xref: /freebsd/crypto/openssl/providers/implementations/kdfs/tls1_prf.c (revision f25b8c9fb4f58cf61adb47d7570abe7caa6d385d)
1 /*
2  * Copyright 2016-2026 The OpenSSL Project Authors. All Rights Reserved.
3  *
4  * Licensed under the Apache License 2.0 (the "License").  You may not use
5  * this file except in compliance with the License.  You can obtain a copy
6  * in the file LICENSE in the source distribution or at
7  * https://www.openssl.org/source/license.html
8  */
9 
10 /*
11  * Refer to "The TLS Protocol Version 1.0" Section 5
12  * (https://tools.ietf.org/html/rfc2246#section-5) and
13  * "The Transport Layer Security (TLS) Protocol Version 1.2" Section 5
14  * (https://tools.ietf.org/html/rfc5246#section-5).
15  *
16  * For TLS v1.0 and TLS v1.1 the TLS PRF algorithm is given by:
17  *
18  *   PRF(secret, label, seed) = P_MD5(S1, label + seed) XOR
19  *                              P_SHA-1(S2, label + seed)
20  *
21  * where P_MD5 and P_SHA-1 are defined by P_<hash>, below, and S1 and S2 are
22  * two halves of the secret (with the possibility of one shared byte, in the
23  * case where the length of the original secret is odd).  S1 is taken from the
24  * first half of the secret, S2 from the second half.
25  *
26  * For TLS v1.2 the TLS PRF algorithm is given by:
27  *
28  *   PRF(secret, label, seed) = P_<hash>(secret, label + seed)
29  *
30  * where hash is SHA-256 for all cipher suites defined in RFC 5246 as well as
31  * those published prior to TLS v1.2 while the TLS v1.2 protocol is in effect,
32  * unless defined otherwise by the cipher suite.
33  *
34  * P_<hash> is an expansion function that uses a single hash function to expand
35  * a secret and seed into an arbitrary quantity of output:
36  *
37  *   P_<hash>(secret, seed) = HMAC_<hash>(secret, A(1) + seed) +
38  *                            HMAC_<hash>(secret, A(2) + seed) +
39  *                            HMAC_<hash>(secret, A(3) + seed) + ...
40  *
41  * where + indicates concatenation.  P_<hash> can be iterated as many times as
42  * is necessary to produce the required quantity of data.
43  *
44  * A(i) is defined as:
45  *     A(0) = seed
46  *     A(i) = HMAC_<hash>(secret, A(i-1))
47  */
48 
49 /*
50  * Low level APIs (such as DH) are deprecated for public use, but still ok for
51  * internal use.
52  */
53 #include "internal/deprecated.h"
54 
55 #include <stdio.h>
56 #include <stdarg.h>
57 #include <string.h>
58 #include <openssl/evp.h>
59 #include <openssl/kdf.h>
60 #include <openssl/core_names.h>
61 #include <openssl/params.h>
62 #include <openssl/proverr.h>
63 #include "internal/cryptlib.h"
64 #include "internal/numbers.h"
65 #include "crypto/evp.h"
66 #include "prov/provider_ctx.h"
67 #include "prov/providercommon.h"
68 #include "prov/implementations.h"
69 #include "prov/provider_util.h"
70 #include "prov/securitycheck.h"
71 #include "internal/e_os.h"
72 #include "internal/safe_math.h"
73 
74 OSSL_SAFE_MATH_UNSIGNED(size_t, size_t)
75 
76 static OSSL_FUNC_kdf_newctx_fn kdf_tls1_prf_new;
77 static OSSL_FUNC_kdf_dupctx_fn kdf_tls1_prf_dup;
78 static OSSL_FUNC_kdf_freectx_fn kdf_tls1_prf_free;
79 static OSSL_FUNC_kdf_reset_fn kdf_tls1_prf_reset;
80 static OSSL_FUNC_kdf_derive_fn kdf_tls1_prf_derive;
81 static OSSL_FUNC_kdf_settable_ctx_params_fn kdf_tls1_prf_settable_ctx_params;
