1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2007-2008 Sam Leffler, Errno Consulting
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 */
27
28 /*
29 * IEEE 802.11n protocol support.
30 */
31
32 #include "opt_inet.h"
33 #include "opt_wlan.h"
34
35 #include <sys/param.h>
36 #include <sys/kernel.h>
37 #include <sys/malloc.h>
38 #include <sys/systm.h>
39 #include <sys/endian.h>
40
41 #include <sys/socket.h>
42
43 #include <net/if.h>
44 #include <net/if_var.h>
45 #include <net/if_media.h>
46 #include <net/ethernet.h>
47
48 #include <net80211/ieee80211_var.h>
49 #include <net80211/ieee80211_action.h>
50 #include <net80211/ieee80211_input.h>
51
52 const struct ieee80211_mcs_rates ieee80211_htrates[IEEE80211_HTRATE_MAXSIZE] = {
53 { 13, 14, 27, 30 }, /* MCS 0 */
54 { 26, 29, 54, 60 }, /* MCS 1 */
55 { 39, 43, 81, 90 }, /* MCS 2 */
56 { 52, 58, 108, 120 }, /* MCS 3 */
57 { 78, 87, 162, 180 }, /* MCS 4 */
58 { 104, 116, 216, 240 }, /* MCS 5 */
59 { 117, 130, 243, 270 }, /* MCS 6 */
60 { 130, 144, 270, 300 }, /* MCS 7 */
61 { 26, 29, 54, 60 }, /* MCS 8 */
62 { 52, 58, 108, 120 }, /* MCS 9 */
63 { 78, 87, 162, 180 }, /* MCS 10 */
64 { 104, 116, 216, 240 }, /* MCS 11 */
65 { 156, 173, 324, 360 }, /* MCS 12 */
66 { 208, 231, 432, 480 }, /* MCS 13 */
67 { 234, 260, 486, 540 }, /* MCS 14 */
68 { 260, 289, 540, 600 }, /* MCS 15 */
69 { 39, 43, 81, 90 }, /* MCS 16 */
70 { 78, 87, 162, 180 }, /* MCS 17 */
71 { 117, 130, 243, 270 }, /* MCS 18 */
72 { 156, 173, 324, 360 }, /* MCS 19 */
73 { 234, 260, 486, 540 }, /* MCS 20 */
74 { 312, 347, 648, 720 }, /* MCS 21 */
75 { 351, 390, 729, 810 }, /* MCS 22 */
76 { 390, 433, 810, 900 }, /* MCS 23 */
77 { 52, 58, 108, 120 }, /* MCS 24 */
78 { 104, 116, 216, 240 }, /* MCS 25 */
79 { 156, 173, 324, 360 }, /* MCS 26 */
80 { 208, 231, 432, 480 }, /* MCS 27 */
81 { 312, 347, 648, 720 }, /* MCS 28 */
82 { 416, 462, 864, 960 }, /* MCS 29 */
83 { 468, 520, 972, 1080 }, /* MCS 30 */
84 { 520, 578, 1080, 1200 }, /* MCS 31 */
85 { 0, 0, 12, 13 }, /* MCS 32 */
86 { 78, 87, 162, 180 }, /* MCS 33 */
87 { 104, 116, 216, 240 }, /* MCS 34 */
88 { 130, 144, 270, 300 }, /* MCS 35 */
89 { 117, 130, 243, 270 }, /* MCS 36 */
90 { 156, 173, 324, 360 }, /* MCS 37 */
91 { 195, 217, 405, 450 }, /* MCS 38 */
92 { 104, 116, 216, 240 }, /* MCS 39 */
93 { 130, 144, 270, 300 }, /* MCS 40 */
94 { 130, 144, 270, 300 }, /* MCS 41 */
95 { 156, 173, 324, 360 }, /* MCS 42 */
96 { 182, 202, 378, 420 }, /* MCS 43 */
97 { 182, 202, 378, 420 }, /* MCS 44 */
98 { 208, 231, 432, 480 }, /* MCS 45 */
99 { 156, 173, 324, 360 }, /* MCS 46 */
100 { 195, 217, 405, 450 }, /* MCS 47 */
101 { 195, 217, 405, 450 }, /* MCS 48 */
102 { 234, 260, 486, 540 }, /* MCS 49 */
103 { 273, 303, 567, 630 }, /* MCS 50 */
104 { 273, 303, 567, 630 }, /* MCS 51 */
105 { 312, 347, 648, 720 }, /* MCS 52 */
106 { 130, 144, 270, 300 }, /* MCS 53 */
107 { 156, 173, 324, 360 }, /* MCS 54 */
108 { 182, 202, 378, 420 }, /* MCS 55 */
109 { 156, 173, 324, 360 }, /* MCS 56 */
110 { 182, 202, 378, 420 }, /* MCS 57 */
111 { 208, 231, 432, 480 }, /* MCS 58 */
112 { 234, 260, 486, 540 }, /* MCS 59 */
113 { 208, 231, 432, 480 }, /* MCS 60 */
114 { 234, 260, 486, 540 }, /* MCS 61 */
115 { 260, 289, 540, 600 }, /* MCS 62 */
116 { 260, 289, 540, 600 }, /* MCS 63 */
117 { 286, 318, 594, 660 }, /* MCS 64 */
118 { 195, 217, 405, 450 }, /* MCS 65 */
119 { 234, 260, 486, 540 }, /* MCS 66 */
120 { 273, 303, 567, 630 }, /* MCS 67 */
121 { 234, 260, 486, 540 }, /* MCS 68 */
122 { 273, 303, 567, 630 }, /* MCS 69 */
123 { 312, 347, 648, 720 }, /* MCS 70 */
124 { 351, 390, 729, 810 }, /* MCS 71 */
125 { 312, 347, 648, 720 }, /* MCS 72 */
126 { 351, 390, 729, 810 }, /* MCS 73 */
127 { 390, 433, 810, 900 }, /* MCS 74 */
128 { 390, 433, 810, 900 }, /* MCS 75 */
129 { 429, 477, 891, 990 }, /* MCS 76 */
130 };
131
132 static int ieee80211_ampdu_age = -1; /* threshold for ampdu reorder q (ms) */
133 SYSCTL_PROC(_net_wlan, OID_AUTO, ampdu_age,
134 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
135 &ieee80211_ampdu_age, 0, ieee80211_sysctl_msecs_ticks, "I",
136 "AMPDU max reorder age (ms)");
137
138 static int ieee80211_recv_bar_ena = 1;
139 SYSCTL_INT(_net_wlan, OID_AUTO, recv_bar, CTLFLAG_RW, &ieee80211_recv_bar_ena,
140 0, "BAR frame processing (ena/dis)");
141
142 static int ieee80211_addba_timeout = -1;/* timeout for ADDBA response */
143 SYSCTL_PROC(_net_wlan, OID_AUTO, addba_timeout,
144 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
145 &ieee80211_addba_timeout, 0, ieee80211_sysctl_msecs_ticks, "I",
146 "ADDBA request timeout (ms)");
147 static int ieee80211_addba_backoff = -1;/* backoff after max ADDBA requests */
148 SYSCTL_PROC(_net_wlan, OID_AUTO, addba_backoff,
149 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
150 &ieee80211_addba_backoff, 0, ieee80211_sysctl_msecs_ticks, "I",
151 "ADDBA request backoff (ms)");
152 static int ieee80211_addba_maxtries = 3;/* max ADDBA requests before backoff */
153 SYSCTL_INT(_net_wlan, OID_AUTO, addba_maxtries, CTLFLAG_RW,
154 &ieee80211_addba_maxtries, 0, "max ADDBA requests sent before backoff");
155
156 static int ieee80211_bar_timeout = -1; /* timeout waiting for BAR response */
157 static int ieee80211_bar_maxtries = 50;/* max BAR requests before DELBA */
158
159 static ieee80211_recv_action_func ht_recv_action_ba_addba_request;
160 static ieee80211_recv_action_func ht_recv_action_ba_addba_response;
161 static ieee80211_recv_action_func ht_recv_action_ba_delba;
162 static ieee80211_recv_action_func ht_recv_action_ht_mimopwrsave;
163 static ieee80211_recv_action_func ht_recv_action_ht_txchwidth;
164
165 static ieee80211_send_action_func ht_send_action_ba_addba;
166 static ieee80211_send_action_func ht_send_action_ba_delba;
167 static ieee80211_send_action_func ht_send_action_ht_txchwidth;
168
169 static void
ieee80211_ht_init(void * dummy __unused)170 ieee80211_ht_init(void *dummy __unused)
171 {
172 /*
173 * Setup HT parameters that depends on the clock frequency.
174 */
175 ieee80211_ampdu_age = msecs_to_ticks(500);
176 ieee80211_addba_timeout = msecs_to_ticks(250);
177 ieee80211_addba_backoff = msecs_to_ticks(10*1000);
178 ieee80211_bar_timeout = msecs_to_ticks(250);
179 /*
180 * Register action frame handlers.
181 */
182 ieee80211_recv_action_register(IEEE80211_ACTION_CAT_BA,
183 IEEE80211_ACTION_BA_ADDBA_REQUEST, ht_recv_action_ba_addba_request);
184 ieee80211_recv_action_register(IEEE80211_ACTION_CAT_BA,
185 IEEE80211_ACTION_BA_ADDBA_RESPONSE, ht_recv_action_ba_addba_response);
186 ieee80211_recv_action_register(IEEE80211_ACTION_CAT_BA,
187 IEEE80211_ACTION_BA_DELBA, ht_recv_action_ba_delba);
188 ieee80211_recv_action_register(IEEE80211_ACTION_CAT_HT,
189 IEEE80211_ACTION_HT_MIMOPWRSAVE, ht_recv_action_ht_mimopwrsave);
190 ieee80211_recv_action_register(IEEE80211_ACTION_CAT_HT,
191 IEEE80211_ACTION_HT_TXCHWIDTH, ht_recv_action_ht_txchwidth);
192
193 ieee80211_send_action_register(IEEE80211_ACTION_CAT_BA,
194 IEEE80211_ACTION_BA_ADDBA_REQUEST, ht_send_action_ba_addba);
195 ieee80211_send_action_register(IEEE80211_ACTION_CAT_BA,
196 IEEE80211_ACTION_BA_ADDBA_RESPONSE, ht_send_action_ba_addba);
197 ieee80211_send_action_register(IEEE80211_ACTION_CAT_BA,
198 IEEE80211_ACTION_BA_DELBA, ht_send_action_ba_delba);
199 ieee80211_send_action_register(IEEE80211_ACTION_CAT_HT,
200 IEEE80211_ACTION_HT_TXCHWIDTH, ht_send_action_ht_txchwidth);
201 }
202 SYSINIT(wlan_ht, SI_SUB_DRIVERS, SI_ORDER_FIRST, ieee80211_ht_init, NULL);
203
204 static int ieee80211_ampdu_enable(struct ieee80211_node *ni,
205 struct ieee80211_tx_ampdu *tap);
206 static int ieee80211_addba_request(struct ieee80211_node *ni,
207 struct ieee80211_tx_ampdu *tap,
208 int dialogtoken, int baparamset, int batimeout);
209 static int ieee80211_addba_response(struct ieee80211_node *ni,
210 struct ieee80211_tx_ampdu *tap,
211 int code, int baparamset, int batimeout);
212 static void ieee80211_addba_stop(struct ieee80211_node *ni,
213 struct ieee80211_tx_ampdu *tap);
214 static void null_addba_response_timeout(struct ieee80211_node *ni,
215 struct ieee80211_tx_ampdu *tap);
216
217 static void ieee80211_bar_response(struct ieee80211_node *ni,
218 struct ieee80211_tx_ampdu *tap, int status);
219 static void ampdu_tx_stop(struct ieee80211_tx_ampdu *tap);
220 static void bar_stop_timer(struct ieee80211_tx_ampdu *tap);
221 static int ampdu_rx_start(struct ieee80211_node *, struct ieee80211_rx_ampdu *,
222 int baparamset, int batimeout, int baseqctl);
223 static void ampdu_rx_stop(struct ieee80211_node *, struct ieee80211_rx_ampdu *);
224
225 void
ieee80211_ht_attach(struct ieee80211com * ic)226 ieee80211_ht_attach(struct ieee80211com *ic)
227 {
228 /* setup default aggregation policy */
229 ic->ic_recv_action = ieee80211_recv_action;
230 ic->ic_send_action = ieee80211_send_action;
231 ic->ic_ampdu_enable = ieee80211_ampdu_enable;
232 ic->ic_addba_request = ieee80211_addba_request;
233 ic->ic_addba_response = ieee80211_addba_response;
234 ic->ic_addba_response_timeout = null_addba_response_timeout;
235 ic->ic_addba_stop = ieee80211_addba_stop;
236 ic->ic_bar_response = ieee80211_bar_response;
237 ic->ic_ampdu_rx_start = ampdu_rx_start;
238 ic->ic_ampdu_rx_stop = ampdu_rx_stop;
239
240 ic->ic_htprotmode = IEEE80211_PROT_RTSCTS;
241 ic->ic_curhtprotmode = IEEE80211_HTINFO_OPMODE_PURE;
242 }
243
244 void
ieee80211_ht_detach(struct ieee80211com * ic)245 ieee80211_ht_detach(struct ieee80211com *ic)
246 {
247 }
248
249 void
ieee80211_ht_vattach(struct ieee80211vap * vap)250 ieee80211_ht_vattach(struct ieee80211vap *vap)
251 {
252
253 /* driver can override defaults */
254 vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_8K;
255 vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_NA;
256 vap->iv_ampdu_limit = vap->iv_ampdu_rxmax;
257 vap->iv_amsdu_limit = vap->iv_htcaps & IEEE80211_HTCAP_MAXAMSDU;
258 /* tx aggregation traffic thresholds */
259 vap->iv_ampdu_mintraffic[WME_AC_BK] = 128;
260 vap->iv_ampdu_mintraffic[WME_AC_BE] = 64;
261 vap->iv_ampdu_mintraffic[WME_AC_VO] = 32;
262 vap->iv_ampdu_mintraffic[WME_AC_VI] = 32;
263
264 vap->iv_htprotmode = IEEE80211_PROT_RTSCTS;
265 vap->iv_curhtprotmode = IEEE80211_HTINFO_OPMODE_PURE;
266
267 if (vap->iv_htcaps & IEEE80211_HTC_HT) {
268 /*
269 * Device is HT capable; enable all HT-related
270 * facilities by default.
271 * XXX these choices may be too aggressive.
272 */
273 vap->iv_flags_ht |= IEEE80211_FHT_HT
274 | IEEE80211_FHT_HTCOMPAT
275 ;
276 if (vap->iv_htcaps & IEEE80211_HTCAP_SHORTGI20)
277 vap->iv_flags_ht |= IEEE80211_FHT_SHORTGI20;
278 /* XXX infer from channel list? */
279 if (vap->iv_htcaps & IEEE80211_HTCAP_CHWIDTH40) {
280 vap->iv_flags_ht |= IEEE80211_FHT_USEHT40;
281 if (vap->iv_htcaps & IEEE80211_HTCAP_SHORTGI40)
282 vap->iv_flags_ht |= IEEE80211_FHT_SHORTGI40;
283 }
284 /* enable RIFS if capable */
285 if (vap->iv_htcaps & IEEE80211_HTC_RIFS)
286 vap->iv_flags_ht |= IEEE80211_FHT_RIFS;
287
288 /* NB: A-MPDU and A-MSDU rx are mandated, these are tx only */
289 vap->iv_flags_ht |= IEEE80211_FHT_AMPDU_RX;
290 if (vap->iv_htcaps & IEEE80211_HTC_AMPDU)
291 vap->iv_flags_ht |= IEEE80211_FHT_AMPDU_TX;
292 vap->iv_flags_ht |= IEEE80211_FHT_AMSDU_RX;
293 if (vap->iv_htcaps & IEEE80211_HTC_AMSDU)
294 vap->iv_flags_ht |= IEEE80211_FHT_AMSDU_TX;
295
296 if (vap->iv_htcaps & IEEE80211_HTCAP_TXSTBC)
297 vap->iv_flags_ht |= IEEE80211_FHT_STBC_TX;
298 if (vap->iv_htcaps & IEEE80211_HTCAP_RXSTBC)
299 vap->iv_flags_ht |= IEEE80211_FHT_STBC_RX;
300
301 if (vap->iv_htcaps & IEEE80211_HTCAP_LDPC)
302 vap->iv_flags_ht |= IEEE80211_FHT_LDPC_RX;
303 if (vap->iv_htcaps & IEEE80211_HTC_TXLDPC)
304 vap->iv_flags_ht |= IEEE80211_FHT_LDPC_TX;
305 }
306 /* NB: disable default legacy WDS, too many issues right now */
307 if (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY)
308 vap->iv_flags_ht &= ~IEEE80211_FHT_HT;
309 }
310
311 void
ieee80211_ht_vdetach(struct ieee80211vap * vap)312 ieee80211_ht_vdetach(struct ieee80211vap *vap)
313 {
314 }
315
316 static int
ht_getrate(struct ieee80211com * ic,int index,enum ieee80211_phymode mode,int ratetype)317 ht_getrate(struct ieee80211com *ic, int index, enum ieee80211_phymode mode,
318 int ratetype)
319 {
320 struct ieee80211_node_txrate tr;
321 int mword, rate;
322
323 tr = IEEE80211_NODE_TXRATE_INIT_HT(index);
324
325 mword = ieee80211_rate2media(ic, &tr, mode);
326 if (IFM_SUBTYPE(mword) != IFM_IEEE80211_MCS)
327 return (0);
328 switch (ratetype) {
329 case 0:
330 rate = ieee80211_htrates[index].ht20_rate_800ns;
331 break;
332 case 1:
333 rate = ieee80211_htrates[index].ht20_rate_400ns;
334 break;
335 case 2:
336 rate = ieee80211_htrates[index].ht40_rate_800ns;
337 break;
338 default:
339 rate = ieee80211_htrates[index].ht40_rate_400ns;
340 break;
341 }
342 return (rate);
343 }
344
345 static struct printranges {
346 int minmcs;
347 int maxmcs;
348 int txstream;
349 int ratetype;
350 int htcapflags;
351 } ranges[] = {
352 { 0, 7, 1, 0, 0 },
353 { 8, 15, 2, 0, 0 },
354 { 16, 23, 3, 0, 0 },
355 { 24, 31, 4, 0, 0 },
356 { 32, 0, 1, 2, IEEE80211_HTC_TXMCS32 },
357 { 33, 38, 2, 0, IEEE80211_HTC_TXUNEQUAL },
358 { 39, 52, 3, 0, IEEE80211_HTC_TXUNEQUAL },
359 { 53, 76, 4, 0, IEEE80211_HTC_TXUNEQUAL },
360 { 0, 0, 0, 0, 0 },
361 };
362
363 static void
ht_rateprint(struct ieee80211com * ic,enum ieee80211_phymode mode,int ratetype)364 ht_rateprint(struct ieee80211com *ic, enum ieee80211_phymode mode, int ratetype)
365 {
366 int minrate, maxrate;
367 struct printranges *range;
368
369 for (range = ranges; range->txstream != 0; range++) {
370 if (ic->ic_txstream < range->txstream)
371 continue;
372 if (range->htcapflags &&
373 (ic->ic_htcaps & range->htcapflags) == 0)
374 continue;
375 if (ratetype < range->ratetype)
376 continue;
377 minrate = ht_getrate(ic, range->minmcs, mode, ratetype);
378 maxrate = ht_getrate(ic, range->maxmcs, mode, ratetype);
379 if (range->maxmcs) {
380 ic_printf(ic, "MCS %d-%d: %d%sMbps - %d%sMbps\n",
381 range->minmcs, range->maxmcs,
382 minrate/2, ((minrate & 0x1) != 0 ? ".5" : ""),
383 maxrate/2, ((maxrate & 0x1) != 0 ? ".5" : ""));
384 } else {
385 ic_printf(ic, "MCS %d: %d%sMbps\n", range->minmcs,
386 minrate/2, ((minrate & 0x1) != 0 ? ".5" : ""));
387 }
388 }
389 }
390
391 static void
ht_announce(struct ieee80211com * ic,enum ieee80211_phymode mode)392 ht_announce(struct ieee80211com *ic, enum ieee80211_phymode mode)
393 {
394 const char *modestr = ieee80211_phymode_name[mode];
395
396 ic_printf(ic, "%s MCS 20MHz\n", modestr);
397 ht_rateprint(ic, mode, 0);
398 if (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI20) {
399 ic_printf(ic, "%s MCS 20MHz SGI\n", modestr);
400 ht_rateprint(ic, mode, 1);
401 }
402 if (ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) {
403 ic_printf(ic, "%s MCS 40MHz:\n", modestr);
404 ht_rateprint(ic, mode, 2);
405 }
406 if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) &&
407 (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI40)) {
408 ic_printf(ic, "%s MCS 40MHz SGI:\n", modestr);
409 ht_rateprint(ic, mode, 3);
410 }
411 }
412
413 void
ieee80211_ht_announce(struct ieee80211com * ic)414 ieee80211_ht_announce(struct ieee80211com *ic)
415 {
416
417 if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA) ||
418 isset(ic->ic_modecaps, IEEE80211_MODE_11NG))
419 ic_printf(ic, "%dT%dR\n", ic->ic_txstream, ic->ic_rxstream);
420 if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA))
421 ht_announce(ic, IEEE80211_MODE_11NA);
422 if (isset(ic->ic_modecaps, IEEE80211_MODE_11NG))
423 ht_announce(ic, IEEE80211_MODE_11NG);
424 }
425
426 void
ieee80211_init_suphtrates(struct ieee80211com * ic)427 ieee80211_init_suphtrates(struct ieee80211com *ic)
428 {
429 #define ADDRATE(x) do { \
430 htrateset->rs_rates[htrateset->rs_nrates] = x; \
431 htrateset->rs_nrates++; \
432 } while (0)
433 struct ieee80211_htrateset *htrateset = &ic->ic_sup_htrates;
434 int i;
435
436 memset(htrateset, 0, sizeof(struct ieee80211_htrateset));
437 for (i = 0; i < ic->ic_txstream * 8; i++)
438 ADDRATE(i);
439 if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) &&
440 (ic->ic_htcaps & IEEE80211_HTC_TXMCS32))
441 ADDRATE(32);
442 if (ic->ic_htcaps & IEEE80211_HTC_TXUNEQUAL) {
443 if (ic->ic_txstream >= 2) {
444 for (i = 33; i <= 38; i++)
445 ADDRATE(i);
446 }
447 if (ic->ic_txstream >= 3) {
448 for (i = 39; i <= 52; i++)
449 ADDRATE(i);
450 }
451 if (ic->ic_txstream == 4) {
452 for (i = 53; i <= 76; i++)
453 ADDRATE(i);
454 }
455 }
456 #undef ADDRATE
457 }
458
459 /*
460 * Receive processing.
