1 /*-
2 * Copyright (c) 2000 Takanori Watanabe <takawata@jp.freebsd.org>
3 * Copyright (c) 2000 Mitsuru IWASAKI <iwasaki@jp.freebsd.org>
4 * Copyright (c) 2000, 2001 Michael Smith
5 * Copyright (c) 2000 BSDi
6 * All rights reserved.
7 * Copyright (c) 2025 The FreeBSD Foundation
8 *
9 * Portions of this software were developed by Aymeric Wibo
10 * <obiwac@freebsd.org> under sponsorship from the FreeBSD Foundation.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 */
33
34 #include <sys/cdefs.h>
35 #include "opt_acpi.h"
36
37 #include <sys/param.h>
38 #include <sys/eventhandler.h>
39 #include <sys/kernel.h>
40 #include <sys/proc.h>
41 #include <sys/fcntl.h>
42 #include <sys/malloc.h>
43 #include <sys/module.h>
44 #include <sys/bus.h>
45 #include <sys/conf.h>
46 #include <sys/ioccom.h>
47 #include <sys/reboot.h>
48 #include <sys/sysctl.h>
49 #include <sys/ctype.h>
50 #include <sys/linker.h>
51 #include <sys/mount.h>
52 #include <sys/power.h>
53 #include <sys/sbuf.h>
54 #include <sys/sched.h>
55 #include <sys/smp.h>
56 #include <sys/timetc.h>
57 #include <sys/uuid.h>
58
59 #if defined(__i386__) || defined(__amd64__)
60 #include <machine/clock.h>
61 #include <machine/pci_cfgreg.h>
62 #include <x86/cputypes.h>
63 #include <x86/x86_var.h>
64 #endif
65 #include <machine/resource.h>
66 #include <machine/bus.h>
67 #include <sys/rman.h>
68 #include <isa/isavar.h>
69 #include <isa/pnpvar.h>
70
71 #include <contrib/dev/acpica/include/acpi.h>
72 #include <contrib/dev/acpica/include/accommon.h>
73 #include <contrib/dev/acpica/include/acnamesp.h>
74
75 #include <dev/acpica/acpivar.h>
76 #include <dev/acpica/acpiio.h>
77
78 #include <dev/pci/pcivar.h>
79
80 #include <vm/vm_param.h>
81
82 static MALLOC_DEFINE(M_ACPIDEV, "acpidev", "ACPI devices");
83
84 /* Hooks for the ACPI CA debugging infrastructure */
85 #define _COMPONENT ACPI_BUS
86 ACPI_MODULE_NAME("ACPI")
87
88 static d_open_t acpiopen;
89 static d_close_t acpiclose;
90 static d_ioctl_t acpiioctl;
91
92 static struct cdevsw acpi_cdevsw = {
93 .d_version = D_VERSION,
94 .d_open = acpiopen,
95 .d_close = acpiclose,
96 .d_ioctl = acpiioctl,
97 .d_name = "acpi",
98 };
99
100 struct acpi_interface {
101 ACPI_STRING *data;
102 int num;
103 };
104
105 static char *sysres_ids[] = { "PNP0C01", "PNP0C02", NULL };
106
107 /* Global mutex for locking access to the ACPI subsystem. */
108 struct mtx acpi_mutex;
109 struct callout acpi_sleep_timer;
110
111 /* Bitmap of device quirks. */
112 int acpi_quirks;
113
114 /* Supported sleep states. */
115 static BOOLEAN acpi_sleep_states[ACPI_S_STATE_COUNT];
116
117 static void acpi_lookup(void *arg, const char *name, device_t *dev);
118 static int acpi_modevent(struct module *mod, int event, void *junk);
119
120 static device_probe_t acpi_probe;
121 static device_attach_t acpi_attach;
122 static device_suspend_t acpi_suspend;
123 static device_resume_t acpi_resume;
124 static device_shutdown_t acpi_shutdown;
125
126 static bus_add_child_t acpi_add_child;
127 static bus_print_child_t acpi_print_child;
128 static bus_probe_nomatch_t acpi_probe_nomatch;
129 static bus_driver_added_t acpi_driver_added;
130 static bus_child_deleted_t acpi_child_deleted;
131 static bus_read_ivar_t acpi_read_ivar;
132 static bus_write_ivar_t acpi_write_ivar;
133 static bus_get_resource_list_t acpi_get_rlist;
134 static bus_get_rman_t acpi_get_rman;
135 static bus_set_resource_t acpi_set_resource;
136 static bus_alloc_resource_t acpi_alloc_resource;
137 static bus_adjust_resource_t acpi_adjust_resource;
138 static bus_release_resource_t acpi_release_resource;
139 static bus_delete_resource_t acpi_delete_resource;
140 static bus_activate_resource_t acpi_activate_resource;
141 static bus_deactivate_resource_t acpi_deactivate_resource;
142 static bus_map_resource_t acpi_map_resource;
143 static bus_unmap_resource_t acpi_unmap_resource;
144 static bus_child_pnpinfo_t acpi_child_pnpinfo_method;
145 static bus_child_location_t acpi_child_location_method;
146 static bus_hint_device_unit_t acpi_hint_device_unit;
147 static bus_get_property_t acpi_bus_get_prop;
148 static bus_get_device_path_t acpi_get_device_path;
149 static bus_get_domain_t acpi_get_domain_method;
150
151 static acpi_id_probe_t acpi_device_id_probe;
152 static acpi_evaluate_object_t acpi_device_eval_obj;
153 static acpi_get_property_t acpi_device_get_prop;
154 static acpi_scan_children_t acpi_device_scan_children;
155
156 static isa_pnp_probe_t acpi_isa_pnp_probe;
157
158 static void acpi_reserve_resources(device_t dev);
159 static int acpi_sysres_alloc(device_t dev);
160 static uint32_t acpi_isa_get_logicalid(device_t dev);
161 static int acpi_isa_get_compatid(device_t dev, uint32_t *cids, int count);
162 static ACPI_STATUS acpi_device_scan_cb(ACPI_HANDLE h, UINT32 level,
163 void *context, void **retval);
164 static ACPI_STATUS acpi_find_dsd(struct acpi_device *ad);
165 static void acpi_platform_osc(device_t dev);
166 static void acpi_probe_children(device_t bus);
167 static void acpi_probe_order(ACPI_HANDLE handle, int *order);
168 static ACPI_STATUS acpi_probe_child(ACPI_HANDLE handle, UINT32 level,
169 void *context, void **status);
170 static void acpi_sleep_enable(void *arg);
171 static ACPI_STATUS acpi_sleep_disable(struct acpi_softc *sc);
172 static ACPI_STATUS acpi_EnterSleepState(struct acpi_softc *sc, int state);
173 static void acpi_shutdown_final(void *arg, int howto);
174 static void acpi_enable_fixed_events(struct acpi_softc *sc);
175 static void acpi_resync_clock(struct acpi_softc *sc);
176 static int acpi_wake_sleep_prep(ACPI_HANDLE handle, int sstate);
177 static int acpi_wake_run_prep(ACPI_HANDLE handle, int sstate);
178 static int acpi_wake_prep_walk(int sstate);
179 static int acpi_wake_sysctl_walk(device_t dev);
180 static int acpi_wake_set_sysctl(SYSCTL_HANDLER_ARGS);
181 static void acpi_system_eventhandler_sleep(void *arg, int state);
182 static void acpi_system_eventhandler_wakeup(void *arg, int state);
183 static int acpi_sname2sstate(const char *sname);
184 static const char *acpi_sstate2sname(int sstate);
185 static int acpi_supported_sleep_state_sysctl(SYSCTL_HANDLER_ARGS);
186 static int acpi_sleep_state_sysctl(SYSCTL_HANDLER_ARGS);
187 static int acpi_debug_objects_sysctl(SYSCTL_HANDLER_ARGS);
188 static int acpi_stype_to_sstate(struct acpi_softc *sc, enum power_stype stype);
189 static int acpi_pm_func(u_long cmd, void *arg, enum power_stype stype);
190 static void acpi_enable_pcie(void);
191 static void acpi_reset_interfaces(device_t dev);
192
193 static device_method_t acpi_methods[] = {
194 /* Device interface */
195 DEVMETHOD(device_probe, acpi_probe),
196 DEVMETHOD(device_attach, acpi_attach),
197 DEVMETHOD(device_shutdown, acpi_shutdown),
198 DEVMETHOD(device_detach, bus_generic_detach),
199 DEVMETHOD(device_suspend, acpi_suspend),
200 DEVMETHOD(device_resume, acpi_resume),
201
202 /* Bus interface */
203 DEVMETHOD(bus_add_child, acpi_add_child),
204 DEVMETHOD(bus_print_child, acpi_print_child),
205 DEVMETHOD(bus_probe_nomatch, acpi_probe_nomatch),
206 DEVMETHOD(bus_driver_added, acpi_driver_added),
207 DEVMETHOD(bus_child_deleted, acpi_child_deleted),
208 DEVMETHOD(bus_read_ivar, acpi_read_ivar),
209 DEVMETHOD(bus_write_ivar, acpi_write_ivar),
210 DEVMETHOD(bus_get_resource_list, acpi_get_rlist),
211 DEVMETHOD(bus_get_rman, acpi_get_rman),
212 DEVMETHOD(bus_set_resource, acpi_set_resource),
213 DEVMETHOD(bus_get_resource, bus_generic_rl_get_resource),
214 DEVMETHOD(bus_alloc_resource, acpi_alloc_resource),
215 DEVMETHOD(bus_adjust_resource, acpi_adjust_resource),
216 DEVMETHOD(bus_release_resource, acpi_release_resource),
217 DEVMETHOD(bus_delete_resource, acpi_delete_resource),
218 DEVMETHOD(bus_activate_resource, acpi_activate_resource),
219 DEVMETHOD(bus_deactivate_resource, acpi_deactivate_resource),
220 DEVMETHOD(bus_map_resource, acpi_map_resource),
221 DEVMETHOD(bus_unmap_resource, acpi_unmap_resource),
222 DEVMETHOD(bus_child_pnpinfo, acpi_child_pnpinfo_method),
223 DEVMETHOD(bus_child_location, acpi_child_location_method),
224 DEVMETHOD(bus_setup_intr, bus_generic_setup_intr),
225 DEVMETHOD(bus_teardown_intr, bus_generic_teardown_intr),
226 DEVMETHOD(bus_hint_device_unit, acpi_hint_device_unit),
227 DEVMETHOD(bus_get_cpus, acpi_get_cpus),
228 DEVMETHOD(bus_get_domain, acpi_get_domain_method),
229 DEVMETHOD(bus_get_property, acpi_bus_get_prop),
230 DEVMETHOD(bus_get_device_path, acpi_get_device_path),
231
232 /* ACPI bus */
233 DEVMETHOD(acpi_id_probe, acpi_device_id_probe),
234 DEVMETHOD(acpi_evaluate_object, acpi_device_eval_obj),
235 DEVMETHOD(acpi_get_property, acpi_device_get_prop),
236 DEVMETHOD(acpi_pwr_for_sleep, acpi_device_pwr_for_sleep),
237 DEVMETHOD(acpi_scan_children, acpi_device_scan_children),
238
239 /* ISA emulation */
240 DEVMETHOD(isa_pnp_probe, acpi_isa_pnp_probe),
241
242 DEVMETHOD_END
243 };
244
245 static driver_t acpi_driver = {
246 "acpi",
247 acpi_methods,
248 sizeof(struct acpi_softc),
249 };
250
251 EARLY_DRIVER_MODULE(acpi, nexus, acpi_driver, acpi_modevent, 0,
252 BUS_PASS_BUS + BUS_PASS_ORDER_MIDDLE);
253 MODULE_VERSION(acpi, 1);
254
255 ACPI_SERIAL_DECL(acpi, "ACPI root bus");
256
257 /* Local pools for managing system resources for ACPI child devices. */
258 static struct rman acpi_rman_io, acpi_rman_mem;
259
260 #define ACPI_MINIMUM_AWAKETIME 5
261
262 /* Holds the description of the acpi0 device. */
263 static char acpi_desc[ACPI_OEM_ID_SIZE + ACPI_OEM_TABLE_ID_SIZE + 2];
264
265 SYSCTL_NODE(_debug, OID_AUTO, acpi, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
266 "ACPI debugging");
267 static char acpi_ca_version[12];
268 SYSCTL_STRING(_debug_acpi, OID_AUTO, acpi_ca_version, CTLFLAG_RD,
269 acpi_ca_version, 0, "Version of Intel ACPI-CA");
270
271 /*
272 * Allow overriding _OSI methods.
273 */
274 static char acpi_install_interface[256];
275 TUNABLE_STR("hw.acpi.install_interface", acpi_install_interface,
276 sizeof(acpi_install_interface));
277 static char acpi_remove_interface[256];
278 TUNABLE_STR("hw.acpi.remove_interface", acpi_remove_interface,
279 sizeof(acpi_remove_interface));
280
281 /* Allow users to dump Debug objects without ACPI debugger. */
282 static int acpi_debug_objects;
283 TUNABLE_INT("debug.acpi.enable_debug_objects", &acpi_debug_objects);
284 SYSCTL_PROC(_debug_acpi, OID_AUTO, enable_debug_objects,
285 CTLFLAG_RW | CTLTYPE_INT | CTLFLAG_MPSAFE, NULL, 0,
286 acpi_debug_objects_sysctl, "I",
287 "Enable Debug objects");
288
289 /* Allow the interpreter to ignore common mistakes in BIOS. */
290 static int acpi_interpreter_slack = 1;
291 TUNABLE_INT("debug.acpi.interpreter_slack", &acpi_interpreter_slack);
292 SYSCTL_INT(_debug_acpi, OID_AUTO, interpreter_slack, CTLFLAG_RDTUN,
293 &acpi_interpreter_slack, 1, "Turn on interpreter slack mode.");
294
295 /* Ignore register widths set by FADT and use default widths instead. */
296 static int acpi_ignore_reg_width = 1;
297 TUNABLE_INT("debug.acpi.default_register_width", &acpi_ignore_reg_width);
298 SYSCTL_INT(_debug_acpi, OID_AUTO, default_register_width, CTLFLAG_RDTUN,
299 &acpi_ignore_reg_width, 1, "Ignore register widths set by FADT");
300
301 /* Allow users to override quirks. */
302 TUNABLE_INT("debug.acpi.quirks", &acpi_quirks);
303
304 int acpi_susp_bounce;
305 SYSCTL_INT(_debug_acpi, OID_AUTO, suspend_bounce, CTLFLAG_RW,
306 &acpi_susp_bounce, 0, "Don't actually suspend, just test devices.");
307
308 #if defined(__amd64__) || defined(__i386__)
309 int acpi_override_isa_irq_polarity;
310 #endif
311
312 /*
313 * ACPI standard UUID for Device Specific Data Package
314 * "Device Properties UUID for _DSD" Rev. 2.0
315 */
316 static const struct uuid acpi_dsd_uuid = {
317 0xdaffd814, 0x6eba, 0x4d8c, 0x8a, 0x91,
318 { 0xbc, 0x9b, 0xbf, 0x4a, 0xa3, 0x01 }
319 };
320
321 /*
322 * ACPI can only be loaded as a module by the loader; activating it after
323 * system bootstrap time is not useful, and can be fatal to the system.
324 * It also cannot be unloaded, since the entire system bus hierarchy hangs
325 * off it.
326 */
327 static int
acpi_modevent(struct module * mod,int event,void * junk)328 acpi_modevent(struct module *mod, int event, void *junk)
329 {
330 switch (event) {
331 case MOD_LOAD:
332 if (!cold) {
333 printf("The ACPI driver cannot be loaded after boot.\n");
334 return (EPERM);
335 }
336 break;
337 case MOD_UNLOAD:
338 if (!cold && power_pm_get_type() == POWER_PM_TYPE_ACPI)
339 return (EBUSY);
340 break;
341 default:
342 break;
343 }
344 return (0);
345 }
346
347 /*
348 * Perform early initialization.
349 */
350 ACPI_STATUS
acpi_Startup(void)351 acpi_Startup(void)
352 {
353 static int started = 0;
354 ACPI_STATUS status;
355 int val;
356
357 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
358
359 /* Only run the startup code once. The MADT driver also calls this. */
360 if (started)
361 return_VALUE (AE_OK);
362 started = 1;
363
364 /*
365 * Initialize the ACPICA subsystem.
366 */
367 if (ACPI_FAILURE(status = AcpiInitializeSubsystem())) {
368 printf("ACPI: Could not initialize Subsystem: %s\n",
369 AcpiFormatException(status));
370 return_VALUE (status);
371 }
372
373 /*
374 * Pre-allocate space for RSDT/XSDT and DSDT tables and allow resizing
375 * if more tables exist.
376 */
377 if (ACPI_FAILURE(status = AcpiInitializeTables(NULL, 2, TRUE))) {
378 printf("ACPI: Table initialisation failed: %s\n",
379 AcpiFormatException(status));
380 return_VALUE (status);
381 }
382
383 /* Set up any quirks we have for this system. */
384 if (acpi_quirks == ACPI_Q_OK)
385 acpi_table_quirks(&acpi_quirks);
386
387 /* If the user manually set the disabled hint to 0, force-enable ACPI. */
388 if (resource_int_value("acpi", 0, "disabled", &val) == 0 && val == 0)
389 acpi_quirks &= ~ACPI_Q_BROKEN;
390 if (acpi_quirks & ACPI_Q_BROKEN) {
391 printf("ACPI disabled by blacklist. Contact your BIOS vendor.\n");
392 status = AE_SUPPORT;
393 }
394
395 return_VALUE (status);
396 }
397
398 /*
399 * Detect ACPI and perform early initialisation.
400 */
401 int
acpi_identify(void)402 acpi_identify(void)
403 {
404 ACPI_TABLE_RSDP *rsdp;
405 ACPI_TABLE_HEADER *rsdt;
406 ACPI_PHYSICAL_ADDRESS paddr;
407 struct sbuf sb;
408
409 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
410
411 if (!cold)
412 return (ENXIO);
413
414 /* Check that we haven't been disabled with a hint. */
415 if (resource_disabled("acpi", 0))
416 return (ENXIO);
417
418 /* Check for other PM systems. */
419 if (power_pm_get_type() != POWER_PM_TYPE_NONE &&
420 power_pm_get_type() != POWER_PM_TYPE_ACPI) {
421 printf("ACPI identify failed, other PM system enabled.\n");
422 return (ENXIO);
423 }
424
425 /* Initialize root tables. */
426 if (ACPI_FAILURE(acpi_Startup())) {
427 printf("ACPI: Try disabling either ACPI or apic support.\n");
428 return (ENXIO);
429 }
430
431 if ((paddr = AcpiOsGetRootPointer()) == 0 ||
432 (rsdp = AcpiOsMapMemory(paddr, sizeof(ACPI_TABLE_RSDP))) == NULL)
433 return (ENXIO);
434 if (rsdp->Revision > 1 && rsdp->XsdtPhysicalAddress != 0)
435 paddr = (ACPI_PHYSICAL_ADDRESS)rsdp->XsdtPhysicalAddress;
436 else
437 paddr = (ACPI_PHYSICAL_ADDRESS)rsdp->RsdtPhysicalAddress;
438 AcpiOsUnmapMemory(rsdp, sizeof(ACPI_TABLE_RSDP));
439
440 if ((rsdt = AcpiOsMapMemory(paddr, sizeof(ACPI_TABLE_HEADER))) == NULL)
441 return (ENXIO);
442 sbuf_new(&sb, acpi_desc, sizeof(acpi_desc), SBUF_FIXEDLEN);
443 sbuf_bcat(&sb, rsdt->OemId, ACPI_OEM_ID_SIZE);
444 sbuf_trim(&sb);
445 sbuf_putc(&sb, ' ');
446 sbuf_bcat(&sb, rsdt->OemTableId, ACPI_OEM_TABLE_ID_SIZE);
447 sbuf_trim(&sb);
448 sbuf_finish(&sb);
449 sbuf_delete(&sb);
450 AcpiOsUnmapMemory(rsdt, sizeof(ACPI_TABLE_HEADER));
451
452 snprintf(acpi_ca_version, sizeof(acpi_ca_version), "%x", ACPI_CA_VERSION);
453
454 return (0);
455 }
456
457 /*
458 * Fetch some descriptive data from ACPI to put in our attach message.
459 */
460 static int
acpi_probe(device_t dev)461 acpi_probe(device_t dev)
462 {
463
464 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
465
466 device_set_desc(dev, acpi_desc);
467
468 return_VALUE (BUS_PROBE_NOWILDCARD);
469 }
470
471 static int
acpi_attach(device_t dev)472 acpi_attach(device_t dev)
473 {
474 struct acpi_softc *sc;
475 ACPI_STATUS status;
476 int error, state;
477 UINT32 flags;
478 UINT8 TypeA, TypeB;
479 char *env;
480
481 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
482
483 sc = device_get_softc(dev);
484 sc->acpi_dev = dev;
485 callout_init(&sc->susp_force_to, 1);
486
487 error = ENXIO;
488
489 /* Initialize resource manager. */
490 acpi_rman_io.rm_type = RMAN_ARRAY;
491 acpi_rman_io.rm_start = 0;
492 acpi_rman_io.rm_end = 0xffff;
493 acpi_rman_io.rm_descr = "ACPI I/O ports";
494 if (rman_init(&acpi_rman_io) != 0)
495 panic("acpi rman_init IO ports failed");
496 acpi_rman_mem.rm_type = RMAN_ARRAY;
497 acpi_rman_mem.rm_descr = "ACPI I/O memory addresses";
498 if (rman_init(&acpi_rman_mem) != 0)
499 panic("acpi rman_init memory failed");
500
501 resource_list_init(&sc->sysres_rl);
502
503 /* Initialise the ACPI mutex */
504 mtx_init(&acpi_mutex, "ACPI global lock", NULL, MTX_DEF);
505
506 /*
507 * Set the globals from our tunables. This is needed because ACPI-CA
508 * uses UINT8 for some values and we have no tunable_byte.
509 */
510 AcpiGbl_EnableInterpreterSlack = acpi_interpreter_slack ? TRUE : FALSE;
511 AcpiGbl_EnableAmlDebugObject = acpi_debug_objects ? TRUE : FALSE;
512 AcpiGbl_UseDefaultRegisterWidths = acpi_ignore_reg_width ? TRUE : FALSE;
513
514 #ifndef ACPI_DEBUG
515 /*
516 * Disable all debugging layers and levels.
517 */
518 AcpiDbgLayer = 0;
519 AcpiDbgLevel = 0;
520 #endif
521
522 /* Override OS interfaces if the user requested. */
523 acpi_reset_interfaces(dev);
524
525 /* Load ACPI name space. */
526 status = AcpiLoadTables();
527 if (ACPI_FAILURE(status)) {
528 device_printf(dev, "Could not load Namespace: %s\n",
529 AcpiFormatException(status));
530 goto out;
531 }
532
533 /* Handle MCFG table if present. */
534 acpi_enable_pcie();
535
536 /*
537 * Note that some systems (specifically, those with namespace evaluation
538 * issues that require the avoidance of parts of the namespace) must
539 * avoid running _INI and _STA on everything, as well as dodging the final
540 * object init pass.
541 *
542 * For these devices, we set ACPI_NO_DEVICE_INIT and ACPI_NO_OBJECT_INIT).
543 *
544 * XXX We should arrange for the object init pass after we have attached
545 * all our child devices, but on many systems it works here.
546 */
547 flags = 0;
548 if (testenv("debug.acpi.avoid"))
549 flags = ACPI_NO_DEVICE_INIT | ACPI_NO_OBJECT_INIT;
550
551 /* Bring the hardware and basic handlers online. */
552 if (ACPI_FAILURE(status = AcpiEnableSubsystem(flags))) {
553 device_printf(dev, "Could not enable ACPI: %s\n",
554 AcpiFormatException(status));
555 goto out;
556 }
557
558 /*
559 * Call the ECDT probe function to provide EC functionality before
560 * the namespace has been evaluated.
