xref: /freebsd/sys/cam/cam_xpt.c (revision b4b166b8c46b86df855f1621d2aa4b6ab26b3a5e)
1 /*-
2  * Implementation of the Common Access Method Transport (XPT) layer.
3  *
4  * SPDX-License-Identifier: BSD-2-Clause
5  *
6  * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs.
7  * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry.
8  * All rights reserved.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions, and the following disclaimer,
15  *    without modification, immediately at the beginning of the file.
16  * 2. The name of the author may not be used to endorse or promote products
17  *    derived from this software without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
23  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 #include "opt_printf.h"
33 
34 #include <sys/param.h>
35 #include <sys/bio.h>
36 #include <sys/bus.h>
37 #include <sys/systm.h>
38 #include <sys/types.h>
39 #include <sys/malloc.h>
40 #include <sys/kernel.h>
41 #include <sys/time.h>
42 #include <sys/conf.h>
43 #include <sys/fcntl.h>
44 #include <sys/proc.h>
45 #include <sys/sbuf.h>
46 #include <sys/smp.h>
47 #include <sys/stdarg.h>
48 #include <sys/taskqueue.h>
49 
50 #include <sys/lock.h>
51 #include <sys/mutex.h>
52 #include <sys/sysctl.h>
53 #include <sys/kthread.h>
54 
55 #include <cam/cam.h>
56 #include <cam/cam_ccb.h>
57 #include <cam/cam_iosched.h>
58 #include <cam/cam_periph.h>
59 #include <cam/cam_queue.h>
60 #include <cam/cam_sim.h>
61 #include <cam/cam_xpt.h>
62 #include <cam/cam_xpt_sim.h>
63 #include <cam/cam_xpt_periph.h>
64 #include <cam/cam_xpt_internal.h>
65 #include <cam/cam_debug.h>
66 #include <cam/cam_compat.h>
67 
68 #include <cam/scsi/scsi_all.h>
69 #include <cam/scsi/scsi_message.h>
70 #include <cam/scsi/scsi_pass.h>
71 
72 
73 /* Wild guess based on not wanting to grow the stack too much */
74 #define XPT_PRINT_MAXLEN	512
75 #ifdef PRINTF_BUFR_SIZE
76 #define XPT_PRINT_LEN	PRINTF_BUFR_SIZE
77 #else
78 #define XPT_PRINT_LEN	128
79 #endif
80 _Static_assert(XPT_PRINT_LEN <= XPT_PRINT_MAXLEN, "XPT_PRINT_LEN is too large");
81 
82 /*
83  * This is the maximum number of high powered commands (e.g. start unit)
84  * that can be outstanding at a particular time.
85  */
86 #ifndef CAM_MAX_HIGHPOWER
87 #define CAM_MAX_HIGHPOWER  4
88 #endif
89 
90 /* Datastructures internal to the xpt layer */
91 MALLOC_DEFINE(M_CAMXPT, "CAM XPT", "CAM XPT buffers");
92 MALLOC_DEFINE(M_CAMDEV, "CAM DEV", "CAM devices");
93 MALLOC_DEFINE(M_CAMCCB, "CAM CCB", "CAM CCBs");
94 MALLOC_DEFINE(M_CAMPATH, "CAM path", "CAM paths");
95 
96 struct xpt_softc {
97 	uint32_t		xpt_generation;
98 
99 	/* number of high powered commands that can go through right now */
100 	struct mtx		xpt_highpower_lock;
101 	STAILQ_HEAD(highpowerlist, cam_ed)	highpowerq;
102 	int			num_highpower;
103 
104 	/* queue for handling async rescan requests. */
105 	TAILQ_HEAD(, ccb_hdr) ccb_scanq;
106 	int buses_to_config;
107 	int buses_config_done;
108 
109 	/*
110 	 * Registered buses
111 	 *
112 	 * N.B., "busses" is an archaic spelling of "buses".  In new code
113 	 * "buses" is preferred.
114 	 */
115 	TAILQ_HEAD(,cam_eb)	xpt_busses;
116 	u_int			bus_generation;
117 
118 	int			boot_delay;
119 	struct callout 		boot_callout;
120 	struct task		boot_task;
121 	struct root_hold_token	xpt_rootmount;
122 
123 	struct mtx		xpt_topo_lock;
124 	struct taskqueue	*xpt_taskq;
125 };
126 
127 typedef enum {
128 	DM_RET_COPY		= 0x01,
129 	DM_RET_FLAG_MASK	= 0x0f,
130 	DM_RET_NONE		= 0x00,
131 	DM_RET_STOP		= 0x10,
132 	DM_RET_DESCEND		= 0x20,
133 	DM_RET_ERROR		= 0x30,
134 	DM_RET_ACTION_MASK	= 0xf0
135 } dev_match_ret;
136 
137 typedef enum {
138 	XPT_DEPTH_BUS,
139 	XPT_DEPTH_TARGET,
140 	XPT_DEPTH_DEVICE,
141 	XPT_DEPTH_PERIPH
142 } xpt_traverse_depth;
143 
144 struct xpt_traverse_config {
145 	xpt_traverse_depth	depth;
146 	void			*tr_func;
147 	void			*tr_arg;
148 };
149 
150 typedef	int	xpt_busfunc_t (struct cam_eb *bus, void *arg);
151 typedef	int	xpt_targetfunc_t (struct cam_et *target, void *arg);
152 typedef	int	xpt_devicefunc_t (struct cam_ed *device, void *arg);
153 typedef	int	xpt_periphfunc_t (struct cam_periph *periph, void *arg);
154 typedef int	xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg);
155 
156 /* Transport layer configuration information */
157 static struct xpt_softc xsoftc;
158 
159 MTX_SYSINIT(xpt_topo_init, &xsoftc.xpt_topo_lock, "XPT topology lock", MTX_DEF);
160 
161 SYSCTL_INT(_kern_cam, OID_AUTO, boot_delay, CTLFLAG_RDTUN,
162            &xsoftc.boot_delay, 0, "Bus registration wait time");
163 SYSCTL_UINT(_kern_cam, OID_AUTO, xpt_generation, CTLFLAG_RD,
164 	    &xsoftc.xpt_generation, 0, "CAM peripheral generation count");
165 
166 struct cam_doneq {
167 	struct mtx_padalign	cam_doneq_mtx;
168 	STAILQ_HEAD(, ccb_hdr)	cam_doneq;
169 	int			cam_doneq_sleep;
170 };
171 
172 static struct cam_doneq cam_doneqs[MAXCPU];
173 static u_int __read_mostly cam_num_doneqs;
174 static struct proc *cam_proc;
175 static struct cam_doneq cam_async;
176 
177 SYSCTL_INT(_kern_cam, OID_AUTO, num_doneqs, CTLFLAG_RDTUN,
178            &cam_num_doneqs, 0, "Number of completion queues/threads");
179 
180 struct cam_periph *xpt_periph;
181 
182 static periph_init_t xpt_periph_init;
183 
184 static struct periph_driver xpt_driver =
185 {
186 	xpt_periph_init, "xpt",
187 	TAILQ_HEAD_INITIALIZER(xpt_driver.units), /* generation */ 0,
188 	CAM_PERIPH_DRV_EARLY
189 };
190 
191 PERIPHDRIVER_DECLARE(xpt, xpt_driver);
192 
193 static d_open_t xptopen;
194 static d_close_t xptclose;
195 static d_ioctl_t xptioctl;
196 static d_ioctl_t xptdoioctl;
197 
198 static struct cdevsw xpt_cdevsw = {
199 	.d_version =	D_VERSION,
200 	.d_flags =	0,
201 	.d_open =	xptopen,
202 	.d_close =	xptclose,
203 	.d_ioctl =	xptioctl,
204 	.d_name =	"xpt",
205 };
206 
207 /* Storage for debugging datastructures */
208 struct cam_path *cam_dpath;
209 uint32_t __read_mostly cam_dflags = CAM_DEBUG_FLAGS;
210 SYSCTL_UINT(_kern_cam, OID_AUTO, dflags, CTLFLAG_RWTUN,
211 	&cam_dflags, 0, "Enabled debug flags");
212 uint32_t cam_debug_delay = CAM_DEBUG_DELAY;
213 SYSCTL_UINT(_kern_cam, OID_AUTO, debug_delay, CTLFLAG_RWTUN,
214 	&cam_debug_delay, 0, "Delay in us after each debug message");
215 
216 /* Our boot-time initialization hook */
217 static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *);
218 
219 static moduledata_t cam_moduledata = {
220 	"cam",
221 	cam_module_event_handler,
222 	NULL
223 };
224 
225 static int	xpt_init(void *);
226 
227 DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND);
228 MODULE_VERSION(cam, 1);
229 
230 static void		xpt_async_bcast(struct async_list *async_head,
231 					uint32_t async_code,
232 					struct cam_path *path,
233 					void *async_arg);
234 static path_id_t xptnextfreepathid(void);
235 static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus);
236 static union ccb *xpt_get_ccb(struct cam_periph *periph);
237 static union ccb *xpt_get_ccb_nowait(struct cam_periph *periph);
238 static void	 xpt_run_allocq(struct cam_periph *periph, int sleep);
239 static void	 xpt_run_allocq_task(void *context, int pending);
240 static void	 xpt_run_devq(struct cam_devq *devq);
241 static callout_func_t xpt_release_devq_timeout;
242 static void	 xpt_acquire_bus(struct cam_eb *bus);
243 static void	 xpt_release_bus(struct cam_eb *bus);
244 static uint32_t	 xpt_freeze_devq_device(struct cam_ed *dev, u_int count);
245 static int	 xpt_release_devq_device(struct cam_ed *dev, u_int count,
246 		    int run_queue);
247 static struct cam_et*
248 		 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id);
249 static void	 xpt_acquire_target(struct cam_et *target);
250 static void	 xpt_release_target(struct cam_et *target);
251 static struct cam_eb*
252 		 xpt_find_bus(path_id_t path_id);
253 static struct cam_et*
254 		 xpt_find_target(struct cam_eb *bus, target_id_t target_id);
255 static struct cam_ed*
256 		 xpt_find_device(struct cam_et *target, lun_id_t lun_id);
257 static void	 xpt_config(void *arg);
258 static void	 xpt_hold_boot_locked(void);
259 static int	 xpt_schedule_dev(struct camq *queue, cam_pinfo *dev_pinfo,
260 				 uint32_t new_priority);
261 static xpt_devicefunc_t xptpassannouncefunc;
262 static void	 xptaction(struct cam_sim *sim, union ccb *work_ccb);
263 static void	 xptpoll(struct cam_sim *sim);
264 static void	 camisr_runqueue(void);
265 static void	 xpt_done_process(struct ccb_hdr *ccb_h);
266 static void	 xpt_done_td(void *);
267 static void	 xpt_async_td(void *);
268 static dev_match_ret	xptbusmatch(struct dev_match_pattern *patterns,
269 				    u_int num_patterns, struct cam_eb *bus);
270 static dev_match_ret	xptdevicematch(struct dev_match_pattern *patterns,
271 				       u_int num_patterns,
272 				       struct cam_ed *device);
273 static dev_match_ret	xptperiphmatch(struct dev_match_pattern *patterns,
274 				       u_int num_patterns,
275 				       struct cam_periph *periph);
276 static xpt_busfunc_t	xptedtbusfunc;
277 static xpt_targetfunc_t	xptedttargetfunc;
278 static xpt_devicefunc_t	xptedtdevicefunc;
279 static xpt_periphfunc_t	xptedtperiphfunc;
280 static xpt_pdrvfunc_t	xptplistpdrvfunc;
281 static xpt_periphfunc_t	xptplistperiphfunc;
282 static int		xptedtmatch(struct ccb_dev_match *cdm);
283 static int		xptperiphlistmatch(struct ccb_dev_match *cdm);
284 static int		xptbustraverse(struct cam_eb *start_bus,
285 				       xpt_busfunc_t *tr_func, void *arg);
286 static int		xpttargettraverse(struct cam_eb *bus,
287 					  struct cam_et *start_target,
288 					  xpt_targetfunc_t *tr_func, void *arg);
289 static int		xptdevicetraverse(struct cam_et *target,
290 					  struct cam_ed *start_device,
291 					  xpt_devicefunc_t *tr_func, void *arg);
292 static int		xptperiphtraverse(struct cam_ed *device,
293 					  struct cam_periph *start_periph,
294 					  xpt_periphfunc_t *tr_func, void *arg);
295 static int		xptpdrvtraverse(struct periph_driver **start_pdrv,
296 					xpt_pdrvfunc_t *tr_func, void *arg);
297 static int		xptpdperiphtraverse(struct periph_driver **pdrv,
298 					    struct cam_periph *start_periph,
299 					    xpt_periphfunc_t *tr_func,
300 					    void *arg);
301 static xpt_busfunc_t	xptdefbusfunc;
302 static xpt_targetfunc_t	xptdeftargetfunc;
303 static xpt_devicefunc_t	xptdefdevicefunc;
304 static xpt_periphfunc_t	xptdefperiphfunc;
305 static void		xpt_finishconfig_task(void *context, int pending);
306 static void		xpt_dev_async_default(uint32_t async_code,
307 					      struct cam_eb *bus,
308 					      struct cam_et *target,
309 					      struct cam_ed *device,
310 					      void *async_arg);
311 static struct cam_ed *	xpt_alloc_device_default(struct cam_eb *bus,
312 						 struct cam_et *target,
313 						 lun_id_t lun_id);
314 static xpt_devicefunc_t	xptsetasyncfunc;
315 static xpt_busfunc_t	xptsetasyncbusfunc;
316 static cam_status	xptregister(struct cam_periph *periph,
317 				    void *arg);
318 
319 static __inline int
xpt_schedule_devq(struct cam_devq * devq,struct cam_ed * dev)320 xpt_schedule_devq(struct cam_devq *devq, struct cam_ed *dev)
321 {
322 	int	retval;
323 
324 	mtx_assert(&devq->send_mtx, MA_OWNED);
325 	if ((dev->ccbq.queue.entries > 0) &&
326 	    (dev->ccbq.dev_openings > 0) &&
327 	    (dev->ccbq.queue.qfrozen_cnt == 0)) {
328 		/*
329 		 * The priority of a device waiting for controller
330 		 * resources is that of the highest priority CCB
331 		 * enqueued.
332 		 */
333 		retval =
334 		    xpt_schedule_dev(&devq->send_queue,
335 				     &dev->devq_entry,
336 				     CAMQ_GET_PRIO(&dev->ccbq.queue));
337 	} else {
338 		retval = 0;
339 	}
340 	return (retval);
341 }
342 
343 static __inline int
device_is_queued(struct cam_ed * device)344 device_is_queued(struct cam_ed *device)
345 {
346 	return (device->devq_entry.index != CAM_UNQUEUED_INDEX);
347 }
348 
349 static void
xpt_periph_init(void)350 xpt_periph_init(void)
351 {
352 	make_dev(&xpt_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0");
353 }
354 
355 static int
xptopen(struct cdev * dev,int flags,int fmt,struct thread * td)356 xptopen(struct cdev *dev, int flags, int fmt, struct thread *td)
357 {
358 
359 	/*
360 	 * Only allow read-write access.
361 	 */
362 	if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0))
363 		return(EPERM);
364 
365 	/*
366 	 * We don't allow nonblocking access.
367 	 */
368 	if ((flags & O_NONBLOCK) != 0) {
369 		printf("%s: can't do nonblocking access\n", devtoname(dev));
370 		return(ENODEV);
371 	}
372 
373 	return(0);
374 }
375 
376 static int
xptclose(struct cdev * dev,int flag,int fmt,struct thread * td)377 xptclose(struct cdev *dev, int flag, int fmt, struct thread *td)
378 {
379 
380 	return(0);
381 }
382 
383 /*
384  * Don't automatically grab the xpt softc lock here even though this is going
385  * through the xpt device.  The xpt device is really just a back door for
386  * accessing other devices and SIMs, so the right thing to do is to grab
387  * the appropriate SIM lock once the bus/SIM is located.
388  */
389 static int
xptioctl(struct cdev * dev,u_long cmd,caddr_t addr,int flag,struct thread * td)390 xptioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
391 {
392 	int error;
393 
394 	if ((error = xptdoioctl(dev, cmd, addr, flag, td)) == ENOTTY) {
395 		error = cam_compat_ioctl(dev, cmd, addr, flag, td, xptdoioctl);
396 	}
397 	return (error);
398 }
399 
400 static int
xptdoioctl(struct cdev * dev,u_long cmd,caddr_t addr,int flag,struct thread * td)401 xptdoioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
402 {
403 	int error;
404 
405 	error = 0;
406 
407 	switch(cmd) {
408 	/*
409 	 * For the transport layer CAMIOCOMMAND ioctl, we really only want
410 	 * to accept CCB types that don't quite make sense to send through a
411 	 * passthrough driver. XPT_PATH_INQ is an exception to this, as stated
412 	 * in the CAM spec.
413 	 */
414 	case CAMIOCOMMAND: {
415 		union ccb *ccb;
416 		union ccb *inccb;
417 		struct cam_eb *bus;
418 
419 		inccb = (union ccb *)addr;
420 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
421 		if (inccb->ccb_h.func_code == XPT_SCSI_IO)
422 			inccb->csio.bio = NULL;
423 #endif
424 
425 		if (inccb->ccb_h.flags & CAM_UNLOCKED)
426 			return (EINVAL);
427 
428 		bus = xpt_find_bus(inccb->ccb_h.path_id);
429 		if (bus == NULL)
430 			return (EINVAL);
431 
432 		switch (inccb->ccb_h.func_code) {
433 		case XPT_SCAN_BUS:
434 		case XPT_RESET_BUS:
435 			if (inccb->ccb_h.target_id != CAM_TARGET_WILDCARD ||
436 			    inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) {
437 				xpt_release_bus(bus);
438 				return (EINVAL);
439 			}
440 			break;
441 		case XPT_SCAN_TGT:
442 			if (inccb->ccb_h.target_id == CAM_TARGET_WILDCARD ||
443 			    inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) {
444 				xpt_release_bus(bus);
445 				return (EINVAL);
446 			}
447 			break;
448 		default:
449 			break;
450 		}
451 
452 		switch(inccb->ccb_h.func_code) {
453 		case XPT_SCAN_BUS:
454 		case XPT_RESET_BUS:
455 		case XPT_PATH_INQ:
456 		case XPT_ENG_INQ:
457 		case XPT_SCAN_LUN:
458 		case XPT_SCAN_TGT:
459 
460 			ccb = xpt_alloc_ccb();
461 
462 			/*
463 			 * Create a path using the bus, target, and lun the
464 			 * user passed in.
465 			 */
466 			if (xpt_create_path(&ccb->ccb_h.path, NULL,
467 					    inccb->ccb_h.path_id,
468 					    inccb->ccb_h.target_id,
469 					    inccb->ccb_h.target_lun) !=
470 					    CAM_REQ_CMP){
471 				error = EINVAL;
472 				xpt_free_ccb(ccb);
473 				break;
474 			}
475 			/* Ensure all of our fields are correct */
476 			xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path,
477 				      inccb->ccb_h.pinfo.priority);
478 			xpt_merge_ccb(ccb, inccb);
479 			xpt_path_lock(ccb->ccb_h.path);
480 			cam_periph_runccb(ccb, NULL, 0, 0, NULL);
481 			xpt_path_unlock(ccb->ccb_h.path);
482 			bcopy(ccb, inccb, sizeof(union ccb));
483 			xpt_free_path(ccb->ccb_h.path);
484 			xpt_free_ccb(ccb);
485 			break;
486 
487 		case XPT_DEBUG: {
488 			union ccb ccb;
489 
490 			/*
491 			 * This is an immediate CCB, so it's okay to
492 			 * allocate it on the stack.
493 			 */
494 			memset(&ccb, 0, sizeof(ccb));
495 
496 			/*
497 			 * Create a path using the bus, target, and lun the
498 			 * user passed in.
499 			 */
500 			if (xpt_create_path(&ccb.ccb_h.path, NULL,
501 					    inccb->ccb_h.path_id,
502 					    inccb->ccb_h.target_id,
503 					    inccb->ccb_h.target_lun) !=
504 					    CAM_REQ_CMP){
505 				error = EINVAL;
506 				break;
507 			}
508 			/* Ensure all of our fields are correct */
509 			xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path,
510 				      inccb->ccb_h.pinfo.priority);
511 			xpt_merge_ccb(&ccb, inccb);
512 			xpt_action(&ccb);
513 			bcopy(&ccb, inccb, sizeof(union ccb));
514 			xpt_free_path(ccb.ccb_h.path);
515 			break;
516 		}
517 		case XPT_DEV_MATCH: {
518 			struct cam_periph_map_info mapinfo;
519 			struct cam_path *old_path;
520 
521 			/*
522 			 * We can't deal with physical addresses for this
523 			 * type of transaction.
524 			 */
525 			if ((inccb->ccb_h.flags & CAM_DATA_MASK) !=
526 			    CAM_DATA_VADDR) {
527 				error = EINVAL;
528 				break;
529 			}
530 
531 			/*
532 			 * Save this in case the caller had it set to
533 			 * something in particular.
534 			 */
535 			old_path = inccb->ccb_h.path;
536 
537 			/*
538 			 * We really don't need a path for the matching
539 			 * code.  The path is needed because of the
540 			 * debugging statements in xpt_action().  They
541 			 * assume that the CCB has a valid path.
542 			 */
543 			inccb->ccb_h.path = xpt_periph->path;
544 
545 			bzero(&mapinfo, sizeof(mapinfo));
546 
547 			/*
548 			 * Map the pattern and match buffers into kernel
549 			 * virtual address space.
550 			 */
551 			error = cam_periph_mapmem(inccb, &mapinfo, maxphys);
552 
553 			if (error) {
554 				inccb->ccb_h.path = old_path;
555 				break;
556 			}
557 
558 			/*
559 			 * This is an immediate CCB, we can send it on directly.
560 			 */
561 			xpt_action(inccb);
562 
563 			/*
564 			 * Map the buffers back into user space.
565 			 */
566 			error = cam_periph_unmapmem(inccb, &mapinfo);
567 
568 			inccb->ccb_h.path = old_path;
569 			break;
570 		}
571 		default:
572 			error = ENOTSUP;
573 			break;
574 		}
575 		xpt_release_bus(bus);
576 		break;
577 	}
578 	/*
579 	 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input,
580 	 * with the periphal driver name and unit name filled in.  The other
581 	 * fields don't really matter as input.  The passthrough driver name
582 	 * ("pass"), and unit number are passed back in the ccb.  The current
583 	 * device generation number, and the index into the device peripheral
584 	 * driver list, and the status are also passed back.  Note that
585 	 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb,
586 	 * we never return a status of CAM_GDEVLIST_LIST_CHANGED.  It is
587 	 * (or rather should be) impossible for the device peripheral driver
588 	 * list to change since we look at the whole thing in one pass, and
589 	 * we do it with lock protection.
590 	 *
591 	 */
592 	case CAMGETPASSTHRU: {
593 		union ccb *ccb;
594 		struct cam_periph *periph;
595 		struct periph_driver **p_drv;
596 		char   *name;
597 		u_int unit;
598 		bool base_periph_found;
599 
600 		ccb = (union ccb *)addr;
601 		unit = ccb->cgdl.unit_number;
602 		name = ccb->cgdl.periph_name;
603 		base_periph_found = false;
604 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
605 		if (ccb->ccb_h.func_code == XPT_SCSI_IO)
606 			ccb->csio.bio = NULL;
607 #endif
608 
609 		/*
610 		 * Sanity check -- make sure we don't get a null peripheral
611 		 * driver name.
612 		 */
613 		if (*ccb->cgdl.periph_name == '\0') {
614 			error = EINVAL;
615 			break;
616 		}
617 
618 		/* Keep the list from changing while we traverse it */
619 		xpt_lock_buses();
620 
621 		/* first find our driver in the list of drivers */
622 		for (p_drv = periph_drivers; *p_drv != NULL; p_drv++)
623 			if (strcmp((*p_drv)->driver_name, name) == 0)
624 				break;
625 
626 		if (*p_drv == NULL) {
627 			xpt_unlock_buses();
628 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
629 			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
630 			*ccb->cgdl.periph_name = '\0';
631 			ccb->cgdl.unit_number = 0;
632 			error = ENOENT;
633 			break;
634 		}
635 
636 		/*
637 		 * Run through every peripheral instance of this driver
638 		 * and check to see whether it matches the unit passed
639 		 * in by the user.  If it does, get out of the loops and
640 		 * find the passthrough driver associated with that
641 		 * peripheral driver.
642 		 */
643 		for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL;
644 		     periph = TAILQ_NEXT(periph, unit_links)) {
645 			if (periph->unit_number == unit)
646 				break;
647 		}
648 		/*
649 		 * If we found the peripheral driver that the user passed
650 		 * in, go through all of the peripheral drivers for that
651 		 * particular device and look for a passthrough driver.
652 		 */
653 		if (periph != NULL) {
654 			struct cam_ed *device;
655 			int i;
656 
657 			base_periph_found = true;
658 			device = periph->path->device;
659 			for (i = 0, periph = SLIST_FIRST(&device->periphs);
660 			     periph != NULL;
661 			     periph = SLIST_NEXT(periph, periph_links), i++) {
662 				/*
663 				 * Check to see whether we have a
664 				 * passthrough device or not.
665 				 */
666 				if (strcmp(periph->periph_name, "pass") == 0) {
667 					/*
668 					 * Fill in the getdevlist fields.
669 					 */
670 					strlcpy(ccb->cgdl.periph_name,
671 					       periph->periph_name,
672 					       sizeof(ccb->cgdl.periph_name));
673 					ccb->cgdl.unit_number =
674 						periph->unit_number;
675 					if (SLIST_NEXT(periph, periph_links))
676 						ccb->cgdl.status =
677 							CAM_GDEVLIST_MORE_DEVS;
678 					else
679 						ccb->cgdl.status =
680 						       CAM_GDEVLIST_LAST_DEVICE;
681 					ccb->cgdl.generation =
682 						device->generation;
683 					ccb->cgdl.index = i;
684 					/*
685 					 * Fill in some CCB header fields
686 					 * that the user may want.
687 					 */
688 					ccb->ccb_h.path_id =
689 						periph->path->bus->path_id;
690 					ccb->ccb_h.target_id =
691 						periph->path->target->target_id;
692 					ccb->ccb_h.target_lun =
693 						periph->path->device->lun_id;
694 					ccb->ccb_h.status = CAM_REQ_CMP;
695 					break;
696 				}
697 			}
698 		}
699 
700 		/*
701 		 * If the periph is null here, one of two things has
702 		 * happened.  The first possibility is that we couldn't
703 		 * find the unit number of the particular peripheral driver
704 		 * that the user is asking about.  e.g. the user asks for
705 		 * the passthrough driver for "da11".  We find the list of
706 		 * "da" peripherals all right, but there is no unit 11.
707 		 * The other possibility is that we went through the list
708 		 * of peripheral drivers attached to the device structure,
709 		 * but didn't find one with the name "pass".  Either way,
710 		 * we return ENOENT, since we couldn't find something.
711 		 */
712 		if (periph == NULL) {
713 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
714 			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
715 			*ccb->cgdl.periph_name = '\0';
716 			ccb->cgdl.unit_number = 0;
717 			error = ENOENT;
718 			/*
719 			 * It is unfortunate that this is even necessary,
720 			 * but there are many, many clueless users out there.
721 			 * If this is true, the user is looking for the
722 			 * passthrough driver, but doesn't have one in his
723 			 * kernel.
