1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/fs.h>
7 #include <linux/blkdev.h>
8 #include <linux/radix-tree.h>
9 #include <linux/writeback.h>
10 #include <linux/workqueue.h>
11 #include <linux/kthread.h>
12 #include <linux/slab.h>
13 #include <linux/migrate.h>
14 #include <linux/ratelimit.h>
15 #include <linux/uuid.h>
16 #include <linux/semaphore.h>
17 #include <linux/error-injection.h>
18 #include <linux/crc32c.h>
19 #include <linux/sched/mm.h>
20 #include <linux/unaligned.h>
21 #include <crypto/hash.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "bio.h"
27 #include "print-tree.h"
28 #include "locking.h"
29 #include "tree-log.h"
30 #include "free-space-cache.h"
31 #include "free-space-tree.h"
32 #include "dev-replace.h"
33 #include "raid56.h"
34 #include "sysfs.h"
35 #include "qgroup.h"
36 #include "compression.h"
37 #include "tree-checker.h"
38 #include "ref-verify.h"
39 #include "block-group.h"
40 #include "discard.h"
41 #include "space-info.h"
42 #include "zoned.h"
43 #include "subpage.h"
44 #include "fs.h"
45 #include "accessors.h"
46 #include "extent-tree.h"
47 #include "root-tree.h"
48 #include "defrag.h"
49 #include "uuid-tree.h"
50 #include "relocation.h"
51 #include "scrub.h"
52 #include "super.h"
53
54 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
55 BTRFS_HEADER_FLAG_RELOC |\
56 BTRFS_SUPER_FLAG_ERROR |\
57 BTRFS_SUPER_FLAG_SEEDING |\
58 BTRFS_SUPER_FLAG_METADUMP |\
59 BTRFS_SUPER_FLAG_METADUMP_V2)
60
61 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
62 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
63
btrfs_free_csum_hash(struct btrfs_fs_info * fs_info)64 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
65 {
66 if (fs_info->csum_shash)
67 crypto_free_shash(fs_info->csum_shash);
68 }
69
70 /*
71 * Compute the csum of a btree block and store the result to provided buffer.
72 */
csum_tree_block(struct extent_buffer * buf,u8 * result)73 static void csum_tree_block(struct extent_buffer *buf, u8 *result)
74 {
75 struct btrfs_fs_info *fs_info = buf->fs_info;
76 int num_pages;
77 u32 first_page_part;
78 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
79 char *kaddr;
80 int i;
81
82 shash->tfm = fs_info->csum_shash;
83 crypto_shash_init(shash);
84
85 if (buf->addr) {
86 /* Pages are contiguous, handle them as a big one. */
87 kaddr = buf->addr;
88 first_page_part = fs_info->nodesize;
89 num_pages = 1;
90 } else {
91 kaddr = folio_address(buf->folios[0]);
92 first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize);
93 num_pages = num_extent_pages(buf);
94 }
95
96 crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
97 first_page_part - BTRFS_CSUM_SIZE);
98
99 /*
100 * Multiple single-page folios case would reach here.
101 *
102 * nodesize <= PAGE_SIZE and large folio all handled by above
103 * crypto_shash_update() already.
104 */
105 for (i = 1; i < num_pages && INLINE_EXTENT_BUFFER_PAGES > 1; i++) {
106 kaddr = folio_address(buf->folios[i]);
107 crypto_shash_update(shash, kaddr, PAGE_SIZE);
108 }
109 memset(result, 0, BTRFS_CSUM_SIZE);
110 crypto_shash_final(shash, result);
111 }
112
113 /*
114 * we can't consider a given block up to date unless the transid of the
115 * block matches the transid in the parent node's pointer. This is how we
116 * detect blocks that either didn't get written at all or got written
117 * in the wrong place.
118 */
btrfs_buffer_uptodate(struct extent_buffer * eb,u64 parent_transid,int atomic)119 int btrfs_buffer_uptodate(struct extent_buffer *eb, u64 parent_transid, int atomic)
120 {
121 if (!extent_buffer_uptodate(eb))
122 return 0;
123
124 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
125 return 1;
126
127 if (atomic)
128 return -EAGAIN;
129
130 if (!extent_buffer_uptodate(eb) ||
131 btrfs_header_generation(eb) != parent_transid) {
132 btrfs_err_rl(eb->fs_info,
133 "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu",
134 eb->start, eb->read_mirror,
135 parent_transid, btrfs_header_generation(eb));
136 clear_extent_buffer_uptodate(eb);
137 return 0;
138 }
139 return 1;
140 }
141
btrfs_supported_super_csum(u16 csum_type)142 static bool btrfs_supported_super_csum(u16 csum_type)
143 {
144 switch (csum_type) {
145 case BTRFS_CSUM_TYPE_CRC32:
146 case BTRFS_CSUM_TYPE_XXHASH:
147 case BTRFS_CSUM_TYPE_SHA256:
148 case BTRFS_CSUM_TYPE_BLAKE2:
149 return true;
150 default:
151 return false;
152 }
153 }
154
155 /*
156 * Return 0 if the superblock checksum type matches the checksum value of that
157 * algorithm. Pass the raw disk superblock data.
158 */
btrfs_check_super_csum(struct btrfs_fs_info * fs_info,const struct btrfs_super_block * disk_sb)159 int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
160 const struct btrfs_super_block *disk_sb)
161 {
162 char result[BTRFS_CSUM_SIZE];
163 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
164
165 shash->tfm = fs_info->csum_shash;
166
167 /*
168 * The super_block structure does not span the whole
169 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
170 * filled with zeros and is included in the checksum.
171 */
172 crypto_shash_digest(shash, (const u8 *)disk_sb + BTRFS_CSUM_SIZE,
173 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
174
175 if (memcmp(disk_sb->csum, result, fs_info->csum_size))
176 return 1;
177
178 return 0;
179 }
180
btrfs_repair_eb_io_failure(const struct extent_buffer * eb,int mirror_num)181 static int btrfs_repair_eb_io_failure(const struct extent_buffer *eb,
182 int mirror_num)
183 {
184 struct btrfs_fs_info *fs_info = eb->fs_info;
185 int ret = 0;
186
187 if (sb_rdonly(fs_info->sb))
188 return -EROFS;
189
190 for (int i = 0; i < num_extent_folios(eb); i++) {
191 struct folio *folio = eb->folios[i];
192 u64 start = max_t(u64, eb->start, folio_pos(folio));
193 u64 end = min_t(u64, eb->start + eb->len,
194 folio_pos(folio) + eb->folio_size);
195 u32 len = end - start;
196 phys_addr_t paddr = PFN_PHYS(folio_pfn(folio)) +
197 offset_in_folio(folio, start);
198
199 ret = btrfs_repair_io_failure(fs_info, 0, start, len, start,
200 paddr, mirror_num);
201 if (ret)
202 break;
203 }
204
205 return ret;
206 }
207
208 /*
209 * helper to read a given tree block, doing retries as required when
210 * the checksums don't match and we have alternate mirrors to try.
211 *
212 * @check: expected tree parentness check, see the comments of the
213 * structure for details.
214 */
btrfs_read_extent_buffer(struct extent_buffer * eb,const struct btrfs_tree_parent_check * check)215 int btrfs_read_extent_buffer(struct extent_buffer *eb,
216 const struct btrfs_tree_parent_check *check)
217 {
218 struct btrfs_fs_info *fs_info = eb->fs_info;
219 int failed = 0;
220 int ret;
221 int num_copies = 0;
222 int mirror_num = 0;
223 int failed_mirror = 0;
224
225 ASSERT(check);
226
227 while (1) {
228 ret = read_extent_buffer_pages(eb, mirror_num, check);
229 if (!ret)
230 break;
231
232 num_copies = btrfs_num_copies(fs_info,
233 eb->start, eb->len);
234 if (num_copies == 1)
235 break;
236
237 if (!failed_mirror) {
238 failed = 1;
239 failed_mirror = eb->read_mirror;
240 }
241
242 mirror_num++;
243 if (mirror_num == failed_mirror)
244 mirror_num++;
245
246 if (mirror_num > num_copies)
247 break;
248 }
249
250 if (failed && !ret && failed_mirror)
251 btrfs_repair_eb_io_failure(eb, failed_mirror);
252
253 return ret;
254 }
255
256 /*
257 * Checksum a dirty tree block before IO.
258 */
btree_csum_one_bio(struct btrfs_bio * bbio)259 int btree_csum_one_bio(struct btrfs_bio *bbio)
260 {
261 struct extent_buffer *eb = bbio->private;
262 struct btrfs_fs_info *fs_info = eb->fs_info;
263 u64 found_start = btrfs_header_bytenr(eb);
264 u64 last_trans;
265 u8 result[BTRFS_CSUM_SIZE];
266 int ret;
267
268 /* Btree blocks are always contiguous on disk. */
269 if (WARN_ON_ONCE(bbio->file_offset != eb->start))
270 return -EIO;
271 if (WARN_ON_ONCE(bbio->bio.bi_iter.bi_size != eb->len))
272 return -EIO;
273
274 /*
275 * If an extent_buffer is marked as EXTENT_BUFFER_ZONED_ZEROOUT, don't
276 * checksum it but zero-out its content. This is done to preserve
277 * ordering of I/O without unnecessarily writing out data.
278 */
279 if (test_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &eb->bflags)) {
280 memzero_extent_buffer(eb, 0, eb->len);
281 return 0;
282 }
283
284 if (WARN_ON_ONCE(found_start != eb->start))
285 return -EIO;
286 if (WARN_ON(!btrfs_meta_folio_test_uptodate(eb->folios[0], eb)))
287 return -EIO;
288
289 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
290 offsetof(struct btrfs_header, fsid),
291 BTRFS_FSID_SIZE) == 0);
292 csum_tree_block(eb, result);
293
294 if (btrfs_header_level(eb))
295 ret = btrfs_check_node(eb);
296 else
297 ret = btrfs_check_leaf(eb);
298
299 if (ret < 0)
300 goto error;
301
302 /*
303 * Also check the generation, the eb reached here must be newer than
304 * last committed. Or something seriously wrong happened.
305 */
306 last_trans = btrfs_get_last_trans_committed(fs_info);
307 if (unlikely(btrfs_header_generation(eb) <= last_trans)) {
308 ret = -EUCLEAN;
309 btrfs_err(fs_info,
310 "block=%llu bad generation, have %llu expect > %llu",
311 eb->start, btrfs_header_generation(eb), last_trans);
312 goto error;
313 }
314 write_extent_buffer(eb, result, 0, fs_info->csum_size);
315 return 0;
316
317 error:
318 btrfs_print_tree(eb, 0);
319 btrfs_err(fs_info, "block=%llu write time tree block corruption detected",
320 eb->start);
321 /*
322 * Be noisy if this is an extent buffer from a log tree. We don't abort
323 * a transaction in case there's a bad log tree extent buffer, we just
324 * fallback to a transaction commit. Still we want to know when there is
325 * a bad log tree extent buffer, as that may signal a bug somewhere.
326 */
327 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG) ||
328 btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID);
329 return ret;
330 }
331
check_tree_block_fsid(struct extent_buffer * eb)332 static bool check_tree_block_fsid(struct extent_buffer *eb)
333 {
334 struct btrfs_fs_info *fs_info = eb->fs_info;
335 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
336 u8 fsid[BTRFS_FSID_SIZE];
337
338 read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
339 BTRFS_FSID_SIZE);
340
341 /*
342 * alloc_fsid_devices() copies the fsid into fs_devices::metadata_uuid.
343 * This is then overwritten by metadata_uuid if it is present in the
344 * device_list_add(). The same true for a seed device as well. So use of
345 * fs_devices::metadata_uuid is appropriate here.
346 */
347 if (memcmp(fsid, fs_info->fs_devices->metadata_uuid, BTRFS_FSID_SIZE) == 0)
348 return false;
349
350 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
351 if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE))
352 return false;
353
354 return true;
355 }
356
357 /* Do basic extent buffer checks at read time */
btrfs_validate_extent_buffer(struct extent_buffer * eb,const struct btrfs_tree_parent_check * check)358 int btrfs_validate_extent_buffer(struct extent_buffer *eb,
359 const struct btrfs_tree_parent_check *check)
360 {
361 struct btrfs_fs_info *fs_info = eb->fs_info;
362 u64 found_start;
363 const u32 csum_size = fs_info->csum_size;
364 u8 found_level;
365 u8 result[BTRFS_CSUM_SIZE];
366 const u8 *header_csum;
367 int ret = 0;
368 const bool ignore_csum = btrfs_test_opt(fs_info, IGNOREMETACSUMS);
369
370 ASSERT(check);
371
372 found_start = btrfs_header_bytenr(eb);
373 if (found_start != eb->start) {
374 btrfs_err_rl(fs_info,
375 "bad tree block start, mirror %u want %llu have %llu",
376 eb->read_mirror, eb->start, found_start);
377 ret = -EIO;
378 goto out;
379 }
380 if (check_tree_block_fsid(eb)) {
381 btrfs_err_rl(fs_info, "bad fsid on logical %llu mirror %u",
382 eb->start, eb->read_mirror);
383 ret = -EIO;
384 goto out;
385 }
386 found_level = btrfs_header_level(eb);
387 if (found_level >= BTRFS_MAX_LEVEL) {
388 btrfs_err(fs_info,
389 "bad tree block level, mirror %u level %d on logical %llu",
390 eb->read_mirror, btrfs_header_level(eb), eb->start);
391 ret = -EIO;
392 goto out;
393 }
394
395 csum_tree_block(eb, result);
396 header_csum = folio_address(eb->folios[0]) +
397 get_eb_offset_in_folio(eb, offsetof(struct btrfs_header, csum));
398
399 if (memcmp(result, header_csum, csum_size) != 0) {
400 btrfs_warn_rl(fs_info,
401 "checksum verify failed on logical %llu mirror %u wanted " CSUM_FMT " found " CSUM_FMT " level %d%s",
402 eb->start, eb->read_mirror,
403 CSUM_FMT_VALUE(csum_size, header_csum),
404 CSUM_FMT_VALUE(csum_size, result),
405 btrfs_header_level(eb),
406 ignore_csum ? ", ignored" : "");
407 if (!ignore_csum) {
408 ret = -EUCLEAN;
409 goto out;
410 }
411 }
412
413 if (found_level != check->level) {
414 btrfs_err(fs_info,
415 "level verify failed on logical %llu mirror %u wanted %u found %u",
416 eb->start, eb->read_mirror, check->level, found_level);
417 ret = -EIO;
418 goto out;
419 }
420 if (unlikely(check->transid &&
421 btrfs_header_generation(eb) != check->transid)) {
422 btrfs_err_rl(eb->fs_info,
423 "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu",
424 eb->start, eb->read_mirror, check->transid,
425 btrfs_header_generation(eb));
426 ret = -EIO;
427 goto out;
428 }
429 if (check->has_first_key) {
430 const struct btrfs_key *expect_key = &check->first_key;
431 struct btrfs_key found_key;
432
433 if (found_level)
434 btrfs_node_key_to_cpu(eb, &found_key, 0);
435 else
436 btrfs_item_key_to_cpu(eb, &found_key, 0);
437 if (unlikely(btrfs_comp_cpu_keys(expect_key, &found_key))) {
438 btrfs_err(fs_info,
439 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
440 eb->start, check->transid,
441 expect_key->objectid,
442 expect_key->type, expect_key->offset,
443 found_key.objectid, found_key.type,
444 found_key.offset);
445 ret = -EUCLEAN;
446 goto out;
447 }
448 }
449 if (check->owner_root) {
450 ret = btrfs_check_eb_owner(eb, check->owner_root);
451 if (ret < 0)
452 goto out;
453 }
454
455 /* If this is a leaf block and it is corrupt, just return -EIO. */
456 if (found_level == 0 && btrfs_check_leaf(eb))
457 ret = -EIO;
458
459 if (found_level > 0 && btrfs_check_node(eb))
460 ret = -EIO;
461
462 if (ret)
463 btrfs_err(fs_info,
464 "read time tree block corruption detected on logical %llu mirror %u",
465 eb->start, eb->read_mirror);
466 out:
467 return ret;
468 }
469
470 #ifdef CONFIG_MIGRATION
btree_migrate_folio(struct address_space * mapping,struct folio * dst,struct folio * src,enum migrate_mode mode)471 static int btree_migrate_folio(struct address_space *mapping,
472 struct folio *dst, struct folio *src, enum migrate_mode mode)
473 {
474 /*
475 * we can't safely write a btree page from here,
476 * we haven't done the locking hook
477 */
478 if (folio_test_dirty(src))
479 return -EAGAIN;
480 /*
481 * Buffers may be managed in a filesystem specific way.
482 * We must have no buffers or drop them.
483 */
484 if (folio_get_private(src) &&
485 !filemap_release_folio(src, GFP_KERNEL))
486 return -EAGAIN;
487 return migrate_folio(mapping, dst, src, mode);
488 }
489 #else
490 #define btree_migrate_folio NULL
491 #endif
492
btree_writepages(struct address_space * mapping,struct writeback_control * wbc)493 static int btree_writepages(struct address_space *mapping,
494 struct writeback_control *wbc)
495 {
496 int ret;
497
498 if (wbc->sync_mode == WB_SYNC_NONE) {
499 struct btrfs_fs_info *fs_info;
500
501 if (wbc->for_kupdate)
502 return 0;
503
504 fs_info = inode_to_fs_info(mapping->host);
505 /* this is a bit racy, but that's ok */
506 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
507 BTRFS_DIRTY_METADATA_THRESH,
508 fs_info->dirty_metadata_batch);
509 if (ret < 0)
510 return 0;
511 }
512 return btree_write_cache_pages(mapping, wbc);
513 }
514
btree_release_folio(struct folio * folio,gfp_t gfp_flags)515 static bool btree_release_folio(struct folio *folio, gfp_t gfp_flags)
516 {
517 if (folio_test_writeback(folio) || folio_test_dirty(folio))
518 return false;
519
520 return try_release_extent_buffer(folio);
521 }
522
btree_invalidate_folio(struct folio * folio,size_t offset,size_t length)523 static void btree_invalidate_folio(struct folio *folio, size_t offset,
524 size_t length)
525 {
526 struct extent_io_tree *tree;
527
528 tree = &folio_to_inode(folio)->io_tree;
529 extent_invalidate_folio(tree, folio, offset);
530 btree_release_folio(folio, GFP_NOFS);
531 if (folio_get_private(folio)) {
532 btrfs_warn(folio_to_fs_info(folio),
533 "folio private not zero on folio %llu",
534 (unsigned long long)folio_pos(folio));
535 folio_detach_private(folio);
536 }
537 }
538
539 #ifdef DEBUG
btree_dirty_folio(struct address_space * mapping,struct folio * folio)540 static bool btree_dirty_folio(struct address_space *mapping,
541 struct folio *folio)
542 {
543 struct btrfs_fs_info *fs_info = inode_to_fs_info(mapping->host);
544 struct btrfs_subpage_info *spi = fs_info->subpage_info;
545 struct btrfs_subpage *subpage;
546 struct extent_buffer *eb;
547 int cur_bit = 0;
548 u64 page_start = folio_pos(folio);
549
550 if (fs_info->sectorsize == PAGE_SIZE) {
551 eb = folio_get_private(folio);
552 BUG_ON(!eb);
553 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
554 BUG_ON(!atomic_read(&eb->refs));
555 btrfs_assert_tree_write_locked(eb);
556 return filemap_dirty_folio(mapping, folio);
557 }
558
559 ASSERT(spi);
560 subpage = folio_get_private(folio);
561
562 for (cur_bit = spi->dirty_offset;
563 cur_bit < spi->dirty_offset + spi->bitmap_nr_bits;
564 cur_bit++) {
565 unsigned long flags;
566 u64 cur;
567
568 spin_lock_irqsave(&subpage->lock, flags);
569 if (!test_bit(cur_bit, subpage->bitmaps)) {
570 spin_unlock_irqrestore(&subpage->lock, flags);
571 continue;
572 }
573 spin_unlock_irqrestore(&subpage->lock, flags);
574 cur = page_start + cur_bit * fs_info->sectorsize;
575
576 eb = find_extent_buffer(fs_info, cur);
577 ASSERT(eb);
578 ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
579 ASSERT(atomic_read(&eb->refs));
580 btrfs_assert_tree_write_locked(eb);
581 free_extent_buffer(eb);
582
583 cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits) - 1;
584 }
585 return filemap_dirty_folio(mapping, folio);
586 }
587 #else
588 #define btree_dirty_folio filemap_dirty_folio
589 #endif
590
591 static const struct address_space_operations btree_aops = {
592 .writepages = btree_writepages,
593 .release_folio = btree_release_folio,
594 .invalidate_folio = btree_invalidate_folio,
595 .migrate_folio = btree_migrate_folio,
596 .dirty_folio = btree_dirty_folio,
597 };
598
btrfs_find_create_tree_block(struct btrfs_fs_info * fs_info,u64 bytenr,u64 owner_root,int level)599 struct extent_buffer *btrfs_find_create_tree_block(
600 struct btrfs_fs_info *fs_info,
601 u64 bytenr, u64 owner_root,
602 int level)
603 {
604 if (btrfs_is_testing(fs_info))
605 return alloc_test_extent_buffer(fs_info, bytenr);
606 return alloc_extent_buffer(fs_info, bytenr, owner_root, level);
607 }
608
609 /*
610 * Read tree block at logical address @bytenr and do variant basic but critical
611 * verification.
612 *
613 * @check: expected tree parentness check, see comments of the
614 * structure for details.
