xref: /freebsd/sys/compat/linuxkpi/common/src/linux_compat.c (revision 5cb64a1d3fe75526fb879ef4dce5860bbb4e4aea)
1 /*-
2  * Copyright (c) 2010 Isilon Systems, Inc.
3  * Copyright (c) 2010 iX Systems, Inc.
4  * Copyright (c) 2010 Panasas, Inc.
5  * Copyright (c) 2013-2021 Mellanox Technologies, Ltd.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice unmodified, this list of conditions, and the following
13  *    disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
23  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
27  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 #include "opt_global.h"
32 #include "opt_stack.h"
33 
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/malloc.h>
37 #include <sys/kernel.h>
38 #include <sys/sysctl.h>
39 #include <sys/proc.h>
40 #include <sys/sglist.h>
41 #include <sys/sleepqueue.h>
42 #include <sys/refcount.h>
43 #include <sys/lock.h>
44 #include <sys/mutex.h>
45 #include <sys/bus.h>
46 #include <sys/eventhandler.h>
47 #include <sys/fcntl.h>
48 #include <sys/file.h>
49 #include <sys/filio.h>
50 #include <sys/rwlock.h>
51 #include <sys/mman.h>
52 #include <sys/stack.h>
53 #include <sys/stdarg.h>
54 #include <sys/sysent.h>
55 #include <sys/time.h>
56 #include <sys/user.h>
57 
58 #include <vm/vm.h>
59 #include <vm/pmap.h>
60 #include <vm/vm_object.h>
61 #include <vm/vm_page.h>
62 #include <vm/vm_pager.h>
63 #include <vm/vm_radix.h>
64 
65 #if defined(__i386__) || defined(__amd64__)
66 #include <machine/cputypes.h>
67 #include <machine/md_var.h>
68 #endif
69 
70 #include <linux/kobject.h>
71 #include <linux/cpu.h>
72 #include <linux/device.h>
73 #include <linux/slab.h>
74 #include <linux/module.h>
75 #include <linux/moduleparam.h>
76 #include <linux/cdev.h>
77 #include <linux/file.h>
78 #include <linux/fs.h>
79 #include <linux/sysfs.h>
80 #include <linux/mm.h>
81 #include <linux/io.h>
82 #include <linux/vmalloc.h>
83 #include <linux/netdevice.h>
84 #include <linux/timer.h>
85 #include <linux/interrupt.h>
86 #include <linux/uaccess.h>
87 #include <linux/utsname.h>
88 #include <linux/list.h>
89 #include <linux/kthread.h>
90 #include <linux/kernel.h>
91 #include <linux/compat.h>
92 #include <linux/io-mapping.h>
93 #include <linux/poll.h>
94 #include <linux/smp.h>
95 #include <linux/wait_bit.h>
96 #include <linux/rcupdate.h>
97 #include <linux/interval_tree.h>
98 #include <linux/interval_tree_generic.h>
99 #include <linux/printk.h>
100 #include <linux/seq_file.h>
101 
102 #if defined(__i386__) || defined(__amd64__)
103 #include <asm/smp.h>
104 #include <asm/processor.h>
105 #endif
106 
107 #include <xen/xen.h>
108 #ifdef XENHVM
109 #undef xen_pv_domain
110 #undef xen_initial_domain
111 /* xen/xen-os.h redefines __must_check */
112 #undef __must_check
113 #include <xen/xen-os.h>
114 #endif
115 
116 SYSCTL_NODE(_compat, OID_AUTO, linuxkpi, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
117     "LinuxKPI parameters");
118 
119 int linuxkpi_debug;
120 SYSCTL_INT(_compat_linuxkpi, OID_AUTO, debug, CTLFLAG_RWTUN,
121     &linuxkpi_debug, 0, "Set to enable pr_debug() prints. Clear to disable.");
122 
123 int linuxkpi_rcu_debug;
124 SYSCTL_INT(_compat_linuxkpi, OID_AUTO, rcu_debug, CTLFLAG_RWTUN,
125     &linuxkpi_rcu_debug, 0, "Set to enable RCU warning. Clear to disable.");
126 
127 int linuxkpi_warn_dump_stack = 0;
128 SYSCTL_INT(_compat_linuxkpi, OID_AUTO, warn_dump_stack, CTLFLAG_RWTUN,
129     &linuxkpi_warn_dump_stack, 0,
130     "Set to enable stack traces from WARN_ON(). Clear to disable.");
131 
132 static struct timeval lkpi_net_lastlog;
133 static int lkpi_net_curpps;
134 static int lkpi_net_maxpps = 99;
135 SYSCTL_INT(_compat_linuxkpi, OID_AUTO, net_ratelimit, CTLFLAG_RWTUN,
136     &lkpi_net_maxpps, 0, "Limit number of LinuxKPI net messages per second.");
137 
138 MALLOC_DEFINE(M_KMALLOC, "lkpikmalloc", "Linux kmalloc compat");
139 
140 #include <linux/rbtree.h>
141 /* Undo Linux compat changes. */
142 #undef RB_ROOT
143 #undef file
144 #undef cdev
145 #define	RB_ROOT(head)	(head)->rbh_root
146 
147 static void linux_destroy_dev(struct linux_cdev *);
148 static void linux_cdev_deref(struct linux_cdev *ldev);
149 static struct vm_area_struct *linux_cdev_handle_find(void *handle);
150 
151 cpumask_t cpu_online_mask;
152 static cpumask_t **static_single_cpu_mask;
153 static cpumask_t *static_single_cpu_mask_lcs;
154 struct kobject linux_class_root;
155 struct device linux_root_device;
156 struct class linux_class_misc;
157 struct list_head pci_drivers;
158 struct list_head pci_devices;
159 spinlock_t pci_lock;
160 struct uts_namespace init_uts_ns;
161 
162 unsigned long linux_timer_hz_mask;
163 
164 wait_queue_head_t linux_bit_waitq;
165 wait_queue_head_t linux_var_waitq;
166 
167 int
panic_cmp(struct rb_node * one,struct rb_node * two)168 panic_cmp(struct rb_node *one, struct rb_node *two)
169 {
170 	panic("no cmp");
171 }
172 
173 RB_GENERATE(linux_root, rb_node, __entry, panic_cmp);
174 
175 #define	START(node)	((node)->start)
176 #define	LAST(node)	((node)->last)
177 
178 INTERVAL_TREE_DEFINE(struct interval_tree_node, rb, unsigned long,, START,
179     LAST,, lkpi_interval_tree)
180 
181 static void
linux_device_release(struct device * dev)182 linux_device_release(struct device *dev)
183 {
184 	pr_debug("linux_device_release: %s\n", dev_name(dev));
185 	kfree(dev);
186 }
187 
188 static ssize_t
linux_class_show(struct kobject * kobj,struct attribute * attr,char * buf)189 linux_class_show(struct kobject *kobj, struct attribute *attr, char *buf)
190 {
191 	struct class_attribute *dattr;
192 	ssize_t error;
193 
194 	dattr = container_of(attr, struct class_attribute, attr);
195 	error = -EIO;
196 	if (dattr->show)
197 		error = dattr->show(container_of(kobj, struct class, kobj),
198 		    dattr, buf);
199 	return (error);
200 }
201 
202 static ssize_t
linux_class_store(struct kobject * kobj,struct attribute * attr,const char * buf,size_t count)203 linux_class_store(struct kobject *kobj, struct attribute *attr, const char *buf,
204     size_t count)
205 {
206 	struct class_attribute *dattr;
207 	ssize_t error;
208 
209 	dattr = container_of(attr, struct class_attribute, attr);
210 	error = -EIO;
211 	if (dattr->store)
212 		error = dattr->store(container_of(kobj, struct class, kobj),
213 		    dattr, buf, count);
214 	return (error);
215 }
216 
217 static void
linux_class_release(struct kobject * kobj)218 linux_class_release(struct kobject *kobj)
219 {
220 	struct class *class;
221 
222 	class = container_of(kobj, struct class, kobj);
223 	if (class->class_release)
224 		class->class_release(class);
225 }
226 
227 static const struct sysfs_ops linux_class_sysfs = {
228 	.show  = linux_class_show,
229 	.store = linux_class_store,
230 };
231 
232 const struct kobj_type linux_class_ktype = {
233 	.release = linux_class_release,
234 	.sysfs_ops = &linux_class_sysfs
235 };
236 
237 static void
linux_dev_release(struct kobject * kobj)238 linux_dev_release(struct kobject *kobj)
239 {
240 	struct device *dev;
241 
242 	dev = container_of(kobj, struct device, kobj);
243 	/* This is the precedence defined by linux. */
244 	if (dev->release)
245 		dev->release(dev);
246 	else if (dev->class && dev->class->dev_release)
247 		dev->class->dev_release(dev);
248 }
249 
250 static ssize_t
linux_dev_show(struct kobject * kobj,struct attribute * attr,char * buf)251 linux_dev_show(struct kobject *kobj, struct attribute *attr, char *buf)
252 {
253 	struct device_attribute *dattr;
254 	ssize_t error;
255 
256 	dattr = container_of(attr, struct device_attribute, attr);
257 	error = -EIO;
258 	if (dattr->show)
259 		error = dattr->show(container_of(kobj, struct device, kobj),
260 		    dattr, buf);
261 	return (error);
262 }
263 
264 static ssize_t
linux_dev_store(struct kobject * kobj,struct attribute * attr,const char * buf,size_t count)265 linux_dev_store(struct kobject *kobj, struct attribute *attr, const char *buf,
266     size_t count)
267 {
268 	struct device_attribute *dattr;
269 	ssize_t error;
270 
271 	dattr = container_of(attr, struct device_attribute, attr);
272 	error = -EIO;
273 	if (dattr->store)
274 		error = dattr->store(container_of(kobj, struct device, kobj),
275 		    dattr, buf, count);
276 	return (error);
277 }
278 
279 static const struct sysfs_ops linux_dev_sysfs = {
280 	.show  = linux_dev_show,
281 	.store = linux_dev_store,
282 };
283 
284 const struct kobj_type linux_dev_ktype = {
285 	.release = linux_dev_release,
286 	.sysfs_ops = &linux_dev_sysfs
287 };
288 
289 struct device *
device_create(struct class * class,struct device * parent,dev_t devt,void * drvdata,const char * fmt,...)290 device_create(struct class *class, struct device *parent, dev_t devt,
291     void *drvdata, const char *fmt, ...)
292 {
293 	struct device *dev;
294 	va_list args;
295 
296 	dev = kzalloc(sizeof(*dev), M_WAITOK);
297 	dev->parent = parent;
298 	dev->class = class;
299 	dev->devt = devt;
300 	dev->driver_data = drvdata;
301 	dev->release = linux_device_release;
302 	va_start(args, fmt);
303 	kobject_set_name_vargs(&dev->kobj, fmt, args);
304 	va_end(args);
305 	device_register(dev);
306 
307 	return (dev);
308 }
309 
310 struct device *
device_create_groups_vargs(struct class * class,struct device * parent,dev_t devt,void * drvdata,const struct attribute_group ** groups,const char * fmt,va_list args)311 device_create_groups_vargs(struct class *class, struct device *parent,
312     dev_t devt, void *drvdata, const struct attribute_group **groups,
313     const char *fmt, va_list args)
314 {
315 	struct device *dev = NULL;
316 	int retval = -ENODEV;
317 
318 	if (class == NULL || IS_ERR(class))
319 		goto error;
320 
321 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
322 	if (!dev) {
323 		retval = -ENOMEM;
324 		goto error;
325 	}
326 
327 	dev->devt = devt;
328 	dev->class = class;
329 	dev->parent = parent;
330 	dev->groups = groups;
331 	dev->release = device_create_release;
332 	/* device_initialize() needs the class and parent to be set */
333 	device_initialize(dev);
334 	dev_set_drvdata(dev, drvdata);
335 
336 	retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
337 	if (retval)
338 		goto error;
339 
340 	retval = device_add(dev);
341 	if (retval)
342 		goto error;
343 
344 	return dev;
345 
346 error:
347 	put_device(dev);
348 	return ERR_PTR(retval);
349 }
350 
351 struct class *
lkpi_class_create(const char * name)352 lkpi_class_create(const char *name)
353 {
354 	struct class *class;
355 	int error;
356 
357 	class = kzalloc(sizeof(*class), M_WAITOK);
358 	class->name = name;
359 	class->class_release = linux_class_kfree;
360 	error = class_register(class);
361 	if (error) {
362 		kfree(class);
363 		return (NULL);
364 	}
365 
366 	return (class);
367 }
368 
369 static void
linux_kq_lock(void * arg)370 linux_kq_lock(void *arg)
371 {
372 	spinlock_t *s = arg;
373 
374 	spin_lock(s);
375 }
376 static void
linux_kq_unlock(void * arg)377 linux_kq_unlock(void *arg)
378 {
379 	spinlock_t *s = arg;
380 
381 	spin_unlock(s);
382 }
383 
384 static void
linux_kq_assert_lock(void * arg,int what)385 linux_kq_assert_lock(void *arg, int what)
386 {
387 #ifdef INVARIANTS
388 	spinlock_t *s = arg;
389 
390 	if (what == LA_LOCKED)
391 		mtx_assert(s, MA_OWNED);
392 	else
393 		mtx_assert(s, MA_NOTOWNED);
394 #endif
395 }
396 
397 static void
398 linux_file_kqfilter_poll(struct linux_file *, int);
399 
400 struct linux_file *
linux_file_alloc(void)401 linux_file_alloc(void)
402 {
403 	struct linux_file *filp;
404 
405 	filp = kzalloc(sizeof(*filp), GFP_KERNEL);
406 
407 	/* set initial refcount */
408 	filp->f_count = 1;
409 
410 	/* setup fields needed by kqueue support */
411 	spin_lock_init(&filp->f_kqlock);
412 	knlist_init(&filp->f_selinfo.si_note, &filp->f_kqlock,
413 	    linux_kq_lock, linux_kq_unlock, linux_kq_assert_lock);
414 
415 	return (filp);
416 }
417 
418 void
linux_file_free(struct linux_file * filp)419 linux_file_free(struct linux_file *filp)
420 {
421 	if (filp->_file == NULL) {
422 		if (filp->f_op != NULL && filp->f_op->release != NULL)
423 			filp->f_op->release(filp->f_vnode, filp);
424 		if (filp->f_shmem != NULL)
425 			vm_object_deallocate(filp->f_shmem);
426 		kfree_rcu(filp, rcu);
427 	} else {
428 		/*
429 		 * The close method of the character device or file
430 		 * will free the linux_file structure:
431 		 */
432 		_fdrop(filp->_file, curthread);
433 	}
434 }
435 
436 struct linux_cdev *
cdev_alloc(void)437 cdev_alloc(void)
438 {
439 	struct linux_cdev *cdev;
440 
441 	cdev = kzalloc(sizeof(struct linux_cdev), M_WAITOK);
442 	kobject_init(&cdev->kobj, &linux_cdev_ktype);
443 	cdev->refs = 1;
444 	return (cdev);
445 }
446 
447 static int
linux_cdev_pager_fault(vm_object_t vm_obj,vm_ooffset_t offset,int prot,vm_page_t * mres)448 linux_cdev_pager_fault(vm_object_t vm_obj, vm_ooffset_t offset, int prot,
449     vm_page_t *mres)
450 {
451 	struct vm_area_struct *vmap;
452 
453 	vmap = linux_cdev_handle_find(vm_obj->handle);
454 
455 	MPASS(vmap != NULL);
456 	MPASS(vmap->vm_private_data == vm_obj->handle);
457 
458 	if (likely(vmap->vm_ops != NULL && offset < vmap->vm_len)) {
459 		vm_paddr_t paddr = IDX_TO_OFF(vmap->vm_pfn) + offset;
460 		vm_page_t page;
461 
462 		if (((*mres)->flags & PG_FICTITIOUS) != 0) {
463 			/*
464 			 * If the passed in result page is a fake
465 			 * page, update it with the new physical
466 			 * address.
