xref: /freebsd/sys/kern/subr_bus.c (revision c745a6818bcbf33cf7f59641c925d19b3f98cea8)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 1997,1998,2003 Doug Rabson
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 #include "opt_bus.h"
31 #include "opt_ddb.h"
32 #include "opt_iommu.h"
33 
34 #include <sys/param.h>
35 #include <sys/conf.h>
36 #include <sys/domainset.h>
37 #include <sys/eventhandler.h>
38 #include <sys/jail.h>
39 #include <sys/lock.h>
40 #include <sys/kernel.h>
41 #include <sys/limits.h>
42 #include <sys/malloc.h>
43 #include <sys/module.h>
44 #include <sys/mutex.h>
45 #include <sys/priv.h>
46 #include <machine/bus.h>
47 #include <sys/random.h>
48 #include <sys/refcount.h>
49 #include <sys/rman.h>
50 #include <sys/sbuf.h>
51 #include <sys/smp.h>
52 #include <sys/stdarg.h>
53 #include <sys/sysctl.h>
54 #include <sys/systm.h>
55 #include <sys/taskqueue.h>
56 #include <sys/bus.h>
57 #include <sys/cpuset.h>
58 #ifdef INTRNG
59 #include <sys/intr.h>
60 #endif
61 
62 #include <net/vnet.h>
63 
64 #include <machine/cpu.h>
65 
66 #include <vm/uma.h>
67 #include <vm/vm.h>
68 
69 #include <dev/iommu/iommu.h>
70 
71 #include <ddb/ddb.h>
72 
73 SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
74     NULL);
75 SYSCTL_ROOT_NODE(OID_AUTO, dev, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
76     NULL);
77 
78 static bool disable_failed_devs = false;
79 SYSCTL_BOOL(_hw_bus, OID_AUTO, disable_failed_devices, CTLFLAG_RWTUN, &disable_failed_devs,
80     0, "Do not retry attaching devices that return an error from DEVICE_ATTACH the first time");
81 
82 /*
83  * Used to attach drivers to devclasses.
84  */
85 typedef struct driverlink *driverlink_t;
86 struct driverlink {
87 	kobj_class_t	driver;
88 	TAILQ_ENTRY(driverlink) link;	/* list of drivers in devclass */
89 	int		pass;
90 	int		flags;
91 #define DL_DEFERRED_PROBE	1	/* Probe deferred on this */
92 	TAILQ_ENTRY(driverlink) passlink;
93 };
94 
95 /*
96  * Forward declarations
97  */
98 typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t;
99 typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t;
100 typedef TAILQ_HEAD(device_list, _device) device_list_t;
101 
102 struct devclass {
103 	TAILQ_ENTRY(devclass) link;
104 	devclass_t	parent;		/* parent in devclass hierarchy */
105 	driver_list_t	drivers;	/* bus devclasses store drivers for bus */
106 	char		*name;
107 	device_t	*devices;	/* array of devices indexed by unit */
108 	int		maxunit;	/* size of devices array */
109 	int		flags;
110 #define DC_HAS_CHILDREN		1
111 
112 	struct sysctl_ctx_list sysctl_ctx;
113 	struct sysctl_oid *sysctl_tree;
114 };
115 
116 struct device_prop_elm {
117 	const char *name;
118 	void *val;
119 	void *dtr_ctx;
120 	device_prop_dtr_t dtr;
121 	LIST_ENTRY(device_prop_elm) link;
122 };
123 
124 TASKQUEUE_DEFINE_THREAD(bus);
125 
126 static void device_destroy_props(device_t dev);
127 
128 /**
129  * @brief Implementation of _device.
130  *
131  * The structure is named "_device" instead of "device" to avoid type confusion
132  * caused by other subsystems defining a (struct device).
133  */
134 struct _device {
135 	/*
136 	 * A device is a kernel object. The first field must be the
137 	 * current ops table for the object.
138 	 */
139 	KOBJ_FIELDS;
140 
141 	/*
142 	 * Device hierarchy.
143 	 */
144 	TAILQ_ENTRY(_device)	link;	/**< list of devices in parent */
145 	TAILQ_ENTRY(_device)	devlink; /**< global device list membership */
146 	device_t	parent;		/**< parent of this device  */
147 	device_list_t	children;	/**< list of child devices */
148 
149 	/*
150 	 * Details of this device.
151 	 */
152 	driver_t	*driver;	/**< current driver */
153 	devclass_t	devclass;	/**< current device class */
154 	int		unit;		/**< current unit number */
155 	char*		nameunit;	/**< name+unit e.g. foodev0 */
156 	char*		desc;		/**< driver specific description */
157 	u_int		busy;		/**< count of calls to device_busy() */
158 	device_state_t	state;		/**< current device state  */
159 	uint32_t	devflags;	/**< api level flags for device_get_flags() */
160 	u_int		flags;		/**< internal device flags  */
161 	u_int	order;			/**< order from device_add_child_ordered() */
162 	void	*ivars;			/**< instance variables  */
163 	void	*softc;			/**< current driver's variables  */
164 	LIST_HEAD(, device_prop_elm) props;
165 
166 	struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables  */
167 	struct sysctl_oid *sysctl_tree;	/**< state for sysctl variables */
168 };
169 
170 static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures");
171 static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc");
172 
173 EVENTHANDLER_LIST_DEFINE(device_attach);
174 EVENTHANDLER_LIST_DEFINE(device_detach);
175 EVENTHANDLER_LIST_DEFINE(device_nomatch);
176 EVENTHANDLER_LIST_DEFINE(dev_lookup);
177 
178 static void devctl2_init(void);
179 static bool device_frozen;
180 
181 #define DRIVERNAME(d)	((d)? d->name : "no driver")
182 #define DEVCLANAME(d)	((d)? d->name : "no devclass")
183 
184 #ifdef BUS_DEBUG
185 
186 static int bus_debug = 1;
187 SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RWTUN, &bus_debug, 0,
188     "Bus debug level");
189 #define PDEBUG(a)	if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");}
190 #define DEVICENAME(d)	((d)? device_get_name(d): "no device")
191 
192 /**
193  * Produce the indenting, indent*2 spaces plus a '.' ahead of that to
194  * prevent syslog from deleting initial spaces
195  */
196 #define indentprintf(p)	do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf("  "); printf p ; } while (0)
197 
198 static void print_device_short(device_t dev, int indent);
199 static void print_device(device_t dev, int indent);
200 void print_device_tree_short(device_t dev, int indent);
201 void print_device_tree(device_t dev, int indent);
202 static void print_driver_short(driver_t *driver, int indent);
203 static void print_driver(driver_t *driver, int indent);
204 static void print_driver_list(driver_list_t drivers, int indent);
205 static void print_devclass_short(devclass_t dc, int indent);
206 static void print_devclass(devclass_t dc, int indent);
207 void print_devclass_list_short(void);
208 void print_devclass_list(void);
209 
210 #else
211 /* Make the compiler ignore the function calls */
212 #define PDEBUG(a)			/* nop */
213 #define DEVICENAME(d)			/* nop */
214 
215 #define print_device_short(d,i)		/* nop */
216 #define print_device(d,i)		/* nop */
217 #define print_device_tree_short(d,i)	/* nop */
218 #define print_device_tree(d,i)		/* nop */
219 #define print_driver_short(d,i)		/* nop */
220 #define print_driver(d,i)		/* nop */
221 #define print_driver_list(d,i)		/* nop */
222 #define print_devclass_short(d,i)	/* nop */
223 #define print_devclass(d,i)		/* nop */
224 #define print_devclass_list_short()	/* nop */
225 #define print_devclass_list()		/* nop */
226 #endif
227 
228 /*
229  * dev sysctl tree
230  */
231 
232 enum {
233 	DEVCLASS_SYSCTL_PARENT,
234 };
235 
236 static int
devclass_sysctl_handler(SYSCTL_HANDLER_ARGS)237 devclass_sysctl_handler(SYSCTL_HANDLER_ARGS)
238 {
239 	devclass_t dc = (devclass_t)arg1;
240 	const char *value;
241 
242 	switch (arg2) {
243 	case DEVCLASS_SYSCTL_PARENT:
244 		value = dc->parent ? dc->parent->name : "";
245 		break;
246 	default:
247 		return (EINVAL);
248 	}
249 	return (SYSCTL_OUT_STR(req, value));
250 }
251 
252 static void
devclass_sysctl_init(devclass_t dc)253 devclass_sysctl_init(devclass_t dc)
254 {
255 	if (dc->sysctl_tree != NULL)
256 		return;
257 	sysctl_ctx_init(&dc->sysctl_ctx);
258 	dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx,
259 	    SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name,
260 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
261 	SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree),
262 	    OID_AUTO, "%parent",
263 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
264 	    dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A",
265 	    "parent class");
266 }
267 
268 enum {
269 	DEVICE_SYSCTL_DESC,
270 	DEVICE_SYSCTL_DRIVER,
271 	DEVICE_SYSCTL_LOCATION,
272 	DEVICE_SYSCTL_PNPINFO,
273 	DEVICE_SYSCTL_PARENT,
274 	DEVICE_SYSCTL_IOMMU,
275 };
276 
277 static int
device_sysctl_handler(SYSCTL_HANDLER_ARGS)278 device_sysctl_handler(SYSCTL_HANDLER_ARGS)
279 {
280 	struct sbuf sb;
281 	device_t dev = (device_t)arg1;
282 	device_t iommu;
283 #ifdef IOMMU
284 	device_t requester;
285 #endif
286 	int error;
287 	uint16_t rid;
288 	const char *c;
289 
290 	sbuf_new_for_sysctl(&sb, NULL, 1024, req);
291 	sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
292 	bus_topo_lock();
293 	switch (arg2) {
294 	case DEVICE_SYSCTL_DESC:
295 		sbuf_cat(&sb, dev->desc ? dev->desc : "");
296 		break;
297 	case DEVICE_SYSCTL_DRIVER:
298 		sbuf_cat(&sb, dev->driver ? dev->driver->name : "");
299 		break;
300 	case DEVICE_SYSCTL_LOCATION:
301 		bus_child_location(dev, &sb);
302 		break;
303 	case DEVICE_SYSCTL_PNPINFO:
304 		bus_child_pnpinfo(dev, &sb);
305 		break;
306 	case DEVICE_SYSCTL_PARENT:
307 		sbuf_cat(&sb, dev->parent ? dev->parent->nameunit : "");
308 		break;
309 	case DEVICE_SYSCTL_IOMMU:
310 		iommu = NULL;
311 		error = device_get_prop(dev, DEV_PROP_NAME_IOMMU,
312 		    (void **)&iommu);
313 		c = "";
314 		if (error == 0 && iommu != NULL) {
315 			sbuf_printf(&sb, "unit=%s", device_get_nameunit(iommu));
316 			c = " ";
317 		}
318 		rid = 0;
319 #ifdef IOMMU
320 		error = iommu_get_requester(dev, &requester, &rid);
321 		/*
322 		 * Do not return requester error from sysctl, iommu
323 		 * unit might be assigned by other means.
324 		 */
325 #else
326 		error = ENXIO;
327 #endif
328 		if (error == 0)
329 			sbuf_printf(&sb, "%srid=%#x", c, rid);
330 		break;
331 	default:
332 		error = EINVAL;
333 		goto out;
334 	}
335 	error = sbuf_finish(&sb);
336 out:
337 	bus_topo_unlock();
338 	sbuf_delete(&sb);
339 	return (error);
340 }
341 
342 static void
device_sysctl_init(device_t dev)343 device_sysctl_init(device_t dev)
344 {
345 	devclass_t dc = dev->devclass;
346 	int domain;
347 
348 	if (dev->sysctl_tree != NULL)
349 		return;
350 	devclass_sysctl_init(dc);
351 	sysctl_ctx_init(&dev->sysctl_ctx);
352 	dev->sysctl_tree = SYSCTL_ADD_NODE_WITH_LABEL(&dev->sysctl_ctx,
353 	    SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO,
354 	    dev->nameunit + strlen(dc->name),
355 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "", "device_index");
356 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
357 	    OID_AUTO, "%desc", CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
358 	    dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A",
359 	    "device description");
360 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
361 	    OID_AUTO, "%driver",
362 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
363 	    dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A",
364 	    "device driver name");
365 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
366 	    OID_AUTO, "%location",
367 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
368 	    dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A",
369 	    "device location relative to parent");
370 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
371 	    OID_AUTO, "%pnpinfo",
372 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
373 	    dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A",
374 	    "device identification");
375 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
376 	    OID_AUTO, "%parent",
377 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
378 	    dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A",
379 	    "parent device");
380 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
381 	    OID_AUTO, "%iommu",
382 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
383 	    dev, DEVICE_SYSCTL_IOMMU, device_sysctl_handler, "A",
384 	    "iommu unit handling the device requests");
385 	if (bus_get_domain(dev, &domain) == 0)
386 		SYSCTL_ADD_INT(&dev->sysctl_ctx,
387 		    SYSCTL_CHILDREN(dev->sysctl_tree), OID_AUTO, "%domain",
388 		    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, domain, "NUMA domain");
389 }
390 
391 static void
device_sysctl_update(device_t dev)392 device_sysctl_update(device_t dev)
393 {
394 	devclass_t dc = dev->devclass;
395 
396 	if (dev->sysctl_tree == NULL)
397 		return;
398 	sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name));
399 }
400 
401 static void
device_sysctl_fini(device_t dev)402 device_sysctl_fini(device_t dev)
403 {
404 	if (dev->sysctl_tree == NULL)
405 		return;
406 	sysctl_ctx_free(&dev->sysctl_ctx);
407 	dev->sysctl_tree = NULL;
408 }
409 
410 static struct device_list bus_data_devices;
411 static int bus_data_generation = 1;
412 
413 static kobj_method_t null_methods[] = {
414 	KOBJMETHOD_END
415 };
416 
417 DEFINE_CLASS(null, null_methods, 0);
418 
419 void
bus_topo_assert(void)420 bus_topo_assert(void)
421 {
422 
423 	GIANT_REQUIRED;
424 }
425 
426 struct mtx *
bus_topo_mtx(void)427 bus_topo_mtx(void)
428 {
429 
430 	return (&Giant);
431 }
432 
433 void
bus_topo_lock(void)434 bus_topo_lock(void)
435 {
436 
437 	mtx_lock(bus_topo_mtx());
438 }
439 
440 void
bus_topo_unlock(void)441 bus_topo_unlock(void)
442 {
443 
444 	mtx_unlock(bus_topo_mtx());
445 }
446 
447 /*
448  * Bus pass implementation
449  */
450 
451 static driver_list_t passes = TAILQ_HEAD_INITIALIZER(passes);
452 static int bus_current_pass = BUS_PASS_ROOT;
453 
454 /**
455  * @internal
456  * @brief Register the pass level of a new driver attachment
457  *
458  * Register a new driver attachment's pass level.  If no driver
459  * attachment with the same pass level has been added, then @p new
460  * will be added to the global passes list.
461  *
462  * @param new		the new driver attachment
463  */
464 static void
driver_register_pass(struct driverlink * new)465 driver_register_pass(struct driverlink *new)
466 {
467 	struct driverlink *dl;
468 
469 	/* We only consider pass numbers during boot. */
470 	if (bus_current_pass == BUS_PASS_DEFAULT)
471 		return;
472 
473 	/*
474 	 * Walk the passes list.  If we already know about this pass
475 	 * then there is nothing to do.  If we don't, then insert this
476 	 * driver link into the list.
477 	 */
478 	TAILQ_FOREACH(dl, &passes, passlink) {
479 		if (dl->pass < new->pass)
480 			continue;
481 		if (dl->pass == new->pass)
482 			return;
483 		TAILQ_INSERT_BEFORE(dl, new, passlink);
484 		return;
485 	}
486 	TAILQ_INSERT_TAIL(&passes, new, passlink);
487 }
488 
489 /**
490  * @brief Retrieve the current bus pass
491  *
492  * Retrieves the current bus pass level.  Call the BUS_NEW_PASS()
493  * method on the root bus to kick off a new device tree scan for each
494  * new pass level that has at least one driver.
495  */
496 int
bus_get_pass(void)497 bus_get_pass(void)
498 {
499 
500 	return (bus_current_pass);
501 }
502 
503 /**
504  * @brief Raise the current bus pass
505  *
506  * Raise the current bus pass level to @p pass.  Call the BUS_NEW_PASS()
507  * method on the root bus to kick off a new device tree scan for each
508  * new pass level that has at least one driver.
509  */
510 static void
bus_set_pass(int pass)511 bus_set_pass(int pass)
512 {
513 	struct driverlink *dl;
514 
515 	if (bus_current_pass > pass)
516 		panic("Attempt to lower bus pass level");
517 
518 	TAILQ_FOREACH(dl, &passes, passlink) {
519 		/* Skip pass values below the current pass level. */
520 		if (dl->pass <= bus_current_pass)
521 			continue;
522 
523 		/*
524 		 * Bail once we hit a driver with a pass level that is
525 		 * too high.
526 		 */
527 		if (dl->pass > pass)
528 			break;
529 
530 		/*
531 		 * Raise the pass level to the next level and rescan
532 		 * the tree.
533 		 */
534 		bus_current_pass = dl->pass;
535 		BUS_NEW_PASS(root_bus);
536 	}
537 
538 	/*
539 	 * If there isn't a driver registered for the requested pass,
540 	 * then bus_current_pass might still be less than 'pass'.  Set
541 	 * it to 'pass' in that case.
542 	 */
543 	if (bus_current_pass < pass)
544 		bus_current_pass = pass;
545 	KASSERT(bus_current_pass == pass, ("Failed to update bus pass level"));
546 }
547 
548 /*
549  * Devclass implementation
550  */
551 
552 static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses);
553 
554 /**
555  * @internal
556  * @brief Find or create a device class
557  *
558  * If a device class with the name @p classname exists, return it,
559  * otherwise if @p create is non-zero create and return a new device
560  * class.
561  *
562  * If @p parentname is non-NULL, the parent of the devclass is set to
563  * the devclass of that name.
564  *
565  * @param classname	the devclass name to find or create
566  * @param parentname	the parent devclass name or @c NULL
567  * @param create	non-zero to create a devclass
568  */
569 static devclass_t
devclass_find_internal(const char * classname,const char * parentname,int create)570 devclass_find_internal(const char *classname, const char *parentname,
571 		       int create)
572 {
573 	devclass_t dc;
574 
575 	PDEBUG(("looking for %s", classname));
576 	if (!classname)
577 		return (NULL);
578 
579 	TAILQ_FOREACH(dc, &devclasses, link) {
580 		if (!strcmp(dc->name, classname))
581 			break;
582 	}
583 
584 	if (create && !dc) {
585 		PDEBUG(("creating %s", classname));
586 		dc = malloc(sizeof(struct devclass) + strlen(classname) + 1,
587 		    M_BUS, M_WAITOK | M_ZERO);
588 		dc->parent = NULL;
589 		dc->name = (char*) (dc + 1);
590 		strcpy(dc->name, classname);
591 		TAILQ_INIT(&dc->drivers);
592 		TAILQ_INSERT_TAIL(&devclasses, dc, link);
593 
594 		bus_data_generation_update();
595 	}
596 
597 	/*
598 	 * If a parent class is specified, then set that as our parent so
599 	 * that this devclass will support drivers for the parent class as
600 	 * well.  If the parent class has the same name don't do this though
601 	 * as it creates a cycle that can trigger an infinite loop in
602 	 * device_probe_child() if a device exists for which there is no
603 	 * suitable driver.
604 	 */
605 	if (parentname && dc && !dc->parent &&
606 	    strcmp(classname, parentname) != 0) {
607 		dc->parent = devclass_find_internal(parentname, NULL, TRUE);
608 		dc->parent->flags |= DC_HAS_CHILDREN;
609 	}
610 
611 	return (dc);
612 }
613 
614 /**
615  * @brief Create a device class
616  *
617  * If a device class with the name @p classname exists, return it,
618  * otherwise create and return a new device class.
619  *
620  * @param classname	the devclass name to find or create
621  */
622 devclass_t
devclass_create(const char * classname)623 devclass_create(const char *classname)
624 {
625 	return (devclass_find_internal(classname, NULL, TRUE));
626 }
627 
628 /**
629  * @brief Find a device class
630  *
631  * If a device class with the name @p classname exists, return it,
632  * otherwise return @c NULL.
633  *
634  * @param classname	the devclass name to find
635  */
636 devclass_t
devclass_find(const char * classname)637 devclass_find(const char *classname)
638 {
639 	return (devclass_find_internal(classname, NULL, FALSE));
640 }
641 
642 /**
643  * @brief Register that a device driver has been added to a devclass
644  *
645  * Register that a device driver has been added to a devclass.  This
646  * is called by devclass_add_driver to accomplish the recursive
647  * notification of all the children classes of dc, as well as dc.
648  * Each layer will have BUS_DRIVER_ADDED() called for all instances of
649  * the devclass.
650  *
651  * We do a full search here of the devclass list at each iteration
652  * level to save storing children-lists in the devclass structure.  If
653  * we ever move beyond a few dozen devices doing this, we may need to
654  * reevaluate...
655  *
656  * @param dc		the devclass to edit
657  * @param driver	the driver that was just added
658  */
659 static void
devclass_driver_added(devclass_t dc,driver_t * driver)660 devclass_driver_added(devclass_t dc, driver_t *driver)
661 {
662 	devclass_t parent;
663 	int i;
664 
665 	/*
666 	 * Call BUS_DRIVER_ADDED for any existing buses in this class.
667 	 */
668 	for (i = 0; i < dc->maxunit; i++)
669 		if (dc->devices[i] && device_is_attached(dc->devices[i]))
670 			BUS_DRIVER_ADDED(dc->devices[i], driver);
671 
672 	/*
673 	 * Walk through the children classes.  Since we only keep a
674 	 * single parent pointer around, we walk the entire list of
675 	 * devclasses looking for children.  We set the
676 	 * DC_HAS_CHILDREN flag when a child devclass is created on
677 	 * the parent, so we only walk the list for those devclasses
678 	 * that have children.
679 	 */
680 	if (!(dc->flags & DC_HAS_CHILDREN))
681 		return;
682 	parent = dc;
683 	TAILQ_FOREACH(dc, &devclasses, link) {
684 		if (dc->parent == parent)
685 			devclass_driver_added(dc, driver);
686 	}
687 }
688 
689 static void
device_handle_nomatch(device_t dev)690 device_handle_nomatch(device_t dev)
691 {
692 	BUS_PROBE_NOMATCH(dev->parent, dev);
693 	EVENTHANDLER_DIRECT_INVOKE(device_nomatch, dev);
694 	dev->flags |= DF_DONENOMATCH;
695 }
696 
697 /**
698  * @brief Add a device driver to a device class
699  *
700  * Add a device driver to a devclass. This is normally called
701  * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of
702  * all devices in the devclass will be called to allow them to attempt
703  * to re-probe any unmatched children.
704  *
705  * @param dc		the devclass to edit
706  * @param driver	the driver to register
707  */
708 int
devclass_add_driver(devclass_t dc,driver_t * driver,int pass,devclass_t * dcp)709 devclass_add_driver(devclass_t dc, driver_t *driver, int pass, devclass_t *dcp)
710 {
711 	driverlink_t dl;
712 	devclass_t child_dc;
713 	const char *parentname;
714 
715 	PDEBUG(("%s", DRIVERNAME(driver)));
716 
717 	/* Don't allow invalid pass values. */
718 	if (pass <= BUS_PASS_ROOT)
719 		return (EINVAL);
720 
721 	dl = malloc(sizeof *dl, M_BUS, M_WAITOK|M_ZERO);
722 
723 	/*
724 	 * Compile the driver's methods. Also increase the reference count
725 	 * so that the class doesn't get freed when the last instance
726 	 * goes. This means we can safely use static methods and avoids a
727 	 * double-free in devclass_delete_driver.
728 	 */
729 	kobj_class_compile((kobj_class_t) driver);
730 
731 	/*
732 	 * If the driver has any base classes, make the
733 	 * devclass inherit from the devclass of the driver's
734 	 * first base class. This will allow the system to
735 	 * search for drivers in both devclasses for children
736 	 * of a device using this driver.
737 	 */
738 	if (driver->baseclasses)
739 		parentname = driver->baseclasses[0]->name;
740 	else
741 		parentname = NULL;
742 	child_dc = devclass_find_internal(driver->name, parentname, TRUE);
743 	if (dcp != NULL)
744 		*dcp = child_dc;
745 
746 	dl->driver = driver;
747 	TAILQ_INSERT_TAIL(&dc->drivers, dl, link);
748 	driver->refs++;		/* XXX: kobj_mtx */
749 	dl->pass = pass;
750 	driver_register_pass(dl);
751 
752 	if (device_frozen) {
753 		dl->flags |= DL_DEFERRED_PROBE;
754 	} else {
755 		devclass_driver_added(dc, driver);
756 	}
757 	bus_data_generation_update();
758 	return (0);
759 }
760 
761 /**
762  * @brief Register that a device driver has been deleted from a devclass
763  *
764  * Register that a device driver has been removed from a devclass.
765  * This is called by devclass_delete_driver to accomplish the
766  * recursive notification of all the children classes of busclass, as
767  * well as busclass.  Each layer will attempt to detach the driver
768  * from any devices that are children of the bus's devclass.  The function
769  * will return an error if a device fails to detach.
770  *
771  * We do a full search here of the devclass list at each iteration
772  * level to save storing children-lists in the devclass structure.  If
773  * we ever move beyond a few dozen devices doing this, we may need to
774  * reevaluate...
775  *
776  * @param busclass	the devclass of the parent bus
777  * @param dc		the devclass of the driver being deleted
778  * @param driver	the driver being deleted
779  */
780 static int
devclass_driver_deleted(devclass_t busclass,devclass_t dc,driver_t * driver)781 devclass_driver_deleted(devclass_t busclass, devclass_t dc, driver_t *driver)
782 {
783 	devclass_t parent;
784 	device_t dev;
785 	int error, i;
786 
787 	/*
788 	 * Disassociate from any devices.  We iterate through all the
789 	 * devices in the devclass of the driver and detach any which are
790 	 * using the driver and which have a parent in the devclass which
791 	 * we are deleting from.
792 	 *
793 	 * Note that since a driver can be in multiple devclasses, we
794 	 * should not detach devices which are not children of devices in
795 	 * the affected devclass.
796 	 *
797 	 * If we're frozen, we don't generate NOMATCH events. Mark to
798 	 * generate later.
799 	 */
800 	for (i = 0; i < dc->maxunit; i++) {
801 		if (dc->devices[i]) {
802 			dev = dc->devices[i];
803 			if (dev->driver == driver && dev->parent &&
804 			    dev->parent->devclass == busclass) {
805 				if ((error = device_detach(dev)) != 0)
806 					return (error);
807 				if (device_frozen) {
808 					dev->flags &= ~DF_DONENOMATCH;
809 					dev->flags |= DF_NEEDNOMATCH;
810 				} else {
811 					device_handle_nomatch(dev);
812 				}
813 			}
814 		}
815 	}
816 
817 	/*
818 	 * Walk through the children classes.  Since we only keep a
819 	 * single parent pointer around, we walk the entire list of
820 	 * devclasses looking for children.  We set the
821 	 * DC_HAS_CHILDREN flag when a child devclass is created on
822 	 * the parent, so we only walk the list for those devclasses
823 	 * that have children.
824 	 */
825 	if (!(busclass->flags & DC_HAS_CHILDREN))
826 		return (0);
827 	parent = busclass;
828 	TAILQ_FOREACH(busclass, &devclasses, link) {
829 		if (busclass->parent == parent) {
830 			error = devclass_driver_deleted(busclass, dc, driver);
831 			if (error)
832 				return (error);
833 		}
834 	}
835 	return (0);
836 }
837 
838 /**
839  * @brief Delete a device driver from a device class
840  *
841  * Delete a device driver from a devclass. This is normally called
842  * automatically by DRIVER_MODULE().