615 */
read_tree_block(struct btrfs_fs_info * fs_info,u64 bytenr,struct btrfs_tree_parent_check * check)616 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
617 struct btrfs_tree_parent_check *check)
618 {
619 struct extent_buffer *buf = NULL;
620 int ret;
621
622 ASSERT(check);
623
624 buf = btrfs_find_create_tree_block(fs_info, bytenr, check->owner_root,
625 check->level);
626 if (IS_ERR(buf))
627 return buf;
628
629 ret = btrfs_read_extent_buffer(buf, check);
630 if (ret) {
631 free_extent_buffer_stale(buf);
632 return ERR_PTR(ret);
633 }
634 return buf;
635
636 }
637
btrfs_alloc_root(struct btrfs_fs_info * fs_info,u64 objectid,gfp_t flags)638 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
639 u64 objectid, gfp_t flags)
640 {
641 struct btrfs_root *root;
642 bool dummy = btrfs_is_testing(fs_info);
643
644 root = kzalloc(sizeof(*root), flags);
645 if (!root)
646 return NULL;
647
648 memset(&root->root_key, 0, sizeof(root->root_key));
649 memset(&root->root_item, 0, sizeof(root->root_item));
650 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
651 root->fs_info = fs_info;
652 root->root_key.objectid = objectid;
653 root->node = NULL;
654 root->commit_root = NULL;
655 root->state = 0;
656 RB_CLEAR_NODE(&root->rb_node);
657
658 btrfs_set_root_last_trans(root, 0);
659 root->free_objectid = 0;
660 root->nr_delalloc_inodes = 0;
661 root->nr_ordered_extents = 0;
662 xa_init(&root->inodes);
663 xa_init(&root->delayed_nodes);
664
665 btrfs_init_root_block_rsv(root);
666
667 INIT_LIST_HEAD(&root->dirty_list);
668 INIT_LIST_HEAD(&root->root_list);
669 INIT_LIST_HEAD(&root->delalloc_inodes);
670 INIT_LIST_HEAD(&root->delalloc_root);
671 INIT_LIST_HEAD(&root->ordered_extents);
672 INIT_LIST_HEAD(&root->ordered_root);
673 INIT_LIST_HEAD(&root->reloc_dirty_list);
674 spin_lock_init(&root->delalloc_lock);
675 spin_lock_init(&root->ordered_extent_lock);
676 spin_lock_init(&root->accounting_lock);
677 spin_lock_init(&root->qgroup_meta_rsv_lock);
678 mutex_init(&root->objectid_mutex);
679 mutex_init(&root->log_mutex);
680 mutex_init(&root->ordered_extent_mutex);
681 mutex_init(&root->delalloc_mutex);
682 init_waitqueue_head(&root->qgroup_flush_wait);
683 init_waitqueue_head(&root->log_writer_wait);
684 init_waitqueue_head(&root->log_commit_wait[0]);
685 init_waitqueue_head(&root->log_commit_wait[1]);
686 INIT_LIST_HEAD(&root->log_ctxs[0]);
687 INIT_LIST_HEAD(&root->log_ctxs[1]);
688 atomic_set(&root->log_commit[0], 0);
689 atomic_set(&root->log_commit[1], 0);
690 atomic_set(&root->log_writers, 0);
691 atomic_set(&root->log_batch, 0);
692 refcount_set(&root->refs, 1);
693 atomic_set(&root->snapshot_force_cow, 0);
694 atomic_set(&root->nr_swapfiles, 0);
695 btrfs_set_root_log_transid(root, 0);
696 root->log_transid_committed = -1;
697 btrfs_set_root_last_log_commit(root, 0);
698 root->anon_dev = 0;
699 if (!dummy) {
700 btrfs_extent_io_tree_init(fs_info, &root->dirty_log_pages,
701 IO_TREE_ROOT_DIRTY_LOG_PAGES);
702 btrfs_extent_io_tree_init(fs_info, &root->log_csum_range,
703 IO_TREE_LOG_CSUM_RANGE);
704 }
705
706 spin_lock_init(&root->root_item_lock);
707 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
708 #ifdef CONFIG_BTRFS_DEBUG
709 INIT_LIST_HEAD(&root->leak_list);
710 spin_lock(&fs_info->fs_roots_radix_lock);
711 list_add_tail(&root->leak_list, &fs_info->allocated_roots);
712 spin_unlock(&fs_info->fs_roots_radix_lock);
713 #endif
714
715 return root;
716 }
717
718 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
719 /* Should only be used by the testing infrastructure */
btrfs_alloc_dummy_root(struct btrfs_fs_info * fs_info)720 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
721 {
722 struct btrfs_root *root;
723
724 if (!fs_info)
725 return ERR_PTR(-EINVAL);
726
727 root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
728 if (!root)
729 return ERR_PTR(-ENOMEM);
730
731 /* We don't use the stripesize in selftest, set it as sectorsize */
732 root->alloc_bytenr = 0;
733
734 return root;
735 }
736 #endif
737
global_root_cmp(struct rb_node * a_node,const struct rb_node * b_node)738 static int global_root_cmp(struct rb_node *a_node, const struct rb_node *b_node)
739 {
740 const struct btrfs_root *a = rb_entry(a_node, struct btrfs_root, rb_node);
741 const struct btrfs_root *b = rb_entry(b_node, struct btrfs_root, rb_node);
742
743 return btrfs_comp_cpu_keys(&a->root_key, &b->root_key);
744 }
745
global_root_key_cmp(const void * k,const struct rb_node * node)746 static int global_root_key_cmp(const void *k, const struct rb_node *node)
747 {
748 const struct btrfs_key *key = k;
749 const struct btrfs_root *root = rb_entry(node, struct btrfs_root, rb_node);
750
751 return btrfs_comp_cpu_keys(key, &root->root_key);
752 }
753
btrfs_global_root_insert(struct btrfs_root * root)754 int btrfs_global_root_insert(struct btrfs_root *root)
755 {
756 struct btrfs_fs_info *fs_info = root->fs_info;
757 struct rb_node *tmp;
758 int ret = 0;
759
760 write_lock(&fs_info->global_root_lock);
761 tmp = rb_find_add(&root->rb_node, &fs_info->global_root_tree, global_root_cmp);
762 write_unlock(&fs_info->global_root_lock);
763
764 if (tmp) {
765 ret = -EEXIST;
766 btrfs_warn(fs_info, "global root %llu %llu already exists",
767 btrfs_root_id(root), root->root_key.offset);
768 }
769 return ret;
770 }
771
btrfs_global_root_delete(struct btrfs_root * root)772 void btrfs_global_root_delete(struct btrfs_root *root)
773 {
774 struct btrfs_fs_info *fs_info = root->fs_info;
775
776 write_lock(&fs_info->global_root_lock);
777 rb_erase(&root->rb_node, &fs_info->global_root_tree);
778 write_unlock(&fs_info->global_root_lock);
779 }
780
btrfs_global_root(struct btrfs_fs_info * fs_info,struct btrfs_key * key)781 struct btrfs_root *btrfs_global_root(struct btrfs_fs_info *fs_info,
782 struct btrfs_key *key)
783 {
784 struct rb_node *node;
785 struct btrfs_root *root = NULL;
786
787 read_lock(&fs_info->global_root_lock);
788 node = rb_find(key, &fs_info->global_root_tree, global_root_key_cmp);
789 if (node)
790 root = container_of(node, struct btrfs_root, rb_node);
791 read_unlock(&fs_info->global_root_lock);
792
793 return root;
794 }
795
btrfs_global_root_id(struct btrfs_fs_info * fs_info,u64 bytenr)796 static u64 btrfs_global_root_id(struct btrfs_fs_info *fs_info, u64 bytenr)
797 {
798 struct btrfs_block_group *block_group;
799 u64 ret;
800
801 if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
802 return 0;
803
804 if (bytenr)
805 block_group = btrfs_lookup_block_group(fs_info, bytenr);
806 else
807 block_group = btrfs_lookup_first_block_group(fs_info, bytenr);
808 ASSERT(block_group);
809 if (!block_group)
810 return 0;
811 ret = block_group->global_root_id;
812 btrfs_put_block_group(block_group);
813
814 return ret;
815 }
816
btrfs_csum_root(struct btrfs_fs_info * fs_info,u64 bytenr)817 struct btrfs_root *btrfs_csum_root(struct btrfs_fs_info *fs_info, u64 bytenr)
818 {
819 struct btrfs_key key = {
820 .objectid = BTRFS_CSUM_TREE_OBJECTID,
821 .type = BTRFS_ROOT_ITEM_KEY,
822 .offset = btrfs_global_root_id(fs_info, bytenr),
823 };
824
825 return btrfs_global_root(fs_info, &key);
826 }
827
btrfs_extent_root(struct btrfs_fs_info * fs_info,u64 bytenr)828 struct btrfs_root *btrfs_extent_root(struct btrfs_fs_info *fs_info, u64 bytenr)
829 {
830 struct btrfs_key key = {
831 .objectid = BTRFS_EXTENT_TREE_OBJECTID,
832 .type = BTRFS_ROOT_ITEM_KEY,
833 .offset = btrfs_global_root_id(fs_info, bytenr),
834 };
835
836 return btrfs_global_root(fs_info, &key);
837 }
838
btrfs_create_tree(struct btrfs_trans_handle * trans,u64 objectid)839 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
840 u64 objectid)
841 {
842 struct btrfs_fs_info *fs_info = trans->fs_info;
843 struct extent_buffer *leaf;
844 struct btrfs_root *tree_root = fs_info->tree_root;
845 struct btrfs_root *root;
846 struct btrfs_key key;
847 unsigned int nofs_flag;
848 int ret = 0;
849
850 /*
851 * We're holding a transaction handle, so use a NOFS memory allocation
852 * context to avoid deadlock if reclaim happens.
853 */
854 nofs_flag = memalloc_nofs_save();
855 root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
856 memalloc_nofs_restore(nofs_flag);
857 if (!root)
858 return ERR_PTR(-ENOMEM);
859
860 root->root_key.objectid = objectid;
861 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
862 root->root_key.offset = 0;
863
864 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
865 0, BTRFS_NESTING_NORMAL);
866 if (IS_ERR(leaf)) {
867 ret = PTR_ERR(leaf);
868 leaf = NULL;
869 goto fail;
870 }
871
872 root->node = leaf;
873 btrfs_mark_buffer_dirty(trans, leaf);
874
875 root->commit_root = btrfs_root_node(root);
876 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
877
878 btrfs_set_root_flags(&root->root_item, 0);
879 btrfs_set_root_limit(&root->root_item, 0);
880 btrfs_set_root_bytenr(&root->root_item, leaf->start);
881 btrfs_set_root_generation(&root->root_item, trans->transid);
882 btrfs_set_root_level(&root->root_item, 0);
883 btrfs_set_root_refs(&root->root_item, 1);
884 btrfs_set_root_used(&root->root_item, leaf->len);
885 btrfs_set_root_last_snapshot(&root->root_item, 0);
886 btrfs_set_root_dirid(&root->root_item, 0);
887 if (btrfs_is_fstree(objectid))
888 generate_random_guid(root->root_item.uuid);
889 else
890 export_guid(root->root_item.uuid, &guid_null);
891 btrfs_set_root_drop_level(&root->root_item, 0);
892
893 btrfs_tree_unlock(leaf);
894
895 key.objectid = objectid;
896 key.type = BTRFS_ROOT_ITEM_KEY;
897 key.offset = 0;
898 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
899 if (ret)
900 goto fail;
901
902 return root;
903
904 fail:
905 btrfs_put_root(root);
906
907 return ERR_PTR(ret);
908 }
909
alloc_log_tree(struct btrfs_fs_info * fs_info)910 static struct btrfs_root *alloc_log_tree(struct btrfs_fs_info *fs_info)
911 {
912 struct btrfs_root *root;
913
914 root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
915 if (!root)
916 return ERR_PTR(-ENOMEM);
917
918 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
919 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
920 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
921
922 return root;
923 }
924
btrfs_alloc_log_tree_node(struct btrfs_trans_handle * trans,struct btrfs_root * root)925 int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans,
926 struct btrfs_root *root)
927 {
928 struct extent_buffer *leaf;
929
930 /*
931 * DON'T set SHAREABLE bit for log trees.
932 *
933 * Log trees are not exposed to user space thus can't be snapshotted,
934 * and they go away before a real commit is actually done.
935 *
936 * They do store pointers to file data extents, and those reference
937 * counts still get updated (along with back refs to the log tree).
938 */
939
940 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
941 NULL, 0, 0, 0, 0, BTRFS_NESTING_NORMAL);
942 if (IS_ERR(leaf))
943 return PTR_ERR(leaf);
944
945 root->node = leaf;
946
947 btrfs_mark_buffer_dirty(trans, root->node);
948 btrfs_tree_unlock(root->node);
949
950 return 0;
951 }
952
btrfs_init_log_root_tree(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)953 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
954 struct btrfs_fs_info *fs_info)
955 {
956 struct btrfs_root *log_root;
957
958 log_root = alloc_log_tree(fs_info);
959 if (IS_ERR(log_root))
960 return PTR_ERR(log_root);
961
962 if (!btrfs_is_zoned(fs_info)) {
963 int ret = btrfs_alloc_log_tree_node(trans, log_root);
964
965 if (ret) {
966 btrfs_put_root(log_root);
967 return ret;
968 }
969 }
970
971 WARN_ON(fs_info->log_root_tree);
972 fs_info->log_root_tree = log_root;
973 return 0;
974 }
975
btrfs_add_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root)976 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
977 struct btrfs_root *root)
978 {
979 struct btrfs_fs_info *fs_info = root->fs_info;
980 struct btrfs_root *log_root;
981 struct btrfs_inode_item *inode_item;
982 int ret;
983
984 log_root = alloc_log_tree(fs_info);
985 if (IS_ERR(log_root))
986 return PTR_ERR(log_root);
987
988 ret = btrfs_alloc_log_tree_node(trans, log_root);
989 if (ret) {
990 btrfs_put_root(log_root);
991 return ret;
992 }
993
994 btrfs_set_root_last_trans(log_root, trans->transid);
995 log_root->root_key.offset = btrfs_root_id(root);
996
997 inode_item = &log_root->root_item.inode;
998 btrfs_set_stack_inode_generation(inode_item, 1);
999 btrfs_set_stack_inode_size(inode_item, 3);
1000 btrfs_set_stack_inode_nlink(inode_item, 1);
1001 btrfs_set_stack_inode_nbytes(inode_item,
1002 fs_info->nodesize);
1003 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1004
1005 btrfs_set_root_node(&log_root->root_item, log_root->node);
1006
1007 WARN_ON(root->log_root);
1008 root->log_root = log_root;
1009 btrfs_set_root_log_transid(root, 0);
1010 root->log_transid_committed = -1;
1011 btrfs_set_root_last_log_commit(root, 0);
1012 return 0;
1013 }
1014
read_tree_root_path(struct btrfs_root * tree_root,struct btrfs_path * path,const struct btrfs_key * key)1015 static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root,
1016 struct btrfs_path *path,
1017 const struct btrfs_key *key)
1018 {
1019 struct btrfs_root *root;
1020 struct btrfs_tree_parent_check check = { 0 };
1021 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1022 u64 generation;
1023 int ret;
1024 int level;
1025
1026 root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
1027 if (!root)
1028 return ERR_PTR(-ENOMEM);
1029
1030 ret = btrfs_find_root(tree_root, key, path,
1031 &root->root_item, &root->root_key);
1032 if (ret) {
1033 if (ret > 0)
1034 ret = -ENOENT;
1035 goto fail;
1036 }
1037
1038 generation = btrfs_root_generation(&root->root_item);
1039 level = btrfs_root_level(&root->root_item);
1040 check.level = level;
1041 check.transid = generation;
1042 check.owner_root = key->objectid;
1043 root->node = read_tree_block(fs_info, btrfs_root_bytenr(&root->root_item),
1044 &check);
1045 if (IS_ERR(root->node)) {
1046 ret = PTR_ERR(root->node);
1047 root->node = NULL;
1048 goto fail;
1049 }
1050 if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1051 ret = -EIO;
1052 goto fail;
1053 }
1054
1055 /*
1056 * For real fs, and not log/reloc trees, root owner must
1057 * match its root node owner
1058 */
1059 if (!btrfs_is_testing(fs_info) &&
1060 btrfs_root_id(root) != BTRFS_TREE_LOG_OBJECTID &&
1061 btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID &&
1062 btrfs_root_id(root) != btrfs_header_owner(root->node)) {
1063 btrfs_crit(fs_info,
1064 "root=%llu block=%llu, tree root owner mismatch, have %llu expect %llu",
1065 btrfs_root_id(root), root->node->start,
1066 btrfs_header_owner(root->node),
1067 btrfs_root_id(root));
1068 ret = -EUCLEAN;
1069 goto fail;
1070 }
1071 root->commit_root = btrfs_root_node(root);
1072 return root;
1073 fail:
1074 btrfs_put_root(root);
1075 return ERR_PTR(ret);
1076 }
1077
btrfs_read_tree_root(struct btrfs_root * tree_root,const struct btrfs_key * key)1078 struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1079 const struct btrfs_key *key)
1080 {
1081 struct btrfs_root *root;
1082 BTRFS_PATH_AUTO_FREE(path);
1083
1084 path = btrfs_alloc_path();
1085 if (!path)
1086 return ERR_PTR(-ENOMEM);
1087 root = read_tree_root_path(tree_root, path, key);
1088
1089 return root;
1090 }
1091
1092 /*
1093 * Initialize subvolume root in-memory structure.
1094 *
1095 * @anon_dev: anonymous device to attach to the root, if zero, allocate new
1096 *
1097 * In case of failure the caller is responsible to call btrfs_free_fs_root()
1098 */
btrfs_init_fs_root(struct btrfs_root * root,dev_t anon_dev)1099 static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
1100 {
1101 int ret;
1102
1103 btrfs_drew_lock_init(&root->snapshot_lock);
1104
1105 if (btrfs_root_id(root) != BTRFS_TREE_LOG_OBJECTID &&
1106 !btrfs_is_data_reloc_root(root) &&
1107 btrfs_is_fstree(btrfs_root_id(root))) {
1108 set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
1109 btrfs_check_and_init_root_item(&root->root_item);
1110 }
1111
1112 /*
1113 * Don't assign anonymous block device to roots that are not exposed to
1114 * userspace, the id pool is limited to 1M
1115 */
1116 if (btrfs_is_fstree(btrfs_root_id(root)) &&
1117 btrfs_root_refs(&root->root_item) > 0) {
1118 if (!anon_dev) {
1119 ret = get_anon_bdev(&root->anon_dev);
1120 if (ret)
1121 return ret;
1122 } else {
1123 root->anon_dev = anon_dev;
1124 }
1125 }
1126
1127 mutex_lock(&root->objectid_mutex);
1128 ret = btrfs_init_root_free_objectid(root);
1129 if (ret) {
1130 mutex_unlock(&root->objectid_mutex);
1131 return ret;
1132 }
1133
1134 ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
1135
1136 mutex_unlock(&root->objectid_mutex);
1137
1138 return 0;
1139 }
1140
btrfs_lookup_fs_root(struct btrfs_fs_info * fs_info,u64 root_id)1141 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1142 u64 root_id)
1143 {
1144 struct btrfs_root *root;
1145
1146 spin_lock(&fs_info->fs_roots_radix_lock);
1147 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1148 (unsigned long)root_id);
1149 root = btrfs_grab_root(root);
1150 spin_unlock(&fs_info->fs_roots_radix_lock);
1151 return root;
1152 }
1153
btrfs_get_global_root(struct btrfs_fs_info * fs_info,u64 objectid)1154 static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info,
1155 u64 objectid)
1156 {
1157 struct btrfs_key key = {
1158 .objectid = objectid,
1159 .type = BTRFS_ROOT_ITEM_KEY,
1160 .offset = 0,
1161 };
1162
1163 switch (objectid) {
1164 case BTRFS_ROOT_TREE_OBJECTID:
1165 return btrfs_grab_root(fs_info->tree_root);
1166 case BTRFS_EXTENT_TREE_OBJECTID:
1167 return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1168 case BTRFS_CHUNK_TREE_OBJECTID:
1169 return btrfs_grab_root(fs_info->chunk_root);
1170 case BTRFS_DEV_TREE_OBJECTID:
1171 return btrfs_grab_root(fs_info->dev_root);
1172 case BTRFS_CSUM_TREE_OBJECTID:
1173 return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1174 case BTRFS_QUOTA_TREE_OBJECTID:
1175 return btrfs_grab_root(fs_info->quota_root);
1176 case BTRFS_UUID_TREE_OBJECTID:
1177 return btrfs_grab_root(fs_info->uuid_root);
1178 case BTRFS_BLOCK_GROUP_TREE_OBJECTID:
1179 return btrfs_grab_root(fs_info->block_group_root);
1180 case BTRFS_FREE_SPACE_TREE_OBJECTID:
1181 return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1182 case BTRFS_RAID_STRIPE_TREE_OBJECTID:
1183 return btrfs_grab_root(fs_info->stripe_root);
1184 default:
1185 return NULL;
1186 }
1187 }
1188
btrfs_insert_fs_root(struct btrfs_fs_info * fs_info,struct btrfs_root * root)1189 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1190 struct btrfs_root *root)
1191 {
1192 int ret;
1193
1194 ret = radix_tree_preload(GFP_NOFS);
1195 if (ret)
1196 return ret;
1197
1198 spin_lock(&fs_info->fs_roots_radix_lock);
1199 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1200 (unsigned long)btrfs_root_id(root),
1201 root);
1202 if (ret == 0) {
1203 btrfs_grab_root(root);
1204 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1205 }
1206 spin_unlock(&fs_info->fs_roots_radix_lock);
1207 radix_tree_preload_end();
1208
1209 return ret;
1210 }
1211
btrfs_check_leaked_roots(const struct btrfs_fs_info * fs_info)1212 void btrfs_check_leaked_roots(const struct btrfs_fs_info *fs_info)
1213 {
1214 #ifdef CONFIG_BTRFS_DEBUG
1215 struct btrfs_root *root;
1216
1217 while (!list_empty(&fs_info->allocated_roots)) {
1218 char buf[BTRFS_ROOT_NAME_BUF_LEN];
1219
1220 root = list_first_entry(&fs_info->allocated_roots,
1221 struct btrfs_root, leak_list);
1222 btrfs_err(fs_info, "leaked root %s refcount %d",
1223 btrfs_root_name(&root->root_key, buf),
1224 refcount_read(&root->refs));
1225 WARN_ON_ONCE(1);
1226 while (refcount_read(&root->refs) > 1)
1227 btrfs_put_root(root);
1228 btrfs_put_root(root);
1229 }
1230 #endif
1231 }
1232
free_global_roots(struct btrfs_fs_info * fs_info)1233 static void free_global_roots(struct btrfs_fs_info *fs_info)
1234 {
1235 struct btrfs_root *root;
1236 struct rb_node *node;
1237
1238 while ((node = rb_first_postorder(&fs_info->global_root_tree)) != NULL) {
1239 root = rb_entry(node, struct btrfs_root, rb_node);
1240 rb_erase(&root->rb_node, &fs_info->global_root_tree);
1241 btrfs_put_root(root);
1242 }
1243 }
1244
btrfs_free_fs_info(struct btrfs_fs_info * fs_info)1245 void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1246 {
1247 struct percpu_counter *em_counter = &fs_info->evictable_extent_maps;
1248
1249 if (fs_info->fs_devices)
1250 btrfs_close_devices(fs_info->fs_devices);
1251 percpu_counter_destroy(&fs_info->stats_read_blocks);
1252 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1253 percpu_counter_destroy(&fs_info->delalloc_bytes);
1254 percpu_counter_destroy(&fs_info->ordered_bytes);
1255 if (percpu_counter_initialized(em_counter))
1256 ASSERT(percpu_counter_sum_positive(em_counter) == 0);
1257 percpu_counter_destroy(em_counter);
1258 percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1259 btrfs_free_csum_hash(fs_info);
1260 btrfs_free_stripe_hash_table(fs_info);
1261 btrfs_free_ref_cache(fs_info);
1262 kfree(fs_info->balance_ctl);
1263 kfree(fs_info->delayed_root);
1264 free_global_roots(fs_info);
1265 btrfs_put_root(fs_info->tree_root);
1266 btrfs_put_root(fs_info->chunk_root);
1267 btrfs_put_root(fs_info->dev_root);
1268 btrfs_put_root(fs_info->quota_root);
1269 btrfs_put_root(fs_info->uuid_root);
1270 btrfs_put_root(fs_info->fs_root);
1271 btrfs_put_root(fs_info->data_reloc_root);
1272 btrfs_put_root(fs_info->block_group_root);
1273 btrfs_put_root(fs_info->stripe_root);
1274 btrfs_check_leaked_roots(fs_info);
1275 btrfs_extent_buffer_leak_debug_check(fs_info);
1276 kfree(fs_info->super_copy);
1277 kfree(fs_info->super_for_commit);
1278 kvfree(fs_info);
1279 }
1280
1281
1282 /*
1283 * Get an in-memory reference of a root structure.
