1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Generic pwmlib implementation
4 *
5 * Copyright (C) 2011 Sascha Hauer <s.hauer@pengutronix.de>
6 * Copyright (C) 2011-2012 Avionic Design GmbH
7 */
8
9 #define DEFAULT_SYMBOL_NAMESPACE "PWM"
10
11 #include <linux/acpi.h>
12 #include <linux/module.h>
13 #include <linux/idr.h>
14 #include <linux/of.h>
15 #include <linux/pwm.h>
16 #include <linux/list.h>
17 #include <linux/mutex.h>
18 #include <linux/err.h>
19 #include <linux/slab.h>
20 #include <linux/device.h>
21 #include <linux/debugfs.h>
22 #include <linux/seq_file.h>
23
24 #include <dt-bindings/pwm/pwm.h>
25
26 #include <uapi/linux/pwm.h>
27
28 #define CREATE_TRACE_POINTS
29 #include <trace/events/pwm.h>
30
31 #define PWM_MINOR_COUNT 256
32
33 /* protects access to pwm_chips */
34 static DEFINE_MUTEX(pwm_lock);
35
36 static DEFINE_IDR(pwm_chips);
37
pwmchip_lock(struct pwm_chip * chip)38 static void pwmchip_lock(struct pwm_chip *chip)
39 {
40 if (chip->atomic)
41 spin_lock(&chip->atomic_lock);
42 else
43 mutex_lock(&chip->nonatomic_lock);
44 }
45
pwmchip_unlock(struct pwm_chip * chip)46 static void pwmchip_unlock(struct pwm_chip *chip)
47 {
48 if (chip->atomic)
49 spin_unlock(&chip->atomic_lock);
50 else
51 mutex_unlock(&chip->nonatomic_lock);
52 }
53
DEFINE_GUARD(pwmchip,struct pwm_chip *,pwmchip_lock (_T),pwmchip_unlock (_T))54 DEFINE_GUARD(pwmchip, struct pwm_chip *, pwmchip_lock(_T), pwmchip_unlock(_T))
55
56 static bool pwm_wf_valid(const struct pwm_waveform *wf)
57 {
58 /*
59 * For now restrict waveforms to period_length_ns <= S64_MAX to provide
60 * some space for future extensions. One possibility is to simplify
61 * representing waveforms with inverted polarity using negative values
62 * somehow.
63 */
64 if (wf->period_length_ns > S64_MAX)
65 return false;
66
67 if (wf->duty_length_ns > wf->period_length_ns)
68 return false;
69
70 /*
71 * .duty_offset_ns is supposed to be smaller than .period_length_ns, apart
72 * from the corner case .duty_offset_ns == 0 && .period_length_ns == 0.
73 */
74 if (wf->duty_offset_ns && wf->duty_offset_ns >= wf->period_length_ns)
75 return false;
76
77 return true;
78 }
79
pwm_wf2state(const struct pwm_waveform * wf,struct pwm_state * state)80 static void pwm_wf2state(const struct pwm_waveform *wf, struct pwm_state *state)
81 {
82 if (wf->period_length_ns) {
83 if (wf->duty_length_ns + wf->duty_offset_ns < wf->period_length_ns)
84 *state = (struct pwm_state){
85 .enabled = true,
86 .polarity = PWM_POLARITY_NORMAL,
87 .period = wf->period_length_ns,
88 .duty_cycle = wf->duty_length_ns,
89 };
90 else
91 *state = (struct pwm_state){
92 .enabled = true,
93 .polarity = PWM_POLARITY_INVERSED,
94 .period = wf->period_length_ns,
95 .duty_cycle = wf->period_length_ns - wf->duty_length_ns,
96 };
97 } else {
98 *state = (struct pwm_state){
99 .enabled = false,
100 };
101 }
102 }
103
pwm_state2wf(const struct pwm_state * state,struct pwm_waveform * wf)104 static void pwm_state2wf(const struct pwm_state *state, struct pwm_waveform *wf)
105 {
106 if (state->enabled) {
107 if (state->polarity == PWM_POLARITY_NORMAL)
108 *wf = (struct pwm_waveform){
109 .period_length_ns = state->period,
110 .duty_length_ns = state->duty_cycle,
111 .duty_offset_ns = 0,
112 };
113 else
114 *wf = (struct pwm_waveform){
115 .period_length_ns = state->period,
116 .duty_length_ns = state->period - state->duty_cycle,
117 .duty_offset_ns = state->duty_cycle,
118 };
119 } else {
120 *wf = (struct pwm_waveform){
121 .period_length_ns = 0,
122 };
123 }
124 }
125
pwmwfcmp(const struct pwm_waveform * a,const struct pwm_waveform * b)126 static int pwmwfcmp(const struct pwm_waveform *a, const struct pwm_waveform *b)
127 {
128 if (a->period_length_ns > b->period_length_ns)
129 return 1;
130
131 if (a->period_length_ns < b->period_length_ns)
132 return -1;
133
134 if (a->duty_length_ns > b->duty_length_ns)
135 return 1;
136
137 if (a->duty_length_ns < b->duty_length_ns)
138 return -1;
139
140 if (a->duty_offset_ns > b->duty_offset_ns)
141 return 1;
142
143 if (a->duty_offset_ns < b->duty_offset_ns)
144 return -1;
145
146 return 0;
147 }
148
pwm_check_rounding(const struct pwm_waveform * wf,const struct pwm_waveform * wf_rounded)149 static bool pwm_check_rounding(const struct pwm_waveform *wf,
150 const struct pwm_waveform *wf_rounded)
151 {
152 if (!wf->period_length_ns)
153 return true;
154
155 if (wf->period_length_ns < wf_rounded->period_length_ns)
156 return false;
157
158 if (wf->duty_length_ns < wf_rounded->duty_length_ns)
159 return false;
160
161 if (wf->duty_offset_ns < wf_rounded->duty_offset_ns)
162 return false;
163
164 return true;
165 }
166
__pwm_round_waveform_tohw(struct pwm_chip * chip,struct pwm_device * pwm,const struct pwm_waveform * wf,void * wfhw)167 static int __pwm_round_waveform_tohw(struct pwm_chip *chip, struct pwm_device *pwm,
168 const struct pwm_waveform *wf, void *wfhw)
169 {
170 const struct pwm_ops *ops = chip->ops;
171 int ret;
172
173 ret = ops->round_waveform_tohw(chip, pwm, wf, wfhw);
174 trace_pwm_round_waveform_tohw(pwm, wf, wfhw, ret);
175
176 return ret;
177 }
178
__pwm_round_waveform_fromhw(struct pwm_chip * chip,struct pwm_device * pwm,const void * wfhw,struct pwm_waveform * wf)179 static int __pwm_round_waveform_fromhw(struct pwm_chip *chip, struct pwm_device *pwm,
180 const void *wfhw, struct pwm_waveform *wf)
181 {
182 const struct pwm_ops *ops = chip->ops;
183 int ret;
184
185 ret = ops->round_waveform_fromhw(chip, pwm, wfhw, wf);
186 trace_pwm_round_waveform_fromhw(pwm, wfhw, wf, ret);
187
188 return ret;
189 }
190
__pwm_read_waveform(struct pwm_chip * chip,struct pwm_device * pwm,void * wfhw)191 static int __pwm_read_waveform(struct pwm_chip *chip, struct pwm_device *pwm, void *wfhw)
192 {
193 const struct pwm_ops *ops = chip->ops;
194 int ret;
195
196 ret = ops->read_waveform(chip, pwm, wfhw);
197 trace_pwm_read_waveform(pwm, wfhw, ret);
198
199 return ret;
200 }
201
__pwm_write_waveform(struct pwm_chip * chip,struct pwm_device * pwm,const void * wfhw)202 static int __pwm_write_waveform(struct pwm_chip *chip, struct pwm_device *pwm, const void *wfhw)
203 {
204 const struct pwm_ops *ops = chip->ops;
205 int ret;
206
207 ret = ops->write_waveform(chip, pwm, wfhw);
208 trace_pwm_write_waveform(pwm, wfhw, ret);
209
210 return ret;
211 }
212
213 /**
214 * pwm_round_waveform_might_sleep - Query hardware capabilities
215 * Cannot be used in atomic context.
216 * @pwm: PWM device
217 * @wf: waveform to round and output parameter
218 *
219 * Typically a given waveform cannot be implemented exactly by hardware, e.g.
220 * because hardware only supports coarse period resolution or no duty_offset.
221 * This function returns the actually implemented waveform if you pass @wf to
222 * pwm_set_waveform_might_sleep() now.
223 *
224 * Note however that the world doesn't stop turning when you call it, so when
225 * doing::
226 *
227 * pwm_round_waveform_might_sleep(mypwm, &wf);
228 * pwm_set_waveform_might_sleep(mypwm, &wf, true);
229 *
230 * the latter might fail, e.g. because an input clock changed its rate between
231 * these two calls and the waveform determined by
232 * pwm_round_waveform_might_sleep() cannot be implemented any more.
233 *
234 * Usually all values passed in @wf are rounded down to the nearest possible
235 * value (in the order period_length_ns, duty_length_ns and then
236 * duty_offset_ns). Only if this isn't possible, a value might grow. See the
237 * documentation for pwm_set_waveform_might_sleep() for a more formal
238 * description.
239 *
240 * Returns: 0 on success, 1 if at least one value had to be rounded up or a
241 * negative errno.
242 * Context: May sleep.
243 */
pwm_round_waveform_might_sleep(struct pwm_device * pwm,struct pwm_waveform * wf)244 int pwm_round_waveform_might_sleep(struct pwm_device *pwm, struct pwm_waveform *wf)
245 {
246 struct pwm_chip *chip = pwm->chip;
247 const struct pwm_ops *ops = chip->ops;
248 struct pwm_waveform wf_req = *wf;
249 char wfhw[PWM_WFHWSIZE];
250 int ret_tohw, ret_fromhw;
251
252 BUG_ON(PWM_WFHWSIZE < ops->sizeof_wfhw);
253
254 if (!pwmchip_supports_waveform(chip))
255 return -EOPNOTSUPP;
256
257 if (!pwm_wf_valid(wf))
258 return -EINVAL;
259
260 guard(pwmchip)(chip);
261
262 if (!chip->operational)
263 return -ENODEV;
264
265 ret_tohw = __pwm_round_waveform_tohw(chip, pwm, wf, wfhw);
266 if (ret_tohw < 0)
267 return ret_tohw;
268
269 if (IS_ENABLED(CONFIG_PWM_DEBUG) && ret_tohw > 1)
270 dev_err(&chip->dev, "Unexpected return value from __pwm_round_waveform_tohw: requested %llu/%llu [+%llu], return value %d\n",
271 wf_req.duty_length_ns, wf_req.period_length_ns, wf_req.duty_offset_ns, ret_tohw);
272
273 ret_fromhw = __pwm_round_waveform_fromhw(chip, pwm, wfhw, wf);
274 if (ret_fromhw < 0)
275 return ret_fromhw;
276
277 if (IS_ENABLED(CONFIG_PWM_DEBUG) && ret_fromhw > 0)
278 dev_err(&chip->dev, "Unexpected return value from __pwm_round_waveform_fromhw: requested %llu/%llu [+%llu], return value %d\n",
279 wf_req.duty_length_ns, wf_req.period_length_ns, wf_req.duty_offset_ns, ret_tohw);
280
281 if (IS_ENABLED(CONFIG_PWM_DEBUG) &&
282 (ret_tohw == 0) != pwm_check_rounding(&wf_req, wf))
283 dev_err(&chip->dev, "Wrong rounding: requested %llu/%llu [+%llu], result %llu/%llu [+%llu], ret: %d\n",
284 wf_req.duty_length_ns, wf_req.period_length_ns, wf_req.duty_offset_ns,
285 wf->duty_length_ns, wf->period_length_ns, wf->duty_offset_ns, ret_tohw);
286
287 return ret_tohw;
288 }
289 EXPORT_SYMBOL_GPL(pwm_round_waveform_might_sleep);
290
291 /**
292 * pwm_get_waveform_might_sleep - Query hardware about current configuration
293 * Cannot be used in atomic context.
294 * @pwm: PWM device
295 * @wf: output parameter
296 *
297 * Stores the current configuration of the PWM in @wf. Note this is the
298 * equivalent of pwm_get_state_hw() (and not pwm_get_state()) for pwm_waveform.
299 *
300 * Returns: 0 on success or a negative errno
301 * Context: May sleep.