843  *
844  * If the driver is currently attached to any devices,
845  * devclass_delete_driver() will first attempt to detach from each
846  * device. If one of the detach calls fails, the driver will not be
847  * deleted.
848  *
849  * @param dc		the devclass to edit
850  * @param driver	the driver to unregister
851  */
852 int
devclass_delete_driver(devclass_t busclass,driver_t * driver)853 devclass_delete_driver(devclass_t busclass, driver_t *driver)
854 {
855 	devclass_t dc = devclass_find(driver->name);
856 	driverlink_t dl;
857 	int error;
858 
859 	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
860 
861 	if (!dc)
862 		return (0);
863 
864 	/*
865 	 * Find the link structure in the bus' list of drivers.
866 	 */
867 	TAILQ_FOREACH(dl, &busclass->drivers, link) {
868 		if (dl->driver == driver)
869 			break;
870 	}
871 
872 	if (!dl) {
873 		PDEBUG(("%s not found in %s list", driver->name,
874 		    busclass->name));
875 		return (ENOENT);
876 	}
877 
878 	error = devclass_driver_deleted(busclass, dc, driver);
879 	if (error != 0)
880 		return (error);
881 
882 	TAILQ_REMOVE(&busclass->drivers, dl, link);
883 	free(dl, M_BUS);
884 
885 	/* XXX: kobj_mtx */
886 	driver->refs--;
887 	if (driver->refs == 0)
888 		kobj_class_free((kobj_class_t) driver);
889 
890 	bus_data_generation_update();
891 	return (0);
892 }
893 
894 /**
895  * @brief Quiesces a set of device drivers from a device class
896  *
897  * Quiesce a device driver from a devclass. This is normally called
898  * automatically by DRIVER_MODULE().
899  *
900  * If the driver is currently attached to any devices,
901  * devclass_quiesece_driver() will first attempt to quiesce each
902  * device.
903  *
904  * @param dc		the devclass to edit
905  * @param driver	the driver to unregister
906  */
907 static int
devclass_quiesce_driver(devclass_t busclass,driver_t * driver)908 devclass_quiesce_driver(devclass_t busclass, driver_t *driver)
909 {
910 	devclass_t dc = devclass_find(driver->name);
911 	driverlink_t dl;
912 	device_t dev;
913 	int i;
914 	int error;
915 
916 	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
917 
918 	if (!dc)
919 		return (0);
920 
921 	/*
922 	 * Find the link structure in the bus' list of drivers.
923 	 */
924 	TAILQ_FOREACH(dl, &busclass->drivers, link) {
925 		if (dl->driver == driver)
926 			break;
927 	}
928 
929 	if (!dl) {
930 		PDEBUG(("%s not found in %s list", driver->name,
931 		    busclass->name));
932 		return (ENOENT);
933 	}
934 
935 	/*
936 	 * Quiesce all devices.  We iterate through all the devices in
937 	 * the devclass of the driver and quiesce any which are using
938 	 * the driver and which have a parent in the devclass which we
939 	 * are quiescing.
940 	 *
941 	 * Note that since a driver can be in multiple devclasses, we
942 	 * should not quiesce devices which are not children of
943 	 * devices in the affected devclass.
944 	 */
945 	for (i = 0; i < dc->maxunit; i++) {
946 		if (dc->devices[i]) {
947 			dev = dc->devices[i];
948 			if (dev->driver == driver && dev->parent &&
949 			    dev->parent->devclass == busclass) {
950 				if ((error = device_quiesce(dev)) != 0)
951 					return (error);
952 			}
953 		}
954 	}
955 
956 	return (0);
957 }
958 
959 /**
960  * @internal
961  */
962 static driverlink_t
devclass_find_driver_internal(devclass_t dc,const char * classname)963 devclass_find_driver_internal(devclass_t dc, const char *classname)
964 {
965 	driverlink_t dl;
966 
967 	PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc)));
968 
969 	TAILQ_FOREACH(dl, &dc->drivers, link) {
970 		if (!strcmp(dl->driver->name, classname))
971 			return (dl);
972 	}
973 
974 	PDEBUG(("not found"));
975 	return (NULL);
976 }
977 
978 /**
979  * @brief Return the name of the devclass
980  */
981 const char *
devclass_get_name(devclass_t dc)982 devclass_get_name(devclass_t dc)
983 {
984 	return (dc->name);
985 }
986 
987 /**
988  * @brief Find a device given a unit number
989  *
990  * @param dc		the devclass to search
991  * @param unit		the unit number to search for
992  *
993  * @returns		the device with the given unit number or @c
994  *			NULL if there is no such device
995  */
996 device_t
devclass_get_device(devclass_t dc,int unit)997 devclass_get_device(devclass_t dc, int unit)
998 {
999 	if (dc == NULL || unit < 0 || unit >= dc->maxunit)
1000 		return (NULL);
1001 	return (dc->devices[unit]);
1002 }
1003 
1004 /**
1005  * @brief Find the softc field of a device given a unit number
1006  *
1007  * @param dc		the devclass to search
1008  * @param unit		the unit number to search for
1009  *
1010  * @returns		the softc field of the device with the given
1011  *			unit number or @c NULL if there is no such
1012  *			device
1013  */
1014 void *
devclass_get_softc(devclass_t dc,int unit)1015 devclass_get_softc(devclass_t dc, int unit)
1016 {
1017 	device_t dev;
1018 
1019 	dev = devclass_get_device(dc, unit);
1020 	if (!dev)
1021 		return (NULL);
1022 
1023 	return (device_get_softc(dev));
1024 }
1025 
1026 /**
1027  * @brief Get a list of devices in the devclass
1028  *
1029  * An array containing a list of all the devices in the given devclass
1030  * is allocated and returned in @p *devlistp. The number of devices
1031  * in the array is returned in @p *devcountp. The caller should free
1032  * the array using @c free(p, M_TEMP), even if @p *devcountp is 0.
1033  *
1034  * @param dc		the devclass to examine
1035  * @param devlistp	points at location for array pointer return
1036  *			value
1037  * @param devcountp	points at location for array size return value
1038  *
1039  * @retval 0		success
1040  * @retval ENOMEM	the array allocation failed
1041  */
1042 int
devclass_get_devices(devclass_t dc,device_t ** devlistp,int * devcountp)1043 devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp)
1044 {
1045 	int count, i;
1046 	device_t *list;
1047 
1048 	count = devclass_get_count(dc);
1049 	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
1050 	if (!list)
1051 		return (ENOMEM);
1052 
1053 	count = 0;
1054 	for (i = 0; i < dc->maxunit; i++) {
1055 		if (dc->devices[i]) {
1056 			list[count] = dc->devices[i];
1057 			count++;
1058 		}
1059 	}
1060 
1061 	*devlistp = list;
1062 	*devcountp = count;
1063 
1064 	return (0);
1065 }
1066 
1067 /**
1068  * @brief Get a list of drivers in the devclass
1069  *
1070  * An array containing a list of pointers to all the drivers in the
1071  * given devclass is allocated and returned in @p *listp.  The number
1072  * of drivers in the array is returned in @p *countp. The caller should
1073  * free the array using @c free(p, M_TEMP).
1074  *
1075  * @param dc		the devclass to examine
1076  * @param listp		gives location for array pointer return value
1077  * @param countp	gives location for number of array elements
1078  *			return value
1079  *
1080  * @retval 0		success
1081  * @retval ENOMEM	the array allocation failed
1082  */
1083 int
devclass_get_drivers(devclass_t dc,driver_t *** listp,int * countp)1084 devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp)
1085 {
1086 	driverlink_t dl;
1087 	driver_t **list;
1088 	int count;
1089 
1090 	count = 0;
1091 	TAILQ_FOREACH(dl, &dc->drivers, link)
1092 		count++;
1093 	list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT);
1094 	if (list == NULL)
1095 		return (ENOMEM);
1096 
1097 	count = 0;
1098 	TAILQ_FOREACH(dl, &dc->drivers, link) {
1099 		list[count] = dl->driver;
1100 		count++;
1101 	}
1102 	*listp = list;
1103 	*countp = count;
1104 
1105 	return (0);
1106 }
1107 
1108 /**
1109  * @brief Get the number of devices in a devclass
1110  *
1111  * @param dc		the devclass to examine
1112  */
1113 int
devclass_get_count(devclass_t dc)1114 devclass_get_count(devclass_t dc)
1115 {
1116 	int count, i;
1117 
1118 	count = 0;
1119 	for (i = 0; i < dc->maxunit; i++)
1120 		if (dc->devices[i])
1121 			count++;
1122 	return (count);
1123 }
1124 
1125 /**
1126  * @brief Get the maximum unit number used in a devclass
1127  *
1128  * Note that this is one greater than the highest currently-allocated unit.  If
1129  * @p dc is NULL, @c -1 is returned to indicate that not even the devclass has
1130  * been allocated yet.
1131  *
1132  * @param dc		the devclass to examine
1133  */
1134 int
devclass_get_maxunit(devclass_t dc)1135 devclass_get_maxunit(devclass_t dc)
1136 {
1137 	if (dc == NULL)
1138 		return (-1);
1139 	return (dc->maxunit);
1140 }
1141 
1142 /**
1143  * @brief Find a free unit number in a devclass
1144  *
1145  * This function searches for the first unused unit number greater
1146  * that or equal to @p unit. Note: This can return INT_MAX which
1147  * may be rejected elsewhere.
1148  *
1149  * @param dc		the devclass to examine
1150  * @param unit		the first unit number to check
1151  */
1152 int
devclass_find_free_unit(devclass_t dc,int unit)1153 devclass_find_free_unit(devclass_t dc, int unit)
1154 {
1155 	if (dc == NULL)
1156 		return (unit);
1157 	while (unit < dc->maxunit && dc->devices[unit] != NULL)
1158 		unit++;
1159 	return (unit);
1160 }
1161 
1162 /**
1163  * @brief Set the parent of a devclass
1164  *
1165  * The parent class is normally initialised automatically by
1166  * DRIVER_MODULE().
1167  *
1168  * @param dc		the devclass to edit
1169  * @param pdc		the new parent devclass
1170  */
1171 void
devclass_set_parent(devclass_t dc,devclass_t pdc)1172 devclass_set_parent(devclass_t dc, devclass_t pdc)
1173 {
1174 	dc->parent = pdc;
1175 }
1176 
1177 /**
1178  * @brief Get the parent of a devclass
1179  *
1180  * @param dc		the devclass to examine
1181  */
1182 devclass_t
devclass_get_parent(devclass_t dc)1183 devclass_get_parent(devclass_t dc)
1184 {
1185 	return (dc->parent);
1186 }
1187 
1188 struct sysctl_ctx_list *
devclass_get_sysctl_ctx(devclass_t dc)1189 devclass_get_sysctl_ctx(devclass_t dc)
1190 {
1191 	return (&dc->sysctl_ctx);
1192 }
1193 
1194 struct sysctl_oid *
devclass_get_sysctl_tree(devclass_t dc)1195 devclass_get_sysctl_tree(devclass_t dc)
1196 {
1197 	return (dc->sysctl_tree);
1198 }
1199 
1200 /**
1201  * @internal
1202  * @brief Allocate a unit number
1203  *
1204  * On entry, @p *unitp is the desired unit number (or @c DEVICE_UNIT_ANY if any
1205  * will do). The allocated unit number is returned in @p *unitp.
1206  *
1207  * @param dc		the devclass to allocate from
1208  * @param unitp		points at the location for the allocated unit
1209  *			number
1210  *
1211  * @retval 0		success
1212  * @retval EEXIST	the requested unit number is already allocated
1213  * @retval ENOMEM	memory allocation failure
1214  * @retval EINVAL	unit is negative or we've run out of units
1215  */
1216 static int
devclass_alloc_unit(devclass_t dc,device_t dev,int * unitp)1217 devclass_alloc_unit(devclass_t dc, device_t dev, int *unitp)
1218 {
1219 	const char *s;
1220 	int unit = *unitp;
1221 
1222 	PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc)));
1223 
1224 	/* Ask the parent bus if it wants to wire this device. */
1225 	if (unit == DEVICE_UNIT_ANY)
1226 		BUS_HINT_DEVICE_UNIT(device_get_parent(dev), dev, dc->name,
1227 		    &unit);
1228 
1229 	/* Unit numbers are either DEVICE_UNIT_ANY or in [0,INT_MAX) */
1230 	if ((unit < 0 && unit != DEVICE_UNIT_ANY) || unit == INT_MAX)
1231 		return (EINVAL);
1232 
1233 	/* If we were given a wired unit number, check for existing device */
1234 	if (unit != DEVICE_UNIT_ANY) {
1235 		if (unit < dc->maxunit && dc->devices[unit] != NULL) {
1236 			if (bootverbose)
1237 				printf("%s: %s%d already exists; skipping it\n",
1238 				    dc->name, dc->name, *unitp);
1239 			return (EEXIST);
1240 		}
1241 	} else {
1242 		/* Unwired device, find the next available slot for it */
1243 		unit = 0;
1244 		for (unit = 0; unit < INT_MAX; unit++) {
1245 			/* If this device slot is already in use, skip it. */
1246 			if (unit < dc->maxunit && dc->devices[unit] != NULL)
1247 				continue;
1248 
1249 			/* If there is an "at" hint for a unit then skip it. */
1250 			if (resource_string_value(dc->name, unit, "at", &s) ==
1251 			    0)
1252 				continue;
1253 
1254 			break;
1255 		}
1256 	}
1257 
1258 	/*
1259 	 * Unit numbers must be in the range [0, INT_MAX), so exclude INT_MAX as
1260 	 * too large. We constrain maxunit below to be <= INT_MAX. This means we
1261 	 * can treat unit and maxunit as normal integers with normal math
1262 	 * everywhere and we only have to flag INT_MAX as invalid.
1263 	 */
1264 	if (unit == INT_MAX)
1265 		return (EINVAL);
1266 
1267 	/*
1268 	 * We've selected a unit beyond the length of the table, so let's extend
1269 	 * the table to make room for all units up to and including this one.
1270 	 */
1271 	if (unit >= dc->maxunit) {
1272 		int newsize;
1273 
1274 		newsize = unit + 1;
1275 		dc->devices = reallocf(dc->devices,
1276 		    newsize * sizeof(*dc->devices), M_BUS, M_WAITOK);
1277 		memset(dc->devices + dc->maxunit, 0,
1278 		    sizeof(device_t) * (newsize - dc->maxunit));
1279 		dc->maxunit = newsize;
1280 	}
1281 	PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc)));
1282 
1283 	*unitp = unit;
1284 	return (0);
1285 }
1286 
1287 /**
1288  * @internal
1289  * @brief Add a device to a devclass
1290  *
1291  * A unit number is allocated for the device (using the device's
1292  * preferred unit number if any) and the device is registered in the
1293  * devclass. This allows the device to be looked up by its unit
1294  * number, e.g. by decoding a dev_t minor number.
1295  *
1296  * @param dc		the devclass to add to
1297  * @param dev		the device to add
1298  *
1299  * @retval 0		success
1300  * @retval EEXIST	the requested unit number is already allocated
1301  * @retval ENOMEM	memory allocation failure
1302  * @retval EINVAL	Unit number invalid or too many units
1303  */
1304 static int
devclass_add_device(devclass_t dc,device_t dev)1305 devclass_add_device(devclass_t dc, device_t dev)
1306 {
1307 	int buflen, error;
1308 
1309 	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1310 
1311 	buflen = snprintf(NULL, 0, "%s%d$", dc->name, INT_MAX);
1312 	if (buflen < 0)
1313 		return (ENOMEM);
1314 	dev->nameunit = malloc(buflen, M_BUS, M_WAITOK|M_ZERO);
1315 
1316 	if ((error = devclass_alloc_unit(dc, dev, &dev->unit)) != 0) {
1317 		free(dev->nameunit, M_BUS);
1318 		dev->nameunit = NULL;
1319 		return (error);
1320 	}
1321 	dc->devices[dev->unit] = dev;
1322 	dev->devclass = dc;
1323 	snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit);
1324 
1325 	return (0);
1326 }
1327 
1328 /**
1329  * @internal
1330  * @brief Delete a device from a devclass
1331  *
1332  * The device is removed from the devclass's device list and its unit
1333  * number is freed.
1334 
1335  * @param dc		the devclass to delete from
1336  * @param dev		the device to delete
1337  *
1338  * @retval 0		success
1339  */
1340 static int
devclass_delete_device(devclass_t dc,device_t dev)1341 devclass_delete_device(devclass_t dc, device_t dev)
1342 {
1343 	if (!dc || !dev)
1344 		return (0);
1345 
1346 	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1347 
1348 	if (dev->devclass != dc || dc->devices[dev->unit] != dev)
1349 		panic("devclass_delete_device: inconsistent device class");
1350 	dc->devices[dev->unit] = NULL;
1351 	if (dev->flags & DF_WILDCARD)
1352 		dev->unit = DEVICE_UNIT_ANY;
1353 	dev->devclass = NULL;
1354 	free(dev->nameunit, M_BUS);
1355 	dev->nameunit = NULL;
1356 
1357 	return (0);
1358 }
1359 
1360 /**
1361  * @internal
1362  * @brief Make a new device and add it as a child of @p parent
1363  *
1364  * @param parent	the parent of the new device
1365  * @param name		the devclass name of the new device or @c NULL
1366  *			to leave the devclass unspecified
1367  * @parem unit		the unit number of the new device of @c DEVICE_UNIT_ANY
1368  *			to leave the unit number unspecified
1369  *
1370  * @returns the new device
1371  */
1372 static device_t
make_device(device_t parent,const char * name,int unit)1373 make_device(device_t parent, const char *name, int unit)
1374 {
1375 	device_t dev;
1376 	devclass_t dc;
1377 
1378 	PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit));
1379 
1380 	if (name) {
1381 		dc = devclass_find_internal(name, NULL, TRUE);
1382 		if (!dc) {
1383 			printf("make_device: can't find device class %s\n",
1384 			    name);
1385 			return (NULL);
1386 		}
1387 	} else {
1388 		dc = NULL;
1389 	}
1390 
1391 	dev = malloc(sizeof(*dev), M_BUS, M_WAITOK|M_ZERO);
1392 	dev->parent = parent;
1393 	TAILQ_INIT(&dev->children);
1394 	kobj_init((kobj_t) dev, &null_class);
1395 	dev->driver = NULL;
1396 	dev->devclass = NULL;
1397 	dev->unit = unit;
1398 	dev->nameunit = NULL;
1399 	dev->desc = NULL;
1400 	dev->busy = 0;
1401 	dev->devflags = 0;
1402 	dev->flags = DF_ENABLED;
1403 	dev->order = 0;
1404 	if (unit == DEVICE_UNIT_ANY)
1405 		dev->flags |= DF_WILDCARD;
1406 	if (name) {
1407 		dev->flags |= DF_FIXEDCLASS;
1408 		if (devclass_add_device(dc, dev)) {
1409 			kobj_delete((kobj_t) dev, M_BUS);
1410 			return (NULL);
1411 		}
1412 	}
1413 	if (parent != NULL && device_has_quiet_children(parent))
1414 		dev->flags |= DF_QUIET | DF_QUIET_CHILDREN;
1415 	dev->ivars = NULL;
1416 	dev->softc = NULL;
1417 	LIST_INIT(&dev->props);
1418 
1419 	dev->state = DS_NOTPRESENT;
1420 
1421 	TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink);
1422 	bus_data_generation_update();
1423 
1424 	return (dev);
1425 }
1426 
1427 /**
1428  * @internal
1429  * @brief Print a description of a device.
1430  */
1431 static int
device_print_child(device_t dev,device_t child)1432 device_print_child(device_t dev, device_t child)
1433 {
1434 	int retval = 0;
1435 
1436 	if (device_is_alive(child))
1437 		retval += BUS_PRINT_CHILD(dev, child);
1438 	else
1439 		retval += device_printf(child, " not found\n");
1440 
1441 	return (retval);
1442 }
1443 
1444 /**
1445  * @brief Create a new device
1446  *
1447  * This creates a new device and adds it as a child of an existing
1448  * parent device. The new device will be added after the last existing
1449  * child with order zero.
1450  *
1451  * @param dev		the device which will be the parent of the
1452  *			new child device
1453  * @param name		devclass name for new device or @c NULL if not
1454  *			specified
1455  * @param unit		unit number for new device or @c DEVICE_UNIT_ANY if not
1456  *			specified
1457  *
1458  * @returns		the new device
1459  */
1460 device_t
device_add_child(device_t dev,const char * name,int unit)1461 device_add_child(device_t dev, const char *name, int unit)
1462 {
1463 	return (device_add_child_ordered(dev, 0, name, unit));
1464 }
1465 
1466 /**
1467  * @brief Create a new device
1468  *
1469  * This creates a new device and adds it as a child of an existing
1470  * parent device. The new device will be added after the last existing
1471  * child with the same order.
1472  *
1473  * @param dev		the device which will be the parent of the
1474  *			new child device
1475  * @param order		a value which is used to partially sort the
1476  *			children of @p dev - devices created using
1477  *			lower values of @p order appear first in @p
1478  *			dev's list of children
1479  * @param name		devclass name for new device or @c NULL if not
1480  *			specified
1481  * @param unit		unit number for new device or @c DEVICE_UNIT_ANY if not
1482  *			specified
1483  *
1484  * @returns		the new device
1485  */
1486 device_t
device_add_child_ordered(device_t dev,u_int order,const char * name,int unit)1487 device_add_child_ordered(device_t dev, u_int order, const char *name, int unit)
1488 {
1489 	device_t child;
1490 	device_t place;
1491 
1492 	PDEBUG(("%s at %s with order %u as unit %d",
1493 	    name, DEVICENAME(dev), order, unit));
1494 	KASSERT(name != NULL || unit == DEVICE_UNIT_ANY,
1495 	    ("child device with wildcard name and specific unit number"));
1496 
1497 	child = make_device(dev, name, unit);
1498 	if (child == NULL)
1499 		return (child);
1500 	child->order = order;
1501 
1502 	TAILQ_FOREACH(place, &dev->children, link) {
1503 		if (place->order > order)
1504 			break;
1505 	}
1506 
1507 	if (place) {
1508 		/*
1509 		 * The device 'place' is the first device whose order is
1510 		 * greater than the new child.
1511 		 */
1512 		TAILQ_INSERT_BEFORE(place, child, link);
1513 	} else {
1514 		/*
1515 		 * The new child's order is greater or equal to the order of
1516 		 * any existing device. Add the child to the tail of the list.
1517 		 */
1518 		TAILQ_INSERT_TAIL(&dev->children, child, link);
1519 	}
1520 
1521 	bus_data_generation_update();
1522 	return (child);
1523 }
1524 
1525 /**
1526  * @brief Delete a device
1527  *
1528  * This function deletes a device along with all of its children. If
1529  * the device currently has a driver attached to it, the device is
1530  * detached first using device_detach().
1531  *
1532  * @param dev		the parent device
1533  * @param child		the device to delete
1534  *
1535  * @retval 0		success
1536  * @retval non-zero	a unit error code describing the error
1537  */
1538 int
device_delete_child(device_t dev,device_t child)1539 device_delete_child(device_t dev, device_t child)
1540 {
1541 	int error;
1542 	device_t grandchild;
1543 
1544 	PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev)));
1545 
1546 	/*
1547 	 * Detach child.  Ideally this cleans up any grandchild
1548 	 * devices.
1549 	 */
1550 	if ((error = device_detach(child)) != 0)
1551 		return (error);
1552 
1553 	/* Delete any grandchildren left after detach. */
1554 	while ((grandchild = TAILQ_FIRST(&child->children)) != NULL) {
1555 		error = device_delete_child(child, grandchild);
1556 		if (error)
1557 			return (error);
1558 	}
1559 
1560 	device_destroy_props(dev);
1561 	if (child->devclass)
1562 		devclass_delete_device(child->devclass, child);
1563 	if (child->parent)
1564 		BUS_CHILD_DELETED(dev, child);
1565 	TAILQ_REMOVE(&dev->children, child, link);
1566 	TAILQ_REMOVE(&bus_data_devices, child, devlink);
1567 	kobj_delete((kobj_t) child, M_BUS);
1568 
1569 	bus_data_generation_update();
1570 	return (0);
1571 }
1572 
1573 /**
1574  * @brief Delete all children devices of the given device, if any.
1575  *
1576  * This function deletes all children devices of the given device, if
1577  * any, using the device_delete_child() function for each device it
1578  * finds. If a child device cannot be deleted, this function will
1579  * return an error code.
1580  *
1581  * @param dev		the parent device
1582  *
1583  * @retval 0		success
1584  * @retval non-zero	a device would not detach
1585  */
1586 int
device_delete_children(device_t dev)1587 device_delete_children(device_t dev)
1588 {
1589 	device_t child;
1590 	int error;
1591 
1592 	PDEBUG(("Deleting all children of %s", DEVICENAME(dev)));
1593 
1594 	error = 0;
1595 
1596 	while ((child = TAILQ_FIRST(&dev->children)) != NULL) {
1597 		error = device_delete_child(dev, child);
1598 		if (error) {
1599 			PDEBUG(("Failed deleting %s", DEVICENAME(child)));
1600 			break;
1601 		}
1602 	}
1603 	return (error);
1604 }
1605 
1606 /**
1607  * @brief Find a device given a unit number
1608  *
1609  * This is similar to devclass_get_devices() but only searches for
1610  * devices which have @p dev as a parent.
1611  *
1612  * @param dev		the parent device to search
1613  * @param unit		the unit number to search for.  If the unit is
1614  *			@c DEVICE_UNIT_ANY, return the first child of @p dev
1615  *			which has name @p classname (that is, the one with the
1616  *			lowest unit.)
1617  *
1618  * @returns		the device with the given unit number or @c
1619  *			NULL if there is no such device
1620  */
1621 device_t
device_find_child(device_t dev,const char * classname,int unit)1622 device_find_child(device_t dev, const char *classname, int unit)
1623 {
1624 	devclass_t dc;
1625 	device_t child;
1626 
1627 	dc = devclass_find(classname);
1628 	if (!dc)
1629 		return (NULL);
1630 
1631 	if (unit != DEVICE_UNIT_ANY) {
1632 		child = devclass_get_device(dc, unit);
1633 		if (child && child->parent == dev)
1634 			return (child);
1635 	} else {
1636 		for (unit = 0; unit < devclass_get_maxunit(dc); unit++) {
1637 			child = devclass_get_device(dc, unit);
1638 			if (child && child->parent == dev)
1639 				return (child);
1640 		}
1641 	}
1642 	return (NULL);
1643 }
1644 
1645 /**
1646  * @internal
1647  */
1648 static driverlink_t
first_matching_driver(devclass_t dc,device_t dev)1649 first_matching_driver(devclass_t dc, device_t dev)
1650 {
1651 	if (dev->devclass)
1652 		return (devclass_find_driver_internal(dc, dev->devclass->name));
1653 	return (TAILQ_FIRST(&dc->drivers));
1654 }
1655 
1656 /**
1657  * @internal
1658  */
1659 static driverlink_t
next_matching_driver(devclass_t dc,device_t dev,driverlink_t last)1660 next_matching_driver(devclass_t dc, device_t dev, driverlink_t last)
1661 {
1662 	if (dev->devclass) {
1663 		driverlink_t dl;
1664 		for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link))
1665 			if (!strcmp(dev->devclass->name, dl->driver->name))
1666 				return (dl);
1667 		return (NULL);
1668 	}
1669 	return (TAILQ_NEXT(last, link));
1670 }
1671 
1672 /**
1673  * @internal
1674  */
1675 int
device_probe_child(device_t dev,device_t child)1676 device_probe_child(device_t dev, device_t child)
1677 {
1678 	devclass_t dc;
1679 	driverlink_t best = NULL;
1680 	driverlink_t dl;
1681 	int result, pri = 0;
1682 	/* We should preserve the devclass (or lack of) set by the bus. */
1683 	int hasclass = (child->devclass != NULL);
1684 
1685 	bus_topo_assert();
1686 
1687 	dc = dev->devclass;
1688 	if (!dc)
1689 		panic("device_probe_child: parent device has no devclass");
1690 
1691 	/*
1692 	 * If the state is already probed, then return.