561 *
562 * XXX This happens before the sysresource devices have been probed and
563 * attached so its resources come from nexus0. In practice, this isn't
564 * a problem but should be addressed eventually.
565 */
566 acpi_ec_ecdt_probe(dev);
567
568 /* Bring device objects and regions online. */
569 if (ACPI_FAILURE(status = AcpiInitializeObjects(flags))) {
570 device_printf(dev, "Could not initialize ACPI objects: %s\n",
571 AcpiFormatException(status));
572 goto out;
573 }
574
575 /*
576 * Setup our sysctl tree.
577 *
578 * XXX: This doesn't check to make sure that none of these fail.
579 */
580 sysctl_ctx_init(&sc->acpi_sysctl_ctx);
581 sc->acpi_sysctl_tree = SYSCTL_ADD_NODE(&sc->acpi_sysctl_ctx,
582 SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO, device_get_name(dev),
583 CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "");
584 SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree),
585 OID_AUTO, "supported_sleep_state",
586 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
587 0, 0, acpi_supported_sleep_state_sysctl, "A",
588 "List supported ACPI sleep states.");
589 SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree),
590 OID_AUTO, "power_button_state",
591 CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE,
592 &sc->acpi_power_button_sx, 0, acpi_sleep_state_sysctl, "A",
593 "Power button ACPI sleep state.");
594 SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree),
595 OID_AUTO, "sleep_button_state",
596 CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE,
597 &sc->acpi_sleep_button_sx, 0, acpi_sleep_state_sysctl, "A",
598 "Sleep button ACPI sleep state.");
599 SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree),
600 OID_AUTO, "lid_switch_state",
601 CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE,
602 &sc->acpi_lid_switch_sx, 0, acpi_sleep_state_sysctl, "A",
603 "Lid ACPI sleep state. Set to S3 if you want to suspend your laptop when close the Lid.");
604 SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree),
605 OID_AUTO, "standby_state",
606 CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE,
607 &sc->acpi_standby_sx, 0, acpi_sleep_state_sysctl, "A", "");
608 SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree),
609 OID_AUTO, "suspend_state",
610 CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE,
611 &sc->acpi_suspend_sx, 0, acpi_sleep_state_sysctl, "A", "");
612 SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree),
613 OID_AUTO, "sleep_delay", CTLFLAG_RW, &sc->acpi_sleep_delay, 0,
614 "sleep delay in seconds");
615 SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree),
616 OID_AUTO, "s4bios", CTLFLAG_RW, &sc->acpi_s4bios, 0, "S4BIOS mode");
617 SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree),
618 OID_AUTO, "verbose", CTLFLAG_RW, &sc->acpi_verbose, 0, "verbose mode");
619 SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree),
620 OID_AUTO, "disable_on_reboot", CTLFLAG_RW,
621 &sc->acpi_do_disable, 0, "Disable ACPI when rebooting/halting system");
622 SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree),
623 OID_AUTO, "handle_reboot", CTLFLAG_RW,
624 &sc->acpi_handle_reboot, 0, "Use ACPI Reset Register to reboot");
625
626 #if defined(__amd64__) || defined(__i386__)
627 /*
628 * Enable workaround for incorrect ISA IRQ polarity by default on
629 * systems with Intel CPUs.
630 */
631 if (cpu_vendor_id == CPU_VENDOR_INTEL)
632 acpi_override_isa_irq_polarity = 1;
633 SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree),
634 OID_AUTO, "override_isa_irq_polarity", CTLFLAG_RDTUN,
635 &acpi_override_isa_irq_polarity, 0,
636 "Force active-hi polarity for edge-triggered ISA IRQs");
637 #endif
638
639 /*
640 * Default to 1 second before sleeping to give some machines time to
641 * stabilize.
642 */
643 sc->acpi_sleep_delay = 1;
644 if (bootverbose)
645 sc->acpi_verbose = 1;
646 if ((env = kern_getenv("hw.acpi.verbose")) != NULL) {
647 if (strcmp(env, "0") != 0)
648 sc->acpi_verbose = 1;
649 freeenv(env);
650 }
651
652 /* Only enable reboot by default if the FADT says it is available. */
653 if (AcpiGbl_FADT.Flags & ACPI_FADT_RESET_REGISTER)
654 sc->acpi_handle_reboot = 1;
655
656 #if !ACPI_REDUCED_HARDWARE
657 /* Only enable S4BIOS by default if the FACS says it is available. */
658 if (AcpiGbl_FACS != NULL && AcpiGbl_FACS->Flags & ACPI_FACS_S4_BIOS_PRESENT)
659 sc->acpi_s4bios = 1;
660 #endif
661
662 /* Probe all supported sleep states. */
663 acpi_sleep_states[ACPI_STATE_S0] = TRUE;
664 for (state = ACPI_STATE_S1; state < ACPI_S_STATE_COUNT; state++)
665 if (ACPI_SUCCESS(AcpiEvaluateObject(ACPI_ROOT_OBJECT,
666 __DECONST(char *, AcpiGbl_SleepStateNames[state]), NULL, NULL)) &&
667 ACPI_SUCCESS(AcpiGetSleepTypeData(state, &TypeA, &TypeB)))
668 acpi_sleep_states[state] = TRUE;
669
670 /*
671 * Dispatch the default sleep state to devices. The lid switch is set
672 * to UNKNOWN by default to avoid surprising users.
673 */
674 sc->acpi_power_button_sx = acpi_sleep_states[ACPI_STATE_S5] ?
675 ACPI_STATE_S5 : ACPI_STATE_UNKNOWN;
676 sc->acpi_lid_switch_sx = ACPI_STATE_UNKNOWN;
677 sc->acpi_standby_sx = acpi_sleep_states[ACPI_STATE_S1] ?
678 ACPI_STATE_S1 : ACPI_STATE_UNKNOWN;
679 sc->acpi_suspend_sx = acpi_sleep_states[ACPI_STATE_S3] ?
680 ACPI_STATE_S3 : ACPI_STATE_UNKNOWN;
681
682 /* Pick the first valid sleep state for the sleep button default. */
683 sc->acpi_sleep_button_sx = ACPI_STATE_UNKNOWN;
684 for (state = ACPI_STATE_S1; state <= ACPI_STATE_S4; state++)
685 if (acpi_sleep_states[state]) {
686 sc->acpi_sleep_button_sx = state;
687 break;
688 }
689
690 acpi_enable_fixed_events(sc);
691
692 /*
693 * Scan the namespace and attach/initialise children.
694 */
695
696 /* Register our shutdown handler. */
697 EVENTHANDLER_REGISTER(shutdown_final, acpi_shutdown_final, sc,
698 SHUTDOWN_PRI_LAST + 150);
699
700 /*
701 * Register our acpi event handlers.
702 * XXX should be configurable eg. via userland policy manager.
703 */
704 EVENTHANDLER_REGISTER(acpi_sleep_event, acpi_system_eventhandler_sleep,
705 sc, ACPI_EVENT_PRI_LAST);
706 EVENTHANDLER_REGISTER(acpi_wakeup_event, acpi_system_eventhandler_wakeup,
707 sc, ACPI_EVENT_PRI_LAST);
708
709 /* Flag our initial states. */
710 sc->acpi_enabled = TRUE;
711 sc->acpi_sstate = ACPI_STATE_S0;
712 sc->acpi_sleep_disabled = TRUE;
713
714 /* Create the control device */
715 sc->acpi_dev_t = make_dev(&acpi_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0664,
716 "acpi");
717 sc->acpi_dev_t->si_drv1 = sc;
718
719 if ((error = acpi_machdep_init(dev)))
720 goto out;
721
722 /* Register ACPI again to pass the correct argument of pm_func. */
723 power_pm_register(POWER_PM_TYPE_ACPI, acpi_pm_func, sc);
724
725 acpi_platform_osc(dev);
726
727 if (!acpi_disabled("bus")) {
728 EVENTHANDLER_REGISTER(dev_lookup, acpi_lookup, NULL, 1000);
729 acpi_probe_children(dev);
730 }
731
732 /* Update all GPEs and enable runtime GPEs. */
733 status = AcpiUpdateAllGpes();
734 if (ACPI_FAILURE(status))
735 device_printf(dev, "Could not update all GPEs: %s\n",
736 AcpiFormatException(status));
737
738 /* Allow sleep request after a while. */
739 callout_init_mtx(&acpi_sleep_timer, &acpi_mutex, 0);
740 callout_reset(&acpi_sleep_timer, hz * ACPI_MINIMUM_AWAKETIME,
741 acpi_sleep_enable, sc);
742
743 error = 0;
744
745 out:
746 return_VALUE (error);
747 }
748
749 static int
acpi_stype_to_sstate(struct acpi_softc * sc,enum power_stype stype)750 acpi_stype_to_sstate(struct acpi_softc *sc, enum power_stype stype)
751 {
752 switch (stype) {
753 case POWER_STYPE_AWAKE:
754 return (ACPI_STATE_S0);
755 case POWER_STYPE_STANDBY:
756 return (sc->acpi_standby_sx);
757 case POWER_STYPE_SUSPEND_TO_MEM:
758 return (ACPI_STATE_S3);
759 case POWER_STYPE_HIBERNATE:
760 return (ACPI_STATE_S4);
761 case POWER_STYPE_POWEROFF:
762 return (ACPI_STATE_S5);
763 case POWER_STYPE_SUSPEND_TO_IDLE:
764 case POWER_STYPE_COUNT:
765 case POWER_STYPE_UNKNOWN:
766 return (ACPI_STATE_UNKNOWN);
767 }
768 return (ACPI_STATE_UNKNOWN);
769 }
770
771 static void
acpi_set_power_children(device_t dev,int state)772 acpi_set_power_children(device_t dev, int state)
773 {
774 device_t child;
775 device_t *devlist;
776 int dstate, i, numdevs;
777
778 if (device_get_children(dev, &devlist, &numdevs) != 0)
779 return;
780
781 /*
782 * Retrieve and set D-state for the sleep state if _SxD is present.
783 * Skip children who aren't attached since they are handled separately.
784 */
785 for (i = 0; i < numdevs; i++) {
786 child = devlist[i];
787 dstate = state;
788 if (device_is_attached(child) &&
789 acpi_device_pwr_for_sleep(dev, child, &dstate) == 0)
790 acpi_set_powerstate(child, dstate);
791 }
792 free(devlist, M_TEMP);
793 }
794
795 static int
acpi_suspend(device_t dev)796 acpi_suspend(device_t dev)
797 {
798 int error;
799
800 bus_topo_assert();
801
802 error = bus_generic_suspend(dev);
803 if (error == 0)
804 acpi_set_power_children(dev, ACPI_STATE_D3);
805
806 return (error);
807 }
808
809 static int
acpi_resume(device_t dev)810 acpi_resume(device_t dev)
811 {
812
813 bus_topo_assert();
814
815 acpi_set_power_children(dev, ACPI_STATE_D0);
816
817 return (bus_generic_resume(dev));
818 }
819
820 static int
acpi_shutdown(device_t dev)821 acpi_shutdown(device_t dev)
822 {
823
824 bus_topo_assert();
825
826 /* Allow children to shutdown first. */
827 bus_generic_shutdown(dev);
828
829 /*
830 * Enable any GPEs that are able to power-on the system (i.e., RTC).
831 * Also, disable any that are not valid for this state (most).
832 */
833 acpi_wake_prep_walk(ACPI_STATE_S5);
834
835 return (0);
836 }
837
838 /*
839 * Handle a new device being added
840 */
841 static device_t
acpi_add_child(device_t bus,u_int order,const char * name,int unit)842 acpi_add_child(device_t bus, u_int order, const char *name, int unit)
843 {
844 struct acpi_device *ad;
845 device_t child;
846
847 if ((ad = malloc(sizeof(*ad), M_ACPIDEV, M_NOWAIT | M_ZERO)) == NULL)
848 return (NULL);
849
850 ad->ad_domain = ACPI_DEV_DOMAIN_UNKNOWN;
851 resource_list_init(&ad->ad_rl);
852
853 child = device_add_child_ordered(bus, order, name, unit);
854 if (child != NULL)
855 device_set_ivars(child, ad);
856 else
857 free(ad, M_ACPIDEV);
858 return (child);
859 }
860
861 static int
acpi_print_child(device_t bus,device_t child)862 acpi_print_child(device_t bus, device_t child)
863 {
864 struct acpi_device *adev = device_get_ivars(child);
865 struct resource_list *rl = &adev->ad_rl;
866 int retval = 0;
867
868 retval += bus_print_child_header(bus, child);
869 retval += resource_list_print_type(rl, "port", SYS_RES_IOPORT, "%#jx");
870 retval += resource_list_print_type(rl, "iomem", SYS_RES_MEMORY, "%#jx");
871 retval += resource_list_print_type(rl, "irq", SYS_RES_IRQ, "%jd");
872 retval += resource_list_print_type(rl, "drq", SYS_RES_DRQ, "%jd");
873 if (device_get_flags(child))
874 retval += printf(" flags %#x", device_get_flags(child));
875 retval += bus_print_child_domain(bus, child);
876 retval += bus_print_child_footer(bus, child);
877
878 return (retval);
879 }
880
881 /*
882 * If this device is an ACPI child but no one claimed it, attempt
883 * to power it off. We'll power it back up when a driver is added.
884 *
885 * XXX Disabled for now since many necessary devices (like fdc and
886 * ATA) don't claim the devices we created for them but still expect
887 * them to be powered up.
888 */
889 static void
acpi_probe_nomatch(device_t bus,device_t child)890 acpi_probe_nomatch(device_t bus, device_t child)
891 {
892 #ifdef ACPI_ENABLE_POWERDOWN_NODRIVER
893 acpi_set_powerstate(child, ACPI_STATE_D3);
894 #endif
895 }
896
897 /*
898 * If a new driver has a chance to probe a child, first power it up.
899 *
900 * XXX Disabled for now (see acpi_probe_nomatch for details).
901 */
902 static void
acpi_driver_added(device_t dev,driver_t * driver)903 acpi_driver_added(device_t dev, driver_t *driver)
904 {
905 device_t child, *devlist;
906 int i, numdevs;
907
908 DEVICE_IDENTIFY(driver, dev);
909 if (device_get_children(dev, &devlist, &numdevs))
910 return;
911 for (i = 0; i < numdevs; i++) {
912 child = devlist[i];
913 if (device_get_state(child) == DS_NOTPRESENT) {
914 #ifdef ACPI_ENABLE_POWERDOWN_NODRIVER
915 acpi_set_powerstate(child, ACPI_STATE_D0);
916 if (device_probe_and_attach(child) != 0)
917 acpi_set_powerstate(child, ACPI_STATE_D3);
918 #else
919 device_probe_and_attach(child);
920 #endif
921 }
922 }
923 free(devlist, M_TEMP);
924 }
925
926 /* Location hint for devctl(8) */
927 static int
acpi_child_location_method(device_t cbdev,device_t child,struct sbuf * sb)928 acpi_child_location_method(device_t cbdev, device_t child, struct sbuf *sb)
929 {
930 struct acpi_device *dinfo = device_get_ivars(child);
931 int pxm;
932
933 if (dinfo->ad_handle) {
934 sbuf_printf(sb, "handle=%s", acpi_name(dinfo->ad_handle));
935 if (ACPI_SUCCESS(acpi_GetInteger(dinfo->ad_handle, "_PXM", &pxm))) {
936 sbuf_printf(sb, " _PXM=%d", pxm);
937 }
938 }
939 return (0);
940 }
941
942 /* PnP information for devctl(8) */
943 int
acpi_pnpinfo(ACPI_HANDLE handle,struct sbuf * sb)944 acpi_pnpinfo(ACPI_HANDLE handle, struct sbuf *sb)
945 {
946 ACPI_DEVICE_INFO *adinfo;
947
948 if (ACPI_FAILURE(AcpiGetObjectInfo(handle, &adinfo))) {
949 sbuf_printf(sb, "unknown");
950 return (0);
951 }
952
953 sbuf_printf(sb, "_HID=%s _UID=%lu _CID=%s",
954 (adinfo->Valid & ACPI_VALID_HID) ?
955 adinfo->HardwareId.String : "none",
956 (adinfo->Valid & ACPI_VALID_UID) ?
957 strtoul(adinfo->UniqueId.String, NULL, 10) : 0UL,
958 ((adinfo->Valid & ACPI_VALID_CID) &&
959 adinfo->CompatibleIdList.Count > 0) ?
960 adinfo->CompatibleIdList.Ids[0].String : "none");
961 AcpiOsFree(adinfo);
962
963 return (0);
964 }
965
966 static int
acpi_child_pnpinfo_method(device_t cbdev,device_t child,struct sbuf * sb)967 acpi_child_pnpinfo_method(device_t cbdev, device_t child, struct sbuf *sb)
968 {
969 struct acpi_device *dinfo = device_get_ivars(child);
970
971 return (acpi_pnpinfo(dinfo->ad_handle, sb));
972 }
973
974 /*
975 * Note: the check for ACPI locator may be redundant. However, this routine is
976 * suitable for both busses whose only locator is ACPI and as a building block
977 * for busses that have multiple locators to cope with.
978 */
979 int
acpi_get_acpi_device_path(device_t bus,device_t child,const char * locator,struct sbuf * sb)980 acpi_get_acpi_device_path(device_t bus, device_t child, const char *locator, struct sbuf *sb)
981 {
982 if (strcmp(locator, BUS_LOCATOR_ACPI) == 0) {
983 ACPI_HANDLE *handle = acpi_get_handle(child);
984
985 if (handle != NULL)
986 sbuf_printf(sb, "%s", acpi_name(handle));
987 return (0);
988 }
989
990 return (bus_generic_get_device_path(bus, child, locator, sb));
991 }
992
993 static int
acpi_get_device_path(device_t bus,device_t child,const char * locator,struct sbuf * sb)994 acpi_get_device_path(device_t bus, device_t child, const char *locator, struct sbuf *sb)
995 {
996 struct acpi_device *dinfo = device_get_ivars(child);
997
998 if (strcmp(locator, BUS_LOCATOR_ACPI) == 0)
999 return (acpi_get_acpi_device_path(bus, child, locator, sb));
1000
1001 if (strcmp(locator, BUS_LOCATOR_UEFI) == 0) {
1002 ACPI_DEVICE_INFO *adinfo;
1003 if (!ACPI_FAILURE(AcpiGetObjectInfo(dinfo->ad_handle, &adinfo)) &&
1004 dinfo->ad_handle != 0 && (adinfo->Valid & ACPI_VALID_HID)) {
1005 const char *hid = adinfo->HardwareId.String;
1006 u_long uid = (adinfo->Valid & ACPI_VALID_UID) ?
1007 strtoul(adinfo->UniqueId.String, NULL, 10) : 0UL;
1008 u_long hidval;
1009
1010 /*
1011 * In UEFI Stanard Version 2.6, Section 9.6.1.6 Text
1012 * Device Node Reference, there's an insanely long table
1013 * 98. This implements the relevant bits from that
1014 * table. Newer versions appear to have not required
1015 * anything new. The EDK2 firmware presents both PciRoot
1016 * and PcieRoot as PciRoot. Follow the EDK2 standard.
1017 */
1018 if (strncmp("PNP", hid, 3) != 0)
1019 goto nomatch;
1020 hidval = strtoul(hid + 3, NULL, 16);
1021 switch (hidval) {
1022 case 0x0301:
1023 sbuf_printf(sb, "Keyboard(0x%lx)", uid);
1024 break;
1025 case 0x0401:
1026 sbuf_printf(sb, "ParallelPort(0x%lx)", uid);
1027 break;
1028 case 0x0501:
1029 sbuf_printf(sb, "Serial(0x%lx)", uid);
1030 break;
1031 case 0x0604:
1032 sbuf_printf(sb, "Floppy(0x%lx)", uid);
1033 break;
1034 case 0x0a03:
1035 case 0x0a08:
1036 sbuf_printf(sb, "PciRoot(0x%lx)", uid);
1037 break;
1038 default: /* Everything else gets a generic encode */
1039 nomatch:
1040 sbuf_printf(sb, "Acpi(%s,0x%lx)", hid, uid);
1041 break;
1042 }
1043 }
1044 /* Not handled: AcpiAdr... unsure how to know it's one */
1045 }
1046
1047 /* For the rest, punt to the default handler */
1048 return (bus_generic_get_device_path(bus, child, locator, sb));
1049 }
1050
1051 /*
1052 * Handle device deletion.
1053 */
1054 static void
acpi_child_deleted(device_t dev,device_t child)1055 acpi_child_deleted(device_t dev, device_t child)
1056 {
1057 struct acpi_device *dinfo = device_get_ivars(child);
1058
1059 if (acpi_get_device(dinfo->ad_handle) == child)
1060 AcpiDetachData(dinfo->ad_handle, acpi_fake_objhandler);
1061 }
1062
1063 /*
1064 * Handle per-device ivars
1065 */
1066 static int
acpi_read_ivar(device_t dev,device_t child,int index,uintptr_t * result)1067 acpi_read_ivar(device_t dev, device_t child, int index, uintptr_t *result)
1068 {
1069 struct acpi_device *ad;
1070
1071 if ((ad = device_get_ivars(child)) == NULL) {
1072 device_printf(child, "device has no ivars\n");
1073 return (ENOENT);
1074 }
1075
1076 /* ACPI and ISA compatibility ivars */
1077 switch(index) {
1078 case ACPI_IVAR_HANDLE:
1079 *(ACPI_HANDLE *)result = ad->ad_handle;
1080 break;
1081 case ACPI_IVAR_PRIVATE:
1082 *(void **)result = ad->ad_private;
1083 break;
1084 case ACPI_IVAR_FLAGS:
1085 *(int *)result = ad->ad_flags;
1086 break;
1087 case ACPI_IVAR_DOMAIN:
1088 *(int *)result = ad->ad_domain;
1089 break;
1090 case ISA_IVAR_VENDORID:
1091 case ISA_IVAR_SERIAL:
1092 case ISA_IVAR_COMPATID:
1093 *(int *)result = -1;
1094 break;
1095 case ISA_IVAR_LOGICALID:
1096 *(int *)result = acpi_isa_get_logicalid(child);
1097 break;
1098 case PCI_IVAR_CLASS:
1099 *(uint8_t*)result = (ad->ad_cls_class >> 16) & 0xff;
1100 break;
1101 case PCI_IVAR_SUBCLASS:
1102 *(uint8_t*)result = (ad->ad_cls_class >> 8) & 0xff;
1103 break;
1104 case PCI_IVAR_PROGIF:
1105 *(uint8_t*)result = (ad->ad_cls_class >> 0) & 0xff;
1106 break;
1107 default:
1108 return (ENOENT);
1109 }
1110
1111 return (0);
1112 }
1113
1114 static int
acpi_write_ivar(device_t dev,device_t child,int index,uintptr_t value)1115 acpi_write_ivar(device_t dev, device_t child, int index, uintptr_t value)
1116 {
1117 struct acpi_device *ad;
1118
1119 if ((ad = device_get_ivars(child)) == NULL) {
1120 device_printf(child, "device has no ivars\n");
1121 return (ENOENT);
1122 }
1123
1124 switch(index) {
1125 case ACPI_IVAR_HANDLE:
1126 ad->ad_handle = (ACPI_HANDLE)value;
1127 break;
1128 case ACPI_IVAR_PRIVATE:
1129 ad->ad_private = (void *)value;
1130 break;
1131 case ACPI_IVAR_FLAGS:
1132 ad->ad_flags = (int)value;
1133 break;
1134 case ACPI_IVAR_DOMAIN:
1135 ad->ad_domain = (int)value;
1136 break;
1137 default:
1138 panic("bad ivar write request (%d)", index);
1139 return (ENOENT);
1140 }
1141
1142 return (0);
1143 }
1144
1145 /*
1146 * Handle child resource allocation/removal
1147 */
1148 static struct resource_list *
acpi_get_rlist(device_t dev,device_t child)1149 acpi_get_rlist(device_t dev, device_t child)
1150 {
1151 struct acpi_device *ad;
1152
1153 ad = device_get_ivars(child);
1154 return (&ad->ad_rl);
1155 }
1156
1157 static int
acpi_match_resource_hint(device_t dev,int type,long value)1158 acpi_match_resource_hint(device_t dev, int type, long value)
1159 {
1160 struct acpi_device *ad = device_get_ivars(dev);
1161 struct resource_list *rl = &ad->ad_rl;
1162 struct resource_list_entry *rle;
1163
1164 STAILQ_FOREACH(rle, rl, link) {
1165 if (rle->type != type)
1166 continue;
1167 if (rle->start <= value && rle->end >= value)
1168 return (1);
1169 }
1170 return (0);
1171 }
1172
1173 /*
1174 * Does this device match because the resources match?
