1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2001-2024, Intel Corporation
5 * Copyright (c) 2016 Nicole Graziano <nicole@nextbsd.org>
6 * Copyright (c) 2024 Kevin Bowling <kbowling@FreeBSD.org>
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
30 #include "if_em.h"
31 #include <sys/sbuf.h>
32 #include <machine/_inttypes.h>
33
34 #define em_mac_min e1000_82571
35 #define igb_mac_min e1000_82575
36
37 /*********************************************************************
38 * Driver version:
39 *********************************************************************/
40 static const char em_driver_version[] = "7.7.8-fbsd";
41 static const char igb_driver_version[] = "2.5.28-fbsd";
42
43 /*********************************************************************
44 * PCI Device ID Table
45 *
46 * Used by probe to select devices to load on
47 * Last field stores an index into e1000_strings
48 * Last entry must be all 0s
49 *
50 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, String Index }
51 *********************************************************************/
52
53 static const pci_vendor_info_t em_vendor_info_array[] =
54 {
55 /* Intel(R) - lem-class legacy devices */
56 PVID(0x8086, E1000_DEV_ID_82540EM,
57 "Intel(R) Legacy PRO/1000 MT 82540EM"),
58 PVID(0x8086, E1000_DEV_ID_82540EM_LOM,
59 "Intel(R) Legacy PRO/1000 MT 82540EM (LOM)"),
60 PVID(0x8086, E1000_DEV_ID_82540EP,
61 "Intel(R) Legacy PRO/1000 MT 82540EP"),
62 PVID(0x8086, E1000_DEV_ID_82540EP_LOM,
63 "Intel(R) Legacy PRO/1000 MT 82540EP (LOM)"),
64 PVID(0x8086, E1000_DEV_ID_82540EP_LP,
65 "Intel(R) Legacy PRO/1000 MT 82540EP (Mobile)"),
66
67 PVID(0x8086, E1000_DEV_ID_82541EI,
68 "Intel(R) Legacy PRO/1000 MT 82541EI (Copper)"),
69 PVID(0x8086, E1000_DEV_ID_82541ER,
70 "Intel(R) Legacy PRO/1000 82541ER"),
71 PVID(0x8086, E1000_DEV_ID_82541ER_LOM,
72 "Intel(R) Legacy PRO/1000 MT 82541ER"),
73 PVID(0x8086, E1000_DEV_ID_82541EI_MOBILE,
74 "Intel(R) Legacy PRO/1000 MT 82541EI (Mobile)"),
75 PVID(0x8086, E1000_DEV_ID_82541GI,
76 "Intel(R) Legacy PRO/1000 MT 82541GI"),
77 PVID(0x8086, E1000_DEV_ID_82541GI_LF,
78 "Intel(R) Legacy PRO/1000 GT 82541PI"),
79 PVID(0x8086, E1000_DEV_ID_82541GI_MOBILE,
80 "Intel(R) Legacy PRO/1000 MT 82541GI (Mobile)"),
81
82 PVID(0x8086, E1000_DEV_ID_82542,
83 "Intel(R) Legacy PRO/1000 82542 (Fiber)"),
84
85 PVID(0x8086, E1000_DEV_ID_82543GC_FIBER,
86 "Intel(R) Legacy PRO/1000 F 82543GC (Fiber)"),
87 PVID(0x8086, E1000_DEV_ID_82543GC_COPPER,
88 "Intel(R) Legacy PRO/1000 T 82543GC (Copper)"),
89
90 PVID(0x8086, E1000_DEV_ID_82544EI_COPPER,
91 "Intel(R) Legacy PRO/1000 XT 82544EI (Copper)"),
92 PVID(0x8086, E1000_DEV_ID_82544EI_FIBER,
93 "Intel(R) Legacy PRO/1000 XF 82544EI (Fiber)"),
94 PVID(0x8086, E1000_DEV_ID_82544GC_COPPER,
95 "Intel(R) Legacy PRO/1000 T 82544GC (Copper)"),
96 PVID(0x8086, E1000_DEV_ID_82544GC_LOM,
97 "Intel(R) Legacy PRO/1000 XT 82544GC (LOM)"),
98
99 PVID(0x8086, E1000_DEV_ID_82545EM_COPPER,
100 "Intel(R) Legacy PRO/1000 MT 82545EM (Copper)"),
101 PVID(0x8086, E1000_DEV_ID_82545EM_FIBER,
102 "Intel(R) Legacy PRO/1000 MF 82545EM (Fiber)"),
103 PVID(0x8086, E1000_DEV_ID_82545GM_COPPER,
104 "Intel(R) Legacy PRO/1000 MT 82545GM (Copper)"),
105 PVID(0x8086, E1000_DEV_ID_82545GM_FIBER,
106 "Intel(R) Legacy PRO/1000 MF 82545GM (Fiber)"),
107 PVID(0x8086, E1000_DEV_ID_82545GM_SERDES,
108 "Intel(R) Legacy PRO/1000 MB 82545GM (SERDES)"),
109
110 PVID(0x8086, E1000_DEV_ID_82546EB_COPPER,
111 "Intel(R) Legacy PRO/1000 MT 82546EB (Copper)"),
112 PVID(0x8086, E1000_DEV_ID_82546EB_FIBER,
113 "Intel(R) Legacy PRO/1000 MF 82546EB (Fiber)"),
114 PVID(0x8086, E1000_DEV_ID_82546EB_QUAD_COPPER,
115 "Intel(R) Legacy PRO/1000 MT 82546EB (Quad Copper"),
116 PVID(0x8086, E1000_DEV_ID_82546GB_COPPER,
117 "Intel(R) Legacy PRO/1000 MT 82546GB (Copper)"),
118 PVID(0x8086, E1000_DEV_ID_82546GB_FIBER,
119 "Intel(R) Legacy PRO/1000 MF 82546GB (Fiber)"),
120 PVID(0x8086, E1000_DEV_ID_82546GB_SERDES,
121 "Intel(R) Legacy PRO/1000 MB 82546GB (SERDES)"),
122 PVID(0x8086, E1000_DEV_ID_82546GB_PCIE,
123 "Intel(R) Legacy PRO/1000 P 82546GB (PCIe)"),
124 PVID(0x8086, E1000_DEV_ID_82546GB_QUAD_COPPER,
125 "Intel(R) Legacy PRO/1000 GT 82546GB (Quad Copper)"),
126 PVID(0x8086, E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3,
127 "Intel(R) Legacy PRO/1000 GT 82546GB (Quad Copper)"),
128
129 PVID(0x8086, E1000_DEV_ID_82547EI,
130 "Intel(R) Legacy PRO/1000 CT 82547EI"),
131 PVID(0x8086, E1000_DEV_ID_82547EI_MOBILE,
132 "Intel(R) Legacy PRO/1000 CT 82547EI (Mobile)"),
133 PVID(0x8086, E1000_DEV_ID_82547GI,
134 "Intel(R) Legacy PRO/1000 CT 82547GI"),
135
136 /* Intel(R) - em-class devices */
137 PVID(0x8086, E1000_DEV_ID_82571EB_COPPER,
138 "Intel(R) PRO/1000 PT 82571EB/82571GB (Copper)"),
139 PVID(0x8086, E1000_DEV_ID_82571EB_FIBER,
140 "Intel(R) PRO/1000 PF 82571EB/82571GB (Fiber)"),
141 PVID(0x8086, E1000_DEV_ID_82571EB_SERDES,
142 "Intel(R) PRO/1000 PB 82571EB (SERDES)"),
143 PVID(0x8086, E1000_DEV_ID_82571EB_SERDES_DUAL,
144 "Intel(R) PRO/1000 82571EB (Dual Mezzanine)"),
145 PVID(0x8086, E1000_DEV_ID_82571EB_SERDES_QUAD,
146 "Intel(R) PRO/1000 82571EB (Quad Mezzanine)"),
147 PVID(0x8086, E1000_DEV_ID_82571EB_QUAD_COPPER,
148 "Intel(R) PRO/1000 PT 82571EB/82571GB (Quad Copper)"),
149 PVID(0x8086, E1000_DEV_ID_82571EB_QUAD_COPPER_LP,
150 "Intel(R) PRO/1000 PT 82571EB/82571GB (Quad Copper)"),
151 PVID(0x8086, E1000_DEV_ID_82571EB_QUAD_FIBER,
152 "Intel(R) PRO/1000 PF 82571EB (Quad Fiber)"),
153 PVID(0x8086, E1000_DEV_ID_82571PT_QUAD_COPPER,
154 "Intel(R) PRO/1000 PT 82571PT (Quad Copper)"),
155 PVID(0x8086, E1000_DEV_ID_82572EI,
156 "Intel(R) PRO/1000 PT 82572EI (Copper)"),
157 PVID(0x8086, E1000_DEV_ID_82572EI_COPPER,
158 "Intel(R) PRO/1000 PT 82572EI (Copper)"),
159 PVID(0x8086, E1000_DEV_ID_82572EI_FIBER,
160 "Intel(R) PRO/1000 PF 82572EI (Fiber)"),
161 PVID(0x8086, E1000_DEV_ID_82572EI_SERDES,
162 "Intel(R) PRO/1000 82572EI (SERDES)"),
163 PVID(0x8086, E1000_DEV_ID_82573E,
164 "Intel(R) PRO/1000 82573E (Copper)"),
165 PVID(0x8086, E1000_DEV_ID_82573E_IAMT,
166 "Intel(R) PRO/1000 82573E AMT (Copper)"),
167 PVID(0x8086, E1000_DEV_ID_82573L, "Intel(R) PRO/1000 82573L"),
168 PVID(0x8086, E1000_DEV_ID_82583V, "Intel(R) 82583V"),
169 PVID(0x8086, E1000_DEV_ID_80003ES2LAN_COPPER_SPT,
170 "Intel(R) 80003ES2LAN (Copper)"),
171 PVID(0x8086, E1000_DEV_ID_80003ES2LAN_SERDES_SPT,
172 "Intel(R) 80003ES2LAN (SERDES)"),
173 PVID(0x8086, E1000_DEV_ID_80003ES2LAN_COPPER_DPT,
174 "Intel(R) 80003ES2LAN (Dual Copper)"),
175 PVID(0x8086, E1000_DEV_ID_80003ES2LAN_SERDES_DPT,
176 "Intel(R) 80003ES2LAN (Dual SERDES)"),
177 PVID(0x8086, E1000_DEV_ID_ICH8_IGP_M_AMT,
178 "Intel(R) 82566MM ICH8 AMT (Mobile)"),
179 PVID(0x8086, E1000_DEV_ID_ICH8_IGP_AMT, "Intel(R) 82566DM ICH8 AMT"),
180 PVID(0x8086, E1000_DEV_ID_ICH8_IGP_C, "Intel(R) 82566DC ICH8"),
181 PVID(0x8086, E1000_DEV_ID_ICH8_IFE, "Intel(R) 82562V ICH8"),
182 PVID(0x8086, E1000_DEV_ID_ICH8_IFE_GT, "Intel(R) 82562GT ICH8"),
183 PVID(0x8086, E1000_DEV_ID_ICH8_IFE_G, "Intel(R) 82562G ICH8"),
184 PVID(0x8086, E1000_DEV_ID_ICH8_IGP_M, "Intel(R) 82566MC ICH8"),
185 PVID(0x8086, E1000_DEV_ID_ICH8_82567V_3, "Intel(R) 82567V-3 ICH8"),
186 PVID(0x8086, E1000_DEV_ID_ICH9_IGP_M_AMT,
187 "Intel(R) 82567LM ICH9 AMT"),
188 PVID(0x8086, E1000_DEV_ID_ICH9_IGP_AMT,
189 "Intel(R) 82566DM-2 ICH9 AMT"),
190 PVID(0x8086, E1000_DEV_ID_ICH9_IGP_C, "Intel(R) 82566DC-2 ICH9"),
191 PVID(0x8086, E1000_DEV_ID_ICH9_IGP_M, "Intel(R) 82567LF ICH9"),
192 PVID(0x8086, E1000_DEV_ID_ICH9_IGP_M_V, "Intel(R) 82567V ICH9"),
193 PVID(0x8086, E1000_DEV_ID_ICH9_IFE, "Intel(R) 82562V-2 ICH9"),
194 PVID(0x8086, E1000_DEV_ID_ICH9_IFE_GT, "Intel(R) 82562GT-2 ICH9"),
195 PVID(0x8086, E1000_DEV_ID_ICH9_IFE_G, "Intel(R) 82562G-2 ICH9"),
196 PVID(0x8086, E1000_DEV_ID_ICH9_BM, "Intel(R) 82567LM-4 ICH9"),
197 PVID(0x8086, E1000_DEV_ID_82574L, "Intel(R) Gigabit CT 82574L"),
198 PVID(0x8086, E1000_DEV_ID_82574LA, "Intel(R) 82574L-Apple"),
199 PVID(0x8086, E1000_DEV_ID_ICH10_R_BM_LM, "Intel(R) 82567LM-2 ICH10"),
200 PVID(0x8086, E1000_DEV_ID_ICH10_R_BM_LF, "Intel(R) 82567LF-2 ICH10"),
201 PVID(0x8086, E1000_DEV_ID_ICH10_R_BM_V, "Intel(R) 82567V-2 ICH10"),
202 PVID(0x8086, E1000_DEV_ID_ICH10_D_BM_LM, "Intel(R) 82567LM-3 ICH10"),
203 PVID(0x8086, E1000_DEV_ID_ICH10_D_BM_LF, "Intel(R) 82567LF-3 ICH10"),
204 PVID(0x8086, E1000_DEV_ID_ICH10_D_BM_V, "Intel(R) 82567V-4 ICH10"),
205 PVID(0x8086, E1000_DEV_ID_PCH_M_HV_LM, "Intel(R) 82577LM"),
206 PVID(0x8086, E1000_DEV_ID_PCH_M_HV_LC, "Intel(R) 82577LC"),
207 PVID(0x8086, E1000_DEV_ID_PCH_D_HV_DM, "Intel(R) 82578DM"),
208 PVID(0x8086, E1000_DEV_ID_PCH_D_HV_DC, "Intel(R) 82578DC"),
209 PVID(0x8086, E1000_DEV_ID_PCH2_LV_LM, "Intel(R) 82579LM"),
210 PVID(0x8086, E1000_DEV_ID_PCH2_LV_V, "Intel(R) 82579V"),
211 PVID(0x8086, E1000_DEV_ID_PCH_LPT_I217_LM, "Intel(R) I217-LM LPT"),
212 PVID(0x8086, E1000_DEV_ID_PCH_LPT_I217_V, "Intel(R) I217-V LPT"),
213 PVID(0x8086, E1000_DEV_ID_PCH_LPTLP_I218_LM,
214 "Intel(R) I218-LM LPTLP"),
215 PVID(0x8086, E1000_DEV_ID_PCH_LPTLP_I218_V, "Intel(R) I218-V LPTLP"),
216 PVID(0x8086, E1000_DEV_ID_PCH_I218_LM2, "Intel(R) I218-LM (2)"),
217 PVID(0x8086, E1000_DEV_ID_PCH_I218_V2, "Intel(R) I218-V (2)"),
218 PVID(0x8086, E1000_DEV_ID_PCH_I218_LM3, "Intel(R) I218-LM (3)"),
219 PVID(0x8086, E1000_DEV_ID_PCH_I218_V3, "Intel(R) I218-V (3)"),
220 PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM, "Intel(R) I219-LM SPT"),
221 PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V, "Intel(R) I219-V SPT"),
222 PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM2,
223 "Intel(R) I219-LM SPT-H(2)"),
224 PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V2,
225 "Intel(R) I219-V SPT-H(2)"),
226 PVID(0x8086, E1000_DEV_ID_PCH_LBG_I219_LM3,
227 "Intel(R) I219-LM LBG(3)"),
228 PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM4,
229 "Intel(R) I219-LM SPT(4)"),
230 PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V4, "Intel(R) I219-V SPT(4)"),
231 PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM5,
232 "Intel(R) I219-LM SPT(5)"),
233 PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V5, "Intel(R) I219-V SPT(5)"),
234 PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_LM6,
235 "Intel(R) I219-LM CNP(6)"),
236 PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_V6, "Intel(R) I219-V CNP(6)"),
237 PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_LM7,
238 "Intel(R) I219-LM CNP(7)"),
239 PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_V7, "Intel(R) I219-V CNP(7)"),
240 PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_LM8,
241 "Intel(R) I219-LM ICP(8)"),
242 PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_V8, "Intel(R) I219-V ICP(8)"),
243 PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_LM9,
244 "Intel(R) I219-LM ICP(9)"),
245 PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_V9, "Intel(R) I219-V ICP(9)"),
246 PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_LM10,
247 "Intel(R) I219-LM CMP(10)"),
248 PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_V10,
249 "Intel(R) I219-V CMP(10)"),
250 PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_LM11,
251 "Intel(R) I219-LM CMP(11)"),
252 PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_V11,
253 "Intel(R) I219-V CMP(11)"),
254 PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_LM12,
255 "Intel(R) I219-LM CMP(12)"),
256 PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_V12,
257 "Intel(R) I219-V CMP(12)"),
258 PVID(0x8086, E1000_DEV_ID_PCH_TGP_I219_LM13,
259 "Intel(R) I219-LM TGP(13)"),
260 PVID(0x8086, E1000_DEV_ID_PCH_TGP_I219_V13,
261 "Intel(R) I219-V TGP(13)"),
262 PVID(0x8086, E1000_DEV_ID_PCH_TGP_I219_LM14,
263 "Intel(R) I219-LM TGP(14)"),
264 PVID(0x8086, E1000_DEV_ID_PCH_TGP_I219_V14,
265 "Intel(R) I219-V GTP(14)"),
266 PVID(0x8086, E1000_DEV_ID_PCH_TGP_I219_LM15,
267 "Intel(R) I219-LM TGP(15)"),
268 PVID(0x8086, E1000_DEV_ID_PCH_TGP_I219_V15,
269 "Intel(R) I219-V TGP(15)"),
270 PVID(0x8086, E1000_DEV_ID_PCH_ADL_I219_LM16,
271 "Intel(R) I219-LM ADL(16)"),
272 PVID(0x8086, E1000_DEV_ID_PCH_ADL_I219_V16,
273 "Intel(R) I219-V ADL(16)"),
274 PVID(0x8086, E1000_DEV_ID_PCH_ADL_I219_LM17,
275 "Intel(R) I219-LM ADL(17)"),
276 PVID(0x8086, E1000_DEV_ID_PCH_ADL_I219_V17,
277 "Intel(R) I219-V ADL(17)"),
278 PVID(0x8086, E1000_DEV_ID_PCH_MTP_I219_LM18,
279 "Intel(R) I219-LM MTP(18)"),
280 PVID(0x8086, E1000_DEV_ID_PCH_MTP_I219_V18,
281 "Intel(R) I219-V MTP(18)"),
282 PVID(0x8086, E1000_DEV_ID_PCH_ADL_I219_LM19,
283 "Intel(R) I219-LM ADL(19)"),
284 PVID(0x8086, E1000_DEV_ID_PCH_ADL_I219_V19,
285 "Intel(R) I219-V ADL(19)"),
286 PVID(0x8086, E1000_DEV_ID_PCH_LNL_I219_LM20,
287 "Intel(R) I219-LM LNL(20)"),
288 PVID(0x8086, E1000_DEV_ID_PCH_LNL_I219_V20,
289 "Intel(R) I219-V LNL(20)"),
290 PVID(0x8086, E1000_DEV_ID_PCH_LNL_I219_LM21,
291 "Intel(R) I219-LM LNL(21)"),
292 PVID(0x8086, E1000_DEV_ID_PCH_LNL_I219_V21,
293 "Intel(R) I219-V LNL(21)"),
294 PVID(0x8086, E1000_DEV_ID_PCH_RPL_I219_LM22,
295 "Intel(R) I219-LM RPL(22)"),
296 PVID(0x8086, E1000_DEV_ID_PCH_RPL_I219_V22,
297 "Intel(R) I219-V RPL(22)"),
298 PVID(0x8086, E1000_DEV_ID_PCH_RPL_I219_LM23,
299 "Intel(R) I219-LM RPL(23)"),
300 PVID(0x8086, E1000_DEV_ID_PCH_RPL_I219_V23,
301 "Intel(R) I219-V RPL(23)"),
302 PVID(0x8086, E1000_DEV_ID_PCH_ARL_I219_LM24,
303 "Intel(R) I219-LM ARL(24)"),
304 PVID(0x8086, E1000_DEV_ID_PCH_ARL_I219_V24,
305 "Intel(R) I219-V ARL(24)"),
306 PVID(0x8086, E1000_DEV_ID_PCH_PTP_I219_LM25,
307 "Intel(R) I219-LM PTP(25)"),
308 PVID(0x8086, E1000_DEV_ID_PCH_PTP_I219_V25,
309 "Intel(R) I219-V PTP(25)"),
310 PVID(0x8086, E1000_DEV_ID_PCH_PTP_I219_LM26,
311 "Intel(R) I219-LM PTP(26)"),
312 PVID(0x8086, E1000_DEV_ID_PCH_PTP_I219_V26,
313 "Intel(R) I219-V PTP(26)"),
314 PVID(0x8086, E1000_DEV_ID_PCH_PTP_I219_LM27,
315 "Intel(R) I219-LM PTP(27)"),
316 PVID(0x8086, E1000_DEV_ID_PCH_PTP_I219_V27,
317 "Intel(R) I219-V PTP(27)"),
318 /* required last entry */
319 PVID_END
320 };
321
322 static const pci_vendor_info_t igb_vendor_info_array[] =
323 {
324 /* Intel(R) - igb-class devices */
325 PVID(0x8086, E1000_DEV_ID_82575EB_COPPER,
326 "Intel(R) PRO/1000 82575EB (Copper)"),
327 PVID(0x8086, E1000_DEV_ID_82575EB_FIBER_SERDES,
328 "Intel(R) PRO/1000 82575EB (SERDES)"),
329 PVID(0x8086, E1000_DEV_ID_82575GB_QUAD_COPPER,
330 "Intel(R) PRO/1000 VT 82575GB (Quad Copper)"),
331 PVID(0x8086, E1000_DEV_ID_82576, "Intel(R) PRO/1000 82576"),
332 PVID(0x8086, E1000_DEV_ID_82576_NS, "Intel(R) PRO/1000 82576NS"),
333 PVID(0x8086, E1000_DEV_ID_82576_NS_SERDES,
334 "Intel(R) PRO/1000 82576NS (SERDES)"),
335 PVID(0x8086, E1000_DEV_ID_82576_FIBER,
336 "Intel(R) PRO/1000 EF 82576 (Dual Fiber)"),
337 PVID(0x8086, E1000_DEV_ID_82576_SERDES,
338 "Intel(R) PRO/1000 82576 (Dual SERDES)"),
339 PVID(0x8086, E1000_DEV_ID_82576_SERDES_QUAD,
340 "Intel(R) PRO/1000 ET 82576 (Quad SERDES)"),
341 PVID(0x8086, E1000_DEV_ID_82576_QUAD_COPPER,
342 "Intel(R) PRO/1000 ET 82576 (Quad Copper)"),
343 PVID(0x8086, E1000_DEV_ID_82576_QUAD_COPPER_ET2,
344 "Intel(R) PRO/1000 ET(2) 82576 (Quad Copper)"),
345 PVID(0x8086, E1000_DEV_ID_82576_VF,
346 "Intel(R) PRO/1000 82576 Virtual Function"),
347 PVID(0x8086, E1000_DEV_ID_82580_COPPER,
348 "Intel(R) I340 82580 (Copper)"),
349 PVID(0x8086, E1000_DEV_ID_82580_FIBER, "Intel(R) I340 82580 (Fiber)"),
350 PVID(0x8086, E1000_DEV_ID_82580_SERDES,
351 "Intel(R) I340 82580 (SERDES)"),
352 PVID(0x8086, E1000_DEV_ID_82580_SGMII, "Intel(R) I340 82580 (SGMII)"),
353 PVID(0x8086, E1000_DEV_ID_82580_COPPER_DUAL,
354 "Intel(R) I340-T2 82580 (Dual Copper)"),
355 PVID(0x8086, E1000_DEV_ID_82580_QUAD_FIBER,
356 "Intel(R) I340-F4 82580 (Quad Fiber)"),
357 PVID(0x8086, E1000_DEV_ID_DH89XXCC_SERDES,
358 "Intel(R) DH89XXCC (SERDES)"),
359 PVID(0x8086, E1000_DEV_ID_DH89XXCC_SGMII,
360 "Intel(R) I347-AT4 DH89XXCC"),
361 PVID(0x8086, E1000_DEV_ID_DH89XXCC_SFP, "Intel(R) DH89XXCC (SFP)"),
362 PVID(0x8086, E1000_DEV_ID_DH89XXCC_BACKPLANE,
363 "Intel(R) DH89XXCC (Backplane)"),
364 PVID(0x8086, E1000_DEV_ID_I350_COPPER, "Intel(R) I350 (Copper)"),
365 PVID(0x8086, E1000_DEV_ID_I350_FIBER, "Intel(R) I350 (Fiber)"),
366 PVID(0x8086, E1000_DEV_ID_I350_SERDES, "Intel(R) I350 (SERDES)"),
367 PVID(0x8086, E1000_DEV_ID_I350_SGMII, "Intel(R) I350 (SGMII)"),
368 PVID(0x8086, E1000_DEV_ID_I350_VF, "Intel(R) I350 Virtual Function"),
369 PVID(0x8086, E1000_DEV_ID_I210_COPPER, "Intel(R) I210 (Copper)"),
370 PVID(0x8086, E1000_DEV_ID_I210_COPPER_IT,
371 "Intel(R) I210 IT (Copper)"),
372 PVID(0x8086, E1000_DEV_ID_I210_COPPER_OEM1, "Intel(R) I210 (OEM)"),
373 PVID(0x8086, E1000_DEV_ID_I210_COPPER_FLASHLESS,
374 "Intel(R) I210 Flashless (Copper)"),
375 PVID(0x8086, E1000_DEV_ID_I210_SERDES_FLASHLESS,
376 "Intel(R) I210 Flashless (SERDES)"),
377 PVID(0x8086, E1000_DEV_ID_I210_SGMII_FLASHLESS,
378 "Intel(R) I210 Flashless (SGMII)"),
379 PVID(0x8086, E1000_DEV_ID_I210_FIBER, "Intel(R) I210 (Fiber)"),
380 PVID(0x8086, E1000_DEV_ID_I210_SERDES, "Intel(R) I210 (SERDES)"),
381 PVID(0x8086, E1000_DEV_ID_I210_SGMII, "Intel(R) I210 (SGMII)"),
382 PVID(0x8086, E1000_DEV_ID_I211_COPPER, "Intel(R) I211 (Copper)"),
383 PVID(0x8086, E1000_DEV_ID_I354_BACKPLANE_1GBPS,
384 "Intel(R) I354 (1.0 GbE Backplane)"),
385 PVID(0x8086, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS,
386 "Intel(R) I354 (2.5 GbE Backplane)"),
387 PVID(0x8086, E1000_DEV_ID_I354_SGMII, "Intel(R) I354 (SGMII)"),
388 /* required last entry */
389 PVID_END
390 };
391
392 /*********************************************************************
393 * Function prototypes
394 *********************************************************************/
395 static void *em_register(device_t);
396 static void *igb_register(device_t);
397 static int em_if_attach_pre(if_ctx_t);
398 static int em_if_attach_post(if_ctx_t);
399 static int em_if_detach(if_ctx_t);
400 static int em_if_shutdown(if_ctx_t);
401 static int em_if_suspend(if_ctx_t);
402 static int em_if_resume(if_ctx_t);
403
404 static int em_if_tx_queues_alloc(if_ctx_t, caddr_t *, uint64_t *, int,
405 int);
406 static int em_if_rx_queues_alloc(if_ctx_t, caddr_t *, uint64_t *, int,
407 int);
408 static void em_if_queues_free(if_ctx_t);
409
410 static uint64_t em_if_get_counter(if_ctx_t, ift_counter);
411 static void em_if_init(if_ctx_t);
412 static void em_if_stop(if_ctx_t);
413 static void em_if_media_status(if_ctx_t, struct ifmediareq *);
414 static int em_if_media_change(if_ctx_t);
415 static int em_if_mtu_set(if_ctx_t, uint32_t);
416 static void em_if_timer(if_ctx_t, uint16_t);
417 static void em_if_vlan_register(if_ctx_t, u16);
418 static void em_if_vlan_unregister(if_ctx_t, u16);
419 static void em_if_watchdog_reset(if_ctx_t);
420 static bool em_if_needs_restart(if_ctx_t, enum iflib_restart_event);
421
422 static void em_identify_hardware(if_ctx_t);
423 static int em_allocate_pci_resources(if_ctx_t);
424 static void em_free_pci_resources(if_ctx_t);
425 static void em_reset(if_ctx_t);
426 static int em_setup_interface(if_ctx_t);
427 static int em_setup_msix(if_ctx_t);
428
429 static void em_initialize_transmit_unit(if_ctx_t);
430 static void em_initialize_receive_unit(if_ctx_t);
431
432 static void em_if_intr_enable(if_ctx_t);
433 static void em_if_intr_disable(if_ctx_t);
434 static void igb_if_intr_enable(if_ctx_t);
435 static void igb_if_intr_disable(if_ctx_t);
436 static int em_if_rx_queue_intr_enable(if_ctx_t, uint16_t);
437 static int em_if_tx_queue_intr_enable(if_ctx_t, uint16_t);
438 static int igb_if_rx_queue_intr_enable(if_ctx_t, uint16_t);
439 static int igb_if_tx_queue_intr_enable(if_ctx_t, uint16_t);
440 static void em_if_multi_set(if_ctx_t);
441 static void em_if_update_admin_status(if_ctx_t);
442 static void em_if_debug(if_ctx_t);
443 static void em_update_stats_counters(struct e1000_softc *);
444 static void em_add_hw_stats(struct e1000_softc *);
445 static int em_if_set_promisc(if_ctx_t, int);
446 static bool em_if_vlan_filter_capable(if_ctx_t);
447 static bool em_if_vlan_filter_used(if_ctx_t);
448 static void em_if_vlan_filter_enable(struct e1000_softc *);
449 static void em_if_vlan_filter_disable(struct e1000_softc *);
450 static void em_if_vlan_filter_write(struct e1000_softc *);
451 static void em_setup_vlan_hw_support(if_ctx_t ctx);
452 static int em_sysctl_nvm_info(SYSCTL_HANDLER_ARGS);
453 static void em_print_nvm_info(struct e1000_softc *);
454 static void em_fw_version_locked(if_ctx_t);
455 static void em_sbuf_fw_version(struct e1000_fw_version *, struct sbuf *);
456 static void em_print_fw_version(struct e1000_softc *);
457 static int em_sysctl_print_fw_version(SYSCTL_HANDLER_ARGS);
458 static int em_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
459 static int em_get_rs(SYSCTL_HANDLER_ARGS);
460 static void em_print_debug_info(struct e1000_softc *);
461 static int em_is_valid_ether_addr(u8 *);
462 static void em_newitr(struct e1000_softc *, struct em_rx_queue *,
463 struct tx_ring *, struct rx_ring *);
464 static bool em_automask_tso(if_ctx_t);
465 static int em_sysctl_tso_tcp_flags_mask(SYSCTL_HANDLER_ARGS);
466 static int em_sysctl_int_delay(SYSCTL_HANDLER_ARGS);
467 static void em_add_int_delay_sysctl(struct e1000_softc *, const char *,
468 const char *, struct em_int_delay_info *, int, int);
469 /* Management and WOL Support */
470 static void em_init_manageability(struct e1000_softc *);
471 static void em_release_manageability(struct e1000_softc *);
472 static void em_get_hw_control(struct e1000_softc *);
473 static void em_release_hw_control(struct e1000_softc *);
474 static void em_get_wakeup(if_ctx_t);
475 static void em_enable_wakeup(if_ctx_t);
476 static int em_enable_phy_wakeup(struct e1000_softc *);
477 static void em_disable_aspm(struct e1000_softc *);
478
479 int em_intr(void *);
480
481 /* MSI-X handlers */
482 static int em_if_msix_intr_assign(if_ctx_t, int);
483 static int em_msix_link(void *);
484 static void em_handle_link(void *);
485
486 static void em_enable_vectors_82574(if_ctx_t);
487
488 static int em_set_flowcntl(SYSCTL_HANDLER_ARGS);
489 static int em_sysctl_eee(SYSCTL_HANDLER_ARGS);
490 static int igb_sysctl_dmac(SYSCTL_HANDLER_ARGS);
491 static void em_if_led_func(if_ctx_t, int);
492
493 static int em_get_regs(SYSCTL_HANDLER_ARGS);
494
495 static void lem_smartspeed(struct e1000_softc *);
496 static void igb_configure_queues(struct e1000_softc *);
497 static void em_flush_desc_rings(struct e1000_softc *);
498
499
500 /*********************************************************************
501 * FreeBSD Device Interface Entry Points
502 *********************************************************************/
503 static device_method_t em_methods[] = {
504 /* Device interface */
505 DEVMETHOD(device_register, em_register),
506 DEVMETHOD(device_probe, iflib_device_probe),
507 DEVMETHOD(device_attach, iflib_device_attach),
508 DEVMETHOD(device_detach, iflib_device_detach),
509 DEVMETHOD(device_shutdown, iflib_device_shutdown),
510 DEVMETHOD(device_suspend, iflib_device_suspend),
511 DEVMETHOD(device_resume, iflib_device_resume),
512 DEVMETHOD_END
513 };
514
515 static device_method_t igb_methods[] = {
516 /* Device interface */
517 DEVMETHOD(device_register, igb_register),
518 DEVMETHOD(device_probe, iflib_device_probe),
519 DEVMETHOD(device_attach, iflib_device_attach),
520 DEVMETHOD(device_detach, iflib_device_detach),
521 DEVMETHOD(device_shutdown, iflib_device_shutdown),
522 DEVMETHOD(device_suspend, iflib_device_suspend),
523 DEVMETHOD(device_resume, iflib_device_resume),
524 DEVMETHOD_END
525 };
526
527
528 static driver_t em_driver = {
529 "em", em_methods, sizeof(struct e1000_softc),
530 };
531
532 DRIVER_MODULE(em, pci, em_driver, 0, 0);
533
534 MODULE_DEPEND(em, pci, 1, 1, 1);
535 MODULE_DEPEND(em, ether, 1, 1, 1);
536 MODULE_DEPEND(em, iflib, 1, 1, 1);
537
538 IFLIB_PNP_INFO(pci, em, em_vendor_info_array);
539
540 static driver_t igb_driver = {
541 "igb", igb_methods, sizeof(struct e1000_softc),
542 };
543
544 DRIVER_MODULE(igb, pci, igb_driver, 0, 0);
545
546 MODULE_DEPEND(igb, pci, 1, 1, 1);
547 MODULE_DEPEND(igb, ether, 1, 1, 1);
548 MODULE_DEPEND(igb, iflib, 1, 1, 1);
549
550 IFLIB_PNP_INFO(pci, igb, igb_vendor_info_array);
551
552 static device_method_t em_if_methods[] = {
553 DEVMETHOD(ifdi_attach_pre, em_if_attach_pre),
554 DEVMETHOD(ifdi_attach_post, em_if_attach_post),
555 DEVMETHOD(ifdi_detach, em_if_detach),
556 DEVMETHOD(ifdi_shutdown, em_if_shutdown),
557 DEVMETHOD(ifdi_suspend, em_if_suspend),
558 DEVMETHOD(ifdi_resume, em_if_resume),
559 DEVMETHOD(ifdi_init, em_if_init),
560 DEVMETHOD(ifdi_stop, em_if_stop),
561 DEVMETHOD(ifdi_msix_intr_assign, em_if_msix_intr_assign),
562 DEVMETHOD(ifdi_intr_enable, em_if_intr_enable),
563 DEVMETHOD(ifdi_intr_disable, em_if_intr_disable),
564 DEVMETHOD(ifdi_tx_queues_alloc, em_if_tx_queues_alloc),
565 DEVMETHOD(ifdi_rx_queues_alloc, em_if_rx_queues_alloc),
566 DEVMETHOD(ifdi_queues_free, em_if_queues_free),
567 DEVMETHOD(ifdi_update_admin_status, em_if_update_admin_status),
568 DEVMETHOD(ifdi_multi_set, em_if_multi_set),
569 DEVMETHOD(ifdi_media_status, em_if_media_status),
570 DEVMETHOD(ifdi_media_change, em_if_media_change),
571 DEVMETHOD(ifdi_mtu_set, em_if_mtu_set),
572 DEVMETHOD(ifdi_promisc_set, em_if_set_promisc),
573 DEVMETHOD(ifdi_timer, em_if_timer),
574 DEVMETHOD(ifdi_watchdog_reset, em_if_watchdog_reset),
575 DEVMETHOD(ifdi_vlan_register, em_if_vlan_register),
576 DEVMETHOD(ifdi_vlan_unregister, em_if_vlan_unregister),
577 DEVMETHOD(ifdi_get_counter, em_if_get_counter),
578 DEVMETHOD(ifdi_led_func, em_if_led_func),
579 DEVMETHOD(ifdi_rx_queue_intr_enable, em_if_rx_queue_intr_enable),
580 DEVMETHOD(ifdi_tx_queue_intr_enable, em_if_tx_queue_intr_enable),
581 DEVMETHOD(ifdi_debug, em_if_debug),
582 DEVMETHOD(ifdi_needs_restart, em_if_needs_restart),
583 DEVMETHOD_END
584 };
585
586 static driver_t em_if_driver = {
587 "em_if", em_if_methods, sizeof(struct e1000_softc)
588 };
589
590 static device_method_t igb_if_methods[] = {
591 DEVMETHOD(ifdi_attach_pre, em_if_attach_pre),
592 DEVMETHOD(ifdi_attach_post, em_if_attach_post),
593 DEVMETHOD(ifdi_detach, em_if_detach),
594 DEVMETHOD(ifdi_shutdown, em_if_shutdown),
595 DEVMETHOD(ifdi_suspend, em_if_suspend),
596 DEVMETHOD(ifdi_resume, em_if_resume),
597 DEVMETHOD(ifdi_init, em_if_init),
598 DEVMETHOD(ifdi_stop, em_if_stop),
599 DEVMETHOD(ifdi_msix_intr_assign, em_if_msix_intr_assign),
600 DEVMETHOD(ifdi_intr_enable, igb_if_intr_enable),
601 DEVMETHOD(ifdi_intr_disable, igb_if_intr_disable),
602 DEVMETHOD(ifdi_tx_queues_alloc, em_if_tx_queues_alloc),
603 DEVMETHOD(ifdi_rx_queues_alloc, em_if_rx_queues_alloc),
604 DEVMETHOD(ifdi_queues_free, em_if_queues_free),
605 DEVMETHOD(ifdi_update_admin_status, em_if_update_admin_status),
606 DEVMETHOD(ifdi_multi_set, em_if_multi_set),
607 DEVMETHOD(ifdi_media_status, em_if_media_status),
608 DEVMETHOD(ifdi_media_change, em_if_media_change),
609 DEVMETHOD(ifdi_mtu_set, em_if_mtu_set),
610 DEVMETHOD(ifdi_promisc_set, em_if_set_promisc),
611 DEVMETHOD(ifdi_timer, em_if_timer),
612 DEVMETHOD(ifdi_watchdog_reset, em_if_watchdog_reset),
613 DEVMETHOD(ifdi_vlan_register, em_if_vlan_register),
614 DEVMETHOD(ifdi_vlan_unregister, em_if_vlan_unregister),
615 DEVMETHOD(ifdi_get_counter, em_if_get_counter),
616 DEVMETHOD(ifdi_led_func, em_if_led_func),
617 DEVMETHOD(ifdi_rx_queue_intr_enable, igb_if_rx_queue_intr_enable),
618 DEVMETHOD(ifdi_tx_queue_intr_enable, igb_if_tx_queue_intr_enable),
619 DEVMETHOD(ifdi_debug, em_if_debug),
620 DEVMETHOD(ifdi_needs_restart, em_if_needs_restart),
621 DEVMETHOD_END
622 };
623
624 static driver_t igb_if_driver = {
625 "igb_if", igb_if_methods, sizeof(struct e1000_softc)
626 };
627
628 /*********************************************************************
629 * Tunable default values.