724 			 */
725 			if (base_periph_found) {
726 				printf(
727 		"xptioctl: pass driver is not in the kernel\n"
728 		"xptioctl: put \"device pass\" in your kernel config file\n");
729 			}
730 		}
731 		xpt_unlock_buses();
732 		break;
733 		}
734 	default:
735 		error = ENOTTY;
736 		break;
737 	}
738 
739 	return(error);
740 }
741 
742 static int
cam_module_event_handler(module_t mod,int what,void * arg)743 cam_module_event_handler(module_t mod, int what, void *arg)
744 {
745 	int error;
746 
747 	switch (what) {
748 	case MOD_LOAD:
749 		if ((error = xpt_init(NULL)) != 0)
750 			return (error);
751 		break;
752 	case MOD_UNLOAD:
753 		return EBUSY;
754 	default:
755 		return EOPNOTSUPP;
756 	}
757 
758 	return 0;
759 }
760 
761 static struct xpt_proto *
xpt_proto_find(cam_proto proto)762 xpt_proto_find(cam_proto proto)
763 {
764 	struct xpt_proto **pp;
765 
766 	SET_FOREACH(pp, cam_xpt_proto_set) {
767 		if ((*pp)->proto == proto)
768 			return *pp;
769 	}
770 
771 	return NULL;
772 }
773 
774 static void
xpt_rescan_done(struct cam_periph * periph,union ccb * done_ccb)775 xpt_rescan_done(struct cam_periph *periph, union ccb *done_ccb)
776 {
777 
778 	if (done_ccb->ccb_h.ppriv_ptr1 == NULL) {
779 		xpt_free_path(done_ccb->ccb_h.path);
780 		xpt_free_ccb(done_ccb);
781 	} else {
782 		done_ccb->ccb_h.cbfcnp = done_ccb->ccb_h.ppriv_ptr1;
783 		(*done_ccb->ccb_h.cbfcnp)(periph, done_ccb);
784 	}
785 	xpt_release_boot();
786 }
787 
788 /* thread to handle bus rescans */
789 static void
xpt_scanner_thread(void * dummy)790 xpt_scanner_thread(void *dummy)
791 {
792 	union ccb	*ccb;
793 	struct mtx	*mtx;
794 	struct cam_ed	*device;
795 
796 	xpt_lock_buses();
797 	for (;;) {
798 		if (TAILQ_EMPTY(&xsoftc.ccb_scanq))
799 			msleep(&xsoftc.ccb_scanq, &xsoftc.xpt_topo_lock, PRIBIO,
800 			       "-", 0);
801 		if ((ccb = (union ccb *)TAILQ_FIRST(&xsoftc.ccb_scanq)) != NULL) {
802 			TAILQ_REMOVE(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
803 			xpt_unlock_buses();
804 
805 			/*
806 			 * We need to lock the device's mutex which we use as
807 			 * the path mutex. We can't do it directly because the
808 			 * cam_path in the ccb may wind up going away because
809 			 * the path lock may be dropped and the path retired in
810 			 * the completion callback. We do this directly to keep
811 			 * the reference counts in cam_path sane. We also have
812 			 * to copy the device pointer because ccb_h.path may
813 			 * be freed in the callback.
814 			 */
815 			mtx = xpt_path_mtx(ccb->ccb_h.path);
816 			device = ccb->ccb_h.path->device;
817 			xpt_acquire_device(device);
818 			mtx_lock(mtx);
819 			xpt_action(ccb);
820 			mtx_unlock(mtx);
821 			xpt_release_device(device);
822 
823 			xpt_lock_buses();
824 		}
825 	}
826 }
827 
828 void
xpt_rescan(union ccb * ccb)829 xpt_rescan(union ccb *ccb)
830 {
831 	struct ccb_hdr *hdr;
832 
833 	/* Prepare request */
834 	if (ccb->ccb_h.path->target->target_id == CAM_TARGET_WILDCARD &&
835 	    ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD)
836 		ccb->ccb_h.func_code = XPT_SCAN_BUS;
837 	else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD &&
838 	    ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD)
839 		ccb->ccb_h.func_code = XPT_SCAN_TGT;
840 	else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD &&
841 	    ccb->ccb_h.path->device->lun_id != CAM_LUN_WILDCARD)
842 		ccb->ccb_h.func_code = XPT_SCAN_LUN;
843 	else {
844 		xpt_print(ccb->ccb_h.path, "illegal scan path\n");
845 		xpt_free_path(ccb->ccb_h.path);
846 		xpt_free_ccb(ccb);
847 		return;
848 	}
849 	CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE,
850 	    ("xpt_rescan: func %#x %s\n", ccb->ccb_h.func_code,
851  		xpt_action_name(ccb->ccb_h.func_code)));
852 
853 	ccb->ccb_h.ppriv_ptr1 = ccb->ccb_h.cbfcnp;
854 	ccb->ccb_h.cbfcnp = xpt_rescan_done;
855 	xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, CAM_PRIORITY_XPT);
856 	/* Don't make duplicate entries for the same paths. */
857 	xpt_lock_buses();
858 	if (ccb->ccb_h.ppriv_ptr1 == NULL) {
859 		TAILQ_FOREACH(hdr, &xsoftc.ccb_scanq, sim_links.tqe) {
860 			if (xpt_path_comp(hdr->path, ccb->ccb_h.path) == 0) {
861 				wakeup(&xsoftc.ccb_scanq);
862 				xpt_unlock_buses();
863 				xpt_print(ccb->ccb_h.path, "rescan already queued\n");
864 				xpt_free_path(ccb->ccb_h.path);
865 				xpt_free_ccb(ccb);
866 				return;
867 			}
868 		}
869 	}
870 	TAILQ_INSERT_TAIL(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
871 	xpt_hold_boot_locked();
872 	wakeup(&xsoftc.ccb_scanq);
873 	xpt_unlock_buses();
874 }
875 
876 /* Functions accessed by the peripheral drivers */
877 static int
xpt_init(void * dummy)878 xpt_init(void *dummy)
879 {
880 	struct cam_sim *xpt_sim;
881 	struct cam_path *path;
882 	struct cam_devq *devq;
883 	cam_status status;
884 	int error, i;
885 
886 	TAILQ_INIT(&xsoftc.xpt_busses);
887 	TAILQ_INIT(&xsoftc.ccb_scanq);
888 	STAILQ_INIT(&xsoftc.highpowerq);
889 	xsoftc.num_highpower = CAM_MAX_HIGHPOWER;
890 
891 	mtx_init(&xsoftc.xpt_highpower_lock, "XPT highpower lock", NULL, MTX_DEF);
892 	xsoftc.xpt_taskq = taskqueue_create("CAM XPT task", M_WAITOK,
893 	    taskqueue_thread_enqueue, /*context*/&xsoftc.xpt_taskq);
894 
895 #ifdef CAM_BOOT_DELAY
896 	/*
897 	 * Override this value at compile time to assist our users
898 	 * who don't use loader to boot a kernel.
899 	 */
900 	xsoftc.boot_delay = CAM_BOOT_DELAY;
901 #endif
902 
903 	/*
904 	 * The xpt layer is, itself, the equivalent of a SIM.
905 	 * Allow 16 ccbs in the ccb pool for it.  This should
906 	 * give decent parallelism when we probe buses and
907 	 * perform other XPT functions.
908 	 */
909 	devq = cam_simq_alloc(16);
910 	if (devq == NULL)
911 		return (ENOMEM);
912 	xpt_sim = cam_sim_alloc(xptaction,
913 				xptpoll,
914 				"xpt",
915 				/*softc*/NULL,
916 				/*unit*/0,
917 				/*mtx*/NULL,
918 				/*max_dev_transactions*/0,
919 				/*max_tagged_dev_transactions*/0,
920 				devq);
921 	if (xpt_sim == NULL)
922 		return (ENOMEM);
923 
924 	if ((error = xpt_bus_register(xpt_sim, NULL, 0)) != CAM_SUCCESS) {
925 		printf(
926 		    "xpt_init: xpt_bus_register failed with errno %d, failing attach\n",
927 		    error);
928 		return (EINVAL);
929 	}
930 
931 	/*
932 	 * Looking at the XPT from the SIM layer, the XPT is
933 	 * the equivalent of a peripheral driver.  Allocate
934 	 * a peripheral driver entry for us.
935 	 */
936 	if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID,
937 				      CAM_TARGET_WILDCARD,
938 				      CAM_LUN_WILDCARD)) != CAM_REQ_CMP) {
939 		printf(
940 	"xpt_init: xpt_create_path failed with status %#x, failing attach\n",
941 		    status);
942 		return (EINVAL);
943 	}
944 	xpt_path_lock(path);
945 	cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO,
946 			 path, NULL, 0, xpt_sim);
947 	xpt_path_unlock(path);
948 	xpt_free_path(path);
949 
950 	if (cam_num_doneqs < 1)
951 		cam_num_doneqs = 1 + mp_ncpus / 6;
952 	else if (cam_num_doneqs > MAXCPU)
953 		cam_num_doneqs = MAXCPU;
954 	for (i = 0; i < cam_num_doneqs; i++) {
955 		mtx_init(&cam_doneqs[i].cam_doneq_mtx, "CAM doneq", NULL,
956 		    MTX_DEF);
957 		STAILQ_INIT(&cam_doneqs[i].cam_doneq);
958 		error = kproc_kthread_add(xpt_done_td, &cam_doneqs[i],
959 		    &cam_proc, NULL, 0, 0, "cam", "doneq%d", i);
960 		if (error != 0) {
961 			cam_num_doneqs = i;
962 			break;
963 		}
964 	}
965 	if (cam_num_doneqs < 1) {
966 		printf("xpt_init: Cannot init completion queues - failing attach\n");
967 		return (ENOMEM);
968 	}
969 
970 	mtx_init(&cam_async.cam_doneq_mtx, "CAM async", NULL, MTX_DEF);
971 	STAILQ_INIT(&cam_async.cam_doneq);
972 	if (kproc_kthread_add(xpt_async_td, &cam_async,
973 		&cam_proc, NULL, 0, 0, "cam", "async") != 0) {
974 		printf("xpt_init: Cannot init async thread - failing attach\n");
975 		return (ENOMEM);
976 	}
977 
978 	/*
979 	 * Register a callback for when interrupts are enabled.
980 	 */
981 	config_intrhook_oneshot(xpt_config, NULL);
982 
983 	return (0);
984 }
985 
986 static cam_status
xptregister(struct cam_periph * periph,void * arg)987 xptregister(struct cam_periph *periph, void *arg)
988 {
989 	struct cam_sim *xpt_sim;
990 
991 	if (periph == NULL) {
992 		printf("xptregister: periph was NULL!!\n");
993 		return(CAM_REQ_CMP_ERR);
994 	}
995 
996 	xpt_sim = (struct cam_sim *)arg;
997 	xpt_sim->softc = periph;
998 	xpt_periph = periph;
999 	periph->softc = NULL;
1000 
1001 	return(CAM_REQ_CMP);
1002 }
1003 
1004 int32_t
xpt_add_periph(struct cam_periph * periph)1005 xpt_add_periph(struct cam_periph *periph)
1006 {
1007 	struct cam_ed *device;
1008 	int32_t	 status;
1009 
1010 	TASK_INIT(&periph->periph_run_task, 0, xpt_run_allocq_task, periph);
1011 	device = periph->path->device;
1012 	status = CAM_REQ_CMP;
1013 	if (device != NULL) {
1014 		mtx_lock(&device->target->bus->eb_mtx);
1015 		device->generation++;
1016 		SLIST_INSERT_HEAD(&device->periphs, periph, periph_links);
1017 		mtx_unlock(&device->target->bus->eb_mtx);
1018 		atomic_add_32(&xsoftc.xpt_generation, 1);
1019 	}
1020 
1021 	return (status);
1022 }
1023 
1024 void
xpt_remove_periph(struct cam_periph * periph)1025 xpt_remove_periph(struct cam_periph *periph)
1026 {
1027 	struct cam_ed *device;
1028 
1029 	device = periph->path->device;
1030 	if (device != NULL) {
1031 		mtx_lock(&device->target->bus->eb_mtx);
1032 		device->generation++;
1033 		SLIST_REMOVE(&device->periphs, periph, cam_periph, periph_links);
1034 		mtx_unlock(&device->target->bus->eb_mtx);
1035 		atomic_add_32(&xsoftc.xpt_generation, 1);
1036 	}
1037 }
1038 
1039 void
xpt_announce_periph(struct cam_periph * periph,char * announce_string)1040 xpt_announce_periph(struct cam_periph *periph, char *announce_string)
1041 {
1042 	char buf[128];
1043 	struct sbuf sb;
1044 
1045 	(void)sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN | SBUF_INCLUDENUL);
1046 	sbuf_set_drain(&sb, sbuf_printf_drain, NULL);
1047 	xpt_announce_periph_sbuf(periph, &sb, announce_string);
1048 	(void)sbuf_finish(&sb);
1049 }
1050 
1051 void
xpt_announce_periph_sbuf(struct cam_periph * periph,struct sbuf * sb,char * announce_string)1052 xpt_announce_periph_sbuf(struct cam_periph *periph, struct sbuf *sb,
1053     char *announce_string)
1054 {
1055 	struct	cam_path *path = periph->path;
1056 	struct  xpt_proto *proto;
1057 
1058 	cam_periph_assert(periph, MA_OWNED);
1059 	periph->flags |= CAM_PERIPH_ANNOUNCED;
1060 
1061 	sbuf_printf(sb, "%s%d at %s%d bus %d scbus%d target %d lun %jx\n",
1062 	    periph->periph_name, periph->unit_number,
1063 	    path->bus->sim->sim_name,
1064 	    path->bus->sim->unit_number,
1065 	    path->bus->sim->bus_id,
1066 	    path->bus->path_id,
1067 	    path->target->target_id,
1068 	    (uintmax_t)path->device->lun_id);
1069 	sbuf_printf(sb, "%s%d: ", periph->periph_name, periph->unit_number);
1070 	proto = xpt_proto_find(path->device->protocol);
1071 	if (proto)
1072 		proto->ops->announce_sbuf(path->device, sb);
1073 	else
1074 		sbuf_printf(sb, "Unknown protocol device %d\n",
1075 		    path->device->protocol);
1076 	if (path->device->serial_num_len > 0) {
1077 		/* Don't wrap the screen  - print only the first 60 chars */
1078 		sbuf_printf(sb, "%s%d: Serial Number %.60s\n",
1079 		    periph->periph_name, periph->unit_number,
1080 		    path->device->serial_num);
1081 	}
1082 	/* Announce transport details. */
1083 	path->bus->xport->ops->announce_sbuf(periph, sb);
1084 	/* Announce command queueing. */
1085 	if (path->device->inq_flags & SID_CmdQue
1086 	 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) {
1087 		sbuf_printf(sb, "%s%d: Command Queueing enabled\n",
1088 		    periph->periph_name, periph->unit_number);
1089 	}
1090 	/* Announce caller's details if they've passed in. */
1091 	if (announce_string != NULL)
1092 		sbuf_printf(sb, "%s%d: %s\n", periph->periph_name,
1093 		    periph->unit_number, announce_string);
1094 }
1095 
1096 void
xpt_announce_quirks(struct cam_periph * periph,int quirks,char * bit_string)1097 xpt_announce_quirks(struct cam_periph *periph, int quirks, char *bit_string)
1098 {
1099 	if (quirks != 0) {
1100 		printf("%s%d: quirks=0x%b\n", periph->periph_name,
1101 		    periph->unit_number, quirks, bit_string);
1102 	}
1103 }
1104 
1105 void
xpt_announce_quirks_sbuf(struct cam_periph * periph,struct sbuf * sb,int quirks,char * bit_string)1106 xpt_announce_quirks_sbuf(struct cam_periph *periph, struct sbuf *sb,
1107 			 int quirks, char *bit_string)
1108 {
1109 	if (quirks != 0) {
1110 		sbuf_printf(sb, "%s%d: quirks=0x%b\n", periph->periph_name,
1111 		    periph->unit_number, quirks, bit_string);
1112 	}
1113 }
1114 
1115 void
xpt_denounce_periph(struct cam_periph * periph)1116 xpt_denounce_periph(struct cam_periph *periph)
1117 {
1118 	char buf[128];
1119 	struct sbuf sb;
1120 
1121 	(void)sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN | SBUF_INCLUDENUL);
1122 	sbuf_set_drain(&sb, sbuf_printf_drain, NULL);
1123 	xpt_denounce_periph_sbuf(periph, &sb);
1124 	(void)sbuf_finish(&sb);
1125 }
1126 
1127 void
xpt_denounce_periph_sbuf(struct cam_periph * periph,struct sbuf * sb)1128 xpt_denounce_periph_sbuf(struct cam_periph *periph, struct sbuf *sb)
1129 {
1130 	struct cam_path *path = periph->path;
1131 	struct xpt_proto *proto;
1132 
1133 	cam_periph_assert(periph, MA_OWNED);
1134 
1135 	sbuf_printf(sb, "%s%d at %s%d bus %d scbus%d target %d lun %jx\n",
1136 	    periph->periph_name, periph->unit_number,
1137 	    path->bus->sim->sim_name,
1138 	    path->bus->sim->unit_number,
1139 	    path->bus->sim->bus_id,
1140 	    path->bus->path_id,
1141 	    path->target->target_id,
1142 	    (uintmax_t)path->device->lun_id);
1143 	sbuf_printf(sb, "%s%d: ", periph->periph_name, periph->unit_number);
1144 	proto = xpt_proto_find(path->device->protocol);
1145 	if (proto)
1146 		proto->ops->denounce_sbuf(path->device, sb);
1147 	else
1148 		sbuf_printf(sb, "Unknown protocol device %d",
1149 		    path->device->protocol);
1150 	if (path->device->serial_num_len > 0)
1151 		sbuf_printf(sb, " s/n %.60s", path->device->serial_num);
1152 	sbuf_cat(sb, " detached\n");
1153 }
1154 
1155 int
xpt_getattr(char * buf,size_t len,const char * attr,struct cam_path * path)1156 xpt_getattr(char *buf, size_t len, const char *attr, struct cam_path *path)
1157 {
1158 	int ret = -1, l, o;
1159 	struct ccb_dev_advinfo cdai;
1160 	struct scsi_vpd_device_id *did;
1161 	struct scsi_vpd_id_descriptor *idd;
1162 
1163 	xpt_path_assert(path, MA_OWNED);
1164 
1165 	memset(&cdai, 0, sizeof(cdai));
1166 	xpt_setup_ccb(&cdai.ccb_h, path, CAM_PRIORITY_NORMAL);
1167 	cdai.ccb_h.func_code = XPT_DEV_ADVINFO;
1168 	cdai.flags = CDAI_FLAG_NONE;
1169 	cdai.bufsiz = len;
1170 	cdai.buf = buf;
1171 
1172 	if (!strcmp(attr, "GEOM::ident"))
1173 		cdai.buftype = CDAI_TYPE_SERIAL_NUM;
1174 	else if (!strcmp(attr, "GEOM::physpath"))
1175 		cdai.buftype = CDAI_TYPE_PHYS_PATH;
1176 	else if (strcmp(attr, "GEOM::lunid") == 0 ||
1177 		 strcmp(attr, "GEOM::lunname") == 0) {
1178 		cdai.buftype = CDAI_TYPE_SCSI_DEVID;
1179 		cdai.bufsiz = CAM_SCSI_DEVID_MAXLEN;
1180 		cdai.buf = malloc(cdai.bufsiz, M_CAMXPT, M_NOWAIT);
1181 		if (cdai.buf == NULL) {
1182 			ret = ENOMEM;
1183 			goto out;
1184 		}
1185 	} else
1186 		goto out;
1187 
1188 	xpt_action((union ccb *)&cdai); /* can only be synchronous */
1189 	if ((cdai.ccb_h.status & CAM_DEV_QFRZN) != 0)
1190 		cam_release_devq(cdai.ccb_h.path, 0, 0, 0, FALSE);
1191 	if (cdai.provsiz == 0)
1192 		goto out;
1193 	switch(cdai.buftype) {
1194 	case CDAI_TYPE_SCSI_DEVID:
1195 		did = (struct scsi_vpd_device_id *)cdai.buf;
1196 		if (strcmp(attr, "GEOM::lunid") == 0) {
1197 			idd = scsi_get_devid(did, cdai.provsiz,
1198 			    scsi_devid_is_lun_naa);
1199 			if (idd == NULL)
1200 				idd = scsi_get_devid(did, cdai.provsiz,
1201 				    scsi_devid_is_lun_eui64);
1202 			if (idd == NULL)
1203 				idd = scsi_get_devid(did, cdai.provsiz,
1204 				    scsi_devid_is_lun_uuid);
1205 			if (idd == NULL)
1206 				idd = scsi_get_devid(did, cdai.provsiz,
1207 				    scsi_devid_is_lun_md5);
1208 		} else
1209 			idd = NULL;
1210 
1211 		if (idd == NULL)
1212 			idd = scsi_get_devid(did, cdai.provsiz,
1213 			    scsi_devid_is_lun_t10);
1214 		if (idd == NULL)
1215 			idd = scsi_get_devid(did, cdai.provsiz,
1216 			    scsi_devid_is_lun_name);
1217 		if (idd == NULL)
1218 			break;
1219 
1220 		ret = 0;
1221 		if ((idd->proto_codeset & SVPD_ID_CODESET_MASK) ==
1222 		    SVPD_ID_CODESET_ASCII) {
1223 			if (idd->length < len) {
1224 				for (l = 0; l < idd->length; l++)
1225 					buf[l] = idd->identifier[l] ?
1226 					    idd->identifier[l] : ' ';
1227 				buf[l] = 0;
1228 			} else
1229 				ret = EFAULT;
1230 			break;
1231 		}
1232 		if ((idd->proto_codeset & SVPD_ID_CODESET_MASK) ==
1233 		    SVPD_ID_CODESET_UTF8) {
1234 			l = strnlen(idd->identifier, idd->length);
1235 			if (l < len) {
1236 				bcopy(idd->identifier, buf, l);
1237 				buf[l] = 0;
1238 			} else
1239 				ret = EFAULT;
1240 			break;
1241 		}
1242 		if ((idd->id_type & SVPD_ID_TYPE_MASK) ==
1243 		    SVPD_ID_TYPE_UUID && idd->identifier[0] == 0x10) {
1244 			if ((idd->length - 2) * 2 + 4 >= len) {
1245 				ret = EFAULT;
1246 				break;
1247 			}
1248 			for (l = 2, o = 0; l < idd->length; l++) {
1249 				if (l == 6 || l == 8 || l == 10 || l == 12)
1250 				    o += sprintf(buf + o, "-");
1251 				o += sprintf(buf + o, "%02x",
1252 				    idd->identifier[l]);
1253 			}
1254 			break;
1255 		}
1256 		if (idd->length * 2 < len) {
1257 			for (l = 0; l < idd->length; l++)
1258 				sprintf(buf + l * 2, "%02x",
1259 				    idd->identifier[l]);
1260 		} else
1261 				ret = EFAULT;
1262 		break;
1263 	default:
1264 		if (cdai.provsiz < len) {
1265 			cdai.buf[cdai.provsiz] = 0;
1266 			ret = 0;
1267 		} else
1268 			ret = EFAULT;
1269 		break;
1270 	}
1271 
1272 out:
1273 	if ((char *)cdai.buf != buf)
1274 		free(cdai.buf, M_CAMXPT);
1275 	return ret;
1276 }
1277 
1278 static dev_match_ret
xptbusmatch(struct dev_match_pattern * patterns,u_int num_patterns,struct cam_eb * bus)1279 xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1280 	    struct cam_eb *bus)
1281 {
1282 	dev_match_ret retval;
1283 	u_int i;
1284 
1285 	retval = DM_RET_NONE;
1286 
1287 	/*
1288 	 * If we aren't given something to match against, that's an error.
1289 	 */
1290 	if (bus == NULL)
1291 		return(DM_RET_ERROR);
1292 
1293 	/*
1294 	 * If there are no match entries, then this bus matches no
1295 	 * matter what.
1296 	 */
1297 	if ((patterns == NULL) || (num_patterns == 0))
1298 		return(DM_RET_DESCEND | DM_RET_COPY);
1299 
1300 	for (i = 0; i < num_patterns; i++) {
1301 		struct bus_match_pattern *cur_pattern;
1302 		struct device_match_pattern *dp = &patterns[i].pattern.device_pattern;
1303 		struct periph_match_pattern *pp = &patterns[i].pattern.periph_pattern;
1304 
1305 		/*
1306 		 * If the pattern in question isn't for a bus node, we
1307 		 * aren't interested.  However, we do indicate to the
1308 		 * calling routine that we should continue descending the
1309 		 * tree, since the user wants to match against lower-level
1310 		 * EDT elements.
1311 		 */
1312 		if (patterns[i].type == DEV_MATCH_DEVICE &&
1313 		    (dp->flags & DEV_MATCH_PATH) != 0 &&
1314 		    dp->path_id != bus->path_id)
1315 			continue;
1316 		if (patterns[i].type == DEV_MATCH_PERIPH &&
1317 		    (pp->flags & PERIPH_MATCH_PATH) != 0 &&
1318 		    pp->path_id != bus->path_id)
1319 			continue;
1320 		if (patterns[i].type != DEV_MATCH_BUS) {
1321 			if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1322 				retval |= DM_RET_DESCEND;
1323 			continue;
1324 		}
1325 
1326 		cur_pattern = &patterns[i].pattern.bus_pattern;
1327 
1328 		if (((cur_pattern->flags & BUS_MATCH_PATH) != 0)
1329 		 && (cur_pattern->path_id != bus->path_id))
1330 			continue;
1331 
1332 		if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0)
1333 		 && (cur_pattern->bus_id != bus->sim->bus_id))
1334 			continue;
1335 
1336 		if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0)
1337 		 && (cur_pattern->unit_number != bus->sim->unit_number))
1338 			continue;
1339 
1340 		if (((cur_pattern->flags & BUS_MATCH_NAME) != 0)
1341 		 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name,
1342 			     DEV_IDLEN) != 0))
1343 			continue;
1344 
1345 		/*
1346 		 * If we get to this point, the user definitely wants
1347 		 * information on this bus.  So tell the caller to copy the
1348 		 * data out.
1349 		 */
1350 		retval |= DM_RET_COPY;
1351 
1352 		/*
1353 		 * If the return action has been set to descend, then we
1354 		 * know that we've already seen a non-bus matching
1355 		 * expression, therefore we need to further descend the tree.
1356 		 * This won't change by continuing around the loop, so we
1357 		 * go ahead and return.  If we haven't seen a non-bus
1358 		 * matching expression, we keep going around the loop until
1359 		 * we exhaust the matching expressions.  We'll set the stop
1360 		 * flag once we fall out of the loop.
1361 		 */
1362 		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1363 			return(retval);
1364 	}
1365 
1366 	/*
1367 	 * If the return action hasn't been set to descend yet, that means
1368 	 * we haven't seen anything other than bus matching patterns.  So
1369 	 * tell the caller to stop descending the tree -- the user doesn't
1370 	 * want to match against lower level tree elements.
1371 	 */
1372 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1373 		retval |= DM_RET_STOP;
1374 
1375 	return(retval);
1376 }
1377 
1378 static dev_match_ret
xptdevicematch(struct dev_match_pattern * patterns,u_int num_patterns,struct cam_ed * device)1379 xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns,
1380 	       struct cam_ed *device)
1381 {
1382 	dev_match_ret retval;
1383 	u_int i;
1384 
1385 	retval = DM_RET_NONE;
1386 
1387 	/*
1388 	 * If we aren't given something to match against, that's an error.
1389 	 */
1390 	if (device == NULL)
1391 		return(DM_RET_ERROR);
1392 
1393 	/*
1394 	 * If there are no match entries, then this device matches no
1395 	 * matter what.
1396 	 */
1397 	if ((patterns == NULL) || (num_patterns == 0))
1398 		return(DM_RET_DESCEND | DM_RET_COPY);
1399 
1400 	for (i = 0; i < num_patterns; i++) {
1401 		struct device_match_pattern *cur_pattern;
1402 		struct scsi_vpd_device_id *device_id_page;
1403 		struct periph_match_pattern *pp = &patterns[i].pattern.periph_pattern;
1404 
1405 		/*
1406 		 * If the pattern in question isn't for a device node, we
1407 		 * aren't interested.
