xref: /linux/arch/powerpc/mm/book3s64/mmu_context.c (revision ad952db4a865e96ec98d4c5874a4699fe3286d56)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  MMU context allocation for 64-bit kernels.
4  *
5  *  Copyright (C) 2004 Anton Blanchard, IBM Corp. <anton@samba.org>
6  */
7 
8 #include <linux/sched.h>
9 #include <linux/kernel.h>
10 #include <linux/errno.h>
11 #include <linux/string.h>
12 #include <linux/types.h>
13 #include <linux/mm.h>
14 #include <linux/pkeys.h>
15 #include <linux/spinlock.h>
16 #include <linux/idr.h>
17 #include <linux/export.h>
18 #include <linux/gfp.h>
19 #include <linux/slab.h>
20 #include <linux/cpu.h>
21 
22 #include <asm/mmu_context.h>
23 #include <asm/pgalloc.h>
24 
25 #include "internal.h"
26 
27 static DEFINE_IDA(mmu_context_ida);
28 
alloc_context_id(int min_id,int max_id)29 static int alloc_context_id(int min_id, int max_id)
30 {
31 	return ida_alloc_range(&mmu_context_ida, min_id, max_id, GFP_KERNEL);
32 }
33 
34 #ifdef CONFIG_PPC_64S_HASH_MMU
hash__reserve_context_id(int id)35 void __init hash__reserve_context_id(int id)
36 {
37 	int result = ida_alloc_range(&mmu_context_ida, id, id, GFP_KERNEL);
38 
39 	WARN(result != id, "mmu: Failed to reserve context id %d (rc %d)\n", id, result);
40 }
41 
hash__alloc_context_id(void)42 int hash__alloc_context_id(void)
43 {
44 	unsigned long max;
45 
46 	if (mmu_has_feature(MMU_FTR_68_BIT_VA))
47 		max = MAX_USER_CONTEXT;
48 	else
49 		max = MAX_USER_CONTEXT_65BIT_VA;
50 
51 	return alloc_context_id(MIN_USER_CONTEXT, max);
52 }
53 EXPORT_SYMBOL_GPL(hash__alloc_context_id);
54 #endif
55 
56 #ifdef CONFIG_PPC_64S_HASH_MMU
realloc_context_ids(mm_context_t * ctx)57 static int realloc_context_ids(mm_context_t *ctx)
58 {
59 	int i, id;
60 
61 	/*
62 	 * id 0 (aka. ctx->id) is special, we always allocate a new one, even if
63 	 * there wasn't one allocated previously (which happens in the exec
64 	 * case where ctx is newly allocated).
65 	 *
66 	 * We have to be a bit careful here. We must keep the existing ids in
67 	 * the array, so that we can test if they're non-zero to decide if we
68 	 * need to allocate a new one. However in case of error we must free the
69 	 * ids we've allocated but *not* any of the existing ones (or risk a
70 	 * UAF). That's why we decrement i at the start of the error handling
71 	 * loop, to skip the id that we just tested but couldn't reallocate.
72 	 */
73 	for (i = 0; i < ARRAY_SIZE(ctx->extended_id); i++) {
74 		if (i == 0 || ctx->extended_id[i]) {
75 			id = hash__alloc_context_id();
76 			if (id < 0)
77 				goto error;
78 
79 			ctx->extended_id[i] = id;
80 		}
81 	}
82 
83 	/* The caller expects us to return id */
84 	return ctx->id;
85 
86 error:
87 	for (i--; i >= 0; i--) {
88 		if (ctx->extended_id[i])
89 			ida_free(&mmu_context_ida, ctx->extended_id[i]);
90 	}
91 
92 	return id;
93 }
94 
hash__init_new_context(struct mm_struct * mm)95 static int hash__init_new_context(struct mm_struct *mm)
96 {
97 	int index;
98 
99 	mm->context.hash_context = kmalloc(sizeof(struct hash_mm_context),
100 					   GFP_KERNEL);
101 	if (!mm->context.hash_context)
102 		return -ENOMEM;
103 
104 	/*
105 	 * The old code would re-promote on fork, we don't do that when using
106 	 * slices as it could cause problem promoting slices that have been
107 	 * forced down to 4K.
108 	 *
109 	 * For book3s we have MMU_NO_CONTEXT set to be ~0. Hence check
110 	 * explicitly against context.id == 0. This ensures that we properly
111 	 * initialize context slice details for newly allocated mm's (which will
112 	 * have id == 0) and don't alter context slice inherited via fork (which
113 	 * will have id != 0).
