xref: /linux/drivers/media/i2c/ccs/ccs-core.c (revision 518b21ba139cefa2ee7f9fcf516fdc6743e8db68)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * drivers/media/i2c/ccs/ccs-core.c
4  *
5  * Generic driver for MIPI CCS/SMIA/SMIA++ compliant camera sensors
6  *
7  * Copyright (C) 2020 Intel Corporation
8  * Copyright (C) 2010--2012 Nokia Corporation
9  * Contact: Sakari Ailus <sakari.ailus@linux.intel.com>
10  *
11  * Based on smiapp driver by Vimarsh Zutshi
12  * Based on jt8ev1.c by Vimarsh Zutshi
13  * Based on smia-sensor.c by Tuukka Toivonen <tuukkat76@gmail.com>
14  */
15 
16 #include <linux/clk.h>
17 #include <linux/delay.h>
18 #include <linux/device.h>
19 #include <linux/firmware.h>
20 #include <linux/gpio/consumer.h>
21 #include <linux/module.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/property.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/slab.h>
26 #include <linux/smiapp.h>
27 #include <linux/v4l2-mediabus.h>
28 #include <media/v4l2-cci.h>
29 #include <media/v4l2-device.h>
30 #include <media/v4l2-fwnode.h>
31 #include <uapi/linux/ccs.h>
32 
33 #include "ccs.h"
34 
35 #define CCS_ALIGN_DIM(dim, flags)	\
36 	((flags) & V4L2_SEL_FLAG_GE	\
37 	 ? ALIGN((dim), 2)		\
38 	 : (dim) & ~1)
39 
40 static struct ccs_limit_offset {
41 	u16	lim;
42 	u16	info;
43 } ccs_limit_offsets[CCS_L_LAST + 1];
44 
45 /*
46  * ccs_module_idents - supported camera modules
47  */
48 static const struct ccs_module_ident ccs_module_idents[] = {
49 	CCS_IDENT_L(0x01, 0x022b, -1, "vs6555"),
50 	CCS_IDENT_L(0x01, 0x022e, -1, "vw6558"),
51 	CCS_IDENT_L(0x07, 0x7698, -1, "ovm7698"),
52 	CCS_IDENT_L(0x0b, 0x4242, -1, "smiapp-003"),
53 	CCS_IDENT_L(0x0c, 0x208a, -1, "tcm8330md"),
54 	CCS_IDENT_LQ(0x0c, 0x2134, -1, "tcm8500md", &smiapp_tcm8500md_quirk),
55 	CCS_IDENT_L(0x0c, 0x213e, -1, "et8en2"),
56 	CCS_IDENT_L(0x0c, 0x2184, -1, "tcm8580md"),
57 	CCS_IDENT_LQ(0x0c, 0x560f, -1, "jt8ew9", &smiapp_jt8ew9_quirk),
58 	CCS_IDENT_LQ(0x10, 0x4141, -1, "jt8ev1", &smiapp_jt8ev1_quirk),
59 	CCS_IDENT_LQ(0x10, 0x4241, -1, "imx125es", &smiapp_imx125es_quirk),
60 };
61 
62 #define CCS_DEVICE_FLAG_IS_SMIA		BIT(0)
63 
64 struct ccs_device {
65 	unsigned char flags;
66 };
67 
68 static const char * const ccs_regulators[] = { "vcore", "vio", "vana" };
69 
70 /*
71  *
72  * Dynamic Capability Identification
73  *
74  */
75 
ccs_assign_limit(void * ptr,unsigned int width,u32 val)76 static void ccs_assign_limit(void *ptr, unsigned int width, u32 val)
77 {
78 	switch (width) {
79 	case sizeof(u8):
80 		*(u8 *)ptr = val;
81 		break;
82 	case sizeof(u16):
83 		*(u16 *)ptr = val;
84 		break;
85 	case sizeof(u32):
86 		*(u32 *)ptr = val;
87 		break;
88 	}
89 }
90 
ccs_limit_ptr(struct ccs_sensor * sensor,unsigned int limit,unsigned int offset,void ** __ptr)91 static int ccs_limit_ptr(struct ccs_sensor *sensor, unsigned int limit,
92 			 unsigned int offset, void **__ptr)
93 {
94 	const struct ccs_limit *linfo;
95 
96 	if (WARN_ON(limit >= CCS_L_LAST))
97 		return -EINVAL;
98 
99 	linfo = &ccs_limits[ccs_limit_offsets[limit].info];
100 
101 	if (WARN_ON(!sensor->ccs_limits) ||
102 	    WARN_ON(offset + CCI_REG_WIDTH_BYTES(linfo->reg) >
103 		    ccs_limit_offsets[limit + 1].lim))
104 		return -EINVAL;
105 
106 	*__ptr = sensor->ccs_limits + ccs_limit_offsets[limit].lim + offset;
107 
108 	return 0;
109 }
110 
ccs_replace_limit(struct ccs_sensor * sensor,unsigned int limit,unsigned int offset,u32 val)111 void ccs_replace_limit(struct ccs_sensor *sensor,
112 		       unsigned int limit, unsigned int offset, u32 val)
113 {
114 	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
115 	const struct ccs_limit *linfo;
116 	void *ptr;
117 	int ret;
118 
119 	ret = ccs_limit_ptr(sensor, limit, offset, &ptr);
120 	if (ret)
121 		return;
122 
123 	linfo = &ccs_limits[ccs_limit_offsets[limit].info];
124 
125 	dev_dbg(&client->dev, "quirk: 0x%8.8x \"%s\" %u = %u, 0x%x\n",
126 		linfo->reg, linfo->name, offset, val, val);
127 
128 	ccs_assign_limit(ptr, CCI_REG_WIDTH_BYTES(linfo->reg), val);
129 }
130 
ccs_get_limit(struct ccs_sensor * sensor,unsigned int limit,unsigned int offset)131 u32 ccs_get_limit(struct ccs_sensor *sensor, unsigned int limit,
132 		  unsigned int offset)
133 {
134 	void *ptr;
135 	u32 val;
136 	int ret;
137 
138 	ret = ccs_limit_ptr(sensor, limit, offset, &ptr);
139 	if (ret)
140 		return 0;
141 
142 	switch (CCI_REG_WIDTH_BYTES(ccs_limits[ccs_limit_offsets[limit].info].reg)) {
143 	case sizeof(u8):
144 		val = *(u8 *)ptr;
145 		break;
146 	case sizeof(u16):
147 		val = *(u16 *)ptr;
148 		break;
149 	case sizeof(u32):
150 		val = *(u32 *)ptr;
151 		break;
152 	default:
153 		WARN_ON(1);
154 		return 0;
155 	}
156 
157 	return ccs_reg_conv(sensor, ccs_limits[limit].reg, val);
158 }
159 
ccs_read_all_limits(struct ccs_sensor * sensor)160 static int ccs_read_all_limits(struct ccs_sensor *sensor)
161 {
162 	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
163 	void *ptr, *alloc, *end;
164 	unsigned int i, l;
165 	int ret;
166 
167 	kfree(sensor->ccs_limits);
168 	sensor->ccs_limits = NULL;
169 
170 	alloc = kzalloc(ccs_limit_offsets[CCS_L_LAST].lim, GFP_KERNEL);
171 	if (!alloc)
172 		return -ENOMEM;
173 
174 	end = alloc + ccs_limit_offsets[CCS_L_LAST].lim;
175 
176 	sensor->ccs_limits = alloc;
177 
178 	for (i = 0, l = 0, ptr = alloc; ccs_limits[i].size; i++) {
179 		u32 reg = ccs_limits[i].reg;
180 		unsigned int width = CCI_REG_WIDTH_BYTES(reg);
181 		unsigned int j;
182 
183 		if (l == CCS_L_LAST) {
184 			dev_err(&client->dev,
185 				"internal error --- end of limit array\n");
186 			ret = -EINVAL;
187 			goto out_err;
188 		}
189 
190 		for (j = 0; j < ccs_limits[i].size / width;
191 		     j++, reg += width, ptr += width) {
192 			char str[16] = "";
193 			u32 val;
194 
195 			ret = ccs_read_addr_noconv(sensor, reg, &val);
196 			if (ret)
197 				goto out_err;
198 
199 			if (ptr + width > end) {
200 				dev_err(&client->dev,
201 					"internal error --- no room for regs\n");
202 				ret = -EINVAL;
203 				goto out_err;
204 			}
205 
206 			if (!val && j)
207 				break;
208 
209 			ccs_assign_limit(ptr, width, val);
210 
211 #ifdef CONFIG_DYNAMIC_DEBUG
212 			if (reg & (CCS_FL_FLOAT_IREAL | CCS_FL_IREAL))
213 				snprintf(str, sizeof(str), ", %u",
214 					 ccs_reg_conv(sensor, reg, val));
215 #endif
216 
217 			dev_dbg(&client->dev,
218 				"0x%8.8x \"%s\" = %u, 0x%x%s\n",
219 				reg, ccs_limits[i].name, val, val, str);
220 		}
221 
222 		if (ccs_limits[i].flags & CCS_L_FL_SAME_REG)
223 			continue;
224 
225 		l++;
226 		ptr = alloc + ccs_limit_offsets[l].lim;
227 	}
228 
229 	if (l != CCS_L_LAST) {
230 		dev_err(&client->dev,
231 			"internal error --- insufficient limits\n");
232 		ret = -EINVAL;
233 		goto out_err;
234 	}
235 
236 	if (CCS_LIM(sensor, SCALER_N_MIN) < 16)
237 		ccs_replace_limit(sensor, CCS_L_SCALER_N_MIN, 0, 16);
238 
239 	return 0;
240 
241 out_err:
242 	sensor->ccs_limits = NULL;
243 	kfree(alloc);
244 
245 	return ret;
246 }
247 
ccs_read_frame_fmt(struct ccs_sensor * sensor)248 static int ccs_read_frame_fmt(struct ccs_sensor *sensor)
249 {
250 	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
251 	u8 fmt_model_type, fmt_model_subtype, ncol_desc, nrow_desc;
252 	unsigned int i;
253 	int pixel_count = 0;
254 	int line_count = 0;
255 
256 	fmt_model_type = CCS_LIM(sensor, FRAME_FORMAT_MODEL_TYPE);
257 	fmt_model_subtype = CCS_LIM(sensor, FRAME_FORMAT_MODEL_SUBTYPE);
258 
259 	ncol_desc = (fmt_model_subtype
260 		     & CCS_FRAME_FORMAT_MODEL_SUBTYPE_COLUMNS_MASK)
261 		>> CCS_FRAME_FORMAT_MODEL_SUBTYPE_COLUMNS_SHIFT;
262 	nrow_desc = fmt_model_subtype
263 		& CCS_FRAME_FORMAT_MODEL_SUBTYPE_ROWS_MASK;
264 
265 	dev_dbg(&client->dev, "format_model_type %s\n",
266 		fmt_model_type == CCS_FRAME_FORMAT_MODEL_TYPE_2_BYTE
267 		? "2 byte" :
268 		fmt_model_type == CCS_FRAME_FORMAT_MODEL_TYPE_4_BYTE
269 		? "4 byte" : "is simply bad");
270 
271 	dev_dbg(&client->dev, "%u column and %u row descriptors\n",
272 		ncol_desc, nrow_desc);
273 
274 	for (i = 0; i < ncol_desc + nrow_desc; i++) {
275 		u32 desc;
276 		u32 pixelcode;
277 		u32 pixels;
278 		char *which;
279 		char *what;
280 
281 		if (fmt_model_type == CCS_FRAME_FORMAT_MODEL_TYPE_2_BYTE) {
282 			desc = CCS_LIM_AT(sensor, FRAME_FORMAT_DESCRIPTOR, i);
283 
284 			pixelcode =
285 				(desc
286 				 & CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_MASK)
287 				>> CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_SHIFT;
288 			pixels = desc & CCS_FRAME_FORMAT_DESCRIPTOR_PIXELS_MASK;
289 		} else if (fmt_model_type
290 			   == CCS_FRAME_FORMAT_MODEL_TYPE_4_BYTE) {
291 			desc = CCS_LIM_AT(sensor, FRAME_FORMAT_DESCRIPTOR_4, i);
292 
293 			pixelcode =
294 				(desc
295 				 & CCS_FRAME_FORMAT_DESCRIPTOR_4_PCODE_MASK)
296 				>> CCS_FRAME_FORMAT_DESCRIPTOR_4_PCODE_SHIFT;
297 			pixels = desc &
298 				CCS_FRAME_FORMAT_DESCRIPTOR_4_PIXELS_MASK;
299 		} else {
300 			dev_dbg(&client->dev,
301 				"invalid frame format model type %u\n",
302 				fmt_model_type);
303 			return -EINVAL;
304 		}
305 
306 		if (i < ncol_desc)
307 			which = "columns";
308 		else
309 			which = "rows";
310 
311 		switch (pixelcode) {
312 		case CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_EMBEDDED:
313 			what = "embedded";
314 			break;
315 		case CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_DUMMY_PIXEL:
316 			what = "dummy";
317 			break;
318 		case CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_BLACK_PIXEL:
319 			what = "black";
320 			break;
321 		case CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_DARK_PIXEL:
322 			what = "dark";
323 			break;
324 		case CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_VISIBLE_PIXEL:
325 			what = "visible";
326 			break;
327 		default:
328 			what = "invalid";
329 			break;
330 		}
331 
332 		dev_dbg(&client->dev,
333 			"%s pixels: %u %s (pixelcode %u)\n",
334 			what, pixels, which, pixelcode);
335 
336 		if (i < ncol_desc) {
337 			if (pixelcode ==
338 			    CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_VISIBLE_PIXEL)
339 				sensor->visible_pixel_start = pixel_count;
340 			pixel_count += pixels;
341 			continue;
342 		}
343 
344 		/* Handle row descriptors */
345 		switch (pixelcode) {
346 		case CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_EMBEDDED:
347 			if (sensor->embedded_end)
348 				break;
349 			sensor->embedded_start = line_count;
350 			sensor->embedded_end = line_count + pixels;
351 			break;
352 		case CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_VISIBLE_PIXEL:
353 			sensor->image_start = line_count;
354 			break;
355 		}
356 		line_count += pixels;
357 	}
358 
359 	if (sensor->embedded_end > sensor->image_start) {
360 		dev_dbg(&client->dev,
361 			"adjusting image start line to %u (was %u)\n",
362 			sensor->embedded_end, sensor->image_start);
363 		sensor->image_start = sensor->embedded_end;
364 	}
365 
366 	dev_dbg(&client->dev, "embedded data from lines %u to %u\n",
367 		sensor->embedded_start, sensor->embedded_end);
368 	dev_dbg(&client->dev, "image data starts at line %u\n",
369 		sensor->image_start);
370 
371 	return 0;
372 }
373 
ccs_pll_configure(struct ccs_sensor * sensor)374 static int ccs_pll_configure(struct ccs_sensor *sensor)
375 {
376 	struct ccs_pll *pll = &sensor->pll;
377 	int rval;
378 
379 	rval = ccs_write(sensor, VT_PIX_CLK_DIV, pll->vt_bk.pix_clk_div);
380 	if (rval < 0)
381 		return rval;
382 
383 	rval = ccs_write(sensor, VT_SYS_CLK_DIV, pll->vt_bk.sys_clk_div);
384 	if (rval < 0)
385 		return rval;
386 
387 	rval = ccs_write(sensor, PRE_PLL_CLK_DIV, pll->vt_fr.pre_pll_clk_div);
388 	if (rval < 0)
389 		return rval;
390 
391 	rval = ccs_write(sensor, PLL_MULTIPLIER, pll->vt_fr.pll_multiplier);
392 	if (rval < 0)
393 		return rval;
394 
395 	if (!(CCS_LIM(sensor, PHY_CTRL_CAPABILITY) &
396 	      CCS_PHY_CTRL_CAPABILITY_AUTO_PHY_CTL)) {
397 		/* Lane op clock ratio does not apply here. */
398 		rval = ccs_write(sensor, REQUESTED_LINK_RATE,
399 				 DIV_ROUND_UP(pll->op_bk.sys_clk_freq_hz,
400 					      1000000 / 256 / 256) *
401 				 (pll->flags & CCS_PLL_FLAG_LANE_SPEED_MODEL ?
402 				  sensor->pll.csi2.lanes : 1) <<
403 				 (pll->flags & CCS_PLL_FLAG_OP_SYS_DDR ?
404 				  1 : 0));
405 		if (rval < 0)
406 			return rval;
407 	}
408 
409 	if (sensor->pll.flags & CCS_PLL_FLAG_NO_OP_CLOCKS)
410 		return 0;
411 
412 	rval = ccs_write(sensor, OP_PIX_CLK_DIV, pll->op_bk.pix_clk_div);
413 	if (rval < 0)
414 		return rval;
415 
416 	rval = ccs_write(sensor, OP_SYS_CLK_DIV, pll->op_bk.sys_clk_div);
417 	if (rval < 0)
418 		return rval;
419 
420 	if (!(pll->flags & CCS_PLL_FLAG_DUAL_PLL))
421 		return 0;
422 
423 	rval = ccs_write(sensor, PLL_MODE, CCS_PLL_MODE_DUAL);
424 	if (rval < 0)
425 		return rval;
426 
427 	rval = ccs_write(sensor, OP_PRE_PLL_CLK_DIV,
428 			 pll->op_fr.pre_pll_clk_div);
429 	if (rval < 0)
430 		return rval;
431 
432 	return ccs_write(sensor, OP_PLL_MULTIPLIER, pll->op_fr.pll_multiplier);
433 }
434 
ccs_pll_try(struct ccs_sensor * sensor,struct ccs_pll * pll)435 static int ccs_pll_try(struct ccs_sensor *sensor, struct ccs_pll *pll)
436 {
437 	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
438 	struct ccs_pll_limits lim = {
439 		.vt_fr = {
440 			.min_pre_pll_clk_div = CCS_LIM(sensor, MIN_PRE_PLL_CLK_DIV),
441 			.max_pre_pll_clk_div = CCS_LIM(sensor, MAX_PRE_PLL_CLK_DIV),
442 			.min_pll_ip_clk_freq_hz = CCS_LIM(sensor, MIN_PLL_IP_CLK_FREQ_MHZ),
443 			.max_pll_ip_clk_freq_hz = CCS_LIM(sensor, MAX_PLL_IP_CLK_FREQ_MHZ),
444 			.min_pll_multiplier = CCS_LIM(sensor, MIN_PLL_MULTIPLIER),
445 			.max_pll_multiplier = CCS_LIM(sensor, MAX_PLL_MULTIPLIER),
446 			.min_pll_op_clk_freq_hz = CCS_LIM(sensor, MIN_PLL_OP_CLK_FREQ_MHZ),
447 			.max_pll_op_clk_freq_hz = CCS_LIM(sensor, MAX_PLL_OP_CLK_FREQ_MHZ),
448 		},
449 		.op_fr = {
450 			.min_pre_pll_clk_div = CCS_LIM(sensor, MIN_OP_PRE_PLL_CLK_DIV),
451 			.max_pre_pll_clk_div = CCS_LIM(sensor, MAX_OP_PRE_PLL_CLK_DIV),
452 			.min_pll_ip_clk_freq_hz = CCS_LIM(sensor, MIN_OP_PLL_IP_CLK_FREQ_MHZ),
453 			.max_pll_ip_clk_freq_hz = CCS_LIM(sensor, MAX_OP_PLL_IP_CLK_FREQ_MHZ),
454 			.min_pll_multiplier = CCS_LIM(sensor, MIN_OP_PLL_MULTIPLIER),
455 			.max_pll_multiplier = CCS_LIM(sensor, MAX_OP_PLL_MULTIPLIER),
456 			.min_pll_op_clk_freq_hz = CCS_LIM(sensor, MIN_OP_PLL_OP_CLK_FREQ_MHZ),
457 			.max_pll_op_clk_freq_hz = CCS_LIM(sensor, MAX_OP_PLL_OP_CLK_FREQ_MHZ),
458 		},
459 		.op_bk = {
460 			 .min_sys_clk_div = CCS_LIM(sensor, MIN_OP_SYS_CLK_DIV),
461 			 .max_sys_clk_div = CCS_LIM(sensor, MAX_OP_SYS_CLK_DIV),
462 			 .min_pix_clk_div = CCS_LIM(sensor, MIN_OP_PIX_CLK_DIV),
463 			 .max_pix_clk_div = CCS_LIM(sensor, MAX_OP_PIX_CLK_DIV),
464 			 .min_sys_clk_freq_hz = CCS_LIM(sensor, MIN_OP_SYS_CLK_FREQ_MHZ),
465 			 .max_sys_clk_freq_hz = CCS_LIM(sensor, MAX_OP_SYS_CLK_FREQ_MHZ),
466 			 .min_pix_clk_freq_hz = CCS_LIM(sensor, MIN_OP_PIX_CLK_FREQ_MHZ),
467 			 .max_pix_clk_freq_hz = CCS_LIM(sensor, MAX_OP_PIX_CLK_FREQ_MHZ),
468 		 },
469 		.vt_bk = {
470 			 .min_sys_clk_div = CCS_LIM(sensor, MIN_VT_SYS_CLK_DIV),
471 			 .max_sys_clk_div = CCS_LIM(sensor, MAX_VT_SYS_CLK_DIV),
472 			 .min_pix_clk_div = CCS_LIM(sensor, MIN_VT_PIX_CLK_DIV),
473 			 .max_pix_clk_div = CCS_LIM(sensor, MAX_VT_PIX_CLK_DIV),
474 			 .min_sys_clk_freq_hz = CCS_LIM(sensor, MIN_VT_SYS_CLK_FREQ_MHZ),
475 			 .max_sys_clk_freq_hz = CCS_LIM(sensor, MAX_VT_SYS_CLK_FREQ_MHZ),
476 			 .min_pix_clk_freq_hz = CCS_LIM(sensor, MIN_VT_PIX_CLK_FREQ_MHZ),
477 			 .max_pix_clk_freq_hz = CCS_LIM(sensor, MAX_VT_PIX_CLK_FREQ_MHZ),
478 		 },
479 		.min_line_length_pck_bin = CCS_LIM(sensor, MIN_LINE_LENGTH_PCK_BIN),
480 		.min_line_length_pck = CCS_LIM(sensor, MIN_LINE_LENGTH_PCK),
481 	};
482 
483 	return ccs_pll_calculate(&client->dev, &lim, pll);
484 }
485 
ccs_pll_update(struct ccs_sensor * sensor)486 static int ccs_pll_update(struct ccs_sensor *sensor)
487 {
488 	struct ccs_pll *pll = &sensor->pll;
489 	int rval;
490 
491 	pll->binning_horizontal = sensor->binning_horizontal;
492 	pll->binning_vertical = sensor->binning_vertical;
493 	pll->link_freq =
494 		sensor->link_freq->qmenu_int[sensor->link_freq->val];
495 	pll->scale_m = sensor->scale_m;
496 	pll->bits_per_pixel = sensor->csi_format->compressed;
497 
498 	rval = ccs_pll_try(sensor, pll);
499 	if (rval < 0)
500 		return rval;
501 
502 	__v4l2_ctrl_s_ctrl_int64(sensor->pixel_rate_parray,
503 				 pll->pixel_rate_pixel_array);
504 	__v4l2_ctrl_s_ctrl_int64(sensor->pixel_rate_csi, pll->pixel_rate_csi);
505 
506 	return 0;
507 }
508 
509 
510 /*
511  *
512  * V4L2 Controls handling
513  *
514  */
515 
__ccs_update_exposure_limits(struct ccs_sensor * sensor)516 static void __ccs_update_exposure_limits(struct ccs_sensor *sensor)
517 {
518 	struct v4l2_ctrl *ctrl = sensor->exposure;
519 	int max;
520 
521 	max = sensor->pa_src.height + sensor->vblank->val -
522 		CCS_LIM(sensor, COARSE_INTEGRATION_TIME_MAX_MARGIN);
523 
524 	__v4l2_ctrl_modify_range(ctrl, ctrl->minimum, max, ctrl->step, max);
525 }
526 
527 /*
528  * Order matters.
