xref: /linux/arch/s390/net/bpf_jit_comp.c (revision d786aba32000f20a58bb79c2e3ae326e4fb377a1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * BPF Jit compiler for s390.
4  *
5  * Minimum build requirements:
6  *
7  *  - HAVE_MARCH_Z196_FEATURES: laal, laalg
8  *  - HAVE_MARCH_Z10_FEATURES: msfi, cgrj, clgrj
9  *  - HAVE_MARCH_Z9_109_FEATURES: alfi, llilf, clfi, oilf, nilf
10  *  - 64BIT
11  *
12  * Copyright IBM Corp. 2012,2015
13  *
14  * Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>
15  *	      Michael Holzheu <holzheu@linux.vnet.ibm.com>
16  */
17 
18 #define KMSG_COMPONENT "bpf_jit"
19 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
20 
21 #include <linux/netdevice.h>
22 #include <linux/filter.h>
23 #include <linux/init.h>
24 #include <linux/bpf.h>
25 #include <linux/mm.h>
26 #include <linux/kernel.h>
27 #include <asm/cacheflush.h>
28 #include <asm/extable.h>
29 #include <asm/dis.h>
30 #include <asm/facility.h>
31 #include <asm/nospec-branch.h>
32 #include <asm/set_memory.h>
33 #include <asm/text-patching.h>
34 #include <asm/unwind.h>
35 #include "bpf_jit.h"
36 
37 struct bpf_jit {
38 	u32 seen;		/* Flags to remember seen eBPF instructions */
39 	u16 seen_regs;		/* Mask to remember which registers are used */
40 	u32 *addrs;		/* Array with relative instruction addresses */
41 	u8 *prg_buf;		/* Start of program */
42 	int size;		/* Size of program and literal pool */
43 	int size_prg;		/* Size of program */
44 	int prg;		/* Current position in program */
45 	int lit32_start;	/* Start of 32-bit literal pool */
46 	int lit32;		/* Current position in 32-bit literal pool */
47 	int lit64_start;	/* Start of 64-bit literal pool */
48 	int lit64;		/* Current position in 64-bit literal pool */
49 	int base_ip;		/* Base address for literal pool */
50 	int exit_ip;		/* Address of exit */
51 	int tail_call_start;	/* Tail call start offset */
52 	int excnt;		/* Number of exception table entries */
53 	int prologue_plt_ret;	/* Return address for prologue hotpatch PLT */
54 	int prologue_plt;	/* Start of prologue hotpatch PLT */
55 	int kern_arena;		/* Pool offset of kernel arena address */
56 	u64 user_arena;		/* User arena address */
57 };
58 
59 #define SEEN_MEM	BIT(0)		/* use mem[] for temporary storage */
60 #define SEEN_LITERAL	BIT(1)		/* code uses literals */
61 #define SEEN_FUNC	BIT(2)		/* calls C functions */
62 #define SEEN_STACK	(SEEN_FUNC | SEEN_MEM)
63 
64 #define NVREGS		0xffc0		/* %r6-%r15 */
65 
66 /*
67  * s390 registers
68  */
69 #define REG_W0		(MAX_BPF_JIT_REG + 0)	/* Work register 1 (even) */
70 #define REG_W1		(MAX_BPF_JIT_REG + 1)	/* Work register 2 (odd) */
71 #define REG_L		(MAX_BPF_JIT_REG + 2)	/* Literal pool register */
72 #define REG_15		(MAX_BPF_JIT_REG + 3)	/* Register 15 */
73 #define REG_0		REG_W0			/* Register 0 */
74 #define REG_1		REG_W1			/* Register 1 */
75 #define REG_2		BPF_REG_1		/* Register 2 */
76 #define REG_3		BPF_REG_2		/* Register 3 */
77 #define REG_4		BPF_REG_3		/* Register 4 */
78 #define REG_7		BPF_REG_6		/* Register 7 */
79 #define REG_8		BPF_REG_7		/* Register 8 */
80 #define REG_14		BPF_REG_0		/* Register 14 */
81 
82 /*
83  * Mapping of BPF registers to s390 registers
84  */
85 static const int reg2hex[] = {
86 	/* Return code */
87 	[BPF_REG_0]	= 14,
88 	/* Function parameters */
89 	[BPF_REG_1]	= 2,
90 	[BPF_REG_2]	= 3,
91 	[BPF_REG_3]	= 4,
92 	[BPF_REG_4]	= 5,
93 	[BPF_REG_5]	= 6,
94 	/* Call saved registers */
95 	[BPF_REG_6]	= 7,
96 	[BPF_REG_7]	= 8,
97 	[BPF_REG_8]	= 9,
98 	[BPF_REG_9]	= 10,
99 	/* BPF stack pointer */
100 	[BPF_REG_FP]	= 13,
101 	/* Register for blinding */
102 	[BPF_REG_AX]	= 12,
103 	/* Work registers for s390x backend */
104 	[REG_W0]	= 0,
105 	[REG_W1]	= 1,
106 	[REG_L]		= 11,
107 	[REG_15]	= 15,
108 };
109 
110 static inline u32 reg(u32 dst_reg, u32 src_reg)
111 {
112 	return reg2hex[dst_reg] << 4 | reg2hex[src_reg];
113 }
114 
115 static inline u32 reg_high(u32 reg)
116 {
117 	return reg2hex[reg] << 4;
118 }
119 
120 static inline void reg_set_seen(struct bpf_jit *jit, u32 b1)
121 {
122 	u32 r1 = reg2hex[b1];
123 
124 	if (r1 >= 6 && r1 <= 15)
125 		jit->seen_regs |= (1 << r1);
126 }
127 
128 static s32 off_to_pcrel(struct bpf_jit *jit, u32 off)
129 {
130 	return off - jit->prg;
131 }
132 
133 static s64 ptr_to_pcrel(struct bpf_jit *jit, const void *ptr)
134 {
135 	if (jit->prg_buf)
136 		return (const u8 *)ptr - ((const u8 *)jit->prg_buf + jit->prg);
137 	return 0;
138 }
139 
140 #define REG_SET_SEEN(b1)					\
141 ({								\
142 	reg_set_seen(jit, b1);					\
143 })
144 
145 /*
146  * EMIT macros for code generation
147  */
148 
149 #define _EMIT2(op)						\
150 ({								\
151 	if (jit->prg_buf)					\
152 		*(u16 *) (jit->prg_buf + jit->prg) = (op);	\
153 	jit->prg += 2;						\
154 })
155 
156 #define EMIT2(op, b1, b2)					\
157 ({								\
158 	_EMIT2((op) | reg(b1, b2));				\
159 	REG_SET_SEEN(b1);					\
160 	REG_SET_SEEN(b2);					\
161 })
162 
163 #define _EMIT4(op)						\
164 ({								\
165 	if (jit->prg_buf)					\
166 		*(u32 *) (jit->prg_buf + jit->prg) = (op);	\
167 	jit->prg += 4;						\
168 })
169 
170 #define EMIT4(op, b1, b2)					\
171 ({								\
172 	_EMIT4((op) | reg(b1, b2));				\
173 	REG_SET_SEEN(b1);					\
174 	REG_SET_SEEN(b2);					\
175 })
176 
177 #define EMIT4_RRF(op, b1, b2, b3)				\
178 ({								\
179 	_EMIT4((op) | reg_high(b3) << 8 | reg(b1, b2));		\
180 	REG_SET_SEEN(b1);					\
181 	REG_SET_SEEN(b2);					\
182 	REG_SET_SEEN(b3);					\
183 })
184 
185 #define _EMIT4_DISP(op, disp)					\
186 ({								\
187 	unsigned int __disp = (disp) & 0xfff;			\
188 	_EMIT4((op) | __disp);					\
189 })
190 
191 #define EMIT4_DISP(op, b1, b2, disp)				\
192 ({								\
193 	_EMIT4_DISP((op) | reg_high(b1) << 16 |			\
194 		    reg_high(b2) << 8, (disp));			\
195 	REG_SET_SEEN(b1);					\
196 	REG_SET_SEEN(b2);					\
197 })
198 
199 #define EMIT4_IMM(op, b1, imm)					\
200 ({								\
201 	unsigned int __imm = (imm) & 0xffff;			\
202 	_EMIT4((op) | reg_high(b1) << 16 | __imm);		\
203 	REG_SET_SEEN(b1);					\
204 })
205 
206 #define EMIT4_PCREL(op, pcrel)					\
207 ({								\
208 	long __pcrel = ((pcrel) >> 1) & 0xffff;			\
209 	_EMIT4((op) | __pcrel);					\
210 })
211 
212 #define EMIT4_PCREL_RIC(op, mask, target)			\
213 ({								\
214 	int __rel = off_to_pcrel(jit, target) / 2;		\
215 	_EMIT4((op) | (mask) << 20 | (__rel & 0xffff));		\
216 })
217 
218 #define _EMIT6(op1, op2)					\
219 ({								\
220 	if (jit->prg_buf) {					\
221 		*(u32 *) (jit->prg_buf + jit->prg) = (op1);	\
222 		*(u16 *) (jit->prg_buf + jit->prg + 4) = (op2);	\
223 	}							\
224 	jit->prg += 6;						\
225 })
226 
227 #define _EMIT6_DISP(op1, op2, disp)				\
228 ({								\
229 	unsigned int __disp = (disp) & 0xfff;			\
230 	_EMIT6((op1) | __disp, op2);				\
231 })
232 
233 #define _EMIT6_DISP_LH(op1, op2, disp)				\
234 ({								\
235 	u32 _disp = (u32) (disp);				\
236 	unsigned int __disp_h = _disp & 0xff000;		\
237 	unsigned int __disp_l = _disp & 0x00fff;		\
238 	_EMIT6((op1) | __disp_l, (op2) | __disp_h >> 4);	\
239 })
240 
241 #define EMIT6_DISP_LH(op1, op2, b1, b2, b3, disp)		\
242 ({								\
243 	_EMIT6_DISP_LH((op1) | reg(b1, b2) << 16 |		\
244 		       reg_high(b3) << 8, op2, disp);		\
245 	REG_SET_SEEN(b1);					\
246 	REG_SET_SEEN(b2);					\
247 	REG_SET_SEEN(b3);					\
248 })
249 
250 #define EMIT6_PCREL_RIEB(op1, op2, b1, b2, mask, target)	\
251 ({								\
252 	unsigned int rel = off_to_pcrel(jit, target) / 2;	\
253 	_EMIT6((op1) | reg(b1, b2) << 16 | (rel & 0xffff),	\
254 	       (op2) | (mask) << 12);				\
255 	REG_SET_SEEN(b1);					\
256 	REG_SET_SEEN(b2);					\
257 })
258 
259 #define EMIT6_PCREL_RIEC(op1, op2, b1, imm, mask, target)	\
260 ({								\
261 	unsigned int rel = off_to_pcrel(jit, target) / 2;	\
262 	_EMIT6((op1) | (reg_high(b1) | (mask)) << 16 |		\
263 		(rel & 0xffff), (op2) | ((imm) & 0xff) << 8);	\
264 	REG_SET_SEEN(b1);					\
265 	BUILD_BUG_ON(((unsigned long) (imm)) > 0xff);		\
266 })
267 
268 #define EMIT6_PCREL(op1, op2, b1, b2, i, off, mask)		\
269 ({								\
270 	int rel = off_to_pcrel(jit, addrs[(i) + (off) + 1]) / 2;\
271 	_EMIT6((op1) | reg(b1, b2) << 16 | (rel & 0xffff), (op2) | (mask));\
272 	REG_SET_SEEN(b1);					\
273 	REG_SET_SEEN(b2);					\
274 })
275 
276 static void emit6_pcrel_ril(struct bpf_jit *jit, u32 op, s64 pcrel)
277 {
278 	u32 pc32dbl = (s32)(pcrel / 2);
279 
280 	_EMIT6(op | pc32dbl >> 16, pc32dbl & 0xffff);
281 }
282 
283 static void emit6_pcrel_rilb(struct bpf_jit *jit, u32 op, u8 b, s64 pcrel)
284 {
285 	emit6_pcrel_ril(jit, op | reg_high(b) << 16, pcrel);
286 	REG_SET_SEEN(b);
287 }
288 
289 #define EMIT6_PCREL_RILB(op, b, target)				\
290 	emit6_pcrel_rilb(jit, op, b, off_to_pcrel(jit, target))
291 
292 #define EMIT6_PCREL_RILB_PTR(op, b, target_ptr)			\
293 	emit6_pcrel_rilb(jit, op, b, ptr_to_pcrel(jit, target_ptr))
294 
295 static void emit6_pcrel_rilc(struct bpf_jit *jit, u32 op, u8 mask, s64 pcrel)
296 {
297 	emit6_pcrel_ril(jit, op | mask << 20, pcrel);
298 }
299 
300 #define EMIT6_PCREL_RILC(op, mask, target)			\
301 	emit6_pcrel_rilc(jit, op, mask, off_to_pcrel(jit, target))
302 
303 #define EMIT6_PCREL_RILC_PTR(op, mask, target_ptr)		\
304 	emit6_pcrel_rilc(jit, op, mask, ptr_to_pcrel(jit, target_ptr))
305 
306 #define _EMIT6_IMM(op, imm)					\
307 ({								\
308 	unsigned int __imm = (imm);				\
309 	_EMIT6((op) | (__imm >> 16), __imm & 0xffff);		\
310 })
311 
312 #define EMIT6_IMM(op, b1, imm)					\
313 ({								\
314 	_EMIT6_IMM((op) | reg_high(b1) << 16, imm);		\
315 	REG_SET_SEEN(b1);					\
316 })
317 
318 #define _EMIT_CONST_U32(val)					\
319 ({								\
320 	unsigned int ret;					\
321 	ret = jit->lit32;					\
322 	if (jit->prg_buf)					\
323 		*(u32 *)(jit->prg_buf + jit->lit32) = (u32)(val);\
324 	jit->lit32 += 4;					\
325 	ret;							\
326 })
327 
328 #define EMIT_CONST_U32(val)					\
329 ({								\
330 	jit->seen |= SEEN_LITERAL;				\
331 	_EMIT_CONST_U32(val) - jit->base_ip;			\
332 })
333 
334 #define _EMIT_CONST_U64(val)					\
335 ({								\
336 	unsigned int ret;					\
337 	ret = jit->lit64;					\
338 	if (jit->prg_buf)					\
339 		*(u64 *)(jit->prg_buf + jit->lit64) = (u64)(val);\
340 	jit->lit64 += 8;					\
341 	ret;							\
342 })
343 
344 #define EMIT_CONST_U64(val)					\
345 ({								\
346 	jit->seen |= SEEN_LITERAL;				\
347 	_EMIT_CONST_U64(val) - jit->base_ip;			\
348 })
349 
350 #define EMIT_ZERO(b1)						\
351 ({								\
352 	if (!fp->aux->verifier_zext) {				\
353 		/* llgfr %dst,%dst (zero extend to 64 bit) */	\
354 		EMIT4(0xb9160000, b1, b1);			\
355 		REG_SET_SEEN(b1);				\
356 	}							\
357 })
358 
359 /*
360  * Return whether this is the first pass. The first pass is special, since we
361  * don't know any sizes yet, and thus must be conservative.
362  */
363 static bool is_first_pass(struct bpf_jit *jit)
364 {
365 	return jit->size == 0;
366 }
367 
368 /*
369  * Return whether this is the code generation pass. The code generation pass is
370  * special, since we should change as little as possible.
