xref: /freebsd/sys/kern/sched_ule.c (revision 120ca8d74b46caa260702485e30fe5f9f9984682)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2002-2007, Jeffrey Roberson <jeff@freebsd.org>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice unmodified, this list of conditions, and the following
12  *    disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 /*
30  * This file implements the ULE scheduler.  ULE supports independent CPU
31  * run queues and fine grain locking.  It has superior interactive
32  * performance under load even on uni-processor systems.
33  *
34  * etymology:
35  *   ULE is the last three letters in schedule.  It owes its name to a
36  * generic user created for a scheduling system by Paul Mikesell at
37  * Isilon Systems and a general lack of creativity on the part of the author.
38  */
39 
40 #include "opt_hwpmc_hooks.h"
41 #include "opt_hwt_hooks.h"
42 #include "opt_sched.h"
43 
44 #include <sys/systm.h>
45 #include <sys/kdb.h>
46 #include <sys/kernel.h>
47 #include <sys/ktr.h>
48 #include <sys/limits.h>
49 #include <sys/lock.h>
50 #include <sys/mutex.h>
51 #include <sys/proc.h>
52 #include <sys/resource.h>
53 #include <sys/resourcevar.h>
54 #include <sys/runq.h>
55 #include <sys/sched.h>
56 #include <sys/sdt.h>
57 #include <sys/smp.h>
58 #include <sys/sx.h>
59 #include <sys/sysctl.h>
60 #include <sys/sysproto.h>
61 #include <sys/turnstile.h>
62 #include <sys/umtxvar.h>
63 #include <sys/vmmeter.h>
64 #include <sys/cpuset.h>
65 #include <sys/sbuf.h>
66 
67 #ifdef HWPMC_HOOKS
68 #include <sys/pmckern.h>
69 #endif
70 
71 #ifdef HWT_HOOKS
72 #include <dev/hwt/hwt_hook.h>
73 #endif
74 
75 #include <machine/cpu.h>
76 #include <machine/smp.h>
77 
78 #define	KTR_ULE	0
79 
80 #define	TS_NAME_LEN (MAXCOMLEN + sizeof(" td ") + sizeof(__XSTRING(UINT_MAX)))
81 #define	TDQ_NAME_LEN	(sizeof("sched lock ") + sizeof(__XSTRING(MAXCPU)))
82 #define	TDQ_LOADNAME_LEN	(sizeof("CPU ") + sizeof(__XSTRING(MAXCPU)) - 1 + sizeof(" load"))
83 
84 /*
85  * Thread scheduler specific section.  All fields are protected
86  * by the thread lock.
87  */
88 struct td_sched {
89 	short		ts_flags;	/* TSF_* flags. */
90 	int		ts_cpu;		/* CPU we are on, or were last on. */
91 	u_int		ts_rltick;	/* Real last tick, for affinity. */
92 	u_int		ts_slice;	/* Ticks of slice remaining. */
93 	u_int		ts_ftick;	/* %CPU window's first tick */
94 	u_int		ts_ltick;	/* %CPU window's last tick */
95 	/* All ticks count below are stored shifted by SCHED_TICK_SHIFT. */
96 	u_int		ts_slptime;	/* Number of ticks we vol. slept */
97 	u_int		ts_runtime;	/* Number of ticks we were running */
98 	u_int		ts_ticks;	/* pctcpu window's running tick count */
99 #ifdef KTR
100 	char		ts_name[TS_NAME_LEN];
101 #endif
102 };
103 /* flags kept in ts_flags */
104 #define	TSF_BOUND	0x0001		/* Thread can not migrate. */
105 #define	TSF_XFERABLE	0x0002		/* Thread was added as transferable. */
106 
107 #define	THREAD_CAN_MIGRATE(td)	((td)->td_pinned == 0)
108 #define	THREAD_CAN_SCHED(td, cpu)	\
109     CPU_ISSET((cpu), &(td)->td_cpuset->cs_mask)
110 
111 _Static_assert(sizeof(struct thread) + sizeof(struct td_sched) <=
112     sizeof(struct thread0_storage),
113     "increase struct thread0_storage.t0st_sched size");
114 
115 /*
116  * Priority ranges used for interactive and non-interactive timeshare
117  * threads.  The timeshare priorities are split up into four ranges.
118  * The first range handles interactive threads.  The last three ranges
119  * (NHALF, x, and NHALF) handle non-interactive threads with the outer
120  * ranges supporting nice values.
121  */
122 #define	PRI_TIMESHARE_RANGE	(PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE + 1)
123 #define	PRI_INTERACT_RANGE	((PRI_TIMESHARE_RANGE - SCHED_PRI_NRESV) / 2)
124 #define	PRI_BATCH_RANGE		(PRI_TIMESHARE_RANGE - PRI_INTERACT_RANGE)
125 
126 #define	PRI_MIN_INTERACT	PRI_MIN_TIMESHARE
127 #define	PRI_MAX_INTERACT	(PRI_MIN_TIMESHARE + PRI_INTERACT_RANGE - 1)
128 #define	PRI_MIN_BATCH		(PRI_MIN_TIMESHARE + PRI_INTERACT_RANGE)
129 #define	PRI_MAX_BATCH		PRI_MAX_TIMESHARE
130 
131 /*
132  * These macros determine priorities for non-interactive threads.  They are
133  * assigned a priority based on their recent cpu utilization as expressed
134  * by the ratio of ticks to the tick total.  NHALF priorities at the start
135  * and end of the MIN to MAX timeshare range are only reachable with negative
136  * or positive nice respectively.
137  *
138  * CPU_RANGE:	Length of range for priorities computed from CPU use.
139  * NICE:	Priority offset due to the nice value.
140  *              5/4 is to preserve historical nice effect on computation ratios.
141  * NRESV:	Number of priority levels reserved to account for nice values.
142  */
143 #define	SCHED_PRI_CPU_RANGE	(PRI_BATCH_RANGE - SCHED_PRI_NRESV)
144 #define	SCHED_PRI_NICE(nice)	(((nice) - PRIO_MIN) * 5 / 4)
145 #define	SCHED_PRI_NRESV		SCHED_PRI_NICE(PRIO_MAX)
146 
147 /*
148  * Runqueue indices for the implemented scheduling policies' priority bounds.
149  *
150  * In ULE's implementation, realtime policy covers the ITHD, REALTIME and
151  * INTERACT (see above) ranges, timesharing the BATCH range (see above), and
152  * idle policy the IDLE range.
153  *
154  * Priorities from these ranges must not be assigned to the same runqueue's
155  * queue.
156  */
157 #define	RQ_RT_POL_MIN		(RQ_PRI_TO_QUEUE_IDX(PRI_MIN_ITHD))
158 #define	RQ_RT_POL_MAX		(RQ_PRI_TO_QUEUE_IDX(PRI_MAX_INTERACT))
159 #define	RQ_TS_POL_MIN		(RQ_PRI_TO_QUEUE_IDX(PRI_MIN_BATCH))
160 #define	RQ_TS_POL_MAX		(RQ_PRI_TO_QUEUE_IDX(PRI_MAX_BATCH))
161 #define	RQ_ID_POL_MIN		(RQ_PRI_TO_QUEUE_IDX(PRI_MIN_IDLE))
162 #define	RQ_ID_POL_MAX		(RQ_PRI_TO_QUEUE_IDX(PRI_MAX_IDLE))
163 
164 _Static_assert(RQ_RT_POL_MAX != RQ_TS_POL_MIN,
165     "ULE's realtime and timeshare policies' runqueue ranges overlap");
166 _Static_assert(RQ_TS_POL_MAX != RQ_ID_POL_MIN,
167     "ULE's timeshare and idle policies' runqueue ranges overlap");
168 
169 /* Helper to treat the timeshare range as a circular group of queues. */
170 #define RQ_TS_POL_MODULO	(RQ_TS_POL_MAX - RQ_TS_POL_MIN + 1)
171 
172 /*
173  * Cpu percentage computation macros and defines.
174  *
175  * SCHED_TICK_SECS:	Max number of seconds to average the cpu usage across.
176  *   Must be at most 20 to avoid overflow in sched_pctcpu()'s current formula.
177  * SCHED_TICK_MAX:	Max number of hz ticks matching SCHED_TICK_SECS.
178  * SCHED_TICK_SHIFT:	Shift factor to avoid rounding away results.
179  * SCHED_TICK_RUN_SHIFTED: Number of shifted ticks running in last window.
180  * SCHED_TICK_LENGTH:	Length of last window in shifted ticks or 1 if empty.
181  * SCHED_CPU_DECAY_NUMER: Numerator of %CPU decay factor.
182  * SCHED_CPU_DECAY_DENOM: Denominator of %CPU decay factor.
183  */
184 #define	SCHED_TICK_SECS			11
185 #define	SCHED_TICK_MAX(hz)		((hz) * SCHED_TICK_SECS)
186 #define	SCHED_TICK_SHIFT		10
187 #define	SCHED_TICK_RUN_SHIFTED(ts)	((ts)->ts_ticks)
188 #define	SCHED_TICK_LENGTH(ts)		(max((ts)->ts_ltick - (ts)->ts_ftick, 1))
189 #define	SCHED_CPU_DECAY_NUMER		10
190 #define	SCHED_CPU_DECAY_DENOM		11
191 _Static_assert(SCHED_CPU_DECAY_NUMER >= 0 && SCHED_CPU_DECAY_DENOM > 0 &&
192     SCHED_CPU_DECAY_NUMER <= SCHED_CPU_DECAY_DENOM,
193     "Inconsistent values for SCHED_CPU_DECAY_NUMER and/or "
194     "SCHED_CPU_DECAY_DENOM");
195 
196 /*
197  * These determine the interactivity of a process.  Interactivity differs from
198  * cpu utilization in that it expresses the voluntary time slept vs time ran
199  * while cpu utilization includes all time not running.  This more accurately
200  * models the intent of the thread.
201  *
202  * SLP_RUN_MAX:	Maximum amount of sleep time + run time we'll accumulate
203  *		before throttling back.
204  * SLP_RUN_FORK:	Maximum slp+run time to inherit at fork time.
205  * INTERACT_MAX:	Maximum interactivity value.  Smaller is better.
206  * INTERACT_THRESH:	Threshold for placement on the current runq.
207  */
208 #define	SCHED_SLP_RUN_MAX	((hz * 5) << SCHED_TICK_SHIFT)
209 #define	SCHED_SLP_RUN_FORK	((hz / 2) << SCHED_TICK_SHIFT)
210 #define	SCHED_INTERACT_MAX	(100)
211 #define	SCHED_INTERACT_HALF	(SCHED_INTERACT_MAX / 2)
212 #define	SCHED_INTERACT_THRESH	(30)
213 
214 /*
215  * These parameters determine the slice behavior for batch work.
216  */
217 #define	SCHED_SLICE_DEFAULT_DIVISOR	10	/* ~94 ms, 12 stathz ticks. */
218 #define	SCHED_SLICE_MIN_DIVISOR		6	/* DEFAULT/MIN = ~16 ms. */
219 
220 /* Flags kept in td_flags. */
221 #define	TDF_PICKCPU	TDF_SCHED0	/* Thread should pick new CPU. */
222 #define	TDF_SLICEEND	TDF_SCHED2	/* Thread time slice is over. */
223 
224 /*
225  * tickincr:		Converts a stathz tick into a hz domain scaled by
226  *			the shift factor.  Without the shift the error rate
227  *			due to rounding would be unacceptably high.
228  * realstathz:		stathz is sometimes 0 and run off of hz.
229  * sched_slice:		Runtime of each thread before rescheduling.
230  * preempt_thresh:	Priority threshold for preemption and remote IPIs.
231  */
232 static u_int __read_mostly sched_interact = SCHED_INTERACT_THRESH;
233 static int __read_mostly tickincr = 8 << SCHED_TICK_SHIFT;
234 static int __read_mostly realstathz = 127;	/* reset during boot. */
235 static int __read_mostly sched_slice = 10;	/* reset during boot. */
236 static int __read_mostly sched_slice_min = 1;	/* reset during boot. */
237 #ifdef PREEMPTION
238 #ifdef FULL_PREEMPTION
239 static int __read_mostly preempt_thresh = PRI_MAX_IDLE;
240 #else
241 static int __read_mostly preempt_thresh = PRI_MIN_KERN;
242 #endif
243 #else
244 static int __read_mostly preempt_thresh = 0;
245 #endif
246 static int __read_mostly static_boost = PRI_MIN_BATCH;
247 static int __read_mostly sched_idlespins = 10000;
248 static int __read_mostly sched_idlespinthresh = -1;
249 
250 /*
251  * tdq - per processor runqs and statistics.  A mutex synchronizes access to
252  * most fields.  Some fields are loaded or modified without the mutex.
253  *
254  * Locking protocols:
255  * (c)  constant after initialization
256  * (f)  flag, set with the tdq lock held, cleared on local CPU
257  * (l)  all accesses are CPU-local
258  * (ls) stores are performed by the local CPU, loads may be lockless
259  * (t)  all accesses are protected by the tdq mutex
260  * (ts) stores are serialized by the tdq mutex, loads may be lockless
261  */
262 struct tdq {
263 	/*
264 	 * Ordered to improve efficiency of cpu_search() and switch().
265 	 * tdq_lock is padded to avoid false sharing with tdq_load and
266 	 * tdq_cpu_idle.
267 	 */
268 	struct mtx_padalign tdq_lock;	/* run queue lock. */
269 	struct cpu_group *tdq_cg;	/* (c) Pointer to cpu topology. */
270 	struct thread	*tdq_curthread;	/* (t) Current executing thread. */
271 	int		tdq_load;	/* (ts) Aggregate load. */
272 	int		tdq_sysload;	/* (ts) For loadavg, !ITHD load. */
273 	int		tdq_cpu_idle;	/* (ls) cpu_idle() is active. */
274 	int		tdq_transferable; /* (ts) Transferable thread count. */
275 	short		tdq_switchcnt;	/* (l) Switches this tick. */
276 	short		tdq_oldswitchcnt; /* (l) Switches last tick. */
277 	u_char		tdq_lowpri;	/* (ts) Lowest priority thread. */
278 	u_char		tdq_owepreempt;	/* (f) Remote preemption pending. */
279 	u_char		tdq_ts_off;	/* (t) TS insertion offset. */
280 	u_char		tdq_ts_deq_off;	/* (t) TS dequeue offset. */
281 	/*
282 	 * (t) Number of (stathz) ticks since last offset incrementation
283 	 * correction.
284 	 */
285 	u_char		tdq_ts_ticks;
286 	int		tdq_id;		/* (c) cpuid. */
287 	struct runq	tdq_runq;	/* (t) Run queue. */
288 	char		tdq_name[TDQ_NAME_LEN];
289 #ifdef KTR
290 	char		tdq_loadname[TDQ_LOADNAME_LEN];
291 #endif
292 };
293 
294 /* Idle thread states and config. */
295 #define	TDQ_RUNNING	1
296 #define	TDQ_IDLE	2
297 
298 /* Lockless accessors. */
299 #define	TDQ_LOAD(tdq)		atomic_load_int(&(tdq)->tdq_load)
300 #define	TDQ_TRANSFERABLE(tdq)	atomic_load_int(&(tdq)->tdq_transferable)
301 #define	TDQ_SWITCHCNT(tdq)	(atomic_load_short(&(tdq)->tdq_switchcnt) + \
302 				 atomic_load_short(&(tdq)->tdq_oldswitchcnt))
303 #define	TDQ_SWITCHCNT_INC(tdq)	(atomic_store_short(&(tdq)->tdq_switchcnt, \
304 				 atomic_load_short(&(tdq)->tdq_switchcnt) + 1))
305 
306 #ifdef SMP
307 
308 #define	SCHED_AFFINITY_DEFAULT	(max(1, hz / 1000))
309 /*
310  * This inequality has to be written with a positive difference of ticks to
311  * correctly handle wraparound.
312  */
313 #define	SCHED_AFFINITY(ts, t)	((u_int)ticks - (ts)->ts_rltick < (t) * affinity)
314 
315 /*
316  * Run-time tunables.
317  */
318 static int rebalance = 1;
319 static int balance_interval = 128;	/* Default set in sched_initticks(). */
320 static int __read_mostly affinity;
321 static int __read_mostly steal_idle = 1;
322 static int __read_mostly steal_thresh = 2;
323 static int __read_mostly always_steal = 0;
324 static int __read_mostly trysteal_limit = 2;
325 
326 /*
327  * One thread queue per processor.
328  */
329 static struct tdq __read_mostly *balance_tdq;
330 static int balance_ticks;
331 DPCPU_DEFINE_STATIC(struct tdq, tdq);
332 DPCPU_DEFINE_STATIC(uint32_t, randomval);
333 
334 #define	TDQ_SELF()	((struct tdq *)PCPU_GET(sched))
335 #define	TDQ_CPU(x)	(DPCPU_ID_PTR((x), tdq))
336 #define	TDQ_ID(x)	((x)->tdq_id)
337 #else	/* !SMP */
338 static struct tdq	tdq_cpu;
339 
340 #define	TDQ_ID(x)	(0)
341 #define	TDQ_SELF()	(&tdq_cpu)
342 #define	TDQ_CPU(x)	(&tdq_cpu)
343 #endif
344 
345 #define	TDQ_LOCK_ASSERT(t, type)	mtx_assert(TDQ_LOCKPTR((t)), (type))
346 #define	TDQ_LOCK(t)		mtx_lock_spin(TDQ_LOCKPTR((t)))
347 #define	TDQ_LOCK_FLAGS(t, f)	mtx_lock_spin_flags(TDQ_LOCKPTR((t)), (f))
348 #define	TDQ_TRYLOCK(t)		mtx_trylock_spin(TDQ_LOCKPTR((t)))
349 #define	TDQ_TRYLOCK_FLAGS(t, f)	mtx_trylock_spin_flags(TDQ_LOCKPTR((t)), (f))
350 #define	TDQ_UNLOCK(t)		mtx_unlock_spin(TDQ_LOCKPTR((t)))
351 #define	TDQ_LOCKPTR(t)		((struct mtx *)(&(t)->tdq_lock))
352 
353 static void sched_setpreempt(int);
354 static void sched_priority(struct thread *);
355 static void sched_thread_priority(struct thread *, u_char);
356 static int sched_interact_score(struct thread *);
357 static void sched_interact_update(struct thread *);
358 static void sched_interact_fork(struct thread *);
359 static void sched_pctcpu_update(struct td_sched *, int);
360 
361 /* Operations on per processor queues */
362 static inline struct thread *runq_choose_realtime(struct runq *const rq);
363 static inline struct thread *runq_choose_timeshare(struct runq *const rq,
364     int off);
365 static inline struct thread *runq_choose_idle(struct runq *const rq);
366 static struct thread *tdq_choose(struct tdq *);
367 
368 static void tdq_setup(struct tdq *, int i);
369 static void tdq_load_add(struct tdq *, struct thread *);
370 static void tdq_load_rem(struct tdq *, struct thread *);
371 static inline void tdq_runq_add(struct tdq *, struct thread *, int);
372 static inline void tdq_advance_ts_deq_off(struct tdq *, bool);
373 static inline void tdq_runq_rem(struct tdq *, struct thread *);
374 static inline int sched_shouldpreempt(int, int, int);
375 static void tdq_print(int cpu);
376 static void runq_print(struct runq *rq);
377 static int tdq_add(struct tdq *, struct thread *, int);
378 #ifdef SMP
379 static int tdq_move(struct tdq *, struct tdq *);
380 static int tdq_idled(struct tdq *);
381 static void tdq_notify(struct tdq *, int lowpri);
382 
383 static bool runq_steal_pred(const int idx, struct rq_queue *const q,
384     void *const data);
385 static inline struct thread *runq_steal_range(struct runq *const rq,
386     const int lvl_min, const int lvl_max, int cpu);
387 static inline struct thread *runq_steal_realtime(struct runq *const rq,
388     int cpu);
389 static inline struct thread *runq_steal_timeshare(struct runq *const rq,
390     int cpu, int off);
391 static inline struct thread *runq_steal_idle(struct runq *const rq,
392     int cpu);
393 static struct thread *tdq_steal(struct tdq *, int);
394 
395 static int sched_pickcpu(struct thread *, int);
396 static void sched_balance(void);
397 static bool sched_balance_pair(struct tdq *, struct tdq *);
398 static inline struct tdq *sched_setcpu(struct thread *, int, int);
399 static inline void thread_unblock_switch(struct thread *, struct mtx *);
400 #endif
401 
402 /*
403  * Print the threads waiting on a run-queue.