461 */
462
463 /*
464 * Decap the encapsulated A-MSDU frames and dispatch all but
465 * the last for delivery. The last frame is returned for
466 * delivery via the normal path.
467 */
468 struct mbuf *
ieee80211_decap_amsdu(struct ieee80211_node * ni,struct mbuf * m)469 ieee80211_decap_amsdu(struct ieee80211_node *ni, struct mbuf *m)
470 {
471 struct ieee80211vap *vap = ni->ni_vap;
472 int framelen;
473 struct mbuf *n;
474
475 /* discard 802.3 header inserted by ieee80211_decap */
476 m_adj(m, sizeof(struct ether_header));
477
478 vap->iv_stats.is_amsdu_decap++;
479
480 for (;;) {
481 /*
482 * Decap the first frame, bust it apart from the
483 * remainder and deliver. We leave the last frame
484 * delivery to the caller (for consistency with other
485 * code paths, could also do it here).
486 */
487 m = ieee80211_decap1(m, &framelen);
488 if (m == NULL) {
489 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY,
490 ni->ni_macaddr, "a-msdu", "%s", "decap failed");
491 vap->iv_stats.is_amsdu_tooshort++;
492 return NULL;
493 }
494 if (m->m_pkthdr.len == framelen)
495 break;
496 n = m_split(m, framelen, IEEE80211_M_NOWAIT);
497 if (n == NULL) {
498 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY,
499 ni->ni_macaddr, "a-msdu",
500 "%s", "unable to split encapsulated frames");
501 vap->iv_stats.is_amsdu_split++;
502 m_freem(m); /* NB: must reclaim */
503 return NULL;
504 }
505 vap->iv_deliver_data(vap, ni, m);
506
507 /*
508 * Remove frame contents; each intermediate frame
509 * is required to be aligned to a 4-byte boundary.
510 */
511 m = n;
512 m_adj(m, roundup2(framelen, 4) - framelen); /* padding */
513 }
514 return m; /* last delivered by caller */
515 }
516
517 static void
ampdu_rx_purge_slot(struct ieee80211_rx_ampdu * rap,int i)518 ampdu_rx_purge_slot(struct ieee80211_rx_ampdu *rap, int i)
519 {
520 struct mbuf *m;
521
522 /* Walk the queue, removing frames as appropriate */
523 for (;;) {
524 m = mbufq_dequeue(&rap->rxa_mq[i]);
525 if (m == NULL)
526 break;
527 rap->rxa_qbytes -= m->m_pkthdr.len;
528 rap->rxa_qframes--;
529 m_freem(m);
530 }
531 }
532
533 /*
534 * Add the given frame to the current RX reorder slot.
535 *
536 * For future offloaded A-MSDU handling where multiple frames with
537 * the same sequence number show up here, this routine will append
538 * those frames as long as they're appropriately tagged.
539 */
540 static int
ampdu_rx_add_slot(struct ieee80211_rx_ampdu * rap,int off,int tid,ieee80211_seq rxseq,struct ieee80211_node * ni,struct mbuf * m,const struct ieee80211_rx_stats * rxs)541 ampdu_rx_add_slot(struct ieee80211_rx_ampdu *rap, int off, int tid,
542 ieee80211_seq rxseq,
543 struct ieee80211_node *ni,
544 struct mbuf *m,
545 const struct ieee80211_rx_stats *rxs)
546 {
547 const struct ieee80211_rx_stats *rxs_final = NULL;
548 struct ieee80211vap *vap = ni->ni_vap;
549 int toss_dup;
550 #define PROCESS 0 /* caller should process frame */
551 #define CONSUMED 1 /* frame consumed, caller does nothing */
552
553 /*
554 * Figure out if this is a duplicate frame for the given slot.
555 *
556 * We're assuming that the driver will hand us all the frames
557 * for a given AMSDU decap pass and if we get /a/ frame
558 * for an AMSDU decap then we'll get all of them.
559 *
560 * The tricksy bit is that we don't know when the /end/ of
561 * the decap pass is, because we aren't tracking state here
562 * per-slot to know that we've finished receiving the frame list.
563 *
564 * The driver sets RX_F_AMSDU and RX_F_AMSDU_MORE to tell us
565 * what's going on; so ideally we'd just check the frame at the
566 * end of the reassembly slot to see if its F_AMSDU w/ no F_AMSDU_MORE -
567 * that means we've received the whole AMSDU decap pass.
568 */
569
570 /*
571 * Get the rxs of the final mbuf in the slot, if one exists.
572 */
573 if (!mbufq_empty(&rap->rxa_mq[off])) {
574 rxs_final = ieee80211_get_rx_params_ptr(mbufq_last(&rap->rxa_mq[off]));
575 }
576
577 /* Default to tossing the duplicate frame */
578 toss_dup = 1;
579
580 /*
581 * Check to see if the final frame has F_AMSDU and F_AMSDU set, AND
582 * this frame has F_AMSDU set (MORE or otherwise.) That's a sign
583 * that more can come.
584 */
585
586 if ((rxs != NULL) && (rxs_final != NULL) &&
587 ieee80211_check_rxseq_amsdu(rxs) &&
588 ieee80211_check_rxseq_amsdu(rxs_final)) {
589 if (! ieee80211_check_rxseq_amsdu_more(rxs_final)) {
590 /*
591 * amsdu_more() returning 0 means "it's not the
592 * final frame" so we can append more
593 * frames here.
594 */
595 toss_dup = 0;
596 }
597 }
598
599 /*
600 * If the list is empty OR we have determined we can put more
601 * driver decap'ed AMSDU frames in here, then insert.
602 */
603 if (mbufq_empty(&rap->rxa_mq[off]) || (toss_dup == 0)) {
604 if (mbufq_enqueue(&rap->rxa_mq[off], m) != 0) {
605 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_INPUT | IEEE80211_MSG_11N,
606 ni->ni_macaddr,
607 "a-mpdu queue fail",
608 "seqno %u tid %u BA win <%u:%u> off=%d, qlen=%d, maxqlen=%d",
609 rxseq, tid, rap->rxa_start,
610 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1),
611 off,
612 mbufq_len(&rap->rxa_mq[off]),
613 rap->rxa_mq[off].mq_maxlen);
614 /* XXX error count */
615 m_freem(m);
616 return CONSUMED;
617 }
618 rap->rxa_qframes++;
619 rap->rxa_qbytes += m->m_pkthdr.len;
620 vap->iv_stats.is_ampdu_rx_reorder++;
621 /*
622 * Statistics for AMSDU decap.
623 */
624 if (rxs != NULL && ieee80211_check_rxseq_amsdu(rxs)) {
625 if (ieee80211_check_rxseq_amsdu_more(rxs)) {
626 /* more=1, AMSDU, end of batch */
627 IEEE80211_NODE_STAT(ni, rx_amsdu_more_end);
628 } else {
629 IEEE80211_NODE_STAT(ni, rx_amsdu_more);
630 }
631 }
632 } else {
633 IEEE80211_DISCARD_MAC(vap,
634 IEEE80211_MSG_INPUT | IEEE80211_MSG_11N,
635 ni->ni_macaddr, "a-mpdu duplicate",
636 "seqno %u tid %u BA win <%u:%u>",
637 rxseq, tid, rap->rxa_start,
638 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1));
639 if (rxs != NULL) {
640 IEEE80211_DISCARD_MAC(vap,
641 IEEE80211_MSG_INPUT | IEEE80211_MSG_11N,
642 ni->ni_macaddr, "a-mpdu duplicate",
643 "seqno %d tid %u pktflags 0x%08x\n",
644 rxseq, tid, rxs->c_pktflags);
645 }
646 if (rxs_final != NULL) {
647 IEEE80211_DISCARD_MAC(vap,
648 IEEE80211_MSG_INPUT | IEEE80211_MSG_11N,
649 ni->ni_macaddr, "a-mpdu duplicate",
650 "final: pktflags 0x%08x\n",
651 rxs_final->c_pktflags);
652 }
653 vap->iv_stats.is_rx_dup++;
654 IEEE80211_NODE_STAT(ni, rx_dup);
655 m_freem(m);
656 }
657 return CONSUMED;
658 #undef CONSUMED
659 #undef PROCESS
660 }
661
662 /*
663 * Purge all frames in the A-MPDU re-order queue.
664 */
665 static void
ampdu_rx_purge(struct ieee80211_rx_ampdu * rap)666 ampdu_rx_purge(struct ieee80211_rx_ampdu *rap)
667 {
668 int i;
669
670 for (i = 0; i < rap->rxa_wnd; i++) {
671 ampdu_rx_purge_slot(rap, i);
672 if (rap->rxa_qframes == 0)
673 break;
674 }
675 KASSERT(rap->rxa_qbytes == 0 && rap->rxa_qframes == 0,
676 ("lost %u data, %u frames on ampdu rx q",
677 rap->rxa_qbytes, rap->rxa_qframes));
678 }
679
680 static void
ieee80211_ampdu_rx_init_rap(struct ieee80211_node * ni,struct ieee80211_rx_ampdu * rap)681 ieee80211_ampdu_rx_init_rap(struct ieee80211_node *ni,
682 struct ieee80211_rx_ampdu *rap)
683 {
684 int i;
685
686 /* XXX TODO: ensure the queues are empty */
687 memset(rap, 0, sizeof(*rap));
688 for (i = 0; i < IEEE80211_AGGR_BAWMAX; i++)
689 mbufq_init(&rap->rxa_mq[i], 256);
690 }
691
692 /*
693 * Start A-MPDU rx/re-order processing for the specified TID.
694 */
695 static int
ampdu_rx_start(struct ieee80211_node * ni,struct ieee80211_rx_ampdu * rap,int baparamset,int batimeout,int baseqctl)696 ampdu_rx_start(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap,
697 int baparamset, int batimeout, int baseqctl)
698 {
699 struct ieee80211vap *vap = ni->ni_vap;
700 int bufsiz = _IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_BUFSIZ);
701
702 if (rap->rxa_flags & IEEE80211_AGGR_RUNNING) {
703 /*
704 * AMPDU previously setup and not terminated with a DELBA,
705 * flush the reorder q's in case anything remains.
706 */
707 ampdu_rx_purge(rap);
708 }
709 ieee80211_ampdu_rx_init_rap(ni, rap);
710 rap->rxa_wnd = (bufsiz == 0) ?
711 IEEE80211_AGGR_BAWMAX : min(bufsiz, IEEE80211_AGGR_BAWMAX);
712 rap->rxa_start = _IEEE80211_MASKSHIFT(baseqctl, IEEE80211_BASEQ_START);
713 rap->rxa_flags |= IEEE80211_AGGR_RUNNING | IEEE80211_AGGR_XCHGPEND;
714
715 /* XXX this should be a configuration flag */
716 if ((vap->iv_htcaps & IEEE80211_HTC_RX_AMSDU_AMPDU) &&
717 (_IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_AMSDU)))
718 rap->rxa_flags |= IEEE80211_AGGR_AMSDU;
719 else
720 rap->rxa_flags &= ~IEEE80211_AGGR_AMSDU;
721
722 return 0;
723 }
724
725 /*
726 * Public function; manually setup the RX ampdu state.
727 */
728 int
ieee80211_ampdu_rx_start_ext(struct ieee80211_node * ni,int tid,int seq,int baw)729 ieee80211_ampdu_rx_start_ext(struct ieee80211_node *ni, int tid, int seq, int baw)
730 {
731 struct ieee80211_rx_ampdu *rap;
732
733 /* XXX TODO: sanity check tid, seq, baw */
734
735 rap = &ni->ni_rx_ampdu[tid];
736
737 if (rap->rxa_flags & IEEE80211_AGGR_RUNNING) {
738 /*
739 * AMPDU previously setup and not terminated with a DELBA,
740 * flush the reorder q's in case anything remains.
741 */
742 ampdu_rx_purge(rap);
743 }
744
745 ieee80211_ampdu_rx_init_rap(ni, rap);
746
747 rap->rxa_wnd = (baw== 0) ?
748 IEEE80211_AGGR_BAWMAX : min(baw, IEEE80211_AGGR_BAWMAX);
749 if (seq == -1) {
750 /* Wait for the first RX frame, use that as BAW */
751 rap->rxa_start = 0;
752 rap->rxa_flags |= IEEE80211_AGGR_WAITRX;
753 } else {
754 rap->rxa_start = seq;
755 }
756 rap->rxa_flags |= IEEE80211_AGGR_RUNNING | IEEE80211_AGGR_XCHGPEND;
757
758 /* XXX TODO: no amsdu flag */
759
760 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, ni,
761 "%s: tid=%d, start=%d, wnd=%d, flags=0x%08x",
762 __func__,
763 tid,
764 seq,
765 rap->rxa_wnd,
766 rap->rxa_flags);
767
768 return 0;
769 }
770
771 /*
772 * Public function; manually stop the RX AMPDU state.
773 */
774 void
ieee80211_ampdu_rx_stop_ext(struct ieee80211_node * ni,int tid)775 ieee80211_ampdu_rx_stop_ext(struct ieee80211_node *ni, int tid)
776 {
777 struct ieee80211_rx_ampdu *rap;
778
779 /* XXX TODO: sanity check tid, seq, baw */
780 rap = &ni->ni_rx_ampdu[tid];
781 ampdu_rx_stop(ni, rap);
782 }
783
784 /*
785 * Stop A-MPDU rx processing for the specified TID.
786 */
787 static void
ampdu_rx_stop(struct ieee80211_node * ni,struct ieee80211_rx_ampdu * rap)788 ampdu_rx_stop(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap)
789 {
790
791 ampdu_rx_purge(rap);
792 rap->rxa_flags &= ~(IEEE80211_AGGR_RUNNING
793 | IEEE80211_AGGR_XCHGPEND
794 | IEEE80211_AGGR_WAITRX);
795 }
796
797 /*
798 * Dispatch a frame from the A-MPDU reorder queue. The
799 * frame is fed back into ieee80211_input marked with an
800 * M_AMPDU_MPDU flag so it doesn't come back to us (it also
801 * permits ieee80211_input to optimize re-processing).
802 */
803 static __inline void
ampdu_dispatch(struct ieee80211_node * ni,struct mbuf * m)804 ampdu_dispatch(struct ieee80211_node *ni, struct mbuf *m)
805 {
806 m->m_flags |= M_AMPDU_MPDU; /* bypass normal processing */
807 /* NB: rssi and noise are ignored w/ M_AMPDU_MPDU set */
808 (void) ieee80211_input(ni, m, 0, 0);
809 }
810
811 static int
ampdu_dispatch_slot(struct ieee80211_rx_ampdu * rap,struct ieee80211_node * ni,int i)812 ampdu_dispatch_slot(struct ieee80211_rx_ampdu *rap, struct ieee80211_node *ni,
813 int i)
814 {
815 struct mbuf *m;
816 int n = 0;
817
818 for (;;) {
819 m = mbufq_dequeue(&rap->rxa_mq[i]);
820 if (m == NULL)
821 break;
822 n++;
823
824 rap->rxa_qbytes -= m->m_pkthdr.len;
825 rap->rxa_qframes--;
826
827 ampdu_dispatch(ni, m);
828 }
829 return (n);
830 }
831
832 static void
ampdu_rx_moveup(struct ieee80211_rx_ampdu * rap,struct ieee80211_node * ni,int i,int winstart)833 ampdu_rx_moveup(struct ieee80211_rx_ampdu *rap, struct ieee80211_node *ni,
834 int i, int winstart)
835 {
836 struct ieee80211vap *vap = ni->ni_vap;
837
838 /*
839 * If frames remain, copy the mbuf pointers down so
840 * they correspond to the offsets in the new window.
841 */
842 if (rap->rxa_qframes != 0) {
843 int n = rap->rxa_qframes, j;
844 for (j = i+1; j < rap->rxa_wnd; j++) {
845 /*
846 * Concat the list contents over, which will
847 * blank the source list for us.
848 */
849 if (mbufq_len(&rap->rxa_mq[j]) != 0) {
850 n = n - mbufq_len(&rap->rxa_mq[j]);
851 mbufq_concat(&rap->rxa_mq[j-i], &rap->rxa_mq[j]);
852 KASSERT(n >= 0, ("%s: n < 0 (%d)", __func__, n));
853 if (n == 0)
854 break;
855 }
856 }
857 KASSERT(n == 0, ("%s: lost %d frames, qframes %d off %d "
858 "BA win <%d:%d> winstart %d",
859 __func__, n, rap->rxa_qframes, i, rap->rxa_start,
860 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1),
861 winstart));
862 vap->iv_stats.is_ampdu_rx_copy += rap->rxa_qframes;
863 }
864 }
865
866 /*
867 * Dispatch as many frames as possible from the re-order queue.
868 * Frames will always be "at the front"; we process all frames
869 * up to the first empty slot in the window. On completion we
870 * cleanup state if there are still pending frames in the current
871 * BA window. We assume the frame at slot 0 is already handled
872 * by the caller; we always start at slot 1.
873 */
874 static void
ampdu_rx_dispatch(struct ieee80211_rx_ampdu * rap,struct ieee80211_node * ni)875 ampdu_rx_dispatch(struct ieee80211_rx_ampdu *rap, struct ieee80211_node *ni)
876 {
877 struct ieee80211vap *vap = ni->ni_vap;
878 int i, r, r2;
879
880 /* flush run of frames */
881 r2 = 0;
882 for (i = 1; i < rap->rxa_wnd; i++) {
883 r = ampdu_dispatch_slot(rap, ni, i);
884 if (r == 0)
885 break;
886 r2 += r;
887 }
888
889 /* move up frames */
890 ampdu_rx_moveup(rap, ni, i, -1);
891
892 /*
893 * Adjust the start of the BA window to
894 * reflect the frames just dispatched.
895 */
896 rap->rxa_start = IEEE80211_SEQ_ADD(rap->rxa_start, i);
897 vap->iv_stats.is_ampdu_rx_oor += r2;
898
899 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, ni,
900 "%s: moved slot up %d slots to start at %d (%d frames)",
901 __func__,
902 i,
903 rap->rxa_start,
904 r2);
905 }
906
907 /*
908 * Dispatch all frames in the A-MPDU re-order queue.
909 */
910 static void
ampdu_rx_flush(struct ieee80211_node * ni,struct ieee80211_rx_ampdu * rap)911 ampdu_rx_flush(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap)
912 {
913 int i, r;
914
915 for (i = 0; i < rap->rxa_wnd; i++) {
916 r = ampdu_dispatch_slot(rap, ni, i);
917 if (r == 0)
918 continue;
919 ni->ni_vap->iv_stats.is_ampdu_rx_oor += r;
920
921 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, ni,
922 "%s: moved slot up %d slots to start at %d (%d frames)",
923 __func__,
924 1,
925 rap->rxa_start,
926 r);
927
928 if (rap->rxa_qframes == 0)
929 break;
930 }
931 }
932
933 /*
934 * Dispatch all frames in the A-MPDU re-order queue
935 * preceding the specified sequence number. This logic
936 * handles window moves due to a received MSDU or BAR.
937 */
938 static void
ampdu_rx_flush_upto(struct ieee80211_node * ni,struct ieee80211_rx_ampdu * rap,ieee80211_seq winstart)939 ampdu_rx_flush_upto(struct ieee80211_node *ni,
940 struct ieee80211_rx_ampdu *rap, ieee80211_seq winstart)
941 {
942 struct ieee80211vap *vap = ni->ni_vap;
943 ieee80211_seq seqno;
944 int i, r;
945
946 /*
947 * Flush any complete MSDU's with a sequence number lower
948 * than winstart. Gaps may exist. Note that we may actually
949 * dispatch frames past winstart if a run continues; this is
950 * an optimization that avoids having to do a separate pass
951 * to dispatch frames after moving the BA window start.
952 */
953 seqno = rap->rxa_start;
954 for (i = 0; i < rap->rxa_wnd; i++) {
955 if ((r = mbufq_len(&rap->rxa_mq[i])) != 0) {
956 (void) ampdu_dispatch_slot(rap, ni, i);
957 } else {
958 if (!IEEE80211_SEQ_BA_BEFORE(seqno, winstart))
959 break;
960 }
961 vap->iv_stats.is_ampdu_rx_oor += r;
962 seqno = IEEE80211_SEQ_INC(seqno);
963
964 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, ni,
965 "%s: moved slot up %d slots to start at %d (%d frames)",
966 __func__,
967 1,
968 seqno,
969 r);
970 }
971
972 /*
973 * If frames remain, copy the mbuf pointers down so
974 * they correspond to the offsets in the new window.
