1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * drivers/media/i2c/ccs/ccs-core.c
4 *
5 * Generic driver for MIPI CCS/SMIA/SMIA++ compliant camera sensors
6 *
7 * Copyright (C) 2020 Intel Corporation
8 * Copyright (C) 2010--2012 Nokia Corporation
9 * Contact: Sakari Ailus <sakari.ailus@linux.intel.com>
10 *
11 * Based on smiapp driver by Vimarsh Zutshi
12 * Based on jt8ev1.c by Vimarsh Zutshi
13 * Based on smia-sensor.c by Tuukka Toivonen <tuukkat76@gmail.com>
14 */
15
16 #include <linux/clk.h>
17 #include <linux/delay.h>
18 #include <linux/device.h>
19 #include <linux/firmware.h>
20 #include <linux/gpio/consumer.h>
21 #include <linux/module.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/property.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/slab.h>
26 #include <linux/smiapp.h>
27 #include <linux/v4l2-mediabus.h>
28 #include <media/v4l2-cci.h>
29 #include <media/v4l2-device.h>
30 #include <media/v4l2-fwnode.h>
31 #include <uapi/linux/ccs.h>
32
33 #include "ccs.h"
34
35 #define CCS_ALIGN_DIM(dim, flags) \
36 ((flags) & V4L2_SEL_FLAG_GE \
37 ? ALIGN((dim), 2) \
38 : (dim) & ~1)
39
40 static struct ccs_limit_offset {
41 u16 lim;
42 u16 info;
43 } ccs_limit_offsets[CCS_L_LAST + 1];
44
45 /*
46 * ccs_module_idents - supported camera modules
47 */
48 static const struct ccs_module_ident ccs_module_idents[] = {
49 CCS_IDENT_L(0x01, 0x022b, -1, "vs6555"),
50 CCS_IDENT_L(0x01, 0x022e, -1, "vw6558"),
51 CCS_IDENT_L(0x07, 0x7698, -1, "ovm7698"),
52 CCS_IDENT_L(0x0b, 0x4242, -1, "smiapp-003"),
53 CCS_IDENT_L(0x0c, 0x208a, -1, "tcm8330md"),
54 CCS_IDENT_LQ(0x0c, 0x2134, -1, "tcm8500md", &smiapp_tcm8500md_quirk),
55 CCS_IDENT_L(0x0c, 0x213e, -1, "et8en2"),
56 CCS_IDENT_L(0x0c, 0x2184, -1, "tcm8580md"),
57 CCS_IDENT_LQ(0x0c, 0x560f, -1, "jt8ew9", &smiapp_jt8ew9_quirk),
58 CCS_IDENT_LQ(0x10, 0x4141, -1, "jt8ev1", &smiapp_jt8ev1_quirk),
59 CCS_IDENT_LQ(0x10, 0x4241, -1, "imx125es", &smiapp_imx125es_quirk),
60 };
61
62 #define CCS_DEVICE_FLAG_IS_SMIA BIT(0)
63
64 struct ccs_device {
65 unsigned char flags;
66 };
67
68 static const char * const ccs_regulators[] = { "vcore", "vio", "vana" };
69
70 /*
71 *
72 * Dynamic Capability Identification
73 *
74 */
75
ccs_assign_limit(void * ptr,unsigned int width,u32 val)76 static void ccs_assign_limit(void *ptr, unsigned int width, u32 val)
77 {
78 switch (width) {
79 case sizeof(u8):
80 *(u8 *)ptr = val;
81 break;
82 case sizeof(u16):
83 *(u16 *)ptr = val;
84 break;
85 case sizeof(u32):
86 *(u32 *)ptr = val;
87 break;
88 }
89 }
90
ccs_limit_ptr(struct ccs_sensor * sensor,unsigned int limit,unsigned int offset,void ** __ptr)91 static int ccs_limit_ptr(struct ccs_sensor *sensor, unsigned int limit,
92 unsigned int offset, void **__ptr)
93 {
94 const struct ccs_limit *linfo;
95
96 if (WARN_ON(limit >= CCS_L_LAST))
97 return -EINVAL;
98
99 linfo = &ccs_limits[ccs_limit_offsets[limit].info];
100
101 if (WARN_ON(!sensor->ccs_limits) ||
102 WARN_ON(offset + CCI_REG_WIDTH_BYTES(linfo->reg) >
103 ccs_limit_offsets[limit + 1].lim))
104 return -EINVAL;
105
106 *__ptr = sensor->ccs_limits + ccs_limit_offsets[limit].lim + offset;
107
108 return 0;
109 }
110
ccs_replace_limit(struct ccs_sensor * sensor,unsigned int limit,unsigned int offset,u32 val)111 void ccs_replace_limit(struct ccs_sensor *sensor,
112 unsigned int limit, unsigned int offset, u32 val)
113 {
114 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
115 const struct ccs_limit *linfo;
116 void *ptr;
117 int ret;
118
119 ret = ccs_limit_ptr(sensor, limit, offset, &ptr);
120 if (ret)
121 return;
122
123 linfo = &ccs_limits[ccs_limit_offsets[limit].info];
124
125 dev_dbg(&client->dev, "quirk: 0x%8.8x \"%s\" %u = %u, 0x%x\n",
126 linfo->reg, linfo->name, offset, val, val);
127
128 ccs_assign_limit(ptr, CCI_REG_WIDTH_BYTES(linfo->reg), val);
129 }
130
ccs_get_limit(struct ccs_sensor * sensor,unsigned int limit,unsigned int offset)131 u32 ccs_get_limit(struct ccs_sensor *sensor, unsigned int limit,
132 unsigned int offset)
133 {
134 void *ptr;
135 u32 val;
136 int ret;
137
138 ret = ccs_limit_ptr(sensor, limit, offset, &ptr);
139 if (ret)
140 return 0;
141
142 switch (CCI_REG_WIDTH_BYTES(ccs_limits[ccs_limit_offsets[limit].info].reg)) {
143 case sizeof(u8):
144 val = *(u8 *)ptr;
145 break;
146 case sizeof(u16):
147 val = *(u16 *)ptr;
148 break;
149 case sizeof(u32):
150 val = *(u32 *)ptr;
151 break;
152 default:
153 WARN_ON(1);
154 return 0;
155 }
156
157 return ccs_reg_conv(sensor, ccs_limits[limit].reg, val);
158 }
159
ccs_read_all_limits(struct ccs_sensor * sensor)160 static int ccs_read_all_limits(struct ccs_sensor *sensor)
161 {
162 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
163 void *ptr, *alloc, *end;
164 unsigned int i, l;
165 int ret;
166
167 kfree(sensor->ccs_limits);
168 sensor->ccs_limits = NULL;
169
170 alloc = kzalloc(ccs_limit_offsets[CCS_L_LAST].lim, GFP_KERNEL);
171 if (!alloc)
172 return -ENOMEM;
173
174 end = alloc + ccs_limit_offsets[CCS_L_LAST].lim;
175
176 sensor->ccs_limits = alloc;
177
178 for (i = 0, l = 0, ptr = alloc; ccs_limits[i].size; i++) {
179 u32 reg = ccs_limits[i].reg;
180 unsigned int width = CCI_REG_WIDTH_BYTES(reg);
181 unsigned int j;
182
183 if (l == CCS_L_LAST) {
184 dev_err(&client->dev,
185 "internal error --- end of limit array\n");
186 ret = -EINVAL;
187 goto out_err;
188 }
189
190 for (j = 0; j < ccs_limits[i].size / width;
191 j++, reg += width, ptr += width) {
192 char str[16] = "";
193 u32 val;
194
195 ret = ccs_read_addr_noconv(sensor, reg, &val);
196 if (ret)
197 goto out_err;
198
199 if (ptr + width > end) {
200 dev_err(&client->dev,
201 "internal error --- no room for regs\n");
202 ret = -EINVAL;
203 goto out_err;
204 }
205
206 if (!val && j)
207 break;
208
209 ccs_assign_limit(ptr, width, val);
210
211 #ifdef CONFIG_DYNAMIC_DEBUG
212 if (reg & (CCS_FL_FLOAT_IREAL | CCS_FL_IREAL))
213 snprintf(str, sizeof(str), ", %u",
214 ccs_reg_conv(sensor, reg, val));
215 #endif
216
217 dev_dbg(&client->dev,
218 "0x%8.8x \"%s\" = %u, 0x%x%s\n",
219 reg, ccs_limits[i].name, val, val, str);
220 }
221
222 if (ccs_limits[i].flags & CCS_L_FL_SAME_REG)
223 continue;
224
225 l++;
226 ptr = alloc + ccs_limit_offsets[l].lim;
227 }
228
229 if (l != CCS_L_LAST) {
230 dev_err(&client->dev,
231 "internal error --- insufficient limits\n");
232 ret = -EINVAL;
233 goto out_err;
234 }
235
236 if (CCS_LIM(sensor, SCALER_N_MIN) < 16)
237 ccs_replace_limit(sensor, CCS_L_SCALER_N_MIN, 0, 16);
238
239 return 0;
240
241 out_err:
242 sensor->ccs_limits = NULL;
243 kfree(alloc);
244
245 return ret;
246 }
247
ccs_read_frame_fmt(struct ccs_sensor * sensor)248 static int ccs_read_frame_fmt(struct ccs_sensor *sensor)
249 {
250 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
251 u8 fmt_model_type, fmt_model_subtype, ncol_desc, nrow_desc;
252 unsigned int i;
253 int pixel_count = 0;
254 int line_count = 0;
255
256 fmt_model_type = CCS_LIM(sensor, FRAME_FORMAT_MODEL_TYPE);
257 fmt_model_subtype = CCS_LIM(sensor, FRAME_FORMAT_MODEL_SUBTYPE);
258
259 ncol_desc = (fmt_model_subtype
260 & CCS_FRAME_FORMAT_MODEL_SUBTYPE_COLUMNS_MASK)
261 >> CCS_FRAME_FORMAT_MODEL_SUBTYPE_COLUMNS_SHIFT;
262 nrow_desc = fmt_model_subtype
263 & CCS_FRAME_FORMAT_MODEL_SUBTYPE_ROWS_MASK;
264
265 dev_dbg(&client->dev, "format_model_type %s\n",
266 fmt_model_type == CCS_FRAME_FORMAT_MODEL_TYPE_2_BYTE
267 ? "2 byte" :
268 fmt_model_type == CCS_FRAME_FORMAT_MODEL_TYPE_4_BYTE
269 ? "4 byte" : "is simply bad");
270
271 dev_dbg(&client->dev, "%u column and %u row descriptors\n",
272 ncol_desc, nrow_desc);
273
274 for (i = 0; i < ncol_desc + nrow_desc; i++) {
275 u32 desc;
276 u32 pixelcode;
277 u32 pixels;
278 char *which;
279 char *what;
280
281 if (fmt_model_type == CCS_FRAME_FORMAT_MODEL_TYPE_2_BYTE) {
282 desc = CCS_LIM_AT(sensor, FRAME_FORMAT_DESCRIPTOR, i);
283
284 pixelcode =
285 (desc
286 & CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_MASK)
287 >> CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_SHIFT;
288 pixels = desc & CCS_FRAME_FORMAT_DESCRIPTOR_PIXELS_MASK;
289 } else if (fmt_model_type
290 == CCS_FRAME_FORMAT_MODEL_TYPE_4_BYTE) {
291 desc = CCS_LIM_AT(sensor, FRAME_FORMAT_DESCRIPTOR_4, i);
292
293 pixelcode =
294 (desc
295 & CCS_FRAME_FORMAT_DESCRIPTOR_4_PCODE_MASK)
296 >> CCS_FRAME_FORMAT_DESCRIPTOR_4_PCODE_SHIFT;
297 pixels = desc &
298 CCS_FRAME_FORMAT_DESCRIPTOR_4_PIXELS_MASK;
299 } else {
300 dev_dbg(&client->dev,
301 "invalid frame format model type %u\n",
302 fmt_model_type);
303 return -EINVAL;
304 }
305
306 if (i < ncol_desc)
307 which = "columns";
308 else
309 which = "rows";
310
311 switch (pixelcode) {
312 case CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_EMBEDDED:
313 what = "embedded";
314 break;
315 case CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_DUMMY_PIXEL:
316 what = "dummy";
317 break;
318 case CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_BLACK_PIXEL:
319 what = "black";
320 break;
321 case CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_DARK_PIXEL:
322 what = "dark";
323 break;
324 case CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_VISIBLE_PIXEL:
325 what = "visible";
326 break;
327 default:
328 what = "invalid";
329 break;
330 }
331
332 dev_dbg(&client->dev,
333 "%s pixels: %u %s (pixelcode %u)\n",
334 what, pixels, which, pixelcode);
335
336 if (i < ncol_desc) {
337 if (pixelcode ==
338 CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_VISIBLE_PIXEL)
339 sensor->visible_pixel_start = pixel_count;
340 pixel_count += pixels;
341 continue;
342 }
343
344 /* Handle row descriptors */
345 switch (pixelcode) {
346 case CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_EMBEDDED:
347 if (sensor->embedded_end)
348 break;
349 sensor->embedded_start = line_count;
350 sensor->embedded_end = line_count + pixels;
351 break;
352 case CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_VISIBLE_PIXEL:
353 sensor->image_start = line_count;
354 break;
355 }
356 line_count += pixels;
357 }
358
359 if (sensor->embedded_end > sensor->image_start) {
360 dev_dbg(&client->dev,
361 "adjusting image start line to %u (was %u)\n",
362 sensor->embedded_end, sensor->image_start);
363 sensor->image_start = sensor->embedded_end;
364 }
365
366 dev_dbg(&client->dev, "embedded data from lines %u to %u\n",
367 sensor->embedded_start, sensor->embedded_end);
368 dev_dbg(&client->dev, "image data starts at line %u\n",
369 sensor->image_start);
370
371 return 0;
372 }
373
ccs_pll_configure(struct ccs_sensor * sensor)374 static int ccs_pll_configure(struct ccs_sensor *sensor)
375 {
376 struct ccs_pll *pll = &sensor->pll;
377 int rval;
378
379 rval = ccs_write(sensor, VT_PIX_CLK_DIV, pll->vt_bk.pix_clk_div);
380 if (rval < 0)
381 return rval;
382
383 rval = ccs_write(sensor, VT_SYS_CLK_DIV, pll->vt_bk.sys_clk_div);
384 if (rval < 0)
385 return rval;
386
387 rval = ccs_write(sensor, PRE_PLL_CLK_DIV, pll->vt_fr.pre_pll_clk_div);
388 if (rval < 0)
389 return rval;
390
391 rval = ccs_write(sensor, PLL_MULTIPLIER, pll->vt_fr.pll_multiplier);
392 if (rval < 0)
393 return rval;
394
395 if (!(CCS_LIM(sensor, PHY_CTRL_CAPABILITY) &
396 CCS_PHY_CTRL_CAPABILITY_AUTO_PHY_CTL)) {
397 /* Lane op clock ratio does not apply here. */
398 rval = ccs_write(sensor, REQUESTED_LINK_RATE,
399 DIV_ROUND_UP(pll->op_bk.sys_clk_freq_hz,
400 1000000 / 256 / 256) *
401 (pll->flags & CCS_PLL_FLAG_LANE_SPEED_MODEL ?
402 sensor->pll.csi2.lanes : 1) <<
403 (pll->flags & CCS_PLL_FLAG_OP_SYS_DDR ?
404 1 : 0));
405 if (rval < 0)
406 return rval;
407 }
408
409 if (sensor->pll.flags & CCS_PLL_FLAG_NO_OP_CLOCKS)
410 return 0;
411
412 rval = ccs_write(sensor, OP_PIX_CLK_DIV, pll->op_bk.pix_clk_div);
413 if (rval < 0)
414 return rval;
415
416 rval = ccs_write(sensor, OP_SYS_CLK_DIV, pll->op_bk.sys_clk_div);
417 if (rval < 0)
418 return rval;
419
420 if (!(pll->flags & CCS_PLL_FLAG_DUAL_PLL))
421 return 0;
422
423 rval = ccs_write(sensor, PLL_MODE, CCS_PLL_MODE_DUAL);
424 if (rval < 0)
425 return rval;
426
427 rval = ccs_write(sensor, OP_PRE_PLL_CLK_DIV,
428 pll->op_fr.pre_pll_clk_div);
429 if (rval < 0)
430 return rval;
431
432 return ccs_write(sensor, OP_PLL_MULTIPLIER, pll->op_fr.pll_multiplier);
433 }
434
ccs_pll_try(struct ccs_sensor * sensor,struct ccs_pll * pll)435 static int ccs_pll_try(struct ccs_sensor *sensor, struct ccs_pll *pll)
436 {
437 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
438 struct ccs_pll_limits lim = {
439 .vt_fr = {
440 .min_pre_pll_clk_div = CCS_LIM(sensor, MIN_PRE_PLL_CLK_DIV),
441 .max_pre_pll_clk_div = CCS_LIM(sensor, MAX_PRE_PLL_CLK_DIV),
442 .min_pll_ip_clk_freq_hz = CCS_LIM(sensor, MIN_PLL_IP_CLK_FREQ_MHZ),
443 .max_pll_ip_clk_freq_hz = CCS_LIM(sensor, MAX_PLL_IP_CLK_FREQ_MHZ),
444 .min_pll_multiplier = CCS_LIM(sensor, MIN_PLL_MULTIPLIER),
445 .max_pll_multiplier = CCS_LIM(sensor, MAX_PLL_MULTIPLIER),
446 .min_pll_op_clk_freq_hz = CCS_LIM(sensor, MIN_PLL_OP_CLK_FREQ_MHZ),
447 .max_pll_op_clk_freq_hz = CCS_LIM(sensor, MAX_PLL_OP_CLK_FREQ_MHZ),
448 },
449 .op_fr = {
450 .min_pre_pll_clk_div = CCS_LIM(sensor, MIN_OP_PRE_PLL_CLK_DIV),
451 .max_pre_pll_clk_div = CCS_LIM(sensor, MAX_OP_PRE_PLL_CLK_DIV),
452 .min_pll_ip_clk_freq_hz = CCS_LIM(sensor, MIN_OP_PLL_IP_CLK_FREQ_MHZ),
453 .max_pll_ip_clk_freq_hz = CCS_LIM(sensor, MAX_OP_PLL_IP_CLK_FREQ_MHZ),
454 .min_pll_multiplier = CCS_LIM(sensor, MIN_OP_PLL_MULTIPLIER),
455 .max_pll_multiplier = CCS_LIM(sensor, MAX_OP_PLL_MULTIPLIER),
456 .min_pll_op_clk_freq_hz = CCS_LIM(sensor, MIN_OP_PLL_OP_CLK_FREQ_MHZ),
457 .max_pll_op_clk_freq_hz = CCS_LIM(sensor, MAX_OP_PLL_OP_CLK_FREQ_MHZ),
458 },
459 .op_bk = {
460 .min_sys_clk_div = CCS_LIM(sensor, MIN_OP_SYS_CLK_DIV),
461 .max_sys_clk_div = CCS_LIM(sensor, MAX_OP_SYS_CLK_DIV),
462 .min_pix_clk_div = CCS_LIM(sensor, MIN_OP_PIX_CLK_DIV),
463 .max_pix_clk_div = CCS_LIM(sensor, MAX_OP_PIX_CLK_DIV),
464 .min_sys_clk_freq_hz = CCS_LIM(sensor, MIN_OP_SYS_CLK_FREQ_MHZ),
465 .max_sys_clk_freq_hz = CCS_LIM(sensor, MAX_OP_SYS_CLK_FREQ_MHZ),
466 .min_pix_clk_freq_hz = CCS_LIM(sensor, MIN_OP_PIX_CLK_FREQ_MHZ),
467 .max_pix_clk_freq_hz = CCS_LIM(sensor, MAX_OP_PIX_CLK_FREQ_MHZ),
468 },
469 .vt_bk = {
470 .min_sys_clk_div = CCS_LIM(sensor, MIN_VT_SYS_CLK_DIV),
471 .max_sys_clk_div = CCS_LIM(sensor, MAX_VT_SYS_CLK_DIV),
472 .min_pix_clk_div = CCS_LIM(sensor, MIN_VT_PIX_CLK_DIV),
473 .max_pix_clk_div = CCS_LIM(sensor, MAX_VT_PIX_CLK_DIV),
474 .min_sys_clk_freq_hz = CCS_LIM(sensor, MIN_VT_SYS_CLK_FREQ_MHZ),
475 .max_sys_clk_freq_hz = CCS_LIM(sensor, MAX_VT_SYS_CLK_FREQ_MHZ),
476 .min_pix_clk_freq_hz = CCS_LIM(sensor, MIN_VT_PIX_CLK_FREQ_MHZ),
477 .max_pix_clk_freq_hz = CCS_LIM(sensor, MAX_VT_PIX_CLK_FREQ_MHZ),
478 },
479 .min_line_length_pck_bin = CCS_LIM(sensor, MIN_LINE_LENGTH_PCK_BIN),
480 .min_line_length_pck = CCS_LIM(sensor, MIN_LINE_LENGTH_PCK),
481 };
482
483 return ccs_pll_calculate(&client->dev, &lim, pll);
484 }
485
ccs_pll_update(struct ccs_sensor * sensor)486 static int ccs_pll_update(struct ccs_sensor *sensor)
487 {
488 struct ccs_pll *pll = &sensor->pll;
489 int rval;
490
491 pll->binning_horizontal = sensor->binning_horizontal;
492 pll->binning_vertical = sensor->binning_vertical;
493 pll->link_freq =
494 sensor->link_freq->qmenu_int[sensor->link_freq->val];
495 pll->scale_m = sensor->scale_m;
496 pll->bits_per_pixel = sensor->csi_format->compressed;
497
498 rval = ccs_pll_try(sensor, pll);
499 if (rval < 0)
500 return rval;
501
502 __v4l2_ctrl_s_ctrl_int64(sensor->pixel_rate_parray,
503 pll->pixel_rate_pixel_array);
504 __v4l2_ctrl_s_ctrl_int64(sensor->pixel_rate_csi, pll->pixel_rate_csi);
505
506 return 0;
507 }
508
509
510 /*
511 *
512 * V4L2 Controls handling
513 *
514 */
515
__ccs_update_exposure_limits(struct ccs_sensor * sensor)516 static void __ccs_update_exposure_limits(struct ccs_sensor *sensor)
517 {
518 struct v4l2_ctrl *ctrl = sensor->exposure;
519 int max;
520
521 max = sensor->pa_src.height + sensor->vblank->val -
522 CCS_LIM(sensor, COARSE_INTEGRATION_TIME_MAX_MARGIN);
523
524 __v4l2_ctrl_modify_range(ctrl, ctrl->minimum, max, ctrl->step, max);
525 }
526
527 /*
528 * Order matters.