404  */
405 static void
runq_print(struct runq * rq)406 runq_print(struct runq *rq)
407 {
408 	struct rq_queue *rqq;
409 	struct thread *td;
410 	int pri;
411 	int j;
412 	int i;
413 
414 	for (i = 0; i < RQSW_NB; i++) {
415 		printf("\t\trunq bits %d %#lx\n",
416 		    i, rq->rq_status.rq_sw[i]);
417 		for (j = 0; j < RQSW_BPW; j++)
418 			if (rq->rq_status.rq_sw[i] & (1ul << j)) {
419 				pri = RQSW_TO_QUEUE_IDX(i, j);
420 				rqq = &rq->rq_queues[pri];
421 				TAILQ_FOREACH(td, rqq, td_runq) {
422 					printf("\t\t\ttd %p(%s) priority %d rqindex %d pri %d\n",
423 					    td, td->td_name, td->td_priority,
424 					    td->td_rqindex, pri);
425 				}
426 			}
427 	}
428 }
429 
430 /*
431  * Print the status of a per-cpu thread queue.  Should be a ddb show cmd.
432  */
433 static void __unused
tdq_print(int cpu)434 tdq_print(int cpu)
435 {
436 	struct tdq *tdq;
437 
438 	tdq = TDQ_CPU(cpu);
439 
440 	printf("tdq %d:\n", TDQ_ID(tdq));
441 	printf("\tlock               %p\n", TDQ_LOCKPTR(tdq));
442 	printf("\tLock name:         %s\n", tdq->tdq_name);
443 	printf("\tload:              %d\n", tdq->tdq_load);
444 	printf("\tswitch cnt:        %d\n", tdq->tdq_switchcnt);
445 	printf("\told switch cnt:    %d\n", tdq->tdq_oldswitchcnt);
446 	printf("\tTS insert offset:  %d\n", tdq->tdq_ts_off);
447 	printf("\tTS dequeue offset: %d\n", tdq->tdq_ts_deq_off);
448 	printf("\tload transferable: %d\n", tdq->tdq_transferable);
449 	printf("\tlowest priority:   %d\n", tdq->tdq_lowpri);
450 	printf("\trunq:\n");
451 	runq_print(&tdq->tdq_runq);
452 }
453 
454 static inline int
sched_shouldpreempt(int pri,int cpri,int remote)455 sched_shouldpreempt(int pri, int cpri, int remote)
456 {
457 	/*
458 	 * If the new priority is not better than the current priority there is
459 	 * nothing to do.
460 	 */
461 	if (pri >= cpri)
462 		return (0);
463 	/*
464 	 * Always preempt idle.
465 	 */
466 	if (cpri >= PRI_MIN_IDLE)
467 		return (1);
468 	/*
469 	 * If preemption is disabled don't preempt others.
470 	 */
471 	if (preempt_thresh == 0)
472 		return (0);
473 	/*
474 	 * Preempt if we exceed the threshold.
475 	 */
476 	if (pri <= preempt_thresh)
477 		return (1);
478 	/*
479 	 * If we're interactive or better and there is non-interactive
480 	 * or worse running preempt only remote processors.
481 	 */
482 	if (remote && pri <= PRI_MAX_INTERACT && cpri > PRI_MAX_INTERACT)
483 		return (1);
484 	return (0);
485 }
486 
487 /*
488  * Add a thread to the actual run-queue.  Keeps transferable counts up to
489  * date with what is actually on the run-queue.  Selects the correct
490  * queue position for timeshare threads.
491  */
492 static inline void
tdq_runq_add(struct tdq * tdq,struct thread * td,int flags)493 tdq_runq_add(struct tdq *tdq, struct thread *td, int flags)
494 {
495 	struct td_sched *ts;
496 	u_char pri, idx;
497 
498 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
499 	THREAD_LOCK_BLOCKED_ASSERT(td, MA_OWNED);
500 
501 	pri = td->td_priority;
502 	ts = td_get_sched(td);
503 	TD_SET_RUNQ(td);
504 	if (THREAD_CAN_MIGRATE(td)) {
505 		tdq->tdq_transferable++;
506 		ts->ts_flags |= TSF_XFERABLE;
507 	}
508 	if (PRI_MIN_BATCH <= pri && pri <= PRI_MAX_BATCH) {
509 		/*
510 		 * The queues allocated to the batch range are not used as
511 		 * a simple array but as a "circular" one where the insertion
512 		 * index (derived from 'pri') is offset by 'tdq_ts_off'. 'idx'
513 		 * is first set to the offset of the wanted queue in the TS'
514 		 * selection policy range.
515 		 */
516 		if ((flags & (SRQ_BORROWING|SRQ_PREEMPTED)) != 0)
517 			/* Current queue from which processes are being run. */
518 			idx = tdq->tdq_ts_deq_off;
519 		else {
520 			idx = (RQ_PRI_TO_QUEUE_IDX(pri) - RQ_TS_POL_MIN +
521 			    tdq->tdq_ts_off) % RQ_TS_POL_MODULO;
522 			/*
523 			 * We avoid enqueuing low priority threads in the queue
524 			 * that we are still draining, effectively shortening
525 			 * the runqueue by one queue.
526 			 */
527 			if (tdq->tdq_ts_deq_off != tdq->tdq_ts_off &&
528 			    idx == tdq->tdq_ts_deq_off)
529 				/* Ensure the dividend is positive. */
530 				idx = (idx - 1 + RQ_TS_POL_MODULO) %
531 				    RQ_TS_POL_MODULO;
532 		}
533 		/* Absolute queue index. */
534 		idx += RQ_TS_POL_MIN;
535 		runq_add_idx(&tdq->tdq_runq, td, idx, flags);
536 	} else
537 		runq_add(&tdq->tdq_runq, td, flags);
538 }
539 
540 /*
541  * Advance the timesharing dequeue offset to the next non-empty queue or the
542  * insertion offset, whichever is closer.
543  *
544  * If 'deq_queue_known_empty' is true, then the queue where timesharing threads
545  * are currently removed for execution (pointed to by 'tdq_ts_deq_off') is
546  * assumed empty.  Otherwise, this condition is checked for.
547  */
548 static inline void
tdq_advance_ts_deq_off(struct tdq * tdq,bool deq_queue_known_empty)549 tdq_advance_ts_deq_off(struct tdq *tdq, bool deq_queue_known_empty)
550 {
551 	/*
552 	 * We chose a simple iterative algorithm since the difference between
553 	 * offsets is small in practice (see sched_clock()).
554 	 */
555 	while (tdq->tdq_ts_deq_off != tdq->tdq_ts_off) {
556 		if (deq_queue_known_empty)
557 			deq_queue_known_empty = false;
558 		else if (!runq_is_queue_empty(&tdq->tdq_runq,
559 		    tdq->tdq_ts_deq_off + RQ_TS_POL_MIN))
560 			break;
561 
562 		tdq->tdq_ts_deq_off = (tdq->tdq_ts_deq_off + 1) %
563 		    RQ_TS_POL_MODULO;
564 	}
565 }
566 
567 /*
568  * Remove a thread from a run-queue.  This typically happens when a thread
569  * is selected to run.  Running threads are not on the queue and the
570  * transferable count does not reflect them.
571  */
572 static inline void
tdq_runq_rem(struct tdq * tdq,struct thread * td)573 tdq_runq_rem(struct tdq *tdq, struct thread *td)
574 {
575 	struct td_sched *ts;
576 	bool queue_empty;
577 
578 	ts = td_get_sched(td);
579 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
580 	THREAD_LOCK_BLOCKED_ASSERT(td, MA_OWNED);
581 	if (ts->ts_flags & TSF_XFERABLE) {
582 		tdq->tdq_transferable--;
583 		ts->ts_flags &= ~TSF_XFERABLE;
584 	}
585 	queue_empty = runq_remove(&tdq->tdq_runq, td);
586 	/*
587 	 * If thread has a batch priority and the queue from which it was
588 	 * removed is now empty, advance the batch's queue removal index if it
589 	 * lags with respect to the batch's queue insertion index, so that we
590 	 * may eventually be able to advance the latter in sched_clock().
591 	 */
592 	if (PRI_MIN_BATCH <= td->td_priority &&
593 	    td->td_priority <= PRI_MAX_BATCH && queue_empty &&
594 	    tdq->tdq_ts_deq_off + RQ_TS_POL_MIN == td->td_rqindex)
595 		tdq_advance_ts_deq_off(tdq, true);
596 }
597 
598 /*
599  * Load is maintained for all threads RUNNING and ON_RUNQ.  Add the load
600  * for this thread to the referenced thread queue.
601  */
602 static void
tdq_load_add(struct tdq * tdq,struct thread * td)603 tdq_load_add(struct tdq *tdq, struct thread *td)
604 {
605 
606 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
607 	THREAD_LOCK_BLOCKED_ASSERT(td, MA_OWNED);
608 
609 	tdq->tdq_load++;
610 	if ((td->td_flags & TDF_NOLOAD) == 0)
611 		tdq->tdq_sysload++;
612 	KTR_COUNTER0(KTR_SCHED, "load", tdq->tdq_loadname, tdq->tdq_load);
613 	SDT_PROBE2(sched, , , load__change, (int)TDQ_ID(tdq), tdq->tdq_load);
614 }
615 
616 /*
617  * Remove the load from a thread that is transitioning to a sleep state or
618  * exiting.
619  */
620 static void
tdq_load_rem(struct tdq * tdq,struct thread * td)621 tdq_load_rem(struct tdq *tdq, struct thread *td)
622 {
623 
624 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
625 	THREAD_LOCK_BLOCKED_ASSERT(td, MA_OWNED);
626 	KASSERT(tdq->tdq_load != 0,
627 	    ("tdq_load_rem: Removing with 0 load on queue %d", TDQ_ID(tdq)));
628 
629 	tdq->tdq_load--;
630 	if ((td->td_flags & TDF_NOLOAD) == 0)
631 		tdq->tdq_sysload--;
632 	KTR_COUNTER0(KTR_SCHED, "load", tdq->tdq_loadname, tdq->tdq_load);
633 	SDT_PROBE2(sched, , , load__change, (int)TDQ_ID(tdq), tdq->tdq_load);
634 }
635 
636 /*
637  * Bound timeshare latency by decreasing slice size as load increases.  We
638  * consider the maximum latency as the sum of the threads waiting to run
639  * aside from curthread and target no more than sched_slice latency but
640  * no less than sched_slice_min runtime.
641  */
642 static inline u_int
tdq_slice(struct tdq * tdq)643 tdq_slice(struct tdq *tdq)
644 {
645 	int load;
646 
647 	/*
648 	 * It is safe to use sys_load here because this is called from
649 	 * contexts where timeshare threads are running and so there
650 	 * cannot be higher priority load in the system.
651 	 */
652 	load = tdq->tdq_sysload - 1;
653 	if (load >= SCHED_SLICE_MIN_DIVISOR)
654 		return (sched_slice_min);
655 	if (load <= 1)
656 		return (sched_slice);
657 	return (sched_slice / load);
658 }
659 
660 /*
661  * Set lowpri to its exact value by searching the run-queue and
662  * evaluating curthread.  curthread may be passed as an optimization.
663  */
664 static void
tdq_setlowpri(struct tdq * tdq,struct thread * ctd)665 tdq_setlowpri(struct tdq *tdq, struct thread *ctd)
666 {
667 	struct thread *td;
668 
669 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
670 	if (ctd == NULL)
671 		ctd = tdq->tdq_curthread;
672 	td = tdq_choose(tdq);
673 	if (td == NULL || td->td_priority > ctd->td_priority)
674 		tdq->tdq_lowpri = ctd->td_priority;
675 	else
676 		tdq->tdq_lowpri = td->td_priority;
677 }
678 
679 #ifdef SMP
680 /*
681  * We need some randomness. Implement a classic Linear Congruential
682  * Generator X_{n+1}=(aX_n+c) mod m. These values are optimized for
683  * m = 2^32, a = 69069 and c = 5. We only return the upper 16 bits
684  * of the random state (in the low bits of our answer) to keep
685  * the maximum randomness.
686  */
687 static uint32_t
sched_random(void)688 sched_random(void)
689 {
690 	uint32_t *rndptr;
691 
692 	rndptr = DPCPU_PTR(randomval);
693 	*rndptr = *rndptr * 69069 + 5;
694 
695 	return (*rndptr >> 16);
696 }
697 
698 struct cpu_search {
699 	cpuset_t *cs_mask;	/* The mask of allowed CPUs to choose from. */
700 	int	cs_prefer;	/* Prefer this CPU and groups including it. */
701 	int	cs_running;	/* The thread is now running at cs_prefer. */
702 	int	cs_pri;		/* Min priority for low. */
703 	int	cs_load;	/* Max load for low, min load for high. */
704 	int	cs_trans;	/* Min transferable load for high. */
705 };
706 
707 struct cpu_search_res {
708 	int	csr_cpu;	/* The best CPU found. */
709 	int	csr_load;	/* The load of cs_cpu. */
710 };
711 
712 /*
713  * Search the tree of cpu_groups for the lowest or highest loaded CPU.
714  * These routines actually compare the load on all paths through the tree
715  * and find the least loaded cpu on the least loaded path, which may differ
716  * from the least loaded cpu in the system.  This balances work among caches
717  * and buses.
718  */
719 static int
cpu_search_lowest(const struct cpu_group * cg,const struct cpu_search * s,struct cpu_search_res * r)720 cpu_search_lowest(const struct cpu_group *cg, const struct cpu_search *s,
721     struct cpu_search_res *r)
722 {
723 	struct cpu_search_res lr;
724 	struct tdq *tdq;
725 	int c, bload, l, load, p, total;
726 
727 	total = 0;
728 	bload = INT_MAX;
729 	r->csr_cpu = -1;
730 
731 	/* Loop through children CPU groups if there are any. */
732 	if (cg->cg_children > 0) {
733 		for (c = cg->cg_children - 1; c >= 0; c--) {
734 			load = cpu_search_lowest(&cg->cg_child[c], s, &lr);
735 			total += load;
736 
737 			/*
738 			 * When balancing do not prefer SMT groups with load >1.
739 			 * It allows round-robin between SMT groups with equal
740 			 * load within parent group for more fair scheduling.
741 			 */
742 			if (__predict_false(s->cs_running) &&
743 			    (cg->cg_child[c].cg_flags & CG_FLAG_THREAD) &&
744 			    load >= 128 && (load & 128) != 0)
745 				load += 128;
746 
747 			if (lr.csr_cpu >= 0 && (load < bload ||
748 			    (load == bload && lr.csr_load < r->csr_load))) {
749 				bload = load;
750 				r->csr_cpu = lr.csr_cpu;
751 				r->csr_load = lr.csr_load;
752 			}
753 		}
754 		return (total);
755 	}
756 
757 	/* Loop through children CPUs otherwise. */
758 	for (c = cg->cg_last; c >= cg->cg_first; c--) {
759 		if (!CPU_ISSET(c, &cg->cg_mask))
760 			continue;
761 		tdq = TDQ_CPU(c);
762 		l = TDQ_LOAD(tdq);
763 		if (c == s->cs_prefer) {
764 			if (__predict_false(s->cs_running))
765 				l--;
766 			p = 128;
767 		} else
768 			p = 0;
769 		load = l * 256;
770 		total += load - p;
771 
772 		/*
773 		 * Check this CPU is acceptable.
774 		 * If the threads is already on the CPU, don't look on the TDQ
775 		 * priority, since it can be the priority of the thread itself.
776 		 */
777 		if (l > s->cs_load ||
778 		    (atomic_load_char(&tdq->tdq_lowpri) <= s->cs_pri &&
779 		     (!s->cs_running || c != s->cs_prefer)) ||
780 		    !CPU_ISSET(c, s->cs_mask))
781 			continue;
782 
783 		/*
784 		 * When balancing do not prefer CPUs with load > 1.
785 		 * It allows round-robin between CPUs with equal load
786 		 * within the CPU group for more fair scheduling.
