xref: /freebsd/sys/kern/imgact_elf.c (revision d5bc81e6c76ba6fcf4c7a813e3b9731a7889d64e)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 2017 Dell EMC
5  * Copyright (c) 2000-2001, 2003 David O'Brien
6  * Copyright (c) 1995-1996 Søren Schmidt
7  * Copyright (c) 1996 Peter Wemm
8  * All rights reserved.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer
15  *    in this position and unchanged.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. The name of the author may not be used to endorse or promote products
20  *    derived from this software without specific prior written permission
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
23  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
24  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
25  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
27  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
31  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include "opt_capsicum.h"
35 
36 #include <sys/param.h>
37 #include <sys/capsicum.h>
38 #include <sys/compressor.h>
39 #include <sys/exec.h>
40 #include <sys/fcntl.h>
41 #include <sys/imgact.h>
42 #include <sys/imgact_elf.h>
43 #include <sys/jail.h>
44 #include <sys/kernel.h>
45 #include <sys/lock.h>
46 #include <sys/malloc.h>
47 #include <sys/mount.h>
48 #include <sys/mman.h>
49 #include <sys/namei.h>
50 #include <sys/proc.h>
51 #include <sys/procfs.h>
52 #include <sys/ptrace.h>
53 #include <sys/racct.h>
54 #include <sys/reg.h>
55 #include <sys/resourcevar.h>
56 #include <sys/rwlock.h>
57 #include <sys/sbuf.h>
58 #include <sys/sf_buf.h>
59 #include <sys/smp.h>
60 #include <sys/systm.h>
61 #include <sys/signalvar.h>
62 #include <sys/stat.h>
63 #include <sys/sx.h>
64 #include <sys/syscall.h>
65 #include <sys/sysctl.h>
66 #include <sys/sysent.h>
67 #include <sys/ucoredump.h>
68 #include <sys/vnode.h>
69 #include <sys/syslog.h>
70 #include <sys/eventhandler.h>
71 #include <sys/user.h>
72 
73 #include <vm/vm.h>
74 #include <vm/vm_kern.h>
75 #include <vm/vm_param.h>
76 #include <vm/pmap.h>
77 #include <vm/vm_map.h>
78 #include <vm/vm_object.h>
79 #include <vm/vm_extern.h>
80 
81 #include <machine/elf.h>
82 #include <machine/md_var.h>
83 
84 #define ELF_NOTE_ROUNDSIZE	4
85 #define OLD_EI_BRAND	8
86 
87 static int __elfN(check_header)(const Elf_Ehdr *hdr);
88 static Elf_Brandinfo *__elfN(get_brandinfo)(struct image_params *imgp,
89     const char *interp, int32_t *osrel, uint32_t *fctl0);
90 static int __elfN(load_file)(struct proc *p, const char *file, u_long *addr,
91     u_long *entry);
92 static int __elfN(load_section)(const struct image_params *imgp,
93     vm_ooffset_t offset, caddr_t vmaddr, size_t memsz, size_t filsz,
94     vm_prot_t prot);
95 static int __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp);
96 static bool __elfN(freebsd_trans_osrel)(const Elf_Note *note,
97     int32_t *osrel);
98 static bool kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel);
99 static bool __elfN(check_note)(struct image_params *imgp,
100     Elf_Brandnote *checknote, int32_t *osrel, bool *has_fctl0,
101     uint32_t *fctl0);
102 static vm_prot_t __elfN(trans_prot)(Elf_Word);
103 static Elf_Word __elfN(untrans_prot)(vm_prot_t);
104 static size_t __elfN(prepare_register_notes)(struct thread *td,
105     struct note_info_list *list, struct thread *target_td);
106 
107 SYSCTL_NODE(_kern, OID_AUTO, __CONCAT(elf, __ELF_WORD_SIZE),
108     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
109     "");
110 
111 int __elfN(fallback_brand) = -1;
112 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO,
113     fallback_brand, CTLFLAG_RWTUN, &__elfN(fallback_brand), 0,
114     __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) " brand of last resort");
115 
116 static int elf_legacy_coredump = 0;
117 SYSCTL_INT(_debug, OID_AUTO, __elfN(legacy_coredump), CTLFLAG_RW,
118     &elf_legacy_coredump, 0,
119     "include all and only RW pages in core dumps");
120 
121 int __elfN(nxstack) =
122 #if defined(__amd64__) || defined(__powerpc64__) /* both 64 and 32 bit */ || \
123     defined(__arm__) || defined(__aarch64__) || \
124     defined(__riscv)
125 	1;
126 #else
127 	0;
128 #endif
129 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO,
130     nxstack, CTLFLAG_RW, &__elfN(nxstack), 0,
131     __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) ": support PT_GNU_STACK for non-executable stack control");
132 
133 #if defined(__amd64__)
134 static int __elfN(vdso) = 1;
135 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO,
136     vdso, CTLFLAG_RWTUN, &__elfN(vdso), 0,
137     __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) ": enable vdso preloading");
138 #else
139 static int __elfN(vdso) = 0;
140 #endif
141 
142 #if __ELF_WORD_SIZE == 32 && (defined(__amd64__) || defined(__i386__))
143 int i386_read_exec = 0;
144 SYSCTL_INT(_kern_elf32, OID_AUTO, read_exec, CTLFLAG_RW, &i386_read_exec, 0,
145     "enable execution from readable segments");
146 #endif
147 
148 static u_long __elfN(pie_base) = ET_DYN_LOAD_ADDR;
149 static int
sysctl_pie_base(SYSCTL_HANDLER_ARGS)150 sysctl_pie_base(SYSCTL_HANDLER_ARGS)
151 {
152 	u_long val;
153 	int error;
154 
155 	val = __elfN(pie_base);
156 	error = sysctl_handle_long(oidp, &val, 0, req);
157 	if (error != 0 || req->newptr == NULL)
158 		return (error);
159 	if ((val & PAGE_MASK) != 0)
160 		return (EINVAL);
161 	__elfN(pie_base) = val;
162 	return (0);
163 }
164 SYSCTL_PROC(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, pie_base,
165     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0,
166     sysctl_pie_base, "LU",
167     "PIE load base without randomization");
168 
169 SYSCTL_NODE(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, aslr,
170     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
171     "");
172 #define	ASLR_NODE_OID	__CONCAT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), _aslr)
173 
174 /*
175  * Enable ASLR by default for 64-bit non-PIE binaries.  32-bit architectures
176  * have limited address space (which can cause issues for applications with
177  * high memory use) so we leave it off there.
178  */
179 static int __elfN(aslr_enabled) = __ELF_WORD_SIZE == 64;
180 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, enable, CTLFLAG_RWTUN,
181     &__elfN(aslr_enabled), 0,
182     __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE))
183     ": enable address map randomization");
184 
185 /*
186  * Enable ASLR by default for 64-bit PIE binaries.
187  */
188 static int __elfN(pie_aslr_enabled) = __ELF_WORD_SIZE == 64;
189 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, pie_enable, CTLFLAG_RWTUN,
190     &__elfN(pie_aslr_enabled), 0,
191     __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE))
192     ": enable address map randomization for PIE binaries");
193 
194 /*
195  * Sbrk is deprecated and it can be assumed that in most cases it will not be
196  * used anyway. This setting is valid only with ASLR enabled, and allows ASLR
197  * to use the bss grow region.
198  */
199 static int __elfN(aslr_honor_sbrk) = 0;
200 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, honor_sbrk, CTLFLAG_RW,
201     &__elfN(aslr_honor_sbrk), 0,
202     __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) ": assume sbrk is used");
203 
204 static int __elfN(aslr_stack) = __ELF_WORD_SIZE == 64;
205 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, stack, CTLFLAG_RWTUN,
206     &__elfN(aslr_stack), 0,
207     __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE))
208     ": enable stack address randomization");
209 
210 static int __elfN(aslr_shared_page) = __ELF_WORD_SIZE == 64;
211 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, shared_page, CTLFLAG_RWTUN,
212     &__elfN(aslr_shared_page), 0,
213     __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE))
214     ": enable shared page address randomization");
215 
216 static int __elfN(sigfastblock) = 1;
217 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, sigfastblock,
218     CTLFLAG_RWTUN, &__elfN(sigfastblock), 0,
219     "enable sigfastblock for new processes");
220 
221 static bool __elfN(allow_wx) = true;
222 SYSCTL_BOOL(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, allow_wx,
223     CTLFLAG_RWTUN, &__elfN(allow_wx), 0,
224     "Allow pages to be mapped simultaneously writable and executable");
225 
226 static Elf_Brandinfo *elf_brand_list[MAX_BRANDS];
227 
228 #define	aligned(a, t)	(rounddown2((u_long)(a), sizeof(t)) == (u_long)(a))
229 
230 Elf_Brandnote __elfN(freebsd_brandnote) = {
231 	.hdr.n_namesz	= sizeof(FREEBSD_ABI_VENDOR),
232 	.hdr.n_descsz	= sizeof(int32_t),
233 	.hdr.n_type	= NT_FREEBSD_ABI_TAG,
234 	.vendor		= FREEBSD_ABI_VENDOR,
235 	.flags		= BN_TRANSLATE_OSREL,
236 	.trans_osrel	= __elfN(freebsd_trans_osrel)
237 };
238 
239 static bool
__elfN(freebsd_trans_osrel)240 __elfN(freebsd_trans_osrel)(const Elf_Note *note, int32_t *osrel)
241 {
242 	uintptr_t p;
243 
244 	p = (uintptr_t)(note + 1);
245 	p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE);
246 	*osrel = *(const int32_t *)(p);
247 
248 	return (true);
249 }
250 
251 static int GNU_KFREEBSD_ABI_DESC = 3;
252 
253 Elf_Brandnote __elfN(kfreebsd_brandnote) = {
254 	.hdr.n_namesz	= sizeof(GNU_ABI_VENDOR),
255 	.hdr.n_descsz	= 16,	/* XXX at least 16 */
256 	.hdr.n_type	= 1,
257 	.vendor		= GNU_ABI_VENDOR,
258 	.flags		= BN_TRANSLATE_OSREL,
259 	.trans_osrel	= kfreebsd_trans_osrel
260 };
261 
262 static bool
kfreebsd_trans_osrel(const Elf_Note * note,int32_t * osrel)263 kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel)
264 {
265 	const Elf32_Word *desc;
266 	uintptr_t p;
267 
268 	p = (uintptr_t)(note + 1);
269 	p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE);
270 
271 	desc = (const Elf32_Word *)p;
272 	if (desc[0] != GNU_KFREEBSD_ABI_DESC)
273 		return (false);
274 
275 	/*
276 	 * Debian GNU/kFreeBSD embed the earliest compatible kernel version
277 	 * (__FreeBSD_version: <major><two digit minor>Rxx) in the LSB way.
278 	 */
279 	*osrel = desc[1] * 100000 + desc[2] * 1000 + desc[3];
280 
281 	return (true);
282 }
283 
284 int
__elfN(insert_brand_entry)285 __elfN(insert_brand_entry)(Elf_Brandinfo *entry)
286 {
287 	int i;
288 
289 	for (i = 0; i < MAX_BRANDS; i++) {
290 		if (elf_brand_list[i] == NULL) {
291 			elf_brand_list[i] = entry;
292 			break;
293 		}
294 	}
295 	if (i == MAX_BRANDS) {
296 		printf("WARNING: %s: could not insert brandinfo entry: %p\n",
297 			__func__, entry);
298 		return (-1);
299 	}
300 	return (0);
301 }
302 
303 int
__elfN(remove_brand_entry)304 __elfN(remove_brand_entry)(Elf_Brandinfo *entry)
305 {
306 	int i;
307 
308 	for (i = 0; i < MAX_BRANDS; i++) {
309 		if (elf_brand_list[i] == entry) {
310 			elf_brand_list[i] = NULL;
311 			break;
312 		}
313 	}
314 	if (i == MAX_BRANDS)
315 		return (-1);
316 	return (0);
317 }
318 
319 bool
__elfN(brand_inuse)320 __elfN(brand_inuse)(Elf_Brandinfo *entry)
321 {
322 	struct proc *p;
323 	bool rval = false;
324 
325 	sx_slock(&allproc_lock);
326 	FOREACH_PROC_IN_SYSTEM(p) {
327 		if (p->p_sysent == entry->sysvec) {
328 			rval = true;
329 			break;
330 		}
331 	}
332 	sx_sunlock(&allproc_lock);
333 
334 	return (rval);
335 }
336 
337 static Elf_Brandinfo *
__elfN(get_brandinfo)338 __elfN(get_brandinfo)(struct image_params *imgp, const char *interp,
339     int32_t *osrel, uint32_t *fctl0)
340 {
341 	const Elf_Ehdr *hdr = (const Elf_Ehdr *)imgp->image_header;
342 	Elf_Brandinfo *bi, *bi_m;
343 	bool ret, has_fctl0;
344 	int i, interp_name_len;
345 
346 	interp_name_len = interp != NULL ? strlen(interp) + 1 : 0;
347 
348 	/*
349 	 * We support four types of branding -- (1) the ELF EI_OSABI field
350 	 * that SCO added to the ELF spec, (2) FreeBSD 3.x's traditional string
351 	 * branding w/in the ELF header, (3) path of the `interp_path'
352 	 * field, and (4) the ".note.ABI-tag" ELF section.
353 	 */
354 
355 	/* Look for an ".note.ABI-tag" ELF section */
356 	bi_m = NULL;
357 	for (i = 0; i < MAX_BRANDS; i++) {
358 		bi = elf_brand_list[i];
359 		if (bi == NULL)
360 			continue;
361 		if (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0)
362 			continue;
363 		if (hdr->e_machine == bi->machine && (bi->flags &
364 		    (BI_BRAND_NOTE|BI_BRAND_NOTE_MANDATORY)) != 0) {
365 			has_fctl0 = false;
366 			*fctl0 = 0;
367 			*osrel = 0;
368 			ret = __elfN(check_note)(imgp, bi->brand_note, osrel,
369 			    &has_fctl0, fctl0);
370 			/* Give brand a chance to veto check_note's guess */
371 			if (ret && bi->header_supported) {
372 				ret = bi->header_supported(imgp, osrel,
373 				    has_fctl0 ? fctl0 : NULL);
374 			}
375 			/*
376 			 * If note checker claimed the binary, but the
377 			 * interpreter path in the image does not
378 			 * match default one for the brand, try to
379 			 * search for other brands with the same
380 			 * interpreter.  Either there is better brand
381 			 * with the right interpreter, or, failing
382 			 * this, we return first brand which accepted
383 			 * our note and, optionally, header.
384 			 */
385 			if (ret && bi_m == NULL && interp != NULL &&
386 			    (bi->interp_path == NULL ||
387 			    (strlen(bi->interp_path) + 1 != interp_name_len ||
388 			    strncmp(interp, bi->interp_path, interp_name_len)
389 			    != 0))) {
390 				bi_m = bi;
391 				ret = 0;
392 			}
393 			if (ret)
394 				return (bi);
395 		}
396 	}
397 	if (bi_m != NULL)
398 		return (bi_m);
399 
400 	/* If the executable has a brand, search for it in the brand list. */
401 	for (i = 0; i < MAX_BRANDS; i++) {
402 		bi = elf_brand_list[i];
403 		if (bi == NULL || (bi->flags & BI_BRAND_NOTE_MANDATORY) != 0 ||
404 		    (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0))
405 			continue;
406 		if (hdr->e_machine == bi->machine &&
407 		    (hdr->e_ident[EI_OSABI] == bi->brand ||
408 		    (bi->compat_3_brand != NULL &&
409 		    strcmp((const char *)&hdr->e_ident[OLD_EI_BRAND],
410 		    bi->compat_3_brand) == 0))) {
411 			/* Looks good, but give brand a chance to veto */
412 			if (bi->header_supported == NULL ||
413 			    bi->header_supported(imgp, NULL, NULL)) {
414 				/*
415 				 * Again, prefer strictly matching
416 				 * interpreter path.