529 *
530 * 1. Bits-per-pixel, descending.
531 * 2. Bits-per-pixel compressed, descending.
532 * 3. Pixel order, same as in pixel_order_str. Formats for all four pixel
533 * orders must be defined.
534 */
535 static const struct ccs_csi_data_format ccs_csi_data_formats[] = {
536 { MEDIA_BUS_FMT_SGRBG16_1X16, 16, 16, CCS_PIXEL_ORDER_GRBG, },
537 { MEDIA_BUS_FMT_SRGGB16_1X16, 16, 16, CCS_PIXEL_ORDER_RGGB, },
538 { MEDIA_BUS_FMT_SBGGR16_1X16, 16, 16, CCS_PIXEL_ORDER_BGGR, },
539 { MEDIA_BUS_FMT_SGBRG16_1X16, 16, 16, CCS_PIXEL_ORDER_GBRG, },
540 { MEDIA_BUS_FMT_SGRBG14_1X14, 14, 14, CCS_PIXEL_ORDER_GRBG, },
541 { MEDIA_BUS_FMT_SRGGB14_1X14, 14, 14, CCS_PIXEL_ORDER_RGGB, },
542 { MEDIA_BUS_FMT_SBGGR14_1X14, 14, 14, CCS_PIXEL_ORDER_BGGR, },
543 { MEDIA_BUS_FMT_SGBRG14_1X14, 14, 14, CCS_PIXEL_ORDER_GBRG, },
544 { MEDIA_BUS_FMT_SGRBG12_1X12, 12, 12, CCS_PIXEL_ORDER_GRBG, },
545 { MEDIA_BUS_FMT_SRGGB12_1X12, 12, 12, CCS_PIXEL_ORDER_RGGB, },
546 { MEDIA_BUS_FMT_SBGGR12_1X12, 12, 12, CCS_PIXEL_ORDER_BGGR, },
547 { MEDIA_BUS_FMT_SGBRG12_1X12, 12, 12, CCS_PIXEL_ORDER_GBRG, },
548 { MEDIA_BUS_FMT_SGRBG10_1X10, 10, 10, CCS_PIXEL_ORDER_GRBG, },
549 { MEDIA_BUS_FMT_SRGGB10_1X10, 10, 10, CCS_PIXEL_ORDER_RGGB, },
550 { MEDIA_BUS_FMT_SBGGR10_1X10, 10, 10, CCS_PIXEL_ORDER_BGGR, },
551 { MEDIA_BUS_FMT_SGBRG10_1X10, 10, 10, CCS_PIXEL_ORDER_GBRG, },
552 { MEDIA_BUS_FMT_SGRBG10_DPCM8_1X8, 10, 8, CCS_PIXEL_ORDER_GRBG, },
553 { MEDIA_BUS_FMT_SRGGB10_DPCM8_1X8, 10, 8, CCS_PIXEL_ORDER_RGGB, },
554 { MEDIA_BUS_FMT_SBGGR10_DPCM8_1X8, 10, 8, CCS_PIXEL_ORDER_BGGR, },
555 { MEDIA_BUS_FMT_SGBRG10_DPCM8_1X8, 10, 8, CCS_PIXEL_ORDER_GBRG, },
556 { MEDIA_BUS_FMT_SGRBG8_1X8, 8, 8, CCS_PIXEL_ORDER_GRBG, },
557 { MEDIA_BUS_FMT_SRGGB8_1X8, 8, 8, CCS_PIXEL_ORDER_RGGB, },
558 { MEDIA_BUS_FMT_SBGGR8_1X8, 8, 8, CCS_PIXEL_ORDER_BGGR, },
559 { MEDIA_BUS_FMT_SGBRG8_1X8, 8, 8, CCS_PIXEL_ORDER_GBRG, },
560 };
561
562 static const char *pixel_order_str[] = { "GRBG", "RGGB", "BGGR", "GBRG" };
563
564 #define to_csi_format_idx(fmt) (((unsigned long)(fmt) \
565 - (unsigned long)ccs_csi_data_formats) \
566 / sizeof(*ccs_csi_data_formats))
567
ccs_pixel_order(struct ccs_sensor * sensor)568 static u32 ccs_pixel_order(struct ccs_sensor *sensor)
569 {
570 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
571 int flip = 0;
572
573 if (sensor->hflip) {
574 if (sensor->hflip->val)
575 flip |= CCS_IMAGE_ORIENTATION_HORIZONTAL_MIRROR;
576
577 if (sensor->vflip->val)
578 flip |= CCS_IMAGE_ORIENTATION_VERTICAL_FLIP;
579 }
580
581 dev_dbg(&client->dev, "flip %u\n", flip);
582 return sensor->default_pixel_order ^ flip;
583 }
584
ccs_update_mbus_formats(struct ccs_sensor * sensor)585 static void ccs_update_mbus_formats(struct ccs_sensor *sensor)
586 {
587 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
588 unsigned int csi_format_idx =
589 to_csi_format_idx(sensor->csi_format) & ~3;
590 unsigned int internal_csi_format_idx =
591 to_csi_format_idx(sensor->internal_csi_format) & ~3;
592 unsigned int pixel_order = ccs_pixel_order(sensor);
593
594 if (WARN_ON_ONCE(max(internal_csi_format_idx, csi_format_idx) +
595 pixel_order >= ARRAY_SIZE(ccs_csi_data_formats)))
596 return;
597
598 sensor->mbus_frame_fmts =
599 sensor->default_mbus_frame_fmts << pixel_order;
600 sensor->csi_format =
601 &ccs_csi_data_formats[csi_format_idx + pixel_order];
602 sensor->internal_csi_format =
603 &ccs_csi_data_formats[internal_csi_format_idx
604 + pixel_order];
605
606 dev_dbg(&client->dev, "new pixel order %s\n",
607 pixel_order_str[pixel_order]);
608 }
609
610 static const char * const ccs_test_patterns[] = {
611 "Disabled",
612 "Solid Colour",
613 "Eight Vertical Colour Bars",
614 "Colour Bars With Fade to Grey",
615 "Pseudorandom Sequence (PN9)",
616 };
617
ccs_set_ctrl(struct v4l2_ctrl * ctrl)618 static int ccs_set_ctrl(struct v4l2_ctrl *ctrl)
619 {
620 struct ccs_sensor *sensor =
621 container_of(ctrl->handler, struct ccs_subdev, ctrl_handler)
622 ->sensor;
623 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
624 int pm_status;
625 u32 orient = 0;
626 unsigned int i;
627 int exposure;
628 int rval;
629
630 switch (ctrl->id) {
631 case V4L2_CID_HFLIP:
632 case V4L2_CID_VFLIP:
633 if (sensor->streaming)
634 return -EBUSY;
635
636 if (sensor->hflip->val)
637 orient |= CCS_IMAGE_ORIENTATION_HORIZONTAL_MIRROR;
638
639 if (sensor->vflip->val)
640 orient |= CCS_IMAGE_ORIENTATION_VERTICAL_FLIP;
641
642 ccs_update_mbus_formats(sensor);
643
644 break;
645 case V4L2_CID_VBLANK:
646 exposure = sensor->exposure->val;
647
648 __ccs_update_exposure_limits(sensor);
649
650 if (exposure > sensor->exposure->maximum) {
651 sensor->exposure->val = sensor->exposure->maximum;
652 rval = ccs_set_ctrl(sensor->exposure);
653 if (rval < 0)
654 return rval;
655 }
656
657 break;
658 case V4L2_CID_LINK_FREQ:
659 if (sensor->streaming)
660 return -EBUSY;
661
662 rval = ccs_pll_update(sensor);
663 if (rval)
664 return rval;
665
666 return 0;
667 case V4L2_CID_TEST_PATTERN:
668 for (i = 0; i < ARRAY_SIZE(sensor->test_data); i++)
669 v4l2_ctrl_activate(
670 sensor->test_data[i],
671 ctrl->val ==
672 V4L2_SMIAPP_TEST_PATTERN_MODE_SOLID_COLOUR);
673
674 break;
675 }
676
677 pm_status = pm_runtime_get_if_active(&client->dev);
678 if (!pm_status)
679 return 0;
680
681 switch (ctrl->id) {
682 case V4L2_CID_ANALOGUE_GAIN:
683 rval = ccs_write(sensor, ANALOG_GAIN_CODE_GLOBAL, ctrl->val);
684
685 break;
686
687 case V4L2_CID_CCS_ANALOGUE_LINEAR_GAIN:
688 rval = ccs_write(sensor, ANALOG_LINEAR_GAIN_GLOBAL, ctrl->val);
689
690 break;
691
692 case V4L2_CID_CCS_ANALOGUE_EXPONENTIAL_GAIN:
693 rval = ccs_write(sensor, ANALOG_EXPONENTIAL_GAIN_GLOBAL,
694 ctrl->val);
695
696 break;
697
698 case V4L2_CID_DIGITAL_GAIN:
699 if (CCS_LIM(sensor, DIGITAL_GAIN_CAPABILITY) ==
700 CCS_DIGITAL_GAIN_CAPABILITY_GLOBAL) {
701 rval = ccs_write(sensor, DIGITAL_GAIN_GLOBAL,
702 ctrl->val);
703 break;
704 }
705
706 rval = ccs_write_addr(sensor,
707 SMIAPP_REG_U16_DIGITAL_GAIN_GREENR,
708 ctrl->val);
709 if (rval)
710 break;
711
712 rval = ccs_write_addr(sensor,
713 SMIAPP_REG_U16_DIGITAL_GAIN_RED,
714 ctrl->val);
715 if (rval)
716 break;
717
718 rval = ccs_write_addr(sensor,
719 SMIAPP_REG_U16_DIGITAL_GAIN_BLUE,
720 ctrl->val);
721 if (rval)
722 break;
723
724 rval = ccs_write_addr(sensor,
725 SMIAPP_REG_U16_DIGITAL_GAIN_GREENB,
726 ctrl->val);
727
728 break;
729 case V4L2_CID_EXPOSURE:
730 rval = ccs_write(sensor, COARSE_INTEGRATION_TIME, ctrl->val);
731
732 break;
733 case V4L2_CID_HFLIP:
734 case V4L2_CID_VFLIP:
735 rval = ccs_write(sensor, IMAGE_ORIENTATION, orient);
736
737 break;
738 case V4L2_CID_VBLANK:
739 rval = ccs_write(sensor, FRAME_LENGTH_LINES,
740 sensor->pa_src.height + ctrl->val);
741
742 break;
743 case V4L2_CID_HBLANK:
744 rval = ccs_write(sensor, LINE_LENGTH_PCK,
745 sensor->pa_src.width + ctrl->val);
746
747 break;
748 case V4L2_CID_TEST_PATTERN:
749 rval = ccs_write(sensor, TEST_PATTERN_MODE, ctrl->val);
750
751 break;
752 case V4L2_CID_TEST_PATTERN_RED:
753 rval = ccs_write(sensor, TEST_DATA_RED, ctrl->val);
754
755 break;
756 case V4L2_CID_TEST_PATTERN_GREENR:
757 rval = ccs_write(sensor, TEST_DATA_GREENR, ctrl->val);
758
759 break;
760 case V4L2_CID_TEST_PATTERN_BLUE:
761 rval = ccs_write(sensor, TEST_DATA_BLUE, ctrl->val);
762
763 break;
764 case V4L2_CID_TEST_PATTERN_GREENB:
765 rval = ccs_write(sensor, TEST_DATA_GREENB, ctrl->val);
766
767 break;
768 case V4L2_CID_CCS_SHADING_CORRECTION:
769 rval = ccs_write(sensor, SHADING_CORRECTION_EN,
770 ctrl->val ? CCS_SHADING_CORRECTION_EN_ENABLE :
771 0);
772
773 if (!rval && sensor->luminance_level)
774 v4l2_ctrl_activate(sensor->luminance_level, ctrl->val);
775
776 break;
777 case V4L2_CID_CCS_LUMINANCE_CORRECTION_LEVEL:
778 rval = ccs_write(sensor, LUMINANCE_CORRECTION_LEVEL, ctrl->val);
779
780 break;
781 case V4L2_CID_PIXEL_RATE:
782 /* For v4l2_ctrl_s_ctrl_int64() used internally. */
783 rval = 0;
784
785 break;
786 default:
787 rval = -EINVAL;
788 }
789
790 if (pm_status > 0)
791 pm_runtime_put_autosuspend(&client->dev);
792
793 return rval;
794 }
795
796 static const struct v4l2_ctrl_ops ccs_ctrl_ops = {
797 .s_ctrl = ccs_set_ctrl,
798 };
799
ccs_init_controls(struct ccs_sensor * sensor)800 static int ccs_init_controls(struct ccs_sensor *sensor)
801 {
802 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
803 struct v4l2_fwnode_device_properties props;
804 int rval;
805
806 rval = v4l2_ctrl_handler_init(&sensor->pixel_array->ctrl_handler, 19);
807 if (rval)
808 return rval;
809
810 sensor->pixel_array->ctrl_handler.lock = &sensor->mutex;
811
812 rval = v4l2_fwnode_device_parse(&client->dev, &props);
813 if (rval)
814 return rval;
815
816 rval = v4l2_ctrl_new_fwnode_properties(&sensor->pixel_array->ctrl_handler,
817 &ccs_ctrl_ops, &props);
818 if (rval)
819 return rval;
820
821 switch (CCS_LIM(sensor, ANALOG_GAIN_CAPABILITY)) {
822 case CCS_ANALOG_GAIN_CAPABILITY_GLOBAL: {
823 struct {
824 const char *name;
825 u32 id;
826 s32 value;
827 } const gain_ctrls[] = {
828 { "Analogue Gain m0", V4L2_CID_CCS_ANALOGUE_GAIN_M0,
829 CCS_LIM(sensor, ANALOG_GAIN_M0), },
830 { "Analogue Gain c0", V4L2_CID_CCS_ANALOGUE_GAIN_C0,
831 CCS_LIM(sensor, ANALOG_GAIN_C0), },
832 { "Analogue Gain m1", V4L2_CID_CCS_ANALOGUE_GAIN_M1,
833 CCS_LIM(sensor, ANALOG_GAIN_M1), },
834 { "Analogue Gain c1", V4L2_CID_CCS_ANALOGUE_GAIN_C1,
835 CCS_LIM(sensor, ANALOG_GAIN_C1), },
836 };
837 struct v4l2_ctrl_config ctrl_cfg = {
838 .type = V4L2_CTRL_TYPE_INTEGER,
839 .ops = &ccs_ctrl_ops,
840 .flags = V4L2_CTRL_FLAG_READ_ONLY,
841 .step = 1,
842 };
843 unsigned int i;
844
845 for (i = 0; i < ARRAY_SIZE(gain_ctrls); i++) {
846 ctrl_cfg.name = gain_ctrls[i].name;
847 ctrl_cfg.id = gain_ctrls[i].id;
848 ctrl_cfg.min = ctrl_cfg.max = ctrl_cfg.def =
849 gain_ctrls[i].value;
850
851 v4l2_ctrl_new_custom(&sensor->pixel_array->ctrl_handler,
852 &ctrl_cfg, NULL);
853 }
854
855 v4l2_ctrl_new_std(&sensor->pixel_array->ctrl_handler,
856 &ccs_ctrl_ops, V4L2_CID_ANALOGUE_GAIN,
857 CCS_LIM(sensor, ANALOG_GAIN_CODE_MIN),
858 CCS_LIM(sensor, ANALOG_GAIN_CODE_MAX),
859 max(CCS_LIM(sensor, ANALOG_GAIN_CODE_STEP),
860 1U),
861 CCS_LIM(sensor, ANALOG_GAIN_CODE_MIN));
862 }
863 break;
864
865 case CCS_ANALOG_GAIN_CAPABILITY_ALTERNATE_GLOBAL: {
866 struct {
867 const char *name;
868 u32 id;
869 u16 min, max, step;
870 } const gain_ctrls[] = {
871 {
872 "Analogue Linear Gain",
873 V4L2_CID_CCS_ANALOGUE_LINEAR_GAIN,
874 CCS_LIM(sensor, ANALOG_LINEAR_GAIN_MIN),
875 CCS_LIM(sensor, ANALOG_LINEAR_GAIN_MAX),
876 max(CCS_LIM(sensor,
877 ANALOG_LINEAR_GAIN_STEP_SIZE),
878 1U),
879 },
880 {
881 "Analogue Exponential Gain",
882 V4L2_CID_CCS_ANALOGUE_EXPONENTIAL_GAIN,
883 CCS_LIM(sensor, ANALOG_EXPONENTIAL_GAIN_MIN),
884 CCS_LIM(sensor, ANALOG_EXPONENTIAL_GAIN_MAX),
885 max(CCS_LIM(sensor,
886 ANALOG_EXPONENTIAL_GAIN_STEP_SIZE),
887 1U),
888 },
889 };
890 struct v4l2_ctrl_config ctrl_cfg = {
891 .type = V4L2_CTRL_TYPE_INTEGER,
892 .ops = &ccs_ctrl_ops,
893 };
894 unsigned int i;
895
896 for (i = 0; i < ARRAY_SIZE(gain_ctrls); i++) {
897 ctrl_cfg.name = gain_ctrls[i].name;
898 ctrl_cfg.min = ctrl_cfg.def = gain_ctrls[i].min;
899 ctrl_cfg.max = gain_ctrls[i].max;
900 ctrl_cfg.step = gain_ctrls[i].step;
901 ctrl_cfg.id = gain_ctrls[i].id;
902
903 v4l2_ctrl_new_custom(&sensor->pixel_array->ctrl_handler,
904 &ctrl_cfg, NULL);
905 }
906 }
907 }
908
909 if (CCS_LIM(sensor, SHADING_CORRECTION_CAPABILITY) &
910 (CCS_SHADING_CORRECTION_CAPABILITY_COLOR_SHADING |
911 CCS_SHADING_CORRECTION_CAPABILITY_LUMINANCE_CORRECTION)) {
912 const struct v4l2_ctrl_config ctrl_cfg = {
913 .name = "Shading Correction",
914 .type = V4L2_CTRL_TYPE_BOOLEAN,
915 .id = V4L2_CID_CCS_SHADING_CORRECTION,
916 .ops = &ccs_ctrl_ops,
917 .max = 1,
918 .step = 1,
919 };
920
921 v4l2_ctrl_new_custom(&sensor->pixel_array->ctrl_handler,
922 &ctrl_cfg, NULL);
923 }
924
925 if (CCS_LIM(sensor, SHADING_CORRECTION_CAPABILITY) &
926 CCS_SHADING_CORRECTION_CAPABILITY_LUMINANCE_CORRECTION) {
927 const struct v4l2_ctrl_config ctrl_cfg = {
928 .name = "Luminance Correction Level",
929 .type = V4L2_CTRL_TYPE_BOOLEAN,
930 .id = V4L2_CID_CCS_LUMINANCE_CORRECTION_LEVEL,
931 .ops = &ccs_ctrl_ops,
932 .max = 255,
933 .step = 1,
934 .def = 128,
935 };
936
937 sensor->luminance_level =
938 v4l2_ctrl_new_custom(&sensor->pixel_array->ctrl_handler,
939 &ctrl_cfg, NULL);
940 }
941
942 if (CCS_LIM(sensor, DIGITAL_GAIN_CAPABILITY) ==
943 CCS_DIGITAL_GAIN_CAPABILITY_GLOBAL ||
944 CCS_LIM(sensor, DIGITAL_GAIN_CAPABILITY) ==
945 SMIAPP_DIGITAL_GAIN_CAPABILITY_PER_CHANNEL)
946 v4l2_ctrl_new_std(&sensor->pixel_array->ctrl_handler,
947 &ccs_ctrl_ops, V4L2_CID_DIGITAL_GAIN,
948 CCS_LIM(sensor, DIGITAL_GAIN_MIN),
949 CCS_LIM(sensor, DIGITAL_GAIN_MAX),
950 max(CCS_LIM(sensor, DIGITAL_GAIN_STEP_SIZE),
951 1U),
952 0x100);
953
954 /* Exposure limits will be updated soon, use just something here. */
955 sensor->exposure = v4l2_ctrl_new_std(
956 &sensor->pixel_array->ctrl_handler, &ccs_ctrl_ops,
957 V4L2_CID_EXPOSURE, 0, 0, 1, 0);
958
959 sensor->hflip = v4l2_ctrl_new_std(
960 &sensor->pixel_array->ctrl_handler, &ccs_ctrl_ops,
961 V4L2_CID_HFLIP, 0, 1, 1, 0);
962 sensor->vflip = v4l2_ctrl_new_std(
963 &sensor->pixel_array->ctrl_handler, &ccs_ctrl_ops,
964 V4L2_CID_VFLIP, 0, 1, 1, 0);
965
966 sensor->vblank = v4l2_ctrl_new_std(
967 &sensor->pixel_array->ctrl_handler, &ccs_ctrl_ops,