371  */
372 static bool is_codegen_pass(struct bpf_jit *jit)
373 {
374 	return jit->prg_buf;
375 }
376 
377 /*
378  * Return whether "rel" can be encoded as a short PC-relative offset
379  */
380 static bool is_valid_rel(int rel)
381 {
382 	return rel >= -65536 && rel <= 65534;
383 }
384 
385 /*
386  * Return whether "off" can be reached using a short PC-relative offset
387  */
388 static bool can_use_rel(struct bpf_jit *jit, int off)
389 {
390 	return is_valid_rel(off - jit->prg);
391 }
392 
393 /*
394  * Return whether given displacement can be encoded using
395  * Long-Displacement Facility
396  */
397 static bool is_valid_ldisp(int disp)
398 {
399 	return disp >= -524288 && disp <= 524287;
400 }
401 
402 /*
403  * Return whether the next 32-bit literal pool entry can be referenced using
404  * Long-Displacement Facility
405  */
406 static bool can_use_ldisp_for_lit32(struct bpf_jit *jit)
407 {
408 	return is_valid_ldisp(jit->lit32 - jit->base_ip);
409 }
410 
411 /*
412  * Return whether the next 64-bit literal pool entry can be referenced using
413  * Long-Displacement Facility
414  */
415 static bool can_use_ldisp_for_lit64(struct bpf_jit *jit)
416 {
417 	return is_valid_ldisp(jit->lit64 - jit->base_ip);
418 }
419 
420 /*
421  * Fill whole space with illegal instructions
422  */
423 static void jit_fill_hole(void *area, unsigned int size)
424 {
425 	memset(area, 0, size);
426 }
427 
428 /*
429  * Save registers from "rs" (register start) to "re" (register end) on stack
430  */
431 static void save_regs(struct bpf_jit *jit, u32 rs, u32 re)
432 {
433 	u32 off = STK_OFF_R6 + (rs - 6) * 8;
434 
435 	if (rs == re)
436 		/* stg %rs,off(%r15) */
437 		_EMIT6(0xe300f000 | rs << 20 | off, 0x0024);
438 	else
439 		/* stmg %rs,%re,off(%r15) */
440 		_EMIT6_DISP(0xeb00f000 | rs << 20 | re << 16, 0x0024, off);
441 }
442 
443 /*
444  * Restore registers from "rs" (register start) to "re" (register end) on stack
445  */
446 static void restore_regs(struct bpf_jit *jit, u32 rs, u32 re, u32 stack_depth)
447 {
448 	u32 off = STK_OFF_R6 + (rs - 6) * 8;
449 
450 	if (jit->seen & SEEN_STACK)
451 		off += STK_OFF + stack_depth;
452 
453 	if (rs == re)
454 		/* lg %rs,off(%r15) */
455 		_EMIT6(0xe300f000 | rs << 20 | off, 0x0004);
456 	else
457 		/* lmg %rs,%re,off(%r15) */
458 		_EMIT6_DISP(0xeb00f000 | rs << 20 | re << 16, 0x0004, off);
459 }
460 
461 /*
462  * Return first seen register (from start)
463  */
464 static int get_start(u16 seen_regs, int start)
465 {
466 	int i;
467 
468 	for (i = start; i <= 15; i++) {
469 		if (seen_regs & (1 << i))
470 			return i;
471 	}
472 	return 0;
473 }
474 
475 /*
476  * Return last seen register (from start) (gap >= 2)
477  */
478 static int get_end(u16 seen_regs, int start)
479 {
480 	int i;
481 
482 	for (i = start; i < 15; i++) {
483 		if (!(seen_regs & (3 << i)))
484 			return i - 1;
485 	}
486 	return (seen_regs & (1 << 15)) ? 15 : 14;
487 }
488 
489 #define REGS_SAVE	1
490 #define REGS_RESTORE	0
491 /*
492  * Save and restore clobbered registers (6-15) on stack.
493  * We save/restore registers in chunks with gap >= 2 registers.
494  */
495 static void save_restore_regs(struct bpf_jit *jit, int op, u32 stack_depth,
496 			      u16 extra_regs)
497 {
498 	u16 seen_regs = jit->seen_regs | extra_regs;
499 	const int last = 15, save_restore_size = 6;
500 	int re = 6, rs;
501 
502 	if (is_first_pass(jit)) {
503 		/*
504 		 * We don't know yet which registers are used. Reserve space
505 		 * conservatively.
506 		 */
507 		jit->prg += (last - re + 1) * save_restore_size;
508 		return;
509 	}
510 
511 	do {
512 		rs = get_start(seen_regs, re);
513 		if (!rs)
514 			break;
515 		re = get_end(seen_regs, rs + 1);
516 		if (op == REGS_SAVE)
517 			save_regs(jit, rs, re);
518 		else
519 			restore_regs(jit, rs, re, stack_depth);
520 		re++;
521 	} while (re <= last);
522 }
523 
524 static void bpf_skip(struct bpf_jit *jit, int size)
525 {
526 	if (size >= 6 && !is_valid_rel(size)) {
527 		/* brcl 0xf,size */
528 		EMIT6_PCREL_RILC(0xc0040000, 0xf, size);
529 		size -= 6;
530 	} else if (size >= 4 && is_valid_rel(size)) {
531 		/* brc 0xf,size */
532 		EMIT4_PCREL(0xa7f40000, size);
533 		size -= 4;
534 	}
535 	while (size >= 2) {
536 		/* bcr 0,%0 */
537 		_EMIT2(0x0700);
538 		size -= 2;
539 	}
540 }
541 
542 /*
543  * PLT for hotpatchable calls. The calling convention is the same as for the
544  * ftrace hotpatch trampolines: %r0 is return address, %r1 is clobbered.
545  */
546 struct bpf_plt {
547 	char code[16];
548 	void *ret;
549 	void *target;
550 } __packed;
551 extern const struct bpf_plt bpf_plt;
552 asm(
553 	".pushsection .rodata\n"
554 	"	.balign 8\n"
555 	"bpf_plt:\n"
556 	"	lgrl %r0,bpf_plt_ret\n"
557 	"	lgrl %r1,bpf_plt_target\n"
558 	"	br %r1\n"
559 	"	.balign 8\n"
560 	"bpf_plt_ret: .quad 0\n"
561 	"bpf_plt_target: .quad 0\n"
562 	"	.popsection\n"
563 );
564 
565 static void bpf_jit_plt(struct bpf_plt *plt, void *ret, void *target)
566 {
567 	memcpy(plt, &bpf_plt, sizeof(*plt));
568 	plt->ret = ret;
569 	/*
570 	 * (target == NULL) implies that the branch to this PLT entry was
571 	 * patched and became a no-op. However, some CPU could have jumped
572 	 * to this PLT entry before patching and may be still executing it.
573 	 *
574 	 * Since the intention in this case is to make the PLT entry a no-op,
575 	 * make the target point to the return label instead of NULL.
576 	 */
577 	plt->target = target ?: ret;
578 }
579 
580 /*
581  * Emit function prologue
582  *
583  * Save registers and create stack frame if necessary.
584  * See stack frame layout description in "bpf_jit.h"!
585  */
586 static void bpf_jit_prologue(struct bpf_jit *jit, struct bpf_prog *fp,
587 			     u32 stack_depth)
588 {
589 	/* No-op for hotpatching */
590 	/* brcl 0,prologue_plt */
591 	EMIT6_PCREL_RILC(0xc0040000, 0, jit->prologue_plt);
592 	jit->prologue_plt_ret = jit->prg;
593 
594 	if (!bpf_is_subprog(fp)) {
595 		/* Initialize the tail call counter in the main program. */
596 		/* xc STK_OFF_TCCNT(4,%r15),STK_OFF_TCCNT(%r15) */
597 		_EMIT6(0xd703f000 | STK_OFF_TCCNT, 0xf000 | STK_OFF_TCCNT);
598 	} else {
599 		/*
600 		 * Skip the tail call counter initialization in subprograms.
601 		 * Insert nops in order to have tail_call_start at a
602 		 * predictable offset.
603 		 */
604 		bpf_skip(jit, 6);
605 	}
606 	/* Tail calls have to skip above initialization */
607 	jit->tail_call_start = jit->prg;
608 	if (fp->aux->exception_cb) {
609 		/*
610 		 * Switch stack, the new address is in the 2nd parameter.
611 		 *
612 		 * Arrange the restoration of %r6-%r15 in the epilogue.
613 		 * Do not restore them now, the prog does not need them.
614 		 */
615 		/* lgr %r15,%r3 */
616 		EMIT4(0xb9040000, REG_15, REG_3);
617 		jit->seen_regs |= NVREGS;
618 	} else {
619 		/* Save registers */
620 		save_restore_regs(jit, REGS_SAVE, stack_depth,
621 				  fp->aux->exception_boundary ? NVREGS : 0);
622 	}
623 	/* Setup literal pool */
624 	if (is_first_pass(jit) || (jit->seen & SEEN_LITERAL)) {
625 		if (!is_first_pass(jit) &&
626 		    is_valid_ldisp(jit->size - (jit->prg + 2))) {
627 			/* basr %l,0 */
628 			EMIT2(0x0d00, REG_L, REG_0);
629 			jit->base_ip = jit->prg;
630 		} else {
631 			/* larl %l,lit32_start */
632 			EMIT6_PCREL_RILB(0xc0000000, REG_L, jit->lit32_start);
633 			jit->base_ip = jit->lit32_start;
634 		}
635 	}
636 	/* Setup stack and backchain */
637 	if (is_first_pass(jit) || (jit->seen & SEEN_STACK)) {
638 		/* lgr %w1,%r15 (backchain) */
639 		EMIT4(0xb9040000, REG_W1, REG_15);
640 		/* la %bfp,STK_160_UNUSED(%r15) (BPF frame pointer) */
641 		EMIT4_DISP(0x41000000, BPF_REG_FP, REG_15, STK_160_UNUSED);
642 		/* aghi %r15,-STK_OFF */
643 		EMIT4_IMM(0xa70b0000, REG_15, -(STK_OFF + stack_depth));
644 		/* stg %w1,152(%r15) (backchain) */
645 		EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W1, REG_0,
646 			      REG_15, 152);
647 	}
648 }
649 
650 /*
651  * Jump using a register either directly or via an expoline thunk
652  */
653 #define EMIT_JUMP_REG(reg) do {						\
654 	if (nospec_uses_trampoline())					\
655 		/* brcl 0xf,__s390_indirect_jump_rN */			\
656 		EMIT6_PCREL_RILC_PTR(0xc0040000, 0x0f,			\
657 				     __s390_indirect_jump_r ## reg);	\
658 	else								\
659 		/* br %rN */						\
660 		_EMIT2(0x07f0 | reg);					\
661 } while (0)
662 
663 /*
664  * Call r1 either directly or via __s390_indirect_jump_r1 thunk
665  */
666 static void call_r1(struct bpf_jit *jit)
667 {
668 	if (nospec_uses_trampoline())
669 		/* brasl %r14,__s390_indirect_jump_r1 */
670 		EMIT6_PCREL_RILB_PTR(0xc0050000, REG_14,
671 				     __s390_indirect_jump_r1);
672 	else
673 		/* basr %r14,%r1 */
674 		EMIT2(0x0d00, REG_14, REG_1);
675 }
676 
677 /*
678  * Function epilogue
679  */
680 static void bpf_jit_epilogue(struct bpf_jit *jit, u32 stack_depth)
681 {
682 	jit->exit_ip = jit->prg;
683 	/* Load exit code: lgr %r2,%b0 */
684 	EMIT4(0xb9040000, REG_2, BPF_REG_0);
685 	/* Restore registers */
686 	save_restore_regs(jit, REGS_RESTORE, stack_depth, 0);
687 	EMIT_JUMP_REG(14);
688 
689 	jit->prg = ALIGN(jit->prg, 8);
690 	jit->prologue_plt = jit->prg;
691 	if (jit->prg_buf)
692 		bpf_jit_plt((struct bpf_plt *)(jit->prg_buf + jit->prg),
693 			    jit->prg_buf + jit->prologue_plt_ret, NULL);
694 	jit->prg += sizeof(struct bpf_plt);
695 }
696 
697 bool ex_handler_bpf(const struct exception_table_entry *x, struct pt_regs *regs)
698 {
699 	regs->psw.addr = extable_fixup(x);
700 	if (x->data != -1)
701 		regs->gprs[x->data] = 0;
702 	return true;
703 }
704 
705 /*
706  * A single BPF probe instruction
707  */
708 struct bpf_jit_probe {
709 	int prg;	/* JITed instruction offset */
710 	int nop_prg;	/* JITed nop offset */
711 	int reg;	/* Register to clear on exception */
712 	int arena_reg;	/* Register to use for arena addressing */
713 };
714 
715 static void bpf_jit_probe_init(struct bpf_jit_probe *probe)
716 {
717 	probe->prg = -1;
718 	probe->nop_prg = -1;
719 	probe->reg = -1;
720 	probe->arena_reg = REG_0;
721 }
722 
723 /*
724  * Handlers of certain exceptions leave psw.addr pointing to the instruction
725  * directly after the failing one. Therefore, create two exception table
726  * entries and also add a nop in case two probing instructions come directly
727  * after each other.
728  */
729 static void bpf_jit_probe_emit_nop(struct bpf_jit *jit,
730 				   struct bpf_jit_probe *probe)
731 {
732 	if (probe->prg == -1 || probe->nop_prg != -1)
733 		/* The probe is not armed or nop is already emitted. */
734 		return;
735 
736 	probe->nop_prg = jit->prg;
737 	/* bcr 0,%0 */
738 	_EMIT2(0x0700);
739 }
740 
741 static void bpf_jit_probe_load_pre(struct bpf_jit *jit, struct bpf_insn *insn,
742 				   struct bpf_jit_probe *probe)
743 {
744 	if (BPF_MODE(insn->code) != BPF_PROBE_MEM &&
745 	    BPF_MODE(insn->code) != BPF_PROBE_MEMSX &&
746 	    BPF_MODE(insn->code) != BPF_PROBE_MEM32)
747 		return;
748 
749 	if (BPF_MODE(insn->code) == BPF_PROBE_MEM32) {
750 		/* lgrl %r1,kern_arena */
751 		EMIT6_PCREL_RILB(0xc4080000, REG_W1, jit->kern_arena);
752 		probe->arena_reg = REG_W1;
753 	}
754 	probe->prg = jit->prg;
755 	probe->reg = reg2hex[insn->dst_reg];
756 }
757 
758 static void bpf_jit_probe_store_pre(struct bpf_jit *jit, struct bpf_insn *insn,
759 				    struct bpf_jit_probe *probe)
760 {
761 	if (BPF_MODE(insn->code) != BPF_PROBE_MEM32)
762 		return;
763 
764 	/* lgrl %r1,kern_arena */
765 	EMIT6_PCREL_RILB(0xc4080000, REG_W1, jit->kern_arena);
766 	probe->arena_reg = REG_W1;
767 	probe->prg = jit->prg;
768 }
769 
770 static void bpf_jit_probe_atomic_pre(struct bpf_jit *jit,
771 				     struct bpf_insn *insn,
772 				     struct bpf_jit_probe *probe)
773 {
774 	if (BPF_MODE(insn->code) != BPF_PROBE_ATOMIC)
775 		return;
776 
777 	/* lgrl %r1,kern_arena */
778 	EMIT6_PCREL_RILB(0xc4080000, REG_W1, jit->kern_arena);
779 	/* agr %r1,%dst */
780 	EMIT4(0xb9080000, REG_W1, insn->dst_reg);
781 	probe->arena_reg = REG_W1;
782 	probe->prg = jit->prg;
783 }
784 
785 static int bpf_jit_probe_post(struct bpf_jit *jit, struct bpf_prog *fp,
786 			      struct bpf_jit_probe *probe)
787 {
788 	struct exception_table_entry *ex;
789 	int i, prg;
790 	s64 delta;
791 	u8 *insn;
792 
793 	if (probe->prg == -1)
794 		/* The probe is not armed. */
795 		return 0;
796 	bpf_jit_probe_emit_nop(jit, probe);
797 	if (!fp->aux->extable)
798 		/* Do nothing during early JIT passes. */
799 		return 0;
800 	insn = jit->prg_buf + probe->prg;
801 	if (WARN_ON_ONCE(probe->prg + insn_length(*insn) != probe->nop_prg))
802 		/* JIT bug - gap between probe and nop instructions. */
803 		return -1;
804 	for (i = 0; i < 2; i++) {
805 		if (WARN_ON_ONCE(jit->excnt >= fp->aux->num_exentries))
806 			/* Verifier bug - not enough entries. */
807 			return -1;
808 		ex = &fp->aux->extable[jit->excnt];
809 		/* Add extable entries for probe and nop instructions. */
810 		prg = i == 0 ? probe->prg : probe->nop_prg;
811 		delta = jit->prg_buf + prg - (u8 *)&ex->insn;
812 		if (WARN_ON_ONCE(delta < INT_MIN || delta > INT_MAX))
813 			/* JIT bug - code and extable must be close. */
814 			return -1;
815 		ex->insn = delta;
816 		/*
817 		 * Land on the current instruction. Note that the extable
818 		 * infrastructure ignores the fixup field; it is handled by
819 		 * ex_handler_bpf().
820 		 */
821 		delta = jit->prg_buf + jit->prg - (u8 *)&ex->fixup;
822 		if (WARN_ON_ONCE(delta < INT_MIN || delta > INT_MAX))
823 			/* JIT bug - landing pad and extable must be close. */
824 			return -1;
825 		ex->fixup = delta;
826 		ex->type = EX_TYPE_BPF;
827 		ex->data = probe->reg;
828 		jit->excnt++;
829 	}
830 	return 0;
831 }
832 
833 /*
834  * Sign-extend the register if necessary
835  */
836 static int sign_extend(struct bpf_jit *jit, int r, u8 size, u8 flags)
837 {
838 	if (!(flags & BTF_FMODEL_SIGNED_ARG))
839 		return 0;
840 
841 	switch (size) {
842 	case 1:
843 		/* lgbr %r,%r */
844 		EMIT4(0xb9060000, r, r);
845 		return 0;
846 	case 2:
847 		/* lghr %r,%r */
848 		EMIT4(0xb9070000, r, r);
849 		return 0;
850 	case 4:
851 		/* lgfr %r,%r */
852 		EMIT4(0xb9140000, r, r);
853 		return 0;
854 	case 8:
855 		return 0;
856 	default:
857 		return -1;
858 	}
859 }
860 
861 /*
862  * Compile one eBPF instruction into s390x code
863  *
864  * NOTE: Use noinline because for gcov (-fprofile-arcs) gcc allocates a lot of
865  * stack space for the large switch statement.