467 			 */
468 			page = *mres;
469 			vm_page_updatefake(page, paddr, vm_obj->memattr);
470 		} else {
471 			/*
472 			 * Replace the passed in "mres" page with our
473 			 * own fake page and free up the all of the
474 			 * original pages.
475 			 */
476 			VM_OBJECT_WUNLOCK(vm_obj);
477 			page = vm_page_getfake(paddr, vm_obj->memattr);
478 			VM_OBJECT_WLOCK(vm_obj);
479 
480 			vm_page_replace(page, vm_obj, (*mres)->pindex, *mres);
481 			*mres = page;
482 		}
483 		vm_page_valid(page);
484 		return (VM_PAGER_OK);
485 	}
486 	return (VM_PAGER_FAIL);
487 }
488 
489 static int
linux_cdev_pager_populate(vm_object_t vm_obj,vm_pindex_t pidx,int fault_type,vm_prot_t max_prot,vm_pindex_t * first,vm_pindex_t * last)490 linux_cdev_pager_populate(vm_object_t vm_obj, vm_pindex_t pidx, int fault_type,
491     vm_prot_t max_prot, vm_pindex_t *first, vm_pindex_t *last)
492 {
493 	struct vm_area_struct *vmap;
494 	int err;
495 
496 	/* get VM area structure */
497 	vmap = linux_cdev_handle_find(vm_obj->handle);
498 	MPASS(vmap != NULL);
499 	MPASS(vmap->vm_private_data == vm_obj->handle);
500 
501 	VM_OBJECT_WUNLOCK(vm_obj);
502 
503 	linux_set_current(curthread);
504 
505 	down_write(&vmap->vm_mm->mmap_sem);
506 	if (unlikely(vmap->vm_ops == NULL)) {
507 		err = VM_FAULT_SIGBUS;
508 	} else {
509 		struct vm_fault vmf;
510 
511 		/* fill out VM fault structure */
512 		vmf.virtual_address = (void *)(uintptr_t)IDX_TO_OFF(pidx);
513 		vmf.flags = (fault_type & VM_PROT_WRITE) ? FAULT_FLAG_WRITE : 0;
514 		vmf.pgoff = 0;
515 		vmf.page = NULL;
516 		vmf.vma = vmap;
517 
518 		vmap->vm_pfn_count = 0;
519 		vmap->vm_pfn_pcount = &vmap->vm_pfn_count;
520 		vmap->vm_obj = vm_obj;
521 
522 		err = vmap->vm_ops->fault(&vmf);
523 
524 		while (vmap->vm_pfn_count == 0 && err == VM_FAULT_NOPAGE) {
525 			kern_yield(PRI_USER);
526 			err = vmap->vm_ops->fault(&vmf);
527 		}
528 	}
529 
530 	/* translate return code */
531 	switch (err) {
532 	case VM_FAULT_OOM:
533 		err = VM_PAGER_AGAIN;
534 		break;
535 	case VM_FAULT_SIGBUS:
536 		err = VM_PAGER_BAD;
537 		break;
538 	case VM_FAULT_NOPAGE:
539 		/*
540 		 * By contract the fault handler will return having
541 		 * busied all the pages itself. If pidx is already
542 		 * found in the object, it will simply xbusy the first
543 		 * page and return with vm_pfn_count set to 1.
544 		 */
545 		*first = vmap->vm_pfn_first;
546 		*last = *first + vmap->vm_pfn_count - 1;
547 		err = VM_PAGER_OK;
548 		break;
549 	default:
550 		err = VM_PAGER_ERROR;
551 		break;
552 	}
553 	up_write(&vmap->vm_mm->mmap_sem);
554 	VM_OBJECT_WLOCK(vm_obj);
555 	return (err);
556 }
557 
558 static struct rwlock linux_vma_lock;
559 static TAILQ_HEAD(, vm_area_struct) linux_vma_head =
560     TAILQ_HEAD_INITIALIZER(linux_vma_head);
561 
562 static void
linux_cdev_handle_free(struct vm_area_struct * vmap)563 linux_cdev_handle_free(struct vm_area_struct *vmap)
564 {
565 	/* Drop reference on vm_file */
566 	if (vmap->vm_file != NULL)
567 		fput(vmap->vm_file);
568 
569 	/* Drop reference on mm_struct */
570 	mmput(vmap->vm_mm);
571 
572 	kfree(vmap);
573 }
574 
575 static void
linux_cdev_handle_remove(struct vm_area_struct * vmap)576 linux_cdev_handle_remove(struct vm_area_struct *vmap)
577 {
578 	rw_wlock(&linux_vma_lock);
579 	TAILQ_REMOVE(&linux_vma_head, vmap, vm_entry);
580 	rw_wunlock(&linux_vma_lock);
581 }
582 
583 static struct vm_area_struct *
linux_cdev_handle_find(void * handle)584 linux_cdev_handle_find(void *handle)
585 {
586 	struct vm_area_struct *vmap;
587 
588 	rw_rlock(&linux_vma_lock);
589 	TAILQ_FOREACH(vmap, &linux_vma_head, vm_entry) {
590 		if (vmap->vm_private_data == handle)
591 			break;
592 	}
593 	rw_runlock(&linux_vma_lock);
594 	return (vmap);
595 }
596 
597 static int
linux_cdev_pager_ctor(void * handle,vm_ooffset_t size,vm_prot_t prot,vm_ooffset_t foff,struct ucred * cred,u_short * color)598 linux_cdev_pager_ctor(void *handle, vm_ooffset_t size, vm_prot_t prot,
599 		      vm_ooffset_t foff, struct ucred *cred, u_short *color)
600 {
601 
602 	MPASS(linux_cdev_handle_find(handle) != NULL);
603 	*color = 0;
604 	return (0);
605 }
606 
607 static void
linux_cdev_pager_dtor(void * handle)608 linux_cdev_pager_dtor(void *handle)
609 {
610 	const struct vm_operations_struct *vm_ops;
611 	struct vm_area_struct *vmap;
612 
613 	vmap = linux_cdev_handle_find(handle);
614 	MPASS(vmap != NULL);
615 
616 	/*
617 	 * Remove handle before calling close operation to prevent
618 	 * other threads from reusing the handle pointer.
619 	 */
620 	linux_cdev_handle_remove(vmap);
621 
622 	down_write(&vmap->vm_mm->mmap_sem);
623 	vm_ops = vmap->vm_ops;
624 	if (likely(vm_ops != NULL))
625 		vm_ops->close(vmap);
626 	up_write(&vmap->vm_mm->mmap_sem);
627 
628 	linux_cdev_handle_free(vmap);
629 }
630 
631 static struct cdev_pager_ops linux_cdev_pager_ops[2] = {
632   {
633 	/* OBJT_MGTDEVICE */
634 	.cdev_pg_populate	= linux_cdev_pager_populate,
635 	.cdev_pg_ctor	= linux_cdev_pager_ctor,
636 	.cdev_pg_dtor	= linux_cdev_pager_dtor
637   },
638   {
639 	/* OBJT_DEVICE */
640 	.cdev_pg_fault	= linux_cdev_pager_fault,
641 	.cdev_pg_ctor	= linux_cdev_pager_ctor,
642 	.cdev_pg_dtor	= linux_cdev_pager_dtor
643   },
644 };
645 
646 int
zap_vma_ptes(struct vm_area_struct * vma,unsigned long address,unsigned long size)647 zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
648     unsigned long size)
649 {
650 	struct pctrie_iter pages;
651 	vm_object_t obj;
652 	vm_page_t m;
653 
654 	obj = vma->vm_obj;
655 	if (obj == NULL || (obj->flags & OBJ_UNMANAGED) != 0)
656 		return (-ENOTSUP);
657 	VM_OBJECT_RLOCK(obj);
658 	vm_page_iter_limit_init(&pages, obj, OFF_TO_IDX(address + size));
659 	VM_RADIX_FOREACH_FROM(m, &pages, OFF_TO_IDX(address))
660 		pmap_remove_all(m);
661 	VM_OBJECT_RUNLOCK(obj);
662 	return (0);
663 }
664 
665 void
vma_set_file(struct vm_area_struct * vma,struct linux_file * file)666 vma_set_file(struct vm_area_struct *vma, struct linux_file *file)
667 {
668 	struct linux_file *tmp;
669 
670 	/* Changing an anonymous vma with this is illegal */
671 	get_file(file);
672 	tmp = vma->vm_file;
673 	vma->vm_file = file;
674 	fput(tmp);
675 }
676 
677 static struct file_operations dummy_ldev_ops = {
678 	/* XXXKIB */
679 };
680 
681 static struct linux_cdev dummy_ldev = {
682 	.ops = &dummy_ldev_ops,
683 };
684 
685 #define	LDEV_SI_DTR	0x0001
686 #define	LDEV_SI_REF	0x0002
687 
688 static void
linux_get_fop(struct linux_file * filp,const struct file_operations ** fop,struct linux_cdev ** dev)689 linux_get_fop(struct linux_file *filp, const struct file_operations **fop,
690     struct linux_cdev **dev)
691 {
692 	struct linux_cdev *ldev;
693 	u_int siref;
694 
695 	ldev = filp->f_cdev;
696 	*fop = filp->f_op;
697 	if (ldev != NULL) {
698 		if (ldev->kobj.ktype == &linux_cdev_static_ktype) {
699 			refcount_acquire(&ldev->refs);
700 		} else {
701 			for (siref = ldev->siref;;) {
702 				if ((siref & LDEV_SI_DTR) != 0) {
703 					ldev = &dummy_ldev;
704 					*fop = ldev->ops;
705 					siref = ldev->siref;
706 					MPASS((ldev->siref & LDEV_SI_DTR) == 0);
707 				} else if (atomic_fcmpset_int(&ldev->siref,
708 				    &siref, siref + LDEV_SI_REF)) {
709 					break;
710 				}
711 			}
712 		}
713 	}
714 	*dev = ldev;
715 }
716 
717 static void
linux_drop_fop(struct linux_cdev * ldev)718 linux_drop_fop(struct linux_cdev *ldev)
719 {
720 
721 	if (ldev == NULL)
722 		return;
723 	if (ldev->kobj.ktype == &linux_cdev_static_ktype) {
724 		linux_cdev_deref(ldev);
725 	} else {
726 		MPASS(ldev->kobj.ktype == &linux_cdev_ktype);
727 		MPASS((ldev->siref & ~LDEV_SI_DTR) != 0);
728 		atomic_subtract_int(&ldev->siref, LDEV_SI_REF);
729 	}
730 }
731 
732 #define	OPW(fp,td,code) ({			\
733 	struct file *__fpop;			\
734 	__typeof(code) __retval;		\
735 						\
736 	__fpop = (td)->td_fpop;			\
737 	(td)->td_fpop = (fp);			\
738 	__retval = (code);			\
739 	(td)->td_fpop = __fpop;			\
740 	__retval;				\
741 })
742 
743 static int
linux_dev_fdopen(struct cdev * dev,int fflags,struct thread * td,struct file * file)744 linux_dev_fdopen(struct cdev *dev, int fflags, struct thread *td,
745     struct file *file)
746 {
747 	struct linux_cdev *ldev;
748 	struct linux_file *filp;
749 	const struct file_operations *fop;
750 	int error;
751 
752 	ldev = dev->si_drv1;
753 
754 	filp = linux_file_alloc();
755 	filp->f_dentry = &filp->f_dentry_store;
756 	filp->f_op = ldev->ops;
757 	filp->f_mode = file->f_flag;
758 	filp->f_flags = file->f_flag;
759 	filp->f_vnode = file->f_vnode;
760 	filp->_file = file;
761 	refcount_acquire(&ldev->refs);
762 	filp->f_cdev = ldev;
763 
764 	linux_set_current(td);
765 	linux_get_fop(filp, &fop, &ldev);
766 
767 	if (fop->open != NULL) {
768 		error = -fop->open(file->f_vnode, filp);
769 		if (error != 0) {
770 			linux_drop_fop(ldev);
771 			linux_cdev_deref(filp->f_cdev);
772 			kfree(filp);
773 			return (error);
774 		}
775 	}
776 
777 	/* hold on to the vnode - used for fstat() */
778 	vref(filp->f_vnode);
779 
780 	/* release the file from devfs */
781 	finit(file, filp->f_mode, DTYPE_DEV, filp, &linuxfileops);
782 	linux_drop_fop(ldev);
783 	return (ENXIO);
784 }
785 
786 #define	LINUX_IOCTL_MIN_PTR 0x10000UL
787 #define	LINUX_IOCTL_MAX_PTR (LINUX_IOCTL_MIN_PTR + IOCPARM_MAX)
788 
789 static inline int
linux_remap_address(void ** uaddr,size_t len)790 linux_remap_address(void **uaddr, size_t len)
791 {
792 	uintptr_t uaddr_val = (uintptr_t)(*uaddr);
793 
794 	if (unlikely(uaddr_val >= LINUX_IOCTL_MIN_PTR &&
795 	    uaddr_val < LINUX_IOCTL_MAX_PTR)) {
796 		struct task_struct *pts = current;
797 		if (pts == NULL) {
798 			*uaddr = NULL;
799 			return (1);
800 		}
801 
802 		/* compute data offset */
803 		uaddr_val -= LINUX_IOCTL_MIN_PTR;
804 
805 		/* check that length is within bounds */
806 		if ((len > IOCPARM_MAX) ||
807 		    (uaddr_val + len) > pts->bsd_ioctl_len) {
808 			*uaddr = NULL;
809 			return (1);
810 		}
811 
812 		/* re-add kernel buffer address */
813 		uaddr_val += (uintptr_t)pts->bsd_ioctl_data;
814 
815 		/* update address location */
816 		*uaddr = (void *)uaddr_val;
817 		return (1);
818 	}
819 	return (0);
820 }
821 
822 int
linux_copyin(const void * uaddr,void * kaddr,size_t len)823 linux_copyin(const void *uaddr, void *kaddr, size_t len)
824 {
825 	if (linux_remap_address(__DECONST(void **, &uaddr), len)) {
826 		if (uaddr == NULL)
827 			return (-EFAULT);
828 		memcpy(kaddr, uaddr, len);
829 		return (0);
830 	}
831 	return (-copyin(uaddr, kaddr, len));
832 }
833 
834 int
linux_copyout(const void * kaddr,void * uaddr,size_t len)835 linux_copyout(const void *kaddr, void *uaddr, size_t len)
836 {
837 	if (linux_remap_address(&uaddr, len)) {
838 		if (uaddr == NULL)
839 			return (-EFAULT);
840 		memcpy(uaddr, kaddr, len);
841 		return (0);
842 	}
843 	return (-copyout(kaddr, uaddr, len));
844 }
845 
846 size_t
linux_clear_user(void * _uaddr,size_t _len)847 linux_clear_user(void *_uaddr, size_t _len)
848 {
849 	uint8_t *uaddr = _uaddr;
850 	size_t len = _len;
851 
852 	/* make sure uaddr is aligned before going into the fast loop */
853 	while (((uintptr_t)uaddr & 7) != 0 && len > 7) {
854 		if (subyte(uaddr, 0))
855 			return (_len);
856 		uaddr++;
857 		len--;
858 	}
859 
860 	/* zero 8 bytes at a time */
861 	while (len > 7) {
862 #ifdef __LP64__
863 		if (suword64(uaddr, 0))
864 			return (_len);
865 #else
866 		if (suword32(uaddr, 0))
867 			return (_len);
868 		if (suword32(uaddr + 4, 0))
869 			return (_len);
870 #endif
871 		uaddr += 8;
872 		len -= 8;
873 	}
874 
875 	/* zero fill end, if any */
876 	while (len > 0) {
877 		if (subyte(uaddr, 0))
878 			return (_len);
879 		uaddr++;
880 		len--;
881 	}
882 	return (0);
883 }
884 
885 int
linux_access_ok(const void * uaddr,size_t len)886 linux_access_ok(const void *uaddr, size_t len)
887 {
888 	uintptr_t saddr;
889 	uintptr_t eaddr;
890 
891 	/* get start and end address */
892 	saddr = (uintptr_t)uaddr;
893 	eaddr = (uintptr_t)uaddr + len;
894 
895 	/* verify addresses are valid for userspace */
896 	return ((saddr == eaddr) ||
897 	    (eaddr > saddr && eaddr <= VM_MAXUSER_ADDRESS));
898 }
899 
900 /*
901  * This function should return either EINTR or ERESTART depending on
902  * the signal type sent to this thread:
903  */
904 static int
linux_get_error(struct task_struct * task,int error)905 linux_get_error(struct task_struct *task, int error)
906 {
907 	/* check for signal type interrupt code */
908 	if (error == EINTR || error == ERESTARTSYS || error == ERESTART) {
909 		error = -linux_schedule_get_interrupt_value(task);
910 		if (error == 0)
911 			error = EINTR;
912 	}
913 	return (error);
914 }
915 
916 static int
linux_file_ioctl_sub(struct file * fp,struct linux_file * filp,const struct file_operations * fop,u_long cmd,caddr_t data,struct thread * td)917 linux_file_ioctl_sub(struct file *fp, struct linux_file *filp,
918     const struct file_operations *fop, u_long cmd, caddr_t data,
919     struct thread *td)
920 {
921 	struct task_struct *task = current;
922 	unsigned size;
923 	int error;
924 
925 	size = IOCPARM_LEN(cmd);
926 	/* refer to logic in sys_ioctl() */
927 	if (size > 0) {
928 		/*
929 		 * Setup hint for linux_copyin() and linux_copyout().
