the sync_state() is called in a timely fashion and the
1118 * put_device() is called on this device.
1119 */
__device_links_queue_sync_state(struct device * dev,struct list_head * list)1120 static void __device_links_queue_sync_state(struct device *dev,
1121 struct list_head *list)
1122 {
1123 struct device_link *link;
1124
1125 if (!dev_has_sync_state(dev))
1126 return;
1127 if (dev->state_synced)
1128 return;
1129
1130 list_for_each_entry(link, &dev->links.consumers, s_node) {
1131 if (!(link->flags & DL_FLAG_MANAGED))
1132 continue;
1133 if (link->status != DL_STATE_ACTIVE)
1134 return;
1135 }
1136
1137 /*
1138 * Set the flag here to avoid adding the same device to a list more
1139 * than once. This can happen if new consumers get added to the device
1140 * and probed before the list is flushed.
1141 */
1142 dev->state_synced = true;
1143
1144 if (WARN_ON(!list_empty(&dev->links.defer_sync)))
1145 return;
1146
1147 get_device(dev);
1148 list_add_tail(&dev->links.defer_sync, list);
1149 }
1150
1151 /**
1152 * device_links_flush_sync_list - Call sync_state() on a list of devices
1153 * @list: List of devices to call sync_state() on
1154 * @dont_lock_dev: Device for which lock is already held by the caller
1155 *
1156 * Calls sync_state() on all the devices that have been queued for it. This
1157 * function is used in conjunction with __device_links_queue_sync_state(). The
1158 * @dont_lock_dev parameter is useful when this function is called from a
1159 * context where a device lock is already held.
1160 */
device_links_flush_sync_list(struct list_head * list,struct device * dont_lock_dev)1161 static void device_links_flush_sync_list(struct list_head *list,
1162 struct device *dont_lock_dev)
1163 {
1164 struct device *dev, *tmp;
1165
1166 list_for_each_entry_safe(dev, tmp, list, links.defer_sync) {
1167 list_del_init(&dev->links.defer_sync);
1168
1169 if (dev != dont_lock_dev)
1170 device_lock(dev);
1171
1172 dev_sync_state(dev);
1173
1174 if (dev != dont_lock_dev)
1175 device_unlock(dev);
1176
1177 put_device(dev);
1178 }
1179 }
1180
device_links_supplier_sync_state_pause(void)1181 void device_links_supplier_sync_state_pause(void)
1182 {
1183 device_links_write_lock();
1184 defer_sync_state_count++;
1185 device_links_write_unlock();
1186 }
1187
device_links_supplier_sync_state_resume(void)1188 void device_links_supplier_sync_state_resume(void)
1189 {
1190 struct device *dev, *tmp;
1191 LIST_HEAD(sync_list);
1192
1193 device_links_write_lock();
1194 if (!defer_sync_state_count) {
1195 WARN(true, "Unmatched sync_state pause/resume!");
1196 goto out;
1197 }
1198 defer_sync_state_count--;
1199 if (defer_sync_state_count)
1200 goto out;
1201
1202 list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_sync) {
1203 /*
1204 * Delete from deferred_sync list before queuing it to
1205 * sync_list because defer_sync is used for both lists.
1206 */
1207 list_del_init(&dev->links.defer_sync);
1208 __device_links_queue_sync_state(dev, &sync_list);
1209 }
1210 out:
1211 device_links_write_unlock();
1212
1213 device_links_flush_sync_list(&sync_list, NULL);
1214 }
1215
sync_state_resume_initcall(void)1216 static int sync_state_resume_initcall(void)
1217 {
1218 device_links_supplier_sync_state_resume();
1219 return 0;
1220 }
1221 late_initcall(sync_state_resume_initcall);
1222
__device_links_supplier_defer_sync(struct device * sup)1223 static void __device_links_supplier_defer_sync(struct device *sup)
1224 {
1225 if (list_empty(&sup->links.defer_sync) && dev_has_sync_state(sup))
1226 list_add_tail(&sup->links.defer_sync, &deferred_sync);
1227 }
1228
device_link_drop_managed(struct device_link * link)1229 static void device_link_drop_managed(struct device_link *link)
1230 {
1231 link->flags &= ~DL_FLAG_MANAGED;
1232 WRITE_ONCE(link->status, DL_STATE_NONE);
1233 kref_put(&link->kref, __device_link_del);
1234 }
1235
waiting_for_supplier_show(struct device * dev,struct device_attribute * attr,char * buf)1236 static ssize_t waiting_for_supplier_show(struct device *dev,
1237 struct device_attribute *attr,
1238 char *buf)
1239 {
1240 bool val;
1241
1242 device_lock(dev);
1243 scoped_guard(mutex, &fwnode_link_lock)
1244 val = !!fwnode_links_check_suppliers(dev->fwnode);
1245 device_unlock(dev);
1246 return sysfs_emit(buf, "%u\n", val);
1247 }
1248 static DEVICE_ATTR_RO(waiting_for_supplier);
1249
1250 /**
1251 * device_links_force_bind - Prepares device to be force bound
1252 * @dev: Consumer device.
1253 *
1254 * device_bind_driver() force binds a device to a driver without calling any
1255 * driver probe functions. So the consumer really isn't going to wait for any
1256 * supplier before it's bound to the driver. We still want the device link
1257 * states to be sensible when this happens.
1258 *
1259 * In preparation for device_bind_driver(), this function goes through each
1260 * supplier device links and checks if the supplier is bound. If it is, then
1261 * the device link status is set to CONSUMER_PROBE. Otherwise, the device link
1262 * is dropped. Links without the DL_FLAG_MANAGED flag set are ignored.
1263 */
device_links_force_bind(struct device * dev)1264 void device_links_force_bind(struct device *dev)
1265 {
1266 struct device_link *link, *ln;
1267
1268 device_links_write_lock();
1269
1270 list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1271 if (!(link->flags & DL_FLAG_MANAGED))
1272 continue;
1273
1274 if (link->status != DL_STATE_AVAILABLE) {
1275 device_link_drop_managed(link);
1276 continue;
1277 }
1278 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
1279 }
1280 dev->links.status = DL_DEV_PROBING;
1281
1282 device_links_write_unlock();
1283 }
1284
1285 /**
1286 * device_links_driver_bound - Update device links after probing its driver.
1287 * @dev: Device to update the links for.
1288 *
1289 * The probe has been successful, so update links from this device to any
1290 * consumers by changing their status to "available".
1291 *
1292 * Also change the status of @dev's links to suppliers to "active".
1293 *
1294 * Links without the DL_FLAG_MANAGED flag set are ignored.
1295 */
device_links_driver_bound(struct device * dev)1296 void device_links_driver_bound(struct device *dev)
1297 {
1298 struct device_link *link, *ln;
1299 LIST_HEAD(sync_list);
1300
1301 /*
1302 * If a device binds successfully, it's expected to have created all
1303 * the device links it needs to or make new device links as it needs
1304 * them. So, fw_devlink no longer needs to create device links to any
1305 * of the device's suppliers.
1306 *
1307 * Also, if a child firmware node of this bound device is not added as a
1308 * device by now, assume it is never going to be added. Make this bound
1309 * device the fallback supplier to the dangling consumers of the child
1310 * firmware node because this bound device is probably implementing the
1311 * child firmware node functionality and we don't want the dangling
1312 * consumers to defer probe indefinitely waiting for a device for the
1313 * child firmware node.
1314 */
1315 if (dev->fwnode && dev->fwnode->dev == dev) {
1316 struct fwnode_handle *child;
1317
1318 fwnode_links_purge_suppliers(dev->fwnode);
1319
1320 guard(mutex)(&fwnode_link_lock);
1321
1322 fwnode_for_each_available_child_node(dev->fwnode, child)
1323 __fw_devlink_pickup_dangling_consumers(child,
1324 dev->fwnode);
1325 __fw_devlink_link_to_consumers(dev);
1326 }
1327 device_remove_file(dev, &dev_attr_waiting_for_supplier);
1328
1329 device_links_write_lock();
1330
1331 list_for_each_entry(link, &dev->links.consumers, s_node) {
1332 if (!(link->flags & DL_FLAG_MANAGED))
1333 continue;
1334
1335 /*
1336 * Links created during consumer probe may be in the "consumer
1337 * probe" state to start with if the supplier is still probing
1338 * when they are created and they may become "active" if the
1339 * consumer probe returns first. Skip them here.
1340 */
1341 if (link->status == DL_STATE_CONSUMER_PROBE ||
1342 link->status == DL_STATE_ACTIVE)
1343 continue;
1344
1345 WARN_ON(link->status != DL_STATE_DORMANT);
1346 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1347
1348 if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER)
1349 driver_deferred_probe_add(link->consumer);
1350 }
1351
1352 if (defer_sync_state_count)
1353 __device_links_supplier_defer_sync(dev);
1354 else
1355 __device_links_queue_sync_state(dev, &sync_list);
1356
1357 list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1358 struct device *supplier;
1359
1360 if (!(link->flags & DL_FLAG_MANAGED))
1361 continue;
1362
1363 supplier = link->supplier;
1364 if (link->flags & DL_FLAG_SYNC_STATE_ONLY) {
1365 /*
1366 * When DL_FLAG_SYNC_STATE_ONLY is set, it means no
1367 * other DL_MANAGED_LINK_FLAGS have been set. So, it's
1368 * save to drop the managed link completely.
1369 */
1370 device_link_drop_managed(link);
1371 } else if (dev_is_best_effort(dev) &&
1372 link->flags & DL_FLAG_INFERRED &&
1373 link->status != DL_STATE_CONSUMER_PROBE &&
1374 !link->supplier->can_match) {
1375 /*
1376 * When dev_is_best_effort() is true, we ignore device
1377 * links to suppliers that don't have a driver. If the
1378 * consumer device still managed to probe, there's no
1379 * point in maintaining a device link in a weird state
1380 * (consumer probed before supplier). So delete it.
1381 */
1382 device_link_drop_managed(link);
1383 } else {
1384 WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
1385 WRITE_ONCE(link->status, DL_STATE_ACTIVE);
1386 }
1387
1388 /*
1389 * This needs to be done even for the deleted
1390 * DL_FLAG_SYNC_STATE_ONLY device link in case it was the last
1391 * device link that was preventing the supplier from getting a
1392 * sync_state() call.
1393 */
1394 if (defer_sync_state_count)
1395 __device_links_supplier_defer_sync(supplier);
1396 else
1397 __device_links_queue_sync_state(supplier, &sync_list);
1398 }
1399
1400 dev->links.status = DL_DEV_DRIVER_BOUND;
1401
1402 device_links_write_unlock();
1403
1404 device_links_flush_sync_list(&sync_list, dev);
1405 }
1406
1407 /**
1408 * __device_links_no_driver - Update links of a device without a driver.
1409 * @dev: Device without a drvier.
1410 *
1411 * Delete all non-persistent links from this device to any suppliers.
1412 *
1413 * Persistent links stay around, but their status is changed to "available",
1414 * unless they already are in the "supplier unbind in progress" state in which
1415 * case they need not be updated.
1416 *
1417 * Links without the DL_FLAG_MANAGED flag set are ignored.
1418 */
__device_links_no_driver(struct device * dev)1419 static void __device_links_no_driver(struct device *dev)
1420 {
1421 struct device_link *link, *ln;
1422
1423 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1424 if (!(link->flags & DL_FLAG_MANAGED))
1425 continue;
1426
1427 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
1428 device_link_drop_managed(link);
1429 continue;
1430 }
1431
1432 if (link->status != DL_STATE_CONSUMER_PROBE &&
1433 link->status != DL_STATE_ACTIVE)
1434 continue;
1435
1436 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
1437 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1438 } else {
1439 WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
1440 WRITE_ONCE(link->status, DL_STATE_DORMANT);
1441 }
1442 }
1443
1444 dev->links.status = DL_DEV_NO_DRIVER;
1445 }
1446
1447 /**
1448 * device_links_no_driver - Update links after failing driver probe.
1449 * @dev: Device whose driver has just failed to probe.
1450 *
1451 * Clean up leftover links to consumers for @dev and invoke
1452 * %__device_links_no_driver() to update links to suppliers for it as
1453 * appropriate.
1454 *
1455 * Links without the DL_FLAG_MANAGED flag set are ignored.
1456 */
device_links_no_driver(struct device * dev)1457 void device_links_no_driver(struct device *dev)
1458 {
1459 struct device_link *link;
1460
1461 device_links_write_lock();
1462
1463 list_for_each_entry(link, &dev->links.consumers, s_node) {
1464 if (!(link->flags & DL_FLAG_MANAGED))
1465 continue;
1466
1467 /*
1468 * The probe has failed, so if the status of the link is
1469 * "consumer probe" or "active", it must have been added by
1470 * a probing consumer while this device was still probing.
1471 * Change its state to "dormant", as it represents a valid
1472 * relationship, but it is not functionally meaningful.
1473 */
1474 if (link->status == DL_STATE_CONSUMER_PROBE ||
1475 link->status == DL_STATE_ACTIVE)
1476 WRITE_ONCE(link->status, DL_STATE_DORMANT);
1477 }
1478
1479 __device_links_no_driver(dev);
1480
1481 device_links_write_unlock();
1482 }
1483
1484 /**
1485 * device_links_driver_cleanup - Update links after driver removal.
1486 * @dev: Device whose driver has just gone away.
1487 *
1488 * Update links to consumers for @dev by changing their status to "dormant" and
1489 * invoke %__device_links_no_driver() to update links to suppliers for it as
1490 * appropriate.
1491 *
1492 * Links without the DL_FLAG_MANAGED flag set are ignored.
1493 */
device_links_driver_cleanup(struct device * dev)1494 void device_links_driver_cleanup(struct device *dev)
1495 {
1496 struct device_link *link, *ln;
1497
1498 device_links_write_lock();
1499
1500 list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) {
1501 if (!(link->flags & DL_FLAG_MANAGED))
1502 continue;
1503
1504 WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER);
1505 WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
1506
1507 /*
1508 * autoremove the links between this @dev and its consumer
1509 * devices that are not active, i.e. where the link state
1510 * has moved to DL_STATE_SUPPLIER_UNBIND.
1511 */
1512 if (link->status == DL_STATE_SUPPLIER_UNBIND &&
1513 link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
1514 device_link_drop_managed(link);
1515
1516 WRITE_ONCE(link->status, DL_STATE_DORMANT);
1517 }
1518
1519 list_del_init(&dev->links.defer_sync);
1520 __device_links_no_driver(dev);
1521
1522 device_links_write_unlock();
1523 }
1524
1525 /**
1526 * device_links_busy - Check if there are any busy links to consumers.
1527 * @dev: Device to check.
1528 *
1529 * Check each consumer of the device and return 'true' if its link's status
1530 * is one of "consumer probe" or "active" (meaning that the given consumer is
1531 * probing right now or its driver is present). Otherwise, change the link
1532 * state to "supplier unbind" to prevent the consumer from being probed
1533 * successfully going forward.
1534 *
1535 * Return 'false' if there are no probing or active consumers.
1536 *
1537 * Links without the DL_FLAG_MANAGED flag set are ignored.
1538 */
device_links_busy(struct device * dev)1539 bool device_links_busy(struct device *dev)
1540 {
1541 struct device_link *link;
1542 bool ret = false;
1543
1544 device_links_write_lock();
1545
1546 list_for_each_entry(link, &dev->links.consumers, s_node) {
1547 if (!(link->flags & DL_FLAG_MANAGED))
1548 continue;
1549
1550 if (link->status == DL_STATE_CONSUMER_PROBE
1551 || link->status == DL_STATE_ACTIVE) {
1552 ret = true;
1553 break;
1554 }
1555 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1556 }
1557
1558 dev->links.status = DL_DEV_UNBINDING;
1559
1560 device_links_write_unlock();
1561 return ret;
1562 }
1563
1564 /**
1565 * device_links_unbind_consumers - Force unbind consumers of the given device.
1566 * @dev: Device to unbind the consumers of.
1567 *
1568 * Walk the list of links to consumers for @dev and if any of them is in the
1569 * "consumer probe" state, wait for all device probes in progress to complete
1570 * and start over.
1571 *
1572 * If that's not the case, change the status of the link to "supplier unbind"
1573 * and check if the link was in the "active" state. If so, force the consumer
1574 * driver to unbind and start over (the consumer will not re-probe as we have
1575 * changed the state of the link already).
1576 *
1577 * Links without the DL_FLAG_MANAGED flag set are ignored.
1578 */
device_links_unbind_consumers(struct device * dev)1579 void device_links_unbind_consumers(struct device *dev)
1580 {
1581 struct device_link *link;
1582
1583 start:
1584 device_links_write_lock();
1585
1586 list_for_each_entry(link, &dev->links.consumers, s_node) {
1587 enum device_link_state status;
1588
1589 if (!(link->flags & DL_FLAG_MANAGED) ||
1590 link->flags & DL_FLAG_SYNC_STATE_ONLY)
1591 continue;
1592
1593 status = link->status;
1594 if (status == DL_STATE_CONSUMER_PROBE) {
1595 device_links_write_unlock();
1596
1597 wait_for_device_probe();
1598 goto start;
1599 }
1600 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1601 if (status == DL_STATE_ACTIVE) {
1602 struct device *consumer = link->consumer;
1603
1604 get_device(consumer);
1605
1606 device_links_write_unlock();
1607
1608 device_release_driver_internal(consumer, NULL,
1609 consumer->parent);
1610 put_device(consumer);
1611 goto start;
1612 }
1613 }
1614
1615 device_links_write_unlock();
1616 }
1617
1618 /**
1619 * device_links_purge - Delete existing links to other devices.
1620 * @dev: Target device.
1621 */
device_links_purge(struct device * dev)1622 static void device_links_purge(struct device *dev)
1623 {
1624 struct device_link *link, *ln;
1625
1626 if (dev->class == &devlink_class)
1627 return;
1628
1629 /*
1630 * Delete all of the remaining links from this device to any other
1631 * devices (either consumers or suppliers).