1284 *
1285 * For essential trees like root/extent tree, we grab it from fs_info directly.
1286 * For subvolume trees, we check the cached filesystem roots first. If not
1287 * found, then read it from disk and add it to cached fs roots.
1288 *
1289 * Caller should release the root by calling btrfs_put_root() after the usage.
1290 *
1291 * NOTE: Reloc and log trees can't be read by this function as they share the
1292 * same root objectid.
1293 *
1294 * @objectid: root id
1295 * @anon_dev: preallocated anonymous block device number for new roots,
1296 * pass NULL for a new allocation.
1297 * @check_ref: whether to check root item references, If true, return -ENOENT
1298 * for orphan roots
1299 */
btrfs_get_root_ref(struct btrfs_fs_info * fs_info,u64 objectid,dev_t * anon_dev,bool check_ref)1300 static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
1301 u64 objectid, dev_t *anon_dev,
1302 bool check_ref)
1303 {
1304 struct btrfs_root *root;
1305 struct btrfs_path *path;
1306 struct btrfs_key key;
1307 int ret;
1308
1309 root = btrfs_get_global_root(fs_info, objectid);
1310 if (root)
1311 return root;
1312
1313 /*
1314 * If we're called for non-subvolume trees, and above function didn't
1315 * find one, do not try to read it from disk.
1316 *
1317 * This is namely for free-space-tree and quota tree, which can change
1318 * at runtime and should only be grabbed from fs_info.
1319 */
1320 if (!btrfs_is_fstree(objectid) && objectid != BTRFS_DATA_RELOC_TREE_OBJECTID)
1321 return ERR_PTR(-ENOENT);
1322 again:
1323 root = btrfs_lookup_fs_root(fs_info, objectid);
1324 if (root) {
1325 /*
1326 * Some other caller may have read out the newly inserted
1327 * subvolume already (for things like backref walk etc). Not
1328 * that common but still possible. In that case, we just need
1329 * to free the anon_dev.
1330 */
1331 if (unlikely(anon_dev && *anon_dev)) {
1332 free_anon_bdev(*anon_dev);
1333 *anon_dev = 0;
1334 }
1335
1336 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1337 btrfs_put_root(root);
1338 return ERR_PTR(-ENOENT);
1339 }
1340 return root;
1341 }
1342
1343 key.objectid = objectid;
1344 key.type = BTRFS_ROOT_ITEM_KEY;
1345 key.offset = (u64)-1;
1346 root = btrfs_read_tree_root(fs_info->tree_root, &key);
1347 if (IS_ERR(root))
1348 return root;
1349
1350 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1351 ret = -ENOENT;
1352 goto fail;
1353 }
1354
1355 ret = btrfs_init_fs_root(root, anon_dev ? *anon_dev : 0);
1356 if (ret)
1357 goto fail;
1358
1359 path = btrfs_alloc_path();
1360 if (!path) {
1361 ret = -ENOMEM;
1362 goto fail;
1363 }
1364 key.objectid = BTRFS_ORPHAN_OBJECTID;
1365 key.type = BTRFS_ORPHAN_ITEM_KEY;
1366 key.offset = objectid;
1367
1368 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1369 btrfs_free_path(path);
1370 if (ret < 0)
1371 goto fail;
1372 if (ret == 0)
1373 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1374
1375 ret = btrfs_insert_fs_root(fs_info, root);
1376 if (ret) {
1377 if (ret == -EEXIST) {
1378 btrfs_put_root(root);
1379 goto again;
1380 }
1381 goto fail;
1382 }
1383 return root;
1384 fail:
1385 /*
1386 * If our caller provided us an anonymous device, then it's his
1387 * responsibility to free it in case we fail. So we have to set our
1388 * root's anon_dev to 0 to avoid a double free, once by btrfs_put_root()
1389 * and once again by our caller.
1390 */
1391 if (anon_dev && *anon_dev)
1392 root->anon_dev = 0;
1393 btrfs_put_root(root);
1394 return ERR_PTR(ret);
1395 }
1396
1397 /*
1398 * Get in-memory reference of a root structure
1399 *
1400 * @objectid: tree objectid
1401 * @check_ref: if set, verify that the tree exists and the item has at least
1402 * one reference
1403 */
btrfs_get_fs_root(struct btrfs_fs_info * fs_info,u64 objectid,bool check_ref)1404 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1405 u64 objectid, bool check_ref)
1406 {
1407 return btrfs_get_root_ref(fs_info, objectid, NULL, check_ref);
1408 }
1409
1410 /*
1411 * Get in-memory reference of a root structure, created as new, optionally pass
1412 * the anonymous block device id
1413 *
1414 * @objectid: tree objectid
1415 * @anon_dev: if NULL, allocate a new anonymous block device or use the
1416 * parameter value if not NULL
1417 */
btrfs_get_new_fs_root(struct btrfs_fs_info * fs_info,u64 objectid,dev_t * anon_dev)1418 struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
1419 u64 objectid, dev_t *anon_dev)
1420 {
1421 return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
1422 }
1423
1424 /*
1425 * Return a root for the given objectid.
1426 *
1427 * @fs_info: the fs_info
1428 * @objectid: the objectid we need to lookup
1429 *
1430 * This is exclusively used for backref walking, and exists specifically because
1431 * of how qgroups does lookups. Qgroups will do a backref lookup at delayed ref
1432 * creation time, which means we may have to read the tree_root in order to look
1433 * up a fs root that is not in memory. If the root is not in memory we will
1434 * read the tree root commit root and look up the fs root from there. This is a
1435 * temporary root, it will not be inserted into the radix tree as it doesn't
1436 * have the most uptodate information, it'll simply be discarded once the
1437 * backref code is finished using the root.
1438 */
btrfs_get_fs_root_commit_root(struct btrfs_fs_info * fs_info,struct btrfs_path * path,u64 objectid)1439 struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info,
1440 struct btrfs_path *path,
1441 u64 objectid)
1442 {
1443 struct btrfs_root *root;
1444 struct btrfs_key key;
1445
1446 ASSERT(path->search_commit_root && path->skip_locking);
1447
1448 /*
1449 * This can return -ENOENT if we ask for a root that doesn't exist, but
1450 * since this is called via the backref walking code we won't be looking
1451 * up a root that doesn't exist, unless there's corruption. So if root
1452 * != NULL just return it.
1453 */
1454 root = btrfs_get_global_root(fs_info, objectid);
1455 if (root)
1456 return root;
1457
1458 root = btrfs_lookup_fs_root(fs_info, objectid);
1459 if (root)
1460 return root;
1461
1462 key.objectid = objectid;
1463 key.type = BTRFS_ROOT_ITEM_KEY;
1464 key.offset = (u64)-1;
1465 root = read_tree_root_path(fs_info->tree_root, path, &key);
1466 btrfs_release_path(path);
1467
1468 return root;
1469 }
1470
cleaner_kthread(void * arg)1471 static int cleaner_kthread(void *arg)
1472 {
1473 struct btrfs_fs_info *fs_info = arg;
1474 int again;
1475
1476 while (1) {
1477 again = 0;
1478
1479 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1480
1481 /* Make the cleaner go to sleep early. */
1482 if (btrfs_need_cleaner_sleep(fs_info))
1483 goto sleep;
1484
1485 /*
1486 * Do not do anything if we might cause open_ctree() to block
1487 * before we have finished mounting the filesystem.
1488 */
1489 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1490 goto sleep;
1491
1492 if (!mutex_trylock(&fs_info->cleaner_mutex))
1493 goto sleep;
1494
1495 /*
1496 * Avoid the problem that we change the status of the fs
1497 * during the above check and trylock.
1498 */
1499 if (btrfs_need_cleaner_sleep(fs_info)) {
1500 mutex_unlock(&fs_info->cleaner_mutex);
1501 goto sleep;
1502 }
1503
1504 if (test_and_clear_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags))
1505 btrfs_sysfs_feature_update(fs_info);
1506
1507 btrfs_run_delayed_iputs(fs_info);
1508
1509 again = btrfs_clean_one_deleted_snapshot(fs_info);
1510 mutex_unlock(&fs_info->cleaner_mutex);
1511
1512 /*
1513 * The defragger has dealt with the R/O remount and umount,
1514 * needn't do anything special here.
1515 */
1516 btrfs_run_defrag_inodes(fs_info);
1517
1518 /*
1519 * Acquires fs_info->reclaim_bgs_lock to avoid racing
1520 * with relocation (btrfs_relocate_chunk) and relocation
1521 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1522 * after acquiring fs_info->reclaim_bgs_lock. So we
1523 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1524 * unused block groups.
1525 */
1526 btrfs_delete_unused_bgs(fs_info);
1527
1528 /*
1529 * Reclaim block groups in the reclaim_bgs list after we deleted
1530 * all unused block_groups. This possibly gives us some more free
1531 * space.
1532 */
1533 btrfs_reclaim_bgs(fs_info);
1534 sleep:
1535 clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1536 if (kthread_should_park())
1537 kthread_parkme();
1538 if (kthread_should_stop())
1539 return 0;
1540 if (!again) {
1541 set_current_state(TASK_INTERRUPTIBLE);
1542 schedule();
1543 __set_current_state(TASK_RUNNING);
1544 }
1545 }
1546 }
1547
transaction_kthread(void * arg)1548 static int transaction_kthread(void *arg)
1549 {
1550 struct btrfs_root *root = arg;
1551 struct btrfs_fs_info *fs_info = root->fs_info;
1552 struct btrfs_trans_handle *trans;
1553 struct btrfs_transaction *cur;
1554 u64 transid;
1555 time64_t delta;
1556 unsigned long delay;
1557 bool cannot_commit;
1558
1559 do {
1560 cannot_commit = false;
1561 delay = secs_to_jiffies(fs_info->commit_interval);
1562 mutex_lock(&fs_info->transaction_kthread_mutex);
1563
1564 spin_lock(&fs_info->trans_lock);
1565 cur = fs_info->running_transaction;
1566 if (!cur) {
1567 spin_unlock(&fs_info->trans_lock);
1568 goto sleep;
1569 }
1570
1571 delta = ktime_get_seconds() - cur->start_time;
1572 if (!test_and_clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags) &&
1573 cur->state < TRANS_STATE_COMMIT_PREP &&
1574 delta < fs_info->commit_interval) {
1575 spin_unlock(&fs_info->trans_lock);
1576 delay -= secs_to_jiffies(delta - 1);
1577 delay = min(delay,
1578 secs_to_jiffies(fs_info->commit_interval));
1579 goto sleep;
1580 }
1581 transid = cur->transid;
1582 spin_unlock(&fs_info->trans_lock);
1583
1584 /* If the file system is aborted, this will always fail. */
1585 trans = btrfs_attach_transaction(root);
1586 if (IS_ERR(trans)) {
1587 if (PTR_ERR(trans) != -ENOENT)
1588 cannot_commit = true;
1589 goto sleep;
1590 }
1591 if (transid == trans->transid) {
1592 btrfs_commit_transaction(trans);
1593 } else {
1594 btrfs_end_transaction(trans);
1595 }
1596 sleep:
1597 wake_up_process(fs_info->cleaner_kthread);
1598 mutex_unlock(&fs_info->transaction_kthread_mutex);
1599
1600 if (BTRFS_FS_ERROR(fs_info))
1601 btrfs_cleanup_transaction(fs_info);
1602 if (!kthread_should_stop() &&
1603 (!btrfs_transaction_blocked(fs_info) ||
1604 cannot_commit))
1605 schedule_timeout_interruptible(delay);
1606 } while (!kthread_should_stop());
1607 return 0;
1608 }
1609
1610 /*
1611 * This will find the highest generation in the array of root backups. The
1612 * index of the highest array is returned, or -EINVAL if we can't find
1613 * anything.
1614 *
1615 * We check to make sure the array is valid by comparing the
1616 * generation of the latest root in the array with the generation
1617 * in the super block. If they don't match we pitch it.
1618 */
find_newest_super_backup(struct btrfs_fs_info * info)1619 static int find_newest_super_backup(struct btrfs_fs_info *info)
1620 {
1621 const u64 newest_gen = btrfs_super_generation(info->super_copy);
1622 u64 cur;
1623 struct btrfs_root_backup *root_backup;
1624 int i;
1625
1626 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1627 root_backup = info->super_copy->super_roots + i;
1628 cur = btrfs_backup_tree_root_gen(root_backup);
1629 if (cur == newest_gen)
1630 return i;
1631 }
1632
1633 return -EINVAL;
1634 }
1635
1636 /*
1637 * copy all the root pointers into the super backup array.
1638 * this will bump the backup pointer by one when it is
1639 * done
1640 */
backup_super_roots(struct btrfs_fs_info * info)1641 static void backup_super_roots(struct btrfs_fs_info *info)
1642 {
1643 const int next_backup = info->backup_root_index;
1644 struct btrfs_root_backup *root_backup;
1645
1646 root_backup = info->super_for_commit->super_roots + next_backup;
1647
1648 /*
1649 * make sure all of our padding and empty slots get zero filled
1650 * regardless of which ones we use today
1651 */
1652 memset(root_backup, 0, sizeof(*root_backup));
1653
1654 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1655
1656 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1657 btrfs_set_backup_tree_root_gen(root_backup,
1658 btrfs_header_generation(info->tree_root->node));
1659
1660 btrfs_set_backup_tree_root_level(root_backup,
1661 btrfs_header_level(info->tree_root->node));
1662
1663 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1664 btrfs_set_backup_chunk_root_gen(root_backup,
1665 btrfs_header_generation(info->chunk_root->node));
1666 btrfs_set_backup_chunk_root_level(root_backup,
1667 btrfs_header_level(info->chunk_root->node));
1668
1669 if (!btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE)) {
1670 struct btrfs_root *extent_root = btrfs_extent_root(info, 0);
1671 struct btrfs_root *csum_root = btrfs_csum_root(info, 0);
1672
1673 btrfs_set_backup_extent_root(root_backup,
1674 extent_root->node->start);
1675 btrfs_set_backup_extent_root_gen(root_backup,
1676 btrfs_header_generation(extent_root->node));
1677 btrfs_set_backup_extent_root_level(root_backup,
1678 btrfs_header_level(extent_root->node));
1679
1680 btrfs_set_backup_csum_root(root_backup, csum_root->node->start);
1681 btrfs_set_backup_csum_root_gen(root_backup,
1682 btrfs_header_generation(csum_root->node));
1683 btrfs_set_backup_csum_root_level(root_backup,
1684 btrfs_header_level(csum_root->node));
1685 }
1686
1687 /*
1688 * we might commit during log recovery, which happens before we set
1689 * the fs_root. Make sure it is valid before we fill it in.
1690 */
1691 if (info->fs_root && info->fs_root->node) {
1692 btrfs_set_backup_fs_root(root_backup,
1693 info->fs_root->node->start);
1694 btrfs_set_backup_fs_root_gen(root_backup,
1695 btrfs_header_generation(info->fs_root->node));
1696 btrfs_set_backup_fs_root_level(root_backup,
1697 btrfs_header_level(info->fs_root->node));
1698 }
1699
1700 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1701 btrfs_set_backup_dev_root_gen(root_backup,
1702 btrfs_header_generation(info->dev_root->node));
1703 btrfs_set_backup_dev_root_level(root_backup,
1704 btrfs_header_level(info->dev_root->node));
1705
1706 btrfs_set_backup_total_bytes(root_backup,
1707 btrfs_super_total_bytes(info->super_copy));
1708 btrfs_set_backup_bytes_used(root_backup,
1709 btrfs_super_bytes_used(info->super_copy));
1710 btrfs_set_backup_num_devices(root_backup,
1711 btrfs_super_num_devices(info->super_copy));
1712
1713 /*
1714 * if we don't copy this out to the super_copy, it won't get remembered
1715 * for the next commit
1716 */
1717 memcpy(&info->super_copy->super_roots,
1718 &info->super_for_commit->super_roots,
1719 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1720 }
1721
1722 /*
1723 * Reads a backup root based on the passed priority. Prio 0 is the newest, prio
1724 * 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
1725 *
1726 * @fs_info: filesystem whose backup roots need to be read
1727 * @priority: priority of backup root required
1728 *
1729 * Returns backup root index on success and -EINVAL otherwise.
1730 */
read_backup_root(struct btrfs_fs_info * fs_info,u8 priority)1731 static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
1732 {
1733 int backup_index = find_newest_super_backup(fs_info);
1734 struct btrfs_super_block *super = fs_info->super_copy;
1735 struct btrfs_root_backup *root_backup;
1736
1737 if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
1738 if (priority == 0)
1739 return backup_index;
1740
1741 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
1742 backup_index %= BTRFS_NUM_BACKUP_ROOTS;
1743 } else {
1744 return -EINVAL;
1745 }
1746
1747 root_backup = super->super_roots + backup_index;
1748
1749 btrfs_set_super_generation(super,
1750 btrfs_backup_tree_root_gen(root_backup));
1751 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1752 btrfs_set_super_root_level(super,
1753 btrfs_backup_tree_root_level(root_backup));
1754 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1755
1756 /*
1757 * Fixme: the total bytes and num_devices need to match or we should
1758 * need a fsck
1759 */
1760 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1761 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1762
1763 return backup_index;
1764 }
1765
1766 /* helper to cleanup workers */
btrfs_stop_all_workers(struct btrfs_fs_info * fs_info)1767 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1768 {
1769 btrfs_destroy_workqueue(fs_info->fixup_workers);
1770 btrfs_destroy_workqueue(fs_info->delalloc_workers);
1771 btrfs_destroy_workqueue(fs_info->workers);
1772 if (fs_info->endio_workers)
1773 destroy_workqueue(fs_info->endio_workers);
1774 if (fs_info->rmw_workers)
1775 destroy_workqueue(fs_info->rmw_workers);
1776 if (fs_info->compressed_write_workers)
1777 destroy_workqueue(fs_info->compressed_write_workers);
1778 btrfs_destroy_workqueue(fs_info->endio_write_workers);
1779 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
1780 btrfs_destroy_workqueue(fs_info->delayed_workers);
1781 btrfs_destroy_workqueue(fs_info->caching_workers);
1782 btrfs_destroy_workqueue(fs_info->flush_workers);
1783 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
1784 if (fs_info->discard_ctl.discard_workers)
1785 destroy_workqueue(fs_info->discard_ctl.discard_workers);
1786 /*
1787 * Now that all other work queues are destroyed, we can safely destroy
1788 * the queues used for metadata I/O, since tasks from those other work
1789 * queues can do metadata I/O operations.