930 		 *
931 		 * Background: Linux code expects a user-space address
932 		 * while FreeBSD supplies a kernel-space address.
933 		 */
934 		task->bsd_ioctl_data = data;
935 		task->bsd_ioctl_len = size;
936 		data = (void *)LINUX_IOCTL_MIN_PTR;
937 	} else {
938 		/* fetch user-space pointer */
939 		data = *(void **)data;
940 	}
941 #ifdef COMPAT_FREEBSD32
942 	if (SV_PROC_FLAG(td->td_proc, SV_ILP32)) {
943 		/* try the compat IOCTL handler first */
944 		if (fop->compat_ioctl != NULL) {
945 			error = -OPW(fp, td, fop->compat_ioctl(filp,
946 			    cmd, (u_long)data));
947 		} else {
948 			error = ENOTTY;
949 		}
950 
951 		/* fallback to the regular IOCTL handler, if any */
952 		if (error == ENOTTY && fop->unlocked_ioctl != NULL) {
953 			error = -OPW(fp, td, fop->unlocked_ioctl(filp,
954 			    cmd, (u_long)data));
955 		}
956 	} else
957 #endif
958 	{
959 		if (fop->unlocked_ioctl != NULL) {
960 			error = -OPW(fp, td, fop->unlocked_ioctl(filp,
961 			    cmd, (u_long)data));
962 		} else {
963 			error = ENOTTY;
964 		}
965 	}
966 	if (size > 0) {
967 		task->bsd_ioctl_data = NULL;
968 		task->bsd_ioctl_len = 0;
969 	}
970 
971 	if (error == EWOULDBLOCK) {
972 		/* update kqfilter status, if any */
973 		linux_file_kqfilter_poll(filp,
974 		    LINUX_KQ_FLAG_HAS_READ | LINUX_KQ_FLAG_HAS_WRITE);
975 	} else {
976 		error = linux_get_error(task, error);
977 	}
978 	return (error);
979 }
980 
981 #define	LINUX_POLL_TABLE_NORMAL ((poll_table *)1)
982 
983 /*
984  * This function atomically updates the poll wakeup state and returns
985  * the previous state at the time of update.
986  */
987 static uint8_t
linux_poll_wakeup_state(atomic_t * v,const uint8_t * pstate)988 linux_poll_wakeup_state(atomic_t *v, const uint8_t *pstate)
989 {
990 	int c, old;
991 
992 	c = v->counter;
993 
994 	while ((old = atomic_cmpxchg(v, c, pstate[c])) != c)
995 		c = old;
996 
997 	return (c);
998 }
999 
1000 static int
linux_poll_wakeup_callback(wait_queue_t * wq,unsigned int wq_state,int flags,void * key)1001 linux_poll_wakeup_callback(wait_queue_t *wq, unsigned int wq_state, int flags, void *key)
1002 {
1003 	static const uint8_t state[LINUX_FWQ_STATE_MAX] = {
1004 		[LINUX_FWQ_STATE_INIT] = LINUX_FWQ_STATE_INIT, /* NOP */
1005 		[LINUX_FWQ_STATE_NOT_READY] = LINUX_FWQ_STATE_NOT_READY, /* NOP */
1006 		[LINUX_FWQ_STATE_QUEUED] = LINUX_FWQ_STATE_READY,
1007 		[LINUX_FWQ_STATE_READY] = LINUX_FWQ_STATE_READY, /* NOP */
1008 	};
1009 	struct linux_file *filp = container_of(wq, struct linux_file, f_wait_queue.wq);
1010 
1011 	switch (linux_poll_wakeup_state(&filp->f_wait_queue.state, state)) {
1012 	case LINUX_FWQ_STATE_QUEUED:
1013 		linux_poll_wakeup(filp);
1014 		return (1);
1015 	default:
1016 		return (0);
1017 	}
1018 }
1019 
1020 void
linux_poll_wait(struct linux_file * filp,wait_queue_head_t * wqh,poll_table * p)1021 linux_poll_wait(struct linux_file *filp, wait_queue_head_t *wqh, poll_table *p)
1022 {
1023 	static const uint8_t state[LINUX_FWQ_STATE_MAX] = {
1024 		[LINUX_FWQ_STATE_INIT] = LINUX_FWQ_STATE_NOT_READY,
1025 		[LINUX_FWQ_STATE_NOT_READY] = LINUX_FWQ_STATE_NOT_READY, /* NOP */
1026 		[LINUX_FWQ_STATE_QUEUED] = LINUX_FWQ_STATE_QUEUED, /* NOP */
1027 		[LINUX_FWQ_STATE_READY] = LINUX_FWQ_STATE_QUEUED,
1028 	};
1029 
1030 	/* check if we are called inside the select system call */
1031 	if (p == LINUX_POLL_TABLE_NORMAL)
1032 		selrecord(curthread, &filp->f_selinfo);
1033 
1034 	switch (linux_poll_wakeup_state(&filp->f_wait_queue.state, state)) {
1035 	case LINUX_FWQ_STATE_INIT:
1036 		/* NOTE: file handles can only belong to one wait-queue */
1037 		filp->f_wait_queue.wqh = wqh;
1038 		filp->f_wait_queue.wq.func = &linux_poll_wakeup_callback;
1039 		add_wait_queue(wqh, &filp->f_wait_queue.wq);
1040 		atomic_set(&filp->f_wait_queue.state, LINUX_FWQ_STATE_QUEUED);
1041 		break;
1042 	default:
1043 		break;
1044 	}
1045 }
1046 
1047 static void
linux_poll_wait_dequeue(struct linux_file * filp)1048 linux_poll_wait_dequeue(struct linux_file *filp)
1049 {
1050 	static const uint8_t state[LINUX_FWQ_STATE_MAX] = {
1051 		[LINUX_FWQ_STATE_INIT] = LINUX_FWQ_STATE_INIT,	/* NOP */
1052 		[LINUX_FWQ_STATE_NOT_READY] = LINUX_FWQ_STATE_INIT,
1053 		[LINUX_FWQ_STATE_QUEUED] = LINUX_FWQ_STATE_INIT,
1054 		[LINUX_FWQ_STATE_READY] = LINUX_FWQ_STATE_INIT,
1055 	};
1056 
1057 	seldrain(&filp->f_selinfo);
1058 
1059 	switch (linux_poll_wakeup_state(&filp->f_wait_queue.state, state)) {
1060 	case LINUX_FWQ_STATE_NOT_READY:
1061 	case LINUX_FWQ_STATE_QUEUED:
1062 	case LINUX_FWQ_STATE_READY:
1063 		remove_wait_queue(filp->f_wait_queue.wqh, &filp->f_wait_queue.wq);
1064 		break;
1065 	default:
1066 		break;
1067 	}
1068 }
1069 
1070 void
linux_poll_wakeup(struct linux_file * filp)1071 linux_poll_wakeup(struct linux_file *filp)
1072 {
1073 	/* this function should be NULL-safe */
1074 	if (filp == NULL)
1075 		return;
1076 
1077 	selwakeup(&filp->f_selinfo);
1078 
1079 	spin_lock(&filp->f_kqlock);
1080 	filp->f_kqflags |= LINUX_KQ_FLAG_NEED_READ |
1081 	    LINUX_KQ_FLAG_NEED_WRITE;
1082 
1083 	/* make sure the "knote" gets woken up */
1084 	KNOTE_LOCKED(&filp->f_selinfo.si_note, 1);
1085 	spin_unlock(&filp->f_kqlock);
1086 }
1087 
1088 static struct linux_file *
__get_file_rcu(struct linux_file ** f)1089 __get_file_rcu(struct linux_file **f)
1090 {
1091 	struct linux_file *file1, *file2;
1092 
1093 	file1 = READ_ONCE(*f);
1094 	if (file1 == NULL)
1095 		return (NULL);
1096 
1097 	if (!refcount_acquire_if_not_zero(
1098 	    file1->_file == NULL ? &file1->f_count : &file1->_file->f_count))
1099 		return (ERR_PTR(-EAGAIN));
1100 
1101 	file2 = READ_ONCE(*f);
1102 	if (file2 == file1)
1103 		return (file2);
1104 
1105 	fput(file1);
1106 	return (ERR_PTR(-EAGAIN));
1107 }
1108 
1109 struct linux_file *
linux_get_file_rcu(struct linux_file ** f)1110 linux_get_file_rcu(struct linux_file **f)
1111 {
1112 	struct linux_file *file1;
1113 
1114 	for (;;) {
1115 		file1 = __get_file_rcu(f);
1116 		if (file1 == NULL)
1117 			return (NULL);
1118 
1119 		if (IS_ERR(file1))
1120 			continue;
1121 
1122 		return (file1);
1123 	}
1124 }
1125 
1126 struct linux_file *
get_file_active(struct linux_file ** f)1127 get_file_active(struct linux_file **f)
1128 {
1129 	struct linux_file *file1;
1130 
1131 	rcu_read_lock();
1132 	file1 = __get_file_rcu(f);
1133 	rcu_read_unlock();
1134 	if (IS_ERR(file1))
1135 		file1 = NULL;
1136 
1137 	return (file1);
1138 }
1139 
1140 static void
linux_file_kqfilter_detach(struct knote * kn)1141 linux_file_kqfilter_detach(struct knote *kn)
1142 {
1143 	struct linux_file *filp = kn->kn_hook;
1144 
1145 	spin_lock(&filp->f_kqlock);
1146 	knlist_remove(&filp->f_selinfo.si_note, kn, 1);
1147 	spin_unlock(&filp->f_kqlock);
1148 }
1149 
1150 static int
linux_file_kqfilter_read_event(struct knote * kn,long hint)1151 linux_file_kqfilter_read_event(struct knote *kn, long hint)
1152 {
1153 	struct linux_file *filp = kn->kn_hook;
1154 
1155 	mtx_assert(&filp->f_kqlock, MA_OWNED);
1156 
1157 	return ((filp->f_kqflags & LINUX_KQ_FLAG_NEED_READ) ? 1 : 0);
1158 }
1159 
1160 static int
linux_file_kqfilter_write_event(struct knote * kn,long hint)1161 linux_file_kqfilter_write_event(struct knote *kn, long hint)
1162 {
1163 	struct linux_file *filp = kn->kn_hook;
1164 
1165 	mtx_assert(&filp->f_kqlock, MA_OWNED);
1166 
1167 	return ((filp->f_kqflags & LINUX_KQ_FLAG_NEED_WRITE) ? 1 : 0);
1168 }
1169 
1170 static const struct filterops linux_dev_kqfiltops_read = {
1171 	.f_isfd = 1,
1172 	.f_detach = linux_file_kqfilter_detach,
1173 	.f_event = linux_file_kqfilter_read_event,
1174 };
1175 
1176 static const struct filterops linux_dev_kqfiltops_write = {
1177 	.f_isfd = 1,
1178 	.f_detach = linux_file_kqfilter_detach,
1179 	.f_event = linux_file_kqfilter_write_event,
1180 };
1181 
1182 static void
linux_file_kqfilter_poll(struct linux_file * filp,int kqflags)1183 linux_file_kqfilter_poll(struct linux_file *filp, int kqflags)
1184 {
1185 	struct thread *td;
1186 	const struct file_operations *fop;
1187 	struct linux_cdev *ldev;
1188 	int temp;
1189 
1190 	if ((filp->f_kqflags & kqflags) == 0)
1191 		return;
1192 
1193 	td = curthread;
1194 
1195 	linux_get_fop(filp, &fop, &ldev);
1196 	/* get the latest polling state */
1197 	temp = OPW(filp->_file, td, fop->poll(filp, NULL));
1198 	linux_drop_fop(ldev);
1199 
1200 	spin_lock(&filp->f_kqlock);
1201 	/* clear kqflags */
1202 	filp->f_kqflags &= ~(LINUX_KQ_FLAG_NEED_READ |
1203 	    LINUX_KQ_FLAG_NEED_WRITE);
1204 	/* update kqflags */
1205 	if ((temp & (POLLIN | POLLOUT)) != 0) {
1206 		if ((temp & POLLIN) != 0)
1207 			filp->f_kqflags |= LINUX_KQ_FLAG_NEED_READ;
1208 		if ((temp & POLLOUT) != 0)
1209 			filp->f_kqflags |= LINUX_KQ_FLAG_NEED_WRITE;
1210 
1211 		/* make sure the "knote" gets woken up */
1212 		KNOTE_LOCKED(&filp->f_selinfo.si_note, 0);
1213 	}
1214 	spin_unlock(&filp->f_kqlock);
1215 }
1216 
1217 static int
linux_file_kqfilter(struct file * file,struct knote * kn)1218 linux_file_kqfilter(struct file *file, struct knote *kn)
1219 {
1220 	struct linux_file *filp;
1221 	struct thread *td;
1222 	int error;
1223 
1224 	td = curthread;
1225 	filp = (struct linux_file *)file->f_data;
1226 	filp->f_flags = file->f_flag;
1227 	if (filp->f_op->poll == NULL)
1228 		return (EINVAL);
1229 
1230 	spin_lock(&filp->f_kqlock);
1231 	switch (kn->kn_filter) {
1232 	case EVFILT_READ:
1233 		filp->f_kqflags |= LINUX_KQ_FLAG_HAS_READ;
1234 		kn->kn_fop = &linux_dev_kqfiltops_read;
1235 		kn->kn_hook = filp;
1236 		knlist_add(&filp->f_selinfo.si_note, kn, 1);
1237 		error = 0;
1238 		break;
1239 	case EVFILT_WRITE:
1240 		filp->f_kqflags |= LINUX_KQ_FLAG_HAS_WRITE;
1241 		kn->kn_fop = &linux_dev_kqfiltops_write;
1242 		kn->kn_hook = filp;
1243 		knlist_add(&filp->f_selinfo.si_note, kn, 1);
1244 		error = 0;
1245 		break;
1246 	default:
1247 		error = EINVAL;
1248 		break;
1249 	}
1250 	spin_unlock(&filp->f_kqlock);
1251 
1252 	if (error == 0) {
1253 		linux_set_current(td);
1254 
1255 		/* update kqfilter status, if any */
1256 		linux_file_kqfilter_poll(filp,
1257 		    LINUX_KQ_FLAG_HAS_READ | LINUX_KQ_FLAG_HAS_WRITE);
1258 	}
1259 	return (error);
1260 }
1261 
1262 static int
linux_file_mmap_single(struct file * fp,const struct file_operations * fop,vm_ooffset_t * offset,vm_size_t size,struct vm_object ** object,int nprot,bool is_shared,struct thread * td)1263 linux_file_mmap_single(struct file *fp, const struct file_operations *fop,
1264     vm_ooffset_t *offset, vm_size_t size, struct vm_object **object,
1265     int nprot, bool is_shared, struct thread *td)
1266 {
1267 	struct task_struct *task;
1268 	struct vm_area_struct *vmap;
1269 	struct mm_struct *mm;
1270 	struct linux_file *filp;
1271 	vm_memattr_t attr;
1272 	int error;
1273 
1274 	filp = (struct linux_file *)fp->f_data;
1275 	filp->f_flags = fp->f_flag;
1276 
1277 	if (fop->mmap == NULL)
1278 		return (EOPNOTSUPP);
1279 
1280 	linux_set_current(td);
1281 
1282 	/*
1283 	 * The same VM object might be shared by multiple processes
1284 	 * and the mm_struct is usually freed when a process exits.