1632 */
1633 device_links_write_lock();
1634
1635 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1636 WARN_ON(link->status == DL_STATE_ACTIVE);
1637 __device_link_del(&link->kref);
1638 }
1639
1640 list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
1641 WARN_ON(link->status != DL_STATE_DORMANT &&
1642 link->status != DL_STATE_NONE);
1643 __device_link_del(&link->kref);
1644 }
1645
1646 device_links_write_unlock();
1647 }
1648
1649 #define FW_DEVLINK_FLAGS_PERMISSIVE (DL_FLAG_INFERRED | \
1650 DL_FLAG_SYNC_STATE_ONLY)
1651 #define FW_DEVLINK_FLAGS_ON (DL_FLAG_INFERRED | \
1652 DL_FLAG_AUTOPROBE_CONSUMER)
1653 #define FW_DEVLINK_FLAGS_RPM (FW_DEVLINK_FLAGS_ON | \
1654 DL_FLAG_PM_RUNTIME)
1655
1656 static u32 fw_devlink_flags = FW_DEVLINK_FLAGS_RPM;
fw_devlink_setup(char * arg)1657 static int __init fw_devlink_setup(char *arg)
1658 {
1659 if (!arg)
1660 return -EINVAL;
1661
1662 if (strcmp(arg, "off") == 0) {
1663 fw_devlink_flags = 0;
1664 } else if (strcmp(arg, "permissive") == 0) {
1665 fw_devlink_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
1666 } else if (strcmp(arg, "on") == 0) {
1667 fw_devlink_flags = FW_DEVLINK_FLAGS_ON;
1668 } else if (strcmp(arg, "rpm") == 0) {
1669 fw_devlink_flags = FW_DEVLINK_FLAGS_RPM;
1670 }
1671 return 0;
1672 }
1673 early_param("fw_devlink", fw_devlink_setup);
1674
1675 static bool fw_devlink_strict;
fw_devlink_strict_setup(char * arg)1676 static int __init fw_devlink_strict_setup(char *arg)
1677 {
1678 return kstrtobool(arg, &fw_devlink_strict);
1679 }
1680 early_param("fw_devlink.strict", fw_devlink_strict_setup);
1681
1682 #define FW_DEVLINK_SYNC_STATE_STRICT 0
1683 #define FW_DEVLINK_SYNC_STATE_TIMEOUT 1
1684
1685 #ifndef CONFIG_FW_DEVLINK_SYNC_STATE_TIMEOUT
1686 static int fw_devlink_sync_state;
1687 #else
1688 static int fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_TIMEOUT;
1689 #endif
1690
fw_devlink_sync_state_setup(char * arg)1691 static int __init fw_devlink_sync_state_setup(char *arg)
1692 {
1693 if (!arg)
1694 return -EINVAL;
1695
1696 if (strcmp(arg, "strict") == 0) {
1697 fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_STRICT;
1698 return 0;
1699 } else if (strcmp(arg, "timeout") == 0) {
1700 fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_TIMEOUT;
1701 return 0;
1702 }
1703 return -EINVAL;
1704 }
1705 early_param("fw_devlink.sync_state", fw_devlink_sync_state_setup);
1706
fw_devlink_get_flags(u8 fwlink_flags)1707 static inline u32 fw_devlink_get_flags(u8 fwlink_flags)
1708 {
1709 if (fwlink_flags & FWLINK_FLAG_CYCLE)
1710 return FW_DEVLINK_FLAGS_PERMISSIVE | DL_FLAG_CYCLE;
1711
1712 return fw_devlink_flags;
1713 }
1714
fw_devlink_is_permissive(void)1715 static bool fw_devlink_is_permissive(void)
1716 {
1717 return fw_devlink_flags == FW_DEVLINK_FLAGS_PERMISSIVE;
1718 }
1719
fw_devlink_is_strict(void)1720 bool fw_devlink_is_strict(void)
1721 {
1722 return fw_devlink_strict && !fw_devlink_is_permissive();
1723 }
1724
fw_devlink_parse_fwnode(struct fwnode_handle * fwnode)1725 static void fw_devlink_parse_fwnode(struct fwnode_handle *fwnode)
1726 {
1727 if (fwnode->flags & FWNODE_FLAG_LINKS_ADDED)
1728 return;
1729
1730 fwnode_call_int_op(fwnode, add_links);
1731 fwnode->flags |= FWNODE_FLAG_LINKS_ADDED;
1732 }
1733
fw_devlink_parse_fwtree(struct fwnode_handle * fwnode)1734 static void fw_devlink_parse_fwtree(struct fwnode_handle *fwnode)
1735 {
1736 struct fwnode_handle *child = NULL;
1737
1738 fw_devlink_parse_fwnode(fwnode);
1739
1740 while ((child = fwnode_get_next_available_child_node(fwnode, child)))
1741 fw_devlink_parse_fwtree(child);
1742 }
1743
fw_devlink_relax_link(struct device_link * link)1744 static void fw_devlink_relax_link(struct device_link *link)
1745 {
1746 if (!(link->flags & DL_FLAG_INFERRED))
1747 return;
1748
1749 if (device_link_flag_is_sync_state_only(link->flags))
1750 return;
1751
1752 pm_runtime_drop_link(link);
1753 link->flags = DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE;
1754 dev_dbg(link->consumer, "Relaxing link with %s\n",
1755 dev_name(link->supplier));
1756 }
1757
fw_devlink_no_driver(struct device * dev,void * data)1758 static int fw_devlink_no_driver(struct device *dev, void *data)
1759 {
1760 struct device_link *link = to_devlink(dev);
1761
1762 if (!link->supplier->can_match)
1763 fw_devlink_relax_link(link);
1764
1765 return 0;
1766 }
1767
fw_devlink_drivers_done(void)1768 void fw_devlink_drivers_done(void)
1769 {
1770 fw_devlink_drv_reg_done = true;
1771 device_links_write_lock();
1772 class_for_each_device(&devlink_class, NULL, NULL,
1773 fw_devlink_no_driver);
1774 device_links_write_unlock();
1775 }
1776
fw_devlink_dev_sync_state(struct device * dev,void * data)1777 static int fw_devlink_dev_sync_state(struct device *dev, void *data)
1778 {
1779 struct device_link *link = to_devlink(dev);
1780 struct device *sup = link->supplier;
1781
1782 if (!(link->flags & DL_FLAG_MANAGED) ||
1783 link->status == DL_STATE_ACTIVE || sup->state_synced ||
1784 !dev_has_sync_state(sup))
1785 return 0;
1786
1787 if (fw_devlink_sync_state == FW_DEVLINK_SYNC_STATE_STRICT) {
1788 dev_warn(sup, "sync_state() pending due to %s\n",
1789 dev_name(link->consumer));
1790 return 0;
1791 }
1792
1793 if (!list_empty(&sup->links.defer_sync))
1794 return 0;
1795
1796 dev_warn(sup, "Timed out. Forcing sync_state()\n");
1797 sup->state_synced = true;
1798 get_device(sup);
1799 list_add_tail(&sup->links.defer_sync, data);
1800
1801 return 0;
1802 }
1803
fw_devlink_probing_done(void)1804 void fw_devlink_probing_done(void)
1805 {
1806 LIST_HEAD(sync_list);
1807
1808 device_links_write_lock();
1809 class_for_each_device(&devlink_class, NULL, &sync_list,
1810 fw_devlink_dev_sync_state);
1811 device_links_write_unlock();
1812 device_links_flush_sync_list(&sync_list, NULL);
1813 }
1814
1815 /**
1816 * wait_for_init_devices_probe - Try to probe any device needed for init
1817 *
1818 * Some devices might need to be probed and bound successfully before the kernel
1819 * boot sequence can finish and move on to init/userspace. For example, a
1820 * network interface might need to be bound to be able to mount a NFS rootfs.
1821 *
1822 * With fw_devlink=on by default, some of these devices might be blocked from
1823 * probing because they are waiting on a optional supplier that doesn't have a
1824 * driver. While fw_devlink will eventually identify such devices and unblock
1825 * the probing automatically, it might be too late by the time it unblocks the
1826 * probing of devices. For example, the IP4 autoconfig might timeout before
1827 * fw_devlink unblocks probing of the network interface.
1828 *
1829 * This function is available to temporarily try and probe all devices that have
1830 * a driver even if some of their suppliers haven't been added or don't have
1831 * drivers.
1832 *
1833 * The drivers can then decide which of the suppliers are optional vs mandatory
1834 * and probe the device if possible. By the time this function returns, all such
1835 * "best effort" probes are guaranteed to be completed. If a device successfully
1836 * probes in this mode, we delete all fw_devlink discovered dependencies of that
1837 * device where the supplier hasn't yet probed successfully because they have to
1838 * be optional dependencies.
1839 *
1840 * Any devices that didn't successfully probe go back to being treated as if
1841 * this function was never called.
1842 *
1843 * This also means that some devices that aren't needed for init and could have
1844 * waited for their optional supplier to probe (when the supplier's module is
1845 * loaded later on) would end up probing prematurely with limited functionality.
1846 * So call this function only when boot would fail without it.
1847 */
wait_for_init_devices_probe(void)1848 void __init wait_for_init_devices_probe(void)
1849 {
1850 if (!fw_devlink_flags || fw_devlink_is_permissive())
1851 return;
1852
1853 /*
1854 * Wait for all ongoing probes to finish so that the "best effort" is
1855 * only applied to devices that can't probe otherwise.
1856 */
1857 wait_for_device_probe();
1858
1859 pr_info("Trying to probe devices needed for running init ...\n");
1860 fw_devlink_best_effort = true;
1861 driver_deferred_probe_trigger();
1862
1863 /*
1864 * Wait for all "best effort" probes to finish before going back to
1865 * normal enforcement.
1866 */
1867 wait_for_device_probe();
1868 fw_devlink_best_effort = false;
1869 }
1870
fw_devlink_unblock_consumers(struct device * dev)1871 static void fw_devlink_unblock_consumers(struct device *dev)
1872 {
1873 struct device_link *link;
1874
1875 if (!fw_devlink_flags || fw_devlink_is_permissive())
1876 return;
1877
1878 device_links_write_lock();
1879 list_for_each_entry(link, &dev->links.consumers, s_node)
1880 fw_devlink_relax_link(link);
1881 device_links_write_unlock();
1882 }
1883
1884 #define get_dev_from_fwnode(fwnode) get_device((fwnode)->dev)
1885
fwnode_init_without_drv(struct fwnode_handle * fwnode)1886 static bool fwnode_init_without_drv(struct fwnode_handle *fwnode)
1887 {
1888 struct device *dev;
1889 bool ret;
1890
1891 if (!(fwnode->flags & FWNODE_FLAG_INITIALIZED))
1892 return false;
1893
1894 dev = get_dev_from_fwnode(fwnode);
1895 ret = !dev || dev->links.status == DL_DEV_NO_DRIVER;
1896 put_device(dev);
1897
1898 return ret;
1899 }
1900
fwnode_ancestor_init_without_drv(struct fwnode_handle * fwnode)1901 static bool fwnode_ancestor_init_without_drv(struct fwnode_handle *fwnode)
1902 {
1903 struct fwnode_handle *parent;
1904
1905 fwnode_for_each_parent_node(fwnode, parent) {
1906 if (fwnode_init_without_drv(parent)) {
1907 fwnode_handle_put(parent);
1908 return true;
1909 }
1910 }
1911
1912 return false;
1913 }
1914
1915 /**
1916 * fwnode_is_ancestor_of - Test if @ancestor is ancestor of @child
1917 * @ancestor: Firmware which is tested for being an ancestor
1918 * @child: Firmware which is tested for being the child
1919 *
1920 * A node is considered an ancestor of itself too.
1921 *
1922 * Return: true if @ancestor is an ancestor of @child. Otherwise, returns false.
1923 */
fwnode_is_ancestor_of(const struct fwnode_handle * ancestor,const struct fwnode_handle * child)1924 static bool fwnode_is_ancestor_of(const struct fwnode_handle *ancestor,
1925 const struct fwnode_handle *child)
1926 {
1927 struct fwnode_handle *parent;
1928
1929 if (IS_ERR_OR_NULL(ancestor))
1930 return false;
1931
1932 if (child == ancestor)
1933 return true;
1934
1935 fwnode_for_each_parent_node(child, parent) {
1936 if (parent == ancestor) {
1937 fwnode_handle_put(parent);
1938 return true;
1939 }
1940 }
1941 return false;
1942 }
1943
1944 /**
1945 * fwnode_get_next_parent_dev - Find device of closest ancestor fwnode
1946 * @fwnode: firmware node
1947 *
1948 * Given a firmware node (@fwnode), this function finds its closest ancestor
1949 * firmware node that has a corresponding struct device and returns that struct
1950 * device.
1951 *
1952 * The caller is responsible for calling put_device() on the returned device
1953 * pointer.
1954 *
1955 * Return: a pointer to the device of the @fwnode's closest ancestor.
1956 */
fwnode_get_next_parent_dev(const struct fwnode_handle * fwnode)1957 static struct device *fwnode_get_next_parent_dev(const struct fwnode_handle *fwnode)
1958 {
1959 struct fwnode_handle *parent;
1960 struct device *dev;
1961
1962 fwnode_for_each_parent_node(fwnode, parent) {
1963 dev = get_dev_from_fwnode(parent);
1964 if (dev) {
1965 fwnode_handle_put(parent);
1966 return dev;
1967 }
1968 }
1969 return NULL;
1970 }
1971
1972 /**
1973 * __fw_devlink_relax_cycles - Relax and mark dependency cycles.
1974 * @con_handle: Potential consumer device fwnode.
1975 * @sup_handle: Potential supplier's fwnode.
1976 *
1977 * Needs to be called with fwnode_lock and device link lock held.
1978 *
1979 * Check if @sup_handle or any of its ancestors or suppliers direct/indirectly
1980 * depend on @con. This function can detect multiple cyles between @sup_handle
1981 * and @con. When such dependency cycles are found, convert all device links
1982 * created solely by fw_devlink into SYNC_STATE_ONLY device links. Also, mark
1983 * all fwnode links in the cycle with FWLINK_FLAG_CYCLE so that when they are
1984 * converted into a device link in the future, they are created as
1985 * SYNC_STATE_ONLY device links. This is the equivalent of doing
1986 * fw_devlink=permissive just between the devices in the cycle. We need to do
1987 * this because, at this point, fw_devlink can't tell which of these
1988 * dependencies is not a real dependency.
1989 *
1990 * Return true if one or more cycles were found. Otherwise, return false.
1991 */
__fw_devlink_relax_cycles(struct fwnode_handle * con_handle,struct fwnode_handle * sup_handle)1992 static bool __fw_devlink_relax_cycles(struct fwnode_handle *con_handle,
1993 struct fwnode_handle *sup_handle)
1994 {
1995 struct device *sup_dev = NULL, *par_dev = NULL, *con_dev = NULL;
1996 struct fwnode_link *link;
1997 struct device_link *dev_link;
1998 bool ret = false;
1999
2000 if (!sup_handle)
2001 return false;
2002
2003 /*
2004 * We aren't trying to find all cycles. Just a cycle between con and
2005 * sup_handle.
2006 */
2007 if (sup_handle->flags & FWNODE_FLAG_VISITED)
2008 return false;
2009
2010 sup_handle->flags |= FWNODE_FLAG_VISITED;
2011
2012 /* Termination condition. */
2013 if (sup_handle == con_handle) {
2014 pr_debug("----- cycle: start -----\n");
2015 ret = true;
2016 goto out;
2017 }
2018
2019 sup_dev = get_dev_from_fwnode(sup_handle);
2020 con_dev = get_dev_from_fwnode(con_handle);
2021 /*
2022 * If sup_dev is bound to a driver and @con hasn't started binding to a
2023 * driver, sup_dev can't be a consumer of @con. So, no need to check
2024 * further.
2025 */
2026 if (sup_dev && sup_dev->links.status == DL_DEV_DRIVER_BOUND &&
2027 con_dev && con_dev->links.status == DL_DEV_NO_DRIVER) {
2028 ret = false;
2029 goto out;
2030 }
2031
2032 list_for_each_entry(link, &sup_handle->suppliers, c_hook) {
2033 if (link->flags & FWLINK_FLAG_IGNORE)
2034 continue;
2035
2036 if (__fw_devlink_relax_cycles(con_handle, link->supplier)) {
2037 __fwnode_link_cycle(link);
2038 ret = true;
2039 }
2040 }
2041
2042 /*
2043 * Give priority to device parent over fwnode parent to account for any
2044 * quirks in how fwnodes are converted to devices.
2045 */
2046 if (sup_dev)
2047 par_dev = get_device(sup_dev->parent);
2048 else
2049 par_dev = fwnode_get_next_parent_dev(sup_handle);
2050
2051 if (par_dev && __fw_devlink_relax_cycles(con_handle, par_dev->fwnode)) {
2052 pr_debug("%pfwf: cycle: child of %pfwf\n", sup_handle,
2053 par_dev->fwnode);
2054 ret = true;
2055 }
2056
2057 if (!sup_dev)
2058 goto out;
2059
2060 list_for_each_entry(dev_link, &sup_dev->links.suppliers, c_node) {
2061 /*
2062 * Ignore a SYNC_STATE_ONLY flag only if it wasn't marked as
2063 * such due to a cycle.
2064 */
2065 if (device_link_flag_is_sync_state_only(dev_link->flags) &&
2066 !(dev_link->flags & DL_FLAG_CYCLE))
2067 continue;
2068
2069 if (__fw_devlink_relax_cycles(con_handle,
2070 dev_link->supplier->fwnode)) {
2071 pr_debug("%pfwf: cycle: depends on %pfwf\n", sup_handle,
2072 dev_link->supplier->fwnode);
2073 fw_devlink_relax_link(dev_link);
2074 dev_link->flags |= DL_FLAG_CYCLE;
2075 ret = true;
2076 }
2077 }
2078
2079 out:
2080 sup_handle->flags &= ~FWNODE_FLAG_VISITED;
2081 put_device(sup_dev);
2082 put_device(con_dev);
2083 put_device(par_dev);
2084 return ret;
2085 }
2086
2087 /**
2088 * fw_devlink_create_devlink - Create a device link from a consumer to fwnode
2089 * @con: consumer device for the device link
2090 * @sup_handle: fwnode handle of supplier
2091 * @link: fwnode link that's being converted to a device link
2092 *
2093 * This function will try to create a device link between the consumer device
2094 * @con and the supplier device represented by @sup_handle.
2095 *
2096 * The supplier has to be provided as a fwnode because incorrect cycles in
2097 * fwnode links can sometimes cause the supplier device to never be created.
2098 * This function detects such cases and returns an error if it cannot create a
2099 * device link from the consumer to a missing supplier.