1175 */
1176 static bool
acpi_hint_device_matches_resources(device_t child,const char * name,int unit)1177 acpi_hint_device_matches_resources(device_t child, const char *name,
1178 int unit)
1179 {
1180 long value;
1181 bool matches;
1182
1183 /*
1184 * Check for matching resources. We must have at least one match.
1185 * Since I/O and memory resources cannot be shared, if we get a
1186 * match on either of those, ignore any mismatches in IRQs or DRQs.
1187 *
1188 * XXX: We may want to revisit this to be more lenient and wire
1189 * as long as it gets one match.
1190 */
1191 matches = false;
1192 if (resource_long_value(name, unit, "port", &value) == 0) {
1193 /*
1194 * Floppy drive controllers are notorious for having a
1195 * wide variety of resources not all of which include the
1196 * first port that is specified by the hint (typically
1197 * 0x3f0) (see the comment above fdc_isa_alloc_resources()
1198 * in fdc_isa.c). However, they do all seem to include
1199 * port + 2 (e.g. 0x3f2) so for a floppy device, look for
1200 * 'value + 2' in the port resources instead of the hint
1201 * value.
1202 */
1203 if (strcmp(name, "fdc") == 0)
1204 value += 2;
1205 if (acpi_match_resource_hint(child, SYS_RES_IOPORT, value))
1206 matches = true;
1207 else
1208 return false;
1209 }
1210 if (resource_long_value(name, unit, "maddr", &value) == 0) {
1211 if (acpi_match_resource_hint(child, SYS_RES_MEMORY, value))
1212 matches = true;
1213 else
1214 return false;
1215 }
1216
1217 /*
1218 * If either the I/O address and/or the memory address matched, then
1219 * assumed this devices matches and that any mismatch in other resources
1220 * will be resolved by siltently ignoring those other resources. Otherwise
1221 * all further resources must match.
1222 */
1223 if (matches) {
1224 return (true);
1225 }
1226 if (resource_long_value(name, unit, "irq", &value) == 0) {
1227 if (acpi_match_resource_hint(child, SYS_RES_IRQ, value))
1228 matches = true;
1229 else
1230 return false;
1231 }
1232 if (resource_long_value(name, unit, "drq", &value) == 0) {
1233 if (acpi_match_resource_hint(child, SYS_RES_DRQ, value))
1234 matches = true;
1235 else
1236 return false;
1237 }
1238 return matches;
1239 }
1240
1241
1242 /*
1243 * Wire device unit numbers based on resource matches in hints.
1244 */
1245 static void
acpi_hint_device_unit(device_t acdev,device_t child,const char * name,int * unitp)1246 acpi_hint_device_unit(device_t acdev, device_t child, const char *name,
1247 int *unitp)
1248 {
1249 device_location_cache_t *cache;
1250 const char *s;
1251 int line, unit;
1252 bool matches;
1253
1254 /*
1255 * Iterate over all the hints for the devices with the specified
1256 * name to see if one's resources are a subset of this device.
1257 */
1258 line = 0;
1259 cache = dev_wired_cache_init();
1260 while (resource_find_dev(&line, name, &unit, "at", NULL) == 0) {
1261 /* Must have an "at" for acpi or isa. */
1262 resource_string_value(name, unit, "at", &s);
1263 matches = false;
1264 if (strcmp(s, "acpi0") == 0 || strcmp(s, "acpi") == 0 ||
1265 strcmp(s, "isa0") == 0 || strcmp(s, "isa") == 0)
1266 matches = acpi_hint_device_matches_resources(child, name, unit);
1267 else
1268 matches = dev_wired_cache_match(cache, child, s);
1269
1270 if (matches) {
1271 /* We have a winner! */
1272 *unitp = unit;
1273 break;
1274 }
1275 }
1276 dev_wired_cache_fini(cache);
1277 }
1278
1279 /*
1280 * Fetch the NUMA domain for a device by mapping the value returned by
1281 * _PXM to a NUMA domain. If the device does not have a _PXM method,
1282 * -2 is returned. If any other error occurs, -1 is returned.
1283 */
1284 int
acpi_pxm_parse(device_t dev)1285 acpi_pxm_parse(device_t dev)
1286 {
1287 #ifdef NUMA
1288 #if defined(__i386__) || defined(__amd64__) || defined(__aarch64__)
1289 ACPI_HANDLE handle;
1290 ACPI_STATUS status;
1291 int pxm;
1292
1293 handle = acpi_get_handle(dev);
1294 if (handle == NULL)
1295 return (-2);
1296 status = acpi_GetInteger(handle, "_PXM", &pxm);
1297 if (ACPI_SUCCESS(status))
1298 return (acpi_map_pxm_to_vm_domainid(pxm));
1299 if (status == AE_NOT_FOUND)
1300 return (-2);
1301 #endif
1302 #endif
1303 return (-1);
1304 }
1305
1306 int
acpi_get_cpus(device_t dev,device_t child,enum cpu_sets op,size_t setsize,cpuset_t * cpuset)1307 acpi_get_cpus(device_t dev, device_t child, enum cpu_sets op, size_t setsize,
1308 cpuset_t *cpuset)
1309 {
1310 int d, error;
1311
1312 d = acpi_pxm_parse(child);
1313 if (d < 0)
1314 return (bus_generic_get_cpus(dev, child, op, setsize, cpuset));
1315
1316 switch (op) {
1317 case LOCAL_CPUS:
1318 if (setsize != sizeof(cpuset_t))
1319 return (EINVAL);
1320 *cpuset = cpuset_domain[d];
1321 return (0);
1322 case INTR_CPUS:
1323 error = bus_generic_get_cpus(dev, child, op, setsize, cpuset);
1324 if (error != 0)
1325 return (error);
1326 if (setsize != sizeof(cpuset_t))
1327 return (EINVAL);
1328 CPU_AND(cpuset, cpuset, &cpuset_domain[d]);
1329 return (0);
1330 default:
1331 return (bus_generic_get_cpus(dev, child, op, setsize, cpuset));
1332 }
1333 }
1334
1335 static int
acpi_get_domain_method(device_t dev,device_t child,int * domain)1336 acpi_get_domain_method(device_t dev, device_t child, int *domain)
1337 {
1338 int error;
1339
1340 error = acpi_read_ivar(dev, child, ACPI_IVAR_DOMAIN,
1341 (uintptr_t *)domain);
1342 if (error == 0 && *domain != ACPI_DEV_DOMAIN_UNKNOWN)
1343 return (0);
1344 return (ENOENT);
1345 }
1346
1347 static struct rman *
acpi_get_rman(device_t bus,int type,u_int flags)1348 acpi_get_rman(device_t bus, int type, u_int flags)
1349 {
1350 /* Only memory and IO resources are managed. */
1351 switch (type) {
1352 case SYS_RES_IOPORT:
1353 return (&acpi_rman_io);
1354 case SYS_RES_MEMORY:
1355 return (&acpi_rman_mem);
1356 default:
1357 return (NULL);
1358 }
1359 }
1360
1361 /*
1362 * Pre-allocate/manage all memory and IO resources. Since rman can't handle
1363 * duplicates, we merge any in the sysresource attach routine.
1364 */
1365 static int
acpi_sysres_alloc(device_t dev)1366 acpi_sysres_alloc(device_t dev)
1367 {
1368 struct acpi_softc *sc = device_get_softc(dev);
1369 struct resource *res;
1370 struct resource_list_entry *rle;
1371 struct rman *rm;
1372 device_t *children;
1373 int child_count, i;
1374
1375 /*
1376 * Probe/attach any sysresource devices. This would be unnecessary if we
1377 * had multi-pass probe/attach.
1378 */
1379 if (device_get_children(dev, &children, &child_count) != 0)
1380 return (ENXIO);
1381 for (i = 0; i < child_count; i++) {
1382 if (ACPI_ID_PROBE(dev, children[i], sysres_ids, NULL) <= 0)
1383 device_probe_and_attach(children[i]);
1384 }
1385 free(children, M_TEMP);
1386
1387 STAILQ_FOREACH(rle, &sc->sysres_rl, link) {
1388 if (rle->res != NULL) {
1389 device_printf(dev, "duplicate resource for %jx\n", rle->start);
1390 continue;
1391 }
1392
1393 /* Only memory and IO resources are valid here. */
1394 rm = acpi_get_rman(dev, rle->type, 0);
1395 if (rm == NULL)
1396 continue;
1397
1398 /* Pre-allocate resource and add to our rman pool. */
1399 res = bus_alloc_resource(dev, rle->type,
1400 &rle->rid, rle->start, rle->start + rle->count - 1, rle->count,
1401 RF_ACTIVE | RF_UNMAPPED);
1402 if (res != NULL) {
1403 rman_manage_region(rm, rman_get_start(res), rman_get_end(res));
1404 rle->res = res;
1405 } else if (bootverbose)
1406 device_printf(dev, "reservation of %jx, %jx (%d) failed\n",
1407 rle->start, rle->count, rle->type);
1408 }
1409 return (0);
1410 }
1411
1412 /*
1413 * Reserve declared resources for active devices found during the
1414 * namespace scan once the boot-time attach of devices has completed.
1415 *
1416 * Ideally reserving firmware-assigned resources would work in a
1417 * depth-first traversal of the device namespace, but this is
1418 * complicated. In particular, not all resources are enumerated by
1419 * ACPI (e.g. PCI bridges and devices enumerate their resources via
1420 * other means). Some systems also enumerate devices via ACPI behind
1421 * PCI bridges but without a matching a PCI device_t enumerated via
1422 * PCI bus scanning, the device_t's end up as direct children of
1423 * acpi0. Doing this scan late is not ideal, but works for now.
1424 */
1425 static void
acpi_reserve_resources(device_t dev)1426 acpi_reserve_resources(device_t dev)
1427 {
1428 struct resource_list_entry *rle;
1429 struct resource_list *rl;
1430 struct acpi_device *ad;
1431 device_t *children;
1432 int child_count, i;
1433
1434 if (device_get_children(dev, &children, &child_count) != 0)
1435 return;
1436 for (i = 0; i < child_count; i++) {
1437 ad = device_get_ivars(children[i]);
1438 rl = &ad->ad_rl;
1439
1440 /* Don't reserve system resources. */
1441 if (ACPI_ID_PROBE(dev, children[i], sysres_ids, NULL) <= 0)
1442 continue;
1443
1444 STAILQ_FOREACH(rle, rl, link) {
1445 /*
1446 * Don't reserve IRQ resources. There are many sticky things
1447 * to get right otherwise (e.g. IRQs for psm, atkbd, and HPET
1448 * when using legacy routing).
1449 */
1450 if (rle->type == SYS_RES_IRQ)
1451 continue;
1452
1453 /*
1454 * Don't reserve the resource if it is already allocated.
1455 * The acpi_ec(4) driver can allocate its resources early
1456 * if ECDT is present.
1457 */
1458 if (rle->res != NULL)
1459 continue;
1460
1461 /*
1462 * Try to reserve the resource from our parent. If this
1463 * fails because the resource is a system resource, just
1464 * let it be. The resource range is already reserved so
1465 * that other devices will not use it. If the driver
1466 * needs to allocate the resource, then
1467 * acpi_alloc_resource() will sub-alloc from the system
1468 * resource.
1469 */
1470 resource_list_reserve(rl, dev, children[i], rle->type, &rle->rid,
1471 rle->start, rle->end, rle->count, 0);
1472 }
1473 }
1474 free(children, M_TEMP);
1475 }
1476
1477 static int
acpi_set_resource(device_t dev,device_t child,int type,int rid,rman_res_t start,rman_res_t count)1478 acpi_set_resource(device_t dev, device_t child, int type, int rid,
1479 rman_res_t start, rman_res_t count)
1480 {
1481 struct acpi_device *ad = device_get_ivars(child);
1482 struct resource_list *rl = &ad->ad_rl;
1483 rman_res_t end;
1484
1485 #ifdef INTRNG
1486 /* map with default for now */
1487 if (type == SYS_RES_IRQ)
1488 start = (rman_res_t)acpi_map_intr(child, (u_int)start,
1489 acpi_get_handle(child));
1490 #endif
1491
1492 /* If the resource is already allocated, fail. */
1493 if (resource_list_busy(rl, type, rid))
1494 return (EBUSY);
1495
1496 /* If the resource is already reserved, release it. */
1497 if (resource_list_reserved(rl, type, rid))
1498 resource_list_unreserve(rl, dev, child, type, rid);
1499
1500 /* Add the resource. */
1501 end = (start + count - 1);
1502 resource_list_add(rl, type, rid, start, end, count);
1503 return (0);
1504 }
1505
1506 static struct resource *
acpi_alloc_resource(device_t bus,device_t child,int type,int * rid,rman_res_t start,rman_res_t end,rman_res_t count,u_int flags)1507 acpi_alloc_resource(device_t bus, device_t child, int type, int *rid,
1508 rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
1509 {
1510 #ifndef INTRNG
1511 ACPI_RESOURCE ares;
1512 #endif
1513 struct acpi_device *ad;
1514 struct resource_list_entry *rle;
1515 struct resource_list *rl;
1516 struct resource *res;
1517 int isdefault = RMAN_IS_DEFAULT_RANGE(start, end);
1518
1519 /*
1520 * First attempt at allocating the resource. For direct children,
1521 * use resource_list_alloc() to handle reserved resources. For
1522 * other devices, pass the request up to our parent.
1523 */
1524 if (bus == device_get_parent(child)) {
1525 ad = device_get_ivars(child);
1526 rl = &ad->ad_rl;
1527
1528 /*
1529 * Simulate the behavior of the ISA bus for direct children
1530 * devices. That is, if a non-default range is specified for
1531 * a resource that doesn't exist, use bus_set_resource() to
1532 * add the resource before allocating it. Note that these
1533 * resources will not be reserved.
1534 */
1535 if (!isdefault && resource_list_find(rl, type, *rid) == NULL)
1536 resource_list_add(rl, type, *rid, start, end, count);
1537 res = resource_list_alloc(rl, bus, child, type, rid, start, end, count,
1538 flags);
1539 #ifndef INTRNG
1540 if (res != NULL && type == SYS_RES_IRQ) {
1541 /*
1542 * Since bus_config_intr() takes immediate effect, we cannot
1543 * configure the interrupt associated with a device when we
1544 * parse the resources but have to defer it until a driver
1545 * actually allocates the interrupt via bus_alloc_resource().
1546 *
1547 * XXX: Should we handle the lookup failing?
1548 */
1549 if (ACPI_SUCCESS(acpi_lookup_irq_resource(child, *rid, res, &ares)))
1550 acpi_config_intr(child, &ares);
1551 }
1552 #endif
1553
1554 /*
1555 * If this is an allocation of the "default" range for a given
1556 * RID, fetch the exact bounds for this resource from the
1557 * resource list entry to try to allocate the range from the
1558 * system resource regions.
1559 */
1560 if (res == NULL && isdefault) {
1561 rle = resource_list_find(rl, type, *rid);
1562 if (rle != NULL) {
1563 start = rle->start;
1564 end = rle->end;
1565 count = rle->count;
1566 }
1567 }
1568 } else
1569 res = bus_generic_alloc_resource(bus, child, type, rid,
1570 start, end, count, flags);
1571
1572 /*
1573 * If the first attempt failed and this is an allocation of a
1574 * specific range, try to satisfy the request via a suballocation
1575 * from our system resource regions.
1576 */
1577 if (res == NULL && start + count - 1 == end)
1578 res = bus_generic_rman_alloc_resource(bus, child, type, rid, start, end,
1579 count, flags);
1580 return (res);
1581 }
1582
1583 static bool
acpi_is_resource_managed(device_t bus,struct resource * r)1584 acpi_is_resource_managed(device_t bus, struct resource *r)
1585 {
1586 struct rman *rm;
1587
1588 rm = acpi_get_rman(bus, rman_get_type(r), rman_get_flags(r));
1589 if (rm == NULL)
1590 return (false);
1591 return (rman_is_region_manager(r, rm));
1592 }
1593
1594 static struct resource *
acpi_managed_resource(device_t bus,struct resource * r)1595 acpi_managed_resource(device_t bus, struct resource *r)
1596 {
1597 struct acpi_softc *sc = device_get_softc(bus);
1598 struct resource_list_entry *rle;
1599
1600 KASSERT(acpi_is_resource_managed(bus, r),
1601 ("resource %p is not suballocated", r));
1602
1603 STAILQ_FOREACH(rle, &sc->sysres_rl, link) {
1604 if (rle->type != rman_get_type(r) || rle->res == NULL)
1605 continue;
1606 if (rman_get_start(r) >= rman_get_start(rle->res) &&
1607 rman_get_end(r) <= rman_get_end(rle->res))
1608 return (rle->res);
1609 }
1610 return (NULL);
1611 }
1612
1613 static int
acpi_adjust_resource(device_t bus,device_t child,struct resource * r,rman_res_t start,rman_res_t end)1614 acpi_adjust_resource(device_t bus, device_t child, struct resource *r,
1615 rman_res_t start, rman_res_t end)
1616 {
1617
1618 if (acpi_is_resource_managed(bus, r))
1619 return (rman_adjust_resource(r, start, end));
1620 return (bus_generic_adjust_resource(bus, child, r, start, end));
1621 }
1622
1623 static int
acpi_release_resource(device_t bus,device_t child,struct resource * r)1624 acpi_release_resource(device_t bus, device_t child, struct resource *r)
1625 {
1626 /*
1627 * If this resource belongs to one of our internal managers,
1628 * deactivate it and release it to the local pool.
1629 */
1630 if (acpi_is_resource_managed(bus, r))
1631 return (bus_generic_rman_release_resource(bus, child, r));
1632
1633 return (bus_generic_rl_release_resource(bus, child, r));
1634 }
1635
1636 static void
acpi_delete_resource(device_t bus,device_t child,int type,int rid)1637 acpi_delete_resource(device_t bus, device_t child, int type, int rid)
1638 {
1639 struct resource_list *rl;
1640
1641 rl = acpi_get_rlist(bus, child);
1642 if (resource_list_busy(rl, type, rid)) {
1643 device_printf(bus, "delete_resource: Resource still owned by child"
1644 " (type=%d, rid=%d)\n", type, rid);
1645 return;
1646 }
1647 if (resource_list_reserved(rl, type, rid))
1648 resource_list_unreserve(rl, bus, child, type, rid);
1649 resource_list_delete(rl, type, rid);
1650 }
1651
1652 static int
acpi_activate_resource(device_t bus,device_t child,struct resource * r)1653 acpi_activate_resource(device_t bus, device_t child, struct resource *r)
1654 {
1655 if (acpi_is_resource_managed(bus, r))
1656 return (bus_generic_rman_activate_resource(bus, child, r));
1657 return (bus_generic_activate_resource(bus, child, r));
1658 }
1659
1660 static int
acpi_deactivate_resource(device_t bus,device_t child,struct resource * r)1661 acpi_deactivate_resource(device_t bus, device_t child, struct resource *r)
1662 {
1663 if (acpi_is_resource_managed(bus, r))
1664 return (bus_generic_rman_deactivate_resource(bus, child, r));
1665 return (bus_generic_deactivate_resource(bus, child, r));
1666 }
1667
1668 static int
acpi_map_resource(device_t bus,device_t child,struct resource * r,struct resource_map_request * argsp,struct resource_map * map)1669 acpi_map_resource(device_t bus, device_t child, struct resource *r,
1670 struct resource_map_request *argsp, struct resource_map *map)
1671 {
1672 struct resource_map_request args;
1673 struct resource *sysres;
1674 rman_res_t length, start;
1675 int error;
1676
1677 if (!acpi_is_resource_managed(bus, r))
1678 return (bus_generic_map_resource(bus, child, r, argsp, map));
1679
1680 /* Resources must be active to be mapped. */
1681 if (!(rman_get_flags(r) & RF_ACTIVE))
1682 return (ENXIO);
1683
1684 resource_init_map_request(&args);
1685 error = resource_validate_map_request(r, argsp, &args, &start, &length);
1686 if (error)
1687 return (error);
1688
1689 sysres = acpi_managed_resource(bus, r);
1690 if (sysres == NULL)
1691 return (ENOENT);
1692
1693 args.offset = start - rman_get_start(sysres);
1694 args.length = length;
1695 return (bus_map_resource(bus, sysres, &args, map));
1696 }
1697
1698 static int
acpi_unmap_resource(device_t bus,device_t child,struct resource * r,struct resource_map * map)1699 acpi_unmap_resource(device_t bus, device_t child, struct resource *r,
1700 struct resource_map *map)
1701 {
1702 struct resource *sysres;
1703
1704 if (!acpi_is_resource_managed(bus, r))
1705 return (bus_generic_unmap_resource(bus, child, r, map));
1706
1707 sysres = acpi_managed_resource(bus, r);
1708 if (sysres == NULL)
1709 return (ENOENT);
1710 return (bus_unmap_resource(bus, sysres, map));
1711 }
1712
1713 /* Allocate an IO port or memory resource, given its GAS. */
1714 int
acpi_bus_alloc_gas(device_t dev,int * type,int * rid,ACPI_GENERIC_ADDRESS * gas,struct resource ** res,u_int flags)1715 acpi_bus_alloc_gas(device_t dev, int *type, int *rid, ACPI_GENERIC_ADDRESS *gas,
1716 struct resource **res, u_int flags)
1717 {
1718 int error, res_type;
1719
1720 error = ENOMEM;
1721 if (type == NULL || rid == NULL || gas == NULL || res == NULL)
1722 return (EINVAL);
1723
1724 /* We only support memory and IO spaces. */
1725 switch (gas->SpaceId) {
1726 case ACPI_ADR_SPACE_SYSTEM_MEMORY:
1727 res_type = SYS_RES_MEMORY;
1728 break;
1729 case ACPI_ADR_SPACE_SYSTEM_IO:
1730 res_type = SYS_RES_IOPORT;
1731 break;
1732 default:
1733 return (EOPNOTSUPP);
1734 }
1735
1736 /*
1737 * If the register width is less than 8, assume the BIOS author means
1738 * it is a bit field and just allocate a byte.
1739 */
1740 if (gas->BitWidth && gas->BitWidth < 8)
1741 gas->BitWidth = 8;
1742
1743 /* Validate the address after we're sure we support the space. */
1744 if (gas->Address == 0 || gas->BitWidth == 0)
1745 return (EINVAL);
1746
1747 bus_set_resource(dev, res_type, *rid, gas->Address,
1748 gas->BitWidth / 8);
1749 *res = bus_alloc_resource_any(dev, res_type, rid, RF_ACTIVE | flags);
1750 if (*res != NULL) {
1751 *type = res_type;
1752 error = 0;
1753 } else
1754 bus_delete_resource(dev, res_type, *rid);
1755
1756 return (error);
1757 }
1758
1759 /* Probe _HID and _CID for compatible ISA PNP ids. */
1760 static uint32_t
acpi_isa_get_logicalid(device_t dev)1761 acpi_isa_get_logicalid(device_t dev)
1762 {
1763 ACPI_DEVICE_INFO *devinfo;
1764 ACPI_HANDLE h;
1765 uint32_t pnpid;
1766
1767 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
1768
1769 /* Fetch and validate the HID. */
1770 if ((h = acpi_get_handle(dev)) == NULL ||
1771 ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo)))
1772 return_VALUE (0);
1773
1774 pnpid = (devinfo->Valid & ACPI_VALID_HID) != 0 &&
1775 devinfo->HardwareId.Length >= ACPI_EISAID_STRING_SIZE ?