1693 	 */
1694 	if (child->state == DS_ALIVE)
1695 		return (0);
1696 
1697 	for (; dc; dc = dc->parent) {
1698 		for (dl = first_matching_driver(dc, child);
1699 		     dl;
1700 		     dl = next_matching_driver(dc, child, dl)) {
1701 			/* If this driver's pass is too high, then ignore it. */
1702 			if (dl->pass > bus_current_pass)
1703 				continue;
1704 
1705 			PDEBUG(("Trying %s", DRIVERNAME(dl->driver)));
1706 			result = device_set_driver(child, dl->driver);
1707 			if (result == ENOMEM)
1708 				return (result);
1709 			else if (result != 0)
1710 				continue;
1711 			if (!hasclass) {
1712 				if (device_set_devclass(child,
1713 				    dl->driver->name) != 0) {
1714 					char const * devname =
1715 					    device_get_name(child);
1716 					if (devname == NULL)
1717 						devname = "(unknown)";
1718 					printf("driver bug: Unable to set "
1719 					    "devclass (class: %s "
1720 					    "devname: %s)\n",
1721 					    dl->driver->name,
1722 					    devname);
1723 					(void)device_set_driver(child, NULL);
1724 					continue;
1725 				}
1726 			}
1727 
1728 			/* Fetch any flags for the device before probing. */
1729 			resource_int_value(dl->driver->name, child->unit,
1730 			    "flags", &child->devflags);
1731 
1732 			result = DEVICE_PROBE(child);
1733 
1734 			/*
1735 			 * If probe returns 0, this is the driver that wins this
1736 			 * device.
1737 			 */
1738 			if (result == 0) {
1739 				best = dl;
1740 				pri = 0;
1741 				goto exact_match;	/* C doesn't have break 2 */
1742 			}
1743 
1744 			/* Reset flags and devclass before the next probe. */
1745 			child->devflags = 0;
1746 			if (!hasclass)
1747 				(void)device_set_devclass(child, NULL);
1748 
1749 			/*
1750 			 * Reset DF_QUIET in case this driver doesn't
1751 			 * end up as the best driver.
1752 			 */
1753 			device_verbose(child);
1754 
1755 			/*
1756 			 * Probes that return BUS_PROBE_NOWILDCARD or lower
1757 			 * only match on devices whose driver was explicitly
1758 			 * specified.
1759 			 */
1760 			if (result <= BUS_PROBE_NOWILDCARD &&
1761 			    !(child->flags & DF_FIXEDCLASS)) {
1762 				result = ENXIO;
1763 			}
1764 
1765 			/*
1766 			 * The driver returned an error so it
1767 			 * certainly doesn't match.
1768 			 */
1769 			if (result > 0) {
1770 				(void)device_set_driver(child, NULL);
1771 				continue;
1772 			}
1773 
1774 			/*
1775 			 * A priority lower than SUCCESS, remember the
1776 			 * best matching driver. Initialise the value
1777 			 * of pri for the first match.
1778 			 */
1779 			if (best == NULL || result > pri) {
1780 				best = dl;
1781 				pri = result;
1782 				continue;
1783 			}
1784 		}
1785 	}
1786 
1787 	if (best == NULL)
1788 		return (ENXIO);
1789 
1790 	/*
1791 	 * If we found a driver, change state and initialise the devclass.
1792 	 * Set the winning driver, devclass, and flags.
1793 	 */
1794 	result = device_set_driver(child, best->driver);
1795 	if (result != 0)
1796 		return (result);
1797 	if (!child->devclass) {
1798 		result = device_set_devclass(child, best->driver->name);
1799 		if (result != 0) {
1800 			(void)device_set_driver(child, NULL);
1801 			return (result);
1802 		}
1803 	}
1804 	resource_int_value(best->driver->name, child->unit,
1805 	    "flags", &child->devflags);
1806 
1807 	/*
1808 	 * A bit bogus. Call the probe method again to make sure that we have
1809 	 * the right description for the device.
1810 	 */
1811 	result = DEVICE_PROBE(child);
1812 	if (result > 0) {
1813 		if (!hasclass)
1814 			(void)device_set_devclass(child, NULL);
1815 		(void)device_set_driver(child, NULL);
1816 		return (result);
1817 	}
1818 
1819 exact_match:
1820 	child->state = DS_ALIVE;
1821 	bus_data_generation_update();
1822 	return (0);
1823 }
1824 
1825 /**
1826  * @brief Return the parent of a device
1827  */
1828 device_t
device_get_parent(device_t dev)1829 device_get_parent(device_t dev)
1830 {
1831 	return (dev->parent);
1832 }
1833 
1834 /**
1835  * @brief Get a list of children of a device
1836  *
1837  * An array containing a list of all the children of the given device
1838  * is allocated and returned in @p *devlistp. The number of devices
1839  * in the array is returned in @p *devcountp. The caller should free
1840  * the array using @c free(p, M_TEMP).
1841  *
1842  * @param dev		the device to examine
1843  * @param devlistp	points at location for array pointer return
1844  *			value
1845  * @param devcountp	points at location for array size return value
1846  *
1847  * @retval 0		success
1848  * @retval ENOMEM	the array allocation failed
1849  */
1850 int
device_get_children(device_t dev,device_t ** devlistp,int * devcountp)1851 device_get_children(device_t dev, device_t **devlistp, int *devcountp)
1852 {
1853 	int count;
1854 	device_t child;
1855 	device_t *list;
1856 
1857 	count = 0;
1858 	TAILQ_FOREACH(child, &dev->children, link) {
1859 		count++;
1860 	}
1861 	if (count == 0) {
1862 		*devlistp = NULL;
1863 		*devcountp = 0;
1864 		return (0);
1865 	}
1866 
1867 	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
1868 	if (!list)
1869 		return (ENOMEM);
1870 
1871 	count = 0;
1872 	TAILQ_FOREACH(child, &dev->children, link) {
1873 		list[count] = child;
1874 		count++;
1875 	}
1876 
1877 	*devlistp = list;
1878 	*devcountp = count;
1879 
1880 	return (0);
1881 }
1882 
1883 /**
1884  * @brief Return the current driver for the device or @c NULL if there
1885  * is no driver currently attached
1886  */
1887 driver_t *
device_get_driver(device_t dev)1888 device_get_driver(device_t dev)
1889 {
1890 	return (dev->driver);
1891 }
1892 
1893 /**
1894  * @brief Return the current devclass for the device or @c NULL if
1895  * there is none.
1896  */
1897 devclass_t
device_get_devclass(device_t dev)1898 device_get_devclass(device_t dev)
1899 {
1900 	return (dev->devclass);
1901 }
1902 
1903 /**
1904  * @brief Return the name of the device's devclass or @c NULL if there
1905  * is none.
1906  */
1907 const char *
device_get_name(device_t dev)1908 device_get_name(device_t dev)
1909 {
1910 	if (dev != NULL && dev->devclass)
1911 		return (devclass_get_name(dev->devclass));
1912 	return (NULL);
1913 }
1914 
1915 /**
1916  * @brief Return a string containing the device's devclass name
1917  * followed by an ascii representation of the device's unit number
1918  * (e.g. @c "foo2").
1919  */
1920 const char *
device_get_nameunit(device_t dev)1921 device_get_nameunit(device_t dev)
1922 {
1923 	return (dev->nameunit);
1924 }
1925 
1926 /**
1927  * @brief Return the device's unit number.
1928  */
1929 int
device_get_unit(device_t dev)1930 device_get_unit(device_t dev)
1931 {
1932 	return (dev->unit);
1933 }
1934 
1935 /**
1936  * @brief Return the device's description string
1937  */
1938 const char *
device_get_desc(device_t dev)1939 device_get_desc(device_t dev)
1940 {
1941 	return (dev->desc);
1942 }
1943 
1944 /**
1945  * @brief Return the device's flags
1946  */
1947 uint32_t
device_get_flags(device_t dev)1948 device_get_flags(device_t dev)
1949 {
1950 	return (dev->devflags);
1951 }
1952 
1953 struct sysctl_ctx_list *
device_get_sysctl_ctx(device_t dev)1954 device_get_sysctl_ctx(device_t dev)
1955 {
1956 	return (&dev->sysctl_ctx);
1957 }
1958 
1959 struct sysctl_oid *
device_get_sysctl_tree(device_t dev)1960 device_get_sysctl_tree(device_t dev)
1961 {
1962 	return (dev->sysctl_tree);
1963 }
1964 
1965 /**
1966  * @brief Print the name of the device followed by a colon and a space
1967  *
1968  * @returns the number of characters printed
1969  */
1970 int
device_print_prettyname(device_t dev)1971 device_print_prettyname(device_t dev)
1972 {
1973 	const char *name = device_get_name(dev);
1974 
1975 	if (name == NULL)
1976 		return (printf("unknown: "));
1977 	return (printf("%s%d: ", name, device_get_unit(dev)));
1978 }
1979 
1980 /**
1981  * @brief Print the name of the device followed by a colon, a space
1982  * and the result of calling vprintf() with the value of @p fmt and
1983  * the following arguments.
1984  *
1985  * @returns the number of characters printed
1986  */
1987 int
device_printf(device_t dev,const char * fmt,...)1988 device_printf(device_t dev, const char * fmt, ...)
1989 {
1990 	char buf[128];
1991 	struct sbuf sb;
1992 	const char *name;
1993 	va_list ap;
1994 	size_t retval;
1995 
1996 	retval = 0;
1997 
1998 	sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
1999 	sbuf_set_drain(&sb, sbuf_printf_drain, &retval);
2000 
2001 	name = device_get_name(dev);
2002 
2003 	if (name == NULL)
2004 		sbuf_cat(&sb, "unknown: ");
2005 	else
2006 		sbuf_printf(&sb, "%s%d: ", name, device_get_unit(dev));
2007 
2008 	va_start(ap, fmt);
2009 	sbuf_vprintf(&sb, fmt, ap);
2010 	va_end(ap);
2011 
2012 	sbuf_finish(&sb);
2013 	sbuf_delete(&sb);
2014 
2015 	return (retval);
2016 }
2017 
2018 /**
2019  * @brief Print the name of the device followed by a colon, a space
2020  * and the result of calling log() with the value of @p fmt and
2021  * the following arguments.
2022  *
2023  * @returns the number of characters printed
2024  */
2025 int
device_log(device_t dev,int pri,const char * fmt,...)2026 device_log(device_t dev, int pri, const char * fmt, ...)
2027 {
2028 	char buf[128];
2029 	struct sbuf sb;
2030 	const char *name;
2031 	va_list ap;
2032 	size_t retval;
2033 
2034 	retval = 0;
2035 
2036 	sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
2037 
2038 	name = device_get_name(dev);
2039 
2040 	if (name == NULL)
2041 		sbuf_cat(&sb, "unknown: ");
2042 	else
2043 		sbuf_printf(&sb, "%s%d: ", name, device_get_unit(dev));
2044 
2045 	va_start(ap, fmt);
2046 	sbuf_vprintf(&sb, fmt, ap);
2047 	va_end(ap);
2048 
2049 	sbuf_finish(&sb);
2050 
2051 	log(pri, "%.*s", (int) sbuf_len(&sb), sbuf_data(&sb));
2052 	retval = sbuf_len(&sb);
2053 
2054 	sbuf_delete(&sb);
2055 
2056 	return (retval);
2057 }
2058 
2059 /**
2060  * @internal
2061  */
2062 static void
device_set_desc_internal(device_t dev,const char * desc,bool allocated)2063 device_set_desc_internal(device_t dev, const char *desc, bool allocated)
2064 {
2065 	if (dev->desc && (dev->flags & DF_DESCMALLOCED)) {
2066 		free(dev->desc, M_BUS);
2067 		dev->flags &= ~DF_DESCMALLOCED;
2068 		dev->desc = NULL;
2069 	}
2070 
2071 	if (allocated && desc)
2072 		dev->flags |= DF_DESCMALLOCED;
2073 	dev->desc = __DECONST(char *, desc);
2074 
2075 	bus_data_generation_update();
2076 }
2077 
2078 /**
2079  * @brief Set the device's description
2080  *
2081  * The value of @c desc should be a string constant that will not
2082  * change (at least until the description is changed in a subsequent
2083  * call to device_set_desc() or device_set_desc_copy()).
2084  */
2085 void
device_set_desc(device_t dev,const char * desc)2086 device_set_desc(device_t dev, const char *desc)
2087 {
2088 	device_set_desc_internal(dev, desc, false);
2089 }
2090 
2091 /**
2092  * @brief Set the device's description
2093  *
2094  * A printf-like version of device_set_desc().
2095  */
2096 void
device_set_descf(device_t dev,const char * fmt,...)2097 device_set_descf(device_t dev, const char *fmt, ...)
2098 {
2099 	va_list ap;
2100 	char *buf = NULL;
2101 
2102 	va_start(ap, fmt);
2103 	vasprintf(&buf, M_BUS, fmt, ap);
2104 	va_end(ap);
2105 	device_set_desc_internal(dev, buf, true);
2106 }
2107 
2108 /**
2109  * @brief Set the device's description
2110  *
2111  * The string pointed to by @c desc is copied. Use this function if
2112  * the device description is generated, (e.g. with sprintf()).
2113  */
2114 void
device_set_desc_copy(device_t dev,const char * desc)2115 device_set_desc_copy(device_t dev, const char *desc)
2116 {
2117 	char *buf;
2118 
2119 	buf = strdup_flags(desc, M_BUS, M_WAITOK);
2120 	device_set_desc_internal(dev, buf, true);
2121 }
2122 
2123 /**
2124  * @brief Set the device's flags
2125  */
2126 void
device_set_flags(device_t dev,uint32_t flags)2127 device_set_flags(device_t dev, uint32_t flags)
2128 {
2129 	dev->devflags = flags;
2130 }
2131 
2132 /**
2133  * @brief Return the device's softc field
2134  *
2135  * The softc is allocated and zeroed when a driver is attached, based
2136  * on the size field of the driver.
2137  */
2138 void *
device_get_softc(device_t dev)2139 device_get_softc(device_t dev)
2140 {
2141 	return (dev->softc);
2142 }
2143 
2144 /**
2145  * @brief Set the device's softc field
2146  *
2147  * Most drivers do not need to use this since the softc is allocated
2148  * automatically when the driver is attached.
2149  */
2150 void
device_set_softc(device_t dev,void * softc)2151 device_set_softc(device_t dev, void *softc)
2152 {
2153 	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC))
2154 		free(dev->softc, M_BUS_SC);
2155 	dev->softc = softc;
2156 	if (dev->softc)
2157 		dev->flags |= DF_EXTERNALSOFTC;
2158 	else
2159 		dev->flags &= ~DF_EXTERNALSOFTC;
2160 }
2161 
2162 /**
2163  * @brief Free claimed softc
2164  *
2165  * Most drivers do not need to use this since the softc is freed
2166  * automatically when the driver is detached.
2167  */
2168 void
device_free_softc(void * softc)2169 device_free_softc(void *softc)
2170 {
2171 	free(softc, M_BUS_SC);
2172 }
2173 
2174 /**
2175  * @brief Claim softc
2176  *
2177  * This function can be used to let the driver free the automatically
2178  * allocated softc using "device_free_softc()". This function is
2179  * useful when the driver is refcounting the softc and the softc
2180  * cannot be freed when the "device_detach" method is called.
2181  */
2182 void
device_claim_softc(device_t dev)2183 device_claim_softc(device_t dev)
2184 {
2185 	if (dev->softc)
2186 		dev->flags |= DF_EXTERNALSOFTC;
2187 	else
2188 		dev->flags &= ~DF_EXTERNALSOFTC;
2189 }
2190 
2191 /**
2192  * @brief Get the device's ivars field
2193  *
2194  * The ivars field is used by the parent device to store per-device
2195  * state (e.g. the physical location of the device or a list of
2196  * resources).
2197  */
2198 void *
device_get_ivars(device_t dev)2199 device_get_ivars(device_t dev)
2200 {
2201 	KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)"));
2202 	return (dev->ivars);
2203 }
2204 
2205 /**
2206  * @brief Set the device's ivars field
2207  */
2208 void
device_set_ivars(device_t dev,void * ivars)2209 device_set_ivars(device_t dev, void * ivars)
2210 {
2211 	KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)"));
2212 	dev->ivars = ivars;
2213 }
2214 
2215 /**
2216  * @brief Return the device's state
2217  */
2218 device_state_t
device_get_state(device_t dev)2219 device_get_state(device_t dev)
2220 {
2221 	return (dev->state);
2222 }
2223 
2224 /**
2225  * @brief Set the DF_ENABLED flag for the device
2226  */
2227 void
device_enable(device_t dev)2228 device_enable(device_t dev)
2229 {
2230 	dev->flags |= DF_ENABLED;
2231 }
2232 
2233 /**
2234  * @brief Clear the DF_ENABLED flag for the device
2235  */
2236 void
device_disable(device_t dev)2237 device_disable(device_t dev)
2238 {
2239 	dev->flags &= ~DF_ENABLED;
2240 }
2241 
2242 /**
2243  * @brief Increment the busy counter for the device
2244  */
2245 void
device_busy(device_t dev)2246 device_busy(device_t dev)
2247 {
2248 
2249 	/*
2250 	 * Mark the device as busy, recursively up the tree if this busy count
2251 	 * goes 0->1.
2252 	 */
2253 	if (refcount_acquire(&dev->busy) == 0 && dev->parent != NULL)
2254 		device_busy(dev->parent);
2255 }
2256 
2257 /**
2258  * @brief Decrement the busy counter for the device
2259  */
2260 void
device_unbusy(device_t dev)2261 device_unbusy(device_t dev)
2262 {
2263 
2264 	/*
2265 	 * Mark the device as unbsy, recursively if this is the last busy count.
2266 	 */
2267 	if (refcount_release(&dev->busy) && dev->parent != NULL)
2268 		device_unbusy(dev->parent);
2269 }
2270 
2271 /**
2272  * @brief Set the DF_QUIET flag for the device
2273  */
2274 void
device_quiet(device_t dev)2275 device_quiet(device_t dev)
2276 {
2277 	dev->flags |= DF_QUIET;
2278 }
2279 
2280 /**
2281  * @brief Set the DF_QUIET_CHILDREN flag for the device
2282  */
2283 void
device_quiet_children(device_t dev)2284 device_quiet_children(device_t dev)
2285 {
2286 	dev->flags |= DF_QUIET_CHILDREN;
2287 }
2288 
2289 /**
2290  * @brief Clear the DF_QUIET flag for the device
2291  */
2292 void
device_verbose(device_t dev)2293 device_verbose(device_t dev)
2294 {
2295 	dev->flags &= ~DF_QUIET;
2296 }
2297 
2298 ssize_t
device_get_property(device_t dev,const char * prop,void * val,size_t sz,device_property_type_t type)2299 device_get_property(device_t dev, const char *prop, void *val, size_t sz,
2300     device_property_type_t type)
2301 {
2302 	device_t bus = device_get_parent(dev);
2303 
2304 	switch (type) {
2305 	case DEVICE_PROP_ANY:
2306 	case DEVICE_PROP_BUFFER:
2307 	case DEVICE_PROP_HANDLE:	/* Size checks done in implementation. */
2308 		break;
2309 	case DEVICE_PROP_UINT32:
2310 		if (sz % 4 != 0)
2311 			return (-1);
2312 		break;
2313 	case DEVICE_PROP_UINT64:
2314 		if (sz % 8 != 0)
2315 			return (-1);
2316 		break;
2317 	default:
2318 		return (-1);
2319 	}
2320 
2321 	return (BUS_GET_PROPERTY(bus, dev, prop, val, sz, type));
2322 }
2323 
2324 bool
device_has_property(device_t dev,const char * prop)2325 device_has_property(device_t dev, const char *prop)
2326 {
2327 	return (device_get_property(dev, prop, NULL, 0, DEVICE_PROP_ANY) >= 0);
2328 }
2329 
2330 /**
2331  * @brief Return non-zero if the DF_QUIET_CHIDLREN flag is set on the device
2332  */
2333 int
device_has_quiet_children(device_t dev)2334 device_has_quiet_children(device_t dev)
2335 {
2336 	return ((dev->flags & DF_QUIET_CHILDREN) != 0);
2337 }
2338 
2339 /**
2340  * @brief Return non-zero if the DF_QUIET flag is set on the device
2341  */
2342 int
device_is_quiet(device_t dev)2343 device_is_quiet(device_t dev)
2344 {
2345 	return ((dev->flags & DF_QUIET) != 0);
2346 }
2347 
2348 /**
2349  * @brief Return non-zero if the DF_ENABLED flag is set on the device
2350  */
2351 int
device_is_enabled(device_t dev)2352 device_is_enabled(device_t dev)
2353 {
2354 	return ((dev->flags & DF_ENABLED) != 0);
2355 }
2356 
2357 /**
2358  * @brief Return non-zero if the device was successfully probed
2359  */
2360 int
device_is_alive(device_t dev)2361 device_is_alive(device_t dev)
2362 {
2363 	return (dev->state >= DS_ALIVE);
2364 }
2365 
2366 /**
2367  * @brief Return non-zero if the device currently has a driver
2368  * attached to it
2369  */
2370 int
device_is_attached(device_t dev)2371 device_is_attached(device_t dev)
2372 {
2373 	return (dev->state >= DS_ATTACHED);
2374 }
2375 
2376 /**
2377  * @brief Return non-zero if the device is currently suspended.
2378  */
2379 int
device_is_suspended(device_t dev)2380 device_is_suspended(device_t dev)
2381 {
2382 	return ((dev->flags & DF_SUSPENDED) != 0);
2383 }
2384 
2385 /**
2386  * @brief Set the devclass of a device
2387  * @see devclass_add_device().
2388  */
2389 int
device_set_devclass(device_t dev,const char * classname)2390 device_set_devclass(device_t dev, const char *classname)
2391 {
2392 	devclass_t dc;
2393 	int error;
2394 
2395 	if (!classname) {
2396 		if (dev->devclass)
2397 			devclass_delete_device(dev->devclass, dev);
2398 		return (0);
2399 	}
2400 
2401 	if (dev->devclass) {
2402 		printf("device_set_devclass: device class already set\n");
2403 		return (EINVAL);
2404 	}
2405 
2406 	dc = devclass_find_internal(classname, NULL, TRUE);
2407 	if (!dc)
2408 		return (ENOMEM);
2409 
2410 	error = devclass_add_device(dc, dev);
2411 
2412 	bus_data_generation_update();
2413 	return (error);
2414 }
2415 
2416 /**
2417  * @brief Set the devclass of a device and mark the devclass fixed.
2418  * @see device_set_devclass()
2419  */
2420 int
device_set_devclass_fixed(device_t dev,const char * classname)2421 device_set_devclass_fixed(device_t dev, const char *classname)
2422 {
2423 	int error;
2424 
2425 	if (classname == NULL)
2426 		return (EINVAL);
2427 
2428 	error = device_set_devclass(dev, classname);
2429 	if (error)
2430 		return (error);
2431 	dev->flags |= DF_FIXEDCLASS;
2432 	return (0);
2433 }
2434 
2435 /**
2436  * @brief Query the device to determine if it's of a fixed devclass
2437  * @see device_set_devclass_fixed()
2438  */
2439 bool
device_is_devclass_fixed(device_t dev)2440 device_is_devclass_fixed(device_t dev)
2441 {
2442 	return ((dev->flags & DF_FIXEDCLASS) != 0);
2443 }
2444 
2445 /**
2446  * @brief Set the driver of a device
2447  *
2448  * @retval 0		success
2449  * @retval EBUSY	the device already has a driver attached
2450  * @retval ENOMEM	a memory allocation failure occurred
2451  */
2452 int
device_set_driver(device_t dev,driver_t * driver)2453 device_set_driver(device_t dev, driver_t *driver)
2454 {
2455 	int domain;
2456 	struct domainset *policy;
2457 
2458 	if (dev->state >= DS_ATTACHED)
2459 		return (EBUSY);
2460 
2461 	if (dev->driver == driver)
2462 		return (0);
2463 
2464 	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) {
2465 		free(dev->softc, M_BUS_SC);
2466 		dev->softc = NULL;
2467 	}
2468 	device_set_desc(dev, NULL);
2469 	kobj_delete((kobj_t) dev, NULL);
2470 	dev->driver = driver;
2471 	if (driver) {
2472 		kobj_init((kobj_t) dev, (kobj_class_t) driver);
2473 		if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) {
2474 			if (bus_get_domain(dev, &domain) == 0)
2475 				policy = DOMAINSET_PREF(domain);
2476 			else
2477 				policy = DOMAINSET_RR();
2478 			dev->softc = malloc_domainset(driver->size, M_BUS_SC,
2479 			    policy, M_WAITOK | M_ZERO);
2480 		}
2481 	} else {
2482 		kobj_init((kobj_t) dev, &null_class);
2483 	}
2484 
2485 	bus_data_generation_update();
2486 	return (0);
2487 }
2488 
2489 /**
2490  * @brief Probe a device, and return this status.
2491  *
2492  * This function is the core of the device autoconfiguration
2493  * system. Its purpose is to select a suitable driver for a device and
2494  * then call that driver to initialise the hardware appropriately. The
2495  * driver is selected by calling the DEVICE_PROBE() method of a set of
2496  * candidate drivers and then choosing the driver which returned the
2497  * best value. This driver is then attached to the device using
2498  * device_attach().
2499  *
2500  * The set of suitable drivers is taken from the list of drivers in
2501  * the parent device's devclass. If the device was originally created
2502  * with a specific class name (see device_add_child()), only drivers
2503  * with that name are probed, otherwise all drivers in the devclass
2504  * are probed. If no drivers return successful probe values in the
2505  * parent devclass, the search continues in the parent of that
2506  * devclass (see devclass_get_parent()) if any.
2507  *
2508  * @param dev		the device to initialise
2509  *
2510  * @retval 0		success
2511  * @retval ENXIO	no driver was found
2512  * @retval ENOMEM	memory allocation failure
2513  * @retval non-zero	some other unix error code
2514  * @retval -1		Device already attached
2515  */
2516 int
device_probe(device_t dev)2517 device_probe(device_t dev)
2518 {
2519 	int error;
2520 
2521 	bus_topo_assert();
2522 
2523 	if (dev->state >= DS_ALIVE)
2524 		return (-1);
2525 
2526 	if (!(dev->flags & DF_ENABLED)) {
2527 		if (bootverbose && device_get_name(dev) != NULL) {
2528 			device_print_prettyname(dev);
2529 			printf("not probed (disabled)\n");
2530 		}
2531 		return (-1);
2532 	}
2533 	if ((error = device_probe_child(dev->parent, dev)) != 0) {
2534 		if (bus_current_pass == BUS_PASS_DEFAULT &&
2535 		    !(dev->flags & DF_DONENOMATCH)) {
2536 			device_handle_nomatch(dev);
2537 		}
2538 		return (error);
2539 	}
2540 	return (0);
2541 }
2542 
2543 /**
2544  * @brief Probe a device and attach a driver if possible
2545  *
2546  * calls device_probe() and attaches if that was successful.
2547  */
2548 int
device_probe_and_attach(device_t dev)2549 device_probe_and_attach(device_t dev)
2550 {
2551 	int error;
2552 
2553 	bus_topo_assert();
2554 
2555 	error = device_probe(dev);
2556 	if (error == -1)
2557 		return (0);
2558 	else if (error != 0)
2559 		return (error);
2560 
2561 	return (device_attach(dev));
2562 }
2563 
2564 /**
2565  * @brief Attach a device driver to a device
2566  *
2567  * This function is a wrapper around the DEVICE_ATTACH() driver
2568  * method. In addition to calling DEVICE_ATTACH(), it initialises the
2569  * device's sysctl tree, optionally prints a description of the device
2570  * and queues a notification event for user-based device management
2571  * services.
