xref: /freebsd/sys/contrib/openzfs/cmd/ztest.c (revision 0df1ee76950fc28c3c90a8aa85534fd44641c425)
1 // SPDX-License-Identifier: CDDL-1.0
2 /*
3  * CDDL HEADER START
4  *
5  * The contents of this file are subject to the terms of the
6  * Common Development and Distribution License (the "License").
7  * You may not use this file except in compliance with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or https://opensource.org/licenses/CDDL-1.0.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, 2024 by Delphix. All rights reserved.
25  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
26  * Copyright (c) 2013 Steven Hartland. All rights reserved.
27  * Copyright (c) 2014 Integros [integros.com]
28  * Copyright 2017 Joyent, Inc.
29  * Copyright (c) 2017, Intel Corporation.
30  * Copyright (c) 2023, Klara, Inc.
31  */
32 
33 /*
34  * The objective of this program is to provide a DMU/ZAP/SPA stress test
35  * that runs entirely in userland, is easy to use, and easy to extend.
36  *
37  * The overall design of the ztest program is as follows:
38  *
39  * (1) For each major functional area (e.g. adding vdevs to a pool,
40  *     creating and destroying datasets, reading and writing objects, etc)
41  *     we have a simple routine to test that functionality.  These
42  *     individual routines do not have to do anything "stressful".
43  *
44  * (2) We turn these simple functionality tests into a stress test by
45  *     running them all in parallel, with as many threads as desired,
46  *     and spread across as many datasets, objects, and vdevs as desired.
47  *
48  * (3) While all this is happening, we inject faults into the pool to
49  *     verify that self-healing data really works.
50  *
51  * (4) Every time we open a dataset, we change its checksum and compression
52  *     functions.  Thus even individual objects vary from block to block
53  *     in which checksum they use and whether they're compressed.
54  *
55  * (5) To verify that we never lose on-disk consistency after a crash,
56  *     we run the entire test in a child of the main process.
57  *     At random times, the child self-immolates with a SIGKILL.
58  *     This is the software equivalent of pulling the power cord.
59  *     The parent then runs the test again, using the existing
60  *     storage pool, as many times as desired. If backwards compatibility
61  *     testing is enabled ztest will sometimes run the "older" version
62  *     of ztest after a SIGKILL.
63  *
64  * (6) To verify that we don't have future leaks or temporal incursions,
65  *     many of the functional tests record the transaction group number
66  *     as part of their data.  When reading old data, they verify that
67  *     the transaction group number is less than the current, open txg.
68  *     If you add a new test, please do this if applicable.
69  *
70  * (7) Threads are created with a reduced stack size, for sanity checking.
71  *     Therefore, it's important not to allocate huge buffers on the stack.
72  *
73  * When run with no arguments, ztest runs for about five minutes and
74  * produces no output if successful.  To get a little bit of information,
75  * specify -V.  To get more information, specify -VV, and so on.
76  *
77  * To turn this into an overnight stress test, use -T to specify run time.
78  *
79  * You can ask more vdevs [-v], datasets [-d], or threads [-t]
80  * to increase the pool capacity, fanout, and overall stress level.
81  *
82  * Use the -k option to set the desired frequency of kills.
83  *
84  * When ztest invokes itself it passes all relevant information through a
85  * temporary file which is mmap-ed in the child process. This allows shared
86  * memory to survive the exec syscall. The ztest_shared_hdr_t struct is always
87  * stored at offset 0 of this file and contains information on the size and
88  * number of shared structures in the file. The information stored in this file
89  * must remain backwards compatible with older versions of ztest so that
90  * ztest can invoke them during backwards compatibility testing (-B).
91  */
92 
93 #include <sys/zfs_context.h>
94 #include <sys/spa.h>
95 #include <sys/dmu.h>
96 #include <sys/txg.h>
97 #include <sys/dbuf.h>
98 #include <sys/zap.h>
99 #include <sys/dmu_objset.h>
100 #include <sys/poll.h>
101 #include <sys/stat.h>
102 #include <sys/time.h>
103 #include <sys/wait.h>
104 #include <sys/mman.h>
105 #include <sys/resource.h>
106 #include <sys/zio.h>
107 #include <sys/zil.h>
108 #include <sys/zil_impl.h>
109 #include <sys/vdev_draid.h>
110 #include <sys/vdev_impl.h>
111 #include <sys/vdev_file.h>
112 #include <sys/vdev_initialize.h>
113 #include <sys/vdev_raidz.h>
114 #include <sys/vdev_trim.h>
115 #include <sys/spa_impl.h>
116 #include <sys/metaslab_impl.h>
117 #include <sys/dsl_prop.h>
118 #include <sys/dsl_dataset.h>
119 #include <sys/dsl_destroy.h>
120 #include <sys/dsl_scan.h>
121 #include <sys/zio_checksum.h>
122 #include <sys/zfs_refcount.h>
123 #include <sys/zfeature.h>
124 #include <sys/dsl_userhold.h>
125 #include <sys/abd.h>
126 #include <sys/blake3.h>
127 #include <stdio.h>
128 #include <stdlib.h>
129 #include <unistd.h>
130 #include <getopt.h>
131 #include <signal.h>
132 #include <umem.h>
133 #include <ctype.h>
134 #include <math.h>
135 #include <sys/fs/zfs.h>
136 #include <zfs_fletcher.h>
137 #include <libnvpair.h>
138 #include <libzutil.h>
139 #include <sys/crypto/icp.h>
140 #include <sys/zfs_impl.h>
141 #include <sys/backtrace.h>
142 
143 static int ztest_fd_data = -1;
144 static int ztest_fd_rand = -1;
145 
146 typedef struct ztest_shared_hdr {
147 	uint64_t	zh_hdr_size;
148 	uint64_t	zh_opts_size;
149 	uint64_t	zh_size;
150 	uint64_t	zh_stats_size;
151 	uint64_t	zh_stats_count;
152 	uint64_t	zh_ds_size;
153 	uint64_t	zh_ds_count;
154 	uint64_t	zh_scratch_state_size;
155 } ztest_shared_hdr_t;
156 
157 static ztest_shared_hdr_t *ztest_shared_hdr;
158 
159 enum ztest_class_state {
160 	ZTEST_VDEV_CLASS_OFF,
161 	ZTEST_VDEV_CLASS_ON,
162 	ZTEST_VDEV_CLASS_RND
163 };
164 
165 /* Dedicated RAIDZ Expansion test states */
166 typedef enum {
167 	RAIDZ_EXPAND_NONE,		/* Default is none, must opt-in	*/
168 	RAIDZ_EXPAND_REQUESTED,		/* The '-X' option was used	*/
169 	RAIDZ_EXPAND_STARTED,		/* Testing has commenced	*/
170 	RAIDZ_EXPAND_KILLED,		/* Reached the proccess kill	*/
171 	RAIDZ_EXPAND_CHECKED,		/* Pool scrub verification done	*/
172 } raidz_expand_test_state_t;
173 
174 
175 #define	ZO_GVARS_MAX_ARGLEN	((size_t)64)
176 #define	ZO_GVARS_MAX_COUNT	((size_t)10)
177 
178 typedef struct ztest_shared_opts {
179 	char zo_pool[ZFS_MAX_DATASET_NAME_LEN];
180 	char zo_dir[ZFS_MAX_DATASET_NAME_LEN];
181 	char zo_alt_ztest[MAXNAMELEN];
182 	char zo_alt_libpath[MAXNAMELEN];
183 	uint64_t zo_vdevs;
184 	uint64_t zo_vdevtime;
185 	size_t zo_vdev_size;
186 	int zo_ashift;
187 	int zo_mirrors;
188 	int zo_raid_do_expand;
189 	int zo_raid_children;
190 	int zo_raid_parity;
191 	char zo_raid_type[8];
192 	int zo_draid_data;
193 	int zo_draid_spares;
194 	int zo_datasets;
195 	int zo_threads;
196 	uint64_t zo_passtime;
197 	uint64_t zo_killrate;
198 	int zo_verbose;
199 	int zo_init;
200 	uint64_t zo_time;
201 	uint64_t zo_maxloops;
202 	uint64_t zo_metaslab_force_ganging;
203 	raidz_expand_test_state_t zo_raidz_expand_test;
204 	int zo_mmp_test;
205 	int zo_special_vdevs;
206 	int zo_dump_dbgmsg;
207 	int zo_gvars_count;
208 	char zo_gvars[ZO_GVARS_MAX_COUNT][ZO_GVARS_MAX_ARGLEN];
209 } ztest_shared_opts_t;
210 
211 /* Default values for command line options. */
212 #define	DEFAULT_POOL "ztest"
213 #define	DEFAULT_VDEV_DIR "/tmp"
214 #define	DEFAULT_VDEV_COUNT 5
215 #define	DEFAULT_VDEV_SIZE (SPA_MINDEVSIZE * 4)	/* 256m default size */
216 #define	DEFAULT_VDEV_SIZE_STR "256M"
217 #define	DEFAULT_ASHIFT SPA_MINBLOCKSHIFT
218 #define	DEFAULT_MIRRORS 2
219 #define	DEFAULT_RAID_CHILDREN 4
220 #define	DEFAULT_RAID_PARITY 1
221 #define	DEFAULT_DRAID_DATA 4
222 #define	DEFAULT_DRAID_SPARES 1
223 #define	DEFAULT_DATASETS_COUNT 7
224 #define	DEFAULT_THREADS 23
225 #define	DEFAULT_RUN_TIME 300 /* 300 seconds */
226 #define	DEFAULT_RUN_TIME_STR "300 sec"
227 #define	DEFAULT_PASS_TIME 60 /* 60 seconds */
228 #define	DEFAULT_PASS_TIME_STR "60 sec"
229 #define	DEFAULT_KILL_RATE 70 /* 70% kill rate */
230 #define	DEFAULT_KILLRATE_STR "70%"
231 #define	DEFAULT_INITS 1
232 #define	DEFAULT_MAX_LOOPS 50 /* 5 minutes */
233 #define	DEFAULT_FORCE_GANGING (64 << 10)
234 #define	DEFAULT_FORCE_GANGING_STR "64K"
235 
236 /* Simplifying assumption: -1 is not a valid default. */
237 #define	NO_DEFAULT -1
238 
239 static const ztest_shared_opts_t ztest_opts_defaults = {
240 	.zo_pool = DEFAULT_POOL,
241 	.zo_dir = DEFAULT_VDEV_DIR,
242 	.zo_alt_ztest = { '\0' },
243 	.zo_alt_libpath = { '\0' },
244 	.zo_vdevs = DEFAULT_VDEV_COUNT,
245 	.zo_ashift = DEFAULT_ASHIFT,
246 	.zo_mirrors = DEFAULT_MIRRORS,
247 	.zo_raid_children = DEFAULT_RAID_CHILDREN,
248 	.zo_raid_parity = DEFAULT_RAID_PARITY,
249 	.zo_raid_type = VDEV_TYPE_RAIDZ,
250 	.zo_vdev_size = DEFAULT_VDEV_SIZE,
251 	.zo_draid_data = DEFAULT_DRAID_DATA,	/* data drives */
252 	.zo_draid_spares = DEFAULT_DRAID_SPARES, /* distributed spares */
253 	.zo_datasets = DEFAULT_DATASETS_COUNT,
254 	.zo_threads = DEFAULT_THREADS,
255 	.zo_passtime = DEFAULT_PASS_TIME,
256 	.zo_killrate = DEFAULT_KILL_RATE,
257 	.zo_verbose = 0,
258 	.zo_mmp_test = 0,
259 	.zo_init = DEFAULT_INITS,
260 	.zo_time = DEFAULT_RUN_TIME,
261 	.zo_maxloops = DEFAULT_MAX_LOOPS, /* max loops during spa_freeze() */
262 	.zo_metaslab_force_ganging = DEFAULT_FORCE_GANGING,
263 	.zo_special_vdevs = ZTEST_VDEV_CLASS_RND,
264 	.zo_gvars_count = 0,
265 	.zo_raidz_expand_test = RAIDZ_EXPAND_NONE,
266 };
267 
268 extern uint64_t metaslab_force_ganging;
269 extern uint64_t metaslab_df_alloc_threshold;
270 extern uint64_t zfs_deadman_synctime_ms;
271 extern uint_t metaslab_preload_limit;
272 extern int zfs_compressed_arc_enabled;
273 extern int zfs_abd_scatter_enabled;
274 extern uint_t dmu_object_alloc_chunk_shift;
275 extern boolean_t zfs_force_some_double_word_sm_entries;
276 extern unsigned long zio_decompress_fail_fraction;
277 extern unsigned long zfs_reconstruct_indirect_damage_fraction;
278 extern uint64_t raidz_expand_max_reflow_bytes;
279 extern uint_t raidz_expand_pause_point;
280 extern boolean_t ddt_prune_artificial_age;
281 extern boolean_t ddt_dump_prune_histogram;
282 
283 
284 static ztest_shared_opts_t *ztest_shared_opts;
285 static ztest_shared_opts_t ztest_opts;
286 static const char *const ztest_wkeydata = "abcdefghijklmnopqrstuvwxyz012345";
287 
288 typedef struct ztest_shared_ds {
289 	uint64_t	zd_seq;
290 } ztest_shared_ds_t;
291 
292 static ztest_shared_ds_t *ztest_shared_ds;
293 #define	ZTEST_GET_SHARED_DS(d) (&ztest_shared_ds[d])
294 
295 typedef struct ztest_scratch_state {
296 	uint64_t	zs_raidz_scratch_verify_pause;
297 } ztest_shared_scratch_state_t;
298 
299 static ztest_shared_scratch_state_t *ztest_scratch_state;
300 
301 #define	BT_MAGIC	0x123456789abcdefULL
302 #define	MAXFAULTS(zs) \
303 	(MAX((zs)->zs_mirrors, 1) * (ztest_opts.zo_raid_parity + 1) - 1)
304 
305 enum ztest_io_type {
306 	ZTEST_IO_WRITE_TAG,
307 	ZTEST_IO_WRITE_PATTERN,
308 	ZTEST_IO_WRITE_ZEROES,
309 	ZTEST_IO_TRUNCATE,
310 	ZTEST_IO_SETATTR,
311 	ZTEST_IO_REWRITE,
312 	ZTEST_IO_TYPES
313 };
314 
315 typedef struct ztest_block_tag {
316 	uint64_t	bt_magic;
317 	uint64_t	bt_objset;
318 	uint64_t	bt_object;
319 	uint64_t	bt_dnodesize;
320 	uint64_t	bt_offset;
321 	uint64_t	bt_gen;
322 	uint64_t	bt_txg;
323 	uint64_t	bt_crtxg;
324 } ztest_block_tag_t;
325 
326 typedef struct bufwad {
327 	uint64_t	bw_index;
328 	uint64_t	bw_txg;
329 	uint64_t	bw_data;
330 } bufwad_t;
331 
332 /*
333  * It would be better to use a rangelock_t per object.  Unfortunately
334  * the rangelock_t is not a drop-in replacement for rl_t, because we
335  * still need to map from object ID to rangelock_t.
336  */
337 typedef enum {
338 	ZTRL_READER,
339 	ZTRL_WRITER,
340 	ZTRL_APPEND
341 } rl_type_t;
342 
343 typedef struct rll {
344 	void		*rll_writer;
345 	int		rll_readers;
346 	kmutex_t	rll_lock;
347 	kcondvar_t	rll_cv;
348 } rll_t;
349 
350 typedef struct rl {
351 	uint64_t	rl_object;
352 	uint64_t	rl_offset;
353 	uint64_t	rl_size;
354 	rll_t		*rl_lock;
355 } rl_t;
356 
357 #define	ZTEST_RANGE_LOCKS	64
358 #define	ZTEST_OBJECT_LOCKS	64
359 
360 /*
361  * Object descriptor.  Used as a template for object lookup/create/remove.
362  */
363 typedef struct ztest_od {
364 	uint64_t	od_dir;
365 	uint64_t	od_object;
366 	dmu_object_type_t od_type;
367 	dmu_object_type_t od_crtype;
368 	uint64_t	od_blocksize;
369 	uint64_t	od_crblocksize;
370 	uint64_t	od_crdnodesize;
371 	uint64_t	od_gen;
372 	uint64_t	od_crgen;
373 	char		od_name[ZFS_MAX_DATASET_NAME_LEN];
374 } ztest_od_t;
375 
376 /*
377  * Per-dataset state.
378  */
379 typedef struct ztest_ds {
380 	ztest_shared_ds_t *zd_shared;
381 	objset_t	*zd_os;
382 	pthread_rwlock_t zd_zilog_lock;
383 	zilog_t		*zd_zilog;
384 	ztest_od_t	*zd_od;		/* debugging aid */
385 	char		zd_name[ZFS_MAX_DATASET_NAME_LEN];
386 	kmutex_t	zd_dirobj_lock;
387 	rll_t		zd_object_lock[ZTEST_OBJECT_LOCKS];
388 	rll_t		zd_range_lock[ZTEST_RANGE_LOCKS];
389 } ztest_ds_t;
390 
391 /*
392  * Per-iteration state.
393  */
394 typedef void ztest_func_t(ztest_ds_t *zd, uint64_t id);
395 
396 typedef struct ztest_info {
397 	ztest_func_t	*zi_func;	/* test function */
398 	uint64_t	zi_iters;	/* iterations per execution */
399 	uint64_t	*zi_interval;	/* execute every <interval> seconds */
400 	const char	*zi_funcname;	/* name of test function */
401 } ztest_info_t;
402 
403 typedef struct ztest_shared_callstate {
404 	uint64_t	zc_count;	/* per-pass count */
405 	uint64_t	zc_time;	/* per-pass time */
406 	uint64_t	zc_next;	/* next time to call this function */
407 } ztest_shared_callstate_t;
408 
409 static ztest_shared_callstate_t *ztest_shared_callstate;
410 #define	ZTEST_GET_SHARED_CALLSTATE(c) (&ztest_shared_callstate[c])
411 
412 ztest_func_t ztest_dmu_read_write;
413 ztest_func_t ztest_dmu_write_parallel;
414 ztest_func_t ztest_dmu_object_alloc_free;
415 ztest_func_t ztest_dmu_object_next_chunk;
416 ztest_func_t ztest_dmu_commit_callbacks;
417 ztest_func_t ztest_zap;
418 ztest_func_t ztest_zap_parallel;
419 ztest_func_t ztest_zil_commit;
420 ztest_func_t ztest_zil_remount;
421 ztest_func_t ztest_dmu_read_write_zcopy;
422 ztest_func_t ztest_dmu_objset_create_destroy;
423 ztest_func_t ztest_dmu_prealloc;
424 ztest_func_t ztest_fzap;
425 ztest_func_t ztest_dmu_snapshot_create_destroy;
426 ztest_func_t ztest_dsl_prop_get_set;
427 ztest_func_t ztest_spa_prop_get_set;
428 ztest_func_t ztest_spa_create_destroy;
429 ztest_func_t ztest_fault_inject;
430 ztest_func_t ztest_dmu_snapshot_hold;
431 ztest_func_t ztest_mmp_enable_disable;
432 ztest_func_t ztest_scrub;
433 ztest_func_t ztest_dsl_dataset_promote_busy;
434 ztest_func_t ztest_vdev_attach_detach;
435 ztest_func_t ztest_vdev_raidz_attach;
436 ztest_func_t ztest_vdev_LUN_growth;
437 ztest_func_t ztest_vdev_add_remove;
438 ztest_func_t ztest_vdev_class_add;
439 ztest_func_t ztest_vdev_aux_add_remove;
440 ztest_func_t ztest_split_pool;
441 ztest_func_t ztest_reguid;
442 ztest_func_t ztest_spa_upgrade;
443 ztest_func_t ztest_device_removal;
444 ztest_func_t ztest_spa_checkpoint_create_discard;
445 ztest_func_t ztest_initialize;
446 ztest_func_t ztest_trim;
447 ztest_func_t ztest_blake3;
448 ztest_func_t ztest_fletcher;
449 ztest_func_t ztest_fletcher_incr;
450 ztest_func_t ztest_verify_dnode_bt;
451 ztest_func_t ztest_pool_prefetch_ddt;
452 ztest_func_t ztest_ddt_prune;
453 
454 static uint64_t zopt_always = 0ULL * NANOSEC;		/* all the time */
455 static uint64_t zopt_incessant = 1ULL * NANOSEC / 10;	/* every 1/10 second */
456 static uint64_t zopt_often = 1ULL * NANOSEC;		/* every second */
457 static uint64_t zopt_sometimes = 10ULL * NANOSEC;	/* every 10 seconds */
458 static uint64_t zopt_rarely = 60ULL * NANOSEC;		/* every 60 seconds */
459 
460 #define	ZTI_INIT(func, iters, interval) \
461 	{   .zi_func = (func), \
462 	    .zi_iters = (iters), \
463 	    .zi_interval = (interval), \
464 	    .zi_funcname = # func }
465 
466 static ztest_info_t ztest_info[] = {
467 	ZTI_INIT(ztest_dmu_read_write, 1, &zopt_always),
468 	ZTI_INIT(ztest_dmu_write_parallel, 10, &zopt_always),
469 	ZTI_INIT(ztest_dmu_object_alloc_free, 1, &zopt_always),
470 	ZTI_INIT(ztest_dmu_object_next_chunk, 1, &zopt_sometimes),
471 	ZTI_INIT(ztest_dmu_commit_callbacks, 1, &zopt_always),
472 	ZTI_INIT(ztest_zap, 30, &zopt_always),
473 	ZTI_INIT(ztest_zap_parallel, 100, &zopt_always),
474 	ZTI_INIT(ztest_split_pool, 1, &zopt_sometimes),
475 	ZTI_INIT(ztest_zil_commit, 1, &zopt_incessant),
476 	ZTI_INIT(ztest_zil_remount, 1, &zopt_sometimes),
477 	ZTI_INIT(ztest_dmu_read_write_zcopy, 1, &zopt_often),
478 	ZTI_INIT(ztest_dmu_objset_create_destroy, 1, &zopt_often),
479 	ZTI_INIT(ztest_dsl_prop_get_set, 1, &zopt_often),
480 	ZTI_INIT(ztest_spa_prop_get_set, 1, &zopt_sometimes),
481 #if 0
482 	ZTI_INIT(ztest_dmu_prealloc, 1, &zopt_sometimes),
483 #endif
484 	ZTI_INIT(ztest_fzap, 1, &zopt_sometimes),
485 	ZTI_INIT(ztest_dmu_snapshot_create_destroy, 1, &zopt_sometimes),
486 	ZTI_INIT(ztest_spa_create_destroy, 1, &zopt_sometimes),
487 	ZTI_INIT(ztest_fault_inject, 1, &zopt_sometimes),
488 	ZTI_INIT(ztest_dmu_snapshot_hold, 1, &zopt_sometimes),
489 	ZTI_INIT(ztest_mmp_enable_disable, 1, &zopt_sometimes),
490 	ZTI_INIT(ztest_reguid, 1, &zopt_rarely),
491 	ZTI_INIT(ztest_scrub, 1, &zopt_rarely),
492 	ZTI_INIT(ztest_spa_upgrade, 1, &zopt_rarely),
493 	ZTI_INIT(ztest_dsl_dataset_promote_busy, 1, &zopt_rarely),
494 	ZTI_INIT(ztest_vdev_attach_detach, 1, &zopt_sometimes),
495 	ZTI_INIT(ztest_vdev_raidz_attach, 1, &zopt_sometimes),
496 	ZTI_INIT(ztest_vdev_LUN_growth, 1, &zopt_rarely),
497 	ZTI_INIT(ztest_vdev_add_remove, 1, &ztest_opts.zo_vdevtime),
498 	ZTI_INIT(ztest_vdev_class_add, 1, &ztest_opts.zo_vdevtime),
499 	ZTI_INIT(ztest_vdev_aux_add_remove, 1, &ztest_opts.zo_vdevtime),
500 	ZTI_INIT(ztest_device_removal, 1, &zopt_sometimes),
501 	ZTI_INIT(ztest_spa_checkpoint_create_discard, 1, &zopt_rarely),
502 	ZTI_INIT(ztest_initialize, 1, &zopt_sometimes),
503 	ZTI_INIT(ztest_trim, 1, &zopt_sometimes),
504 	ZTI_INIT(ztest_blake3, 1, &zopt_rarely),
505 	ZTI_INIT(ztest_fletcher, 1, &zopt_rarely),
506 	ZTI_INIT(ztest_fletcher_incr, 1, &zopt_rarely),
507 	ZTI_INIT(ztest_verify_dnode_bt, 1, &zopt_sometimes),
508 	ZTI_INIT(ztest_pool_prefetch_ddt, 1, &zopt_rarely),
509 	ZTI_INIT(ztest_ddt_prune, 1, &zopt_rarely),
510 };
511 
512 #define	ZTEST_FUNCS	(sizeof (ztest_info) / sizeof (ztest_info_t))
513 
514 /*
515  * The following struct is used to hold a list of uncalled commit callbacks.
516  * The callbacks are ordered by txg number.
517  */
518 typedef struct ztest_cb_list {
519 	kmutex_t	zcl_callbacks_lock;
520 	list_t		zcl_callbacks;
521 } ztest_cb_list_t;
522 
523 /*
524  * Stuff we need to share writably between parent and child.
525  */
526 typedef struct ztest_shared {
527 	boolean_t	zs_do_init;
528 	hrtime_t	zs_proc_start;
529 	hrtime_t	zs_proc_stop;
530 	hrtime_t	zs_thread_start;
531 	hrtime_t	zs_thread_stop;
532 	hrtime_t	zs_thread_kill;
533 	uint64_t	zs_enospc_count;
534 	uint64_t	zs_vdev_next_leaf;
535 	uint64_t	zs_vdev_aux;
536 	uint64_t	zs_alloc;
537 	uint64_t	zs_space;
538 	uint64_t	zs_splits;
539 	uint64_t	zs_mirrors;
540 	uint64_t	zs_metaslab_sz;
541 	uint64_t	zs_metaslab_df_alloc_threshold;
542 	uint64_t	zs_guid;
543 } ztest_shared_t;
544 
545 #define	ID_PARALLEL	-1ULL
546 
547 static char ztest_dev_template[] = "%s/%s.%llua";
548 static char ztest_aux_template[] = "%s/%s.%s.%llu";
549 static ztest_shared_t *ztest_shared;
550 
551 static spa_t *ztest_spa = NULL;
552 static ztest_ds_t *ztest_ds;
553 
554 static kmutex_t ztest_vdev_lock;
555 static boolean_t ztest_device_removal_active = B_FALSE;
556 static boolean_t ztest_pool_scrubbed = B_FALSE;
557 static kmutex_t ztest_checkpoint_lock;
558 
559 /*
560  * The ztest_name_lock protects the pool and dataset namespace used by
561  * the individual tests. To modify the namespace, consumers must grab
562  * this lock as writer. Grabbing the lock as reader will ensure that the
563  * namespace does not change while the lock is held.
564  */
565 static pthread_rwlock_t ztest_name_lock;
566 
567 static boolean_t ztest_dump_core = B_TRUE;
568 static boolean_t ztest_exiting;
569 
570 /* Global commit callback list */
571 static ztest_cb_list_t zcl;
572 /* Commit cb delay */
573 static uint64_t zc_min_txg_delay = UINT64_MAX;
574 static int zc_cb_counter = 0;
575 
576 /*
577  * Minimum number of commit callbacks that need to be registered for us to check
578  * whether the minimum txg delay is acceptable.
579  */
580 #define	ZTEST_COMMIT_CB_MIN_REG	100
581 
582 /*
583  * If a number of txgs equal to this threshold have been created after a commit
584  * callback has been registered but not called, then we assume there is an
585  * implementation bug.
586  */
587 #define	ZTEST_COMMIT_CB_THRESH	(TXG_CONCURRENT_STATES + 1000)
588 
589 enum ztest_object {
590 	ZTEST_META_DNODE = 0,
591 	ZTEST_DIROBJ,
592 	ZTEST_OBJECTS
593 };
594 
595 static __attribute__((noreturn)) void usage(boolean_t requested);
596 static int ztest_scrub_impl(spa_t *spa);
597 
598 /*
599  * These libumem hooks provide a reasonable set of defaults for the allocator's
600  * debugging facilities.
601  */
602 const char *
_umem_debug_init(void)603 _umem_debug_init(void)
604 {
605 	return ("default,verbose"); /* $UMEM_DEBUG setting */
606 }
607 
608 const char *
_umem_logging_init(void)609 _umem_logging_init(void)
610 {
611 	return ("fail,contents"); /* $UMEM_LOGGING setting */
612 }
613 
614 static void
dump_debug_buffer(void)615 dump_debug_buffer(void)
616 {
617 	ssize_t ret __attribute__((unused));
618 
619 	if (!ztest_opts.zo_dump_dbgmsg)
620 		return;
621 
622 	/*
623 	 * We use write() instead of printf() so that this function
624 	 * is safe to call from a signal handler.
625 	 */
626 	ret = write(STDERR_FILENO, "\n", 1);
627 	zfs_dbgmsg_print(STDERR_FILENO, "ztest");
628 }
629 
sig_handler(int signo)630 static void sig_handler(int signo)
631 {
632 	struct sigaction action;
633 
634 	libspl_backtrace(STDERR_FILENO);
635 	dump_debug_buffer();
636 
637 	/*
638 	 * Restore default action and re-raise signal so SIGSEGV and
639 	 * SIGABRT can trigger a core dump.
640 	 */
641 	action.sa_handler = SIG_DFL;
642 	sigemptyset(&action.sa_mask);
643 	action.sa_flags = 0;
644 	(void) sigaction(signo, &action, NULL);
645 	raise(signo);
646 }
647 
648 #define	FATAL_MSG_SZ	1024
649 
650 static const char *fatal_msg;
651 
652 static __attribute__((format(printf, 2, 3))) __attribute__((noreturn)) void
fatal(int do_perror,const char * message,...)653 fatal(int do_perror, const char *message, ...)
654 {
655 	va_list args;
656 	int save_errno = errno;
657 	char *buf;
658 
659 	(void) fflush(stdout);
660 	buf = umem_alloc(FATAL_MSG_SZ, UMEM_NOFAIL);
661 	if (buf == NULL)
662 		goto out;
663 
664 	va_start(args, message);
665 	(void) sprintf(buf, "ztest: ");
666 	/* LINTED */
667 	(void) vsprintf(buf + strlen(buf), message, args);
668 	va_end(args);
669 	if (do_perror) {
670 		(void) snprintf(buf + strlen(buf), FATAL_MSG_SZ - strlen(buf),
671 		    ": %s", strerror(save_errno));
672 	}
673 	(void) fprintf(stderr, "%s\n", buf);
674 	fatal_msg = buf;			/* to ease debugging */
675 
676 out:
677 	if (ztest_dump_core)
678 		abort();
679 	else
680 		dump_debug_buffer();
681 
682 	exit(3);
683 }
684 
685 static int
str2shift(const char * buf)686 str2shift(const char *buf)
687 {
688 	const char *ends = "BKMGTPEZ";
689 	int i, len;
690 
691 	if (buf[0] == '\0')
692 		return (0);
693 
694 	len = strlen(ends);
695 	for (i = 0; i < len; i++) {
696 		if (toupper(buf[0]) == ends[i])
697 			break;
698 	}
699 	if (i == len) {
700 		(void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n",
701 		    buf);
702 		usage(B_FALSE);
703 	}
704 	if (buf[1] == '\0' || (toupper(buf[1]) == 'B' && buf[2] == '\0')) {
705 		return (10*i);
706 	}
707 	(void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", buf);
708 	usage(B_FALSE);
709 }
710 
711 static uint64_t
nicenumtoull(const char * buf)712 nicenumtoull(const char *buf)
713 {
714 	char *end;
715 	uint64_t val;
716 
717 	val = strtoull(buf, &end, 0);
718 	if (end == buf) {
719 		(void) fprintf(stderr, "ztest: bad numeric value: %s\n", buf);
720 		usage(B_FALSE);
721 	} else if (end[0] == '.') {
722 		double fval = strtod(buf, &end);
723 		fval *= pow(2, str2shift(end));
724 		/*
725 		 * UINT64_MAX is not exactly representable as a double.
726 		 * The closest representation is UINT64_MAX + 1, so we
727 		 * use a >= comparison instead of > for the bounds check.
728 		 */
729 		if (fval >= (double)UINT64_MAX) {
730 			(void) fprintf(stderr, "ztest: value too large: %s\n",
731 			    buf);
732 			usage(B_FALSE);
733 		}
734 		val = (uint64_t)fval;
735 	} else {
736 		int shift = str2shift(end);
737 		if (shift >= 64 || (val << shift) >> shift != val) {
738 			(void) fprintf(stderr, "ztest: value too large: %s\n",
739 			    buf);
740 			usage(B_FALSE);
741 		}
742 		val <<= shift;
743 	}
744 	return (val);
745 }
746 
747 typedef struct ztest_option {
748 	const char	short_opt;
749 	const char	*long_opt;
750 	const char	*long_opt_param;
751 	const char	*comment;
752 	unsigned int	default_int;
753 	const char	*default_str;
754 } ztest_option_t;
755 
756 /*
757  * The following option_table is used for generating the usage info as well as
758  * the long and short option information for calling getopt_long().
759  */
760 static ztest_option_t option_table[] = {
761 	{ 'v',	"vdevs", "INTEGER", "Number of vdevs", DEFAULT_VDEV_COUNT,
762 	    NULL},
763 	{ 's',	"vdev-size", "INTEGER", "Size of each vdev",
764 	    NO_DEFAULT, DEFAULT_VDEV_SIZE_STR},
765 	{ 'a',	"alignment-shift", "INTEGER",
766 	    "Alignment shift; use 0 for random", DEFAULT_ASHIFT, NULL},
767 	{ 'm',	"mirror-copies", "INTEGER", "Number of mirror copies",
768 	    DEFAULT_MIRRORS, NULL},
769 	{ 'r',	"raid-disks", "INTEGER", "Number of raidz/draid disks",
770 	    DEFAULT_RAID_CHILDREN, NULL},
771 	{ 'R',	"raid-parity", "INTEGER", "Raid parity",
772 	    DEFAULT_RAID_PARITY, NULL},
773 	{ 'K',  "raid-kind", "raidz|eraidz|draid|random", "Raid kind",
774 	    NO_DEFAULT, "random"},
775 	{ 'D',	"draid-data", "INTEGER", "Number of draid data drives",
776 	    DEFAULT_DRAID_DATA, NULL},
777 	{ 'S',	"draid-spares", "INTEGER", "Number of draid spares",
778 	    DEFAULT_DRAID_SPARES, NULL},
779 	{ 'd',	"datasets", "INTEGER", "Number of datasets",
780 	    DEFAULT_DATASETS_COUNT, NULL},
781 	{ 't',	"threads", "INTEGER", "Number of ztest threads",
782 	    DEFAULT_THREADS, NULL},
783 	{ 'g',	"gang-block-threshold", "INTEGER",
784 	    "Metaslab gang block threshold",
785 	    NO_DEFAULT, DEFAULT_FORCE_GANGING_STR},
786 	{ 'i',	"init-count", "INTEGER", "Number of times to initialize pool",
787 	    DEFAULT_INITS, NULL},
788 	{ 'k',	"kill-percentage", "INTEGER", "Kill percentage",
789 	    NO_DEFAULT, DEFAULT_KILLRATE_STR},
790 	{ 'p',	"pool-name", "STRING", "Pool name",
791 	    NO_DEFAULT, DEFAULT_POOL},
792 	{ 'f',	"vdev-file-directory", "PATH", "File directory for vdev files",
793 	    NO_DEFAULT, DEFAULT_VDEV_DIR},
794 	{ 'M',	"multi-host", NULL,
795 	    "Multi-host; simulate pool imported on remote host",
796 	    NO_DEFAULT, NULL},
797 	{ 'E',	"use-existing-pool", NULL,
798 	    "Use existing pool instead of creating new one", NO_DEFAULT, NULL},
799 	{ 'T',	"run-time", "INTEGER", "Total run time",
800 	    NO_DEFAULT, DEFAULT_RUN_TIME_STR},
801 	{ 'P',	"pass-time", "INTEGER", "Time per pass",
802 	    NO_DEFAULT, DEFAULT_PASS_TIME_STR},
803 	{ 'F',	"freeze-loops", "INTEGER", "Max loops in spa_freeze()",
804 	    DEFAULT_MAX_LOOPS, NULL},
805 	{ 'B',	"alt-ztest", "PATH", "Alternate ztest path",
806 	    NO_DEFAULT, NULL},
807 	{ 'C',	"vdev-class-state", "on|off|random", "vdev class state",
808 	    NO_DEFAULT, "random"},
809 	{ 'X', "raidz-expansion", NULL,
810 	    "Perform a dedicated raidz expansion test",
811 	    NO_DEFAULT, NULL},
812 	{ 'o',	"option", "\"OPTION=INTEGER\"",
813 	    "Set global variable to an unsigned 32-bit integer value",
814 	    NO_DEFAULT, NULL},
815 	{ 'G',	"dump-debug-msg", NULL,
816 	    "Dump zfs_dbgmsg buffer before exiting due to an error",
817 	    NO_DEFAULT, NULL},
818 	{ 'V',	"verbose", NULL,
819 	    "Verbose (use multiple times for ever more verbosity)",
820 	    NO_DEFAULT, NULL},
821 	{ 'h',	"help",	NULL, "Show this help",
822 	    NO_DEFAULT, NULL},
823 	{0, 0, 0, 0, 0, 0}
824 };
825 
826 static struct option *long_opts = NULL;
827 static char *short_opts = NULL;
828 
829 static void
init_options(void)830 init_options(void)
831 {
832 	ASSERT3P(long_opts, ==, NULL);
833 	ASSERT3P(short_opts, ==, NULL);
834 
835 	int count = sizeof (option_table) / sizeof (option_table[0]);
836 	long_opts = umem_alloc(sizeof (struct option) * count, UMEM_NOFAIL);
837 
838 	short_opts = umem_alloc(sizeof (char) * 2 * count, UMEM_NOFAIL);
839 	int short_opt_index = 0;
840 
841 	for (int i = 0; i < count; i++) {
842 		long_opts[i].val = option_table[i].short_opt;
843 		long_opts[i].name = option_table[i].long_opt;
844 		long_opts[i].has_arg = option_table[i].long_opt_param != NULL
845 		    ? required_argument : no_argument;
846 		long_opts[i].flag = NULL;
847 		short_opts[short_opt_index++] = option_table[i].short_opt;
848 		if (option_table[i].long_opt_param != NULL) {
849 			short_opts[short_opt_index++] = ':';
850 		}
851 	}
852 }
853 
854 static void
fini_options(void)855 fini_options(void)
856 {
857 	int count = sizeof (option_table) / sizeof (option_table[0]);
858 
859 	umem_free(long_opts, sizeof (struct option) * count);
860 	umem_free(short_opts, sizeof (char) * 2 * count);
861 
862 	long_opts = NULL;
863 	short_opts = NULL;
864 }
865 
866 static __attribute__((noreturn)) void
usage(boolean_t requested)867 usage(boolean_t requested)
868 {
869 	char option[80];
870 	FILE *fp = requested ? stdout : stderr;
871 
872 	(void) fprintf(fp, "Usage: %s [OPTIONS...]\n", DEFAULT_POOL);
873 	for (int i = 0; option_table[i].short_opt != 0; i++) {
874 		if (option_table[i].long_opt_param != NULL) {
875 			(void) sprintf(option, "  -%c --%s=%s",
876 			    option_table[i].short_opt,
877 			    option_table[i].long_opt,
878 			    option_table[i].long_opt_param);
879 		} else {
880 			(void) sprintf(option, "  -%c --%s",
881 			    option_table[i].short_opt,
882 			    option_table[i].long_opt);
883 		}
884 		(void) fprintf(fp, "  %-43s%s", option,
885 		    option_table[i].comment);
886 
887 		if (option_table[i].long_opt_param != NULL) {
888 			if (option_table[i].default_str != NULL) {
889 				(void) fprintf(fp, " (default: %s)",
890 				    option_table[i].default_str);
891 			} else if (option_table[i].default_int != NO_DEFAULT) {
892 				(void) fprintf(fp, " (default: %u)",
893 				    option_table[i].default_int);
894 			}
895 		}
896 		(void) fprintf(fp, "\n");
897 	}
898 	exit(requested ? 0 : 1);
899 }
900 
901 static uint64_t
ztest_random(uint64_t range)902 ztest_random(uint64_t range)
903 {
904 	uint64_t r;
905 
906 	ASSERT3S(ztest_fd_rand, >=, 0);
907 
908 	if (range == 0)
909 		return (0);
910 
911 	if (read(ztest_fd_rand, &r, sizeof (r)) != sizeof (r))
912 		fatal(B_TRUE, "short read from /dev/urandom");
913 
914 	return (r % range);
915 }
916 
917 static void
ztest_parse_name_value(const char * input,ztest_shared_opts_t * zo)918 ztest_parse_name_value(const char *input, ztest_shared_opts_t *zo)
919 {
920 	char name[32];
921 	char *value;
922 	int state = ZTEST_VDEV_CLASS_RND;
923 
924 	(void) strlcpy(name, input, sizeof (name));
925 
926 	value = strchr(name, '=');
927 	if (value == NULL) {
928 		(void) fprintf(stderr, "missing value in property=value "
929 		    "'-C' argument (%s)\n", input);
930 		usage(B_FALSE);
931 	}
932 	*(value) = '\0';
933 	value++;
934 
935 	if (strcmp(value, "on") == 0) {
936 		state = ZTEST_VDEV_CLASS_ON;
937 	} else if (strcmp(value, "off") == 0) {
938 		state = ZTEST_VDEV_CLASS_OFF;
939 	} else if (strcmp(value, "random") == 0) {
940 		state = ZTEST_VDEV_CLASS_RND;
941 	} else {
942 		(void) fprintf(stderr, "invalid property value '%s'\n", value);
943 		usage(B_FALSE);
944 	}
945 
946 	if (strcmp(name, "special") == 0) {
947 		zo->zo_special_vdevs = state;
948 	} else {
949 		(void) fprintf(stderr, "invalid property name '%s'\n", name);
950 		usage(B_FALSE);
951 	}
952 	if (zo->zo_verbose >= 3)
953 		(void) printf("%s vdev state is '%s'\n", name, value);
954 }
955 
956 static void
process_options(int argc,char ** argv)957 process_options(int argc, char **argv)
958 {
959 	char *path;
960 	ztest_shared_opts_t *zo = &ztest_opts;
961 
962 	int opt;
963 	uint64_t value;
964 	const char *raid_kind = "random";
965 
966 	memcpy(zo, &ztest_opts_defaults, sizeof (*zo));
967 
968 	init_options();
969 
970 	while ((opt = getopt_long(argc, argv, short_opts, long_opts,
971 	    NULL)) != EOF) {
972 		value = 0;
973 		switch (opt) {
974 		case 'v':
975 		case 's':
976 		case 'a':
977 		case 'm':
978 		case 'r':
979 		case 'R':
980 		case 'D':
981 		case 'S':
982 		case 'd':
983 		case 't':
984 		case 'g':
985 		case 'i':
986 		case 'k':
987 		case 'T':
988 		case 'P':
989 		case 'F':
990 			value = nicenumtoull(optarg);
991 		}
992 		switch (opt) {
993 		case 'v':
994 			zo->zo_vdevs = value;
995 			break;
996 		case 's':
997 			zo->zo_vdev_size = MAX(SPA_MINDEVSIZE, value);
998 			break;
999 		case 'a':
1000 			zo->zo_ashift = value;
1001 			break;
1002 		case 'm':
1003 			zo->zo_mirrors = value;
1004 			break;
1005 		case 'r':
1006 			zo->zo_raid_children = MAX(1, value);
1007 			break;
1008 		case 'R':
1009 			zo->zo_raid_parity = MIN(MAX(value, 1), 3);
1010 			break;
1011 		case 'K':
1012 			raid_kind = optarg;
1013 			break;
1014 		case 'D':
1015 			zo->zo_draid_data = MAX(1, value);
1016 			break;
1017 		case 'S':
1018 			zo->zo_draid_spares = MAX(1, value);
1019 			break;
1020 		case 'd':
1021 			zo->zo_datasets = MAX(1, value);
1022 			break;
1023 		case 't':
1024 			zo->zo_threads = MAX(1, value);
1025 			break;
1026 		case 'g':
1027 			zo->zo_metaslab_force_ganging =
1028 			    MAX(SPA_MINBLOCKSIZE << 1, value);
1029 			break;
1030 		case 'i':
1031 			zo->zo_init = value;
1032 			break;
1033 		case 'k':
1034 			zo->zo_killrate = value;
1035 			break;
1036 		case 'p':
1037 			(void) strlcpy(zo->zo_pool, optarg,
1038 			    sizeof (zo->zo_pool));
1039 			break;
1040 		case 'f':
1041 			path = realpath(optarg, NULL);
1042 			if (path == NULL) {
1043 				(void) fprintf(stderr, "error: %s: %s\n",
1044 				    optarg, strerror(errno));
1045 				usage(B_FALSE);
1046 			} else {
1047 				(void) strlcpy(zo->zo_dir, path,
1048 				    sizeof (zo->zo_dir));
1049 				free(path);
1050 			}
1051 			break;
1052 		case 'M':
1053 			zo->zo_mmp_test = 1;
1054 			break;
1055 		case 'V':
1056 			zo->zo_verbose++;
1057 			break;
1058 		case 'X':
1059 			zo->zo_raidz_expand_test = RAIDZ_EXPAND_REQUESTED;
1060 			break;
1061 		case 'E':
1062 			zo->zo_init = 0;
1063 			break;
1064 		case 'T':
1065 			zo->zo_time = value;
1066 			break;
1067 		case 'P':
1068 			zo->zo_passtime = MAX(1, value);
1069 			break;
1070 		case 'F':
1071 			zo->zo_maxloops = MAX(1, value);
1072 			break;
1073 		case 'B':
1074 			(void) strlcpy(zo->zo_alt_ztest, optarg,
1075 			    sizeof (zo->zo_alt_ztest));
1076 			break;
1077 		case 'C':
1078 			ztest_parse_name_value(optarg, zo);
1079 			break;
1080 		case 'o':
1081 			if (zo->zo_gvars_count >= ZO_GVARS_MAX_COUNT) {
1082 				(void) fprintf(stderr,
1083 				    "max global var count (%zu) exceeded\n",
1084 				    ZO_GVARS_MAX_COUNT);
1085 				usage(B_FALSE);
1086 			}
1087 			char *v = zo->zo_gvars[zo->zo_gvars_count];
1088 			if (strlcpy(v, optarg, ZO_GVARS_MAX_ARGLEN) >=
1089 			    ZO_GVARS_MAX_ARGLEN) {
1090 				(void) fprintf(stderr,
1091 				    "global var option '%s' is too long\n",
1092 				    optarg);
1093 				usage(B_FALSE);
1094 			}
1095 			zo->zo_gvars_count++;
1096 			break;
1097 		case 'G':
1098 			zo->zo_dump_dbgmsg = 1;
1099 			break;
1100 		case 'h':
1101 			usage(B_TRUE);
1102 			break;
1103 		case '?':
1104 		default:
1105 			usage(B_FALSE);
1106 			break;
1107 		}
1108 	}
1109 
1110 	fini_options();
1111 
1112 	/* Force compatible options for raidz expansion run */
1113 	if (zo->zo_raidz_expand_test == RAIDZ_EXPAND_REQUESTED) {
1114 		zo->zo_mmp_test = 0;
1115 		zo->zo_mirrors = 0;
1116 		zo->zo_vdevs = 1;
1117 		zo->zo_vdev_size = DEFAULT_VDEV_SIZE * 2;
1118 		zo->zo_raid_do_expand = B_FALSE;
1119 		raid_kind = "raidz";
1120 	}
1121 
1122 	if (strcmp(raid_kind, "random") == 0) {
1123 		switch (ztest_random(3)) {
1124 		case 0:
1125 			raid_kind = "raidz";
1126 			break;
1127 		case 1:
1128 			raid_kind = "eraidz";
1129 			break;
1130 		case 2:
1131 			raid_kind = "draid";
1132 			break;
1133 		}
1134 
1135 		if (ztest_opts.zo_verbose >= 3)
1136 			(void) printf("choosing RAID type '%s'\n", raid_kind);
1137 	}
1138 
1139 	if (strcmp(raid_kind, "draid") == 0) {
1140 		uint64_t min_devsize;
1141 
1142 		/* With fewer disk use 256M, otherwise 128M is OK */
1143 		min_devsize = (ztest_opts.zo_raid_children < 16) ?