1776 PNP_EISAID(devinfo->HardwareId.String) : 0;
1777 AcpiOsFree(devinfo);
1778
1779 return_VALUE (pnpid);
1780 }
1781
1782 static int
acpi_isa_get_compatid(device_t dev,uint32_t * cids,int count)1783 acpi_isa_get_compatid(device_t dev, uint32_t *cids, int count)
1784 {
1785 ACPI_DEVICE_INFO *devinfo;
1786 ACPI_PNP_DEVICE_ID *ids;
1787 ACPI_HANDLE h;
1788 uint32_t *pnpid;
1789 int i, valid;
1790
1791 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
1792
1793 pnpid = cids;
1794
1795 /* Fetch and validate the CID */
1796 if ((h = acpi_get_handle(dev)) == NULL ||
1797 ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo)))
1798 return_VALUE (0);
1799
1800 if ((devinfo->Valid & ACPI_VALID_CID) == 0) {
1801 AcpiOsFree(devinfo);
1802 return_VALUE (0);
1803 }
1804
1805 if (devinfo->CompatibleIdList.Count < count)
1806 count = devinfo->CompatibleIdList.Count;
1807 ids = devinfo->CompatibleIdList.Ids;
1808 for (i = 0, valid = 0; i < count; i++)
1809 if (ids[i].Length >= ACPI_EISAID_STRING_SIZE &&
1810 strncmp(ids[i].String, "PNP", 3) == 0) {
1811 *pnpid++ = PNP_EISAID(ids[i].String);
1812 valid++;
1813 }
1814 AcpiOsFree(devinfo);
1815
1816 return_VALUE (valid);
1817 }
1818
1819 static int
acpi_device_id_probe(device_t bus,device_t dev,char ** ids,char ** match)1820 acpi_device_id_probe(device_t bus, device_t dev, char **ids, char **match)
1821 {
1822 ACPI_HANDLE h;
1823 ACPI_OBJECT_TYPE t;
1824 int rv;
1825 int i;
1826
1827 h = acpi_get_handle(dev);
1828 if (ids == NULL || h == NULL)
1829 return (ENXIO);
1830 t = acpi_get_type(dev);
1831 if (t != ACPI_TYPE_DEVICE && t != ACPI_TYPE_PROCESSOR)
1832 return (ENXIO);
1833
1834 /* Try to match one of the array of IDs with a HID or CID. */
1835 for (i = 0; ids[i] != NULL; i++) {
1836 rv = acpi_MatchHid(h, ids[i]);
1837 if (rv == ACPI_MATCHHID_NOMATCH)
1838 continue;
1839
1840 if (match != NULL) {
1841 *match = ids[i];
1842 }
1843 return ((rv == ACPI_MATCHHID_HID)?
1844 BUS_PROBE_DEFAULT : BUS_PROBE_LOW_PRIORITY);
1845 }
1846 return (ENXIO);
1847 }
1848
1849 static ACPI_STATUS
acpi_device_eval_obj(device_t bus,device_t dev,ACPI_STRING pathname,ACPI_OBJECT_LIST * parameters,ACPI_BUFFER * ret)1850 acpi_device_eval_obj(device_t bus, device_t dev, ACPI_STRING pathname,
1851 ACPI_OBJECT_LIST *parameters, ACPI_BUFFER *ret)
1852 {
1853 ACPI_HANDLE h;
1854
1855 if (dev == NULL)
1856 h = ACPI_ROOT_OBJECT;
1857 else if ((h = acpi_get_handle(dev)) == NULL)
1858 return (AE_BAD_PARAMETER);
1859 return (AcpiEvaluateObject(h, pathname, parameters, ret));
1860 }
1861
1862 static ACPI_STATUS
acpi_device_get_prop(device_t bus,device_t dev,ACPI_STRING propname,const ACPI_OBJECT ** value)1863 acpi_device_get_prop(device_t bus, device_t dev, ACPI_STRING propname,
1864 const ACPI_OBJECT **value)
1865 {
1866 const ACPI_OBJECT *pkg, *name, *val;
1867 struct acpi_device *ad;
1868 ACPI_STATUS status;
1869 int i;
1870
1871 ad = device_get_ivars(dev);
1872
1873 if (ad == NULL || propname == NULL)
1874 return (AE_BAD_PARAMETER);
1875 if (ad->dsd_pkg == NULL) {
1876 if (ad->dsd.Pointer == NULL) {
1877 status = acpi_find_dsd(ad);
1878 if (ACPI_FAILURE(status))
1879 return (status);
1880 } else {
1881 return (AE_NOT_FOUND);
1882 }
1883 }
1884
1885 for (i = 0; i < ad->dsd_pkg->Package.Count; i ++) {
1886 pkg = &ad->dsd_pkg->Package.Elements[i];
1887 if (pkg->Type != ACPI_TYPE_PACKAGE || pkg->Package.Count != 2)
1888 continue;
1889
1890 name = &pkg->Package.Elements[0];
1891 val = &pkg->Package.Elements[1];
1892 if (name->Type != ACPI_TYPE_STRING)
1893 continue;
1894 if (strncmp(propname, name->String.Pointer, name->String.Length) == 0) {
1895 if (value != NULL)
1896 *value = val;
1897
1898 return (AE_OK);
1899 }
1900 }
1901
1902 return (AE_NOT_FOUND);
1903 }
1904
1905 static ACPI_STATUS
acpi_find_dsd(struct acpi_device * ad)1906 acpi_find_dsd(struct acpi_device *ad)
1907 {
1908 const ACPI_OBJECT *dsd, *guid, *pkg;
1909 ACPI_STATUS status;
1910
1911 ad->dsd.Length = ACPI_ALLOCATE_BUFFER;
1912 ad->dsd.Pointer = NULL;
1913 ad->dsd_pkg = NULL;
1914
1915 status = AcpiEvaluateObject(ad->ad_handle, "_DSD", NULL, &ad->dsd);
1916 if (ACPI_FAILURE(status))
1917 return (status);
1918
1919 dsd = ad->dsd.Pointer;
1920 guid = &dsd->Package.Elements[0];
1921 pkg = &dsd->Package.Elements[1];
1922
1923 if (guid->Type != ACPI_TYPE_BUFFER || pkg->Type != ACPI_TYPE_PACKAGE ||
1924 guid->Buffer.Length != sizeof(acpi_dsd_uuid))
1925 return (AE_NOT_FOUND);
1926 if (memcmp(guid->Buffer.Pointer, &acpi_dsd_uuid,
1927 sizeof(acpi_dsd_uuid)) == 0) {
1928
1929 ad->dsd_pkg = pkg;
1930 return (AE_OK);
1931 }
1932
1933 return (AE_NOT_FOUND);
1934 }
1935
1936 static ssize_t
acpi_bus_get_prop_handle(const ACPI_OBJECT * hobj,void * propvalue,size_t size)1937 acpi_bus_get_prop_handle(const ACPI_OBJECT *hobj, void *propvalue, size_t size)
1938 {
1939 ACPI_OBJECT *pobj;
1940 ACPI_HANDLE h;
1941
1942 if (hobj->Type != ACPI_TYPE_PACKAGE)
1943 goto err;
1944 if (hobj->Package.Count != 1)
1945 goto err;
1946
1947 pobj = &hobj->Package.Elements[0];
1948 if (pobj == NULL)
1949 goto err;
1950 if (pobj->Type != ACPI_TYPE_LOCAL_REFERENCE)
1951 goto err;
1952
1953 h = acpi_GetReference(NULL, pobj);
1954 if (h == NULL)
1955 goto err;
1956
1957 if (propvalue != NULL && size >= sizeof(ACPI_HANDLE))
1958 *(ACPI_HANDLE *)propvalue = h;
1959 return (sizeof(ACPI_HANDLE));
1960
1961 err:
1962 return (-1);
1963 }
1964
1965 static ssize_t
acpi_bus_get_prop(device_t bus,device_t child,const char * propname,void * propvalue,size_t size,device_property_type_t type)1966 acpi_bus_get_prop(device_t bus, device_t child, const char *propname,
1967 void *propvalue, size_t size, device_property_type_t type)
1968 {
1969 ACPI_STATUS status;
1970 const ACPI_OBJECT *obj;
1971
1972 status = acpi_device_get_prop(bus, child, __DECONST(char *, propname),
1973 &obj);
1974 if (ACPI_FAILURE(status))
1975 return (-1);
1976
1977 switch (type) {
1978 case DEVICE_PROP_ANY:
1979 case DEVICE_PROP_BUFFER:
1980 case DEVICE_PROP_UINT32:
1981 case DEVICE_PROP_UINT64:
1982 break;
1983 case DEVICE_PROP_HANDLE:
1984 return (acpi_bus_get_prop_handle(obj, propvalue, size));
1985 default:
1986 return (-1);
1987 }
1988
1989 switch (obj->Type) {
1990 case ACPI_TYPE_INTEGER:
1991 if (type == DEVICE_PROP_UINT32) {
1992 if (propvalue != NULL && size >= sizeof(uint32_t))
1993 *((uint32_t *)propvalue) = obj->Integer.Value;
1994 return (sizeof(uint32_t));
1995 }
1996 if (propvalue != NULL && size >= sizeof(uint64_t))
1997 *((uint64_t *) propvalue) = obj->Integer.Value;
1998 return (sizeof(uint64_t));
1999
2000 case ACPI_TYPE_STRING:
2001 if (type != DEVICE_PROP_ANY &&
2002 type != DEVICE_PROP_BUFFER)
2003 return (-1);
2004
2005 if (propvalue != NULL && size > 0)
2006 memcpy(propvalue, obj->String.Pointer,
2007 MIN(size, obj->String.Length));
2008 return (obj->String.Length);
2009
2010 case ACPI_TYPE_BUFFER:
2011 if (propvalue != NULL && size > 0)
2012 memcpy(propvalue, obj->Buffer.Pointer,
2013 MIN(size, obj->Buffer.Length));
2014 return (obj->Buffer.Length);
2015
2016 case ACPI_TYPE_PACKAGE:
2017 if (propvalue != NULL && size >= sizeof(ACPI_OBJECT *)) {
2018 *((ACPI_OBJECT **) propvalue) =
2019 __DECONST(ACPI_OBJECT *, obj);
2020 }
2021 return (sizeof(ACPI_OBJECT *));
2022
2023 case ACPI_TYPE_LOCAL_REFERENCE:
2024 if (propvalue != NULL && size >= sizeof(ACPI_HANDLE)) {
2025 ACPI_HANDLE h;
2026
2027 h = acpi_GetReference(NULL,
2028 __DECONST(ACPI_OBJECT *, obj));
2029 memcpy(propvalue, h, sizeof(ACPI_HANDLE));
2030 }
2031 return (sizeof(ACPI_HANDLE));
2032 default:
2033 return (0);
2034 }
2035 }
2036
2037 int
acpi_device_pwr_for_sleep(device_t bus,device_t dev,int * dstate)2038 acpi_device_pwr_for_sleep(device_t bus, device_t dev, int *dstate)
2039 {
2040 struct acpi_softc *sc;
2041 ACPI_HANDLE handle;
2042 ACPI_STATUS status;
2043 char sxd[8];
2044
2045 handle = acpi_get_handle(dev);
2046
2047 /*
2048 * XXX If we find these devices, don't try to power them down.
2049 * The serial and IRDA ports on my T23 hang the system when
2050 * set to D3 and it appears that such legacy devices may
2051 * need special handling in their drivers.
2052 */
2053 if (dstate == NULL || handle == NULL ||
2054 acpi_MatchHid(handle, "PNP0500") ||
2055 acpi_MatchHid(handle, "PNP0501") ||
2056 acpi_MatchHid(handle, "PNP0502") ||
2057 acpi_MatchHid(handle, "PNP0510") ||
2058 acpi_MatchHid(handle, "PNP0511"))
2059 return (ENXIO);
2060
2061 /*
2062 * Override next state with the value from _SxD, if present.
2063 * Note illegal _S0D is evaluated because some systems expect this.
2064 */
2065 sc = device_get_softc(bus);
2066 snprintf(sxd, sizeof(sxd), "_S%dD", sc->acpi_sstate);
2067 status = acpi_GetInteger(handle, sxd, dstate);
2068 if (ACPI_FAILURE(status) && status != AE_NOT_FOUND) {
2069 device_printf(dev, "failed to get %s on %s: %s\n", sxd,
2070 acpi_name(handle), AcpiFormatException(status));
2071 return (ENXIO);
2072 }
2073
2074 return (0);
2075 }
2076
2077 /* Callback arg for our implementation of walking the namespace. */
2078 struct acpi_device_scan_ctx {
2079 acpi_scan_cb_t user_fn;
2080 void *arg;
2081 ACPI_HANDLE parent;
2082 };
2083
2084 static ACPI_STATUS
acpi_device_scan_cb(ACPI_HANDLE h,UINT32 level,void * arg,void ** retval)2085 acpi_device_scan_cb(ACPI_HANDLE h, UINT32 level, void *arg, void **retval)
2086 {
2087 struct acpi_device_scan_ctx *ctx;
2088 device_t dev, old_dev;
2089 ACPI_STATUS status;
2090 ACPI_OBJECT_TYPE type;
2091
2092 /*
2093 * Skip this device if we think we'll have trouble with it or it is
2094 * the parent where the scan began.
2095 */
2096 ctx = (struct acpi_device_scan_ctx *)arg;
2097 if (acpi_avoid(h) || h == ctx->parent)
2098 return (AE_OK);
2099
2100 /* If this is not a valid device type (e.g., a method), skip it. */
2101 if (ACPI_FAILURE(AcpiGetType(h, &type)))
2102 return (AE_OK);
2103 if (type != ACPI_TYPE_DEVICE && type != ACPI_TYPE_PROCESSOR &&
2104 type != ACPI_TYPE_THERMAL && type != ACPI_TYPE_POWER)
2105 return (AE_OK);
2106
2107 /*
2108 * Call the user function with the current device. If it is unchanged
2109 * afterwards, return. Otherwise, we update the handle to the new dev.
2110 */
2111 old_dev = acpi_get_device(h);
2112 dev = old_dev;
2113 status = ctx->user_fn(h, &dev, level, ctx->arg);
2114 if (ACPI_FAILURE(status) || old_dev == dev)
2115 return (status);
2116
2117 /* Remove the old child and its connection to the handle. */
2118 if (old_dev != NULL)
2119 device_delete_child(device_get_parent(old_dev), old_dev);
2120
2121 /* Recreate the handle association if the user created a device. */
2122 if (dev != NULL)
2123 AcpiAttachData(h, acpi_fake_objhandler, dev);
2124
2125 return (AE_OK);
2126 }
2127
2128 static ACPI_STATUS
acpi_device_scan_children(device_t bus,device_t dev,int max_depth,acpi_scan_cb_t user_fn,void * arg)2129 acpi_device_scan_children(device_t bus, device_t dev, int max_depth,
2130 acpi_scan_cb_t user_fn, void *arg)
2131 {
2132 ACPI_HANDLE h;
2133 struct acpi_device_scan_ctx ctx;
2134
2135 if (acpi_disabled("children"))
2136 return (AE_OK);
2137
2138 if (dev == NULL)
2139 h = ACPI_ROOT_OBJECT;
2140 else if ((h = acpi_get_handle(dev)) == NULL)
2141 return (AE_BAD_PARAMETER);
2142 ctx.user_fn = user_fn;
2143 ctx.arg = arg;
2144 ctx.parent = h;
2145 return (AcpiWalkNamespace(ACPI_TYPE_ANY, h, max_depth,
2146 acpi_device_scan_cb, NULL, &ctx, NULL));
2147 }
2148
2149 /*
2150 * Even though ACPI devices are not PCI, we use the PCI approach for setting
2151 * device power states since it's close enough to ACPI.
2152 */
2153 int
acpi_set_powerstate(device_t child,int state)2154 acpi_set_powerstate(device_t child, int state)
2155 {
2156 ACPI_HANDLE h;
2157 ACPI_STATUS status;
2158
2159 h = acpi_get_handle(child);
2160 if (state < ACPI_STATE_D0 || state > ACPI_D_STATES_MAX)
2161 return (EINVAL);
2162 if (h == NULL)
2163 return (0);
2164
2165 /* Ignore errors if the power methods aren't present. */
2166 status = acpi_pwr_switch_consumer(h, state);
2167 if (ACPI_SUCCESS(status)) {
2168 if (bootverbose)
2169 device_printf(child, "set ACPI power state %s on %s\n",
2170 acpi_d_state_to_str(state), acpi_name(h));
2171 } else if (status != AE_NOT_FOUND)
2172 device_printf(child,
2173 "failed to set ACPI power state %s on %s: %s\n",
2174 acpi_d_state_to_str(state), acpi_name(h),
2175 AcpiFormatException(status));
2176
2177 return (0);
2178 }
2179
2180 static int
acpi_isa_pnp_probe(device_t bus,device_t child,struct isa_pnp_id * ids)2181 acpi_isa_pnp_probe(device_t bus, device_t child, struct isa_pnp_id *ids)
2182 {
2183 int result, cid_count, i;
2184 uint32_t lid, cids[8];
2185
2186 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
2187
2188 /*
2189 * ISA-style drivers attached to ACPI may persist and
2190 * probe manually if we return ENOENT. We never want
2191 * that to happen, so don't ever return it.
2192 */
2193 result = ENXIO;
2194
2195 /* Scan the supplied IDs for a match */
2196 lid = acpi_isa_get_logicalid(child);
2197 cid_count = acpi_isa_get_compatid(child, cids, 8);
2198 while (ids && ids->ip_id) {
2199 if (lid == ids->ip_id) {
2200 result = 0;
2201 goto out;
2202 }
2203 for (i = 0; i < cid_count; i++) {
2204 if (cids[i] == ids->ip_id) {
2205 result = 0;
2206 goto out;
2207 }
2208 }
2209 ids++;
2210 }
2211
2212 out:
2213 if (result == 0 && ids->ip_desc)
2214 device_set_desc(child, ids->ip_desc);
2215
2216 return_VALUE (result);
2217 }
2218
2219 /*
2220 * Look for a MCFG table. If it is present, use the settings for
2221 * domain (segment) 0 to setup PCI config space access via the memory
2222 * map.
2223 *
2224 * On non-x86 architectures (arm64 for now), this will be done from the
2225 * PCI host bridge driver.
2226 */
2227 static void
acpi_enable_pcie(void)2228 acpi_enable_pcie(void)
2229 {
2230 #if defined(__i386__) || defined(__amd64__)
2231 ACPI_TABLE_HEADER *hdr;
2232 ACPI_MCFG_ALLOCATION *alloc, *end;
2233 ACPI_STATUS status;
2234
2235 status = AcpiGetTable(ACPI_SIG_MCFG, 1, &hdr);
2236 if (ACPI_FAILURE(status))
2237 return;
2238
2239 end = (ACPI_MCFG_ALLOCATION *)((char *)hdr + hdr->Length);
2240 alloc = (ACPI_MCFG_ALLOCATION *)((ACPI_TABLE_MCFG *)hdr + 1);
2241 while (alloc < end) {
2242 pcie_cfgregopen(alloc->Address, alloc->PciSegment,
2243 alloc->StartBusNumber, alloc->EndBusNumber);
2244 alloc++;
2245 }
2246 #endif
2247 }
2248
2249 static void
acpi_platform_osc(device_t dev)2250 acpi_platform_osc(device_t dev)
2251 {
2252 ACPI_HANDLE sb_handle;
2253 ACPI_STATUS status;
2254 uint32_t cap_set[2];
2255
2256 /* 0811B06E-4A27-44F9-8D60-3CBBC22E7B48 */
2257 static uint8_t acpi_platform_uuid[ACPI_UUID_LENGTH] = {
2258 0x6e, 0xb0, 0x11, 0x08, 0x27, 0x4a, 0xf9, 0x44,
2259 0x8d, 0x60, 0x3c, 0xbb, 0xc2, 0x2e, 0x7b, 0x48
2260 };
2261
2262 if (ACPI_FAILURE(AcpiGetHandle(ACPI_ROOT_OBJECT, "\\_SB_", &sb_handle)))
2263 return;
2264
2265 cap_set[1] = 0x10; /* APEI Support */
2266 status = acpi_EvaluateOSC(sb_handle, acpi_platform_uuid, 1,
2267 nitems(cap_set), cap_set, cap_set, false);
2268 if (ACPI_FAILURE(status)) {
2269 if (status == AE_NOT_FOUND)
2270 return;
2271 device_printf(dev, "_OSC failed: %s\n",
2272 AcpiFormatException(status));
2273 return;
2274 }
2275 }
2276
2277 /*
2278 * Scan all of the ACPI namespace and attach child devices.
2279 *
2280 * We should only expect to find devices in the \_PR, \_TZ, \_SI, and
2281 * \_SB scopes, and \_PR and \_TZ became obsolete in the ACPI 2.0 spec.
2282 * However, in violation of the spec, some systems place their PCI link
2283 * devices in \, so we have to walk the whole namespace. We check the
2284 * type of namespace nodes, so this should be ok.
2285 */
2286 static void
acpi_probe_children(device_t bus)2287 acpi_probe_children(device_t bus)
2288 {
2289
2290 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
2291
2292 /*
2293 * Scan the namespace and insert placeholders for all the devices that
2294 * we find. We also probe/attach any early devices.
2295 *
2296 * Note that we use AcpiWalkNamespace rather than AcpiGetDevices because
2297 * we want to create nodes for all devices, not just those that are
2298 * currently present. (This assumes that we don't want to create/remove
2299 * devices as they appear, which might be smarter.)
2300 */
2301 ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "namespace scan\n"));
2302 AcpiWalkNamespace(ACPI_TYPE_ANY, ACPI_ROOT_OBJECT, 100, acpi_probe_child,
2303 NULL, bus, NULL);
2304
2305 /* Pre-allocate resources for our rman from any sysresource devices. */
2306 acpi_sysres_alloc(bus);
2307
2308 /* Create any static children by calling device identify methods. */
2309 ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "device identify routines\n"));
2310 bus_identify_children(bus);
2311
2312 /* Probe/attach all children, created statically and from the namespace. */
2313 ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "acpi bus_attach_children\n"));
2314 bus_attach_children(bus);
2315
2316 /*
2317 * Reserve resources allocated to children but not yet allocated
2318 * by a driver.
2319 */
2320 acpi_reserve_resources(bus);
2321
2322 /* Attach wake sysctls. */
2323 acpi_wake_sysctl_walk(bus);
2324
2325 ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "done attaching children\n"));
2326 return_VOID;
2327 }
2328
2329 /*
2330 * Determine the probe order for a given device.
2331 */
2332 static void
acpi_probe_order(ACPI_HANDLE handle,int * order)2333 acpi_probe_order(ACPI_HANDLE handle, int *order)
2334 {
2335 ACPI_OBJECT_TYPE type;
2336
2337 /*
2338 * 0. CPUs
2339 * 1. I/O port and memory system resource holders
2340 * 2. Clocks and timers (to handle early accesses)
2341 * 3. Embedded controllers (to handle early accesses)
2342 * 4. PCI Link Devices
2343 */
2344 AcpiGetType(handle, &type);
2345 if (type == ACPI_TYPE_PROCESSOR)
2346 *order = 0;
2347 else if (acpi_MatchHid(handle, "PNP0C01") ||
2348 acpi_MatchHid(handle, "PNP0C02"))
2349 *order = 1;
2350 else if (acpi_MatchHid(handle, "PNP0100") ||
2351 acpi_MatchHid(handle, "PNP0103") ||
2352 acpi_MatchHid(handle, "PNP0B00"))
2353 *order = 2;
2354 else if (acpi_MatchHid(handle, "PNP0C09"))
2355 *order = 3;
2356 else if (acpi_MatchHid(handle, "PNP0C0F"))
2357 *order = 4;
2358 }
2359
2360 /*
2361 * Evaluate a child device and determine whether we might attach a device to
2362 * it.
