xref: /illumos-gate/usr/src/cmd/mdb/common/modules/zfs/zfs.c (revision 3b8c21f5248de9b48d63b0842c93815134478ded)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24  * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
25  * Copyright 2020 Joyent, Inc.
26  * Copyright 2025 Oxide Computer Company
27  */
28 
29 /* Portions Copyright 2010 Robert Milkowski */
30 
31 /*
32  * ZFS_MDB lets dmu.h know that we don't have dmu_ot, and we will define our
33  * own macros to access the target's dmu_ot.  Therefore it must be defined
34  * before including any ZFS headers.  Note that we don't define
35  * DMU_OT_IS_ENCRYPTED_IMPL() or DMU_OT_BYTESWAP_IMPL(), therefore using them
36  * will result in a compilation error.  If they are needed in the future, we
37  * can implement them similarly to mdb_dmu_ot_is_encrypted_impl().
38  */
39 #define	ZFS_MDB
40 #define	DMU_OT_IS_ENCRYPTED_IMPL(ot) mdb_dmu_ot_is_encrypted_impl(ot)
41 
42 #include <mdb/mdb_ctf.h>
43 #include <sys/zfs_context.h>
44 #include <sys/mdb_modapi.h>
45 #include <sys/dbuf.h>
46 #include <sys/dmu_objset.h>
47 #include <sys/dsl_dir.h>
48 #include <sys/dsl_pool.h>
49 #include <sys/metaslab_impl.h>
50 #include <sys/space_map.h>
51 #include <sys/list.h>
52 #include <sys/vdev_impl.h>
53 #include <sys/zap_leaf.h>
54 #include <sys/zap_impl.h>
55 #include <ctype.h>
56 #include <sys/zfs_acl.h>
57 #include <sys/sa_impl.h>
58 #include <sys/multilist.h>
59 #include <sys/btree.h>
60 
61 #ifdef _KERNEL
62 #define	ZFS_OBJ_NAME	"zfs"
63 #else
64 #define	ZFS_OBJ_NAME	"libzpool.so.1"
65 #endif
66 extern int64_t mdb_gethrtime(void);
67 
68 #define	ZFS_STRUCT	"struct " ZFS_OBJ_NAME "`"
69 
70 #ifndef _KERNEL
71 int aok;
72 #endif
73 
74 enum spa_flags {
75 	SPA_FLAG_CONFIG			= 1 << 0,
76 	SPA_FLAG_VDEVS			= 1 << 1,
77 	SPA_FLAG_ERRORS			= 1 << 2,
78 	SPA_FLAG_METASLAB_GROUPS	= 1 << 3,
79 	SPA_FLAG_METASLABS		= 1 << 4,
80 	SPA_FLAG_HISTOGRAMS		= 1 << 5
81 };
82 
83 /*
84  * If any of these flags are set, call spa_vdevs in spa_print
85  */
86 #define	SPA_FLAG_ALL_VDEV	\
87 	(SPA_FLAG_VDEVS | SPA_FLAG_ERRORS | SPA_FLAG_METASLAB_GROUPS | \
88 	SPA_FLAG_METASLABS)
89 
90 static int
getmember(uintptr_t addr,const char * type,mdb_ctf_id_t * idp,const char * member,int len,void * buf)91 getmember(uintptr_t addr, const char *type, mdb_ctf_id_t *idp,
92     const char *member, int len, void *buf)
93 {
94 	mdb_ctf_id_t id;
95 	ulong_t off;
96 	char name[64];
97 
98 	if (idp == NULL) {
99 		if (mdb_ctf_lookup_by_name(type, &id) == -1) {
100 			mdb_warn("couldn't find type %s", type);
101 			return (DCMD_ERR);
102 		}
103 		idp = &id;
104 	} else {
105 		type = name;
106 		mdb_ctf_type_name(*idp, name, sizeof (name));
107 	}
108 
109 	if (mdb_ctf_offsetof(*idp, member, &off) == -1) {
110 		mdb_warn("couldn't find member %s of type %s\n", member, type);
111 		return (DCMD_ERR);
112 	}
113 	if (off % 8 != 0) {
114 		mdb_warn("member %s of type %s is unsupported bitfield",
115 		    member, type);
116 		return (DCMD_ERR);
117 	}
118 	off /= 8;
119 
120 	if (mdb_vread(buf, len, addr + off) == -1) {
121 		mdb_warn("failed to read %s from %s at %p",
122 		    member, type, addr + off);
123 		return (DCMD_ERR);
124 	}
125 	/* mdb_warn("read %s from %s at %p+%llx\n", member, type, addr, off); */
126 
127 	return (0);
128 }
129 
130 #define	GETMEMB(addr, structname, member, dest) \
131 	getmember(addr, ZFS_STRUCT structname, NULL, #member, \
132 	sizeof (dest), &(dest))
133 
134 #define	GETMEMBID(addr, ctfid, member, dest) \
135 	getmember(addr, NULL, ctfid, #member, sizeof (dest), &(dest))
136 
137 static boolean_t
strisprint(const char * cp)138 strisprint(const char *cp)
139 {
140 	for (; *cp; cp++) {
141 		if (!isprint(*cp))
142 			return (B_FALSE);
143 	}
144 	return (B_TRUE);
145 }
146 
147 /*
148  * <addr>::sm_entries <buffer length in bytes>
149  *
150  * Treat the buffer specified by the given address as a buffer that contains
151  * space map entries. Iterate over the specified number of entries and print
152  * them in both encoded and decoded form.
153  */
154 /* ARGSUSED */
155 static int
sm_entries(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)156 sm_entries(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
157 {
158 	uint64_t bufsz = 0;
159 	boolean_t preview = B_FALSE;
160 
161 	if (!(flags & DCMD_ADDRSPEC))
162 		return (DCMD_USAGE);
163 
164 	if (argc < 1) {
165 		preview = B_TRUE;
166 		bufsz = 2;
167 	} else if (argc != 1) {
168 		return (DCMD_USAGE);
169 	} else {
170 		switch (argv[0].a_type) {
171 		case MDB_TYPE_STRING:
172 			bufsz = mdb_strtoull(argv[0].a_un.a_str);
173 			break;
174 		case MDB_TYPE_IMMEDIATE:
175 			bufsz = argv[0].a_un.a_val;
176 			break;
177 		default:
178 			return (DCMD_USAGE);
179 		}
180 	}
181 
182 	char *actions[] = { "ALLOC", "FREE", "INVALID" };
183 	for (uintptr_t bufend = addr + bufsz; addr < bufend;
184 	    addr += sizeof (uint64_t)) {
185 		uint64_t nwords;
186 		uint64_t start_addr = addr;
187 
188 		uint64_t word = 0;
189 		if (mdb_vread(&word, sizeof (word), addr) == -1) {
190 			mdb_warn("failed to read space map entry %p", addr);
191 			return (DCMD_ERR);
192 		}
193 
194 		if (SM_PREFIX_DECODE(word) == SM_DEBUG_PREFIX) {
195 			(void) mdb_printf("\t    [%6llu] %s: txg %llu, "
196 			    "pass %llu\n",
197 			    (u_longlong_t)(addr),
198 			    actions[SM_DEBUG_ACTION_DECODE(word)],
199 			    (u_longlong_t)SM_DEBUG_TXG_DECODE(word),
200 			    (u_longlong_t)SM_DEBUG_SYNCPASS_DECODE(word));
201 			continue;
202 		}
203 
204 		char entry_type;
205 		uint64_t raw_offset, raw_run, vdev_id = SM_NO_VDEVID;
206 
207 		if (SM_PREFIX_DECODE(word) != SM2_PREFIX) {
208 			entry_type = (SM_TYPE_DECODE(word) == SM_ALLOC) ?
209 			    'A' : 'F';
210 			raw_offset = SM_OFFSET_DECODE(word);
211 			raw_run = SM_RUN_DECODE(word);
212 			nwords = 1;
213 		} else {
214 			ASSERT3U(SM_PREFIX_DECODE(word), ==, SM2_PREFIX);
215 
216 			raw_run = SM2_RUN_DECODE(word);
217 			vdev_id = SM2_VDEV_DECODE(word);
218 
219 			/* it is a two-word entry so we read another word */
220 			addr += sizeof (uint64_t);
221 			if (addr >= bufend) {
222 				mdb_warn("buffer ends in the middle of a two "
223 				    "word entry\n", addr);
224 				return (DCMD_ERR);
225 			}
226 
227 			if (mdb_vread(&word, sizeof (word), addr) == -1) {
228 				mdb_warn("failed to read space map entry %p",
229 				    addr);
230 				return (DCMD_ERR);
231 			}
232 
233 			entry_type = (SM2_TYPE_DECODE(word) == SM_ALLOC) ?
234 			    'A' : 'F';
235 			raw_offset = SM2_OFFSET_DECODE(word);
236 			nwords = 2;
237 		}
238 
239 		(void) mdb_printf("\t    [%6llx]    %c  range:"
240 		    " %010llx-%010llx  size: %06llx vdev: %06llu words: %llu\n",
241 		    (u_longlong_t)start_addr,
242 		    entry_type, (u_longlong_t)raw_offset,
243 		    (u_longlong_t)(raw_offset + raw_run),
244 		    (u_longlong_t)raw_run,
245 		    (u_longlong_t)vdev_id, (u_longlong_t)nwords);
246 
247 		if (preview)
248 			break;
249 	}
250 	return (DCMD_OK);
251 }
252 
253 static int
mdb_dsl_dir_name(uintptr_t addr,char * buf)254 mdb_dsl_dir_name(uintptr_t addr, char *buf)
255 {
256 	static int gotid;
257 	static mdb_ctf_id_t dd_id;
258 	uintptr_t dd_parent;
259 	char dd_myname[ZFS_MAX_DATASET_NAME_LEN];
260 
261 	if (!gotid) {
262 		if (mdb_ctf_lookup_by_name(ZFS_STRUCT "dsl_dir",
263 		    &dd_id) == -1) {
264 			mdb_warn("couldn't find struct dsl_dir");
265 			return (DCMD_ERR);
266 		}
267 		gotid = TRUE;
268 	}
269 	if (GETMEMBID(addr, &dd_id, dd_parent, dd_parent) ||
270 	    GETMEMBID(addr, &dd_id, dd_myname, dd_myname)) {
271 		return (DCMD_ERR);
272 	}
273 
274 	if (dd_parent) {
275 		if (mdb_dsl_dir_name(dd_parent, buf))
276 			return (DCMD_ERR);
277 		strcat(buf, "/");
278 	}
279 
280 	if (dd_myname[0])
281 		strcat(buf, dd_myname);
282 	else
283 		strcat(buf, "???");
284 
285 	return (0);
286 }
287 
288 static int
objset_name(uintptr_t addr,char * buf)289 objset_name(uintptr_t addr, char *buf)
290 {
291 	static int gotid;
292 	static mdb_ctf_id_t os_id, ds_id;
293 	uintptr_t os_dsl_dataset;
294 	char ds_snapname[ZFS_MAX_DATASET_NAME_LEN];
295 	uintptr_t ds_dir;
296 
297 	buf[0] = '\0';
298 
299 	if (!gotid) {
300 		if (mdb_ctf_lookup_by_name(ZFS_STRUCT "objset",
301 		    &os_id) == -1) {
302 			mdb_warn("couldn't find struct objset");
303 			return (DCMD_ERR);
304 		}
305 		if (mdb_ctf_lookup_by_name(ZFS_STRUCT "dsl_dataset",
306 		    &ds_id) == -1) {
307 			mdb_warn("couldn't find struct dsl_dataset");
308 			return (DCMD_ERR);
309 		}
310 
311 		gotid = TRUE;
312 	}
313 
314 	if (GETMEMBID(addr, &os_id, os_dsl_dataset, os_dsl_dataset))
315 		return (DCMD_ERR);
316 
317 	if (os_dsl_dataset == 0) {
318 		strcat(buf, "mos");
319 		return (0);
320 	}
321 
322 	if (GETMEMBID(os_dsl_dataset, &ds_id, ds_snapname, ds_snapname) ||
323 	    GETMEMBID(os_dsl_dataset, &ds_id, ds_dir, ds_dir)) {
324 		return (DCMD_ERR);
325 	}
326 
327 	if (ds_dir && mdb_dsl_dir_name(ds_dir, buf))
328 		return (DCMD_ERR);
329 
330 	if (ds_snapname[0]) {
331 		strcat(buf, "@");
332 		strcat(buf, ds_snapname);
333 	}
334 	return (0);
335 }
336 
337 static int
enum_lookup(char * type,int val,const char * prefix,size_t size,char * out)338 enum_lookup(char *type, int val, const char *prefix, size_t size, char *out)
339 {
340 	const char *cp;
341 	size_t len = strlen(prefix);
342 	mdb_ctf_id_t enum_type;
343 
344 	if (mdb_ctf_lookup_by_name(type, &enum_type) != 0) {
345 		mdb_warn("Could not find enum for %s", type);
346 		return (-1);
347 	}
348 
349 	if ((cp = mdb_ctf_enum_name(enum_type, val)) != NULL) {
350 		if (strncmp(cp, prefix, len) == 0)
351 			cp += len;
352 		(void) strncpy(out, cp, size);
353 	} else {
354 		mdb_snprintf(out, size, "? (%d)", val);
355 	}
356 	return (0);
357 }
358 
359 /* ARGSUSED */
360 static int
zfs_params(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)361 zfs_params(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
362 {
363 	/*
364 	 * This table can be approximately generated by running:
365 	 * egrep "^[a-z0-9_]+ [a-z0-9_]+( =.*)?;" *.c | cut -d ' ' -f 2
366 	 */
367 	static const char *params[] = {
