xref: /linux/drivers/pwm/core.c (revision f38b7512903a50eaeb300e9c8d9448187dd3959c)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Generic pwmlib implementation
4  *
5  * Copyright (C) 2011 Sascha Hauer <s.hauer@pengutronix.de>
6  * Copyright (C) 2011-2012 Avionic Design GmbH
7  */
8 
9 #define DEFAULT_SYMBOL_NAMESPACE "PWM"
10 
11 #include <linux/acpi.h>
12 #include <linux/module.h>
13 #include <linux/idr.h>
14 #include <linux/of.h>
15 #include <linux/pwm.h>
16 #include <linux/list.h>
17 #include <linux/mutex.h>
18 #include <linux/err.h>
19 #include <linux/slab.h>
20 #include <linux/device.h>
21 #include <linux/debugfs.h>
22 #include <linux/seq_file.h>
23 
24 #include <dt-bindings/pwm/pwm.h>
25 
26 #include <uapi/linux/pwm.h>
27 
28 #define CREATE_TRACE_POINTS
29 #include <trace/events/pwm.h>
30 
31 #define PWM_MINOR_COUNT 256
32 
33 /* protects access to pwm_chips */
34 static DEFINE_MUTEX(pwm_lock);
35 
36 static DEFINE_IDR(pwm_chips);
37 
pwmchip_lock(struct pwm_chip * chip)38 static void pwmchip_lock(struct pwm_chip *chip)
39 {
40 	if (chip->atomic)
41 		spin_lock(&chip->atomic_lock);
42 	else
43 		mutex_lock(&chip->nonatomic_lock);
44 }
45 
pwmchip_unlock(struct pwm_chip * chip)46 static void pwmchip_unlock(struct pwm_chip *chip)
47 {
48 	if (chip->atomic)
49 		spin_unlock(&chip->atomic_lock);
50 	else
51 		mutex_unlock(&chip->nonatomic_lock);
52 }
53 
DEFINE_GUARD(pwmchip,struct pwm_chip *,pwmchip_lock (_T),pwmchip_unlock (_T))54 DEFINE_GUARD(pwmchip, struct pwm_chip *, pwmchip_lock(_T), pwmchip_unlock(_T))
55 
56 static bool pwm_wf_valid(const struct pwm_waveform *wf)
57 {
58 	/*
59 	 * For now restrict waveforms to period_length_ns <= S64_MAX to provide
60 	 * some space for future extensions. One possibility is to simplify
61 	 * representing waveforms with inverted polarity using negative values
62 	 * somehow.
63 	 */
64 	if (wf->period_length_ns > S64_MAX)
65 		return false;
66 
67 	if (wf->duty_length_ns > wf->period_length_ns)
68 		return false;
69 
70 	/*
71 	 * .duty_offset_ns is supposed to be smaller than .period_length_ns, apart
72 	 * from the corner case .duty_offset_ns == 0 && .period_length_ns == 0.
73 	 */
74 	if (wf->duty_offset_ns && wf->duty_offset_ns >= wf->period_length_ns)
75 		return false;
76 
77 	return true;
78 }
79 
pwm_wf2state(const struct pwm_waveform * wf,struct pwm_state * state)80 static void pwm_wf2state(const struct pwm_waveform *wf, struct pwm_state *state)
81 {
82 	if (wf->period_length_ns) {
83 		if (wf->duty_length_ns + wf->duty_offset_ns < wf->period_length_ns)
84 			*state = (struct pwm_state){
85 				.enabled = true,
86 				.polarity = PWM_POLARITY_NORMAL,
87 				.period = wf->period_length_ns,
88 				.duty_cycle = wf->duty_length_ns,
89 			};
90 		else
91 			*state = (struct pwm_state){
92 				.enabled = true,
93 				.polarity = PWM_POLARITY_INVERSED,
94 				.period = wf->period_length_ns,
95 				.duty_cycle = wf->period_length_ns - wf->duty_length_ns,
96 			};
97 	} else {
98 		*state = (struct pwm_state){
99 			.enabled = false,
100 		};
101 	}
102 }
103 
pwm_state2wf(const struct pwm_state * state,struct pwm_waveform * wf)104 static void pwm_state2wf(const struct pwm_state *state, struct pwm_waveform *wf)
105 {
106 	if (state->enabled) {
107 		if (state->polarity == PWM_POLARITY_NORMAL)
108 			*wf = (struct pwm_waveform){
109 				.period_length_ns = state->period,
110 				.duty_length_ns = state->duty_cycle,
111 				.duty_offset_ns = 0,
112 			};
113 		else
114 			*wf = (struct pwm_waveform){
115 				.period_length_ns = state->period,
116 				.duty_length_ns = state->period - state->duty_cycle,
117 				.duty_offset_ns = state->duty_cycle,
118 			};
119 	} else {
120 		*wf = (struct pwm_waveform){
121 			.period_length_ns = 0,
122 		};
123 	}
124 }
125 
pwmwfcmp(const struct pwm_waveform * a,const struct pwm_waveform * b)126 static int pwmwfcmp(const struct pwm_waveform *a, const struct pwm_waveform *b)
127 {
128 	if (a->period_length_ns > b->period_length_ns)
129 		return 1;
130 
131 	if (a->period_length_ns < b->period_length_ns)
132 		return -1;
133 
134 	if (a->duty_length_ns > b->duty_length_ns)
135 		return 1;
136 
137 	if (a->duty_length_ns < b->duty_length_ns)
138 		return -1;
139 
140 	if (a->duty_offset_ns > b->duty_offset_ns)
141 		return 1;
142 
143 	if (a->duty_offset_ns < b->duty_offset_ns)
144 		return -1;
145 
146 	return 0;
147 }
148 
pwm_check_rounding(const struct pwm_waveform * wf,const struct pwm_waveform * wf_rounded)149 static bool pwm_check_rounding(const struct pwm_waveform *wf,
150 			       const struct pwm_waveform *wf_rounded)
151 {
152 	if (!wf->period_length_ns)
153 		return true;
154 
155 	if (wf->period_length_ns < wf_rounded->period_length_ns)
156 		return false;
157 
158 	if (wf->duty_length_ns < wf_rounded->duty_length_ns)
159 		return false;
160 
161 	if (wf->duty_offset_ns < wf_rounded->duty_offset_ns)
162 		return false;
163 
164 	return true;
165 }
166 
__pwm_round_waveform_tohw(struct pwm_chip * chip,struct pwm_device * pwm,const struct pwm_waveform * wf,void * wfhw)167 static int __pwm_round_waveform_tohw(struct pwm_chip *chip, struct pwm_device *pwm,
168 				     const struct pwm_waveform *wf, void *wfhw)
169 {
170 	const struct pwm_ops *ops = chip->ops;
171 	int ret;
172 
173 	ret = ops->round_waveform_tohw(chip, pwm, wf, wfhw);
174 	trace_pwm_round_waveform_tohw(pwm, wf, wfhw, ret);
175 
176 	return ret;
177 }
178 
__pwm_round_waveform_fromhw(struct pwm_chip * chip,struct pwm_device * pwm,const void * wfhw,struct pwm_waveform * wf)179 static int __pwm_round_waveform_fromhw(struct pwm_chip *chip, struct pwm_device *pwm,
180 				       const void *wfhw, struct pwm_waveform *wf)
181 {
182 	const struct pwm_ops *ops = chip->ops;
183 	int ret;
184 
185 	ret = ops->round_waveform_fromhw(chip, pwm, wfhw, wf);
186 	trace_pwm_round_waveform_fromhw(pwm, wfhw, wf, ret);
187 
188 	return ret;
189 }
190 
__pwm_read_waveform(struct pwm_chip * chip,struct pwm_device * pwm,void * wfhw)191 static int __pwm_read_waveform(struct pwm_chip *chip, struct pwm_device *pwm, void *wfhw)
192 {
193 	const struct pwm_ops *ops = chip->ops;
194 	int ret;
195 
196 	ret = ops->read_waveform(chip, pwm, wfhw);
197 	trace_pwm_read_waveform(pwm, wfhw, ret);
198 
199 	return ret;
200 }
201 
__pwm_write_waveform(struct pwm_chip * chip,struct pwm_device * pwm,const void * wfhw)202 static int __pwm_write_waveform(struct pwm_chip *chip, struct pwm_device *pwm, const void *wfhw)
203 {
204 	const struct pwm_ops *ops = chip->ops;
205 	int ret;
206 
207 	ret = ops->write_waveform(chip, pwm, wfhw);
208 	trace_pwm_write_waveform(pwm, wfhw, ret);
209 
210 	return ret;
211 }
212 
213 /**
214  * pwm_round_waveform_might_sleep - Query hardware capabilities
215  * Cannot be used in atomic context.
216  * @pwm: PWM device
217  * @wf: waveform to round and output parameter
218  *
219  * Typically a given waveform cannot be implemented exactly by hardware, e.g.
220  * because hardware only supports coarse period resolution or no duty_offset.
221  * This function returns the actually implemented waveform if you pass @wf to
222  * pwm_set_waveform_might_sleep() now.
223  *
224  * Note however that the world doesn't stop turning when you call it, so when
225  * doing::
226  *
227  *   pwm_round_waveform_might_sleep(mypwm, &wf);
228  *   pwm_set_waveform_might_sleep(mypwm, &wf, true);
229  *
230  * the latter might fail, e.g. because an input clock changed its rate between
231  * these two calls and the waveform determined by
232  * pwm_round_waveform_might_sleep() cannot be implemented any more.
233  *
234  * Usually all values passed in @wf are rounded down to the nearest possible
235  * value (in the order period_length_ns, duty_length_ns and then
236  * duty_offset_ns). Only if this isn't possible, a value might grow. See the
237  * documentation for pwm_set_waveform_might_sleep() for a more formal
238  * description.
239  *
240  * Returns: 0 on success, 1 if at least one value had to be rounded up or a
241  * negative errno.
242  * Context: May sleep.
243  */
pwm_round_waveform_might_sleep(struct pwm_device * pwm,struct pwm_waveform * wf)244 int pwm_round_waveform_might_sleep(struct pwm_device *pwm, struct pwm_waveform *wf)
245 {
246 	struct pwm_chip *chip = pwm->chip;
247 	const struct pwm_ops *ops = chip->ops;
248 	struct pwm_waveform wf_req = *wf;
249 	char wfhw[PWM_WFHWSIZE];
250 	int ret_tohw, ret_fromhw;
251 
252 	BUG_ON(PWM_WFHWSIZE < ops->sizeof_wfhw);
253 
254 	if (!pwmchip_supports_waveform(chip))
255 		return -EOPNOTSUPP;
256 
257 	if (!pwm_wf_valid(wf))
258 		return -EINVAL;
259 
260 	guard(pwmchip)(chip);
261 
262 	if (!chip->operational)
263 		return -ENODEV;
264 
265 	ret_tohw = __pwm_round_waveform_tohw(chip, pwm, wf, wfhw);
266 	if (ret_tohw < 0)
267 		return ret_tohw;
268 
269 	if (IS_ENABLED(CONFIG_PWM_DEBUG) && ret_tohw > 1)
270 		dev_err(&chip->dev, "Unexpected return value from __pwm_round_waveform_tohw: requested %llu/%llu [+%llu], return value %d\n",
271 			wf_req.duty_length_ns, wf_req.period_length_ns, wf_req.duty_offset_ns, ret_tohw);
272 
273 	ret_fromhw = __pwm_round_waveform_fromhw(chip, pwm, wfhw, wf);
274 	if (ret_fromhw < 0)
275 		return ret_fromhw;
276 
277 	if (IS_ENABLED(CONFIG_PWM_DEBUG) && ret_fromhw > 0)
278 		dev_err(&chip->dev, "Unexpected return value from __pwm_round_waveform_fromhw: requested %llu/%llu [+%llu], return value %d\n",
279 			wf_req.duty_length_ns, wf_req.period_length_ns, wf_req.duty_offset_ns, ret_tohw);
280 
281 	if (IS_ENABLED(CONFIG_PWM_DEBUG) &&
282 	    (ret_tohw == 0) != pwm_check_rounding(&wf_req, wf))
283 		dev_err(&chip->dev, "Wrong rounding: requested %llu/%llu [+%llu], result %llu/%llu [+%llu], ret: %d\n",
284 			wf_req.duty_length_ns, wf_req.period_length_ns, wf_req.duty_offset_ns,
285 			wf->duty_length_ns, wf->period_length_ns, wf->duty_offset_ns, ret_tohw);
286 
287 	return ret_tohw;
288 }
289 EXPORT_SYMBOL_GPL(pwm_round_waveform_might_sleep);
290 
291 /**
292  * pwm_get_waveform_might_sleep - Query hardware about current configuration
293  * Cannot be used in atomic context.
294  * @pwm: PWM device
295  * @wf: output parameter
296  *
297  * Stores the current configuration of the PWM in @wf. Note this is the
298  * equivalent of pwm_get_state_hw() (and not pwm_get_state()) for pwm_waveform.
299  *
300  * Returns: 0 on success or a negative errno
301  * Context: May sleep.
