1 /*
2 * Copyright © 2009 Keith Packard
3 *
4 * Permission to use, copy, modify, distribute, and sell this software and its
5 * documentation for any purpose is hereby granted without fee, provided that
6 * the above copyright notice appear in all copies and that both that copyright
7 * notice and this permission notice appear in supporting documentation, and
8 * that the name of the copyright holders not be used in advertising or
9 * publicity pertaining to distribution of the software without specific,
10 * written prior permission. The copyright holders make no representations
11 * about the suitability of this software for any purpose. It is provided "as
12 * is" without express or implied warranty.
13 *
14 * THE COPYRIGHT HOLDERS DISCLAIM ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
15 * INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
16 * EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY SPECIAL, INDIRECT OR
17 * CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
18 * DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
19 * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
20 * OF THIS SOFTWARE.
21 */
22
23 #include <linux/backlight.h>
24 #include <linux/delay.h>
25 #include <linux/dynamic_debug.h>
26 #include <linux/errno.h>
27 #include <linux/export.h>
28 #include <linux/i2c.h>
29 #include <linux/init.h>
30 #include <linux/iopoll.h>
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/sched.h>
34 #include <linux/seq_file.h>
35 #include <linux/string_helpers.h>
36
37 #include <drm/display/drm_dp_helper.h>
38 #include <drm/display/drm_dp_mst_helper.h>
39 #include <drm/drm_edid.h>
40 #include <drm/drm_fixed.h>
41 #include <drm/drm_print.h>
42 #include <drm/drm_vblank.h>
43 #include <drm/drm_panel.h>
44
45 #include "drm_dp_helper_internal.h"
46
47 DECLARE_DYNDBG_CLASSMAP(drm_debug_classes, DD_CLASS_TYPE_DISJOINT_BITS, 0,
48 "DRM_UT_CORE",
49 "DRM_UT_DRIVER",
50 "DRM_UT_KMS",
51 "DRM_UT_PRIME",
52 "DRM_UT_ATOMIC",
53 "DRM_UT_VBL",
54 "DRM_UT_STATE",
55 "DRM_UT_LEASE",
56 "DRM_UT_DP",
57 "DRM_UT_DRMRES");
58
59 struct dp_aux_backlight {
60 struct backlight_device *base;
61 struct drm_dp_aux *aux;
62 struct drm_edp_backlight_info info;
63 bool enabled;
64 };
65
66 /**
67 * DOC: dp helpers
68 *
69 * These functions contain some common logic and helpers at various abstraction
70 * levels to deal with Display Port sink devices and related things like DP aux
71 * channel transfers, EDID reading over DP aux channels, decoding certain DPCD
72 * blocks, ...
73 */
74
75 /* Helpers for DP link training */
dp_link_status(const u8 link_status[DP_LINK_STATUS_SIZE],int r)76 static u8 dp_link_status(const u8 link_status[DP_LINK_STATUS_SIZE], int r)
77 {
78 return link_status[r - DP_LANE0_1_STATUS];
79 }
80
dp_get_lane_status(const u8 link_status[DP_LINK_STATUS_SIZE],int lane)81 static u8 dp_get_lane_status(const u8 link_status[DP_LINK_STATUS_SIZE],
82 int lane)
83 {
84 int i = DP_LANE0_1_STATUS + (lane >> 1);
85 int s = (lane & 1) * 4;
86 u8 l = dp_link_status(link_status, i);
87
88 return (l >> s) & 0xf;
89 }
90
drm_dp_channel_eq_ok(const u8 link_status[DP_LINK_STATUS_SIZE],int lane_count)91 bool drm_dp_channel_eq_ok(const u8 link_status[DP_LINK_STATUS_SIZE],
92 int lane_count)
93 {
94 u8 lane_align;
95 u8 lane_status;
96 int lane;
97
98 lane_align = dp_link_status(link_status,
99 DP_LANE_ALIGN_STATUS_UPDATED);
100 if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
101 return false;
102 for (lane = 0; lane < lane_count; lane++) {
103 lane_status = dp_get_lane_status(link_status, lane);
104 if ((lane_status & DP_CHANNEL_EQ_BITS) != DP_CHANNEL_EQ_BITS)
105 return false;
106 }
107 return true;
108 }
109 EXPORT_SYMBOL(drm_dp_channel_eq_ok);
110
drm_dp_clock_recovery_ok(const u8 link_status[DP_LINK_STATUS_SIZE],int lane_count)111 bool drm_dp_clock_recovery_ok(const u8 link_status[DP_LINK_STATUS_SIZE],
112 int lane_count)
113 {
114 int lane;
115 u8 lane_status;
116
117 for (lane = 0; lane < lane_count; lane++) {
118 lane_status = dp_get_lane_status(link_status, lane);
119 if ((lane_status & DP_LANE_CR_DONE) == 0)
120 return false;
121 }
122 return true;
123 }
124 EXPORT_SYMBOL(drm_dp_clock_recovery_ok);
125
drm_dp_get_adjust_request_voltage(const u8 link_status[DP_LINK_STATUS_SIZE],int lane)126 u8 drm_dp_get_adjust_request_voltage(const u8 link_status[DP_LINK_STATUS_SIZE],
127 int lane)
128 {
129 int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
130 int s = ((lane & 1) ?
131 DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
132 DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
133 u8 l = dp_link_status(link_status, i);
134
135 return ((l >> s) & 0x3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
136 }
137 EXPORT_SYMBOL(drm_dp_get_adjust_request_voltage);
138
drm_dp_get_adjust_request_pre_emphasis(const u8 link_status[DP_LINK_STATUS_SIZE],int lane)139 u8 drm_dp_get_adjust_request_pre_emphasis(const u8 link_status[DP_LINK_STATUS_SIZE],
140 int lane)
141 {
142 int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
143 int s = ((lane & 1) ?
144 DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
145 DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
146 u8 l = dp_link_status(link_status, i);
147
148 return ((l >> s) & 0x3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
149 }
150 EXPORT_SYMBOL(drm_dp_get_adjust_request_pre_emphasis);
151
152 /* DP 2.0 128b/132b */
drm_dp_get_adjust_tx_ffe_preset(const u8 link_status[DP_LINK_STATUS_SIZE],int lane)153 u8 drm_dp_get_adjust_tx_ffe_preset(const u8 link_status[DP_LINK_STATUS_SIZE],
154 int lane)
155 {
156 int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
157 int s = ((lane & 1) ?
158 DP_ADJUST_TX_FFE_PRESET_LANE1_SHIFT :
159 DP_ADJUST_TX_FFE_PRESET_LANE0_SHIFT);
160 u8 l = dp_link_status(link_status, i);
161
162 return (l >> s) & 0xf;
163 }
164 EXPORT_SYMBOL(drm_dp_get_adjust_tx_ffe_preset);
165
166 /* DP 2.0 errata for 128b/132b */
drm_dp_128b132b_lane_channel_eq_done(const u8 link_status[DP_LINK_STATUS_SIZE],int lane_count)167 bool drm_dp_128b132b_lane_channel_eq_done(const u8 link_status[DP_LINK_STATUS_SIZE],
168 int lane_count)
169 {
170 u8 lane_align, lane_status;
171 int lane;
172
173 lane_align = dp_link_status(link_status, DP_LANE_ALIGN_STATUS_UPDATED);
174 if (!(lane_align & DP_INTERLANE_ALIGN_DONE))
175 return false;
176
177 for (lane = 0; lane < lane_count; lane++) {
178 lane_status = dp_get_lane_status(link_status, lane);
179 if (!(lane_status & DP_LANE_CHANNEL_EQ_DONE))
180 return false;
181 }
182 return true;
183 }
184 EXPORT_SYMBOL(drm_dp_128b132b_lane_channel_eq_done);
185
186 /* DP 2.0 errata for 128b/132b */
drm_dp_128b132b_lane_symbol_locked(const u8 link_status[DP_LINK_STATUS_SIZE],int lane_count)187 bool drm_dp_128b132b_lane_symbol_locked(const u8 link_status[DP_LINK_STATUS_SIZE],
188 int lane_count)
189 {
190 u8 lane_status;
191 int lane;
192
193 for (lane = 0; lane < lane_count; lane++) {
194 lane_status = dp_get_lane_status(link_status, lane);
195 if (!(lane_status & DP_LANE_SYMBOL_LOCKED))
196 return false;
197 }
198 return true;
199 }
200 EXPORT_SYMBOL(drm_dp_128b132b_lane_symbol_locked);
201
202 /* DP 2.0 errata for 128b/132b */
drm_dp_128b132b_eq_interlane_align_done(const u8 link_status[DP_LINK_STATUS_SIZE])203 bool drm_dp_128b132b_eq_interlane_align_done(const u8 link_status[DP_LINK_STATUS_SIZE])
204 {
205 u8 status = dp_link_status(link_status, DP_LANE_ALIGN_STATUS_UPDATED);
206
207 return status & DP_128B132B_DPRX_EQ_INTERLANE_ALIGN_DONE;
208 }
209 EXPORT_SYMBOL(drm_dp_128b132b_eq_interlane_align_done);
210
211 /* DP 2.0 errata for 128b/132b */
drm_dp_128b132b_cds_interlane_align_done(const u8 link_status[DP_LINK_STATUS_SIZE])212 bool drm_dp_128b132b_cds_interlane_align_done(const u8 link_status[DP_LINK_STATUS_SIZE])
213 {
214 u8 status = dp_link_status(link_status, DP_LANE_ALIGN_STATUS_UPDATED);
215
216 return status & DP_128B132B_DPRX_CDS_INTERLANE_ALIGN_DONE;
217 }
218 EXPORT_SYMBOL(drm_dp_128b132b_cds_interlane_align_done);
219
220 /* DP 2.0 errata for 128b/132b */
drm_dp_128b132b_link_training_failed(const u8 link_status[DP_LINK_STATUS_SIZE])221 bool drm_dp_128b132b_link_training_failed(const u8 link_status[DP_LINK_STATUS_SIZE])
222 {
223 u8 status = dp_link_status(link_status, DP_LANE_ALIGN_STATUS_UPDATED);
224
225 return status & DP_128B132B_LT_FAILED;
226 }
227 EXPORT_SYMBOL(drm_dp_128b132b_link_training_failed);
228
__8b10b_clock_recovery_delay_us(const struct drm_dp_aux * aux,u8 rd_interval)229 static int __8b10b_clock_recovery_delay_us(const struct drm_dp_aux *aux, u8 rd_interval)
230 {
231 if (rd_interval > 4)
232 drm_dbg_kms(aux->drm_dev, "%s: invalid AUX interval 0x%02x (max 4)\n",
233 aux->name, rd_interval);
234
235 if (rd_interval == 0)
236 return 100;
237
238 return rd_interval * 4 * USEC_PER_MSEC;
239 }
240
__8b10b_channel_eq_delay_us(const struct drm_dp_aux * aux,u8 rd_interval)241 static int __8b10b_channel_eq_delay_us(const struct drm_dp_aux *aux, u8 rd_interval)
242 {
243 if (rd_interval > 4)
244 drm_dbg_kms(aux->drm_dev, "%s: invalid AUX interval 0x%02x (max 4)\n",
245 aux->name, rd_interval);
246
247 if (rd_interval == 0)
248 return 400;
249
250 return rd_interval * 4 * USEC_PER_MSEC;
251 }
252
__128b132b_channel_eq_delay_us(const struct drm_dp_aux * aux,u8 rd_interval)253 static int __128b132b_channel_eq_delay_us(const struct drm_dp_aux *aux, u8 rd_interval)
254 {
255 switch (rd_interval) {
256 default:
257 drm_dbg_kms(aux->drm_dev, "%s: invalid AUX interval 0x%02x\n",
258 aux->name, rd_interval);
259 fallthrough;
260 case DP_128B132B_TRAINING_AUX_RD_INTERVAL_400_US:
261 return 400;
262 case DP_128B132B_TRAINING_AUX_RD_INTERVAL_4_MS:
263 return 4000;
264 case DP_128B132B_TRAINING_AUX_RD_INTERVAL_8_MS:
265 return 8000;
266 case DP_128B132B_TRAINING_AUX_RD_INTERVAL_12_MS:
267 return 12000;
268 case DP_128B132B_TRAINING_AUX_RD_INTERVAL_16_MS:
269 return 16000;
270 case DP_128B132B_TRAINING_AUX_RD_INTERVAL_32_MS:
271 return 32000;
272 case DP_128B132B_TRAINING_AUX_RD_INTERVAL_64_MS:
273 return 64000;
274 }
275 }
276
277 /*
278 * The link training delays are different for:
279 *
280 * - Clock recovery vs. channel equalization
281 * - DPRX vs. LTTPR
282 * - 128b/132b vs. 8b/10b
283 * - DPCD rev 1.3 vs. later
284 *
285 * Get the correct delay in us, reading DPCD if necessary.
286 */
__read_delay(struct drm_dp_aux * aux,const u8 dpcd[DP_RECEIVER_CAP_SIZE],enum drm_dp_phy dp_phy,bool uhbr,bool cr)287 static int __read_delay(struct drm_dp_aux *aux, const u8 dpcd[DP_RECEIVER_CAP_SIZE],
288 enum drm_dp_phy dp_phy, bool uhbr, bool cr)
289 {
290 int (*parse)(const struct drm_dp_aux *aux, u8 rd_interval);
291 unsigned int offset;
292 u8 rd_interval, mask;
293
294 if (dp_phy == DP_PHY_DPRX) {
295 if (uhbr) {
296 if (cr)
297 return 100;
298
299 offset = DP_128B132B_TRAINING_AUX_RD_INTERVAL;
300 mask = DP_128B132B_TRAINING_AUX_RD_INTERVAL_MASK;
301 parse = __128b132b_channel_eq_delay_us;
302 } else {
303 if (cr && dpcd[DP_DPCD_REV] >= DP_DPCD_REV_14)
304 return 100;
305
306 offset = DP_TRAINING_AUX_RD_INTERVAL;
307 mask = DP_TRAINING_AUX_RD_MASK;
308 if (cr)
309 parse = __8b10b_clock_recovery_delay_us;
310 else
311 parse = __8b10b_channel_eq_delay_us;
312 }
313 } else {
314 if (uhbr) {
315 offset = DP_128B132B_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER(dp_phy);
316 mask = DP_128B132B_TRAINING_AUX_RD_INTERVAL_MASK;
317 parse = __128b132b_channel_eq_delay_us;
318 } else {
319 if (cr)
320 return 100;
321
322 offset = DP_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER(dp_phy);
323 mask = DP_TRAINING_AUX_RD_MASK;
324 parse = __8b10b_channel_eq_delay_us;
325 }
326 }
327
328 if (offset < DP_RECEIVER_CAP_SIZE) {
329 rd_interval = dpcd[offset];
330 } else {
331 if (drm_dp_dpcd_read_byte(aux, offset, &rd_interval) < 0) {
332 drm_dbg_kms(aux->drm_dev, "%s: failed rd interval read\n",
333 aux->name);
334 /* arbitrary default delay */
335 return 400;
336 }
337 }
338
339 return parse(aux, rd_interval & mask);
340 }
341
drm_dp_read_clock_recovery_delay(struct drm_dp_aux * aux,const u8 dpcd[DP_RECEIVER_CAP_SIZE],enum drm_dp_phy dp_phy,bool uhbr)342 int drm_dp_read_clock_recovery_delay(struct drm_dp_aux *aux, const u8 dpcd[DP_RECEIVER_CAP_SIZE],
343 enum drm_dp_phy dp_phy, bool uhbr)
344 {
345 return __read_delay(aux, dpcd, dp_phy, uhbr, true);
346 }
347 EXPORT_SYMBOL(drm_dp_read_clock_recovery_delay);
348
drm_dp_read_channel_eq_delay(struct drm_dp_aux * aux,const u8 dpcd[DP_RECEIVER_CAP_SIZE],enum drm_dp_phy dp_phy,bool uhbr)349 int drm_dp_read_channel_eq_delay(struct drm_dp_aux *aux, const u8 dpcd[DP_RECEIVER_CAP_SIZE],
350 enum drm_dp_phy dp_phy, bool uhbr)
351 {
352 return __read_delay(aux, dpcd, dp_phy, uhbr, false);
353 }
354 EXPORT_SYMBOL(drm_dp_read_channel_eq_delay);
355
356 /* Per DP 2.0 Errata */
drm_dp_128b132b_read_aux_rd_interval(struct drm_dp_aux * aux)357 int drm_dp_128b132b_read_aux_rd_interval(struct drm_dp_aux *aux)
358 {
359 int unit;
360 u8 val;
361
362 if (drm_dp_dpcd_read_byte(aux, DP_128B132B_TRAINING_AUX_RD_INTERVAL, &val) < 0) {
363 drm_err(aux->drm_dev, "%s: failed rd interval read\n",
364 aux->name);
365 /* default to max */
366 val = DP_128B132B_TRAINING_AUX_RD_INTERVAL_MASK;
367 }
368
369 unit = (val & DP_128B132B_TRAINING_AUX_RD_INTERVAL_1MS_UNIT) ? 1 : 2;
370 val &= DP_128B132B_TRAINING_AUX_RD_INTERVAL_MASK;
371
372 return (val + 1) * unit * 1000;
373 }
374 EXPORT_SYMBOL(drm_dp_128b132b_read_aux_rd_interval);
375
drm_dp_link_train_clock_recovery_delay(const struct drm_dp_aux * aux,const u8 dpcd[DP_RECEIVER_CAP_SIZE])376 void drm_dp_link_train_clock_recovery_delay(const struct drm_dp_aux *aux,
377 const u8 dpcd[DP_RECEIVER_CAP_SIZE])
378 {
379 u8 rd_interval = dpcd[DP_TRAINING_AUX_RD_INTERVAL] &
380 DP_TRAINING_AUX_RD_MASK;
381 int delay_us;
382
383 if (dpcd[DP_DPCD_REV] >= DP_DPCD_REV_14)
384 delay_us = 100;
385 else
386 delay_us = __8b10b_clock_recovery_delay_us(aux, rd_interval);
387
388 usleep_range(delay_us, delay_us * 2);
389 }
390 EXPORT_SYMBOL(drm_dp_link_train_clock_recovery_delay);
391
__drm_dp_link_train_channel_eq_delay(const struct drm_dp_aux * aux,u8 rd_interval)392 static void __drm_dp_link_train_channel_eq_delay(const struct drm_dp_aux *aux,
393 u8 rd_interval)
394 {
395 int delay_us = __8b10b_channel_eq_delay_us(aux, rd_interval);
396
397 usleep_range(delay_us, delay_us * 2);
398 }
399
drm_dp_link_train_channel_eq_delay(const struct drm_dp_aux * aux,const u8 dpcd[DP_RECEIVER_CAP_SIZE])400 void drm_dp_link_train_channel_eq_delay(const struct drm_dp_aux *aux,
401 const u8 dpcd[DP_RECEIVER_CAP_SIZE])
402 {
403 __drm_dp_link_train_channel_eq_delay(aux,
404 dpcd[DP_TRAINING_AUX_RD_INTERVAL] &
405 DP_TRAINING_AUX_RD_MASK);
406 }
407 EXPORT_SYMBOL(drm_dp_link_train_channel_eq_delay);
408
409 /**
410 * drm_dp_phy_name() - Get the name of the given DP PHY
411 * @dp_phy: The DP PHY identifier
412 *
413 * Given the @dp_phy, get a user friendly name of the DP PHY, either "DPRX" or
414 * "LTTPR <N>", or "<INVALID DP PHY>" on errors. The returned string is always
415 * non-NULL and valid.
416 *
417 * Returns: Name of the DP PHY.
418 */
drm_dp_phy_name(enum drm_dp_phy dp_phy)419 const char *drm_dp_phy_name(enum drm_dp_phy dp_phy)
420 {
421 static const char * const phy_names[] = {
422 [DP_PHY_DPRX] = "DPRX",
423 [DP_PHY_LTTPR1] = "LTTPR 1",
424 [DP_PHY_LTTPR2] = "LTTPR 2",
425 [DP_PHY_LTTPR3] = "LTTPR 3",
426 [DP_PHY_LTTPR4] = "LTTPR 4",
427 [DP_PHY_LTTPR5] = "LTTPR 5",
428 [DP_PHY_LTTPR6] = "LTTPR 6",
429 [DP_PHY_LTTPR7] = "LTTPR 7",
430 [DP_PHY_LTTPR8] = "LTTPR 8",
431 };
432
433 if (dp_phy < 0 || dp_phy >= ARRAY_SIZE(phy_names) ||
434 WARN_ON(!phy_names[dp_phy]))
435 return "<INVALID DP PHY>";
436
437 return phy_names[dp_phy];
438 }
439 EXPORT_SYMBOL(drm_dp_phy_name);
440
drm_dp_lttpr_link_train_clock_recovery_delay(void)441 void drm_dp_lttpr_link_train_clock_recovery_delay(void)
442 {
443 usleep_range(100, 200);
444 }
445 EXPORT_SYMBOL(drm_dp_lttpr_link_train_clock_recovery_delay);
446
dp_lttpr_phy_cap(const u8 phy_cap[DP_LTTPR_PHY_CAP_SIZE],int r)447 static u8 dp_lttpr_phy_cap(const u8 phy_cap[DP_LTTPR_PHY_CAP_SIZE], int r)
448 {
449 return phy_cap[r - DP_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER1];
450 }
451
drm_dp_lttpr_link_train_channel_eq_delay(const struct drm_dp_aux * aux,const u8 phy_cap[DP_LTTPR_PHY_CAP_SIZE])452 void drm_dp_lttpr_link_train_channel_eq_delay(const struct drm_dp_aux *aux,
453 const u8 phy_cap[DP_LTTPR_PHY_CAP_SIZE])
454 {
455 u8 interval = dp_lttpr_phy_cap(phy_cap,
456 DP_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER1) &
457 DP_TRAINING_AUX_RD_MASK;
458
459 __drm_dp_link_train_channel_eq_delay(aux, interval);
460 }
461 EXPORT_SYMBOL(drm_dp_lttpr_link_train_channel_eq_delay);
462
463 /**
464 * drm_dp_lttpr_wake_timeout_setup() - Grant extended time for sink to wake up
465 * @aux: The DP AUX channel to use
466 * @transparent_mode: This is true if lttpr is in transparent mode
467 *
468 * This function checks if the sink needs any extended wake time, if it does
469 * it grants this request. Post this setup the source device can keep trying
470 * the Aux transaction till the granted wake timeout.
471 * If this function is not called all Aux transactions are expected to take
472 * a default of 1ms before they throw an error.
473 */
drm_dp_lttpr_wake_timeout_setup(struct drm_dp_aux * aux,bool transparent_mode)474 void drm_dp_lttpr_wake_timeout_setup(struct drm_dp_aux *aux, bool transparent_mode)
475 {
476 u8 val = 1;
477 int ret;
478
479 if (transparent_mode) {
480 static const u8 timeout_mapping[] = {
481 [DP_DPRX_SLEEP_WAKE_TIMEOUT_PERIOD_1_MS] = 1,
482 [DP_DPRX_SLEEP_WAKE_TIMEOUT_PERIOD_20_MS] = 20,
483 [DP_DPRX_SLEEP_WAKE_TIMEOUT_PERIOD_40_MS] = 40,
484 [DP_DPRX_SLEEP_WAKE_TIMEOUT_PERIOD_60_MS] = 60,
485 [DP_DPRX_SLEEP_WAKE_TIMEOUT_PERIOD_80_MS] = 80,
486 [DP_DPRX_SLEEP_WAKE_TIMEOUT_PERIOD_100_MS] = 100,
487 };
488
489 ret = drm_dp_dpcd_readb(aux, DP_EXTENDED_DPRX_SLEEP_WAKE_TIMEOUT_REQUEST, &val);
490 if (ret != 1) {
491 drm_dbg_kms(aux->drm_dev,
492 "Failed to read Extended sleep wake timeout request\n");
493 return;
494 }
495
496 val = (val < sizeof(timeout_mapping) && timeout_mapping[val]) ?
497 timeout_mapping[val] : 1;
498
499 if (val > 1)
500 drm_dp_dpcd_writeb(aux,
501 DP_EXTENDED_DPRX_SLEEP_WAKE_TIMEOUT_GRANT,
502 DP_DPRX_SLEEP_WAKE_TIMEOUT_PERIOD_GRANTED);
503 } else {
504 ret = drm_dp_dpcd_readb(aux, DP_PHY_REPEATER_EXTENDED_WAIT_TIMEOUT, &val);
505 if (ret != 1) {
506 drm_dbg_kms(aux->drm_dev,
507 "Failed to read Extended sleep wake timeout request\n");
508 return;
509 }
510
511 val = (val & DP_EXTENDED_WAKE_TIMEOUT_REQUEST_MASK) ?
512 (val & DP_EXTENDED_WAKE_TIMEOUT_REQUEST_MASK) * 10 : 1;
513
514 if (val > 1)
515 drm_dp_dpcd_writeb(aux, DP_PHY_REPEATER_EXTENDED_WAIT_TIMEOUT,
516 DP_EXTENDED_WAKE_TIMEOUT_GRANT);
517 }
518 }
519 EXPORT_SYMBOL(drm_dp_lttpr_wake_timeout_setup);
520
drm_dp_link_rate_to_bw_code(int link_rate)521 u8 drm_dp_link_rate_to_bw_code(int link_rate)
522 {
523 switch (link_rate) {
524 case 1000000:
525 return DP_LINK_BW_10;
526 case 1350000:
527 return DP_LINK_BW_13_5;
528 case 2000000:
529 return DP_LINK_BW_20;
530 default:
531 /* Spec says link_bw = link_rate / 0.27Gbps */
532 return link_rate / 27000;
533 }
534 }
535 EXPORT_SYMBOL(drm_dp_link_rate_to_bw_code);
536
drm_dp_bw_code_to_link_rate(u8 link_bw)537 int drm_dp_bw_code_to_link_rate(u8 link_bw)
538 {
539 switch (link_bw) {
540 case DP_LINK_BW_10:
541 return 1000000;
542 case DP_LINK_BW_13_5:
543 return 1350000;
544 case DP_LINK_BW_20:
545 return 2000000;
546 default:
547 /* Spec says link_rate = link_bw * 0.27Gbps */
548 return link_bw * 27000;
549 }
550 }
551 EXPORT_SYMBOL(drm_dp_bw_code_to_link_rate);
552
553 #define AUX_RETRY_INTERVAL 500 /* us */
554
555 static inline void
drm_dp_dump_access(const struct drm_dp_aux * aux,u8 request,uint offset,void * buffer,int ret)556 drm_dp_dump_access(const struct drm_dp_aux *aux,
557 u8 request, uint offset, void *buffer, int ret)
558 {
559 const char *arrow = request == DP_AUX_NATIVE_READ ? "->" : "<-";
560
561 if (ret > 0)
562 drm_dbg_dp(aux->drm_dev, "%s: 0x%05x AUX %s (ret=%3d) %*ph\n",
563 aux->name, offset, arrow, ret, min(ret, 20), buffer);
564 else
565 drm_dbg_dp(aux->drm_dev, "%s: 0x%05x AUX %s (ret=%3d)\n",
566 aux->name, offset, arrow, ret);
567 }
568
569 /**
570 * DOC: dp helpers
571 *
572 * The DisplayPort AUX channel is an abstraction to allow generic, driver-
573 * independent access to AUX functionality. Drivers can take advantage of
574 * this by filling in the fields of the drm_dp_aux structure.