368 		"arc_lotsfree_percent",
369 		"arc_pages_pp_reserve",
370 		"arc_reduce_dnlc_percent",
371 		"arc_swapfs_reserve",
372 		"arc_zio_arena_free_shift",
373 		"dbuf_cache_hiwater_pct",
374 		"dbuf_cache_lowater_pct",
375 		"dbuf_cache_max_bytes",
376 		"dbuf_cache_max_shift",
377 		"ddt_zap_indirect_blockshift",
378 		"ddt_zap_leaf_blockshift",
379 		"ditto_same_vdev_distance_shift",
380 		"dmu_find_threads",
381 		"dmu_rescan_dnode_threshold",
382 		"dsl_scan_delay_completion",
383 		"fzap_default_block_shift",
384 		"l2arc_feed_again",
385 		"l2arc_feed_min_ms",
386 		"l2arc_feed_secs",
387 		"l2arc_headroom",
388 		"l2arc_headroom_boost",
389 		"l2arc_noprefetch",
390 		"l2arc_norw",
391 		"l2arc_write_boost",
392 		"l2arc_write_max",
393 		"metaslab_aliquot",
394 		"metaslab_bias_enabled",
395 		"metaslab_debug_load",
396 		"metaslab_debug_unload",
397 		"metaslab_df_alloc_threshold",
398 		"metaslab_df_free_pct",
399 		"metaslab_fragmentation_factor_enabled",
400 		"metaslab_force_ganging",
401 		"metaslab_lba_weighting_enabled",
402 		"metaslab_load_pct",
403 		"metaslab_min_alloc_size",
404 		"metaslab_ndf_clump_shift",
405 		"metaslab_preload_enabled",
406 		"metaslab_preload_limit",
407 		"metaslab_trace_enabled",
408 		"metaslab_trace_max_entries",
409 		"metaslab_unload_delay",
410 		"metaslabs_per_vdev",
411 		"reference_history",
412 		"reference_tracking_enable",
413 		"send_holes_without_birth_time",
414 		"spa_asize_inflation",
415 		"spa_load_verify_data",
416 		"spa_load_verify_maxinflight",
417 		"spa_load_verify_metadata",
418 		"spa_max_replication_override",
419 		"spa_min_slop",
420 		"spa_mode_global",
421 		"spa_slop_shift",
422 		"space_map_blksz",
423 		"vdev_mirror_shift",
424 		"zfetch_max_distance",
425 		"zfs_abd_chunk_size",
426 		"zfs_abd_scatter_enabled",
427 		"zfs_arc_average_blocksize",
428 		"zfs_arc_evict_batch_limit",
429 		"zfs_arc_grow_retry",
430 		"zfs_arc_max",
431 		"zfs_arc_meta_limit",
432 		"zfs_arc_meta_min",
433 		"zfs_arc_min",
434 		"zfs_arc_p_min_shift",
435 		"zfs_arc_shrink_shift",
436 		"zfs_async_block_max_blocks",
437 		"zfs_ccw_retry_interval",
438 		"zfs_commit_timeout_pct",
439 		"zfs_compressed_arc_enabled",
440 		"zfs_condense_indirect_commit_entry_delay_ticks",
441 		"zfs_condense_indirect_vdevs_enable",
442 		"zfs_condense_max_obsolete_bytes",
443 		"zfs_condense_min_mapping_bytes",
444 		"zfs_condense_pct",
445 		"zfs_dbgmsg_maxsize",
446 		"zfs_deadman_checktime_ms",
447 		"zfs_deadman_enabled",
448 		"zfs_deadman_synctime_ms",
449 		"zfs_dedup_prefetch",
450 		"zfs_default_bs",
451 		"zfs_default_ibs",
452 		"zfs_delay_max_ns",
453 		"zfs_delay_min_dirty_percent",
454 		"zfs_delay_resolution_ns",
455 		"zfs_delay_scale",
456 		"zfs_dirty_data_max",
457 		"zfs_dirty_data_max_max",
458 		"zfs_dirty_data_max_percent",
459 		"zfs_dirty_data_sync",
460 		"zfs_flags",
461 		"zfs_free_bpobj_enabled",
462 		"zfs_free_leak_on_eio",
463 		"zfs_free_min_time_ms",
464 		"zfs_fsync_sync_cnt",
465 		"zfs_immediate_write_sz",
466 		"zfs_indirect_condense_obsolete_pct",
467 		"zfs_lua_check_instrlimit_interval",
468 		"zfs_lua_max_instrlimit",
469 		"zfs_lua_max_memlimit",
470 		"zfs_max_recordsize",
471 		"zfs_mdcomp_disable",
472 		"zfs_metaslab_condense_block_threshold",
473 		"zfs_metaslab_fragmentation_threshold",
474 		"zfs_metaslab_segment_weight_enabled",
475 		"zfs_metaslab_switch_threshold",
476 		"zfs_mg_fragmentation_threshold",
477 		"zfs_mg_noalloc_threshold",
478 		"zfs_multilist_num_sublists",
479 		"zfs_no_scrub_io",
480 		"zfs_no_scrub_prefetch",
481 		"zfs_nocacheflush",
482 		"zfs_nopwrite_enabled",
483 		"zfs_object_remap_one_indirect_delay_ticks",
484 		"zfs_obsolete_min_time_ms",
485 		"zfs_pd_bytes_max",
486 		"zfs_per_txg_dirty_frees_percent",
487 		"zfs_prefetch_disable",
488 		"zfs_read_chunk_size",
489 		"zfs_recover",
490 		"zfs_recv_queue_length",
491 		"zfs_redundant_metadata_most_ditto_level",
492 		"zfs_remap_blkptr_enable",
493 		"zfs_remove_max_copy_bytes",
494 		"zfs_remove_max_segment",
495 		"zfs_resilver_min_time_ms",
496 		"zfs_scan_min_time_ms",
497 		"zfs_scrub_limit",
498 		"zfs_send_corrupt_data",
499 		"zfs_send_queue_length",
500 		"zfs_send_set_freerecords_bit",
501 		"zfs_sync_pass_deferred_free",
502 		"zfs_sync_pass_dont_compress",
503 		"zfs_sync_pass_rewrite",
504 		"zfs_sync_taskq_batch_pct",
505 		"zfs_top_maxinflight",
506 		"zfs_txg_timeout",
507 		"zfs_vdev_aggregation_limit",
508 		"zfs_vdev_async_read_max_active",
509 		"zfs_vdev_async_read_min_active",
510 		"zfs_vdev_async_write_active_max_dirty_percent",
511 		"zfs_vdev_async_write_active_min_dirty_percent",
512 		"zfs_vdev_async_write_max_active",
513 		"zfs_vdev_async_write_min_active",
514 		"zfs_vdev_cache_bshift",
515 		"zfs_vdev_cache_max",
516 		"zfs_vdev_cache_size",
517 		"zfs_vdev_max_active",
518 		"zfs_vdev_queue_depth_pct",
519 		"zfs_vdev_read_gap_limit",
520 		"zfs_vdev_removal_max_active",
521 		"zfs_vdev_removal_min_active",
522 		"zfs_vdev_scrub_max_active",
523 		"zfs_vdev_scrub_min_active",
524 		"zfs_vdev_sync_read_max_active",
525 		"zfs_vdev_sync_read_min_active",
526 		"zfs_vdev_sync_write_max_active",
527 		"zfs_vdev_sync_write_min_active",
528 		"zfs_vdev_write_gap_limit",
529 		"zfs_write_implies_delete_child",
530 		"zfs_zil_clean_taskq_maxalloc",
531 		"zfs_zil_clean_taskq_minalloc",
532 		"zfs_zil_clean_taskq_nthr_pct",
533 		"zil_replay_disable",
534 		"zil_slog_bulk",
535 		"zio_buf_debug_limit",
536 		"zio_dva_throttle_enabled",
537 		"zio_injection_enabled",
538 		"zvol_immediate_write_sz",
539 		"zvol_maxphys",
540 		"zvol_unmap_enabled",
541 		"zvol_unmap_sync_enabled",
542 		"zfs_max_dataset_nesting",
543 	};
544 
545 	for (int i = 0; i < sizeof (params) / sizeof (params[0]); i++) {
546 		int sz;
547 		uint64_t val64;
548 		uint32_t *val32p = (uint32_t *)&val64;
549 
550 		sz = mdb_readvar(&val64, params[i]);
551 		if (sz == 4) {
552 			mdb_printf("%s = 0x%x\n", params[i], *val32p);
553 		} else if (sz == 8) {
554 			mdb_printf("%s = 0x%llx\n", params[i], val64);
555 		} else {
556 			mdb_warn("variable %s not found", params[i]);
557 		}
558 	}
559 
560 	return (DCMD_OK);
561 }
562 
563 /* ARGSUSED */
564 static int
dva(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)565 dva(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
566 {
567 	dva_t dva;
568 	if (mdb_vread(&dva, sizeof (dva_t), addr) == -1) {
569 		mdb_warn("failed to read dva_t");
570 		return (DCMD_ERR);
571 	}
572 	mdb_printf("<%llu:%llx:%llx>\n",
573 	    (u_longlong_t)DVA_GET_VDEV(&dva),
574 	    (u_longlong_t)DVA_GET_OFFSET(&dva),
575 	    (u_longlong_t)DVA_GET_ASIZE(&dva));
576 
577 	return (DCMD_OK);
578 }
579 
580 typedef struct mdb_dmu_object_type_info {
581 	boolean_t ot_encrypt;
582 } mdb_dmu_object_type_info_t;
583 
584 static boolean_t
mdb_dmu_ot_is_encrypted_impl(dmu_object_type_t ot)585 mdb_dmu_ot_is_encrypted_impl(dmu_object_type_t ot)
586 {
587 	mdb_dmu_object_type_info_t mdoti;
588 	GElf_Sym sym;
589 	size_t sz = mdb_ctf_sizeof_by_name("dmu_object_type_info_t");
590 
591 	if (mdb_lookup_by_obj(ZFS_OBJ_NAME, "dmu_ot", &sym)) {
592 		mdb_warn("failed to find " ZFS_OBJ_NAME "`dmu_ot");
593 		return (B_FALSE);
594 	}
595 
596 	if (mdb_ctf_vread(&mdoti, "dmu_object_type_info_t",
597 	    "mdb_dmu_object_type_info_t", sym.st_value + sz * ot, 0) != 0) {
598 		return (B_FALSE);
599 	}
600 
601 	return (mdoti.ot_encrypt);
602 }
603 
604 /* ARGSUSED */
605 static int
blkptr(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)606 blkptr(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
607 {
608 	char type[80], checksum[80], compress[80];
609 	blkptr_t blk, *bp = &blk;
610 	char buf[BP_SPRINTF_LEN];
611 
612 	if (mdb_vread(&blk, sizeof (blkptr_t), addr) == -1) {
613 		mdb_warn("failed to read blkptr_t");
614 		return (DCMD_ERR);
615 	}
616 
617 	if (enum_lookup("enum dmu_object_type", BP_GET_TYPE(bp), "DMU_OT_",
618 	    sizeof (type), type) == -1 ||
619 	    enum_lookup("enum zio_checksum", BP_GET_CHECKSUM(bp),
620 	    "ZIO_CHECKSUM_", sizeof (checksum), checksum) == -1 ||
621 	    enum_lookup("enum zio_compress", BP_GET_COMPRESS(bp),
622 	    "ZIO_COMPRESS_", sizeof (compress), compress) == -1) {
623 		mdb_warn("Could not find blkptr enumerated types");
624 		return (DCMD_ERR);
625 	}
626 
627 	SNPRINTF_BLKPTR(mdb_snprintf, '\n', buf, sizeof (buf), bp, type,
628 	    checksum, compress);
629 
630 	mdb_printf("%s\n", buf);
631 
632 	return (DCMD_OK);
633 }
634 
635 typedef struct mdb_dmu_buf_impl {
636 	struct {
637 		uint64_t db_object;
638 		uintptr_t db_data;
639 	} db;
640 	uintptr_t db_objset;
641 	uint64_t db_level;
642 	uint64_t db_blkid;
643 	struct {
644 		uint64_t rc_count;
645 	} db_holds;
646 } mdb_dmu_buf_impl_t;
647 
648 /* ARGSUSED */
649 static int
dbuf(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)650 dbuf(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
651 {
652 	mdb_dmu_buf_impl_t db;
653 	char objectname[32];
654 	char blkidname[32];
655 	char path[ZFS_MAX_DATASET_NAME_LEN];
656 	int ptr_width = (int)(sizeof (void *)) * 2;
657 
658 	if (DCMD_HDRSPEC(flags))
659 		mdb_printf("%*s %8s %3s %9s %5s %s\n",
660 		    ptr_width, "addr", "object", "lvl", "blkid", "holds", "os");
661 
662 	if (mdb_ctf_vread(&db, ZFS_STRUCT "dmu_buf_impl", "mdb_dmu_buf_impl_t",
663 	    addr, 0) == -1)
664 		return (DCMD_ERR);
665 
666 	if (db.db.db_object == DMU_META_DNODE_OBJECT)
667 		(void) strcpy(objectname, "mdn");
668 	else
669 		(void) mdb_snprintf(objectname, sizeof (objectname), "%llx",
670 		    (u_longlong_t)db.db.db_object);
671 
672 	if (db.db_blkid == DMU_BONUS_BLKID)
673 		(void) strcpy(blkidname, "bonus");
674 	else
675 		(void) mdb_snprintf(blkidname, sizeof (blkidname), "%llx",
676 		    (u_longlong_t)db.db_blkid);
677 
678 	if (objset_name(db.db_objset, path)) {
679 		return (DCMD_ERR);
680 	}
681 
682 	mdb_printf("%*p %8s %3u %9s %5llu %s\n", ptr_width, addr,
683 	    objectname, (int)db.db_level, blkidname,
684 	    db.db_holds.rc_count, path);
685 
686 	return (DCMD_OK);
687 }
688 
689 /* ARGSUSED */
690 static int