787 		 */
788 		if (__predict_false(s->cs_running) && l > 0)
789 			p = 0;
790 
791 		load -= sched_random() % 128;
792 		if (bload > load - p) {
793 			bload = load - p;
794 			r->csr_cpu = c;
795 			r->csr_load = load;
796 		}
797 	}
798 	return (total);
799 }
800 
801 static int
cpu_search_highest(const struct cpu_group * cg,const struct cpu_search * s,struct cpu_search_res * r)802 cpu_search_highest(const struct cpu_group *cg, const struct cpu_search *s,
803     struct cpu_search_res *r)
804 {
805 	struct cpu_search_res lr;
806 	struct tdq *tdq;
807 	int c, bload, l, load, total;
808 
809 	total = 0;
810 	bload = INT_MIN;
811 	r->csr_cpu = -1;
812 
813 	/* Loop through children CPU groups if there are any. */
814 	if (cg->cg_children > 0) {
815 		for (c = cg->cg_children - 1; c >= 0; c--) {
816 			load = cpu_search_highest(&cg->cg_child[c], s, &lr);
817 			total += load;
818 			if (lr.csr_cpu >= 0 && (load > bload ||
819 			    (load == bload && lr.csr_load > r->csr_load))) {
820 				bload = load;
821 				r->csr_cpu = lr.csr_cpu;
822 				r->csr_load = lr.csr_load;
823 			}
824 		}
825 		return (total);
826 	}
827 
828 	/* Loop through children CPUs otherwise. */
829 	for (c = cg->cg_last; c >= cg->cg_first; c--) {
830 		if (!CPU_ISSET(c, &cg->cg_mask))
831 			continue;
832 		tdq = TDQ_CPU(c);
833 		l = TDQ_LOAD(tdq);
834 		load = l * 256;
835 		total += load;
836 
837 		/*
838 		 * Check this CPU is acceptable.
839 		 */
840 		if (l < s->cs_load || TDQ_TRANSFERABLE(tdq) < s->cs_trans ||
841 		    !CPU_ISSET(c, s->cs_mask))
842 			continue;
843 
844 		load -= sched_random() % 256;
845 		if (load > bload) {
846 			bload = load;
847 			r->csr_cpu = c;
848 		}
849 	}
850 	r->csr_load = bload;
851 	return (total);
852 }
853 
854 /*
855  * Find the cpu with the least load via the least loaded path that has a
856  * lowpri greater than pri  pri.  A pri of -1 indicates any priority is
857  * acceptable.
858  */
859 static inline int
sched_lowest(const struct cpu_group * cg,cpuset_t * mask,int pri,int maxload,int prefer,int running)860 sched_lowest(const struct cpu_group *cg, cpuset_t *mask, int pri, int maxload,
861     int prefer, int running)
862 {
863 	struct cpu_search s;
864 	struct cpu_search_res r;
865 
866 	s.cs_prefer = prefer;
867 	s.cs_running = running;
868 	s.cs_mask = mask;
869 	s.cs_pri = pri;
870 	s.cs_load = maxload;
871 	cpu_search_lowest(cg, &s, &r);
872 	return (r.csr_cpu);
873 }
874 
875 /*
876  * Find the cpu with the highest load via the highest loaded path.
877  */
878 static inline int
sched_highest(const struct cpu_group * cg,cpuset_t * mask,int minload,int mintrans)879 sched_highest(const struct cpu_group *cg, cpuset_t *mask, int minload,
880     int mintrans)
881 {
882 	struct cpu_search s;
883 	struct cpu_search_res r;
884 
885 	s.cs_mask = mask;
886 	s.cs_load = minload;
887 	s.cs_trans = mintrans;
888 	cpu_search_highest(cg, &s, &r);
889 	return (r.csr_cpu);
890 }
891 
892 static void
sched_balance_group(struct cpu_group * cg)893 sched_balance_group(struct cpu_group *cg)
894 {
895 	struct tdq *tdq;
896 	struct thread *td;
897 	cpuset_t hmask, lmask;
898 	int high, low, anylow;
899 
900 	CPU_FILL(&hmask);
901 	for (;;) {
902 		high = sched_highest(cg, &hmask, 1, 0);
903 		/* Stop if there is no more CPU with transferrable threads. */
904 		if (high == -1)
905 			break;
906 		CPU_CLR(high, &hmask);
907 		CPU_COPY(&hmask, &lmask);
908 		/* Stop if there is no more CPU left for low. */
909 		if (CPU_EMPTY(&lmask))
910 			break;
911 		tdq = TDQ_CPU(high);
912 		if (TDQ_LOAD(tdq) == 1) {
913 			/*
914 			 * There is only one running thread.  We can't move
915 			 * it from here, so tell it to pick new CPU by itself.
916 			 */
917 			TDQ_LOCK(tdq);
918 			td = tdq->tdq_curthread;
919 			if (td->td_lock == TDQ_LOCKPTR(tdq) &&
920 			    (td->td_flags & TDF_IDLETD) == 0 &&
921 			    THREAD_CAN_MIGRATE(td)) {
922 				td->td_flags |= TDF_PICKCPU;
923 				ast_sched_locked(td, TDA_SCHED);
924 				if (high != curcpu)
925 					ipi_cpu(high, IPI_AST);
926 			}
927 			TDQ_UNLOCK(tdq);
928 			break;
929 		}
930 		anylow = 1;
931 nextlow:
932 		if (TDQ_TRANSFERABLE(tdq) == 0)
933 			continue;
934 		low = sched_lowest(cg, &lmask, -1, TDQ_LOAD(tdq) - 1, high, 1);
935 		/* Stop if we looked well and found no less loaded CPU. */
936 		if (anylow && low == -1)
937 			break;
938 		/* Go to next high if we found no less loaded CPU. */
939 		if (low == -1)
940 			continue;
941 		/* Transfer thread from high to low. */
942 		if (sched_balance_pair(tdq, TDQ_CPU(low))) {
943 			/* CPU that got thread can no longer be a donor. */
944 			CPU_CLR(low, &hmask);
945 		} else {
946 			/*
947 			 * If failed, then there is no threads on high
948 			 * that can run on this low. Drop low from low
949 			 * mask and look for different one.
950 			 */
951 			CPU_CLR(low, &lmask);
952 			anylow = 0;
953 			goto nextlow;
954 		}
955 	}
956 }
957 
958 static void
sched_balance(void)959 sched_balance(void)
960 {
961 	struct tdq *tdq;
962 
963 	balance_ticks = max(balance_interval / 2, 1) +
964 	    (sched_random() % balance_interval);
965 	tdq = TDQ_SELF();
966 	TDQ_UNLOCK(tdq);
967 	sched_balance_group(cpu_top);
968 	TDQ_LOCK(tdq);
969 }
970 
971 /*
972  * Lock two thread queues using their address to maintain lock order.
973  */
974 static void
tdq_lock_pair(struct tdq * one,struct tdq * two)975 tdq_lock_pair(struct tdq *one, struct tdq *two)
976 {
977 	if (one < two) {
978 		TDQ_LOCK(one);
979 		TDQ_LOCK_FLAGS(two, MTX_DUPOK);
980 	} else {
981 		TDQ_LOCK(two);
982 		TDQ_LOCK_FLAGS(one, MTX_DUPOK);
983 	}
984 }
985 
986 /*
987  * Unlock two thread queues.  Order is not important here.
988  */
989 static void
tdq_unlock_pair(struct tdq * one,struct tdq * two)990 tdq_unlock_pair(struct tdq *one, struct tdq *two)
991 {
992 	TDQ_UNLOCK(one);
993 	TDQ_UNLOCK(two);
994 }
995 
996 /*
997  * Transfer load between two imbalanced thread queues.  Returns true if a thread
998  * was moved between the queues, and false otherwise.
999  */
1000 static bool
sched_balance_pair(struct tdq * high,struct tdq * low)1001 sched_balance_pair(struct tdq *high, struct tdq *low)
1002 {
1003 	int cpu, lowpri;
1004 	bool ret;
1005 
1006 	ret = false;
1007 	tdq_lock_pair(high, low);
1008 
1009 	/*
1010 	 * Transfer a thread from high to low.
1011 	 */
1012 	if (high->tdq_transferable != 0 && high->tdq_load > low->tdq_load) {
1013 		lowpri = tdq_move(high, low);
1014 		if (lowpri != -1) {
1015 			/*
1016 			 * In case the target isn't the current CPU notify it of
1017 			 * the new load, possibly sending an IPI to force it to
1018 			 * reschedule.  Otherwise maybe schedule a preemption.
1019 			 */
1020 			cpu = TDQ_ID(low);
1021 			if (cpu != PCPU_GET(cpuid))
1022 				tdq_notify(low, lowpri);
1023 			else
1024 				sched_setpreempt(low->tdq_lowpri);
1025 			ret = true;
1026 		}
1027 	}
1028 	tdq_unlock_pair(high, low);
1029 	return (ret);
1030 }
1031 
1032 /*
1033  * Move a thread from one thread queue to another.  Returns -1 if the source
1034  * queue was empty, else returns the maximum priority of all threads in
1035  * the destination queue prior to the addition of the new thread.  In the latter
1036  * case, this priority can be used to determine whether an IPI needs to be
1037  * delivered.
1038  */
1039 static int
tdq_move(struct tdq * from,struct tdq * to)1040 tdq_move(struct tdq *from, struct tdq *to)
1041 {
1042 	struct thread *td;
1043 	int cpu;
1044 
1045 	TDQ_LOCK_ASSERT(from, MA_OWNED);
1046 	TDQ_LOCK_ASSERT(to, MA_OWNED);
1047 
1048 	cpu = TDQ_ID(to);
1049 	td = tdq_steal(from, cpu);
1050 	if (td == NULL)
1051 		return (-1);
1052 
1053 	/*
1054 	 * Although the run queue is locked the thread may be
1055 	 * blocked.  We can not set the lock until it is unblocked.
1056 	 */
1057 	thread_lock_block_wait(td);
1058 	sched_rem(td);
1059 	THREAD_LOCKPTR_ASSERT(td, TDQ_LOCKPTR(from));
1060 	td->td_lock = TDQ_LOCKPTR(to);
1061 	td_get_sched(td)->ts_cpu = cpu;
1062 	return (tdq_add(to, td, SRQ_YIELDING));
1063 }
1064 
1065 /*
1066  * This tdq has idled.  Try to steal a thread from another cpu and switch
1067  * to it.
1068  */
1069 static int
tdq_idled(struct tdq * tdq)1070 tdq_idled(struct tdq *tdq)
1071 {
1072 	struct cpu_group *cg, *parent;
1073 	struct tdq *steal;
1074 	cpuset_t mask;
1075 	int cpu, switchcnt, goup;
1076 
1077 	if (smp_started == 0 || steal_idle == 0 || tdq->tdq_cg == NULL)
1078 		return (1);
1079 	CPU_FILL(&mask);
1080 	CPU_CLR(PCPU_GET(cpuid), &mask);
1081 restart:
1082 	switchcnt = TDQ_SWITCHCNT(tdq);
1083 	for (cg = tdq->tdq_cg, goup = 0; ; ) {
1084 		cpu = sched_highest(cg, &mask, steal_thresh, 1);
1085 		/*
1086 		 * We were assigned a thread but not preempted.  Returning
1087 		 * 0 here will cause our caller to switch to it.
1088 		 */
1089 		if (TDQ_LOAD(tdq))
1090 			return (0);
1091 
1092 		/*
1093 		 * We found no CPU to steal from in this group.  Escalate to
1094 		 * the parent and repeat.  But if parent has only two children
1095 		 * groups we can avoid searching this group again by searching
1096 		 * the other one specifically and then escalating two levels.
1097 		 */
1098 		if (cpu == -1) {
1099 			if (goup) {
1100 				cg = cg->cg_parent;
1101 				goup = 0;
1102 			}
1103 			parent = cg->cg_parent;
1104 			if (parent == NULL)
1105 				return (1);
1106 			if (parent->cg_children == 2) {
1107 				if (cg == &parent->cg_child[0])
1108 					cg = &parent->cg_child[1];
1109 				else
1110 					cg = &parent->cg_child[0];
1111 				goup = 1;
1112 			} else
1113 				cg = parent;
1114 			continue;
1115 		}
1116 		steal = TDQ_CPU(cpu);
1117 		/*
1118 		 * The data returned by sched_highest() is stale and
1119 		 * the chosen CPU no longer has an eligible thread.
1120 		 *
1121 		 * Testing this ahead of tdq_lock_pair() only catches
1122 		 * this situation about 20% of the time on an 8 core
1123 		 * 16 thread Ryzen 7, but it still helps performance.
1124 		 */
1125 		if (TDQ_LOAD(steal) < steal_thresh ||
1126 		    TDQ_TRANSFERABLE(steal) == 0)
1127 			goto restart;
1128 		/*
1129 		 * Try to lock both queues. If we are assigned a thread while
1130 		 * waited for the lock, switch to it now instead of stealing.
1131 		 * If we can't get the lock, then somebody likely got there
1132 		 * first so continue searching.
1133 		 */
1134 		TDQ_LOCK(tdq);
1135 		if (tdq->tdq_load > 0) {
1136 			mi_switch(SW_VOL | SWT_IDLE);
1137 			return (0);
1138 		}
1139 		if (TDQ_TRYLOCK_FLAGS(steal, MTX_DUPOK) == 0) {
1140 			TDQ_UNLOCK(tdq);
1141 			CPU_CLR(cpu, &mask);
1142 			continue;
1143 		}
1144 		/*
1145 		 * The data returned by sched_highest() is stale and
1146 		 * the chosen CPU no longer has an eligible thread, or
1147 		 * we were preempted and the CPU loading info may be out
1148 		 * of date.  The latter is rare.  In either case restart
1149 		 * the search.
1150 		 */
1151 		if (TDQ_LOAD(steal) < steal_thresh ||
1152 		    TDQ_TRANSFERABLE(steal) == 0 ||
1153 		    switchcnt != TDQ_SWITCHCNT(tdq)) {
1154 			tdq_unlock_pair(tdq, steal);
1155 			goto restart;
1156 		}
1157 		/*
1158 		 * Steal the thread and switch to it.
1159 		 */
1160 		if (tdq_move(steal, tdq) != -1)
1161 			break;
1162 		/*
1163 		 * We failed to acquire a thread even though it looked
1164 		 * like one was available.  This could be due to affinity
1165 		 * restrictions or for other reasons.  Loop again after
1166 		 * removing this CPU from the set.  The restart logic
1167 		 * above does not restore this CPU to the set due to the
1168 		 * likelyhood of failing here again.
1169 		 */
1170 		CPU_CLR(cpu, &mask);
1171 		tdq_unlock_pair(tdq, steal);
1172 	}
1173 	TDQ_UNLOCK(steal);
1174 	mi_switch(SW_VOL | SWT_IDLE);
1175 	return (0);
1176 }
1177 
1178 /*
1179  * Notify a remote cpu of new work.  Sends an IPI if criteria are met.
1180  *
1181  * "lowpri" is the minimum scheduling priority among all threads on
1182  * the queue prior to the addition of the new thread.
1183  */
1184 static void
tdq_notify(struct tdq * tdq,int lowpri)1185 tdq_notify(struct tdq *tdq, int lowpri)
1186 {
1187 	int cpu;
1188 
1189 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
1190 	KASSERT(tdq->tdq_lowpri <= lowpri,
1191 	    ("tdq_notify: lowpri %d > tdq_lowpri %d", lowpri, tdq->tdq_lowpri));
1192 
1193 	if (tdq->tdq_owepreempt)
1194 		return;
1195 
1196 	/*
1197 	 * Check to see if the newly added thread should preempt the one
1198 	 * currently running.
1199 	 */
1200 	if (!sched_shouldpreempt(tdq->tdq_lowpri, lowpri, 1))
1201 		return;
1202 
1203 	/*
1204 	 * Make sure that our caller's earlier update to tdq_load is
1205 	 * globally visible before we read tdq_cpu_idle.  Idle thread
1206 	 * accesses both of them without locks, and the order is important.
1207 	 */
1208 	atomic_thread_fence_seq_cst();
1209 
1210 	/*
1211 	 * Try to figure out if we can signal the idle thread instead of sending
1212 	 * an IPI.  This check is racy; at worst, we will deliever an IPI
1213 	 * unnecessarily.
1214 	 */
1215 	cpu = TDQ_ID(tdq);
1216 	if (TD_IS_IDLETHREAD(tdq->tdq_curthread) &&
1217 	    (atomic_load_int(&tdq->tdq_cpu_idle) == 0 || cpu_idle_wakeup(cpu)))
1218 		return;
1219 
1220 	/*
1221 	 * The run queues have been updated, so any switch on the remote CPU
1222 	 * will satisfy the preemption request.
1223 	 */
1224 	tdq->tdq_owepreempt = 1;
1225 	ipi_cpu(cpu, IPI_PREEMPT);
1226 }
1227 
1228 struct runq_steal_pred_data {
1229 	struct thread	*td;
1230 	int		cpu;
1231 };
1232 
1233 static bool
runq_steal_pred(const int idx,struct rq_queue * const q,void * const data)1234 runq_steal_pred(const int idx, struct rq_queue *const q, void *const data)
1235 {
1236 	struct runq_steal_pred_data *const d = data;
1237 	struct thread *td;
1238 
1239 	TAILQ_FOREACH(td, q, td_runq) {
1240 		if (THREAD_CAN_MIGRATE(td) && THREAD_CAN_SCHED(td, d->cpu)) {
1241 			d->td = td;
1242 			return (true);
1243 		}
1244 	}
1245 
1246 	return (false);
1247 }
1248 
1249 /*
1250  * Steals load contained in queues with indices in the specified range.
1251  */
1252 static inline struct thread *
runq_steal_range(struct runq * const rq,const int lvl_min,const int lvl_max,int cpu)1253 runq_steal_range(struct runq *const rq, const int lvl_min, const int lvl_max,
1254     int cpu)
1255 {
1256 	struct runq_steal_pred_data data = {
1257 		.td = NULL,
1258 		.cpu = cpu,
1259 	};
1260 	int idx;
1261 
1262 	idx = runq_findq(rq, lvl_min, lvl_max, &runq_steal_pred, &data);
1263 	if (idx != -1) {
1264 		MPASS(data.td != NULL);
1265 		return (data.td);
1266 	}
1267 
1268 	MPASS(data.td == NULL);
1269 	return (NULL);
1270 }
1271 
1272 static inline struct thread *
runq_steal_realtime(struct runq * const rq,int cpu)1273 runq_steal_realtime(struct runq *const rq, int cpu)
1274 {
1275 
1276 	return (runq_steal_range(rq, RQ_RT_POL_MIN, RQ_RT_POL_MAX, cpu));
1277 }
1278 
1279 /*
1280  * Steals load from a timeshare queue.  Honors the rotating queue head
1281  * index.