529  *
530  * 1. Bits-per-pixel, descending.
531  * 2. Bits-per-pixel compressed, descending.
532  * 3. Pixel order, same as in pixel_order_str. Formats for all four pixel
533  *    orders must be defined.
534  */
535 static const struct ccs_csi_data_format ccs_csi_data_formats[] = {
536 	{ MEDIA_BUS_FMT_SGRBG16_1X16, 16, 16, CCS_PIXEL_ORDER_GRBG, },
537 	{ MEDIA_BUS_FMT_SRGGB16_1X16, 16, 16, CCS_PIXEL_ORDER_RGGB, },
538 	{ MEDIA_BUS_FMT_SBGGR16_1X16, 16, 16, CCS_PIXEL_ORDER_BGGR, },
539 	{ MEDIA_BUS_FMT_SGBRG16_1X16, 16, 16, CCS_PIXEL_ORDER_GBRG, },
540 	{ MEDIA_BUS_FMT_SGRBG14_1X14, 14, 14, CCS_PIXEL_ORDER_GRBG, },
541 	{ MEDIA_BUS_FMT_SRGGB14_1X14, 14, 14, CCS_PIXEL_ORDER_RGGB, },
542 	{ MEDIA_BUS_FMT_SBGGR14_1X14, 14, 14, CCS_PIXEL_ORDER_BGGR, },
543 	{ MEDIA_BUS_FMT_SGBRG14_1X14, 14, 14, CCS_PIXEL_ORDER_GBRG, },
544 	{ MEDIA_BUS_FMT_SGRBG12_1X12, 12, 12, CCS_PIXEL_ORDER_GRBG, },
545 	{ MEDIA_BUS_FMT_SRGGB12_1X12, 12, 12, CCS_PIXEL_ORDER_RGGB, },
546 	{ MEDIA_BUS_FMT_SBGGR12_1X12, 12, 12, CCS_PIXEL_ORDER_BGGR, },
547 	{ MEDIA_BUS_FMT_SGBRG12_1X12, 12, 12, CCS_PIXEL_ORDER_GBRG, },
548 	{ MEDIA_BUS_FMT_SGRBG10_1X10, 10, 10, CCS_PIXEL_ORDER_GRBG, },
549 	{ MEDIA_BUS_FMT_SRGGB10_1X10, 10, 10, CCS_PIXEL_ORDER_RGGB, },
550 	{ MEDIA_BUS_FMT_SBGGR10_1X10, 10, 10, CCS_PIXEL_ORDER_BGGR, },
551 	{ MEDIA_BUS_FMT_SGBRG10_1X10, 10, 10, CCS_PIXEL_ORDER_GBRG, },
552 	{ MEDIA_BUS_FMT_SGRBG10_DPCM8_1X8, 10, 8, CCS_PIXEL_ORDER_GRBG, },
553 	{ MEDIA_BUS_FMT_SRGGB10_DPCM8_1X8, 10, 8, CCS_PIXEL_ORDER_RGGB, },
554 	{ MEDIA_BUS_FMT_SBGGR10_DPCM8_1X8, 10, 8, CCS_PIXEL_ORDER_BGGR, },
555 	{ MEDIA_BUS_FMT_SGBRG10_DPCM8_1X8, 10, 8, CCS_PIXEL_ORDER_GBRG, },
556 	{ MEDIA_BUS_FMT_SGRBG8_1X8, 8, 8, CCS_PIXEL_ORDER_GRBG, },
557 	{ MEDIA_BUS_FMT_SRGGB8_1X8, 8, 8, CCS_PIXEL_ORDER_RGGB, },
558 	{ MEDIA_BUS_FMT_SBGGR8_1X8, 8, 8, CCS_PIXEL_ORDER_BGGR, },
559 	{ MEDIA_BUS_FMT_SGBRG8_1X8, 8, 8, CCS_PIXEL_ORDER_GBRG, },
560 };
561 
562 static const char *pixel_order_str[] = { "GRBG", "RGGB", "BGGR", "GBRG" };
563 
564 #define to_csi_format_idx(fmt) (((unsigned long)(fmt)			\
565 				 - (unsigned long)ccs_csi_data_formats) \
566 				/ sizeof(*ccs_csi_data_formats))
567 
ccs_pixel_order(struct ccs_sensor * sensor)568 static u32 ccs_pixel_order(struct ccs_sensor *sensor)
569 {
570 	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
571 	int flip = 0;
572 
573 	if (sensor->hflip) {
574 		if (sensor->hflip->val)
575 			flip |= CCS_IMAGE_ORIENTATION_HORIZONTAL_MIRROR;
576 
577 		if (sensor->vflip->val)
578 			flip |= CCS_IMAGE_ORIENTATION_VERTICAL_FLIP;
579 	}
580 
581 	dev_dbg(&client->dev, "flip %u\n", flip);
582 	return sensor->default_pixel_order ^ flip;
583 }
584 
ccs_update_mbus_formats(struct ccs_sensor * sensor)585 static void ccs_update_mbus_formats(struct ccs_sensor *sensor)
586 {
587 	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
588 	unsigned int csi_format_idx =
589 		to_csi_format_idx(sensor->csi_format) & ~3;
590 	unsigned int internal_csi_format_idx =
591 		to_csi_format_idx(sensor->internal_csi_format) & ~3;
592 	unsigned int pixel_order = ccs_pixel_order(sensor);
593 
594 	if (WARN_ON_ONCE(max(internal_csi_format_idx, csi_format_idx) +
595 			 pixel_order >= ARRAY_SIZE(ccs_csi_data_formats)))
596 		return;
597 
598 	sensor->mbus_frame_fmts =
599 		sensor->default_mbus_frame_fmts << pixel_order;
600 	sensor->csi_format =
601 		&ccs_csi_data_formats[csi_format_idx + pixel_order];
602 	sensor->internal_csi_format =
603 		&ccs_csi_data_formats[internal_csi_format_idx
604 					 + pixel_order];
605 
606 	dev_dbg(&client->dev, "new pixel order %s\n",
607 		pixel_order_str[pixel_order]);
608 }
609 
610 static const char * const ccs_test_patterns[] = {
611 	"Disabled",
612 	"Solid Colour",
613 	"Eight Vertical Colour Bars",
614 	"Colour Bars With Fade to Grey",
615 	"Pseudorandom Sequence (PN9)",
616 };
617 
ccs_set_ctrl(struct v4l2_ctrl * ctrl)618 static int ccs_set_ctrl(struct v4l2_ctrl *ctrl)
619 {
620 	struct ccs_sensor *sensor =
621 		container_of(ctrl->handler, struct ccs_subdev, ctrl_handler)
622 			->sensor;
623 	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
624 	int pm_status;
625 	u32 orient = 0;
626 	unsigned int i;
627 	int exposure;
628 	int rval;
629 
630 	switch (ctrl->id) {
631 	case V4L2_CID_HFLIP:
632 	case V4L2_CID_VFLIP:
633 		if (sensor->streaming)
634 			return -EBUSY;
635 
636 		if (sensor->hflip->val)
637 			orient |= CCS_IMAGE_ORIENTATION_HORIZONTAL_MIRROR;
638 
639 		if (sensor->vflip->val)
640 			orient |= CCS_IMAGE_ORIENTATION_VERTICAL_FLIP;
641 
642 		ccs_update_mbus_formats(sensor);
643 
644 		break;
645 	case V4L2_CID_VBLANK:
646 		exposure = sensor->exposure->val;
647 
648 		__ccs_update_exposure_limits(sensor);
649 
650 		if (exposure > sensor->exposure->maximum) {
651 			sensor->exposure->val =	sensor->exposure->maximum;
652 			rval = ccs_set_ctrl(sensor->exposure);
653 			if (rval < 0)
654 				return rval;
655 		}
656 
657 		break;
658 	case V4L2_CID_LINK_FREQ:
659 		if (sensor->streaming)
660 			return -EBUSY;
661 
662 		rval = ccs_pll_update(sensor);
663 		if (rval)
664 			return rval;
665 
666 		return 0;
667 	case V4L2_CID_TEST_PATTERN:
668 		for (i = 0; i < ARRAY_SIZE(sensor->test_data); i++)
669 			v4l2_ctrl_activate(
670 				sensor->test_data[i],
671 				ctrl->val ==
672 				V4L2_SMIAPP_TEST_PATTERN_MODE_SOLID_COLOUR);
673 
674 		break;
675 	}
676 
677 	pm_status = pm_runtime_get_if_active(&client->dev);
678 	if (!pm_status)
679 		return 0;
680 
681 	switch (ctrl->id) {
682 	case V4L2_CID_ANALOGUE_GAIN:
683 		rval = ccs_write(sensor, ANALOG_GAIN_CODE_GLOBAL, ctrl->val);
684 
685 		break;
686 
687 	case V4L2_CID_CCS_ANALOGUE_LINEAR_GAIN:
688 		rval = ccs_write(sensor, ANALOG_LINEAR_GAIN_GLOBAL, ctrl->val);
689 
690 		break;
691 
692 	case V4L2_CID_CCS_ANALOGUE_EXPONENTIAL_GAIN:
693 		rval = ccs_write(sensor, ANALOG_EXPONENTIAL_GAIN_GLOBAL,
694 				 ctrl->val);
695 
696 		break;
697 
698 	case V4L2_CID_DIGITAL_GAIN:
699 		if (CCS_LIM(sensor, DIGITAL_GAIN_CAPABILITY) ==
700 		    CCS_DIGITAL_GAIN_CAPABILITY_GLOBAL) {
701 			rval = ccs_write(sensor, DIGITAL_GAIN_GLOBAL,
702 					 ctrl->val);
703 			break;
704 		}
705 
706 		rval = ccs_write_addr(sensor,
707 				      SMIAPP_REG_U16_DIGITAL_GAIN_GREENR,
708 				      ctrl->val);
709 		if (rval)
710 			break;
711 
712 		rval = ccs_write_addr(sensor,
713 				      SMIAPP_REG_U16_DIGITAL_GAIN_RED,
714 				      ctrl->val);
715 		if (rval)
716 			break;
717 
718 		rval = ccs_write_addr(sensor,
719 				      SMIAPP_REG_U16_DIGITAL_GAIN_BLUE,
720 				      ctrl->val);
721 		if (rval)
722 			break;
723 
724 		rval = ccs_write_addr(sensor,
725 				      SMIAPP_REG_U16_DIGITAL_GAIN_GREENB,
726 				      ctrl->val);
727 
728 		break;
729 	case V4L2_CID_EXPOSURE:
730 		rval = ccs_write(sensor, COARSE_INTEGRATION_TIME, ctrl->val);
731 
732 		break;
733 	case V4L2_CID_HFLIP:
734 	case V4L2_CID_VFLIP:
735 		rval = ccs_write(sensor, IMAGE_ORIENTATION, orient);
736 
737 		break;
738 	case V4L2_CID_VBLANK:
739 		rval = ccs_write(sensor, FRAME_LENGTH_LINES,
740 				 sensor->pa_src.height + ctrl->val);
741 
742 		break;
743 	case V4L2_CID_HBLANK:
744 		rval = ccs_write(sensor, LINE_LENGTH_PCK,
745 				 sensor->pa_src.width + ctrl->val);
746 
747 		break;
748 	case V4L2_CID_TEST_PATTERN:
749 		rval = ccs_write(sensor, TEST_PATTERN_MODE, ctrl->val);
750 
751 		break;
752 	case V4L2_CID_TEST_PATTERN_RED:
753 		rval = ccs_write(sensor, TEST_DATA_RED, ctrl->val);
754 
755 		break;
756 	case V4L2_CID_TEST_PATTERN_GREENR:
757 		rval = ccs_write(sensor, TEST_DATA_GREENR, ctrl->val);
758 
759 		break;
760 	case V4L2_CID_TEST_PATTERN_BLUE:
761 		rval = ccs_write(sensor, TEST_DATA_BLUE, ctrl->val);
762 
763 		break;
764 	case V4L2_CID_TEST_PATTERN_GREENB:
765 		rval = ccs_write(sensor, TEST_DATA_GREENB, ctrl->val);
766 
767 		break;
768 	case V4L2_CID_CCS_SHADING_CORRECTION:
769 		rval = ccs_write(sensor, SHADING_CORRECTION_EN,
770 				 ctrl->val ? CCS_SHADING_CORRECTION_EN_ENABLE :
771 				 0);
772 
773 		if (!rval && sensor->luminance_level)
774 			v4l2_ctrl_activate(sensor->luminance_level, ctrl->val);
775 
776 		break;
777 	case V4L2_CID_CCS_LUMINANCE_CORRECTION_LEVEL:
778 		rval = ccs_write(sensor, LUMINANCE_CORRECTION_LEVEL, ctrl->val);
779 
780 		break;
781 	case V4L2_CID_PIXEL_RATE:
782 		/* For v4l2_ctrl_s_ctrl_int64() used internally. */
783 		rval = 0;
784 
785 		break;
786 	default:
787 		rval = -EINVAL;
788 	}
789 
790 	if (pm_status > 0)
791 		pm_runtime_put_autosuspend(&client->dev);
792 
793 	return rval;
794 }
795 
796 static const struct v4l2_ctrl_ops ccs_ctrl_ops = {
797 	.s_ctrl = ccs_set_ctrl,
798 };
799 
ccs_init_controls(struct ccs_sensor * sensor)800 static int ccs_init_controls(struct ccs_sensor *sensor)
801 {
802 	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
803 	struct v4l2_fwnode_device_properties props;
804 	int rval;
805 
806 	rval = v4l2_ctrl_handler_init(&sensor->pixel_array->ctrl_handler, 19);
807 	if (rval)
808 		return rval;
809 
810 	sensor->pixel_array->ctrl_handler.lock = &sensor->mutex;
811 
812 	rval = v4l2_fwnode_device_parse(&client->dev, &props);
813 	if (rval)
814 		return rval;
815 
816 	rval = v4l2_ctrl_new_fwnode_properties(&sensor->pixel_array->ctrl_handler,
817 					       &ccs_ctrl_ops, &props);
818 	if (rval)
819 		return rval;
820 
821 	switch (CCS_LIM(sensor, ANALOG_GAIN_CAPABILITY)) {
822 	case CCS_ANALOG_GAIN_CAPABILITY_GLOBAL: {
823 		struct {
824 			const char *name;
825 			u32 id;
826 			s32 value;
827 		} const gain_ctrls[] = {
828 			{ "Analogue Gain m0", V4L2_CID_CCS_ANALOGUE_GAIN_M0,
829 			  CCS_LIM(sensor, ANALOG_GAIN_M0), },
830 			{ "Analogue Gain c0", V4L2_CID_CCS_ANALOGUE_GAIN_C0,
831 			  CCS_LIM(sensor, ANALOG_GAIN_C0), },
832 			{ "Analogue Gain m1", V4L2_CID_CCS_ANALOGUE_GAIN_M1,
833 			  CCS_LIM(sensor, ANALOG_GAIN_M1), },
834 			{ "Analogue Gain c1", V4L2_CID_CCS_ANALOGUE_GAIN_C1,
835 			  CCS_LIM(sensor, ANALOG_GAIN_C1), },
836 		};
837 		struct v4l2_ctrl_config ctrl_cfg = {
838 			.type = V4L2_CTRL_TYPE_INTEGER,
839 			.ops = &ccs_ctrl_ops,
840 			.flags = V4L2_CTRL_FLAG_READ_ONLY,
841 			.step = 1,
842 		};
843 		unsigned int i;
844 
845 		for (i = 0; i < ARRAY_SIZE(gain_ctrls); i++) {
846 			ctrl_cfg.name = gain_ctrls[i].name;
847 			ctrl_cfg.id = gain_ctrls[i].id;
848 			ctrl_cfg.min = ctrl_cfg.max = ctrl_cfg.def =
849 				gain_ctrls[i].value;
850 
851 			v4l2_ctrl_new_custom(&sensor->pixel_array->ctrl_handler,
852 					     &ctrl_cfg, NULL);
853 		}
854 
855 		v4l2_ctrl_new_std(&sensor->pixel_array->ctrl_handler,
856 				  &ccs_ctrl_ops, V4L2_CID_ANALOGUE_GAIN,
857 				  CCS_LIM(sensor, ANALOG_GAIN_CODE_MIN),
858 				  CCS_LIM(sensor, ANALOG_GAIN_CODE_MAX),
859 				  max(CCS_LIM(sensor, ANALOG_GAIN_CODE_STEP),
860 				      1U),
861 				  CCS_LIM(sensor, ANALOG_GAIN_CODE_MIN));
862 	}
863 		break;
864 
865 	case CCS_ANALOG_GAIN_CAPABILITY_ALTERNATE_GLOBAL: {
866 		struct {
867 			const char *name;
868 			u32 id;
869 			u16 min, max, step;
870 		} const gain_ctrls[] = {
871 			{
872 				"Analogue Linear Gain",
873 				V4L2_CID_CCS_ANALOGUE_LINEAR_GAIN,
874 				CCS_LIM(sensor, ANALOG_LINEAR_GAIN_MIN),
875 				CCS_LIM(sensor, ANALOG_LINEAR_GAIN_MAX),
876 				max(CCS_LIM(sensor,
877 					    ANALOG_LINEAR_GAIN_STEP_SIZE),
878 				    1U),
879 			},
880 			{
881 				"Analogue Exponential Gain",
882 				V4L2_CID_CCS_ANALOGUE_EXPONENTIAL_GAIN,
883 				CCS_LIM(sensor, ANALOG_EXPONENTIAL_GAIN_MIN),
884 				CCS_LIM(sensor, ANALOG_EXPONENTIAL_GAIN_MAX),
885 				max(CCS_LIM(sensor,
886 					    ANALOG_EXPONENTIAL_GAIN_STEP_SIZE),
887 				    1U),
888 			},
889 		};
890 		struct v4l2_ctrl_config ctrl_cfg = {
891 			.type = V4L2_CTRL_TYPE_INTEGER,
892 			.ops = &ccs_ctrl_ops,
893 		};
894 		unsigned int i;
895 
896 		for (i = 0; i < ARRAY_SIZE(gain_ctrls); i++) {
897 			ctrl_cfg.name = gain_ctrls[i].name;
898 			ctrl_cfg.min = ctrl_cfg.def = gain_ctrls[i].min;
899 			ctrl_cfg.max = gain_ctrls[i].max;
900 			ctrl_cfg.step = gain_ctrls[i].step;
901 			ctrl_cfg.id = gain_ctrls[i].id;
902 
903 			v4l2_ctrl_new_custom(&sensor->pixel_array->ctrl_handler,
904 					     &ctrl_cfg, NULL);
905 		}
906 	}
907 	}
908 
909 	if (CCS_LIM(sensor, SHADING_CORRECTION_CAPABILITY) &
910 	    (CCS_SHADING_CORRECTION_CAPABILITY_COLOR_SHADING |
911 	     CCS_SHADING_CORRECTION_CAPABILITY_LUMINANCE_CORRECTION)) {
912 		const struct v4l2_ctrl_config ctrl_cfg = {
913 			.name = "Shading Correction",
914 			.type = V4L2_CTRL_TYPE_BOOLEAN,
915 			.id = V4L2_CID_CCS_SHADING_CORRECTION,
916 			.ops = &ccs_ctrl_ops,
917 			.max = 1,
918 			.step = 1,
919 		};
920 
921 		v4l2_ctrl_new_custom(&sensor->pixel_array->ctrl_handler,
922 				     &ctrl_cfg, NULL);
923 	}
924 
925 	if (CCS_LIM(sensor, SHADING_CORRECTION_CAPABILITY) &
926 	    CCS_SHADING_CORRECTION_CAPABILITY_LUMINANCE_CORRECTION) {
927 		const struct v4l2_ctrl_config ctrl_cfg = {
928 			.name = "Luminance Correction Level",
929 			.type = V4L2_CTRL_TYPE_BOOLEAN,
930 			.id = V4L2_CID_CCS_LUMINANCE_CORRECTION_LEVEL,
931 			.ops = &ccs_ctrl_ops,
932 			.max = 255,
933 			.step = 1,
934 			.def = 128,
935 		};
936 
937 		sensor->luminance_level =
938 			v4l2_ctrl_new_custom(&sensor->pixel_array->ctrl_handler,
939 					     &ctrl_cfg, NULL);
940 	}
941 
942 	if (CCS_LIM(sensor, DIGITAL_GAIN_CAPABILITY) ==
943 	    CCS_DIGITAL_GAIN_CAPABILITY_GLOBAL ||
944 	    CCS_LIM(sensor, DIGITAL_GAIN_CAPABILITY) ==
945 	    SMIAPP_DIGITAL_GAIN_CAPABILITY_PER_CHANNEL)
946 		v4l2_ctrl_new_std(&sensor->pixel_array->ctrl_handler,
947 				  &ccs_ctrl_ops, V4L2_CID_DIGITAL_GAIN,
948 				  CCS_LIM(sensor, DIGITAL_GAIN_MIN),
949 				  CCS_LIM(sensor, DIGITAL_GAIN_MAX),
950 				  max(CCS_LIM(sensor, DIGITAL_GAIN_STEP_SIZE),
951 				      1U),
952 				  0x100);
953 
954 	/* Exposure limits will be updated soon, use just something here. */
955 	sensor->exposure = v4l2_ctrl_new_std(
956 		&sensor->pixel_array->ctrl_handler, &ccs_ctrl_ops,
957 		V4L2_CID_EXPOSURE, 0, 0, 1, 0);
958 
959 	sensor->hflip = v4l2_ctrl_new_std(
960 		&sensor->pixel_array->ctrl_handler, &ccs_ctrl_ops,
961 		V4L2_CID_HFLIP, 0, 1, 1, 0);
962 	sensor->vflip = v4l2_ctrl_new_std(
963 		&sensor->pixel_array->ctrl_handler, &ccs_ctrl_ops,
964 		V4L2_CID_VFLIP, 0, 1, 1, 0);