866  */
867 static noinline int bpf_jit_insn(struct bpf_jit *jit, struct bpf_prog *fp,
868 				 int i, bool extra_pass, u32 stack_depth)
869 {
870 	struct bpf_insn *insn = &fp->insnsi[i];
871 	s32 branch_oc_off = insn->off;
872 	u32 dst_reg = insn->dst_reg;
873 	u32 src_reg = insn->src_reg;
874 	struct bpf_jit_probe probe;
875 	int last, insn_count = 1;
876 	u32 *addrs = jit->addrs;
877 	s32 imm = insn->imm;
878 	s16 off = insn->off;
879 	unsigned int mask;
880 	int err;
881 
882 	bpf_jit_probe_init(&probe);
883 
884 	switch (insn->code) {
885 	/*
886 	 * BPF_MOV
887 	 */
888 	case BPF_ALU | BPF_MOV | BPF_X:
889 		switch (insn->off) {
890 		case 0: /* DST = (u32) SRC */
891 			/* llgfr %dst,%src */
892 			EMIT4(0xb9160000, dst_reg, src_reg);
893 			if (insn_is_zext(&insn[1]))
894 				insn_count = 2;
895 			break;
896 		case 8: /* DST = (u32)(s8) SRC */
897 			/* lbr %dst,%src */
898 			EMIT4(0xb9260000, dst_reg, src_reg);
899 			/* llgfr %dst,%dst */
900 			EMIT4(0xb9160000, dst_reg, dst_reg);
901 			break;
902 		case 16: /* DST = (u32)(s16) SRC */
903 			/* lhr %dst,%src */
904 			EMIT4(0xb9270000, dst_reg, src_reg);
905 			/* llgfr %dst,%dst */
906 			EMIT4(0xb9160000, dst_reg, dst_reg);
907 			break;
908 		}
909 		break;
910 	case BPF_ALU64 | BPF_MOV | BPF_X:
911 		if (insn_is_cast_user(insn)) {
912 			int patch_brc;
913 
914 			/* ltgr %dst,%src */
915 			EMIT4(0xb9020000, dst_reg, src_reg);
916 			/* brc 8,0f */
917 			patch_brc = jit->prg;
918 			EMIT4_PCREL_RIC(0xa7040000, 8, 0);
919 			/* iihf %dst,user_arena>>32 */
920 			EMIT6_IMM(0xc0080000, dst_reg, jit->user_arena >> 32);
921 			/* 0: */
922 			if (jit->prg_buf)
923 				*(u16 *)(jit->prg_buf + patch_brc + 2) =
924 					(jit->prg - patch_brc) >> 1;
925 			break;
926 		}
927 		switch (insn->off) {
928 		case 0: /* DST = SRC */
929 			/* lgr %dst,%src */
930 			EMIT4(0xb9040000, dst_reg, src_reg);
931 			break;
932 		case 8: /* DST = (s8) SRC */
933 			/* lgbr %dst,%src */
934 			EMIT4(0xb9060000, dst_reg, src_reg);
935 			break;
936 		case 16: /* DST = (s16) SRC */
937 			/* lghr %dst,%src */
938 			EMIT4(0xb9070000, dst_reg, src_reg);
939 			break;
940 		case 32: /* DST = (s32) SRC */
941 			/* lgfr %dst,%src */
942 			EMIT4(0xb9140000, dst_reg, src_reg);
943 			break;
944 		}
945 		break;
946 	case BPF_ALU | BPF_MOV | BPF_K: /* dst = (u32) imm */
947 		/* llilf %dst,imm */
948 		EMIT6_IMM(0xc00f0000, dst_reg, imm);
949 		if (insn_is_zext(&insn[1]))
950 			insn_count = 2;
951 		break;
952 	case BPF_ALU64 | BPF_MOV | BPF_K: /* dst = imm */
953 		/* lgfi %dst,imm */
954 		EMIT6_IMM(0xc0010000, dst_reg, imm);
955 		break;
956 	/*
957 	 * BPF_LD 64
958 	 */
959 	case BPF_LD | BPF_IMM | BPF_DW: /* dst = (u64) imm */
960 	{
961 		/* 16 byte instruction that uses two 'struct bpf_insn' */
962 		u64 imm64;
963 
964 		imm64 = (u64)(u32) insn[0].imm | ((u64)(u32) insn[1].imm) << 32;
965 		/* lgrl %dst,imm */
966 		EMIT6_PCREL_RILB(0xc4080000, dst_reg, _EMIT_CONST_U64(imm64));
967 		insn_count = 2;
968 		break;
969 	}
970 	/*
971 	 * BPF_ADD
972 	 */
973 	case BPF_ALU | BPF_ADD | BPF_X: /* dst = (u32) dst + (u32) src */
974 		/* ar %dst,%src */
975 		EMIT2(0x1a00, dst_reg, src_reg);
976 		EMIT_ZERO(dst_reg);
977 		break;
978 	case BPF_ALU64 | BPF_ADD | BPF_X: /* dst = dst + src */
979 		/* agr %dst,%src */
980 		EMIT4(0xb9080000, dst_reg, src_reg);
981 		break;
982 	case BPF_ALU | BPF_ADD | BPF_K: /* dst = (u32) dst + (u32) imm */
983 		if (imm != 0) {
984 			/* alfi %dst,imm */
985 			EMIT6_IMM(0xc20b0000, dst_reg, imm);
986 		}
987 		EMIT_ZERO(dst_reg);
988 		break;
989 	case BPF_ALU64 | BPF_ADD | BPF_K: /* dst = dst + imm */
990 		if (!imm)
991 			break;
992 		/* agfi %dst,imm */
993 		EMIT6_IMM(0xc2080000, dst_reg, imm);
994 		break;
995 	/*
996 	 * BPF_SUB
997 	 */
998 	case BPF_ALU | BPF_SUB | BPF_X: /* dst = (u32) dst - (u32) src */
999 		/* sr %dst,%src */
1000 		EMIT2(0x1b00, dst_reg, src_reg);
1001 		EMIT_ZERO(dst_reg);
1002 		break;
1003 	case BPF_ALU64 | BPF_SUB | BPF_X: /* dst = dst - src */
1004 		/* sgr %dst,%src */
1005 		EMIT4(0xb9090000, dst_reg, src_reg);
1006 		break;
1007 	case BPF_ALU | BPF_SUB | BPF_K: /* dst = (u32) dst - (u32) imm */
1008 		if (imm != 0) {
1009 			/* alfi %dst,-imm */
1010 			EMIT6_IMM(0xc20b0000, dst_reg, -imm);
1011 		}
1012 		EMIT_ZERO(dst_reg);
1013 		break;
1014 	case BPF_ALU64 | BPF_SUB | BPF_K: /* dst = dst - imm */
1015 		if (!imm)
1016 			break;
1017 		if (imm == -0x80000000) {
1018 			/* algfi %dst,0x80000000 */
1019 			EMIT6_IMM(0xc20a0000, dst_reg, 0x80000000);
1020 		} else {
1021 			/* agfi %dst,-imm */
1022 			EMIT6_IMM(0xc2080000, dst_reg, -imm);
1023 		}
1024 		break;
1025 	/*
1026 	 * BPF_MUL
1027 	 */
1028 	case BPF_ALU | BPF_MUL | BPF_X: /* dst = (u32) dst * (u32) src */
1029 		/* msr %dst,%src */
1030 		EMIT4(0xb2520000, dst_reg, src_reg);
1031 		EMIT_ZERO(dst_reg);
1032 		break;
1033 	case BPF_ALU64 | BPF_MUL | BPF_X: /* dst = dst * src */
1034 		/* msgr %dst,%src */
1035 		EMIT4(0xb90c0000, dst_reg, src_reg);
1036 		break;
1037 	case BPF_ALU | BPF_MUL | BPF_K: /* dst = (u32) dst * (u32) imm */
1038 		if (imm != 1) {
1039 			/* msfi %r5,imm */
1040 			EMIT6_IMM(0xc2010000, dst_reg, imm);
1041 		}
1042 		EMIT_ZERO(dst_reg);
1043 		break;
1044 	case BPF_ALU64 | BPF_MUL | BPF_K: /* dst = dst * imm */
1045 		if (imm == 1)
1046 			break;
1047 		/* msgfi %dst,imm */
1048 		EMIT6_IMM(0xc2000000, dst_reg, imm);
1049 		break;
1050 	/*
1051 	 * BPF_DIV / BPF_MOD
1052 	 */
1053 	case BPF_ALU | BPF_DIV | BPF_X:
1054 	case BPF_ALU | BPF_MOD | BPF_X:
1055 	{
1056 		int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
1057 
1058 		switch (off) {
1059 		case 0: /* dst = (u32) dst {/,%} (u32) src */
1060 			/* xr %w0,%w0 */
1061 			EMIT2(0x1700, REG_W0, REG_W0);
1062 			/* lr %w1,%dst */
1063 			EMIT2(0x1800, REG_W1, dst_reg);
1064 			/* dlr %w0,%src */
1065 			EMIT4(0xb9970000, REG_W0, src_reg);
1066 			break;
1067 		case 1: /* dst = (u32) ((s32) dst {/,%} (s32) src) */
1068 			/* lgfr %r1,%dst */
1069 			EMIT4(0xb9140000, REG_W1, dst_reg);
1070 			/* dsgfr %r0,%src */
1071 			EMIT4(0xb91d0000, REG_W0, src_reg);
1072 			break;
1073 		}
1074 		/* llgfr %dst,%rc */
1075 		EMIT4(0xb9160000, dst_reg, rc_reg);
1076 		if (insn_is_zext(&insn[1]))
1077 			insn_count = 2;
1078 		break;
1079 	}
1080 	case BPF_ALU64 | BPF_DIV | BPF_X:
1081 	case BPF_ALU64 | BPF_MOD | BPF_X:
1082 	{
1083 		int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
1084 
1085 		switch (off) {
1086 		case 0: /* dst = dst {/,%} src */
1087 			/* lghi %w0,0 */
1088 			EMIT4_IMM(0xa7090000, REG_W0, 0);
1089 			/* lgr %w1,%dst */
1090 			EMIT4(0xb9040000, REG_W1, dst_reg);
1091 			/* dlgr %w0,%src */
1092 			EMIT4(0xb9870000, REG_W0, src_reg);
1093 			break;
1094 		case 1: /* dst = (s64) dst {/,%} (s64) src */
1095 			/* lgr %w1,%dst */
1096 			EMIT4(0xb9040000, REG_W1, dst_reg);
1097 			/* dsgr %w0,%src */
1098 			EMIT4(0xb90d0000, REG_W0, src_reg);
1099 			break;
1100 		}
1101 		/* lgr %dst,%rc */
1102 		EMIT4(0xb9040000, dst_reg, rc_reg);
1103 		break;
1104 	}
1105 	case BPF_ALU | BPF_DIV | BPF_K:
1106 	case BPF_ALU | BPF_MOD | BPF_K:
1107 	{
1108 		int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
1109 
1110 		if (imm == 1) {
1111 			if (BPF_OP(insn->code) == BPF_MOD)
1112 				/* lghi %dst,0 */
1113 				EMIT4_IMM(0xa7090000, dst_reg, 0);
1114 			else
1115 				EMIT_ZERO(dst_reg);
1116 			break;
1117 		}
1118 		if (!is_first_pass(jit) && can_use_ldisp_for_lit32(jit)) {
1119 			switch (off) {
1120 			case 0: /* dst = (u32) dst {/,%} (u32) imm */
1121 				/* xr %w0,%w0 */
1122 				EMIT2(0x1700, REG_W0, REG_W0);
1123 				/* lr %w1,%dst */
1124 				EMIT2(0x1800, REG_W1, dst_reg);
1125 				/* dl %w0,<d(imm)>(%l) */
1126 				EMIT6_DISP_LH(0xe3000000, 0x0097, REG_W0, REG_0,
1127 					      REG_L, EMIT_CONST_U32(imm));
1128 				break;
1129 			case 1: /* dst = (s32) dst {/,%} (s32) imm */
1130 				/* lgfr %r1,%dst */
1131 				EMIT4(0xb9140000, REG_W1, dst_reg);
1132 				/* dsgf %r0,<d(imm)>(%l) */
1133 				EMIT6_DISP_LH(0xe3000000, 0x001d, REG_W0, REG_0,
1134 					      REG_L, EMIT_CONST_U32(imm));
1135 				break;
1136 			}
1137 		} else {
1138 			switch (off) {
1139 			case 0: /* dst = (u32) dst {/,%} (u32) imm */
1140 				/* xr %w0,%w0 */
1141 				EMIT2(0x1700, REG_W0, REG_W0);
1142 				/* lr %w1,%dst */
1143 				EMIT2(0x1800, REG_W1, dst_reg);
1144 				/* lrl %dst,imm */
1145 				EMIT6_PCREL_RILB(0xc40d0000, dst_reg,
1146 						 _EMIT_CONST_U32(imm));
1147 				jit->seen |= SEEN_LITERAL;
1148 				/* dlr %w0,%dst */
1149 				EMIT4(0xb9970000, REG_W0, dst_reg);
1150 				break;
1151 			case 1: /* dst = (s32) dst {/,%} (s32) imm */
1152 				/* lgfr %w1,%dst */
1153 				EMIT4(0xb9140000, REG_W1, dst_reg);
1154 				/* lgfrl %dst,imm */
1155 				EMIT6_PCREL_RILB(0xc40c0000, dst_reg,
1156 						 _EMIT_CONST_U32(imm));
1157 				jit->seen |= SEEN_LITERAL;
1158 				/* dsgr %w0,%dst */
1159 				EMIT4(0xb90d0000, REG_W0, dst_reg);
1160 				break;
1161 			}
1162 		}
1163 		/* llgfr %dst,%rc */
1164 		EMIT4(0xb9160000, dst_reg, rc_reg);
1165 		if (insn_is_zext(&insn[1]))
1166 			insn_count = 2;
1167 		break;
1168 	}
1169 	case BPF_ALU64 | BPF_DIV | BPF_K:
1170 	case BPF_ALU64 | BPF_MOD | BPF_K:
1171 	{
1172 		int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
1173 
1174 		if (imm == 1) {
1175 			if (BPF_OP(insn->code) == BPF_MOD)
1176 				/* lhgi %dst,0 */
1177 				EMIT4_IMM(0xa7090000, dst_reg, 0);
1178 			break;
1179 		}
1180 		if (!is_first_pass(jit) && can_use_ldisp_for_lit64(jit)) {
1181 			switch (off) {
1182 			case 0: /* dst = dst {/,%} imm */
1183 				/* lghi %w0,0 */
1184 				EMIT4_IMM(0xa7090000, REG_W0, 0);
1185 				/* lgr %w1,%dst */
1186 				EMIT4(0xb9040000, REG_W1, dst_reg);
1187 				/* dlg %w0,<d(imm)>(%l) */
1188 				EMIT6_DISP_LH(0xe3000000, 0x0087, REG_W0, REG_0,
1189 					      REG_L, EMIT_CONST_U64(imm));
1190 				break;
1191 			case 1: /* dst = (s64) dst {/,%} (s64) imm */
1192 				/* lgr %w1,%dst */
1193 				EMIT4(0xb9040000, REG_W1, dst_reg);
1194 				/* dsg %w0,<d(imm)>(%l) */
1195 				EMIT6_DISP_LH(0xe3000000, 0x000d, REG_W0, REG_0,
1196 					      REG_L, EMIT_CONST_U64(imm));
1197 				break;
1198 			}
1199 		} else {
1200 			switch (off) {
1201 			case 0: /* dst = dst {/,%} imm */
1202 				/* lghi %w0,0 */
1203 				EMIT4_IMM(0xa7090000, REG_W0, 0);
1204 				/* lgr %w1,%dst */
1205 				EMIT4(0xb9040000, REG_W1, dst_reg);
1206 				/* lgrl %dst,imm */
1207 				EMIT6_PCREL_RILB(0xc4080000, dst_reg,
1208 						 _EMIT_CONST_U64(imm));
1209 				jit->seen |= SEEN_LITERAL;
1210 				/* dlgr %w0,%dst */
1211 				EMIT4(0xb9870000, REG_W0, dst_reg);
1212 				break;
1213 			case 1: /* dst = (s64) dst {/,%} (s64) imm */
1214 				/* lgr %w1,%dst */
1215 				EMIT4(0xb9040000, REG_W1, dst_reg);
1216 				/* lgrl %dst,imm */
1217 				EMIT6_PCREL_RILB(0xc4080000, dst_reg,
1218 						 _EMIT_CONST_U64(imm));
1219 				jit->seen |= SEEN_LITERAL;
1220 				/* dsgr %w0,%dst */
1221 				EMIT4(0xb90d0000, REG_W0, dst_reg);
1222 				break;
1223 			}
1224 		}
1225 		/* lgr %dst,%rc */
1226 		EMIT4(0xb9040000, dst_reg, rc_reg);
1227 		break;
1228 	}
1229 	/*
1230 	 * BPF_AND
1231 	 */
1232 	case BPF_ALU | BPF_AND | BPF_X: /* dst = (u32) dst & (u32) src */
1233 		/* nr %dst,%src */
1234 		EMIT2(0x1400, dst_reg, src_reg);
1235 		EMIT_ZERO(dst_reg);
1236 		break;
1237 	case BPF_ALU64 | BPF_AND | BPF_X: /* dst = dst & src */
1238 		/* ngr %dst,%src */
1239 		EMIT4(0xb9800000, dst_reg, src_reg);
1240 		break;
1241 	case BPF_ALU | BPF_AND | BPF_K: /* dst = (u32) dst & (u32) imm */
1242 		/* nilf %dst,imm */
1243 		EMIT6_IMM(0xc00b0000, dst_reg, imm);
1244 		EMIT_ZERO(dst_reg);
1245 		break;
1246 	case BPF_ALU64 | BPF_AND | BPF_K: /* dst = dst & imm */
