1 /*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 2017 Dell EMC
5 * Copyright (c) 2000-2001, 2003 David O'Brien
6 * Copyright (c) 1995-1996 Søren Schmidt
7 * Copyright (c) 1996 Peter Wemm
8 * All rights reserved.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer
15 * in this position and unchanged.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. The name of the author may not be used to endorse or promote products
20 * derived from this software without specific prior written permission
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
23 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
24 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
25 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
27 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
31 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 #include "opt_capsicum.h"
35
36 #include <sys/param.h>
37 #include <sys/capsicum.h>
38 #include <sys/compressor.h>
39 #include <sys/exec.h>
40 #include <sys/fcntl.h>
41 #include <sys/imgact.h>
42 #include <sys/imgact_elf.h>
43 #include <sys/jail.h>
44 #include <sys/kernel.h>
45 #include <sys/lock.h>
46 #include <sys/malloc.h>
47 #include <sys/mount.h>
48 #include <sys/mman.h>
49 #include <sys/namei.h>
50 #include <sys/proc.h>
51 #include <sys/procfs.h>
52 #include <sys/ptrace.h>
53 #include <sys/racct.h>
54 #include <sys/reg.h>
55 #include <sys/resourcevar.h>
56 #include <sys/rwlock.h>
57 #include <sys/sbuf.h>
58 #include <sys/sf_buf.h>
59 #include <sys/smp.h>
60 #include <sys/systm.h>
61 #include <sys/signalvar.h>
62 #include <sys/stat.h>
63 #include <sys/sx.h>
64 #include <sys/syscall.h>
65 #include <sys/sysctl.h>
66 #include <sys/sysent.h>
67 #include <sys/ucoredump.h>
68 #include <sys/vnode.h>
69 #include <sys/syslog.h>
70 #include <sys/eventhandler.h>
71 #include <sys/user.h>
72
73 #include <vm/vm.h>
74 #include <vm/vm_kern.h>
75 #include <vm/vm_param.h>
76 #include <vm/pmap.h>
77 #include <vm/vm_map.h>
78 #include <vm/vm_object.h>
79 #include <vm/vm_extern.h>
80
81 #include <machine/elf.h>
82 #include <machine/md_var.h>
83
84 #define ELF_NOTE_ROUNDSIZE 4
85 #define OLD_EI_BRAND 8
86
87 static int __elfN(check_header)(const Elf_Ehdr *hdr);
88 static Elf_Brandinfo *__elfN(get_brandinfo)(struct image_params *imgp,
89 const char *interp, int32_t *osrel, uint32_t *fctl0);
90 static int __elfN(load_file)(struct proc *p, const char *file, u_long *addr,
91 u_long *entry);
92 static int __elfN(load_section)(const struct image_params *imgp,
93 vm_ooffset_t offset, caddr_t vmaddr, size_t memsz, size_t filsz,
94 vm_prot_t prot);
95 static int __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp);
96 static bool __elfN(freebsd_trans_osrel)(const Elf_Note *note,
97 int32_t *osrel);
98 static bool kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel);
99 static bool __elfN(check_note)(struct image_params *imgp,
100 Elf_Brandnote *checknote, int32_t *osrel, bool *has_fctl0,
101 uint32_t *fctl0);
102 static vm_prot_t __elfN(trans_prot)(Elf_Word);
103 static Elf_Word __elfN(untrans_prot)(vm_prot_t);
104 static size_t __elfN(prepare_register_notes)(struct thread *td,
105 struct note_info_list *list, struct thread *target_td);
106
107 SYSCTL_NODE(_kern, OID_AUTO, __CONCAT(elf, __ELF_WORD_SIZE),
108 CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
109 "");
110
111 int __elfN(fallback_brand) = -1;
112 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO,
113 fallback_brand, CTLFLAG_RWTUN, &__elfN(fallback_brand), 0,
114 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) " brand of last resort");
115
116 static int elf_legacy_coredump = 0;
117 SYSCTL_INT(_debug, OID_AUTO, __elfN(legacy_coredump), CTLFLAG_RW,
118 &elf_legacy_coredump, 0,
119 "include all and only RW pages in core dumps");
120
121 int __elfN(nxstack) =
122 #if defined(__amd64__) || defined(__powerpc64__) /* both 64 and 32 bit */ || \
123 defined(__arm__) || defined(__aarch64__) || \
124 defined(__riscv)
125 1;
126 #else
127 0;
128 #endif
129 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO,
130 nxstack, CTLFLAG_RW, &__elfN(nxstack), 0,
131 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) ": support PT_GNU_STACK for non-executable stack control");
132
133 #if defined(__amd64__)
134 static int __elfN(vdso) = 1;
135 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO,
136 vdso, CTLFLAG_RWTUN, &__elfN(vdso), 0,
137 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) ": enable vdso preloading");
138 #else
139 static int __elfN(vdso) = 0;
140 #endif
141
142 #if __ELF_WORD_SIZE == 32 && (defined(__amd64__) || defined(__i386__))
143 int i386_read_exec = 0;
144 SYSCTL_INT(_kern_elf32, OID_AUTO, read_exec, CTLFLAG_RW, &i386_read_exec, 0,
145 "enable execution from readable segments");
146 #endif
147
148 static u_long __elfN(pie_base) = ET_DYN_LOAD_ADDR;
149 static int
sysctl_pie_base(SYSCTL_HANDLER_ARGS)150 sysctl_pie_base(SYSCTL_HANDLER_ARGS)
151 {
152 u_long val;
153 int error;
154
155 val = __elfN(pie_base);
156 error = sysctl_handle_long(oidp, &val, 0, req);
157 if (error != 0 || req->newptr == NULL)
158 return (error);
159 if ((val & PAGE_MASK) != 0)
160 return (EINVAL);
161 __elfN(pie_base) = val;
162 return (0);
163 }
164 SYSCTL_PROC(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, pie_base,
165 CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0,
166 sysctl_pie_base, "LU",
167 "PIE load base without randomization");
168
169 SYSCTL_NODE(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, aslr,
170 CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
171 "");
172 #define ASLR_NODE_OID __CONCAT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), _aslr)
173
174 /*
175 * Enable ASLR by default for 64-bit non-PIE binaries. 32-bit architectures
176 * have limited address space (which can cause issues for applications with
177 * high memory use) so we leave it off there.
178 */
179 static int __elfN(aslr_enabled) = __ELF_WORD_SIZE == 64;
180 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, enable, CTLFLAG_RWTUN,
181 &__elfN(aslr_enabled), 0,
182 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE))
183 ": enable address map randomization");
184
185 /*
186 * Enable ASLR by default for 64-bit PIE binaries.
187 */
188 static int __elfN(pie_aslr_enabled) = __ELF_WORD_SIZE == 64;
189 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, pie_enable, CTLFLAG_RWTUN,
190 &__elfN(pie_aslr_enabled), 0,
191 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE))
192 ": enable address map randomization for PIE binaries");
193
194 /*
195 * Sbrk is deprecated and it can be assumed that in most cases it will not be
196 * used anyway. This setting is valid only with ASLR enabled, and allows ASLR
197 * to use the bss grow region.
198 */
199 static int __elfN(aslr_honor_sbrk) = 0;
200 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, honor_sbrk, CTLFLAG_RW,
201 &__elfN(aslr_honor_sbrk), 0,
202 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) ": assume sbrk is used");
203
204 static int __elfN(aslr_stack) = __ELF_WORD_SIZE == 64;
205 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, stack, CTLFLAG_RWTUN,
206 &__elfN(aslr_stack), 0,
207 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE))
208 ": enable stack address randomization");
209
210 static int __elfN(aslr_shared_page) = __ELF_WORD_SIZE == 64;
211 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, shared_page, CTLFLAG_RWTUN,
212 &__elfN(aslr_shared_page), 0,
213 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE))
214 ": enable shared page address randomization");
215
216 static int __elfN(sigfastblock) = 1;
217 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, sigfastblock,
218 CTLFLAG_RWTUN, &__elfN(sigfastblock), 0,
219 "enable sigfastblock for new processes");
220
221 static bool __elfN(allow_wx) = true;
222 SYSCTL_BOOL(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, allow_wx,
223 CTLFLAG_RWTUN, &__elfN(allow_wx), 0,
224 "Allow pages to be mapped simultaneously writable and executable");
225
226 static Elf_Brandinfo *elf_brand_list[MAX_BRANDS];
227
228 #define aligned(a, t) (rounddown2((u_long)(a), sizeof(t)) == (u_long)(a))
229
230 Elf_Brandnote __elfN(freebsd_brandnote) = {
231 .hdr.n_namesz = sizeof(FREEBSD_ABI_VENDOR),
232 .hdr.n_descsz = sizeof(int32_t),
233 .hdr.n_type = NT_FREEBSD_ABI_TAG,
234 .vendor = FREEBSD_ABI_VENDOR,
235 .flags = BN_TRANSLATE_OSREL,
236 .trans_osrel = __elfN(freebsd_trans_osrel)
237 };
238
239 static bool
__elfN(freebsd_trans_osrel)240 __elfN(freebsd_trans_osrel)(const Elf_Note *note, int32_t *osrel)
241 {
242 uintptr_t p;
243
244 p = (uintptr_t)(note + 1);
245 p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE);
246 *osrel = *(const int32_t *)(p);
247
248 return (true);
249 }
250
251 static int GNU_KFREEBSD_ABI_DESC = 3;
252
253 Elf_Brandnote __elfN(kfreebsd_brandnote) = {
254 .hdr.n_namesz = sizeof(GNU_ABI_VENDOR),
255 .hdr.n_descsz = 16, /* XXX at least 16 */
256 .hdr.n_type = 1,
257 .vendor = GNU_ABI_VENDOR,
258 .flags = BN_TRANSLATE_OSREL,
259 .trans_osrel = kfreebsd_trans_osrel
260 };
261
262 static bool
kfreebsd_trans_osrel(const Elf_Note * note,int32_t * osrel)263 kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel)
264 {
265 const Elf32_Word *desc;
266 uintptr_t p;
267
268 p = (uintptr_t)(note + 1);
269 p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE);
270
271 desc = (const Elf32_Word *)p;
272 if (desc[0] != GNU_KFREEBSD_ABI_DESC)
273 return (false);
274
275 /*
276 * Debian GNU/kFreeBSD embed the earliest compatible kernel version
277 * (__FreeBSD_version: <major><two digit minor>Rxx) in the LSB way.
278 */
279 *osrel = desc[1] * 100000 + desc[2] * 1000 + desc[3];
280
281 return (true);
282 }
283
284 int
__elfN(insert_brand_entry)285 __elfN(insert_brand_entry)(Elf_Brandinfo *entry)
286 {
287 int i;
288
289 for (i = 0; i < MAX_BRANDS; i++) {
290 if (elf_brand_list[i] == NULL) {
291 elf_brand_list[i] = entry;
292 break;
293 }
294 }
295 if (i == MAX_BRANDS) {
296 printf("WARNING: %s: could not insert brandinfo entry: %p\n",
297 __func__, entry);
298 return (-1);
299 }
300 return (0);
301 }
302
303 int
__elfN(remove_brand_entry)304 __elfN(remove_brand_entry)(Elf_Brandinfo *entry)
305 {
306 int i;
307
308 for (i = 0; i < MAX_BRANDS; i++) {
309 if (elf_brand_list[i] == entry) {
310 elf_brand_list[i] = NULL;
311 break;
312 }
313 }
314 if (i == MAX_BRANDS)
315 return (-1);
316 return (0);
317 }
318
319 bool
__elfN(brand_inuse)320 __elfN(brand_inuse)(Elf_Brandinfo *entry)
321 {
322 struct proc *p;
323 bool rval = false;
324
325 sx_slock(&allproc_lock);
326 FOREACH_PROC_IN_SYSTEM(p) {
327 if (p->p_sysent == entry->sysvec) {
328 rval = true;
329 break;
330 }
331 }
332 sx_sunlock(&allproc_lock);
333
334 return (rval);
335 }
336
337 static Elf_Brandinfo *
__elfN(get_brandinfo)338 __elfN(get_brandinfo)(struct image_params *imgp, const char *interp,
339 int32_t *osrel, uint32_t *fctl0)
340 {
341 const Elf_Ehdr *hdr = (const Elf_Ehdr *)imgp->image_header;
342 Elf_Brandinfo *bi, *bi_m;
343 bool ret, has_fctl0;
344 int i, interp_name_len;
345
346 interp_name_len = interp != NULL ? strlen(interp) + 1 : 0;
347
348 /*
349 * We support four types of branding -- (1) the ELF EI_OSABI field
350 * that SCO added to the ELF spec, (2) FreeBSD 3.x's traditional string
351 * branding w/in the ELF header, (3) path of the `interp_path'
352 * field, and (4) the ".note.ABI-tag" ELF section.
353 */
354
355 /* Look for an ".note.ABI-tag" ELF section */
356 bi_m = NULL;
357 for (i = 0; i < MAX_BRANDS; i++) {
358 bi = elf_brand_list[i];
359 if (bi == NULL)
360 continue;
361 if (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0)
362 continue;
363 if (hdr->e_machine == bi->machine && (bi->flags &
364 (BI_BRAND_NOTE|BI_BRAND_NOTE_MANDATORY)) != 0) {
365 has_fctl0 = false;
366 *fctl0 = 0;
367 *osrel = 0;
368 ret = __elfN(check_note)(imgp, bi->brand_note, osrel,
369 &has_fctl0, fctl0);
370 /* Give brand a chance to veto check_note's guess */
371 if (ret && bi->header_supported) {
372 ret = bi->header_supported(imgp, osrel,
373 has_fctl0 ? fctl0 : NULL);
374 }
375 /*
376 * If note checker claimed the binary, but the
377 * interpreter path in the image does not
378 * match default one for the brand, try to
379 * search for other brands with the same
380 * interpreter. Either there is better brand
381 * with the right interpreter, or, failing
382 * this, we return first brand which accepted
383 * our note and, optionally, header.
384 */
385 if (ret && bi_m == NULL && interp != NULL &&
386 (bi->interp_path == NULL ||
387 (strlen(bi->interp_path) + 1 != interp_name_len ||
388 strncmp(interp, bi->interp_path, interp_name_len)
389 != 0))) {
390 bi_m = bi;
391 ret = 0;
392 }
393 if (ret)
394 return (bi);
395 }
396 }
397 if (bi_m != NULL)
398 return (bi_m);
399
400 /* If the executable has a brand, search for it in the brand list. */
401 for (i = 0; i < MAX_BRANDS; i++) {
402 bi = elf_brand_list[i];
403 if (bi == NULL || (bi->flags & BI_BRAND_NOTE_MANDATORY) != 0 ||
404 (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0))
405 continue;
406 if (hdr->e_machine == bi->machine &&
407 (hdr->e_ident[EI_OSABI] == bi->brand ||
408 (bi->compat_3_brand != NULL &&
409 strcmp((const char *)&hdr->e_ident[OLD_EI_BRAND],
410 bi->compat_3_brand) == 0))) {
411 /* Looks good, but give brand a chance to veto */
412 if (bi->header_supported == NULL ||
413 bi->header_supported(imgp, NULL, NULL)) {
414 /*
415 * Again, prefer strictly matching
416 * interpreter path.