965 
966 	sensor->vblank = v4l2_ctrl_new_std(
967 		&sensor->pixel_array->ctrl_handler, &ccs_ctrl_ops,
968 		V4L2_CID_VBLANK, 0, 1, 1, 0);
969 
970 	if (sensor->vblank)
971 		sensor->vblank->flags |= V4L2_CTRL_FLAG_UPDATE;
972 
973 	sensor->hblank = v4l2_ctrl_new_std(
974 		&sensor->pixel_array->ctrl_handler, &ccs_ctrl_ops,
975 		V4L2_CID_HBLANK, 0, 1, 1, 0);
976 
977 	if (sensor->hblank)
978 		sensor->hblank->flags |= V4L2_CTRL_FLAG_UPDATE;
979 
980 	sensor->pixel_rate_parray = v4l2_ctrl_new_std(
981 		&sensor->pixel_array->ctrl_handler, &ccs_ctrl_ops,
982 		V4L2_CID_PIXEL_RATE, 1, INT_MAX, 1, 1);
983 
984 	v4l2_ctrl_new_std_menu_items(&sensor->pixel_array->ctrl_handler,
985 				     &ccs_ctrl_ops, V4L2_CID_TEST_PATTERN,
986 				     ARRAY_SIZE(ccs_test_patterns) - 1,
987 				     0, 0, ccs_test_patterns);
988 
989 	if (sensor->pixel_array->ctrl_handler.error) {
990 		dev_err(&client->dev,
991 			"pixel array controls initialization failed (%d)\n",
992 			sensor->pixel_array->ctrl_handler.error);
993 		return sensor->pixel_array->ctrl_handler.error;
994 	}
995 
996 	sensor->pixel_array->sd.ctrl_handler =
997 		&sensor->pixel_array->ctrl_handler;
998 
999 	v4l2_ctrl_cluster(2, &sensor->hflip);
1000 
1001 	rval = v4l2_ctrl_handler_init(&sensor->src->ctrl_handler, 0);
1002 	if (rval)
1003 		return rval;
1004 
1005 	sensor->src->ctrl_handler.lock = &sensor->mutex;
1006 
1007 	sensor->pixel_rate_csi = v4l2_ctrl_new_std(
1008 		&sensor->src->ctrl_handler, &ccs_ctrl_ops,
1009 		V4L2_CID_PIXEL_RATE, 1, INT_MAX, 1, 1);
1010 
1011 	if (sensor->src->ctrl_handler.error) {
1012 		dev_err(&client->dev,
1013 			"src controls initialization failed (%d)\n",
1014 			sensor->src->ctrl_handler.error);
1015 		return sensor->src->ctrl_handler.error;
1016 	}
1017 
1018 	sensor->src->sd.ctrl_handler = &sensor->src->ctrl_handler;
1019 
1020 	return 0;
1021 }
1022 
1023 /*
1024  * For controls that require information on available media bus codes
1025  * and linke frequencies.
1026  */
ccs_init_late_controls(struct ccs_sensor * sensor)1027 static int ccs_init_late_controls(struct ccs_sensor *sensor)
1028 {
1029 	unsigned long *valid_link_freqs = &sensor->valid_link_freqs[
1030 		sensor->csi_format->compressed - sensor->compressed_min_bpp];
1031 	unsigned int i;
1032 
1033 	for (i = 0; i < ARRAY_SIZE(sensor->test_data); i++) {
1034 		int max_value = (1 << sensor->csi_format->width) - 1;
1035 
1036 		sensor->test_data[i] = v4l2_ctrl_new_std(
1037 				&sensor->pixel_array->ctrl_handler,
1038 				&ccs_ctrl_ops, V4L2_CID_TEST_PATTERN_RED + i,
1039 				0, max_value, 1, max_value);
1040 	}
1041 
1042 	sensor->link_freq = v4l2_ctrl_new_int_menu(
1043 		&sensor->src->ctrl_handler, &ccs_ctrl_ops,
1044 		V4L2_CID_LINK_FREQ, __fls(*valid_link_freqs),
1045 		__ffs(*valid_link_freqs), sensor->hwcfg.op_sys_clock);
1046 
1047 	return sensor->src->ctrl_handler.error;
1048 }
1049 
ccs_free_controls(struct ccs_sensor * sensor)1050 static void ccs_free_controls(struct ccs_sensor *sensor)
1051 {
1052 	unsigned int i;
1053 
1054 	for (i = 0; i < sensor->ssds_used; i++)
1055 		v4l2_ctrl_handler_free(&sensor->ssds[i].ctrl_handler);
1056 }
1057 
ccs_get_mbus_formats(struct ccs_sensor * sensor)1058 static int ccs_get_mbus_formats(struct ccs_sensor *sensor)
1059 {
1060 	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1061 	struct ccs_pll *pll = &sensor->pll;
1062 	u8 compressed_max_bpp = 0;
1063 	unsigned int type, n;
1064 	unsigned int i, pixel_order;
1065 	int rval;
1066 
1067 	type = CCS_LIM(sensor, DATA_FORMAT_MODEL_TYPE);
1068 
1069 	dev_dbg(&client->dev, "data_format_model_type %u\n", type);
1070 
1071 	rval = ccs_read(sensor, PIXEL_ORDER, &pixel_order);
1072 	if (rval)
1073 		return rval;
1074 
1075 	if (pixel_order >= ARRAY_SIZE(pixel_order_str)) {
1076 		dev_dbg(&client->dev, "bad pixel order %u\n", pixel_order);
1077 		return -EINVAL;
1078 	}
1079 
1080 	dev_dbg(&client->dev, "pixel order %u (%s)\n", pixel_order,
1081 		pixel_order_str[pixel_order]);
1082 
1083 	switch (type) {
1084 	case CCS_DATA_FORMAT_MODEL_TYPE_NORMAL:
1085 		n = SMIAPP_DATA_FORMAT_MODEL_TYPE_NORMAL_N;
1086 		break;
1087 	case CCS_DATA_FORMAT_MODEL_TYPE_EXTENDED:
1088 		n = CCS_LIM_DATA_FORMAT_DESCRIPTOR_MAX_N + 1;
1089 		break;
1090 	default:
1091 		return -EINVAL;
1092 	}
1093 
1094 	sensor->default_pixel_order = pixel_order;
1095 	sensor->mbus_frame_fmts = 0;
1096 
1097 	for (i = 0; i < n; i++) {
1098 		unsigned int fmt, j;
1099 
1100 		fmt = CCS_LIM_AT(sensor, DATA_FORMAT_DESCRIPTOR, i);
1101 
1102 		dev_dbg(&client->dev, "%u: bpp %u, compressed %u\n",
1103 			i, fmt >> 8, (u8)fmt);
1104 
1105 		for (j = 0; j < ARRAY_SIZE(ccs_csi_data_formats); j++) {
1106 			const struct ccs_csi_data_format *f =
1107 				&ccs_csi_data_formats[j];
1108 
1109 			if (f->pixel_order != CCS_PIXEL_ORDER_GRBG)
1110 				continue;
1111 
1112 			if (f->width != fmt >>
1113 			    CCS_DATA_FORMAT_DESCRIPTOR_UNCOMPRESSED_SHIFT ||
1114 			    f->compressed !=
1115 			    (fmt & CCS_DATA_FORMAT_DESCRIPTOR_COMPRESSED_MASK))
1116 				continue;
1117 
1118 			dev_dbg(&client->dev, "jolly good! %u\n", j);
1119 
1120 			sensor->default_mbus_frame_fmts |= 1 << j;
1121 		}
1122 	}
1123 
1124 	/* Figure out which BPP values can be used with which formats. */
1125 	pll->binning_horizontal = 1;
1126 	pll->binning_vertical = 1;
1127 	pll->scale_m = sensor->scale_m;
1128 
1129 	for (i = 0; i < ARRAY_SIZE(ccs_csi_data_formats); i++) {
1130 		sensor->compressed_min_bpp =
1131 			min(ccs_csi_data_formats[i].compressed,
1132 			    sensor->compressed_min_bpp);
1133 		compressed_max_bpp =
1134 			max(ccs_csi_data_formats[i].compressed,
1135 			    compressed_max_bpp);
1136 	}
1137 
1138 	sensor->valid_link_freqs = devm_kcalloc(
1139 		&client->dev,
1140 		compressed_max_bpp - sensor->compressed_min_bpp + 1,
1141 		sizeof(*sensor->valid_link_freqs), GFP_KERNEL);
1142 	if (!sensor->valid_link_freqs)
1143 		return -ENOMEM;
1144 
1145 	for (i = 0; i < ARRAY_SIZE(ccs_csi_data_formats); i++) {
1146 		const struct ccs_csi_data_format *f =
1147 			&ccs_csi_data_formats[i];
1148 		unsigned long *valid_link_freqs =
1149 			&sensor->valid_link_freqs[
1150 				f->compressed - sensor->compressed_min_bpp];
1151 		unsigned int j;
1152 
1153 		if (!(sensor->default_mbus_frame_fmts & 1 << i))
1154 			continue;
1155 
1156 		pll->bits_per_pixel = f->compressed;
1157 
1158 		for (j = 0; sensor->hwcfg.op_sys_clock[j]; j++) {
1159 			pll->link_freq = sensor->hwcfg.op_sys_clock[j];
1160 
1161 			rval = ccs_pll_try(sensor, pll);
1162 			dev_dbg(&client->dev, "link freq %u Hz, bpp %u %s\n",
1163 				pll->link_freq, pll->bits_per_pixel,
1164 				rval ? "not ok" : "ok");
1165 			if (rval)
1166 				continue;
1167 
1168 			set_bit(j, valid_link_freqs);
1169 		}
1170 
1171 		if (!*valid_link_freqs) {
1172 			dev_info(&client->dev,
1173 				 "no valid link frequencies for %u bpp\n",
1174 				 f->compressed);
1175 			sensor->default_mbus_frame_fmts &= ~BIT(i);
1176 			continue;
1177 		}
1178 
1179 		if (!sensor->csi_format
1180 		    || f->width > sensor->csi_format->width
1181 		    || (f->width == sensor->csi_format->width
1182 			&& f->compressed > sensor->csi_format->compressed)) {
1183 			sensor->csi_format = f;
1184 			sensor->internal_csi_format = f;
1185 		}
1186 	}
1187 
1188 	if (!sensor->csi_format) {
1189 		dev_err(&client->dev, "no supported mbus code found\n");
1190 		return -EINVAL;
1191 	}
1192 
1193 	ccs_update_mbus_formats(sensor);
1194 
1195 	return 0;
1196 }
1197 
ccs_update_blanking(struct ccs_sensor * sensor)1198 static void ccs_update_blanking(struct ccs_sensor *sensor)
1199 {
1200 	struct v4l2_ctrl *vblank = sensor->vblank;
1201 	struct v4l2_ctrl *hblank = sensor->hblank;
1202 	u16 min_fll, max_fll, min_llp, max_llp, min_lbp;
1203 	int min, max;
1204 
1205 	if (sensor->binning_vertical > 1 || sensor->binning_horizontal > 1) {
1206 		min_fll = CCS_LIM(sensor, MIN_FRAME_LENGTH_LINES_BIN);
1207 		max_fll = CCS_LIM(sensor, MAX_FRAME_LENGTH_LINES_BIN);
1208 		min_llp = CCS_LIM(sensor, MIN_LINE_LENGTH_PCK_BIN);
1209 		max_llp = CCS_LIM(sensor, MAX_LINE_LENGTH_PCK_BIN);
1210 		min_lbp = CCS_LIM(sensor, MIN_LINE_BLANKING_PCK_BIN);
1211 	} else {
1212 		min_fll = CCS_LIM(sensor, MIN_FRAME_LENGTH_LINES);
1213 		max_fll = CCS_LIM(sensor, MAX_FRAME_LENGTH_LINES);
1214 		min_llp = CCS_LIM(sensor, MIN_LINE_LENGTH_PCK);
1215 		max_llp = CCS_LIM(sensor, MAX_LINE_LENGTH_PCK);
1216 		min_lbp = CCS_LIM(sensor, MIN_LINE_BLANKING_PCK);
1217 	}
1218 
1219 	min = max_t(int,
1220 		    CCS_LIM(sensor, MIN_FRAME_BLANKING_LINES),
1221 		    min_fll - sensor->pa_src.height);
1222 	max = max_fll -	sensor->pa_src.height;
1223 
1224 	__v4l2_ctrl_modify_range(vblank, min, max, vblank->step, min);
1225 
1226 	min = max_t(int, min_llp - sensor->pa_src.width, min_lbp);
1227 	max = max_llp - sensor->pa_src.width;
1228 
1229 	__v4l2_ctrl_modify_range(hblank, min, max, hblank->step, min);
1230 
1231 	__ccs_update_exposure_limits(sensor);
1232 }
1233 
ccs_pll_blanking_update(struct ccs_sensor * sensor)1234 static int ccs_pll_blanking_update(struct ccs_sensor *sensor)
1235 {
1236 	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1237 	int rval;
1238 
1239 	rval = ccs_pll_update(sensor);
1240 	if (rval < 0)
1241 		return rval;
1242 
1243 	/* Output from pixel array, including blanking */
1244 	ccs_update_blanking(sensor);
1245 
1246 	dev_dbg(&client->dev, "vblank\t\t%d\n", sensor->vblank->val);
1247 	dev_dbg(&client->dev, "hblank\t\t%d\n", sensor->hblank->val);
1248 
1249 	dev_dbg(&client->dev, "real timeperframe\t100/%d\n",
1250 		sensor->pll.pixel_rate_pixel_array /
1251 		((sensor->pa_src.width + sensor->hblank->val) *
1252 		 (sensor->pa_src.height + sensor->vblank->val) / 100));
1253 
1254 	return 0;
1255 }
1256 
1257 /*
1258  *
1259  * SMIA++ NVM handling
1260  *
1261  */
1262 
ccs_read_nvm_page(struct ccs_sensor * sensor,u32 p,u8 * nvm,u8 * status)1263 static int ccs_read_nvm_page(struct ccs_sensor *sensor, u32 p, u8 *nvm,
1264 			     u8 *status)
1265 {
1266 	unsigned int i;
1267 	int rval;
1268 	u32 s;
1269 
1270 	*status = 0;
1271 
1272 	rval = ccs_write(sensor, DATA_TRANSFER_IF_1_PAGE_SELECT, p);
1273 	if (rval)
1274 		return rval;
1275 
1276 	rval = ccs_write(sensor, DATA_TRANSFER_IF_1_CTRL,
1277 			 CCS_DATA_TRANSFER_IF_1_CTRL_ENABLE);
1278 	if (rval)
1279 		return rval;
1280 
1281 	rval = ccs_read(sensor, DATA_TRANSFER_IF_1_STATUS, &s);
1282 	if (rval)
1283 		return rval;
1284 
1285 	if (s & CCS_DATA_TRANSFER_IF_1_STATUS_IMPROPER_IF_USAGE) {
1286 		*status = s;
1287 		return -ENODATA;
1288 	}
1289 
1290 	if (CCS_LIM(sensor, DATA_TRANSFER_IF_CAPABILITY) &
1291 	    CCS_DATA_TRANSFER_IF_CAPABILITY_POLLING) {
1292 		for (i = 1000; i > 0; i--) {
1293 			if (s & CCS_DATA_TRANSFER_IF_1_STATUS_READ_IF_READY)
1294 				break;
1295 
1296 			rval = ccs_read(sensor, DATA_TRANSFER_IF_1_STATUS, &s);
1297 			if (rval)
1298 				return rval;
1299 		}
1300 
1301 		if (!i)
1302 			return -ETIMEDOUT;
1303 	}
1304 
1305 	for (i = 0; i <= CCS_LIM_DATA_TRANSFER_IF_1_DATA_MAX_P; i++) {
1306 		u32 v;
1307 
1308 		rval = ccs_read(sensor, DATA_TRANSFER_IF_1_DATA(i), &v);
1309 		if (rval)
1310 			return rval;
1311 
1312 		*nvm++ = v;
1313 	}
1314 
1315 	return 0;
1316 }
1317 
ccs_read_nvm(struct ccs_sensor * sensor,unsigned char * nvm,size_t nvm_size)1318 static int ccs_read_nvm(struct ccs_sensor *sensor, unsigned char *nvm,
1319 			size_t nvm_size)
1320 {
1321 	u8 status = 0;
1322 	u32 p;
1323 	int rval = 0, rval2;
1324 
1325 	for (p = 0; p < nvm_size / (CCS_LIM_DATA_TRANSFER_IF_1_DATA_MAX_P + 1)
1326 		     && !rval; p++) {
1327 		rval = ccs_read_nvm_page(sensor, p, nvm, &status);
1328 		nvm += CCS_LIM_DATA_TRANSFER_IF_1_DATA_MAX_P + 1;
1329 	}
1330 
1331 	if (rval == -ENODATA &&
1332 	    status & CCS_DATA_TRANSFER_IF_1_STATUS_IMPROPER_IF_USAGE)
1333 		rval = 0;
1334 
1335 	rval2 = ccs_write(sensor, DATA_TRANSFER_IF_1_CTRL, 0);
1336 	if (rval < 0)
1337 		return rval;
1338 	else
1339 		return rval2 ?: p * (CCS_LIM_DATA_TRANSFER_IF_1_DATA_MAX_P + 1);
1340 }
1341 
1342 /*
1343  *
1344  * SMIA++ CCI address control
1345  *
1346  */
ccs_change_cci_addr(struct ccs_sensor * sensor)1347 static int ccs_change_cci_addr(struct ccs_sensor *sensor)
1348 {
1349 	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1350 	int rval;
1351 	u32 val;
1352 
1353 	client->addr = sensor->hwcfg.i2c_addr_dfl;
1354 
1355 	rval = read_poll_timeout(ccs_write, rval, !rval, CCS_RESET_DELAY_US,
1356 				 CCS_RESET_TIMEOUT_US, false, sensor,
1357 				 CCI_ADDRESS_CTRL,
1358 				 sensor->hwcfg.i2c_addr_alt << 1);
1359 	if (rval)
1360 		return rval;
1361 
1362 	client->addr = sensor->hwcfg.i2c_addr_alt;
1363 
1364 	/* verify addr change went ok */
1365 	rval = ccs_read(sensor, CCI_ADDRESS_CTRL, &val);
1366 	if (rval)
1367 		return rval;
1368 
1369 	if (val != sensor->hwcfg.i2c_addr_alt << 1)
1370 		return -ENODEV;
1371 
1372 	return 0;
1373 }
1374 
1375 /*
1376  *
1377  * SMIA++ Mode Control
1378  *
1379  */
ccs_setup_flash_strobe(struct ccs_sensor * sensor)1380 static int ccs_setup_flash_strobe(struct ccs_sensor *sensor)
1381 {
1382 	struct ccs_flash_strobe_parms *strobe_setup;
1383 	unsigned int ext_freq = sensor->hwcfg.ext_clk;
1384 	u32 tmp;
1385 	u32 strobe_adjustment;
1386 	u32 strobe_width_high_rs;
1387 	int rval;
1388 
1389 	strobe_setup = sensor->hwcfg.strobe_setup;
1390 
1391 	/*
1392 	 * How to calculate registers related to strobe length. Please
1393 	 * do not change, or if you do at least know what you're
1394 	 * doing. :-)
1395 	 *
1396 	 * Sakari Ailus <sakari.ailus@linux.intel.com> 2010-10-25
1397 	 *
1398 	 * flash_strobe_length [us] / 10^6 = (tFlash_strobe_width_ctrl
1399 	 *	/ EXTCLK freq [Hz]) * flash_strobe_adjustment
1400 	 *
1401 	 * tFlash_strobe_width_ctrl E N, [1 - 0xffff]
1402 	 * flash_strobe_adjustment E N, [1 - 0xff]
1403 	 *
1404 	 * The formula above is written as below to keep it on one
1405 	 * line:
1406 	 *
1407 	 * l / 10^6 = w / e * a
1408 	 *
1409 	 * Let's mark w * a by x:
1410 	 *
1411 	 * x = w * a
1412 	 *
1413 	 * Thus, we get:
1414 	 *
1415 	 * x = l * e / 10^6
1416 	 *
1417 	 * The strobe width must be at least as long as requested,
1418 	 * thus rounding upwards is needed.