2363 */
2364 static ACPI_STATUS
acpi_probe_child(ACPI_HANDLE handle,UINT32 level,void * context,void ** status)2365 acpi_probe_child(ACPI_HANDLE handle, UINT32 level, void *context, void **status)
2366 {
2367 ACPI_DEVICE_INFO *devinfo;
2368 struct acpi_device *ad;
2369 struct acpi_prw_data prw;
2370 ACPI_OBJECT_TYPE type;
2371 ACPI_HANDLE h;
2372 device_t bus, child;
2373 char *handle_str;
2374 int d, order;
2375
2376 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
2377
2378 if (acpi_disabled("children"))
2379 return_ACPI_STATUS (AE_OK);
2380
2381 /* Skip this device if we think we'll have trouble with it. */
2382 if (acpi_avoid(handle))
2383 return_ACPI_STATUS (AE_OK);
2384
2385 bus = (device_t)context;
2386 if (ACPI_SUCCESS(AcpiGetType(handle, &type))) {
2387 handle_str = acpi_name(handle);
2388 switch (type) {
2389 case ACPI_TYPE_DEVICE:
2390 /*
2391 * Since we scan from \, be sure to skip system scope objects.
2392 * \_SB_ and \_TZ_ are defined in ACPICA as devices to work around
2393 * BIOS bugs. For example, \_SB_ is to allow \_SB_._INI to be run
2394 * during the initialization and \_TZ_ is to support Notify() on it.
2395 */
2396 if (strcmp(handle_str, "\\_SB_") == 0 ||
2397 strcmp(handle_str, "\\_TZ_") == 0)
2398 break;
2399 if (acpi_parse_prw(handle, &prw) == 0)
2400 AcpiSetupGpeForWake(handle, prw.gpe_handle, prw.gpe_bit);
2401
2402 /*
2403 * Ignore devices that do not have a _HID or _CID. They should
2404 * be discovered by other buses (e.g. the PCI bus driver).
2405 */
2406 if (!acpi_has_hid(handle))
2407 break;
2408 /* FALLTHROUGH */
2409 case ACPI_TYPE_PROCESSOR:
2410 case ACPI_TYPE_THERMAL:
2411 case ACPI_TYPE_POWER:
2412 /*
2413 * Create a placeholder device for this node. Sort the
2414 * placeholder so that the probe/attach passes will run
2415 * breadth-first. Orders less than ACPI_DEV_BASE_ORDER
2416 * are reserved for special objects (i.e., system
2417 * resources).
2418 */
2419 ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "scanning '%s'\n", handle_str));
2420 order = level * 10 + ACPI_DEV_BASE_ORDER;
2421 acpi_probe_order(handle, &order);
2422 child = BUS_ADD_CHILD(bus, order, NULL, DEVICE_UNIT_ANY);
2423 if (child == NULL)
2424 break;
2425
2426 /* Associate the handle with the device_t and vice versa. */
2427 acpi_set_handle(child, handle);
2428 AcpiAttachData(handle, acpi_fake_objhandler, child);
2429
2430 /*
2431 * Check that the device is present. If it's not present,
2432 * leave it disabled (so that we have a device_t attached to
2433 * the handle, but we don't probe it).
2434 *
2435 * XXX PCI link devices sometimes report "present" but not
2436 * "functional" (i.e. if disabled). Go ahead and probe them
2437 * anyway since we may enable them later.
2438 */
2439 if (type == ACPI_TYPE_DEVICE && !acpi_DeviceIsPresent(child)) {
2440 /* Never disable PCI link devices. */
2441 if (acpi_MatchHid(handle, "PNP0C0F"))
2442 break;
2443
2444 /*
2445 * RTC Device should be enabled for CMOS register space
2446 * unless FADT indicate it is not present.
2447 * (checked in RTC probe routine.)
2448 */
2449 if (acpi_MatchHid(handle, "PNP0B00"))
2450 break;
2451
2452 /*
2453 * Docking stations should remain enabled since the system
2454 * may be undocked at boot.
2455 */
2456 if (ACPI_SUCCESS(AcpiGetHandle(handle, "_DCK", &h)))
2457 break;
2458
2459 device_disable(child);
2460 break;
2461 }
2462
2463 /*
2464 * Get the device's resource settings and attach them.
2465 * Note that if the device has _PRS but no _CRS, we need
2466 * to decide when it's appropriate to try to configure the
2467 * device. Ignore the return value here; it's OK for the
2468 * device not to have any resources.
2469 */
2470 acpi_parse_resources(child, handle, &acpi_res_parse_set, NULL);
2471
2472 ad = device_get_ivars(child);
2473 ad->ad_cls_class = 0xffffff;
2474 if (ACPI_SUCCESS(AcpiGetObjectInfo(handle, &devinfo))) {
2475 if ((devinfo->Valid & ACPI_VALID_CLS) != 0 &&
2476 devinfo->ClassCode.Length >= ACPI_PCICLS_STRING_SIZE) {
2477 ad->ad_cls_class = strtoul(devinfo->ClassCode.String,
2478 NULL, 16);
2479 }
2480 AcpiOsFree(devinfo);
2481 }
2482
2483 d = acpi_pxm_parse(child);
2484 if (d >= 0)
2485 ad->ad_domain = d;
2486 break;
2487 }
2488 }
2489
2490 return_ACPI_STATUS (AE_OK);
2491 }
2492
2493 /*
2494 * AcpiAttachData() requires an object handler but never uses it. This is a
2495 * placeholder object handler so we can store a device_t in an ACPI_HANDLE.
2496 */
2497 void
acpi_fake_objhandler(ACPI_HANDLE h,void * data)2498 acpi_fake_objhandler(ACPI_HANDLE h, void *data)
2499 {
2500 }
2501
2502 static void
acpi_shutdown_final(void * arg,int howto)2503 acpi_shutdown_final(void *arg, int howto)
2504 {
2505 struct acpi_softc *sc = (struct acpi_softc *)arg;
2506 register_t intr;
2507 ACPI_STATUS status;
2508
2509 /*
2510 * XXX Shutdown code should only run on the BSP (cpuid 0).
2511 * Some chipsets do not power off the system correctly if called from
2512 * an AP.
2513 */
2514 if ((howto & RB_POWEROFF) != 0) {
2515 status = AcpiEnterSleepStatePrep(ACPI_STATE_S5);
2516 if (ACPI_FAILURE(status)) {
2517 device_printf(sc->acpi_dev, "AcpiEnterSleepStatePrep failed - %s\n",
2518 AcpiFormatException(status));
2519 return;
2520 }
2521 device_printf(sc->acpi_dev, "Powering system off\n");
2522 intr = intr_disable();
2523 status = AcpiEnterSleepState(ACPI_STATE_S5);
2524 if (ACPI_FAILURE(status)) {
2525 intr_restore(intr);
2526 device_printf(sc->acpi_dev, "power-off failed - %s\n",
2527 AcpiFormatException(status));
2528 } else {
2529 DELAY(1000000);
2530 intr_restore(intr);
2531 device_printf(sc->acpi_dev, "power-off failed - timeout\n");
2532 }
2533 } else if ((howto & RB_HALT) == 0 && sc->acpi_handle_reboot) {
2534 /* Reboot using the reset register. */
2535 status = AcpiReset();
2536 if (ACPI_SUCCESS(status)) {
2537 DELAY(1000000);
2538 device_printf(sc->acpi_dev, "reset failed - timeout\n");
2539 } else if (status != AE_NOT_EXIST)
2540 device_printf(sc->acpi_dev, "reset failed - %s\n",
2541 AcpiFormatException(status));
2542 } else if (sc->acpi_do_disable && !KERNEL_PANICKED()) {
2543 /*
2544 * Only disable ACPI if the user requested. On some systems, writing
2545 * the disable value to SMI_CMD hangs the system.
2546 */
2547 device_printf(sc->acpi_dev, "Shutting down\n");
2548 AcpiTerminate();
2549 }
2550 }
2551
2552 static void
acpi_enable_fixed_events(struct acpi_softc * sc)2553 acpi_enable_fixed_events(struct acpi_softc *sc)
2554 {
2555 static int first_time = 1;
2556
2557 /* Enable and clear fixed events and install handlers. */
2558 if ((AcpiGbl_FADT.Flags & ACPI_FADT_POWER_BUTTON) == 0) {
2559 AcpiClearEvent(ACPI_EVENT_POWER_BUTTON);
2560 AcpiInstallFixedEventHandler(ACPI_EVENT_POWER_BUTTON,
2561 acpi_event_power_button_sleep, sc);
2562 if (first_time)
2563 device_printf(sc->acpi_dev, "Power Button (fixed)\n");
2564 }
2565 if ((AcpiGbl_FADT.Flags & ACPI_FADT_SLEEP_BUTTON) == 0) {
2566 AcpiClearEvent(ACPI_EVENT_SLEEP_BUTTON);
2567 AcpiInstallFixedEventHandler(ACPI_EVENT_SLEEP_BUTTON,
2568 acpi_event_sleep_button_sleep, sc);
2569 if (first_time)
2570 device_printf(sc->acpi_dev, "Sleep Button (fixed)\n");
2571 }
2572
2573 first_time = 0;
2574 }
2575
2576 /*
2577 * Returns true if the device is actually present and should
2578 * be attached to. This requires the present, enabled, UI-visible
2579 * and diagnostics-passed bits to be set.
2580 */
2581 BOOLEAN
acpi_DeviceIsPresent(device_t dev)2582 acpi_DeviceIsPresent(device_t dev)
2583 {
2584 ACPI_HANDLE h;
2585 UINT32 s;
2586 ACPI_STATUS status;
2587
2588 h = acpi_get_handle(dev);
2589 if (h == NULL)
2590 return (FALSE);
2591
2592 #ifdef ACPI_EARLY_EPYC_WAR
2593 /*
2594 * Certain Treadripper boards always returns 0 for FreeBSD because it
2595 * only returns non-zero for the OS string "Windows 2015". Otherwise it
2596 * will return zero. Force them to always be treated as present.
2597 * Beata versions were worse: they always returned 0.
2598 */
2599 if (acpi_MatchHid(h, "AMDI0020") || acpi_MatchHid(h, "AMDI0010"))
2600 return (TRUE);
2601 #endif
2602
2603 status = acpi_GetInteger(h, "_STA", &s);
2604
2605 /*
2606 * If no _STA method or if it failed, then assume that
2607 * the device is present.
2608 */
2609 if (ACPI_FAILURE(status))
2610 return (TRUE);
2611
2612 return (ACPI_DEVICE_PRESENT(s) ? TRUE : FALSE);
2613 }
2614
2615 /*
2616 * Returns true if the battery is actually present and inserted.
2617 */
2618 BOOLEAN
acpi_BatteryIsPresent(device_t dev)2619 acpi_BatteryIsPresent(device_t dev)
2620 {
2621 ACPI_HANDLE h;
2622 UINT32 s;
2623 ACPI_STATUS status;
2624
2625 h = acpi_get_handle(dev);
2626 if (h == NULL)
2627 return (FALSE);
2628 status = acpi_GetInteger(h, "_STA", &s);
2629
2630 /*
2631 * If no _STA method or if it failed, then assume that
2632 * the device is present.
2633 */
2634 if (ACPI_FAILURE(status))
2635 return (TRUE);
2636
2637 return (ACPI_BATTERY_PRESENT(s) ? TRUE : FALSE);
2638 }
2639
2640 /*
2641 * Returns true if a device has at least one valid device ID.
2642 */
2643 BOOLEAN
acpi_has_hid(ACPI_HANDLE h)2644 acpi_has_hid(ACPI_HANDLE h)
2645 {
2646 ACPI_DEVICE_INFO *devinfo;
2647 BOOLEAN ret;
2648
2649 if (h == NULL ||
2650 ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo)))
2651 return (FALSE);
2652
2653 ret = FALSE;
2654 if ((devinfo->Valid & ACPI_VALID_HID) != 0)
2655 ret = TRUE;
2656 else if ((devinfo->Valid & ACPI_VALID_CID) != 0)
2657 if (devinfo->CompatibleIdList.Count > 0)
2658 ret = TRUE;
2659
2660 AcpiOsFree(devinfo);
2661 return (ret);
2662 }
2663
2664 /*
2665 * Match a HID string against a handle
2666 * returns ACPI_MATCHHID_HID if _HID match
2667 * ACPI_MATCHHID_CID if _CID match and not _HID match.
2668 * ACPI_MATCHHID_NOMATCH=0 if no match.
2669 */
2670 int
acpi_MatchHid(ACPI_HANDLE h,const char * hid)2671 acpi_MatchHid(ACPI_HANDLE h, const char *hid)
2672 {
2673 ACPI_DEVICE_INFO *devinfo;
2674 BOOLEAN ret;
2675 int i;
2676
2677 if (hid == NULL || h == NULL ||
2678 ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo)))
2679 return (ACPI_MATCHHID_NOMATCH);
2680
2681 ret = ACPI_MATCHHID_NOMATCH;
2682 if ((devinfo->Valid & ACPI_VALID_HID) != 0 &&
2683 strcmp(hid, devinfo->HardwareId.String) == 0)
2684 ret = ACPI_MATCHHID_HID;
2685 else if ((devinfo->Valid & ACPI_VALID_CID) != 0)
2686 for (i = 0; i < devinfo->CompatibleIdList.Count; i++) {
2687 if (strcmp(hid, devinfo->CompatibleIdList.Ids[i].String) == 0) {
2688 ret = ACPI_MATCHHID_CID;
2689 break;
2690 }
2691 }
2692
2693 AcpiOsFree(devinfo);
2694 return (ret);
2695 }
2696
2697 /*
2698 * Return the handle of a named object within our scope, ie. that of (parent)
2699 * or one if its parents.
2700 */
2701 ACPI_STATUS
acpi_GetHandleInScope(ACPI_HANDLE parent,char * path,ACPI_HANDLE * result)2702 acpi_GetHandleInScope(ACPI_HANDLE parent, char *path, ACPI_HANDLE *result)
2703 {
2704 ACPI_HANDLE r;
2705 ACPI_STATUS status;
2706
2707 /* Walk back up the tree to the root */
2708 for (;;) {
2709 status = AcpiGetHandle(parent, path, &r);
2710 if (ACPI_SUCCESS(status)) {
2711 *result = r;
2712 return (AE_OK);
2713 }
2714 /* XXX Return error here? */
2715 if (status != AE_NOT_FOUND)
2716 return (AE_OK);
2717 if (ACPI_FAILURE(AcpiGetParent(parent, &r)))
2718 return (AE_NOT_FOUND);
2719 parent = r;
2720 }
2721 }
2722
2723 ACPI_STATUS
acpi_GetProperty(device_t dev,ACPI_STRING propname,const ACPI_OBJECT ** value)2724 acpi_GetProperty(device_t dev, ACPI_STRING propname,
2725 const ACPI_OBJECT **value)
2726 {
2727 device_t bus = device_get_parent(dev);
2728
2729 return (ACPI_GET_PROPERTY(bus, dev, propname, value));
2730 }
2731
2732 /*
2733 * Allocate a buffer with a preset data size.
2734 */
2735 ACPI_BUFFER *
acpi_AllocBuffer(int size)2736 acpi_AllocBuffer(int size)
2737 {
2738 ACPI_BUFFER *buf;
2739
2740 if ((buf = malloc(size + sizeof(*buf), M_ACPIDEV, M_NOWAIT)) == NULL)
2741 return (NULL);
2742 buf->Length = size;
2743 buf->Pointer = (void *)(buf + 1);
2744 return (buf);
2745 }
2746
2747 ACPI_STATUS
acpi_SetInteger(ACPI_HANDLE handle,char * path,UINT32 number)2748 acpi_SetInteger(ACPI_HANDLE handle, char *path, UINT32 number)
2749 {
2750 ACPI_OBJECT arg1;
2751 ACPI_OBJECT_LIST args;
2752
2753 arg1.Type = ACPI_TYPE_INTEGER;
2754 arg1.Integer.Value = number;
2755 args.Count = 1;
2756 args.Pointer = &arg1;
2757
2758 return (AcpiEvaluateObject(handle, path, &args, NULL));
2759 }
2760
2761 /*
2762 * Evaluate a path that should return an integer.
2763 */
2764 ACPI_STATUS
acpi_GetInteger(ACPI_HANDLE handle,char * path,UINT32 * number)2765 acpi_GetInteger(ACPI_HANDLE handle, char *path, UINT32 *number)
2766 {
2767 ACPI_STATUS status;
2768 ACPI_BUFFER buf;
2769 ACPI_OBJECT param;
2770
2771 if (handle == NULL)
2772 handle = ACPI_ROOT_OBJECT;
2773
2774 /*
2775 * Assume that what we've been pointed at is an Integer object, or
2776 * a method that will return an Integer.
2777 */
2778 buf.Pointer = ¶m;
2779 buf.Length = sizeof(param);
2780 status = AcpiEvaluateObject(handle, path, NULL, &buf);
2781 if (ACPI_SUCCESS(status)) {
2782 if (param.Type == ACPI_TYPE_INTEGER)
2783 *number = param.Integer.Value;
2784 else
2785 status = AE_TYPE;
2786 }
2787
2788 /*
2789 * In some applications, a method that's expected to return an Integer
2790 * may instead return a Buffer (probably to simplify some internal
2791 * arithmetic). We'll try to fetch whatever it is, and if it's a Buffer,
2792 * convert it into an Integer as best we can.
2793 *
2794 * This is a hack.
2795 */
2796 if (status == AE_BUFFER_OVERFLOW) {
2797 if ((buf.Pointer = AcpiOsAllocate(buf.Length)) == NULL) {
2798 status = AE_NO_MEMORY;
2799 } else {
2800 status = AcpiEvaluateObject(handle, path, NULL, &buf);
2801 if (ACPI_SUCCESS(status))
2802 status = acpi_ConvertBufferToInteger(&buf, number);
2803 AcpiOsFree(buf.Pointer);
2804 }
2805 }
2806 return (status);
2807 }
2808
2809 ACPI_STATUS
acpi_ConvertBufferToInteger(ACPI_BUFFER * bufp,UINT32 * number)2810 acpi_ConvertBufferToInteger(ACPI_BUFFER *bufp, UINT32 *number)
2811 {
2812 ACPI_OBJECT *p;
2813 UINT8 *val;
2814 int i;
2815
2816 p = (ACPI_OBJECT *)bufp->Pointer;
2817 if (p->Type == ACPI_TYPE_INTEGER) {
2818 *number = p->Integer.Value;
2819 return (AE_OK);
2820 }
2821 if (p->Type != ACPI_TYPE_BUFFER)
2822 return (AE_TYPE);
2823 if (p->Buffer.Length > sizeof(int))
2824 return (AE_BAD_DATA);
2825
2826 *number = 0;
2827 val = p->Buffer.Pointer;
2828 for (i = 0; i < p->Buffer.Length; i++)
2829 *number += val[i] << (i * 8);
2830 return (AE_OK);
2831 }
2832
2833 /*
2834 * Iterate over the elements of an a package object, calling the supplied
2835 * function for each element.
2836 *
2837 * XXX possible enhancement might be to abort traversal on error.
2838 */
2839 ACPI_STATUS
acpi_ForeachPackageObject(ACPI_OBJECT * pkg,void (* func)(ACPI_OBJECT * comp,void * arg),void * arg)2840 acpi_ForeachPackageObject(ACPI_OBJECT *pkg,
2841 void (*func)(ACPI_OBJECT *comp, void *arg), void *arg)
2842 {
2843 ACPI_OBJECT *comp;
2844 int i;
2845
2846 if (pkg == NULL || pkg->Type != ACPI_TYPE_PACKAGE)
2847 return (AE_BAD_PARAMETER);
2848
2849 /* Iterate over components */
2850 i = 0;
2851 comp = pkg->Package.Elements;
2852 for (; i < pkg->Package.Count; i++, comp++)
2853 func(comp, arg);
2854
2855 return (AE_OK);
2856 }
2857
2858 /*
2859 * Find the (index)th resource object in a set.
2860 */
2861 ACPI_STATUS
acpi_FindIndexedResource(ACPI_BUFFER * buf,int index,ACPI_RESOURCE ** resp)2862 acpi_FindIndexedResource(ACPI_BUFFER *buf, int index, ACPI_RESOURCE **resp)
2863 {
2864 ACPI_RESOURCE *rp;
2865 int i;
2866
2867 rp = (ACPI_RESOURCE *)buf->Pointer;
2868 i = index;
2869 while (i-- > 0) {
2870 /* Range check */
2871 if (rp > (ACPI_RESOURCE *)((u_int8_t *)buf->Pointer + buf->Length))
2872 return (AE_BAD_PARAMETER);
2873
2874 /* Check for terminator */
2875 if (rp->Type == ACPI_RESOURCE_TYPE_END_TAG || rp->Length == 0)
2876 return (AE_NOT_FOUND);
2877 rp = ACPI_NEXT_RESOURCE(rp);
2878 }
2879 if (resp != NULL)
2880 *resp = rp;
2881
2882 return (AE_OK);
2883 }
2884
2885 /*
2886 * Append an ACPI_RESOURCE to an ACPI_BUFFER.
2887 *
2888 * Given a pointer to an ACPI_RESOURCE structure, expand the ACPI_BUFFER
2889 * provided to contain it. If the ACPI_BUFFER is empty, allocate a sensible
2890 * backing block. If the ACPI_RESOURCE is NULL, return an empty set of
2891 * resources.
2892 */
2893 #define ACPI_INITIAL_RESOURCE_BUFFER_SIZE 512
2894
2895 ACPI_STATUS
acpi_AppendBufferResource(ACPI_BUFFER * buf,ACPI_RESOURCE * res)2896 acpi_AppendBufferResource(ACPI_BUFFER *buf, ACPI_RESOURCE *res)
2897 {
2898 ACPI_RESOURCE *rp;
2899 void *newp;
2900
2901 /* Initialise the buffer if necessary. */
2902 if (buf->Pointer == NULL) {
2903 buf->Length = ACPI_INITIAL_RESOURCE_BUFFER_SIZE;
2904 if ((buf->Pointer = AcpiOsAllocate(buf->Length)) == NULL)
2905 return (AE_NO_MEMORY);
2906 rp = (ACPI_RESOURCE *)buf->Pointer;
2907 rp->Type = ACPI_RESOURCE_TYPE_END_TAG;
2908 rp->Length = ACPI_RS_SIZE_MIN;
2909 }
2910 if (res == NULL)
2911 return (AE_OK);
2912
2913 /*
2914 * Scan the current buffer looking for the terminator.
2915 * This will either find the terminator or hit the end
2916 * of the buffer and return an error.
2917 */
2918 rp = (ACPI_RESOURCE *)buf->Pointer;
2919 for (;;) {
2920 /* Range check, don't go outside the buffer */
2921 if (rp >= (ACPI_RESOURCE *)((u_int8_t *)buf->Pointer + buf->Length))
2922 return (AE_BAD_PARAMETER);
2923 if (rp->Type == ACPI_RESOURCE_TYPE_END_TAG || rp->Length == 0)
2924 break;
2925 rp = ACPI_NEXT_RESOURCE(rp);
2926 }
2927
2928 /*
2929 * Check the size of the buffer and expand if required.
2930 *
2931 * Required size is:
2932 * size of existing resources before terminator +
2933 * size of new resource and header +
2934 * size of terminator.
2935 *
2936 * Note that this loop should really only run once, unless
2937 * for some reason we are stuffing a *really* huge resource.
