1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
4 * Author: Joerg Roedel <jroedel@suse.de>
5 * Leo Duran <leo.duran@amd.com>
6 */
7
8 #define pr_fmt(fmt) "AMD-Vi: " fmt
9 #define dev_fmt(fmt) pr_fmt(fmt)
10
11 #include <linux/ratelimit.h>
12 #include <linux/pci.h>
13 #include <linux/acpi.h>
14 #include <linux/pci-ats.h>
15 #include <linux/bitmap.h>
16 #include <linux/slab.h>
17 #include <linux/debugfs.h>
18 #include <linux/scatterlist.h>
19 #include <linux/dma-map-ops.h>
20 #include <linux/dma-direct.h>
21 #include <linux/idr.h>
22 #include <linux/iommu-helper.h>
23 #include <linux/delay.h>
24 #include <linux/amd-iommu.h>
25 #include <linux/notifier.h>
26 #include <linux/export.h>
27 #include <linux/irq.h>
28 #include <linux/msi.h>
29 #include <linux/irqdomain.h>
30 #include <linux/percpu.h>
31 #include <linux/io-pgtable.h>
32 #include <linux/cc_platform.h>
33 #include <asm/irq_remapping.h>
34 #include <asm/io_apic.h>
35 #include <asm/apic.h>
36 #include <asm/hw_irq.h>
37 #include <asm/proto.h>
38 #include <asm/iommu.h>
39 #include <asm/gart.h>
40 #include <asm/dma.h>
41 #include <uapi/linux/iommufd.h>
42
43 #include "amd_iommu.h"
44 #include "../dma-iommu.h"
45 #include "../irq_remapping.h"
46 #include "../iommu-pages.h"
47
48 #define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
49
50 /* Reserved IOVA ranges */
51 #define MSI_RANGE_START (0xfee00000)
52 #define MSI_RANGE_END (0xfeefffff)
53 #define HT_RANGE_START (0xfd00000000ULL)
54 #define HT_RANGE_END (0xffffffffffULL)
55
56 LIST_HEAD(ioapic_map);
57 LIST_HEAD(hpet_map);
58 LIST_HEAD(acpihid_map);
59
60 const struct iommu_ops amd_iommu_ops;
61 static const struct iommu_dirty_ops amd_dirty_ops;
62
63 int amd_iommu_max_glx_val = -1;
64
65 /*
66 * general struct to manage commands send to an IOMMU
67 */
68 struct iommu_cmd {
69 u32 data[4];
70 };
71
72 /*
73 * AMD IOMMU allows up to 2^16 different protection domains. This is a bitmap
74 * to know which ones are already in use.
75 */
76 DEFINE_IDA(pdom_ids);
77
78 struct kmem_cache *amd_iommu_irq_cache;
79
80 static int amd_iommu_attach_device(struct iommu_domain *dom,
81 struct device *dev);
82
83 static void set_dte_entry(struct amd_iommu *iommu,
84 struct iommu_dev_data *dev_data);
85
86 static void iommu_flush_dte_sync(struct amd_iommu *iommu, u16 devid);
87
88 static struct iommu_dev_data *find_dev_data(struct amd_iommu *iommu, u16 devid);
89
90 /****************************************************************************
91 *
92 * Helper functions
93 *
94 ****************************************************************************/
95
amd_iommu_atomic128_set(__int128 * ptr,__int128 val)96 static __always_inline void amd_iommu_atomic128_set(__int128 *ptr, __int128 val)
97 {
98 /*
99 * Note:
100 * We use arch_cmpxchg128_local() because:
101 * - Need cmpxchg16b instruction mainly for 128-bit store to DTE
102 * (not necessary for cmpxchg since this function is already
103 * protected by a spin_lock for this DTE).
104 * - Neither need LOCK_PREFIX nor try loop because of the spin_lock.
105 */
106 arch_cmpxchg128_local(ptr, *ptr, val);
107 }
108
write_dte_upper128(struct dev_table_entry * ptr,struct dev_table_entry * new)109 static void write_dte_upper128(struct dev_table_entry *ptr, struct dev_table_entry *new)
110 {
111 struct dev_table_entry old;
112
113 old.data128[1] = ptr->data128[1];
114 /*
115 * Preserve DTE_DATA2_INTR_MASK. This needs to be
116 * done here since it requires to be inside
117 * spin_lock(&dev_data->dte_lock) context.
118 */
119 new->data[2] &= ~DTE_DATA2_INTR_MASK;
120 new->data[2] |= old.data[2] & DTE_DATA2_INTR_MASK;
121
122 amd_iommu_atomic128_set(&ptr->data128[1], new->data128[1]);
123 }
124
write_dte_lower128(struct dev_table_entry * ptr,struct dev_table_entry * new)125 static void write_dte_lower128(struct dev_table_entry *ptr, struct dev_table_entry *new)
126 {
127 amd_iommu_atomic128_set(&ptr->data128[0], new->data128[0]);
128 }
129
130 /*
131 * Note:
132 * IOMMU reads the entire Device Table entry in a single 256-bit transaction
133 * but the driver is programming DTE using 2 128-bit cmpxchg. So, the driver
134 * need to ensure the following:
135 * - DTE[V|GV] bit is being written last when setting.
136 * - DTE[V|GV] bit is being written first when clearing.
137 *
138 * This function is used only by code, which updates DMA translation part of the DTE.
139 * So, only consider control bits related to DMA when updating the entry.
140 */
update_dte256(struct amd_iommu * iommu,struct iommu_dev_data * dev_data,struct dev_table_entry * new)141 static void update_dte256(struct amd_iommu *iommu, struct iommu_dev_data *dev_data,
142 struct dev_table_entry *new)
143 {
144 unsigned long flags;
145 struct dev_table_entry *dev_table = get_dev_table(iommu);
146 struct dev_table_entry *ptr = &dev_table[dev_data->devid];
147
148 spin_lock_irqsave(&dev_data->dte_lock, flags);
149
150 if (!(ptr->data[0] & DTE_FLAG_V)) {
151 /* Existing DTE is not valid. */
152 write_dte_upper128(ptr, new);
153 write_dte_lower128(ptr, new);
154 iommu_flush_dte_sync(iommu, dev_data->devid);
155 } else if (!(new->data[0] & DTE_FLAG_V)) {
156 /* Existing DTE is valid. New DTE is not valid. */
157 write_dte_lower128(ptr, new);
158 write_dte_upper128(ptr, new);
159 iommu_flush_dte_sync(iommu, dev_data->devid);
160 } else if (!FIELD_GET(DTE_FLAG_GV, ptr->data[0])) {
161 /*
162 * Both DTEs are valid.
163 * Existing DTE has no guest page table.
164 */
165 write_dte_upper128(ptr, new);
166 write_dte_lower128(ptr, new);
167 iommu_flush_dte_sync(iommu, dev_data->devid);
168 } else if (!FIELD_GET(DTE_FLAG_GV, new->data[0])) {
169 /*
170 * Both DTEs are valid.
171 * Existing DTE has guest page table,
172 * new DTE has no guest page table,
173 */
174 write_dte_lower128(ptr, new);
175 write_dte_upper128(ptr, new);
176 iommu_flush_dte_sync(iommu, dev_data->devid);
177 } else if (FIELD_GET(DTE_GPT_LEVEL_MASK, ptr->data[2]) !=
178 FIELD_GET(DTE_GPT_LEVEL_MASK, new->data[2])) {
179 /*
180 * Both DTEs are valid and have guest page table,
181 * but have different number of levels. So, we need
182 * to upadte both upper and lower 128-bit value, which
183 * require disabling and flushing.
184 */
185 struct dev_table_entry clear = {};
186
187 /* First disable DTE */
188 write_dte_lower128(ptr, &clear);
189 iommu_flush_dte_sync(iommu, dev_data->devid);
190
191 /* Then update DTE */
192 write_dte_upper128(ptr, new);
193 write_dte_lower128(ptr, new);
194 iommu_flush_dte_sync(iommu, dev_data->devid);
195 } else {
196 /*
197 * Both DTEs are valid and have guest page table,
198 * and same number of levels. We just need to only
199 * update the lower 128-bit. So no need to disable DTE.
200 */
201 write_dte_lower128(ptr, new);
202 }
203
204 spin_unlock_irqrestore(&dev_data->dte_lock, flags);
205 }
206
get_dte256(struct amd_iommu * iommu,struct iommu_dev_data * dev_data,struct dev_table_entry * dte)207 static void get_dte256(struct amd_iommu *iommu, struct iommu_dev_data *dev_data,
208 struct dev_table_entry *dte)
209 {
210 unsigned long flags;
211 struct dev_table_entry *ptr;
212 struct dev_table_entry *dev_table = get_dev_table(iommu);
213
214 ptr = &dev_table[dev_data->devid];
215
216 spin_lock_irqsave(&dev_data->dte_lock, flags);
217 dte->data128[0] = ptr->data128[0];
218 dte->data128[1] = ptr->data128[1];
219 spin_unlock_irqrestore(&dev_data->dte_lock, flags);
220 }
221
pdom_is_v2_pgtbl_mode(struct protection_domain * pdom)222 static inline bool pdom_is_v2_pgtbl_mode(struct protection_domain *pdom)
223 {
224 return (pdom && (pdom->pd_mode == PD_MODE_V2));
225 }
226
pdom_is_in_pt_mode(struct protection_domain * pdom)227 static inline bool pdom_is_in_pt_mode(struct protection_domain *pdom)
228 {
229 return (pdom->domain.type == IOMMU_DOMAIN_IDENTITY);
230 }
231
232 /*
233 * We cannot support PASID w/ existing v1 page table in the same domain
234 * since it will be nested. However, existing domain w/ v2 page table
235 * or passthrough mode can be used for PASID.
236 */
pdom_is_sva_capable(struct protection_domain * pdom)237 static inline bool pdom_is_sva_capable(struct protection_domain *pdom)
238 {
239 return pdom_is_v2_pgtbl_mode(pdom) || pdom_is_in_pt_mode(pdom);
240 }
241
get_acpihid_device_id(struct device * dev,struct acpihid_map_entry ** entry)242 static inline int get_acpihid_device_id(struct device *dev,
243 struct acpihid_map_entry **entry)
244 {
245 struct acpi_device *adev = ACPI_COMPANION(dev);
246 struct acpihid_map_entry *p;
247
248 if (!adev)
249 return -ENODEV;
250
251 list_for_each_entry(p, &acpihid_map, list) {
252 if (acpi_dev_hid_uid_match(adev, p->hid,
253 p->uid[0] ? p->uid : NULL)) {
254 if (entry)
255 *entry = p;
256 return p->devid;
257 }
258 }
259 return -EINVAL;
260 }
261
get_device_sbdf_id(struct device * dev)262 static inline int get_device_sbdf_id(struct device *dev)
263 {
264 int sbdf;
265
266 if (dev_is_pci(dev))
267 sbdf = get_pci_sbdf_id(to_pci_dev(dev));
268 else
269 sbdf = get_acpihid_device_id(dev, NULL);
270
271 return sbdf;
272 }
273
get_dev_table(struct amd_iommu * iommu)274 struct dev_table_entry *get_dev_table(struct amd_iommu *iommu)
275 {
276 struct dev_table_entry *dev_table;
277 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
278
279 BUG_ON(pci_seg == NULL);
280 dev_table = pci_seg->dev_table;
281 BUG_ON(dev_table == NULL);
282
283 return dev_table;
284 }
285
get_device_segment(struct device * dev)286 static inline u16 get_device_segment(struct device *dev)
287 {
288 u16 seg;
289
290 if (dev_is_pci(dev)) {
291 struct pci_dev *pdev = to_pci_dev(dev);
292
293 seg = pci_domain_nr(pdev->bus);
294 } else {
295 u32 devid = get_acpihid_device_id(dev, NULL);
296
297 seg = PCI_SBDF_TO_SEGID(devid);
298 }
299
300 return seg;
301 }
302
303 /* Writes the specific IOMMU for a device into the PCI segment rlookup table */
amd_iommu_set_rlookup_table(struct amd_iommu * iommu,u16 devid)304 void amd_iommu_set_rlookup_table(struct amd_iommu *iommu, u16 devid)
305 {
306 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
307
308 pci_seg->rlookup_table[devid] = iommu;
309 }
310
__rlookup_amd_iommu(u16 seg,u16 devid)311 static struct amd_iommu *__rlookup_amd_iommu(u16 seg, u16 devid)
312 {
313 struct amd_iommu_pci_seg *pci_seg;
314
315 for_each_pci_segment(pci_seg) {
316 if (pci_seg->id == seg)
317 return pci_seg->rlookup_table[devid];
318 }
319 return NULL;
320 }
321
rlookup_amd_iommu(struct device * dev)322 static struct amd_iommu *rlookup_amd_iommu(struct device *dev)
323 {
324 u16 seg = get_device_segment(dev);
325 int devid = get_device_sbdf_id(dev);
326
327 if (devid < 0)
328 return NULL;
329 return __rlookup_amd_iommu(seg, PCI_SBDF_TO_DEVID(devid));
330 }
331
alloc_dev_data(struct amd_iommu * iommu,u16 devid)332 static struct iommu_dev_data *alloc_dev_data(struct amd_iommu *iommu, u16 devid)
333 {
334 struct iommu_dev_data *dev_data;
335 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
336
337 dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
338 if (!dev_data)
339 return NULL;
340
341 mutex_init(&dev_data->mutex);
342 spin_lock_init(&dev_data->dte_lock);
343 dev_data->devid = devid;
344 ratelimit_default_init(&dev_data->rs);
345
346 llist_add(&dev_data->dev_data_list, &pci_seg->dev_data_list);
347 return dev_data;
348 }
349
search_dev_data(struct amd_iommu * iommu,u16 devid)350 struct iommu_dev_data *search_dev_data(struct amd_iommu *iommu, u16 devid)
351 {
352 struct iommu_dev_data *dev_data;
353 struct llist_node *node;
354 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
355
356 if (llist_empty(&pci_seg->dev_data_list))
357 return NULL;
358
359 node = pci_seg->dev_data_list.first;
360 llist_for_each_entry(dev_data, node, dev_data_list) {
361 if (dev_data->devid == devid)
362 return dev_data;
363 }
364
365 return NULL;
366 }
367
clone_alias(struct pci_dev * pdev,u16 alias,void * data)368 static int clone_alias(struct pci_dev *pdev, u16 alias, void *data)
369 {
370 struct dev_table_entry new;
371 struct amd_iommu *iommu;
372 struct iommu_dev_data *dev_data, *alias_data;
373 u16 devid = pci_dev_id(pdev);
374 int ret = 0;
375
376 if (devid == alias)
377 return 0;
378
379 iommu = rlookup_amd_iommu(&pdev->dev);
380 if (!iommu)
381 return 0;
382
383 /* Copy the data from pdev */
384 dev_data = dev_iommu_priv_get(&pdev->dev);
385 if (!dev_data) {
386 pr_err("%s : Failed to get dev_data for 0x%x\n", __func__, devid);
387 ret = -EINVAL;
388 goto out;
389 }
390 get_dte256(iommu, dev_data, &new);
391
392 /* Setup alias */
393 alias_data = find_dev_data(iommu, alias);
394 if (!alias_data) {
395 pr_err("%s : Failed to get alias dev_data for 0x%x\n", __func__, alias);
396 ret = -EINVAL;
397 goto out;
398 }
399 update_dte256(iommu, alias_data, &new);
400
401 amd_iommu_set_rlookup_table(iommu, alias);
402 out:
403 return ret;
404 }
405
clone_aliases(struct amd_iommu * iommu,struct device * dev)406 static void clone_aliases(struct amd_iommu *iommu, struct device *dev)
407 {
408 struct pci_dev *pdev;
409
410 if (!dev_is_pci(dev))
411 return;
412 pdev = to_pci_dev(dev);
413
414 /*
415 * The IVRS alias stored in the alias table may not be
416 * part of the PCI DMA aliases if it's bus differs
417 * from the original device.
418 */
419 clone_alias(pdev, iommu->pci_seg->alias_table[pci_dev_id(pdev)], NULL);
420
421 pci_for_each_dma_alias(pdev, clone_alias, NULL);
422 }
423
setup_aliases(struct amd_iommu * iommu,struct device * dev)424 static void setup_aliases(struct amd_iommu *iommu, struct device *dev)
425 {
426 struct pci_dev *pdev = to_pci_dev(dev);
427 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
428 u16 ivrs_alias;
429
430 /* For ACPI HID devices, there are no aliases */
431 if (!dev_is_pci(dev))
432 return;
433
434 /*
435 * Add the IVRS alias to the pci aliases if it is on the same
436 * bus. The IVRS table may know about a quirk that we don't.
437 */
438 ivrs_alias = pci_seg->alias_table[pci_dev_id(pdev)];
439 if (ivrs_alias != pci_dev_id(pdev) &&
440 PCI_BUS_NUM(ivrs_alias) == pdev->bus->number)
441 pci_add_dma_alias(pdev, ivrs_alias & 0xff, 1);
442
443 clone_aliases(iommu, dev);
444 }
445
find_dev_data(struct amd_iommu * iommu,u16 devid)446 static struct iommu_dev_data *find_dev_data(struct amd_iommu *iommu, u16 devid)
447 {
448 struct iommu_dev_data *dev_data;
449
450 dev_data = search_dev_data(iommu, devid);
451
452 if (dev_data == NULL) {
453 dev_data = alloc_dev_data(iommu, devid);
454 if (!dev_data)
455 return NULL;
456
457 if (translation_pre_enabled(iommu))
458 dev_data->defer_attach = true;
459 }
460
461 return dev_data;
462 }
463
464 /*
465 * Find or create an IOMMU group for a acpihid device.
466 */
acpihid_device_group(struct device * dev)467 static struct iommu_group *acpihid_device_group(struct device *dev)
468 {
469 struct acpihid_map_entry *p, *entry = NULL;
470 int devid;
471
472 devid = get_acpihid_device_id(dev, &entry);
473 if (devid < 0)
474 return ERR_PTR(devid);
475
476 list_for_each_entry(p, &acpihid_map, list) {
477 if ((devid == p->devid) && p->group)
478 entry->group = p->group;
479 }
480
481 if (!entry->group)
482 entry->group = generic_device_group(dev);
483 else
484 iommu_group_ref_get(entry->group);
485
486 return entry->group;
487 }
488
pdev_pasid_supported(struct iommu_dev_data * dev_data)489 static inline bool pdev_pasid_supported(struct iommu_dev_data *dev_data)
490 {
491 return (dev_data->flags & AMD_IOMMU_DEVICE_FLAG_PASID_SUP);
492 }
493
pdev_get_caps(struct pci_dev * pdev)494 static u32 pdev_get_caps(struct pci_dev *pdev)
495 {
496 int features;
497 u32 flags = 0;
498
499 if (pci_ats_supported(pdev))
500 flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;
501
502 if (pci_pri_supported(pdev))
503 flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;
504
505 features = pci_pasid_features(pdev);
506 if (features >= 0) {
507 flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
508
509 if (features & PCI_PASID_CAP_EXEC)
510 flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
511
512 if (features & PCI_PASID_CAP_PRIV)
513 flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
514 }
515
516 return flags;
517 }
518
pdev_enable_cap_ats(struct pci_dev * pdev)519 static inline int pdev_enable_cap_ats(struct pci_dev *pdev)
520 {
521 struct iommu_dev_data *dev_data = dev_iommu_priv_get(&pdev->dev);
522 int ret = -EINVAL;
523
524 if (dev_data->ats_enabled)
525 return 0;
526
527 if (amd_iommu_iotlb_sup &&
528 (dev_data->flags & AMD_IOMMU_DEVICE_FLAG_ATS_SUP)) {
529 ret = pci_enable_ats(pdev, PAGE_SHIFT);
530 if (!ret) {
531 dev_data->ats_enabled = 1;
532 dev_data->ats_qdep = pci_ats_queue_depth(pdev);
533 }
534 }
535
536 return ret;
537 }
538
pdev_disable_cap_ats(struct pci_dev * pdev)539 static inline void pdev_disable_cap_ats(struct pci_dev *pdev)
540 {
541 struct iommu_dev_data *dev_data = dev_iommu_priv_get(&pdev->dev);
542
543 if (dev_data->ats_enabled) {
544 pci_disable_ats(pdev);
545 dev_data->ats_enabled = 0;
546 }
547 }
548
pdev_enable_cap_pri(struct pci_dev * pdev)549 static inline int pdev_enable_cap_pri(struct pci_dev *pdev)
550 {
551 struct iommu_dev_data *dev_data = dev_iommu_priv_get(&pdev->dev);
552 int ret = -EINVAL;
553
554 if (dev_data->pri_enabled)
555 return 0;
556
557 if (!dev_data->ats_enabled)
558 return 0;
559
560 if (dev_data->flags & AMD_IOMMU_DEVICE_FLAG_PRI_SUP) {
561 /*
562 * First reset the PRI state of the device.