417 				 */
418 				if (interp_name_len == 0 &&
419 				    bi->interp_path == NULL)
420 					return (bi);
421 				if (bi->interp_path != NULL &&
422 				    strlen(bi->interp_path) + 1 ==
423 				    interp_name_len && strncmp(interp,
424 				    bi->interp_path, interp_name_len) == 0)
425 					return (bi);
426 				if (bi_m == NULL)
427 					bi_m = bi;
428 			}
429 		}
430 	}
431 	if (bi_m != NULL)
432 		return (bi_m);
433 
434 	/* No known brand, see if the header is recognized by any brand */
435 	for (i = 0; i < MAX_BRANDS; i++) {
436 		bi = elf_brand_list[i];
437 		if (bi == NULL || bi->flags & BI_BRAND_NOTE_MANDATORY ||
438 		    bi->header_supported == NULL)
439 			continue;
440 		if (hdr->e_machine == bi->machine) {
441 			ret = bi->header_supported(imgp, NULL, NULL);
442 			if (ret)
443 				return (bi);
444 		}
445 	}
446 
447 	/* Lacking a known brand, search for a recognized interpreter. */
448 	if (interp != NULL) {
449 		for (i = 0; i < MAX_BRANDS; i++) {
450 			bi = elf_brand_list[i];
451 			if (bi == NULL || (bi->flags &
452 			    (BI_BRAND_NOTE_MANDATORY | BI_BRAND_ONLY_STATIC))
453 			    != 0)
454 				continue;
455 			if (hdr->e_machine == bi->machine &&
456 			    bi->interp_path != NULL &&
457 			    /* ELF image p_filesz includes terminating zero */
458 			    strlen(bi->interp_path) + 1 == interp_name_len &&
459 			    strncmp(interp, bi->interp_path, interp_name_len)
460 			    == 0 && (bi->header_supported == NULL ||
461 			    bi->header_supported(imgp, NULL, NULL)))
462 				return (bi);
463 		}
464 	}
465 
466 	/* Lacking a recognized interpreter, try the default brand */
467 	for (i = 0; i < MAX_BRANDS; i++) {
468 		bi = elf_brand_list[i];
469 		if (bi == NULL || (bi->flags & BI_BRAND_NOTE_MANDATORY) != 0 ||
470 		    (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0))
471 			continue;
472 		if (hdr->e_machine == bi->machine &&
473 		    __elfN(fallback_brand) == bi->brand &&
474 		    (bi->header_supported == NULL ||
475 		    bi->header_supported(imgp, NULL, NULL)))
476 			return (bi);
477 	}
478 	return (NULL);
479 }
480 
481 static bool
__elfN(phdr_in_zero_page)482 __elfN(phdr_in_zero_page)(const Elf_Ehdr *hdr)
483 {
484 	return (hdr->e_phoff <= PAGE_SIZE &&
485 	    (u_int)hdr->e_phentsize * hdr->e_phnum <= PAGE_SIZE - hdr->e_phoff);
486 }
487 
488 static int
__elfN(check_header)489 __elfN(check_header)(const Elf_Ehdr *hdr)
490 {
491 	Elf_Brandinfo *bi;
492 	int i;
493 
494 	if (!IS_ELF(*hdr) ||
495 	    hdr->e_ident[EI_CLASS] != ELF_TARG_CLASS ||
496 	    hdr->e_ident[EI_DATA] != ELF_TARG_DATA ||
497 	    hdr->e_ident[EI_VERSION] != EV_CURRENT ||
498 	    hdr->e_phentsize != sizeof(Elf_Phdr) ||
499 	    hdr->e_version != ELF_TARG_VER)
500 		return (ENOEXEC);
501 
502 	/*
503 	 * Make sure we have at least one brand for this machine.
504 	 */
505 
506 	for (i = 0; i < MAX_BRANDS; i++) {
507 		bi = elf_brand_list[i];
508 		if (bi != NULL && bi->machine == hdr->e_machine)
509 			break;
510 	}
511 	if (i == MAX_BRANDS)
512 		return (ENOEXEC);
513 
514 	return (0);
515 }
516 
517 static int
__elfN(map_partial)518 __elfN(map_partial)(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
519     vm_offset_t start, vm_offset_t end, vm_prot_t prot)
520 {
521 	struct sf_buf *sf;
522 	int error;
523 	vm_offset_t off;
524 
525 	/*
526 	 * Create the page if it doesn't exist yet. Ignore errors.
527 	 */
528 	vm_map_fixed(map, NULL, 0, trunc_page(start), round_page(end) -
529 	    trunc_page(start), VM_PROT_ALL, VM_PROT_ALL, MAP_CHECK_EXCL);
530 
531 	/*
532 	 * Find the page from the underlying object.
533 	 */
534 	if (object != NULL) {
535 		sf = vm_imgact_map_page(object, offset);
536 		if (sf == NULL)
537 			return (KERN_FAILURE);
538 		off = offset - trunc_page(offset);
539 		error = copyout((caddr_t)sf_buf_kva(sf) + off, (caddr_t)start,
540 		    end - start);
541 		vm_imgact_unmap_page(sf);
542 		if (error != 0)
543 			return (KERN_FAILURE);
544 	}
545 
546 	return (KERN_SUCCESS);
547 }
548 
549 static int
__elfN(map_insert)550 __elfN(map_insert)(const struct image_params *imgp, vm_map_t map,
551     vm_object_t object, vm_ooffset_t offset, vm_offset_t start, vm_offset_t end,
552     vm_prot_t prot, int cow)
553 {
554 	struct sf_buf *sf;
555 	vm_offset_t off;
556 	vm_size_t sz;
557 	int error, locked, rv;
558 
559 	if (start != trunc_page(start)) {
560 		rv = __elfN(map_partial)(map, object, offset, start,
561 		    round_page(start), prot);
562 		if (rv != KERN_SUCCESS)
563 			return (rv);
564 		offset += round_page(start) - start;
565 		start = round_page(start);
566 	}
567 	if (end != round_page(end)) {
568 		rv = __elfN(map_partial)(map, object, offset +
569 		    trunc_page(end) - start, trunc_page(end), end, prot);
570 		if (rv != KERN_SUCCESS)
571 			return (rv);
572 		end = trunc_page(end);
573 	}
574 	if (start >= end)
575 		return (KERN_SUCCESS);
576 	if ((offset & PAGE_MASK) != 0) {
577 		/*
578 		 * The mapping is not page aligned.  This means that we have
579 		 * to copy the data.
580 		 */
581 		rv = vm_map_fixed(map, NULL, 0, start, end - start,
582 		    prot | VM_PROT_WRITE, VM_PROT_ALL, MAP_CHECK_EXCL);
583 		if (rv != KERN_SUCCESS)
584 			return (rv);
585 		if (object == NULL)
586 			return (KERN_SUCCESS);
587 		for (; start < end; start += sz) {
588 			sf = vm_imgact_map_page(object, offset);
589 			if (sf == NULL)
590 				return (KERN_FAILURE);
591 			off = offset - trunc_page(offset);
592 			sz = end - start;
593 			if (sz > PAGE_SIZE - off)
594 				sz = PAGE_SIZE - off;
595 			error = copyout((caddr_t)sf_buf_kva(sf) + off,
596 			    (caddr_t)start, sz);
597 			vm_imgact_unmap_page(sf);
598 			if (error != 0)
599 				return (KERN_FAILURE);
600 			offset += sz;
601 		}
602 	} else {
603 		vm_object_reference(object);
604 		rv = vm_map_fixed(map, object, offset, start, end - start,
605 		    prot, VM_PROT_ALL, cow | MAP_CHECK_EXCL |
606 		    (object != NULL ? MAP_VN_EXEC : 0));
607 		if (rv != KERN_SUCCESS) {
608 			locked = VOP_ISLOCKED(imgp->vp);
609 			VOP_UNLOCK(imgp->vp);
610 			vm_object_deallocate(object);
611 			vn_lock(imgp->vp, locked | LK_RETRY);
612 			return (rv);
613 		} else if (object != NULL) {
614 			MPASS(imgp->vp->v_object == object);
615 			VOP_SET_TEXT_CHECKED(imgp->vp);
616 		}
617 	}
618 	return (KERN_SUCCESS);
619 }
620 
621 static int
__elfN(load_section)622 __elfN(load_section)(const struct image_params *imgp, vm_ooffset_t offset,
623     caddr_t vmaddr, size_t memsz, size_t filsz, vm_prot_t prot)
624 {
625 	struct sf_buf *sf;
626 	size_t map_len;
627 	vm_map_t map;
628 	vm_object_t object;
629 	vm_offset_t map_addr;
630 	int error, rv, cow;
631 	size_t copy_len;
632 	vm_ooffset_t file_addr;
633 
634 	/*
635 	 * It's necessary to fail if the filsz + offset taken from the
636 	 * header is greater than the actual file pager object's size.
637 	 * If we were to allow this, then the vm_map_find() below would
638 	 * walk right off the end of the file object and into the ether.
639 	 *
640 	 * While I'm here, might as well check for something else that
641 	 * is invalid: filsz cannot be greater than memsz.
642 	 */
643 	if ((filsz != 0 && (off_t)filsz + offset > imgp->attr->va_size) ||
644 	    filsz > memsz) {
645 		uprintf("elf_load_section: truncated ELF file\n");
646 		return (ENOEXEC);
647 	}
648 
649 	object = imgp->object;
650 	map = &imgp->proc->p_vmspace->vm_map;
651 	map_addr = trunc_page((vm_offset_t)vmaddr);
652 	file_addr = trunc_page(offset);
653 
654 	/*
655 	 * We have two choices.  We can either clear the data in the last page
656 	 * of an oversized mapping, or we can start the anon mapping a page
657 	 * early and copy the initialized data into that first page.  We
658 	 * choose the second.
659 	 */
660 	if (filsz == 0)
661 		map_len = 0;
662 	else if (memsz > filsz)
663 		map_len = trunc_page(offset + filsz) - file_addr;
664 	else
665 		map_len = round_page(offset + filsz) - file_addr;
666 
667 	if (map_len != 0) {
668 		/* cow flags: don't dump readonly sections in core */
669 		cow = MAP_COPY_ON_WRITE | MAP_PREFAULT |
670 		    (prot & VM_PROT_WRITE ? 0 : MAP_DISABLE_COREDUMP);
671 
672 		rv = __elfN(map_insert)(imgp, map, object, file_addr,
673 		    map_addr, map_addr + map_len, prot, cow);
674 		if (rv != KERN_SUCCESS)
675 			return (EINVAL);
676 
677 		/* we can stop now if we've covered it all */
678 		if (memsz == filsz)
679 			return (0);
680 	}
681 
682 	/*
683 	 * We have to get the remaining bit of the file into the first part
684 	 * of the oversized map segment.  This is normally because the .data
685 	 * segment in the file is extended to provide bss.  It's a neat idea
686 	 * to try and save a page, but it's a pain in the behind to implement.
687 	 */
688 	copy_len = filsz == 0 ? 0 : (offset + filsz) - trunc_page(offset +
689 	    filsz);
690 	map_addr = trunc_page((vm_offset_t)vmaddr + filsz);
691 	map_len = round_page((vm_offset_t)vmaddr + memsz) - map_addr;
692 
693 	/* This had damn well better be true! */
694 	if (map_len != 0) {
695 		rv = __elfN(map_insert)(imgp, map, NULL, 0, map_addr,
696 		    map_addr + map_len, prot, 0);
697 		if (rv != KERN_SUCCESS)
698 			return (EINVAL);
699 	}
700 
701 	if (copy_len != 0) {
702 		sf = vm_imgact_map_page(object, offset + filsz);
703 		if (sf == NULL)
704 			return (EIO);
705 
706 		/* send the page fragment to user space */
707 		error = copyout((caddr_t)sf_buf_kva(sf), (caddr_t)map_addr,
708 		    copy_len);
709 		vm_imgact_unmap_page(sf);
710 		if (error != 0)
711 			return (error);
712 	}
713 
714 	/*
715 	 * Remove write access to the page if it was only granted by map_insert
716 	 * to allow copyout.
717 	 */
718 	if ((prot & VM_PROT_WRITE) == 0)
719 		vm_map_protect(map, trunc_page(map_addr), round_page(map_addr +
720 		    map_len), prot, 0, VM_MAP_PROTECT_SET_PROT);
721 
722 	return (0);
723 }
724 
725 static int
__elfN(load_sections)726 __elfN(load_sections)(const struct image_params *imgp, const Elf_Ehdr *hdr,
727     const Elf_Phdr *phdr, u_long rbase, u_long *base_addrp)
728 {
729 	vm_prot_t prot;
730 	u_long base_addr;
731 	bool first;
732 	int error, i;
733 
734 	ASSERT_VOP_LOCKED(imgp->vp, __func__);
735 
736 	base_addr = 0;
737 	first = true;
738 
739 	for (i = 0; i < hdr->e_phnum; i++) {
740 		if (phdr[i].p_type != PT_LOAD || phdr[i].p_memsz == 0)
741 			continue;
742 
743 		/* Loadable segment */
744 		prot = __elfN(trans_prot)(phdr[i].p_flags);
745 		error = __elfN(load_section)(imgp, phdr[i].p_offset,
746 		    (caddr_t)(uintptr_t)phdr[i].p_vaddr + rbase,
747 		    phdr[i].p_memsz, phdr[i].p_filesz, prot);
748 		if (error != 0)
749 			return (error);
750 
751 		/*
752 		 * Establish the base address if this is the first segment.
753 		 */
754 		if (first) {
755   			base_addr = trunc_page(phdr[i].p_vaddr + rbase);
756 			first = false;
757 		}
758 	}
759 
760 	if (base_addrp != NULL)
761 		*base_addrp = base_addr;
762 
763 	return (0);
764 }
765 
766 /*
767  * Load the file "file" into memory.  It may be either a shared object
768  * or an executable.
769  *
770  * The "addr" reference parameter is in/out.  On entry, it specifies
771  * the address where a shared object should be loaded.  If the file is
772  * an executable, this value is ignored.  On exit, "addr" specifies
773  * where the file was actually loaded.
774  *
775  * The "entry" reference parameter is out only.  On exit, it specifies
776  * the entry point for the loaded file.
777  */
778 static int
__elfN(load_file)779 __elfN(load_file)(struct proc *p, const char *file, u_long *addr,
780 	u_long *entry)
781 {
782 	struct {
783 		struct nameidata nd;
784 		struct vattr attr;
785 		struct image_params image_params;
786 	} *tempdata;
787 	const Elf_Ehdr *hdr = NULL;
788 	const Elf_Phdr *phdr = NULL;
789 	struct nameidata *nd;
790 	struct vattr *attr;
791 	struct image_params *imgp;
792 	u_long rbase;
793 	u_long base_addr = 0;
794 	int error;
795 
796 #ifdef CAPABILITY_MODE
797 	/*
798 	 * XXXJA: This check can go away once we are sufficiently confident
799 	 * that the checks in namei() are correct.
800 	 */
801 	if (IN_CAPABILITY_MODE(curthread))
802 		return (ECAPMODE);
803 #endif
804 
805 	tempdata = malloc(sizeof(*tempdata), M_TEMP, M_WAITOK | M_ZERO);
806 	nd = &tempdata->nd;
807 	attr = &tempdata->attr;
808 	imgp = &tempdata->image_params;
809 
810 	/*
811 	 * Initialize part of the common data
812 	 */
813 	imgp->proc = p;
814 	imgp->attr = attr;
815 
816 	NDINIT(nd, LOOKUP, ISOPEN | FOLLOW | LOCKSHARED | LOCKLEAF,
817 	    UIO_SYSSPACE, file);
818 	if ((error = namei(nd)) != 0) {
819 		nd->ni_vp = NULL;
820 		goto fail;
821 	}
822 	NDFREE_PNBUF(nd);
823 	imgp->vp = nd->ni_vp;
824 
825 	/*
826 	 * Check permissions, modes, uid, etc on the file, and "open" it.