dbuf_stats(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)691 dbuf_stats(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
692 {
693 #define	HISTOSZ 32
694 	uintptr_t dbp;
695 	dmu_buf_impl_t db;
696 	dbuf_hash_table_t ht;
697 	uint64_t bucket, ndbufs;
698 	uint64_t histo[HISTOSZ];
699 	uint64_t histo2[HISTOSZ];
700 	int i, maxidx;
701 
702 	if (mdb_readvar(&ht, "dbuf_hash_table") == -1) {
703 		mdb_warn("failed to read 'dbuf_hash_table'");
704 		return (DCMD_ERR);
705 	}
706 
707 	for (i = 0; i < HISTOSZ; i++) {
708 		histo[i] = 0;
709 		histo2[i] = 0;
710 	}
711 
712 	ndbufs = 0;
713 	for (bucket = 0; bucket < ht.hash_table_mask+1; bucket++) {
714 		int len;
715 
716 		if (mdb_vread(&dbp, sizeof (void *),
717 		    (uintptr_t)(ht.hash_table+bucket)) == -1) {
718 			mdb_warn("failed to read hash bucket %u at %p",
719 			    bucket, ht.hash_table+bucket);
720 			return (DCMD_ERR);
721 		}
722 
723 		len = 0;
724 		while (dbp != 0) {
725 			if (mdb_vread(&db, sizeof (dmu_buf_impl_t),
726 			    dbp) == -1) {
727 				mdb_warn("failed to read dbuf at %p", dbp);
728 				return (DCMD_ERR);
729 			}
730 			dbp = (uintptr_t)db.db_hash_next;
731 			for (i = MIN(len, HISTOSZ - 1); i >= 0; i--)
732 				histo2[i]++;
733 			len++;
734 			ndbufs++;
735 		}
736 
737 		if (len >= HISTOSZ)
738 			len = HISTOSZ-1;
739 		histo[len]++;
740 	}
741 
742 	mdb_printf("hash table has %llu buckets, %llu dbufs "
743 	    "(avg %llu buckets/dbuf)\n",
744 	    ht.hash_table_mask+1, ndbufs,
745 	    (ht.hash_table_mask+1)/ndbufs);
746 
747 	mdb_printf("\n");
748 	maxidx = 0;
749 	for (i = 0; i < HISTOSZ; i++)
750 		if (histo[i] > 0)
751 			maxidx = i;
752 	mdb_printf("hash chain length	number of buckets\n");
753 	for (i = 0; i <= maxidx; i++)
754 		mdb_printf("%u			%llu\n", i, histo[i]);
755 
756 	mdb_printf("\n");
757 	maxidx = 0;
758 	for (i = 0; i < HISTOSZ; i++)
759 		if (histo2[i] > 0)
760 			maxidx = i;
761 	mdb_printf("hash chain depth	number of dbufs\n");
762 	for (i = 0; i <= maxidx; i++)
763 		mdb_printf("%u or more		%llu	%llu%%\n",
764 		    i, histo2[i], histo2[i]*100/ndbufs);
765 
766 
767 	return (DCMD_OK);
768 }
769 
770 #define	CHAIN_END 0xffff
771 /*
772  * ::zap_leaf [-v]
773  *
774  * Print a zap_leaf_phys_t, assumed to be 16k
775  */
776 /* ARGSUSED */
777 static int
zap_leaf(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)778 zap_leaf(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
779 {
780 	char buf[16*1024];
781 	int verbose = B_FALSE;
782 	int four = B_FALSE;
783 	dmu_buf_t l_dbuf;
784 	zap_leaf_t l;
785 	zap_leaf_phys_t *zlp = (void *)buf;
786 	int i;
787 
788 	if (mdb_getopts(argc, argv,
789 	    'v', MDB_OPT_SETBITS, TRUE, &verbose,
790 	    '4', MDB_OPT_SETBITS, TRUE, &four,
791 	    NULL) != argc)
792 		return (DCMD_USAGE);
793 
794 	l_dbuf.db_data = zlp;
795 	l.l_dbuf = &l_dbuf;
796 	l.l_bs = 14; /* assume 16k blocks */
797 	if (four)
798 		l.l_bs = 12;
799 
800 	if (!(flags & DCMD_ADDRSPEC)) {
801 		return (DCMD_USAGE);
802 	}
803 
804 	if (mdb_vread(buf, sizeof (buf), addr) == -1) {
805 		mdb_warn("failed to read zap_leaf_phys_t at %p", addr);
806 		return (DCMD_ERR);
807 	}
808 
809 	if (zlp->l_hdr.lh_block_type != ZBT_LEAF ||
810 	    zlp->l_hdr.lh_magic != ZAP_LEAF_MAGIC) {
811 		mdb_warn("This does not appear to be a zap_leaf_phys_t");
812 		return (DCMD_ERR);
813 	}
814 
815 	mdb_printf("zap_leaf_phys_t at %p:\n", addr);
816 	mdb_printf("    lh_prefix_len = %u\n", zlp->l_hdr.lh_prefix_len);
817 	mdb_printf("    lh_prefix = %llx\n", zlp->l_hdr.lh_prefix);
818 	mdb_printf("    lh_nentries = %u\n", zlp->l_hdr.lh_nentries);
819 	mdb_printf("    lh_nfree = %u\n", zlp->l_hdr.lh_nfree,
820 	    zlp->l_hdr.lh_nfree * 100 / (ZAP_LEAF_NUMCHUNKS(&l)));
821 	mdb_printf("    lh_freelist = %u\n", zlp->l_hdr.lh_freelist);
822 	mdb_printf("    lh_flags = %x (%s)\n", zlp->l_hdr.lh_flags,
823 	    zlp->l_hdr.lh_flags & ZLF_ENTRIES_CDSORTED ?
824 	    "ENTRIES_CDSORTED" : "");
825 
826 	if (verbose) {
827 		mdb_printf(" hash table:\n");
828 		for (i = 0; i < ZAP_LEAF_HASH_NUMENTRIES(&l); i++) {
829 			if (zlp->l_hash[i] != CHAIN_END)
830 				mdb_printf("    %u: %u\n", i, zlp->l_hash[i]);
831 		}
832 	}
833 
834 	mdb_printf(" chunks:\n");
835 	for (i = 0; i < ZAP_LEAF_NUMCHUNKS(&l); i++) {
836 		/* LINTED: alignment */
837 		zap_leaf_chunk_t *zlc = &ZAP_LEAF_CHUNK(&l, i);
838 		switch (zlc->l_entry.le_type) {
839 		case ZAP_CHUNK_FREE:
840 			if (verbose) {
841 				mdb_printf("    %u: free; lf_next = %u\n",
842 				    i, zlc->l_free.lf_next);
843 			}
844 			break;
845 		case ZAP_CHUNK_ENTRY:
846 			mdb_printf("    %u: entry\n", i);
847 			if (verbose) {
848 				mdb_printf("        le_next = %u\n",
849 				    zlc->l_entry.le_next);
850 			}
851 			mdb_printf("        le_name_chunk = %u\n",
852 			    zlc->l_entry.le_name_chunk);
853 			mdb_printf("        le_name_numints = %u\n",
854 			    zlc->l_entry.le_name_numints);
855 			mdb_printf("        le_value_chunk = %u\n",
856 			    zlc->l_entry.le_value_chunk);
857 			mdb_printf("        le_value_intlen = %u\n",
858 			    zlc->l_entry.le_value_intlen);
859 			mdb_printf("        le_value_numints = %u\n",
860 			    zlc->l_entry.le_value_numints);
861 			mdb_printf("        le_cd = %u\n",
862 			    zlc->l_entry.le_cd);
863 			mdb_printf("        le_hash = %llx\n",
864 			    zlc->l_entry.le_hash);
865 			break;
866 		case ZAP_CHUNK_ARRAY:
867 			mdb_printf("    %u: array", i);
868 			if (strisprint((char *)zlc->l_array.la_array))
869 				mdb_printf(" \"%s\"", zlc->l_array.la_array);
870 			mdb_printf("\n");
871 			if (verbose) {
872 				int j;
873 				mdb_printf("        ");
874 				for (j = 0; j < ZAP_LEAF_ARRAY_BYTES; j++) {
875 					mdb_printf("%02x ",
876 					    zlc->l_array.la_array[j]);
877 				}
878 				mdb_printf("\n");
879 			}
880 			if (zlc->l_array.la_next != CHAIN_END) {
881 				mdb_printf("        lf_next = %u\n",
882 				    zlc->l_array.la_next);
883 			}
884 			break;
885 		default:
886 			mdb_printf("    %u: undefined type %u\n",
887 			    zlc->l_entry.le_type);
888 		}
889 	}
890 
891 	return (DCMD_OK);
892 }
893 
894 typedef struct dbufs_data {
895 	mdb_ctf_id_t id;
896 	uint64_t objset;
897 	uint64_t object;
898 	uint64_t level;
899 	uint64_t blkid;
900 	char *osname;
901 } dbufs_data_t;
902 
903 #define	DBUFS_UNSET	(0xbaddcafedeadbeefULL)
904 
905 /* ARGSUSED */
906 static int
dbufs_cb(uintptr_t addr,const void * unknown,void * arg)907 dbufs_cb(uintptr_t addr, const void *unknown, void *arg)
908 {
909 	dbufs_data_t *data = arg;
910 	uintptr_t objset;
911 	dmu_buf_t db;
912 	uint8_t level;
913 	uint64_t blkid;
914 	char osname[ZFS_MAX_DATASET_NAME_LEN];
915 
916 	if (GETMEMBID(addr, &data->id, db_objset, objset) ||
917 	    GETMEMBID(addr, &data->id, db, db) ||
918 	    GETMEMBID(addr, &data->id, db_level, level) ||
919 	    GETMEMBID(addr, &data->id, db_blkid, blkid)) {
920 		return (WALK_ERR);
921 	}
922 
923 	if ((data->objset == DBUFS_UNSET || data->objset == objset) &&
924 	    (data->osname == NULL || (objset_name(objset, osname) == 0 &&
925 	    strcmp(data->osname, osname) == 0)) &&
926 	    (data->object == DBUFS_UNSET || data->object == db.db_object) &&
927 	    (data->level == DBUFS_UNSET || data->level == level) &&
928 	    (data->blkid == DBUFS_UNSET || data->blkid == blkid)) {
929 		mdb_printf("%#lr\n", addr);
930 	}
931 	return (WALK_NEXT);
932 }
933 
934 /* ARGSUSED */
935 static int
dbufs(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)936 dbufs(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
937 {
938 	dbufs_data_t data;
939 	char *object = NULL;
940 	char *blkid = NULL;
941 
942 	data.objset = data.object = data.level = data.blkid = DBUFS_UNSET;
943 	data.osname = NULL;
944 
945 	if (mdb_getopts(argc, argv,
946 	    'O', MDB_OPT_UINT64, &data.objset,
947 	    'n', MDB_OPT_STR, &data.osname,
948 	    'o', MDB_OPT_STR, &object,
949 	    'l', MDB_OPT_UINT64, &data.level,
950 	    'b', MDB_OPT_STR, &blkid,
951 	    NULL) != argc) {
952 		return (DCMD_USAGE);
953 	}
954 
955 	if (object) {
956 		if (strcmp(object, "mdn") == 0) {
957 			data.object = DMU_META_DNODE_OBJECT;
958 		} else {
959 			data.object = mdb_strtoull(object);
960 		}
961 	}
962 
963 	if (blkid) {
964 		if (strcmp(blkid, "bonus") == 0) {
965 			data.blkid = DMU_BONUS_BLKID;
966 		} else {
967 			data.blkid = mdb_strtoull(blkid);
968 		}
969 	}
970 
971 	if (mdb_ctf_lookup_by_name(ZFS_STRUCT "dmu_buf_impl", &data.id) == -1) {
972 		mdb_warn("couldn't find struct dmu_buf_impl_t");
973 		return (DCMD_ERR);
974 	}
975 
976 	if (mdb_walk("dmu_buf_impl_t", dbufs_cb, &data) != 0) {
977 		mdb_warn("can't walk dbufs");
978 		return (DCMD_ERR);
979 	}
980 
981 	return (DCMD_OK);
982 }
983 
984 typedef struct abuf_find_data {
985 	dva_t dva;
986 	mdb_ctf_id_t id;
987 } abuf_find_data_t;
988 
989 /* ARGSUSED */
990 static int
abuf_find_cb(uintptr_t addr,const void * unknown,void * arg)991 abuf_find_cb(uintptr_t addr, const void *unknown, void *arg)
992 {
993 	abuf_find_data_t *data = arg;
994 	dva_t dva;
995 
996 	if (GETMEMBID(addr, &data->id, b_dva, dva)) {
997 		return (WALK_ERR);
998 	}
999 
1000 	if (dva.dva_word[0] == data->dva.dva_word[0] &&
1001 	    dva.dva_word[1] == data->dva.dva_word[1]) {
1002 		mdb_printf("%#lr\n", addr);
1003 	}
1004 	return (WALK_NEXT);
1005 }
1006 
1007 typedef struct mdb_arc_state {
1008 	uintptr_t	arcs_list[ARC_BUFC_NUMTYPES];
1009 } mdb_arc_state_t;
1010 
1011 /* ARGSUSED */
1012 static int
abuf_find(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)1013 abuf_find(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1014 {
1015 	abuf_find_data_t data;
1016 	GElf_Sym sym;
1017 	int i, j;
1018 	const char *syms[] = {
1019 		"ARC_mru",
1020 		"ARC_mru_ghost",
1021 		"ARC_mfu",
1022 		"ARC_mfu_ghost",
1023 	};
1024 
1025 	if (argc != 2)
1026 		return (DCMD_USAGE);
1027 
1028 	for (i = 0; i < 2; i ++) {
1029 		switch (argv[i].a_type) {
1030 		case MDB_TYPE_STRING:
1031 			data.dva.dva_word[i] = mdb_strtoull(argv[i].a_un.a_str);
1032 			break;
1033 		case MDB_TYPE_IMMEDIATE:
1034 			data.dva.dva_word[i] = argv[i].a_un.a_val;
1035 			break;
