1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
4 * Author: Joerg Roedel <jroedel@suse.de>
5 * Leo Duran <leo.duran@amd.com>
6 */
7
8 #define pr_fmt(fmt) "AMD-Vi: " fmt
9 #define dev_fmt(fmt) pr_fmt(fmt)
10
11 #include <linux/ratelimit.h>
12 #include <linux/pci.h>
13 #include <linux/acpi.h>
14 #include <linux/pci-ats.h>
15 #include <linux/bitmap.h>
16 #include <linux/slab.h>
17 #include <linux/debugfs.h>
18 #include <linux/scatterlist.h>
19 #include <linux/dma-map-ops.h>
20 #include <linux/dma-direct.h>
21 #include <linux/idr.h>
22 #include <linux/iommu-helper.h>
23 #include <linux/delay.h>
24 #include <linux/amd-iommu.h>
25 #include <linux/notifier.h>
26 #include <linux/export.h>
27 #include <linux/irq.h>
28 #include <linux/msi.h>
29 #include <linux/irqdomain.h>
30 #include <linux/percpu.h>
31 #include <linux/io-pgtable.h>
32 #include <linux/cc_platform.h>
33 #include <asm/irq_remapping.h>
34 #include <asm/io_apic.h>
35 #include <asm/apic.h>
36 #include <asm/hw_irq.h>
37 #include <asm/proto.h>
38 #include <asm/iommu.h>
39 #include <asm/gart.h>
40 #include <asm/dma.h>
41 #include <uapi/linux/iommufd.h>
42
43 #include "amd_iommu.h"
44 #include "../dma-iommu.h"
45 #include "../irq_remapping.h"
46 #include "../iommu-pages.h"
47
48 #define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
49
50 /* Reserved IOVA ranges */
51 #define MSI_RANGE_START (0xfee00000)
52 #define MSI_RANGE_END (0xfeefffff)
53 #define HT_RANGE_START (0xfd00000000ULL)
54 #define HT_RANGE_END (0xffffffffffULL)
55
56 LIST_HEAD(ioapic_map);
57 LIST_HEAD(hpet_map);
58 LIST_HEAD(acpihid_map);
59
60 const struct iommu_ops amd_iommu_ops;
61 static const struct iommu_dirty_ops amd_dirty_ops;
62
63 int amd_iommu_max_glx_val = -1;
64
65 /*
66 * general struct to manage commands send to an IOMMU
67 */
68 struct iommu_cmd {
69 u32 data[4];
70 };
71
72 /*
73 * AMD IOMMU allows up to 2^16 different protection domains. This is a bitmap
74 * to know which ones are already in use.
75 */
76 DEFINE_IDA(pdom_ids);
77
78 static int amd_iommu_attach_device(struct iommu_domain *dom,
79 struct device *dev);
80
81 static void set_dte_entry(struct amd_iommu *iommu,
82 struct iommu_dev_data *dev_data);
83
84 static void iommu_flush_dte_sync(struct amd_iommu *iommu, u16 devid);
85
86 static struct iommu_dev_data *find_dev_data(struct amd_iommu *iommu, u16 devid);
87
88 /****************************************************************************
89 *
90 * Helper functions
91 *
92 ****************************************************************************/
93
amd_iommu_atomic128_set(__int128 * ptr,__int128 val)94 static __always_inline void amd_iommu_atomic128_set(__int128 *ptr, __int128 val)
95 {
96 /*
97 * Note:
98 * We use arch_cmpxchg128_local() because:
99 * - Need cmpxchg16b instruction mainly for 128-bit store to DTE
100 * (not necessary for cmpxchg since this function is already
101 * protected by a spin_lock for this DTE).
102 * - Neither need LOCK_PREFIX nor try loop because of the spin_lock.
103 */
104 arch_cmpxchg128_local(ptr, *ptr, val);
105 }
106
write_dte_upper128(struct dev_table_entry * ptr,struct dev_table_entry * new)107 static void write_dte_upper128(struct dev_table_entry *ptr, struct dev_table_entry *new)
108 {
109 struct dev_table_entry old;
110
111 old.data128[1] = ptr->data128[1];
112 /*
113 * Preserve DTE_DATA2_INTR_MASK. This needs to be
114 * done here since it requires to be inside
115 * spin_lock(&dev_data->dte_lock) context.
116 */
117 new->data[2] &= ~DTE_DATA2_INTR_MASK;
118 new->data[2] |= old.data[2] & DTE_DATA2_INTR_MASK;
119
120 amd_iommu_atomic128_set(&ptr->data128[1], new->data128[1]);
121 }
122
write_dte_lower128(struct dev_table_entry * ptr,struct dev_table_entry * new)123 static void write_dte_lower128(struct dev_table_entry *ptr, struct dev_table_entry *new)
124 {
125 amd_iommu_atomic128_set(&ptr->data128[0], new->data128[0]);
126 }
127
128 /*
129 * Note:
130 * IOMMU reads the entire Device Table entry in a single 256-bit transaction
131 * but the driver is programming DTE using 2 128-bit cmpxchg. So, the driver
132 * need to ensure the following:
133 * - DTE[V|GV] bit is being written last when setting.
134 * - DTE[V|GV] bit is being written first when clearing.
135 *
136 * This function is used only by code, which updates DMA translation part of the DTE.
137 * So, only consider control bits related to DMA when updating the entry.
138 */
update_dte256(struct amd_iommu * iommu,struct iommu_dev_data * dev_data,struct dev_table_entry * new)139 static void update_dte256(struct amd_iommu *iommu, struct iommu_dev_data *dev_data,
140 struct dev_table_entry *new)
141 {
142 unsigned long flags;
143 struct dev_table_entry *dev_table = get_dev_table(iommu);
144 struct dev_table_entry *ptr = &dev_table[dev_data->devid];
145
146 spin_lock_irqsave(&dev_data->dte_lock, flags);
147
148 if (!(ptr->data[0] & DTE_FLAG_V)) {
149 /* Existing DTE is not valid. */
150 write_dte_upper128(ptr, new);
151 write_dte_lower128(ptr, new);
152 iommu_flush_dte_sync(iommu, dev_data->devid);
153 } else if (!(new->data[0] & DTE_FLAG_V)) {
154 /* Existing DTE is valid. New DTE is not valid. */
155 write_dte_lower128(ptr, new);
156 write_dte_upper128(ptr, new);
157 iommu_flush_dte_sync(iommu, dev_data->devid);
158 } else if (!FIELD_GET(DTE_FLAG_GV, ptr->data[0])) {
159 /*
160 * Both DTEs are valid.
161 * Existing DTE has no guest page table.
162 */
163 write_dte_upper128(ptr, new);
164 write_dte_lower128(ptr, new);
165 iommu_flush_dte_sync(iommu, dev_data->devid);
166 } else if (!FIELD_GET(DTE_FLAG_GV, new->data[0])) {
167 /*
168 * Both DTEs are valid.
169 * Existing DTE has guest page table,
170 * new DTE has no guest page table,
171 */
172 write_dte_lower128(ptr, new);
173 write_dte_upper128(ptr, new);
174 iommu_flush_dte_sync(iommu, dev_data->devid);
175 } else if (FIELD_GET(DTE_GPT_LEVEL_MASK, ptr->data[2]) !=
176 FIELD_GET(DTE_GPT_LEVEL_MASK, new->data[2])) {
177 /*
178 * Both DTEs are valid and have guest page table,
179 * but have different number of levels. So, we need
180 * to upadte both upper and lower 128-bit value, which
181 * require disabling and flushing.
182 */
183 struct dev_table_entry clear = {};
184
185 /* First disable DTE */
186 write_dte_lower128(ptr, &clear);
187 iommu_flush_dte_sync(iommu, dev_data->devid);
188
189 /* Then update DTE */
190 write_dte_upper128(ptr, new);
191 write_dte_lower128(ptr, new);
192 iommu_flush_dte_sync(iommu, dev_data->devid);
193 } else {
194 /*
195 * Both DTEs are valid and have guest page table,
196 * and same number of levels. We just need to only
197 * update the lower 128-bit. So no need to disable DTE.
198 */
199 write_dte_lower128(ptr, new);
200 }
201
202 spin_unlock_irqrestore(&dev_data->dte_lock, flags);
203 }
204
get_dte256(struct amd_iommu * iommu,struct iommu_dev_data * dev_data,struct dev_table_entry * dte)205 static void get_dte256(struct amd_iommu *iommu, struct iommu_dev_data *dev_data,
206 struct dev_table_entry *dte)
207 {
208 unsigned long flags;
209 struct dev_table_entry *ptr;
210 struct dev_table_entry *dev_table = get_dev_table(iommu);
211
212 ptr = &dev_table[dev_data->devid];
213
214 spin_lock_irqsave(&dev_data->dte_lock, flags);
215 dte->data128[0] = ptr->data128[0];
216 dte->data128[1] = ptr->data128[1];
217 spin_unlock_irqrestore(&dev_data->dte_lock, flags);
218 }
219
pdom_is_v2_pgtbl_mode(struct protection_domain * pdom)220 static inline bool pdom_is_v2_pgtbl_mode(struct protection_domain *pdom)
221 {
222 return (pdom && (pdom->pd_mode == PD_MODE_V2));
223 }
224
pdom_is_in_pt_mode(struct protection_domain * pdom)225 static inline bool pdom_is_in_pt_mode(struct protection_domain *pdom)
226 {
227 return (pdom->domain.type == IOMMU_DOMAIN_IDENTITY);
228 }
229
230 /*
231 * We cannot support PASID w/ existing v1 page table in the same domain
232 * since it will be nested. However, existing domain w/ v2 page table
233 * or passthrough mode can be used for PASID.
234 */
pdom_is_sva_capable(struct protection_domain * pdom)235 static inline bool pdom_is_sva_capable(struct protection_domain *pdom)
236 {
237 return pdom_is_v2_pgtbl_mode(pdom) || pdom_is_in_pt_mode(pdom);
238 }
239
get_acpihid_device_id(struct device * dev,struct acpihid_map_entry ** entry)240 static inline int get_acpihid_device_id(struct device *dev,
241 struct acpihid_map_entry **entry)
242 {
243 struct acpi_device *adev = ACPI_COMPANION(dev);
244 struct acpihid_map_entry *p, *p1 = NULL;
245 int hid_count = 0;
246 bool fw_bug;
247
248 if (!adev)
249 return -ENODEV;
250
251 list_for_each_entry(p, &acpihid_map, list) {
252 if (acpi_dev_hid_uid_match(adev, p->hid,
253 p->uid[0] ? p->uid : NULL)) {
254 p1 = p;
255 fw_bug = false;
256 hid_count = 1;
257 break;
258 }
259
260 /*
261 * Count HID matches w/o UID, raise FW_BUG but allow exactly one match
262 */
263 if (acpi_dev_hid_match(adev, p->hid)) {
264 p1 = p;
265 hid_count++;
266 fw_bug = true;
267 }
268 }
269
270 if (!p1)
271 return -EINVAL;
272 if (fw_bug)
273 dev_err_once(dev, FW_BUG "No ACPI device matched UID, but %d device%s matched HID.\n",
274 hid_count, hid_count > 1 ? "s" : "");
275 if (hid_count > 1)
276 return -EINVAL;
277 if (entry)
278 *entry = p1;
279
280 return p1->devid;
281 }
282
get_device_sbdf_id(struct device * dev)283 static inline int get_device_sbdf_id(struct device *dev)
284 {
285 int sbdf;
286
287 if (dev_is_pci(dev))
288 sbdf = get_pci_sbdf_id(to_pci_dev(dev));
289 else
290 sbdf = get_acpihid_device_id(dev, NULL);
291
292 return sbdf;
293 }
294
get_dev_table(struct amd_iommu * iommu)295 struct dev_table_entry *get_dev_table(struct amd_iommu *iommu)
296 {
297 struct dev_table_entry *dev_table;
298 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
299
300 BUG_ON(pci_seg == NULL);
301 dev_table = pci_seg->dev_table;
302 BUG_ON(dev_table == NULL);
303
304 return dev_table;
305 }
306
get_device_segment(struct device * dev)307 static inline u16 get_device_segment(struct device *dev)
308 {
309 u16 seg;
310
311 if (dev_is_pci(dev)) {
312 struct pci_dev *pdev = to_pci_dev(dev);
313
314 seg = pci_domain_nr(pdev->bus);
315 } else {
316 u32 devid = get_acpihid_device_id(dev, NULL);
317
318 seg = PCI_SBDF_TO_SEGID(devid);
319 }
320
321 return seg;
322 }
323
324 /* Writes the specific IOMMU for a device into the PCI segment rlookup table */
amd_iommu_set_rlookup_table(struct amd_iommu * iommu,u16 devid)325 void amd_iommu_set_rlookup_table(struct amd_iommu *iommu, u16 devid)
326 {
327 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
328
329 pci_seg->rlookup_table[devid] = iommu;
330 }
331
__rlookup_amd_iommu(u16 seg,u16 devid)332 static struct amd_iommu *__rlookup_amd_iommu(u16 seg, u16 devid)
333 {
334 struct amd_iommu_pci_seg *pci_seg;
335
336 for_each_pci_segment(pci_seg) {
337 if (pci_seg->id == seg)
338 return pci_seg->rlookup_table[devid];
339 }
340 return NULL;
341 }
342
rlookup_amd_iommu(struct device * dev)343 static struct amd_iommu *rlookup_amd_iommu(struct device *dev)
344 {
345 u16 seg = get_device_segment(dev);
346 int devid = get_device_sbdf_id(dev);
347
348 if (devid < 0)
349 return NULL;
350 return __rlookup_amd_iommu(seg, PCI_SBDF_TO_DEVID(devid));
351 }
352
alloc_dev_data(struct amd_iommu * iommu,u16 devid)353 static struct iommu_dev_data *alloc_dev_data(struct amd_iommu *iommu, u16 devid)
354 {
355 struct iommu_dev_data *dev_data;
356 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
357
358 dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
359 if (!dev_data)
360 return NULL;
361
362 mutex_init(&dev_data->mutex);
363 spin_lock_init(&dev_data->dte_lock);
364 dev_data->devid = devid;
365 ratelimit_default_init(&dev_data->rs);
366
367 llist_add(&dev_data->dev_data_list, &pci_seg->dev_data_list);
368 return dev_data;
369 }
370
search_dev_data(struct amd_iommu * iommu,u16 devid)371 struct iommu_dev_data *search_dev_data(struct amd_iommu *iommu, u16 devid)
372 {
373 struct iommu_dev_data *dev_data;
374 struct llist_node *node;
375 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
376
377 if (llist_empty(&pci_seg->dev_data_list))
378 return NULL;
379
380 node = pci_seg->dev_data_list.first;
381 llist_for_each_entry(dev_data, node, dev_data_list) {
382 if (dev_data->devid == devid)
383 return dev_data;
384 }
385
386 return NULL;
387 }
388
clone_alias(struct pci_dev * pdev,u16 alias,void * data)389 static int clone_alias(struct pci_dev *pdev, u16 alias, void *data)
390 {
391 struct dev_table_entry new;
392 struct amd_iommu *iommu;
393 struct iommu_dev_data *dev_data, *alias_data;
394 u16 devid = pci_dev_id(pdev);
395 int ret = 0;
396
397 if (devid == alias)
398 return 0;
399
400 iommu = rlookup_amd_iommu(&pdev->dev);
401 if (!iommu)
402 return 0;
403
404 /* Copy the data from pdev */
405 dev_data = dev_iommu_priv_get(&pdev->dev);
406 if (!dev_data) {
407 pr_err("%s : Failed to get dev_data for 0x%x\n", __func__, devid);
408 ret = -EINVAL;
409 goto out;
410 }
411 get_dte256(iommu, dev_data, &new);
412
413 /* Setup alias */
414 alias_data = find_dev_data(iommu, alias);
415 if (!alias_data) {
416 pr_err("%s : Failed to get alias dev_data for 0x%x\n", __func__, alias);
417 ret = -EINVAL;
418 goto out;
419 }
420 update_dte256(iommu, alias_data, &new);
421
422 amd_iommu_set_rlookup_table(iommu, alias);
423 out:
424 return ret;
425 }
426
clone_aliases(struct amd_iommu * iommu,struct device * dev)427 static void clone_aliases(struct amd_iommu *iommu, struct device *dev)
428 {
429 struct pci_dev *pdev;
430
431 if (!dev_is_pci(dev))
432 return;
433 pdev = to_pci_dev(dev);
434
435 /*
436 * The IVRS alias stored in the alias table may not be
437 * part of the PCI DMA aliases if it's bus differs
438 * from the original device.
439 */
440 clone_alias(pdev, iommu->pci_seg->alias_table[pci_dev_id(pdev)], NULL);
441
442 pci_for_each_dma_alias(pdev, clone_alias, NULL);
443 }
444
setup_aliases(struct amd_iommu * iommu,struct device * dev)445 static void setup_aliases(struct amd_iommu *iommu, struct device *dev)
446 {
447 struct pci_dev *pdev = to_pci_dev(dev);
448 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
449 u16 ivrs_alias;
450
451 /* For ACPI HID devices, there are no aliases */
452 if (!dev_is_pci(dev))
453 return;
454
455 /*
456 * Add the IVRS alias to the pci aliases if it is on the same
457 * bus. The IVRS table may know about a quirk that we don't.
458 */
459 ivrs_alias = pci_seg->alias_table[pci_dev_id(pdev)];
460 if (ivrs_alias != pci_dev_id(pdev) &&
461 PCI_BUS_NUM(ivrs_alias) == pdev->bus->number)
462 pci_add_dma_alias(pdev, ivrs_alias & 0xff, 1);
463
464 clone_aliases(iommu, dev);
465 }
466
find_dev_data(struct amd_iommu * iommu,u16 devid)467 static struct iommu_dev_data *find_dev_data(struct amd_iommu *iommu, u16 devid)
468 {
469 struct iommu_dev_data *dev_data;
470
471 dev_data = search_dev_data(iommu, devid);
472
473 if (dev_data == NULL) {
474 dev_data = alloc_dev_data(iommu, devid);
475 if (!dev_data)
476 return NULL;
477
478 if (translation_pre_enabled(iommu))
479 dev_data->defer_attach = true;
480 }
481
482 return dev_data;
483 }
484
485 /*
486 * Find or create an IOMMU group for a acpihid device.
487 */
acpihid_device_group(struct device * dev)488 static struct iommu_group *acpihid_device_group(struct device *dev)
489 {
490 struct acpihid_map_entry *p, *entry = NULL;
491 int devid;
492
493 devid = get_acpihid_device_id(dev, &entry);
494 if (devid < 0)
495 return ERR_PTR(devid);
496
497 list_for_each_entry(p, &acpihid_map, list) {
498 if ((devid == p->devid) && p->group)
499 entry->group = p->group;
500 }
501
502 if (!entry->group)
503 entry->group = generic_device_group(dev);
504 else
505 iommu_group_ref_get(entry->group);
506
507 return entry->group;
508 }
509
pdev_pasid_supported(struct iommu_dev_data * dev_data)510 static inline bool pdev_pasid_supported(struct iommu_dev_data *dev_data)
511 {
512 return (dev_data->flags & AMD_IOMMU_DEVICE_FLAG_PASID_SUP);
513 }
514
pdev_get_caps(struct pci_dev * pdev)515 static u32 pdev_get_caps(struct pci_dev *pdev)
516 {
517 int features;
518 u32 flags = 0;
519
520 if (pci_ats_supported(pdev))
521 flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;
522
523 if (pci_pri_supported(pdev))
524 flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;
525
526 features = pci_pasid_features(pdev);
527 if (features >= 0) {
528 flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
529
530 if (features & PCI_PASID_CAP_EXEC)
531 flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
532
533 if (features & PCI_PASID_CAP_PRIV)
534 flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
535 }
536
537 return flags;
538 }
539
pdev_enable_cap_ats(struct pci_dev * pdev)540 static inline int pdev_enable_cap_ats(struct pci_dev *pdev)
541 {
542 struct iommu_dev_data *dev_data = dev_iommu_priv_get(&pdev->dev);
543 int ret = -EINVAL;
544
545 if (dev_data->ats_enabled)
546 return 0;
547
548 if (amd_iommu_iotlb_sup &&
549 (dev_data->flags & AMD_IOMMU_DEVICE_FLAG_ATS_SUP)) {
550 ret = pci_enable_ats(pdev, PAGE_SHIFT);
551 if (!ret) {
552 dev_data->ats_enabled = 1;
553 dev_data->ats_qdep = pci_ats_queue_depth(pdev);
554 }
555 }
556
557 return ret;
558 }
559
pdev_disable_cap_ats(struct pci_dev * pdev)560 static inline void pdev_disable_cap_ats(struct pci_dev *pdev)
561 {
562 struct iommu_dev_data *dev_data = dev_iommu_priv_get(&pdev->dev);
563
564 if (dev_data->ats_enabled) {
565 pci_disable_ats(pdev);
566 dev_data->ats_enabled = 0;
567 }
568 }
569
pdev_enable_cap_pri(struct pci_dev * pdev)570 static inline int pdev_enable_cap_pri(struct pci_dev *pdev)
571 {
572 struct iommu_dev_data *dev_data = dev_iommu_priv_get(&pdev->dev);
573 int ret = -EINVAL;
574
575 if (dev_data->pri_enabled)
576 return 0;
577
578 if (!dev_data->ats_enabled)
579 return 0;
580
581 if (dev_data->flags & AMD_IOMMU_DEVICE_FLAG_PRI_SUP) {
582 /*
583 * First reset the PRI state of the device.