1419 	 *
1420 	 * x = (l * e + 10^6 - 1) / 10^6
1421 	 * -----------------------------
1422 	 *
1423 	 * Maximum possible accuracy is wanted at all times. Thus keep
1424 	 * a as small as possible.
1425 	 *
1426 	 * Calculate a, assuming maximum w, with rounding upwards:
1427 	 *
1428 	 * a = (x + (2^16 - 1) - 1) / (2^16 - 1)
1429 	 * -------------------------------------
1430 	 *
1431 	 * Thus, we also get w, with that a, with rounding upwards:
1432 	 *
1433 	 * w = (x + a - 1) / a
1434 	 * -------------------
1435 	 *
1436 	 * To get limits:
1437 	 *
1438 	 * x E [1, (2^16 - 1) * (2^8 - 1)]
1439 	 *
1440 	 * Substituting maximum x to the original formula (with rounding),
1441 	 * the maximum l is thus
1442 	 *
1443 	 * (2^16 - 1) * (2^8 - 1) * 10^6 = l * e + 10^6 - 1
1444 	 *
1445 	 * l = (10^6 * (2^16 - 1) * (2^8 - 1) - 10^6 + 1) / e
1446 	 * --------------------------------------------------
1447 	 *
1448 	 * flash_strobe_length must be clamped between 1 and
1449 	 * (10^6 * (2^16 - 1) * (2^8 - 1) - 10^6 + 1) / EXTCLK freq.
1450 	 *
1451 	 * Then,
1452 	 *
1453 	 * flash_strobe_adjustment = ((flash_strobe_length *
1454 	 *	EXTCLK freq + 10^6 - 1) / 10^6 + (2^16 - 1) - 1) / (2^16 - 1)
1455 	 *
1456 	 * tFlash_strobe_width_ctrl = ((flash_strobe_length *
1457 	 *	EXTCLK freq + 10^6 - 1) / 10^6 +
1458 	 *	flash_strobe_adjustment - 1) / flash_strobe_adjustment
1459 	 */
1460 	tmp = div_u64(1000000ULL * ((1 << 16) - 1) * ((1 << 8) - 1) -
1461 		      1000000 + 1, ext_freq);
1462 	strobe_setup->strobe_width_high_us =
1463 		clamp_t(u32, strobe_setup->strobe_width_high_us, 1, tmp);
1464 
1465 	tmp = div_u64(((u64)strobe_setup->strobe_width_high_us * (u64)ext_freq +
1466 			1000000 - 1), 1000000ULL);
1467 	strobe_adjustment = (tmp + (1 << 16) - 1 - 1) / ((1 << 16) - 1);
1468 	strobe_width_high_rs = (tmp + strobe_adjustment - 1) /
1469 				strobe_adjustment;
1470 
1471 	rval = ccs_write(sensor, FLASH_MODE_RS, strobe_setup->mode);
1472 	if (rval < 0)
1473 		goto out;
1474 
1475 	rval = ccs_write(sensor, FLASH_STROBE_ADJUSTMENT, strobe_adjustment);
1476 	if (rval < 0)
1477 		goto out;
1478 
1479 	rval = ccs_write(sensor, TFLASH_STROBE_WIDTH_HIGH_RS_CTRL,
1480 			 strobe_width_high_rs);
1481 	if (rval < 0)
1482 		goto out;
1483 
1484 	rval = ccs_write(sensor, TFLASH_STROBE_DELAY_RS_CTRL,
1485 			 strobe_setup->strobe_delay);
1486 	if (rval < 0)
1487 		goto out;
1488 
1489 	rval = ccs_write(sensor, FLASH_STROBE_START_POINT,
1490 			 strobe_setup->stobe_start_point);
1491 	if (rval < 0)
1492 		goto out;
1493 
1494 	rval = ccs_write(sensor, FLASH_TRIGGER_RS, strobe_setup->trigger);
1495 
1496 out:
1497 	sensor->hwcfg.strobe_setup->trigger = 0;
1498 
1499 	return rval;
1500 }
1501 
1502 /* -----------------------------------------------------------------------------
1503  * Power management
1504  */
1505 
ccs_write_msr_regs(struct ccs_sensor * sensor)1506 static int ccs_write_msr_regs(struct ccs_sensor *sensor)
1507 {
1508 	int rval;
1509 
1510 	rval = ccs_write_data_regs(sensor,
1511 				   sensor->sdata.sensor_manufacturer_regs,
1512 				   sensor->sdata.num_sensor_manufacturer_regs);
1513 	if (rval)
1514 		return rval;
1515 
1516 	return ccs_write_data_regs(sensor,
1517 				   sensor->mdata.module_manufacturer_regs,
1518 				   sensor->mdata.num_module_manufacturer_regs);
1519 }
1520 
ccs_update_phy_ctrl(struct ccs_sensor * sensor)1521 static int ccs_update_phy_ctrl(struct ccs_sensor *sensor)
1522 {
1523 	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1524 	u8 val;
1525 
1526 	if (!sensor->ccs_limits)
1527 		return 0;
1528 
1529 	if (CCS_LIM(sensor, PHY_CTRL_CAPABILITY) &
1530 	    CCS_PHY_CTRL_CAPABILITY_AUTO_PHY_CTL) {
1531 		val = CCS_PHY_CTRL_AUTO;
1532 	} else if (CCS_LIM(sensor, PHY_CTRL_CAPABILITY) &
1533 		   CCS_PHY_CTRL_CAPABILITY_UI_PHY_CTL) {
1534 		val = CCS_PHY_CTRL_UI;
1535 	} else {
1536 		dev_err(&client->dev, "manual PHY control not supported\n");
1537 		return -EINVAL;
1538 	}
1539 
1540 	return ccs_write(sensor, PHY_CTRL, val);
1541 }
1542 
ccs_power_on(struct device * dev)1543 static int ccs_power_on(struct device *dev)
1544 {
1545 	struct v4l2_subdev *subdev = dev_get_drvdata(dev);
1546 	struct ccs_subdev *ssd = to_ccs_subdev(subdev);
1547 	/*
1548 	 * The sub-device related to the I2C device is always the
1549 	 * source one, i.e. ssds[0].
1550 	 */
1551 	struct ccs_sensor *sensor =
1552 		container_of(ssd, struct ccs_sensor, ssds[0]);
1553 	const struct ccs_device *ccsdev = device_get_match_data(dev);
1554 	int rval;
1555 
1556 	rval = regulator_bulk_enable(ARRAY_SIZE(ccs_regulators),
1557 				     sensor->regulators);
1558 	if (rval) {
1559 		dev_err(dev, "failed to enable vana regulator\n");
1560 		return rval;
1561 	}
1562 
1563 	if (sensor->reset || sensor->xshutdown || sensor->ext_clk) {
1564 		unsigned int sleep;
1565 
1566 		rval = clk_prepare_enable(sensor->ext_clk);
1567 		if (rval < 0) {
1568 			dev_dbg(dev, "failed to enable xclk\n");
1569 			goto out_xclk_fail;
1570 		}
1571 
1572 		gpiod_set_value(sensor->reset, 0);
1573 		gpiod_set_value(sensor->xshutdown, 1);
1574 
1575 		if (ccsdev->flags & CCS_DEVICE_FLAG_IS_SMIA)
1576 			sleep = SMIAPP_RESET_DELAY(sensor->hwcfg.ext_clk);
1577 		else
1578 			sleep = CCS_RESET_DELAY_US;
1579 
1580 		usleep_range(sleep, sleep);
1581 	}
1582 
1583 	/*
1584 	 * Some devices take longer than the spec-defined time to respond
1585 	 * after reset. Try until some time has passed before flagging it
1586 	 * an error.
1587 	 */
1588 	if (!sensor->reset && !sensor->xshutdown) {
1589 		u32 reset;
1590 
1591 		rval = read_poll_timeout(ccs_write, rval, !rval,
1592 					 CCS_RESET_DELAY_US,
1593 					 CCS_RESET_TIMEOUT_US,
1594 					 false, sensor, SOFTWARE_RESET,
1595 					 CCS_SOFTWARE_RESET_ON);
1596 		if (rval < 0) {
1597 			dev_err(dev, "software reset failed\n");
1598 			goto out_cci_addr_fail;
1599 		}
1600 
1601 		rval = read_poll_timeout(ccs_read, rval,
1602 					 !rval &&
1603 						reset == CCS_SOFTWARE_RESET_OFF,
1604 					 CCS_RESET_DELAY_US,
1605 					 CCS_RESET_TIMEOUT_US, false, sensor,
1606 					 SOFTWARE_RESET, &reset);
1607 		if (rval < 0) {
1608 			dev_err_probe(dev, rval,
1609 				      "failed to respond after reset\n");
1610 			goto out_cci_addr_fail;
1611 		}
1612 	}
1613 
1614 	if (sensor->hwcfg.i2c_addr_alt) {
1615 		rval = ccs_change_cci_addr(sensor);
1616 		if (rval) {
1617 			dev_err(dev, "cci address change error\n");
1618 			goto out_cci_addr_fail;
1619 		}
1620 	}
1621 
1622 	rval = ccs_write(sensor, COMPRESSION_MODE,
1623 			 CCS_COMPRESSION_MODE_DPCM_PCM_SIMPLE);
1624 	if (rval) {
1625 		dev_err(dev, "compression mode set failed\n");
1626 		goto out_cci_addr_fail;
1627 	}
1628 
1629 	rval = ccs_write(sensor, EXTCLK_FREQUENCY_MHZ,
1630 			 sensor->hwcfg.ext_clk / (1000000 / (1 << 8)));
1631 	if (rval) {
1632 		dev_err(dev, "extclk frequency set failed\n");
1633 		goto out_cci_addr_fail;
1634 	}
1635 
1636 	rval = ccs_write(sensor, CSI_LANE_MODE, sensor->hwcfg.lanes - 1);
1637 	if (rval) {
1638 		dev_err(dev, "csi lane mode set failed\n");
1639 		goto out_cci_addr_fail;
1640 	}
1641 
1642 	rval = ccs_write(sensor, FAST_STANDBY_CTRL,
1643 			 CCS_FAST_STANDBY_CTRL_FRAME_TRUNCATION);
1644 	if (rval) {
1645 		dev_err(dev, "fast standby set failed\n");
1646 		goto out_cci_addr_fail;
1647 	}
1648 
1649 	rval = ccs_write(sensor, CSI_SIGNALING_MODE,
1650 			 sensor->hwcfg.csi_signalling_mode);
1651 	if (rval) {
1652 		dev_err(dev, "csi signalling mode set failed\n");
1653 		goto out_cci_addr_fail;
1654 	}
1655 
1656 	rval = ccs_update_phy_ctrl(sensor);
1657 	if (rval < 0)
1658 		goto out_cci_addr_fail;
1659 
1660 	rval = ccs_write_msr_regs(sensor);
1661 	if (rval)
1662 		goto out_cci_addr_fail;
1663 
1664 	rval = ccs_call_quirk(sensor, post_poweron);
1665 	if (rval) {
1666 		dev_err(dev, "post_poweron quirks failed\n");
1667 		goto out_cci_addr_fail;
1668 	}
1669 
1670 	return 0;
1671 
1672 out_cci_addr_fail:
1673 	gpiod_set_value(sensor->reset, 1);
1674 	gpiod_set_value(sensor->xshutdown, 0);
1675 	clk_disable_unprepare(sensor->ext_clk);
1676 
1677 out_xclk_fail:
1678 	regulator_bulk_disable(ARRAY_SIZE(ccs_regulators),
1679 			       sensor->regulators);
1680 
1681 	return rval;
1682 }
1683 
ccs_power_off(struct device * dev)1684 static int ccs_power_off(struct device *dev)
1685 {
1686 	struct v4l2_subdev *subdev = dev_get_drvdata(dev);
1687 	struct ccs_subdev *ssd = to_ccs_subdev(subdev);
1688 	struct ccs_sensor *sensor =
1689 		container_of(ssd, struct ccs_sensor, ssds[0]);
1690 
1691 	/*
1692 	 * Currently power/clock to lens are enable/disabled separately
1693 	 * but they are essentially the same signals. So if the sensor is
1694 	 * powered off while the lens is powered on the sensor does not
1695 	 * really see a power off and next time the cci address change
1696 	 * will fail. So do a soft reset explicitly here.
1697 	 */
1698 	if (sensor->hwcfg.i2c_addr_alt)
1699 		ccs_write(sensor, SOFTWARE_RESET, CCS_SOFTWARE_RESET_ON);
1700 
1701 	gpiod_set_value(sensor->reset, 1);
1702 	gpiod_set_value(sensor->xshutdown, 0);
1703 	clk_disable_unprepare(sensor->ext_clk);
1704 	usleep_range(5000, 5000);
1705 	regulator_bulk_disable(ARRAY_SIZE(ccs_regulators),
1706 			       sensor->regulators);
1707 	sensor->streaming = false;
1708 
1709 	return 0;
1710 }
1711 
1712 /* -----------------------------------------------------------------------------
1713  * Video stream management
1714  */
1715 
ccs_start_streaming(struct ccs_sensor * sensor)1716 static int ccs_start_streaming(struct ccs_sensor *sensor)
1717 {
1718 	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1719 	unsigned int binning_mode;
1720 	int rval;
1721 
1722 	mutex_lock(&sensor->mutex);
1723 
1724 	rval = ccs_write(sensor, CSI_DATA_FORMAT,
1725 			 (sensor->csi_format->width << 8) |
1726 			 sensor->csi_format->compressed);
1727 	if (rval)
1728 		goto out;
1729 
1730 	/* Binning configuration */
1731 	if (sensor->binning_horizontal == 1 &&
1732 	    sensor->binning_vertical == 1) {
1733 		binning_mode = 0;
1734 	} else {
1735 		u8 binning_type =
1736 			(sensor->binning_horizontal << 4)
1737 			| sensor->binning_vertical;
1738 
1739 		rval = ccs_write(sensor, BINNING_TYPE, binning_type);
1740 		if (rval < 0)
1741 			goto out;
1742 
1743 		binning_mode = 1;
1744 	}
1745 	rval = ccs_write(sensor, BINNING_MODE, binning_mode);
1746 	if (rval < 0)
1747 		goto out;
1748 
1749 	/* Set up PLL */
1750 	rval = ccs_pll_configure(sensor);
1751 	if (rval)
1752 		goto out;
1753 
1754 	/* Analog crop start coordinates */
1755 	rval = ccs_write(sensor, X_ADDR_START, sensor->pa_src.left);
1756 	if (rval < 0)
1757 		goto out;
1758 
1759 	rval = ccs_write(sensor, Y_ADDR_START, sensor->pa_src.top);
1760 	if (rval < 0)
1761 		goto out;
1762 
1763 	/* Analog crop end coordinates */
1764 	rval = ccs_write(sensor, X_ADDR_END,
1765 			 sensor->pa_src.left + sensor->pa_src.width - 1);
1766 	if (rval < 0)
1767 		goto out;
1768 
1769 	rval = ccs_write(sensor, Y_ADDR_END,
1770 			 sensor->pa_src.top + sensor->pa_src.height - 1);
1771 	if (rval < 0)
1772 		goto out;
1773 
1774 	/*
1775 	 * Output from pixel array, including blanking, is set using
1776 	 * controls below. No need to set here.
1777 	 */
1778 
1779 	/* Digital crop */
1780 	if (CCS_LIM(sensor, DIGITAL_CROP_CAPABILITY)
1781 	    == CCS_DIGITAL_CROP_CAPABILITY_INPUT_CROP) {
1782 		rval = ccs_write(sensor, DIGITAL_CROP_X_OFFSET,
1783 				 sensor->scaler_sink.left);
1784 		if (rval < 0)
1785 			goto out;
1786 
1787 		rval = ccs_write(sensor, DIGITAL_CROP_Y_OFFSET,
1788 				 sensor->scaler_sink.top);
1789 		if (rval < 0)
1790 			goto out;
1791 
1792 		rval = ccs_write(sensor, DIGITAL_CROP_IMAGE_WIDTH,
1793 				 sensor->scaler_sink.width);
1794 		if (rval < 0)
1795 			goto out;
1796 
1797 		rval = ccs_write(sensor, DIGITAL_CROP_IMAGE_HEIGHT,
1798 				 sensor->scaler_sink.height);
1799 		if (rval < 0)
1800 			goto out;
1801 	}
1802 
1803 	/* Scaling */
1804 	if (CCS_LIM(sensor, SCALING_CAPABILITY)
1805 	    != CCS_SCALING_CAPABILITY_NONE) {
1806 		rval = ccs_write(sensor, SCALING_MODE, sensor->scaling_mode);
1807 		if (rval < 0)
1808 			goto out;
1809 
1810 		rval = ccs_write(sensor, SCALE_M, sensor->scale_m);
1811 		if (rval < 0)
1812 			goto out;
1813 	}
1814 
1815 	/* Output size from sensor */
1816 	rval = ccs_write(sensor, X_OUTPUT_SIZE, sensor->src_src.width);
1817 	if (rval < 0)
1818 		goto out;
1819 	rval = ccs_write(sensor, Y_OUTPUT_SIZE, sensor->src_src.height);
1820 	if (rval < 0)
1821 		goto out;
1822 
1823 	if (CCS_LIM(sensor, FLASH_MODE_CAPABILITY) &
1824 	    (CCS_FLASH_MODE_CAPABILITY_SINGLE_STROBE |
1825 	     SMIAPP_FLASH_MODE_CAPABILITY_MULTIPLE_STROBE) &&
1826 	    sensor->hwcfg.strobe_setup != NULL &&
1827 	    sensor->hwcfg.strobe_setup->trigger != 0) {
1828 		rval = ccs_setup_flash_strobe(sensor);
1829 		if (rval)
1830 			goto out;
1831 	}
1832 
1833 	rval = ccs_call_quirk(sensor, pre_streamon);
1834 	if (rval) {
1835 		dev_err(&client->dev, "pre_streamon quirks failed\n");
1836 		goto out;
1837 	}
1838 
1839 	rval = ccs_write(sensor, MODE_SELECT, CCS_MODE_SELECT_STREAMING);
1840 
1841 out:
1842 	mutex_unlock(&sensor->mutex);
1843 
1844 	return rval;
1845 }
1846 
ccs_stop_streaming(struct ccs_sensor * sensor)1847 static int ccs_stop_streaming(struct ccs_sensor *sensor)
1848 {
1849 	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1850 	int rval;
1851 
1852 	mutex_lock(&sensor->mutex);
1853 	rval = ccs_write(sensor, MODE_SELECT, CCS_MODE_SELECT_SOFTWARE_STANDBY);
1854 	if (rval)
1855 		goto out;
1856 
1857 	rval = ccs_call_quirk(sensor, post_streamoff);
1858 	if (rval)
1859 		dev_err(&client->dev, "post_streamoff quirks failed\n");
1860 
1861 out:
1862 	mutex_unlock(&sensor->mutex);
1863 	return rval;
1864 }
1865 
1866 /* -----------------------------------------------------------------------------
1867  * V4L2 subdev video operations
1868  */
1869 
ccs_pm_get_init(struct ccs_sensor * sensor)1870 static int ccs_pm_get_init(struct ccs_sensor *sensor)
1871 {
1872 	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1873 	int rval;
1874 
1875 	/*
1876 	 * It can't use pm_runtime_resume_and_get() here, as the driver
1877 	 * relies at the returned value to detect if the device was already
1878 	 * active or not.