1247 		if (!is_first_pass(jit) && can_use_ldisp_for_lit64(jit)) {
1248 			/* ng %dst,<d(imm)>(%l) */
1249 			EMIT6_DISP_LH(0xe3000000, 0x0080,
1250 				      dst_reg, REG_0, REG_L,
1251 				      EMIT_CONST_U64(imm));
1252 		} else {
1253 			/* lgrl %w0,imm */
1254 			EMIT6_PCREL_RILB(0xc4080000, REG_W0,
1255 					 _EMIT_CONST_U64(imm));
1256 			jit->seen |= SEEN_LITERAL;
1257 			/* ngr %dst,%w0 */
1258 			EMIT4(0xb9800000, dst_reg, REG_W0);
1259 		}
1260 		break;
1261 	/*
1262 	 * BPF_OR
1263 	 */
1264 	case BPF_ALU | BPF_OR | BPF_X: /* dst = (u32) dst | (u32) src */
1265 		/* or %dst,%src */
1266 		EMIT2(0x1600, dst_reg, src_reg);
1267 		EMIT_ZERO(dst_reg);
1268 		break;
1269 	case BPF_ALU64 | BPF_OR | BPF_X: /* dst = dst | src */
1270 		/* ogr %dst,%src */
1271 		EMIT4(0xb9810000, dst_reg, src_reg);
1272 		break;
1273 	case BPF_ALU | BPF_OR | BPF_K: /* dst = (u32) dst | (u32) imm */
1274 		/* oilf %dst,imm */
1275 		EMIT6_IMM(0xc00d0000, dst_reg, imm);
1276 		EMIT_ZERO(dst_reg);
1277 		break;
1278 	case BPF_ALU64 | BPF_OR | BPF_K: /* dst = dst | imm */
1279 		if (!is_first_pass(jit) && can_use_ldisp_for_lit64(jit)) {
1280 			/* og %dst,<d(imm)>(%l) */
1281 			EMIT6_DISP_LH(0xe3000000, 0x0081,
1282 				      dst_reg, REG_0, REG_L,
1283 				      EMIT_CONST_U64(imm));
1284 		} else {
1285 			/* lgrl %w0,imm */
1286 			EMIT6_PCREL_RILB(0xc4080000, REG_W0,
1287 					 _EMIT_CONST_U64(imm));
1288 			jit->seen |= SEEN_LITERAL;
1289 			/* ogr %dst,%w0 */
1290 			EMIT4(0xb9810000, dst_reg, REG_W0);
1291 		}
1292 		break;
1293 	/*
1294 	 * BPF_XOR
1295 	 */
1296 	case BPF_ALU | BPF_XOR | BPF_X: /* dst = (u32) dst ^ (u32) src */
1297 		/* xr %dst,%src */
1298 		EMIT2(0x1700, dst_reg, src_reg);
1299 		EMIT_ZERO(dst_reg);
1300 		break;
1301 	case BPF_ALU64 | BPF_XOR | BPF_X: /* dst = dst ^ src */
1302 		/* xgr %dst,%src */
1303 		EMIT4(0xb9820000, dst_reg, src_reg);
1304 		break;
1305 	case BPF_ALU | BPF_XOR | BPF_K: /* dst = (u32) dst ^ (u32) imm */
1306 		if (imm != 0) {
1307 			/* xilf %dst,imm */
1308 			EMIT6_IMM(0xc0070000, dst_reg, imm);
1309 		}
1310 		EMIT_ZERO(dst_reg);
1311 		break;
1312 	case BPF_ALU64 | BPF_XOR | BPF_K: /* dst = dst ^ imm */
1313 		if (!is_first_pass(jit) && can_use_ldisp_for_lit64(jit)) {
1314 			/* xg %dst,<d(imm)>(%l) */
1315 			EMIT6_DISP_LH(0xe3000000, 0x0082,
1316 				      dst_reg, REG_0, REG_L,
1317 				      EMIT_CONST_U64(imm));
1318 		} else {
1319 			/* lgrl %w0,imm */
1320 			EMIT6_PCREL_RILB(0xc4080000, REG_W0,
1321 					 _EMIT_CONST_U64(imm));
1322 			jit->seen |= SEEN_LITERAL;
1323 			/* xgr %dst,%w0 */
1324 			EMIT4(0xb9820000, dst_reg, REG_W0);
1325 		}
1326 		break;
1327 	/*
1328 	 * BPF_LSH
1329 	 */
1330 	case BPF_ALU | BPF_LSH | BPF_X: /* dst = (u32) dst << (u32) src */
1331 		/* sll %dst,0(%src) */
1332 		EMIT4_DISP(0x89000000, dst_reg, src_reg, 0);
1333 		EMIT_ZERO(dst_reg);
1334 		break;
1335 	case BPF_ALU64 | BPF_LSH | BPF_X: /* dst = dst << src */
1336 		/* sllg %dst,%dst,0(%src) */
1337 		EMIT6_DISP_LH(0xeb000000, 0x000d, dst_reg, dst_reg, src_reg, 0);
1338 		break;
1339 	case BPF_ALU | BPF_LSH | BPF_K: /* dst = (u32) dst << (u32) imm */
1340 		if (imm != 0) {
1341 			/* sll %dst,imm(%r0) */
1342 			EMIT4_DISP(0x89000000, dst_reg, REG_0, imm);
1343 		}
1344 		EMIT_ZERO(dst_reg);
1345 		break;
1346 	case BPF_ALU64 | BPF_LSH | BPF_K: /* dst = dst << imm */
1347 		if (imm == 0)
1348 			break;
1349 		/* sllg %dst,%dst,imm(%r0) */
1350 		EMIT6_DISP_LH(0xeb000000, 0x000d, dst_reg, dst_reg, REG_0, imm);
1351 		break;
1352 	/*
1353 	 * BPF_RSH
1354 	 */
1355 	case BPF_ALU | BPF_RSH | BPF_X: /* dst = (u32) dst >> (u32) src */
1356 		/* srl %dst,0(%src) */
1357 		EMIT4_DISP(0x88000000, dst_reg, src_reg, 0);
1358 		EMIT_ZERO(dst_reg);
1359 		break;
1360 	case BPF_ALU64 | BPF_RSH | BPF_X: /* dst = dst >> src */
1361 		/* srlg %dst,%dst,0(%src) */
1362 		EMIT6_DISP_LH(0xeb000000, 0x000c, dst_reg, dst_reg, src_reg, 0);
1363 		break;
1364 	case BPF_ALU | BPF_RSH | BPF_K: /* dst = (u32) dst >> (u32) imm */
1365 		if (imm != 0) {
1366 			/* srl %dst,imm(%r0) */
1367 			EMIT4_DISP(0x88000000, dst_reg, REG_0, imm);
1368 		}
1369 		EMIT_ZERO(dst_reg);
1370 		break;
1371 	case BPF_ALU64 | BPF_RSH | BPF_K: /* dst = dst >> imm */
1372 		if (imm == 0)
1373 			break;
1374 		/* srlg %dst,%dst,imm(%r0) */
1375 		EMIT6_DISP_LH(0xeb000000, 0x000c, dst_reg, dst_reg, REG_0, imm);
1376 		break;
1377 	/*
1378 	 * BPF_ARSH
1379 	 */
1380 	case BPF_ALU | BPF_ARSH | BPF_X: /* ((s32) dst) >>= src */
1381 		/* sra %dst,%dst,0(%src) */
1382 		EMIT4_DISP(0x8a000000, dst_reg, src_reg, 0);
1383 		EMIT_ZERO(dst_reg);
1384 		break;
1385 	case BPF_ALU64 | BPF_ARSH | BPF_X: /* ((s64) dst) >>= src */
1386 		/* srag %dst,%dst,0(%src) */
1387 		EMIT6_DISP_LH(0xeb000000, 0x000a, dst_reg, dst_reg, src_reg, 0);
1388 		break;
1389 	case BPF_ALU | BPF_ARSH | BPF_K: /* ((s32) dst >> imm */
1390 		if (imm != 0) {
1391 			/* sra %dst,imm(%r0) */
1392 			EMIT4_DISP(0x8a000000, dst_reg, REG_0, imm);
1393 		}
1394 		EMIT_ZERO(dst_reg);
1395 		break;
1396 	case BPF_ALU64 | BPF_ARSH | BPF_K: /* ((s64) dst) >>= imm */
1397 		if (imm == 0)
1398 			break;
1399 		/* srag %dst,%dst,imm(%r0) */
1400 		EMIT6_DISP_LH(0xeb000000, 0x000a, dst_reg, dst_reg, REG_0, imm);
1401 		break;
1402 	/*
1403 	 * BPF_NEG
1404 	 */
1405 	case BPF_ALU | BPF_NEG: /* dst = (u32) -dst */
1406 		/* lcr %dst,%dst */
1407 		EMIT2(0x1300, dst_reg, dst_reg);
1408 		EMIT_ZERO(dst_reg);
1409 		break;
1410 	case BPF_ALU64 | BPF_NEG: /* dst = -dst */
1411 		/* lcgr %dst,%dst */
1412 		EMIT4(0xb9030000, dst_reg, dst_reg);
1413 		break;
1414 	/*
1415 	 * BPF_FROM_BE/LE
1416 	 */
1417 	case BPF_ALU | BPF_END | BPF_FROM_BE:
1418 		/* s390 is big endian, therefore only clear high order bytes */
1419 		switch (imm) {
1420 		case 16: /* dst = (u16) cpu_to_be16(dst) */
1421 			/* llghr %dst,%dst */
1422 			EMIT4(0xb9850000, dst_reg, dst_reg);
1423 			if (insn_is_zext(&insn[1]))
1424 				insn_count = 2;
1425 			break;
1426 		case 32: /* dst = (u32) cpu_to_be32(dst) */
1427 			if (!fp->aux->verifier_zext)
1428 				/* llgfr %dst,%dst */
1429 				EMIT4(0xb9160000, dst_reg, dst_reg);
1430 			break;
1431 		case 64: /* dst = (u64) cpu_to_be64(dst) */
1432 			break;
1433 		}
1434 		break;
1435 	case BPF_ALU | BPF_END | BPF_FROM_LE:
1436 	case BPF_ALU64 | BPF_END | BPF_FROM_LE:
1437 		switch (imm) {
1438 		case 16: /* dst = (u16) cpu_to_le16(dst) */
1439 			/* lrvr %dst,%dst */
1440 			EMIT4(0xb91f0000, dst_reg, dst_reg);
1441 			/* srl %dst,16(%r0) */
1442 			EMIT4_DISP(0x88000000, dst_reg, REG_0, 16);
1443 			/* llghr %dst,%dst */
1444 			EMIT4(0xb9850000, dst_reg, dst_reg);
1445 			if (insn_is_zext(&insn[1]))
1446 				insn_count = 2;
1447 			break;
1448 		case 32: /* dst = (u32) cpu_to_le32(dst) */
1449 			/* lrvr %dst,%dst */
1450 			EMIT4(0xb91f0000, dst_reg, dst_reg);
1451 			if (!fp->aux->verifier_zext)
1452 				/* llgfr %dst,%dst */
1453 				EMIT4(0xb9160000, dst_reg, dst_reg);
1454 			break;
1455 		case 64: /* dst = (u64) cpu_to_le64(dst) */
1456 			/* lrvgr %dst,%dst */
1457 			EMIT4(0xb90f0000, dst_reg, dst_reg);
1458 			break;
1459 		}
1460 		break;
1461 	/*
1462 	 * BPF_NOSPEC (speculation barrier)
1463 	 */
1464 	case BPF_ST | BPF_NOSPEC:
1465 		break;
1466 	/*
1467 	 * BPF_ST(X)
1468 	 */
1469 	case BPF_STX | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = src_reg */
1470 	case BPF_STX | BPF_PROBE_MEM32 | BPF_B:
1471 		bpf_jit_probe_store_pre(jit, insn, &probe);
1472 		/* stcy %src,off(%dst,%arena) */
1473 		EMIT6_DISP_LH(0xe3000000, 0x0072, src_reg, dst_reg,
1474 			      probe.arena_reg, off);
1475 		err = bpf_jit_probe_post(jit, fp, &probe);
1476 		if (err < 0)
1477 			return err;
1478 		jit->seen |= SEEN_MEM;
1479 		break;
1480 	case BPF_STX | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = src */
1481 	case BPF_STX | BPF_PROBE_MEM32 | BPF_H:
1482 		bpf_jit_probe_store_pre(jit, insn, &probe);
1483 		/* sthy %src,off(%dst,%arena) */
1484 		EMIT6_DISP_LH(0xe3000000, 0x0070, src_reg, dst_reg,
1485 			      probe.arena_reg, off);
1486 		err = bpf_jit_probe_post(jit, fp, &probe);
1487 		if (err < 0)
1488 			return err;
1489 		jit->seen |= SEEN_MEM;
1490 		break;
1491 	case BPF_STX | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = src */
1492 	case BPF_STX | BPF_PROBE_MEM32 | BPF_W:
1493 		bpf_jit_probe_store_pre(jit, insn, &probe);
1494 		/* sty %src,off(%dst,%arena) */
1495 		EMIT6_DISP_LH(0xe3000000, 0x0050, src_reg, dst_reg,
1496 			      probe.arena_reg, off);
1497 		err = bpf_jit_probe_post(jit, fp, &probe);
1498 		if (err < 0)
1499 			return err;
1500 		jit->seen |= SEEN_MEM;
1501 		break;
1502 	case BPF_STX | BPF_MEM | BPF_DW: /* (u64 *)(dst + off) = src */
1503 	case BPF_STX | BPF_PROBE_MEM32 | BPF_DW:
1504 		bpf_jit_probe_store_pre(jit, insn, &probe);
1505 		/* stg %src,off(%dst,%arena) */
1506 		EMIT6_DISP_LH(0xe3000000, 0x0024, src_reg, dst_reg,
1507 			      probe.arena_reg, off);
1508 		err = bpf_jit_probe_post(jit, fp, &probe);
1509 		if (err < 0)
1510 			return err;
1511 		jit->seen |= SEEN_MEM;
1512 		break;
1513 	case BPF_ST | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = imm */
1514 	case BPF_ST | BPF_PROBE_MEM32 | BPF_B:
1515 		/* lhi %w0,imm */
1516 		EMIT4_IMM(0xa7080000, REG_W0, (u8) imm);
1517 		bpf_jit_probe_store_pre(jit, insn, &probe);
1518 		/* stcy %w0,off(%dst,%arena) */
1519 		EMIT6_DISP_LH(0xe3000000, 0x0072, REG_W0, dst_reg,
1520 			      probe.arena_reg, off);
1521 		err = bpf_jit_probe_post(jit, fp, &probe);
1522 		if (err < 0)
1523 			return err;
1524 		jit->seen |= SEEN_MEM;
1525 		break;
1526 	case BPF_ST | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = imm */
1527 	case BPF_ST | BPF_PROBE_MEM32 | BPF_H:
1528 		/* lhi %w0,imm */
1529 		EMIT4_IMM(0xa7080000, REG_W0, (u16) imm);
1530 		bpf_jit_probe_store_pre(jit, insn, &probe);
1531 		/* sthy %w0,off(%dst,%arena) */
1532 		EMIT6_DISP_LH(0xe3000000, 0x0070, REG_W0, dst_reg,
1533 			      probe.arena_reg, off);
1534 		err = bpf_jit_probe_post(jit, fp, &probe);
1535 		if (err < 0)
1536 			return err;
1537 		jit->seen |= SEEN_MEM;
1538 		break;
1539 	case BPF_ST | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = imm */
1540 	case BPF_ST | BPF_PROBE_MEM32 | BPF_W:
1541 		/* llilf %w0,imm  */
1542 		EMIT6_IMM(0xc00f0000, REG_W0, (u32) imm);
1543 		bpf_jit_probe_store_pre(jit, insn, &probe);
1544 		/* sty %w0,off(%dst,%arena) */
1545 		EMIT6_DISP_LH(0xe3000000, 0x0050, REG_W0, dst_reg,
1546 			      probe.arena_reg, off);
1547 		err = bpf_jit_probe_post(jit, fp, &probe);
1548 		if (err < 0)
1549 			return err;
1550 		jit->seen |= SEEN_MEM;
1551 		break;
1552 	case BPF_ST | BPF_MEM | BPF_DW: /* *(u64 *)(dst + off) = imm */
1553 	case BPF_ST | BPF_PROBE_MEM32 | BPF_DW:
1554 		/* lgfi %w0,imm */
1555 		EMIT6_IMM(0xc0010000, REG_W0, imm);
1556 		bpf_jit_probe_store_pre(jit, insn, &probe);
1557 		/* stg %w0,off(%dst,%arena) */
1558 		EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W0, dst_reg,
1559 			      probe.arena_reg, off);
1560 		err = bpf_jit_probe_post(jit, fp, &probe);
1561 		if (err < 0)
1562 			return err;
1563 		jit->seen |= SEEN_MEM;
1564 		break;
1565 	/*
1566 	 * BPF_ATOMIC
1567 	 */
1568 	case BPF_STX | BPF_ATOMIC | BPF_DW:
1569 	case BPF_STX | BPF_ATOMIC | BPF_W:
1570 	case BPF_STX | BPF_PROBE_ATOMIC | BPF_DW:
1571 	case BPF_STX | BPF_PROBE_ATOMIC | BPF_W:
1572 	{
1573 		bool is32 = BPF_SIZE(insn->code) == BPF_W;
1574 
1575 		/*
1576 		 * Unlike loads and stores, atomics have only a base register,
1577 		 * but no index register. For the non-arena case, simply use
1578 		 * %dst as a base. For the arena case, use the work register
1579 		 * %r1: first, load the arena base into it, and then add %dst
1580 		 * to it.