975 */
976 ampdu_rx_moveup(rap, ni, i, winstart);
977
978 /*
979 * Move the start of the BA window; we use the
980 * sequence number of the last MSDU that was
981 * passed up the stack+1 or winstart if stopped on
982 * a gap in the reorder buffer.
983 */
984 rap->rxa_start = seqno;
985 }
986
987 /*
988 * Process a received QoS data frame for an HT station. Handle
989 * A-MPDU reordering: if this frame is received out of order
990 * and falls within the BA window hold onto it. Otherwise if
991 * this frame completes a run, flush any pending frames. We
992 * return 1 if the frame is consumed. A 0 is returned if
993 * the frame should be processed normally by the caller.
994 *
995 * A-MSDU: handle hardware decap'ed A-MSDU frames that are
996 * pretending to be MPDU's. They're dispatched directly if
997 * able; or attempted to put into the receive reordering slot.
998 */
999 int
ieee80211_ampdu_reorder(struct ieee80211_node * ni,struct mbuf * m,const struct ieee80211_rx_stats * rxs)1000 ieee80211_ampdu_reorder(struct ieee80211_node *ni, struct mbuf *m,
1001 const struct ieee80211_rx_stats *rxs)
1002 {
1003 #define PROCESS 0 /* caller should process frame */
1004 #define CONSUMED 1 /* frame consumed, caller does nothing */
1005 struct ieee80211vap *vap = ni->ni_vap;
1006 struct ieee80211_qosframe *wh;
1007 struct ieee80211_rx_ampdu *rap;
1008 ieee80211_seq rxseq;
1009 uint8_t tid;
1010 int off;
1011 int amsdu = ieee80211_check_rxseq_amsdu(rxs);
1012 int amsdu_end = ieee80211_check_rxseq_amsdu_more(rxs);
1013
1014 KASSERT((m->m_flags & (M_AMPDU | M_AMPDU_MPDU)) == M_AMPDU,
1015 ("!a-mpdu or already re-ordered, flags 0x%x", m->m_flags));
1016 KASSERT(ni->ni_flags & IEEE80211_NODE_HT, ("not an HT sta"));
1017
1018 /* NB: m_len known to be sufficient */
1019 wh = mtod(m, struct ieee80211_qosframe *);
1020 if (!IEEE80211_IS_QOSDATA(wh)) {
1021 /*
1022 * Not QoS data, shouldn't get here but just
1023 * return it to the caller for processing.
1024 */
1025 return PROCESS;
1026 }
1027
1028 /*
1029 * 802.11-2012 9.3.2.10 - Duplicate detection and recovery.
1030 *
1031 * Multicast QoS data frames are checked against a different
1032 * counter, not the per-TID counter.
1033 */
1034 if (IEEE80211_IS_MULTICAST(wh->i_addr1))
1035 return PROCESS;
1036
1037 tid = ieee80211_getqos(wh)[0];
1038 tid &= IEEE80211_QOS_TID;
1039 rap = &ni->ni_rx_ampdu[tid];
1040 if ((rap->rxa_flags & IEEE80211_AGGR_XCHGPEND) == 0) {
1041 /*
1042 * No ADDBA request yet, don't touch.
1043 */
1044 return PROCESS;
1045 }
1046 rxseq = le16toh(*(uint16_t *)wh->i_seq);
1047 if ((rxseq & IEEE80211_SEQ_FRAG_MASK) != 0) {
1048 /*
1049 * Fragments are not allowed; toss.
1050 */
1051 IEEE80211_DISCARD_MAC(vap,
1052 IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, ni->ni_macaddr,
1053 "A-MPDU", "fragment, rxseq 0x%x tid %u%s", rxseq, tid,
1054 wh->i_fc[1] & IEEE80211_FC1_RETRY ? " (retransmit)" : "");
1055 vap->iv_stats.is_ampdu_rx_drop++;
1056 IEEE80211_NODE_STAT(ni, rx_drop);
1057 m_freem(m);
1058 return CONSUMED;
1059 }
1060 rxseq >>= IEEE80211_SEQ_SEQ_SHIFT;
1061 rap->rxa_nframes++;
1062
1063 /*
1064 * Handle waiting for the first frame to define the BAW.
1065 * Some firmware doesn't provide the RX of the starting point
1066 * of the BAW and we have to cope.
1067 */
1068 if (rap->rxa_flags & IEEE80211_AGGR_WAITRX) {
1069 rap->rxa_flags &= ~IEEE80211_AGGR_WAITRX;
1070 rap->rxa_start = rxseq;
1071 }
1072 again:
1073 if (rxseq == rap->rxa_start) {
1074 /*
1075 * First frame in window.
1076 */
1077 if (rap->rxa_qframes != 0) {
1078 /*
1079 * Dispatch as many packets as we can.
1080 */
1081 KASSERT(mbufq_empty(&rap->rxa_mq[0]), ("unexpected dup"));
1082 ampdu_dispatch(ni, m);
1083 ampdu_rx_dispatch(rap, ni);
1084 return CONSUMED;
1085 } else {
1086 /*
1087 * In order; advance window if needed and notify
1088 * caller to dispatch directly.
1089 */
1090 if (amsdu) {
1091 if (amsdu_end) {
1092 rap->rxa_start = IEEE80211_SEQ_INC(rxseq);
1093 IEEE80211_NODE_STAT(ni, rx_amsdu_more_end);
1094 } else {
1095 IEEE80211_NODE_STAT(ni, rx_amsdu_more);
1096 }
1097 } else {
1098 rap->rxa_start = IEEE80211_SEQ_INC(rxseq);
1099 }
1100 return PROCESS;
1101 }
1102 }
1103 /*
1104 * Frame is out of order; store if in the BA window.
1105 */
1106 /* calculate offset in BA window */
1107 off = IEEE80211_SEQ_SUB(rxseq, rap->rxa_start);
1108 if (off < rap->rxa_wnd) {
1109 /*
1110 * Common case (hopefully): in the BA window.
1111 * Sec 9.10.7.6.2 a) (p.137)
1112 */
1113
1114 /*
1115 * Check for frames sitting too long in the reorder queue.
1116 * This should only ever happen if frames are not delivered
1117 * without the sender otherwise notifying us (e.g. with a
1118 * BAR to move the window). Typically this happens because
1119 * of vendor bugs that cause the sequence number to jump.
1120 * When this happens we get a gap in the reorder queue that
1121 * leaves frame sitting on the queue until they get pushed
1122 * out due to window moves. When the vendor does not send
1123 * BAR this move only happens due to explicit packet sends
1124 *
1125 * NB: we only track the time of the oldest frame in the
1126 * reorder q; this means that if we flush we might push
1127 * frames that still "new"; if this happens then subsequent
1128 * frames will result in BA window moves which cost something
1129 * but is still better than a big throughput dip.
1130 */
1131 if (rap->rxa_qframes != 0) {
1132 /* XXX honor batimeout? */
1133 if (ieee80211_time_after(ticks - rap->rxa_age,
1134 ieee80211_ampdu_age)) {
1135 /*
1136 * Too long since we received the first
1137 * frame; flush the reorder buffer.
1138 */
1139 if (rap->rxa_qframes != 0) {
1140 vap->iv_stats.is_ampdu_rx_age +=
1141 rap->rxa_qframes;
1142 ampdu_rx_flush(ni, rap);
1143 }
1144 /*
1145 * Advance the window if needed and notify
1146 * the caller to dispatch directly.
1147 */
1148 if (amsdu) {
1149 if (amsdu_end) {
1150 rap->rxa_start =
1151 IEEE80211_SEQ_INC(rxseq);
1152 IEEE80211_NODE_STAT(ni,
1153 rx_amsdu_more_end);
1154 } else {
1155 IEEE80211_NODE_STAT(ni,
1156 rx_amsdu_more);
1157 }
1158 } else {
1159 rap->rxa_start =
1160 IEEE80211_SEQ_INC(rxseq);
1161 }
1162 return PROCESS;
1163 }
1164 } else {
1165 /*
1166 * First frame, start aging timer.
1167 */
1168 rap->rxa_age = ticks;
1169 }
1170
1171 /* save packet - this consumes, no matter what */
1172 ampdu_rx_add_slot(rap, off, tid, rxseq, ni, m, rxs);
1173 return CONSUMED;
1174 }
1175 if (off < IEEE80211_SEQ_BA_RANGE) {
1176 /*
1177 * Outside the BA window, but within range;
1178 * flush the reorder q and move the window.
1179 * Sec 9.10.7.6.2 b) (p.138)
1180 */
1181 IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni,
1182 "move BA win <%u:%u> (%u frames) rxseq %u tid %u",
1183 rap->rxa_start,
1184 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1),
1185 rap->rxa_qframes, rxseq, tid);
1186 vap->iv_stats.is_ampdu_rx_move++;
1187
1188 /*
1189 * The spec says to flush frames up to but not including:
1190 * WinStart_B = rxseq - rap->rxa_wnd + 1
1191 * Then insert the frame or notify the caller to process
1192 * it immediately. We can safely do this by just starting
1193 * over again because we know the frame will now be within
1194 * the BA window.
1195 */
1196 /* NB: rxa_wnd known to be >0 */
1197 ampdu_rx_flush_upto(ni, rap,
1198 IEEE80211_SEQ_SUB(rxseq, rap->rxa_wnd-1));
1199 goto again;
1200 } else {
1201 /*
1202 * Outside the BA window and out of range; toss.
1203 * Sec 9.10.7.6.2 c) (p.138)
1204 */
1205 IEEE80211_DISCARD_MAC(vap,
1206 IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, ni->ni_macaddr,
1207 "MPDU", "BA win <%u:%u> (%u frames) rxseq %u tid %u%s",
1208 rap->rxa_start,
1209 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1),
1210 rap->rxa_qframes, rxseq, tid,
1211 wh->i_fc[1] & IEEE80211_FC1_RETRY ? " (retransmit)" : "");
1212 vap->iv_stats.is_ampdu_rx_drop++;
1213 IEEE80211_NODE_STAT(ni, rx_drop);
1214 m_freem(m);
1215 return CONSUMED;
1216 }
1217 #undef CONSUMED
1218 #undef PROCESS
1219 }
1220
1221 /*
1222 * Process a BAR ctl frame. Dispatch all frames up to
1223 * the sequence number of the frame. If this frame is
1224 * out of range it's discarded.
1225 */
1226 void
ieee80211_recv_bar(struct ieee80211_node * ni,struct mbuf * m0)1227 ieee80211_recv_bar(struct ieee80211_node *ni, struct mbuf *m0)
1228 {
1229 struct ieee80211vap *vap = ni->ni_vap;
1230 struct ieee80211_frame_bar *wh;
1231 struct ieee80211_rx_ampdu *rap;
1232 ieee80211_seq rxseq;
1233 int tid, off;
1234
1235 if (!ieee80211_recv_bar_ena) {
1236 #if 0
1237 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_11N,
1238 ni->ni_macaddr, "BAR", "%s", "processing disabled");
1239 #endif
1240 vap->iv_stats.is_ampdu_bar_bad++;
1241 return;
1242 }
1243 wh = mtod(m0, struct ieee80211_frame_bar *);
1244 /* XXX check basic BAR */
1245 tid = _IEEE80211_MASKSHIFT(le16toh(wh->i_ctl), IEEE80211_BAR_TID);
1246 rap = &ni->ni_rx_ampdu[tid];
1247 if ((rap->rxa_flags & IEEE80211_AGGR_XCHGPEND) == 0) {
1248 /*
1249 * No ADDBA request yet, don't touch.
1250 */
1251 IEEE80211_DISCARD_MAC(vap,
1252 IEEE80211_MSG_INPUT | IEEE80211_MSG_11N,
1253 ni->ni_macaddr, "BAR", "no BA stream, tid %u", tid);
1254 vap->iv_stats.is_ampdu_bar_bad++;
1255 return;
1256 }
1257 vap->iv_stats.is_ampdu_bar_rx++;
1258 rxseq = le16toh(wh->i_seq) >> IEEE80211_SEQ_SEQ_SHIFT;
1259 if (rxseq == rap->rxa_start)
1260 return;
1261 /* calculate offset in BA window */
1262 off = IEEE80211_SEQ_SUB(rxseq, rap->rxa_start);
1263 if (off < IEEE80211_SEQ_BA_RANGE) {
1264 /*
1265 * Flush the reorder q up to rxseq and move the window.
1266 * Sec 9.10.7.6.3 a) (p.138)
1267 */
1268 IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni,
1269 "BAR moves BA win <%u:%u> (%u frames) rxseq %u tid %u",
1270 rap->rxa_start,
1271 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1),
1272 rap->rxa_qframes, rxseq, tid);
1273 vap->iv_stats.is_ampdu_bar_move++;
1274
1275 ampdu_rx_flush_upto(ni, rap, rxseq);
1276 if (off >= rap->rxa_wnd) {
1277 /*
1278 * BAR specifies a window start to the right of BA
1279 * window; we must move it explicitly since
1280 * ampdu_rx_flush_upto will not.
1281 */
1282 rap->rxa_start = rxseq;
1283 }
1284 } else {
1285 /*
1286 * Out of range; toss.
1287 * Sec 9.10.7.6.3 b) (p.138)
1288 */
1289 IEEE80211_DISCARD_MAC(vap,
1290 IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, ni->ni_macaddr,
1291 "BAR", "BA win <%u:%u> (%u frames) rxseq %u tid %u%s",
1292 rap->rxa_start,
1293 IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1),
1294 rap->rxa_qframes, rxseq, tid,
1295 wh->i_fc[1] & IEEE80211_FC1_RETRY ? " (retransmit)" : "");
1296 vap->iv_stats.is_ampdu_bar_oow++;
1297 IEEE80211_NODE_STAT(ni, rx_drop);
1298 }
1299 }
1300
1301 /*
1302 * Setup HT-specific state in a node. Called only
1303 * when HT use is negotiated so we don't do extra
1304 * work for temporary and/or legacy sta's.
1305 */
1306 void
ieee80211_ht_node_init(struct ieee80211_node * ni)1307 ieee80211_ht_node_init(struct ieee80211_node *ni)
1308 {
1309 struct ieee80211_tx_ampdu *tap;
1310 int tid;
1311
1312 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N,
1313 ni,
1314 "%s: called (%p)",
1315 __func__,
1316 ni);
1317
1318 if (ni->ni_flags & IEEE80211_NODE_HT) {
1319 /*
1320 * Clean AMPDU state on re-associate. This handles the case
1321 * where a station leaves w/o notifying us and then returns
1322 * before node is reaped for inactivity.
1323 */
1324 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N,
1325 ni,
1326 "%s: calling cleanup (%p)",
1327 __func__, ni);
1328 ieee80211_ht_node_cleanup(ni);
1329 }
1330 for (tid = 0; tid < WME_NUM_TID; tid++) {
1331 tap = &ni->ni_tx_ampdu[tid];
1332 tap->txa_tid = tid;
1333 tap->txa_ni = ni;
1334 ieee80211_txampdu_init_pps(tap);
1335 /* NB: further initialization deferred */
1336 ieee80211_ampdu_rx_init_rap(ni, &ni->ni_rx_ampdu[tid]);
1337 }
1338 ni->ni_flags |= IEEE80211_NODE_HT | IEEE80211_NODE_AMPDU |
1339 IEEE80211_NODE_AMSDU;
1340 }
1341
1342 /*
1343 * Cleanup HT-specific state in a node. Called only
1344 * when HT use has been marked.
1345 */
1346 void
ieee80211_ht_node_cleanup(struct ieee80211_node * ni)1347 ieee80211_ht_node_cleanup(struct ieee80211_node *ni)
1348 {
1349 struct ieee80211com *ic = ni->ni_ic;
1350 int i;
1351
1352 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N,
1353 ni,
1354 "%s: called (%p)",
1355 __func__, ni);
1356
1357 KASSERT(ni->ni_flags & IEEE80211_NODE_HT, ("not an HT node"));
1358
1359 /* XXX optimize this */
1360 for (i = 0; i < WME_NUM_TID; i++) {
1361 struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[i];
1362 if (tap->txa_flags & IEEE80211_AGGR_SETUP)
1363 ampdu_tx_stop(tap);
1364 }
1365 for (i = 0; i < WME_NUM_TID; i++)
1366 ic->ic_ampdu_rx_stop(ni, &ni->ni_rx_ampdu[i]);
1367
1368 ni->ni_htcap = 0;
1369 ni->ni_flags &= ~IEEE80211_NODE_HT_ALL;
1370 }
1371
1372 /*
1373 * Age out HT resources for a station.
1374 */
1375 void
ieee80211_ht_node_age(struct ieee80211_node * ni)1376 ieee80211_ht_node_age(struct ieee80211_node *ni)
1377 {
1378 struct ieee80211vap *vap = ni->ni_vap;
1379 uint8_t tid;
1380
1381 KASSERT(ni->ni_flags & IEEE80211_NODE_HT, ("not an HT sta"));
1382
1383 for (tid = 0; tid < WME_NUM_TID; tid++) {
1384 struct ieee80211_rx_ampdu *rap;
1385
1386 rap = &ni->ni_rx_ampdu[tid];
1387 if ((rap->rxa_flags & IEEE80211_AGGR_XCHGPEND) == 0)
1388 continue;
1389 if (rap->rxa_qframes == 0)
1390 continue;
1391 /*
1392 * Check for frames sitting too long in the reorder queue.
1393 * See above for more details on what's happening here.
1394 */
1395 /* XXX honor batimeout? */
1396 if (ieee80211_time_after(ticks - rap->rxa_age,
1397 ieee80211_ampdu_age)) {
1398 /*
1399 * Too long since we received the first
1400 * frame; flush the reorder buffer.
1401 */
1402 vap->iv_stats.is_ampdu_rx_age += rap->rxa_qframes;
1403 ampdu_rx_flush(ni, rap);
1404 }
1405 }
1406 }
1407
1408 static struct ieee80211_channel *
findhtchan(struct ieee80211com * ic,struct ieee80211_channel * c,int htflags)1409 findhtchan(struct ieee80211com *ic, struct ieee80211_channel *c, int htflags)
1410 {
1411 return ieee80211_find_channel(ic, c->ic_freq,
1412 (c->ic_flags &~ IEEE80211_CHAN_HT) | htflags);
1413 }
1414
1415 /*
1416 * Adjust a channel to be HT/non-HT according to the vap's configuration.
1417 */
1418 struct ieee80211_channel *
ieee80211_ht_adjust_channel(struct ieee80211com * ic,struct ieee80211_channel * chan,int flags)1419 ieee80211_ht_adjust_channel(struct ieee80211com *ic,
1420 struct ieee80211_channel *chan, int flags)
1421 {
1422 struct ieee80211_channel *c;
1423
1424 if (flags & IEEE80211_FHT_HT) {
1425 /* promote to HT if possible */
1426 if (flags & IEEE80211_FHT_USEHT40) {
1427 if (!IEEE80211_IS_CHAN_HT40(chan)) {
1428 /* NB: arbitrarily pick ht40+ over ht40- */
1429 c = findhtchan(ic, chan, IEEE80211_CHAN_HT40U);
1430 if (c == NULL)
1431 c = findhtchan(ic, chan,
1432 IEEE80211_CHAN_HT40D);
1433 if (c == NULL)
1434 c = findhtchan(ic, chan,
1435 IEEE80211_CHAN_HT20);
1436 if (c != NULL)
1437 chan = c;
1438 }
1439 } else if (!IEEE80211_IS_CHAN_HT20(chan)) {
1440 c = findhtchan(ic, chan, IEEE80211_CHAN_HT20);
1441 if (c != NULL)
1442 chan = c;
1443 }
1444 } else if (IEEE80211_IS_CHAN_HT(chan)) {
1445 /* demote to legacy, HT use is disabled */
1446 c = ieee80211_find_channel(ic, chan->ic_freq,
1447 chan->ic_flags &~ IEEE80211_CHAN_HT);
1448 if (c != NULL)
1449 chan = c;
1450 }
1451 return chan;
1452 }
1453
1454 /*
1455 * Setup HT-specific state for a legacy WDS peer.
1456 */
1457 void
ieee80211_ht_wds_init(struct ieee80211_node * ni)1458 ieee80211_ht_wds_init(struct ieee80211_node *ni)
1459 {
1460 struct ieee80211vap *vap = ni->ni_vap;
1461 struct ieee80211_tx_ampdu *tap;
1462 int tid;
1463
1464 KASSERT(vap->iv_flags_ht & IEEE80211_FHT_HT, ("no HT requested"));
1465
1466 /* XXX check scan cache in case peer has an ap and we have info */
1467 /*
1468 * If setup with a legacy channel; locate an HT channel.
1469 * Otherwise if the inherited channel (from a companion
1470 * AP) is suitable use it so we use the same location
1471 * for the extension channel).