2938 */
2939 while ((((u_int8_t *)rp - (u_int8_t *)buf->Pointer) +
2940 res->Length + ACPI_RS_SIZE_NO_DATA +
2941 ACPI_RS_SIZE_MIN) >= buf->Length) {
2942 if ((newp = AcpiOsAllocate(buf->Length * 2)) == NULL)
2943 return (AE_NO_MEMORY);
2944 bcopy(buf->Pointer, newp, buf->Length);
2945 rp = (ACPI_RESOURCE *)((u_int8_t *)newp +
2946 ((u_int8_t *)rp - (u_int8_t *)buf->Pointer));
2947 AcpiOsFree(buf->Pointer);
2948 buf->Pointer = newp;
2949 buf->Length += buf->Length;
2950 }
2951
2952 /* Insert the new resource. */
2953 bcopy(res, rp, res->Length + ACPI_RS_SIZE_NO_DATA);
2954
2955 /* And add the terminator. */
2956 rp = ACPI_NEXT_RESOURCE(rp);
2957 rp->Type = ACPI_RESOURCE_TYPE_END_TAG;
2958 rp->Length = ACPI_RS_SIZE_MIN;
2959
2960 return (AE_OK);
2961 }
2962
2963 UINT64
acpi_DSMQuery(ACPI_HANDLE h,const uint8_t * uuid,int revision)2964 acpi_DSMQuery(ACPI_HANDLE h, const uint8_t *uuid, int revision)
2965 {
2966 /*
2967 * ACPI spec 9.1.1 defines this.
2968 *
2969 * "Arg2: Function Index Represents a specific function whose meaning is
2970 * specific to the UUID and Revision ID. Function indices should start
2971 * with 1. Function number zero is a query function (see the special
2972 * return code defined below)."
2973 */
2974 ACPI_BUFFER buf;
2975 ACPI_OBJECT *obj;
2976 UINT64 ret = 0;
2977 int i;
2978
2979 if (!ACPI_SUCCESS(acpi_EvaluateDSM(h, uuid, revision, 0, NULL, &buf))) {
2980 ACPI_INFO(("Failed to enumerate DSM functions\n"));
2981 return (0);
2982 }
2983
2984 obj = (ACPI_OBJECT *)buf.Pointer;
2985 KASSERT(obj, ("Object not allowed to be NULL\n"));
2986
2987 /*
2988 * From ACPI 6.2 spec 9.1.1:
2989 * If Function Index = 0, a Buffer containing a function index bitfield.
2990 * Otherwise, the return value and type depends on the UUID and revision
2991 * ID (see below).
2992 */
2993 switch (obj->Type) {
2994 case ACPI_TYPE_BUFFER:
2995 for (i = 0; i < MIN(obj->Buffer.Length, sizeof(ret)); i++)
2996 ret |= (((uint64_t)obj->Buffer.Pointer[i]) << (i * 8));
2997 break;
2998 case ACPI_TYPE_INTEGER:
2999 ACPI_BIOS_WARNING((AE_INFO,
3000 "Possibly buggy BIOS with ACPI_TYPE_INTEGER for function enumeration\n"));
3001 ret = obj->Integer.Value;
3002 break;
3003 default:
3004 ACPI_WARNING((AE_INFO, "Unexpected return type %u\n", obj->Type));
3005 };
3006
3007 AcpiOsFree(obj);
3008 return ret;
3009 }
3010
3011 /*
3012 * DSM may return multiple types depending on the function. It is therefore
3013 * unsafe to use the typed evaluation. It is highly recommended that the caller
3014 * check the type of the returned object.
3015 */
3016 ACPI_STATUS
acpi_EvaluateDSM(ACPI_HANDLE handle,const uint8_t * uuid,int revision,UINT64 function,ACPI_OBJECT * package,ACPI_BUFFER * out_buf)3017 acpi_EvaluateDSM(ACPI_HANDLE handle, const uint8_t *uuid, int revision,
3018 UINT64 function, ACPI_OBJECT *package, ACPI_BUFFER *out_buf)
3019 {
3020 return (acpi_EvaluateDSMTyped(handle, uuid, revision, function,
3021 package, out_buf, ACPI_TYPE_ANY));
3022 }
3023
3024 ACPI_STATUS
acpi_EvaluateDSMTyped(ACPI_HANDLE handle,const uint8_t * uuid,int revision,UINT64 function,ACPI_OBJECT * package,ACPI_BUFFER * out_buf,ACPI_OBJECT_TYPE type)3025 acpi_EvaluateDSMTyped(ACPI_HANDLE handle, const uint8_t *uuid, int revision,
3026 UINT64 function, ACPI_OBJECT *package, ACPI_BUFFER *out_buf,
3027 ACPI_OBJECT_TYPE type)
3028 {
3029 ACPI_OBJECT arg[4];
3030 ACPI_OBJECT_LIST arglist;
3031 ACPI_BUFFER buf;
3032 ACPI_STATUS status;
3033
3034 if (out_buf == NULL)
3035 return (AE_NO_MEMORY);
3036
3037 arg[0].Type = ACPI_TYPE_BUFFER;
3038 arg[0].Buffer.Length = ACPI_UUID_LENGTH;
3039 arg[0].Buffer.Pointer = __DECONST(uint8_t *, uuid);
3040 arg[1].Type = ACPI_TYPE_INTEGER;
3041 arg[1].Integer.Value = revision;
3042 arg[2].Type = ACPI_TYPE_INTEGER;
3043 arg[2].Integer.Value = function;
3044 if (package) {
3045 arg[3] = *package;
3046 } else {
3047 arg[3].Type = ACPI_TYPE_PACKAGE;
3048 arg[3].Package.Count = 0;
3049 arg[3].Package.Elements = NULL;
3050 }
3051
3052 arglist.Pointer = arg;
3053 arglist.Count = 4;
3054 buf.Pointer = NULL;
3055 buf.Length = ACPI_ALLOCATE_BUFFER;
3056 status = AcpiEvaluateObjectTyped(handle, "_DSM", &arglist, &buf, type);
3057 if (ACPI_FAILURE(status))
3058 return (status);
3059
3060 KASSERT(ACPI_SUCCESS(status), ("Unexpected status"));
3061
3062 *out_buf = buf;
3063 return (status);
3064 }
3065
3066 ACPI_STATUS
acpi_EvaluateOSC(ACPI_HANDLE handle,uint8_t * uuid,int revision,int count,uint32_t * caps_in,uint32_t * caps_out,bool query)3067 acpi_EvaluateOSC(ACPI_HANDLE handle, uint8_t *uuid, int revision, int count,
3068 uint32_t *caps_in, uint32_t *caps_out, bool query)
3069 {
3070 ACPI_OBJECT arg[4], *ret;
3071 ACPI_OBJECT_LIST arglist;
3072 ACPI_BUFFER buf;
3073 ACPI_STATUS status;
3074
3075 arglist.Pointer = arg;
3076 arglist.Count = 4;
3077 arg[0].Type = ACPI_TYPE_BUFFER;
3078 arg[0].Buffer.Length = ACPI_UUID_LENGTH;
3079 arg[0].Buffer.Pointer = uuid;
3080 arg[1].Type = ACPI_TYPE_INTEGER;
3081 arg[1].Integer.Value = revision;
3082 arg[2].Type = ACPI_TYPE_INTEGER;
3083 arg[2].Integer.Value = count;
3084 arg[3].Type = ACPI_TYPE_BUFFER;
3085 arg[3].Buffer.Length = count * sizeof(*caps_in);
3086 arg[3].Buffer.Pointer = (uint8_t *)caps_in;
3087 caps_in[0] = query ? 1 : 0;
3088 buf.Pointer = NULL;
3089 buf.Length = ACPI_ALLOCATE_BUFFER;
3090 status = AcpiEvaluateObjectTyped(handle, "_OSC", &arglist, &buf,
3091 ACPI_TYPE_BUFFER);
3092 if (ACPI_FAILURE(status))
3093 return (status);
3094 if (caps_out != NULL) {
3095 ret = buf.Pointer;
3096 if (ret->Buffer.Length != count * sizeof(*caps_out)) {
3097 AcpiOsFree(buf.Pointer);
3098 return (AE_BUFFER_OVERFLOW);
3099 }
3100 bcopy(ret->Buffer.Pointer, caps_out, ret->Buffer.Length);
3101 }
3102 AcpiOsFree(buf.Pointer);
3103 return (status);
3104 }
3105
3106 /*
3107 * Set interrupt model.
3108 */
3109 ACPI_STATUS
acpi_SetIntrModel(int model)3110 acpi_SetIntrModel(int model)
3111 {
3112
3113 return (acpi_SetInteger(ACPI_ROOT_OBJECT, "_PIC", model));
3114 }
3115
3116 /*
3117 * Walk subtables of a table and call a callback routine for each
3118 * subtable. The caller should provide the first subtable and a
3119 * pointer to the end of the table. This can be used to walk tables
3120 * such as MADT and SRAT that use subtable entries.
3121 */
3122 void
acpi_walk_subtables(void * first,void * end,acpi_subtable_handler * handler,void * arg)3123 acpi_walk_subtables(void *first, void *end, acpi_subtable_handler *handler,
3124 void *arg)
3125 {
3126 ACPI_SUBTABLE_HEADER *entry;
3127
3128 for (entry = first; (void *)entry < end; ) {
3129 /* Avoid an infinite loop if we hit a bogus entry. */
3130 if (entry->Length < sizeof(ACPI_SUBTABLE_HEADER))
3131 return;
3132
3133 handler(entry, arg);
3134 entry = ACPI_ADD_PTR(ACPI_SUBTABLE_HEADER, entry, entry->Length);
3135 }
3136 }
3137
3138 /*
3139 * DEPRECATED. This interface has serious deficiencies and will be
3140 * removed.
3141 *
3142 * Immediately enter the sleep state. In the old model, acpiconf(8) ran
3143 * rc.suspend and rc.resume so we don't have to notify devd(8) to do this.
3144 */
3145 ACPI_STATUS
acpi_SetSleepState(struct acpi_softc * sc,int state)3146 acpi_SetSleepState(struct acpi_softc *sc, int state)
3147 {
3148 static int once;
3149
3150 if (!once) {
3151 device_printf(sc->acpi_dev,
3152 "warning: acpi_SetSleepState() deprecated, need to update your software\n");
3153 once = 1;
3154 }
3155 return (acpi_EnterSleepState(sc, state));
3156 }
3157
3158 #if defined(__amd64__) || defined(__i386__)
3159 static void
acpi_sleep_force_task(void * context)3160 acpi_sleep_force_task(void *context)
3161 {
3162 struct acpi_softc *sc = (struct acpi_softc *)context;
3163
3164 if (ACPI_FAILURE(acpi_EnterSleepState(sc, sc->acpi_next_sstate)))
3165 device_printf(sc->acpi_dev, "force sleep state S%d failed\n",
3166 sc->acpi_next_sstate);
3167 }
3168
3169 static void
acpi_sleep_force(void * arg)3170 acpi_sleep_force(void *arg)
3171 {
3172 struct acpi_softc *sc = (struct acpi_softc *)arg;
3173
3174 device_printf(sc->acpi_dev,
3175 "suspend request timed out, forcing sleep now\n");
3176 /*
3177 * XXX Suspending from callout causes freezes in DEVICE_SUSPEND().
3178 * Suspend from acpi_task thread instead.
3179 */
3180 if (ACPI_FAILURE(AcpiOsExecute(OSL_NOTIFY_HANDLER,
3181 acpi_sleep_force_task, sc)))
3182 device_printf(sc->acpi_dev, "AcpiOsExecute() for sleeping failed\n");
3183 }
3184 #endif
3185
3186 /*
3187 * Request that the system enter the given suspend state. All /dev/apm
3188 * devices and devd(8) will be notified. Userland then has a chance to
3189 * save state and acknowledge the request. The system sleeps once all
3190 * acks are in.
3191 */
3192 int
acpi_ReqSleepState(struct acpi_softc * sc,int state)3193 acpi_ReqSleepState(struct acpi_softc *sc, int state)
3194 {
3195 #if defined(__amd64__) || defined(__i386__)
3196 struct apm_clone_data *clone;
3197 ACPI_STATUS status;
3198
3199 if (state < ACPI_STATE_S1 || state > ACPI_S_STATES_MAX)
3200 return (EINVAL);
3201 if (!acpi_sleep_states[state])
3202 return (EOPNOTSUPP);
3203
3204 /*
3205 * If a reboot/shutdown/suspend request is already in progress or
3206 * suspend is blocked due to an upcoming shutdown, just return.
3207 */
3208 if (rebooting || sc->acpi_next_sstate != 0 || suspend_blocked) {
3209 return (0);
3210 }
3211
3212 /* Wait until sleep is enabled. */
3213 while (sc->acpi_sleep_disabled) {
3214 AcpiOsSleep(1000);
3215 }
3216
3217 ACPI_LOCK(acpi);
3218
3219 sc->acpi_next_sstate = state;
3220
3221 /* S5 (soft-off) should be entered directly with no waiting. */
3222 if (state == ACPI_STATE_S5) {
3223 ACPI_UNLOCK(acpi);
3224 status = acpi_EnterSleepState(sc, state);
3225 return (ACPI_SUCCESS(status) ? 0 : ENXIO);
3226 }
3227
3228 /* Record the pending state and notify all apm devices. */
3229 STAILQ_FOREACH(clone, &sc->apm_cdevs, entries) {
3230 clone->notify_status = APM_EV_NONE;
3231 if ((clone->flags & ACPI_EVF_DEVD) == 0) {
3232 selwakeuppri(&clone->sel_read, PZERO);
3233 KNOTE_LOCKED(&clone->sel_read.si_note, 0);
3234 }
3235 }
3236
3237 /* If devd(8) is not running, immediately enter the sleep state. */
3238 if (!devctl_process_running()) {
3239 ACPI_UNLOCK(acpi);
3240 status = acpi_EnterSleepState(sc, state);
3241 return (ACPI_SUCCESS(status) ? 0 : ENXIO);
3242 }
3243
3244 /*
3245 * Set a timeout to fire if userland doesn't ack the suspend request
3246 * in time. This way we still eventually go to sleep if we were
3247 * overheating or running low on battery, even if userland is hung.
3248 * We cancel this timeout once all userland acks are in or the
3249 * suspend request is aborted.
3250 */
3251 callout_reset(&sc->susp_force_to, 10 * hz, acpi_sleep_force, sc);
3252 ACPI_UNLOCK(acpi);
3253
3254 /* Now notify devd(8) also. */
3255 acpi_UserNotify("Suspend", ACPI_ROOT_OBJECT, state);
3256
3257 return (0);
3258 #else
3259 /* This platform does not support acpi suspend/resume. */
3260 return (EOPNOTSUPP);
3261 #endif
3262 }
3263
3264 /*
3265 * Acknowledge (or reject) a pending sleep state. The caller has
3266 * prepared for suspend and is now ready for it to proceed. If the
3267 * error argument is non-zero, it indicates suspend should be cancelled
3268 * and gives an errno value describing why. Once all votes are in,
3269 * we suspend the system.
3270 */
3271 int
acpi_AckSleepState(struct apm_clone_data * clone,int error)3272 acpi_AckSleepState(struct apm_clone_data *clone, int error)
3273 {
3274 #if defined(__amd64__) || defined(__i386__)
3275 struct acpi_softc *sc;
3276 int ret, sleeping;
3277
3278 /* If no pending sleep state, return an error. */
3279 ACPI_LOCK(acpi);
3280 sc = clone->acpi_sc;
3281 if (sc->acpi_next_sstate == 0) {
3282 ACPI_UNLOCK(acpi);
3283 return (ENXIO);
3284 }
3285
3286 /* Caller wants to abort suspend process. */
3287 if (error) {
3288 sc->acpi_next_sstate = 0;
3289 callout_stop(&sc->susp_force_to);
3290 device_printf(sc->acpi_dev,
3291 "listener on %s cancelled the pending suspend\n",
3292 devtoname(clone->cdev));
3293 ACPI_UNLOCK(acpi);
3294 return (0);
3295 }
3296
3297 /*
3298 * Mark this device as acking the suspend request. Then, walk through
3299 * all devices, seeing if they agree yet. We only count devices that
3300 * are writable since read-only devices couldn't ack the request.
3301 */
3302 sleeping = TRUE;
3303 clone->notify_status = APM_EV_ACKED;
3304 STAILQ_FOREACH(clone, &sc->apm_cdevs, entries) {
3305 if ((clone->flags & ACPI_EVF_WRITE) != 0 &&
3306 clone->notify_status != APM_EV_ACKED) {
3307 sleeping = FALSE;
3308 break;
3309 }
3310 }
3311
3312 /* If all devices have voted "yes", we will suspend now. */
3313 if (sleeping)
3314 callout_stop(&sc->susp_force_to);
3315 ACPI_UNLOCK(acpi);
3316 ret = 0;
3317 if (sleeping) {
3318 if (ACPI_FAILURE(acpi_EnterSleepState(sc, sc->acpi_next_sstate)))
3319 ret = ENODEV;
3320 }
3321 return (ret);
3322 #else
3323 /* This platform does not support acpi suspend/resume. */
3324 return (EOPNOTSUPP);
3325 #endif
3326 }
3327
3328 static void
acpi_sleep_enable(void * arg)3329 acpi_sleep_enable(void *arg)
3330 {
3331 struct acpi_softc *sc = (struct acpi_softc *)arg;
3332
3333 ACPI_LOCK_ASSERT(acpi);
3334
3335 /* Reschedule if the system is not fully up and running. */
3336 if (!AcpiGbl_SystemAwakeAndRunning) {
3337 callout_schedule(&acpi_sleep_timer, hz * ACPI_MINIMUM_AWAKETIME);
3338 return;
3339 }
3340
3341 sc->acpi_sleep_disabled = FALSE;
3342 }
3343
3344 static ACPI_STATUS
acpi_sleep_disable(struct acpi_softc * sc)3345 acpi_sleep_disable(struct acpi_softc *sc)
3346 {
3347 ACPI_STATUS status;
3348
3349 /* Fail if the system is not fully up and running. */
3350 if (!AcpiGbl_SystemAwakeAndRunning)
3351 return (AE_ERROR);
3352
3353 ACPI_LOCK(acpi);
3354 status = sc->acpi_sleep_disabled ? AE_ERROR : AE_OK;
3355 sc->acpi_sleep_disabled = TRUE;
3356 ACPI_UNLOCK(acpi);
3357
3358 return (status);
3359 }
3360
3361 enum acpi_sleep_state {
3362 ACPI_SS_NONE,
3363 ACPI_SS_GPE_SET,
3364 ACPI_SS_DEV_SUSPEND,
3365 ACPI_SS_SLP_PREP,
3366 ACPI_SS_SLEPT,
3367 };
3368
3369 /*
3370 * Enter the desired system sleep state.
3371 *
3372 * Currently we support S1-S5 but S4 is only S4BIOS
3373 */
3374 static ACPI_STATUS
acpi_EnterSleepState(struct acpi_softc * sc,int state)3375 acpi_EnterSleepState(struct acpi_softc *sc, int state)
3376 {
3377 register_t intr;
3378 ACPI_STATUS status;
3379 ACPI_EVENT_STATUS power_button_status;
3380 enum acpi_sleep_state slp_state;
3381 int sleep_result;
3382
3383 ACPI_FUNCTION_TRACE_U32((char *)(uintptr_t)__func__, state);
3384
3385 if (state < ACPI_STATE_S1 || state > ACPI_S_STATES_MAX)
3386 return_ACPI_STATUS (AE_BAD_PARAMETER);
3387 if (!acpi_sleep_states[state]) {
3388 device_printf(sc->acpi_dev, "Sleep state S%d not supported by BIOS\n",
3389 state);
3390 return (AE_SUPPORT);
3391 }
3392
3393 /* Re-entry once we're suspending is not allowed. */
3394 status = acpi_sleep_disable(sc);
3395 if (ACPI_FAILURE(status)) {
3396 device_printf(sc->acpi_dev,
3397 "suspend request ignored (not ready yet)\n");
3398 return (status);
3399 }
3400
3401 if (state == ACPI_STATE_S5) {
3402 /*
3403 * Shut down cleanly and power off. This will call us back through the
3404 * shutdown handlers.
3405 */
3406 shutdown_nice(RB_POWEROFF);
3407 return_ACPI_STATUS (AE_OK);
3408 }
3409
3410 EVENTHANDLER_INVOKE(power_suspend_early);
3411 stop_all_proc();
3412 suspend_all_fs();
3413 EVENTHANDLER_INVOKE(power_suspend);
3414
3415 #ifdef EARLY_AP_STARTUP
3416 MPASS(mp_ncpus == 1 || smp_started);
3417 thread_lock(curthread);
3418 sched_bind(curthread, 0);
3419 thread_unlock(curthread);
3420 #else
3421 if (smp_started) {
3422 thread_lock(curthread);
3423 sched_bind(curthread, 0);
3424 thread_unlock(curthread);
3425 }
3426 #endif
3427
3428 /*
3429 * Be sure to hold Giant across DEVICE_SUSPEND/RESUME
3430 */
3431 bus_topo_lock();
3432
3433 slp_state = ACPI_SS_NONE;
3434
3435 sc->acpi_sstate = state;
3436
3437 /* Enable any GPEs as appropriate and requested by the user. */
3438 acpi_wake_prep_walk(state);
3439 slp_state = ACPI_SS_GPE_SET;
3440
3441 /*
3442 * Inform all devices that we are going to sleep. If at least one
3443 * device fails, DEVICE_SUSPEND() automatically resumes the tree.
3444 *
3445 * XXX Note that a better two-pass approach with a 'veto' pass
3446 * followed by a "real thing" pass would be better, but the current
3447 * bus interface does not provide for this.
3448 */
3449 if (DEVICE_SUSPEND(root_bus) != 0) {
3450 device_printf(sc->acpi_dev, "device_suspend failed\n");
3451 goto backout;
3452 }
3453 slp_state = ACPI_SS_DEV_SUSPEND;
3454
3455 status = AcpiEnterSleepStatePrep(state);
3456 if (ACPI_FAILURE(status)) {
3457 device_printf(sc->acpi_dev, "AcpiEnterSleepStatePrep failed - %s\n",
3458 AcpiFormatException(status));
3459 goto backout;
3460 }
3461 slp_state = ACPI_SS_SLP_PREP;
3462
3463 if (sc->acpi_sleep_delay > 0)
3464 DELAY(sc->acpi_sleep_delay * 1000000);
3465
3466 suspendclock();
3467 intr = intr_disable();
3468 if (state != ACPI_STATE_S1) {
3469 sleep_result = acpi_sleep_machdep(sc, state);
3470 acpi_wakeup_machdep(sc, state, sleep_result, 0);
3471
3472 /*
3473 * XXX According to ACPI specification SCI_EN bit should be restored
3474 * by ACPI platform (BIOS, firmware) to its pre-sleep state.
3475 * Unfortunately some BIOSes fail to do that and that leads to
3476 * unexpected and serious consequences during wake up like a system
3477 * getting stuck in SMI handlers.
3478 * This hack is picked up from Linux, which claims that it follows
3479 * Windows behavior.
3480 */
3481 if (sleep_result == 1 && state != ACPI_STATE_S4)
3482 AcpiWriteBitRegister(ACPI_BITREG_SCI_ENABLE, ACPI_ENABLE_EVENT);
3483
3484 if (sleep_result == 1 && state == ACPI_STATE_S3) {
3485 /*
3486 * Prevent mis-interpretation of the wakeup by power button
3487 * as a request for power off.
3488 * Ideally we should post an appropriate wakeup event,
3489 * perhaps using acpi_event_power_button_wake or alike.
3490 *
3491 * Clearing of power button status after wakeup is mandated
3492 * by ACPI specification in section "Fixed Power Button".
3493 *
3494 * XXX As of ACPICA 20121114 AcpiGetEventStatus provides
3495 * status as 0/1 corressponding to inactive/active despite
3496 * its type being ACPI_EVENT_STATUS. In other words,
3497 * we should not test for ACPI_EVENT_FLAG_SET for time being.