1282  */
1283 static inline struct thread *
runq_steal_timeshare(struct runq * const rq,int cpu,int off)1284 runq_steal_timeshare(struct runq *const rq, int cpu, int off)
1285 {
1286 	struct thread *td;
1287 
1288 	MPASS(0 <= off && off < RQ_TS_POL_MODULO);
1289 
1290 	td = runq_steal_range(rq, RQ_TS_POL_MIN + off, RQ_TS_POL_MAX, cpu);
1291 	if (td != NULL || off == 0)
1292 		return (td);
1293 
1294 	td = runq_steal_range(rq, RQ_TS_POL_MIN, RQ_TS_POL_MIN + off - 1, cpu);
1295 	return (td);
1296 }
1297 
1298 static inline struct thread *
runq_steal_idle(struct runq * const rq,int cpu)1299 runq_steal_idle(struct runq *const rq, int cpu)
1300 {
1301 
1302 	return (runq_steal_range(rq, RQ_ID_POL_MIN, RQ_ID_POL_MAX, cpu));
1303 }
1304 
1305 
1306 /*
1307  * Attempt to steal a thread in priority order from a thread queue.
1308  */
1309 static struct thread *
tdq_steal(struct tdq * tdq,int cpu)1310 tdq_steal(struct tdq *tdq, int cpu)
1311 {
1312 	struct thread *td;
1313 
1314 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
1315 	td = runq_steal_realtime(&tdq->tdq_runq, cpu);
1316 	if (td != NULL)
1317 		return (td);
1318 	td = runq_steal_timeshare(&tdq->tdq_runq, cpu, tdq->tdq_ts_deq_off);
1319 	if (td != NULL)
1320 		return (td);
1321 	return (runq_steal_idle(&tdq->tdq_runq, cpu));
1322 }
1323 
1324 /*
1325  * Sets the thread lock and ts_cpu to match the requested cpu.  Unlocks the
1326  * current lock and returns with the assigned queue locked.
1327  */
1328 static inline struct tdq *
sched_setcpu(struct thread * td,int cpu,int flags)1329 sched_setcpu(struct thread *td, int cpu, int flags)
1330 {
1331 
1332 	struct tdq *tdq;
1333 	struct mtx *mtx;
1334 
1335 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1336 	tdq = TDQ_CPU(cpu);
1337 	td_get_sched(td)->ts_cpu = cpu;
1338 	/*
1339 	 * If the lock matches just return the queue.
1340 	 */
1341 	if (td->td_lock == TDQ_LOCKPTR(tdq)) {
1342 		KASSERT((flags & SRQ_HOLD) == 0,
1343 		    ("sched_setcpu: Invalid lock for SRQ_HOLD"));
1344 		return (tdq);
1345 	}
1346 
1347 	/*
1348 	 * The hard case, migration, we need to block the thread first to
1349 	 * prevent order reversals with other cpus locks.
1350 	 */
1351 	spinlock_enter();
1352 	mtx = thread_lock_block(td);
1353 	if ((flags & SRQ_HOLD) == 0)
1354 		mtx_unlock_spin(mtx);
1355 	TDQ_LOCK(tdq);
1356 	thread_lock_unblock(td, TDQ_LOCKPTR(tdq));
1357 	spinlock_exit();
1358 	return (tdq);
1359 }
1360 
1361 SCHED_STAT_DEFINE(pickcpu_intrbind, "Soft interrupt binding");
1362 SCHED_STAT_DEFINE(pickcpu_idle_affinity, "Picked idle cpu based on affinity");
1363 SCHED_STAT_DEFINE(pickcpu_affinity, "Picked cpu based on affinity");
1364 SCHED_STAT_DEFINE(pickcpu_lowest, "Selected lowest load");
1365 SCHED_STAT_DEFINE(pickcpu_local, "Migrated to current cpu");
1366 SCHED_STAT_DEFINE(pickcpu_migration, "Selection may have caused migration");
1367 
1368 static int
sched_pickcpu(struct thread * td,int flags)1369 sched_pickcpu(struct thread *td, int flags)
1370 {
1371 	struct cpu_group *cg, *ccg;
1372 	struct td_sched *ts;
1373 	struct tdq *tdq;
1374 	cpuset_t *mask;
1375 	int cpu, pri, r, self, intr;
1376 
1377 	self = PCPU_GET(cpuid);
1378 	ts = td_get_sched(td);
1379 	KASSERT(!CPU_ABSENT(ts->ts_cpu), ("sched_pickcpu: Start scheduler on "
1380 	    "absent CPU %d for thread %s.", ts->ts_cpu, td->td_name));
1381 	if (smp_started == 0)
1382 		return (self);
1383 	/*
1384 	 * Don't migrate a running thread from sched_switch().
1385 	 */
1386 	if ((flags & SRQ_OURSELF) || !THREAD_CAN_MIGRATE(td))
1387 		return (ts->ts_cpu);
1388 	/*
1389 	 * Prefer to run interrupt threads on the processors that generate
1390 	 * the interrupt.
1391 	 */
1392 	if (td->td_priority <= PRI_MAX_ITHD && THREAD_CAN_SCHED(td, self) &&
1393 	    curthread->td_intr_nesting_level) {
1394 		tdq = TDQ_SELF();
1395 		if (tdq->tdq_lowpri >= PRI_MIN_IDLE) {
1396 			SCHED_STAT_INC(pickcpu_idle_affinity);
1397 			return (self);
1398 		}
1399 		ts->ts_cpu = self;
1400 		intr = 1;
1401 		cg = tdq->tdq_cg;
1402 		goto llc;
1403 	} else {
1404 		intr = 0;
1405 		tdq = TDQ_CPU(ts->ts_cpu);
1406 		cg = tdq->tdq_cg;
1407 	}
1408 	/*
1409 	 * If the thread can run on the last cpu and the affinity has not
1410 	 * expired and it is idle, run it there.
1411 	 */
1412 	if (THREAD_CAN_SCHED(td, ts->ts_cpu) &&
1413 	    atomic_load_char(&tdq->tdq_lowpri) >= PRI_MIN_IDLE &&
1414 	    SCHED_AFFINITY(ts, CG_SHARE_L2)) {
1415 		if (cg->cg_flags & CG_FLAG_THREAD) {
1416 			/* Check all SMT threads for being idle. */
1417 			for (cpu = cg->cg_first; cpu <= cg->cg_last; cpu++) {
1418 				pri =
1419 				    atomic_load_char(&TDQ_CPU(cpu)->tdq_lowpri);
1420 				if (CPU_ISSET(cpu, &cg->cg_mask) &&
1421 				    pri < PRI_MIN_IDLE)
1422 					break;
1423 			}
1424 			if (cpu > cg->cg_last) {
1425 				SCHED_STAT_INC(pickcpu_idle_affinity);
1426 				return (ts->ts_cpu);
1427 			}
1428 		} else {
1429 			SCHED_STAT_INC(pickcpu_idle_affinity);
1430 			return (ts->ts_cpu);
1431 		}
1432 	}
1433 llc:
1434 	/*
1435 	 * Search for the last level cache CPU group in the tree.
1436 	 * Skip SMT, identical groups and caches with expired affinity.
1437 	 * Interrupt threads affinity is explicit and never expires.
1438 	 */
1439 	for (ccg = NULL; cg != NULL; cg = cg->cg_parent) {
1440 		if (cg->cg_flags & CG_FLAG_THREAD)
1441 			continue;
1442 		if (cg->cg_children == 1 || cg->cg_count == 1)
1443 			continue;
1444 		if (cg->cg_level == CG_SHARE_NONE ||
1445 		    (!intr && !SCHED_AFFINITY(ts, cg->cg_level)))
1446 			continue;
1447 		ccg = cg;
1448 	}
1449 	/* Found LLC shared by all CPUs, so do a global search. */
1450 	if (ccg == cpu_top)
1451 		ccg = NULL;
1452 	cpu = -1;
1453 	mask = &td->td_cpuset->cs_mask;
1454 	pri = td->td_priority;
1455 	r = TD_IS_RUNNING(td);
1456 	/*
1457 	 * Try hard to keep interrupts within found LLC.  Search the LLC for
1458 	 * the least loaded CPU we can run now.  For NUMA systems it should
1459 	 * be within target domain, and it also reduces scheduling overhead.
1460 	 */
1461 	if (ccg != NULL && intr) {
1462 		cpu = sched_lowest(ccg, mask, pri, INT_MAX, ts->ts_cpu, r);
1463 		if (cpu >= 0)
1464 			SCHED_STAT_INC(pickcpu_intrbind);
1465 	} else
1466 	/* Search the LLC for the least loaded idle CPU we can run now. */
1467 	if (ccg != NULL) {
1468 		cpu = sched_lowest(ccg, mask, max(pri, PRI_MAX_TIMESHARE),
1469 		    INT_MAX, ts->ts_cpu, r);
1470 		if (cpu >= 0)
1471 			SCHED_STAT_INC(pickcpu_affinity);
1472 	}
1473 	/* Search globally for the least loaded CPU we can run now. */
1474 	if (cpu < 0) {
1475 		cpu = sched_lowest(cpu_top, mask, pri, INT_MAX, ts->ts_cpu, r);
1476 		if (cpu >= 0)
1477 			SCHED_STAT_INC(pickcpu_lowest);
1478 	}
1479 	/* Search globally for the least loaded CPU. */
1480 	if (cpu < 0) {
1481 		cpu = sched_lowest(cpu_top, mask, -1, INT_MAX, ts->ts_cpu, r);
1482 		if (cpu >= 0)
1483 			SCHED_STAT_INC(pickcpu_lowest);
1484 	}
1485 	KASSERT(cpu >= 0, ("sched_pickcpu: Failed to find a cpu."));
1486 	KASSERT(!CPU_ABSENT(cpu), ("sched_pickcpu: Picked absent CPU %d.", cpu));
1487 	/*
1488 	 * Compare the lowest loaded cpu to current cpu.
1489 	 */
1490 	tdq = TDQ_CPU(cpu);
1491 	if (THREAD_CAN_SCHED(td, self) && TDQ_SELF()->tdq_lowpri > pri &&
1492 	    atomic_load_char(&tdq->tdq_lowpri) < PRI_MIN_IDLE &&
1493 	    TDQ_LOAD(TDQ_SELF()) <= TDQ_LOAD(tdq) + 1) {
1494 		SCHED_STAT_INC(pickcpu_local);
1495 		cpu = self;
1496 	}
1497 	if (cpu != ts->ts_cpu)
1498 		SCHED_STAT_INC(pickcpu_migration);
1499 	return (cpu);
1500 }
1501 #endif
1502 
1503 static inline struct thread *
runq_choose_realtime(struct runq * const rq)1504 runq_choose_realtime(struct runq *const rq)
1505 {
1506 
1507 	return (runq_first_thread_range(rq, RQ_RT_POL_MIN, RQ_RT_POL_MAX));
1508 }
1509 
1510 static struct thread *
runq_choose_timeshare(struct runq * const rq,int off)1511 runq_choose_timeshare(struct runq *const rq, int off)
1512 {
1513 	struct thread *td;
1514 
1515 	MPASS(0 <= off && off < RQ_TS_POL_MODULO);
1516 
1517 	td = runq_first_thread_range(rq, RQ_TS_POL_MIN + off, RQ_TS_POL_MAX);
1518 	if (td != NULL || off == 0)
1519 		return (td);
1520 
1521 	td = runq_first_thread_range(rq, RQ_TS_POL_MIN, RQ_TS_POL_MIN + off - 1);
1522 	return (td);
1523 }
1524 
1525 static inline struct thread *
runq_choose_idle(struct runq * const rq)1526 runq_choose_idle(struct runq *const rq)
1527 {
1528 
1529 	return (runq_first_thread_range(rq, RQ_ID_POL_MIN, RQ_ID_POL_MAX));
1530 }
1531 
1532 /*
1533  * Pick the highest priority task we have and return it.
1534  */
1535 static struct thread *
tdq_choose(struct tdq * tdq)1536 tdq_choose(struct tdq *tdq)
1537 {
1538 	struct thread *td;
1539 
1540 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
1541 	td = runq_choose_realtime(&tdq->tdq_runq);
1542 	if (td != NULL)
1543 		return (td);
1544 	td = runq_choose_timeshare(&tdq->tdq_runq, tdq->tdq_ts_deq_off);
1545 	if (td != NULL) {
1546 		KASSERT(td->td_priority >= PRI_MIN_BATCH,
1547 		    ("tdq_choose: Invalid priority on timeshare queue %d",
1548 		    td->td_priority));
1549 		return (td);
1550 	}
1551 	td = runq_choose_idle(&tdq->tdq_runq);
1552 	if (td != NULL) {
1553 		KASSERT(td->td_priority >= PRI_MIN_IDLE,
1554 		    ("tdq_choose: Invalid priority on idle queue %d",
1555 		    td->td_priority));
1556 		return (td);
1557 	}
1558 
1559 	return (NULL);
1560 }
1561 
1562 /*
1563  * Initialize a thread queue.
1564  */
1565 static void
tdq_setup(struct tdq * tdq,int id)1566 tdq_setup(struct tdq *tdq, int id)
1567 {
1568 
1569 	if (bootverbose)
1570 		printf("ULE: setup cpu %d\n", id);
1571 	runq_init(&tdq->tdq_runq);
1572 	tdq->tdq_id = id;
1573 	snprintf(tdq->tdq_name, sizeof(tdq->tdq_name),
1574 	    "sched lock %d", (int)TDQ_ID(tdq));
1575 	mtx_init(&tdq->tdq_lock, tdq->tdq_name, "sched lock", MTX_SPIN);
1576 #ifdef KTR
1577 	snprintf(tdq->tdq_loadname, sizeof(tdq->tdq_loadname),
1578 	    "CPU %d load", (int)TDQ_ID(tdq));
1579 #endif
1580 }
1581 
1582 #ifdef SMP
1583 static void
sched_setup_smp(void)1584 sched_setup_smp(void)
1585 {
1586 	struct tdq *tdq;
1587 	int i;
1588 
1589 	CPU_FOREACH(i) {
1590 		tdq = DPCPU_ID_PTR(i, tdq);
1591 		tdq_setup(tdq, i);
1592 		tdq->tdq_cg = smp_topo_find(cpu_top, i);
1593 		if (tdq->tdq_cg == NULL)
1594 			panic("Can't find cpu group for %d\n", i);
1595 		DPCPU_ID_SET(i, randomval, i * 69069 + 5);
1596 	}
1597 	PCPU_SET(sched, DPCPU_PTR(tdq));
1598 	balance_tdq = TDQ_SELF();
1599 }
1600 #endif
1601 
1602 /*
1603  * Setup the thread queues and initialize the topology based on MD
1604  * information.
1605  */
1606 static void
sched_ule_setup(void)1607 sched_ule_setup(void)
1608 {
1609 	struct tdq *tdq;
1610 
1611 #ifdef SMP
1612 	sched_setup_smp();
1613 #else
1614 	tdq_setup(TDQ_SELF(), 0);
1615 #endif
1616 	tdq = TDQ_SELF();
1617 
1618 	/* Add thread0's load since it's running. */
1619 	TDQ_LOCK(tdq);
1620 	thread0.td_lock = TDQ_LOCKPTR(tdq);
1621 	tdq_load_add(tdq, &thread0);
1622 	tdq->tdq_curthread = &thread0;
1623 	tdq->tdq_lowpri = thread0.td_priority;
1624 	TDQ_UNLOCK(tdq);
1625 }
1626 
1627 /*
1628  * This routine determines time constants after stathz and hz are setup.
1629  */
1630 /* ARGSUSED */
1631 static void
sched_ule_initticks(void)1632 sched_ule_initticks(void)
1633 {
1634 	int incr;
1635 
1636 	realstathz = stathz ? stathz : hz;
1637 	sched_slice = realstathz / SCHED_SLICE_DEFAULT_DIVISOR;
1638 	sched_slice_min = sched_slice / SCHED_SLICE_MIN_DIVISOR;
1639 	hogticks = imax(1, (2 * hz * sched_slice + realstathz / 2) /
1640 	    realstathz);
1641 
1642 	/*
1643 	 * tickincr is shifted out by 10 to avoid rounding errors due to
1644 	 * hz not being evenly divisible by stathz on all platforms.
1645 	 */
1646 	incr = (hz << SCHED_TICK_SHIFT) / realstathz;
1647 	/*
1648 	 * This does not work for values of stathz that are more than
1649 	 * 1 << SCHED_TICK_SHIFT * hz.  In practice this does not happen.
1650 	 */
1651 	if (incr == 0)
1652 		incr = 1;
1653 	tickincr = incr;
1654 #ifdef SMP
1655 	/*
1656 	 * Set the default balance interval now that we know
1657 	 * what realstathz is.
1658 	 */
1659 	balance_interval = realstathz;
1660 	balance_ticks = balance_interval;
1661 	affinity = SCHED_AFFINITY_DEFAULT;
1662 #endif
1663 	if (sched_idlespinthresh < 0)
1664 		sched_idlespinthresh = 2 * max(10000, 6 * hz) / realstathz;
1665 }
1666 
1667 /*
1668  * This is the core of the interactivity algorithm.  Determines a score based
1669  * on past behavior.  It is the ratio of sleep time to run time scaled to
1670  * a [0, 100] integer.  This is the voluntary sleep time of a process, which
1671  * differs from the cpu usage because it does not account for time spent
1672  * waiting on a run-queue.  Would be prettier if we had floating point.
1673  *
1674  * When a thread's sleep time is greater than its run time the
1675  * calculation is:
1676  *
1677  *                           scaling factor
1678  * interactivity score =  ---------------------
1679  *                        sleep time / run time
1680  *
1681  *
1682  * When a thread's run time is greater than its sleep time the
1683  * calculation is:
1684  *
1685  *                                                 scaling factor
1686  * interactivity score = 2 * scaling factor  -  ---------------------
1687  *                                              run time / sleep time
1688  */
1689 static int
sched_interact_score(struct thread * td)1690 sched_interact_score(struct thread *td)
1691 {
1692 	struct td_sched *ts;
1693 	int div;
1694 
1695 	ts = td_get_sched(td);
1696 	/*
1697 	 * The score is only needed if this is likely to be an interactive
1698 	 * task.  Don't go through the expense of computing it if there's
1699 	 * no chance.
1700 	 */
1701 	if (sched_interact <= SCHED_INTERACT_HALF &&
1702 		ts->ts_runtime >= ts->ts_slptime)
1703 			return (SCHED_INTERACT_HALF);
1704 
1705 	if (ts->ts_runtime > ts->ts_slptime) {
1706 		div = max(1, ts->ts_runtime / SCHED_INTERACT_HALF);
1707 		return (SCHED_INTERACT_HALF +
1708 		    (SCHED_INTERACT_HALF - (ts->ts_slptime / div)));
1709 	}
1710 	if (ts->ts_slptime > ts->ts_runtime) {
1711 		div = max(1, ts->ts_slptime / SCHED_INTERACT_HALF);
1712 		return (ts->ts_runtime / div);
1713 	}
1714 	/* runtime == slptime */
1715 	if (ts->ts_runtime)
1716 		return (SCHED_INTERACT_HALF);
1717 
1718 	/*
1719 	 * This can happen if slptime and runtime are 0.