827 	 */
828 	error = exec_check_permissions(imgp);
829 	if (error)
830 		goto fail;
831 
832 	error = exec_map_first_page(imgp);
833 	if (error)
834 		goto fail;
835 
836 	imgp->object = nd->ni_vp->v_object;
837 
838 	hdr = (const Elf_Ehdr *)imgp->image_header;
839 	if ((error = __elfN(check_header)(hdr)) != 0)
840 		goto fail;
841 	if (hdr->e_type == ET_DYN)
842 		rbase = *addr;
843 	else if (hdr->e_type == ET_EXEC)
844 		rbase = 0;
845 	else {
846 		error = ENOEXEC;
847 		goto fail;
848 	}
849 
850 	/* Only support headers that fit within first page for now      */
851 	if (!__elfN(phdr_in_zero_page)(hdr)) {
852 		error = ENOEXEC;
853 		goto fail;
854 	}
855 
856 	phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff);
857 	if (!aligned(phdr, Elf_Addr)) {
858 		error = ENOEXEC;
859 		goto fail;
860 	}
861 
862 	error = __elfN(load_sections)(imgp, hdr, phdr, rbase, &base_addr);
863 	if (error != 0)
864 		goto fail;
865 
866 	if (p->p_sysent->sv_protect != NULL)
867 		p->p_sysent->sv_protect(imgp, SVP_INTERP);
868 
869 	*addr = base_addr;
870 	*entry = (unsigned long)hdr->e_entry + rbase;
871 
872 fail:
873 	if (imgp->firstpage)
874 		exec_unmap_first_page(imgp);
875 
876 	if (nd->ni_vp) {
877 		if (imgp->textset)
878 			VOP_UNSET_TEXT_CHECKED(nd->ni_vp);
879 		vput(nd->ni_vp);
880 	}
881 	free(tempdata, M_TEMP);
882 
883 	return (error);
884 }
885 
886 /*
887  * Select randomized valid address in the map map, between minv and
888  * maxv, with specified alignment.  The [minv, maxv) range must belong
889  * to the map.  Note that function only allocates the address, it is
890  * up to caller to clamp maxv in a way that the final allocation
891  * length fit into the map.
892  *
893  * Result is returned in *resp, error code indicates that arguments
894  * did not pass sanity checks for overflow and range correctness.
895  */
896 static int
__CONCAT(rnd_,__elfN (base))897 __CONCAT(rnd_, __elfN(base))(vm_map_t map, u_long minv, u_long maxv,
898     u_int align, u_long *resp)
899 {
900 	u_long rbase, res;
901 
902 	MPASS(vm_map_min(map) <= minv);
903 
904 	if (minv >= maxv || minv + align >= maxv || maxv > vm_map_max(map)) {
905 		uprintf("Invalid ELF segments layout\n");
906 		return (ENOEXEC);
907 	}
908 
909 	arc4rand(&rbase, sizeof(rbase), 0);
910 	res = roundup(minv, (u_long)align) + rbase % (maxv - minv);
911 	res &= ~((u_long)align - 1);
912 	if (res >= maxv)
913 		res -= align;
914 
915 	KASSERT(res >= minv,
916 	    ("res %#lx < minv %#lx, maxv %#lx rbase %#lx",
917 	    res, minv, maxv, rbase));
918 	KASSERT(res < maxv,
919 	    ("res %#lx > maxv %#lx, minv %#lx rbase %#lx",
920 	    res, maxv, minv, rbase));
921 
922 	*resp = res;
923 	return (0);
924 }
925 
926 static int
__elfN(enforce_limits)927 __elfN(enforce_limits)(struct image_params *imgp, const Elf_Ehdr *hdr,
928     const Elf_Phdr *phdr)
929 {
930 	struct vmspace *vmspace;
931 	const char *err_str;
932 	u_long text_size, data_size, total_size, text_addr, data_addr;
933 	u_long seg_size, seg_addr;
934 	int i;
935 
936 	err_str = NULL;
937 	text_size = data_size = total_size = text_addr = data_addr = 0;
938 
939 	for (i = 0; i < hdr->e_phnum; i++) {
940 		if (phdr[i].p_type != PT_LOAD || phdr[i].p_memsz == 0)
941 			continue;
942 
943 		seg_addr = trunc_page(phdr[i].p_vaddr + imgp->et_dyn_addr);
944 		seg_size = round_page(phdr[i].p_memsz +
945 		    phdr[i].p_vaddr + imgp->et_dyn_addr - seg_addr);
946 
947 		/*
948 		 * Make the largest executable segment the official
949 		 * text segment and all others data.
950 		 *
951 		 * Note that obreak() assumes that data_addr + data_size == end
952 		 * of data load area, and the ELF file format expects segments
953 		 * to be sorted by address.  If multiple data segments exist,
954 		 * the last one will be used.
955 		 */
956 
957 		if ((phdr[i].p_flags & PF_X) != 0 && text_size < seg_size) {
958 			text_size = seg_size;
959 			text_addr = seg_addr;
960 		} else {
961 			data_size = seg_size;
962 			data_addr = seg_addr;
963 		}
964 		total_size += seg_size;
965 	}
966 
967 	if (data_addr == 0 && data_size == 0) {
968 		data_addr = text_addr;
969 		data_size = text_size;
970 	}
971 
972 	/*
973 	 * Check limits.  It should be safe to check the
974 	 * limits after loading the segments since we do
975 	 * not actually fault in all the segments pages.
976 	 */
977 	PROC_LOCK(imgp->proc);
978 	if (data_size > lim_cur_proc(imgp->proc, RLIMIT_DATA))
979 		err_str = "Data segment size exceeds process limit";
980 	else if (text_size > maxtsiz)
981 		err_str = "Text segment size exceeds system limit";
982 	else if (total_size > lim_cur_proc(imgp->proc, RLIMIT_VMEM))
983 		err_str = "Total segment size exceeds process limit";
984 	else if (racct_set(imgp->proc, RACCT_DATA, data_size) != 0)
985 		err_str = "Data segment size exceeds resource limit";
986 	else if (racct_set(imgp->proc, RACCT_VMEM, total_size) != 0)
987 		err_str = "Total segment size exceeds resource limit";
988 	PROC_UNLOCK(imgp->proc);
989 	if (err_str != NULL) {
990 		uprintf("%s\n", err_str);
991 		return (ENOMEM);
992 	}
993 
994 	vmspace = imgp->proc->p_vmspace;
995 	vmspace->vm_tsize = text_size >> PAGE_SHIFT;
996 	vmspace->vm_taddr = (caddr_t)(uintptr_t)text_addr;
997 	vmspace->vm_dsize = data_size >> PAGE_SHIFT;
998 	vmspace->vm_daddr = (caddr_t)(uintptr_t)data_addr;
999 
1000 	return (0);
1001 }
1002 
1003 static int
__elfN(get_interp)1004 __elfN(get_interp)(struct image_params *imgp, const Elf_Phdr *phdr,
1005     char **interpp, bool *free_interpp)
1006 {
1007 	struct thread *td;
1008 	char *interp;
1009 	int error, interp_name_len;
1010 
1011 	KASSERT(phdr->p_type == PT_INTERP,
1012 	    ("%s: p_type %u != PT_INTERP", __func__, phdr->p_type));
1013 	ASSERT_VOP_LOCKED(imgp->vp, __func__);
1014 
1015 	td = curthread;
1016 
1017 	/* Path to interpreter */
1018 	if (phdr->p_filesz < 2 || phdr->p_filesz > MAXPATHLEN) {
1019 		uprintf("Invalid PT_INTERP\n");
1020 		return (ENOEXEC);
1021 	}
1022 
1023 	interp_name_len = phdr->p_filesz;
1024 	if (phdr->p_offset > PAGE_SIZE ||
1025 	    interp_name_len > PAGE_SIZE - phdr->p_offset) {
1026 		/*
1027 		 * The vnode lock might be needed by the pagedaemon to
1028 		 * clean pages owned by the vnode.  Do not allow sleep
1029 		 * waiting for memory with the vnode locked, instead
1030 		 * try non-sleepable allocation first, and if it
1031 		 * fails, go to the slow path were we drop the lock
1032 		 * and do M_WAITOK.  A text reference prevents
1033 		 * modifications to the vnode content.
1034 		 */
1035 		interp = malloc(interp_name_len + 1, M_TEMP, M_NOWAIT);
1036 		if (interp == NULL) {
1037 			VOP_UNLOCK(imgp->vp);
1038 			interp = malloc(interp_name_len + 1, M_TEMP, M_WAITOK);
1039 			vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
1040 		}
1041 
1042 		error = vn_rdwr(UIO_READ, imgp->vp, interp,
1043 		    interp_name_len, phdr->p_offset,
1044 		    UIO_SYSSPACE, IO_NODELOCKED, td->td_ucred,
1045 		    NOCRED, NULL, td);
1046 		if (error != 0) {
1047 			free(interp, M_TEMP);
1048 			uprintf("i/o error PT_INTERP %d\n", error);
1049 			return (error);
1050 		}
1051 		interp[interp_name_len] = '\0';
1052 
1053 		*interpp = interp;
1054 		*free_interpp = true;
1055 		return (0);
1056 	}
1057 
1058 	interp = __DECONST(char *, imgp->image_header) + phdr->p_offset;
1059 	if (interp[interp_name_len - 1] != '\0') {
1060 		uprintf("Invalid PT_INTERP\n");
1061 		return (ENOEXEC);
1062 	}
1063 
1064 	*interpp = interp;
1065 	*free_interpp = false;
1066 	return (0);
1067 }
1068 
1069 static int
__elfN(load_interp)1070 __elfN(load_interp)(struct image_params *imgp, const Elf_Brandinfo *brand_info,
1071     const char *interp, u_long *addr, u_long *entry)
1072 {
1073 	int error;
1074 
1075 	if (brand_info->interp_newpath != NULL &&
1076 	    (brand_info->interp_path == NULL ||
1077 	    strcmp(interp, brand_info->interp_path) == 0)) {
1078 		error = __elfN(load_file)(imgp->proc,
1079 		    brand_info->interp_newpath, addr, entry);
1080 		if (error == 0)
1081 			return (0);
1082 	}
1083 
1084 	error = __elfN(load_file)(imgp->proc, interp, addr, entry);
1085 	if (error == 0)
1086 		return (0);
1087 
1088 	uprintf("ELF interpreter %s not found, error %d\n", interp, error);
1089 	return (error);
1090 }
1091 
1092 /*
1093  * Impossible et_dyn_addr initial value indicating that the real base
1094  * must be calculated later with some randomization applied.
1095  */
1096 #define	ET_DYN_ADDR_RAND	1
1097 
1098 static int
__CONCAT(exec_,__elfN (imgact))1099 __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp)
1100 {
1101 	struct thread *td;
1102 	const Elf_Ehdr *hdr;
1103 	const Elf_Phdr *phdr;
1104 	Elf_Auxargs *elf_auxargs;
1105 	struct vmspace *vmspace;
1106 	vm_map_t map;
1107 	char *interp;
1108 	Elf_Brandinfo *brand_info;
1109 	struct sysentvec *sv;
1110 	u_long addr, baddr, entry, proghdr;
1111 	u_long maxalign, maxsalign, mapsz, maxv, maxv1, anon_loc;
1112 	uint32_t fctl0;
1113 	int32_t osrel;
1114 	bool free_interp;
1115 	int error, i, n;
1116 
1117 	hdr = (const Elf_Ehdr *)imgp->image_header;
1118 
1119 	/*
1120 	 * Do we have a valid ELF header ?
1121 	 *
1122 	 * Only allow ET_EXEC & ET_DYN here, reject ET_DYN later
1123 	 * if particular brand doesn't support it.
1124 	 */
1125 	if (__elfN(check_header)(hdr) != 0 ||
1126 	    (hdr->e_type != ET_EXEC && hdr->e_type != ET_DYN))
1127 		return (-1);
1128 
1129 	/*
1130 	 * From here on down, we return an errno, not -1, as we've
1131 	 * detected an ELF file.
1132 	 */
1133 
1134 	if (!__elfN(phdr_in_zero_page)(hdr)) {
1135 		uprintf("Program headers not in the first page\n");
1136 		return (ENOEXEC);
1137 	}
1138 	phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff);
1139 	if (!aligned(phdr, Elf_Addr)) {
1140 		uprintf("Unaligned program headers\n");
1141 		return (ENOEXEC);
1142 	}
1143 
1144 	n = error = 0;
1145 	baddr = 0;
1146 	osrel = 0;
1147 	fctl0 = 0;
1148 	entry = proghdr = 0;
1149 	interp = NULL;
1150 	free_interp = false;
1151 	td = curthread;
1152 
1153 	/*
1154 	 * Somewhat arbitrary, limit accepted max alignment for the
1155 	 * loadable segment to the max supported superpage size. Too
1156 	 * large alignment requests are not useful and are indicators
1157 	 * of corrupted or outright malicious binary.
1158 	 */
1159 	maxalign = PAGE_SIZE;
1160 	maxsalign = PAGE_SIZE * 1024;
1161 	for (i = MAXPAGESIZES - 1; i > 0; i--) {
1162 		if (pagesizes[i] > maxsalign) {
1163 			maxsalign = pagesizes[i];
1164 			break;
1165 		}
1166 	}
1167 
1168 	mapsz = 0;
1169 
1170 	for (i = 0; i < hdr->e_phnum; i++) {
1171 		switch (phdr[i].p_type) {
1172 		case PT_LOAD:
1173 			if (n == 0)
1174 				baddr = phdr[i].p_vaddr;
1175 			if (!powerof2(phdr[i].p_align) ||
1176 			    phdr[i].p_align > maxsalign) {
1177 				uprintf("Invalid segment alignment\n");
1178 				error = ENOEXEC;
1179 				goto ret;
1180 			}
1181 			if (phdr[i].p_align > maxalign)
1182 				maxalign = phdr[i].p_align;
1183 			if (mapsz + phdr[i].p_memsz < mapsz) {
1184 				uprintf("Mapsize overflow\n");
1185 				error = ENOEXEC;
1186 				goto ret;
1187 			}
1188 			mapsz += phdr[i].p_memsz;
1189 			n++;
1190 
1191 			/*
1192 			 * If this segment contains the program headers,
1193 			 * remember their virtual address for the AT_PHDR
1194 			 * aux entry. Static binaries don't usually include
1195 			 * a PT_PHDR entry.
1196 			 */
1197 			if (phdr[i].p_offset == 0 &&
1198 			    hdr->e_phoff + hdr->e_phnum * hdr->e_phentsize <=
1199 			    phdr[i].p_filesz)
1200 				proghdr = phdr[i].p_vaddr + hdr->e_phoff;
1201 			break;
1202 		case PT_INTERP:
1203 			/* Path to interpreter */
1204 			if (interp != NULL) {
1205 				uprintf("Multiple PT_INTERP headers\n");
1206 				error = ENOEXEC;
1207 				goto ret;
1208 			}
1209 			error = __elfN(get_interp)(imgp, &phdr[i], &interp,
1210 			    &free_interp);
1211 			if (error != 0)
1212 				goto ret;
1213 			break;
1214 		case PT_GNU_STACK:
1215 			if (__elfN(nxstack)) {
1216 				imgp->stack_prot =
1217 				    __elfN(trans_prot)(phdr[i].p_flags);
1218 				if ((imgp->stack_prot & VM_PROT_RW) !=
1219 				    VM_PROT_RW) {
1220 					uprintf("Invalid PT_GNU_STACK\n");
1221 					error = ENOEXEC;
1222 					goto ret;
1223 				}
1224 			}
1225 			imgp->stack_sz = phdr[i].p_memsz;
1226 			break;
1227 		case PT_PHDR: 	/* Program header table info */
1228 			proghdr = phdr[i].p_vaddr;
1229 			break;
1230 		}
1231 	}
1232 
1233 	brand_info = __elfN(get_brandinfo)(imgp, interp, &osrel, &fctl0);
1234 	if (brand_info == NULL) {
1235 		uprintf("ELF binary type \"%u\" not known.\n",
1236 		    hdr->e_ident[EI_OSABI]);
1237 		error = ENOEXEC;
1238 		goto ret;
1239 	}
1240 	sv = brand_info->sysvec;
1241 	if (hdr->e_type == ET_DYN) {
1242 		if ((brand_info->flags & BI_CAN_EXEC_DYN) == 0) {
1243 			uprintf("Cannot execute shared object\n");
1244 			error = ENOEXEC;
1245 			goto ret;
1246 		}
1247 		/*
1248 		 * Honour the base load address from the dso if it is
1249 		 * non-zero for some reason.