1472 */
1473 ni->ni_chan = ieee80211_ht_adjust_channel(ni->ni_ic,
1474 ni->ni_chan, ieee80211_htchanflags(ni->ni_chan));
1475
1476 ni->ni_htcap = 0;
1477 if (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20)
1478 ni->ni_htcap |= IEEE80211_HTCAP_SHORTGI20;
1479 if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) {
1480 ni->ni_htcap |= IEEE80211_HTCAP_CHWIDTH40;
1481 ni->ni_chw = NET80211_STA_RX_BW_40;
1482 if (IEEE80211_IS_CHAN_HT40U(ni->ni_chan))
1483 ni->ni_ht2ndchan = IEEE80211_HTINFO_2NDCHAN_ABOVE;
1484 else if (IEEE80211_IS_CHAN_HT40D(ni->ni_chan))
1485 ni->ni_ht2ndchan = IEEE80211_HTINFO_2NDCHAN_BELOW;
1486 if (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40)
1487 ni->ni_htcap |= IEEE80211_HTCAP_SHORTGI40;
1488 } else {
1489 ni->ni_chw = NET80211_STA_RX_BW_20;
1490 ni->ni_ht2ndchan = IEEE80211_HTINFO_2NDCHAN_NONE;
1491 }
1492 ni->ni_htctlchan = ni->ni_chan->ic_ieee;
1493 if (vap->iv_flags_ht & IEEE80211_FHT_RIFS)
1494 ni->ni_flags |= IEEE80211_NODE_RIFS;
1495 /* XXX does it make sense to enable SMPS? */
1496
1497 ni->ni_htopmode = 0; /* XXX need protection state */
1498 ni->ni_htstbc = 0; /* XXX need info */
1499
1500 for (tid = 0; tid < WME_NUM_TID; tid++) {
1501 tap = &ni->ni_tx_ampdu[tid];
1502 tap->txa_tid = tid;
1503 ieee80211_txampdu_init_pps(tap);
1504 }
1505 /* NB: AMPDU tx/rx governed by IEEE80211_FHT_AMPDU_{TX,RX} */
1506 ni->ni_flags |= IEEE80211_NODE_HT | IEEE80211_NODE_AMPDU |
1507 IEEE80211_NODE_AMSDU;
1508 }
1509
1510 /*
1511 * Notify a VAP of a change in the HTINFO ie if it's a hostap VAP.
1512 *
1513 * This is to be called from the deferred HT protection update
1514 * task once the flags are updated.
1515 */
1516 void
ieee80211_htinfo_notify(struct ieee80211vap * vap)1517 ieee80211_htinfo_notify(struct ieee80211vap *vap)
1518 {
1519
1520 IEEE80211_LOCK_ASSERT(vap->iv_ic);
1521
1522 if (vap->iv_opmode != IEEE80211_M_HOSTAP)
1523 return;
1524 if (vap->iv_state != IEEE80211_S_RUN ||
1525 !IEEE80211_IS_CHAN_HT(vap->iv_bss->ni_chan))
1526 return;
1527
1528 IEEE80211_NOTE(vap,
1529 IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N,
1530 vap->iv_bss,
1531 "HT bss occupancy change: %d sta, %d ht, "
1532 "%d ht40%s, HT protmode now 0x%x"
1533 , vap->iv_sta_assoc
1534 , vap->iv_ht_sta_assoc
1535 , vap->iv_ht40_sta_assoc
1536 , (vap->iv_flags_ht & IEEE80211_FHT_NONHT_PR) ?
1537 ", non-HT sta present" : ""
1538 , vap->iv_curhtprotmode);
1539
1540 ieee80211_beacon_notify(vap, IEEE80211_BEACON_HTINFO);
1541 }
1542
1543 /*
1544 * Calculate HT protection mode from current
1545 * state and handle updates.
1546 */
1547 static void
htinfo_update(struct ieee80211vap * vap)1548 htinfo_update(struct ieee80211vap *vap)
1549 {
1550 struct ieee80211com *ic = vap->iv_ic;
1551 uint8_t protmode;
1552
1553 if (vap->iv_sta_assoc != vap->iv_ht_sta_assoc) {
1554 protmode = IEEE80211_HTINFO_OPMODE_MIXED
1555 | IEEE80211_HTINFO_NONHT_PRESENT;
1556 } else if (vap->iv_flags_ht & IEEE80211_FHT_NONHT_PR) {
1557 protmode = IEEE80211_HTINFO_OPMODE_PROTOPT
1558 | IEEE80211_HTINFO_NONHT_PRESENT;
1559 } else if (ic->ic_bsschan != IEEE80211_CHAN_ANYC &&
1560 IEEE80211_IS_CHAN_HT40(ic->ic_bsschan) &&
1561 vap->iv_sta_assoc != vap->iv_ht40_sta_assoc) {
1562 protmode = IEEE80211_HTINFO_OPMODE_HT20PR;
1563 } else {
1564 protmode = IEEE80211_HTINFO_OPMODE_PURE;
1565 }
1566 if (protmode != vap->iv_curhtprotmode) {
1567 vap->iv_curhtprotmode = protmode;
1568 /* Update VAP with new protection mode */
1569 ieee80211_vap_update_ht_protmode(vap);
1570 }
1571 }
1572
1573 /*
1574 * Handle an HT station joining a BSS.
1575 */
1576 void
ieee80211_ht_node_join(struct ieee80211_node * ni)1577 ieee80211_ht_node_join(struct ieee80211_node *ni)
1578 {
1579 struct ieee80211vap *vap = ni->ni_vap;
1580
1581 IEEE80211_LOCK_ASSERT(vap->iv_ic);
1582
1583 if (ni->ni_flags & IEEE80211_NODE_HT) {
1584 vap->iv_ht_sta_assoc++;
1585 if (ni->ni_chw == NET80211_STA_RX_BW_40)
1586 vap->iv_ht40_sta_assoc++;
1587 }
1588 htinfo_update(vap);
1589 }
1590
1591 /*
1592 * Handle an HT station leaving a BSS.
1593 */
1594 void
ieee80211_ht_node_leave(struct ieee80211_node * ni)1595 ieee80211_ht_node_leave(struct ieee80211_node *ni)
1596 {
1597 struct ieee80211vap *vap = ni->ni_vap;
1598
1599 IEEE80211_LOCK_ASSERT(vap->iv_ic);
1600
1601 if (ni->ni_flags & IEEE80211_NODE_HT) {
1602 vap->iv_ht_sta_assoc--;
1603 if (ni->ni_chw == NET80211_STA_RX_BW_40)
1604 vap->iv_ht40_sta_assoc--;
1605 }
1606 htinfo_update(vap);
1607 }
1608
1609 /*
1610 * Public version of htinfo_update; used for processing
1611 * beacon frames from overlapping bss.
1612 *
1613 * Caller can specify either IEEE80211_HTINFO_OPMODE_MIXED
1614 * (on receipt of a beacon that advertises MIXED) or
1615 * IEEE80211_HTINFO_OPMODE_PROTOPT (on receipt of a beacon
1616 * from an overlapping legacy bss). We treat MIXED with
1617 * a higher precedence than PROTOPT (i.e. we will not change
1618 * change PROTOPT -> MIXED; only MIXED -> PROTOPT). This
1619 * corresponds to how we handle things in htinfo_update.
1620 *
1621 */
1622 void
ieee80211_htprot_update(struct ieee80211vap * vap,int protmode)1623 ieee80211_htprot_update(struct ieee80211vap *vap, int protmode)
1624 {
1625 struct ieee80211com *ic = vap->iv_ic;
1626 #define OPMODE(x) _IEEE80211_SHIFTMASK(x, IEEE80211_HTINFO_OPMODE)
1627 IEEE80211_LOCK(ic);
1628
1629 /* track non-HT station presence */
1630 KASSERT(protmode & IEEE80211_HTINFO_NONHT_PRESENT,
1631 ("protmode 0x%x", protmode));
1632 vap->iv_flags_ht |= IEEE80211_FHT_NONHT_PR;
1633 vap->iv_lastnonht = ticks;
1634
1635 if (protmode != vap->iv_curhtprotmode &&
1636 (OPMODE(vap->iv_curhtprotmode) != IEEE80211_HTINFO_OPMODE_MIXED ||
1637 OPMODE(protmode) == IEEE80211_HTINFO_OPMODE_PROTOPT)) {
1638 vap->iv_curhtprotmode = protmode;
1639 /* Update VAP with new protection mode */
1640 ieee80211_vap_update_ht_protmode(vap);
1641 }
1642 IEEE80211_UNLOCK(ic);
1643 #undef OPMODE
1644 }
1645
1646 /*
1647 * Time out presence of an overlapping bss with non-HT
1648 * stations. When operating in hostap mode we listen for
1649 * beacons from other stations and if we identify a non-HT
1650 * station is present we update the opmode field of the
1651 * HTINFO ie. To identify when all non-HT stations are
1652 * gone we time out this condition.
1653 */
1654 void
ieee80211_ht_timeout(struct ieee80211vap * vap)1655 ieee80211_ht_timeout(struct ieee80211vap *vap)
1656 {
1657
1658 IEEE80211_LOCK_ASSERT(vap->iv_ic);
1659
1660 if ((vap->iv_flags_ht & IEEE80211_FHT_NONHT_PR) &&
1661 ieee80211_time_after(ticks, vap->iv_lastnonht + IEEE80211_NONHT_PRESENT_AGE)) {
1662 IEEE80211_DPRINTF(vap, IEEE80211_MSG_11N,
1663 "%s", "time out non-HT STA present on channel");
1664 vap->iv_flags_ht &= ~IEEE80211_FHT_NONHT_PR;
1665 htinfo_update(vap);
1666 }
1667 }
1668
1669 /*
1670 * Process an 802.11n HT capabilities ie.
1671 */
1672 void
ieee80211_parse_htcap(struct ieee80211_node * ni,const uint8_t * ie)1673 ieee80211_parse_htcap(struct ieee80211_node *ni, const uint8_t *ie)
1674 {
1675 if (ie[0] == IEEE80211_ELEMID_VENDOR) {
1676 /*
1677 * Station used Vendor OUI ie to associate;
1678 * mark the node so when we respond we'll use
1679 * the Vendor OUI's and not the standard ie's.
1680 */
1681 ni->ni_flags |= IEEE80211_NODE_HTCOMPAT;
1682 ie += 4;
1683 } else
1684 ni->ni_flags &= ~IEEE80211_NODE_HTCOMPAT;
1685
1686 ni->ni_htcap = le16dec(ie +
1687 __offsetof(struct ieee80211_ie_htcap, hc_cap));
1688 ni->ni_htparam = ie[__offsetof(struct ieee80211_ie_htcap, hc_param)];
1689 }
1690
1691 static void
htinfo_parse(struct ieee80211_node * ni,const struct ieee80211_ie_htinfo * htinfo)1692 htinfo_parse(struct ieee80211_node *ni,
1693 const struct ieee80211_ie_htinfo *htinfo)
1694 {
1695 uint16_t w;
1696
1697 ni->ni_htctlchan = htinfo->hi_ctrlchannel;
1698 ni->ni_ht2ndchan = _IEEE80211_SHIFTMASK(htinfo->hi_byte1,
1699 IEEE80211_HTINFO_2NDCHAN);
1700 w = le16dec(&htinfo->hi_byte2);
1701 ni->ni_htopmode = _IEEE80211_SHIFTMASK(w, IEEE80211_HTINFO_OPMODE);
1702 w = le16dec(&htinfo->hi_byte45);
1703 ni->ni_htstbc = _IEEE80211_SHIFTMASK(w, IEEE80211_HTINFO_BASIC_STBCMCS);
1704 }
1705
1706 /*
1707 * Parse an 802.11n HT info ie and save useful information
1708 * to the node state. Note this does not effect any state
1709 * changes such as for channel width change.
1710 */
1711 void
ieee80211_parse_htinfo(struct ieee80211_node * ni,const uint8_t * ie)1712 ieee80211_parse_htinfo(struct ieee80211_node *ni, const uint8_t *ie)
1713 {
1714 if (ie[0] == IEEE80211_ELEMID_VENDOR)
1715 ie += 4;
1716 htinfo_parse(ni, (const struct ieee80211_ie_htinfo *) ie);
1717 }
1718
1719 /*
1720 * Handle 11n/11ac channel switch.
1721 *
1722 * Use the received HT/VHT ie's to identify the right channel to use.
1723 * If we cannot locate it in the channel table then fallback to
1724 * legacy operation.
1725 *
1726 * Note that we use this information to identify the node's
1727 * channel only; the caller is responsible for insuring any
1728 * required channel change is done (e.g. in sta mode when
1729 * parsing the contents of a beacon frame).
1730 */
1731 static int
htinfo_update_chw(struct ieee80211_node * ni,int htflags,int vhtflags)1732 htinfo_update_chw(struct ieee80211_node *ni, int htflags, int vhtflags)
1733 {
1734 struct ieee80211com *ic = ni->ni_ic;
1735 struct ieee80211_channel *c;
1736 int chanflags;
1737 int ret = 0;
1738
1739 /*
1740 * First step - do HT/VHT only channel lookup based on operating mode
1741 * flags. This involves masking out the VHT flags as well.
1742 * Otherwise we end up doing the full channel walk each time
1743 * we trigger this, which is expensive.
1744 */
1745 chanflags = (ni->ni_chan->ic_flags &~
1746 (IEEE80211_CHAN_HT | IEEE80211_CHAN_VHT)) | htflags | vhtflags;
1747
1748 if (chanflags == ni->ni_chan->ic_flags)
1749 goto done;
1750
1751 /*
1752 * If HT /or/ VHT flags have changed then check both.
1753 * We need to start by picking a HT channel anyway.
1754 */
1755
1756 c = NULL;
1757 chanflags = (ni->ni_chan->ic_flags &~
1758 (IEEE80211_CHAN_HT | IEEE80211_CHAN_VHT)) | htflags;
1759 /* XXX not right for ht40- */
1760 c = ieee80211_find_channel(ic, ni->ni_chan->ic_freq, chanflags);
1761 if (c == NULL && (htflags & IEEE80211_CHAN_HT40)) {
1762 /*
1763 * No HT40 channel entry in our table; fall back
1764 * to HT20 operation. This should not happen.
1765 */
1766 c = findhtchan(ic, ni->ni_chan, IEEE80211_CHAN_HT20);
1767 #if 0
1768 IEEE80211_NOTE(ni->ni_vap,
1769 IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, ni,
1770 "no HT40 channel (freq %u), falling back to HT20",
1771 ni->ni_chan->ic_freq);
1772 #endif
1773 /* XXX stat */
1774 }
1775
1776 /* Nothing found - leave it alone; move onto VHT */
1777 if (c == NULL)
1778 c = ni->ni_chan;
1779
1780 /*
1781 * If it's non-HT, then bail out now.
1782 */
1783 if (! IEEE80211_IS_CHAN_HT(c)) {
1784 IEEE80211_NOTE(ni->ni_vap,
1785 IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, ni,
1786 "not HT; skipping VHT check (%u/0x%x)",
1787 c->ic_freq, c->ic_flags);
1788 goto done;
1789 }
1790
1791 /*
1792 * Next step - look at the current VHT flags and determine
1793 * if we need to upgrade. Mask out the VHT and HT flags since
1794 * the vhtflags field will already have the correct HT
1795 * flags to use.
1796 */
1797 if (IEEE80211_CONF_VHT(ic) && ni->ni_vhtcap != 0 && vhtflags != 0) {
1798 chanflags = (c->ic_flags
1799 &~ (IEEE80211_CHAN_HT | IEEE80211_CHAN_VHT))
1800 | vhtflags;
1801 IEEE80211_NOTE(ni->ni_vap,
1802 IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N,
1803 ni,
1804 "%s: VHT; chanwidth=0x%02x; vhtflags=0x%08x",
1805 __func__, ni->ni_vht_chanwidth, vhtflags);
1806
1807 IEEE80211_NOTE(ni->ni_vap,
1808 IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N,
1809 ni,
1810 "%s: VHT; trying lookup for %d/0x%08x",
1811 __func__, c->ic_freq, chanflags);
1812 c = ieee80211_find_channel(ic, c->ic_freq, chanflags);
1813 }
1814
1815 /* Finally, if it's changed */
1816 if (c != NULL && c != ni->ni_chan) {
1817 IEEE80211_NOTE(ni->ni_vap,
1818 IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, ni,
1819 "switch station to %s%d channel %u/0x%x",
1820 IEEE80211_IS_CHAN_VHT(c) ? "VHT" : "HT",
1821 IEEE80211_IS_CHAN_VHT80(c) ? 80 :
1822 (IEEE80211_IS_CHAN_HT40(c) ? 40 : 20),
1823 c->ic_freq, c->ic_flags);
1824 ni->ni_chan = c;
1825 ret = 1;
1826 }
1827 /* NB: caller responsible for forcing any channel change */
1828
1829 done:
1830 /* update node's (11n) tx channel width */
1831 ni->ni_chw = IEEE80211_IS_CHAN_HT40(ni->ni_chan) ?
1832 NET80211_STA_RX_BW_40 : NET80211_STA_RX_BW_20;
1833 return (ret);
1834 }
1835
1836 /*
1837 * Update 11n MIMO PS state according to received htcap.
1838 */
1839 static __inline int
htcap_update_mimo_ps(struct ieee80211_node * ni)1840 htcap_update_mimo_ps(struct ieee80211_node *ni)
1841 {
1842 uint16_t oflags = ni->ni_flags;
1843
1844 switch (ni->ni_htcap & IEEE80211_HTCAP_SMPS) {
1845 case IEEE80211_HTCAP_SMPS_DYNAMIC:
1846 ni->ni_flags |= IEEE80211_NODE_MIMO_PS;
1847 ni->ni_flags |= IEEE80211_NODE_MIMO_RTS;
1848 break;
1849 case IEEE80211_HTCAP_SMPS_ENA:
1850 ni->ni_flags |= IEEE80211_NODE_MIMO_PS;
1851 ni->ni_flags &= ~IEEE80211_NODE_MIMO_RTS;
1852 break;
1853 case IEEE80211_HTCAP_SMPS_OFF:
1854 default: /* disable on rx of reserved value */
1855 ni->ni_flags &= ~IEEE80211_NODE_MIMO_PS;
1856 ni->ni_flags &= ~IEEE80211_NODE_MIMO_RTS;
1857 break;
1858 }
1859 return (oflags ^ ni->ni_flags);
1860 }
1861
1862 /*
1863 * Update short GI state according to received htcap
1864 * and local settings.
1865 */
1866 static __inline void
htcap_update_shortgi(struct ieee80211_node * ni)1867 htcap_update_shortgi(struct ieee80211_node *ni)
1868 {
1869 struct ieee80211vap *vap = ni->ni_vap;
1870
1871 ni->ni_flags &= ~(IEEE80211_NODE_SGI20|IEEE80211_NODE_SGI40);
1872 if ((ni->ni_htcap & IEEE80211_HTCAP_SHORTGI20) &&
1873 (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20))
1874 ni->ni_flags |= IEEE80211_NODE_SGI20;
1875 if ((ni->ni_htcap & IEEE80211_HTCAP_SHORTGI40) &&
1876 (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40))
1877 ni->ni_flags |= IEEE80211_NODE_SGI40;
1878 }
1879
1880 /*
1881 * Update LDPC state according to received htcap
1882 * and local settings.
1883 */
1884 static __inline void
htcap_update_ldpc(struct ieee80211_node * ni)1885 htcap_update_ldpc(struct ieee80211_node *ni)
1886 {
1887 struct ieee80211vap *vap = ni->ni_vap;
1888
1889 if ((ni->ni_htcap & IEEE80211_HTCAP_LDPC) &&
1890 (vap->iv_flags_ht & IEEE80211_FHT_LDPC_TX))
1891 ni->ni_flags |= IEEE80211_NODE_LDPC;
1892 }
1893
1894 /*
1895 * Parse and update HT-related state extracted from
1896 * the HT cap and info ie's.
1897 *
1898 * This is called from the STA management path and
1899 * the ieee80211_node_join() path. It will take into
1900 * account the IEs discovered during scanning and
1901 * adjust things accordingly.
1902 */
1903 void
ieee80211_ht_updateparams(struct ieee80211_node * ni,const uint8_t * htcapie,const uint8_t * htinfoie)1904 ieee80211_ht_updateparams(struct ieee80211_node *ni,
1905 const uint8_t *htcapie, const uint8_t *htinfoie)
1906 {
1907 struct ieee80211vap *vap = ni->ni_vap;
1908 const struct ieee80211_ie_htinfo *htinfo;
1909
1910 ieee80211_parse_htcap(ni, htcapie);
1911 if (vap->iv_htcaps & IEEE80211_HTC_SMPS)
1912 htcap_update_mimo_ps(ni);
1913 htcap_update_shortgi(ni);
1914 htcap_update_ldpc(ni);
1915
1916 if (htinfoie[0] == IEEE80211_ELEMID_VENDOR)
1917 htinfoie += 4;
1918 htinfo = (const struct ieee80211_ie_htinfo *) htinfoie;
1919 htinfo_parse(ni, htinfo);
1920
1921 /*
1922 * Defer the node channel change; we need to now
1923 * update VHT parameters before we do it.
1924 */
1925
1926 if ((htinfo->hi_byte1 & IEEE80211_HTINFO_RIFSMODE_PERM) &&
1927 (vap->iv_flags_ht & IEEE80211_FHT_RIFS))
1928 ni->ni_flags |= IEEE80211_NODE_RIFS;
1929 else
1930 ni->ni_flags &= ~IEEE80211_NODE_RIFS;
1931 }
1932
1933 static uint32_t
ieee80211_vht_get_vhtflags(struct ieee80211_node * ni,uint32_t htflags)1934 ieee80211_vht_get_vhtflags(struct ieee80211_node *ni, uint32_t htflags)
1935 {
1936 #define _RETURN_CHAN_BITS(_cb) \
1937 do { \
1938 if (0) IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, ni, \
1939 "%s:%d: selected %b", __func__, __LINE__, \
1940 (_cb), IEEE80211_CHAN_BITS); \
1941 return (_cb); \
1942 } while(0)
1943 struct ieee80211vap *vap;
1944 const struct ieee80211_ie_htinfo *htinfo;
1945 uint32_t vhtflags;
1946 bool can_vht160, can_vht80p80, can_vht80;
1947 bool ht40;
1948
1949 vap = ni->ni_vap;
1950
1951 /* If we do not support VHT or VHT is disabled just return. */
1952 if ((ni->ni_flags & IEEE80211_NODE_VHT) == 0 ||
1953 (vap->iv_vht_flags & IEEE80211_FVHT_VHT) == 0)
1954 _RETURN_CHAN_BITS(0);
1955
1956 /*
1957 * TODO: should we bail out if there's no htinfo?
1958 * Or just treat it as if we can't do the HT20/HT40 check?