1790 */
1791 if (fs_info->endio_meta_workers)
1792 destroy_workqueue(fs_info->endio_meta_workers);
1793 }
1794
free_root_extent_buffers(struct btrfs_root * root)1795 static void free_root_extent_buffers(struct btrfs_root *root)
1796 {
1797 if (root) {
1798 free_extent_buffer(root->node);
1799 free_extent_buffer(root->commit_root);
1800 root->node = NULL;
1801 root->commit_root = NULL;
1802 }
1803 }
1804
free_global_root_pointers(struct btrfs_fs_info * fs_info)1805 static void free_global_root_pointers(struct btrfs_fs_info *fs_info)
1806 {
1807 struct btrfs_root *root, *tmp;
1808
1809 rbtree_postorder_for_each_entry_safe(root, tmp,
1810 &fs_info->global_root_tree,
1811 rb_node)
1812 free_root_extent_buffers(root);
1813 }
1814
1815 /* helper to cleanup tree roots */
free_root_pointers(struct btrfs_fs_info * info,bool free_chunk_root)1816 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
1817 {
1818 free_root_extent_buffers(info->tree_root);
1819
1820 free_global_root_pointers(info);
1821 free_root_extent_buffers(info->dev_root);
1822 free_root_extent_buffers(info->quota_root);
1823 free_root_extent_buffers(info->uuid_root);
1824 free_root_extent_buffers(info->fs_root);
1825 free_root_extent_buffers(info->data_reloc_root);
1826 free_root_extent_buffers(info->block_group_root);
1827 free_root_extent_buffers(info->stripe_root);
1828 if (free_chunk_root)
1829 free_root_extent_buffers(info->chunk_root);
1830 }
1831
btrfs_put_root(struct btrfs_root * root)1832 void btrfs_put_root(struct btrfs_root *root)
1833 {
1834 if (!root)
1835 return;
1836
1837 if (refcount_dec_and_test(&root->refs)) {
1838 if (WARN_ON(!xa_empty(&root->inodes)))
1839 xa_destroy(&root->inodes);
1840 if (WARN_ON(!xa_empty(&root->delayed_nodes)))
1841 xa_destroy(&root->delayed_nodes);
1842 WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
1843 if (root->anon_dev)
1844 free_anon_bdev(root->anon_dev);
1845 free_root_extent_buffers(root);
1846 #ifdef CONFIG_BTRFS_DEBUG
1847 spin_lock(&root->fs_info->fs_roots_radix_lock);
1848 list_del_init(&root->leak_list);
1849 spin_unlock(&root->fs_info->fs_roots_radix_lock);
1850 #endif
1851 kfree(root);
1852 }
1853 }
1854
btrfs_free_fs_roots(struct btrfs_fs_info * fs_info)1855 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
1856 {
1857 int ret;
1858 struct btrfs_root *gang[8];
1859 int i;
1860
1861 while (!list_empty(&fs_info->dead_roots)) {
1862 gang[0] = list_first_entry(&fs_info->dead_roots,
1863 struct btrfs_root, root_list);
1864 list_del(&gang[0]->root_list);
1865
1866 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
1867 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
1868 btrfs_put_root(gang[0]);
1869 }
1870
1871 while (1) {
1872 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
1873 (void **)gang, 0,
1874 ARRAY_SIZE(gang));
1875 if (!ret)
1876 break;
1877 for (i = 0; i < ret; i++)
1878 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
1879 }
1880 }
1881
btrfs_init_scrub(struct btrfs_fs_info * fs_info)1882 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
1883 {
1884 mutex_init(&fs_info->scrub_lock);
1885 atomic_set(&fs_info->scrubs_running, 0);
1886 atomic_set(&fs_info->scrub_pause_req, 0);
1887 atomic_set(&fs_info->scrubs_paused, 0);
1888 atomic_set(&fs_info->scrub_cancel_req, 0);
1889 init_waitqueue_head(&fs_info->scrub_pause_wait);
1890 refcount_set(&fs_info->scrub_workers_refcnt, 0);
1891 }
1892
btrfs_init_balance(struct btrfs_fs_info * fs_info)1893 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
1894 {
1895 spin_lock_init(&fs_info->balance_lock);
1896 mutex_init(&fs_info->balance_mutex);
1897 atomic_set(&fs_info->balance_pause_req, 0);
1898 atomic_set(&fs_info->balance_cancel_req, 0);
1899 fs_info->balance_ctl = NULL;
1900 init_waitqueue_head(&fs_info->balance_wait_q);
1901 atomic_set(&fs_info->reloc_cancel_req, 0);
1902 }
1903
btrfs_init_btree_inode(struct super_block * sb)1904 static int btrfs_init_btree_inode(struct super_block *sb)
1905 {
1906 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1907 unsigned long hash = btrfs_inode_hash(BTRFS_BTREE_INODE_OBJECTID,
1908 fs_info->tree_root);
1909 struct inode *inode;
1910
1911 inode = new_inode(sb);
1912 if (!inode)
1913 return -ENOMEM;
1914
1915 btrfs_set_inode_number(BTRFS_I(inode), BTRFS_BTREE_INODE_OBJECTID);
1916 set_nlink(inode, 1);
1917 /*
1918 * we set the i_size on the btree inode to the max possible int.
1919 * the real end of the address space is determined by all of
1920 * the devices in the system
1921 */
1922 inode->i_size = OFFSET_MAX;
1923 inode->i_mapping->a_ops = &btree_aops;
1924 mapping_set_gfp_mask(inode->i_mapping, GFP_NOFS);
1925
1926 btrfs_extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
1927 IO_TREE_BTREE_INODE_IO);
1928 btrfs_extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
1929
1930 BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
1931 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
1932 __insert_inode_hash(inode, hash);
1933 fs_info->btree_inode = inode;
1934
1935 return 0;
1936 }
1937
btrfs_init_dev_replace_locks(struct btrfs_fs_info * fs_info)1938 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
1939 {
1940 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
1941 init_rwsem(&fs_info->dev_replace.rwsem);
1942 init_waitqueue_head(&fs_info->dev_replace.replace_wait);
1943 }
1944
btrfs_init_qgroup(struct btrfs_fs_info * fs_info)1945 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
1946 {
1947 spin_lock_init(&fs_info->qgroup_lock);
1948 mutex_init(&fs_info->qgroup_ioctl_lock);
1949 fs_info->qgroup_tree = RB_ROOT;
1950 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
1951 fs_info->qgroup_seq = 1;
1952 fs_info->qgroup_rescan_running = false;
1953 fs_info->qgroup_drop_subtree_thres = BTRFS_QGROUP_DROP_SUBTREE_THRES_DEFAULT;
1954 mutex_init(&fs_info->qgroup_rescan_lock);
1955 }
1956
btrfs_init_workqueues(struct btrfs_fs_info * fs_info)1957 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info)
1958 {
1959 u32 max_active = fs_info->thread_pool_size;
1960 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
1961 unsigned int ordered_flags = WQ_MEM_RECLAIM | WQ_FREEZABLE;
1962
1963 fs_info->workers =
1964 btrfs_alloc_workqueue(fs_info, "worker", flags, max_active, 16);
1965
1966 fs_info->delalloc_workers =
1967 btrfs_alloc_workqueue(fs_info, "delalloc",
1968 flags, max_active, 2);
1969
1970 fs_info->flush_workers =
1971 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
1972 flags, max_active, 0);
1973
1974 fs_info->caching_workers =
1975 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
1976
1977 fs_info->fixup_workers =
1978 btrfs_alloc_ordered_workqueue(fs_info, "fixup", ordered_flags);
1979
1980 fs_info->endio_workers =
1981 alloc_workqueue("btrfs-endio", flags, max_active);
1982 fs_info->endio_meta_workers =
1983 alloc_workqueue("btrfs-endio-meta", flags, max_active);
1984 fs_info->rmw_workers = alloc_workqueue("btrfs-rmw", flags, max_active);
1985 fs_info->endio_write_workers =
1986 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
1987 max_active, 2);
1988 fs_info->compressed_write_workers =
1989 alloc_workqueue("btrfs-compressed-write", flags, max_active);
1990 fs_info->endio_freespace_worker =
1991 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
1992 max_active, 0);
1993 fs_info->delayed_workers =
1994 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
1995 max_active, 0);
1996 fs_info->qgroup_rescan_workers =
1997 btrfs_alloc_ordered_workqueue(fs_info, "qgroup-rescan",
1998 ordered_flags);
1999 fs_info->discard_ctl.discard_workers =
2000 alloc_ordered_workqueue("btrfs-discard", WQ_FREEZABLE);
2001
2002 if (!(fs_info->workers &&
2003 fs_info->delalloc_workers && fs_info->flush_workers &&
2004 fs_info->endio_workers && fs_info->endio_meta_workers &&
2005 fs_info->compressed_write_workers &&
2006 fs_info->endio_write_workers &&
2007 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2008 fs_info->caching_workers && fs_info->fixup_workers &&
2009 fs_info->delayed_workers && fs_info->qgroup_rescan_workers &&
2010 fs_info->discard_ctl.discard_workers)) {
2011 return -ENOMEM;
2012 }
2013
2014 return 0;
2015 }
2016
btrfs_init_csum_hash(struct btrfs_fs_info * fs_info,u16 csum_type)2017 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2018 {
2019 struct crypto_shash *csum_shash;
2020 const char *csum_driver = btrfs_super_csum_driver(csum_type);
2021
2022 csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
2023
2024 if (IS_ERR(csum_shash)) {
2025 btrfs_err(fs_info, "error allocating %s hash for checksum",
2026 csum_driver);
2027 return PTR_ERR(csum_shash);
2028 }
2029
2030 fs_info->csum_shash = csum_shash;
2031
2032 /* Check if the checksum implementation is a fast accelerated one. */
2033 switch (csum_type) {
2034 case BTRFS_CSUM_TYPE_CRC32:
2035 if (crc32_optimizations() & CRC32C_OPTIMIZATION)
2036 set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags);
2037 break;
2038 case BTRFS_CSUM_TYPE_XXHASH:
2039 set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags);
2040 break;
2041 default:
2042 break;
2043 }
2044
2045 btrfs_info(fs_info, "using %s (%s) checksum algorithm",
2046 btrfs_super_csum_name(csum_type),
2047 crypto_shash_driver_name(csum_shash));
2048 return 0;
2049 }
2050
btrfs_replay_log(struct btrfs_fs_info * fs_info,struct btrfs_fs_devices * fs_devices)2051 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2052 struct btrfs_fs_devices *fs_devices)
2053 {
2054 int ret;
2055 struct btrfs_tree_parent_check check = { 0 };
2056 struct btrfs_root *log_tree_root;
2057 struct btrfs_super_block *disk_super = fs_info->super_copy;
2058 u64 bytenr = btrfs_super_log_root(disk_super);
2059 int level = btrfs_super_log_root_level(disk_super);
2060
2061 if (fs_devices->rw_devices == 0) {
2062 btrfs_warn(fs_info, "log replay required on RO media");
2063 return -EIO;
2064 }
2065
2066 log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2067 GFP_KERNEL);
2068 if (!log_tree_root)
2069 return -ENOMEM;
2070
2071 check.level = level;
2072 check.transid = fs_info->generation + 1;
2073 check.owner_root = BTRFS_TREE_LOG_OBJECTID;
2074 log_tree_root->node = read_tree_block(fs_info, bytenr, &check);
2075 if (IS_ERR(log_tree_root->node)) {
2076 btrfs_warn(fs_info, "failed to read log tree");
2077 ret = PTR_ERR(log_tree_root->node);
2078 log_tree_root->node = NULL;
2079 btrfs_put_root(log_tree_root);
2080 return ret;
2081 }
2082 if (!extent_buffer_uptodate(log_tree_root->node)) {
2083 btrfs_err(fs_info, "failed to read log tree");
2084 btrfs_put_root(log_tree_root);
2085 return -EIO;
2086 }
2087
2088 /* returns with log_tree_root freed on success */
2089 ret = btrfs_recover_log_trees(log_tree_root);
2090 if (ret) {
2091 btrfs_handle_fs_error(fs_info, ret,
2092 "Failed to recover log tree");
2093 btrfs_put_root(log_tree_root);
2094 return ret;
2095 }
2096
2097 if (sb_rdonly(fs_info->sb)) {
2098 ret = btrfs_commit_super(fs_info);
2099 if (ret)
2100 return ret;
2101 }
2102
2103 return 0;
2104 }
2105
load_global_roots_objectid(struct btrfs_root * tree_root,struct btrfs_path * path,u64 objectid,const char * name)2106 static int load_global_roots_objectid(struct btrfs_root *tree_root,
2107 struct btrfs_path *path, u64 objectid,
2108 const char *name)
2109 {
2110 struct btrfs_fs_info *fs_info = tree_root->fs_info;
2111 struct btrfs_root *root;
2112 u64 max_global_id = 0;
2113 int ret;
2114 struct btrfs_key key = {
2115 .objectid = objectid,
2116 .type = BTRFS_ROOT_ITEM_KEY,
2117 .offset = 0,
2118 };
2119 bool found = false;
2120
2121 /* If we have IGNOREDATACSUMS skip loading these roots. */
2122 if (objectid == BTRFS_CSUM_TREE_OBJECTID &&
2123 btrfs_test_opt(fs_info, IGNOREDATACSUMS)) {
2124 set_bit(BTRFS_FS_STATE_NO_DATA_CSUMS, &fs_info->fs_state);
2125 return 0;
2126 }
2127
2128 while (1) {
2129 ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
2130 if (ret < 0)
2131 break;
2132
2133 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2134 ret = btrfs_next_leaf(tree_root, path);
2135 if (ret) {
2136 if (ret > 0)
2137 ret = 0;
2138 break;
2139 }
2140 }
2141 ret = 0;
2142
2143 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2144 if (key.objectid != objectid)
2145 break;
2146 btrfs_release_path(path);
2147
2148 /*
2149 * Just worry about this for extent tree, it'll be the same for
2150 * everybody.
2151 */
2152 if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2153 max_global_id = max(max_global_id, key.offset);
2154
2155 found = true;
2156 root = read_tree_root_path(tree_root, path, &key);
2157 if (IS_ERR(root)) {
2158 ret = PTR_ERR(root);
2159 break;
2160 }
2161 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2162 ret = btrfs_global_root_insert(root);
2163 if (ret) {
2164 btrfs_put_root(root);
2165 break;
2166 }
2167 key.offset++;
2168 }
2169 btrfs_release_path(path);
2170
2171 if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2172 fs_info->nr_global_roots = max_global_id + 1;
2173
2174 if (!found || ret) {
2175 if (objectid == BTRFS_CSUM_TREE_OBJECTID)
2176 set_bit(BTRFS_FS_STATE_NO_DATA_CSUMS, &fs_info->fs_state);
2177
2178 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2179 ret = ret ? ret : -ENOENT;
2180 else
2181 ret = 0;
2182 btrfs_err(fs_info, "failed to load root %s", name);
2183 }
2184 return ret;
2185 }
2186
load_global_roots(struct btrfs_root * tree_root)2187 static int load_global_roots(struct btrfs_root *tree_root)
2188 {
2189 BTRFS_PATH_AUTO_FREE(path);
2190 int ret;
2191
2192 path = btrfs_alloc_path();
2193 if (!path)
2194 return -ENOMEM;
2195
2196 ret = load_global_roots_objectid(tree_root, path,
2197 BTRFS_EXTENT_TREE_OBJECTID, "extent");
2198 if (ret)
2199 return ret;
2200 ret = load_global_roots_objectid(tree_root, path,
2201 BTRFS_CSUM_TREE_OBJECTID, "csum");
2202 if (ret)
2203 return ret;
2204 if (!btrfs_fs_compat_ro(tree_root->fs_info, FREE_SPACE_TREE))
2205 return ret;
2206 ret = load_global_roots_objectid(tree_root, path,
2207 BTRFS_FREE_SPACE_TREE_OBJECTID,
2208 "free space");
2209
2210 return ret;
2211 }
2212
btrfs_read_roots(struct btrfs_fs_info * fs_info)2213 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2214 {
2215 struct btrfs_root *tree_root = fs_info->tree_root;
2216 struct btrfs_root *root;
2217 struct btrfs_key location;
2218 int ret;
2219
2220 ASSERT(fs_info->tree_root);
2221
2222 ret = load_global_roots(tree_root);
2223 if (ret)
2224 return ret;
2225
2226 location.type = BTRFS_ROOT_ITEM_KEY;
2227 location.offset = 0;
2228
2229 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) {
2230 location.objectid = BTRFS_BLOCK_GROUP_TREE_OBJECTID;
2231 root = btrfs_read_tree_root(tree_root, &location);
2232 if (IS_ERR(root)) {
2233 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2234 ret = PTR_ERR(root);
2235 goto out;
2236 }
2237 } else {
2238 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2239 fs_info->block_group_root = root;
2240 }
2241 }
2242
2243 location.objectid = BTRFS_DEV_TREE_OBJECTID;
2244 root = btrfs_read_tree_root(tree_root, &location);
2245 if (IS_ERR(root)) {
2246 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2247 ret = PTR_ERR(root);
2248 goto out;
2249 }
2250 } else {
2251 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2252 fs_info->dev_root = root;
2253 }
2254 /* Initialize fs_info for all devices in any case */
2255 ret = btrfs_init_devices_late(fs_info);
2256 if (ret)
2257 goto out;
2258
2259 /*
2260 * This tree can share blocks with some other fs tree during relocation
2261 * and we need a proper setup by btrfs_get_fs_root
2262 */
2263 root = btrfs_get_fs_root(tree_root->fs_info,
2264 BTRFS_DATA_RELOC_TREE_OBJECTID, true);
2265 if (IS_ERR(root)) {
2266 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2267 ret = PTR_ERR(root);
2268 goto out;
2269 }
2270 } else {
2271 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2272 fs_info->data_reloc_root = root;
2273 }
2274
2275 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2276 root = btrfs_read_tree_root(tree_root, &location);
2277 if (!IS_ERR(root)) {
2278 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2279 fs_info->quota_root = root;
2280 }
2281
2282 location.objectid = BTRFS_UUID_TREE_OBJECTID;
2283 root = btrfs_read_tree_root(tree_root, &location);
2284 if (IS_ERR(root)) {
2285 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2286 ret = PTR_ERR(root);
2287 if (ret != -ENOENT)
2288 goto out;
2289 }
2290 } else {
2291 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2292 fs_info->uuid_root = root;
2293 }
2294
2295 if (btrfs_fs_incompat(fs_info, RAID_STRIPE_TREE)) {
2296 location.objectid = BTRFS_RAID_STRIPE_TREE_OBJECTID;
2297 root = btrfs_read_tree_root(tree_root, &location);
2298 if (IS_ERR(root)) {
2299 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2300 ret = PTR_ERR(root);
2301 goto out;
2302 }
2303 } else {
2304 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2305 fs_info->stripe_root = root;
2306 }
2307 }
2308
2309 return 0;
2310 out:
2311 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2312 location.objectid, ret);
2313 return ret;
2314 }
2315
validate_sys_chunk_array(const struct btrfs_fs_info * fs_info,const struct btrfs_super_block * sb)2316 static int validate_sys_chunk_array(const struct btrfs_fs_info *fs_info,
2317 const struct btrfs_super_block *sb)
2318 {
2319 unsigned int cur = 0; /* Offset inside the sys chunk array */
2320 /*
2321 * At sb read time, fs_info is not fully initialized. Thus we have
2322 * to use super block sectorsize, which should have been validated.
2323 */
2324 const u32 sectorsize = btrfs_super_sectorsize(sb);
2325 u32 sys_array_size = btrfs_super_sys_array_size(sb);
2326
2327 if (sys_array_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2328 btrfs_err(fs_info, "system chunk array too big %u > %u",
2329 sys_array_size, BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2330 return -EUCLEAN;
2331 }
2332
2333 while (cur < sys_array_size) {
2334 struct btrfs_disk_key *disk_key;
2335 struct btrfs_chunk *chunk;
2336 struct btrfs_key key;
2337 u64 type;
2338 u16 num_stripes;
2339 u32 len;
2340 int ret;
2341
2342 disk_key = (struct btrfs_disk_key *)(sb->sys_chunk_array + cur);
2343 len = sizeof(*disk_key);
2344
2345 if (cur + len > sys_array_size)
2346 goto short_read;
2347 cur += len;
2348
2349 btrfs_disk_key_to_cpu(&key, disk_key);
2350 if (key.type != BTRFS_CHUNK_ITEM_KEY) {
2351 btrfs_err(fs_info,
2352 "unexpected item type %u in sys_array at offset %u",
2353 key.type, cur);
2354 return -EUCLEAN;
2355 }
2356 chunk = (struct btrfs_chunk *)(sb->sys_chunk_array + cur);
2357 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2358 if (cur + btrfs_chunk_item_size(num_stripes) > sys_array_size)
2359 goto short_read;
2360 type = btrfs_stack_chunk_type(chunk);
2361 if (!(type & BTRFS_BLOCK_GROUP_SYSTEM)) {
2362 btrfs_err(fs_info,
2363 "invalid chunk type %llu in sys_array at offset %u",
2364 type, cur);
2365 return -EUCLEAN;
2366 }
2367 ret = btrfs_check_chunk_valid(fs_info, NULL, chunk, key.offset,
2368 sectorsize);
2369 if (ret < 0)
2370 return ret;
2371 cur += btrfs_chunk_item_size(num_stripes);
2372 }
2373 return 0;
2374 short_read:
2375 btrfs_err(fs_info,
2376 "super block sys chunk array short read, cur=%u sys_array_size=%u",
2377 cur, sys_array_size);
2378 return -EUCLEAN;
2379 }
2380
2381 /*
2382 * Real super block validation
2383 * NOTE: super csum type and incompat features will not be checked here.
2384 *
2385 * @sb: super block to check
2386 * @mirror_num: the super block number to check its bytenr:
2387 * 0 the primary (1st) sb
2388 * 1, 2 2nd and 3rd backup copy
2389 * -1 skip bytenr check
2390 */
btrfs_validate_super(const struct btrfs_fs_info * fs_info,const struct btrfs_super_block * sb,int mirror_num)2391 int btrfs_validate_super(const struct btrfs_fs_info *fs_info,
2392 const struct btrfs_super_block *sb, int mirror_num)
2393 {
2394 u64 nodesize = btrfs_super_nodesize(sb);
2395 u64 sectorsize = btrfs_super_sectorsize(sb);
2396 int ret = 0;
2397 const bool ignore_flags = btrfs_test_opt(fs_info, IGNORESUPERFLAGS);
2398
2399 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2400 btrfs_err(fs_info, "no valid FS found");
2401 ret = -EINVAL;
2402 }
2403 if ((btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP)) {
2404 if (!ignore_flags) {
2405 btrfs_err(fs_info,
2406 "unrecognized or unsupported super flag 0x%llx",
2407 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2408 ret = -EINVAL;
2409 } else {
2410 btrfs_info(fs_info,
2411 "unrecognized or unsupported super flags: 0x%llx, ignored",
2412 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2413 }
2414 }
2415 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2416 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2417 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2418 ret = -EINVAL;
2419 }
2420 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2421 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2422 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2423 ret = -EINVAL;
2424 }
2425 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2426 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2427 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2428 ret = -EINVAL;
2429 }
2430
2431 /*
2432 * Check sectorsize and nodesize first, other check will need it.
2433 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2434 */
2435 if (!is_power_of_2(sectorsize) || sectorsize < BTRFS_MIN_BLOCKSIZE ||
2436 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2437 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2438 ret = -EINVAL;
2439 }
2440
2441 /*
2442 * We only support at most 3 sectorsizes: 4K, PAGE_SIZE, MIN_BLOCKSIZE.
2443 *
2444 * For 4K page sized systems with non-debug builds, all 3 matches (4K).
2445 * For 4K page sized systems with debug builds, there are two block sizes
2446 * supported. (4K and 2K)
2447 *
2448 * We can support 16K sectorsize with 64K page size without problem,
2449 * but such sectorsize/pagesize combination doesn't make much sense.
2450 * 4K will be our future standard, PAGE_SIZE is supported from the very
2451 * beginning.