302  */
pwm_get_waveform_might_sleep(struct pwm_device * pwm,struct pwm_waveform * wf)303 int pwm_get_waveform_might_sleep(struct pwm_device *pwm, struct pwm_waveform *wf)
304 {
305 	struct pwm_chip *chip = pwm->chip;
306 	const struct pwm_ops *ops = chip->ops;
307 	char wfhw[PWM_WFHWSIZE];
308 	int err;
309 
310 	BUG_ON(PWM_WFHWSIZE < ops->sizeof_wfhw);
311 
312 	if (!pwmchip_supports_waveform(chip) || !ops->read_waveform)
313 		return -EOPNOTSUPP;
314 
315 	guard(pwmchip)(chip);
316 
317 	if (!chip->operational)
318 		return -ENODEV;
319 
320 	err = __pwm_read_waveform(chip, pwm, &wfhw);
321 	if (err)
322 		return err;
323 
324 	return __pwm_round_waveform_fromhw(chip, pwm, &wfhw, wf);
325 }
326 EXPORT_SYMBOL_GPL(pwm_get_waveform_might_sleep);
327 
328 /* Called with the pwmchip lock held */
__pwm_set_waveform(struct pwm_device * pwm,const struct pwm_waveform * wf,bool exact)329 static int __pwm_set_waveform(struct pwm_device *pwm,
330 			      const struct pwm_waveform *wf,
331 			      bool exact)
332 {
333 	struct pwm_chip *chip = pwm->chip;
334 	const struct pwm_ops *ops = chip->ops;
335 	char wfhw[PWM_WFHWSIZE];
336 	struct pwm_waveform wf_rounded;
337 	int err, ret_tohw;
338 
339 	BUG_ON(PWM_WFHWSIZE < ops->sizeof_wfhw);
340 
341 	if (!pwmchip_supports_waveform(chip))
342 		return -EOPNOTSUPP;
343 
344 	if (!pwm_wf_valid(wf))
345 		return -EINVAL;
346 
347 	ret_tohw = __pwm_round_waveform_tohw(chip, pwm, wf, &wfhw);
348 	if (ret_tohw < 0)
349 		return ret_tohw;
350 
351 	if ((IS_ENABLED(CONFIG_PWM_DEBUG) || exact) && wf->period_length_ns) {
352 		err = __pwm_round_waveform_fromhw(chip, pwm, &wfhw, &wf_rounded);
353 		if (err)
354 			return err;
355 
356 		if (IS_ENABLED(CONFIG_PWM_DEBUG) && (ret_tohw == 0) != pwm_check_rounding(wf, &wf_rounded))
357 			dev_err(&chip->dev, "Wrong rounding: requested %llu/%llu [+%llu], result %llu/%llu [+%llu], ret: %d\n",
358 				wf->duty_length_ns, wf->period_length_ns, wf->duty_offset_ns,
359 				wf_rounded.duty_length_ns, wf_rounded.period_length_ns, wf_rounded.duty_offset_ns, ret_tohw);
360 
361 		if (exact && pwmwfcmp(wf, &wf_rounded)) {
362 			dev_dbg(&chip->dev, "Requested no rounding, but %llu/%llu [+%llu] -> %llu/%llu [+%llu]\n",
363 				wf->duty_length_ns, wf->period_length_ns, wf->duty_offset_ns,
364 				wf_rounded.duty_length_ns, wf_rounded.period_length_ns, wf_rounded.duty_offset_ns);
365 
366 			return 1;
367 		}
368 	}
369 
370 	err = __pwm_write_waveform(chip, pwm, &wfhw);
371 	if (err)
372 		return err;
373 
374 	/* update .state */
375 	pwm_wf2state(wf, &pwm->state);
376 
377 	if (IS_ENABLED(CONFIG_PWM_DEBUG) && ops->read_waveform && wf->period_length_ns) {
378 		struct pwm_waveform wf_set;
379 
380 		err = __pwm_read_waveform(chip, pwm, &wfhw);
381 		if (err)
382 			/* maybe ignore? */
383 			return err;
384 
385 		err = __pwm_round_waveform_fromhw(chip, pwm, &wfhw, &wf_set);
386 		if (err)
387 			/* maybe ignore? */
388 			return err;
389 
390 		if (pwmwfcmp(&wf_set, &wf_rounded) != 0)
391 			dev_err(&chip->dev,
392 				"Unexpected setting: requested %llu/%llu [+%llu], expected %llu/%llu [+%llu], set %llu/%llu [+%llu]\n",
393 				wf->duty_length_ns, wf->period_length_ns, wf->duty_offset_ns,
394 				wf_rounded.duty_length_ns, wf_rounded.period_length_ns, wf_rounded.duty_offset_ns,
395 				wf_set.duty_length_ns, wf_set.period_length_ns, wf_set.duty_offset_ns);
396 	}
397 
398 	return ret_tohw;
399 }
400 
401 /**
402  * pwm_set_waveform_might_sleep - Apply a new waveform
403  * Cannot be used in atomic context.
404  * @pwm: PWM device
405  * @wf: The waveform to apply
406  * @exact: If true no rounding is allowed
407  *
408  * Typically a requested waveform cannot be implemented exactly, e.g. because
409  * you requested .period_length_ns = 100 ns, but the hardware can only set
410  * periods that are a multiple of 8.5 ns. With that hardware passing @exact =
411  * true results in pwm_set_waveform_might_sleep() failing and returning -EDOM.
412  * If @exact = false you get a period of 93.5 ns (i.e. the biggest period not
413  * bigger than the requested value).
414  * Note that even with @exact = true, some rounding by less than 1 ns is
415  * possible/needed. In the above example requesting .period_length_ns = 94 and
416  * @exact = true, you get the hardware configured with period = 93.5 ns.
417  *
418  * Let C be the set of possible hardware configurations for a given PWM device,
419  * consisting of tuples (p, d, o) where p is the period length, d is the duty
420  * length and o the duty offset.
421  *
422  * The following algorithm is implemented to pick the hardware setting
423  * (p, d, o) ∈ C for a given request (p', d', o') with @exact = false::
424  *
425  *   p = max( { ṗ | ∃ ḋ, ȯ : (ṗ, ḋ, ȯ) ∈ C ∧ ṗ ≤ p' } ∪ { min({ ṗ | ∃ ḋ, ȯ : (ṗ, ḋ, ȯ) ∈ C }) })
426  *   d = max( { ḋ | ∃ ȯ : (p, ḋ, ȯ) ∈ C ∧ ḋ ≤ d' } ∪ { min({ ḋ | ∃ ȯ : (p, ḋ, ȯ) ∈ C }) })
427  *   o = max( { ȯ | (p, d, ȯ) ∈ C ∧ ȯ ≤ o' } ∪ { min({ ȯ | (p, d, ȯ) ∈ C }) })
428  *
429  * In words: The chosen period length is the maximal possible period length not
430  * bigger than the requested period length and if that doesn't exist, the
431  * minimal period length. The chosen duty length is the maximal possible duty
432  * length that is compatible with the chosen period length and isn't bigger than
433  * the requested duty length. Again if such a value doesn't exist, the minimal
434  * duty length compatible with the chosen period is picked. After that the duty
435  * offset compatible with the chosen period and duty length is chosen in the
436  * same way.
437  *
438  * Returns: 0 on success, -EDOM if setting failed due to the exact waveform not
439  * being possible (if @exact), or a different negative errno on failure.
440  * Context: May sleep.
441  */
pwm_set_waveform_might_sleep(struct pwm_device * pwm,const struct pwm_waveform * wf,bool exact)442 int pwm_set_waveform_might_sleep(struct pwm_device *pwm,
443 				 const struct pwm_waveform *wf, bool exact)
444 {
445 	struct pwm_chip *chip = pwm->chip;
446 	int err;
447 
448 	might_sleep();
449 
450 	guard(pwmchip)(chip);
451 
452 	if (!chip->operational)
453 		return -ENODEV;
454 
455 	if (IS_ENABLED(CONFIG_PWM_DEBUG) && chip->atomic) {
456 		/*
457 		 * Catch any drivers that have been marked as atomic but
458 		 * that will sleep anyway.
459 		 */
460 		non_block_start();
461 		err = __pwm_set_waveform(pwm, wf, exact);
462 		non_block_end();
463 	} else {
464 		err = __pwm_set_waveform(pwm, wf, exact);
465 	}
466 
467 	/*
468 	 * map err == 1 to -EDOM for exact requests and 0 for !exact ones. Also
469 	 * make sure that -EDOM is only returned in exactly that case. Note that
470 	 * __pwm_set_waveform() should never return -EDOM which justifies the
471 	 * unlikely().
472 	 */
473 	if (unlikely(err == -EDOM))
474 		err = -EINVAL;
475 	else if (exact && err == 1)
476 		err = -EDOM;
477 	else if (err == 1)
478 		err = 0;
479 
480 	return err;
481 }
482 EXPORT_SYMBOL_GPL(pwm_set_waveform_might_sleep);
483 
pwm_apply_debug(struct pwm_device * pwm,const struct pwm_state * state)484 static void pwm_apply_debug(struct pwm_device *pwm,
485 			    const struct pwm_state *state)
486 {
487 	struct pwm_state *last = &pwm->last;
488 	struct pwm_chip *chip = pwm->chip;
489 	struct pwm_state s1 = { 0 }, s2 = { 0 };
490 	int err;
491 
492 	if (!IS_ENABLED(CONFIG_PWM_DEBUG))
493 		return;
494 
495 	/* No reasonable diagnosis possible without .get_state() */
496 	if (!chip->ops->get_state)
497 		return;
498 
499 	/*
500 	 * *state was just applied. Read out the hardware state and do some
501 	 * checks.
502 	 */
503 
504 	err = chip->ops->get_state(chip, pwm, &s1);
505 	trace_pwm_get(pwm, &s1, err);
506 	if (err)
507 		/* If that failed there isn't much to debug */
508 		return;
509 
510 	/*
511 	 * The lowlevel driver either ignored .polarity (which is a bug) or as
512 	 * best effort inverted .polarity and fixed .duty_cycle respectively.
513 	 * Undo this inversion and fixup for further tests.
514 	 */
515 	if (s1.enabled && s1.polarity != state->polarity) {
516 		s2.polarity = state->polarity;
517 		s2.duty_cycle = s1.period - s1.duty_cycle;
518 		s2.period = s1.period;
519 		s2.enabled = s1.enabled;
520 	} else {
521 		s2 = s1;
522 	}
523 
524 	if (s2.polarity != state->polarity &&
525 	    state->duty_cycle < state->period)
526 		dev_warn(pwmchip_parent(chip), ".apply ignored .polarity\n");
527 
528 	if (state->enabled && s2.enabled &&
529 	    last->polarity == state->polarity &&
530 	    last->period > s2.period &&
531 	    last->period <= state->period)
532 		dev_warn(pwmchip_parent(chip),
533 			 ".apply didn't pick the best available period (requested: %llu, applied: %llu, possible: %llu)\n",
534 			 state->period, s2.period, last->period);
535 
536 	/*
537 	 * Rounding period up is fine only if duty_cycle is 0 then, because a
538 	 * flat line doesn't have a characteristic period.
539 	 */
540 	if (state->enabled && s2.enabled && state->period < s2.period && s2.duty_cycle)
541 		dev_warn(pwmchip_parent(chip),
542 			 ".apply is supposed to round down period (requested: %llu, applied: %llu)\n",
543 			 state->period, s2.period);
544 
545 	if (state->enabled &&
546 	    last->polarity == state->polarity &&
547 	    last->period == s2.period &&
548 	    last->duty_cycle > s2.duty_cycle &&
549 	    last->duty_cycle <= state->duty_cycle)
550 		dev_warn(pwmchip_parent(chip),
551 			 ".apply didn't pick the best available duty cycle (requested: %llu/%llu, applied: %llu/%llu, possible: %llu/%llu)\n",
552 			 state->duty_cycle, state->period,
553 			 s2.duty_cycle, s2.period,
554 			 last->duty_cycle, last->period);
555 
556 	if (state->enabled && s2.enabled && state->duty_cycle < s2.duty_cycle)
557 		dev_warn(pwmchip_parent(chip),
558 			 ".apply is supposed to round down duty_cycle (requested: %llu/%llu, applied: %llu/%llu)\n",
559 			 state->duty_cycle, state->period,
560 			 s2.duty_cycle, s2.period);
561 
562 	if (!state->enabled && s2.enabled && s2.duty_cycle > 0)
563 		dev_warn(pwmchip_parent(chip),
564 			 "requested disabled, but yielded enabled with duty > 0\n");
565 
566 	/* reapply the state that the driver reported being configured. */
567 	err = chip->ops->apply(chip, pwm, &s1);
568 	trace_pwm_apply(pwm, &s1, err);
569 	if (err) {
570 		*last = s1;
571 		dev_err(pwmchip_parent(chip), "failed to reapply current setting\n");
572 		return;
573 	}
574 
575 	*last = (struct pwm_state){ 0 };
576 	err = chip->ops->get_state(chip, pwm, last);
577 	trace_pwm_get(pwm, last, err);
578 	if (err)
579 		return;
580 
581 	/* reapplication of the current state should give an exact match */
582 	if (s1.enabled != last->enabled ||
583 	    s1.polarity != last->polarity ||
584 	    (s1.enabled && s1.period != last->period) ||
585 	    (s1.enabled && s1.duty_cycle != last->duty_cycle)) {
586 		dev_err(pwmchip_parent(chip),
587 			".apply is not idempotent (ena=%d pol=%d %llu/%llu) -> (ena=%d pol=%d %llu/%llu)\n",
588 			s1.enabled, s1.polarity, s1.duty_cycle, s1.period,
589 			last->enabled, last->polarity, last->duty_cycle,
590 			last->period);
591 	}
592 }
593 
pwm_state_valid(const struct pwm_state * state)594 static bool pwm_state_valid(const struct pwm_state *state)
595 {
596 	/*
597 	 * For a disabled state all other state description is irrelevant and
598 	 * and supposed to be ignored. So also ignore any strange values and
599 	 * consider the state ok.