1036 		default:
1037 			return (DCMD_USAGE);
1038 		}
1039 	}
1040 
1041 	if (mdb_ctf_lookup_by_name(ZFS_STRUCT "arc_buf_hdr", &data.id) == -1) {
1042 		mdb_warn("couldn't find struct arc_buf_hdr");
1043 		return (DCMD_ERR);
1044 	}
1045 
1046 	for (i = 0; i < sizeof (syms) / sizeof (syms[0]); i++) {
1047 		mdb_arc_state_t mas;
1048 
1049 		if (mdb_lookup_by_obj(ZFS_OBJ_NAME, syms[i], &sym)) {
1050 			mdb_warn("can't find symbol %s", syms[i]);
1051 			return (DCMD_ERR);
1052 		}
1053 
1054 		if (mdb_ctf_vread(&mas, "arc_state_t", "mdb_arc_state_t",
1055 		    sym.st_value, 0) != 0) {
1056 			mdb_warn("can't read arcs_list of %s", syms[i]);
1057 			return (DCMD_ERR);
1058 		}
1059 
1060 		for (j = 0; j < ARC_BUFC_NUMTYPES; j++) {
1061 			uintptr_t addr = mas.arcs_list[j];
1062 
1063 			if (addr == 0)
1064 				continue;
1065 
1066 			if (mdb_pwalk("multilist", abuf_find_cb, &data,
1067 			    addr) != 0) {
1068 				mdb_warn("can't walk %s", syms[i]);
1069 				return (DCMD_ERR);
1070 			}
1071 		}
1072 	}
1073 
1074 	return (DCMD_OK);
1075 }
1076 
1077 typedef struct dbgmsg_arg {
1078 	boolean_t da_address;
1079 	boolean_t da_hrtime;
1080 	boolean_t da_timedelta;
1081 	boolean_t da_time;
1082 	boolean_t da_whatis;
1083 
1084 	hrtime_t da_curtime;
1085 } dbgmsg_arg_t;
1086 
1087 static int
dbgmsg_cb(uintptr_t addr,const void * unknown __unused,void * arg)1088 dbgmsg_cb(uintptr_t addr, const void *unknown __unused, void *arg)
1089 {
1090 	static mdb_ctf_id_t id;
1091 	static boolean_t gotid;
1092 	static ulong_t off;
1093 
1094 	dbgmsg_arg_t *da = arg;
1095 	time_t timestamp;
1096 	hrtime_t hrtime;
1097 	char buf[1024];
1098 
1099 	if (!gotid) {
1100 		if (mdb_ctf_lookup_by_name(ZFS_STRUCT "zfs_dbgmsg", &id) ==
1101 		    -1) {
1102 			mdb_warn("couldn't find struct zfs_dbgmsg");
1103 			return (WALK_ERR);
1104 		}
1105 		gotid = TRUE;
1106 		if (mdb_ctf_offsetof(id, "zdm_msg", &off) == -1) {
1107 			mdb_warn("couldn't find zdm_msg");
1108 			return (WALK_ERR);
1109 		}
1110 		off /= 8;
1111 	}
1112 
1113 	if (GETMEMBID(addr, &id, zdm_timestamp, timestamp)) {
1114 		return (WALK_ERR);
1115 	}
1116 
1117 	if (da->da_hrtime || da->da_timedelta) {
1118 		if (GETMEMBID(addr, &id, zdm_hrtime, hrtime)) {
1119 			return (WALK_ERR);
1120 		}
1121 	}
1122 
1123 	if (mdb_readstr(buf, sizeof (buf), addr + off) == -1) {
1124 		mdb_warn("failed to read zdm_msg at %p\n", addr + off);
1125 		return (DCMD_ERR);
1126 	}
1127 
1128 	if (da->da_address)
1129 		mdb_printf("%p ", addr);
1130 
1131 	if (da->da_timedelta) {
1132 		int64_t		diff;
1133 		char		dbuf[32] = { 0 };
1134 
1135 		if (da->da_curtime == 0)
1136 			da->da_curtime = mdb_gethrtime();
1137 
1138 		diff = (int64_t)hrtime - da->da_curtime;
1139 		mdb_nicetime(diff, dbuf, sizeof (dbuf));
1140 		mdb_printf("%-20s ", dbuf);
1141 	} else if (da->da_hrtime) {
1142 		mdb_printf("%016x ", hrtime);
1143 	} else if (da->da_time) {
1144 		mdb_printf("%Y ", timestamp);
1145 	}
1146 
1147 	mdb_printf("%s\n", buf);
1148 
1149 	if (da->da_whatis)
1150 		(void) mdb_call_dcmd("whatis", addr, DCMD_ADDRSPEC, 0, NULL);
1151 
1152 	return (WALK_NEXT);
1153 }
1154 
1155 static int
dbgmsg(uintptr_t addr,uint_t flags __unused,int argc,const mdb_arg_t * argv)1156 dbgmsg(uintptr_t addr, uint_t flags __unused, int argc, const mdb_arg_t *argv)
1157 {
1158 	GElf_Sym sym;
1159 	dbgmsg_arg_t da = { 0 };
1160 	boolean_t verbose = B_FALSE;
1161 
1162 	if (mdb_getopts(argc, argv,
1163 	    'a', MDB_OPT_SETBITS, B_TRUE, &da.da_address,
1164 	    'r', MDB_OPT_SETBITS, B_TRUE, &da.da_hrtime,
1165 	    't', MDB_OPT_SETBITS, B_TRUE, &da.da_timedelta,
1166 	    'T', MDB_OPT_SETBITS, B_TRUE, &da.da_time,
1167 	    'v', MDB_OPT_SETBITS, B_TRUE, &verbose,
1168 	    'w', MDB_OPT_SETBITS, B_TRUE, &da.da_whatis,
1169 	    NULL) != argc) {
1170 		return (DCMD_USAGE);
1171 	}
1172 
1173 	if (verbose)
1174 		da.da_address = da.da_time = B_TRUE;
1175 
1176 	if (mdb_lookup_by_obj(ZFS_OBJ_NAME, "zfs_dbgmsgs", &sym)) {
1177 		mdb_warn("can't find zfs_dbgmsgs");
1178 		return (DCMD_ERR);
1179 	}
1180 
1181 	if (mdb_pwalk("list", dbgmsg_cb, &da, sym.st_value) != 0) {
1182 		mdb_warn("can't walk zfs_dbgmsgs");
1183 		return (DCMD_ERR);
1184 	}
1185 
1186 	return (DCMD_OK);
1187 }
1188 
1189 
1190 static void
dbgmsg_help(void)1191 dbgmsg_help(void)
1192 {
1193 	mdb_printf("Print entries from the ZFS debug log.\n\n"
1194 	    "%<b>OPTIONS%</b>\n"
1195 	    "\t-a\tInclude the address of each zfs_dbgmsg_t.\n"
1196 	    "\t-r\tDisplay high-resolution timestamps.\n"
1197 	    "\t-t\tInclude the age of the message.\n"
1198 	    "\t-T\tInclude the date/time of the message.\n"
1199 	    "\t-v\tEquivalent to -aT.\n"
1200 	    "\t-w\tRun ::whatis on each zfs_dbgmsg_t. Useful in DEBUG kernels\n"
1201 	    "\t\tto show the origin of the message.\n");
1202 }
1203 
1204 /*ARGSUSED*/
1205 static int
arc_print(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)1206 arc_print(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1207 {
1208 	kstat_named_t *stats;
1209 	GElf_Sym sym;
1210 	int nstats, i;
1211 	uint_t opt_a = FALSE;
1212 	uint_t opt_b = FALSE;
1213 	uint_t shift = 0;
1214 	const char *suffix;
1215 
1216 	static const char *bytestats[] = {
1217 		"p", "c", "c_min", "c_max", "size", "duplicate_buffers_size",
1218 		"arc_meta_used", "arc_meta_limit", "arc_meta_max",
1219 		"arc_meta_min", "hdr_size", "data_size", "metadata_size",
1220 		"other_size", "anon_size", "anon_evictable_data",
1221 		"anon_evictable_metadata", "mru_size", "mru_evictable_data",
1222 		"mru_evictable_metadata", "mru_ghost_size",
1223 		"mru_ghost_evictable_data", "mru_ghost_evictable_metadata",
1224 		"mfu_size", "mfu_evictable_data", "mfu_evictable_metadata",
1225 		"mfu_ghost_size", "mfu_ghost_evictable_data",
1226 		"mfu_ghost_evictable_metadata", "evict_l2_cached",
1227 		"evict_l2_eligible", "evict_l2_ineligible", "l2_read_bytes",
1228 		"l2_write_bytes", "l2_size", "l2_asize", "l2_hdr_size",
1229 		"compressed_size", "uncompressed_size", "overhead_size",
1230 		NULL
1231 	};
1232 
1233 	static const char *extras[] = {
1234 		"arc_no_grow", "arc_tempreserve",
1235 		NULL
1236 	};
1237 
1238 	if (mdb_lookup_by_obj(ZFS_OBJ_NAME, "arc_stats", &sym) == -1) {
1239 		mdb_warn("failed to find 'arc_stats'");
1240 		return (DCMD_ERR);
1241 	}
1242 
1243 	stats = mdb_zalloc(sym.st_size, UM_SLEEP | UM_GC);
1244 
1245 	if (mdb_vread(stats, sym.st_size, sym.st_value) == -1) {
1246 		mdb_warn("couldn't read 'arc_stats' at %p", sym.st_value);
1247 		return (DCMD_ERR);
1248 	}
1249 
1250 	nstats = sym.st_size / sizeof (kstat_named_t);
1251 
1252 	/* NB: -a / opt_a are ignored for backwards compatability */
1253 	if (mdb_getopts(argc, argv,
1254 	    'a', MDB_OPT_SETBITS, TRUE, &opt_a,
1255 	    'b', MDB_OPT_SETBITS, TRUE, &opt_b,
1256 	    'k', MDB_OPT_SETBITS, 10, &shift,
1257 	    'm', MDB_OPT_SETBITS, 20, &shift,
1258 	    'g', MDB_OPT_SETBITS, 30, &shift,
1259 	    NULL) != argc)
1260 		return (DCMD_USAGE);
1261 
1262 	if (!opt_b && !shift)
1263 		shift = 20;
1264 
1265 	switch (shift) {
1266 	case 0:
1267 		suffix = "B";
1268 		break;
1269 	case 10:
1270 		suffix = "KB";
1271 		break;
1272 	case 20:
1273 		suffix = "MB";
1274 		break;
1275 	case 30:
1276 		suffix = "GB";
1277 		break;
1278 	default:
1279 		suffix = "XX";
1280 	}
1281 
1282 	for (i = 0; i < nstats; i++) {
1283 		int j;
1284 		boolean_t bytes = B_FALSE;
1285 
1286 		for (j = 0; bytestats[j]; j++) {
1287 			if (strcmp(stats[i].name, bytestats[j]) == 0) {
1288 				bytes = B_TRUE;
1289 				break;
1290 			}
1291 		}
1292 
1293 		if (bytes) {
1294 			mdb_printf("%-25s = %9llu %s\n", stats[i].name,
1295 			    stats[i].value.ui64 >> shift, suffix);
1296 		} else {
1297 			mdb_printf("%-25s = %9llu\n", stats[i].name,
1298 			    stats[i].value.ui64);
1299 		}
1300 	}
1301 
1302 	for (i = 0; extras[i]; i++) {
1303 		uint64_t buf;
1304 
1305 		if (mdb_lookup_by_obj(ZFS_OBJ_NAME, extras[i], &sym) == -1) {
1306 			mdb_warn("failed to find '%s'", extras[i]);
1307 			return (DCMD_ERR);
1308 		}
1309 
1310 		if (sym.st_size != sizeof (uint64_t) &&
1311 		    sym.st_size != sizeof (uint32_t)) {
1312 			mdb_warn("expected scalar for variable '%s'\n",
1313 			    extras[i]);
1314 			return (DCMD_ERR);
1315 		}
1316 
1317 		if (mdb_vread(&buf, sym.st_size, sym.st_value) == -1) {
1318 			mdb_warn("couldn't read '%s'", extras[i]);
1319 			return (DCMD_ERR);
1320 		}
1321 
1322 		mdb_printf("%-25s = ", extras[i]);
1323 
1324 		/* NB: all the 64-bit extras happen to be byte counts */
1325 		if (sym.st_size == sizeof (uint64_t))
1326 			mdb_printf("%9llu %s\n", buf >> shift, suffix);
1327 
1328 		if (sym.st_size == sizeof (uint32_t))
1329 			mdb_printf("%9d\n", *((uint32_t *)&buf));
1330 	}
1331 	return (DCMD_OK);
1332 }
1333 
1334 typedef struct mdb_spa_print {
1335 	pool_state_t spa_state;
1336 	char spa_name[ZFS_MAX_DATASET_NAME_LEN];
1337 	uintptr_t spa_normal_class;
1338 } mdb_spa_print_t;
1339 
1340 
1341 const char histo_stars[] = "****************************************";
1342 const int histo_width = sizeof (histo_stars) - 1;
1343 
1344 static void
dump_histogram(const uint64_t * histo,int size,int offset)1345 dump_histogram(const uint64_t *histo, int size, int offset)
1346 {
1347 	int i;
1348 	int minidx = size - 1;
1349 	int maxidx = 0;
1350 	uint64_t max = 0;
1351 
1352 	for (i = 0; i < size; i++) {
1353 		if (histo[i] > max)
1354 			max = histo[i];
1355 		if (histo[i] > 0 && i > maxidx)
1356 			maxidx = i;
1357 		if (histo[i] > 0 && i < minidx)
1358 			minidx = i;
1359 	}
1360 
1361 	if (max < histo_width)
1362 		max = histo_width;
1363 
1364 	for (i = minidx; i <= maxidx; i++) {
1365 		mdb_printf("%3u: %6llu %s\n",
1366 		    i + offset, (u_longlong_t)histo[i],
1367 		    &histo_stars[(max - histo[i]) * histo_width / max]);
1368 	}
1369 }
1370 
1371 typedef struct mdb_metaslab_class {
1372 	uint64_t mc_histogram[RANGE_TREE_HISTOGRAM_SIZE];
1373 } mdb_metaslab_class_t;
1374 
1375 /*
1376  * spa_class_histogram(uintptr_t class_addr)
1377  *
1378  * Prints free space histogram for a device class
1379  *
1380  * Returns DCMD_OK, or DCMD_ERR.
