1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * The User Datagram Protocol (UDP).
8 *
9 * Authors: Ross Biro
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
12 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
13 * Hirokazu Takahashi, <taka@valinux.co.jp>
14 *
15 * Fixes:
16 * Alan Cox : verify_area() calls
17 * Alan Cox : stopped close while in use off icmp
18 * messages. Not a fix but a botch that
19 * for udp at least is 'valid'.
20 * Alan Cox : Fixed icmp handling properly
21 * Alan Cox : Correct error for oversized datagrams
22 * Alan Cox : Tidied select() semantics.
23 * Alan Cox : udp_err() fixed properly, also now
24 * select and read wake correctly on errors
25 * Alan Cox : udp_send verify_area moved to avoid mem leak
26 * Alan Cox : UDP can count its memory
27 * Alan Cox : send to an unknown connection causes
28 * an ECONNREFUSED off the icmp, but
29 * does NOT close.
30 * Alan Cox : Switched to new sk_buff handlers. No more backlog!
31 * Alan Cox : Using generic datagram code. Even smaller and the PEEK
32 * bug no longer crashes it.
33 * Fred Van Kempen : Net2e support for sk->broadcast.
34 * Alan Cox : Uses skb_free_datagram
35 * Alan Cox : Added get/set sockopt support.
36 * Alan Cox : Broadcasting without option set returns EACCES.
37 * Alan Cox : No wakeup calls. Instead we now use the callbacks.
38 * Alan Cox : Use ip_tos and ip_ttl
39 * Alan Cox : SNMP Mibs
40 * Alan Cox : MSG_DONTROUTE, and 0.0.0.0 support.
41 * Matt Dillon : UDP length checks.
42 * Alan Cox : Smarter af_inet used properly.
43 * Alan Cox : Use new kernel side addressing.
44 * Alan Cox : Incorrect return on truncated datagram receive.
45 * Arnt Gulbrandsen : New udp_send and stuff
46 * Alan Cox : Cache last socket
47 * Alan Cox : Route cache
48 * Jon Peatfield : Minor efficiency fix to sendto().
49 * Mike Shaver : RFC1122 checks.
50 * Alan Cox : Nonblocking error fix.
51 * Willy Konynenberg : Transparent proxying support.
52 * Mike McLagan : Routing by source
53 * David S. Miller : New socket lookup architecture.
54 * Last socket cache retained as it
55 * does have a high hit rate.
56 * Olaf Kirch : Don't linearise iovec on sendmsg.
57 * Andi Kleen : Some cleanups, cache destination entry
58 * for connect.
59 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
60 * Melvin Smith : Check msg_name not msg_namelen in sendto(),
61 * return ENOTCONN for unconnected sockets (POSIX)
62 * Janos Farkas : don't deliver multi/broadcasts to a different
63 * bound-to-device socket
64 * Hirokazu Takahashi : HW checksumming for outgoing UDP
65 * datagrams.
66 * Hirokazu Takahashi : sendfile() on UDP works now.
67 * Arnaldo C. Melo : convert /proc/net/udp to seq_file
68 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
69 * Alexey Kuznetsov: allow both IPv4 and IPv6 sockets to bind
70 * a single port at the same time.
71 * Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
72 * James Chapman : Add L2TP encapsulation type.
73 */
74
75 #define pr_fmt(fmt) "UDP: " fmt
76
77 #include <linux/bpf-cgroup.h>
78 #include <linux/uaccess.h>
79 #include <asm/ioctls.h>
80 #include <linux/memblock.h>
81 #include <linux/highmem.h>
82 #include <linux/types.h>
83 #include <linux/fcntl.h>
84 #include <linux/module.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/igmp.h>
88 #include <linux/inetdevice.h>
89 #include <linux/in.h>
90 #include <linux/errno.h>
91 #include <linux/timer.h>
92 #include <linux/mm.h>
93 #include <linux/inet.h>
94 #include <linux/netdevice.h>
95 #include <linux/slab.h>
96 #include <linux/sock_diag.h>
97 #include <net/tcp_states.h>
98 #include <linux/skbuff.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <net/net_namespace.h>
102 #include <net/icmp.h>
103 #include <net/inet_hashtables.h>
104 #include <net/ip.h>
105 #include <net/ip_tunnels.h>
106 #include <net/route.h>
107 #include <net/checksum.h>
108 #include <net/gso.h>
109 #include <net/xfrm.h>
110 #include <trace/events/udp.h>
111 #include <linux/static_key.h>
112 #include <linux/btf_ids.h>
113 #include <trace/events/skb.h>
114 #include <net/busy_poll.h>
115 #include "udp_impl.h"
116 #include <net/sock_reuseport.h>
117 #include <net/addrconf.h>
118 #include <net/udp_tunnel.h>
119 #include <net/gro.h>
120 #if IS_ENABLED(CONFIG_IPV6)
121 #include <net/ipv6_stubs.h>
122 #endif
123 #include <net/rps.h>
124
125 struct udp_table udp_table __read_mostly;
126
127 long sysctl_udp_mem[3] __read_mostly;
128 EXPORT_IPV6_MOD(sysctl_udp_mem);
129
130 DEFINE_PER_CPU(int, udp_memory_per_cpu_fw_alloc);
131 EXPORT_PER_CPU_SYMBOL_GPL(udp_memory_per_cpu_fw_alloc);
132
133 #define MAX_UDP_PORTS 65536
134 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN_PERNET)
135
udp_get_table_prot(struct sock * sk)136 static struct udp_table *udp_get_table_prot(struct sock *sk)
137 {
138 return sk->sk_prot->h.udp_table ? : sock_net(sk)->ipv4.udp_table;
139 }
140
udp_lib_lport_inuse(struct net * net,__u16 num,const struct udp_hslot * hslot,unsigned long * bitmap,struct sock * sk,unsigned int log)141 static int udp_lib_lport_inuse(struct net *net, __u16 num,
142 const struct udp_hslot *hslot,
143 unsigned long *bitmap,
144 struct sock *sk, unsigned int log)
145 {
146 kuid_t uid = sk_uid(sk);
147 struct sock *sk2;
148
149 sk_for_each(sk2, &hslot->head) {
150 if (net_eq(sock_net(sk2), net) &&
151 sk2 != sk &&
152 (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
153 (!sk2->sk_reuse || !sk->sk_reuse) &&
154 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
155 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
156 inet_rcv_saddr_equal(sk, sk2, true)) {
157 if (sk2->sk_reuseport && sk->sk_reuseport &&
158 !rcu_access_pointer(sk->sk_reuseport_cb) &&
159 uid_eq(uid, sk_uid(sk2))) {
160 if (!bitmap)
161 return 0;
162 } else {
163 if (!bitmap)
164 return 1;
165 __set_bit(udp_sk(sk2)->udp_port_hash >> log,
166 bitmap);
167 }
168 }
169 }
170 return 0;
171 }
172
173 /*
174 * Note: we still hold spinlock of primary hash chain, so no other writer
175 * can insert/delete a socket with local_port == num
176 */
udp_lib_lport_inuse2(struct net * net,__u16 num,struct udp_hslot * hslot2,struct sock * sk)177 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
178 struct udp_hslot *hslot2,
179 struct sock *sk)
180 {
181 kuid_t uid = sk_uid(sk);
182 struct sock *sk2;
183 int res = 0;
184
185 spin_lock(&hslot2->lock);
186 udp_portaddr_for_each_entry(sk2, &hslot2->head) {
187 if (net_eq(sock_net(sk2), net) &&
188 sk2 != sk &&
189 (udp_sk(sk2)->udp_port_hash == num) &&
190 (!sk2->sk_reuse || !sk->sk_reuse) &&
191 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
192 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
193 inet_rcv_saddr_equal(sk, sk2, true)) {
194 if (sk2->sk_reuseport && sk->sk_reuseport &&
195 !rcu_access_pointer(sk->sk_reuseport_cb) &&
196 uid_eq(uid, sk_uid(sk2))) {
197 res = 0;
198 } else {
199 res = 1;
200 }
201 break;
202 }
203 }
204 spin_unlock(&hslot2->lock);
205 return res;
206 }
207
udp_reuseport_add_sock(struct sock * sk,struct udp_hslot * hslot)208 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot)
209 {
210 struct net *net = sock_net(sk);
211 kuid_t uid = sk_uid(sk);
212 struct sock *sk2;
213
214 sk_for_each(sk2, &hslot->head) {
215 if (net_eq(sock_net(sk2), net) &&
216 sk2 != sk &&
217 sk2->sk_family == sk->sk_family &&
218 ipv6_only_sock(sk2) == ipv6_only_sock(sk) &&
219 (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) &&
220 (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
221 sk2->sk_reuseport && uid_eq(uid, sk_uid(sk2)) &&
222 inet_rcv_saddr_equal(sk, sk2, false)) {
223 return reuseport_add_sock(sk, sk2,
224 inet_rcv_saddr_any(sk));
225 }
226 }
227
228 return reuseport_alloc(sk, inet_rcv_saddr_any(sk));
229 }
230
231 /**
232 * udp_lib_get_port - UDP/-Lite port lookup for IPv4 and IPv6
233 *
234 * @sk: socket struct in question
235 * @snum: port number to look up
236 * @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
237 * with NULL address
238 */
udp_lib_get_port(struct sock * sk,unsigned short snum,unsigned int hash2_nulladdr)239 int udp_lib_get_port(struct sock *sk, unsigned short snum,
240 unsigned int hash2_nulladdr)
241 {
242 struct udp_table *udptable = udp_get_table_prot(sk);
243 struct udp_hslot *hslot, *hslot2;
244 struct net *net = sock_net(sk);
245 int error = -EADDRINUSE;
246
247 if (!snum) {
248 DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
249 unsigned short first, last;
250 int low, high, remaining;
251 unsigned int rand;
252
253 inet_sk_get_local_port_range(sk, &low, &high);
254 remaining = (high - low) + 1;
255
256 rand = get_random_u32();
257 first = reciprocal_scale(rand, remaining) + low;
258 /*
259 * force rand to be an odd multiple of UDP_HTABLE_SIZE
260 */
261 rand = (rand | 1) * (udptable->mask + 1);
262 last = first + udptable->mask + 1;
263 do {
264 hslot = udp_hashslot(udptable, net, first);
265 bitmap_zero(bitmap, PORTS_PER_CHAIN);
266 spin_lock_bh(&hslot->lock);
267 udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
268 udptable->log);
269
270 snum = first;
271 /*
272 * Iterate on all possible values of snum for this hash.
273 * Using steps of an odd multiple of UDP_HTABLE_SIZE
274 * give us randomization and full range coverage.
275 */
276 do {
277 if (low <= snum && snum <= high &&
278 !test_bit(snum >> udptable->log, bitmap) &&
279 !inet_is_local_reserved_port(net, snum))
280 goto found;
281 snum += rand;
282 } while (snum != first);
283 spin_unlock_bh(&hslot->lock);
284 cond_resched();
285 } while (++first != last);
286 goto fail;
287 } else {
288 hslot = udp_hashslot(udptable, net, snum);
289 spin_lock_bh(&hslot->lock);
290 if (hslot->count > 10) {
291 int exist;
292 unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
293
294 slot2 &= udptable->mask;
295 hash2_nulladdr &= udptable->mask;
296
297 hslot2 = udp_hashslot2(udptable, slot2);
298 if (hslot->count < hslot2->count)
299 goto scan_primary_hash;
300
301 exist = udp_lib_lport_inuse2(net, snum, hslot2, sk);
302 if (!exist && (hash2_nulladdr != slot2)) {
303 hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
304 exist = udp_lib_lport_inuse2(net, snum, hslot2,
305 sk);
306 }
307 if (exist)
308 goto fail_unlock;
309 else
310 goto found;
311 }
312 scan_primary_hash:
313 if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0))
314 goto fail_unlock;
315 }
316 found:
317 inet_sk(sk)->inet_num = snum;
318 udp_sk(sk)->udp_port_hash = snum;
319 udp_sk(sk)->udp_portaddr_hash ^= snum;
320 if (sk_unhashed(sk)) {
321 if (sk->sk_reuseport &&
322 udp_reuseport_add_sock(sk, hslot)) {
323 inet_sk(sk)->inet_num = 0;
324 udp_sk(sk)->udp_port_hash = 0;
325 udp_sk(sk)->udp_portaddr_hash ^= snum;
326 goto fail_unlock;
327 }
328
329 sock_set_flag(sk, SOCK_RCU_FREE);
330
331 sk_add_node_rcu(sk, &hslot->head);
332 hslot->count++;
333 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
334
335 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
336 spin_lock(&hslot2->lock);
337 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
338 sk->sk_family == AF_INET6)
339 hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node,
340 &hslot2->head);
341 else
342 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
343 &hslot2->head);
344 hslot2->count++;
345 spin_unlock(&hslot2->lock);
346 }
347
348 error = 0;
349 fail_unlock:
350 spin_unlock_bh(&hslot->lock);
351 fail:
352 return error;
353 }
354 EXPORT_IPV6_MOD(udp_lib_get_port);
355
udp_v4_get_port(struct sock * sk,unsigned short snum)356 int udp_v4_get_port(struct sock *sk, unsigned short snum)
357 {
358 unsigned int hash2_nulladdr =
359 ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
360 unsigned int hash2_partial =
361 ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
362
363 /* precompute partial secondary hash */
364 udp_sk(sk)->udp_portaddr_hash = hash2_partial;
365 return udp_lib_get_port(sk, snum, hash2_nulladdr);
366 }
367
compute_score(struct sock * sk,const struct net * net,__be32 saddr,__be16 sport,__be32 daddr,unsigned short hnum,int dif,int sdif)368 static int compute_score(struct sock *sk, const struct net *net,
369 __be32 saddr, __be16 sport,
370 __be32 daddr, unsigned short hnum,
371 int dif, int sdif)
372 {
373 int score;
374 struct inet_sock *inet;
375 bool dev_match;
376
377 if (!net_eq(sock_net(sk), net) ||
378 udp_sk(sk)->udp_port_hash != hnum ||
379 ipv6_only_sock(sk))
380 return -1;
381
382 if (sk->sk_rcv_saddr != daddr)
383 return -1;
384
385 score = (sk->sk_family == PF_INET) ? 2 : 1;
386
387 inet = inet_sk(sk);
388 if (inet->inet_daddr) {
389 if (inet->inet_daddr != saddr)
390 return -1;
391 score += 4;
392 }
393
394 if (inet->inet_dport) {
395 if (inet->inet_dport != sport)
396 return -1;
397 score += 4;
398 }
399
400 dev_match = udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if,
401 dif, sdif);
402 if (!dev_match)
403 return -1;
404 if (sk->sk_bound_dev_if)
405 score += 4;
406
407 if (READ_ONCE(sk->sk_incoming_cpu) == raw_smp_processor_id())
408 score++;
409 return score;
410 }
411
udp_ehashfn(const struct net * net,const __be32 laddr,const __u16 lport,const __be32 faddr,const __be16 fport)412 u32 udp_ehashfn(const struct net *net, const __be32 laddr, const __u16 lport,
413 const __be32 faddr, const __be16 fport)
414 {
415 net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
416
417 return __inet_ehashfn(laddr, lport, faddr, fport,
418 udp_ehash_secret + net_hash_mix(net));
419 }
420 EXPORT_IPV6_MOD(udp_ehashfn);
421
422 /**
423 * udp4_lib_lookup1() - Simplified lookup using primary hash (destination port)
424 * @net: Network namespace
425 * @saddr: Source address, network order
426 * @sport: Source port, network order
427 * @daddr: Destination address, network order
428 * @hnum: Destination port, host order
429 * @dif: Destination interface index
430 * @sdif: Destination bridge port index, if relevant
431 * @udptable: Set of UDP hash tables
432 *
433 * Simplified lookup to be used as fallback if no sockets are found due to a
434 * potential race between (receive) address change, and lookup happening before
435 * the rehash operation. This function ignores SO_REUSEPORT groups while scoring
436 * result sockets, because if we have one, we don't need the fallback at all.
437 *
438 * Called under rcu_read_lock().
439 *
440 * Return: socket with highest matching score if any, NULL if none
441 */
udp4_lib_lookup1(const struct net * net,__be32 saddr,__be16 sport,__be32 daddr,unsigned int hnum,int dif,int sdif,const struct udp_table * udptable)442 static struct sock *udp4_lib_lookup1(const struct net *net,
443 __be32 saddr, __be16 sport,
444 __be32 daddr, unsigned int hnum,
445 int dif, int sdif,
446 const struct udp_table *udptable)
447 {
448 unsigned int slot = udp_hashfn(net, hnum, udptable->mask);
449 struct udp_hslot *hslot = &udptable->hash[slot];
450 struct sock *sk, *result = NULL;
451 int score, badness = 0;
452
453 sk_for_each_rcu(sk, &hslot->head) {
454 score = compute_score(sk, net,
455 saddr, sport, daddr, hnum, dif, sdif);
456 if (score > badness) {
457 result = sk;
458 badness = score;
459 }
460 }
461
462 return result;
463 }
464
465 /* called with rcu_read_lock() */
udp4_lib_lookup2(const struct net * net,__be32 saddr,__be16 sport,__be32 daddr,unsigned int hnum,int dif,int sdif,struct udp_hslot * hslot2,struct sk_buff * skb)466 static struct sock *udp4_lib_lookup2(const struct net *net,
467 __be32 saddr, __be16 sport,
468 __be32 daddr, unsigned int hnum,
469 int dif, int sdif,
470 struct udp_hslot *hslot2,
471 struct sk_buff *skb)
472 {
473 struct sock *sk, *result;
474 int score, badness;
475 bool need_rescore;
476
477 result = NULL;
478 badness = 0;
479 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
480 need_rescore = false;
481 rescore:
482 score = compute_score(need_rescore ? result : sk, net, saddr,
483 sport, daddr, hnum, dif, sdif);
484 if (score > badness) {
485 badness = score;
486
487 if (need_rescore)
488 continue;
489
490 if (sk->sk_state == TCP_ESTABLISHED) {
491 result = sk;
492 continue;
493 }
494
495 result = inet_lookup_reuseport(net, sk, skb, sizeof(struct udphdr),
496 saddr, sport, daddr, hnum, udp_ehashfn);
497 if (!result) {
498 result = sk;
499 continue;
500 }
501
502 /* Fall back to scoring if group has connections */
503 if (!reuseport_has_conns(sk))
504 return result;
505
506 /* Reuseport logic returned an error, keep original score. */
507 if (IS_ERR(result))
508 continue;
509
510 /* compute_score is too long of a function to be
511 * inlined, and calling it again here yields
512 * measureable overhead for some
513 * workloads. Work around it by jumping
514 * backwards to rescore 'result'.