1581 		 */
1582 		probe.arena_reg = dst_reg;
1583 
1584 		switch (insn->imm) {
1585 #define EMIT_ATOMIC(op32, op64) do {					\
1586 	bpf_jit_probe_atomic_pre(jit, insn, &probe);			\
1587 	/* {op32|op64} {%w0|%src},%src,off(%arena) */			\
1588 	EMIT6_DISP_LH(0xeb000000, is32 ? (op32) : (op64),		\
1589 		      (insn->imm & BPF_FETCH) ? src_reg : REG_W0,	\
1590 		      src_reg, probe.arena_reg, off);			\
1591 	err = bpf_jit_probe_post(jit, fp, &probe);			\
1592 	if (err < 0)							\
1593 		return err;						\
1594 	if (insn->imm & BPF_FETCH) {					\
1595 		/* bcr 14,0 - see atomic_fetch_{add,and,or,xor}() */	\
1596 		_EMIT2(0x07e0);						\
1597 		if (is32)                                               \
1598 			EMIT_ZERO(src_reg);				\
1599 	}								\
1600 } while (0)
1601 		case BPF_ADD:
1602 		case BPF_ADD | BPF_FETCH:
1603 			/* {laal|laalg} */
1604 			EMIT_ATOMIC(0x00fa, 0x00ea);
1605 			break;
1606 		case BPF_AND:
1607 		case BPF_AND | BPF_FETCH:
1608 			/* {lan|lang} */
1609 			EMIT_ATOMIC(0x00f4, 0x00e4);
1610 			break;
1611 		case BPF_OR:
1612 		case BPF_OR | BPF_FETCH:
1613 			/* {lao|laog} */
1614 			EMIT_ATOMIC(0x00f6, 0x00e6);
1615 			break;
1616 		case BPF_XOR:
1617 		case BPF_XOR | BPF_FETCH:
1618 			/* {lax|laxg} */
1619 			EMIT_ATOMIC(0x00f7, 0x00e7);
1620 			break;
1621 #undef EMIT_ATOMIC
1622 		case BPF_XCHG: {
1623 			struct bpf_jit_probe load_probe = probe;
1624 			int loop_start;
1625 
1626 			bpf_jit_probe_atomic_pre(jit, insn, &load_probe);
1627 			/* {ly|lg} %w0,off(%arena) */
1628 			EMIT6_DISP_LH(0xe3000000,
1629 				      is32 ? 0x0058 : 0x0004, REG_W0, REG_0,
1630 				      load_probe.arena_reg, off);
1631 			bpf_jit_probe_emit_nop(jit, &load_probe);
1632 			/* Reuse {ly|lg}'s arena_reg for {csy|csg}. */
1633 			if (load_probe.prg != -1) {
1634 				probe.prg = jit->prg;
1635 				probe.arena_reg = load_probe.arena_reg;
1636 			}
1637 			loop_start = jit->prg;
1638 			/* 0: {csy|csg} %w0,%src,off(%arena) */
1639 			EMIT6_DISP_LH(0xeb000000, is32 ? 0x0014 : 0x0030,
1640 				      REG_W0, src_reg, probe.arena_reg, off);
1641 			bpf_jit_probe_emit_nop(jit, &probe);
1642 			/* brc 4,0b */
1643 			EMIT4_PCREL_RIC(0xa7040000, 4, loop_start);
1644 			/* {llgfr|lgr} %src,%w0 */
1645 			EMIT4(is32 ? 0xb9160000 : 0xb9040000, src_reg, REG_W0);
1646 			/* Both probes should land here on exception. */
1647 			err = bpf_jit_probe_post(jit, fp, &load_probe);
1648 			if (err < 0)
1649 				return err;
1650 			err = bpf_jit_probe_post(jit, fp, &probe);
1651 			if (err < 0)
1652 				return err;
1653 			if (is32 && insn_is_zext(&insn[1]))
1654 				insn_count = 2;
1655 			break;
1656 		}
1657 		case BPF_CMPXCHG:
1658 			bpf_jit_probe_atomic_pre(jit, insn, &probe);
1659 			/* 0: {csy|csg} %b0,%src,off(%arena) */
1660 			EMIT6_DISP_LH(0xeb000000, is32 ? 0x0014 : 0x0030,
1661 				      BPF_REG_0, src_reg,
1662 				      probe.arena_reg, off);
1663 			err = bpf_jit_probe_post(jit, fp, &probe);
1664 			if (err < 0)
1665 				return err;
1666 			break;
1667 		default:
1668 			pr_err("Unknown atomic operation %02x\n", insn->imm);
1669 			return -1;
1670 		}
1671 
1672 		jit->seen |= SEEN_MEM;
1673 		break;
1674 	}
1675 	/*
1676 	 * BPF_LDX
1677 	 */
1678 	case BPF_LDX | BPF_MEM | BPF_B: /* dst = *(u8 *)(ul) (src + off) */
1679 	case BPF_LDX | BPF_PROBE_MEM | BPF_B:
1680 	case BPF_LDX | BPF_PROBE_MEM32 | BPF_B:
1681 		bpf_jit_probe_load_pre(jit, insn, &probe);
1682 		/* llgc %dst,off(%src,%arena) */
1683 		EMIT6_DISP_LH(0xe3000000, 0x0090, dst_reg, src_reg,
1684 			      probe.arena_reg, off);
1685 		err = bpf_jit_probe_post(jit, fp, &probe);
1686 		if (err < 0)
1687 			return err;
1688 		jit->seen |= SEEN_MEM;
1689 		if (insn_is_zext(&insn[1]))
1690 			insn_count = 2;
1691 		break;
1692 	case BPF_LDX | BPF_MEMSX | BPF_B: /* dst = *(s8 *)(ul) (src + off) */
1693 	case BPF_LDX | BPF_PROBE_MEMSX | BPF_B:
1694 		bpf_jit_probe_load_pre(jit, insn, &probe);
1695 		/* lgb %dst,off(%src) */
1696 		EMIT6_DISP_LH(0xe3000000, 0x0077, dst_reg, src_reg, REG_0, off);
1697 		err = bpf_jit_probe_post(jit, fp, &probe);
1698 		if (err < 0)
1699 			return err;
1700 		jit->seen |= SEEN_MEM;
1701 		break;
1702 	case BPF_LDX | BPF_MEM | BPF_H: /* dst = *(u16 *)(ul) (src + off) */
1703 	case BPF_LDX | BPF_PROBE_MEM | BPF_H:
1704 	case BPF_LDX | BPF_PROBE_MEM32 | BPF_H:
1705 		bpf_jit_probe_load_pre(jit, insn, &probe);
1706 		/* llgh %dst,off(%src,%arena) */
1707 		EMIT6_DISP_LH(0xe3000000, 0x0091, dst_reg, src_reg,
1708 			      probe.arena_reg, off);
1709 		err = bpf_jit_probe_post(jit, fp, &probe);
1710 		if (err < 0)
1711 			return err;
1712 		jit->seen |= SEEN_MEM;
1713 		if (insn_is_zext(&insn[1]))
1714 			insn_count = 2;
1715 		break;
1716 	case BPF_LDX | BPF_MEMSX | BPF_H: /* dst = *(s16 *)(ul) (src + off) */
1717 	case BPF_LDX | BPF_PROBE_MEMSX | BPF_H:
1718 		bpf_jit_probe_load_pre(jit, insn, &probe);
1719 		/* lgh %dst,off(%src) */
1720 		EMIT6_DISP_LH(0xe3000000, 0x0015, dst_reg, src_reg, REG_0, off);
1721 		err = bpf_jit_probe_post(jit, fp, &probe);
1722 		if (err < 0)
1723 			return err;
1724 		jit->seen |= SEEN_MEM;
1725 		break;
1726 	case BPF_LDX | BPF_MEM | BPF_W: /* dst = *(u32 *)(ul) (src + off) */
1727 	case BPF_LDX | BPF_PROBE_MEM | BPF_W:
1728 	case BPF_LDX | BPF_PROBE_MEM32 | BPF_W:
1729 		bpf_jit_probe_load_pre(jit, insn, &probe);
1730 		/* llgf %dst,off(%src) */
1731 		jit->seen |= SEEN_MEM;
1732 		EMIT6_DISP_LH(0xe3000000, 0x0016, dst_reg, src_reg,
1733 			      probe.arena_reg, off);
1734 		err = bpf_jit_probe_post(jit, fp, &probe);
1735 		if (err < 0)
1736 			return err;
1737 		if (insn_is_zext(&insn[1]))
1738 			insn_count = 2;
1739 		break;
1740 	case BPF_LDX | BPF_MEMSX | BPF_W: /* dst = *(s32 *)(ul) (src + off) */
1741 	case BPF_LDX | BPF_PROBE_MEMSX | BPF_W:
1742 		bpf_jit_probe_load_pre(jit, insn, &probe);
1743 		/* lgf %dst,off(%src) */
1744 		jit->seen |= SEEN_MEM;
1745 		EMIT6_DISP_LH(0xe3000000, 0x0014, dst_reg, src_reg, REG_0, off);
1746 		err = bpf_jit_probe_post(jit, fp, &probe);
1747 		if (err < 0)
1748 			return err;
1749 		break;
1750 	case BPF_LDX | BPF_MEM | BPF_DW: /* dst = *(u64 *)(ul) (src + off) */
1751 	case BPF_LDX | BPF_PROBE_MEM | BPF_DW:
1752 	case BPF_LDX | BPF_PROBE_MEM32 | BPF_DW:
1753 		bpf_jit_probe_load_pre(jit, insn, &probe);
1754 		/* lg %dst,off(%src,%arena) */
1755 		jit->seen |= SEEN_MEM;
1756 		EMIT6_DISP_LH(0xe3000000, 0x0004, dst_reg, src_reg,
1757 			      probe.arena_reg, off);
1758 		err = bpf_jit_probe_post(jit, fp, &probe);
1759 		if (err < 0)
1760 			return err;
1761 		break;
1762 	/*
1763 	 * BPF_JMP / CALL
1764 	 */
1765 	case BPF_JMP | BPF_CALL:
1766 	{
1767 		const struct btf_func_model *m;
1768 		bool func_addr_fixed;
1769 		int j, ret;
1770 		u64 func;
1771 
1772 		ret = bpf_jit_get_func_addr(fp, insn, extra_pass,
1773 					    &func, &func_addr_fixed);
1774 		if (ret < 0)
1775 			return -1;
1776 
1777 		REG_SET_SEEN(BPF_REG_5);
1778 		jit->seen |= SEEN_FUNC;
1779 		/*
1780 		 * Copy the tail call counter to where the callee expects it.
1781 		 *
1782 		 * Note 1: The callee can increment the tail call counter, but
1783 		 * we do not load it back, since the x86 JIT does not do this
1784 		 * either.
1785 		 *
1786 		 * Note 2: We assume that the verifier does not let us call the
1787 		 * main program, which clears the tail call counter on entry.
1788 		 */
1789 		/* mvc STK_OFF_TCCNT(4,%r15),N(%r15) */
1790 		_EMIT6(0xd203f000 | STK_OFF_TCCNT,
1791 		       0xf000 | (STK_OFF_TCCNT + STK_OFF + stack_depth));
1792 
1793 		/* Sign-extend the kfunc arguments. */
1794 		if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
1795 			m = bpf_jit_find_kfunc_model(fp, insn);
1796 			if (!m)
1797 				return -1;
1798 
1799 			for (j = 0; j < m->nr_args; j++) {
1800 				if (sign_extend(jit, BPF_REG_1 + j,
1801 						m->arg_size[j],
1802 						m->arg_flags[j]))
1803 					return -1;
1804 			}
1805 		}
1806 
1807 		/* lgrl %w1,func */
1808 		EMIT6_PCREL_RILB(0xc4080000, REG_W1, _EMIT_CONST_U64(func));
1809 		/* %r1() */
1810 		call_r1(jit);
1811 		/* lgr %b0,%r2: load return value into %b0 */
1812 		EMIT4(0xb9040000, BPF_REG_0, REG_2);
1813 		break;
1814 	}
1815 	case BPF_JMP | BPF_TAIL_CALL: {
1816 		int patch_1_clrj, patch_2_clij, patch_3_brc;
1817 
1818 		/*
1819 		 * Implicit input:
1820 		 *  B1: pointer to ctx
1821 		 *  B2: pointer to bpf_array
1822 		 *  B3: index in bpf_array
1823 		 *
1824 		 * if (index >= array->map.max_entries)
1825 		 *         goto out;
1826 		 */
1827 
1828 		/* llgf %w1,map.max_entries(%b2) */
1829 		EMIT6_DISP_LH(0xe3000000, 0x0016, REG_W1, REG_0, BPF_REG_2,
1830 			      offsetof(struct bpf_array, map.max_entries));
1831 		/* if ((u32)%b3 >= (u32)%w1) goto out; */
1832 		/* clrj %b3,%w1,0xa,out */
1833 		patch_1_clrj = jit->prg;
1834 		EMIT6_PCREL_RIEB(0xec000000, 0x0077, BPF_REG_3, REG_W1, 0xa,
1835 				 jit->prg);
1836 
1837 		/*
1838 		 * if (tail_call_cnt++ >= MAX_TAIL_CALL_CNT)
1839 		 *         goto out;
1840 		 */
1841 
1842 		if (jit->seen & SEEN_STACK)
1843 			off = STK_OFF_TCCNT + STK_OFF + stack_depth;
1844 		else
1845 			off = STK_OFF_TCCNT;
1846 		/* lhi %w0,1 */
1847 		EMIT4_IMM(0xa7080000, REG_W0, 1);
1848 		/* laal %w1,%w0,off(%r15) */
1849 		EMIT6_DISP_LH(0xeb000000, 0x00fa, REG_W1, REG_W0, REG_15, off);
1850 		/* clij %w1,MAX_TAIL_CALL_CNT-1,0x2,out */
1851 		patch_2_clij = jit->prg;
1852 		EMIT6_PCREL_RIEC(0xec000000, 0x007f, REG_W1, MAX_TAIL_CALL_CNT - 1,
1853 				 2, jit->prg);
1854 
1855 		/*
1856 		 * prog = array->ptrs[index];
1857 		 * if (prog == NULL)
1858 		 *         goto out;
1859 		 */
1860 
1861 		/* llgfr %r1,%b3: %r1 = (u32) index */
1862 		EMIT4(0xb9160000, REG_1, BPF_REG_3);
1863 		/* sllg %r1,%r1,3: %r1 *= 8 */
1864 		EMIT6_DISP_LH(0xeb000000, 0x000d, REG_1, REG_1, REG_0, 3);
1865 		/* ltg %r1,prog(%b2,%r1) */
1866 		EMIT6_DISP_LH(0xe3000000, 0x0002, REG_1, BPF_REG_2,
1867 			      REG_1, offsetof(struct bpf_array, ptrs));
1868 		/* brc 0x8,out */
1869 		patch_3_brc = jit->prg;
1870 		EMIT4_PCREL_RIC(0xa7040000, 8, jit->prg);
1871 
1872 		/*
1873 		 * Restore registers before calling function
1874 		 */
1875 		save_restore_regs(jit, REGS_RESTORE, stack_depth, 0);
1876 
1877 		/*
1878 		 * goto *(prog->bpf_func + tail_call_start);
1879 		 */
1880 
1881 		/* lg %r1,bpf_func(%r1) */
1882 		EMIT6_DISP_LH(0xe3000000, 0x0004, REG_1, REG_1, REG_0,
1883 			      offsetof(struct bpf_prog, bpf_func));
1884 		if (nospec_uses_trampoline()) {
1885 			jit->seen |= SEEN_FUNC;
1886 			/* aghi %r1,tail_call_start */
1887 			EMIT4_IMM(0xa70b0000, REG_1, jit->tail_call_start);
1888 			/* brcl 0xf,__s390_indirect_jump_r1 */
1889 			EMIT6_PCREL_RILC_PTR(0xc0040000, 0xf,
1890 					     __s390_indirect_jump_r1);
1891 		} else {
1892 			/* bc 0xf,tail_call_start(%r1) */
1893 			_EMIT4(0x47f01000 + jit->tail_call_start);
1894 		}
1895 		/* out: */
1896 		if (jit->prg_buf) {
1897 			*(u16 *)(jit->prg_buf + patch_1_clrj + 2) =
1898 				(jit->prg - patch_1_clrj) >> 1;
1899 			*(u16 *)(jit->prg_buf + patch_2_clij + 2) =
1900 				(jit->prg - patch_2_clij) >> 1;
1901 			*(u16 *)(jit->prg_buf + patch_3_brc + 2) =
1902 				(jit->prg - patch_3_brc) >> 1;
1903 		}
1904 		break;
1905 	}
1906 	case BPF_JMP | BPF_EXIT: /* return b0 */
1907 		last = (i == fp->len - 1) ? 1 : 0;
1908 		if (last)
1909 			break;
1910 		if (!is_first_pass(jit) && can_use_rel(jit, jit->exit_ip))
1911 			/* brc 0xf, <exit> */
1912 			EMIT4_PCREL_RIC(0xa7040000, 0xf, jit->exit_ip);
1913 		else
1914 			/* brcl 0xf, <exit> */
1915 			EMIT6_PCREL_RILC(0xc0040000, 0xf, jit->exit_ip);
1916 		break;
1917 	/*
1918 	 * Branch relative (number of skipped instructions) to offset on
1919 	 * condition.