2100 *
2101 * Returns,
2102 * 0 on successfully creating a device link
2103 * -EINVAL if the device link cannot be created as expected
2104 * -EAGAIN if the device link cannot be created right now, but it may be
2105 * possible to do that in the future
2106 */
fw_devlink_create_devlink(struct device * con,struct fwnode_handle * sup_handle,struct fwnode_link * link)2107 static int fw_devlink_create_devlink(struct device *con,
2108 struct fwnode_handle *sup_handle,
2109 struct fwnode_link *link)
2110 {
2111 struct device *sup_dev;
2112 int ret = 0;
2113 u32 flags;
2114
2115 if (link->flags & FWLINK_FLAG_IGNORE)
2116 return 0;
2117
2118 /*
2119 * In some cases, a device P might also be a supplier to its child node
2120 * C. However, this would defer the probe of C until the probe of P
2121 * completes successfully. This is perfectly fine in the device driver
2122 * model. device_add() doesn't guarantee probe completion of the device
2123 * by the time it returns.
2124 *
2125 * However, there are a few drivers that assume C will finish probing
2126 * as soon as it's added and before P finishes probing. So, we provide
2127 * a flag to let fw_devlink know not to delay the probe of C until the
2128 * probe of P completes successfully.
2129 *
2130 * When such a flag is set, we can't create device links where P is the
2131 * supplier of C as that would delay the probe of C.
2132 */
2133 if (sup_handle->flags & FWNODE_FLAG_NEEDS_CHILD_BOUND_ON_ADD &&
2134 fwnode_is_ancestor_of(sup_handle, con->fwnode))
2135 return -EINVAL;
2136
2137 /*
2138 * Don't try to optimize by not calling the cycle detection logic under
2139 * certain conditions. There's always some corner case that won't get
2140 * detected.
2141 */
2142 device_links_write_lock();
2143 if (__fw_devlink_relax_cycles(link->consumer, sup_handle)) {
2144 __fwnode_link_cycle(link);
2145 pr_debug("----- cycle: end -----\n");
2146 pr_info("%pfwf: Fixed dependency cycle(s) with %pfwf\n",
2147 link->consumer, sup_handle);
2148 }
2149 device_links_write_unlock();
2150
2151 if (con->fwnode == link->consumer)
2152 flags = fw_devlink_get_flags(link->flags);
2153 else
2154 flags = FW_DEVLINK_FLAGS_PERMISSIVE;
2155
2156 if (sup_handle->flags & FWNODE_FLAG_NOT_DEVICE)
2157 sup_dev = fwnode_get_next_parent_dev(sup_handle);
2158 else
2159 sup_dev = get_dev_from_fwnode(sup_handle);
2160
2161 if (sup_dev) {
2162 /*
2163 * If it's one of those drivers that don't actually bind to
2164 * their device using driver core, then don't wait on this
2165 * supplier device indefinitely.
2166 */
2167 if (sup_dev->links.status == DL_DEV_NO_DRIVER &&
2168 sup_handle->flags & FWNODE_FLAG_INITIALIZED) {
2169 dev_dbg(con,
2170 "Not linking %pfwf - dev might never probe\n",
2171 sup_handle);
2172 ret = -EINVAL;
2173 goto out;
2174 }
2175
2176 if (con != sup_dev && !device_link_add(con, sup_dev, flags)) {
2177 dev_err(con, "Failed to create device link (0x%x) with supplier %s for %pfwf\n",
2178 flags, dev_name(sup_dev), link->consumer);
2179 ret = -EINVAL;
2180 }
2181
2182 goto out;
2183 }
2184
2185 /*
2186 * Supplier or supplier's ancestor already initialized without a struct
2187 * device or being probed by a driver.
2188 */
2189 if (fwnode_init_without_drv(sup_handle) ||
2190 fwnode_ancestor_init_without_drv(sup_handle)) {
2191 dev_dbg(con, "Not linking %pfwf - might never become dev\n",
2192 sup_handle);
2193 return -EINVAL;
2194 }
2195
2196 ret = -EAGAIN;
2197 out:
2198 put_device(sup_dev);
2199 return ret;
2200 }
2201
2202 /**
2203 * __fw_devlink_link_to_consumers - Create device links to consumers of a device
2204 * @dev: Device that needs to be linked to its consumers
2205 *
2206 * This function looks at all the consumer fwnodes of @dev and creates device
2207 * links between the consumer device and @dev (supplier).
2208 *
2209 * If the consumer device has not been added yet, then this function creates a
2210 * SYNC_STATE_ONLY link between @dev (supplier) and the closest ancestor device
2211 * of the consumer fwnode. This is necessary to make sure @dev doesn't get a
2212 * sync_state() callback before the real consumer device gets to be added and
2213 * then probed.
2214 *
2215 * Once device links are created from the real consumer to @dev (supplier), the
2216 * fwnode links are deleted.
2217 */
__fw_devlink_link_to_consumers(struct device * dev)2218 static void __fw_devlink_link_to_consumers(struct device *dev)
2219 {
2220 struct fwnode_handle *fwnode = dev->fwnode;
2221 struct fwnode_link *link, *tmp;
2222
2223 list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) {
2224 struct device *con_dev;
2225 bool own_link = true;
2226 int ret;
2227
2228 con_dev = get_dev_from_fwnode(link->consumer);
2229 /*
2230 * If consumer device is not available yet, make a "proxy"
2231 * SYNC_STATE_ONLY link from the consumer's parent device to
2232 * the supplier device. This is necessary to make sure the
2233 * supplier doesn't get a sync_state() callback before the real
2234 * consumer can create a device link to the supplier.
2235 *
2236 * This proxy link step is needed to handle the case where the
2237 * consumer's parent device is added before the supplier.
2238 */
2239 if (!con_dev) {
2240 con_dev = fwnode_get_next_parent_dev(link->consumer);
2241 /*
2242 * However, if the consumer's parent device is also the
2243 * parent of the supplier, don't create a
2244 * consumer-supplier link from the parent to its child
2245 * device. Such a dependency is impossible.
2246 */
2247 if (con_dev &&
2248 fwnode_is_ancestor_of(con_dev->fwnode, fwnode)) {
2249 put_device(con_dev);
2250 con_dev = NULL;
2251 } else {
2252 own_link = false;
2253 }
2254 }
2255
2256 if (!con_dev)
2257 continue;
2258
2259 ret = fw_devlink_create_devlink(con_dev, fwnode, link);
2260 put_device(con_dev);
2261 if (!own_link || ret == -EAGAIN)
2262 continue;
2263
2264 __fwnode_link_del(link);
2265 }
2266 }
2267
2268 /**
2269 * __fw_devlink_link_to_suppliers - Create device links to suppliers of a device
2270 * @dev: The consumer device that needs to be linked to its suppliers
2271 * @fwnode: Root of the fwnode tree that is used to create device links
2272 *
2273 * This function looks at all the supplier fwnodes of fwnode tree rooted at
2274 * @fwnode and creates device links between @dev (consumer) and all the
2275 * supplier devices of the entire fwnode tree at @fwnode.
2276 *
2277 * The function creates normal (non-SYNC_STATE_ONLY) device links between @dev
2278 * and the real suppliers of @dev. Once these device links are created, the
2279 * fwnode links are deleted.
2280 *
2281 * In addition, it also looks at all the suppliers of the entire fwnode tree
2282 * because some of the child devices of @dev that have not been added yet
2283 * (because @dev hasn't probed) might already have their suppliers added to
2284 * driver core. So, this function creates SYNC_STATE_ONLY device links between
2285 * @dev (consumer) and these suppliers to make sure they don't execute their
2286 * sync_state() callbacks before these child devices have a chance to create
2287 * their device links. The fwnode links that correspond to the child devices
2288 * aren't delete because they are needed later to create the device links
2289 * between the real consumer and supplier devices.
2290 */
__fw_devlink_link_to_suppliers(struct device * dev,struct fwnode_handle * fwnode)2291 static void __fw_devlink_link_to_suppliers(struct device *dev,
2292 struct fwnode_handle *fwnode)
2293 {
2294 bool own_link = (dev->fwnode == fwnode);
2295 struct fwnode_link *link, *tmp;
2296 struct fwnode_handle *child = NULL;
2297
2298 list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) {
2299 int ret;
2300 struct fwnode_handle *sup = link->supplier;
2301
2302 ret = fw_devlink_create_devlink(dev, sup, link);
2303 if (!own_link || ret == -EAGAIN)
2304 continue;
2305
2306 __fwnode_link_del(link);
2307 }
2308
2309 /*
2310 * Make "proxy" SYNC_STATE_ONLY device links to represent the needs of
2311 * all the descendants. This proxy link step is needed to handle the
2312 * case where the supplier is added before the consumer's parent device
2313 * (@dev).
2314 */
2315 while ((child = fwnode_get_next_available_child_node(fwnode, child)))
2316 __fw_devlink_link_to_suppliers(dev, child);
2317 }
2318
fw_devlink_link_device(struct device * dev)2319 static void fw_devlink_link_device(struct device *dev)
2320 {
2321 struct fwnode_handle *fwnode = dev->fwnode;
2322
2323 if (!fw_devlink_flags)
2324 return;
2325
2326 fw_devlink_parse_fwtree(fwnode);
2327
2328 guard(mutex)(&fwnode_link_lock);
2329
2330 __fw_devlink_link_to_consumers(dev);
2331 __fw_devlink_link_to_suppliers(dev, fwnode);
2332 }
2333
2334 /* Device links support end. */
2335
2336 static struct kobject *dev_kobj;
2337
2338 /* /sys/dev/char */
2339 static struct kobject *sysfs_dev_char_kobj;
2340
2341 /* /sys/dev/block */
2342 static struct kobject *sysfs_dev_block_kobj;
2343
2344 static DEFINE_MUTEX(device_hotplug_lock);
2345
lock_device_hotplug(void)2346 void lock_device_hotplug(void)
2347 {
2348 mutex_lock(&device_hotplug_lock);
2349 }
2350
unlock_device_hotplug(void)2351 void unlock_device_hotplug(void)
2352 {
2353 mutex_unlock(&device_hotplug_lock);
2354 }
2355
lock_device_hotplug_sysfs(void)2356 int lock_device_hotplug_sysfs(void)
2357 {
2358 if (mutex_trylock(&device_hotplug_lock))
2359 return 0;
2360
2361 /* Avoid busy looping (5 ms of sleep should do). */
2362 msleep(5);
2363 return restart_syscall();
2364 }
2365
2366 #ifdef CONFIG_BLOCK
device_is_not_partition(struct device * dev)2367 static inline int device_is_not_partition(struct device *dev)
2368 {
2369 return !(dev->type == &part_type);
2370 }
2371 #else
device_is_not_partition(struct device * dev)2372 static inline int device_is_not_partition(struct device *dev)
2373 {
2374 return 1;
2375 }
2376 #endif
2377
device_platform_notify(struct device * dev)2378 static void device_platform_notify(struct device *dev)
2379 {
2380 acpi_device_notify(dev);
2381
2382 software_node_notify(dev);
2383 }
2384
device_platform_notify_remove(struct device * dev)2385 static void device_platform_notify_remove(struct device *dev)
2386 {
2387 software_node_notify_remove(dev);
2388
2389 acpi_device_notify_remove(dev);
2390 }
2391
2392 /**
2393 * dev_driver_string - Return a device's driver name, if at all possible
2394 * @dev: struct device to get the name of
2395 *
2396 * Will return the device's driver's name if it is bound to a device. If
2397 * the device is not bound to a driver, it will return the name of the bus
2398 * it is attached to. If it is not attached to a bus either, an empty
2399 * string will be returned.
2400 */
dev_driver_string(const struct device * dev)2401 const char *dev_driver_string(const struct device *dev)
2402 {
2403 struct device_driver *drv;
2404
2405 /* dev->driver can change to NULL underneath us because of unbinding,
2406 * so be careful about accessing it. dev->bus and dev->class should
2407 * never change once they are set, so they don't need special care.
2408 */
2409 drv = READ_ONCE(dev->driver);
2410 return drv ? drv->name : dev_bus_name(dev);
2411 }
2412 EXPORT_SYMBOL(dev_driver_string);
2413
2414 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
2415
dev_attr_show(struct kobject * kobj,struct attribute * attr,char * buf)2416 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
2417 char *buf)
2418 {
2419 struct device_attribute *dev_attr = to_dev_attr(attr);
2420 struct device *dev = kobj_to_dev(kobj);
2421 ssize_t ret = -EIO;
2422
2423 if (dev_attr->show)
2424 ret = dev_attr->show(dev, dev_attr, buf);
2425 if (ret >= (ssize_t)PAGE_SIZE) {
2426 printk("dev_attr_show: %pS returned bad count\n",
2427 dev_attr->show);
2428 }
2429 return ret;
2430 }
2431
dev_attr_store(struct kobject * kobj,struct attribute * attr,const char * buf,size_t count)2432 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
2433 const char *buf, size_t count)
2434 {
2435 struct device_attribute *dev_attr = to_dev_attr(attr);
2436 struct device *dev = kobj_to_dev(kobj);
2437 ssize_t ret = -EIO;
2438
2439 if (dev_attr->store)
2440 ret = dev_attr->store(dev, dev_attr, buf, count);
2441 return ret;
2442 }
2443
2444 static const struct sysfs_ops dev_sysfs_ops = {
2445 .show = dev_attr_show,
2446 .store = dev_attr_store,
2447 };
2448
2449 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
2450
device_store_ulong(struct device * dev,struct device_attribute * attr,const char * buf,size_t size)2451 ssize_t device_store_ulong(struct device *dev,
2452 struct device_attribute *attr,
2453 const char *buf, size_t size)
2454 {
2455 struct dev_ext_attribute *ea = to_ext_attr(attr);
2456 int ret;
2457 unsigned long new;
2458
2459 ret = kstrtoul(buf, 0, &new);
2460 if (ret)
2461 return ret;
2462 *(unsigned long *)(ea->var) = new;
2463 /* Always return full write size even if we didn't consume all */
2464 return size;
2465 }
2466 EXPORT_SYMBOL_GPL(device_store_ulong);
2467
device_show_ulong(struct device * dev,struct device_attribute * attr,char * buf)2468 ssize_t device_show_ulong(struct device *dev,
2469 struct device_attribute *attr,
2470 char *buf)
2471 {
2472 struct dev_ext_attribute *ea = to_ext_attr(attr);
2473 return sysfs_emit(buf, "%lx\n", *(unsigned long *)(ea->var));
2474 }
2475 EXPORT_SYMBOL_GPL(device_show_ulong);
2476
device_store_int(struct device * dev,struct device_attribute * attr,const char * buf,size_t size)2477 ssize_t device_store_int(struct device *dev,
2478 struct device_attribute *attr,
2479 const char *buf, size_t size)
2480 {
2481 struct dev_ext_attribute *ea = to_ext_attr(attr);
2482 int ret;
2483 long new;
2484
2485 ret = kstrtol(buf, 0, &new);
2486 if (ret)
2487 return ret;
2488
2489 if (new > INT_MAX || new < INT_MIN)
2490 return -EINVAL;
2491 *(int *)(ea->var) = new;
2492 /* Always return full write size even if we didn't consume all */
2493 return size;
2494 }
2495 EXPORT_SYMBOL_GPL(device_store_int);
2496
device_show_int(struct device * dev,struct device_attribute * attr,char * buf)2497 ssize_t device_show_int(struct device *dev,
2498 struct device_attribute *attr,
2499 char *buf)
2500 {
2501 struct dev_ext_attribute *ea = to_ext_attr(attr);
2502
2503 return sysfs_emit(buf, "%d\n", *(int *)(ea->var));
2504 }
2505 EXPORT_SYMBOL_GPL(device_show_int);
2506
device_store_bool(struct device * dev,struct device_attribute * attr,const char * buf,size_t size)2507 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
2508 const char *buf, size_t size)
2509 {
2510 struct dev_ext_attribute *ea = to_ext_attr(attr);
2511
2512 if (kstrtobool(buf, ea->var) < 0)
2513 return -EINVAL;
2514
2515 return size;
2516 }
2517 EXPORT_SYMBOL_GPL(device_store_bool);
2518
device_show_bool(struct device * dev,struct device_attribute * attr,char * buf)2519 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
2520 char *buf)
2521 {
2522 struct dev_ext_attribute *ea = to_ext_attr(attr);
2523
2524 return sysfs_emit(buf, "%d\n", *(bool *)(ea->var));
2525 }
2526 EXPORT_SYMBOL_GPL(device_show_bool);
2527
device_show_string(struct device * dev,struct device_attribute * attr,char * buf)2528 ssize_t device_show_string(struct device *dev,
2529 struct device_attribute *attr, char *buf)
2530 {
2531 struct dev_ext_attribute *ea = to_ext_attr(attr);
2532
2533 return sysfs_emit(buf, "%s\n", (char *)ea->var);
2534 }
2535 EXPORT_SYMBOL_GPL(device_show_string);
2536
2537 /**
2538 * device_release - free device structure.
2539 * @kobj: device's kobject.
2540 *
2541 * This is called once the reference count for the object
2542 * reaches 0. We forward the call to the device's release
2543 * method, which should handle actually freeing the structure.
2544 */
device_release(struct kobject * kobj)2545 static void device_release(struct kobject *kobj)
2546 {
2547 struct device *dev = kobj_to_dev(kobj);
2548 struct device_private *p = dev->p;
2549
2550 /*
2551 * Some platform devices are driven without driver attached
2552 * and managed resources may have been acquired. Make sure
2553 * all resources are released.
2554 *
2555 * Drivers still can add resources into device after device
2556 * is deleted but alive, so release devres here to avoid
2557 * possible memory leak.