1285 	 *
1286 	 * The atomic reference below makes sure the mm_struct is
1287 	 * available as long as the vmap is in the linux_vma_head.
1288 	 */
1289 	task = current;
1290 	mm = task->mm;
1291 	if (atomic_inc_not_zero(&mm->mm_users) == 0)
1292 		return (EINVAL);
1293 
1294 	vmap = kzalloc(sizeof(*vmap), GFP_KERNEL);
1295 	vmap->vm_start = 0;
1296 	vmap->vm_end = size;
1297 	vmap->vm_pgoff = *offset / PAGE_SIZE;
1298 	vmap->vm_pfn = 0;
1299 	vmap->vm_flags = vmap->vm_page_prot = (nprot & VM_PROT_ALL);
1300 	if (is_shared)
1301 		vmap->vm_flags |= VM_SHARED;
1302 	vmap->vm_ops = NULL;
1303 	vmap->vm_file = get_file(filp);
1304 	vmap->vm_mm = mm;
1305 
1306 	if (unlikely(down_write_killable(&vmap->vm_mm->mmap_sem))) {
1307 		error = linux_get_error(task, EINTR);
1308 	} else {
1309 		error = -OPW(fp, td, fop->mmap(filp, vmap));
1310 		error = linux_get_error(task, error);
1311 		up_write(&vmap->vm_mm->mmap_sem);
1312 	}
1313 
1314 	if (error != 0) {
1315 		linux_cdev_handle_free(vmap);
1316 		return (error);
1317 	}
1318 
1319 	attr = pgprot2cachemode(vmap->vm_page_prot);
1320 
1321 	if (vmap->vm_ops != NULL) {
1322 		struct vm_area_struct *ptr;
1323 		void *vm_private_data;
1324 		bool vm_no_fault;
1325 
1326 		if (vmap->vm_ops->open == NULL ||
1327 		    vmap->vm_ops->close == NULL ||
1328 		    vmap->vm_private_data == NULL) {
1329 			/* free allocated VM area struct */
1330 			linux_cdev_handle_free(vmap);
1331 			return (EINVAL);
1332 		}
1333 
1334 		vm_private_data = vmap->vm_private_data;
1335 
1336 		rw_wlock(&linux_vma_lock);
1337 		TAILQ_FOREACH(ptr, &linux_vma_head, vm_entry) {
1338 			if (ptr->vm_private_data == vm_private_data)
1339 				break;
1340 		}
1341 		/* check if there is an existing VM area struct */
1342 		if (ptr != NULL) {
1343 			/* check if the VM area structure is invalid */
1344 			if (ptr->vm_ops == NULL ||
1345 			    ptr->vm_ops->open == NULL ||
1346 			    ptr->vm_ops->close == NULL) {
1347 				error = ESTALE;
1348 				vm_no_fault = 1;
1349 			} else {
1350 				error = EEXIST;
1351 				vm_no_fault = (ptr->vm_ops->fault == NULL);
1352 			}
1353 		} else {
1354 			/* insert VM area structure into list */
1355 			TAILQ_INSERT_TAIL(&linux_vma_head, vmap, vm_entry);
1356 			error = 0;
1357 			vm_no_fault = (vmap->vm_ops->fault == NULL);
1358 		}
1359 		rw_wunlock(&linux_vma_lock);
1360 
1361 		if (error != 0) {
1362 			/* free allocated VM area struct */
1363 			linux_cdev_handle_free(vmap);
1364 			/* check for stale VM area struct */
1365 			if (error != EEXIST)
1366 				return (error);
1367 		}
1368 
1369 		/* check if there is no fault handler */
1370 		if (vm_no_fault) {
1371 			*object = cdev_pager_allocate(vm_private_data, OBJT_DEVICE,
1372 			    &linux_cdev_pager_ops[1], size, nprot, *offset,
1373 			    td->td_ucred);
1374 		} else {
1375 			*object = cdev_pager_allocate(vm_private_data, OBJT_MGTDEVICE,
1376 			    &linux_cdev_pager_ops[0], size, nprot, *offset,
1377 			    td->td_ucred);
1378 		}
1379 
1380 		/* check if allocating the VM object failed */
1381 		if (*object == NULL) {
1382 			if (error == 0) {
1383 				/* remove VM area struct from list */
1384 				linux_cdev_handle_remove(vmap);
1385 				/* free allocated VM area struct */
1386 				linux_cdev_handle_free(vmap);
1387 			}
1388 			return (EINVAL);
1389 		}
1390 	} else {
1391 		struct sglist *sg;
1392 
1393 		sg = sglist_alloc(1, M_WAITOK);
1394 		sglist_append_phys(sg,
1395 		    (vm_paddr_t)vmap->vm_pfn << PAGE_SHIFT, vmap->vm_len);
1396 
1397 		*object = vm_pager_allocate(OBJT_SG, sg, vmap->vm_len,
1398 		    nprot, 0, td->td_ucred);
1399 
1400 		linux_cdev_handle_free(vmap);
1401 
1402 		if (*object == NULL) {
1403 			sglist_free(sg);
1404 			return (EINVAL);
1405 		}
1406 	}
1407 
1408 	if (attr != VM_MEMATTR_DEFAULT) {
1409 		VM_OBJECT_WLOCK(*object);
1410 		vm_object_set_memattr(*object, attr);
1411 		VM_OBJECT_WUNLOCK(*object);
1412 	}
1413 	*offset = 0;
1414 	return (0);
1415 }
1416 
1417 struct cdevsw linuxcdevsw = {
1418 	.d_version = D_VERSION,
1419 	.d_fdopen = linux_dev_fdopen,
1420 	.d_name = "lkpidev",
1421 };
1422 
1423 static int
linux_file_read(struct file * file,struct uio * uio,struct ucred * active_cred,int flags,struct thread * td)1424 linux_file_read(struct file *file, struct uio *uio, struct ucred *active_cred,
1425     int flags, struct thread *td)
1426 {
1427 	struct linux_file *filp;
1428 	const struct file_operations *fop;
1429 	struct linux_cdev *ldev;
1430 	ssize_t bytes;
1431 	int error;
1432 
1433 	error = 0;
1434 	filp = (struct linux_file *)file->f_data;
1435 	filp->f_flags = file->f_flag;
1436 	/* XXX no support for I/O vectors currently */
1437 	if (uio->uio_iovcnt != 1)
1438 		return (EOPNOTSUPP);
1439 	if (uio->uio_resid > DEVFS_IOSIZE_MAX)
1440 		return (EINVAL);
1441 	linux_set_current(td);
1442 	linux_get_fop(filp, &fop, &ldev);
1443 	if (fop->read != NULL) {
1444 		bytes = OPW(file, td, fop->read(filp,
1445 		    uio->uio_iov->iov_base,
1446 		    uio->uio_iov->iov_len, &uio->uio_offset));
1447 		if (bytes >= 0) {
1448 			uio->uio_iov->iov_base =
1449 			    ((uint8_t *)uio->uio_iov->iov_base) + bytes;
1450 			uio->uio_iov->iov_len -= bytes;
1451 			uio->uio_resid -= bytes;
1452 		} else {
1453 			error = linux_get_error(current, -bytes);
1454 		}
1455 	} else
1456 		error = ENXIO;
1457 
1458 	/* update kqfilter status, if any */
1459 	linux_file_kqfilter_poll(filp, LINUX_KQ_FLAG_HAS_READ);
1460 	linux_drop_fop(ldev);
1461 
1462 	return (error);
1463 }
1464 
1465 static int
linux_file_write(struct file * file,struct uio * uio,struct ucred * active_cred,int flags,struct thread * td)1466 linux_file_write(struct file *file, struct uio *uio, struct ucred *active_cred,
1467     int flags, struct thread *td)
1468 {
1469 	struct linux_file *filp;
1470 	const struct file_operations *fop;
1471 	struct linux_cdev *ldev;
1472 	ssize_t bytes;
1473 	int error;
1474 
1475 	filp = (struct linux_file *)file->f_data;
1476 	filp->f_flags = file->f_flag;
1477 	/* XXX no support for I/O vectors currently */
1478 	if (uio->uio_iovcnt != 1)
1479 		return (EOPNOTSUPP);
1480 	if (uio->uio_resid > DEVFS_IOSIZE_MAX)
1481 		return (EINVAL);
1482 	linux_set_current(td);
1483 	linux_get_fop(filp, &fop, &ldev);
1484 	if (fop->write != NULL) {
1485 		bytes = OPW(file, td, fop->write(filp,
1486 		    uio->uio_iov->iov_base,
1487 		    uio->uio_iov->iov_len, &uio->uio_offset));
1488 		if (bytes >= 0) {
1489 			uio->uio_iov->iov_base =
1490 			    ((uint8_t *)uio->uio_iov->iov_base) + bytes;
1491 			uio->uio_iov->iov_len -= bytes;
1492 			uio->uio_resid -= bytes;
1493 			error = 0;
1494 		} else {
1495 			error = linux_get_error(current, -bytes);
1496 		}
1497 	} else
1498 		error = ENXIO;
1499 
1500 	/* update kqfilter status, if any */
1501 	linux_file_kqfilter_poll(filp, LINUX_KQ_FLAG_HAS_WRITE);
1502 
1503 	linux_drop_fop(ldev);
1504 
1505 	return (error);
1506 }
1507 
1508 static int
linux_file_poll(struct file * file,int events,struct ucred * active_cred,struct thread * td)1509 linux_file_poll(struct file *file, int events, struct ucred *active_cred,
1510     struct thread *td)
1511 {
1512 	struct linux_file *filp;
1513 	const struct file_operations *fop;
1514 	struct linux_cdev *ldev;
1515 	int revents;
1516 
1517 	filp = (struct linux_file *)file->f_data;
1518 	filp->f_flags = file->f_flag;
1519 	linux_set_current(td);
1520 	linux_get_fop(filp, &fop, &ldev);
1521 	if (fop->poll != NULL) {
1522 		revents = OPW(file, td, fop->poll(filp,
1523 		    LINUX_POLL_TABLE_NORMAL)) & events;
1524 	} else {
1525 		revents = 0;
1526 	}
1527 	linux_drop_fop(ldev);
1528 	return (revents);
1529 }
1530 
1531 static int
linux_file_close(struct file * file,struct thread * td)1532 linux_file_close(struct file *file, struct thread *td)
1533 {
1534 	struct linux_file *filp;
1535 	int (*release)(struct inode *, struct linux_file *);
1536 	const struct file_operations *fop;
1537 	struct linux_cdev *ldev;
1538 	int error;
1539 
1540 	filp = (struct linux_file *)file->f_data;
1541 
1542 	KASSERT(file_count(filp) == 0,
1543 	    ("File refcount(%d) is not zero", file_count(filp)));
1544 
1545 	if (td == NULL)
1546 		td = curthread;
1547 
1548 	error = 0;
1549 	filp->f_flags = file->f_flag;
1550 	linux_set_current(td);
1551 	linux_poll_wait_dequeue(filp);
1552 	linux_get_fop(filp, &fop, &ldev);
1553 	/*
1554 	 * Always use the real release function, if any, to avoid
1555 	 * leaking device resources:
1556 	 */
1557 	release = filp->f_op->release;
1558 	if (release != NULL)
1559 		error = -OPW(file, td, release(filp->f_vnode, filp));
1560 	funsetown(&filp->f_sigio);
1561 	if (filp->f_vnode != NULL)
1562 		vrele(filp->f_vnode);
1563 	linux_drop_fop(ldev);
1564 	ldev = filp->f_cdev;
1565 	if (ldev != NULL)
1566 		linux_cdev_deref(ldev);
1567 	linux_synchronize_rcu(RCU_TYPE_REGULAR);
1568 	kfree(filp);
1569 
1570 	return (error);
1571 }
1572 
1573 static int
linux_file_ioctl(struct file * fp,u_long cmd,void * data,struct ucred * cred,struct thread * td)1574 linux_file_ioctl(struct file *fp, u_long cmd, void *data, struct ucred *cred,
1575     struct thread *td)
1576 {
1577 	struct linux_file *filp;
1578 	const struct file_operations *fop;
1579 	struct linux_cdev *ldev;
1580 	struct fiodgname_arg *fgn;
1581 	const char *p;
1582 	int error, i;
1583 
1584 	error = 0;
1585 	filp = (struct linux_file *)fp->f_data;
1586 	filp->f_flags = fp->f_flag;
1587 	linux_get_fop(filp, &fop, &ldev);
1588 
1589 	linux_set_current(td);
1590 	switch (cmd) {
1591 	case FIONBIO:
1592 		break;
1593 	case FIOASYNC:
1594 		if (fop->fasync == NULL)
1595 			break;
1596 		error = -OPW(fp, td, fop->fasync(0, filp, fp->f_flag & FASYNC));
1597 		break;
1598 	case FIOSETOWN:
1599 		error = fsetown(*(int *)data, &filp->f_sigio);
1600 		if (error == 0) {
1601 			if (fop->fasync == NULL)
1602 				break;
1603 			error = -OPW(fp, td, fop->fasync(0, filp,
1604 			    fp->f_flag & FASYNC));
1605 		}
1606 		break;
1607 	case FIOGETOWN:
1608 		*(int *)data = fgetown(&filp->f_sigio);
1609 		break;
1610 	case FIODGNAME:
1611 #ifdef	COMPAT_FREEBSD32
1612 	case FIODGNAME_32:
1613 #endif
1614 		if (filp->f_cdev == NULL || filp->f_cdev->cdev == NULL) {