575 *
576 * Transactions are described using a hardware-independent drm_dp_aux_msg
577 * structure, which is passed into a driver's .transfer() implementation.
578 * Both native and I2C-over-AUX transactions are supported.
579 */
580
drm_dp_dpcd_access(struct drm_dp_aux * aux,u8 request,unsigned int offset,void * buffer,size_t size)581 static int drm_dp_dpcd_access(struct drm_dp_aux *aux, u8 request,
582 unsigned int offset, void *buffer, size_t size)
583 {
584 struct drm_dp_aux_msg msg;
585 unsigned int retry, native_reply;
586 int err = 0, ret = 0;
587
588 memset(&msg, 0, sizeof(msg));
589 msg.address = offset;
590 msg.request = request;
591 msg.buffer = buffer;
592 msg.size = size;
593
594 mutex_lock(&aux->hw_mutex);
595
596 /*
597 * If the device attached to the aux bus is powered down then there's
598 * no reason to attempt a transfer. Error out immediately.
599 */
600 if (aux->powered_down) {
601 ret = -EBUSY;
602 goto unlock;
603 }
604
605 /*
606 * The specification doesn't give any recommendation on how often to
607 * retry native transactions. We used to retry 7 times like for
608 * aux i2c transactions but real world devices this wasn't
609 * sufficient, bump to 32 which makes Dell 4k monitors happier.
610 */
611 for (retry = 0; retry < 32; retry++) {
612 if (ret != 0 && ret != -ETIMEDOUT) {
613 usleep_range(AUX_RETRY_INTERVAL,
614 AUX_RETRY_INTERVAL + 100);
615 }
616
617 ret = aux->transfer(aux, &msg);
618 if (ret >= 0) {
619 native_reply = msg.reply & DP_AUX_NATIVE_REPLY_MASK;
620 if (native_reply == DP_AUX_NATIVE_REPLY_ACK) {
621 if (ret == size)
622 goto unlock;
623
624 ret = -EPROTO;
625 } else
626 ret = -EIO;
627 }
628
629 /*
630 * We want the error we return to be the error we received on
631 * the first transaction, since we may get a different error the
632 * next time we retry
633 */
634 if (!err)
635 err = ret;
636 }
637
638 drm_dbg_kms(aux->drm_dev, "%s: Too many retries, giving up. First error: %d\n",
639 aux->name, err);
640 ret = err;
641
642 unlock:
643 mutex_unlock(&aux->hw_mutex);
644 return ret;
645 }
646
647 /**
648 * drm_dp_dpcd_probe() - probe a given DPCD address with a 1-byte read access
649 * @aux: DisplayPort AUX channel (SST)
650 * @offset: address of the register to probe
651 *
652 * Probe the provided DPCD address by reading 1 byte from it. The function can
653 * be used to trigger some side-effect the read access has, like waking up the
654 * sink, without the need for the read-out value.
655 *
656 * Returns 0 if the read access suceeded, or a negative error code on failure.
657 */
drm_dp_dpcd_probe(struct drm_dp_aux * aux,unsigned int offset)658 int drm_dp_dpcd_probe(struct drm_dp_aux *aux, unsigned int offset)
659 {
660 u8 buffer;
661 int ret;
662
663 ret = drm_dp_dpcd_access(aux, DP_AUX_NATIVE_READ, offset, &buffer, 1);
664 WARN_ON(ret == 0);
665
666 drm_dp_dump_access(aux, DP_AUX_NATIVE_READ, offset, &buffer, ret);
667
668 return ret < 0 ? ret : 0;
669 }
670 EXPORT_SYMBOL(drm_dp_dpcd_probe);
671
672 /**
673 * drm_dp_dpcd_set_powered() - Set whether the DP device is powered
674 * @aux: DisplayPort AUX channel; for convenience it's OK to pass NULL here
675 * and the function will be a no-op.
676 * @powered: true if powered; false if not
677 *
678 * If the endpoint device on the DP AUX bus is known to be powered down
679 * then this function can be called to make future transfers fail immediately
680 * instead of needing to time out.
681 *
682 * If this function is never called then a device defaults to being powered.
683 */
drm_dp_dpcd_set_powered(struct drm_dp_aux * aux,bool powered)684 void drm_dp_dpcd_set_powered(struct drm_dp_aux *aux, bool powered)
685 {
686 if (!aux)
687 return;
688
689 mutex_lock(&aux->hw_mutex);
690 aux->powered_down = !powered;
691 mutex_unlock(&aux->hw_mutex);
692 }
693 EXPORT_SYMBOL(drm_dp_dpcd_set_powered);
694
695 /**
696 * drm_dp_dpcd_set_probe() - Set whether a probing before DPCD access is done
697 * @aux: DisplayPort AUX channel
698 * @enable: Enable the probing if required
699 */
drm_dp_dpcd_set_probe(struct drm_dp_aux * aux,bool enable)700 void drm_dp_dpcd_set_probe(struct drm_dp_aux *aux, bool enable)
701 {
702 WRITE_ONCE(aux->dpcd_probe_disabled, !enable);
703 }
704 EXPORT_SYMBOL(drm_dp_dpcd_set_probe);
705
dpcd_access_needs_probe(struct drm_dp_aux * aux)706 static bool dpcd_access_needs_probe(struct drm_dp_aux *aux)
707 {
708 /*
709 * HP ZR24w corrupts the first DPCD access after entering power save
710 * mode. Eg. on a read, the entire buffer will be filled with the same
711 * byte. Do a throw away read to avoid corrupting anything we care
712 * about. Afterwards things will work correctly until the monitor
713 * gets woken up and subsequently re-enters power save mode.
714 *
715 * The user pressing any button on the monitor is enough to wake it
716 * up, so there is no particularly good place to do the workaround.
717 * We just have to do it before any DPCD access and hope that the
718 * monitor doesn't power down exactly after the throw away read.
719 */
720 return !aux->is_remote && !READ_ONCE(aux->dpcd_probe_disabled);
721 }
722
723 /**
724 * drm_dp_dpcd_read() - read a series of bytes from the DPCD
725 * @aux: DisplayPort AUX channel (SST or MST)
726 * @offset: address of the (first) register to read
727 * @buffer: buffer to store the register values
728 * @size: number of bytes in @buffer
729 *
730 * Returns the number of bytes transferred on success, or a negative error
731 * code on failure. -EIO is returned if the request was NAKed by the sink or
732 * if the retry count was exceeded. If not all bytes were transferred, this
733 * function returns -EPROTO. Errors from the underlying AUX channel transfer
734 * function, with the exception of -EBUSY (which causes the transaction to
735 * be retried), are propagated to the caller.
736 *
737 * In most of the cases you want to use drm_dp_dpcd_read_data() instead.
738 */
drm_dp_dpcd_read(struct drm_dp_aux * aux,unsigned int offset,void * buffer,size_t size)739 ssize_t drm_dp_dpcd_read(struct drm_dp_aux *aux, unsigned int offset,
740 void *buffer, size_t size)
741 {
742 int ret;
743
744 if (dpcd_access_needs_probe(aux)) {
745 ret = drm_dp_dpcd_probe(aux, DP_TRAINING_PATTERN_SET);
746 if (ret < 0)
747 return ret;
748 }
749
750 if (aux->is_remote)
751 ret = drm_dp_mst_dpcd_read(aux, offset, buffer, size);
752 else
753 ret = drm_dp_dpcd_access(aux, DP_AUX_NATIVE_READ, offset,
754 buffer, size);
755
756 drm_dp_dump_access(aux, DP_AUX_NATIVE_READ, offset, buffer, ret);
757 return ret;
758 }
759 EXPORT_SYMBOL(drm_dp_dpcd_read);
760
761 /**
762 * drm_dp_dpcd_write() - write a series of bytes to the DPCD
763 * @aux: DisplayPort AUX channel (SST or MST)
764 * @offset: address of the (first) register to write
765 * @buffer: buffer containing the values to write
766 * @size: number of bytes in @buffer
767 *
768 * Returns the number of bytes transferred on success, or a negative error
769 * code on failure. -EIO is returned if the request was NAKed by the sink or
770 * if the retry count was exceeded. If not all bytes were transferred, this
771 * function returns -EPROTO. Errors from the underlying AUX channel transfer
772 * function, with the exception of -EBUSY (which causes the transaction to
773 * be retried), are propagated to the caller.
774 *
775 * In most of the cases you want to use drm_dp_dpcd_write_data() instead.
776 */
drm_dp_dpcd_write(struct drm_dp_aux * aux,unsigned int offset,void * buffer,size_t size)777 ssize_t drm_dp_dpcd_write(struct drm_dp_aux *aux, unsigned int offset,
778 void *buffer, size_t size)
779 {
780 int ret;
781
782 if (aux->is_remote)
783 ret = drm_dp_mst_dpcd_write(aux, offset, buffer, size);
784 else
785 ret = drm_dp_dpcd_access(aux, DP_AUX_NATIVE_WRITE, offset,
786 buffer, size);
787
788 drm_dp_dump_access(aux, DP_AUX_NATIVE_WRITE, offset, buffer, ret);
789 return ret;
790 }
791 EXPORT_SYMBOL(drm_dp_dpcd_write);
792
793 /**
794 * drm_dp_dpcd_read_link_status() - read DPCD link status (bytes 0x202-0x207)
795 * @aux: DisplayPort AUX channel
796 * @status: buffer to store the link status in (must be at least 6 bytes)
797 *
798 * Returns a negative error code on failure or 0 on success.
799 */
drm_dp_dpcd_read_link_status(struct drm_dp_aux * aux,u8 status[DP_LINK_STATUS_SIZE])800 int drm_dp_dpcd_read_link_status(struct drm_dp_aux *aux,
801 u8 status[DP_LINK_STATUS_SIZE])
802 {
803 return drm_dp_dpcd_read_data(aux, DP_LANE0_1_STATUS, status,
804 DP_LINK_STATUS_SIZE);
805 }
806 EXPORT_SYMBOL(drm_dp_dpcd_read_link_status);
807
808 /**
809 * drm_dp_dpcd_read_phy_link_status - get the link status information for a DP PHY
810 * @aux: DisplayPort AUX channel
811 * @dp_phy: the DP PHY to get the link status for
812 * @link_status: buffer to return the status in
813 *
814 * Fetch the AUX DPCD registers for the DPRX or an LTTPR PHY link status. The
815 * layout of the returned @link_status matches the DPCD register layout of the
816 * DPRX PHY link status.
817 *
818 * Returns 0 if the information was read successfully or a negative error code
819 * on failure.
820 */
drm_dp_dpcd_read_phy_link_status(struct drm_dp_aux * aux,enum drm_dp_phy dp_phy,u8 link_status[DP_LINK_STATUS_SIZE])821 int drm_dp_dpcd_read_phy_link_status(struct drm_dp_aux *aux,
822 enum drm_dp_phy dp_phy,
823 u8 link_status[DP_LINK_STATUS_SIZE])
824 {
825 int ret;
826
827 if (dp_phy == DP_PHY_DPRX)
828 return drm_dp_dpcd_read_data(aux,
829 DP_LANE0_1_STATUS,
830 link_status,
831 DP_LINK_STATUS_SIZE);
832
833 ret = drm_dp_dpcd_read_data(aux,
834 DP_LANE0_1_STATUS_PHY_REPEATER(dp_phy),
835 link_status,
836 DP_LINK_STATUS_SIZE - 1);
837
838 if (ret < 0)
839 return ret;
840
841 /* Convert the LTTPR to the sink PHY link status layout */
842 memmove(&link_status[DP_SINK_STATUS - DP_LANE0_1_STATUS + 1],
843 &link_status[DP_SINK_STATUS - DP_LANE0_1_STATUS],
844 DP_LINK_STATUS_SIZE - (DP_SINK_STATUS - DP_LANE0_1_STATUS) - 1);
845 link_status[DP_SINK_STATUS - DP_LANE0_1_STATUS] = 0;
846
847 return 0;
848 }
849 EXPORT_SYMBOL(drm_dp_dpcd_read_phy_link_status);
850
851 /**
852 * drm_dp_link_power_up() - power up a DisplayPort link
853 * @aux: DisplayPort AUX channel
854 * @revision: DPCD revision supported on the link
855 *
856 * Returns 0 on success or a negative error code on failure.
857 */
drm_dp_link_power_up(struct drm_dp_aux * aux,unsigned char revision)858 int drm_dp_link_power_up(struct drm_dp_aux *aux, unsigned char revision)
859 {
860 u8 value;
861 int err;
862
863 /* DP_SET_POWER register is only available on DPCD v1.1 and later */
864 if (revision < DP_DPCD_REV_11)
865 return 0;
866
867 err = drm_dp_dpcd_readb(aux, DP_SET_POWER, &value);
868 if (err < 0)
869 return err;
870
871 value &= ~DP_SET_POWER_MASK;
872 value |= DP_SET_POWER_D0;
873
874 err = drm_dp_dpcd_writeb(aux, DP_SET_POWER, value);
875 if (err < 0)
876 return err;
877
878 /*
879 * According to the DP 1.1 specification, a "Sink Device must exit the
880 * power saving state within 1 ms" (Section 2.5.3.1, Table 5-52, "Sink
881 * Control Field" (register 0x600).
882 */
883 usleep_range(1000, 2000);
884
885 return 0;
886 }
887 EXPORT_SYMBOL(drm_dp_link_power_up);
888
889 /**
890 * drm_dp_link_power_down() - power down a DisplayPort link
891 * @aux: DisplayPort AUX channel
892 * @revision: DPCD revision supported on the link
893 *
894 * Returns 0 on success or a negative error code on failure.
895 */
drm_dp_link_power_down(struct drm_dp_aux * aux,unsigned char revision)896 int drm_dp_link_power_down(struct drm_dp_aux *aux, unsigned char revision)
897 {
898 u8 value;
899 int err;
900
901 /* DP_SET_POWER register is only available on DPCD v1.1 and later */
902 if (revision < DP_DPCD_REV_11)
903 return 0;
904
905 err = drm_dp_dpcd_readb(aux, DP_SET_POWER, &value);
906 if (err < 0)
907 return err;
908
909 value &= ~DP_SET_POWER_MASK;
910 value |= DP_SET_POWER_D3;
911
912 err = drm_dp_dpcd_writeb(aux, DP_SET_POWER, value);
913 if (err < 0)
914 return err;
915
916 return 0;
917 }
918 EXPORT_SYMBOL(drm_dp_link_power_down);
919
read_payload_update_status(struct drm_dp_aux * aux)920 static int read_payload_update_status(struct drm_dp_aux *aux)
921 {
922 int ret;
923 u8 status;
924
925 ret = drm_dp_dpcd_read_byte(aux, DP_PAYLOAD_TABLE_UPDATE_STATUS, &status);
926 if (ret < 0)
927 return ret;
928
929 return status;
930 }
931
932 /**
933 * drm_dp_dpcd_write_payload() - Write Virtual Channel information to payload table
934 * @aux: DisplayPort AUX channel
935 * @vcpid: Virtual Channel Payload ID
936 * @start_time_slot: Starting time slot
937 * @time_slot_count: Time slot count
938 *
939 * Write the Virtual Channel payload allocation table, checking the payload
940 * update status and retrying as necessary.
941 *
942 * Returns:
943 * 0 on success, negative error otherwise
944 */
drm_dp_dpcd_write_payload(struct drm_dp_aux * aux,int vcpid,u8 start_time_slot,u8 time_slot_count)945 int drm_dp_dpcd_write_payload(struct drm_dp_aux *aux,
946 int vcpid, u8 start_time_slot, u8 time_slot_count)
947 {
948 u8 payload_alloc[3], status;
949 int ret;
950 int retries = 0;
951
952 drm_dp_dpcd_write_byte(aux, DP_PAYLOAD_TABLE_UPDATE_STATUS,
953 DP_PAYLOAD_TABLE_UPDATED);
954
955 payload_alloc[0] = vcpid;
956 payload_alloc[1] = start_time_slot;
957 payload_alloc[2] = time_slot_count;
958
959 ret = drm_dp_dpcd_write_data(aux, DP_PAYLOAD_ALLOCATE_SET, payload_alloc, 3);
960 if (ret < 0) {
961 drm_dbg_kms(aux->drm_dev, "failed to write payload allocation %d\n", ret);
962 goto fail;
963 }
964
965 retry:
966 ret = drm_dp_dpcd_read_byte(aux, DP_PAYLOAD_TABLE_UPDATE_STATUS, &status);
967 if (ret < 0) {
968 drm_dbg_kms(aux->drm_dev, "failed to read payload table status %d\n", ret);
969 goto fail;
970 }
971
972 if (!(status & DP_PAYLOAD_TABLE_UPDATED)) {
973 retries++;
974 if (retries < 20) {
975 usleep_range(10000, 20000);
976 goto retry;
977 }
978 drm_dbg_kms(aux->drm_dev, "status not set after read payload table status %d\n",
979 status);
980 ret = -EINVAL;
981 goto fail;
982 }
983 ret = 0;
984 fail:
985 return ret;
986 }
987 EXPORT_SYMBOL(drm_dp_dpcd_write_payload);
988
989 /**
990 * drm_dp_dpcd_clear_payload() - Clear the entire VC Payload ID table
991 * @aux: DisplayPort AUX channel
992 *
993 * Clear the entire VC Payload ID table.
994 *
995 * Returns: 0 on success, negative error code on errors.
996 */
drm_dp_dpcd_clear_payload(struct drm_dp_aux * aux)997 int drm_dp_dpcd_clear_payload(struct drm_dp_aux *aux)
998 {
999 return drm_dp_dpcd_write_payload(aux, 0, 0, 0x3f);
1000 }
1001 EXPORT_SYMBOL(drm_dp_dpcd_clear_payload);
1002
1003 /**
1004 * drm_dp_dpcd_poll_act_handled() - Poll for ACT handled status
1005 * @aux: DisplayPort AUX channel
1006 * @timeout_ms: Timeout in ms
1007 *
1008 * Try waiting for the sink to finish updating its payload table by polling for
1009 * the ACT handled bit of DP_PAYLOAD_TABLE_UPDATE_STATUS for up to @timeout_ms
1010 * milliseconds, defaulting to 3000 ms if 0.
1011 *
1012 * Returns:
1013 * 0 if the ACT was handled in time, negative error code on failure.
1014 */
drm_dp_dpcd_poll_act_handled(struct drm_dp_aux * aux,int timeout_ms)1015 int drm_dp_dpcd_poll_act_handled(struct drm_dp_aux *aux, int timeout_ms)
1016 {
1017 int ret, status;
1018
1019 /* default to 3 seconds, this is arbitrary */
1020 timeout_ms = timeout_ms ?: 3000;
1021
1022 ret = readx_poll_timeout(read_payload_update_status, aux, status,
1023 status & DP_PAYLOAD_ACT_HANDLED || status < 0,
1024 200, timeout_ms * USEC_PER_MSEC);
1025 if (ret < 0 && status >= 0) {
1026 drm_err(aux->drm_dev, "Failed to get ACT after %d ms, last status: %02x\n",
1027 timeout_ms, status);
1028 return -EINVAL;
1029 } else if (status < 0) {
1030 /*
1031 * Failure here isn't unexpected - the hub may have
1032 * just been unplugged
1033 */
1034 drm_dbg_kms(aux->drm_dev, "Failed to read payload table status: %d\n", status);
1035 return status;
1036 }
1037
1038 return 0;
1039 }
1040 EXPORT_SYMBOL(drm_dp_dpcd_poll_act_handled);
1041
is_edid_digital_input_dp(const struct drm_edid * drm_edid)1042 static bool is_edid_digital_input_dp(const struct drm_edid *drm_edid)
1043 {
1044 /* FIXME: get rid of drm_edid_raw() */
1045 const struct edid *edid = drm_edid_raw(drm_edid);
1046
1047 return edid && edid->revision >= 4 &&
1048 edid->input & DRM_EDID_INPUT_DIGITAL &&
1049 (edid->input & DRM_EDID_DIGITAL_TYPE_MASK) == DRM_EDID_DIGITAL_TYPE_DP;
1050 }
1051
1052 /**
1053 * drm_dp_downstream_is_type() - is the downstream facing port of certain type?
1054 * @dpcd: DisplayPort configuration data
1055 * @port_cap: port capabilities
1056 * @type: port type to be checked. Can be:
1057 * %DP_DS_PORT_TYPE_DP, %DP_DS_PORT_TYPE_VGA, %DP_DS_PORT_TYPE_DVI,
1058 * %DP_DS_PORT_TYPE_HDMI, %DP_DS_PORT_TYPE_NON_EDID,
1059 * %DP_DS_PORT_TYPE_DP_DUALMODE or %DP_DS_PORT_TYPE_WIRELESS.
1060 *
1061 * Caveat: Only works with DPCD 1.1+ port caps.
1062 *
1063 * Returns: whether the downstream facing port matches the type.
1064 */
drm_dp_downstream_is_type(const u8 dpcd[DP_RECEIVER_CAP_SIZE],const u8 port_cap[4],u8 type)1065 bool drm_dp_downstream_is_type(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1066 const u8 port_cap[4], u8 type)
1067 {
1068 return drm_dp_is_branch(dpcd) &&
1069 dpcd[DP_DPCD_REV] >= 0x11 &&
1070 (port_cap[0] & DP_DS_PORT_TYPE_MASK) == type;
1071 }
1072 EXPORT_SYMBOL(drm_dp_downstream_is_type);
1073
1074 /**
1075 * drm_dp_downstream_is_tmds() - is the downstream facing port TMDS?
1076 * @dpcd: DisplayPort configuration data
1077 * @port_cap: port capabilities
1078 * @drm_edid: EDID
1079 *
1080 * Returns: whether the downstream facing port is TMDS (HDMI/DVI).
1081 */
drm_dp_downstream_is_tmds(const u8 dpcd[DP_RECEIVER_CAP_SIZE],const u8 port_cap[4],const struct drm_edid * drm_edid)1082 bool drm_dp_downstream_is_tmds(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1083 const u8 port_cap[4],
1084 const struct drm_edid *drm_edid)
1085 {
1086 if (dpcd[DP_DPCD_REV] < 0x11) {
1087 switch (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_TYPE_MASK) {
1088 case DP_DWN_STRM_PORT_TYPE_TMDS:
1089 return true;
1090 default:
1091 return false;
1092 }
1093 }
1094
1095 switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1096 case DP_DS_PORT_TYPE_DP_DUALMODE:
1097 if (is_edid_digital_input_dp(drm_edid))
1098 return false;
1099 fallthrough;
1100 case DP_DS_PORT_TYPE_DVI:
1101 case DP_DS_PORT_TYPE_HDMI:
1102 return true;
1103 default:
1104 return false;
1105 }
1106 }
1107 EXPORT_SYMBOL(drm_dp_downstream_is_tmds);
1108
1109 /**
1110 * drm_dp_send_real_edid_checksum() - send back real edid checksum value
1111 * @aux: DisplayPort AUX channel
1112 * @real_edid_checksum: real edid checksum for the last block
1113 *
1114 * Returns:
1115 * True on success
1116 */
drm_dp_send_real_edid_checksum(struct drm_dp_aux * aux,u8 real_edid_checksum)1117 bool drm_dp_send_real_edid_checksum(struct drm_dp_aux *aux,
1118 u8 real_edid_checksum)
1119 {
1120 u8 link_edid_read = 0, auto_test_req = 0, test_resp = 0;
1121
1122 if (drm_dp_dpcd_read_byte(aux, DP_DEVICE_SERVICE_IRQ_VECTOR,
1123 &auto_test_req) < 0) {
1124 drm_err(aux->drm_dev, "%s: DPCD failed read at register 0x%x\n",
1125 aux->name, DP_DEVICE_SERVICE_IRQ_VECTOR);
1126 return false;
1127 }
1128 auto_test_req &= DP_AUTOMATED_TEST_REQUEST;
1129
1130 if (drm_dp_dpcd_read_byte(aux, DP_TEST_REQUEST, &link_edid_read) < 0) {
1131 drm_err(aux->drm_dev, "%s: DPCD failed read at register 0x%x\n",
1132 aux->name, DP_TEST_REQUEST);
1133 return false;
1134 }
1135 link_edid_read &= DP_TEST_LINK_EDID_READ;
1136
1137 if (!auto_test_req || !link_edid_read) {
1138 drm_dbg_kms(aux->drm_dev, "%s: Source DUT does not support TEST_EDID_READ\n",
1139 aux->name);
1140 return false;
1141 }
1142
1143 if (drm_dp_dpcd_write_byte(aux, DP_DEVICE_SERVICE_IRQ_VECTOR,
1144 auto_test_req) < 0) {
1145 drm_err(aux->drm_dev, "%s: DPCD failed write at register 0x%x\n",
1146 aux->name, DP_DEVICE_SERVICE_IRQ_VECTOR);
1147 return false;
1148 }
1149
1150 /* send back checksum for the last edid extension block data */
1151 if (drm_dp_dpcd_write_byte(aux, DP_TEST_EDID_CHECKSUM,
1152 real_edid_checksum) < 0) {
1153 drm_err(aux->drm_dev, "%s: DPCD failed write at register 0x%x\n",
1154 aux->name, DP_TEST_EDID_CHECKSUM);
1155 return false;
1156 }
1157
1158 test_resp |= DP_TEST_EDID_CHECKSUM_WRITE;
1159 if (drm_dp_dpcd_write_byte(aux, DP_TEST_RESPONSE, test_resp) < 0) {
1160 drm_err(aux->drm_dev, "%s: DPCD failed write at register 0x%x\n",
1161 aux->name, DP_TEST_RESPONSE);
1162 return false;
1163 }
1164
1165 return true;
1166 }
1167 EXPORT_SYMBOL(drm_dp_send_real_edid_checksum);
1168
drm_dp_downstream_port_count(const u8 dpcd[DP_RECEIVER_CAP_SIZE])1169 static u8 drm_dp_downstream_port_count(const u8 dpcd[DP_RECEIVER_CAP_SIZE])
1170 {
1171 u8 port_count = dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_PORT_COUNT_MASK;
1172
1173 if (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE && port_count > 4)
1174 port_count = 4;
1175
1176 return port_count;
1177 }
1178
drm_dp_read_extended_dpcd_caps(struct drm_dp_aux * aux,u8 dpcd[DP_RECEIVER_CAP_SIZE])1179 static int drm_dp_read_extended_dpcd_caps(struct drm_dp_aux *aux,
1180 u8 dpcd[DP_RECEIVER_CAP_SIZE])
1181 {
1182 u8 dpcd_ext[DP_RECEIVER_CAP_SIZE];
1183 int ret;
1184
1185 /*
1186 * Prior to DP1.3 the bit represented by
1187 * DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT was reserved.
1188 * If it is set DP_DPCD_REV at 0000h could be at a value less than
1189 * the true capability of the panel. The only way to check is to
1190 * then compare 0000h and 2200h.