82 static OSSL_FUNC_kdf_set_ctx_params_fn kdf_tls1_prf_set_ctx_params;
83 static OSSL_FUNC_kdf_gettable_ctx_params_fn kdf_tls1_prf_gettable_ctx_params;
84 static OSSL_FUNC_kdf_get_ctx_params_fn kdf_tls1_prf_get_ctx_params;
85 
86 static int tls1_prf_alg(EVP_MAC_CTX *mdctx, EVP_MAC_CTX *sha1ctx,
87     const unsigned char *sec, size_t slen,
88     const unsigned char *seed, size_t seed_len,
89     unsigned char *out, size_t olen);
90 
91 #define TLS_MD_MASTER_SECRET_CONST "\x6d\x61\x73\x74\x65\x72\x20\x73\x65\x63\x72\x65\x74"
92 #define TLS_MD_MASTER_SECRET_CONST_SIZE 13
93 
94 /* TLS KDF kdf context structure */
95 typedef struct {
96     void *provctx;
97 
98     /* MAC context for the main digest */
99     EVP_MAC_CTX *P_hash;
100     /* MAC context for SHA1 for the MD5/SHA-1 combined PRF */
101     EVP_MAC_CTX *P_sha1;
102 
103     /* Secret value to use for PRF */
104     unsigned char *sec;
105     size_t seclen;
106     /* Concatenated seed data */
107     unsigned char *seed;
108     size_t seedlen;
109 
110     OSSL_FIPS_IND_DECLARE
111 } TLS1_PRF;
112 
kdf_tls1_prf_new(void * provctx)113 static void *kdf_tls1_prf_new(void *provctx)
114 {
115     TLS1_PRF *ctx;
116 
117     if (!ossl_prov_is_running())
118         return NULL;
119 
120     if ((ctx = OPENSSL_zalloc(sizeof(*ctx))) != NULL) {
121         ctx->provctx = provctx;
122         OSSL_FIPS_IND_INIT(ctx)
123     }
124     return ctx;
125 }
126 
kdf_tls1_prf_free(void * vctx)127 static void kdf_tls1_prf_free(void *vctx)
128 {
129     TLS1_PRF *ctx = (TLS1_PRF *)vctx;
130 
131     if (ctx != NULL) {
132         kdf_tls1_prf_reset(ctx);
133         OPENSSL_free(ctx);
134     }
135 }
136 
kdf_tls1_prf_reset(void * vctx)137 static void kdf_tls1_prf_reset(void *vctx)
138 {
139     TLS1_PRF *ctx = (TLS1_PRF *)vctx;
140     void *provctx = ctx->provctx;
141 
142     EVP_MAC_CTX_free(ctx->P_hash);
143     EVP_MAC_CTX_free(ctx->P_sha1);
144     OPENSSL_clear_free(ctx->sec, ctx->seclen);
145     OPENSSL_clear_free(ctx->seed, ctx->seedlen);
146     memset(ctx, 0, sizeof(*ctx));
147     ctx->provctx = provctx;
148 }
149 
kdf_tls1_prf_dup(void * vctx)150 static void *kdf_tls1_prf_dup(void *vctx)
151 {
152     const TLS1_PRF *src = (const TLS1_PRF *)vctx;
153     TLS1_PRF *dest;
154 
155     dest = kdf_tls1_prf_new(src->provctx);
156     if (dest != NULL) {
157         if (src->P_hash != NULL
158             && (dest->P_hash = EVP_MAC_CTX_dup(src->P_hash)) == NULL)
159             goto err;
160         if (src->P_sha1 != NULL
161             && (dest->P_sha1 = EVP_MAC_CTX_dup(src->P_sha1)) == NULL)
162             goto err;
163         if (!ossl_prov_memdup(src->sec, src->seclen, &dest->sec, &dest->seclen))
164             goto err;
165         if (!ossl_prov_memdup(src->seed, src->seedlen, &dest->seed,
166                 &dest->seedlen))
167             goto err;
168         OSSL_FIPS_IND_COPY(dest, src)
169     }
170     return dest;
171 
172 err:
173     kdf_tls1_prf_free(dest);
174     return NULL;
175 }
176 
177 #ifdef FIPS_MODULE
178 
fips_ems_check_passed(TLS1_PRF * ctx)179 static int fips_ems_check_passed(TLS1_PRF *ctx)
180 {
181     OSSL_LIB_CTX *libctx = PROV_LIBCTX_OF(ctx->provctx);
182     /*
183      * Check that TLS is using EMS.