3498 */
3499 if (ACPI_SUCCESS(AcpiGetEventStatus(ACPI_EVENT_POWER_BUTTON,
3500 &power_button_status)) && power_button_status != 0) {
3501 AcpiClearEvent(ACPI_EVENT_POWER_BUTTON);
3502 device_printf(sc->acpi_dev,
3503 "cleared fixed power button status\n");
3504 }
3505 }
3506
3507 intr_restore(intr);
3508
3509 /* call acpi_wakeup_machdep() again with interrupt enabled */
3510 acpi_wakeup_machdep(sc, state, sleep_result, 1);
3511
3512 AcpiLeaveSleepStatePrep(state);
3513
3514 if (sleep_result == -1)
3515 goto backout;
3516
3517 /* Re-enable ACPI hardware on wakeup from sleep state 4. */
3518 if (state == ACPI_STATE_S4)
3519 AcpiEnable();
3520 } else {
3521 status = AcpiEnterSleepState(state);
3522 intr_restore(intr);
3523 AcpiLeaveSleepStatePrep(state);
3524 if (ACPI_FAILURE(status)) {
3525 device_printf(sc->acpi_dev, "AcpiEnterSleepState failed - %s\n",
3526 AcpiFormatException(status));
3527 goto backout;
3528 }
3529 }
3530 slp_state = ACPI_SS_SLEPT;
3531
3532 /*
3533 * Back out state according to how far along we got in the suspend
3534 * process. This handles both the error and success cases.
3535 */
3536 backout:
3537 if (slp_state >= ACPI_SS_SLP_PREP)
3538 resumeclock();
3539 if (slp_state >= ACPI_SS_GPE_SET) {
3540 acpi_wake_prep_walk(state);
3541 sc->acpi_sstate = ACPI_STATE_S0;
3542 }
3543 if (slp_state >= ACPI_SS_DEV_SUSPEND)
3544 DEVICE_RESUME(root_bus);
3545 if (slp_state >= ACPI_SS_SLP_PREP)
3546 AcpiLeaveSleepState(state);
3547 if (slp_state >= ACPI_SS_SLEPT) {
3548 #if defined(__i386__) || defined(__amd64__)
3549 /* NB: we are still using ACPI timecounter at this point. */
3550 resume_TSC();
3551 #endif
3552 acpi_resync_clock(sc);
3553 acpi_enable_fixed_events(sc);
3554 }
3555 sc->acpi_next_sstate = 0;
3556
3557 bus_topo_unlock();
3558
3559 #ifdef EARLY_AP_STARTUP
3560 thread_lock(curthread);
3561 sched_unbind(curthread);
3562 thread_unlock(curthread);
3563 #else
3564 if (smp_started) {
3565 thread_lock(curthread);
3566 sched_unbind(curthread);
3567 thread_unlock(curthread);
3568 }
3569 #endif
3570
3571 resume_all_fs();
3572 resume_all_proc();
3573
3574 EVENTHANDLER_INVOKE(power_resume);
3575
3576 /* Allow another sleep request after a while. */
3577 callout_schedule(&acpi_sleep_timer, hz * ACPI_MINIMUM_AWAKETIME);
3578
3579 /* Run /etc/rc.resume after we are back. */
3580 if (devctl_process_running())
3581 acpi_UserNotify("Resume", ACPI_ROOT_OBJECT, state);
3582
3583 return_ACPI_STATUS (status);
3584 }
3585
3586 static void
acpi_resync_clock(struct acpi_softc * sc)3587 acpi_resync_clock(struct acpi_softc *sc)
3588 {
3589
3590 /*
3591 * Warm up timecounter again and reset system clock.
3592 */
3593 (void)timecounter->tc_get_timecount(timecounter);
3594 inittodr(time_second + sc->acpi_sleep_delay);
3595 }
3596
3597 /* Enable or disable the device's wake GPE. */
3598 int
acpi_wake_set_enable(device_t dev,int enable)3599 acpi_wake_set_enable(device_t dev, int enable)
3600 {
3601 struct acpi_prw_data prw;
3602 ACPI_STATUS status;
3603 int flags;
3604
3605 /* Make sure the device supports waking the system and get the GPE. */
3606 if (acpi_parse_prw(acpi_get_handle(dev), &prw) != 0)
3607 return (ENXIO);
3608
3609 flags = acpi_get_flags(dev);
3610 if (enable) {
3611 status = AcpiSetGpeWakeMask(prw.gpe_handle, prw.gpe_bit,
3612 ACPI_GPE_ENABLE);
3613 if (ACPI_FAILURE(status)) {
3614 device_printf(dev, "enable wake failed\n");
3615 return (ENXIO);
3616 }
3617 acpi_set_flags(dev, flags | ACPI_FLAG_WAKE_ENABLED);
3618 } else {
3619 status = AcpiSetGpeWakeMask(prw.gpe_handle, prw.gpe_bit,
3620 ACPI_GPE_DISABLE);
3621 if (ACPI_FAILURE(status)) {
3622 device_printf(dev, "disable wake failed\n");
3623 return (ENXIO);
3624 }
3625 acpi_set_flags(dev, flags & ~ACPI_FLAG_WAKE_ENABLED);
3626 }
3627
3628 return (0);
3629 }
3630
3631 static int
acpi_wake_sleep_prep(ACPI_HANDLE handle,int sstate)3632 acpi_wake_sleep_prep(ACPI_HANDLE handle, int sstate)
3633 {
3634 struct acpi_prw_data prw;
3635 device_t dev;
3636
3637 /* Check that this is a wake-capable device and get its GPE. */
3638 if (acpi_parse_prw(handle, &prw) != 0)
3639 return (ENXIO);
3640 dev = acpi_get_device(handle);
3641
3642 /*
3643 * The destination sleep state must be less than (i.e., higher power)
3644 * or equal to the value specified by _PRW. If this GPE cannot be
3645 * enabled for the next sleep state, then disable it. If it can and
3646 * the user requested it be enabled, turn on any required power resources
3647 * and set _PSW.
3648 */
3649 if (sstate > prw.lowest_wake) {
3650 AcpiSetGpeWakeMask(prw.gpe_handle, prw.gpe_bit, ACPI_GPE_DISABLE);
3651 if (bootverbose)
3652 device_printf(dev, "wake_prep disabled wake for %s (S%d)\n",
3653 acpi_name(handle), sstate);
3654 } else if (dev && (acpi_get_flags(dev) & ACPI_FLAG_WAKE_ENABLED) != 0) {
3655 acpi_pwr_wake_enable(handle, 1);
3656 acpi_SetInteger(handle, "_PSW", 1);
3657 if (bootverbose)
3658 device_printf(dev, "wake_prep enabled for %s (S%d)\n",
3659 acpi_name(handle), sstate);
3660 }
3661
3662 return (0);
3663 }
3664
3665 static int
acpi_wake_run_prep(ACPI_HANDLE handle,int sstate)3666 acpi_wake_run_prep(ACPI_HANDLE handle, int sstate)
3667 {
3668 struct acpi_prw_data prw;
3669 device_t dev;
3670
3671 /*
3672 * Check that this is a wake-capable device and get its GPE. Return
3673 * now if the user didn't enable this device for wake.
3674 */
3675 if (acpi_parse_prw(handle, &prw) != 0)
3676 return (ENXIO);
3677 dev = acpi_get_device(handle);
3678 if (dev == NULL || (acpi_get_flags(dev) & ACPI_FLAG_WAKE_ENABLED) == 0)
3679 return (0);
3680
3681 /*
3682 * If this GPE couldn't be enabled for the previous sleep state, it was
3683 * disabled before going to sleep so re-enable it. If it was enabled,
3684 * clear _PSW and turn off any power resources it used.
3685 */
3686 if (sstate > prw.lowest_wake) {
3687 AcpiSetGpeWakeMask(prw.gpe_handle, prw.gpe_bit, ACPI_GPE_ENABLE);
3688 if (bootverbose)
3689 device_printf(dev, "run_prep re-enabled %s\n", acpi_name(handle));
3690 } else {
3691 acpi_SetInteger(handle, "_PSW", 0);
3692 acpi_pwr_wake_enable(handle, 0);
3693 if (bootverbose)
3694 device_printf(dev, "run_prep cleaned up for %s\n",
3695 acpi_name(handle));
3696 }
3697
3698 return (0);
3699 }
3700
3701 static ACPI_STATUS
acpi_wake_prep(ACPI_HANDLE handle,UINT32 level,void * context,void ** status)3702 acpi_wake_prep(ACPI_HANDLE handle, UINT32 level, void *context, void **status)
3703 {
3704 int sstate;
3705
3706 /* If suspending, run the sleep prep function, otherwise wake. */
3707 sstate = *(int *)context;
3708 if (AcpiGbl_SystemAwakeAndRunning)
3709 acpi_wake_sleep_prep(handle, sstate);
3710 else
3711 acpi_wake_run_prep(handle, sstate);
3712 return (AE_OK);
3713 }
3714
3715 /* Walk the tree rooted at acpi0 to prep devices for suspend/resume. */
3716 static int
acpi_wake_prep_walk(int sstate)3717 acpi_wake_prep_walk(int sstate)
3718 {
3719 ACPI_HANDLE sb_handle;
3720
3721 if (ACPI_SUCCESS(AcpiGetHandle(ACPI_ROOT_OBJECT, "\\_SB_", &sb_handle)))
3722 AcpiWalkNamespace(ACPI_TYPE_DEVICE, sb_handle, 100,
3723 acpi_wake_prep, NULL, &sstate, NULL);
3724 return (0);
3725 }
3726
3727 /* Walk the tree rooted at acpi0 to attach per-device wake sysctls. */
3728 static int
acpi_wake_sysctl_walk(device_t dev)3729 acpi_wake_sysctl_walk(device_t dev)
3730 {
3731 int error, i, numdevs;
3732 device_t *devlist;
3733 device_t child;
3734 ACPI_STATUS status;
3735
3736 error = device_get_children(dev, &devlist, &numdevs);
3737 if (error != 0 || numdevs == 0) {
3738 if (numdevs == 0)
3739 free(devlist, M_TEMP);
3740 return (error);
3741 }
3742 for (i = 0; i < numdevs; i++) {
3743 child = devlist[i];
3744 acpi_wake_sysctl_walk(child);
3745 if (!device_is_attached(child))
3746 continue;
3747 status = AcpiEvaluateObject(acpi_get_handle(child), "_PRW", NULL, NULL);
3748 if (ACPI_SUCCESS(status)) {
3749 SYSCTL_ADD_PROC(device_get_sysctl_ctx(child),
3750 SYSCTL_CHILDREN(device_get_sysctl_tree(child)), OID_AUTO,
3751 "wake", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, child, 0,
3752 acpi_wake_set_sysctl, "I", "Device set to wake the system");
3753 }
3754 }
3755 free(devlist, M_TEMP);
3756
3757 return (0);
3758 }
3759
3760 /* Enable or disable wake from userland. */
3761 static int
acpi_wake_set_sysctl(SYSCTL_HANDLER_ARGS)3762 acpi_wake_set_sysctl(SYSCTL_HANDLER_ARGS)
3763 {
3764 int enable, error;
3765 device_t dev;
3766
3767 dev = (device_t)arg1;
3768 enable = (acpi_get_flags(dev) & ACPI_FLAG_WAKE_ENABLED) ? 1 : 0;
3769
3770 error = sysctl_handle_int(oidp, &enable, 0, req);
3771 if (error != 0 || req->newptr == NULL)
3772 return (error);
3773 if (enable != 0 && enable != 1)
3774 return (EINVAL);
3775
3776 return (acpi_wake_set_enable(dev, enable));
3777 }
3778
3779 /* Parse a device's _PRW into a structure. */
3780 int
acpi_parse_prw(ACPI_HANDLE h,struct acpi_prw_data * prw)3781 acpi_parse_prw(ACPI_HANDLE h, struct acpi_prw_data *prw)
3782 {
3783 ACPI_STATUS status;
3784 ACPI_BUFFER prw_buffer;
3785 ACPI_OBJECT *res, *res2;
3786 int error, i, power_count;
3787
3788 if (h == NULL || prw == NULL)
3789 return (EINVAL);
3790
3791 /*
3792 * The _PRW object (7.2.9) is only required for devices that have the
3793 * ability to wake the system from a sleeping state.
3794 */
3795 error = EINVAL;
3796 prw_buffer.Pointer = NULL;
3797 prw_buffer.Length = ACPI_ALLOCATE_BUFFER;
3798 status = AcpiEvaluateObject(h, "_PRW", NULL, &prw_buffer);
3799 if (ACPI_FAILURE(status))
3800 return (ENOENT);
3801 res = (ACPI_OBJECT *)prw_buffer.Pointer;
3802 if (res == NULL)
3803 return (ENOENT);
3804 if (!ACPI_PKG_VALID(res, 2))
3805 goto out;
3806
3807 /*
3808 * Element 1 of the _PRW object:
3809 * The lowest power system sleeping state that can be entered while still
3810 * providing wake functionality. The sleeping state being entered must
3811 * be less than (i.e., higher power) or equal to this value.
3812 */
3813 if (acpi_PkgInt32(res, 1, &prw->lowest_wake) != 0)
3814 goto out;
3815
3816 /*
3817 * Element 0 of the _PRW object:
3818 */
3819 switch (res->Package.Elements[0].Type) {
3820 case ACPI_TYPE_INTEGER:
3821 /*
3822 * If the data type of this package element is numeric, then this
3823 * _PRW package element is the bit index in the GPEx_EN, in the
3824 * GPE blocks described in the FADT, of the enable bit that is
3825 * enabled for the wake event.
3826 */
3827 prw->gpe_handle = NULL;
3828 prw->gpe_bit = res->Package.Elements[0].Integer.Value;
3829 error = 0;
3830 break;
3831 case ACPI_TYPE_PACKAGE:
3832 /*
3833 * If the data type of this package element is a package, then this
3834 * _PRW package element is itself a package containing two
3835 * elements. The first is an object reference to the GPE Block
3836 * device that contains the GPE that will be triggered by the wake
3837 * event. The second element is numeric and it contains the bit
3838 * index in the GPEx_EN, in the GPE Block referenced by the
3839 * first element in the package, of the enable bit that is enabled for
3840 * the wake event.
3841 *
3842 * For example, if this field is a package then it is of the form:
3843 * Package() {\_SB.PCI0.ISA.GPE, 2}
3844 */
3845 res2 = &res->Package.Elements[0];
3846 if (!ACPI_PKG_VALID(res2, 2))
3847 goto out;
3848 prw->gpe_handle = acpi_GetReference(NULL, &res2->Package.Elements[0]);
3849 if (prw->gpe_handle == NULL)
3850 goto out;
3851 if (acpi_PkgInt32(res2, 1, &prw->gpe_bit) != 0)
3852 goto out;
3853 error = 0;
3854 break;
3855 default:
3856 goto out;
3857 }
3858
3859 /* Elements 2 to N of the _PRW object are power resources. */
3860 power_count = res->Package.Count - 2;
3861 if (power_count > ACPI_PRW_MAX_POWERRES) {
3862 printf("ACPI device %s has too many power resources\n", acpi_name(h));
3863 power_count = 0;
3864 }
3865 prw->power_res_count = power_count;
3866 for (i = 0; i < power_count; i++)
3867 prw->power_res[i] = res->Package.Elements[i];
3868
3869 out:
3870 if (prw_buffer.Pointer != NULL)
3871 AcpiOsFree(prw_buffer.Pointer);
3872 return (error);
3873 }
3874
3875 /*
3876 * ACPI Event Handlers
3877 */
3878
3879 /* System Event Handlers (registered by EVENTHANDLER_REGISTER) */
3880
3881 static void
acpi_system_eventhandler_sleep(void * arg,int state)3882 acpi_system_eventhandler_sleep(void *arg, int state)
3883 {
3884 struct acpi_softc *sc = (struct acpi_softc *)arg;
3885 int ret;
3886
3887 ACPI_FUNCTION_TRACE_U32((char *)(uintptr_t)__func__, state);
3888
3889 /* Check if button action is disabled or unknown. */
3890 if (state == ACPI_STATE_UNKNOWN)
3891 return;
3892
3893 /* Request that the system prepare to enter the given suspend state. */
3894 ret = acpi_ReqSleepState(sc, state);
3895 if (ret != 0)
3896 device_printf(sc->acpi_dev,
3897 "request to enter state S%d failed (err %d)\n", state, ret);
3898
3899 return_VOID;
3900 }
3901
3902 static void
acpi_system_eventhandler_wakeup(void * arg,int state)3903 acpi_system_eventhandler_wakeup(void *arg, int state)
3904 {
3905
3906 ACPI_FUNCTION_TRACE_U32((char *)(uintptr_t)__func__, state);
3907
3908 /* Currently, nothing to do for wakeup. */
3909
3910 return_VOID;
3911 }
3912
3913 /*
3914 * ACPICA Event Handlers (FixedEvent, also called from button notify handler)
3915 */
3916 static void
acpi_invoke_sleep_eventhandler(void * context)3917 acpi_invoke_sleep_eventhandler(void *context)
3918 {
3919
3920 EVENTHANDLER_INVOKE(acpi_sleep_event, *(int *)context);
3921 }
3922
3923 static void
acpi_invoke_wake_eventhandler(void * context)3924 acpi_invoke_wake_eventhandler(void *context)
3925 {
3926
3927 EVENTHANDLER_INVOKE(acpi_wakeup_event, *(int *)context);
3928 }
3929
3930 UINT32
acpi_event_power_button_sleep(void * context)3931 acpi_event_power_button_sleep(void *context)
3932 {
3933 #if defined(__amd64__) || defined(__i386__)
3934 struct acpi_softc *sc = (struct acpi_softc *)context;
3935 #else
3936 (void)context;
3937 #endif
3938
3939 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
3940
3941 #if defined(__amd64__) || defined(__i386__)
3942 if (ACPI_FAILURE(AcpiOsExecute(OSL_NOTIFY_HANDLER,
3943 acpi_invoke_sleep_eventhandler, &sc->acpi_power_button_sx)))
3944 return_VALUE (ACPI_INTERRUPT_NOT_HANDLED);
3945 #else
3946 shutdown_nice(RB_POWEROFF);
3947 #endif
3948
3949 return_VALUE (ACPI_INTERRUPT_HANDLED);
3950 }
3951
3952 UINT32
acpi_event_power_button_wake(void * context)3953 acpi_event_power_button_wake(void *context)
3954 {
3955 struct acpi_softc *sc = (struct acpi_softc *)context;
3956
3957 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
3958
3959 if (ACPI_FAILURE(AcpiOsExecute(OSL_NOTIFY_HANDLER,
3960 acpi_invoke_wake_eventhandler, &sc->acpi_power_button_sx)))
3961 return_VALUE (ACPI_INTERRUPT_NOT_HANDLED);
3962 return_VALUE (ACPI_INTERRUPT_HANDLED);
3963 }
3964
3965 UINT32
acpi_event_sleep_button_sleep(void * context)3966 acpi_event_sleep_button_sleep(void *context)
3967 {
3968 struct acpi_softc *sc = (struct acpi_softc *)context;
3969
3970 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
3971
3972 if (ACPI_FAILURE(AcpiOsExecute(OSL_NOTIFY_HANDLER,
3973 acpi_invoke_sleep_eventhandler, &sc->acpi_sleep_button_sx)))
3974 return_VALUE (ACPI_INTERRUPT_NOT_HANDLED);
3975 return_VALUE (ACPI_INTERRUPT_HANDLED);
3976 }
3977
3978 UINT32
acpi_event_sleep_button_wake(void * context)3979 acpi_event_sleep_button_wake(void *context)
3980 {
3981 struct acpi_softc *sc = (struct acpi_softc *)context;
3982
3983 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
3984
3985 if (ACPI_FAILURE(AcpiOsExecute(OSL_NOTIFY_HANDLER,
3986 acpi_invoke_wake_eventhandler, &sc->acpi_sleep_button_sx)))
3987 return_VALUE (ACPI_INTERRUPT_NOT_HANDLED);
3988 return_VALUE (ACPI_INTERRUPT_HANDLED);
3989 }
3990
3991 /*
3992 * XXX This static buffer is suboptimal. There is no locking so only
3993 * use this for single-threaded callers.
3994 */
3995 char *
acpi_name(ACPI_HANDLE handle)3996 acpi_name(ACPI_HANDLE handle)
3997 {
3998 ACPI_BUFFER buf;
3999 static char data[256];
4000
4001 buf.Length = sizeof(data);
4002 buf.Pointer = data;
4003
4004 if (handle && ACPI_SUCCESS(AcpiGetName(handle, ACPI_FULL_PATHNAME, &buf)))
4005 return (data);
4006 return ("(unknown)");
4007 }
4008
4009 /*
4010 * Debugging/bug-avoidance. Avoid trying to fetch info on various
4011 * parts of the namespace.
4012 */
4013 int
acpi_avoid(ACPI_HANDLE handle)4014 acpi_avoid(ACPI_HANDLE handle)
4015 {
4016 char *cp, *env, *np;
4017 int len;
4018
4019 np = acpi_name(handle);
4020 if (*np == '\\')
4021 np++;
4022 if ((env = kern_getenv("debug.acpi.avoid")) == NULL)
4023 return (0);
4024
4025 /* Scan the avoid list checking for a match */
4026 cp = env;
4027 for (;;) {
4028 while (*cp != 0 && isspace(*cp))
4029 cp++;
4030 if (*cp == 0)
4031 break;
4032 len = 0;
4033 while (cp[len] != 0 && !isspace(cp[len]))
4034 len++;
4035 if (!strncmp(cp, np, len)) {
4036 freeenv(env);
4037 return(1);
4038 }
4039 cp += len;
4040 }
4041 freeenv(env);
4042
4043 return (0);
4044 }
4045
4046 /*
4047 * Debugging/bug-avoidance. Disable ACPI subsystem components.
4048 */
4049 int
acpi_disabled(char * subsys)4050 acpi_disabled(char *subsys)
4051 {
4052 char *cp, *env;
4053 int len;
4054
4055 if ((env = kern_getenv("debug.acpi.disabled")) == NULL)
4056 return (0);
4057 if (strcmp(env, "all") == 0) {
4058 freeenv(env);
4059 return (1);
4060 }
4061
4062 /* Scan the disable list, checking for a match. */
4063 cp = env;
4064 for (;;) {
4065 while (*cp != '\0' && isspace(*cp))
4066 cp++;
4067 if (*cp == '\0')
4068 break;
4069 len = 0;
4070 while (cp[len] != '\0' && !isspace(cp[len]))
4071 len++;
4072 if (strncmp(cp, subsys, len) == 0) {
4073 freeenv(env);
4074 return (1);
4075 }
4076 cp += len;
4077 }
4078 freeenv(env);
4079
4080 return (0);
4081 }
4082
4083 static void
acpi_lookup(void * arg,const char * name,device_t * dev)4084 acpi_lookup(void *arg, const char *name, device_t *dev)
4085 {
4086 ACPI_HANDLE handle;
4087
4088 if (*dev != NULL)
4089 return;
4090
4091 /*
4092 * Allow any handle name that is specified as an absolute path and
4093 * starts with '\'. We could restrict this to \_SB and friends,
4094 * but see acpi_probe_children() for notes on why we scan the entire
4095 * namespace for devices.
4096 *
4097 * XXX: The pathname argument to AcpiGetHandle() should be fixed to
4098 * be const.
4099 */
4100 if (name[0] != '\\')
4101 return;
4102 if (ACPI_FAILURE(AcpiGetHandle(ACPI_ROOT_OBJECT, __DECONST(char *, name),
4103 &handle)))
4104 return;
4105 *dev = acpi_get_device(handle);
4106 }
4107
4108 /*
4109 * Control interface.
4110 *
4111 * We multiplex ioctls for all participating ACPI devices here. Individual
4112 * drivers wanting to be accessible via /dev/acpi should use the
4113 * register/deregister interface to make their handlers visible.