1191 */
1192 if (!(dpcd[DP_TRAINING_AUX_RD_INTERVAL] &
1193 DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT))
1194 return 0;
1195
1196 ret = drm_dp_dpcd_read_data(aux, DP_DP13_DPCD_REV, &dpcd_ext,
1197 sizeof(dpcd_ext));
1198 if (ret < 0)
1199 return ret;
1200
1201 if (dpcd[DP_DPCD_REV] > dpcd_ext[DP_DPCD_REV]) {
1202 drm_dbg_kms(aux->drm_dev,
1203 "%s: Extended DPCD rev less than base DPCD rev (%d > %d)\n",
1204 aux->name, dpcd[DP_DPCD_REV], dpcd_ext[DP_DPCD_REV]);
1205 return 0;
1206 }
1207
1208 if (!memcmp(dpcd, dpcd_ext, sizeof(dpcd_ext)))
1209 return 0;
1210
1211 drm_dbg_kms(aux->drm_dev, "%s: Base DPCD: %*ph\n", aux->name, DP_RECEIVER_CAP_SIZE, dpcd);
1212
1213 memcpy(dpcd, dpcd_ext, sizeof(dpcd_ext));
1214
1215 return 0;
1216 }
1217
1218 /**
1219 * drm_dp_read_dpcd_caps() - read DPCD caps and extended DPCD caps if
1220 * available
1221 * @aux: DisplayPort AUX channel
1222 * @dpcd: Buffer to store the resulting DPCD in
1223 *
1224 * Attempts to read the base DPCD caps for @aux. Additionally, this function
1225 * checks for and reads the extended DPRX caps (%DP_DP13_DPCD_REV) if
1226 * present.
1227 *
1228 * Returns: %0 if the DPCD was read successfully, negative error code
1229 * otherwise.
1230 */
drm_dp_read_dpcd_caps(struct drm_dp_aux * aux,u8 dpcd[DP_RECEIVER_CAP_SIZE])1231 int drm_dp_read_dpcd_caps(struct drm_dp_aux *aux,
1232 u8 dpcd[DP_RECEIVER_CAP_SIZE])
1233 {
1234 int ret;
1235
1236 ret = drm_dp_dpcd_read_data(aux, DP_DPCD_REV, dpcd, DP_RECEIVER_CAP_SIZE);
1237 if (ret < 0)
1238 return ret;
1239 if (dpcd[DP_DPCD_REV] == 0)
1240 return -EIO;
1241
1242 ret = drm_dp_read_extended_dpcd_caps(aux, dpcd);
1243 if (ret < 0)
1244 return ret;
1245
1246 drm_dbg_kms(aux->drm_dev, "%s: DPCD: %*ph\n", aux->name, DP_RECEIVER_CAP_SIZE, dpcd);
1247
1248 return ret;
1249 }
1250 EXPORT_SYMBOL(drm_dp_read_dpcd_caps);
1251
1252 /**
1253 * drm_dp_read_downstream_info() - read DPCD downstream port info if available
1254 * @aux: DisplayPort AUX channel
1255 * @dpcd: A cached copy of the port's DPCD
1256 * @downstream_ports: buffer to store the downstream port info in
1257 *
1258 * See also:
1259 * drm_dp_downstream_max_clock()
1260 * drm_dp_downstream_max_bpc()
1261 *
1262 * Returns: 0 if either the downstream port info was read successfully or
1263 * there was no downstream info to read, or a negative error code otherwise.
1264 */
drm_dp_read_downstream_info(struct drm_dp_aux * aux,const u8 dpcd[DP_RECEIVER_CAP_SIZE],u8 downstream_ports[DP_MAX_DOWNSTREAM_PORTS])1265 int drm_dp_read_downstream_info(struct drm_dp_aux *aux,
1266 const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1267 u8 downstream_ports[DP_MAX_DOWNSTREAM_PORTS])
1268 {
1269 int ret;
1270 u8 len;
1271
1272 memset(downstream_ports, 0, DP_MAX_DOWNSTREAM_PORTS);
1273
1274 /* No downstream info to read */
1275 if (!drm_dp_is_branch(dpcd) || dpcd[DP_DPCD_REV] == DP_DPCD_REV_10)
1276 return 0;
1277
1278 /* Some branches advertise having 0 downstream ports, despite also advertising they have a
1279 * downstream port present. The DP spec isn't clear on if this is allowed or not, but since
1280 * some branches do it we need to handle it regardless.
1281 */
1282 len = drm_dp_downstream_port_count(dpcd);
1283 if (!len)
1284 return 0;
1285
1286 if (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE)
1287 len *= 4;
1288
1289 ret = drm_dp_dpcd_read_data(aux, DP_DOWNSTREAM_PORT_0, downstream_ports, len);
1290 if (ret < 0)
1291 return ret;
1292
1293 drm_dbg_kms(aux->drm_dev, "%s: DPCD DFP: %*ph\n", aux->name, len, downstream_ports);
1294
1295 return 0;
1296 }
1297 EXPORT_SYMBOL(drm_dp_read_downstream_info);
1298
1299 /**
1300 * drm_dp_downstream_max_dotclock() - extract downstream facing port max dot clock
1301 * @dpcd: DisplayPort configuration data
1302 * @port_cap: port capabilities
1303 *
1304 * Returns: Downstream facing port max dot clock in kHz on success,
1305 * or 0 if max clock not defined
1306 */
drm_dp_downstream_max_dotclock(const u8 dpcd[DP_RECEIVER_CAP_SIZE],const u8 port_cap[4])1307 int drm_dp_downstream_max_dotclock(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1308 const u8 port_cap[4])
1309 {
1310 if (!drm_dp_is_branch(dpcd))
1311 return 0;
1312
1313 if (dpcd[DP_DPCD_REV] < 0x11)
1314 return 0;
1315
1316 switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1317 case DP_DS_PORT_TYPE_VGA:
1318 if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1319 return 0;
1320 return port_cap[1] * 8000;
1321 default:
1322 return 0;
1323 }
1324 }
1325 EXPORT_SYMBOL(drm_dp_downstream_max_dotclock);
1326
1327 /**
1328 * drm_dp_downstream_max_tmds_clock() - extract downstream facing port max TMDS clock
1329 * @dpcd: DisplayPort configuration data
1330 * @port_cap: port capabilities
1331 * @drm_edid: EDID
1332 *
1333 * Returns: HDMI/DVI downstream facing port max TMDS clock in kHz on success,
1334 * or 0 if max TMDS clock not defined
1335 */
drm_dp_downstream_max_tmds_clock(const u8 dpcd[DP_RECEIVER_CAP_SIZE],const u8 port_cap[4],const struct drm_edid * drm_edid)1336 int drm_dp_downstream_max_tmds_clock(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1337 const u8 port_cap[4],
1338 const struct drm_edid *drm_edid)
1339 {
1340 if (!drm_dp_is_branch(dpcd))
1341 return 0;
1342
1343 if (dpcd[DP_DPCD_REV] < 0x11) {
1344 switch (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_TYPE_MASK) {
1345 case DP_DWN_STRM_PORT_TYPE_TMDS:
1346 return 165000;
1347 default:
1348 return 0;
1349 }
1350 }
1351
1352 switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1353 case DP_DS_PORT_TYPE_DP_DUALMODE:
1354 if (is_edid_digital_input_dp(drm_edid))
1355 return 0;
1356 /*
1357 * It's left up to the driver to check the
1358 * DP dual mode adapter's max TMDS clock.
1359 *
1360 * Unfortunately it looks like branch devices
1361 * may not fordward that the DP dual mode i2c
1362 * access so we just usually get i2c nak :(
1363 */
1364 fallthrough;
1365 case DP_DS_PORT_TYPE_HDMI:
1366 /*
1367 * We should perhaps assume 165 MHz when detailed cap
1368 * info is not available. But looks like many typical
1369 * branch devices fall into that category and so we'd
1370 * probably end up with users complaining that they can't
1371 * get high resolution modes with their favorite dongle.
1372 *
1373 * So let's limit to 300 MHz instead since DPCD 1.4
1374 * HDMI 2.0 DFPs are required to have the detailed cap
1375 * info. So it's more likely we're dealing with a HDMI 1.4
1376 * compatible* device here.
1377 */
1378 if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1379 return 300000;
1380 return port_cap[1] * 2500;
1381 case DP_DS_PORT_TYPE_DVI:
1382 if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1383 return 165000;
1384 /* FIXME what to do about DVI dual link? */
1385 return port_cap[1] * 2500;
1386 default:
1387 return 0;
1388 }
1389 }
1390 EXPORT_SYMBOL(drm_dp_downstream_max_tmds_clock);
1391
1392 /**
1393 * drm_dp_downstream_min_tmds_clock() - extract downstream facing port min TMDS clock
1394 * @dpcd: DisplayPort configuration data
1395 * @port_cap: port capabilities
1396 * @drm_edid: EDID
1397 *
1398 * Returns: HDMI/DVI downstream facing port min TMDS clock in kHz on success,
1399 * or 0 if max TMDS clock not defined
1400 */
drm_dp_downstream_min_tmds_clock(const u8 dpcd[DP_RECEIVER_CAP_SIZE],const u8 port_cap[4],const struct drm_edid * drm_edid)1401 int drm_dp_downstream_min_tmds_clock(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1402 const u8 port_cap[4],
1403 const struct drm_edid *drm_edid)
1404 {
1405 if (!drm_dp_is_branch(dpcd))
1406 return 0;
1407
1408 if (dpcd[DP_DPCD_REV] < 0x11) {
1409 switch (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_TYPE_MASK) {
1410 case DP_DWN_STRM_PORT_TYPE_TMDS:
1411 return 25000;
1412 default:
1413 return 0;
1414 }
1415 }
1416
1417 switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1418 case DP_DS_PORT_TYPE_DP_DUALMODE:
1419 if (is_edid_digital_input_dp(drm_edid))
1420 return 0;
1421 fallthrough;
1422 case DP_DS_PORT_TYPE_DVI:
1423 case DP_DS_PORT_TYPE_HDMI:
1424 /*
1425 * Unclear whether the protocol converter could
1426 * utilize pixel replication. Assume it won't.
1427 */
1428 return 25000;
1429 default:
1430 return 0;
1431 }
1432 }
1433 EXPORT_SYMBOL(drm_dp_downstream_min_tmds_clock);
1434
1435 /**
1436 * drm_dp_downstream_max_bpc() - extract downstream facing port max
1437 * bits per component
1438 * @dpcd: DisplayPort configuration data
1439 * @port_cap: downstream facing port capabilities
1440 * @drm_edid: EDID
1441 *
1442 * Returns: Max bpc on success or 0 if max bpc not defined
1443 */
drm_dp_downstream_max_bpc(const u8 dpcd[DP_RECEIVER_CAP_SIZE],const u8 port_cap[4],const struct drm_edid * drm_edid)1444 int drm_dp_downstream_max_bpc(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1445 const u8 port_cap[4],
1446 const struct drm_edid *drm_edid)
1447 {
1448 if (!drm_dp_is_branch(dpcd))
1449 return 0;
1450
1451 if (dpcd[DP_DPCD_REV] < 0x11) {
1452 switch (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_TYPE_MASK) {
1453 case DP_DWN_STRM_PORT_TYPE_DP:
1454 return 0;
1455 default:
1456 return 8;
1457 }
1458 }
1459
1460 switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1461 case DP_DS_PORT_TYPE_DP:
1462 return 0;
1463 case DP_DS_PORT_TYPE_DP_DUALMODE:
1464 if (is_edid_digital_input_dp(drm_edid))
1465 return 0;
1466 fallthrough;
1467 case DP_DS_PORT_TYPE_HDMI:
1468 case DP_DS_PORT_TYPE_DVI:
1469 case DP_DS_PORT_TYPE_VGA:
1470 if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1471 return 8;
1472
1473 switch (port_cap[2] & DP_DS_MAX_BPC_MASK) {
1474 case DP_DS_8BPC:
1475 return 8;
1476 case DP_DS_10BPC:
1477 return 10;
1478 case DP_DS_12BPC:
1479 return 12;
1480 case DP_DS_16BPC:
1481 return 16;
1482 default:
1483 return 8;
1484 }
1485 break;
1486 default:
1487 return 8;
1488 }
1489 }
1490 EXPORT_SYMBOL(drm_dp_downstream_max_bpc);
1491
1492 /**
1493 * drm_dp_downstream_420_passthrough() - determine downstream facing port
1494 * YCbCr 4:2:0 pass-through capability
1495 * @dpcd: DisplayPort configuration data
1496 * @port_cap: downstream facing port capabilities
1497 *
1498 * Returns: whether the downstream facing port can pass through YCbCr 4:2:0
1499 */
drm_dp_downstream_420_passthrough(const u8 dpcd[DP_RECEIVER_CAP_SIZE],const u8 port_cap[4])1500 bool drm_dp_downstream_420_passthrough(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1501 const u8 port_cap[4])
1502 {
1503 if (!drm_dp_is_branch(dpcd))
1504 return false;
1505
1506 if (dpcd[DP_DPCD_REV] < 0x13)
1507 return false;
1508
1509 switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1510 case DP_DS_PORT_TYPE_DP:
1511 return true;
1512 case DP_DS_PORT_TYPE_HDMI:
1513 if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1514 return false;
1515
1516 return port_cap[3] & DP_DS_HDMI_YCBCR420_PASS_THROUGH;
1517 default:
1518 return false;
1519 }
1520 }
1521 EXPORT_SYMBOL(drm_dp_downstream_420_passthrough);
1522
1523 /**
1524 * drm_dp_downstream_444_to_420_conversion() - determine downstream facing port
1525 * YCbCr 4:4:4->4:2:0 conversion capability
1526 * @dpcd: DisplayPort configuration data
1527 * @port_cap: downstream facing port capabilities
1528 *
1529 * Returns: whether the downstream facing port can convert YCbCr 4:4:4 to 4:2:0
1530 */
drm_dp_downstream_444_to_420_conversion(const u8 dpcd[DP_RECEIVER_CAP_SIZE],const u8 port_cap[4])1531 bool drm_dp_downstream_444_to_420_conversion(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1532 const u8 port_cap[4])
1533 {
1534 if (!drm_dp_is_branch(dpcd))
1535 return false;
1536
1537 if (dpcd[DP_DPCD_REV] < 0x13)
1538 return false;
1539
1540 switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1541 case DP_DS_PORT_TYPE_HDMI:
1542 if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1543 return false;
1544
1545 return port_cap[3] & DP_DS_HDMI_YCBCR444_TO_420_CONV;
1546 default:
1547 return false;
1548 }
1549 }
1550 EXPORT_SYMBOL(drm_dp_downstream_444_to_420_conversion);
1551
1552 /**
1553 * drm_dp_downstream_rgb_to_ycbcr_conversion() - determine downstream facing port
1554 * RGB->YCbCr conversion capability
1555 * @dpcd: DisplayPort configuration data
1556 * @port_cap: downstream facing port capabilities
1557 * @color_spc: Colorspace for which conversion cap is sought
1558 *
1559 * Returns: whether the downstream facing port can convert RGB->YCbCr for a given
1560 * colorspace.
1561 */
drm_dp_downstream_rgb_to_ycbcr_conversion(const u8 dpcd[DP_RECEIVER_CAP_SIZE],const u8 port_cap[4],u8 color_spc)1562 bool drm_dp_downstream_rgb_to_ycbcr_conversion(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1563 const u8 port_cap[4],
1564 u8 color_spc)
1565 {
1566 if (!drm_dp_is_branch(dpcd))
1567 return false;
1568
1569 if (dpcd[DP_DPCD_REV] < 0x13)
1570 return false;
1571
1572 switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1573 case DP_DS_PORT_TYPE_HDMI:
1574 if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1575 return false;
1576
1577 return port_cap[3] & color_spc;
1578 default:
1579 return false;
1580 }
1581 }
1582 EXPORT_SYMBOL(drm_dp_downstream_rgb_to_ycbcr_conversion);
1583
1584 /**
1585 * drm_dp_downstream_mode() - return a mode for downstream facing port
1586 * @dev: DRM device
1587 * @dpcd: DisplayPort configuration data
1588 * @port_cap: port capabilities
1589 *
1590 * Provides a suitable mode for downstream facing ports without EDID.
1591 *
1592 * Returns: A new drm_display_mode on success or NULL on failure
1593 */
1594 struct drm_display_mode *
drm_dp_downstream_mode(struct drm_device * dev,const u8 dpcd[DP_RECEIVER_CAP_SIZE],const u8 port_cap[4])1595 drm_dp_downstream_mode(struct drm_device *dev,
1596 const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1597 const u8 port_cap[4])
1598
1599 {
1600 u8 vic;
1601
1602 if (!drm_dp_is_branch(dpcd))
1603 return NULL;
1604
1605 if (dpcd[DP_DPCD_REV] < 0x11)
1606 return NULL;
1607
1608 switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1609 case DP_DS_PORT_TYPE_NON_EDID:
1610 switch (port_cap[0] & DP_DS_NON_EDID_MASK) {
1611 case DP_DS_NON_EDID_720x480i_60:
1612 vic = 6;
1613 break;
1614 case DP_DS_NON_EDID_720x480i_50:
1615 vic = 21;
1616 break;
1617 case DP_DS_NON_EDID_1920x1080i_60:
1618 vic = 5;
1619 break;
1620 case DP_DS_NON_EDID_1920x1080i_50:
1621 vic = 20;
1622 break;
1623 case DP_DS_NON_EDID_1280x720_60:
1624 vic = 4;
1625 break;
1626 case DP_DS_NON_EDID_1280x720_50:
1627 vic = 19;
1628 break;
1629 default:
1630 return NULL;
1631 }
1632 return drm_display_mode_from_cea_vic(dev, vic);
1633 default:
1634 return NULL;
1635 }
1636 }
1637 EXPORT_SYMBOL(drm_dp_downstream_mode);
1638
1639 /**
1640 * drm_dp_downstream_id() - identify branch device
1641 * @aux: DisplayPort AUX channel
1642 * @id: DisplayPort branch device id
1643 *
1644 * Returns branch device id on success or NULL on failure
1645 */
drm_dp_downstream_id(struct drm_dp_aux * aux,char id[6])1646 int drm_dp_downstream_id(struct drm_dp_aux *aux, char id[6])
1647 {
1648 return drm_dp_dpcd_read_data(aux, DP_BRANCH_ID, id, 6);
1649 }
1650 EXPORT_SYMBOL(drm_dp_downstream_id);
1651
1652 /**
1653 * drm_dp_downstream_debug() - debug DP branch devices
1654 * @m: pointer for debugfs file
1655 * @dpcd: DisplayPort configuration data
1656 * @port_cap: port capabilities
1657 * @drm_edid: EDID
1658 * @aux: DisplayPort AUX channel
1659 *
1660 */
drm_dp_downstream_debug(struct seq_file * m,const u8 dpcd[DP_RECEIVER_CAP_SIZE],const u8 port_cap[4],const struct drm_edid * drm_edid,struct drm_dp_aux * aux)1661 void drm_dp_downstream_debug(struct seq_file *m,
1662 const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1663 const u8 port_cap[4],
1664 const struct drm_edid *drm_edid,
1665 struct drm_dp_aux *aux)
1666 {
1667 bool detailed_cap_info = dpcd[DP_DOWNSTREAMPORT_PRESENT] &
1668 DP_DETAILED_CAP_INFO_AVAILABLE;
1669 int clk;
1670 int bpc;
1671 char id[7];
1672 int len;
1673 uint8_t rev[2];
1674 int type = port_cap[0] & DP_DS_PORT_TYPE_MASK;
1675 bool branch_device = drm_dp_is_branch(dpcd);
1676
1677 seq_printf(m, "\tDP branch device present: %s\n",
1678 str_yes_no(branch_device));
1679
1680 if (!branch_device)
1681 return;
1682
1683 switch (type) {
1684 case DP_DS_PORT_TYPE_DP:
1685 seq_puts(m, "\t\tType: DisplayPort\n");
1686 break;
1687 case DP_DS_PORT_TYPE_VGA:
1688 seq_puts(m, "\t\tType: VGA\n");
1689 break;
1690 case DP_DS_PORT_TYPE_DVI:
1691 seq_puts(m, "\t\tType: DVI\n");
1692 break;
1693 case DP_DS_PORT_TYPE_HDMI:
1694 seq_puts(m, "\t\tType: HDMI\n");
1695 break;
1696 case DP_DS_PORT_TYPE_NON_EDID:
1697 seq_puts(m, "\t\tType: others without EDID support\n");
1698 break;
1699 case DP_DS_PORT_TYPE_DP_DUALMODE:
1700 seq_puts(m, "\t\tType: DP++\n");
1701 break;
1702 case DP_DS_PORT_TYPE_WIRELESS:
1703 seq_puts(m, "\t\tType: Wireless\n");
1704 break;
1705 default:
1706 seq_puts(m, "\t\tType: N/A\n");
1707 }
1708
1709 memset(id, 0, sizeof(id));
1710 drm_dp_downstream_id(aux, id);
1711 seq_printf(m, "\t\tID: %s\n", id);
1712
1713 len = drm_dp_dpcd_read_data(aux, DP_BRANCH_HW_REV, &rev[0], 1);
1714 if (!len)
1715 seq_printf(m, "\t\tHW: %d.%d\n",
1716 (rev[0] & 0xf0) >> 4, rev[0] & 0xf);
1717
1718 len = drm_dp_dpcd_read_data(aux, DP_BRANCH_SW_REV, rev, 2);
1719 if (!len)
1720 seq_printf(m, "\t\tSW: %d.%d\n", rev[0], rev[1]);
1721
1722 if (detailed_cap_info) {
1723 clk = drm_dp_downstream_max_dotclock(dpcd, port_cap);
1724 if (clk > 0)
1725 seq_printf(m, "\t\tMax dot clock: %d kHz\n", clk);
1726
1727 clk = drm_dp_downstream_max_tmds_clock(dpcd, port_cap, drm_edid);
1728 if (clk > 0)
1729 seq_printf(m, "\t\tMax TMDS clock: %d kHz\n", clk);
1730
1731 clk = drm_dp_downstream_min_tmds_clock(dpcd, port_cap, drm_edid);
1732 if (clk > 0)
1733 seq_printf(m, "\t\tMin TMDS clock: %d kHz\n", clk);
1734
1735 bpc = drm_dp_downstream_max_bpc(dpcd, port_cap, drm_edid);
1736
1737 if (bpc > 0)
1738 seq_printf(m, "\t\tMax bpc: %d\n", bpc);
1739 }
1740 }
1741 EXPORT_SYMBOL(drm_dp_downstream_debug);
1742
1743 /**
1744 * drm_dp_subconnector_type() - get DP branch device type
1745 * @dpcd: DisplayPort configuration data
1746 * @port_cap: port capabilities
1747 */
1748 enum drm_mode_subconnector
drm_dp_subconnector_type(const u8 dpcd[DP_RECEIVER_CAP_SIZE],const u8 port_cap[4])1749 drm_dp_subconnector_type(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1750 const u8 port_cap[4])
1751 {
1752 int type;
1753 if (!drm_dp_is_branch(dpcd))
1754 return DRM_MODE_SUBCONNECTOR_Native;
1755 /* DP 1.0 approach */
1756 if (dpcd[DP_DPCD_REV] == DP_DPCD_REV_10) {
1757 type = dpcd[DP_DOWNSTREAMPORT_PRESENT] &
1758 DP_DWN_STRM_PORT_TYPE_MASK;
1759
1760 switch (type) {
1761 case DP_DWN_STRM_PORT_TYPE_TMDS:
1762 /* Can be HDMI or DVI-D, DVI-D is a safer option */
1763 return DRM_MODE_SUBCONNECTOR_DVID;
1764 case DP_DWN_STRM_PORT_TYPE_ANALOG:
1765 /* Can be VGA or DVI-A, VGA is more popular */
1766 return DRM_MODE_SUBCONNECTOR_VGA;
1767 case DP_DWN_STRM_PORT_TYPE_DP:
1768 return DRM_MODE_SUBCONNECTOR_DisplayPort;
1769 case DP_DWN_STRM_PORT_TYPE_OTHER:
1770 default:
1771 return DRM_MODE_SUBCONNECTOR_Unknown;
1772 }
1773 }
1774 type = port_cap[0] & DP_DS_PORT_TYPE_MASK;
1775
1776 switch (type) {
1777 case DP_DS_PORT_TYPE_DP:
1778 case DP_DS_PORT_TYPE_DP_DUALMODE:
1779 return DRM_MODE_SUBCONNECTOR_DisplayPort;
1780 case DP_DS_PORT_TYPE_VGA:
1781 return DRM_MODE_SUBCONNECTOR_VGA;
1782 case DP_DS_PORT_TYPE_DVI:
1783 return DRM_MODE_SUBCONNECTOR_DVID;
1784 case DP_DS_PORT_TYPE_HDMI:
1785 return DRM_MODE_SUBCONNECTOR_HDMIA;
1786 case DP_DS_PORT_TYPE_WIRELESS:
1787 return DRM_MODE_SUBCONNECTOR_Wireless;
1788 case DP_DS_PORT_TYPE_NON_EDID:
1789 default:
1790 return DRM_MODE_SUBCONNECTOR_Unknown;
1791 }
1792 }
1793 EXPORT_SYMBOL(drm_dp_subconnector_type);
1794
1795 /**
1796 * drm_dp_set_subconnector_property - set subconnector for DP connector
1797 * @connector: connector to set property on
1798 * @status: connector status
1799 * @dpcd: DisplayPort configuration data
1800 * @port_cap: port capabilities
1801 *
1802 * Called by a driver on every detect event.
1803 */
drm_dp_set_subconnector_property(struct drm_connector * connector,enum drm_connector_status status,const u8 * dpcd,const u8 port_cap[4])1804 void drm_dp_set_subconnector_property(struct drm_connector *connector,
1805 enum drm_connector_status status,
1806 const u8 *dpcd,
1807 const u8 port_cap[4])
1808 {
1809 enum drm_mode_subconnector subconnector = DRM_MODE_SUBCONNECTOR_Unknown;
1810
1811 if (status == connector_status_connected)
1812 subconnector = drm_dp_subconnector_type(dpcd, port_cap);
1813 drm_object_property_set_value(&connector->base,
1814 connector->dev->mode_config.dp_subconnector_property,
1815 subconnector);
1816 }
1817 EXPORT_SYMBOL(drm_dp_set_subconnector_property);
1818
1819 /**
1820 * drm_dp_read_sink_count_cap() - Check whether a given connector has a valid sink
1821 * count
1822 * @connector: The DRM connector to check
1823 * @dpcd: A cached copy of the connector's DPCD RX capabilities
1824 * @desc: A cached copy of the connector's DP descriptor
1825 *
1826 * See also: drm_dp_read_sink_count()
1827 *
1828 * Returns: %True if the (e)DP connector has a valid sink count that should
1829 * be probed, %false otherwise.