515 */
516 need_rescore = true;
517 goto rescore;
518 }
519 }
520 return result;
521 }
522
523 #if IS_ENABLED(CONFIG_BASE_SMALL)
udp4_lib_lookup4(const struct net * net,__be32 saddr,__be16 sport,__be32 daddr,unsigned int hnum,int dif,int sdif,struct udp_table * udptable)524 static struct sock *udp4_lib_lookup4(const struct net *net,
525 __be32 saddr, __be16 sport,
526 __be32 daddr, unsigned int hnum,
527 int dif, int sdif,
528 struct udp_table *udptable)
529 {
530 return NULL;
531 }
532
udp_rehash4(struct udp_table * udptable,struct sock * sk,u16 newhash4)533 static void udp_rehash4(struct udp_table *udptable, struct sock *sk,
534 u16 newhash4)
535 {
536 }
537
udp_unhash4(struct udp_table * udptable,struct sock * sk)538 static void udp_unhash4(struct udp_table *udptable, struct sock *sk)
539 {
540 }
541 #else /* !CONFIG_BASE_SMALL */
udp4_lib_lookup4(const struct net * net,__be32 saddr,__be16 sport,__be32 daddr,unsigned int hnum,int dif,int sdif,struct udp_table * udptable)542 static struct sock *udp4_lib_lookup4(const struct net *net,
543 __be32 saddr, __be16 sport,
544 __be32 daddr, unsigned int hnum,
545 int dif, int sdif,
546 struct udp_table *udptable)
547 {
548 const __portpair ports = INET_COMBINED_PORTS(sport, hnum);
549 const struct hlist_nulls_node *node;
550 struct udp_hslot *hslot4;
551 unsigned int hash4, slot;
552 struct udp_sock *up;
553 struct sock *sk;
554
555 hash4 = udp_ehashfn(net, daddr, hnum, saddr, sport);
556 slot = hash4 & udptable->mask;
557 hslot4 = &udptable->hash4[slot];
558 INET_ADDR_COOKIE(acookie, saddr, daddr);
559
560 begin:
561 /* SLAB_TYPESAFE_BY_RCU not used, so we don't need to touch sk_refcnt */
562 udp_lrpa_for_each_entry_rcu(up, node, &hslot4->nulls_head) {
563 sk = (struct sock *)up;
564 if (inet_match(net, sk, acookie, ports, dif, sdif))
565 return sk;
566 }
567
568 /* if the nulls value we got at the end of this lookup is not the
569 * expected one, we must restart lookup. We probably met an item that
570 * was moved to another chain due to rehash.
571 */
572 if (get_nulls_value(node) != slot)
573 goto begin;
574
575 return NULL;
576 }
577
578 /* udp_rehash4() only checks hslot4, and hash4_cnt is not processed. */
udp_rehash4(struct udp_table * udptable,struct sock * sk,u16 newhash4)579 static void udp_rehash4(struct udp_table *udptable, struct sock *sk,
580 u16 newhash4)
581 {
582 struct udp_hslot *hslot4, *nhslot4;
583
584 hslot4 = udp_hashslot4(udptable, udp_sk(sk)->udp_lrpa_hash);
585 nhslot4 = udp_hashslot4(udptable, newhash4);
586 udp_sk(sk)->udp_lrpa_hash = newhash4;
587
588 if (hslot4 != nhslot4) {
589 spin_lock_bh(&hslot4->lock);
590 hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_lrpa_node);
591 hslot4->count--;
592 spin_unlock_bh(&hslot4->lock);
593
594 spin_lock_bh(&nhslot4->lock);
595 hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_lrpa_node,
596 &nhslot4->nulls_head);
597 nhslot4->count++;
598 spin_unlock_bh(&nhslot4->lock);
599 }
600 }
601
udp_unhash4(struct udp_table * udptable,struct sock * sk)602 static void udp_unhash4(struct udp_table *udptable, struct sock *sk)
603 {
604 struct udp_hslot *hslot2, *hslot4;
605
606 if (udp_hashed4(sk)) {
607 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
608 hslot4 = udp_hashslot4(udptable, udp_sk(sk)->udp_lrpa_hash);
609
610 spin_lock(&hslot4->lock);
611 hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_lrpa_node);
612 hslot4->count--;
613 spin_unlock(&hslot4->lock);
614
615 spin_lock(&hslot2->lock);
616 udp_hash4_dec(hslot2);
617 spin_unlock(&hslot2->lock);
618 }
619 }
620
udp_lib_hash4(struct sock * sk,u16 hash)621 void udp_lib_hash4(struct sock *sk, u16 hash)
622 {
623 struct udp_hslot *hslot, *hslot2, *hslot4;
624 struct net *net = sock_net(sk);
625 struct udp_table *udptable;
626
627 /* Connected udp socket can re-connect to another remote address, which
628 * will be handled by rehash. Thus no need to redo hash4 here.
629 */
630 if (udp_hashed4(sk))
631 return;
632
633 udptable = net->ipv4.udp_table;
634 hslot = udp_hashslot(udptable, net, udp_sk(sk)->udp_port_hash);
635 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
636 hslot4 = udp_hashslot4(udptable, hash);
637 udp_sk(sk)->udp_lrpa_hash = hash;
638
639 spin_lock_bh(&hslot->lock);
640 if (rcu_access_pointer(sk->sk_reuseport_cb))
641 reuseport_detach_sock(sk);
642
643 spin_lock(&hslot4->lock);
644 hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_lrpa_node,
645 &hslot4->nulls_head);
646 hslot4->count++;
647 spin_unlock(&hslot4->lock);
648
649 spin_lock(&hslot2->lock);
650 udp_hash4_inc(hslot2);
651 spin_unlock(&hslot2->lock);
652
653 spin_unlock_bh(&hslot->lock);
654 }
655 EXPORT_IPV6_MOD(udp_lib_hash4);
656
657 /* call with sock lock */
udp4_hash4(struct sock * sk)658 void udp4_hash4(struct sock *sk)
659 {
660 struct net *net = sock_net(sk);
661 unsigned int hash;
662
663 if (sk_unhashed(sk) || sk->sk_rcv_saddr == htonl(INADDR_ANY))
664 return;
665
666 hash = udp_ehashfn(net, sk->sk_rcv_saddr, sk->sk_num,
667 sk->sk_daddr, sk->sk_dport);
668
669 udp_lib_hash4(sk, hash);
670 }
671 EXPORT_IPV6_MOD(udp4_hash4);
672 #endif /* CONFIG_BASE_SMALL */
673
674 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
675 * harder than this. -DaveM
676 */
__udp4_lib_lookup(const struct net * net,__be32 saddr,__be16 sport,__be32 daddr,__be16 dport,int dif,int sdif,struct udp_table * udptable,struct sk_buff * skb)677 struct sock *__udp4_lib_lookup(const struct net *net, __be32 saddr,
678 __be16 sport, __be32 daddr, __be16 dport, int dif,
679 int sdif, struct udp_table *udptable, struct sk_buff *skb)
680 {
681 unsigned short hnum = ntohs(dport);
682 struct udp_hslot *hslot2;
683 struct sock *result, *sk;
684 unsigned int hash2;
685
686 hash2 = ipv4_portaddr_hash(net, daddr, hnum);
687 hslot2 = udp_hashslot2(udptable, hash2);
688
689 if (udp_has_hash4(hslot2)) {
690 result = udp4_lib_lookup4(net, saddr, sport, daddr, hnum,
691 dif, sdif, udptable);
692 if (result) /* udp4_lib_lookup4 return sk or NULL */
693 return result;
694 }
695
696 /* Lookup connected or non-wildcard socket */
697 result = udp4_lib_lookup2(net, saddr, sport,
698 daddr, hnum, dif, sdif,
699 hslot2, skb);
700 if (!IS_ERR_OR_NULL(result) && result->sk_state == TCP_ESTABLISHED)
701 goto done;
702
703 /* Lookup redirect from BPF */
704 if (static_branch_unlikely(&bpf_sk_lookup_enabled) &&
705 udptable == net->ipv4.udp_table) {
706 sk = inet_lookup_run_sk_lookup(net, IPPROTO_UDP, skb, sizeof(struct udphdr),
707 saddr, sport, daddr, hnum, dif,
708 udp_ehashfn);
709 if (sk) {
710 result = sk;
711 goto done;
712 }
713 }
714
715 /* Got non-wildcard socket or error on first lookup */
716 if (result)
717 goto done;
718
719 /* Lookup wildcard sockets */
720 hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
721 hslot2 = udp_hashslot2(udptable, hash2);
722
723 result = udp4_lib_lookup2(net, saddr, sport,
724 htonl(INADDR_ANY), hnum, dif, sdif,
725 hslot2, skb);
726 if (!IS_ERR_OR_NULL(result))
727 goto done;
728
729 /* Primary hash (destination port) lookup as fallback for this race:
730 * 1. __ip4_datagram_connect() sets sk_rcv_saddr
731 * 2. lookup (this function): new sk_rcv_saddr, hashes not updated yet
732 * 3. rehash operation updating _secondary and four-tuple_ hashes
733 * The primary hash doesn't need an update after 1., so, thanks to this
734 * further step, 1. and 3. don't need to be atomic against the lookup.
735 */
736 result = udp4_lib_lookup1(net, saddr, sport, daddr, hnum, dif, sdif,
737 udptable);
738
739 done:
740 if (IS_ERR(result))
741 return NULL;
742 return result;
743 }
744 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
745
__udp4_lib_lookup_skb(struct sk_buff * skb,__be16 sport,__be16 dport,struct udp_table * udptable)746 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
747 __be16 sport, __be16 dport,
748 struct udp_table *udptable)
749 {
750 const struct iphdr *iph = ip_hdr(skb);
751
752 return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
753 iph->daddr, dport, inet_iif(skb),
754 inet_sdif(skb), udptable, skb);
755 }
756
udp4_lib_lookup_skb(const struct sk_buff * skb,__be16 sport,__be16 dport)757 struct sock *udp4_lib_lookup_skb(const struct sk_buff *skb,
758 __be16 sport, __be16 dport)
759 {
760 const u16 offset = NAPI_GRO_CB(skb)->network_offsets[skb->encapsulation];
761 const struct iphdr *iph = (struct iphdr *)(skb->data + offset);
762 struct net *net = dev_net(skb->dev);
763 int iif, sdif;
764
765 inet_get_iif_sdif(skb, &iif, &sdif);
766
767 return __udp4_lib_lookup(net, iph->saddr, sport,
768 iph->daddr, dport, iif,
769 sdif, net->ipv4.udp_table, NULL);
770 }
771
772 /* Must be called under rcu_read_lock().
773 * Does increment socket refcount.
774 */
775 #if IS_ENABLED(CONFIG_NF_TPROXY_IPV4) || IS_ENABLED(CONFIG_NF_SOCKET_IPV4)
udp4_lib_lookup(const struct net * net,__be32 saddr,__be16 sport,__be32 daddr,__be16 dport,int dif)776 struct sock *udp4_lib_lookup(const struct net *net, __be32 saddr, __be16 sport,
777 __be32 daddr, __be16 dport, int dif)
778 {
779 struct sock *sk;
780
781 sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport,
782 dif, 0, net->ipv4.udp_table, NULL);
783 if (sk && !refcount_inc_not_zero(&sk->sk_refcnt))
784 sk = NULL;
785 return sk;
786 }
787 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
788 #endif
789
__udp_is_mcast_sock(struct net * net,const struct sock * sk,__be16 loc_port,__be32 loc_addr,__be16 rmt_port,__be32 rmt_addr,int dif,int sdif,unsigned short hnum)790 static inline bool __udp_is_mcast_sock(struct net *net, const struct sock *sk,
791 __be16 loc_port, __be32 loc_addr,
792 __be16 rmt_port, __be32 rmt_addr,
793 int dif, int sdif, unsigned short hnum)
794 {
795 const struct inet_sock *inet = inet_sk(sk);
796
797 if (!net_eq(sock_net(sk), net) ||
798 udp_sk(sk)->udp_port_hash != hnum ||
799 (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
800 (inet->inet_dport != rmt_port && inet->inet_dport) ||
801 (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
802 ipv6_only_sock(sk) ||
803 !udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, dif, sdif))
804 return false;
805 if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif))
806 return false;
807 return true;
808 }
809
810 DEFINE_STATIC_KEY_FALSE(udp_encap_needed_key);
811 EXPORT_IPV6_MOD(udp_encap_needed_key);
812
813 #if IS_ENABLED(CONFIG_IPV6)
814 DEFINE_STATIC_KEY_FALSE(udpv6_encap_needed_key);
815 EXPORT_IPV6_MOD(udpv6_encap_needed_key);
816 #endif
817
udp_encap_enable(void)818 void udp_encap_enable(void)
819 {
820 static_branch_inc(&udp_encap_needed_key);
821 }
822 EXPORT_SYMBOL(udp_encap_enable);
823
udp_encap_disable(void)824 void udp_encap_disable(void)
825 {
826 static_branch_dec(&udp_encap_needed_key);
827 }
828 EXPORT_SYMBOL(udp_encap_disable);
829
830 /* Handler for tunnels with arbitrary destination ports: no socket lookup, go
831 * through error handlers in encapsulations looking for a match.
832 */
__udp4_lib_err_encap_no_sk(struct sk_buff * skb,u32 info)833 static int __udp4_lib_err_encap_no_sk(struct sk_buff *skb, u32 info)
834 {
835 int i;
836
837 for (i = 0; i < MAX_IPTUN_ENCAP_OPS; i++) {
838 int (*handler)(struct sk_buff *skb, u32 info);
839 const struct ip_tunnel_encap_ops *encap;
840
841 encap = rcu_dereference(iptun_encaps[i]);
842 if (!encap)
843 continue;
844 handler = encap->err_handler;
845 if (handler && !handler(skb, info))
846 return 0;
847 }
848
849 return -ENOENT;
850 }
851
852 /* Try to match ICMP errors to UDP tunnels by looking up a socket without
853 * reversing source and destination port: this will match tunnels that force the
854 * same destination port on both endpoints (e.g. VXLAN, GENEVE). Note that
855 * lwtunnels might actually break this assumption by being configured with
856 * different destination ports on endpoints, in this case we won't be able to
857 * trace ICMP messages back to them.
858 *
859 * If this doesn't match any socket, probe tunnels with arbitrary destination
860 * ports (e.g. FoU, GUE): there, the receiving socket is useless, as the port
861 * we've sent packets to won't necessarily match the local destination port.
862 *
863 * Then ask the tunnel implementation to match the error against a valid
864 * association.
865 *
866 * Return an error if we can't find a match, the socket if we need further
867 * processing, zero otherwise.
868 */
__udp4_lib_err_encap(struct net * net,const struct iphdr * iph,struct udphdr * uh,struct udp_table * udptable,struct sock * sk,struct sk_buff * skb,u32 info)869 static struct sock *__udp4_lib_err_encap(struct net *net,
870 const struct iphdr *iph,
871 struct udphdr *uh,
872 struct udp_table *udptable,
873 struct sock *sk,
874 struct sk_buff *skb, u32 info)
875 {
876 int (*lookup)(struct sock *sk, struct sk_buff *skb);
877 int network_offset, transport_offset;
878 struct udp_sock *up;
879
880 network_offset = skb_network_offset(skb);
881 transport_offset = skb_transport_offset(skb);
882
883 /* Network header needs to point to the outer IPv4 header inside ICMP */
884 skb_reset_network_header(skb);
885
886 /* Transport header needs to point to the UDP header */
887 skb_set_transport_header(skb, iph->ihl << 2);
888
889 if (sk) {
890 up = udp_sk(sk);
891
892 lookup = READ_ONCE(up->encap_err_lookup);
893 if (lookup && lookup(sk, skb))
894 sk = NULL;
895
896 goto out;
897 }
898
899 sk = __udp4_lib_lookup(net, iph->daddr, uh->source,
900 iph->saddr, uh->dest, skb->dev->ifindex, 0,
901 udptable, NULL);
902 if (sk) {
903 up = udp_sk(sk);
904
905 lookup = READ_ONCE(up->encap_err_lookup);
906 if (!lookup || lookup(sk, skb))
907 sk = NULL;
908 }
909
910 out:
911 if (!sk)
912 sk = ERR_PTR(__udp4_lib_err_encap_no_sk(skb, info));
913
914 skb_set_transport_header(skb, transport_offset);
915 skb_set_network_header(skb, network_offset);
916
917 return sk;
918 }
919
920 /*
921 * This routine is called by the ICMP module when it gets some
922 * sort of error condition. If err < 0 then the socket should
923 * be closed and the error returned to the user. If err > 0
924 * it's just the icmp type << 8 | icmp code.
925 * Header points to the ip header of the error packet. We move
926 * on past this. Then (as it used to claim before adjustment)
927 * header points to the first 8 bytes of the udp header. We need
928 * to find the appropriate port.
929 */
930
__udp4_lib_err(struct sk_buff * skb,u32 info,struct udp_table * udptable)931 int __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
932 {
933 struct inet_sock *inet;
934 const struct iphdr *iph = (const struct iphdr *)skb->data;
935 struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
936 const int type = icmp_hdr(skb)->type;
937 const int code = icmp_hdr(skb)->code;
938 bool tunnel = false;
939 struct sock *sk;
940 int harderr;
941 int err;
942 struct net *net = dev_net(skb->dev);
943
944 sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
945 iph->saddr, uh->source, skb->dev->ifindex,
946 inet_sdif(skb), udptable, NULL);
947
948 if (!sk || READ_ONCE(udp_sk(sk)->encap_type)) {
949 /* No socket for error: try tunnels before discarding */
950 if (static_branch_unlikely(&udp_encap_needed_key)) {
951 sk = __udp4_lib_err_encap(net, iph, uh, udptable, sk, skb,
952 info);
953 if (!sk)
954 return 0;
955 } else
956 sk = ERR_PTR(-ENOENT);
957
958 if (IS_ERR(sk)) {
959 __ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
960 return PTR_ERR(sk);
961 }
962
963 tunnel = true;
964 }
965
966 err = 0;
967 harderr = 0;
968 inet = inet_sk(sk);
969
970 switch (type) {
971 default:
972 case ICMP_TIME_EXCEEDED:
973 err = EHOSTUNREACH;
974 break;
975 case ICMP_SOURCE_QUENCH:
976 goto out;
977 case ICMP_PARAMETERPROB:
978 err = EPROTO;
979 harderr = 1;
980 break;
981 case ICMP_DEST_UNREACH:
982 if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
983 ipv4_sk_update_pmtu(skb, sk, info);
984 if (READ_ONCE(inet->pmtudisc) != IP_PMTUDISC_DONT) {
985 err = EMSGSIZE;
986 harderr = 1;
987 break;
988 }
989 goto out;
990 }
991 err = EHOSTUNREACH;
992 if (code <= NR_ICMP_UNREACH) {
993 harderr = icmp_err_convert[code].fatal;
994 err = icmp_err_convert[code].errno;
995 }
996 break;
997 case ICMP_REDIRECT:
998 ipv4_sk_redirect(skb, sk);
999 goto out;
1000 }
1001
1002 /*
1003 * RFC1122: OK. Passes ICMP errors back to application, as per
1004 * 4.1.3.3.