1381  */
1382 static int
spa_class_histogram(uintptr_t class_addr)1383 spa_class_histogram(uintptr_t class_addr)
1384 {
1385 	mdb_metaslab_class_t mc;
1386 	if (mdb_ctf_vread(&mc, "metaslab_class_t",
1387 	    "mdb_metaslab_class_t", class_addr, 0) == -1)
1388 		return (DCMD_ERR);
1389 
1390 	mdb_inc_indent(4);
1391 	dump_histogram(mc.mc_histogram, RANGE_TREE_HISTOGRAM_SIZE, 0);
1392 	mdb_dec_indent(4);
1393 	return (DCMD_OK);
1394 }
1395 
1396 /*
1397  * ::spa
1398  *
1399  *	-c	Print configuration information as well
1400  *	-v	Print vdev state
1401  *	-e	Print vdev error stats
1402  *	-m	Print vdev metaslab info
1403  *	-M	print vdev metaslab group info
1404  *	-h	Print histogram info (must be combined with -m or -M)
1405  *
1406  * Print a summarized spa_t.  When given no arguments, prints out a table of all
1407  * active pools on the system.
1408  */
1409 /* ARGSUSED */
1410 static int
spa_print(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)1411 spa_print(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1412 {
1413 	const char *statetab[] = { "ACTIVE", "EXPORTED", "DESTROYED",
1414 		"SPARE", "L2CACHE", "UNINIT", "UNAVAIL", "POTENTIAL" };
1415 	const char *state;
1416 	int spa_flags = 0;
1417 
1418 	if (mdb_getopts(argc, argv,
1419 	    'c', MDB_OPT_SETBITS, SPA_FLAG_CONFIG, &spa_flags,
1420 	    'v', MDB_OPT_SETBITS, SPA_FLAG_VDEVS, &spa_flags,
1421 	    'e', MDB_OPT_SETBITS, SPA_FLAG_ERRORS, &spa_flags,
1422 	    'M', MDB_OPT_SETBITS, SPA_FLAG_METASLAB_GROUPS, &spa_flags,
1423 	    'm', MDB_OPT_SETBITS, SPA_FLAG_METASLABS, &spa_flags,
1424 	    'h', MDB_OPT_SETBITS, SPA_FLAG_HISTOGRAMS, &spa_flags,
1425 	    NULL) != argc)
1426 		return (DCMD_USAGE);
1427 
1428 	if (!(flags & DCMD_ADDRSPEC)) {
1429 		if (mdb_walk_dcmd("spa", "spa", argc, argv) == -1) {
1430 			mdb_warn("can't walk spa");
1431 			return (DCMD_ERR);
1432 		}
1433 
1434 		return (DCMD_OK);
1435 	}
1436 
1437 	if (flags & DCMD_PIPE_OUT) {
1438 		mdb_printf("%#lr\n", addr);
1439 		return (DCMD_OK);
1440 	}
1441 
1442 	if (DCMD_HDRSPEC(flags))
1443 		mdb_printf("%<u>%-?s %9s %-*s%</u>\n", "ADDR", "STATE",
1444 		    sizeof (uintptr_t) == 4 ? 60 : 52, "NAME");
1445 
1446 	mdb_spa_print_t spa;
1447 	if (mdb_ctf_vread(&spa, "spa_t", "mdb_spa_print_t", addr, 0) == -1)
1448 		return (DCMD_ERR);
1449 
1450 	if (spa.spa_state < 0 || spa.spa_state > POOL_STATE_UNAVAIL)
1451 		state = "UNKNOWN";
1452 	else
1453 		state = statetab[spa.spa_state];
1454 
1455 	mdb_printf("%0?p %9s %s\n", addr, state, spa.spa_name);
1456 	if (spa_flags & SPA_FLAG_HISTOGRAMS)
1457 		spa_class_histogram(spa.spa_normal_class);
1458 
1459 	if (spa_flags & SPA_FLAG_CONFIG) {
1460 		mdb_printf("\n");
1461 		mdb_inc_indent(4);
1462 		if (mdb_call_dcmd("spa_config", addr, flags, 0,
1463 		    NULL) != DCMD_OK)
1464 			return (DCMD_ERR);
1465 		mdb_dec_indent(4);
1466 	}
1467 
1468 	if (spa_flags & SPA_FLAG_ALL_VDEV) {
1469 		mdb_arg_t v;
1470 		char opts[100] = "-";
1471 		int args =
1472 		    (spa_flags | SPA_FLAG_VDEVS) == SPA_FLAG_VDEVS ? 0 : 1;
1473 
1474 		if (spa_flags & SPA_FLAG_ERRORS)
1475 			strcat(opts, "e");
1476 		if (spa_flags & SPA_FLAG_METASLABS)
1477 			strcat(opts, "m");
1478 		if (spa_flags & SPA_FLAG_METASLAB_GROUPS)
1479 			strcat(opts, "M");
1480 		if (spa_flags & SPA_FLAG_HISTOGRAMS)
1481 			strcat(opts, "h");
1482 
1483 		v.a_type = MDB_TYPE_STRING;
1484 		v.a_un.a_str = opts;
1485 
1486 		mdb_printf("\n");
1487 		mdb_inc_indent(4);
1488 		if (mdb_call_dcmd("spa_vdevs", addr, flags, args,
1489 		    &v) != DCMD_OK)
1490 			return (DCMD_ERR);
1491 		mdb_dec_indent(4);
1492 	}
1493 
1494 	return (DCMD_OK);
1495 }
1496 
1497 typedef struct mdb_spa_config_spa {
1498 	uintptr_t spa_config;
1499 } mdb_spa_config_spa_t;
1500 
1501 /*
1502  * ::spa_config
1503  *
1504  * Given a spa_t, print the configuration information stored in spa_config.
1505  * Since it's just an nvlist, format it as an indented list of name=value pairs.
1506  * We simply read the value of spa_config and pass off to ::nvlist.
1507  */
1508 /* ARGSUSED */
1509 static int
spa_print_config(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)1510 spa_print_config(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1511 {
1512 	mdb_spa_config_spa_t spa;
1513 
1514 	if (argc != 0 || !(flags & DCMD_ADDRSPEC))
1515 		return (DCMD_USAGE);
1516 
1517 	if (mdb_ctf_vread(&spa, ZFS_STRUCT "spa", "mdb_spa_config_spa_t",
1518 	    addr, 0) == -1)
1519 		return (DCMD_ERR);
1520 
1521 	if (spa.spa_config == 0) {
1522 		mdb_printf("(none)\n");
1523 		return (DCMD_OK);
1524 	}
1525 
1526 	return (mdb_call_dcmd("nvlist", spa.spa_config, flags,
1527 	    0, NULL));
1528 }
1529 
1530 typedef struct mdb_range_tree {
1531 	struct {
1532 		uint64_t bt_num_elems;
1533 		uint64_t bt_num_nodes;
1534 	} rt_root;
1535 	uint64_t rt_space;
1536 	range_seg_type_t rt_type;
1537 	uint8_t		rt_shift;
1538 	uint64_t	rt_start;
1539 } mdb_range_tree_t;
1540 
1541 typedef struct mdb_metaslab_group {
1542 	uint64_t mg_fragmentation;
1543 	uint64_t mg_histogram[RANGE_TREE_HISTOGRAM_SIZE];
1544 	uintptr_t mg_vd;
1545 } mdb_metaslab_group_t;
1546 
1547 typedef struct mdb_metaslab {
1548 	uint64_t ms_id;
1549 	uint64_t ms_start;
1550 	uint64_t ms_size;
1551 	int64_t ms_deferspace;
1552 	uint64_t ms_fragmentation;
1553 	uint64_t ms_weight;
1554 	uintptr_t ms_allocating[TXG_SIZE];
1555 	uintptr_t ms_checkpointing;
1556 	uintptr_t ms_freeing;
1557 	uintptr_t ms_freed;
1558 	uintptr_t ms_allocatable;
1559 	uintptr_t ms_unflushed_frees;
1560 	uintptr_t ms_unflushed_allocs;
1561 	uintptr_t ms_sm;
1562 } mdb_metaslab_t;
1563 
1564 typedef struct mdb_space_map_phys_t {
1565 	int64_t smp_alloc;
1566 	uint64_t smp_histogram[SPACE_MAP_HISTOGRAM_SIZE];
1567 } mdb_space_map_phys_t;
1568 
1569 typedef struct mdb_space_map {
1570 	uint64_t sm_size;
1571 	uint8_t sm_shift;
1572 	uintptr_t sm_phys;
1573 } mdb_space_map_t;
1574 
1575 typedef struct mdb_vdev {
1576 	uint64_t vdev_id;
1577 	uint64_t vdev_state;
1578 	uintptr_t vdev_ops;
1579 	struct {
1580 		uint64_t vs_aux;
1581 		uint64_t vs_ops[VS_ZIO_TYPES];
1582 		uint64_t vs_bytes[VS_ZIO_TYPES];
1583 		uint64_t vs_read_errors;
1584 		uint64_t vs_write_errors;
1585 		uint64_t vs_checksum_errors;
1586 	} vdev_stat;
1587 	uintptr_t vdev_child;
1588 	uint64_t vdev_children;
1589 	uint64_t vdev_ms_count;
1590 	uintptr_t vdev_mg;
1591 	uintptr_t vdev_ms;
1592 	uintptr_t vdev_path;
1593 } mdb_vdev_t;
1594 
1595 typedef struct mdb_vdev_ops {
1596 	char vdev_op_type[16];
1597 } mdb_vdev_ops_t;
1598 
1599 static int
metaslab_stats(mdb_vdev_t * vd,int spa_flags)1600 metaslab_stats(mdb_vdev_t *vd, int spa_flags)
1601 {
1602 	mdb_inc_indent(4);
1603 	mdb_printf("%<u>%-?s %6s %20s %10s %10s %10s%</u>\n", "ADDR", "ID",
1604 	    "OFFSET", "FREE", "FRAG", "UCMU");
1605 
1606 	uintptr_t *vdev_ms = mdb_alloc(vd->vdev_ms_count * sizeof (vdev_ms),
1607 	    UM_SLEEP | UM_GC);
1608 	if (mdb_vread(vdev_ms, vd->vdev_ms_count * sizeof (uintptr_t),
1609 	    vd->vdev_ms) == -1) {
1610 		mdb_warn("failed to read vdev_ms at %p\n", vd->vdev_ms);
1611 		return (DCMD_ERR);
1612 	}
1613 
1614 	for (int m = 0; m < vd->vdev_ms_count; m++) {
1615 		mdb_metaslab_t ms;
1616 		mdb_space_map_t sm = { 0 };
1617 		mdb_space_map_phys_t smp = { 0 };
1618 		mdb_range_tree_t rt;
1619 		uint64_t uallocs, ufrees, raw_free, raw_uchanges_mem;
1620 		char free[MDB_NICENUM_BUFLEN];
1621 		char uchanges_mem[MDB_NICENUM_BUFLEN];
1622 
1623 		if (mdb_ctf_vread(&ms, "metaslab_t", "mdb_metaslab_t",
1624 		    vdev_ms[m], 0) == -1)
1625 			return (DCMD_ERR);
1626 
1627 		if (ms.ms_sm != 0 &&
1628 		    mdb_ctf_vread(&sm, "space_map_t", "mdb_space_map_t",
1629 		    ms.ms_sm, 0) == -1)
1630 			return (DCMD_ERR);
1631 
1632 		if (mdb_ctf_vread(&rt, "range_tree_t", "mdb_range_tree_t",
1633 		    ms.ms_unflushed_frees, 0) == -1)
1634 			return (DCMD_ERR);
1635 		ufrees = rt.rt_space;
1636 		raw_uchanges_mem = rt.rt_root.bt_num_nodes * BTREE_LEAF_SIZE;
1637 
1638 		if (mdb_ctf_vread(&rt, "range_tree_t", "mdb_range_tree_t",
1639 		    ms.ms_unflushed_allocs, 0) == -1)
1640 			return (DCMD_ERR);
1641 		uallocs = rt.rt_space;
1642 		raw_uchanges_mem += rt.rt_root.bt_num_nodes * BTREE_LEAF_SIZE;
1643 		mdb_nicenum(raw_uchanges_mem, uchanges_mem);
1644 
1645 		raw_free = ms.ms_size;
1646 		if (ms.ms_sm != 0 && sm.sm_phys != 0) {
1647 			(void) mdb_ctf_vread(&smp, "space_map_phys_t",
1648 			    "mdb_space_map_phys_t", sm.sm_phys, 0);
1649 			raw_free -= smp.smp_alloc;
1650 		}
1651 		raw_free += ufrees - uallocs;
1652 		mdb_nicenum(raw_free, free);
1653 
1654 		mdb_printf("%0?p %6llu %20llx %10s ", vdev_ms[m], ms.ms_id,
1655 		    ms.ms_start, free);
1656 		if (ms.ms_fragmentation == ZFS_FRAG_INVALID)
1657 			mdb_printf("%9s ", "-");
1658 		else
1659 			mdb_printf("%9llu%% ", ms.ms_fragmentation);
1660 		mdb_printf("%10s\n", uchanges_mem);
1661 
1662 		if ((spa_flags & SPA_FLAG_HISTOGRAMS) && ms.ms_sm != 0 &&
1663 		    sm.sm_phys != 0) {
1664 			dump_histogram(smp.smp_histogram,
1665 			    SPACE_MAP_HISTOGRAM_SIZE, sm.sm_shift);
1666 		}
1667 	}
1668 	mdb_dec_indent(4);
1669 	return (DCMD_OK);
1670 }
1671 
1672 static int
metaslab_group_stats(mdb_vdev_t * vd,int spa_flags)1673 metaslab_group_stats(mdb_vdev_t *vd, int spa_flags)
1674 {
1675 	mdb_metaslab_group_t mg;
1676 	if (mdb_ctf_vread(&mg, "metaslab_group_t", "mdb_metaslab_group_t",
1677 	    vd->vdev_mg, 0) == -1) {
1678 		mdb_warn("failed to read vdev_mg at %p\n", vd->vdev_mg);
1679 		return (DCMD_ERR);
1680 	}
1681 
1682 	mdb_inc_indent(4);
1683 	mdb_printf("%<u>%-?s %7s %9s%</u>\n", "ADDR", "FRAG", "UCMU");
1684 
1685 	if (mg.mg_fragmentation == ZFS_FRAG_INVALID)
1686 		mdb_printf("%0?p %6s\n", vd->vdev_mg, "-");
1687 	else
1688 		mdb_printf("%0?p %6llu%%", vd->vdev_mg, mg.mg_fragmentation);
1689 
1690 
1691 	uintptr_t *vdev_ms = mdb_alloc(vd->vdev_ms_count * sizeof (vdev_ms),
1692 	    UM_SLEEP | UM_GC);
1693 	if (mdb_vread(vdev_ms, vd->vdev_ms_count * sizeof (uintptr_t),
1694 	    vd->vdev_ms) == -1) {
1695 		mdb_warn("failed to read vdev_ms at %p\n", vd->vdev_ms);
1696 		return (DCMD_ERR);
1697 	}
1698 
1699 	uint64_t raw_uchanges_mem = 0;
1700 	char uchanges_mem[MDB_NICENUM_BUFLEN];
1701 	for (int m = 0; m < vd->vdev_ms_count; m++) {
1702 		mdb_metaslab_t ms;
1703 		mdb_range_tree_t rt;
1704 
1705 		if (mdb_ctf_vread(&ms, "metaslab_t", "mdb_metaslab_t",
1706 		    vdev_ms[m], 0) == -1)
1707 			return (DCMD_ERR);
1708 
1709 		if (mdb_ctf_vread(&rt, "range_tree_t", "mdb_range_tree_t",
1710 		    ms.ms_unflushed_frees, 0) == -1)
1711 			return (DCMD_ERR);
1712 		raw_uchanges_mem += rt.rt_root.bt_num_nodes * BTREE_LEAF_SIZE;
1713 
1714 		if (mdb_ctf_vread(&rt, "range_tree_t", "mdb_range_tree_t",
1715 		    ms.ms_unflushed_allocs, 0) == -1)
1716 			return (DCMD_ERR);
1717 		raw_uchanges_mem += rt.rt_root.bt_num_nodes * BTREE_LEAF_SIZE;
1718 	}
1719 	mdb_nicenum(raw_uchanges_mem, uchanges_mem);
1720 	mdb_printf("%10s\n", uchanges_mem);
1721 
1722 	if (spa_flags & SPA_FLAG_HISTOGRAMS)
1723 		dump_histogram(mg.mg_histogram, RANGE_TREE_HISTOGRAM_SIZE, 0);
1724 	mdb_dec_indent(4);
1725 	return (DCMD_OK);
1726 }
1727 
1728 /*
1729  * ::vdev
1730  *
1731  * Print out a summarized vdev_t, in the following form:
1732  *
1733  * ADDR             STATE	AUX            DESC
1734  * fffffffbcde23df0 HEALTHY	-              /dev/dsk/c0t0d0
1735  *
1736  * If '-r' is specified, recursively visit all children.