1830 */
drm_dp_read_sink_count_cap(struct drm_connector * connector,const u8 dpcd[DP_RECEIVER_CAP_SIZE],const struct drm_dp_desc * desc)1831 bool drm_dp_read_sink_count_cap(struct drm_connector *connector,
1832 const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1833 const struct drm_dp_desc *desc)
1834 {
1835 /* Some eDP panels don't set a valid value for the sink count */
1836 return connector->connector_type != DRM_MODE_CONNECTOR_eDP &&
1837 dpcd[DP_DPCD_REV] >= DP_DPCD_REV_11 &&
1838 dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT &&
1839 !drm_dp_has_quirk(desc, DP_DPCD_QUIRK_NO_SINK_COUNT);
1840 }
1841 EXPORT_SYMBOL(drm_dp_read_sink_count_cap);
1842
1843 /**
1844 * drm_dp_read_sink_count() - Retrieve the sink count for a given sink
1845 * @aux: The DP AUX channel to use
1846 *
1847 * See also: drm_dp_read_sink_count_cap()
1848 *
1849 * Returns: The current sink count reported by @aux, or a negative error code
1850 * otherwise.
1851 */
drm_dp_read_sink_count(struct drm_dp_aux * aux)1852 int drm_dp_read_sink_count(struct drm_dp_aux *aux)
1853 {
1854 u8 count;
1855 int ret;
1856
1857 ret = drm_dp_dpcd_read_byte(aux, DP_SINK_COUNT, &count);
1858 if (ret < 0)
1859 return ret;
1860
1861 return DP_GET_SINK_COUNT(count);
1862 }
1863 EXPORT_SYMBOL(drm_dp_read_sink_count);
1864
1865 /*
1866 * I2C-over-AUX implementation
1867 */
1868
drm_dp_i2c_functionality(struct i2c_adapter * adapter)1869 static u32 drm_dp_i2c_functionality(struct i2c_adapter *adapter)
1870 {
1871 return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL |
1872 I2C_FUNC_SMBUS_READ_BLOCK_DATA |
1873 I2C_FUNC_SMBUS_BLOCK_PROC_CALL |
1874 I2C_FUNC_10BIT_ADDR;
1875 }
1876
drm_dp_i2c_msg_write_status_update(struct drm_dp_aux_msg * msg)1877 static void drm_dp_i2c_msg_write_status_update(struct drm_dp_aux_msg *msg)
1878 {
1879 /*
1880 * In case of i2c defer or short i2c ack reply to a write,
1881 * we need to switch to WRITE_STATUS_UPDATE to drain the
1882 * rest of the message
1883 */
1884 if ((msg->request & ~DP_AUX_I2C_MOT) == DP_AUX_I2C_WRITE) {
1885 msg->request &= DP_AUX_I2C_MOT;
1886 msg->request |= DP_AUX_I2C_WRITE_STATUS_UPDATE;
1887 }
1888 }
1889
1890 #define AUX_PRECHARGE_LEN 10 /* 10 to 16 */
1891 #define AUX_SYNC_LEN (16 + 4) /* preamble + AUX_SYNC_END */
1892 #define AUX_STOP_LEN 4
1893 #define AUX_CMD_LEN 4
1894 #define AUX_ADDRESS_LEN 20
1895 #define AUX_REPLY_PAD_LEN 4
1896 #define AUX_LENGTH_LEN 8
1897
1898 /*
1899 * Calculate the duration of the AUX request/reply in usec. Gives the
1900 * "best" case estimate, ie. successful while as short as possible.
1901 */
drm_dp_aux_req_duration(const struct drm_dp_aux_msg * msg)1902 static int drm_dp_aux_req_duration(const struct drm_dp_aux_msg *msg)
1903 {
1904 int len = AUX_PRECHARGE_LEN + AUX_SYNC_LEN + AUX_STOP_LEN +
1905 AUX_CMD_LEN + AUX_ADDRESS_LEN + AUX_LENGTH_LEN;
1906
1907 if ((msg->request & DP_AUX_I2C_READ) == 0)
1908 len += msg->size * 8;
1909
1910 return len;
1911 }
1912
drm_dp_aux_reply_duration(const struct drm_dp_aux_msg * msg)1913 static int drm_dp_aux_reply_duration(const struct drm_dp_aux_msg *msg)
1914 {
1915 int len = AUX_PRECHARGE_LEN + AUX_SYNC_LEN + AUX_STOP_LEN +
1916 AUX_CMD_LEN + AUX_REPLY_PAD_LEN;
1917
1918 /*
1919 * For read we expect what was asked. For writes there will
1920 * be 0 or 1 data bytes. Assume 0 for the "best" case.
1921 */
1922 if (msg->request & DP_AUX_I2C_READ)
1923 len += msg->size * 8;
1924
1925 return len;
1926 }
1927
1928 #define I2C_START_LEN 1
1929 #define I2C_STOP_LEN 1
1930 #define I2C_ADDR_LEN 9 /* ADDRESS + R/W + ACK/NACK */
1931 #define I2C_DATA_LEN 9 /* DATA + ACK/NACK */
1932
1933 /*
1934 * Calculate the length of the i2c transfer in usec, assuming
1935 * the i2c bus speed is as specified. Gives the "worst"
1936 * case estimate, ie. successful while as long as possible.
1937 * Doesn't account the "MOT" bit, and instead assumes each
1938 * message includes a START, ADDRESS and STOP. Neither does it
1939 * account for additional random variables such as clock stretching.
1940 */
drm_dp_i2c_msg_duration(const struct drm_dp_aux_msg * msg,int i2c_speed_khz)1941 static int drm_dp_i2c_msg_duration(const struct drm_dp_aux_msg *msg,
1942 int i2c_speed_khz)
1943 {
1944 /* AUX bitrate is 1MHz, i2c bitrate as specified */
1945 return DIV_ROUND_UP((I2C_START_LEN + I2C_ADDR_LEN +
1946 msg->size * I2C_DATA_LEN +
1947 I2C_STOP_LEN) * 1000, i2c_speed_khz);
1948 }
1949
1950 /*
1951 * Determine how many retries should be attempted to successfully transfer
1952 * the specified message, based on the estimated durations of the
1953 * i2c and AUX transfers.
1954 */
drm_dp_i2c_retry_count(const struct drm_dp_aux_msg * msg,int i2c_speed_khz)1955 static int drm_dp_i2c_retry_count(const struct drm_dp_aux_msg *msg,
1956 int i2c_speed_khz)
1957 {
1958 int aux_time_us = drm_dp_aux_req_duration(msg) +
1959 drm_dp_aux_reply_duration(msg);
1960 int i2c_time_us = drm_dp_i2c_msg_duration(msg, i2c_speed_khz);
1961
1962 return DIV_ROUND_UP(i2c_time_us, aux_time_us + AUX_RETRY_INTERVAL);
1963 }
1964
1965 /*
1966 * FIXME currently assumes 10 kHz as some real world devices seem
1967 * to require it. We should query/set the speed via DPCD if supported.
1968 */
1969 static int dp_aux_i2c_speed_khz __read_mostly = 10;
1970 module_param_unsafe(dp_aux_i2c_speed_khz, int, 0644);
1971 MODULE_PARM_DESC(dp_aux_i2c_speed_khz,
1972 "Assumed speed of the i2c bus in kHz, (1-400, default 10)");
1973
1974 /*
1975 * Transfer a single I2C-over-AUX message and handle various error conditions,
1976 * retrying the transaction as appropriate. It is assumed that the
1977 * &drm_dp_aux.transfer function does not modify anything in the msg other than the
1978 * reply field.
1979 *
1980 * Returns bytes transferred on success, or a negative error code on failure.
1981 */
drm_dp_i2c_do_msg(struct drm_dp_aux * aux,struct drm_dp_aux_msg * msg)1982 static int drm_dp_i2c_do_msg(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
1983 {
1984 unsigned int retry, defer_i2c;
1985 int ret;
1986 /*
1987 * DP1.2 sections 2.7.7.1.5.6.1 and 2.7.7.1.6.6.1: A DP Source device
1988 * is required to retry at least seven times upon receiving AUX_DEFER
1989 * before giving up the AUX transaction.
1990 *
1991 * We also try to account for the i2c bus speed.
1992 */
1993 int max_retries = max(7, drm_dp_i2c_retry_count(msg, dp_aux_i2c_speed_khz));
1994
1995 for (retry = 0, defer_i2c = 0; retry < (max_retries + defer_i2c); retry++) {
1996 ret = aux->transfer(aux, msg);
1997 if (ret < 0) {
1998 if (ret == -EBUSY)
1999 continue;
2000
2001 /*
2002 * While timeouts can be errors, they're usually normal
2003 * behavior (for instance, when a driver tries to
2004 * communicate with a non-existent DisplayPort device).
2005 * Avoid spamming the kernel log with timeout errors.
2006 */
2007 if (ret == -ETIMEDOUT)
2008 drm_dbg_kms_ratelimited(aux->drm_dev, "%s: transaction timed out\n",
2009 aux->name);
2010 else
2011 drm_dbg_kms(aux->drm_dev, "%s: transaction failed: %d\n",
2012 aux->name, ret);
2013 return ret;
2014 }
2015
2016
2017 switch (msg->reply & DP_AUX_NATIVE_REPLY_MASK) {
2018 case DP_AUX_NATIVE_REPLY_ACK:
2019 /*
2020 * For I2C-over-AUX transactions this isn't enough, we
2021 * need to check for the I2C ACK reply.
2022 */
2023 break;
2024
2025 case DP_AUX_NATIVE_REPLY_NACK:
2026 drm_dbg_kms(aux->drm_dev, "%s: native nack (result=%d, size=%zu)\n",
2027 aux->name, ret, msg->size);
2028 return -EREMOTEIO;
2029
2030 case DP_AUX_NATIVE_REPLY_DEFER:
2031 drm_dbg_kms(aux->drm_dev, "%s: native defer\n", aux->name);
2032 /*
2033 * We could check for I2C bit rate capabilities and if
2034 * available adjust this interval. We could also be
2035 * more careful with DP-to-legacy adapters where a
2036 * long legacy cable may force very low I2C bit rates.
2037 *
2038 * For now just defer for long enough to hopefully be
2039 * safe for all use-cases.
2040 */
2041 usleep_range(AUX_RETRY_INTERVAL, AUX_RETRY_INTERVAL + 100);
2042 continue;
2043
2044 default:
2045 drm_err(aux->drm_dev, "%s: invalid native reply %#04x\n",
2046 aux->name, msg->reply);
2047 return -EREMOTEIO;
2048 }
2049
2050 switch (msg->reply & DP_AUX_I2C_REPLY_MASK) {
2051 case DP_AUX_I2C_REPLY_ACK:
2052 /*
2053 * Both native ACK and I2C ACK replies received. We
2054 * can assume the transfer was successful.
2055 */
2056 if (ret != msg->size)
2057 drm_dp_i2c_msg_write_status_update(msg);
2058 return ret;
2059
2060 case DP_AUX_I2C_REPLY_NACK:
2061 drm_dbg_kms(aux->drm_dev, "%s: I2C nack (result=%d, size=%zu)\n",
2062 aux->name, ret, msg->size);
2063 aux->i2c_nack_count++;
2064 return -EREMOTEIO;
2065
2066 case DP_AUX_I2C_REPLY_DEFER:
2067 drm_dbg_kms(aux->drm_dev, "%s: I2C defer\n", aux->name);
2068 /* DP Compliance Test 4.2.2.5 Requirement:
2069 * Must have at least 7 retries for I2C defers on the
2070 * transaction to pass this test
2071 */
2072 aux->i2c_defer_count++;
2073 if (defer_i2c < 7)
2074 defer_i2c++;
2075 usleep_range(AUX_RETRY_INTERVAL, AUX_RETRY_INTERVAL + 100);
2076 drm_dp_i2c_msg_write_status_update(msg);
2077
2078 continue;
2079
2080 default:
2081 drm_err(aux->drm_dev, "%s: invalid I2C reply %#04x\n",
2082 aux->name, msg->reply);
2083 return -EREMOTEIO;
2084 }
2085 }
2086
2087 drm_dbg_kms(aux->drm_dev, "%s: Too many retries, giving up\n", aux->name);
2088 return -EREMOTEIO;
2089 }
2090
drm_dp_i2c_msg_set_request(struct drm_dp_aux_msg * msg,const struct i2c_msg * i2c_msg)2091 static void drm_dp_i2c_msg_set_request(struct drm_dp_aux_msg *msg,
2092 const struct i2c_msg *i2c_msg)
2093 {
2094 msg->request = (i2c_msg->flags & I2C_M_RD) ?
2095 DP_AUX_I2C_READ : DP_AUX_I2C_WRITE;
2096 if (!(i2c_msg->flags & I2C_M_STOP))
2097 msg->request |= DP_AUX_I2C_MOT;
2098 }
2099
2100 /*
2101 * Keep retrying drm_dp_i2c_do_msg until all data has been transferred.
2102 *
2103 * Returns an error code on failure, or a recommended transfer size on success.
2104 */
drm_dp_i2c_drain_msg(struct drm_dp_aux * aux,struct drm_dp_aux_msg * orig_msg)2105 static int drm_dp_i2c_drain_msg(struct drm_dp_aux *aux, struct drm_dp_aux_msg *orig_msg)
2106 {
2107 int err, ret = orig_msg->size;
2108 struct drm_dp_aux_msg msg = *orig_msg;
2109
2110 while (msg.size > 0) {
2111 err = drm_dp_i2c_do_msg(aux, &msg);
2112 if (err <= 0)
2113 return err == 0 ? -EPROTO : err;
2114
2115 if (err < msg.size && err < ret) {
2116 drm_dbg_kms(aux->drm_dev,
2117 "%s: Partial I2C reply: requested %zu bytes got %d bytes\n",
2118 aux->name, msg.size, err);
2119 ret = err;
2120 }
2121
2122 msg.size -= err;
2123 msg.buffer += err;
2124 }
2125
2126 return ret;
2127 }
2128
2129 /*
2130 * Bizlink designed DP->DVI-D Dual Link adapters require the I2C over AUX
2131 * packets to be as large as possible. If not, the I2C transactions never
2132 * succeed. Hence the default is maximum.
2133 */
2134 static int dp_aux_i2c_transfer_size __read_mostly = DP_AUX_MAX_PAYLOAD_BYTES;
2135 module_param_unsafe(dp_aux_i2c_transfer_size, int, 0644);
2136 MODULE_PARM_DESC(dp_aux_i2c_transfer_size,
2137 "Number of bytes to transfer in a single I2C over DP AUX CH message, (1-16, default 16)");
2138
drm_dp_i2c_xfer(struct i2c_adapter * adapter,struct i2c_msg * msgs,int num)2139 static int drm_dp_i2c_xfer(struct i2c_adapter *adapter, struct i2c_msg *msgs,
2140 int num)
2141 {
2142 struct drm_dp_aux *aux = adapter->algo_data;
2143 unsigned int i, j;
2144 unsigned transfer_size;
2145 struct drm_dp_aux_msg msg;
2146 int err = 0;
2147
2148 if (aux->powered_down)
2149 return -EBUSY;
2150
2151 dp_aux_i2c_transfer_size = clamp(dp_aux_i2c_transfer_size, 1, DP_AUX_MAX_PAYLOAD_BYTES);
2152
2153 memset(&msg, 0, sizeof(msg));
2154
2155 for (i = 0; i < num; i++) {
2156 msg.address = msgs[i].addr;
2157
2158 if (!aux->no_zero_sized) {
2159 drm_dp_i2c_msg_set_request(&msg, &msgs[i]);
2160 /* Send a bare address packet to start the transaction.
2161 * Zero sized messages specify an address only (bare
2162 * address) transaction.
2163 */
2164 msg.buffer = NULL;
2165 msg.size = 0;
2166 err = drm_dp_i2c_do_msg(aux, &msg);
2167 }
2168
2169 /*
2170 * Reset msg.request in case in case it got
2171 * changed into a WRITE_STATUS_UPDATE.
2172 */
2173 drm_dp_i2c_msg_set_request(&msg, &msgs[i]);
2174
2175 if (err < 0)
2176 break;
2177 /* We want each transaction to be as large as possible, but
2178 * we'll go to smaller sizes if the hardware gives us a
2179 * short reply.
2180 */
2181 transfer_size = dp_aux_i2c_transfer_size;
2182 for (j = 0; j < msgs[i].len; j += msg.size) {
2183 msg.buffer = msgs[i].buf + j;
2184 msg.size = min(transfer_size, msgs[i].len - j);
2185
2186 if (j + msg.size == msgs[i].len && aux->no_zero_sized)
2187 msg.request &= ~DP_AUX_I2C_MOT;
2188 err = drm_dp_i2c_drain_msg(aux, &msg);
2189
2190 /*
2191 * Reset msg.request in case in case it got
2192 * changed into a WRITE_STATUS_UPDATE.
2193 */
2194 drm_dp_i2c_msg_set_request(&msg, &msgs[i]);
2195
2196 if (err < 0)
2197 break;
2198 transfer_size = err;
2199 }
2200 if (err < 0)
2201 break;
2202 }
2203 if (err >= 0)
2204 err = num;
2205
2206 if (!aux->no_zero_sized) {
2207 /* Send a bare address packet to close out the transaction.
2208 * Zero sized messages specify an address only (bare
2209 * address) transaction.
2210 */
2211 msg.request &= ~DP_AUX_I2C_MOT;
2212 msg.buffer = NULL;
2213 msg.size = 0;
2214 (void)drm_dp_i2c_do_msg(aux, &msg);
2215 }
2216 return err;
2217 }
2218
2219 static const struct i2c_algorithm drm_dp_i2c_algo = {
2220 .functionality = drm_dp_i2c_functionality,
2221 .master_xfer = drm_dp_i2c_xfer,
2222 };
2223
i2c_to_aux(struct i2c_adapter * i2c)2224 static struct drm_dp_aux *i2c_to_aux(struct i2c_adapter *i2c)
2225 {
2226 return container_of(i2c, struct drm_dp_aux, ddc);
2227 }
2228
lock_bus(struct i2c_adapter * i2c,unsigned int flags)2229 static void lock_bus(struct i2c_adapter *i2c, unsigned int flags)
2230 {
2231 mutex_lock(&i2c_to_aux(i2c)->hw_mutex);
2232 }
2233
trylock_bus(struct i2c_adapter * i2c,unsigned int flags)2234 static int trylock_bus(struct i2c_adapter *i2c, unsigned int flags)
2235 {
2236 return mutex_trylock(&i2c_to_aux(i2c)->hw_mutex);
2237 }
2238
unlock_bus(struct i2c_adapter * i2c,unsigned int flags)2239 static void unlock_bus(struct i2c_adapter *i2c, unsigned int flags)
2240 {
2241 mutex_unlock(&i2c_to_aux(i2c)->hw_mutex);
2242 }
2243
2244 static const struct i2c_lock_operations drm_dp_i2c_lock_ops = {
2245 .lock_bus = lock_bus,
2246 .trylock_bus = trylock_bus,
2247 .unlock_bus = unlock_bus,
2248 };
2249
drm_dp_aux_get_crc(struct drm_dp_aux * aux,u8 * crc)2250 static int drm_dp_aux_get_crc(struct drm_dp_aux *aux, u8 *crc)
2251 {
2252 u8 buf, count;
2253 int ret;
2254
2255 ret = drm_dp_dpcd_read_byte(aux, DP_TEST_SINK, &buf);
2256 if (ret < 0)
2257 return ret;
2258
2259 WARN_ON(!(buf & DP_TEST_SINK_START));
2260
2261 ret = drm_dp_dpcd_read_byte(aux, DP_TEST_SINK_MISC, &buf);
2262 if (ret < 0)
2263 return ret;
2264
2265 count = buf & DP_TEST_COUNT_MASK;
2266 if (count == aux->crc_count)
2267 return -EAGAIN; /* No CRC yet */
2268
2269 aux->crc_count = count;
2270
2271 /*
2272 * At DP_TEST_CRC_R_CR, there's 6 bytes containing CRC data, 2 bytes
2273 * per component (RGB or CrYCb).
2274 */
2275 return drm_dp_dpcd_read_data(aux, DP_TEST_CRC_R_CR, crc, 6);
2276 }
2277
drm_dp_aux_crc_work(struct work_struct * work)2278 static void drm_dp_aux_crc_work(struct work_struct *work)
2279 {
2280 struct drm_dp_aux *aux = container_of(work, struct drm_dp_aux,
2281 crc_work);
2282 struct drm_crtc *crtc;
2283 u8 crc_bytes[6];
2284 uint32_t crcs[3];
2285 int ret;
2286
2287 if (WARN_ON(!aux->crtc))
2288 return;
2289
2290 crtc = aux->crtc;
2291 while (crtc->crc.opened) {
2292 drm_crtc_wait_one_vblank(crtc);
2293 if (!crtc->crc.opened)
2294 break;
2295
2296 ret = drm_dp_aux_get_crc(aux, crc_bytes);
2297 if (ret == -EAGAIN) {
2298 usleep_range(1000, 2000);
2299 ret = drm_dp_aux_get_crc(aux, crc_bytes);
2300 }
2301
2302 if (ret == -EAGAIN) {
2303 drm_dbg_kms(aux->drm_dev, "%s: Get CRC failed after retrying: %d\n",
2304 aux->name, ret);
2305 continue;
2306 } else if (ret) {
2307 drm_dbg_kms(aux->drm_dev, "%s: Failed to get a CRC: %d\n", aux->name, ret);
2308 continue;
2309 }
2310
2311 crcs[0] = crc_bytes[0] | crc_bytes[1] << 8;
2312 crcs[1] = crc_bytes[2] | crc_bytes[3] << 8;
2313 crcs[2] = crc_bytes[4] | crc_bytes[5] << 8;
2314 drm_crtc_add_crc_entry(crtc, false, 0, crcs);
2315 }
2316 }
2317
2318 /**
2319 * drm_dp_remote_aux_init() - minimally initialise a remote aux channel
2320 * @aux: DisplayPort AUX channel
2321 *
2322 * Used for remote aux channel in general. Merely initialize the crc work
2323 * struct.
2324 */
drm_dp_remote_aux_init(struct drm_dp_aux * aux)2325 void drm_dp_remote_aux_init(struct drm_dp_aux *aux)
2326 {
2327 INIT_WORK(&aux->crc_work, drm_dp_aux_crc_work);
2328 }
2329 EXPORT_SYMBOL(drm_dp_remote_aux_init);
2330
2331 /**
2332 * drm_dp_aux_init() - minimally initialise an aux channel
2333 * @aux: DisplayPort AUX channel
2334 *
2335 * If you need to use the drm_dp_aux's i2c adapter prior to registering it with
2336 * the outside world, call drm_dp_aux_init() first. For drivers which are
2337 * grandparents to their AUX adapters (e.g. the AUX adapter is parented by a
2338 * &drm_connector), you must still call drm_dp_aux_register() once the connector
2339 * has been registered to allow userspace access to the auxiliary DP channel.
2340 * Likewise, for such drivers you should also assign &drm_dp_aux.drm_dev as
2341 * early as possible so that the &drm_device that corresponds to the AUX adapter
2342 * may be mentioned in debugging output from the DRM DP helpers.
2343 *
2344 * For devices which use a separate platform device for their AUX adapters, this
2345 * may be called as early as required by the driver.
2346 *
2347 */
drm_dp_aux_init(struct drm_dp_aux * aux)2348 void drm_dp_aux_init(struct drm_dp_aux *aux)
2349 {
2350 mutex_init(&aux->hw_mutex);
2351 mutex_init(&aux->cec.lock);
2352 INIT_WORK(&aux->crc_work, drm_dp_aux_crc_work);
2353
2354 aux->ddc.algo = &drm_dp_i2c_algo;
2355 aux->ddc.algo_data = aux;
2356 aux->ddc.retries = 3;
2357
2358 aux->ddc.lock_ops = &drm_dp_i2c_lock_ops;
2359 }
2360 EXPORT_SYMBOL(drm_dp_aux_init);
2361
2362 /**
2363 * drm_dp_aux_register() - initialise and register aux channel
2364 * @aux: DisplayPort AUX channel
2365 *
2366 * Automatically calls drm_dp_aux_init() if this hasn't been done yet. This
2367 * should only be called once the parent of @aux, &drm_dp_aux.dev, is
2368 * initialized. For devices which are grandparents of their AUX channels,
2369 * &drm_dp_aux.dev will typically be the &drm_connector &device which
2370 * corresponds to @aux. For these devices, it's advised to call
2371 * drm_dp_aux_register() in &drm_connector_funcs.late_register, and likewise to
2372 * call drm_dp_aux_unregister() in &drm_connector_funcs.early_unregister.
2373 * Functions which don't follow this will likely Oops when
2374 * %CONFIG_DRM_DISPLAY_DP_AUX_CHARDEV is enabled.
2375 *
2376 * For devices where the AUX channel is a device that exists independently of
2377 * the &drm_device that uses it, such as SoCs and bridge devices, it is
2378 * recommended to call drm_dp_aux_register() after a &drm_device has been
2379 * assigned to &drm_dp_aux.drm_dev, and likewise to call
2380 * drm_dp_aux_unregister() once the &drm_device should no longer be associated
2381 * with the AUX channel (e.g. on bridge detach).
2382 *
2383 * Drivers which need to use the aux channel before either of the two points
2384 * mentioned above need to call drm_dp_aux_init() in order to use the AUX
2385 * channel before registration.
2386 *
2387 * Returns 0 on success or a negative error code on failure.
2388 */
drm_dp_aux_register(struct drm_dp_aux * aux)2389 int drm_dp_aux_register(struct drm_dp_aux *aux)
2390 {
2391 int ret;
2392
2393 WARN_ON_ONCE(!aux->drm_dev);
2394
2395 if (!aux->ddc.algo)
2396 drm_dp_aux_init(aux);
2397
2398 aux->ddc.owner = THIS_MODULE;
2399 aux->ddc.dev.parent = aux->dev;
2400
2401 strscpy(aux->ddc.name, aux->name ? aux->name : dev_name(aux->dev),
2402 sizeof(aux->ddc.name));
2403
2404 ret = drm_dp_aux_register_devnode(aux);
2405 if (ret)
2406 return ret;
2407
2408 ret = i2c_add_adapter(&aux->ddc);
2409 if (ret) {
2410 drm_dp_aux_unregister_devnode(aux);
2411 return ret;
2412 }
2413
2414 return 0;
2415 }
2416 EXPORT_SYMBOL(drm_dp_aux_register);
2417
2418 /**
2419 * drm_dp_aux_unregister() - unregister an AUX adapter
2420 * @aux: DisplayPort AUX channel
2421 */
drm_dp_aux_unregister(struct drm_dp_aux * aux)2422 void drm_dp_aux_unregister(struct drm_dp_aux *aux)
2423 {
2424 drm_dp_aux_unregister_devnode(aux);
2425 i2c_del_adapter(&aux->ddc);
2426 }
2427 EXPORT_SYMBOL(drm_dp_aux_unregister);
2428
2429 #define PSR_SETUP_TIME(x) [DP_PSR_SETUP_TIME_ ## x >> DP_PSR_SETUP_TIME_SHIFT] = (x)
2430
2431 /**
2432 * drm_dp_psr_setup_time() - PSR setup in time usec
2433 * @psr_cap: PSR capabilities from DPCD
2434 *
2435 * Returns:
2436 * PSR setup time for the panel in microseconds, negative
2437 * error code on failure.