1408 		 */
1409 		if (patterns[i].type == DEV_MATCH_PERIPH &&
1410 		    (pp->flags & PERIPH_MATCH_TARGET) != 0 &&
1411 		    pp->target_id != device->target->target_id)
1412 			continue;
1413 		if (patterns[i].type == DEV_MATCH_PERIPH &&
1414 		    (pp->flags & PERIPH_MATCH_LUN) != 0 &&
1415 		    pp->target_lun != device->lun_id)
1416 			continue;
1417 		if (patterns[i].type != DEV_MATCH_DEVICE) {
1418 			if ((patterns[i].type == DEV_MATCH_PERIPH)
1419 			 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE))
1420 				retval |= DM_RET_DESCEND;
1421 			continue;
1422 		}
1423 
1424 		cur_pattern = &patterns[i].pattern.device_pattern;
1425 
1426 		/* Error out if mutually exclusive options are specified. */
1427 		if ((cur_pattern->flags & (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID))
1428 		 == (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID))
1429 			return(DM_RET_ERROR);
1430 
1431 		if (((cur_pattern->flags & DEV_MATCH_PATH) != 0)
1432 		 && (cur_pattern->path_id != device->target->bus->path_id))
1433 			continue;
1434 
1435 		if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0)
1436 		 && (cur_pattern->target_id != device->target->target_id))
1437 			continue;
1438 
1439 		if (((cur_pattern->flags & DEV_MATCH_LUN) != 0)
1440 		 && (cur_pattern->target_lun != device->lun_id))
1441 			continue;
1442 
1443 		if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0)
1444 		 && (cam_quirkmatch((caddr_t)&device->inq_data,
1445 				    (caddr_t)&cur_pattern->data.inq_pat,
1446 				    1, sizeof(cur_pattern->data.inq_pat),
1447 				    scsi_static_inquiry_match) == NULL))
1448 			continue;
1449 
1450 		device_id_page = (struct scsi_vpd_device_id *)device->device_id;
1451 		if (((cur_pattern->flags & DEV_MATCH_DEVID) != 0)
1452 		 && (device->device_id_len < SVPD_DEVICE_ID_HDR_LEN
1453 		  || scsi_devid_match((uint8_t *)device_id_page->desc_list,
1454 				      device->device_id_len
1455 				    - SVPD_DEVICE_ID_HDR_LEN,
1456 				      cur_pattern->data.devid_pat.id,
1457 				      cur_pattern->data.devid_pat.id_len) != 0))
1458 			continue;
1459 
1460 		/*
1461 		 * If we get to this point, the user definitely wants
1462 		 * information on this device.  So tell the caller to copy
1463 		 * the data out.
1464 		 */
1465 		retval |= DM_RET_COPY;
1466 
1467 		/*
1468 		 * If the return action has been set to descend, then we
1469 		 * know that we've already seen a peripheral matching
1470 		 * expression, therefore we need to further descend the tree.
1471 		 * This won't change by continuing around the loop, so we
1472 		 * go ahead and return.  If we haven't seen a peripheral
1473 		 * matching expression, we keep going around the loop until
1474 		 * we exhaust the matching expressions.  We'll set the stop
1475 		 * flag once we fall out of the loop.
1476 		 */
1477 		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1478 			return(retval);
1479 	}
1480 
1481 	/*
1482 	 * If the return action hasn't been set to descend yet, that means
1483 	 * we haven't seen any peripheral matching patterns.  So tell the
1484 	 * caller to stop descending the tree -- the user doesn't want to
1485 	 * match against lower level tree elements.
1486 	 */
1487 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1488 		retval |= DM_RET_STOP;
1489 
1490 	return(retval);
1491 }
1492 
1493 /*
1494  * Match a single peripheral against any number of match patterns.
1495  */
1496 static dev_match_ret
xptperiphmatch(struct dev_match_pattern * patterns,u_int num_patterns,struct cam_periph * periph)1497 xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1498 	       struct cam_periph *periph)
1499 {
1500 	dev_match_ret retval;
1501 	u_int i;
1502 
1503 	/*
1504 	 * If we aren't given something to match against, that's an error.
1505 	 */
1506 	if (periph == NULL)
1507 		return(DM_RET_ERROR);
1508 
1509 	/*
1510 	 * If there are no match entries, then this peripheral matches no
1511 	 * matter what.
1512 	 */
1513 	if ((patterns == NULL) || (num_patterns == 0))
1514 		return(DM_RET_STOP | DM_RET_COPY);
1515 
1516 	/*
1517 	 * There aren't any nodes below a peripheral node, so there's no
1518 	 * reason to descend the tree any further.
1519 	 */
1520 	retval = DM_RET_STOP;
1521 
1522 	for (i = 0; i < num_patterns; i++) {
1523 		struct periph_match_pattern *cur_pattern;
1524 
1525 		/*
1526 		 * If the pattern in question isn't for a peripheral, we
1527 		 * aren't interested.
1528 		 */
1529 		if (patterns[i].type != DEV_MATCH_PERIPH)
1530 			continue;
1531 
1532 		cur_pattern = &patterns[i].pattern.periph_pattern;
1533 
1534 		if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0)
1535 		 && (cur_pattern->path_id != periph->path->bus->path_id))
1536 			continue;
1537 
1538 		/*
1539 		 * For the target and lun id's, we have to make sure the
1540 		 * target and lun pointers aren't NULL.  The xpt peripheral
1541 		 * has a wildcard target and device.
1542 		 */
1543 		if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0)
1544 		 && ((periph->path->target == NULL)
1545 		 ||(cur_pattern->target_id != periph->path->target->target_id)))
1546 			continue;
1547 
1548 		if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0)
1549 		 && ((periph->path->device == NULL)
1550 		 || (cur_pattern->target_lun != periph->path->device->lun_id)))
1551 			continue;
1552 
1553 		if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0)
1554 		 && (cur_pattern->unit_number != periph->unit_number))
1555 			continue;
1556 
1557 		if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0)
1558 		 && (strncmp(cur_pattern->periph_name, periph->periph_name,
1559 			     DEV_IDLEN) != 0))
1560 			continue;
1561 
1562 		/*
1563 		 * If we get to this point, the user definitely wants
1564 		 * information on this peripheral.  So tell the caller to
1565 		 * copy the data out.
1566 		 */
1567 		retval |= DM_RET_COPY;
1568 
1569 		/*
1570 		 * The return action has already been set to stop, since
1571 		 * peripherals don't have any nodes below them in the EDT.
1572 		 */
1573 		return(retval);
1574 	}
1575 
1576 	/*
1577 	 * If we get to this point, the peripheral that was passed in
1578 	 * doesn't match any of the patterns.
1579 	 */
1580 	return(retval);
1581 }
1582 
1583 static int
xptedtbusfunc(struct cam_eb * bus,void * arg)1584 xptedtbusfunc(struct cam_eb *bus, void *arg)
1585 {
1586 	struct ccb_dev_match *cdm;
1587 	struct cam_et *target;
1588 	dev_match_ret retval;
1589 
1590 	cdm = (struct ccb_dev_match *)arg;
1591 
1592 	/*
1593 	 * If our position is for something deeper in the tree, that means
1594 	 * that we've already seen this node.  So, we keep going down.
1595 	 */
1596 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1597 	 && (cdm->pos.cookie.bus == bus)
1598 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1599 	 && (cdm->pos.cookie.target != NULL))
1600 		retval = DM_RET_DESCEND;
1601 	else
1602 		retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus);
1603 
1604 	/*
1605 	 * If we got an error, bail out of the search.
1606 	 */
1607 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1608 		cdm->status = CAM_DEV_MATCH_ERROR;
1609 		return(0);
1610 	}
1611 
1612 	/*
1613 	 * If the copy flag is set, copy this bus out.
1614 	 */
1615 	if (retval & DM_RET_COPY) {
1616 		int spaceleft, j;
1617 
1618 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1619 			sizeof(struct dev_match_result));
1620 
1621 		/*
1622 		 * If we don't have enough space to put in another
1623 		 * match result, save our position and tell the
1624 		 * user there are more devices to check.
1625 		 */
1626 		if (spaceleft < sizeof(struct dev_match_result)) {
1627 			bzero(&cdm->pos, sizeof(cdm->pos));
1628 			cdm->pos.position_type =
1629 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS;
1630 
1631 			cdm->pos.cookie.bus = bus;
1632 			cdm->pos.generations[CAM_BUS_GENERATION]=
1633 				xsoftc.bus_generation;
1634 			cdm->status = CAM_DEV_MATCH_MORE;
1635 			return(0);
1636 		}
1637 		j = cdm->num_matches;
1638 		cdm->num_matches++;
1639 		cdm->matches[j].type = DEV_MATCH_BUS;
1640 		cdm->matches[j].result.bus_result.path_id = bus->path_id;
1641 		cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id;
1642 		cdm->matches[j].result.bus_result.unit_number =
1643 			bus->sim->unit_number;
1644 		strlcpy(cdm->matches[j].result.bus_result.dev_name,
1645 			bus->sim->sim_name,
1646 			sizeof(cdm->matches[j].result.bus_result.dev_name));
1647 	}
1648 
1649 	/*
1650 	 * If the user is only interested in buses, there's no
1651 	 * reason to descend to the next level in the tree.
1652 	 */
1653 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
1654 		return(1);
1655 
1656 	/*
1657 	 * If there is a target generation recorded, check it to
1658 	 * make sure the target list hasn't changed.
1659 	 */
1660 	mtx_lock(&bus->eb_mtx);
1661 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1662 	 && (cdm->pos.cookie.bus == bus)
1663 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1664 	 && (cdm->pos.cookie.target != NULL)) {
1665 		if ((cdm->pos.generations[CAM_TARGET_GENERATION] !=
1666 		    bus->generation)) {
1667 			mtx_unlock(&bus->eb_mtx);
1668 			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1669 			return (0);
1670 		}
1671 		target = (struct cam_et *)cdm->pos.cookie.target;
1672 		target->refcount++;
1673 	} else
1674 		target = NULL;
1675 	mtx_unlock(&bus->eb_mtx);
1676 
1677 	return (xpttargettraverse(bus, target, xptedttargetfunc, arg));
1678 }
1679 
1680 static int
xptedttargetfunc(struct cam_et * target,void * arg)1681 xptedttargetfunc(struct cam_et *target, void *arg)
1682 {
1683 	struct ccb_dev_match *cdm;
1684 	struct cam_eb *bus;
1685 	struct cam_ed *device;
1686 
1687 	cdm = (struct ccb_dev_match *)arg;
1688 	bus = target->bus;
1689 
1690 	/*
1691 	 * If there is a device list generation recorded, check it to
1692 	 * make sure the device list hasn't changed.
1693 	 */
1694 	mtx_lock(&bus->eb_mtx);
1695 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1696 	 && (cdm->pos.cookie.bus == bus)
1697 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1698 	 && (cdm->pos.cookie.target == target)
1699 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1700 	 && (cdm->pos.cookie.device != NULL)) {
1701 		if (cdm->pos.generations[CAM_DEV_GENERATION] !=
1702 		    target->generation) {
1703 			mtx_unlock(&bus->eb_mtx);
1704 			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1705 			return(0);
1706 		}
1707 		device = (struct cam_ed *)cdm->pos.cookie.device;
1708 		device->refcount++;
1709 	} else
1710 		device = NULL;
1711 	mtx_unlock(&bus->eb_mtx);
1712 
1713 	return (xptdevicetraverse(target, device, xptedtdevicefunc, arg));
1714 }
1715 
1716 static int
xptedtdevicefunc(struct cam_ed * device,void * arg)1717 xptedtdevicefunc(struct cam_ed *device, void *arg)
1718 {
1719 	struct cam_eb *bus;
1720 	struct cam_periph *periph;
1721 	struct ccb_dev_match *cdm;
1722 	dev_match_ret retval;
1723 
1724 	cdm = (struct ccb_dev_match *)arg;
1725 	bus = device->target->bus;
1726 
1727 	/*
1728 	 * If our position is for something deeper in the tree, that means
1729 	 * that we've already seen this node.  So, we keep going down.
1730 	 */
1731 	if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1732 	 && (cdm->pos.cookie.device == device)
1733 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1734 	 && (cdm->pos.cookie.periph != NULL))
1735 		retval = DM_RET_DESCEND;
1736 	else
1737 		retval = xptdevicematch(cdm->patterns, cdm->num_patterns,
1738 					device);
1739 
1740 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1741 		cdm->status = CAM_DEV_MATCH_ERROR;
1742 		return(0);
1743 	}
1744 
1745 	/*
1746 	 * If the copy flag is set, copy this device out.
1747 	 */
1748 	if (retval & DM_RET_COPY) {
1749 		int spaceleft, j;
1750 
1751 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1752 			sizeof(struct dev_match_result));
1753 
1754 		/*
1755 		 * If we don't have enough space to put in another
1756 		 * match result, save our position and tell the
1757 		 * user there are more devices to check.
1758 		 */
1759 		if (spaceleft < sizeof(struct dev_match_result)) {
1760 			bzero(&cdm->pos, sizeof(cdm->pos));
1761 			cdm->pos.position_type =
1762 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
1763 				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE;
1764 
1765 			cdm->pos.cookie.bus = device->target->bus;
1766 			cdm->pos.generations[CAM_BUS_GENERATION]=
1767 				xsoftc.bus_generation;
1768 			cdm->pos.cookie.target = device->target;
1769 			cdm->pos.generations[CAM_TARGET_GENERATION] =
1770 				device->target->bus->generation;
1771 			cdm->pos.cookie.device = device;
1772 			cdm->pos.generations[CAM_DEV_GENERATION] =
1773 				device->target->generation;
1774 			cdm->status = CAM_DEV_MATCH_MORE;
1775 			return(0);
1776 		}
1777 		j = cdm->num_matches;
1778 		cdm->num_matches++;
1779 		cdm->matches[j].type = DEV_MATCH_DEVICE;
1780 		cdm->matches[j].result.device_result.path_id =
1781 			device->target->bus->path_id;
1782 		cdm->matches[j].result.device_result.target_id =
1783 			device->target->target_id;
1784 		cdm->matches[j].result.device_result.target_lun =
1785 			device->lun_id;
1786 		cdm->matches[j].result.device_result.protocol =
1787 			device->protocol;
1788 		bcopy(&device->inq_data,
1789 		      &cdm->matches[j].result.device_result.inq_data,
1790 		      sizeof(struct scsi_inquiry_data));
1791 		bcopy(&device->ident_data,
1792 		      &cdm->matches[j].result.device_result.ident_data,
1793 		      sizeof(struct ata_params));
1794 
1795 		/* Let the user know whether this device is unconfigured */
1796 		if (device->flags & CAM_DEV_UNCONFIGURED)
1797 			cdm->matches[j].result.device_result.flags =
1798 				DEV_RESULT_UNCONFIGURED;
1799 		else
1800 			cdm->matches[j].result.device_result.flags =
1801 				DEV_RESULT_NOFLAG;
1802 	}
1803 
1804 	/*
1805 	 * If the user isn't interested in peripherals, don't descend
1806 	 * the tree any further.
1807 	 */
1808 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
1809 		return(1);
1810 
1811 	/*
1812 	 * If there is a peripheral list generation recorded, make sure
1813 	 * it hasn't changed.
1814 	 */
1815 	xpt_lock_buses();
1816 	mtx_lock(&bus->eb_mtx);
1817 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1818 	 && (cdm->pos.cookie.bus == bus)
1819 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1820 	 && (cdm->pos.cookie.target == device->target)
1821 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1822 	 && (cdm->pos.cookie.device == device)
1823 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1824 	 && (cdm->pos.cookie.periph != NULL)) {
1825 		if (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
1826 		    device->generation) {
1827 			mtx_unlock(&bus->eb_mtx);
1828 			xpt_unlock_buses();
1829 			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1830 			return(0);
1831 		}
1832 		periph = (struct cam_periph *)cdm->pos.cookie.periph;
1833 		periph->refcount++;
1834 	} else
1835 		periph = NULL;
1836 	mtx_unlock(&bus->eb_mtx);
1837 	xpt_unlock_buses();
1838 
1839 	return (xptperiphtraverse(device, periph, xptedtperiphfunc, arg));
1840 }
1841 
1842 static int
xptedtperiphfunc(struct cam_periph * periph,void * arg)1843 xptedtperiphfunc(struct cam_periph *periph, void *arg)
1844 {
1845 	struct ccb_dev_match *cdm;
1846 	dev_match_ret retval;
1847 
1848 	cdm = (struct ccb_dev_match *)arg;
1849 
1850 	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
1851 
1852 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1853 		cdm->status = CAM_DEV_MATCH_ERROR;
1854 		return(0);
1855 	}
1856 
1857 	/*
1858 	 * If the copy flag is set, copy this peripheral out.
1859 	 */
1860 	if (retval & DM_RET_COPY) {
1861 		int spaceleft, j;
1862 		size_t l;
1863 
1864 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1865 			sizeof(struct dev_match_result));
1866 
1867 		/*
1868 		 * If we don't have enough space to put in another
1869 		 * match result, save our position and tell the
1870 		 * user there are more devices to check.
1871 		 */
1872 		if (spaceleft < sizeof(struct dev_match_result)) {
1873 			bzero(&cdm->pos, sizeof(cdm->pos));
1874 			cdm->pos.position_type =
1875 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
1876 				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE |
1877 				CAM_DEV_POS_PERIPH;
1878 
1879 			cdm->pos.cookie.bus = periph->path->bus;
1880 			cdm->pos.generations[CAM_BUS_GENERATION]=
1881 				xsoftc.bus_generation;
1882 			cdm->pos.cookie.target = periph->path->target;
1883 			cdm->pos.generations[CAM_TARGET_GENERATION] =
1884 				periph->path->bus->generation;
1885 			cdm->pos.cookie.device = periph->path->device;
1886 			cdm->pos.generations[CAM_DEV_GENERATION] =
1887 				periph->path->target->generation;
1888 			cdm->pos.cookie.periph = periph;
1889 			cdm->pos.generations[CAM_PERIPH_GENERATION] =
1890 				periph->path->device->generation;
1891 			cdm->status = CAM_DEV_MATCH_MORE;
1892 			return(0);
1893 		}
1894 
1895 		j = cdm->num_matches;
1896 		cdm->num_matches++;
1897 		cdm->matches[j].type = DEV_MATCH_PERIPH;
1898 		cdm->matches[j].result.periph_result.path_id =
1899 			periph->path->bus->path_id;
1900 		cdm->matches[j].result.periph_result.target_id =
1901 			periph->path->target->target_id;
1902 		cdm->matches[j].result.periph_result.target_lun =
1903 			periph->path->device->lun_id;
1904 		cdm->matches[j].result.periph_result.unit_number =
1905 			periph->unit_number;
1906 		l = sizeof(cdm->matches[j].result.periph_result.periph_name);
1907 		strlcpy(cdm->matches[j].result.periph_result.periph_name,
1908 			periph->periph_name, l);
1909 	}
1910 
1911 	return(1);
1912 }
1913 
1914 static int
xptedtmatch(struct ccb_dev_match * cdm)1915 xptedtmatch(struct ccb_dev_match *cdm)
1916 {
1917 	struct cam_eb *bus;
1918 	int ret;
1919 
1920 	cdm->num_matches = 0;
1921 
1922 	/*
1923 	 * Check the bus list generation.  If it has changed, the user
1924 	 * needs to reset everything and start over.
1925 	 */
1926 	xpt_lock_buses();
1927 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1928 	 && (cdm->pos.cookie.bus != NULL)) {
1929 		if (cdm->pos.generations[CAM_BUS_GENERATION] !=
1930 		    xsoftc.bus_generation) {
1931 			xpt_unlock_buses();
1932 			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1933 			return(0);
1934 		}
1935 		bus = (struct cam_eb *)cdm->pos.cookie.bus;
1936 		bus->refcount++;
1937 	} else
1938 		bus = NULL;
1939 	xpt_unlock_buses();
1940 
1941 	ret = xptbustraverse(bus, xptedtbusfunc, cdm);
1942 
1943 	/*
1944 	 * If we get back 0, that means that we had to stop before fully
1945 	 * traversing the EDT.  It also means that one of the subroutines
1946 	 * has set the status field to the proper value.  If we get back 1,
1947 	 * we've fully traversed the EDT and copied out any matching entries.
1948 	 */
1949 	if (ret == 1)
1950 		cdm->status = CAM_DEV_MATCH_LAST;
1951 
1952 	return(ret);
1953 }
1954 
1955 static int
xptplistpdrvfunc(struct periph_driver ** pdrv,void * arg)1956 xptplistpdrvfunc(struct periph_driver **pdrv, void *arg)
1957 {
1958 	struct cam_periph *periph;
1959 	struct ccb_dev_match *cdm;
1960 
1961 	cdm = (struct ccb_dev_match *)arg;
1962 
1963 	xpt_lock_buses();
1964 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
1965 	 && (cdm->pos.cookie.pdrv == pdrv)
1966 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1967 	 && (cdm->pos.cookie.periph != NULL)) {
1968 		if (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
1969 		    (*pdrv)->generation) {
1970 			xpt_unlock_buses();
1971 			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1972 			return(0);
1973 		}
1974 		periph = (struct cam_periph *)cdm->pos.cookie.periph;
1975 		periph->refcount++;
1976 	} else
1977 		periph = NULL;
1978 	xpt_unlock_buses();
1979 
1980 	return (xptpdperiphtraverse(pdrv, periph, xptplistperiphfunc, arg));
1981 }
1982 
1983 static int
xptplistperiphfunc(struct cam_periph * periph,void * arg)1984 xptplistperiphfunc(struct cam_periph *periph, void *arg)
1985 {
1986 	struct ccb_dev_match *cdm;
1987 	dev_match_ret retval;
1988 
1989 	cdm = (struct ccb_dev_match *)arg;
1990 
1991 	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
1992 
1993 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1994 		cdm->status = CAM_DEV_MATCH_ERROR;
1995 		return(0);
1996 	}
1997 
1998 	/*
1999 	 * If the copy flag is set, copy this peripheral out.
2000 	 */
2001 	if (retval & DM_RET_COPY) {
2002 		int spaceleft, j;
2003 		size_t l;
2004 
2005 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
2006 			sizeof(struct dev_match_result));
2007 
2008 		/*
2009 		 * If we don't have enough space to put in another
2010 		 * match result, save our position and tell the
2011 		 * user there are more devices to check.
2012 		 */
2013 		if (spaceleft < sizeof(struct dev_match_result)) {
2014 			struct periph_driver **pdrv;
2015 
2016 			pdrv = NULL;
2017 			bzero(&cdm->pos, sizeof(cdm->pos));
2018 			cdm->pos.position_type =
2019 				CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR |
2020 				CAM_DEV_POS_PERIPH;
2021 
2022 			/*
2023 			 * This may look a bit non-sensical, but it is
2024 			 * actually quite logical.  There are very few
2025 			 * peripheral drivers, and bloating every peripheral
2026 			 * structure with a pointer back to its parent
2027 			 * peripheral driver linker set entry would cost
2028 			 * more in the long run than doing this quick lookup.
2029 			 */
2030 			for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) {
2031 				if (strcmp((*pdrv)->driver_name,
2032 				    periph->periph_name) == 0)
2033 					break;
2034 			}
2035 
2036 			if (*pdrv == NULL) {
2037 				cdm->status = CAM_DEV_MATCH_ERROR;
2038 				return(0);
2039 			}
2040 
2041 			cdm->pos.cookie.pdrv = pdrv;
2042 			/*
2043 			 * The periph generation slot does double duty, as
2044 			 * does the periph pointer slot.  They are used for
2045 			 * both edt and pdrv lookups and positioning.
2046 			 */
2047 			cdm->pos.cookie.periph = periph;
2048 			cdm->pos.generations[CAM_PERIPH_GENERATION] =
2049 				(*pdrv)->generation;
2050 			cdm->status = CAM_DEV_MATCH_MORE;
2051 			return(0);
2052 		}
2053 
2054 		j = cdm->num_matches;
2055 		cdm->num_matches++;
2056 		cdm->matches[j].type = DEV_MATCH_PERIPH;
2057 		cdm->matches[j].result.periph_result.path_id =
2058 			periph->path->bus->path_id;
2059 
2060 		/*
2061 		 * The transport layer peripheral doesn't have a target or
2062 		 * lun.
2063 		 */
2064 		if (periph->path->target)
2065 			cdm->matches[j].result.periph_result.target_id =
2066 				periph->path->target->target_id;
2067 		else
2068 			cdm->matches[j].result.periph_result.target_id =
2069 				CAM_TARGET_WILDCARD;
2070 
2071 		if (periph->path->device)
2072 			cdm->matches[j].result.periph_result.target_lun =
2073 				periph->path->device->lun_id;
2074 		else
2075 			cdm->matches[j].result.periph_result.target_lun =
2076 				CAM_LUN_WILDCARD;
2077 
2078 		cdm->matches[j].result.periph_result.unit_number =
2079 			periph->unit_number;
2080 		l = sizeof(cdm->matches[j].result.periph_result.periph_name);
2081 		strlcpy(cdm->matches[j].result.periph_result.periph_name,
2082 			periph->periph_name, l);
2083 	}
2084 
2085 	return(1);
2086 }
2087 
2088 static int
xptperiphlistmatch(struct ccb_dev_match * cdm)2089 xptperiphlistmatch(struct ccb_dev_match *cdm)
2090 {
2091 	int ret;
2092 
2093 	cdm->num_matches = 0;
2094 
2095 	/*
2096 	 * At this point in the edt traversal function, we check the bus
2097 	 * list generation to make sure that no buses have been added or
2098 	 * removed since the user last sent a XPT_DEV_MATCH ccb through.
2099 	 * For the peripheral driver list traversal function, however, we
2100 	 * don't have to worry about new peripheral driver types coming or
2101 	 * going; they're in a linker set, and therefore can't change
2102 	 * without a recompile.
2103 	 */
2104 
2105 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2106 	 && (cdm->pos.cookie.pdrv != NULL))
2107 		ret = xptpdrvtraverse(
2108 				(struct periph_driver **)cdm->pos.cookie.pdrv,
2109 				xptplistpdrvfunc, cdm);
2110 	else
2111 		ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm);
2112 
2113 	/*
2114 	 * If we get back 0, that means that we had to stop before fully
2115 	 * traversing the peripheral driver tree.  It also means that one of
2116 	 * the subroutines has set the status field to the proper value.  If
2117 	 * we get back 1, we've fully traversed the EDT and copied out any
2118 	 * matching entries.