2558 */
2559 devres_release_all(dev);
2560
2561 kfree(dev->dma_range_map);
2562
2563 if (dev->release)
2564 dev->release(dev);
2565 else if (dev->type && dev->type->release)
2566 dev->type->release(dev);
2567 else if (dev->class && dev->class->dev_release)
2568 dev->class->dev_release(dev);
2569 else
2570 WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/core-api/kobject.rst.\n",
2571 dev_name(dev));
2572 kfree(p);
2573 }
2574
device_namespace(const struct kobject * kobj)2575 static const void *device_namespace(const struct kobject *kobj)
2576 {
2577 const struct device *dev = kobj_to_dev(kobj);
2578 const void *ns = NULL;
2579
2580 if (dev->class && dev->class->namespace)
2581 ns = dev->class->namespace(dev);
2582
2583 return ns;
2584 }
2585
device_get_ownership(const struct kobject * kobj,kuid_t * uid,kgid_t * gid)2586 static void device_get_ownership(const struct kobject *kobj, kuid_t *uid, kgid_t *gid)
2587 {
2588 const struct device *dev = kobj_to_dev(kobj);
2589
2590 if (dev->class && dev->class->get_ownership)
2591 dev->class->get_ownership(dev, uid, gid);
2592 }
2593
2594 static const struct kobj_type device_ktype = {
2595 .release = device_release,
2596 .sysfs_ops = &dev_sysfs_ops,
2597 .namespace = device_namespace,
2598 .get_ownership = device_get_ownership,
2599 };
2600
2601
dev_uevent_filter(const struct kobject * kobj)2602 static int dev_uevent_filter(const struct kobject *kobj)
2603 {
2604 const struct kobj_type *ktype = get_ktype(kobj);
2605
2606 if (ktype == &device_ktype) {
2607 const struct device *dev = kobj_to_dev(kobj);
2608 if (dev->bus)
2609 return 1;
2610 if (dev->class)
2611 return 1;
2612 }
2613 return 0;
2614 }
2615
dev_uevent_name(const struct kobject * kobj)2616 static const char *dev_uevent_name(const struct kobject *kobj)
2617 {
2618 const struct device *dev = kobj_to_dev(kobj);
2619
2620 if (dev->bus)
2621 return dev->bus->name;
2622 if (dev->class)
2623 return dev->class->name;
2624 return NULL;
2625 }
2626
dev_uevent(const struct kobject * kobj,struct kobj_uevent_env * env)2627 static int dev_uevent(const struct kobject *kobj, struct kobj_uevent_env *env)
2628 {
2629 const struct device *dev = kobj_to_dev(kobj);
2630 int retval = 0;
2631
2632 /* add device node properties if present */
2633 if (MAJOR(dev->devt)) {
2634 const char *tmp;
2635 const char *name;
2636 umode_t mode = 0;
2637 kuid_t uid = GLOBAL_ROOT_UID;
2638 kgid_t gid = GLOBAL_ROOT_GID;
2639
2640 add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
2641 add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
2642 name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
2643 if (name) {
2644 add_uevent_var(env, "DEVNAME=%s", name);
2645 if (mode)
2646 add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
2647 if (!uid_eq(uid, GLOBAL_ROOT_UID))
2648 add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
2649 if (!gid_eq(gid, GLOBAL_ROOT_GID))
2650 add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
2651 kfree(tmp);
2652 }
2653 }
2654
2655 if (dev->type && dev->type->name)
2656 add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
2657
2658 if (dev->driver)
2659 add_uevent_var(env, "DRIVER=%s", dev->driver->name);
2660
2661 /* Add common DT information about the device */
2662 of_device_uevent(dev, env);
2663
2664 /* have the bus specific function add its stuff */
2665 if (dev->bus && dev->bus->uevent) {
2666 retval = dev->bus->uevent(dev, env);
2667 if (retval)
2668 pr_debug("device: '%s': %s: bus uevent() returned %d\n",
2669 dev_name(dev), __func__, retval);
2670 }
2671
2672 /* have the class specific function add its stuff */
2673 if (dev->class && dev->class->dev_uevent) {
2674 retval = dev->class->dev_uevent(dev, env);
2675 if (retval)
2676 pr_debug("device: '%s': %s: class uevent() "
2677 "returned %d\n", dev_name(dev),
2678 __func__, retval);
2679 }
2680
2681 /* have the device type specific function add its stuff */
2682 if (dev->type && dev->type->uevent) {
2683 retval = dev->type->uevent(dev, env);
2684 if (retval)
2685 pr_debug("device: '%s': %s: dev_type uevent() "
2686 "returned %d\n", dev_name(dev),
2687 __func__, retval);
2688 }
2689
2690 return retval;
2691 }
2692
2693 static const struct kset_uevent_ops device_uevent_ops = {
2694 .filter = dev_uevent_filter,
2695 .name = dev_uevent_name,
2696 .uevent = dev_uevent,
2697 };
2698
uevent_show(struct device * dev,struct device_attribute * attr,char * buf)2699 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
2700 char *buf)
2701 {
2702 struct kobject *top_kobj;
2703 struct kset *kset;
2704 struct kobj_uevent_env *env = NULL;
2705 int i;
2706 int len = 0;
2707 int retval;
2708
2709 /* search the kset, the device belongs to */
2710 top_kobj = &dev->kobj;
2711 while (!top_kobj->kset && top_kobj->parent)
2712 top_kobj = top_kobj->parent;
2713 if (!top_kobj->kset)
2714 goto out;
2715
2716 kset = top_kobj->kset;
2717 if (!kset->uevent_ops || !kset->uevent_ops->uevent)
2718 goto out;
2719
2720 /* respect filter */
2721 if (kset->uevent_ops && kset->uevent_ops->filter)
2722 if (!kset->uevent_ops->filter(&dev->kobj))
2723 goto out;
2724
2725 env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
2726 if (!env)
2727 return -ENOMEM;
2728
2729 /* Synchronize with really_probe() */
2730 device_lock(dev);
2731 /* let the kset specific function add its keys */
2732 retval = kset->uevent_ops->uevent(&dev->kobj, env);
2733 device_unlock(dev);
2734 if (retval)
2735 goto out;
2736
2737 /* copy keys to file */
2738 for (i = 0; i < env->envp_idx; i++)
2739 len += sysfs_emit_at(buf, len, "%s\n", env->envp[i]);
2740 out:
2741 kfree(env);
2742 return len;
2743 }
2744
uevent_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2745 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
2746 const char *buf, size_t count)
2747 {
2748 int rc;
2749
2750 rc = kobject_synth_uevent(&dev->kobj, buf, count);
2751
2752 if (rc) {
2753 dev_err(dev, "uevent: failed to send synthetic uevent: %d\n", rc);
2754 return rc;
2755 }
2756
2757 return count;
2758 }
2759 static DEVICE_ATTR_RW(uevent);
2760
online_show(struct device * dev,struct device_attribute * attr,char * buf)2761 static ssize_t online_show(struct device *dev, struct device_attribute *attr,
2762 char *buf)
2763 {
2764 bool val;
2765
2766 device_lock(dev);
2767 val = !dev->offline;
2768 device_unlock(dev);
2769 return sysfs_emit(buf, "%u\n", val);
2770 }
2771
online_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2772 static ssize_t online_store(struct device *dev, struct device_attribute *attr,
2773 const char *buf, size_t count)
2774 {
2775 bool val;
2776 int ret;
2777
2778 ret = kstrtobool(buf, &val);
2779 if (ret < 0)
2780 return ret;
2781
2782 ret = lock_device_hotplug_sysfs();
2783 if (ret)
2784 return ret;
2785
2786 ret = val ? device_online(dev) : device_offline(dev);
2787 unlock_device_hotplug();
2788 return ret < 0 ? ret : count;
2789 }
2790 static DEVICE_ATTR_RW(online);
2791
removable_show(struct device * dev,struct device_attribute * attr,char * buf)2792 static ssize_t removable_show(struct device *dev, struct device_attribute *attr,
2793 char *buf)
2794 {
2795 const char *loc;
2796
2797 switch (dev->removable) {
2798 case DEVICE_REMOVABLE:
2799 loc = "removable";
2800 break;
2801 case DEVICE_FIXED:
2802 loc = "fixed";
2803 break;
2804 default:
2805 loc = "unknown";
2806 }
2807 return sysfs_emit(buf, "%s\n", loc);
2808 }
2809 static DEVICE_ATTR_RO(removable);
2810
device_add_groups(struct device * dev,const struct attribute_group ** groups)2811 int device_add_groups(struct device *dev, const struct attribute_group **groups)
2812 {
2813 return sysfs_create_groups(&dev->kobj, groups);
2814 }
2815 EXPORT_SYMBOL_GPL(device_add_groups);
2816
device_remove_groups(struct device * dev,const struct attribute_group ** groups)2817 void device_remove_groups(struct device *dev,
2818 const struct attribute_group **groups)
2819 {
2820 sysfs_remove_groups(&dev->kobj, groups);
2821 }
2822 EXPORT_SYMBOL_GPL(device_remove_groups);
2823
2824 union device_attr_group_devres {
2825 const struct attribute_group *group;
2826 const struct attribute_group **groups;
2827 };
2828
devm_attr_group_remove(struct device * dev,void * res)2829 static void devm_attr_group_remove(struct device *dev, void *res)
2830 {
2831 union device_attr_group_devres *devres = res;
2832 const struct attribute_group *group = devres->group;
2833
2834 dev_dbg(dev, "%s: removing group %p\n", __func__, group);
2835 sysfs_remove_group(&dev->kobj, group);
2836 }
2837
2838 /**
2839 * devm_device_add_group - given a device, create a managed attribute group
2840 * @dev: The device to create the group for
2841 * @grp: The attribute group to create
2842 *
2843 * This function creates a group for the first time. It will explicitly
2844 * warn and error if any of the attribute files being created already exist.
2845 *
2846 * Returns 0 on success or error code on failure.
2847 */
devm_device_add_group(struct device * dev,const struct attribute_group * grp)2848 int devm_device_add_group(struct device *dev, const struct attribute_group *grp)
2849 {
2850 union device_attr_group_devres *devres;
2851 int error;
2852
2853 devres = devres_alloc(devm_attr_group_remove,
2854 sizeof(*devres), GFP_KERNEL);
2855 if (!devres)
2856 return -ENOMEM;
2857
2858 error = sysfs_create_group(&dev->kobj, grp);
2859 if (error) {
2860 devres_free(devres);
2861 return error;
2862 }
2863
2864 devres->group = grp;
2865 devres_add(dev, devres);
2866 return 0;
2867 }
2868 EXPORT_SYMBOL_GPL(devm_device_add_group);
2869
device_add_attrs(struct device * dev)2870 static int device_add_attrs(struct device *dev)
2871 {
2872 const struct class *class = dev->class;
2873 const struct device_type *type = dev->type;
2874 int error;
2875
2876 if (class) {
2877 error = device_add_groups(dev, class->dev_groups);
2878 if (error)
2879 return error;
2880 }
2881
2882 if (type) {
2883 error = device_add_groups(dev, type->groups);
2884 if (error)
2885 goto err_remove_class_groups;
2886 }
2887
2888 error = device_add_groups(dev, dev->groups);
2889 if (error)
2890 goto err_remove_type_groups;
2891
2892 if (device_supports_offline(dev) && !dev->offline_disabled) {
2893 error = device_create_file(dev, &dev_attr_online);
2894 if (error)
2895 goto err_remove_dev_groups;
2896 }
2897
2898 if (fw_devlink_flags && !fw_devlink_is_permissive() && dev->fwnode) {
2899 error = device_create_file(dev, &dev_attr_waiting_for_supplier);
2900 if (error)
2901 goto err_remove_dev_online;
2902 }
2903
2904 if (dev_removable_is_valid(dev)) {
2905 error = device_create_file(dev, &dev_attr_removable);
2906 if (error)
2907 goto err_remove_dev_waiting_for_supplier;
2908 }
2909
2910 if (dev_add_physical_location(dev)) {
2911 error = device_add_group(dev,
2912 &dev_attr_physical_location_group);
2913 if (error)
2914 goto err_remove_dev_removable;
2915 }
2916
2917 return 0;
2918
2919 err_remove_dev_removable:
2920 device_remove_file(dev, &dev_attr_removable);
2921 err_remove_dev_waiting_for_supplier:
2922 device_remove_file(dev, &dev_attr_waiting_for_supplier);
2923 err_remove_dev_online:
2924 device_remove_file(dev, &dev_attr_online);
2925 err_remove_dev_groups:
2926 device_remove_groups(dev, dev->groups);
2927 err_remove_type_groups:
2928 if (type)
2929 device_remove_groups(dev, type->groups);
2930 err_remove_class_groups:
2931 if (class)
2932 device_remove_groups(dev, class->dev_groups);
2933
2934 return error;
2935 }
2936
device_remove_attrs(struct device * dev)2937 static void device_remove_attrs(struct device *dev)
2938 {
2939 const struct class *class = dev->class;
2940 const struct device_type *type = dev->type;
2941
2942 if (dev->physical_location) {
2943 device_remove_group(dev, &dev_attr_physical_location_group);
2944 kfree(dev->physical_location);
2945 }
2946
2947 device_remove_file(dev, &dev_attr_removable);
2948 device_remove_file(dev, &dev_attr_waiting_for_supplier);
2949 device_remove_file(dev, &dev_attr_online);
2950 device_remove_groups(dev, dev->groups);
2951
2952 if (type)
2953 device_remove_groups(dev, type->groups);
2954
2955 if (class)
2956 device_remove_groups(dev, class->dev_groups);
2957 }
2958
dev_show(struct device * dev,struct device_attribute * attr,char * buf)2959 static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
2960 char *buf)
2961 {
2962 return print_dev_t(buf, dev->devt);
2963 }
2964 static DEVICE_ATTR_RO(dev);
2965
2966 /* /sys/devices/ */
2967 struct kset *devices_kset;
2968
2969 /**
2970 * devices_kset_move_before - Move device in the devices_kset's list.
2971 * @deva: Device to move.
2972 * @devb: Device @deva should come before.
2973 */
devices_kset_move_before(struct device * deva,struct device * devb)2974 static void devices_kset_move_before(struct device *deva, struct device *devb)
2975 {
2976 if (!devices_kset)
2977 return;
2978 pr_debug("devices_kset: Moving %s before %s\n",
2979 dev_name(deva), dev_name(devb));
2980 spin_lock(&devices_kset->list_lock);
2981 list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
2982 spin_unlock(&devices_kset->list_lock);
2983 }
2984
2985 /**
2986 * devices_kset_move_after - Move device in the devices_kset's list.
2987 * @deva: Device to move
2988 * @devb: Device @deva should come after.
2989 */
devices_kset_move_after(struct device * deva,struct device * devb)2990 static void devices_kset_move_after(struct device *deva, struct device *devb)
2991 {
2992 if (!devices_kset)
2993 return;
2994 pr_debug("devices_kset: Moving %s after %s\n",
2995 dev_name(deva), dev_name(devb));
2996 spin_lock(&devices_kset->list_lock);
2997 list_move(&deva->kobj.entry, &devb->kobj.entry);
2998 spin_unlock(&devices_kset->list_lock);
2999 }
3000
3001 /**
3002 * devices_kset_move_last - move the device to the end of devices_kset's list.
3003 * @dev: device to move
3004 */
devices_kset_move_last(struct device * dev)3005 void devices_kset_move_last(struct device *dev)
3006 {
3007 if (!devices_kset)
3008 return;
3009 pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
3010 spin_lock(&devices_kset->list_lock);
3011 list_move_tail(&dev->kobj.entry, &devices_kset->list);
3012 spin_unlock(&devices_kset->list_lock);
3013 }
3014
3015 /**
3016 * device_create_file - create sysfs attribute file for device.
3017 * @dev: device.
3018 * @attr: device attribute descriptor.
3019 */
device_create_file(struct device * dev,const struct device_attribute * attr)3020 int device_create_file(struct device *dev,
3021 const struct device_attribute *attr)
3022 {
3023 int error = 0;
3024
3025 if (dev) {
3026 WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
3027 "Attribute %s: write permission without 'store'\n",
3028 attr->attr.name);
3029 WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
3030 "Attribute %s: read permission without 'show'\n",
3031 attr->attr.name);
3032 error = sysfs_create_file(&dev->kobj, &attr->attr);
3033 }
3034
3035 return error;
3036 }
3037 EXPORT_SYMBOL_GPL(device_create_file);
3038
3039 /**
3040 * device_remove_file - remove sysfs attribute file.
3041 * @dev: device.
3042 * @attr: device attribute descriptor.
3043 */
device_remove_file(struct device * dev,const struct device_attribute * attr)3044 void device_remove_file(struct device *dev,
3045 const struct device_attribute *attr)
3046 {
3047 if (dev)
3048 sysfs_remove_file(&dev->kobj, &attr->attr);
3049 }
3050 EXPORT_SYMBOL_GPL(device_remove_file);
3051
3052 /**
3053 * device_remove_file_self - remove sysfs attribute file from its own method.
3054 * @dev: device.
3055 * @attr: device attribute descriptor.
3056 *
3057 * See kernfs_remove_self() for details.
3058 */
device_remove_file_self(struct device * dev,const struct device_attribute * attr)3059 bool device_remove_file_self(struct device *dev,
3060 const struct device_attribute *attr)
3061 {
3062 if (dev)
3063 return sysfs_remove_file_self(&dev->kobj, &attr->attr);
3064 else
3065 return false;
3066 }
3067 EXPORT_SYMBOL_GPL(device_remove_file_self);
3068
3069 /**
3070 * device_create_bin_file - create sysfs binary attribute file for device.
3071 * @dev: device.
3072 * @attr: device binary attribute descriptor.
3073 */
device_create_bin_file(struct device * dev,const struct bin_attribute * attr)3074 int device_create_bin_file(struct device *dev,
3075 const struct bin_attribute *attr)
3076 {
3077 int error = -EINVAL;
3078 if (dev)
3079 error = sysfs_create_bin_file(&dev->kobj, attr);
3080 return error;
3081 }
3082 EXPORT_SYMBOL_GPL(device_create_bin_file);
3083
3084 /**
3085 * device_remove_bin_file - remove sysfs binary attribute file
3086 * @dev: device.
3087 * @attr: device binary attribute descriptor.
3088 */
device_remove_bin_file(struct device * dev,const struct bin_attribute * attr)3089 void device_remove_bin_file(struct device *dev,
3090 const struct bin_attribute *attr)
3091 {
3092 if (dev)
3093 sysfs_remove_bin_file(&dev->kobj, attr);
3094 }
3095 EXPORT_SYMBOL_GPL(device_remove_bin_file);
3096
klist_children_get(struct klist_node * n)3097 static void klist_children_get(struct klist_node *n)
3098 {
3099 struct device_private *p = to_device_private_parent(n);
3100 struct device *dev = p->device;
3101
3102 get_device(dev);
3103 }
3104
klist_children_put(struct klist_node * n)3105 static void klist_children_put(struct klist_node *n)
3106 {
3107 struct device_private *p = to_device_private_parent(n);
3108 struct device *dev = p->device;
3109
3110 put_device(dev);
3111 }
3112
3113 /**
3114 * device_initialize - init device structure.
3115 * @dev: device.
3116 *
3117 * This prepares the device for use by other layers by initializing
3118 * its fields.
3119 * It is the first half of device_register(), if called by
3120 * that function, though it can also be called separately, so one
3121 * may use @dev's fields. In particular, get_device()/put_device()
3122 * may be used for reference counting of @dev after calling this
3123 * function.