600 	 */
601 	if (!state->enabled)
602 		return true;
603 
604 	if (!state->period)
605 		return false;
606 
607 	if (state->duty_cycle > state->period)
608 		return false;
609 
610 	return true;
611 }
612 
__pwm_apply(struct pwm_device * pwm,const struct pwm_state * state)613 static int __pwm_apply(struct pwm_device *pwm, const struct pwm_state *state)
614 {
615 	struct pwm_chip *chip;
616 	const struct pwm_ops *ops;
617 	int err;
618 
619 	if (!pwm || !state)
620 		return -EINVAL;
621 
622 	if (!pwm_state_valid(state)) {
623 		/*
624 		 * Allow to transition from one invalid state to another.
625 		 * This ensures that you can e.g. change the polarity while
626 		 * the period is zero. (This happens on stm32 when the hardware
627 		 * is in its poweron default state.) This greatly simplifies
628 		 * working with the sysfs API where you can only change one
629 		 * parameter at a time.
630 		 */
631 		if (!pwm_state_valid(&pwm->state)) {
632 			pwm->state = *state;
633 			return 0;
634 		}
635 
636 		return -EINVAL;
637 	}
638 
639 	chip = pwm->chip;
640 	ops = chip->ops;
641 
642 	if (state->period == pwm->state.period &&
643 	    state->duty_cycle == pwm->state.duty_cycle &&
644 	    state->polarity == pwm->state.polarity &&
645 	    state->enabled == pwm->state.enabled &&
646 	    state->usage_power == pwm->state.usage_power)
647 		return 0;
648 
649 	if (pwmchip_supports_waveform(chip)) {
650 		struct pwm_waveform wf;
651 		char wfhw[PWM_WFHWSIZE];
652 
653 		BUG_ON(PWM_WFHWSIZE < ops->sizeof_wfhw);
654 
655 		pwm_state2wf(state, &wf);
656 
657 		/*
658 		 * The rounding is wrong here for states with inverted polarity.
659 		 * While .apply() rounds down duty_cycle (which represents the
660 		 * time from the start of the period to the inner edge),
661 		 * .round_waveform_tohw() rounds down the time the PWM is high.
662 		 * Can be fixed if the need arises, until reported otherwise
663 		 * let's assume that consumers don't care.
664 		 */
665 
666 		err = __pwm_round_waveform_tohw(chip, pwm, &wf, &wfhw);
667 		if (err) {
668 			if (err > 0)
669 				/*
670 				 * This signals an invalid request, typically
671 				 * the requested period (or duty_offset) is
672 				 * smaller than possible with the hardware.
673 				 */
674 				return -EINVAL;
675 
676 			return err;
677 		}
678 
679 		if (IS_ENABLED(CONFIG_PWM_DEBUG)) {
680 			struct pwm_waveform wf_rounded;
681 
682 			err = __pwm_round_waveform_fromhw(chip, pwm, &wfhw, &wf_rounded);
683 			if (err)
684 				return err;
685 
686 			if (!pwm_check_rounding(&wf, &wf_rounded))
687 				dev_err(&chip->dev, "Wrong rounding: requested %llu/%llu [+%llu], result %llu/%llu [+%llu]\n",
688 					wf.duty_length_ns, wf.period_length_ns, wf.duty_offset_ns,
689 					wf_rounded.duty_length_ns, wf_rounded.period_length_ns, wf_rounded.duty_offset_ns);
690 		}
691 
692 		err = __pwm_write_waveform(chip, pwm, &wfhw);
693 		if (err)
694 			return err;
695 
696 		pwm->state = *state;
697 
698 	} else {
699 		err = ops->apply(chip, pwm, state);
700 		trace_pwm_apply(pwm, state, err);
701 		if (err)
702 			return err;
703 
704 		pwm->state = *state;
705 
706 		/*
707 		 * only do this after pwm->state was applied as some
708 		 * implementations of .get_state() depend on this
709 		 */
710 		pwm_apply_debug(pwm, state);
711 	}
712 
713 	return 0;
714 }
715 
716 /**
717  * pwm_apply_might_sleep() - atomically apply a new state to a PWM device
718  * Cannot be used in atomic context.
719  * @pwm: PWM device
720  * @state: new state to apply
721  *
722  * Returns: 0 on success, or a negative errno
723  * Context: May sleep.
724  */
pwm_apply_might_sleep(struct pwm_device * pwm,const struct pwm_state * state)725 int pwm_apply_might_sleep(struct pwm_device *pwm, const struct pwm_state *state)
726 {
727 	int err;
728 	struct pwm_chip *chip = pwm->chip;
729 
730 	/*
731 	 * Some lowlevel driver's implementations of .apply() make use of
732 	 * mutexes, also with some drivers only returning when the new
733 	 * configuration is active calling pwm_apply_might_sleep() from atomic context
734 	 * is a bad idea. So make it explicit that calling this function might
735 	 * sleep.
736 	 */
737 	might_sleep();
738 
739 	guard(pwmchip)(chip);
740 
741 	if (!chip->operational)
742 		return -ENODEV;
743 
744 	if (IS_ENABLED(CONFIG_PWM_DEBUG) && chip->atomic) {
745 		/*
746 		 * Catch any drivers that have been marked as atomic but
747 		 * that will sleep anyway.
748 		 */
749 		non_block_start();
750 		err = __pwm_apply(pwm, state);
751 		non_block_end();
752 	} else {
753 		err = __pwm_apply(pwm, state);
754 	}
755 
756 	return err;
757 }
758 EXPORT_SYMBOL_GPL(pwm_apply_might_sleep);
759 
760 /**
761  * pwm_apply_atomic() - apply a new state to a PWM device from atomic context
762  * Not all PWM devices support this function, check with pwm_might_sleep().
763  * @pwm: PWM device
764  * @state: new state to apply
765  *
766  * Returns: 0 on success, or a negative errno
767  * Context: Any
768  */
pwm_apply_atomic(struct pwm_device * pwm,const struct pwm_state * state)769 int pwm_apply_atomic(struct pwm_device *pwm, const struct pwm_state *state)
770 {
771 	struct pwm_chip *chip = pwm->chip;
772 
773 	WARN_ONCE(!chip->atomic,
774 		  "sleeping PWM driver used in atomic context\n");
775 
776 	guard(pwmchip)(chip);
777 
778 	if (!chip->operational)
779 		return -ENODEV;
780 
781 	return __pwm_apply(pwm, state);
782 }
783 EXPORT_SYMBOL_GPL(pwm_apply_atomic);
784 
785 /**
786  * pwm_get_state_hw() - get the current PWM state from hardware
787  * @pwm: PWM device
788  * @state: state to fill with the current PWM state
789  *
790  * Similar to pwm_get_state() but reads the current PWM state from hardware
791  * instead of the requested state.
792  *
793  * Returns: 0 on success or a negative error code on failure.
794  * Context: May sleep.
795  */
pwm_get_state_hw(struct pwm_device * pwm,struct pwm_state * state)796 int pwm_get_state_hw(struct pwm_device *pwm, struct pwm_state *state)
797 {
798 	struct pwm_chip *chip = pwm->chip;
799 	const struct pwm_ops *ops = chip->ops;
800 	int ret = -EOPNOTSUPP;
801 
802 	might_sleep();
803 
804 	guard(pwmchip)(chip);
805 
806 	if (!chip->operational)
807 		return -ENODEV;
808 
809 	if (pwmchip_supports_waveform(chip) && ops->read_waveform) {
810 		char wfhw[PWM_WFHWSIZE];
811 		struct pwm_waveform wf;
812 
813 		BUG_ON(PWM_WFHWSIZE < ops->sizeof_wfhw);
814 
815 		ret = __pwm_read_waveform(chip, pwm, &wfhw);
816 		if (ret)
817 			return ret;
818 
819 		ret = __pwm_round_waveform_fromhw(chip, pwm, &wfhw, &wf);
820 		if (ret)
821 			return ret;
822 
823 		pwm_wf2state(&wf, state);
824 
825 	} else if (ops->get_state) {
826 		ret = ops->get_state(chip, pwm, state);
827 		trace_pwm_get(pwm, state, ret);
828 	}
829 
830 	return ret;
831 }
832 EXPORT_SYMBOL_GPL(pwm_get_state_hw);
833 
834 /**
835  * pwm_adjust_config() - adjust the current PWM config to the PWM arguments
836  * @pwm: PWM device
837  *
838  * This function will adjust the PWM config to the PWM arguments provided
839  * by the DT or PWM lookup table. This is particularly useful to adapt
840  * the bootloader config to the Linux one.
841  *
842  * Returns: 0 on success or a negative error code on failure.
843  * Context: May sleep.
844  */
pwm_adjust_config(struct pwm_device * pwm)845 int pwm_adjust_config(struct pwm_device *pwm)
846 {
847 	struct pwm_state state;
848 	struct pwm_args pargs;
849 
850 	pwm_get_args(pwm, &pargs);
851 	pwm_get_state(pwm, &state);
852 
853 	/*
854 	 * If the current period is zero it means that either the PWM driver
855 	 * does not support initial state retrieval or the PWM has not yet
856 	 * been configured.
857 	 *
858 	 * In either case, we setup the new period and polarity, and assign a
859 	 * duty cycle of 0.
860 	 */
861 	if (!state.period) {
862 		state.duty_cycle = 0;
863 		state.period = pargs.period;
864 		state.polarity = pargs.polarity;
865 
866 		return pwm_apply_might_sleep(pwm, &state);
867 	}
868 
869 	/*
870 	 * Adjust the PWM duty cycle/period based on the period value provided
871 	 * in PWM args.
872 	 */
873 	if (pargs.period != state.period) {
874 		u64 dutycycle = (u64)state.duty_cycle * pargs.period;
875 
876 		do_div(dutycycle, state.period);
877 		state.duty_cycle = dutycycle;
878 		state.period = pargs.period;
879 	}
880 
881 	/*
882 	 * If the polarity changed, we should also change the duty cycle.
883 	 */
884 	if (pargs.polarity != state.polarity) {
885 		state.polarity = pargs.polarity;
886 		state.duty_cycle = state.period - state.duty_cycle;
887 	}
888 
889 	return pwm_apply_might_sleep(pwm, &state);
890 }
891 EXPORT_SYMBOL_GPL(pwm_adjust_config);
892 
893 /**
894  * pwm_capture() - capture and report a PWM signal
895  * @pwm: PWM device
896  * @result: structure to fill with capture result
897  * @timeout: time to wait, in milliseconds, before giving up on capture
898  *
899  * Returns: 0 on success or a negative error code on failure.
900  */
pwm_capture(struct pwm_device * pwm,struct pwm_capture * result,unsigned long timeout)901 static int pwm_capture(struct pwm_device *pwm, struct pwm_capture *result,
902 		       unsigned long timeout)
903 {
904 	struct pwm_chip *chip = pwm->chip;
905 	const struct pwm_ops *ops = chip->ops;
906 
907 	if (!ops->capture)
908 		return -ENOSYS;
909 
910 	/*
911 	 * Holding the pwm_lock is probably not needed. If you use pwm_capture()
912 	 * and you're interested to speed it up, please convince yourself it's
913 	 * really not needed, test and then suggest a patch on the mailing list.
914 	 */
915 	guard(mutex)(&pwm_lock);
916 
917 	guard(pwmchip)(chip);
918 
919 	if (!chip->operational)
920 		return -ENODEV;
921 
922 	return ops->capture(chip, pwm, result, timeout);
923 }
924 
pwmchip_find_by_name(const char * name)925 static struct pwm_chip *pwmchip_find_by_name(const char *name)
926 {
927 	struct pwm_chip *chip;
928 	unsigned long id, tmp;
929 
930 	if (!name)
931 		return NULL;
932 
933 	guard(mutex)(&pwm_lock);
934 
935 	idr_for_each_entry_ul(&pwm_chips, chip, tmp, id) {
936 		if (device_match_name(pwmchip_parent(chip), name))
937 			return chip;
938 	}
939 
940 	return NULL;
941 }
942 
pwm_device_request(struct pwm_device * pwm,const char * label)943 static int pwm_device_request(struct pwm_device *pwm, const char *label)
944 {
945 	int err;
946 	struct pwm_chip *chip = pwm->chip;
947 	const struct pwm_ops *ops = chip->ops;
948 
949 	if (test_bit(PWMF_REQUESTED, &pwm->flags))
950 		return -EBUSY;
951 
952 	/*
953 	 * This function is called while holding pwm_lock. As .operational only
954 	 * changes while holding this lock, checking it here without holding the
955 	 * chip lock is fine.