2119 	 */
2120 	if (ret == 1)
2121 		cdm->status = CAM_DEV_MATCH_LAST;
2122 
2123 	return(ret);
2124 }
2125 
2126 static int
xptbustraverse(struct cam_eb * start_bus,xpt_busfunc_t * tr_func,void * arg)2127 xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg)
2128 {
2129 	struct cam_eb *bus, *next_bus;
2130 	int retval;
2131 
2132 	retval = 1;
2133 	if (start_bus)
2134 		bus = start_bus;
2135 	else {
2136 		xpt_lock_buses();
2137 		bus = TAILQ_FIRST(&xsoftc.xpt_busses);
2138 		if (bus == NULL) {
2139 			xpt_unlock_buses();
2140 			return (retval);
2141 		}
2142 		bus->refcount++;
2143 		xpt_unlock_buses();
2144 	}
2145 	for (; bus != NULL; bus = next_bus) {
2146 		retval = tr_func(bus, arg);
2147 		if (retval == 0) {
2148 			xpt_release_bus(bus);
2149 			break;
2150 		}
2151 		xpt_lock_buses();
2152 		next_bus = TAILQ_NEXT(bus, links);
2153 		if (next_bus)
2154 			next_bus->refcount++;
2155 		xpt_unlock_buses();
2156 		xpt_release_bus(bus);
2157 	}
2158 	return(retval);
2159 }
2160 
2161 static int
xpttargettraverse(struct cam_eb * bus,struct cam_et * start_target,xpt_targetfunc_t * tr_func,void * arg)2162 xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target,
2163 		  xpt_targetfunc_t *tr_func, void *arg)
2164 {
2165 	struct cam_et *target, *next_target;
2166 	int retval;
2167 
2168 	retval = 1;
2169 	if (start_target)
2170 		target = start_target;
2171 	else {
2172 		mtx_lock(&bus->eb_mtx);
2173 		target = TAILQ_FIRST(&bus->et_entries);
2174 		if (target == NULL) {
2175 			mtx_unlock(&bus->eb_mtx);
2176 			return (retval);
2177 		}
2178 		target->refcount++;
2179 		mtx_unlock(&bus->eb_mtx);
2180 	}
2181 	for (; target != NULL; target = next_target) {
2182 		retval = tr_func(target, arg);
2183 		if (retval == 0) {
2184 			xpt_release_target(target);
2185 			break;
2186 		}
2187 		mtx_lock(&bus->eb_mtx);
2188 		next_target = TAILQ_NEXT(target, links);
2189 		if (next_target)
2190 			next_target->refcount++;
2191 		mtx_unlock(&bus->eb_mtx);
2192 		xpt_release_target(target);
2193 	}
2194 	return(retval);
2195 }
2196 
2197 static int
xptdevicetraverse(struct cam_et * target,struct cam_ed * start_device,xpt_devicefunc_t * tr_func,void * arg)2198 xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device,
2199 		  xpt_devicefunc_t *tr_func, void *arg)
2200 {
2201 	struct cam_eb *bus;
2202 	struct cam_ed *device, *next_device;
2203 	int retval;
2204 
2205 	retval = 1;
2206 	bus = target->bus;
2207 	if (start_device)
2208 		device = start_device;
2209 	else {
2210 		mtx_lock(&bus->eb_mtx);
2211 		device = TAILQ_FIRST(&target->ed_entries);
2212 		if (device == NULL) {
2213 			mtx_unlock(&bus->eb_mtx);
2214 			return (retval);
2215 		}
2216 		device->refcount++;
2217 		mtx_unlock(&bus->eb_mtx);
2218 	}
2219 	for (; device != NULL; device = next_device) {
2220 		mtx_lock(&device->device_mtx);
2221 		retval = tr_func(device, arg);
2222 		mtx_unlock(&device->device_mtx);
2223 		if (retval == 0) {
2224 			xpt_release_device(device);
2225 			break;
2226 		}
2227 		mtx_lock(&bus->eb_mtx);
2228 		next_device = TAILQ_NEXT(device, links);
2229 		if (next_device)
2230 			next_device->refcount++;
2231 		mtx_unlock(&bus->eb_mtx);
2232 		xpt_release_device(device);
2233 	}
2234 	return(retval);
2235 }
2236 
2237 static int
xptperiphtraverse(struct cam_ed * device,struct cam_periph * start_periph,xpt_periphfunc_t * tr_func,void * arg)2238 xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph,
2239 		  xpt_periphfunc_t *tr_func, void *arg)
2240 {
2241 	struct cam_eb *bus;
2242 	struct cam_periph *periph, *next_periph;
2243 	int retval;
2244 
2245 	retval = 1;
2246 
2247 	bus = device->target->bus;
2248 	if (start_periph)
2249 		periph = start_periph;
2250 	else {
2251 		xpt_lock_buses();
2252 		mtx_lock(&bus->eb_mtx);
2253 		periph = SLIST_FIRST(&device->periphs);
2254 		while (periph != NULL && (periph->flags & CAM_PERIPH_FREE) != 0)
2255 			periph = SLIST_NEXT(periph, periph_links);
2256 		if (periph == NULL) {
2257 			mtx_unlock(&bus->eb_mtx);
2258 			xpt_unlock_buses();
2259 			return (retval);
2260 		}
2261 		periph->refcount++;
2262 		mtx_unlock(&bus->eb_mtx);
2263 		xpt_unlock_buses();
2264 	}
2265 	for (; periph != NULL; periph = next_periph) {
2266 		retval = tr_func(periph, arg);
2267 		if (retval == 0) {
2268 			cam_periph_release_locked(periph);
2269 			break;
2270 		}
2271 		xpt_lock_buses();
2272 		mtx_lock(&bus->eb_mtx);
2273 		next_periph = SLIST_NEXT(periph, periph_links);
2274 		while (next_periph != NULL &&
2275 		    (next_periph->flags & CAM_PERIPH_FREE) != 0)
2276 			next_periph = SLIST_NEXT(next_periph, periph_links);
2277 		if (next_periph)
2278 			next_periph->refcount++;
2279 		mtx_unlock(&bus->eb_mtx);
2280 		xpt_unlock_buses();
2281 		cam_periph_release_locked(periph);
2282 	}
2283 	return(retval);
2284 }
2285 
2286 static int
xptpdrvtraverse(struct periph_driver ** start_pdrv,xpt_pdrvfunc_t * tr_func,void * arg)2287 xptpdrvtraverse(struct periph_driver **start_pdrv,
2288 		xpt_pdrvfunc_t *tr_func, void *arg)
2289 {
2290 	struct periph_driver **pdrv;
2291 	int retval;
2292 
2293 	retval = 1;
2294 
2295 	/*
2296 	 * We don't traverse the peripheral driver list like we do the
2297 	 * other lists, because it is a linker set, and therefore cannot be
2298 	 * changed during runtime.  If the peripheral driver list is ever
2299 	 * re-done to be something other than a linker set (i.e. it can
2300 	 * change while the system is running), the list traversal should
2301 	 * be modified to work like the other traversal functions.
2302 	 */
2303 	for (pdrv = (start_pdrv ? start_pdrv : periph_drivers);
2304 	     *pdrv != NULL; pdrv++) {
2305 		retval = tr_func(pdrv, arg);
2306 
2307 		if (retval == 0)
2308 			return(retval);
2309 	}
2310 
2311 	return(retval);
2312 }
2313 
2314 static int
xptpdperiphtraverse(struct periph_driver ** pdrv,struct cam_periph * start_periph,xpt_periphfunc_t * tr_func,void * arg)2315 xptpdperiphtraverse(struct periph_driver **pdrv,
2316 		    struct cam_periph *start_periph,
2317 		    xpt_periphfunc_t *tr_func, void *arg)
2318 {
2319 	struct cam_periph *periph, *next_periph;
2320 	int retval;
2321 
2322 	retval = 1;
2323 
2324 	if (start_periph)
2325 		periph = start_periph;
2326 	else {
2327 		xpt_lock_buses();
2328 		periph = TAILQ_FIRST(&(*pdrv)->units);
2329 		while (periph != NULL && (periph->flags & CAM_PERIPH_FREE) != 0)
2330 			periph = TAILQ_NEXT(periph, unit_links);
2331 		if (periph == NULL) {
2332 			xpt_unlock_buses();
2333 			return (retval);
2334 		}
2335 		periph->refcount++;
2336 		xpt_unlock_buses();
2337 	}
2338 	for (; periph != NULL; periph = next_periph) {
2339 		cam_periph_lock(periph);
2340 		retval = tr_func(periph, arg);
2341 		cam_periph_unlock(periph);
2342 		if (retval == 0) {
2343 			cam_periph_release(periph);
2344 			break;
2345 		}
2346 		xpt_lock_buses();
2347 		next_periph = TAILQ_NEXT(periph, unit_links);
2348 		while (next_periph != NULL &&
2349 		    (next_periph->flags & CAM_PERIPH_FREE) != 0)
2350 			next_periph = TAILQ_NEXT(next_periph, unit_links);
2351 		if (next_periph)
2352 			next_periph->refcount++;
2353 		xpt_unlock_buses();
2354 		cam_periph_release(periph);
2355 	}
2356 	return(retval);
2357 }
2358 
2359 static int
xptdefbusfunc(struct cam_eb * bus,void * arg)2360 xptdefbusfunc(struct cam_eb *bus, void *arg)
2361 {
2362 	struct xpt_traverse_config *tr_config;
2363 
2364 	tr_config = (struct xpt_traverse_config *)arg;
2365 
2366 	if (tr_config->depth == XPT_DEPTH_BUS) {
2367 		xpt_busfunc_t *tr_func;
2368 
2369 		tr_func = (xpt_busfunc_t *)tr_config->tr_func;
2370 
2371 		return(tr_func(bus, tr_config->tr_arg));
2372 	} else
2373 		return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg));
2374 }
2375 
2376 static int
xptdeftargetfunc(struct cam_et * target,void * arg)2377 xptdeftargetfunc(struct cam_et *target, void *arg)
2378 {
2379 	struct xpt_traverse_config *tr_config;
2380 
2381 	tr_config = (struct xpt_traverse_config *)arg;
2382 
2383 	if (tr_config->depth == XPT_DEPTH_TARGET) {
2384 		xpt_targetfunc_t *tr_func;
2385 
2386 		tr_func = (xpt_targetfunc_t *)tr_config->tr_func;
2387 
2388 		return(tr_func(target, tr_config->tr_arg));
2389 	} else
2390 		return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg));
2391 }
2392 
2393 static int
xptdefdevicefunc(struct cam_ed * device,void * arg)2394 xptdefdevicefunc(struct cam_ed *device, void *arg)
2395 {
2396 	struct xpt_traverse_config *tr_config;
2397 
2398 	tr_config = (struct xpt_traverse_config *)arg;
2399 
2400 	if (tr_config->depth == XPT_DEPTH_DEVICE) {
2401 		xpt_devicefunc_t *tr_func;
2402 
2403 		tr_func = (xpt_devicefunc_t *)tr_config->tr_func;
2404 
2405 		return(tr_func(device, tr_config->tr_arg));
2406 	} else
2407 		return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg));
2408 }
2409 
2410 static int
xptdefperiphfunc(struct cam_periph * periph,void * arg)2411 xptdefperiphfunc(struct cam_periph *periph, void *arg)
2412 {
2413 	struct xpt_traverse_config *tr_config;
2414 	xpt_periphfunc_t *tr_func;
2415 
2416 	tr_config = (struct xpt_traverse_config *)arg;
2417 
2418 	tr_func = (xpt_periphfunc_t *)tr_config->tr_func;
2419 
2420 	/*
2421 	 * Unlike the other default functions, we don't check for depth
2422 	 * here.  The peripheral driver level is the last level in the EDT,
2423 	 * so if we're here, we should execute the function in question.
2424 	 */
2425 	return(tr_func(periph, tr_config->tr_arg));
2426 }
2427 
2428 /*
2429  * Execute the given function for every bus in the EDT.
2430  */
2431 static int
xpt_for_all_busses(xpt_busfunc_t * tr_func,void * arg)2432 xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg)
2433 {
2434 	struct xpt_traverse_config tr_config;
2435 
2436 	tr_config.depth = XPT_DEPTH_BUS;
2437 	tr_config.tr_func = tr_func;
2438 	tr_config.tr_arg = arg;
2439 
2440 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2441 }
2442 
2443 /*
2444  * Execute the given function for every device in the EDT.
2445  */
2446 static int
xpt_for_all_devices(xpt_devicefunc_t * tr_func,void * arg)2447 xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg)
2448 {
2449 	struct xpt_traverse_config tr_config;
2450 
2451 	tr_config.depth = XPT_DEPTH_DEVICE;
2452 	tr_config.tr_func = tr_func;
2453 	tr_config.tr_arg = arg;
2454 
2455 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2456 }
2457 
2458 static int
xptsetasyncfunc(struct cam_ed * device,void * arg)2459 xptsetasyncfunc(struct cam_ed *device, void *arg)
2460 {
2461 	struct cam_path path;
2462 	struct ccb_getdev cgd;
2463 	struct ccb_setasync *csa = (struct ccb_setasync *)arg;
2464 
2465 	/*
2466 	 * Don't report unconfigured devices (Wildcard devs,
2467 	 * devices only for target mode, device instances
2468 	 * that have been invalidated but are waiting for
2469 	 * their last reference count to be released).
2470 	 */
2471 	if ((device->flags & CAM_DEV_UNCONFIGURED) != 0)
2472 		return (1);
2473 
2474 	xpt_compile_path(&path,
2475 			 NULL,
2476 			 device->target->bus->path_id,
2477 			 device->target->target_id,
2478 			 device->lun_id);
2479 	xpt_gdev_type(&cgd, &path);
2480 	csa->callback(csa->callback_arg,
2481 			    AC_FOUND_DEVICE,
2482 			    &path, &cgd);
2483 	xpt_release_path(&path);
2484 
2485 	return(1);
2486 }
2487 
2488 static int
xptsetasyncbusfunc(struct cam_eb * bus,void * arg)2489 xptsetasyncbusfunc(struct cam_eb *bus, void *arg)
2490 {
2491 	struct cam_path path;
2492 	struct ccb_pathinq cpi;
2493 	struct ccb_setasync *csa = (struct ccb_setasync *)arg;
2494 
2495 	xpt_compile_path(&path, /*periph*/NULL,
2496 			 bus->path_id,
2497 			 CAM_TARGET_WILDCARD,
2498 			 CAM_LUN_WILDCARD);
2499 	xpt_path_lock(&path);
2500 	xpt_path_inq(&cpi, &path);
2501 	csa->callback(csa->callback_arg,
2502 			    AC_PATH_REGISTERED,
2503 			    &path, &cpi);
2504 	xpt_path_unlock(&path);
2505 	xpt_release_path(&path);
2506 
2507 	return(1);
2508 }
2509 
2510 void
xpt_action(union ccb * start_ccb)2511 xpt_action(union ccb *start_ccb)
2512 {
2513 
2514 	CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE,
2515 	    ("xpt_action: func %#x %s\n", start_ccb->ccb_h.func_code,
2516 		xpt_action_name(start_ccb->ccb_h.func_code)));
2517 
2518 	/*
2519 	 * Either it isn't queued, or it has a real priority. There still too
2520 	 * many places that reuse CCBs with a real priority to do immediate
2521 	 * queries to do the other side of this assert.
2522 	 */
2523 	KASSERT((start_ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0 ||
2524 	    start_ccb->ccb_h.pinfo.priority != CAM_PRIORITY_NONE,
2525 	    ("%s: queued ccb and CAM_PRIORITY_NONE illegal.", __func__));
2526 
2527 	start_ccb->ccb_h.status = CAM_REQ_INPROG;
2528 	(*(start_ccb->ccb_h.path->bus->xport->ops->action))(start_ccb);
2529 }
2530 
2531 void
xpt_action_default(union ccb * start_ccb)2532 xpt_action_default(union ccb *start_ccb)
2533 {
2534 	struct cam_path *path;
2535 	struct cam_sim *sim;
2536 	struct mtx *mtx;
2537 
2538 	path = start_ccb->ccb_h.path;
2539 	CAM_DEBUG(path, CAM_DEBUG_TRACE,
2540 	    ("xpt_action_default: func %#x %s\n", start_ccb->ccb_h.func_code,
2541 		xpt_action_name(start_ccb->ccb_h.func_code)));
2542 
2543 	switch (start_ccb->ccb_h.func_code) {
2544 	case XPT_SCSI_IO:
2545 	{
2546 		struct cam_ed *device;
2547 
2548 		/*
2549 		 * For the sake of compatibility with SCSI-1
2550 		 * devices that may not understand the identify
2551 		 * message, we include lun information in the
2552 		 * second byte of all commands.  SCSI-1 specifies
2553 		 * that luns are a 3 bit value and reserves only 3
2554 		 * bits for lun information in the CDB.  Later
2555 		 * revisions of the SCSI spec allow for more than 8
2556 		 * luns, but have deprecated lun information in the
2557 		 * CDB.  So, if the lun won't fit, we must omit.
2558 		 *
2559 		 * Also be aware that during initial probing for devices,
2560 		 * the inquiry information is unknown but initialized to 0.
2561 		 * This means that this code will be exercised while probing
2562 		 * devices with an ANSI revision greater than 2.
2563 		 */
2564 		device = path->device;
2565 		if (device->protocol_version <= SCSI_REV_2
2566 		 && start_ccb->ccb_h.target_lun < 8
2567 		 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) {
2568 			start_ccb->csio.cdb_io.cdb_bytes[1] |=
2569 			    start_ccb->ccb_h.target_lun << 5;
2570 		}
2571 		start_ccb->csio.scsi_status = SCSI_STATUS_OK;
2572 	}
2573 	/* FALLTHROUGH */
2574 	case XPT_TARGET_IO:
2575 	case XPT_CONT_TARGET_IO:
2576 		start_ccb->csio.sense_resid = 0;
2577 		start_ccb->csio.resid = 0;
2578 		/* FALLTHROUGH */
2579 	case XPT_ATA_IO:
2580 		if (start_ccb->ccb_h.func_code == XPT_ATA_IO)
2581 			start_ccb->ataio.resid = 0;
2582 		/* FALLTHROUGH */
2583 	case XPT_NVME_IO:
2584 	case XPT_NVME_ADMIN:
2585 	case XPT_MMC_IO:
2586 	case XPT_MMC_GET_TRAN_SETTINGS:
2587 	case XPT_MMC_SET_TRAN_SETTINGS:
2588 	case XPT_RESET_DEV:
2589 	case XPT_ENG_EXEC:
2590 	case XPT_SMP_IO:
2591 	{
2592 		struct cam_devq *devq;
2593 
2594 		devq = path->bus->sim->devq;
2595 		mtx_lock(&devq->send_mtx);
2596 		cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb);
2597 		if (xpt_schedule_devq(devq, path->device) != 0)
2598 			xpt_run_devq(devq);
2599 		mtx_unlock(&devq->send_mtx);
2600 		break;
2601 	}
2602 	case XPT_CALC_GEOMETRY:
2603 		/* Filter out garbage */
2604 		if (start_ccb->ccg.block_size == 0
2605 		 || start_ccb->ccg.volume_size == 0) {
2606 			start_ccb->ccg.cylinders = 0;
2607 			start_ccb->ccg.heads = 0;
2608 			start_ccb->ccg.secs_per_track = 0;
2609 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2610 			break;
2611 		}
2612 		goto call_sim;
2613 	case XPT_ABORT:
2614 	{
2615 		union ccb* abort_ccb;
2616 
2617 		abort_ccb = start_ccb->cab.abort_ccb;
2618 		if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) {
2619 			struct cam_ed *device;
2620 			struct cam_devq *devq;
2621 
2622 			device = abort_ccb->ccb_h.path->device;
2623 			devq = device->sim->devq;
2624 
2625 			mtx_lock(&devq->send_mtx);
2626 			if (abort_ccb->ccb_h.pinfo.index > 0) {
2627 				cam_ccbq_remove_ccb(&device->ccbq, abort_ccb);
2628 				abort_ccb->ccb_h.status =
2629 				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
2630 				xpt_freeze_devq_device(device, 1);
2631 				mtx_unlock(&devq->send_mtx);
2632 				xpt_done(abort_ccb);
2633 				start_ccb->ccb_h.status = CAM_REQ_CMP;
2634 				break;
2635 			}
2636 			mtx_unlock(&devq->send_mtx);
2637 
2638 			if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX
2639 			 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) {
2640 				/*
2641 				 * We've caught this ccb en route to
2642 				 * the SIM.  Flag it for abort and the
2643 				 * SIM will do so just before starting
2644 				 * real work on the CCB.
2645 				 */
2646 				abort_ccb->ccb_h.status =
2647 				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
2648 				xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
2649 				start_ccb->ccb_h.status = CAM_REQ_CMP;
2650 				break;
2651 			}
2652 		}
2653 		if (XPT_FC_IS_QUEUED(abort_ccb)
2654 		 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) {
2655 			/*
2656 			 * It's already completed but waiting
2657 			 * for our SWI to get to it.
2658 			 */
2659 			start_ccb->ccb_h.status = CAM_UA_ABORT;
2660 			break;
2661 		}
2662 		/*
2663 		 * If we weren't able to take care of the abort request
2664 		 * in the XPT, pass the request down to the SIM for processing.
2665 		 */
2666 	}
2667 	/* FALLTHROUGH */
2668 	case XPT_ACCEPT_TARGET_IO:
2669 	case XPT_EN_LUN:
2670 	case XPT_IMMED_NOTIFY:
2671 	case XPT_NOTIFY_ACK:
2672 	case XPT_RESET_BUS:
2673 	case XPT_IMMEDIATE_NOTIFY:
2674 	case XPT_NOTIFY_ACKNOWLEDGE:
2675 	case XPT_GET_SIM_KNOB_OLD:
2676 	case XPT_GET_SIM_KNOB:
2677 	case XPT_SET_SIM_KNOB:
2678 	case XPT_GET_TRAN_SETTINGS:
2679 	case XPT_SET_TRAN_SETTINGS:
2680 	case XPT_PATH_INQ:
2681 call_sim:
2682 		sim = path->bus->sim;
2683 		mtx = sim->mtx;
2684 		if (mtx && !mtx_owned(mtx))
2685 			mtx_lock(mtx);
2686 		else
2687 			mtx = NULL;
2688 
2689 		CAM_DEBUG(path, CAM_DEBUG_TRACE,
2690 		    ("Calling sim->sim_action(): func=%#x\n", start_ccb->ccb_h.func_code));
2691 		(*(sim->sim_action))(sim, start_ccb);
2692 		CAM_DEBUG(path, CAM_DEBUG_TRACE,
2693 		    ("sim->sim_action returned: status=%#x\n", start_ccb->ccb_h.status));
2694 		if (mtx)
2695 			mtx_unlock(mtx);
2696 		break;
2697 	case XPT_PATH_STATS:
2698 		start_ccb->cpis.last_reset = path->bus->last_reset;
2699 		start_ccb->ccb_h.status = CAM_REQ_CMP;
2700 		break;
2701 	case XPT_GDEV_TYPE:
2702 	{
2703 		struct cam_ed *dev;
2704 
2705 		dev = path->device;
2706 		if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
2707 			start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
2708 		} else {
2709 			struct ccb_getdev *cgd;
2710 
2711 			cgd = &start_ccb->cgd;
2712 			cgd->protocol = dev->protocol;
2713 			cgd->inq_data = dev->inq_data;
2714 			cgd->ident_data = dev->ident_data;
2715 			cgd->inq_flags = dev->inq_flags;
2716 			cgd->ccb_h.status = CAM_REQ_CMP;
2717 			cgd->serial_num_len = dev->serial_num_len;
2718 			if ((dev->serial_num_len > 0)
2719 			 && (dev->serial_num != NULL))
2720 				bcopy(dev->serial_num, cgd->serial_num,
2721 				      dev->serial_num_len);
2722 		}
2723 		break;
2724 	}
2725 	case XPT_GDEV_STATS:
2726 	{
2727 		struct ccb_getdevstats *cgds = &start_ccb->cgds;
2728 		struct cam_ed *dev = path->device;
2729 		struct cam_eb *bus = path->bus;
2730 		struct cam_et *tar = path->target;
2731 		struct cam_devq *devq = bus->sim->devq;
2732 
2733 		mtx_lock(&devq->send_mtx);
2734 		cgds->dev_openings = dev->ccbq.dev_openings;
2735 		cgds->dev_active = dev->ccbq.dev_active;
2736 		cgds->allocated = dev->ccbq.allocated;
2737 		cgds->queued = cam_ccbq_pending_ccb_count(&dev->ccbq);
2738 		cgds->held = cgds->allocated - cgds->dev_active - cgds->queued;
2739 		cgds->last_reset = tar->last_reset;
2740 		cgds->maxtags = dev->maxtags;
2741 		cgds->mintags = dev->mintags;
2742 		if (timevalcmp(&tar->last_reset, &bus->last_reset, <))
2743 			cgds->last_reset = bus->last_reset;
2744 		mtx_unlock(&devq->send_mtx);
2745 		cgds->ccb_h.status = CAM_REQ_CMP;
2746 		break;
2747 	}
2748 	case XPT_GDEVLIST:
2749 	{
2750 		struct cam_periph	*nperiph;
2751 		struct periph_list	*periph_head;
2752 		struct ccb_getdevlist	*cgdl;
2753 		u_int			i;
2754 		struct cam_ed		*device;
2755 		bool			found;
2756 
2757 		found = false;
2758 
2759 		/*
2760 		 * Don't want anyone mucking with our data.
2761 		 */
2762 		device = path->device;
2763 		periph_head = &device->periphs;
2764 		cgdl = &start_ccb->cgdl;
2765 
2766 		/*
2767 		 * Check and see if the list has changed since the user
2768 		 * last requested a list member.  If so, tell them that the
2769 		 * list has changed, and therefore they need to start over
2770 		 * from the beginning.
2771 		 */
2772 		if ((cgdl->index != 0) &&
2773 		    (cgdl->generation != device->generation)) {
2774 			cgdl->status = CAM_GDEVLIST_LIST_CHANGED;
2775 			break;
2776 		}
2777 
2778 		/*
2779 		 * Traverse the list of peripherals and attempt to find
2780 		 * the requested peripheral.
2781 		 */
2782 		for (nperiph = SLIST_FIRST(periph_head), i = 0;
2783 		     (nperiph != NULL) && (i <= cgdl->index);
2784 		     nperiph = SLIST_NEXT(nperiph, periph_links), i++) {
2785 			if (i == cgdl->index) {
2786 				strlcpy(cgdl->periph_name,
2787 					nperiph->periph_name,
2788 					sizeof(cgdl->periph_name));
2789 				cgdl->unit_number = nperiph->unit_number;
2790 				found = true;
2791 			}
2792 		}
2793 		if (!found) {
2794 			cgdl->status = CAM_GDEVLIST_ERROR;
2795 			break;
2796 		}
2797 
2798 		if (nperiph == NULL)
2799 			cgdl->status = CAM_GDEVLIST_LAST_DEVICE;
2800 		else
2801 			cgdl->status = CAM_GDEVLIST_MORE_DEVS;
2802 
2803 		cgdl->index++;
2804 		cgdl->generation = device->generation;
2805 
2806 		cgdl->ccb_h.status = CAM_REQ_CMP;
2807 		break;
2808 	}
2809 	case XPT_DEV_MATCH:
2810 	{
2811 		dev_pos_type position_type;
2812 		struct ccb_dev_match *cdm;
2813 
2814 		cdm = &start_ccb->cdm;
2815 
2816 		/*
2817 		 * There are two ways of getting at information in the EDT.
2818 		 * The first way is via the primary EDT tree.  It starts
2819 		 * with a list of buses, then a list of targets on a bus,
2820 		 * then devices/luns on a target, and then peripherals on a
2821 		 * device/lun.  The "other" way is by the peripheral driver
2822 		 * lists.  The peripheral driver lists are organized by
2823 		 * peripheral driver.  (obviously)  So it makes sense to
2824 		 * use the peripheral driver list if the user is looking
2825 		 * for something like "da1", or all "da" devices.  If the
2826 		 * user is looking for something on a particular bus/target
2827 		 * or lun, it's generally better to go through the EDT tree.
2828 		 */
2829 
2830 		if (cdm->pos.position_type != CAM_DEV_POS_NONE)
2831 			position_type = cdm->pos.position_type;
2832 		else {
2833 			u_int i;
2834 
2835 			position_type = CAM_DEV_POS_NONE;
2836 
2837 			for (i = 0; i < cdm->num_patterns; i++) {
2838 				if ((cdm->patterns[i].type == DEV_MATCH_BUS)
2839 				 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){
2840 					position_type = CAM_DEV_POS_EDT;
2841 					break;
2842 				}
2843 			}
2844 
2845 			if (cdm->num_patterns == 0)
2846 				position_type = CAM_DEV_POS_EDT;
2847 			else if (position_type == CAM_DEV_POS_NONE)
2848 				position_type = CAM_DEV_POS_PDRV;
2849 		}
2850 
2851 		switch(position_type & CAM_DEV_POS_TYPEMASK) {
2852 		case CAM_DEV_POS_EDT:
2853 			xptedtmatch(cdm);
2854 			break;
2855 		case CAM_DEV_POS_PDRV:
2856 			xptperiphlistmatch(cdm);
2857 			break;
2858 		default:
2859 			cdm->status = CAM_DEV_MATCH_ERROR;
2860 			break;
2861 		}
2862 
2863 		if (cdm->status == CAM_DEV_MATCH_ERROR)
2864 			start_ccb->ccb_h.status = CAM_REQ_CMP_ERR;
2865 		else
2866 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2867 
2868 		break;
2869 	}
2870 	case XPT_SASYNC_CB:
2871 	{
2872 		struct ccb_setasync *csa;
2873 		struct async_node *cur_entry;
2874 		struct async_list *async_head;
2875 		uint32_t added;
2876 
2877 		csa = &start_ccb->csa;
2878 		added = csa->event_enable;
2879 		async_head = &path->device->asyncs;
2880 
2881 		/*
2882 		 * If there is already an entry for us, simply
2883 		 * update it.