302 */
pwm_get_waveform_might_sleep(struct pwm_device * pwm,struct pwm_waveform * wf)303 int pwm_get_waveform_might_sleep(struct pwm_device *pwm, struct pwm_waveform *wf)
304 {
305 struct pwm_chip *chip = pwm->chip;
306 const struct pwm_ops *ops = chip->ops;
307 char wfhw[PWM_WFHWSIZE];
308 int err;
309
310 BUG_ON(PWM_WFHWSIZE < ops->sizeof_wfhw);
311
312 if (!pwmchip_supports_waveform(chip) || !ops->read_waveform)
313 return -EOPNOTSUPP;
314
315 guard(pwmchip)(chip);
316
317 if (!chip->operational)
318 return -ENODEV;
319
320 err = __pwm_read_waveform(chip, pwm, &wfhw);
321 if (err)
322 return err;
323
324 return __pwm_round_waveform_fromhw(chip, pwm, &wfhw, wf);
325 }
326 EXPORT_SYMBOL_GPL(pwm_get_waveform_might_sleep);
327
328 /* Called with the pwmchip lock held */
__pwm_set_waveform(struct pwm_device * pwm,const struct pwm_waveform * wf,bool exact)329 static int __pwm_set_waveform(struct pwm_device *pwm,
330 const struct pwm_waveform *wf,
331 bool exact)
332 {
333 struct pwm_chip *chip = pwm->chip;
334 const struct pwm_ops *ops = chip->ops;
335 char wfhw[PWM_WFHWSIZE];
336 struct pwm_waveform wf_rounded;
337 int err, ret_tohw;
338
339 BUG_ON(PWM_WFHWSIZE < ops->sizeof_wfhw);
340
341 if (!pwmchip_supports_waveform(chip))
342 return -EOPNOTSUPP;
343
344 if (!pwm_wf_valid(wf))
345 return -EINVAL;
346
347 ret_tohw = __pwm_round_waveform_tohw(chip, pwm, wf, &wfhw);
348 if (ret_tohw < 0)
349 return ret_tohw;
350
351 if ((IS_ENABLED(CONFIG_PWM_DEBUG) || exact) && wf->period_length_ns) {
352 err = __pwm_round_waveform_fromhw(chip, pwm, &wfhw, &wf_rounded);
353 if (err)
354 return err;
355
356 if (IS_ENABLED(CONFIG_PWM_DEBUG) && (ret_tohw == 0) != pwm_check_rounding(wf, &wf_rounded))
357 dev_err(&chip->dev, "Wrong rounding: requested %llu/%llu [+%llu], result %llu/%llu [+%llu], ret: %d\n",
358 wf->duty_length_ns, wf->period_length_ns, wf->duty_offset_ns,
359 wf_rounded.duty_length_ns, wf_rounded.period_length_ns, wf_rounded.duty_offset_ns, ret_tohw);
360
361 if (exact && pwmwfcmp(wf, &wf_rounded)) {
362 dev_dbg(&chip->dev, "Requested no rounding, but %llu/%llu [+%llu] -> %llu/%llu [+%llu]\n",
363 wf->duty_length_ns, wf->period_length_ns, wf->duty_offset_ns,
364 wf_rounded.duty_length_ns, wf_rounded.period_length_ns, wf_rounded.duty_offset_ns);
365
366 return 1;
367 }
368 }
369
370 err = __pwm_write_waveform(chip, pwm, &wfhw);
371 if (err)
372 return err;
373
374 /* update .state */
375 pwm_wf2state(wf, &pwm->state);
376
377 if (IS_ENABLED(CONFIG_PWM_DEBUG) && ops->read_waveform && wf->period_length_ns) {
378 struct pwm_waveform wf_set;
379
380 err = __pwm_read_waveform(chip, pwm, &wfhw);
381 if (err)
382 /* maybe ignore? */
383 return err;
384
385 err = __pwm_round_waveform_fromhw(chip, pwm, &wfhw, &wf_set);
386 if (err)
387 /* maybe ignore? */
388 return err;
389
390 if (pwmwfcmp(&wf_set, &wf_rounded) != 0)
391 dev_err(&chip->dev,
392 "Unexpected setting: requested %llu/%llu [+%llu], expected %llu/%llu [+%llu], set %llu/%llu [+%llu]\n",
393 wf->duty_length_ns, wf->period_length_ns, wf->duty_offset_ns,
394 wf_rounded.duty_length_ns, wf_rounded.period_length_ns, wf_rounded.duty_offset_ns,
395 wf_set.duty_length_ns, wf_set.period_length_ns, wf_set.duty_offset_ns);
396 }
397
398 return ret_tohw;
399 }
400
401 /**
402 * pwm_set_waveform_might_sleep - Apply a new waveform
403 * Cannot be used in atomic context.
404 * @pwm: PWM device
405 * @wf: The waveform to apply
406 * @exact: If true no rounding is allowed
407 *
408 * Typically a requested waveform cannot be implemented exactly, e.g. because
409 * you requested .period_length_ns = 100 ns, but the hardware can only set
410 * periods that are a multiple of 8.5 ns. With that hardware passing @exact =
411 * true results in pwm_set_waveform_might_sleep() failing and returning -EDOM.
412 * If @exact = false you get a period of 93.5 ns (i.e. the biggest period not
413 * bigger than the requested value).
414 * Note that even with @exact = true, some rounding by less than 1 ns is
415 * possible/needed. In the above example requesting .period_length_ns = 94 and
416 * @exact = true, you get the hardware configured with period = 93.5 ns.
417 *
418 * Let C be the set of possible hardware configurations for a given PWM device,
419 * consisting of tuples (p, d, o) where p is the period length, d is the duty
420 * length and o the duty offset.
421 *
422 * The following algorithm is implemented to pick the hardware setting
423 * (p, d, o) ∈ C for a given request (p', d', o') with @exact = false::
424 *
425 * p = max( { ṗ | ∃ ḋ, ȯ : (ṗ, ḋ, ȯ) ∈ C ∧ ṗ ≤ p' } ∪ { min({ ṗ | ∃ ḋ, ȯ : (ṗ, ḋ, ȯ) ∈ C }) })
426 * d = max( { ḋ | ∃ ȯ : (p, ḋ, ȯ) ∈ C ∧ ḋ ≤ d' } ∪ { min({ ḋ | ∃ ȯ : (p, ḋ, ȯ) ∈ C }) })
427 * o = max( { ȯ | (p, d, ȯ) ∈ C ∧ ȯ ≤ o' } ∪ { min({ ȯ | (p, d, ȯ) ∈ C }) })
428 *
429 * In words: The chosen period length is the maximal possible period length not
430 * bigger than the requested period length and if that doesn't exist, the
431 * minimal period length. The chosen duty length is the maximal possible duty
432 * length that is compatible with the chosen period length and isn't bigger than
433 * the requested duty length. Again if such a value doesn't exist, the minimal
434 * duty length compatible with the chosen period is picked. After that the duty
435 * offset compatible with the chosen period and duty length is chosen in the
436 * same way.
437 *
438 * Returns: 0 on success, -EDOM if setting failed due to the exact waveform not
439 * being possible (if @exact), or a different negative errno on failure.
440 * Context: May sleep.
441 */
pwm_set_waveform_might_sleep(struct pwm_device * pwm,const struct pwm_waveform * wf,bool exact)442 int pwm_set_waveform_might_sleep(struct pwm_device *pwm,
443 const struct pwm_waveform *wf, bool exact)
444 {
445 struct pwm_chip *chip = pwm->chip;
446 int err;
447
448 might_sleep();
449
450 guard(pwmchip)(chip);
451
452 if (!chip->operational)
453 return -ENODEV;
454
455 if (IS_ENABLED(CONFIG_PWM_DEBUG) && chip->atomic) {
456 /*
457 * Catch any drivers that have been marked as atomic but
458 * that will sleep anyway.
459 */
460 non_block_start();
461 err = __pwm_set_waveform(pwm, wf, exact);
462 non_block_end();
463 } else {
464 err = __pwm_set_waveform(pwm, wf, exact);
465 }
466
467 /*
468 * map err == 1 to -EDOM for exact requests and 0 for !exact ones. Also
469 * make sure that -EDOM is only returned in exactly that case. Note that
470 * __pwm_set_waveform() should never return -EDOM which justifies the
471 * unlikely().
472 */
473 if (unlikely(err == -EDOM))
474 err = -EINVAL;
475 else if (exact && err == 1)
476 err = -EDOM;
477 else if (err == 1)
478 err = 0;
479
480 return err;
481 }
482 EXPORT_SYMBOL_GPL(pwm_set_waveform_might_sleep);
483
pwm_apply_debug(struct pwm_device * pwm,const struct pwm_state * state)484 static void pwm_apply_debug(struct pwm_device *pwm,
485 const struct pwm_state *state)
486 {
487 struct pwm_state *last = &pwm->last;
488 struct pwm_chip *chip = pwm->chip;
489 struct pwm_state s1 = { 0 }, s2 = { 0 };
490 int err;
491
492 if (!IS_ENABLED(CONFIG_PWM_DEBUG))
493 return;
494
495 /* No reasonable diagnosis possible without .get_state() */
496 if (!chip->ops->get_state)
497 return;
498
499 /*
500 * *state was just applied. Read out the hardware state and do some
501 * checks.
502 */
503
504 err = chip->ops->get_state(chip, pwm, &s1);
505 trace_pwm_get(pwm, &s1, err);
506 if (err)
507 /* If that failed there isn't much to debug */
508 return;
509
510 /*
511 * The lowlevel driver either ignored .polarity (which is a bug) or as
512 * best effort inverted .polarity and fixed .duty_cycle respectively.
513 * Undo this inversion and fixup for further tests.
514 */
515 if (s1.enabled && s1.polarity != state->polarity) {
516 s2.polarity = state->polarity;
517 s2.duty_cycle = s1.period - s1.duty_cycle;
518 s2.period = s1.period;
519 s2.enabled = s1.enabled;
520 } else {
521 s2 = s1;
522 }
523
524 if (s2.polarity != state->polarity &&
525 state->duty_cycle < state->period)
526 dev_warn(pwmchip_parent(chip), ".apply ignored .polarity\n");
527
528 if (state->enabled && s2.enabled &&
529 last->polarity == state->polarity &&
530 last->period > s2.period &&
531 last->period <= state->period)
532 dev_warn(pwmchip_parent(chip),
533 ".apply didn't pick the best available period (requested: %llu, applied: %llu, possible: %llu)\n",
534 state->period, s2.period, last->period);
535
536 /*
537 * Rounding period up is fine only if duty_cycle is 0 then, because a
538 * flat line doesn't have a characteristic period.
539 */
540 if (state->enabled && s2.enabled && state->period < s2.period && s2.duty_cycle)
541 dev_warn(pwmchip_parent(chip),
542 ".apply is supposed to round down period (requested: %llu, applied: %llu)\n",
543 state->period, s2.period);
544
545 if (state->enabled &&
546 last->polarity == state->polarity &&
547 last->period == s2.period &&
548 last->duty_cycle > s2.duty_cycle &&
549 last->duty_cycle <= state->duty_cycle)
550 dev_warn(pwmchip_parent(chip),
551 ".apply didn't pick the best available duty cycle (requested: %llu/%llu, applied: %llu/%llu, possible: %llu/%llu)\n",
552 state->duty_cycle, state->period,
553 s2.duty_cycle, s2.period,
554 last->duty_cycle, last->period);
555
556 if (state->enabled && s2.enabled && state->duty_cycle < s2.duty_cycle)
557 dev_warn(pwmchip_parent(chip),
558 ".apply is supposed to round down duty_cycle (requested: %llu/%llu, applied: %llu/%llu)\n",
559 state->duty_cycle, state->period,
560 s2.duty_cycle, s2.period);
561
562 if (!state->enabled && s2.enabled && s2.duty_cycle > 0)
563 dev_warn(pwmchip_parent(chip),
564 "requested disabled, but yielded enabled with duty > 0\n");
565
566 /* reapply the state that the driver reported being configured. */
567 err = chip->ops->apply(chip, pwm, &s1);
568 trace_pwm_apply(pwm, &s1, err);
569 if (err) {
570 *last = s1;
571 dev_err(pwmchip_parent(chip), "failed to reapply current setting\n");
572 return;
573 }
574
575 *last = (struct pwm_state){ 0 };
576 err = chip->ops->get_state(chip, pwm, last);
577 trace_pwm_get(pwm, last, err);
578 if (err)
579 return;
580
581 /* reapplication of the current state should give an exact match */
582 if (s1.enabled != last->enabled ||
583 s1.polarity != last->polarity ||
584 (s1.enabled && s1.period != last->period) ||
585 (s1.enabled && s1.duty_cycle != last->duty_cycle)) {
586 dev_err(pwmchip_parent(chip),
587 ".apply is not idempotent (ena=%d pol=%d %llu/%llu) -> (ena=%d pol=%d %llu/%llu)\n",
588 s1.enabled, s1.polarity, s1.duty_cycle, s1.period,
589 last->enabled, last->polarity, last->duty_cycle,
590 last->period);
591 }
592 }
593
pwm_state_valid(const struct pwm_state * state)594 static bool pwm_state_valid(const struct pwm_state *state)
595 {
596 /*
597 * For a disabled state all other state description is irrelevant and
598 * and supposed to be ignored. So also ignore any strange values and
599 * consider the state ok.