417 */
418 if (interp_name_len == 0 &&
419 bi->interp_path == NULL)
420 return (bi);
421 if (bi->interp_path != NULL &&
422 strlen(bi->interp_path) + 1 ==
423 interp_name_len && strncmp(interp,
424 bi->interp_path, interp_name_len) == 0)
425 return (bi);
426 if (bi_m == NULL)
427 bi_m = bi;
428 }
429 }
430 }
431 if (bi_m != NULL)
432 return (bi_m);
433
434 /* No known brand, see if the header is recognized by any brand */
435 for (i = 0; i < MAX_BRANDS; i++) {
436 bi = elf_brand_list[i];
437 if (bi == NULL || bi->flags & BI_BRAND_NOTE_MANDATORY ||
438 bi->header_supported == NULL)
439 continue;
440 if (hdr->e_machine == bi->machine) {
441 ret = bi->header_supported(imgp, NULL, NULL);
442 if (ret)
443 return (bi);
444 }
445 }
446
447 /* Lacking a known brand, search for a recognized interpreter. */
448 if (interp != NULL) {
449 for (i = 0; i < MAX_BRANDS; i++) {
450 bi = elf_brand_list[i];
451 if (bi == NULL || (bi->flags &
452 (BI_BRAND_NOTE_MANDATORY | BI_BRAND_ONLY_STATIC))
453 != 0)
454 continue;
455 if (hdr->e_machine == bi->machine &&
456 bi->interp_path != NULL &&
457 /* ELF image p_filesz includes terminating zero */
458 strlen(bi->interp_path) + 1 == interp_name_len &&
459 strncmp(interp, bi->interp_path, interp_name_len)
460 == 0 && (bi->header_supported == NULL ||
461 bi->header_supported(imgp, NULL, NULL)))
462 return (bi);
463 }
464 }
465
466 /* Lacking a recognized interpreter, try the default brand */
467 for (i = 0; i < MAX_BRANDS; i++) {
468 bi = elf_brand_list[i];
469 if (bi == NULL || (bi->flags & BI_BRAND_NOTE_MANDATORY) != 0 ||
470 (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0))
471 continue;
472 if (hdr->e_machine == bi->machine &&
473 __elfN(fallback_brand) == bi->brand &&
474 (bi->header_supported == NULL ||
475 bi->header_supported(imgp, NULL, NULL)))
476 return (bi);
477 }
478 return (NULL);
479 }
480
481 static bool
__elfN(phdr_in_zero_page)482 __elfN(phdr_in_zero_page)(const Elf_Ehdr *hdr)
483 {
484 return (hdr->e_phoff <= PAGE_SIZE &&
485 (u_int)hdr->e_phentsize * hdr->e_phnum <= PAGE_SIZE - hdr->e_phoff);
486 }
487
488 static int
__elfN(check_header)489 __elfN(check_header)(const Elf_Ehdr *hdr)
490 {
491 Elf_Brandinfo *bi;
492 int i;
493
494 if (!IS_ELF(*hdr) ||
495 hdr->e_ident[EI_CLASS] != ELF_TARG_CLASS ||
496 hdr->e_ident[EI_DATA] != ELF_TARG_DATA ||
497 hdr->e_ident[EI_VERSION] != EV_CURRENT ||
498 hdr->e_phentsize != sizeof(Elf_Phdr) ||
499 hdr->e_version != ELF_TARG_VER)
500 return (ENOEXEC);
501
502 /*
503 * Make sure we have at least one brand for this machine.
504 */
505
506 for (i = 0; i < MAX_BRANDS; i++) {
507 bi = elf_brand_list[i];
508 if (bi != NULL && bi->machine == hdr->e_machine)
509 break;
510 }
511 if (i == MAX_BRANDS)
512 return (ENOEXEC);
513
514 return (0);
515 }
516
517 static int
__elfN(map_partial)518 __elfN(map_partial)(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
519 vm_offset_t start, vm_offset_t end, vm_prot_t prot)
520 {
521 struct sf_buf *sf;
522 int error;
523 vm_offset_t off;
524
525 /*
526 * Create the page if it doesn't exist yet. Ignore errors.
527 */
528 vm_map_fixed(map, NULL, 0, trunc_page(start), round_page(end) -
529 trunc_page(start), VM_PROT_ALL, VM_PROT_ALL, MAP_CHECK_EXCL);
530
531 /*
532 * Find the page from the underlying object.
533 */
534 if (object != NULL) {
535 sf = vm_imgact_map_page(object, offset);
536 if (sf == NULL)
537 return (KERN_FAILURE);
538 off = offset - trunc_page(offset);
539 error = copyout((caddr_t)sf_buf_kva(sf) + off, (caddr_t)start,
540 end - start);
541 vm_imgact_unmap_page(sf);
542 if (error != 0)
543 return (KERN_FAILURE);
544 }
545
546 return (KERN_SUCCESS);
547 }
548
549 static int
__elfN(map_insert)550 __elfN(map_insert)(const struct image_params *imgp, vm_map_t map,
551 vm_object_t object, vm_ooffset_t offset, vm_offset_t start, vm_offset_t end,
552 vm_prot_t prot, int cow)
553 {
554 struct sf_buf *sf;
555 vm_offset_t off;
556 vm_size_t sz;
557 int error, locked, rv;
558
559 if (start != trunc_page(start)) {
560 rv = __elfN(map_partial)(map, object, offset, start,
561 round_page(start), prot);
562 if (rv != KERN_SUCCESS)
563 return (rv);
564 offset += round_page(start) - start;
565 start = round_page(start);
566 }
567 if (end != round_page(end)) {
568 rv = __elfN(map_partial)(map, object, offset +
569 trunc_page(end) - start, trunc_page(end), end, prot);
570 if (rv != KERN_SUCCESS)
571 return (rv);
572 end = trunc_page(end);
573 }
574 if (start >= end)
575 return (KERN_SUCCESS);
576 if ((offset & PAGE_MASK) != 0) {
577 /*
578 * The mapping is not page aligned. This means that we have
579 * to copy the data.
580 */
581 rv = vm_map_fixed(map, NULL, 0, start, end - start,
582 prot | VM_PROT_WRITE, VM_PROT_ALL, MAP_CHECK_EXCL);
583 if (rv != KERN_SUCCESS)
584 return (rv);
585 if (object == NULL)
586 return (KERN_SUCCESS);
587 for (; start < end; start += sz) {
588 sf = vm_imgact_map_page(object, offset);
589 if (sf == NULL)
590 return (KERN_FAILURE);
591 off = offset - trunc_page(offset);
592 sz = end - start;
593 if (sz > PAGE_SIZE - off)
594 sz = PAGE_SIZE - off;
595 error = copyout((caddr_t)sf_buf_kva(sf) + off,
596 (caddr_t)start, sz);
597 vm_imgact_unmap_page(sf);
598 if (error != 0)
599 return (KERN_FAILURE);
600 offset += sz;
601 }
602 } else {
603 vm_object_reference(object);
604 rv = vm_map_fixed(map, object, offset, start, end - start,
605 prot, VM_PROT_ALL, cow | MAP_CHECK_EXCL |
606 (object != NULL ? MAP_VN_EXEC : 0));
607 if (rv != KERN_SUCCESS) {
608 locked = VOP_ISLOCKED(imgp->vp);
609 VOP_UNLOCK(imgp->vp);
610 vm_object_deallocate(object);
611 vn_lock(imgp->vp, locked | LK_RETRY);
612 return (rv);
613 } else if (object != NULL) {
614 MPASS(imgp->vp->v_object == object);
615 VOP_SET_TEXT_CHECKED(imgp->vp);
616 }
617 }
618 return (KERN_SUCCESS);
619 }
620
621 static int
__elfN(load_section)622 __elfN(load_section)(const struct image_params *imgp, vm_ooffset_t offset,
623 caddr_t vmaddr, size_t memsz, size_t filsz, vm_prot_t prot)
624 {
625 struct sf_buf *sf;
626 size_t map_len;
627 vm_map_t map;
628 vm_object_t object;
629 vm_offset_t map_addr;
630 int error, rv, cow;
631 size_t copy_len;
632 vm_ooffset_t file_addr;
633
634 /*
635 * It's necessary to fail if the filsz + offset taken from the
636 * header is greater than the actual file pager object's size.
637 * If we were to allow this, then the vm_map_find() below would
638 * walk right off the end of the file object and into the ether.
639 *
640 * While I'm here, might as well check for something else that
641 * is invalid: filsz cannot be greater than memsz.
642 */
643 if ((filsz != 0 && (off_t)filsz + offset > imgp->attr->va_size) ||
644 filsz > memsz) {
645 uprintf("elf_load_section: truncated ELF file\n");
646 return (ENOEXEC);
647 }
648
649 object = imgp->object;
650 map = &imgp->proc->p_vmspace->vm_map;
651 map_addr = trunc_page((vm_offset_t)vmaddr);
652 file_addr = trunc_page(offset);
653
654 /*
655 * We have two choices. We can either clear the data in the last page
656 * of an oversized mapping, or we can start the anon mapping a page
657 * early and copy the initialized data into that first page. We
658 * choose the second.
659 */
660 if (filsz == 0)
661 map_len = 0;
662 else if (memsz > filsz)
663 map_len = trunc_page(offset + filsz) - file_addr;
664 else
665 map_len = round_page(offset + filsz) - file_addr;
666
667 if (map_len != 0) {
668 /* cow flags: don't dump readonly sections in core */
669 cow = MAP_COPY_ON_WRITE | MAP_PREFAULT |
670 (prot & VM_PROT_WRITE ? 0 : MAP_DISABLE_COREDUMP);
671
672 rv = __elfN(map_insert)(imgp, map, object, file_addr,
673 map_addr, map_addr + map_len, prot, cow);
674 if (rv != KERN_SUCCESS)
675 return (EINVAL);
676
677 /* we can stop now if we've covered it all */
678 if (memsz == filsz)
679 return (0);
680 }
681
682 /*
683 * We have to get the remaining bit of the file into the first part
684 * of the oversized map segment. This is normally because the .data
685 * segment in the file is extended to provide bss. It's a neat idea
686 * to try and save a page, but it's a pain in the behind to implement.
687 */
688 copy_len = filsz == 0 ? 0 : (offset + filsz) - trunc_page(offset +
689 filsz);
690 map_addr = trunc_page((vm_offset_t)vmaddr + filsz);
691 map_len = round_page((vm_offset_t)vmaddr + memsz) - map_addr;
692
693 /* This had damn well better be true! */
694 if (map_len != 0) {
695 rv = __elfN(map_insert)(imgp, map, NULL, 0, map_addr,
696 map_addr + map_len, prot, 0);
697 if (rv != KERN_SUCCESS)
698 return (EINVAL);
699 }
700
701 if (copy_len != 0) {
702 sf = vm_imgact_map_page(object, offset + filsz);
703 if (sf == NULL)
704 return (EIO);
705
706 /* send the page fragment to user space */
707 error = copyout((caddr_t)sf_buf_kva(sf), (caddr_t)map_addr,
708 copy_len);
709 vm_imgact_unmap_page(sf);
710 if (error != 0)
711 return (error);
712 }
713
714 /*
715 * Remove write access to the page if it was only granted by map_insert
716 * to allow copyout.
717 */
718 if ((prot & VM_PROT_WRITE) == 0)
719 vm_map_protect(map, trunc_page(map_addr), round_page(map_addr +
720 map_len), prot, 0, VM_MAP_PROTECT_SET_PROT);
721
722 return (0);
723 }
724
725 static int
__elfN(load_sections)726 __elfN(load_sections)(const struct image_params *imgp, const Elf_Ehdr *hdr,
727 const Elf_Phdr *phdr, u_long rbase, u_long *base_addrp)
728 {
729 vm_prot_t prot;
730 u_long base_addr;
731 bool first;
732 int error, i;
733
734 ASSERT_VOP_LOCKED(imgp->vp, __func__);
735
736 base_addr = 0;
737 first = true;
738
739 for (i = 0; i < hdr->e_phnum; i++) {
740 if (phdr[i].p_type != PT_LOAD || phdr[i].p_memsz == 0)
741 continue;
742
743 /* Loadable segment */
744 prot = __elfN(trans_prot)(phdr[i].p_flags);
745 error = __elfN(load_section)(imgp, phdr[i].p_offset,
746 (caddr_t)(uintptr_t)phdr[i].p_vaddr + rbase,
747 phdr[i].p_memsz, phdr[i].p_filesz, prot);
748 if (error != 0)
749 return (error);
750
751 /*
752 * Establish the base address if this is the first segment.
753 */
754 if (first) {
755 base_addr = trunc_page(phdr[i].p_vaddr + rbase);
756 first = false;
757 }
758 }
759
760 if (base_addrp != NULL)
761 *base_addrp = base_addr;
762
763 return (0);
764 }
765
766 /*
767 * Load the file "file" into memory. It may be either a shared object
768 * or an executable.
769 *
770 * The "addr" reference parameter is in/out. On entry, it specifies
771 * the address where a shared object should be loaded. If the file is
772 * an executable, this value is ignored. On exit, "addr" specifies
773 * where the file was actually loaded.
774 *
775 * The "entry" reference parameter is out only. On exit, it specifies
776 * the entry point for the loaded file.
777 */
778 static int
__elfN(load_file)779 __elfN(load_file)(struct proc *p, const char *file, u_long *addr,
780 u_long *entry)
781 {
782 struct {
783 struct nameidata nd;
784 struct vattr attr;
785 struct image_params image_params;
786 } *tempdata;
787 const Elf_Ehdr *hdr = NULL;
788 const Elf_Phdr *phdr = NULL;
789 struct nameidata *nd;
790 struct vattr *attr;
791 struct image_params *imgp;
792 u_long rbase;
793 u_long base_addr = 0;
794 int error;
795
796 #ifdef CAPABILITY_MODE
797 /*
798 * XXXJA: This check can go away once we are sufficiently confident
799 * that the checks in namei() are correct.
800 */
801 if (IN_CAPABILITY_MODE(curthread))
802 return (ECAPMODE);
803 #endif
804
805 tempdata = malloc(sizeof(*tempdata), M_TEMP, M_WAITOK | M_ZERO);
806 nd = &tempdata->nd;
807 attr = &tempdata->attr;
808 imgp = &tempdata->image_params;
809
810 /*
811 * Initialize part of the common data
812 */
813 imgp->proc = p;
814 imgp->attr = attr;
815
816 NDINIT(nd, LOOKUP, ISOPEN | FOLLOW | LOCKSHARED | LOCKLEAF,
817 UIO_SYSSPACE, file);
818 if ((error = namei(nd)) != 0) {
819 nd->ni_vp = NULL;
820 goto fail;
821 }
822 NDFREE_PNBUF(nd);
823 imgp->vp = nd->ni_vp;
824
825 /*
826 * Check permissions, modes, uid, etc on the file, and "open" it.