630 *********************************************************************/
631
632 #define EM_TICKS_TO_USECS(ticks) ((1024 * (ticks) + 500) / 1000)
633 #define EM_USECS_TO_TICKS(usecs) ((1000 * (usecs) + 512) / 1024)
634
635 /* Allow common code without TSO */
636 #ifndef CSUM_TSO
637 #define CSUM_TSO 0
638 #endif
639
640 static SYSCTL_NODE(_hw, OID_AUTO, em, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
641 "EM driver parameters");
642
643 static int em_disable_crc_stripping = 0;
644 SYSCTL_INT(_hw_em, OID_AUTO, disable_crc_stripping, CTLFLAG_RDTUN,
645 &em_disable_crc_stripping, 0, "Disable CRC Stripping");
646
647 static int em_tx_int_delay_dflt = EM_TICKS_TO_USECS(EM_TIDV);
648 static int em_rx_int_delay_dflt = EM_TICKS_TO_USECS(EM_RDTR);
649 SYSCTL_INT(_hw_em, OID_AUTO, tx_int_delay, CTLFLAG_RDTUN,
650 &em_tx_int_delay_dflt, 0, "Default transmit interrupt delay in usecs");
651 SYSCTL_INT(_hw_em, OID_AUTO, rx_int_delay, CTLFLAG_RDTUN,
652 &em_rx_int_delay_dflt, 0, "Default receive interrupt delay in usecs");
653
654 static int em_tx_abs_int_delay_dflt = EM_TICKS_TO_USECS(EM_TADV);
655 static int em_rx_abs_int_delay_dflt = EM_TICKS_TO_USECS(EM_RADV);
656 SYSCTL_INT(_hw_em, OID_AUTO, tx_abs_int_delay, CTLFLAG_RDTUN,
657 &em_tx_abs_int_delay_dflt, 0,
658 "Default transmit interrupt delay limit in usecs");
659 SYSCTL_INT(_hw_em, OID_AUTO, rx_abs_int_delay, CTLFLAG_RDTUN,
660 &em_rx_abs_int_delay_dflt, 0,
661 "Default receive interrupt delay limit in usecs");
662
663 static int em_smart_pwr_down = false;
664 SYSCTL_INT(_hw_em, OID_AUTO, smart_pwr_down, CTLFLAG_RDTUN,
665 &em_smart_pwr_down,
666 0, "Set to true to leave smart power down enabled on newer adapters");
667
668 static bool em_unsupported_tso = false;
669 SYSCTL_BOOL(_hw_em, OID_AUTO, unsupported_tso, CTLFLAG_RDTUN,
670 &em_unsupported_tso, 0, "Allow unsupported em(4) TSO configurations");
671
672 /* Controls whether promiscuous also shows bad packets */
673 static int em_debug_sbp = false;
674 SYSCTL_INT(_hw_em, OID_AUTO, sbp, CTLFLAG_RDTUN, &em_debug_sbp, 0,
675 "Show bad packets in promiscuous mode");
676
677 /* Energy efficient ethernet - default to OFF */
678 static int eee_setting = 1;
679 SYSCTL_INT(_hw_em, OID_AUTO, eee_setting, CTLFLAG_RDTUN, &eee_setting, 0,
680 "Enable Energy Efficient Ethernet");
681
682 /*
683 * AIM: Adaptive Interrupt Moderation
684 * which means that the interrupt rate is varied over time based on the
685 * traffic for that interrupt vector
686 */
687 static int em_enable_aim = 1;
688 SYSCTL_INT(_hw_em, OID_AUTO, enable_aim, CTLFLAG_RWTUN, &em_enable_aim,
689 0, "Enable adaptive interrupt moderation (1=normal, 2=lowlatency)");
690
691 /*
692 ** Tuneable Interrupt rate
693 */
694 static int em_max_interrupt_rate = EM_INTS_DEFAULT;
695 SYSCTL_INT(_hw_em, OID_AUTO, max_interrupt_rate, CTLFLAG_RDTUN,
696 &em_max_interrupt_rate, 0, "Maximum interrupts per second");
697
698 /* Global used in WOL setup with multiport cards */
699 static int global_quad_port_a = 0;
700
701 extern struct if_txrx igb_txrx;
702 extern struct if_txrx em_txrx;
703 extern struct if_txrx lem_txrx;
704
705 static struct if_shared_ctx em_sctx_init = {
706 .isc_magic = IFLIB_MAGIC,
707 .isc_q_align = PAGE_SIZE,
708 .isc_tx_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header),
709 .isc_tx_maxsegsize = PAGE_SIZE,
710 .isc_tso_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header),
711 .isc_tso_maxsegsize = EM_TSO_SEG_SIZE,
712 .isc_rx_maxsize = MJUM9BYTES,
713 .isc_rx_nsegments = 1,
714 .isc_rx_maxsegsize = MJUM9BYTES,
715 .isc_nfl = 1,
716 .isc_nrxqs = 1,
717 .isc_ntxqs = 1,
718 .isc_admin_intrcnt = 1,
719 .isc_vendor_info = em_vendor_info_array,
720 .isc_driver_version = em_driver_version,
721 .isc_driver = &em_if_driver,
722 .isc_flags =
723 IFLIB_NEED_SCRATCH | IFLIB_TSO_INIT_IP | IFLIB_NEED_ZERO_CSUM,
724
725 .isc_nrxd_min = {EM_MIN_RXD},
726 .isc_ntxd_min = {EM_MIN_TXD},
727 .isc_nrxd_max = {EM_MAX_RXD},
728 .isc_ntxd_max = {EM_MAX_TXD},
729 .isc_nrxd_default = {EM_DEFAULT_RXD},
730 .isc_ntxd_default = {EM_DEFAULT_TXD},
731 };
732
733 static struct if_shared_ctx igb_sctx_init = {
734 .isc_magic = IFLIB_MAGIC,
735 .isc_q_align = PAGE_SIZE,
736 .isc_tx_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header),
737 .isc_tx_maxsegsize = PAGE_SIZE,
738 .isc_tso_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header),
739 .isc_tso_maxsegsize = EM_TSO_SEG_SIZE,
740 .isc_rx_maxsize = MJUM9BYTES,
741 .isc_rx_nsegments = 1,
742 .isc_rx_maxsegsize = MJUM9BYTES,
743 .isc_nfl = 1,
744 .isc_nrxqs = 1,
745 .isc_ntxqs = 1,
746 .isc_admin_intrcnt = 1,
747 .isc_vendor_info = igb_vendor_info_array,
748 .isc_driver_version = igb_driver_version,
749 .isc_driver = &igb_if_driver,
750 .isc_flags =
751 IFLIB_NEED_SCRATCH | IFLIB_TSO_INIT_IP | IFLIB_NEED_ZERO_CSUM,
752
753 .isc_nrxd_min = {EM_MIN_RXD},
754 .isc_ntxd_min = {EM_MIN_TXD},
755 .isc_nrxd_max = {IGB_MAX_RXD},
756 .isc_ntxd_max = {IGB_MAX_TXD},
757 .isc_nrxd_default = {EM_DEFAULT_RXD},
758 .isc_ntxd_default = {EM_DEFAULT_TXD},
759 };
760
761 /*****************************************************************
762 *
763 * Dump Registers
764 *
765 ****************************************************************/
766 #define IGB_REGS_LEN 739
767
em_get_regs(SYSCTL_HANDLER_ARGS)768 static int em_get_regs(SYSCTL_HANDLER_ARGS)
769 {
770 struct e1000_softc *sc = (struct e1000_softc *)arg1;
771 struct e1000_hw *hw = &sc->hw;
772 struct sbuf *sb;
773 u32 *regs_buff;
774 int rc;
775
776 regs_buff = malloc(sizeof(u32) * IGB_REGS_LEN, M_DEVBUF, M_WAITOK);
777 memset(regs_buff, 0, IGB_REGS_LEN * sizeof(u32));
778
779 rc = sysctl_wire_old_buffer(req, 0);
780 MPASS(rc == 0);
781 if (rc != 0) {
782 free(regs_buff, M_DEVBUF);
783 return (rc);
784 }
785
786 sb = sbuf_new_for_sysctl(NULL, NULL, 32*400, req);
787 MPASS(sb != NULL);
788 if (sb == NULL) {
789 free(regs_buff, M_DEVBUF);
790 return (ENOMEM);
791 }
792
793 /* General Registers */
794 regs_buff[0] = E1000_READ_REG(hw, E1000_CTRL);
795 regs_buff[1] = E1000_READ_REG(hw, E1000_STATUS);
796 regs_buff[2] = E1000_READ_REG(hw, E1000_CTRL_EXT);
797 regs_buff[3] = E1000_READ_REG(hw, E1000_ICR);
798 regs_buff[4] = E1000_READ_REG(hw, E1000_RCTL);
799 regs_buff[5] = E1000_READ_REG(hw, E1000_RDLEN(0));
800 regs_buff[6] = E1000_READ_REG(hw, E1000_RDH(0));
801 regs_buff[7] = E1000_READ_REG(hw, E1000_RDT(0));
802 regs_buff[8] = E1000_READ_REG(hw, E1000_RXDCTL(0));
803 regs_buff[9] = E1000_READ_REG(hw, E1000_RDBAL(0));
804 regs_buff[10] = E1000_READ_REG(hw, E1000_RDBAH(0));
805 regs_buff[11] = E1000_READ_REG(hw, E1000_TCTL);
806 regs_buff[12] = E1000_READ_REG(hw, E1000_TDBAL(0));
807 regs_buff[13] = E1000_READ_REG(hw, E1000_TDBAH(0));
808 regs_buff[14] = E1000_READ_REG(hw, E1000_TDLEN(0));
809 regs_buff[15] = E1000_READ_REG(hw, E1000_TDH(0));
810 regs_buff[16] = E1000_READ_REG(hw, E1000_TDT(0));
811 regs_buff[17] = E1000_READ_REG(hw, E1000_TXDCTL(0));
812 regs_buff[18] = E1000_READ_REG(hw, E1000_TDFH);
813 regs_buff[19] = E1000_READ_REG(hw, E1000_TDFT);
814 regs_buff[20] = E1000_READ_REG(hw, E1000_TDFHS);
815 regs_buff[21] = E1000_READ_REG(hw, E1000_TDFPC);
816
817 sbuf_printf(sb, "General Registers\n");
818 sbuf_printf(sb, "\tCTRL\t %08x\n", regs_buff[0]);
819 sbuf_printf(sb, "\tSTATUS\t %08x\n", regs_buff[1]);
820 sbuf_printf(sb, "\tCTRL_EXT\t %08x\n\n", regs_buff[2]);
821
822 sbuf_printf(sb, "Interrupt Registers\n");
823 sbuf_printf(sb, "\tICR\t %08x\n\n", regs_buff[3]);
824
825 sbuf_printf(sb, "RX Registers\n");
826 sbuf_printf(sb, "\tRCTL\t %08x\n", regs_buff[4]);
827 sbuf_printf(sb, "\tRDLEN\t %08x\n", regs_buff[5]);
828 sbuf_printf(sb, "\tRDH\t %08x\n", regs_buff[6]);
829 sbuf_printf(sb, "\tRDT\t %08x\n", regs_buff[7]);
830 sbuf_printf(sb, "\tRXDCTL\t %08x\n", regs_buff[8]);
831 sbuf_printf(sb, "\tRDBAL\t %08x\n", regs_buff[9]);
832 sbuf_printf(sb, "\tRDBAH\t %08x\n\n", regs_buff[10]);
833
834 sbuf_printf(sb, "TX Registers\n");
835 sbuf_printf(sb, "\tTCTL\t %08x\n", regs_buff[11]);
836 sbuf_printf(sb, "\tTDBAL\t %08x\n", regs_buff[12]);
837 sbuf_printf(sb, "\tTDBAH\t %08x\n", regs_buff[13]);
838 sbuf_printf(sb, "\tTDLEN\t %08x\n", regs_buff[14]);
839 sbuf_printf(sb, "\tTDH\t %08x\n", regs_buff[15]);
840 sbuf_printf(sb, "\tTDT\t %08x\n", regs_buff[16]);
841 sbuf_printf(sb, "\tTXDCTL\t %08x\n", regs_buff[17]);
842 sbuf_printf(sb, "\tTDFH\t %08x\n", regs_buff[18]);
843 sbuf_printf(sb, "\tTDFT\t %08x\n", regs_buff[19]);
844 sbuf_printf(sb, "\tTDFHS\t %08x\n", regs_buff[20]);
845 sbuf_printf(sb, "\tTDFPC\t %08x\n\n", regs_buff[21]);
846
847 free(regs_buff, M_DEVBUF);
848
849 #ifdef DUMP_DESCS
850 {
851 if_softc_ctx_t scctx = sc->shared;
852 struct rx_ring *rxr = &rx_que->rxr;
853 struct tx_ring *txr = &tx_que->txr;
854 int ntxd = scctx->isc_ntxd[0];
855 int nrxd = scctx->isc_nrxd[0];
856 int j;
857
858 for (j = 0; j < nrxd; j++) {
859 u32 staterr = le32toh(rxr->rx_base[j].wb.upper.status_error);
860 u32 length = le32toh(rxr->rx_base[j].wb.upper.length);
861 sbuf_printf(sb, "\tReceive Descriptor Address %d: %08"
862 PRIx64 " Error:%d Length:%d\n",
863 j, rxr->rx_base[j].read.buffer_addr, staterr, length);
864 }
865
866 for (j = 0; j < min(ntxd, 256); j++) {
867 unsigned int *ptr = (unsigned int *)&txr->tx_base[j];
868
869 sbuf_printf(sb,
870 "\tTXD[%03d] [0]: %08x [1]: %08x [2]: %08x [3]: %08x"
871 " eop: %d DD=%d\n",
872 j, ptr[0], ptr[1], ptr[2], ptr[3], buf->eop,
873 buf->eop != -1 ?
874 txr->tx_base[buf->eop].upper.fields.status &
875 E1000_TXD_STAT_DD : 0);
876
877 }
878 }
879 #endif
880
881 rc = sbuf_finish(sb);
882 sbuf_delete(sb);
883 return(rc);
884 }
885
886 static void *
em_register(device_t dev)887 em_register(device_t dev)
888 {
889 return (&em_sctx_init);
890 }
891
892 static void *
igb_register(device_t dev)893 igb_register(device_t dev)
894 {
895 return (&igb_sctx_init);
896 }
897
898 static int
em_set_num_queues(if_ctx_t ctx)899 em_set_num_queues(if_ctx_t ctx)
900 {
901 struct e1000_softc *sc = iflib_get_softc(ctx);
902 int maxqueues;
903
904 /* Sanity check based on HW */
905 switch (sc->hw.mac.type) {
906 case e1000_82576:
907 case e1000_82580:
908 case e1000_i350:
909 case e1000_i354:
910 maxqueues = 8;
911 break;
912 case e1000_i210:
913 case e1000_82575:
914 maxqueues = 4;
915 break;
916 case e1000_i211:
917 case e1000_82574:
918 maxqueues = 2;
919 break;
920 default:
921 maxqueues = 1;
922 break;
923 }
924
925 return (maxqueues);
926 }
927
928 #define LEM_CAPS \
929 IFCAP_HWCSUM | IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING | \
930 IFCAP_VLAN_HWCSUM | IFCAP_WOL | IFCAP_VLAN_HWFILTER | IFCAP_TSO4 | \
931 IFCAP_LRO | IFCAP_VLAN_HWTSO | IFCAP_JUMBO_MTU | IFCAP_HWCSUM_IPV6
932
933 #define EM_CAPS \
934 IFCAP_HWCSUM | IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING | \
935 IFCAP_VLAN_HWCSUM | IFCAP_WOL | IFCAP_VLAN_HWFILTER | IFCAP_TSO4 | \
936 IFCAP_LRO | IFCAP_VLAN_HWTSO | IFCAP_JUMBO_MTU | IFCAP_HWCSUM_IPV6 | \
937 IFCAP_TSO6
938
939 #define IGB_CAPS \
940 IFCAP_HWCSUM | IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING | \
941 IFCAP_VLAN_HWCSUM | IFCAP_WOL | IFCAP_VLAN_HWFILTER | IFCAP_TSO4 | \
942 IFCAP_LRO | IFCAP_VLAN_HWTSO | IFCAP_JUMBO_MTU | IFCAP_HWCSUM_IPV6 | \
943 IFCAP_TSO6
944
945 /*********************************************************************
946 * Device initialization routine
947 *
948 * The attach entry point is called when the driver is being loaded.
949 * This routine identifies the type of hardware, allocates all resources
950 * and initializes the hardware.
951 *
952 * return 0 on success, positive on failure
953 *********************************************************************/
954 static int
em_if_attach_pre(if_ctx_t ctx)955 em_if_attach_pre(if_ctx_t ctx)
956 {
957 struct e1000_softc *sc;
958 if_softc_ctx_t scctx;
959 device_t dev;
960 struct e1000_hw *hw;
961 struct sysctl_oid_list *child;
962 struct sysctl_ctx_list *ctx_list;
963 int error = 0;
964
965 INIT_DEBUGOUT("em_if_attach_pre: begin");
966 dev = iflib_get_dev(ctx);
967 sc = iflib_get_softc(ctx);
968
969 sc->ctx = sc->osdep.ctx = ctx;
970 sc->dev = sc->osdep.dev = dev;
971 scctx = sc->shared = iflib_get_softc_ctx(ctx);
972 sc->media = iflib_get_media(ctx);
973 hw = &sc->hw;
974
975 /* Determine hardware and mac info */
976 em_identify_hardware(ctx);
977
978 /* SYSCTL stuff */
979 ctx_list = device_get_sysctl_ctx(dev);
980 child = SYSCTL_CHILDREN(device_get_sysctl_tree(dev));
981
982 SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO, "nvm",
983 CTLTYPE_INT | CTLFLAG_RW, sc, 0,
984 em_sysctl_nvm_info, "I", "NVM Information");
985
986 sc->enable_aim = em_enable_aim;
987 SYSCTL_ADD_INT(ctx_list, child, OID_AUTO, "enable_aim",
988 CTLFLAG_RW, &sc->enable_aim, 0,
989 "Interrupt Moderation (1=normal, 2=lowlatency)");
990
991 SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO, "fw_version",
992 CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
993 em_sysctl_print_fw_version, "A",
994 "Prints FW/NVM Versions");
995
996 SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO, "debug",
997 CTLTYPE_INT | CTLFLAG_RW, sc, 0,
998 em_sysctl_debug_info, "I", "Debug Information");
999
1000 SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO, "fc",
1001 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, sc, 0,
1002 em_set_flowcntl, "I", "Flow Control");
1003
1004 SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO, "reg_dump",
1005 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, sc, 0,
1006 em_get_regs, "A", "Dump Registers");
1007
1008 SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO, "rs_dump",
1009 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, sc, 0,
1010 em_get_rs, "I", "Dump RS indexes");
1011
1012 if (hw->mac.type >= e1000_i350) {
1013 SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO, "dmac",
1014 CTLTYPE_INT | CTLFLAG_RW, sc, 0,
1015 igb_sysctl_dmac, "I", "DMA Coalesce");
1016 }
1017
1018 SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO,
1019 "tso_tcp_flags_mask_first_segment",
1020 CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
1021 sc, 0, em_sysctl_tso_tcp_flags_mask, "IU",
1022 "TSO TCP flags mask for first segment");
1023
1024 SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO,
1025 "tso_tcp_flags_mask_middle_segment",
1026 CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
1027 sc, 1, em_sysctl_tso_tcp_flags_mask, "IU",
1028 "TSO TCP flags mask for middle segment");
1029
1030 SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO,
1031 "tso_tcp_flags_mask_last_segment",
1032 CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
1033 sc, 2, em_sysctl_tso_tcp_flags_mask, "IU",
1034 "TSO TCP flags mask for last segment");
1035
1036 scctx->isc_tx_nsegments = EM_MAX_SCATTER;
1037 scctx->isc_nrxqsets_max =
1038 scctx->isc_ntxqsets_max = em_set_num_queues(ctx);
1039 if (bootverbose)
1040 device_printf(dev, "attach_pre capping queues at %d\n",
1041 scctx->isc_ntxqsets_max);
1042
1043 if (hw->mac.type >= igb_mac_min) {
1044 scctx->isc_txqsizes[0] = roundup2(scctx->isc_ntxd[0] *
1045 sizeof(union e1000_adv_tx_desc), EM_DBA_ALIGN);
1046 scctx->isc_rxqsizes[0] = roundup2(scctx->isc_nrxd[0] *
1047 sizeof(union e1000_adv_rx_desc), EM_DBA_ALIGN);
1048 scctx->isc_txd_size[0] = sizeof(union e1000_adv_tx_desc);
1049 scctx->isc_rxd_size[0] = sizeof(union e1000_adv_rx_desc);
1050 scctx->isc_txrx = &igb_txrx;
1051 scctx->isc_tx_tso_segments_max = EM_MAX_SCATTER;
1052 scctx->isc_tx_tso_size_max = EM_TSO_SIZE;
1053 scctx->isc_tx_tso_segsize_max = EM_TSO_SEG_SIZE;
1054 scctx->isc_capabilities = scctx->isc_capenable = IGB_CAPS;
1055 scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP | CSUM_TSO |
1056 CSUM_IP6_TCP | CSUM_IP6_UDP;
1057 if (hw->mac.type != e1000_82575)
1058 scctx->isc_tx_csum_flags |= CSUM_SCTP | CSUM_IP6_SCTP;
1059 /*
1060 ** Some new devices, as with ixgbe, now may
1061 ** use a different BAR, so we need to keep
1062 ** track of which is used.
1063 */
1064 scctx->isc_msix_bar = pci_msix_table_bar(dev);
1065 } else if (hw->mac.type >= em_mac_min) {
1066 scctx->isc_txqsizes[0] = roundup2(scctx->isc_ntxd[0] *
1067 sizeof(struct e1000_tx_desc), EM_DBA_ALIGN);
1068 scctx->isc_rxqsizes[0] = roundup2(scctx->isc_nrxd[0] *
1069 sizeof(union e1000_rx_desc_extended), EM_DBA_ALIGN);
1070 scctx->isc_txd_size[0] = sizeof(struct e1000_tx_desc);
1071 scctx->isc_rxd_size[0] = sizeof(union e1000_rx_desc_extended);
1072 scctx->isc_txrx = &em_txrx;
1073 scctx->isc_tx_tso_segments_max = EM_MAX_SCATTER;
1074 scctx->isc_tx_tso_size_max = EM_TSO_SIZE;
1075 scctx->isc_tx_tso_segsize_max = EM_TSO_SEG_SIZE;
1076 scctx->isc_capabilities = scctx->isc_capenable = EM_CAPS;
1077 scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP | CSUM_IP_TSO |
1078 CSUM_IP6_TCP | CSUM_IP6_UDP;
1079
1080 /* Disable TSO on all em(4) until ring stalls are debugged */
1081 scctx->isc_capenable &= ~IFCAP_TSO;
1082
1083 /*
1084 * Disable TSO on SPT due to errata that downclocks DMA
1085 * performance
1086 * i218-i219 Specification Update 1.5.4.5
1087 */
1088 if (hw->mac.type == e1000_pch_spt)
1089 scctx->isc_capenable &= ~IFCAP_TSO;
1090
1091 /*
1092 * We support MSI-X with 82574 only, but indicate to iflib(4)
1093 * that it shall give MSI at least a try with other devices.