1615 			error = ENXIO;
1616 			break;
1617 		}
1618 		fgn = data;
1619 		p = devtoname(filp->f_cdev->cdev);
1620 		i = strlen(p) + 1;
1621 		if (i > fgn->len) {
1622 			error = EINVAL;
1623 			break;
1624 		}
1625 		error = copyout(p, fiodgname_buf_get_ptr(fgn, cmd), i);
1626 		break;
1627 	default:
1628 		error = linux_file_ioctl_sub(fp, filp, fop, cmd, data, td);
1629 		break;
1630 	}
1631 	linux_drop_fop(ldev);
1632 	return (error);
1633 }
1634 
1635 static int
linux_file_mmap_sub(struct thread * td,vm_size_t objsize,vm_prot_t prot,vm_prot_t maxprot,int flags,struct file * fp,vm_ooffset_t * foff,const struct file_operations * fop,vm_object_t * objp)1636 linux_file_mmap_sub(struct thread *td, vm_size_t objsize, vm_prot_t prot,
1637     vm_prot_t maxprot, int flags, struct file *fp,
1638     vm_ooffset_t *foff, const struct file_operations *fop, vm_object_t *objp)
1639 {
1640 	/*
1641 	 * Character devices do not provide private mappings
1642 	 * of any kind:
1643 	 */
1644 	if ((maxprot & VM_PROT_WRITE) == 0 &&
1645 	    (prot & VM_PROT_WRITE) != 0)
1646 		return (EACCES);
1647 	if ((flags & (MAP_PRIVATE | MAP_COPY)) != 0)
1648 		return (EINVAL);
1649 
1650 	return (linux_file_mmap_single(fp, fop, foff, objsize, objp,
1651 	    (int)prot, (flags & MAP_SHARED) ? true : false, td));
1652 }
1653 
1654 static int
linux_file_mmap(struct file * fp,vm_map_t map,vm_offset_t * addr,vm_size_t size,vm_prot_t prot,vm_prot_t cap_maxprot,int flags,vm_ooffset_t foff,struct thread * td)1655 linux_file_mmap(struct file *fp, vm_map_t map, vm_offset_t *addr, vm_size_t size,
1656     vm_prot_t prot, vm_prot_t cap_maxprot, int flags, vm_ooffset_t foff,
1657     struct thread *td)
1658 {
1659 	struct linux_file *filp;
1660 	const struct file_operations *fop;
1661 	struct linux_cdev *ldev;
1662 	struct mount *mp;
1663 	struct vnode *vp;
1664 	vm_object_t object;
1665 	vm_prot_t maxprot;
1666 	int error;
1667 
1668 	filp = (struct linux_file *)fp->f_data;
1669 
1670 	vp = filp->f_vnode;
1671 	if (vp == NULL)
1672 		return (EOPNOTSUPP);
1673 
1674 	/*
1675 	 * Ensure that file and memory protections are
1676 	 * compatible.
1677 	 */
1678 	mp = vp->v_mount;
1679 	if (mp != NULL && (mp->mnt_flag & MNT_NOEXEC) != 0) {
1680 		maxprot = VM_PROT_NONE;
1681 		if ((prot & VM_PROT_EXECUTE) != 0)
1682 			return (EACCES);
1683 	} else
1684 		maxprot = VM_PROT_EXECUTE;
1685 	if ((fp->f_flag & FREAD) != 0)
1686 		maxprot |= VM_PROT_READ;
1687 	else if ((prot & VM_PROT_READ) != 0)
1688 		return (EACCES);
1689 
1690 	/*
1691 	 * If we are sharing potential changes via MAP_SHARED and we
1692 	 * are trying to get write permission although we opened it
1693 	 * without asking for it, bail out.
1694 	 *
1695 	 * Note that most character devices always share mappings.
1696 	 *
1697 	 * Rely on linux_file_mmap_sub() to fail invalid MAP_PRIVATE
1698 	 * requests rather than doing it here.
1699 	 */
1700 	if ((flags & MAP_SHARED) != 0) {
1701 		if ((fp->f_flag & FWRITE) != 0)
1702 			maxprot |= VM_PROT_WRITE;
1703 		else if ((prot & VM_PROT_WRITE) != 0)
1704 			return (EACCES);
1705 	}
1706 	maxprot &= cap_maxprot;
1707 
1708 	linux_get_fop(filp, &fop, &ldev);
1709 	error = linux_file_mmap_sub(td, size, prot, maxprot, flags, fp,
1710 	    &foff, fop, &object);
1711 	if (error != 0)
1712 		goto out;
1713 
1714 	error = vm_mmap_object(map, addr, size, prot, maxprot, flags, object,
1715 	    foff, FALSE, td);
1716 	if (error != 0)
1717 		vm_object_deallocate(object);
1718 out:
1719 	linux_drop_fop(ldev);
1720 	return (error);
1721 }
1722 
1723 static int
linux_file_stat(struct file * fp,struct stat * sb,struct ucred * active_cred)1724 linux_file_stat(struct file *fp, struct stat *sb, struct ucred *active_cred)
1725 {
1726 	struct linux_file *filp;
1727 	struct vnode *vp;
1728 	int error;
1729 
1730 	filp = (struct linux_file *)fp->f_data;
1731 	if (filp->f_vnode == NULL)
1732 		return (EOPNOTSUPP);
1733 
1734 	vp = filp->f_vnode;
1735 
1736 	vn_lock(vp, LK_SHARED | LK_RETRY);
1737 	error = VOP_STAT(vp, sb, curthread->td_ucred, NOCRED);
1738 	VOP_UNLOCK(vp);
1739 
1740 	return (error);
1741 }
1742 
1743 static int
linux_file_fill_kinfo(struct file * fp,struct kinfo_file * kif,struct filedesc * fdp)1744 linux_file_fill_kinfo(struct file *fp, struct kinfo_file *kif,
1745     struct filedesc *fdp)
1746 {
1747 	struct linux_file *filp;
1748 	struct vnode *vp;
1749 	int error;
1750 
1751 	filp = fp->f_data;
1752 	vp = filp->f_vnode;
1753 	if (vp == NULL) {
1754 		error = 0;
1755 		kif->kf_type = KF_TYPE_DEV;
1756 	} else {
1757 		vref(vp);
1758 		FILEDESC_SUNLOCK(fdp);
1759 		error = vn_fill_kinfo_vnode(vp, kif);
1760 		vrele(vp);
1761 		kif->kf_type = KF_TYPE_VNODE;
1762 		FILEDESC_SLOCK(fdp);
1763 	}
1764 	return (error);
1765 }
1766 
1767 unsigned int
linux_iminor(struct inode * inode)1768 linux_iminor(struct inode *inode)
1769 {
1770 	struct linux_cdev *ldev;
1771 
1772 	if (inode == NULL || inode->v_rdev == NULL ||
1773 	    inode->v_rdev->si_devsw != &linuxcdevsw)
1774 		return (-1U);
1775 	ldev = inode->v_rdev->si_drv1;
1776 	if (ldev == NULL)
1777 		return (-1U);
1778 
1779 	return (minor(ldev->dev));
1780 }
1781 
1782 static int
linux_file_kcmp(struct file * fp1,struct file * fp2,struct thread * td)1783 linux_file_kcmp(struct file *fp1, struct file *fp2, struct thread *td)
1784 {
1785 	struct linux_file *filp1, *filp2;
1786 
1787 	if (fp2->f_type != DTYPE_DEV)
1788 		return (3);
1789 
1790 	filp1 = fp1->f_data;
1791 	filp2 = fp2->f_data;
1792 	return (kcmp_cmp((uintptr_t)filp1->f_cdev, (uintptr_t)filp2->f_cdev));
1793 }
1794 
1795 const struct fileops linuxfileops = {
1796 	.fo_read = linux_file_read,
1797 	.fo_write = linux_file_write,
1798 	.fo_truncate = invfo_truncate,
1799 	.fo_kqfilter = linux_file_kqfilter,
1800 	.fo_stat = linux_file_stat,
1801 	.fo_fill_kinfo = linux_file_fill_kinfo,
1802 	.fo_poll = linux_file_poll,
1803 	.fo_close = linux_file_close,
1804 	.fo_ioctl = linux_file_ioctl,
1805 	.fo_mmap = linux_file_mmap,
1806 	.fo_chmod = invfo_chmod,
1807 	.fo_chown = invfo_chown,
1808 	.fo_sendfile = invfo_sendfile,
1809 	.fo_cmp = linux_file_kcmp,
1810 	.fo_flags = DFLAG_PASSABLE,
1811 };
1812 
1813 /*
1814  * Hash of vmmap addresses.  This is infrequently accessed and does not
1815  * need to be particularly large.  This is done because we must store the
1816  * caller's idea of the map size to properly unmap.
1817  */
1818 struct vmmap {
1819 	LIST_ENTRY(vmmap)	vm_next;
1820 	void 			*vm_addr;
1821 	unsigned long		vm_size;
1822 };
1823 
1824 struct vmmaphd {
1825 	struct vmmap *lh_first;
1826 };
1827 #define	VMMAP_HASH_SIZE	64
1828 #define	VMMAP_HASH_MASK	(VMMAP_HASH_SIZE - 1)
1829 #define	VM_HASH(addr)	((uintptr_t)(addr) >> PAGE_SHIFT) & VMMAP_HASH_MASK
1830 static struct vmmaphd vmmaphead[VMMAP_HASH_SIZE];
1831 static struct mtx vmmaplock;
1832 
1833 static void
vmmap_add(void * addr,unsigned long size)1834 vmmap_add(void *addr, unsigned long size)
1835 {
1836 	struct vmmap *vmmap;
1837 
1838 	vmmap = kmalloc(sizeof(*vmmap), GFP_KERNEL);
1839 	mtx_lock(&vmmaplock);
1840 	vmmap->vm_size = size;
1841 	vmmap->vm_addr = addr;
1842 	LIST_INSERT_HEAD(&vmmaphead[VM_HASH(addr)], vmmap, vm_next);
1843 	mtx_unlock(&vmmaplock);
1844 }
1845 
1846 static struct vmmap *
vmmap_remove(void * addr)1847 vmmap_remove(void *addr)
1848 {
1849 	struct vmmap *vmmap;
1850 
1851 	mtx_lock(&vmmaplock);
1852 	LIST_FOREACH(vmmap, &vmmaphead[VM_HASH(addr)], vm_next)
1853 		if (vmmap->vm_addr == addr)
1854 			break;
1855 	if (vmmap)
1856 		LIST_REMOVE(vmmap, vm_next);
1857 	mtx_unlock(&vmmaplock);
1858 
1859 	return (vmmap);
1860 }
1861 
1862 #if defined(__i386__) || defined(__amd64__) || defined(__powerpc__) || defined(__aarch64__) || defined(__riscv)
1863 void *
_ioremap_attr(vm_paddr_t phys_addr,unsigned long size,int attr)1864 _ioremap_attr(vm_paddr_t phys_addr, unsigned long size, int attr)
1865 {
1866 	void *addr;
1867 
1868 	addr = pmap_mapdev_attr(phys_addr, size, attr);
1869 	if (addr == NULL)
1870 		return (NULL);
1871 	vmmap_add(addr, size);
1872 
1873 	return (addr);
1874 }
1875 #endif
1876 
1877 void
iounmap(void * addr)1878 iounmap(void *addr)
1879 {
1880 	struct vmmap *vmmap;
1881 
1882 	vmmap = vmmap_remove(addr);
1883 	if (vmmap == NULL)
1884 		return;
1885 #if defined(__i386__) || defined(__amd64__) || defined(__powerpc__) || defined(__aarch64__) || defined(__riscv)
1886 	pmap_unmapdev(addr, vmmap->vm_size);
1887 #endif
1888 	kfree(vmmap);
1889 }
1890 
1891 void *
vmap(struct page ** pages,unsigned int count,unsigned long flags,int prot)1892 vmap(struct page **pages, unsigned int count, unsigned long flags, int prot)
1893 {
1894 	vm_offset_t off;
1895 	size_t size;
1896 
1897 	size = count * PAGE_SIZE;
1898 	off = kva_alloc(size);
1899 	if (off == 0)
1900 		return (NULL);
1901 	vmmap_add((void *)off, size);
1902 	pmap_qenter(off, pages, count);
1903 
1904 	return ((void *)off);
1905 }
1906 
1907 void
vunmap(void * addr)1908 vunmap(void *addr)
1909 {
1910 	struct vmmap *vmmap;
1911 
1912 	vmmap = vmmap_remove(addr);
1913 	if (vmmap == NULL)
1914 		return;
1915 	pmap_qremove((vm_offset_t)addr, vmmap->vm_size / PAGE_SIZE);
1916 	kva_free((vm_offset_t)addr, vmmap->vm_size);
1917 	kfree(vmmap);
1918 }
1919 
1920 static char *
devm_kvasprintf(struct device * dev,gfp_t gfp,const char * fmt,va_list ap)1921 devm_kvasprintf(struct device *dev, gfp_t gfp, const char *fmt, va_list ap)
1922 {
1923 	unsigned int len;
1924 	char *p;
1925 	va_list aq;
1926 
1927 	va_copy(aq, ap);
1928 	len = vsnprintf(NULL, 0, fmt, aq);
1929 	va_end(aq);
1930 
1931 	if (dev != NULL)
1932 		p = devm_kmalloc(dev, len + 1, gfp);
1933 	else
1934 		p = kmalloc(len + 1, gfp);
1935 	if (p != NULL)
1936 		vsnprintf(p, len + 1, fmt, ap);
1937 
1938 	return (p);
1939 }
1940 
1941 char *
kvasprintf(gfp_t gfp,const char * fmt,va_list ap)1942 kvasprintf(gfp_t gfp, const char *fmt, va_list ap)
1943 {
1944 
1945 	return (devm_kvasprintf(NULL, gfp, fmt, ap));
1946 }
1947 
1948 char *
lkpi_devm_kasprintf(struct device * dev,gfp_t gfp,const char * fmt,...)1949 lkpi_devm_kasprintf(struct device *dev, gfp_t gfp, const char *fmt, ...)