1144 		    (256ULL << 20) : (128ULL << 20);
1145 
1146 		/* No top-level mirrors with dRAID for now */
1147 		zo->zo_mirrors = 0;
1148 
1149 		/* Use more appropriate defaults for dRAID */
1150 		if (zo->zo_vdevs == ztest_opts_defaults.zo_vdevs)
1151 			zo->zo_vdevs = 1;
1152 		if (zo->zo_raid_children ==
1153 		    ztest_opts_defaults.zo_raid_children)
1154 			zo->zo_raid_children = 16;
1155 		if (zo->zo_ashift < 12)
1156 			zo->zo_ashift = 12;
1157 		if (zo->zo_vdev_size < min_devsize)
1158 			zo->zo_vdev_size = min_devsize;
1159 
1160 		if (zo->zo_draid_data + zo->zo_raid_parity >
1161 		    zo->zo_raid_children - zo->zo_draid_spares) {
1162 			(void) fprintf(stderr, "error: too few draid "
1163 			    "children (%d) for stripe width (%d)\n",
1164 			    zo->zo_raid_children,
1165 			    zo->zo_draid_data + zo->zo_raid_parity);
1166 			usage(B_FALSE);
1167 		}
1168 
1169 		(void) strlcpy(zo->zo_raid_type, VDEV_TYPE_DRAID,
1170 		    sizeof (zo->zo_raid_type));
1171 
1172 	} else if (strcmp(raid_kind, "eraidz") == 0) {
1173 		/* using eraidz (expandable raidz) */
1174 		zo->zo_raid_do_expand = B_TRUE;
1175 
1176 		/* tests expect top-level to be raidz */
1177 		zo->zo_mirrors = 0;
1178 		zo->zo_vdevs = 1;
1179 
1180 		/* Make sure parity is less than data columns */
1181 		zo->zo_raid_parity = MIN(zo->zo_raid_parity,
1182 		    zo->zo_raid_children - 1);
1183 
1184 	} else /* using raidz */ {
1185 		ASSERT0(strcmp(raid_kind, "raidz"));
1186 
1187 		zo->zo_raid_parity = MIN(zo->zo_raid_parity,
1188 		    zo->zo_raid_children - 1);
1189 	}
1190 
1191 	zo->zo_vdevtime =
1192 	    (zo->zo_vdevs > 0 ? zo->zo_time * NANOSEC / zo->zo_vdevs :
1193 	    UINT64_MAX >> 2);
1194 
1195 	if (*zo->zo_alt_ztest) {
1196 		const char *invalid_what = "ztest";
1197 		char *val = zo->zo_alt_ztest;
1198 		if (0 != access(val, X_OK) ||
1199 		    (strrchr(val, '/') == NULL && (errno == EINVAL)))
1200 			goto invalid;
1201 
1202 		int dirlen = strrchr(val, '/') - val;
1203 		strlcpy(zo->zo_alt_libpath, val,
1204 		    MIN(sizeof (zo->zo_alt_libpath), dirlen + 1));
1205 		invalid_what = "library path", val = zo->zo_alt_libpath;
1206 		if (strrchr(val, '/') == NULL && (errno == EINVAL))
1207 			goto invalid;
1208 		*strrchr(val, '/') = '\0';
1209 		strlcat(val, "/lib", sizeof (zo->zo_alt_libpath));
1210 
1211 		if (0 != access(zo->zo_alt_libpath, X_OK))
1212 			goto invalid;
1213 		return;
1214 
1215 invalid:
1216 		ztest_dump_core = B_FALSE;
1217 		fatal(B_TRUE, "invalid alternate %s %s", invalid_what, val);
1218 	}
1219 }
1220 
1221 static void
ztest_kill(ztest_shared_t * zs)1222 ztest_kill(ztest_shared_t *zs)
1223 {
1224 	zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(ztest_spa));
1225 	zs->zs_space = metaslab_class_get_space(spa_normal_class(ztest_spa));
1226 
1227 	/*
1228 	 * Before we kill ourselves, make sure that the config is updated.
1229 	 * See comment above spa_write_cachefile().
1230 	 */
1231 	if (raidz_expand_pause_point != RAIDZ_EXPAND_PAUSE_NONE) {
1232 		if (mutex_tryenter(&spa_namespace_lock)) {
1233 			spa_write_cachefile(ztest_spa, B_FALSE, B_FALSE,
1234 			    B_FALSE);
1235 			mutex_exit(&spa_namespace_lock);
1236 
1237 			ztest_scratch_state->zs_raidz_scratch_verify_pause =
1238 			    raidz_expand_pause_point;
1239 		} else {
1240 			/*
1241 			 * Do not verify scratch object in case if
1242 			 * spa_namespace_lock cannot be acquired,
1243 			 * it can cause deadlock in spa_config_update().
1244 			 */
1245 			raidz_expand_pause_point = RAIDZ_EXPAND_PAUSE_NONE;
1246 
1247 			return;
1248 		}
1249 	} else {
1250 		mutex_enter(&spa_namespace_lock);
1251 		spa_write_cachefile(ztest_spa, B_FALSE, B_FALSE, B_FALSE);
1252 		mutex_exit(&spa_namespace_lock);
1253 	}
1254 
1255 	(void) raise(SIGKILL);
1256 }
1257 
1258 static void
ztest_record_enospc(const char * s)1259 ztest_record_enospc(const char *s)
1260 {
1261 	(void) s;
1262 	ztest_shared->zs_enospc_count++;
1263 }
1264 
1265 static uint64_t
ztest_get_ashift(void)1266 ztest_get_ashift(void)
1267 {
1268 	if (ztest_opts.zo_ashift == 0)
1269 		return (SPA_MINBLOCKSHIFT + ztest_random(5));
1270 	return (ztest_opts.zo_ashift);
1271 }
1272 
1273 static boolean_t
ztest_is_draid_spare(const char * name)1274 ztest_is_draid_spare(const char *name)
1275 {
1276 	uint64_t spare_id = 0, parity = 0, vdev_id = 0;
1277 
1278 	if (sscanf(name, VDEV_TYPE_DRAID "%"PRIu64"-%"PRIu64"-%"PRIu64"",
1279 	    &parity, &vdev_id, &spare_id) == 3) {
1280 		return (B_TRUE);
1281 	}
1282 
1283 	return (B_FALSE);
1284 }
1285 
1286 static nvlist_t *
make_vdev_file(const char * path,const char * aux,const char * pool,size_t size,uint64_t ashift)1287 make_vdev_file(const char *path, const char *aux, const char *pool,
1288     size_t size, uint64_t ashift)
1289 {
1290 	char *pathbuf = NULL;
1291 	uint64_t vdev;
1292 	nvlist_t *file;
1293 	boolean_t draid_spare = B_FALSE;
1294 
1295 
1296 	if (ashift == 0)
1297 		ashift = ztest_get_ashift();
1298 
1299 	if (path == NULL) {
1300 		pathbuf = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
1301 		path = pathbuf;
1302 
1303 		if (aux != NULL) {
1304 			vdev = ztest_shared->zs_vdev_aux;
1305 			(void) snprintf(pathbuf, MAXPATHLEN,
1306 			    ztest_aux_template, ztest_opts.zo_dir,
1307 			    pool == NULL ? ztest_opts.zo_pool : pool,
1308 			    aux, vdev);
1309 		} else {
1310 			vdev = ztest_shared->zs_vdev_next_leaf++;
1311 			(void) snprintf(pathbuf, MAXPATHLEN,
1312 			    ztest_dev_template, ztest_opts.zo_dir,
1313 			    pool == NULL ? ztest_opts.zo_pool : pool, vdev);
1314 		}
1315 	} else {
1316 		draid_spare = ztest_is_draid_spare(path);
1317 	}
1318 
1319 	if (size != 0 && !draid_spare) {
1320 		int fd = open(path, O_RDWR | O_CREAT | O_TRUNC, 0666);
1321 		if (fd == -1)
1322 			fatal(B_TRUE, "can't open %s", path);
1323 		if (ftruncate(fd, size) != 0)
1324 			fatal(B_TRUE, "can't ftruncate %s", path);
1325 		(void) close(fd);
1326 	}
1327 
1328 	file = fnvlist_alloc();
1329 	fnvlist_add_string(file, ZPOOL_CONFIG_TYPE,
1330 	    draid_spare ? VDEV_TYPE_DRAID_SPARE : VDEV_TYPE_FILE);
1331 	fnvlist_add_string(file, ZPOOL_CONFIG_PATH, path);
1332 	fnvlist_add_uint64(file, ZPOOL_CONFIG_ASHIFT, ashift);
1333 	umem_free(pathbuf, MAXPATHLEN);
1334 
1335 	return (file);
1336 }
1337 
1338 static nvlist_t *
make_vdev_raid(const char * path,const char * aux,const char * pool,size_t size,uint64_t ashift,int r)1339 make_vdev_raid(const char *path, const char *aux, const char *pool, size_t size,
1340     uint64_t ashift, int r)
1341 {
1342 	nvlist_t *raid, **child;
1343 	int c;
1344 
1345 	if (r < 2)
1346 		return (make_vdev_file(path, aux, pool, size, ashift));
1347 	child = umem_alloc(r * sizeof (nvlist_t *), UMEM_NOFAIL);
1348 
1349 	for (c = 0; c < r; c++)
1350 		child[c] = make_vdev_file(path, aux, pool, size, ashift);
1351 
1352 	raid = fnvlist_alloc();
1353 	fnvlist_add_string(raid, ZPOOL_CONFIG_TYPE,
1354 	    ztest_opts.zo_raid_type);
1355 	fnvlist_add_uint64(raid, ZPOOL_CONFIG_NPARITY,
1356 	    ztest_opts.zo_raid_parity);
1357 	fnvlist_add_nvlist_array(raid, ZPOOL_CONFIG_CHILDREN,
1358 	    (const nvlist_t **)child, r);
1359 
1360 	if (strcmp(ztest_opts.zo_raid_type, VDEV_TYPE_DRAID) == 0) {
1361 		uint64_t ndata = ztest_opts.zo_draid_data;
1362 		uint64_t nparity = ztest_opts.zo_raid_parity;
1363 		uint64_t nspares = ztest_opts.zo_draid_spares;
1364 		uint64_t children = ztest_opts.zo_raid_children;
1365 		uint64_t ngroups = 1;
1366 
1367 		/*
1368 		 * Calculate the minimum number of groups required to fill a
1369 		 * slice. This is the LCM of the stripe width (data + parity)
1370 		 * and the number of data drives (children - spares).
1371 		 */
1372 		while (ngroups * (ndata + nparity) % (children - nspares) != 0)
1373 			ngroups++;
1374 
1375 		/* Store the basic dRAID configuration. */
1376 		fnvlist_add_uint64(raid, ZPOOL_CONFIG_DRAID_NDATA, ndata);
1377 		fnvlist_add_uint64(raid, ZPOOL_CONFIG_DRAID_NSPARES, nspares);
1378 		fnvlist_add_uint64(raid, ZPOOL_CONFIG_DRAID_NGROUPS, ngroups);
1379 	}
1380 
1381 	for (c = 0; c < r; c++)
1382 		fnvlist_free(child[c]);
1383 
1384 	umem_free(child, r * sizeof (nvlist_t *));
1385 
1386 	return (raid);
1387 }
1388 
1389 static nvlist_t *
make_vdev_mirror(const char * path,const char * aux,const char * pool,size_t size,uint64_t ashift,int r,int m)1390 make_vdev_mirror(const char *path, const char *aux, const char *pool,
1391     size_t size, uint64_t ashift, int r, int m)
1392 {
1393 	nvlist_t *mirror, **child;
1394 	int c;
1395 
1396 	if (m < 1)
1397 		return (make_vdev_raid(path, aux, pool, size, ashift, r));
1398 
1399 	child = umem_alloc(m * sizeof (nvlist_t *), UMEM_NOFAIL);
1400 
1401 	for (c = 0; c < m; c++)
1402 		child[c] = make_vdev_raid(path, aux, pool, size, ashift, r);
1403 
1404 	mirror = fnvlist_alloc();
1405 	fnvlist_add_string(mirror, ZPOOL_CONFIG_TYPE, VDEV_TYPE_MIRROR);
1406 	fnvlist_add_nvlist_array(mirror, ZPOOL_CONFIG_CHILDREN,
1407 	    (const nvlist_t **)child, m);
1408 
1409 	for (c = 0; c < m; c++)
1410 		fnvlist_free(child[c]);
1411 
1412 	umem_free(child, m * sizeof (nvlist_t *));
1413 
1414 	return (mirror);
1415 }
1416 
1417 static nvlist_t *
make_vdev_root(const char * path,const char * aux,const char * pool,size_t size,uint64_t ashift,const char * class,int r,int m,int t)1418 make_vdev_root(const char *path, const char *aux, const char *pool, size_t size,
1419     uint64_t ashift, const char *class, int r, int m, int t)
1420 {
1421 	nvlist_t *root, **child;
1422 	int c;
1423 	boolean_t log;
1424 
1425 	ASSERT3S(t, >, 0);
1426 
1427 	log = (class != NULL && strcmp(class, "log") == 0);
1428 
1429 	child = umem_alloc(t * sizeof (nvlist_t *), UMEM_NOFAIL);
1430 
1431 	for (c = 0; c < t; c++) {
1432 		child[c] = make_vdev_mirror(path, aux, pool, size, ashift,
1433 		    r, m);
1434 		fnvlist_add_uint64(child[c], ZPOOL_CONFIG_IS_LOG, log);
1435 
1436 		if (class != NULL && class[0] != '\0') {
1437 			ASSERT(m > 1 || log);   /* expecting a mirror */
1438 			fnvlist_add_string(child[c],
1439 			    ZPOOL_CONFIG_ALLOCATION_BIAS, class);
1440 		}
1441 	}
1442 
1443 	root = fnvlist_alloc();
1444 	fnvlist_add_string(root, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT);
1445 	fnvlist_add_nvlist_array(root, aux ? aux : ZPOOL_CONFIG_CHILDREN,
1446 	    (const nvlist_t **)child, t);
1447 
1448 	for (c = 0; c < t; c++)
1449 		fnvlist_free(child[c]);
1450 
1451 	umem_free(child, t * sizeof (nvlist_t *));
1452 
1453 	return (root);
1454 }
1455 
1456 /*
1457  * Find a random spa version. Returns back a random spa version in the
1458  * range [initial_version, SPA_VERSION_FEATURES].
1459  */
1460 static uint64_t
ztest_random_spa_version(uint64_t initial_version)1461 ztest_random_spa_version(uint64_t initial_version)
1462 {
1463 	uint64_t version = initial_version;
1464 
1465 	if (version <= SPA_VERSION_BEFORE_FEATURES) {
1466 		version = version +
1467 		    ztest_random(SPA_VERSION_BEFORE_FEATURES - version + 1);
1468 	}
1469 
1470 	if (version > SPA_VERSION_BEFORE_FEATURES)
1471 		version = SPA_VERSION_FEATURES;
1472 
1473 	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
1474 	return (version);
1475 }
1476 
1477 static int
ztest_random_blocksize(void)1478 ztest_random_blocksize(void)
1479 {
1480 	ASSERT3U(ztest_spa->spa_max_ashift, !=, 0);
1481 
1482 	/*
1483 	 * Choose a block size >= the ashift.
1484 	 * If the SPA supports new MAXBLOCKSIZE, test up to 1MB blocks.
1485 	 */
1486 	int maxbs = SPA_OLD_MAXBLOCKSHIFT;
1487 	if (spa_maxblocksize(ztest_spa) == SPA_MAXBLOCKSIZE)
1488 		maxbs = 20;
1489 	uint64_t block_shift =
1490 	    ztest_random(maxbs - ztest_spa->spa_max_ashift + 1);
1491 	return (1 << (SPA_MINBLOCKSHIFT + block_shift));
1492 }
1493 
1494 static int
ztest_random_dnodesize(void)1495 ztest_random_dnodesize(void)
1496 {
1497 	int slots;
1498 	int max_slots = spa_maxdnodesize(ztest_spa) >> DNODE_SHIFT;
1499 
1500 	if (max_slots == DNODE_MIN_SLOTS)
1501 		return (DNODE_MIN_SIZE);
1502 
1503 	/*
1504 	 * Weight the random distribution more heavily toward smaller
1505 	 * dnode sizes since that is more likely to reflect real-world
1506 	 * usage.
1507 	 */
1508 	ASSERT3U(max_slots, >, 4);
1509 	switch (ztest_random(10)) {
1510 	case 0:
1511 		slots = 5 + ztest_random(max_slots - 4);
1512 		break;
1513 	case 1 ... 4:
1514 		slots = 2 + ztest_random(3);
1515 		break;
1516 	default:
1517 		slots = 1;
1518 		break;
1519 	}
1520 
1521 	return (slots << DNODE_SHIFT);
1522 }
1523 
1524 static int
ztest_random_ibshift(void)1525 ztest_random_ibshift(void)
1526 {
1527 	return (DN_MIN_INDBLKSHIFT +
1528 	    ztest_random(DN_MAX_INDBLKSHIFT - DN_MIN_INDBLKSHIFT + 1));
1529 }
1530 
1531 static uint64_t
ztest_random_vdev_top(spa_t * spa,boolean_t log_ok)1532 ztest_random_vdev_top(spa_t *spa, boolean_t log_ok)
1533 {
1534 	uint64_t top;
1535 	vdev_t *rvd = spa->spa_root_vdev;
1536 	vdev_t *tvd;
1537 
1538 	ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
1539 
1540 	do {
1541 		top = ztest_random(rvd->vdev_children);
1542 		tvd = rvd->vdev_child[top];
1543 	} while (!vdev_is_concrete(tvd) || (tvd->vdev_islog && !log_ok) ||
1544 	    tvd->vdev_mg == NULL || tvd->vdev_mg->mg_class == NULL);
1545 
1546 	return (top);
1547 }
1548 
1549 static uint64_t
ztest_random_dsl_prop(zfs_prop_t prop)1550 ztest_random_dsl_prop(zfs_prop_t prop)
1551 {
1552 	uint64_t value;
1553 
1554 	do {
1555 		value = zfs_prop_random_value(prop, ztest_random(-1ULL));
1556 	} while (prop == ZFS_PROP_CHECKSUM && value == ZIO_CHECKSUM_OFF);
1557 
1558 	return (value);
1559 }
1560 
1561 static int
ztest_dsl_prop_set_uint64(char * osname,zfs_prop_t prop,uint64_t value,boolean_t inherit)1562 ztest_dsl_prop_set_uint64(char *osname, zfs_prop_t prop, uint64_t value,
1563     boolean_t inherit)
1564 {
1565 	const char *propname = zfs_prop_to_name(prop);
1566 	const char *valname;
1567 	char *setpoint;
1568 	uint64_t curval;
1569 	int error;
1570 
1571 	error = dsl_prop_set_int(osname, propname,
1572 	    (inherit ? ZPROP_SRC_NONE : ZPROP_SRC_LOCAL), value);
1573 
1574 	if (error == ENOSPC) {
1575 		ztest_record_enospc(FTAG);
1576 		return (error);
1577 	}
1578 	ASSERT0(error);
1579 
1580 	setpoint = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
1581 	VERIFY0(dsl_prop_get_integer(osname, propname, &curval, setpoint));
1582 
1583 	if (ztest_opts.zo_verbose >= 6) {
1584 		int err;
1585 
1586 		err = zfs_prop_index_to_string(prop, curval, &valname);
1587 		if (err)
1588 			(void) printf("%s %s = %llu at '%s'\n", osname,
1589 			    propname, (unsigned long long)curval, setpoint);
1590 		else
1591 			(void) printf("%s %s = %s at '%s'\n",
1592 			    osname, propname, valname, setpoint);
1593 	}
1594 	umem_free(setpoint, MAXPATHLEN);
1595 
1596 	return (error);
1597 }
1598 
1599 static int
ztest_spa_prop_set_uint64(zpool_prop_t prop,uint64_t value)1600 ztest_spa_prop_set_uint64(zpool_prop_t prop, uint64_t value)
1601 {
1602 	spa_t *spa = ztest_spa;
1603 	nvlist_t *props = NULL;
1604 	int error;
1605 
1606 	props = fnvlist_alloc();
1607 	fnvlist_add_uint64(props, zpool_prop_to_name(prop), value);
1608 
1609 	error = spa_prop_set(spa, props);
1610 
1611 	fnvlist_free(props);
1612 
1613 	if (error == ENOSPC) {
1614 		ztest_record_enospc(FTAG);
1615 		return (error);
1616 	}
1617 	ASSERT0(error);
1618 
1619 	return (error);
1620 }
1621 
1622 static int
ztest_dmu_objset_own(const char * name,dmu_objset_type_t type,boolean_t readonly,boolean_t decrypt,const void * tag,objset_t ** osp)1623 ztest_dmu_objset_own(const char *name, dmu_objset_type_t type,
1624     boolean_t readonly, boolean_t decrypt, const void *tag, objset_t **osp)
1625 {
1626 	int err;
1627 	char *cp = NULL;
1628 	char ddname[ZFS_MAX_DATASET_NAME_LEN];
1629 
1630 	strlcpy(ddname, name, sizeof (ddname));
1631 	cp = strchr(ddname, '@');
1632 	if (cp != NULL)
1633 		*cp = '\0';
1634 
1635 	err = dmu_objset_own(name, type, readonly, decrypt, tag, osp);
1636 	while (decrypt && err == EACCES) {
1637 		dsl_crypto_params_t *dcp;
1638 		nvlist_t *crypto_args = fnvlist_alloc();
1639 
1640 		fnvlist_add_uint8_array(crypto_args, "wkeydata",
1641 		    (uint8_t *)ztest_wkeydata, WRAPPING_KEY_LEN);
1642 		VERIFY0(dsl_crypto_params_create_nvlist(DCP_CMD_NONE, NULL,
1643 		    crypto_args, &dcp));
1644 		err = spa_keystore_load_wkey(ddname, dcp, B_FALSE);
1645 		/*
1646 		 * Note: if there was an error loading, the wkey was not
1647 		 * consumed, and needs to be freed.
1648 		 */
1649 		dsl_crypto_params_free(dcp, (err != 0));
1650 		fnvlist_free(crypto_args);
1651 
1652 		if (err == EINVAL) {
1653 			/*
1654 			 * We couldn't load a key for this dataset so try
1655 			 * the parent. This loop will eventually hit the
1656 			 * encryption root since ztest only makes clones
1657 			 * as children of their origin datasets.
1658 			 */
1659 			cp = strrchr(ddname, '/');
1660 			if (cp == NULL)
1661 				return (err);
1662 
1663 			*cp = '\0';
1664 			err = EACCES;
1665 			continue;
1666 		} else if (err != 0) {
1667 			break;
1668 		}
1669 
1670 		err = dmu_objset_own(name, type, readonly, decrypt, tag, osp);
1671 		break;
1672 	}
1673 
1674 	return (err);
1675 }
1676 
1677 static void
ztest_rll_init(rll_t * rll)1678 ztest_rll_init(rll_t *rll)
1679 {
1680 	rll->rll_writer = NULL;
1681 	rll->rll_readers = 0;
1682 	mutex_init(&rll->rll_lock, NULL, MUTEX_DEFAULT, NULL);
1683 	cv_init(&rll->rll_cv, NULL, CV_DEFAULT, NULL);
1684 }
1685 
1686 static void
ztest_rll_destroy(rll_t * rll)1687 ztest_rll_destroy(rll_t *rll)
1688 {
1689 	ASSERT3P(rll->rll_writer, ==, NULL);
1690 	ASSERT0(rll->rll_readers);
1691 	mutex_destroy(&rll->rll_lock);
1692 	cv_destroy(&rll->rll_cv);
1693 }
1694 
1695 static void
ztest_rll_lock(rll_t * rll,rl_type_t type)1696 ztest_rll_lock(rll_t *rll, rl_type_t type)
1697 {
1698 	mutex_enter(&rll->rll_lock);
1699 
1700 	if (type == ZTRL_READER) {
1701 		while (rll->rll_writer != NULL)
1702 			(void) cv_wait(&rll->rll_cv, &rll->rll_lock);
1703 		rll->rll_readers++;
1704 	} else {
1705 		while (rll->rll_writer != NULL || rll->rll_readers)
1706 			(void) cv_wait(&rll->rll_cv, &rll->rll_lock);
1707 		rll->rll_writer = curthread;
1708 	}
1709 
1710 	mutex_exit(&rll->rll_lock);
1711 }
1712 
1713 static void
ztest_rll_unlock(rll_t * rll)1714 ztest_rll_unlock(rll_t *rll)
1715 {
1716 	mutex_enter(&rll->rll_lock);
1717 
1718 	if (rll->rll_writer) {
1719 		ASSERT0(rll->rll_readers);
1720 		rll->rll_writer = NULL;
1721 	} else {
1722 		ASSERT3S(rll->rll_readers, >, 0);
1723 		ASSERT3P(rll->rll_writer, ==, NULL);
1724 		rll->rll_readers--;
1725 	}
1726 
1727 	if (rll->rll_writer == NULL && rll->rll_readers == 0)
1728 		cv_broadcast(&rll->rll_cv);
1729 
1730 	mutex_exit(&rll->rll_lock);
1731 }
1732 
1733 static void
ztest_object_lock(ztest_ds_t * zd,uint64_t object,rl_type_t type)1734 ztest_object_lock(ztest_ds_t *zd, uint64_t object, rl_type_t type)
1735 {
1736 	rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)];
1737 
1738 	ztest_rll_lock(rll, type);
1739 }
1740 
1741 static void
ztest_object_unlock(ztest_ds_t * zd,uint64_t object)1742 ztest_object_unlock(ztest_ds_t *zd, uint64_t object)
1743 {
1744 	rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)];
1745 
1746 	ztest_rll_unlock(rll);
1747 }
1748 
1749 static rl_t *
ztest_range_lock(ztest_ds_t * zd,uint64_t object,uint64_t offset,uint64_t size,rl_type_t type)1750 ztest_range_lock(ztest_ds_t *zd, uint64_t object, uint64_t offset,
1751     uint64_t size, rl_type_t type)
1752 {
1753 	uint64_t hash = object ^ (offset % (ZTEST_RANGE_LOCKS + 1));
1754 	rll_t *rll = &zd->zd_range_lock[hash & (ZTEST_RANGE_LOCKS - 1)];
1755 	rl_t *rl;
1756 
1757 	rl = umem_alloc(sizeof (*rl), UMEM_NOFAIL);
1758 	rl->rl_object = object;
1759 	rl->rl_offset = offset;
1760 	rl->rl_size = size;
1761 	rl->rl_lock = rll;
1762 
1763 	ztest_rll_lock(rll, type);
1764 
1765 	return (rl);
1766 }
1767 
1768 static void
ztest_range_unlock(rl_t * rl)1769 ztest_range_unlock(rl_t *rl)
1770 {
1771 	rll_t *rll = rl->rl_lock;
1772 
1773 	ztest_rll_unlock(rll);
1774 
1775 	umem_free(rl, sizeof (*rl));
1776 }
1777 
1778 static void
ztest_zd_init(ztest_ds_t * zd,ztest_shared_ds_t * szd,objset_t * os)1779 ztest_zd_init(ztest_ds_t *zd, ztest_shared_ds_t *szd, objset_t *os)
1780 {
1781 	zd->zd_os = os;
1782 	zd->zd_zilog = dmu_objset_zil(os);
1783 	zd->zd_shared = szd;
1784 	dmu_objset_name(os, zd->zd_name);
1785 	int l;
1786 
1787 	if (zd->zd_shared != NULL)
1788 		zd->zd_shared->zd_seq = 0;
1789 
1790 	VERIFY0(pthread_rwlock_init(&zd->zd_zilog_lock, NULL));
1791 	mutex_init(&zd->zd_dirobj_lock, NULL, MUTEX_DEFAULT, NULL);
1792 
1793 	for (l = 0; l < ZTEST_OBJECT_LOCKS; l++)
1794 		ztest_rll_init(&zd->zd_object_lock[l]);
1795 
1796 	for (l = 0; l < ZTEST_RANGE_LOCKS; l++)
1797 		ztest_rll_init(&zd->zd_range_lock[l]);
1798 }
1799 
1800 static void
ztest_zd_fini(ztest_ds_t * zd)1801 ztest_zd_fini(ztest_ds_t *zd)
1802 {
1803 	int l;
1804 
1805 	mutex_destroy(&zd->zd_dirobj_lock);
1806 	(void) pthread_rwlock_destroy(&zd->zd_zilog_lock);
1807 
1808 	for (l = 0; l < ZTEST_OBJECT_LOCKS; l++)
1809 		ztest_rll_destroy(&zd->zd_object_lock[l]);
1810 
1811 	for (l = 0; l < ZTEST_RANGE_LOCKS; l++)
1812 		ztest_rll_destroy(&zd->zd_range_lock[l]);
1813 }
1814 
1815 #define	DMU_TX_MIGHTWAIT	\
1816 	(ztest_random(10) == 0 ? DMU_TX_NOWAIT : DMU_TX_WAIT)
1817 
1818 static uint64_t
ztest_tx_assign(dmu_tx_t * tx,dmu_tx_flag_t txg_how,const char * tag)1819 ztest_tx_assign(dmu_tx_t *tx, dmu_tx_flag_t txg_how, const char *tag)
1820 {
1821 	uint64_t txg;
1822 	int error;
1823 
1824 	/*
1825 	 * Attempt to assign tx to some transaction group.
1826 	 */
1827 	error = dmu_tx_assign(tx, txg_how);
1828 	if (error) {
1829 		if (error == ERESTART) {
1830 			ASSERT3U(txg_how, ==, DMU_TX_NOWAIT);
1831 			dmu_tx_wait(tx);
1832 		} else if (error == ENOSPC) {
1833 			ztest_record_enospc(tag);
1834 		} else {
1835 			ASSERT(error == EDQUOT || error == EIO);
1836 		}
1837 		dmu_tx_abort(tx);
1838 		return (0);
1839 	}
1840 	txg = dmu_tx_get_txg(tx);
1841 	ASSERT3U(txg, !=, 0);
1842 	return (txg);
1843 }
1844 
1845 static void
ztest_bt_generate(ztest_block_tag_t * bt,objset_t * os,uint64_t object,uint64_t dnodesize,uint64_t offset,uint64_t gen,uint64_t txg,uint64_t crtxg)1846 ztest_bt_generate(ztest_block_tag_t *bt, objset_t *os, uint64_t object,
1847     uint64_t dnodesize, uint64_t offset, uint64_t gen, uint64_t txg,
1848     uint64_t crtxg)
1849 {
1850 	bt->bt_magic = BT_MAGIC;
1851 	bt->bt_objset = dmu_objset_id(os);
1852 	bt->bt_object = object;
1853 	bt->bt_dnodesize = dnodesize;
1854 	bt->bt_offset = offset;
1855 	bt->bt_gen = gen;
1856 	bt->bt_txg = txg;
1857 	bt->bt_crtxg = crtxg;
1858 }
1859 
1860 static void
ztest_bt_verify(ztest_block_tag_t * bt,objset_t * os,uint64_t object,uint64_t dnodesize,uint64_t offset,uint64_t gen,uint64_t txg,uint64_t crtxg)1861 ztest_bt_verify(ztest_block_tag_t *bt, objset_t *os, uint64_t object,
1862     uint64_t dnodesize, uint64_t offset, uint64_t gen, uint64_t txg,
1863     uint64_t crtxg)
1864 {
1865 	ASSERT3U(bt->bt_magic, ==, BT_MAGIC);
1866 	ASSERT3U(bt->bt_objset, ==, dmu_objset_id(os));
1867 	ASSERT3U(bt->bt_object, ==, object);
1868 	ASSERT3U(bt->bt_dnodesize, ==, dnodesize);
1869 	ASSERT3U(bt->bt_offset, ==, offset);
1870 	ASSERT3U(bt->bt_gen, <=, gen);
1871 	ASSERT3U(bt->bt_txg, <=, txg);
1872 	ASSERT3U(bt->bt_crtxg, ==, crtxg);
1873 }
1874 
1875 static ztest_block_tag_t *
ztest_bt_bonus(dmu_buf_t * db)1876 ztest_bt_bonus(dmu_buf_t *db)
1877 {
1878 	dmu_object_info_t doi;
1879 	ztest_block_tag_t *bt;
1880 
1881 	dmu_object_info_from_db(db, &doi);
1882 	ASSERT3U(doi.doi_bonus_size, <=, db->db_size);
1883 	ASSERT3U(doi.doi_bonus_size, >=, sizeof (*bt));
1884 	bt = (void *)((char *)db->db_data + doi.doi_bonus_size - sizeof (*bt));
1885 
1886 	return (bt);
1887 }
1888 
1889 /*
1890  * Generate a token to fill up unused bonus buffer space.  Try to make
1891  * it unique to the object, generation, and offset to verify that data
1892  * is not getting overwritten by data from other dnodes.
1893  */
1894 #define	ZTEST_BONUS_FILL_TOKEN(obj, ds, gen, offset) \
1895 	(((ds) << 48) | ((gen) << 32) | ((obj) << 8) | (offset))
1896 
1897 /*
1898  * Fill up the unused bonus buffer region before the block tag with a
1899  * verifiable pattern. Filling the whole bonus area with non-zero data
1900  * helps ensure that all dnode traversal code properly skips the
1901  * interior regions of large dnodes.
1902  */
1903 static void
ztest_fill_unused_bonus(dmu_buf_t * db,void * end,uint64_t obj,objset_t * os,uint64_t gen)1904 ztest_fill_unused_bonus(dmu_buf_t *db, void *end, uint64_t obj,
1905     objset_t *os, uint64_t gen)
1906 {
1907 	uint64_t *bonusp;
1908 
1909 	ASSERT(IS_P2ALIGNED((char *)end - (char *)db->db_data, 8));
1910 
1911 	for (bonusp = db->db_data; bonusp < (uint64_t *)end; bonusp++) {
1912 		uint64_t token = ZTEST_BONUS_FILL_TOKEN(obj, dmu_objset_id(os),
1913 		    gen, bonusp - (uint64_t *)db->db_data);
1914 		*bonusp = token;
1915 	}
1916 }
1917 
1918 /*
1919  * Verify that the unused area of a bonus buffer is filled with the
1920  * expected tokens.
1921  */
1922 static void
ztest_verify_unused_bonus(dmu_buf_t * db,void * end,uint64_t obj,objset_t * os,uint64_t gen)1923 ztest_verify_unused_bonus(dmu_buf_t *db, void *end, uint64_t obj,
1924     objset_t *os, uint64_t gen)
1925 {
1926 	uint64_t *bonusp;
1927 
1928 	for (bonusp = db->db_data; bonusp < (uint64_t *)end; bonusp++) {
1929 		uint64_t token = ZTEST_BONUS_FILL_TOKEN(obj, dmu_objset_id(os),
1930 		    gen, bonusp - (uint64_t *)db->db_data);
1931 		VERIFY3U(*bonusp, ==, token);
1932 	}
1933 }
1934 
1935 /*
1936  * ZIL logging ops
1937  */
1938 
1939 #define	lrz_type	lr_mode
1940 #define	lrz_blocksize	lr_uid
1941 #define	lrz_ibshift	lr_gid
1942 #define	lrz_bonustype	lr_rdev
1943 #define	lrz_dnodesize	lr_crtime[1]
1944 
1945 static void
ztest_log_create(ztest_ds_t * zd,dmu_tx_t * tx,lr_create_t * lr)1946 ztest_log_create(ztest_ds_t *zd, dmu_tx_t *tx, lr_create_t *lr)
1947 {
1948 	char *name = (char *)&lr->lr_data[0];		/* name follows lr */
1949 	size_t namesize = strlen(name) + 1;
1950 	itx_t *itx;
1951 
1952 	if (zil_replaying(zd->zd_zilog, tx))
1953 		return;
1954 
1955 	itx = zil_itx_create(TX_CREATE, sizeof (*lr) + namesize);
1956 	memcpy(&itx->itx_lr + 1, &lr->lr_create.lr_common + 1,
1957 	    sizeof (*lr) + namesize - sizeof (lr_t));
1958 
1959 	zil_itx_assign(zd->zd_zilog, itx, tx);
1960 }
1961 
1962 static void
ztest_log_remove(ztest_ds_t * zd,dmu_tx_t * tx,lr_remove_t * lr,uint64_t object)1963 ztest_log_remove(ztest_ds_t *zd, dmu_tx_t *tx, lr_remove_t *lr, uint64_t object)
1964 {
1965 	char *name = (char *)&lr->lr_data[0];		/* name follows lr */
1966 	size_t namesize = strlen(name) + 1;
1967 	itx_t *itx;
1968 
1969 	if (zil_replaying(zd->zd_zilog, tx))
1970 		return;
1971 
1972 	itx = zil_itx_create(TX_REMOVE, sizeof (*lr) + namesize);
1973 	memcpy(&itx->itx_lr + 1, &lr->lr_common + 1,
1974 	    sizeof (*lr) + namesize - sizeof (lr_t));
1975 
1976 	itx->itx_oid = object;
1977 	zil_itx_assign(zd->zd_zilog, itx, tx);
1978 }
1979 
1980 static void
ztest_log_write(ztest_ds_t * zd,dmu_tx_t * tx,lr_write_t * lr)1981 ztest_log_write(ztest_ds_t *zd, dmu_tx_t *tx, lr_write_t *lr)
1982 {
1983 	itx_t *itx;
1984 	itx_wr_state_t write_state = ztest_random(WR_NUM_STATES);
1985 
1986 	if (zil_replaying(zd->zd_zilog, tx))
1987 		return;
1988 
1989 	if (lr->lr_length > zil_max_log_data(zd->zd_zilog, sizeof (lr_write_t)))
1990 		write_state = WR_INDIRECT;
1991 
1992 	itx = zil_itx_create(TX_WRITE,
1993 	    sizeof (*lr) + (write_state == WR_COPIED ? lr->lr_length : 0));
1994 
1995 	if (write_state == WR_COPIED &&
1996 	    dmu_read(zd->zd_os, lr->lr_foid, lr->lr_offset, lr->lr_length,
1997 	    ((lr_write_t *)&itx->itx_lr) + 1, DMU_READ_NO_PREFETCH |
1998 	    DMU_KEEP_CACHING) != 0) {
1999 		zil_itx_destroy(itx);
2000 		itx = zil_itx_create(TX_WRITE, sizeof (*lr));
2001 		write_state = WR_NEED_COPY;
2002 	}
2003 	itx->itx_private = zd;
2004 	itx->itx_wr_state = write_state;
2005 	itx->itx_sync = (ztest_random(8) == 0);
2006 
2007 	memcpy(&itx->itx_lr + 1, &lr->lr_common + 1,
2008 	    sizeof (*lr) - sizeof (lr_t));
2009 
2010 	zil_itx_assign(zd->zd_zilog, itx, tx);
2011 }
2012 
2013 static void
ztest_log_truncate(ztest_ds_t * zd,dmu_tx_t * tx,lr_truncate_t * lr)2014 ztest_log_truncate(ztest_ds_t *zd, dmu_tx_t *tx, lr_truncate_t *lr)
2015 {
2016 	itx_t *itx;
2017 
2018 	if (zil_replaying(zd->zd_zilog, tx))
2019 		return;
2020 
2021 	itx = zil_itx_create(TX_TRUNCATE, sizeof (*lr));
2022 	memcpy(&itx->itx_lr + 1, &lr->lr_common + 1,
2023 	    sizeof (*lr) - sizeof (lr_t));
2024 
2025 	itx->itx_sync = B_FALSE;
2026 	zil_itx_assign(zd->zd_zilog, itx, tx);
2027 }
2028 
2029 static void
ztest_log_setattr(ztest_ds_t * zd,dmu_tx_t * tx,lr_setattr_t * lr)2030 ztest_log_setattr(ztest_ds_t *zd, dmu_tx_t *tx, lr_setattr_t *lr)
2031 {
2032 	itx_t *itx;
2033 
2034 	if (zil_replaying(zd->zd_zilog, tx))
2035 		return;
2036 
2037 	itx = zil_itx_create(TX_SETATTR, sizeof (*lr));
2038 	memcpy(&itx->itx_lr + 1, &lr->lr_common + 1,
2039 	    sizeof (*lr) - sizeof (lr_t));
2040 
2041 	itx->itx_sync = B_FALSE;
2042 	zil_itx_assign(zd->zd_zilog, itx, tx);
2043 }
2044 
2045 /*
2046  * ZIL replay ops
2047  */
2048 static int
ztest_replay_create(void * arg1,void * arg2,boolean_t byteswap)2049 ztest_replay_create(void *arg1, void *arg2, boolean_t byteswap)
2050 {
2051 	ztest_ds_t *zd = arg1;
2052 	lr_create_t *lrc = arg2;
2053 	_lr_create_t *lr = &lrc->lr_create;
2054 	char *name = (char *)&lrc->lr_data[0];		/* name follows lr */
2055 	objset_t *os = zd->zd_os;
2056 	ztest_block_tag_t *bbt;
2057 	dmu_buf_t *db;
2058 	dmu_tx_t *tx;
2059 	uint64_t txg;
2060 	int error = 0;
2061 	int bonuslen;
2062 
2063 	if (byteswap)
2064 		byteswap_uint64_array(lr, sizeof (*lr));
2065 
2066 	ASSERT3U(lr->lr_doid, ==, ZTEST_DIROBJ);
2067 	ASSERT3S(name[0], !=, '\0');
2068 
2069 	tx = dmu_tx_create(os);
2070 
2071 	dmu_tx_hold_zap(tx, lr->lr_doid, B_TRUE, name);
2072 
2073 	if (lr->lrz_type == DMU_OT_ZAP_OTHER) {
2074 		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
2075 	} else {
2076 		dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
2077 	}
2078 
2079 	txg = ztest_tx_assign(tx, DMU_TX_WAIT, FTAG);
2080 	if (txg == 0)
2081 		return (ENOSPC);
2082 
2083 	ASSERT3U(dmu_objset_zil(os)->zl_replay, ==, !!lr->lr_foid);
2084 	bonuslen = DN_BONUS_SIZE(lr->lrz_dnodesize);
2085 
2086 	if (lr->lrz_type == DMU_OT_ZAP_OTHER) {
2087 		if (lr->lr_foid == 0) {
2088 			lr->lr_foid = zap_create_dnsize(os,
2089 			    lr->lrz_type, lr->lrz_bonustype,
2090 			    bonuslen, lr->lrz_dnodesize, tx);
2091 		} else {
2092 			error = zap_create_claim_dnsize(os, lr->lr_foid,
2093 			    lr->lrz_type, lr->lrz_bonustype,
2094 			    bonuslen, lr->lrz_dnodesize, tx);
2095 		}
2096 	} else {
2097 		if (lr->lr_foid == 0) {
2098 			lr->lr_foid = dmu_object_alloc_dnsize(os,
2099 			    lr->lrz_type, 0, lr->lrz_bonustype,
2100 			    bonuslen, lr->lrz_dnodesize, tx);
2101 		} else {
2102 			error = dmu_object_claim_dnsize(os, lr->lr_foid,
2103 			    lr->lrz_type, 0, lr->lrz_bonustype,
2104 			    bonuslen, lr->lrz_dnodesize, tx);
2105 		}
2106 	}
2107 
2108 	if (error) {
2109 		ASSERT3U(error, ==, EEXIST);
2110 		ASSERT(zd->zd_zilog->zl_replay);
2111 		dmu_tx_commit(tx);
2112 		return (error);
2113 	}
2114 
2115 	ASSERT3U(lr->lr_foid, !=, 0);
2116 
2117 	if (lr->lrz_type != DMU_OT_ZAP_OTHER)
2118 		VERIFY0(dmu_object_set_blocksize(os, lr->lr_foid,
2119 		    lr->lrz_blocksize, lr->lrz_ibshift, tx));
2120 
2121 	VERIFY0(dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
2122 	bbt = ztest_bt_bonus(db);
2123 	dmu_buf_will_dirty(db, tx);
2124 	ztest_bt_generate(bbt, os, lr->lr_foid, lr->lrz_dnodesize, -1ULL,
2125 	    lr->lr_gen, txg, txg);
2126 	ztest_fill_unused_bonus(db, bbt, lr->lr_foid, os, lr->lr_gen);
2127 	dmu_buf_rele(db, FTAG);
2128 
2129 	VERIFY0(zap_add(os, lr->lr_doid, name, sizeof (uint64_t), 1,
2130 	    &lr->lr_foid, tx));
2131 
2132 	(void) ztest_log_create(zd, tx, lrc);
2133 
2134 	dmu_tx_commit(tx);
2135 
2136 	return (0);
2137 }
2138 
2139 static int
ztest_replay_remove(void * arg1,void * arg2,boolean_t byteswap)2140 ztest_replay_remove(void *arg1, void *arg2, boolean_t byteswap)
2141 {
2142 	ztest_ds_t *zd = arg1;
2143 	lr_remove_t *lr = arg2;
2144 	char *name = (char *)&lr->lr_data[0];		/* name follows lr */
2145 	objset_t *os = zd->zd_os;
2146 	dmu_object_info_t doi;
2147 	dmu_tx_t *tx;
2148 	uint64_t object, txg;
2149 
2150 	if (byteswap)
2151 		byteswap_uint64_array(lr, sizeof (*lr));
2152 
2153 	ASSERT3U(lr->lr_doid, ==, ZTEST_DIROBJ);
2154 	ASSERT3S(name[0], !=, '\0');
2155 
2156 	VERIFY0(
2157 	    zap_lookup(os, lr->lr_doid, name, sizeof (object), 1, &object));
2158 	ASSERT3U(object, !=, 0);
2159 
2160 	ztest_object_lock(zd, object, ZTRL_WRITER);
2161 
2162 	VERIFY0(dmu_object_info(os, object, &doi));
2163 
2164 	tx = dmu_tx_create(os);
2165 
2166 	dmu_tx_hold_zap(tx, lr->lr_doid, B_FALSE, name);
2167 	dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END);
2168 
2169 	txg = ztest_tx_assign(tx, DMU_TX_WAIT, FTAG);
2170 	if (txg == 0) {
2171 		ztest_object_unlock(zd, object);
2172 		return (ENOSPC);
2173 	}
2174 
2175 	if (doi.doi_type == DMU_OT_ZAP_OTHER) {
2176 		VERIFY0(zap_destroy(os, object, tx));
2177 	} else {
2178 		VERIFY0(dmu_object_free(os, object, tx));
2179 	}
2180 
2181 	VERIFY0(zap_remove(os, lr->lr_doid, name, tx));
2182 
2183 	(void) ztest_log_remove(zd, tx, lr, object);
2184 
2185 	dmu_tx_commit(tx);
2186 
2187 	ztest_object_unlock(zd, object);
2188 
2189 	return (0);
2190 }
2191 
2192 static int
ztest_replay_write(void * arg1,void * arg2,boolean_t byteswap)2193 ztest_replay_write(void *arg1, void *arg2, boolean_t byteswap)
2194 {
2195 	ztest_ds_t *zd = arg1;
2196 	lr_write_t *lr = arg2;
2197 	objset_t *os = zd->zd_os;
2198 	uint8_t *data = &lr->lr_data[0];		/* data follows lr */
2199 	uint64_t offset, length;
2200 	ztest_block_tag_t *bt = (ztest_block_tag_t *)data;
2201 	ztest_block_tag_t *bbt;
2202 	uint64_t gen, txg, lrtxg, crtxg;
2203 	dmu_object_info_t doi;
2204 	dmu_tx_t *tx;
2205 	dmu_buf_t *db;
2206 	arc_buf_t *abuf = NULL;
2207 	rl_t *rl;
2208 
2209 	if (byteswap)
2210 		byteswap_uint64_array(lr, sizeof (*lr));
2211 
2212 	offset = lr->lr_offset;
2213 	length = lr->lr_length;
2214 
2215 	/* If it's a dmu_sync() block, write the whole block */
2216 	if (lr->lr_common.lrc_reclen == sizeof (lr_write_t)) {
2217 		uint64_t blocksize = BP_GET_LSIZE(&lr->lr_blkptr);
2218 		if (length < blocksize) {
2219 			offset -= offset % blocksize;
2220 			length = blocksize;
2221 		}
2222 	}
2223 
2224 	if (bt->bt_magic == BSWAP_64(BT_MAGIC))
2225 		byteswap_uint64_array(bt, sizeof (*bt));
2226 
2227 	if (bt->bt_magic != BT_MAGIC)
2228 		bt = NULL;
2229 
2230 	ztest_object_lock(zd, lr->lr_foid, ZTRL_READER);
2231 	rl = ztest_range_lock(zd, lr->lr_foid, offset, length, ZTRL_WRITER);
2232 
2233 	VERIFY0(dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
2234 
2235 	dmu_object_info_from_db(db, &doi);
2236 
2237 	bbt = ztest_bt_bonus(db);
2238 	ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
2239 	gen = bbt->bt_gen;
2240 	crtxg = bbt->bt_crtxg;
2241 	lrtxg = lr->lr_common.lrc_txg;
2242 
2243 	tx = dmu_tx_create(os);
2244 
2245 	dmu_tx_hold_write(tx, lr->lr_foid, offset, length);
2246 
2247 	if (ztest_random(8) == 0 && length == doi.doi_data_block_size &&
2248 	    P2PHASE(offset, length) == 0)
2249 		abuf = dmu_request_arcbuf(db, length);
2250 
2251 	txg = ztest_tx_assign(tx, DMU_TX_WAIT, FTAG);
2252 	if (txg == 0) {
2253 		if (abuf != NULL)
2254 			dmu_return_arcbuf(abuf);
2255 		dmu_buf_rele(db, FTAG);
2256 		ztest_range_unlock(rl);
2257 		ztest_object_unlock(zd, lr->lr_foid);
2258 		return (ENOSPC);
2259 	}
2260 
2261 	if (bt != NULL) {
2262 		/*
2263 		 * Usually, verify the old data before writing new data --
2264 		 * but not always, because we also want to verify correct
2265 		 * behavior when the data was not recently read into cache.