184      *
185      * The seed buffer is prepended with a label.
186      * If EMS mode is enforced then the label "master secret" is not allowed,
187      * We do the check this way since the PRF is used for other purposes, as well
188      * as "extended master secret".
189      */
190     int ems_approved = (ctx->seedlen < TLS_MD_MASTER_SECRET_CONST_SIZE
191         || memcmp(ctx->seed, TLS_MD_MASTER_SECRET_CONST,
192                TLS_MD_MASTER_SECRET_CONST_SIZE)
193             != 0);
194 
195     if (!ems_approved) {
196         if (!OSSL_FIPS_IND_ON_UNAPPROVED(ctx, OSSL_FIPS_IND_SETTABLE0,
197                 libctx, "TLS_PRF", "EMS",
198                 ossl_fips_config_tls1_prf_ems_check)) {
199             ERR_raise(ERR_LIB_PROV, PROV_R_EMS_NOT_ENABLED);
200             return 0;
201         }
202     }
203     return 1;
204 }
205 
fips_digest_check_passed(TLS1_PRF * ctx,const EVP_MD * md)206 static int fips_digest_check_passed(TLS1_PRF *ctx, const EVP_MD *md)
207 {
208     OSSL_LIB_CTX *libctx = PROV_LIBCTX_OF(ctx->provctx);
209     /*
210      * Perform digest check
211      *
212      * According to NIST SP 800-135r1 section 5.2, the valid hash functions are
213      * specified in FIPS 180-3. ACVP also only lists the same set of hash
214      * functions.
215      */
216     int digest_unapproved = !EVP_MD_is_a(md, SN_sha256)
217         && !EVP_MD_is_a(md, SN_sha384)
218         && !EVP_MD_is_a(md, SN_sha512);
219 
220     if (digest_unapproved) {
221         if (!OSSL_FIPS_IND_ON_UNAPPROVED(ctx, OSSL_FIPS_IND_SETTABLE1,
222                 libctx, "TLS_PRF", "Digest",
223                 ossl_fips_config_tls1_prf_digest_check)) {
224             ERR_raise(ERR_LIB_PROV, PROV_R_DIGEST_NOT_ALLOWED);
225             return 0;
226         }
227     }
228     return 1;
229 }
230 
fips_key_check_passed(TLS1_PRF * ctx)231 static int fips_key_check_passed(TLS1_PRF *ctx)
232 {
233     OSSL_LIB_CTX *libctx = PROV_LIBCTX_OF(ctx->provctx);
234     int key_approved = ossl_kdf_check_key_size(ctx->seclen);
235 
236     if (!key_approved) {
237         if (!OSSL_FIPS_IND_ON_UNAPPROVED(ctx, OSSL_FIPS_IND_SETTABLE2,
238                 libctx, "TLS_PRF", "Key size",
239                 ossl_fips_config_tls1_prf_key_check)) {
240             ERR_raise(ERR_LIB_PROV, PROV_R_INVALID_KEY_LENGTH);
241             return 0;
242         }
243     }
244     return 1;
245 }
246 #endif
247 
kdf_tls1_prf_derive(void * vctx,unsigned char * key,size_t keylen,const OSSL_PARAM params[])248 static int kdf_tls1_prf_derive(void *vctx, unsigned char *key, size_t keylen,
249     const OSSL_PARAM params[])
250 {
251     TLS1_PRF *ctx = (TLS1_PRF *)vctx;
252 
253     if (!ossl_prov_is_running() || !kdf_tls1_prf_set_ctx_params(ctx, params))
254         return 0;
255 
256     if (ctx->P_hash == NULL) {
257         ERR_raise(ERR_LIB_PROV, PROV_R_MISSING_MESSAGE_DIGEST);
258         return 0;
259     }
260     if (ctx->sec == NULL) {
261         ERR_raise(ERR_LIB_PROV, PROV_R_MISSING_SECRET);
262         return 0;
263     }
264     if (ctx->seedlen == 0) {