1920 	 *
1921 	 * Condition code to mask mapping:
1922 	 *
1923 	 * CC | Description	   | Mask
1924 	 * ------------------------------
1925 	 * 0  | Operands equal	   |	8
1926 	 * 1  | First operand low  |	4
1927 	 * 2  | First operand high |	2
1928 	 * 3  | Unused		   |	1
1929 	 *
1930 	 * For s390x relative branches: ip = ip + off_bytes
1931 	 * For BPF relative branches:	insn = insn + off_insns + 1
1932 	 *
1933 	 * For example for s390x with offset 0 we jump to the branch
1934 	 * instruction itself (loop) and for BPF with offset 0 we
1935 	 * branch to the instruction behind the branch.
1936 	 */
1937 	case BPF_JMP32 | BPF_JA: /* if (true) */
1938 		branch_oc_off = imm;
1939 		fallthrough;
1940 	case BPF_JMP | BPF_JA: /* if (true) */
1941 		mask = 0xf000; /* j */
1942 		goto branch_oc;
1943 	case BPF_JMP | BPF_JSGT | BPF_K: /* ((s64) dst > (s64) imm) */
1944 	case BPF_JMP32 | BPF_JSGT | BPF_K: /* ((s32) dst > (s32) imm) */
1945 		mask = 0x2000; /* jh */
1946 		goto branch_ks;
1947 	case BPF_JMP | BPF_JSLT | BPF_K: /* ((s64) dst < (s64) imm) */
1948 	case BPF_JMP32 | BPF_JSLT | BPF_K: /* ((s32) dst < (s32) imm) */
1949 		mask = 0x4000; /* jl */
1950 		goto branch_ks;
1951 	case BPF_JMP | BPF_JSGE | BPF_K: /* ((s64) dst >= (s64) imm) */
1952 	case BPF_JMP32 | BPF_JSGE | BPF_K: /* ((s32) dst >= (s32) imm) */
1953 		mask = 0xa000; /* jhe */
1954 		goto branch_ks;
1955 	case BPF_JMP | BPF_JSLE | BPF_K: /* ((s64) dst <= (s64) imm) */
1956 	case BPF_JMP32 | BPF_JSLE | BPF_K: /* ((s32) dst <= (s32) imm) */
1957 		mask = 0xc000; /* jle */
1958 		goto branch_ks;
1959 	case BPF_JMP | BPF_JGT | BPF_K: /* (dst_reg > imm) */
1960 	case BPF_JMP32 | BPF_JGT | BPF_K: /* ((u32) dst_reg > (u32) imm) */
1961 		mask = 0x2000; /* jh */
1962 		goto branch_ku;
1963 	case BPF_JMP | BPF_JLT | BPF_K: /* (dst_reg < imm) */
1964 	case BPF_JMP32 | BPF_JLT | BPF_K: /* ((u32) dst_reg < (u32) imm) */
1965 		mask = 0x4000; /* jl */
1966 		goto branch_ku;
1967 	case BPF_JMP | BPF_JGE | BPF_K: /* (dst_reg >= imm) */
1968 	case BPF_JMP32 | BPF_JGE | BPF_K: /* ((u32) dst_reg >= (u32) imm) */
1969 		mask = 0xa000; /* jhe */
1970 		goto branch_ku;
1971 	case BPF_JMP | BPF_JLE | BPF_K: /* (dst_reg <= imm) */
1972 	case BPF_JMP32 | BPF_JLE | BPF_K: /* ((u32) dst_reg <= (u32) imm) */
1973 		mask = 0xc000; /* jle */
1974 		goto branch_ku;
1975 	case BPF_JMP | BPF_JNE | BPF_K: /* (dst_reg != imm) */
1976 	case BPF_JMP32 | BPF_JNE | BPF_K: /* ((u32) dst_reg != (u32) imm) */
1977 		mask = 0x7000; /* jne */
1978 		goto branch_ku;
1979 	case BPF_JMP | BPF_JEQ | BPF_K: /* (dst_reg == imm) */
1980 	case BPF_JMP32 | BPF_JEQ | BPF_K: /* ((u32) dst_reg == (u32) imm) */
1981 		mask = 0x8000; /* je */
1982 		goto branch_ku;
1983 	case BPF_JMP | BPF_JSET | BPF_K: /* (dst_reg & imm) */
1984 	case BPF_JMP32 | BPF_JSET | BPF_K: /* ((u32) dst_reg & (u32) imm) */
1985 		mask = 0x7000; /* jnz */
1986 		if (BPF_CLASS(insn->code) == BPF_JMP32) {
1987 			/* llilf %w1,imm (load zero extend imm) */
1988 			EMIT6_IMM(0xc00f0000, REG_W1, imm);
1989 			/* nr %w1,%dst */
1990 			EMIT2(0x1400, REG_W1, dst_reg);
1991 		} else {
1992 			/* lgfi %w1,imm (load sign extend imm) */
1993 			EMIT6_IMM(0xc0010000, REG_W1, imm);
1994 			/* ngr %w1,%dst */
1995 			EMIT4(0xb9800000, REG_W1, dst_reg);
1996 		}
1997 		goto branch_oc;
1998 
1999 	case BPF_JMP | BPF_JSGT | BPF_X: /* ((s64) dst > (s64) src) */
2000 	case BPF_JMP32 | BPF_JSGT | BPF_X: /* ((s32) dst > (s32) src) */
2001 		mask = 0x2000; /* jh */
2002 		goto branch_xs;
2003 	case BPF_JMP | BPF_JSLT | BPF_X: /* ((s64) dst < (s64) src) */
2004 	case BPF_JMP32 | BPF_JSLT | BPF_X: /* ((s32) dst < (s32) src) */
2005 		mask = 0x4000; /* jl */
2006 		goto branch_xs;
2007 	case BPF_JMP | BPF_JSGE | BPF_X: /* ((s64) dst >= (s64) src) */
2008 	case BPF_JMP32 | BPF_JSGE | BPF_X: /* ((s32) dst >= (s32) src) */
2009 		mask = 0xa000; /* jhe */
2010 		goto branch_xs;
2011 	case BPF_JMP | BPF_JSLE | BPF_X: /* ((s64) dst <= (s64) src) */
2012 	case BPF_JMP32 | BPF_JSLE | BPF_X: /* ((s32) dst <= (s32) src) */
2013 		mask = 0xc000; /* jle */
2014 		goto branch_xs;
2015 	case BPF_JMP | BPF_JGT | BPF_X: /* (dst > src) */
2016 	case BPF_JMP32 | BPF_JGT | BPF_X: /* ((u32) dst > (u32) src) */
2017 		mask = 0x2000; /* jh */
2018 		goto branch_xu;
2019 	case BPF_JMP | BPF_JLT | BPF_X: /* (dst < src) */
2020 	case BPF_JMP32 | BPF_JLT | BPF_X: /* ((u32) dst < (u32) src) */
2021 		mask = 0x4000; /* jl */
2022 		goto branch_xu;
2023 	case BPF_JMP | BPF_JGE | BPF_X: /* (dst >= src) */
2024 	case BPF_JMP32 | BPF_JGE | BPF_X: /* ((u32) dst >= (u32) src) */
2025 		mask = 0xa000; /* jhe */
2026 		goto branch_xu;
2027 	case BPF_JMP | BPF_JLE | BPF_X: /* (dst <= src) */
2028 	case BPF_JMP32 | BPF_JLE | BPF_X: /* ((u32) dst <= (u32) src) */
2029 		mask = 0xc000; /* jle */
2030 		goto branch_xu;
2031 	case BPF_JMP | BPF_JNE | BPF_X: /* (dst != src) */
2032 	case BPF_JMP32 | BPF_JNE | BPF_X: /* ((u32) dst != (u32) src) */
2033 		mask = 0x7000; /* jne */
2034 		goto branch_xu;
2035 	case BPF_JMP | BPF_JEQ | BPF_X: /* (dst == src) */
2036 	case BPF_JMP32 | BPF_JEQ | BPF_X: /* ((u32) dst == (u32) src) */
2037 		mask = 0x8000; /* je */
2038 		goto branch_xu;
2039 	case BPF_JMP | BPF_JSET | BPF_X: /* (dst & src) */
2040 	case BPF_JMP32 | BPF_JSET | BPF_X: /* ((u32) dst & (u32) src) */
2041 	{
2042 		bool is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
2043 
2044 		mask = 0x7000; /* jnz */
2045 		/* nrk or ngrk %w1,%dst,%src */
2046 		EMIT4_RRF((is_jmp32 ? 0xb9f40000 : 0xb9e40000),
2047 			  REG_W1, dst_reg, src_reg);
2048 		goto branch_oc;
2049 branch_ks:
2050 		is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
2051 		/* cfi or cgfi %dst,imm */
2052 		EMIT6_IMM(is_jmp32 ? 0xc20d0000 : 0xc20c0000,
2053 			  dst_reg, imm);
2054 		if (!is_first_pass(jit) &&
2055 		    can_use_rel(jit, addrs[i + off + 1])) {
2056 			/* brc mask,off */
2057 			EMIT4_PCREL_RIC(0xa7040000,
2058 					mask >> 12, addrs[i + off + 1]);
2059 		} else {
2060 			/* brcl mask,off */
2061 			EMIT6_PCREL_RILC(0xc0040000,
2062 					 mask >> 12, addrs[i + off + 1]);
2063 		}
2064 		break;
2065 branch_ku:
2066 		/* lgfi %w1,imm (load sign extend imm) */
2067 		src_reg = REG_1;
2068 		EMIT6_IMM(0xc0010000, src_reg, imm);
2069 		goto branch_xu;
2070 branch_xs:
2071 		is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
2072 		if (!is_first_pass(jit) &&
2073 		    can_use_rel(jit, addrs[i + off + 1])) {
2074 			/* crj or cgrj %dst,%src,mask,off */
2075 			EMIT6_PCREL(0xec000000, (is_jmp32 ? 0x0076 : 0x0064),
2076 				    dst_reg, src_reg, i, off, mask);
2077 		} else {
2078 			/* cr or cgr %dst,%src */
2079 			if (is_jmp32)
2080 				EMIT2(0x1900, dst_reg, src_reg);
2081 			else
2082 				EMIT4(0xb9200000, dst_reg, src_reg);
2083 			/* brcl mask,off */
2084 			EMIT6_PCREL_RILC(0xc0040000,
2085 					 mask >> 12, addrs[i + off + 1]);
2086 		}
2087 		break;
2088 branch_xu:
2089 		is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
2090 		if (!is_first_pass(jit) &&
2091 		    can_use_rel(jit, addrs[i + off + 1])) {
2092 			/* clrj or clgrj %dst,%src,mask,off */
2093 			EMIT6_PCREL(0xec000000, (is_jmp32 ? 0x0077 : 0x0065),
2094 				    dst_reg, src_reg, i, off, mask);
2095 		} else {
2096 			/* clr or clgr %dst,%src */
2097 			if (is_jmp32)
2098 				EMIT2(0x1500, dst_reg, src_reg);
2099 			else
2100 				EMIT4(0xb9210000, dst_reg, src_reg);
2101 			/* brcl mask,off */
2102 			EMIT6_PCREL_RILC(0xc0040000,
2103 					 mask >> 12, addrs[i + off + 1]);
2104 		}
2105 		break;
2106 branch_oc:
2107 		if (!is_first_pass(jit) &&
2108 		    can_use_rel(jit, addrs[i + branch_oc_off + 1])) {
2109 			/* brc mask,off */
2110 			EMIT4_PCREL_RIC(0xa7040000,
2111 					mask >> 12,
2112 					addrs[i + branch_oc_off + 1]);
2113 		} else {
2114 			/* brcl mask,off */
2115 			EMIT6_PCREL_RILC(0xc0040000,
2116 					 mask >> 12,
2117 					 addrs[i + branch_oc_off + 1]);
2118 		}
2119 		break;
2120 	}
2121 	default: /* too complex, give up */
2122 		pr_err("Unknown opcode %02x\n", insn->code);
2123 		return -1;
2124 	}
2125 
2126 	return insn_count;
2127 }
2128 
2129 /*
2130  * Return whether new i-th instruction address does not violate any invariant
2131  */
2132 static bool bpf_is_new_addr_sane(struct bpf_jit *jit, int i)
2133 {
2134 	/* On the first pass anything goes */
2135 	if (is_first_pass(jit))
2136 		return true;
2137 
2138 	/* The codegen pass must not change anything */
2139 	if (is_codegen_pass(jit))
2140 		return jit->addrs[i] == jit->prg;
2141 
2142 	/* Passes in between must not increase code size */
2143 	return jit->addrs[i] >= jit->prg;
2144 }
2145 
2146 /*
2147  * Update the address of i-th instruction
2148  */
2149 static int bpf_set_addr(struct bpf_jit *jit, int i)
2150 {
2151 	int delta;
2152 
2153 	if (is_codegen_pass(jit)) {
2154 		delta = jit->prg - jit->addrs[i];
2155 		if (delta < 0)
2156 			bpf_skip(jit, -delta);
2157 	}
2158 	if (WARN_ON_ONCE(!bpf_is_new_addr_sane(jit, i)))
2159 		return -1;
2160 	jit->addrs[i] = jit->prg;
2161 	return 0;
2162 }
2163 
2164 /*
2165  * Compile eBPF program into s390x code
2166  */
2167 static int bpf_jit_prog(struct bpf_jit *jit, struct bpf_prog *fp,
2168 			bool extra_pass, u32 stack_depth)
2169 {
2170 	int i, insn_count, lit32_size, lit64_size;
2171 	u64 kern_arena;
2172 
2173 	jit->lit32 = jit->lit32_start;
2174 	jit->lit64 = jit->lit64_start;
2175 	jit->prg = 0;
2176 	jit->excnt = 0;
2177 
2178 	kern_arena = bpf_arena_get_kern_vm_start(fp->aux->arena);
2179 	if (kern_arena)
2180 		jit->kern_arena = _EMIT_CONST_U64(kern_arena);
2181 	jit->user_arena = bpf_arena_get_user_vm_start(fp->aux->arena);
2182 
2183 	bpf_jit_prologue(jit, fp, stack_depth);
2184 	if (bpf_set_addr(jit, 0) < 0)
2185 		return -1;
2186 	for (i = 0; i < fp->len; i += insn_count) {
2187 		insn_count = bpf_jit_insn(jit, fp, i, extra_pass, stack_depth);
2188 		if (insn_count < 0)
2189 			return -1;
2190 		/* Next instruction address */
2191 		if (bpf_set_addr(jit, i + insn_count) < 0)
2192 			return -1;
2193 	}
2194 	bpf_jit_epilogue(jit, stack_depth);
2195 
2196 	lit32_size = jit->lit32 - jit->lit32_start;
2197 	lit64_size = jit->lit64 - jit->lit64_start;
2198 	jit->lit32_start = jit->prg;
2199 	if (lit32_size)
2200 		jit->lit32_start = ALIGN(jit->lit32_start, 4);
2201 	jit->lit64_start = jit->lit32_start + lit32_size;
2202 	if (lit64_size)
2203 		jit->lit64_start = ALIGN(jit->lit64_start, 8);
2204 	jit->size = jit->lit64_start + lit64_size;
2205 	jit->size_prg = jit->prg;
2206 
2207 	if (WARN_ON_ONCE(fp->aux->extable &&
2208 			 jit->excnt != fp->aux->num_exentries))
2209 		/* Verifier bug - too many entries. */
2210 		return -1;
2211 
2212 	return 0;
2213 }
2214 
2215 bool bpf_jit_needs_zext(void)
2216 {
2217 	return true;
2218 }
2219 
2220 struct s390_jit_data {
2221 	struct bpf_binary_header *header;
2222 	struct bpf_jit ctx;
2223 	int pass;
2224 };
2225 
2226 static struct bpf_binary_header *bpf_jit_alloc(struct bpf_jit *jit,
2227 					       struct bpf_prog *fp)
2228 {
2229 	struct bpf_binary_header *header;
2230 	struct bpf_insn *insn;
2231 	u32 extable_size;
2232 	u32 code_size;
2233 	int i;
2234 
2235 	for (i = 0; i < fp->len; i++) {
2236 		insn = &fp->insnsi[i];
2237 
2238 		if (BPF_CLASS(insn->code) == BPF_STX &&
2239 		    BPF_MODE(insn->code) == BPF_PROBE_ATOMIC &&
2240 		    (BPF_SIZE(insn->code) == BPF_DW ||
2241 		     BPF_SIZE(insn->code) == BPF_W) &&
2242 		    insn->imm == BPF_XCHG)
2243 			/*
2244 			 * bpf_jit_insn() emits a load and a compare-and-swap,
2245 			 * both of which need to be probed.