1005 */
1006 if (tunnel) {
1007 /* ...not for tunnels though: we don't have a sending socket */
1008 if (udp_sk(sk)->encap_err_rcv)
1009 udp_sk(sk)->encap_err_rcv(sk, skb, err, uh->dest, info,
1010 (u8 *)(uh+1));
1011 goto out;
1012 }
1013 if (!inet_test_bit(RECVERR, sk)) {
1014 if (!harderr || sk->sk_state != TCP_ESTABLISHED)
1015 goto out;
1016 } else
1017 ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
1018
1019 sk->sk_err = err;
1020 sk_error_report(sk);
1021 out:
1022 return 0;
1023 }
1024
udp_err(struct sk_buff * skb,u32 info)1025 int udp_err(struct sk_buff *skb, u32 info)
1026 {
1027 return __udp4_lib_err(skb, info, dev_net(skb->dev)->ipv4.udp_table);
1028 }
1029
1030 /*
1031 * Throw away all pending data and cancel the corking. Socket is locked.
1032 */
udp_flush_pending_frames(struct sock * sk)1033 void udp_flush_pending_frames(struct sock *sk)
1034 {
1035 struct udp_sock *up = udp_sk(sk);
1036
1037 if (up->pending) {
1038 up->len = 0;
1039 WRITE_ONCE(up->pending, 0);
1040 ip_flush_pending_frames(sk);
1041 }
1042 }
1043 EXPORT_IPV6_MOD(udp_flush_pending_frames);
1044
1045 /**
1046 * udp4_hwcsum - handle outgoing HW checksumming
1047 * @skb: sk_buff containing the filled-in UDP header
1048 * (checksum field must be zeroed out)
1049 * @src: source IP address
1050 * @dst: destination IP address
1051 */
udp4_hwcsum(struct sk_buff * skb,__be32 src,__be32 dst)1052 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
1053 {
1054 struct udphdr *uh = udp_hdr(skb);
1055 int offset = skb_transport_offset(skb);
1056 int len = skb->len - offset;
1057 int hlen = len;
1058 __wsum csum = 0;
1059
1060 if (!skb_has_frag_list(skb)) {
1061 /*
1062 * Only one fragment on the socket.
1063 */
1064 skb->csum_start = skb_transport_header(skb) - skb->head;
1065 skb->csum_offset = offsetof(struct udphdr, check);
1066 uh->check = ~csum_tcpudp_magic(src, dst, len,
1067 IPPROTO_UDP, 0);
1068 } else {
1069 struct sk_buff *frags;
1070
1071 /*
1072 * HW-checksum won't work as there are two or more
1073 * fragments on the socket so that all csums of sk_buffs
1074 * should be together
1075 */
1076 skb_walk_frags(skb, frags) {
1077 csum = csum_add(csum, frags->csum);
1078 hlen -= frags->len;
1079 }
1080
1081 csum = skb_checksum(skb, offset, hlen, csum);
1082 skb->ip_summed = CHECKSUM_NONE;
1083
1084 uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
1085 if (uh->check == 0)
1086 uh->check = CSUM_MANGLED_0;
1087 }
1088 }
1089 EXPORT_SYMBOL_GPL(udp4_hwcsum);
1090
1091 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended
1092 * for the simple case like when setting the checksum for a UDP tunnel.
1093 */
udp_set_csum(bool nocheck,struct sk_buff * skb,__be32 saddr,__be32 daddr,int len)1094 void udp_set_csum(bool nocheck, struct sk_buff *skb,
1095 __be32 saddr, __be32 daddr, int len)
1096 {
1097 struct udphdr *uh = udp_hdr(skb);
1098
1099 if (nocheck) {
1100 uh->check = 0;
1101 } else if (skb_is_gso(skb)) {
1102 uh->check = ~udp_v4_check(len, saddr, daddr, 0);
1103 } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
1104 uh->check = 0;
1105 uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb));
1106 if (uh->check == 0)
1107 uh->check = CSUM_MANGLED_0;
1108 } else {
1109 skb->ip_summed = CHECKSUM_PARTIAL;
1110 skb->csum_start = skb_transport_header(skb) - skb->head;
1111 skb->csum_offset = offsetof(struct udphdr, check);
1112 uh->check = ~udp_v4_check(len, saddr, daddr, 0);
1113 }
1114 }
1115 EXPORT_SYMBOL(udp_set_csum);
1116
udp_send_skb(struct sk_buff * skb,struct flowi4 * fl4,struct inet_cork * cork)1117 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4,
1118 struct inet_cork *cork)
1119 {
1120 struct sock *sk = skb->sk;
1121 struct inet_sock *inet = inet_sk(sk);
1122 struct udphdr *uh;
1123 int err;
1124 int is_udplite = IS_UDPLITE(sk);
1125 int offset = skb_transport_offset(skb);
1126 int len = skb->len - offset;
1127 int datalen = len - sizeof(*uh);
1128 __wsum csum = 0;
1129
1130 /*
1131 * Create a UDP header
1132 */
1133 uh = udp_hdr(skb);
1134 uh->source = inet->inet_sport;
1135 uh->dest = fl4->fl4_dport;
1136 uh->len = htons(len);
1137 uh->check = 0;
1138
1139 if (cork->gso_size) {
1140 const int hlen = skb_network_header_len(skb) +
1141 sizeof(struct udphdr);
1142
1143 if (hlen + min(datalen, cork->gso_size) > cork->fragsize) {
1144 kfree_skb(skb);
1145 return -EMSGSIZE;
1146 }
1147 if (datalen > cork->gso_size * UDP_MAX_SEGMENTS) {
1148 kfree_skb(skb);
1149 return -EINVAL;
1150 }
1151 if (sk->sk_no_check_tx) {
1152 kfree_skb(skb);
1153 return -EINVAL;
1154 }
1155 if (is_udplite || dst_xfrm(skb_dst(skb))) {
1156 kfree_skb(skb);
1157 return -EIO;
1158 }
1159
1160 if (datalen > cork->gso_size) {
1161 skb_shinfo(skb)->gso_size = cork->gso_size;
1162 skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4;
1163 skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(datalen,
1164 cork->gso_size);
1165
1166 /* Don't checksum the payload, skb will get segmented */
1167 goto csum_partial;
1168 }
1169 }
1170
1171 if (is_udplite) /* UDP-Lite */
1172 csum = udplite_csum(skb);
1173
1174 else if (sk->sk_no_check_tx) { /* UDP csum off */
1175
1176 skb->ip_summed = CHECKSUM_NONE;
1177 goto send;
1178
1179 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
1180 csum_partial:
1181
1182 udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
1183 goto send;
1184
1185 } else
1186 csum = udp_csum(skb);
1187
1188 /* add protocol-dependent pseudo-header */
1189 uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
1190 sk->sk_protocol, csum);
1191 if (uh->check == 0)
1192 uh->check = CSUM_MANGLED_0;
1193
1194 send:
1195 err = ip_send_skb(sock_net(sk), skb);
1196 if (err) {
1197 if (err == -ENOBUFS &&
1198 !inet_test_bit(RECVERR, sk)) {
1199 UDP_INC_STATS(sock_net(sk),
1200 UDP_MIB_SNDBUFERRORS, is_udplite);
1201 err = 0;
1202 }
1203 } else
1204 UDP_INC_STATS(sock_net(sk),
1205 UDP_MIB_OUTDATAGRAMS, is_udplite);
1206 return err;
1207 }
1208
1209 /*
1210 * Push out all pending data as one UDP datagram. Socket is locked.
1211 */
udp_push_pending_frames(struct sock * sk)1212 int udp_push_pending_frames(struct sock *sk)
1213 {
1214 struct udp_sock *up = udp_sk(sk);
1215 struct inet_sock *inet = inet_sk(sk);
1216 struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
1217 struct sk_buff *skb;
1218 int err = 0;
1219
1220 skb = ip_finish_skb(sk, fl4);
1221 if (!skb)
1222 goto out;
1223
1224 err = udp_send_skb(skb, fl4, &inet->cork.base);
1225
1226 out:
1227 up->len = 0;
1228 WRITE_ONCE(up->pending, 0);
1229 return err;
1230 }
1231 EXPORT_IPV6_MOD(udp_push_pending_frames);
1232
__udp_cmsg_send(struct cmsghdr * cmsg,u16 * gso_size)1233 static int __udp_cmsg_send(struct cmsghdr *cmsg, u16 *gso_size)
1234 {
1235 switch (cmsg->cmsg_type) {
1236 case UDP_SEGMENT:
1237 if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u16)))
1238 return -EINVAL;
1239 *gso_size = *(__u16 *)CMSG_DATA(cmsg);
1240 return 0;
1241 default:
1242 return -EINVAL;
1243 }
1244 }
1245
udp_cmsg_send(struct sock * sk,struct msghdr * msg,u16 * gso_size)1246 int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size)
1247 {
1248 struct cmsghdr *cmsg;
1249 bool need_ip = false;
1250 int err;
1251
1252 for_each_cmsghdr(cmsg, msg) {
1253 if (!CMSG_OK(msg, cmsg))
1254 return -EINVAL;
1255
1256 if (cmsg->cmsg_level != SOL_UDP) {
1257 need_ip = true;
1258 continue;
1259 }
1260
1261 err = __udp_cmsg_send(cmsg, gso_size);
1262 if (err)
1263 return err;
1264 }
1265
1266 return need_ip;
1267 }
1268 EXPORT_IPV6_MOD_GPL(udp_cmsg_send);
1269
udp_sendmsg(struct sock * sk,struct msghdr * msg,size_t len)1270 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
1271 {
1272 struct inet_sock *inet = inet_sk(sk);
1273 struct udp_sock *up = udp_sk(sk);
1274 DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
1275 struct flowi4 fl4_stack;
1276 struct flowi4 *fl4;
1277 int ulen = len;
1278 struct ipcm_cookie ipc;
1279 struct rtable *rt = NULL;
1280 int free = 0;
1281 int connected = 0;
1282 __be32 daddr, faddr, saddr;
1283 u8 scope;
1284 __be16 dport;
1285 int err, is_udplite = IS_UDPLITE(sk);
1286 int corkreq = udp_test_bit(CORK, sk) || msg->msg_flags & MSG_MORE;
1287 int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
1288 struct sk_buff *skb;
1289 struct ip_options_data opt_copy;
1290 int uc_index;
1291
1292 if (len > 0xFFFF)
1293 return -EMSGSIZE;
1294
1295 /*
1296 * Check the flags.
1297 */
1298
1299 if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
1300 return -EOPNOTSUPP;
1301
1302 getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
1303
1304 fl4 = &inet->cork.fl.u.ip4;
1305 if (READ_ONCE(up->pending)) {
1306 /*
1307 * There are pending frames.
1308 * The socket lock must be held while it's corked.
1309 */
1310 lock_sock(sk);
1311 if (likely(up->pending)) {
1312 if (unlikely(up->pending != AF_INET)) {
1313 release_sock(sk);
1314 return -EINVAL;
1315 }
1316 goto do_append_data;
1317 }
1318 release_sock(sk);
1319 }
1320 ulen += sizeof(struct udphdr);
1321
1322 /*
1323 * Get and verify the address.
1324 */
1325 if (usin) {
1326 if (msg->msg_namelen < sizeof(*usin))
1327 return -EINVAL;
1328 if (usin->sin_family != AF_INET) {
1329 if (usin->sin_family != AF_UNSPEC)
1330 return -EAFNOSUPPORT;
1331 }
1332
1333 daddr = usin->sin_addr.s_addr;
1334 dport = usin->sin_port;
1335 if (dport == 0)
1336 return -EINVAL;
1337 } else {
1338 if (sk->sk_state != TCP_ESTABLISHED)
1339 return -EDESTADDRREQ;
1340 daddr = inet->inet_daddr;
1341 dport = inet->inet_dport;
1342 /* Open fast path for connected socket.
1343 Route will not be used, if at least one option is set.
1344 */
1345 connected = 1;
1346 }
1347
1348 ipcm_init_sk(&ipc, inet);
1349 ipc.gso_size = READ_ONCE(up->gso_size);
1350
1351 if (msg->msg_controllen) {
1352 err = udp_cmsg_send(sk, msg, &ipc.gso_size);
1353 if (err > 0) {
1354 err = ip_cmsg_send(sk, msg, &ipc,
1355 sk->sk_family == AF_INET6);
1356 connected = 0;
1357 }
1358 if (unlikely(err < 0)) {
1359 kfree(ipc.opt);
1360 return err;
1361 }
1362 if (ipc.opt)
1363 free = 1;
1364 }
1365 if (!ipc.opt) {
1366 struct ip_options_rcu *inet_opt;
1367
1368 rcu_read_lock();
1369 inet_opt = rcu_dereference(inet->inet_opt);
1370 if (inet_opt) {
1371 memcpy(&opt_copy, inet_opt,
1372 sizeof(*inet_opt) + inet_opt->opt.optlen);
1373 ipc.opt = &opt_copy.opt;
1374 }
1375 rcu_read_unlock();
1376 }
1377
1378 if (cgroup_bpf_enabled(CGROUP_UDP4_SENDMSG) && !connected) {
1379 err = BPF_CGROUP_RUN_PROG_UDP4_SENDMSG_LOCK(sk,
1380 (struct sockaddr *)usin,
1381 &msg->msg_namelen,
1382 &ipc.addr);
1383 if (err)
1384 goto out_free;
1385 if (usin) {
1386 if (usin->sin_port == 0) {
1387 /* BPF program set invalid port. Reject it. */
1388 err = -EINVAL;
1389 goto out_free;
1390 }
1391 daddr = usin->sin_addr.s_addr;
1392 dport = usin->sin_port;
1393 }
1394 }
1395
1396 saddr = ipc.addr;
1397 ipc.addr = faddr = daddr;
1398
1399 if (ipc.opt && ipc.opt->opt.srr) {
1400 if (!daddr) {
1401 err = -EINVAL;
1402 goto out_free;
1403 }
1404 faddr = ipc.opt->opt.faddr;
1405 connected = 0;
1406 }
1407 scope = ip_sendmsg_scope(inet, &ipc, msg);
1408 if (scope == RT_SCOPE_LINK)
1409 connected = 0;
1410
1411 uc_index = READ_ONCE(inet->uc_index);
1412 if (ipv4_is_multicast(daddr)) {
1413 if (!ipc.oif || netif_index_is_l3_master(sock_net(sk), ipc.oif))
1414 ipc.oif = READ_ONCE(inet->mc_index);
1415 if (!saddr)
1416 saddr = READ_ONCE(inet->mc_addr);
1417 connected = 0;
1418 } else if (!ipc.oif) {
1419 ipc.oif = uc_index;
1420 } else if (ipv4_is_lbcast(daddr) && uc_index) {
1421 /* oif is set, packet is to local broadcast and
1422 * uc_index is set. oif is most likely set
1423 * by sk_bound_dev_if. If uc_index != oif check if the
1424 * oif is an L3 master and uc_index is an L3 slave.
1425 * If so, we want to allow the send using the uc_index.
1426 */
1427 if (ipc.oif != uc_index &&
1428 ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk),
1429 uc_index)) {
1430 ipc.oif = uc_index;
1431 }
1432 }
1433
1434 if (connected)
1435 rt = dst_rtable(sk_dst_check(sk, 0));
1436
1437 if (!rt) {
1438 struct net *net = sock_net(sk);
1439 __u8 flow_flags = inet_sk_flowi_flags(sk);
1440
1441 fl4 = &fl4_stack;
1442
1443 flowi4_init_output(fl4, ipc.oif, ipc.sockc.mark,
1444 ipc.tos & INET_DSCP_MASK, scope,
1445 sk->sk_protocol, flow_flags, faddr, saddr,
1446 dport, inet->inet_sport,
1447 sk_uid(sk));
1448
1449 security_sk_classify_flow(sk, flowi4_to_flowi_common(fl4));
1450 rt = ip_route_output_flow(net, fl4, sk);
1451 if (IS_ERR(rt)) {
1452 err = PTR_ERR(rt);
1453 rt = NULL;
1454 if (err == -ENETUNREACH)
1455 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1456 goto out;
1457 }
1458
1459 err = -EACCES;
1460 if ((rt->rt_flags & RTCF_BROADCAST) &&
1461 !sock_flag(sk, SOCK_BROADCAST))
1462 goto out;
1463 if (connected)
1464 sk_dst_set(sk, dst_clone(&rt->dst));
1465 }
1466
1467 if (msg->msg_flags&MSG_CONFIRM)
1468 goto do_confirm;
1469 back_from_confirm:
1470
1471 saddr = fl4->saddr;
1472 if (!ipc.addr)
1473 daddr = ipc.addr = fl4->daddr;
1474
1475 /* Lockless fast path for the non-corking case. */
1476 if (!corkreq) {
1477 struct inet_cork cork;
1478
1479 skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
1480 sizeof(struct udphdr), &ipc, &rt,
1481 &cork, msg->msg_flags);
1482 err = PTR_ERR(skb);
1483 if (!IS_ERR_OR_NULL(skb))
1484 err = udp_send_skb(skb, fl4, &cork);
1485 goto out;
1486 }
1487
1488 lock_sock(sk);
1489 if (unlikely(up->pending)) {
1490 /* The socket is already corked while preparing it. */
1491 /* ... which is an evident application bug. --ANK */
1492 release_sock(sk);
1493
1494 net_dbg_ratelimited("socket already corked\n");
1495 err = -EINVAL;
1496 goto out;
1497 }
1498 /*
1499 * Now cork the socket to pend data.
1500 */
1501 fl4 = &inet->cork.fl.u.ip4;
1502 fl4->daddr = daddr;
1503 fl4->saddr = saddr;
1504 fl4->fl4_dport = dport;
1505 fl4->fl4_sport = inet->inet_sport;
1506 WRITE_ONCE(up->pending, AF_INET);
1507
1508 do_append_data:
1509 up->len += ulen;
1510 err = ip_append_data(sk, fl4, getfrag, msg, ulen,
1511 sizeof(struct udphdr), &ipc, &rt,
1512 corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1513 if (err)
1514 udp_flush_pending_frames(sk);
1515 else if (!corkreq)
1516 err = udp_push_pending_frames(sk);
1517 else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1518 WRITE_ONCE(up->pending, 0);
1519 release_sock(sk);
1520
1521 out:
1522 ip_rt_put(rt);
1523 out_free:
1524 if (free)
1525 kfree(ipc.opt);
1526 if (!err)
1527 return len;
1528 /*
1529 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space. Reporting
1530 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1531 * we don't have a good statistic (IpOutDiscards but it can be too many
1532 * things). We could add another new stat but at least for now that
1533 * seems like overkill.