1879 	 */
1880 	rval = pm_runtime_get_sync(&client->dev);
1881 	if (rval < 0)
1882 		goto error;
1883 
1884 	/* Device was already active, so don't set controls */
1885 	if (rval == 1 && !sensor->handler_setup_needed)
1886 		return 0;
1887 
1888 	sensor->handler_setup_needed = false;
1889 
1890 	/* Restore V4L2 controls to the previously suspended device */
1891 	rval = v4l2_ctrl_handler_setup(&sensor->pixel_array->ctrl_handler);
1892 	if (rval)
1893 		goto error;
1894 
1895 	rval = v4l2_ctrl_handler_setup(&sensor->src->ctrl_handler);
1896 	if (rval)
1897 		goto error;
1898 
1899 	/* Keep PM runtime usage_count incremented on success */
1900 	return 0;
1901 error:
1902 	pm_runtime_put(&client->dev);
1903 	return rval;
1904 }
1905 
ccs_set_stream(struct v4l2_subdev * subdev,int enable)1906 static int ccs_set_stream(struct v4l2_subdev *subdev, int enable)
1907 {
1908 	struct ccs_sensor *sensor = to_ccs_sensor(subdev);
1909 	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1910 	int rval;
1911 
1912 	if (!enable) {
1913 		ccs_stop_streaming(sensor);
1914 		sensor->streaming = false;
1915 		pm_runtime_put_autosuspend(&client->dev);
1916 
1917 		return 0;
1918 	}
1919 
1920 	rval = ccs_pm_get_init(sensor);
1921 	if (rval)
1922 		return rval;
1923 
1924 	sensor->streaming = true;
1925 
1926 	rval = ccs_start_streaming(sensor);
1927 	if (rval < 0) {
1928 		sensor->streaming = false;
1929 		pm_runtime_put_autosuspend(&client->dev);
1930 	}
1931 
1932 	return rval;
1933 }
1934 
ccs_pre_streamon(struct v4l2_subdev * subdev,u32 flags)1935 static int ccs_pre_streamon(struct v4l2_subdev *subdev, u32 flags)
1936 {
1937 	struct ccs_sensor *sensor = to_ccs_sensor(subdev);
1938 	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1939 	int rval;
1940 
1941 	if (flags & V4L2_SUBDEV_PRE_STREAMON_FL_MANUAL_LP) {
1942 		switch (sensor->hwcfg.csi_signalling_mode) {
1943 		case CCS_CSI_SIGNALING_MODE_CSI_2_DPHY:
1944 			if (!(CCS_LIM(sensor, PHY_CTRL_CAPABILITY_2) &
1945 			      CCS_PHY_CTRL_CAPABILITY_2_MANUAL_LP_DPHY))
1946 				return -EACCES;
1947 			break;
1948 		case CCS_CSI_SIGNALING_MODE_CSI_2_CPHY:
1949 			if (!(CCS_LIM(sensor, PHY_CTRL_CAPABILITY_2) &
1950 			      CCS_PHY_CTRL_CAPABILITY_2_MANUAL_LP_CPHY))
1951 				return -EACCES;
1952 			break;
1953 		default:
1954 			return -EACCES;
1955 		}
1956 	}
1957 
1958 	rval = ccs_pm_get_init(sensor);
1959 	if (rval)
1960 		return rval;
1961 
1962 	if (flags & V4L2_SUBDEV_PRE_STREAMON_FL_MANUAL_LP) {
1963 		rval = ccs_write(sensor, MANUAL_LP_CTRL,
1964 				 CCS_MANUAL_LP_CTRL_ENABLE);
1965 		if (rval)
1966 			pm_runtime_put(&client->dev);
1967 	}
1968 
1969 	return rval;
1970 }
1971 
ccs_post_streamoff(struct v4l2_subdev * subdev)1972 static int ccs_post_streamoff(struct v4l2_subdev *subdev)
1973 {
1974 	struct ccs_sensor *sensor = to_ccs_sensor(subdev);
1975 	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1976 
1977 	return pm_runtime_put(&client->dev);
1978 }
1979 
ccs_enum_mbus_code(struct v4l2_subdev * subdev,struct v4l2_subdev_state * sd_state,struct v4l2_subdev_mbus_code_enum * code)1980 static int ccs_enum_mbus_code(struct v4l2_subdev *subdev,
1981 			      struct v4l2_subdev_state *sd_state,
1982 			      struct v4l2_subdev_mbus_code_enum *code)
1983 {
1984 	struct i2c_client *client = v4l2_get_subdevdata(subdev);
1985 	struct ccs_sensor *sensor = to_ccs_sensor(subdev);
1986 	unsigned int i;
1987 	int idx = -1;
1988 	int rval = -EINVAL;
1989 
1990 	mutex_lock(&sensor->mutex);
1991 
1992 	dev_err(&client->dev, "subdev %s, pad %u, index %u\n",
1993 		subdev->name, code->pad, code->index);
1994 
1995 	if (subdev != &sensor->src->sd || code->pad != CCS_PAD_SRC) {
1996 		if (code->index)
1997 			goto out;
1998 
1999 		code->code = sensor->internal_csi_format->code;
2000 		rval = 0;
2001 		goto out;
2002 	}
2003 
2004 	for (i = 0; i < ARRAY_SIZE(ccs_csi_data_formats); i++) {
2005 		if (sensor->mbus_frame_fmts & (1 << i))
2006 			idx++;
2007 
2008 		if (idx == code->index) {
2009 			code->code = ccs_csi_data_formats[i].code;
2010 			dev_err(&client->dev, "found index %u, i %u, code %x\n",
2011 				code->index, i, code->code);
2012 			rval = 0;
2013 			break;
2014 		}
2015 	}
2016 
2017 out:
2018 	mutex_unlock(&sensor->mutex);
2019 
2020 	return rval;
2021 }
2022 
__ccs_get_mbus_code(struct v4l2_subdev * subdev,unsigned int pad)2023 static u32 __ccs_get_mbus_code(struct v4l2_subdev *subdev, unsigned int pad)
2024 {
2025 	struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2026 
2027 	if (subdev == &sensor->src->sd && pad == CCS_PAD_SRC)
2028 		return sensor->csi_format->code;
2029 	else
2030 		return sensor->internal_csi_format->code;
2031 }
2032 
__ccs_get_format(struct v4l2_subdev * subdev,struct v4l2_subdev_state * sd_state,struct v4l2_subdev_format * fmt)2033 static int __ccs_get_format(struct v4l2_subdev *subdev,
2034 			    struct v4l2_subdev_state *sd_state,
2035 			    struct v4l2_subdev_format *fmt)
2036 {
2037 	fmt->format = *v4l2_subdev_state_get_format(sd_state, fmt->pad);
2038 	fmt->format.code = __ccs_get_mbus_code(subdev, fmt->pad);
2039 
2040 	return 0;
2041 }
2042 
ccs_get_format(struct v4l2_subdev * subdev,struct v4l2_subdev_state * sd_state,struct v4l2_subdev_format * fmt)2043 static int ccs_get_format(struct v4l2_subdev *subdev,
2044 			  struct v4l2_subdev_state *sd_state,
2045 			  struct v4l2_subdev_format *fmt)
2046 {
2047 	struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2048 	int rval;
2049 
2050 	mutex_lock(&sensor->mutex);
2051 	rval = __ccs_get_format(subdev, sd_state, fmt);
2052 	mutex_unlock(&sensor->mutex);
2053 
2054 	return rval;
2055 }
2056 
ccs_get_crop_compose(struct v4l2_subdev * subdev,struct v4l2_subdev_state * sd_state,struct v4l2_rect ** crops,struct v4l2_rect ** comps)2057 static void ccs_get_crop_compose(struct v4l2_subdev *subdev,
2058 				 struct v4l2_subdev_state *sd_state,
2059 				 struct v4l2_rect **crops,
2060 				 struct v4l2_rect **comps)
2061 {
2062 	struct ccs_subdev *ssd = to_ccs_subdev(subdev);
2063 	unsigned int i;
2064 
2065 	if (crops)
2066 		for (i = 0; i < subdev->entity.num_pads; i++)
2067 			crops[i] =
2068 				v4l2_subdev_state_get_crop(sd_state, i);
2069 	if (comps)
2070 		*comps = v4l2_subdev_state_get_compose(sd_state,
2071 						       ssd->sink_pad);
2072 }
2073 
2074 /* Changes require propagation only on sink pad. */
ccs_propagate(struct v4l2_subdev * subdev,struct v4l2_subdev_state * sd_state,int which,int target)2075 static void ccs_propagate(struct v4l2_subdev *subdev,
2076 			  struct v4l2_subdev_state *sd_state, int which,
2077 			  int target)
2078 {
2079 	struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2080 	struct ccs_subdev *ssd = to_ccs_subdev(subdev);
2081 	struct v4l2_rect *comp, *crops[CCS_PADS];
2082 	struct v4l2_mbus_framefmt *fmt;
2083 
2084 	ccs_get_crop_compose(subdev, sd_state, crops, &comp);
2085 
2086 	switch (target) {
2087 	case V4L2_SEL_TGT_CROP:
2088 		comp->width = crops[CCS_PAD_SINK]->width;
2089 		comp->height = crops[CCS_PAD_SINK]->height;
2090 		if (which == V4L2_SUBDEV_FORMAT_ACTIVE) {
2091 			if (ssd == sensor->scaler) {
2092 				sensor->scale_m = CCS_LIM(sensor, SCALER_N_MIN);
2093 				sensor->scaling_mode =
2094 					CCS_SCALING_MODE_NO_SCALING;
2095 				sensor->scaler_sink = *comp;
2096 			} else if (ssd == sensor->binner) {
2097 				sensor->binning_horizontal = 1;
2098 				sensor->binning_vertical = 1;
2099 			}
2100 		}
2101 		fallthrough;
2102 	case V4L2_SEL_TGT_COMPOSE:
2103 		*crops[CCS_PAD_SRC] = *comp;
2104 		fmt = v4l2_subdev_state_get_format(sd_state, CCS_PAD_SRC);
2105 		fmt->width = comp->width;
2106 		fmt->height = comp->height;
2107 		if (which == V4L2_SUBDEV_FORMAT_ACTIVE && ssd == sensor->src)
2108 			sensor->src_src = *crops[CCS_PAD_SRC];
2109 		break;
2110 	default:
2111 		WARN_ON_ONCE(1);
2112 	}
2113 }
2114 
2115 static const struct ccs_csi_data_format
ccs_validate_csi_data_format(struct ccs_sensor * sensor,u32 code)2116 *ccs_validate_csi_data_format(struct ccs_sensor *sensor, u32 code)
2117 {
2118 	unsigned int i;
2119 
2120 	for (i = 0; i < ARRAY_SIZE(ccs_csi_data_formats); i++) {
2121 		if (sensor->mbus_frame_fmts & (1 << i) &&
2122 		    ccs_csi_data_formats[i].code == code)
2123 			return &ccs_csi_data_formats[i];
2124 	}
2125 
2126 	return sensor->csi_format;
2127 }
2128 
ccs_set_format_source(struct v4l2_subdev * subdev,struct v4l2_subdev_state * sd_state,struct v4l2_subdev_format * fmt)2129 static int ccs_set_format_source(struct v4l2_subdev *subdev,
2130 				 struct v4l2_subdev_state *sd_state,
2131 				 struct v4l2_subdev_format *fmt)
2132 {
2133 	struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2134 	const struct ccs_csi_data_format *csi_format,
2135 		*old_csi_format = sensor->csi_format;
2136 	unsigned long *valid_link_freqs;
2137 	u32 code = fmt->format.code;
2138 	unsigned int i;
2139 	int rval;
2140 
2141 	rval = __ccs_get_format(subdev, sd_state, fmt);
2142 	if (rval)
2143 		return rval;
2144 
2145 	/*
2146 	 * Media bus code is changeable on src subdev's source pad. On
2147 	 * other source pads we just get format here.
2148 	 */
2149 	if (subdev != &sensor->src->sd)
2150 		return 0;
2151 
2152 	csi_format = ccs_validate_csi_data_format(sensor, code);
2153 
2154 	fmt->format.code = csi_format->code;
2155 
2156 	if (fmt->which != V4L2_SUBDEV_FORMAT_ACTIVE)
2157 		return 0;
2158 
2159 	sensor->csi_format = csi_format;
2160 
2161 	if (csi_format->width != old_csi_format->width)
2162 		for (i = 0; i < ARRAY_SIZE(sensor->test_data); i++)
2163 			__v4l2_ctrl_modify_range(
2164 				sensor->test_data[i], 0,
2165 				(1 << csi_format->width) - 1, 1, 0);
2166 
2167 	if (csi_format->compressed == old_csi_format->compressed)
2168 		return 0;
2169 
2170 	valid_link_freqs =
2171 		&sensor->valid_link_freqs[sensor->csi_format->compressed
2172 					  - sensor->compressed_min_bpp];
2173 
2174 	__v4l2_ctrl_modify_range(
2175 		sensor->link_freq, 0,
2176 		__fls(*valid_link_freqs), ~*valid_link_freqs,
2177 		__ffs(*valid_link_freqs));
2178 
2179 	return ccs_pll_update(sensor);
2180 }
2181 
ccs_set_format(struct v4l2_subdev * subdev,struct v4l2_subdev_state * sd_state,struct v4l2_subdev_format * fmt)2182 static int ccs_set_format(struct v4l2_subdev *subdev,
2183 			  struct v4l2_subdev_state *sd_state,
2184 			  struct v4l2_subdev_format *fmt)
2185 {
2186 	struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2187 	struct ccs_subdev *ssd = to_ccs_subdev(subdev);
2188 	struct v4l2_rect *crops[CCS_PADS];
2189 
2190 	mutex_lock(&sensor->mutex);
2191 
2192 	if (fmt->pad == ssd->source_pad) {
2193 		int rval;
2194 
2195 		rval = ccs_set_format_source(subdev, sd_state, fmt);
2196 
2197 		mutex_unlock(&sensor->mutex);
2198 
2199 		return rval;
2200 	}
2201 
2202 	/* Sink pad. Width and height are changeable here. */
2203 	fmt->format.code = __ccs_get_mbus_code(subdev, fmt->pad);
2204 	fmt->format.width &= ~1;
2205 	fmt->format.height &= ~1;
2206 	fmt->format.field = V4L2_FIELD_NONE;
2207 
2208 	fmt->format.width =
2209 		clamp(fmt->format.width,
2210 		      CCS_LIM(sensor, MIN_X_OUTPUT_SIZE),
2211 		      CCS_LIM(sensor, MAX_X_OUTPUT_SIZE));
2212 	fmt->format.height =
2213 		clamp(fmt->format.height,
2214 		      CCS_LIM(sensor, MIN_Y_OUTPUT_SIZE),
2215 		      CCS_LIM(sensor, MAX_Y_OUTPUT_SIZE));
2216 
2217 	ccs_get_crop_compose(subdev, sd_state, crops, NULL);
2218 
2219 	crops[ssd->sink_pad]->left = 0;
2220 	crops[ssd->sink_pad]->top = 0;
2221 	crops[ssd->sink_pad]->width = fmt->format.width;
2222 	crops[ssd->sink_pad]->height = fmt->format.height;
2223 	ccs_propagate(subdev, sd_state, fmt->which, V4L2_SEL_TGT_CROP);
2224 
2225 	mutex_unlock(&sensor->mutex);
2226 
2227 	return 0;
2228 }
2229 
2230 /*
2231  * Calculate goodness of scaled image size compared to expected image
2232  * size and flags provided.
2233  */
2234 #define SCALING_GOODNESS		100000
2235 #define SCALING_GOODNESS_EXTREME	100000000
scaling_goodness(struct v4l2_subdev * subdev,int w,int ask_w,int h,int ask_h,u32 flags)2236 static int scaling_goodness(struct v4l2_subdev *subdev, int w, int ask_w,
2237 			    int h, int ask_h, u32 flags)
2238 {
2239 	struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2240 	struct i2c_client *client = v4l2_get_subdevdata(subdev);
2241 	int val = 0;
2242 
2243 	w &= ~1;
2244 	ask_w &= ~1;
2245 	h &= ~1;
2246 	ask_h &= ~1;
2247 
2248 	if (flags & V4L2_SEL_FLAG_GE) {
2249 		if (w < ask_w)
2250 			val -= SCALING_GOODNESS;
2251 		if (h < ask_h)
2252 			val -= SCALING_GOODNESS;
2253 	}
2254 
2255 	if (flags & V4L2_SEL_FLAG_LE) {
2256 		if (w > ask_w)
2257 			val -= SCALING_GOODNESS;
2258 		if (h > ask_h)
2259 			val -= SCALING_GOODNESS;
2260 	}
2261 
2262 	val -= abs(w - ask_w);
2263 	val -= abs(h - ask_h);
2264 
2265 	if (w < CCS_LIM(sensor, MIN_X_OUTPUT_SIZE))
2266 		val -= SCALING_GOODNESS_EXTREME;
2267 
2268 	dev_dbg(&client->dev, "w %d ask_w %d h %d ask_h %d goodness %d\n",
2269 		w, ask_w, h, ask_h, val);
2270 
2271 	return val;
2272 }
2273 
ccs_set_compose_binner(struct v4l2_subdev * subdev,struct v4l2_subdev_state * sd_state,struct v4l2_subdev_selection * sel,struct v4l2_rect ** crops,struct v4l2_rect * comp)2274 static void ccs_set_compose_binner(struct v4l2_subdev *subdev,
2275 				   struct v4l2_subdev_state *sd_state,
2276 				   struct v4l2_subdev_selection *sel,
2277 				   struct v4l2_rect **crops,
2278 				   struct v4l2_rect *comp)
2279 {
2280 	struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2281 	unsigned int i;
2282 	unsigned int binh = 1, binv = 1;
2283 	int best = scaling_goodness(
2284 		subdev,
2285 		crops[CCS_PAD_SINK]->width, sel->r.width,
2286 		crops[CCS_PAD_SINK]->height, sel->r.height, sel->flags);
2287 
2288 	for (i = 0; i < sensor->nbinning_subtypes; i++) {
2289 		int this = scaling_goodness(
2290 			subdev,
2291 			crops[CCS_PAD_SINK]->width
2292 			/ sensor->binning_subtypes[i].horizontal,
2293 			sel->r.width,
2294 			crops[CCS_PAD_SINK]->height
2295 			/ sensor->binning_subtypes[i].vertical,
2296 			sel->r.height, sel->flags);
2297 
2298 		if (this > best) {
2299 			binh = sensor->binning_subtypes[i].horizontal;
2300 			binv = sensor->binning_subtypes[i].vertical;
2301 			best = this;
2302 		}
2303 	}
2304 	if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
2305 		sensor->binning_vertical = binv;
2306 		sensor->binning_horizontal = binh;
2307 	}
2308 
2309 	sel->r.width = (crops[CCS_PAD_SINK]->width / binh) & ~1;
2310 	sel->r.height = (crops[CCS_PAD_SINK]->height / binv) & ~1;
2311 }
2312 
2313 /*
2314  * Calculate best scaling ratio and mode for given output resolution.
2315  *
2316  * Try all of these: horizontal ratio, vertical ratio and smallest
2317  * size possible (horizontally).
2318  *
2319  * Also try whether horizontal scaler or full scaler gives a better
2320  * result.