563 * FIXME: Hardcode number of outstanding requests for now
564 */
565 if (!pci_reset_pri(pdev) && !pci_enable_pri(pdev, 32)) {
566 dev_data->pri_enabled = 1;
567 dev_data->pri_tlp = pci_prg_resp_pasid_required(pdev);
568
569 ret = 0;
570 }
571 }
572
573 return ret;
574 }
575
pdev_disable_cap_pri(struct pci_dev * pdev)576 static inline void pdev_disable_cap_pri(struct pci_dev *pdev)
577 {
578 struct iommu_dev_data *dev_data = dev_iommu_priv_get(&pdev->dev);
579
580 if (dev_data->pri_enabled) {
581 pci_disable_pri(pdev);
582 dev_data->pri_enabled = 0;
583 }
584 }
585
pdev_enable_cap_pasid(struct pci_dev * pdev)586 static inline int pdev_enable_cap_pasid(struct pci_dev *pdev)
587 {
588 struct iommu_dev_data *dev_data = dev_iommu_priv_get(&pdev->dev);
589 int ret = -EINVAL;
590
591 if (dev_data->pasid_enabled)
592 return 0;
593
594 if (dev_data->flags & AMD_IOMMU_DEVICE_FLAG_PASID_SUP) {
595 /* Only allow access to user-accessible pages */
596 ret = pci_enable_pasid(pdev, 0);
597 if (!ret)
598 dev_data->pasid_enabled = 1;
599 }
600
601 return ret;
602 }
603
pdev_disable_cap_pasid(struct pci_dev * pdev)604 static inline void pdev_disable_cap_pasid(struct pci_dev *pdev)
605 {
606 struct iommu_dev_data *dev_data = dev_iommu_priv_get(&pdev->dev);
607
608 if (dev_data->pasid_enabled) {
609 pci_disable_pasid(pdev);
610 dev_data->pasid_enabled = 0;
611 }
612 }
613
pdev_enable_caps(struct pci_dev * pdev)614 static void pdev_enable_caps(struct pci_dev *pdev)
615 {
616 pdev_enable_cap_ats(pdev);
617 pdev_enable_cap_pasid(pdev);
618 pdev_enable_cap_pri(pdev);
619 }
620
pdev_disable_caps(struct pci_dev * pdev)621 static void pdev_disable_caps(struct pci_dev *pdev)
622 {
623 pdev_disable_cap_ats(pdev);
624 pdev_disable_cap_pasid(pdev);
625 pdev_disable_cap_pri(pdev);
626 }
627
628 /*
629 * This function checks if the driver got a valid device from the caller to
630 * avoid dereferencing invalid pointers.
631 */
check_device(struct device * dev)632 static bool check_device(struct device *dev)
633 {
634 struct amd_iommu_pci_seg *pci_seg;
635 struct amd_iommu *iommu;
636 int devid, sbdf;
637
638 if (!dev)
639 return false;
640
641 sbdf = get_device_sbdf_id(dev);
642 if (sbdf < 0)
643 return false;
644 devid = PCI_SBDF_TO_DEVID(sbdf);
645
646 iommu = rlookup_amd_iommu(dev);
647 if (!iommu)
648 return false;
649
650 /* Out of our scope? */
651 pci_seg = iommu->pci_seg;
652 if (devid > pci_seg->last_bdf)
653 return false;
654
655 return true;
656 }
657
iommu_init_device(struct amd_iommu * iommu,struct device * dev)658 static int iommu_init_device(struct amd_iommu *iommu, struct device *dev)
659 {
660 struct iommu_dev_data *dev_data;
661 int devid, sbdf;
662
663 if (dev_iommu_priv_get(dev))
664 return 0;
665
666 sbdf = get_device_sbdf_id(dev);
667 if (sbdf < 0)
668 return sbdf;
669
670 devid = PCI_SBDF_TO_DEVID(sbdf);
671 dev_data = find_dev_data(iommu, devid);
672 if (!dev_data)
673 return -ENOMEM;
674
675 dev_data->dev = dev;
676
677 /*
678 * The dev_iommu_priv_set() needes to be called before setup_aliases.
679 * Otherwise, subsequent call to dev_iommu_priv_get() will fail.
680 */
681 dev_iommu_priv_set(dev, dev_data);
682 setup_aliases(iommu, dev);
683
684 /*
685 * By default we use passthrough mode for IOMMUv2 capable device.
686 * But if amd_iommu=force_isolation is set (e.g. to debug DMA to
687 * invalid address), we ignore the capability for the device so
688 * it'll be forced to go into translation mode.
689 */
690 if ((iommu_default_passthrough() || !amd_iommu_force_isolation) &&
691 dev_is_pci(dev) && amd_iommu_gt_ppr_supported()) {
692 dev_data->flags = pdev_get_caps(to_pci_dev(dev));
693 }
694
695 return 0;
696 }
697
iommu_ignore_device(struct amd_iommu * iommu,struct device * dev)698 static void iommu_ignore_device(struct amd_iommu *iommu, struct device *dev)
699 {
700 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
701 struct dev_table_entry *dev_table = get_dev_table(iommu);
702 int devid, sbdf;
703
704 sbdf = get_device_sbdf_id(dev);
705 if (sbdf < 0)
706 return;
707
708 devid = PCI_SBDF_TO_DEVID(sbdf);
709 pci_seg->rlookup_table[devid] = NULL;
710 memset(&dev_table[devid], 0, sizeof(struct dev_table_entry));
711
712 setup_aliases(iommu, dev);
713 }
714
715
716 /****************************************************************************
717 *
718 * Interrupt handling functions
719 *
720 ****************************************************************************/
721
dump_dte_entry(struct amd_iommu * iommu,u16 devid)722 static void dump_dte_entry(struct amd_iommu *iommu, u16 devid)
723 {
724 int i;
725 struct dev_table_entry dte;
726 struct iommu_dev_data *dev_data = find_dev_data(iommu, devid);
727
728 get_dte256(iommu, dev_data, &dte);
729
730 for (i = 0; i < 4; ++i)
731 pr_err("DTE[%d]: %016llx\n", i, dte.data[i]);
732 }
733
dump_command(unsigned long phys_addr)734 static void dump_command(unsigned long phys_addr)
735 {
736 struct iommu_cmd *cmd = iommu_phys_to_virt(phys_addr);
737 int i;
738
739 for (i = 0; i < 4; ++i)
740 pr_err("CMD[%d]: %08x\n", i, cmd->data[i]);
741 }
742
amd_iommu_report_rmp_hw_error(struct amd_iommu * iommu,volatile u32 * event)743 static void amd_iommu_report_rmp_hw_error(struct amd_iommu *iommu, volatile u32 *event)
744 {
745 struct iommu_dev_data *dev_data = NULL;
746 int devid, vmg_tag, flags;
747 struct pci_dev *pdev;
748 u64 spa;
749
750 devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
751 vmg_tag = (event[1]) & 0xFFFF;
752 flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
753 spa = ((u64)event[3] << 32) | (event[2] & 0xFFFFFFF8);
754
755 pdev = pci_get_domain_bus_and_slot(iommu->pci_seg->id, PCI_BUS_NUM(devid),
756 devid & 0xff);
757 if (pdev)
758 dev_data = dev_iommu_priv_get(&pdev->dev);
759
760 if (dev_data) {
761 if (__ratelimit(&dev_data->rs)) {
762 pci_err(pdev, "Event logged [RMP_HW_ERROR vmg_tag=0x%04x, spa=0x%llx, flags=0x%04x]\n",
763 vmg_tag, spa, flags);
764 }
765 } else {
766 pr_err_ratelimited("Event logged [RMP_HW_ERROR device=%04x:%02x:%02x.%x, vmg_tag=0x%04x, spa=0x%llx, flags=0x%04x]\n",
767 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
768 vmg_tag, spa, flags);
769 }
770
771 if (pdev)
772 pci_dev_put(pdev);
773 }
774
amd_iommu_report_rmp_fault(struct amd_iommu * iommu,volatile u32 * event)775 static void amd_iommu_report_rmp_fault(struct amd_iommu *iommu, volatile u32 *event)
776 {
777 struct iommu_dev_data *dev_data = NULL;
778 int devid, flags_rmp, vmg_tag, flags;
779 struct pci_dev *pdev;
780 u64 gpa;
781
782 devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
783 flags_rmp = (event[0] >> EVENT_FLAGS_SHIFT) & 0xFF;
784 vmg_tag = (event[1]) & 0xFFFF;
785 flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
786 gpa = ((u64)event[3] << 32) | event[2];
787
788 pdev = pci_get_domain_bus_and_slot(iommu->pci_seg->id, PCI_BUS_NUM(devid),
789 devid & 0xff);
790 if (pdev)
791 dev_data = dev_iommu_priv_get(&pdev->dev);
792
793 if (dev_data) {
794 if (__ratelimit(&dev_data->rs)) {
795 pci_err(pdev, "Event logged [RMP_PAGE_FAULT vmg_tag=0x%04x, gpa=0x%llx, flags_rmp=0x%04x, flags=0x%04x]\n",
796 vmg_tag, gpa, flags_rmp, flags);
797 }
798 } else {
799 pr_err_ratelimited("Event logged [RMP_PAGE_FAULT device=%04x:%02x:%02x.%x, vmg_tag=0x%04x, gpa=0x%llx, flags_rmp=0x%04x, flags=0x%04x]\n",
800 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
801 vmg_tag, gpa, flags_rmp, flags);
802 }
803
804 if (pdev)
805 pci_dev_put(pdev);
806 }
807
808 #define IS_IOMMU_MEM_TRANSACTION(flags) \
809 (((flags) & EVENT_FLAG_I) == 0)
810
811 #define IS_WRITE_REQUEST(flags) \
812 ((flags) & EVENT_FLAG_RW)
813
amd_iommu_report_page_fault(struct amd_iommu * iommu,u16 devid,u16 domain_id,u64 address,int flags)814 static void amd_iommu_report_page_fault(struct amd_iommu *iommu,
815 u16 devid, u16 domain_id,
816 u64 address, int flags)
817 {
818 struct iommu_dev_data *dev_data = NULL;
819 struct pci_dev *pdev;
820
821 pdev = pci_get_domain_bus_and_slot(iommu->pci_seg->id, PCI_BUS_NUM(devid),
822 devid & 0xff);
823 if (pdev)
824 dev_data = dev_iommu_priv_get(&pdev->dev);
825
826 if (dev_data) {
827 /*
828 * If this is a DMA fault (for which the I(nterrupt)
829 * bit will be unset), allow report_iommu_fault() to
830 * prevent logging it.
831 */
832 if (IS_IOMMU_MEM_TRANSACTION(flags)) {
833 /* Device not attached to domain properly */
834 if (dev_data->domain == NULL) {
835 pr_err_ratelimited("Event logged [Device not attached to domain properly]\n");
836 pr_err_ratelimited(" device=%04x:%02x:%02x.%x domain=0x%04x\n",
837 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid),
838 PCI_FUNC(devid), domain_id);
839 goto out;
840 }
841
842 if (!report_iommu_fault(&dev_data->domain->domain,
843 &pdev->dev, address,
844 IS_WRITE_REQUEST(flags) ?
845 IOMMU_FAULT_WRITE :
846 IOMMU_FAULT_READ))
847 goto out;
848 }
849
850 if (__ratelimit(&dev_data->rs)) {
851 pci_err(pdev, "Event logged [IO_PAGE_FAULT domain=0x%04x address=0x%llx flags=0x%04x]\n",
852 domain_id, address, flags);
853 }
854 } else {
855 pr_err_ratelimited("Event logged [IO_PAGE_FAULT device=%04x:%02x:%02x.%x domain=0x%04x address=0x%llx flags=0x%04x]\n",
856 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
857 domain_id, address, flags);
858 }
859
860 out:
861 if (pdev)
862 pci_dev_put(pdev);
863 }
864
iommu_print_event(struct amd_iommu * iommu,void * __evt)865 static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
866 {
867 struct device *dev = iommu->iommu.dev;
868 int type, devid, flags, tag;
869 volatile u32 *event = __evt;
870 int count = 0;
871 u64 address;
872 u32 pasid;
873
874 retry:
875 type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
876 devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
877 pasid = (event[0] & EVENT_DOMID_MASK_HI) |
878 (event[1] & EVENT_DOMID_MASK_LO);
879 flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
880 address = (u64)(((u64)event[3]) << 32) | event[2];
881
882 if (type == 0) {
883 /* Did we hit the erratum? */
884 if (++count == LOOP_TIMEOUT) {
885 pr_err("No event written to event log\n");
886 return;
887 }
888 udelay(1);
889 goto retry;
890 }
891
892 if (type == EVENT_TYPE_IO_FAULT) {
893 amd_iommu_report_page_fault(iommu, devid, pasid, address, flags);
894 return;
895 }
896
897 switch (type) {
898 case EVENT_TYPE_ILL_DEV:
899 dev_err(dev, "Event logged [ILLEGAL_DEV_TABLE_ENTRY device=%04x:%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x]\n",
900 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
901 pasid, address, flags);
902 dump_dte_entry(iommu, devid);
903 break;
904 case EVENT_TYPE_DEV_TAB_ERR:
905 dev_err(dev, "Event logged [DEV_TAB_HARDWARE_ERROR device=%04x:%02x:%02x.%x "
906 "address=0x%llx flags=0x%04x]\n",
907 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
908 address, flags);
909 break;
910 case EVENT_TYPE_PAGE_TAB_ERR:
911 dev_err(dev, "Event logged [PAGE_TAB_HARDWARE_ERROR device=%04x:%02x:%02x.%x pasid=0x%04x address=0x%llx flags=0x%04x]\n",
912 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
913 pasid, address, flags);
914 break;
915 case EVENT_TYPE_ILL_CMD:
916 dev_err(dev, "Event logged [ILLEGAL_COMMAND_ERROR address=0x%llx]\n", address);
917 dump_command(address);
918 break;
919 case EVENT_TYPE_CMD_HARD_ERR:
920 dev_err(dev, "Event logged [COMMAND_HARDWARE_ERROR address=0x%llx flags=0x%04x]\n",
921 address, flags);
922 break;
923 case EVENT_TYPE_IOTLB_INV_TO:
924 dev_err(dev, "Event logged [IOTLB_INV_TIMEOUT device=%04x:%02x:%02x.%x address=0x%llx]\n",
925 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
926 address);
927 break;
928 case EVENT_TYPE_INV_DEV_REQ:
929 dev_err(dev, "Event logged [INVALID_DEVICE_REQUEST device=%04x:%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x]\n",
930 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
931 pasid, address, flags);
932 break;
933 case EVENT_TYPE_RMP_FAULT:
934 amd_iommu_report_rmp_fault(iommu, event);
935 break;
936 case EVENT_TYPE_RMP_HW_ERR:
937 amd_iommu_report_rmp_hw_error(iommu, event);
938 break;
939 case EVENT_TYPE_INV_PPR_REQ:
940 pasid = PPR_PASID(*((u64 *)__evt));
941 tag = event[1] & 0x03FF;
942 dev_err(dev, "Event logged [INVALID_PPR_REQUEST device=%04x:%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x tag=0x%03x]\n",
943 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
944 pasid, address, flags, tag);
945 break;
946 default:
947 dev_err(dev, "Event logged [UNKNOWN event[0]=0x%08x event[1]=0x%08x event[2]=0x%08x event[3]=0x%08x\n",
948 event[0], event[1], event[2], event[3]);
949 }
950
951 /*
952 * To detect the hardware errata 732 we need to clear the
953 * entry back to zero. This issue does not exist on SNP
954 * enabled system. Also this buffer is not writeable on
955 * SNP enabled system.
956 */
957 if (!amd_iommu_snp_en)
958 memset(__evt, 0, 4 * sizeof(u32));
959 }
960
iommu_poll_events(struct amd_iommu * iommu)961 static void iommu_poll_events(struct amd_iommu *iommu)
962 {
963 u32 head, tail;
964
965 head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
966 tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
967
968 while (head != tail) {
969 iommu_print_event(iommu, iommu->evt_buf + head);
970
971 /* Update head pointer of hardware ring-buffer */
972 head = (head + EVENT_ENTRY_SIZE) % EVT_BUFFER_SIZE;
973 writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
974 }
975
976 }
977
978 #ifdef CONFIG_IRQ_REMAP
979 static int (*iommu_ga_log_notifier)(u32);
980
amd_iommu_register_ga_log_notifier(int (* notifier)(u32))981 int amd_iommu_register_ga_log_notifier(int (*notifier)(u32))
982 {
983 iommu_ga_log_notifier = notifier;
984
985 return 0;
986 }
987 EXPORT_SYMBOL(amd_iommu_register_ga_log_notifier);
988
iommu_poll_ga_log(struct amd_iommu * iommu)989 static void iommu_poll_ga_log(struct amd_iommu *iommu)
990 {
991 u32 head, tail;
992
993 if (iommu->ga_log == NULL)
994 return;
995
996 head = readl(iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
997 tail = readl(iommu->mmio_base + MMIO_GA_TAIL_OFFSET);
998
999 while (head != tail) {
1000 volatile u64 *raw;
1001 u64 log_entry;
1002
1003 raw = (u64 *)(iommu->ga_log + head);
1004
1005 /* Avoid memcpy function-call overhead */
1006 log_entry = *raw;
1007
1008 /* Update head pointer of hardware ring-buffer */
1009 head = (head + GA_ENTRY_SIZE) % GA_LOG_SIZE;
1010 writel(head, iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
1011
1012 /* Handle GA entry */
1013 switch (GA_REQ_TYPE(log_entry)) {
1014 case GA_GUEST_NR:
1015 if (!iommu_ga_log_notifier)
1016 break;
1017
1018 pr_debug("%s: devid=%#x, ga_tag=%#x\n",
1019 __func__, GA_DEVID(log_entry),
1020 GA_TAG(log_entry));
1021
1022 if (iommu_ga_log_notifier(GA_TAG(log_entry)) != 0)
1023 pr_err("GA log notifier failed.\n");
1024 break;
1025 default:
1026 break;
1027 }
1028 }
1029 }
1030
1031 static void
amd_iommu_set_pci_msi_domain(struct device * dev,struct amd_iommu * iommu)1032 amd_iommu_set_pci_msi_domain(struct device *dev, struct amd_iommu *iommu)
1033 {
1034 if (!irq_remapping_enabled || !dev_is_pci(dev) ||
1035 !pci_dev_has_default_msi_parent_domain(to_pci_dev(dev)))
1036 return;
1037
1038 dev_set_msi_domain(dev, iommu->ir_domain);
1039 }
1040
1041 #else /* CONFIG_IRQ_REMAP */
1042 static inline void
amd_iommu_set_pci_msi_domain(struct device * dev,struct amd_iommu * iommu)1043 amd_iommu_set_pci_msi_domain(struct device *dev, struct amd_iommu *iommu) { }
1044 #endif /* !CONFIG_IRQ_REMAP */
1045
amd_iommu_handle_irq(void * data,const char * evt_type,u32 int_mask,u32 overflow_mask,void (* int_handler)(struct amd_iommu *),void (* overflow_handler)(struct amd_iommu *))1046 static void amd_iommu_handle_irq(void *data, const char *evt_type,
1047 u32 int_mask, u32 overflow_mask,
1048 void (*int_handler)(struct amd_iommu *),
1049 void (*overflow_handler)(struct amd_iommu *))
1050 {
1051 struct amd_iommu *iommu = (struct amd_iommu *) data;
1052 u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
1053 u32 mask = int_mask | overflow_mask;
1054
1055 while (status & mask) {
1056 /* Enable interrupt sources again */
1057 writel(mask, iommu->mmio_base + MMIO_STATUS_OFFSET);
1058
1059 if (int_handler) {
1060 pr_devel("Processing IOMMU (ivhd%d) %s Log\n",
1061 iommu->index, evt_type);
1062 int_handler(iommu);
1063 }
1064
1065 if ((status & overflow_mask) && overflow_handler)
1066 overflow_handler(iommu);
1067
1068 /*
1069 * Hardware bug: ERBT1312
1070 * When re-enabling interrupt (by writing 1
1071 * to clear the bit), the hardware might also try to set
1072 * the interrupt bit in the event status register.