600 */
601 if (!state->enabled)
602 return true;
603
604 if (!state->period)
605 return false;
606
607 if (state->duty_cycle > state->period)
608 return false;
609
610 return true;
611 }
612
__pwm_apply(struct pwm_device * pwm,const struct pwm_state * state)613 static int __pwm_apply(struct pwm_device *pwm, const struct pwm_state *state)
614 {
615 struct pwm_chip *chip;
616 const struct pwm_ops *ops;
617 int err;
618
619 if (!pwm || !state)
620 return -EINVAL;
621
622 if (!pwm_state_valid(state)) {
623 /*
624 * Allow to transition from one invalid state to another.
625 * This ensures that you can e.g. change the polarity while
626 * the period is zero. (This happens on stm32 when the hardware
627 * is in its poweron default state.) This greatly simplifies
628 * working with the sysfs API where you can only change one
629 * parameter at a time.
630 */
631 if (!pwm_state_valid(&pwm->state)) {
632 pwm->state = *state;
633 return 0;
634 }
635
636 return -EINVAL;
637 }
638
639 chip = pwm->chip;
640 ops = chip->ops;
641
642 if (state->period == pwm->state.period &&
643 state->duty_cycle == pwm->state.duty_cycle &&
644 state->polarity == pwm->state.polarity &&
645 state->enabled == pwm->state.enabled &&
646 state->usage_power == pwm->state.usage_power)
647 return 0;
648
649 if (pwmchip_supports_waveform(chip)) {
650 struct pwm_waveform wf;
651 char wfhw[PWM_WFHWSIZE];
652
653 BUG_ON(PWM_WFHWSIZE < ops->sizeof_wfhw);
654
655 pwm_state2wf(state, &wf);
656
657 /*
658 * The rounding is wrong here for states with inverted polarity.
659 * While .apply() rounds down duty_cycle (which represents the
660 * time from the start of the period to the inner edge),
661 * .round_waveform_tohw() rounds down the time the PWM is high.
662 * Can be fixed if the need arises, until reported otherwise
663 * let's assume that consumers don't care.
664 */
665
666 err = __pwm_round_waveform_tohw(chip, pwm, &wf, &wfhw);
667 if (err) {
668 if (err > 0)
669 /*
670 * This signals an invalid request, typically
671 * the requested period (or duty_offset) is
672 * smaller than possible with the hardware.
673 */
674 return -EINVAL;
675
676 return err;
677 }
678
679 if (IS_ENABLED(CONFIG_PWM_DEBUG)) {
680 struct pwm_waveform wf_rounded;
681
682 err = __pwm_round_waveform_fromhw(chip, pwm, &wfhw, &wf_rounded);
683 if (err)
684 return err;
685
686 if (!pwm_check_rounding(&wf, &wf_rounded))
687 dev_err(&chip->dev, "Wrong rounding: requested %llu/%llu [+%llu], result %llu/%llu [+%llu]\n",
688 wf.duty_length_ns, wf.period_length_ns, wf.duty_offset_ns,
689 wf_rounded.duty_length_ns, wf_rounded.period_length_ns, wf_rounded.duty_offset_ns);
690 }
691
692 err = __pwm_write_waveform(chip, pwm, &wfhw);
693 if (err)
694 return err;
695
696 pwm->state = *state;
697
698 } else {
699 err = ops->apply(chip, pwm, state);
700 trace_pwm_apply(pwm, state, err);
701 if (err)
702 return err;
703
704 pwm->state = *state;
705
706 /*
707 * only do this after pwm->state was applied as some
708 * implementations of .get_state() depend on this
709 */
710 pwm_apply_debug(pwm, state);
711 }
712
713 return 0;
714 }
715
716 /**
717 * pwm_apply_might_sleep() - atomically apply a new state to a PWM device
718 * Cannot be used in atomic context.
719 * @pwm: PWM device
720 * @state: new state to apply
721 *
722 * Returns: 0 on success, or a negative errno
723 * Context: May sleep.
724 */
pwm_apply_might_sleep(struct pwm_device * pwm,const struct pwm_state * state)725 int pwm_apply_might_sleep(struct pwm_device *pwm, const struct pwm_state *state)
726 {
727 int err;
728 struct pwm_chip *chip = pwm->chip;
729
730 /*
731 * Some lowlevel driver's implementations of .apply() make use of
732 * mutexes, also with some drivers only returning when the new
733 * configuration is active calling pwm_apply_might_sleep() from atomic context
734 * is a bad idea. So make it explicit that calling this function might
735 * sleep.
736 */
737 might_sleep();
738
739 guard(pwmchip)(chip);
740
741 if (!chip->operational)
742 return -ENODEV;
743
744 if (IS_ENABLED(CONFIG_PWM_DEBUG) && chip->atomic) {
745 /*
746 * Catch any drivers that have been marked as atomic but
747 * that will sleep anyway.
748 */
749 non_block_start();
750 err = __pwm_apply(pwm, state);
751 non_block_end();
752 } else {
753 err = __pwm_apply(pwm, state);
754 }
755
756 return err;
757 }
758 EXPORT_SYMBOL_GPL(pwm_apply_might_sleep);
759
760 /**
761 * pwm_apply_atomic() - apply a new state to a PWM device from atomic context
762 * Not all PWM devices support this function, check with pwm_might_sleep().
763 * @pwm: PWM device
764 * @state: new state to apply
765 *
766 * Returns: 0 on success, or a negative errno
767 * Context: Any
768 */
pwm_apply_atomic(struct pwm_device * pwm,const struct pwm_state * state)769 int pwm_apply_atomic(struct pwm_device *pwm, const struct pwm_state *state)
770 {
771 struct pwm_chip *chip = pwm->chip;
772
773 WARN_ONCE(!chip->atomic,
774 "sleeping PWM driver used in atomic context\n");
775
776 guard(pwmchip)(chip);
777
778 if (!chip->operational)
779 return -ENODEV;
780
781 return __pwm_apply(pwm, state);
782 }
783 EXPORT_SYMBOL_GPL(pwm_apply_atomic);
784
785 /**
786 * pwm_get_state_hw() - get the current PWM state from hardware
787 * @pwm: PWM device
788 * @state: state to fill with the current PWM state
789 *
790 * Similar to pwm_get_state() but reads the current PWM state from hardware
791 * instead of the requested state.
792 *
793 * Returns: 0 on success or a negative error code on failure.
794 * Context: May sleep.
795 */
pwm_get_state_hw(struct pwm_device * pwm,struct pwm_state * state)796 int pwm_get_state_hw(struct pwm_device *pwm, struct pwm_state *state)
797 {
798 struct pwm_chip *chip = pwm->chip;
799 const struct pwm_ops *ops = chip->ops;
800 int ret = -EOPNOTSUPP;
801
802 might_sleep();
803
804 guard(pwmchip)(chip);
805
806 if (!chip->operational)
807 return -ENODEV;
808
809 if (pwmchip_supports_waveform(chip) && ops->read_waveform) {
810 char wfhw[PWM_WFHWSIZE];
811 struct pwm_waveform wf;
812
813 BUG_ON(PWM_WFHWSIZE < ops->sizeof_wfhw);
814
815 ret = __pwm_read_waveform(chip, pwm, &wfhw);
816 if (ret)
817 return ret;
818
819 ret = __pwm_round_waveform_fromhw(chip, pwm, &wfhw, &wf);
820 if (ret)
821 return ret;
822
823 pwm_wf2state(&wf, state);
824
825 } else if (ops->get_state) {
826 ret = ops->get_state(chip, pwm, state);
827 trace_pwm_get(pwm, state, ret);
828 }
829
830 return ret;
831 }
832 EXPORT_SYMBOL_GPL(pwm_get_state_hw);
833
834 /**
835 * pwm_adjust_config() - adjust the current PWM config to the PWM arguments
836 * @pwm: PWM device
837 *
838 * This function will adjust the PWM config to the PWM arguments provided
839 * by the DT or PWM lookup table. This is particularly useful to adapt
840 * the bootloader config to the Linux one.
841 *
842 * Returns: 0 on success or a negative error code on failure.
843 * Context: May sleep.
844 */
pwm_adjust_config(struct pwm_device * pwm)845 int pwm_adjust_config(struct pwm_device *pwm)
846 {
847 struct pwm_state state;
848 struct pwm_args pargs;
849
850 pwm_get_args(pwm, &pargs);
851 pwm_get_state(pwm, &state);
852
853 /*
854 * If the current period is zero it means that either the PWM driver
855 * does not support initial state retrieval or the PWM has not yet
856 * been configured.
857 *
858 * In either case, we setup the new period and polarity, and assign a
859 * duty cycle of 0.
860 */
861 if (!state.period) {
862 state.duty_cycle = 0;
863 state.period = pargs.period;
864 state.polarity = pargs.polarity;
865
866 return pwm_apply_might_sleep(pwm, &state);
867 }
868
869 /*
870 * Adjust the PWM duty cycle/period based on the period value provided
871 * in PWM args.
872 */
873 if (pargs.period != state.period) {
874 u64 dutycycle = (u64)state.duty_cycle * pargs.period;
875
876 do_div(dutycycle, state.period);
877 state.duty_cycle = dutycycle;
878 state.period = pargs.period;
879 }
880
881 /*
882 * If the polarity changed, we should also change the duty cycle.
883 */
884 if (pargs.polarity != state.polarity) {
885 state.polarity = pargs.polarity;
886 state.duty_cycle = state.period - state.duty_cycle;
887 }
888
889 return pwm_apply_might_sleep(pwm, &state);
890 }
891 EXPORT_SYMBOL_GPL(pwm_adjust_config);
892
893 /**
894 * pwm_capture() - capture and report a PWM signal
895 * @pwm: PWM device
896 * @result: structure to fill with capture result
897 * @timeout: time to wait, in milliseconds, before giving up on capture
898 *
899 * Returns: 0 on success or a negative error code on failure.
900 */
pwm_capture(struct pwm_device * pwm,struct pwm_capture * result,unsigned long timeout)901 static int pwm_capture(struct pwm_device *pwm, struct pwm_capture *result,
902 unsigned long timeout)
903 {
904 struct pwm_chip *chip = pwm->chip;
905 const struct pwm_ops *ops = chip->ops;
906
907 if (!ops->capture)
908 return -ENOSYS;
909
910 /*
911 * Holding the pwm_lock is probably not needed. If you use pwm_capture()
912 * and you're interested to speed it up, please convince yourself it's
913 * really not needed, test and then suggest a patch on the mailing list.
914 */
915 guard(mutex)(&pwm_lock);
916
917 guard(pwmchip)(chip);
918
919 if (!chip->operational)
920 return -ENODEV;
921
922 return ops->capture(chip, pwm, result, timeout);
923 }
924
pwmchip_find_by_name(const char * name)925 static struct pwm_chip *pwmchip_find_by_name(const char *name)
926 {
927 struct pwm_chip *chip;
928 unsigned long id, tmp;
929
930 if (!name)
931 return NULL;
932
933 guard(mutex)(&pwm_lock);
934
935 idr_for_each_entry_ul(&pwm_chips, chip, tmp, id) {
936 if (device_match_name(pwmchip_parent(chip), name))
937 return chip;
938 }
939
940 return NULL;
941 }
942
pwm_device_request(struct pwm_device * pwm,const char * label)943 static int pwm_device_request(struct pwm_device *pwm, const char *label)
944 {
945 int err;
946 struct pwm_chip *chip = pwm->chip;
947 const struct pwm_ops *ops = chip->ops;
948
949 if (test_bit(PWMF_REQUESTED, &pwm->flags))
950 return -EBUSY;
951
952 /*
953 * This function is called while holding pwm_lock. As .operational only
954 * changes while holding this lock, checking it here without holding the
955 * chip lock is fine.