2321  */
ccs_set_compose_scaler(struct v4l2_subdev * subdev,struct v4l2_subdev_state * sd_state,struct v4l2_subdev_selection * sel,struct v4l2_rect ** crops,struct v4l2_rect * comp)2322 static void ccs_set_compose_scaler(struct v4l2_subdev *subdev,
2323 				   struct v4l2_subdev_state *sd_state,
2324 				   struct v4l2_subdev_selection *sel,
2325 				   struct v4l2_rect **crops,
2326 				   struct v4l2_rect *comp)
2327 {
2328 	struct i2c_client *client = v4l2_get_subdevdata(subdev);
2329 	struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2330 	u32 min, max, a, b, max_m;
2331 	u32 scale_m = CCS_LIM(sensor, SCALER_N_MIN);
2332 	int mode = CCS_SCALING_MODE_HORIZONTAL;
2333 	u32 try[4];
2334 	u32 ntry = 0;
2335 	unsigned int i;
2336 	int best = INT_MIN;
2337 
2338 	sel->r.width = min_t(unsigned int, sel->r.width,
2339 			     crops[CCS_PAD_SINK]->width);
2340 	sel->r.height = min_t(unsigned int, sel->r.height,
2341 			      crops[CCS_PAD_SINK]->height);
2342 
2343 	a = crops[CCS_PAD_SINK]->width
2344 		* CCS_LIM(sensor, SCALER_N_MIN) / sel->r.width;
2345 	b = crops[CCS_PAD_SINK]->height
2346 		* CCS_LIM(sensor, SCALER_N_MIN) / sel->r.height;
2347 	max_m = crops[CCS_PAD_SINK]->width
2348 		* CCS_LIM(sensor, SCALER_N_MIN)
2349 		/ CCS_LIM(sensor, MIN_X_OUTPUT_SIZE);
2350 
2351 	a = clamp(a, CCS_LIM(sensor, SCALER_M_MIN),
2352 		  CCS_LIM(sensor, SCALER_M_MAX));
2353 	b = clamp(b, CCS_LIM(sensor, SCALER_M_MIN),
2354 		  CCS_LIM(sensor, SCALER_M_MAX));
2355 	max_m = clamp(max_m, CCS_LIM(sensor, SCALER_M_MIN),
2356 		      CCS_LIM(sensor, SCALER_M_MAX));
2357 
2358 	dev_dbg(&client->dev, "scaling: a %u b %u max_m %u\n", a, b, max_m);
2359 
2360 	min = min(max_m, min(a, b));
2361 	max = min(max_m, max(a, b));
2362 
2363 	try[ntry] = min;
2364 	ntry++;
2365 	if (min != max) {
2366 		try[ntry] = max;
2367 		ntry++;
2368 	}
2369 	if (max != max_m) {
2370 		try[ntry] = min + 1;
2371 		ntry++;
2372 		if (min != max) {
2373 			try[ntry] = max + 1;
2374 			ntry++;
2375 		}
2376 	}
2377 
2378 	for (i = 0; i < ntry; i++) {
2379 		int this = scaling_goodness(
2380 			subdev,
2381 			crops[CCS_PAD_SINK]->width
2382 			/ try[i] * CCS_LIM(sensor, SCALER_N_MIN),
2383 			sel->r.width,
2384 			crops[CCS_PAD_SINK]->height,
2385 			sel->r.height,
2386 			sel->flags);
2387 
2388 		dev_dbg(&client->dev, "trying factor %u (%u)\n", try[i], i);
2389 
2390 		if (this > best) {
2391 			scale_m = try[i];
2392 			mode = CCS_SCALING_MODE_HORIZONTAL;
2393 			best = this;
2394 		}
2395 
2396 		if (CCS_LIM(sensor, SCALING_CAPABILITY)
2397 		    == CCS_SCALING_CAPABILITY_HORIZONTAL)
2398 			continue;
2399 
2400 		this = scaling_goodness(
2401 			subdev, crops[CCS_PAD_SINK]->width
2402 			/ try[i]
2403 			* CCS_LIM(sensor, SCALER_N_MIN),
2404 			sel->r.width,
2405 			crops[CCS_PAD_SINK]->height
2406 			/ try[i]
2407 			* CCS_LIM(sensor, SCALER_N_MIN),
2408 			sel->r.height,
2409 			sel->flags);
2410 
2411 		if (this > best) {
2412 			scale_m = try[i];
2413 			mode = SMIAPP_SCALING_MODE_BOTH;
2414 			best = this;
2415 		}
2416 	}
2417 
2418 	sel->r.width =
2419 		(crops[CCS_PAD_SINK]->width
2420 		 / scale_m
2421 		 * CCS_LIM(sensor, SCALER_N_MIN)) & ~1;
2422 	if (mode == SMIAPP_SCALING_MODE_BOTH)
2423 		sel->r.height =
2424 			(crops[CCS_PAD_SINK]->height
2425 			 / scale_m
2426 			 * CCS_LIM(sensor, SCALER_N_MIN))
2427 			& ~1;
2428 	else
2429 		sel->r.height = crops[CCS_PAD_SINK]->height;
2430 
2431 	if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
2432 		sensor->scale_m = scale_m;
2433 		sensor->scaling_mode = mode;
2434 	}
2435 }
2436 /* We're only called on source pads. This function sets scaling. */
ccs_set_compose(struct v4l2_subdev * subdev,struct v4l2_subdev_state * sd_state,struct v4l2_subdev_selection * sel)2437 static int ccs_set_compose(struct v4l2_subdev *subdev,
2438 			   struct v4l2_subdev_state *sd_state,
2439 			   struct v4l2_subdev_selection *sel)
2440 {
2441 	struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2442 	struct ccs_subdev *ssd = to_ccs_subdev(subdev);
2443 	struct v4l2_rect *comp, *crops[CCS_PADS];
2444 
2445 	ccs_get_crop_compose(subdev, sd_state, crops, &comp);
2446 
2447 	sel->r.top = 0;
2448 	sel->r.left = 0;
2449 
2450 	if (ssd == sensor->binner)
2451 		ccs_set_compose_binner(subdev, sd_state, sel, crops, comp);
2452 	else
2453 		ccs_set_compose_scaler(subdev, sd_state, sel, crops, comp);
2454 
2455 	*comp = sel->r;
2456 	ccs_propagate(subdev, sd_state, sel->which, V4L2_SEL_TGT_COMPOSE);
2457 
2458 	if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE)
2459 		return ccs_pll_blanking_update(sensor);
2460 
2461 	return 0;
2462 }
2463 
ccs_sel_supported(struct v4l2_subdev * subdev,struct v4l2_subdev_selection * sel)2464 static int ccs_sel_supported(struct v4l2_subdev *subdev,
2465 			     struct v4l2_subdev_selection *sel)
2466 {
2467 	struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2468 	struct ccs_subdev *ssd = to_ccs_subdev(subdev);
2469 
2470 	/* We only implement crop in three places. */
2471 	switch (sel->target) {
2472 	case V4L2_SEL_TGT_CROP:
2473 	case V4L2_SEL_TGT_CROP_BOUNDS:
2474 		if (ssd == sensor->pixel_array && sel->pad == CCS_PA_PAD_SRC)
2475 			return 0;
2476 		if (ssd == sensor->src && sel->pad == CCS_PAD_SRC)
2477 			return 0;
2478 		if (ssd == sensor->scaler && sel->pad == CCS_PAD_SINK &&
2479 		    CCS_LIM(sensor, DIGITAL_CROP_CAPABILITY)
2480 		    == CCS_DIGITAL_CROP_CAPABILITY_INPUT_CROP)
2481 			return 0;
2482 		return -EINVAL;
2483 	case V4L2_SEL_TGT_NATIVE_SIZE:
2484 		if (ssd == sensor->pixel_array && sel->pad == CCS_PA_PAD_SRC)
2485 			return 0;
2486 		return -EINVAL;
2487 	case V4L2_SEL_TGT_COMPOSE:
2488 	case V4L2_SEL_TGT_COMPOSE_BOUNDS:
2489 		if (sel->pad == ssd->source_pad)
2490 			return -EINVAL;
2491 		if (ssd == sensor->binner)
2492 			return 0;
2493 		if (ssd == sensor->scaler && CCS_LIM(sensor, SCALING_CAPABILITY)
2494 		    != CCS_SCALING_CAPABILITY_NONE)
2495 			return 0;
2496 		fallthrough;
2497 	default:
2498 		return -EINVAL;
2499 	}
2500 }
2501 
ccs_set_crop(struct v4l2_subdev * subdev,struct v4l2_subdev_state * sd_state,struct v4l2_subdev_selection * sel)2502 static int ccs_set_crop(struct v4l2_subdev *subdev,
2503 			struct v4l2_subdev_state *sd_state,
2504 			struct v4l2_subdev_selection *sel)
2505 {
2506 	struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2507 	struct ccs_subdev *ssd = to_ccs_subdev(subdev);
2508 	struct v4l2_rect src_size = { 0 }, *crops[CCS_PADS], *comp;
2509 
2510 	ccs_get_crop_compose(subdev, sd_state, crops, &comp);
2511 
2512 	if (sel->pad == ssd->sink_pad) {
2513 		struct v4l2_mbus_framefmt *mfmt =
2514 			v4l2_subdev_state_get_format(sd_state, sel->pad);
2515 
2516 		src_size.width = mfmt->width;
2517 		src_size.height = mfmt->height;
2518 	} else {
2519 		src_size = *comp;
2520 	}
2521 
2522 	if (ssd == sensor->src && sel->pad == CCS_PAD_SRC) {
2523 		sel->r.left = 0;
2524 		sel->r.top = 0;
2525 	}
2526 
2527 	sel->r.width = min(sel->r.width, src_size.width);
2528 	sel->r.height = min(sel->r.height, src_size.height);
2529 
2530 	sel->r.left = min_t(int, sel->r.left, src_size.width - sel->r.width);
2531 	sel->r.top = min_t(int, sel->r.top, src_size.height - sel->r.height);
2532 
2533 	*crops[sel->pad] = sel->r;
2534 
2535 	if (ssd != sensor->pixel_array && sel->pad == CCS_PAD_SINK)
2536 		ccs_propagate(subdev, sd_state, sel->which, V4L2_SEL_TGT_CROP);
2537 	else if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE &&
2538 		 ssd == sensor->pixel_array)
2539 		sensor->pa_src = sel->r;
2540 
2541 	return 0;
2542 }
2543 
ccs_get_native_size(struct ccs_subdev * ssd,struct v4l2_rect * r)2544 static void ccs_get_native_size(struct ccs_subdev *ssd, struct v4l2_rect *r)
2545 {
2546 	r->top = 0;
2547 	r->left = 0;
2548 	r->width = CCS_LIM(ssd->sensor, X_ADDR_MAX) + 1;
2549 	r->height = CCS_LIM(ssd->sensor, Y_ADDR_MAX) + 1;
2550 }
2551 
ccs_get_selection(struct v4l2_subdev * subdev,struct v4l2_subdev_state * sd_state,struct v4l2_subdev_selection * sel)2552 static int ccs_get_selection(struct v4l2_subdev *subdev,
2553 			     struct v4l2_subdev_state *sd_state,
2554 			     struct v4l2_subdev_selection *sel)
2555 {
2556 	struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2557 	struct ccs_subdev *ssd = to_ccs_subdev(subdev);
2558 	struct v4l2_rect *comp, *crops[CCS_PADS];
2559 	int ret;
2560 
2561 	ret = ccs_sel_supported(subdev, sel);
2562 	if (ret)
2563 		return ret;
2564 
2565 	ccs_get_crop_compose(subdev, sd_state, crops, &comp);
2566 
2567 	switch (sel->target) {
2568 	case V4L2_SEL_TGT_CROP_BOUNDS:
2569 	case V4L2_SEL_TGT_NATIVE_SIZE:
2570 		if (ssd == sensor->pixel_array) {
2571 			ccs_get_native_size(ssd, &sel->r);
2572 		} else if (sel->pad == ssd->sink_pad) {
2573 			struct v4l2_mbus_framefmt *sink_fmt =
2574 				v4l2_subdev_state_get_format(sd_state,
2575 							     ssd->sink_pad);
2576 			sel->r.top = sel->r.left = 0;
2577 			sel->r.width = sink_fmt->width;
2578 			sel->r.height = sink_fmt->height;
2579 		} else {
2580 			sel->r = *comp;
2581 		}
2582 		break;
2583 	case V4L2_SEL_TGT_CROP:
2584 	case V4L2_SEL_TGT_COMPOSE_BOUNDS:
2585 		sel->r = *crops[sel->pad];
2586 		break;
2587 	case V4L2_SEL_TGT_COMPOSE:
2588 		sel->r = *comp;
2589 		break;
2590 	}
2591 
2592 	return 0;
2593 }
2594 
ccs_set_selection(struct v4l2_subdev * subdev,struct v4l2_subdev_state * sd_state,struct v4l2_subdev_selection * sel)2595 static int ccs_set_selection(struct v4l2_subdev *subdev,
2596 			     struct v4l2_subdev_state *sd_state,
2597 			     struct v4l2_subdev_selection *sel)
2598 {
2599 	struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2600 	int ret;
2601 
2602 	ret = ccs_sel_supported(subdev, sel);
2603 	if (ret)
2604 		return ret;
2605 
2606 	mutex_lock(&sensor->mutex);
2607 
2608 	sel->r.left = max(0, sel->r.left & ~1);
2609 	sel->r.top = max(0, sel->r.top & ~1);
2610 	sel->r.width = CCS_ALIGN_DIM(sel->r.width, sel->flags);
2611 	sel->r.height =	CCS_ALIGN_DIM(sel->r.height, sel->flags);
2612 
2613 	sel->r.width = max_t(unsigned int, CCS_LIM(sensor, MIN_X_OUTPUT_SIZE),
2614 			     sel->r.width);
2615 	sel->r.height = max_t(unsigned int, CCS_LIM(sensor, MIN_Y_OUTPUT_SIZE),
2616 			      sel->r.height);
2617 
2618 	switch (sel->target) {
2619 	case V4L2_SEL_TGT_CROP:
2620 		ret = ccs_set_crop(subdev, sd_state, sel);
2621 		break;
2622 	case V4L2_SEL_TGT_COMPOSE:
2623 		ret = ccs_set_compose(subdev, sd_state, sel);
2624 		break;
2625 	default:
2626 		ret = -EINVAL;
2627 	}
2628 
2629 	mutex_unlock(&sensor->mutex);
2630 	return ret;
2631 }
2632 
ccs_get_skip_frames(struct v4l2_subdev * subdev,u32 * frames)2633 static int ccs_get_skip_frames(struct v4l2_subdev *subdev, u32 *frames)
2634 {
2635 	struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2636 
2637 	*frames = sensor->frame_skip;
2638 	return 0;
2639 }
2640 
ccs_get_skip_top_lines(struct v4l2_subdev * subdev,u32 * lines)2641 static int ccs_get_skip_top_lines(struct v4l2_subdev *subdev, u32 *lines)
2642 {
2643 	struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2644 
2645 	*lines = sensor->image_start;
2646 
2647 	return 0;
2648 }
2649 
2650 /* -----------------------------------------------------------------------------
2651  * sysfs attributes
2652  */
2653 
2654 static ssize_t
nvm_show(struct device * dev,struct device_attribute * attr,char * buf)2655 nvm_show(struct device *dev, struct device_attribute *attr, char *buf)
2656 {
2657 	struct v4l2_subdev *subdev = i2c_get_clientdata(to_i2c_client(dev));
2658 	struct i2c_client *client = v4l2_get_subdevdata(subdev);
2659 	struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2660 	int rval;
2661 
2662 	if (!sensor->dev_init_done)
2663 		return -EBUSY;
2664 
2665 	rval = ccs_pm_get_init(sensor);
2666 	if (rval < 0)
2667 		return -ENODEV;
2668 
2669 	rval = ccs_read_nvm(sensor, buf, PAGE_SIZE);
2670 	if (rval < 0) {
2671 		pm_runtime_put(&client->dev);
2672 		dev_err(&client->dev, "nvm read failed\n");
2673 		return -ENODEV;
2674 	}
2675 
2676 	pm_runtime_put_autosuspend(&client->dev);
2677 
2678 	/*
2679 	 * NVM is still way below a PAGE_SIZE, so we can safely
2680 	 * assume this for now.
2681 	 */
2682 	return rval;
2683 }
2684 static DEVICE_ATTR_RO(nvm);
2685 
2686 static ssize_t
ident_show(struct device * dev,struct device_attribute * attr,char * buf)2687 ident_show(struct device *dev, struct device_attribute *attr, char *buf)
2688 {
2689 	struct v4l2_subdev *subdev = i2c_get_clientdata(to_i2c_client(dev));
2690 	struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2691 	struct ccs_module_info *minfo = &sensor->minfo;
2692 
2693 	if (minfo->mipi_manufacturer_id)
2694 		return sysfs_emit(buf, "%4.4x%4.4x%2.2x\n",
2695 				    minfo->mipi_manufacturer_id, minfo->model_id,
2696 				    minfo->revision_number) + 1;
2697 	else
2698 		return sysfs_emit(buf, "%2.2x%4.4x%2.2x\n",
2699 				    minfo->smia_manufacturer_id, minfo->model_id,
2700 				    minfo->revision_number) + 1;
2701 }
2702 static DEVICE_ATTR_RO(ident);
2703 
2704 /* -----------------------------------------------------------------------------
2705  * V4L2 subdev core operations
2706  */
2707 
ccs_identify_module(struct ccs_sensor * sensor)2708 static int ccs_identify_module(struct ccs_sensor *sensor)
2709 {
2710 	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
2711 	struct ccs_module_info *minfo = &sensor->minfo;
2712 	unsigned int i;
2713 	u32 rev;
2714 	int rval = 0;
2715 
2716 	/* Module info */
2717 	rval = ccs_read(sensor, MODULE_MANUFACTURER_ID,
2718 			&minfo->mipi_manufacturer_id);
2719 	if (!rval && !minfo->mipi_manufacturer_id)
2720 		rval = ccs_read_addr(sensor, SMIAPP_REG_U8_MANUFACTURER_ID,
2721 				     &minfo->smia_manufacturer_id);
2722 	if (!rval)
2723 		rval = ccs_read(sensor, MODULE_MODEL_ID, &minfo->model_id);
2724 	if (!rval)
2725 		rval = ccs_read(sensor, MODULE_REVISION_NUMBER_MAJOR, &rev);
2726 	if (!rval) {
2727 		rval = ccs_read(sensor, MODULE_REVISION_NUMBER_MINOR,
2728 				&minfo->revision_number);
2729 		minfo->revision_number |= rev << 8;
2730 	}
2731 	if (!rval)
2732 		rval = ccs_read(sensor, MODULE_DATE_YEAR, &minfo->module_year);
2733 	if (!rval)
2734 		rval = ccs_read(sensor, MODULE_DATE_MONTH,
2735 				&minfo->module_month);
2736 	if (!rval)
2737 		rval = ccs_read(sensor, MODULE_DATE_DAY, &minfo->module_day);
2738 
2739 	/* Sensor info */
2740 	if (!rval)
2741 		rval = ccs_read(sensor, SENSOR_MANUFACTURER_ID,
2742 				&minfo->sensor_mipi_manufacturer_id);
2743 	if (!rval && !minfo->sensor_mipi_manufacturer_id)
2744 		rval = ccs_read(sensor, SENSOR_MANUFACTURER_ID,
2745 				&minfo->sensor_smia_manufacturer_id);
2746 	if (!rval)
2747 		rval = ccs_read(sensor, SENSOR_MODEL_ID,
2748 				&minfo->sensor_model_id);
2749 	if (!rval)
2750 		rval = ccs_read(sensor, SENSOR_REVISION_NUMBER,
2751 				&minfo->sensor_revision_number);
2752 	if (!rval && !minfo->sensor_revision_number)
2753 		rval = ccs_read(sensor, SENSOR_REVISION_NUMBER_16,
2754 				&minfo->sensor_revision_number);
2755 	if (!rval)
2756 		rval = ccs_read(sensor, SENSOR_FIRMWARE_VERSION,
2757 				&minfo->sensor_firmware_version);
2758 
2759 	/* SMIA */
2760 	if (!rval)
2761 		rval = ccs_read(sensor, MIPI_CCS_VERSION, &minfo->ccs_version);
2762 	if (!rval && !minfo->ccs_version)
2763 		rval = ccs_read_addr(sensor, SMIAPP_REG_U8_SMIA_VERSION,
2764 				     &minfo->smia_version);
2765 	if (!rval && !minfo->ccs_version)
2766 		rval = ccs_read_addr(sensor, SMIAPP_REG_U8_SMIAPP_VERSION,
2767 				     &minfo->smiapp_version);
2768 
2769 	if (rval) {
2770 		dev_err(&client->dev, "sensor detection failed\n");
2771 		return -ENODEV;
2772 	}
2773 
2774 	if (minfo->mipi_manufacturer_id)
2775 		dev_dbg(&client->dev, "MIPI CCS module 0x%4.4x-0x%4.4x\n",
2776 			minfo->mipi_manufacturer_id, minfo->model_id);
2777 	else
2778 		dev_dbg(&client->dev, "SMIA module 0x%2.2x-0x%4.4x\n",
2779 			minfo->smia_manufacturer_id, minfo->model_id);
2780 
2781 	dev_dbg(&client->dev,
2782 		"module revision 0x%4.4x date %2.2d-%2.2d-%2.2d\n",
2783 		minfo->revision_number, minfo->module_year, minfo->module_month,
2784 		minfo->module_day);
2785 
2786 	if (minfo->sensor_mipi_manufacturer_id)
2787 		dev_dbg(&client->dev, "MIPI CCS sensor 0x%4.4x-0x%4.4x\n",
2788 			minfo->sensor_mipi_manufacturer_id,
2789 			minfo->sensor_model_id);
2790 	else
2791 		dev_dbg(&client->dev, "SMIA sensor 0x%2.2x-0x%4.4x\n",
2792 			minfo->sensor_smia_manufacturer_id,
2793 			minfo->sensor_model_id);
2794 
2795 	dev_dbg(&client->dev,
2796 		"sensor revision 0x%4.4x firmware version 0x%2.2x\n",
2797 		minfo->sensor_revision_number, minfo->sensor_firmware_version);
2798 
2799 	if (minfo->ccs_version) {
2800 		dev_dbg(&client->dev, "MIPI CCS version %u.%u",
2801 			(minfo->ccs_version & CCS_MIPI_CCS_VERSION_MAJOR_MASK)
2802 			>> CCS_MIPI_CCS_VERSION_MAJOR_SHIFT,
2803 			(minfo->ccs_version & CCS_MIPI_CCS_VERSION_MINOR_MASK));
2804 		minfo->name = CCS_NAME;
2805 	} else {
2806 		dev_dbg(&client->dev,
2807 			"smia version %2.2d smiapp version %2.2d\n",
2808 			minfo->smia_version, minfo->smiapp_version);
2809 		minfo->name = SMIAPP_NAME;
2810 		/*
2811 		 * Some modules have bad data in the lvalues below. Hope the
2812 		 * rvalues have better stuff. The lvalues are module
2813 		 * parameters whereas the rvalues are sensor parameters.