2438 */
drm_dp_psr_setup_time(const u8 psr_cap[EDP_PSR_RECEIVER_CAP_SIZE])2439 int drm_dp_psr_setup_time(const u8 psr_cap[EDP_PSR_RECEIVER_CAP_SIZE])
2440 {
2441 static const u16 psr_setup_time_us[] = {
2442 PSR_SETUP_TIME(330),
2443 PSR_SETUP_TIME(275),
2444 PSR_SETUP_TIME(220),
2445 PSR_SETUP_TIME(165),
2446 PSR_SETUP_TIME(110),
2447 PSR_SETUP_TIME(55),
2448 PSR_SETUP_TIME(0),
2449 };
2450 int i;
2451
2452 i = (psr_cap[1] & DP_PSR_SETUP_TIME_MASK) >> DP_PSR_SETUP_TIME_SHIFT;
2453 if (i >= ARRAY_SIZE(psr_setup_time_us))
2454 return -EINVAL;
2455
2456 return psr_setup_time_us[i];
2457 }
2458 EXPORT_SYMBOL(drm_dp_psr_setup_time);
2459
2460 #undef PSR_SETUP_TIME
2461
2462 /**
2463 * drm_dp_start_crc() - start capture of frame CRCs
2464 * @aux: DisplayPort AUX channel
2465 * @crtc: CRTC displaying the frames whose CRCs are to be captured
2466 *
2467 * Returns 0 on success or a negative error code on failure.
2468 */
drm_dp_start_crc(struct drm_dp_aux * aux,struct drm_crtc * crtc)2469 int drm_dp_start_crc(struct drm_dp_aux *aux, struct drm_crtc *crtc)
2470 {
2471 u8 buf;
2472 int ret;
2473
2474 ret = drm_dp_dpcd_read_byte(aux, DP_TEST_SINK, &buf);
2475 if (ret < 0)
2476 return ret;
2477
2478 ret = drm_dp_dpcd_write_byte(aux, DP_TEST_SINK, buf | DP_TEST_SINK_START);
2479 if (ret < 0)
2480 return ret;
2481
2482 aux->crc_count = 0;
2483 aux->crtc = crtc;
2484 schedule_work(&aux->crc_work);
2485
2486 return 0;
2487 }
2488 EXPORT_SYMBOL(drm_dp_start_crc);
2489
2490 /**
2491 * drm_dp_stop_crc() - stop capture of frame CRCs
2492 * @aux: DisplayPort AUX channel
2493 *
2494 * Returns 0 on success or a negative error code on failure.
2495 */
drm_dp_stop_crc(struct drm_dp_aux * aux)2496 int drm_dp_stop_crc(struct drm_dp_aux *aux)
2497 {
2498 u8 buf;
2499 int ret;
2500
2501 ret = drm_dp_dpcd_read_byte(aux, DP_TEST_SINK, &buf);
2502 if (ret < 0)
2503 return ret;
2504
2505 ret = drm_dp_dpcd_write_byte(aux, DP_TEST_SINK, buf & ~DP_TEST_SINK_START);
2506 if (ret < 0)
2507 return ret;
2508
2509 flush_work(&aux->crc_work);
2510 aux->crtc = NULL;
2511
2512 return 0;
2513 }
2514 EXPORT_SYMBOL(drm_dp_stop_crc);
2515
2516 struct dpcd_quirk {
2517 u8 oui[3];
2518 u8 device_id[6];
2519 bool is_branch;
2520 u32 quirks;
2521 };
2522
2523 #define OUI(first, second, third) { (first), (second), (third) }
2524 #define DEVICE_ID(first, second, third, fourth, fifth, sixth) \
2525 { (first), (second), (third), (fourth), (fifth), (sixth) }
2526
2527 #define DEVICE_ID_ANY DEVICE_ID(0, 0, 0, 0, 0, 0)
2528
2529 static const struct dpcd_quirk dpcd_quirk_list[] = {
2530 /* Analogix 7737 needs reduced M and N at HBR2 link rates */
2531 { OUI(0x00, 0x22, 0xb9), DEVICE_ID_ANY, true, BIT(DP_DPCD_QUIRK_CONSTANT_N) },
2532 /* LG LP140WF6-SPM1 eDP panel */
2533 { OUI(0x00, 0x22, 0xb9), DEVICE_ID('s', 'i', 'v', 'a', 'r', 'T'), false, BIT(DP_DPCD_QUIRK_CONSTANT_N) },
2534 /* Apple panels need some additional handling to support PSR */
2535 { OUI(0x00, 0x10, 0xfa), DEVICE_ID_ANY, false, BIT(DP_DPCD_QUIRK_NO_PSR) },
2536 /* CH7511 seems to leave SINK_COUNT zeroed */
2537 { OUI(0x00, 0x00, 0x00), DEVICE_ID('C', 'H', '7', '5', '1', '1'), false, BIT(DP_DPCD_QUIRK_NO_SINK_COUNT) },
2538 /* Synaptics DP1.4 MST hubs can support DSC without virtual DPCD */
2539 { OUI(0x90, 0xCC, 0x24), DEVICE_ID_ANY, true, BIT(DP_DPCD_QUIRK_DSC_WITHOUT_VIRTUAL_DPCD) },
2540 /* Synaptics DP1.4 MST hubs require DSC for some modes on which it applies HBLANK expansion. */
2541 { OUI(0x90, 0xCC, 0x24), DEVICE_ID_ANY, true, BIT(DP_DPCD_QUIRK_HBLANK_EXPANSION_REQUIRES_DSC) },
2542 /* MediaTek panels (at least in U3224KBA) require DSC for modes with a short HBLANK on UHBR links. */
2543 { OUI(0x00, 0x0C, 0xE7), DEVICE_ID_ANY, false, BIT(DP_DPCD_QUIRK_HBLANK_EXPANSION_REQUIRES_DSC) },
2544 /* Apple MacBookPro 2017 15 inch eDP Retina panel reports too low DP_MAX_LINK_RATE */
2545 { OUI(0x00, 0x10, 0xfa), DEVICE_ID(101, 68, 21, 101, 98, 97), false, BIT(DP_DPCD_QUIRK_CAN_DO_MAX_LINK_RATE_3_24_GBPS) },
2546 };
2547
2548 #undef OUI
2549
2550 /*
2551 * Get a bit mask of DPCD quirks for the sink/branch device identified by
2552 * ident. The quirk data is shared but it's up to the drivers to act on the
2553 * data.
2554 *
2555 * For now, only the OUI (first three bytes) is used, but this may be extended
2556 * to device identification string and hardware/firmware revisions later.
2557 */
2558 static u32
drm_dp_get_quirks(const struct drm_dp_dpcd_ident * ident,bool is_branch)2559 drm_dp_get_quirks(const struct drm_dp_dpcd_ident *ident, bool is_branch)
2560 {
2561 const struct dpcd_quirk *quirk;
2562 u32 quirks = 0;
2563 int i;
2564 u8 any_device[] = DEVICE_ID_ANY;
2565
2566 for (i = 0; i < ARRAY_SIZE(dpcd_quirk_list); i++) {
2567 quirk = &dpcd_quirk_list[i];
2568
2569 if (quirk->is_branch != is_branch)
2570 continue;
2571
2572 if (memcmp(quirk->oui, ident->oui, sizeof(ident->oui)) != 0)
2573 continue;
2574
2575 if (memcmp(quirk->device_id, any_device, sizeof(any_device)) != 0 &&
2576 memcmp(quirk->device_id, ident->device_id, sizeof(ident->device_id)) != 0)
2577 continue;
2578
2579 quirks |= quirk->quirks;
2580 }
2581
2582 return quirks;
2583 }
2584
2585 #undef DEVICE_ID_ANY
2586 #undef DEVICE_ID
2587
drm_dp_read_ident(struct drm_dp_aux * aux,unsigned int offset,struct drm_dp_dpcd_ident * ident)2588 static int drm_dp_read_ident(struct drm_dp_aux *aux, unsigned int offset,
2589 struct drm_dp_dpcd_ident *ident)
2590 {
2591 return drm_dp_dpcd_read_data(aux, offset, ident, sizeof(*ident));
2592 }
2593
drm_dp_dump_desc(struct drm_dp_aux * aux,const char * device_name,const struct drm_dp_desc * desc)2594 static void drm_dp_dump_desc(struct drm_dp_aux *aux,
2595 const char *device_name, const struct drm_dp_desc *desc)
2596 {
2597 const struct drm_dp_dpcd_ident *ident = &desc->ident;
2598
2599 drm_dbg_kms(aux->drm_dev,
2600 "%s: %s: OUI %*phD dev-ID %*pE HW-rev %d.%d SW-rev %d.%d quirks 0x%04x\n",
2601 aux->name, device_name,
2602 (int)sizeof(ident->oui), ident->oui,
2603 (int)strnlen(ident->device_id, sizeof(ident->device_id)), ident->device_id,
2604 ident->hw_rev >> 4, ident->hw_rev & 0xf,
2605 ident->sw_major_rev, ident->sw_minor_rev,
2606 desc->quirks);
2607 }
2608
2609 /**
2610 * drm_dp_read_desc - read sink/branch descriptor from DPCD
2611 * @aux: DisplayPort AUX channel
2612 * @desc: Device descriptor to fill from DPCD
2613 * @is_branch: true for branch devices, false for sink devices
2614 *
2615 * Read DPCD 0x400 (sink) or 0x500 (branch) into @desc. Also debug log the
2616 * identification.
2617 *
2618 * Returns 0 on success or a negative error code on failure.
2619 */
drm_dp_read_desc(struct drm_dp_aux * aux,struct drm_dp_desc * desc,bool is_branch)2620 int drm_dp_read_desc(struct drm_dp_aux *aux, struct drm_dp_desc *desc,
2621 bool is_branch)
2622 {
2623 struct drm_dp_dpcd_ident *ident = &desc->ident;
2624 unsigned int offset = is_branch ? DP_BRANCH_OUI : DP_SINK_OUI;
2625 int ret;
2626
2627 ret = drm_dp_read_ident(aux, offset, ident);
2628 if (ret < 0)
2629 return ret;
2630
2631 desc->quirks = drm_dp_get_quirks(ident, is_branch);
2632
2633 drm_dp_dump_desc(aux, is_branch ? "DP branch" : "DP sink", desc);
2634
2635 return 0;
2636 }
2637 EXPORT_SYMBOL(drm_dp_read_desc);
2638
2639 /**
2640 * drm_dp_dump_lttpr_desc - read and dump the DPCD descriptor for an LTTPR PHY
2641 * @aux: DisplayPort AUX channel
2642 * @dp_phy: LTTPR PHY instance
2643 *
2644 * Read the DPCD LTTPR PHY descriptor for @dp_phy and print a debug message
2645 * with its details to dmesg.
2646 *
2647 * Returns 0 on success or a negative error code on failure.
2648 */
drm_dp_dump_lttpr_desc(struct drm_dp_aux * aux,enum drm_dp_phy dp_phy)2649 int drm_dp_dump_lttpr_desc(struct drm_dp_aux *aux, enum drm_dp_phy dp_phy)
2650 {
2651 struct drm_dp_desc desc = {};
2652 int ret;
2653
2654 if (drm_WARN_ON(aux->drm_dev, dp_phy < DP_PHY_LTTPR1 || dp_phy > DP_MAX_LTTPR_COUNT))
2655 return -EINVAL;
2656
2657 ret = drm_dp_read_ident(aux, DP_OUI_PHY_REPEATER(dp_phy), &desc.ident);
2658 if (ret < 0)
2659 return ret;
2660
2661 drm_dp_dump_desc(aux, drm_dp_phy_name(dp_phy), &desc);
2662
2663 return 0;
2664 }
2665 EXPORT_SYMBOL(drm_dp_dump_lttpr_desc);
2666
2667 /**
2668 * drm_dp_dsc_sink_bpp_incr() - Get bits per pixel increment
2669 * @dsc_dpcd: DSC capabilities from DPCD
2670 *
2671 * Returns the bpp precision supported by the DP sink.
2672 */
drm_dp_dsc_sink_bpp_incr(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE])2673 u8 drm_dp_dsc_sink_bpp_incr(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE])
2674 {
2675 u8 bpp_increment_dpcd = dsc_dpcd[DP_DSC_BITS_PER_PIXEL_INC - DP_DSC_SUPPORT];
2676
2677 switch (bpp_increment_dpcd & DP_DSC_BITS_PER_PIXEL_MASK) {
2678 case DP_DSC_BITS_PER_PIXEL_1_16:
2679 return 16;
2680 case DP_DSC_BITS_PER_PIXEL_1_8:
2681 return 8;
2682 case DP_DSC_BITS_PER_PIXEL_1_4:
2683 return 4;
2684 case DP_DSC_BITS_PER_PIXEL_1_2:
2685 return 2;
2686 case DP_DSC_BITS_PER_PIXEL_1_1:
2687 return 1;
2688 }
2689
2690 return 0;
2691 }
2692 EXPORT_SYMBOL(drm_dp_dsc_sink_bpp_incr);
2693
2694 /**
2695 * drm_dp_dsc_sink_max_slice_count() - Get the max slice count
2696 * supported by the DSC sink.
2697 * @dsc_dpcd: DSC capabilities from DPCD
2698 * @is_edp: true if its eDP, false for DP
2699 *
2700 * Read the slice capabilities DPCD register from DSC sink to get
2701 * the maximum slice count supported. This is used to populate
2702 * the DSC parameters in the &struct drm_dsc_config by the driver.
2703 * Driver creates an infoframe using these parameters to populate
2704 * &struct drm_dsc_pps_infoframe. These are sent to the sink using DSC
2705 * infoframe using the helper function drm_dsc_pps_infoframe_pack()
2706 *
2707 * Returns:
2708 * Maximum slice count supported by DSC sink or 0 its invalid
2709 */
drm_dp_dsc_sink_max_slice_count(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE],bool is_edp)2710 u8 drm_dp_dsc_sink_max_slice_count(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE],
2711 bool is_edp)
2712 {
2713 u8 slice_cap1 = dsc_dpcd[DP_DSC_SLICE_CAP_1 - DP_DSC_SUPPORT];
2714
2715 if (is_edp) {
2716 /* For eDP, register DSC_SLICE_CAPABILITIES_1 gives slice count */
2717 if (slice_cap1 & DP_DSC_4_PER_DP_DSC_SINK)
2718 return 4;
2719 if (slice_cap1 & DP_DSC_2_PER_DP_DSC_SINK)
2720 return 2;
2721 if (slice_cap1 & DP_DSC_1_PER_DP_DSC_SINK)
2722 return 1;
2723 } else {
2724 /* For DP, use values from DSC_SLICE_CAP_1 and DSC_SLICE_CAP2 */
2725 u8 slice_cap2 = dsc_dpcd[DP_DSC_SLICE_CAP_2 - DP_DSC_SUPPORT];
2726
2727 if (slice_cap2 & DP_DSC_24_PER_DP_DSC_SINK)
2728 return 24;
2729 if (slice_cap2 & DP_DSC_20_PER_DP_DSC_SINK)
2730 return 20;
2731 if (slice_cap2 & DP_DSC_16_PER_DP_DSC_SINK)
2732 return 16;
2733 if (slice_cap1 & DP_DSC_12_PER_DP_DSC_SINK)
2734 return 12;
2735 if (slice_cap1 & DP_DSC_10_PER_DP_DSC_SINK)
2736 return 10;
2737 if (slice_cap1 & DP_DSC_8_PER_DP_DSC_SINK)
2738 return 8;
2739 if (slice_cap1 & DP_DSC_6_PER_DP_DSC_SINK)
2740 return 6;
2741 if (slice_cap1 & DP_DSC_4_PER_DP_DSC_SINK)
2742 return 4;
2743 if (slice_cap1 & DP_DSC_2_PER_DP_DSC_SINK)
2744 return 2;
2745 if (slice_cap1 & DP_DSC_1_PER_DP_DSC_SINK)
2746 return 1;
2747 }
2748
2749 return 0;
2750 }
2751 EXPORT_SYMBOL(drm_dp_dsc_sink_max_slice_count);
2752
2753 /**
2754 * drm_dp_dsc_sink_line_buf_depth() - Get the line buffer depth in bits
2755 * @dsc_dpcd: DSC capabilities from DPCD
2756 *
2757 * Read the DSC DPCD register to parse the line buffer depth in bits which is
2758 * number of bits of precision within the decoder line buffer supported by
2759 * the DSC sink. This is used to populate the DSC parameters in the
2760 * &struct drm_dsc_config by the driver.
2761 * Driver creates an infoframe using these parameters to populate
2762 * &struct drm_dsc_pps_infoframe. These are sent to the sink using DSC
2763 * infoframe using the helper function drm_dsc_pps_infoframe_pack()
2764 *
2765 * Returns:
2766 * Line buffer depth supported by DSC panel or 0 its invalid
2767 */
drm_dp_dsc_sink_line_buf_depth(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE])2768 u8 drm_dp_dsc_sink_line_buf_depth(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE])
2769 {
2770 u8 line_buf_depth = dsc_dpcd[DP_DSC_LINE_BUF_BIT_DEPTH - DP_DSC_SUPPORT];
2771
2772 switch (line_buf_depth & DP_DSC_LINE_BUF_BIT_DEPTH_MASK) {
2773 case DP_DSC_LINE_BUF_BIT_DEPTH_9:
2774 return 9;
2775 case DP_DSC_LINE_BUF_BIT_DEPTH_10:
2776 return 10;
2777 case DP_DSC_LINE_BUF_BIT_DEPTH_11:
2778 return 11;
2779 case DP_DSC_LINE_BUF_BIT_DEPTH_12:
2780 return 12;
2781 case DP_DSC_LINE_BUF_BIT_DEPTH_13:
2782 return 13;
2783 case DP_DSC_LINE_BUF_BIT_DEPTH_14:
2784 return 14;
2785 case DP_DSC_LINE_BUF_BIT_DEPTH_15:
2786 return 15;
2787 case DP_DSC_LINE_BUF_BIT_DEPTH_16:
2788 return 16;
2789 case DP_DSC_LINE_BUF_BIT_DEPTH_8:
2790 return 8;
2791 }
2792
2793 return 0;
2794 }
2795 EXPORT_SYMBOL(drm_dp_dsc_sink_line_buf_depth);
2796
2797 /**
2798 * drm_dp_dsc_sink_supported_input_bpcs() - Get all the input bits per component
2799 * values supported by the DSC sink.
2800 * @dsc_dpcd: DSC capabilities from DPCD
2801 * @dsc_bpc: An array to be filled by this helper with supported
2802 * input bpcs.
2803 *
2804 * Read the DSC DPCD from the sink device to parse the supported bits per
2805 * component values. This is used to populate the DSC parameters
2806 * in the &struct drm_dsc_config by the driver.
2807 * Driver creates an infoframe using these parameters to populate
2808 * &struct drm_dsc_pps_infoframe. These are sent to the sink using DSC
2809 * infoframe using the helper function drm_dsc_pps_infoframe_pack()
2810 *
2811 * Returns:
2812 * Number of input BPC values parsed from the DPCD
2813 */
drm_dp_dsc_sink_supported_input_bpcs(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE],u8 dsc_bpc[3])2814 int drm_dp_dsc_sink_supported_input_bpcs(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE],
2815 u8 dsc_bpc[3])
2816 {
2817 int num_bpc = 0;
2818 u8 color_depth = dsc_dpcd[DP_DSC_DEC_COLOR_DEPTH_CAP - DP_DSC_SUPPORT];
2819
2820 if (!drm_dp_sink_supports_dsc(dsc_dpcd))
2821 return 0;
2822
2823 if (color_depth & DP_DSC_12_BPC)
2824 dsc_bpc[num_bpc++] = 12;
2825 if (color_depth & DP_DSC_10_BPC)
2826 dsc_bpc[num_bpc++] = 10;
2827
2828 /* A DP DSC Sink device shall support 8 bpc. */
2829 dsc_bpc[num_bpc++] = 8;
2830
2831 return num_bpc;
2832 }
2833 EXPORT_SYMBOL(drm_dp_dsc_sink_supported_input_bpcs);
2834
drm_dp_read_lttpr_regs(struct drm_dp_aux * aux,const u8 dpcd[DP_RECEIVER_CAP_SIZE],int address,u8 * buf,int buf_size)2835 static int drm_dp_read_lttpr_regs(struct drm_dp_aux *aux,
2836 const u8 dpcd[DP_RECEIVER_CAP_SIZE], int address,
2837 u8 *buf, int buf_size)
2838 {
2839 /*
2840 * At least the DELL P2715Q monitor with a DPCD_REV < 0x14 returns
2841 * corrupted values when reading from the 0xF0000- range with a block
2842 * size bigger than 1.
2843 */
2844 int block_size = dpcd[DP_DPCD_REV] < 0x14 ? 1 : buf_size;
2845 int offset;
2846 int ret;
2847
2848 for (offset = 0; offset < buf_size; offset += block_size) {
2849 ret = drm_dp_dpcd_read_data(aux,
2850 address + offset,
2851 &buf[offset], block_size);
2852 if (ret < 0)
2853 return ret;
2854 }
2855
2856 return 0;
2857 }
2858
2859 /**
2860 * drm_dp_read_lttpr_common_caps - read the LTTPR common capabilities
2861 * @aux: DisplayPort AUX channel
2862 * @dpcd: DisplayPort configuration data
2863 * @caps: buffer to return the capability info in
2864 *
2865 * Read capabilities common to all LTTPRs.
2866 *
2867 * Returns 0 on success or a negative error code on failure.
2868 */
drm_dp_read_lttpr_common_caps(struct drm_dp_aux * aux,const u8 dpcd[DP_RECEIVER_CAP_SIZE],u8 caps[DP_LTTPR_COMMON_CAP_SIZE])2869 int drm_dp_read_lttpr_common_caps(struct drm_dp_aux *aux,
2870 const u8 dpcd[DP_RECEIVER_CAP_SIZE],
2871 u8 caps[DP_LTTPR_COMMON_CAP_SIZE])
2872 {
2873 return drm_dp_read_lttpr_regs(aux, dpcd,
2874 DP_LT_TUNABLE_PHY_REPEATER_FIELD_DATA_STRUCTURE_REV,
2875 caps, DP_LTTPR_COMMON_CAP_SIZE);
2876 }
2877 EXPORT_SYMBOL(drm_dp_read_lttpr_common_caps);
2878
2879 /**
2880 * drm_dp_read_lttpr_phy_caps - read the capabilities for a given LTTPR PHY
2881 * @aux: DisplayPort AUX channel
2882 * @dpcd: DisplayPort configuration data
2883 * @dp_phy: LTTPR PHY to read the capabilities for
2884 * @caps: buffer to return the capability info in
2885 *
2886 * Read the capabilities for the given LTTPR PHY.
2887 *
2888 * Returns 0 on success or a negative error code on failure.
2889 */
drm_dp_read_lttpr_phy_caps(struct drm_dp_aux * aux,const u8 dpcd[DP_RECEIVER_CAP_SIZE],enum drm_dp_phy dp_phy,u8 caps[DP_LTTPR_PHY_CAP_SIZE])2890 int drm_dp_read_lttpr_phy_caps(struct drm_dp_aux *aux,
2891 const u8 dpcd[DP_RECEIVER_CAP_SIZE],
2892 enum drm_dp_phy dp_phy,
2893 u8 caps[DP_LTTPR_PHY_CAP_SIZE])
2894 {
2895 return drm_dp_read_lttpr_regs(aux, dpcd,
2896 DP_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER(dp_phy),
2897 caps, DP_LTTPR_PHY_CAP_SIZE);
2898 }
2899 EXPORT_SYMBOL(drm_dp_read_lttpr_phy_caps);
2900
dp_lttpr_common_cap(const u8 caps[DP_LTTPR_COMMON_CAP_SIZE],int r)2901 static u8 dp_lttpr_common_cap(const u8 caps[DP_LTTPR_COMMON_CAP_SIZE], int r)
2902 {
2903 return caps[r - DP_LT_TUNABLE_PHY_REPEATER_FIELD_DATA_STRUCTURE_REV];
2904 }
2905
2906 /**
2907 * drm_dp_lttpr_count - get the number of detected LTTPRs
2908 * @caps: LTTPR common capabilities
2909 *
2910 * Get the number of detected LTTPRs from the LTTPR common capabilities info.
2911 *
2912 * Returns:
2913 * -ERANGE if more than supported number (8) of LTTPRs are detected
2914 * -EINVAL if the DP_PHY_REPEATER_CNT register contains an invalid value
2915 * otherwise the number of detected LTTPRs
2916 */
drm_dp_lttpr_count(const u8 caps[DP_LTTPR_COMMON_CAP_SIZE])2917 int drm_dp_lttpr_count(const u8 caps[DP_LTTPR_COMMON_CAP_SIZE])
2918 {
2919 u8 count = dp_lttpr_common_cap(caps, DP_PHY_REPEATER_CNT);
2920
2921 switch (hweight8(count)) {
2922 case 0:
2923 return 0;
2924 case 1:
2925 return 8 - ilog2(count);
2926 case 8:
2927 return -ERANGE;
2928 default:
2929 return -EINVAL;
2930 }
2931 }
2932 EXPORT_SYMBOL(drm_dp_lttpr_count);
2933
2934 /**
2935 * drm_dp_lttpr_max_link_rate - get the maximum link rate supported by all LTTPRs
2936 * @caps: LTTPR common capabilities
2937 *
2938 * Returns the maximum link rate supported by all detected LTTPRs.
2939 */
drm_dp_lttpr_max_link_rate(const u8 caps[DP_LTTPR_COMMON_CAP_SIZE])2940 int drm_dp_lttpr_max_link_rate(const u8 caps[DP_LTTPR_COMMON_CAP_SIZE])
2941 {
2942 u8 rate = dp_lttpr_common_cap(caps, DP_MAX_LINK_RATE_PHY_REPEATER);
2943
2944 return drm_dp_bw_code_to_link_rate(rate);
2945 }
2946 EXPORT_SYMBOL(drm_dp_lttpr_max_link_rate);
2947
2948 /**
2949 * drm_dp_lttpr_set_transparent_mode() - set the LTTPR in transparent mode
2950 * @aux: DisplayPort AUX channel
2951 * @enable: Enable or disable transparent mode
2952 *
2953 * Returns: 0 on success or a negative error code on failure.
2954 */
drm_dp_lttpr_set_transparent_mode(struct drm_dp_aux * aux,bool enable)2955 int drm_dp_lttpr_set_transparent_mode(struct drm_dp_aux *aux, bool enable)
2956 {
2957 u8 val = enable ? DP_PHY_REPEATER_MODE_TRANSPARENT :
2958 DP_PHY_REPEATER_MODE_NON_TRANSPARENT;
2959 int ret = drm_dp_dpcd_writeb(aux, DP_PHY_REPEATER_MODE, val);
2960
2961 if (ret < 0)
2962 return ret;
2963
2964 return (ret == 1) ? 0 : -EIO;
2965 }
2966 EXPORT_SYMBOL(drm_dp_lttpr_set_transparent_mode);
2967
2968 /**
2969 * drm_dp_lttpr_init() - init LTTPR transparency mode according to DP standard
2970 * @aux: DisplayPort AUX channel
2971 * @lttpr_count: Number of LTTPRs. Between 0 and 8, according to DP standard.