1534 */
1535 if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1536 UDP_INC_STATS(sock_net(sk),
1537 UDP_MIB_SNDBUFERRORS, is_udplite);
1538 }
1539 return err;
1540
1541 do_confirm:
1542 if (msg->msg_flags & MSG_PROBE)
1543 dst_confirm_neigh(&rt->dst, &fl4->daddr);
1544 if (!(msg->msg_flags&MSG_PROBE) || len)
1545 goto back_from_confirm;
1546 err = 0;
1547 goto out;
1548 }
1549 EXPORT_SYMBOL(udp_sendmsg);
1550
udp_splice_eof(struct socket * sock)1551 void udp_splice_eof(struct socket *sock)
1552 {
1553 struct sock *sk = sock->sk;
1554 struct udp_sock *up = udp_sk(sk);
1555
1556 if (!READ_ONCE(up->pending) || udp_test_bit(CORK, sk))
1557 return;
1558
1559 lock_sock(sk);
1560 if (up->pending && !udp_test_bit(CORK, sk))
1561 udp_push_pending_frames(sk);
1562 release_sock(sk);
1563 }
1564 EXPORT_IPV6_MOD_GPL(udp_splice_eof);
1565
1566 #define UDP_SKB_IS_STATELESS 0x80000000
1567
1568 /* all head states (dst, sk, nf conntrack) except skb extensions are
1569 * cleared by udp_rcv().
1570 *
1571 * We need to preserve secpath, if present, to eventually process
1572 * IP_CMSG_PASSSEC at recvmsg() time.
1573 *
1574 * Other extensions can be cleared.
1575 */
udp_try_make_stateless(struct sk_buff * skb)1576 static bool udp_try_make_stateless(struct sk_buff *skb)
1577 {
1578 if (!skb_has_extensions(skb))
1579 return true;
1580
1581 if (!secpath_exists(skb)) {
1582 skb_ext_reset(skb);
1583 return true;
1584 }
1585
1586 return false;
1587 }
1588
udp_set_dev_scratch(struct sk_buff * skb)1589 static void udp_set_dev_scratch(struct sk_buff *skb)
1590 {
1591 struct udp_dev_scratch *scratch = udp_skb_scratch(skb);
1592
1593 BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long));
1594 scratch->_tsize_state = skb->truesize;
1595 #if BITS_PER_LONG == 64
1596 scratch->len = skb->len;
1597 scratch->csum_unnecessary = !!skb_csum_unnecessary(skb);
1598 scratch->is_linear = !skb_is_nonlinear(skb);
1599 #endif
1600 if (udp_try_make_stateless(skb))
1601 scratch->_tsize_state |= UDP_SKB_IS_STATELESS;
1602 }
1603
udp_skb_csum_unnecessary_set(struct sk_buff * skb)1604 static void udp_skb_csum_unnecessary_set(struct sk_buff *skb)
1605 {
1606 /* We come here after udp_lib_checksum_complete() returned 0.
1607 * This means that __skb_checksum_complete() might have
1608 * set skb->csum_valid to 1.
1609 * On 64bit platforms, we can set csum_unnecessary
1610 * to true, but only if the skb is not shared.
1611 */
1612 #if BITS_PER_LONG == 64
1613 if (!skb_shared(skb))
1614 udp_skb_scratch(skb)->csum_unnecessary = true;
1615 #endif
1616 }
1617
udp_skb_truesize(struct sk_buff * skb)1618 static int udp_skb_truesize(struct sk_buff *skb)
1619 {
1620 return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS;
1621 }
1622
udp_skb_has_head_state(struct sk_buff * skb)1623 static bool udp_skb_has_head_state(struct sk_buff *skb)
1624 {
1625 return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS);
1626 }
1627
1628 /* fully reclaim rmem/fwd memory allocated for skb */
udp_rmem_release(struct sock * sk,unsigned int size,int partial,bool rx_queue_lock_held)1629 static void udp_rmem_release(struct sock *sk, unsigned int size,
1630 int partial, bool rx_queue_lock_held)
1631 {
1632 struct udp_sock *up = udp_sk(sk);
1633 struct sk_buff_head *sk_queue;
1634 unsigned int amt;
1635
1636 if (likely(partial)) {
1637 up->forward_deficit += size;
1638 size = up->forward_deficit;
1639 if (size < READ_ONCE(up->forward_threshold) &&
1640 !skb_queue_empty(&up->reader_queue))
1641 return;
1642 } else {
1643 size += up->forward_deficit;
1644 }
1645 up->forward_deficit = 0;
1646
1647 /* acquire the sk_receive_queue for fwd allocated memory scheduling,
1648 * if the called don't held it already
1649 */
1650 sk_queue = &sk->sk_receive_queue;
1651 if (!rx_queue_lock_held)
1652 spin_lock(&sk_queue->lock);
1653
1654 amt = (size + sk->sk_forward_alloc - partial) & ~(PAGE_SIZE - 1);
1655 sk_forward_alloc_add(sk, size - amt);
1656
1657 if (amt)
1658 __sk_mem_reduce_allocated(sk, amt >> PAGE_SHIFT);
1659
1660 atomic_sub(size, &sk->sk_rmem_alloc);
1661
1662 /* this can save us from acquiring the rx queue lock on next receive */
1663 skb_queue_splice_tail_init(sk_queue, &up->reader_queue);
1664
1665 if (!rx_queue_lock_held)
1666 spin_unlock(&sk_queue->lock);
1667 }
1668
1669 /* Note: called with reader_queue.lock held.
1670 * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch
1671 * This avoids a cache line miss while receive_queue lock is held.
1672 * Look at __udp_enqueue_schedule_skb() to find where this copy is done.
1673 */
udp_skb_destructor(struct sock * sk,struct sk_buff * skb)1674 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb)
1675 {
1676 prefetch(&skb->data);
1677 udp_rmem_release(sk, udp_skb_truesize(skb), 1, false);
1678 }
1679 EXPORT_IPV6_MOD(udp_skb_destructor);
1680
1681 /* as above, but the caller held the rx queue lock, too */
udp_skb_dtor_locked(struct sock * sk,struct sk_buff * skb)1682 static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb)
1683 {
1684 prefetch(&skb->data);
1685 udp_rmem_release(sk, udp_skb_truesize(skb), 1, true);
1686 }
1687
1688 /* Idea of busylocks is to let producers grab an extra spinlock
1689 * to relieve pressure on the receive_queue spinlock shared by consumer.
1690 * Under flood, this means that only one producer can be in line
1691 * trying to acquire the receive_queue spinlock.
1692 * These busylock can be allocated on a per cpu manner, instead of a
1693 * per socket one (that would consume a cache line per socket)
1694 */
1695 static int udp_busylocks_log __read_mostly;
1696 static spinlock_t *udp_busylocks __read_mostly;
1697
busylock_acquire(void * ptr)1698 static spinlock_t *busylock_acquire(void *ptr)
1699 {
1700 spinlock_t *busy;
1701
1702 busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log);
1703 spin_lock(busy);
1704 return busy;
1705 }
1706
busylock_release(spinlock_t * busy)1707 static void busylock_release(spinlock_t *busy)
1708 {
1709 if (busy)
1710 spin_unlock(busy);
1711 }
1712
udp_rmem_schedule(struct sock * sk,int size)1713 static int udp_rmem_schedule(struct sock *sk, int size)
1714 {
1715 int delta;
1716
1717 delta = size - sk->sk_forward_alloc;
1718 if (delta > 0 && !__sk_mem_schedule(sk, delta, SK_MEM_RECV))
1719 return -ENOBUFS;
1720
1721 return 0;
1722 }
1723
__udp_enqueue_schedule_skb(struct sock * sk,struct sk_buff * skb)1724 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb)
1725 {
1726 struct sk_buff_head *list = &sk->sk_receive_queue;
1727 unsigned int rmem, rcvbuf;
1728 spinlock_t *busy = NULL;
1729 int size, err = -ENOMEM;
1730
1731 rmem = atomic_read(&sk->sk_rmem_alloc);
1732 rcvbuf = READ_ONCE(sk->sk_rcvbuf);
1733 size = skb->truesize;
1734
1735 /* Immediately drop when the receive queue is full.
1736 * Cast to unsigned int performs the boundary check for INT_MAX.
1737 */
1738 if (rmem + size > rcvbuf) {
1739 if (rcvbuf > INT_MAX >> 1)
1740 goto drop;
1741
1742 /* Always allow at least one packet for small buffer. */
1743 if (rmem > rcvbuf)
1744 goto drop;
1745 }
1746
1747 /* Under mem pressure, it might be helpful to help udp_recvmsg()
1748 * having linear skbs :
1749 * - Reduce memory overhead and thus increase receive queue capacity
1750 * - Less cache line misses at copyout() time
1751 * - Less work at consume_skb() (less alien page frag freeing)
1752 */
1753 if (rmem > (rcvbuf >> 1)) {
1754 skb_condense(skb);
1755 size = skb->truesize;
1756 busy = busylock_acquire(sk);
1757 }
1758
1759 udp_set_dev_scratch(skb);
1760
1761 atomic_add(size, &sk->sk_rmem_alloc);
1762
1763 spin_lock(&list->lock);
1764 err = udp_rmem_schedule(sk, size);
1765 if (err) {
1766 spin_unlock(&list->lock);
1767 goto uncharge_drop;
1768 }
1769
1770 sk_forward_alloc_add(sk, -size);
1771
1772 /* no need to setup a destructor, we will explicitly release the
1773 * forward allocated memory on dequeue
1774 */
1775 sock_skb_set_dropcount(sk, skb);
1776
1777 __skb_queue_tail(list, skb);
1778 spin_unlock(&list->lock);
1779
1780 if (!sock_flag(sk, SOCK_DEAD))
1781 INDIRECT_CALL_1(sk->sk_data_ready, sock_def_readable, sk);
1782
1783 busylock_release(busy);
1784 return 0;
1785
1786 uncharge_drop:
1787 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1788
1789 drop:
1790 atomic_inc(&sk->sk_drops);
1791 busylock_release(busy);
1792 return err;
1793 }
1794 EXPORT_IPV6_MOD_GPL(__udp_enqueue_schedule_skb);
1795
udp_destruct_common(struct sock * sk)1796 void udp_destruct_common(struct sock *sk)
1797 {
1798 /* reclaim completely the forward allocated memory */
1799 struct udp_sock *up = udp_sk(sk);
1800 unsigned int total = 0;
1801 struct sk_buff *skb;
1802
1803 skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue);
1804 while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) {
1805 total += skb->truesize;
1806 kfree_skb(skb);
1807 }
1808 udp_rmem_release(sk, total, 0, true);
1809 }
1810 EXPORT_IPV6_MOD_GPL(udp_destruct_common);
1811
udp_destruct_sock(struct sock * sk)1812 static void udp_destruct_sock(struct sock *sk)
1813 {
1814 udp_destruct_common(sk);
1815 inet_sock_destruct(sk);
1816 }
1817
udp_init_sock(struct sock * sk)1818 int udp_init_sock(struct sock *sk)
1819 {
1820 udp_lib_init_sock(sk);
1821 sk->sk_destruct = udp_destruct_sock;
1822 set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
1823 return 0;
1824 }
1825
skb_consume_udp(struct sock * sk,struct sk_buff * skb,int len)1826 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len)
1827 {
1828 if (unlikely(READ_ONCE(udp_sk(sk)->peeking_with_offset)))
1829 sk_peek_offset_bwd(sk, len);
1830
1831 if (!skb_unref(skb))
1832 return;
1833
1834 /* In the more common cases we cleared the head states previously,
1835 * see __udp_queue_rcv_skb().
1836 */
1837 if (unlikely(udp_skb_has_head_state(skb)))
1838 skb_release_head_state(skb);
1839 __consume_stateless_skb(skb);
1840 }
1841 EXPORT_IPV6_MOD_GPL(skb_consume_udp);
1842
__first_packet_length(struct sock * sk,struct sk_buff_head * rcvq,unsigned int * total)1843 static struct sk_buff *__first_packet_length(struct sock *sk,
1844 struct sk_buff_head *rcvq,
1845 unsigned int *total)
1846 {
1847 struct sk_buff *skb;
1848
1849 while ((skb = skb_peek(rcvq)) != NULL) {
1850 if (udp_lib_checksum_complete(skb)) {
1851 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS,
1852 IS_UDPLITE(sk));
1853 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS,
1854 IS_UDPLITE(sk));
1855 atomic_inc(&sk->sk_drops);
1856 __skb_unlink(skb, rcvq);
1857 *total += skb->truesize;
1858 kfree_skb_reason(skb, SKB_DROP_REASON_UDP_CSUM);
1859 } else {
1860 udp_skb_csum_unnecessary_set(skb);
1861 break;
1862 }
1863 }
1864 return skb;
1865 }
1866
1867 /**
1868 * first_packet_length - return length of first packet in receive queue
1869 * @sk: socket
1870 *
1871 * Drops all bad checksum frames, until a valid one is found.
1872 * Returns the length of found skb, or -1 if none is found.
1873 */
first_packet_length(struct sock * sk)1874 static int first_packet_length(struct sock *sk)
1875 {
1876 struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue;
1877 struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1878 unsigned int total = 0;
1879 struct sk_buff *skb;
1880 int res;
1881
1882 spin_lock_bh(&rcvq->lock);
1883 skb = __first_packet_length(sk, rcvq, &total);
1884 if (!skb && !skb_queue_empty_lockless(sk_queue)) {
1885 spin_lock(&sk_queue->lock);
1886 skb_queue_splice_tail_init(sk_queue, rcvq);
1887 spin_unlock(&sk_queue->lock);
1888
1889 skb = __first_packet_length(sk, rcvq, &total);
1890 }
1891 res = skb ? skb->len : -1;
1892 if (total)
1893 udp_rmem_release(sk, total, 1, false);
1894 spin_unlock_bh(&rcvq->lock);
1895 return res;
1896 }
1897
1898 /*
1899 * IOCTL requests applicable to the UDP protocol
1900 */
1901
udp_ioctl(struct sock * sk,int cmd,int * karg)1902 int udp_ioctl(struct sock *sk, int cmd, int *karg)
1903 {
1904 switch (cmd) {
1905 case SIOCOUTQ:
1906 {
1907 *karg = sk_wmem_alloc_get(sk);
1908 return 0;
1909 }
1910
1911 case SIOCINQ:
1912 {
1913 *karg = max_t(int, 0, first_packet_length(sk));
1914 return 0;
1915 }
1916
1917 default:
1918 return -ENOIOCTLCMD;
1919 }
1920
1921 return 0;
1922 }
1923 EXPORT_IPV6_MOD(udp_ioctl);
1924
__skb_recv_udp(struct sock * sk,unsigned int flags,int * off,int * err)1925 struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags,
1926 int *off, int *err)
1927 {
1928 struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1929 struct sk_buff_head *queue;
1930 struct sk_buff *last;
1931 long timeo;
1932 int error;
1933
1934 queue = &udp_sk(sk)->reader_queue;
1935 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1936 do {
1937 struct sk_buff *skb;
1938
1939 error = sock_error(sk);
1940 if (error)
1941 break;
1942
1943 error = -EAGAIN;
1944 do {
1945 spin_lock_bh(&queue->lock);
1946 skb = __skb_try_recv_from_queue(queue, flags, off, err,
1947 &last);
1948 if (skb) {
1949 if (!(flags & MSG_PEEK))
1950 udp_skb_destructor(sk, skb);
1951 spin_unlock_bh(&queue->lock);
1952 return skb;
1953 }
1954
1955 if (skb_queue_empty_lockless(sk_queue)) {
1956 spin_unlock_bh(&queue->lock);
1957 goto busy_check;
1958 }
1959
1960 /* refill the reader queue and walk it again
1961 * keep both queues locked to avoid re-acquiring
1962 * the sk_receive_queue lock if fwd memory scheduling
1963 * is needed.
1964 */
1965 spin_lock(&sk_queue->lock);
1966 skb_queue_splice_tail_init(sk_queue, queue);
1967
1968 skb = __skb_try_recv_from_queue(queue, flags, off, err,
1969 &last);
1970 if (skb && !(flags & MSG_PEEK))
1971 udp_skb_dtor_locked(sk, skb);
1972 spin_unlock(&sk_queue->lock);
1973 spin_unlock_bh(&queue->lock);
1974 if (skb)
1975 return skb;
1976
1977 busy_check:
1978 if (!sk_can_busy_loop(sk))
1979 break;
1980
1981 sk_busy_loop(sk, flags & MSG_DONTWAIT);
1982 } while (!skb_queue_empty_lockless(sk_queue));
1983
1984 /* sk_queue is empty, reader_queue may contain peeked packets */
1985 } while (timeo &&
1986 !__skb_wait_for_more_packets(sk, &sk->sk_receive_queue,
1987 &error, &timeo,
1988 (struct sk_buff *)sk_queue));
1989
1990 *err = error;
1991 return NULL;
1992 }
1993 EXPORT_SYMBOL(__skb_recv_udp);
1994
udp_read_skb(struct sock * sk,skb_read_actor_t recv_actor)1995 int udp_read_skb(struct sock *sk, skb_read_actor_t recv_actor)
1996 {
1997 struct sk_buff *skb;
1998 int err;
1999
2000 try_again:
2001 skb = skb_recv_udp(sk, MSG_DONTWAIT, &err);
2002 if (!skb)
2003 return err;
2004
2005 if (udp_lib_checksum_complete(skb)) {
2006 int is_udplite = IS_UDPLITE(sk);
2007 struct net *net = sock_net(sk);
2008
2009 __UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, is_udplite);
2010 __UDP_INC_STATS(net, UDP_MIB_INERRORS, is_udplite);
2011 atomic_inc(&sk->sk_drops);
2012 kfree_skb_reason(skb, SKB_DROP_REASON_UDP_CSUM);
2013 goto try_again;
2014 }
2015
2016 WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk));
2017 return recv_actor(sk, skb);
2018 }
2019 EXPORT_IPV6_MOD(udp_read_skb);
2020
2021 /*
2022 * This should be easy, if there is something there we
2023 * return it, otherwise we block.