3124 *
3125 * All fields in @dev must be initialized by the caller to 0, except
3126 * for those explicitly set to some other value. The simplest
3127 * approach is to use kzalloc() to allocate the structure containing
3128 * @dev.
3129 *
3130 * NOTE: Use put_device() to give up your reference instead of freeing
3131 * @dev directly once you have called this function.
3132 */
device_initialize(struct device * dev)3133 void device_initialize(struct device *dev)
3134 {
3135 dev->kobj.kset = devices_kset;
3136 kobject_init(&dev->kobj, &device_ktype);
3137 INIT_LIST_HEAD(&dev->dma_pools);
3138 mutex_init(&dev->mutex);
3139 lockdep_set_novalidate_class(&dev->mutex);
3140 spin_lock_init(&dev->devres_lock);
3141 INIT_LIST_HEAD(&dev->devres_head);
3142 device_pm_init(dev);
3143 set_dev_node(dev, NUMA_NO_NODE);
3144 INIT_LIST_HEAD(&dev->links.consumers);
3145 INIT_LIST_HEAD(&dev->links.suppliers);
3146 INIT_LIST_HEAD(&dev->links.defer_sync);
3147 dev->links.status = DL_DEV_NO_DRIVER;
3148 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
3149 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
3150 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL)
3151 dev->dma_coherent = dma_default_coherent;
3152 #endif
3153 swiotlb_dev_init(dev);
3154 }
3155 EXPORT_SYMBOL_GPL(device_initialize);
3156
virtual_device_parent(void)3157 struct kobject *virtual_device_parent(void)
3158 {
3159 static struct kobject *virtual_dir = NULL;
3160
3161 if (!virtual_dir)
3162 virtual_dir = kobject_create_and_add("virtual",
3163 &devices_kset->kobj);
3164
3165 return virtual_dir;
3166 }
3167
3168 struct class_dir {
3169 struct kobject kobj;
3170 const struct class *class;
3171 };
3172
3173 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
3174
class_dir_release(struct kobject * kobj)3175 static void class_dir_release(struct kobject *kobj)
3176 {
3177 struct class_dir *dir = to_class_dir(kobj);
3178 kfree(dir);
3179 }
3180
3181 static const
class_dir_child_ns_type(const struct kobject * kobj)3182 struct kobj_ns_type_operations *class_dir_child_ns_type(const struct kobject *kobj)
3183 {
3184 const struct class_dir *dir = to_class_dir(kobj);
3185 return dir->class->ns_type;
3186 }
3187
3188 static const struct kobj_type class_dir_ktype = {
3189 .release = class_dir_release,
3190 .sysfs_ops = &kobj_sysfs_ops,
3191 .child_ns_type = class_dir_child_ns_type
3192 };
3193
class_dir_create_and_add(struct subsys_private * sp,struct kobject * parent_kobj)3194 static struct kobject *class_dir_create_and_add(struct subsys_private *sp,
3195 struct kobject *parent_kobj)
3196 {
3197 struct class_dir *dir;
3198 int retval;
3199
3200 dir = kzalloc(sizeof(*dir), GFP_KERNEL);
3201 if (!dir)
3202 return ERR_PTR(-ENOMEM);
3203
3204 dir->class = sp->class;
3205 kobject_init(&dir->kobj, &class_dir_ktype);
3206
3207 dir->kobj.kset = &sp->glue_dirs;
3208
3209 retval = kobject_add(&dir->kobj, parent_kobj, "%s", sp->class->name);
3210 if (retval < 0) {
3211 kobject_put(&dir->kobj);
3212 return ERR_PTR(retval);
3213 }
3214 return &dir->kobj;
3215 }
3216
3217 static DEFINE_MUTEX(gdp_mutex);
3218
get_device_parent(struct device * dev,struct device * parent)3219 static struct kobject *get_device_parent(struct device *dev,
3220 struct device *parent)
3221 {
3222 struct subsys_private *sp = class_to_subsys(dev->class);
3223 struct kobject *kobj = NULL;
3224
3225 if (sp) {
3226 struct kobject *parent_kobj;
3227 struct kobject *k;
3228
3229 /*
3230 * If we have no parent, we live in "virtual".
3231 * Class-devices with a non class-device as parent, live
3232 * in a "glue" directory to prevent namespace collisions.
3233 */
3234 if (parent == NULL)
3235 parent_kobj = virtual_device_parent();
3236 else if (parent->class && !dev->class->ns_type) {
3237 subsys_put(sp);
3238 return &parent->kobj;
3239 } else {
3240 parent_kobj = &parent->kobj;
3241 }
3242
3243 mutex_lock(&gdp_mutex);
3244
3245 /* find our class-directory at the parent and reference it */
3246 spin_lock(&sp->glue_dirs.list_lock);
3247 list_for_each_entry(k, &sp->glue_dirs.list, entry)
3248 if (k->parent == parent_kobj) {
3249 kobj = kobject_get(k);
3250 break;
3251 }
3252 spin_unlock(&sp->glue_dirs.list_lock);
3253 if (kobj) {
3254 mutex_unlock(&gdp_mutex);
3255 subsys_put(sp);
3256 return kobj;
3257 }
3258
3259 /* or create a new class-directory at the parent device */
3260 k = class_dir_create_and_add(sp, parent_kobj);
3261 /* do not emit an uevent for this simple "glue" directory */
3262 mutex_unlock(&gdp_mutex);
3263 subsys_put(sp);
3264 return k;
3265 }
3266
3267 /* subsystems can specify a default root directory for their devices */
3268 if (!parent && dev->bus) {
3269 struct device *dev_root = bus_get_dev_root(dev->bus);
3270
3271 if (dev_root) {
3272 kobj = &dev_root->kobj;
3273 put_device(dev_root);
3274 return kobj;
3275 }
3276 }
3277
3278 if (parent)
3279 return &parent->kobj;
3280 return NULL;
3281 }
3282
live_in_glue_dir(struct kobject * kobj,struct device * dev)3283 static inline bool live_in_glue_dir(struct kobject *kobj,
3284 struct device *dev)
3285 {
3286 struct subsys_private *sp;
3287 bool retval;
3288
3289 if (!kobj || !dev->class)
3290 return false;
3291
3292 sp = class_to_subsys(dev->class);
3293 if (!sp)
3294 return false;
3295
3296 if (kobj->kset == &sp->glue_dirs)
3297 retval = true;
3298 else
3299 retval = false;
3300
3301 subsys_put(sp);
3302 return retval;
3303 }
3304
get_glue_dir(struct device * dev)3305 static inline struct kobject *get_glue_dir(struct device *dev)
3306 {
3307 return dev->kobj.parent;
3308 }
3309
3310 /**
3311 * kobject_has_children - Returns whether a kobject has children.
3312 * @kobj: the object to test
3313 *
3314 * This will return whether a kobject has other kobjects as children.
3315 *
3316 * It does NOT account for the presence of attribute files, only sub
3317 * directories. It also assumes there is no concurrent addition or
3318 * removal of such children, and thus relies on external locking.
3319 */
kobject_has_children(struct kobject * kobj)3320 static inline bool kobject_has_children(struct kobject *kobj)
3321 {
3322 WARN_ON_ONCE(kref_read(&kobj->kref) == 0);
3323
3324 return kobj->sd && kobj->sd->dir.subdirs;
3325 }
3326
3327 /*
3328 * make sure cleaning up dir as the last step, we need to make
3329 * sure .release handler of kobject is run with holding the
3330 * global lock
3331 */
cleanup_glue_dir(struct device * dev,struct kobject * glue_dir)3332 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
3333 {
3334 unsigned int ref;
3335
3336 /* see if we live in a "glue" directory */
3337 if (!live_in_glue_dir(glue_dir, dev))
3338 return;
3339
3340 mutex_lock(&gdp_mutex);
3341 /**
3342 * There is a race condition between removing glue directory
3343 * and adding a new device under the glue directory.
3344 *
3345 * CPU1: CPU2:
3346 *
3347 * device_add()
3348 * get_device_parent()
3349 * class_dir_create_and_add()
3350 * kobject_add_internal()
3351 * create_dir() // create glue_dir
3352 *
3353 * device_add()
3354 * get_device_parent()
3355 * kobject_get() // get glue_dir
3356 *
3357 * device_del()
3358 * cleanup_glue_dir()
3359 * kobject_del(glue_dir)
3360 *
3361 * kobject_add()
3362 * kobject_add_internal()
3363 * create_dir() // in glue_dir
3364 * sysfs_create_dir_ns()
3365 * kernfs_create_dir_ns(sd)
3366 *
3367 * sysfs_remove_dir() // glue_dir->sd=NULL
3368 * sysfs_put() // free glue_dir->sd
3369 *
3370 * // sd is freed
3371 * kernfs_new_node(sd)
3372 * kernfs_get(glue_dir)
3373 * kernfs_add_one()
3374 * kernfs_put()
3375 *
3376 * Before CPU1 remove last child device under glue dir, if CPU2 add
3377 * a new device under glue dir, the glue_dir kobject reference count
3378 * will be increase to 2 in kobject_get(k). And CPU2 has been called
3379 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir()
3380 * and sysfs_put(). This result in glue_dir->sd is freed.
3381 *
3382 * Then the CPU2 will see a stale "empty" but still potentially used
3383 * glue dir around in kernfs_new_node().
3384 *
3385 * In order to avoid this happening, we also should make sure that
3386 * kernfs_node for glue_dir is released in CPU1 only when refcount
3387 * for glue_dir kobj is 1.
3388 */
3389 ref = kref_read(&glue_dir->kref);
3390 if (!kobject_has_children(glue_dir) && !--ref)
3391 kobject_del(glue_dir);
3392 kobject_put(glue_dir);
3393 mutex_unlock(&gdp_mutex);
3394 }
3395
device_add_class_symlinks(struct device * dev)3396 static int device_add_class_symlinks(struct device *dev)
3397 {
3398 struct device_node *of_node = dev_of_node(dev);
3399 struct subsys_private *sp;
3400 int error;
3401
3402 if (of_node) {
3403 error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node");
3404 if (error)
3405 dev_warn(dev, "Error %d creating of_node link\n",error);
3406 /* An error here doesn't warrant bringing down the device */
3407 }
3408
3409 sp = class_to_subsys(dev->class);
3410 if (!sp)
3411 return 0;
3412
3413 error = sysfs_create_link(&dev->kobj, &sp->subsys.kobj, "subsystem");
3414 if (error)
3415 goto out_devnode;
3416
3417 if (dev->parent && device_is_not_partition(dev)) {
3418 error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
3419 "device");
3420 if (error)
3421 goto out_subsys;
3422 }
3423
3424 /* link in the class directory pointing to the device */
3425 error = sysfs_create_link(&sp->subsys.kobj, &dev->kobj, dev_name(dev));
3426 if (error)
3427 goto out_device;
3428 goto exit;
3429
3430 out_device:
3431 sysfs_remove_link(&dev->kobj, "device");
3432 out_subsys:
3433 sysfs_remove_link(&dev->kobj, "subsystem");
3434 out_devnode:
3435 sysfs_remove_link(&dev->kobj, "of_node");
3436 exit:
3437 subsys_put(sp);
3438 return error;
3439 }
3440
device_remove_class_symlinks(struct device * dev)3441 static void device_remove_class_symlinks(struct device *dev)
3442 {
3443 struct subsys_private *sp = class_to_subsys(dev->class);
3444
3445 if (dev_of_node(dev))
3446 sysfs_remove_link(&dev->kobj, "of_node");
3447
3448 if (!sp)
3449 return;
3450
3451 if (dev->parent && device_is_not_partition(dev))
3452 sysfs_remove_link(&dev->kobj, "device");
3453 sysfs_remove_link(&dev->kobj, "subsystem");
3454 sysfs_delete_link(&sp->subsys.kobj, &dev->kobj, dev_name(dev));
3455 subsys_put(sp);
3456 }
3457
3458 /**
3459 * dev_set_name - set a device name
3460 * @dev: device
3461 * @fmt: format string for the device's name
3462 */
dev_set_name(struct device * dev,const char * fmt,...)3463 int dev_set_name(struct device *dev, const char *fmt, ...)
3464 {
3465 va_list vargs;
3466 int err;
3467
3468 va_start(vargs, fmt);
3469 err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
3470 va_end(vargs);
3471 return err;
3472 }
3473 EXPORT_SYMBOL_GPL(dev_set_name);
3474
3475 /* select a /sys/dev/ directory for the device */
device_to_dev_kobj(struct device * dev)3476 static struct kobject *device_to_dev_kobj(struct device *dev)
3477 {
3478 if (is_blockdev(dev))
3479 return sysfs_dev_block_kobj;
3480 else
3481 return sysfs_dev_char_kobj;
3482 }
3483
device_create_sys_dev_entry(struct device * dev)3484 static int device_create_sys_dev_entry(struct device *dev)
3485 {
3486 struct kobject *kobj = device_to_dev_kobj(dev);
3487 int error = 0;
3488 char devt_str[15];
3489
3490 if (kobj) {
3491 format_dev_t(devt_str, dev->devt);
3492 error = sysfs_create_link(kobj, &dev->kobj, devt_str);
3493 }
3494
3495 return error;
3496 }
3497
device_remove_sys_dev_entry(struct device * dev)3498 static void device_remove_sys_dev_entry(struct device *dev)
3499 {
3500 struct kobject *kobj = device_to_dev_kobj(dev);
3501 char devt_str[15];
3502
3503 if (kobj) {
3504 format_dev_t(devt_str, dev->devt);
3505 sysfs_remove_link(kobj, devt_str);
3506 }
3507 }
3508
device_private_init(struct device * dev)3509 static int device_private_init(struct device *dev)
3510 {
3511 dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
3512 if (!dev->p)
3513 return -ENOMEM;
3514 dev->p->device = dev;
3515 klist_init(&dev->p->klist_children, klist_children_get,
3516 klist_children_put);
3517 INIT_LIST_HEAD(&dev->p->deferred_probe);
3518 return 0;
3519 }
3520
3521 /**
3522 * device_add - add device to device hierarchy.
3523 * @dev: device.
3524 *
3525 * This is part 2 of device_register(), though may be called
3526 * separately _iff_ device_initialize() has been called separately.
3527 *
3528 * This adds @dev to the kobject hierarchy via kobject_add(), adds it
3529 * to the global and sibling lists for the device, then
3530 * adds it to the other relevant subsystems of the driver model.
3531 *
3532 * Do not call this routine or device_register() more than once for
3533 * any device structure. The driver model core is not designed to work
3534 * with devices that get unregistered and then spring back to life.
3535 * (Among other things, it's very hard to guarantee that all references
3536 * to the previous incarnation of @dev have been dropped.) Allocate
3537 * and register a fresh new struct device instead.
3538 *
3539 * NOTE: _Never_ directly free @dev after calling this function, even
3540 * if it returned an error! Always use put_device() to give up your
3541 * reference instead.
3542 *
3543 * Rule of thumb is: if device_add() succeeds, you should call
3544 * device_del() when you want to get rid of it. If device_add() has
3545 * *not* succeeded, use *only* put_device() to drop the reference
3546 * count.
3547 */
device_add(struct device * dev)3548 int device_add(struct device *dev)
3549 {
3550 struct subsys_private *sp;
3551 struct device *parent;
3552 struct kobject *kobj;
3553 struct class_interface *class_intf;
3554 int error = -EINVAL;
3555 struct kobject *glue_dir = NULL;
3556
3557 dev = get_device(dev);
3558 if (!dev)
3559 goto done;
3560
3561 if (!dev->p) {
3562 error = device_private_init(dev);
3563 if (error)
3564 goto done;
3565 }
3566
3567 /*
3568 * for statically allocated devices, which should all be converted
3569 * some day, we need to initialize the name. We prevent reading back
3570 * the name, and force the use of dev_name()
3571 */
3572 if (dev->init_name) {
3573 error = dev_set_name(dev, "%s", dev->init_name);
3574 dev->init_name = NULL;
3575 }
3576
3577 if (dev_name(dev))
3578 error = 0;
3579 /* subsystems can specify simple device enumeration */
3580 else if (dev->bus && dev->bus->dev_name)
3581 error = dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
3582 else
3583 error = -EINVAL;
3584 if (error)
3585 goto name_error;
3586
3587 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3588
3589 parent = get_device(dev->parent);
3590 kobj = get_device_parent(dev, parent);
3591 if (IS_ERR(kobj)) {
3592 error = PTR_ERR(kobj);
3593 goto parent_error;
3594 }
3595 if (kobj)
3596 dev->kobj.parent = kobj;
3597
3598 /* use parent numa_node */
3599 if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
3600 set_dev_node(dev, dev_to_node(parent));
3601
3602 /* first, register with generic layer. */
3603 /* we require the name to be set before, and pass NULL */
3604 error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
3605 if (error) {
3606 glue_dir = kobj;
3607 goto Error;
3608 }
3609
3610 /* notify platform of device entry */
3611 device_platform_notify(dev);
3612
3613 error = device_create_file(dev, &dev_attr_uevent);
3614 if (error)
3615 goto attrError;
3616
3617 error = device_add_class_symlinks(dev);
3618 if (error)
3619 goto SymlinkError;
3620 error = device_add_attrs(dev);
3621 if (error)
3622 goto AttrsError;
3623 error = bus_add_device(dev);
3624 if (error)
3625 goto BusError;
3626 error = dpm_sysfs_add(dev);
3627 if (error)
3628 goto DPMError;
3629 device_pm_add(dev);
3630
3631 if (MAJOR(dev->devt)) {
3632 error = device_create_file(dev, &dev_attr_dev);
3633 if (error)
3634 goto DevAttrError;
3635
3636 error = device_create_sys_dev_entry(dev);
3637 if (error)
3638 goto SysEntryError;
3639
3640 devtmpfs_create_node(dev);
3641 }
3642
3643 /* Notify clients of device addition. This call must come
3644 * after dpm_sysfs_add() and before kobject_uevent().
3645 */
3646 bus_notify(dev, BUS_NOTIFY_ADD_DEVICE);
3647 kobject_uevent(&dev->kobj, KOBJ_ADD);
3648
3649 /*
3650 * Check if any of the other devices (consumers) have been waiting for
3651 * this device (supplier) to be added so that they can create a device
3652 * link to it.
3653 *
3654 * This needs to happen after device_pm_add() because device_link_add()
3655 * requires the supplier be registered before it's called.
3656 *
3657 * But this also needs to happen before bus_probe_device() to make sure
3658 * waiting consumers can link to it before the driver is bound to the
3659 * device and the driver sync_state callback is called for this device.