2884 		 */
2885 		cur_entry = SLIST_FIRST(async_head);
2886 		while (cur_entry != NULL) {
2887 			if ((cur_entry->callback_arg == csa->callback_arg)
2888 			 && (cur_entry->callback == csa->callback))
2889 				break;
2890 			cur_entry = SLIST_NEXT(cur_entry, links);
2891 		}
2892 
2893 		if (cur_entry != NULL) {
2894 		 	/*
2895 			 * If the request has no flags set,
2896 			 * remove the entry.
2897 			 */
2898 			added &= ~cur_entry->event_enable;
2899 			if (csa->event_enable == 0) {
2900 				SLIST_REMOVE(async_head, cur_entry,
2901 					     async_node, links);
2902 				xpt_release_device(path->device);
2903 				free(cur_entry, M_CAMXPT);
2904 			} else {
2905 				cur_entry->event_enable = csa->event_enable;
2906 			}
2907 			csa->event_enable = added;
2908 		} else {
2909 			cur_entry = malloc(sizeof(*cur_entry), M_CAMXPT,
2910 					   M_NOWAIT);
2911 			if (cur_entry == NULL) {
2912 				csa->ccb_h.status = CAM_RESRC_UNAVAIL;
2913 				break;
2914 			}
2915 			cur_entry->event_enable = csa->event_enable;
2916 			cur_entry->event_lock = (path->bus->sim->mtx &&
2917 			    mtx_owned(path->bus->sim->mtx)) ? 1 : 0;
2918 			cur_entry->callback_arg = csa->callback_arg;
2919 			cur_entry->callback = csa->callback;
2920 			SLIST_INSERT_HEAD(async_head, cur_entry, links);
2921 			xpt_acquire_device(path->device);
2922 		}
2923 		start_ccb->ccb_h.status = CAM_REQ_CMP;
2924 		break;
2925 	}
2926 	case XPT_REL_SIMQ:
2927 	{
2928 		struct ccb_relsim *crs;
2929 		struct cam_ed *dev;
2930 
2931 		crs = &start_ccb->crs;
2932 		dev = path->device;
2933 		if (dev == NULL) {
2934 			crs->ccb_h.status = CAM_DEV_NOT_THERE;
2935 			break;
2936 		}
2937 
2938 		if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) {
2939 			/* Don't ever go below one opening */
2940 			if (crs->openings > 0) {
2941 				xpt_dev_ccbq_resize(path, crs->openings);
2942 				if (bootverbose) {
2943 					xpt_print(path,
2944 					    "number of openings is now %d\n",
2945 					    crs->openings);
2946 				}
2947 			}
2948 		}
2949 
2950 		mtx_lock(&dev->sim->devq->send_mtx);
2951 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) {
2952 			if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
2953 				/*
2954 				 * Just extend the old timeout and decrement
2955 				 * the freeze count so that a single timeout
2956 				 * is sufficient for releasing the queue.
2957 				 */
2958 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
2959 				callout_stop(&dev->callout);
2960 			} else {
2961 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
2962 			}
2963 
2964 			callout_reset_sbt(&dev->callout,
2965 			    SBT_1MS * crs->release_timeout, SBT_1MS,
2966 			    xpt_release_devq_timeout, dev, 0);
2967 
2968 			dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING;
2969 		}
2970 
2971 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) {
2972 			if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) {
2973 				/*
2974 				 * Decrement the freeze count so that a single
2975 				 * completion is still sufficient to unfreeze
2976 				 * the queue.
2977 				 */
2978 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
2979 			} else {
2980 				dev->flags |= CAM_DEV_REL_ON_COMPLETE;
2981 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
2982 			}
2983 		}
2984 
2985 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) {
2986 			if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
2987 			 || (dev->ccbq.dev_active == 0)) {
2988 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
2989 			} else {
2990 				dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY;
2991 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
2992 			}
2993 		}
2994 		mtx_unlock(&dev->sim->devq->send_mtx);
2995 
2996 		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0)
2997 			xpt_release_devq(path, /*count*/1, /*run_queue*/TRUE);
2998 		start_ccb->crs.qfrozen_cnt = dev->ccbq.queue.qfrozen_cnt;
2999 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3000 		break;
3001 	}
3002 	case XPT_DEBUG: {
3003 		struct cam_path *oldpath;
3004 
3005 		/* Check that all request bits are supported. */
3006 		if (start_ccb->cdbg.flags & ~(CAM_DEBUG_COMPILE)) {
3007 			start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL;
3008 			break;
3009 		}
3010 
3011 		cam_dflags = CAM_DEBUG_NONE;
3012 		if (cam_dpath != NULL) {
3013 			oldpath = cam_dpath;
3014 			cam_dpath = NULL;
3015 			xpt_free_path(oldpath);
3016 		}
3017 		if (start_ccb->cdbg.flags != CAM_DEBUG_NONE) {
3018 			if (xpt_create_path(&cam_dpath, NULL,
3019 					    start_ccb->ccb_h.path_id,
3020 					    start_ccb->ccb_h.target_id,
3021 					    start_ccb->ccb_h.target_lun) !=
3022 					    CAM_REQ_CMP) {
3023 				start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3024 			} else {
3025 				cam_dflags = start_ccb->cdbg.flags;
3026 				start_ccb->ccb_h.status = CAM_REQ_CMP;
3027 				xpt_print(cam_dpath, "debugging flags now %x\n",
3028 				    cam_dflags);
3029 			}
3030 		} else
3031 			start_ccb->ccb_h.status = CAM_REQ_CMP;
3032 		break;
3033 	}
3034 	case XPT_NOOP:
3035 		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0)
3036 			xpt_freeze_devq(path, 1);
3037 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3038 		break;
3039 	case XPT_REPROBE_LUN:
3040 		xpt_async(AC_INQ_CHANGED, path, NULL);
3041 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3042 		xpt_done(start_ccb);
3043 		break;
3044 	case XPT_ASYNC:
3045 		/*
3046 		 * Queue the async operation so it can be run from a sleepable
3047 		 * context.
3048 		 */
3049 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3050 		mtx_lock(&cam_async.cam_doneq_mtx);
3051 		STAILQ_INSERT_TAIL(&cam_async.cam_doneq, &start_ccb->ccb_h, sim_links.stqe);
3052 		start_ccb->ccb_h.pinfo.index = CAM_ASYNC_INDEX;
3053 		mtx_unlock(&cam_async.cam_doneq_mtx);
3054 		wakeup(&cam_async.cam_doneq);
3055 		break;
3056 	default:
3057 	case XPT_SDEV_TYPE:
3058 	case XPT_TERM_IO:
3059 	case XPT_ENG_INQ:
3060 		/* XXX Implement */
3061 		xpt_print(start_ccb->ccb_h.path,
3062 		    "%s: CCB type %#x %s not supported\n", __func__,
3063 		    start_ccb->ccb_h.func_code,
3064 		    xpt_action_name(start_ccb->ccb_h.func_code));
3065 		start_ccb->ccb_h.status = CAM_PROVIDE_FAIL;
3066 		if (start_ccb->ccb_h.func_code & XPT_FC_DEV_QUEUED) {
3067 			xpt_done(start_ccb);
3068 		}
3069 		break;
3070 	}
3071 	CAM_DEBUG(path, CAM_DEBUG_TRACE,
3072 	    ("xpt_action_default: func= %#x %s status %#x\n",
3073 		start_ccb->ccb_h.func_code,
3074  		xpt_action_name(start_ccb->ccb_h.func_code),
3075 		start_ccb->ccb_h.status));
3076 }
3077 
3078 /*
3079  * Call the sim poll routine to allow the sim to complete
3080  * any inflight requests, then call camisr_runqueue to
3081  * complete any CCB that the polling completed.
3082  */
3083 void
xpt_sim_poll(struct cam_sim * sim)3084 xpt_sim_poll(struct cam_sim *sim)
3085 {
3086 	struct mtx *mtx;
3087 
3088 	KASSERT(cam_sim_pollable(sim), ("%s: non-pollable sim", __func__));
3089 	mtx = sim->mtx;
3090 	if (mtx)
3091 		mtx_lock(mtx);
3092 	(*(sim->sim_poll))(sim);
3093 	if (mtx)
3094 		mtx_unlock(mtx);
3095 	camisr_runqueue();
3096 }
3097 
3098 uint32_t
xpt_poll_setup(union ccb * start_ccb)3099 xpt_poll_setup(union ccb *start_ccb)
3100 {
3101 	uint32_t timeout;
3102 	struct	  cam_sim *sim;
3103 	struct	  cam_devq *devq;
3104 	struct	  cam_ed *dev;
3105 
3106 	timeout = start_ccb->ccb_h.timeout * 10;
3107 	sim = start_ccb->ccb_h.path->bus->sim;
3108 	devq = sim->devq;
3109 	dev = start_ccb->ccb_h.path->device;
3110 
3111 	KASSERT(cam_sim_pollable(sim), ("%s: non-pollable sim", __func__));
3112 
3113 	/*
3114 	 * Steal an opening so that no other queued requests
3115 	 * can get it before us while we simulate interrupts.
3116 	 */
3117 	mtx_lock(&devq->send_mtx);
3118 	dev->ccbq.dev_openings--;
3119 	while((devq->send_openings <= 0 || dev->ccbq.dev_openings < 0) &&
3120 	    (--timeout > 0)) {
3121 		mtx_unlock(&devq->send_mtx);
3122 		DELAY(100);
3123 		xpt_sim_poll(sim);
3124 		mtx_lock(&devq->send_mtx);
3125 	}
3126 	dev->ccbq.dev_openings++;
3127 	mtx_unlock(&devq->send_mtx);
3128 
3129 	return (timeout);
3130 }
3131 
3132 void
xpt_pollwait(union ccb * start_ccb,uint32_t timeout)3133 xpt_pollwait(union ccb *start_ccb, uint32_t timeout)
3134 {
3135 
3136 	KASSERT(cam_sim_pollable(start_ccb->ccb_h.path->bus->sim),
3137 	    ("%s: non-pollable sim", __func__));
3138 	while (--timeout > 0) {
3139 		xpt_sim_poll(start_ccb->ccb_h.path->bus->sim);
3140 		if ((start_ccb->ccb_h.status & CAM_STATUS_MASK)
3141 		    != CAM_REQ_INPROG)
3142 			break;
3143 		DELAY(100);
3144 	}
3145 
3146 	if (timeout == 0) {
3147 		/*
3148 		 * XXX Is it worth adding a sim_timeout entry
3149 		 * point so we can attempt recovery?  If
3150 		 * this is only used for dumps, I don't think
3151 		 * it is.
3152 		 */
3153 		start_ccb->ccb_h.status = CAM_CMD_TIMEOUT;
3154 	}
3155 }
3156 
3157 /*
3158  * Schedule a peripheral driver to receive a ccb when its
3159  * target device has space for more transactions.
3160  */
3161 void
xpt_schedule(struct cam_periph * periph,uint32_t new_priority)3162 xpt_schedule(struct cam_periph *periph, uint32_t new_priority)
3163 {
3164 
3165 	CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n"));
3166 	cam_periph_assert(periph, MA_OWNED);
3167 	if (new_priority < periph->scheduled_priority) {
3168 		periph->scheduled_priority = new_priority;
3169 		xpt_run_allocq(periph, 0);
3170 	}
3171 }
3172 
3173 /*
3174  * Schedule a device to run on a given queue.
3175  * If the device was inserted as a new entry on the queue,
3176  * return 1 meaning the device queue should be run. If we
3177  * were already queued, implying someone else has already
3178  * started the queue, return 0 so the caller doesn't attempt
3179  * to run the queue.
3180  */
3181 static int
xpt_schedule_dev(struct camq * queue,cam_pinfo * pinfo,uint32_t new_priority)3182 xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo,
3183 		 uint32_t new_priority)
3184 {
3185 	int retval;
3186 	uint32_t old_priority;
3187 
3188 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n"));
3189 
3190 	old_priority = pinfo->priority;
3191 
3192 	/*
3193 	 * Are we already queued?
3194 	 */
3195 	if (pinfo->index != CAM_UNQUEUED_INDEX) {
3196 		/* Simply reorder based on new priority */
3197 		if (new_priority < old_priority) {
3198 			camq_change_priority(queue, pinfo->index,
3199 					     new_priority);
3200 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3201 					("changed priority to %d\n",
3202 					 new_priority));
3203 			retval = 1;
3204 		} else
3205 			retval = 0;
3206 	} else {
3207 		/* New entry on the queue */
3208 		if (new_priority < old_priority)
3209 			pinfo->priority = new_priority;
3210 
3211 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3212 				("Inserting onto queue\n"));
3213 		pinfo->generation = ++queue->generation;
3214 		camq_insert(queue, pinfo);
3215 		retval = 1;
3216 	}
3217 	return (retval);
3218 }
3219 
3220 static void
xpt_run_allocq_task(void * context,int pending)3221 xpt_run_allocq_task(void *context, int pending)
3222 {
3223 	struct cam_periph *periph = context;
3224 
3225 	cam_periph_lock(periph);
3226 	periph->flags &= ~CAM_PERIPH_RUN_TASK;
3227 	xpt_run_allocq(periph, 1);
3228 	cam_periph_unlock(periph);
3229 	cam_periph_release(periph);
3230 }
3231 
3232 static void
xpt_run_allocq(struct cam_periph * periph,int sleep)3233 xpt_run_allocq(struct cam_periph *periph, int sleep)
3234 {
3235 	struct cam_ed	*device;
3236 	union ccb	*ccb;
3237 	uint32_t	 prio;
3238 
3239 	cam_periph_assert(periph, MA_OWNED);
3240 	if (periph->periph_allocating)
3241 		return;
3242 	cam_periph_doacquire(periph);
3243 	periph->periph_allocating = 1;
3244 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_allocq(%p)\n", periph));
3245 	device = periph->path->device;
3246 	ccb = NULL;
3247 restart:
3248 	while ((prio = min(periph->scheduled_priority,
3249 	    periph->immediate_priority)) != CAM_PRIORITY_NONE &&
3250 	    (periph->periph_allocated - (ccb != NULL ? 1 : 0) <
3251 	     device->ccbq.total_openings || prio <= CAM_PRIORITY_OOB)) {
3252 		if (ccb == NULL &&
3253 		    (ccb = xpt_get_ccb_nowait(periph)) == NULL) {
3254 			if (sleep) {
3255 				ccb = xpt_get_ccb(periph);
3256 				goto restart;
3257 			}
3258 			if (periph->flags & CAM_PERIPH_RUN_TASK)
3259 				break;
3260 			cam_periph_doacquire(periph);
3261 			periph->flags |= CAM_PERIPH_RUN_TASK;
3262 			taskqueue_enqueue(xsoftc.xpt_taskq,
3263 			    &periph->periph_run_task);
3264 			break;
3265 		}
3266 		xpt_setup_ccb(&ccb->ccb_h, periph->path, prio);
3267 		if (prio == periph->immediate_priority) {
3268 			periph->immediate_priority = CAM_PRIORITY_NONE;
3269 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3270 					("waking cam_periph_getccb()\n"));
3271 			SLIST_INSERT_HEAD(&periph->ccb_list, &ccb->ccb_h,
3272 					  periph_links.sle);
3273 			wakeup(&periph->ccb_list);
3274 		} else {
3275 			periph->scheduled_priority = CAM_PRIORITY_NONE;
3276 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3277 					("calling periph_start()\n"));
3278 			periph->periph_start(periph, ccb);
3279 		}
3280 		ccb = NULL;
3281 	}
3282 	if (ccb != NULL)
3283 		xpt_release_ccb(ccb);
3284 	periph->periph_allocating = 0;
3285 	cam_periph_release_locked(periph);
3286 }
3287 
3288 static void
xpt_run_devq(struct cam_devq * devq)3289 xpt_run_devq(struct cam_devq *devq)
3290 {
3291 	struct mtx *mtx;
3292 
3293 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_devq\n"));
3294 
3295 	devq->send_queue.qfrozen_cnt++;
3296 	while ((devq->send_queue.entries > 0)
3297 	    && (devq->send_openings > 0)
3298 	    && (devq->send_queue.qfrozen_cnt <= 1)) {
3299 		struct	cam_ed *device;
3300 		union ccb *work_ccb;
3301 		struct	cam_sim *sim;
3302 		struct xpt_proto *proto;
3303 
3304 		device = (struct cam_ed *)camq_remove(&devq->send_queue,
3305 							   CAMQ_HEAD);
3306 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3307 				("running device %p\n", device));
3308 
3309 		work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD);
3310 		if (work_ccb == NULL) {
3311 			printf("device on run queue with no ccbs???\n");
3312 			continue;
3313 		}
3314 
3315 		if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) {
3316 			mtx_lock(&xsoftc.xpt_highpower_lock);
3317 		 	if (xsoftc.num_highpower <= 0) {
3318 				/*
3319 				 * We got a high power command, but we
3320 				 * don't have any available slots.  Freeze
3321 				 * the device queue until we have a slot
3322 				 * available.
3323 				 */
3324 				xpt_freeze_devq_device(device, 1);
3325 				STAILQ_INSERT_TAIL(&xsoftc.highpowerq, device,
3326 						   highpowerq_entry);
3327 
3328 				mtx_unlock(&xsoftc.xpt_highpower_lock);
3329 				continue;
3330 			} else {
3331 				/*
3332 				 * Consume a high power slot while
3333 				 * this ccb runs.
3334 				 */
3335 				xsoftc.num_highpower--;
3336 			}
3337 			mtx_unlock(&xsoftc.xpt_highpower_lock);
3338 		}
3339 		cam_ccbq_remove_ccb(&device->ccbq, work_ccb);
3340 		cam_ccbq_send_ccb(&device->ccbq, work_ccb);
3341 		devq->send_openings--;
3342 		devq->send_active++;
3343 		xpt_schedule_devq(devq, device);
3344 		mtx_unlock(&devq->send_mtx);
3345 
3346 		if ((work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0) {
3347 			/*
3348 			 * The client wants to freeze the queue
3349 			 * after this CCB is sent.
3350 			 */
3351 			xpt_freeze_devq(work_ccb->ccb_h.path, 1);
3352 		}
3353 
3354 		/* In Target mode, the peripheral driver knows best... */
3355 		if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) {
3356 			if ((device->inq_flags & SID_CmdQue) != 0
3357 			 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE)
3358 				work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID;
3359 			else
3360 				/*
3361 				 * Clear this in case of a retried CCB that
3362 				 * failed due to a rejected tag.
3363 				 */
3364 				work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID;
3365 		}
3366 
3367 		KASSERT(device == work_ccb->ccb_h.path->device,
3368 		    ("device (%p) / path->device (%p) mismatch",
3369 			device, work_ccb->ccb_h.path->device));
3370 		proto = xpt_proto_find(device->protocol);
3371 		if (proto && proto->ops->debug_out)
3372 			proto->ops->debug_out(work_ccb);
3373 
3374 		/*
3375 		 * Device queues can be shared among multiple SIM instances
3376 		 * that reside on different buses.  Use the SIM from the
3377 		 * queued device, rather than the one from the calling bus.
3378 		 */
3379 		sim = device->sim;
3380 		mtx = sim->mtx;
3381 		if (mtx && !mtx_owned(mtx))
3382 			mtx_lock(mtx);
3383 		else
3384 			mtx = NULL;
3385 		work_ccb->ccb_h.qos.periph_data = cam_iosched_now();
3386 		(*(sim->sim_action))(sim, work_ccb);
3387 		if (mtx)
3388 			mtx_unlock(mtx);
3389 		mtx_lock(&devq->send_mtx);
3390 	}
3391 	devq->send_queue.qfrozen_cnt--;
3392 }
3393 
3394 /*
3395  * This function merges stuff from the src ccb into the dst ccb, while keeping
3396  * important fields in the dst ccb constant.
3397  */
3398 void
xpt_merge_ccb(union ccb * dst_ccb,union ccb * src_ccb)3399 xpt_merge_ccb(union ccb *dst_ccb, union ccb *src_ccb)
3400 {
3401 
3402 	/*
3403 	 * Pull fields that are valid for peripheral drivers to set
3404 	 * into the dst CCB along with the CCB "payload".
3405 	 */
3406 	dst_ccb->ccb_h.retry_count = src_ccb->ccb_h.retry_count;
3407 	dst_ccb->ccb_h.func_code = src_ccb->ccb_h.func_code;
3408 	dst_ccb->ccb_h.timeout = src_ccb->ccb_h.timeout;
3409 	dst_ccb->ccb_h.flags = src_ccb->ccb_h.flags;
3410 	bcopy(&(&src_ccb->ccb_h)[1], &(&dst_ccb->ccb_h)[1],
3411 	      sizeof(union ccb) - sizeof(struct ccb_hdr));
3412 }
3413 
3414 void
xpt_setup_ccb_flags(struct ccb_hdr * ccb_h,struct cam_path * path,uint32_t priority,uint32_t flags)3415 xpt_setup_ccb_flags(struct ccb_hdr *ccb_h, struct cam_path *path,
3416 		    uint32_t priority, uint32_t flags)
3417 {
3418 
3419 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n"));
3420 	ccb_h->pinfo.priority = priority;
3421 	ccb_h->path = path;
3422 	ccb_h->path_id = path->bus->path_id;
3423 	if (path->target)
3424 		ccb_h->target_id = path->target->target_id;
3425 	else
3426 		ccb_h->target_id = CAM_TARGET_WILDCARD;
3427 	if (path->device) {
3428 		ccb_h->target_lun = path->device->lun_id;
3429 		ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation;
3430 	} else {
3431 		ccb_h->target_lun = CAM_TARGET_WILDCARD;
3432 	}
3433 	ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
3434 	ccb_h->flags = flags;
3435 	ccb_h->xflags = 0;
3436 }
3437 
3438 void
xpt_setup_ccb(struct ccb_hdr * ccb_h,struct cam_path * path,uint32_t priority)3439 xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, uint32_t priority)
3440 {
3441 	xpt_setup_ccb_flags(ccb_h, path, priority, /*flags*/ 0);
3442 }
3443 
3444 /* Path manipulation functions */
3445 cam_status
xpt_create_path(struct cam_path ** new_path_ptr,struct cam_periph * perph,path_id_t path_id,target_id_t target_id,lun_id_t lun_id)3446 xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph,
3447 		path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3448 {
3449 	struct	   cam_path *path;
3450 	cam_status status;
3451 
3452 	path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT);
3453 
3454 	if (path == NULL) {
3455 		status = CAM_RESRC_UNAVAIL;
3456 		return(status);
3457 	}
3458 	status = xpt_compile_path(path, perph, path_id, target_id, lun_id);
3459 	if (status != CAM_REQ_CMP) {
3460 		free(path, M_CAMPATH);
3461 		path = NULL;
3462 	}
3463 	*new_path_ptr = path;
3464 	return (status);
3465 }
3466 
3467 cam_status
xpt_create_path_unlocked(struct cam_path ** new_path_ptr,struct cam_periph * periph,path_id_t path_id,target_id_t target_id,lun_id_t lun_id)3468 xpt_create_path_unlocked(struct cam_path **new_path_ptr,
3469 			 struct cam_periph *periph, path_id_t path_id,
3470 			 target_id_t target_id, lun_id_t lun_id)
3471 {
3472 
3473 	return (xpt_create_path(new_path_ptr, periph, path_id, target_id,
3474 	    lun_id));
3475 }
3476 
3477 cam_status
xpt_compile_path(struct cam_path * new_path,struct cam_periph * perph,path_id_t path_id,target_id_t target_id,lun_id_t lun_id)3478 xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph,
3479 		 path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3480 {
3481 	struct	     cam_eb *bus;
3482 	struct	     cam_et *target;
3483 	struct	     cam_ed *device;
3484 	cam_status   status;
3485 
3486 	status = CAM_REQ_CMP;	/* Completed without error */
3487 	target = NULL;		/* Wildcarded */
3488 	device = NULL;		/* Wildcarded */
3489 
3490 	/*
3491 	 * We will potentially modify the EDT, so block interrupts
3492 	 * that may attempt to create cam paths.
3493 	 */
3494 	bus = xpt_find_bus(path_id);
3495 	if (bus == NULL) {
3496 		status = CAM_PATH_INVALID;
3497 	} else {
3498 		xpt_lock_buses();
3499 		mtx_lock(&bus->eb_mtx);
3500 		target = xpt_find_target(bus, target_id);
3501 		if (target == NULL) {
3502 			/* Create one */
3503 			struct cam_et *new_target;
3504 
3505 			new_target = xpt_alloc_target(bus, target_id);
3506 			if (new_target == NULL) {
3507 				status = CAM_RESRC_UNAVAIL;
3508 			} else {
3509 				target = new_target;
3510 			}
3511 		}
3512 		xpt_unlock_buses();
3513 		if (target != NULL) {
3514 			device = xpt_find_device(target, lun_id);
3515 			if (device == NULL) {
3516 				/* Create one */
3517 				struct cam_ed *new_device;
3518 
3519 				new_device =
3520 				    (*(bus->xport->ops->alloc_device))(bus,
3521 								       target,
3522 								       lun_id);
3523 				if (new_device == NULL) {
3524 					status = CAM_RESRC_UNAVAIL;
3525 				} else {
3526 					device = new_device;
3527 				}
3528 			}
3529 		}
3530 		mtx_unlock(&bus->eb_mtx);
3531 	}
3532 
3533 	/*
3534 	 * Only touch the user's data if we are successful.
3535 	 */
3536 	if (status == CAM_REQ_CMP) {
3537 		new_path->periph = perph;
3538 		new_path->bus = bus;
3539 		new_path->target = target;
3540 		new_path->device = device;
3541 		CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n"));
3542 	} else {
3543 		if (device != NULL)
3544 			xpt_release_device(device);
3545 		if (target != NULL)
3546 			xpt_release_target(target);
3547 		if (bus != NULL)
3548 			xpt_release_bus(bus);
3549 	}
3550 	return (status);
3551 }
3552 
3553 int
xpt_clone_path(struct cam_path ** new_path_ptr,struct cam_path * path)3554 xpt_clone_path(struct cam_path **new_path_ptr, struct cam_path *path)
3555 {
3556 	struct	   cam_path *new_path;
3557 
3558 	new_path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT);
3559 	if (new_path == NULL)
3560 		return (ENOMEM);
3561 	*new_path = *path;
3562 	if (path->bus != NULL)
3563 		xpt_acquire_bus(path->bus);
3564 	if (path->target != NULL)
3565 		xpt_acquire_target(path->target);
3566 	if (path->device != NULL)
3567 		xpt_acquire_device(path->device);
3568 	*new_path_ptr = new_path;
3569 	return (0);
3570 }
3571 
3572 void
xpt_release_path(struct cam_path * path)3573 xpt_release_path(struct cam_path *path)
3574 {
3575 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n"));
3576 	if (path->device != NULL) {
3577 		xpt_release_device(path->device);
3578 		path->device = NULL;
3579 	}
3580 	if (path->target != NULL) {
3581 		xpt_release_target(path->target);
3582 		path->target = NULL;
3583 	}
3584 	if (path->bus != NULL) {
3585 		xpt_release_bus(path->bus);
3586 		path->bus = NULL;
3587 	}
3588 }
3589 
3590 void
xpt_free_path(struct cam_path * path)3591 xpt_free_path(struct cam_path *path)
3592 {
3593 
3594 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n"));
3595 	xpt_release_path(path);
3596 	free(path, M_CAMPATH);
3597 }
3598 
3599 void
xpt_path_counts(struct cam_path * path,uint32_t * bus_ref,uint32_t * periph_ref,uint32_t * target_ref,uint32_t * device_ref)3600 xpt_path_counts(struct cam_path *path, uint32_t *bus_ref,
3601     uint32_t *periph_ref, uint32_t *target_ref, uint32_t *device_ref)
3602 {
3603 
3604 	xpt_lock_buses();
3605 	if (bus_ref) {
3606 		if (path->bus)
3607 			*bus_ref = path->bus->refcount;
3608 		else
3609 			*bus_ref = 0;
3610 	}
3611 	if (periph_ref) {
3612 		if (path->periph)
3613 			*periph_ref = path->periph->refcount;
3614 		else
3615 			*periph_ref = 0;
3616 	}
3617 	xpt_unlock_buses();
3618 	if (target_ref) {
3619 		if (path->target)
3620 			*target_ref = path->target->refcount;
3621 		else
3622 			*target_ref = 0;
3623 	}
3624 	if (device_ref) {
3625 		if (path->device)
3626 			*device_ref = path->device->refcount;
3627 		else
3628 			*device_ref = 0;
3629 	}
3630 }
3631 
3632 /*
3633  * Return -1 for failure, 0 for exact match, 1 for match with wildcards
3634  * in path1, 2 for match with wildcards in path2.