1073 * In this scenario, the bit will be set, and disable
1074 * subsequent interrupts.
1075 *
1076 * Workaround: The IOMMU driver should read back the
1077 * status register and check if the interrupt bits are cleared.
1078 * If not, driver will need to go through the interrupt handler
1079 * again and re-clear the bits
1080 */
1081 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
1082 }
1083 }
1084
amd_iommu_int_thread_evtlog(int irq,void * data)1085 irqreturn_t amd_iommu_int_thread_evtlog(int irq, void *data)
1086 {
1087 amd_iommu_handle_irq(data, "Evt", MMIO_STATUS_EVT_INT_MASK,
1088 MMIO_STATUS_EVT_OVERFLOW_MASK,
1089 iommu_poll_events, amd_iommu_restart_event_logging);
1090
1091 return IRQ_HANDLED;
1092 }
1093
amd_iommu_int_thread_pprlog(int irq,void * data)1094 irqreturn_t amd_iommu_int_thread_pprlog(int irq, void *data)
1095 {
1096 amd_iommu_handle_irq(data, "PPR", MMIO_STATUS_PPR_INT_MASK,
1097 MMIO_STATUS_PPR_OVERFLOW_MASK,
1098 amd_iommu_poll_ppr_log, amd_iommu_restart_ppr_log);
1099
1100 return IRQ_HANDLED;
1101 }
1102
amd_iommu_int_thread_galog(int irq,void * data)1103 irqreturn_t amd_iommu_int_thread_galog(int irq, void *data)
1104 {
1105 #ifdef CONFIG_IRQ_REMAP
1106 amd_iommu_handle_irq(data, "GA", MMIO_STATUS_GALOG_INT_MASK,
1107 MMIO_STATUS_GALOG_OVERFLOW_MASK,
1108 iommu_poll_ga_log, amd_iommu_restart_ga_log);
1109 #endif
1110
1111 return IRQ_HANDLED;
1112 }
1113
amd_iommu_int_thread(int irq,void * data)1114 irqreturn_t amd_iommu_int_thread(int irq, void *data)
1115 {
1116 amd_iommu_int_thread_evtlog(irq, data);
1117 amd_iommu_int_thread_pprlog(irq, data);
1118 amd_iommu_int_thread_galog(irq, data);
1119
1120 return IRQ_HANDLED;
1121 }
1122
amd_iommu_int_handler(int irq,void * data)1123 irqreturn_t amd_iommu_int_handler(int irq, void *data)
1124 {
1125 return IRQ_WAKE_THREAD;
1126 }
1127
1128 /****************************************************************************
1129 *
1130 * IOMMU command queuing functions
1131 *
1132 ****************************************************************************/
1133
wait_on_sem(struct amd_iommu * iommu,u64 data)1134 static int wait_on_sem(struct amd_iommu *iommu, u64 data)
1135 {
1136 int i = 0;
1137
1138 while (*iommu->cmd_sem != data && i < LOOP_TIMEOUT) {
1139 udelay(1);
1140 i += 1;
1141 }
1142
1143 if (i == LOOP_TIMEOUT) {
1144 pr_alert("Completion-Wait loop timed out\n");
1145 return -EIO;
1146 }
1147
1148 return 0;
1149 }
1150
copy_cmd_to_buffer(struct amd_iommu * iommu,struct iommu_cmd * cmd)1151 static void copy_cmd_to_buffer(struct amd_iommu *iommu,
1152 struct iommu_cmd *cmd)
1153 {
1154 u8 *target;
1155 u32 tail;
1156
1157 /* Copy command to buffer */
1158 tail = iommu->cmd_buf_tail;
1159 target = iommu->cmd_buf + tail;
1160 memcpy(target, cmd, sizeof(*cmd));
1161
1162 tail = (tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
1163 iommu->cmd_buf_tail = tail;
1164
1165 /* Tell the IOMMU about it */
1166 writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
1167 }
1168
build_completion_wait(struct iommu_cmd * cmd,struct amd_iommu * iommu,u64 data)1169 static void build_completion_wait(struct iommu_cmd *cmd,
1170 struct amd_iommu *iommu,
1171 u64 data)
1172 {
1173 u64 paddr = iommu_virt_to_phys((void *)iommu->cmd_sem);
1174
1175 memset(cmd, 0, sizeof(*cmd));
1176 cmd->data[0] = lower_32_bits(paddr) | CMD_COMPL_WAIT_STORE_MASK;
1177 cmd->data[1] = upper_32_bits(paddr);
1178 cmd->data[2] = lower_32_bits(data);
1179 cmd->data[3] = upper_32_bits(data);
1180 CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
1181 }
1182
build_inv_dte(struct iommu_cmd * cmd,u16 devid)1183 static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
1184 {
1185 memset(cmd, 0, sizeof(*cmd));
1186 cmd->data[0] = devid;
1187 CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
1188 }
1189
1190 /*
1191 * Builds an invalidation address which is suitable for one page or multiple
1192 * pages. Sets the size bit (S) as needed is more than one page is flushed.
1193 */
build_inv_address(u64 address,size_t size)1194 static inline u64 build_inv_address(u64 address, size_t size)
1195 {
1196 u64 pages, end, msb_diff;
1197
1198 pages = iommu_num_pages(address, size, PAGE_SIZE);
1199
1200 if (pages == 1)
1201 return address & PAGE_MASK;
1202
1203 end = address + size - 1;
1204
1205 /*
1206 * msb_diff would hold the index of the most significant bit that
1207 * flipped between the start and end.
1208 */
1209 msb_diff = fls64(end ^ address) - 1;
1210
1211 /*
1212 * Bits 63:52 are sign extended. If for some reason bit 51 is different
1213 * between the start and the end, invalidate everything.
1214 */
1215 if (unlikely(msb_diff > 51)) {
1216 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
1217 } else {
1218 /*
1219 * The msb-bit must be clear on the address. Just set all the
1220 * lower bits.
1221 */
1222 address |= (1ull << msb_diff) - 1;
1223 }
1224
1225 /* Clear bits 11:0 */
1226 address &= PAGE_MASK;
1227
1228 /* Set the size bit - we flush more than one 4kb page */
1229 return address | CMD_INV_IOMMU_PAGES_SIZE_MASK;
1230 }
1231
build_inv_iommu_pages(struct iommu_cmd * cmd,u64 address,size_t size,u16 domid,ioasid_t pasid,bool gn)1232 static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
1233 size_t size, u16 domid,
1234 ioasid_t pasid, bool gn)
1235 {
1236 u64 inv_address = build_inv_address(address, size);
1237
1238 memset(cmd, 0, sizeof(*cmd));
1239
1240 cmd->data[1] |= domid;
1241 cmd->data[2] = lower_32_bits(inv_address);
1242 cmd->data[3] = upper_32_bits(inv_address);
1243 /* PDE bit - we want to flush everything, not only the PTEs */
1244 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
1245 if (gn) {
1246 cmd->data[0] |= pasid;
1247 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
1248 }
1249 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
1250 }
1251
build_inv_iotlb_pages(struct iommu_cmd * cmd,u16 devid,int qdep,u64 address,size_t size,ioasid_t pasid,bool gn)1252 static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
1253 u64 address, size_t size,
1254 ioasid_t pasid, bool gn)
1255 {
1256 u64 inv_address = build_inv_address(address, size);
1257
1258 memset(cmd, 0, sizeof(*cmd));
1259
1260 cmd->data[0] = devid;
1261 cmd->data[0] |= (qdep & 0xff) << 24;
1262 cmd->data[1] = devid;
1263 cmd->data[2] = lower_32_bits(inv_address);
1264 cmd->data[3] = upper_32_bits(inv_address);
1265 if (gn) {
1266 cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
1267 cmd->data[1] |= (pasid & 0xff) << 16;
1268 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
1269 }
1270
1271 CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
1272 }
1273
build_complete_ppr(struct iommu_cmd * cmd,u16 devid,u32 pasid,int status,int tag,u8 gn)1274 static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, u32 pasid,
1275 int status, int tag, u8 gn)
1276 {
1277 memset(cmd, 0, sizeof(*cmd));
1278
1279 cmd->data[0] = devid;
1280 if (gn) {
1281 cmd->data[1] = pasid;
1282 cmd->data[2] = CMD_INV_IOMMU_PAGES_GN_MASK;
1283 }
1284 cmd->data[3] = tag & 0x1ff;
1285 cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;
1286
1287 CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
1288 }
1289
build_inv_all(struct iommu_cmd * cmd)1290 static void build_inv_all(struct iommu_cmd *cmd)
1291 {
1292 memset(cmd, 0, sizeof(*cmd));
1293 CMD_SET_TYPE(cmd, CMD_INV_ALL);
1294 }
1295
build_inv_irt(struct iommu_cmd * cmd,u16 devid)1296 static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
1297 {
1298 memset(cmd, 0, sizeof(*cmd));
1299 cmd->data[0] = devid;
1300 CMD_SET_TYPE(cmd, CMD_INV_IRT);
1301 }
1302
1303 /*
1304 * Writes the command to the IOMMUs command buffer and informs the
1305 * hardware about the new command.
1306 */
__iommu_queue_command_sync(struct amd_iommu * iommu,struct iommu_cmd * cmd,bool sync)1307 static int __iommu_queue_command_sync(struct amd_iommu *iommu,
1308 struct iommu_cmd *cmd,
1309 bool sync)
1310 {
1311 unsigned int count = 0;
1312 u32 left, next_tail;
1313
1314 next_tail = (iommu->cmd_buf_tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
1315 again:
1316 left = (iommu->cmd_buf_head - next_tail) % CMD_BUFFER_SIZE;
1317
1318 if (left <= 0x20) {
1319 /* Skip udelay() the first time around */
1320 if (count++) {
1321 if (count == LOOP_TIMEOUT) {
1322 pr_err("Command buffer timeout\n");
1323 return -EIO;
1324 }
1325
1326 udelay(1);
1327 }
1328
1329 /* Update head and recheck remaining space */
1330 iommu->cmd_buf_head = readl(iommu->mmio_base +
1331 MMIO_CMD_HEAD_OFFSET);
1332
1333 goto again;
1334 }
1335
1336 copy_cmd_to_buffer(iommu, cmd);
1337
1338 /* Do we need to make sure all commands are processed? */
1339 iommu->need_sync = sync;
1340
1341 return 0;
1342 }
1343
iommu_queue_command_sync(struct amd_iommu * iommu,struct iommu_cmd * cmd,bool sync)1344 static int iommu_queue_command_sync(struct amd_iommu *iommu,
1345 struct iommu_cmd *cmd,
1346 bool sync)
1347 {
1348 unsigned long flags;
1349 int ret;
1350
1351 raw_spin_lock_irqsave(&iommu->lock, flags);
1352 ret = __iommu_queue_command_sync(iommu, cmd, sync);
1353 raw_spin_unlock_irqrestore(&iommu->lock, flags);
1354
1355 return ret;
1356 }
1357
iommu_queue_command(struct amd_iommu * iommu,struct iommu_cmd * cmd)1358 static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
1359 {
1360 return iommu_queue_command_sync(iommu, cmd, true);
1361 }
1362
1363 /*
1364 * This function queues a completion wait command into the command
1365 * buffer of an IOMMU
1366 */
iommu_completion_wait(struct amd_iommu * iommu)1367 static int iommu_completion_wait(struct amd_iommu *iommu)
1368 {
1369 struct iommu_cmd cmd;
1370 unsigned long flags;
1371 int ret;
1372 u64 data;
1373
1374 if (!iommu->need_sync)
1375 return 0;
1376
1377 data = atomic64_inc_return(&iommu->cmd_sem_val);
1378 build_completion_wait(&cmd, iommu, data);
1379
1380 raw_spin_lock_irqsave(&iommu->lock, flags);
1381
1382 ret = __iommu_queue_command_sync(iommu, &cmd, false);
1383 if (ret)
1384 goto out_unlock;
1385
1386 ret = wait_on_sem(iommu, data);
1387
1388 out_unlock:
1389 raw_spin_unlock_irqrestore(&iommu->lock, flags);
1390
1391 return ret;
1392 }
1393
domain_flush_complete(struct protection_domain * domain)1394 static void domain_flush_complete(struct protection_domain *domain)
1395 {
1396 struct pdom_iommu_info *pdom_iommu_info;
1397 unsigned long i;
1398
1399 lockdep_assert_held(&domain->lock);
1400
1401 /*
1402 * Devices of this domain are behind this IOMMU
1403 * We need to wait for completion of all commands.
1404 */
1405 xa_for_each(&domain->iommu_array, i, pdom_iommu_info)
1406 iommu_completion_wait(pdom_iommu_info->iommu);
1407 }
1408
iommu_flush_dte(struct amd_iommu * iommu,u16 devid)1409 static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
1410 {
1411 struct iommu_cmd cmd;
1412
1413 build_inv_dte(&cmd, devid);
1414
1415 return iommu_queue_command(iommu, &cmd);
1416 }
1417
iommu_flush_dte_sync(struct amd_iommu * iommu,u16 devid)1418 static void iommu_flush_dte_sync(struct amd_iommu *iommu, u16 devid)
1419 {
1420 int ret;
1421
1422 ret = iommu_flush_dte(iommu, devid);
1423 if (!ret)
1424 iommu_completion_wait(iommu);
1425 }
1426
amd_iommu_flush_dte_all(struct amd_iommu * iommu)1427 static void amd_iommu_flush_dte_all(struct amd_iommu *iommu)
1428 {
1429 u32 devid;
1430 u16 last_bdf = iommu->pci_seg->last_bdf;
1431
1432 for (devid = 0; devid <= last_bdf; ++devid)
1433 iommu_flush_dte(iommu, devid);
1434
1435 iommu_completion_wait(iommu);
1436 }
1437
1438 /*
1439 * This function uses heavy locking and may disable irqs for some time. But
1440 * this is no issue because it is only called during resume.
1441 */
amd_iommu_flush_tlb_all(struct amd_iommu * iommu)1442 static void amd_iommu_flush_tlb_all(struct amd_iommu *iommu)
1443 {
1444 u32 dom_id;
1445 u16 last_bdf = iommu->pci_seg->last_bdf;
1446
1447 for (dom_id = 0; dom_id <= last_bdf; ++dom_id) {
1448 struct iommu_cmd cmd;
1449 build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
1450 dom_id, IOMMU_NO_PASID, false);
1451 iommu_queue_command(iommu, &cmd);
1452 }
1453
1454 iommu_completion_wait(iommu);
1455 }
1456
amd_iommu_flush_tlb_domid(struct amd_iommu * iommu,u32 dom_id)1457 static void amd_iommu_flush_tlb_domid(struct amd_iommu *iommu, u32 dom_id)
1458 {
1459 struct iommu_cmd cmd;
1460
1461 build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
1462 dom_id, IOMMU_NO_PASID, false);
1463 iommu_queue_command(iommu, &cmd);
1464
1465 iommu_completion_wait(iommu);
1466 }
1467
amd_iommu_flush_all(struct amd_iommu * iommu)1468 static void amd_iommu_flush_all(struct amd_iommu *iommu)
1469 {
1470 struct iommu_cmd cmd;
1471
1472 build_inv_all(&cmd);
1473
1474 iommu_queue_command(iommu, &cmd);
1475 iommu_completion_wait(iommu);
1476 }
1477
iommu_flush_irt(struct amd_iommu * iommu,u16 devid)1478 static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
1479 {
1480 struct iommu_cmd cmd;
1481
1482 build_inv_irt(&cmd, devid);
1483
1484 iommu_queue_command(iommu, &cmd);
1485 }
1486
amd_iommu_flush_irt_all(struct amd_iommu * iommu)1487 static void amd_iommu_flush_irt_all(struct amd_iommu *iommu)
1488 {
1489 u32 devid;
1490 u16 last_bdf = iommu->pci_seg->last_bdf;
1491
1492 if (iommu->irtcachedis_enabled)
1493 return;
1494
1495 for (devid = 0; devid <= last_bdf; devid++)
1496 iommu_flush_irt(iommu, devid);
1497
1498 iommu_completion_wait(iommu);
1499 }
1500
amd_iommu_flush_all_caches(struct amd_iommu * iommu)1501 void amd_iommu_flush_all_caches(struct amd_iommu *iommu)
1502 {
1503 if (check_feature(FEATURE_IA)) {
1504 amd_iommu_flush_all(iommu);
1505 } else {
1506 amd_iommu_flush_dte_all(iommu);
1507 amd_iommu_flush_irt_all(iommu);
1508 amd_iommu_flush_tlb_all(iommu);
1509 }
1510 }
1511
1512 /*
1513 * Command send function for flushing on-device TLB
1514 */
device_flush_iotlb(struct iommu_dev_data * dev_data,u64 address,size_t size,ioasid_t pasid,bool gn)1515 static int device_flush_iotlb(struct iommu_dev_data *dev_data, u64 address,
1516 size_t size, ioasid_t pasid, bool gn)
1517 {
1518 struct amd_iommu *iommu = get_amd_iommu_from_dev_data(dev_data);
1519 struct iommu_cmd cmd;
1520 int qdep = dev_data->ats_qdep;
1521
1522 build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address,
1523 size, pasid, gn);
1524
1525 return iommu_queue_command(iommu, &cmd);
1526 }
1527
device_flush_dte_alias(struct pci_dev * pdev,u16 alias,void * data)1528 static int device_flush_dte_alias(struct pci_dev *pdev, u16 alias, void *data)
1529 {
1530 struct amd_iommu *iommu = data;
1531
1532 return iommu_flush_dte(iommu, alias);
1533 }
1534
1535 /*
1536 * Command send function for invalidating a device table entry
1537 */
device_flush_dte(struct iommu_dev_data * dev_data)1538 static int device_flush_dte(struct iommu_dev_data *dev_data)
1539 {
1540 struct amd_iommu *iommu = get_amd_iommu_from_dev_data(dev_data);
1541 struct pci_dev *pdev = NULL;
1542 struct amd_iommu_pci_seg *pci_seg;
1543 u16 alias;
1544 int ret;
1545
1546 if (dev_is_pci(dev_data->dev))
1547 pdev = to_pci_dev(dev_data->dev);
1548
1549 if (pdev)
1550 ret = pci_for_each_dma_alias(pdev,
1551 device_flush_dte_alias, iommu);
1552 else
1553 ret = iommu_flush_dte(iommu, dev_data->devid);
1554 if (ret)
1555 return ret;
1556
1557 pci_seg = iommu->pci_seg;
1558 alias = pci_seg->alias_table[dev_data->devid];
1559 if (alias != dev_data->devid) {
1560 ret = iommu_flush_dte(iommu, alias);
1561 if (ret)
1562 return ret;
1563 }
1564
1565 if (dev_data->ats_enabled) {
1566 /* Invalidate the entire contents of an IOTLB */
1567 ret = device_flush_iotlb(dev_data, 0, ~0UL,
1568 IOMMU_NO_PASID, false);
1569 }
1570
1571 return ret;
1572 }
1573
domain_flush_pages_v2(struct protection_domain * pdom,u64 address,size_t size)1574 static int domain_flush_pages_v2(struct protection_domain *pdom,
1575 u64 address, size_t size)
1576 {
1577 struct iommu_dev_data *dev_data;
1578 struct iommu_cmd cmd;
1579 int ret = 0;
1580
1581 lockdep_assert_held(&pdom->lock);
1582 list_for_each_entry(dev_data, &pdom->dev_list, list) {
1583 struct amd_iommu *iommu = get_amd_iommu_from_dev(dev_data->dev);
1584 u16 domid = dev_data->gcr3_info.domid;
1585
1586 build_inv_iommu_pages(&cmd, address, size,
1587 domid, IOMMU_NO_PASID, true);
1588
1589 ret |= iommu_queue_command(iommu, &cmd);
1590 }
1591
1592 return ret;
1593 }
1594
domain_flush_pages_v1(struct protection_domain * pdom,u64 address,size_t size)1595 static int domain_flush_pages_v1(struct protection_domain *pdom,
1596 u64 address, size_t size)
1597 {
1598 struct pdom_iommu_info *pdom_iommu_info;
1599 struct iommu_cmd cmd;
1600 int ret = 0;
1601 unsigned long i;
1602
1603 lockdep_assert_held(&pdom->lock);
1604
1605 build_inv_iommu_pages(&cmd, address, size,
1606 pdom->id, IOMMU_NO_PASID, false);
1607
1608 xa_for_each(&pdom->iommu_array, i, pdom_iommu_info) {
1609 /*
1610 * Devices of this domain are behind this IOMMU
1611 * We need a TLB flush
1612 */
1613 ret |= iommu_queue_command(pdom_iommu_info->iommu, &cmd);
1614 }
1615
1616 return ret;
1617 }
1618
1619 /*
1620 * TLB invalidation function which is called from the mapping functions.