1094 */
1095 if (hw->mac.type == e1000_82574) {
1096 scctx->isc_msix_bar = pci_msix_table_bar(dev);
1097 } else {
1098 scctx->isc_msix_bar = -1;
1099 scctx->isc_disable_msix = 1;
1100 }
1101 } else {
1102 scctx->isc_txqsizes[0] = roundup2((scctx->isc_ntxd[0] + 1) *
1103 sizeof(struct e1000_tx_desc), EM_DBA_ALIGN);
1104 scctx->isc_rxqsizes[0] = roundup2((scctx->isc_nrxd[0] + 1) *
1105 sizeof(struct e1000_rx_desc), EM_DBA_ALIGN);
1106 scctx->isc_txd_size[0] = sizeof(struct e1000_tx_desc);
1107 scctx->isc_rxd_size[0] = sizeof(struct e1000_rx_desc);
1108 scctx->isc_txrx = &lem_txrx;
1109 scctx->isc_tx_tso_segments_max = EM_MAX_SCATTER;
1110 scctx->isc_tx_tso_size_max = EM_TSO_SIZE;
1111 scctx->isc_tx_tso_segsize_max = EM_TSO_SEG_SIZE;
1112 scctx->isc_capabilities = scctx->isc_capenable = LEM_CAPS;
1113 if (em_unsupported_tso)
1114 scctx->isc_capabilities |= IFCAP_TSO6;
1115 scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP | CSUM_IP_TSO |
1116 CSUM_IP6_TCP | CSUM_IP6_UDP;
1117
1118 /* Disable TSO on all lem(4) until ring stalls debugged */
1119 scctx->isc_capenable &= ~IFCAP_TSO;
1120
1121 /* 82541ER doesn't do HW tagging */
1122 if (hw->device_id == E1000_DEV_ID_82541ER ||
1123 hw->device_id == E1000_DEV_ID_82541ER_LOM) {
1124 scctx->isc_capabilities &= ~IFCAP_VLAN_HWTAGGING;
1125 scctx->isc_capenable = scctx->isc_capabilities;
1126 }
1127 /* This is the first e1000 chip and it does not do offloads */
1128 if (hw->mac.type == e1000_82542) {
1129 scctx->isc_capabilities &= ~(IFCAP_HWCSUM |
1130 IFCAP_VLAN_HWCSUM | IFCAP_HWCSUM_IPV6 |
1131 IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_HWFILTER |
1132 IFCAP_TSO | IFCAP_VLAN_HWTSO);
1133 scctx->isc_capenable = scctx->isc_capabilities;
1134 }
1135 /* These can't do TSO for various reasons */
1136 if (hw->mac.type < e1000_82544 ||
1137 hw->mac.type == e1000_82547 ||
1138 hw->mac.type == e1000_82547_rev_2) {
1139 scctx->isc_capabilities &=
1140 ~(IFCAP_TSO |IFCAP_VLAN_HWTSO);
1141 scctx->isc_capenable = scctx->isc_capabilities;
1142 }
1143 /* XXXKB: No IPv6 before this? */
1144 if (hw->mac.type < e1000_82545){
1145 scctx->isc_capabilities &= ~IFCAP_HWCSUM_IPV6;
1146 scctx->isc_capenable = scctx->isc_capabilities;
1147 }
1148 /*
1149 * "PCI/PCI-X SDM 4.0" page 33 (b):
1150 * FDX requirement on these chips
1151 */
1152 if (hw->mac.type == e1000_82547 ||
1153 hw->mac.type == e1000_82547_rev_2)
1154 scctx->isc_capenable &= ~(IFCAP_HWCSUM |
1155 IFCAP_VLAN_HWCSUM | IFCAP_HWCSUM_IPV6);
1156
1157 /* INTx only */
1158 scctx->isc_msix_bar = 0;
1159 }
1160
1161 /* Setup PCI resources */
1162 if (em_allocate_pci_resources(ctx)) {
1163 device_printf(dev, "Allocation of PCI resources failed\n");
1164 error = ENXIO;
1165 goto err_pci;
1166 }
1167
1168 /*
1169 ** For ICH8 and family we need to
1170 ** map the flash memory, and this
1171 ** must happen after the MAC is
1172 ** identified
1173 */
1174 if ((hw->mac.type == e1000_ich8lan) ||
1175 (hw->mac.type == e1000_ich9lan) ||
1176 (hw->mac.type == e1000_ich10lan) ||
1177 (hw->mac.type == e1000_pchlan) ||
1178 (hw->mac.type == e1000_pch2lan) ||
1179 (hw->mac.type == e1000_pch_lpt)) {
1180 int rid = EM_BAR_TYPE_FLASH;
1181 sc->flash = bus_alloc_resource_any(dev,
1182 SYS_RES_MEMORY, &rid, RF_ACTIVE);
1183 if (sc->flash == NULL) {
1184 device_printf(dev, "Mapping of Flash failed\n");
1185 error = ENXIO;
1186 goto err_pci;
1187 }
1188 /* This is used in the shared code */
1189 hw->flash_address = (u8 *)sc->flash;
1190 sc->osdep.flash_bus_space_tag =
1191 rman_get_bustag(sc->flash);
1192 sc->osdep.flash_bus_space_handle =
1193 rman_get_bushandle(sc->flash);
1194 }
1195 /*
1196 ** In the new SPT device flash is not a
1197 ** separate BAR, rather it is also in BAR0,
1198 ** so use the same tag and an offset handle for the
1199 ** FLASH read/write macros in the shared code.
1200 */
1201 else if (hw->mac.type >= e1000_pch_spt) {
1202 sc->osdep.flash_bus_space_tag = sc->osdep.mem_bus_space_tag;
1203 sc->osdep.flash_bus_space_handle =
1204 sc->osdep.mem_bus_space_handle + E1000_FLASH_BASE_ADDR;
1205 }
1206
1207 /* Do Shared Code initialization */
1208 error = e1000_setup_init_funcs(hw, true);
1209 if (error) {
1210 device_printf(dev, "Setup of Shared code failed, error %d\n",
1211 error);
1212 error = ENXIO;
1213 goto err_pci;
1214 }
1215
1216 em_setup_msix(ctx);
1217 e1000_get_bus_info(hw);
1218
1219 /* Set up some sysctls for the tunable interrupt delays */
1220 if (hw->mac.type < igb_mac_min) {
1221 em_add_int_delay_sysctl(sc, "rx_int_delay",
1222 "receive interrupt delay in usecs", &sc->rx_int_delay,
1223 E1000_REGISTER(hw, E1000_RDTR), em_rx_int_delay_dflt);
1224 em_add_int_delay_sysctl(sc, "tx_int_delay",
1225 "transmit interrupt delay in usecs", &sc->tx_int_delay,
1226 E1000_REGISTER(hw, E1000_TIDV), em_tx_int_delay_dflt);
1227 }
1228 if (hw->mac.type >= e1000_82540 && hw->mac.type < igb_mac_min) {
1229 em_add_int_delay_sysctl(sc, "rx_abs_int_delay",
1230 "receive interrupt delay limit in usecs",
1231 &sc->rx_abs_int_delay,
1232 E1000_REGISTER(hw, E1000_RADV), em_rx_abs_int_delay_dflt);
1233 em_add_int_delay_sysctl(sc, "tx_abs_int_delay",
1234 "transmit interrupt delay limit in usecs",
1235 &sc->tx_abs_int_delay,
1236 E1000_REGISTER(hw, E1000_TADV), em_tx_abs_int_delay_dflt);
1237 }
1238
1239 hw->mac.autoneg = DO_AUTO_NEG;
1240 hw->phy.autoneg_wait_to_complete = false;
1241 hw->phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
1242
1243 if (hw->mac.type < em_mac_min) {
1244 e1000_init_script_state_82541(hw, true);
1245 e1000_set_tbi_compatibility_82543(hw, true);
1246 }
1247 /* Copper options */
1248 if (hw->phy.media_type == e1000_media_type_copper) {
1249 hw->phy.mdix = AUTO_ALL_MODES;
1250 hw->phy.disable_polarity_correction = false;
1251 hw->phy.ms_type = EM_MASTER_SLAVE;
1252 }
1253
1254 /*
1255 * Set the frame limits assuming
1256 * standard ethernet sized frames.
1257 */
1258 scctx->isc_max_frame_size = hw->mac.max_frame_size =
1259 ETHERMTU + ETHER_HDR_LEN + ETHERNET_FCS_SIZE;
1260
1261 /*
1262 * This controls when hardware reports transmit completion
1263 * status.
1264 */
1265 hw->mac.report_tx_early = 1;
1266
1267 /* Allocate multicast array memory. */
1268 sc->mta = malloc(sizeof(u8) * ETHER_ADDR_LEN *
1269 MAX_NUM_MULTICAST_ADDRESSES, M_DEVBUF, M_NOWAIT);
1270 if (sc->mta == NULL) {
1271 device_printf(dev,
1272 "Can not allocate multicast setup array\n");
1273 error = ENOMEM;
1274 goto err_late;
1275 }
1276
1277 /* Clear the IFCAP_TSO auto mask */
1278 sc->tso_automasked = 0;
1279
1280 /* Check SOL/IDER usage */
1281 if (e1000_check_reset_block(hw))
1282 device_printf(dev,
1283 "PHY reset is blocked due to SOL/IDER session.\n");
1284
1285 /* Sysctl for setting Energy Efficient Ethernet */
1286 if (hw->mac.type < igb_mac_min)
1287 hw->dev_spec.ich8lan.eee_disable = eee_setting;
1288 else
1289 hw->dev_spec._82575.eee_disable = eee_setting;
1290 SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO, "eee_control",
1291 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, sc, 0,
1292 em_sysctl_eee, "I", "Disable Energy Efficient Ethernet");
1293
1294 /*
1295 ** Start from a known state, this is
1296 ** important in reading the nvm and
1297 ** mac from that.
1298 */
1299 e1000_reset_hw(hw);
1300
1301 /* Make sure we have a good EEPROM before we read from it */
1302 if (e1000_validate_nvm_checksum(hw) < 0) {
1303 /*
1304 ** Some PCI-E parts fail the first check due to
1305 ** the link being in sleep state, call it again,
1306 ** if it fails a second time its a real issue.
1307 */
1308 if (e1000_validate_nvm_checksum(hw) < 0) {
1309 device_printf(dev,
1310 "The EEPROM Checksum Is Not Valid\n");
1311 error = EIO;
1312 goto err_late;
1313 }
1314 }
1315
1316 /* Copy the permanent MAC address out of the EEPROM */
1317 if (e1000_read_mac_addr(hw) < 0) {
1318 device_printf(dev,
1319 "EEPROM read error while reading MAC address\n");
1320 error = EIO;
1321 goto err_late;
1322 }
1323
1324 if (!em_is_valid_ether_addr(hw->mac.addr)) {
1325 if (sc->vf_ifp) {
1326 ether_gen_addr(iflib_get_ifp(ctx),
1327 (struct ether_addr *)hw->mac.addr);
1328 } else {
1329 device_printf(dev, "Invalid MAC address\n");
1330 error = EIO;
1331 goto err_late;
1332 }
1333 }
1334
1335 /* Save the EEPROM/NVM versions, must be done under IFLIB_CTX_LOCK */
1336 em_fw_version_locked(ctx);
1337
1338 em_print_fw_version(sc);
1339
1340 /*
1341 * Get Wake-on-Lan and Management info for later use
1342 */
1343 em_get_wakeup(ctx);
1344
1345 /* Enable only WOL MAGIC by default */
1346 scctx->isc_capenable &= ~IFCAP_WOL;
1347 if (sc->wol != 0)
1348 scctx->isc_capenable |= IFCAP_WOL_MAGIC;
1349
1350 iflib_set_mac(ctx, hw->mac.addr);
1351
1352 return (0);
1353
1354 err_late:
1355 em_release_hw_control(sc);
1356 err_pci:
1357 em_free_pci_resources(ctx);
1358 free(sc->mta, M_DEVBUF);
1359
1360 return (error);
1361 }
1362
1363 static int
em_if_attach_post(if_ctx_t ctx)1364 em_if_attach_post(if_ctx_t ctx)
1365 {
1366 struct e1000_softc *sc = iflib_get_softc(ctx);
1367 struct e1000_hw *hw = &sc->hw;
1368 int error = 0;
1369
1370 /* Setup OS specific network interface */
1371 error = em_setup_interface(ctx);
1372 if (error != 0) {
1373 device_printf(sc->dev, "Interface setup failed: %d\n", error);
1374 goto err_late;
1375 }
1376
1377 em_reset(ctx);
1378
1379 /* Initialize statistics */
1380 em_update_stats_counters(sc);
1381 hw->mac.get_link_status = 1;
1382 em_if_update_admin_status(ctx);
1383 em_add_hw_stats(sc);
1384
1385 /* Non-AMT based hardware can now take control from firmware */
1386 if (sc->has_manage && !sc->has_amt)
1387 em_get_hw_control(sc);
1388
1389 INIT_DEBUGOUT("em_if_attach_post: end");
1390
1391 return (0);
1392
1393 err_late:
1394 /*
1395 * Upon em_if_attach_post() error, iflib calls em_if_detach() to
1396 * free resources
1397 */
1398 return (error);
1399 }
1400
1401 /*********************************************************************
1402 * Device removal routine
1403 *
1404 * The detach entry point is called when the driver is being removed.
1405 * This routine stops the adapter and deallocates all the resources
1406 * that were allocated for driver operation.
1407 *
1408 * return 0 on success, positive on failure
1409 *********************************************************************/
1410 static int
em_if_detach(if_ctx_t ctx)1411 em_if_detach(if_ctx_t ctx)
1412 {
1413 struct e1000_softc *sc = iflib_get_softc(ctx);
1414
1415 INIT_DEBUGOUT("em_if_detach: begin");
1416
1417 e1000_phy_hw_reset(&sc->hw);
1418
1419 em_release_manageability(sc);
1420 em_release_hw_control(sc);
1421 em_free_pci_resources(ctx);
1422 free(sc->mta, M_DEVBUF);
1423 sc->mta = NULL;
1424
1425 return (0);
1426 }
1427
1428 /*********************************************************************
1429 *
1430 * Shutdown entry point
1431 *
1432 **********************************************************************/
1433
1434 static int
em_if_shutdown(if_ctx_t ctx)1435 em_if_shutdown(if_ctx_t ctx)
1436 {
1437 return em_if_suspend(ctx);
1438 }
1439
1440 /*
1441 * Suspend/resume device methods.
1442 */
1443 static int
em_if_suspend(if_ctx_t ctx)1444 em_if_suspend(if_ctx_t ctx)
1445 {
1446 struct e1000_softc *sc = iflib_get_softc(ctx);
1447
1448 em_release_manageability(sc);
1449 em_release_hw_control(sc);
1450 em_enable_wakeup(ctx);
1451 return (0);
1452 }
1453
1454 static int
em_if_resume(if_ctx_t ctx)1455 em_if_resume(if_ctx_t ctx)
1456 {
1457 struct e1000_softc *sc = iflib_get_softc(ctx);
1458
1459 if (sc->hw.mac.type == e1000_pch2lan)
1460 e1000_resume_workarounds_pchlan(&sc->hw);
1461 em_if_init(ctx);
1462 em_init_manageability(sc);
1463
1464 return(0);
1465 }
1466
1467 static int
em_if_mtu_set(if_ctx_t ctx,uint32_t mtu)1468 em_if_mtu_set(if_ctx_t ctx, uint32_t mtu)
1469 {
1470 int max_frame_size;
1471 struct e1000_softc *sc = iflib_get_softc(ctx);
1472 if_softc_ctx_t scctx = iflib_get_softc_ctx(ctx);
1473
1474 IOCTL_DEBUGOUT("ioctl rcv'd: SIOCSIFMTU (Set Interface MTU)");
1475
1476 switch (sc->hw.mac.type) {
1477 case e1000_82571:
1478 case e1000_82572:
1479 case e1000_ich9lan:
1480 case e1000_ich10lan:
1481 case e1000_pch2lan:
1482 case e1000_pch_lpt:
1483 case e1000_pch_spt:
1484 case e1000_pch_cnp:
1485 case e1000_pch_tgp:
1486 case e1000_pch_adp:
1487 case e1000_pch_mtp:
1488 case e1000_pch_ptp:
1489 case e1000_82574:
1490 case e1000_82583:
1491 case e1000_80003es2lan:
1492 /* 9K Jumbo Frame size */
1493 max_frame_size = 9234;
1494 break;
1495 case e1000_pchlan:
1496 max_frame_size = 4096;
1497 break;
1498 case e1000_82542:
1499 case e1000_ich8lan:
1500 /* Adapters that do not support jumbo frames */
1501 max_frame_size = ETHER_MAX_LEN;
1502 break;
1503 default:
1504 if (sc->hw.mac.type >= igb_mac_min)
1505 max_frame_size = 9234;
1506 else /* lem */
1507 max_frame_size = MAX_JUMBO_FRAME_SIZE;
1508 }
1509 if (mtu > max_frame_size - ETHER_HDR_LEN - ETHER_CRC_LEN) {
1510 return (EINVAL);
1511 }
1512
1513 scctx->isc_max_frame_size = sc->hw.mac.max_frame_size =
1514 mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
1515 return (0);
1516 }
1517
1518 /*********************************************************************
1519 * Init entry point
1520 *
1521 * This routine is used in two ways. It is used by the stack as
1522 * init entry point in network interface structure. It is also used
1523 * by the driver as a hw/sw initialization routine to get to a
1524 * consistent state.
1525 *
1526 **********************************************************************/
1527 static void
em_if_init(if_ctx_t ctx)1528 em_if_init(if_ctx_t ctx)
1529 {
1530 struct e1000_softc *sc = iflib_get_softc(ctx);
1531 if_softc_ctx_t scctx = sc->shared;
1532 if_t ifp = iflib_get_ifp(ctx);
1533 struct em_tx_queue *tx_que;
1534 int i;
1535
1536 INIT_DEBUGOUT("em_if_init: begin");
1537
1538 /* Get the latest mac address, User can use a LAA */
1539 bcopy(if_getlladdr(ifp), sc->hw.mac.addr, ETHER_ADDR_LEN);
1540
1541 /* Put the address into the Receive Address Array */
1542 e1000_rar_set(&sc->hw, sc->hw.mac.addr, 0);
1543
1544 /*
1545 * With the 82571 adapter, RAR[0] may be overwritten
1546 * when the other port is reset, we make a duplicate
1547 * in RAR[14] for that eventuality, this assures
1548 * the interface continues to function.
1549 */
1550 if (sc->hw.mac.type == e1000_82571) {
1551 e1000_set_laa_state_82571(&sc->hw, true);
1552 e1000_rar_set(&sc->hw, sc->hw.mac.addr,
1553 E1000_RAR_ENTRIES - 1);
1554 }
1555
1556 /* Initialize the hardware */
1557 em_reset(ctx);
1558 em_if_update_admin_status(ctx);
1559
1560 for (i = 0, tx_que = sc->tx_queues; i < sc->tx_num_queues;
1561 i++, tx_que++) {
1562 struct tx_ring *txr = &tx_que->txr;
1563
1564 txr->tx_rs_cidx = txr->tx_rs_pidx;
1565
1566 /* Initialize the last processed descriptor to be the end of
1567 * the ring, rather than the start, so that we avoid an
1568 * off-by-one error when calculating how many descriptors are
1569 * done in the credits_update function.
1570 */
1571 txr->tx_cidx_processed = scctx->isc_ntxd[0] - 1;
1572 }
1573
1574 /* Setup VLAN support, basic and offload if available */
1575 E1000_WRITE_REG(&sc->hw, E1000_VET, ETHERTYPE_VLAN);
1576
1577 /* Clear bad data from Rx FIFOs */
1578 if (sc->hw.mac.type >= igb_mac_min)
1579 e1000_rx_fifo_flush_base(&sc->hw);
1580
1581 /* Configure for OS presence */
1582 em_init_manageability(sc);
1583
1584 /* Prepare transmit descriptors and buffers */
1585 em_initialize_transmit_unit(ctx);
1586
1587 /* Setup Multicast table */
1588 em_if_multi_set(ctx);
1589
1590 sc->rx_mbuf_sz = iflib_get_rx_mbuf_sz(ctx);
1591 em_initialize_receive_unit(ctx);
1592
1593 /* Set up VLAN support and filter */
1594 em_setup_vlan_hw_support(ctx);
1595
1596 /* Don't lose promiscuous settings */
1597 em_if_set_promisc(ctx, if_getflags(ifp));
1598 e1000_clear_hw_cntrs_base_generic(&sc->hw);
1599
1600 /* MSI-X configuration for 82574 */
1601 if (sc->hw.mac.type == e1000_82574) {
1602 int tmp = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
1603
1604 tmp |= E1000_CTRL_EXT_PBA_CLR;
1605 E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT, tmp);
1606 /* Set the IVAR - interrupt vector routing. */
1607 E1000_WRITE_REG(&sc->hw, E1000_IVAR, sc->ivars);
1608 } else if (sc->intr_type == IFLIB_INTR_MSIX) {
1609 /* Set up queue routing */
1610 igb_configure_queues(sc);
1611 }
1612
1613 /* this clears any pending interrupts */
1614 E1000_READ_REG(&sc->hw, E1000_ICR);
1615 E1000_WRITE_REG(&sc->hw, E1000_ICS, E1000_ICS_LSC);
1616
1617 /* AMT based hardware can now take control from firmware */
1618 if (sc->has_manage && sc->has_amt)
1619 em_get_hw_control(sc);
1620
1621 /* Set Energy Efficient Ethernet */
1622 if (sc->hw.mac.type >= igb_mac_min &&
1623 sc->hw.phy.media_type == e1000_media_type_copper) {
1624 if (sc->hw.mac.type == e1000_i354)
1625 e1000_set_eee_i354(&sc->hw, true, true);
1626 else
1627 e1000_set_eee_i350(&sc->hw, true, true);
1628 }
1629 }
1630
1631 enum itr_latency_target {
1632 itr_latency_disabled = 0,
1633 itr_latency_lowest = 1,
1634 itr_latency_low = 2,
1635 itr_latency_bulk = 3
1636 };
1637 /*********************************************************************
1638 *
1639 * Helper to calculate next (E)ITR value for AIM
1640 *
1641 *********************************************************************/
1642 static void
em_newitr(struct e1000_softc * sc,struct em_rx_queue * que,struct tx_ring * txr,struct rx_ring * rxr)1643 em_newitr(struct e1000_softc *sc, struct em_rx_queue *que,
1644 struct tx_ring *txr, struct rx_ring *rxr)
1645 {
1646 struct e1000_hw *hw = &sc->hw;
1647 unsigned long bytes, bytes_per_packet, packets;
1648 unsigned long rxbytes, rxpackets, txbytes, txpackets;
1649 u32 newitr;
1650 u8 nextlatency;
1651
1652 rxbytes = atomic_load_long(&rxr->rx_bytes);
1653 txbytes = atomic_load_long(&txr->tx_bytes);
1654
1655 /* Idle, do nothing */
1656 if (txbytes == 0 && rxbytes == 0)
1657 return;
1658
1659 newitr = 0;
1660
1661 if (sc->enable_aim) {
1662 nextlatency = rxr->rx_nextlatency;
1663
1664 /* Use half default (4K) ITR if sub-gig */
1665 if (sc->link_speed != 1000) {
1666 newitr = EM_INTS_4K;
1667 goto em_set_next_itr;
1668 }
1669 /* Want at least enough packet buffer for two frames to AIM */
1670 if (sc->shared->isc_max_frame_size * 2 > (sc->pba << 10)) {
1671 newitr = em_max_interrupt_rate;
1672 sc->enable_aim = 0;
1673 goto em_set_next_itr;
1674 }
1675
1676 bytes = bytes_per_packet = 0;
1677 /* Get largest values from the associated tx and rx ring */
1678 txpackets = atomic_load_long(&txr->tx_packets);
1679 if (txpackets != 0) {
1680 bytes = txbytes;
1681 bytes_per_packet = txbytes / txpackets;
1682 packets = txpackets;
1683 }
1684 rxpackets = atomic_load_long(&rxr->rx_packets);
1685 if (rxpackets != 0) {
1686 bytes = lmax(bytes, rxbytes);
1687 bytes_per_packet =
1688 lmax(bytes_per_packet, rxbytes / rxpackets);
1689 packets = lmax(packets, rxpackets);
1690 }
1691
1692 /* Latency state machine */
1693 switch (nextlatency) {
1694 case itr_latency_disabled: /* Bootstrapping */
1695 nextlatency = itr_latency_low;
1696 break;
1697 case itr_latency_lowest: /* 70k ints/s */
1698 /* TSO and jumbo frames */
1699 if (bytes_per_packet > 8000)
1700 nextlatency = itr_latency_bulk;
1701 else if ((packets < 5) && (bytes > 512))
1702 nextlatency = itr_latency_low;
1703 break;
1704 case itr_latency_low: /* 20k ints/s */
1705 if (bytes > 10000) {
1706 /* Handle TSO */
1707 if (bytes_per_packet > 8000)
1708 nextlatency = itr_latency_bulk;
1709 else if ((packets < 10) ||
1710 (bytes_per_packet > 1200))
1711 nextlatency = itr_latency_bulk;
1712 else if (packets > 35)
1713 nextlatency = itr_latency_lowest;
1714 } else if (bytes_per_packet > 2000) {
1715 nextlatency = itr_latency_bulk;
1716 } else if (packets < 3 && bytes < 512) {
1717 nextlatency = itr_latency_lowest;
1718 }
1719 break;
1720 case itr_latency_bulk: /* 4k ints/s */
1721 if (bytes > 25000) {
1722 if (packets > 35)
1723 nextlatency = itr_latency_low;
1724 } else if (bytes < 1500)
1725 nextlatency = itr_latency_low;
1726 break;
1727 default:
1728 nextlatency = itr_latency_low;
1729 device_printf(sc->dev,
1730 "Unexpected newitr transition %d\n", nextlatency);
1731 break;
1732 }
1733
1734 /* Trim itr_latency_lowest for default AIM setting */
1735 if (sc->enable_aim == 1 && nextlatency == itr_latency_lowest)
1736 nextlatency = itr_latency_low;
1737
1738 /* Request new latency */
1739 rxr->rx_nextlatency = nextlatency;
1740 } else {
1741 /* We may have toggled to AIM disabled */
1742 nextlatency = itr_latency_disabled;
1743 rxr->rx_nextlatency = nextlatency;
1744 }
1745
1746 /* ITR state machine */
1747 switch(nextlatency) {
1748 case itr_latency_lowest:
1749 newitr = EM_INTS_70K;
1750 break;
1751 case itr_latency_low:
1752 newitr = EM_INTS_20K;
1753 break;
1754 case itr_latency_bulk:
1755 newitr = EM_INTS_4K;
1756 break;
1757 case itr_latency_disabled:
1758 default:
1759 newitr = em_max_interrupt_rate;
1760 break;
1761 }
1762
1763 em_set_next_itr:
1764 if (hw->mac.type >= igb_mac_min) {
1765 newitr = IGB_INTS_TO_EITR(newitr);
1766
1767 if (hw->mac.type == e1000_82575)
1768 newitr |= newitr << 16;
1769 else
1770 newitr |= E1000_EITR_CNT_IGNR;
1771
1772 if (newitr != que->itr_setting) {
1773 que->itr_setting = newitr;
1774 E1000_WRITE_REG(hw, E1000_EITR(que->msix),
1775 que->itr_setting);
1776 }
1777 } else {
1778 newitr = EM_INTS_TO_ITR(newitr);
1779
1780 if (newitr != que->itr_setting) {
1781 que->itr_setting = newitr;
1782 if (hw->mac.type == e1000_82574 && que->msix) {
1783 E1000_WRITE_REG(hw,
1784 E1000_EITR_82574(que->msix),
1785 que->itr_setting);
1786 } else {
1787 E1000_WRITE_REG(hw, E1000_ITR,
1788 que->itr_setting);
1789 }
1790 }
1791 }
1792 }
1793
1794 /*********************************************************************
1795 *
1796 * Fast Legacy/MSI Combined Interrupt Service routine
1797 *
1798 *********************************************************************/
1799 int
em_intr(void * arg)1800 em_intr(void *arg)
1801 {
1802 struct e1000_softc *sc = arg;
1803 struct e1000_hw *hw = &sc->hw;
1804 struct em_rx_queue *que = &sc->rx_queues[0];
1805 struct tx_ring *txr = &sc->tx_queues[0].txr;
1806 struct rx_ring *rxr = &que->rxr;
1807 if_ctx_t ctx = sc->ctx;
1808 u32 reg_icr;
1809
1810 reg_icr = E1000_READ_REG(hw, E1000_ICR);
1811
1812 /* Hot eject? */
1813 if (reg_icr == 0xffffffff)
1814 return FILTER_STRAY;
1815
1816 /* Definitely not our interrupt. */
1817 if (reg_icr == 0x0)
1818 return FILTER_STRAY;
1819
1820 /*
1821 * Starting with the 82571 chip, bit 31 should be used to
1822 * determine whether the interrupt belongs to us.
1823 */
1824 if (hw->mac.type >= e1000_82571 &&
1825 (reg_icr & E1000_ICR_INT_ASSERTED) == 0)
1826 return FILTER_STRAY;
1827
1828 /*
1829 * Only MSI-X interrupts have one-shot behavior by taking advantage
1830 * of the EIAC register. Thus, explicitly disable interrupts. This
1831 * also works around the MSI message reordering errata on certain
1832 * systems.