1250 		 */
1251 		if (baddr == 0) {
1252 			if ((sv->sv_flags & SV_ASLR) == 0 ||
1253 			    (fctl0 & NT_FREEBSD_FCTL_ASLR_DISABLE) != 0)
1254 				imgp->et_dyn_addr = __elfN(pie_base);
1255 			else if ((__elfN(pie_aslr_enabled) &&
1256 			    (imgp->proc->p_flag2 & P2_ASLR_DISABLE) == 0) ||
1257 			    (imgp->proc->p_flag2 & P2_ASLR_ENABLE) != 0)
1258 				imgp->et_dyn_addr = ET_DYN_ADDR_RAND;
1259 			else
1260 				imgp->et_dyn_addr = __elfN(pie_base);
1261 		}
1262 	}
1263 
1264 	/*
1265 	 * Avoid a possible deadlock if the current address space is destroyed
1266 	 * and that address space maps the locked vnode.  In the common case,
1267 	 * the locked vnode's v_usecount is decremented but remains greater
1268 	 * than zero.  Consequently, the vnode lock is not needed by vrele().
1269 	 * However, in cases where the vnode lock is external, such as nullfs,
1270 	 * v_usecount may become zero.
1271 	 *
1272 	 * The VV_TEXT flag prevents modifications to the executable while
1273 	 * the vnode is unlocked.
1274 	 */
1275 	VOP_UNLOCK(imgp->vp);
1276 
1277 	/*
1278 	 * Decide whether to enable randomization of user mappings.
1279 	 * First, reset user preferences for the setid binaries.
1280 	 * Then, account for the support of the randomization by the
1281 	 * ABI, by user preferences, and make special treatment for
1282 	 * PIE binaries.
1283 	 */
1284 	if (imgp->credential_setid) {
1285 		PROC_LOCK(imgp->proc);
1286 		imgp->proc->p_flag2 &= ~(P2_ASLR_ENABLE | P2_ASLR_DISABLE |
1287 		    P2_WXORX_DISABLE | P2_WXORX_ENABLE_EXEC);
1288 		PROC_UNLOCK(imgp->proc);
1289 	}
1290 	if ((sv->sv_flags & SV_ASLR) == 0 ||
1291 	    (imgp->proc->p_flag2 & P2_ASLR_DISABLE) != 0 ||
1292 	    (fctl0 & NT_FREEBSD_FCTL_ASLR_DISABLE) != 0) {
1293 		KASSERT(imgp->et_dyn_addr != ET_DYN_ADDR_RAND,
1294 		    ("imgp->et_dyn_addr == RAND and !ASLR"));
1295 	} else if ((imgp->proc->p_flag2 & P2_ASLR_ENABLE) != 0 ||
1296 	    (__elfN(aslr_enabled) && hdr->e_type == ET_EXEC) ||
1297 	    imgp->et_dyn_addr == ET_DYN_ADDR_RAND) {
1298 		imgp->map_flags |= MAP_ASLR;
1299 		/*
1300 		 * If user does not care about sbrk, utilize the bss
1301 		 * grow region for mappings as well.  We can select
1302 		 * the base for the image anywere and still not suffer
1303 		 * from the fragmentation.
1304 		 */
1305 		if (!__elfN(aslr_honor_sbrk) ||
1306 		    (imgp->proc->p_flag2 & P2_ASLR_IGNSTART) != 0)
1307 			imgp->map_flags |= MAP_ASLR_IGNSTART;
1308 		if (__elfN(aslr_stack))
1309 			imgp->map_flags |= MAP_ASLR_STACK;
1310 		if (__elfN(aslr_shared_page))
1311 			imgp->imgp_flags |= IMGP_ASLR_SHARED_PAGE;
1312 	}
1313 
1314 	if ((!__elfN(allow_wx) && (fctl0 & NT_FREEBSD_FCTL_WXNEEDED) == 0 &&
1315 	    (imgp->proc->p_flag2 & P2_WXORX_DISABLE) == 0) ||
1316 	    (imgp->proc->p_flag2 & P2_WXORX_ENABLE_EXEC) != 0)
1317 		imgp->map_flags |= MAP_WXORX;
1318 
1319 	error = exec_new_vmspace(imgp, sv);
1320 
1321 	imgp->proc->p_sysent = sv;
1322 	imgp->proc->p_elf_brandinfo = brand_info;
1323 
1324 	vmspace = imgp->proc->p_vmspace;
1325 	map = &vmspace->vm_map;
1326 	maxv = sv->sv_usrstack;
1327 	if ((imgp->map_flags & MAP_ASLR_STACK) == 0)
1328 		maxv -= lim_max(td, RLIMIT_STACK);
1329 	if (error == 0 && mapsz >= maxv - vm_map_min(map)) {
1330 		uprintf("Excessive mapping size\n");
1331 		error = ENOEXEC;
1332 	}
1333 
1334 	if (error == 0 && imgp->et_dyn_addr == ET_DYN_ADDR_RAND) {
1335 		KASSERT((map->flags & MAP_ASLR) != 0,
1336 		    ("ET_DYN_ADDR_RAND but !MAP_ASLR"));
1337 		error = __CONCAT(rnd_, __elfN(base))(map,
1338 		    vm_map_min(map) + mapsz + lim_max(td, RLIMIT_DATA),
1339 		    /* reserve half of the address space to interpreter */
1340 		    maxv / 2, maxalign, &imgp->et_dyn_addr);
1341 	}
1342 
1343 	vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
1344 	if (error != 0)
1345 		goto ret;
1346 
1347 	error = __elfN(load_sections)(imgp, hdr, phdr, imgp->et_dyn_addr, NULL);
1348 	if (error != 0)
1349 		goto ret;
1350 
1351 	error = __elfN(enforce_limits)(imgp, hdr, phdr);
1352 	if (error != 0)
1353 		goto ret;
1354 
1355 	/*
1356 	 * We load the dynamic linker where a userland call
1357 	 * to mmap(0, ...) would put it.  The rationale behind this
1358 	 * calculation is that it leaves room for the heap to grow to
1359 	 * its maximum allowed size.
1360 	 */
1361 	addr = round_page((vm_offset_t)vmspace->vm_daddr + lim_max(td,
1362 	    RLIMIT_DATA));
1363 	if ((map->flags & MAP_ASLR) != 0) {
1364 		maxv1 = maxv / 2 + addr / 2;
1365 		error = __CONCAT(rnd_, __elfN(base))(map, addr, maxv1,
1366 #if VM_NRESERVLEVEL > 0
1367 		    pagesizes[VM_NRESERVLEVEL] != 0 ?
1368 		    /* Align anon_loc to the largest superpage size. */
1369 		    pagesizes[VM_NRESERVLEVEL] :
1370 #endif
1371 		    pagesizes[0], &anon_loc);
1372 		if (error != 0)
1373 			goto ret;
1374 		map->anon_loc = anon_loc;
1375 	} else {
1376 		map->anon_loc = addr;
1377 	}
1378 
1379 	entry = (u_long)hdr->e_entry + imgp->et_dyn_addr;
1380 	imgp->entry_addr = entry;
1381 
1382 	if (sv->sv_protect != NULL)
1383 		sv->sv_protect(imgp, SVP_IMAGE);
1384 
1385 	if (interp != NULL) {
1386 		VOP_UNLOCK(imgp->vp);
1387 		if ((map->flags & MAP_ASLR) != 0) {
1388 			/* Assume that interpreter fits into 1/4 of AS */
1389 			maxv1 = maxv / 2 + addr / 2;
1390 			error = __CONCAT(rnd_, __elfN(base))(map, addr,
1391 			    maxv1, PAGE_SIZE, &addr);
1392 		}
1393 		if (error == 0) {
1394 			error = __elfN(load_interp)(imgp, brand_info, interp,
1395 			    &addr, &imgp->entry_addr);
1396 		}
1397 		vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
1398 		if (error != 0)
1399 			goto ret;
1400 	} else
1401 		addr = imgp->et_dyn_addr;
1402 
1403 	error = exec_map_stack(imgp);
1404 	if (error != 0)
1405 		goto ret;
1406 
1407 	/*
1408 	 * Construct auxargs table (used by the copyout_auxargs routine)
1409 	 */
1410 	elf_auxargs = malloc(sizeof(Elf_Auxargs), M_TEMP, M_NOWAIT);
1411 	if (elf_auxargs == NULL) {
1412 		VOP_UNLOCK(imgp->vp);
1413 		elf_auxargs = malloc(sizeof(Elf_Auxargs), M_TEMP, M_WAITOK);
1414 		vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
1415 	}
1416 	elf_auxargs->execfd = -1;
1417 	elf_auxargs->phdr = proghdr + imgp->et_dyn_addr;
1418 	elf_auxargs->phent = hdr->e_phentsize;
1419 	elf_auxargs->phnum = hdr->e_phnum;
1420 	elf_auxargs->pagesz = PAGE_SIZE;
1421 	elf_auxargs->base = addr;
1422 	elf_auxargs->flags = 0;
1423 	elf_auxargs->entry = entry;
1424 	elf_auxargs->hdr_eflags = hdr->e_flags;
1425 
1426 	imgp->auxargs = elf_auxargs;
1427 	imgp->interpreted = 0;
1428 	imgp->reloc_base = addr;
1429 	imgp->proc->p_osrel = osrel;
1430 	imgp->proc->p_fctl0 = fctl0;
1431 	imgp->proc->p_elf_flags = hdr->e_flags;
1432 
1433 ret:
1434 	ASSERT_VOP_LOCKED(imgp->vp, "skipped relock");
1435 	if (free_interp)
1436 		free(interp, M_TEMP);
1437 	return (error);
1438 }
1439 
1440 #define	elf_suword __CONCAT(suword, __ELF_WORD_SIZE)
1441 
1442 int
__elfN(freebsd_copyout_auxargs)1443 __elfN(freebsd_copyout_auxargs)(struct image_params *imgp, uintptr_t base)
1444 {
1445 	Elf_Auxargs *args = (Elf_Auxargs *)imgp->auxargs;
1446 	Elf_Auxinfo *argarray, *pos;
1447 	struct vmspace *vmspace;
1448 	rlim_t stacksz;
1449 	int error, oc;
1450 	uint32_t bsdflags;
1451 
1452 	argarray = pos = malloc(AT_COUNT * sizeof(*pos), M_TEMP,
1453 	    M_WAITOK | M_ZERO);
1454 
1455 	vmspace = imgp->proc->p_vmspace;
1456 
1457 	if (args->execfd != -1)
1458 		AUXARGS_ENTRY(pos, AT_EXECFD, args->execfd);
1459 	AUXARGS_ENTRY(pos, AT_PHDR, args->phdr);
1460 	AUXARGS_ENTRY(pos, AT_PHENT, args->phent);
1461 	AUXARGS_ENTRY(pos, AT_PHNUM, args->phnum);
1462 	AUXARGS_ENTRY(pos, AT_PAGESZ, args->pagesz);
1463 	AUXARGS_ENTRY(pos, AT_FLAGS, args->flags);
1464 	AUXARGS_ENTRY(pos, AT_ENTRY, args->entry);
1465 	AUXARGS_ENTRY(pos, AT_BASE, args->base);
1466 	AUXARGS_ENTRY(pos, AT_EHDRFLAGS, args->hdr_eflags);
1467 	if (imgp->execpathp != 0)
1468 		AUXARGS_ENTRY_PTR(pos, AT_EXECPATH, imgp->execpathp);
1469 	AUXARGS_ENTRY(pos, AT_OSRELDATE,
1470 	    imgp->proc->p_ucred->cr_prison->pr_osreldate);
1471 	if (imgp->canary != 0) {
1472 		AUXARGS_ENTRY_PTR(pos, AT_CANARY, imgp->canary);
1473 		AUXARGS_ENTRY(pos, AT_CANARYLEN, imgp->canarylen);
1474 	}
1475 	AUXARGS_ENTRY(pos, AT_NCPUS, mp_ncpus);
1476 	if (imgp->pagesizes != 0) {
1477 		AUXARGS_ENTRY_PTR(pos, AT_PAGESIZES, imgp->pagesizes);
1478 		AUXARGS_ENTRY(pos, AT_PAGESIZESLEN, imgp->pagesizeslen);
1479 	}
1480 	if ((imgp->sysent->sv_flags & SV_TIMEKEEP) != 0) {
1481 		AUXARGS_ENTRY(pos, AT_TIMEKEEP,
1482 		    vmspace->vm_shp_base + imgp->sysent->sv_timekeep_offset);
1483 	}
1484 	AUXARGS_ENTRY(pos, AT_STACKPROT, imgp->sysent->sv_shared_page_obj
1485 	    != NULL && imgp->stack_prot != 0 ? imgp->stack_prot :
1486 	    imgp->sysent->sv_stackprot);
1487 	if (imgp->sysent->sv_hwcap != NULL)
1488 		AUXARGS_ENTRY(pos, AT_HWCAP, *imgp->sysent->sv_hwcap);
1489 	if (imgp->sysent->sv_hwcap2 != NULL)
1490 		AUXARGS_ENTRY(pos, AT_HWCAP2, *imgp->sysent->sv_hwcap2);
1491 	if (imgp->sysent->sv_hwcap3 != NULL)
1492 		AUXARGS_ENTRY(pos, AT_HWCAP3, *imgp->sysent->sv_hwcap3);
1493 	if (imgp->sysent->sv_hwcap4 != NULL)
1494 		AUXARGS_ENTRY(pos, AT_HWCAP4, *imgp->sysent->sv_hwcap4);
1495 	bsdflags = 0;
1496 	bsdflags |= __elfN(sigfastblock) ? ELF_BSDF_SIGFASTBLK : 0;
1497 	oc = atomic_load_int(&vm_overcommit);
1498 	bsdflags |= (oc & (SWAP_RESERVE_FORCE_ON | SWAP_RESERVE_RLIMIT_ON)) !=
1499 	    0 ? ELF_BSDF_VMNOOVERCOMMIT : 0;
1500 	AUXARGS_ENTRY(pos, AT_BSDFLAGS, bsdflags);
1501 	AUXARGS_ENTRY(pos, AT_ARGC, imgp->args->argc);
1502 	AUXARGS_ENTRY_PTR(pos, AT_ARGV, imgp->argv);
1503 	AUXARGS_ENTRY(pos, AT_ENVC, imgp->args->envc);
1504 	AUXARGS_ENTRY_PTR(pos, AT_ENVV, imgp->envv);
1505 	AUXARGS_ENTRY_PTR(pos, AT_PS_STRINGS, imgp->ps_strings);
1506 #ifdef RANDOM_FENESTRASX
1507 	if ((imgp->sysent->sv_flags & SV_RNG_SEED_VER) != 0) {
1508 		AUXARGS_ENTRY(pos, AT_FXRNG,
1509 		    vmspace->vm_shp_base + imgp->sysent->sv_fxrng_gen_offset);
1510 	}
1511 #endif
1512 	if ((imgp->sysent->sv_flags & SV_DSO_SIG) != 0 && __elfN(vdso) != 0) {
1513 		AUXARGS_ENTRY(pos, AT_KPRELOAD,
1514 		    vmspace->vm_shp_base + imgp->sysent->sv_vdso_offset);
1515 	}
1516 	AUXARGS_ENTRY(pos, AT_USRSTACKBASE, round_page(vmspace->vm_stacktop));
1517 	stacksz = imgp->proc->p_limit->pl_rlimit[RLIMIT_STACK].rlim_cur;
1518 	AUXARGS_ENTRY(pos, AT_USRSTACKLIM, stacksz);
1519 	AUXARGS_ENTRY(pos, AT_NULL, 0);
1520 
1521 	free(imgp->auxargs, M_TEMP);
1522 	imgp->auxargs = NULL;
1523 	KASSERT(pos - argarray <= AT_COUNT, ("Too many auxargs"));
1524 
1525 	error = copyout(argarray, (void *)base, sizeof(*argarray) * AT_COUNT);
1526 	free(argarray, M_TEMP);
1527 	return (error);
1528 }
1529 
1530 int
__elfN(freebsd_fixup)1531 __elfN(freebsd_fixup)(uintptr_t *stack_base, struct image_params *imgp)
1532 {
1533 	Elf_Addr *base;
1534 
1535 	base = (Elf_Addr *)*stack_base;
1536 	base--;
1537 	if (elf_suword(base, imgp->args->argc) == -1)
1538 		return (EFAULT);
1539 	*stack_base = (uintptr_t)base;
1540 	return (0);
1541 }
1542 
1543 /*
1544  * Code for generating ELF core dumps.