114 	 *
115 	 * We should not be calling init_new_context() on init_mm. Hence a
116 	 * check against 0 is OK.
117 	 */
118 	if (mm->context.id == 0) {
119 		memset(mm->context.hash_context, 0, sizeof(struct hash_mm_context));
120 		slice_init_new_context_exec(mm);
121 	} else {
122 		/* This is fork. Copy hash_context details from current->mm */
123 		memcpy(mm->context.hash_context, current->mm->context.hash_context, sizeof(struct hash_mm_context));
124 #ifdef CONFIG_PPC_SUBPAGE_PROT
125 		/* inherit subpage prot details if we have one. */
126 		if (current->mm->context.hash_context->spt) {
127 			mm->context.hash_context->spt = kmalloc(sizeof(struct subpage_prot_table),
128 								GFP_KERNEL);
129 			if (!mm->context.hash_context->spt) {
130 				kfree(mm->context.hash_context);
131 				return -ENOMEM;
132 			}
133 		}
134 #endif
135 	}
136 
137 	index = realloc_context_ids(&mm->context);
138 	if (index < 0) {
139 #ifdef CONFIG_PPC_SUBPAGE_PROT
140 		kfree(mm->context.hash_context->spt);
141 #endif
142 		kfree(mm->context.hash_context);
143 		return index;
144 	}
145 
146 	pkey_mm_init(mm);
147 	return index;
148 }
149 
hash__setup_new_exec(void)150 void hash__setup_new_exec(void)
151 {
152 	slice_setup_new_exec();
153 }
154 #else
hash__init_new_context(struct mm_struct * mm)155 static inline int hash__init_new_context(struct mm_struct *mm)
156 {
157 	BUILD_BUG();
158 	return 0;
159 }
160 #endif
161 
radix__init_new_context(struct mm_struct * mm)162 static int radix__init_new_context(struct mm_struct *mm)
163 {
164 	unsigned long rts_field;
165 	int index, max_id;
166 
167 	max_id = (1 << mmu_pid_bits) - 1;
168 	index = alloc_context_id(mmu_base_pid, max_id);
169 	if (index < 0)
170 		return index;
171 
172 	/*
173 	 * set the process table entry,
174 	 */
175 	rts_field = radix__get_tree_size();
176 	process_tb[index].prtb0 = cpu_to_be64(rts_field | __pa(mm->pgd) | RADIX_PGD_INDEX_SIZE);
177 
178 	/*
179 	 * Order the above store with subsequent update of the PID
180 	 * register (at which point HW can start loading/caching
181 	 * the entry) and the corresponding load by the MMU from
182 	 * the L2 cache.
183 	 */
184 	asm volatile("ptesync;isync" : : : "memory");
185 
186 #ifdef CONFIG_PPC_64S_HASH_MMU
187 	mm->context.hash_context = NULL;
188 #endif
189 
190 	return index;
191 }
192 
init_new_context(struct task_struct * tsk,struct mm_struct * mm)193 int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
194 {
195 	int index;
196 
197 	if (radix_enabled())
198 		index = radix__init_new_context(mm);
199 	else
200 		index = hash__init_new_context(mm);
201 
202 	if (index < 0)
203 		return index;
204 
205 	mm->context.id = index;
206 
207 	mm->context.pte_frag = NULL;
208 	mm->context.pmd_frag = NULL;
209 #ifdef CONFIG_SPAPR_TCE_IOMMU
210 	mm_iommu_init(mm);
211 #endif
212 	atomic_set(&mm->context.active_cpus, 0);
213 	atomic_set(&mm->context.copros, 0);
214 
215 	return 0;
216 }
217 
__destroy_context(int context_id)218 void __destroy_context(int context_id)
219 {
220 	ida_free(&mmu_context_ida, context_id);
221 }
222 EXPORT_SYMBOL_GPL(__destroy_context);
223 
destroy_contexts(mm_context_t * ctx)224 static void destroy_contexts(mm_context_t *ctx)
225 {
226 	if (radix_enabled()) {
227 		ida_free(&mmu_context_ida, ctx->id);
228 	} else {
229 #ifdef CONFIG_PPC_64S_HASH_MMU
230 		int index, context_id;
231 
232 		for (index = 0; index < ARRAY_SIZE(ctx->extended_id); index++) {
233 			context_id = ctx->extended_id[index];
234 			if (context_id)
235 				ida_free(&mmu_context_ida, context_id);
236 		}
237 		kfree(ctx->hash_context);
238 #else
239 		BUILD_BUG(); // radix_enabled() should be constant true
240 #endif