2246 			 */
2247 			fp->aux->num_exentries += 1;
2248 	}
2249 	/* We need two entries per insn. */
2250 	fp->aux->num_exentries *= 2;
2251 
2252 	code_size = roundup(jit->size,
2253 			    __alignof__(struct exception_table_entry));
2254 	extable_size = fp->aux->num_exentries *
2255 		sizeof(struct exception_table_entry);
2256 	header = bpf_jit_binary_alloc(code_size + extable_size, &jit->prg_buf,
2257 				      8, jit_fill_hole);
2258 	if (!header)
2259 		return NULL;
2260 	fp->aux->extable = (struct exception_table_entry *)
2261 		(jit->prg_buf + code_size);
2262 	return header;
2263 }
2264 
2265 /*
2266  * Compile eBPF program "fp"
2267  */
2268 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *fp)
2269 {
2270 	u32 stack_depth = round_up(fp->aux->stack_depth, 8);
2271 	struct bpf_prog *tmp, *orig_fp = fp;
2272 	struct bpf_binary_header *header;
2273 	struct s390_jit_data *jit_data;
2274 	bool tmp_blinded = false;
2275 	bool extra_pass = false;
2276 	struct bpf_jit jit;
2277 	int pass;
2278 
2279 	if (!fp->jit_requested)
2280 		return orig_fp;
2281 
2282 	tmp = bpf_jit_blind_constants(fp);
2283 	/*
2284 	 * If blinding was requested and we failed during blinding,
2285 	 * we must fall back to the interpreter.
2286 	 */
2287 	if (IS_ERR(tmp))
2288 		return orig_fp;
2289 	if (tmp != fp) {
2290 		tmp_blinded = true;
2291 		fp = tmp;
2292 	}
2293 
2294 	jit_data = fp->aux->jit_data;
2295 	if (!jit_data) {
2296 		jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL);
2297 		if (!jit_data) {
2298 			fp = orig_fp;
2299 			goto out;
2300 		}
2301 		fp->aux->jit_data = jit_data;
2302 	}
2303 	if (jit_data->ctx.addrs) {
2304 		jit = jit_data->ctx;
2305 		header = jit_data->header;
2306 		extra_pass = true;
2307 		pass = jit_data->pass + 1;
2308 		goto skip_init_ctx;
2309 	}
2310 
2311 	memset(&jit, 0, sizeof(jit));
2312 	jit.addrs = kvcalloc(fp->len + 1, sizeof(*jit.addrs), GFP_KERNEL);
2313 	if (jit.addrs == NULL) {
2314 		fp = orig_fp;
2315 		goto free_addrs;
2316 	}
2317 	/*
2318 	 * Three initial passes:
2319 	 *   - 1/2: Determine clobbered registers
2320 	 *   - 3:   Calculate program size and addrs array
2321 	 */
2322 	for (pass = 1; pass <= 3; pass++) {
2323 		if (bpf_jit_prog(&jit, fp, extra_pass, stack_depth)) {
2324 			fp = orig_fp;
2325 			goto free_addrs;
2326 		}
2327 	}
2328 	/*
2329 	 * Final pass: Allocate and generate program
2330 	 */
2331 	header = bpf_jit_alloc(&jit, fp);
2332 	if (!header) {
2333 		fp = orig_fp;
2334 		goto free_addrs;
2335 	}
2336 skip_init_ctx:
2337 	if (bpf_jit_prog(&jit, fp, extra_pass, stack_depth)) {
2338 		bpf_jit_binary_free(header);
2339 		fp = orig_fp;
2340 		goto free_addrs;
2341 	}
2342 	if (bpf_jit_enable > 1) {
2343 		bpf_jit_dump(fp->len, jit.size, pass, jit.prg_buf);
2344 		print_fn_code(jit.prg_buf, jit.size_prg);
2345 	}
2346 	if (!fp->is_func || extra_pass) {
2347 		if (bpf_jit_binary_lock_ro(header)) {
2348 			bpf_jit_binary_free(header);
2349 			fp = orig_fp;
2350 			goto free_addrs;
2351 		}
2352 	} else {
2353 		jit_data->header = header;
2354 		jit_data->ctx = jit;
2355 		jit_data->pass = pass;
2356 	}
2357 	fp->bpf_func = (void *) jit.prg_buf;
2358 	fp->jited = 1;
2359 	fp->jited_len = jit.size;
2360 
2361 	if (!fp->is_func || extra_pass) {
2362 		bpf_prog_fill_jited_linfo(fp, jit.addrs + 1);
2363 free_addrs:
2364 		kvfree(jit.addrs);
2365 		kfree(jit_data);
2366 		fp->aux->jit_data = NULL;
2367 	}
2368 out:
2369 	if (tmp_blinded)
2370 		bpf_jit_prog_release_other(fp, fp == orig_fp ?
2371 					   tmp : orig_fp);
2372 	return fp;
2373 }
2374 
2375 bool bpf_jit_supports_kfunc_call(void)
2376 {
2377 	return true;
2378 }
2379 
2380 bool bpf_jit_supports_far_kfunc_call(void)
2381 {
2382 	return true;
2383 }
2384 
2385 int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
2386 		       void *old_addr, void *new_addr)
2387 {
2388 	struct bpf_plt expected_plt, current_plt, new_plt, *plt;
2389 	struct {
2390 		u16 opc;
2391 		s32 disp;
2392 	} __packed insn;
2393 	char *ret;
2394 	int err;
2395 
2396 	/* Verify the branch to be patched. */
2397 	err = copy_from_kernel_nofault(&insn, ip, sizeof(insn));
2398 	if (err < 0)
2399 		return err;
2400 	if (insn.opc != (0xc004 | (old_addr ? 0xf0 : 0)))
2401 		return -EINVAL;
2402 
2403 	if (t == BPF_MOD_JUMP &&
2404 	    insn.disp == ((char *)new_addr - (char *)ip) >> 1) {
2405 		/*
2406 		 * The branch already points to the destination,
2407 		 * there is no PLT.
2408 		 */
2409 	} else {
2410 		/* Verify the PLT. */
2411 		plt = ip + (insn.disp << 1);
2412 		err = copy_from_kernel_nofault(&current_plt, plt,
2413 					       sizeof(current_plt));
2414 		if (err < 0)
2415 			return err;
2416 		ret = (char *)ip + 6;
2417 		bpf_jit_plt(&expected_plt, ret, old_addr);
2418 		if (memcmp(&current_plt, &expected_plt, sizeof(current_plt)))
2419 			return -EINVAL;
2420 		/* Adjust the call address. */
2421 		bpf_jit_plt(&new_plt, ret, new_addr);
2422 		s390_kernel_write(&plt->target, &new_plt.target,
2423 				  sizeof(void *));
2424 	}
2425 
2426 	/* Adjust the mask of the branch. */
2427 	insn.opc = 0xc004 | (new_addr ? 0xf0 : 0);
2428 	s390_kernel_write((char *)ip + 1, (char *)&insn.opc + 1, 1);
2429 
2430 	/* Make the new code visible to the other CPUs. */
2431 	text_poke_sync_lock();
2432 
2433 	return 0;
2434 }
2435 
2436 struct bpf_tramp_jit {
2437 	struct bpf_jit common;
2438 	int orig_stack_args_off;/* Offset of arguments placed on stack by the
2439 				 * func_addr's original caller
2440 				 */
2441 	int stack_size;		/* Trampoline stack size */
2442 	int backchain_off;	/* Offset of backchain */
2443 	int stack_args_off;	/* Offset of stack arguments for calling
2444 				 * func_addr, has to be at the top
2445 				 */
2446 	int reg_args_off;	/* Offset of register arguments for calling
2447 				 * func_addr
2448 				 */
2449 	int ip_off;		/* For bpf_get_func_ip(), has to be at
2450 				 * (ctx - 16)
2451 				 */
2452 	int arg_cnt_off;	/* For bpf_get_func_arg_cnt(), has to be at
2453 				 * (ctx - 8)
2454 				 */
2455 	int bpf_args_off;	/* Offset of BPF_PROG context, which consists
2456 				 * of BPF arguments followed by return value
2457 				 */
2458 	int retval_off;		/* Offset of return value (see above) */
2459 	int r7_r8_off;		/* Offset of saved %r7 and %r8, which are used
2460 				 * for __bpf_prog_enter() return value and
2461 				 * func_addr respectively
2462 				 */
2463 	int run_ctx_off;	/* Offset of struct bpf_tramp_run_ctx */
2464 	int tccnt_off;		/* Offset of saved tailcall counter */
2465 	int r14_off;		/* Offset of saved %r14, has to be at the
2466 				 * bottom */
2467 	int do_fexit;		/* do_fexit: label */
2468 };
2469 
2470 static void load_imm64(struct bpf_jit *jit, int dst_reg, u64 val)
2471 {
2472 	/* llihf %dst_reg,val_hi */
2473 	EMIT6_IMM(0xc00e0000, dst_reg, (val >> 32));
2474 	/* oilf %rdst_reg,val_lo */
2475 	EMIT6_IMM(0xc00d0000, dst_reg, val);
2476 }
2477 
2478 static int invoke_bpf_prog(struct bpf_tramp_jit *tjit,
2479 			   const struct btf_func_model *m,
2480 			   struct bpf_tramp_link *tlink, bool save_ret)
2481 {
2482 	struct bpf_jit *jit = &tjit->common;
2483 	int cookie_off = tjit->run_ctx_off +
2484 			 offsetof(struct bpf_tramp_run_ctx, bpf_cookie);
2485 	struct bpf_prog *p = tlink->link.prog;
2486 	int patch;
2487 
2488 	/*
2489 	 * run_ctx.cookie = tlink->cookie;
2490 	 */
2491 
2492 	/* %r0 = tlink->cookie */
2493 	load_imm64(jit, REG_W0, tlink->cookie);
2494 	/* stg %r0,cookie_off(%r15) */
2495 	EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W0, REG_0, REG_15, cookie_off);
2496 
2497 	/*
2498 	 * if ((start = __bpf_prog_enter(p, &run_ctx)) == 0)
2499 	 *         goto skip;
2500 	 */
2501 
2502 	/* %r1 = __bpf_prog_enter */
2503 	load_imm64(jit, REG_1, (u64)bpf_trampoline_enter(p));
2504 	/* %r2 = p */
2505 	load_imm64(jit, REG_2, (u64)p);
2506 	/* la %r3,run_ctx_off(%r15) */
2507 	EMIT4_DISP(0x41000000, REG_3, REG_15, tjit->run_ctx_off);
2508 	/* %r1() */
2509 	call_r1(jit);
2510 	/* ltgr %r7,%r2 */
2511 	EMIT4(0xb9020000, REG_7, REG_2);
2512 	/* brcl 8,skip */
2513 	patch = jit->prg;
2514 	EMIT6_PCREL_RILC(0xc0040000, 8, 0);
2515 
2516 	/*
2517 	 * retval = bpf_func(args, p->insnsi);
2518 	 */
2519 
2520 	/* %r1 = p->bpf_func */
2521 	load_imm64(jit, REG_1, (u64)p->bpf_func);
2522 	/* la %r2,bpf_args_off(%r15) */
2523 	EMIT4_DISP(0x41000000, REG_2, REG_15, tjit->bpf_args_off);
2524 	/* %r3 = p->insnsi */
2525 	if (!p->jited)
2526 		load_imm64(jit, REG_3, (u64)p->insnsi);
2527 	/* %r1() */
2528 	call_r1(jit);
2529 	/* stg %r2,retval_off(%r15) */
2530 	if (save_ret) {
2531 		if (sign_extend(jit, REG_2, m->ret_size, m->ret_flags))
2532 			return -1;
2533 		EMIT6_DISP_LH(0xe3000000, 0x0024, REG_2, REG_0, REG_15,
2534 			      tjit->retval_off);
2535 	}
2536 
2537 	/* skip: */
2538 	if (jit->prg_buf)
2539 		*(u32 *)&jit->prg_buf[patch + 2] = (jit->prg - patch) >> 1;
2540 
2541 	/*
2542 	 * __bpf_prog_exit(p, start, &run_ctx);
2543 	 */
2544 
2545 	/* %r1 = __bpf_prog_exit */
2546 	load_imm64(jit, REG_1, (u64)bpf_trampoline_exit(p));
2547 	/* %r2 = p */
2548 	load_imm64(jit, REG_2, (u64)p);
2549 	/* lgr %r3,%r7 */
2550 	EMIT4(0xb9040000, REG_3, REG_7);
2551 	/* la %r4,run_ctx_off(%r15) */
2552 	EMIT4_DISP(0x41000000, REG_4, REG_15, tjit->run_ctx_off);
2553 	/* %r1() */
2554 	call_r1(jit);
2555 
2556 	return 0;
2557 }
2558 
2559 static int alloc_stack(struct bpf_tramp_jit *tjit, size_t size)
2560 {
2561 	int stack_offset = tjit->stack_size;
2562 
2563 	tjit->stack_size += size;
2564 	return stack_offset;
2565 }
2566 
2567 /* ABI uses %r2 - %r6 for parameter passing. */
2568 #define MAX_NR_REG_ARGS 5
2569 
2570 /* The "L" field of the "mvc" instruction is 8 bits. */
2571 #define MAX_MVC_SIZE 256
2572 #define MAX_NR_STACK_ARGS (MAX_MVC_SIZE / sizeof(u64))
2573 
2574 /* -mfentry generates a 6-byte nop on s390x. */
2575 #define S390X_PATCH_SIZE 6
2576 
2577 static int __arch_prepare_bpf_trampoline(struct bpf_tramp_image *im,
2578 					 struct bpf_tramp_jit *tjit,
2579 					 const struct btf_func_model *m,
2580 					 u32 flags,
2581 					 struct bpf_tramp_links *tlinks,
2582 					 void *func_addr)
2583 {
2584 	struct bpf_tramp_links *fmod_ret = &tlinks[BPF_TRAMP_MODIFY_RETURN];
2585 	struct bpf_tramp_links *fentry = &tlinks[BPF_TRAMP_FENTRY];
2586 	struct bpf_tramp_links *fexit = &tlinks[BPF_TRAMP_FEXIT];
2587 	int nr_bpf_args, nr_reg_args, nr_stack_args;
2588 	struct bpf_jit *jit = &tjit->common;
2589 	int arg, bpf_arg_off;
2590 	int i, j;
2591 
2592 	/* Support as many stack arguments as "mvc" instruction can handle. */
2593 	nr_reg_args = min_t(int, m->nr_args, MAX_NR_REG_ARGS);
2594 	nr_stack_args = m->nr_args - nr_reg_args;
2595 	if (nr_stack_args > MAX_NR_STACK_ARGS)
2596 		return -ENOTSUPP;
2597 
2598 	/* Return to %r14 in the struct_ops case. */
2599 	if (flags & BPF_TRAMP_F_INDIRECT)
2600 		flags |= BPF_TRAMP_F_SKIP_FRAME;
2601 
2602 	/*
2603 	 * Compute how many arguments we need to pass to BPF programs.
2604 	 * BPF ABI mirrors that of x86_64: arguments that are 16 bytes or
2605 	 * smaller are packed into 1 or 2 registers; larger arguments are
2606 	 * passed via pointers.
2607 	 * In s390x ABI, arguments that are 8 bytes or smaller are packed into
2608 	 * a register; larger arguments are passed via pointers.
2609 	 * We need to deal with this difference.
2610 	 */
2611 	nr_bpf_args = 0;
2612 	for (i = 0; i < m->nr_args; i++) {
2613 		if (m->arg_size[i] <= 8)
2614 			nr_bpf_args += 1;
2615 		else if (m->arg_size[i] <= 16)
2616 			nr_bpf_args += 2;
2617 		else
2618 			return -ENOTSUPP;
2619 	}
2620 
2621 	/*
2622 	 * Calculate the stack layout.