4114 */
4115 struct acpi_ioctl_hook
4116 {
4117 TAILQ_ENTRY(acpi_ioctl_hook) link;
4118 u_long cmd;
4119 acpi_ioctl_fn fn;
4120 void *arg;
4121 };
4122
4123 static TAILQ_HEAD(,acpi_ioctl_hook) acpi_ioctl_hooks;
4124 static int acpi_ioctl_hooks_initted;
4125
4126 int
acpi_register_ioctl(u_long cmd,acpi_ioctl_fn fn,void * arg)4127 acpi_register_ioctl(u_long cmd, acpi_ioctl_fn fn, void *arg)
4128 {
4129 struct acpi_ioctl_hook *hp;
4130
4131 if ((hp = malloc(sizeof(*hp), M_ACPIDEV, M_NOWAIT)) == NULL)
4132 return (ENOMEM);
4133 hp->cmd = cmd;
4134 hp->fn = fn;
4135 hp->arg = arg;
4136
4137 ACPI_LOCK(acpi);
4138 if (acpi_ioctl_hooks_initted == 0) {
4139 TAILQ_INIT(&acpi_ioctl_hooks);
4140 acpi_ioctl_hooks_initted = 1;
4141 }
4142 TAILQ_INSERT_TAIL(&acpi_ioctl_hooks, hp, link);
4143 ACPI_UNLOCK(acpi);
4144
4145 return (0);
4146 }
4147
4148 void
acpi_deregister_ioctl(u_long cmd,acpi_ioctl_fn fn)4149 acpi_deregister_ioctl(u_long cmd, acpi_ioctl_fn fn)
4150 {
4151 struct acpi_ioctl_hook *hp;
4152
4153 ACPI_LOCK(acpi);
4154 TAILQ_FOREACH(hp, &acpi_ioctl_hooks, link)
4155 if (hp->cmd == cmd && hp->fn == fn)
4156 break;
4157
4158 if (hp != NULL) {
4159 TAILQ_REMOVE(&acpi_ioctl_hooks, hp, link);
4160 free(hp, M_ACPIDEV);
4161 }
4162 ACPI_UNLOCK(acpi);
4163 }
4164
4165 static int
acpiopen(struct cdev * dev,int flag,int fmt,struct thread * td)4166 acpiopen(struct cdev *dev, int flag, int fmt, struct thread *td)
4167 {
4168 return (0);
4169 }
4170
4171 static int
acpiclose(struct cdev * dev,int flag,int fmt,struct thread * td)4172 acpiclose(struct cdev *dev, int flag, int fmt, struct thread *td)
4173 {
4174 return (0);
4175 }
4176
4177 static int
acpiioctl(struct cdev * dev,u_long cmd,caddr_t addr,int flag,struct thread * td)4178 acpiioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
4179 {
4180 struct acpi_softc *sc;
4181 struct acpi_ioctl_hook *hp;
4182 int error, state;
4183
4184 error = 0;
4185 hp = NULL;
4186 sc = dev->si_drv1;
4187
4188 /*
4189 * Scan the list of registered ioctls, looking for handlers.
4190 */
4191 ACPI_LOCK(acpi);
4192 if (acpi_ioctl_hooks_initted)
4193 TAILQ_FOREACH(hp, &acpi_ioctl_hooks, link) {
4194 if (hp->cmd == cmd)
4195 break;
4196 }
4197 ACPI_UNLOCK(acpi);
4198 if (hp)
4199 return (hp->fn(cmd, addr, hp->arg));
4200
4201 /*
4202 * Core ioctls are not permitted for non-writable user.
4203 * Currently, other ioctls just fetch information.
4204 * Not changing system behavior.
4205 */
4206 if ((flag & FWRITE) == 0)
4207 return (EPERM);
4208
4209 /* Core system ioctls. */
4210 switch (cmd) {
4211 case ACPIIO_REQSLPSTATE:
4212 state = *(int *)addr;
4213 if (state != ACPI_STATE_S5)
4214 return (acpi_ReqSleepState(sc, state));
4215 device_printf(sc->acpi_dev, "power off via acpi ioctl not supported\n");
4216 error = EOPNOTSUPP;
4217 break;
4218 case ACPIIO_ACKSLPSTATE:
4219 error = *(int *)addr;
4220 error = acpi_AckSleepState(sc->acpi_clone, error);
4221 break;
4222 case ACPIIO_SETSLPSTATE: /* DEPRECATED */
4223 state = *(int *)addr;
4224 if (state < ACPI_STATE_S0 || state > ACPI_S_STATES_MAX)
4225 return (EINVAL);
4226 if (!acpi_sleep_states[state])
4227 return (EOPNOTSUPP);
4228 if (ACPI_FAILURE(acpi_SetSleepState(sc, state)))
4229 error = ENXIO;
4230 break;
4231 default:
4232 error = ENXIO;
4233 break;
4234 }
4235
4236 return (error);
4237 }
4238
4239 static int
acpi_sname2sstate(const char * sname)4240 acpi_sname2sstate(const char *sname)
4241 {
4242 int sstate;
4243
4244 if (toupper(sname[0]) == 'S') {
4245 sstate = sname[1] - '0';
4246 if (sstate >= ACPI_STATE_S0 && sstate <= ACPI_STATE_S5 &&
4247 sname[2] == '\0')
4248 return (sstate);
4249 } else if (strcasecmp(sname, "NONE") == 0)
4250 return (ACPI_STATE_UNKNOWN);
4251 return (-1);
4252 }
4253
4254 static const char *
acpi_sstate2sname(int sstate)4255 acpi_sstate2sname(int sstate)
4256 {
4257 static const char *snames[] = { "S0", "S1", "S2", "S3", "S4", "S5" };
4258
4259 if (sstate >= ACPI_STATE_S0 && sstate <= ACPI_STATE_S5)
4260 return (snames[sstate]);
4261 else if (sstate == ACPI_STATE_UNKNOWN)
4262 return ("NONE");
4263 return (NULL);
4264 }
4265
4266 static int
acpi_supported_sleep_state_sysctl(SYSCTL_HANDLER_ARGS)4267 acpi_supported_sleep_state_sysctl(SYSCTL_HANDLER_ARGS)
4268 {
4269 int error;
4270 struct sbuf sb;
4271 UINT8 state;
4272
4273 sbuf_new(&sb, NULL, 32, SBUF_AUTOEXTEND);
4274 for (state = ACPI_STATE_S1; state < ACPI_S_STATE_COUNT; state++)
4275 if (acpi_sleep_states[state])
4276 sbuf_printf(&sb, "%s ", acpi_sstate2sname(state));
4277 sbuf_trim(&sb);
4278 sbuf_finish(&sb);
4279 error = sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req);
4280 sbuf_delete(&sb);
4281 return (error);
4282 }
4283
4284 static int
acpi_sleep_state_sysctl(SYSCTL_HANDLER_ARGS)4285 acpi_sleep_state_sysctl(SYSCTL_HANDLER_ARGS)
4286 {
4287 char sleep_state[10];
4288 int error, new_state, old_state;
4289
4290 old_state = *(int *)oidp->oid_arg1;
4291 strlcpy(sleep_state, acpi_sstate2sname(old_state), sizeof(sleep_state));
4292 error = sysctl_handle_string(oidp, sleep_state, sizeof(sleep_state), req);
4293 if (error == 0 && req->newptr != NULL) {
4294 new_state = acpi_sname2sstate(sleep_state);
4295 if (new_state < ACPI_STATE_S1)
4296 return (EINVAL);
4297 if (new_state < ACPI_S_STATE_COUNT && !acpi_sleep_states[new_state])
4298 return (EOPNOTSUPP);
4299 if (new_state != old_state)
4300 *(int *)oidp->oid_arg1 = new_state;
4301 }
4302 return (error);
4303 }
4304
4305 /* Inform devctl(4) when we receive a Notify. */
4306 void
acpi_UserNotify(const char * subsystem,ACPI_HANDLE h,uint8_t notify)4307 acpi_UserNotify(const char *subsystem, ACPI_HANDLE h, uint8_t notify)
4308 {
4309 char notify_buf[16];
4310 ACPI_BUFFER handle_buf;
4311 ACPI_STATUS status;
4312
4313 if (subsystem == NULL)
4314 return;
4315
4316 handle_buf.Pointer = NULL;
4317 handle_buf.Length = ACPI_ALLOCATE_BUFFER;
4318 status = AcpiNsHandleToPathname(h, &handle_buf, FALSE);
4319 if (ACPI_FAILURE(status))
4320 return;
4321 snprintf(notify_buf, sizeof(notify_buf), "notify=0x%02x", notify);
4322 devctl_notify("ACPI", subsystem, handle_buf.Pointer, notify_buf);
4323 AcpiOsFree(handle_buf.Pointer);
4324 }
4325
4326 #ifdef ACPI_DEBUG
4327 /*
4328 * Support for parsing debug options from the kernel environment.
4329 *
4330 * Bits may be set in the AcpiDbgLayer and AcpiDbgLevel debug registers
4331 * by specifying the names of the bits in the debug.acpi.layer and
4332 * debug.acpi.level environment variables. Bits may be unset by
4333 * prefixing the bit name with !.
4334 */
4335 struct debugtag
4336 {
4337 char *name;
4338 UINT32 value;
4339 };
4340
4341 static struct debugtag dbg_layer[] = {
4342 {"ACPI_UTILITIES", ACPI_UTILITIES},
4343 {"ACPI_HARDWARE", ACPI_HARDWARE},
4344 {"ACPI_EVENTS", ACPI_EVENTS},
4345 {"ACPI_TABLES", ACPI_TABLES},
4346 {"ACPI_NAMESPACE", ACPI_NAMESPACE},
4347 {"ACPI_PARSER", ACPI_PARSER},
4348 {"ACPI_DISPATCHER", ACPI_DISPATCHER},
4349 {"ACPI_EXECUTER", ACPI_EXECUTER},
4350 {"ACPI_RESOURCES", ACPI_RESOURCES},
4351 {"ACPI_CA_DEBUGGER", ACPI_CA_DEBUGGER},
4352 {"ACPI_OS_SERVICES", ACPI_OS_SERVICES},
4353 {"ACPI_CA_DISASSEMBLER", ACPI_CA_DISASSEMBLER},
4354 {"ACPI_ALL_COMPONENTS", ACPI_ALL_COMPONENTS},
4355
4356 {"ACPI_AC_ADAPTER", ACPI_AC_ADAPTER},
4357 {"ACPI_BATTERY", ACPI_BATTERY},
4358 {"ACPI_BUS", ACPI_BUS},
4359 {"ACPI_BUTTON", ACPI_BUTTON},
4360 {"ACPI_EC", ACPI_EC},
4361 {"ACPI_FAN", ACPI_FAN},
4362 {"ACPI_POWERRES", ACPI_POWERRES},
4363 {"ACPI_PROCESSOR", ACPI_PROCESSOR},
4364 {"ACPI_THERMAL", ACPI_THERMAL},
4365 {"ACPI_TIMER", ACPI_TIMER},
4366 {"ACPI_ALL_DRIVERS", ACPI_ALL_DRIVERS},
4367 {NULL, 0}
4368 };
4369
4370 static struct debugtag dbg_level[] = {
4371 {"ACPI_LV_INIT", ACPI_LV_INIT},
4372 {"ACPI_LV_DEBUG_OBJECT", ACPI_LV_DEBUG_OBJECT},
4373 {"ACPI_LV_INFO", ACPI_LV_INFO},
4374 {"ACPI_LV_REPAIR", ACPI_LV_REPAIR},
4375 {"ACPI_LV_ALL_EXCEPTIONS", ACPI_LV_ALL_EXCEPTIONS},
4376
4377 /* Trace verbosity level 1 [Standard Trace Level] */
4378 {"ACPI_LV_INIT_NAMES", ACPI_LV_INIT_NAMES},
4379 {"ACPI_LV_PARSE", ACPI_LV_PARSE},
4380 {"ACPI_LV_LOAD", ACPI_LV_LOAD},
4381 {"ACPI_LV_DISPATCH", ACPI_LV_DISPATCH},
4382 {"ACPI_LV_EXEC", ACPI_LV_EXEC},
4383 {"ACPI_LV_NAMES", ACPI_LV_NAMES},
4384 {"ACPI_LV_OPREGION", ACPI_LV_OPREGION},
4385 {"ACPI_LV_BFIELD", ACPI_LV_BFIELD},
4386 {"ACPI_LV_TABLES", ACPI_LV_TABLES},
4387 {"ACPI_LV_VALUES", ACPI_LV_VALUES},
4388 {"ACPI_LV_OBJECTS", ACPI_LV_OBJECTS},
4389 {"ACPI_LV_RESOURCES", ACPI_LV_RESOURCES},
4390 {"ACPI_LV_USER_REQUESTS", ACPI_LV_USER_REQUESTS},
4391 {"ACPI_LV_PACKAGE", ACPI_LV_PACKAGE},
4392 {"ACPI_LV_VERBOSITY1", ACPI_LV_VERBOSITY1},
4393
4394 /* Trace verbosity level 2 [Function tracing and memory allocation] */
4395 {"ACPI_LV_ALLOCATIONS", ACPI_LV_ALLOCATIONS},
4396 {"ACPI_LV_FUNCTIONS", ACPI_LV_FUNCTIONS},
4397 {"ACPI_LV_OPTIMIZATIONS", ACPI_LV_OPTIMIZATIONS},
4398 {"ACPI_LV_VERBOSITY2", ACPI_LV_VERBOSITY2},
4399 {"ACPI_LV_ALL", ACPI_LV_ALL},
4400
4401 /* Trace verbosity level 3 [Threading, I/O, and Interrupts] */
4402 {"ACPI_LV_MUTEX", ACPI_LV_MUTEX},
4403 {"ACPI_LV_THREADS", ACPI_LV_THREADS},
4404 {"ACPI_LV_IO", ACPI_LV_IO},
4405 {"ACPI_LV_INTERRUPTS", ACPI_LV_INTERRUPTS},
4406 {"ACPI_LV_VERBOSITY3", ACPI_LV_VERBOSITY3},
4407
4408 /* Exceptionally verbose output -- also used in the global "DebugLevel" */
4409 {"ACPI_LV_AML_DISASSEMBLE", ACPI_LV_AML_DISASSEMBLE},
4410 {"ACPI_LV_VERBOSE_INFO", ACPI_LV_VERBOSE_INFO},
4411 {"ACPI_LV_FULL_TABLES", ACPI_LV_FULL_TABLES},
4412 {"ACPI_LV_EVENTS", ACPI_LV_EVENTS},
4413 {"ACPI_LV_VERBOSE", ACPI_LV_VERBOSE},
4414 {NULL, 0}
4415 };
4416
4417 static void
acpi_parse_debug(char * cp,struct debugtag * tag,UINT32 * flag)4418 acpi_parse_debug(char *cp, struct debugtag *tag, UINT32 *flag)
4419 {
4420 char *ep;
4421 int i, l;
4422 int set;
4423
4424 while (*cp) {
4425 if (isspace(*cp)) {
4426 cp++;
4427 continue;
4428 }
4429 ep = cp;
4430 while (*ep && !isspace(*ep))
4431 ep++;
4432 if (*cp == '!') {
4433 set = 0;
4434 cp++;
4435 if (cp == ep)
4436 continue;
4437 } else {
4438 set = 1;
4439 }
4440 l = ep - cp;
4441 for (i = 0; tag[i].name != NULL; i++) {
4442 if (!strncmp(cp, tag[i].name, l)) {
4443 if (set)
4444 *flag |= tag[i].value;
4445 else
4446 *flag &= ~tag[i].value;
4447 }
4448 }
4449 cp = ep;
4450 }
4451 }
4452
4453 static void
acpi_set_debugging(void * junk)4454 acpi_set_debugging(void *junk)
4455 {
4456 char *layer, *level;
4457
4458 if (cold) {
4459 AcpiDbgLayer = 0;
4460 AcpiDbgLevel = 0;
4461 }
4462
4463 layer = kern_getenv("debug.acpi.layer");
4464 level = kern_getenv("debug.acpi.level");
4465 if (layer == NULL && level == NULL)
4466 return;
4467
4468 printf("ACPI set debug");
4469 if (layer != NULL) {
4470 if (strcmp("NONE", layer) != 0)
4471 printf(" layer '%s'", layer);
4472 acpi_parse_debug(layer, &dbg_layer[0], &AcpiDbgLayer);
4473 freeenv(layer);
4474 }
4475 if (level != NULL) {
4476 if (strcmp("NONE", level) != 0)
4477 printf(" level '%s'", level);
4478 acpi_parse_debug(level, &dbg_level[0], &AcpiDbgLevel);
4479 freeenv(level);
4480 }
4481 printf("\n");
4482 }
4483
4484 SYSINIT(acpi_debugging, SI_SUB_TUNABLES, SI_ORDER_ANY, acpi_set_debugging,
4485 NULL);
4486
4487 static int
acpi_debug_sysctl(SYSCTL_HANDLER_ARGS)4488 acpi_debug_sysctl(SYSCTL_HANDLER_ARGS)
4489 {
4490 int error, *dbg;
4491 struct debugtag *tag;
4492 struct sbuf sb;
4493 char temp[128];
4494
4495 if (sbuf_new(&sb, NULL, 128, SBUF_AUTOEXTEND) == NULL)
4496 return (ENOMEM);
4497 if (strcmp(oidp->oid_arg1, "debug.acpi.layer") == 0) {
4498 tag = &dbg_layer[0];
4499 dbg = &AcpiDbgLayer;
4500 } else {
4501 tag = &dbg_level[0];
4502 dbg = &AcpiDbgLevel;
4503 }
4504
4505 /* Get old values if this is a get request. */
4506 ACPI_SERIAL_BEGIN(acpi);
4507 if (*dbg == 0) {
4508 sbuf_cpy(&sb, "NONE");
4509 } else if (req->newptr == NULL) {
4510 for (; tag->name != NULL; tag++) {
4511 if ((*dbg & tag->value) == tag->value)
4512 sbuf_printf(&sb, "%s ", tag->name);
4513 }
4514 }
4515 sbuf_trim(&sb);
4516 sbuf_finish(&sb);
4517 strlcpy(temp, sbuf_data(&sb), sizeof(temp));
4518 sbuf_delete(&sb);
4519
4520 error = sysctl_handle_string(oidp, temp, sizeof(temp), req);
4521
4522 /* Check for error or no change */
4523 if (error == 0 && req->newptr != NULL) {
4524 *dbg = 0;
4525 kern_setenv((char *)oidp->oid_arg1, temp);
4526 acpi_set_debugging(NULL);
4527 }
4528 ACPI_SERIAL_END(acpi);
4529
4530 return (error);
4531 }
4532
4533 SYSCTL_PROC(_debug_acpi, OID_AUTO, layer,
4534 CTLFLAG_RW | CTLTYPE_STRING | CTLFLAG_MPSAFE, "debug.acpi.layer", 0,
4535 acpi_debug_sysctl, "A",
4536 "");
4537 SYSCTL_PROC(_debug_acpi, OID_AUTO, level,
4538 CTLFLAG_RW | CTLTYPE_STRING | CTLFLAG_MPSAFE, "debug.acpi.level", 0,
4539 acpi_debug_sysctl, "A",
4540 "");
4541 #endif /* ACPI_DEBUG */
4542
4543 static int
acpi_debug_objects_sysctl(SYSCTL_HANDLER_ARGS)4544 acpi_debug_objects_sysctl(SYSCTL_HANDLER_ARGS)
4545 {
4546 int error;
4547 int old;
4548
4549 old = acpi_debug_objects;
4550 error = sysctl_handle_int(oidp, &acpi_debug_objects, 0, req);
4551 if (error != 0 || req->newptr == NULL)
4552 return (error);
4553 if (old == acpi_debug_objects || (old && acpi_debug_objects))
4554 return (0);
4555
4556 ACPI_SERIAL_BEGIN(acpi);
4557 AcpiGbl_EnableAmlDebugObject = acpi_debug_objects ? TRUE : FALSE;
4558 ACPI_SERIAL_END(acpi);
4559
4560 return (0);
4561 }
4562
4563 static int
acpi_parse_interfaces(char * str,struct acpi_interface * iface)4564 acpi_parse_interfaces(char *str, struct acpi_interface *iface)
4565 {
4566 char *p;
4567 size_t len;
4568 int i, j;
4569
4570 p = str;
4571 while (isspace(*p) || *p == ',')
4572 p++;
4573 len = strlen(p);
4574 if (len == 0)
4575 return (0);
4576 p = strdup(p, M_TEMP);
4577 for (i = 0; i < len; i++)
4578 if (p[i] == ',')
4579 p[i] = '\0';
4580 i = j = 0;
4581 while (i < len)
4582 if (isspace(p[i]) || p[i] == '\0')
4583 i++;
4584 else {
4585 i += strlen(p + i) + 1;
4586 j++;
4587 }
4588 if (j == 0) {
4589 free(p, M_TEMP);
4590 return (0);
4591 }
4592 iface->data = malloc(sizeof(*iface->data) * j, M_TEMP, M_WAITOK);
4593 iface->num = j;
4594 i = j = 0;
4595 while (i < len)
4596 if (isspace(p[i]) || p[i] == '\0')
4597 i++;
4598 else {
4599 iface->data[j] = p + i;
4600 i += strlen(p + i) + 1;
4601 j++;
4602 }
4603
4604 return (j);
4605 }
4606
4607 static void
acpi_free_interfaces(struct acpi_interface * iface)4608 acpi_free_interfaces(struct acpi_interface *iface)
4609 {
4610
4611 free(iface->data[0], M_TEMP);
4612 free(iface->data, M_TEMP);
4613 }
4614
4615 static void
acpi_reset_interfaces(device_t dev)4616 acpi_reset_interfaces(device_t dev)
4617 {
4618 struct acpi_interface list;
4619 ACPI_STATUS status;
4620 int i;
4621
4622 if (acpi_parse_interfaces(acpi_install_interface, &list) > 0) {
4623 for (i = 0; i < list.num; i++) {
4624 status = AcpiInstallInterface(list.data[i]);
4625 if (ACPI_FAILURE(status))
4626 device_printf(dev,
4627 "failed to install _OSI(\"%s\"): %s\n",
4628 list.data[i], AcpiFormatException(status));
4629 else if (bootverbose)
4630 device_printf(dev, "installed _OSI(\"%s\")\n",
4631 list.data[i]);
4632 }
4633 acpi_free_interfaces(&list);
4634 }
4635 if (acpi_parse_interfaces(acpi_remove_interface, &list) > 0) {
4636 for (i = 0; i < list.num; i++) {
4637 status = AcpiRemoveInterface(list.data[i]);
4638 if (ACPI_FAILURE(status))
4639 device_printf(dev,
4640 "failed to remove _OSI(\"%s\"): %s\n",
4641 list.data[i], AcpiFormatException(status));
4642 else if (bootverbose)
4643 device_printf(dev, "removed _OSI(\"%s\")\n",
4644 list.data[i]);
4645 }
4646 acpi_free_interfaces(&list);
4647 }
4648 }
4649
4650 static int
acpi_pm_func(u_long cmd,void * arg,enum power_stype stype)4651 acpi_pm_func(u_long cmd, void *arg, enum power_stype stype)
4652 {
4653 int error, sstate;
4654 struct acpi_softc *sc;
4655
4656 error = 0;
4657 switch (cmd) {
4658 case POWER_CMD_SUSPEND:
4659 sc = (struct acpi_softc *)arg;
4660 if (sc == NULL) {
4661 error = EINVAL;
4662 goto out;
4663 }
4664 sstate = acpi_stype_to_sstate(sc, stype);
4665 if (ACPI_FAILURE(acpi_EnterSleepState(sc, sstate)))
4666 error = ENXIO;
4667 break;
4668 default:
4669 error = EINVAL;
4670 goto out;
4671 }
4672
4673 out:
4674 return (error);
4675 }
4676
4677 static void
acpi_pm_register(void * arg)4678 acpi_pm_register(void *arg)
4679 {
4680 if (!cold || resource_disabled("acpi", 0))
4681 return;
4682
4683 power_pm_register(POWER_PM_TYPE_ACPI, acpi_pm_func, NULL);
4684 }
4685
4686 SYSINIT(power, SI_SUB_KLD, SI_ORDER_ANY, acpi_pm_register, NULL);
4687