1720 	 */
1721 	return (0);
1722 
1723 }
1724 
1725 /*
1726  * Scale the scheduling priority according to the "interactivity" of this
1727  * process.
1728  */
1729 static void
sched_priority(struct thread * td)1730 sched_priority(struct thread *td)
1731 {
1732 	u_int pri, score;
1733 	int nice;
1734 
1735 	if (PRI_BASE(td->td_pri_class) != PRI_TIMESHARE)
1736 		return;
1737 
1738 	nice = td->td_proc->p_nice;
1739 	/*
1740 	 * If the score is interactive we place the thread in the realtime
1741 	 * queue with a priority that is less than kernel and interrupt
1742 	 * priorities.  These threads are not subject to nice restrictions.
1743 	 *
1744 	 * Scores greater than this are placed on the normal timeshare queue
1745 	 * where the priority is partially decided by the most recent cpu
1746 	 * utilization and the rest is decided by nice value.
1747 	 *
1748 	 * The nice value of the process has a linear effect on the calculated
1749 	 * score.  Negative nice values make it easier for a thread to be
1750 	 * considered interactive.
1751 	 */
1752 	score = imax(0, sched_interact_score(td) + nice);
1753 	if (score < sched_interact) {
1754 		pri = PRI_MIN_INTERACT;
1755 		pri += (PRI_MAX_INTERACT - PRI_MIN_INTERACT + 1) * score /
1756 		    sched_interact;
1757 		KASSERT(pri >= PRI_MIN_INTERACT && pri <= PRI_MAX_INTERACT,
1758 		    ("sched_priority: invalid interactive priority %u score %u",
1759 		    pri, score));
1760 	} else {
1761 		const struct td_sched *const ts = td_get_sched(td);
1762 		const u_int run = SCHED_TICK_RUN_SHIFTED(ts);
1763 		const u_int run_unshifted __unused = (run +
1764 		    (1 << SCHED_TICK_SHIFT) / 2) >> SCHED_TICK_SHIFT;
1765 		const u_int len = SCHED_TICK_LENGTH(ts);
1766 		const u_int nice_pri_off = SCHED_PRI_NICE(nice);
1767 		const u_int cpu_pri_off = (((SCHED_PRI_CPU_RANGE - 1) *
1768 		    run + len / 2) / len + (1 << SCHED_TICK_SHIFT) / 2) >>
1769 		    SCHED_TICK_SHIFT;
1770 
1771 		MPASS(cpu_pri_off < SCHED_PRI_CPU_RANGE);
1772 		pri = PRI_MIN_BATCH + cpu_pri_off + nice_pri_off;
1773 		KASSERT(pri >= PRI_MIN_BATCH && pri <= PRI_MAX_BATCH,
1774 		    ("sched_priority: Invalid computed priority %u: "
1775 		    "Should be between %u and %u (PRI_MIN_BATCH: %u; "
1776 		    "Window size (ticks): %u, runtime (shifted ticks): %u,"
1777 		    "(unshifted ticks): %u => CPU pri off: %u; "
1778 		    "Nice: %d => nice pri off: %u)",
1779 		    pri, PRI_MIN_BATCH, PRI_MAX_BATCH, PRI_MIN_BATCH,
1780 		    len, run, run_unshifted, cpu_pri_off, nice, nice_pri_off));
1781 	}
1782 	sched_user_prio(td, pri);
1783 
1784 	return;
1785 }
1786 
1787 /*
1788  * This routine enforces a maximum limit on the amount of scheduling history
1789  * kept.  It is called after either the slptime or runtime is adjusted.  This
1790  * function is ugly due to integer math.
1791  */
1792 static void
sched_interact_update(struct thread * td)1793 sched_interact_update(struct thread *td)
1794 {
1795 	struct td_sched *ts;
1796 	u_int sum;
1797 
1798 	ts = td_get_sched(td);
1799 	sum = ts->ts_runtime + ts->ts_slptime;
1800 	if (sum < SCHED_SLP_RUN_MAX)
1801 		return;
1802 	/*
1803 	 * This only happens from two places:
1804 	 * 1) We have added an unusual amount of run time from fork_exit.
1805 	 * 2) We have added an unusual amount of sleep time from sched_sleep().
1806 	 */
1807 	if (sum > SCHED_SLP_RUN_MAX * 2) {
1808 		if (ts->ts_runtime > ts->ts_slptime) {
1809 			ts->ts_runtime = SCHED_SLP_RUN_MAX;
1810 			ts->ts_slptime = 1;
1811 		} else {
1812 			ts->ts_slptime = SCHED_SLP_RUN_MAX;
1813 			ts->ts_runtime = 1;
1814 		}
1815 		return;
1816 	}
1817 	/*
1818 	 * If we have exceeded by more than 1/5th then the algorithm below
1819 	 * will not bring us back into range.  Dividing by two here forces
1820 	 * us into the range of [4/5 * SCHED_INTERACT_MAX, SCHED_INTERACT_MAX]
1821 	 */
1822 	if (sum > (SCHED_SLP_RUN_MAX / 5) * 6) {
1823 		ts->ts_runtime /= 2;
1824 		ts->ts_slptime /= 2;
1825 		return;
1826 	}
1827 	ts->ts_runtime = (ts->ts_runtime / 5) * 4;
1828 	ts->ts_slptime = (ts->ts_slptime / 5) * 4;
1829 }
1830 
1831 /*
1832  * Scale back the interactivity history when a child thread is created.  The
1833  * history is inherited from the parent but the thread may behave totally
1834  * differently.  For example, a shell spawning a compiler process.  We want
1835  * to learn that the compiler is behaving badly very quickly.
1836  */
1837 static void
sched_interact_fork(struct thread * td)1838 sched_interact_fork(struct thread *td)
1839 {
1840 	struct td_sched *ts;
1841 	int ratio;
1842 	int sum;
1843 
1844 	ts = td_get_sched(td);
1845 	sum = ts->ts_runtime + ts->ts_slptime;
1846 	if (sum > SCHED_SLP_RUN_FORK) {
1847 		ratio = sum / SCHED_SLP_RUN_FORK;
1848 		ts->ts_runtime /= ratio;
1849 		ts->ts_slptime /= ratio;
1850 	}
1851 }
1852 
1853 /*
1854  * Called from proc0_init() to setup the scheduler fields.
1855  */
1856 static void
sched_ule_init(void)1857 sched_ule_init(void)
1858 {
1859 	struct td_sched *ts0;
1860 
1861 	/*
1862 	 * Set up the scheduler specific parts of thread0.
1863 	 */
1864 	ts0 = td_get_sched(&thread0);
1865 	ts0->ts_ftick = (u_int)ticks;
1866 	ts0->ts_ltick = ts0->ts_ftick;
1867 	ts0->ts_slice = 0;
1868 	ts0->ts_cpu = curcpu;	/* set valid CPU number */
1869 }
1870 
1871 /*
1872  * schedinit_ap() is needed prior to calling sched_throw(NULL) to ensure that
1873  * the pcpu requirements are met for any calls in the period between curthread
1874  * initialization and sched_throw().  One can safely add threads to the queue
1875  * before sched_throw(), for instance, as long as the thread lock is setup
1876  * correctly.
1877  *
1878  * TDQ_SELF() relies on the below sched pcpu setting; it may be used only
1879  * after schedinit_ap().
1880  */
1881 static void
sched_ule_init_ap(void)1882 sched_ule_init_ap(void)
1883 {
1884 
1885 #ifdef SMP
1886 	PCPU_SET(sched, DPCPU_PTR(tdq));
1887 #endif
1888 	PCPU_GET(idlethread)->td_lock = TDQ_LOCKPTR(TDQ_SELF());
1889 }
1890 
1891 /*
1892  * This is only somewhat accurate since given many processes of the same
1893  * priority they will switch when their slices run out, which will be
1894  * at most sched_slice stathz ticks.
1895  */
1896 static int
sched_ule_rr_interval(void)1897 sched_ule_rr_interval(void)
1898 {
1899 
1900 	/* Convert sched_slice from stathz to hz. */
1901 	return (imax(1, (sched_slice * hz + realstathz / 2) / realstathz));
1902 }
1903 
1904 /*
1905  * Update the percent cpu tracking information when it is requested or the total
1906  * history exceeds the maximum.  We keep a sliding history of tick counts that
1907  * slowly decays, for running threads (see comments below for more details).
1908  * This is less precise than the 4BSD mechanism since it happens with less
1909  * regular and frequent events.
1910  */
1911 static void
sched_pctcpu_update(struct td_sched * ts,int run)1912 sched_pctcpu_update(struct td_sched *ts, int run)
1913 {
1914 	const u_int t = (u_int)ticks;
1915 	u_int t_max = SCHED_TICK_MAX((u_int)hz);
1916 	u_int t_tgt = ((t_max << SCHED_TICK_SHIFT) * SCHED_CPU_DECAY_NUMER /
1917 	    SCHED_CPU_DECAY_DENOM) >> SCHED_TICK_SHIFT;
1918 	const u_int lu_span = t - ts->ts_ltick;
1919 
1920 	if (lu_span >= t_tgt) {
1921 		/*
1922 		 * Forget all previous ticks if we are more than t_tgt
1923 		 * (currently, 10s) apart from the last update.  Don't account
1924 		 * for more than 't_tgt' ticks when running.
1925 		 */
1926 		ts->ts_ticks = run ? (t_tgt << SCHED_TICK_SHIFT) : 0;
1927 		ts->ts_ftick = t - t_tgt;
1928 		ts->ts_ltick = t;
1929 		return;
1930 	}
1931 
1932 	if (t - ts->ts_ftick >= t_max) {
1933 		/*
1934 		 * First reduce the existing ticks to proportionally occupy only
1935 		 * what's left of the target window given 'lu_span' will occupy
1936 		 * the rest.  Since sched_clock() is called frequently on
1937 		 * running threads, these threads have a small 'lu_span', and
1938 		 * the next formula basically becomes an exponential decay with
1939 		 * ratio r = SCHED_CPU_DECAY_NUMER / SCHED_CPU_DECAY_DENOM
1940 		 * (currently, 10/11) and period 1s.  However, a sleeping thread
1941 		 * will see its accounted ticks drop linearly with a high slope
1942 		 * with respect to 'lu_span', approaching 0 as 'lu_span'
1943 		 * approaches 't_tgt' (so, continuously with respect to the
1944 		 * previous case).  This rescaling is completely dependent on
1945 		 * the frequency of calls and the span since last update passed
1946 		 * at each call.
1947 		 */
1948 		ts->ts_ticks = SCHED_TICK_RUN_SHIFTED(ts) /
1949 		    SCHED_TICK_LENGTH(ts) * (t_tgt - lu_span);
1950 		ts->ts_ftick = t - t_tgt;
1951 	}
1952 
1953 	if (run)
1954 		ts->ts_ticks += lu_span << SCHED_TICK_SHIFT;
1955 	ts->ts_ltick = t;
1956 }
1957 
1958 /*
1959  * Adjust the priority of a thread.  Move it to the appropriate run-queue
1960  * if necessary.  This is the back-end for several priority related
1961  * functions.
1962  */
1963 static void
sched_thread_priority(struct thread * td,u_char prio)1964 sched_thread_priority(struct thread *td, u_char prio)
1965 {
1966 	struct tdq *tdq;
1967 	int oldpri;
1968 
1969 	KTR_POINT3(KTR_SCHED, "thread", sched_tdname(td), "prio",
1970 	    "prio:%d", td->td_priority, "new prio:%d", prio,
1971 	    KTR_ATTR_LINKED, sched_tdname(curthread));
1972 	SDT_PROBE3(sched, , , change__pri, td, td->td_proc, prio);
1973 	if (td != curthread && prio < td->td_priority) {
1974 		KTR_POINT3(KTR_SCHED, "thread", sched_tdname(curthread),
1975 		    "lend prio", "prio:%d", td->td_priority, "new prio:%d",
1976 		    prio, KTR_ATTR_LINKED, sched_tdname(td));
1977 		SDT_PROBE4(sched, , , lend__pri, td, td->td_proc, prio,
1978 		    curthread);
1979 	}
1980 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1981 	if (td->td_priority == prio)
1982 		return;
1983 	/*
1984 	 * If the priority has been elevated due to priority
1985 	 * propagation, we may have to move ourselves to a new
1986 	 * queue.  This could be optimized to not re-add in some
1987 	 * cases.
1988 	 */
1989 	if (TD_ON_RUNQ(td) && prio < td->td_priority) {
1990 		sched_rem(td);
1991 		td->td_priority = prio;
1992 		sched_add(td, SRQ_BORROWING | SRQ_HOLDTD);
1993 		return;
1994 	}
1995 	/*
1996 	 * If the thread is currently running we may have to adjust the lowpri
1997 	 * information so other cpus are aware of our current priority.
1998 	 */
1999 	if (TD_IS_RUNNING(td)) {
2000 		tdq = TDQ_CPU(td_get_sched(td)->ts_cpu);
2001 		oldpri = td->td_priority;
2002 		td->td_priority = prio;
2003 		if (prio < tdq->tdq_lowpri)
2004 			tdq->tdq_lowpri = prio;
2005 		else if (tdq->tdq_lowpri == oldpri)
2006 			tdq_setlowpri(tdq, td);
2007 		return;
2008 	}
2009 	td->td_priority = prio;
2010 }
2011 
2012 /*
2013  * Update a thread's priority when it is lent another thread's
2014  * priority.
2015  */
2016 static void
sched_ule_lend_prio(struct thread * td,u_char prio)2017 sched_ule_lend_prio(struct thread *td, u_char prio)
2018 {
2019 
2020 	td->td_flags |= TDF_BORROWING;
2021 	sched_thread_priority(td, prio);
2022 }
2023 
2024 /*
2025  * Restore a thread's priority when priority propagation is
2026  * over.  The prio argument is the minimum priority the thread
2027  * needs to have to satisfy other possible priority lending
2028  * requests.  If the thread's regular priority is less
2029  * important than prio, the thread will keep a priority boost
2030  * of prio.
2031  */
2032 static void
sched_ule_unlend_prio(struct thread * td,u_char prio)2033 sched_ule_unlend_prio(struct thread *td, u_char prio)
2034 {
2035 	u_char base_pri;
2036 
2037 	if (td->td_base_pri >= PRI_MIN_TIMESHARE &&
2038 	    td->td_base_pri <= PRI_MAX_TIMESHARE)
2039 		base_pri = td->td_user_pri;
2040 	else
2041 		base_pri = td->td_base_pri;
2042 	if (prio >= base_pri) {
2043 		td->td_flags &= ~TDF_BORROWING;
2044 		sched_thread_priority(td, base_pri);
2045 	} else
2046 		sched_lend_prio(td, prio);
2047 }
2048 
2049 /*
2050  * Standard entry for setting the priority to an absolute value.
2051  */
2052 static void
sched_ule_prio(struct thread * td,u_char prio)2053 sched_ule_prio(struct thread *td, u_char prio)
2054 {
2055 	u_char oldprio;
2056 
2057 	/* First, update the base priority. */
2058 	td->td_base_pri = prio;
2059 
2060 	/*
2061 	 * If the thread is borrowing another thread's priority, don't
2062 	 * ever lower the priority.
2063 	 */
2064 	if (td->td_flags & TDF_BORROWING && td->td_priority < prio)
2065 		return;
2066 
2067 	/* Change the real priority. */
2068 	oldprio = td->td_priority;
2069 	sched_thread_priority(td, prio);
2070 
2071 	/*
2072 	 * If the thread is on a turnstile, then let the turnstile update
2073 	 * its state.
2074 	 */
2075 	if (TD_ON_LOCK(td) && oldprio != prio)
2076 		turnstile_adjust(td, oldprio);
2077 }
2078 
2079 /*
2080  * Set the base interrupt thread priority.
2081  */
2082 static void
sched_ule_ithread_prio(struct thread * td,u_char prio)2083 sched_ule_ithread_prio(struct thread *td, u_char prio)
2084 {
2085 	THREAD_LOCK_ASSERT(td, MA_OWNED);
2086 	MPASS(td->td_pri_class == PRI_ITHD);
2087 	td->td_base_ithread_pri = prio;
2088 	sched_prio(td, prio);
2089 }
2090 
2091 /*
2092  * Set the base user priority, does not effect current running priority.
2093  */
2094 static void
sched_ule_user_prio(struct thread * td,u_char prio)2095 sched_ule_user_prio(struct thread *td, u_char prio)
2096 {
2097 
2098 	td->td_base_user_pri = prio;
2099 	if (td->td_lend_user_pri <= prio)
2100 		return;
2101 	td->td_user_pri = prio;
2102 }
2103 
2104 static void
sched_ule_lend_user_prio(struct thread * td,u_char prio)2105 sched_ule_lend_user_prio(struct thread *td, u_char prio)
2106 {
2107 
2108 	THREAD_LOCK_ASSERT(td, MA_OWNED);
2109 	td->td_lend_user_pri = prio;
2110 	td->td_user_pri = min(prio, td->td_base_user_pri);
2111 	if (td->td_priority > td->td_user_pri)
2112 		sched_prio(td, td->td_user_pri);
2113 	else if (td->td_priority != td->td_user_pri)
2114 		ast_sched_locked(td, TDA_SCHED);
2115 }
2116 
2117 /*
2118  * Like the above but first check if there is anything to do.
2119  */
2120 static void
sched_ule_lend_user_prio_cond(struct thread * td,u_char prio)2121 sched_ule_lend_user_prio_cond(struct thread *td, u_char prio)
2122 {
2123 
2124 	if (td->td_lend_user_pri == prio)
2125 		return;
2126 
2127 	thread_lock(td);
2128 	sched_lend_user_prio(td, prio);
2129 	thread_unlock(td);
2130 }
2131 
2132 #ifdef SMP
2133 /*
2134  * This tdq is about to idle.  Try to steal a thread from another CPU before
2135  * choosing the idle thread.
2136  */
2137 static void
tdq_trysteal(struct tdq * tdq)2138 tdq_trysteal(struct tdq *tdq)
2139 {
2140 	struct cpu_group *cg, *parent;
2141 	struct tdq *steal;
2142 	cpuset_t mask;
2143 	int cpu, i, goup;
2144 
2145 	if (smp_started == 0 || steal_idle == 0 || trysteal_limit == 0 ||
2146 	    tdq->tdq_cg == NULL)
2147 		return;
2148 	CPU_FILL(&mask);
2149 	CPU_CLR(PCPU_GET(cpuid), &mask);
2150 	/* We don't want to be preempted while we're iterating. */
2151 	spinlock_enter();
2152 	TDQ_UNLOCK(tdq);
2153 	for (i = 1, cg = tdq->tdq_cg, goup = 0; ; ) {
2154 		cpu = sched_highest(cg, &mask, steal_thresh, 1);
2155 		/*
2156 		 * If a thread was added while interrupts were disabled don't
2157 		 * steal one here.