2623 	 */
2624 
2625 	/*
2626 	 * Allocate STACK_FRAME_OVERHEAD bytes for the callees. As the s390x
2627 	 * ABI requires, put our backchain at the end of the allocated memory.
2628 	 */
2629 	tjit->stack_size = STACK_FRAME_OVERHEAD;
2630 	tjit->backchain_off = tjit->stack_size - sizeof(u64);
2631 	tjit->stack_args_off = alloc_stack(tjit, nr_stack_args * sizeof(u64));
2632 	tjit->reg_args_off = alloc_stack(tjit, nr_reg_args * sizeof(u64));
2633 	tjit->ip_off = alloc_stack(tjit, sizeof(u64));
2634 	tjit->arg_cnt_off = alloc_stack(tjit, sizeof(u64));
2635 	tjit->bpf_args_off = alloc_stack(tjit, nr_bpf_args * sizeof(u64));
2636 	tjit->retval_off = alloc_stack(tjit, sizeof(u64));
2637 	tjit->r7_r8_off = alloc_stack(tjit, 2 * sizeof(u64));
2638 	tjit->run_ctx_off = alloc_stack(tjit,
2639 					sizeof(struct bpf_tramp_run_ctx));
2640 	tjit->tccnt_off = alloc_stack(tjit, sizeof(u64));
2641 	tjit->r14_off = alloc_stack(tjit, sizeof(u64) * 2);
2642 	/*
2643 	 * In accordance with the s390x ABI, the caller has allocated
2644 	 * STACK_FRAME_OVERHEAD bytes for us. 8 of them contain the caller's
2645 	 * backchain, and the rest we can use.
2646 	 */
2647 	tjit->stack_size -= STACK_FRAME_OVERHEAD - sizeof(u64);
2648 	tjit->orig_stack_args_off = tjit->stack_size + STACK_FRAME_OVERHEAD;
2649 
2650 	/* lgr %r1,%r15 */
2651 	EMIT4(0xb9040000, REG_1, REG_15);
2652 	/* aghi %r15,-stack_size */
2653 	EMIT4_IMM(0xa70b0000, REG_15, -tjit->stack_size);
2654 	/* stg %r1,backchain_off(%r15) */
2655 	EMIT6_DISP_LH(0xe3000000, 0x0024, REG_1, REG_0, REG_15,
2656 		      tjit->backchain_off);
2657 	/* mvc tccnt_off(4,%r15),stack_size+STK_OFF_TCCNT(%r15) */
2658 	_EMIT6(0xd203f000 | tjit->tccnt_off,
2659 	       0xf000 | (tjit->stack_size + STK_OFF_TCCNT));
2660 	/* stmg %r2,%rN,fwd_reg_args_off(%r15) */
2661 	if (nr_reg_args)
2662 		EMIT6_DISP_LH(0xeb000000, 0x0024, REG_2,
2663 			      REG_2 + (nr_reg_args - 1), REG_15,
2664 			      tjit->reg_args_off);
2665 	for (i = 0, j = 0; i < m->nr_args; i++) {
2666 		if (i < MAX_NR_REG_ARGS)
2667 			arg = REG_2 + i;
2668 		else
2669 			arg = tjit->orig_stack_args_off +
2670 			      (i - MAX_NR_REG_ARGS) * sizeof(u64);
2671 		bpf_arg_off = tjit->bpf_args_off + j * sizeof(u64);
2672 		if (m->arg_size[i] <= 8) {
2673 			if (i < MAX_NR_REG_ARGS)
2674 				/* stg %arg,bpf_arg_off(%r15) */
2675 				EMIT6_DISP_LH(0xe3000000, 0x0024, arg,
2676 					      REG_0, REG_15, bpf_arg_off);
2677 			else
2678 				/* mvc bpf_arg_off(8,%r15),arg(%r15) */
2679 				_EMIT6(0xd207f000 | bpf_arg_off,
2680 				       0xf000 | arg);
2681 			j += 1;
2682 		} else {
2683 			if (i < MAX_NR_REG_ARGS) {
2684 				/* mvc bpf_arg_off(16,%r15),0(%arg) */
2685 				_EMIT6(0xd20ff000 | bpf_arg_off,
2686 				       reg2hex[arg] << 12);
2687 			} else {
2688 				/* lg %r1,arg(%r15) */
2689 				EMIT6_DISP_LH(0xe3000000, 0x0004, REG_1, REG_0,
2690 					      REG_15, arg);
2691 				/* mvc bpf_arg_off(16,%r15),0(%r1) */
2692 				_EMIT6(0xd20ff000 | bpf_arg_off, 0x1000);
2693 			}
2694 			j += 2;
2695 		}
2696 	}
2697 	/* stmg %r7,%r8,r7_r8_off(%r15) */
2698 	EMIT6_DISP_LH(0xeb000000, 0x0024, REG_7, REG_8, REG_15,
2699 		      tjit->r7_r8_off);
2700 	/* stg %r14,r14_off(%r15) */
2701 	EMIT6_DISP_LH(0xe3000000, 0x0024, REG_14, REG_0, REG_15, tjit->r14_off);
2702 
2703 	if (flags & BPF_TRAMP_F_ORIG_STACK) {
2704 		/*
2705 		 * The ftrace trampoline puts the return address (which is the
2706 		 * address of the original function + S390X_PATCH_SIZE) into
2707 		 * %r0; see ftrace_shared_hotpatch_trampoline_br and
2708 		 * ftrace_init_nop() for details.
2709 		 */
2710 
2711 		/* lgr %r8,%r0 */
2712 		EMIT4(0xb9040000, REG_8, REG_0);
2713 	} else {
2714 		/* %r8 = func_addr + S390X_PATCH_SIZE */
2715 		load_imm64(jit, REG_8, (u64)func_addr + S390X_PATCH_SIZE);
2716 	}
2717 
2718 	/*
2719 	 * ip = func_addr;
2720 	 * arg_cnt = m->nr_args;
2721 	 */
2722 
2723 	if (flags & BPF_TRAMP_F_IP_ARG) {
2724 		/* %r0 = func_addr */
2725 		load_imm64(jit, REG_0, (u64)func_addr);
2726 		/* stg %r0,ip_off(%r15) */
2727 		EMIT6_DISP_LH(0xe3000000, 0x0024, REG_0, REG_0, REG_15,
2728 			      tjit->ip_off);
2729 	}
2730 	/* lghi %r0,nr_bpf_args */
2731 	EMIT4_IMM(0xa7090000, REG_0, nr_bpf_args);
2732 	/* stg %r0,arg_cnt_off(%r15) */
2733 	EMIT6_DISP_LH(0xe3000000, 0x0024, REG_0, REG_0, REG_15,
2734 		      tjit->arg_cnt_off);
2735 
2736 	if (flags & BPF_TRAMP_F_CALL_ORIG) {
2737 		/*
2738 		 * __bpf_tramp_enter(im);
2739 		 */
2740 
2741 		/* %r1 = __bpf_tramp_enter */
2742 		load_imm64(jit, REG_1, (u64)__bpf_tramp_enter);
2743 		/* %r2 = im */
2744 		load_imm64(jit, REG_2, (u64)im);
2745 		/* %r1() */
2746 		call_r1(jit);
2747 	}
2748 
2749 	for (i = 0; i < fentry->nr_links; i++)
2750 		if (invoke_bpf_prog(tjit, m, fentry->links[i],
2751 				    flags & BPF_TRAMP_F_RET_FENTRY_RET))
2752 			return -EINVAL;
2753 
2754 	if (fmod_ret->nr_links) {
2755 		/*
2756 		 * retval = 0;
2757 		 */
2758 
2759 		/* xc retval_off(8,%r15),retval_off(%r15) */
2760 		_EMIT6(0xd707f000 | tjit->retval_off,
2761 		       0xf000 | tjit->retval_off);
2762 
2763 		for (i = 0; i < fmod_ret->nr_links; i++) {
2764 			if (invoke_bpf_prog(tjit, m, fmod_ret->links[i], true))
2765 				return -EINVAL;
2766 
2767 			/*
2768 			 * if (retval)
2769 			 *         goto do_fexit;
2770 			 */
2771 
2772 			/* ltg %r0,retval_off(%r15) */
2773 			EMIT6_DISP_LH(0xe3000000, 0x0002, REG_0, REG_0, REG_15,
2774 				      tjit->retval_off);
2775 			/* brcl 7,do_fexit */
2776 			EMIT6_PCREL_RILC(0xc0040000, 7, tjit->do_fexit);
2777 		}
2778 	}
2779 
2780 	if (flags & BPF_TRAMP_F_CALL_ORIG) {
2781 		/*
2782 		 * retval = func_addr(args);
2783 		 */
2784 
2785 		/* lmg %r2,%rN,reg_args_off(%r15) */
2786 		if (nr_reg_args)
2787 			EMIT6_DISP_LH(0xeb000000, 0x0004, REG_2,
2788 				      REG_2 + (nr_reg_args - 1), REG_15,
2789 				      tjit->reg_args_off);
2790 		/* mvc stack_args_off(N,%r15),orig_stack_args_off(%r15) */
2791 		if (nr_stack_args)
2792 			_EMIT6(0xd200f000 |
2793 				       (nr_stack_args * sizeof(u64) - 1) << 16 |
2794 				       tjit->stack_args_off,
2795 			       0xf000 | tjit->orig_stack_args_off);
2796 		/* mvc STK_OFF_TCCNT(4,%r15),tccnt_off(%r15) */
2797 		_EMIT6(0xd203f000 | STK_OFF_TCCNT, 0xf000 | tjit->tccnt_off);
2798 		/* lgr %r1,%r8 */
2799 		EMIT4(0xb9040000, REG_1, REG_8);
2800 		/* %r1() */
2801 		call_r1(jit);
2802 		/* stg %r2,retval_off(%r15) */
2803 		EMIT6_DISP_LH(0xe3000000, 0x0024, REG_2, REG_0, REG_15,
2804 			      tjit->retval_off);
2805 
2806 		im->ip_after_call = jit->prg_buf + jit->prg;
2807 
2808 		/*
2809 		 * The following nop will be patched by bpf_tramp_image_put().
2810 		 */
2811 
2812 		/* brcl 0,im->ip_epilogue */
2813 		EMIT6_PCREL_RILC(0xc0040000, 0, (u64)im->ip_epilogue);
2814 	}
2815 
2816 	/* do_fexit: */
2817 	tjit->do_fexit = jit->prg;
2818 	for (i = 0; i < fexit->nr_links; i++)
2819 		if (invoke_bpf_prog(tjit, m, fexit->links[i], false))
2820 			return -EINVAL;
2821 
2822 	if (flags & BPF_TRAMP_F_CALL_ORIG) {
2823 		im->ip_epilogue = jit->prg_buf + jit->prg;
2824 
2825 		/*
2826 		 * __bpf_tramp_exit(im);
2827 		 */
2828 
2829 		/* %r1 = __bpf_tramp_exit */
2830 		load_imm64(jit, REG_1, (u64)__bpf_tramp_exit);
2831 		/* %r2 = im */
2832 		load_imm64(jit, REG_2, (u64)im);
2833 		/* %r1() */
2834 		call_r1(jit);
2835 	}
2836 
2837 	/* lmg %r2,%rN,reg_args_off(%r15) */
2838 	if ((flags & BPF_TRAMP_F_RESTORE_REGS) && nr_reg_args)
2839 		EMIT6_DISP_LH(0xeb000000, 0x0004, REG_2,
2840 			      REG_2 + (nr_reg_args - 1), REG_15,
2841 			      tjit->reg_args_off);
2842 	/* lgr %r1,%r8 */
2843 	if (!(flags & BPF_TRAMP_F_SKIP_FRAME))
2844 		EMIT4(0xb9040000, REG_1, REG_8);
2845 	/* lmg %r7,%r8,r7_r8_off(%r15) */
2846 	EMIT6_DISP_LH(0xeb000000, 0x0004, REG_7, REG_8, REG_15,
2847 		      tjit->r7_r8_off);
2848 	/* lg %r14,r14_off(%r15) */
2849 	EMIT6_DISP_LH(0xe3000000, 0x0004, REG_14, REG_0, REG_15, tjit->r14_off);
2850 	/* lg %r2,retval_off(%r15) */
2851 	if (flags & (BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_RET_FENTRY_RET))
2852 		EMIT6_DISP_LH(0xe3000000, 0x0004, REG_2, REG_0, REG_15,
2853 			      tjit->retval_off);
2854 	/* mvc stack_size+STK_OFF_TCCNT(4,%r15),tccnt_off(%r15) */
2855 	_EMIT6(0xd203f000 | (tjit->stack_size + STK_OFF_TCCNT),
2856 	       0xf000 | tjit->tccnt_off);
2857 	/* aghi %r15,stack_size */
2858 	EMIT4_IMM(0xa70b0000, REG_15, tjit->stack_size);
2859 	if (flags & BPF_TRAMP_F_SKIP_FRAME)
2860 		EMIT_JUMP_REG(14);
2861 	else
2862 		EMIT_JUMP_REG(1);
2863 
2864 	return 0;
2865 }
2866 
2867 int arch_bpf_trampoline_size(const struct btf_func_model *m, u32 flags,
2868 			     struct bpf_tramp_links *tlinks, void *orig_call)
2869 {
2870 	struct bpf_tramp_image im;
2871 	struct bpf_tramp_jit tjit;
2872 	int ret;
2873 
2874 	memset(&tjit, 0, sizeof(tjit));
2875 
2876 	ret = __arch_prepare_bpf_trampoline(&im, &tjit, m, flags,
2877 					    tlinks, orig_call);
2878 
2879 	return ret < 0 ? ret : tjit.common.prg;
2880 }
2881 
2882 int arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *image,
2883 				void *image_end, const struct btf_func_model *m,
2884 				u32 flags, struct bpf_tramp_links *tlinks,
2885 				void *func_addr)
2886 {
2887 	struct bpf_tramp_jit tjit;
2888 	int ret;
2889 
2890 	/* Compute offsets, check whether the code fits. */
2891 	memset(&tjit, 0, sizeof(tjit));
2892 	ret = __arch_prepare_bpf_trampoline(im, &tjit, m, flags,
2893 					    tlinks, func_addr);
2894 
2895 	if (ret < 0)
2896 		return ret;
2897 	if (tjit.common.prg > (char *)image_end - (char *)image)
2898 		/*
2899 		 * Use the same error code as for exceeding
2900 		 * BPF_MAX_TRAMP_LINKS.
2901 		 */
2902 		return -E2BIG;
2903 
2904 	tjit.common.prg = 0;
2905 	tjit.common.prg_buf = image;
2906 	ret = __arch_prepare_bpf_trampoline(im, &tjit, m, flags,
2907 					    tlinks, func_addr);
2908 
2909 	return ret < 0 ? ret : tjit.common.prg;
2910 }
2911 
2912 bool bpf_jit_supports_subprog_tailcalls(void)
2913 {
2914 	return true;
2915 }
2916 
2917 bool bpf_jit_supports_arena(void)
2918 {
2919 	return true;
2920 }
2921 
2922 bool bpf_jit_supports_insn(struct bpf_insn *insn, bool in_arena)
2923 {
2924 	if (!in_arena)
2925 		return true;
2926 	switch (insn->code) {
2927 	case BPF_STX | BPF_ATOMIC | BPF_B:
2928 	case BPF_STX | BPF_ATOMIC | BPF_H:
2929 	case BPF_STX | BPF_ATOMIC | BPF_W:
2930 	case BPF_STX | BPF_ATOMIC | BPF_DW:
2931 		if (bpf_atomic_is_load_store(insn))
2932 			return false;
2933 	}
2934 	return true;
2935 }
2936 
2937 bool bpf_jit_supports_exceptions(void)
2938 {
2939 	/*
2940 	 * Exceptions require unwinding support, which is always available,
2941 	 * because the kernel is always built with backchain.
2942 	 */
2943 	return true;
2944 }
2945 
2946 void arch_bpf_stack_walk(bool (*consume_fn)(void *, u64, u64, u64),
2947 			 void *cookie)
2948 {
2949 	unsigned long addr, prev_addr = 0;
2950 	struct unwind_state state;
2951 
2952 	unwind_for_each_frame(&state, NULL, NULL, 0) {
2953 		addr = unwind_get_return_address(&state);
2954 		if (!addr)
2955 			break;
2956 		/*
2957 		 * addr is a return address and state.sp is the value of %r15
2958 		 * at this address. exception_cb needs %r15 at entry to the
2959 		 * function containing addr, so take the next state.sp.
2960 		 *
2961 		 * There is no bp, and the exception_cb prog does not need one
2962 		 * to perform a quasi-longjmp. The common code requires a
2963 		 * non-zero bp, so pass sp there as well.
2964 		 */
2965 		if (prev_addr && !consume_fn(cookie, prev_addr, state.sp,
2966 					     state.sp))
2967 			break;
2968 		prev_addr = addr;
2969 	}
2970 }
2971