1959 */
1960
1961 /*
1962 * The original code was based on
1963 * 802.11ac-2013, Table 8-183x-VHT Operation Information subfields.
1964 * 802.11-2020, Table 9-274-VHT Operation Information subfields
1965 * has IEEE80211_VHT_CHANWIDTH_160MHZ and
1966 * IEEE80211_VHT_CHANWIDTH_80P80MHZ deprecated.
1967 * For current logic see
1968 * 802.11-2020, 11.38.1 Basic VHT BSS functionality.
1969 */
1970
1971 htinfo = (const struct ieee80211_ie_htinfo *)ni->ni_ies.htinfo_ie;
1972 if (htinfo != NULL)
1973 ht40 = ((htinfo->hi_byte1 & IEEE80211_HTINFO_TXWIDTH) ==
1974 IEEE80211_HTINFO_TXWIDTH_2040);
1975 else
1976 ht40 = false;
1977
1978 can_vht160 = can_vht80p80 = can_vht80 = false;
1979
1980 /* 20 Mhz */
1981 if (!ht40) {
1982 /* Check for the full valid combination -- other fields be 0. */
1983 if (ni->ni_vht_chanwidth != IEEE80211_VHT_CHANWIDTH_USE_HT ||
1984 ni->ni_vht_chan2 != 0)
1985 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, ni,
1986 "%s: invalid VHT BSS bandwidth 0/%d/%d/%d",
1987 __func__, ni->ni_vht_chanwidth,
1988 ni->ni_vht_chan1, ni->ni_vht_chan2);
1989
1990 _RETURN_CHAN_BITS(IEEE80211_CHAN_VHT20 | IEEE80211_CHAN_HT20);
1991 }
1992
1993 vhtflags = 0;
1994
1995 /* We know we can at least do 40Mhz, so mirror the HT40 flags. */
1996 if (htflags == IEEE80211_CHAN_HT40U)
1997 vhtflags |= IEEE80211_CHAN_HT40U;
1998 else if (htflags == IEEE80211_CHAN_HT40D)
1999 vhtflags |= IEEE80211_CHAN_HT40D;
2000
2001 /* 40 MHz */
2002 if (ni->ni_vht_chanwidth == IEEE80211_VHT_CHANWIDTH_USE_HT) {
2003 if (ni->ni_vht_chan2 != 0)
2004 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, ni,
2005 "%s: invalid VHT BSS bandwidth 1/%d/%d/%d",
2006 __func__, ni->ni_vht_chanwidth,
2007 ni->ni_vht_chan1, ni->ni_vht_chan2);
2008
2009 if ((vap->iv_vht_flags & IEEE80211_FVHT_USEVHT40) != 0) {
2010 if (htflags == IEEE80211_CHAN_HT40U)
2011 _RETURN_CHAN_BITS(IEEE80211_CHAN_VHT40U | vhtflags);
2012 if (htflags == IEEE80211_CHAN_HT40D)
2013 _RETURN_CHAN_BITS(IEEE80211_CHAN_VHT40D | vhtflags);
2014 }
2015
2016 /* If we get here VHT40 is not supported or disabled. */
2017 _RETURN_CHAN_BITS(IEEE80211_CHAN_VHT20 | IEEE80211_CHAN_HT20);
2018 }
2019
2020 /* Deprecated check for 160. */
2021 if ((ni->ni_vht_chanwidth == IEEE80211_VHT_CHANWIDTH_160MHZ) &&
2022 IEEE80211_VHTCAP_SUPP_CHAN_WIDTH_IS_160MHZ(vap->iv_vht_cap.vht_cap_info) &&
2023 (vap->iv_vht_flags & IEEE80211_FVHT_USEVHT160) != 0)
2024 _RETURN_CHAN_BITS(IEEE80211_CHAN_VHT160 | vhtflags);
2025
2026 /* Deprecated check for 80P80. */
2027 if ((ni->ni_vht_chanwidth == IEEE80211_VHT_CHANWIDTH_80P80MHZ) &&
2028 IEEE80211_VHTCAP_SUPP_CHAN_WIDTH_IS_160_80P80MHZ(vap->iv_vht_cap.vht_cap_info) &&
2029 (vap->iv_vht_flags & IEEE80211_FVHT_USEVHT80P80) != 0)
2030 _RETURN_CHAN_BITS(IEEE80211_CHAN_VHT80P80 | vhtflags);
2031
2032 if (ni->ni_vht_chanwidth != IEEE80211_VHT_CHANWIDTH_80MHZ) {
2033 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, ni,
2034 "%s: invalid VHT BSS bandwidth %d/%d/%d", __func__,
2035 ni->ni_vht_chanwidth, ni->ni_vht_chan2);
2036
2037 _RETURN_CHAN_BITS(0);
2038 }
2039
2040 /* CCFS1 > 0 and | CCFS1 - CCFS0 | = 8 */
2041 if (ni->ni_vht_chan2 > 0 && (ni->ni_vht_chan2 - ni->ni_vht_chan1) == 8)
2042 can_vht160 = can_vht80 = true;
2043
2044 /* CCFS1 > 0 and | CCFS1 - CCFS0 | > 16 */
2045 if (ni->ni_vht_chan2 > 0 && (ni->ni_vht_chan2 - ni->ni_vht_chan1) > 16)
2046 can_vht80p80 = can_vht80 = true;
2047
2048 /* CFFS1 == 0 */
2049 if (ni->ni_vht_chan2 == 0)
2050 can_vht80 = true;
2051
2052 if (can_vht160 && (vap->iv_vht_flags & IEEE80211_FVHT_USEVHT160) != 0)
2053 _RETURN_CHAN_BITS(IEEE80211_CHAN_VHT160 | vhtflags);
2054
2055 if (can_vht80p80 && (vap->iv_vht_flags & IEEE80211_FVHT_USEVHT80P80) != 0)
2056 _RETURN_CHAN_BITS(IEEE80211_CHAN_VHT80P80 | vhtflags);
2057
2058 if (can_vht80 && (vap->iv_vht_flags & IEEE80211_FVHT_USEVHT80) != 0)
2059 _RETURN_CHAN_BITS(IEEE80211_CHAN_VHT80 | vhtflags);
2060
2061 if (ht40 && (vap->iv_vht_flags & IEEE80211_FVHT_USEVHT40) != 0) {
2062 if (htflags == IEEE80211_CHAN_HT40U)
2063 _RETURN_CHAN_BITS(IEEE80211_CHAN_VHT40U | vhtflags);
2064 if (htflags == IEEE80211_CHAN_HT40D)
2065 _RETURN_CHAN_BITS(IEEE80211_CHAN_VHT40D | vhtflags);
2066 }
2067
2068 /* Either we disabled support or got an invalid setting. */
2069 _RETURN_CHAN_BITS(IEEE80211_CHAN_VHT20 | IEEE80211_CHAN_HT20);
2070 #undef _RETURN_CHAN_BITS
2071 }
2072
2073 /*
2074 * Final part of updating the HT parameters.
2075 *
2076 * This is called from the STA management path and
2077 * the ieee80211_node_join() path. It will take into
2078 * account the IEs discovered during scanning and
2079 * adjust things accordingly.
2080 *
2081 * This is done after a call to ieee80211_ht_updateparams()
2082 * because it (and the upcoming VHT version of updateparams)
2083 * needs to ensure everything is parsed before htinfo_update_chw()
2084 * is called - which will change the channel config for the
2085 * node for us.
2086 */
2087 int
ieee80211_ht_updateparams_final(struct ieee80211_node * ni,const uint8_t * htcapie,const uint8_t * htinfoie)2088 ieee80211_ht_updateparams_final(struct ieee80211_node *ni,
2089 const uint8_t *htcapie, const uint8_t *htinfoie)
2090 {
2091 struct ieee80211vap *vap = ni->ni_vap;
2092 const struct ieee80211_ie_htinfo *htinfo;
2093 int htflags, vhtflags;
2094 int ret = 0;
2095
2096 htinfo = (const struct ieee80211_ie_htinfo *) htinfoie;
2097
2098 htflags = (vap->iv_flags_ht & IEEE80211_FHT_HT) ?
2099 IEEE80211_CHAN_HT20 : 0;
2100
2101 /* NB: honor operating mode constraint */
2102 if ((htinfo->hi_byte1 & IEEE80211_HTINFO_TXWIDTH_2040) &&
2103 (vap->iv_flags_ht & IEEE80211_FHT_USEHT40)) {
2104 if (ni->ni_ht2ndchan == IEEE80211_HTINFO_2NDCHAN_ABOVE)
2105 htflags = IEEE80211_CHAN_HT40U;
2106 else if (ni->ni_ht2ndchan == IEEE80211_HTINFO_2NDCHAN_BELOW)
2107 htflags = IEEE80211_CHAN_HT40D;
2108 }
2109
2110 /*
2111 * VHT flags - do much the same; check whether VHT is available
2112 * and if so, what our ideal channel use would be based on our
2113 * capabilities and the (pre-parsed) VHT info IE.
2114 */
2115 vhtflags = ieee80211_vht_get_vhtflags(ni, htflags);
2116
2117 if (htinfo_update_chw(ni, htflags, vhtflags))
2118 ret = 1;
2119
2120 return (ret);
2121 }
2122
2123 /*
2124 * Parse and update HT-related state extracted from the HT cap ie
2125 * for a station joining an HT BSS.
2126 *
2127 * This is called from the hostap path for each station.
2128 */
2129 void
ieee80211_ht_updatehtcap(struct ieee80211_node * ni,const uint8_t * htcapie)2130 ieee80211_ht_updatehtcap(struct ieee80211_node *ni, const uint8_t *htcapie)
2131 {
2132 struct ieee80211vap *vap = ni->ni_vap;
2133
2134 ieee80211_parse_htcap(ni, htcapie);
2135 if (vap->iv_htcaps & IEEE80211_HTC_SMPS)
2136 htcap_update_mimo_ps(ni);
2137 htcap_update_shortgi(ni);
2138 htcap_update_ldpc(ni);
2139 }
2140
2141 /*
2142 * Called once HT and VHT capabilities are parsed in hostap mode -
2143 * this will adjust the channel configuration of the given node
2144 * based on the configuration and capabilities.
2145 */
2146 void
ieee80211_ht_updatehtcap_final(struct ieee80211_node * ni)2147 ieee80211_ht_updatehtcap_final(struct ieee80211_node *ni)
2148 {
2149 struct ieee80211vap *vap = ni->ni_vap;
2150 int htflags;
2151 int vhtflags;
2152
2153 /* NB: honor operating mode constraint */
2154 /* XXX 40 MHz intolerant */
2155 htflags = (vap->iv_flags_ht & IEEE80211_FHT_HT) ?
2156 IEEE80211_CHAN_HT20 : 0;
2157 if ((ni->ni_htcap & IEEE80211_HTCAP_CHWIDTH40) &&
2158 (vap->iv_flags_ht & IEEE80211_FHT_USEHT40)) {
2159 if (IEEE80211_IS_CHAN_HT40U(vap->iv_bss->ni_chan))
2160 htflags = IEEE80211_CHAN_HT40U;
2161 else if (IEEE80211_IS_CHAN_HT40D(vap->iv_bss->ni_chan))
2162 htflags = IEEE80211_CHAN_HT40D;
2163 }
2164 /*
2165 * VHT flags - do much the same; check whether VHT is available
2166 * and if so, what our ideal channel use would be based on our
2167 * capabilities and the (pre-parsed) VHT info IE.
2168 */
2169 vhtflags = ieee80211_vht_get_vhtflags(ni, htflags);
2170
2171 (void) htinfo_update_chw(ni, htflags, vhtflags);
2172 }
2173
2174 /*
2175 * Install received HT rate set by parsing the HT cap ie.
2176 */
2177 int
ieee80211_setup_htrates(struct ieee80211_node * ni,const uint8_t * ie,int flags)2178 ieee80211_setup_htrates(struct ieee80211_node *ni, const uint8_t *ie, int flags)
2179 {
2180 struct ieee80211com *ic = ni->ni_ic;
2181 struct ieee80211vap *vap = ni->ni_vap;
2182 const struct ieee80211_ie_htcap *htcap;
2183 struct ieee80211_htrateset *rs;
2184 int i, maxequalmcs, maxunequalmcs;
2185
2186 maxequalmcs = ic->ic_txstream * 8 - 1;
2187 maxunequalmcs = 0;
2188 if (ic->ic_htcaps & IEEE80211_HTC_TXUNEQUAL) {
2189 if (ic->ic_txstream >= 2)
2190 maxunequalmcs = 38;
2191 if (ic->ic_txstream >= 3)
2192 maxunequalmcs = 52;
2193 if (ic->ic_txstream >= 4)
2194 maxunequalmcs = 76;
2195 }
2196
2197 rs = &ni->ni_htrates;
2198 memset(rs, 0, sizeof(*rs));
2199 if (ie != NULL) {
2200 if (ie[0] == IEEE80211_ELEMID_VENDOR)
2201 ie += 4;
2202 htcap = (const struct ieee80211_ie_htcap *) ie;
2203 for (i = 0; i < IEEE80211_HTRATE_MAXSIZE; i++) {
2204 if (isclr(htcap->hc_mcsset, i))
2205 continue;
2206 if (rs->rs_nrates == IEEE80211_HTRATE_MAXSIZE) {
2207 IEEE80211_NOTE(vap,
2208 IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni,
2209 "WARNING, HT rate set too large; only "
2210 "using %u rates", IEEE80211_HTRATE_MAXSIZE);
2211 vap->iv_stats.is_rx_rstoobig++;
2212 break;
2213 }
2214 if (i <= 31 && i > maxequalmcs)
2215 continue;
2216 if (i == 32 &&
2217 (ic->ic_htcaps & IEEE80211_HTC_TXMCS32) == 0)
2218 continue;
2219 if (i > 32 && i > maxunequalmcs)
2220 continue;
2221 rs->rs_rates[rs->rs_nrates++] = i;
2222 }
2223 }
2224 return ieee80211_fix_rate(ni, (struct ieee80211_rateset *) rs, flags);
2225 }
2226
2227 /*
2228 * Mark rates in a node's HT rate set as basic according
2229 * to the information in the supplied HT info ie.
2230 */
2231 void
ieee80211_setup_basic_htrates(struct ieee80211_node * ni,const uint8_t * ie)2232 ieee80211_setup_basic_htrates(struct ieee80211_node *ni, const uint8_t *ie)
2233 {
2234 const struct ieee80211_ie_htinfo *htinfo;
2235 struct ieee80211_htrateset *rs;
2236 int i, j;
2237
2238 if (ie[0] == IEEE80211_ELEMID_VENDOR)
2239 ie += 4;
2240 htinfo = (const struct ieee80211_ie_htinfo *) ie;
2241 rs = &ni->ni_htrates;
2242 if (rs->rs_nrates == 0) {
2243 IEEE80211_NOTE(ni->ni_vap,
2244 IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni,
2245 "%s", "WARNING, empty HT rate set");
2246 return;
2247 }
2248 for (i = 0; i < IEEE80211_HTRATE_MAXSIZE; i++) {
2249 if (isclr(htinfo->hi_basicmcsset, i))
2250 continue;
2251 for (j = 0; j < rs->rs_nrates; j++)
2252 if ((rs->rs_rates[j] & IEEE80211_RATE_VAL) == i)
2253 rs->rs_rates[j] |= IEEE80211_RATE_BASIC;
2254 }
2255 }
2256
2257 static void
ampdu_tx_setup(struct ieee80211_tx_ampdu * tap)2258 ampdu_tx_setup(struct ieee80211_tx_ampdu *tap)
2259 {
2260 callout_init(&tap->txa_timer, 1);
2261 tap->txa_flags |= IEEE80211_AGGR_SETUP;
2262 tap->txa_lastsample = ticks;
2263 }
2264
2265 static void
ampdu_tx_stop(struct ieee80211_tx_ampdu * tap)2266 ampdu_tx_stop(struct ieee80211_tx_ampdu *tap)
2267 {
2268 struct ieee80211_node *ni = tap->txa_ni;
2269 struct ieee80211com *ic = ni->ni_ic;
2270
2271 IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N,
2272 tap->txa_ni,
2273 "%s: called",
2274 __func__);
2275
2276 KASSERT(tap->txa_flags & IEEE80211_AGGR_SETUP,
2277 ("txa_flags 0x%x tid %d ac %d", tap->txa_flags, tap->txa_tid,
2278 TID_TO_WME_AC(tap->txa_tid)));
2279
2280 /*
2281 * Stop BA stream if setup so driver has a chance
2282 * to reclaim any resources it might have allocated.
2283 */
2284 ic->ic_addba_stop(ni, tap);
2285 /*
2286 * Stop any pending BAR transmit.
2287 */
2288 bar_stop_timer(tap);
2289
2290 /*
2291 * Reset packet estimate.
2292 */
2293 ieee80211_txampdu_init_pps(tap);
2294
2295 /* NB: clearing NAK means we may re-send ADDBA */
2296 tap->txa_flags &= ~(IEEE80211_AGGR_SETUP | IEEE80211_AGGR_NAK);
2297 }
2298
2299 /*
2300 * ADDBA response timeout.
2301 *
2302 * If software aggregation and per-TID queue management was done here,
2303 * that queue would be unpaused after the ADDBA timeout occurs.
2304 */
2305 static void
addba_timeout(void * arg)2306 addba_timeout(void *arg)
2307 {
2308 struct ieee80211_tx_ampdu *tap = arg;
2309 struct ieee80211_node *ni = tap->txa_ni;
2310 struct ieee80211com *ic = ni->ni_ic;
2311
2312 /* XXX ? */
2313 tap->txa_flags &= ~IEEE80211_AGGR_XCHGPEND;
2314 tap->txa_attempts++;
2315 ic->ic_addba_response_timeout(ni, tap);
2316 }
2317
2318 static void
addba_start_timeout(struct ieee80211_tx_ampdu * tap)2319 addba_start_timeout(struct ieee80211_tx_ampdu *tap)
2320 {
2321 /* XXX use CALLOUT_PENDING instead? */
2322 callout_reset(&tap->txa_timer, ieee80211_addba_timeout,
2323 addba_timeout, tap);
2324 tap->txa_flags |= IEEE80211_AGGR_XCHGPEND;
2325 tap->txa_nextrequest = ticks + ieee80211_addba_timeout;
2326 }
2327
2328 static void
addba_stop_timeout(struct ieee80211_tx_ampdu * tap)2329 addba_stop_timeout(struct ieee80211_tx_ampdu *tap)
2330 {
2331 /* XXX use CALLOUT_PENDING instead? */
2332 if (tap->txa_flags & IEEE80211_AGGR_XCHGPEND) {
2333 callout_stop(&tap->txa_timer);
2334 tap->txa_flags &= ~IEEE80211_AGGR_XCHGPEND;
2335 }
2336 }
2337
2338 static void
null_addba_response_timeout(struct ieee80211_node * ni,struct ieee80211_tx_ampdu * tap)2339 null_addba_response_timeout(struct ieee80211_node *ni,
2340 struct ieee80211_tx_ampdu *tap)
2341 {
2342 }
2343
2344 /*
2345 * Default method for requesting A-MPDU tx aggregation.
2346 * We setup the specified state block and start a timer
2347 * to wait for an ADDBA response frame.
2348 */
2349 static int
ieee80211_addba_request(struct ieee80211_node * ni,struct ieee80211_tx_ampdu * tap,int dialogtoken,int baparamset,int batimeout)2350 ieee80211_addba_request(struct ieee80211_node *ni,
2351 struct ieee80211_tx_ampdu *tap,
2352 int dialogtoken, int baparamset, int batimeout)
2353 {
2354 int bufsiz;
2355
2356 /* XXX locking */
2357 tap->txa_token = dialogtoken;
2358 tap->txa_flags |= IEEE80211_AGGR_IMMEDIATE;
2359 bufsiz = _IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_BUFSIZ);
2360 tap->txa_wnd = (bufsiz == 0) ?
2361 IEEE80211_AGGR_BAWMAX : min(bufsiz, IEEE80211_AGGR_BAWMAX);
2362 addba_start_timeout(tap);
2363 return 1;
2364 }
2365
2366 /*
2367 * Called by drivers that wish to request an ADDBA session be
2368 * setup. This brings it up and starts the request timer.
2369 */
2370 int
ieee80211_ampdu_tx_request_ext(struct ieee80211_node * ni,int tid)2371 ieee80211_ampdu_tx_request_ext(struct ieee80211_node *ni, int tid)
2372 {
2373 struct ieee80211_tx_ampdu *tap;
2374
2375 if (tid < 0 || tid > 15)
2376 return (0);
2377 tap = &ni->ni_tx_ampdu[tid];
2378
2379 /* XXX locking */
2380 if ((tap->txa_flags & IEEE80211_AGGR_SETUP) == 0) {
2381 /* do deferred setup of state */
2382 ampdu_tx_setup(tap);
2383 }
2384 /* XXX hack for not doing proper locking */
2385 tap->txa_flags &= ~IEEE80211_AGGR_NAK;
2386 addba_start_timeout(tap);
2387 return (1);
2388 }
2389
2390 /*
2391 * Called by drivers that have marked a session as active.
2392 */
2393 int
ieee80211_ampdu_tx_request_active_ext(struct ieee80211_node * ni,int tid,int status)2394 ieee80211_ampdu_tx_request_active_ext(struct ieee80211_node *ni, int tid,
2395 int status)
2396 {
2397 struct ieee80211_tx_ampdu *tap;
2398
2399 if (tid < 0 || tid > 15)
2400 return (0);
2401 tap = &ni->ni_tx_ampdu[tid];
2402
2403 /* XXX locking */
2404 addba_stop_timeout(tap);
2405 if (status == 1) {
2406 tap->txa_flags |= IEEE80211_AGGR_RUNNING;
2407 tap->txa_attempts = 0;
2408 } else {
2409 /* mark tid so we don't try again */
2410 tap->txa_flags |= IEEE80211_AGGR_NAK;
2411 }
2412 return (1);
2413 }
2414
2415 /*
2416 * Default method for processing an A-MPDU tx aggregation
2417 * response. We shutdown any pending timer and update the
2418 * state block according to the reply.