584 * FIXME: Hardcode number of outstanding requests for now
585 */
586 if (!pci_reset_pri(pdev) && !pci_enable_pri(pdev, 32)) {
587 dev_data->pri_enabled = 1;
588 dev_data->pri_tlp = pci_prg_resp_pasid_required(pdev);
589
590 ret = 0;
591 }
592 }
593
594 return ret;
595 }
596
pdev_disable_cap_pri(struct pci_dev * pdev)597 static inline void pdev_disable_cap_pri(struct pci_dev *pdev)
598 {
599 struct iommu_dev_data *dev_data = dev_iommu_priv_get(&pdev->dev);
600
601 if (dev_data->pri_enabled) {
602 pci_disable_pri(pdev);
603 dev_data->pri_enabled = 0;
604 }
605 }
606
pdev_enable_cap_pasid(struct pci_dev * pdev)607 static inline int pdev_enable_cap_pasid(struct pci_dev *pdev)
608 {
609 struct iommu_dev_data *dev_data = dev_iommu_priv_get(&pdev->dev);
610 int ret = -EINVAL;
611
612 if (dev_data->pasid_enabled)
613 return 0;
614
615 if (dev_data->flags & AMD_IOMMU_DEVICE_FLAG_PASID_SUP) {
616 /* Only allow access to user-accessible pages */
617 ret = pci_enable_pasid(pdev, 0);
618 if (!ret)
619 dev_data->pasid_enabled = 1;
620 }
621
622 return ret;
623 }
624
pdev_disable_cap_pasid(struct pci_dev * pdev)625 static inline void pdev_disable_cap_pasid(struct pci_dev *pdev)
626 {
627 struct iommu_dev_data *dev_data = dev_iommu_priv_get(&pdev->dev);
628
629 if (dev_data->pasid_enabled) {
630 pci_disable_pasid(pdev);
631 dev_data->pasid_enabled = 0;
632 }
633 }
634
pdev_enable_caps(struct pci_dev * pdev)635 static void pdev_enable_caps(struct pci_dev *pdev)
636 {
637 pdev_enable_cap_ats(pdev);
638 pdev_enable_cap_pasid(pdev);
639 pdev_enable_cap_pri(pdev);
640 }
641
pdev_disable_caps(struct pci_dev * pdev)642 static void pdev_disable_caps(struct pci_dev *pdev)
643 {
644 pdev_disable_cap_ats(pdev);
645 pdev_disable_cap_pasid(pdev);
646 pdev_disable_cap_pri(pdev);
647 }
648
649 /*
650 * This function checks if the driver got a valid device from the caller to
651 * avoid dereferencing invalid pointers.
652 */
check_device(struct device * dev)653 static bool check_device(struct device *dev)
654 {
655 struct amd_iommu_pci_seg *pci_seg;
656 struct amd_iommu *iommu;
657 int devid, sbdf;
658
659 if (!dev)
660 return false;
661
662 sbdf = get_device_sbdf_id(dev);
663 if (sbdf < 0)
664 return false;
665 devid = PCI_SBDF_TO_DEVID(sbdf);
666
667 iommu = rlookup_amd_iommu(dev);
668 if (!iommu)
669 return false;
670
671 /* Out of our scope? */
672 pci_seg = iommu->pci_seg;
673 if (devid > pci_seg->last_bdf)
674 return false;
675
676 return true;
677 }
678
iommu_init_device(struct amd_iommu * iommu,struct device * dev)679 static int iommu_init_device(struct amd_iommu *iommu, struct device *dev)
680 {
681 struct iommu_dev_data *dev_data;
682 int devid, sbdf;
683
684 if (dev_iommu_priv_get(dev))
685 return 0;
686
687 sbdf = get_device_sbdf_id(dev);
688 if (sbdf < 0)
689 return sbdf;
690
691 devid = PCI_SBDF_TO_DEVID(sbdf);
692 dev_data = find_dev_data(iommu, devid);
693 if (!dev_data)
694 return -ENOMEM;
695
696 dev_data->dev = dev;
697
698 /*
699 * The dev_iommu_priv_set() needes to be called before setup_aliases.
700 * Otherwise, subsequent call to dev_iommu_priv_get() will fail.
701 */
702 dev_iommu_priv_set(dev, dev_data);
703 setup_aliases(iommu, dev);
704
705 /*
706 * By default we use passthrough mode for IOMMUv2 capable device.
707 * But if amd_iommu=force_isolation is set (e.g. to debug DMA to
708 * invalid address), we ignore the capability for the device so
709 * it'll be forced to go into translation mode.
710 */
711 if ((iommu_default_passthrough() || !amd_iommu_force_isolation) &&
712 dev_is_pci(dev) && amd_iommu_gt_ppr_supported()) {
713 dev_data->flags = pdev_get_caps(to_pci_dev(dev));
714 }
715
716 return 0;
717 }
718
iommu_ignore_device(struct amd_iommu * iommu,struct device * dev)719 static void iommu_ignore_device(struct amd_iommu *iommu, struct device *dev)
720 {
721 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
722 struct dev_table_entry *dev_table = get_dev_table(iommu);
723 int devid, sbdf;
724
725 sbdf = get_device_sbdf_id(dev);
726 if (sbdf < 0)
727 return;
728
729 devid = PCI_SBDF_TO_DEVID(sbdf);
730 pci_seg->rlookup_table[devid] = NULL;
731 memset(&dev_table[devid], 0, sizeof(struct dev_table_entry));
732
733 setup_aliases(iommu, dev);
734 }
735
736
737 /****************************************************************************
738 *
739 * Interrupt handling functions
740 *
741 ****************************************************************************/
742
dump_dte_entry(struct amd_iommu * iommu,u16 devid)743 static void dump_dte_entry(struct amd_iommu *iommu, u16 devid)
744 {
745 int i;
746 struct dev_table_entry dte;
747 struct iommu_dev_data *dev_data = find_dev_data(iommu, devid);
748
749 get_dte256(iommu, dev_data, &dte);
750
751 for (i = 0; i < 4; ++i)
752 pr_err("DTE[%d]: %016llx\n", i, dte.data[i]);
753 }
754
dump_command(unsigned long phys_addr)755 static void dump_command(unsigned long phys_addr)
756 {
757 struct iommu_cmd *cmd = iommu_phys_to_virt(phys_addr);
758 int i;
759
760 for (i = 0; i < 4; ++i)
761 pr_err("CMD[%d]: %08x\n", i, cmd->data[i]);
762 }
763
amd_iommu_report_rmp_hw_error(struct amd_iommu * iommu,volatile u32 * event)764 static void amd_iommu_report_rmp_hw_error(struct amd_iommu *iommu, volatile u32 *event)
765 {
766 struct iommu_dev_data *dev_data = NULL;
767 int devid, vmg_tag, flags;
768 struct pci_dev *pdev;
769 u64 spa;
770
771 devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
772 vmg_tag = (event[1]) & 0xFFFF;
773 flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
774 spa = ((u64)event[3] << 32) | (event[2] & 0xFFFFFFF8);
775
776 pdev = pci_get_domain_bus_and_slot(iommu->pci_seg->id, PCI_BUS_NUM(devid),
777 devid & 0xff);
778 if (pdev)
779 dev_data = dev_iommu_priv_get(&pdev->dev);
780
781 if (dev_data) {
782 if (__ratelimit(&dev_data->rs)) {
783 pci_err(pdev, "Event logged [RMP_HW_ERROR vmg_tag=0x%04x, spa=0x%llx, flags=0x%04x]\n",
784 vmg_tag, spa, flags);
785 }
786 } else {
787 pr_err_ratelimited("Event logged [RMP_HW_ERROR device=%04x:%02x:%02x.%x, vmg_tag=0x%04x, spa=0x%llx, flags=0x%04x]\n",
788 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
789 vmg_tag, spa, flags);
790 }
791
792 if (pdev)
793 pci_dev_put(pdev);
794 }
795
amd_iommu_report_rmp_fault(struct amd_iommu * iommu,volatile u32 * event)796 static void amd_iommu_report_rmp_fault(struct amd_iommu *iommu, volatile u32 *event)
797 {
798 struct iommu_dev_data *dev_data = NULL;
799 int devid, flags_rmp, vmg_tag, flags;
800 struct pci_dev *pdev;
801 u64 gpa;
802
803 devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
804 flags_rmp = (event[0] >> EVENT_FLAGS_SHIFT) & 0xFF;
805 vmg_tag = (event[1]) & 0xFFFF;
806 flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
807 gpa = ((u64)event[3] << 32) | event[2];
808
809 pdev = pci_get_domain_bus_and_slot(iommu->pci_seg->id, PCI_BUS_NUM(devid),
810 devid & 0xff);
811 if (pdev)
812 dev_data = dev_iommu_priv_get(&pdev->dev);
813
814 if (dev_data) {
815 if (__ratelimit(&dev_data->rs)) {
816 pci_err(pdev, "Event logged [RMP_PAGE_FAULT vmg_tag=0x%04x, gpa=0x%llx, flags_rmp=0x%04x, flags=0x%04x]\n",
817 vmg_tag, gpa, flags_rmp, flags);
818 }
819 } else {
820 pr_err_ratelimited("Event logged [RMP_PAGE_FAULT device=%04x:%02x:%02x.%x, vmg_tag=0x%04x, gpa=0x%llx, flags_rmp=0x%04x, flags=0x%04x]\n",
821 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
822 vmg_tag, gpa, flags_rmp, flags);
823 }
824
825 if (pdev)
826 pci_dev_put(pdev);
827 }
828
829 #define IS_IOMMU_MEM_TRANSACTION(flags) \
830 (((flags) & EVENT_FLAG_I) == 0)
831
832 #define IS_WRITE_REQUEST(flags) \
833 ((flags) & EVENT_FLAG_RW)
834
amd_iommu_report_page_fault(struct amd_iommu * iommu,u16 devid,u16 domain_id,u64 address,int flags)835 static void amd_iommu_report_page_fault(struct amd_iommu *iommu,
836 u16 devid, u16 domain_id,
837 u64 address, int flags)
838 {
839 struct iommu_dev_data *dev_data = NULL;
840 struct pci_dev *pdev;
841
842 pdev = pci_get_domain_bus_and_slot(iommu->pci_seg->id, PCI_BUS_NUM(devid),
843 devid & 0xff);
844 if (pdev)
845 dev_data = dev_iommu_priv_get(&pdev->dev);
846
847 if (dev_data) {
848 /*
849 * If this is a DMA fault (for which the I(nterrupt)
850 * bit will be unset), allow report_iommu_fault() to
851 * prevent logging it.
852 */
853 if (IS_IOMMU_MEM_TRANSACTION(flags)) {
854 /* Device not attached to domain properly */
855 if (dev_data->domain == NULL) {
856 pr_err_ratelimited("Event logged [Device not attached to domain properly]\n");
857 pr_err_ratelimited(" device=%04x:%02x:%02x.%x domain=0x%04x\n",
858 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid),
859 PCI_FUNC(devid), domain_id);
860 goto out;
861 }
862
863 if (!report_iommu_fault(&dev_data->domain->domain,
864 &pdev->dev, address,
865 IS_WRITE_REQUEST(flags) ?
866 IOMMU_FAULT_WRITE :
867 IOMMU_FAULT_READ))
868 goto out;
869 }
870
871 if (__ratelimit(&dev_data->rs)) {
872 pci_err(pdev, "Event logged [IO_PAGE_FAULT domain=0x%04x address=0x%llx flags=0x%04x]\n",
873 domain_id, address, flags);
874 }
875 } else {
876 pr_err_ratelimited("Event logged [IO_PAGE_FAULT device=%04x:%02x:%02x.%x domain=0x%04x address=0x%llx flags=0x%04x]\n",
877 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
878 domain_id, address, flags);
879 }
880
881 out:
882 if (pdev)
883 pci_dev_put(pdev);
884 }
885
iommu_print_event(struct amd_iommu * iommu,void * __evt)886 static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
887 {
888 struct device *dev = iommu->iommu.dev;
889 int type, devid, flags, tag;
890 volatile u32 *event = __evt;
891 int count = 0;
892 u64 address, ctrl;
893 u32 pasid;
894
895 retry:
896 type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
897 devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
898 pasid = (event[0] & EVENT_DOMID_MASK_HI) |
899 (event[1] & EVENT_DOMID_MASK_LO);
900 flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
901 address = (u64)(((u64)event[3]) << 32) | event[2];
902 ctrl = readq(iommu->mmio_base + MMIO_CONTROL_OFFSET);
903
904 if (type == 0) {
905 /* Did we hit the erratum? */
906 if (++count == LOOP_TIMEOUT) {
907 pr_err("No event written to event log\n");
908 return;
909 }
910 udelay(1);
911 goto retry;
912 }
913
914 if (type == EVENT_TYPE_IO_FAULT) {
915 amd_iommu_report_page_fault(iommu, devid, pasid, address, flags);
916 return;
917 }
918
919 switch (type) {
920 case EVENT_TYPE_ILL_DEV:
921 dev_err(dev, "Event logged [ILLEGAL_DEV_TABLE_ENTRY device=%04x:%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x]\n",
922 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
923 pasid, address, flags);
924 dev_err(dev, "Control Reg : 0x%llx\n", ctrl);
925 dump_dte_entry(iommu, devid);
926 break;
927 case EVENT_TYPE_DEV_TAB_ERR:
928 dev_err(dev, "Event logged [DEV_TAB_HARDWARE_ERROR device=%04x:%02x:%02x.%x "
929 "address=0x%llx flags=0x%04x]\n",
930 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
931 address, flags);
932 break;
933 case EVENT_TYPE_PAGE_TAB_ERR:
934 dev_err(dev, "Event logged [PAGE_TAB_HARDWARE_ERROR device=%04x:%02x:%02x.%x pasid=0x%04x address=0x%llx flags=0x%04x]\n",
935 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
936 pasid, address, flags);
937 break;
938 case EVENT_TYPE_ILL_CMD:
939 dev_err(dev, "Event logged [ILLEGAL_COMMAND_ERROR address=0x%llx]\n", address);
940 dump_command(address);
941 break;
942 case EVENT_TYPE_CMD_HARD_ERR:
943 dev_err(dev, "Event logged [COMMAND_HARDWARE_ERROR address=0x%llx flags=0x%04x]\n",
944 address, flags);
945 break;
946 case EVENT_TYPE_IOTLB_INV_TO:
947 dev_err(dev, "Event logged [IOTLB_INV_TIMEOUT device=%04x:%02x:%02x.%x address=0x%llx]\n",
948 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
949 address);
950 break;
951 case EVENT_TYPE_INV_DEV_REQ:
952 dev_err(dev, "Event logged [INVALID_DEVICE_REQUEST device=%04x:%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x]\n",
953 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
954 pasid, address, flags);
955 break;
956 case EVENT_TYPE_RMP_FAULT:
957 amd_iommu_report_rmp_fault(iommu, event);
958 break;
959 case EVENT_TYPE_RMP_HW_ERR:
960 amd_iommu_report_rmp_hw_error(iommu, event);
961 break;
962 case EVENT_TYPE_INV_PPR_REQ:
963 pasid = PPR_PASID(*((u64 *)__evt));
964 tag = event[1] & 0x03FF;
965 dev_err(dev, "Event logged [INVALID_PPR_REQUEST device=%04x:%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x tag=0x%03x]\n",
966 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
967 pasid, address, flags, tag);
968 break;
969 default:
970 dev_err(dev, "Event logged [UNKNOWN event[0]=0x%08x event[1]=0x%08x event[2]=0x%08x event[3]=0x%08x\n",
971 event[0], event[1], event[2], event[3]);
972 }
973
974 /*
975 * To detect the hardware errata 732 we need to clear the
976 * entry back to zero. This issue does not exist on SNP
977 * enabled system. Also this buffer is not writeable on
978 * SNP enabled system.
979 */
980 if (!amd_iommu_snp_en)
981 memset(__evt, 0, 4 * sizeof(u32));
982 }
983
iommu_poll_events(struct amd_iommu * iommu)984 static void iommu_poll_events(struct amd_iommu *iommu)
985 {
986 u32 head, tail;
987
988 head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
989 tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
990
991 while (head != tail) {
992 iommu_print_event(iommu, iommu->evt_buf + head);
993
994 /* Update head pointer of hardware ring-buffer */
995 head = (head + EVENT_ENTRY_SIZE) % EVT_BUFFER_SIZE;
996 writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
997 }
998
999 }
1000
1001 #ifdef CONFIG_IRQ_REMAP
1002 static int (*iommu_ga_log_notifier)(u32);
1003
amd_iommu_register_ga_log_notifier(int (* notifier)(u32))1004 int amd_iommu_register_ga_log_notifier(int (*notifier)(u32))
1005 {
1006 iommu_ga_log_notifier = notifier;
1007
1008 /*
1009 * Ensure all in-flight IRQ handlers run to completion before returning
1010 * to the caller, e.g. to ensure module code isn't unloaded while it's
1011 * being executed in the IRQ handler.