968 V4L2_CID_VBLANK, 0, 1, 1, 0);
969
970 if (sensor->vblank)
971 sensor->vblank->flags |= V4L2_CTRL_FLAG_UPDATE;
972
973 sensor->hblank = v4l2_ctrl_new_std(
974 &sensor->pixel_array->ctrl_handler, &ccs_ctrl_ops,
975 V4L2_CID_HBLANK, 0, 1, 1, 0);
976
977 if (sensor->hblank)
978 sensor->hblank->flags |= V4L2_CTRL_FLAG_UPDATE;
979
980 sensor->pixel_rate_parray = v4l2_ctrl_new_std(
981 &sensor->pixel_array->ctrl_handler, &ccs_ctrl_ops,
982 V4L2_CID_PIXEL_RATE, 1, INT_MAX, 1, 1);
983
984 v4l2_ctrl_new_std_menu_items(&sensor->pixel_array->ctrl_handler,
985 &ccs_ctrl_ops, V4L2_CID_TEST_PATTERN,
986 ARRAY_SIZE(ccs_test_patterns) - 1,
987 0, 0, ccs_test_patterns);
988
989 if (sensor->pixel_array->ctrl_handler.error) {
990 dev_err(&client->dev,
991 "pixel array controls initialization failed (%d)\n",
992 sensor->pixel_array->ctrl_handler.error);
993 return sensor->pixel_array->ctrl_handler.error;
994 }
995
996 sensor->pixel_array->sd.ctrl_handler =
997 &sensor->pixel_array->ctrl_handler;
998
999 v4l2_ctrl_cluster(2, &sensor->hflip);
1000
1001 rval = v4l2_ctrl_handler_init(&sensor->src->ctrl_handler, 0);
1002 if (rval)
1003 return rval;
1004
1005 sensor->src->ctrl_handler.lock = &sensor->mutex;
1006
1007 sensor->pixel_rate_csi = v4l2_ctrl_new_std(
1008 &sensor->src->ctrl_handler, &ccs_ctrl_ops,
1009 V4L2_CID_PIXEL_RATE, 1, INT_MAX, 1, 1);
1010
1011 if (sensor->src->ctrl_handler.error) {
1012 dev_err(&client->dev,
1013 "src controls initialization failed (%d)\n",
1014 sensor->src->ctrl_handler.error);
1015 return sensor->src->ctrl_handler.error;
1016 }
1017
1018 sensor->src->sd.ctrl_handler = &sensor->src->ctrl_handler;
1019
1020 return 0;
1021 }
1022
1023 /*
1024 * For controls that require information on available media bus codes
1025 * and linke frequencies.
1026 */
ccs_init_late_controls(struct ccs_sensor * sensor)1027 static int ccs_init_late_controls(struct ccs_sensor *sensor)
1028 {
1029 unsigned long *valid_link_freqs = &sensor->valid_link_freqs[
1030 sensor->csi_format->compressed - sensor->compressed_min_bpp];
1031 unsigned int i;
1032
1033 for (i = 0; i < ARRAY_SIZE(sensor->test_data); i++) {
1034 int max_value = (1 << sensor->csi_format->width) - 1;
1035
1036 sensor->test_data[i] = v4l2_ctrl_new_std(
1037 &sensor->pixel_array->ctrl_handler,
1038 &ccs_ctrl_ops, V4L2_CID_TEST_PATTERN_RED + i,
1039 0, max_value, 1, max_value);
1040 }
1041
1042 sensor->link_freq = v4l2_ctrl_new_int_menu(
1043 &sensor->src->ctrl_handler, &ccs_ctrl_ops,
1044 V4L2_CID_LINK_FREQ, __fls(*valid_link_freqs),
1045 __ffs(*valid_link_freqs), sensor->hwcfg.op_sys_clock);
1046
1047 return sensor->src->ctrl_handler.error;
1048 }
1049
ccs_free_controls(struct ccs_sensor * sensor)1050 static void ccs_free_controls(struct ccs_sensor *sensor)
1051 {
1052 unsigned int i;
1053
1054 for (i = 0; i < sensor->ssds_used; i++)
1055 v4l2_ctrl_handler_free(&sensor->ssds[i].ctrl_handler);
1056 }
1057
ccs_get_mbus_formats(struct ccs_sensor * sensor)1058 static int ccs_get_mbus_formats(struct ccs_sensor *sensor)
1059 {
1060 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1061 struct ccs_pll *pll = &sensor->pll;
1062 u8 compressed_max_bpp = 0;
1063 unsigned int type, n;
1064 unsigned int i, pixel_order;
1065 int rval;
1066
1067 type = CCS_LIM(sensor, DATA_FORMAT_MODEL_TYPE);
1068
1069 dev_dbg(&client->dev, "data_format_model_type %u\n", type);
1070
1071 rval = ccs_read(sensor, PIXEL_ORDER, &pixel_order);
1072 if (rval)
1073 return rval;
1074
1075 if (pixel_order >= ARRAY_SIZE(pixel_order_str)) {
1076 dev_dbg(&client->dev, "bad pixel order %u\n", pixel_order);
1077 return -EINVAL;
1078 }
1079
1080 dev_dbg(&client->dev, "pixel order %u (%s)\n", pixel_order,
1081 pixel_order_str[pixel_order]);
1082
1083 switch (type) {
1084 case CCS_DATA_FORMAT_MODEL_TYPE_NORMAL:
1085 n = SMIAPP_DATA_FORMAT_MODEL_TYPE_NORMAL_N;
1086 break;
1087 case CCS_DATA_FORMAT_MODEL_TYPE_EXTENDED:
1088 n = CCS_LIM_DATA_FORMAT_DESCRIPTOR_MAX_N + 1;
1089 break;
1090 default:
1091 return -EINVAL;
1092 }
1093
1094 sensor->default_pixel_order = pixel_order;
1095 sensor->mbus_frame_fmts = 0;
1096
1097 for (i = 0; i < n; i++) {
1098 unsigned int fmt, j;
1099
1100 fmt = CCS_LIM_AT(sensor, DATA_FORMAT_DESCRIPTOR, i);
1101
1102 dev_dbg(&client->dev, "%u: bpp %u, compressed %u\n",
1103 i, fmt >> 8, (u8)fmt);
1104
1105 for (j = 0; j < ARRAY_SIZE(ccs_csi_data_formats); j++) {
1106 const struct ccs_csi_data_format *f =
1107 &ccs_csi_data_formats[j];
1108
1109 if (f->pixel_order != CCS_PIXEL_ORDER_GRBG)
1110 continue;
1111
1112 if (f->width != fmt >>
1113 CCS_DATA_FORMAT_DESCRIPTOR_UNCOMPRESSED_SHIFT ||
1114 f->compressed !=
1115 (fmt & CCS_DATA_FORMAT_DESCRIPTOR_COMPRESSED_MASK))
1116 continue;
1117
1118 dev_dbg(&client->dev, "jolly good! %u\n", j);
1119
1120 sensor->default_mbus_frame_fmts |= 1 << j;
1121 }
1122 }
1123
1124 /* Figure out which BPP values can be used with which formats. */
1125 pll->binning_horizontal = 1;
1126 pll->binning_vertical = 1;
1127 pll->scale_m = sensor->scale_m;
1128
1129 for (i = 0; i < ARRAY_SIZE(ccs_csi_data_formats); i++) {
1130 sensor->compressed_min_bpp =
1131 min(ccs_csi_data_formats[i].compressed,
1132 sensor->compressed_min_bpp);
1133 compressed_max_bpp =
1134 max(ccs_csi_data_formats[i].compressed,
1135 compressed_max_bpp);
1136 }
1137
1138 sensor->valid_link_freqs = devm_kcalloc(
1139 &client->dev,
1140 compressed_max_bpp - sensor->compressed_min_bpp + 1,
1141 sizeof(*sensor->valid_link_freqs), GFP_KERNEL);
1142 if (!sensor->valid_link_freqs)
1143 return -ENOMEM;
1144
1145 for (i = 0; i < ARRAY_SIZE(ccs_csi_data_formats); i++) {
1146 const struct ccs_csi_data_format *f =
1147 &ccs_csi_data_formats[i];
1148 unsigned long *valid_link_freqs =
1149 &sensor->valid_link_freqs[
1150 f->compressed - sensor->compressed_min_bpp];
1151 unsigned int j;
1152
1153 if (!(sensor->default_mbus_frame_fmts & 1 << i))
1154 continue;
1155
1156 pll->bits_per_pixel = f->compressed;
1157
1158 for (j = 0; sensor->hwcfg.op_sys_clock[j]; j++) {
1159 pll->link_freq = sensor->hwcfg.op_sys_clock[j];
1160
1161 rval = ccs_pll_try(sensor, pll);
1162 dev_dbg(&client->dev, "link freq %u Hz, bpp %u %s\n",
1163 pll->link_freq, pll->bits_per_pixel,
1164 rval ? "not ok" : "ok");
1165 if (rval)
1166 continue;
1167
1168 set_bit(j, valid_link_freqs);
1169 }
1170
1171 if (!*valid_link_freqs) {
1172 dev_info(&client->dev,
1173 "no valid link frequencies for %u bpp\n",
1174 f->compressed);
1175 sensor->default_mbus_frame_fmts &= ~BIT(i);
1176 continue;
1177 }
1178
1179 if (!sensor->csi_format
1180 || f->width > sensor->csi_format->width
1181 || (f->width == sensor->csi_format->width
1182 && f->compressed > sensor->csi_format->compressed)) {
1183 sensor->csi_format = f;
1184 sensor->internal_csi_format = f;
1185 }
1186 }
1187
1188 if (!sensor->csi_format) {
1189 dev_err(&client->dev, "no supported mbus code found\n");
1190 return -EINVAL;
1191 }
1192
1193 ccs_update_mbus_formats(sensor);
1194
1195 return 0;
1196 }
1197
ccs_update_blanking(struct ccs_sensor * sensor)1198 static void ccs_update_blanking(struct ccs_sensor *sensor)
1199 {
1200 struct v4l2_ctrl *vblank = sensor->vblank;
1201 struct v4l2_ctrl *hblank = sensor->hblank;
1202 u16 min_fll, max_fll, min_llp, max_llp, min_lbp;
1203 int min, max;
1204
1205 if (sensor->binning_vertical > 1 || sensor->binning_horizontal > 1) {
1206 min_fll = CCS_LIM(sensor, MIN_FRAME_LENGTH_LINES_BIN);
1207 max_fll = CCS_LIM(sensor, MAX_FRAME_LENGTH_LINES_BIN);
1208 min_llp = CCS_LIM(sensor, MIN_LINE_LENGTH_PCK_BIN);
1209 max_llp = CCS_LIM(sensor, MAX_LINE_LENGTH_PCK_BIN);
1210 min_lbp = CCS_LIM(sensor, MIN_LINE_BLANKING_PCK_BIN);
1211 } else {
1212 min_fll = CCS_LIM(sensor, MIN_FRAME_LENGTH_LINES);
1213 max_fll = CCS_LIM(sensor, MAX_FRAME_LENGTH_LINES);
1214 min_llp = CCS_LIM(sensor, MIN_LINE_LENGTH_PCK);
1215 max_llp = CCS_LIM(sensor, MAX_LINE_LENGTH_PCK);
1216 min_lbp = CCS_LIM(sensor, MIN_LINE_BLANKING_PCK);
1217 }
1218
1219 min = max_t(int,
1220 CCS_LIM(sensor, MIN_FRAME_BLANKING_LINES),
1221 min_fll - sensor->pa_src.height);
1222 max = max_fll - sensor->pa_src.height;
1223
1224 __v4l2_ctrl_modify_range(vblank, min, max, vblank->step, min);
1225
1226 min = max_t(int, min_llp - sensor->pa_src.width, min_lbp);
1227 max = max_llp - sensor->pa_src.width;
1228
1229 __v4l2_ctrl_modify_range(hblank, min, max, hblank->step, min);
1230
1231 __ccs_update_exposure_limits(sensor);
1232 }
1233
ccs_pll_blanking_update(struct ccs_sensor * sensor)1234 static int ccs_pll_blanking_update(struct ccs_sensor *sensor)
1235 {
1236 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1237 int rval;
1238
1239 rval = ccs_pll_update(sensor);
1240 if (rval < 0)
1241 return rval;
1242
1243 /* Output from pixel array, including blanking */
1244 ccs_update_blanking(sensor);
1245
1246 dev_dbg(&client->dev, "vblank\t\t%d\n", sensor->vblank->val);
1247 dev_dbg(&client->dev, "hblank\t\t%d\n", sensor->hblank->val);
1248
1249 dev_dbg(&client->dev, "real timeperframe\t100/%d\n",
1250 sensor->pll.pixel_rate_pixel_array /
1251 ((sensor->pa_src.width + sensor->hblank->val) *
1252 (sensor->pa_src.height + sensor->vblank->val) / 100));
1253
1254 return 0;
1255 }
1256
1257 /*
1258 *
1259 * SMIA++ NVM handling
1260 *
1261 */
1262
ccs_read_nvm_page(struct ccs_sensor * sensor,u32 p,u8 * nvm,u8 * status)1263 static int ccs_read_nvm_page(struct ccs_sensor *sensor, u32 p, u8 *nvm,
1264 u8 *status)
1265 {
1266 unsigned int i;
1267 int rval;
1268 u32 s;
1269
1270 *status = 0;
1271
1272 rval = ccs_write(sensor, DATA_TRANSFER_IF_1_PAGE_SELECT, p);
1273 if (rval)
1274 return rval;
1275
1276 rval = ccs_write(sensor, DATA_TRANSFER_IF_1_CTRL,
1277 CCS_DATA_TRANSFER_IF_1_CTRL_ENABLE);
1278 if (rval)
1279 return rval;
1280
1281 rval = ccs_read(sensor, DATA_TRANSFER_IF_1_STATUS, &s);
1282 if (rval)
1283 return rval;
1284
1285 if (s & CCS_DATA_TRANSFER_IF_1_STATUS_IMPROPER_IF_USAGE) {
1286 *status = s;
1287 return -ENODATA;
1288 }
1289
1290 if (CCS_LIM(sensor, DATA_TRANSFER_IF_CAPABILITY) &
1291 CCS_DATA_TRANSFER_IF_CAPABILITY_POLLING) {
1292 for (i = 1000; i > 0; i--) {
1293 if (s & CCS_DATA_TRANSFER_IF_1_STATUS_READ_IF_READY)
1294 break;
1295
1296 rval = ccs_read(sensor, DATA_TRANSFER_IF_1_STATUS, &s);
1297 if (rval)
1298 return rval;
1299 }
1300
1301 if (!i)
1302 return -ETIMEDOUT;
1303 }
1304
1305 for (i = 0; i <= CCS_LIM_DATA_TRANSFER_IF_1_DATA_MAX_P; i++) {
1306 u32 v;
1307
1308 rval = ccs_read(sensor, DATA_TRANSFER_IF_1_DATA(i), &v);
1309 if (rval)
1310 return rval;
1311
1312 *nvm++ = v;
1313 }
1314
1315 return 0;
1316 }
1317
ccs_read_nvm(struct ccs_sensor * sensor,unsigned char * nvm,size_t nvm_size)1318 static int ccs_read_nvm(struct ccs_sensor *sensor, unsigned char *nvm,
1319 size_t nvm_size)
1320 {
1321 u8 status = 0;
1322 u32 p;
1323 int rval = 0, rval2;
1324
1325 for (p = 0; p < nvm_size / (CCS_LIM_DATA_TRANSFER_IF_1_DATA_MAX_P + 1)
1326 && !rval; p++) {
1327 rval = ccs_read_nvm_page(sensor, p, nvm, &status);
1328 nvm += CCS_LIM_DATA_TRANSFER_IF_1_DATA_MAX_P + 1;
1329 }
1330
1331 if (rval == -ENODATA &&
1332 status & CCS_DATA_TRANSFER_IF_1_STATUS_IMPROPER_IF_USAGE)
1333 rval = 0;
1334
1335 rval2 = ccs_write(sensor, DATA_TRANSFER_IF_1_CTRL, 0);
1336 if (rval < 0)
1337 return rval;
1338 else
1339 return rval2 ?: p * (CCS_LIM_DATA_TRANSFER_IF_1_DATA_MAX_P + 1);
1340 }
1341
1342 /*
1343 *
1344 * SMIA++ CCI address control
1345 *
1346 */
ccs_change_cci_addr(struct ccs_sensor * sensor)1347 static int ccs_change_cci_addr(struct ccs_sensor *sensor)
1348 {
1349 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1350 int rval;
1351 u32 val;
1352
1353 client->addr = sensor->hwcfg.i2c_addr_dfl;
1354
1355 rval = read_poll_timeout(ccs_write, rval, !rval, CCS_RESET_DELAY_US,
1356 CCS_RESET_TIMEOUT_US, false, sensor,
1357 CCI_ADDRESS_CTRL,
1358 sensor->hwcfg.i2c_addr_alt << 1);
1359 if (rval)
1360 return rval;
1361
1362 client->addr = sensor->hwcfg.i2c_addr_alt;
1363
1364 /* verify addr change went ok */
1365 rval = ccs_read(sensor, CCI_ADDRESS_CTRL, &val);
1366 if (rval)
1367 return rval;
1368
1369 if (val != sensor->hwcfg.i2c_addr_alt << 1)
1370 return -ENODEV;
1371
1372 return 0;
1373 }
1374
1375 /*
1376 *
1377 * SMIA++ Mode Control
1378 *
1379 */
ccs_setup_flash_strobe(struct ccs_sensor * sensor)1380 static int ccs_setup_flash_strobe(struct ccs_sensor *sensor)
1381 {
1382 struct ccs_flash_strobe_parms *strobe_setup;
1383 unsigned int ext_freq = sensor->hwcfg.ext_clk;
1384 u32 tmp;
1385 u32 strobe_adjustment;
1386 u32 strobe_width_high_rs;
1387 int rval;
1388
1389 strobe_setup = sensor->hwcfg.strobe_setup;
1390
1391 /*
1392 * How to calculate registers related to strobe length. Please
1393 * do not change, or if you do at least know what you're
1394 * doing. :-)
1395 *
1396 * Sakari Ailus <sakari.ailus@linux.intel.com> 2010-10-25
1397 *
1398 * flash_strobe_length [us] / 10^6 = (tFlash_strobe_width_ctrl
1399 * / EXTCLK freq [Hz]) * flash_strobe_adjustment
1400 *
1401 * tFlash_strobe_width_ctrl E N, [1 - 0xffff]
1402 * flash_strobe_adjustment E N, [1 - 0xff]
1403 *
1404 * The formula above is written as below to keep it on one
1405 * line:
1406 *
1407 * l / 10^6 = w / e * a
1408 *
1409 * Let's mark w * a by x:
1410 *
1411 * x = w * a
1412 *
1413 * Thus, we get:
1414 *
1415 * x = l * e / 10^6
1416 *
1417 * The strobe width must be at least as long as requested,
1418 * thus rounding upwards is needed.