2572  *
2573  * Normally this function is only called internally from
2574  * device_probe_and_attach().
2575  *
2576  * @param dev		the device to initialise
2577  *
2578  * @retval 0		success
2579  * @retval ENXIO	no driver was found
2580  * @retval ENOMEM	memory allocation failure
2581  * @retval non-zero	some other unix error code
2582  */
2583 int
device_attach(device_t dev)2584 device_attach(device_t dev)
2585 {
2586 	uint64_t attachtime;
2587 	uint16_t attachentropy;
2588 	int error;
2589 
2590 	if (resource_disabled(dev->driver->name, dev->unit)) {
2591 		/*
2592 		 * Mostly detach the device, but leave it attached to
2593 		 * the devclass to reserve the name and unit.
2594 		 */
2595 		device_disable(dev);
2596 		(void)device_set_driver(dev, NULL);
2597 		dev->state = DS_NOTPRESENT;
2598 		if (bootverbose)
2599 			 device_printf(dev, "disabled via hints entry\n");
2600 		return (ENXIO);
2601 	}
2602 
2603 	KASSERT(IS_DEFAULT_VNET(TD_TO_VNET(curthread)),
2604 	    ("device_attach: curthread is not in default vnet"));
2605 	CURVNET_SET_QUIET(TD_TO_VNET(curthread));
2606 
2607 	device_sysctl_init(dev);
2608 	if (!device_is_quiet(dev))
2609 		device_print_child(dev->parent, dev);
2610 	attachtime = get_cyclecount();
2611 	dev->state = DS_ATTACHING;
2612 	if ((error = DEVICE_ATTACH(dev)) != 0) {
2613 		printf("device_attach: %s%d attach returned %d\n",
2614 		    dev->driver->name, dev->unit, error);
2615 		BUS_CHILD_DETACHED(dev->parent, dev);
2616 		if (disable_failed_devs) {
2617 			/*
2618 			 * When the user has asked to disable failed devices, we
2619 			 * directly disable the device, but leave it in the
2620 			 * attaching state. It will not try to probe/attach the
2621 			 * device further. This leaves the device numbering
2622 			 * intact for other similar devices in the system. It
2623 			 * can be removed from this state with devctl.
2624 			 */
2625 			device_disable(dev);
2626 		} else {
2627 			/*
2628 			 * Otherwise, when attach fails, tear down the state
2629 			 * around that so we can retry when, for example, new
2630 			 * drivers are loaded.
2631 			 */
2632 			if (!(dev->flags & DF_FIXEDCLASS))
2633 				devclass_delete_device(dev->devclass, dev);
2634 			(void)device_set_driver(dev, NULL);
2635 			device_sysctl_fini(dev);
2636 			KASSERT(dev->busy == 0, ("attach failed but busy"));
2637 			dev->state = DS_NOTPRESENT;
2638 		}
2639 		CURVNET_RESTORE();
2640 		return (error);
2641 	}
2642 	CURVNET_RESTORE();
2643 	dev->flags |= DF_ATTACHED_ONCE;
2644 	/*
2645 	 * We only need the low bits of this time, but ranges from tens to thousands
2646 	 * have been seen, so keep 2 bytes' worth.
2647 	 */
2648 	attachentropy = (uint16_t)(get_cyclecount() - attachtime);
2649 	random_harvest_direct(&attachentropy, sizeof(attachentropy), RANDOM_ATTACH);
2650 	device_sysctl_update(dev);
2651 	dev->state = DS_ATTACHED;
2652 	dev->flags &= ~DF_DONENOMATCH;
2653 	EVENTHANDLER_DIRECT_INVOKE(device_attach, dev);
2654 	return (0);
2655 }
2656 
2657 /**
2658  * @brief Detach a driver from a device
2659  *
2660  * This function is a wrapper around the DEVICE_DETACH() driver
2661  * method. If the call to DEVICE_DETACH() succeeds, it calls
2662  * BUS_CHILD_DETACHED() for the parent of @p dev, queues a
2663  * notification event for user-based device management services and
2664  * cleans up the device's sysctl tree.
2665  *
2666  * @param dev		the device to un-initialise
2667  *
2668  * @retval 0		success
2669  * @retval ENXIO	no driver was found
2670  * @retval ENOMEM	memory allocation failure
2671  * @retval non-zero	some other unix error code
2672  */
2673 int
device_detach(device_t dev)2674 device_detach(device_t dev)
2675 {
2676 	int error;
2677 
2678 	bus_topo_assert();
2679 
2680 	PDEBUG(("%s", DEVICENAME(dev)));
2681 	if (dev->busy > 0)
2682 		return (EBUSY);
2683 	if (dev->state == DS_ATTACHING) {
2684 		device_printf(dev, "device in attaching state! Deferring detach.\n");
2685 		return (EBUSY);
2686 	}
2687 	if (dev->state != DS_ATTACHED)
2688 		return (0);
2689 
2690 	EVENTHANDLER_DIRECT_INVOKE(device_detach, dev, EVHDEV_DETACH_BEGIN);
2691 	if ((error = DEVICE_DETACH(dev)) != 0) {
2692 		EVENTHANDLER_DIRECT_INVOKE(device_detach, dev,
2693 		    EVHDEV_DETACH_FAILED);
2694 		return (error);
2695 	} else {
2696 		EVENTHANDLER_DIRECT_INVOKE(device_detach, dev,
2697 		    EVHDEV_DETACH_COMPLETE);
2698 	}
2699 	if (!device_is_quiet(dev))
2700 		device_printf(dev, "detached\n");
2701 	if (dev->parent)
2702 		BUS_CHILD_DETACHED(dev->parent, dev);
2703 
2704 	if (!(dev->flags & DF_FIXEDCLASS))
2705 		devclass_delete_device(dev->devclass, dev);
2706 
2707 	device_verbose(dev);
2708 	dev->state = DS_NOTPRESENT;
2709 	(void)device_set_driver(dev, NULL);
2710 	device_sysctl_fini(dev);
2711 
2712 	return (0);
2713 }
2714 
2715 /**
2716  * @brief Tells a driver to quiesce itself.
2717  *
2718  * This function is a wrapper around the DEVICE_QUIESCE() driver
2719  * method. If the call to DEVICE_QUIESCE() succeeds.
2720  *
2721  * @param dev		the device to quiesce
2722  *
2723  * @retval 0		success
2724  * @retval ENXIO	no driver was found
2725  * @retval ENOMEM	memory allocation failure
2726  * @retval non-zero	some other unix error code
2727  */
2728 int
device_quiesce(device_t dev)2729 device_quiesce(device_t dev)
2730 {
2731 	PDEBUG(("%s", DEVICENAME(dev)));
2732 	if (dev->busy > 0)
2733 		return (EBUSY);
2734 	if (dev->state != DS_ATTACHED)
2735 		return (0);
2736 
2737 	return (DEVICE_QUIESCE(dev));
2738 }
2739 
2740 /**
2741  * @brief Notify a device of system shutdown
2742  *
2743  * This function calls the DEVICE_SHUTDOWN() driver method if the
2744  * device currently has an attached driver.
2745  *
2746  * @returns the value returned by DEVICE_SHUTDOWN()
2747  */
2748 int
device_shutdown(device_t dev)2749 device_shutdown(device_t dev)
2750 {
2751 	if (dev->state < DS_ATTACHED)
2752 		return (0);
2753 	return (DEVICE_SHUTDOWN(dev));
2754 }
2755 
2756 /**
2757  * @brief Set the unit number of a device
2758  *
2759  * This function can be used to override the unit number used for a
2760  * device (e.g. to wire a device to a pre-configured unit number).
2761  */
2762 int
device_set_unit(device_t dev,int unit)2763 device_set_unit(device_t dev, int unit)
2764 {
2765 	devclass_t dc;
2766 	int err;
2767 
2768 	if (unit == dev->unit)
2769 		return (0);
2770 	dc = device_get_devclass(dev);
2771 	if (unit < dc->maxunit && dc->devices[unit])
2772 		return (EBUSY);
2773 	err = devclass_delete_device(dc, dev);
2774 	if (err)
2775 		return (err);
2776 	dev->unit = unit;
2777 	err = devclass_add_device(dc, dev);
2778 	if (err)
2779 		return (err);
2780 
2781 	bus_data_generation_update();
2782 	return (0);
2783 }
2784 
2785 /*======================================*/
2786 /*
2787  * Some useful method implementations to make life easier for bus drivers.
2788  */
2789 
2790 /**
2791  * @brief Initialize a resource mapping request
2792  *
2793  * This is the internal implementation of the public API
2794  * resource_init_map_request.  Callers may be using a different layout
2795  * of struct resource_map_request than the kernel, so callers pass in
2796  * the size of the structure they are using to identify the structure
2797  * layout.
2798  */
2799 void
resource_init_map_request_impl(struct resource_map_request * args,size_t sz)2800 resource_init_map_request_impl(struct resource_map_request *args, size_t sz)
2801 {
2802 	bzero(args, sz);
2803 	args->size = sz;
2804 	args->memattr = VM_MEMATTR_DEVICE;
2805 }
2806 
2807 /**
2808  * @brief Validate a resource mapping request
2809  *
2810  * Translate a device driver's mapping request (@p in) to a struct
2811  * resource_map_request using the current structure layout (@p out).
2812  * In addition, validate the offset and length from the mapping
2813  * request against the bounds of the resource @p r.  If the offset or
2814  * length are invalid, fail with EINVAL.  If the offset and length are
2815  * valid, the absolute starting address of the requested mapping is
2816  * returned in @p startp and the length of the requested mapping is
2817  * returned in @p lengthp.
2818  */
2819 int
resource_validate_map_request(struct resource * r,struct resource_map_request * in,struct resource_map_request * out,rman_res_t * startp,rman_res_t * lengthp)2820 resource_validate_map_request(struct resource *r,
2821     struct resource_map_request *in, struct resource_map_request *out,
2822     rman_res_t *startp, rman_res_t *lengthp)
2823 {
2824 	rman_res_t end, length, start;
2825 
2826 	/*
2827 	 * This assumes that any callers of this function are compiled
2828 	 * into the kernel and use the same version of the structure
2829 	 * as this file.
2830 	 */
2831 	MPASS(out->size == sizeof(struct resource_map_request));
2832 
2833 	if (in != NULL)
2834 		bcopy(in, out, imin(in->size, out->size));
2835 	start = rman_get_start(r) + out->offset;
2836 	if (out->length == 0)
2837 		length = rman_get_size(r);
2838 	else
2839 		length = out->length;
2840 	end = start + length - 1;
2841 	if (start > rman_get_end(r) || start < rman_get_start(r))
2842 		return (EINVAL);
2843 	if (end > rman_get_end(r) || end < start)
2844 		return (EINVAL);
2845 	*lengthp = length;
2846 	*startp = start;
2847 	return (0);
2848 }
2849 
2850 /**
2851  * @brief Initialise a resource list.
2852  *
2853  * @param rl		the resource list to initialise
2854  */
2855 void
resource_list_init(struct resource_list * rl)2856 resource_list_init(struct resource_list *rl)
2857 {
2858 	STAILQ_INIT(rl);
2859 }
2860 
2861 /**
2862  * @brief Reclaim memory used by a resource list.
2863  *
2864  * This function frees the memory for all resource entries on the list
2865  * (if any).
2866  *
2867  * @param rl		the resource list to free
2868  */
2869 void
resource_list_free(struct resource_list * rl)2870 resource_list_free(struct resource_list *rl)
2871 {
2872 	struct resource_list_entry *rle;
2873 
2874 	while ((rle = STAILQ_FIRST(rl)) != NULL) {
2875 		if (rle->res)
2876 			panic("resource_list_free: resource entry is busy");
2877 		STAILQ_REMOVE_HEAD(rl, link);
2878 		free(rle, M_BUS);
2879 	}
2880 }
2881 
2882 /**
2883  * @brief Add a resource entry.
2884  *
2885  * This function adds a resource entry using the given @p type, @p
2886  * start, @p end and @p count values. A rid value is chosen by
2887  * searching sequentially for the first unused rid starting at zero.
2888  *
2889  * @param rl		the resource list to edit
2890  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2891  * @param start		the start address of the resource
2892  * @param end		the end address of the resource
2893  * @param count		XXX end-start+1
2894  */
2895 int
resource_list_add_next(struct resource_list * rl,int type,rman_res_t start,rman_res_t end,rman_res_t count)2896 resource_list_add_next(struct resource_list *rl, int type, rman_res_t start,
2897     rman_res_t end, rman_res_t count)
2898 {
2899 	int rid;
2900 
2901 	rid = 0;
2902 	while (resource_list_find(rl, type, rid) != NULL)
2903 		rid++;
2904 	resource_list_add(rl, type, rid, start, end, count);
2905 	return (rid);
2906 }
2907 
2908 /**
2909  * @brief Add or modify a resource entry.
2910  *
2911  * If an existing entry exists with the same type and rid, it will be
2912  * modified using the given values of @p start, @p end and @p
2913  * count. If no entry exists, a new one will be created using the
2914  * given values.  The resource list entry that matches is then returned.
2915  *
2916  * @param rl		the resource list to edit
2917  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2918  * @param rid		the resource identifier
2919  * @param start		the start address of the resource
2920  * @param end		the end address of the resource
2921  * @param count		XXX end-start+1
2922  */
2923 struct resource_list_entry *
resource_list_add(struct resource_list * rl,int type,int rid,rman_res_t start,rman_res_t end,rman_res_t count)2924 resource_list_add(struct resource_list *rl, int type, int rid,
2925     rman_res_t start, rman_res_t end, rman_res_t count)
2926 {
2927 	struct resource_list_entry *rle;
2928 
2929 	rle = resource_list_find(rl, type, rid);
2930 	if (!rle) {
2931 		rle = malloc(sizeof(struct resource_list_entry), M_BUS,
2932 		    M_WAITOK);
2933 		STAILQ_INSERT_TAIL(rl, rle, link);
2934 		rle->type = type;
2935 		rle->rid = rid;
2936 		rle->res = NULL;
2937 		rle->flags = 0;
2938 	}
2939 
2940 	if (rle->res)
2941 		panic("resource_list_add: resource entry is busy");
2942 
2943 	rle->start = start;
2944 	rle->end = end;
2945 	rle->count = count;
2946 	return (rle);
2947 }
2948 
2949 /**
2950  * @brief Determine if a resource entry is busy.
2951  *
2952  * Returns true if a resource entry is busy meaning that it has an
2953  * associated resource that is not an unallocated "reserved" resource.
2954  *
2955  * @param rl		the resource list to search
2956  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2957  * @param rid		the resource identifier
2958  *
2959  * @returns Non-zero if the entry is busy, zero otherwise.
2960  */
2961 int
resource_list_busy(struct resource_list * rl,int type,int rid)2962 resource_list_busy(struct resource_list *rl, int type, int rid)
2963 {
2964 	struct resource_list_entry *rle;
2965 
2966 	rle = resource_list_find(rl, type, rid);
2967 	if (rle == NULL || rle->res == NULL)
2968 		return (0);
2969 	if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == RLE_RESERVED) {
2970 		KASSERT(!(rman_get_flags(rle->res) & RF_ACTIVE),
2971 		    ("reserved resource is active"));
2972 		return (0);
2973 	}
2974 	return (1);
2975 }
2976 
2977 /**
2978  * @brief Determine if a resource entry is reserved.
2979  *
2980  * Returns true if a resource entry is reserved meaning that it has an
2981  * associated "reserved" resource.  The resource can either be
2982  * allocated or unallocated.
2983  *
2984  * @param rl		the resource list to search
2985  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2986  * @param rid		the resource identifier
2987  *
2988  * @returns Non-zero if the entry is reserved, zero otherwise.
2989  */
2990 int
resource_list_reserved(struct resource_list * rl,int type,int rid)2991 resource_list_reserved(struct resource_list *rl, int type, int rid)
2992 {
2993 	struct resource_list_entry *rle;
2994 
2995 	rle = resource_list_find(rl, type, rid);
2996 	if (rle != NULL && rle->flags & RLE_RESERVED)
2997 		return (1);
2998 	return (0);
2999 }
3000 
3001 /**
3002  * @brief Find a resource entry by type and rid.
3003  *
3004  * @param rl		the resource list to search
3005  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3006  * @param rid		the resource identifier
3007  *
3008  * @returns the resource entry pointer or NULL if there is no such
3009  * entry.
3010  */
3011 struct resource_list_entry *
resource_list_find(struct resource_list * rl,int type,int rid)3012 resource_list_find(struct resource_list *rl, int type, int rid)
3013 {
3014 	struct resource_list_entry *rle;
3015 
3016 	STAILQ_FOREACH(rle, rl, link) {
3017 		if (rle->type == type && rle->rid == rid)
3018 			return (rle);
3019 	}
3020 	return (NULL);
3021 }
3022 
3023 /**
3024  * @brief Delete a resource entry.
3025  *
3026  * @param rl		the resource list to edit
3027  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3028  * @param rid		the resource identifier
3029  */
3030 void
resource_list_delete(struct resource_list * rl,int type,int rid)3031 resource_list_delete(struct resource_list *rl, int type, int rid)
3032 {
3033 	struct resource_list_entry *rle = resource_list_find(rl, type, rid);
3034 
3035 	if (rle) {
3036 		if (rle->res != NULL)
3037 			panic("resource_list_delete: resource has not been released");
3038 		STAILQ_REMOVE(rl, rle, resource_list_entry, link);
3039 		free(rle, M_BUS);
3040 	}
3041 }
3042 
3043 /**
3044  * @brief Allocate a reserved resource
3045  *
3046  * This can be used by buses to force the allocation of resources
3047  * that are always active in the system even if they are not allocated
3048  * by a driver (e.g. PCI BARs).  This function is usually called when
3049  * adding a new child to the bus.  The resource is allocated from the
3050  * parent bus when it is reserved.  The resource list entry is marked
3051  * with RLE_RESERVED to note that it is a reserved resource.
3052  *
3053  * Subsequent attempts to allocate the resource with
3054  * resource_list_alloc() will succeed the first time and will set
3055  * RLE_ALLOCATED to note that it has been allocated.  When a reserved
3056  * resource that has been allocated is released with
3057  * resource_list_release() the resource RLE_ALLOCATED is cleared, but
3058  * the actual resource remains allocated.  The resource can be released to
3059  * the parent bus by calling resource_list_unreserve().
3060  *
3061  * @param rl		the resource list to allocate from
3062  * @param bus		the parent device of @p child
3063  * @param child		the device for which the resource is being reserved
3064  * @param type		the type of resource to allocate
3065  * @param rid		a pointer to the resource identifier
3066  * @param start		hint at the start of the resource range - pass
3067  *			@c 0 for any start address
3068  * @param end		hint at the end of the resource range - pass
3069  *			@c ~0 for any end address
3070  * @param count		hint at the size of range required - pass @c 1
3071  *			for any size
3072  * @param flags		any extra flags to control the resource
3073  *			allocation - see @c RF_XXX flags in
3074  *			<sys/rman.h> for details
3075  *
3076  * @returns		the resource which was allocated or @c NULL if no
3077  *			resource could be allocated
3078  */
3079 struct resource *
resource_list_reserve(struct resource_list * rl,device_t bus,device_t child,int type,int * rid,rman_res_t start,rman_res_t end,rman_res_t count,u_int flags)3080 resource_list_reserve(struct resource_list *rl, device_t bus, device_t child,
3081     int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
3082 {
3083 	struct resource_list_entry *rle = NULL;
3084 	int passthrough = (device_get_parent(child) != bus);
3085 	struct resource *r;
3086 
3087 	if (passthrough)
3088 		panic(
3089     "resource_list_reserve() should only be called for direct children");
3090 	if (flags & RF_ACTIVE)
3091 		panic(
3092     "resource_list_reserve() should only reserve inactive resources");
3093 
3094 	r = resource_list_alloc(rl, bus, child, type, rid, start, end, count,
3095 	    flags);
3096 	if (r != NULL) {
3097 		rle = resource_list_find(rl, type, *rid);
3098 		rle->flags |= RLE_RESERVED;
3099 	}
3100 	return (r);
3101 }
3102 
3103 /**
3104  * @brief Helper function for implementing BUS_ALLOC_RESOURCE()
3105  *
3106  * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list
3107  * and passing the allocation up to the parent of @p bus. This assumes
3108  * that the first entry of @c device_get_ivars(child) is a struct
3109  * resource_list. This also handles 'passthrough' allocations where a
3110  * child is a remote descendant of bus by passing the allocation up to
3111  * the parent of bus.
3112  *
3113  * Typically, a bus driver would store a list of child resources
3114  * somewhere in the child device's ivars (see device_get_ivars()) and
3115  * its implementation of BUS_ALLOC_RESOURCE() would find that list and
3116  * then call resource_list_alloc() to perform the allocation.
3117  *
3118  * @param rl		the resource list to allocate from
3119  * @param bus		the parent device of @p child
3120  * @param child		the device which is requesting an allocation
3121  * @param type		the type of resource to allocate
3122  * @param rid		a pointer to the resource identifier
3123  * @param start		hint at the start of the resource range - pass
3124  *			@c 0 for any start address
3125  * @param end		hint at the end of the resource range - pass
3126  *			@c ~0 for any end address
3127  * @param count		hint at the size of range required - pass @c 1
3128  *			for any size
3129  * @param flags		any extra flags to control the resource
3130  *			allocation - see @c RF_XXX flags in
3131  *			<sys/rman.h> for details
3132  *
3133  * @returns		the resource which was allocated or @c NULL if no
3134  *			resource could be allocated
3135  */
3136 struct resource *
resource_list_alloc(struct resource_list * rl,device_t bus,device_t child,int type,int * rid,rman_res_t start,rman_res_t end,rman_res_t count,u_int flags)3137 resource_list_alloc(struct resource_list *rl, device_t bus, device_t child,
3138     int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
3139 {
3140 	struct resource_list_entry *rle = NULL;
3141 	int passthrough = (device_get_parent(child) != bus);
3142 	int isdefault = RMAN_IS_DEFAULT_RANGE(start, end);
3143 
3144 	if (passthrough) {
3145 		return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
3146 		    type, rid, start, end, count, flags));
3147 	}
3148 
3149 	rle = resource_list_find(rl, type, *rid);
3150 
3151 	if (!rle)
3152 		return (NULL);		/* no resource of that type/rid */
3153 
3154 	if (rle->res) {
3155 		if (rle->flags & RLE_RESERVED) {
3156 			if (rle->flags & RLE_ALLOCATED)
3157 				return (NULL);
3158 			if ((flags & RF_ACTIVE) &&
3159 			    bus_activate_resource(child, type, *rid,
3160 			    rle->res) != 0)
3161 				return (NULL);
3162 			rle->flags |= RLE_ALLOCATED;
3163 			return (rle->res);
3164 		}
3165 		device_printf(bus,
3166 		    "resource entry %#x type %d for child %s is busy\n", *rid,
3167 		    type, device_get_nameunit(child));
3168 		return (NULL);
3169 	}
3170 
3171 	if (isdefault) {
3172 		start = rle->start;
3173 		count = ulmax(count, rle->count);
3174 		end = ulmax(rle->end, start + count - 1);
3175 	}
3176 
3177 	rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
3178 	    type, rid, start, end, count, flags);
3179 
3180 	/*
3181 	 * Record the new range.
3182 	 */
3183 	if (rle->res) {
3184 		rle->start = rman_get_start(rle->res);
3185 		rle->end = rman_get_end(rle->res);
3186 		rle->count = count;
3187 	}
3188 
3189 	return (rle->res);
3190 }
3191 
3192 /**
3193  * @brief Helper function for implementing BUS_RELEASE_RESOURCE()
3194  *
3195  * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally
3196  * used with resource_list_alloc().
3197  *
3198  * @param rl		the resource list which was allocated from
3199  * @param bus		the parent device of @p child
3200  * @param child		the device which is requesting a release
3201  * @param res		the resource to release
3202  *
3203  * @retval 0		success
3204  * @retval non-zero	a standard unix error code indicating what
3205  *			error condition prevented the operation
3206  */
3207 int
resource_list_release(struct resource_list * rl,device_t bus,device_t child,struct resource * res)3208 resource_list_release(struct resource_list *rl, device_t bus, device_t child,
3209     struct resource *res)
3210 {
3211 	struct resource_list_entry *rle = NULL;
3212 	int passthrough = (device_get_parent(child) != bus);
3213 	int error;
3214 
3215 	if (passthrough) {
3216 		return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
3217 		    res));
3218 	}
3219 
3220 	rle = resource_list_find(rl, rman_get_type(res), rman_get_rid(res));
3221 
3222 	if (!rle)
3223 		panic("resource_list_release: can't find resource");
3224 	if (!rle->res)
3225 		panic("resource_list_release: resource entry is not busy");
3226 	if (rle->flags & RLE_RESERVED) {
3227 		if (rle->flags & RLE_ALLOCATED) {
3228 			if (rman_get_flags(res) & RF_ACTIVE) {
3229 				error = bus_deactivate_resource(child, res);
3230 				if (error)
3231 					return (error);
3232 			}
3233 			rle->flags &= ~RLE_ALLOCATED;
3234 			return (0);
3235 		}
3236 		return (EINVAL);
3237 	}
3238 
3239 	error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child, res);
3240 	if (error)
3241 		return (error);
3242 
3243 	rle->res = NULL;
3244 	return (0);
3245 }
3246 
3247 /**
3248  * @brief Release all active resources of a given type
3249  *
3250  * Release all active resources of a specified type.  This is intended
3251  * to be used to cleanup resources leaked by a driver after detach or
3252  * a failed attach.
3253  *
3254  * @param rl		the resource list which was allocated from
3255  * @param bus		the parent device of @p child
3256  * @param child		the device whose active resources are being released
3257  * @param type		the type of resources to release
3258  *
3259  * @retval 0		success
3260  * @retval EBUSY	at least one resource was active
3261  */
3262 int
resource_list_release_active(struct resource_list * rl,device_t bus,device_t child,int type)3263 resource_list_release_active(struct resource_list *rl, device_t bus,
3264     device_t child, int type)
3265 {
3266 	struct resource_list_entry *rle;
3267 	int error, retval;
3268 
3269 	retval = 0;
3270 	STAILQ_FOREACH(rle, rl, link) {
3271 		if (rle->type != type)
3272 			continue;
3273 		if (rle->res == NULL)
3274 			continue;
3275 		if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) ==
3276 		    RLE_RESERVED)
3277 			continue;
3278 		retval = EBUSY;
3279 		error = resource_list_release(rl, bus, child, rle->res);
3280 		if (error != 0)
3281 			device_printf(bus,
3282 			    "Failed to release active resource: %d\n", error);
3283 	}
3284 	return (retval);
3285 }
3286 
3287 /**
3288  * @brief Fully release a reserved resource
3289  *
3290  * Fully releases a resource reserved via resource_list_reserve().
3291  *
3292  * @param rl		the resource list which was allocated from
3293  * @param bus		the parent device of @p child
3294  * @param child		the device whose reserved resource is being released
3295  * @param type		the type of resource to release
3296  * @param rid		the resource identifier
3297  * @param res		the resource to release
3298  *
3299  * @retval 0		success
3300  * @retval non-zero	a standard unix error code indicating what
3301  *			error condition prevented the operation
3302  */
3303 int
resource_list_unreserve(struct resource_list * rl,device_t bus,device_t child,int type,int rid)3304 resource_list_unreserve(struct resource_list *rl, device_t bus, device_t child,
3305     int type, int rid)
3306 {
3307 	struct resource_list_entry *rle = NULL;
3308 	int passthrough = (device_get_parent(child) != bus);
3309 
3310 	if (passthrough)
3311 		panic(
3312     "resource_list_unreserve() should only be called for direct children");
3313 
3314 	rle = resource_list_find(rl, type, rid);
3315 
3316 	if (!rle)
3317 		panic("resource_list_unreserve: can't find resource");
3318 	if (!(rle->flags & RLE_RESERVED))
3319 		return (EINVAL);
3320 	if (rle->flags & RLE_ALLOCATED)
3321 		return (EBUSY);
3322 	rle->flags &= ~RLE_RESERVED;
3323 	return (resource_list_release(rl, bus, child, rle->res));
3324 }
3325 
3326 /**
3327  * @brief Print a description of resources in a resource list
3328  *
3329  * Print all resources of a specified type, for use in BUS_PRINT_CHILD().