827 */
828 error = exec_check_permissions(imgp);
829 if (error)
830 goto fail;
831
832 error = exec_map_first_page(imgp);
833 if (error)
834 goto fail;
835
836 imgp->object = nd->ni_vp->v_object;
837
838 hdr = (const Elf_Ehdr *)imgp->image_header;
839 if ((error = __elfN(check_header)(hdr)) != 0)
840 goto fail;
841 if (hdr->e_type == ET_DYN)
842 rbase = *addr;
843 else if (hdr->e_type == ET_EXEC)
844 rbase = 0;
845 else {
846 error = ENOEXEC;
847 goto fail;
848 }
849
850 /* Only support headers that fit within first page for now */
851 if (!__elfN(phdr_in_zero_page)(hdr)) {
852 error = ENOEXEC;
853 goto fail;
854 }
855
856 phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff);
857 if (!aligned(phdr, Elf_Addr)) {
858 error = ENOEXEC;
859 goto fail;
860 }
861
862 error = __elfN(load_sections)(imgp, hdr, phdr, rbase, &base_addr);
863 if (error != 0)
864 goto fail;
865
866 if (p->p_sysent->sv_protect != NULL)
867 p->p_sysent->sv_protect(imgp, SVP_INTERP);
868
869 *addr = base_addr;
870 *entry = (unsigned long)hdr->e_entry + rbase;
871
872 fail:
873 if (imgp->firstpage)
874 exec_unmap_first_page(imgp);
875
876 if (nd->ni_vp) {
877 if (imgp->textset)
878 VOP_UNSET_TEXT_CHECKED(nd->ni_vp);
879 vput(nd->ni_vp);
880 }
881 free(tempdata, M_TEMP);
882
883 return (error);
884 }
885
886 /*
887 * Select randomized valid address in the map map, between minv and
888 * maxv, with specified alignment. The [minv, maxv) range must belong
889 * to the map. Note that function only allocates the address, it is
890 * up to caller to clamp maxv in a way that the final allocation
891 * length fit into the map.
892 *
893 * Result is returned in *resp, error code indicates that arguments
894 * did not pass sanity checks for overflow and range correctness.
895 */
896 static int
__CONCAT(rnd_,__elfN (base))897 __CONCAT(rnd_, __elfN(base))(vm_map_t map, u_long minv, u_long maxv,
898 u_int align, u_long *resp)
899 {
900 u_long rbase, res;
901
902 MPASS(vm_map_min(map) <= minv);
903
904 if (minv >= maxv || minv + align >= maxv || maxv > vm_map_max(map)) {
905 uprintf("Invalid ELF segments layout\n");
906 return (ENOEXEC);
907 }
908
909 arc4rand(&rbase, sizeof(rbase), 0);
910 res = roundup(minv, (u_long)align) + rbase % (maxv - minv);
911 res &= ~((u_long)align - 1);
912 if (res >= maxv)
913 res -= align;
914
915 KASSERT(res >= minv,
916 ("res %#lx < minv %#lx, maxv %#lx rbase %#lx",
917 res, minv, maxv, rbase));
918 KASSERT(res < maxv,
919 ("res %#lx > maxv %#lx, minv %#lx rbase %#lx",
920 res, maxv, minv, rbase));
921
922 *resp = res;
923 return (0);
924 }
925
926 static int
__elfN(enforce_limits)927 __elfN(enforce_limits)(struct image_params *imgp, const Elf_Ehdr *hdr,
928 const Elf_Phdr *phdr)
929 {
930 struct vmspace *vmspace;
931 const char *err_str;
932 u_long text_size, data_size, total_size, text_addr, data_addr;
933 u_long seg_size, seg_addr;
934 int i;
935
936 err_str = NULL;
937 text_size = data_size = total_size = text_addr = data_addr = 0;
938
939 for (i = 0; i < hdr->e_phnum; i++) {
940 if (phdr[i].p_type != PT_LOAD || phdr[i].p_memsz == 0)
941 continue;
942
943 seg_addr = trunc_page(phdr[i].p_vaddr + imgp->et_dyn_addr);
944 seg_size = round_page(phdr[i].p_memsz +
945 phdr[i].p_vaddr + imgp->et_dyn_addr - seg_addr);
946
947 /*
948 * Make the largest executable segment the official
949 * text segment and all others data.
950 *
951 * Note that obreak() assumes that data_addr + data_size == end
952 * of data load area, and the ELF file format expects segments
953 * to be sorted by address. If multiple data segments exist,
954 * the last one will be used.
955 */
956
957 if ((phdr[i].p_flags & PF_X) != 0 && text_size < seg_size) {
958 text_size = seg_size;
959 text_addr = seg_addr;
960 } else {
961 data_size = seg_size;
962 data_addr = seg_addr;
963 }
964 total_size += seg_size;
965 }
966
967 if (data_addr == 0 && data_size == 0) {
968 data_addr = text_addr;
969 data_size = text_size;
970 }
971
972 /*
973 * Check limits. It should be safe to check the
974 * limits after loading the segments since we do
975 * not actually fault in all the segments pages.
976 */
977 PROC_LOCK(imgp->proc);
978 if (data_size > lim_cur_proc(imgp->proc, RLIMIT_DATA))
979 err_str = "Data segment size exceeds process limit";
980 else if (text_size > maxtsiz)
981 err_str = "Text segment size exceeds system limit";
982 else if (total_size > lim_cur_proc(imgp->proc, RLIMIT_VMEM))
983 err_str = "Total segment size exceeds process limit";
984 else if (racct_set(imgp->proc, RACCT_DATA, data_size) != 0)
985 err_str = "Data segment size exceeds resource limit";
986 else if (racct_set(imgp->proc, RACCT_VMEM, total_size) != 0)
987 err_str = "Total segment size exceeds resource limit";
988 PROC_UNLOCK(imgp->proc);
989 if (err_str != NULL) {
990 uprintf("%s\n", err_str);
991 return (ENOMEM);
992 }
993
994 vmspace = imgp->proc->p_vmspace;
995 vmspace->vm_tsize = text_size >> PAGE_SHIFT;
996 vmspace->vm_taddr = (caddr_t)(uintptr_t)text_addr;
997 vmspace->vm_dsize = data_size >> PAGE_SHIFT;
998 vmspace->vm_daddr = (caddr_t)(uintptr_t)data_addr;
999
1000 return (0);
1001 }
1002
1003 static int
__elfN(get_interp)1004 __elfN(get_interp)(struct image_params *imgp, const Elf_Phdr *phdr,
1005 char **interpp, bool *free_interpp)
1006 {
1007 struct thread *td;
1008 char *interp;
1009 int error, interp_name_len;
1010
1011 KASSERT(phdr->p_type == PT_INTERP,
1012 ("%s: p_type %u != PT_INTERP", __func__, phdr->p_type));
1013 ASSERT_VOP_LOCKED(imgp->vp, __func__);
1014
1015 td = curthread;
1016
1017 /* Path to interpreter */
1018 if (phdr->p_filesz < 2 || phdr->p_filesz > MAXPATHLEN) {
1019 uprintf("Invalid PT_INTERP\n");
1020 return (ENOEXEC);
1021 }
1022
1023 interp_name_len = phdr->p_filesz;
1024 if (phdr->p_offset > PAGE_SIZE ||
1025 interp_name_len > PAGE_SIZE - phdr->p_offset) {
1026 /*
1027 * The vnode lock might be needed by the pagedaemon to
1028 * clean pages owned by the vnode. Do not allow sleep
1029 * waiting for memory with the vnode locked, instead
1030 * try non-sleepable allocation first, and if it
1031 * fails, go to the slow path were we drop the lock
1032 * and do M_WAITOK. A text reference prevents
1033 * modifications to the vnode content.
1034 */
1035 interp = malloc(interp_name_len + 1, M_TEMP, M_NOWAIT);
1036 if (interp == NULL) {
1037 VOP_UNLOCK(imgp->vp);
1038 interp = malloc(interp_name_len + 1, M_TEMP, M_WAITOK);
1039 vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
1040 }
1041
1042 error = vn_rdwr(UIO_READ, imgp->vp, interp,
1043 interp_name_len, phdr->p_offset,
1044 UIO_SYSSPACE, IO_NODELOCKED, td->td_ucred,
1045 NOCRED, NULL, td);
1046 if (error != 0) {
1047 free(interp, M_TEMP);
1048 uprintf("i/o error PT_INTERP %d\n", error);
1049 return (error);
1050 }
1051 interp[interp_name_len] = '\0';
1052
1053 *interpp = interp;
1054 *free_interpp = true;
1055 return (0);
1056 }
1057
1058 interp = __DECONST(char *, imgp->image_header) + phdr->p_offset;
1059 if (interp[interp_name_len - 1] != '\0') {
1060 uprintf("Invalid PT_INTERP\n");
1061 return (ENOEXEC);
1062 }
1063
1064 *interpp = interp;
1065 *free_interpp = false;
1066 return (0);
1067 }
1068
1069 static int
__elfN(load_interp)1070 __elfN(load_interp)(struct image_params *imgp, const Elf_Brandinfo *brand_info,
1071 const char *interp, u_long *addr, u_long *entry)
1072 {
1073 int error;
1074
1075 if (brand_info->interp_newpath != NULL &&
1076 (brand_info->interp_path == NULL ||
1077 strcmp(interp, brand_info->interp_path) == 0)) {
1078 error = __elfN(load_file)(imgp->proc,
1079 brand_info->interp_newpath, addr, entry);
1080 if (error == 0)
1081 return (0);
1082 }
1083
1084 error = __elfN(load_file)(imgp->proc, interp, addr, entry);
1085 if (error == 0)
1086 return (0);
1087
1088 uprintf("ELF interpreter %s not found, error %d\n", interp, error);
1089 return (error);
1090 }
1091
1092 /*
1093 * Impossible et_dyn_addr initial value indicating that the real base
1094 * must be calculated later with some randomization applied.
1095 */
1096 #define ET_DYN_ADDR_RAND 1
1097
1098 static int
__CONCAT(exec_,__elfN (imgact))1099 __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp)
1100 {
1101 struct thread *td;
1102 const Elf_Ehdr *hdr;
1103 const Elf_Phdr *phdr;
1104 Elf_Auxargs *elf_auxargs;
1105 struct vmspace *vmspace;
1106 vm_map_t map;
1107 char *interp;
1108 Elf_Brandinfo *brand_info;
1109 struct sysentvec *sv;
1110 u_long addr, baddr, entry, proghdr;
1111 u_long maxalign, maxsalign, mapsz, maxv, maxv1, anon_loc;
1112 uint32_t fctl0;
1113 int32_t osrel;
1114 bool free_interp;
1115 int error, i, n;
1116
1117 hdr = (const Elf_Ehdr *)imgp->image_header;
1118
1119 /*
1120 * Do we have a valid ELF header ?
1121 *
1122 * Only allow ET_EXEC & ET_DYN here, reject ET_DYN later
1123 * if particular brand doesn't support it.
1124 */
1125 if (__elfN(check_header)(hdr) != 0 ||
1126 (hdr->e_type != ET_EXEC && hdr->e_type != ET_DYN))
1127 return (-1);
1128
1129 /*
1130 * From here on down, we return an errno, not -1, as we've
1131 * detected an ELF file.
1132 */
1133
1134 if (!__elfN(phdr_in_zero_page)(hdr)) {
1135 uprintf("Program headers not in the first page\n");
1136 return (ENOEXEC);
1137 }
1138 phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff);
1139 if (!aligned(phdr, Elf_Addr)) {
1140 uprintf("Unaligned program headers\n");
1141 return (ENOEXEC);
1142 }
1143
1144 n = error = 0;
1145 baddr = 0;
1146 osrel = 0;
1147 fctl0 = 0;
1148 entry = proghdr = 0;
1149 interp = NULL;
1150 free_interp = false;
1151 td = curthread;
1152
1153 /*
1154 * Somewhat arbitrary, limit accepted max alignment for the
1155 * loadable segment to the max supported superpage size. Too
1156 * large alignment requests are not useful and are indicators
1157 * of corrupted or outright malicious binary.
1158 */
1159 maxalign = PAGE_SIZE;
1160 maxsalign = PAGE_SIZE * 1024;
1161 for (i = MAXPAGESIZES - 1; i > 0; i--) {
1162 if (pagesizes[i] > maxsalign) {
1163 maxsalign = pagesizes[i];
1164 break;
1165 }
1166 }
1167
1168 mapsz = 0;
1169
1170 for (i = 0; i < hdr->e_phnum; i++) {
1171 switch (phdr[i].p_type) {
1172 case PT_LOAD:
1173 if (n == 0)
1174 baddr = phdr[i].p_vaddr;
1175 if (!powerof2(phdr[i].p_align) ||
1176 phdr[i].p_align > maxsalign) {
1177 uprintf("Invalid segment alignment\n");
1178 error = ENOEXEC;
1179 goto ret;
1180 }
1181 if (phdr[i].p_align > maxalign)
1182 maxalign = phdr[i].p_align;
1183 if (mapsz + phdr[i].p_memsz < mapsz) {
1184 uprintf("Mapsize overflow\n");
1185 error = ENOEXEC;
1186 goto ret;
1187 }
1188 mapsz += phdr[i].p_memsz;
1189 n++;
1190
1191 /*
1192 * If this segment contains the program headers,
1193 * remember their virtual address for the AT_PHDR
1194 * aux entry. Static binaries don't usually include
1195 * a PT_PHDR entry.
1196 */
1197 if (phdr[i].p_offset == 0 &&
1198 hdr->e_phoff + hdr->e_phnum * hdr->e_phentsize <=
1199 phdr[i].p_filesz)
1200 proghdr = phdr[i].p_vaddr + hdr->e_phoff;
1201 break;
1202 case PT_INTERP:
1203 /* Path to interpreter */
1204 if (interp != NULL) {
1205 uprintf("Multiple PT_INTERP headers\n");
1206 error = ENOEXEC;
1207 goto ret;
1208 }
1209 error = __elfN(get_interp)(imgp, &phdr[i], &interp,
1210 &free_interp);
1211 if (error != 0)
1212 goto ret;
1213 break;
1214 case PT_GNU_STACK:
1215 if (__elfN(nxstack)) {
1216 imgp->stack_prot =
1217 __elfN(trans_prot)(phdr[i].p_flags);
1218 if ((imgp->stack_prot & VM_PROT_RW) !=
1219 VM_PROT_RW) {
1220 uprintf("Invalid PT_GNU_STACK\n");
1221 error = ENOEXEC;
1222 goto ret;
1223 }
1224 }
1225 imgp->stack_sz = phdr[i].p_memsz;
1226 break;
1227 case PT_PHDR: /* Program header table info */
1228 proghdr = phdr[i].p_vaddr;
1229 break;
1230 }
1231 }
1232
1233 brand_info = __elfN(get_brandinfo)(imgp, interp, &osrel, &fctl0);
1234 if (brand_info == NULL) {
1235 uprintf("ELF binary type \"%u\" not known.\n",
1236 hdr->e_ident[EI_OSABI]);
1237 error = ENOEXEC;
1238 goto ret;
1239 }
1240 sv = brand_info->sysvec;
1241 if (hdr->e_type == ET_DYN) {
1242 if ((brand_info->flags & BI_CAN_EXEC_DYN) == 0) {
1243 uprintf("Cannot execute shared object\n");
1244 error = ENOEXEC;
1245 goto ret;
1246 }
1247 /*
1248 * Honour the base load address from the dso if it is
1249 * non-zero for some reason.