2419 */
2420 static int
ieee80211_addba_response(struct ieee80211_node * ni,struct ieee80211_tx_ampdu * tap,int status,int baparamset,int batimeout)2421 ieee80211_addba_response(struct ieee80211_node *ni,
2422 struct ieee80211_tx_ampdu *tap,
2423 int status, int baparamset, int batimeout)
2424 {
2425 struct ieee80211vap *vap = ni->ni_vap;
2426 int bufsiz;
2427
2428 /* XXX locking */
2429 addba_stop_timeout(tap);
2430 if (status == IEEE80211_STATUS_SUCCESS) {
2431 bufsiz = _IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_BUFSIZ);
2432 /* XXX override our request? */
2433 tap->txa_wnd = (bufsiz == 0) ?
2434 IEEE80211_AGGR_BAWMAX : min(bufsiz, IEEE80211_AGGR_BAWMAX);
2435 #ifdef __notyet__
2436 tid = _IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_TID);
2437 #endif
2438 tap->txa_flags |= IEEE80211_AGGR_RUNNING;
2439 tap->txa_attempts = 0;
2440 /* TODO: this should be a vap flag */
2441 if ((vap->iv_htcaps & IEEE80211_HTC_TX_AMSDU_AMPDU) &&
2442 (ni->ni_flags & IEEE80211_NODE_AMSDU_TX) &&
2443 (_IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_AMSDU)))
2444 tap->txa_flags |= IEEE80211_AGGR_AMSDU;
2445 else
2446 tap->txa_flags &= ~IEEE80211_AGGR_AMSDU;
2447 } else {
2448 /* mark tid so we don't try again */
2449 tap->txa_flags |= IEEE80211_AGGR_NAK;
2450 }
2451 return 1;
2452 }
2453
2454 /*
2455 * Default method for stopping A-MPDU tx aggregation.
2456 * Any timer is cleared and we drain any pending frames.
2457 */
2458 static void
ieee80211_addba_stop(struct ieee80211_node * ni,struct ieee80211_tx_ampdu * tap)2459 ieee80211_addba_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap)
2460 {
2461 /* XXX locking */
2462 addba_stop_timeout(tap);
2463 if (tap->txa_flags & IEEE80211_AGGR_RUNNING) {
2464 /* XXX clear aggregation queue */
2465 tap->txa_flags &= ~(IEEE80211_AGGR_RUNNING | IEEE80211_AGGR_AMSDU);
2466 }
2467 tap->txa_attempts = 0;
2468 }
2469
2470 /*
2471 * Process a received action frame using the default aggregation
2472 * policy. We intercept ADDBA-related frames and use them to
2473 * update our aggregation state. All other frames are passed up
2474 * for processing by ieee80211_recv_action.
2475 */
2476 static int
ht_recv_action_ba_addba_request(struct ieee80211_node * ni,const struct ieee80211_frame * wh,const uint8_t * frm,const uint8_t * efrm)2477 ht_recv_action_ba_addba_request(struct ieee80211_node *ni,
2478 const struct ieee80211_frame *wh,
2479 const uint8_t *frm, const uint8_t *efrm)
2480 {
2481 struct ieee80211com *ic = ni->ni_ic;
2482 struct ieee80211vap *vap = ni->ni_vap;
2483 struct ieee80211_rx_ampdu *rap;
2484 uint8_t dialogtoken;
2485 uint16_t baparamset, batimeout, baseqctl;
2486 uint16_t args[5];
2487 int tid;
2488
2489 dialogtoken = frm[2];
2490 baparamset = le16dec(frm+3);
2491 batimeout = le16dec(frm+5);
2492 baseqctl = le16dec(frm+7);
2493
2494 tid = _IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_TID);
2495
2496 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni,
2497 "recv ADDBA request: dialogtoken %u baparamset 0x%x "
2498 "(tid %d bufsiz %d) batimeout %d baseqctl %d:%d amsdu %d",
2499 dialogtoken, baparamset,
2500 tid, _IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_BUFSIZ),
2501 batimeout,
2502 _IEEE80211_MASKSHIFT(baseqctl, IEEE80211_BASEQ_START),
2503 _IEEE80211_MASKSHIFT(baseqctl, IEEE80211_BASEQ_FRAG),
2504 _IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_AMSDU));
2505
2506 rap = &ni->ni_rx_ampdu[tid];
2507
2508 /* Send ADDBA response */
2509 args[0] = dialogtoken;
2510 /*
2511 * NB: We ack only if the sta associated with HT and
2512 * the ap is configured to do AMPDU rx (the latter
2513 * violates the 11n spec and is mostly for testing).
2514 */
2515 if ((ni->ni_flags & IEEE80211_NODE_AMPDU_RX) &&
2516 (vap->iv_flags_ht & IEEE80211_FHT_AMPDU_RX)) {
2517 /* XXX TODO: handle ampdu_rx_start failure */
2518 ic->ic_ampdu_rx_start(ni, rap,
2519 baparamset, batimeout, baseqctl);
2520
2521 args[1] = IEEE80211_STATUS_SUCCESS;
2522 } else {
2523 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N,
2524 ni, "reject ADDBA request: %s",
2525 ni->ni_flags & IEEE80211_NODE_AMPDU_RX ?
2526 "administratively disabled" :
2527 "not negotiated for station");
2528 vap->iv_stats.is_addba_reject++;
2529 args[1] = IEEE80211_STATUS_UNSPECIFIED;
2530 }
2531 /* XXX honor rap flags? */
2532 args[2] = IEEE80211_BAPS_POLICY_IMMEDIATE
2533 | _IEEE80211_SHIFTMASK(tid, IEEE80211_BAPS_TID)
2534 | _IEEE80211_SHIFTMASK(rap->rxa_wnd, IEEE80211_BAPS_BUFSIZ)
2535 ;
2536
2537 /*
2538 * TODO: we're out of iv_flags_ht fields; once
2539 * this is extended we should make this configurable.
2540 */
2541 if ((baparamset & IEEE80211_BAPS_AMSDU) &&
2542 (ni->ni_flags & IEEE80211_NODE_AMSDU_RX) &&
2543 (vap->iv_htcaps & IEEE80211_HTC_RX_AMSDU_AMPDU))
2544 args[2] |= IEEE80211_BAPS_AMSDU;
2545
2546 args[3] = 0;
2547 args[4] = 0;
2548 ic->ic_send_action(ni, IEEE80211_ACTION_CAT_BA,
2549 IEEE80211_ACTION_BA_ADDBA_RESPONSE, args);
2550 return 0;
2551 }
2552
2553 static int
ht_recv_action_ba_addba_response(struct ieee80211_node * ni,const struct ieee80211_frame * wh,const uint8_t * frm,const uint8_t * efrm)2554 ht_recv_action_ba_addba_response(struct ieee80211_node *ni,
2555 const struct ieee80211_frame *wh,
2556 const uint8_t *frm, const uint8_t *efrm)
2557 {
2558 struct ieee80211com *ic = ni->ni_ic;
2559 struct ieee80211vap *vap = ni->ni_vap;
2560 struct ieee80211_tx_ampdu *tap;
2561 uint8_t dialogtoken, policy;
2562 uint16_t baparamset, batimeout, code;
2563 int tid;
2564 #ifdef IEEE80211_DEBUG
2565 int amsdu, bufsiz;
2566 #endif
2567
2568 dialogtoken = frm[2];
2569 code = le16dec(frm+3);
2570 baparamset = le16dec(frm+5);
2571 tid = _IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_TID);
2572 #ifdef IEEE80211_DEBUG
2573 bufsiz = _IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_BUFSIZ);
2574 amsdu = !! _IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_AMSDU);
2575 #endif
2576 policy = _IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_POLICY);
2577 batimeout = le16dec(frm+7);
2578
2579 tap = &ni->ni_tx_ampdu[tid];
2580 if ((tap->txa_flags & IEEE80211_AGGR_XCHGPEND) == 0) {
2581 IEEE80211_DISCARD_MAC(vap,
2582 IEEE80211_MSG_ACTION | IEEE80211_MSG_11N,
2583 ni->ni_macaddr, "ADDBA response",
2584 "no pending ADDBA, tid %d dialogtoken %u "
2585 "code %d", tid, dialogtoken, code);
2586 vap->iv_stats.is_addba_norequest++;
2587 return 0;
2588 }
2589 if (dialogtoken != tap->txa_token) {
2590 IEEE80211_DISCARD_MAC(vap,
2591 IEEE80211_MSG_ACTION | IEEE80211_MSG_11N,
2592 ni->ni_macaddr, "ADDBA response",
2593 "dialogtoken mismatch: waiting for %d, "
2594 "received %d, tid %d code %d",
2595 tap->txa_token, dialogtoken, tid, code);
2596 vap->iv_stats.is_addba_badtoken++;
2597 return 0;
2598 }
2599 /* NB: assumes IEEE80211_AGGR_IMMEDIATE is 1 */
2600 if (policy != (tap->txa_flags & IEEE80211_AGGR_IMMEDIATE)) {
2601 IEEE80211_DISCARD_MAC(vap,
2602 IEEE80211_MSG_ACTION | IEEE80211_MSG_11N,
2603 ni->ni_macaddr, "ADDBA response",
2604 "policy mismatch: expecting %s, "
2605 "received %s, tid %d code %d",
2606 tap->txa_flags & IEEE80211_AGGR_IMMEDIATE,
2607 policy, tid, code);
2608 vap->iv_stats.is_addba_badpolicy++;
2609 return 0;
2610 }
2611 #if 0
2612 /* XXX we take MIN in ieee80211_addba_response */
2613 if (bufsiz > IEEE80211_AGGR_BAWMAX) {
2614 IEEE80211_DISCARD_MAC(vap,
2615 IEEE80211_MSG_ACTION | IEEE80211_MSG_11N,
2616 ni->ni_macaddr, "ADDBA response",
2617 "BA window too large: max %d, "
2618 "received %d, tid %d code %d",
2619 bufsiz, IEEE80211_AGGR_BAWMAX, tid, code);
2620 vap->iv_stats.is_addba_badbawinsize++;
2621 return 0;
2622 }
2623 #endif
2624
2625 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni,
2626 "recv ADDBA response: dialogtoken %u code %d "
2627 "baparamset 0x%x (tid %d bufsiz %d amsdu %d) batimeout %d",
2628 dialogtoken, code, baparamset, tid,
2629 bufsiz,
2630 amsdu,
2631 batimeout);
2632 ic->ic_addba_response(ni, tap, code, baparamset, batimeout);
2633 return 0;
2634 }
2635
2636 static int
ht_recv_action_ba_delba(struct ieee80211_node * ni,const struct ieee80211_frame * wh,const uint8_t * frm,const uint8_t * efrm)2637 ht_recv_action_ba_delba(struct ieee80211_node *ni,
2638 const struct ieee80211_frame *wh,
2639 const uint8_t *frm, const uint8_t *efrm)
2640 {
2641 struct ieee80211com *ic = ni->ni_ic;
2642 struct ieee80211_rx_ampdu *rap;
2643 struct ieee80211_tx_ampdu *tap;
2644 uint16_t baparamset;
2645 #ifdef IEEE80211_DEBUG
2646 uint16_t code;
2647 #endif
2648 int tid;
2649
2650 baparamset = le16dec(frm+2);
2651 #ifdef IEEE80211_DEBUG
2652 code = le16dec(frm+4);
2653 #endif
2654
2655 tid = _IEEE80211_MASKSHIFT(baparamset, IEEE80211_DELBAPS_TID);
2656
2657 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni,
2658 "recv DELBA: baparamset 0x%x (tid %d initiator %d) "
2659 "code %d", baparamset, tid,
2660 _IEEE80211_MASKSHIFT(baparamset, IEEE80211_DELBAPS_INIT), code);
2661
2662 if ((baparamset & IEEE80211_DELBAPS_INIT) == 0) {
2663 tap = &ni->ni_tx_ampdu[tid];
2664 ic->ic_addba_stop(ni, tap);
2665 } else {
2666 rap = &ni->ni_rx_ampdu[tid];
2667 ic->ic_ampdu_rx_stop(ni, rap);
2668 }
2669 return 0;
2670 }
2671
2672 /*
2673 * Handle the HT channel width action frame.
2674 *
2675 * 802.11-2020 9.6.11.2 (Notify Channel Width frame format).
2676 */
2677 static int
ht_recv_action_ht_txchwidth(struct ieee80211_node * ni,const struct ieee80211_frame * wh __unused,const uint8_t * frm,const uint8_t * efrm __unused)2678 ht_recv_action_ht_txchwidth(struct ieee80211_node *ni,
2679 const struct ieee80211_frame *wh __unused,
2680 const uint8_t *frm, const uint8_t *efrm __unused)
2681 {
2682 int chw;
2683
2684 /* If 20/40 is not supported the chw cannot change. */
2685 if ((ni->ni_htcap & IEEE80211_HTCAP_CHWIDTH40) == 0)
2686 return (0);
2687
2688 /*
2689 * The supported values are either 0 (any supported width)
2690 * or 1 (HT20). 80, 160, etc MHz widths are not represented
2691 * here.
2692 */
2693 chw = (frm[2] == IEEE80211_A_HT_TXCHWIDTH_2040) ?
2694 NET80211_STA_RX_BW_40 : NET80211_STA_RX_BW_20;
2695
2696 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni,
2697 "%s: HT txchwidth, width %d%s (%s)", __func__,
2698 chw, ni->ni_chw != chw ? "*" : "", net80211_ni_chw_to_str(chw));
2699 if (chw != ni->ni_chw) {
2700 /* XXX does this need to change the ht40 station count? */
2701 ni->ni_chw = chw;
2702 /* XXX notify on change */
2703 }
2704 return 0;
2705 }
2706
2707 static int
ht_recv_action_ht_mimopwrsave(struct ieee80211_node * ni,const struct ieee80211_frame * wh,const uint8_t * frm,const uint8_t * efrm)2708 ht_recv_action_ht_mimopwrsave(struct ieee80211_node *ni,
2709 const struct ieee80211_frame *wh,
2710 const uint8_t *frm, const uint8_t *efrm)
2711 {
2712 const struct ieee80211_action_ht_mimopowersave *mps =
2713 (const struct ieee80211_action_ht_mimopowersave *) frm;
2714
2715 /* XXX check iv_htcaps */
2716 if (mps->am_control & IEEE80211_A_HT_MIMOPWRSAVE_ENA)
2717 ni->ni_flags |= IEEE80211_NODE_MIMO_PS;
2718 else
2719 ni->ni_flags &= ~IEEE80211_NODE_MIMO_PS;
2720 if (mps->am_control & IEEE80211_A_HT_MIMOPWRSAVE_MODE)
2721 ni->ni_flags |= IEEE80211_NODE_MIMO_RTS;
2722 else
2723 ni->ni_flags &= ~IEEE80211_NODE_MIMO_RTS;
2724 /* XXX notify on change */
2725 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni,
2726 "%s: HT MIMO PS (%s%s)", __func__,
2727 (ni->ni_flags & IEEE80211_NODE_MIMO_PS) ? "on" : "off",
2728 (ni->ni_flags & IEEE80211_NODE_MIMO_RTS) ? "+rts" : ""
2729 );
2730 return 0;
2731 }
2732
2733 /*
2734 * Transmit processing.
2735 */
2736
2737 /*
2738 * Check if A-MPDU should be requested/enabled for a stream.
2739 * We require a traffic rate above a per-AC threshold and we
2740 * also handle backoff from previous failed attempts.
2741 *
2742 * Drivers may override this method to bring in information
2743 * such as link state conditions in making the decision.
2744 */
2745 static int
ieee80211_ampdu_enable(struct ieee80211_node * ni,struct ieee80211_tx_ampdu * tap)2746 ieee80211_ampdu_enable(struct ieee80211_node *ni,
2747 struct ieee80211_tx_ampdu *tap)
2748 {
2749 struct ieee80211vap *vap = ni->ni_vap;
2750
2751 if (tap->txa_avgpps <
2752 vap->iv_ampdu_mintraffic[TID_TO_WME_AC(tap->txa_tid)])
2753 return 0;
2754 /* XXX check rssi? */
2755 if (tap->txa_attempts >= ieee80211_addba_maxtries &&
2756 ieee80211_time_after(ticks, tap->txa_nextrequest)) {
2757 /*
2758 * Don't retry too often; txa_nextrequest is set
2759 * to the minimum interval we'll retry after
2760 * ieee80211_addba_maxtries failed attempts are made.
2761 */
2762 return 0;
2763 }
2764 IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni,
2765 "enable AMPDU on tid %d (%s), avgpps %d pkts %d attempt %d",
2766 tap->txa_tid, ieee80211_wme_acnames[TID_TO_WME_AC(tap->txa_tid)],
2767 tap->txa_avgpps, tap->txa_pkts, tap->txa_attempts);
2768 return 1;
2769 }
2770
2771 /**
2772 * @brief Request A-MPDU tx aggregation.
2773 *
2774 * Setup local state and issue an ADDBA request. BA use will only happen after
2775 * the other end replies with ADDBA response.
2776 *
2777 * @param ni ieee80211_node update
2778 * @param tap tx_ampdu state
2779 * @returns 1 on success and 0 on error
2780 */
2781 int
ieee80211_ampdu_request(struct ieee80211_node * ni,struct ieee80211_tx_ampdu * tap)2782 ieee80211_ampdu_request(struct ieee80211_node *ni,
2783 struct ieee80211_tx_ampdu *tap)
2784 {
2785 struct ieee80211com *ic = ni->ni_ic;
2786 uint16_t args[5];
2787 int tid, dialogtoken, error;
2788 static int tokens = 0; /* XXX */
2789
2790 /* XXX locking */
2791 if ((tap->txa_flags & IEEE80211_AGGR_SETUP) == 0) {
2792 /* do deferred setup of state */
2793 ampdu_tx_setup(tap);
2794 }
2795 /* XXX hack for not doing proper locking */
2796 tap->txa_flags &= ~IEEE80211_AGGR_NAK;
2797
2798 dialogtoken = (tokens+1) % 63; /* XXX */
2799 tid = tap->txa_tid;
2800
2801 /*
2802 * XXX TODO: This is racy with any other parallel TX going on. :(
2803 */
2804 tap->txa_start = ni->ni_txseqs[tid];
2805
2806 args[0] = dialogtoken;
2807 args[1] = 0; /* NB: status code not used */
2808 args[2] = IEEE80211_BAPS_POLICY_IMMEDIATE
2809 | _IEEE80211_SHIFTMASK(tid, IEEE80211_BAPS_TID)
2810 | _IEEE80211_SHIFTMASK(IEEE80211_AGGR_BAWMAX,
2811 IEEE80211_BAPS_BUFSIZ)
2812 ;
2813
2814 /* XXX TODO: this should be a flag, not iv_htcaps */
2815 if ((ni->ni_flags & IEEE80211_NODE_AMSDU_TX) &&
2816 (ni->ni_vap->iv_htcaps & IEEE80211_HTC_TX_AMSDU_AMPDU))
2817 args[2] |= IEEE80211_BAPS_AMSDU;
2818
2819 args[3] = 0; /* batimeout */
2820 /* NB: do first so there's no race against reply */
2821 if (!ic->ic_addba_request(ni, tap, dialogtoken, args[2], args[3])) {
2822 /* unable to setup state, don't make request */
2823 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N,
2824 ni, "%s: could not setup BA stream for TID %d AC %d",
2825 __func__, tap->txa_tid, TID_TO_WME_AC(tap->txa_tid));
2826 /* defer next try so we don't slam the driver with requests */
2827 tap->txa_attempts = ieee80211_addba_maxtries;
2828 /* NB: check in case driver wants to override */
2829 if (ieee80211_time_before_eq(tap->txa_nextrequest, ticks))
2830 tap->txa_nextrequest = ticks + ieee80211_addba_backoff;
2831 return 0;
2832 }
2833 tokens = dialogtoken; /* allocate token */
2834 /* NB: after calling ic_addba_request so driver can set txa_start */
2835 args[4] = _IEEE80211_SHIFTMASK(tap->txa_start, IEEE80211_BASEQ_START)
2836 | _IEEE80211_SHIFTMASK(0, IEEE80211_BASEQ_FRAG)
2837 ;
2838
2839 error = ic->ic_send_action(ni, IEEE80211_ACTION_CAT_BA,
2840 IEEE80211_ACTION_BA_ADDBA_REQUEST, args);
2841 /* Silly return of 1 for success here. */
2842 return (error == 0);
2843 }
2844
2845 /*
2846 * Terminate an AMPDU tx stream. State is reclaimed
2847 * and the peer notified with a DelBA Action frame.