2266 		 */
2267 		ASSERT(doi.doi_data_block_size);
2268 		ASSERT0(offset % doi.doi_data_block_size);
2269 		if (ztest_random(4) != 0) {
2270 			dmu_flags_t flags = ztest_random(2) ?
2271 			    DMU_READ_PREFETCH : DMU_READ_NO_PREFETCH;
2272 
2273 			/*
2274 			 * We will randomly set when to do O_DIRECT on a read.
2275 			 */
2276 			if (ztest_random(4) == 0)
2277 				flags |= DMU_DIRECTIO;
2278 
2279 			ztest_block_tag_t rbt;
2280 
2281 			VERIFY(dmu_read(os, lr->lr_foid, offset,
2282 			    sizeof (rbt), &rbt, flags) == 0);
2283 			if (rbt.bt_magic == BT_MAGIC) {
2284 				ztest_bt_verify(&rbt, os, lr->lr_foid, 0,
2285 				    offset, gen, txg, crtxg);
2286 			}
2287 		}
2288 
2289 		/*
2290 		 * Writes can appear to be newer than the bonus buffer because
2291 		 * the ztest_get_data() callback does a dmu_read() of the
2292 		 * open-context data, which may be different than the data
2293 		 * as it was when the write was generated.
2294 		 */
2295 		if (zd->zd_zilog->zl_replay) {
2296 			ztest_bt_verify(bt, os, lr->lr_foid, 0, offset,
2297 			    MAX(gen, bt->bt_gen), MAX(txg, lrtxg),
2298 			    bt->bt_crtxg);
2299 		}
2300 
2301 		/*
2302 		 * Set the bt's gen/txg to the bonus buffer's gen/txg
2303 		 * so that all of the usual ASSERTs will work.
2304 		 */
2305 		ztest_bt_generate(bt, os, lr->lr_foid, 0, offset, gen, txg,
2306 		    crtxg);
2307 	}
2308 
2309 	if (abuf == NULL) {
2310 		dmu_write(os, lr->lr_foid, offset, length, data, tx);
2311 	} else {
2312 		memcpy(abuf->b_data, data, length);
2313 		VERIFY0(dmu_assign_arcbuf_by_dbuf(db, offset, abuf, tx, 0));
2314 	}
2315 
2316 	(void) ztest_log_write(zd, tx, lr);
2317 
2318 	dmu_buf_rele(db, FTAG);
2319 
2320 	dmu_tx_commit(tx);
2321 
2322 	ztest_range_unlock(rl);
2323 	ztest_object_unlock(zd, lr->lr_foid);
2324 
2325 	return (0);
2326 }
2327 
2328 static int
ztest_replay_truncate(void * arg1,void * arg2,boolean_t byteswap)2329 ztest_replay_truncate(void *arg1, void *arg2, boolean_t byteswap)
2330 {
2331 	ztest_ds_t *zd = arg1;
2332 	lr_truncate_t *lr = arg2;
2333 	objset_t *os = zd->zd_os;
2334 	dmu_tx_t *tx;
2335 	uint64_t txg;
2336 	rl_t *rl;
2337 
2338 	if (byteswap)
2339 		byteswap_uint64_array(lr, sizeof (*lr));
2340 
2341 	ztest_object_lock(zd, lr->lr_foid, ZTRL_READER);
2342 	rl = ztest_range_lock(zd, lr->lr_foid, lr->lr_offset, lr->lr_length,
2343 	    ZTRL_WRITER);
2344 
2345 	tx = dmu_tx_create(os);
2346 
2347 	dmu_tx_hold_free(tx, lr->lr_foid, lr->lr_offset, lr->lr_length);
2348 
2349 	txg = ztest_tx_assign(tx, DMU_TX_WAIT, FTAG);
2350 	if (txg == 0) {
2351 		ztest_range_unlock(rl);
2352 		ztest_object_unlock(zd, lr->lr_foid);
2353 		return (ENOSPC);
2354 	}
2355 
2356 	VERIFY0(dmu_free_range(os, lr->lr_foid, lr->lr_offset,
2357 	    lr->lr_length, tx));
2358 
2359 	(void) ztest_log_truncate(zd, tx, lr);
2360 
2361 	dmu_tx_commit(tx);
2362 
2363 	ztest_range_unlock(rl);
2364 	ztest_object_unlock(zd, lr->lr_foid);
2365 
2366 	return (0);
2367 }
2368 
2369 static int
ztest_replay_setattr(void * arg1,void * arg2,boolean_t byteswap)2370 ztest_replay_setattr(void *arg1, void *arg2, boolean_t byteswap)
2371 {
2372 	ztest_ds_t *zd = arg1;
2373 	lr_setattr_t *lr = arg2;
2374 	objset_t *os = zd->zd_os;
2375 	dmu_tx_t *tx;
2376 	dmu_buf_t *db;
2377 	ztest_block_tag_t *bbt;
2378 	uint64_t txg, lrtxg, crtxg, dnodesize;
2379 
2380 	if (byteswap)
2381 		byteswap_uint64_array(lr, sizeof (*lr));
2382 
2383 	ztest_object_lock(zd, lr->lr_foid, ZTRL_WRITER);
2384 
2385 	VERIFY0(dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
2386 
2387 	tx = dmu_tx_create(os);
2388 	dmu_tx_hold_bonus(tx, lr->lr_foid);
2389 
2390 	txg = ztest_tx_assign(tx, DMU_TX_WAIT, FTAG);
2391 	if (txg == 0) {
2392 		dmu_buf_rele(db, FTAG);
2393 		ztest_object_unlock(zd, lr->lr_foid);
2394 		return (ENOSPC);
2395 	}
2396 
2397 	bbt = ztest_bt_bonus(db);
2398 	ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
2399 	crtxg = bbt->bt_crtxg;
2400 	lrtxg = lr->lr_common.lrc_txg;
2401 	dnodesize = bbt->bt_dnodesize;
2402 
2403 	if (zd->zd_zilog->zl_replay) {
2404 		ASSERT3U(lr->lr_size, !=, 0);
2405 		ASSERT3U(lr->lr_mode, !=, 0);
2406 		ASSERT3U(lrtxg, !=, 0);
2407 	} else {
2408 		/*
2409 		 * Randomly change the size and increment the generation.
2410 		 */
2411 		lr->lr_size = (ztest_random(db->db_size / sizeof (*bbt)) + 1) *
2412 		    sizeof (*bbt);
2413 		lr->lr_mode = bbt->bt_gen + 1;
2414 		ASSERT0(lrtxg);
2415 	}
2416 
2417 	/*
2418 	 * Verify that the current bonus buffer is not newer than our txg.
2419 	 */
2420 	ztest_bt_verify(bbt, os, lr->lr_foid, dnodesize, -1ULL, lr->lr_mode,
2421 	    MAX(txg, lrtxg), crtxg);
2422 
2423 	dmu_buf_will_dirty(db, tx);
2424 
2425 	ASSERT3U(lr->lr_size, >=, sizeof (*bbt));
2426 	ASSERT3U(lr->lr_size, <=, db->db_size);
2427 	VERIFY0(dmu_set_bonus(db, lr->lr_size, tx));
2428 	bbt = ztest_bt_bonus(db);
2429 
2430 	ztest_bt_generate(bbt, os, lr->lr_foid, dnodesize, -1ULL, lr->lr_mode,
2431 	    txg, crtxg);
2432 	ztest_fill_unused_bonus(db, bbt, lr->lr_foid, os, bbt->bt_gen);
2433 	dmu_buf_rele(db, FTAG);
2434 
2435 	(void) ztest_log_setattr(zd, tx, lr);
2436 
2437 	dmu_tx_commit(tx);
2438 
2439 	ztest_object_unlock(zd, lr->lr_foid);
2440 
2441 	return (0);
2442 }
2443 
2444 static zil_replay_func_t *ztest_replay_vector[TX_MAX_TYPE] = {
2445 	NULL,			/* 0 no such transaction type */
2446 	ztest_replay_create,	/* TX_CREATE */
2447 	NULL,			/* TX_MKDIR */
2448 	NULL,			/* TX_MKXATTR */
2449 	NULL,			/* TX_SYMLINK */
2450 	ztest_replay_remove,	/* TX_REMOVE */
2451 	NULL,			/* TX_RMDIR */
2452 	NULL,			/* TX_LINK */
2453 	NULL,			/* TX_RENAME */
2454 	ztest_replay_write,	/* TX_WRITE */
2455 	ztest_replay_truncate,	/* TX_TRUNCATE */
2456 	ztest_replay_setattr,	/* TX_SETATTR */
2457 	NULL,			/* TX_ACL */
2458 	NULL,			/* TX_CREATE_ACL */
2459 	NULL,			/* TX_CREATE_ATTR */
2460 	NULL,			/* TX_CREATE_ACL_ATTR */
2461 	NULL,			/* TX_MKDIR_ACL */
2462 	NULL,			/* TX_MKDIR_ATTR */
2463 	NULL,			/* TX_MKDIR_ACL_ATTR */
2464 	NULL,			/* TX_WRITE2 */
2465 	NULL,			/* TX_SETSAXATTR */
2466 	NULL,			/* TX_RENAME_EXCHANGE */
2467 	NULL,			/* TX_RENAME_WHITEOUT */
2468 };
2469 
2470 /*
2471  * ZIL get_data callbacks
2472  */
2473 
2474 static void
ztest_get_done(zgd_t * zgd,int error)2475 ztest_get_done(zgd_t *zgd, int error)
2476 {
2477 	(void) error;
2478 	ztest_ds_t *zd = zgd->zgd_private;
2479 	uint64_t object = ((rl_t *)zgd->zgd_lr)->rl_object;
2480 
2481 	if (zgd->zgd_db)
2482 		dmu_buf_rele(zgd->zgd_db, zgd);
2483 
2484 	ztest_range_unlock((rl_t *)zgd->zgd_lr);
2485 	ztest_object_unlock(zd, object);
2486 
2487 	umem_free(zgd, sizeof (*zgd));
2488 }
2489 
2490 static int
ztest_get_data(void * arg,uint64_t arg2,lr_write_t * lr,char * buf,struct lwb * lwb,zio_t * zio)2491 ztest_get_data(void *arg, uint64_t arg2, lr_write_t *lr, char *buf,
2492     struct lwb *lwb, zio_t *zio)
2493 {
2494 	(void) arg2;
2495 	ztest_ds_t *zd = arg;
2496 	objset_t *os = zd->zd_os;
2497 	uint64_t object = lr->lr_foid;
2498 	uint64_t offset = lr->lr_offset;
2499 	uint64_t size = lr->lr_length;
2500 	uint64_t txg = lr->lr_common.lrc_txg;
2501 	uint64_t crtxg;
2502 	dmu_object_info_t doi;
2503 	dmu_buf_t *db;
2504 	zgd_t *zgd;
2505 	int error;
2506 
2507 	ASSERT3P(lwb, !=, NULL);
2508 	ASSERT3U(size, !=, 0);
2509 
2510 	ztest_object_lock(zd, object, ZTRL_READER);
2511 	error = dmu_bonus_hold(os, object, FTAG, &db);
2512 	if (error) {
2513 		ztest_object_unlock(zd, object);
2514 		return (error);
2515 	}
2516 
2517 	crtxg = ztest_bt_bonus(db)->bt_crtxg;
2518 
2519 	if (crtxg == 0 || crtxg > txg) {
2520 		dmu_buf_rele(db, FTAG);
2521 		ztest_object_unlock(zd, object);
2522 		return (ENOENT);
2523 	}
2524 
2525 	dmu_object_info_from_db(db, &doi);
2526 	dmu_buf_rele(db, FTAG);
2527 	db = NULL;
2528 
2529 	zgd = umem_zalloc(sizeof (*zgd), UMEM_NOFAIL);
2530 	zgd->zgd_lwb = lwb;
2531 	zgd->zgd_private = zd;
2532 
2533 	if (buf != NULL) {	/* immediate write */
2534 		zgd->zgd_lr = (struct zfs_locked_range *)ztest_range_lock(zd,
2535 		    object, offset, size, ZTRL_READER);
2536 
2537 		error = dmu_read(os, object, offset, size, buf,
2538 		    DMU_READ_NO_PREFETCH | DMU_KEEP_CACHING);
2539 		ASSERT0(error);
2540 	} else {
2541 		ASSERT3P(zio, !=, NULL);
2542 		size = doi.doi_data_block_size;
2543 		if (ISP2(size)) {
2544 			offset = P2ALIGN_TYPED(offset, size, uint64_t);
2545 		} else {
2546 			ASSERT3U(offset, <, size);
2547 			offset = 0;
2548 		}
2549 
2550 		zgd->zgd_lr = (struct zfs_locked_range *)ztest_range_lock(zd,
2551 		    object, offset, size, ZTRL_READER);
2552 
2553 		error = dmu_buf_hold_noread(os, object, offset, zgd, &db);
2554 		if (error == 0) {
2555 			blkptr_t *bp = &lr->lr_blkptr;
2556 
2557 			zgd->zgd_db = db;
2558 			zgd->zgd_bp = bp;
2559 
2560 			ASSERT3U(db->db_offset, ==, offset);
2561 			ASSERT3U(db->db_size, ==, size);
2562 
2563 			error = dmu_sync(zio, lr->lr_common.lrc_txg,
2564 			    ztest_get_done, zgd);
2565 
2566 			if (error == 0)
2567 				return (0);
2568 		}
2569 	}
2570 
2571 	ztest_get_done(zgd, error);
2572 
2573 	return (error);
2574 }
2575 
2576 static void *
ztest_lr_alloc(size_t lrsize,char * name)2577 ztest_lr_alloc(size_t lrsize, char *name)
2578 {
2579 	char *lr;
2580 	size_t namesize = name ? strlen(name) + 1 : 0;
2581 
2582 	lr = umem_zalloc(lrsize + namesize, UMEM_NOFAIL);
2583 
2584 	if (name)
2585 		memcpy(lr + lrsize, name, namesize);
2586 
2587 	return (lr);
2588 }
2589 
2590 static void
ztest_lr_free(void * lr,size_t lrsize,char * name)2591 ztest_lr_free(void *lr, size_t lrsize, char *name)
2592 {
2593 	size_t namesize = name ? strlen(name) + 1 : 0;
2594 
2595 	umem_free(lr, lrsize + namesize);
2596 }
2597 
2598 /*
2599  * Lookup a bunch of objects.  Returns the number of objects not found.
2600  */
2601 static int
ztest_lookup(ztest_ds_t * zd,ztest_od_t * od,int count)2602 ztest_lookup(ztest_ds_t *zd, ztest_od_t *od, int count)
2603 {
2604 	int missing = 0;
2605 	int error;
2606 	int i;
2607 
2608 	ASSERT(MUTEX_HELD(&zd->zd_dirobj_lock));
2609 
2610 	for (i = 0; i < count; i++, od++) {
2611 		od->od_object = 0;
2612 		error = zap_lookup(zd->zd_os, od->od_dir, od->od_name,
2613 		    sizeof (uint64_t), 1, &od->od_object);
2614 		if (error) {
2615 			ASSERT3S(error, ==, ENOENT);
2616 			ASSERT0(od->od_object);
2617 			missing++;
2618 		} else {
2619 			dmu_buf_t *db;
2620 			ztest_block_tag_t *bbt;
2621 			dmu_object_info_t doi;
2622 
2623 			ASSERT3U(od->od_object, !=, 0);
2624 			ASSERT0(missing);	/* there should be no gaps */
2625 
2626 			ztest_object_lock(zd, od->od_object, ZTRL_READER);
2627 			VERIFY0(dmu_bonus_hold(zd->zd_os, od->od_object,
2628 			    FTAG, &db));
2629 			dmu_object_info_from_db(db, &doi);
2630 			bbt = ztest_bt_bonus(db);
2631 			ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
2632 			od->od_type = doi.doi_type;
2633 			od->od_blocksize = doi.doi_data_block_size;
2634 			od->od_gen = bbt->bt_gen;
2635 			dmu_buf_rele(db, FTAG);
2636 			ztest_object_unlock(zd, od->od_object);
2637 		}
2638 	}
2639 
2640 	return (missing);
2641 }
2642 
2643 static int
ztest_create(ztest_ds_t * zd,ztest_od_t * od,int count)2644 ztest_create(ztest_ds_t *zd, ztest_od_t *od, int count)
2645 {
2646 	int missing = 0;
2647 	int i;
2648 
2649 	ASSERT(MUTEX_HELD(&zd->zd_dirobj_lock));
2650 
2651 	for (i = 0; i < count; i++, od++) {
2652 		if (missing) {
2653 			od->od_object = 0;
2654 			missing++;
2655 			continue;
2656 		}
2657 
2658 		lr_create_t *lrc = ztest_lr_alloc(sizeof (*lrc), od->od_name);
2659 		_lr_create_t *lr = &lrc->lr_create;
2660 
2661 		lr->lr_doid = od->od_dir;
2662 		lr->lr_foid = 0;	/* 0 to allocate, > 0 to claim */
2663 		lr->lrz_type = od->od_crtype;
2664 		lr->lrz_blocksize = od->od_crblocksize;
2665 		lr->lrz_ibshift = ztest_random_ibshift();
2666 		lr->lrz_bonustype = DMU_OT_UINT64_OTHER;
2667 		lr->lrz_dnodesize = od->od_crdnodesize;
2668 		lr->lr_gen = od->od_crgen;
2669 		lr->lr_crtime[0] = time(NULL);
2670 
2671 		if (ztest_replay_create(zd, lr, B_FALSE) != 0) {
2672 			ASSERT0(missing);
2673 			od->od_object = 0;
2674 			missing++;
2675 		} else {
2676 			od->od_object = lr->lr_foid;
2677 			od->od_type = od->od_crtype;
2678 			od->od_blocksize = od->od_crblocksize;
2679 			od->od_gen = od->od_crgen;
2680 			ASSERT3U(od->od_object, !=, 0);
2681 		}
2682 
2683 		ztest_lr_free(lr, sizeof (*lr), od->od_name);
2684 	}
2685 
2686 	return (missing);
2687 }
2688 
2689 static int
ztest_remove(ztest_ds_t * zd,ztest_od_t * od,int count)2690 ztest_remove(ztest_ds_t *zd, ztest_od_t *od, int count)
2691 {
2692 	int missing = 0;
2693 	int error;
2694 	int i;
2695 
2696 	ASSERT(MUTEX_HELD(&zd->zd_dirobj_lock));
2697 
2698 	od += count - 1;
2699 
2700 	for (i = count - 1; i >= 0; i--, od--) {
2701 		if (missing) {
2702 			missing++;
2703 			continue;
2704 		}
2705 
2706 		/*
2707 		 * No object was found.
2708 		 */
2709 		if (od->od_object == 0)
2710 			continue;
2711 
2712 		lr_remove_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name);
2713 
2714 		lr->lr_doid = od->od_dir;
2715 
2716 		if ((error = ztest_replay_remove(zd, lr, B_FALSE)) != 0) {
2717 			ASSERT3U(error, ==, ENOSPC);
2718 			missing++;
2719 		} else {
2720 			od->od_object = 0;
2721 		}
2722 		ztest_lr_free(lr, sizeof (*lr), od->od_name);
2723 	}
2724 
2725 	return (missing);
2726 }
2727 
2728 static int
ztest_write(ztest_ds_t * zd,uint64_t object,uint64_t offset,uint64_t size,const void * data)2729 ztest_write(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size,
2730     const void *data)
2731 {
2732 	lr_write_t *lr;
2733 	int error;
2734 
2735 	lr = ztest_lr_alloc(sizeof (*lr) + size, NULL);
2736 
2737 	lr->lr_foid = object;
2738 	lr->lr_offset = offset;
2739 	lr->lr_length = size;
2740 	lr->lr_blkoff = 0;
2741 	BP_ZERO(&lr->lr_blkptr);
2742 
2743 	memcpy(&lr->lr_data[0], data, size);
2744 
2745 	error = ztest_replay_write(zd, lr, B_FALSE);
2746 
2747 	ztest_lr_free(lr, sizeof (*lr) + size, NULL);
2748 
2749 	return (error);
2750 }
2751 
2752 static int
ztest_truncate(ztest_ds_t * zd,uint64_t object,uint64_t offset,uint64_t size)2753 ztest_truncate(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size)
2754 {
2755 	lr_truncate_t *lr;
2756 	int error;
2757 
2758 	lr = ztest_lr_alloc(sizeof (*lr), NULL);
2759 
2760 	lr->lr_foid = object;
2761 	lr->lr_offset = offset;
2762 	lr->lr_length = size;
2763 
2764 	error = ztest_replay_truncate(zd, lr, B_FALSE);
2765 
2766 	ztest_lr_free(lr, sizeof (*lr), NULL);
2767 
2768 	return (error);
2769 }
2770 
2771 static int
ztest_setattr(ztest_ds_t * zd,uint64_t object)2772 ztest_setattr(ztest_ds_t *zd, uint64_t object)
2773 {
2774 	lr_setattr_t *lr;
2775 	int error;
2776 
2777 	lr = ztest_lr_alloc(sizeof (*lr), NULL);
2778 
2779 	lr->lr_foid = object;
2780 	lr->lr_size = 0;
2781 	lr->lr_mode = 0;
2782 
2783 	error = ztest_replay_setattr(zd, lr, B_FALSE);
2784 
2785 	ztest_lr_free(lr, sizeof (*lr), NULL);
2786 
2787 	return (error);
2788 }
2789 
2790 static void
ztest_prealloc(ztest_ds_t * zd,uint64_t object,uint64_t offset,uint64_t size)2791 ztest_prealloc(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size)
2792 {
2793 	objset_t *os = zd->zd_os;
2794 	dmu_tx_t *tx;
2795 	uint64_t txg;
2796 	rl_t *rl;
2797 
2798 	txg_wait_synced(dmu_objset_pool(os), 0);
2799 
2800 	ztest_object_lock(zd, object, ZTRL_READER);
2801 	rl = ztest_range_lock(zd, object, offset, size, ZTRL_WRITER);
2802 
2803 	tx = dmu_tx_create(os);
2804 
2805 	dmu_tx_hold_write(tx, object, offset, size);
2806 
2807 	txg = ztest_tx_assign(tx, DMU_TX_WAIT, FTAG);
2808 
2809 	if (txg != 0) {
2810 		dmu_prealloc(os, object, offset, size, tx);
2811 		dmu_tx_commit(tx);
2812 		txg_wait_synced(dmu_objset_pool(os), txg);
2813 	} else {
2814 		(void) dmu_free_long_range(os, object, offset, size);
2815 	}
2816 
2817 	ztest_range_unlock(rl);
2818 	ztest_object_unlock(zd, object);
2819 }
2820 
2821 static void
ztest_io(ztest_ds_t * zd,uint64_t object,uint64_t offset)2822 ztest_io(ztest_ds_t *zd, uint64_t object, uint64_t offset)
2823 {
2824 	int err;
2825 	ztest_block_tag_t wbt;
2826 	dmu_object_info_t doi;
2827 	enum ztest_io_type io_type;
2828 	uint64_t blocksize;
2829 	void *data;
2830 	dmu_flags_t dmu_read_flags = DMU_READ_NO_PREFETCH;
2831 
2832 	/*
2833 	 * We will randomly set when to do O_DIRECT on a read.
2834 	 */
2835 	if (ztest_random(4) == 0)
2836 		dmu_read_flags |= DMU_DIRECTIO;
2837 
2838 	VERIFY0(dmu_object_info(zd->zd_os, object, &doi));
2839 	blocksize = doi.doi_data_block_size;
2840 	data = umem_alloc(blocksize, UMEM_NOFAIL);
2841 
2842 	/*
2843 	 * Pick an i/o type at random, biased toward writing block tags.
2844 	 */
2845 	io_type = ztest_random(ZTEST_IO_TYPES);
2846 	if (ztest_random(2) == 0)
2847 		io_type = ZTEST_IO_WRITE_TAG;
2848 
2849 	(void) pthread_rwlock_rdlock(&zd->zd_zilog_lock);
2850 
2851 	switch (io_type) {
2852 
2853 	case ZTEST_IO_WRITE_TAG:
2854 		ztest_bt_generate(&wbt, zd->zd_os, object, doi.doi_dnodesize,
2855 		    offset, 0, 0, 0);
2856 		(void) ztest_write(zd, object, offset, sizeof (wbt), &wbt);
2857 		break;
2858 
2859 	case ZTEST_IO_WRITE_PATTERN:
2860 		(void) memset(data, 'a' + (object + offset) % 5, blocksize);
2861 		if (ztest_random(2) == 0) {
2862 			/*
2863 			 * Induce fletcher2 collisions to ensure that
2864 			 * zio_ddt_collision() detects and resolves them
2865 			 * when using fletcher2-verify for deduplication.
2866 			 */
2867 			((uint64_t *)data)[0] ^= 1ULL << 63;
2868 			((uint64_t *)data)[4] ^= 1ULL << 63;
2869 		}
2870 		(void) ztest_write(zd, object, offset, blocksize, data);
2871 		break;
2872 
2873 	case ZTEST_IO_WRITE_ZEROES:
2874 		memset(data, 0, blocksize);
2875 		(void) ztest_write(zd, object, offset, blocksize, data);
2876 		break;
2877 
2878 	case ZTEST_IO_TRUNCATE:
2879 		(void) ztest_truncate(zd, object, offset, blocksize);
2880 		break;
2881 
2882 	case ZTEST_IO_SETATTR:
2883 		(void) ztest_setattr(zd, object);
2884 		break;
2885 	default:
2886 		break;
2887 
2888 	case ZTEST_IO_REWRITE:
2889 		(void) pthread_rwlock_rdlock(&ztest_name_lock);
2890 		err = ztest_dsl_prop_set_uint64(zd->zd_name,
2891 		    ZFS_PROP_CHECKSUM, spa_dedup_checksum(ztest_spa),
2892 		    B_FALSE);
2893 		ASSERT(err == 0 || err == ENOSPC);
2894 		err = ztest_dsl_prop_set_uint64(zd->zd_name,
2895 		    ZFS_PROP_COMPRESSION,
2896 		    ztest_random_dsl_prop(ZFS_PROP_COMPRESSION),
2897 		    B_FALSE);
2898 		ASSERT(err == 0 || err == ENOSPC);
2899 		(void) pthread_rwlock_unlock(&ztest_name_lock);
2900 
2901 		VERIFY0(dmu_read(zd->zd_os, object, offset, blocksize, data,
2902 		    dmu_read_flags));
2903 
2904 		(void) ztest_write(zd, object, offset, blocksize, data);
2905 		break;
2906 	}
2907 
2908 	(void) pthread_rwlock_unlock(&zd->zd_zilog_lock);
2909 
2910 	umem_free(data, blocksize);
2911 }
2912 
2913 /*
2914  * Initialize an object description template.
2915  */
2916 static void
ztest_od_init(ztest_od_t * od,uint64_t id,const char * tag,uint64_t index,dmu_object_type_t type,uint64_t blocksize,uint64_t dnodesize,uint64_t gen)2917 ztest_od_init(ztest_od_t *od, uint64_t id, const char *tag, uint64_t index,
2918     dmu_object_type_t type, uint64_t blocksize, uint64_t dnodesize,
2919     uint64_t gen)
2920 {
2921 	od->od_dir = ZTEST_DIROBJ;
2922 	od->od_object = 0;
2923 
2924 	od->od_crtype = type;
2925 	od->od_crblocksize = blocksize ? blocksize : ztest_random_blocksize();
2926 	od->od_crdnodesize = dnodesize ? dnodesize : ztest_random_dnodesize();
2927 	od->od_crgen = gen;
2928 
2929 	od->od_type = DMU_OT_NONE;
2930 	od->od_blocksize = 0;
2931 	od->od_gen = 0;
2932 
2933 	(void) snprintf(od->od_name, sizeof (od->od_name),
2934 	    "%s(%"PRId64")[%"PRIu64"]",
2935 	    tag, id, index);
2936 }
2937 
2938 /*
2939  * Lookup or create the objects for a test using the od template.
2940  * If the objects do not all exist, or if 'remove' is specified,
2941  * remove any existing objects and create new ones.  Otherwise,
2942  * use the existing objects.
2943  */
2944 static int
ztest_object_init(ztest_ds_t * zd,ztest_od_t * od,size_t size,boolean_t remove)2945 ztest_object_init(ztest_ds_t *zd, ztest_od_t *od, size_t size, boolean_t remove)
2946 {
2947 	int count = size / sizeof (*od);
2948 	int rv = 0;
2949 
2950 	mutex_enter(&zd->zd_dirobj_lock);
2951 	if ((ztest_lookup(zd, od, count) != 0 || remove) &&
2952 	    (ztest_remove(zd, od, count) != 0 ||
2953 	    ztest_create(zd, od, count) != 0))
2954 		rv = -1;
2955 	zd->zd_od = od;
2956 	mutex_exit(&zd->zd_dirobj_lock);
2957 
2958 	return (rv);
2959 }
2960 
2961 void
ztest_zil_commit(ztest_ds_t * zd,uint64_t id)2962 ztest_zil_commit(ztest_ds_t *zd, uint64_t id)
2963 {
2964 	(void) id;
2965 	zilog_t *zilog = zd->zd_zilog;
2966 
2967 	(void) pthread_rwlock_rdlock(&zd->zd_zilog_lock);
2968 
2969 	zil_commit(zilog, ztest_random(ZTEST_OBJECTS));
2970 
2971 	/*
2972 	 * Remember the committed values in zd, which is in parent/child
2973 	 * shared memory.  If we die, the next iteration of ztest_run()
2974 	 * will verify that the log really does contain this record.
2975 	 */
2976 	mutex_enter(&zilog->zl_lock);
2977 	ASSERT3P(zd->zd_shared, !=, NULL);
2978 	ASSERT3U(zd->zd_shared->zd_seq, <=, zilog->zl_commit_lr_seq);
2979 	zd->zd_shared->zd_seq = zilog->zl_commit_lr_seq;
2980 	mutex_exit(&zilog->zl_lock);
2981 
2982 	(void) pthread_rwlock_unlock(&zd->zd_zilog_lock);
2983 }
2984 
2985 /*
2986  * This function is designed to simulate the operations that occur during a
2987  * mount/unmount operation.  We hold the dataset across these operations in an
2988  * attempt to expose any implicit assumptions about ZIL management.
2989  */
2990 void
ztest_zil_remount(ztest_ds_t * zd,uint64_t id)2991 ztest_zil_remount(ztest_ds_t *zd, uint64_t id)
2992 {
2993 	(void) id;
2994 	objset_t *os = zd->zd_os;
2995 
2996 	/*
2997 	 * We hold the ztest_vdev_lock so we don't cause problems with
2998 	 * other threads that wish to remove a log device, such as
2999 	 * ztest_device_removal().
3000 	 */
3001 	mutex_enter(&ztest_vdev_lock);
3002 
3003 	/*
3004 	 * We grab the zd_dirobj_lock to ensure that no other thread is
3005 	 * updating the zil (i.e. adding in-memory log records) and the
3006 	 * zd_zilog_lock to block any I/O.
3007 	 */
3008 	mutex_enter(&zd->zd_dirobj_lock);
3009 	(void) pthread_rwlock_wrlock(&zd->zd_zilog_lock);
3010 
3011 	/* zfsvfs_teardown() */
3012 	zil_close(zd->zd_zilog);
3013 
3014 	/* zfsvfs_setup() */
3015 	VERIFY3P(zil_open(os, ztest_get_data, NULL), ==, zd->zd_zilog);
3016 	zil_replay(os, zd, ztest_replay_vector);
3017 
3018 	(void) pthread_rwlock_unlock(&zd->zd_zilog_lock);
3019 	mutex_exit(&zd->zd_dirobj_lock);
3020 	mutex_exit(&ztest_vdev_lock);
3021 }
3022 
3023 /*
3024  * Verify that we can't destroy an active pool, create an existing pool,
3025  * or create a pool with a bad vdev spec.
3026  */
3027 void
ztest_spa_create_destroy(ztest_ds_t * zd,uint64_t id)3028 ztest_spa_create_destroy(ztest_ds_t *zd, uint64_t id)
3029 {
3030 	(void) zd, (void) id;
3031 	ztest_shared_opts_t *zo = &ztest_opts;
3032 	spa_t *spa;
3033 	nvlist_t *nvroot;
3034 
3035 	if (zo->zo_mmp_test)
3036 		return;
3037 
3038 	/*
3039 	 * Attempt to create using a bad file.
3040 	 */
3041 	nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, NULL, 0, 0, 1);
3042 	VERIFY3U(ENOENT, ==,
3043 	    spa_create("ztest_bad_file", nvroot, NULL, NULL, NULL));
3044 	fnvlist_free(nvroot);
3045 
3046 	/*
3047 	 * Attempt to create using a bad mirror.
3048 	 */
3049 	nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, NULL, 0, 2, 1);
3050 	VERIFY3U(ENOENT, ==,
3051 	    spa_create("ztest_bad_mirror", nvroot, NULL, NULL, NULL));
3052 	fnvlist_free(nvroot);
3053 
3054 	/*
3055 	 * Attempt to create an existing pool.  It shouldn't matter
3056 	 * what's in the nvroot; we should fail with EEXIST.
3057 	 */
3058 	(void) pthread_rwlock_rdlock(&ztest_name_lock);
3059 	nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, NULL, 0, 0, 1);
3060 	VERIFY3U(EEXIST, ==,
3061 	    spa_create(zo->zo_pool, nvroot, NULL, NULL, NULL));
3062 	fnvlist_free(nvroot);
3063 
3064 	/*
3065 	 * We open a reference to the spa and then we try to export it
3066 	 * expecting one of the following errors:
3067 	 *
3068 	 * EBUSY
3069 	 *	Because of the reference we just opened.
3070 	 *
3071 	 * ZFS_ERR_EXPORT_IN_PROGRESS
3072 	 *	For the case that there is another ztest thread doing
3073 	 *	an export concurrently.
3074 	 */
3075 	VERIFY0(spa_open(zo->zo_pool, &spa, FTAG));
3076 	int error = spa_destroy(zo->zo_pool);
3077 	if (error != EBUSY && error != ZFS_ERR_EXPORT_IN_PROGRESS) {
3078 		fatal(B_FALSE, "spa_destroy(%s) returned unexpected value %d",
3079 		    spa->spa_name, error);
3080 	}
3081 	spa_close(spa, FTAG);
3082 
3083 	(void) pthread_rwlock_unlock(&ztest_name_lock);
3084 }
3085 
3086 /*
3087  * Start and then stop the MMP threads to ensure the startup and shutdown code
3088  * works properly.  Actual protection and property-related code tested via ZTS.
3089  */
3090 void
ztest_mmp_enable_disable(ztest_ds_t * zd,uint64_t id)3091 ztest_mmp_enable_disable(ztest_ds_t *zd, uint64_t id)
3092 {
3093 	(void) zd, (void) id;
3094 	ztest_shared_opts_t *zo = &ztest_opts;
3095 	spa_t *spa = ztest_spa;
3096 
3097 	if (zo->zo_mmp_test)
3098 		return;
3099 
3100 	/*
3101 	 * Since enabling MMP involves setting a property, it could not be done
3102 	 * while the pool is suspended.
3103 	 */
3104 	if (spa_suspended(spa))
3105 		return;
3106 
3107 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3108 	mutex_enter(&spa->spa_props_lock);
3109 
3110 	zfs_multihost_fail_intervals = 0;
3111 
3112 	if (!spa_multihost(spa)) {
3113 		spa->spa_multihost = B_TRUE;
3114 		mmp_thread_start(spa);
3115 	}
3116 
3117 	mutex_exit(&spa->spa_props_lock);
3118 	spa_config_exit(spa, SCL_CONFIG, FTAG);
3119 
3120 	txg_wait_synced(spa_get_dsl(spa), 0);
3121 	mmp_signal_all_threads();
3122 	txg_wait_synced(spa_get_dsl(spa), 0);
3123 
3124 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3125 	mutex_enter(&spa->spa_props_lock);
3126 
3127 	if (spa_multihost(spa)) {
3128 		mmp_thread_stop(spa);
3129 		spa->spa_multihost = B_FALSE;
3130 	}
3131 
3132 	mutex_exit(&spa->spa_props_lock);
3133 	spa_config_exit(spa, SCL_CONFIG, FTAG);
3134 }
3135 
3136 static int
ztest_get_raidz_children(spa_t * spa)3137 ztest_get_raidz_children(spa_t *spa)
3138 {
3139 	(void) spa;
3140 	vdev_t *raidvd;
3141 
3142 	ASSERT(MUTEX_HELD(&ztest_vdev_lock));
3143 
3144 	if (ztest_opts.zo_raid_do_expand) {
3145 		raidvd = ztest_spa->spa_root_vdev->vdev_child[0];
3146 
3147 		ASSERT(raidvd->vdev_ops == &vdev_raidz_ops);
3148 
3149 		return (raidvd->vdev_children);
3150 	}
3151 
3152 	return (ztest_opts.zo_raid_children);
3153 }
3154 
3155 void
ztest_spa_upgrade(ztest_ds_t * zd,uint64_t id)3156 ztest_spa_upgrade(ztest_ds_t *zd, uint64_t id)
3157 {
3158 	(void) zd, (void) id;
3159 	spa_t *spa;
3160 	uint64_t initial_version = SPA_VERSION_INITIAL;
3161 	uint64_t raidz_children, version, newversion;
3162 	nvlist_t *nvroot, *props;
3163 	char *name;
3164 
3165 	if (ztest_opts.zo_mmp_test)
3166 		return;
3167 
3168 	/* dRAID added after feature flags, skip upgrade test. */
3169 	if (strcmp(ztest_opts.zo_raid_type, VDEV_TYPE_DRAID) == 0)
3170 		return;
3171 
3172 	mutex_enter(&ztest_vdev_lock);
3173 	name = kmem_asprintf("%s_upgrade", ztest_opts.zo_pool);
3174 
3175 	/*
3176 	 * Clean up from previous runs.
3177 	 */
3178 	(void) spa_destroy(name);
3179 
3180 	raidz_children = ztest_get_raidz_children(ztest_spa);
3181 
3182 	nvroot = make_vdev_root(NULL, NULL, name, ztest_opts.zo_vdev_size, 0,
3183 	    NULL, raidz_children, ztest_opts.zo_mirrors, 1);
3184 
3185 	/*
3186 	 * If we're configuring a RAIDZ device then make sure that the
3187 	 * initial version is capable of supporting that feature.
3188 	 */
3189 	switch (ztest_opts.zo_raid_parity) {
3190 	case 0:
3191 	case 1:
3192 		initial_version = SPA_VERSION_INITIAL;
3193 		break;
3194 	case 2:
3195 		initial_version = SPA_VERSION_RAIDZ2;
3196 		break;
3197 	case 3:
3198 		initial_version = SPA_VERSION_RAIDZ3;
3199 		break;
3200 	}
3201 
3202 	/*
3203 	 * Create a pool with a spa version that can be upgraded. Pick
3204 	 * a value between initial_version and SPA_VERSION_BEFORE_FEATURES.
3205 	 */
3206 	do {
3207 		version = ztest_random_spa_version(initial_version);
3208 	} while (version > SPA_VERSION_BEFORE_FEATURES);
3209 
3210 	props = fnvlist_alloc();
3211 	fnvlist_add_uint64(props,
3212 	    zpool_prop_to_name(ZPOOL_PROP_VERSION), version);
3213 	VERIFY0(spa_create(name, nvroot, props, NULL, NULL));
3214 	fnvlist_free(nvroot);
3215 	fnvlist_free(props);
3216 
3217 	VERIFY0(spa_open(name, &spa, FTAG));
3218 	VERIFY3U(spa_version(spa), ==, version);
3219 	newversion = ztest_random_spa_version(version + 1);
3220 
3221 	if (ztest_opts.zo_verbose >= 4) {
3222 		(void) printf("upgrading spa version from "
3223 		    "%"PRIu64" to %"PRIu64"\n",
3224 		    version, newversion);
3225 	}
3226 
3227 	spa_upgrade(spa, newversion);
3228 	VERIFY3U(spa_version(spa), >, version);
3229 	VERIFY3U(spa_version(spa), ==, fnvlist_lookup_uint64(spa->spa_config,
3230 	    zpool_prop_to_name(ZPOOL_PROP_VERSION)));
3231 	spa_close(spa, FTAG);
3232 
3233 	kmem_strfree(name);
3234 	mutex_exit(&ztest_vdev_lock);
3235 }
3236 
3237 static void
ztest_spa_checkpoint(spa_t * spa)3238 ztest_spa_checkpoint(spa_t *spa)
3239 {
3240 	ASSERT(MUTEX_HELD(&ztest_checkpoint_lock));
3241 
3242 	int error = spa_checkpoint(spa->spa_name);
3243 
3244 	switch (error) {
3245 	case 0:
3246 	case ZFS_ERR_DEVRM_IN_PROGRESS:
3247 	case ZFS_ERR_DISCARDING_CHECKPOINT:
3248 	case ZFS_ERR_CHECKPOINT_EXISTS:
3249 	case ZFS_ERR_RAIDZ_EXPAND_IN_PROGRESS:
3250 		break;
3251 	case ENOSPC:
3252 		ztest_record_enospc(FTAG);
3253 		break;
3254 	default:
3255 		fatal(B_FALSE, "spa_checkpoint(%s) = %d", spa->spa_name, error);
3256 	}
3257 }
3258 
3259 static void
ztest_spa_discard_checkpoint(spa_t * spa)3260 ztest_spa_discard_checkpoint(spa_t *spa)
3261 {
3262 	ASSERT(MUTEX_HELD(&ztest_checkpoint_lock));
3263 
3264 	int error = spa_checkpoint_discard(spa->spa_name);
3265 
3266 	switch (error) {
3267 	case 0:
3268 	case ZFS_ERR_DISCARDING_CHECKPOINT:
3269 	case ZFS_ERR_NO_CHECKPOINT:
3270 		break;
3271 	default:
3272 		fatal(B_FALSE, "spa_discard_checkpoint(%s) = %d",
3273 		    spa->spa_name, error);
3274 	}
3275 
3276 }
3277 
3278 void
ztest_spa_checkpoint_create_discard(ztest_ds_t * zd,uint64_t id)3279 ztest_spa_checkpoint_create_discard(ztest_ds_t *zd, uint64_t id)
3280 {
3281 	(void) zd, (void) id;
3282 	spa_t *spa = ztest_spa;
3283 
3284 	mutex_enter(&ztest_checkpoint_lock);
3285 	if (ztest_random(2) == 0) {
3286 		ztest_spa_checkpoint(spa);
3287 	} else {
3288 		ztest_spa_discard_checkpoint(spa);
3289 	}
3290 	mutex_exit(&ztest_checkpoint_lock);
3291 }
3292 
3293 
3294 static vdev_t *
vdev_lookup_by_path(vdev_t * vd,const char * path)3295 vdev_lookup_by_path(vdev_t *vd, const char *path)
3296 {
3297 	vdev_t *mvd;
3298 	int c;
3299 
3300 	if (vd->vdev_path != NULL && strcmp(path, vd->vdev_path) == 0)
3301 		return (vd);
3302 
3303 	for (c = 0; c < vd->vdev_children; c++)
3304 		if ((mvd = vdev_lookup_by_path(vd->vdev_child[c], path)) !=
3305 		    NULL)
3306 			return (mvd);
3307 
3308 	return (NULL);
3309 }
3310 
3311 static int
spa_num_top_vdevs(spa_t * spa)3312 spa_num_top_vdevs(spa_t *spa)
3313 {
3314 	vdev_t *rvd = spa->spa_root_vdev;
3315 	ASSERT3U(spa_config_held(spa, SCL_VDEV, RW_READER), ==, SCL_VDEV);
3316 	return (rvd->vdev_children);
3317 }
3318 
3319 /*
3320  * Verify that vdev_add() works as expected.
3321  */
3322 void
ztest_vdev_add_remove(ztest_ds_t * zd,uint64_t id)3323 ztest_vdev_add_remove(ztest_ds_t *zd, uint64_t id)
3324 {
3325 	(void) zd, (void) id;
3326 	ztest_shared_t *zs = ztest_shared;
3327 	spa_t *spa = ztest_spa;
3328 	uint64_t leaves;
3329 	uint64_t guid;
3330 	uint64_t raidz_children;
3331 
3332 	nvlist_t *nvroot;
3333 	int error;
3334 
3335 	if (ztest_opts.zo_mmp_test)
3336 		return;
3337 
3338 	mutex_enter(&ztest_vdev_lock);
3339 	raidz_children = ztest_get_raidz_children(spa);
3340 	leaves = MAX(zs->zs_mirrors + zs->zs_splits, 1) * raidz_children;
3341 
3342 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
3343 
3344 	ztest_shared->zs_vdev_next_leaf = spa_num_top_vdevs(spa) * leaves;
3345 
3346 	/*
3347 	 * If we have slogs then remove them 1/4 of the time.
3348 	 */
3349 	if (spa_has_slogs(spa) && ztest_random(4) == 0) {
3350 		metaslab_group_t *mg;
3351 
3352 		/*
3353 		 * find the first real slog in log allocation class
3354 		 */
3355 		mg =  spa_log_class(spa)->mc_allocator[0].mca_rotor;
3356 		while (!mg->mg_vd->vdev_islog)
3357 			mg = mg->mg_next;
3358 
3359 		guid = mg->mg_vd->vdev_guid;
3360 
3361 		spa_config_exit(spa, SCL_VDEV, FTAG);
3362 
3363 		/*
3364 		 * We have to grab the zs_name_lock as writer to
3365 		 * prevent a race between removing a slog (dmu_objset_find)
3366 		 * and destroying a dataset. Removing the slog will
3367 		 * grab a reference on the dataset which may cause
3368 		 * dsl_destroy_head() to fail with EBUSY thus
3369 		 * leaving the dataset in an inconsistent state.
3370 		 */
3371 		pthread_rwlock_wrlock(&ztest_name_lock);
3372 		error = spa_vdev_remove(spa, guid, B_FALSE);
3373 		pthread_rwlock_unlock(&ztest_name_lock);
3374 
3375 		switch (error) {
3376 		case 0:
3377 		case EEXIST:	/* Generic zil_reset() error */
3378 		case EBUSY:	/* Replay required */
3379 		case EACCES:	/* Crypto key not loaded */
3380 		case ZFS_ERR_CHECKPOINT_EXISTS:
3381 		case ZFS_ERR_DISCARDING_CHECKPOINT:
3382 			break;
3383 		default:
3384 			fatal(B_FALSE, "spa_vdev_remove() = %d", error);
3385 		}
3386 	} else {
3387 		spa_config_exit(spa, SCL_VDEV, FTAG);
3388 
3389 		/*
3390 		 * Make 1/4 of the devices be log devices
3391 		 */
3392 		nvroot = make_vdev_root(NULL, NULL, NULL,
3393 		    ztest_opts.zo_vdev_size, 0, (ztest_random(4) == 0) ?
3394 		    "log" : NULL, raidz_children, zs->zs_mirrors,
3395 		    1);
3396 
3397 		error = spa_vdev_add(spa, nvroot, B_FALSE);
3398 		fnvlist_free(nvroot);
3399 
3400 		switch (error) {
3401 		case 0:
3402 			break;
3403 		case ENOSPC:
3404 			ztest_record_enospc("spa_vdev_add");
3405 			break;
3406 		default:
3407 			fatal(B_FALSE, "spa_vdev_add() = %d", error);
3408 		}
3409 	}
3410 
3411 	mutex_exit(&ztest_vdev_lock);
3412 }
3413 
3414 void
ztest_vdev_class_add(ztest_ds_t * zd,uint64_t id)3415 ztest_vdev_class_add(ztest_ds_t *zd, uint64_t id)
3416 {
3417 	(void) zd, (void) id;
3418 	ztest_shared_t *zs = ztest_shared;
3419 	spa_t *spa = ztest_spa;
3420 	uint64_t leaves;
3421 	nvlist_t *nvroot;
3422 	uint64_t raidz_children;
3423 	const char *class = (ztest_random(2) == 0) ?