1012 */
1013 if (!notifier)
1014 synchronize_rcu();
1015
1016 return 0;
1017 }
1018 EXPORT_SYMBOL(amd_iommu_register_ga_log_notifier);
1019
iommu_poll_ga_log(struct amd_iommu * iommu)1020 static void iommu_poll_ga_log(struct amd_iommu *iommu)
1021 {
1022 u32 head, tail;
1023
1024 if (iommu->ga_log == NULL)
1025 return;
1026
1027 head = readl(iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
1028 tail = readl(iommu->mmio_base + MMIO_GA_TAIL_OFFSET);
1029
1030 while (head != tail) {
1031 volatile u64 *raw;
1032 u64 log_entry;
1033
1034 raw = (u64 *)(iommu->ga_log + head);
1035
1036 /* Avoid memcpy function-call overhead */
1037 log_entry = *raw;
1038
1039 /* Update head pointer of hardware ring-buffer */
1040 head = (head + GA_ENTRY_SIZE) % GA_LOG_SIZE;
1041 writel(head, iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
1042
1043 /* Handle GA entry */
1044 switch (GA_REQ_TYPE(log_entry)) {
1045 case GA_GUEST_NR:
1046 if (!iommu_ga_log_notifier)
1047 break;
1048
1049 pr_debug("%s: devid=%#x, ga_tag=%#x\n",
1050 __func__, GA_DEVID(log_entry),
1051 GA_TAG(log_entry));
1052
1053 if (iommu_ga_log_notifier(GA_TAG(log_entry)) != 0)
1054 pr_err("GA log notifier failed.\n");
1055 break;
1056 default:
1057 break;
1058 }
1059 }
1060 }
1061
1062 static void
amd_iommu_set_pci_msi_domain(struct device * dev,struct amd_iommu * iommu)1063 amd_iommu_set_pci_msi_domain(struct device *dev, struct amd_iommu *iommu)
1064 {
1065 if (!irq_remapping_enabled || !dev_is_pci(dev) ||
1066 !pci_dev_has_default_msi_parent_domain(to_pci_dev(dev)))
1067 return;
1068
1069 dev_set_msi_domain(dev, iommu->ir_domain);
1070 }
1071
1072 #else /* CONFIG_IRQ_REMAP */
1073 static inline void
amd_iommu_set_pci_msi_domain(struct device * dev,struct amd_iommu * iommu)1074 amd_iommu_set_pci_msi_domain(struct device *dev, struct amd_iommu *iommu) { }
1075 #endif /* !CONFIG_IRQ_REMAP */
1076
amd_iommu_handle_irq(void * data,const char * evt_type,u32 int_mask,u32 overflow_mask,void (* int_handler)(struct amd_iommu *),void (* overflow_handler)(struct amd_iommu *))1077 static void amd_iommu_handle_irq(void *data, const char *evt_type,
1078 u32 int_mask, u32 overflow_mask,
1079 void (*int_handler)(struct amd_iommu *),
1080 void (*overflow_handler)(struct amd_iommu *))
1081 {
1082 struct amd_iommu *iommu = (struct amd_iommu *) data;
1083 u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
1084 u32 mask = int_mask | overflow_mask;
1085
1086 while (status & mask) {
1087 /* Enable interrupt sources again */
1088 writel(mask, iommu->mmio_base + MMIO_STATUS_OFFSET);
1089
1090 if (int_handler) {
1091 pr_devel("Processing IOMMU (ivhd%d) %s Log\n",
1092 iommu->index, evt_type);
1093 int_handler(iommu);
1094 }
1095
1096 if ((status & overflow_mask) && overflow_handler)
1097 overflow_handler(iommu);
1098
1099 /*
1100 * Hardware bug: ERBT1312
1101 * When re-enabling interrupt (by writing 1
1102 * to clear the bit), the hardware might also try to set
1103 * the interrupt bit in the event status register.
1104 * In this scenario, the bit will be set, and disable
1105 * subsequent interrupts.
1106 *
1107 * Workaround: The IOMMU driver should read back the
1108 * status register and check if the interrupt bits are cleared.
1109 * If not, driver will need to go through the interrupt handler
1110 * again and re-clear the bits
1111 */
1112 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
1113 }
1114 }
1115
amd_iommu_int_thread_evtlog(int irq,void * data)1116 irqreturn_t amd_iommu_int_thread_evtlog(int irq, void *data)
1117 {
1118 amd_iommu_handle_irq(data, "Evt", MMIO_STATUS_EVT_INT_MASK,
1119 MMIO_STATUS_EVT_OVERFLOW_MASK,
1120 iommu_poll_events, amd_iommu_restart_event_logging);
1121
1122 return IRQ_HANDLED;
1123 }
1124
amd_iommu_int_thread_pprlog(int irq,void * data)1125 irqreturn_t amd_iommu_int_thread_pprlog(int irq, void *data)
1126 {
1127 amd_iommu_handle_irq(data, "PPR", MMIO_STATUS_PPR_INT_MASK,
1128 MMIO_STATUS_PPR_OVERFLOW_MASK,
1129 amd_iommu_poll_ppr_log, amd_iommu_restart_ppr_log);
1130
1131 return IRQ_HANDLED;
1132 }
1133
amd_iommu_int_thread_galog(int irq,void * data)1134 irqreturn_t amd_iommu_int_thread_galog(int irq, void *data)
1135 {
1136 #ifdef CONFIG_IRQ_REMAP
1137 amd_iommu_handle_irq(data, "GA", MMIO_STATUS_GALOG_INT_MASK,
1138 MMIO_STATUS_GALOG_OVERFLOW_MASK,
1139 iommu_poll_ga_log, amd_iommu_restart_ga_log);
1140 #endif
1141
1142 return IRQ_HANDLED;
1143 }
1144
amd_iommu_int_thread(int irq,void * data)1145 irqreturn_t amd_iommu_int_thread(int irq, void *data)
1146 {
1147 amd_iommu_int_thread_evtlog(irq, data);
1148 amd_iommu_int_thread_pprlog(irq, data);
1149 amd_iommu_int_thread_galog(irq, data);
1150
1151 return IRQ_HANDLED;
1152 }
1153
amd_iommu_int_handler(int irq,void * data)1154 irqreturn_t amd_iommu_int_handler(int irq, void *data)
1155 {
1156 return IRQ_WAKE_THREAD;
1157 }
1158
1159 /****************************************************************************
1160 *
1161 * IOMMU command queuing functions
1162 *
1163 ****************************************************************************/
1164
wait_on_sem(struct amd_iommu * iommu,u64 data)1165 static int wait_on_sem(struct amd_iommu *iommu, u64 data)
1166 {
1167 int i = 0;
1168
1169 while (*iommu->cmd_sem != data && i < LOOP_TIMEOUT) {
1170 udelay(1);
1171 i += 1;
1172 }
1173
1174 if (i == LOOP_TIMEOUT) {
1175 pr_alert("Completion-Wait loop timed out\n");
1176 return -EIO;
1177 }
1178
1179 return 0;
1180 }
1181
copy_cmd_to_buffer(struct amd_iommu * iommu,struct iommu_cmd * cmd)1182 static void copy_cmd_to_buffer(struct amd_iommu *iommu,
1183 struct iommu_cmd *cmd)
1184 {
1185 u8 *target;
1186 u32 tail;
1187
1188 /* Copy command to buffer */
1189 tail = iommu->cmd_buf_tail;
1190 target = iommu->cmd_buf + tail;
1191 memcpy(target, cmd, sizeof(*cmd));
1192
1193 tail = (tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
1194 iommu->cmd_buf_tail = tail;
1195
1196 /* Tell the IOMMU about it */
1197 writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
1198 }
1199
build_completion_wait(struct iommu_cmd * cmd,struct amd_iommu * iommu,u64 data)1200 static void build_completion_wait(struct iommu_cmd *cmd,
1201 struct amd_iommu *iommu,
1202 u64 data)
1203 {
1204 u64 paddr = iommu_virt_to_phys((void *)iommu->cmd_sem);
1205
1206 memset(cmd, 0, sizeof(*cmd));
1207 cmd->data[0] = lower_32_bits(paddr) | CMD_COMPL_WAIT_STORE_MASK;
1208 cmd->data[1] = upper_32_bits(paddr);
1209 cmd->data[2] = lower_32_bits(data);
1210 cmd->data[3] = upper_32_bits(data);
1211 CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
1212 }
1213
build_inv_dte(struct iommu_cmd * cmd,u16 devid)1214 static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
1215 {
1216 memset(cmd, 0, sizeof(*cmd));
1217 cmd->data[0] = devid;
1218 CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
1219 }
1220
1221 /*
1222 * Builds an invalidation address which is suitable for one page or multiple
1223 * pages. Sets the size bit (S) as needed is more than one page is flushed.
1224 */
build_inv_address(u64 address,size_t size)1225 static inline u64 build_inv_address(u64 address, size_t size)
1226 {
1227 u64 pages, end, msb_diff;
1228
1229 pages = iommu_num_pages(address, size, PAGE_SIZE);
1230
1231 if (pages == 1)
1232 return address & PAGE_MASK;
1233
1234 end = address + size - 1;
1235
1236 /*
1237 * msb_diff would hold the index of the most significant bit that
1238 * flipped between the start and end.
1239 */
1240 msb_diff = fls64(end ^ address) - 1;
1241
1242 /*
1243 * Bits 63:52 are sign extended. If for some reason bit 51 is different
1244 * between the start and the end, invalidate everything.
1245 */
1246 if (unlikely(msb_diff > 51)) {
1247 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
1248 } else {
1249 /*
1250 * The msb-bit must be clear on the address. Just set all the
1251 * lower bits.
1252 */
1253 address |= (1ull << msb_diff) - 1;
1254 }
1255
1256 /* Clear bits 11:0 */
1257 address &= PAGE_MASK;
1258
1259 /* Set the size bit - we flush more than one 4kb page */
1260 return address | CMD_INV_IOMMU_PAGES_SIZE_MASK;
1261 }
1262
build_inv_iommu_pages(struct iommu_cmd * cmd,u64 address,size_t size,u16 domid,ioasid_t pasid,bool gn)1263 static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
1264 size_t size, u16 domid,
1265 ioasid_t pasid, bool gn)
1266 {
1267 u64 inv_address = build_inv_address(address, size);
1268
1269 memset(cmd, 0, sizeof(*cmd));
1270
1271 cmd->data[1] |= domid;
1272 cmd->data[2] = lower_32_bits(inv_address);
1273 cmd->data[3] = upper_32_bits(inv_address);
1274 /* PDE bit - we want to flush everything, not only the PTEs */
1275 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
1276 if (gn) {
1277 cmd->data[0] |= pasid;
1278 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
1279 }
1280 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
1281 }
1282
build_inv_iotlb_pages(struct iommu_cmd * cmd,u16 devid,int qdep,u64 address,size_t size,ioasid_t pasid,bool gn)1283 static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
1284 u64 address, size_t size,
1285 ioasid_t pasid, bool gn)
1286 {
1287 u64 inv_address = build_inv_address(address, size);
1288
1289 memset(cmd, 0, sizeof(*cmd));
1290
1291 cmd->data[0] = devid;
1292 cmd->data[0] |= (qdep & 0xff) << 24;
1293 cmd->data[1] = devid;
1294 cmd->data[2] = lower_32_bits(inv_address);
1295 cmd->data[3] = upper_32_bits(inv_address);
1296 if (gn) {
1297 cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
1298 cmd->data[1] |= (pasid & 0xff) << 16;
1299 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
1300 }
1301
1302 CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
1303 }
1304
build_complete_ppr(struct iommu_cmd * cmd,u16 devid,u32 pasid,int status,int tag,u8 gn)1305 static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, u32 pasid,
1306 int status, int tag, u8 gn)
1307 {
1308 memset(cmd, 0, sizeof(*cmd));
1309
1310 cmd->data[0] = devid;
1311 if (gn) {
1312 cmd->data[1] = pasid;
1313 cmd->data[2] = CMD_INV_IOMMU_PAGES_GN_MASK;
1314 }
1315 cmd->data[3] = tag & 0x1ff;
1316 cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;
1317
1318 CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
1319 }
1320
build_inv_all(struct iommu_cmd * cmd)1321 static void build_inv_all(struct iommu_cmd *cmd)
1322 {
1323 memset(cmd, 0, sizeof(*cmd));
1324 CMD_SET_TYPE(cmd, CMD_INV_ALL);
1325 }
1326
build_inv_irt(struct iommu_cmd * cmd,u16 devid)1327 static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
1328 {
1329 memset(cmd, 0, sizeof(*cmd));
1330 cmd->data[0] = devid;
1331 CMD_SET_TYPE(cmd, CMD_INV_IRT);
1332 }
1333
1334 /*
1335 * Writes the command to the IOMMUs command buffer and informs the
1336 * hardware about the new command.
1337 */
__iommu_queue_command_sync(struct amd_iommu * iommu,struct iommu_cmd * cmd,bool sync)1338 static int __iommu_queue_command_sync(struct amd_iommu *iommu,
1339 struct iommu_cmd *cmd,
1340 bool sync)
1341 {
1342 unsigned int count = 0;
1343 u32 left, next_tail;
1344
1345 next_tail = (iommu->cmd_buf_tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
1346 again:
1347 left = (iommu->cmd_buf_head - next_tail) % CMD_BUFFER_SIZE;
1348
1349 if (left <= 0x20) {
1350 /* Skip udelay() the first time around */
1351 if (count++) {
1352 if (count == LOOP_TIMEOUT) {
1353 pr_err("Command buffer timeout\n");
1354 return -EIO;
1355 }
1356
1357 udelay(1);
1358 }
1359
1360 /* Update head and recheck remaining space */
1361 iommu->cmd_buf_head = readl(iommu->mmio_base +
1362 MMIO_CMD_HEAD_OFFSET);
1363
1364 goto again;
1365 }
1366
1367 copy_cmd_to_buffer(iommu, cmd);
1368
1369 /* Do we need to make sure all commands are processed? */
1370 iommu->need_sync = sync;
1371
1372 return 0;
1373 }
1374
iommu_queue_command_sync(struct amd_iommu * iommu,struct iommu_cmd * cmd,bool sync)1375 static int iommu_queue_command_sync(struct amd_iommu *iommu,
1376 struct iommu_cmd *cmd,
1377 bool sync)
1378 {
1379 unsigned long flags;
1380 int ret;
1381
1382 raw_spin_lock_irqsave(&iommu->lock, flags);
1383 ret = __iommu_queue_command_sync(iommu, cmd, sync);
1384 raw_spin_unlock_irqrestore(&iommu->lock, flags);
1385
1386 return ret;
1387 }
1388
iommu_queue_command(struct amd_iommu * iommu,struct iommu_cmd * cmd)1389 static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
1390 {
1391 return iommu_queue_command_sync(iommu, cmd, true);
1392 }
1393
1394 /*
1395 * This function queues a completion wait command into the command
1396 * buffer of an IOMMU
1397 */
iommu_completion_wait(struct amd_iommu * iommu)1398 static int iommu_completion_wait(struct amd_iommu *iommu)
1399 {
1400 struct iommu_cmd cmd;
1401 unsigned long flags;
1402 int ret;
1403 u64 data;
1404
1405 if (!iommu->need_sync)
1406 return 0;
1407
1408 data = atomic64_inc_return(&iommu->cmd_sem_val);
1409 build_completion_wait(&cmd, iommu, data);
1410
1411 raw_spin_lock_irqsave(&iommu->lock, flags);
1412
1413 ret = __iommu_queue_command_sync(iommu, &cmd, false);
1414 if (ret)
1415 goto out_unlock;
1416
1417 ret = wait_on_sem(iommu, data);
1418
1419 out_unlock:
1420 raw_spin_unlock_irqrestore(&iommu->lock, flags);
1421
1422 return ret;
1423 }
1424
domain_flush_complete(struct protection_domain * domain)1425 static void domain_flush_complete(struct protection_domain *domain)
1426 {
1427 struct pdom_iommu_info *pdom_iommu_info;
1428 unsigned long i;
1429
1430 lockdep_assert_held(&domain->lock);
1431
1432 /*
1433 * Devices of this domain are behind this IOMMU
1434 * We need to wait for completion of all commands.
1435 */
1436 xa_for_each(&domain->iommu_array, i, pdom_iommu_info)
1437 iommu_completion_wait(pdom_iommu_info->iommu);
1438 }
1439
iommu_flush_dte(struct amd_iommu * iommu,u16 devid)1440 static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
1441 {
1442 struct iommu_cmd cmd;
1443
1444 build_inv_dte(&cmd, devid);
1445
1446 return iommu_queue_command(iommu, &cmd);
1447 }
1448
iommu_flush_dte_sync(struct amd_iommu * iommu,u16 devid)1449 static void iommu_flush_dte_sync(struct amd_iommu *iommu, u16 devid)
1450 {
1451 int ret;
1452
1453 ret = iommu_flush_dte(iommu, devid);
1454 if (!ret)
1455 iommu_completion_wait(iommu);
1456 }
1457
amd_iommu_flush_dte_all(struct amd_iommu * iommu)1458 static void amd_iommu_flush_dte_all(struct amd_iommu *iommu)
1459 {
1460 u32 devid;
1461 u16 last_bdf = iommu->pci_seg->last_bdf;
1462
1463 for (devid = 0; devid <= last_bdf; ++devid)
1464 iommu_flush_dte(iommu, devid);
1465
1466 iommu_completion_wait(iommu);
1467 }
1468
1469 /*
1470 * This function uses heavy locking and may disable irqs for some time. But
1471 * this is no issue because it is only called during resume.
1472 */
amd_iommu_flush_tlb_all(struct amd_iommu * iommu)1473 static void amd_iommu_flush_tlb_all(struct amd_iommu *iommu)
1474 {
1475 u32 dom_id;
1476 u16 last_bdf = iommu->pci_seg->last_bdf;
1477
1478 for (dom_id = 0; dom_id <= last_bdf; ++dom_id) {
1479 struct iommu_cmd cmd;
1480 build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
1481 dom_id, IOMMU_NO_PASID, false);
1482 iommu_queue_command(iommu, &cmd);
1483 }
1484
1485 iommu_completion_wait(iommu);
1486 }
1487
amd_iommu_flush_tlb_domid(struct amd_iommu * iommu,u32 dom_id)1488 static void amd_iommu_flush_tlb_domid(struct amd_iommu *iommu, u32 dom_id)
1489 {
1490 struct iommu_cmd cmd;
1491
1492 build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
1493 dom_id, IOMMU_NO_PASID, false);
1494 iommu_queue_command(iommu, &cmd);
1495
1496 iommu_completion_wait(iommu);
1497 }
1498
amd_iommu_flush_all(struct amd_iommu * iommu)1499 static void amd_iommu_flush_all(struct amd_iommu *iommu)
1500 {
1501 struct iommu_cmd cmd;
1502
1503 build_inv_all(&cmd);
1504
1505 iommu_queue_command(iommu, &cmd);
1506 iommu_completion_wait(iommu);
1507 }
1508
iommu_flush_irt(struct amd_iommu * iommu,u16 devid)1509 static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
1510 {
1511 struct iommu_cmd cmd;
1512
1513 build_inv_irt(&cmd, devid);
1514
1515 iommu_queue_command(iommu, &cmd);
1516 }
1517
amd_iommu_flush_irt_all(struct amd_iommu * iommu)1518 static void amd_iommu_flush_irt_all(struct amd_iommu *iommu)
1519 {
1520 u32 devid;
1521 u16 last_bdf = iommu->pci_seg->last_bdf;
1522
1523 if (iommu->irtcachedis_enabled)
1524 return;
1525
1526 for (devid = 0; devid <= last_bdf; devid++)
1527 iommu_flush_irt(iommu, devid);
1528
1529 iommu_completion_wait(iommu);
1530 }
1531
amd_iommu_flush_all_caches(struct amd_iommu * iommu)1532 void amd_iommu_flush_all_caches(struct amd_iommu *iommu)
1533 {
1534 if (check_feature(FEATURE_IA)) {
1535 amd_iommu_flush_all(iommu);
1536 } else {
1537 amd_iommu_flush_dte_all(iommu);
1538 amd_iommu_flush_irt_all(iommu);
1539 amd_iommu_flush_tlb_all(iommu);
1540 }
1541 }
1542
1543 /*
1544 * Command send function for flushing on-device TLB
1545 */
device_flush_iotlb(struct iommu_dev_data * dev_data,u64 address,size_t size,ioasid_t pasid,bool gn)1546 static int device_flush_iotlb(struct iommu_dev_data *dev_data, u64 address,
1547 size_t size, ioasid_t pasid, bool gn)
1548 {
1549 struct amd_iommu *iommu = get_amd_iommu_from_dev_data(dev_data);
1550 struct iommu_cmd cmd;
1551 int qdep = dev_data->ats_qdep;
1552
1553 build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address,
1554 size, pasid, gn);
1555
1556 return iommu_queue_command(iommu, &cmd);
1557 }
1558
device_flush_dte_alias(struct pci_dev * pdev,u16 alias,void * data)1559 static int device_flush_dte_alias(struct pci_dev *pdev, u16 alias, void *data)
1560 {
1561 struct amd_iommu *iommu = data;
1562
1563 return iommu_flush_dte(iommu, alias);
1564 }
1565
1566 /*
1567 * Command send function for invalidating a device table entry
1568 */
device_flush_dte(struct iommu_dev_data * dev_data)1569 static int device_flush_dte(struct iommu_dev_data *dev_data)
1570 {
1571 struct amd_iommu *iommu = get_amd_iommu_from_dev_data(dev_data);
1572 struct pci_dev *pdev = NULL;
1573 struct amd_iommu_pci_seg *pci_seg;
1574 u16 alias;
1575 int ret;
1576
1577 if (dev_is_pci(dev_data->dev))
1578 pdev = to_pci_dev(dev_data->dev);
1579
1580 if (pdev)
1581 ret = pci_for_each_dma_alias(pdev,
1582 device_flush_dte_alias, iommu);
1583 else
1584 ret = iommu_flush_dte(iommu, dev_data->devid);
1585 if (ret)
1586 return ret;
1587
1588 pci_seg = iommu->pci_seg;
1589 alias = pci_seg->alias_table[dev_data->devid];
1590 if (alias != dev_data->devid) {
1591 ret = iommu_flush_dte(iommu, alias);
1592 if (ret)
1593 return ret;
1594 }
1595
1596 if (dev_data->ats_enabled) {
1597 /* Invalidate the entire contents of an IOTLB */
1598 ret = device_flush_iotlb(dev_data, 0, ~0UL,
1599 IOMMU_NO_PASID, false);
1600 }
1601
1602 return ret;
1603 }
1604
domain_flush_pages_v2(struct protection_domain * pdom,u64 address,size_t size)1605 static int domain_flush_pages_v2(struct protection_domain *pdom,
1606 u64 address, size_t size)
1607 {
1608 struct iommu_dev_data *dev_data;
1609 struct iommu_cmd cmd;
1610 int ret = 0;
1611
1612 lockdep_assert_held(&pdom->lock);
1613 list_for_each_entry(dev_data, &pdom->dev_list, list) {
1614 struct amd_iommu *iommu = get_amd_iommu_from_dev(dev_data->dev);
1615 u16 domid = dev_data->gcr3_info.domid;
1616
1617 build_inv_iommu_pages(&cmd, address, size,
1618 domid, IOMMU_NO_PASID, true);
1619
1620 ret |= iommu_queue_command(iommu, &cmd);
1621 }
1622
1623 return ret;
1624 }
1625
domain_flush_pages_v1(struct protection_domain * pdom,u64 address,size_t size)1626 static int domain_flush_pages_v1(struct protection_domain *pdom,
1627 u64 address, size_t size)
1628 {
1629 struct pdom_iommu_info *pdom_iommu_info;
1630 struct iommu_cmd cmd;
1631 int ret = 0;
1632 unsigned long i;
1633
1634 lockdep_assert_held(&pdom->lock);
1635
1636 build_inv_iommu_pages(&cmd, address, size,
1637 pdom->id, IOMMU_NO_PASID, false);
1638
1639 xa_for_each(&pdom->iommu_array, i, pdom_iommu_info) {
1640 /*
1641 * Devices of this domain are behind this IOMMU
1642 * We need a TLB flush
1643 */
1644 ret |= iommu_queue_command(pdom_iommu_info->iommu, &cmd);
1645 }
1646
1647 return ret;
1648 }
1649
1650 /*
1651 * TLB invalidation function which is called from the mapping functions.