1545  */
1546 
1547 typedef void (*segment_callback)(vm_map_entry_t, void *);
1548 
1549 /* Closure for cb_put_phdr(). */
1550 struct phdr_closure {
1551 	Elf_Phdr *phdr;		/* Program header to fill in */
1552 	Elf_Off offset;		/* Offset of segment in core file */
1553 };
1554 
1555 struct note_info {
1556 	int		type;		/* Note type. */
1557 	struct regset	*regset;	/* Register set. */
1558 	outfunc_t 	outfunc; 	/* Output function. */
1559 	void		*outarg;	/* Argument for the output function. */
1560 	size_t		outsize;	/* Output size. */
1561 	TAILQ_ENTRY(note_info) link;	/* Link to the next note info. */
1562 };
1563 
1564 TAILQ_HEAD(note_info_list, note_info);
1565 
1566 static void cb_put_phdr(vm_map_entry_t, void *);
1567 static void cb_size_segment(vm_map_entry_t, void *);
1568 static void each_dumpable_segment(struct thread *, segment_callback, void *,
1569     int);
1570 static int __elfN(corehdr)(struct coredump_params *, int, void *, size_t,
1571     struct note_info_list *, size_t, int);
1572 static void __elfN(putnote)(struct thread *td, struct note_info *, struct sbuf *);
1573 
1574 static void __elfN(note_prpsinfo)(void *, struct sbuf *, size_t *);
1575 static void __elfN(note_threadmd)(void *, struct sbuf *, size_t *);
1576 static void __elfN(note_procstat_auxv)(void *, struct sbuf *, size_t *);
1577 static void __elfN(note_procstat_proc)(void *, struct sbuf *, size_t *);
1578 static void __elfN(note_procstat_psstrings)(void *, struct sbuf *, size_t *);
1579 static void __elfN(note_procstat_kqueues)(void *, struct sbuf *, size_t *);
1580 static void note_procstat_files(void *, struct sbuf *, size_t *);
1581 static void note_procstat_groups(void *, struct sbuf *, size_t *);
1582 static void note_procstat_osrel(void *, struct sbuf *, size_t *);
1583 static void note_procstat_rlimit(void *, struct sbuf *, size_t *);
1584 static void note_procstat_umask(void *, struct sbuf *, size_t *);
1585 static void note_procstat_vmmap(void *, struct sbuf *, size_t *);
1586 
1587 static int
core_compressed_write(void * base,size_t len,off_t offset,void * arg)1588 core_compressed_write(void *base, size_t len, off_t offset, void *arg)
1589 {
1590 
1591 	return (core_write((struct coredump_params *)arg, base, len, offset,
1592 	    UIO_SYSSPACE, NULL));
1593 }
1594 
1595 int
__elfN(coredump)1596 __elfN(coredump)(struct thread *td, struct coredump_writer *cdw, off_t limit, int flags)
1597 {
1598 	struct ucred *cred = td->td_ucred;
1599 	int compm, error = 0;
1600 	struct sseg_closure seginfo;
1601 	struct note_info_list notelst;
1602 	struct coredump_params params;
1603 	struct note_info *ninfo;
1604 	void *hdr, *tmpbuf;
1605 	size_t hdrsize, notesz, coresize;
1606 
1607 	hdr = NULL;
1608 	tmpbuf = NULL;
1609 	TAILQ_INIT(&notelst);
1610 
1611 	/* Size the program segments. */
1612 	__elfN(size_segments)(td, &seginfo, flags);
1613 
1614 	/*
1615 	 * Collect info about the core file header area.
1616 	 */
1617 	hdrsize = sizeof(Elf_Ehdr) + sizeof(Elf_Phdr) * (1 + seginfo.count);
1618 	if (seginfo.count + 1 >= PN_XNUM)
1619 		hdrsize += sizeof(Elf_Shdr);
1620 	td->td_proc->p_sysent->sv_elf_core_prepare_notes(td, &notelst, &notesz);
1621 	coresize = round_page(hdrsize + notesz) + seginfo.size;
1622 
1623 	/* Set up core dump parameters. */
1624 	params.offset = 0;
1625 	params.active_cred = cred;
1626 	params.td = td;
1627 	params.cdw = cdw;
1628 	params.comp = NULL;
1629 
1630 #ifdef RACCT
1631 	if (racct_enable) {
1632 		PROC_LOCK(td->td_proc);
1633 		error = racct_add(td->td_proc, RACCT_CORE, coresize);
1634 		PROC_UNLOCK(td->td_proc);
1635 		if (error != 0) {
1636 			error = EFAULT;
1637 			goto done;
1638 		}
1639 	}
1640 #endif
1641 	if (coresize >= limit) {
1642 		error = EFAULT;
1643 		goto done;
1644 	}
1645 
1646 	/* Create a compression stream if necessary. */
1647 	compm = compress_user_cores;
1648 	if ((flags & (SVC_PT_COREDUMP | SVC_NOCOMPRESS)) == SVC_PT_COREDUMP &&
1649 	    compm == 0)
1650 		compm = COMPRESS_GZIP;
1651 	if (compm != 0) {
1652 		params.comp = compressor_init(core_compressed_write,
1653 		    compm, CORE_BUF_SIZE,
1654 		    compress_user_cores_level, &params);
1655 		if (params.comp == NULL) {
1656 			error = EFAULT;
1657 			goto done;
1658 		}
1659 		tmpbuf = malloc(CORE_BUF_SIZE, M_TEMP, M_WAITOK | M_ZERO);
1660         }
1661 
1662 	if (cdw->init_fn != NULL) {
1663 		error = (*cdw->init_fn)(cdw, &params);
1664 		if (error != 0)
1665 			goto done;
1666 	}
1667 
1668 	/*
1669 	 * Allocate memory for building the header, fill it up,
1670 	 * and write it out following the notes.
1671 	 */
1672 	hdr = malloc(hdrsize, M_TEMP, M_WAITOK);
1673 	error = __elfN(corehdr)(&params, seginfo.count, hdr, hdrsize, &notelst,
1674 	    notesz, flags);
1675 
1676 	/* Write the contents of all of the writable segments. */
1677 	if (error == 0) {
1678 		Elf_Phdr *php;
1679 		off_t offset;
1680 		int i;
1681 
1682 		php = (Elf_Phdr *)((char *)hdr + sizeof(Elf_Ehdr)) + 1;
1683 		offset = round_page(hdrsize + notesz);
1684 		for (i = 0; i < seginfo.count; i++) {
1685 			error = core_output((char *)(uintptr_t)php->p_vaddr,
1686 			    php->p_filesz, offset, &params, tmpbuf);
1687 			if (error != 0)
1688 				break;
1689 			offset += php->p_filesz;
1690 			php++;
1691 		}
1692 		if (error == 0 && params.comp != NULL)
1693 			error = compressor_flush(params.comp);
1694 	}
1695 	if (error) {
1696 		log(LOG_WARNING,
1697 		    "Failed to write core file for process %s (error %d)\n",
1698 		    curproc->p_comm, error);
1699 	}
1700 
1701 done:
1702 	free(tmpbuf, M_TEMP);
1703 	if (params.comp != NULL)
1704 		compressor_fini(params.comp);
1705 	while ((ninfo = TAILQ_FIRST(&notelst)) != NULL) {
1706 		TAILQ_REMOVE(&notelst, ninfo, link);
1707 		free(ninfo, M_TEMP);
1708 	}
1709 	if (hdr != NULL)
1710 		free(hdr, M_TEMP);
1711 
1712 	return (error);
1713 }
1714 
1715 /*
1716  * A callback for each_dumpable_segment() to write out the segment's
1717  * program header entry.
1718  */
1719 static void
cb_put_phdr(vm_map_entry_t entry,void * closure)1720 cb_put_phdr(vm_map_entry_t entry, void *closure)
1721 {
1722 	struct phdr_closure *phc = (struct phdr_closure *)closure;
1723 	Elf_Phdr *phdr = phc->phdr;
1724 
1725 	phc->offset = round_page(phc->offset);
1726 
1727 	phdr->p_type = PT_LOAD;
1728 	phdr->p_offset = phc->offset;
1729 	phdr->p_vaddr = entry->start;
1730 	phdr->p_paddr = 0;
1731 	phdr->p_filesz = phdr->p_memsz = entry->end - entry->start;
1732 	phdr->p_align = PAGE_SIZE;
1733 	phdr->p_flags = __elfN(untrans_prot)(entry->protection);
1734 
1735 	phc->offset += phdr->p_filesz;
1736 	phc->phdr++;
1737 }
1738 
1739 /*
1740  * A callback for each_dumpable_segment() to gather information about
1741  * the number of segments and their total size.
1742  */
1743 static void
cb_size_segment(vm_map_entry_t entry,void * closure)1744 cb_size_segment(vm_map_entry_t entry, void *closure)
1745 {
1746 	struct sseg_closure *ssc = (struct sseg_closure *)closure;
1747 
1748 	ssc->count++;
1749 	ssc->size += entry->end - entry->start;
1750 }
1751 
1752 void
__elfN(size_segments)1753 __elfN(size_segments)(struct thread *td, struct sseg_closure *seginfo,
1754     int flags)
1755 {
1756 	seginfo->count = 0;
1757 	seginfo->size = 0;
1758 
1759 	each_dumpable_segment(td, cb_size_segment, seginfo, flags);
1760 }
1761 
1762 /*
1763  * For each writable segment in the process's memory map, call the given
1764  * function with a pointer to the map entry and some arbitrary
1765  * caller-supplied data.
1766  */
1767 static void
each_dumpable_segment(struct thread * td,segment_callback func,void * closure,int flags)1768 each_dumpable_segment(struct thread *td, segment_callback func, void *closure,
1769     int flags)
1770 {
1771 	struct proc *p = td->td_proc;
1772 	vm_map_t map = &p->p_vmspace->vm_map;
1773 	vm_map_entry_t entry;
1774 	vm_object_t backing_object, object;
1775 	bool ignore_entry;
1776 
1777 	vm_map_lock_read(map);
1778 	VM_MAP_ENTRY_FOREACH(entry, map) {
1779 		/*
1780 		 * Don't dump inaccessible mappings, deal with legacy
1781 		 * coredump mode.
1782 		 *
1783 		 * Note that read-only segments related to the elf binary
1784 		 * are marked MAP_ENTRY_NOCOREDUMP now so we no longer
1785 		 * need to arbitrarily ignore such segments.
1786 		 */
1787 		if ((flags & SVC_ALL) == 0) {
1788 			if (elf_legacy_coredump) {
1789 				if ((entry->protection & VM_PROT_RW) !=
1790 				    VM_PROT_RW)
1791 					continue;
1792 			} else {
1793 				if ((entry->protection & VM_PROT_ALL) == 0)
1794 					continue;
1795 			}
1796 		}
1797 
1798 		/*
1799 		 * Dont include memory segment in the coredump if
1800 		 * MAP_NOCORE is set in mmap(2) or MADV_NOCORE in
1801 		 * madvise(2).  Do not dump submaps (i.e. parts of the
1802 		 * kernel map).
1803 		 */
1804 		if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
1805 			continue;
1806 		if ((entry->eflags & MAP_ENTRY_NOCOREDUMP) != 0 &&
1807 		    (flags & SVC_ALL) == 0)
1808 			continue;
1809 		if ((object = entry->object.vm_object) == NULL)
1810 			continue;
1811 
1812 		/* Ignore memory-mapped devices and such things. */
1813 		VM_OBJECT_RLOCK(object);
1814 		while ((backing_object = object->backing_object) != NULL) {
1815 			VM_OBJECT_RLOCK(backing_object);
1816 			VM_OBJECT_RUNLOCK(object);
1817 			object = backing_object;
1818 		}
1819 		ignore_entry = (object->flags & OBJ_FICTITIOUS) != 0;
1820 		VM_OBJECT_RUNLOCK(object);
1821 		if (ignore_entry)
1822 			continue;
1823 
1824 		(*func)(entry, closure);
1825 	}
1826 	vm_map_unlock_read(map);
1827 }
1828 
1829 /*
1830  * Write the core file header to the file, including padding up to
1831  * the page boundary.
1832  */
1833 static int
__elfN(corehdr)1834 __elfN(corehdr)(struct coredump_params *p, int numsegs, void *hdr,
1835     size_t hdrsize, struct note_info_list *notelst, size_t notesz,
1836     int flags)
1837 {
1838 	struct note_info *ninfo;
1839 	struct sbuf *sb;
1840 	int error;
1841 
1842 	/* Fill in the header. */
1843 	bzero(hdr, hdrsize);
1844 	__elfN(puthdr)(p->td, hdr, hdrsize, numsegs, notesz, flags);
1845 
1846 	sb = sbuf_new(NULL, NULL, CORE_BUF_SIZE, SBUF_FIXEDLEN);
1847 	sbuf_set_drain(sb, sbuf_drain_core_output, p);
1848 	sbuf_start_section(sb, NULL);
1849 	sbuf_bcat(sb, hdr, hdrsize);
1850 	TAILQ_FOREACH(ninfo, notelst, link)
1851 	    __elfN(putnote)(p->td, ninfo, sb);
1852 	/* Align up to a page boundary for the program segments. */
1853 	sbuf_end_section(sb, -1, PAGE_SIZE, 0);
1854 	error = sbuf_finish(sb);
1855 	sbuf_delete(sb);
1856 
1857 	return (error);
1858 }
1859 
1860 void
__elfN(prepare_notes)1861 __elfN(prepare_notes)(struct thread *td, struct note_info_list *list,
1862     size_t *sizep)
1863 {
1864 	struct proc *p;
1865 	struct thread *thr;
1866 	size_t size;
1867 
1868 	p = td->td_proc;
1869 	size = 0;
1870 
1871 	size += __elfN(register_note)(td, list, NT_PRPSINFO,
1872 	    __elfN(note_prpsinfo), p);
1873 
1874 	/*
1875 	 * To have the debugger select the right thread (LWP) as the initial
1876 	 * thread, we dump the state of the thread passed to us in td first.
1877 	 * This is the thread that causes the core dump and thus likely to
1878 	 * be the right thread one wants to have selected in the debugger.