2452 */
2453 if (sectorsize > PAGE_SIZE || (sectorsize != SZ_4K &&
2454 sectorsize != PAGE_SIZE &&
2455 sectorsize != BTRFS_MIN_BLOCKSIZE)) {
2456 btrfs_err(fs_info,
2457 "sectorsize %llu not yet supported for page size %lu",
2458 sectorsize, PAGE_SIZE);
2459 ret = -EINVAL;
2460 }
2461
2462 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2463 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2464 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2465 ret = -EINVAL;
2466 }
2467 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2468 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2469 le32_to_cpu(sb->__unused_leafsize), nodesize);
2470 ret = -EINVAL;
2471 }
2472
2473 /* Root alignment check */
2474 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2475 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2476 btrfs_super_root(sb));
2477 ret = -EINVAL;
2478 }
2479 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2480 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2481 btrfs_super_chunk_root(sb));
2482 ret = -EINVAL;
2483 }
2484 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2485 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2486 btrfs_super_log_root(sb));
2487 ret = -EINVAL;
2488 }
2489
2490 if (!fs_info->fs_devices->temp_fsid &&
2491 memcmp(fs_info->fs_devices->fsid, sb->fsid, BTRFS_FSID_SIZE) != 0) {
2492 btrfs_err(fs_info,
2493 "superblock fsid doesn't match fsid of fs_devices: %pU != %pU",
2494 sb->fsid, fs_info->fs_devices->fsid);
2495 ret = -EINVAL;
2496 }
2497
2498 if (memcmp(fs_info->fs_devices->metadata_uuid, btrfs_sb_fsid_ptr(sb),
2499 BTRFS_FSID_SIZE) != 0) {
2500 btrfs_err(fs_info,
2501 "superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU",
2502 btrfs_sb_fsid_ptr(sb), fs_info->fs_devices->metadata_uuid);
2503 ret = -EINVAL;
2504 }
2505
2506 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2507 BTRFS_FSID_SIZE) != 0) {
2508 btrfs_err(fs_info,
2509 "dev_item UUID does not match metadata fsid: %pU != %pU",
2510 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2511 ret = -EINVAL;
2512 }
2513
2514 /*
2515 * Artificial requirement for block-group-tree to force newer features
2516 * (free-space-tree, no-holes) so the test matrix is smaller.
2517 */
2518 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) &&
2519 (!btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID) ||
2520 !btrfs_fs_incompat(fs_info, NO_HOLES))) {
2521 btrfs_err(fs_info,
2522 "block-group-tree feature requires free-space-tree and no-holes");
2523 ret = -EINVAL;
2524 }
2525
2526 /*
2527 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2528 * done later
2529 */
2530 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2531 btrfs_err(fs_info, "bytes_used is too small %llu",
2532 btrfs_super_bytes_used(sb));
2533 ret = -EINVAL;
2534 }
2535 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2536 btrfs_err(fs_info, "invalid stripesize %u",
2537 btrfs_super_stripesize(sb));
2538 ret = -EINVAL;
2539 }
2540 if (btrfs_super_num_devices(sb) > (1UL << 31))
2541 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2542 btrfs_super_num_devices(sb));
2543 if (btrfs_super_num_devices(sb) == 0) {
2544 btrfs_err(fs_info, "number of devices is 0");
2545 ret = -EINVAL;
2546 }
2547
2548 if (mirror_num >= 0 &&
2549 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2550 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2551 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2552 ret = -EINVAL;
2553 }
2554
2555 if (ret)
2556 return ret;
2557
2558 ret = validate_sys_chunk_array(fs_info, sb);
2559
2560 /*
2561 * Obvious sys_chunk_array corruptions, it must hold at least one key
2562 * and one chunk
2563 */
2564 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2565 btrfs_err(fs_info, "system chunk array too big %u > %u",
2566 btrfs_super_sys_array_size(sb),
2567 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2568 ret = -EINVAL;
2569 }
2570 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2571 + sizeof(struct btrfs_chunk)) {
2572 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2573 btrfs_super_sys_array_size(sb),
2574 sizeof(struct btrfs_disk_key)
2575 + sizeof(struct btrfs_chunk));
2576 ret = -EINVAL;
2577 }
2578
2579 /*
2580 * The generation is a global counter, we'll trust it more than the others
2581 * but it's still possible that it's the one that's wrong.
2582 */
2583 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2584 btrfs_warn(fs_info,
2585 "suspicious: generation < chunk_root_generation: %llu < %llu",
2586 btrfs_super_generation(sb),
2587 btrfs_super_chunk_root_generation(sb));
2588 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2589 && btrfs_super_cache_generation(sb) != (u64)-1)
2590 btrfs_warn(fs_info,
2591 "suspicious: generation < cache_generation: %llu < %llu",
2592 btrfs_super_generation(sb),
2593 btrfs_super_cache_generation(sb));
2594
2595 return ret;
2596 }
2597
2598 /*
2599 * Validation of super block at mount time.
2600 * Some checks already done early at mount time, like csum type and incompat
2601 * flags will be skipped.
2602 */
btrfs_validate_mount_super(struct btrfs_fs_info * fs_info)2603 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2604 {
2605 return btrfs_validate_super(fs_info, fs_info->super_copy, 0);
2606 }
2607
2608 /*
2609 * Validation of super block at write time.
2610 * Some checks like bytenr check will be skipped as their values will be
2611 * overwritten soon.
2612 * Extra checks like csum type and incompat flags will be done here.
2613 */
btrfs_validate_write_super(struct btrfs_fs_info * fs_info,struct btrfs_super_block * sb)2614 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2615 struct btrfs_super_block *sb)
2616 {
2617 int ret;
2618
2619 ret = btrfs_validate_super(fs_info, sb, -1);
2620 if (ret < 0)
2621 goto out;
2622 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
2623 ret = -EUCLEAN;
2624 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2625 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2626 goto out;
2627 }
2628 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2629 ret = -EUCLEAN;
2630 btrfs_err(fs_info,
2631 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2632 btrfs_super_incompat_flags(sb),
2633 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2634 goto out;
2635 }
2636 out:
2637 if (ret < 0)
2638 btrfs_err(fs_info,
2639 "super block corruption detected before writing it to disk");
2640 return ret;
2641 }
2642
load_super_root(struct btrfs_root * root,u64 bytenr,u64 gen,int level)2643 static int load_super_root(struct btrfs_root *root, u64 bytenr, u64 gen, int level)
2644 {
2645 struct btrfs_tree_parent_check check = {
2646 .level = level,
2647 .transid = gen,
2648 .owner_root = btrfs_root_id(root)
2649 };
2650 int ret = 0;
2651
2652 root->node = read_tree_block(root->fs_info, bytenr, &check);
2653 if (IS_ERR(root->node)) {
2654 ret = PTR_ERR(root->node);
2655 root->node = NULL;
2656 return ret;
2657 }
2658 if (!extent_buffer_uptodate(root->node)) {
2659 free_extent_buffer(root->node);
2660 root->node = NULL;
2661 return -EIO;
2662 }
2663
2664 btrfs_set_root_node(&root->root_item, root->node);
2665 root->commit_root = btrfs_root_node(root);
2666 btrfs_set_root_refs(&root->root_item, 1);
2667 return ret;
2668 }
2669
load_important_roots(struct btrfs_fs_info * fs_info)2670 static int load_important_roots(struct btrfs_fs_info *fs_info)
2671 {
2672 struct btrfs_super_block *sb = fs_info->super_copy;
2673 u64 gen, bytenr;
2674 int level, ret;
2675
2676 bytenr = btrfs_super_root(sb);
2677 gen = btrfs_super_generation(sb);
2678 level = btrfs_super_root_level(sb);
2679 ret = load_super_root(fs_info->tree_root, bytenr, gen, level);
2680 if (ret) {
2681 btrfs_warn(fs_info, "couldn't read tree root");
2682 return ret;
2683 }
2684 return 0;
2685 }
2686
init_tree_roots(struct btrfs_fs_info * fs_info)2687 static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
2688 {
2689 int backup_index = find_newest_super_backup(fs_info);
2690 struct btrfs_super_block *sb = fs_info->super_copy;
2691 struct btrfs_root *tree_root = fs_info->tree_root;
2692 bool handle_error = false;
2693 int ret = 0;
2694 int i;
2695
2696 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2697 if (handle_error) {
2698 if (!IS_ERR(tree_root->node))
2699 free_extent_buffer(tree_root->node);
2700 tree_root->node = NULL;
2701
2702 if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2703 break;
2704
2705 free_root_pointers(fs_info, 0);
2706
2707 /*
2708 * Don't use the log in recovery mode, it won't be
2709 * valid
2710 */
2711 btrfs_set_super_log_root(sb, 0);
2712
2713 btrfs_warn(fs_info, "try to load backup roots slot %d", i);
2714 ret = read_backup_root(fs_info, i);
2715 backup_index = ret;
2716 if (ret < 0)
2717 return ret;
2718 }
2719
2720 ret = load_important_roots(fs_info);
2721 if (ret) {
2722 handle_error = true;
2723 continue;
2724 }
2725
2726 /*
2727 * No need to hold btrfs_root::objectid_mutex since the fs
2728 * hasn't been fully initialised and we are the only user
2729 */
2730 ret = btrfs_init_root_free_objectid(tree_root);
2731 if (ret < 0) {
2732 handle_error = true;
2733 continue;
2734 }
2735
2736 ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
2737
2738 ret = btrfs_read_roots(fs_info);
2739 if (ret < 0) {
2740 handle_error = true;
2741 continue;
2742 }
2743
2744 /* All successful */
2745 fs_info->generation = btrfs_header_generation(tree_root->node);
2746 btrfs_set_last_trans_committed(fs_info, fs_info->generation);
2747 fs_info->last_reloc_trans = 0;
2748
2749 /* Always begin writing backup roots after the one being used */
2750 if (backup_index < 0) {
2751 fs_info->backup_root_index = 0;
2752 } else {
2753 fs_info->backup_root_index = backup_index + 1;
2754 fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2755 }
2756 break;
2757 }
2758
2759 return ret;
2760 }
2761
2762 /*
2763 * Lockdep gets confused between our buffer_tree which requires IRQ locking because
2764 * we modify marks in the IRQ context, and our delayed inode xarray which doesn't
2765 * have these requirements. Use a class key so lockdep doesn't get them mixed up.
2766 */
2767 static struct lock_class_key buffer_xa_class;
2768
btrfs_init_fs_info(struct btrfs_fs_info * fs_info)2769 void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2770 {
2771 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2772
2773 /* Use the same flags as mapping->i_pages. */
2774 xa_init_flags(&fs_info->buffer_tree, XA_FLAGS_LOCK_IRQ | XA_FLAGS_ACCOUNT);
2775 lockdep_set_class(&fs_info->buffer_tree.xa_lock, &buffer_xa_class);
2776
2777 INIT_LIST_HEAD(&fs_info->trans_list);
2778 INIT_LIST_HEAD(&fs_info->dead_roots);
2779 INIT_LIST_HEAD(&fs_info->delayed_iputs);
2780 INIT_LIST_HEAD(&fs_info->delalloc_roots);
2781 INIT_LIST_HEAD(&fs_info->caching_block_groups);
2782 spin_lock_init(&fs_info->delalloc_root_lock);
2783 spin_lock_init(&fs_info->trans_lock);
2784 spin_lock_init(&fs_info->fs_roots_radix_lock);
2785 spin_lock_init(&fs_info->delayed_iput_lock);
2786 spin_lock_init(&fs_info->defrag_inodes_lock);
2787 spin_lock_init(&fs_info->super_lock);
2788 spin_lock_init(&fs_info->unused_bgs_lock);
2789 spin_lock_init(&fs_info->treelog_bg_lock);
2790 spin_lock_init(&fs_info->zone_active_bgs_lock);
2791 spin_lock_init(&fs_info->relocation_bg_lock);
2792 rwlock_init(&fs_info->tree_mod_log_lock);
2793 rwlock_init(&fs_info->global_root_lock);
2794 mutex_init(&fs_info->unused_bg_unpin_mutex);
2795 mutex_init(&fs_info->reclaim_bgs_lock);
2796 mutex_init(&fs_info->reloc_mutex);
2797 mutex_init(&fs_info->delalloc_root_mutex);
2798 mutex_init(&fs_info->zoned_meta_io_lock);
2799 mutex_init(&fs_info->zoned_data_reloc_io_lock);
2800 seqlock_init(&fs_info->profiles_lock);
2801
2802 btrfs_lockdep_init_map(fs_info, btrfs_trans_num_writers);
2803 btrfs_lockdep_init_map(fs_info, btrfs_trans_num_extwriters);
2804 btrfs_lockdep_init_map(fs_info, btrfs_trans_pending_ordered);
2805 btrfs_lockdep_init_map(fs_info, btrfs_ordered_extent);
2806 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_commit_prep,
2807 BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2808 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_unblocked,
2809 BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2810 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_super_committed,
2811 BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2812 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_completed,
2813 BTRFS_LOCKDEP_TRANS_COMPLETED);
2814
2815 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2816 INIT_LIST_HEAD(&fs_info->space_info);
2817 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2818 INIT_LIST_HEAD(&fs_info->unused_bgs);
2819 INIT_LIST_HEAD(&fs_info->reclaim_bgs);
2820 INIT_LIST_HEAD(&fs_info->zone_active_bgs);
2821 #ifdef CONFIG_BTRFS_DEBUG
2822 INIT_LIST_HEAD(&fs_info->allocated_roots);
2823 INIT_LIST_HEAD(&fs_info->allocated_ebs);
2824 spin_lock_init(&fs_info->eb_leak_lock);
2825 #endif
2826 fs_info->mapping_tree = RB_ROOT_CACHED;
2827 rwlock_init(&fs_info->mapping_tree_lock);
2828 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2829 BTRFS_BLOCK_RSV_GLOBAL);
2830 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2831 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2832 btrfs_init_block_rsv(&fs_info->treelog_rsv, BTRFS_BLOCK_RSV_TREELOG);
2833 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2834 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2835 BTRFS_BLOCK_RSV_DELOPS);
2836 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2837 BTRFS_BLOCK_RSV_DELREFS);
2838
2839 atomic_set(&fs_info->async_delalloc_pages, 0);
2840 atomic_set(&fs_info->defrag_running, 0);
2841 atomic_set(&fs_info->nr_delayed_iputs, 0);
2842 atomic64_set(&fs_info->tree_mod_seq, 0);
2843 fs_info->global_root_tree = RB_ROOT;
2844 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2845 fs_info->metadata_ratio = 0;
2846 fs_info->defrag_inodes = RB_ROOT;
2847 atomic64_set(&fs_info->free_chunk_space, 0);
2848 fs_info->tree_mod_log = RB_ROOT;
2849 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2850 btrfs_init_ref_verify(fs_info);
2851
2852 fs_info->thread_pool_size = min_t(unsigned long,
2853 num_online_cpus() + 2, 8);
2854
2855 INIT_LIST_HEAD(&fs_info->ordered_roots);
2856 spin_lock_init(&fs_info->ordered_root_lock);
2857
2858 btrfs_init_scrub(fs_info);
2859 btrfs_init_balance(fs_info);
2860 btrfs_init_async_reclaim_work(fs_info);
2861 btrfs_init_extent_map_shrinker_work(fs_info);
2862
2863 rwlock_init(&fs_info->block_group_cache_lock);
2864 fs_info->block_group_cache_tree = RB_ROOT_CACHED;
2865
2866 btrfs_extent_io_tree_init(fs_info, &fs_info->excluded_extents,
2867 IO_TREE_FS_EXCLUDED_EXTENTS);
2868
2869 mutex_init(&fs_info->ordered_operations_mutex);
2870 mutex_init(&fs_info->tree_log_mutex);
2871 mutex_init(&fs_info->chunk_mutex);
2872 mutex_init(&fs_info->transaction_kthread_mutex);
2873 mutex_init(&fs_info->cleaner_mutex);
2874 mutex_init(&fs_info->ro_block_group_mutex);
2875 init_rwsem(&fs_info->commit_root_sem);
2876 init_rwsem(&fs_info->cleanup_work_sem);
2877 init_rwsem(&fs_info->subvol_sem);
2878 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2879
2880 btrfs_init_dev_replace_locks(fs_info);
2881 btrfs_init_qgroup(fs_info);
2882 btrfs_discard_init(fs_info);
2883
2884 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2885 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2886
2887 init_waitqueue_head(&fs_info->transaction_throttle);
2888 init_waitqueue_head(&fs_info->transaction_wait);
2889 init_waitqueue_head(&fs_info->transaction_blocked_wait);
2890 init_waitqueue_head(&fs_info->async_submit_wait);
2891 init_waitqueue_head(&fs_info->delayed_iputs_wait);
2892
2893 /* Usable values until the real ones are cached from the superblock */
2894 fs_info->nodesize = 4096;
2895 fs_info->sectorsize = 4096;
2896 fs_info->sectorsize_bits = ilog2(4096);
2897 fs_info->stripesize = 4096;
2898
2899 /* Default compress algorithm when user does -o compress */
2900 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2901
2902 fs_info->max_extent_size = BTRFS_MAX_EXTENT_SIZE;
2903
2904 spin_lock_init(&fs_info->swapfile_pins_lock);
2905 fs_info->swapfile_pins = RB_ROOT;
2906
2907 fs_info->bg_reclaim_threshold = BTRFS_DEFAULT_RECLAIM_THRESH;
2908 INIT_WORK(&fs_info->reclaim_bgs_work, btrfs_reclaim_bgs_work);
2909 }
2910
init_mount_fs_info(struct btrfs_fs_info * fs_info,struct super_block * sb)2911 static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
2912 {
2913 int ret;
2914
2915 fs_info->sb = sb;
2916 /* Temporary fixed values for block size until we read the superblock. */
2917 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2918 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2919
2920 ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL);
2921 if (ret)
2922 return ret;
2923
2924 ret = percpu_counter_init(&fs_info->evictable_extent_maps, 0, GFP_KERNEL);
2925 if (ret)
2926 return ret;
2927
2928 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2929 if (ret)
2930 return ret;
2931
2932 ret = percpu_counter_init(&fs_info->stats_read_blocks, 0, GFP_KERNEL);
2933 if (ret)
2934 return ret;
2935
2936 fs_info->dirty_metadata_batch = PAGE_SIZE *
2937 (1 + ilog2(nr_cpu_ids));
2938
2939 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2940 if (ret)
2941 return ret;
2942
2943 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2944 GFP_KERNEL);
2945 if (ret)
2946 return ret;
2947
2948 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2949 GFP_KERNEL);
2950 if (!fs_info->delayed_root)
2951 return -ENOMEM;
2952 btrfs_init_delayed_root(fs_info->delayed_root);
2953
2954 if (sb_rdonly(sb))
2955 set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state);
2956 if (btrfs_test_opt(fs_info, IGNOREMETACSUMS))
2957 set_bit(BTRFS_FS_STATE_SKIP_META_CSUMS, &fs_info->fs_state);
2958
2959 return btrfs_alloc_stripe_hash_table(fs_info);
2960 }
2961
btrfs_uuid_rescan_kthread(void * data)2962 static int btrfs_uuid_rescan_kthread(void *data)
2963 {
2964 struct btrfs_fs_info *fs_info = data;
2965 int ret;
2966
2967 /*
2968 * 1st step is to iterate through the existing UUID tree and
2969 * to delete all entries that contain outdated data.
2970 * 2nd step is to add all missing entries to the UUID tree.
2971 */
2972 ret = btrfs_uuid_tree_iterate(fs_info);
2973 if (ret < 0) {
2974 if (ret != -EINTR)
2975 btrfs_warn(fs_info, "iterating uuid_tree failed %d",
2976 ret);
2977 up(&fs_info->uuid_tree_rescan_sem);
2978 return ret;
2979 }
2980 return btrfs_uuid_scan_kthread(data);
2981 }
2982
btrfs_check_uuid_tree(struct btrfs_fs_info * fs_info)2983 static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
2984 {
2985 struct task_struct *task;
2986
2987 down(&fs_info->uuid_tree_rescan_sem);
2988 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
2989 if (IS_ERR(task)) {
2990 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
2991 btrfs_warn(fs_info, "failed to start uuid_rescan task");
2992 up(&fs_info->uuid_tree_rescan_sem);
2993 return PTR_ERR(task);
2994 }
2995
2996 return 0;
2997 }
2998
btrfs_cleanup_fs_roots(struct btrfs_fs_info * fs_info)2999 static int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3000 {
3001 u64 root_objectid = 0;
3002 struct btrfs_root *gang[8];
3003 int ret = 0;
3004
3005 while (1) {
3006 unsigned int found;
3007
3008 spin_lock(&fs_info->fs_roots_radix_lock);
3009 found = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3010 (void **)gang, root_objectid,
3011 ARRAY_SIZE(gang));
3012 if (!found) {
3013 spin_unlock(&fs_info->fs_roots_radix_lock);
3014 break;
3015 }
3016 root_objectid = btrfs_root_id(gang[found - 1]) + 1;
3017
3018 for (int i = 0; i < found; i++) {
3019 /* Avoid to grab roots in dead_roots. */
3020 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3021 gang[i] = NULL;
3022 continue;
3023 }
3024 /* Grab all the search result for later use. */
3025 gang[i] = btrfs_grab_root(gang[i]);
3026 }
3027 spin_unlock(&fs_info->fs_roots_radix_lock);
3028
3029 for (int i = 0; i < found; i++) {
3030 if (!gang[i])
3031 continue;
3032 root_objectid = btrfs_root_id(gang[i]);
3033 /*
3034 * Continue to release the remaining roots after the first
3035 * error without cleanup and preserve the first error
3036 * for the return.
3037 */
3038 if (!ret)
3039 ret = btrfs_orphan_cleanup(gang[i]);
3040 btrfs_put_root(gang[i]);
3041 }
3042 if (ret)
3043 break;
3044
3045 root_objectid++;
3046 }
3047 return ret;
3048 }
3049
3050 /*
3051 * Mounting logic specific to read-write file systems. Shared by open_ctree
3052 * and btrfs_remount when remounting from read-only to read-write.