1833 */
1834 IFDI_INTR_DISABLE(ctx);
1835
1836 /* Link status change */
1837 if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))
1838 em_handle_link(ctx);
1839
1840 if (reg_icr & E1000_ICR_RXO)
1841 sc->rx_overruns++;
1842
1843 if (hw->mac.type >= e1000_82540)
1844 em_newitr(sc, que, txr, rxr);
1845
1846 /* Reset state */
1847 txr->tx_bytes = 0;
1848 txr->tx_packets = 0;
1849 rxr->rx_bytes = 0;
1850 rxr->rx_packets = 0;
1851
1852 return (FILTER_SCHEDULE_THREAD);
1853 }
1854
1855 static int
em_if_rx_queue_intr_enable(if_ctx_t ctx,uint16_t rxqid)1856 em_if_rx_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid)
1857 {
1858 struct e1000_softc *sc = iflib_get_softc(ctx);
1859 struct em_rx_queue *rxq = &sc->rx_queues[rxqid];
1860
1861 E1000_WRITE_REG(&sc->hw, E1000_IMS, rxq->eims);
1862 return (0);
1863 }
1864
1865 static int
em_if_tx_queue_intr_enable(if_ctx_t ctx,uint16_t txqid)1866 em_if_tx_queue_intr_enable(if_ctx_t ctx, uint16_t txqid)
1867 {
1868 struct e1000_softc *sc = iflib_get_softc(ctx);
1869 struct em_tx_queue *txq = &sc->tx_queues[txqid];
1870
1871 E1000_WRITE_REG(&sc->hw, E1000_IMS, txq->eims);
1872 return (0);
1873 }
1874
1875 static int
igb_if_rx_queue_intr_enable(if_ctx_t ctx,uint16_t rxqid)1876 igb_if_rx_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid)
1877 {
1878 struct e1000_softc *sc = iflib_get_softc(ctx);
1879 struct em_rx_queue *rxq = &sc->rx_queues[rxqid];
1880
1881 E1000_WRITE_REG(&sc->hw, E1000_EIMS, rxq->eims);
1882 return (0);
1883 }
1884
1885 static int
igb_if_tx_queue_intr_enable(if_ctx_t ctx,uint16_t txqid)1886 igb_if_tx_queue_intr_enable(if_ctx_t ctx, uint16_t txqid)
1887 {
1888 struct e1000_softc *sc = iflib_get_softc(ctx);
1889 struct em_tx_queue *txq = &sc->tx_queues[txqid];
1890
1891 E1000_WRITE_REG(&sc->hw, E1000_EIMS, txq->eims);
1892 return (0);
1893 }
1894
1895 /*********************************************************************
1896 *
1897 * MSI-X RX Interrupt Service routine
1898 *
1899 **********************************************************************/
1900 static int
em_msix_que(void * arg)1901 em_msix_que(void *arg)
1902 {
1903 struct em_rx_queue *que = arg;
1904 struct e1000_softc *sc = que->sc;
1905 struct tx_ring *txr = &sc->tx_queues[que->msix].txr;
1906 struct rx_ring *rxr = &que->rxr;
1907
1908 ++que->irqs;
1909
1910 em_newitr(sc, que, txr, rxr);
1911
1912 /* Reset state */
1913 txr->tx_bytes = 0;
1914 txr->tx_packets = 0;
1915 rxr->rx_bytes = 0;
1916 rxr->rx_packets = 0;
1917
1918 return (FILTER_SCHEDULE_THREAD);
1919 }
1920
1921 /*********************************************************************
1922 *
1923 * MSI-X Link Fast Interrupt Service routine
1924 *
1925 **********************************************************************/
1926 static int
em_msix_link(void * arg)1927 em_msix_link(void *arg)
1928 {
1929 struct e1000_softc *sc = arg;
1930 u32 reg_icr;
1931
1932 ++sc->link_irq;
1933 MPASS(sc->hw.back != NULL);
1934 reg_icr = E1000_READ_REG(&sc->hw, E1000_ICR);
1935
1936 if (reg_icr & E1000_ICR_RXO)
1937 sc->rx_overruns++;
1938
1939 if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))
1940 em_handle_link(sc->ctx);
1941
1942 /* Re-arm unconditionally */
1943 if (sc->hw.mac.type >= igb_mac_min) {
1944 E1000_WRITE_REG(&sc->hw, E1000_IMS, E1000_IMS_LSC);
1945 E1000_WRITE_REG(&sc->hw, E1000_EIMS, sc->link_mask);
1946 } else if (sc->hw.mac.type == e1000_82574) {
1947 E1000_WRITE_REG(&sc->hw, E1000_IMS,
1948 E1000_IMS_LSC | E1000_IMS_OTHER);
1949 /*
1950 * Because we must read the ICR for this interrupt it may
1951 * clear other causes using autoclear, for this reason we
1952 * simply create a soft interrupt for all these vectors.
1953 */
1954 if (reg_icr)
1955 E1000_WRITE_REG(&sc->hw, E1000_ICS, sc->ims);
1956 } else
1957 E1000_WRITE_REG(&sc->hw, E1000_IMS, E1000_IMS_LSC);
1958
1959 return (FILTER_HANDLED);
1960 }
1961
1962 static void
em_handle_link(void * context)1963 em_handle_link(void *context)
1964 {
1965 if_ctx_t ctx = context;
1966 struct e1000_softc *sc = iflib_get_softc(ctx);
1967
1968 sc->hw.mac.get_link_status = 1;
1969 iflib_admin_intr_deferred(ctx);
1970 }
1971
1972 /*********************************************************************
1973 *
1974 * Media Ioctl callback
1975 *
1976 * This routine is called whenever the user queries the status of
1977 * the interface using ifconfig.
1978 *
1979 **********************************************************************/
1980 static void
em_if_media_status(if_ctx_t ctx,struct ifmediareq * ifmr)1981 em_if_media_status(if_ctx_t ctx, struct ifmediareq *ifmr)
1982 {
1983 struct e1000_softc *sc = iflib_get_softc(ctx);
1984 u_char fiber_type = IFM_1000_SX;
1985
1986 INIT_DEBUGOUT("em_if_media_status: begin");
1987
1988 iflib_admin_intr_deferred(ctx);
1989
1990 ifmr->ifm_status = IFM_AVALID;
1991 ifmr->ifm_active = IFM_ETHER;
1992
1993 if (!sc->link_active) {
1994 return;
1995 }
1996
1997 ifmr->ifm_status |= IFM_ACTIVE;
1998
1999 if ((sc->hw.phy.media_type == e1000_media_type_fiber) ||
2000 (sc->hw.phy.media_type == e1000_media_type_internal_serdes)) {
2001 if (sc->hw.mac.type == e1000_82545)
2002 fiber_type = IFM_1000_LX;
2003 ifmr->ifm_active |= fiber_type | IFM_FDX;
2004 } else {
2005 switch (sc->link_speed) {
2006 case 10:
2007 ifmr->ifm_active |= IFM_10_T;
2008 break;
2009 case 100:
2010 ifmr->ifm_active |= IFM_100_TX;
2011 break;
2012 case 1000:
2013 ifmr->ifm_active |= IFM_1000_T;
2014 break;
2015 }
2016 if (sc->link_duplex == FULL_DUPLEX)
2017 ifmr->ifm_active |= IFM_FDX;
2018 else
2019 ifmr->ifm_active |= IFM_HDX;
2020 }
2021 }
2022
2023 /*********************************************************************
2024 *
2025 * Media Ioctl callback
2026 *
2027 * This routine is called when the user changes speed/duplex using
2028 * media/mediopt option with ifconfig.
2029 *
2030 **********************************************************************/
2031 static int
em_if_media_change(if_ctx_t ctx)2032 em_if_media_change(if_ctx_t ctx)
2033 {
2034 struct e1000_softc *sc = iflib_get_softc(ctx);
2035 struct ifmedia *ifm = iflib_get_media(ctx);
2036
2037 INIT_DEBUGOUT("em_if_media_change: begin");
2038
2039 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
2040 return (EINVAL);
2041
2042 switch (IFM_SUBTYPE(ifm->ifm_media)) {
2043 case IFM_AUTO:
2044 sc->hw.mac.autoneg = DO_AUTO_NEG;
2045 sc->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
2046 break;
2047 case IFM_1000_LX:
2048 case IFM_1000_SX:
2049 case IFM_1000_T:
2050 sc->hw.mac.autoneg = DO_AUTO_NEG;
2051 sc->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
2052 break;
2053 case IFM_100_TX:
2054 sc->hw.mac.autoneg = false;
2055 sc->hw.phy.autoneg_advertised = 0;
2056 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
2057 sc->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
2058 else
2059 sc->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
2060 break;
2061 case IFM_10_T:
2062 sc->hw.mac.autoneg = false;
2063 sc->hw.phy.autoneg_advertised = 0;
2064 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
2065 sc->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
2066 else
2067 sc->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
2068 break;
2069 default:
2070 device_printf(sc->dev, "Unsupported media type\n");
2071 }
2072
2073 em_if_init(ctx);
2074
2075 return (0);
2076 }
2077
2078 static int
em_if_set_promisc(if_ctx_t ctx,int flags)2079 em_if_set_promisc(if_ctx_t ctx, int flags)
2080 {
2081 struct e1000_softc *sc = iflib_get_softc(ctx);
2082 if_t ifp = iflib_get_ifp(ctx);
2083 u32 reg_rctl;
2084 int mcnt = 0;
2085
2086 reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
2087 reg_rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_UPE);
2088 if (flags & IFF_ALLMULTI)
2089 mcnt = MAX_NUM_MULTICAST_ADDRESSES;
2090 else
2091 mcnt = min(if_llmaddr_count(ifp),
2092 MAX_NUM_MULTICAST_ADDRESSES);
2093
2094 if (mcnt < MAX_NUM_MULTICAST_ADDRESSES)
2095 reg_rctl &= (~E1000_RCTL_MPE);
2096 E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
2097
2098 if (flags & IFF_PROMISC) {
2099 reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2100 em_if_vlan_filter_disable(sc);
2101 /* Turn this on if you want to see bad packets */
2102 if (em_debug_sbp)
2103 reg_rctl |= E1000_RCTL_SBP;
2104 E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
2105 } else {
2106 if (flags & IFF_ALLMULTI) {
2107 reg_rctl |= E1000_RCTL_MPE;
2108 reg_rctl &= ~E1000_RCTL_UPE;
2109 E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
2110 }
2111 if (em_if_vlan_filter_used(ctx))
2112 em_if_vlan_filter_enable(sc);
2113 }
2114 return (0);
2115 }
2116
2117 static u_int
em_copy_maddr(void * arg,struct sockaddr_dl * sdl,u_int idx)2118 em_copy_maddr(void *arg, struct sockaddr_dl *sdl, u_int idx)
2119 {
2120 u8 *mta = arg;
2121
2122 if (idx == MAX_NUM_MULTICAST_ADDRESSES)
2123 return (0);
2124
2125 bcopy(LLADDR(sdl), &mta[idx * ETHER_ADDR_LEN], ETHER_ADDR_LEN);
2126
2127 return (1);
2128 }
2129
2130 /*********************************************************************
2131 * Multicast Update
2132 *
2133 * This routine is called whenever multicast address list is updated.
2134 *
2135 **********************************************************************/
2136 static void
em_if_multi_set(if_ctx_t ctx)2137 em_if_multi_set(if_ctx_t ctx)
2138 {
2139 struct e1000_softc *sc = iflib_get_softc(ctx);
2140 if_t ifp = iflib_get_ifp(ctx);
2141 u8 *mta; /* Multicast array memory */
2142 u32 reg_rctl = 0;
2143 int mcnt = 0;
2144
2145 IOCTL_DEBUGOUT("em_set_multi: begin");
2146
2147 mta = sc->mta;
2148 bzero(mta, sizeof(u8) * ETHER_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES);
2149
2150 if (sc->hw.mac.type == e1000_82542 &&
2151 sc->hw.revision_id == E1000_REVISION_2) {
2152 reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
2153 if (sc->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
2154 e1000_pci_clear_mwi(&sc->hw);
2155 reg_rctl |= E1000_RCTL_RST;
2156 E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
2157 msec_delay(5);
2158 }
2159
2160 mcnt = if_foreach_llmaddr(ifp, em_copy_maddr, mta);
2161
2162 if (mcnt < MAX_NUM_MULTICAST_ADDRESSES)
2163 e1000_update_mc_addr_list(&sc->hw, mta, mcnt);
2164
2165 reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
2166
2167 if (if_getflags(ifp) & IFF_PROMISC)
2168 reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2169 else if (mcnt >= MAX_NUM_MULTICAST_ADDRESSES ||
2170 if_getflags(ifp) & IFF_ALLMULTI) {
2171 reg_rctl |= E1000_RCTL_MPE;
2172 reg_rctl &= ~E1000_RCTL_UPE;
2173 } else
2174 reg_rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2175
2176 E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
2177
2178 if (sc->hw.mac.type == e1000_82542 &&
2179 sc->hw.revision_id == E1000_REVISION_2) {
2180 reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
2181 reg_rctl &= ~E1000_RCTL_RST;
2182 E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
2183 msec_delay(5);
2184 if (sc->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
2185 e1000_pci_set_mwi(&sc->hw);
2186 }
2187 }
2188
2189 /*********************************************************************
2190 * Timer routine
2191 *
2192 * This routine schedules em_if_update_admin_status() to check for
2193 * link status and to gather statistics as well as to perform some
2194 * controller-specific hardware patting.
2195 *
2196 **********************************************************************/
2197 static void
em_if_timer(if_ctx_t ctx,uint16_t qid)2198 em_if_timer(if_ctx_t ctx, uint16_t qid)
2199 {
2200 if (qid != 0)
2201 return;
2202
2203 iflib_admin_intr_deferred(ctx);
2204 }
2205
2206 static void
em_if_update_admin_status(if_ctx_t ctx)2207 em_if_update_admin_status(if_ctx_t ctx)
2208 {
2209 struct e1000_softc *sc = iflib_get_softc(ctx);
2210 struct e1000_hw *hw = &sc->hw;
2211 device_t dev = iflib_get_dev(ctx);
2212 u32 link_check, thstat, ctrl;
2213 bool automasked = false;
2214
2215 link_check = thstat = ctrl = 0;
2216 /* Get the cached link value or read phy for real */
2217 switch (hw->phy.media_type) {
2218 case e1000_media_type_copper:
2219 if (hw->mac.get_link_status) {
2220 if (hw->mac.type == e1000_pch_spt)
2221 msec_delay(50);
2222 /* Do the work to read phy */
2223 e1000_check_for_link(hw);
2224 link_check = !hw->mac.get_link_status;
2225 if (link_check) /* ESB2 fix */
2226 e1000_cfg_on_link_up(hw);
2227 } else {
2228 link_check = true;
2229 }
2230 break;
2231 case e1000_media_type_fiber:
2232 e1000_check_for_link(hw);
2233 link_check =
2234 (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU);
2235 break;
2236 case e1000_media_type_internal_serdes:
2237 e1000_check_for_link(hw);
2238 link_check = hw->mac.serdes_has_link;
2239 break;
2240 /* VF device is type_unknown */
2241 case e1000_media_type_unknown:
2242 e1000_check_for_link(hw);
2243 link_check = !hw->mac.get_link_status;
2244 /* FALLTHROUGH */
2245 default:
2246 break;
2247 }
2248
2249 /* Check for thermal downshift or shutdown */
2250 if (hw->mac.type == e1000_i350) {
2251 thstat = E1000_READ_REG(hw, E1000_THSTAT);
2252 ctrl = E1000_READ_REG(hw, E1000_CTRL_EXT);
2253 }
2254
2255 /* Now check for a transition */
2256 if (link_check && (sc->link_active == 0)) {
2257 e1000_get_speed_and_duplex(hw, &sc->link_speed,
2258 &sc->link_duplex);
2259 /* Check if we must disable SPEED_MODE bit on PCI-E */
2260 if ((sc->link_speed != SPEED_1000) &&
2261 ((hw->mac.type == e1000_82571) ||
2262 (hw->mac.type == e1000_82572))) {
2263 int tarc0;
2264 tarc0 = E1000_READ_REG(hw, E1000_TARC(0));
2265 tarc0 &= ~TARC_SPEED_MODE_BIT;
2266 E1000_WRITE_REG(hw, E1000_TARC(0), tarc0);
2267 }
2268 if (bootverbose)
2269 device_printf(dev, "Link is up %d Mbps %s\n",
2270 sc->link_speed,
2271 ((sc->link_duplex == FULL_DUPLEX) ?
2272 "Full Duplex" : "Half Duplex"));
2273 sc->link_active = 1;
2274 sc->smartspeed = 0;
2275 if ((ctrl & E1000_CTRL_EXT_LINK_MODE_MASK) ==
2276 E1000_CTRL_EXT_LINK_MODE_GMII &&
2277 (thstat & E1000_THSTAT_LINK_THROTTLE))
2278 device_printf(dev, "Link: thermal downshift\n");
2279 /* Delay Link Up for Phy update */
2280 if (((hw->mac.type == e1000_i210) ||
2281 (hw->mac.type == e1000_i211)) &&
2282 (hw->phy.id == I210_I_PHY_ID))
2283 msec_delay(I210_LINK_DELAY);
2284 /* Reset if the media type changed. */
2285 if (hw->dev_spec._82575.media_changed &&
2286 hw->mac.type >= igb_mac_min) {
2287 hw->dev_spec._82575.media_changed = false;
2288 sc->flags |= IGB_MEDIA_RESET;
2289 em_reset(ctx);
2290 }
2291 /* Only do TSO on gigabit for older chips due to errata */
2292 if (hw->mac.type < igb_mac_min)
2293 automasked = em_automask_tso(ctx);
2294
2295 /* Automasking resets the interface so don't mark it up yet */
2296 if (!automasked)
2297 iflib_link_state_change(ctx, LINK_STATE_UP,
2298 IF_Mbps(sc->link_speed));
2299 } else if (!link_check && (sc->link_active == 1)) {
2300 sc->link_speed = 0;
2301 sc->link_duplex = 0;
2302 sc->link_active = 0;
2303 iflib_link_state_change(ctx, LINK_STATE_DOWN, 0);
2304 }
2305 em_update_stats_counters(sc);
2306
2307 /* Reset LAA into RAR[0] on 82571 */
2308 if (hw->mac.type == e1000_82571 && e1000_get_laa_state_82571(hw))
2309 e1000_rar_set(hw, hw->mac.addr, 0);
2310
2311 if (hw->mac.type < em_mac_min)
2312 lem_smartspeed(sc);
2313 }
2314
2315 static void
em_if_watchdog_reset(if_ctx_t ctx)2316 em_if_watchdog_reset(if_ctx_t ctx)
2317 {
2318 struct e1000_softc *sc = iflib_get_softc(ctx);
2319
2320 /*
2321 * Just count the event; iflib(4) will already trigger a
2322 * sufficient reset of the controller.
2323 */
2324 sc->watchdog_events++;
2325 }
2326
2327 /*********************************************************************
2328 *
2329 * This routine disables all traffic on the adapter by issuing a
2330 * global reset on the MAC.
2331 *
2332 **********************************************************************/
2333 static void
em_if_stop(if_ctx_t ctx)2334 em_if_stop(if_ctx_t ctx)
2335 {
2336 struct e1000_softc *sc = iflib_get_softc(ctx);
2337
2338 INIT_DEBUGOUT("em_if_stop: begin");
2339
2340 /* I219 needs special flushing to avoid hangs */
2341 if (sc->hw.mac.type >= e1000_pch_spt && sc->hw.mac.type < igb_mac_min)
2342 em_flush_desc_rings(sc);
2343
2344 e1000_reset_hw(&sc->hw);
2345 if (sc->hw.mac.type >= e1000_82544)
2346 E1000_WRITE_REG(&sc->hw, E1000_WUFC, 0);
2347
2348 e1000_led_off(&sc->hw);
2349 e1000_cleanup_led(&sc->hw);
2350 }
2351
2352 /*********************************************************************
2353 *
2354 * Determine hardware revision.
2355 *
2356 **********************************************************************/
2357 static void
em_identify_hardware(if_ctx_t ctx)2358 em_identify_hardware(if_ctx_t ctx)
2359 {
2360 device_t dev = iflib_get_dev(ctx);
2361 struct e1000_softc *sc = iflib_get_softc(ctx);
2362
2363 /* Make sure our PCI config space has the necessary stuff set */
2364 sc->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
2365
2366 /* Save off the information about this board */
2367 sc->hw.vendor_id = pci_get_vendor(dev);
2368 sc->hw.device_id = pci_get_device(dev);
2369 sc->hw.revision_id = pci_read_config(dev, PCIR_REVID, 1);
2370 sc->hw.subsystem_vendor_id = pci_read_config(dev, PCIR_SUBVEND_0, 2);
2371 sc->hw.subsystem_device_id = pci_read_config(dev, PCIR_SUBDEV_0, 2);
2372
2373 /* Do Shared Code Init and Setup */
2374 if (e1000_set_mac_type(&sc->hw)) {
2375 device_printf(dev, "Setup init failure\n");
2376 return;
2377 }
2378
2379 /* Are we a VF device? */
2380 if ((sc->hw.mac.type == e1000_vfadapt) ||
2381 (sc->hw.mac.type == e1000_vfadapt_i350))
2382 sc->vf_ifp = 1;
2383 else
2384 sc->vf_ifp = 0;
2385 }
2386
2387 static int
em_allocate_pci_resources(if_ctx_t ctx)2388 em_allocate_pci_resources(if_ctx_t ctx)
2389 {
2390 struct e1000_softc *sc = iflib_get_softc(ctx);
2391 device_t dev = iflib_get_dev(ctx);
2392 int rid, val;
2393
2394 rid = PCIR_BAR(0);
2395 sc->memory = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
2396 RF_ACTIVE);
2397 if (sc->memory == NULL) {
2398 device_printf(dev,
2399 "Unable to allocate bus resource: memory\n");
2400 return (ENXIO);
2401 }
2402 sc->osdep.mem_bus_space_tag = rman_get_bustag(sc->memory);
2403 sc->osdep.mem_bus_space_handle = rman_get_bushandle(sc->memory);
2404 sc->hw.hw_addr = (u8 *)&sc->osdep.mem_bus_space_handle;
2405
2406 /* Only older adapters use IO mapping */
2407 if (sc->hw.mac.type < em_mac_min && sc->hw.mac.type > e1000_82543) {
2408 /* Figure our where our IO BAR is ? */
2409 for (rid = PCIR_BAR(0); rid < PCIR_CIS;) {
2410 val = pci_read_config(dev, rid, 4);
2411 if (EM_BAR_TYPE(val) == EM_BAR_TYPE_IO) {
2412 break;
2413 }
2414 rid += 4;
2415 /* check for 64bit BAR */
2416 if (EM_BAR_MEM_TYPE(val) == EM_BAR_MEM_TYPE_64BIT)
2417 rid += 4;
2418 }
2419 if (rid >= PCIR_CIS) {
2420 device_printf(dev, "Unable to locate IO BAR\n");
2421 return (ENXIO);
2422 }
2423 sc->ioport = bus_alloc_resource_any(dev, SYS_RES_IOPORT,
2424 &rid, RF_ACTIVE);
2425 if (sc->ioport == NULL) {
2426 device_printf(dev,
2427 "Unable to allocate bus resource: ioport\n");
2428 return (ENXIO);
2429 }
2430 sc->hw.io_base = 0;
2431 sc->osdep.io_bus_space_tag =
2432 rman_get_bustag(sc->ioport);
2433 sc->osdep.io_bus_space_handle =
2434 rman_get_bushandle(sc->ioport);
2435 }
2436
2437 sc->hw.back = &sc->osdep;
2438
2439 return (0);
2440 }
2441
2442 /*********************************************************************
2443 *
2444 * Set up the MSI-X Interrupt handlers
2445 *
2446 **********************************************************************/
2447 static int
em_if_msix_intr_assign(if_ctx_t ctx,int msix)2448 em_if_msix_intr_assign(if_ctx_t ctx, int msix)
2449 {
2450 struct e1000_softc *sc = iflib_get_softc(ctx);
2451 struct em_rx_queue *rx_que = sc->rx_queues;
2452 struct em_tx_queue *tx_que = sc->tx_queues;
2453 int error, rid, i, vector = 0, rx_vectors;
2454 char buf[16];
2455
2456 /* First set up ring resources */
2457 for (i = 0; i < sc->rx_num_queues; i++, rx_que++, vector++) {
2458 rid = vector + 1;
2459 snprintf(buf, sizeof(buf), "rxq%d", i);
2460 error = iflib_irq_alloc_generic(ctx, &rx_que->que_irq, rid,
2461 IFLIB_INTR_RXTX, em_msix_que, rx_que, rx_que->me, buf);
2462 if (error) {
2463 device_printf(iflib_get_dev(ctx),
2464 "Failed to allocate que int %d err: %d",
2465 i, error);
2466 sc->rx_num_queues = i + 1;
2467 goto fail;
2468 }
2469
2470 rx_que->msix = vector;
2471
2472 /*
2473 * Set the bit to enable interrupt
2474 * in E1000_IMS -- bits 20 and 21
2475 * are for RX0 and RX1, note this has
2476 * NOTHING to do with the MSI-X vector
2477 */
2478 if (sc->hw.mac.type == e1000_82574) {
2479 rx_que->eims = 1 << (20 + i);
2480 sc->ims |= rx_que->eims;
2481 sc->ivars |= (8 | rx_que->msix) << (i * 4);
2482 } else if (sc->hw.mac.type == e1000_82575)
2483 rx_que->eims = E1000_EICR_TX_QUEUE0 << vector;
2484 else
2485 rx_que->eims = 1 << vector;
2486 }
2487 rx_vectors = vector;
2488
2489 vector = 0;
2490 for (i = 0; i < sc->tx_num_queues; i++, tx_que++, vector++) {
2491 snprintf(buf, sizeof(buf), "txq%d", i);
2492 tx_que = &sc->tx_queues[i];
2493 iflib_softirq_alloc_generic(ctx,
2494 &sc->rx_queues[i % sc->rx_num_queues].que_irq,
2495 IFLIB_INTR_TX, tx_que, tx_que->me, buf);
2496
2497 tx_que->msix = (vector % sc->rx_num_queues);
2498
2499 /*
2500 * Set the bit to enable interrupt
2501 * in E1000_IMS -- bits 22 and 23
2502 * are for TX0 and TX1, note this has
2503 * NOTHING to do with the MSI-X vector
2504 */
2505 if (sc->hw.mac.type == e1000_82574) {
2506 tx_que->eims = 1 << (22 + i);
2507 sc->ims |= tx_que->eims;
2508 sc->ivars |= (8 | tx_que->msix) << (8 + (i * 4));
2509 } else if (sc->hw.mac.type == e1000_82575) {
2510 tx_que->eims = E1000_EICR_TX_QUEUE0 << i;
2511 } else {
2512 tx_que->eims = 1 << i;
2513 }
2514 }
2515
2516 /* Link interrupt */
2517 rid = rx_vectors + 1;
2518 error = iflib_irq_alloc_generic(ctx, &sc->irq, rid, IFLIB_INTR_ADMIN,
2519 em_msix_link, sc, 0, "aq");
2520
2521 if (error) {
2522 device_printf(iflib_get_dev(ctx),
2523 "Failed to register admin handler");
2524 goto fail;
2525 }
2526 sc->linkvec = rx_vectors;
2527 if (sc->hw.mac.type < igb_mac_min) {
2528 sc->ivars |= (8 | rx_vectors) << 16;
2529 sc->ivars |= 0x80000000;
2530 /* Enable the "Other" interrupt type for link status change */
2531 sc->ims |= E1000_IMS_OTHER;
2532 }
2533
2534 return (0);
2535 fail:
2536 iflib_irq_free(ctx, &sc->irq);
2537 rx_que = sc->rx_queues;
2538 for (int i = 0; i < sc->rx_num_queues; i++, rx_que++)
2539 iflib_irq_free(ctx, &rx_que->que_irq);
2540 return (error);
2541 }
2542
2543 static void
igb_configure_queues(struct e1000_softc * sc)2544 igb_configure_queues(struct e1000_softc *sc)
2545 {
2546 struct e1000_hw *hw = &sc->hw;
2547 struct em_rx_queue *rx_que;
2548 struct em_tx_queue *tx_que;
2549 u32 tmp, ivar = 0, newitr = 0;
2550
2551 /* First turn on RSS capability */
2552 if (hw->mac.type != e1000_82575)
2553 E1000_WRITE_REG(hw, E1000_GPIE,
2554 E1000_GPIE_MSIX_MODE | E1000_GPIE_EIAME |
2555 E1000_GPIE_PBA | E1000_GPIE_NSICR);
2556
2557 /* Turn on MSI-X */
2558 switch (hw->mac.type) {
2559 case e1000_82580:
2560 case e1000_i350:
2561 case e1000_i354:
2562 case e1000_i210:
2563 case e1000_i211:
2564 case e1000_vfadapt:
2565 case e1000_vfadapt_i350:
2566 /* RX entries */
2567 for (int i = 0; i < sc->rx_num_queues; i++) {
2568 u32 index = i >> 1;
2569 ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
2570 rx_que = &sc->rx_queues[i];
2571 if (i & 1) {
2572 ivar &= 0xFF00FFFF;
2573 ivar |= (rx_que->msix | E1000_IVAR_VALID) <<
2574 16;
2575 } else {
2576 ivar &= 0xFFFFFF00;
2577 ivar |= rx_que->msix | E1000_IVAR_VALID;
2578 }
2579 E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
2580 }
2581 /* TX entries */
2582 for (int i = 0; i < sc->tx_num_queues; i++) {
2583 u32 index = i >> 1;
2584 ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
2585 tx_que = &sc->tx_queues[i];
2586 if (i & 1) {
2587 ivar &= 0x00FFFFFF;
2588 ivar |= (tx_que->msix | E1000_IVAR_VALID) <<
2589 24;
2590 } else {
2591 ivar &= 0xFFFF00FF;
2592 ivar |= (tx_que->msix | E1000_IVAR_VALID) <<
2593 8;
2594 }
2595 E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
2596 sc->que_mask |= tx_que->eims;
2597 }
2598
2599 /* And for the link interrupt */
2600 ivar = (sc->linkvec | E1000_IVAR_VALID) << 8;
2601 sc->link_mask = 1 << sc->linkvec;
2602 E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
2603 break;
2604 case e1000_82576:
2605 /* RX entries */
2606 for (int i = 0; i < sc->rx_num_queues; i++) {
2607 u32 index = i & 0x7; /* Each IVAR has two entries */
2608 ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
2609 rx_que = &sc->rx_queues[i];
2610 if (i < 8) {
2611 ivar &= 0xFFFFFF00;
2612 ivar |= rx_que->msix | E1000_IVAR_VALID;
2613 } else {
2614 ivar &= 0xFF00FFFF;
2615 ivar |= (rx_que->msix | E1000_IVAR_VALID) <<
2616 16;
2617 }
2618 E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
2619 sc->que_mask |= rx_que->eims;
2620 }
2621 /* TX entries */
2622 for (int i = 0; i < sc->tx_num_queues; i++) {
2623 u32 index = i & 0x7; /* Each IVAR has two entries */
2624 ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
2625 tx_que = &sc->tx_queues[i];
2626 if (i < 8) {
2627 ivar &= 0xFFFF00FF;
2628 ivar |= (tx_que->msix | E1000_IVAR_VALID) <<
2629 8;