1652 * It flushes range of PTEs of the domain.
1653 */
__domain_flush_pages(struct protection_domain * domain,u64 address,size_t size)1654 static void __domain_flush_pages(struct protection_domain *domain,
1655 u64 address, size_t size)
1656 {
1657 struct iommu_dev_data *dev_data;
1658 int ret = 0;
1659 ioasid_t pasid = IOMMU_NO_PASID;
1660 bool gn = false;
1661
1662 lockdep_assert_held(&domain->lock);
1663
1664 if (pdom_is_v2_pgtbl_mode(domain)) {
1665 gn = true;
1666 ret = domain_flush_pages_v2(domain, address, size);
1667 } else {
1668 ret = domain_flush_pages_v1(domain, address, size);
1669 }
1670
1671 list_for_each_entry(dev_data, &domain->dev_list, list) {
1672
1673 if (!dev_data->ats_enabled)
1674 continue;
1675
1676 ret |= device_flush_iotlb(dev_data, address, size, pasid, gn);
1677 }
1678
1679 WARN_ON(ret);
1680 }
1681
amd_iommu_domain_flush_pages(struct protection_domain * domain,u64 address,size_t size)1682 void amd_iommu_domain_flush_pages(struct protection_domain *domain,
1683 u64 address, size_t size)
1684 {
1685 lockdep_assert_held(&domain->lock);
1686
1687 if (likely(!amd_iommu_np_cache)) {
1688 __domain_flush_pages(domain, address, size);
1689
1690 /* Wait until IOMMU TLB and all device IOTLB flushes are complete */
1691 domain_flush_complete(domain);
1692
1693 return;
1694 }
1695
1696 /*
1697 * When NpCache is on, we infer that we run in a VM and use a vIOMMU.
1698 * In such setups it is best to avoid flushes of ranges which are not
1699 * naturally aligned, since it would lead to flushes of unmodified
1700 * PTEs. Such flushes would require the hypervisor to do more work than
1701 * necessary. Therefore, perform repeated flushes of aligned ranges
1702 * until you cover the range. Each iteration flushes the smaller
1703 * between the natural alignment of the address that we flush and the
1704 * greatest naturally aligned region that fits in the range.
1705 */
1706 while (size != 0) {
1707 int addr_alignment = __ffs(address);
1708 int size_alignment = __fls(size);
1709 int min_alignment;
1710 size_t flush_size;
1711
1712 /*
1713 * size is always non-zero, but address might be zero, causing
1714 * addr_alignment to be negative. As the casting of the
1715 * argument in __ffs(address) to long might trim the high bits
1716 * of the address on x86-32, cast to long when doing the check.
1717 */
1718 if (likely((unsigned long)address != 0))
1719 min_alignment = min(addr_alignment, size_alignment);
1720 else
1721 min_alignment = size_alignment;
1722
1723 flush_size = 1ul << min_alignment;
1724
1725 __domain_flush_pages(domain, address, flush_size);
1726 address += flush_size;
1727 size -= flush_size;
1728 }
1729
1730 /* Wait until IOMMU TLB and all device IOTLB flushes are complete */
1731 domain_flush_complete(domain);
1732 }
1733
1734 /* Flush the whole IO/TLB for a given protection domain - including PDE */
amd_iommu_domain_flush_all(struct protection_domain * domain)1735 static void amd_iommu_domain_flush_all(struct protection_domain *domain)
1736 {
1737 amd_iommu_domain_flush_pages(domain, 0,
1738 CMD_INV_IOMMU_ALL_PAGES_ADDRESS);
1739 }
1740
amd_iommu_dev_flush_pasid_pages(struct iommu_dev_data * dev_data,ioasid_t pasid,u64 address,size_t size)1741 void amd_iommu_dev_flush_pasid_pages(struct iommu_dev_data *dev_data,
1742 ioasid_t pasid, u64 address, size_t size)
1743 {
1744 struct iommu_cmd cmd;
1745 struct amd_iommu *iommu = get_amd_iommu_from_dev(dev_data->dev);
1746
1747 build_inv_iommu_pages(&cmd, address, size,
1748 dev_data->gcr3_info.domid, pasid, true);
1749 iommu_queue_command(iommu, &cmd);
1750
1751 if (dev_data->ats_enabled)
1752 device_flush_iotlb(dev_data, address, size, pasid, true);
1753
1754 iommu_completion_wait(iommu);
1755 }
1756
dev_flush_pasid_all(struct iommu_dev_data * dev_data,ioasid_t pasid)1757 static void dev_flush_pasid_all(struct iommu_dev_data *dev_data,
1758 ioasid_t pasid)
1759 {
1760 amd_iommu_dev_flush_pasid_pages(dev_data, pasid, 0,
1761 CMD_INV_IOMMU_ALL_PAGES_ADDRESS);
1762 }
1763
1764 /* Flush the not present cache if it exists */
domain_flush_np_cache(struct protection_domain * domain,dma_addr_t iova,size_t size)1765 static void domain_flush_np_cache(struct protection_domain *domain,
1766 dma_addr_t iova, size_t size)
1767 {
1768 if (unlikely(amd_iommu_np_cache)) {
1769 unsigned long flags;
1770
1771 spin_lock_irqsave(&domain->lock, flags);
1772 amd_iommu_domain_flush_pages(domain, iova, size);
1773 spin_unlock_irqrestore(&domain->lock, flags);
1774 }
1775 }
1776
1777
1778 /*
1779 * This function flushes the DTEs for all devices in domain
1780 */
amd_iommu_update_and_flush_device_table(struct protection_domain * domain)1781 void amd_iommu_update_and_flush_device_table(struct protection_domain *domain)
1782 {
1783 struct iommu_dev_data *dev_data;
1784
1785 lockdep_assert_held(&domain->lock);
1786
1787 list_for_each_entry(dev_data, &domain->dev_list, list) {
1788 struct amd_iommu *iommu = rlookup_amd_iommu(dev_data->dev);
1789
1790 set_dte_entry(iommu, dev_data);
1791 clone_aliases(iommu, dev_data->dev);
1792 }
1793
1794 list_for_each_entry(dev_data, &domain->dev_list, list)
1795 device_flush_dte(dev_data);
1796
1797 domain_flush_complete(domain);
1798 }
1799
amd_iommu_complete_ppr(struct device * dev,u32 pasid,int status,int tag)1800 int amd_iommu_complete_ppr(struct device *dev, u32 pasid, int status, int tag)
1801 {
1802 struct iommu_dev_data *dev_data;
1803 struct amd_iommu *iommu;
1804 struct iommu_cmd cmd;
1805
1806 dev_data = dev_iommu_priv_get(dev);
1807 iommu = get_amd_iommu_from_dev(dev);
1808
1809 build_complete_ppr(&cmd, dev_data->devid, pasid, status,
1810 tag, dev_data->pri_tlp);
1811
1812 return iommu_queue_command(iommu, &cmd);
1813 }
1814
1815 /****************************************************************************
1816 *
1817 * The next functions belong to the domain allocation. A domain is
1818 * allocated for every IOMMU as the default domain. If device isolation
1819 * is enabled, every device get its own domain. The most important thing
1820 * about domains is the page table mapping the DMA address space they
1821 * contain.
1822 *
1823 ****************************************************************************/
1824
pdom_id_alloc(void)1825 static int pdom_id_alloc(void)
1826 {
1827 return ida_alloc_range(&pdom_ids, 1, MAX_DOMAIN_ID - 1, GFP_ATOMIC);
1828 }
1829
pdom_id_free(int id)1830 static void pdom_id_free(int id)
1831 {
1832 ida_free(&pdom_ids, id);
1833 }
1834
free_gcr3_tbl_level1(u64 * tbl)1835 static void free_gcr3_tbl_level1(u64 *tbl)
1836 {
1837 u64 *ptr;
1838 int i;
1839
1840 for (i = 0; i < 512; ++i) {
1841 if (!(tbl[i] & GCR3_VALID))
1842 continue;
1843
1844 ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
1845
1846 iommu_free_pages(ptr);
1847 }
1848 }
1849
free_gcr3_tbl_level2(u64 * tbl)1850 static void free_gcr3_tbl_level2(u64 *tbl)
1851 {
1852 u64 *ptr;
1853 int i;
1854
1855 for (i = 0; i < 512; ++i) {
1856 if (!(tbl[i] & GCR3_VALID))
1857 continue;
1858
1859 ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
1860
1861 free_gcr3_tbl_level1(ptr);
1862 }
1863 }
1864
free_gcr3_table(struct gcr3_tbl_info * gcr3_info)1865 static void free_gcr3_table(struct gcr3_tbl_info *gcr3_info)
1866 {
1867 if (gcr3_info->glx == 2)
1868 free_gcr3_tbl_level2(gcr3_info->gcr3_tbl);
1869 else if (gcr3_info->glx == 1)
1870 free_gcr3_tbl_level1(gcr3_info->gcr3_tbl);
1871 else
1872 WARN_ON_ONCE(gcr3_info->glx != 0);
1873
1874 gcr3_info->glx = 0;
1875
1876 /* Free per device domain ID */
1877 pdom_id_free(gcr3_info->domid);
1878
1879 iommu_free_pages(gcr3_info->gcr3_tbl);
1880 gcr3_info->gcr3_tbl = NULL;
1881 }
1882
1883 /*
1884 * Number of GCR3 table levels required. Level must be 4-Kbyte
1885 * page and can contain up to 512 entries.
1886 */
get_gcr3_levels(int pasids)1887 static int get_gcr3_levels(int pasids)
1888 {
1889 int levels;
1890
1891 if (pasids == -1)
1892 return amd_iommu_max_glx_val;
1893
1894 levels = get_count_order(pasids);
1895
1896 return levels ? (DIV_ROUND_UP(levels, 9) - 1) : levels;
1897 }
1898
setup_gcr3_table(struct gcr3_tbl_info * gcr3_info,struct amd_iommu * iommu,int pasids)1899 static int setup_gcr3_table(struct gcr3_tbl_info *gcr3_info,
1900 struct amd_iommu *iommu, int pasids)
1901 {
1902 int levels = get_gcr3_levels(pasids);
1903 int nid = iommu ? dev_to_node(&iommu->dev->dev) : NUMA_NO_NODE;
1904 int domid;
1905
1906 if (levels > amd_iommu_max_glx_val)
1907 return -EINVAL;
1908
1909 if (gcr3_info->gcr3_tbl)
1910 return -EBUSY;
1911
1912 /* Allocate per device domain ID */
1913 domid = pdom_id_alloc();
1914 if (domid <= 0)
1915 return -ENOSPC;
1916 gcr3_info->domid = domid;
1917
1918 gcr3_info->gcr3_tbl = iommu_alloc_pages_node_sz(nid, GFP_ATOMIC, SZ_4K);
1919 if (gcr3_info->gcr3_tbl == NULL) {
1920 pdom_id_free(domid);
1921 return -ENOMEM;
1922 }
1923
1924 gcr3_info->glx = levels;
1925
1926 return 0;
1927 }
1928
__get_gcr3_pte(struct gcr3_tbl_info * gcr3_info,ioasid_t pasid,bool alloc)1929 static u64 *__get_gcr3_pte(struct gcr3_tbl_info *gcr3_info,
1930 ioasid_t pasid, bool alloc)
1931 {
1932 int index;
1933 u64 *pte;
1934 u64 *root = gcr3_info->gcr3_tbl;
1935 int level = gcr3_info->glx;
1936
1937 while (true) {
1938
1939 index = (pasid >> (9 * level)) & 0x1ff;
1940 pte = &root[index];
1941
1942 if (level == 0)
1943 break;
1944
1945 if (!(*pte & GCR3_VALID)) {
1946 if (!alloc)
1947 return NULL;
1948
1949 root = (void *)get_zeroed_page(GFP_ATOMIC);
1950 if (root == NULL)
1951 return NULL;
1952
1953 *pte = iommu_virt_to_phys(root) | GCR3_VALID;
1954 }
1955
1956 root = iommu_phys_to_virt(*pte & PAGE_MASK);
1957
1958 level -= 1;
1959 }
1960
1961 return pte;
1962 }
1963
update_gcr3(struct iommu_dev_data * dev_data,ioasid_t pasid,unsigned long gcr3,bool set)1964 static int update_gcr3(struct iommu_dev_data *dev_data,
1965 ioasid_t pasid, unsigned long gcr3, bool set)
1966 {
1967 struct gcr3_tbl_info *gcr3_info = &dev_data->gcr3_info;
1968 u64 *pte;
1969
1970 pte = __get_gcr3_pte(gcr3_info, pasid, true);
1971 if (pte == NULL)
1972 return -ENOMEM;
1973
1974 if (set)
1975 *pte = (gcr3 & PAGE_MASK) | GCR3_VALID;
1976 else
1977 *pte = 0;
1978
1979 dev_flush_pasid_all(dev_data, pasid);
1980 return 0;
1981 }
1982
amd_iommu_set_gcr3(struct iommu_dev_data * dev_data,ioasid_t pasid,unsigned long gcr3)1983 int amd_iommu_set_gcr3(struct iommu_dev_data *dev_data, ioasid_t pasid,
1984 unsigned long gcr3)
1985 {
1986 struct gcr3_tbl_info *gcr3_info = &dev_data->gcr3_info;
1987 int ret;
1988
1989 iommu_group_mutex_assert(dev_data->dev);
1990
1991 ret = update_gcr3(dev_data, pasid, gcr3, true);
1992 if (ret)
1993 return ret;
1994
1995 gcr3_info->pasid_cnt++;
1996 return ret;
1997 }
1998
amd_iommu_clear_gcr3(struct iommu_dev_data * dev_data,ioasid_t pasid)1999 int amd_iommu_clear_gcr3(struct iommu_dev_data *dev_data, ioasid_t pasid)
2000 {
2001 struct gcr3_tbl_info *gcr3_info = &dev_data->gcr3_info;
2002 int ret;
2003
2004 iommu_group_mutex_assert(dev_data->dev);
2005
2006 ret = update_gcr3(dev_data, pasid, 0, false);
2007 if (ret)
2008 return ret;
2009
2010 gcr3_info->pasid_cnt--;
2011 return ret;
2012 }
2013
make_clear_dte(struct iommu_dev_data * dev_data,struct dev_table_entry * ptr,struct dev_table_entry * new)2014 static void make_clear_dte(struct iommu_dev_data *dev_data, struct dev_table_entry *ptr,
2015 struct dev_table_entry *new)
2016 {
2017 /* All existing DTE must have V bit set */
2018 new->data128[0] = DTE_FLAG_V;
2019 new->data128[1] = 0;
2020 }
2021
2022 /*
2023 * Note:
2024 * The old value for GCR3 table and GPT have been cleared from caller.
2025 */
set_dte_gcr3_table(struct amd_iommu * iommu,struct iommu_dev_data * dev_data,struct dev_table_entry * target)2026 static void set_dte_gcr3_table(struct amd_iommu *iommu,
2027 struct iommu_dev_data *dev_data,
2028 struct dev_table_entry *target)
2029 {
2030 struct gcr3_tbl_info *gcr3_info = &dev_data->gcr3_info;
2031 u64 gcr3;
2032
2033 if (!gcr3_info->gcr3_tbl)
2034 return;
2035
2036 pr_debug("%s: devid=%#x, glx=%#x, gcr3_tbl=%#llx\n",
2037 __func__, dev_data->devid, gcr3_info->glx,
2038 (unsigned long long)gcr3_info->gcr3_tbl);
2039
2040 gcr3 = iommu_virt_to_phys(gcr3_info->gcr3_tbl);
2041
2042 target->data[0] |= DTE_FLAG_GV |
2043 FIELD_PREP(DTE_GLX, gcr3_info->glx) |
2044 FIELD_PREP(DTE_GCR3_14_12, gcr3 >> 12);
2045 if (pdom_is_v2_pgtbl_mode(dev_data->domain))
2046 target->data[0] |= DTE_FLAG_GIOV;
2047
2048 target->data[1] |= FIELD_PREP(DTE_GCR3_30_15, gcr3 >> 15) |
2049 FIELD_PREP(DTE_GCR3_51_31, gcr3 >> 31);
2050
2051 /* Guest page table can only support 4 and 5 levels */
2052 if (amd_iommu_gpt_level == PAGE_MODE_5_LEVEL)
2053 target->data[2] |= FIELD_PREP(DTE_GPT_LEVEL_MASK, GUEST_PGTABLE_5_LEVEL);
2054 else
2055 target->data[2] |= FIELD_PREP(DTE_GPT_LEVEL_MASK, GUEST_PGTABLE_4_LEVEL);
2056 }
2057
set_dte_entry(struct amd_iommu * iommu,struct iommu_dev_data * dev_data)2058 static void set_dte_entry(struct amd_iommu *iommu,
2059 struct iommu_dev_data *dev_data)
2060 {
2061 u16 domid;
2062 u32 old_domid;
2063 struct dev_table_entry *initial_dte;
2064 struct dev_table_entry new = {};
2065 struct protection_domain *domain = dev_data->domain;
2066 struct gcr3_tbl_info *gcr3_info = &dev_data->gcr3_info;
2067 struct dev_table_entry *dte = &get_dev_table(iommu)[dev_data->devid];
2068
2069 if (gcr3_info && gcr3_info->gcr3_tbl)
2070 domid = dev_data->gcr3_info.domid;
2071 else
2072 domid = domain->id;
2073
2074 make_clear_dte(dev_data, dte, &new);
2075
2076 if (domain->iop.mode != PAGE_MODE_NONE)
2077 new.data[0] |= iommu_virt_to_phys(domain->iop.root);
2078
2079 new.data[0] |= (domain->iop.mode & DEV_ENTRY_MODE_MASK)
2080 << DEV_ENTRY_MODE_SHIFT;
2081
2082 new.data[0] |= DTE_FLAG_IR | DTE_FLAG_IW;
2083
2084 /*
2085 * When SNP is enabled, we can only support TV=1 with non-zero domain ID.