2814 		 */
2815 		if (minfo->sensor_smia_manufacturer_id &&
2816 		    !minfo->smia_manufacturer_id && !minfo->model_id) {
2817 			minfo->smia_manufacturer_id =
2818 				minfo->sensor_smia_manufacturer_id;
2819 			minfo->model_id = minfo->sensor_model_id;
2820 			minfo->revision_number = minfo->sensor_revision_number;
2821 		}
2822 	}
2823 
2824 	for (i = 0; i < ARRAY_SIZE(ccs_module_idents); i++) {
2825 		if (ccs_module_idents[i].mipi_manufacturer_id &&
2826 		    ccs_module_idents[i].mipi_manufacturer_id
2827 		    != minfo->mipi_manufacturer_id)
2828 			continue;
2829 		if (ccs_module_idents[i].smia_manufacturer_id &&
2830 		    ccs_module_idents[i].smia_manufacturer_id
2831 		    != minfo->smia_manufacturer_id)
2832 			continue;
2833 		if (ccs_module_idents[i].model_id != minfo->model_id)
2834 			continue;
2835 		if (ccs_module_idents[i].flags
2836 		    & CCS_MODULE_IDENT_FLAG_REV_LE) {
2837 			if (ccs_module_idents[i].revision_number_major
2838 			    < (minfo->revision_number >> 8))
2839 				continue;
2840 		} else {
2841 			if (ccs_module_idents[i].revision_number_major
2842 			    != (minfo->revision_number >> 8))
2843 				continue;
2844 		}
2845 
2846 		minfo->name = ccs_module_idents[i].name;
2847 		minfo->quirk = ccs_module_idents[i].quirk;
2848 		break;
2849 	}
2850 
2851 	dev_dbg(&client->dev, "the sensor is called %s\n", minfo->name);
2852 
2853 	return 0;
2854 }
2855 
2856 static const struct v4l2_subdev_ops ccs_ops;
2857 static const struct media_entity_operations ccs_entity_ops;
2858 
ccs_register_subdev(struct ccs_sensor * sensor,struct ccs_subdev * ssd,struct ccs_subdev * sink_ssd,u16 source_pad,u16 sink_pad,u32 link_flags)2859 static int ccs_register_subdev(struct ccs_sensor *sensor,
2860 			       struct ccs_subdev *ssd,
2861 			       struct ccs_subdev *sink_ssd,
2862 			       u16 source_pad, u16 sink_pad, u32 link_flags)
2863 {
2864 	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
2865 	int rval;
2866 
2867 	if (!sink_ssd)
2868 		return 0;
2869 
2870 	rval = v4l2_device_register_subdev(sensor->src->sd.v4l2_dev, &ssd->sd);
2871 	if (rval) {
2872 		dev_err(&client->dev, "v4l2_device_register_subdev failed\n");
2873 		return rval;
2874 	}
2875 
2876 	rval = media_create_pad_link(&ssd->sd.entity, source_pad,
2877 				     &sink_ssd->sd.entity, sink_pad,
2878 				     link_flags);
2879 	if (rval) {
2880 		dev_err(&client->dev, "media_create_pad_link failed\n");
2881 		v4l2_device_unregister_subdev(&ssd->sd);
2882 		return rval;
2883 	}
2884 
2885 	return 0;
2886 }
2887 
ccs_unregistered(struct v4l2_subdev * subdev)2888 static void ccs_unregistered(struct v4l2_subdev *subdev)
2889 {
2890 	struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2891 	unsigned int i;
2892 
2893 	for (i = 1; i < sensor->ssds_used; i++)
2894 		v4l2_device_unregister_subdev(&sensor->ssds[i].sd);
2895 }
2896 
ccs_registered(struct v4l2_subdev * subdev)2897 static int ccs_registered(struct v4l2_subdev *subdev)
2898 {
2899 	struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2900 	int rval;
2901 
2902 	if (sensor->scaler) {
2903 		rval = ccs_register_subdev(sensor, sensor->binner,
2904 					   sensor->scaler,
2905 					   CCS_PAD_SRC, CCS_PAD_SINK,
2906 					   MEDIA_LNK_FL_ENABLED |
2907 					   MEDIA_LNK_FL_IMMUTABLE);
2908 		if (rval < 0)
2909 			return rval;
2910 	}
2911 
2912 	rval = ccs_register_subdev(sensor, sensor->pixel_array, sensor->binner,
2913 				   CCS_PA_PAD_SRC, CCS_PAD_SINK,
2914 				   MEDIA_LNK_FL_ENABLED |
2915 				   MEDIA_LNK_FL_IMMUTABLE);
2916 	if (rval)
2917 		goto out_err;
2918 
2919 	return 0;
2920 
2921 out_err:
2922 	ccs_unregistered(subdev);
2923 
2924 	return rval;
2925 }
2926 
ccs_cleanup(struct ccs_sensor * sensor)2927 static void ccs_cleanup(struct ccs_sensor *sensor)
2928 {
2929 	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
2930 	unsigned int i;
2931 
2932 	for (i = 0; i < sensor->ssds_used; i++) {
2933 		v4l2_subdev_cleanup(&sensor->ssds[2].sd);
2934 		media_entity_cleanup(&sensor->ssds[i].sd.entity);
2935 	}
2936 
2937 	device_remove_file(&client->dev, &dev_attr_nvm);
2938 	device_remove_file(&client->dev, &dev_attr_ident);
2939 
2940 	ccs_free_controls(sensor);
2941 }
2942 
ccs_init_subdev(struct ccs_sensor * sensor,struct ccs_subdev * ssd,const char * name,unsigned short num_pads,u32 function,const char * lock_name,struct lock_class_key * lock_key)2943 static int ccs_init_subdev(struct ccs_sensor *sensor,
2944 			   struct ccs_subdev *ssd, const char *name,
2945 			   unsigned short num_pads, u32 function,
2946 			   const char *lock_name,
2947 			   struct lock_class_key *lock_key)
2948 {
2949 	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
2950 	int rval;
2951 
2952 	if (!ssd)
2953 		return 0;
2954 
2955 	if (ssd != sensor->src)
2956 		v4l2_subdev_init(&ssd->sd, &ccs_ops);
2957 
2958 	ssd->sd.flags |= V4L2_SUBDEV_FL_HAS_DEVNODE;
2959 	ssd->sd.entity.function = function;
2960 	ssd->sensor = sensor;
2961 
2962 	ssd->npads = num_pads;
2963 	ssd->source_pad = num_pads - 1;
2964 
2965 	v4l2_i2c_subdev_set_name(&ssd->sd, client, sensor->minfo.name, name);
2966 
2967 	ssd->pads[ssd->source_pad].flags = MEDIA_PAD_FL_SOURCE;
2968 	if (ssd != sensor->pixel_array)
2969 		ssd->pads[ssd->sink_pad].flags = MEDIA_PAD_FL_SINK;
2970 
2971 	ssd->sd.entity.ops = &ccs_entity_ops;
2972 
2973 	if (ssd != sensor->src) {
2974 		ssd->sd.owner = THIS_MODULE;
2975 		ssd->sd.dev = &client->dev;
2976 		v4l2_set_subdevdata(&ssd->sd, client);
2977 	}
2978 
2979 	rval = media_entity_pads_init(&ssd->sd.entity, ssd->npads, ssd->pads);
2980 	if (rval) {
2981 		dev_err(&client->dev, "media_entity_pads_init failed\n");
2982 		return rval;
2983 	}
2984 
2985 	rval = __v4l2_subdev_init_finalize(&ssd->sd, lock_name, lock_key);
2986 	if (rval) {
2987 		media_entity_cleanup(&ssd->sd.entity);
2988 		return rval;
2989 	}
2990 
2991 	return 0;
2992 }
2993 
ccs_init_state(struct v4l2_subdev * sd,struct v4l2_subdev_state * sd_state)2994 static int ccs_init_state(struct v4l2_subdev *sd,
2995 			  struct v4l2_subdev_state *sd_state)
2996 {
2997 	struct ccs_subdev *ssd = to_ccs_subdev(sd);
2998 	struct ccs_sensor *sensor = ssd->sensor;
2999 	unsigned int pad = ssd == sensor->pixel_array ?
3000 		CCS_PA_PAD_SRC : CCS_PAD_SINK;
3001 	struct v4l2_mbus_framefmt *fmt =
3002 		v4l2_subdev_state_get_format(sd_state, pad);
3003 	struct v4l2_rect *crop =
3004 		v4l2_subdev_state_get_crop(sd_state, pad);
3005 	bool is_active = !sd->active_state || sd->active_state == sd_state;
3006 
3007 	mutex_lock(&sensor->mutex);
3008 
3009 	ccs_get_native_size(ssd, crop);
3010 
3011 	fmt->width = crop->width;
3012 	fmt->height = crop->height;
3013 	fmt->code = sensor->internal_csi_format->code;
3014 	fmt->field = V4L2_FIELD_NONE;
3015 
3016 	if (ssd == sensor->pixel_array) {
3017 		if (is_active)
3018 			sensor->pa_src = *crop;
3019 
3020 		mutex_unlock(&sensor->mutex);
3021 		return 0;
3022 	}
3023 
3024 	fmt = v4l2_subdev_state_get_format(sd_state, CCS_PAD_SRC);
3025 	fmt->code = ssd == sensor->src ?
3026 		sensor->csi_format->code : sensor->internal_csi_format->code;
3027 	fmt->field = V4L2_FIELD_NONE;
3028 
3029 	ccs_propagate(sd, sd_state, is_active, V4L2_SEL_TGT_CROP);
3030 
3031 	mutex_unlock(&sensor->mutex);
3032 
3033 	return 0;
3034 }
3035 
3036 static const struct v4l2_subdev_video_ops ccs_video_ops = {
3037 	.s_stream = ccs_set_stream,
3038 	.pre_streamon = ccs_pre_streamon,
3039 	.post_streamoff = ccs_post_streamoff,
3040 };
3041 
3042 static const struct v4l2_subdev_pad_ops ccs_pad_ops = {
3043 	.enum_mbus_code = ccs_enum_mbus_code,
3044 	.get_fmt = ccs_get_format,
3045 	.set_fmt = ccs_set_format,
3046 	.get_selection = ccs_get_selection,
3047 	.set_selection = ccs_set_selection,
3048 };
3049 
3050 static const struct v4l2_subdev_sensor_ops ccs_sensor_ops = {
3051 	.g_skip_frames = ccs_get_skip_frames,
3052 	.g_skip_top_lines = ccs_get_skip_top_lines,
3053 };
3054 
3055 static const struct v4l2_subdev_ops ccs_ops = {
3056 	.video = &ccs_video_ops,
3057 	.pad = &ccs_pad_ops,
3058 	.sensor = &ccs_sensor_ops,
3059 };
3060 
3061 static const struct media_entity_operations ccs_entity_ops = {
3062 	.link_validate = v4l2_subdev_link_validate,
3063 };
3064 
3065 static const struct v4l2_subdev_internal_ops ccs_internal_src_ops = {
3066 	.init_state = ccs_init_state,
3067 	.registered = ccs_registered,
3068 	.unregistered = ccs_unregistered,
3069 };
3070 
3071 /* -----------------------------------------------------------------------------
3072  * I2C Driver
3073  */
3074 
ccs_get_hwconfig(struct ccs_sensor * sensor,struct device * dev)3075 static int ccs_get_hwconfig(struct ccs_sensor *sensor, struct device *dev)
3076 {
3077 	struct ccs_hwconfig *hwcfg = &sensor->hwcfg;
3078 	struct v4l2_fwnode_endpoint bus_cfg = { .bus_type = V4L2_MBUS_UNKNOWN };
3079 	struct fwnode_handle *ep;
3080 	struct fwnode_handle *fwnode = dev_fwnode(dev);
3081 	unsigned int i;
3082 	int rval;
3083 
3084 	ep = fwnode_graph_get_endpoint_by_id(fwnode, 0, 0,
3085 					     FWNODE_GRAPH_ENDPOINT_NEXT);
3086 	if (!ep)
3087 		return -ENODEV;
3088 
3089 	/*
3090 	 * Note that we do need to rely on detecting the bus type between CSI-2
3091 	 * D-PHY and CCP2 as the old bindings did not require it.
3092 	 */
3093 	rval = v4l2_fwnode_endpoint_alloc_parse(ep, &bus_cfg);
3094 	if (rval)
3095 		goto out_err;
3096 
3097 	switch (bus_cfg.bus_type) {
3098 	case V4L2_MBUS_CSI2_DPHY:
3099 		hwcfg->csi_signalling_mode = CCS_CSI_SIGNALING_MODE_CSI_2_DPHY;
3100 		hwcfg->lanes = bus_cfg.bus.mipi_csi2.num_data_lanes;
3101 		break;
3102 	case V4L2_MBUS_CSI2_CPHY:
3103 		hwcfg->csi_signalling_mode = CCS_CSI_SIGNALING_MODE_CSI_2_CPHY;
3104 		hwcfg->lanes = bus_cfg.bus.mipi_csi2.num_data_lanes;
3105 		break;
3106 	case V4L2_MBUS_CSI1:
3107 	case V4L2_MBUS_CCP2:
3108 		hwcfg->csi_signalling_mode = (bus_cfg.bus.mipi_csi1.strobe) ?
3109 		SMIAPP_CSI_SIGNALLING_MODE_CCP2_DATA_STROBE :
3110 		SMIAPP_CSI_SIGNALLING_MODE_CCP2_DATA_CLOCK;
3111 		hwcfg->lanes = 1;
3112 		break;
3113 	default:
3114 		dev_err(dev, "unsupported bus %u\n", bus_cfg.bus_type);
3115 		rval = -EINVAL;
3116 		goto out_err;
3117 	}
3118 
3119 	rval = fwnode_property_read_u32(dev_fwnode(dev), "clock-frequency",
3120 					&hwcfg->ext_clk);
3121 
3122 	dev_dbg(dev, "clk %u, mode %u\n", hwcfg->ext_clk,
3123 		hwcfg->csi_signalling_mode);
3124 
3125 	if (!bus_cfg.nr_of_link_frequencies) {
3126 		dev_warn(dev, "no link frequencies defined\n");
3127 		rval = -EINVAL;
3128 		goto out_err;
3129 	}
3130 
3131 	hwcfg->op_sys_clock = devm_kcalloc(
3132 		dev, bus_cfg.nr_of_link_frequencies + 1 /* guardian */,
3133 		sizeof(*hwcfg->op_sys_clock), GFP_KERNEL);
3134 	if (!hwcfg->op_sys_clock) {
3135 		rval = -ENOMEM;
3136 		goto out_err;
3137 	}
3138 
3139 	for (i = 0; i < bus_cfg.nr_of_link_frequencies; i++) {
3140 		hwcfg->op_sys_clock[i] = bus_cfg.link_frequencies[i];
3141 		dev_dbg(dev, "freq %u: %lld\n", i, hwcfg->op_sys_clock[i]);
3142 	}
3143 
3144 	v4l2_fwnode_endpoint_free(&bus_cfg);
3145 	fwnode_handle_put(ep);
3146 
3147 	return 0;
3148 
3149 out_err:
3150 	v4l2_fwnode_endpoint_free(&bus_cfg);
3151 	fwnode_handle_put(ep);
3152 
3153 	return rval;
3154 }
3155 
ccs_firmware_name(struct i2c_client * client,struct ccs_sensor * sensor,char * filename,size_t filename_size,bool is_module)3156 static int ccs_firmware_name(struct i2c_client *client,
3157 			     struct ccs_sensor *sensor, char *filename,
3158 			     size_t filename_size, bool is_module)
3159 {
3160 	const struct ccs_device *ccsdev = device_get_match_data(&client->dev);
3161 	bool is_ccs = !(ccsdev->flags & CCS_DEVICE_FLAG_IS_SMIA);
3162 	bool is_smiapp = sensor->minfo.smiapp_version;
3163 	u16 manufacturer_id;
3164 	u16 model_id;
3165 	u16 revision_number;
3166 
3167 	/*
3168 	 * Old SMIA is module-agnostic. Its sensor identification is based on
3169 	 * what now are those of the module.
3170 	 */
3171 	if (is_module || (!is_ccs && !is_smiapp)) {
3172 		manufacturer_id = is_ccs ?
3173 			sensor->minfo.mipi_manufacturer_id :
3174 			sensor->minfo.smia_manufacturer_id;
3175 		model_id = sensor->minfo.model_id;
3176 		revision_number = sensor->minfo.revision_number;
3177 	} else {
3178 		manufacturer_id = is_ccs ?
3179 			sensor->minfo.sensor_mipi_manufacturer_id :
3180 			sensor->minfo.sensor_smia_manufacturer_id;
3181 		model_id = sensor->minfo.sensor_model_id;
3182 		revision_number = sensor->minfo.sensor_revision_number;
3183 	}
3184 
3185 	return snprintf(filename, filename_size,
3186 			"ccs/%s-%s-%0*x-%4.4x-%0*x.fw",
3187 			is_ccs ? "ccs" : is_smiapp ? "smiapp" : "smia",
3188 			is_module || (!is_ccs && !is_smiapp) ?