956 */
957 if (!chip->operational)
958 return -ENODEV;
959
960 if (!try_module_get(chip->owner))
961 return -ENODEV;
962
963 if (!get_device(&chip->dev)) {
964 err = -ENODEV;
965 goto err_get_device;
966 }
967
968 if (ops->request) {
969 err = ops->request(chip, pwm);
970 if (err) {
971 put_device(&chip->dev);
972 err_get_device:
973 module_put(chip->owner);
974 return err;
975 }
976 }
977
978 if (ops->read_waveform || ops->get_state) {
979 /*
980 * Zero-initialize state because most drivers are unaware of
981 * .usage_power. The other members of state are supposed to be
982 * set by lowlevel drivers. We still initialize the whole
983 * structure for simplicity even though this might paper over
984 * faulty implementations of .get_state().
985 */
986 struct pwm_state state = { 0, };
987
988 err = pwm_get_state_hw(pwm, &state);
989 if (!err)
990 pwm->state = state;
991
992 if (IS_ENABLED(CONFIG_PWM_DEBUG))
993 pwm->last = pwm->state;
994 }
995
996 set_bit(PWMF_REQUESTED, &pwm->flags);
997 pwm->label = label;
998
999 return 0;
1000 }
1001
1002 /**
1003 * pwm_request_from_chip() - request a PWM device relative to a PWM chip
1004 * @chip: PWM chip
1005 * @index: per-chip index of the PWM to request
1006 * @label: a literal description string of this PWM
1007 *
1008 * Returns: A pointer to the PWM device at the given index of the given PWM
1009 * chip. A negative error code is returned if the index is not valid for the
1010 * specified PWM chip or if the PWM device cannot be requested.
1011 */
pwm_request_from_chip(struct pwm_chip * chip,unsigned int index,const char * label)1012 static struct pwm_device *pwm_request_from_chip(struct pwm_chip *chip,
1013 unsigned int index,
1014 const char *label)
1015 {
1016 struct pwm_device *pwm;
1017 int err;
1018
1019 if (!chip || index >= chip->npwm)
1020 return ERR_PTR(-EINVAL);
1021
1022 guard(mutex)(&pwm_lock);
1023
1024 pwm = &chip->pwms[index];
1025
1026 err = pwm_device_request(pwm, label);
1027 if (err < 0)
1028 return ERR_PTR(err);
1029
1030 return pwm;
1031 }
1032
1033 struct pwm_device *
of_pwm_xlate_with_flags(struct pwm_chip * chip,const struct of_phandle_args * args)1034 of_pwm_xlate_with_flags(struct pwm_chip *chip, const struct of_phandle_args *args)
1035 {
1036 struct pwm_device *pwm;
1037
1038 /* period in the second cell and flags in the third cell are optional */
1039 if (args->args_count < 1)
1040 return ERR_PTR(-EINVAL);
1041
1042 pwm = pwm_request_from_chip(chip, args->args[0], NULL);
1043 if (IS_ERR(pwm))
1044 return pwm;
1045
1046 if (args->args_count > 1)
1047 pwm->args.period = args->args[1];
1048
1049 pwm->args.polarity = PWM_POLARITY_NORMAL;
1050 if (args->args_count > 2 && args->args[2] & PWM_POLARITY_INVERTED)
1051 pwm->args.polarity = PWM_POLARITY_INVERSED;
1052
1053 return pwm;
1054 }
1055 EXPORT_SYMBOL_GPL(of_pwm_xlate_with_flags);
1056
1057 /*
1058 * This callback is used for PXA PWM chips that only have a single PWM line.
1059 * For such chips you could argue that passing the line number (i.e. the first
1060 * parameter in the common case) is useless as it's always zero. So compared to
1061 * the default xlate function of_pwm_xlate_with_flags() the first parameter is
1062 * the default period and the second are flags.
1063 *
1064 * Note that if #pwm-cells = <3>, the semantic is the same as for
1065 * of_pwm_xlate_with_flags() to allow converting the affected driver to
1066 * #pwm-cells = <3> without breaking the legacy binding.
1067 *
1068 * Don't use for new drivers.
1069 */
1070 struct pwm_device *
of_pwm_single_xlate(struct pwm_chip * chip,const struct of_phandle_args * args)1071 of_pwm_single_xlate(struct pwm_chip *chip, const struct of_phandle_args *args)
1072 {
1073 struct pwm_device *pwm;
1074
1075 if (args->args_count >= 3)
1076 return of_pwm_xlate_with_flags(chip, args);
1077
1078 pwm = pwm_request_from_chip(chip, 0, NULL);
1079 if (IS_ERR(pwm))
1080 return pwm;
1081
1082 if (args->args_count > 0)
1083 pwm->args.period = args->args[0];
1084
1085 pwm->args.polarity = PWM_POLARITY_NORMAL;
1086 if (args->args_count > 1 && args->args[1] & PWM_POLARITY_INVERTED)
1087 pwm->args.polarity = PWM_POLARITY_INVERSED;
1088
1089 return pwm;
1090 }
1091 EXPORT_SYMBOL_GPL(of_pwm_single_xlate);
1092
1093 struct pwm_export {
1094 struct device pwm_dev;
1095 struct pwm_device *pwm;
1096 struct mutex lock;
1097 struct pwm_state suspend;
1098 };
1099
pwmchip_from_dev(struct device * pwmchip_dev)1100 static inline struct pwm_chip *pwmchip_from_dev(struct device *pwmchip_dev)
1101 {
1102 return container_of(pwmchip_dev, struct pwm_chip, dev);
1103 }
1104
pwmexport_from_dev(struct device * pwm_dev)1105 static inline struct pwm_export *pwmexport_from_dev(struct device *pwm_dev)
1106 {
1107 return container_of(pwm_dev, struct pwm_export, pwm_dev);
1108 }
1109
pwm_from_dev(struct device * pwm_dev)1110 static inline struct pwm_device *pwm_from_dev(struct device *pwm_dev)
1111 {
1112 struct pwm_export *export = pwmexport_from_dev(pwm_dev);
1113
1114 return export->pwm;
1115 }
1116
period_show(struct device * pwm_dev,struct device_attribute * attr,char * buf)1117 static ssize_t period_show(struct device *pwm_dev,
1118 struct device_attribute *attr,
1119 char *buf)
1120 {
1121 const struct pwm_device *pwm = pwm_from_dev(pwm_dev);
1122 struct pwm_state state;
1123
1124 pwm_get_state(pwm, &state);
1125
1126 return sysfs_emit(buf, "%llu\n", state.period);
1127 }
1128
period_store(struct device * pwm_dev,struct device_attribute * attr,const char * buf,size_t size)1129 static ssize_t period_store(struct device *pwm_dev,
1130 struct device_attribute *attr,
1131 const char *buf, size_t size)
1132 {
1133 struct pwm_export *export = pwmexport_from_dev(pwm_dev);
1134 struct pwm_device *pwm = export->pwm;
1135 struct pwm_state state;
1136 u64 val;
1137 int ret;
1138
1139 ret = kstrtou64(buf, 0, &val);
1140 if (ret)
1141 return ret;
1142
1143 guard(mutex)(&export->lock);
1144
1145 pwm_get_state(pwm, &state);
1146 state.period = val;
1147 ret = pwm_apply_might_sleep(pwm, &state);
1148
1149 return ret ? : size;
1150 }
1151
duty_cycle_show(struct device * pwm_dev,struct device_attribute * attr,char * buf)1152 static ssize_t duty_cycle_show(struct device *pwm_dev,
1153 struct device_attribute *attr,
1154 char *buf)
1155 {
1156 const struct pwm_device *pwm = pwm_from_dev(pwm_dev);
1157 struct pwm_state state;
1158
1159 pwm_get_state(pwm, &state);
1160
1161 return sysfs_emit(buf, "%llu\n", state.duty_cycle);
1162 }
1163
duty_cycle_store(struct device * pwm_dev,struct device_attribute * attr,const char * buf,size_t size)1164 static ssize_t duty_cycle_store(struct device *pwm_dev,
1165 struct device_attribute *attr,
1166 const char *buf, size_t size)
1167 {
1168 struct pwm_export *export = pwmexport_from_dev(pwm_dev);
1169 struct pwm_device *pwm = export->pwm;
1170 struct pwm_state state;
1171 u64 val;
1172 int ret;
1173
1174 ret = kstrtou64(buf, 0, &val);
1175 if (ret)
1176 return ret;
1177
1178 guard(mutex)(&export->lock);
1179
1180 pwm_get_state(pwm, &state);
1181 state.duty_cycle = val;
1182 ret = pwm_apply_might_sleep(pwm, &state);
1183
1184 return ret ? : size;
1185 }
1186
enable_show(struct device * pwm_dev,struct device_attribute * attr,char * buf)1187 static ssize_t enable_show(struct device *pwm_dev,
1188 struct device_attribute *attr,
1189 char *buf)
1190 {
1191 const struct pwm_device *pwm = pwm_from_dev(pwm_dev);
1192 struct pwm_state state;
1193
1194 pwm_get_state(pwm, &state);
1195
1196 return sysfs_emit(buf, "%d\n", state.enabled);
1197 }
1198
enable_store(struct device * pwm_dev,struct device_attribute * attr,const char * buf,size_t size)1199 static ssize_t enable_store(struct device *pwm_dev,
1200 struct device_attribute *attr,
1201 const char *buf, size_t size)
1202 {
1203 struct pwm_export *export = pwmexport_from_dev(pwm_dev);
1204 struct pwm_device *pwm = export->pwm;
1205 struct pwm_state state;
1206 int val, ret;
1207
1208 ret = kstrtoint(buf, 0, &val);
1209 if (ret)
1210 return ret;
1211
1212 guard(mutex)(&export->lock);
1213
1214 pwm_get_state(pwm, &state);
1215
1216 switch (val) {
1217 case 0:
1218 state.enabled = false;
1219 break;
1220 case 1:
1221 state.enabled = true;
1222 break;
1223 default:
1224 return -EINVAL;
1225 }
1226
1227 ret = pwm_apply_might_sleep(pwm, &state);
1228
1229 return ret ? : size;
1230 }
1231
polarity_show(struct device * pwm_dev,struct device_attribute * attr,char * buf)1232 static ssize_t polarity_show(struct device *pwm_dev,
1233 struct device_attribute *attr,
1234 char *buf)
1235 {
1236 const struct pwm_device *pwm = pwm_from_dev(pwm_dev);
1237 const char *polarity = "unknown";
1238 struct pwm_state state;
1239
1240 pwm_get_state(pwm, &state);
1241
1242 switch (state.polarity) {
1243 case PWM_POLARITY_NORMAL:
1244 polarity = "normal";
1245 break;
1246
1247 case PWM_POLARITY_INVERSED:
1248 polarity = "inversed";
1249 break;
1250 }
1251
1252 return sysfs_emit(buf, "%s\n", polarity);
1253 }
1254