3424 	    VDEV_ALLOC_BIAS_SPECIAL : VDEV_ALLOC_BIAS_DEDUP;
3425 	int error;
3426 
3427 	/*
3428 	 * By default add a special vdev 50% of the time
3429 	 */
3430 	if ((ztest_opts.zo_special_vdevs == ZTEST_VDEV_CLASS_OFF) ||
3431 	    (ztest_opts.zo_special_vdevs == ZTEST_VDEV_CLASS_RND &&
3432 	    ztest_random(2) == 0)) {
3433 		return;
3434 	}
3435 
3436 	mutex_enter(&ztest_vdev_lock);
3437 
3438 	/* Only test with mirrors */
3439 	if (zs->zs_mirrors < 2) {
3440 		mutex_exit(&ztest_vdev_lock);
3441 		return;
3442 	}
3443 
3444 	/* requires feature@allocation_classes */
3445 	if (!spa_feature_is_enabled(spa, SPA_FEATURE_ALLOCATION_CLASSES)) {
3446 		mutex_exit(&ztest_vdev_lock);
3447 		return;
3448 	}
3449 
3450 	raidz_children = ztest_get_raidz_children(spa);
3451 	leaves = MAX(zs->zs_mirrors + zs->zs_splits, 1) * raidz_children;
3452 
3453 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
3454 	ztest_shared->zs_vdev_next_leaf = spa_num_top_vdevs(spa) * leaves;
3455 	spa_config_exit(spa, SCL_VDEV, FTAG);
3456 
3457 	nvroot = make_vdev_root(NULL, NULL, NULL, ztest_opts.zo_vdev_size, 0,
3458 	    class, raidz_children, zs->zs_mirrors, 1);
3459 
3460 	error = spa_vdev_add(spa, nvroot, B_FALSE);
3461 	fnvlist_free(nvroot);
3462 
3463 	if (error == ENOSPC)
3464 		ztest_record_enospc("spa_vdev_add");
3465 	else if (error != 0)
3466 		fatal(B_FALSE, "spa_vdev_add() = %d", error);
3467 
3468 	/*
3469 	 * 50% of the time allow small blocks in the special class
3470 	 */
3471 	if (error == 0 &&
3472 	    spa_special_class(spa)->mc_groups == 1 && ztest_random(2) == 0) {
3473 		if (ztest_opts.zo_verbose >= 3)
3474 			(void) printf("Enabling special VDEV small blocks\n");
3475 		error = ztest_dsl_prop_set_uint64(zd->zd_name,
3476 		    ZFS_PROP_SPECIAL_SMALL_BLOCKS, 32768, B_FALSE);
3477 		ASSERT(error == 0 || error == ENOSPC);
3478 	}
3479 
3480 	mutex_exit(&ztest_vdev_lock);
3481 
3482 	if (ztest_opts.zo_verbose >= 3) {
3483 		metaslab_class_t *mc;
3484 
3485 		if (strcmp(class, VDEV_ALLOC_BIAS_SPECIAL) == 0)
3486 			mc = spa_special_class(spa);
3487 		else
3488 			mc = spa_dedup_class(spa);
3489 		(void) printf("Added a %s mirrored vdev (of %d)\n",
3490 		    class, (int)mc->mc_groups);
3491 	}
3492 }
3493 
3494 /*
3495  * Verify that adding/removing aux devices (l2arc, hot spare) works as expected.
3496  */
3497 void
ztest_vdev_aux_add_remove(ztest_ds_t * zd,uint64_t id)3498 ztest_vdev_aux_add_remove(ztest_ds_t *zd, uint64_t id)
3499 {
3500 	(void) zd, (void) id;
3501 	ztest_shared_t *zs = ztest_shared;
3502 	spa_t *spa = ztest_spa;
3503 	vdev_t *rvd = spa->spa_root_vdev;
3504 	spa_aux_vdev_t *sav;
3505 	const char *aux;
3506 	char *path;
3507 	uint64_t guid = 0;
3508 	int error, ignore_err = 0;
3509 
3510 	if (ztest_opts.zo_mmp_test)
3511 		return;
3512 
3513 	path = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
3514 
3515 	if (ztest_random(2) == 0) {
3516 		sav = &spa->spa_spares;
3517 		aux = ZPOOL_CONFIG_SPARES;
3518 	} else {
3519 		sav = &spa->spa_l2cache;
3520 		aux = ZPOOL_CONFIG_L2CACHE;
3521 	}
3522 
3523 	mutex_enter(&ztest_vdev_lock);
3524 
3525 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
3526 
3527 	if (sav->sav_count != 0 && ztest_random(4) == 0) {
3528 		/*
3529 		 * Pick a random device to remove.
3530 		 */
3531 		vdev_t *svd = sav->sav_vdevs[ztest_random(sav->sav_count)];
3532 
3533 		/* dRAID spares cannot be removed; try anyways to see ENOTSUP */
3534 		if (strstr(svd->vdev_path, VDEV_TYPE_DRAID) != NULL)
3535 			ignore_err = ENOTSUP;
3536 
3537 		guid = svd->vdev_guid;
3538 	} else {
3539 		/*
3540 		 * Find an unused device we can add.
3541 		 */
3542 		zs->zs_vdev_aux = 0;
3543 		for (;;) {
3544 			int c;
3545 			(void) snprintf(path, MAXPATHLEN, ztest_aux_template,
3546 			    ztest_opts.zo_dir, ztest_opts.zo_pool, aux,
3547 			    zs->zs_vdev_aux);
3548 			for (c = 0; c < sav->sav_count; c++)
3549 				if (strcmp(sav->sav_vdevs[c]->vdev_path,
3550 				    path) == 0)
3551 					break;
3552 			if (c == sav->sav_count &&
3553 			    vdev_lookup_by_path(rvd, path) == NULL)
3554 				break;
3555 			zs->zs_vdev_aux++;
3556 		}
3557 	}
3558 
3559 	spa_config_exit(spa, SCL_VDEV, FTAG);
3560 
3561 	if (guid == 0) {
3562 		/*
3563 		 * Add a new device.
3564 		 */
3565 		nvlist_t *nvroot = make_vdev_root(NULL, aux, NULL,
3566 		    (ztest_opts.zo_vdev_size * 5) / 4, 0, NULL, 0, 0, 1);
3567 		error = spa_vdev_add(spa, nvroot, B_FALSE);
3568 
3569 		switch (error) {
3570 		case 0:
3571 			break;
3572 		default:
3573 			fatal(B_FALSE, "spa_vdev_add(%p) = %d", nvroot, error);
3574 		}
3575 		fnvlist_free(nvroot);
3576 	} else {
3577 		/*
3578 		 * Remove an existing device.  Sometimes, dirty its
3579 		 * vdev state first to make sure we handle removal
3580 		 * of devices that have pending state changes.
3581 		 */
3582 		if (ztest_random(2) == 0)
3583 			(void) vdev_online(spa, guid, 0, NULL);
3584 
3585 		error = spa_vdev_remove(spa, guid, B_FALSE);
3586 
3587 		switch (error) {
3588 		case 0:
3589 		case EBUSY:
3590 		case ZFS_ERR_CHECKPOINT_EXISTS:
3591 		case ZFS_ERR_DISCARDING_CHECKPOINT:
3592 			break;
3593 		default:
3594 			if (error != ignore_err)
3595 				fatal(B_FALSE,
3596 				    "spa_vdev_remove(%"PRIu64") = %d",
3597 				    guid, error);
3598 		}
3599 	}
3600 
3601 	mutex_exit(&ztest_vdev_lock);
3602 
3603 	umem_free(path, MAXPATHLEN);
3604 }
3605 
3606 /*
3607  * split a pool if it has mirror tlvdevs
3608  */
3609 void
ztest_split_pool(ztest_ds_t * zd,uint64_t id)3610 ztest_split_pool(ztest_ds_t *zd, uint64_t id)
3611 {
3612 	(void) zd, (void) id;
3613 	ztest_shared_t *zs = ztest_shared;
3614 	spa_t *spa = ztest_spa;
3615 	vdev_t *rvd = spa->spa_root_vdev;
3616 	nvlist_t *tree, **child, *config, *split, **schild;
3617 	uint_t c, children, schildren = 0, lastlogid = 0;
3618 	int error = 0;
3619 
3620 	if (ztest_opts.zo_mmp_test)
3621 		return;
3622 
3623 	mutex_enter(&ztest_vdev_lock);
3624 
3625 	/* ensure we have a usable config; mirrors of raidz aren't supported */
3626 	if (zs->zs_mirrors < 3 || ztest_opts.zo_raid_children > 1) {
3627 		mutex_exit(&ztest_vdev_lock);
3628 		return;
3629 	}
3630 
3631 	/* clean up the old pool, if any */
3632 	(void) spa_destroy("splitp");
3633 
3634 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
3635 
3636 	/* generate a config from the existing config */
3637 	mutex_enter(&spa->spa_props_lock);
3638 	tree = fnvlist_lookup_nvlist(spa->spa_config, ZPOOL_CONFIG_VDEV_TREE);
3639 	mutex_exit(&spa->spa_props_lock);
3640 
3641 	VERIFY0(nvlist_lookup_nvlist_array(tree, ZPOOL_CONFIG_CHILDREN,
3642 	    &child, &children));
3643 
3644 	schild = umem_alloc(rvd->vdev_children * sizeof (nvlist_t *),
3645 	    UMEM_NOFAIL);
3646 	for (c = 0; c < children; c++) {
3647 		vdev_t *tvd = rvd->vdev_child[c];
3648 		nvlist_t **mchild;
3649 		uint_t mchildren;
3650 
3651 		if (tvd->vdev_islog || tvd->vdev_ops == &vdev_hole_ops) {
3652 			schild[schildren] = fnvlist_alloc();
3653 			fnvlist_add_string(schild[schildren],
3654 			    ZPOOL_CONFIG_TYPE, VDEV_TYPE_HOLE);
3655 			fnvlist_add_uint64(schild[schildren],
3656 			    ZPOOL_CONFIG_IS_HOLE, 1);
3657 			if (lastlogid == 0)
3658 				lastlogid = schildren;
3659 			++schildren;
3660 			continue;
3661 		}
3662 		lastlogid = 0;
3663 		VERIFY0(nvlist_lookup_nvlist_array(child[c],
3664 		    ZPOOL_CONFIG_CHILDREN, &mchild, &mchildren));
3665 		schild[schildren++] = fnvlist_dup(mchild[0]);
3666 	}
3667 
3668 	/* OK, create a config that can be used to split */
3669 	split = fnvlist_alloc();
3670 	fnvlist_add_string(split, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT);
3671 	fnvlist_add_nvlist_array(split, ZPOOL_CONFIG_CHILDREN,
3672 	    (const nvlist_t **)schild, lastlogid != 0 ? lastlogid : schildren);
3673 
3674 	config = fnvlist_alloc();
3675 	fnvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, split);
3676 
3677 	for (c = 0; c < schildren; c++)
3678 		fnvlist_free(schild[c]);
3679 	umem_free(schild, rvd->vdev_children * sizeof (nvlist_t *));
3680 	fnvlist_free(split);
3681 
3682 	spa_config_exit(spa, SCL_VDEV, FTAG);
3683 
3684 	(void) pthread_rwlock_wrlock(&ztest_name_lock);
3685 	error = spa_vdev_split_mirror(spa, "splitp", config, NULL, B_FALSE);
3686 	(void) pthread_rwlock_unlock(&ztest_name_lock);
3687 
3688 	fnvlist_free(config);
3689 
3690 	if (error == 0) {
3691 		(void) printf("successful split - results:\n");
3692 		mutex_enter(&spa_namespace_lock);
3693 		show_pool_stats(spa);
3694 		show_pool_stats(spa_lookup("splitp"));
3695 		mutex_exit(&spa_namespace_lock);
3696 		++zs->zs_splits;
3697 		--zs->zs_mirrors;
3698 	}
3699 	mutex_exit(&ztest_vdev_lock);
3700 }
3701 
3702 /*
3703  * Verify that we can attach and detach devices.
3704  */
3705 void
ztest_vdev_attach_detach(ztest_ds_t * zd,uint64_t id)3706 ztest_vdev_attach_detach(ztest_ds_t *zd, uint64_t id)
3707 {
3708 	(void) zd, (void) id;
3709 	ztest_shared_t *zs = ztest_shared;
3710 	spa_t *spa = ztest_spa;
3711 	spa_aux_vdev_t *sav = &spa->spa_spares;
3712 	vdev_t *rvd = spa->spa_root_vdev;
3713 	vdev_t *oldvd, *newvd, *pvd;
3714 	nvlist_t *root;
3715 	uint64_t leaves;
3716 	uint64_t leaf, top;
3717 	uint64_t ashift = ztest_get_ashift();
3718 	uint64_t oldguid, pguid;
3719 	uint64_t oldsize, newsize;
3720 	uint64_t raidz_children;
3721 	char *oldpath, *newpath;
3722 	int replacing;
3723 	int oldvd_has_siblings = B_FALSE;
3724 	int newvd_is_spare = B_FALSE;
3725 	int newvd_is_dspare = B_FALSE;
3726 	int oldvd_is_log;
3727 	int oldvd_is_special;
3728 	int error, expected_error;
3729 
3730 	if (ztest_opts.zo_mmp_test)
3731 		return;
3732 
3733 	oldpath = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
3734 	newpath = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
3735 
3736 	mutex_enter(&ztest_vdev_lock);
3737 	raidz_children = ztest_get_raidz_children(spa);
3738 	leaves = MAX(zs->zs_mirrors, 1) * raidz_children;
3739 
3740 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3741 
3742 	/*
3743 	 * If a vdev is in the process of being removed, its removal may
3744 	 * finish while we are in progress, leading to an unexpected error
3745 	 * value.  Don't bother trying to attach while we are in the middle
3746 	 * of removal.
3747 	 */
3748 	if (ztest_device_removal_active) {
3749 		spa_config_exit(spa, SCL_ALL, FTAG);
3750 		goto out;
3751 	}
3752 
3753 	/*
3754 	 * RAIDZ leaf VDEV mirrors are not currently supported while a
3755 	 * RAIDZ expansion is in progress.
3756 	 */
3757 	if (ztest_opts.zo_raid_do_expand) {
3758 		spa_config_exit(spa, SCL_ALL, FTAG);
3759 		goto out;
3760 	}
3761 
3762 	/*
3763 	 * Decide whether to do an attach or a replace.
3764 	 */
3765 	replacing = ztest_random(2);
3766 
3767 	/*
3768 	 * Pick a random top-level vdev.
3769 	 */
3770 	top = ztest_random_vdev_top(spa, B_TRUE);
3771 
3772 	/*
3773 	 * Pick a random leaf within it.
3774 	 */
3775 	leaf = ztest_random(leaves);
3776 
3777 	/*
3778 	 * Locate this vdev.
3779 	 */
3780 	oldvd = rvd->vdev_child[top];
3781 
3782 	/* pick a child from the mirror */
3783 	if (zs->zs_mirrors >= 1) {
3784 		ASSERT3P(oldvd->vdev_ops, ==, &vdev_mirror_ops);
3785 		ASSERT3U(oldvd->vdev_children, >=, zs->zs_mirrors);
3786 		oldvd = oldvd->vdev_child[leaf / raidz_children];
3787 	}
3788 
3789 	/* pick a child out of the raidz group */
3790 	if (ztest_opts.zo_raid_children > 1) {
3791 		if (strcmp(oldvd->vdev_ops->vdev_op_type, "raidz") == 0)
3792 			ASSERT3P(oldvd->vdev_ops, ==, &vdev_raidz_ops);
3793 		else
3794 			ASSERT3P(oldvd->vdev_ops, ==, &vdev_draid_ops);
3795 		oldvd = oldvd->vdev_child[leaf % raidz_children];
3796 	}
3797 
3798 	/*
3799 	 * If we're already doing an attach or replace, oldvd may be a
3800 	 * mirror vdev -- in which case, pick a random child.
3801 	 */
3802 	while (oldvd->vdev_children != 0) {
3803 		oldvd_has_siblings = B_TRUE;
3804 		ASSERT3U(oldvd->vdev_children, >=, 2);
3805 		oldvd = oldvd->vdev_child[ztest_random(oldvd->vdev_children)];
3806 	}
3807 
3808 	oldguid = oldvd->vdev_guid;
3809 	oldsize = vdev_get_min_asize(oldvd);
3810 	oldvd_is_log = oldvd->vdev_top->vdev_islog;
3811 	oldvd_is_special =
3812 	    oldvd->vdev_top->vdev_alloc_bias == VDEV_BIAS_SPECIAL ||
3813 	    oldvd->vdev_top->vdev_alloc_bias == VDEV_BIAS_DEDUP;
3814 	(void) strlcpy(oldpath, oldvd->vdev_path, MAXPATHLEN);
3815 	pvd = oldvd->vdev_parent;
3816 	pguid = pvd->vdev_guid;
3817 
3818 	/*
3819 	 * If oldvd has siblings, then half of the time, detach it.  Prior
3820 	 * to the detach the pool is scrubbed in order to prevent creating
3821 	 * unrepairable blocks as a result of the data corruption injection.
3822 	 */
3823 	if (oldvd_has_siblings && ztest_random(2) == 0) {
3824 		spa_config_exit(spa, SCL_ALL, FTAG);
3825 
3826 		error = ztest_scrub_impl(spa);
3827 		if (error)
3828 			goto out;
3829 
3830 		error = spa_vdev_detach(spa, oldguid, pguid, B_FALSE);
3831 		if (error != 0 && error != ENODEV && error != EBUSY &&
3832 		    error != ENOTSUP && error != ZFS_ERR_CHECKPOINT_EXISTS &&
3833 		    error != ZFS_ERR_DISCARDING_CHECKPOINT)
3834 			fatal(B_FALSE, "detach (%s) returned %d",
3835 			    oldpath, error);
3836 		goto out;
3837 	}
3838 
3839 	/*
3840 	 * For the new vdev, choose with equal probability between the two
3841 	 * standard paths (ending in either 'a' or 'b') or a random hot spare.
3842 	 */
3843 	if (sav->sav_count != 0 && ztest_random(3) == 0) {
3844 		newvd = sav->sav_vdevs[ztest_random(sav->sav_count)];
3845 		newvd_is_spare = B_TRUE;
3846 
3847 		if (newvd->vdev_ops == &vdev_draid_spare_ops)
3848 			newvd_is_dspare = B_TRUE;
3849 
3850 		(void) strlcpy(newpath, newvd->vdev_path, MAXPATHLEN);
3851 	} else {
3852 		(void) snprintf(newpath, MAXPATHLEN, ztest_dev_template,
3853 		    ztest_opts.zo_dir, ztest_opts.zo_pool,
3854 		    top * leaves + leaf);
3855 		if (ztest_random(2) == 0)
3856 			newpath[strlen(newpath) - 1] = 'b';
3857 		newvd = vdev_lookup_by_path(rvd, newpath);
3858 	}
3859 
3860 	if (newvd) {
3861 		/*
3862 		 * Reopen to ensure the vdev's asize field isn't stale.
3863 		 */
3864 		vdev_reopen(newvd);
3865 		newsize = vdev_get_min_asize(newvd);
3866 	} else {
3867 		/*
3868 		 * Make newsize a little bigger or smaller than oldsize.
3869 		 * If it's smaller, the attach should fail.
3870 		 * If it's larger, and we're doing a replace,
3871 		 * we should get dynamic LUN growth when we're done.
3872 		 */
3873 		newsize = 10 * oldsize / (9 + ztest_random(3));
3874 	}
3875 
3876 	/*
3877 	 * If pvd is not a mirror or root, the attach should fail with ENOTSUP,
3878 	 * unless it's a replace; in that case any non-replacing parent is OK.
3879 	 *
3880 	 * If newvd is already part of the pool, it should fail with EBUSY.
3881 	 *
3882 	 * If newvd is too small, it should fail with EOVERFLOW.
3883 	 *
3884 	 * If newvd is a distributed spare and it's being attached to a
3885 	 * dRAID which is not its parent it should fail with EINVAL.
3886 	 */
3887 	if (pvd->vdev_ops != &vdev_mirror_ops &&
3888 	    pvd->vdev_ops != &vdev_root_ops && (!replacing ||
3889 	    pvd->vdev_ops == &vdev_replacing_ops ||
3890 	    pvd->vdev_ops == &vdev_spare_ops))
3891 		expected_error = ENOTSUP;
3892 	else if (newvd_is_spare &&
3893 	    (!replacing || oldvd_is_log || oldvd_is_special))
3894 		expected_error = ENOTSUP;
3895 	else if (newvd == oldvd)
3896 		expected_error = replacing ? 0 : EBUSY;
3897 	else if (vdev_lookup_by_path(rvd, newpath) != NULL)
3898 		expected_error = EBUSY;
3899 	else if (!newvd_is_dspare && newsize < oldsize)
3900 		expected_error = EOVERFLOW;
3901 	else if (ashift > oldvd->vdev_top->vdev_ashift)
3902 		expected_error = EDOM;
3903 	else if (newvd_is_dspare && pvd != vdev_draid_spare_get_parent(newvd))
3904 		expected_error = EINVAL;
3905 	else
3906 		expected_error = 0;
3907 
3908 	spa_config_exit(spa, SCL_ALL, FTAG);
3909 
3910 	/*
3911 	 * Build the nvlist describing newpath.
3912 	 */
3913 	root = make_vdev_root(newpath, NULL, NULL, newvd == NULL ? newsize : 0,
3914 	    ashift, NULL, 0, 0, 1);
3915 
3916 	/*
3917 	 * When supported select either a healing or sequential resilver.
3918 	 */
3919 	boolean_t rebuilding = B_FALSE;
3920 	if (pvd->vdev_ops == &vdev_mirror_ops ||
3921 	    pvd->vdev_ops ==  &vdev_root_ops) {
3922 		rebuilding = !!ztest_random(2);
3923 	}
3924 
3925 	error = spa_vdev_attach(spa, oldguid, root, replacing, rebuilding);
3926 
3927 	fnvlist_free(root);
3928 
3929 	/*
3930 	 * If our parent was the replacing vdev, but the replace completed,
3931 	 * then instead of failing with ENOTSUP we may either succeed,
3932 	 * fail with ENODEV, or fail with EOVERFLOW.
3933 	 */
3934 	if (expected_error == ENOTSUP &&
3935 	    (error == 0 || error == ENODEV || error == EOVERFLOW))
3936 		expected_error = error;
3937 
3938 	/*
3939 	 * If someone grew the LUN, the replacement may be too small.
3940 	 */
3941 	if (error == EOVERFLOW || error == EBUSY)
3942 		expected_error = error;
3943 
3944 	if (error == ZFS_ERR_CHECKPOINT_EXISTS ||
3945 	    error == ZFS_ERR_DISCARDING_CHECKPOINT ||
3946 	    error == ZFS_ERR_RESILVER_IN_PROGRESS ||
3947 	    error == ZFS_ERR_REBUILD_IN_PROGRESS)
3948 		expected_error = error;
3949 
3950 	if (error != expected_error && expected_error != EBUSY) {
3951 		fatal(B_FALSE, "attach (%s %"PRIu64", %s %"PRIu64", %d) "
3952 		    "returned %d, expected %d",
3953 		    oldpath, oldsize, newpath,
3954 		    newsize, replacing, error, expected_error);
3955 	}
3956 out:
3957 	mutex_exit(&ztest_vdev_lock);
3958 
3959 	umem_free(oldpath, MAXPATHLEN);
3960 	umem_free(newpath, MAXPATHLEN);
3961 }
3962 
3963 static void
raidz_scratch_verify(void)3964 raidz_scratch_verify(void)
3965 {
3966 	spa_t *spa;
3967 	uint64_t write_size, logical_size, offset;
3968 	raidz_reflow_scratch_state_t state;
3969 	vdev_raidz_expand_t *vre;
3970 	vdev_t *raidvd;
3971 
3972 	ASSERT(raidz_expand_pause_point == RAIDZ_EXPAND_PAUSE_NONE);
3973 
3974 	if (ztest_scratch_state->zs_raidz_scratch_verify_pause == 0)
3975 		return;
3976 
3977 	kernel_init(SPA_MODE_READ);
3978 
3979 	mutex_enter(&spa_namespace_lock);
3980 	spa = spa_lookup(ztest_opts.zo_pool);
3981 	ASSERT(spa);
3982 	spa->spa_import_flags |= ZFS_IMPORT_SKIP_MMP;
3983 	mutex_exit(&spa_namespace_lock);
3984 
3985 	VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
3986 
3987 	ASSERT3U(RRSS_GET_OFFSET(&spa->spa_uberblock), !=, UINT64_MAX);
3988 
3989 	mutex_enter(&ztest_vdev_lock);
3990 
3991 	spa_config_enter(spa, SCL_ALL, FTAG, RW_READER);
3992 
3993 	vre = spa->spa_raidz_expand;
3994 	if (vre == NULL)
3995 		goto out;
3996 
3997 	raidvd = vdev_lookup_top(spa, vre->vre_vdev_id);
3998 	offset = RRSS_GET_OFFSET(&spa->spa_uberblock);
3999 	state = RRSS_GET_STATE(&spa->spa_uberblock);
4000 	write_size = P2ALIGN_TYPED(VDEV_BOOT_SIZE, 1 << raidvd->vdev_ashift,
4001 	    uint64_t);
4002 	logical_size = write_size * raidvd->vdev_children;
4003 
4004 	switch (state) {
4005 		/*
4006 		 * Initial state of reflow process.  RAIDZ expansion was
4007 		 * requested by user, but scratch object was not created.
4008 		 */
4009 		case RRSS_SCRATCH_NOT_IN_USE:
4010 			ASSERT3U(offset, ==, 0);
4011 			break;
4012 
4013 		/*
4014 		 * Scratch object was synced and stored in boot area.
4015 		 */
4016 		case RRSS_SCRATCH_VALID:
4017 
4018 		/*
4019 		 * Scratch object was synced back to raidz start offset,
4020 		 * raidz is ready for sector by sector reflow process.
4021 		 */
4022 		case RRSS_SCRATCH_INVALID_SYNCED:
4023 
4024 		/*
4025 		 * Scratch object was synced back to raidz start offset
4026 		 * on zpool importing, raidz is ready for sector by sector
4027 		 * reflow process.
4028 		 */
4029 		case RRSS_SCRATCH_INVALID_SYNCED_ON_IMPORT:
4030 			ASSERT3U(offset, ==, logical_size);
4031 			break;
4032 
4033 		/*
4034 		 * Sector by sector reflow process started.
4035 		 */
4036 		case RRSS_SCRATCH_INVALID_SYNCED_REFLOW:
4037 			ASSERT3U(offset, >=, logical_size);
4038 			break;
4039 	}
4040 
4041 out:
4042 	spa_config_exit(spa, SCL_ALL, FTAG);
4043 
4044 	mutex_exit(&ztest_vdev_lock);
4045 
4046 	ztest_scratch_state->zs_raidz_scratch_verify_pause = 0;
4047 
4048 	spa_close(spa, FTAG);
4049 	kernel_fini();
4050 }
4051 
4052 static void
ztest_scratch_thread(void * arg)4053 ztest_scratch_thread(void *arg)
4054 {
4055 	(void) arg;
4056 
4057 	/* wait up to 10 seconds */
4058 	for (int t = 100; t > 0; t -= 1) {
4059 		if (raidz_expand_pause_point == RAIDZ_EXPAND_PAUSE_NONE)
4060 			thread_exit();
4061 
4062 		(void) poll(NULL, 0, 100);
4063 	}
4064 
4065 	/* killed when the scratch area progress reached a certain point */
4066 	ztest_kill(ztest_shared);
4067 }
4068 
4069 /*
4070  * Verify that we can attach raidz device.
4071  */
4072 void
ztest_vdev_raidz_attach(ztest_ds_t * zd,uint64_t id)4073 ztest_vdev_raidz_attach(ztest_ds_t *zd, uint64_t id)
4074 {
4075 	(void) zd, (void) id;
4076 	ztest_shared_t *zs = ztest_shared;
4077 	spa_t *spa = ztest_spa;
4078 	uint64_t leaves, raidz_children, newsize, ashift = ztest_get_ashift();
4079 	kthread_t *scratch_thread = NULL;
4080 	vdev_t *newvd, *pvd;
4081 	nvlist_t *root;
4082 	char *newpath = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
4083 	int error, expected_error = 0;
4084 
4085 	mutex_enter(&ztest_vdev_lock);
4086 
4087 	spa_config_enter(spa, SCL_ALL, FTAG, RW_READER);
4088 
4089 	/* Only allow attach when raid-kind = 'eraidz' */
4090 	if (!ztest_opts.zo_raid_do_expand) {
4091 		spa_config_exit(spa, SCL_ALL, FTAG);
4092 		goto out;
4093 	}
4094 
4095 	if (ztest_opts.zo_mmp_test) {
4096 		spa_config_exit(spa, SCL_ALL, FTAG);
4097 		goto out;
4098 	}
4099 
4100 	if (ztest_device_removal_active) {
4101 		spa_config_exit(spa, SCL_ALL, FTAG);
4102 		goto out;
4103 	}
4104 
4105 	pvd = vdev_lookup_top(spa, 0);
4106 
4107 	ASSERT(pvd->vdev_ops == &vdev_raidz_ops);
4108 
4109 	/*
4110 	 * Get size of a child of the raidz group,
4111 	 * make sure device is a bit bigger
4112 	 */
4113 	newvd = pvd->vdev_child[ztest_random(pvd->vdev_children)];
4114 	newsize = 10 * vdev_get_min_asize(newvd) / (9 + ztest_random(2));
4115 
4116 	/*
4117 	 * Get next attached leaf id
4118 	 */
4119 	raidz_children = ztest_get_raidz_children(spa);
4120 	leaves = MAX(zs->zs_mirrors + zs->zs_splits, 1) * raidz_children;
4121 	zs->zs_vdev_next_leaf = spa_num_top_vdevs(spa) * leaves;
4122 
4123 	if (spa->spa_raidz_expand)
4124 		expected_error = ZFS_ERR_RAIDZ_EXPAND_IN_PROGRESS;
4125 
4126 	spa_config_exit(spa, SCL_ALL, FTAG);
4127 
4128 	/*
4129 	 * Path to vdev to be attached
4130 	 */
4131 	(void) snprintf(newpath, MAXPATHLEN, ztest_dev_template,
4132 	    ztest_opts.zo_dir, ztest_opts.zo_pool, zs->zs_vdev_next_leaf);
4133 
4134 	/*
4135 	 * Build the nvlist describing newpath.
4136 	 */
4137 	root = make_vdev_root(newpath, NULL, NULL, newsize, ashift, NULL,
4138 	    0, 0, 1);
4139 
4140 	/*
4141 	 * 50% of the time, set raidz_expand_pause_point to cause
4142 	 * raidz_reflow_scratch_sync() to pause at a certain point and
4143 	 * then kill the test after 10 seconds so raidz_scratch_verify()
4144 	 * can confirm consistency when the pool is imported.
4145 	 */
4146 	if (ztest_random(2) == 0 && expected_error == 0) {
4147 		raidz_expand_pause_point =
4148 		    ztest_random(RAIDZ_EXPAND_PAUSE_SCRATCH_POST_REFLOW_2) + 1;
4149 		scratch_thread = thread_create(NULL, 0, ztest_scratch_thread,
4150 		    ztest_shared, 0, NULL, TS_RUN | TS_JOINABLE, defclsyspri);
4151 	}
4152 
4153 	error = spa_vdev_attach(spa, pvd->vdev_guid, root, B_FALSE, B_FALSE);
4154 
4155 	nvlist_free(root);
4156 
4157 	if (error == EOVERFLOW || error == ENXIO ||
4158 	    error == ZFS_ERR_CHECKPOINT_EXISTS ||
4159 	    error == ZFS_ERR_DISCARDING_CHECKPOINT)
4160 		expected_error = error;
4161 
4162 	if (error != 0 && error != expected_error) {
4163 		fatal(0, "raidz attach (%s %"PRIu64") returned %d, expected %d",
4164 		    newpath, newsize, error, expected_error);
4165 	}
4166 
4167 	if (raidz_expand_pause_point) {
4168 		if (error != 0) {
4169 			/*
4170 			 * Do not verify scratch object in case of error
4171 			 * returned by vdev attaching.
4172 			 */
4173 			raidz_expand_pause_point = RAIDZ_EXPAND_PAUSE_NONE;
4174 		}
4175 
4176 		VERIFY0(thread_join(scratch_thread));
4177 	}
4178 out:
4179 	mutex_exit(&ztest_vdev_lock);
4180 
4181 	umem_free(newpath, MAXPATHLEN);
4182 }
4183 
4184 void
ztest_device_removal(ztest_ds_t * zd,uint64_t id)4185 ztest_device_removal(ztest_ds_t *zd, uint64_t id)
4186 {
4187 	(void) zd, (void) id;
4188 	spa_t *spa = ztest_spa;
4189 	vdev_t *vd;
4190 	uint64_t guid;
4191 	int error;
4192 
4193 	mutex_enter(&ztest_vdev_lock);
4194 
4195 	if (ztest_device_removal_active) {
4196 		mutex_exit(&ztest_vdev_lock);
4197 		return;
4198 	}
4199 
4200 	/*
4201 	 * Remove a random top-level vdev and wait for removal to finish.
4202 	 */
4203 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
4204 	vd = vdev_lookup_top(spa, ztest_random_vdev_top(spa, B_FALSE));
4205 	guid = vd->vdev_guid;
4206 	spa_config_exit(spa, SCL_VDEV, FTAG);
4207 
4208 	error = spa_vdev_remove(spa, guid, B_FALSE);
4209 	if (error == 0) {
4210 		ztest_device_removal_active = B_TRUE;
4211 		mutex_exit(&ztest_vdev_lock);
4212 
4213 		/*
4214 		 * spa->spa_vdev_removal is created in a sync task that
4215 		 * is initiated via dsl_sync_task_nowait(). Since the
4216 		 * task may not run before spa_vdev_remove() returns, we
4217 		 * must wait at least 1 txg to ensure that the removal
4218 		 * struct has been created.
4219 		 */
4220 		txg_wait_synced(spa_get_dsl(spa), 0);
4221 
4222 		while (spa->spa_removing_phys.sr_state == DSS_SCANNING)
4223 			txg_wait_synced(spa_get_dsl(spa), 0);
4224 	} else {
4225 		mutex_exit(&ztest_vdev_lock);
4226 		return;
4227 	}
4228 
4229 	/*
4230 	 * The pool needs to be scrubbed after completing device removal.
4231 	 * Failure to do so may result in checksum errors due to the
4232 	 * strategy employed by ztest_fault_inject() when selecting which
4233 	 * offset are redundant and can be damaged.
4234 	 */
4235 	error = spa_scan(spa, POOL_SCAN_SCRUB);
4236 	if (error == 0) {
4237 		while (dsl_scan_scrubbing(spa_get_dsl(spa)))
4238 			txg_wait_synced(spa_get_dsl(spa), 0);
4239 	}
4240 
4241 	mutex_enter(&ztest_vdev_lock);
4242 	ztest_device_removal_active = B_FALSE;
4243 	mutex_exit(&ztest_vdev_lock);
4244 }
4245 
4246 /*
4247  * Callback function which expands the physical size of the vdev.
4248  */
4249 static vdev_t *
grow_vdev(vdev_t * vd,void * arg)4250 grow_vdev(vdev_t *vd, void *arg)
4251 {
4252 	spa_t *spa __maybe_unused = vd->vdev_spa;
4253 	size_t *newsize = arg;
4254 	size_t fsize;
4255 	int fd;
4256 
4257 	ASSERT3S(spa_config_held(spa, SCL_STATE, RW_READER), ==, SCL_STATE);
4258 	ASSERT(vd->vdev_ops->vdev_op_leaf);
4259 
4260 	if ((fd = open(vd->vdev_path, O_RDWR)) == -1)
4261 		return (vd);
4262 
4263 	fsize = lseek(fd, 0, SEEK_END);
4264 	VERIFY0(ftruncate(fd, *newsize));
4265 
4266 	if (ztest_opts.zo_verbose >= 6) {
4267 		(void) printf("%s grew from %lu to %lu bytes\n",
4268 		    vd->vdev_path, (ulong_t)fsize, (ulong_t)*newsize);
4269 	}
4270 	(void) close(fd);
4271 	return (NULL);
4272 }
4273 
4274 /*
4275  * Callback function which expands a given vdev by calling vdev_online().
4276  */
4277 static vdev_t *
online_vdev(vdev_t * vd,void * arg)4278 online_vdev(vdev_t *vd, void *arg)
4279 {
4280 	(void) arg;
4281 	spa_t *spa = vd->vdev_spa;
4282 	vdev_t *tvd = vd->vdev_top;
4283 	uint64_t guid = vd->vdev_guid;
4284 	uint64_t generation = spa->spa_config_generation + 1;
4285 	vdev_state_t newstate = VDEV_STATE_UNKNOWN;
4286 	int error;
4287 
4288 	ASSERT3S(spa_config_held(spa, SCL_STATE, RW_READER), ==, SCL_STATE);
4289 	ASSERT(vd->vdev_ops->vdev_op_leaf);
4290 
4291 	/* Calling vdev_online will initialize the new metaslabs */
4292 	spa_config_exit(spa, SCL_STATE, spa);
4293 	error = vdev_online(spa, guid, ZFS_ONLINE_EXPAND, &newstate);
4294 	spa_config_enter(spa, SCL_STATE, spa, RW_READER);
4295 
4296 	/*
4297 	 * If vdev_online returned an error or the underlying vdev_open
4298 	 * failed then we abort the expand. The only way to know that
4299 	 * vdev_open fails is by checking the returned newstate.
4300 	 */
4301 	if (error || newstate != VDEV_STATE_HEALTHY) {
4302 		if (ztest_opts.zo_verbose >= 5) {
4303 			(void) printf("Unable to expand vdev, state %u, "
4304 			    "error %d\n", newstate, error);
4305 		}
4306 		return (vd);
4307 	}
4308 	ASSERT3U(newstate, ==, VDEV_STATE_HEALTHY);
4309 
4310 	/*
4311 	 * Since we dropped the lock we need to ensure that we're
4312 	 * still talking to the original vdev. It's possible this
4313 	 * vdev may have been detached/replaced while we were
4314 	 * trying to online it.
4315 	 */
4316 	if (generation != spa->spa_config_generation) {
4317 		if (ztest_opts.zo_verbose >= 5) {
4318 			(void) printf("vdev configuration has changed, "
4319 			    "guid %"PRIu64", state %"PRIu64", "
4320 			    "expected gen %"PRIu64", got gen %"PRIu64"\n",
4321 			    guid,
4322 			    tvd->vdev_state,
4323 			    generation,
4324 			    spa->spa_config_generation);
4325 		}
4326 		return (vd);
4327 	}
4328 	return (NULL);
4329 }
4330 
4331 /*
4332  * Traverse the vdev tree calling the supplied function.
4333  * We continue to walk the tree until we either have walked all
4334  * children or we receive a non-NULL return from the callback.
4335  * If a NULL callback is passed, then we just return back the first
4336  * leaf vdev we encounter.
4337  */
4338 static vdev_t *
vdev_walk_tree(vdev_t * vd,vdev_t * (* func)(vdev_t *,void *),void * arg)4339 vdev_walk_tree(vdev_t *vd, vdev_t *(*func)(vdev_t *, void *), void *arg)
4340 {
4341 	uint_t c;
4342 
4343 	if (vd->vdev_ops->vdev_op_leaf) {
4344 		if (func == NULL)
4345 			return (vd);
4346 		else
4347 			return (func(vd, arg));
4348 	}
4349 
4350 	for (c = 0; c < vd->vdev_children; c++) {
4351 		vdev_t *cvd = vd->vdev_child[c];
4352 		if ((cvd = vdev_walk_tree(cvd, func, arg)) != NULL)
4353 			return (cvd);
4354 	}
4355 	return (NULL);
4356 }
4357 
4358 /*
4359  * Verify that dynamic LUN growth works as expected.
4360  */
4361 void
ztest_vdev_LUN_growth(ztest_ds_t * zd,uint64_t id)4362 ztest_vdev_LUN_growth(ztest_ds_t *zd, uint64_t id)
4363 {
4364 	(void) zd, (void) id;
4365 	spa_t *spa = ztest_spa;
4366 	vdev_t *vd, *tvd;
4367 	metaslab_class_t *mc;
4368 	metaslab_group_t *mg;
4369 	size_t psize, newsize;
4370 	uint64_t top;
4371 	uint64_t old_class_space, new_class_space, old_ms_count, new_ms_count;
4372 
4373 	mutex_enter(&ztest_checkpoint_lock);
4374 	mutex_enter(&ztest_vdev_lock);
4375 	spa_config_enter(spa, SCL_STATE, spa, RW_READER);
4376 
4377 	/*
4378 	 * If there is a vdev removal in progress, it could complete while
4379 	 * we are running, in which case we would not be able to verify
4380 	 * that the metaslab_class space increased (because it decreases
4381 	 * when the device removal completes).
4382 	 */
4383 	if (ztest_device_removal_active) {
4384 		spa_config_exit(spa, SCL_STATE, spa);
4385 		mutex_exit(&ztest_vdev_lock);
4386 		mutex_exit(&ztest_checkpoint_lock);
4387 		return;
4388 	}
4389 
4390 	/*
4391 	 * If we are under raidz expansion, the test can failed because the
4392 	 * metaslabs count will not increase immediately after the vdev is
4393 	 * expanded. It will happen only after raidz expansion completion.
4394 	 */
4395 	if (spa->spa_raidz_expand) {
4396 		spa_config_exit(spa, SCL_STATE, spa);
4397 		mutex_exit(&ztest_vdev_lock);
4398 		mutex_exit(&ztest_checkpoint_lock);
4399 		return;
4400 	}
4401 
4402 	top = ztest_random_vdev_top(spa, B_TRUE);
4403 
4404 	tvd = spa->spa_root_vdev->vdev_child[top];
4405 	mg = tvd->vdev_mg;
4406 	mc = mg->mg_class;
4407 	old_ms_count = tvd->vdev_ms_count;
4408 	old_class_space = metaslab_class_get_space(mc);
4409 
4410 	/*
4411 	 * Determine the size of the first leaf vdev associated with
4412 	 * our top-level device.
4413 	 */
4414 	vd = vdev_walk_tree(tvd, NULL, NULL);
4415 	ASSERT3P(vd, !=, NULL);
4416 	ASSERT(vd->vdev_ops->vdev_op_leaf);
4417 
4418 	psize = vd->vdev_psize;
4419 
4420 	/*
4421 	 * We only try to expand the vdev if it's healthy, less than 4x its
4422 	 * original size, and it has a valid psize.
4423 	 */
4424 	if (tvd->vdev_state != VDEV_STATE_HEALTHY ||
4425 	    psize == 0 || psize >= 4 * ztest_opts.zo_vdev_size) {
4426 		spa_config_exit(spa, SCL_STATE, spa);
4427 		mutex_exit(&ztest_vdev_lock);
4428 		mutex_exit(&ztest_checkpoint_lock);
4429 		return;
4430 	}
4431 	ASSERT3U(psize, >, 0);
4432 	newsize = psize + MAX(psize / 8, SPA_MAXBLOCKSIZE);
4433 	ASSERT3U(newsize, >, psize);
4434 
4435 	if (ztest_opts.zo_verbose >= 6) {
4436 		(void) printf("Expanding LUN %s from %lu to %lu\n",
4437 		    vd->vdev_path, (ulong_t)psize, (ulong_t)newsize);
4438 	}
4439 
4440 	/*
4441 	 * Growing the vdev is a two step process:
4442 	 *	1). expand the physical size (i.e. relabel)
4443 	 *	2). online the vdev to create the new metaslabs
4444 	 */
4445 	if (vdev_walk_tree(tvd, grow_vdev, &newsize) != NULL ||
4446 	    vdev_walk_tree(tvd, online_vdev, NULL) != NULL ||
4447 	    tvd->vdev_state != VDEV_STATE_HEALTHY) {
4448 		if (ztest_opts.zo_verbose >= 5) {
4449 			(void) printf("Could not expand LUN because "
4450 			    "the vdev configuration changed.\n");
4451 		}
4452 		spa_config_exit(spa, SCL_STATE, spa);
4453 		mutex_exit(&ztest_vdev_lock);
4454 		mutex_exit(&ztest_checkpoint_lock);
4455 		return;
4456 	}
4457 
4458 	spa_config_exit(spa, SCL_STATE, spa);
4459 
4460 	/*
4461 	 * Expanding the LUN will update the config asynchronously,
4462 	 * thus we must wait for the async thread to complete any
4463 	 * pending tasks before proceeding.
4464 	 */
4465 	for (;;) {
4466 		boolean_t done;
4467 		mutex_enter(&spa->spa_async_lock);
4468 		done = (spa->spa_async_thread == NULL && !spa->spa_async_tasks);
4469 		mutex_exit(&spa->spa_async_lock);
4470 		if (done)
4471 			break;
4472 		txg_wait_synced(spa_get_dsl(spa), 0);
4473 		(void) poll(NULL, 0, 100);
4474 	}
4475 
4476 	spa_config_enter(spa, SCL_STATE, spa, RW_READER);
4477 
4478 	tvd = spa->spa_root_vdev->vdev_child[top];
4479 	new_ms_count = tvd->vdev_ms_count;
4480 	new_class_space = metaslab_class_get_space(mc);
4481 
4482 	if (tvd->vdev_mg != mg || mg->mg_class != mc) {
4483 		if (ztest_opts.zo_verbose >= 5) {
4484 			(void) printf("Could not verify LUN expansion due to "
4485 			    "intervening vdev offline or remove.\n");
4486 		}
4487 		spa_config_exit(spa, SCL_STATE, spa);
4488 		mutex_exit(&ztest_vdev_lock);
4489 		mutex_exit(&ztest_checkpoint_lock);
4490 		return;
4491 	}
4492 
4493 	/*
4494 	 * Make sure we were able to grow the vdev.
4495 	 */
4496 	if (new_ms_count <= old_ms_count) {
4497 		fatal(B_FALSE,
4498 		    "LUN expansion failed: ms_count %"PRIu64" < %"PRIu64"\n",
4499 		    old_ms_count, new_ms_count);
4500 	}
4501 
4502 	/*
4503 	 * Make sure we were able to grow the pool.
4504 	 */
4505 	if (new_class_space <= old_class_space) {
4506 		fatal(B_FALSE,
4507 		    "LUN expansion failed: class_space %"PRIu64" < %"PRIu64"\n",
4508 		    old_class_space, new_class_space);
4509 	}
4510 
4511 	if (ztest_opts.zo_verbose >= 5) {
4512 		char oldnumbuf[NN_NUMBUF_SZ], newnumbuf[NN_NUMBUF_SZ];
4513 
4514 		nicenum(old_class_space, oldnumbuf, sizeof (oldnumbuf));
4515 		nicenum(new_class_space, newnumbuf, sizeof (newnumbuf));
4516 		(void) printf("%s grew from %s to %s\n",
4517 		    spa->spa_name, oldnumbuf, newnumbuf);
4518 	}
4519 
4520 	spa_config_exit(spa, SCL_STATE, spa);
4521 	mutex_exit(&ztest_vdev_lock);
4522 	mutex_exit(&ztest_checkpoint_lock);
4523 }
4524 
4525 /*
4526  * Verify that dmu_objset_{create,destroy,open,close} work as expected.
4527  */
4528 static void
ztest_objset_create_cb(objset_t * os,void * arg,cred_t * cr,dmu_tx_t * tx)4529 ztest_objset_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx)
4530 {
4531 	(void) arg, (void) cr;
4532 
4533 	/*
4534 	 * Create the objects common to all ztest datasets.
4535 	 */
4536 	VERIFY0(zap_create_claim(os, ZTEST_DIROBJ,
4537 	    DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx));
4538 }
4539 
4540 static int
ztest_dataset_create(char * dsname)4541 ztest_dataset_create(char *dsname)
4542 {
4543 	int err;
4544 	uint64_t rand;
4545 	dsl_crypto_params_t *dcp = NULL;
4546 
4547 	/*
4548 	 * 50% of the time, we create encrypted datasets
4549 	 * using a random cipher suite and a hard-coded
4550 	 * wrapping key.
4551 	 */
4552 	rand = ztest_random(2);
4553 	if (rand != 0) {
4554 		nvlist_t *crypto_args = fnvlist_alloc();
4555 		nvlist_t *props = fnvlist_alloc();
4556 
4557 		/* slight bias towards the default cipher suite */
4558 		rand = ztest_random(ZIO_CRYPT_FUNCTIONS);
4559 		if (rand < ZIO_CRYPT_AES_128_CCM)
4560 			rand = ZIO_CRYPT_ON;
4561 
4562 		fnvlist_add_uint64(props,
4563 		    zfs_prop_to_name(ZFS_PROP_ENCRYPTION), rand);
4564 		fnvlist_add_uint8_array(crypto_args, "wkeydata",
4565 		    (uint8_t *)ztest_wkeydata, WRAPPING_KEY_LEN);
4566 
4567 		/*
4568 		 * These parameters aren't really used by the kernel. They
4569 		 * are simply stored so that userspace knows how to load
4570 		 * the wrapping key.