2086 * This is prevented by the SNP-enable and IOMMU_DOMAIN_IDENTITY check in
2087 * do_iommu_domain_alloc().
2088 */
2089 WARN_ON(amd_iommu_snp_en && (domid == 0));
2090 new.data[0] |= DTE_FLAG_TV;
2091
2092 if (dev_data->ppr)
2093 new.data[0] |= 1ULL << DEV_ENTRY_PPR;
2094
2095 if (domain->dirty_tracking)
2096 new.data[0] |= DTE_FLAG_HAD;
2097
2098 if (dev_data->ats_enabled)
2099 new.data[1] |= DTE_FLAG_IOTLB;
2100
2101 old_domid = READ_ONCE(dte->data[1]) & DEV_DOMID_MASK;
2102 new.data[1] |= domid;
2103
2104 /*
2105 * Restore cached persistent DTE bits, which can be set by information
2106 * in IVRS table. See set_dev_entry_from_acpi().
2107 */
2108 initial_dte = amd_iommu_get_ivhd_dte_flags(iommu->pci_seg->id, dev_data->devid);
2109 if (initial_dte) {
2110 new.data128[0] |= initial_dte->data128[0];
2111 new.data128[1] |= initial_dte->data128[1];
2112 }
2113
2114 set_dte_gcr3_table(iommu, dev_data, &new);
2115
2116 update_dte256(iommu, dev_data, &new);
2117
2118 /*
2119 * A kdump kernel might be replacing a domain ID that was copied from
2120 * the previous kernel--if so, it needs to flush the translation cache
2121 * entries for the old domain ID that is being overwritten
2122 */
2123 if (old_domid) {
2124 amd_iommu_flush_tlb_domid(iommu, old_domid);
2125 }
2126 }
2127
2128 /*
2129 * Clear DMA-remap related flags to block all DMA (blockeded domain)
2130 */
clear_dte_entry(struct amd_iommu * iommu,struct iommu_dev_data * dev_data)2131 static void clear_dte_entry(struct amd_iommu *iommu, struct iommu_dev_data *dev_data)
2132 {
2133 struct dev_table_entry new = {};
2134 struct dev_table_entry *dte = &get_dev_table(iommu)[dev_data->devid];
2135
2136 make_clear_dte(dev_data, dte, &new);
2137 update_dte256(iommu, dev_data, &new);
2138 }
2139
2140 /* Update and flush DTE for the given device */
dev_update_dte(struct iommu_dev_data * dev_data,bool set)2141 static void dev_update_dte(struct iommu_dev_data *dev_data, bool set)
2142 {
2143 struct amd_iommu *iommu = get_amd_iommu_from_dev(dev_data->dev);
2144
2145 if (set)
2146 set_dte_entry(iommu, dev_data);
2147 else
2148 clear_dte_entry(iommu, dev_data);
2149
2150 clone_aliases(iommu, dev_data->dev);
2151 device_flush_dte(dev_data);
2152 iommu_completion_wait(iommu);
2153 }
2154
2155 /*
2156 * If domain is SVA capable then initialize GCR3 table. Also if domain is
2157 * in v2 page table mode then update GCR3[0].
2158 */
init_gcr3_table(struct iommu_dev_data * dev_data,struct protection_domain * pdom)2159 static int init_gcr3_table(struct iommu_dev_data *dev_data,
2160 struct protection_domain *pdom)
2161 {
2162 struct amd_iommu *iommu = get_amd_iommu_from_dev_data(dev_data);
2163 int max_pasids = dev_data->max_pasids;
2164 int ret = 0;
2165
2166 /*
2167 * If domain is in pt mode then setup GCR3 table only if device
2168 * is PASID capable
2169 */
2170 if (pdom_is_in_pt_mode(pdom) && !pdev_pasid_supported(dev_data))
2171 return ret;
2172
2173 /*
2174 * By default, setup GCR3 table to support MAX PASIDs
2175 * supported by the device/IOMMU.
2176 */
2177 ret = setup_gcr3_table(&dev_data->gcr3_info, iommu,
2178 max_pasids > 0 ? max_pasids : 1);
2179 if (ret)
2180 return ret;
2181
2182 /* Setup GCR3[0] only if domain is setup with v2 page table mode */
2183 if (!pdom_is_v2_pgtbl_mode(pdom))
2184 return ret;
2185
2186 ret = update_gcr3(dev_data, 0, iommu_virt_to_phys(pdom->iop.pgd), true);
2187 if (ret)
2188 free_gcr3_table(&dev_data->gcr3_info);
2189
2190 return ret;
2191 }
2192
destroy_gcr3_table(struct iommu_dev_data * dev_data,struct protection_domain * pdom)2193 static void destroy_gcr3_table(struct iommu_dev_data *dev_data,
2194 struct protection_domain *pdom)
2195 {
2196 struct gcr3_tbl_info *gcr3_info = &dev_data->gcr3_info;
2197
2198 if (pdom_is_v2_pgtbl_mode(pdom))
2199 update_gcr3(dev_data, 0, 0, false);
2200
2201 if (gcr3_info->gcr3_tbl == NULL)
2202 return;
2203
2204 free_gcr3_table(gcr3_info);
2205 }
2206
pdom_attach_iommu(struct amd_iommu * iommu,struct protection_domain * pdom)2207 static int pdom_attach_iommu(struct amd_iommu *iommu,
2208 struct protection_domain *pdom)
2209 {
2210 struct pdom_iommu_info *pdom_iommu_info, *curr;
2211 unsigned long flags;
2212 int ret = 0;
2213
2214 spin_lock_irqsave(&pdom->lock, flags);
2215
2216 pdom_iommu_info = xa_load(&pdom->iommu_array, iommu->index);
2217 if (pdom_iommu_info) {
2218 pdom_iommu_info->refcnt++;
2219 goto out_unlock;
2220 }
2221
2222 pdom_iommu_info = kzalloc(sizeof(*pdom_iommu_info), GFP_ATOMIC);
2223 if (!pdom_iommu_info) {
2224 ret = -ENOMEM;
2225 goto out_unlock;
2226 }
2227
2228 pdom_iommu_info->iommu = iommu;
2229 pdom_iommu_info->refcnt = 1;
2230
2231 curr = xa_cmpxchg(&pdom->iommu_array, iommu->index,
2232 NULL, pdom_iommu_info, GFP_ATOMIC);
2233 if (curr) {
2234 kfree(pdom_iommu_info);
2235 ret = -ENOSPC;
2236 goto out_unlock;
2237 }
2238
2239 out_unlock:
2240 spin_unlock_irqrestore(&pdom->lock, flags);
2241 return ret;
2242 }
2243
pdom_detach_iommu(struct amd_iommu * iommu,struct protection_domain * pdom)2244 static void pdom_detach_iommu(struct amd_iommu *iommu,
2245 struct protection_domain *pdom)
2246 {
2247 struct pdom_iommu_info *pdom_iommu_info;
2248 unsigned long flags;
2249
2250 spin_lock_irqsave(&pdom->lock, flags);
2251
2252 pdom_iommu_info = xa_load(&pdom->iommu_array, iommu->index);
2253 if (!pdom_iommu_info) {
2254 spin_unlock_irqrestore(&pdom->lock, flags);
2255 return;
2256 }
2257
2258 pdom_iommu_info->refcnt--;
2259 if (pdom_iommu_info->refcnt == 0) {
2260 xa_erase(&pdom->iommu_array, iommu->index);
2261 kfree(pdom_iommu_info);
2262 }
2263
2264 spin_unlock_irqrestore(&pdom->lock, flags);
2265 }
2266
2267 /*
2268 * If a device is not yet associated with a domain, this function makes the
2269 * device visible in the domain
2270 */
attach_device(struct device * dev,struct protection_domain * domain)2271 static int attach_device(struct device *dev,
2272 struct protection_domain *domain)
2273 {
2274 struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev);
2275 struct amd_iommu *iommu = get_amd_iommu_from_dev_data(dev_data);
2276 struct pci_dev *pdev;
2277 unsigned long flags;
2278 int ret = 0;
2279
2280 mutex_lock(&dev_data->mutex);
2281
2282 if (dev_data->domain != NULL) {
2283 ret = -EBUSY;
2284 goto out;
2285 }
2286
2287 /* Do reference counting */
2288 ret = pdom_attach_iommu(iommu, domain);
2289 if (ret)
2290 goto out;
2291
2292 /* Setup GCR3 table */
2293 if (pdom_is_sva_capable(domain)) {
2294 ret = init_gcr3_table(dev_data, domain);
2295 if (ret) {
2296 pdom_detach_iommu(iommu, domain);
2297 goto out;
2298 }
2299 }
2300
2301 pdev = dev_is_pci(dev_data->dev) ? to_pci_dev(dev_data->dev) : NULL;
2302 if (pdev && pdom_is_sva_capable(domain)) {
2303 pdev_enable_caps(pdev);
2304
2305 /*
2306 * Device can continue to function even if IOPF
2307 * enablement failed. Hence in error path just
2308 * disable device PRI support.
2309 */
2310 if (amd_iommu_iopf_add_device(iommu, dev_data))
2311 pdev_disable_cap_pri(pdev);
2312 } else if (pdev) {
2313 pdev_enable_cap_ats(pdev);
2314 }
2315
2316 /* Update data structures */
2317 dev_data->domain = domain;
2318 spin_lock_irqsave(&domain->lock, flags);
2319 list_add(&dev_data->list, &domain->dev_list);
2320 spin_unlock_irqrestore(&domain->lock, flags);
2321
2322 /* Update device table */
2323 dev_update_dte(dev_data, true);
2324
2325 out:
2326 mutex_unlock(&dev_data->mutex);
2327
2328 return ret;
2329 }
2330
2331 /*
2332 * Removes a device from a protection domain (with devtable_lock held)
2333 */
detach_device(struct device * dev)2334 static void detach_device(struct device *dev)
2335 {
2336 struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev);
2337 struct amd_iommu *iommu = get_amd_iommu_from_dev_data(dev_data);
2338 struct protection_domain *domain = dev_data->domain;
2339 unsigned long flags;
2340
2341 mutex_lock(&dev_data->mutex);
2342
2343 /*
2344 * First check if the device is still attached. It might already
2345 * be detached from its domain because the generic
2346 * iommu_detach_group code detached it and we try again here in
2347 * our alias handling.
2348 */
2349 if (WARN_ON(!dev_data->domain))
2350 goto out;
2351
2352 /* Remove IOPF handler */
2353 if (dev_data->ppr) {
2354 iopf_queue_flush_dev(dev);
2355 amd_iommu_iopf_remove_device(iommu, dev_data);
2356 }
2357
2358 if (dev_is_pci(dev))
2359 pdev_disable_caps(to_pci_dev(dev));
2360
2361 /* Clear DTE and flush the entry */
2362 dev_update_dte(dev_data, false);
2363
2364 /* Flush IOTLB and wait for the flushes to finish */
2365 spin_lock_irqsave(&domain->lock, flags);
2366 amd_iommu_domain_flush_all(domain);
2367 list_del(&dev_data->list);
2368 spin_unlock_irqrestore(&domain->lock, flags);
2369
2370 /* Clear GCR3 table */
2371 if (pdom_is_sva_capable(domain))
2372 destroy_gcr3_table(dev_data, domain);
2373
2374 /* Update data structures */
2375 dev_data->domain = NULL;
2376
2377 /* decrease reference counters - needs to happen after the flushes */
2378 pdom_detach_iommu(iommu, domain);
2379
2380 out:
2381 mutex_unlock(&dev_data->mutex);
2382 }
2383
amd_iommu_probe_device(struct device * dev)2384 static struct iommu_device *amd_iommu_probe_device(struct device *dev)
2385 {
2386 struct iommu_device *iommu_dev;
2387 struct amd_iommu *iommu;
2388 struct iommu_dev_data *dev_data;
2389 int ret;
2390
2391 if (!check_device(dev))
2392 return ERR_PTR(-ENODEV);
2393
2394 iommu = rlookup_amd_iommu(dev);
2395 if (!iommu)
2396 return ERR_PTR(-ENODEV);
2397
2398 /* Not registered yet? */
2399 if (!iommu->iommu.ops)
2400 return ERR_PTR(-ENODEV);
2401
2402 if (dev_iommu_priv_get(dev))
2403 return &iommu->iommu;
2404
2405 ret = iommu_init_device(iommu, dev);
2406 if (ret) {
2407 dev_err(dev, "Failed to initialize - trying to proceed anyway\n");
2408 iommu_dev = ERR_PTR(ret);
2409 iommu_ignore_device(iommu, dev);
2410 goto out_err;
2411 }
2412
2413 amd_iommu_set_pci_msi_domain(dev, iommu);
2414 iommu_dev = &iommu->iommu;
2415
2416 /*
2417 * If IOMMU and device supports PASID then it will contain max
2418 * supported PASIDs, else it will be zero.
2419 */
2420 dev_data = dev_iommu_priv_get(dev);
2421 if (amd_iommu_pasid_supported() && dev_is_pci(dev) &&
2422 pdev_pasid_supported(dev_data)) {
2423 dev_data->max_pasids = min_t(u32, iommu->iommu.max_pasids,
2424 pci_max_pasids(to_pci_dev(dev)));
2425 }
2426
2427 out_err:
2428
2429 iommu_completion_wait(iommu);
2430
2431 if (FEATURE_NUM_INT_REMAP_SUP_2K(amd_iommu_efr2))
2432 dev_data->max_irqs = MAX_IRQS_PER_TABLE_2K;
2433 else
2434 dev_data->max_irqs = MAX_IRQS_PER_TABLE_512;
2435
2436 if (dev_is_pci(dev))
2437 pci_prepare_ats(to_pci_dev(dev), PAGE_SHIFT);
2438
2439 return iommu_dev;
2440 }
2441
amd_iommu_release_device(struct device * dev)2442 static void amd_iommu_release_device(struct device *dev)
2443 {
2444 struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev);
2445
2446 WARN_ON(dev_data->domain);
2447
2448 /*
2449 * We keep dev_data around for unplugged devices and reuse it when the
2450 * device is re-plugged - not doing so would introduce a ton of races.
2451 */
2452 }
2453
amd_iommu_device_group(struct device * dev)2454 static struct iommu_group *amd_iommu_device_group(struct device *dev)
2455 {
2456 if (dev_is_pci(dev))
2457 return pci_device_group(dev);
2458
2459 return acpihid_device_group(dev);
2460 }
2461
2462 /*****************************************************************************
2463 *
2464 * The following functions belong to the exported interface of AMD IOMMU
2465 *
2466 * This interface allows access to lower level functions of the IOMMU
2467 * like protection domain handling and assignement of devices to domains
2468 * which is not possible with the dma_ops interface.
2469 *
2470 *****************************************************************************/
2471
protection_domain_init(struct protection_domain * domain)2472 static void protection_domain_init(struct protection_domain *domain)
2473 {
2474 spin_lock_init(&domain->lock);
2475 INIT_LIST_HEAD(&domain->dev_list);
2476 INIT_LIST_HEAD(&domain->dev_data_list);
2477 xa_init(&domain->iommu_array);
2478 }
2479
protection_domain_alloc(void)2480 struct protection_domain *protection_domain_alloc(void)
2481 {
2482 struct protection_domain *domain;
2483 int domid;
2484
2485 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
2486 if (!domain)
2487 return NULL;
2488
2489 domid = pdom_id_alloc();
2490 if (domid <= 0) {
2491 kfree(domain);
2492 return NULL;
2493 }
2494 domain->id = domid;
2495
2496 protection_domain_init(domain);
2497
2498 return domain;
2499 }
2500
pdom_setup_pgtable(struct protection_domain * domain,struct device * dev)2501 static int pdom_setup_pgtable(struct protection_domain *domain,
2502 struct device *dev)
2503 {
2504 struct io_pgtable_ops *pgtbl_ops;
2505 enum io_pgtable_fmt fmt;
2506
2507 switch (domain->pd_mode) {
2508 case PD_MODE_V1:
2509 fmt = AMD_IOMMU_V1;
2510 break;
2511 case PD_MODE_V2:
2512 fmt = AMD_IOMMU_V2;
2513 break;
2514 }
2515
2516 domain->iop.pgtbl.cfg.amd.nid = dev_to_node(dev);
2517 pgtbl_ops = alloc_io_pgtable_ops(fmt, &domain->iop.pgtbl.cfg, domain);
2518 if (!pgtbl_ops)
2519 return -ENOMEM;
2520
2521 return 0;
2522 }
2523
dma_max_address(enum protection_domain_mode pgtable)2524 static inline u64 dma_max_address(enum protection_domain_mode pgtable)
2525 {
2526 if (pgtable == PD_MODE_V1)
2527 return ~0ULL;
2528
2529 /* V2 with 4/5 level page table */
2530 return ((1ULL << PM_LEVEL_SHIFT(amd_iommu_gpt_level)) - 1);
2531 }
2532
amd_iommu_hd_support(struct amd_iommu * iommu)2533 static bool amd_iommu_hd_support(struct amd_iommu *iommu)
2534 {
2535 return iommu && (iommu->features & FEATURE_HDSUP);
2536 }
2537
2538 static struct iommu_domain *
do_iommu_domain_alloc(struct device * dev,u32 flags,enum protection_domain_mode pgtable)2539 do_iommu_domain_alloc(struct device *dev, u32 flags,
2540 enum protection_domain_mode pgtable)
2541 {
2542 bool dirty_tracking = flags & IOMMU_HWPT_ALLOC_DIRTY_TRACKING;
2543 struct amd_iommu *iommu = get_amd_iommu_from_dev(dev);
2544 struct protection_domain *domain;
2545 int ret;
2546
2547 domain = protection_domain_alloc();
2548 if (!domain)
2549 return ERR_PTR(-ENOMEM);
2550
2551 domain->pd_mode = pgtable;
2552 ret = pdom_setup_pgtable(domain, dev);
2553 if (ret) {
2554 pdom_id_free(domain->id);
2555 kfree(domain);
2556 return ERR_PTR(ret);
2557 }
2558
2559 domain->domain.geometry.aperture_start = 0;
2560 domain->domain.geometry.aperture_end = dma_max_address(pgtable);
2561 domain->domain.geometry.force_aperture = true;
2562 domain->domain.pgsize_bitmap = domain->iop.pgtbl.cfg.pgsize_bitmap;
2563
2564 domain->domain.type = IOMMU_DOMAIN_UNMANAGED;
2565 domain->domain.ops = iommu->iommu.ops->default_domain_ops;
2566
2567 if (dirty_tracking)
2568 domain->domain.dirty_ops = &amd_dirty_ops;
2569
2570 return &domain->domain;
2571 }
2572
2573 static struct iommu_domain *
amd_iommu_domain_alloc_paging_flags(struct device * dev,u32 flags,const struct iommu_user_data * user_data)2574 amd_iommu_domain_alloc_paging_flags(struct device *dev, u32 flags,
2575 const struct iommu_user_data *user_data)
2576
2577 {
2578 struct amd_iommu *iommu = get_amd_iommu_from_dev(dev);
2579 const u32 supported_flags = IOMMU_HWPT_ALLOC_DIRTY_TRACKING |
2580 IOMMU_HWPT_ALLOC_PASID;
2581
2582 if ((flags & ~supported_flags) || user_data)
2583 return ERR_PTR(-EOPNOTSUPP);
2584
2585 switch (flags & supported_flags) {
2586 case IOMMU_HWPT_ALLOC_DIRTY_TRACKING:
2587 /* Allocate domain with v1 page table for dirty tracking */
2588 if (!amd_iommu_hd_support(iommu))
2589 break;
2590 return do_iommu_domain_alloc(dev, flags, PD_MODE_V1);
2591 case IOMMU_HWPT_ALLOC_PASID:
2592 /* Allocate domain with v2 page table if IOMMU supports PASID. */
2593 if (!amd_iommu_pasid_supported())
2594 break;
2595 return do_iommu_domain_alloc(dev, flags, PD_MODE_V2);
2596 case 0:
2597 /* If nothing specific is required use the kernel commandline default */
2598 return do_iommu_domain_alloc(dev, 0, amd_iommu_pgtable);
2599 default:
2600 break;
2601 }
2602 return ERR_PTR(-EOPNOTSUPP);
2603 }
2604
amd_iommu_domain_free(struct iommu_domain * dom)2605 void amd_iommu_domain_free(struct iommu_domain *dom)
2606 {
2607 struct protection_domain *domain = to_pdomain(dom);
2608
2609 WARN_ON(!list_empty(&domain->dev_list));
2610 if (domain->domain.type & __IOMMU_DOMAIN_PAGING)
2611 free_io_pgtable_ops(&domain->iop.pgtbl.ops);
2612 pdom_id_free(domain->id);
2613 kfree(domain);
2614 }
2615
blocked_domain_attach_device(struct iommu_domain * domain,struct device * dev)2616 static int blocked_domain_attach_device(struct iommu_domain *domain,
2617 struct device *dev)
2618 {
2619 struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev);
2620
2621 if (dev_data->domain)
2622 detach_device(dev);
2623
2624 /* Clear DTE and flush the entry */
2625 mutex_lock(&dev_data->mutex);
2626 dev_update_dte(dev_data, false);
2627 mutex_unlock(&dev_data->mutex);
2628
2629 return 0;
2630 }
2631
blocked_domain_set_dev_pasid(struct iommu_domain * domain,struct device * dev,ioasid_t pasid,struct iommu_domain * old)2632 static int blocked_domain_set_dev_pasid(struct iommu_domain *domain,
2633 struct device *dev, ioasid_t pasid,
2634 struct iommu_domain *old)
2635 {
2636 amd_iommu_remove_dev_pasid(dev, pasid, old);
2637 return 0;
2638 }
2639
2640 static struct iommu_domain blocked_domain = {
2641 .type = IOMMU_DOMAIN_BLOCKED,
2642 .ops = &(const struct iommu_domain_ops) {
2643 .attach_dev = blocked_domain_attach_device,
2644 .set_dev_pasid = blocked_domain_set_dev_pasid,
2645 }
2646 };
2647
2648 static struct protection_domain identity_domain;
2649
2650 static const struct iommu_domain_ops identity_domain_ops = {
2651 .attach_dev = amd_iommu_attach_device,
2652 };
2653
amd_iommu_init_identity_domain(void)2654 void amd_iommu_init_identity_domain(void)
2655 {
2656 struct iommu_domain *domain = &identity_domain.domain;
2657
2658 domain->type = IOMMU_DOMAIN_IDENTITY;
2659 domain->ops = &identity_domain_ops;
2660 domain->owner = &amd_iommu_ops;
2661
2662 identity_domain.id = pdom_id_alloc();
2663
2664 protection_domain_init(&identity_domain);
2665 }
2666
2667 /* Same as blocked domain except it supports only ops->attach_dev() */
2668 static struct iommu_domain release_domain = {
2669 .type = IOMMU_DOMAIN_BLOCKED,
2670 .ops = &(const struct iommu_domain_ops) {
2671 .attach_dev = blocked_domain_attach_device,
2672 }
2673 };
2674
amd_iommu_attach_device(struct iommu_domain * dom,struct device * dev)2675 static int amd_iommu_attach_device(struct iommu_domain *dom,
2676 struct device *dev)
2677 {
2678 struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev);
2679 struct protection_domain *domain = to_pdomain(dom);
2680 struct amd_iommu *iommu = get_amd_iommu_from_dev(dev);
2681 int ret;
2682
2683 /*
2684 * Skip attach device to domain if new domain is same as
2685 * devices current domain
2686 */
2687 if (dev_data->domain == domain)
2688 return 0;
2689
2690 dev_data->defer_attach = false;
2691
2692 /*
2693 * Restrict to devices with compatible IOMMU hardware support
2694 * when enforcement of dirty tracking is enabled.