956 	 */
957 	if (!chip->operational)
958 		return -ENODEV;
959 
960 	if (!try_module_get(chip->owner))
961 		return -ENODEV;
962 
963 	if (!get_device(&chip->dev)) {
964 		err = -ENODEV;
965 		goto err_get_device;
966 	}
967 
968 	if (ops->request) {
969 		err = ops->request(chip, pwm);
970 		if (err) {
971 			put_device(&chip->dev);
972 err_get_device:
973 			module_put(chip->owner);
974 			return err;
975 		}
976 	}
977 
978 	if (ops->read_waveform || ops->get_state) {
979 		/*
980 		 * Zero-initialize state because most drivers are unaware of
981 		 * .usage_power. The other members of state are supposed to be
982 		 * set by lowlevel drivers. We still initialize the whole
983 		 * structure for simplicity even though this might paper over
984 		 * faulty implementations of .get_state().
985 		 */
986 		struct pwm_state state = { 0, };
987 
988 		err = pwm_get_state_hw(pwm, &state);
989 		if (!err)
990 			pwm->state = state;
991 
992 		if (IS_ENABLED(CONFIG_PWM_DEBUG))
993 			pwm->last = pwm->state;
994 	}
995 
996 	set_bit(PWMF_REQUESTED, &pwm->flags);
997 	pwm->label = label;
998 
999 	return 0;
1000 }
1001 
1002 /**
1003  * pwm_request_from_chip() - request a PWM device relative to a PWM chip
1004  * @chip: PWM chip
1005  * @index: per-chip index of the PWM to request
1006  * @label: a literal description string of this PWM
1007  *
1008  * Returns: A pointer to the PWM device at the given index of the given PWM
1009  * chip. A negative error code is returned if the index is not valid for the
1010  * specified PWM chip or if the PWM device cannot be requested.
1011  */
pwm_request_from_chip(struct pwm_chip * chip,unsigned int index,const char * label)1012 static struct pwm_device *pwm_request_from_chip(struct pwm_chip *chip,
1013 						unsigned int index,
1014 						const char *label)
1015 {
1016 	struct pwm_device *pwm;
1017 	int err;
1018 
1019 	if (!chip || index >= chip->npwm)
1020 		return ERR_PTR(-EINVAL);
1021 
1022 	guard(mutex)(&pwm_lock);
1023 
1024 	pwm = &chip->pwms[index];
1025 
1026 	err = pwm_device_request(pwm, label);
1027 	if (err < 0)
1028 		return ERR_PTR(err);
1029 
1030 	return pwm;
1031 }
1032 
1033 struct pwm_device *
of_pwm_xlate_with_flags(struct pwm_chip * chip,const struct of_phandle_args * args)1034 of_pwm_xlate_with_flags(struct pwm_chip *chip, const struct of_phandle_args *args)
1035 {
1036 	struct pwm_device *pwm;
1037 
1038 	/* period in the second cell and flags in the third cell are optional */
1039 	if (args->args_count < 1)
1040 		return ERR_PTR(-EINVAL);
1041 
1042 	pwm = pwm_request_from_chip(chip, args->args[0], NULL);
1043 	if (IS_ERR(pwm))
1044 		return pwm;
1045 
1046 	if (args->args_count > 1)
1047 		pwm->args.period = args->args[1];
1048 
1049 	pwm->args.polarity = PWM_POLARITY_NORMAL;
1050 	if (args->args_count > 2 && args->args[2] & PWM_POLARITY_INVERTED)
1051 		pwm->args.polarity = PWM_POLARITY_INVERSED;
1052 
1053 	return pwm;
1054 }
1055 EXPORT_SYMBOL_GPL(of_pwm_xlate_with_flags);
1056 
1057 /*
1058  * This callback is used for PXA PWM chips that only have a single PWM line.
1059  * For such chips you could argue that passing the line number (i.e. the first
1060  * parameter in the common case) is useless as it's always zero. So compared to
1061  * the default xlate function of_pwm_xlate_with_flags() the first parameter is
1062  * the default period and the second are flags.
1063  *
1064  * Note that if #pwm-cells = <3>, the semantic is the same as for
1065  * of_pwm_xlate_with_flags() to allow converting the affected driver to
1066  * #pwm-cells = <3> without breaking the legacy binding.
1067  *
1068  * Don't use for new drivers.
1069  */
1070 struct pwm_device *
of_pwm_single_xlate(struct pwm_chip * chip,const struct of_phandle_args * args)1071 of_pwm_single_xlate(struct pwm_chip *chip, const struct of_phandle_args *args)
1072 {
1073 	struct pwm_device *pwm;
1074 
1075 	if (args->args_count >= 3)
1076 		return of_pwm_xlate_with_flags(chip, args);
1077 
1078 	pwm = pwm_request_from_chip(chip, 0, NULL);
1079 	if (IS_ERR(pwm))
1080 		return pwm;
1081 
1082 	if (args->args_count > 0)
1083 		pwm->args.period = args->args[0];
1084 
1085 	pwm->args.polarity = PWM_POLARITY_NORMAL;
1086 	if (args->args_count > 1 && args->args[1] & PWM_POLARITY_INVERTED)
1087 		pwm->args.polarity = PWM_POLARITY_INVERSED;
1088 
1089 	return pwm;
1090 }
1091 EXPORT_SYMBOL_GPL(of_pwm_single_xlate);
1092 
1093 struct pwm_export {
1094 	struct device pwm_dev;
1095 	struct pwm_device *pwm;
1096 	struct mutex lock;
1097 	struct pwm_state suspend;
1098 };
1099 
pwmchip_from_dev(struct device * pwmchip_dev)1100 static inline struct pwm_chip *pwmchip_from_dev(struct device *pwmchip_dev)
1101 {
1102 	return container_of(pwmchip_dev, struct pwm_chip, dev);
1103 }
1104 
pwmexport_from_dev(struct device * pwm_dev)1105 static inline struct pwm_export *pwmexport_from_dev(struct device *pwm_dev)
1106 {
1107 	return container_of(pwm_dev, struct pwm_export, pwm_dev);
1108 }
1109 
pwm_from_dev(struct device * pwm_dev)1110 static inline struct pwm_device *pwm_from_dev(struct device *pwm_dev)
1111 {
1112 	struct pwm_export *export = pwmexport_from_dev(pwm_dev);
1113 
1114 	return export->pwm;
1115 }
1116 
period_show(struct device * pwm_dev,struct device_attribute * attr,char * buf)1117 static ssize_t period_show(struct device *pwm_dev,
1118 			   struct device_attribute *attr,
1119 			   char *buf)
1120 {
1121 	const struct pwm_device *pwm = pwm_from_dev(pwm_dev);
1122 	struct pwm_state state;
1123 
1124 	pwm_get_state(pwm, &state);
1125 
1126 	return sysfs_emit(buf, "%llu\n", state.period);
1127 }
1128 
period_store(struct device * pwm_dev,struct device_attribute * attr,const char * buf,size_t size)1129 static ssize_t period_store(struct device *pwm_dev,
1130 			    struct device_attribute *attr,
1131 			    const char *buf, size_t size)
1132 {
1133 	struct pwm_export *export = pwmexport_from_dev(pwm_dev);
1134 	struct pwm_device *pwm = export->pwm;
1135 	struct pwm_state state;
1136 	u64 val;
1137 	int ret;
1138 
1139 	ret = kstrtou64(buf, 0, &val);
1140 	if (ret)
1141 		return ret;
1142 
1143 	guard(mutex)(&export->lock);
1144 
1145 	pwm_get_state(pwm, &state);
1146 	state.period = val;
1147 	ret = pwm_apply_might_sleep(pwm, &state);
1148 
1149 	return ret ? : size;
1150 }
1151 
duty_cycle_show(struct device * pwm_dev,struct device_attribute * attr,char * buf)1152 static ssize_t duty_cycle_show(struct device *pwm_dev,
1153 			       struct device_attribute *attr,
1154 			       char *buf)
1155 {
1156 	const struct pwm_device *pwm = pwm_from_dev(pwm_dev);
1157 	struct pwm_state state;
1158 
1159 	pwm_get_state(pwm, &state);
1160 
1161 	return sysfs_emit(buf, "%llu\n", state.duty_cycle);
1162 }
1163 
duty_cycle_store(struct device * pwm_dev,struct device_attribute * attr,const char * buf,size_t size)1164 static ssize_t duty_cycle_store(struct device *pwm_dev,
1165 				struct device_attribute *attr,
1166 				const char *buf, size_t size)
1167 {
1168 	struct pwm_export *export = pwmexport_from_dev(pwm_dev);
1169 	struct pwm_device *pwm = export->pwm;
1170 	struct pwm_state state;
1171 	u64 val;
1172 	int ret;
1173 
1174 	ret = kstrtou64(buf, 0, &val);
1175 	if (ret)
1176 		return ret;
1177 
1178 	guard(mutex)(&export->lock);
1179 
1180 	pwm_get_state(pwm, &state);
1181 	state.duty_cycle = val;
1182 	ret = pwm_apply_might_sleep(pwm, &state);
1183 
1184 	return ret ? : size;
1185 }
1186 
enable_show(struct device * pwm_dev,struct device_attribute * attr,char * buf)1187 static ssize_t enable_show(struct device *pwm_dev,
1188 			   struct device_attribute *attr,
1189 			   char *buf)
1190 {
1191 	const struct pwm_device *pwm = pwm_from_dev(pwm_dev);
1192 	struct pwm_state state;
1193 
1194 	pwm_get_state(pwm, &state);
1195 
1196 	return sysfs_emit(buf, "%d\n", state.enabled);
1197 }
1198 
enable_store(struct device * pwm_dev,struct device_attribute * attr,const char * buf,size_t size)1199 static ssize_t enable_store(struct device *pwm_dev,
1200 			    struct device_attribute *attr,
1201 			    const char *buf, size_t size)
1202 {
1203 	struct pwm_export *export = pwmexport_from_dev(pwm_dev);
1204 	struct pwm_device *pwm = export->pwm;
1205 	struct pwm_state state;
1206 	int val, ret;
1207 
1208 	ret = kstrtoint(buf, 0, &val);
1209 	if (ret)
1210 		return ret;
1211 
1212 	guard(mutex)(&export->lock);
1213 
1214 	pwm_get_state(pwm, &state);
1215 
1216 	switch (val) {
1217 	case 0:
1218 		state.enabled = false;
1219 		break;
1220 	case 1:
1221 		state.enabled = true;
1222 		break;
1223 	default:
1224 		return -EINVAL;
1225 	}
1226 
1227 	ret = pwm_apply_might_sleep(pwm, &state);
1228 
1229 	return ret ? : size;
1230 }
1231 
polarity_show(struct device * pwm_dev,struct device_attribute * attr,char * buf)1232 static ssize_t polarity_show(struct device *pwm_dev,
1233 			     struct device_attribute *attr,
1234 			     char *buf)
1235 {
1236 	const struct pwm_device *pwm = pwm_from_dev(pwm_dev);
1237 	const char *polarity = "unknown";
1238 	struct pwm_state state;
1239 
1240 	pwm_get_state(pwm, &state);
1241 
1242 	switch (state.polarity) {
1243 	case PWM_POLARITY_NORMAL:
1244 		polarity = "normal";
1245 		break;
1246 
1247 	case PWM_POLARITY_INVERSED:
1248 		polarity = "inversed";
1249 		break;
1250 	}
1251 
1252 	return sysfs_emit(buf, "%s\n", polarity);
1253 }
1254 