1419 *
1420 * x = (l * e + 10^6 - 1) / 10^6
1421 * -----------------------------
1422 *
1423 * Maximum possible accuracy is wanted at all times. Thus keep
1424 * a as small as possible.
1425 *
1426 * Calculate a, assuming maximum w, with rounding upwards:
1427 *
1428 * a = (x + (2^16 - 1) - 1) / (2^16 - 1)
1429 * -------------------------------------
1430 *
1431 * Thus, we also get w, with that a, with rounding upwards:
1432 *
1433 * w = (x + a - 1) / a
1434 * -------------------
1435 *
1436 * To get limits:
1437 *
1438 * x E [1, (2^16 - 1) * (2^8 - 1)]
1439 *
1440 * Substituting maximum x to the original formula (with rounding),
1441 * the maximum l is thus
1442 *
1443 * (2^16 - 1) * (2^8 - 1) * 10^6 = l * e + 10^6 - 1
1444 *
1445 * l = (10^6 * (2^16 - 1) * (2^8 - 1) - 10^6 + 1) / e
1446 * --------------------------------------------------
1447 *
1448 * flash_strobe_length must be clamped between 1 and
1449 * (10^6 * (2^16 - 1) * (2^8 - 1) - 10^6 + 1) / EXTCLK freq.
1450 *
1451 * Then,
1452 *
1453 * flash_strobe_adjustment = ((flash_strobe_length *
1454 * EXTCLK freq + 10^6 - 1) / 10^6 + (2^16 - 1) - 1) / (2^16 - 1)
1455 *
1456 * tFlash_strobe_width_ctrl = ((flash_strobe_length *
1457 * EXTCLK freq + 10^6 - 1) / 10^6 +
1458 * flash_strobe_adjustment - 1) / flash_strobe_adjustment
1459 */
1460 tmp = div_u64(1000000ULL * ((1 << 16) - 1) * ((1 << 8) - 1) -
1461 1000000 + 1, ext_freq);
1462 strobe_setup->strobe_width_high_us =
1463 clamp_t(u32, strobe_setup->strobe_width_high_us, 1, tmp);
1464
1465 tmp = div_u64(((u64)strobe_setup->strobe_width_high_us * (u64)ext_freq +
1466 1000000 - 1), 1000000ULL);
1467 strobe_adjustment = (tmp + (1 << 16) - 1 - 1) / ((1 << 16) - 1);
1468 strobe_width_high_rs = (tmp + strobe_adjustment - 1) /
1469 strobe_adjustment;
1470
1471 rval = ccs_write(sensor, FLASH_MODE_RS, strobe_setup->mode);
1472 if (rval < 0)
1473 goto out;
1474
1475 rval = ccs_write(sensor, FLASH_STROBE_ADJUSTMENT, strobe_adjustment);
1476 if (rval < 0)
1477 goto out;
1478
1479 rval = ccs_write(sensor, TFLASH_STROBE_WIDTH_HIGH_RS_CTRL,
1480 strobe_width_high_rs);
1481 if (rval < 0)
1482 goto out;
1483
1484 rval = ccs_write(sensor, TFLASH_STROBE_DELAY_RS_CTRL,
1485 strobe_setup->strobe_delay);
1486 if (rval < 0)
1487 goto out;
1488
1489 rval = ccs_write(sensor, FLASH_STROBE_START_POINT,
1490 strobe_setup->stobe_start_point);
1491 if (rval < 0)
1492 goto out;
1493
1494 rval = ccs_write(sensor, FLASH_TRIGGER_RS, strobe_setup->trigger);
1495
1496 out:
1497 sensor->hwcfg.strobe_setup->trigger = 0;
1498
1499 return rval;
1500 }
1501
1502 /* -----------------------------------------------------------------------------
1503 * Power management
1504 */
1505
ccs_write_msr_regs(struct ccs_sensor * sensor)1506 static int ccs_write_msr_regs(struct ccs_sensor *sensor)
1507 {
1508 int rval;
1509
1510 rval = ccs_write_data_regs(sensor,
1511 sensor->sdata.sensor_manufacturer_regs,
1512 sensor->sdata.num_sensor_manufacturer_regs);
1513 if (rval)
1514 return rval;
1515
1516 return ccs_write_data_regs(sensor,
1517 sensor->mdata.module_manufacturer_regs,
1518 sensor->mdata.num_module_manufacturer_regs);
1519 }
1520
ccs_update_phy_ctrl(struct ccs_sensor * sensor)1521 static int ccs_update_phy_ctrl(struct ccs_sensor *sensor)
1522 {
1523 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1524 u8 val;
1525
1526 if (!sensor->ccs_limits)
1527 return 0;
1528
1529 if (CCS_LIM(sensor, PHY_CTRL_CAPABILITY) &
1530 CCS_PHY_CTRL_CAPABILITY_AUTO_PHY_CTL) {
1531 val = CCS_PHY_CTRL_AUTO;
1532 } else if (CCS_LIM(sensor, PHY_CTRL_CAPABILITY) &
1533 CCS_PHY_CTRL_CAPABILITY_UI_PHY_CTL) {
1534 val = CCS_PHY_CTRL_UI;
1535 } else {
1536 dev_err(&client->dev, "manual PHY control not supported\n");
1537 return -EINVAL;
1538 }
1539
1540 return ccs_write(sensor, PHY_CTRL, val);
1541 }
1542
ccs_power_on(struct device * dev)1543 static int ccs_power_on(struct device *dev)
1544 {
1545 struct v4l2_subdev *subdev = dev_get_drvdata(dev);
1546 struct ccs_subdev *ssd = to_ccs_subdev(subdev);
1547 /*
1548 * The sub-device related to the I2C device is always the
1549 * source one, i.e. ssds[0].
1550 */
1551 struct ccs_sensor *sensor =
1552 container_of(ssd, struct ccs_sensor, ssds[0]);
1553 const struct ccs_device *ccsdev = device_get_match_data(dev);
1554 int rval;
1555
1556 rval = regulator_bulk_enable(ARRAY_SIZE(ccs_regulators),
1557 sensor->regulators);
1558 if (rval) {
1559 dev_err(dev, "failed to enable vana regulator\n");
1560 return rval;
1561 }
1562
1563 if (sensor->reset || sensor->xshutdown || sensor->ext_clk) {
1564 unsigned int sleep;
1565
1566 rval = clk_prepare_enable(sensor->ext_clk);
1567 if (rval < 0) {
1568 dev_dbg(dev, "failed to enable xclk\n");
1569 goto out_xclk_fail;
1570 }
1571
1572 gpiod_set_value(sensor->reset, 0);
1573 gpiod_set_value(sensor->xshutdown, 1);
1574
1575 if (ccsdev->flags & CCS_DEVICE_FLAG_IS_SMIA)
1576 sleep = SMIAPP_RESET_DELAY(sensor->hwcfg.ext_clk);
1577 else
1578 sleep = CCS_RESET_DELAY_US;
1579
1580 usleep_range(sleep, sleep);
1581 }
1582
1583 /*
1584 * Some devices take longer than the spec-defined time to respond
1585 * after reset. Try until some time has passed before flagging it
1586 * an error.
1587 */
1588 if (!sensor->reset && !sensor->xshutdown) {
1589 u32 reset;
1590
1591 rval = read_poll_timeout(ccs_write, rval, !rval,
1592 CCS_RESET_DELAY_US,
1593 CCS_RESET_TIMEOUT_US,
1594 false, sensor, SOFTWARE_RESET,
1595 CCS_SOFTWARE_RESET_ON);
1596 if (rval < 0) {
1597 dev_err(dev, "software reset failed\n");
1598 goto out_cci_addr_fail;
1599 }
1600
1601 rval = read_poll_timeout(ccs_read, rval,
1602 !rval &&
1603 reset == CCS_SOFTWARE_RESET_OFF,
1604 CCS_RESET_DELAY_US,
1605 CCS_RESET_TIMEOUT_US, false, sensor,
1606 SOFTWARE_RESET, &reset);
1607 if (rval < 0) {
1608 dev_err_probe(dev, rval,
1609 "failed to respond after reset\n");
1610 goto out_cci_addr_fail;
1611 }
1612 }
1613
1614 if (sensor->hwcfg.i2c_addr_alt) {
1615 rval = ccs_change_cci_addr(sensor);
1616 if (rval) {
1617 dev_err(dev, "cci address change error\n");
1618 goto out_cci_addr_fail;
1619 }
1620 }
1621
1622 rval = ccs_write(sensor, COMPRESSION_MODE,
1623 CCS_COMPRESSION_MODE_DPCM_PCM_SIMPLE);
1624 if (rval) {
1625 dev_err(dev, "compression mode set failed\n");
1626 goto out_cci_addr_fail;
1627 }
1628
1629 rval = ccs_write(sensor, EXTCLK_FREQUENCY_MHZ,
1630 sensor->hwcfg.ext_clk / (1000000 / (1 << 8)));
1631 if (rval) {
1632 dev_err(dev, "extclk frequency set failed\n");
1633 goto out_cci_addr_fail;
1634 }
1635
1636 rval = ccs_write(sensor, CSI_LANE_MODE, sensor->hwcfg.lanes - 1);
1637 if (rval) {
1638 dev_err(dev, "csi lane mode set failed\n");
1639 goto out_cci_addr_fail;
1640 }
1641
1642 rval = ccs_write(sensor, FAST_STANDBY_CTRL,
1643 CCS_FAST_STANDBY_CTRL_FRAME_TRUNCATION);
1644 if (rval) {
1645 dev_err(dev, "fast standby set failed\n");
1646 goto out_cci_addr_fail;
1647 }
1648
1649 rval = ccs_write(sensor, CSI_SIGNALING_MODE,
1650 sensor->hwcfg.csi_signalling_mode);
1651 if (rval) {
1652 dev_err(dev, "csi signalling mode set failed\n");
1653 goto out_cci_addr_fail;
1654 }
1655
1656 rval = ccs_update_phy_ctrl(sensor);
1657 if (rval < 0)
1658 goto out_cci_addr_fail;
1659
1660 rval = ccs_write_msr_regs(sensor);
1661 if (rval)
1662 goto out_cci_addr_fail;
1663
1664 rval = ccs_call_quirk(sensor, post_poweron);
1665 if (rval) {
1666 dev_err(dev, "post_poweron quirks failed\n");
1667 goto out_cci_addr_fail;
1668 }
1669
1670 return 0;
1671
1672 out_cci_addr_fail:
1673 gpiod_set_value(sensor->reset, 1);
1674 gpiod_set_value(sensor->xshutdown, 0);
1675 clk_disable_unprepare(sensor->ext_clk);
1676
1677 out_xclk_fail:
1678 regulator_bulk_disable(ARRAY_SIZE(ccs_regulators),
1679 sensor->regulators);
1680
1681 return rval;
1682 }
1683
ccs_power_off(struct device * dev)1684 static int ccs_power_off(struct device *dev)
1685 {
1686 struct v4l2_subdev *subdev = dev_get_drvdata(dev);
1687 struct ccs_subdev *ssd = to_ccs_subdev(subdev);
1688 struct ccs_sensor *sensor =
1689 container_of(ssd, struct ccs_sensor, ssds[0]);
1690
1691 /*
1692 * Currently power/clock to lens are enable/disabled separately
1693 * but they are essentially the same signals. So if the sensor is
1694 * powered off while the lens is powered on the sensor does not
1695 * really see a power off and next time the cci address change
1696 * will fail. So do a soft reset explicitly here.
1697 */
1698 if (sensor->hwcfg.i2c_addr_alt)
1699 ccs_write(sensor, SOFTWARE_RESET, CCS_SOFTWARE_RESET_ON);
1700
1701 gpiod_set_value(sensor->reset, 1);
1702 gpiod_set_value(sensor->xshutdown, 0);
1703 clk_disable_unprepare(sensor->ext_clk);
1704 usleep_range(5000, 5000);
1705 regulator_bulk_disable(ARRAY_SIZE(ccs_regulators),
1706 sensor->regulators);
1707 sensor->streaming = false;
1708
1709 return 0;
1710 }
1711
1712 /* -----------------------------------------------------------------------------
1713 * Video stream management
1714 */
1715
ccs_start_streaming(struct ccs_sensor * sensor)1716 static int ccs_start_streaming(struct ccs_sensor *sensor)
1717 {
1718 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1719 unsigned int binning_mode;
1720 int rval;
1721
1722 mutex_lock(&sensor->mutex);
1723
1724 rval = ccs_write(sensor, CSI_DATA_FORMAT,
1725 (sensor->csi_format->width << 8) |
1726 sensor->csi_format->compressed);
1727 if (rval)
1728 goto out;
1729
1730 /* Binning configuration */
1731 if (sensor->binning_horizontal == 1 &&
1732 sensor->binning_vertical == 1) {
1733 binning_mode = 0;
1734 } else {
1735 u8 binning_type =
1736 (sensor->binning_horizontal << 4)
1737 | sensor->binning_vertical;
1738
1739 rval = ccs_write(sensor, BINNING_TYPE, binning_type);
1740 if (rval < 0)
1741 goto out;
1742
1743 binning_mode = 1;
1744 }
1745 rval = ccs_write(sensor, BINNING_MODE, binning_mode);
1746 if (rval < 0)
1747 goto out;
1748
1749 /* Set up PLL */
1750 rval = ccs_pll_configure(sensor);
1751 if (rval)
1752 goto out;
1753
1754 /* Analog crop start coordinates */
1755 rval = ccs_write(sensor, X_ADDR_START, sensor->pa_src.left);
1756 if (rval < 0)
1757 goto out;
1758
1759 rval = ccs_write(sensor, Y_ADDR_START, sensor->pa_src.top);
1760 if (rval < 0)
1761 goto out;
1762
1763 /* Analog crop end coordinates */
1764 rval = ccs_write(sensor, X_ADDR_END,
1765 sensor->pa_src.left + sensor->pa_src.width - 1);
1766 if (rval < 0)
1767 goto out;
1768
1769 rval = ccs_write(sensor, Y_ADDR_END,
1770 sensor->pa_src.top + sensor->pa_src.height - 1);
1771 if (rval < 0)
1772 goto out;
1773
1774 /*
1775 * Output from pixel array, including blanking, is set using
1776 * controls below. No need to set here.
1777 */
1778
1779 /* Digital crop */
1780 if (CCS_LIM(sensor, DIGITAL_CROP_CAPABILITY)
1781 == CCS_DIGITAL_CROP_CAPABILITY_INPUT_CROP) {
1782 rval = ccs_write(sensor, DIGITAL_CROP_X_OFFSET,
1783 sensor->scaler_sink.left);
1784 if (rval < 0)
1785 goto out;
1786
1787 rval = ccs_write(sensor, DIGITAL_CROP_Y_OFFSET,
1788 sensor->scaler_sink.top);
1789 if (rval < 0)
1790 goto out;
1791
1792 rval = ccs_write(sensor, DIGITAL_CROP_IMAGE_WIDTH,
1793 sensor->scaler_sink.width);
1794 if (rval < 0)
1795 goto out;
1796
1797 rval = ccs_write(sensor, DIGITAL_CROP_IMAGE_HEIGHT,
1798 sensor->scaler_sink.height);
1799 if (rval < 0)
1800 goto out;
1801 }
1802
1803 /* Scaling */
1804 if (CCS_LIM(sensor, SCALING_CAPABILITY)
1805 != CCS_SCALING_CAPABILITY_NONE) {
1806 rval = ccs_write(sensor, SCALING_MODE, sensor->scaling_mode);
1807 if (rval < 0)
1808 goto out;
1809
1810 rval = ccs_write(sensor, SCALE_M, sensor->scale_m);
1811 if (rval < 0)
1812 goto out;
1813 }
1814
1815 /* Output size from sensor */
1816 rval = ccs_write(sensor, X_OUTPUT_SIZE, sensor->src_src.width);
1817 if (rval < 0)
1818 goto out;
1819 rval = ccs_write(sensor, Y_OUTPUT_SIZE, sensor->src_src.height);
1820 if (rval < 0)
1821 goto out;
1822
1823 if (CCS_LIM(sensor, FLASH_MODE_CAPABILITY) &
1824 (CCS_FLASH_MODE_CAPABILITY_SINGLE_STROBE |
1825 SMIAPP_FLASH_MODE_CAPABILITY_MULTIPLE_STROBE) &&
1826 sensor->hwcfg.strobe_setup != NULL &&
1827 sensor->hwcfg.strobe_setup->trigger != 0) {
1828 rval = ccs_setup_flash_strobe(sensor);
1829 if (rval)
1830 goto out;
1831 }
1832
1833 rval = ccs_call_quirk(sensor, pre_streamon);
1834 if (rval) {
1835 dev_err(&client->dev, "pre_streamon quirks failed\n");
1836 goto out;
1837 }
1838
1839 rval = ccs_write(sensor, MODE_SELECT, CCS_MODE_SELECT_STREAMING);
1840
1841 out:
1842 mutex_unlock(&sensor->mutex);
1843
1844 return rval;
1845 }
1846
ccs_stop_streaming(struct ccs_sensor * sensor)1847 static int ccs_stop_streaming(struct ccs_sensor *sensor)
1848 {
1849 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1850 int rval;
1851
1852 mutex_lock(&sensor->mutex);
1853 rval = ccs_write(sensor, MODE_SELECT, CCS_MODE_SELECT_SOFTWARE_STANDBY);
1854 if (rval)
1855 goto out;
1856
1857 rval = ccs_call_quirk(sensor, post_streamoff);
1858 if (rval)
1859 dev_err(&client->dev, "post_streamoff quirks failed\n");
1860
1861 out:
1862 mutex_unlock(&sensor->mutex);
1863 return rval;
1864 }
1865
1866 /* -----------------------------------------------------------------------------
1867 * V4L2 subdev video operations
1868 */
1869
ccs_pm_get_init(struct ccs_sensor * sensor)1870 static int ccs_pm_get_init(struct ccs_sensor *sensor)
1871 {
1872 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1873 int rval;
1874
1875 /*
1876 * It can't use pm_runtime_resume_and_get() here, as the driver
1877 * relies at the returned value to detect if the device was already
1878 * active or not.