3189 				"module" : "sensor",
3190 			is_ccs ? 4 : 2, manufacturer_id, model_id,
3191 			!is_ccs && !is_module ? 2 : 4, revision_number);
3192 }
3193 
ccs_probe(struct i2c_client * client)3194 static int ccs_probe(struct i2c_client *client)
3195 {
3196 	static struct lock_class_key pixel_array_lock_key, binner_lock_key,
3197 		scaler_lock_key;
3198 	const struct ccs_device *ccsdev = device_get_match_data(&client->dev);
3199 	struct ccs_sensor *sensor;
3200 	const struct firmware *fw;
3201 	char filename[40];
3202 	unsigned int i;
3203 	int rval;
3204 
3205 	sensor = devm_kzalloc(&client->dev, sizeof(*sensor), GFP_KERNEL);
3206 	if (sensor == NULL)
3207 		return -ENOMEM;
3208 
3209 	rval = ccs_get_hwconfig(sensor, &client->dev);
3210 	if (rval)
3211 		return rval;
3212 
3213 	sensor->src = &sensor->ssds[sensor->ssds_used];
3214 
3215 	v4l2_i2c_subdev_init(&sensor->src->sd, client, &ccs_ops);
3216 	sensor->src->sd.internal_ops = &ccs_internal_src_ops;
3217 
3218 	sensor->regulators = devm_kcalloc(&client->dev,
3219 					  ARRAY_SIZE(ccs_regulators),
3220 					  sizeof(*sensor->regulators),
3221 					  GFP_KERNEL);
3222 	if (!sensor->regulators)
3223 		return -ENOMEM;
3224 
3225 	for (i = 0; i < ARRAY_SIZE(ccs_regulators); i++)
3226 		sensor->regulators[i].supply = ccs_regulators[i];
3227 
3228 	rval = devm_regulator_bulk_get(&client->dev, ARRAY_SIZE(ccs_regulators),
3229 				       sensor->regulators);
3230 	if (rval) {
3231 		dev_err(&client->dev, "could not get regulators\n");
3232 		return rval;
3233 	}
3234 
3235 	sensor->ext_clk = devm_clk_get(&client->dev, NULL);
3236 	if (PTR_ERR(sensor->ext_clk) == -ENOENT) {
3237 		dev_info(&client->dev, "no clock defined, continuing...\n");
3238 		sensor->ext_clk = NULL;
3239 	} else if (IS_ERR(sensor->ext_clk)) {
3240 		dev_err(&client->dev, "could not get clock (%ld)\n",
3241 			PTR_ERR(sensor->ext_clk));
3242 		return -EPROBE_DEFER;
3243 	}
3244 
3245 	if (sensor->ext_clk) {
3246 		if (sensor->hwcfg.ext_clk) {
3247 			unsigned long rate;
3248 
3249 			rval = clk_set_rate(sensor->ext_clk,
3250 					    sensor->hwcfg.ext_clk);
3251 			if (rval < 0) {
3252 				dev_err(&client->dev,
3253 					"unable to set clock freq to %u\n",
3254 					sensor->hwcfg.ext_clk);
3255 				return rval;
3256 			}
3257 
3258 			rate = clk_get_rate(sensor->ext_clk);
3259 			if (rate != sensor->hwcfg.ext_clk) {
3260 				dev_err(&client->dev,
3261 					"can't set clock freq, asked for %u but got %lu\n",
3262 					sensor->hwcfg.ext_clk, rate);
3263 				return -EINVAL;
3264 			}
3265 		} else {
3266 			sensor->hwcfg.ext_clk = clk_get_rate(sensor->ext_clk);
3267 			dev_dbg(&client->dev, "obtained clock freq %u\n",
3268 				sensor->hwcfg.ext_clk);
3269 		}
3270 	} else if (sensor->hwcfg.ext_clk) {
3271 		dev_dbg(&client->dev, "assuming clock freq %u\n",
3272 			sensor->hwcfg.ext_clk);
3273 	} else {
3274 		dev_err(&client->dev, "unable to obtain clock freq\n");
3275 		return -EINVAL;
3276 	}
3277 
3278 	if (!sensor->hwcfg.ext_clk) {
3279 		dev_err(&client->dev, "cannot work with xclk frequency 0\n");
3280 		return -EINVAL;
3281 	}
3282 
3283 	sensor->reset = devm_gpiod_get_optional(&client->dev, "reset",
3284 						GPIOD_OUT_HIGH);
3285 	if (IS_ERR(sensor->reset))
3286 		return PTR_ERR(sensor->reset);
3287 	/* Support old users that may have used "xshutdown" property. */
3288 	if (!sensor->reset)
3289 		sensor->xshutdown = devm_gpiod_get_optional(&client->dev,
3290 							    "xshutdown",
3291 							    GPIOD_OUT_LOW);
3292 	if (IS_ERR(sensor->xshutdown))
3293 		return PTR_ERR(sensor->xshutdown);
3294 
3295 	sensor->regmap = devm_cci_regmap_init_i2c(client, 16);
3296 	if (IS_ERR(sensor->regmap)) {
3297 		dev_err(&client->dev, "can't initialise CCI (%ld)\n",
3298 			PTR_ERR(sensor->regmap));
3299 		return PTR_ERR(sensor->regmap);
3300 	}
3301 
3302 	rval = ccs_power_on(&client->dev);
3303 	if (rval < 0)
3304 		return rval;
3305 
3306 	mutex_init(&sensor->mutex);
3307 
3308 	rval = ccs_identify_module(sensor);
3309 	if (rval) {
3310 		rval = -ENODEV;
3311 		goto out_power_off;
3312 	}
3313 
3314 	rval = ccs_firmware_name(client, sensor, filename, sizeof(filename),
3315 				 false);
3316 	if (rval >= sizeof(filename)) {
3317 		rval = -ENOMEM;
3318 		goto out_power_off;
3319 	}
3320 
3321 	rval = request_firmware(&fw, filename, &client->dev);
3322 	if (!rval) {
3323 		rval = ccs_data_parse(&sensor->sdata, fw->data, fw->size,
3324 				      &client->dev, true);
3325 		release_firmware(fw);
3326 		if (rval)
3327 			goto out_power_off;
3328 	}
3329 
3330 	if (!(ccsdev->flags & CCS_DEVICE_FLAG_IS_SMIA) ||
3331 	    sensor->minfo.smiapp_version) {
3332 		rval = ccs_firmware_name(client, sensor, filename,
3333 					 sizeof(filename), true);
3334 		if (rval >= sizeof(filename)) {
3335 			rval = -ENOMEM;
3336 			goto out_release_sdata;
3337 		}
3338 
3339 		rval = request_firmware(&fw, filename, &client->dev);
3340 		if (!rval) {
3341 			rval = ccs_data_parse(&sensor->mdata, fw->data,
3342 					      fw->size, &client->dev, true);
3343 			release_firmware(fw);
3344 			if (rval)
3345 				goto out_release_sdata;
3346 		}
3347 	}
3348 
3349 	rval = ccs_read_all_limits(sensor);
3350 	if (rval)
3351 		goto out_release_mdata;
3352 
3353 	rval = ccs_read_frame_fmt(sensor);
3354 	if (rval) {
3355 		rval = -ENODEV;
3356 		goto out_free_ccs_limits;
3357 	}
3358 
3359 	rval = ccs_update_phy_ctrl(sensor);
3360 	if (rval < 0)
3361 		goto out_free_ccs_limits;
3362 
3363 	rval = ccs_call_quirk(sensor, limits);
3364 	if (rval) {
3365 		dev_err(&client->dev, "limits quirks failed\n");
3366 		goto out_free_ccs_limits;
3367 	}
3368 
3369 	if (CCS_LIM(sensor, BINNING_CAPABILITY)) {
3370 		sensor->nbinning_subtypes =
3371 			min_t(u8, CCS_LIM(sensor, BINNING_SUB_TYPES),
3372 			      CCS_LIM_BINNING_SUB_TYPE_MAX_N);
3373 
3374 		for (i = 0; i < sensor->nbinning_subtypes; i++) {
3375 			sensor->binning_subtypes[i].horizontal =
3376 				CCS_LIM_AT(sensor, BINNING_SUB_TYPE, i) >>
3377 				CCS_BINNING_SUB_TYPE_COLUMN_SHIFT;
3378 			sensor->binning_subtypes[i].vertical =
3379 				CCS_LIM_AT(sensor, BINNING_SUB_TYPE, i) &
3380 				CCS_BINNING_SUB_TYPE_ROW_MASK;
3381 
3382 			dev_dbg(&client->dev, "binning %xx%x\n",
3383 				sensor->binning_subtypes[i].horizontal,
3384 				sensor->binning_subtypes[i].vertical);
3385 		}
3386 	}
3387 	sensor->binning_horizontal = 1;
3388 	sensor->binning_vertical = 1;
3389 
3390 	if (device_create_file(&client->dev, &dev_attr_ident) != 0) {
3391 		dev_err(&client->dev, "sysfs ident entry creation failed\n");
3392 		rval = -ENOENT;
3393 		goto out_free_ccs_limits;
3394 	}
3395 
3396 	if (sensor->minfo.smiapp_version &&
3397 	    CCS_LIM(sensor, DATA_TRANSFER_IF_CAPABILITY) &
3398 	    CCS_DATA_TRANSFER_IF_CAPABILITY_SUPPORTED) {
3399 		if (device_create_file(&client->dev, &dev_attr_nvm) != 0) {
3400 			dev_err(&client->dev, "sysfs nvm entry failed\n");
3401 			rval = -EBUSY;
3402 			goto out_cleanup;
3403 		}
3404 	}
3405 
3406 	if (!CCS_LIM(sensor, MIN_OP_SYS_CLK_DIV) ||
3407 	    !CCS_LIM(sensor, MAX_OP_SYS_CLK_DIV) ||
3408 	    !CCS_LIM(sensor, MIN_OP_PIX_CLK_DIV) ||
3409 	    !CCS_LIM(sensor, MAX_OP_PIX_CLK_DIV)) {
3410 		/* No OP clock branch */
3411 		sensor->pll.flags |= CCS_PLL_FLAG_NO_OP_CLOCKS;
3412 	} else if (CCS_LIM(sensor, SCALING_CAPABILITY)
3413 		   != CCS_SCALING_CAPABILITY_NONE ||
3414 		   CCS_LIM(sensor, DIGITAL_CROP_CAPABILITY)
3415 		   == CCS_DIGITAL_CROP_CAPABILITY_INPUT_CROP) {
3416 		/* We have a scaler or digital crop. */
3417 		sensor->scaler = &sensor->ssds[sensor->ssds_used];
3418 		sensor->ssds_used++;
3419 	}
3420 	sensor->binner = &sensor->ssds[sensor->ssds_used];
3421 	sensor->ssds_used++;
3422 	sensor->pixel_array = &sensor->ssds[sensor->ssds_used];
3423 	sensor->ssds_used++;
3424 
3425 	sensor->scale_m = CCS_LIM(sensor, SCALER_N_MIN);
3426 
3427 	/* prepare PLL configuration input values */
3428 	sensor->pll.bus_type = CCS_PLL_BUS_TYPE_CSI2_DPHY;
3429 	sensor->pll.csi2.lanes = sensor->hwcfg.lanes;
3430 	if (CCS_LIM(sensor, CLOCK_CALCULATION) &
3431 	    CCS_CLOCK_CALCULATION_LANE_SPEED) {
3432 		sensor->pll.flags |= CCS_PLL_FLAG_LANE_SPEED_MODEL;
3433 		if (CCS_LIM(sensor, CLOCK_CALCULATION) &
3434 		    CCS_CLOCK_CALCULATION_LINK_DECOUPLED) {
3435 			sensor->pll.vt_lanes =
3436 				CCS_LIM(sensor, NUM_OF_VT_LANES) + 1;
3437 			sensor->pll.op_lanes =
3438 				CCS_LIM(sensor, NUM_OF_OP_LANES) + 1;
3439 		} else {
3440 			sensor->pll.vt_lanes = sensor->pll.csi2.lanes;
3441 			sensor->pll.op_lanes = sensor->pll.csi2.lanes;
3442 		}
3443 	}
3444 	if (CCS_LIM(sensor, CLOCK_TREE_PLL_CAPABILITY) &
3445 	    CCS_CLOCK_TREE_PLL_CAPABILITY_EXT_DIVIDER)
3446 		sensor->pll.flags |= CCS_PLL_FLAG_EXT_IP_PLL_DIVIDER;
3447 	if (CCS_LIM(sensor, CLOCK_TREE_PLL_CAPABILITY) &
3448 	    CCS_CLOCK_TREE_PLL_CAPABILITY_FLEXIBLE_OP_PIX_CLK_DIV)
3449 		sensor->pll.flags |= CCS_PLL_FLAG_FLEXIBLE_OP_PIX_CLK_DIV;
3450 	if (CCS_LIM(sensor, FIFO_SUPPORT_CAPABILITY) &
3451 	    CCS_FIFO_SUPPORT_CAPABILITY_DERATING)
3452 		sensor->pll.flags |= CCS_PLL_FLAG_FIFO_DERATING;
3453 	if (CCS_LIM(sensor, FIFO_SUPPORT_CAPABILITY) &
3454 	    CCS_FIFO_SUPPORT_CAPABILITY_DERATING_OVERRATING)
3455 		sensor->pll.flags |= CCS_PLL_FLAG_FIFO_DERATING |
3456 				     CCS_PLL_FLAG_FIFO_OVERRATING;
3457 	if (CCS_LIM(sensor, CLOCK_TREE_PLL_CAPABILITY) &
3458 	    CCS_CLOCK_TREE_PLL_CAPABILITY_DUAL_PLL) {
3459 		if (CCS_LIM(sensor, CLOCK_TREE_PLL_CAPABILITY) &
3460 		    CCS_CLOCK_TREE_PLL_CAPABILITY_SINGLE_PLL) {
3461 			u32 v;
3462 
3463 			/* Use sensor default in PLL mode selection */
3464 			rval = ccs_read(sensor, PLL_MODE, &v);
3465 			if (rval)
3466 				goto out_cleanup;
3467 
3468 			if (v == CCS_PLL_MODE_DUAL)
3469 				sensor->pll.flags |= CCS_PLL_FLAG_DUAL_PLL;
3470 		} else {
3471 			sensor->pll.flags |= CCS_PLL_FLAG_DUAL_PLL;
3472 		}
3473 		if (CCS_LIM(sensor, CLOCK_CALCULATION) &
3474 		    CCS_CLOCK_CALCULATION_DUAL_PLL_OP_SYS_DDR)
3475 			sensor->pll.flags |= CCS_PLL_FLAG_OP_SYS_DDR;
3476 		if (CCS_LIM(sensor, CLOCK_CALCULATION) &
3477 		    CCS_CLOCK_CALCULATION_DUAL_PLL_OP_PIX_DDR)
3478 			sensor->pll.flags |= CCS_PLL_FLAG_OP_PIX_DDR;
3479 	}
3480 	sensor->pll.op_bits_per_lane = CCS_LIM(sensor, OP_BITS_PER_LANE);
3481 	sensor->pll.ext_clk_freq_hz = sensor->hwcfg.ext_clk;
3482 	sensor->pll.scale_n = CCS_LIM(sensor, SCALER_N_MIN);
3483 
3484 	rval = ccs_get_mbus_formats(sensor);
3485 	if (rval) {
3486 		rval = -ENODEV;
3487 		goto out_cleanup;
3488 	}
3489 
3490 	rval = ccs_init_subdev(sensor, sensor->scaler, " scaler", 2,
3491 			       MEDIA_ENT_F_PROC_VIDEO_SCALER,
3492 			       "ccs scaler mutex", &scaler_lock_key);
3493 	if (rval)
3494 		goto out_cleanup;
3495 	rval = ccs_init_subdev(sensor, sensor->binner, " binner", 2,
3496 			       MEDIA_ENT_F_PROC_VIDEO_SCALER,
3497 			       "ccs binner mutex", &binner_lock_key);
3498 	if (rval)
3499 		goto out_cleanup;
3500 	rval = ccs_init_subdev(sensor, sensor->pixel_array, " pixel_array", 1,
3501 			       MEDIA_ENT_F_CAM_SENSOR, "ccs pixel array mutex",
3502 			       &pixel_array_lock_key);
3503 	if (rval)
3504 		goto out_cleanup;
3505 
3506 	rval = ccs_init_controls(sensor);
3507 	if (rval < 0)
3508 		goto out_cleanup;
3509 
3510 	rval = ccs_call_quirk(sensor, init);
3511 	if (rval)
3512 		goto out_cleanup;
3513 
3514 	rval = ccs_init_late_controls(sensor);
3515 	if (rval) {
3516 		rval = -ENODEV;
3517 		goto out_cleanup;
3518 	}
3519 
3520 	mutex_lock(&sensor->mutex);
3521 	rval = ccs_pll_blanking_update(sensor);
3522 	mutex_unlock(&sensor->mutex);
3523 	if (rval) {
3524 		dev_err(&client->dev, "update mode failed\n");
3525 		goto out_cleanup;
3526 	}
3527 
3528 	sensor->streaming = false;
3529 	sensor->dev_init_done = true;
3530 	sensor->handler_setup_needed = true;
3531 
3532 	rval = ccs_write_msr_regs(sensor);
3533 	if (rval)
3534 		goto out_cleanup;
3535 
3536 	pm_runtime_set_active(&client->dev);
3537 	pm_runtime_get_noresume(&client->dev);
3538 	pm_runtime_enable(&client->dev);
3539 
3540 	rval = v4l2_async_register_subdev_sensor(&sensor->src->sd);
3541 	if (rval < 0)
3542 		goto out_disable_runtime_pm;
3543 
3544 	pm_runtime_set_autosuspend_delay(&client->dev, 1000);
3545 	pm_runtime_use_autosuspend(&client->dev);
3546 	pm_runtime_put_autosuspend(&client->dev);
3547 
3548 	return 0;
3549 
3550 out_disable_runtime_pm:
3551 	pm_runtime_put_noidle(&client->dev);
3552 	pm_runtime_disable(&client->dev);
3553 	pm_runtime_set_suspended(&client->dev);
3554 
3555 out_cleanup:
3556 	ccs_cleanup(sensor);
3557 
3558 out_free_ccs_limits:
3559 	kfree(sensor->ccs_limits);
3560 
3561 out_release_mdata:
3562 	kvfree(sensor->mdata.backing);
3563 
3564 out_release_sdata:
3565 	kvfree(sensor->sdata.backing);
3566 
3567 out_power_off:
3568 	ccs_power_off(&client->dev);
3569 	mutex_destroy(&sensor->mutex);
3570 
3571 	return rval;
3572 }
3573 
ccs_remove(struct i2c_client * client)3574 static void ccs_remove(struct i2c_client *client)
3575 {
3576 	struct v4l2_subdev *subdev = i2c_get_clientdata(client);
3577 	struct ccs_sensor *sensor = to_ccs_sensor(subdev);
3578 	unsigned int i;
3579 
3580 	v4l2_async_unregister_subdev(subdev);
3581 
3582 	pm_runtime_disable(&client->dev);
3583 	if (!pm_runtime_status_suspended(&client->dev)) {
3584 		ccs_power_off(&client->dev);
3585 		pm_runtime_set_suspended(&client->dev);
3586 	}
3587 
3588 	for (i = 0; i < sensor->ssds_used; i++)
3589 		v4l2_device_unregister_subdev(&sensor->ssds[i].sd);
3590 	ccs_cleanup(sensor);
3591 	mutex_destroy(&sensor->mutex);
3592 	kfree(sensor->ccs_limits);
3593 	kvfree(sensor->sdata.backing);
3594 	kvfree(sensor->mdata.backing);
3595 }
3596 
3597 static const struct ccs_device smia_device = {
3598 	.flags = CCS_DEVICE_FLAG_IS_SMIA,
3599 };
3600 
3601 static const struct ccs_device ccs_device = {};
3602 
3603 static const struct acpi_device_id ccs_acpi_table[] = {
3604 	{ .id = "MIPI0200", .driver_data = (unsigned long)&ccs_device },
3605 	{ },
3606 };
3607 MODULE_DEVICE_TABLE(acpi, ccs_acpi_table);
3608 
3609 static const struct of_device_id ccs_of_table[] = {
3610 	{ .compatible = "mipi-ccs-1.1", .data = &ccs_device },
3611 	{ .compatible = "mipi-ccs-1.0", .data = &ccs_device },
3612 	{ .compatible = "mipi-ccs", .data = &ccs_device },
3613 	{ .compatible = "nokia,smia", .data = &smia_device },
3614 	{ },
3615 };
3616 MODULE_DEVICE_TABLE(of, ccs_of_table);
3617 
3618 static const struct dev_pm_ops ccs_pm_ops = {
3619 	SET_RUNTIME_PM_OPS(ccs_power_off, ccs_power_on, NULL)
3620 };
3621 
3622 static struct i2c_driver ccs_i2c_driver = {
3623 	.driver	= {
3624 		.acpi_match_table = ccs_acpi_table,
3625 		.of_match_table = ccs_of_table,
3626 		.name = CCS_NAME,
3627 		.pm = &ccs_pm_ops,
3628 	},
3629 	.probe = ccs_probe,
3630 	.remove	= ccs_remove,
3631 };
3632 
ccs_module_init(void)3633 static int ccs_module_init(void)
3634 {
3635 	unsigned int i, l;
3636 
3637 	CCS_BUILD_BUG;
3638 
3639 	for (i = 0, l = 0; ccs_limits[i].size && l < CCS_L_LAST; i++) {
3640 		if (!(ccs_limits[i].flags & CCS_L_FL_SAME_REG)) {
3641 			ccs_limit_offsets[l + 1].lim =
3642 				ALIGN(ccs_limit_offsets[l].lim +
3643 				      ccs_limits[i].size,
3644 				      ccs_limits[i + 1].reg ?
3645 				      CCI_REG_WIDTH_BYTES(ccs_limits[i + 1].reg) :
3646 				      1U);
3647 			ccs_limit_offsets[l].info = i;
3648 			l++;
3649 		} else {
3650 			ccs_limit_offsets[l].lim += ccs_limits[i].size;
3651 		}
3652 	}
3653 
3654 	if (WARN_ON(ccs_limits[i].size))
3655 		return -EINVAL;
3656 
3657 	if (WARN_ON(l != CCS_L_LAST))
3658 		return -EINVAL;
3659 
3660 	return i2c_register_driver(THIS_MODULE, &ccs_i2c_driver);
3661 }
3662 
ccs_module_cleanup(void)3663 static void ccs_module_cleanup(void)
3664 {
3665 	i2c_del_driver(&ccs_i2c_driver);
3666 }
3667 
3668 module_init(ccs_module_init);
3669 module_exit(ccs_module_cleanup);
3670 
3671 MODULE_AUTHOR("Sakari Ailus <sakari.ailus@linux.intel.com>");
3672 MODULE_DESCRIPTION("Generic MIPI CCS/SMIA/SMIA++ camera sensor driver");
3673 MODULE_LICENSE("GPL v2");
3674 MODULE_ALIAS("smiapp");
3675