2972 * Negative error code for any non-valid number.
2973 * See drm_dp_lttpr_count().
2974 *
2975 * Returns: 0 on success or a negative error code on failure.
2976 */
drm_dp_lttpr_init(struct drm_dp_aux * aux,int lttpr_count)2977 int drm_dp_lttpr_init(struct drm_dp_aux *aux, int lttpr_count)
2978 {
2979 int ret;
2980
2981 if (!lttpr_count)
2982 return 0;
2983
2984 /*
2985 * See DP Standard v2.0 3.6.6.1 about the explicit disabling of
2986 * non-transparent mode and the disable->enable non-transparent mode
2987 * sequence.
2988 */
2989 ret = drm_dp_lttpr_set_transparent_mode(aux, true);
2990 if (ret)
2991 return ret;
2992
2993 if (lttpr_count < 0)
2994 return -ENODEV;
2995
2996 if (drm_dp_lttpr_set_transparent_mode(aux, false)) {
2997 /*
2998 * Roll-back to transparent mode if setting non-transparent
2999 * mode has failed
3000 */
3001 drm_dp_lttpr_set_transparent_mode(aux, true);
3002 return -EINVAL;
3003 }
3004
3005 return 0;
3006 }
3007 EXPORT_SYMBOL(drm_dp_lttpr_init);
3008
3009 /**
3010 * drm_dp_lttpr_max_lane_count - get the maximum lane count supported by all LTTPRs
3011 * @caps: LTTPR common capabilities
3012 *
3013 * Returns the maximum lane count supported by all detected LTTPRs.
3014 */
drm_dp_lttpr_max_lane_count(const u8 caps[DP_LTTPR_COMMON_CAP_SIZE])3015 int drm_dp_lttpr_max_lane_count(const u8 caps[DP_LTTPR_COMMON_CAP_SIZE])
3016 {
3017 u8 max_lanes = dp_lttpr_common_cap(caps, DP_MAX_LANE_COUNT_PHY_REPEATER);
3018
3019 return max_lanes & DP_MAX_LANE_COUNT_MASK;
3020 }
3021 EXPORT_SYMBOL(drm_dp_lttpr_max_lane_count);
3022
3023 /**
3024 * drm_dp_lttpr_voltage_swing_level_3_supported - check for LTTPR vswing3 support
3025 * @caps: LTTPR PHY capabilities
3026 *
3027 * Returns true if the @caps for an LTTPR TX PHY indicate support for
3028 * voltage swing level 3.
3029 */
3030 bool
drm_dp_lttpr_voltage_swing_level_3_supported(const u8 caps[DP_LTTPR_PHY_CAP_SIZE])3031 drm_dp_lttpr_voltage_swing_level_3_supported(const u8 caps[DP_LTTPR_PHY_CAP_SIZE])
3032 {
3033 u8 txcap = dp_lttpr_phy_cap(caps, DP_TRANSMITTER_CAPABILITY_PHY_REPEATER1);
3034
3035 return txcap & DP_VOLTAGE_SWING_LEVEL_3_SUPPORTED;
3036 }
3037 EXPORT_SYMBOL(drm_dp_lttpr_voltage_swing_level_3_supported);
3038
3039 /**
3040 * drm_dp_lttpr_pre_emphasis_level_3_supported - check for LTTPR preemph3 support
3041 * @caps: LTTPR PHY capabilities
3042 *
3043 * Returns true if the @caps for an LTTPR TX PHY indicate support for
3044 * pre-emphasis level 3.
3045 */
3046 bool
drm_dp_lttpr_pre_emphasis_level_3_supported(const u8 caps[DP_LTTPR_PHY_CAP_SIZE])3047 drm_dp_lttpr_pre_emphasis_level_3_supported(const u8 caps[DP_LTTPR_PHY_CAP_SIZE])
3048 {
3049 u8 txcap = dp_lttpr_phy_cap(caps, DP_TRANSMITTER_CAPABILITY_PHY_REPEATER1);
3050
3051 return txcap & DP_PRE_EMPHASIS_LEVEL_3_SUPPORTED;
3052 }
3053 EXPORT_SYMBOL(drm_dp_lttpr_pre_emphasis_level_3_supported);
3054
3055 /**
3056 * drm_dp_get_phy_test_pattern() - get the requested pattern from the sink.
3057 * @aux: DisplayPort AUX channel
3058 * @data: DP phy compliance test parameters.
3059 *
3060 * Returns 0 on success or a negative error code on failure.
3061 */
drm_dp_get_phy_test_pattern(struct drm_dp_aux * aux,struct drm_dp_phy_test_params * data)3062 int drm_dp_get_phy_test_pattern(struct drm_dp_aux *aux,
3063 struct drm_dp_phy_test_params *data)
3064 {
3065 int err;
3066 u8 rate, lanes;
3067
3068 err = drm_dp_dpcd_read_byte(aux, DP_TEST_LINK_RATE, &rate);
3069 if (err < 0)
3070 return err;
3071 data->link_rate = drm_dp_bw_code_to_link_rate(rate);
3072
3073 err = drm_dp_dpcd_read_byte(aux, DP_TEST_LANE_COUNT, &lanes);
3074 if (err < 0)
3075 return err;
3076 data->num_lanes = lanes & DP_MAX_LANE_COUNT_MASK;
3077
3078 if (lanes & DP_ENHANCED_FRAME_CAP)
3079 data->enhanced_frame_cap = true;
3080
3081 err = drm_dp_dpcd_read_byte(aux, DP_PHY_TEST_PATTERN, &data->phy_pattern);
3082 if (err < 0)
3083 return err;
3084
3085 switch (data->phy_pattern) {
3086 case DP_PHY_TEST_PATTERN_80BIT_CUSTOM:
3087 err = drm_dp_dpcd_read_data(aux, DP_TEST_80BIT_CUSTOM_PATTERN_7_0,
3088 &data->custom80, sizeof(data->custom80));
3089 if (err < 0)
3090 return err;
3091
3092 break;
3093 case DP_PHY_TEST_PATTERN_CP2520:
3094 err = drm_dp_dpcd_read_data(aux, DP_TEST_HBR2_SCRAMBLER_RESET,
3095 &data->hbr2_reset,
3096 sizeof(data->hbr2_reset));
3097 if (err < 0)
3098 return err;
3099 }
3100
3101 return 0;
3102 }
3103 EXPORT_SYMBOL(drm_dp_get_phy_test_pattern);
3104
3105 /**
3106 * drm_dp_set_phy_test_pattern() - set the pattern to the sink.
3107 * @aux: DisplayPort AUX channel
3108 * @data: DP phy compliance test parameters.
3109 * @dp_rev: DP revision to use for compliance testing
3110 *
3111 * Returns 0 on success or a negative error code on failure.
3112 */
drm_dp_set_phy_test_pattern(struct drm_dp_aux * aux,struct drm_dp_phy_test_params * data,u8 dp_rev)3113 int drm_dp_set_phy_test_pattern(struct drm_dp_aux *aux,
3114 struct drm_dp_phy_test_params *data, u8 dp_rev)
3115 {
3116 int err, i;
3117 u8 test_pattern;
3118
3119 test_pattern = data->phy_pattern;
3120 if (dp_rev < 0x12) {
3121 test_pattern = (test_pattern << 2) &
3122 DP_LINK_QUAL_PATTERN_11_MASK;
3123 err = drm_dp_dpcd_write_byte(aux, DP_TRAINING_PATTERN_SET,
3124 test_pattern);
3125 if (err < 0)
3126 return err;
3127 } else {
3128 for (i = 0; i < data->num_lanes; i++) {
3129 err = drm_dp_dpcd_write_byte(aux,
3130 DP_LINK_QUAL_LANE0_SET + i,
3131 test_pattern);
3132 if (err < 0)
3133 return err;
3134 }
3135 }
3136
3137 return 0;
3138 }
3139 EXPORT_SYMBOL(drm_dp_set_phy_test_pattern);
3140
dp_pixelformat_get_name(enum dp_pixelformat pixelformat)3141 static const char *dp_pixelformat_get_name(enum dp_pixelformat pixelformat)
3142 {
3143 if (pixelformat < 0 || pixelformat > DP_PIXELFORMAT_RESERVED)
3144 return "Invalid";
3145
3146 switch (pixelformat) {
3147 case DP_PIXELFORMAT_RGB:
3148 return "RGB";
3149 case DP_PIXELFORMAT_YUV444:
3150 return "YUV444";
3151 case DP_PIXELFORMAT_YUV422:
3152 return "YUV422";
3153 case DP_PIXELFORMAT_YUV420:
3154 return "YUV420";
3155 case DP_PIXELFORMAT_Y_ONLY:
3156 return "Y_ONLY";
3157 case DP_PIXELFORMAT_RAW:
3158 return "RAW";
3159 default:
3160 return "Reserved";
3161 }
3162 }
3163
dp_colorimetry_get_name(enum dp_pixelformat pixelformat,enum dp_colorimetry colorimetry)3164 static const char *dp_colorimetry_get_name(enum dp_pixelformat pixelformat,
3165 enum dp_colorimetry colorimetry)
3166 {
3167 if (pixelformat < 0 || pixelformat > DP_PIXELFORMAT_RESERVED)
3168 return "Invalid";
3169
3170 switch (colorimetry) {
3171 case DP_COLORIMETRY_DEFAULT:
3172 switch (pixelformat) {
3173 case DP_PIXELFORMAT_RGB:
3174 return "sRGB";
3175 case DP_PIXELFORMAT_YUV444:
3176 case DP_PIXELFORMAT_YUV422:
3177 case DP_PIXELFORMAT_YUV420:
3178 return "BT.601";
3179 case DP_PIXELFORMAT_Y_ONLY:
3180 return "DICOM PS3.14";
3181 case DP_PIXELFORMAT_RAW:
3182 return "Custom Color Profile";
3183 default:
3184 return "Reserved";
3185 }
3186 case DP_COLORIMETRY_RGB_WIDE_FIXED: /* and DP_COLORIMETRY_BT709_YCC */
3187 switch (pixelformat) {
3188 case DP_PIXELFORMAT_RGB:
3189 return "Wide Fixed";
3190 case DP_PIXELFORMAT_YUV444:
3191 case DP_PIXELFORMAT_YUV422:
3192 case DP_PIXELFORMAT_YUV420:
3193 return "BT.709";
3194 default:
3195 return "Reserved";
3196 }
3197 case DP_COLORIMETRY_RGB_WIDE_FLOAT: /* and DP_COLORIMETRY_XVYCC_601 */
3198 switch (pixelformat) {
3199 case DP_PIXELFORMAT_RGB:
3200 return "Wide Float";
3201 case DP_PIXELFORMAT_YUV444:
3202 case DP_PIXELFORMAT_YUV422:
3203 case DP_PIXELFORMAT_YUV420:
3204 return "xvYCC 601";
3205 default:
3206 return "Reserved";
3207 }
3208 case DP_COLORIMETRY_OPRGB: /* and DP_COLORIMETRY_XVYCC_709 */
3209 switch (pixelformat) {
3210 case DP_PIXELFORMAT_RGB:
3211 return "OpRGB";
3212 case DP_PIXELFORMAT_YUV444:
3213 case DP_PIXELFORMAT_YUV422:
3214 case DP_PIXELFORMAT_YUV420:
3215 return "xvYCC 709";
3216 default:
3217 return "Reserved";
3218 }
3219 case DP_COLORIMETRY_DCI_P3_RGB: /* and DP_COLORIMETRY_SYCC_601 */
3220 switch (pixelformat) {
3221 case DP_PIXELFORMAT_RGB:
3222 return "DCI-P3";
3223 case DP_PIXELFORMAT_YUV444:
3224 case DP_PIXELFORMAT_YUV422:
3225 case DP_PIXELFORMAT_YUV420:
3226 return "sYCC 601";
3227 default:
3228 return "Reserved";
3229 }
3230 case DP_COLORIMETRY_RGB_CUSTOM: /* and DP_COLORIMETRY_OPYCC_601 */
3231 switch (pixelformat) {
3232 case DP_PIXELFORMAT_RGB:
3233 return "Custom Profile";
3234 case DP_PIXELFORMAT_YUV444:
3235 case DP_PIXELFORMAT_YUV422:
3236 case DP_PIXELFORMAT_YUV420:
3237 return "OpYCC 601";
3238 default:
3239 return "Reserved";
3240 }
3241 case DP_COLORIMETRY_BT2020_RGB: /* and DP_COLORIMETRY_BT2020_CYCC */
3242 switch (pixelformat) {
3243 case DP_PIXELFORMAT_RGB:
3244 return "BT.2020 RGB";
3245 case DP_PIXELFORMAT_YUV444:
3246 case DP_PIXELFORMAT_YUV422:
3247 case DP_PIXELFORMAT_YUV420:
3248 return "BT.2020 CYCC";
3249 default:
3250 return "Reserved";
3251 }
3252 case DP_COLORIMETRY_BT2020_YCC:
3253 switch (pixelformat) {
3254 case DP_PIXELFORMAT_YUV444:
3255 case DP_PIXELFORMAT_YUV422:
3256 case DP_PIXELFORMAT_YUV420:
3257 return "BT.2020 YCC";
3258 default:
3259 return "Reserved";
3260 }
3261 default:
3262 return "Invalid";
3263 }
3264 }
3265
dp_dynamic_range_get_name(enum dp_dynamic_range dynamic_range)3266 static const char *dp_dynamic_range_get_name(enum dp_dynamic_range dynamic_range)
3267 {
3268 switch (dynamic_range) {
3269 case DP_DYNAMIC_RANGE_VESA:
3270 return "VESA range";
3271 case DP_DYNAMIC_RANGE_CTA:
3272 return "CTA range";
3273 default:
3274 return "Invalid";
3275 }
3276 }
3277
dp_content_type_get_name(enum dp_content_type content_type)3278 static const char *dp_content_type_get_name(enum dp_content_type content_type)
3279 {
3280 switch (content_type) {
3281 case DP_CONTENT_TYPE_NOT_DEFINED:
3282 return "Not defined";
3283 case DP_CONTENT_TYPE_GRAPHICS:
3284 return "Graphics";
3285 case DP_CONTENT_TYPE_PHOTO:
3286 return "Photo";
3287 case DP_CONTENT_TYPE_VIDEO:
3288 return "Video";
3289 case DP_CONTENT_TYPE_GAME:
3290 return "Game";
3291 default:
3292 return "Reserved";
3293 }
3294 }
3295
drm_dp_vsc_sdp_log(struct drm_printer * p,const struct drm_dp_vsc_sdp * vsc)3296 void drm_dp_vsc_sdp_log(struct drm_printer *p, const struct drm_dp_vsc_sdp *vsc)
3297 {
3298 drm_printf(p, "DP SDP: VSC, revision %u, length %u\n",
3299 vsc->revision, vsc->length);
3300 drm_printf(p, " pixelformat: %s\n",
3301 dp_pixelformat_get_name(vsc->pixelformat));
3302 drm_printf(p, " colorimetry: %s\n",
3303 dp_colorimetry_get_name(vsc->pixelformat, vsc->colorimetry));
3304 drm_printf(p, " bpc: %u\n", vsc->bpc);
3305 drm_printf(p, " dynamic range: %s\n",
3306 dp_dynamic_range_get_name(vsc->dynamic_range));
3307 drm_printf(p, " content type: %s\n",
3308 dp_content_type_get_name(vsc->content_type));
3309 }
3310 EXPORT_SYMBOL(drm_dp_vsc_sdp_log);
3311
drm_dp_as_sdp_log(struct drm_printer * p,const struct drm_dp_as_sdp * as_sdp)3312 void drm_dp_as_sdp_log(struct drm_printer *p, const struct drm_dp_as_sdp *as_sdp)
3313 {
3314 drm_printf(p, "DP SDP: AS_SDP, revision %u, length %u\n",
3315 as_sdp->revision, as_sdp->length);
3316 drm_printf(p, " vtotal: %d\n", as_sdp->vtotal);
3317 drm_printf(p, " target_rr: %d\n", as_sdp->target_rr);
3318 drm_printf(p, " duration_incr_ms: %d\n", as_sdp->duration_incr_ms);
3319 drm_printf(p, " duration_decr_ms: %d\n", as_sdp->duration_decr_ms);
3320 drm_printf(p, " operation_mode: %d\n", as_sdp->mode);
3321 }
3322 EXPORT_SYMBOL(drm_dp_as_sdp_log);
3323
3324 /**
3325 * drm_dp_as_sdp_supported() - check if adaptive sync sdp is supported
3326 * @aux: DisplayPort AUX channel
3327 * @dpcd: DisplayPort configuration data
3328 *
3329 * Returns true if adaptive sync sdp is supported, else returns false
3330 */
drm_dp_as_sdp_supported(struct drm_dp_aux * aux,const u8 dpcd[DP_RECEIVER_CAP_SIZE])3331 bool drm_dp_as_sdp_supported(struct drm_dp_aux *aux, const u8 dpcd[DP_RECEIVER_CAP_SIZE])
3332 {
3333 u8 rx_feature;
3334
3335 if (dpcd[DP_DPCD_REV] < DP_DPCD_REV_13)
3336 return false;
3337
3338 if (drm_dp_dpcd_read_byte(aux, DP_DPRX_FEATURE_ENUMERATION_LIST_CONT_1,
3339 &rx_feature) < 0) {
3340 drm_dbg_dp(aux->drm_dev,
3341 "Failed to read DP_DPRX_FEATURE_ENUMERATION_LIST_CONT_1\n");
3342 return false;
3343 }
3344
3345 return (rx_feature & DP_ADAPTIVE_SYNC_SDP_SUPPORTED);
3346 }
3347 EXPORT_SYMBOL(drm_dp_as_sdp_supported);
3348
3349 /**
3350 * drm_dp_vsc_sdp_supported() - check if vsc sdp is supported
3351 * @aux: DisplayPort AUX channel
3352 * @dpcd: DisplayPort configuration data
3353 *
3354 * Returns true if vsc sdp is supported, else returns false
3355 */
drm_dp_vsc_sdp_supported(struct drm_dp_aux * aux,const u8 dpcd[DP_RECEIVER_CAP_SIZE])3356 bool drm_dp_vsc_sdp_supported(struct drm_dp_aux *aux, const u8 dpcd[DP_RECEIVER_CAP_SIZE])
3357 {
3358 u8 rx_feature;
3359
3360 if (dpcd[DP_DPCD_REV] < DP_DPCD_REV_13)
3361 return false;
3362
3363 if (drm_dp_dpcd_read_byte(aux, DP_DPRX_FEATURE_ENUMERATION_LIST, &rx_feature) < 0) {
3364 drm_dbg_dp(aux->drm_dev, "failed to read DP_DPRX_FEATURE_ENUMERATION_LIST\n");
3365 return false;
3366 }
3367
3368 return (rx_feature & DP_VSC_SDP_EXT_FOR_COLORIMETRY_SUPPORTED);
3369 }
3370 EXPORT_SYMBOL(drm_dp_vsc_sdp_supported);
3371
3372 /**
3373 * drm_dp_vsc_sdp_pack() - pack a given vsc sdp into generic dp_sdp
3374 * @vsc: vsc sdp initialized according to its purpose as defined in
3375 * table 2-118 - table 2-120 in DP 1.4a specification
3376 * @sdp: valid handle to the generic dp_sdp which will be packed
3377 *
3378 * Returns length of sdp on success and error code on failure
3379 */
drm_dp_vsc_sdp_pack(const struct drm_dp_vsc_sdp * vsc,struct dp_sdp * sdp)3380 ssize_t drm_dp_vsc_sdp_pack(const struct drm_dp_vsc_sdp *vsc,
3381 struct dp_sdp *sdp)
3382 {
3383 size_t length = sizeof(struct dp_sdp);
3384
3385 memset(sdp, 0, sizeof(struct dp_sdp));
3386
3387 /*
3388 * Prepare VSC Header for SU as per DP 1.4a spec, Table 2-119
3389 * VSC SDP Header Bytes
3390 */
3391 sdp->sdp_header.HB0 = 0; /* Secondary-Data Packet ID = 0 */
3392 sdp->sdp_header.HB1 = vsc->sdp_type; /* Secondary-data Packet Type */
3393 sdp->sdp_header.HB2 = vsc->revision; /* Revision Number */
3394 sdp->sdp_header.HB3 = vsc->length; /* Number of Valid Data Bytes */
3395
3396 if (vsc->revision == 0x6) {
3397 sdp->db[0] = 1;
3398 sdp->db[3] = 1;
3399 }
3400
3401 /*
3402 * Revision 0x5 and revision 0x7 supports Pixel Encoding/Colorimetry
3403 * Format as per DP 1.4a spec and DP 2.0 respectively.
3404 */
3405 if (!(vsc->revision == 0x5 || vsc->revision == 0x7))
3406 goto out;
3407
3408 /* VSC SDP Payload for DB16 through DB18 */
3409 /* Pixel Encoding and Colorimetry Formats */
3410 sdp->db[16] = (vsc->pixelformat & 0xf) << 4; /* DB16[7:4] */
3411 sdp->db[16] |= vsc->colorimetry & 0xf; /* DB16[3:0] */
3412
3413 switch (vsc->bpc) {
3414 case 6:
3415 /* 6bpc: 0x0 */
3416 break;
3417 case 8:
3418 sdp->db[17] = 0x1; /* DB17[3:0] */
3419 break;
3420 case 10:
3421 sdp->db[17] = 0x2;
3422 break;
3423 case 12:
3424 sdp->db[17] = 0x3;
3425 break;
3426 case 16:
3427 sdp->db[17] = 0x4;
3428 break;
3429 default:
3430 WARN(1, "Missing case %d\n", vsc->bpc);
3431 return -EINVAL;
3432 }
3433
3434 /* Dynamic Range and Component Bit Depth */
3435 if (vsc->dynamic_range == DP_DYNAMIC_RANGE_CTA)
3436 sdp->db[17] |= 0x80; /* DB17[7] */
3437
3438 /* Content Type */
3439 sdp->db[18] = vsc->content_type & 0x7;
3440
3441 out:
3442 return length;
3443 }
3444 EXPORT_SYMBOL(drm_dp_vsc_sdp_pack);
3445
3446 /**
3447 * drm_dp_get_pcon_max_frl_bw() - maximum frl supported by PCON
3448 * @dpcd: DisplayPort configuration data
3449 * @port_cap: port capabilities
3450 *
3451 * Returns maximum frl bandwidth supported by PCON in GBPS,
3452 * returns 0 if not supported.
3453 */
drm_dp_get_pcon_max_frl_bw(const u8 dpcd[DP_RECEIVER_CAP_SIZE],const u8 port_cap[4])3454 int drm_dp_get_pcon_max_frl_bw(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
3455 const u8 port_cap[4])
3456 {
3457 int bw;
3458 u8 buf;
3459
3460 buf = port_cap[2];
3461 bw = buf & DP_PCON_MAX_FRL_BW;
3462
3463 switch (bw) {
3464 case DP_PCON_MAX_9GBPS:
3465 return 9;
3466 case DP_PCON_MAX_18GBPS:
3467 return 18;
3468 case DP_PCON_MAX_24GBPS:
3469 return 24;
3470 case DP_PCON_MAX_32GBPS:
3471 return 32;
3472 case DP_PCON_MAX_40GBPS:
3473 return 40;
3474 case DP_PCON_MAX_48GBPS:
3475 return 48;
3476 case DP_PCON_MAX_0GBPS:
3477 default:
3478 return 0;
3479 }
3480
3481 return 0;
3482 }
3483 EXPORT_SYMBOL(drm_dp_get_pcon_max_frl_bw);
3484
3485 /**
3486 * drm_dp_pcon_frl_prepare() - Prepare PCON for FRL.
3487 * @aux: DisplayPort AUX channel
3488 * @enable_frl_ready_hpd: Configure DP_PCON_ENABLE_HPD_READY.
3489 *
3490 * Returns 0 if success, else returns negative error code.
3491 */
drm_dp_pcon_frl_prepare(struct drm_dp_aux * aux,bool enable_frl_ready_hpd)3492 int drm_dp_pcon_frl_prepare(struct drm_dp_aux *aux, bool enable_frl_ready_hpd)
3493 {
3494 u8 buf = DP_PCON_ENABLE_SOURCE_CTL_MODE |
3495 DP_PCON_ENABLE_LINK_FRL_MODE;
3496
3497 if (enable_frl_ready_hpd)
3498 buf |= DP_PCON_ENABLE_HPD_READY;
3499
3500 return drm_dp_dpcd_write_byte(aux, DP_PCON_HDMI_LINK_CONFIG_1, buf);
3501 }
3502 EXPORT_SYMBOL(drm_dp_pcon_frl_prepare);
3503
3504 /**
3505 * drm_dp_pcon_is_frl_ready() - Is PCON ready for FRL
3506 * @aux: DisplayPort AUX channel
3507 *
3508 * Returns true if success, else returns false.
3509 */
drm_dp_pcon_is_frl_ready(struct drm_dp_aux * aux)3510 bool drm_dp_pcon_is_frl_ready(struct drm_dp_aux *aux)
3511 {
3512 int ret;
3513 u8 buf;
3514
3515 ret = drm_dp_dpcd_read_byte(aux, DP_PCON_HDMI_TX_LINK_STATUS, &buf);
3516 if (ret < 0)
3517 return false;
3518
3519 if (buf & DP_PCON_FRL_READY)
3520 return true;
3521
3522 return false;
3523 }
3524 EXPORT_SYMBOL(drm_dp_pcon_is_frl_ready);
3525
3526 /**
3527 * drm_dp_pcon_frl_configure_1() - Set HDMI LINK Configuration-Step1
3528 * @aux: DisplayPort AUX channel
3529 * @max_frl_gbps: maximum frl bw to be configured between PCON and HDMI sink
3530 * @frl_mode: FRL Training mode, it can be either Concurrent or Sequential.
3531 * In Concurrent Mode, the FRL link bring up can be done along with
3532 * DP Link training. In Sequential mode, the FRL link bring up is done prior to
3533 * the DP Link training.
3534 *
3535 * Returns 0 if success, else returns negative error code.