265         ERR_raise(ERR_LIB_PROV, PROV_R_MISSING_SEED);
266         return 0;
267     }
268     if (keylen == 0) {
269         ERR_raise(ERR_LIB_PROV, PROV_R_INVALID_KEY_LENGTH);
270         return 0;
271     }
272 
273 #ifdef FIPS_MODULE
274     if (!fips_ems_check_passed(ctx))
275         return 0;
276 #endif
277 
278     return tls1_prf_alg(ctx->P_hash, ctx->P_sha1,
279         ctx->sec, ctx->seclen,
280         ctx->seed, ctx->seedlen,
281         key, keylen);
282 }
283 
kdf_tls1_prf_set_ctx_params(void * vctx,const OSSL_PARAM params[])284 static int kdf_tls1_prf_set_ctx_params(void *vctx, const OSSL_PARAM params[])
285 {
286     const OSSL_PARAM *p;
287     TLS1_PRF *ctx = vctx;
288     OSSL_LIB_CTX *libctx = PROV_LIBCTX_OF(ctx->provctx);
289 
290     if (ossl_param_is_empty(params))
291         return 1;
292 
293     if (!OSSL_FIPS_IND_SET_CTX_PARAM(ctx, OSSL_FIPS_IND_SETTABLE0, params,
294             OSSL_KDF_PARAM_FIPS_EMS_CHECK))
295         return 0;
296     if (!OSSL_FIPS_IND_SET_CTX_PARAM(ctx, OSSL_FIPS_IND_SETTABLE1, params,
297             OSSL_KDF_PARAM_FIPS_DIGEST_CHECK))
298         return 0;
299     if (!OSSL_FIPS_IND_SET_CTX_PARAM(ctx, OSSL_FIPS_IND_SETTABLE2, params,
300             OSSL_KDF_PARAM_FIPS_KEY_CHECK))
301         return 0;
302 
303     if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_DIGEST)) != NULL) {
304         PROV_DIGEST digest;
305         const EVP_MD *md = NULL;
306 
307         if (OPENSSL_strcasecmp(p->data, SN_md5_sha1) == 0) {
308             if (!ossl_prov_macctx_load_from_params(&ctx->P_hash, params,
309                     OSSL_MAC_NAME_HMAC,
310                     NULL, SN_md5, libctx)
311                 || !ossl_prov_macctx_load_from_params(&ctx->P_sha1, params,
312                     OSSL_MAC_NAME_HMAC,
313                     NULL, SN_sha1, libctx))
314                 return 0;
315         } else {
316             EVP_MAC_CTX_free(ctx->P_sha1);
317             ctx->P_sha1 = NULL;
318             if (!ossl_prov_macctx_load_from_params(&ctx->P_hash, params,
319                     OSSL_MAC_NAME_HMAC,
320                     NULL, NULL, libctx))
321                 return 0;
322         }
323 
324         memset(&digest, 0, sizeof(digest));
325         if (!ossl_prov_digest_load_from_params(&digest, params, libctx))
326             return 0;
327 
328         md = ossl_prov_digest_md(&digest);
329         if (EVP_MD_xof(md)) {
330             ERR_raise(ERR_LIB_PROV, PROV_R_XOF_DIGESTS_NOT_ALLOWED);
331             ossl_prov_digest_reset(&digest);
332             return 0;
333         }
334 
335 #ifdef FIPS_MODULE
336         if (!fips_digest_check_passed(ctx, md)) {
337             ossl_prov_digest_reset(&digest);
338             return 0;
339         }
340 #endif
341 
342         ossl_prov_digest_reset(&digest);
343     }
344 
345     if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_SECRET)) != NULL) {
346         OPENSSL_clear_free(ctx->sec, ctx->seclen);
347         ctx->sec = NULL;
348         if (!OSSL_PARAM_get_octet_string(p, (void **)&ctx->sec, 0, &ctx->seclen))
349             return 0;