3330  * The name is printed if at least one resource of the given type is available.
3331  * The format is used to print resource start and end.
3332  *
3333  * @param rl		the resource list to print
3334  * @param name		the name of @p type, e.g. @c "memory"
3335  * @param type		type type of resource entry to print
3336  * @param format	printf(9) format string to print resource
3337  *			start and end values
3338  *
3339  * @returns		the number of characters printed
3340  */
3341 int
resource_list_print_type(struct resource_list * rl,const char * name,int type,const char * format)3342 resource_list_print_type(struct resource_list *rl, const char *name, int type,
3343     const char *format)
3344 {
3345 	struct resource_list_entry *rle;
3346 	int printed, retval;
3347 
3348 	printed = 0;
3349 	retval = 0;
3350 	/* Yes, this is kinda cheating */
3351 	STAILQ_FOREACH(rle, rl, link) {
3352 		if (rle->type == type) {
3353 			if (printed == 0)
3354 				retval += printf(" %s ", name);
3355 			else
3356 				retval += printf(",");
3357 			printed++;
3358 			retval += printf(format, rle->start);
3359 			if (rle->count > 1) {
3360 				retval += printf("-");
3361 				retval += printf(format, rle->start +
3362 						 rle->count - 1);
3363 			}
3364 		}
3365 	}
3366 	return (retval);
3367 }
3368 
3369 /**
3370  * @brief Releases all the resources in a list.
3371  *
3372  * @param rl		The resource list to purge.
3373  *
3374  * @returns		nothing
3375  */
3376 void
resource_list_purge(struct resource_list * rl)3377 resource_list_purge(struct resource_list *rl)
3378 {
3379 	struct resource_list_entry *rle;
3380 
3381 	while ((rle = STAILQ_FIRST(rl)) != NULL) {
3382 		if (rle->res)
3383 			bus_release_resource(rman_get_device(rle->res),
3384 			    rle->type, rle->rid, rle->res);
3385 		STAILQ_REMOVE_HEAD(rl, link);
3386 		free(rle, M_BUS);
3387 	}
3388 }
3389 
3390 device_t
bus_generic_add_child(device_t dev,u_int order,const char * name,int unit)3391 bus_generic_add_child(device_t dev, u_int order, const char *name, int unit)
3392 {
3393 	return (device_add_child_ordered(dev, order, name, unit));
3394 }
3395 
3396 /**
3397  * @brief Helper function for implementing DEVICE_PROBE()
3398  *
3399  * This function can be used to help implement the DEVICE_PROBE() for
3400  * a bus (i.e. a device which has other devices attached to it). It
3401  * calls the DEVICE_IDENTIFY() method of each driver in the device's
3402  * devclass.
3403  */
3404 int
bus_generic_probe(device_t dev)3405 bus_generic_probe(device_t dev)
3406 {
3407 	bus_identify_children(dev);
3408 	return (0);
3409 }
3410 
3411 /**
3412  * @brief Ask drivers to add child devices of the given device.
3413  *
3414  * This function allows drivers for child devices of a bus to identify
3415  * child devices and add them as children of the given device.  NB:
3416  * The driver for @param dev must implement the BUS_ADD_CHILD method.
3417  *
3418  * @param dev		the parent device
3419  */
3420 void
bus_identify_children(device_t dev)3421 bus_identify_children(device_t dev)
3422 {
3423 	devclass_t dc = dev->devclass;
3424 	driverlink_t dl;
3425 
3426 	TAILQ_FOREACH(dl, &dc->drivers, link) {
3427 		/*
3428 		 * If this driver's pass is too high, then ignore it.
3429 		 * For most drivers in the default pass, this will
3430 		 * never be true.  For early-pass drivers they will
3431 		 * only call the identify routines of eligible drivers
3432 		 * when this routine is called.  Drivers for later
3433 		 * passes should have their identify routines called
3434 		 * on early-pass buses during BUS_NEW_PASS().
3435 		 */
3436 		if (dl->pass > bus_current_pass)
3437 			continue;
3438 		DEVICE_IDENTIFY(dl->driver, dev);
3439 	}
3440 }
3441 
3442 /**
3443  * @brief Helper function for implementing DEVICE_ATTACH()
3444  *
3445  * This function can be used to help implement the DEVICE_ATTACH() for
3446  * a bus. It calls device_probe_and_attach() for each of the device's
3447  * children.
3448  */
3449 int
bus_generic_attach(device_t dev)3450 bus_generic_attach(device_t dev)
3451 {
3452 	bus_attach_children(dev);
3453 	return (0);
3454 }
3455 
3456 /**
3457  * @brief Probe and attach all children of the given device
3458  *
3459  * This function attempts to attach a device driver to each unattached
3460  * child of the given device using device_probe_and_attach().  If an
3461  * individual child fails to attach this function continues attaching
3462  * other children.
3463  *
3464  * @param dev		the parent device
3465  */
3466 void
bus_attach_children(device_t dev)3467 bus_attach_children(device_t dev)
3468 {
3469 	device_t child;
3470 
3471 	TAILQ_FOREACH(child, &dev->children, link) {
3472 		device_probe_and_attach(child);
3473 	}
3474 }
3475 
3476 /**
3477  * @brief Helper function for delaying attaching children
3478  *
3479  * Many buses can't run transactions on the bus which children need to probe and
3480  * attach until after interrupts and/or timers are running.  This function
3481  * delays their attach until interrupts and timers are enabled.
3482  */
3483 void
bus_delayed_attach_children(device_t dev)3484 bus_delayed_attach_children(device_t dev)
3485 {
3486 	/* Probe and attach the bus children when interrupts are available */
3487 	config_intrhook_oneshot((ich_func_t)bus_attach_children, dev);
3488 }
3489 
3490 /**
3491  * @brief Helper function for implementing DEVICE_DETACH()
3492  *
3493  * This function can be used to help implement the DEVICE_DETACH() for
3494  * a bus.  It detaches and deletes all children.  If an individual
3495  * child fails to detach, this function stops and returns an error.
3496  *
3497  * @param dev		the parent device
3498  *
3499  * @retval 0		success
3500  * @retval non-zero	a device would not detach
3501  */
3502 int
bus_generic_detach(device_t dev)3503 bus_generic_detach(device_t dev)
3504 {
3505 	int error;
3506 
3507 	error = bus_detach_children(dev);
3508 	if (error != 0)
3509 		return (error);
3510 
3511 	return (device_delete_children(dev));
3512 }
3513 
3514 /**
3515  * @brief Detach drivers from all children of a device
3516  *
3517  * This function attempts to detach a device driver from each attached
3518  * child of the given device using device_detach().  If an individual
3519  * child fails to detach this function stops and returns an error.
3520  * NB: Children that were successfully detached are not re-attached if
3521  * an error occurs.
3522  *
3523  * @param dev		the parent device
3524  *
3525  * @retval 0		success
3526  * @retval non-zero	a device would not detach
3527  */
3528 int
bus_detach_children(device_t dev)3529 bus_detach_children(device_t dev)
3530 {
3531 	device_t child;
3532 	int error;
3533 
3534 	/*
3535 	 * Detach children in the reverse order.
3536 	 * See bus_generic_suspend for details.
3537 	 */
3538 	TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) {
3539 		if ((error = device_detach(child)) != 0)
3540 			return (error);
3541 	}
3542 
3543 	return (0);
3544 }
3545 
3546 /**
3547  * @brief Helper function for implementing DEVICE_SHUTDOWN()
3548  *
3549  * This function can be used to help implement the DEVICE_SHUTDOWN()
3550  * for a bus. It calls device_shutdown() for each of the device's
3551  * children.
3552  */
3553 int
bus_generic_shutdown(device_t dev)3554 bus_generic_shutdown(device_t dev)
3555 {
3556 	device_t child;
3557 
3558 	/*
3559 	 * Shut down children in the reverse order.
3560 	 * See bus_generic_suspend for details.
3561 	 */
3562 	TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) {
3563 		device_shutdown(child);
3564 	}
3565 
3566 	return (0);
3567 }
3568 
3569 /**
3570  * @brief Default function for suspending a child device.
3571  *
3572  * This function is to be used by a bus's DEVICE_SUSPEND_CHILD().
3573  */
3574 int
bus_generic_suspend_child(device_t dev,device_t child)3575 bus_generic_suspend_child(device_t dev, device_t child)
3576 {
3577 	int	error;
3578 
3579 	error = DEVICE_SUSPEND(child);
3580 
3581 	if (error == 0) {
3582 		child->flags |= DF_SUSPENDED;
3583 	} else {
3584 		printf("DEVICE_SUSPEND(%s) failed: %d\n",
3585 		    device_get_nameunit(child), error);
3586 	}
3587 
3588 	return (error);
3589 }
3590 
3591 /**
3592  * @brief Default function for resuming a child device.
3593  *
3594  * This function is to be used by a bus's DEVICE_RESUME_CHILD().
3595  */
3596 int
bus_generic_resume_child(device_t dev,device_t child)3597 bus_generic_resume_child(device_t dev, device_t child)
3598 {
3599 	DEVICE_RESUME(child);
3600 	child->flags &= ~DF_SUSPENDED;
3601 
3602 	return (0);
3603 }
3604 
3605 /**
3606  * @brief Helper function for implementing DEVICE_SUSPEND()
3607  *
3608  * This function can be used to help implement the DEVICE_SUSPEND()
3609  * for a bus. It calls DEVICE_SUSPEND() for each of the device's
3610  * children. If any call to DEVICE_SUSPEND() fails, the suspend
3611  * operation is aborted and any devices which were suspended are
3612  * resumed immediately by calling their DEVICE_RESUME() methods.
3613  */
3614 int
bus_generic_suspend(device_t dev)3615 bus_generic_suspend(device_t dev)
3616 {
3617 	int		error;
3618 	device_t	child;
3619 
3620 	/*
3621 	 * Suspend children in the reverse order.
3622 	 * For most buses all children are equal, so the order does not matter.
3623 	 * Other buses, such as acpi, carefully order their child devices to
3624 	 * express implicit dependencies between them.  For such buses it is
3625 	 * safer to bring down devices in the reverse order.
3626 	 */
3627 	TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) {
3628 		error = BUS_SUSPEND_CHILD(dev, child);
3629 		if (error != 0) {
3630 			child = TAILQ_NEXT(child, link);
3631 			if (child != NULL) {
3632 				TAILQ_FOREACH_FROM(child, &dev->children, link)
3633 					BUS_RESUME_CHILD(dev, child);
3634 			}
3635 			return (error);
3636 		}
3637 	}
3638 	return (0);
3639 }
3640 
3641 /**
3642  * @brief Helper function for implementing DEVICE_RESUME()
3643  *
3644  * This function can be used to help implement the DEVICE_RESUME() for
3645  * a bus. It calls DEVICE_RESUME() on each of the device's children.
3646  */
3647 int
bus_generic_resume(device_t dev)3648 bus_generic_resume(device_t dev)
3649 {
3650 	device_t	child;
3651 
3652 	TAILQ_FOREACH(child, &dev->children, link) {
3653 		BUS_RESUME_CHILD(dev, child);
3654 		/* if resume fails, there's nothing we can usefully do... */
3655 	}
3656 	return (0);
3657 }
3658 
3659 /**
3660  * @brief Helper function for implementing BUS_RESET_POST
3661  *
3662  * Bus can use this function to implement common operations of
3663  * re-attaching or resuming the children after the bus itself was
3664  * reset, and after restoring bus-unique state of children.
3665  *
3666  * @param dev	The bus
3667  * #param flags	DEVF_RESET_*
3668  */
3669 int
bus_helper_reset_post(device_t dev,int flags)3670 bus_helper_reset_post(device_t dev, int flags)
3671 {
3672 	device_t child;
3673 	int error, error1;
3674 
3675 	error = 0;
3676 	TAILQ_FOREACH(child, &dev->children,link) {
3677 		BUS_RESET_POST(dev, child);
3678 		error1 = (flags & DEVF_RESET_DETACH) != 0 ?
3679 		    device_probe_and_attach(child) :
3680 		    BUS_RESUME_CHILD(dev, child);
3681 		if (error == 0 && error1 != 0)
3682 			error = error1;
3683 	}
3684 	return (error);
3685 }
3686 
3687 static void
bus_helper_reset_prepare_rollback(device_t dev,device_t child,int flags)3688 bus_helper_reset_prepare_rollback(device_t dev, device_t child, int flags)
3689 {
3690 	child = TAILQ_NEXT(child, link);
3691 	if (child == NULL)
3692 		return;
3693 	TAILQ_FOREACH_FROM(child, &dev->children,link) {
3694 		BUS_RESET_POST(dev, child);
3695 		if ((flags & DEVF_RESET_DETACH) != 0)
3696 			device_probe_and_attach(child);
3697 		else
3698 			BUS_RESUME_CHILD(dev, child);
3699 	}
3700 }
3701 
3702 /**
3703  * @brief Helper function for implementing BUS_RESET_PREPARE
3704  *
3705  * Bus can use this function to implement common operations of
3706  * detaching or suspending the children before the bus itself is
3707  * reset, and then save bus-unique state of children that must
3708  * persists around reset.
3709  *
3710  * @param dev	The bus
3711  * #param flags	DEVF_RESET_*
3712  */
3713 int
bus_helper_reset_prepare(device_t dev,int flags)3714 bus_helper_reset_prepare(device_t dev, int flags)
3715 {
3716 	device_t child;
3717 	int error;
3718 
3719 	if (dev->state != DS_ATTACHED)
3720 		return (EBUSY);
3721 
3722 	TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) {
3723 		if ((flags & DEVF_RESET_DETACH) != 0) {
3724 			error = device_get_state(child) == DS_ATTACHED ?
3725 			    device_detach(child) : 0;
3726 		} else {
3727 			error = BUS_SUSPEND_CHILD(dev, child);
3728 		}
3729 		if (error == 0) {
3730 			error = BUS_RESET_PREPARE(dev, child);
3731 			if (error != 0) {
3732 				if ((flags & DEVF_RESET_DETACH) != 0)
3733 					device_probe_and_attach(child);
3734 				else
3735 					BUS_RESUME_CHILD(dev, child);
3736 			}
3737 		}
3738 		if (error != 0) {
3739 			bus_helper_reset_prepare_rollback(dev, child, flags);
3740 			return (error);
3741 		}
3742 	}
3743 	return (0);
3744 }
3745 
3746 /**
3747  * @brief Helper function for implementing BUS_PRINT_CHILD().
3748  *
3749  * This function prints the first part of the ascii representation of
3750  * @p child, including its name, unit and description (if any - see
3751  * device_set_desc()).
3752  *
3753  * @returns the number of characters printed
3754  */
3755 int
bus_print_child_header(device_t dev,device_t child)3756 bus_print_child_header(device_t dev, device_t child)
3757 {
3758 	int	retval = 0;
3759 
3760 	if (device_get_desc(child)) {
3761 		retval += device_printf(child, "<%s>", device_get_desc(child));
3762 	} else {
3763 		retval += printf("%s", device_get_nameunit(child));
3764 	}
3765 
3766 	return (retval);
3767 }
3768 
3769 /**
3770  * @brief Helper function for implementing BUS_PRINT_CHILD().
3771  *
3772  * This function prints the last part of the ascii representation of
3773  * @p child, which consists of the string @c " on " followed by the
3774  * name and unit of the @p dev.
3775  *
3776  * @returns the number of characters printed
3777  */
3778 int
bus_print_child_footer(device_t dev,device_t child)3779 bus_print_child_footer(device_t dev, device_t child)
3780 {
3781 	return (printf(" on %s\n", device_get_nameunit(dev)));
3782 }
3783 
3784 /**
3785  * @brief Helper function for implementing BUS_PRINT_CHILD().
3786  *
3787  * This function prints out the VM domain for the given device.
3788  *
3789  * @returns the number of characters printed
3790  */
3791 int
bus_print_child_domain(device_t dev,device_t child)3792 bus_print_child_domain(device_t dev, device_t child)
3793 {
3794 	int domain;
3795 
3796 	/* No domain? Don't print anything */
3797 	if (BUS_GET_DOMAIN(dev, child, &domain) != 0)
3798 		return (0);
3799 
3800 	return (printf(" numa-domain %d", domain));
3801 }
3802 
3803 /**
3804  * @brief Helper function for implementing BUS_PRINT_CHILD().
3805  *
3806  * This function simply calls bus_print_child_header() followed by
3807  * bus_print_child_footer().
3808  *
3809  * @returns the number of characters printed
3810  */
3811 int
bus_generic_print_child(device_t dev,device_t child)3812 bus_generic_print_child(device_t dev, device_t child)
3813 {
3814 	int	retval = 0;
3815 
3816 	retval += bus_print_child_header(dev, child);
3817 	retval += bus_print_child_domain(dev, child);
3818 	retval += bus_print_child_footer(dev, child);
3819 
3820 	return (retval);
3821 }
3822 
3823 /**
3824  * @brief Stub function for implementing BUS_READ_IVAR().
3825  *
3826  * @returns ENOENT
3827  */
3828 int
bus_generic_read_ivar(device_t dev,device_t child,int index,uintptr_t * result)3829 bus_generic_read_ivar(device_t dev, device_t child, int index,
3830     uintptr_t * result)
3831 {
3832 	return (ENOENT);
3833 }
3834 
3835 /**
3836  * @brief Stub function for implementing BUS_WRITE_IVAR().
3837  *
3838  * @returns ENOENT
3839  */
3840 int
bus_generic_write_ivar(device_t dev,device_t child,int index,uintptr_t value)3841 bus_generic_write_ivar(device_t dev, device_t child, int index,
3842     uintptr_t value)
3843 {
3844 	return (ENOENT);
3845 }
3846 
3847 /**
3848  * @brief Helper function for implementing BUS_GET_PROPERTY().
3849  *
3850  * This simply calls the BUS_GET_PROPERTY of the parent of dev,
3851  * until a non-default implementation is found.
3852  */
3853 ssize_t
bus_generic_get_property(device_t dev,device_t child,const char * propname,void * propvalue,size_t size,device_property_type_t type)3854 bus_generic_get_property(device_t dev, device_t child, const char *propname,
3855     void *propvalue, size_t size, device_property_type_t type)
3856 {
3857 	if (device_get_parent(dev) != NULL)
3858 		return (BUS_GET_PROPERTY(device_get_parent(dev), child,
3859 		    propname, propvalue, size, type));
3860 
3861 	return (-1);
3862 }
3863 
3864 /**
3865  * @brief Helper function for implementing BUS_DRIVER_ADDED().
3866  *
3867  * This implementation of BUS_DRIVER_ADDED() simply calls the driver's
3868  * DEVICE_IDENTIFY() method to allow it to add new children to the bus
3869  * and then calls device_probe_and_attach() for each unattached child.
3870  */
3871 void
bus_generic_driver_added(device_t dev,driver_t * driver)3872 bus_generic_driver_added(device_t dev, driver_t *driver)
3873 {
3874 	device_t child;
3875 
3876 	DEVICE_IDENTIFY(driver, dev);
3877 	TAILQ_FOREACH(child, &dev->children, link) {
3878 		if (child->state == DS_NOTPRESENT)
3879 			device_probe_and_attach(child);
3880 	}
3881 }
3882 
3883 /**
3884  * @brief Helper function for implementing BUS_NEW_PASS().
3885  *
3886  * This implementing of BUS_NEW_PASS() first calls the identify
3887  * routines for any drivers that probe at the current pass.  Then it
3888  * walks the list of devices for this bus.  If a device is already
3889  * attached, then it calls BUS_NEW_PASS() on that device.  If the
3890  * device is not already attached, it attempts to attach a driver to
3891  * it.
3892  */
3893 void
bus_generic_new_pass(device_t dev)3894 bus_generic_new_pass(device_t dev)
3895 {
3896 	driverlink_t dl;
3897 	devclass_t dc;
3898 	device_t child;
3899 
3900 	dc = dev->devclass;
3901 	TAILQ_FOREACH(dl, &dc->drivers, link) {
3902 		if (dl->pass == bus_current_pass)
3903 			DEVICE_IDENTIFY(dl->driver, dev);
3904 	}
3905 	TAILQ_FOREACH(child, &dev->children, link) {
3906 		if (child->state >= DS_ATTACHED)
3907 			BUS_NEW_PASS(child);
3908 		else if (child->state == DS_NOTPRESENT)
3909 			device_probe_and_attach(child);
3910 	}
3911 }
3912 
3913 /**
3914  * @brief Helper function for implementing BUS_SETUP_INTR().
3915  *
3916  * This simple implementation of BUS_SETUP_INTR() simply calls the
3917  * BUS_SETUP_INTR() method of the parent of @p dev.
3918  */
3919 int
bus_generic_setup_intr(device_t dev,device_t child,struct resource * irq,int flags,driver_filter_t * filter,driver_intr_t * intr,void * arg,void ** cookiep)3920 bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq,
3921     int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg,
3922     void **cookiep)
3923 {
3924 	/* Propagate up the bus hierarchy until someone handles it. */
3925 	if (dev->parent)
3926 		return (BUS_SETUP_INTR(dev->parent, child, irq, flags,
3927 		    filter, intr, arg, cookiep));
3928 	return (EINVAL);
3929 }
3930 
3931 /**
3932  * @brief Helper function for implementing BUS_TEARDOWN_INTR().
3933  *
3934  * This simple implementation of BUS_TEARDOWN_INTR() simply calls the
3935  * BUS_TEARDOWN_INTR() method of the parent of @p dev.
3936  */
3937 int
bus_generic_teardown_intr(device_t dev,device_t child,struct resource * irq,void * cookie)3938 bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq,
3939     void *cookie)
3940 {
3941 	/* Propagate up the bus hierarchy until someone handles it. */
3942 	if (dev->parent)
3943 		return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie));
3944 	return (EINVAL);
3945 }
3946 
3947 /**
3948  * @brief Helper function for implementing BUS_SUSPEND_INTR().
3949  *
3950  * This simple implementation of BUS_SUSPEND_INTR() simply calls the
3951  * BUS_SUSPEND_INTR() method of the parent of @p dev.
3952  */
3953 int
bus_generic_suspend_intr(device_t dev,device_t child,struct resource * irq)3954 bus_generic_suspend_intr(device_t dev, device_t child, struct resource *irq)
3955 {
3956 	/* Propagate up the bus hierarchy until someone handles it. */
3957 	if (dev->parent)
3958 		return (BUS_SUSPEND_INTR(dev->parent, child, irq));
3959 	return (EINVAL);
3960 }
3961 
3962 /**
3963  * @brief Helper function for implementing BUS_RESUME_INTR().
3964  *
3965  * This simple implementation of BUS_RESUME_INTR() simply calls the
3966  * BUS_RESUME_INTR() method of the parent of @p dev.
3967  */
3968 int
bus_generic_resume_intr(device_t dev,device_t child,struct resource * irq)3969 bus_generic_resume_intr(device_t dev, device_t child, struct resource *irq)
3970 {
3971 	/* Propagate up the bus hierarchy until someone handles it. */
3972 	if (dev->parent)
3973 		return (BUS_RESUME_INTR(dev->parent, child, irq));
3974 	return (EINVAL);
3975 }
3976 
3977 /**
3978  * @brief Helper function for implementing BUS_ADJUST_RESOURCE().
3979  *
3980  * This simple implementation of BUS_ADJUST_RESOURCE() simply calls the
3981  * BUS_ADJUST_RESOURCE() method of the parent of @p dev.
3982  */
3983 int
bus_generic_adjust_resource(device_t dev,device_t child,struct resource * r,rman_res_t start,rman_res_t end)3984 bus_generic_adjust_resource(device_t dev, device_t child, struct resource *r,
3985     rman_res_t start, rman_res_t end)
3986 {
3987 	/* Propagate up the bus hierarchy until someone handles it. */
3988 	if (dev->parent)
3989 		return (BUS_ADJUST_RESOURCE(dev->parent, child, r, start, end));
3990 	return (EINVAL);
3991 }
3992 
3993 /*
3994  * @brief Helper function for implementing BUS_TRANSLATE_RESOURCE().
3995  *
3996  * This simple implementation of BUS_TRANSLATE_RESOURCE() simply calls the
3997  * BUS_TRANSLATE_RESOURCE() method of the parent of @p dev.  If there is no
3998  * parent, no translation happens.
3999  */
4000 int
bus_generic_translate_resource(device_t dev,int type,rman_res_t start,rman_res_t * newstart)4001 bus_generic_translate_resource(device_t dev, int type, rman_res_t start,
4002     rman_res_t *newstart)
4003 {
4004 	if (dev->parent)
4005 		return (BUS_TRANSLATE_RESOURCE(dev->parent, type, start,
4006 		    newstart));
4007 	*newstart = start;
4008 	return (0);
4009 }
4010 
4011 /**
4012  * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
4013  *
4014  * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the
4015  * BUS_ALLOC_RESOURCE() method of the parent of @p dev.
4016  */
4017 struct resource *
bus_generic_alloc_resource(device_t dev,device_t child,int type,int * rid,rman_res_t start,rman_res_t end,rman_res_t count,u_int flags)4018 bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid,
4019     rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
4020 {
4021 	/* Propagate up the bus hierarchy until someone handles it. */
4022 	if (dev->parent)
4023 		return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid,
4024 		    start, end, count, flags));
4025 	return (NULL);
4026 }
4027 
4028 /**
4029  * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
4030  *
4031  * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the
4032  * BUS_RELEASE_RESOURCE() method of the parent of @p dev.
4033  */
4034 int
bus_generic_release_resource(device_t dev,device_t child,struct resource * r)4035 bus_generic_release_resource(device_t dev, device_t child, struct resource *r)
4036 {
4037 	/* Propagate up the bus hierarchy until someone handles it. */
4038 	if (dev->parent)
4039 		return (BUS_RELEASE_RESOURCE(dev->parent, child, r));
4040 	return (EINVAL);
4041 }
4042 
4043 /**
4044  * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE().
4045  *
4046  * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the
4047  * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev.
4048  */
4049 int
bus_generic_activate_resource(device_t dev,device_t child,struct resource * r)4050 bus_generic_activate_resource(device_t dev, device_t child, struct resource *r)
4051 {
4052 	/* Propagate up the bus hierarchy until someone handles it. */
4053 	if (dev->parent)
4054 		return (BUS_ACTIVATE_RESOURCE(dev->parent, child, r));
4055 	return (EINVAL);
4056 }
4057 
4058 /**
4059  * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE().
4060  *
4061  * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the
4062  * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev.
4063  */
4064 int
bus_generic_deactivate_resource(device_t dev,device_t child,struct resource * r)4065 bus_generic_deactivate_resource(device_t dev, device_t child,
4066     struct resource *r)
4067 {
4068 	/* Propagate up the bus hierarchy until someone handles it. */
4069 	if (dev->parent)
4070 		return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, r));
4071 	return (EINVAL);
4072 }
4073 
4074 /**
4075  * @brief Helper function for implementing BUS_MAP_RESOURCE().
4076  *
4077  * This simple implementation of BUS_MAP_RESOURCE() simply calls the
4078  * BUS_MAP_RESOURCE() method of the parent of @p dev.