3053 */
btrfs_start_pre_rw_mount(struct btrfs_fs_info * fs_info)3054 int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info)
3055 {
3056 int ret;
3057 const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
3058 bool rebuild_free_space_tree = false;
3059
3060 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3061 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3062 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
3063 btrfs_warn(fs_info,
3064 "'clear_cache' option is ignored with extent tree v2");
3065 else
3066 rebuild_free_space_tree = true;
3067 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3068 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3069 btrfs_warn(fs_info, "free space tree is invalid");
3070 rebuild_free_space_tree = true;
3071 }
3072
3073 if (rebuild_free_space_tree) {
3074 btrfs_info(fs_info, "rebuilding free space tree");
3075 ret = btrfs_rebuild_free_space_tree(fs_info);
3076 if (ret) {
3077 btrfs_warn(fs_info,
3078 "failed to rebuild free space tree: %d", ret);
3079 goto out;
3080 }
3081 }
3082
3083 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3084 !btrfs_test_opt(fs_info, FREE_SPACE_TREE)) {
3085 btrfs_info(fs_info, "disabling free space tree");
3086 ret = btrfs_delete_free_space_tree(fs_info);
3087 if (ret) {
3088 btrfs_warn(fs_info,
3089 "failed to disable free space tree: %d", ret);
3090 goto out;
3091 }
3092 }
3093
3094 /*
3095 * btrfs_find_orphan_roots() is responsible for finding all the dead
3096 * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load
3097 * them into the fs_info->fs_roots_radix tree. This must be done before
3098 * calling btrfs_orphan_cleanup() on the tree root. If we don't do it
3099 * first, then btrfs_orphan_cleanup() will delete a dead root's orphan
3100 * item before the root's tree is deleted - this means that if we unmount
3101 * or crash before the deletion completes, on the next mount we will not
3102 * delete what remains of the tree because the orphan item does not
3103 * exists anymore, which is what tells us we have a pending deletion.
3104 */
3105 ret = btrfs_find_orphan_roots(fs_info);
3106 if (ret)
3107 goto out;
3108
3109 ret = btrfs_cleanup_fs_roots(fs_info);
3110 if (ret)
3111 goto out;
3112
3113 down_read(&fs_info->cleanup_work_sem);
3114 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3115 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3116 up_read(&fs_info->cleanup_work_sem);
3117 goto out;
3118 }
3119 up_read(&fs_info->cleanup_work_sem);
3120
3121 mutex_lock(&fs_info->cleaner_mutex);
3122 ret = btrfs_recover_relocation(fs_info);
3123 mutex_unlock(&fs_info->cleaner_mutex);
3124 if (ret < 0) {
3125 btrfs_warn(fs_info, "failed to recover relocation: %d", ret);
3126 goto out;
3127 }
3128
3129 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3130 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3131 btrfs_info(fs_info, "creating free space tree");
3132 ret = btrfs_create_free_space_tree(fs_info);
3133 if (ret) {
3134 btrfs_warn(fs_info,
3135 "failed to create free space tree: %d", ret);
3136 goto out;
3137 }
3138 }
3139
3140 if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) {
3141 ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
3142 if (ret)
3143 goto out;
3144 }
3145
3146 ret = btrfs_resume_balance_async(fs_info);
3147 if (ret)
3148 goto out;
3149
3150 ret = btrfs_resume_dev_replace_async(fs_info);
3151 if (ret) {
3152 btrfs_warn(fs_info, "failed to resume dev_replace");
3153 goto out;
3154 }
3155
3156 btrfs_qgroup_rescan_resume(fs_info);
3157
3158 if (!fs_info->uuid_root) {
3159 btrfs_info(fs_info, "creating UUID tree");
3160 ret = btrfs_create_uuid_tree(fs_info);
3161 if (ret) {
3162 btrfs_warn(fs_info,
3163 "failed to create the UUID tree %d", ret);
3164 goto out;
3165 }
3166 }
3167
3168 out:
3169 return ret;
3170 }
3171
3172 /*
3173 * Do various sanity and dependency checks of different features.
3174 *
3175 * @is_rw_mount: If the mount is read-write.
3176 *
3177 * This is the place for less strict checks (like for subpage or artificial
3178 * feature dependencies).
3179 *
3180 * For strict checks or possible corruption detection, see
3181 * btrfs_validate_super().
3182 *
3183 * This should be called after btrfs_parse_options(), as some mount options
3184 * (space cache related) can modify on-disk format like free space tree and
3185 * screw up certain feature dependencies.
3186 */
btrfs_check_features(struct btrfs_fs_info * fs_info,bool is_rw_mount)3187 int btrfs_check_features(struct btrfs_fs_info *fs_info, bool is_rw_mount)
3188 {
3189 struct btrfs_super_block *disk_super = fs_info->super_copy;
3190 u64 incompat = btrfs_super_incompat_flags(disk_super);
3191 const u64 compat_ro = btrfs_super_compat_ro_flags(disk_super);
3192 const u64 compat_ro_unsupp = (compat_ro & ~BTRFS_FEATURE_COMPAT_RO_SUPP);
3193
3194 if (incompat & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
3195 btrfs_err(fs_info,
3196 "cannot mount because of unknown incompat features (0x%llx)",
3197 incompat);
3198 return -EINVAL;
3199 }
3200
3201 /* Runtime limitation for mixed block groups. */
3202 if ((incompat & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
3203 (fs_info->sectorsize != fs_info->nodesize)) {
3204 btrfs_err(fs_info,
3205 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3206 fs_info->nodesize, fs_info->sectorsize);
3207 return -EINVAL;
3208 }
3209
3210 /* Mixed backref is an always-enabled feature. */
3211 incompat |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
3212
3213 /* Set compression related flags just in case. */
3214 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
3215 incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
3216 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
3217 incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
3218
3219 /*
3220 * An ancient flag, which should really be marked deprecated.
3221 * Such runtime limitation doesn't really need a incompat flag.
3222 */
3223 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE)
3224 incompat |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3225
3226 if (compat_ro_unsupp && is_rw_mount) {
3227 btrfs_err(fs_info,
3228 "cannot mount read-write because of unknown compat_ro features (0x%llx)",
3229 compat_ro);
3230 return -EINVAL;
3231 }
3232
3233 /*
3234 * We have unsupported RO compat features, although RO mounted, we
3235 * should not cause any metadata writes, including log replay.
3236 * Or we could screw up whatever the new feature requires.
3237 */
3238 if (compat_ro_unsupp && btrfs_super_log_root(disk_super) &&
3239 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3240 btrfs_err(fs_info,
3241 "cannot replay dirty log with unsupported compat_ro features (0x%llx), try rescue=nologreplay",
3242 compat_ro);
3243 return -EINVAL;
3244 }
3245
3246 /*
3247 * Artificial limitations for block group tree, to force
3248 * block-group-tree to rely on no-holes and free-space-tree.
3249 */
3250 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) &&
3251 (!btrfs_fs_incompat(fs_info, NO_HOLES) ||
3252 !btrfs_test_opt(fs_info, FREE_SPACE_TREE))) {
3253 btrfs_err(fs_info,
3254 "block-group-tree feature requires no-holes and free-space-tree features");
3255 return -EINVAL;
3256 }
3257
3258 /*
3259 * Subpage runtime limitation on v1 cache.
3260 *
3261 * V1 space cache still has some hard codeed PAGE_SIZE usage, while
3262 * we're already defaulting to v2 cache, no need to bother v1 as it's
3263 * going to be deprecated anyway.
3264 */
3265 if (fs_info->sectorsize < PAGE_SIZE && btrfs_test_opt(fs_info, SPACE_CACHE)) {
3266 btrfs_warn(fs_info,
3267 "v1 space cache is not supported for page size %lu with sectorsize %u",
3268 PAGE_SIZE, fs_info->sectorsize);
3269 return -EINVAL;
3270 }
3271
3272 /* This can be called by remount, we need to protect the super block. */
3273 spin_lock(&fs_info->super_lock);
3274 btrfs_set_super_incompat_flags(disk_super, incompat);
3275 spin_unlock(&fs_info->super_lock);
3276
3277 return 0;
3278 }
3279
open_ctree(struct super_block * sb,struct btrfs_fs_devices * fs_devices)3280 int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices)
3281 {
3282 u32 sectorsize;
3283 u32 nodesize;
3284 u32 stripesize;
3285 u64 generation;
3286 u16 csum_type;
3287 struct btrfs_super_block *disk_super;
3288 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
3289 struct btrfs_root *tree_root;
3290 struct btrfs_root *chunk_root;
3291 int ret;
3292 int level;
3293
3294 ret = init_mount_fs_info(fs_info, sb);
3295 if (ret)
3296 goto fail;
3297
3298 /* These need to be init'ed before we start creating inodes and such. */
3299 tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
3300 GFP_KERNEL);
3301 fs_info->tree_root = tree_root;
3302 chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
3303 GFP_KERNEL);
3304 fs_info->chunk_root = chunk_root;
3305 if (!tree_root || !chunk_root) {
3306 ret = -ENOMEM;
3307 goto fail;
3308 }
3309
3310 ret = btrfs_init_btree_inode(sb);
3311 if (ret)
3312 goto fail;
3313
3314 invalidate_bdev(fs_devices->latest_dev->bdev);
3315
3316 /*
3317 * Read super block and check the signature bytes only
3318 */
3319 disk_super = btrfs_read_disk_super(fs_devices->latest_dev->bdev, 0, false);
3320 if (IS_ERR(disk_super)) {
3321 ret = PTR_ERR(disk_super);
3322 goto fail_alloc;
3323 }
3324
3325 btrfs_info(fs_info, "first mount of filesystem %pU", disk_super->fsid);
3326 /*
3327 * Verify the type first, if that or the checksum value are
3328 * corrupted, we'll find out
3329 */
3330 csum_type = btrfs_super_csum_type(disk_super);
3331 if (!btrfs_supported_super_csum(csum_type)) {
3332 btrfs_err(fs_info, "unsupported checksum algorithm: %u",
3333 csum_type);
3334 ret = -EINVAL;
3335 btrfs_release_disk_super(disk_super);
3336 goto fail_alloc;
3337 }
3338
3339 fs_info->csum_size = btrfs_super_csum_size(disk_super);
3340
3341 ret = btrfs_init_csum_hash(fs_info, csum_type);
3342 if (ret) {
3343 btrfs_release_disk_super(disk_super);
3344 goto fail_alloc;
3345 }
3346
3347 /*
3348 * We want to check superblock checksum, the type is stored inside.
3349 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
3350 */
3351 if (btrfs_check_super_csum(fs_info, disk_super)) {
3352 btrfs_err(fs_info, "superblock checksum mismatch");
3353 ret = -EINVAL;
3354 btrfs_release_disk_super(disk_super);
3355 goto fail_alloc;
3356 }
3357
3358 /*
3359 * super_copy is zeroed at allocation time and we never touch the
3360 * following bytes up to INFO_SIZE, the checksum is calculated from
3361 * the whole block of INFO_SIZE
3362 */
3363 memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
3364 btrfs_release_disk_super(disk_super);
3365
3366 disk_super = fs_info->super_copy;
3367
3368 memcpy(fs_info->super_for_commit, fs_info->super_copy,
3369 sizeof(*fs_info->super_for_commit));
3370
3371 ret = btrfs_validate_mount_super(fs_info);
3372 if (ret) {
3373 btrfs_err(fs_info, "superblock contains fatal errors");
3374 ret = -EINVAL;
3375 goto fail_alloc;
3376 }
3377
3378 if (!btrfs_super_root(disk_super)) {
3379 btrfs_err(fs_info, "invalid superblock tree root bytenr");
3380 ret = -EINVAL;
3381 goto fail_alloc;
3382 }
3383
3384 /* check FS state, whether FS is broken. */
3385 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
3386 WRITE_ONCE(fs_info->fs_error, -EUCLEAN);
3387
3388 /* Set up fs_info before parsing mount options */
3389 nodesize = btrfs_super_nodesize(disk_super);
3390 sectorsize = btrfs_super_sectorsize(disk_super);
3391 stripesize = sectorsize;
3392 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
3393 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
3394
3395 fs_info->nodesize = nodesize;
3396 fs_info->nodesize_bits = ilog2(nodesize);
3397 fs_info->sectorsize = sectorsize;
3398 fs_info->sectorsize_bits = ilog2(sectorsize);
3399 fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size;
3400 fs_info->stripesize = stripesize;
3401 fs_info->fs_devices->fs_info = fs_info;
3402
3403 /*
3404 * Handle the space caching options appropriately now that we have the
3405 * super block loaded and validated.
3406 */
3407 btrfs_set_free_space_cache_settings(fs_info);
3408
3409 if (!btrfs_check_options(fs_info, &fs_info->mount_opt, sb->s_flags)) {
3410 ret = -EINVAL;
3411 goto fail_alloc;
3412 }
3413
3414 ret = btrfs_check_features(fs_info, !sb_rdonly(sb));
3415 if (ret < 0)
3416 goto fail_alloc;
3417
3418 /*
3419 * At this point our mount options are validated, if we set ->max_inline
3420 * to something non-standard make sure we truncate it to sectorsize.
3421 */
3422 fs_info->max_inline = min_t(u64, fs_info->max_inline, fs_info->sectorsize);
3423
3424 ret = btrfs_init_workqueues(fs_info);
3425 if (ret)
3426 goto fail_sb_buffer;
3427
3428 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3429 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
3430
3431 /* Update the values for the current filesystem. */
3432 sb->s_blocksize = sectorsize;
3433 sb->s_blocksize_bits = blksize_bits(sectorsize);
3434 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
3435
3436 mutex_lock(&fs_info->chunk_mutex);
3437 ret = btrfs_read_sys_array(fs_info);
3438 mutex_unlock(&fs_info->chunk_mutex);
3439 if (ret) {
3440 btrfs_err(fs_info, "failed to read the system array: %d", ret);
3441 goto fail_sb_buffer;
3442 }
3443
3444 generation = btrfs_super_chunk_root_generation(disk_super);
3445 level = btrfs_super_chunk_root_level(disk_super);
3446 ret = load_super_root(chunk_root, btrfs_super_chunk_root(disk_super),
3447 generation, level);
3448 if (ret) {
3449 btrfs_err(fs_info, "failed to read chunk root");
3450 goto fail_tree_roots;
3451 }
3452
3453 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
3454 offsetof(struct btrfs_header, chunk_tree_uuid),
3455 BTRFS_UUID_SIZE);
3456
3457 ret = btrfs_read_chunk_tree(fs_info);
3458 if (ret) {
3459 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
3460 goto fail_tree_roots;
3461 }
3462
3463 /*
3464 * At this point we know all the devices that make this filesystem,
3465 * including the seed devices but we don't know yet if the replace
3466 * target is required. So free devices that are not part of this
3467 * filesystem but skip the replace target device which is checked
3468 * below in btrfs_init_dev_replace().
3469 */
3470 btrfs_free_extra_devids(fs_devices);
3471 if (!fs_devices->latest_dev->bdev) {
3472 btrfs_err(fs_info, "failed to read devices");
3473 ret = -EIO;
3474 goto fail_tree_roots;
3475 }
3476
3477 ret = init_tree_roots(fs_info);
3478 if (ret)
3479 goto fail_tree_roots;
3480
3481 /*
3482 * Get zone type information of zoned block devices. This will also
3483 * handle emulation of a zoned filesystem if a regular device has the
3484 * zoned incompat feature flag set.
3485 */
3486 ret = btrfs_get_dev_zone_info_all_devices(fs_info);
3487 if (ret) {
3488 btrfs_err(fs_info,
3489 "zoned: failed to read device zone info: %d", ret);
3490 goto fail_block_groups;
3491 }
3492
3493 /*
3494 * If we have a uuid root and we're not being told to rescan we need to
3495 * check the generation here so we can set the
3496 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit. Otherwise we could commit the
3497 * transaction during a balance or the log replay without updating the
3498 * uuid generation, and then if we crash we would rescan the uuid tree,
3499 * even though it was perfectly fine.
3500 */
3501 if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3502 fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3503 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3504
3505 ret = btrfs_verify_dev_extents(fs_info);
3506 if (ret) {
3507 btrfs_err(fs_info,
3508 "failed to verify dev extents against chunks: %d",
3509 ret);
3510 goto fail_block_groups;
3511 }
3512 ret = btrfs_recover_balance(fs_info);
3513 if (ret) {
3514 btrfs_err(fs_info, "failed to recover balance: %d", ret);
3515 goto fail_block_groups;
3516 }
3517
3518 ret = btrfs_init_dev_stats(fs_info);
3519 if (ret) {
3520 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3521 goto fail_block_groups;
3522 }
3523
3524 ret = btrfs_init_dev_replace(fs_info);
3525 if (ret) {
3526 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3527 goto fail_block_groups;
3528 }
3529
3530 ret = btrfs_check_zoned_mode(fs_info);
3531 if (ret) {
3532 btrfs_err(fs_info, "failed to initialize zoned mode: %d",
3533 ret);
3534 goto fail_block_groups;
3535 }
3536
3537 ret = btrfs_sysfs_add_fsid(fs_devices);
3538 if (ret) {
3539 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3540 ret);
3541 goto fail_block_groups;
3542 }
3543
3544 ret = btrfs_sysfs_add_mounted(fs_info);
3545 if (ret) {
3546 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3547 goto fail_fsdev_sysfs;
3548 }
3549
3550 ret = btrfs_init_space_info(fs_info);
3551 if (ret) {
3552 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3553 goto fail_sysfs;
3554 }
3555
3556 ret = btrfs_read_block_groups(fs_info);
3557 if (ret) {
3558 btrfs_err(fs_info, "failed to read block groups: %d", ret);
3559 goto fail_sysfs;
3560 }
3561
3562 btrfs_zoned_reserve_data_reloc_bg(fs_info);
3563 btrfs_free_zone_cache(fs_info);
3564
3565 btrfs_check_active_zone_reservation(fs_info);
3566
3567 if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices &&
3568 !btrfs_check_rw_degradable(fs_info, NULL)) {
3569 btrfs_warn(fs_info,
3570 "writable mount is not allowed due to too many missing devices");
3571 ret = -EINVAL;
3572 goto fail_sysfs;
3573 }
3574
3575 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, fs_info,
3576 "btrfs-cleaner");
3577 if (IS_ERR(fs_info->cleaner_kthread)) {
3578 ret = PTR_ERR(fs_info->cleaner_kthread);
3579 goto fail_sysfs;
3580 }
3581
3582 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3583 tree_root,
3584 "btrfs-transaction");
3585 if (IS_ERR(fs_info->transaction_kthread)) {
3586 ret = PTR_ERR(fs_info->transaction_kthread);
3587 goto fail_cleaner;
3588 }
3589
3590 ret = btrfs_read_qgroup_config(fs_info);
3591 if (ret)
3592 goto fail_trans_kthread;
3593
3594 if (btrfs_build_ref_tree(fs_info))
3595 btrfs_err(fs_info, "couldn't build ref tree");
3596
3597 /* do not make disk changes in broken FS or nologreplay is given */
3598 if (btrfs_super_log_root(disk_super) != 0 &&
3599 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3600 btrfs_info(fs_info, "start tree-log replay");
3601 ret = btrfs_replay_log(fs_info, fs_devices);
3602 if (ret)
3603 goto fail_qgroup;
3604 }
3605
3606 fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
3607 if (IS_ERR(fs_info->fs_root)) {
3608 ret = PTR_ERR(fs_info->fs_root);
3609 btrfs_warn(fs_info, "failed to read fs tree: %d", ret);
3610 fs_info->fs_root = NULL;
3611 goto fail_qgroup;
3612 }
3613
3614 if (sb_rdonly(sb))
3615 return 0;
3616
3617 ret = btrfs_start_pre_rw_mount(fs_info);
3618 if (ret) {
3619 close_ctree(fs_info);
3620 return ret;
3621 }
3622 btrfs_discard_resume(fs_info);
3623
3624 if (fs_info->uuid_root &&
3625 (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3626 fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) {
3627 btrfs_info(fs_info, "checking UUID tree");
3628 ret = btrfs_check_uuid_tree(fs_info);
3629 if (ret) {
3630 btrfs_warn(fs_info,
3631 "failed to check the UUID tree: %d", ret);
3632 close_ctree(fs_info);
3633 return ret;
3634 }
3635 }
3636
3637 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3638
3639 /* Kick the cleaner thread so it'll start deleting snapshots. */
3640 if (test_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags))
3641 wake_up_process(fs_info->cleaner_kthread);
3642
3643 return 0;
3644
3645 fail_qgroup:
3646 btrfs_free_qgroup_config(fs_info);
3647 fail_trans_kthread:
3648 kthread_stop(fs_info->transaction_kthread);
3649 btrfs_cleanup_transaction(fs_info);
3650 btrfs_free_fs_roots(fs_info);
3651 fail_cleaner:
3652 kthread_stop(fs_info->cleaner_kthread);
3653
3654 /*
3655 * make sure we're done with the btree inode before we stop our
3656 * kthreads
3657 */
3658 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3659
3660 fail_sysfs:
3661 btrfs_sysfs_remove_mounted(fs_info);
3662
3663 fail_fsdev_sysfs:
3664 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3665
3666 fail_block_groups:
3667 btrfs_put_block_group_cache(fs_info);
3668
3669 fail_tree_roots:
3670 if (fs_info->data_reloc_root)
3671 btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root);
3672 free_root_pointers(fs_info, true);
3673 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3674
3675 fail_sb_buffer:
3676 btrfs_stop_all_workers(fs_info);
3677 btrfs_free_block_groups(fs_info);
3678 fail_alloc:
3679 btrfs_mapping_tree_free(fs_info);
3680
3681 iput(fs_info->btree_inode);
3682 fail:
3683 ASSERT(ret < 0);
3684 return ret;
3685 }
3686 ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3687
btrfs_end_super_write(struct bio * bio)3688 static void btrfs_end_super_write(struct bio *bio)
3689 {
3690 struct btrfs_device *device = bio->bi_private;
3691 struct folio_iter fi;
3692
3693 bio_for_each_folio_all(fi, bio) {
3694 if (bio->bi_status) {
3695 btrfs_warn_rl(device->fs_info,
3696 "lost super block write due to IO error on %s (%d)",
3697 btrfs_dev_name(device),
3698 blk_status_to_errno(bio->bi_status));
3699 btrfs_dev_stat_inc_and_print(device,
3700 BTRFS_DEV_STAT_WRITE_ERRS);
3701 /* Ensure failure if the primary sb fails. */
3702 if (bio->bi_opf & REQ_FUA)
3703 atomic_add(BTRFS_SUPER_PRIMARY_WRITE_ERROR,
3704 &device->sb_write_errors);
3705 else
3706 atomic_inc(&device->sb_write_errors);
3707 }
3708 folio_unlock(fi.folio);
3709 folio_put(fi.folio);
3710 }
3711
3712 bio_put(bio);
3713 }
3714
3715 /*
3716 * Write superblock @sb to the @device. Do not wait for completion, all the
3717 * folios we use for writing are locked.