2848 */
2849 void
ieee80211_ampdu_stop(struct ieee80211_node * ni,struct ieee80211_tx_ampdu * tap,int reason)2850 ieee80211_ampdu_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
2851 int reason)
2852 {
2853 struct ieee80211com *ic = ni->ni_ic;
2854 struct ieee80211vap *vap = ni->ni_vap;
2855 uint16_t args[4];
2856
2857 /* XXX locking */
2858 tap->txa_flags &= ~IEEE80211_AGGR_BARPEND;
2859 if (IEEE80211_AMPDU_RUNNING(tap)) {
2860 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N,
2861 ni, "%s: stop BA stream for TID %d (reason: %d (%s))",
2862 __func__, tap->txa_tid, reason,
2863 ieee80211_reason_to_string(reason));
2864 vap->iv_stats.is_ampdu_stop++;
2865
2866 ic->ic_addba_stop(ni, tap);
2867 args[0] = tap->txa_tid;
2868 args[1] = IEEE80211_DELBAPS_INIT;
2869 args[2] = reason; /* XXX reason code */
2870 ic->ic_send_action(ni, IEEE80211_ACTION_CAT_BA,
2871 IEEE80211_ACTION_BA_DELBA, args);
2872 } else {
2873 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N,
2874 ni, "%s: BA stream for TID %d not running "
2875 "(reason: %d (%s))", __func__, tap->txa_tid, reason,
2876 ieee80211_reason_to_string(reason));
2877 vap->iv_stats.is_ampdu_stop_failed++;
2878 }
2879 }
2880
2881 /* XXX */
2882 static void bar_start_timer(struct ieee80211_tx_ampdu *tap);
2883
2884 static void
bar_timeout(void * arg)2885 bar_timeout(void *arg)
2886 {
2887 struct ieee80211_tx_ampdu *tap = arg;
2888 struct ieee80211_node *ni = tap->txa_ni;
2889
2890 KASSERT((tap->txa_flags & IEEE80211_AGGR_XCHGPEND) == 0,
2891 ("bar/addba collision, flags 0x%x", tap->txa_flags));
2892
2893 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N,
2894 ni, "%s: tid %u flags 0x%x attempts %d", __func__,
2895 tap->txa_tid, tap->txa_flags, tap->txa_attempts);
2896
2897 /* guard against race with bar_tx_complete */
2898 if ((tap->txa_flags & IEEE80211_AGGR_BARPEND) == 0)
2899 return;
2900 /* XXX ? */
2901 if (tap->txa_attempts >= ieee80211_bar_maxtries) {
2902 struct ieee80211com *ic = ni->ni_ic;
2903
2904 ni->ni_vap->iv_stats.is_ampdu_bar_tx_fail++;
2905 /*
2906 * If (at least) the last BAR TX timeout was due to
2907 * an ieee80211_send_bar() failures, then we need
2908 * to make sure we notify the driver that a BAR
2909 * TX did occur and fail. This gives the driver
2910 * a chance to undo any queue pause that may
2911 * have occurred.
2912 */
2913 ic->ic_bar_response(ni, tap, 1);
2914 ieee80211_ampdu_stop(ni, tap, IEEE80211_REASON_TIMEOUT);
2915 } else {
2916 ni->ni_vap->iv_stats.is_ampdu_bar_tx_retry++;
2917 if (ieee80211_send_bar(ni, tap, tap->txa_seqpending) != 0) {
2918 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N,
2919 ni, "%s: failed to TX, starting timer\n",
2920 __func__);
2921 /*
2922 * If ieee80211_send_bar() fails here, the
2923 * timer may have stopped and/or the pending
2924 * flag may be clear. Because of this,
2925 * fake the BARPEND and reset the timer.
2926 * A retransmission attempt will then occur
2927 * during the next timeout.
2928 */
2929 /* XXX locking */
2930 tap->txa_flags |= IEEE80211_AGGR_BARPEND;
2931 bar_start_timer(tap);
2932 }
2933 }
2934 }
2935
2936 static void
bar_start_timer(struct ieee80211_tx_ampdu * tap)2937 bar_start_timer(struct ieee80211_tx_ampdu *tap)
2938 {
2939 IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N,
2940 tap->txa_ni,
2941 "%s: called",
2942 __func__);
2943 callout_reset(&tap->txa_timer, ieee80211_bar_timeout, bar_timeout, tap);
2944 }
2945
2946 static void
bar_stop_timer(struct ieee80211_tx_ampdu * tap)2947 bar_stop_timer(struct ieee80211_tx_ampdu *tap)
2948 {
2949 IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N,
2950 tap->txa_ni,
2951 "%s: called",
2952 __func__);
2953 callout_stop(&tap->txa_timer);
2954 }
2955
2956 static void
bar_tx_complete(struct ieee80211_node * ni,void * arg,int status)2957 bar_tx_complete(struct ieee80211_node *ni, void *arg, int status)
2958 {
2959 struct ieee80211_tx_ampdu *tap = arg;
2960
2961 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N,
2962 ni, "%s: tid %u flags 0x%x pending %d status %d",
2963 __func__, tap->txa_tid, tap->txa_flags,
2964 callout_pending(&tap->txa_timer), status);
2965
2966 ni->ni_vap->iv_stats.is_ampdu_bar_tx++;
2967 /* XXX locking */
2968 if ((tap->txa_flags & IEEE80211_AGGR_BARPEND) &&
2969 callout_pending(&tap->txa_timer)) {
2970 struct ieee80211com *ic = ni->ni_ic;
2971
2972 if (status == 0) /* ACK'd */
2973 bar_stop_timer(tap);
2974 ic->ic_bar_response(ni, tap, status);
2975 /* NB: just let timer expire so we pace requests */
2976 }
2977 }
2978
2979 static void
ieee80211_bar_response(struct ieee80211_node * ni,struct ieee80211_tx_ampdu * tap,int status)2980 ieee80211_bar_response(struct ieee80211_node *ni,
2981 struct ieee80211_tx_ampdu *tap, int status)
2982 {
2983
2984 IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N,
2985 tap->txa_ni,
2986 "%s: called",
2987 __func__);
2988 if (status == 0) { /* got ACK */
2989 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N,
2990 ni, "BAR moves BA win <%u:%u> (%u frames) txseq %u tid %u",
2991 tap->txa_start,
2992 IEEE80211_SEQ_ADD(tap->txa_start, tap->txa_wnd-1),
2993 tap->txa_qframes, tap->txa_seqpending,
2994 tap->txa_tid);
2995
2996 /* NB: timer already stopped in bar_tx_complete */
2997 tap->txa_start = tap->txa_seqpending;
2998 tap->txa_flags &= ~IEEE80211_AGGR_BARPEND;
2999 }
3000 }
3001
3002 /*
3003 * Transmit a BAR frame to the specified node. The
3004 * BAR contents are drawn from the supplied aggregation
3005 * state associated with the node.
3006 *
3007 * NB: we only handle immediate ACK w/ compressed bitmap.
3008 */
3009 int
ieee80211_send_bar(struct ieee80211_node * ni,struct ieee80211_tx_ampdu * tap,ieee80211_seq seq)3010 ieee80211_send_bar(struct ieee80211_node *ni,
3011 struct ieee80211_tx_ampdu *tap, ieee80211_seq seq)
3012 {
3013 #define senderr(_x, _v) do { vap->iv_stats._v++; ret = _x; goto bad; } while (0)
3014 struct ieee80211vap *vap = ni->ni_vap;
3015 struct ieee80211com *ic = ni->ni_ic;
3016 struct ieee80211_frame_bar *bar;
3017 struct mbuf *m;
3018 uint16_t barctl, barseqctl;
3019 uint8_t *frm;
3020 int tid, ret;
3021
3022 IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N,
3023 tap->txa_ni,
3024 "%s: called",
3025 __func__);
3026
3027 if ((tap->txa_flags & IEEE80211_AGGR_RUNNING) == 0) {
3028 /* no ADDBA response, should not happen */
3029 /* XXX stat+msg */
3030 return EINVAL;
3031 }
3032 /* XXX locking */
3033 bar_stop_timer(tap);
3034
3035 ieee80211_ref_node(ni);
3036
3037 m = ieee80211_getmgtframe(&frm, ic->ic_headroom, sizeof(*bar));
3038 if (m == NULL)
3039 senderr(ENOMEM, is_tx_nobuf);
3040
3041 if (!ieee80211_add_callback(m, bar_tx_complete, tap)) {
3042 m_freem(m);
3043 senderr(ENOMEM, is_tx_nobuf); /* XXX */
3044 /* NOTREACHED */
3045 }
3046
3047 bar = mtod(m, struct ieee80211_frame_bar *);
3048 bar->i_fc[0] = IEEE80211_FC0_VERSION_0 |
3049 IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR;
3050 bar->i_fc[1] = 0;
3051 IEEE80211_ADDR_COPY(bar->i_ra, ni->ni_macaddr);
3052 IEEE80211_ADDR_COPY(bar->i_ta, vap->iv_myaddr);
3053
3054 tid = tap->txa_tid;
3055 barctl = (tap->txa_flags & IEEE80211_AGGR_IMMEDIATE ?
3056 0 : IEEE80211_BAR_NOACK)
3057 | IEEE80211_BAR_COMP
3058 | _IEEE80211_SHIFTMASK(tid, IEEE80211_BAR_TID)
3059 ;
3060 barseqctl = _IEEE80211_SHIFTMASK(seq, IEEE80211_BAR_SEQ_START);
3061 /* NB: known to have proper alignment */
3062 bar->i_ctl = htole16(barctl);
3063 bar->i_seq = htole16(barseqctl);
3064 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_bar);
3065
3066 M_WME_SETAC(m, WME_AC_VO);
3067
3068 IEEE80211_NODE_STAT(ni, tx_mgmt); /* XXX tx_ctl? */
3069
3070 /* XXX locking */
3071 /* init/bump attempts counter */
3072 if ((tap->txa_flags & IEEE80211_AGGR_BARPEND) == 0)
3073 tap->txa_attempts = 1;
3074 else
3075 tap->txa_attempts++;
3076 tap->txa_seqpending = seq;
3077 tap->txa_flags |= IEEE80211_AGGR_BARPEND;
3078
3079 IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_11N,
3080 ni, "send BAR: tid %u ctl 0x%x start %u (attempt %d)",
3081 tid, barctl, seq, tap->txa_attempts);
3082
3083 /*
3084 * ic_raw_xmit will free the node reference
3085 * regardless of queue/TX success or failure.
3086 */
3087 IEEE80211_TX_LOCK(ic);
3088 ret = ieee80211_raw_output(vap, ni, m, NULL);
3089 IEEE80211_TX_UNLOCK(ic);
3090 if (ret != 0) {
3091 IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_11N,
3092 ni, "send BAR: failed: (ret = %d)\n",
3093 ret);
3094 /* xmit failed, clear state flag */
3095 tap->txa_flags &= ~IEEE80211_AGGR_BARPEND;
3096 vap->iv_stats.is_ampdu_bar_tx_fail++;
3097 return ret;
3098 }
3099 /* XXX hack against tx complete happening before timer is started */
3100 if (tap->txa_flags & IEEE80211_AGGR_BARPEND)
3101 bar_start_timer(tap);
3102 return 0;
3103 bad:
3104 IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N,
3105 tap->txa_ni,
3106 "%s: bad! ret=%d",
3107 __func__, ret);
3108 vap->iv_stats.is_ampdu_bar_tx_fail++;
3109 ieee80211_free_node(ni);
3110 return ret;
3111 #undef senderr
3112 }
3113
3114 static int
ht_action_output(struct ieee80211_node * ni,struct mbuf * m)3115 ht_action_output(struct ieee80211_node *ni, struct mbuf *m)
3116 {
3117 struct ieee80211_bpf_params params;
3118
3119 memset(¶ms, 0, sizeof(params));
3120 params.ibp_pri = WME_AC_VO;
3121 params.ibp_rate0 = ni->ni_txparms->mgmtrate;
3122 /* NB: we know all frames are unicast */
3123 params.ibp_try0 = ni->ni_txparms->maxretry;
3124 params.ibp_power = ni->ni_txpower;
3125 return ieee80211_mgmt_output(ni, m, IEEE80211_FC0_SUBTYPE_ACTION,
3126 ¶ms);
3127 }
3128
3129 #define ADDSHORT(frm, v) do { \
3130 frm[0] = (v) & 0xff; \
3131 frm[1] = (v) >> 8; \
3132 frm += 2; \
3133 } while (0)
3134
3135 /*
3136 * Send an action management frame. The arguments are stuff
3137 * into a frame without inspection; the caller is assumed to
3138 * prepare them carefully (e.g. based on the aggregation state).
3139 */
3140 static int
ht_send_action_ba_addba(struct ieee80211_node * ni,int category,int action,void * arg0)3141 ht_send_action_ba_addba(struct ieee80211_node *ni,
3142 int category, int action, void *arg0)
3143 {
3144 struct ieee80211vap *vap = ni->ni_vap;
3145 struct ieee80211com *ic = ni->ni_ic;
3146 uint16_t *args = arg0;
3147 struct mbuf *m;
3148 uint8_t *frm;
3149
3150 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni,
3151 "send ADDBA %s: dialogtoken %d status %d "
3152 "baparamset 0x%x (tid %d amsdu %d) batimeout 0x%x baseqctl 0x%x",
3153 (action == IEEE80211_ACTION_BA_ADDBA_REQUEST) ?
3154 "request" : "response", args[0], args[1], args[2],
3155 _IEEE80211_MASKSHIFT(args[2], IEEE80211_BAPS_TID),
3156 _IEEE80211_MASKSHIFT(args[2], IEEE80211_BAPS_AMSDU),
3157 args[3], args[4]);
3158
3159 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
3160 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", __func__, __LINE__,
3161 ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)+1);
3162 ieee80211_ref_node(ni);
3163
3164 m = ieee80211_getmgtframe(&frm,
3165 ic->ic_headroom + sizeof(struct ieee80211_frame),
3166 sizeof(uint16_t) /* action+category */
3167 /* XXX may action payload */
3168 + sizeof(struct ieee80211_action_ba_addbaresponse)
3169 );
3170 if (m != NULL) {
3171 *frm++ = category;
3172 *frm++ = action;
3173 *frm++ = args[0]; /* dialog token */
3174 if (action == IEEE80211_ACTION_BA_ADDBA_RESPONSE)
3175 ADDSHORT(frm, args[1]); /* status code */
3176 ADDSHORT(frm, args[2]); /* baparamset */
3177 ADDSHORT(frm, args[3]); /* batimeout */
3178 if (action == IEEE80211_ACTION_BA_ADDBA_REQUEST)
3179 ADDSHORT(frm, args[4]); /* baseqctl */
3180 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
3181 return ht_action_output(ni, m);
3182 } else {
3183 vap->iv_stats.is_tx_nobuf++;
3184 ieee80211_free_node(ni);
3185 return ENOMEM;
3186 }
3187 }
3188
3189 static int
ht_send_action_ba_delba(struct ieee80211_node * ni,int category,int action,void * arg0)3190 ht_send_action_ba_delba(struct ieee80211_node *ni,
3191 int category, int action, void *arg0)
3192 {
3193 struct ieee80211vap *vap = ni->ni_vap;
3194 struct ieee80211com *ic = ni->ni_ic;
3195 uint16_t *args = arg0;
3196 struct mbuf *m;
3197 uint16_t baparamset;
3198 uint8_t *frm;
3199
3200 baparamset = _IEEE80211_SHIFTMASK(args[0], IEEE80211_DELBAPS_TID)
3201 | args[1]
3202 ;
3203 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni,
3204 "send DELBA action: tid %d, initiator %d reason %d (%s)",
3205 args[0], args[1], args[2], ieee80211_reason_to_string(args[2]));
3206
3207 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
3208 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", __func__, __LINE__,
3209 ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)+1);
3210 ieee80211_ref_node(ni);
3211
3212 m = ieee80211_getmgtframe(&frm,
3213 ic->ic_headroom + sizeof(struct ieee80211_frame),
3214 sizeof(uint16_t) /* action+category */
3215 /* XXX may action payload */
3216 + sizeof(struct ieee80211_action_ba_addbaresponse)
3217 );
3218 if (m != NULL) {
3219 *frm++ = category;
3220 *frm++ = action;
3221 ADDSHORT(frm, baparamset);
3222 ADDSHORT(frm, args[2]); /* reason code */
3223 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
3224 return ht_action_output(ni, m);
3225 } else {
3226 vap->iv_stats.is_tx_nobuf++;
3227 ieee80211_free_node(ni);
3228 return ENOMEM;
3229 }
3230 }
3231
3232 static int
ht_send_action_ht_txchwidth(struct ieee80211_node * ni,int category,int action,void * arg0)3233 ht_send_action_ht_txchwidth(struct ieee80211_node *ni,
3234 int category, int action, void *arg0)
3235 {
3236 struct ieee80211vap *vap = ni->ni_vap;
3237 struct ieee80211com *ic = ni->ni_ic;
3238 struct mbuf *m;
3239 uint8_t *frm;
3240
3241 IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni,
3242 "send HT txchwidth: width %d",
3243 IEEE80211_IS_CHAN_HT40(ni->ni_chan) ? 40 : 20);
3244
3245 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
3246 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", __func__, __LINE__,
3247 ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)+1);
3248 ieee80211_ref_node(ni);
3249
3250 m = ieee80211_getmgtframe(&frm,
3251 ic->ic_headroom + sizeof(struct ieee80211_frame),
3252 sizeof(uint16_t) /* action+category */
3253 /* XXX may action payload */
3254 + sizeof(struct ieee80211_action_ba_addbaresponse)
3255 );
3256 if (m != NULL) {
3257 *frm++ = category;
3258 *frm++ = action;
3259 *frm++ = IEEE80211_IS_CHAN_HT40(ni->ni_chan) ?
3260 IEEE80211_A_HT_TXCHWIDTH_2040 :
3261 IEEE80211_A_HT_TXCHWIDTH_20;
3262 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
3263 return ht_action_output(ni, m);
3264 } else {
3265 vap->iv_stats.is_tx_nobuf++;
3266 ieee80211_free_node(ni);
3267 return ENOMEM;
3268 }
3269 }
3270 #undef ADDSHORT
3271
3272 /*
3273 * Construct the MCS bit mask for inclusion in an HT capabilities
3274 * information element.
3275 */
3276 static void
ieee80211_set_mcsset(struct ieee80211com * ic,uint8_t * frm)3277 ieee80211_set_mcsset(struct ieee80211com *ic, uint8_t *frm)
3278 {
3279 int i;
3280 uint8_t txparams;
3281
3282 KASSERT((ic->ic_rxstream > 0 && ic->ic_rxstream <= 4),
3283 ("ic_rxstream %d out of range", ic->ic_rxstream));
3284 KASSERT((ic->ic_txstream > 0 && ic->ic_txstream <= 4),
3285 ("ic_txstream %d out of range", ic->ic_txstream));
3286
3287 for (i = 0; i < ic->ic_rxstream * 8; i++)
3288 setbit(frm, i);
3289 if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) &&
3290 (ic->ic_htcaps & IEEE80211_HTC_RXMCS32))
3291 setbit(frm, 32);
3292 if (ic->ic_htcaps & IEEE80211_HTC_RXUNEQUAL) {
3293 if (ic->ic_rxstream >= 2) {
3294 for (i = 33; i <= 38; i++)
3295 setbit(frm, i);
3296 }
3297 if (ic->ic_rxstream >= 3) {
3298 for (i = 39; i <= 52; i++)
3299 setbit(frm, i);
3300 }
3301 if (ic->ic_rxstream >= 4) {
3302 for (i = 53; i <= 76; i++)
3303 setbit(frm, i);
3304 }
3305 }
3306
3307 txparams = 0x1; /* TX MCS set defined */
3308 if (ic->ic_rxstream != ic->ic_txstream) {
3309 txparams |= 0x2; /* TX RX MCS not equal */
3310 txparams |= (ic->ic_txstream - 1) << 2; /* num TX streams */
3311 if (ic->ic_htcaps & IEEE80211_HTC_TXUNEQUAL)
3312 txparams |= 0x16; /* TX unequal modulation sup */
3313 }
3314
3315 frm[12] = txparams;
3316 }
3317
3318 /*
3319 * Add body of an HTCAP information element.
3320 */
3321 static uint8_t *
ieee80211_add_htcap_body(uint8_t * frm,struct ieee80211_node * ni)3322 ieee80211_add_htcap_body(uint8_t *frm, struct ieee80211_node *ni)
3323 {
3324 #define ADDSHORT(frm, v) do { \
3325 frm[0] = (v) & 0xff; \
3326 frm[1] = (v) >> 8; \
3327 frm += 2; \
3328 } while (0)
3329 struct ieee80211com *ic = ni->ni_ic;
3330 struct ieee80211vap *vap = ni->ni_vap;
3331 uint16_t caps, extcaps;
3332 int rxmax, density;
3333
3334 /* HT capabilities */
3335 caps = vap->iv_htcaps & 0xffff;
3336 /*
3337 * Note channel width depends on whether we are operating as
3338 * a sta or not. When operating as a sta we are generating
3339 * a request based on our desired configuration. Otherwise
3340 * we are operational and the channel attributes identify
3341 * how we've been setup (which might be different if a fixed
3342 * channel is specified).
3343 */
3344 if (vap->iv_opmode == IEEE80211_M_STA) {
3345 /* override 20/40 use based on config */
3346 if (vap->iv_flags_ht & IEEE80211_FHT_USEHT40)
3347 caps |= IEEE80211_HTCAP_CHWIDTH40;
3348 else
3349 caps &= ~IEEE80211_HTCAP_CHWIDTH40;
3350
3351 /* Start by using the advertised settings */
3352 rxmax = _IEEE80211_MASKSHIFT(ni->ni_htparam,
3353 IEEE80211_HTCAP_MAXRXAMPDU);
3354 density = _IEEE80211_MASKSHIFT(ni->ni_htparam,
3355 IEEE80211_HTCAP_MPDUDENSITY);
3356
3357 IEEE80211_DPRINTF(vap, IEEE80211_MSG_11N,
3358 "%s: advertised rxmax=%d, density=%d, vap rxmax=%d, density=%d\n",
3359 __func__,
3360 rxmax,
3361 density,
3362 vap->iv_ampdu_rxmax,
3363 vap->iv_ampdu_density);
3364
3365 /* Cap at VAP rxmax */
3366 if (rxmax > vap->iv_ampdu_rxmax)
3367 rxmax = vap->iv_ampdu_rxmax;
3368
3369 /*
3370 * If the VAP ampdu density value greater, use that.