241 	}
242 }
243 
pmd_frag_destroy(void * pmd_frag)244 static void pmd_frag_destroy(void *pmd_frag)
245 {
246 	int count;
247 	struct ptdesc *ptdesc;
248 
249 	ptdesc = virt_to_ptdesc(pmd_frag);
250 	/* drop all the pending references */
251 	count = ((unsigned long)pmd_frag & ~PAGE_MASK) >> PMD_FRAG_SIZE_SHIFT;
252 	/* We allow PTE_FRAG_NR fragments from a PTE page */
253 	if (atomic_sub_and_test(PMD_FRAG_NR - count, &ptdesc->pt_frag_refcount)) {
254 		pagetable_dtor(ptdesc);
255 		pagetable_free(ptdesc);
256 	}
257 }
258 
destroy_pagetable_cache(struct mm_struct * mm)259 static void destroy_pagetable_cache(struct mm_struct *mm)
260 {
261 	void *frag;
262 
263 	frag = mm->context.pte_frag;
264 	if (frag)
265 		pte_frag_destroy(frag);
266 
267 	frag = mm->context.pmd_frag;
268 	if (frag)
269 		pmd_frag_destroy(frag);
270 	return;
271 }
272 
destroy_context(struct mm_struct * mm)273 void destroy_context(struct mm_struct *mm)
274 {
275 #ifdef CONFIG_SPAPR_TCE_IOMMU
276 	WARN_ON_ONCE(!list_empty(&mm->context.iommu_group_mem_list));
277 #endif
278 	/*
279 	 * For tasks which were successfully initialized we end up calling
280 	 * arch_exit_mmap() which clears the process table entry. And
281 	 * arch_exit_mmap() is called before the required fullmm TLB flush
282 	 * which does a RIC=2 flush. Hence for an initialized task, we do clear
283 	 * any cached process table entries.
284 	 *
285 	 * The condition below handles the error case during task init. We have
286 	 * set the process table entry early and if we fail a task
287 	 * initialization, we need to ensure the process table entry is zeroed.
288 	 * We need not worry about process table entry caches because the task
289 	 * never ran with the PID value.
290 	 */
291 	if (radix_enabled())
292 		process_tb[mm->context.id].prtb0 = 0;
293 	else
294 		subpage_prot_free(mm);
295 	destroy_contexts(&mm->context);
296 	mm->context.id = MMU_NO_CONTEXT;
297 }
298 
arch_exit_mmap(struct mm_struct * mm)299 void arch_exit_mmap(struct mm_struct *mm)
300 {
301 	destroy_pagetable_cache(mm);
302 
303 	if (radix_enabled()) {
304 		/*
305 		 * Radix doesn't have a valid bit in the process table
306 		 * entries. However we know that at least P9 implementation
307 		 * will avoid caching an entry with an invalid RTS field,
308 		 * and 0 is invalid. So this will do.
309 		 *
310 		 * This runs before the "fullmm" tlb flush in exit_mmap,
311 		 * which does a RIC=2 tlbie to clear the process table
312 		 * entry. See the "fullmm" comments in tlb-radix.c.
313 		 *
314 		 * No barrier required here after the store because
315 		 * this process will do the invalidate, which starts with
316 		 * ptesync.
317 		 */
318 		process_tb[mm->context.id].prtb0 = 0;
319 	}
320 }
321 
322 #ifdef CONFIG_PPC_RADIX_MMU
radix__switch_mmu_context(struct mm_struct * prev,struct mm_struct * next)323 void radix__switch_mmu_context(struct mm_struct *prev, struct mm_struct *next)
324 {
325 	mtspr(SPRN_PID, next->context.id);
326 	isync();
327 }
328 #endif
329 
330 /**
331  * cleanup_cpu_mmu_context - Clean up MMU details for this CPU (newly offlined)
332  *
333  * This clears the CPU from mm_cpumask for all processes, and then flushes the
334  * local TLB to ensure TLB coherency in case the CPU is onlined again.
335  *
336  * KVM guest translations are not necessarily flushed here. If KVM started
337  * using mm_cpumask or the Linux APIs which do, this would have to be resolved.
338  */
339 #ifdef CONFIG_HOTPLUG_CPU
cleanup_cpu_mmu_context(void)340 void cleanup_cpu_mmu_context(void)
341 {
342 	int cpu = smp_processor_id();
343 
344 	clear_tasks_mm_cpumask(cpu);
345 	tlbiel_all();
346 }
347 #endif
348