1250 */
1251 if (baddr == 0) {
1252 if ((sv->sv_flags & SV_ASLR) == 0 ||
1253 (fctl0 & NT_FREEBSD_FCTL_ASLR_DISABLE) != 0)
1254 imgp->et_dyn_addr = __elfN(pie_base);
1255 else if ((__elfN(pie_aslr_enabled) &&
1256 (imgp->proc->p_flag2 & P2_ASLR_DISABLE) == 0) ||
1257 (imgp->proc->p_flag2 & P2_ASLR_ENABLE) != 0)
1258 imgp->et_dyn_addr = ET_DYN_ADDR_RAND;
1259 else
1260 imgp->et_dyn_addr = __elfN(pie_base);
1261 }
1262 }
1263
1264 /*
1265 * Avoid a possible deadlock if the current address space is destroyed
1266 * and that address space maps the locked vnode. In the common case,
1267 * the locked vnode's v_usecount is decremented but remains greater
1268 * than zero. Consequently, the vnode lock is not needed by vrele().
1269 * However, in cases where the vnode lock is external, such as nullfs,
1270 * v_usecount may become zero.
1271 *
1272 * The VV_TEXT flag prevents modifications to the executable while
1273 * the vnode is unlocked.
1274 */
1275 VOP_UNLOCK(imgp->vp);
1276
1277 /*
1278 * Decide whether to enable randomization of user mappings.
1279 * First, reset user preferences for the setid binaries.
1280 * Then, account for the support of the randomization by the
1281 * ABI, by user preferences, and make special treatment for
1282 * PIE binaries.
1283 */
1284 if (imgp->credential_setid) {
1285 PROC_LOCK(imgp->proc);
1286 imgp->proc->p_flag2 &= ~(P2_ASLR_ENABLE | P2_ASLR_DISABLE |
1287 P2_WXORX_DISABLE | P2_WXORX_ENABLE_EXEC);
1288 PROC_UNLOCK(imgp->proc);
1289 }
1290 if ((sv->sv_flags & SV_ASLR) == 0 ||
1291 (imgp->proc->p_flag2 & P2_ASLR_DISABLE) != 0 ||
1292 (fctl0 & NT_FREEBSD_FCTL_ASLR_DISABLE) != 0) {
1293 KASSERT(imgp->et_dyn_addr != ET_DYN_ADDR_RAND,
1294 ("imgp->et_dyn_addr == RAND and !ASLR"));
1295 } else if ((imgp->proc->p_flag2 & P2_ASLR_ENABLE) != 0 ||
1296 (__elfN(aslr_enabled) && hdr->e_type == ET_EXEC) ||
1297 imgp->et_dyn_addr == ET_DYN_ADDR_RAND) {
1298 imgp->map_flags |= MAP_ASLR;
1299 /*
1300 * If user does not care about sbrk, utilize the bss
1301 * grow region for mappings as well. We can select
1302 * the base for the image anywere and still not suffer
1303 * from the fragmentation.
1304 */
1305 if (!__elfN(aslr_honor_sbrk) ||
1306 (imgp->proc->p_flag2 & P2_ASLR_IGNSTART) != 0)
1307 imgp->map_flags |= MAP_ASLR_IGNSTART;
1308 if (__elfN(aslr_stack))
1309 imgp->map_flags |= MAP_ASLR_STACK;
1310 if (__elfN(aslr_shared_page))
1311 imgp->imgp_flags |= IMGP_ASLR_SHARED_PAGE;
1312 }
1313
1314 if ((!__elfN(allow_wx) && (fctl0 & NT_FREEBSD_FCTL_WXNEEDED) == 0 &&
1315 (imgp->proc->p_flag2 & P2_WXORX_DISABLE) == 0) ||
1316 (imgp->proc->p_flag2 & P2_WXORX_ENABLE_EXEC) != 0)
1317 imgp->map_flags |= MAP_WXORX;
1318
1319 error = exec_new_vmspace(imgp, sv);
1320
1321 imgp->proc->p_sysent = sv;
1322 imgp->proc->p_elf_brandinfo = brand_info;
1323
1324 vmspace = imgp->proc->p_vmspace;
1325 map = &vmspace->vm_map;
1326 maxv = sv->sv_usrstack;
1327 if ((imgp->map_flags & MAP_ASLR_STACK) == 0)
1328 maxv -= lim_max(td, RLIMIT_STACK);
1329 if (error == 0 && mapsz >= maxv - vm_map_min(map)) {
1330 uprintf("Excessive mapping size\n");
1331 error = ENOEXEC;
1332 }
1333
1334 if (error == 0 && imgp->et_dyn_addr == ET_DYN_ADDR_RAND) {
1335 KASSERT((map->flags & MAP_ASLR) != 0,
1336 ("ET_DYN_ADDR_RAND but !MAP_ASLR"));
1337 error = __CONCAT(rnd_, __elfN(base))(map,
1338 vm_map_min(map) + mapsz + lim_max(td, RLIMIT_DATA),
1339 /* reserve half of the address space to interpreter */
1340 maxv / 2, maxalign, &imgp->et_dyn_addr);
1341 }
1342
1343 vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
1344 if (error != 0)
1345 goto ret;
1346
1347 error = __elfN(load_sections)(imgp, hdr, phdr, imgp->et_dyn_addr, NULL);
1348 if (error != 0)
1349 goto ret;
1350
1351 error = __elfN(enforce_limits)(imgp, hdr, phdr);
1352 if (error != 0)
1353 goto ret;
1354
1355 /*
1356 * We load the dynamic linker where a userland call
1357 * to mmap(0, ...) would put it. The rationale behind this
1358 * calculation is that it leaves room for the heap to grow to
1359 * its maximum allowed size.
1360 */
1361 addr = round_page((vm_offset_t)vmspace->vm_daddr + lim_max(td,
1362 RLIMIT_DATA));
1363 if ((map->flags & MAP_ASLR) != 0) {
1364 maxv1 = maxv / 2 + addr / 2;
1365 error = __CONCAT(rnd_, __elfN(base))(map, addr, maxv1,
1366 #if VM_NRESERVLEVEL > 0
1367 pagesizes[VM_NRESERVLEVEL] != 0 ?
1368 /* Align anon_loc to the largest superpage size. */
1369 pagesizes[VM_NRESERVLEVEL] :
1370 #endif
1371 pagesizes[0], &anon_loc);
1372 if (error != 0)
1373 goto ret;
1374 map->anon_loc = anon_loc;
1375 } else {
1376 map->anon_loc = addr;
1377 }
1378
1379 entry = (u_long)hdr->e_entry + imgp->et_dyn_addr;
1380 imgp->entry_addr = entry;
1381
1382 if (sv->sv_protect != NULL)
1383 sv->sv_protect(imgp, SVP_IMAGE);
1384
1385 if (interp != NULL) {
1386 VOP_UNLOCK(imgp->vp);
1387 if ((map->flags & MAP_ASLR) != 0) {
1388 /* Assume that interpreter fits into 1/4 of AS */
1389 maxv1 = maxv / 2 + addr / 2;
1390 error = __CONCAT(rnd_, __elfN(base))(map, addr,
1391 maxv1, PAGE_SIZE, &addr);
1392 }
1393 if (error == 0) {
1394 error = __elfN(load_interp)(imgp, brand_info, interp,
1395 &addr, &imgp->entry_addr);
1396 }
1397 vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
1398 if (error != 0)
1399 goto ret;
1400 } else
1401 addr = imgp->et_dyn_addr;
1402
1403 error = exec_map_stack(imgp);
1404 if (error != 0)
1405 goto ret;
1406
1407 /*
1408 * Construct auxargs table (used by the copyout_auxargs routine)
1409 */
1410 elf_auxargs = malloc(sizeof(Elf_Auxargs), M_TEMP, M_NOWAIT);
1411 if (elf_auxargs == NULL) {
1412 VOP_UNLOCK(imgp->vp);
1413 elf_auxargs = malloc(sizeof(Elf_Auxargs), M_TEMP, M_WAITOK);
1414 vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
1415 }
1416 elf_auxargs->execfd = -1;
1417 elf_auxargs->phdr = proghdr + imgp->et_dyn_addr;
1418 elf_auxargs->phent = hdr->e_phentsize;
1419 elf_auxargs->phnum = hdr->e_phnum;
1420 elf_auxargs->pagesz = PAGE_SIZE;
1421 elf_auxargs->base = addr;
1422 elf_auxargs->flags = 0;
1423 elf_auxargs->entry = entry;
1424 elf_auxargs->hdr_eflags = hdr->e_flags;
1425
1426 imgp->auxargs = elf_auxargs;
1427 imgp->interpreted = 0;
1428 imgp->reloc_base = addr;
1429 imgp->proc->p_osrel = osrel;
1430 imgp->proc->p_fctl0 = fctl0;
1431 imgp->proc->p_elf_flags = hdr->e_flags;
1432
1433 ret:
1434 ASSERT_VOP_LOCKED(imgp->vp, "skipped relock");
1435 if (free_interp)
1436 free(interp, M_TEMP);
1437 return (error);
1438 }
1439
1440 #define elf_suword __CONCAT(suword, __ELF_WORD_SIZE)
1441
1442 int
__elfN(freebsd_copyout_auxargs)1443 __elfN(freebsd_copyout_auxargs)(struct image_params *imgp, uintptr_t base)
1444 {
1445 Elf_Auxargs *args = (Elf_Auxargs *)imgp->auxargs;
1446 Elf_Auxinfo *argarray, *pos;
1447 struct vmspace *vmspace;
1448 rlim_t stacksz;
1449 int error, oc;
1450 uint32_t bsdflags;
1451
1452 argarray = pos = malloc(AT_COUNT * sizeof(*pos), M_TEMP,
1453 M_WAITOK | M_ZERO);
1454
1455 vmspace = imgp->proc->p_vmspace;
1456
1457 if (args->execfd != -1)
1458 AUXARGS_ENTRY(pos, AT_EXECFD, args->execfd);
1459 AUXARGS_ENTRY(pos, AT_PHDR, args->phdr);
1460 AUXARGS_ENTRY(pos, AT_PHENT, args->phent);
1461 AUXARGS_ENTRY(pos, AT_PHNUM, args->phnum);
1462 AUXARGS_ENTRY(pos, AT_PAGESZ, args->pagesz);
1463 AUXARGS_ENTRY(pos, AT_FLAGS, args->flags);
1464 AUXARGS_ENTRY(pos, AT_ENTRY, args->entry);
1465 AUXARGS_ENTRY(pos, AT_BASE, args->base);
1466 AUXARGS_ENTRY(pos, AT_EHDRFLAGS, args->hdr_eflags);
1467 if (imgp->execpathp != 0)
1468 AUXARGS_ENTRY_PTR(pos, AT_EXECPATH, imgp->execpathp);
1469 AUXARGS_ENTRY(pos, AT_OSRELDATE,
1470 imgp->proc->p_ucred->cr_prison->pr_osreldate);
1471 if (imgp->canary != 0) {
1472 AUXARGS_ENTRY_PTR(pos, AT_CANARY, imgp->canary);
1473 AUXARGS_ENTRY(pos, AT_CANARYLEN, imgp->canarylen);
1474 }
1475 AUXARGS_ENTRY(pos, AT_NCPUS, mp_ncpus);
1476 if (imgp->pagesizes != 0) {
1477 AUXARGS_ENTRY_PTR(pos, AT_PAGESIZES, imgp->pagesizes);
1478 AUXARGS_ENTRY(pos, AT_PAGESIZESLEN, imgp->pagesizeslen);
1479 }
1480 if ((imgp->sysent->sv_flags & SV_TIMEKEEP) != 0) {
1481 AUXARGS_ENTRY(pos, AT_TIMEKEEP,
1482 vmspace->vm_shp_base + imgp->sysent->sv_timekeep_offset);
1483 }
1484 AUXARGS_ENTRY(pos, AT_STACKPROT, imgp->sysent->sv_shared_page_obj
1485 != NULL && imgp->stack_prot != 0 ? imgp->stack_prot :
1486 imgp->sysent->sv_stackprot);
1487 if (imgp->sysent->sv_hwcap != NULL)
1488 AUXARGS_ENTRY(pos, AT_HWCAP, *imgp->sysent->sv_hwcap);
1489 if (imgp->sysent->sv_hwcap2 != NULL)
1490 AUXARGS_ENTRY(pos, AT_HWCAP2, *imgp->sysent->sv_hwcap2);
1491 if (imgp->sysent->sv_hwcap3 != NULL)
1492 AUXARGS_ENTRY(pos, AT_HWCAP3, *imgp->sysent->sv_hwcap3);
1493 if (imgp->sysent->sv_hwcap4 != NULL)
1494 AUXARGS_ENTRY(pos, AT_HWCAP4, *imgp->sysent->sv_hwcap4);
1495 bsdflags = 0;
1496 bsdflags |= __elfN(sigfastblock) ? ELF_BSDF_SIGFASTBLK : 0;
1497 oc = atomic_load_int(&vm_overcommit);
1498 bsdflags |= (oc & (SWAP_RESERVE_FORCE_ON | SWAP_RESERVE_RLIMIT_ON)) !=
1499 0 ? ELF_BSDF_VMNOOVERCOMMIT : 0;
1500 AUXARGS_ENTRY(pos, AT_BSDFLAGS, bsdflags);
1501 AUXARGS_ENTRY(pos, AT_ARGC, imgp->args->argc);
1502 AUXARGS_ENTRY_PTR(pos, AT_ARGV, imgp->argv);
1503 AUXARGS_ENTRY(pos, AT_ENVC, imgp->args->envc);
1504 AUXARGS_ENTRY_PTR(pos, AT_ENVV, imgp->envv);
1505 AUXARGS_ENTRY_PTR(pos, AT_PS_STRINGS, imgp->ps_strings);
1506 #ifdef RANDOM_FENESTRASX
1507 if ((imgp->sysent->sv_flags & SV_RNG_SEED_VER) != 0) {
1508 AUXARGS_ENTRY(pos, AT_FXRNG,
1509 vmspace->vm_shp_base + imgp->sysent->sv_fxrng_gen_offset);
1510 }
1511 #endif
1512 if ((imgp->sysent->sv_flags & SV_DSO_SIG) != 0 && __elfN(vdso) != 0) {
1513 AUXARGS_ENTRY(pos, AT_KPRELOAD,
1514 vmspace->vm_shp_base + imgp->sysent->sv_vdso_offset);
1515 }
1516 AUXARGS_ENTRY(pos, AT_USRSTACKBASE, round_page(vmspace->vm_stacktop));
1517 stacksz = imgp->proc->p_limit->pl_rlimit[RLIMIT_STACK].rlim_cur;
1518 AUXARGS_ENTRY(pos, AT_USRSTACKLIM, stacksz);
1519 AUXARGS_ENTRY(pos, AT_NULL, 0);
1520
1521 free(imgp->auxargs, M_TEMP);
1522 imgp->auxargs = NULL;
1523 KASSERT(pos - argarray <= AT_COUNT, ("Too many auxargs"));
1524
1525 error = copyout(argarray, (void *)base, sizeof(*argarray) * AT_COUNT);
1526 free(argarray, M_TEMP);
1527 return (error);
1528 }
1529
1530 int
__elfN(freebsd_fixup)1531 __elfN(freebsd_fixup)(uintptr_t *stack_base, struct image_params *imgp)
1532 {
1533 Elf_Addr *base;
1534
1535 base = (Elf_Addr *)*stack_base;
1536 base--;
1537 if (elf_suword(base, imgp->args->argc) == -1)
1538 return (EFAULT);
1539 *stack_base = (uintptr_t)base;
1540 return (0);
1541 }
1542
1543 /*
1544 * Code for generating ELF core dumps.