2024 */
2025
udp_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int flags,int * addr_len)2026 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags,
2027 int *addr_len)
2028 {
2029 struct inet_sock *inet = inet_sk(sk);
2030 DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
2031 struct sk_buff *skb;
2032 unsigned int ulen, copied;
2033 int off, err, peeking = flags & MSG_PEEK;
2034 int is_udplite = IS_UDPLITE(sk);
2035 bool checksum_valid = false;
2036
2037 if (flags & MSG_ERRQUEUE)
2038 return ip_recv_error(sk, msg, len, addr_len);
2039
2040 try_again:
2041 off = sk_peek_offset(sk, flags);
2042 skb = __skb_recv_udp(sk, flags, &off, &err);
2043 if (!skb)
2044 return err;
2045
2046 ulen = udp_skb_len(skb);
2047 copied = len;
2048 if (copied > ulen - off)
2049 copied = ulen - off;
2050 else if (copied < ulen)
2051 msg->msg_flags |= MSG_TRUNC;
2052
2053 /*
2054 * If checksum is needed at all, try to do it while copying the
2055 * data. If the data is truncated, or if we only want a partial
2056 * coverage checksum (UDP-Lite), do it before the copy.
2057 */
2058
2059 if (copied < ulen || peeking ||
2060 (is_udplite && UDP_SKB_CB(skb)->partial_cov)) {
2061 checksum_valid = udp_skb_csum_unnecessary(skb) ||
2062 !__udp_lib_checksum_complete(skb);
2063 if (!checksum_valid)
2064 goto csum_copy_err;
2065 }
2066
2067 if (checksum_valid || udp_skb_csum_unnecessary(skb)) {
2068 if (udp_skb_is_linear(skb))
2069 err = copy_linear_skb(skb, copied, off, &msg->msg_iter);
2070 else
2071 err = skb_copy_datagram_msg(skb, off, msg, copied);
2072 } else {
2073 err = skb_copy_and_csum_datagram_msg(skb, off, msg);
2074
2075 if (err == -EINVAL)
2076 goto csum_copy_err;
2077 }
2078
2079 if (unlikely(err)) {
2080 if (!peeking) {
2081 atomic_inc(&sk->sk_drops);
2082 UDP_INC_STATS(sock_net(sk),
2083 UDP_MIB_INERRORS, is_udplite);
2084 }
2085 kfree_skb(skb);
2086 return err;
2087 }
2088
2089 if (!peeking)
2090 UDP_INC_STATS(sock_net(sk),
2091 UDP_MIB_INDATAGRAMS, is_udplite);
2092
2093 sock_recv_cmsgs(msg, sk, skb);
2094
2095 /* Copy the address. */
2096 if (sin) {
2097 sin->sin_family = AF_INET;
2098 sin->sin_port = udp_hdr(skb)->source;
2099 sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
2100 memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
2101 *addr_len = sizeof(*sin);
2102
2103 BPF_CGROUP_RUN_PROG_UDP4_RECVMSG_LOCK(sk,
2104 (struct sockaddr *)sin,
2105 addr_len);
2106 }
2107
2108 if (udp_test_bit(GRO_ENABLED, sk))
2109 udp_cmsg_recv(msg, sk, skb);
2110
2111 if (inet_cmsg_flags(inet))
2112 ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off);
2113
2114 err = copied;
2115 if (flags & MSG_TRUNC)
2116 err = ulen;
2117
2118 skb_consume_udp(sk, skb, peeking ? -err : err);
2119 return err;
2120
2121 csum_copy_err:
2122 if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags,
2123 udp_skb_destructor)) {
2124 UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
2125 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2126 }
2127 kfree_skb_reason(skb, SKB_DROP_REASON_UDP_CSUM);
2128
2129 /* starting over for a new packet, but check if we need to yield */
2130 cond_resched();
2131 msg->msg_flags &= ~MSG_TRUNC;
2132 goto try_again;
2133 }
2134
udp_pre_connect(struct sock * sk,struct sockaddr * uaddr,int addr_len)2135 int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
2136 {
2137 /* This check is replicated from __ip4_datagram_connect() and
2138 * intended to prevent BPF program called below from accessing bytes
2139 * that are out of the bound specified by user in addr_len.
2140 */
2141 if (addr_len < sizeof(struct sockaddr_in))
2142 return -EINVAL;
2143
2144 return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr, &addr_len);
2145 }
2146 EXPORT_IPV6_MOD(udp_pre_connect);
2147
udp_connect(struct sock * sk,struct sockaddr * uaddr,int addr_len)2148 static int udp_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
2149 {
2150 int res;
2151
2152 lock_sock(sk);
2153 res = __ip4_datagram_connect(sk, uaddr, addr_len);
2154 if (!res)
2155 udp4_hash4(sk);
2156 release_sock(sk);
2157 return res;
2158 }
2159
__udp_disconnect(struct sock * sk,int flags)2160 int __udp_disconnect(struct sock *sk, int flags)
2161 {
2162 struct inet_sock *inet = inet_sk(sk);
2163 /*
2164 * 1003.1g - break association.
2165 */
2166
2167 sk->sk_state = TCP_CLOSE;
2168 inet->inet_daddr = 0;
2169 inet->inet_dport = 0;
2170 sock_rps_reset_rxhash(sk);
2171 sk->sk_bound_dev_if = 0;
2172 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) {
2173 inet_reset_saddr(sk);
2174 if (sk->sk_prot->rehash &&
2175 (sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2176 sk->sk_prot->rehash(sk);
2177 }
2178
2179 if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
2180 sk->sk_prot->unhash(sk);
2181 inet->inet_sport = 0;
2182 }
2183 sk_dst_reset(sk);
2184 return 0;
2185 }
2186 EXPORT_SYMBOL(__udp_disconnect);
2187
udp_disconnect(struct sock * sk,int flags)2188 int udp_disconnect(struct sock *sk, int flags)
2189 {
2190 lock_sock(sk);
2191 __udp_disconnect(sk, flags);
2192 release_sock(sk);
2193 return 0;
2194 }
2195 EXPORT_IPV6_MOD(udp_disconnect);
2196
udp_lib_unhash(struct sock * sk)2197 void udp_lib_unhash(struct sock *sk)
2198 {
2199 if (sk_hashed(sk)) {
2200 struct udp_table *udptable = udp_get_table_prot(sk);
2201 struct udp_hslot *hslot, *hslot2;
2202
2203 sock_rps_delete_flow(sk);
2204 hslot = udp_hashslot(udptable, sock_net(sk),
2205 udp_sk(sk)->udp_port_hash);
2206 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
2207
2208 spin_lock_bh(&hslot->lock);
2209 if (rcu_access_pointer(sk->sk_reuseport_cb))
2210 reuseport_detach_sock(sk);
2211 if (sk_del_node_init_rcu(sk)) {
2212 hslot->count--;
2213 inet_sk(sk)->inet_num = 0;
2214 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
2215
2216 spin_lock(&hslot2->lock);
2217 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
2218 hslot2->count--;
2219 spin_unlock(&hslot2->lock);
2220
2221 udp_unhash4(udptable, sk);
2222 }
2223 spin_unlock_bh(&hslot->lock);
2224 }
2225 }
2226 EXPORT_IPV6_MOD(udp_lib_unhash);
2227
2228 /*
2229 * inet_rcv_saddr was changed, we must rehash secondary hash
2230 */
udp_lib_rehash(struct sock * sk,u16 newhash,u16 newhash4)2231 void udp_lib_rehash(struct sock *sk, u16 newhash, u16 newhash4)
2232 {
2233 if (sk_hashed(sk)) {
2234 struct udp_table *udptable = udp_get_table_prot(sk);
2235 struct udp_hslot *hslot, *hslot2, *nhslot2;
2236
2237 hslot = udp_hashslot(udptable, sock_net(sk),
2238 udp_sk(sk)->udp_port_hash);
2239 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
2240 nhslot2 = udp_hashslot2(udptable, newhash);
2241 udp_sk(sk)->udp_portaddr_hash = newhash;
2242
2243 if (hslot2 != nhslot2 ||
2244 rcu_access_pointer(sk->sk_reuseport_cb)) {
2245 /* we must lock primary chain too */
2246 spin_lock_bh(&hslot->lock);
2247 if (rcu_access_pointer(sk->sk_reuseport_cb))
2248 reuseport_detach_sock(sk);
2249
2250 if (hslot2 != nhslot2) {
2251 spin_lock(&hslot2->lock);
2252 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
2253 hslot2->count--;
2254 spin_unlock(&hslot2->lock);
2255
2256 spin_lock(&nhslot2->lock);
2257 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
2258 &nhslot2->head);
2259 nhslot2->count++;
2260 spin_unlock(&nhslot2->lock);
2261 }
2262
2263 spin_unlock_bh(&hslot->lock);
2264 }
2265
2266 /* Now process hash4 if necessary:
2267 * (1) update hslot4;
2268 * (2) update hslot2->hash4_cnt.
2269 * Note that hslot2/hslot4 should be checked separately, as
2270 * either of them may change with the other unchanged.
2271 */
2272 if (udp_hashed4(sk)) {
2273 spin_lock_bh(&hslot->lock);
2274
2275 udp_rehash4(udptable, sk, newhash4);
2276 if (hslot2 != nhslot2) {
2277 spin_lock(&hslot2->lock);
2278 udp_hash4_dec(hslot2);
2279 spin_unlock(&hslot2->lock);
2280
2281 spin_lock(&nhslot2->lock);
2282 udp_hash4_inc(nhslot2);
2283 spin_unlock(&nhslot2->lock);
2284 }
2285
2286 spin_unlock_bh(&hslot->lock);
2287 }
2288 }
2289 }
2290 EXPORT_IPV6_MOD(udp_lib_rehash);
2291
udp_v4_rehash(struct sock * sk)2292 void udp_v4_rehash(struct sock *sk)
2293 {
2294 u16 new_hash = ipv4_portaddr_hash(sock_net(sk),
2295 inet_sk(sk)->inet_rcv_saddr,
2296 inet_sk(sk)->inet_num);
2297 u16 new_hash4 = udp_ehashfn(sock_net(sk),
2298 sk->sk_rcv_saddr, sk->sk_num,
2299 sk->sk_daddr, sk->sk_dport);
2300
2301 udp_lib_rehash(sk, new_hash, new_hash4);
2302 }
2303
__udp_queue_rcv_skb(struct sock * sk,struct sk_buff * skb)2304 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2305 {
2306 int rc;
2307
2308 if (inet_sk(sk)->inet_daddr) {
2309 sock_rps_save_rxhash(sk, skb);
2310 sk_mark_napi_id(sk, skb);
2311 sk_incoming_cpu_update(sk);
2312 } else {
2313 sk_mark_napi_id_once(sk, skb);
2314 }
2315
2316 rc = __udp_enqueue_schedule_skb(sk, skb);
2317 if (rc < 0) {
2318 int is_udplite = IS_UDPLITE(sk);
2319 int drop_reason;
2320
2321 /* Note that an ENOMEM error is charged twice */
2322 if (rc == -ENOMEM) {
2323 UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS,
2324 is_udplite);
2325 drop_reason = SKB_DROP_REASON_SOCKET_RCVBUFF;
2326 } else {
2327 UDP_INC_STATS(sock_net(sk), UDP_MIB_MEMERRORS,
2328 is_udplite);
2329 drop_reason = SKB_DROP_REASON_PROTO_MEM;
2330 }
2331 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2332 trace_udp_fail_queue_rcv_skb(rc, sk, skb);
2333 sk_skb_reason_drop(sk, skb, drop_reason);
2334 return -1;
2335 }
2336
2337 return 0;
2338 }
2339
2340 /* returns:
2341 * -1: error
2342 * 0: success
2343 * >0: "udp encap" protocol resubmission
2344 *
2345 * Note that in the success and error cases, the skb is assumed to
2346 * have either been requeued or freed.
2347 */
udp_queue_rcv_one_skb(struct sock * sk,struct sk_buff * skb)2348 static int udp_queue_rcv_one_skb(struct sock *sk, struct sk_buff *skb)
2349 {
2350 enum skb_drop_reason drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
2351 struct udp_sock *up = udp_sk(sk);
2352 int is_udplite = IS_UDPLITE(sk);
2353
2354 /*
2355 * Charge it to the socket, dropping if the queue is full.
2356 */
2357 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) {
2358 drop_reason = SKB_DROP_REASON_XFRM_POLICY;
2359 goto drop;
2360 }
2361 nf_reset_ct(skb);
2362
2363 if (static_branch_unlikely(&udp_encap_needed_key) &&
2364 READ_ONCE(up->encap_type)) {
2365 int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
2366
2367 /*
2368 * This is an encapsulation socket so pass the skb to
2369 * the socket's udp_encap_rcv() hook. Otherwise, just
2370 * fall through and pass this up the UDP socket.
2371 * up->encap_rcv() returns the following value:
2372 * =0 if skb was successfully passed to the encap
2373 * handler or was discarded by it.
2374 * >0 if skb should be passed on to UDP.
2375 * <0 if skb should be resubmitted as proto -N
2376 */
2377
2378 /* if we're overly short, let UDP handle it */
2379 encap_rcv = READ_ONCE(up->encap_rcv);
2380 if (encap_rcv) {
2381 int ret;
2382
2383 /* Verify checksum before giving to encap */
2384 if (udp_lib_checksum_complete(skb))
2385 goto csum_error;
2386
2387 ret = encap_rcv(sk, skb);
2388 if (ret <= 0) {
2389 __UDP_INC_STATS(sock_net(sk),
2390 UDP_MIB_INDATAGRAMS,
2391 is_udplite);
2392 return -ret;
2393 }
2394 }
2395
2396 /* FALLTHROUGH -- it's a UDP Packet */
2397 }
2398
2399 /*
2400 * UDP-Lite specific tests, ignored on UDP sockets
2401 */
2402 if (udp_test_bit(UDPLITE_RECV_CC, sk) && UDP_SKB_CB(skb)->partial_cov) {
2403 u16 pcrlen = READ_ONCE(up->pcrlen);
2404
2405 /*
2406 * MIB statistics other than incrementing the error count are
2407 * disabled for the following two types of errors: these depend
2408 * on the application settings, not on the functioning of the
2409 * protocol stack as such.
2410 *
2411 * RFC 3828 here recommends (sec 3.3): "There should also be a
2412 * way ... to ... at least let the receiving application block
2413 * delivery of packets with coverage values less than a value
2414 * provided by the application."
2415 */
2416 if (pcrlen == 0) { /* full coverage was set */
2417 net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
2418 UDP_SKB_CB(skb)->cscov, skb->len);
2419 goto drop;
2420 }
2421 /* The next case involves violating the min. coverage requested
2422 * by the receiver. This is subtle: if receiver wants x and x is
2423 * greater than the buffersize/MTU then receiver will complain
2424 * that it wants x while sender emits packets of smaller size y.
2425 * Therefore the above ...()->partial_cov statement is essential.
2426 */
2427 if (UDP_SKB_CB(skb)->cscov < pcrlen) {
2428 net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
2429 UDP_SKB_CB(skb)->cscov, pcrlen);
2430 goto drop;
2431 }
2432 }
2433
2434 prefetch(&sk->sk_rmem_alloc);
2435 if (rcu_access_pointer(sk->sk_filter) &&
2436 udp_lib_checksum_complete(skb))
2437 goto csum_error;
2438
2439 if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr), &drop_reason))
2440 goto drop;
2441
2442 udp_csum_pull_header(skb);
2443
2444 ipv4_pktinfo_prepare(sk, skb, true);
2445 return __udp_queue_rcv_skb(sk, skb);
2446
2447 csum_error:
2448 drop_reason = SKB_DROP_REASON_UDP_CSUM;
2449 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
2450 drop:
2451 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2452 atomic_inc(&sk->sk_drops);
2453 sk_skb_reason_drop(sk, skb, drop_reason);
2454 return -1;
2455 }
2456
udp_queue_rcv_skb(struct sock * sk,struct sk_buff * skb)2457 static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2458 {
2459 struct sk_buff *next, *segs;
2460 int ret;
2461
2462 if (likely(!udp_unexpected_gso(sk, skb)))
2463 return udp_queue_rcv_one_skb(sk, skb);
2464
2465 BUILD_BUG_ON(sizeof(struct udp_skb_cb) > SKB_GSO_CB_OFFSET);
2466 __skb_push(skb, -skb_mac_offset(skb));
2467 segs = udp_rcv_segment(sk, skb, true);
2468 skb_list_walk_safe(segs, skb, next) {
2469 __skb_pull(skb, skb_transport_offset(skb));
2470
2471 udp_post_segment_fix_csum(skb);
2472 ret = udp_queue_rcv_one_skb(sk, skb);
2473 if (ret > 0)
2474 ip_protocol_deliver_rcu(dev_net(skb->dev), skb, ret);
2475 }
2476 return 0;
2477 }
2478
2479 /* For TCP sockets, sk_rx_dst is protected by socket lock
2480 * For UDP, we use xchg() to guard against concurrent changes.
2481 */
udp_sk_rx_dst_set(struct sock * sk,struct dst_entry * dst)2482 bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
2483 {
2484 struct dst_entry *old;
2485
2486 if (dst_hold_safe(dst)) {
2487 old = unrcu_pointer(xchg(&sk->sk_rx_dst, RCU_INITIALIZER(dst)));
2488 dst_release(old);
2489 return old != dst;
2490 }
2491 return false;
2492 }
2493 EXPORT_IPV6_MOD(udp_sk_rx_dst_set);
2494
2495 /*
2496 * Multicasts and broadcasts go to each listener.
2497 *
2498 * Note: called only from the BH handler context.
2499 */
__udp4_lib_mcast_deliver(struct net * net,struct sk_buff * skb,struct udphdr * uh,__be32 saddr,__be32 daddr,struct udp_table * udptable,int proto)2500 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
2501 struct udphdr *uh,
2502 __be32 saddr, __be32 daddr,
2503 struct udp_table *udptable,
2504 int proto)
2505 {
2506 struct sock *sk, *first = NULL;
2507 unsigned short hnum = ntohs(uh->dest);
2508 struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
2509 unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
2510 unsigned int offset = offsetof(typeof(*sk), sk_node);
2511 int dif = skb->dev->ifindex;
2512 int sdif = inet_sdif(skb);
2513 struct hlist_node *node;
2514 struct sk_buff *nskb;
2515
2516 if (use_hash2) {
2517 hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
2518 udptable->mask;
2519 hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask;
2520 start_lookup:
2521 hslot = &udptable->hash2[hash2].hslot;
2522 offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
2523 }
2524
2525 sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) {
2526 if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr,
2527 uh->source, saddr, dif, sdif, hnum))
2528 continue;
2529
2530 if (!first) {
2531 first = sk;
2532 continue;
2533 }
2534 nskb = skb_clone(skb, GFP_ATOMIC);
2535
2536 if (unlikely(!nskb)) {
2537 atomic_inc(&sk->sk_drops);
2538 __UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS,
2539 IS_UDPLITE(sk));
2540 __UDP_INC_STATS(net, UDP_MIB_INERRORS,
2541 IS_UDPLITE(sk));
2542 continue;
2543 }
2544 if (udp_queue_rcv_skb(sk, nskb) > 0)
2545 consume_skb(nskb);
2546 }
2547
2548 /* Also lookup *:port if we are using hash2 and haven't done so yet. */
2549 if (use_hash2 && hash2 != hash2_any) {
2550 hash2 = hash2_any;
2551 goto start_lookup;
2552 }
2553
2554 if (first) {
2555 if (udp_queue_rcv_skb(first, skb) > 0)
2556 consume_skb(skb);
2557 } else {
2558 kfree_skb(skb);
2559 __UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI,
2560 proto == IPPROTO_UDPLITE);
2561 }
2562 return 0;
2563 }
2564
2565 /* Initialize UDP checksum. If exited with zero value (success),
2566 * CHECKSUM_UNNECESSARY means, that no more checks are required.