polarity_store(struct device * pwm_dev,struct device_attribute * attr,const char * buf,size_t size)1255 static ssize_t polarity_store(struct device *pwm_dev,
1256 			      struct device_attribute *attr,
1257 			      const char *buf, size_t size)
1258 {
1259 	struct pwm_export *export = pwmexport_from_dev(pwm_dev);
1260 	struct pwm_device *pwm = export->pwm;
1261 	enum pwm_polarity polarity;
1262 	struct pwm_state state;
1263 	int ret;
1264 
1265 	if (sysfs_streq(buf, "normal"))
1266 		polarity = PWM_POLARITY_NORMAL;
1267 	else if (sysfs_streq(buf, "inversed"))
1268 		polarity = PWM_POLARITY_INVERSED;
1269 	else
1270 		return -EINVAL;
1271 
1272 	guard(mutex)(&export->lock);
1273 
1274 	pwm_get_state(pwm, &state);
1275 	state.polarity = polarity;
1276 	ret = pwm_apply_might_sleep(pwm, &state);
1277 
1278 	return ret ? : size;
1279 }
1280 
capture_show(struct device * pwm_dev,struct device_attribute * attr,char * buf)1281 static ssize_t capture_show(struct device *pwm_dev,
1282 			    struct device_attribute *attr,
1283 			    char *buf)
1284 {
1285 	struct pwm_device *pwm = pwm_from_dev(pwm_dev);
1286 	struct pwm_capture result;
1287 	int ret;
1288 
1289 	ret = pwm_capture(pwm, &result, jiffies_to_msecs(HZ));
1290 	if (ret)
1291 		return ret;
1292 
1293 	return sysfs_emit(buf, "%u %u\n", result.period, result.duty_cycle);
1294 }
1295 
1296 static DEVICE_ATTR_RW(period);
1297 static DEVICE_ATTR_RW(duty_cycle);
1298 static DEVICE_ATTR_RW(enable);
1299 static DEVICE_ATTR_RW(polarity);
1300 static DEVICE_ATTR_RO(capture);
1301 
1302 static struct attribute *pwm_attrs[] = {
1303 	&dev_attr_period.attr,
1304 	&dev_attr_duty_cycle.attr,
1305 	&dev_attr_enable.attr,
1306 	&dev_attr_polarity.attr,
1307 	&dev_attr_capture.attr,
1308 	NULL
1309 };
1310 ATTRIBUTE_GROUPS(pwm);
1311 
pwm_export_release(struct device * pwm_dev)1312 static void pwm_export_release(struct device *pwm_dev)
1313 {
1314 	struct pwm_export *export = pwmexport_from_dev(pwm_dev);
1315 
1316 	kfree(export);
1317 }
1318 
pwm_export_child(struct device * pwmchip_dev,struct pwm_device * pwm)1319 static int pwm_export_child(struct device *pwmchip_dev, struct pwm_device *pwm)
1320 {
1321 	struct pwm_export *export;
1322 	char *pwm_prop[2];
1323 	int ret;
1324 
1325 	if (test_and_set_bit(PWMF_EXPORTED, &pwm->flags))
1326 		return -EBUSY;
1327 
1328 	export = kzalloc(sizeof(*export), GFP_KERNEL);
1329 	if (!export) {
1330 		clear_bit(PWMF_EXPORTED, &pwm->flags);
1331 		return -ENOMEM;
1332 	}
1333 
1334 	export->pwm = pwm;
1335 	mutex_init(&export->lock);
1336 
1337 	export->pwm_dev.release = pwm_export_release;
1338 	export->pwm_dev.parent = pwmchip_dev;
1339 	export->pwm_dev.devt = MKDEV(0, 0);
1340 	export->pwm_dev.groups = pwm_groups;
1341 	dev_set_name(&export->pwm_dev, "pwm%u", pwm->hwpwm);
1342 
1343 	ret = device_register(&export->pwm_dev);
1344 	if (ret) {
1345 		clear_bit(PWMF_EXPORTED, &pwm->flags);
1346 		put_device(&export->pwm_dev);
1347 		export = NULL;
1348 		return ret;
1349 	}
1350 	pwm_prop[0] = kasprintf(GFP_KERNEL, "EXPORT=pwm%u", pwm->hwpwm);
1351 	pwm_prop[1] = NULL;
1352 	kobject_uevent_env(&pwmchip_dev->kobj, KOBJ_CHANGE, pwm_prop);
1353 	kfree(pwm_prop[0]);
1354 
1355 	return 0;
1356 }
1357 
pwm_unexport_match(struct device * pwm_dev,const void * data)1358 static int pwm_unexport_match(struct device *pwm_dev, const void *data)
1359 {
1360 	return pwm_from_dev(pwm_dev) == data;
1361 }
1362 
pwm_unexport_child(struct device * pwmchip_dev,struct pwm_device * pwm)1363 static int pwm_unexport_child(struct device *pwmchip_dev, struct pwm_device *pwm)
1364 {
1365 	struct device *pwm_dev;
1366 	char *pwm_prop[2];
1367 
1368 	if (!test_and_clear_bit(PWMF_EXPORTED, &pwm->flags))
1369 		return -ENODEV;
1370 
1371 	pwm_dev = device_find_child(pwmchip_dev, pwm, pwm_unexport_match);
1372 	if (!pwm_dev)
1373 		return -ENODEV;
1374 
1375 	pwm_prop[0] = kasprintf(GFP_KERNEL, "UNEXPORT=pwm%u", pwm->hwpwm);
1376 	pwm_prop[1] = NULL;
1377 	kobject_uevent_env(&pwmchip_dev->kobj, KOBJ_CHANGE, pwm_prop);
1378 	kfree(pwm_prop[0]);
1379 
1380 	/* for device_find_child() */
1381 	put_device(pwm_dev);
1382 	device_unregister(pwm_dev);
1383 	pwm_put(pwm);
1384 
1385 	return 0;
1386 }
1387 
export_store(struct device * pwmchip_dev,struct device_attribute * attr,const char * buf,size_t len)1388 static ssize_t export_store(struct device *pwmchip_dev,
1389 			    struct device_attribute *attr,
1390 			    const char *buf, size_t len)
1391 {
1392 	struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev);
1393 	struct pwm_device *pwm;
1394 	unsigned int hwpwm;
1395 	int ret;
1396 
1397 	ret = kstrtouint(buf, 0, &hwpwm);
1398 	if (ret < 0)
1399 		return ret;
1400 
1401 	if (hwpwm >= chip->npwm)
1402 		return -ENODEV;
1403 
1404 	pwm = pwm_request_from_chip(chip, hwpwm, "sysfs");
1405 	if (IS_ERR(pwm))
1406 		return PTR_ERR(pwm);
1407 
1408 	ret = pwm_export_child(pwmchip_dev, pwm);
1409 	if (ret < 0)
1410 		pwm_put(pwm);
1411 
1412 	return ret ? : len;
1413 }
1414 static DEVICE_ATTR_WO(export);
1415 
unexport_store(struct device * pwmchip_dev,struct device_attribute * attr,const char * buf,size_t len)1416 static ssize_t unexport_store(struct device *pwmchip_dev,
1417 			      struct device_attribute *attr,
1418 			      const char *buf, size_t len)
1419 {
1420 	struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev);
1421 	unsigned int hwpwm;
1422 	int ret;
1423 
1424 	ret = kstrtouint(buf, 0, &hwpwm);
1425 	if (ret < 0)
1426 		return ret;
1427 
1428 	if (hwpwm >= chip->npwm)
1429 		return -ENODEV;
1430 
1431 	ret = pwm_unexport_child(pwmchip_dev, &chip->pwms[hwpwm]);
1432 
1433 	return ret ? : len;
1434 }
1435 static DEVICE_ATTR_WO(unexport);
1436 
npwm_show(struct device * pwmchip_dev,struct device_attribute * attr,char * buf)1437 static ssize_t npwm_show(struct device *pwmchip_dev, struct device_attribute *attr,
1438 			 char *buf)
1439 {
1440 	const struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev);
1441 
1442 	return sysfs_emit(buf, "%u\n", chip->npwm);
1443 }
1444 static DEVICE_ATTR_RO(npwm);
1445 
1446 static struct attribute *pwm_chip_attrs[] = {
1447 	&dev_attr_export.attr,
1448 	&dev_attr_unexport.attr,
1449 	&dev_attr_npwm.attr,
1450 	NULL,
1451 };
1452 ATTRIBUTE_GROUPS(pwm_chip);
1453 
1454 /* takes export->lock on success */
pwm_class_get_state(struct device * pwmchip_dev,struct pwm_device * pwm,struct pwm_state * state)1455 static struct pwm_export *pwm_class_get_state(struct device *pwmchip_dev,
1456 					      struct pwm_device *pwm,
1457 					      struct pwm_state *state)
1458 {
1459 	struct device *pwm_dev;
1460 	struct pwm_export *export;
1461 
1462 	if (!test_bit(PWMF_EXPORTED, &pwm->flags))
1463 		return NULL;
1464 
1465 	pwm_dev = device_find_child(pwmchip_dev, pwm, pwm_unexport_match);
1466 	if (!pwm_dev)
1467 		return NULL;
1468 
1469 	export = pwmexport_from_dev(pwm_dev);
1470 	put_device(pwm_dev);	/* for device_find_child() */
1471 
1472 	mutex_lock(&export->lock);
1473 	pwm_get_state(pwm, state);
1474 
1475 	return export;
1476 }
1477 
pwm_class_apply_state(struct pwm_export * export,struct pwm_device * pwm,struct pwm_state * state)1478 static int pwm_class_apply_state(struct pwm_export *export,
1479 				 struct pwm_device *pwm,
1480 				 struct pwm_state *state)
1481 {
1482 	int ret = pwm_apply_might_sleep(pwm, state);
1483 
1484 	/* release lock taken in pwm_class_get_state */
1485 	mutex_unlock(&export->lock);
1486 
1487 	return ret;
1488 }
1489 
pwm_class_resume_npwm(struct device * pwmchip_dev,unsigned int npwm)1490 static int pwm_class_resume_npwm(struct device *pwmchip_dev, unsigned int npwm)
1491 {
1492 	struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev);
1493 	unsigned int i;
1494 	int ret = 0;
1495 
1496 	for (i = 0; i < npwm; i++) {
1497 		struct pwm_device *pwm = &chip->pwms[i];
1498 		struct pwm_state state;
1499 		struct pwm_export *export;
1500 
1501 		export = pwm_class_get_state(pwmchip_dev, pwm, &state);
1502 		if (!export)
1503 			continue;
1504 
1505 		/* If pwmchip was not enabled before suspend, do nothing. */
1506 		if (!export->suspend.enabled) {
1507 			/* release lock taken in pwm_class_get_state */
1508 			mutex_unlock(&export->lock);
1509 			continue;
1510 		}
1511 
1512 		state.enabled = export->suspend.enabled;
1513 		ret = pwm_class_apply_state(export, pwm, &state);
1514 		if (ret < 0)
1515 			break;
1516 	}
1517 
1518 	return ret;
1519 }
1520 
pwm_class_suspend(struct device * pwmchip_dev)1521 static int pwm_class_suspend(struct device *pwmchip_dev)
1522 {
1523 	struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev);
1524 	unsigned int i;
1525 	int ret = 0;
1526 
1527 	for (i = 0; i < chip->npwm; i++) {
1528 		struct pwm_device *pwm = &chip->pwms[i];
1529 		struct pwm_state state;
1530 		struct pwm_export *export;
1531 
1532 		export = pwm_class_get_state(pwmchip_dev, pwm, &state);
1533 		if (!export)
1534 			continue;
1535 
1536 		/*
1537 		 * If pwmchip was not enabled before suspend, save
1538 		 * state for resume time and do nothing else.
1539 		 */
1540 		export->suspend = state;
1541 		if (!state.enabled) {
1542 			/* release lock taken in pwm_class_get_state */
1543 			mutex_unlock(&export->lock);
1544 			continue;
1545 		}
1546 
1547 		state.enabled = false;
1548 		ret = pwm_class_apply_state(export, pwm, &state);
1549 		if (ret < 0) {
1550 			/*
1551 			 * roll back the PWM devices that were disabled by
1552 			 * this suspend function.