3635  */
3636 int
xpt_path_comp(struct cam_path * path1,struct cam_path * path2)3637 xpt_path_comp(struct cam_path *path1, struct cam_path *path2)
3638 {
3639 	int retval = 0;
3640 
3641 	if (path1->bus != path2->bus) {
3642 		if (path1->bus->path_id == CAM_BUS_WILDCARD)
3643 			retval = 1;
3644 		else if (path2->bus->path_id == CAM_BUS_WILDCARD)
3645 			retval = 2;
3646 		else
3647 			return (-1);
3648 	}
3649 	if (path1->target != path2->target) {
3650 		if (path1->target->target_id == CAM_TARGET_WILDCARD) {
3651 			if (retval == 0)
3652 				retval = 1;
3653 		} else if (path2->target->target_id == CAM_TARGET_WILDCARD)
3654 			retval = 2;
3655 		else
3656 			return (-1);
3657 	}
3658 	if (path1->device != path2->device) {
3659 		if (path1->device->lun_id == CAM_LUN_WILDCARD) {
3660 			if (retval == 0)
3661 				retval = 1;
3662 		} else if (path2->device->lun_id == CAM_LUN_WILDCARD)
3663 			retval = 2;
3664 		else
3665 			return (-1);
3666 	}
3667 	return (retval);
3668 }
3669 
3670 int
xpt_path_comp_dev(struct cam_path * path,struct cam_ed * dev)3671 xpt_path_comp_dev(struct cam_path *path, struct cam_ed *dev)
3672 {
3673 	int retval = 0;
3674 
3675 	if (path->bus != dev->target->bus) {
3676 		if (path->bus->path_id == CAM_BUS_WILDCARD)
3677 			retval = 1;
3678 		else if (dev->target->bus->path_id == CAM_BUS_WILDCARD)
3679 			retval = 2;
3680 		else
3681 			return (-1);
3682 	}
3683 	if (path->target != dev->target) {
3684 		if (path->target->target_id == CAM_TARGET_WILDCARD) {
3685 			if (retval == 0)
3686 				retval = 1;
3687 		} else if (dev->target->target_id == CAM_TARGET_WILDCARD)
3688 			retval = 2;
3689 		else
3690 			return (-1);
3691 	}
3692 	if (path->device != dev) {
3693 		if (path->device->lun_id == CAM_LUN_WILDCARD) {
3694 			if (retval == 0)
3695 				retval = 1;
3696 		} else if (dev->lun_id == CAM_LUN_WILDCARD)
3697 			retval = 2;
3698 		else
3699 			return (-1);
3700 	}
3701 	return (retval);
3702 }
3703 
3704 void
xpt_print_path(struct cam_path * path)3705 xpt_print_path(struct cam_path *path)
3706 {
3707 	struct sbuf sb;
3708 	char buffer[XPT_PRINT_LEN];
3709 
3710 	sbuf_new(&sb, buffer, XPT_PRINT_LEN, SBUF_FIXEDLEN);
3711 	xpt_path_sbuf(path, &sb);
3712 	sbuf_finish(&sb);
3713 	printf("%s", sbuf_data(&sb));
3714 	sbuf_delete(&sb);
3715 }
3716 
3717 static void
xpt_device_sbuf(struct cam_ed * device,struct sbuf * sb)3718 xpt_device_sbuf(struct cam_ed *device, struct sbuf *sb)
3719 {
3720 	if (device == NULL)
3721 		sbuf_cat(sb, "(nopath): ");
3722 	else {
3723 		sbuf_printf(sb, "(noperiph:%s%d:%d:%d:%jx): ",
3724 		    device->sim->sim_name,
3725 		    device->sim->unit_number,
3726 		    device->sim->bus_id,
3727 		    device->target->target_id,
3728 		    (uintmax_t)device->lun_id);
3729 	}
3730 }
3731 
3732 void
xpt_print(struct cam_path * path,const char * fmt,...)3733 xpt_print(struct cam_path *path, const char *fmt, ...)
3734 {
3735 	va_list ap;
3736 	struct sbuf sb;
3737 	char buffer[XPT_PRINT_LEN];
3738 
3739 	sbuf_new(&sb, buffer, XPT_PRINT_LEN, SBUF_FIXEDLEN);
3740 
3741 	xpt_path_sbuf(path, &sb);
3742 	va_start(ap, fmt);
3743 	sbuf_vprintf(&sb, fmt, ap);
3744 	va_end(ap);
3745 
3746 	sbuf_finish(&sb);
3747 	printf("%s", sbuf_data(&sb));
3748 	sbuf_delete(&sb);
3749 }
3750 
3751 char *
xpt_path_string(struct cam_path * path,char * str,size_t str_len)3752 xpt_path_string(struct cam_path *path, char *str, size_t str_len)
3753 {
3754 	struct sbuf sb;
3755 
3756 	sbuf_new(&sb, str, str_len, 0);
3757 	xpt_path_sbuf(path, &sb);
3758 	sbuf_finish(&sb);
3759 	return (str);
3760 }
3761 
3762 void
xpt_path_sbuf(struct cam_path * path,struct sbuf * sb)3763 xpt_path_sbuf(struct cam_path *path, struct sbuf *sb)
3764 {
3765 
3766 	if (path == NULL)
3767 		sbuf_cat(sb, "(nopath): ");
3768 	else {
3769 		if (path->periph != NULL)
3770 			sbuf_printf(sb, "(%s%d:", path->periph->periph_name,
3771 				    path->periph->unit_number);
3772 		else
3773 			sbuf_cat(sb, "(noperiph:");
3774 
3775 		if (path->bus != NULL)
3776 			sbuf_printf(sb, "%s%d:%d:", path->bus->sim->sim_name,
3777 				    path->bus->sim->unit_number,
3778 				    path->bus->sim->bus_id);
3779 		else
3780 			sbuf_cat(sb, "nobus:");
3781 
3782 		if (path->target != NULL)
3783 			sbuf_printf(sb, "%d:", path->target->target_id);
3784 		else
3785 			sbuf_cat(sb, "X:");
3786 
3787 		if (path->device != NULL)
3788 			sbuf_printf(sb, "%jx): ",
3789 			    (uintmax_t)path->device->lun_id);
3790 		else
3791 			sbuf_cat(sb, "X): ");
3792 	}
3793 }
3794 
3795 path_id_t
xpt_path_path_id(struct cam_path * path)3796 xpt_path_path_id(struct cam_path *path)
3797 {
3798 	return(path->bus->path_id);
3799 }
3800 
3801 target_id_t
xpt_path_target_id(struct cam_path * path)3802 xpt_path_target_id(struct cam_path *path)
3803 {
3804 	if (path->target != NULL)
3805 		return (path->target->target_id);
3806 	else
3807 		return (CAM_TARGET_WILDCARD);
3808 }
3809 
3810 lun_id_t
xpt_path_lun_id(struct cam_path * path)3811 xpt_path_lun_id(struct cam_path *path)
3812 {
3813 	if (path->device != NULL)
3814 		return (path->device->lun_id);
3815 	else
3816 		return (CAM_LUN_WILDCARD);
3817 }
3818 
3819 struct cam_sim *
xpt_path_sim(struct cam_path * path)3820 xpt_path_sim(struct cam_path *path)
3821 {
3822 
3823 	return (path->bus->sim);
3824 }
3825 
3826 struct cam_periph*
xpt_path_periph(struct cam_path * path)3827 xpt_path_periph(struct cam_path *path)
3828 {
3829 
3830 	return (path->periph);
3831 }
3832 
3833 /*
3834  * Release a CAM control block for the caller.  Remit the cost of the structure
3835  * to the device referenced by the path.  If the this device had no 'credits'
3836  * and peripheral drivers have registered async callbacks for this notification
3837  * call them now.
3838  */
3839 void
xpt_release_ccb(union ccb * free_ccb)3840 xpt_release_ccb(union ccb *free_ccb)
3841 {
3842 	struct	 cam_ed *device;
3843 	struct	 cam_periph *periph;
3844 
3845 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n"));
3846 	xpt_path_assert(free_ccb->ccb_h.path, MA_OWNED);
3847 	device = free_ccb->ccb_h.path->device;
3848 	periph = free_ccb->ccb_h.path->periph;
3849 
3850 	xpt_free_ccb(free_ccb);
3851 	periph->periph_allocated--;
3852 	cam_ccbq_release_opening(&device->ccbq);
3853 	xpt_run_allocq(periph, 0);
3854 }
3855 
3856 /* Functions accessed by SIM drivers */
3857 
3858 static struct xpt_xport_ops xport_default_ops = {
3859 	.alloc_device = xpt_alloc_device_default,
3860 	.action = xpt_action_default,
3861 	.async = xpt_dev_async_default,
3862 };
3863 static struct xpt_xport xport_default = {
3864 	.xport = XPORT_UNKNOWN,
3865 	.name = "unknown",
3866 	.ops = &xport_default_ops,
3867 };
3868 
3869 CAM_XPT_XPORT(xport_default);
3870 
3871 /*
3872  * A sim structure, listing the SIM entry points and instance
3873  * identification info is passed to xpt_bus_register to hook the SIM
3874  * into the CAM framework.  xpt_bus_register creates a cam_eb entry
3875  * for this new bus and places it in the array of buses and assigns
3876  * it a path_id.  The path_id may be influenced by "hard wiring"
3877  * information specified by the user.  Once interrupt services are
3878  * available, the bus will be probed.
3879  */
3880 int
xpt_bus_register(struct cam_sim * sim,device_t parent,uint32_t bus)3881 xpt_bus_register(struct cam_sim *sim, device_t parent, uint32_t bus)
3882 {
3883 	struct cam_eb *new_bus;
3884 	struct cam_eb *old_bus;
3885 	struct ccb_pathinq cpi;
3886 	struct cam_path *path;
3887 	cam_status status;
3888 
3889 	sim->bus_id = bus;
3890 	new_bus = (struct cam_eb *)malloc(sizeof(*new_bus),
3891 					  M_CAMXPT, M_NOWAIT|M_ZERO);
3892 	if (new_bus == NULL) {
3893 		/* Couldn't satisfy request */
3894 		return (ENOMEM);
3895 	}
3896 
3897 	mtx_init(&new_bus->eb_mtx, "CAM bus lock", NULL, MTX_DEF);
3898 	TAILQ_INIT(&new_bus->et_entries);
3899 	cam_sim_hold(sim);
3900 	new_bus->sim = sim;
3901 	timevalclear(&new_bus->last_reset);
3902 	new_bus->flags = 0;
3903 	new_bus->refcount = 1;	/* Held until a bus_deregister event */
3904 	new_bus->generation = 0;
3905 	new_bus->parent_dev = parent;
3906 
3907 	xpt_lock_buses();
3908 	sim->path_id = new_bus->path_id =
3909 	    xptpathid(sim->sim_name, sim->unit_number, sim->bus_id);
3910 	old_bus = TAILQ_FIRST(&xsoftc.xpt_busses);
3911 	while (old_bus != NULL
3912 	    && old_bus->path_id < new_bus->path_id)
3913 		old_bus = TAILQ_NEXT(old_bus, links);
3914 	if (old_bus != NULL)
3915 		TAILQ_INSERT_BEFORE(old_bus, new_bus, links);
3916 	else
3917 		TAILQ_INSERT_TAIL(&xsoftc.xpt_busses, new_bus, links);
3918 	xsoftc.bus_generation++;
3919 	xpt_unlock_buses();
3920 
3921 	/*
3922 	 * Set a default transport so that a PATH_INQ can be issued to
3923 	 * the SIM.  This will then allow for probing and attaching of
3924 	 * a more appropriate transport.
3925 	 */
3926 	new_bus->xport = &xport_default;
3927 
3928 	status = xpt_create_path(&path, /*periph*/NULL, sim->path_id,
3929 				  CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
3930 	if (status != CAM_REQ_CMP) {
3931 		xpt_release_bus(new_bus);
3932 		return (ENOMEM);
3933 	}
3934 
3935 	xpt_path_inq(&cpi, path);
3936 
3937 	/*
3938 	 * Use the results of PATH_INQ to pick a transport.  Note that
3939 	 * the xpt bus (which uses XPORT_UNSPECIFIED) always uses
3940 	 * xport_default instead of a transport from
3941 	 * cam_xpt_port_set.
3942 	 */
3943 	if (cam_ccb_success((union ccb *)&cpi) &&
3944 	    cpi.transport != XPORT_UNSPECIFIED) {
3945 		struct xpt_xport **xpt;
3946 
3947 		SET_FOREACH(xpt, cam_xpt_xport_set) {
3948 			if ((*xpt)->xport == cpi.transport) {
3949 				new_bus->xport = *xpt;
3950 				break;
3951 			}
3952 		}
3953 		if (new_bus->xport == &xport_default) {
3954 			xpt_print(path,
3955 			    "No transport found for %d\n", cpi.transport);
3956 			xpt_release_bus(new_bus);
3957 			xpt_free_path(path);
3958 			return (EINVAL);
3959 		}
3960 	}
3961 
3962 	/* Notify interested parties */
3963 	if (sim->path_id != CAM_XPT_PATH_ID) {
3964 		xpt_async(AC_PATH_REGISTERED, path, &cpi);
3965 		if ((cpi.hba_misc & PIM_NOSCAN) == 0) {
3966 			union	ccb *scan_ccb;
3967 
3968 			/* Initiate bus rescan. */
3969 			scan_ccb = xpt_alloc_ccb_nowait();
3970 			if (scan_ccb != NULL) {
3971 				scan_ccb->ccb_h.path = path;
3972 				scan_ccb->ccb_h.func_code = XPT_SCAN_BUS;
3973 				scan_ccb->crcn.flags = 0;
3974 				xpt_rescan(scan_ccb);
3975 			} else {
3976 				xpt_print(path,
3977 					  "Can't allocate CCB to scan bus\n");
3978 				xpt_free_path(path);
3979 			}
3980 		} else
3981 			xpt_free_path(path);
3982 	} else
3983 		xpt_free_path(path);
3984 	return (CAM_SUCCESS);
3985 }
3986 
3987 int
xpt_bus_deregister(path_id_t pathid)3988 xpt_bus_deregister(path_id_t pathid)
3989 {
3990 	struct cam_path bus_path;
3991 	cam_status status;
3992 
3993 	status = xpt_compile_path(&bus_path, NULL, pathid,
3994 				  CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
3995 	if (status != CAM_REQ_CMP)
3996 		return (ENOMEM);
3997 
3998 	xpt_async(AC_LOST_DEVICE, &bus_path, NULL);
3999 	xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL);
4000 
4001 	/* Release the reference count held while registered. */
4002 	xpt_release_bus(bus_path.bus);
4003 	xpt_release_path(&bus_path);
4004 
4005 	return (CAM_SUCCESS);
4006 }
4007 
4008 static path_id_t
xptnextfreepathid(void)4009 xptnextfreepathid(void)
4010 {
4011 	struct cam_eb *bus;
4012 	path_id_t pathid;
4013 	const char *strval;
4014 
4015 	mtx_assert(&xsoftc.xpt_topo_lock, MA_OWNED);
4016 	pathid = 0;
4017 	bus = TAILQ_FIRST(&xsoftc.xpt_busses);
4018 retry:
4019 	/* Find an unoccupied pathid */
4020 	while (bus != NULL && bus->path_id <= pathid) {
4021 		if (bus->path_id == pathid)
4022 			pathid++;
4023 		bus = TAILQ_NEXT(bus, links);
4024 	}
4025 
4026 	/*
4027 	 * Ensure that this pathid is not reserved for
4028 	 * a bus that may be registered in the future.
4029 	 */
4030 	if (resource_string_value("scbus", pathid, "at", &strval) == 0) {
4031 		++pathid;
4032 		/* Start the search over */
4033 		goto retry;
4034 	}
4035 	return (pathid);
4036 }
4037 
4038 static path_id_t
xptpathid(const char * sim_name,int sim_unit,int sim_bus)4039 xptpathid(const char *sim_name, int sim_unit, int sim_bus)
4040 {
4041 	path_id_t pathid;
4042 	int i, dunit, val;
4043 	char buf[32];
4044 	const char *dname;
4045 
4046 	pathid = CAM_XPT_PATH_ID;
4047 	snprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit);
4048 	if (strcmp(buf, "xpt0") == 0 && sim_bus == 0)
4049 		return (pathid);
4050 	i = 0;
4051 	while ((resource_find_match(&i, &dname, &dunit, "at", buf)) == 0) {
4052 		if (strcmp(dname, "scbus")) {
4053 			/* Avoid a bit of foot shooting. */
4054 			continue;
4055 		}
4056 		if (dunit < 0)		/* unwired?! */
4057 			continue;
4058 		if (resource_int_value("scbus", dunit, "bus", &val) == 0) {
4059 			if (sim_bus == val) {
4060 				pathid = dunit;
4061 				break;
4062 			}
4063 		} else if (sim_bus == 0) {
4064 			/* Unspecified matches bus 0 */
4065 			pathid = dunit;
4066 			break;
4067 		} else {
4068 			printf(
4069 "Ambiguous scbus configuration for %s%d bus %d, cannot wire down.  The kernel\n"
4070 "config entry for scbus%d should specify a controller bus.\n"
4071 "Scbus will be assigned dynamically.\n",
4072 			    sim_name, sim_unit, sim_bus, dunit);
4073 			break;
4074 		}
4075 	}
4076 
4077 	if (pathid == CAM_XPT_PATH_ID)
4078 		pathid = xptnextfreepathid();
4079 	return (pathid);
4080 }
4081 
4082 static const char *
xpt_async_string(uint32_t async_code)4083 xpt_async_string(uint32_t async_code)
4084 {
4085 
4086 	switch (async_code) {
4087 	case AC_BUS_RESET: return ("AC_BUS_RESET");
4088 	case AC_UNSOL_RESEL: return ("AC_UNSOL_RESEL");
4089 	case AC_SCSI_AEN: return ("AC_SCSI_AEN");
4090 	case AC_SENT_BDR: return ("AC_SENT_BDR");
4091 	case AC_PATH_REGISTERED: return ("AC_PATH_REGISTERED");
4092 	case AC_PATH_DEREGISTERED: return ("AC_PATH_DEREGISTERED");
4093 	case AC_FOUND_DEVICE: return ("AC_FOUND_DEVICE");
4094 	case AC_LOST_DEVICE: return ("AC_LOST_DEVICE");
4095 	case AC_TRANSFER_NEG: return ("AC_TRANSFER_NEG");
4096 	case AC_INQ_CHANGED: return ("AC_INQ_CHANGED");
4097 	case AC_GETDEV_CHANGED: return ("AC_GETDEV_CHANGED");
4098 	case AC_CONTRACT: return ("AC_CONTRACT");
4099 	case AC_ADVINFO_CHANGED: return ("AC_ADVINFO_CHANGED");
4100 	case AC_UNIT_ATTENTION: return ("AC_UNIT_ATTENTION");
4101 	}
4102 	return ("AC_UNKNOWN");
4103 }
4104 
4105 static int
xpt_async_size(uint32_t async_code)4106 xpt_async_size(uint32_t async_code)
4107 {
4108 
4109 	switch (async_code) {
4110 	case AC_BUS_RESET: return (0);
4111 	case AC_UNSOL_RESEL: return (0);
4112 	case AC_SCSI_AEN: return (0);
4113 	case AC_SENT_BDR: return (0);
4114 	case AC_PATH_REGISTERED: return (sizeof(struct ccb_pathinq));
4115 	case AC_PATH_DEREGISTERED: return (0);
4116 	case AC_FOUND_DEVICE: return (sizeof(struct ccb_getdev));
4117 	case AC_LOST_DEVICE: return (0);
4118 	case AC_TRANSFER_NEG: return (sizeof(struct ccb_trans_settings));
4119 	case AC_INQ_CHANGED: return (0);
4120 	case AC_GETDEV_CHANGED: return (0);
4121 	case AC_CONTRACT: return (sizeof(struct ac_contract));
4122 	case AC_ADVINFO_CHANGED: return (-1);
4123 	case AC_UNIT_ATTENTION: return (sizeof(struct ccb_scsiio));
4124 	}
4125 	return (0);
4126 }
4127 
4128 static int
xpt_async_process_dev(struct cam_ed * device,void * arg)4129 xpt_async_process_dev(struct cam_ed *device, void *arg)
4130 {
4131 	union ccb *ccb = arg;
4132 	struct cam_path *path = ccb->ccb_h.path;
4133 	void *async_arg = ccb->casync.async_arg_ptr;
4134 	uint32_t async_code = ccb->casync.async_code;
4135 	bool relock;
4136 
4137 	if (path->device != device
4138 	 && path->device->lun_id != CAM_LUN_WILDCARD
4139 	 && device->lun_id != CAM_LUN_WILDCARD)
4140 		return (1);
4141 
4142 	/*
4143 	 * The async callback could free the device.
4144 	 * If it is a broadcast async, it doesn't hold
4145 	 * device reference, so take our own reference.
4146 	 */
4147 	xpt_acquire_device(device);
4148 
4149 	/*
4150 	 * If async for specific device is to be delivered to
4151 	 * the wildcard client, take the specific device lock.
4152 	 * XXX: We may need a way for client to specify it.
4153 	 */
4154 	if ((device->lun_id == CAM_LUN_WILDCARD &&
4155 	     path->device->lun_id != CAM_LUN_WILDCARD) ||
4156 	    (device->target->target_id == CAM_TARGET_WILDCARD &&
4157 	     path->target->target_id != CAM_TARGET_WILDCARD) ||
4158 	    (device->target->bus->path_id == CAM_BUS_WILDCARD &&
4159 	     path->target->bus->path_id != CAM_BUS_WILDCARD)) {
4160 		mtx_unlock(&device->device_mtx);
4161 		xpt_path_lock(path);
4162 		relock = true;
4163 	} else
4164 		relock = false;
4165 
4166 	(*(device->target->bus->xport->ops->async))(async_code,
4167 	    device->target->bus, device->target, device, async_arg);
4168 	xpt_async_bcast(&device->asyncs, async_code, path, async_arg);
4169 
4170 	if (relock) {
4171 		xpt_path_unlock(path);
4172 		mtx_lock(&device->device_mtx);
4173 	}
4174 	xpt_release_device(device);
4175 	return (1);
4176 }
4177 
4178 static int
xpt_async_process_tgt(struct cam_et * target,void * arg)4179 xpt_async_process_tgt(struct cam_et *target, void *arg)
4180 {
4181 	union ccb *ccb = arg;
4182 	struct cam_path *path = ccb->ccb_h.path;
4183 
4184 	if (path->target != target
4185 	 && path->target->target_id != CAM_TARGET_WILDCARD
4186 	 && target->target_id != CAM_TARGET_WILDCARD)
4187 		return (1);
4188 
4189 	if (ccb->casync.async_code == AC_SENT_BDR) {
4190 		/* Update our notion of when the last reset occurred */
4191 		microtime(&target->last_reset);
4192 	}
4193 
4194 	return (xptdevicetraverse(target, NULL, xpt_async_process_dev, ccb));
4195 }
4196 
4197 static void
xpt_async_process(struct cam_periph * periph,union ccb * ccb)4198 xpt_async_process(struct cam_periph *periph, union ccb *ccb)
4199 {
4200 	struct cam_eb *bus;
4201 	struct cam_path *path;
4202 	void *async_arg;
4203 	uint32_t async_code;
4204 
4205 	path = ccb->ccb_h.path;
4206 	async_code = ccb->casync.async_code;
4207 	async_arg = ccb->casync.async_arg_ptr;
4208 	CAM_DEBUG(path, CAM_DEBUG_TRACE | CAM_DEBUG_INFO,
4209 	    ("xpt_async(%s)\n", xpt_async_string(async_code)));
4210 	bus = path->bus;
4211 
4212 	if (async_code == AC_BUS_RESET) {
4213 		/* Update our notion of when the last reset occurred */
4214 		microtime(&bus->last_reset);
4215 	}
4216 
4217 	xpttargettraverse(bus, NULL, xpt_async_process_tgt, ccb);
4218 
4219 	/*
4220 	 * If this wasn't a fully wildcarded async, tell all
4221 	 * clients that want all async events.
4222 	 */
4223 	if (bus != xpt_periph->path->bus) {
4224 		xpt_path_lock(xpt_periph->path);
4225 		xpt_async_process_dev(xpt_periph->path->device, ccb);
4226 		xpt_path_unlock(xpt_periph->path);
4227 	}
4228 
4229 	if (path->device != NULL && path->device->lun_id != CAM_LUN_WILDCARD)
4230 		xpt_release_devq(path, 1, TRUE);
4231 	else
4232 		xpt_release_simq(path->bus->sim, TRUE);
4233 	if (ccb->casync.async_arg_size > 0)
4234 		free(async_arg, M_CAMXPT);
4235 	xpt_free_path(path);
4236 	xpt_free_ccb(ccb);
4237 }
4238 
4239 static void
xpt_async_bcast(struct async_list * async_head,uint32_t async_code,struct cam_path * path,void * async_arg)4240 xpt_async_bcast(struct async_list *async_head,
4241 		uint32_t async_code,
4242 		struct cam_path *path, void *async_arg)
4243 {
4244 	struct async_node *cur_entry;
4245 	struct mtx *mtx;
4246 
4247 	cur_entry = SLIST_FIRST(async_head);
4248 	while (cur_entry != NULL) {
4249 		struct async_node *next_entry;
4250 		/*
4251 		 * Grab the next list entry before we call the current
4252 		 * entry's callback.  This is because the callback function
4253 		 * can delete its async callback entry.
4254 		 */
4255 		next_entry = SLIST_NEXT(cur_entry, links);
4256 		if ((cur_entry->event_enable & async_code) != 0) {
4257 			mtx = cur_entry->event_lock ?