1879 	 */
1880 	thr = td;
1881 	while (thr != NULL) {
1882 		size += __elfN(prepare_register_notes)(td, list, thr);
1883 		size += __elfN(register_note)(td, list, -1,
1884 		    __elfN(note_threadmd), thr);
1885 
1886 		thr = thr == td ? TAILQ_FIRST(&p->p_threads) :
1887 		    TAILQ_NEXT(thr, td_plist);
1888 		if (thr == td)
1889 			thr = TAILQ_NEXT(thr, td_plist);
1890 	}
1891 
1892 	size += __elfN(register_note)(td, list, NT_PROCSTAT_PROC,
1893 	    __elfN(note_procstat_proc), p);
1894 	size += __elfN(register_note)(td, list, NT_PROCSTAT_FILES,
1895 	    note_procstat_files, p);
1896 	size += __elfN(register_note)(td, list, NT_PROCSTAT_VMMAP,
1897 	    note_procstat_vmmap, p);
1898 	size += __elfN(register_note)(td, list, NT_PROCSTAT_GROUPS,
1899 	    note_procstat_groups, p);
1900 	size += __elfN(register_note)(td, list, NT_PROCSTAT_UMASK,
1901 	    note_procstat_umask, p);
1902 	size += __elfN(register_note)(td, list, NT_PROCSTAT_RLIMIT,
1903 	    note_procstat_rlimit, p);
1904 	size += __elfN(register_note)(td, list, NT_PROCSTAT_OSREL,
1905 	    note_procstat_osrel, p);
1906 	size += __elfN(register_note)(td, list, NT_PROCSTAT_PSSTRINGS,
1907 	    __elfN(note_procstat_psstrings), p);
1908 	size += __elfN(register_note)(td, list, NT_PROCSTAT_AUXV,
1909 	    __elfN(note_procstat_auxv), p);
1910 	size += __elfN(register_note)(td, list, NT_PROCSTAT_KQUEUES,
1911 	    __elfN(note_procstat_kqueues), p);
1912 
1913 	*sizep = size;
1914 }
1915 
1916 void
__elfN(puthdr)1917 __elfN(puthdr)(struct thread *td, void *hdr, size_t hdrsize, int numsegs,
1918     size_t notesz, int flags)
1919 {
1920 	Elf_Ehdr *ehdr;
1921 	Elf_Phdr *phdr;
1922 	Elf_Shdr *shdr;
1923 	struct phdr_closure phc;
1924 	Elf_Brandinfo *bi;
1925 
1926 	ehdr = (Elf_Ehdr *)hdr;
1927 	bi = td->td_proc->p_elf_brandinfo;
1928 
1929 	ehdr->e_ident[EI_MAG0] = ELFMAG0;
1930 	ehdr->e_ident[EI_MAG1] = ELFMAG1;
1931 	ehdr->e_ident[EI_MAG2] = ELFMAG2;
1932 	ehdr->e_ident[EI_MAG3] = ELFMAG3;
1933 	ehdr->e_ident[EI_CLASS] = ELF_CLASS;
1934 	ehdr->e_ident[EI_DATA] = ELF_DATA;
1935 	ehdr->e_ident[EI_VERSION] = EV_CURRENT;
1936 	ehdr->e_ident[EI_OSABI] = td->td_proc->p_sysent->sv_elf_core_osabi;
1937 	ehdr->e_ident[EI_ABIVERSION] = 0;
1938 	ehdr->e_ident[EI_PAD] = 0;
1939 	ehdr->e_type = ET_CORE;
1940 	ehdr->e_machine = bi->machine;
1941 	ehdr->e_version = EV_CURRENT;
1942 	ehdr->e_entry = 0;
1943 	ehdr->e_phoff = sizeof(Elf_Ehdr);
1944 	ehdr->e_flags = td->td_proc->p_elf_flags;
1945 	ehdr->e_ehsize = sizeof(Elf_Ehdr);
1946 	ehdr->e_phentsize = sizeof(Elf_Phdr);
1947 	ehdr->e_shentsize = sizeof(Elf_Shdr);
1948 	ehdr->e_shstrndx = SHN_UNDEF;
1949 	if (numsegs + 1 < PN_XNUM) {
1950 		ehdr->e_phnum = numsegs + 1;
1951 		ehdr->e_shnum = 0;
1952 	} else {
1953 		ehdr->e_phnum = PN_XNUM;
1954 		ehdr->e_shnum = 1;
1955 
1956 		ehdr->e_shoff = ehdr->e_phoff +
1957 		    (numsegs + 1) * ehdr->e_phentsize;
1958 		KASSERT(ehdr->e_shoff == hdrsize - sizeof(Elf_Shdr),
1959 		    ("e_shoff: %zu, hdrsize - shdr: %zu",
1960 		     (size_t)ehdr->e_shoff, hdrsize - sizeof(Elf_Shdr)));
1961 
1962 		shdr = (Elf_Shdr *)((char *)hdr + ehdr->e_shoff);
1963 		memset(shdr, 0, sizeof(*shdr));
1964 		/*
1965 		 * A special first section is used to hold large segment and
1966 		 * section counts.  This was proposed by Sun Microsystems in
1967 		 * Solaris and has been adopted by Linux; the standard ELF
1968 		 * tools are already familiar with the technique.
1969 		 *
1970 		 * See table 7-7 of the Solaris "Linker and Libraries Guide"
1971 		 * (or 12-7 depending on the version of the document) for more
1972 		 * details.
1973 		 */
1974 		shdr->sh_type = SHT_NULL;
1975 		shdr->sh_size = ehdr->e_shnum;
1976 		shdr->sh_link = ehdr->e_shstrndx;
1977 		shdr->sh_info = numsegs + 1;
1978 	}
1979 
1980 	/*
1981 	 * Fill in the program header entries.
1982 	 */
1983 	phdr = (Elf_Phdr *)((char *)hdr + ehdr->e_phoff);
1984 
1985 	/* The note segement. */
1986 	phdr->p_type = PT_NOTE;
1987 	phdr->p_offset = hdrsize;
1988 	phdr->p_vaddr = 0;
1989 	phdr->p_paddr = 0;
1990 	phdr->p_filesz = notesz;
1991 	phdr->p_memsz = 0;
1992 	phdr->p_flags = PF_R;
1993 	phdr->p_align = ELF_NOTE_ROUNDSIZE;
1994 	phdr++;
1995 
1996 	/* All the writable segments from the program. */
1997 	phc.phdr = phdr;
1998 	phc.offset = round_page(hdrsize + notesz);
1999 	each_dumpable_segment(td, cb_put_phdr, &phc, flags);
2000 }
2001 
2002 static size_t
__elfN(register_regset_note)2003 __elfN(register_regset_note)(struct thread *td, struct note_info_list *list,
2004     struct regset *regset, struct thread *target_td)
2005 {
2006 	const struct sysentvec *sv;
2007 	struct note_info *ninfo;
2008 	size_t size, notesize;
2009 
2010 	size = 0;
2011 	if (!regset->get(regset, target_td, NULL, &size) || size == 0)
2012 		return (0);
2013 
2014 	ninfo = malloc(sizeof(*ninfo), M_TEMP, M_ZERO | M_WAITOK);
2015 	ninfo->type = regset->note;
2016 	ninfo->regset = regset;
2017 	ninfo->outarg = target_td;
2018 	ninfo->outsize = size;
2019 	TAILQ_INSERT_TAIL(list, ninfo, link);
2020 
2021 	sv = td->td_proc->p_sysent;
2022 	notesize = sizeof(Elf_Note) +		/* note header */
2023 	    roundup2(strlen(sv->sv_elf_core_abi_vendor) + 1, ELF_NOTE_ROUNDSIZE) +
2024 						/* note name */
2025 	    roundup2(size, ELF_NOTE_ROUNDSIZE);	/* note description */
2026 
2027 	return (notesize);
2028 }
2029 
2030 size_t
__elfN(register_note)2031 __elfN(register_note)(struct thread *td, struct note_info_list *list,
2032     int type, outfunc_t out, void *arg)
2033 {
2034 	const struct sysentvec *sv;
2035 	struct note_info *ninfo;
2036 	size_t size, notesize;
2037 
2038 	sv = td->td_proc->p_sysent;
2039 	size = 0;
2040 	out(arg, NULL, &size);
2041 	ninfo = malloc(sizeof(*ninfo), M_TEMP, M_ZERO | M_WAITOK);
2042 	ninfo->type = type;
2043 	ninfo->outfunc = out;
2044 	ninfo->outarg = arg;
2045 	ninfo->outsize = size;
2046 	TAILQ_INSERT_TAIL(list, ninfo, link);
2047 
2048 	if (type == -1)
2049 		return (size);
2050 
2051 	notesize = sizeof(Elf_Note) +		/* note header */
2052 	    roundup2(strlen(sv->sv_elf_core_abi_vendor) + 1, ELF_NOTE_ROUNDSIZE) +
2053 						/* note name */
2054 	    roundup2(size, ELF_NOTE_ROUNDSIZE);	/* note description */
2055 
2056 	return (notesize);
2057 }
2058 
2059 static size_t
append_note_data(const void * src,void * dst,size_t len)2060 append_note_data(const void *src, void *dst, size_t len)
2061 {
2062 	size_t padded_len;
2063 
2064 	padded_len = roundup2(len, ELF_NOTE_ROUNDSIZE);
2065 	if (dst != NULL) {
2066 		bcopy(src, dst, len);
2067 		bzero((char *)dst + len, padded_len - len);
2068 	}
2069 	return (padded_len);
2070 }
2071 
2072 size_t
__elfN(populate_note)2073 __elfN(populate_note)(int type, void *src, void *dst, size_t size, void **descp)
2074 {
2075 	Elf_Note *note;
2076 	char *buf;
2077 	size_t notesize;
2078 
2079 	buf = dst;
2080 	if (buf != NULL) {
2081 		note = (Elf_Note *)buf;
2082 		note->n_namesz = sizeof(FREEBSD_ABI_VENDOR);
2083 		note->n_descsz = size;
2084 		note->n_type = type;
2085 		buf += sizeof(*note);
2086 		buf += append_note_data(FREEBSD_ABI_VENDOR, buf,
2087 		    sizeof(FREEBSD_ABI_VENDOR));
2088 		append_note_data(src, buf, size);
2089 		if (descp != NULL)
2090 			*descp = buf;
2091 	}
2092 
2093 	notesize = sizeof(Elf_Note) +		/* note header */
2094 	    roundup2(sizeof(FREEBSD_ABI_VENDOR), ELF_NOTE_ROUNDSIZE) +
2095 						/* note name */
2096 	    roundup2(size, ELF_NOTE_ROUNDSIZE);	/* note description */
2097 
2098 	return (notesize);
2099 }
2100 
2101 static void
__elfN(putnote)2102 __elfN(putnote)(struct thread *td, struct note_info *ninfo, struct sbuf *sb)
2103 {
2104 	Elf_Note note;
2105 	const struct sysentvec *sv;
2106 	ssize_t old_len, sect_len;
2107 	size_t new_len, descsz, i;
2108 
2109 	if (ninfo->type == -1) {
2110 		ninfo->outfunc(ninfo->outarg, sb, &ninfo->outsize);
2111 		return;
2112 	}
2113 
2114 	sv = td->td_proc->p_sysent;
2115 
2116 	note.n_namesz = strlen(sv->sv_elf_core_abi_vendor) + 1;
2117 	note.n_descsz = ninfo->outsize;
2118 	note.n_type = ninfo->type;
2119 
2120 	sbuf_bcat(sb, &note, sizeof(note));
2121 	sbuf_start_section(sb, &old_len);
2122 	sbuf_bcat(sb, sv->sv_elf_core_abi_vendor,
2123 	    strlen(sv->sv_elf_core_abi_vendor) + 1);
2124 	sbuf_end_section(sb, old_len, ELF_NOTE_ROUNDSIZE, 0);
2125 	if (note.n_descsz == 0)
2126 		return;
2127 	sbuf_start_section(sb, &old_len);
2128 	if (ninfo->regset != NULL) {
2129 		struct regset *regset = ninfo->regset;
2130 		void *buf;
2131 
2132 		buf = malloc(ninfo->outsize, M_TEMP, M_ZERO | M_WAITOK);
2133 		(void)regset->get(regset, ninfo->outarg, buf, &ninfo->outsize);
2134 		sbuf_bcat(sb, buf, ninfo->outsize);
2135 		free(buf, M_TEMP);
2136 	} else
2137 		ninfo->outfunc(ninfo->outarg, sb, &ninfo->outsize);
2138 	sect_len = sbuf_end_section(sb, old_len, ELF_NOTE_ROUNDSIZE, 0);
2139 	if (sect_len < 0)
2140 		return;
2141 
2142 	new_len = (size_t)sect_len;
2143 	descsz = roundup(note.n_descsz, ELF_NOTE_ROUNDSIZE);
2144 	if (new_len < descsz) {
2145 		/*
2146 		 * It is expected that individual note emitters will correctly
2147 		 * predict their expected output size and fill up to that size
2148 		 * themselves, padding in a format-specific way if needed.
2149 		 * However, in case they don't, just do it here with zeros.
2150 		 */
2151 		for (i = 0; i < descsz - new_len; i++)
2152 			sbuf_putc(sb, 0);
2153 	} else if (new_len > descsz) {
2154 		/*
2155 		 * We can't always truncate sb -- we may have drained some
2156 		 * of it already.
2157 		 */
2158 		KASSERT(new_len == descsz, ("%s: Note type %u changed as we "
2159 		    "read it (%zu > %zu).  Since it is longer than "
2160 		    "expected, this coredump's notes are corrupt.  THIS "
2161 		    "IS A BUG in the note_procstat routine for type %u.\n",
2162 		    __func__, (unsigned)note.n_type, new_len, descsz,
2163 		    (unsigned)note.n_type));
2164 	}
2165 }
2166 
2167 /*
2168  * Miscellaneous note out functions.