3718 *
3719 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3720 * the expected device size at commit time. Note that max_mirrors must be
3721 * same for write and wait phases.
3722 *
3723 * Return number of errors when folio is not found or submission fails.
3724 */
write_dev_supers(struct btrfs_device * device,struct btrfs_super_block * sb,int max_mirrors)3725 static int write_dev_supers(struct btrfs_device *device,
3726 struct btrfs_super_block *sb, int max_mirrors)
3727 {
3728 struct btrfs_fs_info *fs_info = device->fs_info;
3729 struct address_space *mapping = device->bdev->bd_mapping;
3730 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3731 int i;
3732 int ret;
3733 u64 bytenr, bytenr_orig;
3734
3735 atomic_set(&device->sb_write_errors, 0);
3736
3737 if (max_mirrors == 0)
3738 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3739
3740 shash->tfm = fs_info->csum_shash;
3741
3742 for (i = 0; i < max_mirrors; i++) {
3743 struct folio *folio;
3744 struct bio *bio;
3745 struct btrfs_super_block *disk_super;
3746 size_t offset;
3747
3748 bytenr_orig = btrfs_sb_offset(i);
3749 ret = btrfs_sb_log_location(device, i, WRITE, &bytenr);
3750 if (ret == -ENOENT) {
3751 continue;
3752 } else if (ret < 0) {
3753 btrfs_err(device->fs_info,
3754 "couldn't get super block location for mirror %d error %d",
3755 i, ret);
3756 atomic_inc(&device->sb_write_errors);
3757 continue;
3758 }
3759 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3760 device->commit_total_bytes)
3761 break;
3762
3763 btrfs_set_super_bytenr(sb, bytenr_orig);
3764
3765 crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3766 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
3767 sb->csum);
3768
3769 folio = __filemap_get_folio(mapping, bytenr >> PAGE_SHIFT,
3770 FGP_LOCK | FGP_ACCESSED | FGP_CREAT,
3771 GFP_NOFS);
3772 if (IS_ERR(folio)) {
3773 btrfs_err(device->fs_info,
3774 "couldn't get super block page for bytenr %llu error %ld",
3775 bytenr, PTR_ERR(folio));
3776 atomic_inc(&device->sb_write_errors);
3777 continue;
3778 }
3779
3780 offset = offset_in_folio(folio, bytenr);
3781 disk_super = folio_address(folio) + offset;
3782 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
3783
3784 /*
3785 * Directly use bios here instead of relying on the page cache
3786 * to do I/O, so we don't lose the ability to do integrity
3787 * checking.
3788 */
3789 bio = bio_alloc(device->bdev, 1,
3790 REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO,
3791 GFP_NOFS);
3792 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
3793 bio->bi_private = device;
3794 bio->bi_end_io = btrfs_end_super_write;
3795 bio_add_folio_nofail(bio, folio, BTRFS_SUPER_INFO_SIZE, offset);
3796
3797 /*
3798 * We FUA only the first super block. The others we allow to
3799 * go down lazy and there's a short window where the on-disk
3800 * copies might still contain the older version.
3801 */
3802 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3803 bio->bi_opf |= REQ_FUA;
3804 submit_bio(bio);
3805
3806 if (btrfs_advance_sb_log(device, i))
3807 atomic_inc(&device->sb_write_errors);
3808 }
3809 return atomic_read(&device->sb_write_errors) < i ? 0 : -1;
3810 }
3811
3812 /*
3813 * Wait for write completion of superblocks done by write_dev_supers,
3814 * @max_mirrors same for write and wait phases.
3815 *
3816 * Return -1 if primary super block write failed or when there were no super block
3817 * copies written. Otherwise 0.
3818 */
wait_dev_supers(struct btrfs_device * device,int max_mirrors)3819 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3820 {
3821 int i;
3822 int errors = 0;
3823 bool primary_failed = false;
3824 int ret;
3825 u64 bytenr;
3826
3827 if (max_mirrors == 0)
3828 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3829
3830 for (i = 0; i < max_mirrors; i++) {
3831 struct folio *folio;
3832
3833 ret = btrfs_sb_log_location(device, i, READ, &bytenr);
3834 if (ret == -ENOENT) {
3835 break;
3836 } else if (ret < 0) {
3837 errors++;
3838 if (i == 0)
3839 primary_failed = true;
3840 continue;
3841 }
3842 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3843 device->commit_total_bytes)
3844 break;
3845
3846 folio = filemap_get_folio(device->bdev->bd_mapping,
3847 bytenr >> PAGE_SHIFT);
3848 /* If the folio has been removed, then we know it completed. */
3849 if (IS_ERR(folio))
3850 continue;
3851
3852 /* Folio will be unlocked once the write completes. */
3853 folio_wait_locked(folio);
3854 folio_put(folio);
3855 }
3856
3857 errors += atomic_read(&device->sb_write_errors);
3858 if (errors >= BTRFS_SUPER_PRIMARY_WRITE_ERROR)
3859 primary_failed = true;
3860 if (primary_failed) {
3861 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3862 device->devid);
3863 return -1;
3864 }
3865
3866 return errors < i ? 0 : -1;
3867 }
3868
3869 /*
3870 * endio for the write_dev_flush, this will wake anyone waiting
3871 * for the barrier when it is done
3872 */
btrfs_end_empty_barrier(struct bio * bio)3873 static void btrfs_end_empty_barrier(struct bio *bio)
3874 {
3875 bio_uninit(bio);
3876 complete(bio->bi_private);
3877 }
3878
3879 /*
3880 * Submit a flush request to the device if it supports it. Error handling is
3881 * done in the waiting counterpart.
3882 */
write_dev_flush(struct btrfs_device * device)3883 static void write_dev_flush(struct btrfs_device *device)
3884 {
3885 struct bio *bio = &device->flush_bio;
3886
3887 device->last_flush_error = BLK_STS_OK;
3888
3889 bio_init(bio, device->bdev, NULL, 0,
3890 REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH);
3891 bio->bi_end_io = btrfs_end_empty_barrier;
3892 init_completion(&device->flush_wait);
3893 bio->bi_private = &device->flush_wait;
3894 submit_bio(bio);
3895 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3896 }
3897
3898 /*
3899 * If the flush bio has been submitted by write_dev_flush, wait for it.
3900 * Return true for any error, and false otherwise.
3901 */
wait_dev_flush(struct btrfs_device * device)3902 static bool wait_dev_flush(struct btrfs_device *device)
3903 {
3904 struct bio *bio = &device->flush_bio;
3905
3906 if (!test_and_clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
3907 return false;
3908
3909 wait_for_completion_io(&device->flush_wait);
3910
3911 if (bio->bi_status) {
3912 device->last_flush_error = bio->bi_status;
3913 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_FLUSH_ERRS);
3914 return true;
3915 }
3916
3917 return false;
3918 }
3919
3920 /*
3921 * send an empty flush down to each device in parallel,
3922 * then wait for them
3923 */
barrier_all_devices(struct btrfs_fs_info * info)3924 static int barrier_all_devices(struct btrfs_fs_info *info)
3925 {
3926 struct list_head *head;
3927 struct btrfs_device *dev;
3928 int errors_wait = 0;
3929
3930 lockdep_assert_held(&info->fs_devices->device_list_mutex);
3931 /* send down all the barriers */
3932 head = &info->fs_devices->devices;
3933 list_for_each_entry(dev, head, dev_list) {
3934 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3935 continue;
3936 if (!dev->bdev)
3937 continue;
3938 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3939 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3940 continue;
3941
3942 write_dev_flush(dev);
3943 }
3944
3945 /* wait for all the barriers */
3946 list_for_each_entry(dev, head, dev_list) {
3947 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3948 continue;
3949 if (!dev->bdev) {
3950 errors_wait++;
3951 continue;
3952 }
3953 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3954 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3955 continue;
3956
3957 if (wait_dev_flush(dev))
3958 errors_wait++;
3959 }
3960
3961 /*
3962 * Checks last_flush_error of disks in order to determine the device
3963 * state.
3964 */
3965 if (errors_wait && !btrfs_check_rw_degradable(info, NULL))
3966 return -EIO;
3967
3968 return 0;
3969 }
3970
btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)3971 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3972 {
3973 int raid_type;
3974 int min_tolerated = INT_MAX;
3975
3976 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3977 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3978 min_tolerated = min_t(int, min_tolerated,
3979 btrfs_raid_array[BTRFS_RAID_SINGLE].
3980 tolerated_failures);
3981
3982 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3983 if (raid_type == BTRFS_RAID_SINGLE)
3984 continue;
3985 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
3986 continue;
3987 min_tolerated = min_t(int, min_tolerated,
3988 btrfs_raid_array[raid_type].
3989 tolerated_failures);
3990 }
3991
3992 if (min_tolerated == INT_MAX) {
3993 btrfs_warn(NULL, "unknown raid flag: %llu", flags);
3994 min_tolerated = 0;
3995 }
3996
3997 return min_tolerated;
3998 }
3999
write_all_supers(struct btrfs_fs_info * fs_info,int max_mirrors)4000 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
4001 {
4002 struct list_head *head;
4003 struct btrfs_device *dev;
4004 struct btrfs_super_block *sb;
4005 struct btrfs_dev_item *dev_item;
4006 int ret;
4007 int do_barriers;
4008 int max_errors;
4009 int total_errors = 0;
4010 u64 flags;
4011
4012 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
4013
4014 /*
4015 * max_mirrors == 0 indicates we're from commit_transaction,
4016 * not from fsync where the tree roots in fs_info have not
4017 * been consistent on disk.
4018 */
4019 if (max_mirrors == 0)
4020 backup_super_roots(fs_info);
4021
4022 sb = fs_info->super_for_commit;
4023 dev_item = &sb->dev_item;
4024
4025 mutex_lock(&fs_info->fs_devices->device_list_mutex);
4026 head = &fs_info->fs_devices->devices;
4027 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
4028
4029 if (do_barriers) {
4030 ret = barrier_all_devices(fs_info);
4031 if (ret) {
4032 mutex_unlock(
4033 &fs_info->fs_devices->device_list_mutex);
4034 btrfs_handle_fs_error(fs_info, ret,
4035 "errors while submitting device barriers.");
4036 return ret;
4037 }
4038 }
4039
4040 list_for_each_entry(dev, head, dev_list) {
4041 if (!dev->bdev) {
4042 total_errors++;
4043 continue;
4044 }
4045 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4046 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4047 continue;
4048
4049 btrfs_set_stack_device_generation(dev_item, 0);
4050 btrfs_set_stack_device_type(dev_item, dev->type);
4051 btrfs_set_stack_device_id(dev_item, dev->devid);
4052 btrfs_set_stack_device_total_bytes(dev_item,
4053 dev->commit_total_bytes);
4054 btrfs_set_stack_device_bytes_used(dev_item,
4055 dev->commit_bytes_used);
4056 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
4057 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
4058 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
4059 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
4060 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
4061 BTRFS_FSID_SIZE);
4062
4063 flags = btrfs_super_flags(sb);
4064 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
4065
4066 ret = btrfs_validate_write_super(fs_info, sb);
4067 if (ret < 0) {
4068 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4069 btrfs_handle_fs_error(fs_info, -EUCLEAN,
4070 "unexpected superblock corruption detected");
4071 return -EUCLEAN;
4072 }
4073
4074 ret = write_dev_supers(dev, sb, max_mirrors);
4075 if (ret)
4076 total_errors++;
4077 }
4078 if (total_errors > max_errors) {
4079 btrfs_err(fs_info, "%d errors while writing supers",
4080 total_errors);
4081 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4082
4083 /* FUA is masked off if unsupported and can't be the reason */
4084 btrfs_handle_fs_error(fs_info, -EIO,
4085 "%d errors while writing supers",
4086 total_errors);
4087 return -EIO;
4088 }
4089
4090 total_errors = 0;
4091 list_for_each_entry(dev, head, dev_list) {
4092 if (!dev->bdev)
4093 continue;
4094 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4095 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4096 continue;
4097
4098 ret = wait_dev_supers(dev, max_mirrors);
4099 if (ret)
4100 total_errors++;
4101 }
4102 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4103 if (total_errors > max_errors) {
4104 btrfs_handle_fs_error(fs_info, -EIO,
4105 "%d errors while writing supers",
4106 total_errors);
4107 return -EIO;
4108 }
4109 return 0;
4110 }
4111
4112 /* Drop a fs root from the radix tree and free it. */
btrfs_drop_and_free_fs_root(struct btrfs_fs_info * fs_info,struct btrfs_root * root)4113 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
4114 struct btrfs_root *root)
4115 {
4116 bool drop_ref = false;
4117
4118 spin_lock(&fs_info->fs_roots_radix_lock);
4119 radix_tree_delete(&fs_info->fs_roots_radix,
4120 (unsigned long)btrfs_root_id(root));
4121 if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
4122 drop_ref = true;
4123 spin_unlock(&fs_info->fs_roots_radix_lock);
4124
4125 if (BTRFS_FS_ERROR(fs_info)) {
4126 ASSERT(root->log_root == NULL);
4127 if (root->reloc_root) {
4128 btrfs_put_root(root->reloc_root);
4129 root->reloc_root = NULL;
4130 }
4131 }
4132
4133 if (drop_ref)
4134 btrfs_put_root(root);
4135 }
4136
btrfs_commit_super(struct btrfs_fs_info * fs_info)4137 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
4138 {
4139 mutex_lock(&fs_info->cleaner_mutex);
4140 btrfs_run_delayed_iputs(fs_info);
4141 mutex_unlock(&fs_info->cleaner_mutex);
4142 wake_up_process(fs_info->cleaner_kthread);
4143
4144 /* wait until ongoing cleanup work done */
4145 down_write(&fs_info->cleanup_work_sem);
4146 up_write(&fs_info->cleanup_work_sem);
4147
4148 return btrfs_commit_current_transaction(fs_info->tree_root);
4149 }
4150
warn_about_uncommitted_trans(struct btrfs_fs_info * fs_info)4151 static void warn_about_uncommitted_trans(struct btrfs_fs_info *fs_info)
4152 {
4153 struct btrfs_transaction *trans;
4154 struct btrfs_transaction *tmp;
4155 bool found = false;
4156
4157 /*
4158 * This function is only called at the very end of close_ctree(),
4159 * thus no other running transaction, no need to take trans_lock.
4160 */
4161 ASSERT(test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags));
4162 list_for_each_entry_safe(trans, tmp, &fs_info->trans_list, list) {
4163 struct extent_state *cached = NULL;
4164 u64 dirty_bytes = 0;
4165 u64 cur = 0;
4166 u64 found_start;
4167 u64 found_end;
4168
4169 found = true;
4170 while (btrfs_find_first_extent_bit(&trans->dirty_pages, cur,
4171 &found_start, &found_end,
4172 EXTENT_DIRTY, &cached)) {
4173 dirty_bytes += found_end + 1 - found_start;
4174 cur = found_end + 1;
4175 }
4176 btrfs_warn(fs_info,
4177 "transaction %llu (with %llu dirty metadata bytes) is not committed",
4178 trans->transid, dirty_bytes);
4179 btrfs_cleanup_one_transaction(trans);
4180
4181 if (trans == fs_info->running_transaction)
4182 fs_info->running_transaction = NULL;
4183 list_del_init(&trans->list);
4184
4185 btrfs_put_transaction(trans);
4186 trace_btrfs_transaction_commit(fs_info);
4187 }
4188 ASSERT(!found);
4189 }
4190
close_ctree(struct btrfs_fs_info * fs_info)4191 void __cold close_ctree(struct btrfs_fs_info *fs_info)
4192 {
4193 int ret;
4194
4195 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
4196
4197 /*
4198 * If we had UNFINISHED_DROPS we could still be processing them, so
4199 * clear that bit and wake up relocation so it can stop.
4200 * We must do this before stopping the block group reclaim task, because
4201 * at btrfs_relocate_block_group() we wait for this bit, and after the
4202 * wait we stop with -EINTR if btrfs_fs_closing() returns non-zero - we
4203 * have just set BTRFS_FS_CLOSING_START, so btrfs_fs_closing() will
4204 * return 1.
4205 */
4206 btrfs_wake_unfinished_drop(fs_info);
4207
4208 /*
4209 * We may have the reclaim task running and relocating a data block group,
4210 * in which case it may create delayed iputs. So stop it before we park
4211 * the cleaner kthread otherwise we can get new delayed iputs after
4212 * parking the cleaner, and that can make the async reclaim task to hang
4213 * if it's waiting for delayed iputs to complete, since the cleaner is
4214 * parked and can not run delayed iputs - this will make us hang when
4215 * trying to stop the async reclaim task.
4216 */
4217 cancel_work_sync(&fs_info->reclaim_bgs_work);
4218 /*
4219 * We don't want the cleaner to start new transactions, add more delayed
4220 * iputs, etc. while we're closing. We can't use kthread_stop() yet
4221 * because that frees the task_struct, and the transaction kthread might
4222 * still try to wake up the cleaner.
4223 */
4224 kthread_park(fs_info->cleaner_kthread);
4225
4226 /* wait for the qgroup rescan worker to stop */
4227 btrfs_qgroup_wait_for_completion(fs_info, false);
4228
4229 /* wait for the uuid_scan task to finish */
4230 down(&fs_info->uuid_tree_rescan_sem);
4231 /* avoid complains from lockdep et al., set sem back to initial state */
4232 up(&fs_info->uuid_tree_rescan_sem);
4233
4234 /* pause restriper - we want to resume on mount */
4235 btrfs_pause_balance(fs_info);
4236
4237 btrfs_dev_replace_suspend_for_unmount(fs_info);
4238
4239 btrfs_scrub_cancel(fs_info);
4240
4241 /* wait for any defraggers to finish */
4242 wait_event(fs_info->transaction_wait,
4243 (atomic_read(&fs_info->defrag_running) == 0));
4244
4245 /* clear out the rbtree of defraggable inodes */
4246 btrfs_cleanup_defrag_inodes(fs_info);
4247
4248 /*
4249 * Handle the error fs first, as it will flush and wait for all ordered
4250 * extents. This will generate delayed iputs, thus we want to handle
4251 * it first.
4252 */
4253 if (unlikely(BTRFS_FS_ERROR(fs_info)))
4254 btrfs_error_commit_super(fs_info);
4255
4256 /*
4257 * Wait for any fixup workers to complete.
4258 * If we don't wait for them here and they are still running by the time
4259 * we call kthread_stop() against the cleaner kthread further below, we
4260 * get an use-after-free on the cleaner because the fixup worker adds an
4261 * inode to the list of delayed iputs and then attempts to wakeup the
4262 * cleaner kthread, which was already stopped and destroyed. We parked
4263 * already the cleaner, but below we run all pending delayed iputs.
4264 */
4265 btrfs_flush_workqueue(fs_info->fixup_workers);
4266 /*
4267 * Similar case here, we have to wait for delalloc workers before we
4268 * proceed below and stop the cleaner kthread, otherwise we trigger a
4269 * use-after-tree on the cleaner kthread task_struct when a delalloc
4270 * worker running submit_compressed_extents() adds a delayed iput, which
4271 * does a wake up on the cleaner kthread, which was already freed below
4272 * when we call kthread_stop().
4273 */
4274 btrfs_flush_workqueue(fs_info->delalloc_workers);
4275
4276 /*
4277 * We can have ordered extents getting their last reference dropped from
4278 * the fs_info->workers queue because for async writes for data bios we
4279 * queue a work for that queue, at btrfs_wq_submit_bio(), that runs
4280 * run_one_async_done() which calls btrfs_bio_end_io() in case the bio
4281 * has an error, and that later function can do the final
4282 * btrfs_put_ordered_extent() on the ordered extent attached to the bio,
4283 * which adds a delayed iput for the inode. So we must flush the queue
4284 * so that we don't have delayed iputs after committing the current
4285 * transaction below and stopping the cleaner and transaction kthreads.
4286 */
4287 btrfs_flush_workqueue(fs_info->workers);
4288
4289 /*
4290 * When finishing a compressed write bio we schedule a work queue item
4291 * to finish an ordered extent - btrfs_finish_compressed_write_work()
4292 * calls btrfs_finish_ordered_extent() which in turns does a call to
4293 * btrfs_queue_ordered_fn(), and that queues the ordered extent
4294 * completion either in the endio_write_workers work queue or in the
4295 * fs_info->endio_freespace_worker work queue. We flush those queues
4296 * below, so before we flush them we must flush this queue for the
4297 * workers of compressed writes.
4298 */
4299 flush_workqueue(fs_info->compressed_write_workers);
4300
4301 /*
4302 * After we parked the cleaner kthread, ordered extents may have
4303 * completed and created new delayed iputs. If one of the async reclaim
4304 * tasks is running and in the RUN_DELAYED_IPUTS flush state, then we
4305 * can hang forever trying to stop it, because if a delayed iput is
4306 * added after it ran btrfs_run_delayed_iputs() and before it called
4307 * btrfs_wait_on_delayed_iputs(), it will hang forever since there is
4308 * no one else to run iputs.
4309 *
4310 * So wait for all ongoing ordered extents to complete and then run
4311 * delayed iputs. This works because once we reach this point no one
4312 * can create new ordered extents, but delayed iputs can still be added
4313 * by a reclaim worker (see comments further below).
4314 *
4315 * Also note that btrfs_wait_ordered_roots() is not safe here, because
4316 * it waits for BTRFS_ORDERED_COMPLETE to be set on an ordered extent,
4317 * but the delayed iput for the respective inode is made only when doing
4318 * the final btrfs_put_ordered_extent() (which must happen at
4319 * btrfs_finish_ordered_io() when we are unmounting).
4320 */
4321 btrfs_flush_workqueue(fs_info->endio_write_workers);
4322 /* Ordered extents for free space inodes. */
4323 btrfs_flush_workqueue(fs_info->endio_freespace_worker);
4324 /*
4325 * Run delayed iputs in case an async reclaim worker is waiting for them
4326 * to be run as mentioned above.