3371 *
3372 * (Larger density value == larger minimum gap between A-MPDU
3373 * subframes.)
3374 */
3375 if (vap->iv_ampdu_density > density)
3376 density = vap->iv_ampdu_density;
3377
3378 /*
3379 * NB: Hardware might support HT40 on some but not all
3380 * channels. We can't determine this earlier because only
3381 * after association the channel is upgraded to HT based
3382 * on the negotiated capabilities.
3383 */
3384 if (ni->ni_chan != IEEE80211_CHAN_ANYC &&
3385 findhtchan(ic, ni->ni_chan, IEEE80211_CHAN_HT40U) == NULL &&
3386 findhtchan(ic, ni->ni_chan, IEEE80211_CHAN_HT40D) == NULL)
3387 caps &= ~IEEE80211_HTCAP_CHWIDTH40;
3388 } else {
3389 /* override 20/40 use based on current channel */
3390 if (IEEE80211_IS_CHAN_HT40(ni->ni_chan))
3391 caps |= IEEE80211_HTCAP_CHWIDTH40;
3392 else
3393 caps &= ~IEEE80211_HTCAP_CHWIDTH40;
3394
3395 /* XXX TODO should it start by using advertised settings? */
3396 rxmax = vap->iv_ampdu_rxmax;
3397 density = vap->iv_ampdu_density;
3398 }
3399
3400 /* adjust short GI based on channel and config */
3401 if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20) == 0)
3402 caps &= ~IEEE80211_HTCAP_SHORTGI20;
3403 if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40) == 0 ||
3404 (caps & IEEE80211_HTCAP_CHWIDTH40) == 0)
3405 caps &= ~IEEE80211_HTCAP_SHORTGI40;
3406
3407 /* adjust STBC based on receive capabilities */
3408 if ((vap->iv_flags_ht & IEEE80211_FHT_STBC_RX) == 0)
3409 caps &= ~IEEE80211_HTCAP_RXSTBC;
3410
3411 /* adjust LDPC based on receive capabilites */
3412 if ((vap->iv_flags_ht & IEEE80211_FHT_LDPC_RX) == 0)
3413 caps &= ~IEEE80211_HTCAP_LDPC;
3414
3415 ADDSHORT(frm, caps);
3416
3417 /* HT parameters */
3418 *frm = _IEEE80211_SHIFTMASK(rxmax, IEEE80211_HTCAP_MAXRXAMPDU)
3419 | _IEEE80211_SHIFTMASK(density, IEEE80211_HTCAP_MPDUDENSITY)
3420 ;
3421 frm++;
3422
3423 /* pre-zero remainder of ie */
3424 memset(frm, 0, sizeof(struct ieee80211_ie_htcap) -
3425 __offsetof(struct ieee80211_ie_htcap, hc_mcsset));
3426
3427 /* supported MCS set */
3428 /*
3429 * XXX: For sta mode the rate set should be restricted based
3430 * on the AP's capabilities, but ni_htrates isn't setup when
3431 * we're called to form an AssocReq frame so for now we're
3432 * restricted to the device capabilities.
3433 */
3434 ieee80211_set_mcsset(ni->ni_ic, frm);
3435
3436 frm += __offsetof(struct ieee80211_ie_htcap, hc_extcap) -
3437 __offsetof(struct ieee80211_ie_htcap, hc_mcsset);
3438
3439 /* HT extended capabilities */
3440 extcaps = vap->iv_htextcaps & 0xffff;
3441
3442 ADDSHORT(frm, extcaps);
3443
3444 frm += sizeof(struct ieee80211_ie_htcap) -
3445 __offsetof(struct ieee80211_ie_htcap, hc_txbf);
3446
3447 return frm;
3448 #undef ADDSHORT
3449 }
3450
3451 /*
3452 * Add 802.11n HT capabilities information element
3453 */
3454 uint8_t *
ieee80211_add_htcap(uint8_t * frm,struct ieee80211_node * ni)3455 ieee80211_add_htcap(uint8_t *frm, struct ieee80211_node *ni)
3456 {
3457 frm[0] = IEEE80211_ELEMID_HTCAP;
3458 frm[1] = sizeof(struct ieee80211_ie_htcap) - 2;
3459 return ieee80211_add_htcap_body(frm + 2, ni);
3460 }
3461
3462 /*
3463 * Non-associated probe request - add HT capabilities based on
3464 * the current channel configuration.
3465 */
3466 static uint8_t *
ieee80211_add_htcap_body_ch(uint8_t * frm,struct ieee80211vap * vap,struct ieee80211_channel * c)3467 ieee80211_add_htcap_body_ch(uint8_t *frm, struct ieee80211vap *vap,
3468 struct ieee80211_channel *c)
3469 {
3470 #define ADDSHORT(frm, v) do { \
3471 frm[0] = (v) & 0xff; \
3472 frm[1] = (v) >> 8; \
3473 frm += 2; \
3474 } while (0)
3475 struct ieee80211com *ic = vap->iv_ic;
3476 uint16_t caps, extcaps;
3477 int rxmax, density;
3478
3479 /* HT capabilities */
3480 caps = vap->iv_htcaps & 0xffff;
3481
3482 /*
3483 * We don't use this in STA mode; only in IBSS mode.
3484 * So in IBSS mode we base our HTCAP flags on the
3485 * given channel.
3486 */
3487
3488 /* override 20/40 use based on current channel */
3489 if (IEEE80211_IS_CHAN_HT40(c))
3490 caps |= IEEE80211_HTCAP_CHWIDTH40;
3491 else
3492 caps &= ~IEEE80211_HTCAP_CHWIDTH40;
3493
3494 /* Use the currently configured values */
3495 rxmax = vap->iv_ampdu_rxmax;
3496 density = vap->iv_ampdu_density;
3497
3498 /* adjust short GI based on channel and config */
3499 if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20) == 0)
3500 caps &= ~IEEE80211_HTCAP_SHORTGI20;
3501 if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40) == 0 ||
3502 (caps & IEEE80211_HTCAP_CHWIDTH40) == 0)
3503 caps &= ~IEEE80211_HTCAP_SHORTGI40;
3504 ADDSHORT(frm, caps);
3505
3506 /* HT parameters */
3507 *frm = _IEEE80211_SHIFTMASK(rxmax, IEEE80211_HTCAP_MAXRXAMPDU)
3508 | _IEEE80211_SHIFTMASK(density, IEEE80211_HTCAP_MPDUDENSITY)
3509 ;
3510 frm++;
3511
3512 /* pre-zero remainder of ie */
3513 memset(frm, 0, sizeof(struct ieee80211_ie_htcap) -
3514 __offsetof(struct ieee80211_ie_htcap, hc_mcsset));
3515
3516 /* supported MCS set */
3517 /*
3518 * XXX: For sta mode the rate set should be restricted based
3519 * on the AP's capabilities, but ni_htrates isn't setup when
3520 * we're called to form an AssocReq frame so for now we're
3521 * restricted to the device capabilities.
3522 */
3523 ieee80211_set_mcsset(ic, frm);
3524
3525 frm += __offsetof(struct ieee80211_ie_htcap, hc_extcap) -
3526 __offsetof(struct ieee80211_ie_htcap, hc_mcsset);
3527
3528 /* HT extended capabilities */
3529 extcaps = vap->iv_htextcaps & 0xffff;
3530
3531 ADDSHORT(frm, extcaps);
3532
3533 frm += sizeof(struct ieee80211_ie_htcap) -
3534 __offsetof(struct ieee80211_ie_htcap, hc_txbf);
3535
3536 return frm;
3537 #undef ADDSHORT
3538 }
3539
3540 /*
3541 * Add 802.11n HT capabilities information element
3542 */
3543 uint8_t *
ieee80211_add_htcap_ch(uint8_t * frm,struct ieee80211vap * vap,struct ieee80211_channel * c)3544 ieee80211_add_htcap_ch(uint8_t *frm, struct ieee80211vap *vap,
3545 struct ieee80211_channel *c)
3546 {
3547 frm[0] = IEEE80211_ELEMID_HTCAP;
3548 frm[1] = sizeof(struct ieee80211_ie_htcap) - 2;
3549 return ieee80211_add_htcap_body_ch(frm + 2, vap, c);
3550 }
3551
3552 /*
3553 * Add Broadcom OUI wrapped standard HTCAP ie; this is
3554 * used for compatibility w/ pre-draft implementations.
3555 */
3556 uint8_t *
ieee80211_add_htcap_vendor(uint8_t * frm,struct ieee80211_node * ni)3557 ieee80211_add_htcap_vendor(uint8_t *frm, struct ieee80211_node *ni)
3558 {
3559 frm[0] = IEEE80211_ELEMID_VENDOR;
3560 frm[1] = 4 + sizeof(struct ieee80211_ie_htcap) - 2;
3561 frm[2] = (BCM_OUI >> 0) & 0xff;
3562 frm[3] = (BCM_OUI >> 8) & 0xff;
3563 frm[4] = (BCM_OUI >> 16) & 0xff;
3564 frm[5] = BCM_OUI_HTCAP;
3565 return ieee80211_add_htcap_body(frm + 6, ni);
3566 }
3567
3568 /*
3569 * Construct the MCS bit mask of basic rates
3570 * for inclusion in an HT information element.
3571 */
3572 static void
ieee80211_set_basic_htrates(uint8_t * frm,const struct ieee80211_htrateset * rs)3573 ieee80211_set_basic_htrates(uint8_t *frm, const struct ieee80211_htrateset *rs)
3574 {
3575 int i;
3576
3577 for (i = 0; i < rs->rs_nrates; i++) {
3578 int r = rs->rs_rates[i] & IEEE80211_RATE_VAL;
3579 if ((rs->rs_rates[i] & IEEE80211_RATE_BASIC) &&
3580 r < IEEE80211_HTRATE_MAXSIZE) {
3581 /* NB: this assumes a particular implementation */
3582 setbit(frm, r);
3583 }
3584 }
3585 }
3586
3587 /*
3588 * Update the HTINFO ie for a beacon frame.
3589 */
3590 void
ieee80211_ht_update_beacon(struct ieee80211vap * vap,struct ieee80211_beacon_offsets * bo)3591 ieee80211_ht_update_beacon(struct ieee80211vap *vap,
3592 struct ieee80211_beacon_offsets *bo)
3593 {
3594 #define PROTMODE (IEEE80211_HTINFO_OPMODE|IEEE80211_HTINFO_NONHT_PRESENT)
3595 struct ieee80211_node *ni;
3596 const struct ieee80211_channel *bsschan;
3597 struct ieee80211com *ic = vap->iv_ic;
3598 struct ieee80211_ie_htinfo *ht =
3599 (struct ieee80211_ie_htinfo *) bo->bo_htinfo;
3600
3601 ni = ieee80211_ref_node(vap->iv_bss);
3602 bsschan = ni->ni_chan;
3603
3604 /* XXX only update on channel change */
3605 ht->hi_ctrlchannel = ieee80211_chan2ieee(ic, bsschan);
3606 if (vap->iv_flags_ht & IEEE80211_FHT_RIFS)
3607 ht->hi_byte1 = IEEE80211_HTINFO_RIFSMODE_PERM;
3608 else
3609 ht->hi_byte1 = IEEE80211_HTINFO_RIFSMODE_PROH;
3610 if (IEEE80211_IS_CHAN_HT40U(bsschan))
3611 ht->hi_byte1 |= IEEE80211_HTINFO_2NDCHAN_ABOVE;
3612 else if (IEEE80211_IS_CHAN_HT40D(bsschan))
3613 ht->hi_byte1 |= IEEE80211_HTINFO_2NDCHAN_BELOW;
3614 else
3615 ht->hi_byte1 |= IEEE80211_HTINFO_2NDCHAN_NONE;
3616 if (IEEE80211_IS_CHAN_HT40(bsschan))
3617 ht->hi_byte1 |= IEEE80211_HTINFO_TXWIDTH_2040;
3618
3619 /* protection mode */
3620 /*
3621 * XXX TODO: this uses the global flag, not the per-VAP flag.
3622 * Eventually (once the protection modes are done per-channel
3623 * rather than per-VAP) we can flip this over to be per-VAP but
3624 * using the channel protection mode.
3625 */
3626 ht->hi_byte2 = (ht->hi_byte2 &~ PROTMODE) | ic->ic_curhtprotmode;
3627
3628 ieee80211_free_node(ni);
3629
3630 /* XXX propagate to vendor ie's */
3631 #undef PROTMODE
3632 }
3633
3634 /*
3635 * Add body of an HTINFO information element.
3636 *
3637 * NB: We don't use struct ieee80211_ie_htinfo because we can
3638 * be called to fillin both a standard ie and a compat ie that
3639 * has a vendor OUI at the front.
3640 */
3641 static uint8_t *
ieee80211_add_htinfo_body(uint8_t * frm,struct ieee80211_node * ni)3642 ieee80211_add_htinfo_body(uint8_t *frm, struct ieee80211_node *ni)
3643 {
3644 struct ieee80211vap *vap = ni->ni_vap;
3645 struct ieee80211com *ic = ni->ni_ic;
3646
3647 /* pre-zero remainder of ie */
3648 memset(frm, 0, sizeof(struct ieee80211_ie_htinfo) - 2);
3649
3650 /* primary/control channel center */
3651 *frm++ = ieee80211_chan2ieee(ic, ni->ni_chan);
3652
3653 if (vap->iv_flags_ht & IEEE80211_FHT_RIFS)
3654 frm[0] = IEEE80211_HTINFO_RIFSMODE_PERM;
3655 else
3656 frm[0] = IEEE80211_HTINFO_RIFSMODE_PROH;
3657 if (IEEE80211_IS_CHAN_HT40U(ni->ni_chan))
3658 frm[0] |= IEEE80211_HTINFO_2NDCHAN_ABOVE;
3659 else if (IEEE80211_IS_CHAN_HT40D(ni->ni_chan))
3660 frm[0] |= IEEE80211_HTINFO_2NDCHAN_BELOW;
3661 else
3662 frm[0] |= IEEE80211_HTINFO_2NDCHAN_NONE;
3663 if (IEEE80211_IS_CHAN_HT40(ni->ni_chan))
3664 frm[0] |= IEEE80211_HTINFO_TXWIDTH_2040;
3665
3666 /*
3667 * Add current protection mode. Unlike for beacons,
3668 * this will respect the per-VAP flags.
3669 */
3670 frm[1] = vap->iv_curhtprotmode;
3671
3672 frm += 5;
3673
3674 /* basic MCS set */
3675 ieee80211_set_basic_htrates(frm, &ni->ni_htrates);
3676 frm += sizeof(struct ieee80211_ie_htinfo) -
3677 __offsetof(struct ieee80211_ie_htinfo, hi_basicmcsset);
3678 return frm;
3679 }
3680
3681 /*
3682 * Add 802.11n HT information element.
3683 */
3684 uint8_t *
ieee80211_add_htinfo(uint8_t * frm,struct ieee80211_node * ni)3685 ieee80211_add_htinfo(uint8_t *frm, struct ieee80211_node *ni)
3686 {
3687 frm[0] = IEEE80211_ELEMID_HTINFO;
3688 frm[1] = sizeof(struct ieee80211_ie_htinfo) - 2;
3689 return ieee80211_add_htinfo_body(frm + 2, ni);
3690 }
3691
3692 /*
3693 * Add Broadcom OUI wrapped standard HTINFO ie; this is
3694 * used for compatibility w/ pre-draft implementations.
3695 */
3696 uint8_t *
ieee80211_add_htinfo_vendor(uint8_t * frm,struct ieee80211_node * ni)3697 ieee80211_add_htinfo_vendor(uint8_t *frm, struct ieee80211_node *ni)
3698 {
3699 frm[0] = IEEE80211_ELEMID_VENDOR;
3700 frm[1] = 4 + sizeof(struct ieee80211_ie_htinfo) - 2;
3701 frm[2] = (BCM_OUI >> 0) & 0xff;
3702 frm[3] = (BCM_OUI >> 8) & 0xff;
3703 frm[4] = (BCM_OUI >> 16) & 0xff;
3704 frm[5] = BCM_OUI_HTINFO;
3705 return ieee80211_add_htinfo_body(frm + 6, ni);
3706 }
3707
3708 /*
3709 * Get the HT density for the given 802.11n node.
3710 *
3711 * Take into account the density advertised from the peer.
3712 * Larger values are longer A-MPDU density spacing values, and
3713 * we want to obey them per station if we get them.
3714 */
3715 int
ieee80211_ht_get_node_ampdu_density(const struct ieee80211_node * ni)3716 ieee80211_ht_get_node_ampdu_density(const struct ieee80211_node *ni)
3717 {
3718 struct ieee80211vap *vap;
3719 int peer_mpdudensity;
3720
3721 vap = ni->ni_vap;
3722 peer_mpdudensity =
3723 _IEEE80211_MASKSHIFT(ni->ni_htparam, IEEE80211_HTCAP_MPDUDENSITY);
3724 if (vap->iv_ampdu_density > peer_mpdudensity)
3725 peer_mpdudensity = vap->iv_ampdu_density;
3726 return (peer_mpdudensity);
3727 }
3728
3729 /*
3730 * Get the transmit A-MPDU limit for the given 802.11n node.
3731 *
3732 * Take into account the limit advertised from the peer.
3733 * Smaller values indicate smaller maximum A-MPDU sizes, and
3734 * should be used when forming an A-MPDU to the given peer.
3735 */
3736 int
ieee80211_ht_get_node_ampdu_limit(const struct ieee80211_node * ni)3737 ieee80211_ht_get_node_ampdu_limit(const struct ieee80211_node *ni)
3738 {
3739 struct ieee80211vap *vap;
3740 int peer_mpdulimit;
3741
3742 vap = ni->ni_vap;
3743 peer_mpdulimit =
3744 _IEEE80211_MASKSHIFT(ni->ni_htparam, IEEE80211_HTCAP_MAXRXAMPDU);
3745
3746 return (MIN(vap->iv_ampdu_limit, peer_mpdulimit));
3747 }
3748
3749 /*
3750 * Return true if short-GI is available when transmitting to
3751 * the given node at 20MHz.
3752 *
3753 * Ensure it's configured and available in the VAP / driver as
3754 * well as the node.
3755 */
3756 bool
ieee80211_ht_check_tx_shortgi_20(const struct ieee80211_node * ni)3757 ieee80211_ht_check_tx_shortgi_20(const struct ieee80211_node *ni)
3758 {
3759 const struct ieee80211vap *vap;
3760 const struct ieee80211com *ic;
3761
3762 if (! ieee80211_ht_check_tx_ht(ni))
3763 return (false);
3764
3765 vap = ni->ni_vap;
3766 ic = ni->ni_ic;
3767
3768 return ((ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI20) &&
3769 (ni->ni_htcap & IEEE80211_HTCAP_SHORTGI20) &&
3770 (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20));
3771 }
3772
3773 /*
3774 * Return true if short-GI is available when transmitting to
3775 * the given node at 40MHz.
3776 *
3777 * Ensure it's configured and available in the VAP / driver as
3778 * well as the node and BSS.
3779 */
3780 bool
ieee80211_ht_check_tx_shortgi_40(const struct ieee80211_node * ni)3781 ieee80211_ht_check_tx_shortgi_40(const struct ieee80211_node *ni)
3782 {
3783 const struct ieee80211vap *vap;
3784 const struct ieee80211com *ic;
3785
3786 if (! ieee80211_ht_check_tx_ht40(ni))
3787 return (false);
3788
3789 vap = ni->ni_vap;
3790 ic = ni->ni_ic;
3791
3792 return ((ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI40) &&
3793 (ni->ni_htcap & IEEE80211_HTCAP_SHORTGI40) &&
3794 (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40));
3795 }
3796
3797 /*
3798 * Return true if HT rates can be used for the given node.
3799 *
3800 * There are some situations seen in the wild, wild past where
3801 * HT APs would announce HT but no HT rates.
3802 */
3803 bool
ieee80211_ht_check_tx_ht(const struct ieee80211_node * ni)3804 ieee80211_ht_check_tx_ht(const struct ieee80211_node *ni)
3805 {
3806 const struct ieee80211vap *vap;
3807 const struct ieee80211_channel *bss_chan;
3808
3809 if (ni == NULL || ni->ni_chan == IEEE80211_CHAN_ANYC ||
3810 ni->ni_vap == NULL || ni->ni_vap->iv_bss == NULL)
3811 return (false);
3812
3813 vap = ni->ni_vap;
3814 bss_chan = vap->iv_bss->ni_chan;
3815
3816 if (bss_chan == IEEE80211_CHAN_ANYC)
3817 return (false);
3818
3819 if (IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
3820 ni->ni_htrates.rs_nrates == 0)
3821 return (false);
3822 return (IEEE80211_IS_CHAN_HT(ni->ni_chan));
3823 }
3824
3825 /*
3826 * Return true if HT40 rates can be transmitted to the given node.
3827 *
3828 * This verifies that the BSS is HT40 capable and the current
3829 * node channel width is 40MHz.
3830 */
3831 bool
ieee80211_ht_check_tx_ht40(const struct ieee80211_node * ni)3832 ieee80211_ht_check_tx_ht40(const struct ieee80211_node *ni)
3833 {
3834 struct ieee80211vap *vap;
3835 struct ieee80211_channel *bss_chan;
3836
3837 if (! ieee80211_ht_check_tx_ht(ni))
3838 return (false);
3839
3840 vap = ni->ni_vap;
3841 bss_chan = vap->iv_bss->ni_chan;
3842
3843 return (IEEE80211_IS_CHAN_HT40(bss_chan) &&
3844 IEEE80211_IS_CHAN_HT40(ni->ni_chan) &&
3845 (ni->ni_chw == NET80211_STA_RX_BW_40));
3846 }
3847