2158 		 */
2159 		if (TDQ_LOAD(tdq) > 0) {
2160 			TDQ_LOCK(tdq);
2161 			break;
2162 		}
2163 
2164 		/*
2165 		 * We found no CPU to steal from in this group.  Escalate to
2166 		 * the parent and repeat.  But if parent has only two children
2167 		 * groups we can avoid searching this group again by searching
2168 		 * the other one specifically and then escalating two levels.
2169 		 */
2170 		if (cpu == -1) {
2171 			if (goup) {
2172 				cg = cg->cg_parent;
2173 				goup = 0;
2174 			}
2175 			if (++i > trysteal_limit) {
2176 				TDQ_LOCK(tdq);
2177 				break;
2178 			}
2179 			parent = cg->cg_parent;
2180 			if (parent == NULL) {
2181 				TDQ_LOCK(tdq);
2182 				break;
2183 			}
2184 			if (parent->cg_children == 2) {
2185 				if (cg == &parent->cg_child[0])
2186 					cg = &parent->cg_child[1];
2187 				else
2188 					cg = &parent->cg_child[0];
2189 				goup = 1;
2190 			} else
2191 				cg = parent;
2192 			continue;
2193 		}
2194 		steal = TDQ_CPU(cpu);
2195 		/*
2196 		 * The data returned by sched_highest() is stale and
2197 		 * the chosen CPU no longer has an eligible thread.
2198 		 * At this point unconditionally exit the loop to bound
2199 		 * the time spent in the critcal section.
2200 		 */
2201 		if (TDQ_LOAD(steal) < steal_thresh ||
2202 		    TDQ_TRANSFERABLE(steal) == 0)
2203 			continue;
2204 		/*
2205 		 * Try to lock both queues. If we are assigned a thread while
2206 		 * waited for the lock, switch to it now instead of stealing.
2207 		 * If we can't get the lock, then somebody likely got there
2208 		 * first.
2209 		 */
2210 		TDQ_LOCK(tdq);
2211 		if (tdq->tdq_load > 0)
2212 			break;
2213 		if (TDQ_TRYLOCK_FLAGS(steal, MTX_DUPOK) == 0)
2214 			break;
2215 		/*
2216 		 * The data returned by sched_highest() is stale and
2217                  * the chosen CPU no longer has an eligible thread.
2218 		 */
2219 		if (TDQ_LOAD(steal) < steal_thresh ||
2220 		    TDQ_TRANSFERABLE(steal) == 0) {
2221 			TDQ_UNLOCK(steal);
2222 			break;
2223 		}
2224 		/*
2225 		 * If we fail to acquire one due to affinity restrictions,
2226 		 * bail out and let the idle thread to a more complete search
2227 		 * outside of a critical section.
2228 		 */
2229 		if (tdq_move(steal, tdq) == -1) {
2230 			TDQ_UNLOCK(steal);
2231 			break;
2232 		}
2233 		TDQ_UNLOCK(steal);
2234 		break;
2235 	}
2236 	spinlock_exit();
2237 }
2238 #endif
2239 
2240 /*
2241  * Handle migration from sched_switch().  This happens only for
2242  * cpu binding.
2243  */
2244 static struct mtx *
sched_switch_migrate(struct tdq * tdq,struct thread * td,int flags)2245 sched_switch_migrate(struct tdq *tdq, struct thread *td, int flags)
2246 {
2247 	struct tdq *tdn;
2248 #ifdef SMP
2249 	int lowpri;
2250 #endif
2251 
2252 	KASSERT(THREAD_CAN_MIGRATE(td) ||
2253 	    (td_get_sched(td)->ts_flags & TSF_BOUND) != 0,
2254 	    ("Thread %p shouldn't migrate", td));
2255 	KASSERT(!CPU_ABSENT(td_get_sched(td)->ts_cpu), ("sched_switch_migrate: "
2256 	    "thread %s queued on absent CPU %d.", td->td_name,
2257 	    td_get_sched(td)->ts_cpu));
2258 	tdn = TDQ_CPU(td_get_sched(td)->ts_cpu);
2259 #ifdef SMP
2260 	tdq_load_rem(tdq, td);
2261 	/*
2262 	 * Do the lock dance required to avoid LOR.  We have an
2263 	 * extra spinlock nesting from sched_switch() which will
2264 	 * prevent preemption while we're holding neither run-queue lock.
2265 	 */
2266 	TDQ_UNLOCK(tdq);
2267 	TDQ_LOCK(tdn);
2268 	lowpri = tdq_add(tdn, td, flags);
2269 	tdq_notify(tdn, lowpri);
2270 	TDQ_UNLOCK(tdn);
2271 	TDQ_LOCK(tdq);
2272 #endif
2273 	return (TDQ_LOCKPTR(tdn));
2274 }
2275 
2276 /*
2277  * thread_lock_unblock() that does not assume td_lock is blocked.
2278  */
2279 static inline void
thread_unblock_switch(struct thread * td,struct mtx * mtx)2280 thread_unblock_switch(struct thread *td, struct mtx *mtx)
2281 {
2282 	atomic_store_rel_ptr((volatile uintptr_t *)&td->td_lock,
2283 	    (uintptr_t)mtx);
2284 }
2285 
2286 /*
2287  * Switch threads.  This function has to handle threads coming in while
2288  * blocked for some reason, running, or idle.  It also must deal with
2289  * migrating a thread from one queue to another as running threads may
2290  * be assigned elsewhere via binding.
2291  */
2292 static void
sched_ule_sswitch(struct thread * td,int flags)2293 sched_ule_sswitch(struct thread *td, int flags)
2294 {
2295 	struct thread *newtd;
2296 	struct tdq *tdq;
2297 	struct td_sched *ts;
2298 	struct mtx *mtx;
2299 	int srqflag;
2300 	int cpuid, preempted;
2301 #ifdef SMP
2302 	int pickcpu;
2303 #endif
2304 
2305 	THREAD_LOCK_ASSERT(td, MA_OWNED);
2306 
2307 	cpuid = PCPU_GET(cpuid);
2308 	tdq = TDQ_SELF();
2309 	ts = td_get_sched(td);
2310 	sched_pctcpu_update(ts, 1);
2311 #ifdef SMP
2312 	pickcpu = (td->td_flags & TDF_PICKCPU) != 0;
2313 	if (pickcpu)
2314 		ts->ts_rltick = (u_int)ticks - affinity * MAX_CACHE_LEVELS;
2315 	else
2316 		ts->ts_rltick = (u_int)ticks;
2317 #endif
2318 	td->td_lastcpu = td->td_oncpu;
2319 	preempted = (td->td_flags & TDF_SLICEEND) == 0 &&
2320 	    (flags & SW_PREEMPT) != 0;
2321 	td->td_flags &= ~(TDF_PICKCPU | TDF_SLICEEND);
2322 	ast_unsched_locked(td, TDA_SCHED);
2323 	td->td_owepreempt = 0;
2324 	atomic_store_char(&tdq->tdq_owepreempt, 0);
2325 	if (!TD_IS_IDLETHREAD(td))
2326 		TDQ_SWITCHCNT_INC(tdq);
2327 
2328 	/*
2329 	 * Always block the thread lock so we can drop the tdq lock early.
2330 	 */
2331 	mtx = thread_lock_block(td);
2332 	spinlock_enter();
2333 	if (TD_IS_IDLETHREAD(td)) {
2334 		MPASS(mtx == TDQ_LOCKPTR(tdq));
2335 		TD_SET_CAN_RUN(td);
2336 	} else if (TD_IS_RUNNING(td)) {
2337 		MPASS(mtx == TDQ_LOCKPTR(tdq));
2338 		srqflag = SRQ_OURSELF | SRQ_YIELDING |
2339 		    (preempted ? SRQ_PREEMPTED : 0);
2340 #ifdef SMP
2341 		if (THREAD_CAN_MIGRATE(td) && (!THREAD_CAN_SCHED(td, ts->ts_cpu)
2342 		    || pickcpu))
2343 			ts->ts_cpu = sched_pickcpu(td, 0);
2344 #endif
2345 		if (ts->ts_cpu == cpuid)
2346 			tdq_runq_add(tdq, td, srqflag);
2347 		else
2348 			mtx = sched_switch_migrate(tdq, td, srqflag);
2349 	} else {
2350 		/* This thread must be going to sleep. */
2351 		if (mtx != TDQ_LOCKPTR(tdq)) {
2352 			mtx_unlock_spin(mtx);
2353 			TDQ_LOCK(tdq);
2354 		}
2355 		tdq_load_rem(tdq, td);
2356 #ifdef SMP
2357 		if (tdq->tdq_load == 0)
2358 			tdq_trysteal(tdq);
2359 #endif
2360 	}
2361 
2362 #if (KTR_COMPILE & KTR_SCHED) != 0
2363 	if (TD_IS_IDLETHREAD(td))
2364 		KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "idle",
2365 		    "prio:%d", td->td_priority);
2366 	else
2367 		KTR_STATE3(KTR_SCHED, "thread", sched_tdname(td), KTDSTATE(td),
2368 		    "prio:%d", td->td_priority, "wmesg:\"%s\"", td->td_wmesg,
2369 		    "lockname:\"%s\"", td->td_lockname);
2370 #endif
2371 
2372 	/*
2373 	 * We enter here with the thread blocked and assigned to the
2374 	 * appropriate cpu run-queue or sleep-queue and with the current
2375 	 * thread-queue locked.
2376 	 */
2377 	TDQ_LOCK_ASSERT(tdq, MA_OWNED | MA_NOTRECURSED);
2378 	MPASS(td == tdq->tdq_curthread);
2379 	newtd = choosethread();
2380 	sched_pctcpu_update(td_get_sched(newtd), 0);
2381 	TDQ_UNLOCK(tdq);
2382 
2383 	/*
2384 	 * Call the MD code to switch contexts if necessary.
2385 	 */
2386 	if (td != newtd) {
2387 #ifdef	HWPMC_HOOKS
2388 		if (PMC_PROC_IS_USING_PMCS(td->td_proc))
2389 			PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT);
2390 #endif
2391 		SDT_PROBE2(sched, , , off__cpu, newtd, newtd->td_proc);
2392 
2393 #ifdef KDTRACE_HOOKS
2394 		/*
2395 		 * If DTrace has set the active vtime enum to anything
2396 		 * other than INACTIVE (0), then it should have set the
2397 		 * function to call.
2398 		 */
2399 		if (dtrace_vtime_active)
2400 			(*dtrace_vtime_switch_func)(newtd);
2401 #endif
2402 
2403 #ifdef HWT_HOOKS
2404 		HWT_CALL_HOOK(td, HWT_SWITCH_OUT, NULL);
2405 		HWT_CALL_HOOK(newtd, HWT_SWITCH_IN, NULL);
2406 #endif
2407 
2408 		td->td_oncpu = NOCPU;
2409 		cpu_switch(td, newtd, mtx);
2410 		cpuid = td->td_oncpu = PCPU_GET(cpuid);
2411 
2412 		SDT_PROBE0(sched, , , on__cpu);
2413 #ifdef	HWPMC_HOOKS
2414 		if (PMC_PROC_IS_USING_PMCS(td->td_proc))
2415 			PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_IN);
2416 #endif
2417 	} else {
2418 		thread_unblock_switch(td, mtx);
2419 		SDT_PROBE0(sched, , , remain__cpu);
2420 	}
2421 	KASSERT(curthread->td_md.md_spinlock_count == 1,
2422 	    ("invalid count %d", curthread->td_md.md_spinlock_count));
2423 
2424 	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "running",
2425 	    "prio:%d", td->td_priority);
2426 }
2427 
2428 /*
2429  * Adjust thread priorities as a result of a nice request.
2430  */
2431 static void
sched_ule_nice(struct proc * p,int nice)2432 sched_ule_nice(struct proc *p, int nice)
2433 {
2434 	struct thread *td;
2435 
2436 	PROC_LOCK_ASSERT(p, MA_OWNED);
2437 
2438 	p->p_nice = nice;
2439 	FOREACH_THREAD_IN_PROC(p, td) {
2440 		thread_lock(td);
2441 		sched_priority(td);
2442 		sched_prio(td, td->td_base_user_pri);
2443 		thread_unlock(td);
2444 	}
2445 }
2446 
2447 /*
2448  * Record the sleep time for the interactivity scorer.
2449  */
2450 static void
sched_ule_sleep(struct thread * td,int prio)2451 sched_ule_sleep(struct thread *td, int prio)
2452 {
2453 
2454 	THREAD_LOCK_ASSERT(td, MA_OWNED);
2455 
2456 	td->td_slptick = ticks;
2457 	if (PRI_BASE(td->td_pri_class) != PRI_TIMESHARE)
2458 		return;
2459 	if (static_boost == 1 && prio)
2460 		sched_prio(td, prio);
2461 	else if (static_boost && td->td_priority > static_boost)
2462 		sched_prio(td, static_boost);
2463 }
2464 
2465 /*
2466  * Schedule a thread to resume execution and record how long it voluntarily
2467  * slept.  We also update the pctcpu, interactivity, and priority.
2468  *
2469  * Requires the thread lock on entry, drops on exit.
2470  */
2471 static void
sched_ule_wakeup(struct thread * td,int srqflags)2472 sched_ule_wakeup(struct thread *td, int srqflags)
2473 {
2474 	struct td_sched *ts;
2475 	int slptick;
2476 
2477 	THREAD_LOCK_ASSERT(td, MA_OWNED);
2478 	ts = td_get_sched(td);
2479 
2480 	/*
2481 	 * If we slept for more than a tick update our interactivity and
2482 	 * priority.
2483 	 */
2484 	slptick = td->td_slptick;
2485 	td->td_slptick = 0;
2486 	if (slptick && slptick != ticks) {
2487 		ts->ts_slptime += (ticks - slptick) << SCHED_TICK_SHIFT;
2488 		sched_interact_update(td);
2489 		sched_pctcpu_update(ts, 0);
2490 	}
2491 
2492 	/*
2493 	 * When resuming an idle ithread, restore its base ithread
2494 	 * priority.
2495 	 */
2496 	if (PRI_BASE(td->td_pri_class) == PRI_ITHD &&
2497 	    td->td_priority != td->td_base_ithread_pri)
2498 		sched_prio(td, td->td_base_ithread_pri);
2499 
2500 	/*
2501 	 * Reset the slice value since we slept and advanced the round-robin.
2502 	 */
2503 	ts->ts_slice = 0;
2504 	sched_add(td, SRQ_BORING | srqflags);
2505 }
2506 
2507 /*
2508  * Penalize the parent for creating a new child and initialize the child's
2509  * priority.
2510  */
2511 static void
sched_ule_fork(struct thread * td,struct thread * child)2512 sched_ule_fork(struct thread *td, struct thread *child)
2513 {
2514 	THREAD_LOCK_ASSERT(td, MA_OWNED);
2515 	sched_pctcpu_update(td_get_sched(td), 1);
2516 	sched_fork_thread(td, child);
2517 	/*
2518 	 * Penalize the parent and child for forking.
2519 	 */
2520 	sched_interact_fork(child);
2521 	sched_priority(child);
2522 	td_get_sched(td)->ts_runtime += tickincr;
2523 	sched_interact_update(td);
2524 	sched_priority(td);
2525 }
2526 
2527 /*
2528  * Fork a new thread, may be within the same process.
2529  */
2530 static void
sched_ule_fork_thread(struct thread * td,struct thread * child)2531 sched_ule_fork_thread(struct thread *td, struct thread *child)
2532 {
2533 	struct td_sched *ts;
2534 	struct td_sched *ts2;
2535 	struct tdq *tdq;
2536 
2537 	tdq = TDQ_SELF();
2538 	THREAD_LOCK_ASSERT(td, MA_OWNED);
2539 	/*
2540 	 * Initialize child.
2541 	 */
2542 	ts = td_get_sched(td);
2543 	ts2 = td_get_sched(child);
2544 	child->td_oncpu = NOCPU;
2545 	child->td_lastcpu = NOCPU;
2546 	child->td_lock = TDQ_LOCKPTR(tdq);
2547 	child->td_cpuset = cpuset_ref(td->td_cpuset);
2548 	child->td_domain.dr_policy = td->td_cpuset->cs_domain;
2549 	ts2->ts_cpu = ts->ts_cpu;
2550 	ts2->ts_flags = 0;
2551 	/*
2552 	 * Grab our parents cpu estimation information.
2553 	 */
2554 	ts2->ts_ticks = ts->ts_ticks;
2555 	ts2->ts_ltick = ts->ts_ltick;
2556 	ts2->ts_ftick = ts->ts_ftick;
2557 	/*
2558 	 * Do not inherit any borrowed priority from the parent.
2559 	 */
2560 	child->td_priority = child->td_base_pri;
2561 	/*
2562 	 * And update interactivity score.
2563 	 */
2564 	ts2->ts_slptime = ts->ts_slptime;
2565 	ts2->ts_runtime = ts->ts_runtime;
2566 	/* Attempt to quickly learn interactivity. */
2567 	ts2->ts_slice = tdq_slice(tdq) - sched_slice_min;
2568 #ifdef KTR
2569 	bzero(ts2->ts_name, sizeof(ts2->ts_name));
2570 #endif
2571 }
2572 
2573 /*
2574  * Adjust the priority class of a thread.
2575  */
2576 static void
sched_ule_class(struct thread * td,int class)2577 sched_ule_class(struct thread *td, int class)
2578 {
2579 
2580 	THREAD_LOCK_ASSERT(td, MA_OWNED);
2581 	if (td->td_pri_class == class)
2582 		return;
2583 	td->td_pri_class = class;
2584 }
2585 
2586 /*
2587  * Return some of the child's priority and interactivity to the parent.
2588  */
2589 static void
sched_ule_exit(struct proc * p,struct thread * child)2590 sched_ule_exit(struct proc *p, struct thread *child)
2591 {
2592 	struct thread *td;
2593 
2594 	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(child), "proc exit",
2595 	    "prio:%d", child->td_priority);
2596 	PROC_LOCK_ASSERT(p, MA_OWNED);
2597 	td = FIRST_THREAD_IN_PROC(p);
2598 	sched_exit_thread(td, child);
2599 }
2600 
2601 /*
2602  * Penalize another thread for the time spent on this one.  This helps to
2603  * worsen the priority and interactivity of processes which schedule batch
2604  * jobs such as make.  This has little effect on the make process itself but
2605  * causes new processes spawned by it to receive worse scores immediately.