polarity_store(struct device * pwm_dev,struct device_attribute * attr,const char * buf,size_t size)1255 static ssize_t polarity_store(struct device *pwm_dev,
1256 struct device_attribute *attr,
1257 const char *buf, size_t size)
1258 {
1259 struct pwm_export *export = pwmexport_from_dev(pwm_dev);
1260 struct pwm_device *pwm = export->pwm;
1261 enum pwm_polarity polarity;
1262 struct pwm_state state;
1263 int ret;
1264
1265 if (sysfs_streq(buf, "normal"))
1266 polarity = PWM_POLARITY_NORMAL;
1267 else if (sysfs_streq(buf, "inversed"))
1268 polarity = PWM_POLARITY_INVERSED;
1269 else
1270 return -EINVAL;
1271
1272 guard(mutex)(&export->lock);
1273
1274 pwm_get_state(pwm, &state);
1275 state.polarity = polarity;
1276 ret = pwm_apply_might_sleep(pwm, &state);
1277
1278 return ret ? : size;
1279 }
1280
capture_show(struct device * pwm_dev,struct device_attribute * attr,char * buf)1281 static ssize_t capture_show(struct device *pwm_dev,
1282 struct device_attribute *attr,
1283 char *buf)
1284 {
1285 struct pwm_device *pwm = pwm_from_dev(pwm_dev);
1286 struct pwm_capture result;
1287 int ret;
1288
1289 ret = pwm_capture(pwm, &result, jiffies_to_msecs(HZ));
1290 if (ret)
1291 return ret;
1292
1293 return sysfs_emit(buf, "%u %u\n", result.period, result.duty_cycle);
1294 }
1295
1296 static DEVICE_ATTR_RW(period);
1297 static DEVICE_ATTR_RW(duty_cycle);
1298 static DEVICE_ATTR_RW(enable);
1299 static DEVICE_ATTR_RW(polarity);
1300 static DEVICE_ATTR_RO(capture);
1301
1302 static struct attribute *pwm_attrs[] = {
1303 &dev_attr_period.attr,
1304 &dev_attr_duty_cycle.attr,
1305 &dev_attr_enable.attr,
1306 &dev_attr_polarity.attr,
1307 &dev_attr_capture.attr,
1308 NULL
1309 };
1310 ATTRIBUTE_GROUPS(pwm);
1311
pwm_export_release(struct device * pwm_dev)1312 static void pwm_export_release(struct device *pwm_dev)
1313 {
1314 struct pwm_export *export = pwmexport_from_dev(pwm_dev);
1315
1316 kfree(export);
1317 }
1318
pwm_export_child(struct device * pwmchip_dev,struct pwm_device * pwm)1319 static int pwm_export_child(struct device *pwmchip_dev, struct pwm_device *pwm)
1320 {
1321 struct pwm_export *export;
1322 char *pwm_prop[2];
1323 int ret;
1324
1325 if (test_and_set_bit(PWMF_EXPORTED, &pwm->flags))
1326 return -EBUSY;
1327
1328 export = kzalloc(sizeof(*export), GFP_KERNEL);
1329 if (!export) {
1330 clear_bit(PWMF_EXPORTED, &pwm->flags);
1331 return -ENOMEM;
1332 }
1333
1334 export->pwm = pwm;
1335 mutex_init(&export->lock);
1336
1337 export->pwm_dev.release = pwm_export_release;
1338 export->pwm_dev.parent = pwmchip_dev;
1339 export->pwm_dev.devt = MKDEV(0, 0);
1340 export->pwm_dev.groups = pwm_groups;
1341 dev_set_name(&export->pwm_dev, "pwm%u", pwm->hwpwm);
1342
1343 ret = device_register(&export->pwm_dev);
1344 if (ret) {
1345 clear_bit(PWMF_EXPORTED, &pwm->flags);
1346 put_device(&export->pwm_dev);
1347 export = NULL;
1348 return ret;
1349 }
1350 pwm_prop[0] = kasprintf(GFP_KERNEL, "EXPORT=pwm%u", pwm->hwpwm);
1351 pwm_prop[1] = NULL;
1352 kobject_uevent_env(&pwmchip_dev->kobj, KOBJ_CHANGE, pwm_prop);
1353 kfree(pwm_prop[0]);
1354
1355 return 0;
1356 }
1357
pwm_unexport_match(struct device * pwm_dev,const void * data)1358 static int pwm_unexport_match(struct device *pwm_dev, const void *data)
1359 {
1360 return pwm_from_dev(pwm_dev) == data;
1361 }
1362
pwm_unexport_child(struct device * pwmchip_dev,struct pwm_device * pwm)1363 static int pwm_unexport_child(struct device *pwmchip_dev, struct pwm_device *pwm)
1364 {
1365 struct device *pwm_dev;
1366 char *pwm_prop[2];
1367
1368 if (!test_and_clear_bit(PWMF_EXPORTED, &pwm->flags))
1369 return -ENODEV;
1370
1371 pwm_dev = device_find_child(pwmchip_dev, pwm, pwm_unexport_match);
1372 if (!pwm_dev)
1373 return -ENODEV;
1374
1375 pwm_prop[0] = kasprintf(GFP_KERNEL, "UNEXPORT=pwm%u", pwm->hwpwm);
1376 pwm_prop[1] = NULL;
1377 kobject_uevent_env(&pwmchip_dev->kobj, KOBJ_CHANGE, pwm_prop);
1378 kfree(pwm_prop[0]);
1379
1380 /* for device_find_child() */
1381 put_device(pwm_dev);
1382 device_unregister(pwm_dev);
1383 pwm_put(pwm);
1384
1385 return 0;
1386 }
1387
export_store(struct device * pwmchip_dev,struct device_attribute * attr,const char * buf,size_t len)1388 static ssize_t export_store(struct device *pwmchip_dev,
1389 struct device_attribute *attr,
1390 const char *buf, size_t len)
1391 {
1392 struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev);
1393 struct pwm_device *pwm;
1394 unsigned int hwpwm;
1395 int ret;
1396
1397 ret = kstrtouint(buf, 0, &hwpwm);
1398 if (ret < 0)
1399 return ret;
1400
1401 if (hwpwm >= chip->npwm)
1402 return -ENODEV;
1403
1404 pwm = pwm_request_from_chip(chip, hwpwm, "sysfs");
1405 if (IS_ERR(pwm))
1406 return PTR_ERR(pwm);
1407
1408 ret = pwm_export_child(pwmchip_dev, pwm);
1409 if (ret < 0)
1410 pwm_put(pwm);
1411
1412 return ret ? : len;
1413 }
1414 static DEVICE_ATTR_WO(export);
1415
unexport_store(struct device * pwmchip_dev,struct device_attribute * attr,const char * buf,size_t len)1416 static ssize_t unexport_store(struct device *pwmchip_dev,
1417 struct device_attribute *attr,
1418 const char *buf, size_t len)
1419 {
1420 struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev);
1421 unsigned int hwpwm;
1422 int ret;
1423
1424 ret = kstrtouint(buf, 0, &hwpwm);
1425 if (ret < 0)
1426 return ret;
1427
1428 if (hwpwm >= chip->npwm)
1429 return -ENODEV;
1430
1431 ret = pwm_unexport_child(pwmchip_dev, &chip->pwms[hwpwm]);
1432
1433 return ret ? : len;
1434 }
1435 static DEVICE_ATTR_WO(unexport);
1436
npwm_show(struct device * pwmchip_dev,struct device_attribute * attr,char * buf)1437 static ssize_t npwm_show(struct device *pwmchip_dev, struct device_attribute *attr,
1438 char *buf)
1439 {
1440 const struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev);
1441
1442 return sysfs_emit(buf, "%u\n", chip->npwm);
1443 }
1444 static DEVICE_ATTR_RO(npwm);
1445
1446 static struct attribute *pwm_chip_attrs[] = {
1447 &dev_attr_export.attr,
1448 &dev_attr_unexport.attr,
1449 &dev_attr_npwm.attr,
1450 NULL,
1451 };
1452 ATTRIBUTE_GROUPS(pwm_chip);
1453
1454 /* takes export->lock on success */
pwm_class_get_state(struct device * pwmchip_dev,struct pwm_device * pwm,struct pwm_state * state)1455 static struct pwm_export *pwm_class_get_state(struct device *pwmchip_dev,
1456 struct pwm_device *pwm,
1457 struct pwm_state *state)
1458 {
1459 struct device *pwm_dev;
1460 struct pwm_export *export;
1461
1462 if (!test_bit(PWMF_EXPORTED, &pwm->flags))
1463 return NULL;
1464
1465 pwm_dev = device_find_child(pwmchip_dev, pwm, pwm_unexport_match);
1466 if (!pwm_dev)
1467 return NULL;
1468
1469 export = pwmexport_from_dev(pwm_dev);
1470 put_device(pwm_dev); /* for device_find_child() */
1471
1472 mutex_lock(&export->lock);
1473 pwm_get_state(pwm, state);
1474
1475 return export;
1476 }
1477
pwm_class_apply_state(struct pwm_export * export,struct pwm_device * pwm,struct pwm_state * state)1478 static int pwm_class_apply_state(struct pwm_export *export,
1479 struct pwm_device *pwm,
1480 struct pwm_state *state)
1481 {
1482 int ret = pwm_apply_might_sleep(pwm, state);
1483
1484 /* release lock taken in pwm_class_get_state */
1485 mutex_unlock(&export->lock);
1486
1487 return ret;
1488 }
1489
pwm_class_resume_npwm(struct device * pwmchip_dev,unsigned int npwm)1490 static int pwm_class_resume_npwm(struct device *pwmchip_dev, unsigned int npwm)
1491 {
1492 struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev);
1493 unsigned int i;
1494 int ret = 0;
1495
1496 for (i = 0; i < npwm; i++) {
1497 struct pwm_device *pwm = &chip->pwms[i];
1498 struct pwm_state state;
1499 struct pwm_export *export;
1500
1501 export = pwm_class_get_state(pwmchip_dev, pwm, &state);
1502 if (!export)
1503 continue;
1504
1505 /* If pwmchip was not enabled before suspend, do nothing. */
1506 if (!export->suspend.enabled) {
1507 /* release lock taken in pwm_class_get_state */
1508 mutex_unlock(&export->lock);
1509 continue;
1510 }
1511
1512 state.enabled = export->suspend.enabled;
1513 ret = pwm_class_apply_state(export, pwm, &state);
1514 if (ret < 0)
1515 break;
1516 }
1517
1518 return ret;
1519 }
1520
pwm_class_suspend(struct device * pwmchip_dev)1521 static int pwm_class_suspend(struct device *pwmchip_dev)
1522 {
1523 struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev);
1524 unsigned int i;
1525 int ret = 0;
1526
1527 for (i = 0; i < chip->npwm; i++) {
1528 struct pwm_device *pwm = &chip->pwms[i];
1529 struct pwm_state state;
1530 struct pwm_export *export;
1531
1532 export = pwm_class_get_state(pwmchip_dev, pwm, &state);
1533 if (!export)
1534 continue;
1535
1536 /*
1537 * If pwmchip was not enabled before suspend, save
1538 * state for resume time and do nothing else.
1539 */
1540 export->suspend = state;
1541 if (!state.enabled) {
1542 /* release lock taken in pwm_class_get_state */
1543 mutex_unlock(&export->lock);
1544 continue;
1545 }
1546
1547 state.enabled = false;
1548 ret = pwm_class_apply_state(export, pwm, &state);
1549 if (ret < 0) {
1550 /*
1551 * roll back the PWM devices that were disabled by
1552 * this suspend function.