3660 */
3661 if (dev->fwnode && !dev->fwnode->dev) {
3662 dev->fwnode->dev = dev;
3663 fw_devlink_link_device(dev);
3664 }
3665
3666 bus_probe_device(dev);
3667
3668 /*
3669 * If all driver registration is done and a newly added device doesn't
3670 * match with any driver, don't block its consumers from probing in
3671 * case the consumer device is able to operate without this supplier.
3672 */
3673 if (dev->fwnode && fw_devlink_drv_reg_done && !dev->can_match)
3674 fw_devlink_unblock_consumers(dev);
3675
3676 if (parent)
3677 klist_add_tail(&dev->p->knode_parent,
3678 &parent->p->klist_children);
3679
3680 sp = class_to_subsys(dev->class);
3681 if (sp) {
3682 mutex_lock(&sp->mutex);
3683 /* tie the class to the device */
3684 klist_add_tail(&dev->p->knode_class, &sp->klist_devices);
3685
3686 /* notify any interfaces that the device is here */
3687 list_for_each_entry(class_intf, &sp->interfaces, node)
3688 if (class_intf->add_dev)
3689 class_intf->add_dev(dev);
3690 mutex_unlock(&sp->mutex);
3691 subsys_put(sp);
3692 }
3693 done:
3694 put_device(dev);
3695 return error;
3696 SysEntryError:
3697 if (MAJOR(dev->devt))
3698 device_remove_file(dev, &dev_attr_dev);
3699 DevAttrError:
3700 device_pm_remove(dev);
3701 dpm_sysfs_remove(dev);
3702 DPMError:
3703 dev->driver = NULL;
3704 bus_remove_device(dev);
3705 BusError:
3706 device_remove_attrs(dev);
3707 AttrsError:
3708 device_remove_class_symlinks(dev);
3709 SymlinkError:
3710 device_remove_file(dev, &dev_attr_uevent);
3711 attrError:
3712 device_platform_notify_remove(dev);
3713 kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3714 glue_dir = get_glue_dir(dev);
3715 kobject_del(&dev->kobj);
3716 Error:
3717 cleanup_glue_dir(dev, glue_dir);
3718 parent_error:
3719 put_device(parent);
3720 name_error:
3721 kfree(dev->p);
3722 dev->p = NULL;
3723 goto done;
3724 }
3725 EXPORT_SYMBOL_GPL(device_add);
3726
3727 /**
3728 * device_register - register a device with the system.
3729 * @dev: pointer to the device structure
3730 *
3731 * This happens in two clean steps - initialize the device
3732 * and add it to the system. The two steps can be called
3733 * separately, but this is the easiest and most common.
3734 * I.e. you should only call the two helpers separately if
3735 * have a clearly defined need to use and refcount the device
3736 * before it is added to the hierarchy.
3737 *
3738 * For more information, see the kerneldoc for device_initialize()
3739 * and device_add().
3740 *
3741 * NOTE: _Never_ directly free @dev after calling this function, even
3742 * if it returned an error! Always use put_device() to give up the
3743 * reference initialized in this function instead.
3744 */
device_register(struct device * dev)3745 int device_register(struct device *dev)
3746 {
3747 device_initialize(dev);
3748 return device_add(dev);
3749 }
3750 EXPORT_SYMBOL_GPL(device_register);
3751
3752 /**
3753 * get_device - increment reference count for device.
3754 * @dev: device.
3755 *
3756 * This simply forwards the call to kobject_get(), though
3757 * we do take care to provide for the case that we get a NULL
3758 * pointer passed in.
3759 */
get_device(struct device * dev)3760 struct device *get_device(struct device *dev)
3761 {
3762 return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
3763 }
3764 EXPORT_SYMBOL_GPL(get_device);
3765
3766 /**
3767 * put_device - decrement reference count.
3768 * @dev: device in question.
3769 */
put_device(struct device * dev)3770 void put_device(struct device *dev)
3771 {
3772 /* might_sleep(); */
3773 if (dev)
3774 kobject_put(&dev->kobj);
3775 }
3776 EXPORT_SYMBOL_GPL(put_device);
3777
kill_device(struct device * dev)3778 bool kill_device(struct device *dev)
3779 {
3780 /*
3781 * Require the device lock and set the "dead" flag to guarantee that
3782 * the update behavior is consistent with the other bitfields near
3783 * it and that we cannot have an asynchronous probe routine trying
3784 * to run while we are tearing out the bus/class/sysfs from
3785 * underneath the device.
3786 */
3787 device_lock_assert(dev);
3788
3789 if (dev->p->dead)
3790 return false;
3791 dev->p->dead = true;
3792 return true;
3793 }
3794 EXPORT_SYMBOL_GPL(kill_device);
3795
3796 /**
3797 * device_del - delete device from system.
3798 * @dev: device.
3799 *
3800 * This is the first part of the device unregistration
3801 * sequence. This removes the device from the lists we control
3802 * from here, has it removed from the other driver model
3803 * subsystems it was added to in device_add(), and removes it
3804 * from the kobject hierarchy.
3805 *
3806 * NOTE: this should be called manually _iff_ device_add() was
3807 * also called manually.
3808 */
device_del(struct device * dev)3809 void device_del(struct device *dev)
3810 {
3811 struct subsys_private *sp;
3812 struct device *parent = dev->parent;
3813 struct kobject *glue_dir = NULL;
3814 struct class_interface *class_intf;
3815 unsigned int noio_flag;
3816
3817 device_lock(dev);
3818 kill_device(dev);
3819 device_unlock(dev);
3820
3821 if (dev->fwnode && dev->fwnode->dev == dev)
3822 dev->fwnode->dev = NULL;
3823
3824 /* Notify clients of device removal. This call must come
3825 * before dpm_sysfs_remove().
3826 */
3827 noio_flag = memalloc_noio_save();
3828 bus_notify(dev, BUS_NOTIFY_DEL_DEVICE);
3829
3830 dpm_sysfs_remove(dev);
3831 if (parent)
3832 klist_del(&dev->p->knode_parent);
3833 if (MAJOR(dev->devt)) {
3834 devtmpfs_delete_node(dev);
3835 device_remove_sys_dev_entry(dev);
3836 device_remove_file(dev, &dev_attr_dev);
3837 }
3838
3839 sp = class_to_subsys(dev->class);
3840 if (sp) {
3841 device_remove_class_symlinks(dev);
3842
3843 mutex_lock(&sp->mutex);
3844 /* notify any interfaces that the device is now gone */
3845 list_for_each_entry(class_intf, &sp->interfaces, node)
3846 if (class_intf->remove_dev)
3847 class_intf->remove_dev(dev);
3848 /* remove the device from the class list */
3849 klist_del(&dev->p->knode_class);
3850 mutex_unlock(&sp->mutex);
3851 subsys_put(sp);
3852 }
3853 device_remove_file(dev, &dev_attr_uevent);
3854 device_remove_attrs(dev);
3855 bus_remove_device(dev);
3856 device_pm_remove(dev);
3857 driver_deferred_probe_del(dev);
3858 device_platform_notify_remove(dev);
3859 device_links_purge(dev);
3860
3861 /*
3862 * If a device does not have a driver attached, we need to clean
3863 * up any managed resources. We do this in device_release(), but
3864 * it's never called (and we leak the device) if a managed
3865 * resource holds a reference to the device. So release all
3866 * managed resources here, like we do in driver_detach(). We
3867 * still need to do so again in device_release() in case someone
3868 * adds a new resource after this point, though.
3869 */
3870 devres_release_all(dev);
3871
3872 bus_notify(dev, BUS_NOTIFY_REMOVED_DEVICE);
3873 kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3874 glue_dir = get_glue_dir(dev);
3875 kobject_del(&dev->kobj);
3876 cleanup_glue_dir(dev, glue_dir);
3877 memalloc_noio_restore(noio_flag);
3878 put_device(parent);
3879 }
3880 EXPORT_SYMBOL_GPL(device_del);
3881
3882 /**
3883 * device_unregister - unregister device from system.
3884 * @dev: device going away.
3885 *
3886 * We do this in two parts, like we do device_register(). First,
3887 * we remove it from all the subsystems with device_del(), then
3888 * we decrement the reference count via put_device(). If that
3889 * is the final reference count, the device will be cleaned up
3890 * via device_release() above. Otherwise, the structure will
3891 * stick around until the final reference to the device is dropped.
3892 */
device_unregister(struct device * dev)3893 void device_unregister(struct device *dev)
3894 {
3895 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3896 device_del(dev);
3897 put_device(dev);
3898 }
3899 EXPORT_SYMBOL_GPL(device_unregister);
3900
prev_device(struct klist_iter * i)3901 static struct device *prev_device(struct klist_iter *i)
3902 {
3903 struct klist_node *n = klist_prev(i);
3904 struct device *dev = NULL;
3905 struct device_private *p;
3906
3907 if (n) {
3908 p = to_device_private_parent(n);
3909 dev = p->device;
3910 }
3911 return dev;
3912 }
3913
next_device(struct klist_iter * i)3914 static struct device *next_device(struct klist_iter *i)
3915 {
3916 struct klist_node *n = klist_next(i);
3917 struct device *dev = NULL;
3918 struct device_private *p;
3919
3920 if (n) {
3921 p = to_device_private_parent(n);
3922 dev = p->device;
3923 }
3924 return dev;
3925 }
3926
3927 /**
3928 * device_get_devnode - path of device node file
3929 * @dev: device
3930 * @mode: returned file access mode
3931 * @uid: returned file owner
3932 * @gid: returned file group
3933 * @tmp: possibly allocated string
3934 *
3935 * Return the relative path of a possible device node.
3936 * Non-default names may need to allocate a memory to compose
3937 * a name. This memory is returned in tmp and needs to be
3938 * freed by the caller.
3939 */
device_get_devnode(const struct device * dev,umode_t * mode,kuid_t * uid,kgid_t * gid,const char ** tmp)3940 const char *device_get_devnode(const struct device *dev,
3941 umode_t *mode, kuid_t *uid, kgid_t *gid,
3942 const char **tmp)
3943 {
3944 char *s;
3945
3946 *tmp = NULL;
3947
3948 /* the device type may provide a specific name */
3949 if (dev->type && dev->type->devnode)
3950 *tmp = dev->type->devnode(dev, mode, uid, gid);
3951 if (*tmp)
3952 return *tmp;
3953
3954 /* the class may provide a specific name */
3955 if (dev->class && dev->class->devnode)
3956 *tmp = dev->class->devnode(dev, mode);
3957 if (*tmp)
3958 return *tmp;
3959
3960 /* return name without allocation, tmp == NULL */
3961 if (strchr(dev_name(dev), '!') == NULL)
3962 return dev_name(dev);
3963
3964 /* replace '!' in the name with '/' */
3965 s = kstrdup_and_replace(dev_name(dev), '!', '/', GFP_KERNEL);
3966 if (!s)
3967 return NULL;
3968 return *tmp = s;
3969 }
3970
3971 /**
3972 * device_for_each_child - device child iterator.
3973 * @parent: parent struct device.
3974 * @fn: function to be called for each device.
3975 * @data: data for the callback.
3976 *
3977 * Iterate over @parent's child devices, and call @fn for each,
3978 * passing it @data.
3979 *
3980 * We check the return of @fn each time. If it returns anything
3981 * other than 0, we break out and return that value.
3982 */
device_for_each_child(struct device * parent,void * data,device_iter_t fn)3983 int device_for_each_child(struct device *parent, void *data,
3984 device_iter_t fn)
3985 {
3986 struct klist_iter i;
3987 struct device *child;
3988 int error = 0;
3989
3990 if (!parent || !parent->p)
3991 return 0;
3992
3993 klist_iter_init(&parent->p->klist_children, &i);
3994 while (!error && (child = next_device(&i)))
3995 error = fn(child, data);
3996 klist_iter_exit(&i);
3997 return error;
3998 }
3999 EXPORT_SYMBOL_GPL(device_for_each_child);
4000
4001 /**
4002 * device_for_each_child_reverse - device child iterator in reversed order.
4003 * @parent: parent struct device.
4004 * @fn: function to be called for each device.
4005 * @data: data for the callback.
4006 *
4007 * Iterate over @parent's child devices, and call @fn for each,
4008 * passing it @data.
4009 *
4010 * We check the return of @fn each time. If it returns anything
4011 * other than 0, we break out and return that value.
4012 */
device_for_each_child_reverse(struct device * parent,void * data,device_iter_t fn)4013 int device_for_each_child_reverse(struct device *parent, void *data,
4014 device_iter_t fn)
4015 {
4016 struct klist_iter i;
4017 struct device *child;
4018 int error = 0;
4019
4020 if (!parent || !parent->p)
4021 return 0;
4022
4023 klist_iter_init(&parent->p->klist_children, &i);
4024 while ((child = prev_device(&i)) && !error)
4025 error = fn(child, data);
4026 klist_iter_exit(&i);
4027 return error;
4028 }
4029 EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
4030
4031 /**
4032 * device_for_each_child_reverse_from - device child iterator in reversed order.
4033 * @parent: parent struct device.
4034 * @from: optional starting point in child list
4035 * @fn: function to be called for each device.
4036 * @data: data for the callback.
4037 *
4038 * Iterate over @parent's child devices, starting at @from, and call @fn
4039 * for each, passing it @data. This helper is identical to
4040 * device_for_each_child_reverse() when @from is NULL.
4041 *
4042 * @fn is checked each iteration. If it returns anything other than 0,
4043 * iteration stop and that value is returned to the caller of
4044 * device_for_each_child_reverse_from();
4045 */
device_for_each_child_reverse_from(struct device * parent,struct device * from,void * data,device_iter_t fn)4046 int device_for_each_child_reverse_from(struct device *parent,
4047 struct device *from, void *data,
4048 device_iter_t fn)
4049 {
4050 struct klist_iter i;
4051 struct device *child;
4052 int error = 0;
4053
4054 if (!parent || !parent->p)
4055 return 0;
4056
4057 klist_iter_init_node(&parent->p->klist_children, &i,
4058 (from ? &from->p->knode_parent : NULL));
4059 while ((child = prev_device(&i)) && !error)
4060 error = fn(child, data);
4061 klist_iter_exit(&i);
4062 return error;
4063 }
4064 EXPORT_SYMBOL_GPL(device_for_each_child_reverse_from);
4065
4066 /**
4067 * device_find_child - device iterator for locating a particular device.
4068 * @parent: parent struct device
4069 * @match: Callback function to check device
4070 * @data: Data to pass to match function
4071 *
4072 * This is similar to the device_for_each_child() function above, but it
4073 * returns a reference to a device that is 'found' for later use, as
4074 * determined by the @match callback.
4075 *
4076 * The callback should return 0 if the device doesn't match and non-zero
4077 * if it does. If the callback returns non-zero and a reference to the
4078 * current device can be obtained, this function will return to the caller
4079 * and not iterate over any more devices.
4080 *
4081 * NOTE: you will need to drop the reference with put_device() after use.
4082 */
device_find_child(struct device * parent,const void * data,device_match_t match)4083 struct device *device_find_child(struct device *parent, const void *data,
4084 device_match_t match)
4085 {
4086 struct klist_iter i;
4087 struct device *child;
4088
4089 if (!parent || !parent->p)
4090 return NULL;
4091
4092 klist_iter_init(&parent->p->klist_children, &i);
4093 while ((child = next_device(&i))) {
4094 if (match(child, data)) {
4095 get_device(child);
4096 break;
4097 }
4098 }
4099 klist_iter_exit(&i);
4100 return child;
4101 }
4102 EXPORT_SYMBOL_GPL(device_find_child);
4103
devices_init(void)4104 int __init devices_init(void)
4105 {
4106 devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
4107 if (!devices_kset)
4108 return -ENOMEM;
4109 dev_kobj = kobject_create_and_add("dev", NULL);
4110 if (!dev_kobj)
4111 goto dev_kobj_err;
4112 sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
4113 if (!sysfs_dev_block_kobj)
4114 goto block_kobj_err;
4115 sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
4116 if (!sysfs_dev_char_kobj)
4117 goto char_kobj_err;
4118 device_link_wq = alloc_workqueue("device_link_wq", 0, 0);
4119 if (!device_link_wq)
4120 goto wq_err;
4121
4122 return 0;
4123
4124 wq_err:
4125 kobject_put(sysfs_dev_char_kobj);
4126 char_kobj_err:
4127 kobject_put(sysfs_dev_block_kobj);
4128 block_kobj_err:
4129 kobject_put(dev_kobj);
4130 dev_kobj_err:
4131 kset_unregister(devices_kset);
4132 return -ENOMEM;
4133 }
4134
device_check_offline(struct device * dev,void * not_used)4135 static int device_check_offline(struct device *dev, void *not_used)
4136 {
4137 int ret;
4138
4139 ret = device_for_each_child(dev, NULL, device_check_offline);
4140 if (ret)
4141 return ret;
4142
4143 return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
4144 }
4145
4146 /**
4147 * device_offline - Prepare the device for hot-removal.
4148 * @dev: Device to be put offline.
4149 *
4150 * Execute the device bus type's .offline() callback, if present, to prepare
4151 * the device for a subsequent hot-removal. If that succeeds, the device must
4152 * not be used until either it is removed or its bus type's .online() callback
4153 * is executed.
4154 *
4155 * Call under device_hotplug_lock.
4156 */
device_offline(struct device * dev)4157 int device_offline(struct device *dev)
4158 {
4159 int ret;
4160
4161 if (dev->offline_disabled)
4162 return -EPERM;
4163
4164 ret = device_for_each_child(dev, NULL, device_check_offline);
4165 if (ret)
4166 return ret;
4167
4168 device_lock(dev);
4169 if (device_supports_offline(dev)) {
4170 if (dev->offline) {
4171 ret = 1;
4172 } else {
4173 ret = dev->bus->offline(dev);
4174 if (!ret) {
4175 kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
4176 dev->offline = true;
4177 }
4178 }
4179 }
4180 device_unlock(dev);
4181
4182 return ret;
4183 }
4184
4185 /**
4186 * device_online - Put the device back online after successful device_offline().
4187 * @dev: Device to be put back online.
4188 *
4189 * If device_offline() has been successfully executed for @dev, but the device
4190 * has not been removed subsequently, execute its bus type's .online() callback
4191 * to indicate that the device can be used again.
4192 *
4193 * Call under device_hotplug_lock.