350 
351 #ifdef FIPS_MODULE
352         if (!fips_key_check_passed(ctx))
353             return 0;
354 #endif
355     }
356     /* The seed fields concatenate, so process them all */
357     if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_SEED)) != NULL) {
358         for (; p != NULL; p = OSSL_PARAM_locate_const(p + 1,
359                               OSSL_KDF_PARAM_SEED)) {
360             if (p->data_size != 0 && p->data != NULL) {
361                 const void *val = NULL;
362                 size_t sz = 0;
363                 unsigned char *seed;
364                 size_t seedlen;
365                 int err = 0;
366 
367                 if (!OSSL_PARAM_get_octet_string_ptr(p, &val, &sz))
368                     return 0;
369 
370                 seedlen = safe_add_size_t(ctx->seedlen, sz, &err);
371                 if (err)
372                     return 0;
373 
374                 seed = OPENSSL_clear_realloc(ctx->seed, ctx->seedlen, seedlen);
375                 if (!seed)
376                     return 0;
377 
378                 ctx->seed = seed;
379                 if (ossl_assert(sz != 0))
380                     memcpy(ctx->seed + ctx->seedlen, val, sz);
381                 ctx->seedlen = seedlen;
382             }
383         }
384     }
385     return 1;
386 }
387 
kdf_tls1_prf_settable_ctx_params(ossl_unused void * ctx,ossl_unused void * provctx)388 static const OSSL_PARAM *kdf_tls1_prf_settable_ctx_params(
389     ossl_unused void *ctx, ossl_unused void *provctx)
390 {
391     static const OSSL_PARAM known_settable_ctx_params[] = {
392         OSSL_PARAM_utf8_string(OSSL_KDF_PARAM_PROPERTIES, NULL, 0),
393         OSSL_PARAM_utf8_string(OSSL_KDF_PARAM_DIGEST, NULL, 0),
394         OSSL_PARAM_octet_string(OSSL_KDF_PARAM_SECRET, NULL, 0),
395         OSSL_PARAM_octet_string(OSSL_KDF_PARAM_SEED, NULL, 0),
396         OSSL_FIPS_IND_SETTABLE_CTX_PARAM(OSSL_KDF_PARAM_FIPS_EMS_CHECK)
397             OSSL_FIPS_IND_SETTABLE_CTX_PARAM(OSSL_KDF_PARAM_FIPS_DIGEST_CHECK)
398                 OSSL_FIPS_IND_SETTABLE_CTX_PARAM(OSSL_KDF_PARAM_FIPS_KEY_CHECK)
399                     OSSL_PARAM_END
400     };
401     return known_settable_ctx_params;
402 }
403 
kdf_tls1_prf_get_ctx_params(void * vctx,OSSL_PARAM params[])404 static int kdf_tls1_prf_get_ctx_params(void *vctx, OSSL_PARAM params[])
405 {
406     OSSL_PARAM *p;
407 
408     if ((p = OSSL_PARAM_locate(params, OSSL_KDF_PARAM_SIZE)) != NULL) {
409         if (!OSSL_PARAM_set_size_t(p, SIZE_MAX))
410             return 0;
411     }
412     if (!OSSL_FIPS_IND_GET_CTX_PARAM(((TLS1_PRF *)vctx), params))
413         return 0;
414     return 1;
415 }
416 
kdf_tls1_prf_gettable_ctx_params(ossl_unused void * ctx,ossl_unused void * provctx)417 static const OSSL_PARAM *kdf_tls1_prf_gettable_ctx_params(
418     ossl_unused void *ctx, ossl_unused void *provctx)
419 {
420     static const OSSL_PARAM known_gettable_ctx_params[] = {
421         OSSL_PARAM_size_t(OSSL_KDF_PARAM_SIZE, NULL),
422         OSSL_FIPS_IND_GETTABLE_CTX_PARAM()
423             OSSL_PARAM_END
424     };