1950 {
1951 	va_list ap;
1952 	char *p;
1953 
1954 	va_start(ap, fmt);
1955 	p = devm_kvasprintf(dev, gfp, fmt, ap);
1956 	va_end(ap);
1957 
1958 	return (p);
1959 }
1960 
1961 char *
kasprintf(gfp_t gfp,const char * fmt,...)1962 kasprintf(gfp_t gfp, const char *fmt, ...)
1963 {
1964 	va_list ap;
1965 	char *p;
1966 
1967 	va_start(ap, fmt);
1968 	p = kvasprintf(gfp, fmt, ap);
1969 	va_end(ap);
1970 
1971 	return (p);
1972 }
1973 
1974 int
__lkpi_hexdump_printf(void * arg1 __unused,const char * fmt,...)1975 __lkpi_hexdump_printf(void *arg1 __unused, const char *fmt, ...)
1976 {
1977 	va_list ap;
1978 	int result;
1979 
1980 	va_start(ap, fmt);
1981 	result = vprintf(fmt, ap);
1982 	va_end(ap);
1983 	return (result);
1984 }
1985 
1986 int
__lkpi_hexdump_sbuf_printf(void * arg1,const char * fmt,...)1987 __lkpi_hexdump_sbuf_printf(void *arg1, const char *fmt, ...)
1988 {
1989 	va_list ap;
1990 	int result;
1991 
1992 	va_start(ap, fmt);
1993 	result = sbuf_vprintf(arg1, fmt, ap);
1994 	va_end(ap);
1995 	return (result);
1996 }
1997 
1998 void
lkpi_hex_dump(int (* _fpf)(void *,const char *,...),void * arg1,const char * level,const char * prefix_str,const int prefix_type,const int rowsize,const int groupsize,const void * buf,size_t len,const bool ascii)1999 lkpi_hex_dump(int(*_fpf)(void *, const char *, ...), void *arg1,
2000     const char *level, const char *prefix_str,
2001     const int prefix_type, const int rowsize, const int groupsize,
2002     const void *buf, size_t len, const bool ascii)
2003 {
2004 	typedef const struct { long long value; } __packed *print_64p_t;
2005 	typedef const struct { uint32_t value; } __packed *print_32p_t;
2006 	typedef const struct { uint16_t value; } __packed *print_16p_t;
2007 	const void *buf_old = buf;
2008 	int row;
2009 
2010 	while (len > 0) {
2011 		if (level != NULL)
2012 			_fpf(arg1, "%s", level);
2013 		if (prefix_str != NULL)
2014 			_fpf(arg1, "%s ", prefix_str);
2015 
2016 		switch (prefix_type) {
2017 		case DUMP_PREFIX_ADDRESS:
2018 			_fpf(arg1, "[%p] ", buf);
2019 			break;
2020 		case DUMP_PREFIX_OFFSET:
2021 			_fpf(arg1, "[%#tx] ", ((const char *)buf -
2022 			    (const char *)buf_old));
2023 			break;
2024 		default:
2025 			break;
2026 		}
2027 		for (row = 0; row != rowsize; row++) {
2028 			if (groupsize == 8 && len > 7) {
2029 				_fpf(arg1, "%016llx ", ((print_64p_t)buf)->value);
2030 				buf = (const uint8_t *)buf + 8;
2031 				len -= 8;
2032 			} else if (groupsize == 4 && len > 3) {
2033 				_fpf(arg1, "%08x ", ((print_32p_t)buf)->value);
2034 				buf = (const uint8_t *)buf + 4;
2035 				len -= 4;
2036 			} else if (groupsize == 2 && len > 1) {
2037 				_fpf(arg1, "%04x ", ((print_16p_t)buf)->value);
2038 				buf = (const uint8_t *)buf + 2;
2039 				len -= 2;
2040 			} else if (len > 0) {
2041 				_fpf(arg1, "%02x ", *(const uint8_t *)buf);
2042 				buf = (const uint8_t *)buf + 1;
2043 				len--;
2044 			} else {
2045 				break;
2046 			}
2047 		}
2048 		_fpf(arg1, "\n");
2049 	}
2050 }
2051 
2052 static void
linux_timer_callback_wrapper(void * context)2053 linux_timer_callback_wrapper(void *context)
2054 {
2055 	struct timer_list *timer;
2056 
2057 	timer = context;
2058 
2059 	/* the timer is about to be shutdown permanently */
2060 	if (timer->function == NULL)
2061 		return;
2062 
2063 	if (linux_set_current_flags(curthread, M_NOWAIT)) {
2064 		/* try again later */
2065 		callout_reset(&timer->callout, 1,
2066 		    &linux_timer_callback_wrapper, timer);
2067 		return;
2068 	}
2069 
2070 	timer->function(timer->data);
2071 }
2072 
2073 static int
linux_timer_jiffies_until(unsigned long expires)2074 linux_timer_jiffies_until(unsigned long expires)
2075 {
2076 	unsigned long delta = expires - jiffies;
2077 
2078 	/*
2079 	 * Guard against already expired values and make sure that the value can
2080 	 * be used as a tick count, rather than a jiffies count.
2081 	 */
2082 	if ((long)delta < 1)
2083 		delta = 1;
2084 	else if (delta > INT_MAX)
2085 		delta = INT_MAX;
2086 	return ((int)delta);
2087 }
2088 
2089 int
mod_timer(struct timer_list * timer,unsigned long expires)2090 mod_timer(struct timer_list *timer, unsigned long expires)
2091 {
2092 	int ret;
2093 
2094 	timer->expires = expires;
2095 	ret = callout_reset(&timer->callout,
2096 	    linux_timer_jiffies_until(expires),
2097 	    &linux_timer_callback_wrapper, timer);
2098 
2099 	MPASS(ret == 0 || ret == 1);
2100 
2101 	return (ret == 1);
2102 }
2103 
2104 void
add_timer(struct timer_list * timer)2105 add_timer(struct timer_list *timer)
2106 {
2107 
2108 	callout_reset(&timer->callout,
2109 	    linux_timer_jiffies_until(timer->expires),
2110 	    &linux_timer_callback_wrapper, timer);
2111 }
2112 
2113 void
add_timer_on(struct timer_list * timer,int cpu)2114 add_timer_on(struct timer_list *timer, int cpu)
2115 {
2116 
2117 	callout_reset_on(&timer->callout,
2118 	    linux_timer_jiffies_until(timer->expires),
2119 	    &linux_timer_callback_wrapper, timer, cpu);
2120 }
2121 
2122 int
timer_delete(struct timer_list * timer)2123 timer_delete(struct timer_list *timer)
2124 {
2125 
2126 	if (callout_stop(&(timer)->callout) == -1)
2127 		return (0);
2128 	return (1);
2129 }
2130 
2131 int
timer_delete_sync(struct timer_list * timer)2132 timer_delete_sync(struct timer_list *timer)
2133 {
2134 
2135 	if (callout_drain(&(timer)->callout) == -1)
2136 		return (0);
2137 	return (1);
2138 }
2139 
2140 int
timer_shutdown_sync(struct timer_list * timer)2141 timer_shutdown_sync(struct timer_list *timer)
2142 {
2143 
2144 	timer->function = NULL;
2145 	return (del_timer_sync(timer));
2146 }
2147 
2148 /* greatest common divisor, Euclid equation */
2149 static uint64_t
lkpi_gcd_64(uint64_t a,uint64_t b)2150 lkpi_gcd_64(uint64_t a, uint64_t b)
2151 {
2152 	uint64_t an;
2153 	uint64_t bn;
2154 
2155 	while (b != 0) {
2156 		an = b;
2157 		bn = a % b;
2158 		a = an;
2159 		b = bn;
2160 	}
2161 	return (a);
2162 }
2163 
2164 uint64_t lkpi_nsec2hz_rem;
2165 uint64_t lkpi_nsec2hz_div = 1000000000ULL;
2166 uint64_t lkpi_nsec2hz_max;
2167 
2168 uint64_t lkpi_usec2hz_rem;
2169 uint64_t lkpi_usec2hz_div = 1000000ULL;
2170 uint64_t lkpi_usec2hz_max;
2171 
2172 uint64_t lkpi_msec2hz_rem;
2173 uint64_t lkpi_msec2hz_div = 1000ULL;
2174 uint64_t lkpi_msec2hz_max;
2175 
2176 static void
linux_timer_init(void * arg)2177 linux_timer_init(void *arg)
2178 {
2179 	uint64_t gcd;
2180 
2181 	/*
2182 	 * Compute an internal HZ value which can divide 2**32 to
2183 	 * avoid timer rounding problems when the tick value wraps
2184 	 * around 2**32:
2185 	 */
2186 	linux_timer_hz_mask = 1;
2187 	while (linux_timer_hz_mask < (unsigned long)hz)
2188 		linux_timer_hz_mask *= 2;
2189 	linux_timer_hz_mask--;
2190 
2191 	/* compute some internal constants */
2192 
2193 	lkpi_nsec2hz_rem = hz;
2194 	lkpi_usec2hz_rem = hz;
2195 	lkpi_msec2hz_rem = hz;
2196 
2197 	gcd = lkpi_gcd_64(lkpi_nsec2hz_rem, lkpi_nsec2hz_div);
2198 	lkpi_nsec2hz_rem /= gcd;
2199 	lkpi_nsec2hz_div /= gcd;
2200 	lkpi_nsec2hz_max = -1ULL / lkpi_nsec2hz_rem;
2201 
2202 	gcd = lkpi_gcd_64(lkpi_usec2hz_rem, lkpi_usec2hz_div);
2203 	lkpi_usec2hz_rem /= gcd;
2204 	lkpi_usec2hz_div /= gcd;
2205 	lkpi_usec2hz_max = -1ULL / lkpi_usec2hz_rem;
2206 
2207 	gcd = lkpi_gcd_64(lkpi_msec2hz_rem, lkpi_msec2hz_div);
2208 	lkpi_msec2hz_rem /= gcd;
2209 	lkpi_msec2hz_div /= gcd;
2210 	lkpi_msec2hz_max = -1ULL / lkpi_msec2hz_rem;
2211 }
2212 SYSINIT(linux_timer, SI_SUB_DRIVERS, SI_ORDER_FIRST, linux_timer_init, NULL);
2213 
2214 void
linux_complete_common(struct completion * c,int all)2215 linux_complete_common(struct completion *c, int all)
2216 {
2217 	sleepq_lock(c);
2218 	if (all) {
2219 		c->done = UINT_MAX;
2220 		sleepq_broadcast(c, SLEEPQ_SLEEP, 0, 0);
2221 	} else {
2222 		if (c->done != UINT_MAX)
2223 			c->done++;
2224 		sleepq_signal(c, SLEEPQ_SLEEP, 0, 0);
2225 	}
2226 	sleepq_release(c);
2227 }
2228 
2229 /*
2230  * Indefinite wait for done != 0 with or without signals.
2231  */
2232 int
linux_wait_for_common(struct completion * c,int flags)2233 linux_wait_for_common(struct completion *c, int flags)
2234 {
2235 	struct task_struct *task;
2236 	int error;
2237 
2238 	if (SCHEDULER_STOPPED())
2239 		return (0);
2240 
2241 	task = current;
2242 
2243 	if (flags != 0)
2244 		flags = SLEEPQ_INTERRUPTIBLE | SLEEPQ_SLEEP;
2245 	else
2246 		flags = SLEEPQ_SLEEP;
2247 	error = 0;
2248 	for (;;) {
2249 		sleepq_lock(c);
2250 		if (c->done)
2251 			break;
2252 		sleepq_add(c, NULL, "completion", flags, 0);
2253 		if (flags & SLEEPQ_INTERRUPTIBLE) {
2254 			DROP_GIANT();
2255 			error = -sleepq_wait_sig(c, 0);
2256 			PICKUP_GIANT();
2257 			if (error != 0) {
2258 				linux_schedule_save_interrupt_value(task, error);
2259 				error = -ERESTARTSYS;
2260 				goto intr;
2261 			}
2262 		} else {
2263 			DROP_GIANT();
2264 			sleepq_wait(c, 0);
2265 			PICKUP_GIANT();
2266 		}
2267 	}
2268 	if (c->done != UINT_MAX)
2269 		c->done--;
2270 	sleepq_release(c);
2271 
2272 intr:
2273 	return (error);
2274 }
2275 
2276 /*
2277  * Time limited wait for done != 0 with or without signals.