2695 */
2696 if (dom->dirty_ops && !amd_iommu_hd_support(iommu))
2697 return -EINVAL;
2698
2699 if (dev_data->domain)
2700 detach_device(dev);
2701
2702 ret = attach_device(dev, domain);
2703
2704 #ifdef CONFIG_IRQ_REMAP
2705 if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
2706 if (dom->type == IOMMU_DOMAIN_UNMANAGED)
2707 dev_data->use_vapic = 1;
2708 else
2709 dev_data->use_vapic = 0;
2710 }
2711 #endif
2712
2713 return ret;
2714 }
2715
amd_iommu_iotlb_sync_map(struct iommu_domain * dom,unsigned long iova,size_t size)2716 static int amd_iommu_iotlb_sync_map(struct iommu_domain *dom,
2717 unsigned long iova, size_t size)
2718 {
2719 struct protection_domain *domain = to_pdomain(dom);
2720 struct io_pgtable_ops *ops = &domain->iop.pgtbl.ops;
2721
2722 if (ops->map_pages)
2723 domain_flush_np_cache(domain, iova, size);
2724 return 0;
2725 }
2726
amd_iommu_map_pages(struct iommu_domain * dom,unsigned long iova,phys_addr_t paddr,size_t pgsize,size_t pgcount,int iommu_prot,gfp_t gfp,size_t * mapped)2727 static int amd_iommu_map_pages(struct iommu_domain *dom, unsigned long iova,
2728 phys_addr_t paddr, size_t pgsize, size_t pgcount,
2729 int iommu_prot, gfp_t gfp, size_t *mapped)
2730 {
2731 struct protection_domain *domain = to_pdomain(dom);
2732 struct io_pgtable_ops *ops = &domain->iop.pgtbl.ops;
2733 int prot = 0;
2734 int ret = -EINVAL;
2735
2736 if ((domain->pd_mode == PD_MODE_V1) &&
2737 (domain->iop.mode == PAGE_MODE_NONE))
2738 return -EINVAL;
2739
2740 if (iommu_prot & IOMMU_READ)
2741 prot |= IOMMU_PROT_IR;
2742 if (iommu_prot & IOMMU_WRITE)
2743 prot |= IOMMU_PROT_IW;
2744
2745 if (ops->map_pages) {
2746 ret = ops->map_pages(ops, iova, paddr, pgsize,
2747 pgcount, prot, gfp, mapped);
2748 }
2749
2750 return ret;
2751 }
2752
amd_iommu_iotlb_gather_add_page(struct iommu_domain * domain,struct iommu_iotlb_gather * gather,unsigned long iova,size_t size)2753 static void amd_iommu_iotlb_gather_add_page(struct iommu_domain *domain,
2754 struct iommu_iotlb_gather *gather,
2755 unsigned long iova, size_t size)
2756 {
2757 /*
2758 * AMD's IOMMU can flush as many pages as necessary in a single flush.
2759 * Unless we run in a virtual machine, which can be inferred according
2760 * to whether "non-present cache" is on, it is probably best to prefer
2761 * (potentially) too extensive TLB flushing (i.e., more misses) over
2762 * mutliple TLB flushes (i.e., more flushes). For virtual machines the
2763 * hypervisor needs to synchronize the host IOMMU PTEs with those of
2764 * the guest, and the trade-off is different: unnecessary TLB flushes
2765 * should be avoided.
2766 */
2767 if (amd_iommu_np_cache &&
2768 iommu_iotlb_gather_is_disjoint(gather, iova, size))
2769 iommu_iotlb_sync(domain, gather);
2770
2771 iommu_iotlb_gather_add_range(gather, iova, size);
2772 }
2773
amd_iommu_unmap_pages(struct iommu_domain * dom,unsigned long iova,size_t pgsize,size_t pgcount,struct iommu_iotlb_gather * gather)2774 static size_t amd_iommu_unmap_pages(struct iommu_domain *dom, unsigned long iova,
2775 size_t pgsize, size_t pgcount,
2776 struct iommu_iotlb_gather *gather)
2777 {
2778 struct protection_domain *domain = to_pdomain(dom);
2779 struct io_pgtable_ops *ops = &domain->iop.pgtbl.ops;
2780 size_t r;
2781
2782 if ((domain->pd_mode == PD_MODE_V1) &&
2783 (domain->iop.mode == PAGE_MODE_NONE))
2784 return 0;
2785
2786 r = (ops->unmap_pages) ? ops->unmap_pages(ops, iova, pgsize, pgcount, NULL) : 0;
2787
2788 if (r)
2789 amd_iommu_iotlb_gather_add_page(dom, gather, iova, r);
2790
2791 return r;
2792 }
2793
amd_iommu_iova_to_phys(struct iommu_domain * dom,dma_addr_t iova)2794 static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
2795 dma_addr_t iova)
2796 {
2797 struct protection_domain *domain = to_pdomain(dom);
2798 struct io_pgtable_ops *ops = &domain->iop.pgtbl.ops;
2799
2800 return ops->iova_to_phys(ops, iova);
2801 }
2802
amd_iommu_capable(struct device * dev,enum iommu_cap cap)2803 static bool amd_iommu_capable(struct device *dev, enum iommu_cap cap)
2804 {
2805 switch (cap) {
2806 case IOMMU_CAP_CACHE_COHERENCY:
2807 return true;
2808 case IOMMU_CAP_NOEXEC:
2809 return false;
2810 case IOMMU_CAP_PRE_BOOT_PROTECTION:
2811 return amdr_ivrs_remap_support;
2812 case IOMMU_CAP_ENFORCE_CACHE_COHERENCY:
2813 return true;
2814 case IOMMU_CAP_DEFERRED_FLUSH:
2815 return true;
2816 case IOMMU_CAP_DIRTY_TRACKING: {
2817 struct amd_iommu *iommu = get_amd_iommu_from_dev(dev);
2818
2819 return amd_iommu_hd_support(iommu);
2820 }
2821 default:
2822 break;
2823 }
2824
2825 return false;
2826 }
2827
amd_iommu_set_dirty_tracking(struct iommu_domain * domain,bool enable)2828 static int amd_iommu_set_dirty_tracking(struct iommu_domain *domain,
2829 bool enable)
2830 {
2831 struct protection_domain *pdomain = to_pdomain(domain);
2832 struct dev_table_entry *dte;
2833 struct iommu_dev_data *dev_data;
2834 bool domain_flush = false;
2835 struct amd_iommu *iommu;
2836 unsigned long flags;
2837 u64 new;
2838
2839 spin_lock_irqsave(&pdomain->lock, flags);
2840 if (!(pdomain->dirty_tracking ^ enable)) {
2841 spin_unlock_irqrestore(&pdomain->lock, flags);
2842 return 0;
2843 }
2844
2845 list_for_each_entry(dev_data, &pdomain->dev_list, list) {
2846 spin_lock(&dev_data->dte_lock);
2847 iommu = get_amd_iommu_from_dev_data(dev_data);
2848 dte = &get_dev_table(iommu)[dev_data->devid];
2849 new = dte->data[0];
2850 new = (enable ? new | DTE_FLAG_HAD : new & ~DTE_FLAG_HAD);
2851 dte->data[0] = new;
2852 spin_unlock(&dev_data->dte_lock);
2853
2854 /* Flush device DTE */
2855 device_flush_dte(dev_data);
2856 domain_flush = true;
2857 }
2858
2859 /* Flush IOTLB to mark IOPTE dirty on the next translation(s) */
2860 if (domain_flush)
2861 amd_iommu_domain_flush_all(pdomain);
2862
2863 pdomain->dirty_tracking = enable;
2864 spin_unlock_irqrestore(&pdomain->lock, flags);
2865
2866 return 0;
2867 }
2868
amd_iommu_read_and_clear_dirty(struct iommu_domain * domain,unsigned long iova,size_t size,unsigned long flags,struct iommu_dirty_bitmap * dirty)2869 static int amd_iommu_read_and_clear_dirty(struct iommu_domain *domain,
2870 unsigned long iova, size_t size,
2871 unsigned long flags,
2872 struct iommu_dirty_bitmap *dirty)
2873 {
2874 struct protection_domain *pdomain = to_pdomain(domain);
2875 struct io_pgtable_ops *ops = &pdomain->iop.pgtbl.ops;
2876 unsigned long lflags;
2877
2878 if (!ops || !ops->read_and_clear_dirty)
2879 return -EOPNOTSUPP;
2880
2881 spin_lock_irqsave(&pdomain->lock, lflags);
2882 if (!pdomain->dirty_tracking && dirty->bitmap) {
2883 spin_unlock_irqrestore(&pdomain->lock, lflags);
2884 return -EINVAL;
2885 }
2886 spin_unlock_irqrestore(&pdomain->lock, lflags);
2887
2888 return ops->read_and_clear_dirty(ops, iova, size, flags, dirty);
2889 }
2890
amd_iommu_get_resv_regions(struct device * dev,struct list_head * head)2891 static void amd_iommu_get_resv_regions(struct device *dev,
2892 struct list_head *head)
2893 {
2894 struct iommu_resv_region *region;
2895 struct unity_map_entry *entry;
2896 struct amd_iommu *iommu;
2897 struct amd_iommu_pci_seg *pci_seg;
2898 int devid, sbdf;
2899
2900 sbdf = get_device_sbdf_id(dev);
2901 if (sbdf < 0)
2902 return;
2903
2904 devid = PCI_SBDF_TO_DEVID(sbdf);
2905 iommu = get_amd_iommu_from_dev(dev);
2906 pci_seg = iommu->pci_seg;
2907
2908 list_for_each_entry(entry, &pci_seg->unity_map, list) {
2909 int type, prot = 0;
2910 size_t length;
2911
2912 if (devid < entry->devid_start || devid > entry->devid_end)
2913 continue;
2914
2915 type = IOMMU_RESV_DIRECT;
2916 length = entry->address_end - entry->address_start;
2917 if (entry->prot & IOMMU_PROT_IR)
2918 prot |= IOMMU_READ;
2919 if (entry->prot & IOMMU_PROT_IW)
2920 prot |= IOMMU_WRITE;
2921 if (entry->prot & IOMMU_UNITY_MAP_FLAG_EXCL_RANGE)
2922 /* Exclusion range */
2923 type = IOMMU_RESV_RESERVED;
2924
2925 region = iommu_alloc_resv_region(entry->address_start,
2926 length, prot, type,
2927 GFP_KERNEL);
2928 if (!region) {
2929 dev_err(dev, "Out of memory allocating dm-regions\n");
2930 return;
2931 }
2932 list_add_tail(®ion->list, head);
2933 }
2934
2935 region = iommu_alloc_resv_region(MSI_RANGE_START,
2936 MSI_RANGE_END - MSI_RANGE_START + 1,
2937 0, IOMMU_RESV_MSI, GFP_KERNEL);
2938 if (!region)
2939 return;
2940 list_add_tail(®ion->list, head);
2941
2942 if (amd_iommu_ht_range_ignore())
2943 return;
2944
2945 region = iommu_alloc_resv_region(HT_RANGE_START,
2946 HT_RANGE_END - HT_RANGE_START + 1,
2947 0, IOMMU_RESV_RESERVED, GFP_KERNEL);
2948 if (!region)
2949 return;
2950 list_add_tail(®ion->list, head);
2951 }
2952
amd_iommu_is_attach_deferred(struct device * dev)2953 static bool amd_iommu_is_attach_deferred(struct device *dev)
2954 {
2955 struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev);
2956
2957 return dev_data->defer_attach;
2958 }
2959
amd_iommu_flush_iotlb_all(struct iommu_domain * domain)2960 static void amd_iommu_flush_iotlb_all(struct iommu_domain *domain)
2961 {
2962 struct protection_domain *dom = to_pdomain(domain);
2963 unsigned long flags;
2964
2965 spin_lock_irqsave(&dom->lock, flags);
2966 amd_iommu_domain_flush_all(dom);
2967 spin_unlock_irqrestore(&dom->lock, flags);
2968 }
2969
amd_iommu_iotlb_sync(struct iommu_domain * domain,struct iommu_iotlb_gather * gather)2970 static void amd_iommu_iotlb_sync(struct iommu_domain *domain,
2971 struct iommu_iotlb_gather *gather)
2972 {
2973 struct protection_domain *dom = to_pdomain(domain);
2974 unsigned long flags;
2975
2976 spin_lock_irqsave(&dom->lock, flags);
2977 amd_iommu_domain_flush_pages(dom, gather->start,
2978 gather->end - gather->start + 1);
2979 spin_unlock_irqrestore(&dom->lock, flags);
2980 }
2981
amd_iommu_def_domain_type(struct device * dev)2982 static int amd_iommu_def_domain_type(struct device *dev)
2983 {
2984 struct iommu_dev_data *dev_data;
2985
2986 dev_data = dev_iommu_priv_get(dev);
2987 if (!dev_data)
2988 return 0;
2989
2990 /* Always use DMA domain for untrusted device */
2991 if (dev_is_pci(dev) && to_pci_dev(dev)->untrusted)
2992 return IOMMU_DOMAIN_DMA;
2993
2994 /*
2995 * Do not identity map IOMMUv2 capable devices when:
2996 * - memory encryption is active, because some of those devices
2997 * (AMD GPUs) don't have the encryption bit in their DMA-mask
2998 * and require remapping.
2999 * - SNP is enabled, because it prohibits DTE[Mode]=0.