3536 */
3537
drm_dp_pcon_frl_configure_1(struct drm_dp_aux * aux,int max_frl_gbps,u8 frl_mode)3538 int drm_dp_pcon_frl_configure_1(struct drm_dp_aux *aux, int max_frl_gbps,
3539 u8 frl_mode)
3540 {
3541 int ret;
3542 u8 buf;
3543
3544 ret = drm_dp_dpcd_read_byte(aux, DP_PCON_HDMI_LINK_CONFIG_1, &buf);
3545 if (ret < 0)
3546 return ret;
3547
3548 if (frl_mode == DP_PCON_ENABLE_CONCURRENT_LINK)
3549 buf |= DP_PCON_ENABLE_CONCURRENT_LINK;
3550 else
3551 buf &= ~DP_PCON_ENABLE_CONCURRENT_LINK;
3552
3553 switch (max_frl_gbps) {
3554 case 9:
3555 buf |= DP_PCON_ENABLE_MAX_BW_9GBPS;
3556 break;
3557 case 18:
3558 buf |= DP_PCON_ENABLE_MAX_BW_18GBPS;
3559 break;
3560 case 24:
3561 buf |= DP_PCON_ENABLE_MAX_BW_24GBPS;
3562 break;
3563 case 32:
3564 buf |= DP_PCON_ENABLE_MAX_BW_32GBPS;
3565 break;
3566 case 40:
3567 buf |= DP_PCON_ENABLE_MAX_BW_40GBPS;
3568 break;
3569 case 48:
3570 buf |= DP_PCON_ENABLE_MAX_BW_48GBPS;
3571 break;
3572 case 0:
3573 buf |= DP_PCON_ENABLE_MAX_BW_0GBPS;
3574 break;
3575 default:
3576 return -EINVAL;
3577 }
3578
3579 return drm_dp_dpcd_write_byte(aux, DP_PCON_HDMI_LINK_CONFIG_1, buf);
3580 }
3581 EXPORT_SYMBOL(drm_dp_pcon_frl_configure_1);
3582
3583 /**
3584 * drm_dp_pcon_frl_configure_2() - Set HDMI Link configuration Step-2
3585 * @aux: DisplayPort AUX channel
3586 * @max_frl_mask : Max FRL BW to be tried by the PCON with HDMI Sink
3587 * @frl_type : FRL training type, can be Extended, or Normal.
3588 * In Normal FRL training, the PCON tries each frl bw from the max_frl_mask
3589 * starting from min, and stops when link training is successful. In Extended
3590 * FRL training, all frl bw selected in the mask are trained by the PCON.
3591 *
3592 * Returns 0 if success, else returns negative error code.
3593 */
drm_dp_pcon_frl_configure_2(struct drm_dp_aux * aux,int max_frl_mask,u8 frl_type)3594 int drm_dp_pcon_frl_configure_2(struct drm_dp_aux *aux, int max_frl_mask,
3595 u8 frl_type)
3596 {
3597 int ret;
3598 u8 buf = max_frl_mask;
3599
3600 if (frl_type == DP_PCON_FRL_LINK_TRAIN_EXTENDED)
3601 buf |= DP_PCON_FRL_LINK_TRAIN_EXTENDED;
3602 else
3603 buf &= ~DP_PCON_FRL_LINK_TRAIN_EXTENDED;
3604
3605 return drm_dp_dpcd_write_byte(aux, DP_PCON_HDMI_LINK_CONFIG_2, buf);
3606 if (ret < 0)
3607 return ret;
3608
3609 return 0;
3610 }
3611 EXPORT_SYMBOL(drm_dp_pcon_frl_configure_2);
3612
3613 /**
3614 * drm_dp_pcon_reset_frl_config() - Re-Set HDMI Link configuration.
3615 * @aux: DisplayPort AUX channel
3616 *
3617 * Returns 0 if success, else returns negative error code.
3618 */
drm_dp_pcon_reset_frl_config(struct drm_dp_aux * aux)3619 int drm_dp_pcon_reset_frl_config(struct drm_dp_aux *aux)
3620 {
3621 return drm_dp_dpcd_write_byte(aux, DP_PCON_HDMI_LINK_CONFIG_1, 0x0);
3622 }
3623 EXPORT_SYMBOL(drm_dp_pcon_reset_frl_config);
3624
3625 /**
3626 * drm_dp_pcon_frl_enable() - Enable HDMI link through FRL
3627 * @aux: DisplayPort AUX channel
3628 *
3629 * Returns 0 if success, else returns negative error code.
3630 */
drm_dp_pcon_frl_enable(struct drm_dp_aux * aux)3631 int drm_dp_pcon_frl_enable(struct drm_dp_aux *aux)
3632 {
3633 int ret;
3634 u8 buf = 0;
3635
3636 ret = drm_dp_dpcd_read_byte(aux, DP_PCON_HDMI_LINK_CONFIG_1, &buf);
3637 if (ret < 0)
3638 return ret;
3639 if (!(buf & DP_PCON_ENABLE_SOURCE_CTL_MODE)) {
3640 drm_dbg_kms(aux->drm_dev, "%s: PCON in Autonomous mode, can't enable FRL\n",
3641 aux->name);
3642 return -EINVAL;
3643 }
3644 buf |= DP_PCON_ENABLE_HDMI_LINK;
3645 return drm_dp_dpcd_write_byte(aux, DP_PCON_HDMI_LINK_CONFIG_1, buf);
3646 }
3647 EXPORT_SYMBOL(drm_dp_pcon_frl_enable);
3648
3649 /**
3650 * drm_dp_pcon_hdmi_link_active() - check if the PCON HDMI LINK status is active.
3651 * @aux: DisplayPort AUX channel
3652 *
3653 * Returns true if link is active else returns false.
3654 */
drm_dp_pcon_hdmi_link_active(struct drm_dp_aux * aux)3655 bool drm_dp_pcon_hdmi_link_active(struct drm_dp_aux *aux)
3656 {
3657 u8 buf;
3658 int ret;
3659
3660 ret = drm_dp_dpcd_read_byte(aux, DP_PCON_HDMI_TX_LINK_STATUS, &buf);
3661 if (ret < 0)
3662 return false;
3663
3664 return buf & DP_PCON_HDMI_TX_LINK_ACTIVE;
3665 }
3666 EXPORT_SYMBOL(drm_dp_pcon_hdmi_link_active);
3667
3668 /**
3669 * drm_dp_pcon_hdmi_link_mode() - get the PCON HDMI LINK MODE
3670 * @aux: DisplayPort AUX channel
3671 * @frl_trained_mask: pointer to store bitmask of the trained bw configuration.
3672 * Valid only if the MODE returned is FRL. For Normal Link training mode
3673 * only 1 of the bits will be set, but in case of Extended mode, more than
3674 * one bits can be set.
3675 *
3676 * Returns the link mode : TMDS or FRL on success, else returns negative error
3677 * code.
3678 */
drm_dp_pcon_hdmi_link_mode(struct drm_dp_aux * aux,u8 * frl_trained_mask)3679 int drm_dp_pcon_hdmi_link_mode(struct drm_dp_aux *aux, u8 *frl_trained_mask)
3680 {
3681 u8 buf;
3682 int mode;
3683 int ret;
3684
3685 ret = drm_dp_dpcd_read_byte(aux, DP_PCON_HDMI_POST_FRL_STATUS, &buf);
3686 if (ret < 0)
3687 return ret;
3688
3689 mode = buf & DP_PCON_HDMI_LINK_MODE;
3690
3691 if (frl_trained_mask && DP_PCON_HDMI_MODE_FRL == mode)
3692 *frl_trained_mask = (buf & DP_PCON_HDMI_FRL_TRAINED_BW) >> 1;
3693
3694 return mode;
3695 }
3696 EXPORT_SYMBOL(drm_dp_pcon_hdmi_link_mode);
3697
3698 /**
3699 * drm_dp_pcon_hdmi_frl_link_error_count() - print the error count per lane
3700 * during link failure between PCON and HDMI sink
3701 * @aux: DisplayPort AUX channel
3702 * @connector: DRM connector
3703 * code.
3704 **/
3705
drm_dp_pcon_hdmi_frl_link_error_count(struct drm_dp_aux * aux,struct drm_connector * connector)3706 void drm_dp_pcon_hdmi_frl_link_error_count(struct drm_dp_aux *aux,
3707 struct drm_connector *connector)
3708 {
3709 u8 buf, error_count;
3710 int i, num_error;
3711 struct drm_hdmi_info *hdmi = &connector->display_info.hdmi;
3712
3713 for (i = 0; i < hdmi->max_lanes; i++) {
3714 if (drm_dp_dpcd_read_byte(aux, DP_PCON_HDMI_ERROR_STATUS_LN0 + i, &buf) < 0)
3715 return;
3716
3717 error_count = buf & DP_PCON_HDMI_ERROR_COUNT_MASK;
3718 switch (error_count) {
3719 case DP_PCON_HDMI_ERROR_COUNT_HUNDRED_PLUS:
3720 num_error = 100;
3721 break;
3722 case DP_PCON_HDMI_ERROR_COUNT_TEN_PLUS:
3723 num_error = 10;
3724 break;
3725 case DP_PCON_HDMI_ERROR_COUNT_THREE_PLUS:
3726 num_error = 3;
3727 break;
3728 default:
3729 num_error = 0;
3730 }
3731
3732 drm_err(aux->drm_dev, "%s: More than %d errors since the last read for lane %d",
3733 aux->name, num_error, i);
3734 }
3735 }
3736 EXPORT_SYMBOL(drm_dp_pcon_hdmi_frl_link_error_count);
3737
3738 /*
3739 * drm_dp_pcon_enc_is_dsc_1_2 - Does PCON Encoder supports DSC 1.2
3740 * @pcon_dsc_dpcd: DSC capabilities of the PCON DSC Encoder
3741 *
3742 * Returns true is PCON encoder is DSC 1.2 else returns false.
3743 */
drm_dp_pcon_enc_is_dsc_1_2(const u8 pcon_dsc_dpcd[DP_PCON_DSC_ENCODER_CAP_SIZE])3744 bool drm_dp_pcon_enc_is_dsc_1_2(const u8 pcon_dsc_dpcd[DP_PCON_DSC_ENCODER_CAP_SIZE])
3745 {
3746 u8 buf;
3747 u8 major_v, minor_v;
3748
3749 buf = pcon_dsc_dpcd[DP_PCON_DSC_VERSION - DP_PCON_DSC_ENCODER];
3750 major_v = (buf & DP_PCON_DSC_MAJOR_MASK) >> DP_PCON_DSC_MAJOR_SHIFT;
3751 minor_v = (buf & DP_PCON_DSC_MINOR_MASK) >> DP_PCON_DSC_MINOR_SHIFT;
3752
3753 if (major_v == 1 && minor_v == 2)
3754 return true;
3755
3756 return false;
3757 }
3758 EXPORT_SYMBOL(drm_dp_pcon_enc_is_dsc_1_2);
3759
3760 /*
3761 * drm_dp_pcon_dsc_max_slices - Get max slices supported by PCON DSC Encoder
3762 * @pcon_dsc_dpcd: DSC capabilities of the PCON DSC Encoder
3763 *
3764 * Returns maximum no. of slices supported by the PCON DSC Encoder.
3765 */
drm_dp_pcon_dsc_max_slices(const u8 pcon_dsc_dpcd[DP_PCON_DSC_ENCODER_CAP_SIZE])3766 int drm_dp_pcon_dsc_max_slices(const u8 pcon_dsc_dpcd[DP_PCON_DSC_ENCODER_CAP_SIZE])
3767 {
3768 u8 slice_cap1, slice_cap2;
3769
3770 slice_cap1 = pcon_dsc_dpcd[DP_PCON_DSC_SLICE_CAP_1 - DP_PCON_DSC_ENCODER];
3771 slice_cap2 = pcon_dsc_dpcd[DP_PCON_DSC_SLICE_CAP_2 - DP_PCON_DSC_ENCODER];
3772
3773 if (slice_cap2 & DP_PCON_DSC_24_PER_DSC_ENC)
3774 return 24;
3775 if (slice_cap2 & DP_PCON_DSC_20_PER_DSC_ENC)
3776 return 20;
3777 if (slice_cap2 & DP_PCON_DSC_16_PER_DSC_ENC)
3778 return 16;
3779 if (slice_cap1 & DP_PCON_DSC_12_PER_DSC_ENC)
3780 return 12;
3781 if (slice_cap1 & DP_PCON_DSC_10_PER_DSC_ENC)
3782 return 10;
3783 if (slice_cap1 & DP_PCON_DSC_8_PER_DSC_ENC)
3784 return 8;
3785 if (slice_cap1 & DP_PCON_DSC_6_PER_DSC_ENC)
3786 return 6;
3787 if (slice_cap1 & DP_PCON_DSC_4_PER_DSC_ENC)
3788 return 4;
3789 if (slice_cap1 & DP_PCON_DSC_2_PER_DSC_ENC)
3790 return 2;
3791 if (slice_cap1 & DP_PCON_DSC_1_PER_DSC_ENC)
3792 return 1;
3793
3794 return 0;
3795 }
3796 EXPORT_SYMBOL(drm_dp_pcon_dsc_max_slices);
3797
3798 /*
3799 * drm_dp_pcon_dsc_max_slice_width() - Get max slice width for Pcon DSC encoder
3800 * @pcon_dsc_dpcd: DSC capabilities of the PCON DSC Encoder
3801 *
3802 * Returns maximum width of the slices in pixel width i.e. no. of pixels x 320.
3803 */
drm_dp_pcon_dsc_max_slice_width(const u8 pcon_dsc_dpcd[DP_PCON_DSC_ENCODER_CAP_SIZE])3804 int drm_dp_pcon_dsc_max_slice_width(const u8 pcon_dsc_dpcd[DP_PCON_DSC_ENCODER_CAP_SIZE])
3805 {
3806 u8 buf;
3807
3808 buf = pcon_dsc_dpcd[DP_PCON_DSC_MAX_SLICE_WIDTH - DP_PCON_DSC_ENCODER];
3809
3810 return buf * DP_DSC_SLICE_WIDTH_MULTIPLIER;
3811 }
3812 EXPORT_SYMBOL(drm_dp_pcon_dsc_max_slice_width);
3813
3814 /*
3815 * drm_dp_pcon_dsc_bpp_incr() - Get bits per pixel increment for PCON DSC encoder
3816 * @pcon_dsc_dpcd: DSC capabilities of the PCON DSC Encoder
3817 *
3818 * Returns the bpp precision supported by the PCON encoder.
3819 */
drm_dp_pcon_dsc_bpp_incr(const u8 pcon_dsc_dpcd[DP_PCON_DSC_ENCODER_CAP_SIZE])3820 int drm_dp_pcon_dsc_bpp_incr(const u8 pcon_dsc_dpcd[DP_PCON_DSC_ENCODER_CAP_SIZE])
3821 {
3822 u8 buf;
3823
3824 buf = pcon_dsc_dpcd[DP_PCON_DSC_BPP_INCR - DP_PCON_DSC_ENCODER];
3825
3826 switch (buf & DP_PCON_DSC_BPP_INCR_MASK) {
3827 case DP_PCON_DSC_ONE_16TH_BPP:
3828 return 16;
3829 case DP_PCON_DSC_ONE_8TH_BPP:
3830 return 8;
3831 case DP_PCON_DSC_ONE_4TH_BPP:
3832 return 4;
3833 case DP_PCON_DSC_ONE_HALF_BPP:
3834 return 2;
3835 case DP_PCON_DSC_ONE_BPP:
3836 return 1;
3837 }
3838
3839 return 0;
3840 }
3841 EXPORT_SYMBOL(drm_dp_pcon_dsc_bpp_incr);
3842
3843 static
drm_dp_pcon_configure_dsc_enc(struct drm_dp_aux * aux,u8 pps_buf_config)3844 int drm_dp_pcon_configure_dsc_enc(struct drm_dp_aux *aux, u8 pps_buf_config)
3845 {
3846 u8 buf;
3847 int ret;
3848
3849 ret = drm_dp_dpcd_read_byte(aux, DP_PROTOCOL_CONVERTER_CONTROL_2, &buf);
3850 if (ret < 0)
3851 return ret;
3852
3853 buf |= DP_PCON_ENABLE_DSC_ENCODER;
3854
3855 if (pps_buf_config <= DP_PCON_ENC_PPS_OVERRIDE_EN_BUFFER) {
3856 buf &= ~DP_PCON_ENCODER_PPS_OVERRIDE_MASK;
3857 buf |= pps_buf_config << 2;
3858 }
3859
3860 return drm_dp_dpcd_write_byte(aux, DP_PROTOCOL_CONVERTER_CONTROL_2, buf);
3861 }
3862
3863 /**
3864 * drm_dp_pcon_pps_default() - Let PCON fill the default pps parameters
3865 * for DSC1.2 between PCON & HDMI2.1 sink
3866 * @aux: DisplayPort AUX channel
3867 *
3868 * Returns 0 on success, else returns negative error code.
3869 */
drm_dp_pcon_pps_default(struct drm_dp_aux * aux)3870 int drm_dp_pcon_pps_default(struct drm_dp_aux *aux)
3871 {
3872 return drm_dp_pcon_configure_dsc_enc(aux, DP_PCON_ENC_PPS_OVERRIDE_DISABLED);
3873 }
3874 EXPORT_SYMBOL(drm_dp_pcon_pps_default);
3875
3876 /**
3877 * drm_dp_pcon_pps_override_buf() - Configure PPS encoder override buffer for
3878 * HDMI sink
3879 * @aux: DisplayPort AUX channel
3880 * @pps_buf: 128 bytes to be written into PPS buffer for HDMI sink by PCON.
3881 *
3882 * Returns 0 on success, else returns negative error code.
3883 */
drm_dp_pcon_pps_override_buf(struct drm_dp_aux * aux,u8 pps_buf[128])3884 int drm_dp_pcon_pps_override_buf(struct drm_dp_aux *aux, u8 pps_buf[128])
3885 {
3886 int ret;
3887
3888 ret = drm_dp_dpcd_write_data(aux, DP_PCON_HDMI_PPS_OVERRIDE_BASE, &pps_buf, 128);
3889 if (ret < 0)
3890 return ret;
3891
3892 return drm_dp_pcon_configure_dsc_enc(aux, DP_PCON_ENC_PPS_OVERRIDE_EN_BUFFER);
3893 }
3894 EXPORT_SYMBOL(drm_dp_pcon_pps_override_buf);
3895
3896 /*
3897 * drm_dp_pcon_pps_override_param() - Write PPS parameters to DSC encoder
3898 * override registers
3899 * @aux: DisplayPort AUX channel
3900 * @pps_param: 3 Parameters (2 Bytes each) : Slice Width, Slice Height,
3901 * bits_per_pixel.
3902 *
3903 * Returns 0 on success, else returns negative error code.
3904 */
drm_dp_pcon_pps_override_param(struct drm_dp_aux * aux,u8 pps_param[6])3905 int drm_dp_pcon_pps_override_param(struct drm_dp_aux *aux, u8 pps_param[6])
3906 {
3907 int ret;
3908
3909 ret = drm_dp_dpcd_write_data(aux, DP_PCON_HDMI_PPS_OVRD_SLICE_HEIGHT, &pps_param[0], 2);
3910 if (ret < 0)
3911 return ret;
3912 ret = drm_dp_dpcd_write_data(aux, DP_PCON_HDMI_PPS_OVRD_SLICE_WIDTH, &pps_param[2], 2);
3913 if (ret < 0)
3914 return ret;
3915 ret = drm_dp_dpcd_write_data(aux, DP_PCON_HDMI_PPS_OVRD_BPP, &pps_param[4], 2);
3916 if (ret < 0)
3917 return ret;
3918
3919 return drm_dp_pcon_configure_dsc_enc(aux, DP_PCON_ENC_PPS_OVERRIDE_EN_BUFFER);
3920 }
3921 EXPORT_SYMBOL(drm_dp_pcon_pps_override_param);
3922
3923 /*
3924 * drm_dp_pcon_convert_rgb_to_ycbcr() - Configure the PCon to convert RGB to Ycbcr
3925 * @aux: displayPort AUX channel
3926 * @color_spc: Color-space/s for which conversion is to be enabled, 0 for disable.
3927 *
3928 * Returns 0 on success, else returns negative error code.
3929 */
drm_dp_pcon_convert_rgb_to_ycbcr(struct drm_dp_aux * aux,u8 color_spc)3930 int drm_dp_pcon_convert_rgb_to_ycbcr(struct drm_dp_aux *aux, u8 color_spc)
3931 {
3932 int ret;
3933 u8 buf;
3934
3935 ret = drm_dp_dpcd_read_byte(aux, DP_PROTOCOL_CONVERTER_CONTROL_2, &buf);
3936 if (ret < 0)
3937 return ret;
3938
3939 if (color_spc & DP_CONVERSION_RGB_YCBCR_MASK)
3940 buf |= (color_spc & DP_CONVERSION_RGB_YCBCR_MASK);
3941 else
3942 buf &= ~DP_CONVERSION_RGB_YCBCR_MASK;
3943
3944 return drm_dp_dpcd_write_byte(aux, DP_PROTOCOL_CONVERTER_CONTROL_2, buf);
3945 }
3946 EXPORT_SYMBOL(drm_dp_pcon_convert_rgb_to_ycbcr);
3947
3948 /**
3949 * drm_edp_backlight_set_level() - Set the backlight level of an eDP panel via AUX
3950 * @aux: The DP AUX channel to use
3951 * @bl: Backlight capability info from drm_edp_backlight_init()
3952 * @level: The brightness level to set
3953 *
3954 * Sets the brightness level of an eDP panel's backlight. Note that the panel's backlight must
3955 * already have been enabled by the driver by calling drm_edp_backlight_enable().
3956 *
3957 * Returns: %0 on success, negative error code on failure
3958 */
drm_edp_backlight_set_level(struct drm_dp_aux * aux,const struct drm_edp_backlight_info * bl,u32 level)3959 int drm_edp_backlight_set_level(struct drm_dp_aux *aux, const struct drm_edp_backlight_info *bl,
3960 u32 level)
3961 {
3962 int ret;
3963 unsigned int offset = DP_EDP_BACKLIGHT_BRIGHTNESS_MSB;
3964 u8 buf[3] = { 0 };
3965
3966 /* The panel uses the PWM for controlling brightness levels */
3967 if (!(bl->aux_set || bl->luminance_set))
3968 return 0;
3969
3970 if (bl->luminance_set) {
3971 level = level * 1000;
3972 level &= 0xffffff;
3973 buf[0] = (level & 0x0000ff);
3974 buf[1] = (level & 0x00ff00) >> 8;
3975 buf[2] = (level & 0xff0000) >> 16;
3976 offset = DP_EDP_PANEL_TARGET_LUMINANCE_VALUE;
3977 } else if (bl->lsb_reg_used) {
3978 buf[0] = (level & 0xff00) >> 8;
3979 buf[1] = (level & 0x00ff);
3980 } else {
3981 buf[0] = level;
3982 }
3983
3984 ret = drm_dp_dpcd_write_data(aux, offset, buf, sizeof(buf));
3985 if (ret < 0) {
3986 drm_err(aux->drm_dev,
3987 "%s: Failed to write aux backlight level: %d\n",
3988 aux->name, ret);
3989 return ret;
3990 }
3991
3992 return 0;
3993 }
3994 EXPORT_SYMBOL(drm_edp_backlight_set_level);
3995
3996 static int
drm_edp_backlight_set_enable(struct drm_dp_aux * aux,const struct drm_edp_backlight_info * bl,bool enable)3997 drm_edp_backlight_set_enable(struct drm_dp_aux *aux, const struct drm_edp_backlight_info *bl,
3998 bool enable)
3999 {
4000 int ret;
4001 u8 buf;
4002
4003 /* This panel uses the EDP_BL_PWR GPIO for enablement */
4004 if (!bl->aux_enable)
4005 return 0;
4006
4007 ret = drm_dp_dpcd_read_byte(aux, DP_EDP_DISPLAY_CONTROL_REGISTER, &buf);
4008 if (ret < 0) {
4009 drm_err(aux->drm_dev, "%s: Failed to read eDP display control register: %d\n",
4010 aux->name, ret);
4011 return ret;
4012 }
4013 if (enable)
4014 buf |= DP_EDP_BACKLIGHT_ENABLE;
4015 else
4016 buf &= ~DP_EDP_BACKLIGHT_ENABLE;
4017
4018 ret = drm_dp_dpcd_write_byte(aux, DP_EDP_DISPLAY_CONTROL_REGISTER, buf);
4019 if (ret < 0) {
4020 drm_err(aux->drm_dev, "%s: Failed to write eDP display control register: %d\n",
4021 aux->name, ret);
4022 return ret;
4023 }
4024
4025 return 0;
4026 }
4027
4028 /**
4029 * drm_edp_backlight_enable() - Enable an eDP panel's backlight using DPCD
4030 * @aux: The DP AUX channel to use
4031 * @bl: Backlight capability info from drm_edp_backlight_init()
4032 * @level: The initial backlight level to set via AUX, if there is one
4033 *
4034 * This function handles enabling DPCD backlight controls on a panel over DPCD, while additionally
4035 * restoring any important backlight state such as the given backlight level, the brightness byte
4036 * count, backlight frequency, etc.
4037 *
4038 * Note that certain panels do not support being enabled or disabled via DPCD, but instead require
4039 * that the driver handle enabling/disabling the panel through implementation-specific means using
4040 * the EDP_BL_PWR GPIO. For such panels, &drm_edp_backlight_info.aux_enable will be set to %false,
4041 * this function becomes a no-op, and the driver is expected to handle powering the panel on using
4042 * the EDP_BL_PWR GPIO.
4043 *
4044 * Returns: %0 on success, negative error code on failure.
4045 */
drm_edp_backlight_enable(struct drm_dp_aux * aux,const struct drm_edp_backlight_info * bl,const u32 level)4046 int drm_edp_backlight_enable(struct drm_dp_aux *aux, const struct drm_edp_backlight_info *bl,
4047 const u32 level)
4048 {
4049 int ret;
4050 u8 dpcd_buf;
4051
4052 if (bl->aux_set)
4053 dpcd_buf = DP_EDP_BACKLIGHT_CONTROL_MODE_DPCD;
4054 else
4055 dpcd_buf = DP_EDP_BACKLIGHT_CONTROL_MODE_PWM;
4056
4057 if (bl->luminance_set)
4058 dpcd_buf |= DP_EDP_PANEL_LUMINANCE_CONTROL_ENABLE;
4059
4060 if (bl->pwmgen_bit_count) {
4061 ret = drm_dp_dpcd_write_byte(aux, DP_EDP_PWMGEN_BIT_COUNT, bl->pwmgen_bit_count);
4062 if (ret < 0)
4063 drm_dbg_kms(aux->drm_dev, "%s: Failed to write aux pwmgen bit count: %d\n",
4064 aux->name, ret);
4065 }
4066
4067 if (bl->pwm_freq_pre_divider) {
4068 ret = drm_dp_dpcd_write_byte(aux, DP_EDP_BACKLIGHT_FREQ_SET,
4069 bl->pwm_freq_pre_divider);
4070 if (ret < 0)
4071 drm_dbg_kms(aux->drm_dev,
4072 "%s: Failed to write aux backlight frequency: %d\n",
4073 aux->name, ret);
4074 else
4075 dpcd_buf |= DP_EDP_BACKLIGHT_FREQ_AUX_SET_ENABLE;
4076 }
4077
4078 ret = drm_dp_dpcd_write_byte(aux, DP_EDP_BACKLIGHT_MODE_SET_REGISTER, dpcd_buf);
4079 if (ret < 0) {
4080 drm_dbg_kms(aux->drm_dev, "%s: Failed to write aux backlight mode: %d\n",
4081 aux->name, ret);
4082 return ret < 0 ? ret : -EIO;
4083 }
4084
4085 ret = drm_edp_backlight_set_level(aux, bl, level);
4086 if (ret < 0)
4087 return ret;
4088 ret = drm_edp_backlight_set_enable(aux, bl, true);
4089 if (ret < 0)
4090 return ret;
4091
4092 return 0;
4093 }
4094 EXPORT_SYMBOL(drm_edp_backlight_enable);
4095
4096 /**
4097 * drm_edp_backlight_disable() - Disable an eDP backlight using DPCD, if supported
4098 * @aux: The DP AUX channel to use
4099 * @bl: Backlight capability info from drm_edp_backlight_init()
4100 *
4101 * This function handles disabling DPCD backlight controls on a panel over AUX.