1553 			 */
1554 			pwm_class_resume_npwm(pwmchip_dev, i);
1555 			break;
1556 		}
1557 	}
1558 
1559 	return ret;
1560 }
1561 
pwm_class_resume(struct device * pwmchip_dev)1562 static int pwm_class_resume(struct device *pwmchip_dev)
1563 {
1564 	struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev);
1565 
1566 	return pwm_class_resume_npwm(pwmchip_dev, chip->npwm);
1567 }
1568 
1569 static DEFINE_SIMPLE_DEV_PM_OPS(pwm_class_pm_ops, pwm_class_suspend, pwm_class_resume);
1570 
1571 static struct class pwm_class = {
1572 	.name = "pwm",
1573 	.dev_groups = pwm_chip_groups,
1574 	.pm = pm_sleep_ptr(&pwm_class_pm_ops),
1575 };
1576 
pwmchip_sysfs_unexport(struct pwm_chip * chip)1577 static void pwmchip_sysfs_unexport(struct pwm_chip *chip)
1578 {
1579 	unsigned int i;
1580 
1581 	for (i = 0; i < chip->npwm; i++) {
1582 		struct pwm_device *pwm = &chip->pwms[i];
1583 
1584 		if (test_bit(PWMF_EXPORTED, &pwm->flags))
1585 			pwm_unexport_child(&chip->dev, pwm);
1586 	}
1587 }
1588 
1589 #define PWMCHIP_ALIGN ARCH_DMA_MINALIGN
1590 
pwmchip_priv(struct pwm_chip * chip)1591 static void *pwmchip_priv(struct pwm_chip *chip)
1592 {
1593 	return (void *)chip + ALIGN(struct_size(chip, pwms, chip->npwm), PWMCHIP_ALIGN);
1594 }
1595 
1596 /* This is the counterpart to pwmchip_alloc() */
pwmchip_put(struct pwm_chip * chip)1597 void pwmchip_put(struct pwm_chip *chip)
1598 {
1599 	put_device(&chip->dev);
1600 }
1601 EXPORT_SYMBOL_GPL(pwmchip_put);
1602 
pwmchip_release(struct device * pwmchip_dev)1603 static void pwmchip_release(struct device *pwmchip_dev)
1604 {
1605 	struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev);
1606 
1607 	kfree(chip);
1608 }
1609 
pwmchip_alloc(struct device * parent,unsigned int npwm,size_t sizeof_priv)1610 struct pwm_chip *pwmchip_alloc(struct device *parent, unsigned int npwm, size_t sizeof_priv)
1611 {
1612 	struct pwm_chip *chip;
1613 	struct device *pwmchip_dev;
1614 	size_t alloc_size;
1615 	unsigned int i;
1616 
1617 	alloc_size = size_add(ALIGN(struct_size(chip, pwms, npwm), PWMCHIP_ALIGN),
1618 			      sizeof_priv);
1619 
1620 	chip = kzalloc(alloc_size, GFP_KERNEL);
1621 	if (!chip)
1622 		return ERR_PTR(-ENOMEM);
1623 
1624 	chip->npwm = npwm;
1625 	chip->uses_pwmchip_alloc = true;
1626 	chip->operational = false;
1627 
1628 	pwmchip_dev = &chip->dev;
1629 	device_initialize(pwmchip_dev);
1630 	pwmchip_dev->class = &pwm_class;
1631 	pwmchip_dev->parent = parent;
1632 	pwmchip_dev->release = pwmchip_release;
1633 
1634 	pwmchip_set_drvdata(chip, pwmchip_priv(chip));
1635 
1636 	for (i = 0; i < chip->npwm; i++) {
1637 		struct pwm_device *pwm = &chip->pwms[i];
1638 		pwm->chip = chip;
1639 		pwm->hwpwm = i;
1640 	}
1641 
1642 	return chip;
1643 }
1644 EXPORT_SYMBOL_GPL(pwmchip_alloc);
1645 
devm_pwmchip_put(void * data)1646 static void devm_pwmchip_put(void *data)
1647 {
1648 	struct pwm_chip *chip = data;
1649 
1650 	pwmchip_put(chip);
1651 }
1652 
devm_pwmchip_alloc(struct device * parent,unsigned int npwm,size_t sizeof_priv)1653 struct pwm_chip *devm_pwmchip_alloc(struct device *parent, unsigned int npwm, size_t sizeof_priv)
1654 {
1655 	struct pwm_chip *chip;
1656 	int ret;
1657 
1658 	chip = pwmchip_alloc(parent, npwm, sizeof_priv);
1659 	if (IS_ERR(chip))
1660 		return chip;
1661 
1662 	ret = devm_add_action_or_reset(parent, devm_pwmchip_put, chip);
1663 	if (ret)
1664 		return ERR_PTR(ret);
1665 
1666 	return chip;
1667 }
1668 EXPORT_SYMBOL_GPL(devm_pwmchip_alloc);
1669 
of_pwmchip_add(struct pwm_chip * chip)1670 static void of_pwmchip_add(struct pwm_chip *chip)
1671 {
1672 	if (!pwmchip_parent(chip) || !pwmchip_parent(chip)->of_node)
1673 		return;
1674 
1675 	if (!chip->of_xlate)
1676 		chip->of_xlate = of_pwm_xlate_with_flags;
1677 
1678 	of_node_get(pwmchip_parent(chip)->of_node);
1679 }
1680 
of_pwmchip_remove(struct pwm_chip * chip)1681 static void of_pwmchip_remove(struct pwm_chip *chip)
1682 {
1683 	if (pwmchip_parent(chip))
1684 		of_node_put(pwmchip_parent(chip)->of_node);
1685 }
1686 
pwm_ops_check(const struct pwm_chip * chip)1687 static bool pwm_ops_check(const struct pwm_chip *chip)
1688 {
1689 	const struct pwm_ops *ops = chip->ops;
1690 
1691 	if (ops->write_waveform) {
1692 		if (!ops->round_waveform_tohw ||
1693 		    !ops->round_waveform_fromhw ||
1694 		    !ops->write_waveform)
1695 			return false;
1696 
1697 		if (PWM_WFHWSIZE < ops->sizeof_wfhw) {
1698 			dev_warn(pwmchip_parent(chip), "PWM_WFHWSIZE < %zu\n", ops->sizeof_wfhw);
1699 			return false;
1700 		}
1701 	} else {
1702 		if (!ops->apply)
1703 			return false;
1704 
1705 		if (IS_ENABLED(CONFIG_PWM_DEBUG) && !ops->get_state)
1706 			dev_warn(pwmchip_parent(chip),
1707 				 "Please implement the .get_state() callback\n");
1708 	}
1709 
1710 	return true;
1711 }
1712 
pwm_device_link_add(struct device * dev,struct pwm_device * pwm)1713 static struct device_link *pwm_device_link_add(struct device *dev,
1714 					       struct pwm_device *pwm)
1715 {
1716 	struct device_link *dl;
1717 
1718 	if (!dev) {
1719 		/*
1720 		 * No device for the PWM consumer has been provided. It may
1721 		 * impact the PM sequence ordering: the PWM supplier may get
1722 		 * suspended before the consumer.
1723 		 */
1724 		dev_warn(pwmchip_parent(pwm->chip),
1725 			 "No consumer device specified to create a link to\n");
1726 		return NULL;
1727 	}
1728 
1729 	dl = device_link_add(dev, pwmchip_parent(pwm->chip), DL_FLAG_AUTOREMOVE_CONSUMER);
1730 	if (!dl) {
1731 		dev_err(dev, "failed to create device link to %s\n",
1732 			dev_name(pwmchip_parent(pwm->chip)));
1733 		return ERR_PTR(-EINVAL);
1734 	}
1735 
1736 	return dl;
1737 }
1738 
fwnode_to_pwmchip(struct fwnode_handle * fwnode)1739 static struct pwm_chip *fwnode_to_pwmchip(struct fwnode_handle *fwnode)
1740 {
1741 	struct pwm_chip *chip;
1742 	unsigned long id, tmp;
1743 
1744 	guard(mutex)(&pwm_lock);
1745 
1746 	idr_for_each_entry_ul(&pwm_chips, chip, tmp, id)
1747 		if (pwmchip_parent(chip) && device_match_fwnode(pwmchip_parent(chip), fwnode))
1748 			return chip;
1749 
1750 	return ERR_PTR(-EPROBE_DEFER);
1751 }
1752 
1753 /**
1754  * of_pwm_get() - request a PWM via the PWM framework
1755  * @dev: device for PWM consumer
1756  * @np: device node to get the PWM from
1757  * @con_id: consumer name
1758  *
1759  * Returns the PWM device parsed from the phandle and index specified in the
1760  * "pwms" property of a device tree node or a negative error-code on failure.
1761  * Values parsed from the device tree are stored in the returned PWM device
1762  * object.
1763  *
1764  * If con_id is NULL, the first PWM device listed in the "pwms" property will
1765  * be requested. Otherwise the "pwm-names" property is used to do a reverse
1766  * lookup of the PWM index. This also means that the "pwm-names" property
1767  * becomes mandatory for devices that look up the PWM device via the con_id
1768  * parameter.
1769  *
1770  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1771  * error code on failure.
1772  */
of_pwm_get(struct device * dev,struct device_node * np,const char * con_id)1773 static struct pwm_device *of_pwm_get(struct device *dev, struct device_node *np,
1774 				     const char *con_id)
1775 {
1776 	struct pwm_device *pwm = NULL;
1777 	struct of_phandle_args args;
1778 	struct device_link *dl;
1779 	struct pwm_chip *chip;
1780 	int index = 0;
1781 	int err;
1782 
1783 	if (con_id) {
1784 		index = of_property_match_string(np, "pwm-names", con_id);
1785 		if (index < 0)
1786 			return ERR_PTR(index);
1787 	}
1788 
1789 	err = of_parse_phandle_with_args_map(np, "pwms", "pwm", index, &args);
1790 	if (err) {
1791 		pr_err("%s(): can't parse \"pwms\" property\n", __func__);
1792 		return ERR_PTR(err);
1793 	}
1794 
1795 	chip = fwnode_to_pwmchip(of_fwnode_handle(args.np));
1796 	if (IS_ERR(chip)) {
1797 		if (PTR_ERR(chip) != -EPROBE_DEFER)
1798 			pr_err("%s(): PWM chip not found\n", __func__);
1799 
1800 		pwm = ERR_CAST(chip);
1801 		goto put;
1802 	}
1803 
1804 	pwm = chip->of_xlate(chip, &args);
1805 	if (IS_ERR(pwm))
1806 		goto put;
1807 
1808 	dl = pwm_device_link_add(dev, pwm);
1809 	if (IS_ERR(dl)) {
1810 		/* of_xlate ended up calling pwm_request_from_chip() */
1811 		pwm_put(pwm);
1812 		pwm = ERR_CAST(dl);
1813 		goto put;
1814 	}
1815 
1816 	/*
1817 	 * If a consumer name was not given, try to look it up from the
1818 	 * "pwm-names" property if it exists. Otherwise use the name of
1819 	 * the user device node.
1820 	 */
1821 	if (!con_id) {
1822 		err = of_property_read_string_index(np, "pwm-names", index,
1823 						    &con_id);
1824 		if (err < 0)
1825 			con_id = np->name;
1826 	}
1827 
1828 	pwm->label = con_id;
1829 
1830 put:
1831 	of_node_put(args.np);
1832 
1833 	return pwm;
1834 }
1835 
1836 /**
1837  * acpi_pwm_get() - request a PWM via parsing "pwms" property in ACPI
1838  * @fwnode: firmware node to get the "pwms" property from
1839  *
1840  * Returns the PWM device parsed from the fwnode and index specified in the
1841  * "pwms" property or a negative error-code on failure.
1842  * Values parsed from the device tree are stored in the returned PWM device
1843  * object.
1844  *
1845  * This is analogous to of_pwm_get() except con_id is not yet supported.
1846  * ACPI entries must look like
1847  * Package () {"pwms", Package ()
1848  *     { <PWM device reference>, <PWM index>, <PWM period> [, <PWM flags>]}}
1849  *
1850  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1851  * error code on failure.
1852  */
acpi_pwm_get(const struct fwnode_handle * fwnode)1853 static struct pwm_device *acpi_pwm_get(const struct fwnode_handle *fwnode)
1854 {
1855 	struct pwm_device *pwm;
1856 	struct fwnode_reference_args args;
1857 	struct pwm_chip *chip;
1858 	int ret;
1859 
1860 	memset(&args, 0, sizeof(args));
1861 
1862 	ret = __acpi_node_get_property_reference(fwnode, "pwms", 0, 3, &args);
1863 	if (ret < 0)
1864 		return ERR_PTR(ret);
1865 
1866 	if (args.nargs < 2)
1867 		return ERR_PTR(-EPROTO);
1868 
1869 	chip = fwnode_to_pwmchip(args.fwnode);
1870 	if (IS_ERR(chip))
1871 		return ERR_CAST(chip);
1872 
1873 	pwm = pwm_request_from_chip(chip, args.args[0], NULL);
1874 	if (IS_ERR(pwm))
1875 		return pwm;
1876 
1877 	pwm->args.period = args.args[1];
1878 	pwm->args.polarity = PWM_POLARITY_NORMAL;
1879 
1880 	if (args.nargs > 2 && args.args[2] & PWM_POLARITY_INVERTED)
1881 		pwm->args.polarity = PWM_POLARITY_INVERSED;
1882 
1883 	return pwm;
1884 }
1885 
1886 static DEFINE_MUTEX(pwm_lookup_lock);
1887 static LIST_HEAD(pwm_lookup_list);
1888 
1889 /**
1890  * pwm_get() - look up and request a PWM device
1891  * @dev: device for PWM consumer
1892  * @con_id: consumer name
1893  *
1894  * Lookup is first attempted using DT. If the device was not instantiated from
1895  * a device tree, a PWM chip and a relative index is looked up via a table
1896  * supplied by board setup code (see pwm_add_table()).
1897  *
1898  * Once a PWM chip has been found the specified PWM device will be requested
1899  * and is ready to be used.
1900  *
1901  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1902  * error code on failure.
1903  */
pwm_get(struct device * dev,const char * con_id)1904 struct pwm_device *pwm_get(struct device *dev, const char *con_id)
1905 {
1906 	const struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL;
1907 	const char *dev_id = dev ? dev_name(dev) : NULL;
1908 	struct pwm_device *pwm;
1909 	struct pwm_chip *chip;
1910 	struct device_link *dl;
1911 	unsigned int best = 0;
1912 	struct pwm_lookup *p, *chosen = NULL;
1913 	unsigned int match;
1914 	int err;
1915 
1916 	/* look up via DT first */
1917 	if (is_of_node(fwnode))
1918 		return of_pwm_get(dev, to_of_node(fwnode), con_id);
1919 
1920 	/* then lookup via ACPI */
1921 	if (is_acpi_node(fwnode)) {
1922 		pwm = acpi_pwm_get(fwnode);
1923 		if (!IS_ERR(pwm) || PTR_ERR(pwm) != -ENOENT)
1924 			return pwm;
1925 	}
1926 
1927 	/*
1928 	 * We look up the provider in the static table typically provided by
1929 	 * board setup code. We first try to lookup the consumer device by
1930 	 * name. If the consumer device was passed in as NULL or if no match
1931 	 * was found, we try to find the consumer by directly looking it up
1932 	 * by name.
1933 	 *
1934 	 * If a match is found, the provider PWM chip is looked up by name
1935 	 * and a PWM device is requested using the PWM device per-chip index.
1936 	 *
1937 	 * The lookup algorithm was shamelessly taken from the clock
1938 	 * framework:
1939 	 *
1940 	 * We do slightly fuzzy matching here:
1941 	 *  An entry with a NULL ID is assumed to be a wildcard.
1942 	 *  If an entry has a device ID, it must match
1943 	 *  If an entry has a connection ID, it must match
1944 	 * Then we take the most specific entry - with the following order
1945 	 * of precedence: dev+con > dev only > con only.