1621 * It flushes range of PTEs of the domain.
1622 */
__domain_flush_pages(struct protection_domain * domain,u64 address,size_t size)1623 static void __domain_flush_pages(struct protection_domain *domain,
1624 u64 address, size_t size)
1625 {
1626 struct iommu_dev_data *dev_data;
1627 int ret = 0;
1628 ioasid_t pasid = IOMMU_NO_PASID;
1629 bool gn = false;
1630
1631 lockdep_assert_held(&domain->lock);
1632
1633 if (pdom_is_v2_pgtbl_mode(domain)) {
1634 gn = true;
1635 ret = domain_flush_pages_v2(domain, address, size);
1636 } else {
1637 ret = domain_flush_pages_v1(domain, address, size);
1638 }
1639
1640 list_for_each_entry(dev_data, &domain->dev_list, list) {
1641
1642 if (!dev_data->ats_enabled)
1643 continue;
1644
1645 ret |= device_flush_iotlb(dev_data, address, size, pasid, gn);
1646 }
1647
1648 WARN_ON(ret);
1649 }
1650
amd_iommu_domain_flush_pages(struct protection_domain * domain,u64 address,size_t size)1651 void amd_iommu_domain_flush_pages(struct protection_domain *domain,
1652 u64 address, size_t size)
1653 {
1654 lockdep_assert_held(&domain->lock);
1655
1656 if (likely(!amd_iommu_np_cache)) {
1657 __domain_flush_pages(domain, address, size);
1658
1659 /* Wait until IOMMU TLB and all device IOTLB flushes are complete */
1660 domain_flush_complete(domain);
1661
1662 return;
1663 }
1664
1665 /*
1666 * When NpCache is on, we infer that we run in a VM and use a vIOMMU.
1667 * In such setups it is best to avoid flushes of ranges which are not
1668 * naturally aligned, since it would lead to flushes of unmodified
1669 * PTEs. Such flushes would require the hypervisor to do more work than
1670 * necessary. Therefore, perform repeated flushes of aligned ranges
1671 * until you cover the range. Each iteration flushes the smaller
1672 * between the natural alignment of the address that we flush and the
1673 * greatest naturally aligned region that fits in the range.
1674 */
1675 while (size != 0) {
1676 int addr_alignment = __ffs(address);
1677 int size_alignment = __fls(size);
1678 int min_alignment;
1679 size_t flush_size;
1680
1681 /*
1682 * size is always non-zero, but address might be zero, causing
1683 * addr_alignment to be negative. As the casting of the
1684 * argument in __ffs(address) to long might trim the high bits
1685 * of the address on x86-32, cast to long when doing the check.
1686 */
1687 if (likely((unsigned long)address != 0))
1688 min_alignment = min(addr_alignment, size_alignment);
1689 else
1690 min_alignment = size_alignment;
1691
1692 flush_size = 1ul << min_alignment;
1693
1694 __domain_flush_pages(domain, address, flush_size);
1695 address += flush_size;
1696 size -= flush_size;
1697 }
1698
1699 /* Wait until IOMMU TLB and all device IOTLB flushes are complete */
1700 domain_flush_complete(domain);
1701 }
1702
1703 /* Flush the whole IO/TLB for a given protection domain - including PDE */
amd_iommu_domain_flush_all(struct protection_domain * domain)1704 static void amd_iommu_domain_flush_all(struct protection_domain *domain)
1705 {
1706 amd_iommu_domain_flush_pages(domain, 0,
1707 CMD_INV_IOMMU_ALL_PAGES_ADDRESS);
1708 }
1709
amd_iommu_dev_flush_pasid_pages(struct iommu_dev_data * dev_data,ioasid_t pasid,u64 address,size_t size)1710 void amd_iommu_dev_flush_pasid_pages(struct iommu_dev_data *dev_data,
1711 ioasid_t pasid, u64 address, size_t size)
1712 {
1713 struct iommu_cmd cmd;
1714 struct amd_iommu *iommu = get_amd_iommu_from_dev(dev_data->dev);
1715
1716 build_inv_iommu_pages(&cmd, address, size,
1717 dev_data->gcr3_info.domid, pasid, true);
1718 iommu_queue_command(iommu, &cmd);
1719
1720 if (dev_data->ats_enabled)
1721 device_flush_iotlb(dev_data, address, size, pasid, true);
1722
1723 iommu_completion_wait(iommu);
1724 }
1725
dev_flush_pasid_all(struct iommu_dev_data * dev_data,ioasid_t pasid)1726 static void dev_flush_pasid_all(struct iommu_dev_data *dev_data,
1727 ioasid_t pasid)
1728 {
1729 amd_iommu_dev_flush_pasid_pages(dev_data, pasid, 0,
1730 CMD_INV_IOMMU_ALL_PAGES_ADDRESS);
1731 }
1732
1733 /* Flush the not present cache if it exists */
domain_flush_np_cache(struct protection_domain * domain,dma_addr_t iova,size_t size)1734 static void domain_flush_np_cache(struct protection_domain *domain,
1735 dma_addr_t iova, size_t size)
1736 {
1737 if (unlikely(amd_iommu_np_cache)) {
1738 unsigned long flags;
1739
1740 spin_lock_irqsave(&domain->lock, flags);
1741 amd_iommu_domain_flush_pages(domain, iova, size);
1742 spin_unlock_irqrestore(&domain->lock, flags);
1743 }
1744 }
1745
1746
1747 /*
1748 * This function flushes the DTEs for all devices in domain
1749 */
amd_iommu_update_and_flush_device_table(struct protection_domain * domain)1750 void amd_iommu_update_and_flush_device_table(struct protection_domain *domain)
1751 {
1752 struct iommu_dev_data *dev_data;
1753
1754 lockdep_assert_held(&domain->lock);
1755
1756 list_for_each_entry(dev_data, &domain->dev_list, list) {
1757 struct amd_iommu *iommu = rlookup_amd_iommu(dev_data->dev);
1758
1759 set_dte_entry(iommu, dev_data);
1760 clone_aliases(iommu, dev_data->dev);
1761 }
1762
1763 list_for_each_entry(dev_data, &domain->dev_list, list)
1764 device_flush_dte(dev_data);
1765
1766 domain_flush_complete(domain);
1767 }
1768
amd_iommu_complete_ppr(struct device * dev,u32 pasid,int status,int tag)1769 int amd_iommu_complete_ppr(struct device *dev, u32 pasid, int status, int tag)
1770 {
1771 struct iommu_dev_data *dev_data;
1772 struct amd_iommu *iommu;
1773 struct iommu_cmd cmd;
1774
1775 dev_data = dev_iommu_priv_get(dev);
1776 iommu = get_amd_iommu_from_dev(dev);
1777
1778 build_complete_ppr(&cmd, dev_data->devid, pasid, status,
1779 tag, dev_data->pri_tlp);
1780
1781 return iommu_queue_command(iommu, &cmd);
1782 }
1783
1784 /****************************************************************************
1785 *
1786 * The next functions belong to the domain allocation. A domain is
1787 * allocated for every IOMMU as the default domain. If device isolation
1788 * is enabled, every device get its own domain. The most important thing
1789 * about domains is the page table mapping the DMA address space they
1790 * contain.
1791 *
1792 ****************************************************************************/
1793
pdom_id_alloc(void)1794 static int pdom_id_alloc(void)
1795 {
1796 return ida_alloc_range(&pdom_ids, 1, MAX_DOMAIN_ID - 1, GFP_ATOMIC);
1797 }
1798
pdom_id_free(int id)1799 static void pdom_id_free(int id)
1800 {
1801 ida_free(&pdom_ids, id);
1802 }
1803
free_gcr3_tbl_level1(u64 * tbl)1804 static void free_gcr3_tbl_level1(u64 *tbl)
1805 {
1806 u64 *ptr;
1807 int i;
1808
1809 for (i = 0; i < 512; ++i) {
1810 if (!(tbl[i] & GCR3_VALID))
1811 continue;
1812
1813 ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
1814
1815 iommu_free_page(ptr);
1816 }
1817 }
1818
free_gcr3_tbl_level2(u64 * tbl)1819 static void free_gcr3_tbl_level2(u64 *tbl)
1820 {
1821 u64 *ptr;
1822 int i;
1823
1824 for (i = 0; i < 512; ++i) {
1825 if (!(tbl[i] & GCR3_VALID))
1826 continue;
1827
1828 ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
1829
1830 free_gcr3_tbl_level1(ptr);
1831 }
1832 }
1833
free_gcr3_table(struct gcr3_tbl_info * gcr3_info)1834 static void free_gcr3_table(struct gcr3_tbl_info *gcr3_info)
1835 {
1836 if (gcr3_info->glx == 2)
1837 free_gcr3_tbl_level2(gcr3_info->gcr3_tbl);
1838 else if (gcr3_info->glx == 1)
1839 free_gcr3_tbl_level1(gcr3_info->gcr3_tbl);
1840 else
1841 WARN_ON_ONCE(gcr3_info->glx != 0);
1842
1843 gcr3_info->glx = 0;
1844
1845 /* Free per device domain ID */
1846 pdom_id_free(gcr3_info->domid);
1847
1848 iommu_free_page(gcr3_info->gcr3_tbl);
1849 gcr3_info->gcr3_tbl = NULL;
1850 }
1851
1852 /*
1853 * Number of GCR3 table levels required. Level must be 4-Kbyte
1854 * page and can contain up to 512 entries.
1855 */
get_gcr3_levels(int pasids)1856 static int get_gcr3_levels(int pasids)
1857 {
1858 int levels;
1859
1860 if (pasids == -1)
1861 return amd_iommu_max_glx_val;
1862
1863 levels = get_count_order(pasids);
1864
1865 return levels ? (DIV_ROUND_UP(levels, 9) - 1) : levels;
1866 }
1867
setup_gcr3_table(struct gcr3_tbl_info * gcr3_info,struct amd_iommu * iommu,int pasids)1868 static int setup_gcr3_table(struct gcr3_tbl_info *gcr3_info,
1869 struct amd_iommu *iommu, int pasids)
1870 {
1871 int levels = get_gcr3_levels(pasids);
1872 int nid = iommu ? dev_to_node(&iommu->dev->dev) : NUMA_NO_NODE;
1873 int domid;
1874
1875 if (levels > amd_iommu_max_glx_val)
1876 return -EINVAL;
1877
1878 if (gcr3_info->gcr3_tbl)
1879 return -EBUSY;
1880
1881 /* Allocate per device domain ID */
1882 domid = pdom_id_alloc();
1883 if (domid <= 0)
1884 return -ENOSPC;
1885 gcr3_info->domid = domid;
1886
1887 gcr3_info->gcr3_tbl = iommu_alloc_page_node(nid, GFP_ATOMIC);
1888 if (gcr3_info->gcr3_tbl == NULL) {
1889 pdom_id_free(domid);
1890 return -ENOMEM;
1891 }
1892
1893 gcr3_info->glx = levels;
1894
1895 return 0;
1896 }
1897
__get_gcr3_pte(struct gcr3_tbl_info * gcr3_info,ioasid_t pasid,bool alloc)1898 static u64 *__get_gcr3_pte(struct gcr3_tbl_info *gcr3_info,
1899 ioasid_t pasid, bool alloc)
1900 {
1901 int index;
1902 u64 *pte;
1903 u64 *root = gcr3_info->gcr3_tbl;
1904 int level = gcr3_info->glx;
1905
1906 while (true) {
1907
1908 index = (pasid >> (9 * level)) & 0x1ff;
1909 pte = &root[index];
1910
1911 if (level == 0)
1912 break;
1913
1914 if (!(*pte & GCR3_VALID)) {
1915 if (!alloc)
1916 return NULL;
1917
1918 root = (void *)get_zeroed_page(GFP_ATOMIC);
1919 if (root == NULL)
1920 return NULL;
1921
1922 *pte = iommu_virt_to_phys(root) | GCR3_VALID;
1923 }
1924
1925 root = iommu_phys_to_virt(*pte & PAGE_MASK);
1926
1927 level -= 1;
1928 }
1929
1930 return pte;
1931 }
1932
update_gcr3(struct iommu_dev_data * dev_data,ioasid_t pasid,unsigned long gcr3,bool set)1933 static int update_gcr3(struct iommu_dev_data *dev_data,
1934 ioasid_t pasid, unsigned long gcr3, bool set)
1935 {
1936 struct gcr3_tbl_info *gcr3_info = &dev_data->gcr3_info;
1937 u64 *pte;
1938
1939 pte = __get_gcr3_pte(gcr3_info, pasid, true);
1940 if (pte == NULL)
1941 return -ENOMEM;
1942
1943 if (set)
1944 *pte = (gcr3 & PAGE_MASK) | GCR3_VALID;
1945 else
1946 *pte = 0;
1947
1948 dev_flush_pasid_all(dev_data, pasid);
1949 return 0;
1950 }
1951
amd_iommu_set_gcr3(struct iommu_dev_data * dev_data,ioasid_t pasid,unsigned long gcr3)1952 int amd_iommu_set_gcr3(struct iommu_dev_data *dev_data, ioasid_t pasid,
1953 unsigned long gcr3)
1954 {
1955 struct gcr3_tbl_info *gcr3_info = &dev_data->gcr3_info;
1956 int ret;
1957
1958 iommu_group_mutex_assert(dev_data->dev);
1959
1960 ret = update_gcr3(dev_data, pasid, gcr3, true);
1961 if (ret)
1962 return ret;
1963
1964 gcr3_info->pasid_cnt++;
1965 return ret;
1966 }
1967
amd_iommu_clear_gcr3(struct iommu_dev_data * dev_data,ioasid_t pasid)1968 int amd_iommu_clear_gcr3(struct iommu_dev_data *dev_data, ioasid_t pasid)
1969 {
1970 struct gcr3_tbl_info *gcr3_info = &dev_data->gcr3_info;
1971 int ret;
1972
1973 iommu_group_mutex_assert(dev_data->dev);
1974
1975 ret = update_gcr3(dev_data, pasid, 0, false);
1976 if (ret)
1977 return ret;
1978
1979 gcr3_info->pasid_cnt--;
1980 return ret;
1981 }
1982
make_clear_dte(struct iommu_dev_data * dev_data,struct dev_table_entry * ptr,struct dev_table_entry * new)1983 static void make_clear_dte(struct iommu_dev_data *dev_data, struct dev_table_entry *ptr,
1984 struct dev_table_entry *new)
1985 {
1986 /* All existing DTE must have V bit set */
1987 new->data128[0] = DTE_FLAG_V;
1988 new->data128[1] = 0;
1989 }
1990
1991 /*
1992 * Note:
1993 * The old value for GCR3 table and GPT have been cleared from caller.
1994 */
set_dte_gcr3_table(struct amd_iommu * iommu,struct iommu_dev_data * dev_data,struct dev_table_entry * target)1995 static void set_dte_gcr3_table(struct amd_iommu *iommu,
1996 struct iommu_dev_data *dev_data,
1997 struct dev_table_entry *target)
1998 {
1999 struct gcr3_tbl_info *gcr3_info = &dev_data->gcr3_info;
2000 u64 gcr3;
2001
2002 if (!gcr3_info->gcr3_tbl)
2003 return;
2004
2005 pr_debug("%s: devid=%#x, glx=%#x, gcr3_tbl=%#llx\n",
2006 __func__, dev_data->devid, gcr3_info->glx,
2007 (unsigned long long)gcr3_info->gcr3_tbl);
2008
2009 gcr3 = iommu_virt_to_phys(gcr3_info->gcr3_tbl);
2010
2011 target->data[0] |= DTE_FLAG_GV |
2012 FIELD_PREP(DTE_GLX, gcr3_info->glx) |
2013 FIELD_PREP(DTE_GCR3_14_12, gcr3 >> 12);
2014 if (pdom_is_v2_pgtbl_mode(dev_data->domain))
2015 target->data[0] |= DTE_FLAG_GIOV;
2016
2017 target->data[1] |= FIELD_PREP(DTE_GCR3_30_15, gcr3 >> 15) |
2018 FIELD_PREP(DTE_GCR3_51_31, gcr3 >> 31);
2019
2020 /* Guest page table can only support 4 and 5 levels */
2021 if (amd_iommu_gpt_level == PAGE_MODE_5_LEVEL)
2022 target->data[2] |= FIELD_PREP(DTE_GPT_LEVEL_MASK, GUEST_PGTABLE_5_LEVEL);
2023 else
2024 target->data[2] |= FIELD_PREP(DTE_GPT_LEVEL_MASK, GUEST_PGTABLE_4_LEVEL);
2025 }
2026
set_dte_entry(struct amd_iommu * iommu,struct iommu_dev_data * dev_data)2027 static void set_dte_entry(struct amd_iommu *iommu,
2028 struct iommu_dev_data *dev_data)
2029 {
2030 u16 domid;
2031 u32 old_domid;
2032 struct dev_table_entry *initial_dte;
2033 struct dev_table_entry new = {};
2034 struct protection_domain *domain = dev_data->domain;
2035 struct gcr3_tbl_info *gcr3_info = &dev_data->gcr3_info;
2036 struct dev_table_entry *dte = &get_dev_table(iommu)[dev_data->devid];
2037
2038 if (gcr3_info && gcr3_info->gcr3_tbl)
2039 domid = dev_data->gcr3_info.domid;
2040 else
2041 domid = domain->id;
2042
2043 make_clear_dte(dev_data, dte, &new);
2044
2045 if (domain->iop.mode != PAGE_MODE_NONE)
2046 new.data[0] |= iommu_virt_to_phys(domain->iop.root);
2047
2048 new.data[0] |= (domain->iop.mode & DEV_ENTRY_MODE_MASK)
2049 << DEV_ENTRY_MODE_SHIFT;
2050
2051 new.data[0] |= DTE_FLAG_IR | DTE_FLAG_IW;
2052
2053 /*
2054 * When SNP is enabled, we can only support TV=1 with non-zero domain ID.