1553 */
1554 pwm_class_resume_npwm(pwmchip_dev, i);
1555 break;
1556 }
1557 }
1558
1559 return ret;
1560 }
1561
pwm_class_resume(struct device * pwmchip_dev)1562 static int pwm_class_resume(struct device *pwmchip_dev)
1563 {
1564 struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev);
1565
1566 return pwm_class_resume_npwm(pwmchip_dev, chip->npwm);
1567 }
1568
1569 static DEFINE_SIMPLE_DEV_PM_OPS(pwm_class_pm_ops, pwm_class_suspend, pwm_class_resume);
1570
1571 static struct class pwm_class = {
1572 .name = "pwm",
1573 .dev_groups = pwm_chip_groups,
1574 .pm = pm_sleep_ptr(&pwm_class_pm_ops),
1575 };
1576
pwmchip_sysfs_unexport(struct pwm_chip * chip)1577 static void pwmchip_sysfs_unexport(struct pwm_chip *chip)
1578 {
1579 unsigned int i;
1580
1581 for (i = 0; i < chip->npwm; i++) {
1582 struct pwm_device *pwm = &chip->pwms[i];
1583
1584 if (test_bit(PWMF_EXPORTED, &pwm->flags))
1585 pwm_unexport_child(&chip->dev, pwm);
1586 }
1587 }
1588
1589 #define PWMCHIP_ALIGN ARCH_DMA_MINALIGN
1590
pwmchip_priv(struct pwm_chip * chip)1591 static void *pwmchip_priv(struct pwm_chip *chip)
1592 {
1593 return (void *)chip + ALIGN(struct_size(chip, pwms, chip->npwm), PWMCHIP_ALIGN);
1594 }
1595
1596 /* This is the counterpart to pwmchip_alloc() */
pwmchip_put(struct pwm_chip * chip)1597 void pwmchip_put(struct pwm_chip *chip)
1598 {
1599 put_device(&chip->dev);
1600 }
1601 EXPORT_SYMBOL_GPL(pwmchip_put);
1602
pwmchip_release(struct device * pwmchip_dev)1603 static void pwmchip_release(struct device *pwmchip_dev)
1604 {
1605 struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev);
1606
1607 kfree(chip);
1608 }
1609
pwmchip_alloc(struct device * parent,unsigned int npwm,size_t sizeof_priv)1610 struct pwm_chip *pwmchip_alloc(struct device *parent, unsigned int npwm, size_t sizeof_priv)
1611 {
1612 struct pwm_chip *chip;
1613 struct device *pwmchip_dev;
1614 size_t alloc_size;
1615 unsigned int i;
1616
1617 alloc_size = size_add(ALIGN(struct_size(chip, pwms, npwm), PWMCHIP_ALIGN),
1618 sizeof_priv);
1619
1620 chip = kzalloc(alloc_size, GFP_KERNEL);
1621 if (!chip)
1622 return ERR_PTR(-ENOMEM);
1623
1624 chip->npwm = npwm;
1625 chip->uses_pwmchip_alloc = true;
1626 chip->operational = false;
1627
1628 pwmchip_dev = &chip->dev;
1629 device_initialize(pwmchip_dev);
1630 pwmchip_dev->class = &pwm_class;
1631 pwmchip_dev->parent = parent;
1632 pwmchip_dev->release = pwmchip_release;
1633
1634 pwmchip_set_drvdata(chip, pwmchip_priv(chip));
1635
1636 for (i = 0; i < chip->npwm; i++) {
1637 struct pwm_device *pwm = &chip->pwms[i];
1638 pwm->chip = chip;
1639 pwm->hwpwm = i;
1640 }
1641
1642 return chip;
1643 }
1644 EXPORT_SYMBOL_GPL(pwmchip_alloc);
1645
devm_pwmchip_put(void * data)1646 static void devm_pwmchip_put(void *data)
1647 {
1648 struct pwm_chip *chip = data;
1649
1650 pwmchip_put(chip);
1651 }
1652
devm_pwmchip_alloc(struct device * parent,unsigned int npwm,size_t sizeof_priv)1653 struct pwm_chip *devm_pwmchip_alloc(struct device *parent, unsigned int npwm, size_t sizeof_priv)
1654 {
1655 struct pwm_chip *chip;
1656 int ret;
1657
1658 chip = pwmchip_alloc(parent, npwm, sizeof_priv);
1659 if (IS_ERR(chip))
1660 return chip;
1661
1662 ret = devm_add_action_or_reset(parent, devm_pwmchip_put, chip);
1663 if (ret)
1664 return ERR_PTR(ret);
1665
1666 return chip;
1667 }
1668 EXPORT_SYMBOL_GPL(devm_pwmchip_alloc);
1669
of_pwmchip_add(struct pwm_chip * chip)1670 static void of_pwmchip_add(struct pwm_chip *chip)
1671 {
1672 if (!pwmchip_parent(chip) || !pwmchip_parent(chip)->of_node)
1673 return;
1674
1675 if (!chip->of_xlate)
1676 chip->of_xlate = of_pwm_xlate_with_flags;
1677
1678 of_node_get(pwmchip_parent(chip)->of_node);
1679 }
1680
of_pwmchip_remove(struct pwm_chip * chip)1681 static void of_pwmchip_remove(struct pwm_chip *chip)
1682 {
1683 if (pwmchip_parent(chip))
1684 of_node_put(pwmchip_parent(chip)->of_node);
1685 }
1686
pwm_ops_check(const struct pwm_chip * chip)1687 static bool pwm_ops_check(const struct pwm_chip *chip)
1688 {
1689 const struct pwm_ops *ops = chip->ops;
1690
1691 if (ops->write_waveform) {
1692 if (!ops->round_waveform_tohw ||
1693 !ops->round_waveform_fromhw ||
1694 !ops->write_waveform)
1695 return false;
1696
1697 if (PWM_WFHWSIZE < ops->sizeof_wfhw) {
1698 dev_warn(pwmchip_parent(chip), "PWM_WFHWSIZE < %zu\n", ops->sizeof_wfhw);
1699 return false;
1700 }
1701 } else {
1702 if (!ops->apply)
1703 return false;
1704
1705 if (IS_ENABLED(CONFIG_PWM_DEBUG) && !ops->get_state)
1706 dev_warn(pwmchip_parent(chip),
1707 "Please implement the .get_state() callback\n");
1708 }
1709
1710 return true;
1711 }
1712
pwm_device_link_add(struct device * dev,struct pwm_device * pwm)1713 static struct device_link *pwm_device_link_add(struct device *dev,
1714 struct pwm_device *pwm)
1715 {
1716 struct device_link *dl;
1717
1718 if (!dev) {
1719 /*
1720 * No device for the PWM consumer has been provided. It may
1721 * impact the PM sequence ordering: the PWM supplier may get
1722 * suspended before the consumer.
1723 */
1724 dev_warn(pwmchip_parent(pwm->chip),
1725 "No consumer device specified to create a link to\n");
1726 return NULL;
1727 }
1728
1729 dl = device_link_add(dev, pwmchip_parent(pwm->chip), DL_FLAG_AUTOREMOVE_CONSUMER);
1730 if (!dl) {
1731 dev_err(dev, "failed to create device link to %s\n",
1732 dev_name(pwmchip_parent(pwm->chip)));
1733 return ERR_PTR(-EINVAL);
1734 }
1735
1736 return dl;
1737 }
1738
fwnode_to_pwmchip(struct fwnode_handle * fwnode)1739 static struct pwm_chip *fwnode_to_pwmchip(struct fwnode_handle *fwnode)
1740 {
1741 struct pwm_chip *chip;
1742 unsigned long id, tmp;
1743
1744 guard(mutex)(&pwm_lock);
1745
1746 idr_for_each_entry_ul(&pwm_chips, chip, tmp, id)
1747 if (pwmchip_parent(chip) && device_match_fwnode(pwmchip_parent(chip), fwnode))
1748 return chip;
1749
1750 return ERR_PTR(-EPROBE_DEFER);
1751 }
1752
1753 /**
1754 * of_pwm_get() - request a PWM via the PWM framework
1755 * @dev: device for PWM consumer
1756 * @np: device node to get the PWM from
1757 * @con_id: consumer name
1758 *
1759 * Returns the PWM device parsed from the phandle and index specified in the
1760 * "pwms" property of a device tree node or a negative error-code on failure.
1761 * Values parsed from the device tree are stored in the returned PWM device
1762 * object.
1763 *
1764 * If con_id is NULL, the first PWM device listed in the "pwms" property will
1765 * be requested. Otherwise the "pwm-names" property is used to do a reverse
1766 * lookup of the PWM index. This also means that the "pwm-names" property
1767 * becomes mandatory for devices that look up the PWM device via the con_id
1768 * parameter.
1769 *
1770 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1771 * error code on failure.
1772 */
of_pwm_get(struct device * dev,struct device_node * np,const char * con_id)1773 static struct pwm_device *of_pwm_get(struct device *dev, struct device_node *np,
1774 const char *con_id)
1775 {
1776 struct pwm_device *pwm = NULL;
1777 struct of_phandle_args args;
1778 struct device_link *dl;
1779 struct pwm_chip *chip;
1780 int index = 0;
1781 int err;
1782
1783 if (con_id) {
1784 index = of_property_match_string(np, "pwm-names", con_id);
1785 if (index < 0)
1786 return ERR_PTR(index);
1787 }
1788
1789 err = of_parse_phandle_with_args_map(np, "pwms", "pwm", index, &args);
1790 if (err) {
1791 pr_err("%s(): can't parse \"pwms\" property\n", __func__);
1792 return ERR_PTR(err);
1793 }
1794
1795 chip = fwnode_to_pwmchip(of_fwnode_handle(args.np));
1796 if (IS_ERR(chip)) {
1797 if (PTR_ERR(chip) != -EPROBE_DEFER)
1798 pr_err("%s(): PWM chip not found\n", __func__);
1799
1800 pwm = ERR_CAST(chip);
1801 goto put;
1802 }
1803
1804 pwm = chip->of_xlate(chip, &args);
1805 if (IS_ERR(pwm))
1806 goto put;
1807
1808 dl = pwm_device_link_add(dev, pwm);
1809 if (IS_ERR(dl)) {
1810 /* of_xlate ended up calling pwm_request_from_chip() */
1811 pwm_put(pwm);
1812 pwm = ERR_CAST(dl);
1813 goto put;
1814 }
1815
1816 /*
1817 * If a consumer name was not given, try to look it up from the
1818 * "pwm-names" property if it exists. Otherwise use the name of
1819 * the user device node.
1820 */
1821 if (!con_id) {
1822 err = of_property_read_string_index(np, "pwm-names", index,
1823 &con_id);
1824 if (err < 0)
1825 con_id = np->name;
1826 }
1827
1828 pwm->label = con_id;
1829
1830 put:
1831 of_node_put(args.np);
1832
1833 return pwm;
1834 }
1835
1836 /**
1837 * acpi_pwm_get() - request a PWM via parsing "pwms" property in ACPI
1838 * @fwnode: firmware node to get the "pwms" property from
1839 *
1840 * Returns the PWM device parsed from the fwnode and index specified in the
1841 * "pwms" property or a negative error-code on failure.
1842 * Values parsed from the device tree are stored in the returned PWM device
1843 * object.
1844 *
1845 * This is analogous to of_pwm_get() except con_id is not yet supported.
1846 * ACPI entries must look like
1847 * Package () {"pwms", Package ()
1848 * { <PWM device reference>, <PWM index>, <PWM period> [, <PWM flags>]}}
1849 *
1850 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1851 * error code on failure.
1852 */
acpi_pwm_get(const struct fwnode_handle * fwnode)1853 static struct pwm_device *acpi_pwm_get(const struct fwnode_handle *fwnode)
1854 {
1855 struct pwm_device *pwm;
1856 struct fwnode_reference_args args;
1857 struct pwm_chip *chip;
1858 int ret;
1859
1860 memset(&args, 0, sizeof(args));
1861
1862 ret = __acpi_node_get_property_reference(fwnode, "pwms", 0, 3, &args);
1863 if (ret < 0)
1864 return ERR_PTR(ret);
1865
1866 if (args.nargs < 2)
1867 return ERR_PTR(-EPROTO);
1868
1869 chip = fwnode_to_pwmchip(args.fwnode);
1870 if (IS_ERR(chip))
1871 return ERR_CAST(chip);
1872
1873 pwm = pwm_request_from_chip(chip, args.args[0], NULL);
1874 if (IS_ERR(pwm))
1875 return pwm;
1876
1877 pwm->args.period = args.args[1];
1878 pwm->args.polarity = PWM_POLARITY_NORMAL;
1879
1880 if (args.nargs > 2 && args.args[2] & PWM_POLARITY_INVERTED)
1881 pwm->args.polarity = PWM_POLARITY_INVERSED;
1882
1883 return pwm;
1884 }
1885
1886 static DEFINE_MUTEX(pwm_lookup_lock);
1887 static LIST_HEAD(pwm_lookup_list);
1888
1889 /**
1890 * pwm_get() - look up and request a PWM device
1891 * @dev: device for PWM consumer
1892 * @con_id: consumer name
1893 *
1894 * Lookup is first attempted using DT. If the device was not instantiated from
1895 * a device tree, a PWM chip and a relative index is looked up via a table
1896 * supplied by board setup code (see pwm_add_table()).
1897 *
1898 * Once a PWM chip has been found the specified PWM device will be requested
1899 * and is ready to be used.
1900 *
1901 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1902 * error code on failure.
1903 */
pwm_get(struct device * dev,const char * con_id)1904 struct pwm_device *pwm_get(struct device *dev, const char *con_id)
1905 {
1906 const struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL;
1907 const char *dev_id = dev ? dev_name(dev) : NULL;
1908 struct pwm_device *pwm;
1909 struct pwm_chip *chip;
1910 struct device_link *dl;
1911 unsigned int best = 0;
1912 struct pwm_lookup *p, *chosen = NULL;
1913 unsigned int match;
1914 int err;
1915
1916 /* look up via DT first */
1917 if (is_of_node(fwnode))
1918 return of_pwm_get(dev, to_of_node(fwnode), con_id);
1919
1920 /* then lookup via ACPI */
1921 if (is_acpi_node(fwnode)) {
1922 pwm = acpi_pwm_get(fwnode);
1923 if (!IS_ERR(pwm) || PTR_ERR(pwm) != -ENOENT)
1924 return pwm;
1925 }
1926
1927 /*
1928 * We look up the provider in the static table typically provided by
1929 * board setup code. We first try to lookup the consumer device by
1930 * name. If the consumer device was passed in as NULL or if no match
1931 * was found, we try to find the consumer by directly looking it up
1932 * by name.
1933 *
1934 * If a match is found, the provider PWM chip is looked up by name
1935 * and a PWM device is requested using the PWM device per-chip index.
1936 *
1937 * The lookup algorithm was shamelessly taken from the clock
1938 * framework:
1939 *
1940 * We do slightly fuzzy matching here:
1941 * An entry with a NULL ID is assumed to be a wildcard.
1942 * If an entry has a device ID, it must match
1943 * If an entry has a connection ID, it must match
1944 * Then we take the most specific entry - with the following order
1945 * of precedence: dev+con > dev only > con only.