1946 	 */
1947 	scoped_guard(mutex, &pwm_lookup_lock)
1948 		list_for_each_entry(p, &pwm_lookup_list, list) {
1949 			match = 0;
1950 
1951 			if (p->dev_id) {
1952 				if (!dev_id || strcmp(p->dev_id, dev_id))
1953 					continue;
1954 
1955 				match += 2;
1956 			}
1957 
1958 			if (p->con_id) {
1959 				if (!con_id || strcmp(p->con_id, con_id))
1960 					continue;
1961 
1962 				match += 1;
1963 			}
1964 
1965 			if (match > best) {
1966 				chosen = p;
1967 
1968 				if (match != 3)
1969 					best = match;
1970 				else
1971 					break;
1972 			}
1973 		}
1974 
1975 	if (!chosen)
1976 		return ERR_PTR(-ENODEV);
1977 
1978 	chip = pwmchip_find_by_name(chosen->provider);
1979 
1980 	/*
1981 	 * If the lookup entry specifies a module, load the module and retry
1982 	 * the PWM chip lookup. This can be used to work around driver load
1983 	 * ordering issues if driver's can't be made to properly support the
1984 	 * deferred probe mechanism.
1985 	 */
1986 	if (!chip && chosen->module) {
1987 		err = request_module(chosen->module);
1988 		if (err == 0)
1989 			chip = pwmchip_find_by_name(chosen->provider);
1990 	}
1991 
1992 	if (!chip)
1993 		return ERR_PTR(-EPROBE_DEFER);
1994 
1995 	pwm = pwm_request_from_chip(chip, chosen->index, con_id ?: dev_id);
1996 	if (IS_ERR(pwm))
1997 		return pwm;
1998 
1999 	dl = pwm_device_link_add(dev, pwm);
2000 	if (IS_ERR(dl)) {
2001 		pwm_put(pwm);
2002 		return ERR_CAST(dl);
2003 	}
2004 
2005 	pwm->args.period = chosen->period;
2006 	pwm->args.polarity = chosen->polarity;
2007 
2008 	return pwm;
2009 }
2010 EXPORT_SYMBOL_GPL(pwm_get);
2011 
__pwm_put(struct pwm_device * pwm)2012 static void __pwm_put(struct pwm_device *pwm)
2013 {
2014 	struct pwm_chip *chip = pwm->chip;
2015 
2016 	/*
2017 	 * Trigger a warning if a consumer called pwm_put() twice.
2018 	 * If the chip isn't operational, PWMF_REQUESTED was already cleared in
2019 	 * pwmchip_remove(). So don't warn in this case.
2020 	 */
2021 	if (chip->operational && !test_and_clear_bit(PWMF_REQUESTED, &pwm->flags)) {
2022 		pr_warn("PWM device already freed\n");
2023 		return;
2024 	}
2025 
2026 	if (chip->operational && chip->ops->free)
2027 		pwm->chip->ops->free(pwm->chip, pwm);
2028 
2029 	pwm->label = NULL;
2030 
2031 	put_device(&chip->dev);
2032 
2033 	module_put(chip->owner);
2034 }
2035 
2036 /**
2037  * pwm_put() - release a PWM device
2038  * @pwm: PWM device
2039  */
pwm_put(struct pwm_device * pwm)2040 void pwm_put(struct pwm_device *pwm)
2041 {
2042 	if (!pwm)
2043 		return;
2044 
2045 	guard(mutex)(&pwm_lock);
2046 
2047 	__pwm_put(pwm);
2048 }
2049 EXPORT_SYMBOL_GPL(pwm_put);
2050 
devm_pwm_release(void * pwm)2051 static void devm_pwm_release(void *pwm)
2052 {
2053 	pwm_put(pwm);
2054 }
2055 
2056 /**
2057  * devm_pwm_get() - resource managed pwm_get()
2058  * @dev: device for PWM consumer
2059  * @con_id: consumer name
2060  *
2061  * This function performs like pwm_get() but the acquired PWM device will
2062  * automatically be released on driver detach.
2063  *
2064  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
2065  * error code on failure.
2066  */
devm_pwm_get(struct device * dev,const char * con_id)2067 struct pwm_device *devm_pwm_get(struct device *dev, const char *con_id)
2068 {
2069 	struct pwm_device *pwm;
2070 	int ret;
2071 
2072 	pwm = pwm_get(dev, con_id);
2073 	if (IS_ERR(pwm))
2074 		return pwm;
2075 
2076 	ret = devm_add_action_or_reset(dev, devm_pwm_release, pwm);
2077 	if (ret)
2078 		return ERR_PTR(ret);
2079 
2080 	return pwm;
2081 }
2082 EXPORT_SYMBOL_GPL(devm_pwm_get);
2083 
2084 /**
2085  * devm_fwnode_pwm_get() - request a resource managed PWM from firmware node
2086  * @dev: device for PWM consumer
2087  * @fwnode: firmware node to get the PWM from
2088  * @con_id: consumer name
2089  *
2090  * Returns the PWM device parsed from the firmware node. See of_pwm_get() and
2091  * acpi_pwm_get() for a detailed description.
2092  *
2093  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
2094  * error code on failure.
2095  */
devm_fwnode_pwm_get(struct device * dev,struct fwnode_handle * fwnode,const char * con_id)2096 struct pwm_device *devm_fwnode_pwm_get(struct device *dev,
2097 				       struct fwnode_handle *fwnode,
2098 				       const char *con_id)
2099 {
2100 	struct pwm_device *pwm = ERR_PTR(-ENODEV);
2101 	int ret;
2102 
2103 	if (is_of_node(fwnode))
2104 		pwm = of_pwm_get(dev, to_of_node(fwnode), con_id);
2105 	else if (is_acpi_node(fwnode))
2106 		pwm = acpi_pwm_get(fwnode);
2107 	if (IS_ERR(pwm))
2108 		return pwm;
2109 
2110 	ret = devm_add_action_or_reset(dev, devm_pwm_release, pwm);
2111 	if (ret)
2112 		return ERR_PTR(ret);
2113 
2114 	return pwm;
2115 }
2116 EXPORT_SYMBOL_GPL(devm_fwnode_pwm_get);
2117 
2118 struct pwm_cdev_data {
2119 	struct pwm_chip *chip;
2120 	struct pwm_device *pwm[];
2121 };
2122 
pwm_cdev_open(struct inode * inode,struct file * file)2123 static int pwm_cdev_open(struct inode *inode, struct file *file)
2124 {
2125 	struct pwm_chip *chip = container_of(inode->i_cdev, struct pwm_chip, cdev);
2126 	struct pwm_cdev_data *cdata;
2127 
2128 	guard(mutex)(&pwm_lock);
2129 
2130 	if (!chip->operational)
2131 		return -ENXIO;
2132 
2133 	cdata = kzalloc(struct_size(cdata, pwm, chip->npwm), GFP_KERNEL);
2134 	if (!cdata)
2135 		return -ENOMEM;
2136 
2137 	cdata->chip = chip;
2138 
2139 	file->private_data = cdata;
2140 
2141 	return nonseekable_open(inode, file);
2142 }
2143 
pwm_cdev_release(struct inode * inode,struct file * file)2144 static int pwm_cdev_release(struct inode *inode, struct file *file)
2145 {
2146 	struct pwm_cdev_data *cdata = file->private_data;
2147 	unsigned int i;
2148 
2149 	for (i = 0; i < cdata->chip->npwm; ++i) {
2150 		struct pwm_device *pwm = cdata->pwm[i];
2151 
2152 		if (pwm) {
2153 			const char *label = pwm->label;
2154 
2155 			pwm_put(cdata->pwm[i]);
2156 			kfree(label);
2157 		}
2158 	}
2159 	kfree(cdata);
2160 
2161 	return 0;
2162 }
2163 
pwm_cdev_request(struct pwm_cdev_data * cdata,unsigned int hwpwm)2164 static int pwm_cdev_request(struct pwm_cdev_data *cdata, unsigned int hwpwm)
2165 {
2166 	struct pwm_chip *chip = cdata->chip;
2167 
2168 	if (hwpwm >= chip->npwm)
2169 		return -EINVAL;
2170 
2171 	if (!cdata->pwm[hwpwm]) {
2172 		struct pwm_device *pwm = &chip->pwms[hwpwm];
2173 		const char *label;
2174 		int ret;
2175 
2176 		label = kasprintf(GFP_KERNEL, "pwm-cdev (pid=%d)", current->pid);
2177 		if (!label)
2178 			return -ENOMEM;
2179 
2180 		ret = pwm_device_request(pwm, label);
2181 		if (ret < 0) {
2182 			kfree(label);
2183 			return ret;
2184 		}
2185 
2186 		cdata->pwm[hwpwm] = pwm;
2187 	}
2188 
2189 	return 0;
2190 }
2191 
pwm_cdev_free(struct pwm_cdev_data * cdata,unsigned int hwpwm)2192 static int pwm_cdev_free(struct pwm_cdev_data *cdata, unsigned int hwpwm)
2193 {
2194 	struct pwm_chip *chip = cdata->chip;
2195 
2196 	if (hwpwm >= chip->npwm)
2197 		return -EINVAL;
2198 
2199 	if (cdata->pwm[hwpwm]) {
2200 		struct pwm_device *pwm = cdata->pwm[hwpwm];
2201 		const char *label = pwm->label;
2202 
2203 		__pwm_put(pwm);
2204 
2205 		kfree(label);
2206 
2207 		cdata->pwm[hwpwm] = NULL;
2208 	}
2209 
2210 	return 0;
2211 }
2212 
pwm_cdev_get_requested_pwm(struct pwm_cdev_data * cdata,u32 hwpwm)2213 static struct pwm_device *pwm_cdev_get_requested_pwm(struct pwm_cdev_data *cdata,
2214 						     u32 hwpwm)
2215 {
2216 	struct pwm_chip *chip = cdata->chip;
2217 
2218 	if (hwpwm >= chip->npwm)
2219 		return ERR_PTR(-EINVAL);
2220 
2221 	if (cdata->pwm[hwpwm])
2222 		return cdata->pwm[hwpwm];
2223 
2224 	return ERR_PTR(-EINVAL);
2225 }
2226 
pwm_cdev_ioctl(struct file * file,unsigned int cmd,unsigned long arg)2227 static long pwm_cdev_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2228 {
2229 	int ret = 0;
2230 	struct pwm_cdev_data *cdata = file->private_data;
2231 	struct pwm_chip *chip = cdata->chip;
2232 
2233 	guard(mutex)(&pwm_lock);
2234 
2235 	if (!chip->operational)
2236 		return -ENODEV;
2237 
2238 	switch (cmd) {
2239 	case PWM_IOCTL_REQUEST:
2240 		{
2241 			unsigned int hwpwm = arg;
2242 
2243 			return pwm_cdev_request(cdata, hwpwm);
2244 		}
2245 
2246 	case PWM_IOCTL_FREE:
2247 		{
2248 			unsigned int hwpwm = arg;
2249 
2250 			return pwm_cdev_free(cdata, hwpwm);
2251 		}
2252 
2253 	case PWM_IOCTL_ROUNDWF:
2254 		{
2255 			struct pwmchip_waveform cwf;
2256 			struct pwm_waveform wf;
2257 			struct pwm_device *pwm;
2258 
2259 			ret = copy_from_user(&cwf,
2260 					     (struct pwmchip_waveform __user *)arg,
2261 					     sizeof(cwf));
2262 			if (ret)
2263 				return -EFAULT;
2264 
2265 			if (cwf.__pad != 0)
2266 				return -EINVAL;
2267 
2268 			pwm = pwm_cdev_get_requested_pwm(cdata, cwf.hwpwm);
2269 			if (IS_ERR(pwm))
2270 				return PTR_ERR(pwm);
2271 
2272 			wf = (struct pwm_waveform) {
2273 				.period_length_ns = cwf.period_length_ns,
2274 				.duty_length_ns = cwf.duty_length_ns,
2275 				.duty_offset_ns = cwf.duty_offset_ns,
2276 			};
2277 
2278 			ret = pwm_round_waveform_might_sleep(pwm, &wf);
2279 			if (ret < 0)
2280 				return ret;
2281 
2282 			cwf = (struct pwmchip_waveform) {
2283 				.hwpwm = cwf.hwpwm,
2284 				.period_length_ns = wf.period_length_ns,
2285 				.duty_length_ns = wf.duty_length_ns,
2286 				.duty_offset_ns = wf.duty_offset_ns,
2287 			};
2288 
2289 			return copy_to_user((struct pwmchip_waveform __user *)arg,
2290 					    &cwf, sizeof(cwf));
2291 		}
2292 
2293 	case PWM_IOCTL_GETWF:
2294 		{
2295 			struct pwmchip_waveform cwf;
2296 			struct pwm_waveform wf;
2297 			struct pwm_device *pwm;
2298 
2299 			ret = copy_from_user(&cwf,
2300 					     (struct pwmchip_waveform __user *)arg,
2301 					     sizeof(cwf));
2302 			if (ret)
2303 				return -EFAULT;
2304 
2305 			if (cwf.__pad != 0)
2306 				return -EINVAL;
2307 
2308 			pwm = pwm_cdev_get_requested_pwm(cdata, cwf.hwpwm);
2309 			if (IS_ERR(pwm))
2310 				return PTR_ERR(pwm);
2311 
2312 			ret = pwm_get_waveform_might_sleep(pwm, &wf);
2313 			if (ret)
2314 				return ret;
2315 
2316 			cwf = (struct pwmchip_waveform) {
2317 				.hwpwm = cwf.hwpwm,
2318 				.period_length_ns = wf.period_length_ns,
2319 				.duty_length_ns = wf.duty_length_ns,
2320 				.duty_offset_ns = wf.duty_offset_ns,
2321 			};
2322 
2323 			return copy_to_user((struct pwmchip_waveform __user *)arg,
2324 					    &cwf, sizeof(cwf));
2325 		}
2326 
2327 	case PWM_IOCTL_SETROUNDEDWF:
2328 	case PWM_IOCTL_SETEXACTWF:
2329 		{
2330 			struct pwmchip_waveform cwf;
2331 			struct pwm_waveform wf;
2332 			struct pwm_device *pwm;
2333 
2334 			ret = copy_from_user(&cwf,
2335 					     (struct pwmchip_waveform __user *)arg,
2336 					     sizeof(cwf));
2337 			if (ret)
2338 				return -EFAULT;
2339 
2340 			if (cwf.__pad != 0)
2341 				return -EINVAL;
2342 
2343 			wf = (struct pwm_waveform){
2344 				.period_length_ns = cwf.period_length_ns,
2345 				.duty_length_ns = cwf.duty_length_ns,
2346 				.duty_offset_ns = cwf.duty_offset_ns,
2347 			};
2348 
2349 			if (!pwm_wf_valid(&wf))
2350 				return -EINVAL;
2351 
2352 			pwm = pwm_cdev_get_requested_pwm(cdata, cwf.hwpwm);
2353 			if (IS_ERR(pwm))
2354 				return PTR_ERR(pwm);
2355 
2356 			ret = pwm_set_waveform_might_sleep(pwm, &wf,
2357 							   cmd == PWM_IOCTL_SETEXACTWF);
2358 
2359 			/*
2360 			 * If userspace cares about rounding deviations it has
2361 			 * to check the values anyhow, so simplify handling for
2362 			 * them and don't signal uprounding. This matches the
2363 			 * behaviour of PWM_IOCTL_ROUNDWF which also returns 0
2364 			 * in that case.