4194 */
device_online(struct device * dev)4195 int device_online(struct device *dev)
4196 {
4197 int ret = 0;
4198
4199 device_lock(dev);
4200 if (device_supports_offline(dev)) {
4201 if (dev->offline) {
4202 ret = dev->bus->online(dev);
4203 if (!ret) {
4204 kobject_uevent(&dev->kobj, KOBJ_ONLINE);
4205 dev->offline = false;
4206 }
4207 } else {
4208 ret = 1;
4209 }
4210 }
4211 device_unlock(dev);
4212
4213 return ret;
4214 }
4215
4216 struct root_device {
4217 struct device dev;
4218 struct module *owner;
4219 };
4220
to_root_device(struct device * d)4221 static inline struct root_device *to_root_device(struct device *d)
4222 {
4223 return container_of(d, struct root_device, dev);
4224 }
4225
root_device_release(struct device * dev)4226 static void root_device_release(struct device *dev)
4227 {
4228 kfree(to_root_device(dev));
4229 }
4230
4231 /**
4232 * __root_device_register - allocate and register a root device
4233 * @name: root device name
4234 * @owner: owner module of the root device, usually THIS_MODULE
4235 *
4236 * This function allocates a root device and registers it
4237 * using device_register(). In order to free the returned
4238 * device, use root_device_unregister().
4239 *
4240 * Root devices are dummy devices which allow other devices
4241 * to be grouped under /sys/devices. Use this function to
4242 * allocate a root device and then use it as the parent of
4243 * any device which should appear under /sys/devices/{name}
4244 *
4245 * The /sys/devices/{name} directory will also contain a
4246 * 'module' symlink which points to the @owner directory
4247 * in sysfs.
4248 *
4249 * Returns &struct device pointer on success, or ERR_PTR() on error.
4250 *
4251 * Note: You probably want to use root_device_register().
4252 */
__root_device_register(const char * name,struct module * owner)4253 struct device *__root_device_register(const char *name, struct module *owner)
4254 {
4255 struct root_device *root;
4256 int err = -ENOMEM;
4257
4258 root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
4259 if (!root)
4260 return ERR_PTR(err);
4261
4262 err = dev_set_name(&root->dev, "%s", name);
4263 if (err) {
4264 kfree(root);
4265 return ERR_PTR(err);
4266 }
4267
4268 root->dev.release = root_device_release;
4269
4270 err = device_register(&root->dev);
4271 if (err) {
4272 put_device(&root->dev);
4273 return ERR_PTR(err);
4274 }
4275
4276 #ifdef CONFIG_MODULES /* gotta find a "cleaner" way to do this */
4277 if (owner) {
4278 struct module_kobject *mk = &owner->mkobj;
4279
4280 err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
4281 if (err) {
4282 device_unregister(&root->dev);
4283 return ERR_PTR(err);
4284 }
4285 root->owner = owner;
4286 }
4287 #endif
4288
4289 return &root->dev;
4290 }
4291 EXPORT_SYMBOL_GPL(__root_device_register);
4292
4293 /**
4294 * root_device_unregister - unregister and free a root device
4295 * @dev: device going away
4296 *
4297 * This function unregisters and cleans up a device that was created by
4298 * root_device_register().
4299 */
root_device_unregister(struct device * dev)4300 void root_device_unregister(struct device *dev)
4301 {
4302 struct root_device *root = to_root_device(dev);
4303
4304 if (root->owner)
4305 sysfs_remove_link(&root->dev.kobj, "module");
4306
4307 device_unregister(dev);
4308 }
4309 EXPORT_SYMBOL_GPL(root_device_unregister);
4310
4311
device_create_release(struct device * dev)4312 static void device_create_release(struct device *dev)
4313 {
4314 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
4315 kfree(dev);
4316 }
4317
4318 static __printf(6, 0) struct device *
device_create_groups_vargs(const struct class * class,struct device * parent,dev_t devt,void * drvdata,const struct attribute_group ** groups,const char * fmt,va_list args)4319 device_create_groups_vargs(const struct class *class, struct device *parent,
4320 dev_t devt, void *drvdata,
4321 const struct attribute_group **groups,
4322 const char *fmt, va_list args)
4323 {
4324 struct device *dev = NULL;
4325 int retval = -ENODEV;
4326
4327 if (IS_ERR_OR_NULL(class))
4328 goto error;
4329
4330 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
4331 if (!dev) {
4332 retval = -ENOMEM;
4333 goto error;
4334 }
4335
4336 device_initialize(dev);
4337 dev->devt = devt;
4338 dev->class = class;
4339 dev->parent = parent;
4340 dev->groups = groups;
4341 dev->release = device_create_release;
4342 dev_set_drvdata(dev, drvdata);
4343
4344 retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
4345 if (retval)
4346 goto error;
4347
4348 retval = device_add(dev);
4349 if (retval)
4350 goto error;
4351
4352 return dev;
4353
4354 error:
4355 put_device(dev);
4356 return ERR_PTR(retval);
4357 }
4358
4359 /**
4360 * device_create - creates a device and registers it with sysfs
4361 * @class: pointer to the struct class that this device should be registered to
4362 * @parent: pointer to the parent struct device of this new device, if any
4363 * @devt: the dev_t for the char device to be added
4364 * @drvdata: the data to be added to the device for callbacks
4365 * @fmt: string for the device's name
4366 *
4367 * This function can be used by char device classes. A struct device
4368 * will be created in sysfs, registered to the specified class.
4369 *
4370 * A "dev" file will be created, showing the dev_t for the device, if
4371 * the dev_t is not 0,0.
4372 * If a pointer to a parent struct device is passed in, the newly created
4373 * struct device will be a child of that device in sysfs.
4374 * The pointer to the struct device will be returned from the call.
4375 * Any further sysfs files that might be required can be created using this
4376 * pointer.
4377 *
4378 * Returns &struct device pointer on success, or ERR_PTR() on error.
4379 */
device_create(const struct class * class,struct device * parent,dev_t devt,void * drvdata,const char * fmt,...)4380 struct device *device_create(const struct class *class, struct device *parent,
4381 dev_t devt, void *drvdata, const char *fmt, ...)
4382 {
4383 va_list vargs;
4384 struct device *dev;
4385
4386 va_start(vargs, fmt);
4387 dev = device_create_groups_vargs(class, parent, devt, drvdata, NULL,
4388 fmt, vargs);
4389 va_end(vargs);
4390 return dev;
4391 }
4392 EXPORT_SYMBOL_GPL(device_create);
4393
4394 /**
4395 * device_create_with_groups - creates a device and registers it with sysfs
4396 * @class: pointer to the struct class that this device should be registered to
4397 * @parent: pointer to the parent struct device of this new device, if any
4398 * @devt: the dev_t for the char device to be added
4399 * @drvdata: the data to be added to the device for callbacks
4400 * @groups: NULL-terminated list of attribute groups to be created
4401 * @fmt: string for the device's name
4402 *
4403 * This function can be used by char device classes. A struct device
4404 * will be created in sysfs, registered to the specified class.
4405 * Additional attributes specified in the groups parameter will also
4406 * be created automatically.
4407 *
4408 * A "dev" file will be created, showing the dev_t for the device, if
4409 * the dev_t is not 0,0.
4410 * If a pointer to a parent struct device is passed in, the newly created
4411 * struct device will be a child of that device in sysfs.
4412 * The pointer to the struct device will be returned from the call.
4413 * Any further sysfs files that might be required can be created using this
4414 * pointer.
4415 *
4416 * Returns &struct device pointer on success, or ERR_PTR() on error.
4417 */
device_create_with_groups(const struct class * class,struct device * parent,dev_t devt,void * drvdata,const struct attribute_group ** groups,const char * fmt,...)4418 struct device *device_create_with_groups(const struct class *class,
4419 struct device *parent, dev_t devt,
4420 void *drvdata,
4421 const struct attribute_group **groups,
4422 const char *fmt, ...)
4423 {
4424 va_list vargs;
4425 struct device *dev;
4426
4427 va_start(vargs, fmt);
4428 dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
4429 fmt, vargs);
4430 va_end(vargs);
4431 return dev;
4432 }
4433 EXPORT_SYMBOL_GPL(device_create_with_groups);
4434
4435 /**
4436 * device_destroy - removes a device that was created with device_create()
4437 * @class: pointer to the struct class that this device was registered with
4438 * @devt: the dev_t of the device that was previously registered
4439 *
4440 * This call unregisters and cleans up a device that was created with a
4441 * call to device_create().
4442 */
device_destroy(const struct class * class,dev_t devt)4443 void device_destroy(const struct class *class, dev_t devt)
4444 {
4445 struct device *dev;
4446
4447 dev = class_find_device_by_devt(class, devt);
4448 if (dev) {
4449 put_device(dev);
4450 device_unregister(dev);
4451 }
4452 }
4453 EXPORT_SYMBOL_GPL(device_destroy);
4454
4455 /**
4456 * device_rename - renames a device
4457 * @dev: the pointer to the struct device to be renamed
4458 * @new_name: the new name of the device
4459 *
4460 * It is the responsibility of the caller to provide mutual
4461 * exclusion between two different calls of device_rename
4462 * on the same device to ensure that new_name is valid and
4463 * won't conflict with other devices.
4464 *
4465 * Note: given that some subsystems (networking and infiniband) use this
4466 * function, with no immediate plans for this to change, we cannot assume or
4467 * require that this function not be called at all.
4468 *
4469 * However, if you're writing new code, do not call this function. The following
4470 * text from Kay Sievers offers some insight:
4471 *
4472 * Renaming devices is racy at many levels, symlinks and other stuff are not
4473 * replaced atomically, and you get a "move" uevent, but it's not easy to
4474 * connect the event to the old and new device. Device nodes are not renamed at
4475 * all, there isn't even support for that in the kernel now.
4476 *
4477 * In the meantime, during renaming, your target name might be taken by another
4478 * driver, creating conflicts. Or the old name is taken directly after you
4479 * renamed it -- then you get events for the same DEVPATH, before you even see
4480 * the "move" event. It's just a mess, and nothing new should ever rely on
4481 * kernel device renaming. Besides that, it's not even implemented now for
4482 * other things than (driver-core wise very simple) network devices.
4483 *
4484 * Make up a "real" name in the driver before you register anything, or add
4485 * some other attributes for userspace to find the device, or use udev to add
4486 * symlinks -- but never rename kernel devices later, it's a complete mess. We
4487 * don't even want to get into that and try to implement the missing pieces in
4488 * the core. We really have other pieces to fix in the driver core mess. :)
4489 */
device_rename(struct device * dev,const char * new_name)4490 int device_rename(struct device *dev, const char *new_name)
4491 {
4492 struct subsys_private *sp = NULL;
4493 struct kobject *kobj = &dev->kobj;
4494 char *old_device_name = NULL;
4495 int error;
4496 bool is_link_renamed = false;
4497
4498 dev = get_device(dev);
4499 if (!dev)
4500 return -EINVAL;
4501
4502 dev_dbg(dev, "renaming to %s\n", new_name);
4503
4504 old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
4505 if (!old_device_name) {
4506 error = -ENOMEM;
4507 goto out;
4508 }
4509
4510 if (dev->class) {
4511 sp = class_to_subsys(dev->class);
4512
4513 if (!sp) {
4514 error = -EINVAL;
4515 goto out;
4516 }
4517
4518 error = sysfs_rename_link_ns(&sp->subsys.kobj, kobj, old_device_name,
4519 new_name, kobject_namespace(kobj));
4520 if (error)
4521 goto out;
4522
4523 is_link_renamed = true;
4524 }
4525
4526 error = kobject_rename(kobj, new_name);
4527 out:
4528 if (error && is_link_renamed)
4529 sysfs_rename_link_ns(&sp->subsys.kobj, kobj, new_name,
4530 old_device_name, kobject_namespace(kobj));
4531 subsys_put(sp);
4532
4533 put_device(dev);
4534
4535 kfree(old_device_name);
4536
4537 return error;
4538 }
4539 EXPORT_SYMBOL_GPL(device_rename);
4540
device_move_class_links(struct device * dev,struct device * old_parent,struct device * new_parent)4541 static int device_move_class_links(struct device *dev,
4542 struct device *old_parent,
4543 struct device *new_parent)
4544 {
4545 int error = 0;
4546
4547 if (old_parent)
4548 sysfs_remove_link(&dev->kobj, "device");
4549 if (new_parent)
4550 error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
4551 "device");
4552 return error;
4553 }
4554
4555 /**
4556 * device_move - moves a device to a new parent
4557 * @dev: the pointer to the struct device to be moved
4558 * @new_parent: the new parent of the device (can be NULL)
4559 * @dpm_order: how to reorder the dpm_list
4560 */
device_move(struct device * dev,struct device * new_parent,enum dpm_order dpm_order)4561 int device_move(struct device *dev, struct device *new_parent,
4562 enum dpm_order dpm_order)
4563 {
4564 int error;
4565 struct device *old_parent;
4566 struct kobject *new_parent_kobj;
4567
4568 dev = get_device(dev);
4569 if (!dev)
4570 return -EINVAL;
4571
4572 device_pm_lock();
4573 new_parent = get_device(new_parent);
4574 new_parent_kobj = get_device_parent(dev, new_parent);
4575 if (IS_ERR(new_parent_kobj)) {
4576 error = PTR_ERR(new_parent_kobj);
4577 put_device(new_parent);
4578 goto out;
4579 }
4580
4581 pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
4582 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
4583 error = kobject_move(&dev->kobj, new_parent_kobj);
4584 if (error) {
4585 cleanup_glue_dir(dev, new_parent_kobj);
4586 put_device(new_parent);
4587 goto out;
4588 }
4589 old_parent = dev->parent;
4590 dev->parent = new_parent;
4591 if (old_parent)
4592 klist_remove(&dev->p->knode_parent);
4593 if (new_parent) {
4594 klist_add_tail(&dev->p->knode_parent,
4595 &new_parent->p->klist_children);
4596 set_dev_node(dev, dev_to_node(new_parent));
4597 }
4598
4599 if (dev->class) {
4600 error = device_move_class_links(dev, old_parent, new_parent);
4601 if (error) {
4602 /* We ignore errors on cleanup since we're hosed anyway... */
4603 device_move_class_links(dev, new_parent, old_parent);
4604 if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
4605 if (new_parent)
4606 klist_remove(&dev->p->knode_parent);
4607 dev->parent = old_parent;
4608 if (old_parent) {
4609 klist_add_tail(&dev->p->knode_parent,
4610 &old_parent->p->klist_children);
4611 set_dev_node(dev, dev_to_node(old_parent));
4612 }
4613 }
4614 cleanup_glue_dir(dev, new_parent_kobj);
4615 put_device(new_parent);
4616 goto out;
4617 }
4618 }
4619 switch (dpm_order) {
4620 case DPM_ORDER_NONE:
4621 break;
4622 case DPM_ORDER_DEV_AFTER_PARENT:
4623 device_pm_move_after(dev, new_parent);
4624 devices_kset_move_after(dev, new_parent);
4625 break;
4626 case DPM_ORDER_PARENT_BEFORE_DEV:
4627 device_pm_move_before(new_parent, dev);
4628 devices_kset_move_before(new_parent, dev);
4629 break;
4630 case DPM_ORDER_DEV_LAST:
4631 device_pm_move_last(dev);
4632 devices_kset_move_last(dev);
4633 break;
4634 }
4635
4636 put_device(old_parent);
4637 out:
4638 device_pm_unlock();
4639 put_device(dev);
4640 return error;
4641 }
4642 EXPORT_SYMBOL_GPL(device_move);
4643
device_attrs_change_owner(struct device * dev,kuid_t kuid,kgid_t kgid)4644 static int device_attrs_change_owner(struct device *dev, kuid_t kuid,
4645 kgid_t kgid)
4646 {
4647 struct kobject *kobj = &dev->kobj;
4648 const struct class *class = dev->class;
4649 const struct device_type *type = dev->type;
4650 int error;
4651
4652 if (class) {
4653 /*
4654 * Change the device groups of the device class for @dev to
4655 * @kuid/@kgid.
4656 */
4657 error = sysfs_groups_change_owner(kobj, class->dev_groups, kuid,
4658 kgid);
4659 if (error)
4660 return error;
4661 }
4662
4663 if (type) {
4664 /*
4665 * Change the device groups of the device type for @dev to
4666 * @kuid/@kgid.
4667 */
4668 error = sysfs_groups_change_owner(kobj, type->groups, kuid,
4669 kgid);
4670 if (error)
4671 return error;
4672 }
4673
4674 /* Change the device groups of @dev to @kuid/@kgid. */
4675 error = sysfs_groups_change_owner(kobj, dev->groups, kuid, kgid);
4676 if (error)
4677 return error;
4678
4679 if (device_supports_offline(dev) && !dev->offline_disabled) {
4680 /* Change online device attributes of @dev to @kuid/@kgid. */
4681 error = sysfs_file_change_owner(kobj, dev_attr_online.attr.name,
4682 kuid, kgid);
4683 if (error)
4684 return error;
4685 }
4686
4687 return 0;
4688 }
4689
4690 /**
4691 * device_change_owner - change the owner of an existing device.
4692 * @dev: device.
4693 * @kuid: new owner's kuid
4694 * @kgid: new owner's kgid
4695 *
4696 * This changes the owner of @dev and its corresponding sysfs entries to
4697 * @kuid/@kgid. This function closely mirrors how @dev was added via driver
4698 * core.
4699 *
4700 * Returns 0 on success or error code on failure.
4701 */
device_change_owner(struct device * dev,kuid_t kuid,kgid_t kgid)4702 int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid)
4703 {
4704 int error;
4705 struct kobject *kobj = &dev->kobj;
4706 struct subsys_private *sp;
4707
4708 dev = get_device(dev);
4709 if (!dev)
4710 return -EINVAL;
4711
4712 /*
4713 * Change the kobject and the default attributes and groups of the
4714 * ktype associated with it to @kuid/@kgid.
4715 */
4716 error = sysfs_change_owner(kobj, kuid, kgid);
4717 if (error)
4718 goto out;
4719
4720 /*
4721 * Change the uevent file for @dev to the new owner. The uevent file
4722 * was created in a separate step when @dev got added and we mirror
4723 * that step here.
4724 */
4725 error = sysfs_file_change_owner(kobj, dev_attr_uevent.attr.name, kuid,
4726 kgid);
4727 if (error)
4728 goto out;
4729
4730 /*
4731 * Change the device groups, the device groups associated with the
4732 * device class, and the groups associated with the device type of @dev
4733 * to @kuid/@kgid.