2567 * Otherwise, csum completion requires checksumming packet body,
2568 * including udp header and folding it to skb->csum.
2569 */
udp4_csum_init(struct sk_buff * skb,struct udphdr * uh,int proto)2570 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
2571 int proto)
2572 {
2573 int err;
2574
2575 UDP_SKB_CB(skb)->partial_cov = 0;
2576 UDP_SKB_CB(skb)->cscov = skb->len;
2577
2578 if (proto == IPPROTO_UDPLITE) {
2579 err = udplite_checksum_init(skb, uh);
2580 if (err)
2581 return err;
2582
2583 if (UDP_SKB_CB(skb)->partial_cov) {
2584 skb->csum = inet_compute_pseudo(skb, proto);
2585 return 0;
2586 }
2587 }
2588
2589 /* Note, we are only interested in != 0 or == 0, thus the
2590 * force to int.
2591 */
2592 err = (__force int)skb_checksum_init_zero_check(skb, proto, uh->check,
2593 inet_compute_pseudo);
2594 if (err)
2595 return err;
2596
2597 if (skb->ip_summed == CHECKSUM_COMPLETE && !skb->csum_valid) {
2598 /* If SW calculated the value, we know it's bad */
2599 if (skb->csum_complete_sw)
2600 return 1;
2601
2602 /* HW says the value is bad. Let's validate that.
2603 * skb->csum is no longer the full packet checksum,
2604 * so don't treat it as such.
2605 */
2606 skb_checksum_complete_unset(skb);
2607 }
2608
2609 return 0;
2610 }
2611
2612 /* wrapper for udp_queue_rcv_skb tacking care of csum conversion and
2613 * return code conversion for ip layer consumption
2614 */
udp_unicast_rcv_skb(struct sock * sk,struct sk_buff * skb,struct udphdr * uh)2615 static int udp_unicast_rcv_skb(struct sock *sk, struct sk_buff *skb,
2616 struct udphdr *uh)
2617 {
2618 int ret;
2619
2620 if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
2621 skb_checksum_try_convert(skb, IPPROTO_UDP, inet_compute_pseudo);
2622
2623 ret = udp_queue_rcv_skb(sk, skb);
2624
2625 /* a return value > 0 means to resubmit the input, but
2626 * it wants the return to be -protocol, or 0
2627 */
2628 if (ret > 0)
2629 return -ret;
2630 return 0;
2631 }
2632
2633 /*
2634 * All we need to do is get the socket, and then do a checksum.
2635 */
2636
__udp4_lib_rcv(struct sk_buff * skb,struct udp_table * udptable,int proto)2637 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
2638 int proto)
2639 {
2640 struct sock *sk = NULL;
2641 struct udphdr *uh;
2642 unsigned short ulen;
2643 struct rtable *rt = skb_rtable(skb);
2644 __be32 saddr, daddr;
2645 struct net *net = dev_net(skb->dev);
2646 bool refcounted;
2647 int drop_reason;
2648
2649 drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
2650
2651 /*
2652 * Validate the packet.
2653 */
2654 if (!pskb_may_pull(skb, sizeof(struct udphdr)))
2655 goto drop; /* No space for header. */
2656
2657 uh = udp_hdr(skb);
2658 ulen = ntohs(uh->len);
2659 saddr = ip_hdr(skb)->saddr;
2660 daddr = ip_hdr(skb)->daddr;
2661
2662 if (ulen > skb->len)
2663 goto short_packet;
2664
2665 if (proto == IPPROTO_UDP) {
2666 /* UDP validates ulen. */
2667 if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
2668 goto short_packet;
2669 uh = udp_hdr(skb);
2670 }
2671
2672 if (udp4_csum_init(skb, uh, proto))
2673 goto csum_error;
2674
2675 sk = inet_steal_sock(net, skb, sizeof(struct udphdr), saddr, uh->source, daddr, uh->dest,
2676 &refcounted, udp_ehashfn);
2677 if (IS_ERR(sk))
2678 goto no_sk;
2679
2680 if (sk) {
2681 struct dst_entry *dst = skb_dst(skb);
2682 int ret;
2683
2684 if (unlikely(rcu_dereference(sk->sk_rx_dst) != dst))
2685 udp_sk_rx_dst_set(sk, dst);
2686
2687 ret = udp_unicast_rcv_skb(sk, skb, uh);
2688 if (refcounted)
2689 sock_put(sk);
2690 return ret;
2691 }
2692
2693 if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
2694 return __udp4_lib_mcast_deliver(net, skb, uh,
2695 saddr, daddr, udptable, proto);
2696
2697 sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
2698 if (sk)
2699 return udp_unicast_rcv_skb(sk, skb, uh);
2700 no_sk:
2701 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2702 goto drop;
2703 nf_reset_ct(skb);
2704
2705 /* No socket. Drop packet silently, if checksum is wrong */
2706 if (udp_lib_checksum_complete(skb))
2707 goto csum_error;
2708
2709 drop_reason = SKB_DROP_REASON_NO_SOCKET;
2710 __UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
2711 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
2712
2713 /*
2714 * Hmm. We got an UDP packet to a port to which we
2715 * don't wanna listen. Ignore it.
2716 */
2717 sk_skb_reason_drop(sk, skb, drop_reason);
2718 return 0;
2719
2720 short_packet:
2721 drop_reason = SKB_DROP_REASON_PKT_TOO_SMALL;
2722 net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
2723 proto == IPPROTO_UDPLITE ? "Lite" : "",
2724 &saddr, ntohs(uh->source),
2725 ulen, skb->len,
2726 &daddr, ntohs(uh->dest));
2727 goto drop;
2728
2729 csum_error:
2730 /*
2731 * RFC1122: OK. Discards the bad packet silently (as far as
2732 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
2733 */
2734 drop_reason = SKB_DROP_REASON_UDP_CSUM;
2735 net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
2736 proto == IPPROTO_UDPLITE ? "Lite" : "",
2737 &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
2738 ulen);
2739 __UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
2740 drop:
2741 __UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
2742 sk_skb_reason_drop(sk, skb, drop_reason);
2743 return 0;
2744 }
2745
2746 /* We can only early demux multicast if there is a single matching socket.
2747 * If more than one socket found returns NULL
2748 */
__udp4_lib_mcast_demux_lookup(struct net * net,__be16 loc_port,__be32 loc_addr,__be16 rmt_port,__be32 rmt_addr,int dif,int sdif)2749 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
2750 __be16 loc_port, __be32 loc_addr,
2751 __be16 rmt_port, __be32 rmt_addr,
2752 int dif, int sdif)
2753 {
2754 struct udp_table *udptable = net->ipv4.udp_table;
2755 unsigned short hnum = ntohs(loc_port);
2756 struct sock *sk, *result;
2757 struct udp_hslot *hslot;
2758 unsigned int slot;
2759
2760 slot = udp_hashfn(net, hnum, udptable->mask);
2761 hslot = &udptable->hash[slot];
2762
2763 /* Do not bother scanning a too big list */
2764 if (hslot->count > 10)
2765 return NULL;
2766
2767 result = NULL;
2768 sk_for_each_rcu(sk, &hslot->head) {
2769 if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr,
2770 rmt_port, rmt_addr, dif, sdif, hnum)) {
2771 if (result)
2772 return NULL;
2773 result = sk;
2774 }
2775 }
2776
2777 return result;
2778 }
2779
2780 /* For unicast we should only early demux connected sockets or we can
2781 * break forwarding setups. The chains here can be long so only check
2782 * if the first socket is an exact match and if not move on.
2783 */
__udp4_lib_demux_lookup(struct net * net,__be16 loc_port,__be32 loc_addr,__be16 rmt_port,__be32 rmt_addr,int dif,int sdif)2784 static struct sock *__udp4_lib_demux_lookup(struct net *net,
2785 __be16 loc_port, __be32 loc_addr,
2786 __be16 rmt_port, __be32 rmt_addr,
2787 int dif, int sdif)
2788 {
2789 struct udp_table *udptable = net->ipv4.udp_table;
2790 INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
2791 unsigned short hnum = ntohs(loc_port);
2792 struct udp_hslot *hslot2;
2793 unsigned int hash2;
2794 __portpair ports;
2795 struct sock *sk;
2796
2797 hash2 = ipv4_portaddr_hash(net, loc_addr, hnum);
2798 hslot2 = udp_hashslot2(udptable, hash2);
2799 ports = INET_COMBINED_PORTS(rmt_port, hnum);
2800
2801 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
2802 if (inet_match(net, sk, acookie, ports, dif, sdif))
2803 return sk;
2804 /* Only check first socket in chain */
2805 break;
2806 }
2807 return NULL;
2808 }
2809
udp_v4_early_demux(struct sk_buff * skb)2810 int udp_v4_early_demux(struct sk_buff *skb)
2811 {
2812 struct net *net = dev_net(skb->dev);
2813 struct in_device *in_dev = NULL;
2814 const struct iphdr *iph;
2815 const struct udphdr *uh;
2816 struct sock *sk = NULL;
2817 struct dst_entry *dst;
2818 int dif = skb->dev->ifindex;
2819 int sdif = inet_sdif(skb);
2820 int ours;
2821
2822 /* validate the packet */
2823 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
2824 return 0;
2825
2826 iph = ip_hdr(skb);
2827 uh = udp_hdr(skb);
2828
2829 if (skb->pkt_type == PACKET_MULTICAST) {
2830 in_dev = __in_dev_get_rcu(skb->dev);
2831
2832 if (!in_dev)
2833 return 0;
2834
2835 ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
2836 iph->protocol);
2837 if (!ours)
2838 return 0;
2839
2840 sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
2841 uh->source, iph->saddr,
2842 dif, sdif);
2843 } else if (skb->pkt_type == PACKET_HOST) {
2844 sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
2845 uh->source, iph->saddr, dif, sdif);
2846 }
2847
2848 if (!sk)
2849 return 0;
2850
2851 skb->sk = sk;
2852 DEBUG_NET_WARN_ON_ONCE(sk_is_refcounted(sk));
2853 skb->destructor = sock_pfree;
2854 dst = rcu_dereference(sk->sk_rx_dst);
2855
2856 if (dst)
2857 dst = dst_check(dst, 0);
2858 if (dst) {
2859 u32 itag = 0;
2860
2861 /* set noref for now.
2862 * any place which wants to hold dst has to call
2863 * dst_hold_safe()
2864 */
2865 skb_dst_set_noref(skb, dst);
2866
2867 /* for unconnected multicast sockets we need to validate
2868 * the source on each packet
2869 */
2870 if (!inet_sk(sk)->inet_daddr && in_dev)
2871 return ip_mc_validate_source(skb, iph->daddr,
2872 iph->saddr,
2873 ip4h_dscp(iph),
2874 skb->dev, in_dev, &itag);
2875 }
2876 return 0;
2877 }
2878
udp_rcv(struct sk_buff * skb)2879 int udp_rcv(struct sk_buff *skb)
2880 {
2881 return __udp4_lib_rcv(skb, dev_net(skb->dev)->ipv4.udp_table, IPPROTO_UDP);
2882 }
2883
udp_destroy_sock(struct sock * sk)2884 void udp_destroy_sock(struct sock *sk)
2885 {
2886 struct udp_sock *up = udp_sk(sk);
2887 bool slow = lock_sock_fast(sk);
2888
2889 /* protects from races with udp_abort() */
2890 sock_set_flag(sk, SOCK_DEAD);
2891 udp_flush_pending_frames(sk);
2892 unlock_sock_fast(sk, slow);
2893 if (static_branch_unlikely(&udp_encap_needed_key)) {
2894 if (up->encap_type) {
2895 void (*encap_destroy)(struct sock *sk);
2896 encap_destroy = READ_ONCE(up->encap_destroy);
2897 if (encap_destroy)
2898 encap_destroy(sk);
2899 }
2900 if (udp_test_bit(ENCAP_ENABLED, sk)) {
2901 static_branch_dec(&udp_encap_needed_key);
2902 udp_tunnel_cleanup_gro(sk);
2903 }
2904 }
2905 }
2906
2907 typedef struct sk_buff *(*udp_gro_receive_t)(struct sock *sk,
2908 struct list_head *head,
2909 struct sk_buff *skb);
2910
set_xfrm_gro_udp_encap_rcv(__u16 encap_type,unsigned short family,struct sock * sk)2911 static void set_xfrm_gro_udp_encap_rcv(__u16 encap_type, unsigned short family,
2912 struct sock *sk)
2913 {
2914 #ifdef CONFIG_XFRM
2915 udp_gro_receive_t new_gro_receive;
2916
2917 if (udp_test_bit(GRO_ENABLED, sk) && encap_type == UDP_ENCAP_ESPINUDP) {
2918 if (IS_ENABLED(CONFIG_IPV6) && family == AF_INET6)
2919 new_gro_receive = ipv6_stub->xfrm6_gro_udp_encap_rcv;
2920 else
2921 new_gro_receive = xfrm4_gro_udp_encap_rcv;
2922
2923 if (udp_sk(sk)->gro_receive != new_gro_receive) {
2924 /*
2925 * With IPV6_ADDRFORM the gro callback could change
2926 * after being set, unregister the old one, if valid.
2927 */
2928 if (udp_sk(sk)->gro_receive)
2929 udp_tunnel_update_gro_rcv(sk, false);
2930
2931 WRITE_ONCE(udp_sk(sk)->gro_receive, new_gro_receive);
2932 udp_tunnel_update_gro_rcv(sk, true);
2933 }
2934 }
2935 #endif
2936 }
2937
2938 /*
2939 * Socket option code for UDP
2940 */
udp_lib_setsockopt(struct sock * sk,int level,int optname,sockptr_t optval,unsigned int optlen,int (* push_pending_frames)(struct sock *))2941 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2942 sockptr_t optval, unsigned int optlen,
2943 int (*push_pending_frames)(struct sock *))
2944 {
2945 struct udp_sock *up = udp_sk(sk);
2946 int val, valbool;
2947 int err = 0;
2948 int is_udplite = IS_UDPLITE(sk);
2949
2950 if (level == SOL_SOCKET) {
2951 err = sk_setsockopt(sk, level, optname, optval, optlen);
2952
2953 if (optname == SO_RCVBUF || optname == SO_RCVBUFFORCE) {
2954 sockopt_lock_sock(sk);
2955 /* paired with READ_ONCE in udp_rmem_release() */
2956 WRITE_ONCE(up->forward_threshold, sk->sk_rcvbuf >> 2);
2957 sockopt_release_sock(sk);
2958 }
2959 return err;
2960 }
2961
2962 if (optlen < sizeof(int))
2963 return -EINVAL;
2964
2965 if (copy_from_sockptr(&val, optval, sizeof(val)))
2966 return -EFAULT;
2967
2968 valbool = val ? 1 : 0;
2969
2970 switch (optname) {
2971 case UDP_CORK:
2972 if (val != 0) {
2973 udp_set_bit(CORK, sk);
2974 } else {
2975 udp_clear_bit(CORK, sk);
2976 lock_sock(sk);
2977 push_pending_frames(sk);
2978 release_sock(sk);
2979 }
2980 break;
2981
2982 case UDP_ENCAP:
2983 sockopt_lock_sock(sk);
2984 switch (val) {
2985 case 0:
2986 #ifdef CONFIG_XFRM
2987 case UDP_ENCAP_ESPINUDP:
2988 set_xfrm_gro_udp_encap_rcv(val, sk->sk_family, sk);
2989 #if IS_ENABLED(CONFIG_IPV6)
2990 if (sk->sk_family == AF_INET6)
2991 WRITE_ONCE(up->encap_rcv,
2992 ipv6_stub->xfrm6_udp_encap_rcv);
2993 else
2994 #endif
2995 WRITE_ONCE(up->encap_rcv,
2996 xfrm4_udp_encap_rcv);
2997 #endif
2998 fallthrough;
2999 case UDP_ENCAP_L2TPINUDP:
3000 WRITE_ONCE(up->encap_type, val);
3001 udp_tunnel_encap_enable(sk);
3002 break;
3003 default:
3004 err = -ENOPROTOOPT;
3005 break;
3006 }
3007 sockopt_release_sock(sk);
3008 break;
3009
3010 case UDP_NO_CHECK6_TX:
3011 udp_set_no_check6_tx(sk, valbool);
3012 break;
3013
3014 case UDP_NO_CHECK6_RX:
3015 udp_set_no_check6_rx(sk, valbool);
3016 break;
3017
3018 case UDP_SEGMENT:
3019 if (val < 0 || val > USHRT_MAX)
3020 return -EINVAL;
3021 WRITE_ONCE(up->gso_size, val);
3022 break;
3023
3024 case UDP_GRO:
3025 sockopt_lock_sock(sk);
3026 /* when enabling GRO, accept the related GSO packet type */
3027 if (valbool)
3028 udp_tunnel_encap_enable(sk);
3029 udp_assign_bit(GRO_ENABLED, sk, valbool);
3030 udp_assign_bit(ACCEPT_L4, sk, valbool);
3031 set_xfrm_gro_udp_encap_rcv(up->encap_type, sk->sk_family, sk);
3032 sockopt_release_sock(sk);
3033 break;
3034
3035 /*
3036 * UDP-Lite's partial checksum coverage (RFC 3828).
3037 */
3038 /* The sender sets actual checksum coverage length via this option.