2055 * This is prevented by the SNP-enable and IOMMU_DOMAIN_IDENTITY check in
2056 * do_iommu_domain_alloc().
2057 */
2058 WARN_ON(amd_iommu_snp_en && (domid == 0));
2059 new.data[0] |= DTE_FLAG_TV;
2060
2061 if (dev_data->ppr)
2062 new.data[0] |= 1ULL << DEV_ENTRY_PPR;
2063
2064 if (domain->dirty_tracking)
2065 new.data[0] |= DTE_FLAG_HAD;
2066
2067 if (dev_data->ats_enabled)
2068 new.data[1] |= DTE_FLAG_IOTLB;
2069
2070 old_domid = READ_ONCE(dte->data[1]) & DEV_DOMID_MASK;
2071 new.data[1] |= domid;
2072
2073 /*
2074 * Restore cached persistent DTE bits, which can be set by information
2075 * in IVRS table. See set_dev_entry_from_acpi().
2076 */
2077 initial_dte = amd_iommu_get_ivhd_dte_flags(iommu->pci_seg->id, dev_data->devid);
2078 if (initial_dte) {
2079 new.data128[0] |= initial_dte->data128[0];
2080 new.data128[1] |= initial_dte->data128[1];
2081 }
2082
2083 set_dte_gcr3_table(iommu, dev_data, &new);
2084
2085 update_dte256(iommu, dev_data, &new);
2086
2087 /*
2088 * A kdump kernel might be replacing a domain ID that was copied from
2089 * the previous kernel--if so, it needs to flush the translation cache
2090 * entries for the old domain ID that is being overwritten
2091 */
2092 if (old_domid) {
2093 amd_iommu_flush_tlb_domid(iommu, old_domid);
2094 }
2095 }
2096
2097 /*
2098 * Clear DMA-remap related flags to block all DMA (blockeded domain)
2099 */
clear_dte_entry(struct amd_iommu * iommu,struct iommu_dev_data * dev_data)2100 static void clear_dte_entry(struct amd_iommu *iommu, struct iommu_dev_data *dev_data)
2101 {
2102 struct dev_table_entry new = {};
2103 struct dev_table_entry *dte = &get_dev_table(iommu)[dev_data->devid];
2104
2105 make_clear_dte(dev_data, dte, &new);
2106 update_dte256(iommu, dev_data, &new);
2107 }
2108
2109 /* Update and flush DTE for the given device */
dev_update_dte(struct iommu_dev_data * dev_data,bool set)2110 static void dev_update_dte(struct iommu_dev_data *dev_data, bool set)
2111 {
2112 struct amd_iommu *iommu = get_amd_iommu_from_dev(dev_data->dev);
2113
2114 if (set)
2115 set_dte_entry(iommu, dev_data);
2116 else
2117 clear_dte_entry(iommu, dev_data);
2118
2119 clone_aliases(iommu, dev_data->dev);
2120 device_flush_dte(dev_data);
2121 iommu_completion_wait(iommu);
2122 }
2123
2124 /*
2125 * If domain is SVA capable then initialize GCR3 table. Also if domain is
2126 * in v2 page table mode then update GCR3[0].
2127 */
init_gcr3_table(struct iommu_dev_data * dev_data,struct protection_domain * pdom)2128 static int init_gcr3_table(struct iommu_dev_data *dev_data,
2129 struct protection_domain *pdom)
2130 {
2131 struct amd_iommu *iommu = get_amd_iommu_from_dev_data(dev_data);
2132 int max_pasids = dev_data->max_pasids;
2133 int ret = 0;
2134
2135 /*
2136 * If domain is in pt mode then setup GCR3 table only if device
2137 * is PASID capable
2138 */
2139 if (pdom_is_in_pt_mode(pdom) && !pdev_pasid_supported(dev_data))
2140 return ret;
2141
2142 /*
2143 * By default, setup GCR3 table to support MAX PASIDs
2144 * supported by the device/IOMMU.
2145 */
2146 ret = setup_gcr3_table(&dev_data->gcr3_info, iommu,
2147 max_pasids > 0 ? max_pasids : 1);
2148 if (ret)
2149 return ret;
2150
2151 /* Setup GCR3[0] only if domain is setup with v2 page table mode */
2152 if (!pdom_is_v2_pgtbl_mode(pdom))
2153 return ret;
2154
2155 ret = update_gcr3(dev_data, 0, iommu_virt_to_phys(pdom->iop.pgd), true);
2156 if (ret)
2157 free_gcr3_table(&dev_data->gcr3_info);
2158
2159 return ret;
2160 }
2161
destroy_gcr3_table(struct iommu_dev_data * dev_data,struct protection_domain * pdom)2162 static void destroy_gcr3_table(struct iommu_dev_data *dev_data,
2163 struct protection_domain *pdom)
2164 {
2165 struct gcr3_tbl_info *gcr3_info = &dev_data->gcr3_info;
2166
2167 if (pdom_is_v2_pgtbl_mode(pdom))
2168 update_gcr3(dev_data, 0, 0, false);
2169
2170 if (gcr3_info->gcr3_tbl == NULL)
2171 return;
2172
2173 free_gcr3_table(gcr3_info);
2174 }
2175
pdom_attach_iommu(struct amd_iommu * iommu,struct protection_domain * pdom)2176 static int pdom_attach_iommu(struct amd_iommu *iommu,
2177 struct protection_domain *pdom)
2178 {
2179 struct pdom_iommu_info *pdom_iommu_info, *curr;
2180 unsigned long flags;
2181 int ret = 0;
2182
2183 spin_lock_irqsave(&pdom->lock, flags);
2184
2185 pdom_iommu_info = xa_load(&pdom->iommu_array, iommu->index);
2186 if (pdom_iommu_info) {
2187 pdom_iommu_info->refcnt++;
2188 goto out_unlock;
2189 }
2190
2191 pdom_iommu_info = kzalloc(sizeof(*pdom_iommu_info), GFP_ATOMIC);
2192 if (!pdom_iommu_info) {
2193 ret = -ENOMEM;
2194 goto out_unlock;
2195 }
2196
2197 pdom_iommu_info->iommu = iommu;
2198 pdom_iommu_info->refcnt = 1;
2199
2200 curr = xa_cmpxchg(&pdom->iommu_array, iommu->index,
2201 NULL, pdom_iommu_info, GFP_ATOMIC);
2202 if (curr) {
2203 kfree(pdom_iommu_info);
2204 ret = -ENOSPC;
2205 goto out_unlock;
2206 }
2207
2208 out_unlock:
2209 spin_unlock_irqrestore(&pdom->lock, flags);
2210 return ret;
2211 }
2212
pdom_detach_iommu(struct amd_iommu * iommu,struct protection_domain * pdom)2213 static void pdom_detach_iommu(struct amd_iommu *iommu,
2214 struct protection_domain *pdom)
2215 {
2216 struct pdom_iommu_info *pdom_iommu_info;
2217 unsigned long flags;
2218
2219 spin_lock_irqsave(&pdom->lock, flags);
2220
2221 pdom_iommu_info = xa_load(&pdom->iommu_array, iommu->index);
2222 if (!pdom_iommu_info) {
2223 spin_unlock_irqrestore(&pdom->lock, flags);
2224 return;
2225 }
2226
2227 pdom_iommu_info->refcnt--;
2228 if (pdom_iommu_info->refcnt == 0) {
2229 xa_erase(&pdom->iommu_array, iommu->index);
2230 kfree(pdom_iommu_info);
2231 }
2232
2233 spin_unlock_irqrestore(&pdom->lock, flags);
2234 }
2235
2236 /*
2237 * If a device is not yet associated with a domain, this function makes the
2238 * device visible in the domain
2239 */
attach_device(struct device * dev,struct protection_domain * domain)2240 static int attach_device(struct device *dev,
2241 struct protection_domain *domain)
2242 {
2243 struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev);
2244 struct amd_iommu *iommu = get_amd_iommu_from_dev_data(dev_data);
2245 struct pci_dev *pdev;
2246 unsigned long flags;
2247 int ret = 0;
2248
2249 mutex_lock(&dev_data->mutex);
2250
2251 if (dev_data->domain != NULL) {
2252 ret = -EBUSY;
2253 goto out;
2254 }
2255
2256 /* Do reference counting */
2257 ret = pdom_attach_iommu(iommu, domain);
2258 if (ret)
2259 goto out;
2260
2261 /* Setup GCR3 table */
2262 if (pdom_is_sva_capable(domain)) {
2263 ret = init_gcr3_table(dev_data, domain);
2264 if (ret) {
2265 pdom_detach_iommu(iommu, domain);
2266 goto out;
2267 }
2268 }
2269
2270 pdev = dev_is_pci(dev_data->dev) ? to_pci_dev(dev_data->dev) : NULL;
2271 if (pdev && pdom_is_sva_capable(domain)) {
2272 pdev_enable_caps(pdev);
2273
2274 /*
2275 * Device can continue to function even if IOPF
2276 * enablement failed. Hence in error path just
2277 * disable device PRI support.
2278 */
2279 if (amd_iommu_iopf_add_device(iommu, dev_data))
2280 pdev_disable_cap_pri(pdev);
2281 } else if (pdev) {
2282 pdev_enable_cap_ats(pdev);
2283 }
2284
2285 /* Update data structures */
2286 dev_data->domain = domain;
2287 spin_lock_irqsave(&domain->lock, flags);
2288 list_add(&dev_data->list, &domain->dev_list);
2289 spin_unlock_irqrestore(&domain->lock, flags);
2290
2291 /* Update device table */
2292 dev_update_dte(dev_data, true);
2293
2294 out:
2295 mutex_unlock(&dev_data->mutex);
2296
2297 return ret;
2298 }
2299
2300 /*
2301 * Removes a device from a protection domain (with devtable_lock held)
2302 */
detach_device(struct device * dev)2303 static void detach_device(struct device *dev)
2304 {
2305 struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev);
2306 struct amd_iommu *iommu = get_amd_iommu_from_dev_data(dev_data);
2307 struct protection_domain *domain = dev_data->domain;
2308 unsigned long flags;
2309
2310 mutex_lock(&dev_data->mutex);
2311
2312 /*
2313 * First check if the device is still attached. It might already
2314 * be detached from its domain because the generic
2315 * iommu_detach_group code detached it and we try again here in
2316 * our alias handling.
2317 */
2318 if (WARN_ON(!dev_data->domain))
2319 goto out;
2320
2321 /* Remove IOPF handler */
2322 if (dev_data->ppr) {
2323 iopf_queue_flush_dev(dev);
2324 amd_iommu_iopf_remove_device(iommu, dev_data);
2325 }
2326
2327 if (dev_is_pci(dev))
2328 pdev_disable_caps(to_pci_dev(dev));
2329
2330 /* Clear DTE and flush the entry */
2331 dev_update_dte(dev_data, false);
2332
2333 /* Flush IOTLB and wait for the flushes to finish */
2334 spin_lock_irqsave(&domain->lock, flags);
2335 amd_iommu_domain_flush_all(domain);
2336 list_del(&dev_data->list);
2337 spin_unlock_irqrestore(&domain->lock, flags);
2338
2339 /* Clear GCR3 table */
2340 if (pdom_is_sva_capable(domain))
2341 destroy_gcr3_table(dev_data, domain);
2342
2343 /* Update data structures */
2344 dev_data->domain = NULL;
2345
2346 /* decrease reference counters - needs to happen after the flushes */
2347 pdom_detach_iommu(iommu, domain);
2348
2349 out:
2350 mutex_unlock(&dev_data->mutex);
2351 }
2352
amd_iommu_probe_device(struct device * dev)2353 static struct iommu_device *amd_iommu_probe_device(struct device *dev)
2354 {
2355 struct iommu_device *iommu_dev;
2356 struct amd_iommu *iommu;
2357 struct iommu_dev_data *dev_data;
2358 int ret;
2359
2360 if (!check_device(dev))
2361 return ERR_PTR(-ENODEV);
2362
2363 iommu = rlookup_amd_iommu(dev);
2364 if (!iommu)
2365 return ERR_PTR(-ENODEV);
2366
2367 /* Not registered yet? */
2368 if (!iommu->iommu.ops)
2369 return ERR_PTR(-ENODEV);
2370
2371 if (dev_iommu_priv_get(dev))
2372 return &iommu->iommu;
2373
2374 ret = iommu_init_device(iommu, dev);
2375 if (ret) {
2376 dev_err(dev, "Failed to initialize - trying to proceed anyway\n");
2377 iommu_dev = ERR_PTR(ret);
2378 iommu_ignore_device(iommu, dev);
2379 goto out_err;
2380 }
2381
2382 amd_iommu_set_pci_msi_domain(dev, iommu);
2383 iommu_dev = &iommu->iommu;
2384
2385 /*
2386 * If IOMMU and device supports PASID then it will contain max
2387 * supported PASIDs, else it will be zero.
2388 */
2389 dev_data = dev_iommu_priv_get(dev);
2390 if (amd_iommu_pasid_supported() && dev_is_pci(dev) &&
2391 pdev_pasid_supported(dev_data)) {
2392 dev_data->max_pasids = min_t(u32, iommu->iommu.max_pasids,
2393 pci_max_pasids(to_pci_dev(dev)));
2394 }
2395
2396 out_err:
2397 iommu_completion_wait(iommu);
2398
2399 if (dev_is_pci(dev))
2400 pci_prepare_ats(to_pci_dev(dev), PAGE_SHIFT);
2401
2402 return iommu_dev;
2403 }
2404
amd_iommu_release_device(struct device * dev)2405 static void amd_iommu_release_device(struct device *dev)
2406 {
2407 struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev);
2408
2409 WARN_ON(dev_data->domain);
2410
2411 /*
2412 * We keep dev_data around for unplugged devices and reuse it when the
2413 * device is re-plugged - not doing so would introduce a ton of races.
2414 */
2415 }
2416
amd_iommu_device_group(struct device * dev)2417 static struct iommu_group *amd_iommu_device_group(struct device *dev)
2418 {
2419 if (dev_is_pci(dev))
2420 return pci_device_group(dev);
2421
2422 return acpihid_device_group(dev);
2423 }
2424
2425 /*****************************************************************************
2426 *
2427 * The following functions belong to the exported interface of AMD IOMMU
2428 *
2429 * This interface allows access to lower level functions of the IOMMU
2430 * like protection domain handling and assignement of devices to domains
2431 * which is not possible with the dma_ops interface.
2432 *
2433 *****************************************************************************/
2434
protection_domain_free(struct protection_domain * domain)2435 void protection_domain_free(struct protection_domain *domain)
2436 {
2437 WARN_ON(!list_empty(&domain->dev_list));
2438 if (domain->domain.type & __IOMMU_DOMAIN_PAGING)
2439 free_io_pgtable_ops(&domain->iop.pgtbl.ops);
2440 pdom_id_free(domain->id);
2441 kfree(domain);
2442 }
2443
protection_domain_init(struct protection_domain * domain)2444 static void protection_domain_init(struct protection_domain *domain)
2445 {
2446 spin_lock_init(&domain->lock);
2447 INIT_LIST_HEAD(&domain->dev_list);
2448 INIT_LIST_HEAD(&domain->dev_data_list);
2449 xa_init(&domain->iommu_array);
2450 }
2451
protection_domain_alloc(void)2452 struct protection_domain *protection_domain_alloc(void)
2453 {
2454 struct protection_domain *domain;
2455 int domid;
2456
2457 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
2458 if (!domain)
2459 return NULL;
2460
2461 domid = pdom_id_alloc();
2462 if (domid <= 0) {
2463 kfree(domain);
2464 return NULL;
2465 }
2466 domain->id = domid;
2467
2468 protection_domain_init(domain);
2469
2470 return domain;
2471 }
2472
pdom_setup_pgtable(struct protection_domain * domain,struct device * dev)2473 static int pdom_setup_pgtable(struct protection_domain *domain,
2474 struct device *dev)
2475 {
2476 struct io_pgtable_ops *pgtbl_ops;
2477 enum io_pgtable_fmt fmt;
2478
2479 switch (domain->pd_mode) {
2480 case PD_MODE_V1:
2481 fmt = AMD_IOMMU_V1;
2482 break;
2483 case PD_MODE_V2:
2484 fmt = AMD_IOMMU_V2;
2485 break;
2486 }
2487
2488 domain->iop.pgtbl.cfg.amd.nid = dev_to_node(dev);
2489 pgtbl_ops = alloc_io_pgtable_ops(fmt, &domain->iop.pgtbl.cfg, domain);
2490 if (!pgtbl_ops)
2491 return -ENOMEM;
2492
2493 return 0;
2494 }
2495
dma_max_address(enum protection_domain_mode pgtable)2496 static inline u64 dma_max_address(enum protection_domain_mode pgtable)
2497 {
2498 if (pgtable == PD_MODE_V1)
2499 return ~0ULL;
2500
2501 /* V2 with 4/5 level page table */
2502 return ((1ULL << PM_LEVEL_SHIFT(amd_iommu_gpt_level)) - 1);
2503 }
2504
amd_iommu_hd_support(struct amd_iommu * iommu)2505 static bool amd_iommu_hd_support(struct amd_iommu *iommu)
2506 {
2507 return iommu && (iommu->features & FEATURE_HDSUP);
2508 }
2509
2510 static struct iommu_domain *
do_iommu_domain_alloc(struct device * dev,u32 flags,enum protection_domain_mode pgtable)2511 do_iommu_domain_alloc(struct device *dev, u32 flags,
2512 enum protection_domain_mode pgtable)
2513 {
2514 bool dirty_tracking = flags & IOMMU_HWPT_ALLOC_DIRTY_TRACKING;
2515 struct amd_iommu *iommu = get_amd_iommu_from_dev(dev);
2516 struct protection_domain *domain;
2517 int ret;
2518
2519 domain = protection_domain_alloc();
2520 if (!domain)
2521 return ERR_PTR(-ENOMEM);
2522
2523 domain->pd_mode = pgtable;
2524 ret = pdom_setup_pgtable(domain, dev);
2525 if (ret) {
2526 pdom_id_free(domain->id);
2527 kfree(domain);
2528 return ERR_PTR(ret);
2529 }
2530
2531 domain->domain.geometry.aperture_start = 0;
2532 domain->domain.geometry.aperture_end = dma_max_address(pgtable);
2533 domain->domain.geometry.force_aperture = true;
2534 domain->domain.pgsize_bitmap = domain->iop.pgtbl.cfg.pgsize_bitmap;
2535
2536 domain->domain.type = IOMMU_DOMAIN_UNMANAGED;
2537 domain->domain.ops = iommu->iommu.ops->default_domain_ops;
2538
2539 if (dirty_tracking)
2540 domain->domain.dirty_ops = &amd_dirty_ops;
2541
2542 return &domain->domain;
2543 }
2544
2545 static struct iommu_domain *
amd_iommu_domain_alloc_paging_flags(struct device * dev,u32 flags,const struct iommu_user_data * user_data)2546 amd_iommu_domain_alloc_paging_flags(struct device *dev, u32 flags,
2547 const struct iommu_user_data *user_data)
2548
2549 {
2550 struct amd_iommu *iommu = get_amd_iommu_from_dev(dev);
2551 const u32 supported_flags = IOMMU_HWPT_ALLOC_DIRTY_TRACKING |
2552 IOMMU_HWPT_ALLOC_PASID;
2553
2554 if ((flags & ~supported_flags) || user_data)
2555 return ERR_PTR(-EOPNOTSUPP);
2556
2557 switch (flags & supported_flags) {
2558 case IOMMU_HWPT_ALLOC_DIRTY_TRACKING:
2559 /* Allocate domain with v1 page table for dirty tracking */
2560 if (!amd_iommu_hd_support(iommu))
2561 break;
2562 return do_iommu_domain_alloc(dev, flags, PD_MODE_V1);
2563 case IOMMU_HWPT_ALLOC_PASID:
2564 /* Allocate domain with v2 page table if IOMMU supports PASID. */
2565 if (!amd_iommu_pasid_supported())
2566 break;
2567 return do_iommu_domain_alloc(dev, flags, PD_MODE_V2);
2568 case 0:
2569 /* If nothing specific is required use the kernel commandline default */
2570 return do_iommu_domain_alloc(dev, 0, amd_iommu_pgtable);
2571 default:
2572 break;
2573 }
2574 return ERR_PTR(-EOPNOTSUPP);
2575 }
2576
amd_iommu_domain_free(struct iommu_domain * dom)2577 void amd_iommu_domain_free(struct iommu_domain *dom)
2578 {
2579 struct protection_domain *domain = to_pdomain(dom);
2580
2581 protection_domain_free(domain);
2582 }
2583
blocked_domain_attach_device(struct iommu_domain * domain,struct device * dev)2584 static int blocked_domain_attach_device(struct iommu_domain *domain,
2585 struct device *dev)
2586 {
2587 struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev);
2588
2589 if (dev_data->domain)
2590 detach_device(dev);
2591
2592 /* Clear DTE and flush the entry */
2593 mutex_lock(&dev_data->mutex);
2594 dev_update_dte(dev_data, false);
2595 mutex_unlock(&dev_data->mutex);
2596
2597 return 0;
2598 }
2599
blocked_domain_set_dev_pasid(struct iommu_domain * domain,struct device * dev,ioasid_t pasid,struct iommu_domain * old)2600 static int blocked_domain_set_dev_pasid(struct iommu_domain *domain,
2601 struct device *dev, ioasid_t pasid,
2602 struct iommu_domain *old)
2603 {
2604 amd_iommu_remove_dev_pasid(dev, pasid, old);
2605 return 0;
2606 }
2607
2608 static struct iommu_domain blocked_domain = {
2609 .type = IOMMU_DOMAIN_BLOCKED,
2610 .ops = &(const struct iommu_domain_ops) {
2611 .attach_dev = blocked_domain_attach_device,
2612 .set_dev_pasid = blocked_domain_set_dev_pasid,
2613 }
2614 };
2615
2616 static struct protection_domain identity_domain;
2617
2618 static const struct iommu_domain_ops identity_domain_ops = {
2619 .attach_dev = amd_iommu_attach_device,
2620 };
2621
amd_iommu_init_identity_domain(void)2622 void amd_iommu_init_identity_domain(void)
2623 {
2624 struct iommu_domain *domain = &identity_domain.domain;
2625
2626 domain->type = IOMMU_DOMAIN_IDENTITY;
2627 domain->ops = &identity_domain_ops;
2628 domain->owner = &amd_iommu_ops;
2629
2630 identity_domain.id = pdom_id_alloc();
2631
2632 protection_domain_init(&identity_domain);
2633 }
2634
2635 /* Same as blocked domain except it supports only ops->attach_dev() */
2636 static struct iommu_domain release_domain = {
2637 .type = IOMMU_DOMAIN_BLOCKED,
2638 .ops = &(const struct iommu_domain_ops) {
2639 .attach_dev = blocked_domain_attach_device,
2640 }
2641 };
2642
amd_iommu_attach_device(struct iommu_domain * dom,struct device * dev)2643 static int amd_iommu_attach_device(struct iommu_domain *dom,
2644 struct device *dev)
2645 {
2646 struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev);
2647 struct protection_domain *domain = to_pdomain(dom);
2648 struct amd_iommu *iommu = get_amd_iommu_from_dev(dev);
2649 int ret;
2650
2651 /*
2652 * Skip attach device to domain if new domain is same as
2653 * devices current domain
2654 */
2655 if (dev_data->domain == domain)
2656 return 0;
2657
2658 dev_data->defer_attach = false;
2659
2660 /*
2661 * Restrict to devices with compatible IOMMU hardware support
2662 * when enforcement of dirty tracking is enabled.