2630 } else {
2631 ivar &= 0x00FFFFFF;
2632 ivar |= (tx_que->msix | E1000_IVAR_VALID) <<
2633 24;
2634 }
2635 E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
2636 sc->que_mask |= tx_que->eims;
2637 }
2638
2639 /* And for the link interrupt */
2640 ivar = (sc->linkvec | E1000_IVAR_VALID) << 8;
2641 sc->link_mask = 1 << sc->linkvec;
2642 E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
2643 break;
2644
2645 case e1000_82575:
2646 /* enable MSI-X support*/
2647 tmp = E1000_READ_REG(hw, E1000_CTRL_EXT);
2648 tmp |= E1000_CTRL_EXT_PBA_CLR;
2649 /* Auto-Mask interrupts upon ICR read. */
2650 tmp |= E1000_CTRL_EXT_EIAME;
2651 tmp |= E1000_CTRL_EXT_IRCA;
2652 E1000_WRITE_REG(hw, E1000_CTRL_EXT, tmp);
2653
2654 /* Queues */
2655 for (int i = 0; i < sc->rx_num_queues; i++) {
2656 rx_que = &sc->rx_queues[i];
2657 tmp = E1000_EICR_RX_QUEUE0 << i;
2658 tmp |= E1000_EICR_TX_QUEUE0 << i;
2659 rx_que->eims = tmp;
2660 E1000_WRITE_REG_ARRAY(hw, E1000_MSIXBM(0), i,
2661 rx_que->eims);
2662 sc->que_mask |= rx_que->eims;
2663 }
2664
2665 /* Link */
2666 E1000_WRITE_REG(hw, E1000_MSIXBM(sc->linkvec),
2667 E1000_EIMS_OTHER);
2668 sc->link_mask |= E1000_EIMS_OTHER;
2669 default:
2670 break;
2671 }
2672
2673 /* Set the igb starting interrupt rate */
2674 if (em_max_interrupt_rate > 0) {
2675 newitr = IGB_INTS_TO_EITR(em_max_interrupt_rate);
2676
2677 if (hw->mac.type == e1000_82575)
2678 newitr |= newitr << 16;
2679 else
2680 newitr |= E1000_EITR_CNT_IGNR;
2681
2682 for (int i = 0; i < sc->rx_num_queues; i++) {
2683 rx_que = &sc->rx_queues[i];
2684 E1000_WRITE_REG(hw, E1000_EITR(rx_que->msix), newitr);
2685 }
2686 }
2687
2688 return;
2689 }
2690
2691 static void
em_free_pci_resources(if_ctx_t ctx)2692 em_free_pci_resources(if_ctx_t ctx)
2693 {
2694 struct e1000_softc *sc = iflib_get_softc(ctx);
2695 struct em_rx_queue *que = sc->rx_queues;
2696 device_t dev = iflib_get_dev(ctx);
2697
2698 /* Release all MSI-X queue resources */
2699 if (sc->intr_type == IFLIB_INTR_MSIX)
2700 iflib_irq_free(ctx, &sc->irq);
2701
2702 if (que != NULL) {
2703 for (int i = 0; i < sc->rx_num_queues; i++, que++) {
2704 iflib_irq_free(ctx, &que->que_irq);
2705 }
2706 }
2707
2708 if (sc->memory != NULL) {
2709 bus_release_resource(dev, SYS_RES_MEMORY,
2710 rman_get_rid(sc->memory), sc->memory);
2711 sc->memory = NULL;
2712 }
2713
2714 if (sc->flash != NULL) {
2715 bus_release_resource(dev, SYS_RES_MEMORY,
2716 rman_get_rid(sc->flash), sc->flash);
2717 sc->flash = NULL;
2718 }
2719
2720 if (sc->ioport != NULL) {
2721 bus_release_resource(dev, SYS_RES_IOPORT,
2722 rman_get_rid(sc->ioport), sc->ioport);
2723 sc->ioport = NULL;
2724 }
2725 }
2726
2727 /* Set up MSI or MSI-X */
2728 static int
em_setup_msix(if_ctx_t ctx)2729 em_setup_msix(if_ctx_t ctx)
2730 {
2731 struct e1000_softc *sc = iflib_get_softc(ctx);
2732
2733 if (sc->hw.mac.type == e1000_82574) {
2734 em_enable_vectors_82574(ctx);
2735 }
2736 return (0);
2737 }
2738
2739 /*********************************************************************
2740 *
2741 * Workaround for SmartSpeed on 82541 and 82547 controllers
2742 *
2743 **********************************************************************/
2744 static void
lem_smartspeed(struct e1000_softc * sc)2745 lem_smartspeed(struct e1000_softc *sc)
2746 {
2747 u16 phy_tmp;
2748
2749 if (sc->link_active || (sc->hw.phy.type != e1000_phy_igp) ||
2750 sc->hw.mac.autoneg == 0 ||
2751 (sc->hw.phy.autoneg_advertised & ADVERTISE_1000_FULL) == 0)
2752 return;
2753
2754 if (sc->smartspeed == 0) {
2755 /* If Master/Slave config fault is asserted twice,
2756 * we assume back-to-back */
2757 e1000_read_phy_reg(&sc->hw, PHY_1000T_STATUS, &phy_tmp);
2758 if (!(phy_tmp & SR_1000T_MS_CONFIG_FAULT))
2759 return;
2760 e1000_read_phy_reg(&sc->hw, PHY_1000T_STATUS, &phy_tmp);
2761 if (phy_tmp & SR_1000T_MS_CONFIG_FAULT) {
2762 e1000_read_phy_reg(&sc->hw,
2763 PHY_1000T_CTRL, &phy_tmp);
2764 if(phy_tmp & CR_1000T_MS_ENABLE) {
2765 phy_tmp &= ~CR_1000T_MS_ENABLE;
2766 e1000_write_phy_reg(&sc->hw,
2767 PHY_1000T_CTRL, phy_tmp);
2768 sc->smartspeed++;
2769 if(sc->hw.mac.autoneg &&
2770 !e1000_copper_link_autoneg(&sc->hw) &&
2771 !e1000_read_phy_reg(&sc->hw,
2772 PHY_CONTROL, &phy_tmp)) {
2773 phy_tmp |= (MII_CR_AUTO_NEG_EN |
2774 MII_CR_RESTART_AUTO_NEG);
2775 e1000_write_phy_reg(&sc->hw,
2776 PHY_CONTROL, phy_tmp);
2777 }
2778 }
2779 }
2780 return;
2781 } else if(sc->smartspeed == EM_SMARTSPEED_DOWNSHIFT) {
2782 /* If still no link, perhaps using 2/3 pair cable */
2783 e1000_read_phy_reg(&sc->hw, PHY_1000T_CTRL, &phy_tmp);
2784 phy_tmp |= CR_1000T_MS_ENABLE;
2785 e1000_write_phy_reg(&sc->hw, PHY_1000T_CTRL, phy_tmp);
2786 if(sc->hw.mac.autoneg &&
2787 !e1000_copper_link_autoneg(&sc->hw) &&
2788 !e1000_read_phy_reg(&sc->hw, PHY_CONTROL, &phy_tmp)) {
2789 phy_tmp |= (MII_CR_AUTO_NEG_EN |
2790 MII_CR_RESTART_AUTO_NEG);
2791 e1000_write_phy_reg(&sc->hw, PHY_CONTROL, phy_tmp);
2792 }
2793 }
2794 /* Restart process after EM_SMARTSPEED_MAX iterations */
2795 if(sc->smartspeed++ == EM_SMARTSPEED_MAX)
2796 sc->smartspeed = 0;
2797 }
2798
2799 /*********************************************************************
2800 *
2801 * Initialize the DMA Coalescing feature
2802 *
2803 **********************************************************************/
2804 static void
igb_init_dmac(struct e1000_softc * sc,u32 pba)2805 igb_init_dmac(struct e1000_softc *sc, u32 pba)
2806 {
2807 device_t dev = sc->dev;
2808 struct e1000_hw *hw = &sc->hw;
2809 u32 dmac, reg = ~E1000_DMACR_DMAC_EN;
2810 u16 hwm;
2811 u16 max_frame_size;
2812
2813 if (hw->mac.type == e1000_i211)
2814 return;
2815
2816 max_frame_size = sc->shared->isc_max_frame_size;
2817 if (hw->mac.type > e1000_82580) {
2818
2819 if (sc->dmac == 0) { /* Disabling it */
2820 E1000_WRITE_REG(hw, E1000_DMACR, reg);
2821 return;
2822 } else
2823 device_printf(dev, "DMA Coalescing enabled\n");
2824
2825 /* Set starting threshold */
2826 E1000_WRITE_REG(hw, E1000_DMCTXTH, 0);
2827
2828 hwm = 64 * pba - max_frame_size / 16;
2829 if (hwm < 64 * (pba - 6))
2830 hwm = 64 * (pba - 6);
2831 reg = E1000_READ_REG(hw, E1000_FCRTC);
2832 reg &= ~E1000_FCRTC_RTH_COAL_MASK;
2833 reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
2834 & E1000_FCRTC_RTH_COAL_MASK);
2835 E1000_WRITE_REG(hw, E1000_FCRTC, reg);
2836
2837
2838 dmac = pba - max_frame_size / 512;
2839 if (dmac < pba - 10)
2840 dmac = pba - 10;
2841 reg = E1000_READ_REG(hw, E1000_DMACR);
2842 reg &= ~E1000_DMACR_DMACTHR_MASK;
2843 reg |= ((dmac << E1000_DMACR_DMACTHR_SHIFT)
2844 & E1000_DMACR_DMACTHR_MASK);
2845
2846 /* transition to L0x or L1 if available..*/
2847 reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
2848
2849 /* Check if status is 2.5Gb backplane connection
2850 * before configuration of watchdog timer, which is
2851 * in msec values in 12.8usec intervals
2852 * watchdog timer= msec values in 32usec intervals
2853 * for non 2.5Gb connection
2854 */
2855 if (hw->mac.type == e1000_i354) {
2856 int status = E1000_READ_REG(hw, E1000_STATUS);
2857 if ((status & E1000_STATUS_2P5_SKU) &&
2858 (!(status & E1000_STATUS_2P5_SKU_OVER)))
2859 reg |= ((sc->dmac * 5) >> 6);
2860 else
2861 reg |= (sc->dmac >> 5);
2862 } else {
2863 reg |= (sc->dmac >> 5);
2864 }
2865
2866 E1000_WRITE_REG(hw, E1000_DMACR, reg);
2867
2868 E1000_WRITE_REG(hw, E1000_DMCRTRH, 0);
2869
2870 /* Set the interval before transition */
2871 reg = E1000_READ_REG(hw, E1000_DMCTLX);
2872 if (hw->mac.type == e1000_i350)
2873 reg |= IGB_DMCTLX_DCFLUSH_DIS;
2874 /*
2875 ** in 2.5Gb connection, TTLX unit is 0.4 usec
2876 ** which is 0x4*2 = 0xA. But delay is still 4 usec
2877 */
2878 if (hw->mac.type == e1000_i354) {
2879 int status = E1000_READ_REG(hw, E1000_STATUS);
2880 if ((status & E1000_STATUS_2P5_SKU) &&
2881 (!(status & E1000_STATUS_2P5_SKU_OVER)))
2882 reg |= 0xA;
2883 else
2884 reg |= 0x4;
2885 } else {
2886 reg |= 0x4;
2887 }
2888
2889 E1000_WRITE_REG(hw, E1000_DMCTLX, reg);
2890
2891 /* free space in tx packet buffer to wake from DMA coal */
2892 E1000_WRITE_REG(hw, E1000_DMCTXTH, (IGB_TXPBSIZE -
2893 (2 * max_frame_size)) >> 6);
2894
2895 /* make low power state decision controlled by DMA coal */
2896 reg = E1000_READ_REG(hw, E1000_PCIEMISC);
2897 reg &= ~E1000_PCIEMISC_LX_DECISION;
2898 E1000_WRITE_REG(hw, E1000_PCIEMISC, reg);
2899
2900 } else if (hw->mac.type == e1000_82580) {
2901 u32 reg = E1000_READ_REG(hw, E1000_PCIEMISC);
2902 E1000_WRITE_REG(hw, E1000_PCIEMISC,
2903 reg & ~E1000_PCIEMISC_LX_DECISION);
2904 E1000_WRITE_REG(hw, E1000_DMACR, 0);
2905 }
2906 }
2907 /*********************************************************************
2908 * The 3 following flush routines are used as a workaround in the
2909 * I219 client parts and only for them.
2910 *
2911 * em_flush_tx_ring - remove all descriptors from the tx_ring
2912 *
2913 * We want to clear all pending descriptors from the TX ring.
2914 * zeroing happens when the HW reads the regs. We assign the ring itself as
2915 * the data of the next descriptor. We don't care about the data we are about
2916 * to reset the HW.
2917 **********************************************************************/
2918 static void
em_flush_tx_ring(struct e1000_softc * sc)2919 em_flush_tx_ring(struct e1000_softc *sc)
2920 {
2921 struct e1000_hw *hw = &sc->hw;
2922 struct tx_ring *txr = &sc->tx_queues->txr;
2923 struct e1000_tx_desc *txd;
2924 u32 tctl, txd_lower = E1000_TXD_CMD_IFCS;
2925 u16 size = 512;
2926
2927 tctl = E1000_READ_REG(hw, E1000_TCTL);
2928 E1000_WRITE_REG(hw, E1000_TCTL, tctl | E1000_TCTL_EN);
2929
2930 txd = &txr->tx_base[txr->tx_cidx_processed];
2931
2932 /* Just use the ring as a dummy buffer addr */
2933 txd->buffer_addr = txr->tx_paddr;
2934 txd->lower.data = htole32(txd_lower | size);
2935 txd->upper.data = 0;
2936
2937 /* flush descriptors to memory before notifying the HW */
2938 wmb();
2939
2940 E1000_WRITE_REG(hw, E1000_TDT(0), txr->tx_cidx_processed);
2941 mb();
2942 usec_delay(250);
2943 }
2944
2945 /*********************************************************************
2946 * em_flush_rx_ring - remove all descriptors from the rx_ring
2947 *
2948 * Mark all descriptors in the RX ring as consumed and disable the rx ring
2949 **********************************************************************/
2950 static void
em_flush_rx_ring(struct e1000_softc * sc)2951 em_flush_rx_ring(struct e1000_softc *sc)
2952 {
2953 struct e1000_hw *hw = &sc->hw;
2954 u32 rctl, rxdctl;
2955
2956 rctl = E1000_READ_REG(hw, E1000_RCTL);
2957 E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
2958 E1000_WRITE_FLUSH(hw);
2959 usec_delay(150);
2960
2961 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(0));
2962 /* zero the lower 14 bits (prefetch and host thresholds) */
2963 rxdctl &= 0xffffc000;
2964 /*
2965 * update thresholds: prefetch threshold to 31, host threshold to 1
2966 * and make sure the granularity is "descriptors" and not
2967 * "cache lines"
2968 */
2969 rxdctl |= (0x1F | (1 << 8) | E1000_RXDCTL_THRESH_UNIT_DESC);
2970 E1000_WRITE_REG(hw, E1000_RXDCTL(0), rxdctl);
2971
2972 /* momentarily enable the RX ring for the changes to take effect */
2973 E1000_WRITE_REG(hw, E1000_RCTL, rctl | E1000_RCTL_EN);
2974 E1000_WRITE_FLUSH(hw);
2975 usec_delay(150);
2976 E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
2977 }
2978
2979 /*********************************************************************
2980 * em_flush_desc_rings - remove all descriptors from the descriptor rings
2981 *
2982 * In I219, the descriptor rings must be emptied before resetting the HW
2983 * or before changing the device state to D3 during runtime (runtime PM).
2984 *
2985 * Failure to do this will cause the HW to enter a unit hang state which can
2986 * only be released by PCI reset on the device
2987 *
2988 **********************************************************************/
2989 static void
em_flush_desc_rings(struct e1000_softc * sc)2990 em_flush_desc_rings(struct e1000_softc *sc)
2991 {
2992 struct e1000_hw *hw = &sc->hw;
2993 device_t dev = sc->dev;
2994 u16 hang_state;
2995 u32 fext_nvm11, tdlen;
2996
2997 /* First, disable MULR fix in FEXTNVM11 */
2998 fext_nvm11 = E1000_READ_REG(hw, E1000_FEXTNVM11);
2999 fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX;
3000 E1000_WRITE_REG(hw, E1000_FEXTNVM11, fext_nvm11);
3001
3002 /* do nothing if we're not in faulty state, or the queue is empty */
3003 tdlen = E1000_READ_REG(hw, E1000_TDLEN(0));
3004 hang_state = pci_read_config(dev, PCICFG_DESC_RING_STATUS, 2);
3005 if (!(hang_state & FLUSH_DESC_REQUIRED) || !tdlen)
3006 return;
3007 em_flush_tx_ring(sc);
3008
3009 /* recheck, maybe the fault is caused by the rx ring */
3010 hang_state = pci_read_config(dev, PCICFG_DESC_RING_STATUS, 2);
3011 if (hang_state & FLUSH_DESC_REQUIRED)
3012 em_flush_rx_ring(sc);
3013 }
3014
3015
3016 /*********************************************************************
3017 *
3018 * Initialize the hardware to a configuration as specified by the
3019 * sc structure.
3020 *
3021 **********************************************************************/
3022 static void
em_reset(if_ctx_t ctx)3023 em_reset(if_ctx_t ctx)
3024 {
3025 device_t dev = iflib_get_dev(ctx);
3026 struct e1000_softc *sc = iflib_get_softc(ctx);
3027 if_t ifp = iflib_get_ifp(ctx);
3028 struct e1000_hw *hw = &sc->hw;
3029 u32 rx_buffer_size;
3030 u32 pba;
3031
3032 INIT_DEBUGOUT("em_reset: begin");
3033 /* Let the firmware know the OS is in control */
3034 em_get_hw_control(sc);
3035
3036 /* Set up smart power down as default off on newer adapters. */
3037 if (!em_smart_pwr_down && (hw->mac.type == e1000_82571 ||
3038 hw->mac.type == e1000_82572)) {
3039 u16 phy_tmp = 0;
3040
3041 /* Speed up time to link by disabling smart power down. */
3042 e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_tmp);
3043 phy_tmp &= ~IGP02E1000_PM_SPD;
3044 e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_tmp);
3045 }
3046
3047 /*
3048 * Packet Buffer Allocation (PBA)
3049 * Writing PBA sets the receive portion of the buffer
3050 * the remainder is used for the transmit buffer.
3051 */
3052 switch (hw->mac.type) {
3053 /* 82547: Total Packet Buffer is 40K */
3054 case e1000_82547:
3055 case e1000_82547_rev_2:
3056 if (hw->mac.max_frame_size > 8192)
3057 pba = E1000_PBA_22K; /* 22K for Rx, 18K for Tx */
3058 else
3059 pba = E1000_PBA_30K; /* 30K for Rx, 10K for Tx */
3060 break;
3061 /* 82571/82572/80003es2lan: Total Packet Buffer is 48K */
3062 case e1000_82571:
3063 case e1000_82572:
3064 case e1000_80003es2lan:
3065 pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
3066 break;
3067 /* 82573: Total Packet Buffer is 32K */
3068 case e1000_82573:
3069 pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
3070 break;
3071 case e1000_82574:
3072 case e1000_82583:
3073 pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
3074 break;
3075 case e1000_ich8lan:
3076 pba = E1000_PBA_8K;
3077 break;
3078 case e1000_ich9lan:
3079 case e1000_ich10lan:
3080 /* Boost Receive side for jumbo frames */
3081 if (hw->mac.max_frame_size > 4096)
3082 pba = E1000_PBA_14K;
3083 else
3084 pba = E1000_PBA_10K;
3085 break;
3086 case e1000_pchlan:
3087 case e1000_pch2lan:
3088 case e1000_pch_lpt:
3089 case e1000_pch_spt:
3090 case e1000_pch_cnp:
3091 case e1000_pch_tgp:
3092 case e1000_pch_adp:
3093 case e1000_pch_mtp:
3094 case e1000_pch_ptp:
3095 pba = E1000_PBA_26K;
3096 break;
3097 case e1000_82575:
3098 pba = E1000_PBA_32K;
3099 break;
3100 case e1000_82576:
3101 case e1000_vfadapt:
3102 pba = E1000_READ_REG(hw, E1000_RXPBS);
3103 pba &= E1000_RXPBS_SIZE_MASK_82576;
3104 break;
3105 case e1000_82580:
3106 case e1000_i350:
3107 case e1000_i354:
3108 case e1000_vfadapt_i350:
3109 pba = E1000_READ_REG(hw, E1000_RXPBS);
3110 pba = e1000_rxpbs_adjust_82580(pba);
3111 break;
3112 case e1000_i210:
3113 case e1000_i211:
3114 pba = E1000_PBA_34K;
3115 break;
3116 default:
3117 /* Remaining devices assumed to have Packet Buffer of 64K. */
3118 if (hw->mac.max_frame_size > 8192)
3119 pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
3120 else
3121 pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */
3122 }
3123
3124 /* Special needs in case of Jumbo frames */
3125 if ((hw->mac.type == e1000_82575) && (if_getmtu(ifp) > ETHERMTU)) {
3126 u32 tx_space, min_tx, min_rx;
3127 pba = E1000_READ_REG(hw, E1000_PBA);
3128 tx_space = pba >> 16;
3129 pba &= 0xffff;
3130 min_tx = (hw->mac.max_frame_size +
3131 sizeof(struct e1000_tx_desc) - ETHERNET_FCS_SIZE) * 2;
3132 min_tx = roundup2(min_tx, 1024);
3133 min_tx >>= 10;
3134 min_rx = hw->mac.max_frame_size;
3135 min_rx = roundup2(min_rx, 1024);
3136 min_rx >>= 10;
3137 if (tx_space < min_tx &&
3138 ((min_tx - tx_space) < pba)) {
3139 pba = pba - (min_tx - tx_space);
3140 /*
3141 * if short on rx space, rx wins
3142 * and must trump tx adjustment
3143 */
3144 if (pba < min_rx)
3145 pba = min_rx;
3146 }
3147 E1000_WRITE_REG(hw, E1000_PBA, pba);
3148 }
3149
3150 if (hw->mac.type < igb_mac_min)
3151 E1000_WRITE_REG(hw, E1000_PBA, pba);
3152
3153 INIT_DEBUGOUT1("em_reset: pba=%dK",pba);
3154
3155 /*
3156 * These parameters control the automatic generation (Tx) and
3157 * response (Rx) to Ethernet PAUSE frames.
3158 * - High water mark should allow for at least two frames to be
3159 * received after sending an XOFF.
3160 * - Low water mark works best when it is very near the high water
3161 mark.
3162 * This allows the receiver to restart by sending XON when it has
3163 * drained a bit. Here we use an arbitrary value of 1500 which will
3164 * restart after one full frame is pulled from the buffer. There
3165 * could be several smaller frames in the buffer and if so they will
3166 * not trigger the XON until their total number reduces the buffer
3167 * by 1500.
3168 * - The pause time is fairly large at 1000 x 512ns = 512 usec.
3169 */
3170 rx_buffer_size = (pba & 0xffff) << 10;
3171 hw->fc.high_water = rx_buffer_size -
3172 roundup2(hw->mac.max_frame_size, 1024);
3173 hw->fc.low_water = hw->fc.high_water - 1500;
3174
3175 if (sc->fc) /* locally set flow control value? */
3176 hw->fc.requested_mode = sc->fc;
3177 else
3178 hw->fc.requested_mode = e1000_fc_full;
3179
3180 if (hw->mac.type == e1000_80003es2lan)
3181 hw->fc.pause_time = 0xFFFF;
3182 else
3183 hw->fc.pause_time = EM_FC_PAUSE_TIME;
3184
3185 hw->fc.send_xon = true;
3186
3187 /* Device specific overrides/settings */
3188 switch (hw->mac.type) {
3189 case e1000_pchlan:
3190 /* Workaround: no TX flow ctrl for PCH */
3191 hw->fc.requested_mode = e1000_fc_rx_pause;
3192 hw->fc.pause_time = 0xFFFF; /* override */
3193 if (if_getmtu(ifp) > ETHERMTU) {
3194 hw->fc.high_water = 0x3500;
3195 hw->fc.low_water = 0x1500;
3196 } else {
3197 hw->fc.high_water = 0x5000;
3198 hw->fc.low_water = 0x3000;
3199 }
3200 hw->fc.refresh_time = 0x1000;
3201 break;
3202 case e1000_pch2lan:
3203 case e1000_pch_lpt:
3204 case e1000_pch_spt:
3205 case e1000_pch_cnp:
3206 case e1000_pch_tgp:
3207 case e1000_pch_adp:
3208 case e1000_pch_mtp:
3209 case e1000_pch_ptp:
3210 hw->fc.high_water = 0x5C20;
3211 hw->fc.low_water = 0x5048;
3212 hw->fc.pause_time = 0x0650;
3213 hw->fc.refresh_time = 0x0400;
3214 /* Jumbos need adjusted PBA */
3215 if (if_getmtu(ifp) > ETHERMTU)
3216 E1000_WRITE_REG(hw, E1000_PBA, 12);
3217 else
3218 E1000_WRITE_REG(hw, E1000_PBA, 26);
3219 break;
3220 case e1000_82575:
3221 case e1000_82576:
3222 /* 8-byte granularity */
3223 hw->fc.low_water = hw->fc.high_water - 8;
3224 break;
3225 case e1000_82580:
3226 case e1000_i350:
3227 case e1000_i354:
3228 case e1000_i210:
3229 case e1000_i211:
3230 case e1000_vfadapt:
3231 case e1000_vfadapt_i350:
3232 /* 16-byte granularity */
3233 hw->fc.low_water = hw->fc.high_water - 16;
3234 break;
3235 case e1000_ich9lan:
3236 case e1000_ich10lan:
3237 if (if_getmtu(ifp) > ETHERMTU) {
3238 hw->fc.high_water = 0x2800;
3239 hw->fc.low_water = hw->fc.high_water - 8;
3240 break;
3241 }
3242 /* FALLTHROUGH */
3243 default:
3244 if (hw->mac.type == e1000_80003es2lan)
3245 hw->fc.pause_time = 0xFFFF;
3246 break;
3247 }
3248
3249 /* I219 needs some special flushing to avoid hangs */
3250 if (sc->hw.mac.type >= e1000_pch_spt && sc->hw.mac.type < igb_mac_min)
3251 em_flush_desc_rings(sc);
3252
3253 /* Issue a global reset */
3254 e1000_reset_hw(hw);
3255 if (hw->mac.type >= igb_mac_min) {
3256 E1000_WRITE_REG(hw, E1000_WUC, 0);
3257 } else {
3258 E1000_WRITE_REG(hw, E1000_WUFC, 0);
3259 em_disable_aspm(sc);
3260 }
3261 if (sc->flags & IGB_MEDIA_RESET) {
3262 e1000_setup_init_funcs(hw, true);
3263 e1000_get_bus_info(hw);
3264 sc->flags &= ~IGB_MEDIA_RESET;
3265 }
3266 /* and a re-init */
3267 if (e1000_init_hw(hw) < 0) {
3268 device_printf(dev, "Hardware Initialization Failed\n");
3269 return;
3270 }
3271 if (hw->mac.type >= igb_mac_min)
3272 igb_init_dmac(sc, pba);
3273
3274 /* Save the final PBA off if it needs to be used elsewhere i.e. AIM */
3275 sc->pba = pba;
3276
3277 E1000_WRITE_REG(hw, E1000_VET, ETHERTYPE_VLAN);
3278 e1000_get_phy_info(hw);
3279 e1000_check_for_link(hw);
3280 }
3281
3282 /*
3283 * Initialise the RSS mapping for NICs that support multiple transmit/
3284 * receive rings.
3285 */
3286
3287 #define RSSKEYLEN 10
3288 static void
em_initialize_rss_mapping(struct e1000_softc * sc)3289 em_initialize_rss_mapping(struct e1000_softc *sc)
3290 {
3291 uint8_t rss_key[4 * RSSKEYLEN];
3292 uint32_t reta = 0;
3293 struct e1000_hw *hw = &sc->hw;
3294 int i;
3295
3296 /*
3297 * Configure RSS key
3298 */
3299 arc4rand(rss_key, sizeof(rss_key), 0);
3300 for (i = 0; i < RSSKEYLEN; ++i) {
3301 uint32_t rssrk = 0;
3302
3303 rssrk = EM_RSSRK_VAL(rss_key, i);
3304 E1000_WRITE_REG(hw,E1000_RSSRK(i), rssrk);
3305 }
3306
3307 /*
3308 * Configure RSS redirect table in following fashion:
3309 * (hash & ring_cnt_mask) == rdr_table[(hash & rdr_table_mask)]
3310 */
3311 for (i = 0; i < sizeof(reta); ++i) {
3312 uint32_t q;
3313
3314 q = (i % sc->rx_num_queues) << 7;
3315 reta |= q << (8 * i);
3316 }
3317
3318 for (i = 0; i < 32; ++i)
3319 E1000_WRITE_REG(hw, E1000_RETA(i), reta);
3320
3321 E1000_WRITE_REG(hw, E1000_MRQC, E1000_MRQC_RSS_ENABLE_2Q |
3322 E1000_MRQC_RSS_FIELD_IPV4_TCP |
3323 E1000_MRQC_RSS_FIELD_IPV4 |
3324 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX |
3325 E1000_MRQC_RSS_FIELD_IPV6_EX |
3326 E1000_MRQC_RSS_FIELD_IPV6);
3327 }
3328
3329 static void
igb_initialize_rss_mapping(struct e1000_softc * sc)3330 igb_initialize_rss_mapping(struct e1000_softc *sc)
3331 {
3332 struct e1000_hw *hw = &sc->hw;
3333 int i;
3334 int queue_id;
3335 u32 reta;
3336 u32 rss_key[10], mrqc, shift = 0;
3337
3338 /* XXX? */
3339 if (hw->mac.type == e1000_82575)
3340 shift = 6;
3341
3342 /*
3343 * The redirection table controls which destination
3344 * queue each bucket redirects traffic to.
3345 * Each DWORD represents four queues, with the LSB
3346 * being the first queue in the DWORD.
3347 *
3348 * This just allocates buckets to queues using round-robin
3349 * allocation.
3350 *
3351 * NOTE: It Just Happens to line up with the default
3352 * RSS allocation method.
3353 */
3354
3355 /* Warning FM follows */
3356 reta = 0;
3357 for (i = 0; i < 128; i++) {
3358 #ifdef RSS
3359 queue_id = rss_get_indirection_to_bucket(i);
3360 /*
3361 * If we have more queues than buckets, we'll
3362 * end up mapping buckets to a subset of the
3363 * queues.
3364 *
3365 * If we have more buckets than queues, we'll
3366 * end up instead assigning multiple buckets
3367 * to queues.
3368 *
3369 * Both are suboptimal, but we need to handle
3370 * the case so we don't go out of bounds
3371 * indexing arrays and such.
3372 */
3373 queue_id = queue_id % sc->rx_num_queues;
3374 #else
3375 queue_id = (i % sc->rx_num_queues);
3376 #endif
3377 /* Adjust if required */
3378 queue_id = queue_id << shift;
3379
3380 /*
3381 * The low 8 bits are for hash value (n+0);
3382 * The next 8 bits are for hash value (n+1), etc.
3383 */
3384 reta = reta >> 8;
3385 reta = reta | ( ((uint32_t) queue_id) << 24);
3386 if ((i & 3) == 3) {
3387 E1000_WRITE_REG(hw, E1000_RETA(i >> 2), reta);
3388 reta = 0;
3389 }
3390 }
3391
3392 /* Now fill in hash table */
3393
3394 /*
3395 * MRQC: Multiple Receive Queues Command
3396 * Set queuing to RSS control, number depends on the device.
3397 */
3398 mrqc = E1000_MRQC_ENABLE_RSS_MQ;
3399
3400 #ifdef RSS
3401 /* XXX ew typecasting */
3402 rss_getkey((uint8_t *) &rss_key);
3403 #else
3404 arc4rand(&rss_key, sizeof(rss_key), 0);
3405 #endif
3406 for (i = 0; i < 10; i++)
3407 E1000_WRITE_REG_ARRAY(hw, E1000_RSSRK(0), i, rss_key[i]);
3408
3409 /*
3410 * Configure the RSS fields to hash upon.
3411 */
3412 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
3413 E1000_MRQC_RSS_FIELD_IPV4_TCP);
3414 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 |
3415 E1000_MRQC_RSS_FIELD_IPV6_TCP);
3416 mrqc |=( E1000_MRQC_RSS_FIELD_IPV4_UDP |
3417 E1000_MRQC_RSS_FIELD_IPV6_UDP);
3418 mrqc |=( E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
3419 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
3420
3421 E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
3422 }
3423
3424 /*********************************************************************
3425 *
3426 * Setup networking device structure and register interface media.