1879 */
1880 rval = pm_runtime_get_sync(&client->dev);
1881 if (rval < 0)
1882 goto error;
1883
1884 /* Device was already active, so don't set controls */
1885 if (rval == 1 && !sensor->handler_setup_needed)
1886 return 0;
1887
1888 sensor->handler_setup_needed = false;
1889
1890 /* Restore V4L2 controls to the previously suspended device */
1891 rval = v4l2_ctrl_handler_setup(&sensor->pixel_array->ctrl_handler);
1892 if (rval)
1893 goto error;
1894
1895 rval = v4l2_ctrl_handler_setup(&sensor->src->ctrl_handler);
1896 if (rval)
1897 goto error;
1898
1899 /* Keep PM runtime usage_count incremented on success */
1900 return 0;
1901 error:
1902 pm_runtime_put(&client->dev);
1903 return rval;
1904 }
1905
ccs_set_stream(struct v4l2_subdev * subdev,int enable)1906 static int ccs_set_stream(struct v4l2_subdev *subdev, int enable)
1907 {
1908 struct ccs_sensor *sensor = to_ccs_sensor(subdev);
1909 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1910 int rval;
1911
1912 if (!enable) {
1913 ccs_stop_streaming(sensor);
1914 sensor->streaming = false;
1915 pm_runtime_put_autosuspend(&client->dev);
1916
1917 return 0;
1918 }
1919
1920 rval = ccs_pm_get_init(sensor);
1921 if (rval)
1922 return rval;
1923
1924 sensor->streaming = true;
1925
1926 rval = ccs_start_streaming(sensor);
1927 if (rval < 0) {
1928 sensor->streaming = false;
1929 pm_runtime_put_autosuspend(&client->dev);
1930 }
1931
1932 return rval;
1933 }
1934
ccs_pre_streamon(struct v4l2_subdev * subdev,u32 flags)1935 static int ccs_pre_streamon(struct v4l2_subdev *subdev, u32 flags)
1936 {
1937 struct ccs_sensor *sensor = to_ccs_sensor(subdev);
1938 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1939 int rval;
1940
1941 if (flags & V4L2_SUBDEV_PRE_STREAMON_FL_MANUAL_LP) {
1942 switch (sensor->hwcfg.csi_signalling_mode) {
1943 case CCS_CSI_SIGNALING_MODE_CSI_2_DPHY:
1944 if (!(CCS_LIM(sensor, PHY_CTRL_CAPABILITY_2) &
1945 CCS_PHY_CTRL_CAPABILITY_2_MANUAL_LP_DPHY))
1946 return -EACCES;
1947 break;
1948 case CCS_CSI_SIGNALING_MODE_CSI_2_CPHY:
1949 if (!(CCS_LIM(sensor, PHY_CTRL_CAPABILITY_2) &
1950 CCS_PHY_CTRL_CAPABILITY_2_MANUAL_LP_CPHY))
1951 return -EACCES;
1952 break;
1953 default:
1954 return -EACCES;
1955 }
1956 }
1957
1958 rval = ccs_pm_get_init(sensor);
1959 if (rval)
1960 return rval;
1961
1962 if (flags & V4L2_SUBDEV_PRE_STREAMON_FL_MANUAL_LP) {
1963 rval = ccs_write(sensor, MANUAL_LP_CTRL,
1964 CCS_MANUAL_LP_CTRL_ENABLE);
1965 if (rval)
1966 pm_runtime_put(&client->dev);
1967 }
1968
1969 return rval;
1970 }
1971
ccs_post_streamoff(struct v4l2_subdev * subdev)1972 static int ccs_post_streamoff(struct v4l2_subdev *subdev)
1973 {
1974 struct ccs_sensor *sensor = to_ccs_sensor(subdev);
1975 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1976
1977 return pm_runtime_put(&client->dev);
1978 }
1979
ccs_enum_mbus_code(struct v4l2_subdev * subdev,struct v4l2_subdev_state * sd_state,struct v4l2_subdev_mbus_code_enum * code)1980 static int ccs_enum_mbus_code(struct v4l2_subdev *subdev,
1981 struct v4l2_subdev_state *sd_state,
1982 struct v4l2_subdev_mbus_code_enum *code)
1983 {
1984 struct i2c_client *client = v4l2_get_subdevdata(subdev);
1985 struct ccs_sensor *sensor = to_ccs_sensor(subdev);
1986 unsigned int i;
1987 int idx = -1;
1988 int rval = -EINVAL;
1989
1990 mutex_lock(&sensor->mutex);
1991
1992 dev_err(&client->dev, "subdev %s, pad %u, index %u\n",
1993 subdev->name, code->pad, code->index);
1994
1995 if (subdev != &sensor->src->sd || code->pad != CCS_PAD_SRC) {
1996 if (code->index)
1997 goto out;
1998
1999 code->code = sensor->internal_csi_format->code;
2000 rval = 0;
2001 goto out;
2002 }
2003
2004 for (i = 0; i < ARRAY_SIZE(ccs_csi_data_formats); i++) {
2005 if (sensor->mbus_frame_fmts & (1 << i))
2006 idx++;
2007
2008 if (idx == code->index) {
2009 code->code = ccs_csi_data_formats[i].code;
2010 dev_err(&client->dev, "found index %u, i %u, code %x\n",
2011 code->index, i, code->code);
2012 rval = 0;
2013 break;
2014 }
2015 }
2016
2017 out:
2018 mutex_unlock(&sensor->mutex);
2019
2020 return rval;
2021 }
2022
__ccs_get_mbus_code(struct v4l2_subdev * subdev,unsigned int pad)2023 static u32 __ccs_get_mbus_code(struct v4l2_subdev *subdev, unsigned int pad)
2024 {
2025 struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2026
2027 if (subdev == &sensor->src->sd && pad == CCS_PAD_SRC)
2028 return sensor->csi_format->code;
2029 else
2030 return sensor->internal_csi_format->code;
2031 }
2032
__ccs_get_format(struct v4l2_subdev * subdev,struct v4l2_subdev_state * sd_state,struct v4l2_subdev_format * fmt)2033 static int __ccs_get_format(struct v4l2_subdev *subdev,
2034 struct v4l2_subdev_state *sd_state,
2035 struct v4l2_subdev_format *fmt)
2036 {
2037 fmt->format = *v4l2_subdev_state_get_format(sd_state, fmt->pad);
2038 fmt->format.code = __ccs_get_mbus_code(subdev, fmt->pad);
2039
2040 return 0;
2041 }
2042
ccs_get_format(struct v4l2_subdev * subdev,struct v4l2_subdev_state * sd_state,struct v4l2_subdev_format * fmt)2043 static int ccs_get_format(struct v4l2_subdev *subdev,
2044 struct v4l2_subdev_state *sd_state,
2045 struct v4l2_subdev_format *fmt)
2046 {
2047 struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2048 int rval;
2049
2050 mutex_lock(&sensor->mutex);
2051 rval = __ccs_get_format(subdev, sd_state, fmt);
2052 mutex_unlock(&sensor->mutex);
2053
2054 return rval;
2055 }
2056
ccs_get_crop_compose(struct v4l2_subdev * subdev,struct v4l2_subdev_state * sd_state,struct v4l2_rect ** crops,struct v4l2_rect ** comps)2057 static void ccs_get_crop_compose(struct v4l2_subdev *subdev,
2058 struct v4l2_subdev_state *sd_state,
2059 struct v4l2_rect **crops,
2060 struct v4l2_rect **comps)
2061 {
2062 struct ccs_subdev *ssd = to_ccs_subdev(subdev);
2063 unsigned int i;
2064
2065 if (crops)
2066 for (i = 0; i < subdev->entity.num_pads; i++)
2067 crops[i] =
2068 v4l2_subdev_state_get_crop(sd_state, i);
2069 if (comps)
2070 *comps = v4l2_subdev_state_get_compose(sd_state,
2071 ssd->sink_pad);
2072 }
2073
2074 /* Changes require propagation only on sink pad. */
ccs_propagate(struct v4l2_subdev * subdev,struct v4l2_subdev_state * sd_state,int which,int target)2075 static void ccs_propagate(struct v4l2_subdev *subdev,
2076 struct v4l2_subdev_state *sd_state, int which,
2077 int target)
2078 {
2079 struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2080 struct ccs_subdev *ssd = to_ccs_subdev(subdev);
2081 struct v4l2_rect *comp, *crops[CCS_PADS];
2082 struct v4l2_mbus_framefmt *fmt;
2083
2084 ccs_get_crop_compose(subdev, sd_state, crops, &comp);
2085
2086 switch (target) {
2087 case V4L2_SEL_TGT_CROP:
2088 comp->width = crops[CCS_PAD_SINK]->width;
2089 comp->height = crops[CCS_PAD_SINK]->height;
2090 if (which == V4L2_SUBDEV_FORMAT_ACTIVE) {
2091 if (ssd == sensor->scaler) {
2092 sensor->scale_m = CCS_LIM(sensor, SCALER_N_MIN);
2093 sensor->scaling_mode =
2094 CCS_SCALING_MODE_NO_SCALING;
2095 sensor->scaler_sink = *comp;
2096 } else if (ssd == sensor->binner) {
2097 sensor->binning_horizontal = 1;
2098 sensor->binning_vertical = 1;
2099 }
2100 }
2101 fallthrough;
2102 case V4L2_SEL_TGT_COMPOSE:
2103 *crops[CCS_PAD_SRC] = *comp;
2104 fmt = v4l2_subdev_state_get_format(sd_state, CCS_PAD_SRC);
2105 fmt->width = comp->width;
2106 fmt->height = comp->height;
2107 if (which == V4L2_SUBDEV_FORMAT_ACTIVE && ssd == sensor->src)
2108 sensor->src_src = *crops[CCS_PAD_SRC];
2109 break;
2110 default:
2111 WARN_ON_ONCE(1);
2112 }
2113 }
2114
2115 static const struct ccs_csi_data_format
ccs_validate_csi_data_format(struct ccs_sensor * sensor,u32 code)2116 *ccs_validate_csi_data_format(struct ccs_sensor *sensor, u32 code)
2117 {
2118 unsigned int i;
2119
2120 for (i = 0; i < ARRAY_SIZE(ccs_csi_data_formats); i++) {
2121 if (sensor->mbus_frame_fmts & (1 << i) &&
2122 ccs_csi_data_formats[i].code == code)
2123 return &ccs_csi_data_formats[i];
2124 }
2125
2126 return sensor->csi_format;
2127 }
2128
ccs_set_format_source(struct v4l2_subdev * subdev,struct v4l2_subdev_state * sd_state,struct v4l2_subdev_format * fmt)2129 static int ccs_set_format_source(struct v4l2_subdev *subdev,
2130 struct v4l2_subdev_state *sd_state,
2131 struct v4l2_subdev_format *fmt)
2132 {
2133 struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2134 const struct ccs_csi_data_format *csi_format,
2135 *old_csi_format = sensor->csi_format;
2136 unsigned long *valid_link_freqs;
2137 u32 code = fmt->format.code;
2138 unsigned int i;
2139 int rval;
2140
2141 rval = __ccs_get_format(subdev, sd_state, fmt);
2142 if (rval)
2143 return rval;
2144
2145 /*
2146 * Media bus code is changeable on src subdev's source pad. On
2147 * other source pads we just get format here.
2148 */
2149 if (subdev != &sensor->src->sd)
2150 return 0;
2151
2152 csi_format = ccs_validate_csi_data_format(sensor, code);
2153
2154 fmt->format.code = csi_format->code;
2155
2156 if (fmt->which != V4L2_SUBDEV_FORMAT_ACTIVE)
2157 return 0;
2158
2159 sensor->csi_format = csi_format;
2160
2161 if (csi_format->width != old_csi_format->width)
2162 for (i = 0; i < ARRAY_SIZE(sensor->test_data); i++)
2163 __v4l2_ctrl_modify_range(
2164 sensor->test_data[i], 0,
2165 (1 << csi_format->width) - 1, 1, 0);
2166
2167 if (csi_format->compressed == old_csi_format->compressed)
2168 return 0;
2169
2170 valid_link_freqs =
2171 &sensor->valid_link_freqs[sensor->csi_format->compressed
2172 - sensor->compressed_min_bpp];
2173
2174 __v4l2_ctrl_modify_range(
2175 sensor->link_freq, 0,
2176 __fls(*valid_link_freqs), ~*valid_link_freqs,
2177 __ffs(*valid_link_freqs));
2178
2179 return ccs_pll_update(sensor);
2180 }
2181
ccs_set_format(struct v4l2_subdev * subdev,struct v4l2_subdev_state * sd_state,struct v4l2_subdev_format * fmt)2182 static int ccs_set_format(struct v4l2_subdev *subdev,
2183 struct v4l2_subdev_state *sd_state,
2184 struct v4l2_subdev_format *fmt)
2185 {
2186 struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2187 struct ccs_subdev *ssd = to_ccs_subdev(subdev);
2188 struct v4l2_rect *crops[CCS_PADS];
2189
2190 mutex_lock(&sensor->mutex);
2191
2192 if (fmt->pad == ssd->source_pad) {
2193 int rval;
2194
2195 rval = ccs_set_format_source(subdev, sd_state, fmt);
2196
2197 mutex_unlock(&sensor->mutex);
2198
2199 return rval;
2200 }
2201
2202 /* Sink pad. Width and height are changeable here. */
2203 fmt->format.code = __ccs_get_mbus_code(subdev, fmt->pad);
2204 fmt->format.width &= ~1;
2205 fmt->format.height &= ~1;
2206 fmt->format.field = V4L2_FIELD_NONE;
2207
2208 fmt->format.width =
2209 clamp(fmt->format.width,
2210 CCS_LIM(sensor, MIN_X_OUTPUT_SIZE),
2211 CCS_LIM(sensor, MAX_X_OUTPUT_SIZE));
2212 fmt->format.height =
2213 clamp(fmt->format.height,
2214 CCS_LIM(sensor, MIN_Y_OUTPUT_SIZE),
2215 CCS_LIM(sensor, MAX_Y_OUTPUT_SIZE));
2216
2217 ccs_get_crop_compose(subdev, sd_state, crops, NULL);
2218
2219 crops[ssd->sink_pad]->left = 0;
2220 crops[ssd->sink_pad]->top = 0;
2221 crops[ssd->sink_pad]->width = fmt->format.width;
2222 crops[ssd->sink_pad]->height = fmt->format.height;
2223 ccs_propagate(subdev, sd_state, fmt->which, V4L2_SEL_TGT_CROP);
2224
2225 mutex_unlock(&sensor->mutex);
2226
2227 return 0;
2228 }
2229
2230 /*
2231 * Calculate goodness of scaled image size compared to expected image
2232 * size and flags provided.
2233 */
2234 #define SCALING_GOODNESS 100000
2235 #define SCALING_GOODNESS_EXTREME 100000000
scaling_goodness(struct v4l2_subdev * subdev,int w,int ask_w,int h,int ask_h,u32 flags)2236 static int scaling_goodness(struct v4l2_subdev *subdev, int w, int ask_w,
2237 int h, int ask_h, u32 flags)
2238 {
2239 struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2240 struct i2c_client *client = v4l2_get_subdevdata(subdev);
2241 int val = 0;
2242
2243 w &= ~1;
2244 ask_w &= ~1;
2245 h &= ~1;
2246 ask_h &= ~1;
2247
2248 if (flags & V4L2_SEL_FLAG_GE) {
2249 if (w < ask_w)
2250 val -= SCALING_GOODNESS;
2251 if (h < ask_h)
2252 val -= SCALING_GOODNESS;
2253 }
2254
2255 if (flags & V4L2_SEL_FLAG_LE) {
2256 if (w > ask_w)
2257 val -= SCALING_GOODNESS;
2258 if (h > ask_h)
2259 val -= SCALING_GOODNESS;
2260 }
2261
2262 val -= abs(w - ask_w);
2263 val -= abs(h - ask_h);
2264
2265 if (w < CCS_LIM(sensor, MIN_X_OUTPUT_SIZE))
2266 val -= SCALING_GOODNESS_EXTREME;
2267
2268 dev_dbg(&client->dev, "w %d ask_w %d h %d ask_h %d goodness %d\n",
2269 w, ask_w, h, ask_h, val);
2270
2271 return val;
2272 }
2273
ccs_set_compose_binner(struct v4l2_subdev * subdev,struct v4l2_subdev_state * sd_state,struct v4l2_subdev_selection * sel,struct v4l2_rect ** crops,struct v4l2_rect * comp)2274 static void ccs_set_compose_binner(struct v4l2_subdev *subdev,
2275 struct v4l2_subdev_state *sd_state,
2276 struct v4l2_subdev_selection *sel,
2277 struct v4l2_rect **crops,
2278 struct v4l2_rect *comp)
2279 {
2280 struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2281 unsigned int i;
2282 unsigned int binh = 1, binv = 1;
2283 int best = scaling_goodness(
2284 subdev,
2285 crops[CCS_PAD_SINK]->width, sel->r.width,
2286 crops[CCS_PAD_SINK]->height, sel->r.height, sel->flags);
2287
2288 for (i = 0; i < sensor->nbinning_subtypes; i++) {
2289 int this = scaling_goodness(
2290 subdev,
2291 crops[CCS_PAD_SINK]->width
2292 / sensor->binning_subtypes[i].horizontal,
2293 sel->r.width,
2294 crops[CCS_PAD_SINK]->height
2295 / sensor->binning_subtypes[i].vertical,
2296 sel->r.height, sel->flags);
2297
2298 if (this > best) {
2299 binh = sensor->binning_subtypes[i].horizontal;
2300 binv = sensor->binning_subtypes[i].vertical;
2301 best = this;
2302 }
2303 }
2304 if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
2305 sensor->binning_vertical = binv;
2306 sensor->binning_horizontal = binh;
2307 }
2308
2309 sel->r.width = (crops[CCS_PAD_SINK]->width / binh) & ~1;
2310 sel->r.height = (crops[CCS_PAD_SINK]->height / binv) & ~1;
2311 }
2312
2313 /*
2314 * Calculate best scaling ratio and mode for given output resolution.
2315 *
2316 * Try all of these: horizontal ratio, vertical ratio and smallest
2317 * size possible (horizontally).
2318 *
2319 * Also try whether horizontal scaler or full scaler gives a better
2320 * result.