4258 			    path->device->sim->mtx : NULL;
4259 			if (mtx)
4260 				mtx_lock(mtx);
4261 			cur_entry->callback(cur_entry->callback_arg,
4262 					    async_code, path,
4263 					    async_arg);
4264 			if (mtx)
4265 				mtx_unlock(mtx);
4266 		}
4267 		cur_entry = next_entry;
4268 	}
4269 }
4270 
4271 void
xpt_async(uint32_t async_code,struct cam_path * path,void * async_arg)4272 xpt_async(uint32_t async_code, struct cam_path *path, void *async_arg)
4273 {
4274 	union ccb *ccb;
4275 	int size;
4276 
4277 	ccb = xpt_alloc_ccb_nowait();
4278 	if (ccb == NULL) {
4279 		xpt_print(path, "Can't allocate CCB to send %s\n",
4280 		    xpt_async_string(async_code));
4281 		return;
4282 	}
4283 
4284 	if (xpt_clone_path(&ccb->ccb_h.path, path) != 0) {
4285 		xpt_print(path, "Can't allocate path to send %s\n",
4286 		    xpt_async_string(async_code));
4287 		xpt_free_ccb(ccb);
4288 		return;
4289 	}
4290 	ccb->ccb_h.path->periph = NULL;
4291 	ccb->ccb_h.func_code = XPT_ASYNC;
4292 	ccb->ccb_h.cbfcnp = xpt_async_process;
4293 	ccb->ccb_h.flags |= CAM_UNLOCKED;
4294 	ccb->casync.async_code = async_code;
4295 	ccb->casync.async_arg_size = 0;
4296 	size = xpt_async_size(async_code);
4297 	CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE,
4298 	    ("xpt_async: func %#x %s aync_code %d %s\n",
4299 		ccb->ccb_h.func_code,
4300 		xpt_action_name(ccb->ccb_h.func_code),
4301 		async_code,
4302 		xpt_async_string(async_code)));
4303 	if (size > 0 && async_arg != NULL) {
4304 		ccb->casync.async_arg_ptr = malloc(size, M_CAMXPT, M_NOWAIT);
4305 		if (ccb->casync.async_arg_ptr == NULL) {
4306 			xpt_print(path, "Can't allocate argument to send %s\n",
4307 			    xpt_async_string(async_code));
4308 			xpt_free_path(ccb->ccb_h.path);
4309 			xpt_free_ccb(ccb);
4310 			return;
4311 		}
4312 		memcpy(ccb->casync.async_arg_ptr, async_arg, size);
4313 		ccb->casync.async_arg_size = size;
4314 	} else if (size < 0) {
4315 		ccb->casync.async_arg_ptr = async_arg;
4316 		ccb->casync.async_arg_size = size;
4317 	}
4318 	if (path->device != NULL && path->device->lun_id != CAM_LUN_WILDCARD)
4319 		xpt_freeze_devq(path, 1);
4320 	else
4321 		xpt_freeze_simq(path->bus->sim, 1);
4322 	xpt_action(ccb);
4323 }
4324 
4325 static void
xpt_dev_async_default(uint32_t async_code,struct cam_eb * bus,struct cam_et * target,struct cam_ed * device,void * async_arg)4326 xpt_dev_async_default(uint32_t async_code, struct cam_eb *bus,
4327 		      struct cam_et *target, struct cam_ed *device,
4328 		      void *async_arg)
4329 {
4330 
4331 	/*
4332 	 * We only need to handle events for real devices.
4333 	 */
4334 	if (target->target_id == CAM_TARGET_WILDCARD
4335 	 || device->lun_id == CAM_LUN_WILDCARD)
4336 		return;
4337 
4338 	printf("%s called\n", __func__);
4339 }
4340 
4341 static uint32_t
xpt_freeze_devq_device(struct cam_ed * dev,u_int count)4342 xpt_freeze_devq_device(struct cam_ed *dev, u_int count)
4343 {
4344 	struct cam_devq	*devq;
4345 	uint32_t freeze;
4346 
4347 	devq = dev->sim->devq;
4348 	mtx_assert(&devq->send_mtx, MA_OWNED);
4349 	CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE,
4350 	    ("xpt_freeze_devq_device(%d) %u->%u\n", count,
4351 	    dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt + count));
4352 	freeze = (dev->ccbq.queue.qfrozen_cnt += count);
4353 	/* Remove frozen device from sendq. */
4354 	if (device_is_queued(dev))
4355 		camq_remove(&devq->send_queue, dev->devq_entry.index);
4356 	return (freeze);
4357 }
4358 
4359 uint32_t
xpt_freeze_devq(struct cam_path * path,u_int count)4360 xpt_freeze_devq(struct cam_path *path, u_int count)
4361 {
4362 	struct cam_ed	*dev = path->device;
4363 	struct cam_devq	*devq;
4364 	uint32_t	 freeze;
4365 
4366 	devq = dev->sim->devq;
4367 	mtx_lock(&devq->send_mtx);
4368 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_freeze_devq(%d)\n", count));
4369 	freeze = xpt_freeze_devq_device(dev, count);
4370 	mtx_unlock(&devq->send_mtx);
4371 	return (freeze);
4372 }
4373 
4374 uint32_t
xpt_freeze_simq(struct cam_sim * sim,u_int count)4375 xpt_freeze_simq(struct cam_sim *sim, u_int count)
4376 {
4377 	struct cam_devq	*devq;
4378 	uint32_t	 freeze;
4379 
4380 	devq = sim->devq;
4381 	mtx_lock(&devq->send_mtx);
4382 	freeze = (devq->send_queue.qfrozen_cnt += count);
4383 	mtx_unlock(&devq->send_mtx);
4384 	return (freeze);
4385 }
4386 
4387 static void
xpt_release_devq_timeout(void * arg)4388 xpt_release_devq_timeout(void *arg)
4389 {
4390 	struct cam_ed *dev;
4391 	struct cam_devq *devq;
4392 
4393 	dev = (struct cam_ed *)arg;
4394 	CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE, ("xpt_release_devq_timeout\n"));
4395 	devq = dev->sim->devq;
4396 	mtx_assert(&devq->send_mtx, MA_OWNED);
4397 	if (xpt_release_devq_device(dev, /*count*/1, /*run_queue*/TRUE))
4398 		xpt_run_devq(devq);
4399 }
4400 
4401 void
xpt_release_devq(struct cam_path * path,u_int count,int run_queue)4402 xpt_release_devq(struct cam_path *path, u_int count, int run_queue)
4403 {
4404 	struct cam_ed *dev;
4405 	struct cam_devq *devq;
4406 
4407 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_devq(%d, %d)\n",
4408 	    count, run_queue));
4409 	dev = path->device;
4410 	devq = dev->sim->devq;
4411 	mtx_lock(&devq->send_mtx);
4412 	if (xpt_release_devq_device(dev, count, run_queue))
4413 		xpt_run_devq(dev->sim->devq);
4414 	mtx_unlock(&devq->send_mtx);
4415 }
4416 
4417 static int
xpt_release_devq_device(struct cam_ed * dev,u_int count,int run_queue)4418 xpt_release_devq_device(struct cam_ed *dev, u_int count, int run_queue)
4419 {
4420 
4421 	mtx_assert(&dev->sim->devq->send_mtx, MA_OWNED);
4422 	CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE,
4423 	    ("xpt_release_devq_device(%d, %d) %u->%u\n", count, run_queue,
4424 	    dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt - count));
4425 	if (count > dev->ccbq.queue.qfrozen_cnt) {
4426 #ifdef INVARIANTS
4427 		printf("xpt_release_devq(): requested %u > present %u\n",
4428 		    count, dev->ccbq.queue.qfrozen_cnt);
4429 #endif
4430 		count = dev->ccbq.queue.qfrozen_cnt;
4431 	}
4432 	dev->ccbq.queue.qfrozen_cnt -= count;
4433 	if (dev->ccbq.queue.qfrozen_cnt == 0) {
4434 		/*
4435 		 * No longer need to wait for a successful
4436 		 * command completion.
4437 		 */
4438 		dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
4439 		/*
4440 		 * Remove any timeouts that might be scheduled
4441 		 * to release this queue.
4442 		 */
4443 		if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
4444 			callout_stop(&dev->callout);
4445 			dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING;
4446 		}
4447 		/*
4448 		 * Now that we are unfrozen schedule the
4449 		 * device so any pending transactions are
4450 		 * run.
4451 		 */
4452 		xpt_schedule_devq(dev->sim->devq, dev);
4453 	} else
4454 		run_queue = 0;
4455 	return (run_queue);
4456 }
4457 
4458 void
xpt_release_simq(struct cam_sim * sim,int run_queue)4459 xpt_release_simq(struct cam_sim *sim, int run_queue)
4460 {
4461 	struct cam_devq	*devq;
4462 
4463 	devq = sim->devq;
4464 	mtx_lock(&devq->send_mtx);
4465 	if (devq->send_queue.qfrozen_cnt <= 0) {
4466 #ifdef INVARIANTS
4467 		printf("xpt_release_simq: requested 1 > present %u\n",
4468 		    devq->send_queue.qfrozen_cnt);
4469 #endif
4470 	} else
4471 		devq->send_queue.qfrozen_cnt--;
4472 	if (devq->send_queue.qfrozen_cnt == 0) {
4473 		if (run_queue) {
4474 			/*
4475 			 * Now that we are unfrozen run the send queue.
4476 			 */
4477 			xpt_run_devq(sim->devq);
4478 		}
4479 	}
4480 	mtx_unlock(&devq->send_mtx);
4481 }
4482 
4483 void
xpt_done(union ccb * done_ccb)4484 xpt_done(union ccb *done_ccb)
4485 {
4486 	struct cam_doneq *queue;
4487 	int	run, hash;
4488 
4489 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
4490 	if (done_ccb->ccb_h.func_code == XPT_SCSI_IO &&
4491 	    done_ccb->csio.bio != NULL)
4492 		biotrack(done_ccb->csio.bio, __func__);
4493 #endif
4494 
4495 	CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE,
4496 	    ("xpt_done: func= %#x %s status %#x\n",
4497 		done_ccb->ccb_h.func_code,
4498 		xpt_action_name(done_ccb->ccb_h.func_code),
4499 		done_ccb->ccb_h.status));
4500 	if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0)
4501 		return;
4502 
4503 	/* Store the time the ccb was in the sim */
4504 	done_ccb->ccb_h.qos.periph_data = cam_iosched_delta_t(done_ccb->ccb_h.qos.periph_data);
4505 	done_ccb->ccb_h.status |= CAM_QOS_VALID;
4506 	hash = (u_int)(done_ccb->ccb_h.path_id + done_ccb->ccb_h.target_id +
4507 	    done_ccb->ccb_h.target_lun) % cam_num_doneqs;
4508 	queue = &cam_doneqs[hash];
4509 	mtx_lock(&queue->cam_doneq_mtx);
4510 	run = (queue->cam_doneq_sleep && STAILQ_EMPTY(&queue->cam_doneq));
4511 	STAILQ_INSERT_TAIL(&queue->cam_doneq, &done_ccb->ccb_h, sim_links.stqe);
4512 	done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX;
4513 	mtx_unlock(&queue->cam_doneq_mtx);
4514 	if (run && !dumping)
4515 		wakeup(&queue->cam_doneq);
4516 }
4517 
4518 void
xpt_done_direct(union ccb * done_ccb)4519 xpt_done_direct(union ccb *done_ccb)
4520 {
4521 
4522 	CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE,
4523 	    ("xpt_done_direct: status %#x\n", done_ccb->ccb_h.status));
4524 	if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0)
4525 		return;
4526 
4527 	/* Store the time the ccb was in the sim */
4528 	done_ccb->ccb_h.qos.periph_data = cam_iosched_delta_t(done_ccb->ccb_h.qos.periph_data);
4529 	done_ccb->ccb_h.status |= CAM_QOS_VALID;
4530 	xpt_done_process(&done_ccb->ccb_h);
4531 }
4532 
4533 union ccb *
xpt_alloc_ccb(void)4534 xpt_alloc_ccb(void)
4535 {
4536 	union ccb *new_ccb;
4537 
4538 	new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK);
4539 	return (new_ccb);
4540 }
4541 
4542 union ccb *
xpt_alloc_ccb_nowait(void)4543 xpt_alloc_ccb_nowait(void)
4544 {
4545 	union ccb *new_ccb;
4546 
4547 	new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT);
4548 	return (new_ccb);
4549 }
4550 
4551 void
xpt_free_ccb(union ccb * free_ccb)4552 xpt_free_ccb(union ccb *free_ccb)
4553 {
4554 	struct cam_periph *periph;
4555 
4556 	if (free_ccb->ccb_h.alloc_flags & CAM_CCB_FROM_UMA) {
4557 		/*
4558 		 * Looks like a CCB allocated from a periph UMA zone.
4559 		 */
4560 		periph = free_ccb->ccb_h.path->periph;
4561 		uma_zfree(periph->ccb_zone, free_ccb);
4562 	} else {
4563 		free(free_ccb, M_CAMCCB);
4564 	}
4565 }
4566 
4567 /* Private XPT functions */
4568 
4569 /*
4570  * Get a CAM control block for the caller. Charge the structure to the device
4571  * referenced by the path.  If we don't have sufficient resources to allocate
4572  * more ccbs, we return NULL.
4573  */
4574 static union ccb *
xpt_get_ccb_nowait(struct cam_periph * periph)4575 xpt_get_ccb_nowait(struct cam_periph *periph)
4576 {
4577 	union ccb *new_ccb;
4578 	int alloc_flags;
4579 
4580 	if (periph->ccb_zone != NULL) {
4581 		alloc_flags = CAM_CCB_FROM_UMA;
4582 		new_ccb = uma_zalloc(periph->ccb_zone, M_ZERO|M_NOWAIT);
4583 	} else {
4584 		alloc_flags = 0;
4585 		new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT);
4586 	}
4587 	if (new_ccb == NULL)
4588 		return (NULL);
4589 	new_ccb->ccb_h.alloc_flags = alloc_flags;
4590 	periph->periph_allocated++;
4591 	cam_ccbq_take_opening(&periph->path->device->ccbq);
4592 	return (new_ccb);
4593 }
4594 
4595 static union ccb *
xpt_get_ccb(struct cam_periph * periph)4596 xpt_get_ccb(struct cam_periph *periph)
4597 {
4598 	union ccb *new_ccb;
4599 	int alloc_flags;
4600 
4601 	cam_periph_unlock(periph);
4602 	if (periph->ccb_zone != NULL) {
4603 		alloc_flags = CAM_CCB_FROM_UMA;
4604 		new_ccb = uma_zalloc(periph->ccb_zone, M_ZERO|M_WAITOK);
4605 	} else {
4606 		alloc_flags = 0;
4607 		new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK);
4608 	}
4609 	new_ccb->ccb_h.alloc_flags = alloc_flags;
4610 	cam_periph_lock(periph);
4611 	periph->periph_allocated++;
4612 	cam_ccbq_take_opening(&periph->path->device->ccbq);
4613 	return (new_ccb);
4614 }
4615 
4616 union ccb *
cam_periph_getccb(struct cam_periph * periph,uint32_t priority)4617 cam_periph_getccb(struct cam_periph *periph, uint32_t priority)
4618 {
4619 	struct ccb_hdr *ccb_h;
4620 
4621 	CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("cam_periph_getccb\n"));
4622 	cam_periph_assert(periph, MA_OWNED);
4623 	while ((ccb_h = SLIST_FIRST(&periph->ccb_list)) == NULL ||
4624 	    ccb_h->pinfo.priority != priority) {
4625 		if (priority < periph->immediate_priority) {
4626 			periph->immediate_priority = priority;
4627 			xpt_run_allocq(periph, 0);
4628 		} else
4629 			cam_periph_sleep(periph, &periph->ccb_list, PRIBIO,
4630 			    "cgticb", 0);
4631 	}
4632 	SLIST_REMOVE_HEAD(&periph->ccb_list, periph_links.sle);
4633 	return ((union ccb *)ccb_h);
4634 }
4635 
4636 static void
xpt_acquire_bus(struct cam_eb * bus)4637 xpt_acquire_bus(struct cam_eb *bus)
4638 {
4639 
4640 	xpt_lock_buses();
4641 	bus->refcount++;
4642 	xpt_unlock_buses();
4643 }
4644 
4645 static void
xpt_release_bus(struct cam_eb * bus)4646 xpt_release_bus(struct cam_eb *bus)
4647 {
4648 
4649 	xpt_lock_buses();
4650 	KASSERT(bus->refcount >= 1, ("bus->refcount >= 1"));
4651 	if (--bus->refcount > 0) {
4652 		xpt_unlock_buses();
4653 		return;
4654 	}
4655 	TAILQ_REMOVE(&xsoftc.xpt_busses, bus, links);
4656 	xsoftc.bus_generation++;
4657 	xpt_unlock_buses();
4658 	KASSERT(TAILQ_EMPTY(&bus->et_entries),
4659 	    ("destroying bus, but target list is not empty"));
4660 	cam_sim_release(bus->sim);
4661 	mtx_destroy(&bus->eb_mtx);
4662 	free(bus, M_CAMXPT);
4663 }
4664 
4665 static struct cam_et *
xpt_alloc_target(struct cam_eb * bus,target_id_t target_id)4666 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id)
4667 {
4668 	struct cam_et *cur_target, *target;
4669 
4670 	mtx_assert(&xsoftc.xpt_topo_lock, MA_OWNED);
4671 	mtx_assert(&bus->eb_mtx, MA_OWNED);
4672 	target = (struct cam_et *)malloc(sizeof(*target), M_CAMXPT,
4673 					 M_NOWAIT|M_ZERO);
4674 	if (target == NULL)
4675 		return (NULL);
4676 
4677 	TAILQ_INIT(&target->ed_entries);
4678 	target->bus = bus;
4679 	target->target_id = target_id;
4680 	target->refcount = 1;
4681 	target->generation = 0;
4682 	target->luns = NULL;
4683 	mtx_init(&target->luns_mtx, "CAM LUNs lock", NULL, MTX_DEF);
4684 	timevalclear(&target->last_reset);
4685 	/*
4686 	 * Hold a reference to our parent bus so it
4687 	 * will not go away before we do.
4688 	 */
4689 	bus->refcount++;
4690 
4691 	/* Insertion sort into our bus's target list */
4692 	cur_target = TAILQ_FIRST(&bus->et_entries);
4693 	while (cur_target != NULL && cur_target->target_id < target_id)
4694 		cur_target = TAILQ_NEXT(cur_target, links);
4695 	if (cur_target != NULL) {
4696 		TAILQ_INSERT_BEFORE(cur_target, target, links);
4697 	} else {
4698 		TAILQ_INSERT_TAIL(&bus->et_entries, target, links);
4699 	}
4700 	bus->generation++;
4701 	return (target);
4702 }
4703 
4704 static void
xpt_acquire_target(struct cam_et * target)4705 xpt_acquire_target(struct cam_et *target)
4706 {
4707 	struct cam_eb *bus = target->bus;
4708 
4709 	mtx_lock(&bus->eb_mtx);
4710 	target->refcount++;
4711 	mtx_unlock(&bus->eb_mtx);
4712 }
4713 
4714 static void
xpt_release_target(struct cam_et * target)4715 xpt_release_target(struct cam_et *target)
4716 {
4717 	struct cam_eb *bus = target->bus;
4718 
4719 	mtx_lock(&bus->eb_mtx);
4720 	if (--target->refcount > 0) {
4721 		mtx_unlock(&bus->eb_mtx);
4722 		return;
4723 	}
4724 	TAILQ_REMOVE(&bus->et_entries, target, links);
4725 	bus->generation++;
4726 	mtx_unlock(&bus->eb_mtx);
4727 	KASSERT(TAILQ_EMPTY(&target->ed_entries),
4728 	    ("destroying target, but device list is not empty"));
4729 	xpt_release_bus(bus);
4730 	mtx_destroy(&target->luns_mtx);
4731 	if (target->luns)
4732 		free(target->luns, M_CAMXPT);
4733 	free(target, M_CAMXPT);
4734 }
4735 
4736 static struct cam_ed *
xpt_alloc_device_default(struct cam_eb * bus,struct cam_et * target,lun_id_t lun_id)4737 xpt_alloc_device_default(struct cam_eb *bus, struct cam_et *target,
4738 			 lun_id_t lun_id)
4739 {
4740 	struct cam_ed *device;
4741 
4742 	device = xpt_alloc_device(bus, target, lun_id);
4743 	if (device == NULL)
4744 		return (NULL);
4745 
4746 	device->mintags = 1;
4747 	device->maxtags = 1;
4748 	return (device);
4749 }
4750 
4751 static void
xpt_destroy_device(void * context,int pending)4752 xpt_destroy_device(void *context, int pending)
4753 {
4754 	struct cam_ed	*device = context;
4755 
4756 	mtx_lock(&device->device_mtx);
4757 	mtx_destroy(&device->device_mtx);
4758 	free(device, M_CAMDEV);
4759 }
4760 
4761 struct cam_ed *
xpt_alloc_device(struct cam_eb * bus,struct cam_et * target,lun_id_t lun_id)4762 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id)
4763 {
4764 	struct cam_ed	*cur_device, *device;
4765 	struct cam_devq	*devq;
4766 	cam_status status;
4767 
4768 	mtx_assert(&bus->eb_mtx, MA_OWNED);
4769 	/* Make space for us in the device queue on our bus */
4770 	devq = bus->sim->devq;
4771 	mtx_lock(&devq->send_mtx);
4772 	status = cam_devq_resize(devq, devq->send_queue.array_size + 1);
4773 	mtx_unlock(&devq->send_mtx);
4774 	if (status != CAM_REQ_CMP)
4775 		return (NULL);
4776 
4777 	device = (struct cam_ed *)malloc(sizeof(*device),
4778 					 M_CAMDEV, M_NOWAIT|M_ZERO);
4779 	if (device == NULL)
4780 		return (NULL);
4781 
4782 	cam_init_pinfo(&device->devq_entry);
4783 	device->target = target;
4784 	device->lun_id = lun_id;
4785 	device->sim = bus->sim;
4786 	if (cam_ccbq_init(&device->ccbq,
4787 			  bus->sim->max_dev_openings) != 0) {
4788 		free(device, M_CAMDEV);
4789 		return (NULL);
4790 	}
4791 	SLIST_INIT(&device->asyncs);
4792 	SLIST_INIT(&device->periphs);
4793 	device->generation = 0;
4794 	device->flags = CAM_DEV_UNCONFIGURED;
4795 	device->tag_delay_count = 0;
4796 	device->tag_saved_openings = 0;
4797 	device->refcount = 1;
4798 	mtx_init(&device->device_mtx, "CAM device lock", NULL, MTX_DEF);
4799 	callout_init_mtx(&device->callout, &devq->send_mtx, 0);
4800 	TASK_INIT(&device->device_destroy_task, 0, xpt_destroy_device, device);
4801 	/*
4802 	 * Hold a reference to our parent bus so it
4803 	 * will not go away before we do.
4804 	 */
4805 	target->refcount++;
4806 
4807 	cur_device = TAILQ_FIRST(&target->ed_entries);
4808 	while (cur_device != NULL && cur_device->lun_id < lun_id)
4809 		cur_device = TAILQ_NEXT(cur_device, links);
4810 	if (cur_device != NULL)
4811 		TAILQ_INSERT_BEFORE(cur_device, device, links);
4812 	else
4813 		TAILQ_INSERT_TAIL(&target->ed_entries, device, links);
4814 	target->generation++;
4815 	return (device);
4816 }
4817 
4818 void
xpt_acquire_device(struct cam_ed * device)4819 xpt_acquire_device(struct cam_ed *device)
4820 {
4821 	struct cam_eb *bus = device->target->bus;
4822 
4823 	mtx_lock(&bus->eb_mtx);
4824 	device->refcount++;
4825 	mtx_unlock(&bus->eb_mtx);
4826 }
4827 
4828 void
xpt_release_device(struct cam_ed * device)4829 xpt_release_device(struct cam_ed *device)
4830 {
4831 	struct cam_eb *bus = device->target->bus;
4832 	struct cam_devq *devq;
4833 
4834 	mtx_lock(&bus->eb_mtx);
4835 	if (--device->refcount > 0) {
4836 		mtx_unlock(&bus->eb_mtx);
4837 		return;
4838 	}
4839 
4840 	TAILQ_REMOVE(&device->target->ed_entries, device,links);
4841 	device->target->generation++;
4842 	mtx_unlock(&bus->eb_mtx);
4843 
4844 	/* Release our slot in the devq */
4845 	devq = bus->sim->devq;
4846 	mtx_lock(&devq->send_mtx);
4847 	cam_devq_resize(devq, devq->send_queue.array_size - 1);
4848 
4849 	KASSERT(SLIST_EMPTY(&device->periphs),
4850 	    ("destroying device, but periphs list is not empty"));
4851 	KASSERT(device->devq_entry.index == CAM_UNQUEUED_INDEX,
4852 	    ("destroying device while still queued for ccbs"));
4853 
4854 	/* The send_mtx must be held when accessing the callout */
4855 	if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0)
4856 		callout_stop(&device->callout);
4857 
4858 	mtx_unlock(&devq->send_mtx);
4859 
4860 	xpt_release_target(device->target);
4861 
4862 	cam_ccbq_fini(&device->ccbq);
4863 	/*
4864 	 * Free allocated memory.  free(9) does nothing if the
4865 	 * supplied pointer is NULL, so it is safe to call without
4866 	 * checking.
4867 	 */
4868 	free(device->supported_vpds, M_CAMXPT);
4869 	free(device->device_id, M_CAMXPT);
4870 	free(device->ext_inq, M_CAMXPT);
4871 	free(device->physpath, M_CAMXPT);
4872 	free(device->rcap_buf, M_CAMXPT);
4873 	free(device->serial_num, M_CAMXPT);
4874 	free(device->nvme_data, M_CAMXPT);
4875 	free(device->nvme_cdata, M_CAMXPT);
4876 	taskqueue_enqueue(xsoftc.xpt_taskq, &device->device_destroy_task);
4877 }
4878 
4879 uint32_t
xpt_dev_ccbq_resize(struct cam_path * path,int newopenings)4880 xpt_dev_ccbq_resize(struct cam_path *path, int newopenings)
4881 {
4882 	int	result;
4883 	struct	cam_ed *dev;
4884 
4885 	dev = path->device;
4886 	mtx_lock(&dev->sim->devq->send_mtx);
4887 	result = cam_ccbq_resize(&dev->ccbq, newopenings);
4888 	mtx_unlock(&dev->sim->devq->send_mtx);
4889 	if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
4890 	 || (dev->inq_flags & SID_CmdQue) != 0)
4891 		dev->tag_saved_openings = newopenings;
4892 	return (result);
4893 }
4894 
4895 static struct cam_eb *
xpt_find_bus(path_id_t path_id)4896 xpt_find_bus(path_id_t path_id)
4897 {
4898 	struct cam_eb *bus;
4899 
4900 	xpt_lock_buses();
4901 	for (bus = TAILQ_FIRST(&xsoftc.xpt_busses);
4902 	     bus != NULL;
4903 	     bus = TAILQ_NEXT(bus, links)) {
4904 		if (bus->path_id == path_id) {
4905 			bus->refcount++;
4906 			break;
4907 		}
4908 	}
4909 	xpt_unlock_buses();
4910 	return (bus);
4911 }
4912 
4913 static struct cam_et *
xpt_find_target(struct cam_eb * bus,target_id_t target_id)4914 xpt_find_target(struct cam_eb *bus, target_id_t	target_id)
4915 {
4916 	struct cam_et *target;
4917 
4918 	mtx_assert(&bus->eb_mtx, MA_OWNED);
4919 	for (target = TAILQ_FIRST(&bus->et_entries);
4920 	     target != NULL;
4921 	     target = TAILQ_NEXT(target, links)) {
4922 		if (target->target_id == target_id) {
4923 			target->refcount++;
4924 			break;
4925 		}
4926 	}
4927 	return (target);
4928 }
4929 
4930 static struct cam_ed *
xpt_find_device(struct cam_et * target,lun_id_t lun_id)4931 xpt_find_device(struct cam_et *target, lun_id_t lun_id)
4932 {
4933 	struct cam_ed *device;
4934 
4935 	mtx_assert(&target->bus->eb_mtx, MA_OWNED);
4936 	for (device = TAILQ_FIRST(&target->ed_entries);
4937 	     device != NULL;
4938 	     device = TAILQ_NEXT(device, links)) {
4939 		if (device->lun_id == lun_id) {
4940 			device->refcount++;
4941 			break;
4942 		}
4943 	}
4944 	return (device);
4945 }
4946 
4947 void
xpt_start_tags(struct cam_path * path)4948 xpt_start_tags(struct cam_path *path)
4949 {
4950 	struct ccb_relsim crs;
4951 	struct cam_ed *device;
4952 	struct cam_sim *sim;
4953 	int    newopenings;
4954 
4955 	device = path->device;
4956 	sim = path->bus->sim;
4957 	device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
4958 	xpt_freeze_devq(path, /*count*/1);
4959 	device->inq_flags |= SID_CmdQue;
4960 	if (device->tag_saved_openings != 0)
4961 		newopenings = device->tag_saved_openings;
4962 	else
4963 		newopenings = min(device->maxtags,
4964 				  sim->max_tagged_dev_openings);
4965 	xpt_dev_ccbq_resize(path, newopenings);
4966 	xpt_async(AC_GETDEV_CHANGED, path, NULL);
4967 	memset(&crs, 0, sizeof(crs));
4968 	xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL);
4969 	crs.ccb_h.func_code = XPT_REL_SIMQ;
4970 	crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
4971 	crs.openings
4972 	    = crs.release_timeout
4973 	    = crs.qfrozen_cnt
4974 	    = 0;
4975 	xpt_action((union ccb *)&crs);
4976 }
4977 
4978 void
xpt_stop_tags(struct cam_path * path)4979 xpt_stop_tags(struct cam_path *path)
4980 {
4981 	struct ccb_relsim crs;
4982 	struct cam_ed *device;
4983 	struct cam_sim *sim;
4984 
4985 	device = path->device;
4986 	sim = path->bus->sim;
4987 	device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
4988 	device->tag_delay_count = 0;
4989 	xpt_freeze_devq(path, /*count*/1);
4990 	device->inq_flags &= ~SID_CmdQue;
4991 	xpt_dev_ccbq_resize(path, sim->max_dev_openings);
4992 	xpt_async(AC_GETDEV_CHANGED, path, NULL);
4993 	memset(&crs, 0, sizeof(crs));
4994 	xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL);
4995 	crs.ccb_h.func_code = XPT_REL_SIMQ;
4996 	crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
4997 	crs.openings
4998 	    = crs.release_timeout
4999 	    = crs.qfrozen_cnt
5000 	    = 0;
5001 	xpt_action((union ccb *)&crs);
5002 }
5003 
5004 /*
5005  * Assume all possible buses are detected by this time, so allow boot
5006  * as soon as they all are scanned.