4079  */
4080 int
bus_generic_map_resource(device_t dev,device_t child,struct resource * r,struct resource_map_request * args,struct resource_map * map)4081 bus_generic_map_resource(device_t dev, device_t child, struct resource *r,
4082     struct resource_map_request *args, struct resource_map *map)
4083 {
4084 	/* Propagate up the bus hierarchy until someone handles it. */
4085 	if (dev->parent)
4086 		return (BUS_MAP_RESOURCE(dev->parent, child, r, args, map));
4087 	return (EINVAL);
4088 }
4089 
4090 /**
4091  * @brief Helper function for implementing BUS_UNMAP_RESOURCE().
4092  *
4093  * This simple implementation of BUS_UNMAP_RESOURCE() simply calls the
4094  * BUS_UNMAP_RESOURCE() method of the parent of @p dev.
4095  */
4096 int
bus_generic_unmap_resource(device_t dev,device_t child,struct resource * r,struct resource_map * map)4097 bus_generic_unmap_resource(device_t dev, device_t child, struct resource *r,
4098     struct resource_map *map)
4099 {
4100 	/* Propagate up the bus hierarchy until someone handles it. */
4101 	if (dev->parent)
4102 		return (BUS_UNMAP_RESOURCE(dev->parent, child, r, map));
4103 	return (EINVAL);
4104 }
4105 
4106 /**
4107  * @brief Helper function for implementing BUS_BIND_INTR().
4108  *
4109  * This simple implementation of BUS_BIND_INTR() simply calls the
4110  * BUS_BIND_INTR() method of the parent of @p dev.
4111  */
4112 int
bus_generic_bind_intr(device_t dev,device_t child,struct resource * irq,int cpu)4113 bus_generic_bind_intr(device_t dev, device_t child, struct resource *irq,
4114     int cpu)
4115 {
4116 	/* Propagate up the bus hierarchy until someone handles it. */
4117 	if (dev->parent)
4118 		return (BUS_BIND_INTR(dev->parent, child, irq, cpu));
4119 	return (EINVAL);
4120 }
4121 
4122 /**
4123  * @brief Helper function for implementing BUS_CONFIG_INTR().
4124  *
4125  * This simple implementation of BUS_CONFIG_INTR() simply calls the
4126  * BUS_CONFIG_INTR() method of the parent of @p dev.
4127  */
4128 int
bus_generic_config_intr(device_t dev,int irq,enum intr_trigger trig,enum intr_polarity pol)4129 bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig,
4130     enum intr_polarity pol)
4131 {
4132 	/* Propagate up the bus hierarchy until someone handles it. */
4133 	if (dev->parent)
4134 		return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol));
4135 	return (EINVAL);
4136 }
4137 
4138 /**
4139  * @brief Helper function for implementing BUS_DESCRIBE_INTR().
4140  *
4141  * This simple implementation of BUS_DESCRIBE_INTR() simply calls the
4142  * BUS_DESCRIBE_INTR() method of the parent of @p dev.
4143  */
4144 int
bus_generic_describe_intr(device_t dev,device_t child,struct resource * irq,void * cookie,const char * descr)4145 bus_generic_describe_intr(device_t dev, device_t child, struct resource *irq,
4146     void *cookie, const char *descr)
4147 {
4148 	/* Propagate up the bus hierarchy until someone handles it. */
4149 	if (dev->parent)
4150 		return (BUS_DESCRIBE_INTR(dev->parent, child, irq, cookie,
4151 		    descr));
4152 	return (EINVAL);
4153 }
4154 
4155 /**
4156  * @brief Helper function for implementing BUS_GET_CPUS().
4157  *
4158  * This simple implementation of BUS_GET_CPUS() simply calls the
4159  * BUS_GET_CPUS() method of the parent of @p dev.
4160  */
4161 int
bus_generic_get_cpus(device_t dev,device_t child,enum cpu_sets op,size_t setsize,cpuset_t * cpuset)4162 bus_generic_get_cpus(device_t dev, device_t child, enum cpu_sets op,
4163     size_t setsize, cpuset_t *cpuset)
4164 {
4165 	/* Propagate up the bus hierarchy until someone handles it. */
4166 	if (dev->parent != NULL)
4167 		return (BUS_GET_CPUS(dev->parent, child, op, setsize, cpuset));
4168 	return (EINVAL);
4169 }
4170 
4171 /**
4172  * @brief Helper function for implementing BUS_GET_DMA_TAG().
4173  *
4174  * This simple implementation of BUS_GET_DMA_TAG() simply calls the
4175  * BUS_GET_DMA_TAG() method of the parent of @p dev.
4176  */
4177 bus_dma_tag_t
bus_generic_get_dma_tag(device_t dev,device_t child)4178 bus_generic_get_dma_tag(device_t dev, device_t child)
4179 {
4180 	/* Propagate up the bus hierarchy until someone handles it. */
4181 	if (dev->parent != NULL)
4182 		return (BUS_GET_DMA_TAG(dev->parent, child));
4183 	return (NULL);
4184 }
4185 
4186 /**
4187  * @brief Helper function for implementing BUS_GET_BUS_TAG().
4188  *
4189  * This simple implementation of BUS_GET_BUS_TAG() simply calls the
4190  * BUS_GET_BUS_TAG() method of the parent of @p dev.
4191  */
4192 bus_space_tag_t
bus_generic_get_bus_tag(device_t dev,device_t child)4193 bus_generic_get_bus_tag(device_t dev, device_t child)
4194 {
4195 	/* Propagate up the bus hierarchy until someone handles it. */
4196 	if (dev->parent != NULL)
4197 		return (BUS_GET_BUS_TAG(dev->parent, child));
4198 	return ((bus_space_tag_t)0);
4199 }
4200 
4201 /**
4202  * @brief Helper function for implementing BUS_GET_RESOURCE().
4203  *
4204  * This implementation of BUS_GET_RESOURCE() uses the
4205  * resource_list_find() function to do most of the work. It calls
4206  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
4207  * search.
4208  */
4209 int
bus_generic_rl_get_resource(device_t dev,device_t child,int type,int rid,rman_res_t * startp,rman_res_t * countp)4210 bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid,
4211     rman_res_t *startp, rman_res_t *countp)
4212 {
4213 	struct resource_list *		rl = NULL;
4214 	struct resource_list_entry *	rle = NULL;
4215 
4216 	rl = BUS_GET_RESOURCE_LIST(dev, child);
4217 	if (!rl)
4218 		return (EINVAL);
4219 
4220 	rle = resource_list_find(rl, type, rid);
4221 	if (!rle)
4222 		return (ENOENT);
4223 
4224 	if (startp)
4225 		*startp = rle->start;
4226 	if (countp)
4227 		*countp = rle->count;
4228 
4229 	return (0);
4230 }
4231 
4232 /**
4233  * @brief Helper function for implementing BUS_SET_RESOURCE().
4234  *
4235  * This implementation of BUS_SET_RESOURCE() uses the
4236  * resource_list_add() function to do most of the work. It calls
4237  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
4238  * edit.
4239  */
4240 int
bus_generic_rl_set_resource(device_t dev,device_t child,int type,int rid,rman_res_t start,rman_res_t count)4241 bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid,
4242     rman_res_t start, rman_res_t count)
4243 {
4244 	struct resource_list *		rl = NULL;
4245 
4246 	rl = BUS_GET_RESOURCE_LIST(dev, child);
4247 	if (!rl)
4248 		return (EINVAL);
4249 
4250 	resource_list_add(rl, type, rid, start, (start + count - 1), count);
4251 
4252 	return (0);
4253 }
4254 
4255 /**
4256  * @brief Helper function for implementing BUS_DELETE_RESOURCE().
4257  *
4258  * This implementation of BUS_DELETE_RESOURCE() uses the
4259  * resource_list_delete() function to do most of the work. It calls
4260  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
4261  * edit.
4262  */
4263 void
bus_generic_rl_delete_resource(device_t dev,device_t child,int type,int rid)4264 bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid)
4265 {
4266 	struct resource_list *		rl = NULL;
4267 
4268 	rl = BUS_GET_RESOURCE_LIST(dev, child);
4269 	if (!rl)
4270 		return;
4271 
4272 	resource_list_delete(rl, type, rid);
4273 
4274 	return;
4275 }
4276 
4277 /**
4278  * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
4279  *
4280  * This implementation of BUS_RELEASE_RESOURCE() uses the
4281  * resource_list_release() function to do most of the work. It calls
4282  * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
4283  */
4284 int
bus_generic_rl_release_resource(device_t dev,device_t child,struct resource * r)4285 bus_generic_rl_release_resource(device_t dev, device_t child,
4286     struct resource *r)
4287 {
4288 	struct resource_list *		rl = NULL;
4289 
4290 	if (device_get_parent(child) != dev)
4291 		return (BUS_RELEASE_RESOURCE(device_get_parent(dev), child, r));
4292 
4293 	rl = BUS_GET_RESOURCE_LIST(dev, child);
4294 	if (!rl)
4295 		return (EINVAL);
4296 
4297 	return (resource_list_release(rl, dev, child, r));
4298 }
4299 
4300 /**
4301  * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
4302  *
4303  * This implementation of BUS_ALLOC_RESOURCE() uses the
4304  * resource_list_alloc() function to do most of the work. It calls
4305  * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
4306  */
4307 struct resource *
bus_generic_rl_alloc_resource(device_t dev,device_t child,int type,int * rid,rman_res_t start,rman_res_t end,rman_res_t count,u_int flags)4308 bus_generic_rl_alloc_resource(device_t dev, device_t child, int type,
4309     int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
4310 {
4311 	struct resource_list *		rl = NULL;
4312 
4313 	if (device_get_parent(child) != dev)
4314 		return (BUS_ALLOC_RESOURCE(device_get_parent(dev), child,
4315 		    type, rid, start, end, count, flags));
4316 
4317 	rl = BUS_GET_RESOURCE_LIST(dev, child);
4318 	if (!rl)
4319 		return (NULL);
4320 
4321 	return (resource_list_alloc(rl, dev, child, type, rid,
4322 	    start, end, count, flags));
4323 }
4324 
4325 /**
4326  * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
4327  *
4328  * This implementation of BUS_ALLOC_RESOURCE() allocates a
4329  * resource from a resource manager.  It uses BUS_GET_RMAN()
4330  * to obtain the resource manager.
4331  */
4332 struct resource *
bus_generic_rman_alloc_resource(device_t dev,device_t child,int type,int * rid,rman_res_t start,rman_res_t end,rman_res_t count,u_int flags)4333 bus_generic_rman_alloc_resource(device_t dev, device_t child, int type,
4334     int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
4335 {
4336 	struct resource *r;
4337 	struct rman *rm;
4338 
4339 	rm = BUS_GET_RMAN(dev, type, flags);
4340 	if (rm == NULL)
4341 		return (NULL);
4342 
4343 	r = rman_reserve_resource(rm, start, end, count, flags & ~RF_ACTIVE,
4344 	    child);
4345 	if (r == NULL)
4346 		return (NULL);
4347 	rman_set_rid(r, *rid);
4348 	rman_set_type(r, type);
4349 
4350 	if (flags & RF_ACTIVE) {
4351 		if (bus_activate_resource(child, type, *rid, r) != 0) {
4352 			rman_release_resource(r);
4353 			return (NULL);
4354 		}
4355 	}
4356 
4357 	return (r);
4358 }
4359 
4360 /**
4361  * @brief Helper function for implementing BUS_ADJUST_RESOURCE().
4362  *
4363  * This implementation of BUS_ADJUST_RESOURCE() adjusts resources only
4364  * if they were allocated from the resource manager returned by
4365  * BUS_GET_RMAN().
4366  */
4367 int
bus_generic_rman_adjust_resource(device_t dev,device_t child,struct resource * r,rman_res_t start,rman_res_t end)4368 bus_generic_rman_adjust_resource(device_t dev, device_t child,
4369     struct resource *r, rman_res_t start, rman_res_t end)
4370 {
4371 	struct rman *rm;
4372 
4373 	rm = BUS_GET_RMAN(dev, rman_get_type(r), rman_get_flags(r));
4374 	if (rm == NULL)
4375 		return (ENXIO);
4376 	if (!rman_is_region_manager(r, rm))
4377 		return (EINVAL);
4378 	return (rman_adjust_resource(r, start, end));
4379 }
4380 
4381 /**
4382  * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
4383  *
4384  * This implementation of BUS_RELEASE_RESOURCE() releases resources
4385  * allocated by bus_generic_rman_alloc_resource.
4386  */
4387 int
bus_generic_rman_release_resource(device_t dev,device_t child,struct resource * r)4388 bus_generic_rman_release_resource(device_t dev, device_t child,
4389     struct resource *r)
4390 {
4391 #ifdef INVARIANTS
4392 	struct rman *rm;
4393 #endif
4394 	int error;
4395 
4396 #ifdef INVARIANTS
4397 	rm = BUS_GET_RMAN(dev, rman_get_type(r), rman_get_flags(r));
4398 	KASSERT(rman_is_region_manager(r, rm),
4399 	    ("%s: rman %p doesn't match for resource %p", __func__, rm, r));
4400 #endif
4401 
4402 	if (rman_get_flags(r) & RF_ACTIVE) {
4403 		error = bus_deactivate_resource(child, r);
4404 		if (error != 0)
4405 			return (error);
4406 	}
4407 	return (rman_release_resource(r));
4408 }
4409 
4410 /**
4411  * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE().
4412  *
4413  * This implementation of BUS_ACTIVATE_RESOURCE() activates resources
4414  * allocated by bus_generic_rman_alloc_resource.
4415  */
4416 int
bus_generic_rman_activate_resource(device_t dev,device_t child,struct resource * r)4417 bus_generic_rman_activate_resource(device_t dev, device_t child,
4418     struct resource *r)
4419 {
4420 	struct resource_map map;
4421 #ifdef INVARIANTS
4422 	struct rman *rm;
4423 #endif
4424 	int error, type;
4425 
4426 	type = rman_get_type(r);
4427 #ifdef INVARIANTS
4428 	rm = BUS_GET_RMAN(dev, type, rman_get_flags(r));
4429 	KASSERT(rman_is_region_manager(r, rm),
4430 	    ("%s: rman %p doesn't match for resource %p", __func__, rm, r));
4431 #endif
4432 
4433 	error = rman_activate_resource(r);
4434 	if (error != 0)
4435 		return (error);
4436 
4437 	switch (type) {
4438 	case SYS_RES_IOPORT:
4439 	case SYS_RES_MEMORY:
4440 		if ((rman_get_flags(r) & RF_UNMAPPED) == 0) {
4441 			error = BUS_MAP_RESOURCE(dev, child, r, NULL, &map);
4442 			if (error != 0)
4443 				break;
4444 
4445 			rman_set_mapping(r, &map);
4446 		}
4447 		break;
4448 #ifdef INTRNG
4449 	case SYS_RES_IRQ:
4450 		error = intr_activate_irq(child, r);
4451 		break;
4452 #endif
4453 	}
4454 	if (error != 0)
4455 		rman_deactivate_resource(r);
4456 	return (error);
4457 }
4458 
4459 /**
4460  * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE().
4461  *
4462  * This implementation of BUS_DEACTIVATE_RESOURCE() deactivates
4463  * resources allocated by bus_generic_rman_alloc_resource.
4464  */
4465 int
bus_generic_rman_deactivate_resource(device_t dev,device_t child,struct resource * r)4466 bus_generic_rman_deactivate_resource(device_t dev, device_t child,
4467     struct resource *r)
4468 {
4469 	struct resource_map map;
4470 #ifdef INVARIANTS
4471 	struct rman *rm;
4472 #endif
4473 	int error, type;
4474 
4475 	type = rman_get_type(r);
4476 #ifdef INVARIANTS
4477 	rm = BUS_GET_RMAN(dev, type, rman_get_flags(r));
4478 	KASSERT(rman_is_region_manager(r, rm),
4479 	    ("%s: rman %p doesn't match for resource %p", __func__, rm, r));
4480 #endif
4481 
4482 	error = rman_deactivate_resource(r);
4483 	if (error != 0)
4484 		return (error);
4485 
4486 	switch (type) {
4487 	case SYS_RES_IOPORT:
4488 	case SYS_RES_MEMORY:
4489 		if ((rman_get_flags(r) & RF_UNMAPPED) == 0) {
4490 			rman_get_mapping(r, &map);
4491 			BUS_UNMAP_RESOURCE(dev, child, r, &map);
4492 		}
4493 		break;
4494 #ifdef INTRNG
4495 	case SYS_RES_IRQ:
4496 		intr_deactivate_irq(child, r);
4497 		break;
4498 #endif
4499 	}
4500 	return (0);
4501 }
4502 
4503 /**
4504  * @brief Helper function for implementing BUS_CHILD_PRESENT().
4505  *
4506  * This simple implementation of BUS_CHILD_PRESENT() simply calls the
4507  * BUS_CHILD_PRESENT() method of the parent of @p dev.
4508  */
4509 int
bus_generic_child_present(device_t dev,device_t child)4510 bus_generic_child_present(device_t dev, device_t child)
4511 {
4512 	return (BUS_CHILD_PRESENT(device_get_parent(dev), dev));
4513 }
4514 
4515 /**
4516  * @brief Helper function for implementing BUS_GET_DOMAIN().
4517  *
4518  * This simple implementation of BUS_GET_DOMAIN() calls the
4519  * BUS_GET_DOMAIN() method of the parent of @p dev.  If @p dev
4520  * does not have a parent, the function fails with ENOENT.
4521  */
4522 int
bus_generic_get_domain(device_t dev,device_t child,int * domain)4523 bus_generic_get_domain(device_t dev, device_t child, int *domain)
4524 {
4525 	if (dev->parent)
4526 		return (BUS_GET_DOMAIN(dev->parent, dev, domain));
4527 
4528 	return (ENOENT);
4529 }
4530 
4531 /**
4532  * @brief Helper function to implement normal BUS_GET_DEVICE_PATH()
4533  *
4534  * This function knows how to (a) pass the request up the tree if there's
4535  * a parent and (b) Knows how to supply a FreeBSD locator.
4536  *
4537  * @param bus		bus in the walk up the tree
4538  * @param child		leaf node to print information about
4539  * @param locator	BUS_LOCATOR_xxx string for locator
4540  * @param sb		Buffer to print information into
4541  */
4542 int
bus_generic_get_device_path(device_t bus,device_t child,const char * locator,struct sbuf * sb)4543 bus_generic_get_device_path(device_t bus, device_t child, const char *locator,
4544     struct sbuf *sb)
4545 {
4546 	int rv = 0;
4547 	device_t parent;
4548 
4549 	/*
4550 	 * We don't recurse on ACPI since either we know the handle for the
4551 	 * device or we don't. And if we're in the generic routine, we don't
4552 	 * have a ACPI override. All other locators build up a path by having
4553 	 * their parents create a path and then adding the path element for this
4554 	 * node. That's why we recurse with parent, bus rather than the typical
4555 	 * parent, child: each spot in the tree is independent of what our child
4556 	 * will do with this path.
4557 	 */
4558 	parent = device_get_parent(bus);
4559 	if (parent != NULL && strcmp(locator, BUS_LOCATOR_ACPI) != 0) {
4560 		rv = BUS_GET_DEVICE_PATH(parent, bus, locator, sb);
4561 	}
4562 	if (strcmp(locator, BUS_LOCATOR_FREEBSD) == 0) {
4563 		if (rv == 0) {
4564 			sbuf_printf(sb, "/%s", device_get_nameunit(child));
4565 		}
4566 		return (rv);
4567 	}
4568 	/*
4569 	 * Don't know what to do. So assume we do nothing. Not sure that's
4570 	 * the right thing, but keeps us from having a big list here.
4571 	 */
4572 	return (0);
4573 }
4574 
4575 
4576 /**
4577  * @brief Helper function for implementing BUS_RESCAN().
4578  *
4579  * This null implementation of BUS_RESCAN() always fails to indicate
4580  * the bus does not support rescanning.
4581  */
4582 int
bus_null_rescan(device_t dev)4583 bus_null_rescan(device_t dev)
4584 {
4585 	return (ENODEV);
4586 }
4587 
4588 /*
4589  * Some convenience functions to make it easier for drivers to use the
4590  * resource-management functions.  All these really do is hide the
4591  * indirection through the parent's method table, making for slightly
4592  * less-wordy code.  In the future, it might make sense for this code
4593  * to maintain some sort of a list of resources allocated by each device.
4594  */
4595 
4596 int
bus_alloc_resources(device_t dev,struct resource_spec * rs,struct resource ** res)4597 bus_alloc_resources(device_t dev, struct resource_spec *rs,
4598     struct resource **res)
4599 {
4600 	int i;
4601 
4602 	for (i = 0; rs[i].type != -1; i++)
4603 		res[i] = NULL;
4604 	for (i = 0; rs[i].type != -1; i++) {
4605 		res[i] = bus_alloc_resource_any(dev,
4606 		    rs[i].type, &rs[i].rid, rs[i].flags);
4607 		if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) {
4608 			bus_release_resources(dev, rs, res);
4609 			return (ENXIO);
4610 		}
4611 	}
4612 	return (0);
4613 }
4614 
4615 void
bus_release_resources(device_t dev,const struct resource_spec * rs,struct resource ** res)4616 bus_release_resources(device_t dev, const struct resource_spec *rs,
4617     struct resource **res)
4618 {
4619 	int i;
4620 
4621 	for (i = 0; rs[i].type != -1; i++)
4622 		if (res[i] != NULL) {
4623 			bus_release_resource(
4624 			    dev, rs[i].type, rs[i].rid, res[i]);
4625 			res[i] = NULL;
4626 		}
4627 }
4628 
4629 /**
4630  * @brief Wrapper function for BUS_ALLOC_RESOURCE().
4631  *
4632  * This function simply calls the BUS_ALLOC_RESOURCE() method of the
4633  * parent of @p dev.
4634  */
4635 struct resource *
bus_alloc_resource(device_t dev,int type,int * rid,rman_res_t start,rman_res_t end,rman_res_t count,u_int flags)4636 bus_alloc_resource(device_t dev, int type, int *rid, rman_res_t start,
4637     rman_res_t end, rman_res_t count, u_int flags)
4638 {
4639 	struct resource *res;
4640 
4641 	if (dev->parent == NULL)
4642 		return (NULL);
4643 	res = BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end,
4644 	    count, flags);
4645 	return (res);
4646 }
4647 
4648 /**
4649  * @brief Wrapper function for BUS_ADJUST_RESOURCE().
4650  *
4651  * This function simply calls the BUS_ADJUST_RESOURCE() method of the
4652  * parent of @p dev.
4653  */
4654 int
bus_adjust_resource(device_t dev,struct resource * r,rman_res_t start,rman_res_t end)4655 bus_adjust_resource(device_t dev, struct resource *r, rman_res_t start,
4656     rman_res_t end)
4657 {
4658 	if (dev->parent == NULL)
4659 		return (EINVAL);
4660 	return (BUS_ADJUST_RESOURCE(dev->parent, dev, r, start, end));
4661 }
4662 
4663 int
bus_adjust_resource_old(device_t dev,int type __unused,struct resource * r,rman_res_t start,rman_res_t end)4664 bus_adjust_resource_old(device_t dev, int type __unused, struct resource *r,
4665     rman_res_t start, rman_res_t end)
4666 {
4667 	return (bus_adjust_resource(dev, r, start, end));
4668 }
4669 
4670 /**
4671  * @brief Wrapper function for BUS_TRANSLATE_RESOURCE().
4672  *
4673  * This function simply calls the BUS_TRANSLATE_RESOURCE() method of the
4674  * parent of @p dev.
4675  */
4676 int
bus_translate_resource(device_t dev,int type,rman_res_t start,rman_res_t * newstart)4677 bus_translate_resource(device_t dev, int type, rman_res_t start,
4678     rman_res_t *newstart)
4679 {
4680 	if (dev->parent == NULL)
4681 		return (EINVAL);
4682 	return (BUS_TRANSLATE_RESOURCE(dev->parent, type, start, newstart));
4683 }
4684 
4685 /**
4686  * @brief Wrapper function for BUS_ACTIVATE_RESOURCE().
4687  *
4688  * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the
4689  * parent of @p dev.
4690  */
4691 int
bus_activate_resource(device_t dev,struct resource * r)4692 bus_activate_resource(device_t dev, struct resource *r)
4693 {
4694 	if (dev->parent == NULL)
4695 		return (EINVAL);
4696 	return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, r));
4697 }
4698 
4699 int
bus_activate_resource_old(device_t dev,int type,int rid,struct resource * r)4700 bus_activate_resource_old(device_t dev, int type, int rid, struct resource *r)
4701 {
4702 	return (bus_activate_resource(dev, r));
4703 }
4704 
4705 /**
4706  * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE().
4707  *
4708  * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the
4709  * parent of @p dev.
4710  */
4711 int
bus_deactivate_resource(device_t dev,struct resource * r)4712 bus_deactivate_resource(device_t dev, struct resource *r)
4713 {
4714 	if (dev->parent == NULL)
4715 		return (EINVAL);
4716 	return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, r));
4717 }
4718 
4719 int
bus_deactivate_resource_old(device_t dev,int type,int rid,struct resource * r)4720 bus_deactivate_resource_old(device_t dev, int type, int rid, struct resource *r)
4721 {
4722 	return (bus_deactivate_resource(dev, r));
4723 }
4724 
4725 /**
4726  * @brief Wrapper function for BUS_MAP_RESOURCE().
4727  *
4728  * This function simply calls the BUS_MAP_RESOURCE() method of the
4729  * parent of @p dev.
4730  */
4731 int
bus_map_resource(device_t dev,struct resource * r,struct resource_map_request * args,struct resource_map * map)4732 bus_map_resource(device_t dev, struct resource *r,
4733     struct resource_map_request *args, struct resource_map *map)
4734 {
4735 	if (dev->parent == NULL)
4736 		return (EINVAL);
4737 	return (BUS_MAP_RESOURCE(dev->parent, dev, r, args, map));
4738 }
4739 
4740 int
bus_map_resource_old(device_t dev,int type,struct resource * r,struct resource_map_request * args,struct resource_map * map)4741 bus_map_resource_old(device_t dev, int type, struct resource *r,
4742     struct resource_map_request *args, struct resource_map *map)
4743 {
4744 	return (bus_map_resource(dev, r, args, map));
4745 }
4746 
4747 /**
4748  * @brief Wrapper function for BUS_UNMAP_RESOURCE().
4749  *
4750  * This function simply calls the BUS_UNMAP_RESOURCE() method of the
4751  * parent of @p dev.
4752  */
4753 int
bus_unmap_resource(device_t dev,struct resource * r,struct resource_map * map)4754 bus_unmap_resource(device_t dev, struct resource *r, struct resource_map *map)
4755 {
4756 	if (dev->parent == NULL)
4757 		return (EINVAL);
4758 	return (BUS_UNMAP_RESOURCE(dev->parent, dev, r, map));
4759 }
4760 
4761 int
bus_unmap_resource_old(device_t dev,int type,struct resource * r,struct resource_map * map)4762 bus_unmap_resource_old(device_t dev, int type, struct resource *r,
4763     struct resource_map *map)
4764 {
4765 	return (bus_unmap_resource(dev, r, map));
4766 }
4767 
4768 /**
4769  * @brief Wrapper function for BUS_RELEASE_RESOURCE().
4770  *
4771  * This function simply calls the BUS_RELEASE_RESOURCE() method of the
4772  * parent of @p dev.
4773  */
4774 int
bus_release_resource(device_t dev,struct resource * r)4775 bus_release_resource(device_t dev, struct resource *r)
4776 {
4777 	int rv;
4778 
4779 	if (dev->parent == NULL)
4780 		return (EINVAL);
4781 	rv = BUS_RELEASE_RESOURCE(dev->parent, dev, r);
4782 	return (rv);
4783 }
4784 
4785 int
bus_release_resource_old(device_t dev,int type,int rid,struct resource * r)4786 bus_release_resource_old(device_t dev, int type, int rid, struct resource *r)
4787 {
4788 	return (bus_release_resource(dev, r));
4789 }
4790 
4791 /**
4792  * @brief Wrapper function for BUS_SETUP_INTR().