2321 */
ccs_set_compose_scaler(struct v4l2_subdev * subdev,struct v4l2_subdev_state * sd_state,struct v4l2_subdev_selection * sel,struct v4l2_rect ** crops,struct v4l2_rect * comp)2322 static void ccs_set_compose_scaler(struct v4l2_subdev *subdev,
2323 struct v4l2_subdev_state *sd_state,
2324 struct v4l2_subdev_selection *sel,
2325 struct v4l2_rect **crops,
2326 struct v4l2_rect *comp)
2327 {
2328 struct i2c_client *client = v4l2_get_subdevdata(subdev);
2329 struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2330 u32 min, max, a, b, max_m;
2331 u32 scale_m = CCS_LIM(sensor, SCALER_N_MIN);
2332 int mode = CCS_SCALING_MODE_HORIZONTAL;
2333 u32 try[4];
2334 u32 ntry = 0;
2335 unsigned int i;
2336 int best = INT_MIN;
2337
2338 sel->r.width = min_t(unsigned int, sel->r.width,
2339 crops[CCS_PAD_SINK]->width);
2340 sel->r.height = min_t(unsigned int, sel->r.height,
2341 crops[CCS_PAD_SINK]->height);
2342
2343 a = crops[CCS_PAD_SINK]->width
2344 * CCS_LIM(sensor, SCALER_N_MIN) / sel->r.width;
2345 b = crops[CCS_PAD_SINK]->height
2346 * CCS_LIM(sensor, SCALER_N_MIN) / sel->r.height;
2347 max_m = crops[CCS_PAD_SINK]->width
2348 * CCS_LIM(sensor, SCALER_N_MIN)
2349 / CCS_LIM(sensor, MIN_X_OUTPUT_SIZE);
2350
2351 a = clamp(a, CCS_LIM(sensor, SCALER_M_MIN),
2352 CCS_LIM(sensor, SCALER_M_MAX));
2353 b = clamp(b, CCS_LIM(sensor, SCALER_M_MIN),
2354 CCS_LIM(sensor, SCALER_M_MAX));
2355 max_m = clamp(max_m, CCS_LIM(sensor, SCALER_M_MIN),
2356 CCS_LIM(sensor, SCALER_M_MAX));
2357
2358 dev_dbg(&client->dev, "scaling: a %u b %u max_m %u\n", a, b, max_m);
2359
2360 min = min(max_m, min(a, b));
2361 max = min(max_m, max(a, b));
2362
2363 try[ntry] = min;
2364 ntry++;
2365 if (min != max) {
2366 try[ntry] = max;
2367 ntry++;
2368 }
2369 if (max != max_m) {
2370 try[ntry] = min + 1;
2371 ntry++;
2372 if (min != max) {
2373 try[ntry] = max + 1;
2374 ntry++;
2375 }
2376 }
2377
2378 for (i = 0; i < ntry; i++) {
2379 int this = scaling_goodness(
2380 subdev,
2381 crops[CCS_PAD_SINK]->width
2382 / try[i] * CCS_LIM(sensor, SCALER_N_MIN),
2383 sel->r.width,
2384 crops[CCS_PAD_SINK]->height,
2385 sel->r.height,
2386 sel->flags);
2387
2388 dev_dbg(&client->dev, "trying factor %u (%u)\n", try[i], i);
2389
2390 if (this > best) {
2391 scale_m = try[i];
2392 mode = CCS_SCALING_MODE_HORIZONTAL;
2393 best = this;
2394 }
2395
2396 if (CCS_LIM(sensor, SCALING_CAPABILITY)
2397 == CCS_SCALING_CAPABILITY_HORIZONTAL)
2398 continue;
2399
2400 this = scaling_goodness(
2401 subdev, crops[CCS_PAD_SINK]->width
2402 / try[i]
2403 * CCS_LIM(sensor, SCALER_N_MIN),
2404 sel->r.width,
2405 crops[CCS_PAD_SINK]->height
2406 / try[i]
2407 * CCS_LIM(sensor, SCALER_N_MIN),
2408 sel->r.height,
2409 sel->flags);
2410
2411 if (this > best) {
2412 scale_m = try[i];
2413 mode = SMIAPP_SCALING_MODE_BOTH;
2414 best = this;
2415 }
2416 }
2417
2418 sel->r.width =
2419 (crops[CCS_PAD_SINK]->width
2420 / scale_m
2421 * CCS_LIM(sensor, SCALER_N_MIN)) & ~1;
2422 if (mode == SMIAPP_SCALING_MODE_BOTH)
2423 sel->r.height =
2424 (crops[CCS_PAD_SINK]->height
2425 / scale_m
2426 * CCS_LIM(sensor, SCALER_N_MIN))
2427 & ~1;
2428 else
2429 sel->r.height = crops[CCS_PAD_SINK]->height;
2430
2431 if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
2432 sensor->scale_m = scale_m;
2433 sensor->scaling_mode = mode;
2434 }
2435 }
2436 /* We're only called on source pads. This function sets scaling. */
ccs_set_compose(struct v4l2_subdev * subdev,struct v4l2_subdev_state * sd_state,struct v4l2_subdev_selection * sel)2437 static int ccs_set_compose(struct v4l2_subdev *subdev,
2438 struct v4l2_subdev_state *sd_state,
2439 struct v4l2_subdev_selection *sel)
2440 {
2441 struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2442 struct ccs_subdev *ssd = to_ccs_subdev(subdev);
2443 struct v4l2_rect *comp, *crops[CCS_PADS];
2444
2445 ccs_get_crop_compose(subdev, sd_state, crops, &comp);
2446
2447 sel->r.top = 0;
2448 sel->r.left = 0;
2449
2450 if (ssd == sensor->binner)
2451 ccs_set_compose_binner(subdev, sd_state, sel, crops, comp);
2452 else
2453 ccs_set_compose_scaler(subdev, sd_state, sel, crops, comp);
2454
2455 *comp = sel->r;
2456 ccs_propagate(subdev, sd_state, sel->which, V4L2_SEL_TGT_COMPOSE);
2457
2458 if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE)
2459 return ccs_pll_blanking_update(sensor);
2460
2461 return 0;
2462 }
2463
ccs_sel_supported(struct v4l2_subdev * subdev,struct v4l2_subdev_selection * sel)2464 static int ccs_sel_supported(struct v4l2_subdev *subdev,
2465 struct v4l2_subdev_selection *sel)
2466 {
2467 struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2468 struct ccs_subdev *ssd = to_ccs_subdev(subdev);
2469
2470 /* We only implement crop in three places. */
2471 switch (sel->target) {
2472 case V4L2_SEL_TGT_CROP:
2473 case V4L2_SEL_TGT_CROP_BOUNDS:
2474 if (ssd == sensor->pixel_array && sel->pad == CCS_PA_PAD_SRC)
2475 return 0;
2476 if (ssd == sensor->src && sel->pad == CCS_PAD_SRC)
2477 return 0;
2478 if (ssd == sensor->scaler && sel->pad == CCS_PAD_SINK &&
2479 CCS_LIM(sensor, DIGITAL_CROP_CAPABILITY)
2480 == CCS_DIGITAL_CROP_CAPABILITY_INPUT_CROP)
2481 return 0;
2482 return -EINVAL;
2483 case V4L2_SEL_TGT_NATIVE_SIZE:
2484 if (ssd == sensor->pixel_array && sel->pad == CCS_PA_PAD_SRC)
2485 return 0;
2486 return -EINVAL;
2487 case V4L2_SEL_TGT_COMPOSE:
2488 case V4L2_SEL_TGT_COMPOSE_BOUNDS:
2489 if (sel->pad == ssd->source_pad)
2490 return -EINVAL;
2491 if (ssd == sensor->binner)
2492 return 0;
2493 if (ssd == sensor->scaler && CCS_LIM(sensor, SCALING_CAPABILITY)
2494 != CCS_SCALING_CAPABILITY_NONE)
2495 return 0;
2496 fallthrough;
2497 default:
2498 return -EINVAL;
2499 }
2500 }
2501
ccs_set_crop(struct v4l2_subdev * subdev,struct v4l2_subdev_state * sd_state,struct v4l2_subdev_selection * sel)2502 static int ccs_set_crop(struct v4l2_subdev *subdev,
2503 struct v4l2_subdev_state *sd_state,
2504 struct v4l2_subdev_selection *sel)
2505 {
2506 struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2507 struct ccs_subdev *ssd = to_ccs_subdev(subdev);
2508 struct v4l2_rect src_size = { 0 }, *crops[CCS_PADS], *comp;
2509
2510 ccs_get_crop_compose(subdev, sd_state, crops, &comp);
2511
2512 if (sel->pad == ssd->sink_pad) {
2513 struct v4l2_mbus_framefmt *mfmt =
2514 v4l2_subdev_state_get_format(sd_state, sel->pad);
2515
2516 src_size.width = mfmt->width;
2517 src_size.height = mfmt->height;
2518 } else {
2519 src_size = *comp;
2520 }
2521
2522 if (ssd == sensor->src && sel->pad == CCS_PAD_SRC) {
2523 sel->r.left = 0;
2524 sel->r.top = 0;
2525 }
2526
2527 sel->r.width = min(sel->r.width, src_size.width);
2528 sel->r.height = min(sel->r.height, src_size.height);
2529
2530 sel->r.left = min_t(int, sel->r.left, src_size.width - sel->r.width);
2531 sel->r.top = min_t(int, sel->r.top, src_size.height - sel->r.height);
2532
2533 *crops[sel->pad] = sel->r;
2534
2535 if (ssd != sensor->pixel_array && sel->pad == CCS_PAD_SINK)
2536 ccs_propagate(subdev, sd_state, sel->which, V4L2_SEL_TGT_CROP);
2537 else if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE &&
2538 ssd == sensor->pixel_array)
2539 sensor->pa_src = sel->r;
2540
2541 return 0;
2542 }
2543
ccs_get_native_size(struct ccs_subdev * ssd,struct v4l2_rect * r)2544 static void ccs_get_native_size(struct ccs_subdev *ssd, struct v4l2_rect *r)
2545 {
2546 r->top = 0;
2547 r->left = 0;
2548 r->width = CCS_LIM(ssd->sensor, X_ADDR_MAX) + 1;
2549 r->height = CCS_LIM(ssd->sensor, Y_ADDR_MAX) + 1;
2550 }
2551
ccs_get_selection(struct v4l2_subdev * subdev,struct v4l2_subdev_state * sd_state,struct v4l2_subdev_selection * sel)2552 static int ccs_get_selection(struct v4l2_subdev *subdev,
2553 struct v4l2_subdev_state *sd_state,
2554 struct v4l2_subdev_selection *sel)
2555 {
2556 struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2557 struct ccs_subdev *ssd = to_ccs_subdev(subdev);
2558 struct v4l2_rect *comp, *crops[CCS_PADS];
2559 int ret;
2560
2561 ret = ccs_sel_supported(subdev, sel);
2562 if (ret)
2563 return ret;
2564
2565 ccs_get_crop_compose(subdev, sd_state, crops, &comp);
2566
2567 switch (sel->target) {
2568 case V4L2_SEL_TGT_CROP_BOUNDS:
2569 case V4L2_SEL_TGT_NATIVE_SIZE:
2570 if (ssd == sensor->pixel_array) {
2571 ccs_get_native_size(ssd, &sel->r);
2572 } else if (sel->pad == ssd->sink_pad) {
2573 struct v4l2_mbus_framefmt *sink_fmt =
2574 v4l2_subdev_state_get_format(sd_state,
2575 ssd->sink_pad);
2576 sel->r.top = sel->r.left = 0;
2577 sel->r.width = sink_fmt->width;
2578 sel->r.height = sink_fmt->height;
2579 } else {
2580 sel->r = *comp;
2581 }
2582 break;
2583 case V4L2_SEL_TGT_CROP:
2584 case V4L2_SEL_TGT_COMPOSE_BOUNDS:
2585 sel->r = *crops[sel->pad];
2586 break;
2587 case V4L2_SEL_TGT_COMPOSE:
2588 sel->r = *comp;
2589 break;
2590 }
2591
2592 return 0;
2593 }
2594
ccs_set_selection(struct v4l2_subdev * subdev,struct v4l2_subdev_state * sd_state,struct v4l2_subdev_selection * sel)2595 static int ccs_set_selection(struct v4l2_subdev *subdev,
2596 struct v4l2_subdev_state *sd_state,
2597 struct v4l2_subdev_selection *sel)
2598 {
2599 struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2600 int ret;
2601
2602 ret = ccs_sel_supported(subdev, sel);
2603 if (ret)
2604 return ret;
2605
2606 mutex_lock(&sensor->mutex);
2607
2608 sel->r.left = max(0, sel->r.left & ~1);
2609 sel->r.top = max(0, sel->r.top & ~1);
2610 sel->r.width = CCS_ALIGN_DIM(sel->r.width, sel->flags);
2611 sel->r.height = CCS_ALIGN_DIM(sel->r.height, sel->flags);
2612
2613 sel->r.width = max_t(unsigned int, CCS_LIM(sensor, MIN_X_OUTPUT_SIZE),
2614 sel->r.width);
2615 sel->r.height = max_t(unsigned int, CCS_LIM(sensor, MIN_Y_OUTPUT_SIZE),
2616 sel->r.height);
2617
2618 switch (sel->target) {
2619 case V4L2_SEL_TGT_CROP:
2620 ret = ccs_set_crop(subdev, sd_state, sel);
2621 break;
2622 case V4L2_SEL_TGT_COMPOSE:
2623 ret = ccs_set_compose(subdev, sd_state, sel);
2624 break;
2625 default:
2626 ret = -EINVAL;
2627 }
2628
2629 mutex_unlock(&sensor->mutex);
2630 return ret;
2631 }
2632
ccs_get_skip_frames(struct v4l2_subdev * subdev,u32 * frames)2633 static int ccs_get_skip_frames(struct v4l2_subdev *subdev, u32 *frames)
2634 {
2635 struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2636
2637 *frames = sensor->frame_skip;
2638 return 0;
2639 }
2640
ccs_get_skip_top_lines(struct v4l2_subdev * subdev,u32 * lines)2641 static int ccs_get_skip_top_lines(struct v4l2_subdev *subdev, u32 *lines)
2642 {
2643 struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2644
2645 *lines = sensor->image_start;
2646
2647 return 0;
2648 }
2649
2650 /* -----------------------------------------------------------------------------
2651 * sysfs attributes
2652 */
2653
2654 static ssize_t
nvm_show(struct device * dev,struct device_attribute * attr,char * buf)2655 nvm_show(struct device *dev, struct device_attribute *attr, char *buf)
2656 {
2657 struct v4l2_subdev *subdev = i2c_get_clientdata(to_i2c_client(dev));
2658 struct i2c_client *client = v4l2_get_subdevdata(subdev);
2659 struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2660 int rval;
2661
2662 if (!sensor->dev_init_done)
2663 return -EBUSY;
2664
2665 rval = ccs_pm_get_init(sensor);
2666 if (rval < 0)
2667 return -ENODEV;
2668
2669 rval = ccs_read_nvm(sensor, buf, PAGE_SIZE);
2670 if (rval < 0) {
2671 pm_runtime_put(&client->dev);
2672 dev_err(&client->dev, "nvm read failed\n");
2673 return -ENODEV;
2674 }
2675
2676 pm_runtime_put_autosuspend(&client->dev);
2677
2678 /*
2679 * NVM is still way below a PAGE_SIZE, so we can safely
2680 * assume this for now.
2681 */
2682 return rval;
2683 }
2684 static DEVICE_ATTR_RO(nvm);
2685
2686 static ssize_t
ident_show(struct device * dev,struct device_attribute * attr,char * buf)2687 ident_show(struct device *dev, struct device_attribute *attr, char *buf)
2688 {
2689 struct v4l2_subdev *subdev = i2c_get_clientdata(to_i2c_client(dev));
2690 struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2691 struct ccs_module_info *minfo = &sensor->minfo;
2692
2693 if (minfo->mipi_manufacturer_id)
2694 return sysfs_emit(buf, "%4.4x%4.4x%2.2x\n",
2695 minfo->mipi_manufacturer_id, minfo->model_id,
2696 minfo->revision_number) + 1;
2697 else
2698 return sysfs_emit(buf, "%2.2x%4.4x%2.2x\n",
2699 minfo->smia_manufacturer_id, minfo->model_id,
2700 minfo->revision_number) + 1;
2701 }
2702 static DEVICE_ATTR_RO(ident);
2703
2704 /* -----------------------------------------------------------------------------
2705 * V4L2 subdev core operations
2706 */
2707
ccs_identify_module(struct ccs_sensor * sensor)2708 static int ccs_identify_module(struct ccs_sensor *sensor)
2709 {
2710 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
2711 struct ccs_module_info *minfo = &sensor->minfo;
2712 unsigned int i;
2713 u32 rev;
2714 int rval = 0;
2715
2716 /* Module info */
2717 rval = ccs_read(sensor, MODULE_MANUFACTURER_ID,
2718 &minfo->mipi_manufacturer_id);
2719 if (!rval && !minfo->mipi_manufacturer_id)
2720 rval = ccs_read_addr(sensor, SMIAPP_REG_U8_MANUFACTURER_ID,
2721 &minfo->smia_manufacturer_id);
2722 if (!rval)
2723 rval = ccs_read(sensor, MODULE_MODEL_ID, &minfo->model_id);
2724 if (!rval)
2725 rval = ccs_read(sensor, MODULE_REVISION_NUMBER_MAJOR, &rev);
2726 if (!rval) {
2727 rval = ccs_read(sensor, MODULE_REVISION_NUMBER_MINOR,
2728 &minfo->revision_number);
2729 minfo->revision_number |= rev << 8;
2730 }
2731 if (!rval)
2732 rval = ccs_read(sensor, MODULE_DATE_YEAR, &minfo->module_year);
2733 if (!rval)
2734 rval = ccs_read(sensor, MODULE_DATE_MONTH,
2735 &minfo->module_month);
2736 if (!rval)
2737 rval = ccs_read(sensor, MODULE_DATE_DAY, &minfo->module_day);
2738
2739 /* Sensor info */
2740 if (!rval)
2741 rval = ccs_read(sensor, SENSOR_MANUFACTURER_ID,
2742 &minfo->sensor_mipi_manufacturer_id);
2743 if (!rval && !minfo->sensor_mipi_manufacturer_id)
2744 rval = ccs_read(sensor, SENSOR_MANUFACTURER_ID,
2745 &minfo->sensor_smia_manufacturer_id);
2746 if (!rval)
2747 rval = ccs_read(sensor, SENSOR_MODEL_ID,
2748 &minfo->sensor_model_id);
2749 if (!rval)
2750 rval = ccs_read(sensor, SENSOR_REVISION_NUMBER,
2751 &minfo->sensor_revision_number);
2752 if (!rval && !minfo->sensor_revision_number)
2753 rval = ccs_read(sensor, SENSOR_REVISION_NUMBER_16,
2754 &minfo->sensor_revision_number);
2755 if (!rval)
2756 rval = ccs_read(sensor, SENSOR_FIRMWARE_VERSION,
2757 &minfo->sensor_firmware_version);
2758
2759 /* SMIA */
2760 if (!rval)
2761 rval = ccs_read(sensor, MIPI_CCS_VERSION, &minfo->ccs_version);
2762 if (!rval && !minfo->ccs_version)
2763 rval = ccs_read_addr(sensor, SMIAPP_REG_U8_SMIA_VERSION,
2764 &minfo->smia_version);
2765 if (!rval && !minfo->ccs_version)
2766 rval = ccs_read_addr(sensor, SMIAPP_REG_U8_SMIAPP_VERSION,
2767 &minfo->smiapp_version);
2768
2769 if (rval) {
2770 dev_err(&client->dev, "sensor detection failed\n");
2771 return -ENODEV;
2772 }
2773
2774 if (minfo->mipi_manufacturer_id)
2775 dev_dbg(&client->dev, "MIPI CCS module 0x%4.4x-0x%4.4x\n",
2776 minfo->mipi_manufacturer_id, minfo->model_id);
2777 else
2778 dev_dbg(&client->dev, "SMIA module 0x%2.2x-0x%4.4x\n",
2779 minfo->smia_manufacturer_id, minfo->model_id);
2780
2781 dev_dbg(&client->dev,
2782 "module revision 0x%4.4x date %2.2d-%2.2d-%2.2d\n",
2783 minfo->revision_number, minfo->module_year, minfo->module_month,
2784 minfo->module_day);
2785
2786 if (minfo->sensor_mipi_manufacturer_id)
2787 dev_dbg(&client->dev, "MIPI CCS sensor 0x%4.4x-0x%4.4x\n",
2788 minfo->sensor_mipi_manufacturer_id,
2789 minfo->sensor_model_id);
2790 else
2791 dev_dbg(&client->dev, "SMIA sensor 0x%2.2x-0x%4.4x\n",
2792 minfo->sensor_smia_manufacturer_id,
2793 minfo->sensor_model_id);
2794
2795 dev_dbg(&client->dev,
2796 "sensor revision 0x%4.4x firmware version 0x%2.2x\n",
2797 minfo->sensor_revision_number, minfo->sensor_firmware_version);
2798
2799 if (minfo->ccs_version) {
2800 dev_dbg(&client->dev, "MIPI CCS version %u.%u",
2801 (minfo->ccs_version & CCS_MIPI_CCS_VERSION_MAJOR_MASK)
2802 >> CCS_MIPI_CCS_VERSION_MAJOR_SHIFT,
2803 (minfo->ccs_version & CCS_MIPI_CCS_VERSION_MINOR_MASK));
2804 minfo->name = CCS_NAME;
2805 } else {
2806 dev_dbg(&client->dev,
2807 "smia version %2.2d smiapp version %2.2d\n",
2808 minfo->smia_version, minfo->smiapp_version);
2809 minfo->name = SMIAPP_NAME;
2810 /*
2811 * Some modules have bad data in the lvalues below. Hope the
2812 * rvalues have better stuff. The lvalues are module
2813 * parameters whereas the rvalues are sensor parameters.