2278  */
2279 unsigned long
linux_wait_for_timeout_common(struct completion * c,unsigned long timeout,int flags)2280 linux_wait_for_timeout_common(struct completion *c, unsigned long timeout,
2281     int flags)
2282 {
2283 	struct task_struct *task;
2284 	unsigned long end = jiffies + timeout, error;
2285 
2286 	if (SCHEDULER_STOPPED())
2287 		return (0);
2288 
2289 	task = current;
2290 
2291 	if (flags != 0)
2292 		flags = SLEEPQ_INTERRUPTIBLE | SLEEPQ_SLEEP;
2293 	else
2294 		flags = SLEEPQ_SLEEP;
2295 
2296 	for (;;) {
2297 		sleepq_lock(c);
2298 		if (c->done)
2299 			break;
2300 		sleepq_add(c, NULL, "completion", flags, 0);
2301 		sleepq_set_timeout(c, linux_timer_jiffies_until(end));
2302 
2303 		DROP_GIANT();
2304 		if (flags & SLEEPQ_INTERRUPTIBLE)
2305 			error = -sleepq_timedwait_sig(c, 0);
2306 		else
2307 			error = -sleepq_timedwait(c, 0);
2308 		PICKUP_GIANT();
2309 
2310 		if (error != 0) {
2311 			/* check for timeout */
2312 			if (error == -EWOULDBLOCK) {
2313 				error = 0;	/* timeout */
2314 			} else {
2315 				/* signal happened */
2316 				linux_schedule_save_interrupt_value(task, error);
2317 				error = -ERESTARTSYS;
2318 			}
2319 			goto done;
2320 		}
2321 	}
2322 	if (c->done != UINT_MAX)
2323 		c->done--;
2324 	sleepq_release(c);
2325 
2326 	/* return how many jiffies are left */
2327 	error = linux_timer_jiffies_until(end);
2328 done:
2329 	return (error);
2330 }
2331 
2332 int
linux_try_wait_for_completion(struct completion * c)2333 linux_try_wait_for_completion(struct completion *c)
2334 {
2335 	int isdone;
2336 
2337 	sleepq_lock(c);
2338 	isdone = (c->done != 0);
2339 	if (c->done != 0 && c->done != UINT_MAX)
2340 		c->done--;
2341 	sleepq_release(c);
2342 	return (isdone);
2343 }
2344 
2345 int
linux_completion_done(struct completion * c)2346 linux_completion_done(struct completion *c)
2347 {
2348 	int isdone;
2349 
2350 	sleepq_lock(c);
2351 	isdone = (c->done != 0);
2352 	sleepq_release(c);
2353 	return (isdone);
2354 }
2355 
2356 static void
linux_cdev_deref(struct linux_cdev * ldev)2357 linux_cdev_deref(struct linux_cdev *ldev)
2358 {
2359 	if (refcount_release(&ldev->refs) &&
2360 	    ldev->kobj.ktype == &linux_cdev_ktype)
2361 		kfree(ldev);
2362 }
2363 
2364 static void
linux_cdev_release(struct kobject * kobj)2365 linux_cdev_release(struct kobject *kobj)
2366 {
2367 	struct linux_cdev *cdev;
2368 	struct kobject *parent;
2369 
2370 	cdev = container_of(kobj, struct linux_cdev, kobj);
2371 	parent = kobj->parent;
2372 	linux_destroy_dev(cdev);
2373 	linux_cdev_deref(cdev);
2374 	kobject_put(parent);
2375 }
2376 
2377 static void
linux_cdev_static_release(struct kobject * kobj)2378 linux_cdev_static_release(struct kobject *kobj)
2379 {
2380 	struct cdev *cdev;
2381 	struct linux_cdev *ldev;
2382 
2383 	ldev = container_of(kobj, struct linux_cdev, kobj);
2384 	cdev = ldev->cdev;
2385 	if (cdev != NULL) {
2386 		destroy_dev(cdev);
2387 		ldev->cdev = NULL;
2388 	}
2389 	kobject_put(kobj->parent);
2390 }
2391 
2392 int
linux_cdev_device_add(struct linux_cdev * ldev,struct device * dev)2393 linux_cdev_device_add(struct linux_cdev *ldev, struct device *dev)
2394 {
2395 	int ret;
2396 
2397 	if (dev->devt != 0) {
2398 		/* Set parent kernel object. */
2399 		ldev->kobj.parent = &dev->kobj;
2400 
2401 		/*
2402 		 * Unlike Linux we require the kobject of the
2403 		 * character device structure to have a valid name
2404 		 * before calling this function:
2405 		 */
2406 		if (ldev->kobj.name == NULL)
2407 			return (-EINVAL);
2408 
2409 		ret = cdev_add(ldev, dev->devt, 1);
2410 		if (ret)
2411 			return (ret);
2412 	}
2413 	ret = device_add(dev);
2414 	if (ret != 0 && dev->devt != 0)
2415 		cdev_del(ldev);
2416 	return (ret);
2417 }
2418 
2419 void
linux_cdev_device_del(struct linux_cdev * ldev,struct device * dev)2420 linux_cdev_device_del(struct linux_cdev *ldev, struct device *dev)
2421 {
2422 	device_del(dev);
2423 
2424 	if (dev->devt != 0)
2425 		cdev_del(ldev);
2426 }
2427 
2428 static void
linux_destroy_dev(struct linux_cdev * ldev)2429 linux_destroy_dev(struct linux_cdev *ldev)
2430 {
2431 
2432 	if (ldev->cdev == NULL)
2433 		return;
2434 
2435 	MPASS((ldev->siref & LDEV_SI_DTR) == 0);
2436 	MPASS(ldev->kobj.ktype == &linux_cdev_ktype);
2437 
2438 	atomic_set_int(&ldev->siref, LDEV_SI_DTR);
2439 	while ((atomic_load_int(&ldev->siref) & ~LDEV_SI_DTR) != 0)
2440 		pause("ldevdtr", hz / 4);
2441 
2442 	destroy_dev(ldev->cdev);
2443 	ldev->cdev = NULL;
2444 }
2445 
2446 const struct kobj_type linux_cdev_ktype = {
2447 	.release = linux_cdev_release,
2448 };
2449 
2450 const struct kobj_type linux_cdev_static_ktype = {
2451 	.release = linux_cdev_static_release,
2452 };
2453 
2454 static void
linux_handle_ifnet_link_event(void * arg,struct ifnet * ifp,int linkstate)2455 linux_handle_ifnet_link_event(void *arg, struct ifnet *ifp, int linkstate)
2456 {
2457 	struct notifier_block *nb;
2458 	struct netdev_notifier_info ni;
2459 
2460 	nb = arg;
2461 	ni.ifp = ifp;
2462 	ni.dev = (struct net_device *)ifp;
2463 	if (linkstate == LINK_STATE_UP)
2464 		nb->notifier_call(nb, NETDEV_UP, &ni);
2465 	else
2466 		nb->notifier_call(nb, NETDEV_DOWN, &ni);
2467 }
2468 
2469 static void
linux_handle_ifnet_arrival_event(void * arg,struct ifnet * ifp)2470 linux_handle_ifnet_arrival_event(void *arg, struct ifnet *ifp)
2471 {
2472 	struct notifier_block *nb;
2473 	struct netdev_notifier_info ni;
2474 
2475 	nb = arg;
2476 	ni.ifp = ifp;
2477 	ni.dev = (struct net_device *)ifp;
2478 	nb->notifier_call(nb, NETDEV_REGISTER, &ni);
2479 }
2480 
2481 static void
linux_handle_ifnet_departure_event(void * arg,struct ifnet * ifp)2482 linux_handle_ifnet_departure_event(void *arg, struct ifnet *ifp)
2483 {
2484 	struct notifier_block *nb;
2485 	struct netdev_notifier_info ni;
2486 
2487 	nb = arg;
2488 	ni.ifp = ifp;
2489 	ni.dev = (struct net_device *)ifp;
2490 	nb->notifier_call(nb, NETDEV_UNREGISTER, &ni);
2491 }
2492 
2493 static void
linux_handle_iflladdr_event(void * arg,struct ifnet * ifp)2494 linux_handle_iflladdr_event(void *arg, struct ifnet *ifp)
2495 {
2496 	struct notifier_block *nb;
2497 	struct netdev_notifier_info ni;
2498 
2499 	nb = arg;
2500 	ni.ifp = ifp;
2501 	ni.dev = (struct net_device *)ifp;
2502 	nb->notifier_call(nb, NETDEV_CHANGEADDR, &ni);
2503 }
2504 
2505 static void
linux_handle_ifaddr_event(void * arg,struct ifnet * ifp)2506 linux_handle_ifaddr_event(void *arg, struct ifnet *ifp)
2507 {
2508 	struct notifier_block *nb;
2509 	struct netdev_notifier_info ni;
2510 
2511 	nb = arg;
2512 	ni.ifp = ifp;
2513 	ni.dev = (struct net_device *)ifp;
2514 	nb->notifier_call(nb, NETDEV_CHANGEIFADDR, &ni);
2515 }
2516 
2517 int
register_netdevice_notifier(struct notifier_block * nb)2518 register_netdevice_notifier(struct notifier_block *nb)
2519 {
2520 
2521 	nb->tags[NETDEV_UP] = EVENTHANDLER_REGISTER(
2522 	    ifnet_link_event, linux_handle_ifnet_link_event, nb, 0);
2523 	nb->tags[NETDEV_REGISTER] = EVENTHANDLER_REGISTER(
2524 	    ifnet_arrival_event, linux_handle_ifnet_arrival_event, nb, 0);
2525 	nb->tags[NETDEV_UNREGISTER] = EVENTHANDLER_REGISTER(
2526 	    ifnet_departure_event, linux_handle_ifnet_departure_event, nb, 0);
2527 	nb->tags[NETDEV_CHANGEADDR] = EVENTHANDLER_REGISTER(
2528 	    iflladdr_event, linux_handle_iflladdr_event, nb, 0);
2529 
2530 	return (0);
2531 }
2532 
2533 int
register_inetaddr_notifier(struct notifier_block * nb)2534 register_inetaddr_notifier(struct notifier_block *nb)
2535 {
2536 
2537 	nb->tags[NETDEV_CHANGEIFADDR] = EVENTHANDLER_REGISTER(
2538 	    ifaddr_event, linux_handle_ifaddr_event, nb, 0);
2539 	return (0);
2540 }
2541 
2542 int
unregister_netdevice_notifier(struct notifier_block * nb)2543 unregister_netdevice_notifier(struct notifier_block *nb)
2544 {
2545 
2546 	EVENTHANDLER_DEREGISTER(ifnet_link_event,
2547 	    nb->tags[NETDEV_UP]);
2548 	EVENTHANDLER_DEREGISTER(ifnet_arrival_event,
2549 	    nb->tags[NETDEV_REGISTER]);
2550 	EVENTHANDLER_DEREGISTER(ifnet_departure_event,
2551 	    nb->tags[NETDEV_UNREGISTER]);
2552 	EVENTHANDLER_DEREGISTER(iflladdr_event,
2553 	    nb->tags[NETDEV_CHANGEADDR]);
2554 
2555 	return (0);
2556 }
2557 
2558 int
unregister_inetaddr_notifier(struct notifier_block * nb)2559 unregister_inetaddr_notifier(struct notifier_block *nb)
2560 {
2561 
2562 	EVENTHANDLER_DEREGISTER(ifaddr_event,
2563 	    nb->tags[NETDEV_CHANGEIFADDR]);
2564 
2565 	return (0);
2566 }
2567 
2568 struct list_sort_thunk {
2569 	int (*cmp)(void *, struct list_head *, struct list_head *);
2570 	void *priv;
2571 };
2572 
2573 static inline int
linux_le_cmp(const void * d1,const void * d2,void * priv)2574 linux_le_cmp(const void *d1, const void *d2, void *priv)
2575 {
2576 	struct list_head *le1, *le2;
2577 	struct list_sort_thunk *thunk;
2578 
2579 	thunk = priv;
2580 	le1 = *(__DECONST(struct list_head **, d1));
2581 	le2 = *(__DECONST(struct list_head **, d2));
2582 	return ((thunk->cmp)(thunk->priv, le1, le2));
2583 }
2584 
2585 void
list_sort(void * priv,struct list_head * head,int (* cmp)(void * priv,struct list_head * a,struct list_head * b))2586 list_sort(void *priv, struct list_head *head, int (*cmp)(void *priv,
2587     struct list_head *a, struct list_head *b))
2588 {
2589 	struct list_sort_thunk thunk;
2590 	struct list_head **ar, *le;
2591 	size_t count, i;
2592 
2593 	count = 0;
2594 	list_for_each(le, head)
2595 		count++;
2596 	ar = malloc(sizeof(struct list_head *) * count, M_KMALLOC, M_WAITOK);
2597 	i = 0;
2598 	list_for_each(le, head)
2599 		ar[i++] = le;
2600 	thunk.cmp = cmp;
2601 	thunk.priv = priv;
2602 	qsort_r(ar, count, sizeof(struct list_head *), linux_le_cmp, &thunk);
2603 	INIT_LIST_HEAD(head);
2604 	for (i = 0; i < count; i++)
2605 		list_add_tail(ar[i], head);
2606 	free(ar, M_KMALLOC);
2607 }
2608 
2609 #if defined(__i386__) || defined(__amd64__)
2610 int
linux_wbinvd_on_all_cpus(void)2611 linux_wbinvd_on_all_cpus(void)
2612 {
2613 
2614 	pmap_invalidate_cache();
2615 	return (0);
2616 }
2617 #endif
2618 
2619 int
linux_on_each_cpu(void callback (void *),void * data)2620 linux_on_each_cpu(void callback(void *), void *data)
2621 {
2622 
2623 	smp_rendezvous(smp_no_rendezvous_barrier, callback,
2624 	    smp_no_rendezvous_barrier, data);
2625 	return (0);
2626 }
2627 
2628 int
linux_in_atomic(void)2629 linux_in_atomic(void)
2630 {
2631 
2632 	return ((curthread->td_pflags & TDP_NOFAULTING) != 0);
2633 }
2634 
2635 struct linux_cdev *
linux_find_cdev(const char * name,unsigned major,unsigned minor)2636 linux_find_cdev(const char *name, unsigned major, unsigned minor)
2637 {
2638 	dev_t dev = MKDEV(major, minor);
2639 	struct cdev *cdev;
2640 
2641 	dev_lock();
2642 	LIST_FOREACH(cdev, &linuxcdevsw.d_devs, si_list) {
2643 		struct linux_cdev *ldev = cdev->si_drv1;
2644 		if (ldev->dev == dev &&
2645 		    strcmp(kobject_name(&ldev->kobj), name) == 0) {
2646 			break;
2647 		}
2648 	}
2649 	dev_unlock();
2650 
2651 	return (cdev != NULL ? cdev->si_drv1 : NULL);
2652 }
2653 
2654 int
__register_chrdev(unsigned int major,unsigned int baseminor,unsigned int count,const char * name,const struct file_operations * fops)2655 __register_chrdev(unsigned int major, unsigned int baseminor,
2656     unsigned int count, const char *name,
2657     const struct file_operations *fops)
2658 {
2659 	struct linux_cdev *cdev;
2660 	int ret = 0;
2661 	int i;
2662 
2663 	for (i = baseminor; i < baseminor + count; i++) {
2664 		cdev = cdev_alloc();
2665 		cdev->ops = fops;
2666 		kobject_set_name(&cdev->kobj, name);
2667 
2668 		ret = cdev_add(cdev, makedev(major, i), 1);
2669 		if (ret != 0)
2670 			break;
2671 	}
2672 	return (ret);
2673 }
2674 
2675 int
__register_chrdev_p(unsigned int major,unsigned int baseminor,unsigned int count,const char * name,const struct file_operations * fops,uid_t uid,gid_t gid,int mode)2676 __register_chrdev_p(unsigned int major, unsigned int baseminor,
2677     unsigned int count, const char *name,
2678     const struct file_operations *fops, uid_t uid,
2679     gid_t gid, int mode)
2680 {
2681 	struct linux_cdev *cdev;
2682 	int ret = 0;
2683 	int i;
2684 
2685 	for (i = baseminor; i < baseminor + count; i++) {
2686 		cdev = cdev_alloc();
2687 		cdev->ops = fops;
2688 		kobject_set_name(&cdev->kobj, name);
2689 
2690 		ret = cdev_add_ext(cdev, makedev(major, i), uid, gid, mode);
2691 		if (ret != 0)
2692 			break;
2693 	}
2694 	return (ret);
2695 }
2696 
2697 void
__unregister_chrdev(unsigned int major,unsigned int baseminor,unsigned int count,const char * name)2698 __unregister_chrdev(unsigned int major, unsigned int baseminor,
2699     unsigned int count, const char *name)
2700 {
2701 	struct linux_cdev *cdevp;
2702 	int i;
2703 
2704 	for (i = baseminor; i < baseminor + count; i++) {
2705 		cdevp = linux_find_cdev(name, major, i);
2706 		if (cdevp != NULL)
2707 			cdev_del(cdevp);
2708 	}
2709 }
2710 
2711 void
linux_dump_stack(void)2712 linux_dump_stack(void)
2713 {
2714 #ifdef STACK
2715 	struct stack st;
2716 
2717 	stack_save(&st);
2718 	stack_print(&st);
2719 #endif
2720 }
2721 
2722 int
linuxkpi_net_ratelimit(void)2723 linuxkpi_net_ratelimit(void)
2724 {
2725 
2726 	return (ppsratecheck(&lkpi_net_lastlog, &lkpi_net_curpps,
2727 	   lkpi_net_maxpps));
2728 }
2729 
2730 struct io_mapping *
io_mapping_create_wc(resource_size_t base,unsigned long size)2731 io_mapping_create_wc(resource_size_t base, unsigned long size)
2732 {
2733 	struct io_mapping *mapping;
2734 
2735 	mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
2736 	if (mapping == NULL)
2737 		return (NULL);
2738 	return (io_mapping_init_wc(mapping, base, size));
2739 }
2740 
2741 /* We likely want a linuxkpi_device.c at some point. */
2742 bool
device_can_wakeup(struct device * dev)2743 device_can_wakeup(struct device *dev)
2744 {
2745 
2746 	if (dev == NULL)
2747 		return (false);
2748 	/*
2749 	 * XXX-BZ iwlwifi queries it as part of enabling WoWLAN.