4102 *
4103 * Note that certain panels do not support being enabled or disabled via DPCD, but instead require
4104 * that the driver handle enabling/disabling the panel through implementation-specific means using
4105 * the EDP_BL_PWR GPIO. For such panels, &drm_edp_backlight_info.aux_enable will be set to %false,
4106 * this function becomes a no-op, and the driver is expected to handle powering the panel off using
4107 * the EDP_BL_PWR GPIO.
4108 *
4109 * Returns: %0 on success or no-op, negative error code on failure.
4110 */
drm_edp_backlight_disable(struct drm_dp_aux * aux,const struct drm_edp_backlight_info * bl)4111 int drm_edp_backlight_disable(struct drm_dp_aux *aux, const struct drm_edp_backlight_info *bl)
4112 {
4113 int ret;
4114
4115 ret = drm_edp_backlight_set_enable(aux, bl, false);
4116 if (ret < 0)
4117 return ret;
4118
4119 return 0;
4120 }
4121 EXPORT_SYMBOL(drm_edp_backlight_disable);
4122
4123 static inline int
drm_edp_backlight_probe_max(struct drm_dp_aux * aux,struct drm_edp_backlight_info * bl,u16 driver_pwm_freq_hz,const u8 edp_dpcd[EDP_DISPLAY_CTL_CAP_SIZE])4124 drm_edp_backlight_probe_max(struct drm_dp_aux *aux, struct drm_edp_backlight_info *bl,
4125 u16 driver_pwm_freq_hz, const u8 edp_dpcd[EDP_DISPLAY_CTL_CAP_SIZE])
4126 {
4127 int fxp, fxp_min, fxp_max, fxp_actual, f = 1;
4128 int ret;
4129 u8 pn, pn_min, pn_max;
4130
4131 if (!bl->aux_set)
4132 return 0;
4133
4134 ret = drm_dp_dpcd_read_byte(aux, DP_EDP_PWMGEN_BIT_COUNT, &pn);
4135 if (ret < 0) {
4136 drm_dbg_kms(aux->drm_dev, "%s: Failed to read pwmgen bit count cap: %d\n",
4137 aux->name, ret);
4138 return -ENODEV;
4139 }
4140
4141 pn &= DP_EDP_PWMGEN_BIT_COUNT_MASK;
4142 bl->max = (1 << pn) - 1;
4143 if (!driver_pwm_freq_hz)
4144 return 0;
4145
4146 /*
4147 * Set PWM Frequency divider to match desired frequency provided by the driver.
4148 * The PWM Frequency is calculated as 27Mhz / (F x P).
4149 * - Where F = PWM Frequency Pre-Divider value programmed by field 7:0 of the
4150 * EDP_BACKLIGHT_FREQ_SET register (DPCD Address 00728h)
4151 * - Where P = 2^Pn, where Pn is the value programmed by field 4:0 of the
4152 * EDP_PWMGEN_BIT_COUNT register (DPCD Address 00724h)
4153 */
4154
4155 /* Find desired value of (F x P)
4156 * Note that, if F x P is out of supported range, the maximum value or minimum value will
4157 * applied automatically. So no need to check that.
4158 */
4159 fxp = DIV_ROUND_CLOSEST(1000 * DP_EDP_BACKLIGHT_FREQ_BASE_KHZ, driver_pwm_freq_hz);
4160
4161 /* Use highest possible value of Pn for more granularity of brightness adjustment while
4162 * satisfying the conditions below.
4163 * - Pn is in the range of Pn_min and Pn_max
4164 * - F is in the range of 1 and 255
4165 * - FxP is within 25% of desired value.
4166 * Note: 25% is arbitrary value and may need some tweak.
4167 */
4168 ret = drm_dp_dpcd_read_byte(aux, DP_EDP_PWMGEN_BIT_COUNT_CAP_MIN, &pn_min);
4169 if (ret < 0) {
4170 drm_dbg_kms(aux->drm_dev, "%s: Failed to read pwmgen bit count cap min: %d\n",
4171 aux->name, ret);
4172 return 0;
4173 }
4174 ret = drm_dp_dpcd_read_byte(aux, DP_EDP_PWMGEN_BIT_COUNT_CAP_MAX, &pn_max);
4175 if (ret < 0) {
4176 drm_dbg_kms(aux->drm_dev, "%s: Failed to read pwmgen bit count cap max: %d\n",
4177 aux->name, ret);
4178 return 0;
4179 }
4180 pn_min &= DP_EDP_PWMGEN_BIT_COUNT_MASK;
4181 pn_max &= DP_EDP_PWMGEN_BIT_COUNT_MASK;
4182
4183 /* Ensure frequency is within 25% of desired value */
4184 fxp_min = DIV_ROUND_CLOSEST(fxp * 3, 4);
4185 fxp_max = DIV_ROUND_CLOSEST(fxp * 5, 4);
4186 if (fxp_min < (1 << pn_min) || (255 << pn_max) < fxp_max) {
4187 drm_dbg_kms(aux->drm_dev,
4188 "%s: Driver defined backlight frequency (%d) out of range\n",
4189 aux->name, driver_pwm_freq_hz);
4190 return 0;
4191 }
4192
4193 for (pn = pn_max; pn >= pn_min; pn--) {
4194 f = clamp(DIV_ROUND_CLOSEST(fxp, 1 << pn), 1, 255);
4195 fxp_actual = f << pn;
4196 if (fxp_min <= fxp_actual && fxp_actual <= fxp_max)
4197 break;
4198 }
4199
4200 ret = drm_dp_dpcd_write_byte(aux, DP_EDP_PWMGEN_BIT_COUNT, pn);
4201 if (ret < 0) {
4202 drm_dbg_kms(aux->drm_dev, "%s: Failed to write aux pwmgen bit count: %d\n",
4203 aux->name, ret);
4204 return 0;
4205 }
4206 bl->pwmgen_bit_count = pn;
4207 bl->max = (1 << pn) - 1;
4208
4209 if (edp_dpcd[2] & DP_EDP_BACKLIGHT_FREQ_AUX_SET_CAP) {
4210 bl->pwm_freq_pre_divider = f;
4211 drm_dbg_kms(aux->drm_dev, "%s: Using backlight frequency from driver (%dHz)\n",
4212 aux->name, driver_pwm_freq_hz);
4213 }
4214
4215 return 0;
4216 }
4217
4218 static inline int
drm_edp_backlight_probe_state(struct drm_dp_aux * aux,struct drm_edp_backlight_info * bl,u8 * current_mode)4219 drm_edp_backlight_probe_state(struct drm_dp_aux *aux, struct drm_edp_backlight_info *bl,
4220 u8 *current_mode)
4221 {
4222 int ret;
4223 u8 buf[3];
4224 u8 mode_reg;
4225
4226 ret = drm_dp_dpcd_read_byte(aux, DP_EDP_BACKLIGHT_MODE_SET_REGISTER, &mode_reg);
4227 if (ret < 0) {
4228 drm_dbg_kms(aux->drm_dev, "%s: Failed to read backlight mode: %d\n",
4229 aux->name, ret);
4230 return ret < 0 ? ret : -EIO;
4231 }
4232
4233 *current_mode = (mode_reg & DP_EDP_BACKLIGHT_CONTROL_MODE_MASK);
4234 if (!bl->aux_set)
4235 return 0;
4236
4237 if (*current_mode == DP_EDP_BACKLIGHT_CONTROL_MODE_DPCD) {
4238 int size = 1 + bl->lsb_reg_used;
4239
4240 if (bl->luminance_set) {
4241 ret = drm_dp_dpcd_read_data(aux, DP_EDP_PANEL_TARGET_LUMINANCE_VALUE,
4242 buf, sizeof(buf));
4243 if (ret < 0) {
4244 drm_dbg_kms(aux->drm_dev,
4245 "%s: Failed to read backlight level: %d\n",
4246 aux->name, ret);
4247 return ret;
4248 }
4249
4250 /*
4251 * Incase luminance is set we want to send the value back in nits but
4252 * since DP_EDP_PANEL_TARGET_LUMINANCE stores values in millinits we
4253 * need to divide by 1000.
4254 */
4255 return (buf[0] | buf[1] << 8 | buf[2] << 16) / 1000;
4256 } else {
4257 ret = drm_dp_dpcd_read_data(aux, DP_EDP_BACKLIGHT_BRIGHTNESS_MSB,
4258 buf, size);
4259 if (ret < 0) {
4260 drm_dbg_kms(aux->drm_dev,
4261 "%s: Failed to read backlight level: %d\n",
4262 aux->name, ret);
4263 return ret;
4264 }
4265
4266 if (bl->lsb_reg_used)
4267 return (buf[0] << 8) | buf[1];
4268 else
4269 return buf[0];
4270 }
4271 }
4272
4273 /*
4274 * If we're not in DPCD control mode yet, the programmed brightness value is meaningless and
4275 * the driver should assume max brightness
4276 */
4277 return bl->max;
4278 }
4279
4280 /**
4281 * drm_edp_backlight_init() - Probe a display panel's TCON using the standard VESA eDP backlight
4282 * interface.
4283 * @aux: The DP aux device to use for probing
4284 * @bl: The &drm_edp_backlight_info struct to fill out with information on the backlight
4285 * @max_luminance: max luminance when need luminance is set as true
4286 * @driver_pwm_freq_hz: Optional PWM frequency from the driver in hz
4287 * @edp_dpcd: A cached copy of the eDP DPCD
4288 * @current_level: Where to store the probed brightness level, if any
4289 * @current_mode: Where to store the currently set backlight control mode
4290 * @need_luminance: Tells us if a we want to manipulate backlight using luminance values
4291 *
4292 * Initializes a &drm_edp_backlight_info struct by probing @aux for it's backlight capabilities,
4293 * along with also probing the current and maximum supported brightness levels.
4294 *
4295 * If @driver_pwm_freq_hz is non-zero, this will be used as the backlight frequency. Otherwise, the
4296 * default frequency from the panel is used.
4297 *
4298 * Returns: %0 on success, negative error code on failure.
4299 */
4300 int
drm_edp_backlight_init(struct drm_dp_aux * aux,struct drm_edp_backlight_info * bl,u32 max_luminance,u16 driver_pwm_freq_hz,const u8 edp_dpcd[EDP_DISPLAY_CTL_CAP_SIZE],u32 * current_level,u8 * current_mode,bool need_luminance)4301 drm_edp_backlight_init(struct drm_dp_aux *aux, struct drm_edp_backlight_info *bl,
4302 u32 max_luminance,
4303 u16 driver_pwm_freq_hz, const u8 edp_dpcd[EDP_DISPLAY_CTL_CAP_SIZE],
4304 u32 *current_level, u8 *current_mode, bool need_luminance)
4305 {
4306 int ret;
4307
4308 if (edp_dpcd[1] & DP_EDP_BACKLIGHT_AUX_ENABLE_CAP)
4309 bl->aux_enable = true;
4310 if (edp_dpcd[2] & DP_EDP_BACKLIGHT_BRIGHTNESS_AUX_SET_CAP)
4311 bl->aux_set = true;
4312 if (edp_dpcd[2] & DP_EDP_BACKLIGHT_BRIGHTNESS_BYTE_COUNT)
4313 bl->lsb_reg_used = true;
4314 if ((edp_dpcd[0] & DP_EDP_15) && edp_dpcd[3] &
4315 (DP_EDP_PANEL_LUMINANCE_CONTROL_CAPABLE) && need_luminance)
4316 bl->luminance_set = true;
4317
4318 /* Sanity check caps */
4319 if (!bl->aux_set && !(edp_dpcd[2] & DP_EDP_BACKLIGHT_BRIGHTNESS_PWM_PIN_CAP) &&
4320 !bl->luminance_set) {
4321 drm_dbg_kms(aux->drm_dev,
4322 "%s: Panel does not support AUX, PWM or luminance-based brightness control. Aborting\n",
4323 aux->name);
4324 return -EINVAL;
4325 }
4326
4327 if (bl->luminance_set) {
4328 bl->max = max_luminance;
4329 } else {
4330 ret = drm_edp_backlight_probe_max(aux, bl, driver_pwm_freq_hz, edp_dpcd);
4331 if (ret < 0)
4332 return ret;
4333 }
4334
4335 ret = drm_edp_backlight_probe_state(aux, bl, current_mode);
4336 if (ret < 0)
4337 return ret;
4338 *current_level = ret;
4339
4340 drm_dbg_kms(aux->drm_dev,
4341 "%s: Found backlight: aux_set=%d aux_enable=%d mode=%d\n",
4342 aux->name, bl->aux_set, bl->aux_enable, *current_mode);
4343 if (bl->aux_set) {
4344 drm_dbg_kms(aux->drm_dev,
4345 "%s: Backlight caps: level=%d/%d pwm_freq_pre_divider=%d lsb_reg_used=%d\n",
4346 aux->name, *current_level, bl->max, bl->pwm_freq_pre_divider,
4347 bl->lsb_reg_used);
4348 }
4349
4350 return 0;
4351 }
4352 EXPORT_SYMBOL(drm_edp_backlight_init);
4353
4354 #if IS_BUILTIN(CONFIG_BACKLIGHT_CLASS_DEVICE) || \
4355 (IS_MODULE(CONFIG_DRM_KMS_HELPER) && IS_MODULE(CONFIG_BACKLIGHT_CLASS_DEVICE))
4356
dp_aux_backlight_update_status(struct backlight_device * bd)4357 static int dp_aux_backlight_update_status(struct backlight_device *bd)
4358 {
4359 struct dp_aux_backlight *bl = bl_get_data(bd);
4360 u16 brightness = backlight_get_brightness(bd);
4361 int ret = 0;
4362
4363 if (!backlight_is_blank(bd)) {
4364 if (!bl->enabled) {
4365 drm_edp_backlight_enable(bl->aux, &bl->info, brightness);
4366 bl->enabled = true;
4367 return 0;
4368 }
4369 ret = drm_edp_backlight_set_level(bl->aux, &bl->info, brightness);
4370 } else {
4371 if (bl->enabled) {
4372 drm_edp_backlight_disable(bl->aux, &bl->info);
4373 bl->enabled = false;
4374 }
4375 }
4376
4377 return ret;
4378 }
4379
4380 static const struct backlight_ops dp_aux_bl_ops = {
4381 .update_status = dp_aux_backlight_update_status,
4382 };
4383
4384 /**
4385 * drm_panel_dp_aux_backlight - create and use DP AUX backlight
4386 * @panel: DRM panel
4387 * @aux: The DP AUX channel to use
4388 *
4389 * Use this function to create and handle backlight if your panel
4390 * supports backlight control over DP AUX channel using DPCD
4391 * registers as per VESA's standard backlight control interface.
4392 *
4393 * When the panel is enabled backlight will be enabled after a
4394 * successful call to &drm_panel_funcs.enable()
4395 *
4396 * When the panel is disabled backlight will be disabled before the
4397 * call to &drm_panel_funcs.disable().
4398 *
4399 * A typical implementation for a panel driver supporting backlight
4400 * control over DP AUX will call this function at probe time.
4401 * Backlight will then be handled transparently without requiring
4402 * any intervention from the driver.
4403 *
4404 * drm_panel_dp_aux_backlight() must be called after the call to drm_panel_init().
4405 *
4406 * Return: 0 on success or a negative error code on failure.
4407 */
drm_panel_dp_aux_backlight(struct drm_panel * panel,struct drm_dp_aux * aux)4408 int drm_panel_dp_aux_backlight(struct drm_panel *panel, struct drm_dp_aux *aux)
4409 {
4410 struct dp_aux_backlight *bl;
4411 struct backlight_properties props = { 0 };
4412 u32 current_level;
4413 u8 current_mode;
4414 u8 edp_dpcd[EDP_DISPLAY_CTL_CAP_SIZE];
4415 int ret;
4416
4417 if (!panel || !panel->dev || !aux)
4418 return -EINVAL;
4419
4420 ret = drm_dp_dpcd_read_data(aux, DP_EDP_DPCD_REV, edp_dpcd,
4421 EDP_DISPLAY_CTL_CAP_SIZE);
4422 if (ret < 0)
4423 return ret;
4424
4425 if (!drm_edp_backlight_supported(edp_dpcd)) {
4426 DRM_DEV_INFO(panel->dev, "DP AUX backlight is not supported\n");
4427 return 0;
4428 }
4429
4430 bl = devm_kzalloc(panel->dev, sizeof(*bl), GFP_KERNEL);
4431 if (!bl)
4432 return -ENOMEM;
4433
4434 bl->aux = aux;
4435
4436 ret = drm_edp_backlight_init(aux, &bl->info, 0, 0, edp_dpcd,
4437 ¤t_level, ¤t_mode, false);
4438 if (ret < 0)
4439 return ret;
4440
4441 props.type = BACKLIGHT_RAW;
4442 props.brightness = current_level;
4443 props.max_brightness = bl->info.max;
4444
4445 bl->base = devm_backlight_device_register(panel->dev, "dp_aux_backlight",
4446 panel->dev, bl,
4447 &dp_aux_bl_ops, &props);
4448 if (IS_ERR(bl->base))
4449 return PTR_ERR(bl->base);
4450
4451 backlight_disable(bl->base);
4452
4453 panel->backlight = bl->base;
4454
4455 return 0;
4456 }
4457 EXPORT_SYMBOL(drm_panel_dp_aux_backlight);
4458
4459 #endif
4460
4461 /* See DP Standard v2.1 2.6.4.4.1.1, 2.8.4.4, 2.8.7 */
drm_dp_link_data_symbol_cycles(int lane_count,int pixels,int bpp_x16,int symbol_size,bool is_mst)4462 static int drm_dp_link_data_symbol_cycles(int lane_count, int pixels,
4463 int bpp_x16, int symbol_size,
4464 bool is_mst)
4465 {
4466 int cycles = DIV_ROUND_UP(pixels * bpp_x16, 16 * symbol_size * lane_count);
4467 int align = is_mst ? 4 / lane_count : 1;
4468
4469 return ALIGN(cycles, align);
4470 }
4471
4472 /**
4473 * drm_dp_link_symbol_cycles - calculate the link symbol count with/without dsc
4474 * @lane_count: DP link lane count
4475 * @pixels: number of pixels in a scanline
4476 * @dsc_slice_count: number of slices for DSC or '0' for non-DSC
4477 * @bpp_x16: bits per pixel in .4 binary fixed format
4478 * @symbol_size: DP symbol size
4479 * @is_mst: %true for MST and %false for SST
4480 *
4481 * Calculate the link symbol cycles for both DSC (@dsc_slice_count !=0) and
4482 * non-DSC case (@dsc_slice_count == 0) and return the count.
4483 */
drm_dp_link_symbol_cycles(int lane_count,int pixels,int dsc_slice_count,int bpp_x16,int symbol_size,bool is_mst)4484 int drm_dp_link_symbol_cycles(int lane_count, int pixels, int dsc_slice_count,
4485 int bpp_x16, int symbol_size, bool is_mst)
4486 {
4487 int slice_count = dsc_slice_count ? : 1;
4488 int slice_pixels = DIV_ROUND_UP(pixels, slice_count);
4489 int slice_data_cycles = drm_dp_link_data_symbol_cycles(lane_count,
4490 slice_pixels,
4491 bpp_x16,
4492 symbol_size,
4493 is_mst);
4494 int slice_eoc_cycles = 0;
4495
4496 if (dsc_slice_count)
4497 slice_eoc_cycles = is_mst ? 4 / lane_count : 1;
4498
4499 return slice_count * (slice_data_cycles + slice_eoc_cycles);
4500 }
4501 EXPORT_SYMBOL(drm_dp_link_symbol_cycles);
4502
4503 /**
4504 * drm_dp_bw_overhead - Calculate the BW overhead of a DP link stream
4505 * @lane_count: DP link lane count
4506 * @hactive: pixel count of the active period in one scanline of the stream
4507 * @dsc_slice_count: number of slices for DSC or '0' for non-DSC
4508 * @bpp_x16: bits per pixel in .4 binary fixed point
4509 * @flags: DRM_DP_OVERHEAD_x flags
4510 *
4511 * Calculate the BW allocation overhead of a DP link stream, depending
4512 * on the link's
4513 * - @lane_count
4514 * - SST/MST mode (@flags / %DRM_DP_OVERHEAD_MST)
4515 * - symbol size (@flags / %DRM_DP_OVERHEAD_UHBR)
4516 * - FEC mode (@flags / %DRM_DP_OVERHEAD_FEC)
4517 * - SSC/REF_CLK mode (@flags / %DRM_DP_OVERHEAD_SSC_REF_CLK)
4518 * as well as the stream's
4519 * - @hactive timing
4520 * - @bpp_x16 color depth
4521 * - compression mode (@dsc_slice_count != 0)
4522 * Note that this overhead doesn't account for the 8b/10b, 128b/132b
4523 * channel coding efficiency, for that see
4524 * @drm_dp_link_bw_channel_coding_efficiency().
4525 *
4526 * Returns the overhead as 100% + overhead% in 1ppm units.
4527 */
drm_dp_bw_overhead(int lane_count,int hactive,int dsc_slice_count,int bpp_x16,unsigned long flags)4528 int drm_dp_bw_overhead(int lane_count, int hactive,
4529 int dsc_slice_count,
4530 int bpp_x16, unsigned long flags)
4531 {
4532 int symbol_size = flags & DRM_DP_BW_OVERHEAD_UHBR ? 32 : 8;
4533 bool is_mst = flags & DRM_DP_BW_OVERHEAD_MST;
4534 u32 overhead = 1000000;
4535 int symbol_cycles;
4536
4537 if (lane_count == 0 || hactive == 0 || bpp_x16 == 0) {
4538 DRM_DEBUG_KMS("Invalid BW overhead params: lane_count %d, hactive %d, bpp_x16 " FXP_Q4_FMT "\n",
4539 lane_count, hactive,
4540 FXP_Q4_ARGS(bpp_x16));
4541 return 0;
4542 }
4543
4544 /*
4545 * DP Standard v2.1 2.6.4.1
4546 * SSC downspread and ref clock variation margin:
4547 * 5300ppm + 300ppm ~ 0.6%
4548 */
4549 if (flags & DRM_DP_BW_OVERHEAD_SSC_REF_CLK)
4550 overhead += 6000;
4551
4552 /*
4553 * DP Standard v2.1 2.6.4.1.1, 3.5.1.5.4:
4554 * FEC symbol insertions for 8b/10b channel coding:
4555 * After each 250 data symbols on 2-4 lanes:
4556 * 250 LL + 5 FEC_PARITY_PH + 1 CD_ADJ (256 byte FEC block)
4557 * After each 2 x 250 data symbols on 1 lane:
4558 * 2 * 250 LL + 11 FEC_PARITY_PH + 1 CD_ADJ (512 byte FEC block)
4559 * After 256 (2-4 lanes) or 128 (1 lane) FEC blocks:
4560 * 256 * 256 bytes + 1 FEC_PM
4561 * or
4562 * 128 * 512 bytes + 1 FEC_PM
4563 * (256 * 6 + 1) / (256 * 250) = 2.4015625 %
4564 */
4565 if (flags & DRM_DP_BW_OVERHEAD_FEC)
4566 overhead += 24016;
4567
4568 /*
4569 * DP Standard v2.1 2.7.9, 5.9.7
4570 * The FEC overhead for UHBR is accounted for in its 96.71% channel
4571 * coding efficiency.
4572 */
4573 WARN_ON((flags & DRM_DP_BW_OVERHEAD_UHBR) &&
4574 (flags & DRM_DP_BW_OVERHEAD_FEC));
4575
4576 symbol_cycles = drm_dp_link_symbol_cycles(lane_count, hactive,
4577 dsc_slice_count,
4578 bpp_x16, symbol_size,
4579 is_mst);
4580
4581 return DIV_ROUND_UP_ULL(mul_u32_u32(symbol_cycles * symbol_size * lane_count,
4582 overhead * 16),
4583 hactive * bpp_x16);
4584 }
4585 EXPORT_SYMBOL(drm_dp_bw_overhead);
4586
4587 /**
4588 * drm_dp_bw_channel_coding_efficiency - Get a DP link's channel coding efficiency
4589 * @is_uhbr: Whether the link has a 128b/132b channel coding
4590 *
4591 * Return the channel coding efficiency of the given DP link type, which is
4592 * either 8b/10b or 128b/132b (aka UHBR). The corresponding overhead includes
4593 * the 8b -> 10b, 128b -> 132b pixel data to link symbol conversion overhead
4594 * and for 128b/132b any link or PHY level control symbol insertion overhead
4595 * (LLCP, FEC, PHY sync, see DP Standard v2.1 3.5.2.18). For 8b/10b the
4596 * corresponding FEC overhead is BW allocation specific, included in the value
4597 * returned by drm_dp_bw_overhead().
4598 *
4599 * Returns the efficiency in the 100%/coding-overhead% ratio in
4600 * 1ppm units.
4601 */
drm_dp_bw_channel_coding_efficiency(bool is_uhbr)4602 int drm_dp_bw_channel_coding_efficiency(bool is_uhbr)
4603 {
4604 if (is_uhbr)
4605 return 967100;
4606 else
4607 /*
4608 * Note that on 8b/10b MST the efficiency is only
4609 * 78.75% due to the 1 out of 64 MTPH packet overhead,
4610 * not accounted for here.
4611 */
4612 return 800000;
4613 }
4614 EXPORT_SYMBOL(drm_dp_bw_channel_coding_efficiency);
4615
4616 /**
4617 * drm_dp_max_dprx_data_rate - Get the max data bandwidth of a DPRX sink
4618 * @max_link_rate: max DPRX link rate in 10kbps units
4619 * @max_lanes: max DPRX lane count
4620 *
4621 * Given a link rate and lanes, get the data bandwidth.
4622 *
4623 * Data bandwidth is the actual payload rate, which depends on the data
4624 * bandwidth efficiency and the link rate.
4625 *
4626 * Note that protocol layers above the DPRX link level considered here can
4627 * further limit the maximum data rate. Such layers are the MST topology (with
4628 * limits on the link between the source and first branch device as well as on
4629 * the whole MST path until the DPRX link) and (Thunderbolt) DP tunnels -
4630 * which in turn can encapsulate an MST link with its own limit - with each
4631 * SST or MST encapsulated tunnel sharing the BW of a tunnel group.
4632 *
4633 * Returns the maximum data rate in kBps units.
4634 */
drm_dp_max_dprx_data_rate(int max_link_rate,int max_lanes)4635 int drm_dp_max_dprx_data_rate(int max_link_rate, int max_lanes)
4636 {
4637 int ch_coding_efficiency =
4638 drm_dp_bw_channel_coding_efficiency(drm_dp_is_uhbr_rate(max_link_rate));
4639
4640 return DIV_ROUND_DOWN_ULL(mul_u32_u32(max_link_rate * 10 * max_lanes,
4641 ch_coding_efficiency),
4642 1000000 * 8);
4643 }
4644 EXPORT_SYMBOL(drm_dp_max_dprx_data_rate);
4645