3427 *
3428 **********************************************************************/
3429 static int
em_setup_interface(if_ctx_t ctx)3430 em_setup_interface(if_ctx_t ctx)
3431 {
3432 if_t ifp = iflib_get_ifp(ctx);
3433 struct e1000_softc *sc = iflib_get_softc(ctx);
3434 if_softc_ctx_t scctx = sc->shared;
3435
3436 INIT_DEBUGOUT("em_setup_interface: begin");
3437
3438 /* Single Queue */
3439 if (sc->tx_num_queues == 1) {
3440 if_setsendqlen(ifp, scctx->isc_ntxd[0] - 1);
3441 if_setsendqready(ifp);
3442 }
3443
3444 /*
3445 * Specify the media types supported by this adapter and register
3446 * callbacks to update media and link information
3447 */
3448 if (sc->hw.phy.media_type == e1000_media_type_fiber ||
3449 sc->hw.phy.media_type == e1000_media_type_internal_serdes) {
3450 u_char fiber_type = IFM_1000_SX; /* default type */
3451
3452 if (sc->hw.mac.type == e1000_82545)
3453 fiber_type = IFM_1000_LX;
3454 ifmedia_add(sc->media,
3455 IFM_ETHER | fiber_type | IFM_FDX, 0, NULL);
3456 ifmedia_add(sc->media, IFM_ETHER | fiber_type, 0, NULL);
3457 } else {
3458 ifmedia_add(sc->media, IFM_ETHER | IFM_10_T, 0, NULL);
3459 ifmedia_add(sc->media,
3460 IFM_ETHER | IFM_10_T | IFM_FDX, 0, NULL);
3461 ifmedia_add(sc->media, IFM_ETHER | IFM_100_TX, 0, NULL);
3462 ifmedia_add(sc->media,
3463 IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL);
3464 if (sc->hw.phy.type != e1000_phy_ife) {
3465 ifmedia_add(sc->media,
3466 IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
3467 ifmedia_add(sc->media,
3468 IFM_ETHER | IFM_1000_T, 0, NULL);
3469 }
3470 }
3471 ifmedia_add(sc->media, IFM_ETHER | IFM_AUTO, 0, NULL);
3472 ifmedia_set(sc->media, IFM_ETHER | IFM_AUTO);
3473 return (0);
3474 }
3475
3476 static int
em_if_tx_queues_alloc(if_ctx_t ctx,caddr_t * vaddrs,uint64_t * paddrs,int ntxqs,int ntxqsets)3477 em_if_tx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs,
3478 int ntxqs, int ntxqsets)
3479 {
3480 struct e1000_softc *sc = iflib_get_softc(ctx);
3481 if_softc_ctx_t scctx = sc->shared;
3482 int error = E1000_SUCCESS;
3483 struct em_tx_queue *que;
3484 int i, j;
3485
3486 MPASS(sc->tx_num_queues > 0);
3487 MPASS(sc->tx_num_queues == ntxqsets);
3488
3489 /* First allocate the top level queue structs */
3490 if (!(sc->tx_queues =
3491 (struct em_tx_queue *) malloc(sizeof(struct em_tx_queue) *
3492 sc->tx_num_queues, M_DEVBUF, M_NOWAIT | M_ZERO))) {
3493 device_printf(iflib_get_dev(ctx),
3494 "Unable to allocate queue memory\n");
3495 return(ENOMEM);
3496 }
3497
3498 for (i = 0, que = sc->tx_queues; i < sc->tx_num_queues; i++, que++) {
3499 /* Set up some basics */
3500
3501 struct tx_ring *txr = &que->txr;
3502 txr->sc = que->sc = sc;
3503 que->me = txr->me = i;
3504
3505 /* Allocate report status array */
3506 if (!(txr->tx_rsq =
3507 (qidx_t *) malloc(sizeof(qidx_t) * scctx->isc_ntxd[0],
3508 M_DEVBUF, M_NOWAIT | M_ZERO))) {
3509 device_printf(iflib_get_dev(ctx),
3510 "failed to allocate rs_idxs memory\n");
3511 error = ENOMEM;
3512 goto fail;
3513 }
3514 for (j = 0; j < scctx->isc_ntxd[0]; j++)
3515 txr->tx_rsq[j] = QIDX_INVALID;
3516 /* get the virtual and physical address of hardware queues */
3517 txr->tx_base = (struct e1000_tx_desc *)vaddrs[i*ntxqs];
3518 txr->tx_paddr = paddrs[i*ntxqs];
3519 }
3520
3521 if (bootverbose)
3522 device_printf(iflib_get_dev(ctx),
3523 "allocated for %d tx_queues\n", sc->tx_num_queues);
3524 return (0);
3525 fail:
3526 em_if_queues_free(ctx);
3527 return (error);
3528 }
3529
3530 static int
em_if_rx_queues_alloc(if_ctx_t ctx,caddr_t * vaddrs,uint64_t * paddrs,int nrxqs,int nrxqsets)3531 em_if_rx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs,
3532 int nrxqs, int nrxqsets)
3533 {
3534 struct e1000_softc *sc = iflib_get_softc(ctx);
3535 int error = E1000_SUCCESS;
3536 struct em_rx_queue *que;
3537 int i;
3538
3539 MPASS(sc->rx_num_queues > 0);
3540 MPASS(sc->rx_num_queues == nrxqsets);
3541
3542 /* First allocate the top level queue structs */
3543 if (!(sc->rx_queues =
3544 (struct em_rx_queue *) malloc(sizeof(struct em_rx_queue) *
3545 sc->rx_num_queues, M_DEVBUF, M_NOWAIT | M_ZERO))) {
3546 device_printf(iflib_get_dev(ctx),
3547 "Unable to allocate queue memory\n");
3548 error = ENOMEM;
3549 goto fail;
3550 }
3551
3552 for (i = 0, que = sc->rx_queues; i < nrxqsets; i++, que++) {
3553 /* Set up some basics */
3554 struct rx_ring *rxr = &que->rxr;
3555 rxr->sc = que->sc = sc;
3556 rxr->que = que;
3557 que->me = rxr->me = i;
3558
3559 /* get the virtual and physical address of hardware queues */
3560 rxr->rx_base =
3561 (union e1000_rx_desc_extended *)vaddrs[i*nrxqs];
3562 rxr->rx_paddr = paddrs[i*nrxqs];
3563 }
3564
3565 if (bootverbose)
3566 device_printf(iflib_get_dev(ctx),
3567 "allocated for %d rx_queues\n", sc->rx_num_queues);
3568
3569 return (0);
3570 fail:
3571 em_if_queues_free(ctx);
3572 return (error);
3573 }
3574
3575 static void
em_if_queues_free(if_ctx_t ctx)3576 em_if_queues_free(if_ctx_t ctx)
3577 {
3578 struct e1000_softc *sc = iflib_get_softc(ctx);
3579 struct em_tx_queue *tx_que = sc->tx_queues;
3580 struct em_rx_queue *rx_que = sc->rx_queues;
3581
3582 if (tx_que != NULL) {
3583 for (int i = 0; i < sc->tx_num_queues; i++, tx_que++) {
3584 struct tx_ring *txr = &tx_que->txr;
3585 if (txr->tx_rsq == NULL)
3586 break;
3587
3588 free(txr->tx_rsq, M_DEVBUF);
3589 txr->tx_rsq = NULL;
3590 }
3591 free(sc->tx_queues, M_DEVBUF);
3592 sc->tx_queues = NULL;
3593 }
3594
3595 if (rx_que != NULL) {
3596 free(sc->rx_queues, M_DEVBUF);
3597 sc->rx_queues = NULL;
3598 }
3599 }
3600
3601 /*********************************************************************
3602 *
3603 * Enable transmit unit.
3604 *
3605 **********************************************************************/
3606 static void
em_initialize_transmit_unit(if_ctx_t ctx)3607 em_initialize_transmit_unit(if_ctx_t ctx)
3608 {
3609 struct e1000_softc *sc = iflib_get_softc(ctx);
3610 if_softc_ctx_t scctx = sc->shared;
3611 struct em_tx_queue *que;
3612 struct tx_ring *txr;
3613 struct e1000_hw *hw = &sc->hw;
3614 u32 tctl, txdctl = 0, tarc, tipg = 0;
3615
3616 INIT_DEBUGOUT("em_initialize_transmit_unit: begin");
3617
3618 for (int i = 0; i < sc->tx_num_queues; i++, txr++) {
3619 u64 bus_addr;
3620 caddr_t offp, endp;
3621
3622 que = &sc->tx_queues[i];
3623 txr = &que->txr;
3624 bus_addr = txr->tx_paddr;
3625
3626 /* Clear checksum offload context. */
3627 offp = (caddr_t)&txr->csum_flags;
3628 endp = (caddr_t)(txr + 1);
3629 bzero(offp, endp - offp);
3630
3631 /* Base and Len of TX Ring */
3632 E1000_WRITE_REG(hw, E1000_TDLEN(i),
3633 scctx->isc_ntxd[0] * sizeof(struct e1000_tx_desc));
3634 E1000_WRITE_REG(hw, E1000_TDBAH(i), (u32)(bus_addr >> 32));
3635 E1000_WRITE_REG(hw, E1000_TDBAL(i), (u32)bus_addr);
3636 /* Init the HEAD/TAIL indices */
3637 E1000_WRITE_REG(hw, E1000_TDT(i), 0);
3638 E1000_WRITE_REG(hw, E1000_TDH(i), 0);
3639
3640 HW_DEBUGOUT2("Base = %x, Length = %x\n",
3641 E1000_READ_REG(hw, E1000_TDBAL(i)),
3642 E1000_READ_REG(hw, E1000_TDLEN(i)));
3643
3644 txdctl = 0; /* clear txdctl */
3645 txdctl |= 0x1f; /* PTHRESH */
3646 txdctl |= 1 << 8; /* HTHRESH */
3647 txdctl |= 1 << 16;/* WTHRESH */
3648 txdctl |= 1 << 22; /* Reserved bit 22 must always be 1 */
3649 txdctl |= E1000_TXDCTL_GRAN;
3650 txdctl |= 1 << 25; /* LWTHRESH */
3651
3652 E1000_WRITE_REG(hw, E1000_TXDCTL(i), txdctl);
3653 }
3654
3655 /* Set the default values for the Tx Inter Packet Gap timer */
3656 switch (hw->mac.type) {
3657 case e1000_80003es2lan:
3658 tipg = DEFAULT_82543_TIPG_IPGR1;
3659 tipg |= DEFAULT_80003ES2LAN_TIPG_IPGR2 <<
3660 E1000_TIPG_IPGR2_SHIFT;
3661 break;
3662 case e1000_82542:
3663 tipg = DEFAULT_82542_TIPG_IPGT;
3664 tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
3665 tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
3666 break;
3667 default:
3668 if (hw->phy.media_type == e1000_media_type_fiber ||
3669 hw->phy.media_type == e1000_media_type_internal_serdes)
3670 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
3671 else
3672 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
3673 tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
3674 tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
3675 }
3676
3677 if (hw->mac.type < igb_mac_min) {
3678 E1000_WRITE_REG(hw, E1000_TIPG, tipg);
3679 E1000_WRITE_REG(hw, E1000_TIDV, sc->tx_int_delay.value);
3680
3681 if (sc->tx_int_delay.value > 0)
3682 sc->txd_cmd |= E1000_TXD_CMD_IDE;
3683 }
3684
3685 if (hw->mac.type >= e1000_82540)
3686 E1000_WRITE_REG(hw, E1000_TADV, sc->tx_abs_int_delay.value);
3687
3688 if (hw->mac.type == e1000_82571 || hw->mac.type == e1000_82572) {
3689 tarc = E1000_READ_REG(hw, E1000_TARC(0));
3690 tarc |= TARC_SPEED_MODE_BIT;
3691 E1000_WRITE_REG(hw, E1000_TARC(0), tarc);
3692 } else if (hw->mac.type == e1000_80003es2lan) {
3693 /* errata: program both queues to unweighted RR */
3694 tarc = E1000_READ_REG(hw, E1000_TARC(0));
3695 tarc |= 1;
3696 E1000_WRITE_REG(hw, E1000_TARC(0), tarc);
3697 tarc = E1000_READ_REG(hw, E1000_TARC(1));
3698 tarc |= 1;
3699 E1000_WRITE_REG(hw, E1000_TARC(1), tarc);
3700 } else if (hw->mac.type == e1000_82574) {
3701 tarc = E1000_READ_REG(hw, E1000_TARC(0));
3702 tarc |= TARC_ERRATA_BIT;
3703 if ( sc->tx_num_queues > 1) {
3704 tarc |= (TARC_COMPENSATION_MODE | TARC_MQ_FIX);
3705 E1000_WRITE_REG(hw, E1000_TARC(0), tarc);
3706 E1000_WRITE_REG(hw, E1000_TARC(1), tarc);
3707 } else
3708 E1000_WRITE_REG(hw, E1000_TARC(0), tarc);
3709 }
3710
3711 /* Program the Transmit Control Register */
3712 tctl = E1000_READ_REG(hw, E1000_TCTL);
3713 tctl &= ~E1000_TCTL_CT;
3714 tctl |= (E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
3715 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT));
3716
3717 if (hw->mac.type >= e1000_82571 && hw->mac.type < igb_mac_min)
3718 tctl |= E1000_TCTL_MULR;
3719
3720 /* This write will effectively turn on the transmit unit. */
3721 E1000_WRITE_REG(hw, E1000_TCTL, tctl);
3722
3723 /* SPT and KBL errata workarounds */
3724 if (hw->mac.type == e1000_pch_spt) {
3725 u32 reg;
3726 reg = E1000_READ_REG(hw, E1000_IOSFPC);
3727 reg |= E1000_RCTL_RDMTS_HEX;
3728 E1000_WRITE_REG(hw, E1000_IOSFPC, reg);
3729 /* i218-i219 Specification Update 1.5.4.5 */
3730 reg = E1000_READ_REG(hw, E1000_TARC(0));
3731 reg &= ~E1000_TARC0_CB_MULTIQ_3_REQ;
3732 reg |= E1000_TARC0_CB_MULTIQ_2_REQ;
3733 E1000_WRITE_REG(hw, E1000_TARC(0), reg);
3734 }
3735 }
3736
3737 /*********************************************************************
3738 *
3739 * Enable receive unit.
3740 *
3741 **********************************************************************/
3742 #define BSIZEPKT_ROUNDUP ((1<<E1000_SRRCTL_BSIZEPKT_SHIFT)-1)
3743
3744 static void
em_initialize_receive_unit(if_ctx_t ctx)3745 em_initialize_receive_unit(if_ctx_t ctx)
3746 {
3747 struct e1000_softc *sc = iflib_get_softc(ctx);
3748 if_softc_ctx_t scctx = sc->shared;
3749 if_t ifp = iflib_get_ifp(ctx);
3750 struct e1000_hw *hw = &sc->hw;
3751 struct em_rx_queue *que;
3752 int i;
3753 uint32_t rctl, rxcsum;
3754
3755 INIT_DEBUGOUT("em_initialize_receive_units: begin");
3756
3757 /*
3758 * Make sure receives are disabled while setting
3759 * up the descriptor ring
3760 */
3761 rctl = E1000_READ_REG(hw, E1000_RCTL);
3762 /* Do not disable if ever enabled on this hardware */
3763 if ((hw->mac.type != e1000_82574) && (hw->mac.type != e1000_82583))
3764 E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
3765
3766 /* Setup the Receive Control Register */
3767 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3768 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
3769 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
3770 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3771
3772 /* Do not store bad packets */
3773 rctl &= ~E1000_RCTL_SBP;
3774
3775 /* Enable Long Packet receive */
3776 if (if_getmtu(ifp) > ETHERMTU)
3777 rctl |= E1000_RCTL_LPE;
3778 else
3779 rctl &= ~E1000_RCTL_LPE;
3780
3781 /* Strip the CRC */
3782 if (!em_disable_crc_stripping)
3783 rctl |= E1000_RCTL_SECRC;
3784
3785 /* lem/em default interrupt moderation */
3786 if (hw->mac.type < igb_mac_min) {
3787 if (hw->mac.type >= e1000_82540) {
3788 E1000_WRITE_REG(hw, E1000_RADV,
3789 sc->rx_abs_int_delay.value);
3790
3791 /* Set the default interrupt throttling rate */
3792 E1000_WRITE_REG(hw, E1000_ITR,
3793 EM_INTS_TO_ITR(em_max_interrupt_rate));
3794 }
3795
3796 /* XXX TEMPORARY WORKAROUND: on some systems with 82573
3797 * long latencies are observed, like Lenovo X60. This
3798 * change eliminates the problem, but since having positive
3799 * values in RDTR is a known source of problems on other
3800 * platforms another solution is being sought.
3801 */
3802 if (hw->mac.type == e1000_82573)
3803 E1000_WRITE_REG(hw, E1000_RDTR, 0x20);
3804 else
3805 E1000_WRITE_REG(hw, E1000_RDTR,
3806 sc->rx_int_delay.value);
3807 }
3808
3809 if (hw->mac.type >= em_mac_min) {
3810 uint32_t rfctl;
3811 /* Use extended rx descriptor formats */
3812 rfctl = E1000_READ_REG(hw, E1000_RFCTL);
3813 rfctl |= E1000_RFCTL_EXTEN;
3814
3815 /*
3816 * When using MSI-X interrupts we need to throttle
3817 * using the EITR register (82574 only)
3818 */
3819 if (hw->mac.type == e1000_82574) {
3820 for (int i = 0; i < 4; i++)
3821 E1000_WRITE_REG(hw, E1000_EITR_82574(i),
3822 EM_INTS_TO_ITR(em_max_interrupt_rate));
3823 /* Disable accelerated acknowledge */
3824 rfctl |= E1000_RFCTL_ACK_DIS;
3825 }
3826 E1000_WRITE_REG(hw, E1000_RFCTL, rfctl);
3827 }
3828
3829 /* Set up L3 and L4 csum Rx descriptor offloads */
3830 rxcsum = E1000_READ_REG(hw, E1000_RXCSUM);
3831 if (if_getcapenable(ifp) & IFCAP_RXCSUM) {
3832 rxcsum |= E1000_RXCSUM_TUOFL | E1000_RXCSUM_IPOFL;
3833 if (hw->mac.type > e1000_82575)
3834 rxcsum |= E1000_RXCSUM_CRCOFL;
3835 else if (hw->mac.type < em_mac_min &&
3836 if_getcapenable(ifp) & IFCAP_HWCSUM_IPV6)
3837 rxcsum |= E1000_RXCSUM_IPV6OFL;
3838 } else {
3839 rxcsum &= ~(E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL);
3840 if (hw->mac.type > e1000_82575)
3841 rxcsum &= ~E1000_RXCSUM_CRCOFL;
3842 else if (hw->mac.type < em_mac_min)
3843 rxcsum &= ~E1000_RXCSUM_IPV6OFL;
3844 }
3845
3846 if (sc->rx_num_queues > 1) {
3847 /* RSS hash needed in the Rx descriptor */
3848 rxcsum |= E1000_RXCSUM_PCSD;
3849
3850 if (hw->mac.type >= igb_mac_min)
3851 igb_initialize_rss_mapping(sc);
3852 else
3853 em_initialize_rss_mapping(sc);
3854 }
3855 E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum);
3856
3857 for (i = 0, que = sc->rx_queues; i < sc->rx_num_queues; i++, que++) {
3858 struct rx_ring *rxr = &que->rxr;
3859 /* Setup the Base and Length of the Rx Descriptor Ring */
3860 u64 bus_addr = rxr->rx_paddr;
3861 #if 0
3862 u32 rdt = sc->rx_num_queues -1; /* default */
3863 #endif
3864
3865 E1000_WRITE_REG(hw, E1000_RDLEN(i),
3866 scctx->isc_nrxd[0] *
3867 sizeof(union e1000_rx_desc_extended));
3868 E1000_WRITE_REG(hw, E1000_RDBAH(i), (u32)(bus_addr >> 32));
3869 E1000_WRITE_REG(hw, E1000_RDBAL(i), (u32)bus_addr);
3870 /* Setup the Head and Tail Descriptor Pointers */
3871 E1000_WRITE_REG(hw, E1000_RDH(i), 0);
3872 E1000_WRITE_REG(hw, E1000_RDT(i), 0);
3873 }
3874
3875 /*
3876 * Set PTHRESH for improved jumbo performance
3877 * According to 10.2.5.11 of Intel 82574 Datasheet,
3878 * RXDCTL(1) is written whenever RXDCTL(0) is written.
3879 * Only write to RXDCTL(1) if there is a need for different
3880 * settings.
3881 */
3882 if ((hw->mac.type == e1000_ich9lan || hw->mac.type == e1000_pch2lan ||
3883 hw->mac.type == e1000_ich10lan) && if_getmtu(ifp) > ETHERMTU) {
3884 u32 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(0));
3885 E1000_WRITE_REG(hw, E1000_RXDCTL(0), rxdctl | 3);
3886 } else if (hw->mac.type == e1000_82574) {
3887 for (int i = 0; i < sc->rx_num_queues; i++) {
3888 u32 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i));
3889 rxdctl |= 0x20; /* PTHRESH */
3890 rxdctl |= 4 << 8; /* HTHRESH */
3891 rxdctl |= 4 << 16;/* WTHRESH */
3892 rxdctl |= 1 << 24; /* Switch to granularity */
3893 E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
3894 }
3895 } else if (hw->mac.type >= igb_mac_min) {
3896 u32 psize, srrctl = 0;
3897
3898 if (if_getmtu(ifp) > ETHERMTU) {
3899 psize = scctx->isc_max_frame_size;
3900 /* are we on a vlan? */
3901 if (if_vlantrunkinuse(ifp))
3902 psize += VLAN_TAG_SIZE;
3903
3904 if (sc->vf_ifp)
3905 e1000_rlpml_set_vf(hw, psize);
3906 else
3907 E1000_WRITE_REG(hw, E1000_RLPML, psize);
3908 }
3909
3910 /* Set maximum packet buffer len */
3911 srrctl |= (sc->rx_mbuf_sz + BSIZEPKT_ROUNDUP) >>
3912 E1000_SRRCTL_BSIZEPKT_SHIFT;
3913
3914 /*
3915 * If TX flow control is disabled and there's >1 queue
3916 * defined, enable DROP.
3917 *
3918 * This drops frames rather than hanging the RX MAC for all
3919 * queues.
3920 */
3921 if ((sc->rx_num_queues > 1) &&
3922 (sc->fc == e1000_fc_none ||
3923 sc->fc == e1000_fc_rx_pause)) {
3924 srrctl |= E1000_SRRCTL_DROP_EN;
3925 }
3926 /* Setup the Base and Length of the Rx Descriptor Rings */
3927 for (i = 0, que = sc->rx_queues; i < sc->rx_num_queues;
3928 i++, que++) {
3929 struct rx_ring *rxr = &que->rxr;
3930 u64 bus_addr = rxr->rx_paddr;
3931 u32 rxdctl;
3932
3933 #ifdef notyet
3934 /* Configure for header split? -- ignore for now */
3935 rxr->hdr_split = igb_header_split;
3936 #else
3937 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3938 #endif
3939
3940 E1000_WRITE_REG(hw, E1000_RDLEN(i),
3941 scctx->isc_nrxd[0] *
3942 sizeof(struct e1000_rx_desc));
3943 E1000_WRITE_REG(hw, E1000_RDBAH(i),
3944 (uint32_t)(bus_addr >> 32));
3945 E1000_WRITE_REG(hw, E1000_RDBAL(i),
3946 (uint32_t)bus_addr);
3947 E1000_WRITE_REG(hw, E1000_SRRCTL(i), srrctl);
3948 /* Enable this Queue */
3949 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i));
3950 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3951 rxdctl &= 0xFFF00000;
3952 rxdctl |= IGB_RX_PTHRESH;
3953 rxdctl |= IGB_RX_HTHRESH << 8;
3954 rxdctl |= IGB_RX_WTHRESH << 16;
3955 E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
3956 }
3957 } else if (hw->mac.type >= e1000_pch2lan) {
3958 if (if_getmtu(ifp) > ETHERMTU)
3959 e1000_lv_jumbo_workaround_ich8lan(hw, true);
3960 else
3961 e1000_lv_jumbo_workaround_ich8lan(hw, false);
3962 }
3963
3964 /* Make sure VLAN Filters are off */
3965 rctl &= ~E1000_RCTL_VFE;
3966
3967 /* Set up packet buffer size, overridden by per queue srrctl on igb */
3968 if (hw->mac.type < igb_mac_min) {
3969 if (sc->rx_mbuf_sz > 2048 && sc->rx_mbuf_sz <= 4096)
3970 rctl |= E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX;
3971 else if (sc->rx_mbuf_sz > 4096 && sc->rx_mbuf_sz <= 8192)
3972 rctl |= E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX;
3973 else if (sc->rx_mbuf_sz > 8192)
3974 rctl |= E1000_RCTL_SZ_16384 | E1000_RCTL_BSEX;
3975 else {
3976 rctl |= E1000_RCTL_SZ_2048;
3977 rctl &= ~E1000_RCTL_BSEX;
3978 }
3979 } else
3980 rctl |= E1000_RCTL_SZ_2048;
3981
3982 /*
3983 * rctl bits 11:10 are as follows
3984 * lem: reserved
3985 * em: DTYPE
3986 * igb: reserved
3987 * and should be 00 on all of the above
3988 */
3989 rctl &= ~0x00000C00;
3990
3991 /* Write out the settings */
3992 E1000_WRITE_REG(hw, E1000_RCTL, rctl);
3993
3994 return;
3995 }
3996
3997 static void
em_if_vlan_register(if_ctx_t ctx,u16 vtag)3998 em_if_vlan_register(if_ctx_t ctx, u16 vtag)
3999 {
4000 struct e1000_softc *sc = iflib_get_softc(ctx);
4001 u32 index, bit;
4002
4003 index = (vtag >> 5) & 0x7F;
4004 bit = vtag & 0x1F;
4005 sc->shadow_vfta[index] |= (1 << bit);
4006 ++sc->num_vlans;
4007 em_if_vlan_filter_write(sc);
4008 }
4009
4010 static void
em_if_vlan_unregister(if_ctx_t ctx,u16 vtag)4011 em_if_vlan_unregister(if_ctx_t ctx, u16 vtag)
4012 {
4013 struct e1000_softc *sc = iflib_get_softc(ctx);
4014 u32 index, bit;
4015
4016 index = (vtag >> 5) & 0x7F;
4017 bit = vtag & 0x1F;
4018 sc->shadow_vfta[index] &= ~(1 << bit);
4019 --sc->num_vlans;
4020 em_if_vlan_filter_write(sc);
4021 }
4022
4023 static bool
em_if_vlan_filter_capable(if_ctx_t ctx)4024 em_if_vlan_filter_capable(if_ctx_t ctx)
4025 {
4026 if_t ifp = iflib_get_ifp(ctx);
4027
4028 if ((if_getcapenable(ifp) & IFCAP_VLAN_HWFILTER) &&
4029 !em_disable_crc_stripping)
4030 return (true);
4031
4032 return (false);
4033 }
4034
4035 static bool
em_if_vlan_filter_used(if_ctx_t ctx)4036 em_if_vlan_filter_used(if_ctx_t ctx)
4037 {
4038 struct e1000_softc *sc = iflib_get_softc(ctx);
4039
4040 if (!em_if_vlan_filter_capable(ctx))
4041 return (false);
4042
4043 for (int i = 0; i < EM_VFTA_SIZE; i++)
4044 if (sc->shadow_vfta[i] != 0)
4045 return (true);
4046
4047 return (false);
4048 }
4049
4050 static void
em_if_vlan_filter_enable(struct e1000_softc * sc)4051 em_if_vlan_filter_enable(struct e1000_softc *sc)
4052 {
4053 struct e1000_hw *hw = &sc->hw;
4054 u32 reg;
4055
4056 reg = E1000_READ_REG(hw, E1000_RCTL);
4057 reg &= ~E1000_RCTL_CFIEN;
4058 reg |= E1000_RCTL_VFE;
4059 E1000_WRITE_REG(hw, E1000_RCTL, reg);
4060 }
4061
4062 static void
em_if_vlan_filter_disable(struct e1000_softc * sc)4063 em_if_vlan_filter_disable(struct e1000_softc *sc)
4064 {
4065 struct e1000_hw *hw = &sc->hw;
4066 u32 reg;
4067
4068 reg = E1000_READ_REG(hw, E1000_RCTL);
4069 reg &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN);
4070 E1000_WRITE_REG(hw, E1000_RCTL, reg);
4071 }
4072
4073 static void
em_if_vlan_filter_write(struct e1000_softc * sc)4074 em_if_vlan_filter_write(struct e1000_softc *sc)
4075 {
4076 struct e1000_hw *hw = &sc->hw;
4077
4078 if (sc->vf_ifp)
4079 return;
4080
4081 /* Disable interrupts for lem(4) devices during the filter change */
4082 if (hw->mac.type < em_mac_min)
4083 em_if_intr_disable(sc->ctx);
4084
4085 for (int i = 0; i < EM_VFTA_SIZE; i++)
4086 if (sc->shadow_vfta[i] != 0) {
4087 /* XXXKB: incomplete VF support, we returned above */
4088 if (sc->vf_ifp)
4089 e1000_vfta_set_vf(hw, sc->shadow_vfta[i],
4090 true);
4091 else
4092 e1000_write_vfta(hw, i, sc->shadow_vfta[i]);
4093 }
4094
4095 /* Re-enable interrupts for lem-class devices */
4096 if (hw->mac.type < em_mac_min)
4097 em_if_intr_enable(sc->ctx);
4098 }
4099
4100 static void
em_setup_vlan_hw_support(if_ctx_t ctx)4101 em_setup_vlan_hw_support(if_ctx_t ctx)
4102 {
4103 struct e1000_softc *sc = iflib_get_softc(ctx);
4104 struct e1000_hw *hw = &sc->hw;
4105 if_t ifp = iflib_get_ifp(ctx);
4106 u32 reg;
4107
4108 /* XXXKB: Return early if we are a VF until VF decap and filter
4109 * management is ready and tested.
4110 */
4111 if (sc->vf_ifp)
4112 return;
4113
4114 if (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING &&
4115 !em_disable_crc_stripping) {
4116 reg = E1000_READ_REG(hw, E1000_CTRL);
4117 reg |= E1000_CTRL_VME;
4118 E1000_WRITE_REG(hw, E1000_CTRL, reg);
4119 } else {
4120 reg = E1000_READ_REG(hw, E1000_CTRL);
4121 reg &= ~E1000_CTRL_VME;
4122 E1000_WRITE_REG(hw, E1000_CTRL, reg);
4123 }
4124
4125 /* If we aren't doing HW filtering, we're done */
4126 if (!em_if_vlan_filter_capable(ctx)) {
4127 em_if_vlan_filter_disable(sc);
4128 return;
4129 }
4130
4131 /*
4132 * A soft reset zero's out the VFTA, so
4133 * we need to repopulate it now.
4134 * We also insert VLAN 0 in the filter list, so we pass VLAN 0 tagged
4135 * traffic through. This will write the entire table.