2750 	 * Normally this would be based on a bool in dev->power.XXX.
2751 	 * Check such as PCI PCIM_PCAP_*PME.  We have no way to enable this yet.
2752 	 * We may get away by directly calling into bsddev for as long as
2753 	 * we can assume PCI only avoiding changing struct device breaking KBI.
2754 	 */
2755 	pr_debug("%s:%d: not enabled; see comment.\n", __func__, __LINE__);
2756 	return (false);
2757 }
2758 
2759 static void
devm_device_group_remove(struct device * dev,void * p)2760 devm_device_group_remove(struct device *dev, void *p)
2761 {
2762 	const struct attribute_group **dr = p;
2763 	const struct attribute_group *group = *dr;
2764 
2765 	sysfs_remove_group(&dev->kobj, group);
2766 }
2767 
2768 int
lkpi_devm_device_add_group(struct device * dev,const struct attribute_group * group)2769 lkpi_devm_device_add_group(struct device *dev,
2770     const struct attribute_group *group)
2771 {
2772 	const struct attribute_group **dr;
2773 	int ret;
2774 
2775 	dr = devres_alloc(devm_device_group_remove, sizeof(*dr), GFP_KERNEL);
2776 	if (dr == NULL)
2777 		return (-ENOMEM);
2778 
2779 	ret = sysfs_create_group(&dev->kobj, group);
2780 	if (ret == 0) {
2781 		*dr = group;
2782 		devres_add(dev, dr);
2783 	} else
2784 		devres_free(dr);
2785 
2786 	return (ret);
2787 }
2788 
2789 #if defined(__i386__) || defined(__amd64__)
2790 bool linux_cpu_has_clflush;
2791 struct cpuinfo_x86 boot_cpu_data;
2792 struct cpuinfo_x86 *__cpu_data;
2793 #endif
2794 
2795 cpumask_t *
lkpi_get_static_single_cpu_mask(int cpuid)2796 lkpi_get_static_single_cpu_mask(int cpuid)
2797 {
2798 
2799 	KASSERT((cpuid >= 0 && cpuid <= mp_maxid), ("%s: invalid cpuid %d\n",
2800 	    __func__, cpuid));
2801 	KASSERT(!CPU_ABSENT(cpuid), ("%s: cpu with cpuid %d is absent\n",
2802 	    __func__, cpuid));
2803 
2804 	return (static_single_cpu_mask[cpuid]);
2805 }
2806 
2807 bool
lkpi_xen_initial_domain(void)2808 lkpi_xen_initial_domain(void)
2809 {
2810 #ifdef XENHVM
2811 	return (xen_initial_domain());
2812 #else
2813 	return (false);
2814 #endif
2815 }
2816 
2817 bool
lkpi_xen_pv_domain(void)2818 lkpi_xen_pv_domain(void)
2819 {
2820 #ifdef XENHVM
2821 	return (xen_pv_domain());
2822 #else
2823 	return (false);
2824 #endif
2825 }
2826 
2827 static void
linux_compat_init(void * arg)2828 linux_compat_init(void *arg)
2829 {
2830 	struct sysctl_oid *rootoid;
2831 	int i;
2832 
2833 #if defined(__i386__) || defined(__amd64__)
2834 	static const uint32_t x86_vendors[X86_VENDOR_NUM] = {
2835 		[X86_VENDOR_INTEL] = CPU_VENDOR_INTEL,
2836 		[X86_VENDOR_CYRIX] = CPU_VENDOR_CYRIX,
2837 		[X86_VENDOR_AMD] = CPU_VENDOR_AMD,
2838 		[X86_VENDOR_UMC] = CPU_VENDOR_UMC,
2839 		[X86_VENDOR_CENTAUR] = CPU_VENDOR_CENTAUR,
2840 		[X86_VENDOR_TRANSMETA] = CPU_VENDOR_TRANSMETA,
2841 		[X86_VENDOR_NSC] = CPU_VENDOR_NSC,
2842 		[X86_VENDOR_HYGON] = CPU_VENDOR_HYGON,
2843 	};
2844 	uint8_t x86_vendor = X86_VENDOR_UNKNOWN;
2845 
2846 	for (i = 0; i < X86_VENDOR_NUM; i++) {
2847 		if (cpu_vendor_id != 0 && cpu_vendor_id == x86_vendors[i]) {
2848 			x86_vendor = i;
2849 			break;
2850 		}
2851 	}
2852 	linux_cpu_has_clflush = (cpu_feature & CPUID_CLFSH);
2853 	boot_cpu_data.x86_clflush_size = cpu_clflush_line_size;
2854 	boot_cpu_data.x86_max_cores = mp_ncpus;
2855 	boot_cpu_data.x86 = CPUID_TO_FAMILY(cpu_id);
2856 	boot_cpu_data.x86_model = CPUID_TO_MODEL(cpu_id);
2857 	boot_cpu_data.x86_vendor = x86_vendor;
2858 
2859 	__cpu_data = kmalloc_array(mp_maxid + 1,
2860 	    sizeof(*__cpu_data), M_WAITOK | M_ZERO);
2861 	CPU_FOREACH(i) {
2862 		__cpu_data[i].x86_clflush_size = cpu_clflush_line_size;
2863 		__cpu_data[i].x86_max_cores = mp_ncpus;
2864 		__cpu_data[i].x86 = CPUID_TO_FAMILY(cpu_id);
2865 		__cpu_data[i].x86_model = CPUID_TO_MODEL(cpu_id);
2866 		__cpu_data[i].x86_vendor = x86_vendor;
2867 	}
2868 #endif
2869 	rw_init(&linux_vma_lock, "lkpi-vma-lock");
2870 
2871 	rootoid = SYSCTL_ADD_ROOT_NODE(NULL,
2872 	    OID_AUTO, "sys", CTLFLAG_RD|CTLFLAG_MPSAFE, NULL, "sys");
2873 	kobject_init(&linux_class_root, &linux_class_ktype);
2874 	kobject_set_name(&linux_class_root, "class");
2875 	linux_class_root.oidp = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(rootoid),
2876 	    OID_AUTO, "class", CTLFLAG_RD|CTLFLAG_MPSAFE, NULL, "class");
2877 	kobject_init(&linux_root_device.kobj, &linux_dev_ktype);
2878 	kobject_set_name(&linux_root_device.kobj, "device");
2879 	linux_root_device.kobj.oidp = SYSCTL_ADD_NODE(NULL,
2880 	    SYSCTL_CHILDREN(rootoid), OID_AUTO, "device",
2881 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "device");
2882 	linux_root_device.bsddev = root_bus;
2883 	linux_class_misc.name = "misc";
2884 	class_register(&linux_class_misc);
2885 	INIT_LIST_HEAD(&pci_drivers);
2886 	INIT_LIST_HEAD(&pci_devices);
2887 	spin_lock_init(&pci_lock);
2888 	mtx_init(&vmmaplock, "IO Map lock", NULL, MTX_DEF);
2889 	for (i = 0; i < VMMAP_HASH_SIZE; i++)
2890 		LIST_INIT(&vmmaphead[i]);
2891 	init_waitqueue_head(&linux_bit_waitq);
2892 	init_waitqueue_head(&linux_var_waitq);
2893 
2894 	CPU_COPY(&all_cpus, &cpu_online_mask);
2895 	/*
2896 	 * Generate a single-CPU cpumask_t for each CPU (possibly) in the system.
2897 	 * CPUs are indexed from 0..(mp_maxid).  The entry for cpuid 0 will only
2898 	 * have itself in the cpumask, cupid 1 only itself on entry 1, and so on.
2899 	 * This is used by cpumask_of() (and possibly others in the future) for,
2900 	 * e.g., drivers to pass hints to irq_set_affinity_hint().
2901 	 */
2902 	static_single_cpu_mask = kmalloc_array(mp_maxid + 1,
2903 	    sizeof(static_single_cpu_mask), M_WAITOK | M_ZERO);
2904 
2905 	/*
2906 	 * When the number of CPUs reach a threshold, we start to save memory
2907 	 * given the sets are static by overlapping those having their single
2908 	 * bit set at same position in a bitset word.  Asymptotically, this
2909 	 * regular scheme is in O(n²) whereas the overlapping one is in O(n)
2910 	 * only with n being the maximum number of CPUs, so the gain will become
2911 	 * huge quite quickly.  The threshold for 64-bit architectures is 128
2912 	 * CPUs.
2913 	 */
2914 	if (mp_ncpus < (2 * _BITSET_BITS)) {
2915 		cpumask_t *sscm_ptr;
2916 
2917 		/*
2918 		 * This represents 'mp_ncpus * __bitset_words(CPU_SETSIZE) *
2919 		 * (_BITSET_BITS / 8)' bytes (for comparison with the
2920 		 * overlapping scheme).
2921 		 */
2922 		static_single_cpu_mask_lcs = kmalloc_array(mp_ncpus,
2923 		    sizeof(*static_single_cpu_mask_lcs),
2924 		    M_WAITOK | M_ZERO);
2925 
2926 		sscm_ptr = static_single_cpu_mask_lcs;
2927 		CPU_FOREACH(i) {
2928 			static_single_cpu_mask[i] = sscm_ptr++;
2929 			CPU_SET(i, static_single_cpu_mask[i]);
2930 		}
2931 	} else {
2932 		/* Pointer to a bitset word. */
2933 		__typeof(((cpuset_t *)NULL)->__bits[0]) *bwp;
2934 
2935 		/*
2936 		 * Allocate memory for (static) spans of 'cpumask_t' ('cpuset_t'
2937 		 * really) with a single bit set that can be reused for all
2938 		 * single CPU masks by making them start at different offsets.
2939 		 * We need '__bitset_words(CPU_SETSIZE) - 1' bitset words before
2940 		 * the word having its single bit set, and the same amount
2941 		 * after.
2942 		 */
2943 		static_single_cpu_mask_lcs = mallocarray(_BITSET_BITS,
2944 		    (2 * __bitset_words(CPU_SETSIZE) - 1) * (_BITSET_BITS / 8),
2945 		    M_KMALLOC, M_WAITOK | M_ZERO);
2946 
2947 		/*
2948 		 * We rely below on cpuset_t and the bitset generic
2949 		 * implementation assigning words in the '__bits' array in the
2950 		 * same order of bits (i.e., little-endian ordering, not to be
2951 		 * confused with machine endianness, which concerns bits in
2952 		 * words and other integers).  This is an imperfect test, but it
2953 		 * will detect a change to big-endian ordering.
2954 		 */
2955 		_Static_assert(
2956 		    __bitset_word(_BITSET_BITS + 1, _BITSET_BITS) == 1,
2957 		    "Assumes a bitset implementation that is little-endian "
2958 		    "on its words");
2959 
2960 		/* Initialize the single bit of each static span. */
2961 		bwp = (__typeof(bwp))static_single_cpu_mask_lcs +
2962 		    (__bitset_words(CPU_SETSIZE) - 1);
2963 		for (i = 0; i < _BITSET_BITS; i++) {
2964 			CPU_SET(i, (cpuset_t *)bwp);
2965 			bwp += (2 * __bitset_words(CPU_SETSIZE) - 1);
2966 		}
2967 
2968 		/*
2969 		 * Finally set all CPU masks to the proper word in their
2970 		 * relevant span.
2971 		 */
2972 		CPU_FOREACH(i) {
2973 			bwp = (__typeof(bwp))static_single_cpu_mask_lcs;
2974 			/* Find the non-zero word of the relevant span. */
2975 			bwp += (2 * __bitset_words(CPU_SETSIZE) - 1) *
2976 			    (i % _BITSET_BITS) +
2977 			    __bitset_words(CPU_SETSIZE) - 1;
2978 			/* Shift to find the CPU mask start. */
2979 			bwp -= (i / _BITSET_BITS);
2980 			static_single_cpu_mask[i] = (cpuset_t *)bwp;
2981 		}
2982 	}
2983 
2984 	strlcpy(init_uts_ns.name.release, osrelease, sizeof(init_uts_ns.name.release));
2985 }
2986 SYSINIT(linux_compat, SI_SUB_DRIVERS, SI_ORDER_SECOND, linux_compat_init, NULL);
2987 
2988 static void
linux_compat_uninit(void * arg)2989 linux_compat_uninit(void *arg)
2990 {
2991 	linux_kobject_kfree_name(&linux_class_root);
2992 	linux_kobject_kfree_name(&linux_root_device.kobj);
2993 	linux_kobject_kfree_name(&linux_class_misc.kobj);
2994 
2995 	free(static_single_cpu_mask_lcs, M_KMALLOC);
2996 	free(static_single_cpu_mask, M_KMALLOC);
2997 #if defined(__i386__) || defined(__amd64__)
2998 	free(__cpu_data, M_KMALLOC);
2999 #endif
3000 
3001 	mtx_destroy(&vmmaplock);
3002 	spin_lock_destroy(&pci_lock);
3003 	rw_destroy(&linux_vma_lock);
3004 }
3005 SYSUNINIT(linux_compat, SI_SUB_DRIVERS, SI_ORDER_SECOND, linux_compat_uninit, NULL);
3006 
3007 /*
3008  * NOTE: Linux frequently uses "unsigned long" for pointer to integer
3009  * conversion and vice versa, where in FreeBSD "uintptr_t" would be
3010  * used. Assert these types have the same size, else some parts of the
3011  * LinuxKPI may not work like expected:
3012  */
3013 CTASSERT(sizeof(unsigned long) == sizeof(uintptr_t));
3014