4327 */
4328 btrfs_run_delayed_iputs(fs_info);
4329
4330 cancel_work_sync(&fs_info->async_reclaim_work);
4331 cancel_work_sync(&fs_info->async_data_reclaim_work);
4332 cancel_work_sync(&fs_info->preempt_reclaim_work);
4333 cancel_work_sync(&fs_info->em_shrinker_work);
4334
4335 /*
4336 * Run delayed iputs again because an async reclaim worker may have
4337 * added new ones if it was flushing delalloc:
4338 *
4339 * shrink_delalloc() -> btrfs_start_delalloc_roots() ->
4340 * start_delalloc_inodes() -> btrfs_add_delayed_iput()
4341 */
4342 btrfs_run_delayed_iputs(fs_info);
4343
4344 /* There should be no more workload to generate new delayed iputs. */
4345 set_bit(BTRFS_FS_STATE_NO_DELAYED_IPUT, &fs_info->fs_state);
4346
4347 /* Cancel or finish ongoing discard work */
4348 btrfs_discard_cleanup(fs_info);
4349
4350 if (!sb_rdonly(fs_info->sb)) {
4351 /*
4352 * The cleaner kthread is stopped, so do one final pass over
4353 * unused block groups.
4354 */
4355 btrfs_delete_unused_bgs(fs_info);
4356
4357 /*
4358 * There might be existing delayed inode workers still running
4359 * and holding an empty delayed inode item. We must wait for
4360 * them to complete first because they can create a transaction.
4361 * This happens when someone calls btrfs_balance_delayed_items()
4362 * and then a transaction commit runs the same delayed nodes
4363 * before any delayed worker has done something with the nodes.
4364 * We must wait for any worker here and not at transaction
4365 * commit time since that could cause a deadlock.
4366 * This is a very rare case.
4367 */
4368 btrfs_flush_workqueue(fs_info->delayed_workers);
4369
4370 ret = btrfs_commit_super(fs_info);
4371 if (ret)
4372 btrfs_err(fs_info, "commit super ret %d", ret);
4373 }
4374
4375 kthread_stop(fs_info->transaction_kthread);
4376 kthread_stop(fs_info->cleaner_kthread);
4377
4378 ASSERT(list_empty(&fs_info->delayed_iputs));
4379 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4380
4381 if (btrfs_check_quota_leak(fs_info)) {
4382 DEBUG_WARN("qgroup reserved space leaked");
4383 btrfs_err(fs_info, "qgroup reserved space leaked");
4384 }
4385
4386 btrfs_free_qgroup_config(fs_info);
4387 ASSERT(list_empty(&fs_info->delalloc_roots));
4388
4389 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4390 btrfs_info(fs_info, "at unmount delalloc count %lld",
4391 percpu_counter_sum(&fs_info->delalloc_bytes));
4392 }
4393
4394 if (percpu_counter_sum(&fs_info->ordered_bytes))
4395 btrfs_info(fs_info, "at unmount dio bytes count %lld",
4396 percpu_counter_sum(&fs_info->ordered_bytes));
4397
4398 btrfs_sysfs_remove_mounted(fs_info);
4399 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4400
4401 btrfs_put_block_group_cache(fs_info);
4402
4403 /*
4404 * we must make sure there is not any read request to
4405 * submit after we stopping all workers.
4406 */
4407 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4408 btrfs_stop_all_workers(fs_info);
4409
4410 /* We shouldn't have any transaction open at this point */
4411 warn_about_uncommitted_trans(fs_info);
4412
4413 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4414 free_root_pointers(fs_info, true);
4415 btrfs_free_fs_roots(fs_info);
4416
4417 /*
4418 * We must free the block groups after dropping the fs_roots as we could
4419 * have had an IO error and have left over tree log blocks that aren't
4420 * cleaned up until the fs roots are freed. This makes the block group
4421 * accounting appear to be wrong because there's pending reserved bytes,
4422 * so make sure we do the block group cleanup afterwards.
4423 */
4424 btrfs_free_block_groups(fs_info);
4425
4426 iput(fs_info->btree_inode);
4427
4428 btrfs_mapping_tree_free(fs_info);
4429 }
4430
btrfs_mark_buffer_dirty(struct btrfs_trans_handle * trans,struct extent_buffer * buf)4431 void btrfs_mark_buffer_dirty(struct btrfs_trans_handle *trans,
4432 struct extent_buffer *buf)
4433 {
4434 struct btrfs_fs_info *fs_info = buf->fs_info;
4435 u64 transid = btrfs_header_generation(buf);
4436
4437 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4438 /*
4439 * This is a fast path so only do this check if we have sanity tests
4440 * enabled. Normal people shouldn't be using unmapped buffers as dirty
4441 * outside of the sanity tests.
4442 */
4443 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4444 return;
4445 #endif
4446 /* This is an active transaction (its state < TRANS_STATE_UNBLOCKED). */
4447 ASSERT(trans->transid == fs_info->generation);
4448 btrfs_assert_tree_write_locked(buf);
4449 if (unlikely(transid != fs_info->generation)) {
4450 btrfs_abort_transaction(trans, -EUCLEAN);
4451 btrfs_crit(fs_info,
4452 "dirty buffer transid mismatch, logical %llu found transid %llu running transid %llu",
4453 buf->start, transid, fs_info->generation);
4454 }
4455 set_extent_buffer_dirty(buf);
4456 }
4457
__btrfs_btree_balance_dirty(struct btrfs_fs_info * fs_info,int flush_delayed)4458 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4459 int flush_delayed)
4460 {
4461 /*
4462 * looks as though older kernels can get into trouble with
4463 * this code, they end up stuck in balance_dirty_pages forever
4464 */
4465 int ret;
4466
4467 if (current->flags & PF_MEMALLOC)
4468 return;
4469
4470 if (flush_delayed)
4471 btrfs_balance_delayed_items(fs_info);
4472
4473 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4474 BTRFS_DIRTY_METADATA_THRESH,
4475 fs_info->dirty_metadata_batch);
4476 if (ret > 0) {
4477 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4478 }
4479 }
4480
btrfs_btree_balance_dirty(struct btrfs_fs_info * fs_info)4481 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4482 {
4483 __btrfs_btree_balance_dirty(fs_info, 1);
4484 }
4485
btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info * fs_info)4486 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4487 {
4488 __btrfs_btree_balance_dirty(fs_info, 0);
4489 }
4490
btrfs_error_commit_super(struct btrfs_fs_info * fs_info)4491 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4492 {
4493 /* cleanup FS via transaction */
4494 btrfs_cleanup_transaction(fs_info);
4495
4496 down_write(&fs_info->cleanup_work_sem);
4497 up_write(&fs_info->cleanup_work_sem);
4498 }
4499
btrfs_drop_all_logs(struct btrfs_fs_info * fs_info)4500 static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
4501 {
4502 struct btrfs_root *gang[8];
4503 u64 root_objectid = 0;
4504 int ret;
4505
4506 spin_lock(&fs_info->fs_roots_radix_lock);
4507 while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4508 (void **)gang, root_objectid,
4509 ARRAY_SIZE(gang))) != 0) {
4510 int i;
4511
4512 for (i = 0; i < ret; i++)
4513 gang[i] = btrfs_grab_root(gang[i]);
4514 spin_unlock(&fs_info->fs_roots_radix_lock);
4515
4516 for (i = 0; i < ret; i++) {
4517 if (!gang[i])
4518 continue;
4519 root_objectid = btrfs_root_id(gang[i]);
4520 btrfs_free_log(NULL, gang[i]);
4521 btrfs_put_root(gang[i]);
4522 }
4523 root_objectid++;
4524 spin_lock(&fs_info->fs_roots_radix_lock);
4525 }
4526 spin_unlock(&fs_info->fs_roots_radix_lock);
4527 btrfs_free_log_root_tree(NULL, fs_info);
4528 }
4529
btrfs_destroy_ordered_extents(struct btrfs_root * root)4530 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4531 {
4532 struct btrfs_ordered_extent *ordered;
4533
4534 spin_lock(&root->ordered_extent_lock);
4535 /*
4536 * This will just short circuit the ordered completion stuff which will
4537 * make sure the ordered extent gets properly cleaned up.
4538 */
4539 list_for_each_entry(ordered, &root->ordered_extents,
4540 root_extent_list)
4541 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4542 spin_unlock(&root->ordered_extent_lock);
4543 }
4544
btrfs_destroy_all_ordered_extents(struct btrfs_fs_info * fs_info)4545 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4546 {
4547 struct btrfs_root *root;
4548 LIST_HEAD(splice);
4549
4550 spin_lock(&fs_info->ordered_root_lock);
4551 list_splice_init(&fs_info->ordered_roots, &splice);
4552 while (!list_empty(&splice)) {
4553 root = list_first_entry(&splice, struct btrfs_root,
4554 ordered_root);
4555 list_move_tail(&root->ordered_root,
4556 &fs_info->ordered_roots);
4557
4558 spin_unlock(&fs_info->ordered_root_lock);
4559 btrfs_destroy_ordered_extents(root);
4560
4561 cond_resched();
4562 spin_lock(&fs_info->ordered_root_lock);
4563 }
4564 spin_unlock(&fs_info->ordered_root_lock);
4565
4566 /*
4567 * We need this here because if we've been flipped read-only we won't
4568 * get sync() from the umount, so we need to make sure any ordered
4569 * extents that haven't had their dirty pages IO start writeout yet
4570 * actually get run and error out properly.
4571 */
4572 btrfs_wait_ordered_roots(fs_info, U64_MAX, NULL);
4573 }
4574
btrfs_destroy_delalloc_inodes(struct btrfs_root * root)4575 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4576 {
4577 struct btrfs_inode *btrfs_inode;
4578 LIST_HEAD(splice);
4579
4580 spin_lock(&root->delalloc_lock);
4581 list_splice_init(&root->delalloc_inodes, &splice);
4582
4583 while (!list_empty(&splice)) {
4584 struct inode *inode = NULL;
4585 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4586 delalloc_inodes);
4587 btrfs_del_delalloc_inode(btrfs_inode);
4588 spin_unlock(&root->delalloc_lock);
4589
4590 /*
4591 * Make sure we get a live inode and that it'll not disappear
4592 * meanwhile.
4593 */
4594 inode = igrab(&btrfs_inode->vfs_inode);
4595 if (inode) {
4596 unsigned int nofs_flag;
4597
4598 nofs_flag = memalloc_nofs_save();
4599 invalidate_inode_pages2(inode->i_mapping);
4600 memalloc_nofs_restore(nofs_flag);
4601 iput(inode);
4602 }
4603 spin_lock(&root->delalloc_lock);
4604 }
4605 spin_unlock(&root->delalloc_lock);
4606 }
4607
btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info * fs_info)4608 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4609 {
4610 struct btrfs_root *root;
4611 LIST_HEAD(splice);
4612
4613 spin_lock(&fs_info->delalloc_root_lock);
4614 list_splice_init(&fs_info->delalloc_roots, &splice);
4615 while (!list_empty(&splice)) {
4616 root = list_first_entry(&splice, struct btrfs_root,
4617 delalloc_root);
4618 root = btrfs_grab_root(root);
4619 BUG_ON(!root);
4620 spin_unlock(&fs_info->delalloc_root_lock);
4621
4622 btrfs_destroy_delalloc_inodes(root);
4623 btrfs_put_root(root);
4624
4625 spin_lock(&fs_info->delalloc_root_lock);
4626 }
4627 spin_unlock(&fs_info->delalloc_root_lock);
4628 }
4629
btrfs_destroy_marked_extents(struct btrfs_fs_info * fs_info,struct extent_io_tree * dirty_pages,int mark)4630 static void btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4631 struct extent_io_tree *dirty_pages,
4632 int mark)
4633 {
4634 struct extent_buffer *eb;
4635 u64 start = 0;
4636 u64 end;
4637
4638 while (btrfs_find_first_extent_bit(dirty_pages, start, &start, &end,
4639 mark, NULL)) {
4640 btrfs_clear_extent_bit(dirty_pages, start, end, mark, NULL);
4641 while (start <= end) {
4642 eb = find_extent_buffer(fs_info, start);
4643 start += fs_info->nodesize;
4644 if (!eb)
4645 continue;
4646
4647 btrfs_tree_lock(eb);
4648 wait_on_extent_buffer_writeback(eb);
4649 btrfs_clear_buffer_dirty(NULL, eb);
4650 btrfs_tree_unlock(eb);
4651
4652 free_extent_buffer_stale(eb);
4653 }
4654 }
4655 }
4656
btrfs_destroy_pinned_extent(struct btrfs_fs_info * fs_info,struct extent_io_tree * unpin)4657 static void btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4658 struct extent_io_tree *unpin)
4659 {
4660 u64 start;
4661 u64 end;
4662
4663 while (1) {
4664 struct extent_state *cached_state = NULL;
4665
4666 /*
4667 * The btrfs_finish_extent_commit() may get the same range as
4668 * ours between find_first_extent_bit and clear_extent_dirty.
4669 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4670 * the same extent range.
4671 */
4672 mutex_lock(&fs_info->unused_bg_unpin_mutex);
4673 if (!btrfs_find_first_extent_bit(unpin, 0, &start, &end,
4674 EXTENT_DIRTY, &cached_state)) {
4675 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4676 break;
4677 }
4678
4679 btrfs_clear_extent_dirty(unpin, start, end, &cached_state);
4680 btrfs_free_extent_state(cached_state);
4681 btrfs_error_unpin_extent_range(fs_info, start, end);
4682 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4683 cond_resched();
4684 }
4685 }
4686
btrfs_cleanup_bg_io(struct btrfs_block_group * cache)4687 static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
4688 {
4689 struct inode *inode;
4690
4691 inode = cache->io_ctl.inode;
4692 if (inode) {
4693 unsigned int nofs_flag;
4694
4695 nofs_flag = memalloc_nofs_save();
4696 invalidate_inode_pages2(inode->i_mapping);
4697 memalloc_nofs_restore(nofs_flag);
4698
4699 BTRFS_I(inode)->generation = 0;
4700 cache->io_ctl.inode = NULL;
4701 iput(inode);
4702 }
4703 ASSERT(cache->io_ctl.pages == NULL);
4704 btrfs_put_block_group(cache);
4705 }
4706
btrfs_cleanup_dirty_bgs(struct btrfs_transaction * cur_trans,struct btrfs_fs_info * fs_info)4707 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4708 struct btrfs_fs_info *fs_info)
4709 {
4710 struct btrfs_block_group *cache;
4711
4712 spin_lock(&cur_trans->dirty_bgs_lock);
4713 while (!list_empty(&cur_trans->dirty_bgs)) {
4714 cache = list_first_entry(&cur_trans->dirty_bgs,
4715 struct btrfs_block_group,
4716 dirty_list);
4717
4718 if (!list_empty(&cache->io_list)) {
4719 spin_unlock(&cur_trans->dirty_bgs_lock);
4720 list_del_init(&cache->io_list);
4721 btrfs_cleanup_bg_io(cache);
4722 spin_lock(&cur_trans->dirty_bgs_lock);
4723 }
4724
4725 list_del_init(&cache->dirty_list);
4726 spin_lock(&cache->lock);
4727 cache->disk_cache_state = BTRFS_DC_ERROR;
4728 spin_unlock(&cache->lock);
4729
4730 spin_unlock(&cur_trans->dirty_bgs_lock);
4731 btrfs_put_block_group(cache);
4732 btrfs_dec_delayed_refs_rsv_bg_updates(fs_info);
4733 spin_lock(&cur_trans->dirty_bgs_lock);
4734 }
4735 spin_unlock(&cur_trans->dirty_bgs_lock);
4736
4737 /*
4738 * Refer to the definition of io_bgs member for details why it's safe
4739 * to use it without any locking
4740 */
4741 while (!list_empty(&cur_trans->io_bgs)) {
4742 cache = list_first_entry(&cur_trans->io_bgs,
4743 struct btrfs_block_group,
4744 io_list);
4745
4746 list_del_init(&cache->io_list);
4747 spin_lock(&cache->lock);
4748 cache->disk_cache_state = BTRFS_DC_ERROR;
4749 spin_unlock(&cache->lock);
4750 btrfs_cleanup_bg_io(cache);
4751 }
4752 }
4753
btrfs_free_all_qgroup_pertrans(struct btrfs_fs_info * fs_info)4754 static void btrfs_free_all_qgroup_pertrans(struct btrfs_fs_info *fs_info)
4755 {
4756 struct btrfs_root *gang[8];
4757 int i;
4758 int ret;
4759
4760 spin_lock(&fs_info->fs_roots_radix_lock);
4761 while (1) {
4762 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
4763 (void **)gang, 0,
4764 ARRAY_SIZE(gang),
4765 BTRFS_ROOT_TRANS_TAG);
4766 if (ret == 0)
4767 break;
4768 for (i = 0; i < ret; i++) {
4769 struct btrfs_root *root = gang[i];
4770
4771 btrfs_qgroup_free_meta_all_pertrans(root);
4772 radix_tree_tag_clear(&fs_info->fs_roots_radix,
4773 (unsigned long)btrfs_root_id(root),
4774 BTRFS_ROOT_TRANS_TAG);
4775 }
4776 }
4777 spin_unlock(&fs_info->fs_roots_radix_lock);
4778 }
4779
btrfs_cleanup_one_transaction(struct btrfs_transaction * cur_trans)4780 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans)
4781 {
4782 struct btrfs_fs_info *fs_info = cur_trans->fs_info;
4783 struct btrfs_device *dev, *tmp;
4784
4785 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4786 ASSERT(list_empty(&cur_trans->dirty_bgs));
4787 ASSERT(list_empty(&cur_trans->io_bgs));
4788
4789 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4790 post_commit_list) {
4791 list_del_init(&dev->post_commit_list);
4792 }
4793
4794 btrfs_destroy_delayed_refs(cur_trans);
4795
4796 cur_trans->state = TRANS_STATE_COMMIT_START;
4797 wake_up(&fs_info->transaction_blocked_wait);
4798
4799 cur_trans->state = TRANS_STATE_UNBLOCKED;
4800 wake_up(&fs_info->transaction_wait);
4801
4802 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4803 EXTENT_DIRTY);
4804 btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
4805
4806 cur_trans->state =TRANS_STATE_COMPLETED;
4807 wake_up(&cur_trans->commit_wait);
4808 }
4809
btrfs_cleanup_transaction(struct btrfs_fs_info * fs_info)4810 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4811 {
4812 struct btrfs_transaction *t;
4813
4814 mutex_lock(&fs_info->transaction_kthread_mutex);
4815
4816 spin_lock(&fs_info->trans_lock);
4817 while (!list_empty(&fs_info->trans_list)) {
4818 t = list_first_entry(&fs_info->trans_list,
4819 struct btrfs_transaction, list);
4820 if (t->state >= TRANS_STATE_COMMIT_PREP) {
4821 refcount_inc(&t->use_count);
4822 spin_unlock(&fs_info->trans_lock);
4823 btrfs_wait_for_commit(fs_info, t->transid);
4824 btrfs_put_transaction(t);
4825 spin_lock(&fs_info->trans_lock);
4826 continue;
4827 }
4828 if (t == fs_info->running_transaction) {
4829 t->state = TRANS_STATE_COMMIT_DOING;
4830 spin_unlock(&fs_info->trans_lock);
4831 /*
4832 * We wait for 0 num_writers since we don't hold a trans
4833 * handle open currently for this transaction.
4834 */
4835 wait_event(t->writer_wait,
4836 atomic_read(&t->num_writers) == 0);
4837 } else {
4838 spin_unlock(&fs_info->trans_lock);
4839 }
4840 btrfs_cleanup_one_transaction(t);
4841
4842 spin_lock(&fs_info->trans_lock);
4843 if (t == fs_info->running_transaction)
4844 fs_info->running_transaction = NULL;
4845 list_del_init(&t->list);
4846 spin_unlock(&fs_info->trans_lock);
4847
4848 btrfs_put_transaction(t);
4849 trace_btrfs_transaction_commit(fs_info);
4850 spin_lock(&fs_info->trans_lock);
4851 }
4852 spin_unlock(&fs_info->trans_lock);
4853 btrfs_destroy_all_ordered_extents(fs_info);
4854 btrfs_destroy_delayed_inodes(fs_info);
4855 btrfs_assert_delayed_root_empty(fs_info);
4856 btrfs_destroy_all_delalloc_inodes(fs_info);
4857 btrfs_drop_all_logs(fs_info);
4858 btrfs_free_all_qgroup_pertrans(fs_info);
4859 mutex_unlock(&fs_info->transaction_kthread_mutex);
4860
4861 return 0;
4862 }
4863
btrfs_init_root_free_objectid(struct btrfs_root * root)4864 int btrfs_init_root_free_objectid(struct btrfs_root *root)
4865 {
4866 BTRFS_PATH_AUTO_FREE(path);
4867 int ret;
4868 struct extent_buffer *l;
4869 struct btrfs_key search_key;
4870 struct btrfs_key found_key;
4871 int slot;
4872
4873 path = btrfs_alloc_path();
4874 if (!path)
4875 return -ENOMEM;
4876
4877 search_key.objectid = BTRFS_LAST_FREE_OBJECTID;
4878 search_key.type = -1;
4879 search_key.offset = (u64)-1;
4880 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
4881 if (ret < 0)
4882 return ret;
4883 if (ret == 0) {
4884 /*
4885 * Key with offset -1 found, there would have to exist a root
4886 * with such id, but this is out of valid range.
4887 */
4888 return -EUCLEAN;
4889 }
4890 if (path->slots[0] > 0) {
4891 slot = path->slots[0] - 1;
4892 l = path->nodes[0];
4893 btrfs_item_key_to_cpu(l, &found_key, slot);
4894 root->free_objectid = max_t(u64, found_key.objectid + 1,
4895 BTRFS_FIRST_FREE_OBJECTID);
4896 } else {
4897 root->free_objectid = BTRFS_FIRST_FREE_OBJECTID;
4898 }
4899
4900 return 0;
4901 }
4902
btrfs_get_free_objectid(struct btrfs_root * root,u64 * objectid)4903 int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid)
4904 {
4905 int ret;
4906 mutex_lock(&root->objectid_mutex);
4907
4908 if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) {
4909 btrfs_warn(root->fs_info,
4910 "the objectid of root %llu reaches its highest value",
4911 btrfs_root_id(root));
4912 ret = -ENOSPC;
4913 goto out;
4914 }
4915
4916 *objectid = root->free_objectid++;
4917 ret = 0;
4918 out:
4919 mutex_unlock(&root->objectid_mutex);
4920 return ret;
4921 }
4922