4793  *
4794  * This function simply calls the BUS_SETUP_INTR() method of the
4795  * parent of @p dev.
4796  */
4797 int
bus_setup_intr(device_t dev,struct resource * r,int flags,driver_filter_t filter,driver_intr_t handler,void * arg,void ** cookiep)4798 bus_setup_intr(device_t dev, struct resource *r, int flags,
4799     driver_filter_t filter, driver_intr_t handler, void *arg, void **cookiep)
4800 {
4801 	int error;
4802 
4803 	if (dev->parent == NULL)
4804 		return (EINVAL);
4805 	error = BUS_SETUP_INTR(dev->parent, dev, r, flags, filter, handler,
4806 	    arg, cookiep);
4807 	if (error != 0)
4808 		return (error);
4809 	if (handler != NULL && !(flags & INTR_MPSAFE))
4810 		device_printf(dev, "[GIANT-LOCKED]\n");
4811 	return (0);
4812 }
4813 
4814 /**
4815  * @brief Wrapper function for BUS_TEARDOWN_INTR().
4816  *
4817  * This function simply calls the BUS_TEARDOWN_INTR() method of the
4818  * parent of @p dev.
4819  */
4820 int
bus_teardown_intr(device_t dev,struct resource * r,void * cookie)4821 bus_teardown_intr(device_t dev, struct resource *r, void *cookie)
4822 {
4823 	if (dev->parent == NULL)
4824 		return (EINVAL);
4825 	return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie));
4826 }
4827 
4828 /**
4829  * @brief Wrapper function for BUS_SUSPEND_INTR().
4830  *
4831  * This function simply calls the BUS_SUSPEND_INTR() method of the
4832  * parent of @p dev.
4833  */
4834 int
bus_suspend_intr(device_t dev,struct resource * r)4835 bus_suspend_intr(device_t dev, struct resource *r)
4836 {
4837 	if (dev->parent == NULL)
4838 		return (EINVAL);
4839 	return (BUS_SUSPEND_INTR(dev->parent, dev, r));
4840 }
4841 
4842 /**
4843  * @brief Wrapper function for BUS_RESUME_INTR().
4844  *
4845  * This function simply calls the BUS_RESUME_INTR() method of the
4846  * parent of @p dev.
4847  */
4848 int
bus_resume_intr(device_t dev,struct resource * r)4849 bus_resume_intr(device_t dev, struct resource *r)
4850 {
4851 	if (dev->parent == NULL)
4852 		return (EINVAL);
4853 	return (BUS_RESUME_INTR(dev->parent, dev, r));
4854 }
4855 
4856 /**
4857  * @brief Wrapper function for BUS_BIND_INTR().
4858  *
4859  * This function simply calls the BUS_BIND_INTR() method of the
4860  * parent of @p dev.
4861  */
4862 int
bus_bind_intr(device_t dev,struct resource * r,int cpu)4863 bus_bind_intr(device_t dev, struct resource *r, int cpu)
4864 {
4865 	if (dev->parent == NULL)
4866 		return (EINVAL);
4867 	return (BUS_BIND_INTR(dev->parent, dev, r, cpu));
4868 }
4869 
4870 /**
4871  * @brief Wrapper function for BUS_DESCRIBE_INTR().
4872  *
4873  * This function first formats the requested description into a
4874  * temporary buffer and then calls the BUS_DESCRIBE_INTR() method of
4875  * the parent of @p dev.
4876  */
4877 int
bus_describe_intr(device_t dev,struct resource * irq,void * cookie,const char * fmt,...)4878 bus_describe_intr(device_t dev, struct resource *irq, void *cookie,
4879     const char *fmt, ...)
4880 {
4881 	va_list ap;
4882 	char descr[MAXCOMLEN + 1];
4883 
4884 	if (dev->parent == NULL)
4885 		return (EINVAL);
4886 	va_start(ap, fmt);
4887 	vsnprintf(descr, sizeof(descr), fmt, ap);
4888 	va_end(ap);
4889 	return (BUS_DESCRIBE_INTR(dev->parent, dev, irq, cookie, descr));
4890 }
4891 
4892 /**
4893  * @brief Wrapper function for BUS_SET_RESOURCE().
4894  *
4895  * This function simply calls the BUS_SET_RESOURCE() method of the
4896  * parent of @p dev.
4897  */
4898 int
bus_set_resource(device_t dev,int type,int rid,rman_res_t start,rman_res_t count)4899 bus_set_resource(device_t dev, int type, int rid,
4900     rman_res_t start, rman_res_t count)
4901 {
4902 	return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid,
4903 	    start, count));
4904 }
4905 
4906 /**
4907  * @brief Wrapper function for BUS_GET_RESOURCE().
4908  *
4909  * This function simply calls the BUS_GET_RESOURCE() method of the
4910  * parent of @p dev.
4911  */
4912 int
bus_get_resource(device_t dev,int type,int rid,rman_res_t * startp,rman_res_t * countp)4913 bus_get_resource(device_t dev, int type, int rid,
4914     rman_res_t *startp, rman_res_t *countp)
4915 {
4916 	return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4917 	    startp, countp));
4918 }
4919 
4920 /**
4921  * @brief Wrapper function for BUS_GET_RESOURCE().
4922  *
4923  * This function simply calls the BUS_GET_RESOURCE() method of the
4924  * parent of @p dev and returns the start value.
4925  */
4926 rman_res_t
bus_get_resource_start(device_t dev,int type,int rid)4927 bus_get_resource_start(device_t dev, int type, int rid)
4928 {
4929 	rman_res_t start;
4930 	rman_res_t count;
4931 	int error;
4932 
4933 	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4934 	    &start, &count);
4935 	if (error)
4936 		return (0);
4937 	return (start);
4938 }
4939 
4940 /**
4941  * @brief Wrapper function for BUS_GET_RESOURCE().
4942  *
4943  * This function simply calls the BUS_GET_RESOURCE() method of the
4944  * parent of @p dev and returns the count value.
4945  */
4946 rman_res_t
bus_get_resource_count(device_t dev,int type,int rid)4947 bus_get_resource_count(device_t dev, int type, int rid)
4948 {
4949 	rman_res_t start;
4950 	rman_res_t count;
4951 	int error;
4952 
4953 	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4954 	    &start, &count);
4955 	if (error)
4956 		return (0);
4957 	return (count);
4958 }
4959 
4960 /**
4961  * @brief Wrapper function for BUS_DELETE_RESOURCE().
4962  *
4963  * This function simply calls the BUS_DELETE_RESOURCE() method of the
4964  * parent of @p dev.
4965  */
4966 void
bus_delete_resource(device_t dev,int type,int rid)4967 bus_delete_resource(device_t dev, int type, int rid)
4968 {
4969 	BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid);
4970 }
4971 
4972 /**
4973  * @brief Wrapper function for BUS_CHILD_PRESENT().
4974  *
4975  * This function simply calls the BUS_CHILD_PRESENT() method of the
4976  * parent of @p dev.
4977  */
4978 int
bus_child_present(device_t child)4979 bus_child_present(device_t child)
4980 {
4981 	return (BUS_CHILD_PRESENT(device_get_parent(child), child));
4982 }
4983 
4984 /**
4985  * @brief Wrapper function for BUS_CHILD_PNPINFO().
4986  *
4987  * This function simply calls the BUS_CHILD_PNPINFO() method of the parent of @p
4988  * dev.
4989  */
4990 int
bus_child_pnpinfo(device_t child,struct sbuf * sb)4991 bus_child_pnpinfo(device_t child, struct sbuf *sb)
4992 {
4993 	device_t parent;
4994 
4995 	parent = device_get_parent(child);
4996 	if (parent == NULL)
4997 		return (0);
4998 	return (BUS_CHILD_PNPINFO(parent, child, sb));
4999 }
5000 
5001 /**
5002  * @brief Generic implementation that does nothing for bus_child_pnpinfo
5003  *
5004  * This function has the right signature and returns 0 since the sbuf is passed
5005  * to us to append to.
5006  */
5007 int
bus_generic_child_pnpinfo(device_t dev,device_t child,struct sbuf * sb)5008 bus_generic_child_pnpinfo(device_t dev, device_t child, struct sbuf *sb)
5009 {
5010 	return (0);
5011 }
5012 
5013 /**
5014  * @brief Wrapper function for BUS_CHILD_LOCATION().
5015  *
5016  * This function simply calls the BUS_CHILD_LOCATION() method of the parent of
5017  * @p dev.
5018  */
5019 int
bus_child_location(device_t child,struct sbuf * sb)5020 bus_child_location(device_t child, struct sbuf *sb)
5021 {
5022 	device_t parent;
5023 
5024 	parent = device_get_parent(child);
5025 	if (parent == NULL)
5026 		return (0);
5027 	return (BUS_CHILD_LOCATION(parent, child, sb));
5028 }
5029 
5030 /**
5031  * @brief Generic implementation that does nothing for bus_child_location
5032  *
5033  * This function has the right signature and returns 0 since the sbuf is passed
5034  * to us to append to.
5035  */
5036 int
bus_generic_child_location(device_t dev,device_t child,struct sbuf * sb)5037 bus_generic_child_location(device_t dev, device_t child, struct sbuf *sb)
5038 {
5039 	return (0);
5040 }
5041 
5042 /**
5043  * @brief Wrapper function for BUS_GET_CPUS().
5044  *
5045  * This function simply calls the BUS_GET_CPUS() method of the
5046  * parent of @p dev.
5047  */
5048 int
bus_get_cpus(device_t dev,enum cpu_sets op,size_t setsize,cpuset_t * cpuset)5049 bus_get_cpus(device_t dev, enum cpu_sets op, size_t setsize, cpuset_t *cpuset)
5050 {
5051 	device_t parent;
5052 
5053 	parent = device_get_parent(dev);
5054 	if (parent == NULL)
5055 		return (EINVAL);
5056 	return (BUS_GET_CPUS(parent, dev, op, setsize, cpuset));
5057 }
5058 
5059 /**
5060  * @brief Wrapper function for BUS_GET_DMA_TAG().
5061  *
5062  * This function simply calls the BUS_GET_DMA_TAG() method of the
5063  * parent of @p dev.
5064  */
5065 bus_dma_tag_t
bus_get_dma_tag(device_t dev)5066 bus_get_dma_tag(device_t dev)
5067 {
5068 	device_t parent;
5069 
5070 	parent = device_get_parent(dev);
5071 	if (parent == NULL)
5072 		return (NULL);
5073 	return (BUS_GET_DMA_TAG(parent, dev));
5074 }
5075 
5076 /**
5077  * @brief Wrapper function for BUS_GET_BUS_TAG().
5078  *
5079  * This function simply calls the BUS_GET_BUS_TAG() method of the
5080  * parent of @p dev.
5081  */
5082 bus_space_tag_t
bus_get_bus_tag(device_t dev)5083 bus_get_bus_tag(device_t dev)
5084 {
5085 	device_t parent;
5086 
5087 	parent = device_get_parent(dev);
5088 	if (parent == NULL)
5089 		return ((bus_space_tag_t)0);
5090 	return (BUS_GET_BUS_TAG(parent, dev));
5091 }
5092 
5093 /**
5094  * @brief Wrapper function for BUS_GET_DOMAIN().
5095  *
5096  * This function simply calls the BUS_GET_DOMAIN() method of the
5097  * parent of @p dev.
5098  */
5099 int
bus_get_domain(device_t dev,int * domain)5100 bus_get_domain(device_t dev, int *domain)
5101 {
5102 	return (BUS_GET_DOMAIN(device_get_parent(dev), dev, domain));
5103 }
5104 
5105 /* Resume all devices and then notify userland that we're up again. */
5106 static int
root_resume(device_t dev)5107 root_resume(device_t dev)
5108 {
5109 	int error;
5110 
5111 	error = bus_generic_resume(dev);
5112 	if (error == 0) {
5113 		devctl_notify("kernel", "power", "resume", NULL);
5114 	}
5115 	return (error);
5116 }
5117 
5118 static int
root_print_child(device_t dev,device_t child)5119 root_print_child(device_t dev, device_t child)
5120 {
5121 	int	retval = 0;
5122 
5123 	retval += bus_print_child_header(dev, child);
5124 	retval += printf("\n");
5125 
5126 	return (retval);
5127 }
5128 
5129 static int
root_setup_intr(device_t dev,device_t child,struct resource * irq,int flags,driver_filter_t * filter,driver_intr_t * intr,void * arg,void ** cookiep)5130 root_setup_intr(device_t dev, device_t child, struct resource *irq, int flags,
5131     driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep)
5132 {
5133 	/*
5134 	 * If an interrupt mapping gets to here something bad has happened.
5135 	 */
5136 	panic("root_setup_intr");
5137 }
5138 
5139 /*
5140  * If we get here, assume that the device is permanent and really is
5141  * present in the system.  Removable bus drivers are expected to intercept
5142  * this call long before it gets here.  We return -1 so that drivers that
5143  * really care can check vs -1 or some ERRNO returned higher in the food
5144  * chain.
5145  */
5146 static int
root_child_present(device_t dev,device_t child)5147 root_child_present(device_t dev, device_t child)
5148 {
5149 	return (-1);
5150 }
5151 
5152 static int
root_get_cpus(device_t dev,device_t child,enum cpu_sets op,size_t setsize,cpuset_t * cpuset)5153 root_get_cpus(device_t dev, device_t child, enum cpu_sets op, size_t setsize,
5154     cpuset_t *cpuset)
5155 {
5156 	switch (op) {
5157 	case INTR_CPUS:
5158 		/* Default to returning the set of all CPUs. */
5159 		if (setsize != sizeof(cpuset_t))
5160 			return (EINVAL);
5161 		*cpuset = all_cpus;
5162 		return (0);
5163 	default:
5164 		return (EINVAL);
5165 	}
5166 }
5167 
5168 static kobj_method_t root_methods[] = {
5169 	/* Device interface */
5170 	KOBJMETHOD(device_shutdown,	bus_generic_shutdown),
5171 	KOBJMETHOD(device_suspend,	bus_generic_suspend),
5172 	KOBJMETHOD(device_resume,	root_resume),
5173 
5174 	/* Bus interface */
5175 	KOBJMETHOD(bus_print_child,	root_print_child),
5176 	KOBJMETHOD(bus_read_ivar,	bus_generic_read_ivar),
5177 	KOBJMETHOD(bus_write_ivar,	bus_generic_write_ivar),
5178 	KOBJMETHOD(bus_setup_intr,	root_setup_intr),
5179 	KOBJMETHOD(bus_child_present,	root_child_present),
5180 	KOBJMETHOD(bus_get_cpus,	root_get_cpus),
5181 
5182 	KOBJMETHOD_END
5183 };
5184 
5185 static driver_t root_driver = {
5186 	"root",
5187 	root_methods,
5188 	1,			/* no softc */
5189 };
5190 
5191 device_t	root_bus;
5192 devclass_t	root_devclass;
5193 
5194 static int
root_bus_module_handler(module_t mod,int what,void * arg)5195 root_bus_module_handler(module_t mod, int what, void* arg)
5196 {
5197 	switch (what) {
5198 	case MOD_LOAD:
5199 		TAILQ_INIT(&bus_data_devices);
5200 		kobj_class_compile((kobj_class_t) &root_driver);
5201 		root_bus = make_device(NULL, "root", 0);
5202 		root_bus->desc = "System root bus";
5203 		kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver);
5204 		root_bus->driver = &root_driver;
5205 		root_bus->state = DS_ATTACHED;
5206 		root_devclass = devclass_find_internal("root", NULL, FALSE);
5207 		devctl2_init();
5208 		return (0);
5209 
5210 	case MOD_SHUTDOWN:
5211 		device_shutdown(root_bus);
5212 		return (0);
5213 	default:
5214 		return (EOPNOTSUPP);
5215 	}
5216 
5217 	return (0);
5218 }
5219 
5220 static moduledata_t root_bus_mod = {
5221 	"rootbus",
5222 	root_bus_module_handler,
5223 	NULL
5224 };
5225 DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
5226 
5227 /**
5228  * @brief Automatically configure devices
5229  *
5230  * This function begins the autoconfiguration process by calling
5231  * device_probe_and_attach() for each child of the @c root0 device.
5232  */
5233 void
root_bus_configure(void)5234 root_bus_configure(void)
5235 {
5236 	PDEBUG(("."));
5237 
5238 	/* Eventually this will be split up, but this is sufficient for now. */
5239 	bus_set_pass(BUS_PASS_DEFAULT);
5240 }
5241 
5242 /**
5243  * @brief Module handler for registering device drivers
5244  *
5245  * This module handler is used to automatically register device
5246  * drivers when modules are loaded. If @p what is MOD_LOAD, it calls
5247  * devclass_add_driver() for the driver described by the
5248  * driver_module_data structure pointed to by @p arg
5249  */
5250 int
driver_module_handler(module_t mod,int what,void * arg)5251 driver_module_handler(module_t mod, int what, void *arg)
5252 {
5253 	struct driver_module_data *dmd;
5254 	devclass_t bus_devclass;
5255 	kobj_class_t driver;
5256 	int error, pass;
5257 
5258 	dmd = (struct driver_module_data *)arg;
5259 	bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE);
5260 	error = 0;
5261 
5262 	switch (what) {
5263 	case MOD_LOAD:
5264 		if (dmd->dmd_chainevh)
5265 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
5266 
5267 		pass = dmd->dmd_pass;
5268 		driver = dmd->dmd_driver;
5269 		PDEBUG(("Loading module: driver %s on bus %s (pass %d)",
5270 		    DRIVERNAME(driver), dmd->dmd_busname, pass));
5271 		error = devclass_add_driver(bus_devclass, driver, pass,
5272 		    dmd->dmd_devclass);
5273 		break;
5274 
5275 	case MOD_UNLOAD:
5276 		PDEBUG(("Unloading module: driver %s from bus %s",
5277 		    DRIVERNAME(dmd->dmd_driver),
5278 		    dmd->dmd_busname));
5279 		error = devclass_delete_driver(bus_devclass,
5280 		    dmd->dmd_driver);
5281 
5282 		if (!error && dmd->dmd_chainevh)
5283 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
5284 		break;
5285 	case MOD_QUIESCE:
5286 		PDEBUG(("Quiesce module: driver %s from bus %s",
5287 		    DRIVERNAME(dmd->dmd_driver),
5288 		    dmd->dmd_busname));
5289 		error = devclass_quiesce_driver(bus_devclass,
5290 		    dmd->dmd_driver);
5291 
5292 		if (!error && dmd->dmd_chainevh)
5293 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
5294 		break;
5295 	default:
5296 		error = EOPNOTSUPP;
5297 		break;
5298 	}
5299 
5300 	return (error);
5301 }
5302 
5303 /**
5304  * @brief Enumerate all hinted devices for this bus.
5305  *
5306  * Walks through the hints for this bus and calls the bus_hinted_child
5307  * routine for each one it fines.  It searches first for the specific
5308  * bus that's being probed for hinted children (eg isa0), and then for
5309  * generic children (eg isa).
5310  *
5311  * @param	dev	bus device to enumerate
5312  */
5313 void
bus_enumerate_hinted_children(device_t bus)5314 bus_enumerate_hinted_children(device_t bus)
5315 {
5316 	int i;
5317 	const char *dname, *busname;
5318 	int dunit;
5319 
5320 	/*
5321 	 * enumerate all devices on the specific bus
5322 	 */
5323 	busname = device_get_nameunit(bus);
5324 	i = 0;
5325 	while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
5326 		BUS_HINTED_CHILD(bus, dname, dunit);
5327 
5328 	/*
5329 	 * and all the generic ones.
5330 	 */
5331 	busname = device_get_name(bus);
5332 	i = 0;
5333 	while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
5334 		BUS_HINTED_CHILD(bus, dname, dunit);
5335 }
5336 
5337 #ifdef BUS_DEBUG
5338 
5339 /* the _short versions avoid iteration by not calling anything that prints
5340  * more than oneliners. I love oneliners.
5341  */
5342 
5343 static void
print_device_short(device_t dev,int indent)5344 print_device_short(device_t dev, int indent)
5345 {
5346 	if (!dev)
5347 		return;
5348 
5349 	indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n",
5350 	    dev->unit, dev->desc,
5351 	    (dev->parent? "":"no "),
5352 	    (TAILQ_EMPTY(&dev->children)? "no ":""),
5353 	    (dev->flags&DF_ENABLED? "enabled,":"disabled,"),
5354 	    (dev->flags&DF_FIXEDCLASS? "fixed,":""),
5355 	    (dev->flags&DF_WILDCARD? "wildcard,":""),
5356 	    (dev->flags&DF_DESCMALLOCED? "descmalloced,":""),
5357 	    (dev->flags&DF_SUSPENDED? "suspended,":""),
5358 	    (dev->ivars? "":"no "),
5359 	    (dev->softc? "":"no "),
5360 	    dev->busy));
5361 }
5362 
5363 static void
print_device(device_t dev,int indent)5364 print_device(device_t dev, int indent)
5365 {
5366 	if (!dev)
5367 		return;
5368 
5369 	print_device_short(dev, indent);
5370 
5371 	indentprintf(("Parent:\n"));
5372 	print_device_short(dev->parent, indent+1);
5373 	indentprintf(("Driver:\n"));
5374 	print_driver_short(dev->driver, indent+1);
5375 	indentprintf(("Devclass:\n"));
5376 	print_devclass_short(dev->devclass, indent+1);
5377 }
5378 
5379 void
print_device_tree_short(device_t dev,int indent)5380 print_device_tree_short(device_t dev, int indent)
5381 /* print the device and all its children (indented) */
5382 {
5383 	device_t child;
5384 
5385 	if (!dev)
5386 		return;
5387 
5388 	print_device_short(dev, indent);
5389 
5390 	TAILQ_FOREACH(child, &dev->children, link) {
5391 		print_device_tree_short(child, indent+1);
5392 	}
5393 }
5394 
5395 void
print_device_tree(device_t dev,int indent)5396 print_device_tree(device_t dev, int indent)
5397 /* print the device and all its children (indented) */
5398 {
5399 	device_t child;
5400 
5401 	if (!dev)
5402 		return;
5403 
5404 	print_device(dev, indent);
5405 
5406 	TAILQ_FOREACH(child, &dev->children, link) {
5407 		print_device_tree(child, indent+1);
5408 	}
5409 }
5410 
5411 static void
print_driver_short(driver_t * driver,int indent)5412 print_driver_short(driver_t *driver, int indent)
5413 {
5414 	if (!driver)
5415 		return;
5416 
5417 	indentprintf(("driver %s: softc size = %zd\n",
5418 	    driver->name, driver->size));
5419 }
5420 
5421 static void
print_driver(driver_t * driver,int indent)5422 print_driver(driver_t *driver, int indent)
5423 {
5424 	if (!driver)
5425 		return;
5426 
5427 	print_driver_short(driver, indent);
5428 }
5429 
5430 static void
print_driver_list(driver_list_t drivers,int indent)5431 print_driver_list(driver_list_t drivers, int indent)
5432 {
5433 	driverlink_t driver;
5434 
5435 	TAILQ_FOREACH(driver, &drivers, link) {
5436 		print_driver(driver->driver, indent);
5437 	}
5438 }
5439 
5440 static void
print_devclass_short(devclass_t dc,int indent)5441 print_devclass_short(devclass_t dc, int indent)
5442 {
5443 	if ( !dc )
5444 		return;
5445 
5446 	indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit));
5447 }
5448 
5449 static void
print_devclass(devclass_t dc,int indent)5450 print_devclass(devclass_t dc, int indent)
5451 {
5452 	int i;
5453 
5454 	if ( !dc )
5455 		return;
5456 
5457 	print_devclass_short(dc, indent);
5458 	indentprintf(("Drivers:\n"));
5459 	print_driver_list(dc->drivers, indent+1);
5460 
5461 	indentprintf(("Devices:\n"));
5462 	for (i = 0; i < dc->maxunit; i++)
5463 		if (dc->devices[i])
5464 			print_device(dc->devices[i], indent+1);
5465 }
5466 
5467 void
print_devclass_list_short(void)5468 print_devclass_list_short(void)
5469 {
5470 	devclass_t dc;
5471 
5472 	printf("Short listing of devclasses, drivers & devices:\n");
5473 	TAILQ_FOREACH(dc, &devclasses, link) {
5474 		print_devclass_short(dc, 0);
5475 	}
5476 }
5477 
5478 void
print_devclass_list(void)5479 print_devclass_list(void)
5480 {
5481 	devclass_t dc;
5482 
5483 	printf("Full listing of devclasses, drivers & devices:\n");
5484 	TAILQ_FOREACH(dc, &devclasses, link) {
5485 		print_devclass(dc, 0);
5486 	}
5487 }
5488 
5489 #endif
5490 
5491 /*
5492  * User-space access to the device tree.
5493  *
5494  * We implement a small set of nodes:
5495  *
5496  * hw.bus			Single integer read method to obtain the
5497  *				current generation count.
5498  * hw.bus.devices		Reads the entire device tree in flat space.
5499  * hw.bus.rman			Resource manager interface
5500  *
5501  * We might like to add the ability to scan devclasses and/or drivers to
5502  * determine what else is currently loaded/available.
5503  */
5504 
5505 static int
sysctl_bus_info(SYSCTL_HANDLER_ARGS)5506 sysctl_bus_info(SYSCTL_HANDLER_ARGS)
5507 {
5508 	struct u_businfo	ubus;
5509 
5510 	ubus.ub_version = BUS_USER_VERSION;
5511 	ubus.ub_generation = bus_data_generation;
5512 
5513 	return (SYSCTL_OUT(req, &ubus, sizeof(ubus)));
5514 }
5515 SYSCTL_PROC(_hw_bus, OID_AUTO, info, CTLTYPE_STRUCT | CTLFLAG_RD |
5516     CTLFLAG_MPSAFE, NULL, 0, sysctl_bus_info, "S,u_businfo",
5517     "bus-related data");
5518 
5519 static int
sysctl_devices(SYSCTL_HANDLER_ARGS)5520 sysctl_devices(SYSCTL_HANDLER_ARGS)
5521 {
5522 	struct sbuf		sb;
5523 	int			*name = (int *)arg1;
5524 	u_int			namelen = arg2;
5525 	int			index;
5526 	device_t		dev;
5527 	struct u_device		*udev;
5528 	int			error;
5529 
5530 	if (namelen != 2)
5531 		return (EINVAL);
5532 
5533 	if (bus_data_generation_check(name[0]))
5534 		return (EINVAL);
5535 
5536 	index = name[1];
5537 
5538 	/*
5539 	 * Scan the list of devices, looking for the requested index.
5540 	 */
5541 	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
5542 		if (index-- == 0)
5543 			break;
5544 	}
5545 	if (dev == NULL)
5546 		return (ENOENT);
5547 
5548 	/*
5549 	 * Populate the return item, careful not to overflow the buffer.