1545 */
1546
1547 typedef void (*segment_callback)(vm_map_entry_t, void *);
1548
1549 /* Closure for cb_put_phdr(). */
1550 struct phdr_closure {
1551 Elf_Phdr *phdr; /* Program header to fill in */
1552 Elf_Off offset; /* Offset of segment in core file */
1553 };
1554
1555 struct note_info {
1556 int type; /* Note type. */
1557 struct regset *regset; /* Register set. */
1558 outfunc_t outfunc; /* Output function. */
1559 void *outarg; /* Argument for the output function. */
1560 size_t outsize; /* Output size. */
1561 TAILQ_ENTRY(note_info) link; /* Link to the next note info. */
1562 };
1563
1564 TAILQ_HEAD(note_info_list, note_info);
1565
1566 static void cb_put_phdr(vm_map_entry_t, void *);
1567 static void cb_size_segment(vm_map_entry_t, void *);
1568 static void each_dumpable_segment(struct thread *, segment_callback, void *,
1569 int);
1570 static int __elfN(corehdr)(struct coredump_params *, int, void *, size_t,
1571 struct note_info_list *, size_t, int);
1572 static void __elfN(putnote)(struct thread *td, struct note_info *, struct sbuf *);
1573
1574 static void __elfN(note_prpsinfo)(void *, struct sbuf *, size_t *);
1575 static void __elfN(note_threadmd)(void *, struct sbuf *, size_t *);
1576 static void __elfN(note_procstat_auxv)(void *, struct sbuf *, size_t *);
1577 static void __elfN(note_procstat_proc)(void *, struct sbuf *, size_t *);
1578 static void __elfN(note_procstat_psstrings)(void *, struct sbuf *, size_t *);
1579 static void __elfN(note_procstat_kqueues)(void *, struct sbuf *, size_t *);
1580 static void note_procstat_files(void *, struct sbuf *, size_t *);
1581 static void note_procstat_groups(void *, struct sbuf *, size_t *);
1582 static void note_procstat_osrel(void *, struct sbuf *, size_t *);
1583 static void note_procstat_rlimit(void *, struct sbuf *, size_t *);
1584 static void note_procstat_umask(void *, struct sbuf *, size_t *);
1585 static void note_procstat_vmmap(void *, struct sbuf *, size_t *);
1586
1587 static int
core_compressed_write(void * base,size_t len,off_t offset,void * arg)1588 core_compressed_write(void *base, size_t len, off_t offset, void *arg)
1589 {
1590
1591 return (core_write((struct coredump_params *)arg, base, len, offset,
1592 UIO_SYSSPACE, NULL));
1593 }
1594
1595 int
__elfN(coredump)1596 __elfN(coredump)(struct thread *td, struct coredump_writer *cdw, off_t limit, int flags)
1597 {
1598 struct ucred *cred = td->td_ucred;
1599 int compm, error = 0;
1600 struct sseg_closure seginfo;
1601 struct note_info_list notelst;
1602 struct coredump_params params;
1603 struct note_info *ninfo;
1604 void *hdr, *tmpbuf;
1605 size_t hdrsize, notesz, coresize;
1606
1607 hdr = NULL;
1608 tmpbuf = NULL;
1609 TAILQ_INIT(¬elst);
1610
1611 /* Size the program segments. */
1612 __elfN(size_segments)(td, &seginfo, flags);
1613
1614 /*
1615 * Collect info about the core file header area.
1616 */
1617 hdrsize = sizeof(Elf_Ehdr) + sizeof(Elf_Phdr) * (1 + seginfo.count);
1618 if (seginfo.count + 1 >= PN_XNUM)
1619 hdrsize += sizeof(Elf_Shdr);
1620 td->td_proc->p_sysent->sv_elf_core_prepare_notes(td, ¬elst, ¬esz);
1621 coresize = round_page(hdrsize + notesz) + seginfo.size;
1622
1623 /* Set up core dump parameters. */
1624 params.offset = 0;
1625 params.active_cred = cred;
1626 params.td = td;
1627 params.cdw = cdw;
1628 params.comp = NULL;
1629
1630 #ifdef RACCT
1631 if (racct_enable) {
1632 PROC_LOCK(td->td_proc);
1633 error = racct_add(td->td_proc, RACCT_CORE, coresize);
1634 PROC_UNLOCK(td->td_proc);
1635 if (error != 0) {
1636 error = EFAULT;
1637 goto done;
1638 }
1639 }
1640 #endif
1641 if (coresize >= limit) {
1642 error = EFAULT;
1643 goto done;
1644 }
1645
1646 /* Create a compression stream if necessary. */
1647 compm = compress_user_cores;
1648 if ((flags & (SVC_PT_COREDUMP | SVC_NOCOMPRESS)) == SVC_PT_COREDUMP &&
1649 compm == 0)
1650 compm = COMPRESS_GZIP;
1651 if (compm != 0) {
1652 params.comp = compressor_init(core_compressed_write,
1653 compm, CORE_BUF_SIZE,
1654 compress_user_cores_level, ¶ms);
1655 if (params.comp == NULL) {
1656 error = EFAULT;
1657 goto done;
1658 }
1659 tmpbuf = malloc(CORE_BUF_SIZE, M_TEMP, M_WAITOK | M_ZERO);
1660 }
1661
1662 if (cdw->init_fn != NULL) {
1663 error = (*cdw->init_fn)(cdw, ¶ms);
1664 if (error != 0)
1665 goto done;
1666 }
1667
1668 /*
1669 * Allocate memory for building the header, fill it up,
1670 * and write it out following the notes.
1671 */
1672 hdr = malloc(hdrsize, M_TEMP, M_WAITOK);
1673 error = __elfN(corehdr)(¶ms, seginfo.count, hdr, hdrsize, ¬elst,
1674 notesz, flags);
1675
1676 /* Write the contents of all of the writable segments. */
1677 if (error == 0) {
1678 Elf_Phdr *php;
1679 off_t offset;
1680 int i;
1681
1682 php = (Elf_Phdr *)((char *)hdr + sizeof(Elf_Ehdr)) + 1;
1683 offset = round_page(hdrsize + notesz);
1684 for (i = 0; i < seginfo.count; i++) {
1685 error = core_output((char *)(uintptr_t)php->p_vaddr,
1686 php->p_filesz, offset, ¶ms, tmpbuf);
1687 if (error != 0)
1688 break;
1689 offset += php->p_filesz;
1690 php++;
1691 }
1692 if (error == 0 && params.comp != NULL)
1693 error = compressor_flush(params.comp);
1694 }
1695 if (error) {
1696 log(LOG_WARNING,
1697 "Failed to write core file for process %s (error %d)\n",
1698 curproc->p_comm, error);
1699 }
1700
1701 done:
1702 free(tmpbuf, M_TEMP);
1703 if (params.comp != NULL)
1704 compressor_fini(params.comp);
1705 while ((ninfo = TAILQ_FIRST(¬elst)) != NULL) {
1706 TAILQ_REMOVE(¬elst, ninfo, link);
1707 free(ninfo, M_TEMP);
1708 }
1709 if (hdr != NULL)
1710 free(hdr, M_TEMP);
1711
1712 return (error);
1713 }
1714
1715 /*
1716 * A callback for each_dumpable_segment() to write out the segment's
1717 * program header entry.
1718 */
1719 static void
cb_put_phdr(vm_map_entry_t entry,void * closure)1720 cb_put_phdr(vm_map_entry_t entry, void *closure)
1721 {
1722 struct phdr_closure *phc = (struct phdr_closure *)closure;
1723 Elf_Phdr *phdr = phc->phdr;
1724
1725 phc->offset = round_page(phc->offset);
1726
1727 phdr->p_type = PT_LOAD;
1728 phdr->p_offset = phc->offset;
1729 phdr->p_vaddr = entry->start;
1730 phdr->p_paddr = 0;
1731 phdr->p_filesz = phdr->p_memsz = entry->end - entry->start;
1732 phdr->p_align = PAGE_SIZE;
1733 phdr->p_flags = __elfN(untrans_prot)(entry->protection);
1734
1735 phc->offset += phdr->p_filesz;
1736 phc->phdr++;
1737 }
1738
1739 /*
1740 * A callback for each_dumpable_segment() to gather information about
1741 * the number of segments and their total size.
1742 */
1743 static void
cb_size_segment(vm_map_entry_t entry,void * closure)1744 cb_size_segment(vm_map_entry_t entry, void *closure)
1745 {
1746 struct sseg_closure *ssc = (struct sseg_closure *)closure;
1747
1748 ssc->count++;
1749 ssc->size += entry->end - entry->start;
1750 }
1751
1752 void
__elfN(size_segments)1753 __elfN(size_segments)(struct thread *td, struct sseg_closure *seginfo,
1754 int flags)
1755 {
1756 seginfo->count = 0;
1757 seginfo->size = 0;
1758
1759 each_dumpable_segment(td, cb_size_segment, seginfo, flags);
1760 }
1761
1762 /*
1763 * For each writable segment in the process's memory map, call the given
1764 * function with a pointer to the map entry and some arbitrary
1765 * caller-supplied data.
1766 */
1767 static void
each_dumpable_segment(struct thread * td,segment_callback func,void * closure,int flags)1768 each_dumpable_segment(struct thread *td, segment_callback func, void *closure,
1769 int flags)
1770 {
1771 struct proc *p = td->td_proc;
1772 vm_map_t map = &p->p_vmspace->vm_map;
1773 vm_map_entry_t entry;
1774 vm_object_t backing_object, object;
1775 bool ignore_entry;
1776
1777 vm_map_lock_read(map);
1778 VM_MAP_ENTRY_FOREACH(entry, map) {
1779 /*
1780 * Don't dump inaccessible mappings, deal with legacy
1781 * coredump mode.
1782 *
1783 * Note that read-only segments related to the elf binary
1784 * are marked MAP_ENTRY_NOCOREDUMP now so we no longer
1785 * need to arbitrarily ignore such segments.
1786 */
1787 if ((flags & SVC_ALL) == 0) {
1788 if (elf_legacy_coredump) {
1789 if ((entry->protection & VM_PROT_RW) !=
1790 VM_PROT_RW)
1791 continue;
1792 } else {
1793 if ((entry->protection & VM_PROT_ALL) == 0)
1794 continue;
1795 }
1796 }
1797
1798 /*
1799 * Dont include memory segment in the coredump if
1800 * MAP_NOCORE is set in mmap(2) or MADV_NOCORE in
1801 * madvise(2). Do not dump submaps (i.e. parts of the
1802 * kernel map).
1803 */
1804 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
1805 continue;
1806 if ((entry->eflags & MAP_ENTRY_NOCOREDUMP) != 0 &&
1807 (flags & SVC_ALL) == 0)
1808 continue;
1809 if ((object = entry->object.vm_object) == NULL)
1810 continue;
1811
1812 /* Ignore memory-mapped devices and such things. */
1813 VM_OBJECT_RLOCK(object);
1814 while ((backing_object = object->backing_object) != NULL) {
1815 VM_OBJECT_RLOCK(backing_object);
1816 VM_OBJECT_RUNLOCK(object);
1817 object = backing_object;
1818 }
1819 ignore_entry = (object->flags & OBJ_FICTITIOUS) != 0;
1820 VM_OBJECT_RUNLOCK(object);
1821 if (ignore_entry)
1822 continue;
1823
1824 (*func)(entry, closure);
1825 }
1826 vm_map_unlock_read(map);
1827 }
1828
1829 /*
1830 * Write the core file header to the file, including padding up to
1831 * the page boundary.
1832 */
1833 static int
__elfN(corehdr)1834 __elfN(corehdr)(struct coredump_params *p, int numsegs, void *hdr,
1835 size_t hdrsize, struct note_info_list *notelst, size_t notesz,
1836 int flags)
1837 {
1838 struct note_info *ninfo;
1839 struct sbuf *sb;
1840 int error;
1841
1842 /* Fill in the header. */
1843 bzero(hdr, hdrsize);
1844 __elfN(puthdr)(p->td, hdr, hdrsize, numsegs, notesz, flags);
1845
1846 sb = sbuf_new(NULL, NULL, CORE_BUF_SIZE, SBUF_FIXEDLEN);
1847 sbuf_set_drain(sb, sbuf_drain_core_output, p);
1848 sbuf_start_section(sb, NULL);
1849 sbuf_bcat(sb, hdr, hdrsize);
1850 TAILQ_FOREACH(ninfo, notelst, link)
1851 __elfN(putnote)(p->td, ninfo, sb);
1852 /* Align up to a page boundary for the program segments. */
1853 sbuf_end_section(sb, -1, PAGE_SIZE, 0);
1854 error = sbuf_finish(sb);
1855 sbuf_delete(sb);
1856
1857 return (error);
1858 }
1859
1860 void
__elfN(prepare_notes)1861 __elfN(prepare_notes)(struct thread *td, struct note_info_list *list,
1862 size_t *sizep)
1863 {
1864 struct proc *p;
1865 struct thread *thr;
1866 size_t size;
1867
1868 p = td->td_proc;
1869 size = 0;
1870
1871 size += __elfN(register_note)(td, list, NT_PRPSINFO,
1872 __elfN(note_prpsinfo), p);
1873
1874 /*
1875 * To have the debugger select the right thread (LWP) as the initial
1876 * thread, we dump the state of the thread passed to us in td first.
1877 * This is the thread that causes the core dump and thus likely to
1878 * be the right thread one wants to have selected in the debugger.