3000 */
3001 if (pdev_pasid_supported(dev_data) &&
3002 !cc_platform_has(CC_ATTR_MEM_ENCRYPT) &&
3003 !amd_iommu_snp_en) {
3004 return IOMMU_DOMAIN_IDENTITY;
3005 }
3006
3007 return 0;
3008 }
3009
amd_iommu_enforce_cache_coherency(struct iommu_domain * domain)3010 static bool amd_iommu_enforce_cache_coherency(struct iommu_domain *domain)
3011 {
3012 /* IOMMU_PTE_FC is always set */
3013 return true;
3014 }
3015
3016 static const struct iommu_dirty_ops amd_dirty_ops = {
3017 .set_dirty_tracking = amd_iommu_set_dirty_tracking,
3018 .read_and_clear_dirty = amd_iommu_read_and_clear_dirty,
3019 };
3020
3021 const struct iommu_ops amd_iommu_ops = {
3022 .capable = amd_iommu_capable,
3023 .blocked_domain = &blocked_domain,
3024 .release_domain = &release_domain,
3025 .identity_domain = &identity_domain.domain,
3026 .domain_alloc_paging_flags = amd_iommu_domain_alloc_paging_flags,
3027 .domain_alloc_sva = amd_iommu_domain_alloc_sva,
3028 .probe_device = amd_iommu_probe_device,
3029 .release_device = amd_iommu_release_device,
3030 .device_group = amd_iommu_device_group,
3031 .get_resv_regions = amd_iommu_get_resv_regions,
3032 .is_attach_deferred = amd_iommu_is_attach_deferred,
3033 .def_domain_type = amd_iommu_def_domain_type,
3034 .page_response = amd_iommu_page_response,
3035 .default_domain_ops = &(const struct iommu_domain_ops) {
3036 .attach_dev = amd_iommu_attach_device,
3037 .map_pages = amd_iommu_map_pages,
3038 .unmap_pages = amd_iommu_unmap_pages,
3039 .iotlb_sync_map = amd_iommu_iotlb_sync_map,
3040 .iova_to_phys = amd_iommu_iova_to_phys,
3041 .flush_iotlb_all = amd_iommu_flush_iotlb_all,
3042 .iotlb_sync = amd_iommu_iotlb_sync,
3043 .free = amd_iommu_domain_free,
3044 .enforce_cache_coherency = amd_iommu_enforce_cache_coherency,
3045 }
3046 };
3047
3048 #ifdef CONFIG_IRQ_REMAP
3049
3050 /*****************************************************************************
3051 *
3052 * Interrupt Remapping Implementation
3053 *
3054 *****************************************************************************/
3055
3056 static struct irq_chip amd_ir_chip;
3057 static DEFINE_SPINLOCK(iommu_table_lock);
3058
iommu_flush_irt_and_complete(struct amd_iommu * iommu,u16 devid)3059 static void iommu_flush_irt_and_complete(struct amd_iommu *iommu, u16 devid)
3060 {
3061 int ret;
3062 u64 data;
3063 unsigned long flags;
3064 struct iommu_cmd cmd, cmd2;
3065
3066 if (iommu->irtcachedis_enabled)
3067 return;
3068
3069 build_inv_irt(&cmd, devid);
3070 data = atomic64_inc_return(&iommu->cmd_sem_val);
3071 build_completion_wait(&cmd2, iommu, data);
3072
3073 raw_spin_lock_irqsave(&iommu->lock, flags);
3074 ret = __iommu_queue_command_sync(iommu, &cmd, true);
3075 if (ret)
3076 goto out;
3077 ret = __iommu_queue_command_sync(iommu, &cmd2, false);
3078 if (ret)
3079 goto out;
3080 wait_on_sem(iommu, data);
3081 out:
3082 raw_spin_unlock_irqrestore(&iommu->lock, flags);
3083 }
3084
iommu_get_int_tablen(struct iommu_dev_data * dev_data)3085 static inline u8 iommu_get_int_tablen(struct iommu_dev_data *dev_data)
3086 {
3087 if (dev_data && dev_data->max_irqs == MAX_IRQS_PER_TABLE_2K)
3088 return DTE_INTTABLEN_2K;
3089 return DTE_INTTABLEN_512;
3090 }
3091
set_dte_irq_entry(struct amd_iommu * iommu,u16 devid,struct irq_remap_table * table)3092 static void set_dte_irq_entry(struct amd_iommu *iommu, u16 devid,
3093 struct irq_remap_table *table)
3094 {
3095 u64 new;
3096 struct dev_table_entry *dte = &get_dev_table(iommu)[devid];
3097 struct iommu_dev_data *dev_data = search_dev_data(iommu, devid);
3098
3099 if (dev_data)
3100 spin_lock(&dev_data->dte_lock);
3101
3102 new = READ_ONCE(dte->data[2]);
3103 new &= ~DTE_IRQ_PHYS_ADDR_MASK;
3104 new |= iommu_virt_to_phys(table->table);
3105 new |= DTE_IRQ_REMAP_INTCTL;
3106 new |= iommu_get_int_tablen(dev_data);
3107 new |= DTE_IRQ_REMAP_ENABLE;
3108 WRITE_ONCE(dte->data[2], new);
3109
3110 if (dev_data)
3111 spin_unlock(&dev_data->dte_lock);
3112 }
3113
get_irq_table(struct amd_iommu * iommu,u16 devid)3114 static struct irq_remap_table *get_irq_table(struct amd_iommu *iommu, u16 devid)
3115 {
3116 struct irq_remap_table *table;
3117 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
3118
3119 if (WARN_ONCE(!pci_seg->rlookup_table[devid],
3120 "%s: no iommu for devid %x:%x\n",
3121 __func__, pci_seg->id, devid))
3122 return NULL;
3123
3124 table = pci_seg->irq_lookup_table[devid];
3125 if (WARN_ONCE(!table, "%s: no table for devid %x:%x\n",
3126 __func__, pci_seg->id, devid))
3127 return NULL;
3128
3129 return table;
3130 }
3131
__alloc_irq_table(int nid,size_t size)3132 static struct irq_remap_table *__alloc_irq_table(int nid, size_t size)
3133 {
3134 struct irq_remap_table *table;
3135
3136 table = kzalloc(sizeof(*table), GFP_KERNEL);
3137 if (!table)
3138 return NULL;
3139
3140 table->table = iommu_alloc_pages_node_sz(
3141 nid, GFP_KERNEL, max(DTE_INTTAB_ALIGNMENT, size));
3142 if (!table->table) {
3143 kfree(table);
3144 return NULL;
3145 }
3146 raw_spin_lock_init(&table->lock);
3147
3148 return table;
3149 }
3150
set_remap_table_entry(struct amd_iommu * iommu,u16 devid,struct irq_remap_table * table)3151 static void set_remap_table_entry(struct amd_iommu *iommu, u16 devid,
3152 struct irq_remap_table *table)
3153 {
3154 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
3155
3156 pci_seg->irq_lookup_table[devid] = table;
3157 set_dte_irq_entry(iommu, devid, table);
3158 iommu_flush_dte(iommu, devid);
3159 }
3160
set_remap_table_entry_alias(struct pci_dev * pdev,u16 alias,void * data)3161 static int set_remap_table_entry_alias(struct pci_dev *pdev, u16 alias,
3162 void *data)
3163 {
3164 struct irq_remap_table *table = data;
3165 struct amd_iommu_pci_seg *pci_seg;
3166 struct amd_iommu *iommu = rlookup_amd_iommu(&pdev->dev);
3167
3168 if (!iommu)
3169 return -EINVAL;
3170
3171 pci_seg = iommu->pci_seg;
3172 pci_seg->irq_lookup_table[alias] = table;
3173 set_dte_irq_entry(iommu, alias, table);
3174 iommu_flush_dte(pci_seg->rlookup_table[alias], alias);
3175
3176 return 0;
3177 }
3178
get_irq_table_size(unsigned int max_irqs)3179 static inline size_t get_irq_table_size(unsigned int max_irqs)
3180 {
3181 if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
3182 return max_irqs * sizeof(u32);
3183
3184 return max_irqs * (sizeof(u64) * 2);
3185 }
3186
alloc_irq_table(struct amd_iommu * iommu,u16 devid,struct pci_dev * pdev,unsigned int max_irqs)3187 static struct irq_remap_table *alloc_irq_table(struct amd_iommu *iommu,
3188 u16 devid, struct pci_dev *pdev,
3189 unsigned int max_irqs)
3190 {
3191 struct irq_remap_table *table = NULL;
3192 struct irq_remap_table *new_table = NULL;
3193 struct amd_iommu_pci_seg *pci_seg;
3194 unsigned long flags;
3195 int nid = iommu && iommu->dev ? dev_to_node(&iommu->dev->dev) : NUMA_NO_NODE;
3196 u16 alias;
3197
3198 spin_lock_irqsave(&iommu_table_lock, flags);
3199
3200 pci_seg = iommu->pci_seg;
3201 table = pci_seg->irq_lookup_table[devid];
3202 if (table)
3203 goto out_unlock;
3204
3205 alias = pci_seg->alias_table[devid];
3206 table = pci_seg->irq_lookup_table[alias];
3207 if (table) {
3208 set_remap_table_entry(iommu, devid, table);
3209 goto out_wait;
3210 }
3211 spin_unlock_irqrestore(&iommu_table_lock, flags);
3212
3213 /* Nothing there yet, allocate new irq remapping table */
3214 new_table = __alloc_irq_table(nid, get_irq_table_size(max_irqs));
3215 if (!new_table)
3216 return NULL;
3217
3218 spin_lock_irqsave(&iommu_table_lock, flags);
3219
3220 table = pci_seg->irq_lookup_table[devid];
3221 if (table)
3222 goto out_unlock;
3223
3224 table = pci_seg->irq_lookup_table[alias];
3225 if (table) {
3226 set_remap_table_entry(iommu, devid, table);
3227 goto out_wait;
3228 }
3229
3230 table = new_table;
3231 new_table = NULL;
3232
3233 if (pdev)
3234 pci_for_each_dma_alias(pdev, set_remap_table_entry_alias,
3235 table);
3236 else
3237 set_remap_table_entry(iommu, devid, table);
3238
3239 if (devid != alias)
3240 set_remap_table_entry(iommu, alias, table);
3241
3242 out_wait:
3243 iommu_completion_wait(iommu);
3244
3245 out_unlock:
3246 spin_unlock_irqrestore(&iommu_table_lock, flags);
3247
3248 if (new_table) {
3249 iommu_free_pages(new_table->table);
3250 kfree(new_table);
3251 }
3252 return table;
3253 }
3254
alloc_irq_index(struct amd_iommu * iommu,u16 devid,int count,bool align,struct pci_dev * pdev,unsigned long max_irqs)3255 static int alloc_irq_index(struct amd_iommu *iommu, u16 devid, int count,
3256 bool align, struct pci_dev *pdev,
3257 unsigned long max_irqs)
3258 {
3259 struct irq_remap_table *table;
3260 int index, c, alignment = 1;
3261 unsigned long flags;
3262
3263 table = alloc_irq_table(iommu, devid, pdev, max_irqs);
3264 if (!table)
3265 return -ENODEV;
3266
3267 if (align)
3268 alignment = roundup_pow_of_two(count);
3269
3270 raw_spin_lock_irqsave(&table->lock, flags);
3271
3272 /* Scan table for free entries */
3273 for (index = ALIGN(table->min_index, alignment), c = 0;
3274 index < max_irqs;) {
3275 if (!iommu->irte_ops->is_allocated(table, index)) {
3276 c += 1;
3277 } else {
3278 c = 0;
3279 index = ALIGN(index + 1, alignment);
3280 continue;
3281 }
3282
3283 if (c == count) {
3284 for (; c != 0; --c)
3285 iommu->irte_ops->set_allocated(table, index - c + 1);
3286
3287 index -= count - 1;
3288 goto out;
3289 }
3290
3291 index++;
3292 }
3293
3294 index = -ENOSPC;
3295
3296 out:
3297 raw_spin_unlock_irqrestore(&table->lock, flags);
3298
3299 return index;
3300 }
3301
__modify_irte_ga(struct amd_iommu * iommu,u16 devid,int index,struct irte_ga * irte)3302 static int __modify_irte_ga(struct amd_iommu *iommu, u16 devid, int index,
3303 struct irte_ga *irte)
3304 {
3305 struct irq_remap_table *table;
3306 struct irte_ga *entry;
3307 unsigned long flags;
3308 u128 old;
3309
3310 table = get_irq_table(iommu, devid);
3311 if (!table)
3312 return -ENOMEM;
3313
3314 raw_spin_lock_irqsave(&table->lock, flags);
3315
3316 entry = (struct irte_ga *)table->table;
3317 entry = &entry[index];
3318
3319 /*
3320 * We use cmpxchg16 to atomically update the 128-bit IRTE,
3321 * and it cannot be updated by the hardware or other processors
3322 * behind us, so the return value of cmpxchg16 should be the
3323 * same as the old value.
3324 */
3325 old = entry->irte;
3326 WARN_ON(!try_cmpxchg128(&entry->irte, &old, irte->irte));
3327
3328 raw_spin_unlock_irqrestore(&table->lock, flags);
3329
3330 return 0;
3331 }
3332
modify_irte_ga(struct amd_iommu * iommu,u16 devid,int index,struct irte_ga * irte)3333 static int modify_irte_ga(struct amd_iommu *iommu, u16 devid, int index,
3334 struct irte_ga *irte)
3335 {
3336 bool ret;
3337
3338 ret = __modify_irte_ga(iommu, devid, index, irte);
3339 if (ret)
3340 return ret;
3341
3342 iommu_flush_irt_and_complete(iommu, devid);
3343
3344 return 0;
3345 }
3346
modify_irte(struct amd_iommu * iommu,u16 devid,int index,union irte * irte)3347 static int modify_irte(struct amd_iommu *iommu,
3348 u16 devid, int index, union irte *irte)
3349 {
3350 struct irq_remap_table *table;
3351 unsigned long flags;
3352
3353 table = get_irq_table(iommu, devid);
3354 if (!table)
3355 return -ENOMEM;
3356
3357 raw_spin_lock_irqsave(&table->lock, flags);
3358 table->table[index] = irte->val;
3359 raw_spin_unlock_irqrestore(&table->lock, flags);
3360
3361 iommu_flush_irt_and_complete(iommu, devid);
3362
3363 return 0;
3364 }
3365
free_irte(struct amd_iommu * iommu,u16 devid,int index)3366 static void free_irte(struct amd_iommu *iommu, u16 devid, int index)
3367 {
3368 struct irq_remap_table *table;
3369 unsigned long flags;
3370
3371 table = get_irq_table(iommu, devid);
3372 if (!table)
3373 return;
3374
3375 raw_spin_lock_irqsave(&table->lock, flags);
3376 iommu->irte_ops->clear_allocated(table, index);
3377 raw_spin_unlock_irqrestore(&table->lock, flags);
3378
3379 iommu_flush_irt_and_complete(iommu, devid);
3380 }
3381
irte_prepare(void * entry,u32 delivery_mode,bool dest_mode,u8 vector,u32 dest_apicid,int devid)3382 static void irte_prepare(void *entry,
3383 u32 delivery_mode, bool dest_mode,
3384 u8 vector, u32 dest_apicid, int devid)
3385 {
3386 union irte *irte = (union irte *) entry;
3387
3388 irte->val = 0;
3389 irte->fields.vector = vector;
3390 irte->fields.int_type = delivery_mode;
3391 irte->fields.destination = dest_apicid;
3392 irte->fields.dm = dest_mode;
3393 irte->fields.valid = 1;
3394 }
3395
irte_ga_prepare(void * entry,u32 delivery_mode,bool dest_mode,u8 vector,u32 dest_apicid,int devid)3396 static void irte_ga_prepare(void *entry,
3397 u32 delivery_mode, bool dest_mode,
3398 u8 vector, u32 dest_apicid, int devid)
3399 {
3400 struct irte_ga *irte = (struct irte_ga *) entry;
3401
3402 irte->lo.val = 0;
3403 irte->hi.val = 0;
3404 irte->lo.fields_remap.int_type = delivery_mode;
3405 irte->lo.fields_remap.dm = dest_mode;
3406 irte->hi.fields.vector = vector;
3407 irte->lo.fields_remap.destination = APICID_TO_IRTE_DEST_LO(dest_apicid);
3408 irte->hi.fields.destination = APICID_TO_IRTE_DEST_HI(dest_apicid);
3409 irte->lo.fields_remap.valid = 1;
3410 }
3411
irte_activate(struct amd_iommu * iommu,void * entry,u16 devid,u16 index)3412 static void irte_activate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index)
3413 {
3414 union irte *irte = (union irte *) entry;
3415
3416 irte->fields.valid = 1;
3417 modify_irte(iommu, devid, index, irte);
3418 }
3419
irte_ga_activate(struct amd_iommu * iommu,void * entry,u16 devid,u16 index)3420 static void irte_ga_activate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index)
3421 {
3422 struct irte_ga *irte = (struct irte_ga *) entry;
3423
3424 irte->lo.fields_remap.valid = 1;
3425 modify_irte_ga(iommu, devid, index, irte);
3426 }
3427
irte_deactivate(struct amd_iommu * iommu,void * entry,u16 devid,u16 index)3428 static void irte_deactivate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index)
3429 {
3430 union irte *irte = (union irte *) entry;
3431
3432 irte->fields.valid = 0;
3433 modify_irte(iommu, devid, index, irte);
3434 }
3435
irte_ga_deactivate(struct amd_iommu * iommu,void * entry,u16 devid,u16 index)3436 static void irte_ga_deactivate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index)
3437 {
3438 struct irte_ga *irte = (struct irte_ga *) entry;
3439
3440 irte->lo.fields_remap.valid = 0;
3441 modify_irte_ga(iommu, devid, index, irte);
3442 }
3443
irte_set_affinity(struct amd_iommu * iommu,void * entry,u16 devid,u16 index,u8 vector,u32 dest_apicid)3444 static void irte_set_affinity(struct amd_iommu *iommu, void *entry, u16 devid, u16 index,
3445 u8 vector, u32 dest_apicid)
3446 {
3447 union irte *irte = (union irte *) entry;
3448
3449 irte->fields.vector = vector;
3450 irte->fields.destination = dest_apicid;
3451 modify_irte(iommu, devid, index, irte);
3452 }
3453
irte_ga_set_affinity(struct amd_iommu * iommu,void * entry,u16 devid,u16 index,u8 vector,u32 dest_apicid)3454 static void irte_ga_set_affinity(struct amd_iommu *iommu, void *entry, u16 devid, u16 index,
3455 u8 vector, u32 dest_apicid)
3456 {
3457 struct irte_ga *irte = (struct irte_ga *) entry;
3458
3459 if (!irte->lo.fields_remap.guest_mode) {
3460 irte->hi.fields.vector = vector;
3461 irte->lo.fields_remap.destination =
3462 APICID_TO_IRTE_DEST_LO(dest_apicid);
3463 irte->hi.fields.destination =
3464 APICID_TO_IRTE_DEST_HI(dest_apicid);
3465 modify_irte_ga(iommu, devid, index, irte);
3466 }
3467 }
3468
3469 #define IRTE_ALLOCATED (~1U)
irte_set_allocated(struct irq_remap_table * table,int index)3470 static void irte_set_allocated(struct irq_remap_table *table, int index)
3471 {
3472 table->table[index] = IRTE_ALLOCATED;
3473 }
3474
irte_ga_set_allocated(struct irq_remap_table * table,int index)3475 static void irte_ga_set_allocated(struct irq_remap_table *table, int index)
3476 {
3477 struct irte_ga *ptr = (struct irte_ga *)table->table;
3478 struct irte_ga *irte = &ptr[index];
3479
3480 memset(&irte->lo.val, 0, sizeof(u64));
3481 memset(&irte->hi.val, 0, sizeof(u64));
3482 irte->hi.fields.vector = 0xff;
3483 }
3484
irte_is_allocated(struct irq_remap_table * table,int index)3485 static bool irte_is_allocated(struct irq_remap_table *table, int index)
3486 {
3487 union irte *ptr = (union irte *)table->table;
3488 union irte *irte = &ptr[index];
3489
3490 return irte->val != 0;
3491 }
3492
irte_ga_is_allocated(struct irq_remap_table * table,int index)3493 static bool irte_ga_is_allocated(struct irq_remap_table *table, int index)
3494 {
3495 struct irte_ga *ptr = (struct irte_ga *)table->table;
3496 struct irte_ga *irte = &ptr[index];
3497
3498 return irte->hi.fields.vector != 0;
3499 }
3500
irte_clear_allocated(struct irq_remap_table * table,int index)3501 static void irte_clear_allocated(struct irq_remap_table *table, int index)
3502 {
3503 table->table[index] = 0;
3504 }
3505
irte_ga_clear_allocated(struct irq_remap_table * table,int index)3506 static void irte_ga_clear_allocated(struct irq_remap_table *table, int index)
3507 {
3508 struct irte_ga *ptr = (struct irte_ga *)table->table;
3509 struct irte_ga *irte = &ptr[index];
3510
3511 memset(&irte->lo.val, 0, sizeof(u64));
3512 memset(&irte->hi.val, 0, sizeof(u64));
3513 }
3514
get_devid(struct irq_alloc_info * info)3515 static int get_devid(struct irq_alloc_info *info)
3516 {
3517 switch (info->type) {
3518 case X86_IRQ_ALLOC_TYPE_IOAPIC:
3519 return get_ioapic_devid(info->devid);
3520 case X86_IRQ_ALLOC_TYPE_HPET:
3521 return get_hpet_devid(info->devid);
3522 case X86_IRQ_ALLOC_TYPE_PCI_MSI:
3523 case X86_IRQ_ALLOC_TYPE_PCI_MSIX:
3524 return get_device_sbdf_id(msi_desc_to_dev(info->desc));
3525 default:
3526 WARN_ON_ONCE(1);
3527 return -1;
3528 }
3529 }
3530
3531 struct irq_remap_ops amd_iommu_irq_ops = {
3532 .prepare = amd_iommu_prepare,
3533 .enable = amd_iommu_enable,
3534 .disable = amd_iommu_disable,
3535 .reenable = amd_iommu_reenable,
3536 .enable_faulting = amd_iommu_enable_faulting,
3537 };
3538
fill_msi_msg(struct msi_msg * msg,u32 index)3539 static void fill_msi_msg(struct msi_msg *msg, u32 index)
3540 {
3541 msg->data = index;
3542 msg->address_lo = 0;
3543 msg->arch_addr_lo.base_address = X86_MSI_BASE_ADDRESS_LOW;
3544 /*
3545 * The struct msi_msg.dest_mode_logical is used to set the DM bit
3546 * in MSI Message Address Register. For device w/ 2K int-remap support,
3547 * this is bit must be set to 1 regardless of the actual destination
3548 * mode, which is signified by the IRTE[DM].