2606  */
2607 static void
sched_ule_exit_thread(struct thread * td,struct thread * child)2608 sched_ule_exit_thread(struct thread *td, struct thread *child)
2609 {
2610 
2611 	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(child), "thread exit",
2612 	    "prio:%d", child->td_priority);
2613 	/*
2614 	 * Give the child's runtime to the parent without returning the
2615 	 * sleep time as a penalty to the parent.  This causes shells that
2616 	 * launch expensive things to mark their children as expensive.
2617 	 */
2618 	thread_lock(td);
2619 	td_get_sched(td)->ts_runtime += td_get_sched(child)->ts_runtime;
2620 	sched_interact_update(td);
2621 	sched_priority(td);
2622 	thread_unlock(td);
2623 }
2624 
2625 static void
sched_ule_preempt(struct thread * td)2626 sched_ule_preempt(struct thread *td)
2627 {
2628 	struct tdq *tdq;
2629 	int flags;
2630 
2631 	SDT_PROBE2(sched, , , surrender, td, td->td_proc);
2632 
2633 	thread_lock(td);
2634 	tdq = TDQ_SELF();
2635 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2636 	if (td->td_priority > tdq->tdq_lowpri) {
2637 		if (td->td_critnest == 1) {
2638 			flags = SW_INVOL | SW_PREEMPT;
2639 			flags |= TD_IS_IDLETHREAD(td) ? SWT_REMOTEWAKEIDLE :
2640 			    SWT_REMOTEPREEMPT;
2641 			mi_switch(flags);
2642 			/* Switch dropped thread lock. */
2643 			return;
2644 		}
2645 		td->td_owepreempt = 1;
2646 	} else {
2647 		tdq->tdq_owepreempt = 0;
2648 	}
2649 	thread_unlock(td);
2650 }
2651 
2652 /*
2653  * Fix priorities on return to user-space.  Priorities may be elevated due
2654  * to static priorities in msleep() or similar.
2655  */
2656 static void
sched_ule_userret_slowpath(struct thread * td)2657 sched_ule_userret_slowpath(struct thread *td)
2658 {
2659 
2660 	thread_lock(td);
2661 	td->td_priority = td->td_user_pri;
2662 	td->td_base_pri = td->td_user_pri;
2663 	tdq_setlowpri(TDQ_SELF(), td);
2664 	thread_unlock(td);
2665 }
2666 
2667 /*
2668  * Return time slice for a given thread.  For ithreads this is
2669  * sched_slice.  For other threads it is tdq_slice(tdq).
2670  */
2671 static inline u_int
td_slice(struct thread * td,struct tdq * tdq)2672 td_slice(struct thread *td, struct tdq *tdq)
2673 {
2674 	if (PRI_BASE(td->td_pri_class) == PRI_ITHD)
2675 		return (sched_slice);
2676 	return (tdq_slice(tdq));
2677 }
2678 
2679 /*
2680  * Handle a stathz tick.  This is really only relevant for timeshare
2681  * and interrupt threads.
2682  */
2683 static void
sched_ule_clock(struct thread * td,int cnt)2684 sched_ule_clock(struct thread *td, int cnt)
2685 {
2686 	struct tdq *tdq;
2687 	struct td_sched *ts;
2688 
2689 	THREAD_LOCK_ASSERT(td, MA_OWNED);
2690 	tdq = TDQ_SELF();
2691 #ifdef SMP
2692 	/*
2693 	 * We run the long term load balancer infrequently on the first cpu.
2694 	 */
2695 	if (balance_tdq == tdq && smp_started != 0 && rebalance != 0 &&
2696 	    balance_ticks != 0) {
2697 		balance_ticks -= cnt;
2698 		if (balance_ticks <= 0)
2699 			sched_balance();
2700 	}
2701 #endif
2702 	/*
2703 	 * Save the old switch count so we have a record of the last ticks
2704 	 * activity.   Initialize the new switch count based on our load.
2705 	 * If there is some activity seed it to reflect that.
2706 	 */
2707 	tdq->tdq_oldswitchcnt = tdq->tdq_switchcnt;
2708 	tdq->tdq_switchcnt = tdq->tdq_load;
2709 
2710 	/*
2711 	 * Advance the insert offset once for each tick to ensure that all
2712 	 * threads get a chance to run.  In order not to change too much ULE's
2713 	 * anti-starvation and "nice" behaviors after the switch to a single
2714 	 * 256-queue runqueue, since the queue insert offset is incremented by
2715 	 * 1 at every tick (provided the system is not too loaded) and there are
2716 	 * now 109 distinct levels for the timesharing selection policy instead
2717 	 * of 64 before (separate runqueue), we apply a factor 7/4 when
2718 	 * increasing the insert offset, by incrementing it by 2 instead of
2719 	 * 1 except for one in four ticks.
2720 	 */
2721 	if (tdq->tdq_ts_off == tdq->tdq_ts_deq_off) {
2722 		tdq->tdq_ts_ticks += cnt;
2723 		tdq->tdq_ts_off = (tdq->tdq_ts_off + 2 * cnt -
2724 		    tdq-> tdq_ts_ticks / 4) % RQ_TS_POL_MODULO;
2725 		tdq->tdq_ts_ticks %= 4;
2726 		tdq_advance_ts_deq_off(tdq, false);
2727 	}
2728 	ts = td_get_sched(td);
2729 	sched_pctcpu_update(ts, 1);
2730 	if ((td->td_pri_class & PRI_FIFO_BIT) || TD_IS_IDLETHREAD(td))
2731 		return;
2732 
2733 	if (PRI_BASE(td->td_pri_class) == PRI_TIMESHARE) {
2734 		/*
2735 		 * We used a tick; charge it to the thread so
2736 		 * that we can compute our interactivity.
2737 		 */
2738 		td_get_sched(td)->ts_runtime += tickincr * cnt;
2739 		sched_interact_update(td);
2740 		sched_priority(td);
2741 	}
2742 
2743 	/*
2744 	 * Force a context switch if the current thread has used up a full
2745 	 * time slice (default is 100ms).
2746 	 */
2747 	ts->ts_slice += cnt;
2748 	if (ts->ts_slice >= td_slice(td, tdq)) {
2749 		ts->ts_slice = 0;
2750 
2751 		/*
2752 		 * If an ithread uses a full quantum, demote its
2753 		 * priority and preempt it.
2754 		 */
2755 		if (PRI_BASE(td->td_pri_class) == PRI_ITHD) {
2756 			SCHED_STAT_INC(ithread_preemptions);
2757 			td->td_owepreempt = 1;
2758 			if (td->td_base_pri + RQ_PPQ < PRI_MAX_ITHD) {
2759 				SCHED_STAT_INC(ithread_demotions);
2760 				sched_prio(td, td->td_base_pri + RQ_PPQ);
2761 			}
2762 		} else {
2763 			ast_sched_locked(td, TDA_SCHED);
2764 			td->td_flags |= TDF_SLICEEND;
2765 		}
2766 	}
2767 }
2768 
2769 static u_int
sched_ule_estcpu(struct thread * td __unused)2770 sched_ule_estcpu(struct thread *td __unused)
2771 {
2772 
2773 	return (0);
2774 }
2775 
2776 /*
2777  * Return whether the current CPU has runnable tasks.  Used for in-kernel
2778  * cooperative idle threads.
2779  */
2780 static bool
sched_ule_runnable(void)2781 sched_ule_runnable(void)
2782 {
2783 	struct tdq *tdq;
2784 
2785 	tdq = TDQ_SELF();
2786 	return (TDQ_LOAD(tdq) > (TD_IS_IDLETHREAD(curthread) ? 0 : 1));
2787 }
2788 
2789 /*
2790  * Choose the highest priority thread to run.  The thread is removed from
2791  * the run-queue while running however the load remains.
2792  */
2793 static struct thread *
sched_ule_choose(void)2794 sched_ule_choose(void)
2795 {
2796 	struct thread *td;
2797 	struct tdq *tdq;
2798 
2799 	tdq = TDQ_SELF();
2800 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2801 	td = tdq_choose(tdq);
2802 	if (td != NULL) {
2803 		tdq_runq_rem(tdq, td);
2804 		tdq->tdq_lowpri = td->td_priority;
2805 	} else {
2806 		tdq->tdq_lowpri = PRI_MAX_IDLE;
2807 		td = PCPU_GET(idlethread);
2808 	}
2809 	tdq->tdq_curthread = td;
2810 	return (td);
2811 }
2812 
2813 /*
2814  * Set owepreempt if the currently running thread has lower priority than "pri".
2815  * Preemption never happens directly in ULE, we always request it once we exit a
2816  * critical section.
2817  */
2818 static void
sched_setpreempt(int pri)2819 sched_setpreempt(int pri)
2820 {
2821 	struct thread *ctd;
2822 	int cpri;
2823 
2824 	ctd = curthread;
2825 	THREAD_LOCK_ASSERT(ctd, MA_OWNED);
2826 
2827 	cpri = ctd->td_priority;
2828 	if (pri < cpri)
2829 		ast_sched_locked(ctd, TDA_SCHED);
2830 	if (KERNEL_PANICKED() || pri >= cpri || cold || TD_IS_INHIBITED(ctd))
2831 		return;
2832 	if (!sched_shouldpreempt(pri, cpri, 0))
2833 		return;
2834 	ctd->td_owepreempt = 1;
2835 }
2836 
2837 /*
2838  * Add a thread to a thread queue.  Select the appropriate runq and add the
2839  * thread to it.  This is the internal function called when the tdq is
2840  * predetermined.
2841  */
2842 static int
tdq_add(struct tdq * tdq,struct thread * td,int flags)2843 tdq_add(struct tdq *tdq, struct thread *td, int flags)
2844 {
2845 	int lowpri;
2846 
2847 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2848 	THREAD_LOCK_BLOCKED_ASSERT(td, MA_OWNED);
2849 	KASSERT((td->td_inhibitors == 0),
2850 	    ("sched_add: trying to run inhibited thread"));
2851 	KASSERT((TD_CAN_RUN(td) || TD_IS_RUNNING(td)),
2852 	    ("sched_add: bad thread state"));
2853 	KASSERT(td->td_flags & TDF_INMEM,
2854 	    ("sched_add: thread swapped out"));
2855 
2856 	lowpri = tdq->tdq_lowpri;
2857 	if (td->td_priority < lowpri)
2858 		tdq->tdq_lowpri = td->td_priority;
2859 	tdq_runq_add(tdq, td, flags);
2860 	tdq_load_add(tdq, td);
2861 	return (lowpri);
2862 }
2863 
2864 /*
2865  * Select the target thread queue and add a thread to it.  Request
2866  * preemption or IPI a remote processor if required.
2867  *
2868  * Requires the thread lock on entry, drops on exit.
2869  */
2870 static void
sched_ule_add(struct thread * td,int flags)2871 sched_ule_add(struct thread *td, int flags)
2872 {
2873 	struct tdq *tdq;
2874 #ifdef SMP
2875 	int cpu, lowpri;
2876 #endif
2877 
2878 	KTR_STATE2(KTR_SCHED, "thread", sched_tdname(td), "runq add",
2879 	    "prio:%d", td->td_priority, KTR_ATTR_LINKED,
2880 	    sched_tdname(curthread));
2881 	KTR_POINT1(KTR_SCHED, "thread", sched_tdname(curthread), "wokeup",
2882 	    KTR_ATTR_LINKED, sched_tdname(td));
2883 	SDT_PROBE4(sched, , , enqueue, td, td->td_proc, NULL,
2884 	    flags & SRQ_PREEMPTED);
2885 	THREAD_LOCK_ASSERT(td, MA_OWNED);
2886 	/*
2887 	 * Recalculate the priority before we select the target cpu or
2888 	 * run-queue.
2889 	 */
2890 	if (PRI_BASE(td->td_pri_class) == PRI_TIMESHARE)
2891 		sched_priority(td);
2892 #ifdef SMP
2893 	/*
2894 	 * Pick the destination cpu and if it isn't ours transfer to the
2895 	 * target cpu.
2896 	 */
2897 	cpu = sched_pickcpu(td, flags);
2898 	tdq = sched_setcpu(td, cpu, flags);
2899 	lowpri = tdq_add(tdq, td, flags);
2900 	if (cpu != PCPU_GET(cpuid))
2901 		tdq_notify(tdq, lowpri);
2902 	else if (!(flags & SRQ_YIELDING))
2903 		sched_setpreempt(td->td_priority);
2904 #else
2905 	tdq = TDQ_SELF();
2906 	/*
2907 	 * Now that the thread is moving to the run-queue, set the lock
2908 	 * to the scheduler's lock.
2909 	 */
2910 	if (td->td_lock != TDQ_LOCKPTR(tdq)) {
2911 		TDQ_LOCK(tdq);
2912 		if ((flags & SRQ_HOLD) != 0)
2913 			td->td_lock = TDQ_LOCKPTR(tdq);
2914 		else
2915 			thread_lock_set(td, TDQ_LOCKPTR(tdq));
2916 	}
2917 	(void)tdq_add(tdq, td, flags);
2918 	if (!(flags & SRQ_YIELDING))
2919 		sched_setpreempt(td->td_priority);
2920 #endif
2921 	if (!(flags & SRQ_HOLDTD))
2922 		thread_unlock(td);
2923 }
2924 
2925 /*
2926  * Remove a thread from a run-queue without running it.  This is used
2927  * when we're stealing a thread from a remote queue.  Otherwise all threads
2928  * exit by calling sched_exit_thread() and sched_throw() themselves.
2929  */
2930 static void
sched_ule_rem(struct thread * td)2931 sched_ule_rem(struct thread *td)
2932 {
2933 	struct tdq *tdq;
2934 
2935 	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "runq rem",
2936 	    "prio:%d", td->td_priority);
2937 	SDT_PROBE3(sched, , , dequeue, td, td->td_proc, NULL);
2938 	tdq = TDQ_CPU(td_get_sched(td)->ts_cpu);
2939 	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2940 	MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
2941 	KASSERT(TD_ON_RUNQ(td),
2942 	    ("sched_rem: thread not on run queue"));
2943 	tdq_runq_rem(tdq, td);
2944 	tdq_load_rem(tdq, td);
2945 	TD_SET_CAN_RUN(td);
2946 	if (td->td_priority == tdq->tdq_lowpri)
2947 		tdq_setlowpri(tdq, NULL);
2948 }
2949 
2950 /*
2951  * Fetch cpu utilization information.  Updates on demand.
2952  */
2953 static fixpt_t
sched_ule_pctcpu(struct thread * td)2954 sched_ule_pctcpu(struct thread *td)
2955 {
2956 	struct td_sched *ts;
2957 	u_int len;
2958 	fixpt_t pctcpu;
2959 
2960 	THREAD_LOCK_ASSERT(td, MA_OWNED);
2961 	ts = td_get_sched(td);
2962 	sched_pctcpu_update(ts, TD_IS_RUNNING(td));
2963 	len = SCHED_TICK_LENGTH(ts);
2964 	pctcpu = ((FSHIFT >= SCHED_TICK_SHIFT ? /* Resolved at compile-time. */
2965 	    (SCHED_TICK_RUN_SHIFTED(ts) << (FSHIFT - SCHED_TICK_SHIFT)) :
2966 	    (SCHED_TICK_RUN_SHIFTED(ts) >> (SCHED_TICK_SHIFT - FSHIFT))) +
2967 	    len / 2) / len;
2968 	return (pctcpu);
2969 }
2970 
2971 /*
2972  * Enforce affinity settings for a thread.  Called after adjustments to
2973  * cpumask.
2974  */
2975 static void
sched_ule_affinity(struct thread * td)2976 sched_ule_affinity(struct thread *td)
2977 {
2978 #ifdef SMP
2979 	struct td_sched *ts;
2980 
2981 	THREAD_LOCK_ASSERT(td, MA_OWNED);
2982 	ts = td_get_sched(td);
2983 	if (THREAD_CAN_SCHED(td, ts->ts_cpu))
2984 		return;
2985 	if (TD_ON_RUNQ(td)) {
2986 		sched_rem(td);
2987 		sched_add(td, SRQ_BORING | SRQ_HOLDTD);
2988 		return;
2989 	}
2990 	if (!TD_IS_RUNNING(td))
2991 		return;
2992 	/*
2993 	 * Force a switch before returning to userspace.  If the
2994 	 * target thread is not running locally send an ipi to force
2995 	 * the issue.
2996 	 */
2997 	ast_sched_locked(td, TDA_SCHED);
2998 	if (td != curthread)
2999 		ipi_cpu(ts->ts_cpu, IPI_PREEMPT);
3000 #endif
3001 }
3002 
3003 /*
3004  * Bind a thread to a target cpu.
3005  */
3006 static void
sched_ule_bind(struct thread * td,int cpu)3007 sched_ule_bind(struct thread *td, int cpu)
3008 {
3009 	struct td_sched *ts;
3010 
3011 	THREAD_LOCK_ASSERT(td, MA_OWNED|MA_NOTRECURSED);
3012 	KASSERT(td == curthread, ("sched_bind: can only bind curthread"));
3013 	ts = td_get_sched(td);
3014 	if (ts->ts_flags & TSF_BOUND)
3015 		sched_unbind(td);
3016 	KASSERT(THREAD_CAN_MIGRATE(td), ("%p must be migratable", td));
3017 	ts->ts_flags |= TSF_BOUND;
3018 	sched_pin();
3019 	if (PCPU_GET(cpuid) == cpu)
3020 		return;
3021 	ts->ts_cpu = cpu;
3022 	/* When we return from mi_switch we'll be on the correct cpu. */
3023 	mi_switch(SW_VOL | SWT_BIND);
3024 	thread_lock(td);
3025 }
3026 
3027 /*
3028  * Release a bound thread.
3029  */
3030 static void
sched_ule_unbind(struct thread * td)3031 sched_ule_unbind(struct thread *td)
3032 {
3033 	struct td_sched *ts;
3034 
3035 	THREAD_LOCK_ASSERT(td, MA_OWNED);
3036 	KASSERT(td == curthread, ("sched_unbind: can only bind curthread"));
3037 	ts = td_get_sched(td);
3038 	if ((ts->ts_flags & TSF_BOUND) == 0)
3039 		return;
3040 	ts->ts_flags &= ~TSF_BOUND;
3041 	sched_unpin();
3042 }
3043 
3044 static int
sched_ule_is_bound(struct thread * td)3045 sched_ule_is_bound(struct thread *td)
3046 {
3047 	THREAD_LOCK_ASSERT(td, MA_OWNED);
3048 	return (td_get_sched(td)->ts_flags & TSF_BOUND);
3049 }
3050 
3051 /*
3052  * Basic yield call.