5007  */
5008 static void
xpt_boot_delay(void * arg)5009 xpt_boot_delay(void *arg)
5010 {
5011 
5012 	xpt_release_boot();
5013 }
5014 
5015 /*
5016  * Now that all config hooks have completed, start boot_delay timer,
5017  * waiting for possibly still undetected buses (USB) to appear.
5018  */
5019 static void
xpt_ch_done(void * arg)5020 xpt_ch_done(void *arg)
5021 {
5022 
5023 	callout_init(&xsoftc.boot_callout, 1);
5024 	callout_reset_sbt(&xsoftc.boot_callout, SBT_1MS * xsoftc.boot_delay,
5025 	    SBT_1MS, xpt_boot_delay, NULL, 0);
5026 }
5027 SYSINIT(xpt_hw_delay, SI_SUB_INT_CONFIG_HOOKS, SI_ORDER_ANY, xpt_ch_done, NULL);
5028 
5029 /*
5030  * Now that interrupts are enabled, go find our devices
5031  */
5032 static void
xpt_config(void * arg)5033 xpt_config(void *arg)
5034 {
5035 	if (taskqueue_start_threads(&xsoftc.xpt_taskq, 1, PRIBIO, "CAM taskq"))
5036 		printf("xpt_config: failed to create taskqueue thread.\n");
5037 
5038 	/* Setup debugging path */
5039 	if (cam_dflags != CAM_DEBUG_NONE) {
5040 		if (xpt_create_path(&cam_dpath, NULL,
5041 				    CAM_DEBUG_BUS, CAM_DEBUG_TARGET,
5042 				    CAM_DEBUG_LUN) != CAM_REQ_CMP) {
5043 			printf(
5044 "xpt_config: xpt_create_path() failed for debug target %d:%d:%d, debugging disabled\n",
5045 			    CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN);
5046 			cam_dflags = CAM_DEBUG_NONE;
5047 		}
5048 	} else
5049 		cam_dpath = NULL;
5050 
5051 	periphdriver_init(1);
5052 	xpt_hold_boot();
5053 
5054 	/* Fire up rescan thread. */
5055 	if (kproc_kthread_add(xpt_scanner_thread, NULL, &cam_proc, NULL, 0, 0,
5056 	    "cam", "scanner")) {
5057 		printf("xpt_config: failed to create rescan thread.\n");
5058 	}
5059 }
5060 
5061 void
xpt_hold_boot_locked(void)5062 xpt_hold_boot_locked(void)
5063 {
5064 
5065 	if (xsoftc.buses_to_config++ == 0)
5066 		root_mount_hold_token("CAM", &xsoftc.xpt_rootmount);
5067 }
5068 
5069 void
xpt_hold_boot(void)5070 xpt_hold_boot(void)
5071 {
5072 
5073 	xpt_lock_buses();
5074 	xpt_hold_boot_locked();
5075 	xpt_unlock_buses();
5076 }
5077 
5078 void
xpt_release_boot(void)5079 xpt_release_boot(void)
5080 {
5081 
5082 	xpt_lock_buses();
5083 	if (--xsoftc.buses_to_config == 0) {
5084 		if (xsoftc.buses_config_done == 0) {
5085 			xsoftc.buses_config_done = 1;
5086 			xsoftc.buses_to_config++;
5087 			TASK_INIT(&xsoftc.boot_task, 0, xpt_finishconfig_task,
5088 			    NULL);
5089 			taskqueue_enqueue(taskqueue_thread, &xsoftc.boot_task);
5090 		} else
5091 			root_mount_rel(&xsoftc.xpt_rootmount);
5092 	}
5093 	xpt_unlock_buses();
5094 }
5095 
5096 /*
5097  * If the given device only has one peripheral attached to it, and if that
5098  * peripheral is the passthrough driver, announce it.  This insures that the
5099  * user sees some sort of announcement for every peripheral in their system.
5100  */
5101 static int
xptpassannouncefunc(struct cam_ed * device,void * arg)5102 xptpassannouncefunc(struct cam_ed *device, void *arg)
5103 {
5104 	struct cam_periph *periph;
5105 	int i;
5106 
5107 	for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL;
5108 	     periph = SLIST_NEXT(periph, periph_links), i++);
5109 
5110 	periph = SLIST_FIRST(&device->periphs);
5111 	if ((i == 1)
5112 	 && (strncmp(periph->periph_name, "pass", 4) == 0))
5113 		xpt_announce_periph(periph, NULL);
5114 
5115 	return(1);
5116 }
5117 
5118 static void
xpt_finishconfig_task(void * context,int pending)5119 xpt_finishconfig_task(void *context, int pending)
5120 {
5121 
5122 	periphdriver_init(2);
5123 	/*
5124 	 * Check for devices with no "standard" peripheral driver
5125 	 * attached.  For any devices like that, announce the
5126 	 * passthrough driver so the user will see something.
5127 	 */
5128 	if (!bootverbose)
5129 		xpt_for_all_devices(xptpassannouncefunc, NULL);
5130 
5131 	xpt_release_boot();
5132 }
5133 
5134 cam_status
xpt_register_async(int event,ac_callback_t * cbfunc,void * cbarg,struct cam_path * path)5135 xpt_register_async(int event, ac_callback_t *cbfunc, void *cbarg,
5136 		   struct cam_path *path)
5137 {
5138 	struct ccb_setasync csa;
5139 	cam_status status;
5140 	bool xptpath = false;
5141 
5142 	if (path == NULL) {
5143 		status = xpt_create_path(&path, /*periph*/NULL, CAM_XPT_PATH_ID,
5144 					 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
5145 		if (status != CAM_REQ_CMP)
5146 			return (status);
5147 		xpt_path_lock(path);
5148 		xptpath = true;
5149 	}
5150 
5151 	memset(&csa, 0, sizeof(csa));
5152 	xpt_setup_ccb(&csa.ccb_h, path, CAM_PRIORITY_NORMAL);
5153 	csa.ccb_h.func_code = XPT_SASYNC_CB;
5154 	csa.event_enable = event;
5155 	csa.callback = cbfunc;
5156 	csa.callback_arg = cbarg;
5157 	xpt_action((union ccb *)&csa);
5158 	status = csa.ccb_h.status;
5159 
5160 	CAM_DEBUG(csa.ccb_h.path, CAM_DEBUG_TRACE,
5161 	    ("xpt_register_async: func %p\n", cbfunc));
5162 
5163 	if (xptpath) {
5164 		xpt_path_unlock(path);
5165 		xpt_free_path(path);
5166 	}
5167 
5168 	if ((status == CAM_REQ_CMP) &&
5169 	    (csa.event_enable & AC_FOUND_DEVICE)) {
5170 		/*
5171 		 * Get this peripheral up to date with all
5172 		 * the currently existing devices.
5173 		 */
5174 		xpt_for_all_devices(xptsetasyncfunc, &csa);
5175 	}
5176 	if ((status == CAM_REQ_CMP) &&
5177 	    (csa.event_enable & AC_PATH_REGISTERED)) {
5178 		/*
5179 		 * Get this peripheral up to date with all
5180 		 * the currently existing buses.
5181 		 */
5182 		xpt_for_all_busses(xptsetasyncbusfunc, &csa);
5183 	}
5184 
5185 	return (status);
5186 }
5187 
5188 static void
xptaction(struct cam_sim * sim,union ccb * work_ccb)5189 xptaction(struct cam_sim *sim, union ccb *work_ccb)
5190 {
5191 	CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n"));
5192 
5193 	switch (work_ccb->ccb_h.func_code) {
5194 	/* Common cases first */
5195 	case XPT_PATH_INQ:		/* Path routing inquiry */
5196 	{
5197 		struct ccb_pathinq *cpi;
5198 
5199 		cpi = &work_ccb->cpi;
5200 		cpi->version_num = 1; /* XXX??? */
5201 		cpi->hba_inquiry = 0;
5202 		cpi->target_sprt = 0;
5203 		cpi->hba_misc = 0;
5204 		cpi->hba_eng_cnt = 0;
5205 		cpi->max_target = 0;
5206 		cpi->max_lun = 0;
5207 		cpi->initiator_id = 0;
5208 		strlcpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
5209 		strlcpy(cpi->hba_vid, "", HBA_IDLEN);
5210 		strlcpy(cpi->dev_name, sim->sim_name, DEV_IDLEN);
5211 		cpi->unit_number = sim->unit_number;
5212 		cpi->bus_id = sim->bus_id;
5213 		cpi->base_transfer_speed = 0;
5214 		cpi->protocol = PROTO_UNSPECIFIED;
5215 		cpi->protocol_version = PROTO_VERSION_UNSPECIFIED;
5216 		cpi->transport = XPORT_UNSPECIFIED;
5217 		cpi->transport_version = XPORT_VERSION_UNSPECIFIED;
5218 		cpi->ccb_h.status = CAM_REQ_CMP;
5219 		break;
5220 	}
5221 	default:
5222 		work_ccb->ccb_h.status = CAM_REQ_INVALID;
5223 		break;
5224 	}
5225 	xpt_done(work_ccb);
5226 }
5227 
5228 /*
5229  * The xpt as a "controller" has no interrupt sources, so polling
5230  * is a no-op.
5231  */
5232 static void
xptpoll(struct cam_sim * sim)5233 xptpoll(struct cam_sim *sim)
5234 {
5235 }
5236 
5237 void
xpt_lock_buses(void)5238 xpt_lock_buses(void)
5239 {
5240 	mtx_lock(&xsoftc.xpt_topo_lock);
5241 }
5242 
5243 void
xpt_unlock_buses(void)5244 xpt_unlock_buses(void)
5245 {
5246 	mtx_unlock(&xsoftc.xpt_topo_lock);
5247 }
5248 
5249 struct mtx *
xpt_path_mtx(struct cam_path * path)5250 xpt_path_mtx(struct cam_path *path)
5251 {
5252 
5253 	return (&path->device->device_mtx);
5254 }
5255 
5256 static void
xpt_done_process(struct ccb_hdr * ccb_h)5257 xpt_done_process(struct ccb_hdr *ccb_h)
5258 {
5259 	struct cam_sim *sim = NULL;
5260 	struct cam_devq *devq = NULL;
5261 	struct mtx *mtx = NULL;
5262 
5263 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
5264 	struct ccb_scsiio *csio;
5265 
5266 	if (ccb_h->func_code == XPT_SCSI_IO) {
5267 		csio = &((union ccb *)ccb_h)->csio;
5268 		if (csio->bio != NULL)
5269 			biotrack(csio->bio, __func__);
5270 	}
5271 #endif
5272 
5273 	if (ccb_h->flags & CAM_HIGH_POWER) {
5274 		struct highpowerlist	*hphead;
5275 		struct cam_ed		*device;
5276 
5277 		mtx_lock(&xsoftc.xpt_highpower_lock);
5278 		hphead = &xsoftc.highpowerq;
5279 
5280 		device = STAILQ_FIRST(hphead);
5281 
5282 		/*
5283 		 * Increment the count since this command is done.
5284 		 */
5285 		xsoftc.num_highpower++;
5286 
5287 		/*
5288 		 * Any high powered commands queued up?
5289 		 */
5290 		if (device != NULL) {
5291 			STAILQ_REMOVE_HEAD(hphead, highpowerq_entry);
5292 			mtx_unlock(&xsoftc.xpt_highpower_lock);
5293 
5294 			mtx_lock(&device->sim->devq->send_mtx);
5295 			xpt_release_devq_device(device,
5296 					 /*count*/1, /*runqueue*/TRUE);
5297 			mtx_unlock(&device->sim->devq->send_mtx);
5298 		} else
5299 			mtx_unlock(&xsoftc.xpt_highpower_lock);
5300 	}
5301 
5302 	/*
5303 	 * Insulate against a race where the periph is destroyed but CCBs are
5304 	 * still not all processed. This shouldn't happen, but allows us better
5305 	 * bug diagnostic when it does.
5306 	 */
5307 	if (ccb_h->path->bus)
5308 		sim = ccb_h->path->bus->sim;
5309 
5310 	if (ccb_h->status & CAM_RELEASE_SIMQ) {
5311 		KASSERT(sim, ("sim missing for CAM_RELEASE_SIMQ request"));
5312 		xpt_release_simq(sim, /*run_queue*/FALSE);
5313 		ccb_h->status &= ~CAM_RELEASE_SIMQ;
5314 	}
5315 
5316 	if ((ccb_h->flags & CAM_DEV_QFRZDIS)
5317 	 && (ccb_h->status & CAM_DEV_QFRZN)) {
5318 		xpt_release_devq(ccb_h->path, /*count*/1, /*run_queue*/TRUE);
5319 		ccb_h->status &= ~CAM_DEV_QFRZN;
5320 	}
5321 
5322 	if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) {
5323 		struct cam_ed *dev = ccb_h->path->device;
5324 
5325 		if (sim)
5326 			devq = sim->devq;
5327 		KASSERT(devq, ("Periph disappeared with CCB %p %s request pending.",
5328 			ccb_h, xpt_action_name(ccb_h->func_code)));
5329 
5330 		mtx_lock(&devq->send_mtx);
5331 		devq->send_active--;
5332 		devq->send_openings++;
5333 		cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h);
5334 
5335 		if (((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
5336 		  && (dev->ccbq.dev_active == 0))) {
5337 			dev->flags &= ~CAM_DEV_REL_ON_QUEUE_EMPTY;
5338 			xpt_release_devq_device(dev, /*count*/1,
5339 					 /*run_queue*/FALSE);
5340 		}
5341 
5342 		if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0
5343 		  && (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ)) {
5344 			dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
5345 			xpt_release_devq_device(dev, /*count*/1,
5346 					 /*run_queue*/FALSE);
5347 		}
5348 
5349 		if (!device_is_queued(dev))
5350 			(void)xpt_schedule_devq(devq, dev);
5351 		xpt_run_devq(devq);
5352 		mtx_unlock(&devq->send_mtx);
5353 
5354 		if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0) {
5355 			mtx = xpt_path_mtx(ccb_h->path);
5356 			mtx_lock(mtx);
5357 
5358 			if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
5359 			 && (--dev->tag_delay_count == 0))
5360 				xpt_start_tags(ccb_h->path);
5361 		}
5362 	}
5363 
5364 	if ((ccb_h->flags & CAM_UNLOCKED) == 0) {
5365 		if (mtx == NULL) {
5366 			mtx = xpt_path_mtx(ccb_h->path);
5367 			mtx_lock(mtx);
5368 		}
5369 	} else {
5370 		if (mtx != NULL) {
5371 			mtx_unlock(mtx);
5372 			mtx = NULL;
5373 		}
5374 	}
5375 
5376 	/* Call the peripheral driver's callback */
5377 	ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
5378 	(*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h);
5379 	if (mtx != NULL)
5380 		mtx_unlock(mtx);
5381 }
5382 
5383 /*
5384  * Parameterize instead and use xpt_done_td?
5385  */
5386 static void
xpt_async_td(void * arg)5387 xpt_async_td(void *arg)
5388 {
5389 	struct cam_doneq *queue = arg;
5390 	struct ccb_hdr *ccb_h;
5391 	STAILQ_HEAD(, ccb_hdr)	doneq;
5392 
5393 	STAILQ_INIT(&doneq);
5394 	mtx_lock(&queue->cam_doneq_mtx);
5395 	while (1) {
5396 		while (STAILQ_EMPTY(&queue->cam_doneq))
5397 			msleep(&queue->cam_doneq, &queue->cam_doneq_mtx,
5398 			    PRIBIO, "-", 0);
5399 		STAILQ_CONCAT(&doneq, &queue->cam_doneq);
5400 		mtx_unlock(&queue->cam_doneq_mtx);
5401 
5402 		while ((ccb_h = STAILQ_FIRST(&doneq)) != NULL) {
5403 			STAILQ_REMOVE_HEAD(&doneq, sim_links.stqe);
5404 			xpt_done_process(ccb_h);
5405 		}
5406 
5407 		mtx_lock(&queue->cam_doneq_mtx);
5408 	}
5409 }
5410 
5411 void
xpt_done_td(void * arg)5412 xpt_done_td(void *arg)
5413 {
5414 	struct cam_doneq *queue = arg;
5415 	struct ccb_hdr *ccb_h;
5416 	STAILQ_HEAD(, ccb_hdr)	doneq;
5417 
5418 	STAILQ_INIT(&doneq);
5419 	mtx_lock(&queue->cam_doneq_mtx);
5420 	while (1) {
5421 		while (STAILQ_EMPTY(&queue->cam_doneq)) {
5422 			queue->cam_doneq_sleep = 1;
5423 			msleep(&queue->cam_doneq, &queue->cam_doneq_mtx,
5424 			    PRIBIO, "-", 0);
5425 			queue->cam_doneq_sleep = 0;
5426 		}
5427 		STAILQ_CONCAT(&doneq, &queue->cam_doneq);
5428 		mtx_unlock(&queue->cam_doneq_mtx);
5429 
5430 		THREAD_NO_SLEEPING();
5431 		while ((ccb_h = STAILQ_FIRST(&doneq)) != NULL) {
5432 			STAILQ_REMOVE_HEAD(&doneq, sim_links.stqe);
5433 			xpt_done_process(ccb_h);
5434 		}
5435 		THREAD_SLEEPING_OK();
5436 
5437 		mtx_lock(&queue->cam_doneq_mtx);
5438 	}
5439 }
5440 
5441 static void
camisr_runqueue(void)5442 camisr_runqueue(void)
5443 {
5444 	struct	ccb_hdr *ccb_h;
5445 	struct cam_doneq *queue;
5446 	int i;
5447 
5448 	/* Process global queues. */
5449 	for (i = 0; i < cam_num_doneqs; i++) {
5450 		queue = &cam_doneqs[i];
5451 		mtx_lock(&queue->cam_doneq_mtx);
5452 		while ((ccb_h = STAILQ_FIRST(&queue->cam_doneq)) != NULL) {
5453 			STAILQ_REMOVE_HEAD(&queue->cam_doneq, sim_links.stqe);
5454 			mtx_unlock(&queue->cam_doneq_mtx);
5455 			xpt_done_process(ccb_h);
5456 			mtx_lock(&queue->cam_doneq_mtx);
5457 		}
5458 		mtx_unlock(&queue->cam_doneq_mtx);
5459 	}
5460 }
5461 
5462 /**
5463  * @brief Return the device_t associated with the path
5464  *
5465  * When a SIM is created, it registers a bus with a NEWBUS device_t. This is
5466  * stored in the internal cam_eb bus structure. There is no guarnatee any given
5467  * path will have a @c device_t associated with it (it's legal to call @c
5468  * xpt_bus_register with a @c NULL @c device_t.
5469  *
5470  * @param path		Path to return the device_t for.
5471  */
5472 device_t
xpt_path_sim_device(const struct cam_path * path)5473 xpt_path_sim_device(const struct cam_path *path)
5474 {
5475 	return (path->bus->parent_dev);
5476 }
5477 
5478 struct kv
5479 {
5480 	uint32_t v;
5481 	const char *name;
5482 };
5483 
5484 static struct kv map[] = {
5485 	{ XPT_NOOP, "XPT_NOOP" },
5486 	{ XPT_SCSI_IO, "XPT_SCSI_IO" },
5487 	{ XPT_GDEV_TYPE, "XPT_GDEV_TYPE" },
5488 	{ XPT_GDEVLIST, "XPT_GDEVLIST" },
5489 	{ XPT_PATH_INQ, "XPT_PATH_INQ" },
5490 	{ XPT_REL_SIMQ, "XPT_REL_SIMQ" },
5491 	{ XPT_SASYNC_CB, "XPT_SASYNC_CB" },
5492 	{ XPT_SDEV_TYPE, "XPT_SDEV_TYPE" },
5493 	{ XPT_SCAN_BUS, "XPT_SCAN_BUS" },
5494 	{ XPT_DEV_MATCH, "XPT_DEV_MATCH" },
5495 	{ XPT_DEBUG, "XPT_DEBUG" },
5496 	{ XPT_PATH_STATS, "XPT_PATH_STATS" },
5497 	{ XPT_GDEV_STATS, "XPT_GDEV_STATS" },
5498 	{ XPT_DEV_ADVINFO, "XPT_DEV_ADVINFO" },
5499 	{ XPT_ASYNC, "XPT_ASYNC" },
5500 	{ XPT_ABORT, "XPT_ABORT" },
5501 	{ XPT_RESET_BUS, "XPT_RESET_BUS" },
5502 	{ XPT_RESET_DEV, "XPT_RESET_DEV" },
5503 	{ XPT_TERM_IO, "XPT_TERM_IO" },
5504 	{ XPT_SCAN_LUN, "XPT_SCAN_LUN" },
5505 	{ XPT_GET_TRAN_SETTINGS, "XPT_GET_TRAN_SETTINGS" },
5506 	{ XPT_SET_TRAN_SETTINGS, "XPT_SET_TRAN_SETTINGS" },
5507 	{ XPT_CALC_GEOMETRY, "XPT_CALC_GEOMETRY" },
5508 	{ XPT_ATA_IO, "XPT_ATA_IO" },
5509 	{ XPT_GET_SIM_KNOB, "XPT_GET_SIM_KNOB" },
5510 	{ XPT_SET_SIM_KNOB, "XPT_SET_SIM_KNOB" },
5511 	{ XPT_NVME_IO, "XPT_NVME_IO" },
5512 	{ XPT_MMC_IO, "XPT_MMC_IO" },
5513 	{ XPT_SMP_IO, "XPT_SMP_IO" },
5514 	{ XPT_SCAN_TGT, "XPT_SCAN_TGT" },
5515 	{ XPT_NVME_ADMIN, "XPT_NVME_ADMIN" },
5516 	{ XPT_ENG_INQ, "XPT_ENG_INQ" },
5517 	{ XPT_ENG_EXEC, "XPT_ENG_EXEC" },
5518 	{ XPT_EN_LUN, "XPT_EN_LUN" },
5519 	{ XPT_TARGET_IO, "XPT_TARGET_IO" },
5520 	{ XPT_ACCEPT_TARGET_IO, "XPT_ACCEPT_TARGET_IO" },
5521 	{ XPT_CONT_TARGET_IO, "XPT_CONT_TARGET_IO" },
5522 	{ XPT_IMMED_NOTIFY, "XPT_IMMED_NOTIFY" },
5523 	{ XPT_NOTIFY_ACK, "XPT_NOTIFY_ACK" },
5524 	{ XPT_IMMEDIATE_NOTIFY, "XPT_IMMEDIATE_NOTIFY" },
5525 	{ XPT_NOTIFY_ACKNOWLEDGE, "XPT_NOTIFY_ACKNOWLEDGE" },
5526 	{ 0, 0 }
5527 };
5528 
5529 const char *
xpt_action_name(uint32_t action)5530 xpt_action_name(uint32_t action)
5531 {
5532 	static char buffer[32];	/* Only for unknown messages -- racy */
5533 	struct kv *walker = map;
5534 
5535 	while (walker->name != NULL) {
5536 		if (walker->v == action)
5537 			return (walker->name);
5538 		walker++;
5539 	}
5540 
5541 	snprintf(buffer, sizeof(buffer), "%#x", action);
5542 	return (buffer);
5543 }
5544 
5545 void
xpt_cam_path_debug(struct cam_path * path,const char * fmt,...)5546 xpt_cam_path_debug(struct cam_path *path, const char *fmt, ...)
5547 {
5548 	struct sbuf sbuf;
5549 	char buf[XPT_PRINT_LEN]; /* balance to not eat too much stack */
5550 	struct sbuf *sb = sbuf_new(&sbuf, buf, sizeof(buf), SBUF_FIXEDLEN);
5551 	va_list ap;
5552 
5553 	sbuf_set_drain(sb, sbuf_printf_drain, NULL);
5554 	xpt_path_sbuf(path, sb);
5555 	va_start(ap, fmt);
5556 	sbuf_vprintf(sb, fmt, ap);
5557 	va_end(ap);
5558 	sbuf_finish(sb);
5559 	sbuf_delete(sb);
5560 	if (cam_debug_delay != 0)
5561 		DELAY(cam_debug_delay);
5562 }
5563 
5564 void
xpt_cam_dev_debug(struct cam_ed * dev,const char * fmt,...)5565 xpt_cam_dev_debug(struct cam_ed *dev, const char *fmt, ...)
5566 {
5567 	struct sbuf sbuf;
5568 	char buf[XPT_PRINT_LEN]; /* balance to not eat too much stack */
5569 	struct sbuf *sb = sbuf_new(&sbuf, buf, sizeof(buf), SBUF_FIXEDLEN);
5570 	va_list ap;
5571 
5572 	sbuf_set_drain(sb, sbuf_printf_drain, NULL);
5573 	xpt_device_sbuf(dev, sb);
5574 	va_start(ap, fmt);
5575 	sbuf_vprintf(sb, fmt, ap);
5576 	va_end(ap);
5577 	sbuf_finish(sb);
5578 	sbuf_delete(sb);
5579 	if (cam_debug_delay != 0)
5580 		DELAY(cam_debug_delay);
5581 }
5582 
5583 void
xpt_cam_debug(const char * fmt,...)5584 xpt_cam_debug(const char *fmt, ...)
5585 {
5586 	struct sbuf sbuf;
5587 	char buf[XPT_PRINT_LEN]; /* balance to not eat too much stack */
5588 	struct sbuf *sb = sbuf_new(&sbuf, buf, sizeof(buf), SBUF_FIXEDLEN);
5589 	va_list ap;
5590 
5591 	sbuf_set_drain(sb, sbuf_printf_drain, NULL);
5592 	sbuf_cat(sb, "cam_debug: ");
5593 	va_start(ap, fmt);
5594 	sbuf_vprintf(sb, fmt, ap);
5595 	va_end(ap);
5596 	sbuf_finish(sb);
5597 	sbuf_delete(sb);
5598 	if (cam_debug_delay != 0)
5599 		DELAY(cam_debug_delay);
5600 }
5601