2169  */
2170 
2171 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2172 #include <compat/freebsd32/freebsd32.h>
2173 #include <compat/freebsd32/freebsd32_signal.h>
2174 
2175 typedef struct prstatus32 elf_prstatus_t;
2176 typedef struct prpsinfo32 elf_prpsinfo_t;
2177 typedef struct fpreg32 elf_prfpregset_t;
2178 typedef struct fpreg32 elf_fpregset_t;
2179 typedef struct reg32 elf_gregset_t;
2180 typedef struct thrmisc32 elf_thrmisc_t;
2181 typedef struct ptrace_lwpinfo32 elf_lwpinfo_t;
2182 #define ELF_KERN_PROC_MASK	KERN_PROC_MASK32
2183 typedef struct kinfo_proc32 elf_kinfo_proc_t;
2184 typedef uint32_t elf_ps_strings_t;
2185 #else
2186 typedef prstatus_t elf_prstatus_t;
2187 typedef prpsinfo_t elf_prpsinfo_t;
2188 typedef prfpregset_t elf_prfpregset_t;
2189 typedef prfpregset_t elf_fpregset_t;
2190 typedef gregset_t elf_gregset_t;
2191 typedef thrmisc_t elf_thrmisc_t;
2192 typedef struct ptrace_lwpinfo elf_lwpinfo_t;
2193 #define ELF_KERN_PROC_MASK	0
2194 typedef struct kinfo_proc elf_kinfo_proc_t;
2195 typedef vm_offset_t elf_ps_strings_t;
2196 #endif
2197 
2198 static void
__elfN(note_prpsinfo)2199 __elfN(note_prpsinfo)(void *arg, struct sbuf *sb, size_t *sizep)
2200 {
2201 	struct sbuf sbarg;
2202 	size_t len;
2203 	char *cp, *end;
2204 	struct proc *p;
2205 	elf_prpsinfo_t *psinfo;
2206 	int error;
2207 
2208 	p = arg;
2209 	if (sb != NULL) {
2210 		KASSERT(*sizep == sizeof(*psinfo), ("invalid size"));
2211 		psinfo = malloc(sizeof(*psinfo), M_TEMP, M_ZERO | M_WAITOK);
2212 		psinfo->pr_version = PRPSINFO_VERSION;
2213 		psinfo->pr_psinfosz = sizeof(elf_prpsinfo_t);
2214 		strlcpy(psinfo->pr_fname, p->p_comm, sizeof(psinfo->pr_fname));
2215 		PROC_LOCK(p);
2216 		if (p->p_args != NULL) {
2217 			len = sizeof(psinfo->pr_psargs) - 1;
2218 			if (len > p->p_args->ar_length)
2219 				len = p->p_args->ar_length;
2220 			memcpy(psinfo->pr_psargs, p->p_args->ar_args, len);
2221 			PROC_UNLOCK(p);
2222 			error = 0;
2223 		} else {
2224 			_PHOLD(p);
2225 			PROC_UNLOCK(p);
2226 			sbuf_new(&sbarg, psinfo->pr_psargs,
2227 			    sizeof(psinfo->pr_psargs), SBUF_FIXEDLEN);
2228 			error = proc_getargv(curthread, p, &sbarg);
2229 			PRELE(p);
2230 			if (sbuf_finish(&sbarg) == 0) {
2231 				len = sbuf_len(&sbarg);
2232 				if (len > 0)
2233 					len--;
2234 			} else {
2235 				len = sizeof(psinfo->pr_psargs) - 1;
2236 			}
2237 			sbuf_delete(&sbarg);
2238 		}
2239 		if (error != 0 || len == 0 || (ssize_t)len == -1)
2240 			strlcpy(psinfo->pr_psargs, p->p_comm,
2241 			    sizeof(psinfo->pr_psargs));
2242 		else {
2243 			KASSERT(len < sizeof(psinfo->pr_psargs),
2244 			    ("len is too long: %zu vs %zu", len,
2245 			    sizeof(psinfo->pr_psargs)));
2246 			cp = psinfo->pr_psargs;
2247 			end = cp + len - 1;
2248 			for (;;) {
2249 				cp = memchr(cp, '\0', end - cp);
2250 				if (cp == NULL)
2251 					break;
2252 				*cp = ' ';
2253 			}
2254 		}
2255 		psinfo->pr_pid = p->p_pid;
2256 		sbuf_bcat(sb, psinfo, sizeof(*psinfo));
2257 		free(psinfo, M_TEMP);
2258 	}
2259 	*sizep = sizeof(*psinfo);
2260 }
2261 
2262 static bool
__elfN(get_prstatus)2263 __elfN(get_prstatus)(struct regset *rs, struct thread *td, void *buf,
2264     size_t *sizep)
2265 {
2266 	elf_prstatus_t *status;
2267 
2268 	if (buf != NULL) {
2269 		KASSERT(*sizep == sizeof(*status), ("%s: invalid size",
2270 		    __func__));
2271 		status = buf;
2272 		memset(status, 0, *sizep);
2273 		status->pr_version = PRSTATUS_VERSION;
2274 		status->pr_statussz = sizeof(elf_prstatus_t);
2275 		status->pr_gregsetsz = sizeof(elf_gregset_t);
2276 		status->pr_fpregsetsz = sizeof(elf_fpregset_t);
2277 		status->pr_osreldate = osreldate;
2278 		status->pr_cursig = td->td_proc->p_sig;
2279 		status->pr_pid = td->td_tid;
2280 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2281 		fill_regs32(td, &status->pr_reg);
2282 #else
2283 		fill_regs(td, &status->pr_reg);
2284 #endif
2285 	}
2286 	*sizep = sizeof(*status);
2287 	return (true);
2288 }
2289 
2290 static bool
__elfN(set_prstatus)2291 __elfN(set_prstatus)(struct regset *rs, struct thread *td, void *buf,
2292     size_t size)
2293 {
2294 	elf_prstatus_t *status;
2295 
2296 	KASSERT(size == sizeof(*status), ("%s: invalid size", __func__));
2297 	status = buf;
2298 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2299 	set_regs32(td, &status->pr_reg);
2300 #else
2301 	set_regs(td, &status->pr_reg);
2302 #endif
2303 	return (true);
2304 }
2305 
2306 static struct regset __elfN(regset_prstatus) = {
2307 	.note = NT_PRSTATUS,
2308 	.size = sizeof(elf_prstatus_t),
2309 	.get = __elfN(get_prstatus),
2310 	.set = __elfN(set_prstatus),
2311 };
2312 ELF_REGSET(__elfN(regset_prstatus));
2313 
2314 static bool
__elfN(get_fpregset)2315 __elfN(get_fpregset)(struct regset *rs, struct thread *td, void *buf,
2316     size_t *sizep)
2317 {
2318 	elf_prfpregset_t *fpregset;
2319 
2320 	if (buf != NULL) {
2321 		KASSERT(*sizep == sizeof(*fpregset), ("%s: invalid size",
2322 		    __func__));
2323 		fpregset = buf;
2324 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2325 		fill_fpregs32(td, fpregset);
2326 #else
2327 		fill_fpregs(td, fpregset);
2328 #endif
2329 	}
2330 	*sizep = sizeof(*fpregset);
2331 	return (true);
2332 }
2333 
2334 static bool
__elfN(set_fpregset)2335 __elfN(set_fpregset)(struct regset *rs, struct thread *td, void *buf,
2336     size_t size)
2337 {
2338 	elf_prfpregset_t *fpregset;
2339 
2340 	fpregset = buf;
2341 	KASSERT(size == sizeof(*fpregset), ("%s: invalid size", __func__));
2342 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2343 	set_fpregs32(td, fpregset);
2344 #else
2345 	set_fpregs(td, fpregset);
2346 #endif
2347 	return (true);
2348 }
2349 
2350 static struct regset __elfN(regset_fpregset) = {
2351 	.note = NT_FPREGSET,
2352 	.size = sizeof(elf_prfpregset_t),
2353 	.get = __elfN(get_fpregset),
2354 	.set = __elfN(set_fpregset),
2355 };
2356 ELF_REGSET(__elfN(regset_fpregset));
2357 
2358 static bool
__elfN(get_thrmisc)2359 __elfN(get_thrmisc)(struct regset *rs, struct thread *td, void *buf,
2360     size_t *sizep)
2361 {
2362 	elf_thrmisc_t *thrmisc;
2363 
2364 	if (buf != NULL) {
2365 		KASSERT(*sizep == sizeof(*thrmisc),
2366 		    ("%s: invalid size", __func__));
2367 		thrmisc = buf;
2368 		bzero(thrmisc, sizeof(*thrmisc));
2369 		strcpy(thrmisc->pr_tname, td->td_name);
2370 	}
2371 	*sizep = sizeof(*thrmisc);
2372 	return (true);
2373 }
2374 
2375 static struct regset __elfN(regset_thrmisc) = {
2376 	.note = NT_THRMISC,
2377 	.size = sizeof(elf_thrmisc_t),
2378 	.get = __elfN(get_thrmisc),
2379 };
2380 ELF_REGSET(__elfN(regset_thrmisc));
2381 
2382 static bool
__elfN(get_lwpinfo)2383 __elfN(get_lwpinfo)(struct regset *rs, struct thread *td, void *buf,
2384     size_t *sizep)
2385 {
2386 	elf_lwpinfo_t pl;
2387 	size_t size;
2388 	int structsize;
2389 
2390 	size = sizeof(structsize) + sizeof(pl);
2391 	if (buf != NULL) {
2392 		KASSERT(*sizep == size, ("%s: invalid size", __func__));
2393 		structsize = sizeof(pl);
2394 		memcpy(buf, &structsize, sizeof(structsize));
2395 		bzero(&pl, sizeof(pl));
2396 		pl.pl_lwpid = td->td_tid;
2397 		pl.pl_event = PL_EVENT_NONE;
2398 		pl.pl_sigmask = td->td_sigmask;
2399 		pl.pl_siglist = td->td_siglist;
2400 		if (td->td_si.si_signo != 0) {
2401 			pl.pl_event = PL_EVENT_SIGNAL;
2402 			pl.pl_flags |= PL_FLAG_SI;
2403 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2404 			siginfo_to_siginfo32(&td->td_si, &pl.pl_siginfo);
2405 #else
2406 			pl.pl_siginfo = td->td_si;
2407 #endif
2408 		}
2409 		strcpy(pl.pl_tdname, td->td_name);
2410 		/* XXX TODO: supply more information in struct ptrace_lwpinfo*/
2411 		memcpy((int *)buf + 1, &pl, sizeof(pl));
2412 	}
2413 	*sizep = size;
2414 	return (true);
2415 }
2416 
2417 static struct regset __elfN(regset_lwpinfo) = {
2418 	.note = NT_PTLWPINFO,
2419 	.size = sizeof(int) + sizeof(elf_lwpinfo_t),
2420 	.get = __elfN(get_lwpinfo),
2421 };
2422 ELF_REGSET(__elfN(regset_lwpinfo));
2423 
2424 static size_t
__elfN(prepare_register_notes)2425 __elfN(prepare_register_notes)(struct thread *td, struct note_info_list *list,
2426     struct thread *target_td)
2427 {
2428 	struct sysentvec *sv = td->td_proc->p_sysent;
2429 	struct regset **regsetp, **regset_end, *regset;
2430 	size_t size;
2431 
2432 	size = 0;
2433 
2434 	if (target_td == td)
2435 		cpu_update_pcb(target_td);
2436 
2437 	/* NT_PRSTATUS must be the first register set note. */
2438 	size += __elfN(register_regset_note)(td, list, &__elfN(regset_prstatus),
2439 	    target_td);
2440 
2441 	regsetp = sv->sv_regset_begin;
2442 	if (regsetp == NULL) {
2443 		/* XXX: This shouldn't be true for any FreeBSD ABIs. */
2444 		size += __elfN(register_regset_note)(td, list,
2445 		    &__elfN(regset_fpregset), target_td);
2446 		return (size);
2447 	}
2448 	regset_end = sv->sv_regset_end;
2449 	MPASS(regset_end != NULL);
2450 	for (; regsetp < regset_end; regsetp++) {
2451 		regset = *regsetp;
2452 		if (regset->note == NT_PRSTATUS)
2453 			continue;
2454 		size += __elfN(register_regset_note)(td, list, regset,
2455 		    target_td);
2456 	}
2457 	return (size);
2458 }
2459 
2460 /*
2461  * Allow for MD specific notes, as well as any MD
2462  * specific preparations for writing MI notes.
2463  */
2464 static void
__elfN(note_threadmd)2465 __elfN(note_threadmd)(void *arg, struct sbuf *sb, size_t *sizep)
2466 {
2467 	struct thread *td;
2468 	void *buf;
2469 	size_t size;
2470 
2471 	td = (struct thread *)arg;
2472 	size = *sizep;
2473 	if (size != 0 && sb != NULL)
2474 		buf = malloc(size, M_TEMP, M_ZERO | M_WAITOK);
2475 	else
2476 		buf = NULL;
2477 	size = 0;
2478 	__elfN(dump_thread)(td, buf, &size);
2479 	KASSERT(sb == NULL || *sizep == size, ("invalid size"));
2480 	if (size != 0 && sb != NULL)
2481 		sbuf_bcat(sb, buf, size);
2482 	free(buf, M_TEMP);
2483 	*sizep = size;
2484 }
2485 
2486 #ifdef KINFO_PROC_SIZE
2487 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE);
2488 #endif
2489 
2490 static void
__elfN(note_procstat_proc)2491 __elfN(note_procstat_proc)(void *arg, struct sbuf *sb, size_t *sizep)
2492 {
2493 	struct proc *p;
2494 	size_t size;
2495 	int structsize;
2496 
2497 	p = arg;
2498 	size = sizeof(structsize) + p->p_numthreads *
2499 	    sizeof(elf_kinfo_proc_t);
2500 
2501 	if (sb != NULL) {
2502 		KASSERT(*sizep == size, ("invalid size"));
2503 		structsize = sizeof(elf_kinfo_proc_t);
2504 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2505 		sx_slock(&proctree_lock);
2506 		PROC_LOCK(p);
2507 		kern_proc_out(p, sb, ELF_KERN_PROC_MASK);
2508 		sx_sunlock(&proctree_lock);
2509 	}
2510 	*sizep = size;
2511 }
2512 
2513 #ifdef KINFO_FILE_SIZE
2514 CTASSERT(sizeof(struct kinfo_file) == KINFO_FILE_SIZE);
2515 #endif
2516 
2517 static void
note_procstat_files(void * arg,struct sbuf * sb,size_t * sizep)2518 note_procstat_files(void *arg, struct sbuf *sb, size_t *sizep)
2519 {
2520 	struct proc *p;
2521 	size_t size, sect_sz, i;
2522 	ssize_t start_len, sect_len;
2523 	int structsize, filedesc_flags;
2524 
2525 	if (coredump_pack_fileinfo)
2526 		filedesc_flags = KERN_FILEDESC_PACK_KINFO;
2527 	else
2528 		filedesc_flags = 0;
2529 
2530 	p = arg;
2531 	structsize = sizeof(struct kinfo_file);
2532 	if (sb == NULL) {
2533 		size = 0;
2534 		sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN);
2535 		sbuf_set_drain(sb, sbuf_count_drain, &size);
2536 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2537 		PROC_LOCK(p);
2538 		kern_proc_filedesc_out(p, sb, -1, filedesc_flags);
2539 		sbuf_finish(sb);
2540 		sbuf_delete(sb);
2541 		*sizep = size;
2542 	} else {
2543 		sbuf_start_section(sb, &start_len);
2544 
2545 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2546 		PROC_LOCK(p);
2547 		kern_proc_filedesc_out(p, sb, *sizep - sizeof(structsize),
2548 		    filedesc_flags);
2549 
2550 		sect_len = sbuf_end_section(sb, start_len, 0, 0);
2551 		if (sect_len < 0)
2552 			return;
2553 		sect_sz = sect_len;
2554 
2555 		KASSERT(sect_sz <= *sizep,
2556 		    ("kern_proc_filedesc_out did not respect maxlen; "
2557 		     "requested %zu, got %zu", *sizep - sizeof(structsize),
2558 		     sect_sz - sizeof(structsize)));
2559 
2560 		for (i = 0; i < *sizep - sect_sz && sb->s_error == 0; i++)
2561 			sbuf_putc(sb, 0);
2562 	}
2563 }
2564 
2565 #ifdef KINFO_VMENTRY_SIZE
2566 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE);
2567 #endif
2568 
2569 static void
note_procstat_vmmap(void * arg,struct sbuf * sb,size_t * sizep)2570 note_procstat_vmmap(void *arg, struct sbuf *sb, size_t *sizep)
2571 {
2572 	struct proc *p;
2573 	size_t size;
2574 	int structsize, vmmap_flags;
2575 
2576 	if (coredump_pack_vmmapinfo)
2577 		vmmap_flags = KERN_VMMAP_PACK_KINFO;
2578 	else
2579 		vmmap_flags = 0;
2580 
2581 	p = arg;
2582 	structsize = sizeof(struct kinfo_vmentry);