1737  *
1738  * With '-e', the statistics associated with the vdev are printed as well.
1739  */
1740 static int
do_print_vdev(uintptr_t addr,int flags,int depth,boolean_t recursive,int spa_flags)1741 do_print_vdev(uintptr_t addr, int flags, int depth, boolean_t recursive,
1742     int spa_flags)
1743 {
1744 	mdb_vdev_t vd;
1745 	if (mdb_ctf_vread(&vd, "vdev_t", "mdb_vdev_t",
1746 	    (uintptr_t)addr, 0) == -1)
1747 		return (DCMD_ERR);
1748 
1749 	if (flags & DCMD_PIPE_OUT) {
1750 		mdb_printf("%#lr\n", addr);
1751 	} else {
1752 		char desc[MAXNAMELEN];
1753 		if (vd.vdev_path != 0) {
1754 			if (mdb_readstr(desc, sizeof (desc),
1755 			    (uintptr_t)vd.vdev_path) == -1) {
1756 				mdb_warn("failed to read vdev_path at %p\n",
1757 				    vd.vdev_path);
1758 				return (DCMD_ERR);
1759 			}
1760 		} else if (vd.vdev_ops != 0) {
1761 			vdev_ops_t ops;
1762 			if (mdb_vread(&ops, sizeof (ops),
1763 			    (uintptr_t)vd.vdev_ops) == -1) {
1764 				mdb_warn("failed to read vdev_ops at %p\n",
1765 				    vd.vdev_ops);
1766 				return (DCMD_ERR);
1767 			}
1768 			(void) strcpy(desc, ops.vdev_op_type);
1769 		} else {
1770 			(void) strcpy(desc, "<unknown>");
1771 		}
1772 
1773 		if (depth == 0 && DCMD_HDRSPEC(flags))
1774 			mdb_printf("%<u>%-?s %-9s %-12s %-*s%</u>\n",
1775 			    "ADDR", "STATE", "AUX",
1776 			    sizeof (uintptr_t) == 4 ? 43 : 35,
1777 			    "DESCRIPTION");
1778 
1779 		mdb_printf("%0?p ", addr);
1780 
1781 		const char *state, *aux;
1782 		switch (vd.vdev_state) {
1783 		case VDEV_STATE_CLOSED:
1784 			state = "CLOSED";
1785 			break;
1786 		case VDEV_STATE_OFFLINE:
1787 			state = "OFFLINE";
1788 			break;
1789 		case VDEV_STATE_CANT_OPEN:
1790 			state = "CANT_OPEN";
1791 			break;
1792 		case VDEV_STATE_DEGRADED:
1793 			state = "DEGRADED";
1794 			break;
1795 		case VDEV_STATE_HEALTHY:
1796 			state = "HEALTHY";
1797 			break;
1798 		case VDEV_STATE_REMOVED:
1799 			state = "REMOVED";
1800 			break;
1801 		case VDEV_STATE_FAULTED:
1802 			state = "FAULTED";
1803 			break;
1804 		default:
1805 			state = "UNKNOWN";
1806 			break;
1807 		}
1808 
1809 		switch (vd.vdev_stat.vs_aux) {
1810 		case VDEV_AUX_NONE:
1811 			aux = "-";
1812 			break;
1813 		case VDEV_AUX_OPEN_FAILED:
1814 			aux = "OPEN_FAILED";
1815 			break;
1816 		case VDEV_AUX_CORRUPT_DATA:
1817 			aux = "CORRUPT_DATA";
1818 			break;
1819 		case VDEV_AUX_NO_REPLICAS:
1820 			aux = "NO_REPLICAS";
1821 			break;
1822 		case VDEV_AUX_BAD_GUID_SUM:
1823 			aux = "BAD_GUID_SUM";
1824 			break;
1825 		case VDEV_AUX_TOO_SMALL:
1826 			aux = "TOO_SMALL";
1827 			break;
1828 		case VDEV_AUX_BAD_LABEL:
1829 			aux = "BAD_LABEL";
1830 			break;
1831 		case VDEV_AUX_VERSION_NEWER:
1832 			aux = "VERS_NEWER";
1833 			break;
1834 		case VDEV_AUX_VERSION_OLDER:
1835 			aux = "VERS_OLDER";
1836 			break;
1837 		case VDEV_AUX_UNSUP_FEAT:
1838 			aux = "UNSUP_FEAT";
1839 			break;
1840 		case VDEV_AUX_SPARED:
1841 			aux = "SPARED";
1842 			break;
1843 		case VDEV_AUX_ERR_EXCEEDED:
1844 			aux = "ERR_EXCEEDED";
1845 			break;
1846 		case VDEV_AUX_IO_FAILURE:
1847 			aux = "IO_FAILURE";
1848 			break;
1849 		case VDEV_AUX_BAD_LOG:
1850 			aux = "BAD_LOG";
1851 			break;
1852 		case VDEV_AUX_EXTERNAL:
1853 			aux = "EXTERNAL";
1854 			break;
1855 		case VDEV_AUX_SPLIT_POOL:
1856 			aux = "SPLIT_POOL";
1857 			break;
1858 		case VDEV_AUX_CHILDREN_OFFLINE:
1859 			aux = "CHILDREN_OFFLINE";
1860 			break;
1861 		default:
1862 			aux = "UNKNOWN";
1863 			break;
1864 		}
1865 
1866 		mdb_printf("%-9s %-12s %*s%s\n", state, aux, depth, "", desc);
1867 
1868 		if (spa_flags & SPA_FLAG_ERRORS) {
1869 			int i;
1870 
1871 			mdb_inc_indent(4);
1872 			mdb_printf("\n");
1873 			mdb_printf("%<u>       %12s %12s %12s %12s "
1874 			    "%12s%</u>\n", "READ", "WRITE", "FREE", "CLAIM",
1875 			    "IOCTL");
1876 			mdb_printf("OPS     ");
1877 			for (i = 1; i < VS_ZIO_TYPES; i++)
1878 				mdb_printf("%11#llx%s",
1879 				    vd.vdev_stat.vs_ops[i],
1880 				    i == VS_ZIO_TYPES - 1 ? "" : "  ");
1881 			mdb_printf("\n");
1882 			mdb_printf("BYTES   ");
1883 			for (i = 1; i < VS_ZIO_TYPES; i++)
1884 				mdb_printf("%11#llx%s",
1885 				    vd.vdev_stat.vs_bytes[i],
1886 				    i == VS_ZIO_TYPES - 1 ? "" : "  ");
1887 
1888 
1889 			mdb_printf("\n");
1890 			mdb_printf("EREAD    %10#llx\n",
1891 			    vd.vdev_stat.vs_read_errors);
1892 			mdb_printf("EWRITE   %10#llx\n",
1893 			    vd.vdev_stat.vs_write_errors);
1894 			mdb_printf("ECKSUM   %10#llx\n",
1895 			    vd.vdev_stat.vs_checksum_errors);
1896 			mdb_dec_indent(4);
1897 			mdb_printf("\n");
1898 		}
1899 
1900 		if ((spa_flags & SPA_FLAG_METASLAB_GROUPS) &&
1901 		    vd.vdev_mg != 0) {
1902 			metaslab_group_stats(&vd, spa_flags);
1903 		}
1904 		if ((spa_flags & SPA_FLAG_METASLABS) && vd.vdev_ms != 0) {
1905 			metaslab_stats(&vd, spa_flags);
1906 		}
1907 	}
1908 
1909 	uint64_t children = vd.vdev_children;
1910 	if (children == 0 || !recursive)
1911 		return (DCMD_OK);
1912 
1913 	uintptr_t *child = mdb_alloc(children * sizeof (child),
1914 	    UM_SLEEP | UM_GC);
1915 	if (mdb_vread(child, children * sizeof (void *), vd.vdev_child) == -1) {
1916 		mdb_warn("failed to read vdev children at %p", vd.vdev_child);
1917 		return (DCMD_ERR);
1918 	}
1919 
1920 	for (uint64_t c = 0; c < children; c++) {
1921 		if (do_print_vdev(child[c], flags, depth + 2, recursive,
1922 		    spa_flags)) {
1923 			return (DCMD_ERR);
1924 		}
1925 	}
1926 
1927 	return (DCMD_OK);
1928 }
1929 
1930 static int
vdev_print(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)1931 vdev_print(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1932 {
1933 	uint64_t depth = 0;
1934 	boolean_t recursive = B_FALSE;
1935 	int spa_flags = 0;
1936 
1937 	if (mdb_getopts(argc, argv,
1938 	    'e', MDB_OPT_SETBITS, SPA_FLAG_ERRORS, &spa_flags,
1939 	    'm', MDB_OPT_SETBITS, SPA_FLAG_METASLABS, &spa_flags,
1940 	    'M', MDB_OPT_SETBITS, SPA_FLAG_METASLAB_GROUPS, &spa_flags,
1941 	    'h', MDB_OPT_SETBITS, SPA_FLAG_HISTOGRAMS, &spa_flags,
1942 	    'r', MDB_OPT_SETBITS, TRUE, &recursive,
1943 	    'd', MDB_OPT_UINT64, &depth, NULL) != argc)
1944 		return (DCMD_USAGE);
1945 
1946 	if (!(flags & DCMD_ADDRSPEC)) {
1947 		mdb_warn("no vdev_t address given\n");
1948 		return (DCMD_ERR);
1949 	}
1950 
1951 	return (do_print_vdev(addr, flags, (int)depth, recursive, spa_flags));
1952 }
1953 
1954 typedef struct mdb_metaslab_alloc_trace {
1955 	uintptr_t mat_mg;
1956 	uintptr_t mat_msp;
1957 	uint64_t mat_size;
1958 	uint64_t mat_weight;
1959 	uint64_t mat_offset;
1960 	uint32_t mat_dva_id;
1961 	int mat_allocator;
1962 } mdb_metaslab_alloc_trace_t;
1963 
1964 static void
metaslab_print_weight(uint64_t weight)1965 metaslab_print_weight(uint64_t weight)
1966 {
1967 	char buf[100];
1968 
1969 	if (WEIGHT_IS_SPACEBASED(weight)) {
1970 		mdb_nicenum(
1971 		    weight & ~(METASLAB_ACTIVE_MASK | METASLAB_WEIGHT_TYPE),
1972 		    buf);
1973 	} else {
1974 		char size[MDB_NICENUM_BUFLEN];
1975 		mdb_nicenum(1ULL << WEIGHT_GET_INDEX(weight), size);
1976 		(void) mdb_snprintf(buf, sizeof (buf), "%llu x %s",
1977 		    WEIGHT_GET_COUNT(weight), size);
1978 	}
1979 	mdb_printf("%11s ", buf);
1980 }
1981 
1982 /* ARGSUSED */
1983 static int
metaslab_weight(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)1984 metaslab_weight(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1985 {
1986 	uint64_t weight = 0;
1987 	char active;
1988 
1989 	if (argc == 0 && (flags & DCMD_ADDRSPEC)) {
1990 		if (mdb_vread(&weight, sizeof (uint64_t), addr) == -1) {
1991 			mdb_warn("failed to read weight at %p\n", addr);
1992 			return (DCMD_ERR);
1993 		}
1994 	} else if (argc == 1 && !(flags & DCMD_ADDRSPEC)) {
1995 		weight = (uint64_t)mdb_argtoull(&argv[0]);
1996 	} else {
1997 		return (DCMD_USAGE);
1998 	}
1999 
2000 	if (DCMD_HDRSPEC(flags)) {
2001 		mdb_printf("%<u>%-6s %9s %9s%</u>\n",
2002 		    "ACTIVE", "ALGORITHM", "WEIGHT");
2003 	}
2004 
2005 	if (weight & METASLAB_WEIGHT_PRIMARY)
2006 		active = 'P';
2007 	else if (weight & METASLAB_WEIGHT_SECONDARY)
2008 		active = 'S';
2009 	else
2010 		active = '-';
2011 	mdb_printf("%6c %8s ", active,
2012 	    WEIGHT_IS_SPACEBASED(weight) ? "SPACE" : "SEGMENT");
2013 	metaslab_print_weight(weight);
2014 	mdb_printf("\n");
2015 
2016 	return (DCMD_OK);
2017 }
2018 
2019 /* ARGSUSED */
2020 static int
metaslab_trace(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)2021 metaslab_trace(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
2022 {
2023 	mdb_metaslab_alloc_trace_t mat;
2024 	mdb_metaslab_group_t mg = { 0 };
2025 	char result_type[100];