2663 */
2664 if (dom->dirty_ops && !amd_iommu_hd_support(iommu))
2665 return -EINVAL;
2666
2667 if (dev_data->domain)
2668 detach_device(dev);
2669
2670 ret = attach_device(dev, domain);
2671
2672 #ifdef CONFIG_IRQ_REMAP
2673 if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
2674 if (dom->type == IOMMU_DOMAIN_UNMANAGED)
2675 dev_data->use_vapic = 1;
2676 else
2677 dev_data->use_vapic = 0;
2678 }
2679 #endif
2680
2681 return ret;
2682 }
2683
amd_iommu_iotlb_sync_map(struct iommu_domain * dom,unsigned long iova,size_t size)2684 static int amd_iommu_iotlb_sync_map(struct iommu_domain *dom,
2685 unsigned long iova, size_t size)
2686 {
2687 struct protection_domain *domain = to_pdomain(dom);
2688 struct io_pgtable_ops *ops = &domain->iop.pgtbl.ops;
2689
2690 if (ops->map_pages)
2691 domain_flush_np_cache(domain, iova, size);
2692 return 0;
2693 }
2694
amd_iommu_map_pages(struct iommu_domain * dom,unsigned long iova,phys_addr_t paddr,size_t pgsize,size_t pgcount,int iommu_prot,gfp_t gfp,size_t * mapped)2695 static int amd_iommu_map_pages(struct iommu_domain *dom, unsigned long iova,
2696 phys_addr_t paddr, size_t pgsize, size_t pgcount,
2697 int iommu_prot, gfp_t gfp, size_t *mapped)
2698 {
2699 struct protection_domain *domain = to_pdomain(dom);
2700 struct io_pgtable_ops *ops = &domain->iop.pgtbl.ops;
2701 int prot = 0;
2702 int ret = -EINVAL;
2703
2704 if ((domain->pd_mode == PD_MODE_V1) &&
2705 (domain->iop.mode == PAGE_MODE_NONE))
2706 return -EINVAL;
2707
2708 if (iommu_prot & IOMMU_READ)
2709 prot |= IOMMU_PROT_IR;
2710 if (iommu_prot & IOMMU_WRITE)
2711 prot |= IOMMU_PROT_IW;
2712
2713 if (ops->map_pages) {
2714 ret = ops->map_pages(ops, iova, paddr, pgsize,
2715 pgcount, prot, gfp, mapped);
2716 }
2717
2718 return ret;
2719 }
2720
amd_iommu_iotlb_gather_add_page(struct iommu_domain * domain,struct iommu_iotlb_gather * gather,unsigned long iova,size_t size)2721 static void amd_iommu_iotlb_gather_add_page(struct iommu_domain *domain,
2722 struct iommu_iotlb_gather *gather,
2723 unsigned long iova, size_t size)
2724 {
2725 /*
2726 * AMD's IOMMU can flush as many pages as necessary in a single flush.
2727 * Unless we run in a virtual machine, which can be inferred according
2728 * to whether "non-present cache" is on, it is probably best to prefer
2729 * (potentially) too extensive TLB flushing (i.e., more misses) over
2730 * mutliple TLB flushes (i.e., more flushes). For virtual machines the
2731 * hypervisor needs to synchronize the host IOMMU PTEs with those of
2732 * the guest, and the trade-off is different: unnecessary TLB flushes
2733 * should be avoided.
2734 */
2735 if (amd_iommu_np_cache &&
2736 iommu_iotlb_gather_is_disjoint(gather, iova, size))
2737 iommu_iotlb_sync(domain, gather);
2738
2739 iommu_iotlb_gather_add_range(gather, iova, size);
2740 }
2741
amd_iommu_unmap_pages(struct iommu_domain * dom,unsigned long iova,size_t pgsize,size_t pgcount,struct iommu_iotlb_gather * gather)2742 static size_t amd_iommu_unmap_pages(struct iommu_domain *dom, unsigned long iova,
2743 size_t pgsize, size_t pgcount,
2744 struct iommu_iotlb_gather *gather)
2745 {
2746 struct protection_domain *domain = to_pdomain(dom);
2747 struct io_pgtable_ops *ops = &domain->iop.pgtbl.ops;
2748 size_t r;
2749
2750 if ((domain->pd_mode == PD_MODE_V1) &&
2751 (domain->iop.mode == PAGE_MODE_NONE))
2752 return 0;
2753
2754 r = (ops->unmap_pages) ? ops->unmap_pages(ops, iova, pgsize, pgcount, NULL) : 0;
2755
2756 if (r)
2757 amd_iommu_iotlb_gather_add_page(dom, gather, iova, r);
2758
2759 return r;
2760 }
2761
amd_iommu_iova_to_phys(struct iommu_domain * dom,dma_addr_t iova)2762 static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
2763 dma_addr_t iova)
2764 {
2765 struct protection_domain *domain = to_pdomain(dom);
2766 struct io_pgtable_ops *ops = &domain->iop.pgtbl.ops;
2767
2768 return ops->iova_to_phys(ops, iova);
2769 }
2770
amd_iommu_capable(struct device * dev,enum iommu_cap cap)2771 static bool amd_iommu_capable(struct device *dev, enum iommu_cap cap)
2772 {
2773 switch (cap) {
2774 case IOMMU_CAP_CACHE_COHERENCY:
2775 return true;
2776 case IOMMU_CAP_NOEXEC:
2777 return false;
2778 case IOMMU_CAP_PRE_BOOT_PROTECTION:
2779 return amdr_ivrs_remap_support;
2780 case IOMMU_CAP_ENFORCE_CACHE_COHERENCY:
2781 return true;
2782 case IOMMU_CAP_DEFERRED_FLUSH:
2783 return true;
2784 case IOMMU_CAP_DIRTY_TRACKING: {
2785 struct amd_iommu *iommu = get_amd_iommu_from_dev(dev);
2786
2787 return amd_iommu_hd_support(iommu);
2788 }
2789 default:
2790 break;
2791 }
2792
2793 return false;
2794 }
2795
amd_iommu_set_dirty_tracking(struct iommu_domain * domain,bool enable)2796 static int amd_iommu_set_dirty_tracking(struct iommu_domain *domain,
2797 bool enable)
2798 {
2799 struct protection_domain *pdomain = to_pdomain(domain);
2800 struct dev_table_entry *dte;
2801 struct iommu_dev_data *dev_data;
2802 bool domain_flush = false;
2803 struct amd_iommu *iommu;
2804 unsigned long flags;
2805 u64 new;
2806
2807 spin_lock_irqsave(&pdomain->lock, flags);
2808 if (!(pdomain->dirty_tracking ^ enable)) {
2809 spin_unlock_irqrestore(&pdomain->lock, flags);
2810 return 0;
2811 }
2812
2813 list_for_each_entry(dev_data, &pdomain->dev_list, list) {
2814 spin_lock(&dev_data->dte_lock);
2815 iommu = get_amd_iommu_from_dev_data(dev_data);
2816 dte = &get_dev_table(iommu)[dev_data->devid];
2817 new = dte->data[0];
2818 new = (enable ? new | DTE_FLAG_HAD : new & ~DTE_FLAG_HAD);
2819 dte->data[0] = new;
2820 spin_unlock(&dev_data->dte_lock);
2821
2822 /* Flush device DTE */
2823 device_flush_dte(dev_data);
2824 domain_flush = true;
2825 }
2826
2827 /* Flush IOTLB to mark IOPTE dirty on the next translation(s) */
2828 if (domain_flush)
2829 amd_iommu_domain_flush_all(pdomain);
2830
2831 pdomain->dirty_tracking = enable;
2832 spin_unlock_irqrestore(&pdomain->lock, flags);
2833
2834 return 0;
2835 }
2836
amd_iommu_read_and_clear_dirty(struct iommu_domain * domain,unsigned long iova,size_t size,unsigned long flags,struct iommu_dirty_bitmap * dirty)2837 static int amd_iommu_read_and_clear_dirty(struct iommu_domain *domain,
2838 unsigned long iova, size_t size,
2839 unsigned long flags,
2840 struct iommu_dirty_bitmap *dirty)
2841 {
2842 struct protection_domain *pdomain = to_pdomain(domain);
2843 struct io_pgtable_ops *ops = &pdomain->iop.pgtbl.ops;
2844 unsigned long lflags;
2845
2846 if (!ops || !ops->read_and_clear_dirty)
2847 return -EOPNOTSUPP;
2848
2849 spin_lock_irqsave(&pdomain->lock, lflags);
2850 if (!pdomain->dirty_tracking && dirty->bitmap) {
2851 spin_unlock_irqrestore(&pdomain->lock, lflags);
2852 return -EINVAL;
2853 }
2854 spin_unlock_irqrestore(&pdomain->lock, lflags);
2855
2856 return ops->read_and_clear_dirty(ops, iova, size, flags, dirty);
2857 }
2858
amd_iommu_get_resv_regions(struct device * dev,struct list_head * head)2859 static void amd_iommu_get_resv_regions(struct device *dev,
2860 struct list_head *head)
2861 {
2862 struct iommu_resv_region *region;
2863 struct unity_map_entry *entry;
2864 struct amd_iommu *iommu;
2865 struct amd_iommu_pci_seg *pci_seg;
2866 int devid, sbdf;
2867
2868 sbdf = get_device_sbdf_id(dev);
2869 if (sbdf < 0)
2870 return;
2871
2872 devid = PCI_SBDF_TO_DEVID(sbdf);
2873 iommu = get_amd_iommu_from_dev(dev);
2874 pci_seg = iommu->pci_seg;
2875
2876 list_for_each_entry(entry, &pci_seg->unity_map, list) {
2877 int type, prot = 0;
2878 size_t length;
2879
2880 if (devid < entry->devid_start || devid > entry->devid_end)
2881 continue;
2882
2883 type = IOMMU_RESV_DIRECT;
2884 length = entry->address_end - entry->address_start;
2885 if (entry->prot & IOMMU_PROT_IR)
2886 prot |= IOMMU_READ;
2887 if (entry->prot & IOMMU_PROT_IW)
2888 prot |= IOMMU_WRITE;
2889 if (entry->prot & IOMMU_UNITY_MAP_FLAG_EXCL_RANGE)
2890 /* Exclusion range */
2891 type = IOMMU_RESV_RESERVED;
2892
2893 region = iommu_alloc_resv_region(entry->address_start,
2894 length, prot, type,
2895 GFP_KERNEL);
2896 if (!region) {
2897 dev_err(dev, "Out of memory allocating dm-regions\n");
2898 return;
2899 }
2900 list_add_tail(®ion->list, head);
2901 }
2902
2903 region = iommu_alloc_resv_region(MSI_RANGE_START,
2904 MSI_RANGE_END - MSI_RANGE_START + 1,
2905 0, IOMMU_RESV_MSI, GFP_KERNEL);
2906 if (!region)
2907 return;
2908 list_add_tail(®ion->list, head);
2909
2910 region = iommu_alloc_resv_region(HT_RANGE_START,
2911 HT_RANGE_END - HT_RANGE_START + 1,
2912 0, IOMMU_RESV_RESERVED, GFP_KERNEL);
2913 if (!region)
2914 return;
2915 list_add_tail(®ion->list, head);
2916 }
2917
amd_iommu_is_attach_deferred(struct device * dev)2918 static bool amd_iommu_is_attach_deferred(struct device *dev)
2919 {
2920 struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev);
2921
2922 return dev_data->defer_attach;
2923 }
2924
amd_iommu_flush_iotlb_all(struct iommu_domain * domain)2925 static void amd_iommu_flush_iotlb_all(struct iommu_domain *domain)
2926 {
2927 struct protection_domain *dom = to_pdomain(domain);
2928 unsigned long flags;
2929
2930 spin_lock_irqsave(&dom->lock, flags);
2931 amd_iommu_domain_flush_all(dom);
2932 spin_unlock_irqrestore(&dom->lock, flags);
2933 }
2934
amd_iommu_iotlb_sync(struct iommu_domain * domain,struct iommu_iotlb_gather * gather)2935 static void amd_iommu_iotlb_sync(struct iommu_domain *domain,
2936 struct iommu_iotlb_gather *gather)
2937 {
2938 struct protection_domain *dom = to_pdomain(domain);
2939 unsigned long flags;
2940
2941 spin_lock_irqsave(&dom->lock, flags);
2942 amd_iommu_domain_flush_pages(dom, gather->start,
2943 gather->end - gather->start + 1);
2944 spin_unlock_irqrestore(&dom->lock, flags);
2945 }
2946
amd_iommu_def_domain_type(struct device * dev)2947 static int amd_iommu_def_domain_type(struct device *dev)
2948 {
2949 struct iommu_dev_data *dev_data;
2950
2951 dev_data = dev_iommu_priv_get(dev);
2952 if (!dev_data)
2953 return 0;
2954
2955 /* Always use DMA domain for untrusted device */
2956 if (dev_is_pci(dev) && to_pci_dev(dev)->untrusted)
2957 return IOMMU_DOMAIN_DMA;
2958
2959 /*
2960 * Do not identity map IOMMUv2 capable devices when:
2961 * - memory encryption is active, because some of those devices
2962 * (AMD GPUs) don't have the encryption bit in their DMA-mask
2963 * and require remapping.
2964 * - SNP is enabled, because it prohibits DTE[Mode]=0.