425     return known_gettable_ctx_params;
426 }
427 
428 const OSSL_DISPATCH ossl_kdf_tls1_prf_functions[] = {
429     { OSSL_FUNC_KDF_NEWCTX, (void (*)(void))kdf_tls1_prf_new },
430     { OSSL_FUNC_KDF_DUPCTX, (void (*)(void))kdf_tls1_prf_dup },
431     { OSSL_FUNC_KDF_FREECTX, (void (*)(void))kdf_tls1_prf_free },
432     { OSSL_FUNC_KDF_RESET, (void (*)(void))kdf_tls1_prf_reset },
433     { OSSL_FUNC_KDF_DERIVE, (void (*)(void))kdf_tls1_prf_derive },
434     { OSSL_FUNC_KDF_SETTABLE_CTX_PARAMS,
435         (void (*)(void))kdf_tls1_prf_settable_ctx_params },
436     { OSSL_FUNC_KDF_SET_CTX_PARAMS,
437         (void (*)(void))kdf_tls1_prf_set_ctx_params },
438     { OSSL_FUNC_KDF_GETTABLE_CTX_PARAMS,
439         (void (*)(void))kdf_tls1_prf_gettable_ctx_params },
440     { OSSL_FUNC_KDF_GET_CTX_PARAMS,
441         (void (*)(void))kdf_tls1_prf_get_ctx_params },
442     OSSL_DISPATCH_END
443 };
444 
445 /*
446  * Refer to "The TLS Protocol Version 1.0" Section 5
447  * (https://tools.ietf.org/html/rfc2246#section-5) and
448  * "The Transport Layer Security (TLS) Protocol Version 1.2" Section 5
449  * (https://tools.ietf.org/html/rfc5246#section-5).
450  *
451  * P_<hash> is an expansion function that uses a single hash function to expand
452  * a secret and seed into an arbitrary quantity of output:
453  *
454  *   P_<hash>(secret, seed) = HMAC_<hash>(secret, A(1) + seed) +
455  *                            HMAC_<hash>(secret, A(2) + seed) +
456  *                            HMAC_<hash>(secret, A(3) + seed) + ...
457  *
458  * where + indicates concatenation.  P_<hash> can be iterated as many times as
459  * is necessary to produce the required quantity of data.
460  *
461  * A(i) is defined as:
462  *     A(0) = seed
463  *     A(i) = HMAC_<hash>(secret, A(i-1))
464  */
tls1_prf_P_hash(EVP_MAC_CTX * ctx_init,const unsigned char * sec,size_t sec_len,const unsigned char * seed,size_t seed_len,unsigned char * out,size_t olen)465 static int tls1_prf_P_hash(EVP_MAC_CTX *ctx_init,
466     const unsigned char *sec, size_t sec_len,
467     const unsigned char *seed, size_t seed_len,
468     unsigned char *out, size_t olen)
469 {
470     size_t chunk;
471     EVP_MAC_CTX *ctx = NULL, *ctx_Ai = NULL;
472     unsigned char Ai[EVP_MAX_MD_SIZE];
473     size_t Ai_len;
474     int ret = 0;
475 
476     if (!EVP_MAC_init(ctx_init, sec, sec_len, NULL))
477         goto err;
478     chunk = EVP_MAC_CTX_get_mac_size(ctx_init);
479     if (chunk == 0)
480         goto err;
481     /* A(0) = seed */
482     ctx_Ai = EVP_MAC_CTX_dup(ctx_init);
483     if (ctx_Ai == NULL)
484         goto err;
485     if (seed != NULL && !EVP_MAC_update(ctx_Ai, seed, seed_len))
486         goto err;
487 
488     for (;;) {
489         /* calc: A(i) = HMAC_<hash>(secret, A(i-1)) */
490         if (!EVP_MAC_final(ctx_Ai, Ai, &Ai_len, sizeof(Ai)))
491             goto err;
492         EVP_MAC_CTX_free(ctx_Ai);
493         ctx_Ai = NULL;
494 
495         /* calc next chunk: HMAC_<hash>(secret, A(i) + seed) */
496         ctx = EVP_MAC_CTX_dup(ctx_init);
497         if (ctx == NULL)
498             goto err;