4136 */
4137 em_if_vlan_register(ctx, 0);
4138
4139 /* Enable the Filter Table */
4140 em_if_vlan_filter_enable(sc);
4141 }
4142
4143 static void
em_if_intr_enable(if_ctx_t ctx)4144 em_if_intr_enable(if_ctx_t ctx)
4145 {
4146 struct e1000_softc *sc = iflib_get_softc(ctx);
4147 struct e1000_hw *hw = &sc->hw;
4148 u32 ims_mask = IMS_ENABLE_MASK;
4149
4150 if (sc->intr_type == IFLIB_INTR_MSIX) {
4151 E1000_WRITE_REG(hw, EM_EIAC, sc->ims);
4152 ims_mask |= sc->ims;
4153 }
4154
4155 E1000_WRITE_REG(hw, E1000_IMS, ims_mask);
4156 E1000_WRITE_FLUSH(hw);
4157 }
4158
4159 static void
em_if_intr_disable(if_ctx_t ctx)4160 em_if_intr_disable(if_ctx_t ctx)
4161 {
4162 struct e1000_softc *sc = iflib_get_softc(ctx);
4163 struct e1000_hw *hw = &sc->hw;
4164
4165 if (sc->intr_type == IFLIB_INTR_MSIX)
4166 E1000_WRITE_REG(hw, EM_EIAC, 0);
4167 E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
4168 E1000_WRITE_FLUSH(hw);
4169 }
4170
4171 static void
igb_if_intr_enable(if_ctx_t ctx)4172 igb_if_intr_enable(if_ctx_t ctx)
4173 {
4174 struct e1000_softc *sc = iflib_get_softc(ctx);
4175 struct e1000_hw *hw = &sc->hw;
4176 u32 mask;
4177
4178 if (__predict_true(sc->intr_type == IFLIB_INTR_MSIX)) {
4179 mask = (sc->que_mask | sc->link_mask);
4180 E1000_WRITE_REG(hw, E1000_EIAC, mask);
4181 E1000_WRITE_REG(hw, E1000_EIAM, mask);
4182 E1000_WRITE_REG(hw, E1000_EIMS, mask);
4183 E1000_WRITE_REG(hw, E1000_IMS, E1000_IMS_LSC);
4184 } else
4185 E1000_WRITE_REG(hw, E1000_IMS, IMS_ENABLE_MASK);
4186 E1000_WRITE_FLUSH(hw);
4187 }
4188
4189 static void
igb_if_intr_disable(if_ctx_t ctx)4190 igb_if_intr_disable(if_ctx_t ctx)
4191 {
4192 struct e1000_softc *sc = iflib_get_softc(ctx);
4193 struct e1000_hw *hw = &sc->hw;
4194
4195 if (__predict_true(sc->intr_type == IFLIB_INTR_MSIX)) {
4196 E1000_WRITE_REG(hw, E1000_EIMC, 0xffffffff);
4197 E1000_WRITE_REG(hw, E1000_EIAC, 0);
4198 }
4199 E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
4200 E1000_WRITE_FLUSH(hw);
4201 }
4202
4203 /*
4204 * Bit of a misnomer, what this really means is
4205 * to enable OS management of the system... aka
4206 * to disable special hardware management features
4207 */
4208 static void
em_init_manageability(struct e1000_softc * sc)4209 em_init_manageability(struct e1000_softc *sc)
4210 {
4211 /* A shared code workaround */
4212 #define E1000_82542_MANC2H E1000_MANC2H
4213 if (sc->has_manage) {
4214 int manc2h = E1000_READ_REG(&sc->hw, E1000_MANC2H);
4215 int manc = E1000_READ_REG(&sc->hw, E1000_MANC);
4216
4217 /* disable hardware interception of ARP */
4218 manc &= ~(E1000_MANC_ARP_EN);
4219
4220 /* enable receiving management packets to the host */
4221 manc |= E1000_MANC_EN_MNG2HOST;
4222 #define E1000_MNG2HOST_PORT_623 (1 << 5)
4223 #define E1000_MNG2HOST_PORT_664 (1 << 6)
4224 manc2h |= E1000_MNG2HOST_PORT_623;
4225 manc2h |= E1000_MNG2HOST_PORT_664;
4226 E1000_WRITE_REG(&sc->hw, E1000_MANC2H, manc2h);
4227 E1000_WRITE_REG(&sc->hw, E1000_MANC, manc);
4228 }
4229 }
4230
4231 /*
4232 * Give control back to hardware management
4233 * controller if there is one.
4234 */
4235 static void
em_release_manageability(struct e1000_softc * sc)4236 em_release_manageability(struct e1000_softc *sc)
4237 {
4238 if (sc->has_manage) {
4239 int manc = E1000_READ_REG(&sc->hw, E1000_MANC);
4240
4241 /* re-enable hardware interception of ARP */
4242 manc |= E1000_MANC_ARP_EN;
4243 manc &= ~E1000_MANC_EN_MNG2HOST;
4244
4245 E1000_WRITE_REG(&sc->hw, E1000_MANC, manc);
4246 }
4247 }
4248
4249 /*
4250 * em_get_hw_control sets the {CTRL_EXT|FWSM}:DRV_LOAD bit.
4251 * For ASF and Pass Through versions of f/w this means
4252 * that the driver is loaded. For AMT version type f/w
4253 * this means that the network i/f is open.
4254 */
4255 static void
em_get_hw_control(struct e1000_softc * sc)4256 em_get_hw_control(struct e1000_softc *sc)
4257 {
4258 u32 ctrl_ext, swsm;
4259
4260 if (sc->vf_ifp)
4261 return;
4262
4263 if (sc->hw.mac.type == e1000_82573) {
4264 swsm = E1000_READ_REG(&sc->hw, E1000_SWSM);
4265 E1000_WRITE_REG(&sc->hw, E1000_SWSM,
4266 swsm | E1000_SWSM_DRV_LOAD);
4267 return;
4268 }
4269 /* else */
4270 ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
4271 E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT,
4272 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
4273 }
4274
4275 /*
4276 * em_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
4277 * For ASF and Pass Through versions of f/w this means that
4278 * the driver is no longer loaded. For AMT versions of the
4279 * f/w this means that the network i/f is closed.
4280 */
4281 static void
em_release_hw_control(struct e1000_softc * sc)4282 em_release_hw_control(struct e1000_softc *sc)
4283 {
4284 u32 ctrl_ext, swsm;
4285
4286 if (!sc->has_manage)
4287 return;
4288
4289 if (sc->hw.mac.type == e1000_82573) {
4290 swsm = E1000_READ_REG(&sc->hw, E1000_SWSM);
4291 E1000_WRITE_REG(&sc->hw, E1000_SWSM,
4292 swsm & ~E1000_SWSM_DRV_LOAD);
4293 return;
4294 }
4295 /* else */
4296 ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
4297 E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT,
4298 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
4299 return;
4300 }
4301
4302 static int
em_is_valid_ether_addr(u8 * addr)4303 em_is_valid_ether_addr(u8 *addr)
4304 {
4305 char zero_addr[6] = { 0, 0, 0, 0, 0, 0 };
4306
4307 if ((addr[0] & 1) || (!bcmp(addr, zero_addr, ETHER_ADDR_LEN))) {
4308 return (false);
4309 }
4310
4311 return (true);
4312 }
4313
4314 static bool
em_automask_tso(if_ctx_t ctx)4315 em_automask_tso(if_ctx_t ctx)
4316 {
4317 struct e1000_softc *sc = iflib_get_softc(ctx);
4318 if_softc_ctx_t scctx = iflib_get_softc_ctx(ctx);
4319 if_t ifp = iflib_get_ifp(ctx);
4320
4321 if (!em_unsupported_tso && sc->link_speed &&
4322 sc->link_speed != SPEED_1000 &&
4323 scctx->isc_capenable & IFCAP_TSO) {
4324 device_printf(sc->dev,
4325 "Disabling TSO for 10/100 Ethernet.\n");
4326 sc->tso_automasked = scctx->isc_capenable & IFCAP_TSO;
4327 scctx->isc_capenable &= ~IFCAP_TSO;
4328 if_setcapenablebit(ifp, 0, IFCAP_TSO);
4329 /* iflib_init_locked handles ifnet hwassistbits */
4330 iflib_request_reset(ctx);
4331 return true;
4332 } else if (sc->link_speed == SPEED_1000 && sc->tso_automasked) {
4333 device_printf(sc->dev, "Re-enabling TSO for GbE.\n");
4334 scctx->isc_capenable |= sc->tso_automasked;
4335 if_setcapenablebit(ifp, sc->tso_automasked, 0);
4336 sc->tso_automasked = 0;
4337 /* iflib_init_locked handles ifnet hwassistbits */
4338 iflib_request_reset(ctx);
4339 return true;
4340 }
4341
4342 return false;
4343 }
4344
4345 /*
4346 ** Parse the interface capabilities with regard
4347 ** to both system management and wake-on-lan for
4348 ** later use.
4349 */
4350 static void
em_get_wakeup(if_ctx_t ctx)4351 em_get_wakeup(if_ctx_t ctx)
4352 {
4353 struct e1000_softc *sc = iflib_get_softc(ctx);
4354 device_t dev = iflib_get_dev(ctx);
4355 u16 eeprom_data = 0, device_id, apme_mask;
4356
4357 sc->has_manage = e1000_enable_mng_pass_thru(&sc->hw);
4358 apme_mask = EM_EEPROM_APME;
4359
4360 switch (sc->hw.mac.type) {
4361 case e1000_82542:
4362 case e1000_82543:
4363 break;
4364 case e1000_82544:
4365 e1000_read_nvm(&sc->hw,
4366 NVM_INIT_CONTROL2_REG, 1, &eeprom_data);
4367 apme_mask = EM_82544_APME;
4368 break;
4369 case e1000_82546:
4370 case e1000_82546_rev_3:
4371 if (sc->hw.bus.func == 1) {
4372 e1000_read_nvm(&sc->hw,
4373 NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
4374 break;
4375 } else
4376 e1000_read_nvm(&sc->hw,
4377 NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
4378 break;
4379 case e1000_82573:
4380 case e1000_82583:
4381 sc->has_amt = true;
4382 /* FALLTHROUGH */
4383 case e1000_82571:
4384 case e1000_82572:
4385 case e1000_80003es2lan:
4386 if (sc->hw.bus.func == 1) {
4387 e1000_read_nvm(&sc->hw,
4388 NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
4389 break;
4390 } else
4391 e1000_read_nvm(&sc->hw,
4392 NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
4393 break;
4394 case e1000_ich8lan:
4395 case e1000_ich9lan:
4396 case e1000_ich10lan:
4397 case e1000_pchlan:
4398 case e1000_pch2lan:
4399 case e1000_pch_lpt:
4400 case e1000_pch_spt:
4401 case e1000_82575: /* listing all igb devices */
4402 case e1000_82576:
4403 case e1000_82580:
4404 case e1000_i350:
4405 case e1000_i354:
4406 case e1000_i210:
4407 case e1000_i211:
4408 case e1000_vfadapt:
4409 case e1000_vfadapt_i350:
4410 apme_mask = E1000_WUC_APME;
4411 sc->has_amt = true;
4412 eeprom_data = E1000_READ_REG(&sc->hw, E1000_WUC);
4413 break;
4414 default:
4415 e1000_read_nvm(&sc->hw,
4416 NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
4417 break;
4418 }
4419 if (eeprom_data & apme_mask)
4420 sc->wol = (E1000_WUFC_MAG | E1000_WUFC_MC);
4421 /*
4422 * We have the eeprom settings, now apply the special cases
4423 * where the eeprom may be wrong or the board won't support
4424 * wake on lan on a particular port
4425 */
4426 device_id = pci_get_device(dev);
4427 switch (device_id) {
4428 case E1000_DEV_ID_82546GB_PCIE:
4429 sc->wol = 0;
4430 break;
4431 case E1000_DEV_ID_82546EB_FIBER:
4432 case E1000_DEV_ID_82546GB_FIBER:
4433 /* Wake events only supported on port A for dual fiber
4434 * regardless of eeprom setting */
4435 if (E1000_READ_REG(&sc->hw, E1000_STATUS) &
4436 E1000_STATUS_FUNC_1)
4437 sc->wol = 0;
4438 break;
4439 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
4440 /* if quad port adapter, disable WoL on all but port A */
4441 if (global_quad_port_a != 0)
4442 sc->wol = 0;
4443 /* Reset for multiple quad port adapters */
4444 if (++global_quad_port_a == 4)
4445 global_quad_port_a = 0;
4446 break;
4447 case E1000_DEV_ID_82571EB_FIBER:
4448 /* Wake events only supported on port A for dual fiber
4449 * regardless of eeprom setting */
4450 if (E1000_READ_REG(&sc->hw, E1000_STATUS) &
4451 E1000_STATUS_FUNC_1)
4452 sc->wol = 0;
4453 break;
4454 case E1000_DEV_ID_82571EB_QUAD_COPPER:
4455 case E1000_DEV_ID_82571EB_QUAD_FIBER:
4456 case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
4457 /* if quad port adapter, disable WoL on all but port A */
4458 if (global_quad_port_a != 0)
4459 sc->wol = 0;
4460 /* Reset for multiple quad port adapters */
4461 if (++global_quad_port_a == 4)
4462 global_quad_port_a = 0;
4463 break;
4464 }
4465 return;
4466 }
4467
4468
4469 /*
4470 * Enable PCI Wake On Lan capability
4471 */
4472 static void
em_enable_wakeup(if_ctx_t ctx)4473 em_enable_wakeup(if_ctx_t ctx)
4474 {
4475 struct e1000_softc *sc = iflib_get_softc(ctx);
4476 device_t dev = iflib_get_dev(ctx);
4477 if_t ifp = iflib_get_ifp(ctx);
4478 int error = 0;
4479 u32 ctrl, ctrl_ext, rctl;
4480
4481 if (!pci_has_pm(dev))
4482 return;
4483
4484 /*
4485 * Determine type of Wakeup: note that wol
4486 * is set with all bits on by default.
4487 */
4488 if ((if_getcapenable(ifp) & IFCAP_WOL_MAGIC) == 0)
4489 sc->wol &= ~E1000_WUFC_MAG;
4490
4491 if ((if_getcapenable(ifp) & IFCAP_WOL_UCAST) == 0)
4492 sc->wol &= ~E1000_WUFC_EX;
4493
4494 if ((if_getcapenable(ifp) & IFCAP_WOL_MCAST) == 0)
4495 sc->wol &= ~E1000_WUFC_MC;
4496 else {
4497 rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
4498 rctl |= E1000_RCTL_MPE;
4499 E1000_WRITE_REG(&sc->hw, E1000_RCTL, rctl);
4500 }
4501
4502 if (!(sc->wol & (E1000_WUFC_EX | E1000_WUFC_MAG | E1000_WUFC_MC)))
4503 goto pme;
4504
4505 /* Advertise the wakeup capability */
4506 ctrl = E1000_READ_REG(&sc->hw, E1000_CTRL);
4507 ctrl |= (E1000_CTRL_SWDPIN2 | E1000_CTRL_SWDPIN3);
4508 E1000_WRITE_REG(&sc->hw, E1000_CTRL, ctrl);
4509
4510 /* Keep the laser running on Fiber adapters */
4511 if (sc->hw.phy.media_type == e1000_media_type_fiber ||
4512 sc->hw.phy.media_type == e1000_media_type_internal_serdes) {
4513 ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
4514 ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
4515 E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT, ctrl_ext);
4516 }
4517
4518 if ((sc->hw.mac.type == e1000_ich8lan) ||
4519 (sc->hw.mac.type == e1000_pchlan) ||
4520 (sc->hw.mac.type == e1000_ich9lan) ||
4521 (sc->hw.mac.type == e1000_ich10lan))
4522 e1000_suspend_workarounds_ich8lan(&sc->hw);
4523
4524 if ( sc->hw.mac.type >= e1000_pchlan) {
4525 error = em_enable_phy_wakeup(sc);
4526 if (error)
4527 goto pme;
4528 } else {
4529 /* Enable wakeup by the MAC */
4530 E1000_WRITE_REG(&sc->hw, E1000_WUC, E1000_WUC_PME_EN);
4531 E1000_WRITE_REG(&sc->hw, E1000_WUFC, sc->wol);
4532 }
4533
4534 if (sc->hw.phy.type == e1000_phy_igp_3)
4535 e1000_igp3_phy_powerdown_workaround_ich8lan(&sc->hw);
4536
4537 pme:
4538 if (!error && (if_getcapenable(ifp) & IFCAP_WOL))
4539 pci_enable_pme(dev);
4540
4541 return;
4542 }
4543
4544 /*
4545 * WOL in the newer chipset interfaces (pchlan)
4546 * require thing to be copied into the phy
4547 */
4548 static int
em_enable_phy_wakeup(struct e1000_softc * sc)4549 em_enable_phy_wakeup(struct e1000_softc *sc)
4550 {
4551 struct e1000_hw *hw = &sc->hw;
4552 u32 mreg, ret = 0;
4553 u16 preg;
4554
4555 /* copy MAC RARs to PHY RARs */
4556 e1000_copy_rx_addrs_to_phy_ich8lan(hw);
4557
4558 /* copy MAC MTA to PHY MTA */
4559 for (int i = 0; i < hw->mac.mta_reg_count; i++) {
4560 mreg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
4561 e1000_write_phy_reg(hw, BM_MTA(i), (u16)(mreg & 0xFFFF));
4562 e1000_write_phy_reg(hw, BM_MTA(i) + 1,
4563 (u16)((mreg >> 16) & 0xFFFF));
4564 }
4565
4566 /* configure PHY Rx Control register */
4567 e1000_read_phy_reg(hw, BM_RCTL, &preg);
4568 mreg = E1000_READ_REG(hw, E1000_RCTL);
4569 if (mreg & E1000_RCTL_UPE)
4570 preg |= BM_RCTL_UPE;
4571 if (mreg & E1000_RCTL_MPE)
4572 preg |= BM_RCTL_MPE;
4573 preg &= ~(BM_RCTL_MO_MASK);
4574 if (mreg & E1000_RCTL_MO_3)
4575 preg |= (((mreg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
4576 << BM_RCTL_MO_SHIFT);
4577 if (mreg & E1000_RCTL_BAM)
4578 preg |= BM_RCTL_BAM;
4579 if (mreg & E1000_RCTL_PMCF)
4580 preg |= BM_RCTL_PMCF;
4581 mreg = E1000_READ_REG(hw, E1000_CTRL);
4582 if (mreg & E1000_CTRL_RFCE)
4583 preg |= BM_RCTL_RFCE;
4584 e1000_write_phy_reg(hw, BM_RCTL, preg);
4585
4586 /* enable PHY wakeup in MAC register */
4587 E1000_WRITE_REG(hw, E1000_WUC,
4588 E1000_WUC_PHY_WAKE | E1000_WUC_PME_EN | E1000_WUC_APME);
4589 E1000_WRITE_REG(hw, E1000_WUFC, sc->wol);
4590
4591 /* configure and enable PHY wakeup in PHY registers */
4592 e1000_write_phy_reg(hw, BM_WUFC, sc->wol);
4593 e1000_write_phy_reg(hw, BM_WUC, E1000_WUC_PME_EN);
4594
4595 /* activate PHY wakeup */
4596 ret = hw->phy.ops.acquire(hw);
4597 if (ret) {
4598 printf("Could not acquire PHY\n");
4599 return ret;
4600 }
4601 e1000_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
4602 (BM_WUC_ENABLE_PAGE << IGP_PAGE_SHIFT));
4603 ret = e1000_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, &preg);
4604 if (ret) {
4605 printf("Could not read PHY page 769\n");
4606 goto out;
4607 }
4608 preg |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
4609 ret = e1000_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, preg);
4610 if (ret)
4611 printf("Could not set PHY Host Wakeup bit\n");
4612 out:
4613 hw->phy.ops.release(hw);
4614
4615 return ret;
4616 }
4617
4618 static void
em_if_led_func(if_ctx_t ctx,int onoff)4619 em_if_led_func(if_ctx_t ctx, int onoff)
4620 {
4621 struct e1000_softc *sc = iflib_get_softc(ctx);
4622
4623 if (onoff) {
4624 e1000_setup_led(&sc->hw);
4625 e1000_led_on(&sc->hw);
4626 } else {
4627 e1000_led_off(&sc->hw);
4628 e1000_cleanup_led(&sc->hw);
4629 }
4630 }
4631
4632 /*
4633 * Disable the L0S and L1 LINK states
4634 */
4635 static void
em_disable_aspm(struct e1000_softc * sc)4636 em_disable_aspm(struct e1000_softc *sc)
4637 {
4638 int base, reg;
4639 u16 link_cap,link_ctrl;
4640 device_t dev = sc->dev;
4641
4642 switch (sc->hw.mac.type) {
4643 case e1000_82573:
4644 case e1000_82574:
4645 case e1000_82583:
4646 break;
4647 default:
4648 return;
4649 }
4650 if (pci_find_cap(dev, PCIY_EXPRESS, &base) != 0)
4651 return;
4652 reg = base + PCIER_LINK_CAP;
4653 link_cap = pci_read_config(dev, reg, 2);
4654 if ((link_cap & PCIEM_LINK_CAP_ASPM) == 0)
4655 return;
4656 reg = base + PCIER_LINK_CTL;
4657 link_ctrl = pci_read_config(dev, reg, 2);
4658 link_ctrl &= ~PCIEM_LINK_CTL_ASPMC;
4659 pci_write_config(dev, reg, link_ctrl, 2);
4660 return;
4661 }
4662
4663 /**********************************************************************
4664 *
4665 * Update the board statistics counters.
4666 *
4667 **********************************************************************/
4668 static void
em_update_stats_counters(struct e1000_softc * sc)4669 em_update_stats_counters(struct e1000_softc *sc)
4670 {
4671 u64 prev_xoffrxc = sc->stats.xoffrxc;
4672
4673 if(sc->hw.phy.media_type == e1000_media_type_copper ||
4674 (E1000_READ_REG(&sc->hw, E1000_STATUS) & E1000_STATUS_LU)) {
4675 sc->stats.symerrs += E1000_READ_REG(&sc->hw, E1000_SYMERRS);
4676 sc->stats.sec += E1000_READ_REG(&sc->hw, E1000_SEC);
4677 }
4678 sc->stats.crcerrs += E1000_READ_REG(&sc->hw, E1000_CRCERRS);
4679 sc->stats.mpc += E1000_READ_REG(&sc->hw, E1000_MPC);
4680 sc->stats.scc += E1000_READ_REG(&sc->hw, E1000_SCC);
4681 sc->stats.ecol += E1000_READ_REG(&sc->hw, E1000_ECOL);
4682
4683 sc->stats.mcc += E1000_READ_REG(&sc->hw, E1000_MCC);
4684 sc->stats.latecol += E1000_READ_REG(&sc->hw, E1000_LATECOL);
4685 sc->stats.colc += E1000_READ_REG(&sc->hw, E1000_COLC);
4686 sc->stats.dc += E1000_READ_REG(&sc->hw, E1000_DC);
4687 sc->stats.rlec += E1000_READ_REG(&sc->hw, E1000_RLEC);
4688 sc->stats.xonrxc += E1000_READ_REG(&sc->hw, E1000_XONRXC);
4689 sc->stats.xontxc += E1000_READ_REG(&sc->hw, E1000_XONTXC);
4690 sc->stats.xoffrxc += E1000_READ_REG(&sc->hw, E1000_XOFFRXC);
4691 /*
4692 ** For watchdog management we need to know if we have been
4693 ** paused during the last interval, so capture that here.
4694 */
4695 if (sc->stats.xoffrxc != prev_xoffrxc)
4696 sc->shared->isc_pause_frames = 1;
4697 sc->stats.xofftxc += E1000_READ_REG(&sc->hw, E1000_XOFFTXC);
4698 sc->stats.fcruc += E1000_READ_REG(&sc->hw, E1000_FCRUC);
4699 sc->stats.prc64 += E1000_READ_REG(&sc->hw, E1000_PRC64);
4700 sc->stats.prc127 += E1000_READ_REG(&sc->hw, E1000_PRC127);
4701 sc->stats.prc255 += E1000_READ_REG(&sc->hw, E1000_PRC255);
4702 sc->stats.prc511 += E1000_READ_REG(&sc->hw, E1000_PRC511);
4703 sc->stats.prc1023 += E1000_READ_REG(&sc->hw, E1000_PRC1023);
4704 sc->stats.prc1522 += E1000_READ_REG(&sc->hw, E1000_PRC1522);
4705 sc->stats.gprc += E1000_READ_REG(&sc->hw, E1000_GPRC);
4706 sc->stats.bprc += E1000_READ_REG(&sc->hw, E1000_BPRC);
4707 sc->stats.mprc += E1000_READ_REG(&sc->hw, E1000_MPRC);
4708 sc->stats.gptc += E1000_READ_REG(&sc->hw, E1000_GPTC);
4709
4710 /* For the 64-bit byte counters the low dword must be read first. */
4711 /* Both registers clear on the read of the high dword */
4712
4713 sc->stats.gorc += E1000_READ_REG(&sc->hw, E1000_GORCL) +
4714 ((u64)E1000_READ_REG(&sc->hw, E1000_GORCH) << 32);
4715 sc->stats.gotc += E1000_READ_REG(&sc->hw, E1000_GOTCL) +
4716 ((u64)E1000_READ_REG(&sc->hw, E1000_GOTCH) << 32);
4717
4718 sc->stats.rnbc += E1000_READ_REG(&sc->hw, E1000_RNBC);
4719 sc->stats.ruc += E1000_READ_REG(&sc->hw, E1000_RUC);
4720 sc->stats.rfc += E1000_READ_REG(&sc->hw, E1000_RFC);
4721 sc->stats.roc += E1000_READ_REG(&sc->hw, E1000_ROC);
4722 sc->stats.rjc += E1000_READ_REG(&sc->hw, E1000_RJC);
4723
4724 sc->stats.mgprc += E1000_READ_REG(&sc->hw, E1000_MGTPRC);
4725 sc->stats.mgpdc += E1000_READ_REG(&sc->hw, E1000_MGTPDC);
4726 sc->stats.mgptc += E1000_READ_REG(&sc->hw, E1000_MGTPTC);
4727
4728 sc->stats.tor += E1000_READ_REG(&sc->hw, E1000_TORH);
4729 sc->stats.tot += E1000_READ_REG(&sc->hw, E1000_TOTH);
4730
4731 sc->stats.tpr += E1000_READ_REG(&sc->hw, E1000_TPR);
4732 sc->stats.tpt += E1000_READ_REG(&sc->hw, E1000_TPT);
4733 sc->stats.ptc64 += E1000_READ_REG(&sc->hw, E1000_PTC64);
4734 sc->stats.ptc127 += E1000_READ_REG(&sc->hw, E1000_PTC127);
4735 sc->stats.ptc255 += E1000_READ_REG(&sc->hw, E1000_PTC255);
4736 sc->stats.ptc511 += E1000_READ_REG(&sc->hw, E1000_PTC511);
4737 sc->stats.ptc1023 += E1000_READ_REG(&sc->hw, E1000_PTC1023);
4738 sc->stats.ptc1522 += E1000_READ_REG(&sc->hw, E1000_PTC1522);
4739 sc->stats.mptc += E1000_READ_REG(&sc->hw, E1000_MPTC);
4740 sc->stats.bptc += E1000_READ_REG(&sc->hw, E1000_BPTC);
4741
4742 /* Interrupt Counts */
4743
4744 sc->stats.iac += E1000_READ_REG(&sc->hw, E1000_IAC);
4745 sc->stats.icrxptc += E1000_READ_REG(&sc->hw, E1000_ICRXPTC);
4746 sc->stats.icrxatc += E1000_READ_REG(&sc->hw, E1000_ICRXATC);
4747 sc->stats.ictxptc += E1000_READ_REG(&sc->hw, E1000_ICTXPTC);
4748 sc->stats.ictxatc += E1000_READ_REG(&sc->hw, E1000_ICTXATC);
4749 sc->stats.ictxqec += E1000_READ_REG(&sc->hw, E1000_ICTXQEC);
4750 sc->stats.ictxqmtc += E1000_READ_REG(&sc->hw, E1000_ICTXQMTC);
4751 sc->stats.icrxdmtc += E1000_READ_REG(&sc->hw, E1000_ICRXDMTC);
4752 sc->stats.icrxoc += E1000_READ_REG(&sc->hw, E1000_ICRXOC);
4753
4754 if (sc->hw.mac.type >= e1000_82543) {
4755 sc->stats.algnerrc +=
4756 E1000_READ_REG(&sc->hw, E1000_ALGNERRC);
4757 sc->stats.rxerrc +=
4758 E1000_READ_REG(&sc->hw, E1000_RXERRC);
4759 sc->stats.tncrs +=
4760 E1000_READ_REG(&sc->hw, E1000_TNCRS);
4761 sc->stats.cexterr +=
4762 E1000_READ_REG(&sc->hw, E1000_CEXTERR);
4763 sc->stats.tsctc +=
4764 E1000_READ_REG(&sc->hw, E1000_TSCTC);
4765 sc->stats.tsctfc +=
4766 E1000_READ_REG(&sc->hw, E1000_TSCTFC);
4767 }
4768 }
4769
4770 static uint64_t
em_if_get_counter(if_ctx_t ctx,ift_counter cnt)4771 em_if_get_counter(if_ctx_t ctx, ift_counter cnt)
4772 {
4773 struct e1000_softc *sc = iflib_get_softc(ctx);
4774 if_t ifp = iflib_get_ifp(ctx);
4775
4776 switch (cnt) {
4777 case IFCOUNTER_COLLISIONS:
4778 return (sc->stats.colc);
4779 case IFCOUNTER_IERRORS:
4780 return (sc->dropped_pkts + sc->stats.rxerrc +
4781 sc->stats.crcerrs + sc->stats.algnerrc +
4782 sc->stats.ruc + sc->stats.roc +
4783 sc->stats.mpc + sc->stats.cexterr);
4784 case IFCOUNTER_OERRORS:
4785 return (sc->stats.ecol + sc->stats.latecol +
4786 sc->watchdog_events);
4787 default:
4788 return (if_get_counter_default(ifp, cnt));
4789 }
4790 }
4791
4792 /* em_if_needs_restart - Tell iflib when the driver needs to be reinitialized
4793 * @ctx: iflib context
4794 * @event: event code to check
4795 *
4796 * Defaults to returning false for unknown events.
4797 *
4798 * @returns true if iflib needs to reinit the interface
4799 */
4800 static bool
em_if_needs_restart(if_ctx_t ctx __unused,enum iflib_restart_event event)4801 em_if_needs_restart(if_ctx_t ctx __unused, enum iflib_restart_event event)
4802 {
4803 switch (event) {
4804 case IFLIB_RESTART_VLAN_CONFIG:
4805 default:
4806 return (false);
4807 }
4808 }
4809
4810 /* Export a single 32-bit register via a read-only sysctl. */
4811 static int
em_sysctl_reg_handler(SYSCTL_HANDLER_ARGS)4812 em_sysctl_reg_handler(SYSCTL_HANDLER_ARGS)
4813 {
4814 struct e1000_softc *sc;
4815 u_int val;
4816
4817 sc = oidp->oid_arg1;
4818 val = E1000_READ_REG(&sc->hw, oidp->oid_arg2);
4819 return (sysctl_handle_int(oidp, &val, 0, req));
4820 }
4821
4822 /* Per queue holdoff interrupt rate handler */
4823 static int
em_sysctl_interrupt_rate_handler(SYSCTL_HANDLER_ARGS)4824 em_sysctl_interrupt_rate_handler(SYSCTL_HANDLER_ARGS)
4825 {
4826 struct em_rx_queue *rque;
4827 struct em_tx_queue *tque;
4828 struct e1000_hw *hw;
4829 int error;
4830 u32 reg, usec, rate;
4831
4832 bool tx = oidp->oid_arg2;
4833
4834 if (tx) {
4835 tque = oidp->oid_arg1;
4836 hw = &tque->sc->hw;
4837 if (hw->mac.type >= igb_mac_min)
4838 reg = E1000_READ_REG(hw, E1000_EITR(tque->me));
4839 else if (hw->mac.type == e1000_82574 && tque->msix)
4840 reg = E1000_READ_REG(hw, E1000_EITR_82574(tque->me));
4841 else
4842 reg = E1000_READ_REG(hw, E1000_ITR);
4843 } else {
4844 rque = oidp->oid_arg1;
4845 hw = &rque->sc->hw;
4846 if (hw->mac.type >= igb_mac_min)
4847 reg = E1000_READ_REG(hw, E1000_EITR(rque->msix));
4848 else if (hw->mac.type == e1000_82574 && rque->msix)
4849 reg = E1000_READ_REG(hw,
4850 E1000_EITR_82574(rque->msix));
4851 else
4852 reg = E1000_READ_REG(hw, E1000_ITR);
4853 }
4854
4855 if (hw->mac.type < igb_mac_min) {
4856 if (reg > 0)
4857 rate = EM_INTS_TO_ITR(reg);
4858 else
4859 rate = 0;
4860 } else {
4861 usec = (reg & IGB_QVECTOR_MASK);
4862 if (usec > 0)
4863 rate = IGB_INTS_TO_EITR(usec);
4864 else
4865 rate = 0;
4866 }
4867
4868 error = sysctl_handle_int(oidp, &rate, 0, req);
4869 if (error || !req->newptr)
4870 return error;
4871 return 0;
4872 }
4873
4874 /*
4875 * Add sysctl variables, one per statistic, to the system.