3549 */
3550 if (FEATURE_NUM_INT_REMAP_SUP_2K(amd_iommu_efr2))
3551 msg->arch_addr_lo.dest_mode_logical = true;
3552 msg->address_hi = X86_MSI_BASE_ADDRESS_HIGH;
3553 }
3554
irq_remapping_prepare_irte(struct amd_ir_data * data,struct irq_cfg * irq_cfg,struct irq_alloc_info * info,int devid,int index,int sub_handle)3555 static void irq_remapping_prepare_irte(struct amd_ir_data *data,
3556 struct irq_cfg *irq_cfg,
3557 struct irq_alloc_info *info,
3558 int devid, int index, int sub_handle)
3559 {
3560 struct irq_2_irte *irte_info = &data->irq_2_irte;
3561 struct amd_iommu *iommu = data->iommu;
3562
3563 if (!iommu)
3564 return;
3565
3566 data->irq_2_irte.devid = devid;
3567 data->irq_2_irte.index = index + sub_handle;
3568 iommu->irte_ops->prepare(data->entry, APIC_DELIVERY_MODE_FIXED,
3569 apic->dest_mode_logical, irq_cfg->vector,
3570 irq_cfg->dest_apicid, devid);
3571
3572 switch (info->type) {
3573 case X86_IRQ_ALLOC_TYPE_IOAPIC:
3574 case X86_IRQ_ALLOC_TYPE_HPET:
3575 case X86_IRQ_ALLOC_TYPE_PCI_MSI:
3576 case X86_IRQ_ALLOC_TYPE_PCI_MSIX:
3577 fill_msi_msg(&data->msi_entry, irte_info->index);
3578 break;
3579
3580 default:
3581 BUG_ON(1);
3582 break;
3583 }
3584 }
3585
3586 struct amd_irte_ops irte_32_ops = {
3587 .prepare = irte_prepare,
3588 .activate = irte_activate,
3589 .deactivate = irte_deactivate,
3590 .set_affinity = irte_set_affinity,
3591 .set_allocated = irte_set_allocated,
3592 .is_allocated = irte_is_allocated,
3593 .clear_allocated = irte_clear_allocated,
3594 };
3595
3596 struct amd_irte_ops irte_128_ops = {
3597 .prepare = irte_ga_prepare,
3598 .activate = irte_ga_activate,
3599 .deactivate = irte_ga_deactivate,
3600 .set_affinity = irte_ga_set_affinity,
3601 .set_allocated = irte_ga_set_allocated,
3602 .is_allocated = irte_ga_is_allocated,
3603 .clear_allocated = irte_ga_clear_allocated,
3604 };
3605
irq_remapping_alloc(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs,void * arg)3606 static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq,
3607 unsigned int nr_irqs, void *arg)
3608 {
3609 struct irq_alloc_info *info = arg;
3610 struct irq_data *irq_data;
3611 struct amd_ir_data *data = NULL;
3612 struct amd_iommu *iommu;
3613 struct irq_cfg *cfg;
3614 struct iommu_dev_data *dev_data;
3615 unsigned long max_irqs;
3616 int i, ret, devid, seg, sbdf;
3617 int index;
3618
3619 if (!info)
3620 return -EINVAL;
3621 if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_PCI_MSI)
3622 return -EINVAL;
3623
3624 sbdf = get_devid(info);
3625 if (sbdf < 0)
3626 return -EINVAL;
3627
3628 seg = PCI_SBDF_TO_SEGID(sbdf);
3629 devid = PCI_SBDF_TO_DEVID(sbdf);
3630 iommu = __rlookup_amd_iommu(seg, devid);
3631 if (!iommu)
3632 return -EINVAL;
3633
3634 dev_data = search_dev_data(iommu, devid);
3635 max_irqs = dev_data ? dev_data->max_irqs : MAX_IRQS_PER_TABLE_512;
3636
3637 ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
3638 if (ret < 0)
3639 return ret;
3640
3641 if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) {
3642 struct irq_remap_table *table;
3643
3644 table = alloc_irq_table(iommu, devid, NULL, max_irqs);
3645 if (table) {
3646 if (!table->min_index) {
3647 /*
3648 * Keep the first 32 indexes free for IOAPIC
3649 * interrupts.
3650 */
3651 table->min_index = 32;
3652 for (i = 0; i < 32; ++i)
3653 iommu->irte_ops->set_allocated(table, i);
3654 }
3655 WARN_ON(table->min_index != 32);
3656 index = info->ioapic.pin;
3657 } else {
3658 index = -ENOMEM;
3659 }
3660 } else if (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI ||
3661 info->type == X86_IRQ_ALLOC_TYPE_PCI_MSIX) {
3662 bool align = (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI);
3663
3664 index = alloc_irq_index(iommu, devid, nr_irqs, align,
3665 msi_desc_to_pci_dev(info->desc),
3666 max_irqs);
3667 } else {
3668 index = alloc_irq_index(iommu, devid, nr_irqs, false, NULL,
3669 max_irqs);
3670 }
3671
3672 if (index < 0) {
3673 pr_warn("Failed to allocate IRTE\n");
3674 ret = index;
3675 goto out_free_parent;
3676 }
3677
3678 for (i = 0; i < nr_irqs; i++) {
3679 irq_data = irq_domain_get_irq_data(domain, virq + i);
3680 cfg = irq_data ? irqd_cfg(irq_data) : NULL;
3681 if (!cfg) {
3682 ret = -EINVAL;
3683 goto out_free_data;
3684 }
3685
3686 ret = -ENOMEM;
3687 data = kzalloc(sizeof(*data), GFP_KERNEL);
3688 if (!data)
3689 goto out_free_data;
3690
3691 if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
3692 data->entry = kzalloc(sizeof(union irte), GFP_KERNEL);
3693 else
3694 data->entry = kzalloc(sizeof(struct irte_ga),
3695 GFP_KERNEL);
3696 if (!data->entry) {
3697 kfree(data);
3698 goto out_free_data;
3699 }
3700
3701 data->iommu = iommu;
3702 irq_data->hwirq = (devid << 16) + i;
3703 irq_data->chip_data = data;
3704 irq_data->chip = &amd_ir_chip;
3705 irq_remapping_prepare_irte(data, cfg, info, devid, index, i);
3706 }
3707
3708 return 0;
3709
3710 out_free_data:
3711 for (i--; i >= 0; i--) {
3712 irq_data = irq_domain_get_irq_data(domain, virq + i);
3713 if (irq_data)
3714 kfree(irq_data->chip_data);
3715 }
3716 for (i = 0; i < nr_irqs; i++)
3717 free_irte(iommu, devid, index + i);
3718 out_free_parent:
3719 irq_domain_free_irqs_common(domain, virq, nr_irqs);
3720 return ret;
3721 }
3722
irq_remapping_free(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs)3723 static void irq_remapping_free(struct irq_domain *domain, unsigned int virq,
3724 unsigned int nr_irqs)
3725 {
3726 struct irq_2_irte *irte_info;
3727 struct irq_data *irq_data;
3728 struct amd_ir_data *data;
3729 int i;
3730
3731 for (i = 0; i < nr_irqs; i++) {
3732 irq_data = irq_domain_get_irq_data(domain, virq + i);
3733 if (irq_data && irq_data->chip_data) {
3734 data = irq_data->chip_data;
3735 irte_info = &data->irq_2_irte;
3736 free_irte(data->iommu, irte_info->devid, irte_info->index);
3737 kfree(data->entry);
3738 kfree(data);
3739 }
3740 }
3741 irq_domain_free_irqs_common(domain, virq, nr_irqs);
3742 }
3743
3744 static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu,
3745 struct amd_ir_data *ir_data,
3746 struct irq_2_irte *irte_info,
3747 struct irq_cfg *cfg);
3748
irq_remapping_activate(struct irq_domain * domain,struct irq_data * irq_data,bool reserve)3749 static int irq_remapping_activate(struct irq_domain *domain,
3750 struct irq_data *irq_data, bool reserve)
3751 {
3752 struct amd_ir_data *data = irq_data->chip_data;
3753 struct irq_2_irte *irte_info = &data->irq_2_irte;
3754 struct amd_iommu *iommu = data->iommu;
3755 struct irq_cfg *cfg = irqd_cfg(irq_data);
3756
3757 if (!iommu)
3758 return 0;
3759
3760 iommu->irte_ops->activate(iommu, data->entry, irte_info->devid,
3761 irte_info->index);
3762 amd_ir_update_irte(irq_data, iommu, data, irte_info, cfg);
3763 return 0;
3764 }
3765
irq_remapping_deactivate(struct irq_domain * domain,struct irq_data * irq_data)3766 static void irq_remapping_deactivate(struct irq_domain *domain,
3767 struct irq_data *irq_data)
3768 {
3769 struct amd_ir_data *data = irq_data->chip_data;
3770 struct irq_2_irte *irte_info = &data->irq_2_irte;
3771 struct amd_iommu *iommu = data->iommu;
3772
3773 if (iommu)
3774 iommu->irte_ops->deactivate(iommu, data->entry, irte_info->devid,
3775 irte_info->index);
3776 }
3777
irq_remapping_select(struct irq_domain * d,struct irq_fwspec * fwspec,enum irq_domain_bus_token bus_token)3778 static int irq_remapping_select(struct irq_domain *d, struct irq_fwspec *fwspec,
3779 enum irq_domain_bus_token bus_token)
3780 {
3781 struct amd_iommu *iommu;
3782 int devid = -1;
3783
3784 if (!amd_iommu_irq_remap)
3785 return 0;
3786
3787 if (x86_fwspec_is_ioapic(fwspec))
3788 devid = get_ioapic_devid(fwspec->param[0]);
3789 else if (x86_fwspec_is_hpet(fwspec))
3790 devid = get_hpet_devid(fwspec->param[0]);
3791
3792 if (devid < 0)
3793 return 0;
3794 iommu = __rlookup_amd_iommu((devid >> 16), (devid & 0xffff));
3795
3796 return iommu && iommu->ir_domain == d;
3797 }
3798
3799 static const struct irq_domain_ops amd_ir_domain_ops = {
3800 .select = irq_remapping_select,
3801 .alloc = irq_remapping_alloc,
3802 .free = irq_remapping_free,
3803 .activate = irq_remapping_activate,
3804 .deactivate = irq_remapping_deactivate,
3805 };
3806
amd_iommu_activate_guest_mode(void * data)3807 int amd_iommu_activate_guest_mode(void *data)
3808 {
3809 struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
3810 struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
3811 u64 valid;
3812
3813 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) || !entry)
3814 return 0;
3815
3816 valid = entry->lo.fields_vapic.valid;
3817
3818 entry->lo.val = 0;
3819 entry->hi.val = 0;
3820
3821 entry->lo.fields_vapic.valid = valid;
3822 entry->lo.fields_vapic.guest_mode = 1;
3823 entry->lo.fields_vapic.ga_log_intr = 1;
3824 entry->hi.fields.ga_root_ptr = ir_data->ga_root_ptr;
3825 entry->hi.fields.vector = ir_data->ga_vector;
3826 entry->lo.fields_vapic.ga_tag = ir_data->ga_tag;
3827
3828 return modify_irte_ga(ir_data->iommu, ir_data->irq_2_irte.devid,
3829 ir_data->irq_2_irte.index, entry);
3830 }
3831 EXPORT_SYMBOL(amd_iommu_activate_guest_mode);
3832
amd_iommu_deactivate_guest_mode(void * data)3833 int amd_iommu_deactivate_guest_mode(void *data)
3834 {
3835 struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
3836 struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
3837 struct irq_cfg *cfg = ir_data->cfg;
3838 u64 valid;
3839
3840 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
3841 !entry || !entry->lo.fields_vapic.guest_mode)
3842 return 0;
3843
3844 valid = entry->lo.fields_remap.valid;
3845
3846 entry->lo.val = 0;
3847 entry->hi.val = 0;
3848
3849 entry->lo.fields_remap.valid = valid;
3850 entry->lo.fields_remap.dm = apic->dest_mode_logical;
3851 entry->lo.fields_remap.int_type = APIC_DELIVERY_MODE_FIXED;
3852 entry->hi.fields.vector = cfg->vector;
3853 entry->lo.fields_remap.destination =
3854 APICID_TO_IRTE_DEST_LO(cfg->dest_apicid);
3855 entry->hi.fields.destination =
3856 APICID_TO_IRTE_DEST_HI(cfg->dest_apicid);
3857
3858 return modify_irte_ga(ir_data->iommu, ir_data->irq_2_irte.devid,
3859 ir_data->irq_2_irte.index, entry);
3860 }
3861 EXPORT_SYMBOL(amd_iommu_deactivate_guest_mode);
3862
amd_ir_set_vcpu_affinity(struct irq_data * data,void * vcpu_info)3863 static int amd_ir_set_vcpu_affinity(struct irq_data *data, void *vcpu_info)
3864 {
3865 int ret;
3866 struct amd_iommu_pi_data *pi_data = vcpu_info;
3867 struct vcpu_data *vcpu_pi_info = pi_data->vcpu_data;
3868 struct amd_ir_data *ir_data = data->chip_data;
3869 struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
3870 struct iommu_dev_data *dev_data;
3871
3872 if (WARN_ON_ONCE(!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)))
3873 return -EINVAL;
3874
3875 if (ir_data->iommu == NULL)
3876 return -EINVAL;
3877
3878 dev_data = search_dev_data(ir_data->iommu, irte_info->devid);
3879
3880 /* Note:
3881 * This device has never been set up for guest mode.
3882 * we should not modify the IRTE
3883 */
3884 if (!dev_data || !dev_data->use_vapic)
3885 return -EINVAL;
3886
3887 ir_data->cfg = irqd_cfg(data);
3888 pi_data->ir_data = ir_data;
3889
3890 pi_data->prev_ga_tag = ir_data->cached_ga_tag;
3891 if (pi_data->is_guest_mode) {
3892 ir_data->ga_root_ptr = (pi_data->base >> 12);
3893 ir_data->ga_vector = vcpu_pi_info->vector;
3894 ir_data->ga_tag = pi_data->ga_tag;
3895 ret = amd_iommu_activate_guest_mode(ir_data);
3896 if (!ret)
3897 ir_data->cached_ga_tag = pi_data->ga_tag;
3898 } else {
3899 ret = amd_iommu_deactivate_guest_mode(ir_data);
3900
3901 /*
3902 * This communicates the ga_tag back to the caller
3903 * so that it can do all the necessary clean up.
3904 */
3905 if (!ret)
3906 ir_data->cached_ga_tag = 0;
3907 }
3908
3909 return ret;
3910 }
3911
3912
amd_ir_update_irte(struct irq_data * irqd,struct amd_iommu * iommu,struct amd_ir_data * ir_data,struct irq_2_irte * irte_info,struct irq_cfg * cfg)3913 static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu,
3914 struct amd_ir_data *ir_data,
3915 struct irq_2_irte *irte_info,
3916 struct irq_cfg *cfg)
3917 {
3918
3919 /*
3920 * Atomically updates the IRTE with the new destination, vector
3921 * and flushes the interrupt entry cache.
3922 */
3923 iommu->irte_ops->set_affinity(iommu, ir_data->entry, irte_info->devid,
3924 irte_info->index, cfg->vector,
3925 cfg->dest_apicid);
3926 }
3927
amd_ir_set_affinity(struct irq_data * data,const struct cpumask * mask,bool force)3928 static int amd_ir_set_affinity(struct irq_data *data,
3929 const struct cpumask *mask, bool force)
3930 {
3931 struct amd_ir_data *ir_data = data->chip_data;
3932 struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
3933 struct irq_cfg *cfg = irqd_cfg(data);
3934 struct irq_data *parent = data->parent_data;
3935 struct amd_iommu *iommu = ir_data->iommu;
3936 int ret;
3937
3938 if (!iommu)
3939 return -ENODEV;
3940
3941 ret = parent->chip->irq_set_affinity(parent, mask, force);
3942 if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
3943 return ret;
3944
3945 amd_ir_update_irte(data, iommu, ir_data, irte_info, cfg);
3946 /*
3947 * After this point, all the interrupts will start arriving
3948 * at the new destination. So, time to cleanup the previous
3949 * vector allocation.
3950 */
3951 vector_schedule_cleanup(cfg);
3952
3953 return IRQ_SET_MASK_OK_DONE;
3954 }
3955
ir_compose_msi_msg(struct irq_data * irq_data,struct msi_msg * msg)3956 static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg)
3957 {
3958 struct amd_ir_data *ir_data = irq_data->chip_data;
3959
3960 *msg = ir_data->msi_entry;
3961 }
3962
3963 static struct irq_chip amd_ir_chip = {
3964 .name = "AMD-IR",
3965 .irq_ack = apic_ack_irq,
3966 .irq_set_affinity = amd_ir_set_affinity,
3967 .irq_set_vcpu_affinity = amd_ir_set_vcpu_affinity,
3968 .irq_compose_msi_msg = ir_compose_msi_msg,
3969 };
3970
3971 static const struct msi_parent_ops amdvi_msi_parent_ops = {
3972 .supported_flags = X86_VECTOR_MSI_FLAGS_SUPPORTED | MSI_FLAG_MULTI_PCI_MSI,
3973 .prefix = "IR-",
3974 .init_dev_msi_info = msi_parent_init_dev_msi_info,
3975 };
3976
amd_iommu_create_irq_domain(struct amd_iommu * iommu)3977 int amd_iommu_create_irq_domain(struct amd_iommu *iommu)
3978 {
3979 struct fwnode_handle *fn;
3980
3981 fn = irq_domain_alloc_named_id_fwnode("AMD-IR", iommu->index);
3982 if (!fn)
3983 return -ENOMEM;
3984 iommu->ir_domain = irq_domain_create_hierarchy(arch_get_ir_parent_domain(), 0, 0,
3985 fn, &amd_ir_domain_ops, iommu);
3986 if (!iommu->ir_domain) {
3987 irq_domain_free_fwnode(fn);
3988 return -ENOMEM;
3989 }
3990
3991 irq_domain_update_bus_token(iommu->ir_domain, DOMAIN_BUS_AMDVI);
3992 iommu->ir_domain->flags |= IRQ_DOMAIN_FLAG_MSI_PARENT |
3993 IRQ_DOMAIN_FLAG_ISOLATED_MSI;
3994 iommu->ir_domain->msi_parent_ops = &amdvi_msi_parent_ops;
3995
3996 return 0;
3997 }
3998
amd_iommu_update_ga(int cpu,bool is_run,void * data)3999 int amd_iommu_update_ga(int cpu, bool is_run, void *data)
4000 {
4001 struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
4002 struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
4003
4004 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
4005 !entry || !entry->lo.fields_vapic.guest_mode)
4006 return 0;
4007
4008 if (!ir_data->iommu)
4009 return -ENODEV;
4010
4011 if (cpu >= 0) {
4012 entry->lo.fields_vapic.destination =
4013 APICID_TO_IRTE_DEST_LO(cpu);
4014 entry->hi.fields.destination =
4015 APICID_TO_IRTE_DEST_HI(cpu);
4016 }
4017 entry->lo.fields_vapic.is_run = is_run;
4018
4019 return __modify_irte_ga(ir_data->iommu, ir_data->irq_2_irte.devid,
4020 ir_data->irq_2_irte.index, entry);
4021 }
4022 EXPORT_SYMBOL(amd_iommu_update_ga);
4023 #endif
4024