4571 		 */
4572 		fnvlist_add_uint64(props,
4573 		    zfs_prop_to_name(ZFS_PROP_KEYFORMAT), ZFS_KEYFORMAT_RAW);
4574 		fnvlist_add_string(props,
4575 		    zfs_prop_to_name(ZFS_PROP_KEYLOCATION), "prompt");
4576 		fnvlist_add_uint64(props,
4577 		    zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT), 0ULL);
4578 		fnvlist_add_uint64(props,
4579 		    zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS), 0ULL);
4580 
4581 		VERIFY0(dsl_crypto_params_create_nvlist(DCP_CMD_NONE, props,
4582 		    crypto_args, &dcp));
4583 
4584 		/*
4585 		 * Cycle through all available encryption implementations
4586 		 * to verify interoperability.
4587 		 */
4588 		VERIFY0(gcm_impl_set("cycle"));
4589 		VERIFY0(aes_impl_set("cycle"));
4590 
4591 		fnvlist_free(crypto_args);
4592 		fnvlist_free(props);
4593 	}
4594 
4595 	err = dmu_objset_create(dsname, DMU_OST_OTHER, 0, dcp,
4596 	    ztest_objset_create_cb, NULL);
4597 	dsl_crypto_params_free(dcp, !!err);
4598 
4599 	rand = ztest_random(100);
4600 	if (err || rand < 80)
4601 		return (err);
4602 
4603 	if (ztest_opts.zo_verbose >= 5)
4604 		(void) printf("Setting dataset %s to sync always\n", dsname);
4605 	return (ztest_dsl_prop_set_uint64(dsname, ZFS_PROP_SYNC,
4606 	    ZFS_SYNC_ALWAYS, B_FALSE));
4607 }
4608 
4609 static int
ztest_objset_destroy_cb(const char * name,void * arg)4610 ztest_objset_destroy_cb(const char *name, void *arg)
4611 {
4612 	(void) arg;
4613 	objset_t *os;
4614 	dmu_object_info_t doi;
4615 	int error;
4616 
4617 	/*
4618 	 * Verify that the dataset contains a directory object.
4619 	 */
4620 	VERIFY0(ztest_dmu_objset_own(name, DMU_OST_OTHER, B_TRUE,
4621 	    B_TRUE, FTAG, &os));
4622 	error = dmu_object_info(os, ZTEST_DIROBJ, &doi);
4623 	if (error != ENOENT) {
4624 		/* We could have crashed in the middle of destroying it */
4625 		ASSERT0(error);
4626 		ASSERT3U(doi.doi_type, ==, DMU_OT_ZAP_OTHER);
4627 		ASSERT3S(doi.doi_physical_blocks_512, >=, 0);
4628 	}
4629 	dmu_objset_disown(os, B_TRUE, FTAG);
4630 
4631 	/*
4632 	 * Destroy the dataset.
4633 	 */
4634 	if (strchr(name, '@') != NULL) {
4635 		error = dsl_destroy_snapshot(name, B_TRUE);
4636 		if (error != ECHRNG) {
4637 			/*
4638 			 * The program was executed, but encountered a runtime
4639 			 * error, such as insufficient slop, or a hold on the
4640 			 * dataset.
4641 			 */
4642 			ASSERT0(error);
4643 		}
4644 	} else {
4645 		error = dsl_destroy_head(name);
4646 		if (error == ENOSPC) {
4647 			/* There could be checkpoint or insufficient slop */
4648 			ztest_record_enospc(FTAG);
4649 		} else if (error != EBUSY) {
4650 			/* There could be a hold on this dataset */
4651 			ASSERT0(error);
4652 		}
4653 	}
4654 	return (0);
4655 }
4656 
4657 static boolean_t
ztest_snapshot_create(char * osname,uint64_t id)4658 ztest_snapshot_create(char *osname, uint64_t id)
4659 {
4660 	char snapname[ZFS_MAX_DATASET_NAME_LEN];
4661 	int error;
4662 
4663 	(void) snprintf(snapname, sizeof (snapname), "%"PRIu64"", id);
4664 
4665 	error = dmu_objset_snapshot_one(osname, snapname);
4666 	if (error == ENOSPC) {
4667 		ztest_record_enospc(FTAG);
4668 		return (B_FALSE);
4669 	}
4670 	if (error != 0 && error != EEXIST && error != ECHRNG) {
4671 		fatal(B_FALSE, "ztest_snapshot_create(%s@%s) = %d", osname,
4672 		    snapname, error);
4673 	}
4674 	return (B_TRUE);
4675 }
4676 
4677 static boolean_t
ztest_snapshot_destroy(char * osname,uint64_t id)4678 ztest_snapshot_destroy(char *osname, uint64_t id)
4679 {
4680 	char snapname[ZFS_MAX_DATASET_NAME_LEN];
4681 	int error;
4682 
4683 	(void) snprintf(snapname, sizeof (snapname), "%s@%"PRIu64"",
4684 	    osname, id);
4685 
4686 	error = dsl_destroy_snapshot(snapname, B_FALSE);
4687 	if (error != 0 && error != ENOENT && error != ECHRNG)
4688 		fatal(B_FALSE, "ztest_snapshot_destroy(%s) = %d",
4689 		    snapname, error);
4690 	return (B_TRUE);
4691 }
4692 
4693 void
ztest_dmu_objset_create_destroy(ztest_ds_t * zd,uint64_t id)4694 ztest_dmu_objset_create_destroy(ztest_ds_t *zd, uint64_t id)
4695 {
4696 	(void) zd;
4697 	ztest_ds_t *zdtmp;
4698 	int iters;
4699 	int error;
4700 	objset_t *os, *os2;
4701 	char name[ZFS_MAX_DATASET_NAME_LEN];
4702 	zilog_t *zilog;
4703 	int i;
4704 
4705 	zdtmp = umem_alloc(sizeof (ztest_ds_t), UMEM_NOFAIL);
4706 
4707 	(void) pthread_rwlock_rdlock(&ztest_name_lock);
4708 
4709 	(void) snprintf(name, sizeof (name), "%s/temp_%"PRIu64"",
4710 	    ztest_opts.zo_pool, id);
4711 
4712 	/*
4713 	 * If this dataset exists from a previous run, process its replay log
4714 	 * half of the time.  If we don't replay it, then dsl_destroy_head()
4715 	 * (invoked from ztest_objset_destroy_cb()) should just throw it away.
4716 	 */
4717 	if (ztest_random(2) == 0 &&
4718 	    ztest_dmu_objset_own(name, DMU_OST_OTHER, B_FALSE,
4719 	    B_TRUE, FTAG, &os) == 0) {
4720 		ztest_zd_init(zdtmp, NULL, os);
4721 		zil_replay(os, zdtmp, ztest_replay_vector);
4722 		ztest_zd_fini(zdtmp);
4723 		dmu_objset_disown(os, B_TRUE, FTAG);
4724 	}
4725 
4726 	/*
4727 	 * There may be an old instance of the dataset we're about to
4728 	 * create lying around from a previous run.  If so, destroy it
4729 	 * and all of its snapshots.
4730 	 */
4731 	(void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL,
4732 	    DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS);
4733 
4734 	/*
4735 	 * Verify that the destroyed dataset is no longer in the namespace.
4736 	 * It may still be present if the destroy above fails with ENOSPC.
4737 	 */
4738 	error = ztest_dmu_objset_own(name, DMU_OST_OTHER, B_TRUE, B_TRUE,
4739 	    FTAG, &os);
4740 	if (error == 0) {
4741 		dmu_objset_disown(os, B_TRUE, FTAG);
4742 		ztest_record_enospc(FTAG);
4743 		goto out;
4744 	}
4745 	VERIFY3U(ENOENT, ==, error);
4746 
4747 	/*
4748 	 * Verify that we can create a new dataset.
4749 	 */
4750 	error = ztest_dataset_create(name);
4751 	if (error) {
4752 		if (error == ENOSPC) {
4753 			ztest_record_enospc(FTAG);
4754 			goto out;
4755 		}
4756 		fatal(B_FALSE, "dmu_objset_create(%s) = %d", name, error);
4757 	}
4758 
4759 	VERIFY0(ztest_dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, B_TRUE,
4760 	    FTAG, &os));
4761 
4762 	ztest_zd_init(zdtmp, NULL, os);
4763 
4764 	/*
4765 	 * Open the intent log for it.
4766 	 */
4767 	zilog = zil_open(os, ztest_get_data, NULL);
4768 
4769 	/*
4770 	 * Put some objects in there, do a little I/O to them,
4771 	 * and randomly take a couple of snapshots along the way.
4772 	 */
4773 	iters = ztest_random(5);
4774 	for (i = 0; i < iters; i++) {
4775 		ztest_dmu_object_alloc_free(zdtmp, id);
4776 		if (ztest_random(iters) == 0)
4777 			(void) ztest_snapshot_create(name, i);
4778 	}
4779 
4780 	/*
4781 	 * Verify that we cannot create an existing dataset.
4782 	 */
4783 	VERIFY3U(EEXIST, ==,
4784 	    dmu_objset_create(name, DMU_OST_OTHER, 0, NULL, NULL, NULL));
4785 
4786 	/*
4787 	 * Verify that we can hold an objset that is also owned.
4788 	 */
4789 	VERIFY0(dmu_objset_hold(name, FTAG, &os2));
4790 	dmu_objset_rele(os2, FTAG);
4791 
4792 	/*
4793 	 * Verify that we cannot own an objset that is already owned.
4794 	 */
4795 	VERIFY3U(EBUSY, ==, ztest_dmu_objset_own(name, DMU_OST_OTHER,
4796 	    B_FALSE, B_TRUE, FTAG, &os2));
4797 
4798 	zil_close(zilog);
4799 	dmu_objset_disown(os, B_TRUE, FTAG);
4800 	ztest_zd_fini(zdtmp);
4801 out:
4802 	(void) pthread_rwlock_unlock(&ztest_name_lock);
4803 
4804 	umem_free(zdtmp, sizeof (ztest_ds_t));
4805 }
4806 
4807 /*
4808  * Verify that dmu_snapshot_{create,destroy,open,close} work as expected.
4809  */
4810 void
ztest_dmu_snapshot_create_destroy(ztest_ds_t * zd,uint64_t id)4811 ztest_dmu_snapshot_create_destroy(ztest_ds_t *zd, uint64_t id)
4812 {
4813 	(void) pthread_rwlock_rdlock(&ztest_name_lock);
4814 	(void) ztest_snapshot_destroy(zd->zd_name, id);
4815 	(void) ztest_snapshot_create(zd->zd_name, id);
4816 	(void) pthread_rwlock_unlock(&ztest_name_lock);
4817 }
4818 
4819 /*
4820  * Cleanup non-standard snapshots and clones.
4821  */
4822 static void
ztest_dsl_dataset_cleanup(char * osname,uint64_t id)4823 ztest_dsl_dataset_cleanup(char *osname, uint64_t id)
4824 {
4825 	char *snap1name;
4826 	char *clone1name;
4827 	char *snap2name;
4828 	char *clone2name;
4829 	char *snap3name;
4830 	int error;
4831 
4832 	snap1name  = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4833 	clone1name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4834 	snap2name  = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4835 	clone2name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4836 	snap3name  = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4837 
4838 	(void) snprintf(snap1name, ZFS_MAX_DATASET_NAME_LEN, "%s@s1_%"PRIu64"",
4839 	    osname, id);
4840 	(void) snprintf(clone1name, ZFS_MAX_DATASET_NAME_LEN, "%s/c1_%"PRIu64"",
4841 	    osname, id);
4842 	(void) snprintf(snap2name, ZFS_MAX_DATASET_NAME_LEN, "%s@s2_%"PRIu64"",
4843 	    clone1name, id);
4844 	(void) snprintf(clone2name, ZFS_MAX_DATASET_NAME_LEN, "%s/c2_%"PRIu64"",
4845 	    osname, id);
4846 	(void) snprintf(snap3name, ZFS_MAX_DATASET_NAME_LEN, "%s@s3_%"PRIu64"",
4847 	    clone1name, id);
4848 
4849 	error = dsl_destroy_head(clone2name);
4850 	if (error && error != ENOENT)
4851 		fatal(B_FALSE, "dsl_destroy_head(%s) = %d", clone2name, error);
4852 	error = dsl_destroy_snapshot(snap3name, B_FALSE);
4853 	if (error && error != ENOENT)
4854 		fatal(B_FALSE, "dsl_destroy_snapshot(%s) = %d",
4855 		    snap3name, error);
4856 	error = dsl_destroy_snapshot(snap2name, B_FALSE);
4857 	if (error && error != ENOENT)
4858 		fatal(B_FALSE, "dsl_destroy_snapshot(%s) = %d",
4859 		    snap2name, error);
4860 	error = dsl_destroy_head(clone1name);
4861 	if (error && error != ENOENT)
4862 		fatal(B_FALSE, "dsl_destroy_head(%s) = %d", clone1name, error);
4863 	error = dsl_destroy_snapshot(snap1name, B_FALSE);
4864 	if (error && error != ENOENT)
4865 		fatal(B_FALSE, "dsl_destroy_snapshot(%s) = %d",
4866 		    snap1name, error);
4867 
4868 	umem_free(snap1name, ZFS_MAX_DATASET_NAME_LEN);
4869 	umem_free(clone1name, ZFS_MAX_DATASET_NAME_LEN);
4870 	umem_free(snap2name, ZFS_MAX_DATASET_NAME_LEN);
4871 	umem_free(clone2name, ZFS_MAX_DATASET_NAME_LEN);
4872 	umem_free(snap3name, ZFS_MAX_DATASET_NAME_LEN);
4873 }
4874 
4875 /*
4876  * Verify dsl_dataset_promote handles EBUSY
4877  */
4878 void
ztest_dsl_dataset_promote_busy(ztest_ds_t * zd,uint64_t id)4879 ztest_dsl_dataset_promote_busy(ztest_ds_t *zd, uint64_t id)
4880 {
4881 	objset_t *os;
4882 	char *snap1name;
4883 	char *clone1name;
4884 	char *snap2name;
4885 	char *clone2name;
4886 	char *snap3name;
4887 	char *osname = zd->zd_name;
4888 	int error;
4889 
4890 	snap1name  = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4891 	clone1name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4892 	snap2name  = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4893 	clone2name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4894 	snap3name  = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4895 
4896 	(void) pthread_rwlock_rdlock(&ztest_name_lock);
4897 
4898 	ztest_dsl_dataset_cleanup(osname, id);
4899 
4900 	(void) snprintf(snap1name, ZFS_MAX_DATASET_NAME_LEN, "%s@s1_%"PRIu64"",
4901 	    osname, id);
4902 	(void) snprintf(clone1name, ZFS_MAX_DATASET_NAME_LEN, "%s/c1_%"PRIu64"",
4903 	    osname, id);
4904 	(void) snprintf(snap2name, ZFS_MAX_DATASET_NAME_LEN, "%s@s2_%"PRIu64"",
4905 	    clone1name, id);
4906 	(void) snprintf(clone2name, ZFS_MAX_DATASET_NAME_LEN, "%s/c2_%"PRIu64"",
4907 	    osname, id);
4908 	(void) snprintf(snap3name, ZFS_MAX_DATASET_NAME_LEN, "%s@s3_%"PRIu64"",
4909 	    clone1name, id);
4910 
4911 	error = dmu_objset_snapshot_one(osname, strchr(snap1name, '@') + 1);
4912 	if (error && error != EEXIST) {
4913 		if (error == ENOSPC) {
4914 			ztest_record_enospc(FTAG);
4915 			goto out;
4916 		}
4917 		fatal(B_FALSE, "dmu_take_snapshot(%s) = %d", snap1name, error);
4918 	}
4919 
4920 	error = dsl_dataset_clone(clone1name, snap1name);
4921 	if (error) {
4922 		if (error == ENOSPC) {
4923 			ztest_record_enospc(FTAG);
4924 			goto out;
4925 		}
4926 		fatal(B_FALSE, "dmu_objset_create(%s) = %d", clone1name, error);
4927 	}
4928 
4929 	error = dmu_objset_snapshot_one(clone1name, strchr(snap2name, '@') + 1);
4930 	if (error && error != EEXIST) {
4931 		if (error == ENOSPC) {
4932 			ztest_record_enospc(FTAG);
4933 			goto out;
4934 		}
4935 		fatal(B_FALSE, "dmu_open_snapshot(%s) = %d", snap2name, error);
4936 	}
4937 
4938 	error = dmu_objset_snapshot_one(clone1name, strchr(snap3name, '@') + 1);
4939 	if (error && error != EEXIST) {
4940 		if (error == ENOSPC) {
4941 			ztest_record_enospc(FTAG);
4942 			goto out;
4943 		}
4944 		fatal(B_FALSE, "dmu_open_snapshot(%s) = %d", snap3name, error);
4945 	}
4946 
4947 	error = dsl_dataset_clone(clone2name, snap3name);
4948 	if (error) {
4949 		if (error == ENOSPC) {
4950 			ztest_record_enospc(FTAG);
4951 			goto out;
4952 		}
4953 		fatal(B_FALSE, "dmu_objset_create(%s) = %d", clone2name, error);
4954 	}
4955 
4956 	error = ztest_dmu_objset_own(snap2name, DMU_OST_ANY, B_TRUE, B_TRUE,
4957 	    FTAG, &os);
4958 	if (error)
4959 		fatal(B_FALSE, "dmu_objset_own(%s) = %d", snap2name, error);
4960 	error = dsl_dataset_promote(clone2name, NULL);
4961 	if (error == ENOSPC) {
4962 		dmu_objset_disown(os, B_TRUE, FTAG);
4963 		ztest_record_enospc(FTAG);
4964 		goto out;
4965 	}
4966 	if (error != EBUSY)
4967 		fatal(B_FALSE, "dsl_dataset_promote(%s), %d, not EBUSY",
4968 		    clone2name, error);
4969 	dmu_objset_disown(os, B_TRUE, FTAG);
4970 
4971 out:
4972 	ztest_dsl_dataset_cleanup(osname, id);
4973 
4974 	(void) pthread_rwlock_unlock(&ztest_name_lock);
4975 
4976 	umem_free(snap1name, ZFS_MAX_DATASET_NAME_LEN);
4977 	umem_free(clone1name, ZFS_MAX_DATASET_NAME_LEN);
4978 	umem_free(snap2name, ZFS_MAX_DATASET_NAME_LEN);
4979 	umem_free(clone2name, ZFS_MAX_DATASET_NAME_LEN);
4980 	umem_free(snap3name, ZFS_MAX_DATASET_NAME_LEN);
4981 }
4982 
4983 #undef OD_ARRAY_SIZE
4984 #define	OD_ARRAY_SIZE	4
4985 
4986 /*
4987  * Verify that dmu_object_{alloc,free} work as expected.
4988  */
4989 void
ztest_dmu_object_alloc_free(ztest_ds_t * zd,uint64_t id)4990 ztest_dmu_object_alloc_free(ztest_ds_t *zd, uint64_t id)
4991 {
4992 	ztest_od_t *od;
4993 	int batchsize;
4994 	int size;
4995 	int b;
4996 
4997 	size = sizeof (ztest_od_t) * OD_ARRAY_SIZE;
4998 	od = umem_alloc(size, UMEM_NOFAIL);
4999 	batchsize = OD_ARRAY_SIZE;
5000 
5001 	for (b = 0; b < batchsize; b++)
5002 		ztest_od_init(od + b, id, FTAG, b, DMU_OT_UINT64_OTHER,
5003 		    0, 0, 0);
5004 
5005 	/*
5006 	 * Destroy the previous batch of objects, create a new batch,
5007 	 * and do some I/O on the new objects.
5008 	 */
5009 	if (ztest_object_init(zd, od, size, B_TRUE) != 0) {
5010 		zd->zd_od = NULL;
5011 		umem_free(od, size);
5012 		return;
5013 	}
5014 
5015 	while (ztest_random(4 * batchsize) != 0)
5016 		ztest_io(zd, od[ztest_random(batchsize)].od_object,
5017 		    ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
5018 
5019 	umem_free(od, size);
5020 }
5021 
5022 /*
5023  * Rewind the global allocator to verify object allocation backfilling.
5024  */
5025 void
ztest_dmu_object_next_chunk(ztest_ds_t * zd,uint64_t id)5026 ztest_dmu_object_next_chunk(ztest_ds_t *zd, uint64_t id)
5027 {
5028 	(void) id;
5029 	objset_t *os = zd->zd_os;
5030 	uint_t dnodes_per_chunk = 1 << dmu_object_alloc_chunk_shift;
5031 	uint64_t object;
5032 
5033 	/*
5034 	 * Rewind the global allocator randomly back to a lower object number
5035 	 * to force backfilling and reclamation of recently freed dnodes.
5036 	 */
5037 	mutex_enter(&os->os_obj_lock);
5038 	object = ztest_random(os->os_obj_next_chunk);
5039 	os->os_obj_next_chunk = P2ALIGN_TYPED(object, dnodes_per_chunk,
5040 	    uint64_t);
5041 	mutex_exit(&os->os_obj_lock);
5042 }
5043 
5044 #undef OD_ARRAY_SIZE
5045 #define	OD_ARRAY_SIZE	2
5046 
5047 /*
5048  * Verify that dmu_{read,write} work as expected.
5049  */
5050 void
ztest_dmu_read_write(ztest_ds_t * zd,uint64_t id)5051 ztest_dmu_read_write(ztest_ds_t *zd, uint64_t id)
5052 {
5053 	int size;
5054 	ztest_od_t *od;
5055 
5056 	objset_t *os = zd->zd_os;
5057 	size = sizeof (ztest_od_t) * OD_ARRAY_SIZE;
5058 	od = umem_alloc(size, UMEM_NOFAIL);
5059 	dmu_tx_t *tx;
5060 	int freeit, error;
5061 	uint64_t i, n, s, txg;
5062 	bufwad_t *packbuf, *bigbuf, *pack, *bigH, *bigT;
5063 	uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize;
5064 	uint64_t chunksize = (1000 + ztest_random(1000)) * sizeof (uint64_t);
5065 	uint64_t regions = 997;
5066 	uint64_t stride = 123456789ULL;
5067 	uint64_t width = 40;
5068 	int free_percent = 5;
5069 	dmu_flags_t dmu_read_flags = DMU_READ_PREFETCH;
5070 
5071 	/*
5072 	 * We will randomly set when to do O_DIRECT on a read.
5073 	 */
5074 	if (ztest_random(4) == 0)
5075 		dmu_read_flags |= DMU_DIRECTIO;
5076 
5077 	/*
5078 	 * This test uses two objects, packobj and bigobj, that are always
5079 	 * updated together (i.e. in the same tx) so that their contents are
5080 	 * in sync and can be compared.  Their contents relate to each other
5081 	 * in a simple way: packobj is a dense array of 'bufwad' structures,
5082 	 * while bigobj is a sparse array of the same bufwads.  Specifically,
5083 	 * for any index n, there are three bufwads that should be identical:
5084 	 *
5085 	 *	packobj, at offset n * sizeof (bufwad_t)
5086 	 *	bigobj, at the head of the nth chunk
5087 	 *	bigobj, at the tail of the nth chunk
5088 	 *
5089 	 * The chunk size is arbitrary. It doesn't have to be a power of two,
5090 	 * and it doesn't have any relation to the object blocksize.
5091 	 * The only requirement is that it can hold at least two bufwads.
5092 	 *
5093 	 * Normally, we write the bufwad to each of these locations.
5094 	 * However, free_percent of the time we instead write zeroes to
5095 	 * packobj and perform a dmu_free_range() on bigobj.  By comparing
5096 	 * bigobj to packobj, we can verify that the DMU is correctly
5097 	 * tracking which parts of an object are allocated and free,
5098 	 * and that the contents of the allocated blocks are correct.
5099 	 */
5100 
5101 	/*
5102 	 * Read the directory info.  If it's the first time, set things up.
5103 	 */
5104 	ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, chunksize);
5105 	ztest_od_init(od + 1, id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, 0,
5106 	    chunksize);
5107 
5108 	if (ztest_object_init(zd, od, size, B_FALSE) != 0) {
5109 		umem_free(od, size);
5110 		return;
5111 	}
5112 
5113 	bigobj = od[0].od_object;
5114 	packobj = od[1].od_object;
5115 	chunksize = od[0].od_gen;
5116 	ASSERT3U(chunksize, ==, od[1].od_gen);
5117 
5118 	/*
5119 	 * Prefetch a random chunk of the big object.
5120 	 * Our aim here is to get some async reads in flight
5121 	 * for blocks that we may free below; the DMU should
5122 	 * handle this race correctly.
5123 	 */
5124 	n = ztest_random(regions) * stride + ztest_random(width);
5125 	s = 1 + ztest_random(2 * width - 1);
5126 	dmu_prefetch(os, bigobj, 0, n * chunksize, s * chunksize,
5127 	    ZIO_PRIORITY_SYNC_READ);
5128 
5129 	/*
5130 	 * Pick a random index and compute the offsets into packobj and bigobj.
5131 	 */
5132 	n = ztest_random(regions) * stride + ztest_random(width);
5133 	s = 1 + ztest_random(width - 1);
5134 
5135 	packoff = n * sizeof (bufwad_t);
5136 	packsize = s * sizeof (bufwad_t);
5137 
5138 	bigoff = n * chunksize;
5139 	bigsize = s * chunksize;
5140 
5141 	packbuf = umem_alloc(packsize, UMEM_NOFAIL);
5142 	bigbuf = umem_alloc(bigsize, UMEM_NOFAIL);
5143 
5144 	/*
5145 	 * free_percent of the time, free a range of bigobj rather than
5146 	 * overwriting it.
5147 	 */
5148 	freeit = (ztest_random(100) < free_percent);
5149 
5150 	/*
5151 	 * Read the current contents of our objects.
5152 	 */
5153 	error = dmu_read(os, packobj, packoff, packsize, packbuf,
5154 	    dmu_read_flags);
5155 	ASSERT0(error);
5156 	error = dmu_read(os, bigobj, bigoff, bigsize, bigbuf,
5157 	    dmu_read_flags);
5158 	ASSERT0(error);
5159 
5160 	/*
5161 	 * Get a tx for the mods to both packobj and bigobj.
5162 	 */
5163 	tx = dmu_tx_create(os);
5164 
5165 	dmu_tx_hold_write(tx, packobj, packoff, packsize);
5166 
5167 	if (freeit)
5168 		dmu_tx_hold_free(tx, bigobj, bigoff, bigsize);
5169 	else
5170 		dmu_tx_hold_write(tx, bigobj, bigoff, bigsize);
5171 
5172 	/* This accounts for setting the checksum/compression. */
5173 	dmu_tx_hold_bonus(tx, bigobj);
5174 
5175 	txg = ztest_tx_assign(tx, DMU_TX_MIGHTWAIT, FTAG);
5176 	if (txg == 0) {
5177 		umem_free(packbuf, packsize);
5178 		umem_free(bigbuf, bigsize);
5179 		umem_free(od, size);
5180 		return;
5181 	}
5182 
5183 	enum zio_checksum cksum;
5184 	do {
5185 		cksum = (enum zio_checksum)
5186 		    ztest_random_dsl_prop(ZFS_PROP_CHECKSUM);
5187 	} while (cksum >= ZIO_CHECKSUM_LEGACY_FUNCTIONS);
5188 	dmu_object_set_checksum(os, bigobj, cksum, tx);
5189 
5190 	enum zio_compress comp;
5191 	do {
5192 		comp = (enum zio_compress)
5193 		    ztest_random_dsl_prop(ZFS_PROP_COMPRESSION);
5194 	} while (comp >= ZIO_COMPRESS_LEGACY_FUNCTIONS);
5195 	dmu_object_set_compress(os, bigobj, comp, tx);
5196 
5197 	/*
5198 	 * For each index from n to n + s, verify that the existing bufwad
5199 	 * in packobj matches the bufwads at the head and tail of the
5200 	 * corresponding chunk in bigobj.  Then update all three bufwads
5201 	 * with the new values we want to write out.
5202 	 */
5203 	for (i = 0; i < s; i++) {
5204 		/* LINTED */
5205 		pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t));
5206 		/* LINTED */
5207 		bigH = (bufwad_t *)((char *)bigbuf + i * chunksize);
5208 		/* LINTED */
5209 		bigT = (bufwad_t *)((char *)bigH + chunksize) - 1;
5210 
5211 		ASSERT3U((uintptr_t)bigH - (uintptr_t)bigbuf, <, bigsize);
5212 		ASSERT3U((uintptr_t)bigT - (uintptr_t)bigbuf, <, bigsize);
5213 
5214 		if (pack->bw_txg > txg)
5215 			fatal(B_FALSE,
5216 			    "future leak: got %"PRIx64", open txg is %"PRIx64"",
5217 			    pack->bw_txg, txg);
5218 
5219 		if (pack->bw_data != 0 && pack->bw_index != n + i)
5220 			fatal(B_FALSE, "wrong index: "
5221 			    "got %"PRIx64", wanted %"PRIx64"+%"PRIx64"",
5222 			    pack->bw_index, n, i);
5223 
5224 		if (memcmp(pack, bigH, sizeof (bufwad_t)) != 0)
5225 			fatal(B_FALSE, "pack/bigH mismatch in %p/%p",
5226 			    pack, bigH);
5227 
5228 		if (memcmp(pack, bigT, sizeof (bufwad_t)) != 0)
5229 			fatal(B_FALSE, "pack/bigT mismatch in %p/%p",
5230 			    pack, bigT);
5231 
5232 		if (freeit) {
5233 			memset(pack, 0, sizeof (bufwad_t));
5234 		} else {
5235 			pack->bw_index = n + i;
5236 			pack->bw_txg = txg;
5237 			pack->bw_data = 1 + ztest_random(-2ULL);
5238 		}
5239 		*bigH = *pack;
5240 		*bigT = *pack;
5241 	}
5242 
5243 	/*
5244 	 * We've verified all the old bufwads, and made new ones.
5245 	 * Now write them out.
5246 	 */
5247 	dmu_write(os, packobj, packoff, packsize, packbuf, tx);
5248 
5249 	if (freeit) {
5250 		if (ztest_opts.zo_verbose >= 7) {
5251 			(void) printf("freeing offset %"PRIx64" size %"PRIx64""
5252 			    " txg %"PRIx64"\n",
5253 			    bigoff, bigsize, txg);
5254 		}
5255 		VERIFY0(dmu_free_range(os, bigobj, bigoff, bigsize, tx));
5256 	} else {
5257 		if (ztest_opts.zo_verbose >= 7) {
5258 			(void) printf("writing offset %"PRIx64" size %"PRIx64""
5259 			    " txg %"PRIx64"\n",
5260 			    bigoff, bigsize, txg);
5261 		}
5262 		dmu_write(os, bigobj, bigoff, bigsize, bigbuf, tx);
5263 	}
5264 
5265 	dmu_tx_commit(tx);
5266 
5267 	/*
5268 	 * Sanity check the stuff we just wrote.
5269 	 */
5270 	{
5271 		void *packcheck = umem_alloc(packsize, UMEM_NOFAIL);
5272 		void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL);
5273 
5274 		VERIFY0(dmu_read(os, packobj, packoff,
5275 		    packsize, packcheck, dmu_read_flags));
5276 		VERIFY0(dmu_read(os, bigobj, bigoff,
5277 		    bigsize, bigcheck, dmu_read_flags));
5278 
5279 		ASSERT0(memcmp(packbuf, packcheck, packsize));
5280 		ASSERT0(memcmp(bigbuf, bigcheck, bigsize));
5281 
5282 		umem_free(packcheck, packsize);
5283 		umem_free(bigcheck, bigsize);
5284 	}
5285 
5286 	umem_free(packbuf, packsize);
5287 	umem_free(bigbuf, bigsize);
5288 	umem_free(od, size);
5289 }
5290 
5291 static void
compare_and_update_pbbufs(uint64_t s,bufwad_t * packbuf,bufwad_t * bigbuf,uint64_t bigsize,uint64_t n,uint64_t chunksize,uint64_t txg)5292 compare_and_update_pbbufs(uint64_t s, bufwad_t *packbuf, bufwad_t *bigbuf,
5293     uint64_t bigsize, uint64_t n, uint64_t chunksize, uint64_t txg)
5294 {
5295 	uint64_t i;
5296 	bufwad_t *pack;
5297 	bufwad_t *bigH;
5298 	bufwad_t *bigT;
5299 
5300 	/*
5301 	 * For each index from n to n + s, verify that the existing bufwad
5302 	 * in packobj matches the bufwads at the head and tail of the
5303 	 * corresponding chunk in bigobj.  Then update all three bufwads
5304 	 * with the new values we want to write out.
5305 	 */
5306 	for (i = 0; i < s; i++) {
5307 		/* LINTED */
5308 		pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t));
5309 		/* LINTED */
5310 		bigH = (bufwad_t *)((char *)bigbuf + i * chunksize);
5311 		/* LINTED */
5312 		bigT = (bufwad_t *)((char *)bigH + chunksize) - 1;
5313 
5314 		ASSERT3U((uintptr_t)bigH - (uintptr_t)bigbuf, <, bigsize);
5315 		ASSERT3U((uintptr_t)bigT - (uintptr_t)bigbuf, <, bigsize);
5316 
5317 		if (pack->bw_txg > txg)
5318 			fatal(B_FALSE,
5319 			    "future leak: got %"PRIx64", open txg is %"PRIx64"",
5320 			    pack->bw_txg, txg);
5321 
5322 		if (pack->bw_data != 0 && pack->bw_index != n + i)
5323 			fatal(B_FALSE, "wrong index: "
5324 			    "got %"PRIx64", wanted %"PRIx64"+%"PRIx64"",
5325 			    pack->bw_index, n, i);
5326 
5327 		if (memcmp(pack, bigH, sizeof (bufwad_t)) != 0)
5328 			fatal(B_FALSE, "pack/bigH mismatch in %p/%p",
5329 			    pack, bigH);
5330 
5331 		if (memcmp(pack, bigT, sizeof (bufwad_t)) != 0)
5332 			fatal(B_FALSE, "pack/bigT mismatch in %p/%p",
5333 			    pack, bigT);
5334 
5335 		pack->bw_index = n + i;
5336 		pack->bw_txg = txg;
5337 		pack->bw_data = 1 + ztest_random(-2ULL);
5338 
5339 		*bigH = *pack;
5340 		*bigT = *pack;
5341 	}
5342 }
5343 
5344 #undef OD_ARRAY_SIZE
5345 #define	OD_ARRAY_SIZE	2
5346 
5347 void
ztest_dmu_read_write_zcopy(ztest_ds_t * zd,uint64_t id)5348 ztest_dmu_read_write_zcopy(ztest_ds_t *zd, uint64_t id)
5349 {
5350 	objset_t *os = zd->zd_os;
5351 	ztest_od_t *od;
5352 	dmu_tx_t *tx;
5353 	uint64_t i;
5354 	int error;
5355 	int size;
5356 	uint64_t n, s, txg;
5357 	bufwad_t *packbuf, *bigbuf;
5358 	uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize;
5359 	uint64_t blocksize = ztest_random_blocksize();
5360 	uint64_t chunksize = blocksize;
5361 	uint64_t regions = 997;
5362 	uint64_t stride = 123456789ULL;
5363 	uint64_t width = 9;
5364 	dmu_buf_t *bonus_db;
5365 	arc_buf_t **bigbuf_arcbufs;
5366 	dmu_object_info_t doi;
5367 	uint32_t dmu_read_flags = DMU_READ_PREFETCH;
5368 
5369 	/*
5370 	 * We will randomly set when to do O_DIRECT on a read.
5371 	 */
5372 	if (ztest_random(4) == 0)
5373 		dmu_read_flags |= DMU_DIRECTIO;
5374 
5375 	size = sizeof (ztest_od_t) * OD_ARRAY_SIZE;
5376 	od = umem_alloc(size, UMEM_NOFAIL);
5377 
5378 	/*
5379 	 * This test uses two objects, packobj and bigobj, that are always
5380 	 * updated together (i.e. in the same tx) so that their contents are
5381 	 * in sync and can be compared.  Their contents relate to each other
5382 	 * in a simple way: packobj is a dense array of 'bufwad' structures,
5383 	 * while bigobj is a sparse array of the same bufwads.  Specifically,
5384 	 * for any index n, there are three bufwads that should be identical:
5385 	 *
5386 	 *	packobj, at offset n * sizeof (bufwad_t)
5387 	 *	bigobj, at the head of the nth chunk
5388 	 *	bigobj, at the tail of the nth chunk
5389 	 *
5390 	 * The chunk size is set equal to bigobj block size so that
5391 	 * dmu_assign_arcbuf_by_dbuf() can be tested for object updates.
5392 	 */
5393 
5394 	/*
5395 	 * Read the directory info.  If it's the first time, set things up.
5396 	 */
5397 	ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0, 0);
5398 	ztest_od_init(od + 1, id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, 0,
5399 	    chunksize);
5400 
5401 
5402 	if (ztest_object_init(zd, od, size, B_FALSE) != 0) {
5403 		umem_free(od, size);
5404 		return;
5405 	}
5406 
5407 	bigobj = od[0].od_object;
5408 	packobj = od[1].od_object;
5409 	blocksize = od[0].od_blocksize;
5410 	chunksize = blocksize;
5411 	ASSERT3U(chunksize, ==, od[1].od_gen);
5412 
5413 	VERIFY0(dmu_object_info(os, bigobj, &doi));
5414 	VERIFY(ISP2(doi.doi_data_block_size));
5415 	VERIFY3U(chunksize, ==, doi.doi_data_block_size);
5416 	VERIFY3U(chunksize, >=, 2 * sizeof (bufwad_t));
5417 
5418 	/*
5419 	 * Pick a random index and compute the offsets into packobj and bigobj.
5420 	 */
5421 	n = ztest_random(regions) * stride + ztest_random(width);
5422 	s = 1 + ztest_random(width - 1);
5423 
5424 	packoff = n * sizeof (bufwad_t);
5425 	packsize = s * sizeof (bufwad_t);
5426 
5427 	bigoff = n * chunksize;
5428 	bigsize = s * chunksize;
5429 
5430 	packbuf = umem_zalloc(packsize, UMEM_NOFAIL);
5431 	bigbuf = umem_zalloc(bigsize, UMEM_NOFAIL);
5432 
5433 	VERIFY0(dmu_bonus_hold(os, bigobj, FTAG, &bonus_db));
5434 
5435 	bigbuf_arcbufs = umem_zalloc(2 * s * sizeof (arc_buf_t *), UMEM_NOFAIL);
5436 
5437 	/*
5438 	 * Iteration 0 test zcopy for DB_UNCACHED dbufs.
5439 	 * Iteration 1 test zcopy to already referenced dbufs.
5440 	 * Iteration 2 test zcopy to dirty dbuf in the same txg.
5441 	 * Iteration 3 test zcopy to dbuf dirty in previous txg.
5442 	 * Iteration 4 test zcopy when dbuf is no longer dirty.
5443 	 * Iteration 5 test zcopy when it can't be done.
5444 	 * Iteration 6 one more zcopy write.
5445 	 */
5446 	for (i = 0; i < 7; i++) {
5447 		uint64_t j;
5448 		uint64_t off;
5449 
5450 		/*
5451 		 * In iteration 5 (i == 5) use arcbufs
5452 		 * that don't match bigobj blksz to test
5453 		 * dmu_assign_arcbuf_by_dbuf() when it can't directly
5454 		 * assign an arcbuf to a dbuf.
5455 		 */
5456 		for (j = 0; j < s; j++) {
5457 			if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) {
5458 				bigbuf_arcbufs[j] =
5459 				    dmu_request_arcbuf(bonus_db, chunksize);
5460 			} else {
5461 				bigbuf_arcbufs[2 * j] =
5462 				    dmu_request_arcbuf(bonus_db, chunksize / 2);
5463 				bigbuf_arcbufs[2 * j + 1] =
5464 				    dmu_request_arcbuf(bonus_db, chunksize / 2);
5465 			}
5466 		}
5467 
5468 		/*
5469 		 * Get a tx for the mods to both packobj and bigobj.
5470 		 */
5471 		tx = dmu_tx_create(os);
5472 
5473 		dmu_tx_hold_write(tx, packobj, packoff, packsize);
5474 		dmu_tx_hold_write(tx, bigobj, bigoff, bigsize);
5475 
5476 		txg = ztest_tx_assign(tx, DMU_TX_MIGHTWAIT, FTAG);
5477 		if (txg == 0) {
5478 			umem_free(packbuf, packsize);
5479 			umem_free(bigbuf, bigsize);
5480 			for (j = 0; j < s; j++) {
5481 				if (i != 5 ||
5482 				    chunksize < (SPA_MINBLOCKSIZE * 2)) {
5483 					dmu_return_arcbuf(bigbuf_arcbufs[j]);
5484 				} else {
5485 					dmu_return_arcbuf(
5486 					    bigbuf_arcbufs[2 * j]);
5487 					dmu_return_arcbuf(
5488 					    bigbuf_arcbufs[2 * j + 1]);
5489 				}
5490 			}
5491 			umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *));
5492 			umem_free(od, size);
5493 			dmu_buf_rele(bonus_db, FTAG);
5494 			return;
5495 		}
5496 
5497 		/*
5498 		 * 50% of the time don't read objects in the 1st iteration to
5499 		 * test dmu_assign_arcbuf_by_dbuf() for the case when there are
5500 		 * no existing dbufs for the specified offsets.
5501 		 */
5502 		if (i != 0 || ztest_random(2) != 0) {
5503 			error = dmu_read(os, packobj, packoff,
5504 			    packsize, packbuf, dmu_read_flags);
5505 			ASSERT0(error);
5506 			error = dmu_read(os, bigobj, bigoff, bigsize,
5507 			    bigbuf, dmu_read_flags);
5508 			ASSERT0(error);
5509 		}
5510 		compare_and_update_pbbufs(s, packbuf, bigbuf, bigsize,
5511 		    n, chunksize, txg);
5512 
5513 		/*
5514 		 * We've verified all the old bufwads, and made new ones.
5515 		 * Now write them out.
5516 		 */
5517 		dmu_write(os, packobj, packoff, packsize, packbuf, tx);
5518 		if (ztest_opts.zo_verbose >= 7) {
5519 			(void) printf("writing offset %"PRIx64" size %"PRIx64""
5520 			    " txg %"PRIx64"\n",
5521 			    bigoff, bigsize, txg);
5522 		}
5523 		for (off = bigoff, j = 0; j < s; j++, off += chunksize) {
5524 			dmu_buf_t *dbt;
5525 			if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) {
5526 				memcpy(bigbuf_arcbufs[j]->b_data,
5527 				    (caddr_t)bigbuf + (off - bigoff),
5528 				    chunksize);
5529 			} else {
5530 				memcpy(bigbuf_arcbufs[2 * j]->b_data,
5531 				    (caddr_t)bigbuf + (off - bigoff),
5532 				    chunksize / 2);
5533 				memcpy(bigbuf_arcbufs[2 * j + 1]->b_data,
5534 				    (caddr_t)bigbuf + (off - bigoff) +
5535 				    chunksize / 2,
5536 				    chunksize / 2);
5537 			}
5538 
5539 			if (i == 1) {
5540 				VERIFY(dmu_buf_hold(os, bigobj, off,
5541 				    FTAG, &dbt, DMU_READ_NO_PREFETCH) == 0);
5542 			}
5543 			if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) {
5544 				VERIFY0(dmu_assign_arcbuf_by_dbuf(bonus_db,
5545 				    off, bigbuf_arcbufs[j], tx, 0));
5546 			} else {
5547 				VERIFY0(dmu_assign_arcbuf_by_dbuf(bonus_db,
5548 				    off, bigbuf_arcbufs[2 * j], tx, 0));
5549 				VERIFY0(dmu_assign_arcbuf_by_dbuf(bonus_db,
5550 				    off + chunksize / 2,
5551 				    bigbuf_arcbufs[2 * j + 1], tx, 0));
5552 			}
5553 			if (i == 1) {
5554 				dmu_buf_rele(dbt, FTAG);
5555 			}
5556 		}
5557 		dmu_tx_commit(tx);
5558 
5559 		/*
5560 		 * Sanity check the stuff we just wrote.
5561 		 */
5562 		{
5563 			void *packcheck = umem_alloc(packsize, UMEM_NOFAIL);
5564 			void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL);
5565 
5566 			VERIFY0(dmu_read(os, packobj, packoff,
5567 			    packsize, packcheck, dmu_read_flags));
5568 			VERIFY0(dmu_read(os, bigobj, bigoff,
5569 			    bigsize, bigcheck, dmu_read_flags));
5570 
5571 			ASSERT0(memcmp(packbuf, packcheck, packsize));
5572 			ASSERT0(memcmp(bigbuf, bigcheck, bigsize));
5573 
5574 			umem_free(packcheck, packsize);
5575 			umem_free(bigcheck, bigsize);
5576 		}
5577 		if (i == 2) {
5578 			txg_wait_open(dmu_objset_pool(os), 0, B_TRUE);
5579 		} else if (i == 3) {
5580 			txg_wait_synced(dmu_objset_pool(os), 0);
5581 		}
5582 	}
5583 
5584 	dmu_buf_rele(bonus_db, FTAG);
5585 	umem_free(packbuf, packsize);
5586 	umem_free(bigbuf, bigsize);
5587 	umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *));
5588 	umem_free(od, size);
5589 }
5590 
5591 void
ztest_dmu_write_parallel(ztest_ds_t * zd,uint64_t id)5592 ztest_dmu_write_parallel(ztest_ds_t *zd, uint64_t id)
5593 {
5594 	(void) id;
5595 	ztest_od_t *od;
5596 
5597 	od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
5598 	uint64_t offset = (1ULL << (ztest_random(20) + 43)) +
5599 	    (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
5600 
5601 	/*
5602 	 * Have multiple threads write to large offsets in an object
5603 	 * to verify that parallel writes to an object -- even to the
5604 	 * same blocks within the object -- doesn't cause any trouble.
5605 	 */
5606 	ztest_od_init(od, ID_PARALLEL, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, 0);
5607 
5608 	if (ztest_object_init(zd, od, sizeof (ztest_od_t), B_FALSE) != 0)
5609 		return;
5610 
5611 	while (ztest_random(10) != 0)
5612 		ztest_io(zd, od->od_object, offset);
5613 
5614 	umem_free(od, sizeof (ztest_od_t));
5615 }
5616 
5617 void
ztest_dmu_prealloc(ztest_ds_t * zd,uint64_t id)5618 ztest_dmu_prealloc(ztest_ds_t *zd, uint64_t id)
5619 {
5620 	ztest_od_t *od;
5621 	uint64_t offset = (1ULL << (ztest_random(4) + SPA_MAXBLOCKSHIFT)) +
5622 	    (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
5623 	uint64_t count = ztest_random(20) + 1;
5624 	uint64_t blocksize = ztest_random_blocksize();
5625 	void *data;
5626 
5627 	od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
5628 
5629 	ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0, 0);
5630 
5631 	if (ztest_object_init(zd, od, sizeof (ztest_od_t),
5632 	    !ztest_random(2)) != 0) {
5633 		umem_free(od, sizeof (ztest_od_t));
5634 		return;
5635 	}
5636 
5637 	if (ztest_truncate(zd, od->od_object, offset, count * blocksize) != 0) {
5638 		umem_free(od, sizeof (ztest_od_t));
5639 		return;
5640 	}
5641 
5642 	ztest_prealloc(zd, od->od_object, offset, count * blocksize);
5643 
5644 	data = umem_zalloc(blocksize, UMEM_NOFAIL);
5645 
5646 	while (ztest_random(count) != 0) {
5647 		uint64_t randoff = offset + (ztest_random(count) * blocksize);
5648 		if (ztest_write(zd, od->od_object, randoff, blocksize,
5649 		    data) != 0)
5650 			break;
5651 		while (ztest_random(4) != 0)
5652 			ztest_io(zd, od->od_object, randoff);
5653 	}
5654 
5655 	umem_free(data, blocksize);
5656 	umem_free(od, sizeof (ztest_od_t));
5657 }
5658 
5659 /*
5660  * Verify that zap_{create,destroy,add,remove,update} work as expected.