499         if (!EVP_MAC_update(ctx, Ai, Ai_len))
500             goto err;
501         /* save state for calculating next A(i) value */
502         if (olen > chunk) {
503             ctx_Ai = EVP_MAC_CTX_dup(ctx);
504             if (ctx_Ai == NULL)
505                 goto err;
506         }
507         if (seed != NULL && !EVP_MAC_update(ctx, seed, seed_len))
508             goto err;
509         if (olen <= chunk) {
510             /* last chunk - use Ai as temp bounce buffer */
511             if (!EVP_MAC_final(ctx, Ai, &Ai_len, sizeof(Ai)))
512                 goto err;
513             memcpy(out, Ai, olen);
514             break;
515         }
516         if (!EVP_MAC_final(ctx, out, NULL, olen))
517             goto err;
518         EVP_MAC_CTX_free(ctx);
519         ctx = NULL;
520         out += chunk;
521         olen -= chunk;
522     }
523     ret = 1;
524 err:
525     EVP_MAC_CTX_free(ctx);
526     EVP_MAC_CTX_free(ctx_Ai);
527     OPENSSL_cleanse(Ai, sizeof(Ai));
528     return ret;
529 }
530 
531 /*
532  * Refer to "The TLS Protocol Version 1.0" Section 5
533  * (https://tools.ietf.org/html/rfc2246#section-5) and
534  * "The Transport Layer Security (TLS) Protocol Version 1.2" Section 5
535  * (https://tools.ietf.org/html/rfc5246#section-5).
536  *
537  * For TLS v1.0 and TLS v1.1:
538  *
539  *   PRF(secret, label, seed) = P_MD5(S1, label + seed) XOR
540  *                              P_SHA-1(S2, label + seed)
541  *
542  * S1 is taken from the first half of the secret, S2 from the second half.
543  *
544  *   L_S = length in bytes of secret;
545  *   L_S1 = L_S2 = ceil(L_S / 2);
546  *
547  * For TLS v1.2:
548  *
549  *   PRF(secret, label, seed) = P_<hash>(secret, label + seed)
550  */
tls1_prf_alg(EVP_MAC_CTX * mdctx,EVP_MAC_CTX * sha1ctx,const unsigned char * sec,size_t slen,const unsigned char * seed,size_t seed_len,unsigned char * out,size_t olen)551 static int tls1_prf_alg(EVP_MAC_CTX *mdctx, EVP_MAC_CTX *sha1ctx,
552     const unsigned char *sec, size_t slen,
553     const unsigned char *seed, size_t seed_len,
554     unsigned char *out, size_t olen)
555 {
556     if (sha1ctx != NULL) {
557         /* TLS v1.0 and TLS v1.1 */
558         size_t i;
559         unsigned char *tmp;
560         /* calc: L_S1 = L_S2 = ceil(L_S / 2) */
561         size_t L_S1 = (slen + 1) / 2;
562         size_t L_S2 = L_S1;
563 
564         if (!tls1_prf_P_hash(mdctx, sec, L_S1,
565                 seed, seed_len, out, olen))
566             return 0;
567 
568         if ((tmp = OPENSSL_malloc(olen)) == NULL)
569             return 0;
570 
571         if (!tls1_prf_P_hash(sha1ctx, sec + slen - L_S2, L_S2,
572                 seed, seed_len, tmp, olen)) {
573             OPENSSL_clear_free(tmp, olen);
574             return 0;
575         }
576         for (i = 0; i < olen; i++)
577             out[i] ^= tmp[i];
578         OPENSSL_clear_free(tmp, olen);
579         return 1;
580     }
581 
582     /* TLS v1.2 */
583     if (!tls1_prf_P_hash(mdctx, sec, slen, seed, seed_len, out, olen))
584         return 0;
585 
586     return 1;
587 }
588