2583 	if (sb == NULL) {
2584 		size = 0;
2585 		sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN);
2586 		sbuf_set_drain(sb, sbuf_count_drain, &size);
2587 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2588 		PROC_LOCK(p);
2589 		kern_proc_vmmap_out(p, sb, -1, vmmap_flags);
2590 		sbuf_finish(sb);
2591 		sbuf_delete(sb);
2592 		*sizep = size;
2593 	} else {
2594 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2595 		PROC_LOCK(p);
2596 		kern_proc_vmmap_out(p, sb, *sizep - sizeof(structsize),
2597 		    vmmap_flags);
2598 	}
2599 }
2600 
2601 static void
note_procstat_groups(void * arg,struct sbuf * sb,size_t * sizep)2602 note_procstat_groups(void *arg, struct sbuf *sb, size_t *sizep)
2603 {
2604 	struct proc *p;
2605 	size_t size;
2606 	int structsize;
2607 
2608 	p = arg;
2609 	size = sizeof(structsize) + p->p_ucred->cr_ngroups * sizeof(gid_t);
2610 	if (sb != NULL) {
2611 		KASSERT(*sizep == size, ("invalid size"));
2612 		structsize = sizeof(gid_t);
2613 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2614 		sbuf_bcat(sb, p->p_ucred->cr_groups, p->p_ucred->cr_ngroups *
2615 		    sizeof(gid_t));
2616 	}
2617 	*sizep = size;
2618 }
2619 
2620 static void
note_procstat_umask(void * arg,struct sbuf * sb,size_t * sizep)2621 note_procstat_umask(void *arg, struct sbuf *sb, size_t *sizep)
2622 {
2623 	struct proc *p;
2624 	size_t size;
2625 	int structsize;
2626 
2627 	p = arg;
2628 	size = sizeof(structsize) + sizeof(p->p_pd->pd_cmask);
2629 	if (sb != NULL) {
2630 		KASSERT(*sizep == size, ("invalid size"));
2631 		structsize = sizeof(p->p_pd->pd_cmask);
2632 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2633 		sbuf_bcat(sb, &p->p_pd->pd_cmask, sizeof(p->p_pd->pd_cmask));
2634 	}
2635 	*sizep = size;
2636 }
2637 
2638 static void
note_procstat_rlimit(void * arg,struct sbuf * sb,size_t * sizep)2639 note_procstat_rlimit(void *arg, struct sbuf *sb, size_t *sizep)
2640 {
2641 	struct proc *p;
2642 	struct rlimit rlim[RLIM_NLIMITS];
2643 	size_t size;
2644 	int structsize, i;
2645 
2646 	p = arg;
2647 	size = sizeof(structsize) + sizeof(rlim);
2648 	if (sb != NULL) {
2649 		KASSERT(*sizep == size, ("invalid size"));
2650 		structsize = sizeof(rlim);
2651 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2652 		PROC_LOCK(p);
2653 		for (i = 0; i < RLIM_NLIMITS; i++)
2654 			lim_rlimit_proc(p, i, &rlim[i]);
2655 		PROC_UNLOCK(p);
2656 		sbuf_bcat(sb, rlim, sizeof(rlim));
2657 	}
2658 	*sizep = size;
2659 }
2660 
2661 static void
note_procstat_osrel(void * arg,struct sbuf * sb,size_t * sizep)2662 note_procstat_osrel(void *arg, struct sbuf *sb, size_t *sizep)
2663 {
2664 	struct proc *p;
2665 	size_t size;
2666 	int structsize;
2667 
2668 	p = arg;
2669 	size = sizeof(structsize) + sizeof(p->p_osrel);
2670 	if (sb != NULL) {
2671 		KASSERT(*sizep == size, ("invalid size"));
2672 		structsize = sizeof(p->p_osrel);
2673 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2674 		sbuf_bcat(sb, &p->p_osrel, sizeof(p->p_osrel));
2675 	}
2676 	*sizep = size;
2677 }
2678 
2679 static void
__elfN(note_procstat_psstrings)2680 __elfN(note_procstat_psstrings)(void *arg, struct sbuf *sb, size_t *sizep)
2681 {
2682 	struct proc *p;
2683 	elf_ps_strings_t ps_strings;
2684 	size_t size;
2685 	int structsize;
2686 
2687 	p = arg;
2688 	size = sizeof(structsize) + sizeof(ps_strings);
2689 	if (sb != NULL) {
2690 		KASSERT(*sizep == size, ("invalid size"));
2691 		structsize = sizeof(ps_strings);
2692 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2693 		ps_strings = PTROUT(PROC_PS_STRINGS(p));
2694 #else
2695 		ps_strings = PROC_PS_STRINGS(p);
2696 #endif
2697 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2698 		sbuf_bcat(sb, &ps_strings, sizeof(ps_strings));
2699 	}
2700 	*sizep = size;
2701 }
2702 
2703 static void
__elfN(note_procstat_auxv)2704 __elfN(note_procstat_auxv)(void *arg, struct sbuf *sb, size_t *sizep)
2705 {
2706 	struct proc *p;
2707 	size_t size;
2708 	int structsize;
2709 
2710 	p = arg;
2711 	if (sb == NULL) {
2712 		size = 0;
2713 		sb = sbuf_new(NULL, NULL, AT_COUNT * sizeof(Elf_Auxinfo),
2714 		    SBUF_FIXEDLEN);
2715 		sbuf_set_drain(sb, sbuf_count_drain, &size);
2716 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2717 		PHOLD(p);
2718 		proc_getauxv(curthread, p, sb);
2719 		PRELE(p);
2720 		sbuf_finish(sb);
2721 		sbuf_delete(sb);
2722 		*sizep = size;
2723 	} else {
2724 		structsize = sizeof(Elf_Auxinfo);
2725 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2726 		PHOLD(p);
2727 		proc_getauxv(curthread, p, sb);
2728 		PRELE(p);
2729 	}
2730 }
2731 
2732 static void
__elfN(note_procstat_kqueues)2733 __elfN(note_procstat_kqueues)(void *arg, struct sbuf *sb, size_t *sizep)
2734 {
2735 	struct proc *p;
2736 	size_t size, sect_sz, i;
2737 	ssize_t start_len, sect_len;
2738 	int structsize;
2739 	bool compat32;
2740 
2741 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2742 	compat32 = true;
2743 	structsize = sizeof(struct kinfo_knote32);
2744 #else
2745 	compat32 = false;
2746 	structsize = sizeof(struct kinfo_knote);
2747 #endif
2748 	p = arg;
2749 	if (sb == NULL) {
2750 		size = 0;
2751 		sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN);
2752 		sbuf_set_drain(sb, sbuf_count_drain, &size);
2753 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2754 		kern_proc_kqueues_out(p, sb, -1, compat32);
2755 		sbuf_finish(sb);
2756 		sbuf_delete(sb);
2757 		*sizep = size;
2758 	} else {
2759 		sbuf_start_section(sb, &start_len);
2760 
2761 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2762 		kern_proc_kqueues_out(p, sb, *sizep - sizeof(structsize),
2763 		    compat32);
2764 
2765 		sect_len = sbuf_end_section(sb, start_len, 0, 0);
2766 		if (sect_len < 0)
2767 			return;
2768 		sect_sz = sect_len;
2769 
2770 		KASSERT(sect_sz <= *sizep,
2771 		    ("kern_proc_kqueue_out did not respect maxlen; "
2772 		     "requested %zu, got %zu", *sizep - sizeof(structsize),
2773 		     sect_sz - sizeof(structsize)));
2774 
2775 		for (i = 0; i < *sizep - sect_sz && sb->s_error == 0; i++)
2776 			sbuf_putc(sb, 0);
2777 	}
2778 }
2779 
2780 #define	MAX_NOTES_LOOP	4096
2781 bool
__elfN(parse_notes)2782 __elfN(parse_notes)(const struct image_params *imgp, const Elf_Note *checknote,
2783     const char *note_vendor, const Elf_Phdr *pnote,
2784     bool (*cb)(const Elf_Note *, void *, bool *), void *cb_arg)
2785 {
2786 	const Elf_Note *note, *note0, *note_end;
2787 	const char *note_name;
2788 	char *buf;
2789 	int i, error;
2790 	bool res;
2791 
2792 	/* We need some limit, might as well use PAGE_SIZE. */
2793 	if (pnote == NULL || pnote->p_filesz > PAGE_SIZE)
2794 		return (false);
2795 	ASSERT_VOP_LOCKED(imgp->vp, "parse_notes");
2796 	if (pnote->p_offset > PAGE_SIZE ||
2797 	    pnote->p_filesz > PAGE_SIZE - pnote->p_offset) {
2798 		buf = malloc(pnote->p_filesz, M_TEMP, M_NOWAIT);
2799 		if (buf == NULL) {
2800 			VOP_UNLOCK(imgp->vp);
2801 			buf = malloc(pnote->p_filesz, M_TEMP, M_WAITOK);
2802 			vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
2803 		}
2804 		error = vn_rdwr(UIO_READ, imgp->vp, buf, pnote->p_filesz,
2805 		    pnote->p_offset, UIO_SYSSPACE, IO_NODELOCKED,
2806 		    curthread->td_ucred, NOCRED, NULL, curthread);
2807 		if (error != 0) {
2808 			uprintf("i/o error PT_NOTE\n");
2809 			goto retf;
2810 		}
2811 		note = note0 = (const Elf_Note *)buf;
2812 		note_end = (const Elf_Note *)(buf + pnote->p_filesz);
2813 	} else {
2814 		note = note0 = (const Elf_Note *)(imgp->image_header +
2815 		    pnote->p_offset);
2816 		note_end = (const Elf_Note *)(imgp->image_header +
2817 		    pnote->p_offset + pnote->p_filesz);
2818 		buf = NULL;
2819 	}
2820 	for (i = 0; i < MAX_NOTES_LOOP && note >= note0 && note < note_end;
2821 	    i++) {
2822 		if (!aligned(note, Elf32_Addr)) {
2823 			uprintf("Unaligned ELF note\n");
2824 			goto retf;
2825 		}
2826 		if ((const char *)note_end - (const char *)note <
2827 		    sizeof(Elf_Note)) {
2828 			uprintf("ELF note to short\n");
2829 			goto retf;
2830 		}
2831 		if (note->n_namesz != checknote->n_namesz ||
2832 		    note->n_descsz != checknote->n_descsz ||
2833 		    note->n_type != checknote->n_type)
2834 			goto nextnote;
2835 		note_name = (const char *)(note + 1);
2836 		if (note_name + checknote->n_namesz >=
2837 		    (const char *)note_end || strncmp(note_vendor,
2838 		    note_name, checknote->n_namesz) != 0)
2839 			goto nextnote;
2840 
2841 		if (cb(note, cb_arg, &res))
2842 			goto ret;
2843 nextnote:
2844 		note = (const Elf_Note *)((const char *)(note + 1) +
2845 		    roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE) +
2846 		    roundup2(note->n_descsz, ELF_NOTE_ROUNDSIZE));
2847 	}
2848 	if (i >= MAX_NOTES_LOOP)
2849 		uprintf("ELF note parser reached %d notes\n", i);
2850 retf:
2851 	res = false;
2852 ret:
2853 	free(buf, M_TEMP);
2854 	return (res);
2855 }
2856 
2857 struct brandnote_cb_arg {
2858 	Elf_Brandnote *brandnote;
2859 	int32_t *osrel;
2860 };
2861 
2862 static bool
brandnote_cb(const Elf_Note * note,void * arg0,bool * res)2863 brandnote_cb(const Elf_Note *note, void *arg0, bool *res)
2864 {
2865 	struct brandnote_cb_arg *arg;
2866 
2867 	arg = arg0;
2868 
2869 	/*
2870 	 * Fetch the osreldate for binary from the ELF OSABI-note if
2871 	 * necessary.
2872 	 */
2873 	*res = (arg->brandnote->flags & BN_TRANSLATE_OSREL) != 0 &&
2874 	    arg->brandnote->trans_osrel != NULL ?
2875 	    arg->brandnote->trans_osrel(note, arg->osrel) : true;
2876 
2877 	return (true);
2878 }
2879 
2880 static Elf_Note fctl_note = {
2881 	.n_namesz = sizeof(FREEBSD_ABI_VENDOR),
2882 	.n_descsz = sizeof(uint32_t),
2883 	.n_type = NT_FREEBSD_FEATURE_CTL,
2884 };
2885 
2886 struct fctl_cb_arg {
2887 	bool *has_fctl0;
2888 	uint32_t *fctl0;
2889 };
2890 
2891 static bool
note_fctl_cb(const Elf_Note * note,void * arg0,bool * res)2892 note_fctl_cb(const Elf_Note *note, void *arg0, bool *res)
2893 {
2894 	struct fctl_cb_arg *arg;
2895 	const Elf32_Word *desc;
2896 	uintptr_t p;
2897 
2898 	arg = arg0;
2899 	p = (uintptr_t)(note + 1);
2900 	p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE);
2901 	desc = (const Elf32_Word *)p;
2902 	*arg->has_fctl0 = true;
2903 	*arg->fctl0 = desc[0];
2904 	*res = true;
2905 	return (true);
2906 }
2907 
2908 /*
2909  * Try to find the appropriate ABI-note section for checknote, fetch
2910  * the osreldate and feature control flags for binary from the ELF
2911  * OSABI-note.  Only the first page of the image is searched, the same
2912  * as for headers.
2913  */
2914 static bool
__elfN(check_note)2915 __elfN(check_note)(struct image_params *imgp, Elf_Brandnote *brandnote,
2916     int32_t *osrel, bool *has_fctl0, uint32_t *fctl0)
2917 {
2918 	const Elf_Phdr *phdr;
2919 	const Elf_Ehdr *hdr;
2920 	struct brandnote_cb_arg b_arg;
2921 	struct fctl_cb_arg f_arg;
2922 	int i, j;
2923 
2924 	hdr = (const Elf_Ehdr *)imgp->image_header;
2925 	phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff);
2926 	b_arg.brandnote = brandnote;
2927 	b_arg.osrel = osrel;
2928 	f_arg.has_fctl0 = has_fctl0;
2929 	f_arg.fctl0 = fctl0;
2930 
2931 	for (i = 0; i < hdr->e_phnum; i++) {
2932 		if (phdr[i].p_type == PT_NOTE && __elfN(parse_notes)(imgp,
2933 		    &brandnote->hdr, brandnote->vendor, &phdr[i], brandnote_cb,
2934 		    &b_arg)) {
2935 			for (j = 0; j < hdr->e_phnum; j++) {
2936 				if (phdr[j].p_type == PT_NOTE &&
2937 				    __elfN(parse_notes)(imgp, &fctl_note,
2938 				    FREEBSD_ABI_VENDOR, &phdr[j],
2939 				    note_fctl_cb, &f_arg))
2940 					break;
2941 			}
2942 			return (true);
2943 		}
2944 	}
2945 	return (false);
2946 
2947 }
2948 
2949 /*
2950  * Tell kern_execve.c about it, with a little help from the linker.
2951  */
2952 static struct execsw __elfN(execsw) = {
2953 	.ex_imgact = __CONCAT(exec_, __elfN(imgact)),
2954 	.ex_name = __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE))
2955 };
2956 EXEC_SET(__CONCAT(elf, __ELF_WORD_SIZE), __elfN(execsw));
2957 
2958 static vm_prot_t
__elfN(trans_prot)2959 __elfN(trans_prot)(Elf_Word flags)
2960 {
2961 	vm_prot_t prot;
2962 
2963 	prot = 0;
2964 	if (flags & PF_X)
2965 		prot |= VM_PROT_EXECUTE;
2966 	if (flags & PF_W)
2967 		prot |= VM_PROT_WRITE;
2968 	if (flags & PF_R)
2969 		prot |= VM_PROT_READ;
2970 #if __ELF_WORD_SIZE == 32 && (defined(__amd64__) || defined(__i386__))
2971 	if (i386_read_exec && (flags & PF_R))
2972 		prot |= VM_PROT_EXECUTE;
2973 #endif
2974 	return (prot);
2975 }
2976 
2977 static Elf_Word
__elfN(untrans_prot)2978 __elfN(untrans_prot)(vm_prot_t prot)
2979 {
2980 	Elf_Word flags;
2981 
2982 	flags = 0;
2983 	if (prot & VM_PROT_EXECUTE)
2984 		flags |= PF_X;
2985 	if (prot & VM_PROT_READ)
2986 		flags |= PF_R;
2987 	if (prot & VM_PROT_WRITE)
2988 		flags |= PF_W;
2989 	return (flags);
2990 }
2991