5661  */
5662 #define	ZTEST_ZAP_MIN_INTS	1
5663 #define	ZTEST_ZAP_MAX_INTS	4
5664 #define	ZTEST_ZAP_MAX_PROPS	1000
5665 
5666 void
ztest_zap(ztest_ds_t * zd,uint64_t id)5667 ztest_zap(ztest_ds_t *zd, uint64_t id)
5668 {
5669 	objset_t *os = zd->zd_os;
5670 	ztest_od_t *od;
5671 	uint64_t object;
5672 	uint64_t txg, last_txg;
5673 	uint64_t value[ZTEST_ZAP_MAX_INTS];
5674 	uint64_t zl_ints, zl_intsize, prop;
5675 	int i, ints;
5676 	dmu_tx_t *tx;
5677 	char propname[100], txgname[100];
5678 	int error;
5679 	const char *const hc[2] = { "s.acl.h", ".s.open.h.hyLZlg" };
5680 
5681 	od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
5682 	ztest_od_init(od, id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0, 0);
5683 
5684 	if (ztest_object_init(zd, od, sizeof (ztest_od_t),
5685 	    !ztest_random(2)) != 0)
5686 		goto out;
5687 
5688 	object = od->od_object;
5689 
5690 	/*
5691 	 * Generate a known hash collision, and verify that
5692 	 * we can lookup and remove both entries.
5693 	 */
5694 	tx = dmu_tx_create(os);
5695 	dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
5696 	txg = ztest_tx_assign(tx, DMU_TX_MIGHTWAIT, FTAG);
5697 	if (txg == 0)
5698 		goto out;
5699 	for (i = 0; i < 2; i++) {
5700 		value[i] = i;
5701 		VERIFY0(zap_add(os, object, hc[i], sizeof (uint64_t),
5702 		    1, &value[i], tx));
5703 	}
5704 	for (i = 0; i < 2; i++) {
5705 		VERIFY3U(EEXIST, ==, zap_add(os, object, hc[i],
5706 		    sizeof (uint64_t), 1, &value[i], tx));
5707 		VERIFY0(
5708 		    zap_length(os, object, hc[i], &zl_intsize, &zl_ints));
5709 		ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
5710 		ASSERT3U(zl_ints, ==, 1);
5711 	}
5712 	for (i = 0; i < 2; i++) {
5713 		VERIFY0(zap_remove(os, object, hc[i], tx));
5714 	}
5715 	dmu_tx_commit(tx);
5716 
5717 	/*
5718 	 * Generate a bunch of random entries.
5719 	 */
5720 	ints = MAX(ZTEST_ZAP_MIN_INTS, object % ZTEST_ZAP_MAX_INTS);
5721 
5722 	prop = ztest_random(ZTEST_ZAP_MAX_PROPS);
5723 	(void) sprintf(propname, "prop_%"PRIu64"", prop);
5724 	(void) sprintf(txgname, "txg_%"PRIu64"", prop);
5725 	memset(value, 0, sizeof (value));
5726 	last_txg = 0;
5727 
5728 	/*
5729 	 * If these zap entries already exist, validate their contents.
5730 	 */
5731 	error = zap_length(os, object, txgname, &zl_intsize, &zl_ints);
5732 	if (error == 0) {
5733 		ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
5734 		ASSERT3U(zl_ints, ==, 1);
5735 
5736 		VERIFY0(zap_lookup(os, object, txgname, zl_intsize,
5737 		    zl_ints, &last_txg));
5738 
5739 		VERIFY0(zap_length(os, object, propname, &zl_intsize,
5740 		    &zl_ints));
5741 
5742 		ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
5743 		ASSERT3U(zl_ints, ==, ints);
5744 
5745 		VERIFY0(zap_lookup(os, object, propname, zl_intsize,
5746 		    zl_ints, value));
5747 
5748 		for (i = 0; i < ints; i++) {
5749 			ASSERT3U(value[i], ==, last_txg + object + i);
5750 		}
5751 	} else {
5752 		ASSERT3U(error, ==, ENOENT);
5753 	}
5754 
5755 	/*
5756 	 * Atomically update two entries in our zap object.
5757 	 * The first is named txg_%llu, and contains the txg
5758 	 * in which the property was last updated.  The second
5759 	 * is named prop_%llu, and the nth element of its value
5760 	 * should be txg + object + n.
5761 	 */
5762 	tx = dmu_tx_create(os);
5763 	dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
5764 	txg = ztest_tx_assign(tx, DMU_TX_MIGHTWAIT, FTAG);
5765 	if (txg == 0)
5766 		goto out;
5767 
5768 	if (last_txg > txg)
5769 		fatal(B_FALSE, "zap future leak: old %"PRIu64" new %"PRIu64"",
5770 		    last_txg, txg);
5771 
5772 	for (i = 0; i < ints; i++)
5773 		value[i] = txg + object + i;
5774 
5775 	VERIFY0(zap_update(os, object, txgname, sizeof (uint64_t),
5776 	    1, &txg, tx));
5777 	VERIFY0(zap_update(os, object, propname, sizeof (uint64_t),
5778 	    ints, value, tx));
5779 
5780 	dmu_tx_commit(tx);
5781 
5782 	/*
5783 	 * Remove a random pair of entries.
5784 	 */
5785 	prop = ztest_random(ZTEST_ZAP_MAX_PROPS);
5786 	(void) sprintf(propname, "prop_%"PRIu64"", prop);
5787 	(void) sprintf(txgname, "txg_%"PRIu64"", prop);
5788 
5789 	error = zap_length(os, object, txgname, &zl_intsize, &zl_ints);
5790 
5791 	if (error == ENOENT)
5792 		goto out;
5793 
5794 	ASSERT0(error);
5795 
5796 	tx = dmu_tx_create(os);
5797 	dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
5798 	txg = ztest_tx_assign(tx, DMU_TX_MIGHTWAIT, FTAG);
5799 	if (txg == 0)
5800 		goto out;
5801 	VERIFY0(zap_remove(os, object, txgname, tx));
5802 	VERIFY0(zap_remove(os, object, propname, tx));
5803 	dmu_tx_commit(tx);
5804 out:
5805 	umem_free(od, sizeof (ztest_od_t));
5806 }
5807 
5808 /*
5809  * Test case to test the upgrading of a microzap to fatzap.
5810  */
5811 void
ztest_fzap(ztest_ds_t * zd,uint64_t id)5812 ztest_fzap(ztest_ds_t *zd, uint64_t id)
5813 {
5814 	objset_t *os = zd->zd_os;
5815 	ztest_od_t *od;
5816 	uint64_t object, txg, value;
5817 
5818 	od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
5819 	ztest_od_init(od, id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0, 0);
5820 
5821 	if (ztest_object_init(zd, od, sizeof (ztest_od_t),
5822 	    !ztest_random(2)) != 0)
5823 		goto out;
5824 	object = od->od_object;
5825 
5826 	/*
5827 	 * Add entries to this ZAP and make sure it spills over
5828 	 * and gets upgraded to a fatzap. Also, since we are adding
5829 	 * 2050 entries we should see ptrtbl growth and leaf-block split.
5830 	 */
5831 	for (value = 0; value < 2050; value++) {
5832 		char name[ZFS_MAX_DATASET_NAME_LEN];
5833 		dmu_tx_t *tx;
5834 		int error;
5835 
5836 		(void) snprintf(name, sizeof (name), "fzap-%"PRIu64"-%"PRIu64"",
5837 		    id, value);
5838 
5839 		tx = dmu_tx_create(os);
5840 		dmu_tx_hold_zap(tx, object, B_TRUE, name);
5841 		txg = ztest_tx_assign(tx, DMU_TX_MIGHTWAIT, FTAG);
5842 		if (txg == 0)
5843 			goto out;
5844 		error = zap_add(os, object, name, sizeof (uint64_t), 1,
5845 		    &value, tx);
5846 		ASSERT(error == 0 || error == EEXIST);
5847 		dmu_tx_commit(tx);
5848 	}
5849 out:
5850 	umem_free(od, sizeof (ztest_od_t));
5851 }
5852 
5853 void
ztest_zap_parallel(ztest_ds_t * zd,uint64_t id)5854 ztest_zap_parallel(ztest_ds_t *zd, uint64_t id)
5855 {
5856 	(void) id;
5857 	objset_t *os = zd->zd_os;
5858 	ztest_od_t *od;
5859 	uint64_t txg, object, count, wsize, wc, zl_wsize, zl_wc;
5860 	dmu_tx_t *tx;
5861 	int i, namelen, error;
5862 	int micro = ztest_random(2);
5863 	char name[20], string_value[20];
5864 	void *data;
5865 
5866 	od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
5867 	ztest_od_init(od, ID_PARALLEL, FTAG, micro, DMU_OT_ZAP_OTHER, 0, 0, 0);
5868 
5869 	if (ztest_object_init(zd, od, sizeof (ztest_od_t), B_FALSE) != 0) {
5870 		umem_free(od, sizeof (ztest_od_t));
5871 		return;
5872 	}
5873 
5874 	object = od->od_object;
5875 
5876 	/*
5877 	 * Generate a random name of the form 'xxx.....' where each
5878 	 * x is a random printable character and the dots are dots.
5879 	 * There are 94 such characters, and the name length goes from
5880 	 * 6 to 20, so there are 94^3 * 15 = 12,458,760 possible names.
5881 	 */
5882 	namelen = ztest_random(sizeof (name) - 5) + 5 + 1;
5883 
5884 	for (i = 0; i < 3; i++)
5885 		name[i] = '!' + ztest_random('~' - '!' + 1);
5886 	for (; i < namelen - 1; i++)
5887 		name[i] = '.';
5888 	name[i] = '\0';
5889 
5890 	if ((namelen & 1) || micro) {
5891 		wsize = sizeof (txg);
5892 		wc = 1;
5893 		data = &txg;
5894 	} else {
5895 		wsize = 1;
5896 		wc = namelen;
5897 		data = string_value;
5898 	}
5899 
5900 	count = -1ULL;
5901 	VERIFY0(zap_count(os, object, &count));
5902 	ASSERT3S(count, !=, -1ULL);
5903 
5904 	/*
5905 	 * Select an operation: length, lookup, add, update, remove.
5906 	 */
5907 	i = ztest_random(5);
5908 
5909 	if (i >= 2) {
5910 		tx = dmu_tx_create(os);
5911 		dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
5912 		txg = ztest_tx_assign(tx, DMU_TX_MIGHTWAIT, FTAG);
5913 		if (txg == 0) {
5914 			umem_free(od, sizeof (ztest_od_t));
5915 			return;
5916 		}
5917 		memcpy(string_value, name, namelen);
5918 	} else {
5919 		tx = NULL;
5920 		txg = 0;
5921 		memset(string_value, 0, namelen);
5922 	}
5923 
5924 	switch (i) {
5925 
5926 	case 0:
5927 		error = zap_length(os, object, name, &zl_wsize, &zl_wc);
5928 		if (error == 0) {
5929 			ASSERT3U(wsize, ==, zl_wsize);
5930 			ASSERT3U(wc, ==, zl_wc);
5931 		} else {
5932 			ASSERT3U(error, ==, ENOENT);
5933 		}
5934 		break;
5935 
5936 	case 1:
5937 		error = zap_lookup(os, object, name, wsize, wc, data);
5938 		if (error == 0) {
5939 			if (data == string_value &&
5940 			    memcmp(name, data, namelen) != 0)
5941 				fatal(B_FALSE, "name '%s' != val '%s' len %d",
5942 				    name, (char *)data, namelen);
5943 		} else {
5944 			ASSERT3U(error, ==, ENOENT);
5945 		}
5946 		break;
5947 
5948 	case 2:
5949 		error = zap_add(os, object, name, wsize, wc, data, tx);
5950 		ASSERT(error == 0 || error == EEXIST);
5951 		break;
5952 
5953 	case 3:
5954 		VERIFY0(zap_update(os, object, name, wsize, wc, data, tx));
5955 		break;
5956 
5957 	case 4:
5958 		error = zap_remove(os, object, name, tx);
5959 		ASSERT(error == 0 || error == ENOENT);
5960 		break;
5961 	}
5962 
5963 	if (tx != NULL)
5964 		dmu_tx_commit(tx);
5965 
5966 	umem_free(od, sizeof (ztest_od_t));
5967 }
5968 
5969 /*
5970  * Commit callback data.
5971  */
5972 typedef struct ztest_cb_data {
5973 	list_node_t		zcd_node;
5974 	uint64_t		zcd_txg;
5975 	int			zcd_expected_err;
5976 	boolean_t		zcd_added;
5977 	boolean_t		zcd_called;
5978 	spa_t			*zcd_spa;
5979 } ztest_cb_data_t;
5980 
5981 /* This is the actual commit callback function */
5982 static void
ztest_commit_callback(void * arg,int error)5983 ztest_commit_callback(void *arg, int error)
5984 {
5985 	ztest_cb_data_t *data = arg;
5986 	uint64_t synced_txg;
5987 
5988 	VERIFY3P(data, !=, NULL);
5989 	VERIFY3S(data->zcd_expected_err, ==, error);
5990 	VERIFY(!data->zcd_called);
5991 
5992 	synced_txg = spa_last_synced_txg(data->zcd_spa);
5993 	if (data->zcd_txg > synced_txg)
5994 		fatal(B_FALSE,
5995 		    "commit callback of txg %"PRIu64" called prematurely, "
5996 		    "last synced txg = %"PRIu64"\n",
5997 		    data->zcd_txg, synced_txg);
5998 
5999 	data->zcd_called = B_TRUE;
6000 
6001 	if (error == ECANCELED) {
6002 		ASSERT0(data->zcd_txg);
6003 		ASSERT(!data->zcd_added);
6004 
6005 		/*
6006 		 * The private callback data should be destroyed here, but
6007 		 * since we are going to check the zcd_called field after
6008 		 * dmu_tx_abort(), we will destroy it there.
6009 		 */
6010 		return;
6011 	}
6012 
6013 	ASSERT(data->zcd_added);
6014 	ASSERT3U(data->zcd_txg, !=, 0);
6015 
6016 	(void) mutex_enter(&zcl.zcl_callbacks_lock);
6017 
6018 	/* See if this cb was called more quickly */
6019 	if ((synced_txg - data->zcd_txg) < zc_min_txg_delay)
6020 		zc_min_txg_delay = synced_txg - data->zcd_txg;
6021 
6022 	/* Remove our callback from the list */
6023 	list_remove(&zcl.zcl_callbacks, data);
6024 
6025 	(void) mutex_exit(&zcl.zcl_callbacks_lock);
6026 
6027 	umem_free(data, sizeof (ztest_cb_data_t));
6028 }
6029 
6030 /* Allocate and initialize callback data structure */
6031 static ztest_cb_data_t *
ztest_create_cb_data(objset_t * os,uint64_t txg)6032 ztest_create_cb_data(objset_t *os, uint64_t txg)
6033 {
6034 	ztest_cb_data_t *cb_data;
6035 
6036 	cb_data = umem_zalloc(sizeof (ztest_cb_data_t), UMEM_NOFAIL);
6037 
6038 	cb_data->zcd_txg = txg;
6039 	cb_data->zcd_spa = dmu_objset_spa(os);
6040 	list_link_init(&cb_data->zcd_node);
6041 
6042 	return (cb_data);
6043 }
6044 
6045 /*
6046  * Commit callback test.
6047  */
6048 void
ztest_dmu_commit_callbacks(ztest_ds_t * zd,uint64_t id)6049 ztest_dmu_commit_callbacks(ztest_ds_t *zd, uint64_t id)
6050 {
6051 	objset_t *os = zd->zd_os;
6052 	ztest_od_t *od;
6053 	dmu_tx_t *tx;
6054 	ztest_cb_data_t *cb_data[3], *tmp_cb;
6055 	uint64_t old_txg, txg;
6056 	int i, error = 0;
6057 
6058 	od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
6059 	ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, 0);
6060 
6061 	if (ztest_object_init(zd, od, sizeof (ztest_od_t), B_FALSE) != 0) {
6062 		umem_free(od, sizeof (ztest_od_t));
6063 		return;
6064 	}
6065 
6066 	tx = dmu_tx_create(os);
6067 
6068 	cb_data[0] = ztest_create_cb_data(os, 0);
6069 	dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[0]);
6070 
6071 	dmu_tx_hold_write(tx, od->od_object, 0, sizeof (uint64_t));
6072 
6073 	/* Every once in a while, abort the transaction on purpose */
6074 	if (ztest_random(100) == 0)
6075 		error = -1;
6076 
6077 	if (!error)
6078 		error = dmu_tx_assign(tx, DMU_TX_NOWAIT);
6079 
6080 	txg = error ? 0 : dmu_tx_get_txg(tx);
6081 
6082 	cb_data[0]->zcd_txg = txg;
6083 	cb_data[1] = ztest_create_cb_data(os, txg);
6084 	dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[1]);
6085 
6086 	if (error) {
6087 		/*
6088 		 * It's not a strict requirement to call the registered
6089 		 * callbacks from inside dmu_tx_abort(), but that's what
6090 		 * it's supposed to happen in the current implementation
6091 		 * so we will check for that.
6092 		 */
6093 		for (i = 0; i < 2; i++) {
6094 			cb_data[i]->zcd_expected_err = ECANCELED;
6095 			VERIFY(!cb_data[i]->zcd_called);
6096 		}
6097 
6098 		dmu_tx_abort(tx);
6099 
6100 		for (i = 0; i < 2; i++) {
6101 			VERIFY(cb_data[i]->zcd_called);
6102 			umem_free(cb_data[i], sizeof (ztest_cb_data_t));
6103 		}
6104 
6105 		umem_free(od, sizeof (ztest_od_t));
6106 		return;
6107 	}
6108 
6109 	cb_data[2] = ztest_create_cb_data(os, txg);
6110 	dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[2]);
6111 
6112 	/*
6113 	 * Read existing data to make sure there isn't a future leak.
6114 	 */
6115 	VERIFY0(dmu_read(os, od->od_object, 0, sizeof (uint64_t),
6116 	    &old_txg, DMU_READ_PREFETCH));
6117 
6118 	if (old_txg > txg)
6119 		fatal(B_FALSE,
6120 		    "future leak: got %"PRIu64", open txg is %"PRIu64"",
6121 		    old_txg, txg);
6122 
6123 	dmu_write(os, od->od_object, 0, sizeof (uint64_t), &txg, tx);
6124 
6125 	(void) mutex_enter(&zcl.zcl_callbacks_lock);
6126 
6127 	/*
6128 	 * Since commit callbacks don't have any ordering requirement and since
6129 	 * it is theoretically possible for a commit callback to be called
6130 	 * after an arbitrary amount of time has elapsed since its txg has been
6131 	 * synced, it is difficult to reliably determine whether a commit
6132 	 * callback hasn't been called due to high load or due to a flawed
6133 	 * implementation.
6134 	 *
6135 	 * In practice, we will assume that if after a certain number of txgs a
6136 	 * commit callback hasn't been called, then most likely there's an
6137 	 * implementation bug..
6138 	 */
6139 	tmp_cb = list_head(&zcl.zcl_callbacks);
6140 	if (tmp_cb != NULL &&
6141 	    tmp_cb->zcd_txg + ZTEST_COMMIT_CB_THRESH < txg) {
6142 		fatal(B_FALSE,
6143 		    "Commit callback threshold exceeded, "
6144 		    "oldest txg: %"PRIu64", open txg: %"PRIu64"\n",
6145 		    tmp_cb->zcd_txg, txg);
6146 	}
6147 
6148 	/*
6149 	 * Let's find the place to insert our callbacks.
6150 	 *
6151 	 * Even though the list is ordered by txg, it is possible for the
6152 	 * insertion point to not be the end because our txg may already be
6153 	 * quiescing at this point and other callbacks in the open txg
6154 	 * (from other objsets) may have sneaked in.
6155 	 */
6156 	tmp_cb = list_tail(&zcl.zcl_callbacks);
6157 	while (tmp_cb != NULL && tmp_cb->zcd_txg > txg)
6158 		tmp_cb = list_prev(&zcl.zcl_callbacks, tmp_cb);
6159 
6160 	/* Add the 3 callbacks to the list */
6161 	for (i = 0; i < 3; i++) {
6162 		if (tmp_cb == NULL)
6163 			list_insert_head(&zcl.zcl_callbacks, cb_data[i]);
6164 		else
6165 			list_insert_after(&zcl.zcl_callbacks, tmp_cb,
6166 			    cb_data[i]);
6167 
6168 		cb_data[i]->zcd_added = B_TRUE;
6169 		VERIFY(!cb_data[i]->zcd_called);
6170 
6171 		tmp_cb = cb_data[i];
6172 	}
6173 
6174 	zc_cb_counter += 3;
6175 
6176 	(void) mutex_exit(&zcl.zcl_callbacks_lock);
6177 
6178 	dmu_tx_commit(tx);
6179 
6180 	umem_free(od, sizeof (ztest_od_t));
6181 }
6182 
6183 /*
6184  * Visit each object in the dataset. Verify that its properties
6185  * are consistent what was stored in the block tag when it was created,
6186  * and that its unused bonus buffer space has not been overwritten.
6187  */
6188 void
ztest_verify_dnode_bt(ztest_ds_t * zd,uint64_t id)6189 ztest_verify_dnode_bt(ztest_ds_t *zd, uint64_t id)
6190 {
6191 	(void) id;
6192 	objset_t *os = zd->zd_os;
6193 	uint64_t obj;
6194 	int err = 0;
6195 
6196 	for (obj = 0; err == 0; err = dmu_object_next(os, &obj, FALSE, 0)) {
6197 		ztest_block_tag_t *bt = NULL;
6198 		dmu_object_info_t doi;
6199 		dmu_buf_t *db;
6200 
6201 		ztest_object_lock(zd, obj, ZTRL_READER);
6202 		if (dmu_bonus_hold(os, obj, FTAG, &db) != 0) {
6203 			ztest_object_unlock(zd, obj);
6204 			continue;
6205 		}
6206 
6207 		dmu_object_info_from_db(db, &doi);
6208 		if (doi.doi_bonus_size >= sizeof (*bt))
6209 			bt = ztest_bt_bonus(db);
6210 
6211 		if (bt && bt->bt_magic == BT_MAGIC) {
6212 			ztest_bt_verify(bt, os, obj, doi.doi_dnodesize,
6213 			    bt->bt_offset, bt->bt_gen, bt->bt_txg,
6214 			    bt->bt_crtxg);
6215 			ztest_verify_unused_bonus(db, bt, obj, os, bt->bt_gen);
6216 		}
6217 
6218 		dmu_buf_rele(db, FTAG);
6219 		ztest_object_unlock(zd, obj);
6220 	}
6221 }
6222 
6223 void
ztest_dsl_prop_get_set(ztest_ds_t * zd,uint64_t id)6224 ztest_dsl_prop_get_set(ztest_ds_t *zd, uint64_t id)
6225 {
6226 	(void) id;
6227 	zfs_prop_t proplist[] = {
6228 		ZFS_PROP_CHECKSUM,
6229 		ZFS_PROP_COMPRESSION,
6230 		ZFS_PROP_COPIES,
6231 		ZFS_PROP_DEDUP
6232 	};
6233 
6234 	(void) pthread_rwlock_rdlock(&ztest_name_lock);
6235 
6236 	for (int p = 0; p < sizeof (proplist) / sizeof (proplist[0]); p++) {
6237 		int error = ztest_dsl_prop_set_uint64(zd->zd_name, proplist[p],
6238 		    ztest_random_dsl_prop(proplist[p]), (int)ztest_random(2));
6239 		ASSERT(error == 0 || error == ENOSPC);
6240 	}
6241 
6242 	int error = ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_RECORDSIZE,
6243 	    ztest_random_blocksize(), (int)ztest_random(2));
6244 	ASSERT(error == 0 || error == ENOSPC);
6245 
6246 	(void) pthread_rwlock_unlock(&ztest_name_lock);
6247 }
6248 
6249 void
ztest_spa_prop_get_set(ztest_ds_t * zd,uint64_t id)6250 ztest_spa_prop_get_set(ztest_ds_t *zd, uint64_t id)
6251 {
6252 	(void) zd, (void) id;
6253 
6254 	(void) pthread_rwlock_rdlock(&ztest_name_lock);
6255 
6256 	(void) ztest_spa_prop_set_uint64(ZPOOL_PROP_AUTOTRIM, ztest_random(2));
6257 
6258 	nvlist_t *props = fnvlist_alloc();
6259 
6260 	VERIFY0(spa_prop_get(ztest_spa, props));
6261 
6262 	if (ztest_opts.zo_verbose >= 6)
6263 		dump_nvlist(props, 4);
6264 
6265 	fnvlist_free(props);
6266 
6267 	(void) pthread_rwlock_unlock(&ztest_name_lock);
6268 }
6269 
6270 static int
user_release_one(const char * snapname,const char * holdname)6271 user_release_one(const char *snapname, const char *holdname)
6272 {
6273 	nvlist_t *snaps, *holds;
6274 	int error;
6275 
6276 	snaps = fnvlist_alloc();
6277 	holds = fnvlist_alloc();
6278 	fnvlist_add_boolean(holds, holdname);
6279 	fnvlist_add_nvlist(snaps, snapname, holds);
6280 	fnvlist_free(holds);
6281 	error = dsl_dataset_user_release(snaps, NULL);
6282 	fnvlist_free(snaps);
6283 	return (error);
6284 }
6285 
6286 /*
6287  * Test snapshot hold/release and deferred destroy.
6288  */
6289 void
ztest_dmu_snapshot_hold(ztest_ds_t * zd,uint64_t id)6290 ztest_dmu_snapshot_hold(ztest_ds_t *zd, uint64_t id)
6291 {
6292 	int error;
6293 	objset_t *os = zd->zd_os;
6294 	objset_t *origin;
6295 	char snapname[100];
6296 	char fullname[100];
6297 	char clonename[100];
6298 	char tag[100];
6299 	char osname[ZFS_MAX_DATASET_NAME_LEN];
6300 	nvlist_t *holds;
6301 
6302 	(void) pthread_rwlock_rdlock(&ztest_name_lock);
6303 
6304 	dmu_objset_name(os, osname);
6305 
6306 	(void) snprintf(snapname, sizeof (snapname), "sh1_%"PRIu64"", id);
6307 	(void) snprintf(fullname, sizeof (fullname), "%s@%s", osname, snapname);
6308 	(void) snprintf(clonename, sizeof (clonename), "%s/ch1_%"PRIu64"",
6309 	    osname, id);
6310 	(void) snprintf(tag, sizeof (tag), "tag_%"PRIu64"", id);
6311 
6312 	/*
6313 	 * Clean up from any previous run.
6314 	 */
6315 	error = dsl_destroy_head(clonename);
6316 	if (error != ENOENT)
6317 		ASSERT0(error);
6318 	error = user_release_one(fullname, tag);
6319 	if (error != ESRCH && error != ENOENT)
6320 		ASSERT0(error);
6321 	error = dsl_destroy_snapshot(fullname, B_FALSE);
6322 	if (error != ENOENT)
6323 		ASSERT0(error);
6324 
6325 	/*
6326 	 * Create snapshot, clone it, mark snap for deferred destroy,
6327 	 * destroy clone, verify snap was also destroyed.
6328 	 */
6329 	error = dmu_objset_snapshot_one(osname, snapname);
6330 	if (error) {
6331 		if (error == ENOSPC) {
6332 			ztest_record_enospc("dmu_objset_snapshot");
6333 			goto out;
6334 		}
6335 		fatal(B_FALSE, "dmu_objset_snapshot(%s) = %d", fullname, error);
6336 	}
6337 
6338 	error = dsl_dataset_clone(clonename, fullname);
6339 	if (error) {
6340 		if (error == ENOSPC) {
6341 			ztest_record_enospc("dsl_dataset_clone");
6342 			goto out;
6343 		}
6344 		fatal(B_FALSE, "dsl_dataset_clone(%s) = %d", clonename, error);
6345 	}
6346 
6347 	error = dsl_destroy_snapshot(fullname, B_TRUE);
6348 	if (error) {
6349 		fatal(B_FALSE, "dsl_destroy_snapshot(%s, B_TRUE) = %d",
6350 		    fullname, error);
6351 	}
6352 
6353 	error = dsl_destroy_head(clonename);
6354 	if (error)
6355 		fatal(B_FALSE, "dsl_destroy_head(%s) = %d", clonename, error);
6356 
6357 	error = dmu_objset_hold(fullname, FTAG, &origin);
6358 	if (error != ENOENT)
6359 		fatal(B_FALSE, "dmu_objset_hold(%s) = %d", fullname, error);
6360 
6361 	/*
6362 	 * Create snapshot, add temporary hold, verify that we can't
6363 	 * destroy a held snapshot, mark for deferred destroy,
6364 	 * release hold, verify snapshot was destroyed.
6365 	 */
6366 	error = dmu_objset_snapshot_one(osname, snapname);
6367 	if (error) {
6368 		if (error == ENOSPC) {
6369 			ztest_record_enospc("dmu_objset_snapshot");
6370 			goto out;
6371 		}
6372 		fatal(B_FALSE, "dmu_objset_snapshot(%s) = %d", fullname, error);
6373 	}
6374 
6375 	holds = fnvlist_alloc();
6376 	fnvlist_add_string(holds, fullname, tag);
6377 	error = dsl_dataset_user_hold(holds, 0, NULL);
6378 	fnvlist_free(holds);
6379 
6380 	if (error == ENOSPC) {
6381 		ztest_record_enospc("dsl_dataset_user_hold");
6382 		goto out;
6383 	} else if (error) {
6384 		fatal(B_FALSE, "dsl_dataset_user_hold(%s, %s) = %u",
6385 		    fullname, tag, error);
6386 	}
6387 
6388 	error = dsl_destroy_snapshot(fullname, B_FALSE);
6389 	if (error != EBUSY) {
6390 		fatal(B_FALSE, "dsl_destroy_snapshot(%s, B_FALSE) = %d",
6391 		    fullname, error);
6392 	}
6393 
6394 	error = dsl_destroy_snapshot(fullname, B_TRUE);
6395 	if (error) {
6396 		fatal(B_FALSE, "dsl_destroy_snapshot(%s, B_TRUE) = %d",
6397 		    fullname, error);
6398 	}
6399 
6400 	error = user_release_one(fullname, tag);
6401 	if (error)
6402 		fatal(B_FALSE, "user_release_one(%s, %s) = %d",
6403 		    fullname, tag, error);
6404 
6405 	VERIFY3U(dmu_objset_hold(fullname, FTAG, &origin), ==, ENOENT);
6406 
6407 out:
6408 	(void) pthread_rwlock_unlock(&ztest_name_lock);
6409 }
6410 
6411 /*
6412  * Inject random faults into the on-disk data.
6413  */
6414 void
ztest_fault_inject(ztest_ds_t * zd,uint64_t id)6415 ztest_fault_inject(ztest_ds_t *zd, uint64_t id)
6416 {
6417 	(void) zd, (void) id;
6418 	ztest_shared_t *zs = ztest_shared;
6419 	spa_t *spa = ztest_spa;
6420 	int fd;
6421 	uint64_t offset;
6422 	uint64_t leaves;
6423 	uint64_t bad = 0x1990c0ffeedecadeull;
6424 	uint64_t top, leaf;
6425 	uint64_t raidz_children;
6426 	char *path0;
6427 	char *pathrand;
6428 	size_t fsize;
6429 	int bshift = SPA_MAXBLOCKSHIFT + 2;
6430 	int iters = 1000;
6431 	int maxfaults;
6432 	int mirror_save;
6433 	vdev_t *vd0 = NULL;
6434 	uint64_t guid0 = 0;
6435 	boolean_t islog = B_FALSE;
6436 	boolean_t injected = B_FALSE;
6437 
6438 	path0 = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
6439 	pathrand = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
6440 
6441 	mutex_enter(&ztest_vdev_lock);
6442 
6443 	/*
6444 	 * Device removal is in progress, fault injection must be disabled
6445 	 * until it completes and the pool is scrubbed.  The fault injection
6446 	 * strategy for damaging blocks does not take in to account evacuated
6447 	 * blocks which may have already been damaged.
6448 	 */
6449 	if (ztest_device_removal_active)
6450 		goto out;
6451 
6452 	/*
6453 	 * The fault injection strategy for damaging blocks cannot be used
6454 	 * if raidz expansion is in progress. The leaves value
6455 	 * (attached raidz children) is variable and strategy for damaging
6456 	 * blocks will corrupt same data blocks on different child vdevs
6457 	 * because of the reflow process.
6458 	 */
6459 	if (spa->spa_raidz_expand != NULL)
6460 		goto out;
6461 
6462 	maxfaults = MAXFAULTS(zs);
6463 	raidz_children = ztest_get_raidz_children(spa);
6464 	leaves = MAX(zs->zs_mirrors, 1) * raidz_children;
6465 	mirror_save = zs->zs_mirrors;
6466 
6467 	ASSERT3U(leaves, >=, 1);
6468 
6469 	/*
6470 	 * While ztest is running the number of leaves will not change.  This
6471 	 * is critical for the fault injection logic as it determines where
6472 	 * errors can be safely injected such that they are always repairable.
6473 	 *
6474 	 * When restarting ztest a different number of leaves may be requested
6475 	 * which will shift the regions to be damaged.  This is fine as long
6476 	 * as the pool has been scrubbed prior to using the new mapping.
6477 	 * Failure to do can result in non-repairable damage being injected.
6478 	 */
6479 	if (ztest_pool_scrubbed == B_FALSE)
6480 		goto out;
6481 
6482 	/*
6483 	 * Grab the name lock as reader. There are some operations
6484 	 * which don't like to have their vdevs changed while
6485 	 * they are in progress (i.e. spa_change_guid). Those
6486 	 * operations will have grabbed the name lock as writer.
6487 	 */
6488 	(void) pthread_rwlock_rdlock(&ztest_name_lock);
6489 
6490 	/*
6491 	 * We need SCL_STATE here because we're going to look at vd0->vdev_tsd.
6492 	 */
6493 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6494 
6495 	if (ztest_random(2) == 0) {
6496 		/*
6497 		 * Inject errors on a normal data device or slog device.
6498 		 */
6499 		top = ztest_random_vdev_top(spa, B_TRUE);
6500 		leaf = ztest_random(leaves) + zs->zs_splits;
6501 
6502 		/*
6503 		 * Generate paths to the first leaf in this top-level vdev,
6504 		 * and to the random leaf we selected.  We'll induce transient
6505 		 * write failures and random online/offline activity on leaf 0,
6506 		 * and we'll write random garbage to the randomly chosen leaf.
6507 		 */
6508 		(void) snprintf(path0, MAXPATHLEN, ztest_dev_template,
6509 		    ztest_opts.zo_dir, ztest_opts.zo_pool,
6510 		    top * leaves + zs->zs_splits);
6511 		(void) snprintf(pathrand, MAXPATHLEN, ztest_dev_template,
6512 		    ztest_opts.zo_dir, ztest_opts.zo_pool,
6513 		    top * leaves + leaf);
6514 
6515 		vd0 = vdev_lookup_by_path(spa->spa_root_vdev, path0);
6516 		if (vd0 != NULL && vd0->vdev_top->vdev_islog)
6517 			islog = B_TRUE;
6518 
6519 		/*
6520 		 * If the top-level vdev needs to be resilvered
6521 		 * then we only allow faults on the device that is
6522 		 * resilvering.
6523 		 */
6524 		if (vd0 != NULL && maxfaults != 1 &&
6525 		    (!vdev_resilver_needed(vd0->vdev_top, NULL, NULL) ||
6526 		    vd0->vdev_resilver_txg != 0)) {
6527 			/*
6528 			 * Make vd0 explicitly claim to be unreadable,
6529 			 * or unwritable, or reach behind its back
6530 			 * and close the underlying fd.  We can do this if
6531 			 * maxfaults == 0 because we'll fail and reexecute,
6532 			 * and we can do it if maxfaults >= 2 because we'll
6533 			 * have enough redundancy.  If maxfaults == 1, the
6534 			 * combination of this with injection of random data
6535 			 * corruption below exceeds the pool's fault tolerance.
6536 			 */
6537 			vdev_file_t *vf = vd0->vdev_tsd;
6538 
6539 			zfs_dbgmsg("injecting fault to vdev %llu; maxfaults=%d",
6540 			    (long long)vd0->vdev_id, (int)maxfaults);
6541 
6542 			if (vf != NULL && ztest_random(3) == 0) {
6543 				(void) close(vf->vf_file->f_fd);
6544 				vf->vf_file->f_fd = -1;
6545 			} else if (ztest_random(2) == 0) {
6546 				vd0->vdev_cant_read = B_TRUE;
6547 			} else {
6548 				vd0->vdev_cant_write = B_TRUE;
6549 			}
6550 			guid0 = vd0->vdev_guid;
6551 		}
6552 	} else {
6553 		/*
6554 		 * Inject errors on an l2cache device.
6555 		 */
6556 		spa_aux_vdev_t *sav = &spa->spa_l2cache;
6557 
6558 		if (sav->sav_count == 0) {
6559 			spa_config_exit(spa, SCL_STATE, FTAG);
6560 			(void) pthread_rwlock_unlock(&ztest_name_lock);
6561 			goto out;
6562 		}
6563 		vd0 = sav->sav_vdevs[ztest_random(sav->sav_count)];
6564 		guid0 = vd0->vdev_guid;
6565 		(void) strlcpy(path0, vd0->vdev_path, MAXPATHLEN);
6566 		(void) strlcpy(pathrand, vd0->vdev_path, MAXPATHLEN);
6567 
6568 		leaf = 0;
6569 		leaves = 1;
6570 		maxfaults = INT_MAX;	/* no limit on cache devices */
6571 	}
6572 
6573 	spa_config_exit(spa, SCL_STATE, FTAG);
6574 	(void) pthread_rwlock_unlock(&ztest_name_lock);
6575 
6576 	/*
6577 	 * If we can tolerate two or more faults, or we're dealing
6578 	 * with a slog, randomly online/offline vd0.
6579 	 */
6580 	if ((maxfaults >= 2 || islog) && guid0 != 0) {
6581 		if (ztest_random(10) < 6) {
6582 			int flags = (ztest_random(2) == 0 ?
6583 			    ZFS_OFFLINE_TEMPORARY : 0);
6584 
6585 			/*
6586 			 * We have to grab the zs_name_lock as writer to
6587 			 * prevent a race between offlining a slog and
6588 			 * destroying a dataset. Offlining the slog will
6589 			 * grab a reference on the dataset which may cause
6590 			 * dsl_destroy_head() to fail with EBUSY thus
6591 			 * leaving the dataset in an inconsistent state.
6592 			 */
6593 			if (islog)
6594 				(void) pthread_rwlock_wrlock(&ztest_name_lock);
6595 
6596 			VERIFY3U(vdev_offline(spa, guid0, flags), !=, EBUSY);
6597 
6598 			if (islog)
6599 				(void) pthread_rwlock_unlock(&ztest_name_lock);
6600 		} else {
6601 			/*
6602 			 * Ideally we would like to be able to randomly
6603 			 * call vdev_[on|off]line without holding locks
6604 			 * to force unpredictable failures but the side
6605 			 * effects of vdev_[on|off]line prevent us from
6606 			 * doing so.
6607 			 */
6608 			(void) vdev_online(spa, guid0, 0, NULL);
6609 		}
6610 	}
6611 
6612 	if (maxfaults == 0)
6613 		goto out;
6614 
6615 	/*
6616 	 * We have at least single-fault tolerance, so inject data corruption.
6617 	 */
6618 	fd = open(pathrand, O_RDWR);
6619 
6620 	if (fd == -1) /* we hit a gap in the device namespace */
6621 		goto out;
6622 
6623 	fsize = lseek(fd, 0, SEEK_END);
6624 
6625 	while (--iters != 0) {
6626 		/*
6627 		 * The offset must be chosen carefully to ensure that
6628 		 * we do not inject a given logical block with errors
6629 		 * on two different leaf devices, because ZFS can not
6630 		 * tolerate that (if maxfaults==1).
6631 		 *
6632 		 * To achieve this we divide each leaf device into
6633 		 * chunks of size (# leaves * SPA_MAXBLOCKSIZE * 4).
6634 		 * Each chunk is further divided into error-injection
6635 		 * ranges (can accept errors) and clear ranges (we do
6636 		 * not inject errors in those). Each error-injection
6637 		 * range can accept errors only for a single leaf vdev.
6638 		 * Error-injection ranges are separated by clear ranges.
6639 		 *
6640 		 * For example, with 3 leaves, each chunk looks like:
6641 		 *    0 to  32M: injection range for leaf 0
6642 		 *  32M to  64M: clear range - no injection allowed
6643 		 *  64M to  96M: injection range for leaf 1
6644 		 *  96M to 128M: clear range - no injection allowed
6645 		 * 128M to 160M: injection range for leaf 2
6646 		 * 160M to 192M: clear range - no injection allowed
6647 		 *
6648 		 * Each clear range must be large enough such that a
6649 		 * single block cannot straddle it. This way a block
6650 		 * can't be a target in two different injection ranges
6651 		 * (on different leaf vdevs).
6652 		 */
6653 		offset = ztest_random(fsize / (leaves << bshift)) *
6654 		    (leaves << bshift) + (leaf << bshift) +
6655 		    (ztest_random(1ULL << (bshift - 1)) & -8ULL);
6656 
6657 		/*
6658 		 * Only allow damage to the labels at one end of the vdev.
6659 		 *
6660 		 * If all labels are damaged, the device will be totally
6661 		 * inaccessible, which will result in loss of data,
6662 		 * because we also damage (parts of) the other side of
6663 		 * the mirror/raidz.
6664 		 *
6665 		 * Additionally, we will always have both an even and an
6666 		 * odd label, so that we can handle crashes in the
6667 		 * middle of vdev_config_sync().
6668 		 */
6669 		if ((leaf & 1) == 0 && offset < VDEV_LABEL_START_SIZE)
6670 			continue;
6671 
6672 		/*
6673 		 * The two end labels are stored at the "end" of the disk, but
6674 		 * the end of the disk (vdev_psize) is aligned to
6675 		 * sizeof (vdev_label_t).
6676 		 */
6677 		uint64_t psize = P2ALIGN_TYPED(fsize, sizeof (vdev_label_t),
6678 		    uint64_t);
6679 		if ((leaf & 1) == 1 &&
6680 		    offset + sizeof (bad) > psize - VDEV_LABEL_END_SIZE)
6681 			continue;
6682 
6683 		if (mirror_save != zs->zs_mirrors) {
6684 			(void) close(fd);
6685 			goto out;
6686 		}
6687 
6688 		if (pwrite(fd, &bad, sizeof (bad), offset) != sizeof (bad))
6689 			fatal(B_TRUE,
6690 			    "can't inject bad word at 0x%"PRIx64" in %s",
6691 			    offset, pathrand);
6692 
6693 		if (ztest_opts.zo_verbose >= 7)
6694 			(void) printf("injected bad word into %s,"
6695 			    " offset 0x%"PRIx64"\n", pathrand, offset);
6696 
6697 		injected = B_TRUE;
6698 	}
6699 
6700 	(void) close(fd);
6701 out:
6702 	mutex_exit(&ztest_vdev_lock);
6703 
6704 	if (injected && ztest_opts.zo_raid_do_expand) {
6705 		int error = spa_scan(spa, POOL_SCAN_SCRUB);
6706 		if (error == 0) {
6707 			while (dsl_scan_scrubbing(spa_get_dsl(spa)))
6708 				txg_wait_synced(spa_get_dsl(spa), 0);
6709 		}
6710 	}
6711 
6712 	umem_free(path0, MAXPATHLEN);
6713 	umem_free(pathrand, MAXPATHLEN);
6714 }
6715 
6716 /*
6717  * By design ztest will never inject uncorrectable damage in to the pool.
6718  * Issue a scrub, wait for it to complete, and verify there is never any
6719  * persistent damage.
6720  *
6721  * Only after a full scrub has been completed is it safe to start injecting
6722  * data corruption.  See the comment in zfs_fault_inject().
6723  *
6724  * EBUSY may be returned for the following six cases.  It's the callers
6725  * responsibility to handle them accordingly.
6726  *
6727  * Current state                Requested
6728  * 1. Normal Scrub Running      Normal Scrub or Error Scrub
6729  * 2. Normal Scrub Paused       Error Scrub
6730  * 3. Normal Scrub Paused       Pause Normal Scrub
6731  * 4. Error Scrub Running       Normal Scrub or Error Scrub
6732  * 5. Error Scrub Paused        Pause Error Scrub
6733  * 6. Resilvering               Anything else
6734  */
6735 static int
ztest_scrub_impl(spa_t * spa)6736 ztest_scrub_impl(spa_t *spa)
6737 {
6738 	int error = spa_scan(spa, POOL_SCAN_SCRUB);
6739 	if (error)
6740 		return (error);
6741 
6742 	while (dsl_scan_scrubbing(spa_get_dsl(spa)))
6743 		txg_wait_synced(spa_get_dsl(spa), 0);
6744 
6745 	if (spa_approx_errlog_size(spa) > 0)
6746 		return (ECKSUM);
6747 
6748 	ztest_pool_scrubbed = B_TRUE;
6749 
6750 	return (0);
6751 }
6752 
6753 /*
6754  * Scrub the pool.
6755  */
6756 void
ztest_scrub(ztest_ds_t * zd,uint64_t id)6757 ztest_scrub(ztest_ds_t *zd, uint64_t id)
6758 {
6759 	(void) zd, (void) id;
6760 	spa_t *spa = ztest_spa;
6761 	int error;
6762 
6763 	/*
6764 	 * Scrub in progress by device removal.
6765 	 */
6766 	if (ztest_device_removal_active)
6767 		return;
6768 
6769 	/*
6770 	 * Start a scrub, wait a moment, then force a restart.
6771 	 */
6772 	(void) spa_scan(spa, POOL_SCAN_SCRUB);
6773 	(void) poll(NULL, 0, 100);
6774 
6775 	error = ztest_scrub_impl(spa);
6776 	if (error == EBUSY)
6777 		error = 0;
6778 	ASSERT0(error);
6779 }
6780 
6781 /*
6782  * Change the guid for the pool.