2814 */
2815 if (minfo->sensor_smia_manufacturer_id &&
2816 !minfo->smia_manufacturer_id && !minfo->model_id) {
2817 minfo->smia_manufacturer_id =
2818 minfo->sensor_smia_manufacturer_id;
2819 minfo->model_id = minfo->sensor_model_id;
2820 minfo->revision_number = minfo->sensor_revision_number;
2821 }
2822 }
2823
2824 for (i = 0; i < ARRAY_SIZE(ccs_module_idents); i++) {
2825 if (ccs_module_idents[i].mipi_manufacturer_id &&
2826 ccs_module_idents[i].mipi_manufacturer_id
2827 != minfo->mipi_manufacturer_id)
2828 continue;
2829 if (ccs_module_idents[i].smia_manufacturer_id &&
2830 ccs_module_idents[i].smia_manufacturer_id
2831 != minfo->smia_manufacturer_id)
2832 continue;
2833 if (ccs_module_idents[i].model_id != minfo->model_id)
2834 continue;
2835 if (ccs_module_idents[i].flags
2836 & CCS_MODULE_IDENT_FLAG_REV_LE) {
2837 if (ccs_module_idents[i].revision_number_major
2838 < (minfo->revision_number >> 8))
2839 continue;
2840 } else {
2841 if (ccs_module_idents[i].revision_number_major
2842 != (minfo->revision_number >> 8))
2843 continue;
2844 }
2845
2846 minfo->name = ccs_module_idents[i].name;
2847 minfo->quirk = ccs_module_idents[i].quirk;
2848 break;
2849 }
2850
2851 dev_dbg(&client->dev, "the sensor is called %s\n", minfo->name);
2852
2853 return 0;
2854 }
2855
2856 static const struct v4l2_subdev_ops ccs_ops;
2857 static const struct media_entity_operations ccs_entity_ops;
2858
ccs_register_subdev(struct ccs_sensor * sensor,struct ccs_subdev * ssd,struct ccs_subdev * sink_ssd,u16 source_pad,u16 sink_pad,u32 link_flags)2859 static int ccs_register_subdev(struct ccs_sensor *sensor,
2860 struct ccs_subdev *ssd,
2861 struct ccs_subdev *sink_ssd,
2862 u16 source_pad, u16 sink_pad, u32 link_flags)
2863 {
2864 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
2865 int rval;
2866
2867 if (!sink_ssd)
2868 return 0;
2869
2870 rval = v4l2_device_register_subdev(sensor->src->sd.v4l2_dev, &ssd->sd);
2871 if (rval) {
2872 dev_err(&client->dev, "v4l2_device_register_subdev failed\n");
2873 return rval;
2874 }
2875
2876 rval = media_create_pad_link(&ssd->sd.entity, source_pad,
2877 &sink_ssd->sd.entity, sink_pad,
2878 link_flags);
2879 if (rval) {
2880 dev_err(&client->dev, "media_create_pad_link failed\n");
2881 v4l2_device_unregister_subdev(&ssd->sd);
2882 return rval;
2883 }
2884
2885 return 0;
2886 }
2887
ccs_unregistered(struct v4l2_subdev * subdev)2888 static void ccs_unregistered(struct v4l2_subdev *subdev)
2889 {
2890 struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2891 unsigned int i;
2892
2893 for (i = 1; i < sensor->ssds_used; i++)
2894 v4l2_device_unregister_subdev(&sensor->ssds[i].sd);
2895 }
2896
ccs_registered(struct v4l2_subdev * subdev)2897 static int ccs_registered(struct v4l2_subdev *subdev)
2898 {
2899 struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2900 int rval;
2901
2902 if (sensor->scaler) {
2903 rval = ccs_register_subdev(sensor, sensor->binner,
2904 sensor->scaler,
2905 CCS_PAD_SRC, CCS_PAD_SINK,
2906 MEDIA_LNK_FL_ENABLED |
2907 MEDIA_LNK_FL_IMMUTABLE);
2908 if (rval < 0)
2909 return rval;
2910 }
2911
2912 rval = ccs_register_subdev(sensor, sensor->pixel_array, sensor->binner,
2913 CCS_PA_PAD_SRC, CCS_PAD_SINK,
2914 MEDIA_LNK_FL_ENABLED |
2915 MEDIA_LNK_FL_IMMUTABLE);
2916 if (rval)
2917 goto out_err;
2918
2919 return 0;
2920
2921 out_err:
2922 ccs_unregistered(subdev);
2923
2924 return rval;
2925 }
2926
ccs_cleanup(struct ccs_sensor * sensor)2927 static void ccs_cleanup(struct ccs_sensor *sensor)
2928 {
2929 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
2930 unsigned int i;
2931
2932 for (i = 0; i < sensor->ssds_used; i++) {
2933 v4l2_subdev_cleanup(&sensor->ssds[2].sd);
2934 media_entity_cleanup(&sensor->ssds[i].sd.entity);
2935 }
2936
2937 device_remove_file(&client->dev, &dev_attr_nvm);
2938 device_remove_file(&client->dev, &dev_attr_ident);
2939
2940 ccs_free_controls(sensor);
2941 }
2942
ccs_init_subdev(struct ccs_sensor * sensor,struct ccs_subdev * ssd,const char * name,unsigned short num_pads,u32 function,const char * lock_name,struct lock_class_key * lock_key)2943 static int ccs_init_subdev(struct ccs_sensor *sensor,
2944 struct ccs_subdev *ssd, const char *name,
2945 unsigned short num_pads, u32 function,
2946 const char *lock_name,
2947 struct lock_class_key *lock_key)
2948 {
2949 struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
2950 int rval;
2951
2952 if (!ssd)
2953 return 0;
2954
2955 if (ssd != sensor->src)
2956 v4l2_subdev_init(&ssd->sd, &ccs_ops);
2957
2958 ssd->sd.flags |= V4L2_SUBDEV_FL_HAS_DEVNODE;
2959 ssd->sd.entity.function = function;
2960 ssd->sensor = sensor;
2961
2962 ssd->npads = num_pads;
2963 ssd->source_pad = num_pads - 1;
2964
2965 v4l2_i2c_subdev_set_name(&ssd->sd, client, sensor->minfo.name, name);
2966
2967 ssd->pads[ssd->source_pad].flags = MEDIA_PAD_FL_SOURCE;
2968 if (ssd != sensor->pixel_array)
2969 ssd->pads[ssd->sink_pad].flags = MEDIA_PAD_FL_SINK;
2970
2971 ssd->sd.entity.ops = &ccs_entity_ops;
2972
2973 if (ssd != sensor->src) {
2974 ssd->sd.owner = THIS_MODULE;
2975 ssd->sd.dev = &client->dev;
2976 v4l2_set_subdevdata(&ssd->sd, client);
2977 }
2978
2979 rval = media_entity_pads_init(&ssd->sd.entity, ssd->npads, ssd->pads);
2980 if (rval) {
2981 dev_err(&client->dev, "media_entity_pads_init failed\n");
2982 return rval;
2983 }
2984
2985 rval = __v4l2_subdev_init_finalize(&ssd->sd, lock_name, lock_key);
2986 if (rval) {
2987 media_entity_cleanup(&ssd->sd.entity);
2988 return rval;
2989 }
2990
2991 return 0;
2992 }
2993
ccs_init_state(struct v4l2_subdev * sd,struct v4l2_subdev_state * sd_state)2994 static int ccs_init_state(struct v4l2_subdev *sd,
2995 struct v4l2_subdev_state *sd_state)
2996 {
2997 struct ccs_subdev *ssd = to_ccs_subdev(sd);
2998 struct ccs_sensor *sensor = ssd->sensor;
2999 unsigned int pad = ssd == sensor->pixel_array ?
3000 CCS_PA_PAD_SRC : CCS_PAD_SINK;
3001 struct v4l2_mbus_framefmt *fmt =
3002 v4l2_subdev_state_get_format(sd_state, pad);
3003 struct v4l2_rect *crop =
3004 v4l2_subdev_state_get_crop(sd_state, pad);
3005 bool is_active = !sd->active_state || sd->active_state == sd_state;
3006
3007 mutex_lock(&sensor->mutex);
3008
3009 ccs_get_native_size(ssd, crop);
3010
3011 fmt->width = crop->width;
3012 fmt->height = crop->height;
3013 fmt->code = sensor->internal_csi_format->code;
3014 fmt->field = V4L2_FIELD_NONE;
3015
3016 if (ssd == sensor->pixel_array) {
3017 if (is_active)
3018 sensor->pa_src = *crop;
3019
3020 mutex_unlock(&sensor->mutex);
3021 return 0;
3022 }
3023
3024 fmt = v4l2_subdev_state_get_format(sd_state, CCS_PAD_SRC);
3025 fmt->code = ssd == sensor->src ?
3026 sensor->csi_format->code : sensor->internal_csi_format->code;
3027 fmt->field = V4L2_FIELD_NONE;
3028
3029 ccs_propagate(sd, sd_state, is_active, V4L2_SEL_TGT_CROP);
3030
3031 mutex_unlock(&sensor->mutex);
3032
3033 return 0;
3034 }
3035
3036 static const struct v4l2_subdev_video_ops ccs_video_ops = {
3037 .s_stream = ccs_set_stream,
3038 .pre_streamon = ccs_pre_streamon,
3039 .post_streamoff = ccs_post_streamoff,
3040 };
3041
3042 static const struct v4l2_subdev_pad_ops ccs_pad_ops = {
3043 .enum_mbus_code = ccs_enum_mbus_code,
3044 .get_fmt = ccs_get_format,
3045 .set_fmt = ccs_set_format,
3046 .get_selection = ccs_get_selection,
3047 .set_selection = ccs_set_selection,
3048 };
3049
3050 static const struct v4l2_subdev_sensor_ops ccs_sensor_ops = {
3051 .g_skip_frames = ccs_get_skip_frames,
3052 .g_skip_top_lines = ccs_get_skip_top_lines,
3053 };
3054
3055 static const struct v4l2_subdev_ops ccs_ops = {
3056 .video = &ccs_video_ops,
3057 .pad = &ccs_pad_ops,
3058 .sensor = &ccs_sensor_ops,
3059 };
3060
3061 static const struct media_entity_operations ccs_entity_ops = {
3062 .link_validate = v4l2_subdev_link_validate,
3063 };
3064
3065 static const struct v4l2_subdev_internal_ops ccs_internal_src_ops = {
3066 .init_state = ccs_init_state,
3067 .registered = ccs_registered,
3068 .unregistered = ccs_unregistered,
3069 };
3070
3071 /* -----------------------------------------------------------------------------
3072 * I2C Driver
3073 */
3074
ccs_get_hwconfig(struct ccs_sensor * sensor,struct device * dev)3075 static int ccs_get_hwconfig(struct ccs_sensor *sensor, struct device *dev)
3076 {
3077 struct ccs_hwconfig *hwcfg = &sensor->hwcfg;
3078 struct v4l2_fwnode_endpoint bus_cfg = { .bus_type = V4L2_MBUS_UNKNOWN };
3079 struct fwnode_handle *ep;
3080 struct fwnode_handle *fwnode = dev_fwnode(dev);
3081 unsigned int i;
3082 int rval;
3083
3084 ep = fwnode_graph_get_endpoint_by_id(fwnode, 0, 0,
3085 FWNODE_GRAPH_ENDPOINT_NEXT);
3086 if (!ep)
3087 return -ENODEV;
3088
3089 /*
3090 * Note that we do need to rely on detecting the bus type between CSI-2
3091 * D-PHY and CCP2 as the old bindings did not require it.
3092 */
3093 rval = v4l2_fwnode_endpoint_alloc_parse(ep, &bus_cfg);
3094 if (rval)
3095 goto out_err;
3096
3097 switch (bus_cfg.bus_type) {
3098 case V4L2_MBUS_CSI2_DPHY:
3099 hwcfg->csi_signalling_mode = CCS_CSI_SIGNALING_MODE_CSI_2_DPHY;
3100 hwcfg->lanes = bus_cfg.bus.mipi_csi2.num_data_lanes;
3101 break;
3102 case V4L2_MBUS_CSI2_CPHY:
3103 hwcfg->csi_signalling_mode = CCS_CSI_SIGNALING_MODE_CSI_2_CPHY;
3104 hwcfg->lanes = bus_cfg.bus.mipi_csi2.num_data_lanes;
3105 break;
3106 case V4L2_MBUS_CSI1:
3107 case V4L2_MBUS_CCP2:
3108 hwcfg->csi_signalling_mode = (bus_cfg.bus.mipi_csi1.strobe) ?
3109 SMIAPP_CSI_SIGNALLING_MODE_CCP2_DATA_STROBE :
3110 SMIAPP_CSI_SIGNALLING_MODE_CCP2_DATA_CLOCK;
3111 hwcfg->lanes = 1;
3112 break;
3113 default:
3114 dev_err(dev, "unsupported bus %u\n", bus_cfg.bus_type);
3115 rval = -EINVAL;
3116 goto out_err;
3117 }
3118
3119 rval = fwnode_property_read_u32(dev_fwnode(dev), "clock-frequency",
3120 &hwcfg->ext_clk);
3121
3122 dev_dbg(dev, "clk %u, mode %u\n", hwcfg->ext_clk,
3123 hwcfg->csi_signalling_mode);
3124
3125 if (!bus_cfg.nr_of_link_frequencies) {
3126 dev_warn(dev, "no link frequencies defined\n");
3127 rval = -EINVAL;
3128 goto out_err;
3129 }
3130
3131 hwcfg->op_sys_clock = devm_kcalloc(
3132 dev, bus_cfg.nr_of_link_frequencies + 1 /* guardian */,
3133 sizeof(*hwcfg->op_sys_clock), GFP_KERNEL);
3134 if (!hwcfg->op_sys_clock) {
3135 rval = -ENOMEM;
3136 goto out_err;
3137 }
3138
3139 for (i = 0; i < bus_cfg.nr_of_link_frequencies; i++) {
3140 hwcfg->op_sys_clock[i] = bus_cfg.link_frequencies[i];
3141 dev_dbg(dev, "freq %u: %lld\n", i, hwcfg->op_sys_clock[i]);
3142 }
3143
3144 v4l2_fwnode_endpoint_free(&bus_cfg);
3145 fwnode_handle_put(ep);
3146
3147 return 0;
3148
3149 out_err:
3150 v4l2_fwnode_endpoint_free(&bus_cfg);
3151 fwnode_handle_put(ep);
3152
3153 return rval;
3154 }
3155
ccs_firmware_name(struct i2c_client * client,struct ccs_sensor * sensor,char * filename,size_t filename_size,bool is_module)3156 static int ccs_firmware_name(struct i2c_client *client,
3157 struct ccs_sensor *sensor, char *filename,
3158 size_t filename_size, bool is_module)
3159 {
3160 const struct ccs_device *ccsdev = device_get_match_data(&client->dev);
3161 bool is_ccs = !(ccsdev->flags & CCS_DEVICE_FLAG_IS_SMIA);
3162 bool is_smiapp = sensor->minfo.smiapp_version;
3163 u16 manufacturer_id;
3164 u16 model_id;
3165 u16 revision_number;
3166
3167 /*
3168 * Old SMIA is module-agnostic. Its sensor identification is based on
3169 * what now are those of the module.
3170 */
3171 if (is_module || (!is_ccs && !is_smiapp)) {
3172 manufacturer_id = is_ccs ?
3173 sensor->minfo.mipi_manufacturer_id :
3174 sensor->minfo.smia_manufacturer_id;
3175 model_id = sensor->minfo.model_id;
3176 revision_number = sensor->minfo.revision_number;
3177 } else {
3178 manufacturer_id = is_ccs ?
3179 sensor->minfo.sensor_mipi_manufacturer_id :
3180 sensor->minfo.sensor_smia_manufacturer_id;
3181 model_id = sensor->minfo.sensor_model_id;
3182 revision_number = sensor->minfo.sensor_revision_number;
3183 }
3184
3185 return snprintf(filename, filename_size,
3186 "ccs/%s-%s-%0*x-%4.4x-%0*x.fw",
3187 is_ccs ? "ccs" : is_smiapp ? "smiapp" : "smia",
3188 is_module || (!is_ccs && !is_smiapp) ?