3039 * The case coverage > packet length is handled by send module. */
3040 case UDPLITE_SEND_CSCOV:
3041 if (!is_udplite) /* Disable the option on UDP sockets */
3042 return -ENOPROTOOPT;
3043 if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
3044 val = 8;
3045 else if (val > USHRT_MAX)
3046 val = USHRT_MAX;
3047 WRITE_ONCE(up->pcslen, val);
3048 udp_set_bit(UDPLITE_SEND_CC, sk);
3049 break;
3050
3051 /* The receiver specifies a minimum checksum coverage value. To make
3052 * sense, this should be set to at least 8 (as done below). If zero is
3053 * used, this again means full checksum coverage. */
3054 case UDPLITE_RECV_CSCOV:
3055 if (!is_udplite) /* Disable the option on UDP sockets */
3056 return -ENOPROTOOPT;
3057 if (val != 0 && val < 8) /* Avoid silly minimal values. */
3058 val = 8;
3059 else if (val > USHRT_MAX)
3060 val = USHRT_MAX;
3061 WRITE_ONCE(up->pcrlen, val);
3062 udp_set_bit(UDPLITE_RECV_CC, sk);
3063 break;
3064
3065 default:
3066 err = -ENOPROTOOPT;
3067 break;
3068 }
3069
3070 return err;
3071 }
3072 EXPORT_IPV6_MOD(udp_lib_setsockopt);
3073
udp_setsockopt(struct sock * sk,int level,int optname,sockptr_t optval,unsigned int optlen)3074 int udp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
3075 unsigned int optlen)
3076 {
3077 if (level == SOL_UDP || level == SOL_UDPLITE || level == SOL_SOCKET)
3078 return udp_lib_setsockopt(sk, level, optname,
3079 optval, optlen,
3080 udp_push_pending_frames);
3081 return ip_setsockopt(sk, level, optname, optval, optlen);
3082 }
3083
udp_lib_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)3084 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
3085 char __user *optval, int __user *optlen)
3086 {
3087 struct udp_sock *up = udp_sk(sk);
3088 int val, len;
3089
3090 if (get_user(len, optlen))
3091 return -EFAULT;
3092
3093 if (len < 0)
3094 return -EINVAL;
3095
3096 len = min_t(unsigned int, len, sizeof(int));
3097
3098 switch (optname) {
3099 case UDP_CORK:
3100 val = udp_test_bit(CORK, sk);
3101 break;
3102
3103 case UDP_ENCAP:
3104 val = READ_ONCE(up->encap_type);
3105 break;
3106
3107 case UDP_NO_CHECK6_TX:
3108 val = udp_get_no_check6_tx(sk);
3109 break;
3110
3111 case UDP_NO_CHECK6_RX:
3112 val = udp_get_no_check6_rx(sk);
3113 break;
3114
3115 case UDP_SEGMENT:
3116 val = READ_ONCE(up->gso_size);
3117 break;
3118
3119 case UDP_GRO:
3120 val = udp_test_bit(GRO_ENABLED, sk);
3121 break;
3122
3123 /* The following two cannot be changed on UDP sockets, the return is
3124 * always 0 (which corresponds to the full checksum coverage of UDP). */
3125 case UDPLITE_SEND_CSCOV:
3126 val = READ_ONCE(up->pcslen);
3127 break;
3128
3129 case UDPLITE_RECV_CSCOV:
3130 val = READ_ONCE(up->pcrlen);
3131 break;
3132
3133 default:
3134 return -ENOPROTOOPT;
3135 }
3136
3137 if (put_user(len, optlen))
3138 return -EFAULT;
3139 if (copy_to_user(optval, &val, len))
3140 return -EFAULT;
3141 return 0;
3142 }
3143 EXPORT_IPV6_MOD(udp_lib_getsockopt);
3144
udp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)3145 int udp_getsockopt(struct sock *sk, int level, int optname,
3146 char __user *optval, int __user *optlen)
3147 {
3148 if (level == SOL_UDP || level == SOL_UDPLITE)
3149 return udp_lib_getsockopt(sk, level, optname, optval, optlen);
3150 return ip_getsockopt(sk, level, optname, optval, optlen);
3151 }
3152
3153 /**
3154 * udp_poll - wait for a UDP event.
3155 * @file: - file struct
3156 * @sock: - socket
3157 * @wait: - poll table
3158 *
3159 * This is same as datagram poll, except for the special case of
3160 * blocking sockets. If application is using a blocking fd
3161 * and a packet with checksum error is in the queue;
3162 * then it could get return from select indicating data available
3163 * but then block when reading it. Add special case code
3164 * to work around these arguably broken applications.
3165 */
udp_poll(struct file * file,struct socket * sock,poll_table * wait)3166 __poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait)
3167 {
3168 __poll_t mask = datagram_poll(file, sock, wait);
3169 struct sock *sk = sock->sk;
3170
3171 if (!skb_queue_empty_lockless(&udp_sk(sk)->reader_queue))
3172 mask |= EPOLLIN | EPOLLRDNORM;
3173
3174 /* Check for false positives due to checksum errors */
3175 if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
3176 !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1)
3177 mask &= ~(EPOLLIN | EPOLLRDNORM);
3178
3179 /* psock ingress_msg queue should not contain any bad checksum frames */
3180 if (sk_is_readable(sk))
3181 mask |= EPOLLIN | EPOLLRDNORM;
3182 return mask;
3183
3184 }
3185 EXPORT_IPV6_MOD(udp_poll);
3186
udp_abort(struct sock * sk,int err)3187 int udp_abort(struct sock *sk, int err)
3188 {
3189 if (!has_current_bpf_ctx())
3190 lock_sock(sk);
3191
3192 /* udp{v6}_destroy_sock() sets it under the sk lock, avoid racing
3193 * with close()
3194 */
3195 if (sock_flag(sk, SOCK_DEAD))
3196 goto out;
3197
3198 sk->sk_err = err;
3199 sk_error_report(sk);
3200 __udp_disconnect(sk, 0);
3201
3202 out:
3203 if (!has_current_bpf_ctx())
3204 release_sock(sk);
3205
3206 return 0;
3207 }
3208 EXPORT_IPV6_MOD_GPL(udp_abort);
3209
3210 struct proto udp_prot = {
3211 .name = "UDP",
3212 .owner = THIS_MODULE,
3213 .close = udp_lib_close,
3214 .pre_connect = udp_pre_connect,
3215 .connect = udp_connect,
3216 .disconnect = udp_disconnect,
3217 .ioctl = udp_ioctl,
3218 .init = udp_init_sock,
3219 .destroy = udp_destroy_sock,
3220 .setsockopt = udp_setsockopt,
3221 .getsockopt = udp_getsockopt,
3222 .sendmsg = udp_sendmsg,
3223 .recvmsg = udp_recvmsg,
3224 .splice_eof = udp_splice_eof,
3225 .release_cb = ip4_datagram_release_cb,
3226 .hash = udp_lib_hash,
3227 .unhash = udp_lib_unhash,
3228 .rehash = udp_v4_rehash,
3229 .get_port = udp_v4_get_port,
3230 .put_port = udp_lib_unhash,
3231 #ifdef CONFIG_BPF_SYSCALL
3232 .psock_update_sk_prot = udp_bpf_update_proto,
3233 #endif
3234 .memory_allocated = &net_aligned_data.udp_memory_allocated,
3235 .per_cpu_fw_alloc = &udp_memory_per_cpu_fw_alloc,
3236
3237 .sysctl_mem = sysctl_udp_mem,
3238 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_udp_wmem_min),
3239 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_udp_rmem_min),
3240 .obj_size = sizeof(struct udp_sock),
3241 .h.udp_table = NULL,
3242 .diag_destroy = udp_abort,
3243 };
3244 EXPORT_SYMBOL(udp_prot);
3245
3246 /* ------------------------------------------------------------------------ */
3247 #ifdef CONFIG_PROC_FS
3248
3249 static unsigned short seq_file_family(const struct seq_file *seq);
seq_sk_match(struct seq_file * seq,const struct sock * sk)3250 static bool seq_sk_match(struct seq_file *seq, const struct sock *sk)
3251 {
3252 unsigned short family = seq_file_family(seq);
3253
3254 /* AF_UNSPEC is used as a match all */
3255 return ((family == AF_UNSPEC || family == sk->sk_family) &&
3256 net_eq(sock_net(sk), seq_file_net(seq)));
3257 }
3258
3259 #ifdef CONFIG_BPF_SYSCALL
3260 static const struct seq_operations bpf_iter_udp_seq_ops;
3261 #endif
udp_get_table_seq(struct seq_file * seq,struct net * net)3262 static struct udp_table *udp_get_table_seq(struct seq_file *seq,
3263 struct net *net)
3264 {
3265 const struct udp_seq_afinfo *afinfo;
3266
3267 #ifdef CONFIG_BPF_SYSCALL
3268 if (seq->op == &bpf_iter_udp_seq_ops)
3269 return net->ipv4.udp_table;
3270 #endif
3271
3272 afinfo = pde_data(file_inode(seq->file));
3273 return afinfo->udp_table ? : net->ipv4.udp_table;
3274 }
3275
udp_get_first(struct seq_file * seq,int start)3276 static struct sock *udp_get_first(struct seq_file *seq, int start)
3277 {
3278 struct udp_iter_state *state = seq->private;
3279 struct net *net = seq_file_net(seq);
3280 struct udp_table *udptable;
3281 struct sock *sk;
3282
3283 udptable = udp_get_table_seq(seq, net);
3284
3285 for (state->bucket = start; state->bucket <= udptable->mask;
3286 ++state->bucket) {
3287 struct udp_hslot *hslot = &udptable->hash[state->bucket];
3288
3289 if (hlist_empty(&hslot->head))
3290 continue;
3291
3292 spin_lock_bh(&hslot->lock);
3293 sk_for_each(sk, &hslot->head) {
3294 if (seq_sk_match(seq, sk))
3295 goto found;
3296 }
3297 spin_unlock_bh(&hslot->lock);
3298 }
3299 sk = NULL;
3300 found:
3301 return sk;
3302 }
3303
udp_get_next(struct seq_file * seq,struct sock * sk)3304 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
3305 {
3306 struct udp_iter_state *state = seq->private;
3307 struct net *net = seq_file_net(seq);
3308 struct udp_table *udptable;
3309
3310 do {
3311 sk = sk_next(sk);
3312 } while (sk && !seq_sk_match(seq, sk));
3313
3314 if (!sk) {
3315 udptable = udp_get_table_seq(seq, net);
3316
3317 if (state->bucket <= udptable->mask)
3318 spin_unlock_bh(&udptable->hash[state->bucket].lock);
3319
3320 return udp_get_first(seq, state->bucket + 1);
3321 }
3322 return sk;
3323 }
3324
udp_get_idx(struct seq_file * seq,loff_t pos)3325 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
3326 {
3327 struct sock *sk = udp_get_first(seq, 0);
3328
3329 if (sk)
3330 while (pos && (sk = udp_get_next(seq, sk)) != NULL)
3331 --pos;
3332 return pos ? NULL : sk;
3333 }
3334
udp_seq_start(struct seq_file * seq,loff_t * pos)3335 void *udp_seq_start(struct seq_file *seq, loff_t *pos)
3336 {
3337 struct udp_iter_state *state = seq->private;
3338 state->bucket = MAX_UDP_PORTS;
3339
3340 return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
3341 }
3342 EXPORT_IPV6_MOD(udp_seq_start);
3343
udp_seq_next(struct seq_file * seq,void * v,loff_t * pos)3344 void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3345 {
3346 struct sock *sk;
3347
3348 if (v == SEQ_START_TOKEN)
3349 sk = udp_get_idx(seq, 0);
3350 else
3351 sk = udp_get_next(seq, v);
3352
3353 ++*pos;
3354 return sk;
3355 }
3356 EXPORT_IPV6_MOD(udp_seq_next);
3357
udp_seq_stop(struct seq_file * seq,void * v)3358 void udp_seq_stop(struct seq_file *seq, void *v)
3359 {
3360 struct udp_iter_state *state = seq->private;
3361 struct udp_table *udptable;
3362
3363 udptable = udp_get_table_seq(seq, seq_file_net(seq));
3364
3365 if (state->bucket <= udptable->mask)
3366 spin_unlock_bh(&udptable->hash[state->bucket].lock);
3367 }
3368 EXPORT_IPV6_MOD(udp_seq_stop);
3369
3370 /* ------------------------------------------------------------------------ */
udp4_format_sock(struct sock * sp,struct seq_file * f,int bucket)3371 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
3372 int bucket)
3373 {
3374 struct inet_sock *inet = inet_sk(sp);
3375 __be32 dest = inet->inet_daddr;
3376 __be32 src = inet->inet_rcv_saddr;
3377 __u16 destp = ntohs(inet->inet_dport);
3378 __u16 srcp = ntohs(inet->inet_sport);
3379
3380 seq_printf(f, "%5d: %08X:%04X %08X:%04X"
3381 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %u",
3382 bucket, src, srcp, dest, destp, sp->sk_state,
3383 sk_wmem_alloc_get(sp),
3384 udp_rqueue_get(sp),
3385 0, 0L, 0,
3386 from_kuid_munged(seq_user_ns(f), sk_uid(sp)),
3387 0, sock_i_ino(sp),
3388 refcount_read(&sp->sk_refcnt), sp,
3389 atomic_read(&sp->sk_drops));
3390 }
3391
udp4_seq_show(struct seq_file * seq,void * v)3392 int udp4_seq_show(struct seq_file *seq, void *v)
3393 {
3394 seq_setwidth(seq, 127);
3395 if (v == SEQ_START_TOKEN)
3396 seq_puts(seq, " sl local_address rem_address st tx_queue "
3397 "rx_queue tr tm->when retrnsmt uid timeout "
3398 "inode ref pointer drops");
3399 else {
3400 struct udp_iter_state *state = seq->private;
3401
3402 udp4_format_sock(v, seq, state->bucket);
3403 }
3404 seq_pad(seq, '\n');
3405 return 0;
3406 }
3407
3408 #ifdef CONFIG_BPF_SYSCALL
3409 struct bpf_iter__udp {
3410 __bpf_md_ptr(struct bpf_iter_meta *, meta);
3411 __bpf_md_ptr(struct udp_sock *, udp_sk);
3412 uid_t uid __aligned(8);
3413 int bucket __aligned(8);
3414 };
3415
3416 union bpf_udp_iter_batch_item {
3417 struct sock *sk;
3418 __u64 cookie;
3419 };
3420
3421 struct bpf_udp_iter_state {
3422 struct udp_iter_state state;
3423 unsigned int cur_sk;
3424 unsigned int end_sk;
3425 unsigned int max_sk;
3426 union bpf_udp_iter_batch_item *batch;
3427 };
3428
3429 static int bpf_iter_udp_realloc_batch(struct bpf_udp_iter_state *iter,
3430 unsigned int new_batch_sz, gfp_t flags);
bpf_iter_udp_resume(struct sock * first_sk,union bpf_udp_iter_batch_item * cookies,int n_cookies)3431 static struct sock *bpf_iter_udp_resume(struct sock *first_sk,
3432 union bpf_udp_iter_batch_item *cookies,
3433 int n_cookies)
3434 {
3435 struct sock *sk = NULL;
3436 int i;
3437
3438 for (i = 0; i < n_cookies; i++) {
3439 sk = first_sk;
3440 udp_portaddr_for_each_entry_from(sk)
3441 if (cookies[i].cookie == atomic64_read(&sk->sk_cookie))
3442 goto done;
3443 }
3444 done:
3445 return sk;
3446 }
3447
bpf_iter_udp_batch(struct seq_file * seq)3448 static struct sock *bpf_iter_udp_batch(struct seq_file *seq)
3449 {
3450 struct bpf_udp_iter_state *iter = seq->private;
3451 struct udp_iter_state *state = &iter->state;
3452 unsigned int find_cookie, end_cookie;
3453 struct net *net = seq_file_net(seq);
3454 struct udp_table *udptable;
3455 unsigned int batch_sks = 0;
3456 int resume_bucket;
3457 int resizes = 0;
3458 struct sock *sk;
3459 int err = 0;
3460
3461 resume_bucket = state->bucket;
3462
3463 /* The current batch is done, so advance the bucket. */
3464 if (iter->cur_sk == iter->end_sk)
3465 state->bucket++;
3466
3467 udptable = udp_get_table_seq(seq, net);
3468
3469 again:
3470 /* New batch for the next bucket.
3471 * Iterate over the hash table to find a bucket with sockets matching
3472 * the iterator attributes, and return the first matching socket from
3473 * the bucket. The remaining matched sockets from the bucket are batched
3474 * before releasing the bucket lock. This allows BPF programs that are
3475 * called in seq_show to acquire the bucket lock if needed.
3476 */
3477 find_cookie = iter->cur_sk;
3478 end_cookie = iter->end_sk;
3479 iter->cur_sk = 0;
3480 iter->end_sk = 0;
3481 batch_sks = 0;
3482
3483 for (; state->bucket <= udptable->mask; state->bucket++) {
3484 struct udp_hslot *hslot2 = &udptable->hash2[state->bucket].hslot;
3485
3486 if (hlist_empty(&hslot2->head))
3487 goto next_bucket;
3488
3489 spin_lock_bh(&hslot2->lock);
3490 sk = hlist_entry_safe(hslot2->head.first, struct sock,
3491 __sk_common.skc_portaddr_node);
3492 /* Resume from the first (in iteration order) unseen socket from
3493 * the last batch that still exists in resume_bucket. Most of
3494 * the time this will just be where the last iteration left off
3495 * in resume_bucket unless that socket disappeared between
3496 * reads.
3497 */
3498 if (state->bucket == resume_bucket)
3499 sk = bpf_iter_udp_resume(sk, &iter->batch[find_cookie],
3500 end_cookie - find_cookie);
3501 fill_batch:
3502 udp_portaddr_for_each_entry_from(sk) {
3503 if (seq_sk_match(seq, sk)) {
3504 if (iter->end_sk < iter->max_sk) {
3505 sock_hold(sk);
3506 iter->batch[iter->end_sk++].sk = sk;
3507 }
3508 batch_sks++;
3509 }
3510 }
3511
3512 /* Allocate a larger batch and try again. */
3513 if (unlikely(resizes <= 1 && iter->end_sk &&
3514 iter->end_sk != batch_sks)) {
3515 resizes++;
3516
3517 /* First, try with GFP_USER to maximize the chances of
3518 * grabbing more memory.
3519 */
3520 if (resizes == 1) {
3521 spin_unlock_bh(&hslot2->lock);
3522 err = bpf_iter_udp_realloc_batch(iter,
3523 batch_sks * 3 / 2,
3524 GFP_USER);
3525 if (err)
3526 return ERR_PTR(err);
3527 /* Start over. */
3528 goto again;
3529 }
3530
3531 /* Next, hold onto the lock, so the bucket doesn't
3532 * change while we get the rest of the sockets.