2365 			 */
2366 			if (ret == 1)
2367 				ret = 0;
2368 
2369 			return ret;
2370 		}
2371 
2372 	default:
2373 		return -ENOTTY;
2374 	}
2375 }
2376 
2377 static const struct file_operations pwm_cdev_fileops = {
2378 	.open = pwm_cdev_open,
2379 	.release = pwm_cdev_release,
2380 	.owner = THIS_MODULE,
2381 	.unlocked_ioctl = pwm_cdev_ioctl,
2382 };
2383 
2384 static dev_t pwm_devt;
2385 
2386 /**
2387  * __pwmchip_add() - register a new PWM chip
2388  * @chip: the PWM chip to add
2389  * @owner: reference to the module providing the chip.
2390  *
2391  * Register a new PWM chip. @owner is supposed to be THIS_MODULE, use the
2392  * pwmchip_add wrapper to do this right.
2393  *
2394  * Returns: 0 on success or a negative error code on failure.
2395  */
__pwmchip_add(struct pwm_chip * chip,struct module * owner)2396 int __pwmchip_add(struct pwm_chip *chip, struct module *owner)
2397 {
2398 	int ret;
2399 
2400 	if (!chip || !pwmchip_parent(chip) || !chip->ops || !chip->npwm)
2401 		return -EINVAL;
2402 
2403 	/*
2404 	 * a struct pwm_chip must be allocated using (devm_)pwmchip_alloc,
2405 	 * otherwise the embedded struct device might disappear too early
2406 	 * resulting in memory corruption.
2407 	 * Catch drivers that were not converted appropriately.
2408 	 */
2409 	if (!chip->uses_pwmchip_alloc)
2410 		return -EINVAL;
2411 
2412 	if (!pwm_ops_check(chip))
2413 		return -EINVAL;
2414 
2415 	chip->owner = owner;
2416 
2417 	if (chip->atomic)
2418 		spin_lock_init(&chip->atomic_lock);
2419 	else
2420 		mutex_init(&chip->nonatomic_lock);
2421 
2422 	guard(mutex)(&pwm_lock);
2423 
2424 	ret = idr_alloc(&pwm_chips, chip, 0, 0, GFP_KERNEL);
2425 	if (ret < 0)
2426 		return ret;
2427 
2428 	chip->id = ret;
2429 
2430 	dev_set_name(&chip->dev, "pwmchip%u", chip->id);
2431 
2432 	if (IS_ENABLED(CONFIG_OF))
2433 		of_pwmchip_add(chip);
2434 
2435 	scoped_guard(pwmchip, chip)
2436 		chip->operational = true;
2437 
2438 	if (chip->ops->write_waveform) {
2439 		if (chip->id < PWM_MINOR_COUNT)
2440 			chip->dev.devt = MKDEV(MAJOR(pwm_devt), chip->id);
2441 		else
2442 			dev_warn(&chip->dev, "chip id too high to create a chardev\n");
2443 	}
2444 
2445 	cdev_init(&chip->cdev, &pwm_cdev_fileops);
2446 	chip->cdev.owner = owner;
2447 
2448 	ret = cdev_device_add(&chip->cdev, &chip->dev);
2449 	if (ret)
2450 		goto err_device_add;
2451 
2452 	return 0;
2453 
2454 err_device_add:
2455 	scoped_guard(pwmchip, chip)
2456 		chip->operational = false;
2457 
2458 	if (IS_ENABLED(CONFIG_OF))
2459 		of_pwmchip_remove(chip);
2460 
2461 	idr_remove(&pwm_chips, chip->id);
2462 
2463 	return ret;
2464 }
2465 EXPORT_SYMBOL_GPL(__pwmchip_add);
2466 
2467 /**
2468  * pwmchip_remove() - remove a PWM chip
2469  * @chip: the PWM chip to remove
2470  *
2471  * Removes a PWM chip.
2472  */
pwmchip_remove(struct pwm_chip * chip)2473 void pwmchip_remove(struct pwm_chip *chip)
2474 {
2475 	pwmchip_sysfs_unexport(chip);
2476 
2477 	scoped_guard(mutex, &pwm_lock) {
2478 		unsigned int i;
2479 
2480 		scoped_guard(pwmchip, chip)
2481 			chip->operational = false;
2482 
2483 		for (i = 0; i < chip->npwm; ++i) {
2484 			struct pwm_device *pwm = &chip->pwms[i];
2485 
2486 			if (test_and_clear_bit(PWMF_REQUESTED, &pwm->flags)) {
2487 				dev_warn(&chip->dev, "Freeing requested PWM #%u\n", i);
2488 				if (pwm->chip->ops->free)
2489 					pwm->chip->ops->free(pwm->chip, pwm);
2490 			}
2491 		}
2492 
2493 		if (IS_ENABLED(CONFIG_OF))
2494 			of_pwmchip_remove(chip);
2495 
2496 		idr_remove(&pwm_chips, chip->id);
2497 	}
2498 
2499 	cdev_device_del(&chip->cdev, &chip->dev);
2500 }
2501 EXPORT_SYMBOL_GPL(pwmchip_remove);
2502 
devm_pwmchip_remove(void * data)2503 static void devm_pwmchip_remove(void *data)
2504 {
2505 	struct pwm_chip *chip = data;
2506 
2507 	pwmchip_remove(chip);
2508 }
2509 
__devm_pwmchip_add(struct device * dev,struct pwm_chip * chip,struct module * owner)2510 int __devm_pwmchip_add(struct device *dev, struct pwm_chip *chip, struct module *owner)
2511 {
2512 	int ret;
2513 
2514 	ret = __pwmchip_add(chip, owner);
2515 	if (ret)
2516 		return ret;
2517 
2518 	return devm_add_action_or_reset(dev, devm_pwmchip_remove, chip);
2519 }
2520 EXPORT_SYMBOL_GPL(__devm_pwmchip_add);
2521 
2522 /**
2523  * pwm_add_table() - register PWM device consumers
2524  * @table: array of consumers to register
2525  * @num: number of consumers in table
2526  */
pwm_add_table(struct pwm_lookup * table,size_t num)2527 void pwm_add_table(struct pwm_lookup *table, size_t num)
2528 {
2529 	guard(mutex)(&pwm_lookup_lock);
2530 
2531 	while (num--) {
2532 		list_add_tail(&table->list, &pwm_lookup_list);
2533 		table++;
2534 	}
2535 }
2536 
2537 /**
2538  * pwm_remove_table() - unregister PWM device consumers
2539  * @table: array of consumers to unregister
2540  * @num: number of consumers in table
2541  */
pwm_remove_table(struct pwm_lookup * table,size_t num)2542 void pwm_remove_table(struct pwm_lookup *table, size_t num)
2543 {
2544 	guard(mutex)(&pwm_lookup_lock);
2545 
2546 	while (num--) {
2547 		list_del(&table->list);
2548 		table++;
2549 	}
2550 }
2551 
pwm_dbg_show(struct pwm_chip * chip,struct seq_file * s)2552 static void pwm_dbg_show(struct pwm_chip *chip, struct seq_file *s)
2553 {
2554 	unsigned int i;
2555 
2556 	for (i = 0; i < chip->npwm; i++) {
2557 		struct pwm_device *pwm = &chip->pwms[i];
2558 		struct pwm_state state, hwstate;
2559 
2560 		pwm_get_state(pwm, &state);
2561 		pwm_get_state_hw(pwm, &hwstate);
2562 
2563 		seq_printf(s, " pwm-%-3d (%-20.20s):", i, pwm->label);
2564 
2565 		if (test_bit(PWMF_REQUESTED, &pwm->flags))
2566 			seq_puts(s, " requested");
2567 
2568 		seq_puts(s, "\n");
2569 
2570 		seq_printf(s, "  requested configuration: %3sabled, %llu/%llu ns, %s polarity",
2571 			   state.enabled ? "en" : "dis", state.duty_cycle, state.period,
2572 			   state.polarity ? "inverse" : "normal");
2573 		if (state.usage_power)
2574 			seq_puts(s, ", usage_power");
2575 		seq_puts(s, "\n");
2576 
2577 		seq_printf(s, "  actual configuration:    %3sabled, %llu/%llu ns, %s polarity",
2578 			   hwstate.enabled ? "en" : "dis", hwstate.duty_cycle, hwstate.period,
2579 			   hwstate.polarity ? "inverse" : "normal");
2580 
2581 		seq_puts(s, "\n");
2582 	}
2583 }
2584 
pwm_seq_start(struct seq_file * s,loff_t * pos)2585 static void *pwm_seq_start(struct seq_file *s, loff_t *pos)
2586 {
2587 	unsigned long id = *pos;
2588 	void *ret;
2589 
2590 	mutex_lock(&pwm_lock);
2591 	s->private = "";
2592 
2593 	ret = idr_get_next_ul(&pwm_chips, &id);
2594 	*pos = id;
2595 	return ret;
2596 }
2597 
pwm_seq_next(struct seq_file * s,void * v,loff_t * pos)2598 static void *pwm_seq_next(struct seq_file *s, void *v, loff_t *pos)
2599 {
2600 	unsigned long id = *pos + 1;
2601 	void *ret;
2602 
2603 	s->private = "\n";
2604 
2605 	ret = idr_get_next_ul(&pwm_chips, &id);
2606 	*pos = id;
2607 	return ret;
2608 }
2609 
pwm_seq_stop(struct seq_file * s,void * v)2610 static void pwm_seq_stop(struct seq_file *s, void *v)
2611 {
2612 	mutex_unlock(&pwm_lock);
2613 }
2614 
pwm_seq_show(struct seq_file * s,void * v)2615 static int pwm_seq_show(struct seq_file *s, void *v)
2616 {
2617 	struct pwm_chip *chip = v;
2618 
2619 	seq_printf(s, "%s%d: %s/%s, %d PWM device%s\n",
2620 		   (char *)s->private, chip->id,
2621 		   pwmchip_parent(chip)->bus ? pwmchip_parent(chip)->bus->name : "no-bus",
2622 		   dev_name(pwmchip_parent(chip)), chip->npwm,
2623 		   (chip->npwm != 1) ? "s" : "");
2624 
2625 	pwm_dbg_show(chip, s);
2626 
2627 	return 0;
2628 }
2629 
2630 static const struct seq_operations pwm_debugfs_sops = {
2631 	.start = pwm_seq_start,
2632 	.next = pwm_seq_next,
2633 	.stop = pwm_seq_stop,
2634 	.show = pwm_seq_show,
2635 };
2636 
2637 DEFINE_SEQ_ATTRIBUTE(pwm_debugfs);
2638 
pwm_init(void)2639 static int __init pwm_init(void)
2640 {
2641 	int ret;
2642 
2643 	ret = alloc_chrdev_region(&pwm_devt, 0, PWM_MINOR_COUNT, "pwm");
2644 	if (ret) {
2645 		pr_err("Failed to initialize chrdev region for PWM usage\n");
2646 		return ret;
2647 	}
2648 
2649 	ret = class_register(&pwm_class);
2650 	if (ret) {
2651 		pr_err("Failed to initialize PWM class (%pe)\n", ERR_PTR(ret));
2652 		unregister_chrdev_region(pwm_devt, 256);
2653 		return ret;
2654 	}
2655 
2656 	if (IS_ENABLED(CONFIG_DEBUG_FS))
2657 		debugfs_create_file("pwm", 0444, NULL, NULL, &pwm_debugfs_fops);
2658 
2659 	return 0;
2660 }
2661 subsys_initcall(pwm_init);
2662