2965 */
2966 if (pdev_pasid_supported(dev_data) &&
2967 !cc_platform_has(CC_ATTR_MEM_ENCRYPT) &&
2968 !amd_iommu_snp_en) {
2969 return IOMMU_DOMAIN_IDENTITY;
2970 }
2971
2972 return 0;
2973 }
2974
amd_iommu_enforce_cache_coherency(struct iommu_domain * domain)2975 static bool amd_iommu_enforce_cache_coherency(struct iommu_domain *domain)
2976 {
2977 /* IOMMU_PTE_FC is always set */
2978 return true;
2979 }
2980
2981 static const struct iommu_dirty_ops amd_dirty_ops = {
2982 .set_dirty_tracking = amd_iommu_set_dirty_tracking,
2983 .read_and_clear_dirty = amd_iommu_read_and_clear_dirty,
2984 };
2985
amd_iommu_dev_enable_feature(struct device * dev,enum iommu_dev_features feat)2986 static int amd_iommu_dev_enable_feature(struct device *dev,
2987 enum iommu_dev_features feat)
2988 {
2989 int ret = 0;
2990
2991 switch (feat) {
2992 case IOMMU_DEV_FEAT_IOPF:
2993 case IOMMU_DEV_FEAT_SVA:
2994 break;
2995 default:
2996 ret = -EINVAL;
2997 break;
2998 }
2999 return ret;
3000 }
3001
amd_iommu_dev_disable_feature(struct device * dev,enum iommu_dev_features feat)3002 static int amd_iommu_dev_disable_feature(struct device *dev,
3003 enum iommu_dev_features feat)
3004 {
3005 int ret = 0;
3006
3007 switch (feat) {
3008 case IOMMU_DEV_FEAT_IOPF:
3009 case IOMMU_DEV_FEAT_SVA:
3010 break;
3011 default:
3012 ret = -EINVAL;
3013 break;
3014 }
3015 return ret;
3016 }
3017
3018 const struct iommu_ops amd_iommu_ops = {
3019 .capable = amd_iommu_capable,
3020 .blocked_domain = &blocked_domain,
3021 .release_domain = &release_domain,
3022 .identity_domain = &identity_domain.domain,
3023 .domain_alloc_paging_flags = amd_iommu_domain_alloc_paging_flags,
3024 .domain_alloc_sva = amd_iommu_domain_alloc_sva,
3025 .probe_device = amd_iommu_probe_device,
3026 .release_device = amd_iommu_release_device,
3027 .device_group = amd_iommu_device_group,
3028 .get_resv_regions = amd_iommu_get_resv_regions,
3029 .is_attach_deferred = amd_iommu_is_attach_deferred,
3030 .def_domain_type = amd_iommu_def_domain_type,
3031 .dev_enable_feat = amd_iommu_dev_enable_feature,
3032 .dev_disable_feat = amd_iommu_dev_disable_feature,
3033 .page_response = amd_iommu_page_response,
3034 .default_domain_ops = &(const struct iommu_domain_ops) {
3035 .attach_dev = amd_iommu_attach_device,
3036 .map_pages = amd_iommu_map_pages,
3037 .unmap_pages = amd_iommu_unmap_pages,
3038 .iotlb_sync_map = amd_iommu_iotlb_sync_map,
3039 .iova_to_phys = amd_iommu_iova_to_phys,
3040 .flush_iotlb_all = amd_iommu_flush_iotlb_all,
3041 .iotlb_sync = amd_iommu_iotlb_sync,
3042 .free = amd_iommu_domain_free,
3043 .enforce_cache_coherency = amd_iommu_enforce_cache_coherency,
3044 }
3045 };
3046
3047 #ifdef CONFIG_IRQ_REMAP
3048
3049 /*****************************************************************************
3050 *
3051 * Interrupt Remapping Implementation
3052 *
3053 *****************************************************************************/
3054
3055 static struct irq_chip amd_ir_chip;
3056 static DEFINE_SPINLOCK(iommu_table_lock);
3057
iommu_flush_irt_and_complete(struct amd_iommu * iommu,u16 devid)3058 static void iommu_flush_irt_and_complete(struct amd_iommu *iommu, u16 devid)
3059 {
3060 int ret;
3061 u64 data;
3062 unsigned long flags;
3063 struct iommu_cmd cmd, cmd2;
3064
3065 if (iommu->irtcachedis_enabled)
3066 return;
3067
3068 build_inv_irt(&cmd, devid);
3069 data = atomic64_inc_return(&iommu->cmd_sem_val);
3070 build_completion_wait(&cmd2, iommu, data);
3071
3072 raw_spin_lock_irqsave(&iommu->lock, flags);
3073 ret = __iommu_queue_command_sync(iommu, &cmd, true);
3074 if (ret)
3075 goto out;
3076 ret = __iommu_queue_command_sync(iommu, &cmd2, false);
3077 if (ret)
3078 goto out;
3079 wait_on_sem(iommu, data);
3080 out:
3081 raw_spin_unlock_irqrestore(&iommu->lock, flags);
3082 }
3083
set_dte_irq_entry(struct amd_iommu * iommu,u16 devid,struct irq_remap_table * table)3084 static void set_dte_irq_entry(struct amd_iommu *iommu, u16 devid,
3085 struct irq_remap_table *table)
3086 {
3087 u64 new;
3088 struct dev_table_entry *dte = &get_dev_table(iommu)[devid];
3089 struct iommu_dev_data *dev_data = search_dev_data(iommu, devid);
3090
3091 if (dev_data)
3092 spin_lock(&dev_data->dte_lock);
3093
3094 new = READ_ONCE(dte->data[2]);
3095 new &= ~DTE_IRQ_PHYS_ADDR_MASK;
3096 new |= iommu_virt_to_phys(table->table);
3097 new |= DTE_IRQ_REMAP_INTCTL;
3098 new |= DTE_INTTABLEN;
3099 new |= DTE_IRQ_REMAP_ENABLE;
3100 WRITE_ONCE(dte->data[2], new);
3101
3102 if (dev_data)
3103 spin_unlock(&dev_data->dte_lock);
3104 }
3105
get_irq_table(struct amd_iommu * iommu,u16 devid)3106 static struct irq_remap_table *get_irq_table(struct amd_iommu *iommu, u16 devid)
3107 {
3108 struct irq_remap_table *table;
3109 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
3110
3111 if (WARN_ONCE(!pci_seg->rlookup_table[devid],
3112 "%s: no iommu for devid %x:%x\n",
3113 __func__, pci_seg->id, devid))
3114 return NULL;
3115
3116 table = pci_seg->irq_lookup_table[devid];
3117 if (WARN_ONCE(!table, "%s: no table for devid %x:%x\n",
3118 __func__, pci_seg->id, devid))
3119 return NULL;
3120
3121 return table;
3122 }
3123
__alloc_irq_table(void)3124 static struct irq_remap_table *__alloc_irq_table(void)
3125 {
3126 struct irq_remap_table *table;
3127
3128 table = kzalloc(sizeof(*table), GFP_KERNEL);
3129 if (!table)
3130 return NULL;
3131
3132 table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_KERNEL);
3133 if (!table->table) {
3134 kfree(table);
3135 return NULL;
3136 }
3137 raw_spin_lock_init(&table->lock);
3138
3139 if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
3140 memset(table->table, 0,
3141 MAX_IRQS_PER_TABLE * sizeof(u32));
3142 else
3143 memset(table->table, 0,
3144 (MAX_IRQS_PER_TABLE * (sizeof(u64) * 2)));
3145 return table;
3146 }
3147
set_remap_table_entry(struct amd_iommu * iommu,u16 devid,struct irq_remap_table * table)3148 static void set_remap_table_entry(struct amd_iommu *iommu, u16 devid,
3149 struct irq_remap_table *table)
3150 {
3151 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
3152
3153 pci_seg->irq_lookup_table[devid] = table;
3154 set_dte_irq_entry(iommu, devid, table);
3155 iommu_flush_dte(iommu, devid);
3156 }
3157
set_remap_table_entry_alias(struct pci_dev * pdev,u16 alias,void * data)3158 static int set_remap_table_entry_alias(struct pci_dev *pdev, u16 alias,
3159 void *data)
3160 {
3161 struct irq_remap_table *table = data;
3162 struct amd_iommu_pci_seg *pci_seg;
3163 struct amd_iommu *iommu = rlookup_amd_iommu(&pdev->dev);
3164
3165 if (!iommu)
3166 return -EINVAL;
3167
3168 pci_seg = iommu->pci_seg;
3169 pci_seg->irq_lookup_table[alias] = table;
3170 set_dte_irq_entry(iommu, alias, table);
3171 iommu_flush_dte(pci_seg->rlookup_table[alias], alias);
3172
3173 return 0;
3174 }
3175
alloc_irq_table(struct amd_iommu * iommu,u16 devid,struct pci_dev * pdev)3176 static struct irq_remap_table *alloc_irq_table(struct amd_iommu *iommu,
3177 u16 devid, struct pci_dev *pdev)
3178 {
3179 struct irq_remap_table *table = NULL;
3180 struct irq_remap_table *new_table = NULL;
3181 struct amd_iommu_pci_seg *pci_seg;
3182 unsigned long flags;
3183 u16 alias;
3184
3185 spin_lock_irqsave(&iommu_table_lock, flags);
3186
3187 pci_seg = iommu->pci_seg;
3188 table = pci_seg->irq_lookup_table[devid];
3189 if (table)
3190 goto out_unlock;
3191
3192 alias = pci_seg->alias_table[devid];
3193 table = pci_seg->irq_lookup_table[alias];
3194 if (table) {
3195 set_remap_table_entry(iommu, devid, table);
3196 goto out_wait;
3197 }
3198 spin_unlock_irqrestore(&iommu_table_lock, flags);
3199
3200 /* Nothing there yet, allocate new irq remapping table */
3201 new_table = __alloc_irq_table();
3202 if (!new_table)
3203 return NULL;
3204
3205 spin_lock_irqsave(&iommu_table_lock, flags);
3206
3207 table = pci_seg->irq_lookup_table[devid];
3208 if (table)
3209 goto out_unlock;
3210
3211 table = pci_seg->irq_lookup_table[alias];
3212 if (table) {
3213 set_remap_table_entry(iommu, devid, table);
3214 goto out_wait;
3215 }
3216
3217 table = new_table;
3218 new_table = NULL;
3219
3220 if (pdev)
3221 pci_for_each_dma_alias(pdev, set_remap_table_entry_alias,
3222 table);
3223 else
3224 set_remap_table_entry(iommu, devid, table);
3225
3226 if (devid != alias)
3227 set_remap_table_entry(iommu, alias, table);
3228
3229 out_wait:
3230 iommu_completion_wait(iommu);
3231
3232 out_unlock:
3233 spin_unlock_irqrestore(&iommu_table_lock, flags);
3234
3235 if (new_table) {
3236 kmem_cache_free(amd_iommu_irq_cache, new_table->table);
3237 kfree(new_table);
3238 }
3239 return table;
3240 }
3241
alloc_irq_index(struct amd_iommu * iommu,u16 devid,int count,bool align,struct pci_dev * pdev)3242 static int alloc_irq_index(struct amd_iommu *iommu, u16 devid, int count,
3243 bool align, struct pci_dev *pdev)
3244 {
3245 struct irq_remap_table *table;
3246 int index, c, alignment = 1;
3247 unsigned long flags;
3248
3249 table = alloc_irq_table(iommu, devid, pdev);
3250 if (!table)
3251 return -ENODEV;
3252
3253 if (align)
3254 alignment = roundup_pow_of_two(count);
3255
3256 raw_spin_lock_irqsave(&table->lock, flags);
3257
3258 /* Scan table for free entries */
3259 for (index = ALIGN(table->min_index, alignment), c = 0;
3260 index < MAX_IRQS_PER_TABLE;) {
3261 if (!iommu->irte_ops->is_allocated(table, index)) {
3262 c += 1;
3263 } else {
3264 c = 0;
3265 index = ALIGN(index + 1, alignment);
3266 continue;
3267 }
3268
3269 if (c == count) {
3270 for (; c != 0; --c)
3271 iommu->irte_ops->set_allocated(table, index - c + 1);
3272
3273 index -= count - 1;
3274 goto out;
3275 }
3276
3277 index++;
3278 }
3279
3280 index = -ENOSPC;
3281
3282 out:
3283 raw_spin_unlock_irqrestore(&table->lock, flags);
3284
3285 return index;
3286 }
3287
__modify_irte_ga(struct amd_iommu * iommu,u16 devid,int index,struct irte_ga * irte)3288 static int __modify_irte_ga(struct amd_iommu *iommu, u16 devid, int index,
3289 struct irte_ga *irte)
3290 {
3291 struct irq_remap_table *table;
3292 struct irte_ga *entry;
3293 unsigned long flags;
3294 u128 old;
3295
3296 table = get_irq_table(iommu, devid);
3297 if (!table)
3298 return -ENOMEM;
3299
3300 raw_spin_lock_irqsave(&table->lock, flags);
3301
3302 entry = (struct irte_ga *)table->table;
3303 entry = &entry[index];
3304
3305 /*
3306 * We use cmpxchg16 to atomically update the 128-bit IRTE,
3307 * and it cannot be updated by the hardware or other processors
3308 * behind us, so the return value of cmpxchg16 should be the
3309 * same as the old value.
3310 */
3311 old = entry->irte;
3312 WARN_ON(!try_cmpxchg128(&entry->irte, &old, irte->irte));
3313
3314 raw_spin_unlock_irqrestore(&table->lock, flags);
3315
3316 return 0;
3317 }
3318
modify_irte_ga(struct amd_iommu * iommu,u16 devid,int index,struct irte_ga * irte)3319 static int modify_irte_ga(struct amd_iommu *iommu, u16 devid, int index,
3320 struct irte_ga *irte)
3321 {
3322 bool ret;
3323
3324 ret = __modify_irte_ga(iommu, devid, index, irte);
3325 if (ret)
3326 return ret;
3327
3328 iommu_flush_irt_and_complete(iommu, devid);
3329
3330 return 0;
3331 }
3332
modify_irte(struct amd_iommu * iommu,u16 devid,int index,union irte * irte)3333 static int modify_irte(struct amd_iommu *iommu,
3334 u16 devid, int index, union irte *irte)
3335 {
3336 struct irq_remap_table *table;
3337 unsigned long flags;
3338
3339 table = get_irq_table(iommu, devid);
3340 if (!table)
3341 return -ENOMEM;
3342
3343 raw_spin_lock_irqsave(&table->lock, flags);
3344 table->table[index] = irte->val;
3345 raw_spin_unlock_irqrestore(&table->lock, flags);
3346
3347 iommu_flush_irt_and_complete(iommu, devid);
3348
3349 return 0;
3350 }
3351
free_irte(struct amd_iommu * iommu,u16 devid,int index)3352 static void free_irte(struct amd_iommu *iommu, u16 devid, int index)
3353 {
3354 struct irq_remap_table *table;
3355 unsigned long flags;
3356
3357 table = get_irq_table(iommu, devid);
3358 if (!table)
3359 return;
3360
3361 raw_spin_lock_irqsave(&table->lock, flags);
3362 iommu->irte_ops->clear_allocated(table, index);
3363 raw_spin_unlock_irqrestore(&table->lock, flags);
3364
3365 iommu_flush_irt_and_complete(iommu, devid);
3366 }
3367
irte_prepare(void * entry,u32 delivery_mode,bool dest_mode,u8 vector,u32 dest_apicid,int devid)3368 static void irte_prepare(void *entry,
3369 u32 delivery_mode, bool dest_mode,
3370 u8 vector, u32 dest_apicid, int devid)
3371 {
3372 union irte *irte = (union irte *) entry;
3373
3374 irte->val = 0;
3375 irte->fields.vector = vector;
3376 irte->fields.int_type = delivery_mode;
3377 irte->fields.destination = dest_apicid;
3378 irte->fields.dm = dest_mode;
3379 irte->fields.valid = 1;
3380 }
3381
irte_ga_prepare(void * entry,u32 delivery_mode,bool dest_mode,u8 vector,u32 dest_apicid,int devid)3382 static void irte_ga_prepare(void *entry,
3383 u32 delivery_mode, bool dest_mode,
3384 u8 vector, u32 dest_apicid, int devid)
3385 {
3386 struct irte_ga *irte = (struct irte_ga *) entry;
3387
3388 irte->lo.val = 0;
3389 irte->hi.val = 0;
3390 irte->lo.fields_remap.int_type = delivery_mode;
3391 irte->lo.fields_remap.dm = dest_mode;
3392 irte->hi.fields.vector = vector;
3393 irte->lo.fields_remap.destination = APICID_TO_IRTE_DEST_LO(dest_apicid);
3394 irte->hi.fields.destination = APICID_TO_IRTE_DEST_HI(dest_apicid);
3395 irte->lo.fields_remap.valid = 1;
3396 }
3397
irte_activate(struct amd_iommu * iommu,void * entry,u16 devid,u16 index)3398 static void irte_activate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index)
3399 {
3400 union irte *irte = (union irte *) entry;
3401
3402 irte->fields.valid = 1;
3403 modify_irte(iommu, devid, index, irte);
3404 }
3405
irte_ga_activate(struct amd_iommu * iommu,void * entry,u16 devid,u16 index)3406 static void irte_ga_activate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index)
3407 {
3408 struct irte_ga *irte = (struct irte_ga *) entry;
3409
3410 irte->lo.fields_remap.valid = 1;
3411 modify_irte_ga(iommu, devid, index, irte);
3412 }
3413
irte_deactivate(struct amd_iommu * iommu,void * entry,u16 devid,u16 index)3414 static void irte_deactivate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index)
3415 {
3416 union irte *irte = (union irte *) entry;
3417
3418 irte->fields.valid = 0;
3419 modify_irte(iommu, devid, index, irte);
3420 }
3421
irte_ga_deactivate(struct amd_iommu * iommu,void * entry,u16 devid,u16 index)3422 static void irte_ga_deactivate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index)
3423 {
3424 struct irte_ga *irte = (struct irte_ga *) entry;
3425
3426 irte->lo.fields_remap.valid = 0;
3427 modify_irte_ga(iommu, devid, index, irte);
3428 }
3429
irte_set_affinity(struct amd_iommu * iommu,void * entry,u16 devid,u16 index,u8 vector,u32 dest_apicid)3430 static void irte_set_affinity(struct amd_iommu *iommu, void *entry, u16 devid, u16 index,
3431 u8 vector, u32 dest_apicid)
3432 {
3433 union irte *irte = (union irte *) entry;
3434
3435 irte->fields.vector = vector;
3436 irte->fields.destination = dest_apicid;
3437 modify_irte(iommu, devid, index, irte);
3438 }
3439
irte_ga_set_affinity(struct amd_iommu * iommu,void * entry,u16 devid,u16 index,u8 vector,u32 dest_apicid)3440 static void irte_ga_set_affinity(struct amd_iommu *iommu, void *entry, u16 devid, u16 index,
3441 u8 vector, u32 dest_apicid)
3442 {
3443 struct irte_ga *irte = (struct irte_ga *) entry;
3444
3445 if (!irte->lo.fields_remap.guest_mode) {
3446 irte->hi.fields.vector = vector;
3447 irte->lo.fields_remap.destination =
3448 APICID_TO_IRTE_DEST_LO(dest_apicid);
3449 irte->hi.fields.destination =
3450 APICID_TO_IRTE_DEST_HI(dest_apicid);
3451 modify_irte_ga(iommu, devid, index, irte);
3452 }
3453 }
3454
3455 #define IRTE_ALLOCATED (~1U)
irte_set_allocated(struct irq_remap_table * table,int index)3456 static void irte_set_allocated(struct irq_remap_table *table, int index)
3457 {
3458 table->table[index] = IRTE_ALLOCATED;
3459 }
3460
irte_ga_set_allocated(struct irq_remap_table * table,int index)3461 static void irte_ga_set_allocated(struct irq_remap_table *table, int index)
3462 {
3463 struct irte_ga *ptr = (struct irte_ga *)table->table;
3464 struct irte_ga *irte = &ptr[index];
3465
3466 memset(&irte->lo.val, 0, sizeof(u64));
3467 memset(&irte->hi.val, 0, sizeof(u64));
3468 irte->hi.fields.vector = 0xff;
3469 }
3470
irte_is_allocated(struct irq_remap_table * table,int index)3471 static bool irte_is_allocated(struct irq_remap_table *table, int index)
3472 {
3473 union irte *ptr = (union irte *)table->table;
3474 union irte *irte = &ptr[index];
3475
3476 return irte->val != 0;
3477 }
3478
irte_ga_is_allocated(struct irq_remap_table * table,int index)3479 static bool irte_ga_is_allocated(struct irq_remap_table *table, int index)
3480 {
3481 struct irte_ga *ptr = (struct irte_ga *)table->table;
3482 struct irte_ga *irte = &ptr[index];
3483
3484 return irte->hi.fields.vector != 0;
3485 }
3486
irte_clear_allocated(struct irq_remap_table * table,int index)3487 static void irte_clear_allocated(struct irq_remap_table *table, int index)
3488 {
3489 table->table[index] = 0;
3490 }
3491
irte_ga_clear_allocated(struct irq_remap_table * table,int index)3492 static void irte_ga_clear_allocated(struct irq_remap_table *table, int index)
3493 {
3494 struct irte_ga *ptr = (struct irte_ga *)table->table;
3495 struct irte_ga *irte = &ptr[index];
3496
3497 memset(&irte->lo.val, 0, sizeof(u64));
3498 memset(&irte->hi.val, 0, sizeof(u64));
3499 }
3500
get_devid(struct irq_alloc_info * info)3501 static int get_devid(struct irq_alloc_info *info)
3502 {
3503 switch (info->type) {
3504 case X86_IRQ_ALLOC_TYPE_IOAPIC:
3505 return get_ioapic_devid(info->devid);
3506 case X86_IRQ_ALLOC_TYPE_HPET:
3507 return get_hpet_devid(info->devid);
3508 case X86_IRQ_ALLOC_TYPE_PCI_MSI:
3509 case X86_IRQ_ALLOC_TYPE_PCI_MSIX:
3510 return get_device_sbdf_id(msi_desc_to_dev(info->desc));
3511 default:
3512 WARN_ON_ONCE(1);
3513 return -1;
3514 }
3515 }
3516
3517 struct irq_remap_ops amd_iommu_irq_ops = {
3518 .prepare = amd_iommu_prepare,
3519 .enable = amd_iommu_enable,
3520 .disable = amd_iommu_disable,
3521 .reenable = amd_iommu_reenable,
3522 .enable_faulting = amd_iommu_enable_faulting,
3523 };
3524
fill_msi_msg(struct msi_msg * msg,u32 index)3525 static void fill_msi_msg(struct msi_msg *msg, u32 index)
3526 {
3527 msg->data = index;
3528 msg->address_lo = 0;
3529 msg->arch_addr_lo.base_address = X86_MSI_BASE_ADDRESS_LOW;
3530 msg->address_hi = X86_MSI_BASE_ADDRESS_HIGH;
3531 }
3532
irq_remapping_prepare_irte(struct amd_ir_data * data,struct irq_cfg * irq_cfg,struct irq_alloc_info * info,int devid,int index,int sub_handle)3533 static void irq_remapping_prepare_irte(struct amd_ir_data *data,
3534 struct irq_cfg *irq_cfg,
3535 struct irq_alloc_info *info,
3536 int devid, int index, int sub_handle)
3537 {
3538 struct irq_2_irte *irte_info = &data->irq_2_irte;
3539 struct amd_iommu *iommu = data->iommu;
3540
3541 if (!iommu)
3542 return;
3543
3544 data->irq_2_irte.devid = devid;
3545 data->irq_2_irte.index = index + sub_handle;
3546 iommu->irte_ops->prepare(data->entry, APIC_DELIVERY_MODE_FIXED,
3547 apic->dest_mode_logical, irq_cfg->vector,
3548 irq_cfg->dest_apicid, devid);
3549
3550 switch (info->type) {
3551 case X86_IRQ_ALLOC_TYPE_IOAPIC:
3552 case X86_IRQ_ALLOC_TYPE_HPET:
3553 case X86_IRQ_ALLOC_TYPE_PCI_MSI:
3554 case X86_IRQ_ALLOC_TYPE_PCI_MSIX:
3555 fill_msi_msg(&data->msi_entry, irte_info->index);
3556 break;
3557
3558 default:
3559 BUG_ON(1);
3560 break;
3561 }
3562 }
3563
3564 struct amd_irte_ops irte_32_ops = {
3565 .prepare = irte_prepare,
3566 .activate = irte_activate,
3567 .deactivate = irte_deactivate,
3568 .set_affinity = irte_set_affinity,
3569 .set_allocated = irte_set_allocated,
3570 .is_allocated = irte_is_allocated,
3571 .clear_allocated = irte_clear_allocated,
3572 };
3573
3574 struct amd_irte_ops irte_128_ops = {
3575 .prepare = irte_ga_prepare,
3576 .activate = irte_ga_activate,
3577 .deactivate = irte_ga_deactivate,
3578 .set_affinity = irte_ga_set_affinity,
3579 .set_allocated = irte_ga_set_allocated,
3580 .is_allocated = irte_ga_is_allocated,
3581 .clear_allocated = irte_ga_clear_allocated,
3582 };
3583
irq_remapping_alloc(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs,void * arg)3584 static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq,
3585 unsigned int nr_irqs, void *arg)
3586 {
3587 struct irq_alloc_info *info = arg;
3588 struct irq_data *irq_data;
3589 struct amd_ir_data *data = NULL;
3590 struct amd_iommu *iommu;
3591 struct irq_cfg *cfg;
3592 int i, ret, devid, seg, sbdf;
3593 int index;
3594
3595 if (!info)
3596 return -EINVAL;
3597 if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_PCI_MSI)
3598 return -EINVAL;
3599
3600 sbdf = get_devid(info);
3601 if (sbdf < 0)
3602 return -EINVAL;
3603
3604 seg = PCI_SBDF_TO_SEGID(sbdf);
3605 devid = PCI_SBDF_TO_DEVID(sbdf);
3606 iommu = __rlookup_amd_iommu(seg, devid);
3607 if (!iommu)
3608 return -EINVAL;
3609
3610 ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
3611 if (ret < 0)
3612 return ret;
3613
3614 if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) {
3615 struct irq_remap_table *table;
3616
3617 table = alloc_irq_table(iommu, devid, NULL);
3618 if (table) {
3619 if (!table->min_index) {
3620 /*
3621 * Keep the first 32 indexes free for IOAPIC
3622 * interrupts.