1946 */
1947 scoped_guard(mutex, &pwm_lookup_lock)
1948 list_for_each_entry(p, &pwm_lookup_list, list) {
1949 match = 0;
1950
1951 if (p->dev_id) {
1952 if (!dev_id || strcmp(p->dev_id, dev_id))
1953 continue;
1954
1955 match += 2;
1956 }
1957
1958 if (p->con_id) {
1959 if (!con_id || strcmp(p->con_id, con_id))
1960 continue;
1961
1962 match += 1;
1963 }
1964
1965 if (match > best) {
1966 chosen = p;
1967
1968 if (match != 3)
1969 best = match;
1970 else
1971 break;
1972 }
1973 }
1974
1975 if (!chosen)
1976 return ERR_PTR(-ENODEV);
1977
1978 chip = pwmchip_find_by_name(chosen->provider);
1979
1980 /*
1981 * If the lookup entry specifies a module, load the module and retry
1982 * the PWM chip lookup. This can be used to work around driver load
1983 * ordering issues if driver's can't be made to properly support the
1984 * deferred probe mechanism.
1985 */
1986 if (!chip && chosen->module) {
1987 err = request_module(chosen->module);
1988 if (err == 0)
1989 chip = pwmchip_find_by_name(chosen->provider);
1990 }
1991
1992 if (!chip)
1993 return ERR_PTR(-EPROBE_DEFER);
1994
1995 pwm = pwm_request_from_chip(chip, chosen->index, con_id ?: dev_id);
1996 if (IS_ERR(pwm))
1997 return pwm;
1998
1999 dl = pwm_device_link_add(dev, pwm);
2000 if (IS_ERR(dl)) {
2001 pwm_put(pwm);
2002 return ERR_CAST(dl);
2003 }
2004
2005 pwm->args.period = chosen->period;
2006 pwm->args.polarity = chosen->polarity;
2007
2008 return pwm;
2009 }
2010 EXPORT_SYMBOL_GPL(pwm_get);
2011
__pwm_put(struct pwm_device * pwm)2012 static void __pwm_put(struct pwm_device *pwm)
2013 {
2014 struct pwm_chip *chip = pwm->chip;
2015
2016 /*
2017 * Trigger a warning if a consumer called pwm_put() twice.
2018 * If the chip isn't operational, PWMF_REQUESTED was already cleared in
2019 * pwmchip_remove(). So don't warn in this case.
2020 */
2021 if (chip->operational && !test_and_clear_bit(PWMF_REQUESTED, &pwm->flags)) {
2022 pr_warn("PWM device already freed\n");
2023 return;
2024 }
2025
2026 if (chip->operational && chip->ops->free)
2027 pwm->chip->ops->free(pwm->chip, pwm);
2028
2029 pwm->label = NULL;
2030
2031 put_device(&chip->dev);
2032
2033 module_put(chip->owner);
2034 }
2035
2036 /**
2037 * pwm_put() - release a PWM device
2038 * @pwm: PWM device
2039 */
pwm_put(struct pwm_device * pwm)2040 void pwm_put(struct pwm_device *pwm)
2041 {
2042 if (!pwm)
2043 return;
2044
2045 guard(mutex)(&pwm_lock);
2046
2047 __pwm_put(pwm);
2048 }
2049 EXPORT_SYMBOL_GPL(pwm_put);
2050
devm_pwm_release(void * pwm)2051 static void devm_pwm_release(void *pwm)
2052 {
2053 pwm_put(pwm);
2054 }
2055
2056 /**
2057 * devm_pwm_get() - resource managed pwm_get()
2058 * @dev: device for PWM consumer
2059 * @con_id: consumer name
2060 *
2061 * This function performs like pwm_get() but the acquired PWM device will
2062 * automatically be released on driver detach.
2063 *
2064 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
2065 * error code on failure.
2066 */
devm_pwm_get(struct device * dev,const char * con_id)2067 struct pwm_device *devm_pwm_get(struct device *dev, const char *con_id)
2068 {
2069 struct pwm_device *pwm;
2070 int ret;
2071
2072 pwm = pwm_get(dev, con_id);
2073 if (IS_ERR(pwm))
2074 return pwm;
2075
2076 ret = devm_add_action_or_reset(dev, devm_pwm_release, pwm);
2077 if (ret)
2078 return ERR_PTR(ret);
2079
2080 return pwm;
2081 }
2082 EXPORT_SYMBOL_GPL(devm_pwm_get);
2083
2084 /**
2085 * devm_fwnode_pwm_get() - request a resource managed PWM from firmware node
2086 * @dev: device for PWM consumer
2087 * @fwnode: firmware node to get the PWM from
2088 * @con_id: consumer name
2089 *
2090 * Returns the PWM device parsed from the firmware node. See of_pwm_get() and
2091 * acpi_pwm_get() for a detailed description.
2092 *
2093 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
2094 * error code on failure.
2095 */
devm_fwnode_pwm_get(struct device * dev,struct fwnode_handle * fwnode,const char * con_id)2096 struct pwm_device *devm_fwnode_pwm_get(struct device *dev,
2097 struct fwnode_handle *fwnode,
2098 const char *con_id)
2099 {
2100 struct pwm_device *pwm = ERR_PTR(-ENODEV);
2101 int ret;
2102
2103 if (is_of_node(fwnode))
2104 pwm = of_pwm_get(dev, to_of_node(fwnode), con_id);
2105 else if (is_acpi_node(fwnode))
2106 pwm = acpi_pwm_get(fwnode);
2107 if (IS_ERR(pwm))
2108 return pwm;
2109
2110 ret = devm_add_action_or_reset(dev, devm_pwm_release, pwm);
2111 if (ret)
2112 return ERR_PTR(ret);
2113
2114 return pwm;
2115 }
2116 EXPORT_SYMBOL_GPL(devm_fwnode_pwm_get);
2117
2118 struct pwm_cdev_data {
2119 struct pwm_chip *chip;
2120 struct pwm_device *pwm[];
2121 };
2122
pwm_cdev_open(struct inode * inode,struct file * file)2123 static int pwm_cdev_open(struct inode *inode, struct file *file)
2124 {
2125 struct pwm_chip *chip = container_of(inode->i_cdev, struct pwm_chip, cdev);
2126 struct pwm_cdev_data *cdata;
2127
2128 guard(mutex)(&pwm_lock);
2129
2130 if (!chip->operational)
2131 return -ENXIO;
2132
2133 cdata = kzalloc(struct_size(cdata, pwm, chip->npwm), GFP_KERNEL);
2134 if (!cdata)
2135 return -ENOMEM;
2136
2137 cdata->chip = chip;
2138
2139 file->private_data = cdata;
2140
2141 return nonseekable_open(inode, file);
2142 }
2143
pwm_cdev_release(struct inode * inode,struct file * file)2144 static int pwm_cdev_release(struct inode *inode, struct file *file)
2145 {
2146 struct pwm_cdev_data *cdata = file->private_data;
2147 unsigned int i;
2148
2149 for (i = 0; i < cdata->chip->npwm; ++i) {
2150 struct pwm_device *pwm = cdata->pwm[i];
2151
2152 if (pwm) {
2153 const char *label = pwm->label;
2154
2155 pwm_put(cdata->pwm[i]);
2156 kfree(label);
2157 }
2158 }
2159 kfree(cdata);
2160
2161 return 0;
2162 }
2163
pwm_cdev_request(struct pwm_cdev_data * cdata,unsigned int hwpwm)2164 static int pwm_cdev_request(struct pwm_cdev_data *cdata, unsigned int hwpwm)
2165 {
2166 struct pwm_chip *chip = cdata->chip;
2167
2168 if (hwpwm >= chip->npwm)
2169 return -EINVAL;
2170
2171 if (!cdata->pwm[hwpwm]) {
2172 struct pwm_device *pwm = &chip->pwms[hwpwm];
2173 const char *label;
2174 int ret;
2175
2176 label = kasprintf(GFP_KERNEL, "pwm-cdev (pid=%d)", current->pid);
2177 if (!label)
2178 return -ENOMEM;
2179
2180 ret = pwm_device_request(pwm, label);
2181 if (ret < 0) {
2182 kfree(label);
2183 return ret;
2184 }
2185
2186 cdata->pwm[hwpwm] = pwm;
2187 }
2188
2189 return 0;
2190 }
2191
pwm_cdev_free(struct pwm_cdev_data * cdata,unsigned int hwpwm)2192 static int pwm_cdev_free(struct pwm_cdev_data *cdata, unsigned int hwpwm)
2193 {
2194 struct pwm_chip *chip = cdata->chip;
2195
2196 if (hwpwm >= chip->npwm)
2197 return -EINVAL;
2198
2199 if (cdata->pwm[hwpwm]) {
2200 struct pwm_device *pwm = cdata->pwm[hwpwm];
2201 const char *label = pwm->label;
2202
2203 __pwm_put(pwm);
2204
2205 kfree(label);
2206
2207 cdata->pwm[hwpwm] = NULL;
2208 }
2209
2210 return 0;
2211 }
2212
pwm_cdev_get_requested_pwm(struct pwm_cdev_data * cdata,u32 hwpwm)2213 static struct pwm_device *pwm_cdev_get_requested_pwm(struct pwm_cdev_data *cdata,
2214 u32 hwpwm)
2215 {
2216 struct pwm_chip *chip = cdata->chip;
2217
2218 if (hwpwm >= chip->npwm)
2219 return ERR_PTR(-EINVAL);
2220
2221 if (cdata->pwm[hwpwm])
2222 return cdata->pwm[hwpwm];
2223
2224 return ERR_PTR(-EINVAL);
2225 }
2226
pwm_cdev_ioctl(struct file * file,unsigned int cmd,unsigned long arg)2227 static long pwm_cdev_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2228 {
2229 int ret = 0;
2230 struct pwm_cdev_data *cdata = file->private_data;
2231 struct pwm_chip *chip = cdata->chip;
2232
2233 guard(mutex)(&pwm_lock);
2234
2235 if (!chip->operational)
2236 return -ENODEV;
2237
2238 switch (cmd) {
2239 case PWM_IOCTL_REQUEST:
2240 {
2241 unsigned int hwpwm = arg;
2242
2243 return pwm_cdev_request(cdata, hwpwm);
2244 }
2245
2246 case PWM_IOCTL_FREE:
2247 {
2248 unsigned int hwpwm = arg;
2249
2250 return pwm_cdev_free(cdata, hwpwm);
2251 }
2252
2253 case PWM_IOCTL_ROUNDWF:
2254 {
2255 struct pwmchip_waveform cwf;
2256 struct pwm_waveform wf;
2257 struct pwm_device *pwm;
2258
2259 ret = copy_from_user(&cwf,
2260 (struct pwmchip_waveform __user *)arg,
2261 sizeof(cwf));
2262 if (ret)
2263 return -EFAULT;
2264
2265 if (cwf.__pad != 0)
2266 return -EINVAL;
2267
2268 pwm = pwm_cdev_get_requested_pwm(cdata, cwf.hwpwm);
2269 if (IS_ERR(pwm))
2270 return PTR_ERR(pwm);
2271
2272 wf = (struct pwm_waveform) {
2273 .period_length_ns = cwf.period_length_ns,
2274 .duty_length_ns = cwf.duty_length_ns,
2275 .duty_offset_ns = cwf.duty_offset_ns,
2276 };
2277
2278 ret = pwm_round_waveform_might_sleep(pwm, &wf);
2279 if (ret < 0)
2280 return ret;
2281
2282 cwf = (struct pwmchip_waveform) {
2283 .hwpwm = cwf.hwpwm,
2284 .period_length_ns = wf.period_length_ns,
2285 .duty_length_ns = wf.duty_length_ns,
2286 .duty_offset_ns = wf.duty_offset_ns,
2287 };
2288
2289 return copy_to_user((struct pwmchip_waveform __user *)arg,
2290 &cwf, sizeof(cwf));
2291 }
2292
2293 case PWM_IOCTL_GETWF:
2294 {
2295 struct pwmchip_waveform cwf;
2296 struct pwm_waveform wf;
2297 struct pwm_device *pwm;
2298
2299 ret = copy_from_user(&cwf,
2300 (struct pwmchip_waveform __user *)arg,
2301 sizeof(cwf));
2302 if (ret)
2303 return -EFAULT;
2304
2305 if (cwf.__pad != 0)
2306 return -EINVAL;
2307
2308 pwm = pwm_cdev_get_requested_pwm(cdata, cwf.hwpwm);
2309 if (IS_ERR(pwm))
2310 return PTR_ERR(pwm);
2311
2312 ret = pwm_get_waveform_might_sleep(pwm, &wf);
2313 if (ret)
2314 return ret;
2315
2316 cwf = (struct pwmchip_waveform) {
2317 .hwpwm = cwf.hwpwm,
2318 .period_length_ns = wf.period_length_ns,
2319 .duty_length_ns = wf.duty_length_ns,
2320 .duty_offset_ns = wf.duty_offset_ns,
2321 };
2322
2323 return copy_to_user((struct pwmchip_waveform __user *)arg,
2324 &cwf, sizeof(cwf));
2325 }
2326
2327 case PWM_IOCTL_SETROUNDEDWF:
2328 case PWM_IOCTL_SETEXACTWF:
2329 {
2330 struct pwmchip_waveform cwf;
2331 struct pwm_waveform wf;
2332 struct pwm_device *pwm;
2333
2334 ret = copy_from_user(&cwf,
2335 (struct pwmchip_waveform __user *)arg,
2336 sizeof(cwf));
2337 if (ret)
2338 return -EFAULT;
2339
2340 if (cwf.__pad != 0)
2341 return -EINVAL;
2342
2343 wf = (struct pwm_waveform){
2344 .period_length_ns = cwf.period_length_ns,
2345 .duty_length_ns = cwf.duty_length_ns,
2346 .duty_offset_ns = cwf.duty_offset_ns,
2347 };
2348
2349 if (!pwm_wf_valid(&wf))
2350 return -EINVAL;
2351
2352 pwm = pwm_cdev_get_requested_pwm(cdata, cwf.hwpwm);
2353 if (IS_ERR(pwm))
2354 return PTR_ERR(pwm);
2355
2356 ret = pwm_set_waveform_might_sleep(pwm, &wf,
2357 cmd == PWM_IOCTL_SETEXACTWF);
2358
2359 /*
2360 * If userspace cares about rounding deviations it has
2361 * to check the values anyhow, so simplify handling for
2362 * them and don't signal uprounding. This matches the
2363 * behaviour of PWM_IOCTL_ROUNDWF which also returns 0
2364 * in that case.