2026 
2027 	if (mdb_ctf_vread(&mat, "metaslab_alloc_trace_t",
2028 	    "mdb_metaslab_alloc_trace_t", addr, 0) == -1) {
2029 		return (DCMD_ERR);
2030 	}
2031 
2032 	if (!(flags & DCMD_PIPE_OUT) && DCMD_HDRSPEC(flags)) {
2033 		mdb_printf("%<u>%6s %6s %8s %11s %11s %18s %18s%</u>\n",
2034 		    "MSID", "DVA", "ASIZE", "ALLOCATOR", "WEIGHT", "RESULT",
2035 		    "VDEV");
2036 	}
2037 
2038 	if (mat.mat_msp != 0) {
2039 		mdb_metaslab_t ms;
2040 
2041 		if (mdb_ctf_vread(&ms, "metaslab_t", "mdb_metaslab_t",
2042 		    mat.mat_msp, 0) == -1) {
2043 			return (DCMD_ERR);
2044 		}
2045 		mdb_printf("%6llu ", ms.ms_id);
2046 	} else {
2047 		mdb_printf("%6s ", "-");
2048 	}
2049 
2050 	mdb_printf("%6d %8llx %11llx ", mat.mat_dva_id, mat.mat_size,
2051 	    mat.mat_allocator);
2052 
2053 	metaslab_print_weight(mat.mat_weight);
2054 
2055 	if ((int64_t)mat.mat_offset < 0) {
2056 		if (enum_lookup("enum trace_alloc_type", mat.mat_offset,
2057 		    "TRACE_", sizeof (result_type), result_type) == -1) {
2058 			mdb_warn("Could not find enum for trace_alloc_type");
2059 			return (DCMD_ERR);
2060 		}
2061 		mdb_printf("%18s ", result_type);
2062 	} else {
2063 		mdb_printf("%<b>%18llx%</b> ", mat.mat_offset);
2064 	}
2065 
2066 	if (mat.mat_mg != 0 &&
2067 	    mdb_ctf_vread(&mg, "metaslab_group_t", "mdb_metaslab_group_t",
2068 	    mat.mat_mg, 0) == -1) {
2069 		return (DCMD_ERR);
2070 	}
2071 
2072 	if (mg.mg_vd != 0) {
2073 		mdb_vdev_t vdev;
2074 		char desc[MAXNAMELEN];
2075 
2076 		if (mdb_ctf_vread(&vdev, "vdev_t", "mdb_vdev_t",
2077 		    mg.mg_vd, 0) == -1) {
2078 			return (DCMD_ERR);
2079 		}
2080 
2081 		if (vdev.vdev_path != 0) {
2082 			char path[MAXNAMELEN];
2083 
2084 			if (mdb_readstr(path, sizeof (path),
2085 			    vdev.vdev_path) == -1) {
2086 				mdb_warn("failed to read vdev_path at %p\n",
2087 				    vdev.vdev_path);
2088 				return (DCMD_ERR);
2089 			}
2090 			char *slash;
2091 			if ((slash = strrchr(path, '/')) != NULL) {
2092 				strcpy(desc, slash + 1);
2093 			} else {
2094 				strcpy(desc, path);
2095 			}
2096 		} else if (vdev.vdev_ops != 0) {
2097 			mdb_vdev_ops_t ops;
2098 			if (mdb_ctf_vread(&ops, "vdev_ops_t", "mdb_vdev_ops_t",
2099 			    vdev.vdev_ops, 0) == -1) {
2100 				mdb_warn("failed to read vdev_ops at %p\n",
2101 				    vdev.vdev_ops);
2102 				return (DCMD_ERR);
2103 			}
2104 			(void) mdb_snprintf(desc, sizeof (desc),
2105 			    "%s-%llu", ops.vdev_op_type, vdev.vdev_id);
2106 		} else {
2107 			(void) strcpy(desc, "<unknown>");
2108 		}
2109 		mdb_printf("%18s\n", desc);
2110 	}
2111 
2112 	return (DCMD_OK);
2113 }
2114 
2115 typedef struct metaslab_walk_data {
2116 	uint64_t mw_numvdevs;
2117 	uintptr_t *mw_vdevs;
2118 	int mw_curvdev;
2119 	uint64_t mw_nummss;
2120 	uintptr_t *mw_mss;
2121 	int mw_curms;
2122 } metaslab_walk_data_t;
2123 
2124 static int
metaslab_walk_step(mdb_walk_state_t * wsp)2125 metaslab_walk_step(mdb_walk_state_t *wsp)
2126 {
2127 	metaslab_walk_data_t *mw = wsp->walk_data;
2128 	metaslab_t ms;
2129 	uintptr_t msp;
2130 
2131 	if (mw->mw_curvdev >= mw->mw_numvdevs)
2132 		return (WALK_DONE);
2133 
2134 	if (mw->mw_mss == NULL) {
2135 		uintptr_t mssp;
2136 		uintptr_t vdevp;
2137 
2138 		ASSERT(mw->mw_curms == 0);
2139 		ASSERT(mw->mw_nummss == 0);
2140 
2141 		vdevp = mw->mw_vdevs[mw->mw_curvdev];
2142 		if (GETMEMB(vdevp, "vdev", vdev_ms, mssp) ||
2143 		    GETMEMB(vdevp, "vdev", vdev_ms_count, mw->mw_nummss)) {
2144 			return (WALK_ERR);
2145 		}
2146 
2147 		mw->mw_mss = mdb_alloc(mw->mw_nummss * sizeof (void*),
2148 		    UM_SLEEP | UM_GC);
2149 		if (mdb_vread(mw->mw_mss, mw->mw_nummss * sizeof (void*),
2150 		    mssp) == -1) {
2151 			mdb_warn("failed to read vdev_ms at %p", mssp);
2152 			return (WALK_ERR);
2153 		}
2154 	}
2155 
2156 	if (mw->mw_curms >= mw->mw_nummss) {
2157 		mw->mw_mss = NULL;
2158 		mw->mw_curms = 0;
2159 		mw->mw_nummss = 0;
2160 		mw->mw_curvdev++;
2161 		return (WALK_NEXT);
2162 	}
2163 
2164 	msp = mw->mw_mss[mw->mw_curms];
2165 	if (mdb_vread(&ms, sizeof (metaslab_t), msp) == -1) {
2166 		mdb_warn("failed to read metaslab_t at %p", msp);
2167 		return (WALK_ERR);
2168 	}
2169 
2170 	mw->mw_curms++;
2171 
2172 	return (wsp->walk_callback(msp, &ms, wsp->walk_cbdata));
2173 }
2174 
2175 static int
metaslab_walk_init(mdb_walk_state_t * wsp)2176 metaslab_walk_init(mdb_walk_state_t *wsp)
2177 {
2178 	metaslab_walk_data_t *mw;
2179 	uintptr_t root_vdevp;
2180 	uintptr_t childp;
2181 
2182 	if (wsp->walk_addr == 0) {
2183 		mdb_warn("must supply address of spa_t\n");
2184 		return (WALK_ERR);
2185 	}
2186 
2187 	mw = mdb_zalloc(sizeof (metaslab_walk_data_t), UM_SLEEP | UM_GC);
2188 
2189 	if (GETMEMB(wsp->walk_addr, "spa", spa_root_vdev, root_vdevp) ||
2190 	    GETMEMB(root_vdevp, "vdev", vdev_children, mw->mw_numvdevs) ||
2191 	    GETMEMB(root_vdevp, "vdev", vdev_child, childp)) {
2192 		return (DCMD_ERR);
2193 	}
2194 
2195 	mw->mw_vdevs = mdb_alloc(mw->mw_numvdevs * sizeof (void *),
2196 	    UM_SLEEP | UM_GC);
2197 	if (mdb_vread(mw->mw_vdevs, mw->mw_numvdevs * sizeof (void *),
2198 	    childp) == -1) {
2199 		mdb_warn("failed to read root vdev children at %p", childp);
2200 		return (DCMD_ERR);
2201 	}
2202 
2203 	wsp->walk_data = mw;
2204 
2205 	return (WALK_NEXT);
2206 }
2207 
2208 typedef struct mdb_spa {
2209 	uintptr_t spa_dsl_pool;
2210 	uintptr_t spa_root_vdev;
2211 } mdb_spa_t;
2212 
2213 typedef struct mdb_dsl_pool {
2214 	uintptr_t dp_root_dir;
2215 } mdb_dsl_pool_t;
2216 
2217 typedef struct mdb_dsl_dir {
2218 	uintptr_t dd_dbuf;
2219 	int64_t dd_space_towrite[TXG_SIZE];
2220 } mdb_dsl_dir_t;
2221 
2222 typedef struct mdb_dsl_dir_phys {
2223 	uint64_t dd_used_bytes;
2224 	uint64_t dd_compressed_bytes;
2225 	uint64_t dd_uncompressed_bytes;
2226 } mdb_dsl_dir_phys_t;
2227 
2228 typedef struct space_data {
2229 	uint64_t ms_allocating[TXG_SIZE];
2230 	uint64_t ms_checkpointing;
2231 	uint64_t ms_freeing;
2232 	uint64_t ms_freed;
2233 	uint64_t ms_unflushed_frees;
2234 	uint64_t ms_unflushed_allocs;
2235 	uint64_t ms_allocatable;
2236 	int64_t ms_deferspace;
2237 	uint64_t avail;
2238 } space_data_t;
2239 
2240 /* ARGSUSED */
2241 static int
space_cb(uintptr_t addr,const void * unknown,void * arg)2242 space_cb(uintptr_t addr, const void *unknown, void *arg)
2243 {
2244 	space_data_t *sd = arg;
2245 	mdb_metaslab_t ms;
2246 	mdb_range_tree_t rt;
2247 	mdb_space_map_t sm = { 0 };
2248 	mdb_space_map_phys_t smp = { 0 };
2249 	uint64_t uallocs, ufrees;
2250 	int i;
2251 
2252 	if (mdb_ctf_vread(&ms, "metaslab_t", "mdb_metaslab_t",
2253 	    addr, 0) == -1)
2254 		return (WALK_ERR);
2255 
2256 	for (i = 0; i < TXG_SIZE; i++) {
2257 		if (mdb_ctf_vread(&rt, "range_tree_t",
2258 		    "mdb_range_tree_t", ms.ms_allocating[i], 0) == -1)
2259 			return (WALK_ERR);
2260 		sd->ms_allocating[i] += rt.rt_space;
2261 	}
2262 
2263 	if (mdb_ctf_vread(&rt, "range_tree_t",
2264 	    "mdb_range_tree_t", ms.ms_checkpointing, 0) == -1)
2265 		return (WALK_ERR);
2266 	sd->ms_checkpointing += rt.rt_space;
2267 
2268 	if (mdb_ctf_vread(&rt, "range_tree_t",
2269 	    "mdb_range_tree_t", ms.ms_freeing, 0) == -1)
2270 		return (WALK_ERR);
2271 	sd->ms_freeing += rt.rt_space;
2272 
2273 	if (mdb_ctf_vread(&rt, "range_tree_t",
2274 	    "mdb_range_tree_t", ms.ms_freed, 0) == -1)
2275 		return (WALK_ERR);
2276 	sd->ms_freed += rt.rt_space;
2277 
2278 	if (mdb_ctf_vread(&rt, "range_tree_t",
2279 	    "mdb_range_tree_t", ms.ms_allocatable, 0) == -1)
2280 		return (WALK_ERR);
2281 	sd->ms_allocatable += rt.rt_space;
2282 
2283 	if (mdb_ctf_vread(&rt, "range_tree_t",
2284 	    "mdb_range_tree_t", ms.ms_unflushed_frees, 0) == -1)
2285 		return (WALK_ERR);
2286 	sd->ms_unflushed_frees += rt.rt_space;
2287 	ufrees = rt.rt_space;
2288 
2289 	if (mdb_ctf_vread(&rt, "range_tree_t",
2290 	    "mdb_range_tree_t", ms.ms_unflushed_allocs, 0) == -1)
2291 		return (WALK_ERR);
2292 	sd->ms_unflushed_allocs += rt.rt_space;
2293 	uallocs = rt.rt_space;
2294 
2295 	if (ms.ms_sm != 0 &&
2296 	    mdb_ctf_vread(&sm, "space_map_t",
2297 	    "mdb_space_map_t", ms.ms_sm, 0) == -1)
2298 		return (WALK_ERR);
2299 
2300 	if (sm.sm_phys != 0) {
2301 		(void) mdb_ctf_vread(&smp, "space_map_phys_t",
2302 		    "mdb_space_map_phys_t", sm.sm_phys, 0);
2303 	}
2304 
2305 	sd->ms_deferspace += ms.ms_deferspace;
2306 	sd->avail += sm.sm_size - smp.smp_alloc + ufrees - uallocs;
2307 
2308 	return (WALK_NEXT);
2309 }
2310 
2311 /*
2312  * ::spa_space [-b]
2313  *
2314  * Given a spa_t, print out it's on-disk space usage and in-core
2315  * estimates of future usage.  If -b is given, print space in bytes.