4876 */
4877 static void
em_add_hw_stats(struct e1000_softc * sc)4878 em_add_hw_stats(struct e1000_softc *sc)
4879 {
4880 device_t dev = iflib_get_dev(sc->ctx);
4881 struct em_tx_queue *tx_que = sc->tx_queues;
4882 struct em_rx_queue *rx_que = sc->rx_queues;
4883
4884 struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(dev);
4885 struct sysctl_oid *tree = device_get_sysctl_tree(dev);
4886 struct sysctl_oid_list *child = SYSCTL_CHILDREN(tree);
4887 struct e1000_hw_stats *stats = &sc->stats;
4888
4889 struct sysctl_oid *stat_node, *queue_node, *int_node;
4890 struct sysctl_oid_list *stat_list, *queue_list, *int_list;
4891
4892 #define QUEUE_NAME_LEN 32
4893 char namebuf[QUEUE_NAME_LEN];
4894
4895 /* Driver Statistics */
4896 SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "dropped",
4897 CTLFLAG_RD, &sc->dropped_pkts,
4898 "Driver dropped packets");
4899 SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "link_irq",
4900 CTLFLAG_RD, &sc->link_irq,
4901 "Link MSI-X IRQ Handled");
4902 SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "rx_overruns",
4903 CTLFLAG_RD, &sc->rx_overruns,
4904 "RX overruns");
4905 SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "watchdog_timeouts",
4906 CTLFLAG_RD, &sc->watchdog_events,
4907 "Watchdog timeouts");
4908 SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "device_control",
4909 CTLTYPE_UINT | CTLFLAG_RD,
4910 sc, E1000_CTRL, em_sysctl_reg_handler, "IU",
4911 "Device Control Register");
4912 SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "rx_control",
4913 CTLTYPE_UINT | CTLFLAG_RD,
4914 sc, E1000_RCTL, em_sysctl_reg_handler, "IU",
4915 "Receiver Control Register");
4916 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "fc_high_water",
4917 CTLFLAG_RD, &sc->hw.fc.high_water, 0,
4918 "Flow Control High Watermark");
4919 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "fc_low_water",
4920 CTLFLAG_RD, &sc->hw.fc.low_water, 0,
4921 "Flow Control Low Watermark");
4922
4923 for (int i = 0; i < sc->tx_num_queues; i++, tx_que++) {
4924 struct tx_ring *txr = &tx_que->txr;
4925 snprintf(namebuf, QUEUE_NAME_LEN, "queue_tx_%d", i);
4926 queue_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, namebuf,
4927 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TX Queue Name");
4928 queue_list = SYSCTL_CHILDREN(queue_node);
4929
4930 SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "interrupt_rate",
4931 CTLTYPE_UINT | CTLFLAG_RD, tx_que,
4932 true, em_sysctl_interrupt_rate_handler,
4933 "IU", "Interrupt Rate");
4934
4935 SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "txd_head",
4936 CTLTYPE_UINT | CTLFLAG_RD, sc,
4937 E1000_TDH(txr->me), em_sysctl_reg_handler, "IU",
4938 "Transmit Descriptor Head");
4939 SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "txd_tail",
4940 CTLTYPE_UINT | CTLFLAG_RD, sc,
4941 E1000_TDT(txr->me), em_sysctl_reg_handler, "IU",
4942 "Transmit Descriptor Tail");
4943 SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO, "tx_irq",
4944 CTLFLAG_RD, &txr->tx_irq,
4945 "Queue MSI-X Transmit Interrupts");
4946 }
4947
4948 for (int j = 0; j < sc->rx_num_queues; j++, rx_que++) {
4949 struct rx_ring *rxr = &rx_que->rxr;
4950 snprintf(namebuf, QUEUE_NAME_LEN, "queue_rx_%d", j);
4951 queue_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, namebuf,
4952 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "RX Queue Name");
4953 queue_list = SYSCTL_CHILDREN(queue_node);
4954
4955 SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "interrupt_rate",
4956 CTLTYPE_UINT | CTLFLAG_RD, rx_que,
4957 false, em_sysctl_interrupt_rate_handler,
4958 "IU", "Interrupt Rate");
4959
4960 SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "rxd_head",
4961 CTLTYPE_UINT | CTLFLAG_RD, sc,
4962 E1000_RDH(rxr->me), em_sysctl_reg_handler, "IU",
4963 "Receive Descriptor Head");
4964 SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "rxd_tail",
4965 CTLTYPE_UINT | CTLFLAG_RD, sc,
4966 E1000_RDT(rxr->me), em_sysctl_reg_handler, "IU",
4967 "Receive Descriptor Tail");
4968 SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO, "rx_irq",
4969 CTLFLAG_RD, &rxr->rx_irq,
4970 "Queue MSI-X Receive Interrupts");
4971 }
4972
4973 /* MAC stats get their own sub node */
4974 stat_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "mac_stats",
4975 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Statistics");
4976 stat_list = SYSCTL_CHILDREN(stat_node);
4977
4978 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "excess_coll",
4979 CTLFLAG_RD, &stats->ecol,
4980 "Excessive collisions");
4981 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "single_coll",
4982 CTLFLAG_RD, &stats->scc,
4983 "Single collisions");
4984 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "multiple_coll",
4985 CTLFLAG_RD, &stats->mcc,
4986 "Multiple collisions");
4987 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "late_coll",
4988 CTLFLAG_RD, &stats->latecol,
4989 "Late collisions");
4990 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "collision_count",
4991 CTLFLAG_RD, &stats->colc,
4992 "Collision Count");
4993 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "symbol_errors",
4994 CTLFLAG_RD, &sc->stats.symerrs,
4995 "Symbol Errors");
4996 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "sequence_errors",
4997 CTLFLAG_RD, &sc->stats.sec,
4998 "Sequence Errors");
4999 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "defer_count",
5000 CTLFLAG_RD, &sc->stats.dc,
5001 "Defer Count");
5002 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "missed_packets",
5003 CTLFLAG_RD, &sc->stats.mpc,
5004 "Missed Packets");
5005 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_length_errors",
5006 CTLFLAG_RD, &sc->stats.rlec,
5007 "Receive Length Errors");
5008 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_no_buff",
5009 CTLFLAG_RD, &sc->stats.rnbc,
5010 "Receive No Buffers");
5011 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_undersize",
5012 CTLFLAG_RD, &sc->stats.ruc,
5013 "Receive Undersize");
5014 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_fragmented",
5015 CTLFLAG_RD, &sc->stats.rfc,
5016 "Fragmented Packets Received ");
5017 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_oversize",
5018 CTLFLAG_RD, &sc->stats.roc,
5019 "Oversized Packets Received");
5020 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_jabber",
5021 CTLFLAG_RD, &sc->stats.rjc,
5022 "Recevied Jabber");
5023 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_errs",
5024 CTLFLAG_RD, &sc->stats.rxerrc,
5025 "Receive Errors");
5026 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "crc_errs",
5027 CTLFLAG_RD, &sc->stats.crcerrs,
5028 "CRC errors");
5029 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "alignment_errs",
5030 CTLFLAG_RD, &sc->stats.algnerrc,
5031 "Alignment Errors");
5032 /* On 82575 these are collision counts */
5033 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "coll_ext_errs",
5034 CTLFLAG_RD, &sc->stats.cexterr,
5035 "Collision/Carrier extension errors");
5036 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xon_recvd",
5037 CTLFLAG_RD, &sc->stats.xonrxc,
5038 "XON Received");
5039 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xon_txd",
5040 CTLFLAG_RD, &sc->stats.xontxc,
5041 "XON Transmitted");
5042 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xoff_recvd",
5043 CTLFLAG_RD, &sc->stats.xoffrxc,
5044 "XOFF Received");
5045 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xoff_txd",
5046 CTLFLAG_RD, &sc->stats.xofftxc,
5047 "XOFF Transmitted");
5048 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "unsupported_fc_recvd",
5049 CTLFLAG_RD, &sc->stats.fcruc,
5050 "Unsupported Flow Control Received");
5051 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mgmt_pkts_recvd",
5052 CTLFLAG_RD, &sc->stats.mgprc,
5053 "Management Packets Received");
5054 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mgmt_pkts_drop",
5055 CTLFLAG_RD, &sc->stats.mgpdc,
5056 "Management Packets Dropped");
5057 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mgmt_pkts_txd",
5058 CTLFLAG_RD, &sc->stats.mgptc,
5059 "Management Packets Transmitted");
5060
5061 /* Packet Reception Stats */
5062 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "total_pkts_recvd",
5063 CTLFLAG_RD, &sc->stats.tpr,
5064 "Total Packets Received ");
5065 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_pkts_recvd",
5066 CTLFLAG_RD, &sc->stats.gprc,
5067 "Good Packets Received");
5068 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "bcast_pkts_recvd",
5069 CTLFLAG_RD, &sc->stats.bprc,
5070 "Broadcast Packets Received");
5071 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mcast_pkts_recvd",
5072 CTLFLAG_RD, &sc->stats.mprc,
5073 "Multicast Packets Received");
5074 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_64",
5075 CTLFLAG_RD, &sc->stats.prc64,
5076 "64 byte frames received ");
5077 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_65_127",
5078 CTLFLAG_RD, &sc->stats.prc127,
5079 "65-127 byte frames received");
5080 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_128_255",
5081 CTLFLAG_RD, &sc->stats.prc255,
5082 "128-255 byte frames received");
5083 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_256_511",
5084 CTLFLAG_RD, &sc->stats.prc511,
5085 "256-511 byte frames received");
5086 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_512_1023",
5087 CTLFLAG_RD, &sc->stats.prc1023,
5088 "512-1023 byte frames received");
5089 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_1024_1522",
5090 CTLFLAG_RD, &sc->stats.prc1522,
5091 "1023-1522 byte frames received");
5092 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_octets_recvd",
5093 CTLFLAG_RD, &sc->stats.gorc,
5094 "Good Octets Received");
5095
5096 /* Packet Transmission Stats */
5097 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_octets_txd",
5098 CTLFLAG_RD, &sc->stats.gotc,
5099 "Good Octets Transmitted");
5100 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "total_pkts_txd",
5101 CTLFLAG_RD, &sc->stats.tpt,
5102 "Total Packets Transmitted");
5103 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_pkts_txd",
5104 CTLFLAG_RD, &sc->stats.gptc,
5105 "Good Packets Transmitted");
5106 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "bcast_pkts_txd",
5107 CTLFLAG_RD, &sc->stats.bptc,
5108 "Broadcast Packets Transmitted");
5109 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mcast_pkts_txd",
5110 CTLFLAG_RD, &sc->stats.mptc,
5111 "Multicast Packets Transmitted");
5112 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_64",
5113 CTLFLAG_RD, &sc->stats.ptc64,
5114 "64 byte frames transmitted ");
5115 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_65_127",
5116 CTLFLAG_RD, &sc->stats.ptc127,
5117 "65-127 byte frames transmitted");
5118 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_128_255",
5119 CTLFLAG_RD, &sc->stats.ptc255,
5120 "128-255 byte frames transmitted");
5121 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_256_511",
5122 CTLFLAG_RD, &sc->stats.ptc511,
5123 "256-511 byte frames transmitted");
5124 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_512_1023",
5125 CTLFLAG_RD, &sc->stats.ptc1023,
5126 "512-1023 byte frames transmitted");
5127 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_1024_1522",
5128 CTLFLAG_RD, &sc->stats.ptc1522,
5129 "1024-1522 byte frames transmitted");
5130 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tso_txd",
5131 CTLFLAG_RD, &sc->stats.tsctc,
5132 "TSO Contexts Transmitted");
5133 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tso_ctx_fail",
5134 CTLFLAG_RD, &sc->stats.tsctfc,
5135 "TSO Contexts Failed");
5136
5137 /* Interrupt Stats */
5138 int_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "interrupts",
5139 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Interrupt Statistics");
5140 int_list = SYSCTL_CHILDREN(int_node);
5141
5142 SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "asserts",
5143 CTLFLAG_RD, &sc->stats.iac,
5144 "Interrupt Assertion Count");
5145
5146 SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_pkt_timer",
5147 CTLFLAG_RD, &sc->stats.icrxptc,
5148 "Interrupt Cause Rx Pkt Timer Expire Count");
5149
5150 SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_abs_timer",
5151 CTLFLAG_RD, &sc->stats.icrxatc,
5152 "Interrupt Cause Rx Abs Timer Expire Count");
5153
5154 SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_pkt_timer",
5155 CTLFLAG_RD, &sc->stats.ictxptc,
5156 "Interrupt Cause Tx Pkt Timer Expire Count");
5157
5158 SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_abs_timer",
5159 CTLFLAG_RD, &sc->stats.ictxatc,
5160 "Interrupt Cause Tx Abs Timer Expire Count");
5161
5162 SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_queue_empty",
5163 CTLFLAG_RD, &sc->stats.ictxqec,
5164 "Interrupt Cause Tx Queue Empty Count");
5165
5166 SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_queue_min_thresh",
5167 CTLFLAG_RD, &sc->stats.ictxqmtc,
5168 "Interrupt Cause Tx Queue Min Thresh Count");
5169
5170 SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_desc_min_thresh",
5171 CTLFLAG_RD, &sc->stats.icrxdmtc,
5172 "Interrupt Cause Rx Desc Min Thresh Count");
5173
5174 SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_overrun",
5175 CTLFLAG_RD, &sc->stats.icrxoc,
5176 "Interrupt Cause Receiver Overrun Count");
5177 }
5178
5179 static void
em_fw_version_locked(if_ctx_t ctx)5180 em_fw_version_locked(if_ctx_t ctx)
5181 {
5182 struct e1000_softc *sc = iflib_get_softc(ctx);
5183 struct e1000_hw *hw = &sc->hw;
5184 struct e1000_fw_version *fw_ver = &sc->fw_ver;
5185 uint16_t eep = 0;
5186
5187 /*
5188 * em_fw_version_locked() must run under the IFLIB_CTX_LOCK to meet
5189 * the NVM locking model, so we do it in em_if_attach_pre() and store
5190 * the info in the softc
5191 */
5192 ASSERT_CTX_LOCK_HELD(hw);
5193
5194 *fw_ver = (struct e1000_fw_version){0};
5195
5196 if (hw->mac.type >= igb_mac_min) {
5197 /*
5198 * Use the Shared Code for igb(4)
5199 */
5200 e1000_get_fw_version(hw, fw_ver);
5201 } else {
5202 /*
5203 * Otherwise, EEPROM version should be present on (almost?)
5204 * all devices here
5205 */
5206 if(e1000_read_nvm(hw, NVM_VERSION, 1, &eep)) {
5207 INIT_DEBUGOUT("can't get EEPROM version");
5208 return;
5209 }
5210
5211 fw_ver->eep_major = (eep & NVM_MAJOR_MASK) >> NVM_MAJOR_SHIFT;
5212 fw_ver->eep_minor = (eep & NVM_MINOR_MASK) >> NVM_MINOR_SHIFT;
5213 fw_ver->eep_build = (eep & NVM_IMAGE_ID_MASK);
5214 }
5215 }
5216
5217 static void
em_sbuf_fw_version(struct e1000_fw_version * fw_ver,struct sbuf * buf)5218 em_sbuf_fw_version(struct e1000_fw_version *fw_ver, struct sbuf *buf)
5219 {
5220 const char *space = "";
5221
5222 if (fw_ver->eep_major || fw_ver->eep_minor || fw_ver->eep_build) {
5223 sbuf_printf(buf, "EEPROM V%d.%d-%d", fw_ver->eep_major,
5224 fw_ver->eep_minor, fw_ver->eep_build);
5225 space = " ";
5226 }
5227
5228 if (fw_ver->invm_major || fw_ver->invm_minor ||
5229 fw_ver->invm_img_type) {
5230 sbuf_printf(buf, "%sNVM V%d.%d imgtype%d",
5231 space, fw_ver->invm_major, fw_ver->invm_minor,
5232 fw_ver->invm_img_type);
5233 space = " ";
5234 }
5235
5236 if (fw_ver->or_valid) {
5237 sbuf_printf(buf, "%sOption ROM V%d-b%d-p%d",
5238 space, fw_ver->or_major, fw_ver->or_build,
5239 fw_ver->or_patch);
5240 space = " ";
5241 }
5242
5243 if (fw_ver->etrack_id)
5244 sbuf_printf(buf, "%seTrack 0x%08x", space, fw_ver->etrack_id);
5245 }
5246
5247 static void
em_print_fw_version(struct e1000_softc * sc)5248 em_print_fw_version(struct e1000_softc *sc )
5249 {
5250 device_t dev = sc->dev;
5251 struct sbuf *buf;
5252 int error = 0;
5253
5254 buf = sbuf_new_auto();
5255 if (!buf) {
5256 device_printf(dev, "Could not allocate sbuf for output.\n");
5257 return;
5258 }
5259
5260 em_sbuf_fw_version(&sc->fw_ver, buf);
5261
5262 error = sbuf_finish(buf);
5263 if (error)
5264 device_printf(dev, "Error finishing sbuf: %d\n", error);
5265 else if (sbuf_len(buf))
5266 device_printf(dev, "%s\n", sbuf_data(buf));
5267
5268 sbuf_delete(buf);
5269 }
5270
5271 static int
em_sysctl_print_fw_version(SYSCTL_HANDLER_ARGS)5272 em_sysctl_print_fw_version(SYSCTL_HANDLER_ARGS)
5273 {
5274 struct e1000_softc *sc = (struct e1000_softc *)arg1;
5275 device_t dev = sc->dev;
5276 struct sbuf *buf;
5277 int error = 0;
5278
5279 buf = sbuf_new_for_sysctl(NULL, NULL, 128, req);
5280 if (!buf) {
5281 device_printf(dev, "Could not allocate sbuf for output.\n");
5282 return (ENOMEM);
5283 }
5284
5285 em_sbuf_fw_version(&sc->fw_ver, buf);
5286
5287 error = sbuf_finish(buf);
5288 if (error)
5289 device_printf(dev, "Error finishing sbuf: %d\n", error);
5290
5291 sbuf_delete(buf);
5292
5293 return (0);
5294 }
5295
5296 /**********************************************************************
5297 *
5298 * This routine provides a way to dump out the adapter eeprom,
5299 * often a useful debug/service tool. This only dumps the first
5300 * 32 words, stuff that matters is in that extent.
5301 *
5302 **********************************************************************/
5303 static int
em_sysctl_nvm_info(SYSCTL_HANDLER_ARGS)5304 em_sysctl_nvm_info(SYSCTL_HANDLER_ARGS)
5305 {
5306 struct e1000_softc *sc = (struct e1000_softc *)arg1;
5307 int error;
5308 int result;
5309
5310 result = -1;
5311 error = sysctl_handle_int(oidp, &result, 0, req);
5312
5313 if (error || !req->newptr)
5314 return (error);
5315
5316 /*
5317 * This value will cause a hex dump of the
5318 * first 32 16-bit words of the EEPROM to
5319 * the screen.
5320 */
5321 if (result == 1)
5322 em_print_nvm_info(sc);
5323
5324 return (error);
5325 }
5326
5327 static void
em_print_nvm_info(struct e1000_softc * sc)5328 em_print_nvm_info(struct e1000_softc *sc)
5329 {
5330 struct e1000_hw *hw = &sc->hw;
5331 struct sx *iflib_ctx_lock = iflib_ctx_lock_get(sc->ctx);
5332 u16 eeprom_data;
5333 int i, j, row = 0;
5334
5335 /* Its a bit crude, but it gets the job done */
5336 printf("\nInterface EEPROM Dump:\n");
5337 printf("Offset\n0x0000 ");
5338
5339 /* We rely on the IFLIB_CTX_LOCK as part of NVM locking model */
5340 sx_xlock(iflib_ctx_lock);
5341 ASSERT_CTX_LOCK_HELD(hw);
5342 for (i = 0, j = 0; i < 32; i++, j++) {
5343 if (j == 8) { /* Make the offset block */
5344 j = 0; ++row;
5345 printf("\n0x00%x0 ",row);
5346 }
5347 e1000_read_nvm(hw, i, 1, &eeprom_data);
5348 printf("%04x ", eeprom_data);
5349 }
5350 sx_xunlock(iflib_ctx_lock);
5351 printf("\n");
5352 }
5353
5354 static int
em_sysctl_int_delay(SYSCTL_HANDLER_ARGS)5355 em_sysctl_int_delay(SYSCTL_HANDLER_ARGS)
5356 {
5357 struct em_int_delay_info *info;
5358 struct e1000_softc *sc;
5359 u32 regval;
5360 int error, usecs, ticks;
5361
5362 info = (struct em_int_delay_info *) arg1;
5363 usecs = info->value;
5364 error = sysctl_handle_int(oidp, &usecs, 0, req);
5365 if (error != 0 || req->newptr == NULL)
5366 return (error);
5367 if (usecs < 0 || usecs > EM_TICKS_TO_USECS(65535))
5368 return (EINVAL);
5369 info->value = usecs;
5370 ticks = EM_USECS_TO_TICKS(usecs);
5371
5372 sc = info->sc;
5373
5374 regval = E1000_READ_OFFSET(&sc->hw, info->offset);
5375 regval = (regval & ~0xffff) | (ticks & 0xffff);
5376 /* Handle a few special cases. */
5377 switch (info->offset) {
5378 case E1000_RDTR:
5379 break;
5380 case E1000_TIDV:
5381 if (ticks == 0) {
5382 sc->txd_cmd &= ~E1000_TXD_CMD_IDE;
5383 /* Don't write 0 into the TIDV register. */
5384 regval++;
5385 } else
5386 sc->txd_cmd |= E1000_TXD_CMD_IDE;
5387 break;
5388 }
5389 E1000_WRITE_OFFSET(&sc->hw, info->offset, regval);
5390 return (0);
5391 }
5392
5393 static int
em_sysctl_tso_tcp_flags_mask(SYSCTL_HANDLER_ARGS)5394 em_sysctl_tso_tcp_flags_mask(SYSCTL_HANDLER_ARGS)
5395 {
5396 struct e1000_softc *sc;
5397 u32 reg, val, shift;
5398 int error, mask;
5399
5400 sc = oidp->oid_arg1;
5401 switch (oidp->oid_arg2) {
5402 case 0:
5403 reg = E1000_DTXTCPFLGL;
5404 shift = 0;
5405 break;
5406 case 1:
5407 reg = E1000_DTXTCPFLGL;
5408 shift = 16;
5409 break;
5410 case 2:
5411 reg = E1000_DTXTCPFLGH;
5412 shift = 0;
5413 break;
5414 default:
5415 return (EINVAL);
5416 break;
5417 }
5418 val = E1000_READ_REG(&sc->hw, reg);
5419 mask = (val >> shift) & 0xfff;
5420 error = sysctl_handle_int(oidp, &mask, 0, req);
5421 if (error != 0 || req->newptr == NULL)
5422 return (error);
5423 if (mask < 0 || mask > 0xfff)
5424 return (EINVAL);
5425 val = (val & ~(0xfff << shift)) | (mask << shift);
5426 E1000_WRITE_REG(&sc->hw, reg, val);
5427 return (0);
5428 }
5429
5430 static void
em_add_int_delay_sysctl(struct e1000_softc * sc,const char * name,const char * description,struct em_int_delay_info * info,int offset,int value)5431 em_add_int_delay_sysctl(struct e1000_softc *sc, const char *name,
5432 const char *description, struct em_int_delay_info *info, int offset,
5433 int value)
5434 {
5435 info->sc = sc;
5436 info->offset = offset;
5437 info->value = value;
5438 SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->dev),
5439 SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)),
5440 OID_AUTO, name, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
5441 info, 0, em_sysctl_int_delay, "I", description);
5442 }
5443
5444 /*
5445 * Set flow control using sysctl:
5446 * Flow control values:
5447 * 0 - off
5448 * 1 - rx pause
5449 * 2 - tx pause
5450 * 3 - full
5451 */
5452 static int
em_set_flowcntl(SYSCTL_HANDLER_ARGS)5453 em_set_flowcntl(SYSCTL_HANDLER_ARGS)
5454 {
5455 int error;
5456 static int input = 3; /* default is full */
5457 struct e1000_softc *sc = (struct e1000_softc *) arg1;
5458
5459 error = sysctl_handle_int(oidp, &input, 0, req);
5460
5461 if ((error) || (req->newptr == NULL))
5462 return (error);
5463
5464 if (input == sc->fc) /* no change? */
5465 return (error);
5466
5467 switch (input) {
5468 case e1000_fc_rx_pause:
5469 case e1000_fc_tx_pause:
5470 case e1000_fc_full:
5471 case e1000_fc_none:
5472 sc->hw.fc.requested_mode = input;
5473 sc->fc = input;
5474 break;
5475 default:
5476 /* Do nothing */
5477 return (error);
5478 }
5479
5480 sc->hw.fc.current_mode = sc->hw.fc.requested_mode;
5481 e1000_force_mac_fc(&sc->hw);
5482 return (error);
5483 }
5484
5485 /*
5486 * Manage DMA Coalesce:
5487 * Control values:
5488 * 0/1 - off/on
5489 * Legal timer values are:
5490 * 250,500,1000-10000 in thousands
5491 */
5492 static int
igb_sysctl_dmac(SYSCTL_HANDLER_ARGS)5493 igb_sysctl_dmac(SYSCTL_HANDLER_ARGS)
5494 {
5495 struct e1000_softc *sc = (struct e1000_softc *) arg1;
5496 int error;
5497
5498 error = sysctl_handle_int(oidp, &sc->dmac, 0, req);
5499
5500 if ((error) || (req->newptr == NULL))
5501 return (error);
5502
5503 switch (sc->dmac) {
5504 case 0:
5505 /* Disabling */
5506 break;
5507 case 1: /* Just enable and use default */
5508 sc->dmac = 1000;
5509 break;
5510 case 250:
5511 case 500:
5512 case 1000:
5513 case 2000:
5514 case 3000:
5515 case 4000:
5516 case 5000:
5517 case 6000:
5518 case 7000:
5519 case 8000:
5520 case 9000:
5521 case 10000:
5522 /* Legal values - allow */
5523 break;
5524 default:
5525 /* Do nothing, illegal value */
5526 sc->dmac = 0;
5527 return (EINVAL);
5528 }
5529 /* Reinit the interface */
5530 em_if_init(sc->ctx);
5531 return (error);
5532 }
5533
5534 /*
5535 * Manage Energy Efficient Ethernet:
5536 * Control values:
5537 * 0/1 - enabled/disabled
5538 */
5539 static int
em_sysctl_eee(SYSCTL_HANDLER_ARGS)5540 em_sysctl_eee(SYSCTL_HANDLER_ARGS)
5541 {
5542 struct e1000_softc *sc = (struct e1000_softc *) arg1;
5543 int error, value;
5544
5545 if (sc->hw.mac.type < igb_mac_min)
5546 value = sc->hw.dev_spec.ich8lan.eee_disable;
5547 else
5548 value = sc->hw.dev_spec._82575.eee_disable;
5549 error = sysctl_handle_int(oidp, &value, 0, req);
5550 if (error || req->newptr == NULL)
5551 return (error);
5552 if (sc->hw.mac.type < igb_mac_min)
5553 sc->hw.dev_spec.ich8lan.eee_disable = (value != 0);
5554 else
5555 sc->hw.dev_spec._82575.eee_disable = (value != 0);
5556 em_if_init(sc->ctx);
5557
5558 return (0);
5559 }
5560
5561 static int
em_sysctl_debug_info(SYSCTL_HANDLER_ARGS)5562 em_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
5563 {
5564 struct e1000_softc *sc;
5565 int error;
5566 int result;
5567
5568 result = -1;
5569 error = sysctl_handle_int(oidp, &result, 0, req);
5570
5571 if (error || !req->newptr)
5572 return (error);
5573
5574 if (result == 1) {
5575 sc = (struct e1000_softc *) arg1;
5576 em_print_debug_info(sc);
5577 }
5578
5579 return (error);
5580 }
5581
5582 static int
em_get_rs(SYSCTL_HANDLER_ARGS)5583 em_get_rs(SYSCTL_HANDLER_ARGS)
5584 {
5585 struct e1000_softc *sc = (struct e1000_softc *) arg1;
5586 int error;
5587 int result;
5588
5589 result = 0;
5590 error = sysctl_handle_int(oidp, &result, 0, req);
5591
5592 if (error || !req->newptr || result != 1)
5593 return (error);
5594 em_dump_rs(sc);
5595
5596 return (error);
5597 }
5598
5599 static void
em_if_debug(if_ctx_t ctx)5600 em_if_debug(if_ctx_t ctx)
5601 {
5602 em_dump_rs(iflib_get_softc(ctx));
5603 }
5604
5605 /*
5606 * This routine is meant to be fluid, add whatever is
5607 * needed for debugging a problem. -jfv
5608 */
5609 static void
em_print_debug_info(struct e1000_softc * sc)5610 em_print_debug_info(struct e1000_softc *sc)
5611 {
5612 device_t dev = iflib_get_dev(sc->ctx);
5613 if_t ifp = iflib_get_ifp(sc->ctx);
5614 struct tx_ring *txr = &sc->tx_queues->txr;
5615 struct rx_ring *rxr = &sc->rx_queues->rxr;
5616
5617 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
5618 printf("Interface is RUNNING ");
5619 else
5620 printf("Interface is NOT RUNNING\n");
5621
5622 if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE)
5623 printf("and INACTIVE\n");
5624 else
5625 printf("and ACTIVE\n");
5626
5627 for (int i = 0; i < sc->tx_num_queues; i++, txr++) {
5628 device_printf(dev, "TX Queue %d ------\n", i);
5629 device_printf(dev, "hw tdh = %d, hw tdt = %d\n",
5630 E1000_READ_REG(&sc->hw, E1000_TDH(i)),
5631 E1000_READ_REG(&sc->hw, E1000_TDT(i)));
5632
5633 }
5634 for (int j=0; j < sc->rx_num_queues; j++, rxr++) {
5635 device_printf(dev, "RX Queue %d ------\n", j);
5636 device_printf(dev, "hw rdh = %d, hw rdt = %d\n",
5637 E1000_READ_REG(&sc->hw, E1000_RDH(j)),
5638 E1000_READ_REG(&sc->hw, E1000_RDT(j)));
5639 }
5640 }
5641
5642 /*
5643 * 82574 only:
5644 * Write a new value to the EEPROM increasing the number of MSI-X
5645 * vectors from 3 to 5, for proper multiqueue support.
5646 */
5647 static void
em_enable_vectors_82574(if_ctx_t ctx)5648 em_enable_vectors_82574(if_ctx_t ctx)
5649 {
5650 struct e1000_softc *sc = iflib_get_softc(ctx);
5651 struct e1000_hw *hw = &sc->hw;
5652 device_t dev = iflib_get_dev(ctx);
5653 u16 edata;
5654
5655 e1000_read_nvm(hw, EM_NVM_PCIE_CTRL, 1, &edata);
5656 if (bootverbose)
5657 device_printf(dev, "EM_NVM_PCIE_CTRL = %#06x\n", edata);
5658 if (((edata & EM_NVM_MSIX_N_MASK) >> EM_NVM_MSIX_N_SHIFT) != 4) {
5659 device_printf(dev, "Writing to eeprom: increasing "
5660 "reported MSI-X vectors from 3 to 5...\n");
5661 edata &= ~(EM_NVM_MSIX_N_MASK);
5662 edata |= 4 << EM_NVM_MSIX_N_SHIFT;
5663 e1000_write_nvm(hw, EM_NVM_PCIE_CTRL, 1, &edata);
5664 e1000_update_nvm_checksum(hw);
5665 device_printf(dev, "Writing to eeprom: done\n");
5666 }
5667 }
5668