5550 	 */
5551 	udev = malloc(sizeof(*udev), M_BUS, M_WAITOK | M_ZERO);
5552 	udev->dv_handle = (uintptr_t)dev;
5553 	udev->dv_parent = (uintptr_t)dev->parent;
5554 	udev->dv_devflags = dev->devflags;
5555 	udev->dv_flags = dev->flags;
5556 	udev->dv_state = dev->state;
5557 	sbuf_new(&sb, udev->dv_fields, sizeof(udev->dv_fields), SBUF_FIXEDLEN);
5558 	if (dev->nameunit != NULL)
5559 		sbuf_cat(&sb, dev->nameunit);
5560 	sbuf_putc(&sb, '\0');
5561 	if (dev->desc != NULL)
5562 		sbuf_cat(&sb, dev->desc);
5563 	sbuf_putc(&sb, '\0');
5564 	if (dev->driver != NULL)
5565 		sbuf_cat(&sb, dev->driver->name);
5566 	sbuf_putc(&sb, '\0');
5567 	bus_child_pnpinfo(dev, &sb);
5568 	sbuf_putc(&sb, '\0');
5569 	bus_child_location(dev, &sb);
5570 	sbuf_putc(&sb, '\0');
5571 	error = sbuf_finish(&sb);
5572 	if (error == 0)
5573 		error = SYSCTL_OUT(req, udev, sizeof(*udev));
5574 	sbuf_delete(&sb);
5575 	free(udev, M_BUS);
5576 	return (error);
5577 }
5578 
5579 SYSCTL_NODE(_hw_bus, OID_AUTO, devices,
5580     CTLFLAG_RD | CTLFLAG_NEEDGIANT, sysctl_devices,
5581     "system device tree");
5582 
5583 int
bus_data_generation_check(int generation)5584 bus_data_generation_check(int generation)
5585 {
5586 	if (generation != bus_data_generation)
5587 		return (1);
5588 
5589 	/* XXX generate optimised lists here? */
5590 	return (0);
5591 }
5592 
5593 void
bus_data_generation_update(void)5594 bus_data_generation_update(void)
5595 {
5596 	atomic_add_int(&bus_data_generation, 1);
5597 }
5598 
5599 int
bus_free_resource(device_t dev,int type,struct resource * r)5600 bus_free_resource(device_t dev, int type, struct resource *r)
5601 {
5602 	if (r == NULL)
5603 		return (0);
5604 	return (bus_release_resource(dev, type, rman_get_rid(r), r));
5605 }
5606 
5607 device_t
device_lookup_by_name(const char * name)5608 device_lookup_by_name(const char *name)
5609 {
5610 	device_t dev;
5611 
5612 	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
5613 		if (dev->nameunit != NULL && strcmp(dev->nameunit, name) == 0)
5614 			return (dev);
5615 	}
5616 	return (NULL);
5617 }
5618 
5619 /*
5620  * /dev/devctl2 implementation.  The existing /dev/devctl device has
5621  * implicit semantics on open, so it could not be reused for this.
5622  * Another option would be to call this /dev/bus?
5623  */
5624 static int
find_device(struct devreq * req,device_t * devp)5625 find_device(struct devreq *req, device_t *devp)
5626 {
5627 	device_t dev;
5628 
5629 	/*
5630 	 * First, ensure that the name is nul terminated.
5631 	 */
5632 	if (memchr(req->dr_name, '\0', sizeof(req->dr_name)) == NULL)
5633 		return (EINVAL);
5634 
5635 	/*
5636 	 * Second, try to find an attached device whose name matches
5637 	 * 'name'.
5638 	 */
5639 	dev = device_lookup_by_name(req->dr_name);
5640 	if (dev != NULL) {
5641 		*devp = dev;
5642 		return (0);
5643 	}
5644 
5645 	/* Finally, give device enumerators a chance. */
5646 	dev = NULL;
5647 	EVENTHANDLER_DIRECT_INVOKE(dev_lookup, req->dr_name, &dev);
5648 	if (dev == NULL)
5649 		return (ENOENT);
5650 	*devp = dev;
5651 	return (0);
5652 }
5653 
5654 static bool
driver_exists(device_t bus,const char * driver)5655 driver_exists(device_t bus, const char *driver)
5656 {
5657 	devclass_t dc;
5658 
5659 	for (dc = bus->devclass; dc != NULL; dc = dc->parent) {
5660 		if (devclass_find_driver_internal(dc, driver) != NULL)
5661 			return (true);
5662 	}
5663 	return (false);
5664 }
5665 
5666 static void
device_gen_nomatch(device_t dev)5667 device_gen_nomatch(device_t dev)
5668 {
5669 	device_t child;
5670 
5671 	if (dev->flags & DF_NEEDNOMATCH &&
5672 	    dev->state == DS_NOTPRESENT) {
5673 		device_handle_nomatch(dev);
5674 	}
5675 	dev->flags &= ~DF_NEEDNOMATCH;
5676 	TAILQ_FOREACH(child, &dev->children, link) {
5677 		device_gen_nomatch(child);
5678 	}
5679 }
5680 
5681 static void
device_do_deferred_actions(void)5682 device_do_deferred_actions(void)
5683 {
5684 	devclass_t dc;
5685 	driverlink_t dl;
5686 
5687 	/*
5688 	 * Walk through the devclasses to find all the drivers we've tagged as
5689 	 * deferred during the freeze and call the driver added routines. They
5690 	 * have already been added to the lists in the background, so the driver
5691 	 * added routines that trigger a probe will have all the right bidders
5692 	 * for the probe auction.
5693 	 */
5694 	TAILQ_FOREACH(dc, &devclasses, link) {
5695 		TAILQ_FOREACH(dl, &dc->drivers, link) {
5696 			if (dl->flags & DL_DEFERRED_PROBE) {
5697 				devclass_driver_added(dc, dl->driver);
5698 				dl->flags &= ~DL_DEFERRED_PROBE;
5699 			}
5700 		}
5701 	}
5702 
5703 	/*
5704 	 * We also defer no-match events during a freeze. Walk the tree and
5705 	 * generate all the pent-up events that are still relevant.
5706 	 */
5707 	device_gen_nomatch(root_bus);
5708 	bus_data_generation_update();
5709 }
5710 
5711 static int
device_get_path(device_t dev,const char * locator,struct sbuf * sb)5712 device_get_path(device_t dev, const char *locator, struct sbuf *sb)
5713 {
5714 	device_t parent;
5715 	int error;
5716 
5717 	KASSERT(sb != NULL, ("sb is NULL"));
5718 	parent = device_get_parent(dev);
5719 	if (parent == NULL) {
5720 		error = sbuf_putc(sb, '/');
5721 	} else {
5722 		error = BUS_GET_DEVICE_PATH(parent, dev, locator, sb);
5723 		if (error == 0) {
5724 			error = sbuf_error(sb);
5725 			if (error == 0 && sbuf_len(sb) <= 1)
5726 				error = EIO;
5727 		}
5728 	}
5729 	sbuf_finish(sb);
5730 	return (error);
5731 }
5732 
5733 static int
devctl2_ioctl(struct cdev * cdev,u_long cmd,caddr_t data,int fflag,struct thread * td)5734 devctl2_ioctl(struct cdev *cdev, u_long cmd, caddr_t data, int fflag,
5735     struct thread *td)
5736 {
5737 	struct devreq *req;
5738 	device_t dev;
5739 	int error, old;
5740 
5741 	/* Locate the device to control. */
5742 	bus_topo_lock();
5743 	req = (struct devreq *)data;
5744 	switch (cmd) {
5745 	case DEV_ATTACH:
5746 	case DEV_DETACH:
5747 	case DEV_ENABLE:
5748 	case DEV_DISABLE:
5749 	case DEV_SUSPEND:
5750 	case DEV_RESUME:
5751 	case DEV_SET_DRIVER:
5752 	case DEV_CLEAR_DRIVER:
5753 	case DEV_RESCAN:
5754 	case DEV_DELETE:
5755 	case DEV_RESET:
5756 		error = priv_check(td, PRIV_DRIVER);
5757 		if (error == 0)
5758 			error = find_device(req, &dev);
5759 		break;
5760 	case DEV_FREEZE:
5761 	case DEV_THAW:
5762 		error = priv_check(td, PRIV_DRIVER);
5763 		break;
5764 	case DEV_GET_PATH:
5765 		error = find_device(req, &dev);
5766 		break;
5767 	default:
5768 		error = ENOTTY;
5769 		break;
5770 	}
5771 	if (error) {
5772 		bus_topo_unlock();
5773 		return (error);
5774 	}
5775 
5776 	/* Perform the requested operation. */
5777 	switch (cmd) {
5778 	case DEV_ATTACH:
5779 		if (device_is_attached(dev))
5780 			error = EBUSY;
5781 		else if (!device_is_enabled(dev))
5782 			error = ENXIO;
5783 		else
5784 			error = device_probe_and_attach(dev);
5785 		break;
5786 	case DEV_DETACH:
5787 		if (!device_is_attached(dev)) {
5788 			error = ENXIO;
5789 			break;
5790 		}
5791 		if (!(req->dr_flags & DEVF_FORCE_DETACH)) {
5792 			error = device_quiesce(dev);
5793 			if (error)
5794 				break;
5795 		}
5796 		error = device_detach(dev);
5797 		break;
5798 	case DEV_ENABLE:
5799 		if (device_is_enabled(dev)) {
5800 			error = EBUSY;
5801 			break;
5802 		}
5803 
5804 		/*
5805 		 * If the device has been probed but not attached (e.g.
5806 		 * when it has been disabled by a loader hint), just
5807 		 * attach the device rather than doing a full probe.
5808 		 */
5809 		device_enable(dev);
5810 		if (dev->devclass != NULL) {
5811 			/*
5812 			 * If the device was disabled via a hint, clear
5813 			 * the hint.
5814 			 */
5815 			if (resource_disabled(dev->devclass->name, dev->unit))
5816 				resource_unset_value(dev->devclass->name,
5817 				    dev->unit, "disabled");
5818 
5819 			/* Allow any drivers to rebid. */
5820 			if (!(dev->flags & DF_FIXEDCLASS))
5821 				devclass_delete_device(dev->devclass, dev);
5822 		}
5823 		error = device_probe_and_attach(dev);
5824 		break;
5825 	case DEV_DISABLE:
5826 		if (!device_is_enabled(dev)) {
5827 			error = ENXIO;
5828 			break;
5829 		}
5830 
5831 		if (!(req->dr_flags & DEVF_FORCE_DETACH)) {
5832 			error = device_quiesce(dev);
5833 			if (error)
5834 				break;
5835 		}
5836 
5837 		/*
5838 		 * Force DF_FIXEDCLASS on around detach to preserve
5839 		 * the existing name.
5840 		 */
5841 		old = dev->flags;
5842 		dev->flags |= DF_FIXEDCLASS;
5843 		error = device_detach(dev);
5844 		if (!(old & DF_FIXEDCLASS))
5845 			dev->flags &= ~DF_FIXEDCLASS;
5846 		if (error == 0)
5847 			device_disable(dev);
5848 		break;
5849 	case DEV_SUSPEND:
5850 		if (device_is_suspended(dev)) {
5851 			error = EBUSY;
5852 			break;
5853 		}
5854 		if (device_get_parent(dev) == NULL) {
5855 			error = EINVAL;
5856 			break;
5857 		}
5858 		error = BUS_SUSPEND_CHILD(device_get_parent(dev), dev);
5859 		break;
5860 	case DEV_RESUME:
5861 		if (!device_is_suspended(dev)) {
5862 			error = EINVAL;
5863 			break;
5864 		}
5865 		if (device_get_parent(dev) == NULL) {
5866 			error = EINVAL;
5867 			break;
5868 		}
5869 		error = BUS_RESUME_CHILD(device_get_parent(dev), dev);
5870 		break;
5871 	case DEV_SET_DRIVER: {
5872 		devclass_t dc;
5873 		char driver[128];
5874 
5875 		error = copyinstr(req->dr_data, driver, sizeof(driver), NULL);
5876 		if (error)
5877 			break;
5878 		if (driver[0] == '\0') {
5879 			error = EINVAL;
5880 			break;
5881 		}
5882 		if (dev->devclass != NULL &&
5883 		    strcmp(driver, dev->devclass->name) == 0)
5884 			/* XXX: Could possibly force DF_FIXEDCLASS on? */
5885 			break;
5886 
5887 		/*
5888 		 * Scan drivers for this device's bus looking for at
5889 		 * least one matching driver.
5890 		 */
5891 		if (dev->parent == NULL) {
5892 			error = EINVAL;
5893 			break;
5894 		}
5895 		if (!driver_exists(dev->parent, driver)) {
5896 			error = ENOENT;
5897 			break;
5898 		}
5899 		dc = devclass_create(driver);
5900 		if (dc == NULL) {
5901 			error = ENOMEM;
5902 			break;
5903 		}
5904 
5905 		/* Detach device if necessary. */
5906 		if (device_is_attached(dev)) {
5907 			if (req->dr_flags & DEVF_SET_DRIVER_DETACH)
5908 				error = device_detach(dev);
5909 			else
5910 				error = EBUSY;
5911 			if (error)
5912 				break;
5913 		}
5914 
5915 		/* Clear any previously-fixed device class and unit. */
5916 		if (dev->flags & DF_FIXEDCLASS)
5917 			devclass_delete_device(dev->devclass, dev);
5918 		dev->flags |= DF_WILDCARD;
5919 		dev->unit = DEVICE_UNIT_ANY;
5920 
5921 		/* Force the new device class. */
5922 		error = devclass_add_device(dc, dev);
5923 		if (error)
5924 			break;
5925 		dev->flags |= DF_FIXEDCLASS;
5926 		error = device_probe_and_attach(dev);
5927 		break;
5928 	}
5929 	case DEV_CLEAR_DRIVER:
5930 		if (!(dev->flags & DF_FIXEDCLASS)) {
5931 			error = 0;
5932 			break;
5933 		}
5934 		if (device_is_attached(dev)) {
5935 			if (req->dr_flags & DEVF_CLEAR_DRIVER_DETACH)
5936 				error = device_detach(dev);
5937 			else
5938 				error = EBUSY;
5939 			if (error)
5940 				break;
5941 		}
5942 
5943 		dev->flags &= ~DF_FIXEDCLASS;
5944 		dev->flags |= DF_WILDCARD;
5945 		devclass_delete_device(dev->devclass, dev);
5946 		error = device_probe_and_attach(dev);
5947 		break;
5948 	case DEV_RESCAN:
5949 		if (!device_is_attached(dev)) {
5950 			error = ENXIO;
5951 			break;
5952 		}
5953 		error = BUS_RESCAN(dev);
5954 		break;
5955 	case DEV_DELETE: {
5956 		device_t parent;
5957 
5958 		parent = device_get_parent(dev);
5959 		if (parent == NULL) {
5960 			error = EINVAL;
5961 			break;
5962 		}
5963 		if (!(req->dr_flags & DEVF_FORCE_DELETE)) {
5964 			if (bus_child_present(dev) != 0) {
5965 				error = EBUSY;
5966 				break;
5967 			}
5968 		}
5969 
5970 		error = device_delete_child(parent, dev);
5971 		break;
5972 	}
5973 	case DEV_FREEZE:
5974 		if (device_frozen)
5975 			error = EBUSY;
5976 		else
5977 			device_frozen = true;
5978 		break;
5979 	case DEV_THAW:
5980 		if (!device_frozen)
5981 			error = EBUSY;
5982 		else {
5983 			device_do_deferred_actions();
5984 			device_frozen = false;
5985 		}
5986 		break;
5987 	case DEV_RESET:
5988 		if ((req->dr_flags & ~(DEVF_RESET_DETACH)) != 0) {
5989 			error = EINVAL;
5990 			break;
5991 		}
5992 		if (device_get_parent(dev) == NULL) {
5993 			error = EINVAL;
5994 			break;
5995 		}
5996 		error = BUS_RESET_CHILD(device_get_parent(dev), dev,
5997 		    req->dr_flags);
5998 		break;
5999 	case DEV_GET_PATH: {
6000 		struct sbuf *sb;
6001 		char locator[64];
6002 		ssize_t len;
6003 
6004 		error = copyinstr(req->dr_buffer.buffer, locator,
6005 		    sizeof(locator), NULL);
6006 		if (error != 0)
6007 			break;
6008 		sb = sbuf_new(NULL, NULL, 0, SBUF_AUTOEXTEND |
6009 		    SBUF_INCLUDENUL /* | SBUF_WAITOK */);
6010 		error = device_get_path(dev, locator, sb);
6011 		if (error == 0) {
6012 			len = sbuf_len(sb);
6013 			if (req->dr_buffer.length < len) {
6014 				error = ENAMETOOLONG;
6015 			} else {
6016 				error = copyout(sbuf_data(sb),
6017 				    req->dr_buffer.buffer, len);
6018 			}
6019 			req->dr_buffer.length = len;
6020 		}
6021 		sbuf_delete(sb);
6022 		break;
6023 	}
6024 	}
6025 	bus_topo_unlock();
6026 	return (error);
6027 }
6028 
6029 static struct cdevsw devctl2_cdevsw = {
6030 	.d_version =	D_VERSION,
6031 	.d_ioctl =	devctl2_ioctl,
6032 	.d_name =	"devctl2",
6033 };
6034 
6035 static void
devctl2_init(void)6036 devctl2_init(void)
6037 {
6038 	make_dev_credf(MAKEDEV_ETERNAL, &devctl2_cdevsw, 0, NULL,
6039 	    UID_ROOT, GID_WHEEL, 0644, "devctl2");
6040 }
6041 
6042 /*
6043  * For maintaining device 'at' location info to avoid recomputing it
6044  */
6045 struct device_location_node {
6046 	const char *dln_locator;
6047 	const char *dln_path;
6048 	TAILQ_ENTRY(device_location_node) dln_link;
6049 };
6050 typedef TAILQ_HEAD(device_location_list, device_location_node) device_location_list_t;
6051 
6052 struct device_location_cache {
6053 	device_location_list_t dlc_list;
6054 };
6055 
6056 
6057 /*
6058  * Location cache for wired devices.
6059  */
6060 device_location_cache_t *
dev_wired_cache_init(void)6061 dev_wired_cache_init(void)
6062 {
6063 	device_location_cache_t *dcp;
6064 
6065 	dcp = malloc(sizeof(*dcp), M_BUS, M_WAITOK | M_ZERO);
6066 	TAILQ_INIT(&dcp->dlc_list);
6067 
6068 	return (dcp);
6069 }
6070 
6071 void
dev_wired_cache_fini(device_location_cache_t * dcp)6072 dev_wired_cache_fini(device_location_cache_t *dcp)
6073 {
6074 	struct device_location_node *dln, *tdln;
6075 
6076 	TAILQ_FOREACH_SAFE(dln, &dcp->dlc_list, dln_link, tdln) {
6077 		free(dln, M_BUS);
6078 	}
6079 	free(dcp, M_BUS);
6080 }
6081 
6082 static struct device_location_node *
dev_wired_cache_lookup(device_location_cache_t * dcp,const char * locator)6083 dev_wired_cache_lookup(device_location_cache_t *dcp, const char *locator)
6084 {
6085 	struct device_location_node *dln;
6086 
6087 	TAILQ_FOREACH(dln, &dcp->dlc_list, dln_link) {
6088 		if (strcmp(locator, dln->dln_locator) == 0)
6089 			return (dln);
6090 	}
6091 
6092 	return (NULL);
6093 }
6094 
6095 static struct device_location_node *
dev_wired_cache_add(device_location_cache_t * dcp,const char * locator,const char * path)6096 dev_wired_cache_add(device_location_cache_t *dcp, const char *locator, const char *path)
6097 {
6098 	struct device_location_node *dln;
6099 	size_t loclen, pathlen;
6100 
6101 	loclen = strlen(locator) + 1;
6102 	pathlen = strlen(path) + 1;
6103 	dln = malloc(sizeof(*dln) + loclen + pathlen, M_BUS, M_WAITOK | M_ZERO);
6104 	dln->dln_locator = (char *)(dln + 1);
6105 	memcpy(__DECONST(char *, dln->dln_locator), locator, loclen);
6106 	dln->dln_path = dln->dln_locator + loclen;
6107 	memcpy(__DECONST(char *, dln->dln_path), path, pathlen);
6108 	TAILQ_INSERT_HEAD(&dcp->dlc_list, dln, dln_link);
6109 
6110 	return (dln);
6111 }
6112 
6113 bool
dev_wired_cache_match(device_location_cache_t * dcp,device_t dev,const char * at)6114 dev_wired_cache_match(device_location_cache_t *dcp, device_t dev,
6115     const char *at)
6116 {
6117 	struct sbuf *sb;
6118 	const char *cp;
6119 	char locator[32];
6120 	int error, len;
6121 	struct device_location_node *res;
6122 
6123 	cp = strchr(at, ':');
6124 	if (cp == NULL)
6125 		return (false);
6126 	len = cp - at;
6127 	if (len > sizeof(locator) - 1)	/* Skip too long locator */
6128 		return (false);
6129 	memcpy(locator, at, len);
6130 	locator[len] = '\0';
6131 	cp++;
6132 
6133 	error = 0;
6134 	/* maybe cache this inside device_t and look that up, but not yet */
6135 	res = dev_wired_cache_lookup(dcp, locator);
6136 	if (res == NULL) {
6137 		sb = sbuf_new(NULL, NULL, 0, SBUF_AUTOEXTEND |
6138 		    SBUF_INCLUDENUL | SBUF_NOWAIT);
6139 		if (sb != NULL) {
6140 			error = device_get_path(dev, locator, sb);
6141 			if (error == 0) {
6142 				res = dev_wired_cache_add(dcp, locator,
6143 				    sbuf_data(sb));
6144 			}
6145 			sbuf_delete(sb);
6146 		}
6147 	}
6148 	if (error != 0 || res == NULL || res->dln_path == NULL)
6149 		return (false);
6150 
6151 	return (strcmp(res->dln_path, cp) == 0);
6152 }
6153 
6154 static struct device_prop_elm *
device_prop_find(device_t dev,const char * name)6155 device_prop_find(device_t dev, const char *name)
6156 {
6157 	struct device_prop_elm *e;
6158 
6159 	bus_topo_assert();
6160 
6161 	LIST_FOREACH(e, &dev->props, link) {
6162 		if (strcmp(name, e->name) == 0)
6163 			return (e);
6164 	}
6165 	return (NULL);
6166 }
6167 
6168 int
device_set_prop(device_t dev,const char * name,void * val,device_prop_dtr_t dtr,void * dtr_ctx)6169 device_set_prop(device_t dev, const char *name, void *val,
6170     device_prop_dtr_t dtr, void *dtr_ctx)
6171 {
6172 	struct device_prop_elm *e, *e1;
6173 
6174 	bus_topo_assert();
6175 
6176 	e = device_prop_find(dev, name);
6177 	if (e != NULL)
6178 		goto found;
6179 
6180 	e1 = malloc(sizeof(*e), M_BUS, M_WAITOK);
6181 	e = device_prop_find(dev, name);
6182 	if (e != NULL) {
6183 		free(e1, M_BUS);
6184 		goto found;
6185 	}
6186 
6187 	e1->name = name;
6188 	e1->val = val;
6189 	e1->dtr = dtr;
6190 	e1->dtr_ctx = dtr_ctx;
6191 	LIST_INSERT_HEAD(&dev->props, e1, link);
6192 	return (0);
6193 
6194 found:
6195 	LIST_REMOVE(e, link);
6196 	if (e->dtr != NULL)
6197 		e->dtr(dev, name, e->val, e->dtr_ctx);
6198 	e->val = val;
6199 	e->dtr = dtr;
6200 	e->dtr_ctx = dtr_ctx;
6201 	LIST_INSERT_HEAD(&dev->props, e, link);
6202 	return (EEXIST);
6203 }
6204 
6205 int
device_get_prop(device_t dev,const char * name,void ** valp)6206 device_get_prop(device_t dev, const char *name, void **valp)
6207 {
6208 	struct device_prop_elm *e;
6209 
6210 	bus_topo_assert();
6211 
6212 	e = device_prop_find(dev, name);
6213 	if (e == NULL)
6214 		return (ENOENT);
6215 	*valp = e->val;
6216 	return (0);
6217 }
6218 
6219 int
device_clear_prop(device_t dev,const char * name)6220 device_clear_prop(device_t dev, const char *name)
6221 {
6222 	struct device_prop_elm *e;
6223 
6224 	bus_topo_assert();
6225 
6226 	e = device_prop_find(dev, name);
6227 	if (e == NULL)
6228 		return (ENOENT);
6229 	LIST_REMOVE(e, link);
6230 	if (e->dtr != NULL)
6231 		e->dtr(dev, e->name, e->val, e->dtr_ctx);
6232 	free(e, M_BUS);
6233 	return (0);
6234 }
6235 
6236 static void
device_destroy_props(device_t dev)6237 device_destroy_props(device_t dev)
6238 {
6239 	struct device_prop_elm *e;
6240 
6241 	bus_topo_assert();
6242 
6243 	while ((e = LIST_FIRST(&dev->props)) != NULL) {
6244 		LIST_REMOVE_HEAD(&dev->props, link);
6245 		if (e->dtr != NULL)
6246 			e->dtr(dev, e->name, e->val, e->dtr_ctx);
6247 		free(e, M_BUS);
6248 	}
6249 }
6250 
6251 void
device_clear_prop_alldev(const char * name)6252 device_clear_prop_alldev(const char *name)
6253 {
6254 	device_t dev;
6255 
6256 	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
6257 		device_clear_prop(dev, name);
6258 	}
6259 }
6260 
6261 /*
6262  * APIs to manage deprecation and obsolescence.
6263  */
6264 static int obsolete_panic = 0;
6265 SYSCTL_INT(_debug, OID_AUTO, obsolete_panic, CTLFLAG_RWTUN, &obsolete_panic, 0,
6266     "Panic when obsolete features are used (0 = never, 1 = if obsolete, "
6267     "2 = if deprecated)");
6268 
6269 static void
gone_panic(int major,int running,const char * msg,...)6270 gone_panic(int major, int running, const char *msg, ...)
6271 {
6272 	va_list ap;
6273 
6274 	switch (obsolete_panic)
6275 	{
6276 	case 0:
6277 		return;
6278 	case 1:
6279 		if (running < major)
6280 			return;
6281 		/* FALLTHROUGH */
6282 	default:
6283 		va_start(ap, msg);
6284 		vpanic(msg, ap);
6285 	}
6286 }
6287 
6288 void
_gone_in(int major,const char * msg,...)6289 _gone_in(int major, const char *msg, ...)
6290 {
6291 	va_list ap;
6292 
6293 	va_start(ap, msg);
6294 	gone_panic(major, P_OSREL_MAJOR(__FreeBSD_version), msg, ap);
6295 	vprintf(msg, ap);
6296 	va_end(ap);
6297 	if (P_OSREL_MAJOR(__FreeBSD_version) < major)
6298 		printf("To be removed in FreeBSD %d\n", major);
6299 }
6300 
6301 void
_gone_in_dev(device_t dev,int major,const char * msg,...)6302 _gone_in_dev(device_t dev, int major, const char *msg, ...)
6303 {
6304 	va_list ap;
6305 
6306 	va_start(ap, msg);
6307 	gone_panic(major, P_OSREL_MAJOR(__FreeBSD_version), msg, ap);
6308 	device_printf(dev, msg, ap);
6309 	va_end(ap);
6310 	if (P_OSREL_MAJOR(__FreeBSD_version) < major)
6311 		device_printf(dev,
6312 		    "to be removed in FreeBSD %d\n", major);
6313 }
6314 
6315 #ifdef DDB
DB_SHOW_COMMAND(device,db_show_device)6316 DB_SHOW_COMMAND(device, db_show_device)
6317 {
6318 	device_t dev;
6319 
6320 	if (!have_addr)
6321 		return;
6322 
6323 	dev = (device_t)addr;
6324 
6325 	db_printf("name:    %s\n", device_get_nameunit(dev));
6326 	db_printf("  driver:  %s\n", DRIVERNAME(dev->driver));
6327 	db_printf("  class:   %s\n", DEVCLANAME(dev->devclass));
6328 	db_printf("  addr:    %p\n", dev);
6329 	db_printf("  parent:  %p\n", dev->parent);
6330 	db_printf("  softc:   %p\n", dev->softc);
6331 	db_printf("  ivars:   %p\n", dev->ivars);
6332 }
6333 
DB_SHOW_ALL_COMMAND(devices,db_show_all_devices)6334 DB_SHOW_ALL_COMMAND(devices, db_show_all_devices)
6335 {
6336 	device_t dev;
6337 
6338 	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
6339 		db_show_device((db_expr_t)dev, true, count, modif);
6340 	}
6341 }
6342 #endif
6343