4734 */
4735 error = device_attrs_change_owner(dev, kuid, kgid);
4736 if (error)
4737 goto out;
4738
4739 error = dpm_sysfs_change_owner(dev, kuid, kgid);
4740 if (error)
4741 goto out;
4742
4743 /*
4744 * Change the owner of the symlink located in the class directory of
4745 * the device class associated with @dev which points to the actual
4746 * directory entry for @dev to @kuid/@kgid. This ensures that the
4747 * symlink shows the same permissions as its target.
4748 */
4749 sp = class_to_subsys(dev->class);
4750 if (!sp) {
4751 error = -EINVAL;
4752 goto out;
4753 }
4754 error = sysfs_link_change_owner(&sp->subsys.kobj, &dev->kobj, dev_name(dev), kuid, kgid);
4755 subsys_put(sp);
4756
4757 out:
4758 put_device(dev);
4759 return error;
4760 }
4761 EXPORT_SYMBOL_GPL(device_change_owner);
4762
4763 /**
4764 * device_shutdown - call ->shutdown() on each device to shutdown.
4765 */
device_shutdown(void)4766 void device_shutdown(void)
4767 {
4768 struct device *dev, *parent;
4769
4770 wait_for_device_probe();
4771 device_block_probing();
4772
4773 cpufreq_suspend();
4774
4775 spin_lock(&devices_kset->list_lock);
4776 /*
4777 * Walk the devices list backward, shutting down each in turn.
4778 * Beware that device unplug events may also start pulling
4779 * devices offline, even as the system is shutting down.
4780 */
4781 while (!list_empty(&devices_kset->list)) {
4782 dev = list_entry(devices_kset->list.prev, struct device,
4783 kobj.entry);
4784
4785 /*
4786 * hold reference count of device's parent to
4787 * prevent it from being freed because parent's
4788 * lock is to be held
4789 */
4790 parent = get_device(dev->parent);
4791 get_device(dev);
4792 /*
4793 * Make sure the device is off the kset list, in the
4794 * event that dev->*->shutdown() doesn't remove it.
4795 */
4796 list_del_init(&dev->kobj.entry);
4797 spin_unlock(&devices_kset->list_lock);
4798
4799 /* hold lock to avoid race with probe/release */
4800 if (parent)
4801 device_lock(parent);
4802 device_lock(dev);
4803
4804 /* Don't allow any more runtime suspends */
4805 pm_runtime_get_noresume(dev);
4806 pm_runtime_barrier(dev);
4807
4808 if (dev->class && dev->class->shutdown_pre) {
4809 if (initcall_debug)
4810 dev_info(dev, "shutdown_pre\n");
4811 dev->class->shutdown_pre(dev);
4812 }
4813 if (dev->bus && dev->bus->shutdown) {
4814 if (initcall_debug)
4815 dev_info(dev, "shutdown\n");
4816 dev->bus->shutdown(dev);
4817 } else if (dev->driver && dev->driver->shutdown) {
4818 if (initcall_debug)
4819 dev_info(dev, "shutdown\n");
4820 dev->driver->shutdown(dev);
4821 }
4822
4823 device_unlock(dev);
4824 if (parent)
4825 device_unlock(parent);
4826
4827 put_device(dev);
4828 put_device(parent);
4829
4830 spin_lock(&devices_kset->list_lock);
4831 }
4832 spin_unlock(&devices_kset->list_lock);
4833 }
4834
4835 /*
4836 * Device logging functions
4837 */
4838
4839 #ifdef CONFIG_PRINTK
4840 static void
set_dev_info(const struct device * dev,struct dev_printk_info * dev_info)4841 set_dev_info(const struct device *dev, struct dev_printk_info *dev_info)
4842 {
4843 const char *subsys;
4844
4845 memset(dev_info, 0, sizeof(*dev_info));
4846
4847 if (dev->class)
4848 subsys = dev->class->name;
4849 else if (dev->bus)
4850 subsys = dev->bus->name;
4851 else
4852 return;
4853
4854 strscpy(dev_info->subsystem, subsys);
4855
4856 /*
4857 * Add device identifier DEVICE=:
4858 * b12:8 block dev_t
4859 * c127:3 char dev_t
4860 * n8 netdev ifindex
4861 * +sound:card0 subsystem:devname
4862 */
4863 if (MAJOR(dev->devt)) {
4864 char c;
4865
4866 if (strcmp(subsys, "block") == 0)
4867 c = 'b';
4868 else
4869 c = 'c';
4870
4871 snprintf(dev_info->device, sizeof(dev_info->device),
4872 "%c%u:%u", c, MAJOR(dev->devt), MINOR(dev->devt));
4873 } else if (strcmp(subsys, "net") == 0) {
4874 struct net_device *net = to_net_dev(dev);
4875
4876 snprintf(dev_info->device, sizeof(dev_info->device),
4877 "n%u", net->ifindex);
4878 } else {
4879 snprintf(dev_info->device, sizeof(dev_info->device),
4880 "+%s:%s", subsys, dev_name(dev));
4881 }
4882 }
4883
dev_vprintk_emit(int level,const struct device * dev,const char * fmt,va_list args)4884 int dev_vprintk_emit(int level, const struct device *dev,
4885 const char *fmt, va_list args)
4886 {
4887 struct dev_printk_info dev_info;
4888
4889 set_dev_info(dev, &dev_info);
4890
4891 return vprintk_emit(0, level, &dev_info, fmt, args);
4892 }
4893 EXPORT_SYMBOL(dev_vprintk_emit);
4894
dev_printk_emit(int level,const struct device * dev,const char * fmt,...)4895 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
4896 {
4897 va_list args;
4898 int r;
4899
4900 va_start(args, fmt);
4901
4902 r = dev_vprintk_emit(level, dev, fmt, args);
4903
4904 va_end(args);
4905
4906 return r;
4907 }
4908 EXPORT_SYMBOL(dev_printk_emit);
4909
__dev_printk(const char * level,const struct device * dev,struct va_format * vaf)4910 static void __dev_printk(const char *level, const struct device *dev,
4911 struct va_format *vaf)
4912 {
4913 if (dev)
4914 dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
4915 dev_driver_string(dev), dev_name(dev), vaf);
4916 else
4917 printk("%s(NULL device *): %pV", level, vaf);
4918 }
4919
_dev_printk(const char * level,const struct device * dev,const char * fmt,...)4920 void _dev_printk(const char *level, const struct device *dev,
4921 const char *fmt, ...)
4922 {
4923 struct va_format vaf;
4924 va_list args;
4925
4926 va_start(args, fmt);
4927
4928 vaf.fmt = fmt;
4929 vaf.va = &args;
4930
4931 __dev_printk(level, dev, &vaf);
4932
4933 va_end(args);
4934 }
4935 EXPORT_SYMBOL(_dev_printk);
4936
4937 #define define_dev_printk_level(func, kern_level) \
4938 void func(const struct device *dev, const char *fmt, ...) \
4939 { \
4940 struct va_format vaf; \
4941 va_list args; \
4942 \
4943 va_start(args, fmt); \
4944 \
4945 vaf.fmt = fmt; \
4946 vaf.va = &args; \
4947 \
4948 __dev_printk(kern_level, dev, &vaf); \
4949 \
4950 va_end(args); \
4951 } \
4952 EXPORT_SYMBOL(func);
4953
4954 define_dev_printk_level(_dev_emerg, KERN_EMERG);
4955 define_dev_printk_level(_dev_alert, KERN_ALERT);
4956 define_dev_printk_level(_dev_crit, KERN_CRIT);
4957 define_dev_printk_level(_dev_err, KERN_ERR);
4958 define_dev_printk_level(_dev_warn, KERN_WARNING);
4959 define_dev_printk_level(_dev_notice, KERN_NOTICE);
4960 define_dev_printk_level(_dev_info, KERN_INFO);
4961
4962 #endif
4963
__dev_probe_failed(const struct device * dev,int err,bool fatal,const char * fmt,va_list vargsp)4964 static void __dev_probe_failed(const struct device *dev, int err, bool fatal,
4965 const char *fmt, va_list vargsp)
4966 {
4967 struct va_format vaf;
4968 va_list vargs;
4969
4970 /*
4971 * On x86_64 and possibly on other architectures, va_list is actually a
4972 * size-1 array containing a structure. As a result, function parameter
4973 * vargsp decays from T[1] to T*, and &vargsp has type T** rather than
4974 * T(*)[1], which is expected by its assignment to vaf.va below.
4975 *
4976 * One standard way to solve this mess is by creating a copy in a local
4977 * variable of type va_list and then using a pointer to that local copy
4978 * instead, which is the approach employed here.
4979 */
4980 va_copy(vargs, vargsp);
4981
4982 vaf.fmt = fmt;
4983 vaf.va = &vargs;
4984
4985 switch (err) {
4986 case -EPROBE_DEFER:
4987 device_set_deferred_probe_reason(dev, &vaf);
4988 dev_dbg(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
4989 break;
4990
4991 case -ENOMEM:
4992 /* Don't print anything on -ENOMEM, there's already enough output */
4993 break;
4994
4995 default:
4996 /* Log fatal final failures as errors, otherwise produce warnings */
4997 if (fatal)
4998 dev_err(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
4999 else
5000 dev_warn(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
5001 break;
5002 }
5003
5004 va_end(vargs);
5005 }
5006
5007 /**
5008 * dev_err_probe - probe error check and log helper
5009 * @dev: the pointer to the struct device
5010 * @err: error value to test
5011 * @fmt: printf-style format string
5012 * @...: arguments as specified in the format string
5013 *
5014 * This helper implements common pattern present in probe functions for error
5015 * checking: print debug or error message depending if the error value is
5016 * -EPROBE_DEFER and propagate error upwards.
5017 * In case of -EPROBE_DEFER it sets also defer probe reason, which can be
5018 * checked later by reading devices_deferred debugfs attribute.
5019 * It replaces the following code sequence::
5020 *
5021 * if (err != -EPROBE_DEFER)
5022 * dev_err(dev, ...);
5023 * else
5024 * dev_dbg(dev, ...);
5025 * return err;
5026 *
5027 * with::
5028 *
5029 * return dev_err_probe(dev, err, ...);
5030 *
5031 * Using this helper in your probe function is totally fine even if @err
5032 * is known to never be -EPROBE_DEFER.
5033 * The benefit compared to a normal dev_err() is the standardized format
5034 * of the error code, which is emitted symbolically (i.e. you get "EAGAIN"
5035 * instead of "-35"), and having the error code returned allows more
5036 * compact error paths.
5037 *
5038 * Returns @err.
5039 */
dev_err_probe(const struct device * dev,int err,const char * fmt,...)5040 int dev_err_probe(const struct device *dev, int err, const char *fmt, ...)
5041 {
5042 va_list vargs;
5043
5044 va_start(vargs, fmt);
5045
5046 /* Use dev_err() for logging when err doesn't equal -EPROBE_DEFER */
5047 __dev_probe_failed(dev, err, true, fmt, vargs);
5048
5049 va_end(vargs);
5050
5051 return err;
5052 }
5053 EXPORT_SYMBOL_GPL(dev_err_probe);
5054
5055 /**
5056 * dev_warn_probe - probe error check and log helper
5057 * @dev: the pointer to the struct device
5058 * @err: error value to test
5059 * @fmt: printf-style format string
5060 * @...: arguments as specified in the format string
5061 *
5062 * This helper implements common pattern present in probe functions for error
5063 * checking: print debug or warning message depending if the error value is
5064 * -EPROBE_DEFER and propagate error upwards.
5065 * In case of -EPROBE_DEFER it sets also defer probe reason, which can be
5066 * checked later by reading devices_deferred debugfs attribute.
5067 * It replaces the following code sequence::
5068 *
5069 * if (err != -EPROBE_DEFER)
5070 * dev_warn(dev, ...);
5071 * else
5072 * dev_dbg(dev, ...);
5073 * return err;
5074 *
5075 * with::
5076 *
5077 * return dev_warn_probe(dev, err, ...);
5078 *
5079 * Using this helper in your probe function is totally fine even if @err
5080 * is known to never be -EPROBE_DEFER.
5081 * The benefit compared to a normal dev_warn() is the standardized format
5082 * of the error code, which is emitted symbolically (i.e. you get "EAGAIN"
5083 * instead of "-35"), and having the error code returned allows more
5084 * compact error paths.
5085 *
5086 * Returns @err.
5087 */
dev_warn_probe(const struct device * dev,int err,const char * fmt,...)5088 int dev_warn_probe(const struct device *dev, int err, const char *fmt, ...)
5089 {
5090 va_list vargs;
5091
5092 va_start(vargs, fmt);
5093
5094 /* Use dev_warn() for logging when err doesn't equal -EPROBE_DEFER */
5095 __dev_probe_failed(dev, err, false, fmt, vargs);
5096
5097 va_end(vargs);
5098
5099 return err;
5100 }
5101 EXPORT_SYMBOL_GPL(dev_warn_probe);
5102
fwnode_is_primary(struct fwnode_handle * fwnode)5103 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
5104 {
5105 return fwnode && !IS_ERR(fwnode->secondary);
5106 }
5107
5108 /**
5109 * set_primary_fwnode - Change the primary firmware node of a given device.
5110 * @dev: Device to handle.
5111 * @fwnode: New primary firmware node of the device.
5112 *
5113 * Set the device's firmware node pointer to @fwnode, but if a secondary
5114 * firmware node of the device is present, preserve it.
5115 *
5116 * Valid fwnode cases are:
5117 * - primary --> secondary --> -ENODEV
5118 * - primary --> NULL
5119 * - secondary --> -ENODEV
5120 * - NULL
5121 */
set_primary_fwnode(struct device * dev,struct fwnode_handle * fwnode)5122 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
5123 {
5124 struct device *parent = dev->parent;
5125 struct fwnode_handle *fn = dev->fwnode;
5126
5127 if (fwnode) {
5128 if (fwnode_is_primary(fn))
5129 fn = fn->secondary;
5130
5131 if (fn) {
5132 WARN_ON(fwnode->secondary);
5133 fwnode->secondary = fn;
5134 }
5135 dev->fwnode = fwnode;
5136 } else {
5137 if (fwnode_is_primary(fn)) {
5138 dev->fwnode = fn->secondary;
5139
5140 /* Skip nullifying fn->secondary if the primary is shared */
5141 if (parent && fn == parent->fwnode)
5142 return;
5143
5144 /* Set fn->secondary = NULL, so fn remains the primary fwnode */
5145 fn->secondary = NULL;
5146 } else {
5147 dev->fwnode = NULL;
5148 }
5149 }
5150 }
5151 EXPORT_SYMBOL_GPL(set_primary_fwnode);
5152
5153 /**
5154 * set_secondary_fwnode - Change the secondary firmware node of a given device.
5155 * @dev: Device to handle.
5156 * @fwnode: New secondary firmware node of the device.
5157 *
5158 * If a primary firmware node of the device is present, set its secondary
5159 * pointer to @fwnode. Otherwise, set the device's firmware node pointer to
5160 * @fwnode.
5161 */
set_secondary_fwnode(struct device * dev,struct fwnode_handle * fwnode)5162 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
5163 {
5164 if (fwnode)
5165 fwnode->secondary = ERR_PTR(-ENODEV);
5166
5167 if (fwnode_is_primary(dev->fwnode))
5168 dev->fwnode->secondary = fwnode;
5169 else
5170 dev->fwnode = fwnode;
5171 }
5172 EXPORT_SYMBOL_GPL(set_secondary_fwnode);
5173
5174 /**
5175 * device_set_of_node_from_dev - reuse device-tree node of another device
5176 * @dev: device whose device-tree node is being set
5177 * @dev2: device whose device-tree node is being reused
5178 *
5179 * Takes another reference to the new device-tree node after first dropping
5180 * any reference held to the old node.
5181 */
device_set_of_node_from_dev(struct device * dev,const struct device * dev2)5182 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2)
5183 {
5184 of_node_put(dev->of_node);
5185 dev->of_node = of_node_get(dev2->of_node);
5186 dev->of_node_reused = true;
5187 }
5188 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev);
5189
device_set_node(struct device * dev,struct fwnode_handle * fwnode)5190 void device_set_node(struct device *dev, struct fwnode_handle *fwnode)
5191 {
5192 dev->fwnode = fwnode;
5193 dev->of_node = to_of_node(fwnode);
5194 }
5195 EXPORT_SYMBOL_GPL(device_set_node);
5196
device_match_name(struct device * dev,const void * name)5197 int device_match_name(struct device *dev, const void *name)
5198 {
5199 return sysfs_streq(dev_name(dev), name);
5200 }
5201 EXPORT_SYMBOL_GPL(device_match_name);
5202
device_match_type(struct device * dev,const void * type)5203 int device_match_type(struct device *dev, const void *type)
5204 {
5205 return dev->type == type;
5206 }
5207 EXPORT_SYMBOL_GPL(device_match_type);
5208
device_match_of_node(struct device * dev,const void * np)5209 int device_match_of_node(struct device *dev, const void *np)
5210 {
5211 return np && dev->of_node == np;
5212 }
5213 EXPORT_SYMBOL_GPL(device_match_of_node);
5214
device_match_fwnode(struct device * dev,const void * fwnode)5215 int device_match_fwnode(struct device *dev, const void *fwnode)
5216 {
5217 return fwnode && dev_fwnode(dev) == fwnode;
5218 }
5219 EXPORT_SYMBOL_GPL(device_match_fwnode);
5220
device_match_devt(struct device * dev,const void * pdevt)5221 int device_match_devt(struct device *dev, const void *pdevt)
5222 {
5223 return dev->devt == *(dev_t *)pdevt;
5224 }
5225 EXPORT_SYMBOL_GPL(device_match_devt);
5226
device_match_acpi_dev(struct device * dev,const void * adev)5227 int device_match_acpi_dev(struct device *dev, const void *adev)
5228 {
5229 return adev && ACPI_COMPANION(dev) == adev;
5230 }
5231 EXPORT_SYMBOL(device_match_acpi_dev);
5232
device_match_acpi_handle(struct device * dev,const void * handle)5233 int device_match_acpi_handle(struct device *dev, const void *handle)
5234 {
5235 return handle && ACPI_HANDLE(dev) == handle;
5236 }
5237 EXPORT_SYMBOL(device_match_acpi_handle);
5238
device_match_any(struct device * dev,const void * unused)5239 int device_match_any(struct device *dev, const void *unused)
5240 {
5241 return 1;
5242 }
5243 EXPORT_SYMBOL_GPL(device_match_any);
5244