3189 "module" : "sensor",
3190 is_ccs ? 4 : 2, manufacturer_id, model_id,
3191 !is_ccs && !is_module ? 2 : 4, revision_number);
3192 }
3193
ccs_probe(struct i2c_client * client)3194 static int ccs_probe(struct i2c_client *client)
3195 {
3196 static struct lock_class_key pixel_array_lock_key, binner_lock_key,
3197 scaler_lock_key;
3198 const struct ccs_device *ccsdev = device_get_match_data(&client->dev);
3199 struct ccs_sensor *sensor;
3200 const struct firmware *fw;
3201 char filename[40];
3202 unsigned int i;
3203 int rval;
3204
3205 sensor = devm_kzalloc(&client->dev, sizeof(*sensor), GFP_KERNEL);
3206 if (sensor == NULL)
3207 return -ENOMEM;
3208
3209 rval = ccs_get_hwconfig(sensor, &client->dev);
3210 if (rval)
3211 return rval;
3212
3213 sensor->src = &sensor->ssds[sensor->ssds_used];
3214
3215 v4l2_i2c_subdev_init(&sensor->src->sd, client, &ccs_ops);
3216 sensor->src->sd.internal_ops = &ccs_internal_src_ops;
3217
3218 sensor->regulators = devm_kcalloc(&client->dev,
3219 ARRAY_SIZE(ccs_regulators),
3220 sizeof(*sensor->regulators),
3221 GFP_KERNEL);
3222 if (!sensor->regulators)
3223 return -ENOMEM;
3224
3225 for (i = 0; i < ARRAY_SIZE(ccs_regulators); i++)
3226 sensor->regulators[i].supply = ccs_regulators[i];
3227
3228 rval = devm_regulator_bulk_get(&client->dev, ARRAY_SIZE(ccs_regulators),
3229 sensor->regulators);
3230 if (rval) {
3231 dev_err(&client->dev, "could not get regulators\n");
3232 return rval;
3233 }
3234
3235 sensor->ext_clk = devm_clk_get(&client->dev, NULL);
3236 if (PTR_ERR(sensor->ext_clk) == -ENOENT) {
3237 dev_info(&client->dev, "no clock defined, continuing...\n");
3238 sensor->ext_clk = NULL;
3239 } else if (IS_ERR(sensor->ext_clk)) {
3240 dev_err(&client->dev, "could not get clock (%ld)\n",
3241 PTR_ERR(sensor->ext_clk));
3242 return -EPROBE_DEFER;
3243 }
3244
3245 if (sensor->ext_clk) {
3246 if (sensor->hwcfg.ext_clk) {
3247 unsigned long rate;
3248
3249 rval = clk_set_rate(sensor->ext_clk,
3250 sensor->hwcfg.ext_clk);
3251 if (rval < 0) {
3252 dev_err(&client->dev,
3253 "unable to set clock freq to %u\n",
3254 sensor->hwcfg.ext_clk);
3255 return rval;
3256 }
3257
3258 rate = clk_get_rate(sensor->ext_clk);
3259 if (rate != sensor->hwcfg.ext_clk) {
3260 dev_err(&client->dev,
3261 "can't set clock freq, asked for %u but got %lu\n",
3262 sensor->hwcfg.ext_clk, rate);
3263 return -EINVAL;
3264 }
3265 } else {
3266 sensor->hwcfg.ext_clk = clk_get_rate(sensor->ext_clk);
3267 dev_dbg(&client->dev, "obtained clock freq %u\n",
3268 sensor->hwcfg.ext_clk);
3269 }
3270 } else if (sensor->hwcfg.ext_clk) {
3271 dev_dbg(&client->dev, "assuming clock freq %u\n",
3272 sensor->hwcfg.ext_clk);
3273 } else {
3274 dev_err(&client->dev, "unable to obtain clock freq\n");
3275 return -EINVAL;
3276 }
3277
3278 if (!sensor->hwcfg.ext_clk) {
3279 dev_err(&client->dev, "cannot work with xclk frequency 0\n");
3280 return -EINVAL;
3281 }
3282
3283 sensor->reset = devm_gpiod_get_optional(&client->dev, "reset",
3284 GPIOD_OUT_HIGH);
3285 if (IS_ERR(sensor->reset))
3286 return PTR_ERR(sensor->reset);
3287 /* Support old users that may have used "xshutdown" property. */
3288 if (!sensor->reset)
3289 sensor->xshutdown = devm_gpiod_get_optional(&client->dev,
3290 "xshutdown",
3291 GPIOD_OUT_LOW);
3292 if (IS_ERR(sensor->xshutdown))
3293 return PTR_ERR(sensor->xshutdown);
3294
3295 sensor->regmap = devm_cci_regmap_init_i2c(client, 16);
3296 if (IS_ERR(sensor->regmap)) {
3297 dev_err(&client->dev, "can't initialise CCI (%ld)\n",
3298 PTR_ERR(sensor->regmap));
3299 return PTR_ERR(sensor->regmap);
3300 }
3301
3302 rval = ccs_power_on(&client->dev);
3303 if (rval < 0)
3304 return rval;
3305
3306 mutex_init(&sensor->mutex);
3307
3308 rval = ccs_identify_module(sensor);
3309 if (rval) {
3310 rval = -ENODEV;
3311 goto out_power_off;
3312 }
3313
3314 rval = ccs_firmware_name(client, sensor, filename, sizeof(filename),
3315 false);
3316 if (rval >= sizeof(filename)) {
3317 rval = -ENOMEM;
3318 goto out_power_off;
3319 }
3320
3321 rval = request_firmware(&fw, filename, &client->dev);
3322 if (!rval) {
3323 rval = ccs_data_parse(&sensor->sdata, fw->data, fw->size,
3324 &client->dev, true);
3325 release_firmware(fw);
3326 if (rval)
3327 goto out_power_off;
3328 }
3329
3330 if (!(ccsdev->flags & CCS_DEVICE_FLAG_IS_SMIA) ||
3331 sensor->minfo.smiapp_version) {
3332 rval = ccs_firmware_name(client, sensor, filename,
3333 sizeof(filename), true);
3334 if (rval >= sizeof(filename)) {
3335 rval = -ENOMEM;
3336 goto out_release_sdata;
3337 }
3338
3339 rval = request_firmware(&fw, filename, &client->dev);
3340 if (!rval) {
3341 rval = ccs_data_parse(&sensor->mdata, fw->data,
3342 fw->size, &client->dev, true);
3343 release_firmware(fw);
3344 if (rval)
3345 goto out_release_sdata;
3346 }
3347 }
3348
3349 rval = ccs_read_all_limits(sensor);
3350 if (rval)
3351 goto out_release_mdata;
3352
3353 rval = ccs_read_frame_fmt(sensor);
3354 if (rval) {
3355 rval = -ENODEV;
3356 goto out_free_ccs_limits;
3357 }
3358
3359 rval = ccs_update_phy_ctrl(sensor);
3360 if (rval < 0)
3361 goto out_free_ccs_limits;
3362
3363 rval = ccs_call_quirk(sensor, limits);
3364 if (rval) {
3365 dev_err(&client->dev, "limits quirks failed\n");
3366 goto out_free_ccs_limits;
3367 }
3368
3369 if (CCS_LIM(sensor, BINNING_CAPABILITY)) {
3370 sensor->nbinning_subtypes =
3371 min_t(u8, CCS_LIM(sensor, BINNING_SUB_TYPES),
3372 CCS_LIM_BINNING_SUB_TYPE_MAX_N);
3373
3374 for (i = 0; i < sensor->nbinning_subtypes; i++) {
3375 sensor->binning_subtypes[i].horizontal =
3376 CCS_LIM_AT(sensor, BINNING_SUB_TYPE, i) >>
3377 CCS_BINNING_SUB_TYPE_COLUMN_SHIFT;
3378 sensor->binning_subtypes[i].vertical =
3379 CCS_LIM_AT(sensor, BINNING_SUB_TYPE, i) &
3380 CCS_BINNING_SUB_TYPE_ROW_MASK;
3381
3382 dev_dbg(&client->dev, "binning %xx%x\n",
3383 sensor->binning_subtypes[i].horizontal,
3384 sensor->binning_subtypes[i].vertical);
3385 }
3386 }
3387 sensor->binning_horizontal = 1;
3388 sensor->binning_vertical = 1;
3389
3390 if (device_create_file(&client->dev, &dev_attr_ident) != 0) {
3391 dev_err(&client->dev, "sysfs ident entry creation failed\n");
3392 rval = -ENOENT;
3393 goto out_free_ccs_limits;
3394 }
3395
3396 if (sensor->minfo.smiapp_version &&
3397 CCS_LIM(sensor, DATA_TRANSFER_IF_CAPABILITY) &
3398 CCS_DATA_TRANSFER_IF_CAPABILITY_SUPPORTED) {
3399 if (device_create_file(&client->dev, &dev_attr_nvm) != 0) {
3400 dev_err(&client->dev, "sysfs nvm entry failed\n");
3401 rval = -EBUSY;
3402 goto out_cleanup;
3403 }
3404 }
3405
3406 if (!CCS_LIM(sensor, MIN_OP_SYS_CLK_DIV) ||
3407 !CCS_LIM(sensor, MAX_OP_SYS_CLK_DIV) ||
3408 !CCS_LIM(sensor, MIN_OP_PIX_CLK_DIV) ||
3409 !CCS_LIM(sensor, MAX_OP_PIX_CLK_DIV)) {
3410 /* No OP clock branch */
3411 sensor->pll.flags |= CCS_PLL_FLAG_NO_OP_CLOCKS;
3412 } else if (CCS_LIM(sensor, SCALING_CAPABILITY)
3413 != CCS_SCALING_CAPABILITY_NONE ||
3414 CCS_LIM(sensor, DIGITAL_CROP_CAPABILITY)
3415 == CCS_DIGITAL_CROP_CAPABILITY_INPUT_CROP) {
3416 /* We have a scaler or digital crop. */
3417 sensor->scaler = &sensor->ssds[sensor->ssds_used];
3418 sensor->ssds_used++;
3419 }
3420 sensor->binner = &sensor->ssds[sensor->ssds_used];
3421 sensor->ssds_used++;
3422 sensor->pixel_array = &sensor->ssds[sensor->ssds_used];
3423 sensor->ssds_used++;
3424
3425 sensor->scale_m = CCS_LIM(sensor, SCALER_N_MIN);
3426
3427 /* prepare PLL configuration input values */
3428 sensor->pll.bus_type = CCS_PLL_BUS_TYPE_CSI2_DPHY;
3429 sensor->pll.csi2.lanes = sensor->hwcfg.lanes;
3430 if (CCS_LIM(sensor, CLOCK_CALCULATION) &
3431 CCS_CLOCK_CALCULATION_LANE_SPEED) {
3432 sensor->pll.flags |= CCS_PLL_FLAG_LANE_SPEED_MODEL;
3433 if (CCS_LIM(sensor, CLOCK_CALCULATION) &
3434 CCS_CLOCK_CALCULATION_LINK_DECOUPLED) {
3435 sensor->pll.vt_lanes =
3436 CCS_LIM(sensor, NUM_OF_VT_LANES) + 1;
3437 sensor->pll.op_lanes =
3438 CCS_LIM(sensor, NUM_OF_OP_LANES) + 1;
3439 } else {
3440 sensor->pll.vt_lanes = sensor->pll.csi2.lanes;
3441 sensor->pll.op_lanes = sensor->pll.csi2.lanes;
3442 }
3443 }
3444 if (CCS_LIM(sensor, CLOCK_TREE_PLL_CAPABILITY) &
3445 CCS_CLOCK_TREE_PLL_CAPABILITY_EXT_DIVIDER)
3446 sensor->pll.flags |= CCS_PLL_FLAG_EXT_IP_PLL_DIVIDER;
3447 if (CCS_LIM(sensor, CLOCK_TREE_PLL_CAPABILITY) &
3448 CCS_CLOCK_TREE_PLL_CAPABILITY_FLEXIBLE_OP_PIX_CLK_DIV)
3449 sensor->pll.flags |= CCS_PLL_FLAG_FLEXIBLE_OP_PIX_CLK_DIV;
3450 if (CCS_LIM(sensor, FIFO_SUPPORT_CAPABILITY) &
3451 CCS_FIFO_SUPPORT_CAPABILITY_DERATING)
3452 sensor->pll.flags |= CCS_PLL_FLAG_FIFO_DERATING;
3453 if (CCS_LIM(sensor, FIFO_SUPPORT_CAPABILITY) &
3454 CCS_FIFO_SUPPORT_CAPABILITY_DERATING_OVERRATING)
3455 sensor->pll.flags |= CCS_PLL_FLAG_FIFO_DERATING |
3456 CCS_PLL_FLAG_FIFO_OVERRATING;
3457 if (CCS_LIM(sensor, CLOCK_TREE_PLL_CAPABILITY) &
3458 CCS_CLOCK_TREE_PLL_CAPABILITY_DUAL_PLL) {
3459 if (CCS_LIM(sensor, CLOCK_TREE_PLL_CAPABILITY) &
3460 CCS_CLOCK_TREE_PLL_CAPABILITY_SINGLE_PLL) {
3461 u32 v;
3462
3463 /* Use sensor default in PLL mode selection */
3464 rval = ccs_read(sensor, PLL_MODE, &v);
3465 if (rval)
3466 goto out_cleanup;
3467
3468 if (v == CCS_PLL_MODE_DUAL)
3469 sensor->pll.flags |= CCS_PLL_FLAG_DUAL_PLL;
3470 } else {
3471 sensor->pll.flags |= CCS_PLL_FLAG_DUAL_PLL;
3472 }
3473 if (CCS_LIM(sensor, CLOCK_CALCULATION) &
3474 CCS_CLOCK_CALCULATION_DUAL_PLL_OP_SYS_DDR)
3475 sensor->pll.flags |= CCS_PLL_FLAG_OP_SYS_DDR;
3476 if (CCS_LIM(sensor, CLOCK_CALCULATION) &
3477 CCS_CLOCK_CALCULATION_DUAL_PLL_OP_PIX_DDR)
3478 sensor->pll.flags |= CCS_PLL_FLAG_OP_PIX_DDR;
3479 }
3480 sensor->pll.op_bits_per_lane = CCS_LIM(sensor, OP_BITS_PER_LANE);
3481 sensor->pll.ext_clk_freq_hz = sensor->hwcfg.ext_clk;
3482 sensor->pll.scale_n = CCS_LIM(sensor, SCALER_N_MIN);
3483
3484 rval = ccs_get_mbus_formats(sensor);
3485 if (rval) {
3486 rval = -ENODEV;
3487 goto out_cleanup;
3488 }
3489
3490 rval = ccs_init_subdev(sensor, sensor->scaler, " scaler", 2,
3491 MEDIA_ENT_F_PROC_VIDEO_SCALER,
3492 "ccs scaler mutex", &scaler_lock_key);
3493 if (rval)
3494 goto out_cleanup;
3495 rval = ccs_init_subdev(sensor, sensor->binner, " binner", 2,
3496 MEDIA_ENT_F_PROC_VIDEO_SCALER,
3497 "ccs binner mutex", &binner_lock_key);
3498 if (rval)
3499 goto out_cleanup;
3500 rval = ccs_init_subdev(sensor, sensor->pixel_array, " pixel_array", 1,
3501 MEDIA_ENT_F_CAM_SENSOR, "ccs pixel array mutex",
3502 &pixel_array_lock_key);
3503 if (rval)
3504 goto out_cleanup;
3505
3506 rval = ccs_init_controls(sensor);
3507 if (rval < 0)
3508 goto out_cleanup;
3509
3510 rval = ccs_call_quirk(sensor, init);
3511 if (rval)
3512 goto out_cleanup;
3513
3514 rval = ccs_init_late_controls(sensor);
3515 if (rval) {
3516 rval = -ENODEV;
3517 goto out_cleanup;
3518 }
3519
3520 mutex_lock(&sensor->mutex);
3521 rval = ccs_pll_blanking_update(sensor);
3522 mutex_unlock(&sensor->mutex);
3523 if (rval) {
3524 dev_err(&client->dev, "update mode failed\n");
3525 goto out_cleanup;
3526 }
3527
3528 sensor->streaming = false;
3529 sensor->dev_init_done = true;
3530 sensor->handler_setup_needed = true;
3531
3532 rval = ccs_write_msr_regs(sensor);
3533 if (rval)
3534 goto out_cleanup;
3535
3536 pm_runtime_set_active(&client->dev);
3537 pm_runtime_get_noresume(&client->dev);
3538 pm_runtime_enable(&client->dev);
3539
3540 rval = v4l2_async_register_subdev_sensor(&sensor->src->sd);
3541 if (rval < 0)
3542 goto out_disable_runtime_pm;
3543
3544 pm_runtime_set_autosuspend_delay(&client->dev, 1000);
3545 pm_runtime_use_autosuspend(&client->dev);
3546 pm_runtime_put_autosuspend(&client->dev);
3547
3548 return 0;
3549
3550 out_disable_runtime_pm:
3551 pm_runtime_put_noidle(&client->dev);
3552 pm_runtime_disable(&client->dev);
3553 pm_runtime_set_suspended(&client->dev);
3554
3555 out_cleanup:
3556 ccs_cleanup(sensor);
3557
3558 out_free_ccs_limits:
3559 kfree(sensor->ccs_limits);
3560
3561 out_release_mdata:
3562 kvfree(sensor->mdata.backing);
3563
3564 out_release_sdata:
3565 kvfree(sensor->sdata.backing);
3566
3567 out_power_off:
3568 ccs_power_off(&client->dev);
3569 mutex_destroy(&sensor->mutex);
3570
3571 return rval;
3572 }
3573
ccs_remove(struct i2c_client * client)3574 static void ccs_remove(struct i2c_client *client)
3575 {
3576 struct v4l2_subdev *subdev = i2c_get_clientdata(client);
3577 struct ccs_sensor *sensor = to_ccs_sensor(subdev);
3578 unsigned int i;
3579
3580 v4l2_async_unregister_subdev(subdev);
3581
3582 pm_runtime_disable(&client->dev);
3583 if (!pm_runtime_status_suspended(&client->dev)) {
3584 ccs_power_off(&client->dev);
3585 pm_runtime_set_suspended(&client->dev);
3586 }
3587
3588 for (i = 0; i < sensor->ssds_used; i++)
3589 v4l2_device_unregister_subdev(&sensor->ssds[i].sd);
3590 ccs_cleanup(sensor);
3591 mutex_destroy(&sensor->mutex);
3592 kfree(sensor->ccs_limits);
3593 kvfree(sensor->sdata.backing);
3594 kvfree(sensor->mdata.backing);
3595 }
3596
3597 static const struct ccs_device smia_device = {
3598 .flags = CCS_DEVICE_FLAG_IS_SMIA,
3599 };
3600
3601 static const struct ccs_device ccs_device = {};
3602
3603 static const struct acpi_device_id ccs_acpi_table[] = {
3604 { .id = "MIPI0200", .driver_data = (unsigned long)&ccs_device },
3605 { },
3606 };
3607 MODULE_DEVICE_TABLE(acpi, ccs_acpi_table);
3608
3609 static const struct of_device_id ccs_of_table[] = {
3610 { .compatible = "mipi-ccs-1.1", .data = &ccs_device },
3611 { .compatible = "mipi-ccs-1.0", .data = &ccs_device },
3612 { .compatible = "mipi-ccs", .data = &ccs_device },
3613 { .compatible = "nokia,smia", .data = &smia_device },
3614 { },
3615 };
3616 MODULE_DEVICE_TABLE(of, ccs_of_table);
3617
3618 static const struct dev_pm_ops ccs_pm_ops = {
3619 SET_RUNTIME_PM_OPS(ccs_power_off, ccs_power_on, NULL)
3620 };
3621
3622 static struct i2c_driver ccs_i2c_driver = {
3623 .driver = {
3624 .acpi_match_table = ccs_acpi_table,
3625 .of_match_table = ccs_of_table,
3626 .name = CCS_NAME,
3627 .pm = &ccs_pm_ops,
3628 },
3629 .probe = ccs_probe,
3630 .remove = ccs_remove,
3631 };
3632
ccs_module_init(void)3633 static int ccs_module_init(void)
3634 {
3635 unsigned int i, l;
3636
3637 CCS_BUILD_BUG;
3638
3639 for (i = 0, l = 0; ccs_limits[i].size && l < CCS_L_LAST; i++) {
3640 if (!(ccs_limits[i].flags & CCS_L_FL_SAME_REG)) {
3641 ccs_limit_offsets[l + 1].lim =
3642 ALIGN(ccs_limit_offsets[l].lim +
3643 ccs_limits[i].size,
3644 ccs_limits[i + 1].reg ?
3645 CCI_REG_WIDTH_BYTES(ccs_limits[i + 1].reg) :
3646 1U);
3647 ccs_limit_offsets[l].info = i;
3648 l++;
3649 } else {
3650 ccs_limit_offsets[l].lim += ccs_limits[i].size;
3651 }
3652 }
3653
3654 if (WARN_ON(ccs_limits[i].size))
3655 return -EINVAL;
3656
3657 if (WARN_ON(l != CCS_L_LAST))
3658 return -EINVAL;
3659
3660 return i2c_register_driver(THIS_MODULE, &ccs_i2c_driver);
3661 }
3662
ccs_module_cleanup(void)3663 static void ccs_module_cleanup(void)
3664 {
3665 i2c_del_driver(&ccs_i2c_driver);
3666 }
3667
3668 module_init(ccs_module_init);
3669 module_exit(ccs_module_cleanup);
3670
3671 MODULE_AUTHOR("Sakari Ailus <sakari.ailus@linux.intel.com>");
3672 MODULE_DESCRIPTION("Generic MIPI CCS/SMIA/SMIA++ camera sensor driver");
3673 MODULE_LICENSE("GPL v2");
3674 MODULE_ALIAS("smiapp");
3675