3053  */
3054 static void
sched_ule_relinquish(struct thread * td)3055 sched_ule_relinquish(struct thread *td)
3056 {
3057 	thread_lock(td);
3058 	mi_switch(SW_VOL | SWT_RELINQUISH);
3059 }
3060 
3061 /*
3062  * Return the total system load.
3063  */
3064 static int
sched_ule_load(void)3065 sched_ule_load(void)
3066 {
3067 #ifdef SMP
3068 	int total;
3069 	int i;
3070 
3071 	total = 0;
3072 	CPU_FOREACH(i)
3073 		total += atomic_load_int(&TDQ_CPU(i)->tdq_sysload);
3074 	return (total);
3075 #else
3076 	return (atomic_load_int(&TDQ_SELF()->tdq_sysload));
3077 #endif
3078 }
3079 
3080 static int
sched_ule_sizeof_proc(void)3081 sched_ule_sizeof_proc(void)
3082 {
3083 	return (sizeof(struct proc));
3084 }
3085 
3086 static int
sched_ule_sizeof_thread(void)3087 sched_ule_sizeof_thread(void)
3088 {
3089 	return (sizeof(struct thread) + sizeof(struct td_sched));
3090 }
3091 
3092 #ifdef SMP
3093 #define	TDQ_IDLESPIN(tdq)						\
3094     ((tdq)->tdq_cg != NULL && ((tdq)->tdq_cg->cg_flags & CG_FLAG_THREAD) == 0)
3095 #else
3096 #define	TDQ_IDLESPIN(tdq)	1
3097 #endif
3098 
3099 /*
3100  * The actual idle process.
3101  */
3102 static void
sched_ule_idletd(void * dummy)3103 sched_ule_idletd(void *dummy)
3104 {
3105 	struct thread *td;
3106 	struct tdq *tdq;
3107 	int oldswitchcnt, switchcnt;
3108 	int i;
3109 
3110 	mtx_assert(&Giant, MA_NOTOWNED);
3111 	td = curthread;
3112 	tdq = TDQ_SELF();
3113 	THREAD_NO_SLEEPING();
3114 	oldswitchcnt = -1;
3115 	for (;;) {
3116 		if (TDQ_LOAD(tdq)) {
3117 			thread_lock(td);
3118 			mi_switch(SW_VOL | SWT_IDLE);
3119 		}
3120 		switchcnt = TDQ_SWITCHCNT(tdq);
3121 #ifdef SMP
3122 		if (always_steal || switchcnt != oldswitchcnt) {
3123 			oldswitchcnt = switchcnt;
3124 			if (tdq_idled(tdq) == 0)
3125 				continue;
3126 		}
3127 		switchcnt = TDQ_SWITCHCNT(tdq);
3128 #else
3129 		oldswitchcnt = switchcnt;
3130 #endif
3131 		/*
3132 		 * If we're switching very frequently, spin while checking
3133 		 * for load rather than entering a low power state that
3134 		 * may require an IPI.  However, don't do any busy
3135 		 * loops while on SMT machines as this simply steals
3136 		 * cycles from cores doing useful work.
3137 		 */
3138 		if (TDQ_IDLESPIN(tdq) && switchcnt > sched_idlespinthresh) {
3139 			for (i = 0; i < sched_idlespins; i++) {
3140 				if (TDQ_LOAD(tdq))
3141 					break;
3142 				cpu_spinwait();
3143 			}
3144 		}
3145 
3146 		/* If there was context switch during spin, restart it. */
3147 		switchcnt = TDQ_SWITCHCNT(tdq);
3148 		if (TDQ_LOAD(tdq) != 0 || switchcnt != oldswitchcnt)
3149 			continue;
3150 
3151 		/* Run main MD idle handler. */
3152 		atomic_store_int(&tdq->tdq_cpu_idle, 1);
3153 		/*
3154 		 * Make sure that the tdq_cpu_idle update is globally visible
3155 		 * before cpu_idle() reads tdq_load.  The order is important
3156 		 * to avoid races with tdq_notify().
3157 		 */
3158 		atomic_thread_fence_seq_cst();
3159 		/*
3160 		 * Checking for again after the fence picks up assigned
3161 		 * threads often enough to make it worthwhile to do so in
3162 		 * order to avoid calling cpu_idle().
3163 		 */
3164 		if (TDQ_LOAD(tdq) != 0) {
3165 			atomic_store_int(&tdq->tdq_cpu_idle, 0);
3166 			continue;
3167 		}
3168 		cpu_idle(switchcnt * 4 > sched_idlespinthresh);
3169 		atomic_store_int(&tdq->tdq_cpu_idle, 0);
3170 
3171 		/*
3172 		 * Account thread-less hardware interrupts and
3173 		 * other wakeup reasons equal to context switches.
3174 		 */
3175 		switchcnt = TDQ_SWITCHCNT(tdq);
3176 		if (switchcnt != oldswitchcnt)
3177 			continue;
3178 		TDQ_SWITCHCNT_INC(tdq);
3179 		oldswitchcnt++;
3180 	}
3181 }
3182 
3183 /*
3184  * sched_throw_grab() chooses a thread from the queue to switch to
3185  * next.  It returns with the tdq lock dropped in a spinlock section to
3186  * keep interrupts disabled until the CPU is running in a proper threaded
3187  * context.
3188  */
3189 static struct thread *
sched_throw_grab(struct tdq * tdq)3190 sched_throw_grab(struct tdq *tdq)
3191 {
3192 	struct thread *newtd;
3193 
3194 	newtd = choosethread();
3195 	spinlock_enter();
3196 	TDQ_UNLOCK(tdq);
3197 	KASSERT(curthread->td_md.md_spinlock_count == 1,
3198 	    ("invalid count %d", curthread->td_md.md_spinlock_count));
3199 	return (newtd);
3200 }
3201 
3202 /*
3203  * A CPU is entering for the first time.
3204  */
3205 static void
sched_ule_ap_entry(void)3206 sched_ule_ap_entry(void)
3207 {
3208 	struct thread *newtd;
3209 	struct tdq *tdq;
3210 
3211 	tdq = TDQ_SELF();
3212 
3213 	/* This should have been setup in schedinit_ap(). */
3214 	THREAD_LOCKPTR_ASSERT(curthread, TDQ_LOCKPTR(tdq));
3215 
3216 	TDQ_LOCK(tdq);
3217 	/* Correct spinlock nesting. */
3218 	spinlock_exit();
3219 	PCPU_SET(switchtime, cpu_ticks());
3220 	PCPU_SET(switchticks, ticks);
3221 
3222 	newtd = sched_throw_grab(tdq);
3223 
3224 #ifdef HWT_HOOKS
3225 	HWT_CALL_HOOK(newtd, HWT_SWITCH_IN, NULL);
3226 #endif
3227 
3228 	/* doesn't return */
3229 	cpu_throw(NULL, newtd);
3230 }
3231 
3232 /*
3233  * A thread is exiting.
3234  */
3235 static void
sched_ule_throw(struct thread * td)3236 sched_ule_throw(struct thread *td)
3237 {
3238 	struct thread *newtd;
3239 	struct tdq *tdq;
3240 
3241 	tdq = TDQ_SELF();
3242 
3243 	MPASS(td != NULL);
3244 	THREAD_LOCK_ASSERT(td, MA_OWNED);
3245 	THREAD_LOCKPTR_ASSERT(td, TDQ_LOCKPTR(tdq));
3246 
3247 	tdq_load_rem(tdq, td);
3248 	td->td_lastcpu = td->td_oncpu;
3249 	td->td_oncpu = NOCPU;
3250 	thread_lock_block(td);
3251 
3252 	newtd = sched_throw_grab(tdq);
3253 
3254 #ifdef HWT_HOOKS
3255 	HWT_CALL_HOOK(newtd, HWT_SWITCH_IN, NULL);
3256 #endif
3257 
3258 	/* doesn't return */
3259 	cpu_switch(td, newtd, TDQ_LOCKPTR(tdq));
3260 }
3261 
3262 /*
3263  * This is called from fork_exit().  Just acquire the correct locks and
3264  * let fork do the rest of the work.
3265  */
3266 static void
sched_ule_fork_exit(struct thread * td)3267 sched_ule_fork_exit(struct thread *td)
3268 {
3269 	struct tdq *tdq;
3270 	int cpuid;
3271 
3272 	/*
3273 	 * Finish setting up thread glue so that it begins execution in a
3274 	 * non-nested critical section with the scheduler lock held.
3275 	 */
3276 	KASSERT(curthread->td_md.md_spinlock_count == 1,
3277 	    ("invalid count %d", curthread->td_md.md_spinlock_count));
3278 	cpuid = PCPU_GET(cpuid);
3279 	tdq = TDQ_SELF();
3280 	TDQ_LOCK(tdq);
3281 	spinlock_exit();
3282 	MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
3283 	td->td_oncpu = cpuid;
3284 	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "running",
3285 	    "prio:%d", td->td_priority);
3286 	SDT_PROBE0(sched, , , on__cpu);
3287 }
3288 
3289 /*
3290  * Create on first use to catch odd startup conditions.
3291  */
3292 static char *
sched_ule_tdname(struct thread * td)3293 sched_ule_tdname(struct thread *td)
3294 {
3295 #ifdef KTR
3296 	struct td_sched *ts;
3297 
3298 	ts = td_get_sched(td);
3299 	if (ts->ts_name[0] == '\0')
3300 		snprintf(ts->ts_name, sizeof(ts->ts_name),
3301 		    "%s tid %d", td->td_name, td->td_tid);
3302 	return (ts->ts_name);
3303 #else
3304 	return (td->td_name);
3305 #endif
3306 }
3307 
3308 static void
sched_ule_clear_tdname(struct thread * td)3309 sched_ule_clear_tdname(struct thread *td)
3310 {
3311 #ifdef KTR
3312 	struct td_sched *ts;
3313 
3314 	ts = td_get_sched(td);
3315 	ts->ts_name[0] = '\0';
3316 #endif
3317 }
3318 
3319 static void
sched_ule_schedcpu(void)3320 sched_ule_schedcpu(void)
3321 {
3322 }
3323 
3324 static bool
sched_ule_do_timer_accounting(void)3325 sched_ule_do_timer_accounting(void)
3326 {
3327 	return (true);
3328 }
3329 
3330 #ifdef SMP
3331 static int
sched_ule_find_child_with_core(int cpu,struct cpu_group * grp)3332 sched_ule_find_child_with_core(int cpu, struct cpu_group *grp)
3333 {
3334 	int i;
3335 
3336 	if (grp->cg_children == 0)
3337 		return (-1);
3338 
3339 	MPASS(grp->cg_child);
3340 	for (i = 0; i < grp->cg_children; i++) {
3341 		if (CPU_ISSET(cpu, &grp->cg_child[i].cg_mask))
3342 			return (i);
3343 	}
3344 
3345 	return (-1);
3346 }
3347 
3348 static int
sched_ule_find_l2_neighbor(int cpu)3349 sched_ule_find_l2_neighbor(int cpu)
3350 {
3351 	struct cpu_group *grp;
3352 	int i;
3353 
3354 	grp = cpu_top;
3355 	if (grp == NULL)
3356 		return (-1);
3357 
3358 	/*
3359 	 * Find the smallest CPU group that contains the given core.
3360 	 */
3361 	i = 0;
3362 	while ((i = sched_ule_find_child_with_core(cpu, grp)) != -1) {
3363 		/*
3364 		 * If the smallest group containing the given CPU has less
3365 		 * than two members, we conclude the given CPU has no
3366 		 * L2 neighbor.
3367 		 */
3368 		if (grp->cg_child[i].cg_count <= 1)
3369 			return (-1);
3370 		grp = &grp->cg_child[i];
3371 	}
3372 
3373 	/* Must share L2. */
3374 	if (grp->cg_level > CG_SHARE_L2 || grp->cg_level == CG_SHARE_NONE)
3375 		return (-1);
3376 
3377 	/*
3378 	 * Select the first member of the set that isn't the reference
3379 	 * CPU, which at this point is guaranteed to exist.
3380 	 */
3381 	for (i = 0; i < CPU_SETSIZE; i++) {
3382 		if (CPU_ISSET(i, &grp->cg_mask) && i != cpu)
3383 			return (i);
3384 	}
3385 
3386 	/* Should never be reached */
3387 	return (-1);
3388 }
3389 #else
3390 static int
sched_ule_find_l2_neighbor(int cpu)3391 sched_ule_find_l2_neighbor(int cpu)
3392 {
3393 	return (-1);
3394 }
3395 #endif
3396 
3397 struct sched_instance sched_ule_instance = {
3398 #define	SLOT(name) .name = sched_ule_##name
3399 	SLOT(load),
3400 	SLOT(rr_interval),
3401 	SLOT(runnable),
3402 	SLOT(exit),
3403 	SLOT(fork),
3404 	SLOT(fork_exit),
3405 	SLOT(class),
3406 	SLOT(nice),
3407 	SLOT(ap_entry),
3408 	SLOT(exit_thread),
3409 	SLOT(estcpu),
3410 	SLOT(fork_thread),
3411 	SLOT(ithread_prio),
3412 	SLOT(lend_prio),
3413 	SLOT(lend_user_prio),
3414 	SLOT(lend_user_prio_cond),
3415 	SLOT(pctcpu),
3416 	SLOT(prio),
3417 	SLOT(sleep),
3418 	SLOT(sswitch),
3419 	SLOT(throw),
3420 	SLOT(unlend_prio),
3421 	SLOT(user_prio),
3422 	SLOT(userret_slowpath),
3423 	SLOT(add),
3424 	SLOT(choose),
3425 	SLOT(clock),
3426 	SLOT(idletd),
3427 	SLOT(preempt),
3428 	SLOT(relinquish),
3429 	SLOT(rem),
3430 	SLOT(wakeup),
3431 	SLOT(bind),
3432 	SLOT(unbind),
3433 	SLOT(is_bound),
3434 	SLOT(affinity),
3435 	SLOT(sizeof_proc),
3436 	SLOT(sizeof_thread),
3437 	SLOT(tdname),
3438 	SLOT(clear_tdname),
3439 	SLOT(do_timer_accounting),
3440 	SLOT(find_l2_neighbor),
3441 	SLOT(init),
3442 	SLOT(init_ap),
3443 	SLOT(setup),
3444 	SLOT(initticks),
3445 	SLOT(schedcpu),
3446 #undef SLOT
3447 };
3448 DECLARE_SCHEDULER(ule_sched_selector, "ULE", &sched_ule_instance);
3449 
3450 static int
sysctl_kern_quantum(SYSCTL_HANDLER_ARGS)3451 sysctl_kern_quantum(SYSCTL_HANDLER_ARGS)
3452 {
3453 	int error, new_val, period;
3454 
3455 	period = 1000000 / realstathz;
3456 	new_val = period * sched_slice;
3457 	error = sysctl_handle_int(oidp, &new_val, 0, req);
3458 	if (error != 0 || req->newptr == NULL)
3459 		return (error);
3460 	if (new_val <= 0)
3461 		return (EINVAL);
3462 	sched_slice = imax(1, (new_val + period / 2) / period);
3463 	sched_slice_min = sched_slice / SCHED_SLICE_MIN_DIVISOR;
3464 	hogticks = imax(1, (2 * hz * sched_slice + realstathz / 2) /
3465 	    realstathz);
3466 	return (0);
3467 }
3468 
3469 SYSCTL_NODE(_kern_sched, OID_AUTO, ule, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
3470     "ULE Scheduler");
3471 
3472 SYSCTL_PROC(_kern_sched_ule, OID_AUTO, quantum,
3473     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, 0,
3474     sysctl_kern_quantum, "I",
3475     "Quantum for timeshare threads in microseconds");
3476 SYSCTL_INT(_kern_sched_ule, OID_AUTO, slice, CTLFLAG_RW, &sched_slice, 0,
3477     "Quantum for timeshare threads in stathz ticks");
3478 SYSCTL_UINT(_kern_sched_ule, OID_AUTO, interact, CTLFLAG_RWTUN, &sched_interact, 0,
3479     "Interactivity score threshold");
3480 SYSCTL_INT(_kern_sched_ule, OID_AUTO, preempt_thresh, CTLFLAG_RWTUN,
3481     &preempt_thresh, 0,
3482     "Maximal (lowest) priority for preemption");
3483 SYSCTL_INT(_kern_sched_ule, OID_AUTO, static_boost, CTLFLAG_RWTUN,
3484     &static_boost, 0,
3485     "Assign static kernel priorities to sleeping threads");
3486 SYSCTL_INT(_kern_sched_ule, OID_AUTO, idlespins, CTLFLAG_RWTUN,
3487     &sched_idlespins, 0,
3488     "Number of times idle thread will spin waiting for new work");
3489 SYSCTL_INT(_kern_sched_ule, OID_AUTO, idlespinthresh, CTLFLAG_RW,
3490     &sched_idlespinthresh, 0,
3491     "Threshold before we will permit idle thread spinning");
3492 #ifdef SMP
3493 SYSCTL_INT(_kern_sched_ule, OID_AUTO, affinity, CTLFLAG_RW, &affinity, 0,
3494     "Number of hz ticks to keep thread affinity for");
3495 SYSCTL_INT(_kern_sched_ule, OID_AUTO, balance, CTLFLAG_RWTUN, &rebalance, 0,
3496     "Enables the long-term load balancer");
3497 SYSCTL_INT(_kern_sched_ule, OID_AUTO, balance_interval, CTLFLAG_RW,
3498     &balance_interval, 0,
3499     "Average period in stathz ticks to run the long-term balancer");
3500 SYSCTL_INT(_kern_sched_ule, OID_AUTO, steal_idle, CTLFLAG_RWTUN,
3501     &steal_idle, 0,
3502     "Attempts to steal work from other cores before idling");
3503 SYSCTL_INT(_kern_sched_ule, OID_AUTO, steal_thresh, CTLFLAG_RWTUN,
3504     &steal_thresh, 0,
3505     "Minimum load on remote CPU before we'll steal");
3506 SYSCTL_INT(_kern_sched_ule, OID_AUTO, trysteal_limit, CTLFLAG_RWTUN,
3507     &trysteal_limit, 0,
3508     "Topological distance limit for stealing threads in sched_switch()");
3509 SYSCTL_INT(_kern_sched_ule, OID_AUTO, always_steal, CTLFLAG_RWTUN,
3510     &always_steal, 0,
3511     "Always run the stealer from the idle thread");
3512 #endif
3513