3533 */
3534 err = bpf_iter_udp_realloc_batch(iter, batch_sks,
3535 GFP_NOWAIT);
3536 if (err) {
3537 spin_unlock_bh(&hslot2->lock);
3538 return ERR_PTR(err);
3539 }
3540
3541 /* Pick up where we left off. */
3542 sk = iter->batch[iter->end_sk - 1].sk;
3543 sk = hlist_entry_safe(sk->__sk_common.skc_portaddr_node.next,
3544 struct sock,
3545 __sk_common.skc_portaddr_node);
3546 batch_sks = iter->end_sk;
3547 goto fill_batch;
3548 }
3549
3550 spin_unlock_bh(&hslot2->lock);
3551
3552 if (iter->end_sk)
3553 break;
3554 next_bucket:
3555 resizes = 0;
3556 }
3557
3558 WARN_ON_ONCE(iter->end_sk != batch_sks);
3559 return iter->end_sk ? iter->batch[0].sk : NULL;
3560 }
3561
bpf_iter_udp_seq_next(struct seq_file * seq,void * v,loff_t * pos)3562 static void *bpf_iter_udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3563 {
3564 struct bpf_udp_iter_state *iter = seq->private;
3565 struct sock *sk;
3566
3567 /* Whenever seq_next() is called, the iter->cur_sk is
3568 * done with seq_show(), so unref the iter->cur_sk.
3569 */
3570 if (iter->cur_sk < iter->end_sk)
3571 sock_put(iter->batch[iter->cur_sk++].sk);
3572
3573 /* After updating iter->cur_sk, check if there are more sockets
3574 * available in the current bucket batch.
3575 */
3576 if (iter->cur_sk < iter->end_sk)
3577 sk = iter->batch[iter->cur_sk].sk;
3578 else
3579 /* Prepare a new batch. */
3580 sk = bpf_iter_udp_batch(seq);
3581
3582 ++*pos;
3583 return sk;
3584 }
3585
bpf_iter_udp_seq_start(struct seq_file * seq,loff_t * pos)3586 static void *bpf_iter_udp_seq_start(struct seq_file *seq, loff_t *pos)
3587 {
3588 /* bpf iter does not support lseek, so it always
3589 * continue from where it was stop()-ped.
3590 */
3591 if (*pos)
3592 return bpf_iter_udp_batch(seq);
3593
3594 return SEQ_START_TOKEN;
3595 }
3596
udp_prog_seq_show(struct bpf_prog * prog,struct bpf_iter_meta * meta,struct udp_sock * udp_sk,uid_t uid,int bucket)3597 static int udp_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta,
3598 struct udp_sock *udp_sk, uid_t uid, int bucket)
3599 {
3600 struct bpf_iter__udp ctx;
3601
3602 meta->seq_num--; /* skip SEQ_START_TOKEN */
3603 ctx.meta = meta;
3604 ctx.udp_sk = udp_sk;
3605 ctx.uid = uid;
3606 ctx.bucket = bucket;
3607 return bpf_iter_run_prog(prog, &ctx);
3608 }
3609
bpf_iter_udp_seq_show(struct seq_file * seq,void * v)3610 static int bpf_iter_udp_seq_show(struct seq_file *seq, void *v)
3611 {
3612 struct udp_iter_state *state = seq->private;
3613 struct bpf_iter_meta meta;
3614 struct bpf_prog *prog;
3615 struct sock *sk = v;
3616 uid_t uid;
3617 int ret;
3618
3619 if (v == SEQ_START_TOKEN)
3620 return 0;
3621
3622 lock_sock(sk);
3623
3624 if (unlikely(sk_unhashed(sk))) {
3625 ret = SEQ_SKIP;
3626 goto unlock;
3627 }
3628
3629 uid = from_kuid_munged(seq_user_ns(seq), sk_uid(sk));
3630 meta.seq = seq;
3631 prog = bpf_iter_get_info(&meta, false);
3632 ret = udp_prog_seq_show(prog, &meta, v, uid, state->bucket);
3633
3634 unlock:
3635 release_sock(sk);
3636 return ret;
3637 }
3638
bpf_iter_udp_put_batch(struct bpf_udp_iter_state * iter)3639 static void bpf_iter_udp_put_batch(struct bpf_udp_iter_state *iter)
3640 {
3641 union bpf_udp_iter_batch_item *item;
3642 unsigned int cur_sk = iter->cur_sk;
3643 __u64 cookie;
3644
3645 /* Remember the cookies of the sockets we haven't seen yet, so we can
3646 * pick up where we left off next time around.
3647 */
3648 while (cur_sk < iter->end_sk) {
3649 item = &iter->batch[cur_sk++];
3650 cookie = sock_gen_cookie(item->sk);
3651 sock_put(item->sk);
3652 item->cookie = cookie;
3653 }
3654 }
3655
bpf_iter_udp_seq_stop(struct seq_file * seq,void * v)3656 static void bpf_iter_udp_seq_stop(struct seq_file *seq, void *v)
3657 {
3658 struct bpf_udp_iter_state *iter = seq->private;
3659 struct bpf_iter_meta meta;
3660 struct bpf_prog *prog;
3661
3662 if (!v) {
3663 meta.seq = seq;
3664 prog = bpf_iter_get_info(&meta, true);
3665 if (prog)
3666 (void)udp_prog_seq_show(prog, &meta, v, 0, 0);
3667 }
3668
3669 if (iter->cur_sk < iter->end_sk)
3670 bpf_iter_udp_put_batch(iter);
3671 }
3672
3673 static const struct seq_operations bpf_iter_udp_seq_ops = {
3674 .start = bpf_iter_udp_seq_start,
3675 .next = bpf_iter_udp_seq_next,
3676 .stop = bpf_iter_udp_seq_stop,
3677 .show = bpf_iter_udp_seq_show,
3678 };
3679 #endif
3680
seq_file_family(const struct seq_file * seq)3681 static unsigned short seq_file_family(const struct seq_file *seq)
3682 {
3683 const struct udp_seq_afinfo *afinfo;
3684
3685 #ifdef CONFIG_BPF_SYSCALL
3686 /* BPF iterator: bpf programs to filter sockets. */
3687 if (seq->op == &bpf_iter_udp_seq_ops)
3688 return AF_UNSPEC;
3689 #endif
3690
3691 /* Proc fs iterator */
3692 afinfo = pde_data(file_inode(seq->file));
3693 return afinfo->family;
3694 }
3695
3696 const struct seq_operations udp_seq_ops = {
3697 .start = udp_seq_start,
3698 .next = udp_seq_next,
3699 .stop = udp_seq_stop,
3700 .show = udp4_seq_show,
3701 };
3702 EXPORT_IPV6_MOD(udp_seq_ops);
3703
3704 static struct udp_seq_afinfo udp4_seq_afinfo = {
3705 .family = AF_INET,
3706 .udp_table = NULL,
3707 };
3708
udp4_proc_init_net(struct net * net)3709 static int __net_init udp4_proc_init_net(struct net *net)
3710 {
3711 if (!proc_create_net_data("udp", 0444, net->proc_net, &udp_seq_ops,
3712 sizeof(struct udp_iter_state), &udp4_seq_afinfo))
3713 return -ENOMEM;
3714 return 0;
3715 }
3716
udp4_proc_exit_net(struct net * net)3717 static void __net_exit udp4_proc_exit_net(struct net *net)
3718 {
3719 remove_proc_entry("udp", net->proc_net);
3720 }
3721
3722 static struct pernet_operations udp4_net_ops = {
3723 .init = udp4_proc_init_net,
3724 .exit = udp4_proc_exit_net,
3725 };
3726
udp4_proc_init(void)3727 int __init udp4_proc_init(void)
3728 {
3729 return register_pernet_subsys(&udp4_net_ops);
3730 }
3731
udp4_proc_exit(void)3732 void udp4_proc_exit(void)
3733 {
3734 unregister_pernet_subsys(&udp4_net_ops);
3735 }
3736 #endif /* CONFIG_PROC_FS */
3737
3738 static __initdata unsigned long uhash_entries;
set_uhash_entries(char * str)3739 static int __init set_uhash_entries(char *str)
3740 {
3741 ssize_t ret;
3742
3743 if (!str)
3744 return 0;
3745
3746 ret = kstrtoul(str, 0, &uhash_entries);
3747 if (ret)
3748 return 0;
3749
3750 if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
3751 uhash_entries = UDP_HTABLE_SIZE_MIN;
3752 return 1;
3753 }
3754 __setup("uhash_entries=", set_uhash_entries);
3755
udp_table_init(struct udp_table * table,const char * name)3756 void __init udp_table_init(struct udp_table *table, const char *name)
3757 {
3758 unsigned int i, slot_size;
3759
3760 slot_size = sizeof(struct udp_hslot) + sizeof(struct udp_hslot_main) +
3761 udp_hash4_slot_size();
3762 table->hash = alloc_large_system_hash(name,
3763 slot_size,
3764 uhash_entries,
3765 21, /* one slot per 2 MB */
3766 0,
3767 &table->log,
3768 &table->mask,
3769 UDP_HTABLE_SIZE_MIN,
3770 UDP_HTABLE_SIZE_MAX);
3771
3772 table->hash2 = (void *)(table->hash + (table->mask + 1));
3773 for (i = 0; i <= table->mask; i++) {
3774 INIT_HLIST_HEAD(&table->hash[i].head);
3775 table->hash[i].count = 0;
3776 spin_lock_init(&table->hash[i].lock);
3777 }
3778 for (i = 0; i <= table->mask; i++) {
3779 INIT_HLIST_HEAD(&table->hash2[i].hslot.head);
3780 table->hash2[i].hslot.count = 0;
3781 spin_lock_init(&table->hash2[i].hslot.lock);
3782 }
3783 udp_table_hash4_init(table);
3784 }
3785
udp_flow_hashrnd(void)3786 u32 udp_flow_hashrnd(void)
3787 {
3788 static u32 hashrnd __read_mostly;
3789
3790 net_get_random_once(&hashrnd, sizeof(hashrnd));
3791
3792 return hashrnd;
3793 }
3794 EXPORT_SYMBOL(udp_flow_hashrnd);
3795
udp_sysctl_init(struct net * net)3796 static void __net_init udp_sysctl_init(struct net *net)
3797 {
3798 net->ipv4.sysctl_udp_rmem_min = PAGE_SIZE;
3799 net->ipv4.sysctl_udp_wmem_min = PAGE_SIZE;
3800
3801 #ifdef CONFIG_NET_L3_MASTER_DEV
3802 net->ipv4.sysctl_udp_l3mdev_accept = 0;
3803 #endif
3804 }
3805
udp_pernet_table_alloc(unsigned int hash_entries)3806 static struct udp_table __net_init *udp_pernet_table_alloc(unsigned int hash_entries)
3807 {
3808 struct udp_table *udptable;
3809 unsigned int slot_size;
3810 int i;
3811
3812 udptable = kmalloc(sizeof(*udptable), GFP_KERNEL);
3813 if (!udptable)
3814 goto out;
3815
3816 slot_size = sizeof(struct udp_hslot) + sizeof(struct udp_hslot_main) +
3817 udp_hash4_slot_size();
3818 udptable->hash = vmalloc_huge(hash_entries * slot_size,
3819 GFP_KERNEL_ACCOUNT);
3820 if (!udptable->hash)
3821 goto free_table;
3822
3823 udptable->hash2 = (void *)(udptable->hash + hash_entries);
3824 udptable->mask = hash_entries - 1;
3825 udptable->log = ilog2(hash_entries);
3826
3827 for (i = 0; i < hash_entries; i++) {
3828 INIT_HLIST_HEAD(&udptable->hash[i].head);
3829 udptable->hash[i].count = 0;
3830 spin_lock_init(&udptable->hash[i].lock);
3831
3832 INIT_HLIST_HEAD(&udptable->hash2[i].hslot.head);
3833 udptable->hash2[i].hslot.count = 0;
3834 spin_lock_init(&udptable->hash2[i].hslot.lock);
3835 }
3836 udp_table_hash4_init(udptable);
3837
3838 return udptable;
3839
3840 free_table:
3841 kfree(udptable);
3842 out:
3843 return NULL;
3844 }
3845
udp_pernet_table_free(struct net * net)3846 static void __net_exit udp_pernet_table_free(struct net *net)
3847 {
3848 struct udp_table *udptable = net->ipv4.udp_table;
3849
3850 if (udptable == &udp_table)
3851 return;
3852
3853 kvfree(udptable->hash);
3854 kfree(udptable);
3855 }
3856
udp_set_table(struct net * net)3857 static void __net_init udp_set_table(struct net *net)
3858 {
3859 struct udp_table *udptable;
3860 unsigned int hash_entries;
3861 struct net *old_net;
3862
3863 if (net_eq(net, &init_net))
3864 goto fallback;
3865
3866 old_net = current->nsproxy->net_ns;
3867 hash_entries = READ_ONCE(old_net->ipv4.sysctl_udp_child_hash_entries);
3868 if (!hash_entries)
3869 goto fallback;
3870
3871 /* Set min to keep the bitmap on stack in udp_lib_get_port() */
3872 if (hash_entries < UDP_HTABLE_SIZE_MIN_PERNET)
3873 hash_entries = UDP_HTABLE_SIZE_MIN_PERNET;
3874 else
3875 hash_entries = roundup_pow_of_two(hash_entries);
3876
3877 udptable = udp_pernet_table_alloc(hash_entries);
3878 if (udptable) {
3879 net->ipv4.udp_table = udptable;
3880 } else {
3881 pr_warn("Failed to allocate UDP hash table (entries: %u) "
3882 "for a netns, fallback to the global one\n",
3883 hash_entries);
3884 fallback:
3885 net->ipv4.udp_table = &udp_table;
3886 }
3887 }
3888
udp_pernet_init(struct net * net)3889 static int __net_init udp_pernet_init(struct net *net)
3890 {
3891 #if IS_ENABLED(CONFIG_NET_UDP_TUNNEL)
3892 int i;
3893
3894 /* No tunnel is configured */
3895 for (i = 0; i < ARRAY_SIZE(net->ipv4.udp_tunnel_gro); ++i) {
3896 INIT_HLIST_HEAD(&net->ipv4.udp_tunnel_gro[i].list);
3897 RCU_INIT_POINTER(net->ipv4.udp_tunnel_gro[i].sk, NULL);
3898 }
3899 #endif
3900 udp_sysctl_init(net);
3901 udp_set_table(net);
3902
3903 return 0;
3904 }
3905
udp_pernet_exit(struct net * net)3906 static void __net_exit udp_pernet_exit(struct net *net)
3907 {
3908 udp_pernet_table_free(net);
3909 }
3910
3911 static struct pernet_operations __net_initdata udp_sysctl_ops = {
3912 .init = udp_pernet_init,
3913 .exit = udp_pernet_exit,
3914 };
3915
3916 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
DEFINE_BPF_ITER_FUNC(udp,struct bpf_iter_meta * meta,struct udp_sock * udp_sk,uid_t uid,int bucket)3917 DEFINE_BPF_ITER_FUNC(udp, struct bpf_iter_meta *meta,
3918 struct udp_sock *udp_sk, uid_t uid, int bucket)
3919
3920 static int bpf_iter_udp_realloc_batch(struct bpf_udp_iter_state *iter,
3921 unsigned int new_batch_sz, gfp_t flags)
3922 {
3923 union bpf_udp_iter_batch_item *new_batch;
3924
3925 new_batch = kvmalloc_array(new_batch_sz, sizeof(*new_batch),
3926 flags | __GFP_NOWARN);
3927 if (!new_batch)
3928 return -ENOMEM;
3929
3930 if (flags != GFP_NOWAIT)
3931 bpf_iter_udp_put_batch(iter);
3932
3933 memcpy(new_batch, iter->batch, sizeof(*iter->batch) * iter->end_sk);
3934 kvfree(iter->batch);
3935 iter->batch = new_batch;
3936 iter->max_sk = new_batch_sz;
3937
3938 return 0;
3939 }
3940
3941 #define INIT_BATCH_SZ 16
3942
bpf_iter_init_udp(void * priv_data,struct bpf_iter_aux_info * aux)3943 static int bpf_iter_init_udp(void *priv_data, struct bpf_iter_aux_info *aux)
3944 {
3945 struct bpf_udp_iter_state *iter = priv_data;
3946 int ret;
3947
3948 ret = bpf_iter_init_seq_net(priv_data, aux);
3949 if (ret)
3950 return ret;
3951
3952 ret = bpf_iter_udp_realloc_batch(iter, INIT_BATCH_SZ, GFP_USER);
3953 if (ret)
3954 bpf_iter_fini_seq_net(priv_data);
3955
3956 iter->state.bucket = -1;
3957
3958 return ret;
3959 }
3960
bpf_iter_fini_udp(void * priv_data)3961 static void bpf_iter_fini_udp(void *priv_data)
3962 {
3963 struct bpf_udp_iter_state *iter = priv_data;
3964
3965 bpf_iter_fini_seq_net(priv_data);
3966 kvfree(iter->batch);
3967 }
3968
3969 static const struct bpf_iter_seq_info udp_seq_info = {
3970 .seq_ops = &bpf_iter_udp_seq_ops,
3971 .init_seq_private = bpf_iter_init_udp,
3972 .fini_seq_private = bpf_iter_fini_udp,
3973 .seq_priv_size = sizeof(struct bpf_udp_iter_state),
3974 };
3975
3976 static struct bpf_iter_reg udp_reg_info = {
3977 .target = "udp",
3978 .ctx_arg_info_size = 1,
3979 .ctx_arg_info = {
3980 { offsetof(struct bpf_iter__udp, udp_sk),
3981 PTR_TO_BTF_ID_OR_NULL | PTR_TRUSTED },
3982 },
3983 .seq_info = &udp_seq_info,
3984 };
3985
bpf_iter_register(void)3986 static void __init bpf_iter_register(void)
3987 {
3988 udp_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_UDP];
3989 if (bpf_iter_reg_target(&udp_reg_info))
3990 pr_warn("Warning: could not register bpf iterator udp\n");
3991 }
3992 #endif
3993
udp_init(void)3994 void __init udp_init(void)
3995 {
3996 unsigned long limit;
3997 unsigned int i;
3998
3999 udp_table_init(&udp_table, "UDP");
4000 limit = nr_free_buffer_pages() / 8;
4001 limit = max(limit, 128UL);
4002 sysctl_udp_mem[0] = limit / 4 * 3;
4003 sysctl_udp_mem[1] = limit;
4004 sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
4005
4006 /* 16 spinlocks per cpu */
4007 udp_busylocks_log = ilog2(nr_cpu_ids) + 4;
4008 udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log,
4009 GFP_KERNEL);
4010 if (!udp_busylocks)
4011 panic("UDP: failed to alloc udp_busylocks\n");
4012 for (i = 0; i < (1U << udp_busylocks_log); i++)
4013 spin_lock_init(udp_busylocks + i);
4014
4015 if (register_pernet_subsys(&udp_sysctl_ops))
4016 panic("UDP: failed to init sysctl parameters.\n");
4017
4018 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
4019 bpf_iter_register();
4020 #endif
4021 }
4022