1879 */
1880 thr = td;
1881 while (thr != NULL) {
1882 size += __elfN(prepare_register_notes)(td, list, thr);
1883 size += __elfN(register_note)(td, list, -1,
1884 __elfN(note_threadmd), thr);
1885
1886 thr = thr == td ? TAILQ_FIRST(&p->p_threads) :
1887 TAILQ_NEXT(thr, td_plist);
1888 if (thr == td)
1889 thr = TAILQ_NEXT(thr, td_plist);
1890 }
1891
1892 size += __elfN(register_note)(td, list, NT_PROCSTAT_PROC,
1893 __elfN(note_procstat_proc), p);
1894 size += __elfN(register_note)(td, list, NT_PROCSTAT_FILES,
1895 note_procstat_files, p);
1896 size += __elfN(register_note)(td, list, NT_PROCSTAT_VMMAP,
1897 note_procstat_vmmap, p);
1898 size += __elfN(register_note)(td, list, NT_PROCSTAT_GROUPS,
1899 note_procstat_groups, p);
1900 size += __elfN(register_note)(td, list, NT_PROCSTAT_UMASK,
1901 note_procstat_umask, p);
1902 size += __elfN(register_note)(td, list, NT_PROCSTAT_RLIMIT,
1903 note_procstat_rlimit, p);
1904 size += __elfN(register_note)(td, list, NT_PROCSTAT_OSREL,
1905 note_procstat_osrel, p);
1906 size += __elfN(register_note)(td, list, NT_PROCSTAT_PSSTRINGS,
1907 __elfN(note_procstat_psstrings), p);
1908 size += __elfN(register_note)(td, list, NT_PROCSTAT_AUXV,
1909 __elfN(note_procstat_auxv), p);
1910 size += __elfN(register_note)(td, list, NT_PROCSTAT_KQUEUES,
1911 __elfN(note_procstat_kqueues), p);
1912
1913 *sizep = size;
1914 }
1915
1916 void
__elfN(puthdr)1917 __elfN(puthdr)(struct thread *td, void *hdr, size_t hdrsize, int numsegs,
1918 size_t notesz, int flags)
1919 {
1920 Elf_Ehdr *ehdr;
1921 Elf_Phdr *phdr;
1922 Elf_Shdr *shdr;
1923 struct phdr_closure phc;
1924 Elf_Brandinfo *bi;
1925
1926 ehdr = (Elf_Ehdr *)hdr;
1927 bi = td->td_proc->p_elf_brandinfo;
1928
1929 ehdr->e_ident[EI_MAG0] = ELFMAG0;
1930 ehdr->e_ident[EI_MAG1] = ELFMAG1;
1931 ehdr->e_ident[EI_MAG2] = ELFMAG2;
1932 ehdr->e_ident[EI_MAG3] = ELFMAG3;
1933 ehdr->e_ident[EI_CLASS] = ELF_CLASS;
1934 ehdr->e_ident[EI_DATA] = ELF_DATA;
1935 ehdr->e_ident[EI_VERSION] = EV_CURRENT;
1936 ehdr->e_ident[EI_OSABI] = td->td_proc->p_sysent->sv_elf_core_osabi;
1937 ehdr->e_ident[EI_ABIVERSION] = 0;
1938 ehdr->e_ident[EI_PAD] = 0;
1939 ehdr->e_type = ET_CORE;
1940 ehdr->e_machine = bi->machine;
1941 ehdr->e_version = EV_CURRENT;
1942 ehdr->e_entry = 0;
1943 ehdr->e_phoff = sizeof(Elf_Ehdr);
1944 ehdr->e_flags = td->td_proc->p_elf_flags;
1945 ehdr->e_ehsize = sizeof(Elf_Ehdr);
1946 ehdr->e_phentsize = sizeof(Elf_Phdr);
1947 ehdr->e_shentsize = sizeof(Elf_Shdr);
1948 ehdr->e_shstrndx = SHN_UNDEF;
1949 if (numsegs + 1 < PN_XNUM) {
1950 ehdr->e_phnum = numsegs + 1;
1951 ehdr->e_shnum = 0;
1952 } else {
1953 ehdr->e_phnum = PN_XNUM;
1954 ehdr->e_shnum = 1;
1955
1956 ehdr->e_shoff = ehdr->e_phoff +
1957 (numsegs + 1) * ehdr->e_phentsize;
1958 KASSERT(ehdr->e_shoff == hdrsize - sizeof(Elf_Shdr),
1959 ("e_shoff: %zu, hdrsize - shdr: %zu",
1960 (size_t)ehdr->e_shoff, hdrsize - sizeof(Elf_Shdr)));
1961
1962 shdr = (Elf_Shdr *)((char *)hdr + ehdr->e_shoff);
1963 memset(shdr, 0, sizeof(*shdr));
1964 /*
1965 * A special first section is used to hold large segment and
1966 * section counts. This was proposed by Sun Microsystems in
1967 * Solaris and has been adopted by Linux; the standard ELF
1968 * tools are already familiar with the technique.
1969 *
1970 * See table 7-7 of the Solaris "Linker and Libraries Guide"
1971 * (or 12-7 depending on the version of the document) for more
1972 * details.
1973 */
1974 shdr->sh_type = SHT_NULL;
1975 shdr->sh_size = ehdr->e_shnum;
1976 shdr->sh_link = ehdr->e_shstrndx;
1977 shdr->sh_info = numsegs + 1;
1978 }
1979
1980 /*
1981 * Fill in the program header entries.
1982 */
1983 phdr = (Elf_Phdr *)((char *)hdr + ehdr->e_phoff);
1984
1985 /* The note segement. */
1986 phdr->p_type = PT_NOTE;
1987 phdr->p_offset = hdrsize;
1988 phdr->p_vaddr = 0;
1989 phdr->p_paddr = 0;
1990 phdr->p_filesz = notesz;
1991 phdr->p_memsz = 0;
1992 phdr->p_flags = PF_R;
1993 phdr->p_align = ELF_NOTE_ROUNDSIZE;
1994 phdr++;
1995
1996 /* All the writable segments from the program. */
1997 phc.phdr = phdr;
1998 phc.offset = round_page(hdrsize + notesz);
1999 each_dumpable_segment(td, cb_put_phdr, &phc, flags);
2000 }
2001
2002 static size_t
__elfN(register_regset_note)2003 __elfN(register_regset_note)(struct thread *td, struct note_info_list *list,
2004 struct regset *regset, struct thread *target_td)
2005 {
2006 const struct sysentvec *sv;
2007 struct note_info *ninfo;
2008 size_t size, notesize;
2009
2010 size = 0;
2011 if (!regset->get(regset, target_td, NULL, &size) || size == 0)
2012 return (0);
2013
2014 ninfo = malloc(sizeof(*ninfo), M_TEMP, M_ZERO | M_WAITOK);
2015 ninfo->type = regset->note;
2016 ninfo->regset = regset;
2017 ninfo->outarg = target_td;
2018 ninfo->outsize = size;
2019 TAILQ_INSERT_TAIL(list, ninfo, link);
2020
2021 sv = td->td_proc->p_sysent;
2022 notesize = sizeof(Elf_Note) + /* note header */
2023 roundup2(strlen(sv->sv_elf_core_abi_vendor) + 1, ELF_NOTE_ROUNDSIZE) +
2024 /* note name */
2025 roundup2(size, ELF_NOTE_ROUNDSIZE); /* note description */
2026
2027 return (notesize);
2028 }
2029
2030 size_t
__elfN(register_note)2031 __elfN(register_note)(struct thread *td, struct note_info_list *list,
2032 int type, outfunc_t out, void *arg)
2033 {
2034 const struct sysentvec *sv;
2035 struct note_info *ninfo;
2036 size_t size, notesize;
2037
2038 sv = td->td_proc->p_sysent;
2039 size = 0;
2040 out(arg, NULL, &size);
2041 ninfo = malloc(sizeof(*ninfo), M_TEMP, M_ZERO | M_WAITOK);
2042 ninfo->type = type;
2043 ninfo->outfunc = out;
2044 ninfo->outarg = arg;
2045 ninfo->outsize = size;
2046 TAILQ_INSERT_TAIL(list, ninfo, link);
2047
2048 if (type == -1)
2049 return (size);
2050
2051 notesize = sizeof(Elf_Note) + /* note header */
2052 roundup2(strlen(sv->sv_elf_core_abi_vendor) + 1, ELF_NOTE_ROUNDSIZE) +
2053 /* note name */
2054 roundup2(size, ELF_NOTE_ROUNDSIZE); /* note description */
2055
2056 return (notesize);
2057 }
2058
2059 static size_t
append_note_data(const void * src,void * dst,size_t len)2060 append_note_data(const void *src, void *dst, size_t len)
2061 {
2062 size_t padded_len;
2063
2064 padded_len = roundup2(len, ELF_NOTE_ROUNDSIZE);
2065 if (dst != NULL) {
2066 bcopy(src, dst, len);
2067 bzero((char *)dst + len, padded_len - len);
2068 }
2069 return (padded_len);
2070 }
2071
2072 size_t
__elfN(populate_note)2073 __elfN(populate_note)(int type, void *src, void *dst, size_t size, void **descp)
2074 {
2075 Elf_Note *note;
2076 char *buf;
2077 size_t notesize;
2078
2079 buf = dst;
2080 if (buf != NULL) {
2081 note = (Elf_Note *)buf;
2082 note->n_namesz = sizeof(FREEBSD_ABI_VENDOR);
2083 note->n_descsz = size;
2084 note->n_type = type;
2085 buf += sizeof(*note);
2086 buf += append_note_data(FREEBSD_ABI_VENDOR, buf,
2087 sizeof(FREEBSD_ABI_VENDOR));
2088 append_note_data(src, buf, size);
2089 if (descp != NULL)
2090 *descp = buf;
2091 }
2092
2093 notesize = sizeof(Elf_Note) + /* note header */
2094 roundup2(sizeof(FREEBSD_ABI_VENDOR), ELF_NOTE_ROUNDSIZE) +
2095 /* note name */
2096 roundup2(size, ELF_NOTE_ROUNDSIZE); /* note description */
2097
2098 return (notesize);
2099 }
2100
2101 static void
__elfN(putnote)2102 __elfN(putnote)(struct thread *td, struct note_info *ninfo, struct sbuf *sb)
2103 {
2104 Elf_Note note;
2105 const struct sysentvec *sv;
2106 ssize_t old_len, sect_len;
2107 size_t new_len, descsz, i;
2108
2109 if (ninfo->type == -1) {
2110 ninfo->outfunc(ninfo->outarg, sb, &ninfo->outsize);
2111 return;
2112 }
2113
2114 sv = td->td_proc->p_sysent;
2115
2116 note.n_namesz = strlen(sv->sv_elf_core_abi_vendor) + 1;
2117 note.n_descsz = ninfo->outsize;
2118 note.n_type = ninfo->type;
2119
2120 sbuf_bcat(sb, ¬e, sizeof(note));
2121 sbuf_start_section(sb, &old_len);
2122 sbuf_bcat(sb, sv->sv_elf_core_abi_vendor,
2123 strlen(sv->sv_elf_core_abi_vendor) + 1);
2124 sbuf_end_section(sb, old_len, ELF_NOTE_ROUNDSIZE, 0);
2125 if (note.n_descsz == 0)
2126 return;
2127 sbuf_start_section(sb, &old_len);
2128 if (ninfo->regset != NULL) {
2129 struct regset *regset = ninfo->regset;
2130 void *buf;
2131
2132 buf = malloc(ninfo->outsize, M_TEMP, M_ZERO | M_WAITOK);
2133 (void)regset->get(regset, ninfo->outarg, buf, &ninfo->outsize);
2134 sbuf_bcat(sb, buf, ninfo->outsize);
2135 free(buf, M_TEMP);
2136 } else
2137 ninfo->outfunc(ninfo->outarg, sb, &ninfo->outsize);
2138 sect_len = sbuf_end_section(sb, old_len, ELF_NOTE_ROUNDSIZE, 0);
2139 if (sect_len < 0)
2140 return;
2141
2142 new_len = (size_t)sect_len;
2143 descsz = roundup(note.n_descsz, ELF_NOTE_ROUNDSIZE);
2144 if (new_len < descsz) {
2145 /*
2146 * It is expected that individual note emitters will correctly
2147 * predict their expected output size and fill up to that size
2148 * themselves, padding in a format-specific way if needed.
2149 * However, in case they don't, just do it here with zeros.
2150 */
2151 for (i = 0; i < descsz - new_len; i++)
2152 sbuf_putc(sb, 0);
2153 } else if (new_len > descsz) {
2154 /*
2155 * We can't always truncate sb -- we may have drained some
2156 * of it already.
2157 */
2158 KASSERT(new_len == descsz, ("%s: Note type %u changed as we "
2159 "read it (%zu > %zu). Since it is longer than "
2160 "expected, this coredump's notes are corrupt. THIS "
2161 "IS A BUG in the note_procstat routine for type %u.\n",
2162 __func__, (unsigned)note.n_type, new_len, descsz,
2163 (unsigned)note.n_type));
2164 }
2165 }
2166
2167 /*
2168 * Miscellaneous note out functions.