2365 */
2366 if (ret == 1)
2367 ret = 0;
2368
2369 return ret;
2370 }
2371
2372 default:
2373 return -ENOTTY;
2374 }
2375 }
2376
2377 static const struct file_operations pwm_cdev_fileops = {
2378 .open = pwm_cdev_open,
2379 .release = pwm_cdev_release,
2380 .owner = THIS_MODULE,
2381 .unlocked_ioctl = pwm_cdev_ioctl,
2382 };
2383
2384 static dev_t pwm_devt;
2385
2386 /**
2387 * __pwmchip_add() - register a new PWM chip
2388 * @chip: the PWM chip to add
2389 * @owner: reference to the module providing the chip.
2390 *
2391 * Register a new PWM chip. @owner is supposed to be THIS_MODULE, use the
2392 * pwmchip_add wrapper to do this right.
2393 *
2394 * Returns: 0 on success or a negative error code on failure.
2395 */
__pwmchip_add(struct pwm_chip * chip,struct module * owner)2396 int __pwmchip_add(struct pwm_chip *chip, struct module *owner)
2397 {
2398 int ret;
2399
2400 if (!chip || !pwmchip_parent(chip) || !chip->ops || !chip->npwm)
2401 return -EINVAL;
2402
2403 /*
2404 * a struct pwm_chip must be allocated using (devm_)pwmchip_alloc,
2405 * otherwise the embedded struct device might disappear too early
2406 * resulting in memory corruption.
2407 * Catch drivers that were not converted appropriately.
2408 */
2409 if (!chip->uses_pwmchip_alloc)
2410 return -EINVAL;
2411
2412 if (!pwm_ops_check(chip))
2413 return -EINVAL;
2414
2415 chip->owner = owner;
2416
2417 if (chip->atomic)
2418 spin_lock_init(&chip->atomic_lock);
2419 else
2420 mutex_init(&chip->nonatomic_lock);
2421
2422 guard(mutex)(&pwm_lock);
2423
2424 ret = idr_alloc(&pwm_chips, chip, 0, 0, GFP_KERNEL);
2425 if (ret < 0)
2426 return ret;
2427
2428 chip->id = ret;
2429
2430 dev_set_name(&chip->dev, "pwmchip%u", chip->id);
2431
2432 if (IS_ENABLED(CONFIG_OF))
2433 of_pwmchip_add(chip);
2434
2435 scoped_guard(pwmchip, chip)
2436 chip->operational = true;
2437
2438 if (chip->ops->write_waveform) {
2439 if (chip->id < PWM_MINOR_COUNT)
2440 chip->dev.devt = MKDEV(MAJOR(pwm_devt), chip->id);
2441 else
2442 dev_warn(&chip->dev, "chip id too high to create a chardev\n");
2443 }
2444
2445 cdev_init(&chip->cdev, &pwm_cdev_fileops);
2446 chip->cdev.owner = owner;
2447
2448 ret = cdev_device_add(&chip->cdev, &chip->dev);
2449 if (ret)
2450 goto err_device_add;
2451
2452 return 0;
2453
2454 err_device_add:
2455 scoped_guard(pwmchip, chip)
2456 chip->operational = false;
2457
2458 if (IS_ENABLED(CONFIG_OF))
2459 of_pwmchip_remove(chip);
2460
2461 idr_remove(&pwm_chips, chip->id);
2462
2463 return ret;
2464 }
2465 EXPORT_SYMBOL_GPL(__pwmchip_add);
2466
2467 /**
2468 * pwmchip_remove() - remove a PWM chip
2469 * @chip: the PWM chip to remove
2470 *
2471 * Removes a PWM chip.
2472 */
pwmchip_remove(struct pwm_chip * chip)2473 void pwmchip_remove(struct pwm_chip *chip)
2474 {
2475 pwmchip_sysfs_unexport(chip);
2476
2477 scoped_guard(mutex, &pwm_lock) {
2478 unsigned int i;
2479
2480 scoped_guard(pwmchip, chip)
2481 chip->operational = false;
2482
2483 for (i = 0; i < chip->npwm; ++i) {
2484 struct pwm_device *pwm = &chip->pwms[i];
2485
2486 if (test_and_clear_bit(PWMF_REQUESTED, &pwm->flags)) {
2487 dev_warn(&chip->dev, "Freeing requested PWM #%u\n", i);
2488 if (pwm->chip->ops->free)
2489 pwm->chip->ops->free(pwm->chip, pwm);
2490 }
2491 }
2492
2493 if (IS_ENABLED(CONFIG_OF))
2494 of_pwmchip_remove(chip);
2495
2496 idr_remove(&pwm_chips, chip->id);
2497 }
2498
2499 cdev_device_del(&chip->cdev, &chip->dev);
2500 }
2501 EXPORT_SYMBOL_GPL(pwmchip_remove);
2502
devm_pwmchip_remove(void * data)2503 static void devm_pwmchip_remove(void *data)
2504 {
2505 struct pwm_chip *chip = data;
2506
2507 pwmchip_remove(chip);
2508 }
2509
__devm_pwmchip_add(struct device * dev,struct pwm_chip * chip,struct module * owner)2510 int __devm_pwmchip_add(struct device *dev, struct pwm_chip *chip, struct module *owner)
2511 {
2512 int ret;
2513
2514 ret = __pwmchip_add(chip, owner);
2515 if (ret)
2516 return ret;
2517
2518 return devm_add_action_or_reset(dev, devm_pwmchip_remove, chip);
2519 }
2520 EXPORT_SYMBOL_GPL(__devm_pwmchip_add);
2521
2522 /**
2523 * pwm_add_table() - register PWM device consumers
2524 * @table: array of consumers to register
2525 * @num: number of consumers in table
2526 */
pwm_add_table(struct pwm_lookup * table,size_t num)2527 void pwm_add_table(struct pwm_lookup *table, size_t num)
2528 {
2529 guard(mutex)(&pwm_lookup_lock);
2530
2531 while (num--) {
2532 list_add_tail(&table->list, &pwm_lookup_list);
2533 table++;
2534 }
2535 }
2536
2537 /**
2538 * pwm_remove_table() - unregister PWM device consumers
2539 * @table: array of consumers to unregister
2540 * @num: number of consumers in table
2541 */
pwm_remove_table(struct pwm_lookup * table,size_t num)2542 void pwm_remove_table(struct pwm_lookup *table, size_t num)
2543 {
2544 guard(mutex)(&pwm_lookup_lock);
2545
2546 while (num--) {
2547 list_del(&table->list);
2548 table++;
2549 }
2550 }
2551
pwm_dbg_show(struct pwm_chip * chip,struct seq_file * s)2552 static void pwm_dbg_show(struct pwm_chip *chip, struct seq_file *s)
2553 {
2554 unsigned int i;
2555
2556 for (i = 0; i < chip->npwm; i++) {
2557 struct pwm_device *pwm = &chip->pwms[i];
2558 struct pwm_state state, hwstate;
2559
2560 pwm_get_state(pwm, &state);
2561 pwm_get_state_hw(pwm, &hwstate);
2562
2563 seq_printf(s, " pwm-%-3d (%-20.20s):", i, pwm->label);
2564
2565 if (test_bit(PWMF_REQUESTED, &pwm->flags))
2566 seq_puts(s, " requested");
2567
2568 seq_puts(s, "\n");
2569
2570 seq_printf(s, " requested configuration: %3sabled, %llu/%llu ns, %s polarity",
2571 state.enabled ? "en" : "dis", state.duty_cycle, state.period,
2572 state.polarity ? "inverse" : "normal");
2573 if (state.usage_power)
2574 seq_puts(s, ", usage_power");
2575 seq_puts(s, "\n");
2576
2577 seq_printf(s, " actual configuration: %3sabled, %llu/%llu ns, %s polarity",
2578 hwstate.enabled ? "en" : "dis", hwstate.duty_cycle, hwstate.period,
2579 hwstate.polarity ? "inverse" : "normal");
2580
2581 seq_puts(s, "\n");
2582 }
2583 }
2584
pwm_seq_start(struct seq_file * s,loff_t * pos)2585 static void *pwm_seq_start(struct seq_file *s, loff_t *pos)
2586 {
2587 unsigned long id = *pos;
2588 void *ret;
2589
2590 mutex_lock(&pwm_lock);
2591 s->private = "";
2592
2593 ret = idr_get_next_ul(&pwm_chips, &id);
2594 *pos = id;
2595 return ret;
2596 }
2597
pwm_seq_next(struct seq_file * s,void * v,loff_t * pos)2598 static void *pwm_seq_next(struct seq_file *s, void *v, loff_t *pos)
2599 {
2600 unsigned long id = *pos + 1;
2601 void *ret;
2602
2603 s->private = "\n";
2604
2605 ret = idr_get_next_ul(&pwm_chips, &id);
2606 *pos = id;
2607 return ret;
2608 }
2609
pwm_seq_stop(struct seq_file * s,void * v)2610 static void pwm_seq_stop(struct seq_file *s, void *v)
2611 {
2612 mutex_unlock(&pwm_lock);
2613 }
2614
pwm_seq_show(struct seq_file * s,void * v)2615 static int pwm_seq_show(struct seq_file *s, void *v)
2616 {
2617 struct pwm_chip *chip = v;
2618
2619 seq_printf(s, "%s%d: %s/%s, %d PWM device%s\n",
2620 (char *)s->private, chip->id,
2621 pwmchip_parent(chip)->bus ? pwmchip_parent(chip)->bus->name : "no-bus",
2622 dev_name(pwmchip_parent(chip)), chip->npwm,
2623 (chip->npwm != 1) ? "s" : "");
2624
2625 pwm_dbg_show(chip, s);
2626
2627 return 0;
2628 }
2629
2630 static const struct seq_operations pwm_debugfs_sops = {
2631 .start = pwm_seq_start,
2632 .next = pwm_seq_next,
2633 .stop = pwm_seq_stop,
2634 .show = pwm_seq_show,
2635 };
2636
2637 DEFINE_SEQ_ATTRIBUTE(pwm_debugfs);
2638
pwm_init(void)2639 static int __init pwm_init(void)
2640 {
2641 int ret;
2642
2643 ret = alloc_chrdev_region(&pwm_devt, 0, PWM_MINOR_COUNT, "pwm");
2644 if (ret) {
2645 pr_err("Failed to initialize chrdev region for PWM usage\n");
2646 return ret;
2647 }
2648
2649 ret = class_register(&pwm_class);
2650 if (ret) {
2651 pr_err("Failed to initialize PWM class (%pe)\n", ERR_PTR(ret));
2652 unregister_chrdev_region(pwm_devt, 256);
2653 return ret;
2654 }
2655
2656 if (IS_ENABLED(CONFIG_DEBUG_FS))
2657 debugfs_create_file("pwm", 0444, NULL, NULL, &pwm_debugfs_fops);
2658
2659 return 0;
2660 }
2661 subsys_initcall(pwm_init);
2662