3623 */
3624 table->min_index = 32;
3625 for (i = 0; i < 32; ++i)
3626 iommu->irte_ops->set_allocated(table, i);
3627 }
3628 WARN_ON(table->min_index != 32);
3629 index = info->ioapic.pin;
3630 } else {
3631 index = -ENOMEM;
3632 }
3633 } else if (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI ||
3634 info->type == X86_IRQ_ALLOC_TYPE_PCI_MSIX) {
3635 bool align = (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI);
3636
3637 index = alloc_irq_index(iommu, devid, nr_irqs, align,
3638 msi_desc_to_pci_dev(info->desc));
3639 } else {
3640 index = alloc_irq_index(iommu, devid, nr_irqs, false, NULL);
3641 }
3642
3643 if (index < 0) {
3644 pr_warn("Failed to allocate IRTE\n");
3645 ret = index;
3646 goto out_free_parent;
3647 }
3648
3649 for (i = 0; i < nr_irqs; i++) {
3650 irq_data = irq_domain_get_irq_data(domain, virq + i);
3651 cfg = irq_data ? irqd_cfg(irq_data) : NULL;
3652 if (!cfg) {
3653 ret = -EINVAL;
3654 goto out_free_data;
3655 }
3656
3657 ret = -ENOMEM;
3658 data = kzalloc(sizeof(*data), GFP_KERNEL);
3659 if (!data)
3660 goto out_free_data;
3661
3662 if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
3663 data->entry = kzalloc(sizeof(union irte), GFP_KERNEL);
3664 else
3665 data->entry = kzalloc(sizeof(struct irte_ga),
3666 GFP_KERNEL);
3667 if (!data->entry) {
3668 kfree(data);
3669 goto out_free_data;
3670 }
3671
3672 data->iommu = iommu;
3673 irq_data->hwirq = (devid << 16) + i;
3674 irq_data->chip_data = data;
3675 irq_data->chip = &amd_ir_chip;
3676 irq_remapping_prepare_irte(data, cfg, info, devid, index, i);
3677 }
3678
3679 return 0;
3680
3681 out_free_data:
3682 for (i--; i >= 0; i--) {
3683 irq_data = irq_domain_get_irq_data(domain, virq + i);
3684 if (irq_data)
3685 kfree(irq_data->chip_data);
3686 }
3687 for (i = 0; i < nr_irqs; i++)
3688 free_irte(iommu, devid, index + i);
3689 out_free_parent:
3690 irq_domain_free_irqs_common(domain, virq, nr_irqs);
3691 return ret;
3692 }
3693
irq_remapping_free(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs)3694 static void irq_remapping_free(struct irq_domain *domain, unsigned int virq,
3695 unsigned int nr_irqs)
3696 {
3697 struct irq_2_irte *irte_info;
3698 struct irq_data *irq_data;
3699 struct amd_ir_data *data;
3700 int i;
3701
3702 for (i = 0; i < nr_irqs; i++) {
3703 irq_data = irq_domain_get_irq_data(domain, virq + i);
3704 if (irq_data && irq_data->chip_data) {
3705 data = irq_data->chip_data;
3706 irte_info = &data->irq_2_irte;
3707 free_irte(data->iommu, irte_info->devid, irte_info->index);
3708 kfree(data->entry);
3709 kfree(data);
3710 }
3711 }
3712 irq_domain_free_irqs_common(domain, virq, nr_irqs);
3713 }
3714
3715 static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu,
3716 struct amd_ir_data *ir_data,
3717 struct irq_2_irte *irte_info,
3718 struct irq_cfg *cfg);
3719
irq_remapping_activate(struct irq_domain * domain,struct irq_data * irq_data,bool reserve)3720 static int irq_remapping_activate(struct irq_domain *domain,
3721 struct irq_data *irq_data, bool reserve)
3722 {
3723 struct amd_ir_data *data = irq_data->chip_data;
3724 struct irq_2_irte *irte_info = &data->irq_2_irte;
3725 struct amd_iommu *iommu = data->iommu;
3726 struct irq_cfg *cfg = irqd_cfg(irq_data);
3727
3728 if (!iommu)
3729 return 0;
3730
3731 iommu->irte_ops->activate(iommu, data->entry, irte_info->devid,
3732 irte_info->index);
3733 amd_ir_update_irte(irq_data, iommu, data, irte_info, cfg);
3734 return 0;
3735 }
3736
irq_remapping_deactivate(struct irq_domain * domain,struct irq_data * irq_data)3737 static void irq_remapping_deactivate(struct irq_domain *domain,
3738 struct irq_data *irq_data)
3739 {
3740 struct amd_ir_data *data = irq_data->chip_data;
3741 struct irq_2_irte *irte_info = &data->irq_2_irte;
3742 struct amd_iommu *iommu = data->iommu;
3743
3744 if (iommu)
3745 iommu->irte_ops->deactivate(iommu, data->entry, irte_info->devid,
3746 irte_info->index);
3747 }
3748
irq_remapping_select(struct irq_domain * d,struct irq_fwspec * fwspec,enum irq_domain_bus_token bus_token)3749 static int irq_remapping_select(struct irq_domain *d, struct irq_fwspec *fwspec,
3750 enum irq_domain_bus_token bus_token)
3751 {
3752 struct amd_iommu *iommu;
3753 int devid = -1;
3754
3755 if (!amd_iommu_irq_remap)
3756 return 0;
3757
3758 if (x86_fwspec_is_ioapic(fwspec))
3759 devid = get_ioapic_devid(fwspec->param[0]);
3760 else if (x86_fwspec_is_hpet(fwspec))
3761 devid = get_hpet_devid(fwspec->param[0]);
3762
3763 if (devid < 0)
3764 return 0;
3765 iommu = __rlookup_amd_iommu((devid >> 16), (devid & 0xffff));
3766
3767 return iommu && iommu->ir_domain == d;
3768 }
3769
3770 static const struct irq_domain_ops amd_ir_domain_ops = {
3771 .select = irq_remapping_select,
3772 .alloc = irq_remapping_alloc,
3773 .free = irq_remapping_free,
3774 .activate = irq_remapping_activate,
3775 .deactivate = irq_remapping_deactivate,
3776 };
3777
amd_iommu_activate_guest_mode(void * data)3778 int amd_iommu_activate_guest_mode(void *data)
3779 {
3780 struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
3781 struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
3782 u64 valid;
3783
3784 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) || !entry)
3785 return 0;
3786
3787 valid = entry->lo.fields_vapic.valid;
3788
3789 entry->lo.val = 0;
3790 entry->hi.val = 0;
3791
3792 entry->lo.fields_vapic.valid = valid;
3793 entry->lo.fields_vapic.guest_mode = 1;
3794 entry->lo.fields_vapic.ga_log_intr = 1;
3795 entry->hi.fields.ga_root_ptr = ir_data->ga_root_ptr;
3796 entry->hi.fields.vector = ir_data->ga_vector;
3797 entry->lo.fields_vapic.ga_tag = ir_data->ga_tag;
3798
3799 return modify_irte_ga(ir_data->iommu, ir_data->irq_2_irte.devid,
3800 ir_data->irq_2_irte.index, entry);
3801 }
3802 EXPORT_SYMBOL(amd_iommu_activate_guest_mode);
3803
amd_iommu_deactivate_guest_mode(void * data)3804 int amd_iommu_deactivate_guest_mode(void *data)
3805 {
3806 struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
3807 struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
3808 struct irq_cfg *cfg = ir_data->cfg;
3809 u64 valid;
3810
3811 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
3812 !entry || !entry->lo.fields_vapic.guest_mode)
3813 return 0;
3814
3815 valid = entry->lo.fields_remap.valid;
3816
3817 entry->lo.val = 0;
3818 entry->hi.val = 0;
3819
3820 entry->lo.fields_remap.valid = valid;
3821 entry->lo.fields_remap.dm = apic->dest_mode_logical;
3822 entry->lo.fields_remap.int_type = APIC_DELIVERY_MODE_FIXED;
3823 entry->hi.fields.vector = cfg->vector;
3824 entry->lo.fields_remap.destination =
3825 APICID_TO_IRTE_DEST_LO(cfg->dest_apicid);
3826 entry->hi.fields.destination =
3827 APICID_TO_IRTE_DEST_HI(cfg->dest_apicid);
3828
3829 return modify_irte_ga(ir_data->iommu, ir_data->irq_2_irte.devid,
3830 ir_data->irq_2_irte.index, entry);
3831 }
3832 EXPORT_SYMBOL(amd_iommu_deactivate_guest_mode);
3833
amd_ir_set_vcpu_affinity(struct irq_data * data,void * vcpu_info)3834 static int amd_ir_set_vcpu_affinity(struct irq_data *data, void *vcpu_info)
3835 {
3836 int ret;
3837 struct amd_iommu_pi_data *pi_data = vcpu_info;
3838 struct vcpu_data *vcpu_pi_info = pi_data->vcpu_data;
3839 struct amd_ir_data *ir_data = data->chip_data;
3840 struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
3841 struct iommu_dev_data *dev_data;
3842
3843 if (ir_data->iommu == NULL)
3844 return -EINVAL;
3845
3846 dev_data = search_dev_data(ir_data->iommu, irte_info->devid);
3847
3848 /* Note:
3849 * This device has never been set up for guest mode.
3850 * we should not modify the IRTE
3851 */
3852 if (!dev_data || !dev_data->use_vapic)
3853 return 0;
3854
3855 ir_data->cfg = irqd_cfg(data);
3856 pi_data->ir_data = ir_data;
3857
3858 /* Note:
3859 * SVM tries to set up for VAPIC mode, but we are in
3860 * legacy mode. So, we force legacy mode instead.
3861 */
3862 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
3863 pr_debug("%s: Fall back to using intr legacy remap\n",
3864 __func__);
3865 pi_data->is_guest_mode = false;
3866 }
3867
3868 pi_data->prev_ga_tag = ir_data->cached_ga_tag;
3869 if (pi_data->is_guest_mode) {
3870 ir_data->ga_root_ptr = (pi_data->base >> 12);
3871 ir_data->ga_vector = vcpu_pi_info->vector;
3872 ir_data->ga_tag = pi_data->ga_tag;
3873 ret = amd_iommu_activate_guest_mode(ir_data);
3874 if (!ret)
3875 ir_data->cached_ga_tag = pi_data->ga_tag;
3876 } else {
3877 ret = amd_iommu_deactivate_guest_mode(ir_data);
3878
3879 /*
3880 * This communicates the ga_tag back to the caller
3881 * so that it can do all the necessary clean up.
3882 */
3883 if (!ret)
3884 ir_data->cached_ga_tag = 0;
3885 }
3886
3887 return ret;
3888 }
3889
3890
amd_ir_update_irte(struct irq_data * irqd,struct amd_iommu * iommu,struct amd_ir_data * ir_data,struct irq_2_irte * irte_info,struct irq_cfg * cfg)3891 static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu,
3892 struct amd_ir_data *ir_data,
3893 struct irq_2_irte *irte_info,
3894 struct irq_cfg *cfg)
3895 {
3896
3897 /*
3898 * Atomically updates the IRTE with the new destination, vector
3899 * and flushes the interrupt entry cache.
3900 */
3901 iommu->irte_ops->set_affinity(iommu, ir_data->entry, irte_info->devid,
3902 irte_info->index, cfg->vector,
3903 cfg->dest_apicid);
3904 }
3905
amd_ir_set_affinity(struct irq_data * data,const struct cpumask * mask,bool force)3906 static int amd_ir_set_affinity(struct irq_data *data,
3907 const struct cpumask *mask, bool force)
3908 {
3909 struct amd_ir_data *ir_data = data->chip_data;
3910 struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
3911 struct irq_cfg *cfg = irqd_cfg(data);
3912 struct irq_data *parent = data->parent_data;
3913 struct amd_iommu *iommu = ir_data->iommu;
3914 int ret;
3915
3916 if (!iommu)
3917 return -ENODEV;
3918
3919 ret = parent->chip->irq_set_affinity(parent, mask, force);
3920 if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
3921 return ret;
3922
3923 amd_ir_update_irte(data, iommu, ir_data, irte_info, cfg);
3924 /*
3925 * After this point, all the interrupts will start arriving
3926 * at the new destination. So, time to cleanup the previous
3927 * vector allocation.
3928 */
3929 vector_schedule_cleanup(cfg);
3930
3931 return IRQ_SET_MASK_OK_DONE;
3932 }
3933
ir_compose_msi_msg(struct irq_data * irq_data,struct msi_msg * msg)3934 static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg)
3935 {
3936 struct amd_ir_data *ir_data = irq_data->chip_data;
3937
3938 *msg = ir_data->msi_entry;
3939 }
3940
3941 static struct irq_chip amd_ir_chip = {
3942 .name = "AMD-IR",
3943 .irq_ack = apic_ack_irq,
3944 .irq_set_affinity = amd_ir_set_affinity,
3945 .irq_set_vcpu_affinity = amd_ir_set_vcpu_affinity,
3946 .irq_compose_msi_msg = ir_compose_msi_msg,
3947 };
3948
3949 static const struct msi_parent_ops amdvi_msi_parent_ops = {
3950 .supported_flags = X86_VECTOR_MSI_FLAGS_SUPPORTED | MSI_FLAG_MULTI_PCI_MSI,
3951 .prefix = "IR-",
3952 .init_dev_msi_info = msi_parent_init_dev_msi_info,
3953 };
3954
amd_iommu_create_irq_domain(struct amd_iommu * iommu)3955 int amd_iommu_create_irq_domain(struct amd_iommu *iommu)
3956 {
3957 struct fwnode_handle *fn;
3958
3959 fn = irq_domain_alloc_named_id_fwnode("AMD-IR", iommu->index);
3960 if (!fn)
3961 return -ENOMEM;
3962 iommu->ir_domain = irq_domain_create_hierarchy(arch_get_ir_parent_domain(), 0, 0,
3963 fn, &amd_ir_domain_ops, iommu);
3964 if (!iommu->ir_domain) {
3965 irq_domain_free_fwnode(fn);
3966 return -ENOMEM;
3967 }
3968
3969 irq_domain_update_bus_token(iommu->ir_domain, DOMAIN_BUS_AMDVI);
3970 iommu->ir_domain->flags |= IRQ_DOMAIN_FLAG_MSI_PARENT |
3971 IRQ_DOMAIN_FLAG_ISOLATED_MSI;
3972 iommu->ir_domain->msi_parent_ops = &amdvi_msi_parent_ops;
3973
3974 return 0;
3975 }
3976
amd_iommu_update_ga(int cpu,bool is_run,void * data)3977 int amd_iommu_update_ga(int cpu, bool is_run, void *data)
3978 {
3979 struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
3980 struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
3981
3982 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
3983 !entry || !entry->lo.fields_vapic.guest_mode)
3984 return 0;
3985
3986 if (!ir_data->iommu)
3987 return -ENODEV;
3988
3989 if (cpu >= 0) {
3990 entry->lo.fields_vapic.destination =
3991 APICID_TO_IRTE_DEST_LO(cpu);
3992 entry->hi.fields.destination =
3993 APICID_TO_IRTE_DEST_HI(cpu);
3994 }
3995 entry->lo.fields_vapic.is_run = is_run;
3996
3997 return __modify_irte_ga(ir_data->iommu, ir_data->irq_2_irte.devid,
3998 ir_data->irq_2_irte.index, entry);
3999 }
4000 EXPORT_SYMBOL(amd_iommu_update_ga);
4001 #endif
4002