2169 */
2170
2171 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2172 #include <compat/freebsd32/freebsd32.h>
2173 #include <compat/freebsd32/freebsd32_signal.h>
2174
2175 typedef struct prstatus32 elf_prstatus_t;
2176 typedef struct prpsinfo32 elf_prpsinfo_t;
2177 typedef struct fpreg32 elf_prfpregset_t;
2178 typedef struct fpreg32 elf_fpregset_t;
2179 typedef struct reg32 elf_gregset_t;
2180 typedef struct thrmisc32 elf_thrmisc_t;
2181 typedef struct ptrace_lwpinfo32 elf_lwpinfo_t;
2182 #define ELF_KERN_PROC_MASK KERN_PROC_MASK32
2183 typedef struct kinfo_proc32 elf_kinfo_proc_t;
2184 typedef uint32_t elf_ps_strings_t;
2185 #else
2186 typedef prstatus_t elf_prstatus_t;
2187 typedef prpsinfo_t elf_prpsinfo_t;
2188 typedef prfpregset_t elf_prfpregset_t;
2189 typedef prfpregset_t elf_fpregset_t;
2190 typedef gregset_t elf_gregset_t;
2191 typedef thrmisc_t elf_thrmisc_t;
2192 typedef struct ptrace_lwpinfo elf_lwpinfo_t;
2193 #define ELF_KERN_PROC_MASK 0
2194 typedef struct kinfo_proc elf_kinfo_proc_t;
2195 typedef vm_offset_t elf_ps_strings_t;
2196 #endif
2197
2198 static void
__elfN(note_prpsinfo)2199 __elfN(note_prpsinfo)(void *arg, struct sbuf *sb, size_t *sizep)
2200 {
2201 struct sbuf sbarg;
2202 size_t len;
2203 char *cp, *end;
2204 struct proc *p;
2205 elf_prpsinfo_t *psinfo;
2206 int error;
2207
2208 p = arg;
2209 if (sb != NULL) {
2210 KASSERT(*sizep == sizeof(*psinfo), ("invalid size"));
2211 psinfo = malloc(sizeof(*psinfo), M_TEMP, M_ZERO | M_WAITOK);
2212 psinfo->pr_version = PRPSINFO_VERSION;
2213 psinfo->pr_psinfosz = sizeof(elf_prpsinfo_t);
2214 strlcpy(psinfo->pr_fname, p->p_comm, sizeof(psinfo->pr_fname));
2215 PROC_LOCK(p);
2216 if (p->p_args != NULL) {
2217 len = sizeof(psinfo->pr_psargs) - 1;
2218 if (len > p->p_args->ar_length)
2219 len = p->p_args->ar_length;
2220 memcpy(psinfo->pr_psargs, p->p_args->ar_args, len);
2221 PROC_UNLOCK(p);
2222 error = 0;
2223 } else {
2224 _PHOLD(p);
2225 PROC_UNLOCK(p);
2226 sbuf_new(&sbarg, psinfo->pr_psargs,
2227 sizeof(psinfo->pr_psargs), SBUF_FIXEDLEN);
2228 error = proc_getargv(curthread, p, &sbarg);
2229 PRELE(p);
2230 if (sbuf_finish(&sbarg) == 0) {
2231 len = sbuf_len(&sbarg);
2232 if (len > 0)
2233 len--;
2234 } else {
2235 len = sizeof(psinfo->pr_psargs) - 1;
2236 }
2237 sbuf_delete(&sbarg);
2238 }
2239 if (error != 0 || len == 0 || (ssize_t)len == -1)
2240 strlcpy(psinfo->pr_psargs, p->p_comm,
2241 sizeof(psinfo->pr_psargs));
2242 else {
2243 KASSERT(len < sizeof(psinfo->pr_psargs),
2244 ("len is too long: %zu vs %zu", len,
2245 sizeof(psinfo->pr_psargs)));
2246 cp = psinfo->pr_psargs;
2247 end = cp + len - 1;
2248 for (;;) {
2249 cp = memchr(cp, '\0', end - cp);
2250 if (cp == NULL)
2251 break;
2252 *cp = ' ';
2253 }
2254 }
2255 psinfo->pr_pid = p->p_pid;
2256 sbuf_bcat(sb, psinfo, sizeof(*psinfo));
2257 free(psinfo, M_TEMP);
2258 }
2259 *sizep = sizeof(*psinfo);
2260 }
2261
2262 static bool
__elfN(get_prstatus)2263 __elfN(get_prstatus)(struct regset *rs, struct thread *td, void *buf,
2264 size_t *sizep)
2265 {
2266 elf_prstatus_t *status;
2267
2268 if (buf != NULL) {
2269 KASSERT(*sizep == sizeof(*status), ("%s: invalid size",
2270 __func__));
2271 status = buf;
2272 memset(status, 0, *sizep);
2273 status->pr_version = PRSTATUS_VERSION;
2274 status->pr_statussz = sizeof(elf_prstatus_t);
2275 status->pr_gregsetsz = sizeof(elf_gregset_t);
2276 status->pr_fpregsetsz = sizeof(elf_fpregset_t);
2277 status->pr_osreldate = osreldate;
2278 status->pr_cursig = td->td_proc->p_sig;
2279 status->pr_pid = td->td_tid;
2280 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2281 fill_regs32(td, &status->pr_reg);
2282 #else
2283 fill_regs(td, &status->pr_reg);
2284 #endif
2285 }
2286 *sizep = sizeof(*status);
2287 return (true);
2288 }
2289
2290 static bool
__elfN(set_prstatus)2291 __elfN(set_prstatus)(struct regset *rs, struct thread *td, void *buf,
2292 size_t size)
2293 {
2294 elf_prstatus_t *status;
2295
2296 KASSERT(size == sizeof(*status), ("%s: invalid size", __func__));
2297 status = buf;
2298 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2299 set_regs32(td, &status->pr_reg);
2300 #else
2301 set_regs(td, &status->pr_reg);
2302 #endif
2303 return (true);
2304 }
2305
2306 static struct regset __elfN(regset_prstatus) = {
2307 .note = NT_PRSTATUS,
2308 .size = sizeof(elf_prstatus_t),
2309 .get = __elfN(get_prstatus),
2310 .set = __elfN(set_prstatus),
2311 };
2312 ELF_REGSET(__elfN(regset_prstatus));
2313
2314 static bool
__elfN(get_fpregset)2315 __elfN(get_fpregset)(struct regset *rs, struct thread *td, void *buf,
2316 size_t *sizep)
2317 {
2318 elf_prfpregset_t *fpregset;
2319
2320 if (buf != NULL) {
2321 KASSERT(*sizep == sizeof(*fpregset), ("%s: invalid size",
2322 __func__));
2323 fpregset = buf;
2324 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2325 fill_fpregs32(td, fpregset);
2326 #else
2327 fill_fpregs(td, fpregset);
2328 #endif
2329 }
2330 *sizep = sizeof(*fpregset);
2331 return (true);
2332 }
2333
2334 static bool
__elfN(set_fpregset)2335 __elfN(set_fpregset)(struct regset *rs, struct thread *td, void *buf,
2336 size_t size)
2337 {
2338 elf_prfpregset_t *fpregset;
2339
2340 fpregset = buf;
2341 KASSERT(size == sizeof(*fpregset), ("%s: invalid size", __func__));
2342 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2343 set_fpregs32(td, fpregset);
2344 #else
2345 set_fpregs(td, fpregset);
2346 #endif
2347 return (true);
2348 }
2349
2350 static struct regset __elfN(regset_fpregset) = {
2351 .note = NT_FPREGSET,
2352 .size = sizeof(elf_prfpregset_t),
2353 .get = __elfN(get_fpregset),
2354 .set = __elfN(set_fpregset),
2355 };
2356 ELF_REGSET(__elfN(regset_fpregset));
2357
2358 static bool
__elfN(get_thrmisc)2359 __elfN(get_thrmisc)(struct regset *rs, struct thread *td, void *buf,
2360 size_t *sizep)
2361 {
2362 elf_thrmisc_t *thrmisc;
2363
2364 if (buf != NULL) {
2365 KASSERT(*sizep == sizeof(*thrmisc),
2366 ("%s: invalid size", __func__));
2367 thrmisc = buf;
2368 bzero(thrmisc, sizeof(*thrmisc));
2369 strcpy(thrmisc->pr_tname, td->td_name);
2370 }
2371 *sizep = sizeof(*thrmisc);
2372 return (true);
2373 }
2374
2375 static struct regset __elfN(regset_thrmisc) = {
2376 .note = NT_THRMISC,
2377 .size = sizeof(elf_thrmisc_t),
2378 .get = __elfN(get_thrmisc),
2379 };
2380 ELF_REGSET(__elfN(regset_thrmisc));
2381
2382 static bool
__elfN(get_lwpinfo)2383 __elfN(get_lwpinfo)(struct regset *rs, struct thread *td, void *buf,
2384 size_t *sizep)
2385 {
2386 elf_lwpinfo_t pl;
2387 size_t size;
2388 int structsize;
2389
2390 size = sizeof(structsize) + sizeof(pl);
2391 if (buf != NULL) {
2392 KASSERT(*sizep == size, ("%s: invalid size", __func__));
2393 structsize = sizeof(pl);
2394 memcpy(buf, &structsize, sizeof(structsize));
2395 bzero(&pl, sizeof(pl));
2396 pl.pl_lwpid = td->td_tid;
2397 pl.pl_event = PL_EVENT_NONE;
2398 pl.pl_sigmask = td->td_sigmask;
2399 pl.pl_siglist = td->td_siglist;
2400 if (td->td_si.si_signo != 0) {
2401 pl.pl_event = PL_EVENT_SIGNAL;
2402 pl.pl_flags |= PL_FLAG_SI;
2403 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2404 siginfo_to_siginfo32(&td->td_si, &pl.pl_siginfo);
2405 #else
2406 pl.pl_siginfo = td->td_si;
2407 #endif
2408 }
2409 strcpy(pl.pl_tdname, td->td_name);
2410 /* XXX TODO: supply more information in struct ptrace_lwpinfo*/
2411 memcpy((int *)buf + 1, &pl, sizeof(pl));
2412 }
2413 *sizep = size;
2414 return (true);
2415 }
2416
2417 static struct regset __elfN(regset_lwpinfo) = {
2418 .note = NT_PTLWPINFO,
2419 .size = sizeof(int) + sizeof(elf_lwpinfo_t),
2420 .get = __elfN(get_lwpinfo),
2421 };
2422 ELF_REGSET(__elfN(regset_lwpinfo));
2423
2424 static size_t
__elfN(prepare_register_notes)2425 __elfN(prepare_register_notes)(struct thread *td, struct note_info_list *list,
2426 struct thread *target_td)
2427 {
2428 struct sysentvec *sv = td->td_proc->p_sysent;
2429 struct regset **regsetp, **regset_end, *regset;
2430 size_t size;
2431
2432 size = 0;
2433
2434 if (target_td == td)
2435 cpu_update_pcb(target_td);
2436
2437 /* NT_PRSTATUS must be the first register set note. */
2438 size += __elfN(register_regset_note)(td, list, &__elfN(regset_prstatus),
2439 target_td);
2440
2441 regsetp = sv->sv_regset_begin;
2442 if (regsetp == NULL) {
2443 /* XXX: This shouldn't be true for any FreeBSD ABIs. */
2444 size += __elfN(register_regset_note)(td, list,
2445 &__elfN(regset_fpregset), target_td);
2446 return (size);
2447 }
2448 regset_end = sv->sv_regset_end;
2449 MPASS(regset_end != NULL);
2450 for (; regsetp < regset_end; regsetp++) {
2451 regset = *regsetp;
2452 if (regset->note == NT_PRSTATUS)
2453 continue;
2454 size += __elfN(register_regset_note)(td, list, regset,
2455 target_td);
2456 }
2457 return (size);
2458 }
2459
2460 /*
2461 * Allow for MD specific notes, as well as any MD
2462 * specific preparations for writing MI notes.
2463 */
2464 static void
__elfN(note_threadmd)2465 __elfN(note_threadmd)(void *arg, struct sbuf *sb, size_t *sizep)
2466 {
2467 struct thread *td;
2468 void *buf;
2469 size_t size;
2470
2471 td = (struct thread *)arg;
2472 size = *sizep;
2473 if (size != 0 && sb != NULL)
2474 buf = malloc(size, M_TEMP, M_ZERO | M_WAITOK);
2475 else
2476 buf = NULL;
2477 size = 0;
2478 __elfN(dump_thread)(td, buf, &size);
2479 KASSERT(sb == NULL || *sizep == size, ("invalid size"));
2480 if (size != 0 && sb != NULL)
2481 sbuf_bcat(sb, buf, size);
2482 free(buf, M_TEMP);
2483 *sizep = size;
2484 }
2485
2486 #ifdef KINFO_PROC_SIZE
2487 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE);
2488 #endif
2489
2490 static void
__elfN(note_procstat_proc)2491 __elfN(note_procstat_proc)(void *arg, struct sbuf *sb, size_t *sizep)
2492 {
2493 struct proc *p;
2494 size_t size;
2495 int structsize;
2496
2497 p = arg;
2498 size = sizeof(structsize) + p->p_numthreads *
2499 sizeof(elf_kinfo_proc_t);
2500
2501 if (sb != NULL) {
2502 KASSERT(*sizep == size, ("invalid size"));
2503 structsize = sizeof(elf_kinfo_proc_t);
2504 sbuf_bcat(sb, &structsize, sizeof(structsize));
2505 sx_slock(&proctree_lock);
2506 PROC_LOCK(p);
2507 kern_proc_out(p, sb, ELF_KERN_PROC_MASK);
2508 sx_sunlock(&proctree_lock);
2509 }
2510 *sizep = size;
2511 }
2512
2513 #ifdef KINFO_FILE_SIZE
2514 CTASSERT(sizeof(struct kinfo_file) == KINFO_FILE_SIZE);
2515 #endif
2516
2517 static void
note_procstat_files(void * arg,struct sbuf * sb,size_t * sizep)2518 note_procstat_files(void *arg, struct sbuf *sb, size_t *sizep)
2519 {
2520 struct proc *p;
2521 size_t size, sect_sz, i;
2522 ssize_t start_len, sect_len;
2523 int structsize, filedesc_flags;
2524
2525 if (coredump_pack_fileinfo)
2526 filedesc_flags = KERN_FILEDESC_PACK_KINFO;
2527 else
2528 filedesc_flags = 0;
2529
2530 p = arg;
2531 structsize = sizeof(struct kinfo_file);
2532 if (sb == NULL) {
2533 size = 0;
2534 sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN);
2535 sbuf_set_drain(sb, sbuf_count_drain, &size);
2536 sbuf_bcat(sb, &structsize, sizeof(structsize));
2537 PROC_LOCK(p);
2538 kern_proc_filedesc_out(p, sb, -1, filedesc_flags);
2539 sbuf_finish(sb);
2540 sbuf_delete(sb);
2541 *sizep = size;
2542 } else {
2543 sbuf_start_section(sb, &start_len);
2544
2545 sbuf_bcat(sb, &structsize, sizeof(structsize));
2546 PROC_LOCK(p);
2547 kern_proc_filedesc_out(p, sb, *sizep - sizeof(structsize),
2548 filedesc_flags);
2549
2550 sect_len = sbuf_end_section(sb, start_len, 0, 0);
2551 if (sect_len < 0)
2552 return;
2553 sect_sz = sect_len;
2554
2555 KASSERT(sect_sz <= *sizep,
2556 ("kern_proc_filedesc_out did not respect maxlen; "
2557 "requested %zu, got %zu", *sizep - sizeof(structsize),
2558 sect_sz - sizeof(structsize)));
2559
2560 for (i = 0; i < *sizep - sect_sz && sb->s_error == 0; i++)
2561 sbuf_putc(sb, 0);
2562 }
2563 }
2564
2565 #ifdef KINFO_VMENTRY_SIZE
2566 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE);
2567 #endif
2568
2569 static void
note_procstat_vmmap(void * arg,struct sbuf * sb,size_t * sizep)2570 note_procstat_vmmap(void *arg, struct sbuf *sb, size_t *sizep)
2571 {
2572 struct proc *p;
2573 size_t size;
2574 int structsize, vmmap_flags;
2575
2576 if (coredump_pack_vmmapinfo)
2577 vmmap_flags = KERN_VMMAP_PACK_KINFO;
2578 else
2579 vmmap_flags = 0;
2580
2581 p = arg;