6783  */
6784 void
ztest_reguid(ztest_ds_t * zd,uint64_t id)6785 ztest_reguid(ztest_ds_t *zd, uint64_t id)
6786 {
6787 	(void) zd, (void) id;
6788 	spa_t *spa = ztest_spa;
6789 	uint64_t orig, load;
6790 	int error;
6791 	ztest_shared_t *zs = ztest_shared;
6792 
6793 	if (ztest_opts.zo_mmp_test)
6794 		return;
6795 
6796 	orig = spa_guid(spa);
6797 	load = spa_load_guid(spa);
6798 
6799 	(void) pthread_rwlock_wrlock(&ztest_name_lock);
6800 	error = spa_change_guid(spa, NULL);
6801 	zs->zs_guid = spa_guid(spa);
6802 	(void) pthread_rwlock_unlock(&ztest_name_lock);
6803 
6804 	if (error != 0)
6805 		return;
6806 
6807 	if (ztest_opts.zo_verbose >= 4) {
6808 		(void) printf("Changed guid old %"PRIu64" -> %"PRIu64"\n",
6809 		    orig, spa_guid(spa));
6810 	}
6811 
6812 	VERIFY3U(orig, !=, spa_guid(spa));
6813 	VERIFY3U(load, ==, spa_load_guid(spa));
6814 }
6815 
6816 void
ztest_blake3(ztest_ds_t * zd,uint64_t id)6817 ztest_blake3(ztest_ds_t *zd, uint64_t id)
6818 {
6819 	(void) zd, (void) id;
6820 	hrtime_t end = gethrtime() + NANOSEC;
6821 	zio_cksum_salt_t salt;
6822 	void *salt_ptr = &salt.zcs_bytes;
6823 	struct abd *abd_data, *abd_meta;
6824 	void *buf, *templ;
6825 	int i, *ptr;
6826 	uint32_t size;
6827 	BLAKE3_CTX ctx;
6828 	const zfs_impl_t *blake3 = zfs_impl_get_ops("blake3");
6829 
6830 	size = ztest_random_blocksize();
6831 	buf = umem_alloc(size, UMEM_NOFAIL);
6832 	abd_data = abd_alloc(size, B_FALSE);
6833 	abd_meta = abd_alloc(size, B_TRUE);
6834 
6835 	for (i = 0, ptr = buf; i < size / sizeof (*ptr); i++, ptr++)
6836 		*ptr = ztest_random(UINT_MAX);
6837 	memset(salt_ptr, 'A', 32);
6838 
6839 	abd_copy_from_buf_off(abd_data, buf, 0, size);
6840 	abd_copy_from_buf_off(abd_meta, buf, 0, size);
6841 
6842 	while (gethrtime() <= end) {
6843 		int run_count = 100;
6844 		zio_cksum_t zc_ref1, zc_ref2;
6845 		zio_cksum_t zc_res1, zc_res2;
6846 
6847 		void *ref1 = &zc_ref1;
6848 		void *ref2 = &zc_ref2;
6849 		void *res1 = &zc_res1;
6850 		void *res2 = &zc_res2;
6851 
6852 		/* BLAKE3_KEY_LEN = 32 */
6853 		VERIFY0(blake3->setname("generic"));
6854 		templ = abd_checksum_blake3_tmpl_init(&salt);
6855 		Blake3_InitKeyed(&ctx, salt_ptr);
6856 		Blake3_Update(&ctx, buf, size);
6857 		Blake3_Final(&ctx, ref1);
6858 		zc_ref2 = zc_ref1;
6859 		ZIO_CHECKSUM_BSWAP(&zc_ref2);
6860 		abd_checksum_blake3_tmpl_free(templ);
6861 
6862 		VERIFY0(blake3->setname("cycle"));
6863 		while (run_count-- > 0) {
6864 
6865 			/* Test current implementation */
6866 			Blake3_InitKeyed(&ctx, salt_ptr);
6867 			Blake3_Update(&ctx, buf, size);
6868 			Blake3_Final(&ctx, res1);
6869 			zc_res2 = zc_res1;
6870 			ZIO_CHECKSUM_BSWAP(&zc_res2);
6871 
6872 			VERIFY0(memcmp(ref1, res1, 32));
6873 			VERIFY0(memcmp(ref2, res2, 32));
6874 
6875 			/* Test ABD - data */
6876 			templ = abd_checksum_blake3_tmpl_init(&salt);
6877 			abd_checksum_blake3_native(abd_data, size,
6878 			    templ, &zc_res1);
6879 			abd_checksum_blake3_byteswap(abd_data, size,
6880 			    templ, &zc_res2);
6881 
6882 			VERIFY0(memcmp(ref1, res1, 32));
6883 			VERIFY0(memcmp(ref2, res2, 32));
6884 
6885 			/* Test ABD - metadata */
6886 			abd_checksum_blake3_native(abd_meta, size,
6887 			    templ, &zc_res1);
6888 			abd_checksum_blake3_byteswap(abd_meta, size,
6889 			    templ, &zc_res2);
6890 			abd_checksum_blake3_tmpl_free(templ);
6891 
6892 			VERIFY0(memcmp(ref1, res1, 32));
6893 			VERIFY0(memcmp(ref2, res2, 32));
6894 
6895 		}
6896 	}
6897 
6898 	abd_free(abd_data);
6899 	abd_free(abd_meta);
6900 	umem_free(buf, size);
6901 }
6902 
6903 void
ztest_fletcher(ztest_ds_t * zd,uint64_t id)6904 ztest_fletcher(ztest_ds_t *zd, uint64_t id)
6905 {
6906 	(void) zd, (void) id;
6907 	hrtime_t end = gethrtime() + NANOSEC;
6908 
6909 	while (gethrtime() <= end) {
6910 		int run_count = 100;
6911 		void *buf;
6912 		struct abd *abd_data, *abd_meta;
6913 		uint32_t size;
6914 		int *ptr;
6915 		int i;
6916 		zio_cksum_t zc_ref;
6917 		zio_cksum_t zc_ref_byteswap;
6918 
6919 		size = ztest_random_blocksize();
6920 
6921 		buf = umem_alloc(size, UMEM_NOFAIL);
6922 		abd_data = abd_alloc(size, B_FALSE);
6923 		abd_meta = abd_alloc(size, B_TRUE);
6924 
6925 		for (i = 0, ptr = buf; i < size / sizeof (*ptr); i++, ptr++)
6926 			*ptr = ztest_random(UINT_MAX);
6927 
6928 		abd_copy_from_buf_off(abd_data, buf, 0, size);
6929 		abd_copy_from_buf_off(abd_meta, buf, 0, size);
6930 
6931 		VERIFY0(fletcher_4_impl_set("scalar"));
6932 		fletcher_4_native(buf, size, NULL, &zc_ref);
6933 		fletcher_4_byteswap(buf, size, NULL, &zc_ref_byteswap);
6934 
6935 		VERIFY0(fletcher_4_impl_set("cycle"));
6936 		while (run_count-- > 0) {
6937 			zio_cksum_t zc;
6938 			zio_cksum_t zc_byteswap;
6939 
6940 			fletcher_4_byteswap(buf, size, NULL, &zc_byteswap);
6941 			fletcher_4_native(buf, size, NULL, &zc);
6942 
6943 			VERIFY0(memcmp(&zc, &zc_ref, sizeof (zc)));
6944 			VERIFY0(memcmp(&zc_byteswap, &zc_ref_byteswap,
6945 			    sizeof (zc_byteswap)));
6946 
6947 			/* Test ABD - data */
6948 			abd_fletcher_4_byteswap(abd_data, size, NULL,
6949 			    &zc_byteswap);
6950 			abd_fletcher_4_native(abd_data, size, NULL, &zc);
6951 
6952 			VERIFY0(memcmp(&zc, &zc_ref, sizeof (zc)));
6953 			VERIFY0(memcmp(&zc_byteswap, &zc_ref_byteswap,
6954 			    sizeof (zc_byteswap)));
6955 
6956 			/* Test ABD - metadata */
6957 			abd_fletcher_4_byteswap(abd_meta, size, NULL,
6958 			    &zc_byteswap);
6959 			abd_fletcher_4_native(abd_meta, size, NULL, &zc);
6960 
6961 			VERIFY0(memcmp(&zc, &zc_ref, sizeof (zc)));
6962 			VERIFY0(memcmp(&zc_byteswap, &zc_ref_byteswap,
6963 			    sizeof (zc_byteswap)));
6964 
6965 		}
6966 
6967 		umem_free(buf, size);
6968 		abd_free(abd_data);
6969 		abd_free(abd_meta);
6970 	}
6971 }
6972 
6973 void
ztest_fletcher_incr(ztest_ds_t * zd,uint64_t id)6974 ztest_fletcher_incr(ztest_ds_t *zd, uint64_t id)
6975 {
6976 	(void) zd, (void) id;
6977 	void *buf;
6978 	size_t size;
6979 	int *ptr;
6980 	int i;
6981 	zio_cksum_t zc_ref;
6982 	zio_cksum_t zc_ref_bswap;
6983 
6984 	hrtime_t end = gethrtime() + NANOSEC;
6985 
6986 	while (gethrtime() <= end) {
6987 		int run_count = 100;
6988 
6989 		size = ztest_random_blocksize();
6990 		buf = umem_alloc(size, UMEM_NOFAIL);
6991 
6992 		for (i = 0, ptr = buf; i < size / sizeof (*ptr); i++, ptr++)
6993 			*ptr = ztest_random(UINT_MAX);
6994 
6995 		VERIFY0(fletcher_4_impl_set("scalar"));
6996 		fletcher_4_native(buf, size, NULL, &zc_ref);
6997 		fletcher_4_byteswap(buf, size, NULL, &zc_ref_bswap);
6998 
6999 		VERIFY0(fletcher_4_impl_set("cycle"));
7000 
7001 		while (run_count-- > 0) {
7002 			zio_cksum_t zc;
7003 			zio_cksum_t zc_bswap;
7004 			size_t pos = 0;
7005 
7006 			ZIO_SET_CHECKSUM(&zc, 0, 0, 0, 0);
7007 			ZIO_SET_CHECKSUM(&zc_bswap, 0, 0, 0, 0);
7008 
7009 			while (pos < size) {
7010 				size_t inc = 64 * ztest_random(size / 67);
7011 				/* sometimes add few bytes to test non-simd */
7012 				if (ztest_random(100) < 10)
7013 					inc += P2ALIGN_TYPED(ztest_random(64),
7014 					    sizeof (uint32_t), uint64_t);
7015 
7016 				if (inc > (size - pos))
7017 					inc = size - pos;
7018 
7019 				fletcher_4_incremental_native(buf + pos, inc,
7020 				    &zc);
7021 				fletcher_4_incremental_byteswap(buf + pos, inc,
7022 				    &zc_bswap);
7023 
7024 				pos += inc;
7025 			}
7026 
7027 			VERIFY3U(pos, ==, size);
7028 
7029 			VERIFY(ZIO_CHECKSUM_EQUAL(zc, zc_ref));
7030 			VERIFY(ZIO_CHECKSUM_EQUAL(zc_bswap, zc_ref_bswap));
7031 
7032 			/*
7033 			 * verify if incremental on the whole buffer is
7034 			 * equivalent to non-incremental version
7035 			 */
7036 			ZIO_SET_CHECKSUM(&zc, 0, 0, 0, 0);
7037 			ZIO_SET_CHECKSUM(&zc_bswap, 0, 0, 0, 0);
7038 
7039 			fletcher_4_incremental_native(buf, size, &zc);
7040 			fletcher_4_incremental_byteswap(buf, size, &zc_bswap);
7041 
7042 			VERIFY(ZIO_CHECKSUM_EQUAL(zc, zc_ref));
7043 			VERIFY(ZIO_CHECKSUM_EQUAL(zc_bswap, zc_ref_bswap));
7044 		}
7045 
7046 		umem_free(buf, size);
7047 	}
7048 }
7049 
7050 void
ztest_pool_prefetch_ddt(ztest_ds_t * zd,uint64_t id)7051 ztest_pool_prefetch_ddt(ztest_ds_t *zd, uint64_t id)
7052 {
7053 	(void) zd, (void) id;
7054 	spa_t *spa;
7055 
7056 	(void) pthread_rwlock_rdlock(&ztest_name_lock);
7057 	VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
7058 
7059 	ddt_prefetch_all(spa);
7060 
7061 	spa_close(spa, FTAG);
7062 	(void) pthread_rwlock_unlock(&ztest_name_lock);
7063 }
7064 
7065 static int
ztest_set_global_vars(void)7066 ztest_set_global_vars(void)
7067 {
7068 	for (size_t i = 0; i < ztest_opts.zo_gvars_count; i++) {
7069 		char *kv = ztest_opts.zo_gvars[i];
7070 		VERIFY3U(strlen(kv), <=, ZO_GVARS_MAX_ARGLEN);
7071 		VERIFY3U(strlen(kv), >, 0);
7072 		int err = set_global_var(kv);
7073 		if (ztest_opts.zo_verbose > 0) {
7074 			(void) printf("setting global var %s ... %s\n", kv,
7075 			    err ? "failed" : "ok");
7076 		}
7077 		if (err != 0) {
7078 			(void) fprintf(stderr,
7079 			    "failed to set global var '%s'\n", kv);
7080 			return (err);
7081 		}
7082 	}
7083 	return (0);
7084 }
7085 
7086 static char **
ztest_global_vars_to_zdb_args(void)7087 ztest_global_vars_to_zdb_args(void)
7088 {
7089 	char **args = calloc(2*ztest_opts.zo_gvars_count + 1, sizeof (char *));
7090 	char **cur = args;
7091 	if (args == NULL)
7092 		return (NULL);
7093 	for (size_t i = 0; i < ztest_opts.zo_gvars_count; i++) {
7094 		*cur++ = (char *)"-o";
7095 		*cur++ = ztest_opts.zo_gvars[i];
7096 	}
7097 	ASSERT3P(cur, ==, &args[2*ztest_opts.zo_gvars_count]);
7098 	*cur = NULL;
7099 	return (args);
7100 }
7101 
7102 /* The end of strings is indicated by a NULL element */
7103 static char *
join_strings(char ** strings,const char * sep)7104 join_strings(char **strings, const char *sep)
7105 {
7106 	size_t totallen = 0;
7107 	for (char **sp = strings; *sp != NULL; sp++) {
7108 		totallen += strlen(*sp);
7109 		totallen += strlen(sep);
7110 	}
7111 	if (totallen > 0) {
7112 		ASSERT(totallen >= strlen(sep));
7113 		totallen -= strlen(sep);
7114 	}
7115 
7116 	size_t buflen = totallen + 1;
7117 	char *o = umem_alloc(buflen, UMEM_NOFAIL); /* trailing 0 byte */
7118 	o[0] = '\0';
7119 	for (char **sp = strings; *sp != NULL; sp++) {
7120 		size_t would;
7121 		would = strlcat(o, *sp, buflen);
7122 		VERIFY3U(would, <, buflen);
7123 		if (*(sp+1) == NULL) {
7124 			break;
7125 		}
7126 		would = strlcat(o, sep, buflen);
7127 		VERIFY3U(would, <, buflen);
7128 	}
7129 	ASSERT3S(strlen(o), ==, totallen);
7130 	return (o);
7131 }
7132 
7133 static int
ztest_check_path(char * path)7134 ztest_check_path(char *path)
7135 {
7136 	struct stat s;
7137 	/* return true on success */
7138 	return (!stat(path, &s));
7139 }
7140 
7141 static void
ztest_get_zdb_bin(char * bin,int len)7142 ztest_get_zdb_bin(char *bin, int len)
7143 {
7144 	char *zdb_path;
7145 	/*
7146 	 * Try to use $ZDB and in-tree zdb path. If not successful, just
7147 	 * let popen to search through PATH.
7148 	 */
7149 	if ((zdb_path = getenv("ZDB"))) {
7150 		strlcpy(bin, zdb_path, len); /* In env */
7151 		if (!ztest_check_path(bin)) {
7152 			ztest_dump_core = 0;
7153 			fatal(B_TRUE, "invalid ZDB '%s'", bin);
7154 		}
7155 		return;
7156 	}
7157 
7158 	VERIFY3P(realpath(getexecname(), bin), !=, NULL);
7159 	if (strstr(bin, ".libs/ztest")) {
7160 		strstr(bin, ".libs/ztest")[0] = '\0'; /* In-tree */
7161 		strcat(bin, "zdb");
7162 		if (ztest_check_path(bin))
7163 			return;
7164 	}
7165 	strcpy(bin, "zdb");
7166 }
7167 
7168 static vdev_t *
ztest_random_concrete_vdev_leaf(vdev_t * vd)7169 ztest_random_concrete_vdev_leaf(vdev_t *vd)
7170 {
7171 	if (vd == NULL)
7172 		return (NULL);
7173 
7174 	if (vd->vdev_children == 0)
7175 		return (vd);
7176 
7177 	vdev_t *eligible[vd->vdev_children];
7178 	int eligible_idx = 0, i;
7179 	for (i = 0; i < vd->vdev_children; i++) {
7180 		vdev_t *cvd = vd->vdev_child[i];
7181 		if (cvd->vdev_top->vdev_removing)
7182 			continue;
7183 		if (cvd->vdev_children > 0 ||
7184 		    (vdev_is_concrete(cvd) && !cvd->vdev_detached)) {
7185 			eligible[eligible_idx++] = cvd;
7186 		}
7187 	}
7188 	VERIFY3S(eligible_idx, >, 0);
7189 
7190 	uint64_t child_no = ztest_random(eligible_idx);
7191 	return (ztest_random_concrete_vdev_leaf(eligible[child_no]));
7192 }
7193 
7194 void
ztest_initialize(ztest_ds_t * zd,uint64_t id)7195 ztest_initialize(ztest_ds_t *zd, uint64_t id)
7196 {
7197 	(void) zd, (void) id;
7198 	spa_t *spa = ztest_spa;
7199 	int error = 0;
7200 
7201 	mutex_enter(&ztest_vdev_lock);
7202 
7203 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
7204 
7205 	/* Random leaf vdev */
7206 	vdev_t *rand_vd = ztest_random_concrete_vdev_leaf(spa->spa_root_vdev);
7207 	if (rand_vd == NULL) {
7208 		spa_config_exit(spa, SCL_VDEV, FTAG);
7209 		mutex_exit(&ztest_vdev_lock);
7210 		return;
7211 	}
7212 
7213 	/*
7214 	 * The random vdev we've selected may change as soon as we
7215 	 * drop the spa_config_lock. We create local copies of things
7216 	 * we're interested in.
7217 	 */
7218 	uint64_t guid = rand_vd->vdev_guid;
7219 	char *path = strdup(rand_vd->vdev_path);
7220 	boolean_t active = rand_vd->vdev_initialize_thread != NULL;
7221 
7222 	zfs_dbgmsg("vd %px, guid %llu", rand_vd, (u_longlong_t)guid);
7223 	spa_config_exit(spa, SCL_VDEV, FTAG);
7224 
7225 	uint64_t cmd = ztest_random(POOL_INITIALIZE_FUNCS);
7226 
7227 	nvlist_t *vdev_guids = fnvlist_alloc();
7228 	nvlist_t *vdev_errlist = fnvlist_alloc();
7229 	fnvlist_add_uint64(vdev_guids, path, guid);
7230 	error = spa_vdev_initialize(spa, vdev_guids, cmd, vdev_errlist);
7231 	fnvlist_free(vdev_guids);
7232 	fnvlist_free(vdev_errlist);
7233 
7234 	switch (cmd) {
7235 	case POOL_INITIALIZE_CANCEL:
7236 		if (ztest_opts.zo_verbose >= 4) {
7237 			(void) printf("Cancel initialize %s", path);
7238 			if (!active)
7239 				(void) printf(" failed (no initialize active)");
7240 			(void) printf("\n");
7241 		}
7242 		break;
7243 	case POOL_INITIALIZE_START:
7244 		if (ztest_opts.zo_verbose >= 4) {
7245 			(void) printf("Start initialize %s", path);
7246 			if (active && error == 0)
7247 				(void) printf(" failed (already active)");
7248 			else if (error != 0)
7249 				(void) printf(" failed (error %d)", error);
7250 			(void) printf("\n");
7251 		}
7252 		break;
7253 	case POOL_INITIALIZE_SUSPEND:
7254 		if (ztest_opts.zo_verbose >= 4) {
7255 			(void) printf("Suspend initialize %s", path);
7256 			if (!active)
7257 				(void) printf(" failed (no initialize active)");
7258 			(void) printf("\n");
7259 		}
7260 		break;
7261 	}
7262 	free(path);
7263 	mutex_exit(&ztest_vdev_lock);
7264 }
7265 
7266 void
ztest_trim(ztest_ds_t * zd,uint64_t id)7267 ztest_trim(ztest_ds_t *zd, uint64_t id)
7268 {
7269 	(void) zd, (void) id;
7270 	spa_t *spa = ztest_spa;
7271 	int error = 0;
7272 
7273 	mutex_enter(&ztest_vdev_lock);
7274 
7275 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
7276 
7277 	/* Random leaf vdev */
7278 	vdev_t *rand_vd = ztest_random_concrete_vdev_leaf(spa->spa_root_vdev);
7279 	if (rand_vd == NULL) {
7280 		spa_config_exit(spa, SCL_VDEV, FTAG);
7281 		mutex_exit(&ztest_vdev_lock);
7282 		return;
7283 	}
7284 
7285 	/*
7286 	 * The random vdev we've selected may change as soon as we
7287 	 * drop the spa_config_lock. We create local copies of things
7288 	 * we're interested in.
7289 	 */
7290 	uint64_t guid = rand_vd->vdev_guid;
7291 	char *path = strdup(rand_vd->vdev_path);
7292 	boolean_t active = rand_vd->vdev_trim_thread != NULL;
7293 
7294 	zfs_dbgmsg("vd %p, guid %llu", rand_vd, (u_longlong_t)guid);
7295 	spa_config_exit(spa, SCL_VDEV, FTAG);
7296 
7297 	uint64_t cmd = ztest_random(POOL_TRIM_FUNCS);
7298 	uint64_t rate = 1 << ztest_random(30);
7299 	boolean_t partial = (ztest_random(5) > 0);
7300 	boolean_t secure = (ztest_random(5) > 0);
7301 
7302 	nvlist_t *vdev_guids = fnvlist_alloc();
7303 	nvlist_t *vdev_errlist = fnvlist_alloc();
7304 	fnvlist_add_uint64(vdev_guids, path, guid);
7305 	error = spa_vdev_trim(spa, vdev_guids, cmd, rate, partial,
7306 	    secure, vdev_errlist);
7307 	fnvlist_free(vdev_guids);
7308 	fnvlist_free(vdev_errlist);
7309 
7310 	switch (cmd) {
7311 	case POOL_TRIM_CANCEL:
7312 		if (ztest_opts.zo_verbose >= 4) {
7313 			(void) printf("Cancel TRIM %s", path);
7314 			if (!active)
7315 				(void) printf(" failed (no TRIM active)");
7316 			(void) printf("\n");
7317 		}
7318 		break;
7319 	case POOL_TRIM_START:
7320 		if (ztest_opts.zo_verbose >= 4) {
7321 			(void) printf("Start TRIM %s", path);
7322 			if (active && error == 0)
7323 				(void) printf(" failed (already active)");
7324 			else if (error != 0)
7325 				(void) printf(" failed (error %d)", error);
7326 			(void) printf("\n");
7327 		}
7328 		break;
7329 	case POOL_TRIM_SUSPEND:
7330 		if (ztest_opts.zo_verbose >= 4) {
7331 			(void) printf("Suspend TRIM %s", path);
7332 			if (!active)
7333 				(void) printf(" failed (no TRIM active)");
7334 			(void) printf("\n");
7335 		}
7336 		break;
7337 	}
7338 	free(path);
7339 	mutex_exit(&ztest_vdev_lock);
7340 }
7341 
7342 void
ztest_ddt_prune(ztest_ds_t * zd,uint64_t id)7343 ztest_ddt_prune(ztest_ds_t *zd, uint64_t id)
7344 {
7345 	(void) zd, (void) id;
7346 
7347 	spa_t *spa = ztest_spa;
7348 	uint64_t pct = ztest_random(15) + 1;
7349 
7350 	(void) ddt_prune_unique_entries(spa, ZPOOL_DDT_PRUNE_PERCENTAGE, pct);
7351 }
7352 
7353 /*
7354  * Verify pool integrity by running zdb.
7355  */
7356 static void
ztest_run_zdb(uint64_t guid)7357 ztest_run_zdb(uint64_t guid)
7358 {
7359 	int status;
7360 	char *bin;
7361 	char *zdb;
7362 	char *zbuf;
7363 	const int len = MAXPATHLEN + MAXNAMELEN + 20;
7364 	FILE *fp;
7365 
7366 	bin = umem_alloc(len, UMEM_NOFAIL);
7367 	zdb = umem_alloc(len, UMEM_NOFAIL);
7368 	zbuf = umem_alloc(1024, UMEM_NOFAIL);
7369 
7370 	ztest_get_zdb_bin(bin, len);
7371 
7372 	char **set_gvars_args = ztest_global_vars_to_zdb_args();
7373 	if (set_gvars_args == NULL) {
7374 		fatal(B_FALSE, "Failed to allocate memory in "
7375 		    "ztest_global_vars_to_zdb_args(). Cannot run zdb.\n");
7376 	}
7377 	char *set_gvars_args_joined = join_strings(set_gvars_args, " ");
7378 	free(set_gvars_args);
7379 
7380 	size_t would = snprintf(zdb, len,
7381 	    "%s -bcc%s%s -G -d -Y -e -y %s -p %s %"PRIu64,
7382 	    bin,
7383 	    ztest_opts.zo_verbose >= 3 ? "s" : "",
7384 	    ztest_opts.zo_verbose >= 4 ? "v" : "",
7385 	    set_gvars_args_joined,
7386 	    ztest_opts.zo_dir,
7387 	    guid);
7388 	ASSERT3U(would, <, len);
7389 
7390 	umem_free(set_gvars_args_joined, strlen(set_gvars_args_joined) + 1);
7391 
7392 	if (ztest_opts.zo_verbose >= 5)
7393 		(void) printf("Executing %s\n", zdb);
7394 
7395 	fp = popen(zdb, "r");
7396 
7397 	while (fgets(zbuf, 1024, fp) != NULL)
7398 		if (ztest_opts.zo_verbose >= 3)
7399 			(void) printf("%s", zbuf);
7400 
7401 	status = pclose(fp);
7402 
7403 	if (status == 0)
7404 		goto out;
7405 
7406 	ztest_dump_core = 0;
7407 	if (WIFEXITED(status))
7408 		fatal(B_FALSE, "'%s' exit code %d", zdb, WEXITSTATUS(status));
7409 	else
7410 		fatal(B_FALSE, "'%s' died with signal %d",
7411 		    zdb, WTERMSIG(status));
7412 out:
7413 	umem_free(bin, len);
7414 	umem_free(zdb, len);
7415 	umem_free(zbuf, 1024);
7416 }
7417 
7418 static void
ztest_walk_pool_directory(const char * header)7419 ztest_walk_pool_directory(const char *header)
7420 {
7421 	spa_t *spa = NULL;
7422 
7423 	if (ztest_opts.zo_verbose >= 6)
7424 		(void) puts(header);
7425 
7426 	mutex_enter(&spa_namespace_lock);
7427 	while ((spa = spa_next(spa)) != NULL)
7428 		if (ztest_opts.zo_verbose >= 6)
7429 			(void) printf("\t%s\n", spa_name(spa));
7430 	mutex_exit(&spa_namespace_lock);
7431 }
7432 
7433 static void
ztest_spa_import_export(char * oldname,char * newname)7434 ztest_spa_import_export(char *oldname, char *newname)
7435 {
7436 	nvlist_t *config, *newconfig;
7437 	uint64_t pool_guid;
7438 	spa_t *spa;
7439 	int error;
7440 
7441 	if (ztest_opts.zo_verbose >= 4) {
7442 		(void) printf("import/export: old = %s, new = %s\n",
7443 		    oldname, newname);
7444 	}
7445 
7446 	/*
7447 	 * Clean up from previous runs.
7448 	 */
7449 	(void) spa_destroy(newname);
7450 
7451 	/*
7452 	 * Get the pool's configuration and guid.
7453 	 */
7454 	VERIFY0(spa_open(oldname, &spa, FTAG));
7455 
7456 	/*
7457 	 * Kick off a scrub to tickle scrub/export races.
7458 	 */
7459 	if (ztest_random(2) == 0)
7460 		(void) spa_scan(spa, POOL_SCAN_SCRUB);
7461 
7462 	pool_guid = spa_guid(spa);
7463 	spa_close(spa, FTAG);
7464 
7465 	ztest_walk_pool_directory("pools before export");
7466 
7467 	/*
7468 	 * Export it.
7469 	 */
7470 	VERIFY0(spa_export(oldname, &config, B_FALSE, B_FALSE));
7471 
7472 	ztest_walk_pool_directory("pools after export");
7473 
7474 	/*
7475 	 * Try to import it.
7476 	 */
7477 	newconfig = spa_tryimport(config);
7478 	ASSERT3P(newconfig, !=, NULL);
7479 	fnvlist_free(newconfig);
7480 
7481 	/*
7482 	 * Import it under the new name.
7483 	 */
7484 	error = spa_import(newname, config, NULL, 0);
7485 	if (error != 0) {
7486 		dump_nvlist(config, 0);
7487 		fatal(B_FALSE, "couldn't import pool %s as %s: error %u",
7488 		    oldname, newname, error);
7489 	}
7490 
7491 	ztest_walk_pool_directory("pools after import");
7492 
7493 	/*
7494 	 * Try to import it again -- should fail with EEXIST.
7495 	 */
7496 	VERIFY3U(EEXIST, ==, spa_import(newname, config, NULL, 0));
7497 
7498 	/*
7499 	 * Try to import it under a different name -- should fail with EEXIST.
7500 	 */
7501 	VERIFY3U(EEXIST, ==, spa_import(oldname, config, NULL, 0));
7502 
7503 	/*
7504 	 * Verify that the pool is no longer visible under the old name.
7505 	 */
7506 	VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG));
7507 
7508 	/*
7509 	 * Verify that we can open and close the pool using the new name.
7510 	 */
7511 	VERIFY0(spa_open(newname, &spa, FTAG));
7512 	ASSERT3U(pool_guid, ==, spa_guid(spa));
7513 	spa_close(spa, FTAG);
7514 
7515 	fnvlist_free(config);
7516 }
7517 
7518 static void
ztest_resume(spa_t * spa)7519 ztest_resume(spa_t *spa)
7520 {
7521 	if (spa_suspended(spa) && ztest_opts.zo_verbose >= 6)
7522 		(void) printf("resuming from suspended state\n");
7523 	spa_vdev_state_enter(spa, SCL_NONE);
7524 	vdev_clear(spa, NULL);
7525 	(void) spa_vdev_state_exit(spa, NULL, 0);
7526 	(void) zio_resume(spa);
7527 }
7528 
7529 static __attribute__((noreturn)) void
ztest_resume_thread(void * arg)7530 ztest_resume_thread(void *arg)
7531 {
7532 	spa_t *spa = arg;
7533 
7534 	/*
7535 	 * Synthesize aged DDT entries for ddt prune testing
7536 	 */
7537 	ddt_prune_artificial_age = B_TRUE;
7538 	if (ztest_opts.zo_verbose >= 3)
7539 		ddt_dump_prune_histogram = B_TRUE;
7540 
7541 	while (!ztest_exiting) {
7542 		if (spa_suspended(spa))
7543 			ztest_resume(spa);
7544 		(void) poll(NULL, 0, 100);
7545 
7546 		/*
7547 		 * Periodically change the zfs_compressed_arc_enabled setting.
7548 		 */
7549 		if (ztest_random(10) == 0)
7550 			zfs_compressed_arc_enabled = ztest_random(2);
7551 
7552 		/*
7553 		 * Periodically change the zfs_abd_scatter_enabled setting.
7554 		 */
7555 		if (ztest_random(10) == 0)
7556 			zfs_abd_scatter_enabled = ztest_random(2);
7557 	}
7558 
7559 	thread_exit();
7560 }
7561 
7562 static __attribute__((noreturn)) void
ztest_deadman_thread(void * arg)7563 ztest_deadman_thread(void *arg)
7564 {
7565 	ztest_shared_t *zs = arg;
7566 	spa_t *spa = ztest_spa;
7567 	hrtime_t delay, overdue, last_run = gethrtime();
7568 
7569 	delay = (zs->zs_thread_stop - zs->zs_thread_start) +
7570 	    MSEC2NSEC(zfs_deadman_synctime_ms);
7571 
7572 	while (!ztest_exiting) {
7573 		/*
7574 		 * Wait for the delay timer while checking occasionally
7575 		 * if we should stop.
7576 		 */
7577 		if (gethrtime() < last_run + delay) {
7578 			(void) poll(NULL, 0, 1000);
7579 			continue;
7580 		}
7581 
7582 		/*
7583 		 * If the pool is suspended then fail immediately. Otherwise,
7584 		 * check to see if the pool is making any progress. If
7585 		 * vdev_deadman() discovers that there hasn't been any recent
7586 		 * I/Os then it will end up aborting the tests.
7587 		 */
7588 		if (spa_suspended(spa) || spa->spa_root_vdev == NULL) {
7589 			fatal(B_FALSE,
7590 			    "aborting test after %llu seconds because "
7591 			    "pool has transitioned to a suspended state.",
7592 			    (u_longlong_t)zfs_deadman_synctime_ms / 1000);
7593 		}
7594 		vdev_deadman(spa->spa_root_vdev, FTAG);
7595 
7596 		/*
7597 		 * If the process doesn't complete within a grace period of
7598 		 * zfs_deadman_synctime_ms over the expected finish time,
7599 		 * then it may be hung and is terminated.
7600 		 */
7601 		overdue = zs->zs_proc_stop + MSEC2NSEC(zfs_deadman_synctime_ms);
7602 		if (gethrtime() > overdue) {
7603 			fatal(B_FALSE,
7604 			    "aborting test after %llu seconds because "
7605 			    "the process is overdue for termination.",
7606 			    (gethrtime() - zs->zs_proc_start) / NANOSEC);
7607 		}
7608 
7609 		(void) printf("ztest has been running for %lld seconds\n",
7610 		    (gethrtime() - zs->zs_proc_start) / NANOSEC);
7611 
7612 		last_run = gethrtime();
7613 		delay = MSEC2NSEC(zfs_deadman_checktime_ms);
7614 	}
7615 
7616 	thread_exit();
7617 }
7618 
7619 static void
ztest_execute(int test,ztest_info_t * zi,uint64_t id)7620 ztest_execute(int test, ztest_info_t *zi, uint64_t id)
7621 {
7622 	ztest_ds_t *zd = &ztest_ds[id % ztest_opts.zo_datasets];
7623 	ztest_shared_callstate_t *zc = ZTEST_GET_SHARED_CALLSTATE(test);
7624 	hrtime_t functime = gethrtime();
7625 	int i;
7626 
7627 	for (i = 0; i < zi->zi_iters; i++)
7628 		zi->zi_func(zd, id);
7629 
7630 	functime = gethrtime() - functime;
7631 
7632 	atomic_add_64(&zc->zc_count, 1);
7633 	atomic_add_64(&zc->zc_time, functime);
7634 
7635 	if (ztest_opts.zo_verbose >= 4)
7636 		(void) printf("%6.2f sec in %s\n",
7637 		    (double)functime / NANOSEC, zi->zi_funcname);
7638 }
7639 
7640 typedef struct ztest_raidz_expand_io {
7641 	uint64_t	rzx_id;
7642 	uint64_t	rzx_amount;
7643 	uint64_t	rzx_bufsize;
7644 	const void	*rzx_buffer;
7645 	uint64_t	rzx_alloc_max;
7646 	spa_t		*rzx_spa;
7647 } ztest_expand_io_t;
7648 
7649 #undef OD_ARRAY_SIZE
7650 #define	OD_ARRAY_SIZE	10
7651 
7652 /*
7653  * Write a request amount of data to some dataset objects.
7654  * There will be ztest_opts.zo_threads count of these running in parallel.
7655  */
7656 static __attribute__((noreturn)) void
ztest_rzx_thread(void * arg)7657 ztest_rzx_thread(void *arg)
7658 {
7659 	ztest_expand_io_t *info = (ztest_expand_io_t *)arg;
7660 	ztest_od_t *od;
7661 	int batchsize;
7662 	int od_size;
7663 	ztest_ds_t *zd = &ztest_ds[info->rzx_id % ztest_opts.zo_datasets];
7664 	spa_t *spa = info->rzx_spa;
7665 
7666 	od_size = sizeof (ztest_od_t) * OD_ARRAY_SIZE;
7667 	od = umem_alloc(od_size, UMEM_NOFAIL);
7668 	batchsize = OD_ARRAY_SIZE;
7669 
7670 	/* Create objects to write to */
7671 	for (int b = 0; b < batchsize; b++) {
7672 		ztest_od_init(od + b, info->rzx_id, FTAG, b,
7673 		    DMU_OT_UINT64_OTHER, 0, 0, 0);
7674 	}
7675 	if (ztest_object_init(zd, od, od_size, B_FALSE) != 0) {
7676 		umem_free(od, od_size);
7677 		thread_exit();
7678 	}
7679 
7680 	for (uint64_t offset = 0, written = 0; written < info->rzx_amount;
7681 	    offset += info->rzx_bufsize) {
7682 		/* write to 10 objects */
7683 		for (int i = 0; i < batchsize && written < info->rzx_amount;
7684 		    i++) {
7685 			(void) pthread_rwlock_rdlock(&zd->zd_zilog_lock);
7686 			ztest_write(zd, od[i].od_object, offset,
7687 			    info->rzx_bufsize, info->rzx_buffer);
7688 			(void) pthread_rwlock_unlock(&zd->zd_zilog_lock);
7689 			written += info->rzx_bufsize;
7690 		}
7691 		txg_wait_synced(spa_get_dsl(spa), 0);
7692 		/* due to inflation, we'll typically bail here */
7693 		if (metaslab_class_get_alloc(spa_normal_class(spa)) >
7694 		    info->rzx_alloc_max) {
7695 			break;
7696 		}
7697 	}
7698 
7699 	/* Remove a few objects to leave some holes in allocation space */
7700 	mutex_enter(&zd->zd_dirobj_lock);
7701 	(void) ztest_remove(zd, od, 2);
7702 	mutex_exit(&zd->zd_dirobj_lock);
7703 
7704 	umem_free(od, od_size);
7705 
7706 	thread_exit();
7707 }
7708 
7709 static __attribute__((noreturn)) void
ztest_thread(void * arg)7710 ztest_thread(void *arg)
7711 {
7712 	int rand;
7713 	uint64_t id = (uintptr_t)arg;
7714 	ztest_shared_t *zs = ztest_shared;
7715 	uint64_t call_next;
7716 	hrtime_t now;
7717 	ztest_info_t *zi;
7718 	ztest_shared_callstate_t *zc;
7719 
7720 	while ((now = gethrtime()) < zs->zs_thread_stop) {
7721 		/*
7722 		 * See if it's time to force a crash.
7723 		 */
7724 		if (now > zs->zs_thread_kill &&
7725 		    raidz_expand_pause_point == RAIDZ_EXPAND_PAUSE_NONE) {
7726 			ztest_kill(zs);
7727 		}
7728 
7729 		/*
7730 		 * If we're getting ENOSPC with some regularity, stop.
7731 		 */
7732 		if (zs->zs_enospc_count > 10)
7733 			break;
7734 
7735 		/*
7736 		 * Pick a random function to execute.
7737 		 */
7738 		rand = ztest_random(ZTEST_FUNCS);
7739 		zi = &ztest_info[rand];
7740 		zc = ZTEST_GET_SHARED_CALLSTATE(rand);
7741 		call_next = zc->zc_next;
7742 
7743 		if (now >= call_next &&
7744 		    atomic_cas_64(&zc->zc_next, call_next, call_next +
7745 		    ztest_random(2 * zi->zi_interval[0] + 1)) == call_next) {
7746 			ztest_execute(rand, zi, id);
7747 		}
7748 	}
7749 
7750 	thread_exit();
7751 }
7752 
7753 static void
ztest_dataset_name(char * dsname,const char * pool,int d)7754 ztest_dataset_name(char *dsname, const char *pool, int d)
7755 {
7756 	(void) snprintf(dsname, ZFS_MAX_DATASET_NAME_LEN, "%s/ds_%d", pool, d);
7757 }
7758 
7759 static void
ztest_dataset_destroy(int d)7760 ztest_dataset_destroy(int d)
7761 {
7762 	char name[ZFS_MAX_DATASET_NAME_LEN];
7763 	int t;
7764 
7765 	ztest_dataset_name(name, ztest_opts.zo_pool, d);
7766 
7767 	if (ztest_opts.zo_verbose >= 3)
7768 		(void) printf("Destroying %s to free up space\n", name);
7769 
7770 	/*
7771 	 * Cleanup any non-standard clones and snapshots.  In general,
7772 	 * ztest thread t operates on dataset (t % zopt_datasets),
7773 	 * so there may be more than one thing to clean up.
7774 	 */
7775 	for (t = d; t < ztest_opts.zo_threads;
7776 	    t += ztest_opts.zo_datasets)
7777 		ztest_dsl_dataset_cleanup(name, t);
7778 
7779 	(void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL,
7780 	    DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN);
7781 }
7782 
7783 static void
ztest_dataset_dirobj_verify(ztest_ds_t * zd)7784 ztest_dataset_dirobj_verify(ztest_ds_t *zd)
7785 {
7786 	uint64_t usedobjs, dirobjs, scratch;
7787 
7788 	/*
7789 	 * ZTEST_DIROBJ is the object directory for the entire dataset.
7790 	 * Therefore, the number of objects in use should equal the
7791 	 * number of ZTEST_DIROBJ entries, +1 for ZTEST_DIROBJ itself.
7792 	 * If not, we have an object leak.
7793 	 *
7794 	 * Note that we can only check this in ztest_dataset_open(),
7795 	 * when the open-context and syncing-context values agree.
7796 	 * That's because zap_count() returns the open-context value,
7797 	 * while dmu_objset_space() returns the rootbp fill count.
7798 	 */
7799 	VERIFY0(zap_count(zd->zd_os, ZTEST_DIROBJ, &dirobjs));
7800 	dmu_objset_space(zd->zd_os, &scratch, &scratch, &usedobjs, &scratch);
7801 	ASSERT3U(dirobjs + 1, ==, usedobjs);
7802 }
7803 
7804 static int
ztest_dataset_open(int d)7805 ztest_dataset_open(int d)
7806 {
7807 	ztest_ds_t *zd = &ztest_ds[d];
7808 	uint64_t committed_seq = ZTEST_GET_SHARED_DS(d)->zd_seq;
7809 	objset_t *os;
7810 	zilog_t *zilog;
7811 	char name[ZFS_MAX_DATASET_NAME_LEN];
7812 	int error;
7813 
7814 	ztest_dataset_name(name, ztest_opts.zo_pool, d);
7815 
7816 	(void) pthread_rwlock_rdlock(&ztest_name_lock);
7817 
7818 	error = ztest_dataset_create(name);
7819 	if (error == ENOSPC) {
7820 		(void) pthread_rwlock_unlock(&ztest_name_lock);
7821 		ztest_record_enospc(FTAG);
7822 		return (error);
7823 	}
7824 	ASSERT(error == 0 || error == EEXIST);
7825 
7826 	VERIFY0(ztest_dmu_objset_own(name, DMU_OST_OTHER, B_FALSE,
7827 	    B_TRUE, zd, &os));
7828 	(void) pthread_rwlock_unlock(&ztest_name_lock);
7829 
7830 	ztest_zd_init(zd, ZTEST_GET_SHARED_DS(d), os);
7831 
7832 	zilog = zd->zd_zilog;
7833 
7834 	if (zilog->zl_header->zh_claim_lr_seq != 0 &&
7835 	    zilog->zl_header->zh_claim_lr_seq < committed_seq)
7836 		fatal(B_FALSE, "missing log records: "
7837 		    "claimed %"PRIu64" < committed %"PRIu64"",
7838 		    zilog->zl_header->zh_claim_lr_seq, committed_seq);
7839 
7840 	ztest_dataset_dirobj_verify(zd);
7841 
7842 	zil_replay(os, zd, ztest_replay_vector);
7843 
7844 	ztest_dataset_dirobj_verify(zd);
7845 
7846 	if (ztest_opts.zo_verbose >= 6)
7847 		(void) printf("%s replay %"PRIu64" blocks, "
7848 		    "%"PRIu64" records, seq %"PRIu64"\n",
7849 		    zd->zd_name,
7850 		    zilog->zl_parse_blk_count,
7851 		    zilog->zl_parse_lr_count,
7852 		    zilog->zl_replaying_seq);
7853 
7854 	zilog = zil_open(os, ztest_get_data, NULL);
7855 
7856 	if (zilog->zl_replaying_seq != 0 &&
7857 	    zilog->zl_replaying_seq < committed_seq)
7858 		fatal(B_FALSE, "missing log records: "
7859 		    "replayed %"PRIu64" < committed %"PRIu64"",
7860 		    zilog->zl_replaying_seq, committed_seq);
7861 
7862 	return (0);
7863 }
7864 
7865 static void
ztest_dataset_close(int d)7866 ztest_dataset_close(int d)
7867 {
7868 	ztest_ds_t *zd = &ztest_ds[d];
7869 
7870 	zil_close(zd->zd_zilog);
7871 	dmu_objset_disown(zd->zd_os, B_TRUE, zd);
7872 
7873 	ztest_zd_fini(zd);
7874 }
7875 
7876 static int
ztest_replay_zil_cb(const char * name,void * arg)7877 ztest_replay_zil_cb(const char *name, void *arg)
7878 {
7879 	(void) arg;
7880 	objset_t *os;
7881 	ztest_ds_t *zdtmp;
7882 
7883 	VERIFY0(ztest_dmu_objset_own(name, DMU_OST_ANY, B_TRUE,
7884 	    B_TRUE, FTAG, &os));
7885 
7886 	zdtmp = umem_alloc(sizeof (ztest_ds_t), UMEM_NOFAIL);
7887 
7888 	ztest_zd_init(zdtmp, NULL, os);
7889 	zil_replay(os, zdtmp, ztest_replay_vector);
7890 	ztest_zd_fini(zdtmp);
7891 
7892 	if (dmu_objset_zil(os)->zl_parse_lr_count != 0 &&
7893 	    ztest_opts.zo_verbose >= 6) {
7894 		zilog_t *zilog = dmu_objset_zil(os);
7895 
7896 		(void) printf("%s replay %"PRIu64" blocks, "
7897 		    "%"PRIu64" records, seq %"PRIu64"\n",
7898 		    name,
7899 		    zilog->zl_parse_blk_count,
7900 		    zilog->zl_parse_lr_count,
7901 		    zilog->zl_replaying_seq);
7902 	}
7903 
7904 	umem_free(zdtmp, sizeof (ztest_ds_t));
7905 
7906 	dmu_objset_disown(os, B_TRUE, FTAG);
7907 	return (0);
7908 }
7909 
7910 static void
ztest_freeze(void)7911 ztest_freeze(void)
7912 {
7913 	ztest_ds_t *zd = &ztest_ds[0];
7914 	spa_t *spa;
7915 	int numloops = 0;
7916 
7917 	/* freeze not supported during RAIDZ expansion */
7918 	if (ztest_opts.zo_raid_do_expand)
7919 		return;
7920 
7921 	if (ztest_opts.zo_verbose >= 3)
7922 		(void) printf("testing spa_freeze()...\n");
7923 
7924 	raidz_scratch_verify();
7925 	kernel_init(SPA_MODE_READ | SPA_MODE_WRITE);
7926 	VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
7927 	VERIFY0(ztest_dataset_open(0));
7928 	ztest_spa = spa;
7929 
7930 	/*
7931 	 * Force the first log block to be transactionally allocated.
7932 	 * We have to do this before we freeze the pool -- otherwise
7933 	 * the log chain won't be anchored.
7934 	 */
7935 	while (BP_IS_HOLE(&zd->zd_zilog->zl_header->zh_log)) {
7936 		ztest_dmu_object_alloc_free(zd, 0);
7937 		zil_commit(zd->zd_zilog, 0);
7938 	}
7939 
7940 	txg_wait_synced(spa_get_dsl(spa), 0);
7941 
7942 	/*
7943 	 * Freeze the pool.  This stops spa_sync() from doing anything,
7944 	 * so that the only way to record changes from now on is the ZIL.
7945 	 */
7946 	spa_freeze(spa);
7947 
7948 	/*
7949 	 * Because it is hard to predict how much space a write will actually
7950 	 * require beforehand, we leave ourselves some fudge space to write over
7951 	 * capacity.
7952 	 */
7953 	uint64_t capacity = metaslab_class_get_space(spa_normal_class(spa)) / 2;
7954 
7955 	/*
7956 	 * Run tests that generate log records but don't alter the pool config
7957 	 * or depend on DSL sync tasks (snapshots, objset create/destroy, etc).
7958 	 * We do a txg_wait_synced() after each iteration to force the txg
7959 	 * to increase well beyond the last synced value in the uberblock.
7960 	 * The ZIL should be OK with that.
7961 	 *
7962 	 * Run a random number of times less than zo_maxloops and ensure we do
7963 	 * not run out of space on the pool.
7964 	 */
7965 	while (ztest_random(10) != 0 &&
7966 	    numloops++ < ztest_opts.zo_maxloops &&
7967 	    metaslab_class_get_alloc(spa_normal_class(spa)) < capacity) {
7968 		ztest_od_t od;
7969 		ztest_od_init(&od, 0, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, 0);
7970 		VERIFY0(ztest_object_init(zd, &od, sizeof (od), B_FALSE));
7971 		ztest_io(zd, od.od_object,
7972 		    ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
7973 		txg_wait_synced(spa_get_dsl(spa), 0);
7974 	}
7975 
7976 	/*
7977 	 * Commit all of the changes we just generated.
7978 	 */
7979 	zil_commit(zd->zd_zilog, 0);
7980 	txg_wait_synced(spa_get_dsl(spa), 0);
7981 
7982 	/*
7983 	 * Close our dataset and close the pool.
7984 	 */
7985 	ztest_dataset_close(0);
7986 	spa_close(spa, FTAG);
7987 	kernel_fini();
7988 
7989 	/*
7990 	 * Open and close the pool and dataset to induce log replay.
7991 	 */
7992 	raidz_scratch_verify();
7993 	kernel_init(SPA_MODE_READ | SPA_MODE_WRITE);
7994 	VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
7995 	ASSERT3U(spa_freeze_txg(spa), ==, UINT64_MAX);
7996 	VERIFY0(ztest_dataset_open(0));
7997 	ztest_spa = spa;
7998 	txg_wait_synced(spa_get_dsl(spa), 0);
7999 	ztest_dataset_close(0);
8000 	ztest_reguid(NULL, 0);
8001 
8002 	spa_close(spa, FTAG);
8003 	kernel_fini();
8004 }
8005 
8006 static void
ztest_import_impl(void)8007 ztest_import_impl(void)
8008 {
8009 	importargs_t args = { 0 };
8010 	nvlist_t *cfg = NULL;
8011 	int nsearch = 1;
8012 	char *searchdirs[nsearch];
8013 	int flags = ZFS_IMPORT_MISSING_LOG;
8014 
8015 	searchdirs[0] = ztest_opts.zo_dir;
8016 	args.paths = nsearch;
8017 	args.path = searchdirs;
8018 	args.can_be_active = B_FALSE;
8019 
8020 	libpc_handle_t lpch = {
8021 		.lpc_lib_handle = NULL,
8022 		.lpc_ops = &libzpool_config_ops,
8023 		.lpc_printerr = B_TRUE
8024 	};
8025 	VERIFY0(zpool_find_config(&lpch, ztest_opts.zo_pool, &cfg, &args));
8026 	VERIFY0(spa_import(ztest_opts.zo_pool, cfg, NULL, flags));
8027 	fnvlist_free(cfg);
8028 }
8029 
8030 /*
8031  * Import a storage pool with the given name.