2582 structsize = sizeof(struct kinfo_vmentry);
2583 if (sb == NULL) {
2584 size = 0;
2585 sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN);
2586 sbuf_set_drain(sb, sbuf_count_drain, &size);
2587 sbuf_bcat(sb, &structsize, sizeof(structsize));
2588 PROC_LOCK(p);
2589 kern_proc_vmmap_out(p, sb, -1, vmmap_flags);
2590 sbuf_finish(sb);
2591 sbuf_delete(sb);
2592 *sizep = size;
2593 } else {
2594 sbuf_bcat(sb, &structsize, sizeof(structsize));
2595 PROC_LOCK(p);
2596 kern_proc_vmmap_out(p, sb, *sizep - sizeof(structsize),
2597 vmmap_flags);
2598 }
2599 }
2600
2601 static void
note_procstat_groups(void * arg,struct sbuf * sb,size_t * sizep)2602 note_procstat_groups(void *arg, struct sbuf *sb, size_t *sizep)
2603 {
2604 struct proc *p;
2605 size_t size;
2606 int structsize;
2607
2608 p = arg;
2609 size = sizeof(structsize) + p->p_ucred->cr_ngroups * sizeof(gid_t);
2610 if (sb != NULL) {
2611 KASSERT(*sizep == size, ("invalid size"));
2612 structsize = sizeof(gid_t);
2613 sbuf_bcat(sb, &structsize, sizeof(structsize));
2614 sbuf_bcat(sb, p->p_ucred->cr_groups, p->p_ucred->cr_ngroups *
2615 sizeof(gid_t));
2616 }
2617 *sizep = size;
2618 }
2619
2620 static void
note_procstat_umask(void * arg,struct sbuf * sb,size_t * sizep)2621 note_procstat_umask(void *arg, struct sbuf *sb, size_t *sizep)
2622 {
2623 struct proc *p;
2624 size_t size;
2625 int structsize;
2626
2627 p = arg;
2628 size = sizeof(structsize) + sizeof(p->p_pd->pd_cmask);
2629 if (sb != NULL) {
2630 KASSERT(*sizep == size, ("invalid size"));
2631 structsize = sizeof(p->p_pd->pd_cmask);
2632 sbuf_bcat(sb, &structsize, sizeof(structsize));
2633 sbuf_bcat(sb, &p->p_pd->pd_cmask, sizeof(p->p_pd->pd_cmask));
2634 }
2635 *sizep = size;
2636 }
2637
2638 static void
note_procstat_rlimit(void * arg,struct sbuf * sb,size_t * sizep)2639 note_procstat_rlimit(void *arg, struct sbuf *sb, size_t *sizep)
2640 {
2641 struct proc *p;
2642 struct rlimit rlim[RLIM_NLIMITS];
2643 size_t size;
2644 int structsize, i;
2645
2646 p = arg;
2647 size = sizeof(structsize) + sizeof(rlim);
2648 if (sb != NULL) {
2649 KASSERT(*sizep == size, ("invalid size"));
2650 structsize = sizeof(rlim);
2651 sbuf_bcat(sb, &structsize, sizeof(structsize));
2652 PROC_LOCK(p);
2653 for (i = 0; i < RLIM_NLIMITS; i++)
2654 lim_rlimit_proc(p, i, &rlim[i]);
2655 PROC_UNLOCK(p);
2656 sbuf_bcat(sb, rlim, sizeof(rlim));
2657 }
2658 *sizep = size;
2659 }
2660
2661 static void
note_procstat_osrel(void * arg,struct sbuf * sb,size_t * sizep)2662 note_procstat_osrel(void *arg, struct sbuf *sb, size_t *sizep)
2663 {
2664 struct proc *p;
2665 size_t size;
2666 int structsize;
2667
2668 p = arg;
2669 size = sizeof(structsize) + sizeof(p->p_osrel);
2670 if (sb != NULL) {
2671 KASSERT(*sizep == size, ("invalid size"));
2672 structsize = sizeof(p->p_osrel);
2673 sbuf_bcat(sb, &structsize, sizeof(structsize));
2674 sbuf_bcat(sb, &p->p_osrel, sizeof(p->p_osrel));
2675 }
2676 *sizep = size;
2677 }
2678
2679 static void
__elfN(note_procstat_psstrings)2680 __elfN(note_procstat_psstrings)(void *arg, struct sbuf *sb, size_t *sizep)
2681 {
2682 struct proc *p;
2683 elf_ps_strings_t ps_strings;
2684 size_t size;
2685 int structsize;
2686
2687 p = arg;
2688 size = sizeof(structsize) + sizeof(ps_strings);
2689 if (sb != NULL) {
2690 KASSERT(*sizep == size, ("invalid size"));
2691 structsize = sizeof(ps_strings);
2692 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2693 ps_strings = PTROUT(PROC_PS_STRINGS(p));
2694 #else
2695 ps_strings = PROC_PS_STRINGS(p);
2696 #endif
2697 sbuf_bcat(sb, &structsize, sizeof(structsize));
2698 sbuf_bcat(sb, &ps_strings, sizeof(ps_strings));
2699 }
2700 *sizep = size;
2701 }
2702
2703 static void
__elfN(note_procstat_auxv)2704 __elfN(note_procstat_auxv)(void *arg, struct sbuf *sb, size_t *sizep)
2705 {
2706 struct proc *p;
2707 size_t size;
2708 int structsize;
2709
2710 p = arg;
2711 if (sb == NULL) {
2712 size = 0;
2713 sb = sbuf_new(NULL, NULL, AT_COUNT * sizeof(Elf_Auxinfo),
2714 SBUF_FIXEDLEN);
2715 sbuf_set_drain(sb, sbuf_count_drain, &size);
2716 sbuf_bcat(sb, &structsize, sizeof(structsize));
2717 PHOLD(p);
2718 proc_getauxv(curthread, p, sb);
2719 PRELE(p);
2720 sbuf_finish(sb);
2721 sbuf_delete(sb);
2722 *sizep = size;
2723 } else {
2724 structsize = sizeof(Elf_Auxinfo);
2725 sbuf_bcat(sb, &structsize, sizeof(structsize));
2726 PHOLD(p);
2727 proc_getauxv(curthread, p, sb);
2728 PRELE(p);
2729 }
2730 }
2731
2732 static void
__elfN(note_procstat_kqueues)2733 __elfN(note_procstat_kqueues)(void *arg, struct sbuf *sb, size_t *sizep)
2734 {
2735 struct proc *p;
2736 size_t size, sect_sz, i;
2737 ssize_t start_len, sect_len;
2738 int structsize;
2739 bool compat32;
2740
2741 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2742 compat32 = true;
2743 structsize = sizeof(struct kinfo_knote32);
2744 #else
2745 compat32 = false;
2746 structsize = sizeof(struct kinfo_knote);
2747 #endif
2748 p = arg;
2749 if (sb == NULL) {
2750 size = 0;
2751 sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN);
2752 sbuf_set_drain(sb, sbuf_count_drain, &size);
2753 sbuf_bcat(sb, &structsize, sizeof(structsize));
2754 kern_proc_kqueues_out(p, sb, -1, compat32);
2755 sbuf_finish(sb);
2756 sbuf_delete(sb);
2757 *sizep = size;
2758 } else {
2759 sbuf_start_section(sb, &start_len);
2760
2761 sbuf_bcat(sb, &structsize, sizeof(structsize));
2762 kern_proc_kqueues_out(p, sb, *sizep - sizeof(structsize),
2763 compat32);
2764
2765 sect_len = sbuf_end_section(sb, start_len, 0, 0);
2766 if (sect_len < 0)
2767 return;
2768 sect_sz = sect_len;
2769
2770 KASSERT(sect_sz <= *sizep,
2771 ("kern_proc_kqueue_out did not respect maxlen; "
2772 "requested %zu, got %zu", *sizep - sizeof(structsize),
2773 sect_sz - sizeof(structsize)));
2774
2775 for (i = 0; i < *sizep - sect_sz && sb->s_error == 0; i++)
2776 sbuf_putc(sb, 0);
2777 }
2778 }
2779
2780 #define MAX_NOTES_LOOP 4096
2781 bool
__elfN(parse_notes)2782 __elfN(parse_notes)(const struct image_params *imgp, const Elf_Note *checknote,
2783 const char *note_vendor, const Elf_Phdr *pnote,
2784 bool (*cb)(const Elf_Note *, void *, bool *), void *cb_arg)
2785 {
2786 const Elf_Note *note, *note0, *note_end;
2787 const char *note_name;
2788 char *buf;
2789 int i, error;
2790 bool res;
2791
2792 /* We need some limit, might as well use PAGE_SIZE. */
2793 if (pnote == NULL || pnote->p_filesz > PAGE_SIZE)
2794 return (false);
2795 ASSERT_VOP_LOCKED(imgp->vp, "parse_notes");
2796 if (pnote->p_offset > PAGE_SIZE ||
2797 pnote->p_filesz > PAGE_SIZE - pnote->p_offset) {
2798 buf = malloc(pnote->p_filesz, M_TEMP, M_NOWAIT);
2799 if (buf == NULL) {
2800 VOP_UNLOCK(imgp->vp);
2801 buf = malloc(pnote->p_filesz, M_TEMP, M_WAITOK);
2802 vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
2803 }
2804 error = vn_rdwr(UIO_READ, imgp->vp, buf, pnote->p_filesz,
2805 pnote->p_offset, UIO_SYSSPACE, IO_NODELOCKED,
2806 curthread->td_ucred, NOCRED, NULL, curthread);
2807 if (error != 0) {
2808 uprintf("i/o error PT_NOTE\n");
2809 goto retf;
2810 }
2811 note = note0 = (const Elf_Note *)buf;
2812 note_end = (const Elf_Note *)(buf + pnote->p_filesz);
2813 } else {
2814 note = note0 = (const Elf_Note *)(imgp->image_header +
2815 pnote->p_offset);
2816 note_end = (const Elf_Note *)(imgp->image_header +
2817 pnote->p_offset + pnote->p_filesz);
2818 buf = NULL;
2819 }
2820 for (i = 0; i < MAX_NOTES_LOOP && note >= note0 && note < note_end;
2821 i++) {
2822 if (!aligned(note, Elf32_Addr)) {
2823 uprintf("Unaligned ELF note\n");
2824 goto retf;
2825 }
2826 if ((const char *)note_end - (const char *)note <
2827 sizeof(Elf_Note)) {
2828 uprintf("ELF note to short\n");
2829 goto retf;
2830 }
2831 if (note->n_namesz != checknote->n_namesz ||
2832 note->n_descsz != checknote->n_descsz ||
2833 note->n_type != checknote->n_type)
2834 goto nextnote;
2835 note_name = (const char *)(note + 1);
2836 if (note_name + checknote->n_namesz >=
2837 (const char *)note_end || strncmp(note_vendor,
2838 note_name, checknote->n_namesz) != 0)
2839 goto nextnote;
2840
2841 if (cb(note, cb_arg, &res))
2842 goto ret;
2843 nextnote:
2844 note = (const Elf_Note *)((const char *)(note + 1) +
2845 roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE) +
2846 roundup2(note->n_descsz, ELF_NOTE_ROUNDSIZE));
2847 }
2848 if (i >= MAX_NOTES_LOOP)
2849 uprintf("ELF note parser reached %d notes\n", i);
2850 retf:
2851 res = false;
2852 ret:
2853 free(buf, M_TEMP);
2854 return (res);
2855 }
2856
2857 struct brandnote_cb_arg {
2858 Elf_Brandnote *brandnote;
2859 int32_t *osrel;
2860 };
2861
2862 static bool
brandnote_cb(const Elf_Note * note,void * arg0,bool * res)2863 brandnote_cb(const Elf_Note *note, void *arg0, bool *res)
2864 {
2865 struct brandnote_cb_arg *arg;
2866
2867 arg = arg0;
2868
2869 /*
2870 * Fetch the osreldate for binary from the ELF OSABI-note if
2871 * necessary.
2872 */
2873 *res = (arg->brandnote->flags & BN_TRANSLATE_OSREL) != 0 &&
2874 arg->brandnote->trans_osrel != NULL ?
2875 arg->brandnote->trans_osrel(note, arg->osrel) : true;
2876
2877 return (true);
2878 }
2879
2880 static Elf_Note fctl_note = {
2881 .n_namesz = sizeof(FREEBSD_ABI_VENDOR),
2882 .n_descsz = sizeof(uint32_t),
2883 .n_type = NT_FREEBSD_FEATURE_CTL,
2884 };
2885
2886 struct fctl_cb_arg {
2887 bool *has_fctl0;
2888 uint32_t *fctl0;
2889 };
2890
2891 static bool
note_fctl_cb(const Elf_Note * note,void * arg0,bool * res)2892 note_fctl_cb(const Elf_Note *note, void *arg0, bool *res)
2893 {
2894 struct fctl_cb_arg *arg;
2895 const Elf32_Word *desc;
2896 uintptr_t p;
2897
2898 arg = arg0;
2899 p = (uintptr_t)(note + 1);
2900 p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE);
2901 desc = (const Elf32_Word *)p;
2902 *arg->has_fctl0 = true;
2903 *arg->fctl0 = desc[0];
2904 *res = true;
2905 return (true);
2906 }
2907
2908 /*
2909 * Try to find the appropriate ABI-note section for checknote, fetch
2910 * the osreldate and feature control flags for binary from the ELF
2911 * OSABI-note. Only the first page of the image is searched, the same
2912 * as for headers.
2913 */
2914 static bool
__elfN(check_note)2915 __elfN(check_note)(struct image_params *imgp, Elf_Brandnote *brandnote,
2916 int32_t *osrel, bool *has_fctl0, uint32_t *fctl0)
2917 {
2918 const Elf_Phdr *phdr;
2919 const Elf_Ehdr *hdr;
2920 struct brandnote_cb_arg b_arg;
2921 struct fctl_cb_arg f_arg;
2922 int i, j;
2923
2924 hdr = (const Elf_Ehdr *)imgp->image_header;
2925 phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff);
2926 b_arg.brandnote = brandnote;
2927 b_arg.osrel = osrel;
2928 f_arg.has_fctl0 = has_fctl0;
2929 f_arg.fctl0 = fctl0;
2930
2931 for (i = 0; i < hdr->e_phnum; i++) {
2932 if (phdr[i].p_type == PT_NOTE && __elfN(parse_notes)(imgp,
2933 &brandnote->hdr, brandnote->vendor, &phdr[i], brandnote_cb,
2934 &b_arg)) {
2935 for (j = 0; j < hdr->e_phnum; j++) {
2936 if (phdr[j].p_type == PT_NOTE &&
2937 __elfN(parse_notes)(imgp, &fctl_note,
2938 FREEBSD_ABI_VENDOR, &phdr[j],
2939 note_fctl_cb, &f_arg))
2940 break;
2941 }
2942 return (true);
2943 }
2944 }
2945 return (false);
2946
2947 }
2948
2949 /*
2950 * Tell kern_execve.c about it, with a little help from the linker.
2951 */
2952 static struct execsw __elfN(execsw) = {
2953 .ex_imgact = __CONCAT(exec_, __elfN(imgact)),
2954 .ex_name = __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE))
2955 };
2956 EXEC_SET(__CONCAT(elf, __ELF_WORD_SIZE), __elfN(execsw));
2957
2958 static vm_prot_t
__elfN(trans_prot)2959 __elfN(trans_prot)(Elf_Word flags)
2960 {
2961 vm_prot_t prot;
2962
2963 prot = 0;
2964 if (flags & PF_X)
2965 prot |= VM_PROT_EXECUTE;
2966 if (flags & PF_W)
2967 prot |= VM_PROT_WRITE;
2968 if (flags & PF_R)
2969 prot |= VM_PROT_READ;
2970 #if __ELF_WORD_SIZE == 32 && (defined(__amd64__) || defined(__i386__))
2971 if (i386_read_exec && (flags & PF_R))
2972 prot |= VM_PROT_EXECUTE;
2973 #endif
2974 return (prot);
2975 }
2976
2977 static Elf_Word
__elfN(untrans_prot)2978 __elfN(untrans_prot)(vm_prot_t prot)
2979 {
2980 Elf_Word flags;
2981
2982 flags = 0;
2983 if (prot & VM_PROT_EXECUTE)
2984 flags |= PF_X;
2985 if (prot & VM_PROT_READ)
2986 flags |= PF_R;
2987 if (prot & VM_PROT_WRITE)
2988 flags |= PF_W;
2989 return (flags);
2990 }
2991