8032  */
8033 static void
ztest_import(ztest_shared_t * zs)8034 ztest_import(ztest_shared_t *zs)
8035 {
8036 	spa_t *spa;
8037 
8038 	mutex_init(&ztest_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
8039 	mutex_init(&ztest_checkpoint_lock, NULL, MUTEX_DEFAULT, NULL);
8040 	VERIFY0(pthread_rwlock_init(&ztest_name_lock, NULL));
8041 
8042 	raidz_scratch_verify();
8043 	kernel_init(SPA_MODE_READ | SPA_MODE_WRITE);
8044 
8045 	ztest_import_impl();
8046 
8047 	VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
8048 	zs->zs_metaslab_sz =
8049 	    1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift;
8050 	zs->zs_guid = spa_guid(spa);
8051 	spa_close(spa, FTAG);
8052 
8053 	kernel_fini();
8054 
8055 	if (!ztest_opts.zo_mmp_test) {
8056 		ztest_run_zdb(zs->zs_guid);
8057 		ztest_freeze();
8058 		ztest_run_zdb(zs->zs_guid);
8059 	}
8060 
8061 	(void) pthread_rwlock_destroy(&ztest_name_lock);
8062 	mutex_destroy(&ztest_vdev_lock);
8063 	mutex_destroy(&ztest_checkpoint_lock);
8064 }
8065 
8066 /*
8067  * After the expansion was killed, check that the pool is healthy
8068  */
8069 static void
ztest_raidz_expand_check(spa_t * spa)8070 ztest_raidz_expand_check(spa_t *spa)
8071 {
8072 	ASSERT3U(ztest_opts.zo_raidz_expand_test, ==, RAIDZ_EXPAND_KILLED);
8073 	/*
8074 	 * Set pool check done flag, main program will run a zdb check
8075 	 * of the pool when we exit.
8076 	 */
8077 	ztest_shared_opts->zo_raidz_expand_test = RAIDZ_EXPAND_CHECKED;
8078 
8079 	/* Wait for reflow to finish */
8080 	if (ztest_opts.zo_verbose >= 1) {
8081 		(void) printf("\nwaiting for reflow to finish ...\n");
8082 	}
8083 	pool_raidz_expand_stat_t rzx_stats;
8084 	pool_raidz_expand_stat_t *pres = &rzx_stats;
8085 	do {
8086 		txg_wait_synced(spa_get_dsl(spa), 0);
8087 		(void) poll(NULL, 0, 500); /* wait 1/2 second */
8088 
8089 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8090 		(void) spa_raidz_expand_get_stats(spa, pres);
8091 		spa_config_exit(spa, SCL_CONFIG, FTAG);
8092 	} while (pres->pres_state != DSS_FINISHED &&
8093 	    pres->pres_reflowed < pres->pres_to_reflow);
8094 
8095 	if (ztest_opts.zo_verbose >= 1) {
8096 		(void) printf("verifying an interrupted raidz "
8097 		    "expansion using a pool scrub ...\n");
8098 	}
8099 
8100 	/* Will fail here if there is non-recoverable corruption detected */
8101 	int error = ztest_scrub_impl(spa);
8102 	if (error == EBUSY)
8103 		error = 0;
8104 
8105 	VERIFY0(error);
8106 
8107 	if (ztest_opts.zo_verbose >= 1) {
8108 		(void) printf("raidz expansion scrub check complete\n");
8109 	}
8110 }
8111 
8112 /*
8113  * Start a raidz expansion test.  We run some I/O on the pool for a while
8114  * to get some data in the pool.  Then we grow the raidz and
8115  * kill the test at the requested offset into the reflow, verifying that
8116  * doing such does not lead to pool corruption.
8117  */
8118 static void
ztest_raidz_expand_run(ztest_shared_t * zs,spa_t * spa)8119 ztest_raidz_expand_run(ztest_shared_t *zs, spa_t *spa)
8120 {
8121 	nvlist_t *root;
8122 	pool_raidz_expand_stat_t rzx_stats;
8123 	pool_raidz_expand_stat_t *pres = &rzx_stats;
8124 	kthread_t **run_threads;
8125 	vdev_t *cvd, *rzvd = spa->spa_root_vdev->vdev_child[0];
8126 	int total_disks = rzvd->vdev_children;
8127 	int data_disks = total_disks - vdev_get_nparity(rzvd);
8128 	uint64_t alloc_goal;
8129 	uint64_t csize;
8130 	int error, t;
8131 	int threads = ztest_opts.zo_threads;
8132 	ztest_expand_io_t *thread_args;
8133 
8134 	ASSERT3U(ztest_opts.zo_raidz_expand_test, !=, RAIDZ_EXPAND_NONE);
8135 	ASSERT3P(rzvd->vdev_ops, ==, &vdev_raidz_ops);
8136 	ztest_opts.zo_raidz_expand_test = RAIDZ_EXPAND_STARTED;
8137 
8138 	/* Setup a 1 MiB buffer of random data */
8139 	uint64_t bufsize = 1024 * 1024;
8140 	void *buffer = umem_alloc(bufsize, UMEM_NOFAIL);
8141 
8142 	if (read(ztest_fd_rand, buffer, bufsize) != bufsize) {
8143 		fatal(B_TRUE, "short read from /dev/urandom");
8144 	}
8145 	/*
8146 	 * Put some data in the pool and then attach a vdev to initiate
8147 	 * reflow.
8148 	 */
8149 	run_threads = umem_zalloc(threads * sizeof (kthread_t *), UMEM_NOFAIL);
8150 	thread_args = umem_zalloc(threads * sizeof (ztest_expand_io_t),
8151 	    UMEM_NOFAIL);
8152 	/* Aim for roughly 25% of allocatable space up to 1GB */
8153 	alloc_goal = (vdev_get_min_asize(rzvd) * data_disks) / total_disks;
8154 	alloc_goal = MIN(alloc_goal >> 2, 1024*1024*1024);
8155 	if (ztest_opts.zo_verbose >= 1) {
8156 		(void) printf("adding data to pool '%s', goal %llu bytes\n",
8157 		    ztest_opts.zo_pool, (u_longlong_t)alloc_goal);
8158 	}
8159 
8160 	/*
8161 	 * Kick off all the I/O generators that run in parallel.
8162 	 */
8163 	for (t = 0; t < threads; t++) {
8164 		if (t < ztest_opts.zo_datasets && ztest_dataset_open(t) != 0) {
8165 			umem_free(run_threads, threads * sizeof (kthread_t *));
8166 			umem_free(buffer, bufsize);
8167 			return;
8168 		}
8169 		thread_args[t].rzx_id = t;
8170 		thread_args[t].rzx_amount = alloc_goal / threads;
8171 		thread_args[t].rzx_bufsize = bufsize;
8172 		thread_args[t].rzx_buffer = buffer;
8173 		thread_args[t].rzx_alloc_max = alloc_goal;
8174 		thread_args[t].rzx_spa = spa;
8175 		run_threads[t] = thread_create(NULL, 0, ztest_rzx_thread,
8176 		    &thread_args[t], 0, NULL, TS_RUN | TS_JOINABLE,
8177 		    defclsyspri);
8178 	}
8179 
8180 	/*
8181 	 * Wait for all of the writers to complete.
8182 	 */
8183 	for (t = 0; t < threads; t++)
8184 		VERIFY0(thread_join(run_threads[t]));
8185 
8186 	/*
8187 	 * Close all datasets. This must be done after all the threads
8188 	 * are joined so we can be sure none of the datasets are in-use
8189 	 * by any of the threads.
8190 	 */
8191 	for (t = 0; t < ztest_opts.zo_threads; t++) {
8192 		if (t < ztest_opts.zo_datasets)
8193 			ztest_dataset_close(t);
8194 	}
8195 
8196 	txg_wait_synced(spa_get_dsl(spa), 0);
8197 
8198 	zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(spa));
8199 	zs->zs_space = metaslab_class_get_space(spa_normal_class(spa));
8200 
8201 	umem_free(buffer, bufsize);
8202 	umem_free(run_threads, threads * sizeof (kthread_t *));
8203 	umem_free(thread_args, threads * sizeof (ztest_expand_io_t));
8204 
8205 	/* Set our reflow target to 25%, 50% or 75% of allocated size */
8206 	uint_t multiple = ztest_random(3) + 1;
8207 	uint64_t reflow_max = (rzvd->vdev_stat.vs_alloc * multiple) / 4;
8208 	raidz_expand_max_reflow_bytes = reflow_max;
8209 
8210 	if (ztest_opts.zo_verbose >= 1) {
8211 		(void) printf("running raidz expansion test, killing when "
8212 		    "reflow reaches %llu bytes (%u/4 of allocated space)\n",
8213 		    (u_longlong_t)reflow_max, multiple);
8214 	}
8215 
8216 	/* XXX - do we want some I/O load during the reflow? */
8217 
8218 	/*
8219 	 * Use a disk size that is larger than existing ones
8220 	 */
8221 	cvd = rzvd->vdev_child[0];
8222 	csize = vdev_get_min_asize(cvd);
8223 	csize += csize / 10;
8224 	/*
8225 	 * Path to vdev to be attached
8226 	 */
8227 	char *newpath = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
8228 	(void) snprintf(newpath, MAXPATHLEN, ztest_dev_template,
8229 	    ztest_opts.zo_dir, ztest_opts.zo_pool, rzvd->vdev_children);
8230 	/*
8231 	 * Build the nvlist describing newpath.
8232 	 */
8233 	root = make_vdev_root(newpath, NULL, NULL, csize, ztest_get_ashift(),
8234 	    NULL, 0, 0, 1);
8235 	/*
8236 	 * Expand the raidz vdev by attaching the new disk
8237 	 */
8238 	if (ztest_opts.zo_verbose >= 1) {
8239 		(void) printf("expanding raidz: %d wide to %d wide with '%s'\n",
8240 		    (int)rzvd->vdev_children, (int)rzvd->vdev_children + 1,
8241 		    newpath);
8242 	}
8243 	error = spa_vdev_attach(spa, rzvd->vdev_guid, root, B_FALSE, B_FALSE);
8244 	nvlist_free(root);
8245 	if (error != 0) {
8246 		fatal(0, "raidz expand: attach (%s %llu) returned %d",
8247 		    newpath, (long long)csize, error);
8248 	}
8249 
8250 	/*
8251 	 * Wait for reflow to begin
8252 	 */
8253 	while (spa->spa_raidz_expand == NULL) {
8254 		txg_wait_synced(spa_get_dsl(spa), 0);
8255 		(void) poll(NULL, 0, 100); /* wait 1/10 second */
8256 	}
8257 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8258 	(void) spa_raidz_expand_get_stats(spa, pres);
8259 	spa_config_exit(spa, SCL_CONFIG, FTAG);
8260 	while (pres->pres_state != DSS_SCANNING) {
8261 		txg_wait_synced(spa_get_dsl(spa), 0);
8262 		(void) poll(NULL, 0, 100); /* wait 1/10 second */
8263 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8264 		(void) spa_raidz_expand_get_stats(spa, pres);
8265 		spa_config_exit(spa, SCL_CONFIG, FTAG);
8266 	}
8267 
8268 	ASSERT3U(pres->pres_state, ==, DSS_SCANNING);
8269 	ASSERT3U(pres->pres_to_reflow, !=, 0);
8270 	/*
8271 	 * Set so when we are killed we go to raidz checking rather than
8272 	 * restarting test.
8273 	 */
8274 	ztest_shared_opts->zo_raidz_expand_test = RAIDZ_EXPAND_KILLED;
8275 	if (ztest_opts.zo_verbose >= 1) {
8276 		(void) printf("raidz expansion reflow started, waiting for "
8277 		    "%llu bytes to be copied\n", (u_longlong_t)reflow_max);
8278 	}
8279 
8280 	/*
8281 	 * Wait for reflow maximum to be reached and then kill the test
8282 	 */
8283 	while (pres->pres_reflowed < reflow_max) {
8284 		txg_wait_synced(spa_get_dsl(spa), 0);
8285 		(void) poll(NULL, 0, 100); /* wait 1/10 second */
8286 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8287 		(void) spa_raidz_expand_get_stats(spa, pres);
8288 		spa_config_exit(spa, SCL_CONFIG, FTAG);
8289 	}
8290 
8291 	/* Reset the reflow pause before killing */
8292 	raidz_expand_max_reflow_bytes = 0;
8293 
8294 	if (ztest_opts.zo_verbose >= 1) {
8295 		(void) printf("killing raidz expansion test after reflow "
8296 		    "reached %llu bytes\n", (u_longlong_t)pres->pres_reflowed);
8297 	}
8298 
8299 	/*
8300 	 * Kill ourself to simulate a panic during a reflow.  Our parent will
8301 	 * restart the test and the changed flag value will drive the test
8302 	 * through the scrub/check code to verify the pool is not corrupted.
8303 	 */
8304 	ztest_kill(zs);
8305 }
8306 
8307 static void
ztest_generic_run(ztest_shared_t * zs,spa_t * spa)8308 ztest_generic_run(ztest_shared_t *zs, spa_t *spa)
8309 {
8310 	kthread_t **run_threads;
8311 	int t;
8312 
8313 	run_threads = umem_zalloc(ztest_opts.zo_threads * sizeof (kthread_t *),
8314 	    UMEM_NOFAIL);
8315 
8316 	/*
8317 	 * Kick off all the tests that run in parallel.
8318 	 */
8319 	for (t = 0; t < ztest_opts.zo_threads; t++) {
8320 		if (t < ztest_opts.zo_datasets && ztest_dataset_open(t) != 0) {
8321 			umem_free(run_threads, ztest_opts.zo_threads *
8322 			    sizeof (kthread_t *));
8323 			return;
8324 		}
8325 
8326 		run_threads[t] = thread_create(NULL, 0, ztest_thread,
8327 		    (void *)(uintptr_t)t, 0, NULL, TS_RUN | TS_JOINABLE,
8328 		    defclsyspri);
8329 	}
8330 
8331 	/*
8332 	 * Wait for all of the tests to complete.
8333 	 */
8334 	for (t = 0; t < ztest_opts.zo_threads; t++)
8335 		VERIFY0(thread_join(run_threads[t]));
8336 
8337 	/*
8338 	 * Close all datasets. This must be done after all the threads
8339 	 * are joined so we can be sure none of the datasets are in-use
8340 	 * by any of the threads.
8341 	 */
8342 	for (t = 0; t < ztest_opts.zo_threads; t++) {
8343 		if (t < ztest_opts.zo_datasets)
8344 			ztest_dataset_close(t);
8345 	}
8346 
8347 	txg_wait_synced(spa_get_dsl(spa), 0);
8348 
8349 	zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(spa));
8350 	zs->zs_space = metaslab_class_get_space(spa_normal_class(spa));
8351 
8352 	umem_free(run_threads, ztest_opts.zo_threads * sizeof (kthread_t *));
8353 }
8354 
8355 /*
8356  * Setup our test context and kick off threads to run tests on all datasets
8357  * in parallel.
8358  */
8359 static void
ztest_run(ztest_shared_t * zs)8360 ztest_run(ztest_shared_t *zs)
8361 {
8362 	spa_t *spa;
8363 	objset_t *os;
8364 	kthread_t *resume_thread, *deadman_thread;
8365 	uint64_t object;
8366 	int error;
8367 	int t, d;
8368 
8369 	ztest_exiting = B_FALSE;
8370 
8371 	/*
8372 	 * Initialize parent/child shared state.
8373 	 */
8374 	mutex_init(&ztest_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
8375 	mutex_init(&ztest_checkpoint_lock, NULL, MUTEX_DEFAULT, NULL);
8376 	VERIFY0(pthread_rwlock_init(&ztest_name_lock, NULL));
8377 
8378 	zs->zs_thread_start = gethrtime();
8379 	zs->zs_thread_stop =
8380 	    zs->zs_thread_start + ztest_opts.zo_passtime * NANOSEC;
8381 	zs->zs_thread_stop = MIN(zs->zs_thread_stop, zs->zs_proc_stop);
8382 	zs->zs_thread_kill = zs->zs_thread_stop;
8383 	if (ztest_random(100) < ztest_opts.zo_killrate) {
8384 		zs->zs_thread_kill -=
8385 		    ztest_random(ztest_opts.zo_passtime * NANOSEC);
8386 	}
8387 
8388 	mutex_init(&zcl.zcl_callbacks_lock, NULL, MUTEX_DEFAULT, NULL);
8389 
8390 	list_create(&zcl.zcl_callbacks, sizeof (ztest_cb_data_t),
8391 	    offsetof(ztest_cb_data_t, zcd_node));
8392 
8393 	/*
8394 	 * Open our pool.  It may need to be imported first depending on
8395 	 * what tests were running when the previous pass was terminated.
8396 	 */
8397 	raidz_scratch_verify();
8398 	kernel_init(SPA_MODE_READ | SPA_MODE_WRITE);
8399 	error = spa_open(ztest_opts.zo_pool, &spa, FTAG);
8400 	if (error) {
8401 		VERIFY3S(error, ==, ENOENT);
8402 		ztest_import_impl();
8403 		VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
8404 		zs->zs_metaslab_sz =
8405 		    1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift;
8406 	}
8407 
8408 	metaslab_preload_limit = ztest_random(20) + 1;
8409 	ztest_spa = spa;
8410 
8411 	/*
8412 	 * XXX - BUGBUG raidz expansion do not run this for generic for now
8413 	 */
8414 	if (ztest_opts.zo_raidz_expand_test != RAIDZ_EXPAND_NONE)
8415 		VERIFY0(vdev_raidz_impl_set("cycle"));
8416 
8417 	dmu_objset_stats_t dds;
8418 	VERIFY0(ztest_dmu_objset_own(ztest_opts.zo_pool,
8419 	    DMU_OST_ANY, B_TRUE, B_TRUE, FTAG, &os));
8420 	dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
8421 	dmu_objset_fast_stat(os, &dds);
8422 	dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
8423 	dmu_objset_disown(os, B_TRUE, FTAG);
8424 
8425 	/* Give the dedicated raidz expansion test more grace time */
8426 	if (ztest_opts.zo_raidz_expand_test != RAIDZ_EXPAND_NONE)
8427 		zfs_deadman_synctime_ms *= 2;
8428 
8429 	/*
8430 	 * Create a thread to periodically resume suspended I/O.
8431 	 */
8432 	resume_thread = thread_create(NULL, 0, ztest_resume_thread,
8433 	    spa, 0, NULL, TS_RUN | TS_JOINABLE, defclsyspri);
8434 
8435 	/*
8436 	 * Create a deadman thread and set to panic if we hang.
8437 	 */
8438 	deadman_thread = thread_create(NULL, 0, ztest_deadman_thread,
8439 	    zs, 0, NULL, TS_RUN | TS_JOINABLE, defclsyspri);
8440 
8441 	spa->spa_deadman_failmode = ZIO_FAILURE_MODE_PANIC;
8442 
8443 	/*
8444 	 * Verify that we can safely inquire about any object,
8445 	 * whether it's allocated or not.  To make it interesting,
8446 	 * we probe a 5-wide window around each power of two.
8447 	 * This hits all edge cases, including zero and the max.
8448 	 */
8449 	for (t = 0; t < 64; t++) {
8450 		for (d = -5; d <= 5; d++) {
8451 			error = dmu_object_info(spa->spa_meta_objset,
8452 			    (1ULL << t) + d, NULL);
8453 			ASSERT(error == 0 || error == ENOENT ||
8454 			    error == EINVAL);
8455 		}
8456 	}
8457 
8458 	/*
8459 	 * If we got any ENOSPC errors on the previous run, destroy something.
8460 	 */
8461 	if (zs->zs_enospc_count != 0) {
8462 		/* Not expecting ENOSPC errors during raidz expansion tests */
8463 		ASSERT3U(ztest_opts.zo_raidz_expand_test, ==,
8464 		    RAIDZ_EXPAND_NONE);
8465 
8466 		int d = ztest_random(ztest_opts.zo_datasets);
8467 		ztest_dataset_destroy(d);
8468 	}
8469 	zs->zs_enospc_count = 0;
8470 
8471 	/*
8472 	 * If we were in the middle of ztest_device_removal() and were killed
8473 	 * we need to ensure the removal and scrub complete before running
8474 	 * any tests that check ztest_device_removal_active. The removal will
8475 	 * be restarted automatically when the spa is opened, but we need to
8476 	 * initiate the scrub manually if it is not already in progress. Note
8477 	 * that we always run the scrub whenever an indirect vdev exists
8478 	 * because we have no way of knowing for sure if ztest_device_removal()
8479 	 * fully completed its scrub before the pool was reimported.
8480 	 *
8481 	 * Does not apply for the RAIDZ expansion specific test runs
8482 	 */
8483 	if (ztest_opts.zo_raidz_expand_test == RAIDZ_EXPAND_NONE &&
8484 	    (spa->spa_removing_phys.sr_state == DSS_SCANNING ||
8485 	    spa->spa_removing_phys.sr_prev_indirect_vdev != -1)) {
8486 		while (spa->spa_removing_phys.sr_state == DSS_SCANNING)
8487 			txg_wait_synced(spa_get_dsl(spa), 0);
8488 
8489 		error = ztest_scrub_impl(spa);
8490 		if (error == EBUSY)
8491 			error = 0;
8492 		ASSERT0(error);
8493 	}
8494 
8495 	if (ztest_opts.zo_verbose >= 4)
8496 		(void) printf("starting main threads...\n");
8497 
8498 	/*
8499 	 * Replay all logs of all datasets in the pool. This is primarily for
8500 	 * temporary datasets which wouldn't otherwise get replayed, which
8501 	 * can trigger failures when attempting to offline a SLOG in
8502 	 * ztest_fault_inject().
8503 	 */
8504 	(void) dmu_objset_find(ztest_opts.zo_pool, ztest_replay_zil_cb,
8505 	    NULL, DS_FIND_CHILDREN);
8506 
8507 	if (ztest_opts.zo_raidz_expand_test == RAIDZ_EXPAND_REQUESTED)
8508 		ztest_raidz_expand_run(zs, spa);
8509 	else if (ztest_opts.zo_raidz_expand_test == RAIDZ_EXPAND_KILLED)
8510 		ztest_raidz_expand_check(spa);
8511 	else
8512 		ztest_generic_run(zs, spa);
8513 
8514 	/* Kill the resume and deadman threads */
8515 	ztest_exiting = B_TRUE;
8516 	VERIFY0(thread_join(resume_thread));
8517 	VERIFY0(thread_join(deadman_thread));
8518 	ztest_resume(spa);
8519 
8520 	/*
8521 	 * Right before closing the pool, kick off a bunch of async I/O;
8522 	 * spa_close() should wait for it to complete.
8523 	 */
8524 	for (object = 1; object < 50; object++) {
8525 		dmu_prefetch(spa->spa_meta_objset, object, 0, 0, 1ULL << 20,
8526 		    ZIO_PRIORITY_SYNC_READ);
8527 	}
8528 
8529 	/* Verify that at least one commit cb was called in a timely fashion */
8530 	if (zc_cb_counter >= ZTEST_COMMIT_CB_MIN_REG)
8531 		VERIFY0(zc_min_txg_delay);
8532 
8533 	spa_close(spa, FTAG);
8534 
8535 	/*
8536 	 * Verify that we can loop over all pools.
8537 	 */
8538 	mutex_enter(&spa_namespace_lock);
8539 	for (spa = spa_next(NULL); spa != NULL; spa = spa_next(spa))
8540 		if (ztest_opts.zo_verbose > 3)
8541 			(void) printf("spa_next: found %s\n", spa_name(spa));
8542 	mutex_exit(&spa_namespace_lock);
8543 
8544 	/*
8545 	 * Verify that we can export the pool and reimport it under a
8546 	 * different name.
8547 	 */
8548 	if ((ztest_random(2) == 0) && !ztest_opts.zo_mmp_test) {
8549 		char name[ZFS_MAX_DATASET_NAME_LEN];
8550 		(void) snprintf(name, sizeof (name), "%s_import",
8551 		    ztest_opts.zo_pool);
8552 		ztest_spa_import_export(ztest_opts.zo_pool, name);
8553 		ztest_spa_import_export(name, ztest_opts.zo_pool);
8554 	}
8555 
8556 	kernel_fini();
8557 
8558 	list_destroy(&zcl.zcl_callbacks);
8559 	mutex_destroy(&zcl.zcl_callbacks_lock);
8560 	(void) pthread_rwlock_destroy(&ztest_name_lock);
8561 	mutex_destroy(&ztest_vdev_lock);
8562 	mutex_destroy(&ztest_checkpoint_lock);
8563 }
8564 
8565 static void
print_time(hrtime_t t,char * timebuf)8566 print_time(hrtime_t t, char *timebuf)
8567 {
8568 	hrtime_t s = t / NANOSEC;
8569 	hrtime_t m = s / 60;
8570 	hrtime_t h = m / 60;
8571 	hrtime_t d = h / 24;
8572 
8573 	s -= m * 60;
8574 	m -= h * 60;
8575 	h -= d * 24;
8576 
8577 	timebuf[0] = '\0';
8578 
8579 	if (d)
8580 		(void) sprintf(timebuf,
8581 		    "%llud%02lluh%02llum%02llus", d, h, m, s);
8582 	else if (h)
8583 		(void) sprintf(timebuf, "%lluh%02llum%02llus", h, m, s);
8584 	else if (m)
8585 		(void) sprintf(timebuf, "%llum%02llus", m, s);
8586 	else
8587 		(void) sprintf(timebuf, "%llus", s);
8588 }
8589 
8590 static nvlist_t *
make_random_pool_props(void)8591 make_random_pool_props(void)
8592 {
8593 	nvlist_t *props;
8594 
8595 	props = fnvlist_alloc();
8596 
8597 	/* Twenty percent of the time enable ZPOOL_PROP_DEDUP_TABLE_QUOTA */
8598 	if (ztest_random(5) == 0) {
8599 		fnvlist_add_uint64(props,
8600 		    zpool_prop_to_name(ZPOOL_PROP_DEDUP_TABLE_QUOTA),
8601 		    2 * 1024 * 1024);
8602 	}
8603 
8604 	/* Fifty percent of the time enable ZPOOL_PROP_AUTOREPLACE */
8605 	if (ztest_random(2) == 0) {
8606 		fnvlist_add_uint64(props,
8607 		    zpool_prop_to_name(ZPOOL_PROP_AUTOREPLACE), 1);
8608 	}
8609 
8610 	return (props);
8611 }
8612 
8613 /*
8614  * Create a storage pool with the given name and initial vdev size.
8615  * Then test spa_freeze() functionality.
8616  */
8617 static void
ztest_init(ztest_shared_t * zs)8618 ztest_init(ztest_shared_t *zs)
8619 {
8620 	spa_t *spa;
8621 	nvlist_t *nvroot, *props;
8622 	int i;
8623 
8624 	mutex_init(&ztest_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
8625 	mutex_init(&ztest_checkpoint_lock, NULL, MUTEX_DEFAULT, NULL);
8626 	VERIFY0(pthread_rwlock_init(&ztest_name_lock, NULL));
8627 
8628 	raidz_scratch_verify();
8629 	kernel_init(SPA_MODE_READ | SPA_MODE_WRITE);
8630 
8631 	/*
8632 	 * Create the storage pool.
8633 	 */
8634 	(void) spa_destroy(ztest_opts.zo_pool);
8635 	ztest_shared->zs_vdev_next_leaf = 0;
8636 	zs->zs_splits = 0;
8637 	zs->zs_mirrors = ztest_opts.zo_mirrors;
8638 	nvroot = make_vdev_root(NULL, NULL, NULL, ztest_opts.zo_vdev_size, 0,
8639 	    NULL, ztest_opts.zo_raid_children, zs->zs_mirrors, 1);
8640 	props = make_random_pool_props();
8641 
8642 	/*
8643 	 * We don't expect the pool to suspend unless maxfaults == 0,
8644 	 * in which case ztest_fault_inject() temporarily takes away
8645 	 * the only valid replica.
8646 	 */
8647 	fnvlist_add_uint64(props,
8648 	    zpool_prop_to_name(ZPOOL_PROP_FAILUREMODE),
8649 	    MAXFAULTS(zs) ? ZIO_FAILURE_MODE_PANIC : ZIO_FAILURE_MODE_WAIT);
8650 
8651 	for (i = 0; i < SPA_FEATURES; i++) {
8652 		char *buf;
8653 
8654 		if (!spa_feature_table[i].fi_zfs_mod_supported)
8655 			continue;
8656 
8657 		/*
8658 		 * 75% chance of using the log space map feature. We want ztest
8659 		 * to exercise both the code paths that use the log space map
8660 		 * feature and the ones that don't.
8661 		 */
8662 		if (i == SPA_FEATURE_LOG_SPACEMAP && ztest_random(4) == 0)
8663 			continue;
8664 
8665 		/*
8666 		 * split 50/50 between legacy and fast dedup
8667 		 */
8668 		if (i == SPA_FEATURE_FAST_DEDUP && ztest_random(2) != 0)
8669 			continue;
8670 
8671 		VERIFY3S(-1, !=, asprintf(&buf, "feature@%s",
8672 		    spa_feature_table[i].fi_uname));
8673 		fnvlist_add_uint64(props, buf, 0);
8674 		free(buf);
8675 	}
8676 
8677 	VERIFY0(spa_create(ztest_opts.zo_pool, nvroot, props, NULL, NULL));
8678 	fnvlist_free(nvroot);
8679 	fnvlist_free(props);
8680 
8681 	VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
8682 	zs->zs_metaslab_sz =
8683 	    1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift;
8684 	zs->zs_guid = spa_guid(spa);
8685 	spa_close(spa, FTAG);
8686 
8687 	kernel_fini();
8688 
8689 	if (!ztest_opts.zo_mmp_test) {
8690 		ztest_run_zdb(zs->zs_guid);
8691 		ztest_freeze();
8692 		ztest_run_zdb(zs->zs_guid);
8693 	}
8694 
8695 	(void) pthread_rwlock_destroy(&ztest_name_lock);
8696 	mutex_destroy(&ztest_vdev_lock);
8697 	mutex_destroy(&ztest_checkpoint_lock);
8698 }
8699 
8700 static void
setup_data_fd(void)8701 setup_data_fd(void)
8702 {
8703 	static char ztest_name_data[] = "/tmp/ztest.data.XXXXXX";
8704 
8705 	ztest_fd_data = mkstemp(ztest_name_data);
8706 	ASSERT3S(ztest_fd_data, >=, 0);
8707 	(void) unlink(ztest_name_data);
8708 }
8709 
8710 static int
shared_data_size(ztest_shared_hdr_t * hdr)8711 shared_data_size(ztest_shared_hdr_t *hdr)
8712 {
8713 	int size;
8714 
8715 	size = hdr->zh_hdr_size;
8716 	size += hdr->zh_opts_size;
8717 	size += hdr->zh_size;
8718 	size += hdr->zh_stats_size * hdr->zh_stats_count;
8719 	size += hdr->zh_ds_size * hdr->zh_ds_count;
8720 	size += hdr->zh_scratch_state_size;
8721 
8722 	return (size);
8723 }
8724 
8725 static void
setup_hdr(void)8726 setup_hdr(void)
8727 {
8728 	int size;
8729 	ztest_shared_hdr_t *hdr;
8730 
8731 	hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()),
8732 	    PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0);
8733 	ASSERT3P(hdr, !=, MAP_FAILED);
8734 
8735 	VERIFY0(ftruncate(ztest_fd_data, sizeof (ztest_shared_hdr_t)));
8736 
8737 	hdr->zh_hdr_size = sizeof (ztest_shared_hdr_t);
8738 	hdr->zh_opts_size = sizeof (ztest_shared_opts_t);
8739 	hdr->zh_size = sizeof (ztest_shared_t);
8740 	hdr->zh_stats_size = sizeof (ztest_shared_callstate_t);
8741 	hdr->zh_stats_count = ZTEST_FUNCS;
8742 	hdr->zh_ds_size = sizeof (ztest_shared_ds_t);
8743 	hdr->zh_ds_count = ztest_opts.zo_datasets;
8744 	hdr->zh_scratch_state_size = sizeof (ztest_shared_scratch_state_t);
8745 
8746 	size = shared_data_size(hdr);
8747 	VERIFY0(ftruncate(ztest_fd_data, size));
8748 
8749 	(void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize()));
8750 }
8751 
8752 static void
setup_data(void)8753 setup_data(void)
8754 {
8755 	int size, offset;
8756 	ztest_shared_hdr_t *hdr;
8757 	uint8_t *buf;
8758 
8759 	hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()),
8760 	    PROT_READ, MAP_SHARED, ztest_fd_data, 0);
8761 	ASSERT3P(hdr, !=, MAP_FAILED);
8762 
8763 	size = shared_data_size(hdr);
8764 
8765 	(void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize()));
8766 	hdr = ztest_shared_hdr = (void *)mmap(0, P2ROUNDUP(size, getpagesize()),
8767 	    PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0);
8768 	ASSERT3P(hdr, !=, MAP_FAILED);
8769 	buf = (uint8_t *)hdr;
8770 
8771 	offset = hdr->zh_hdr_size;
8772 	ztest_shared_opts = (void *)&buf[offset];
8773 	offset += hdr->zh_opts_size;
8774 	ztest_shared = (void *)&buf[offset];
8775 	offset += hdr->zh_size;
8776 	ztest_shared_callstate = (void *)&buf[offset];
8777 	offset += hdr->zh_stats_size * hdr->zh_stats_count;
8778 	ztest_shared_ds = (void *)&buf[offset];
8779 	offset += hdr->zh_ds_size * hdr->zh_ds_count;
8780 	ztest_scratch_state = (void *)&buf[offset];
8781 }
8782 
8783 static boolean_t
exec_child(char * cmd,char * libpath,boolean_t ignorekill,int * statusp)8784 exec_child(char *cmd, char *libpath, boolean_t ignorekill, int *statusp)
8785 {
8786 	pid_t pid;
8787 	int status;
8788 	char *cmdbuf = NULL;
8789 
8790 	pid = fork();
8791 
8792 	if (cmd == NULL) {
8793 		cmdbuf = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
8794 		(void) strlcpy(cmdbuf, getexecname(), MAXPATHLEN);
8795 		cmd = cmdbuf;
8796 	}
8797 
8798 	if (pid == -1)
8799 		fatal(B_TRUE, "fork failed");
8800 
8801 	if (pid == 0) {	/* child */
8802 		char fd_data_str[12];
8803 
8804 		VERIFY3S(11, >=,
8805 		    snprintf(fd_data_str, 12, "%d", ztest_fd_data));
8806 		VERIFY0(setenv("ZTEST_FD_DATA", fd_data_str, 1));
8807 
8808 		if (libpath != NULL) {
8809 			const char *curlp = getenv("LD_LIBRARY_PATH");
8810 			if (curlp == NULL)
8811 				VERIFY0(setenv("LD_LIBRARY_PATH", libpath, 1));
8812 			else {
8813 				char *newlp = NULL;
8814 				VERIFY3S(-1, !=,
8815 				    asprintf(&newlp, "%s:%s", libpath, curlp));
8816 				VERIFY0(setenv("LD_LIBRARY_PATH", newlp, 1));
8817 				free(newlp);
8818 			}
8819 		}
8820 		(void) execl(cmd, cmd, (char *)NULL);
8821 		ztest_dump_core = B_FALSE;
8822 		fatal(B_TRUE, "exec failed: %s", cmd);
8823 	}
8824 
8825 	if (cmdbuf != NULL) {
8826 		umem_free(cmdbuf, MAXPATHLEN);
8827 		cmd = NULL;
8828 	}
8829 
8830 	while (waitpid(pid, &status, 0) != pid)
8831 		continue;
8832 	if (statusp != NULL)
8833 		*statusp = status;
8834 
8835 	if (WIFEXITED(status)) {
8836 		if (WEXITSTATUS(status) != 0) {
8837 			(void) fprintf(stderr, "child exited with code %d\n",
8838 			    WEXITSTATUS(status));
8839 			exit(2);
8840 		}
8841 		return (B_FALSE);
8842 	} else if (WIFSIGNALED(status)) {
8843 		if (!ignorekill || WTERMSIG(status) != SIGKILL) {
8844 			(void) fprintf(stderr, "child died with signal %d\n",
8845 			    WTERMSIG(status));
8846 			exit(3);
8847 		}
8848 		return (B_TRUE);
8849 	} else {
8850 		(void) fprintf(stderr, "something strange happened to child\n");
8851 		exit(4);
8852 	}
8853 }
8854 
8855 static void
ztest_run_init(void)8856 ztest_run_init(void)
8857 {
8858 	int i;
8859 
8860 	ztest_shared_t *zs = ztest_shared;
8861 
8862 	/*
8863 	 * Blow away any existing copy of zpool.cache
8864 	 */
8865 	(void) remove(spa_config_path);
8866 
8867 	if (ztest_opts.zo_init == 0) {
8868 		if (ztest_opts.zo_verbose >= 1)
8869 			(void) printf("Importing pool %s\n",
8870 			    ztest_opts.zo_pool);
8871 		ztest_import(zs);
8872 		return;
8873 	}
8874 
8875 	/*
8876 	 * Create and initialize our storage pool.
8877 	 */
8878 	for (i = 1; i <= ztest_opts.zo_init; i++) {
8879 		memset(zs, 0, sizeof (*zs));
8880 		if (ztest_opts.zo_verbose >= 3 &&
8881 		    ztest_opts.zo_init != 1) {
8882 			(void) printf("ztest_init(), pass %d\n", i);
8883 		}
8884 		ztest_init(zs);
8885 	}
8886 }
8887 
8888 int
main(int argc,char ** argv)8889 main(int argc, char **argv)
8890 {
8891 	int kills = 0;
8892 	int iters = 0;
8893 	int older = 0;
8894 	int newer = 0;
8895 	ztest_shared_t *zs;
8896 	ztest_info_t *zi;
8897 	ztest_shared_callstate_t *zc;
8898 	char timebuf[100];
8899 	char numbuf[NN_NUMBUF_SZ];
8900 	char *cmd;
8901 	boolean_t hasalt;
8902 	int f, err;
8903 	char *fd_data_str = getenv("ZTEST_FD_DATA");
8904 	struct sigaction action;
8905 
8906 	(void) setvbuf(stdout, NULL, _IOLBF, 0);
8907 
8908 	dprintf_setup(&argc, argv);
8909 	zfs_deadman_synctime_ms = 300000;
8910 	zfs_deadman_checktime_ms = 30000;
8911 	/*
8912 	 * As two-word space map entries may not come up often (especially
8913 	 * if pool and vdev sizes are small) we want to force at least some
8914 	 * of them so the feature get tested.
8915 	 */
8916 	zfs_force_some_double_word_sm_entries = B_TRUE;
8917 
8918 	/*
8919 	 * Verify that even extensively damaged split blocks with many
8920 	 * segments can be reconstructed in a reasonable amount of time
8921 	 * when reconstruction is known to be possible.
8922 	 *
8923 	 * Note: the lower this value is, the more damage we inflict, and
8924 	 * the more time ztest spends in recovering that damage. We chose
8925 	 * to induce damage 1/100th of the time so recovery is tested but
8926 	 * not so frequently that ztest doesn't get to test other code paths.
8927 	 */
8928 	zfs_reconstruct_indirect_damage_fraction = 100;
8929 
8930 	action.sa_handler = sig_handler;
8931 	sigemptyset(&action.sa_mask);
8932 	action.sa_flags = 0;
8933 
8934 	if (sigaction(SIGSEGV, &action, NULL) < 0) {
8935 		(void) fprintf(stderr, "ztest: cannot catch SIGSEGV: %s.\n",
8936 		    strerror(errno));
8937 		exit(EXIT_FAILURE);
8938 	}
8939 
8940 	if (sigaction(SIGABRT, &action, NULL) < 0) {
8941 		(void) fprintf(stderr, "ztest: cannot catch SIGABRT: %s.\n",
8942 		    strerror(errno));
8943 		exit(EXIT_FAILURE);
8944 	}
8945 
8946 	/*
8947 	 * Force random_get_bytes() to use /dev/urandom in order to prevent
8948 	 * ztest from needlessly depleting the system entropy pool.
8949 	 */
8950 	random_path = "/dev/urandom";
8951 	ztest_fd_rand = open(random_path, O_RDONLY | O_CLOEXEC);
8952 	ASSERT3S(ztest_fd_rand, >=, 0);
8953 
8954 	if (!fd_data_str) {
8955 		process_options(argc, argv);
8956 
8957 		setup_data_fd();
8958 		setup_hdr();
8959 		setup_data();
8960 		memcpy(ztest_shared_opts, &ztest_opts,
8961 		    sizeof (*ztest_shared_opts));
8962 	} else {
8963 		ztest_fd_data = atoi(fd_data_str);
8964 		setup_data();
8965 		memcpy(&ztest_opts, ztest_shared_opts, sizeof (ztest_opts));
8966 	}
8967 	ASSERT3U(ztest_opts.zo_datasets, ==, ztest_shared_hdr->zh_ds_count);
8968 
8969 	err = ztest_set_global_vars();
8970 	if (err != 0 && !fd_data_str) {
8971 		/* error message done by ztest_set_global_vars */
8972 		exit(EXIT_FAILURE);
8973 	} else {
8974 		/* children should not be spawned if setting gvars fails */
8975 		VERIFY3S(err, ==, 0);
8976 	}
8977 
8978 	/* Override location of zpool.cache */
8979 	VERIFY3S(asprintf((char **)&spa_config_path, "%s/zpool.cache",
8980 	    ztest_opts.zo_dir), !=, -1);
8981 
8982 	ztest_ds = umem_alloc(ztest_opts.zo_datasets * sizeof (ztest_ds_t),
8983 	    UMEM_NOFAIL);
8984 	zs = ztest_shared;
8985 
8986 	if (fd_data_str) {
8987 		metaslab_force_ganging = ztest_opts.zo_metaslab_force_ganging;
8988 		metaslab_df_alloc_threshold =
8989 		    zs->zs_metaslab_df_alloc_threshold;
8990 
8991 		if (zs->zs_do_init)
8992 			ztest_run_init();
8993 		else
8994 			ztest_run(zs);
8995 		exit(0);
8996 	}
8997 
8998 	hasalt = (strlen(ztest_opts.zo_alt_ztest) != 0);
8999 
9000 	if (ztest_opts.zo_verbose >= 1) {
9001 		(void) printf("%"PRIu64" vdevs, %d datasets, %d threads, "
9002 		    "%d %s disks, parity %d, %"PRIu64" seconds...\n\n",
9003 		    ztest_opts.zo_vdevs,
9004 		    ztest_opts.zo_datasets,
9005 		    ztest_opts.zo_threads,
9006 		    ztest_opts.zo_raid_children,
9007 		    ztest_opts.zo_raid_type,
9008 		    ztest_opts.zo_raid_parity,
9009 		    ztest_opts.zo_time);
9010 	}
9011 
9012 	cmd = umem_alloc(MAXNAMELEN, UMEM_NOFAIL);
9013 	(void) strlcpy(cmd, getexecname(), MAXNAMELEN);
9014 
9015 	zs->zs_do_init = B_TRUE;
9016 	if (strlen(ztest_opts.zo_alt_ztest) != 0) {
9017 		if (ztest_opts.zo_verbose >= 1) {
9018 			(void) printf("Executing older ztest for "
9019 			    "initialization: %s\n", ztest_opts.zo_alt_ztest);
9020 		}
9021 		VERIFY(!exec_child(ztest_opts.zo_alt_ztest,
9022 		    ztest_opts.zo_alt_libpath, B_FALSE, NULL));
9023 	} else {
9024 		VERIFY(!exec_child(NULL, NULL, B_FALSE, NULL));
9025 	}
9026 	zs->zs_do_init = B_FALSE;
9027 
9028 	zs->zs_proc_start = gethrtime();
9029 	zs->zs_proc_stop = zs->zs_proc_start + ztest_opts.zo_time * NANOSEC;
9030 
9031 	for (f = 0; f < ZTEST_FUNCS; f++) {
9032 		zi = &ztest_info[f];
9033 		zc = ZTEST_GET_SHARED_CALLSTATE(f);
9034 		if (zs->zs_proc_start + zi->zi_interval[0] > zs->zs_proc_stop)
9035 			zc->zc_next = UINT64_MAX;
9036 		else
9037 			zc->zc_next = zs->zs_proc_start +
9038 			    ztest_random(2 * zi->zi_interval[0] + 1);
9039 	}
9040 
9041 	/*
9042 	 * Run the tests in a loop.  These tests include fault injection
9043 	 * to verify that self-healing data works, and forced crashes
9044 	 * to verify that we never lose on-disk consistency.
9045 	 */
9046 	while (gethrtime() < zs->zs_proc_stop) {
9047 		int status;
9048 		boolean_t killed;
9049 
9050 		/*
9051 		 * Initialize the workload counters for each function.
9052 		 */
9053 		for (f = 0; f < ZTEST_FUNCS; f++) {
9054 			zc = ZTEST_GET_SHARED_CALLSTATE(f);
9055 			zc->zc_count = 0;
9056 			zc->zc_time = 0;
9057 		}
9058 
9059 		/* Set the allocation switch size */
9060 		zs->zs_metaslab_df_alloc_threshold =
9061 		    ztest_random(zs->zs_metaslab_sz / 4) + 1;
9062 
9063 		if (!hasalt || ztest_random(2) == 0) {
9064 			if (hasalt && ztest_opts.zo_verbose >= 1) {
9065 				(void) printf("Executing newer ztest: %s\n",
9066 				    cmd);
9067 			}
9068 			newer++;
9069 			killed = exec_child(cmd, NULL, B_TRUE, &status);
9070 		} else {
9071 			if (hasalt && ztest_opts.zo_verbose >= 1) {
9072 				(void) printf("Executing older ztest: %s\n",
9073 				    ztest_opts.zo_alt_ztest);
9074 			}
9075 			older++;
9076 			killed = exec_child(ztest_opts.zo_alt_ztest,
9077 			    ztest_opts.zo_alt_libpath, B_TRUE, &status);
9078 		}
9079 
9080 		if (killed)
9081 			kills++;
9082 		iters++;
9083 
9084 		if (ztest_opts.zo_verbose >= 1) {
9085 			hrtime_t now = gethrtime();
9086 
9087 			now = MIN(now, zs->zs_proc_stop);
9088 			print_time(zs->zs_proc_stop - now, timebuf);
9089 			nicenum(zs->zs_space, numbuf, sizeof (numbuf));
9090 
9091 			(void) printf("Pass %3d, %8s, %3"PRIu64" ENOSPC, "
9092 			    "%4.1f%% of %5s used, %3.0f%% done, %8s to go\n",
9093 			    iters,
9094 			    WIFEXITED(status) ? "Complete" : "SIGKILL",
9095 			    zs->zs_enospc_count,
9096 			    100.0 * zs->zs_alloc / zs->zs_space,
9097 			    numbuf,
9098 			    100.0 * (now - zs->zs_proc_start) /
9099 			    (ztest_opts.zo_time * NANOSEC), timebuf);
9100 		}
9101 
9102 		if (ztest_opts.zo_verbose >= 2) {
9103 			(void) printf("\nWorkload summary:\n\n");
9104 			(void) printf("%7s %9s   %s\n",
9105 			    "Calls", "Time", "Function");
9106 			(void) printf("%7s %9s   %s\n",
9107 			    "-----", "----", "--------");
9108 			for (f = 0; f < ZTEST_FUNCS; f++) {
9109 				zi = &ztest_info[f];
9110 				zc = ZTEST_GET_SHARED_CALLSTATE(f);
9111 				print_time(zc->zc_time, timebuf);
9112 				(void) printf("%7"PRIu64" %9s   %s\n",
9113 				    zc->zc_count, timebuf,
9114 				    zi->zi_funcname);
9115 			}
9116 			(void) printf("\n");
9117 		}
9118 
9119 		if (!ztest_opts.zo_mmp_test)
9120 			ztest_run_zdb(zs->zs_guid);
9121 		if (ztest_shared_opts->zo_raidz_expand_test ==
9122 		    RAIDZ_EXPAND_CHECKED)
9123 			break; /* raidz expand test complete */
9124 	}
9125 
9126 	if (ztest_opts.zo_verbose >= 1) {
9127 		if (hasalt) {
9128 			(void) printf("%d runs of older ztest: %s\n", older,
9129 			    ztest_opts.zo_alt_ztest);
9130 			(void) printf("%d runs of newer ztest: %s\n", newer,
9131 			    cmd);
9132 		}
9133 		(void) printf("%d killed, %d completed, %.0f%% kill rate\n",
9134 		    kills, iters - kills, (100.0 * kills) / MAX(1, iters));
9135 	}
9136 
9137 	umem_free(cmd, MAXNAMELEN);
9138 
9139 	return (0);
9140 }
9141