2316  * Otherwise print in megabytes.
2317  */
2318 /* ARGSUSED */
2319 static int
spa_space(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)2320 spa_space(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
2321 {
2322 	mdb_spa_t spa;
2323 	mdb_dsl_pool_t dp;
2324 	mdb_dsl_dir_t dd;
2325 	mdb_dmu_buf_impl_t db;
2326 	mdb_dsl_dir_phys_t dsp;
2327 	space_data_t sd;
2328 	int shift = 20;
2329 	char *suffix = "M";
2330 	int bytes = B_FALSE;
2331 
2332 	if (mdb_getopts(argc, argv, 'b', MDB_OPT_SETBITS, TRUE, &bytes, NULL) !=
2333 	    argc)
2334 		return (DCMD_USAGE);
2335 	if (!(flags & DCMD_ADDRSPEC))
2336 		return (DCMD_USAGE);
2337 
2338 	if (bytes) {
2339 		shift = 0;
2340 		suffix = "";
2341 	}
2342 
2343 	if (mdb_ctf_vread(&spa, ZFS_STRUCT "spa", "mdb_spa_t",
2344 	    addr, 0) == -1 ||
2345 	    mdb_ctf_vread(&dp, ZFS_STRUCT "dsl_pool", "mdb_dsl_pool_t",
2346 	    spa.spa_dsl_pool, 0) == -1 ||
2347 	    mdb_ctf_vread(&dd, ZFS_STRUCT "dsl_dir", "mdb_dsl_dir_t",
2348 	    dp.dp_root_dir, 0) == -1 ||
2349 	    mdb_ctf_vread(&db, ZFS_STRUCT "dmu_buf_impl", "mdb_dmu_buf_impl_t",
2350 	    dd.dd_dbuf, 0) == -1 ||
2351 	    mdb_ctf_vread(&dsp, ZFS_STRUCT "dsl_dir_phys",
2352 	    "mdb_dsl_dir_phys_t", db.db.db_data, 0) == -1) {
2353 		return (DCMD_ERR);
2354 	}
2355 
2356 	mdb_printf("dd_space_towrite = %llu%s %llu%s %llu%s %llu%s\n",
2357 	    dd.dd_space_towrite[0] >> shift, suffix,
2358 	    dd.dd_space_towrite[1] >> shift, suffix,
2359 	    dd.dd_space_towrite[2] >> shift, suffix,
2360 	    dd.dd_space_towrite[3] >> shift, suffix);
2361 
2362 	mdb_printf("dd_phys.dd_used_bytes = %llu%s\n",
2363 	    dsp.dd_used_bytes >> shift, suffix);
2364 	mdb_printf("dd_phys.dd_compressed_bytes = %llu%s\n",
2365 	    dsp.dd_compressed_bytes >> shift, suffix);
2366 	mdb_printf("dd_phys.dd_uncompressed_bytes = %llu%s\n",
2367 	    dsp.dd_uncompressed_bytes >> shift, suffix);
2368 
2369 	bzero(&sd, sizeof (sd));
2370 	if (mdb_pwalk("metaslab", space_cb, &sd, addr) != 0) {
2371 		mdb_warn("can't walk metaslabs");
2372 		return (DCMD_ERR);
2373 	}
2374 
2375 	mdb_printf("ms_allocmap = %llu%s %llu%s %llu%s %llu%s\n",
2376 	    sd.ms_allocating[0] >> shift, suffix,
2377 	    sd.ms_allocating[1] >> shift, suffix,
2378 	    sd.ms_allocating[2] >> shift, suffix,
2379 	    sd.ms_allocating[3] >> shift, suffix);
2380 	mdb_printf("ms_checkpointing = %llu%s\n",
2381 	    sd.ms_checkpointing >> shift, suffix);
2382 	mdb_printf("ms_freeing = %llu%s\n",
2383 	    sd.ms_freeing >> shift, suffix);
2384 	mdb_printf("ms_freed = %llu%s\n",
2385 	    sd.ms_freed >> shift, suffix);
2386 	mdb_printf("ms_unflushed_frees = %llu%s\n",
2387 	    sd.ms_unflushed_frees >> shift, suffix);
2388 	mdb_printf("ms_unflushed_allocs = %llu%s\n",
2389 	    sd.ms_unflushed_allocs >> shift, suffix);
2390 	mdb_printf("ms_allocatable = %llu%s\n",
2391 	    sd.ms_allocatable >> shift, suffix);
2392 	mdb_printf("ms_deferspace = %llu%s\n",
2393 	    sd.ms_deferspace >> shift, suffix);
2394 	mdb_printf("current avail = %llu%s\n",
2395 	    sd.avail >> shift, suffix);
2396 
2397 	return (DCMD_OK);
2398 }
2399 
2400 typedef struct mdb_spa_aux_vdev {
2401 	int sav_count;
2402 	uintptr_t sav_vdevs;
2403 } mdb_spa_aux_vdev_t;
2404 
2405 typedef struct mdb_spa_vdevs {
2406 	uintptr_t spa_root_vdev;
2407 	mdb_spa_aux_vdev_t spa_l2cache;
2408 	mdb_spa_aux_vdev_t spa_spares;
2409 } mdb_spa_vdevs_t;
2410 
2411 static int
spa_print_aux(mdb_spa_aux_vdev_t * sav,uint_t flags,mdb_arg_t * v,const char * name)2412 spa_print_aux(mdb_spa_aux_vdev_t *sav, uint_t flags, mdb_arg_t *v,
2413     const char *name)
2414 {
2415 	uintptr_t *aux;
2416 	size_t len;
2417 	int ret, i;
2418 
2419 	/*
2420 	 * Iterate over aux vdevs and print those out as well.  This is a
2421 	 * little annoying because we don't have a root vdev to pass to ::vdev.
2422 	 * Instead, we print a single line and then call it for each child
2423 	 * vdev.
2424 	 */
2425 	if (sav->sav_count != 0) {
2426 		v[1].a_type = MDB_TYPE_STRING;
2427 		v[1].a_un.a_str = "-d";
2428 		v[2].a_type = MDB_TYPE_IMMEDIATE;
2429 		v[2].a_un.a_val = 2;
2430 
2431 		len = sav->sav_count * sizeof (uintptr_t);
2432 		aux = mdb_alloc(len, UM_SLEEP);
2433 		if (mdb_vread(aux, len, sav->sav_vdevs) == -1) {
2434 			mdb_free(aux, len);
2435 			mdb_warn("failed to read l2cache vdevs at %p",
2436 			    sav->sav_vdevs);
2437 			return (DCMD_ERR);
2438 		}
2439 
2440 		mdb_printf("%-?s %-9s %-12s %s\n", "-", "-", "-", name);
2441 
2442 		for (i = 0; i < sav->sav_count; i++) {
2443 			ret = mdb_call_dcmd("vdev", aux[i], flags, 3, v);
2444 			if (ret != DCMD_OK) {
2445 				mdb_free(aux, len);
2446 				return (ret);
2447 			}
2448 		}
2449 
2450 		mdb_free(aux, len);
2451 	}
2452 
2453 	return (0);
2454 }
2455 
2456 /*
2457  * ::spa_vdevs
2458  *
2459  *	-e	Include error stats
2460  *	-m	Include metaslab information
2461  *	-M	Include metaslab group information
2462  *	-h	Include histogram information (requires -m or -M)
2463  *
2464  * Print out a summarized list of vdevs for the given spa_t.
2465  * This is accomplished by invoking "::vdev -re" on the root vdev, as well as
2466  * iterating over the cache devices.
2467  */
2468 /* ARGSUSED */
2469 static int
spa_vdevs(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)2470 spa_vdevs(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
2471 {
2472 	mdb_arg_t v[3];
2473 	int ret;
2474 	char opts[100] = "-r";
2475 	int spa_flags = 0;
2476 
2477 	if (mdb_getopts(argc, argv,
2478 	    'e', MDB_OPT_SETBITS, SPA_FLAG_ERRORS, &spa_flags,
2479 	    'm', MDB_OPT_SETBITS, SPA_FLAG_METASLABS, &spa_flags,
2480 	    'M', MDB_OPT_SETBITS, SPA_FLAG_METASLAB_GROUPS, &spa_flags,
2481 	    'h', MDB_OPT_SETBITS, SPA_FLAG_HISTOGRAMS, &spa_flags,
2482 	    NULL) != argc)
2483 		return (DCMD_USAGE);
2484 
2485 	if (!(flags & DCMD_ADDRSPEC))
2486 		return (DCMD_USAGE);
2487 
2488 	mdb_spa_vdevs_t spa;
2489 	if (mdb_ctf_vread(&spa, "spa_t", "mdb_spa_vdevs_t", addr, 0) == -1)
2490 		return (DCMD_ERR);
2491 
2492 	/*
2493 	 * Unitialized spa_t structures can have a NULL root vdev.
2494 	 */
2495 	if (spa.spa_root_vdev == 0) {
2496 		mdb_printf("no associated vdevs\n");
2497 		return (DCMD_OK);
2498 	}
2499 
2500 	if (spa_flags & SPA_FLAG_ERRORS)
2501 		strcat(opts, "e");
2502 	if (spa_flags & SPA_FLAG_METASLABS)
2503 		strcat(opts, "m");
2504 	if (spa_flags & SPA_FLAG_METASLAB_GROUPS)
2505 		strcat(opts, "M");
2506 	if (spa_flags & SPA_FLAG_HISTOGRAMS)
2507 		strcat(opts, "h");
2508 
2509 	v[0].a_type = MDB_TYPE_STRING;
2510 	v[0].a_un.a_str = opts;
2511 
2512 	ret = mdb_call_dcmd("vdev", (uintptr_t)spa.spa_root_vdev,
2513 	    flags, 1, v);
2514 	if (ret != DCMD_OK)
2515 		return (ret);
2516 
2517 	if (spa_print_aux(&spa.spa_l2cache, flags, v, "cache") != 0 ||
2518 	    spa_print_aux(&spa.spa_spares, flags, v, "spares") != 0)
2519 		return (DCMD_ERR);
2520 
2521 	return (DCMD_OK);
2522 }
2523 
2524 /*
2525  * ::zio
2526  *
2527  * Print a summary of zio_t and all its children.  This is intended to display a
2528  * zio tree, and hence we only pick the most important pieces of information for
2529  * the main summary.  More detailed information can always be found by doing a
2530  * '::print zio' on the underlying zio_t.  The columns we display are:
2531  *
2532  *	ADDRESS  TYPE  STAGE  WAITER  TIME_ELAPSED
2533  *
2534  * The 'address' column is indented by one space for each depth level as we
2535  * descend down the tree.
2536  */
2537 
2538 #define	ZIO_MAXINDENT	7
2539 #define	ZIO_MAXWIDTH	(sizeof (uintptr_t) * 2 + ZIO_MAXINDENT)
2540 #define	ZIO_WALK_SELF	0
2541 #define	ZIO_WALK_CHILD	1
2542 #define	ZIO_WALK_PARENT	2
2543 
2544 typedef struct zio_print_args {
2545 	int	zpa_current_depth;
2546 	int	zpa_min_depth;
2547 	int	zpa_max_depth;
2548 	int	zpa_type;
2549 	uint_t	zpa_flags;
2550 } zio_print_args_t;
2551 
2552 typedef struct mdb_zio {
2553 	enum zio_type io_type;
2554 	enum zio_stage io_stage;
2555 	uintptr_t io_waiter;
2556 	uintptr_t io_spa;
2557 	struct {
2558 		struct {
2559 			uintptr_t list_next;
2560 		} list_head;
2561 	} io_parent_list;
2562 	int io_error;
2563 } mdb_zio_t;
2564 
2565 typedef struct mdb_zio_timestamp {
2566 	hrtime_t io_timestamp;
2567 } mdb_zio_timestamp_t;
2568 
2569 static int zio_child_cb(uintptr_t addr, const void *unknown, void *arg);
2570 
2571 static int
zio_print_cb(uintptr_t addr,zio_print_args_t * zpa)2572 zio_print_cb(uintptr_t addr, zio_print_args_t *zpa)
2573 {
2574 	mdb_ctf_id_t type_enum, stage_enum;
2575 	int indent = zpa->zpa_current_depth;
2576 	const char *type, *stage;
2577 	uintptr_t laddr;
2578 	mdb_zio_t zio;
2579 	mdb_zio_timestamp_t zio_timestamp = { 0 };
2580 
2581 	if (mdb_ctf_vread(&zio, ZFS_STRUCT "zio", "mdb_zio_t", addr, 0) == -1)
2582 		return (WALK_ERR);
2583 	(void) mdb_ctf_vread(&zio_timestamp, ZFS_STRUCT "zio",
2584 	    "mdb_zio_timestamp_t", addr, MDB_CTF_VREAD_QUIET);
2585 
2586 	if (indent > ZIO_MAXINDENT)
2587 		indent = ZIO_MAXINDENT;
2588 
2589 	if (mdb_ctf_lookup_by_name("enum zio_type", &type_enum) == -1 ||
2590 	    mdb_ctf_lookup_by_name("enum zio_stage", &stage_enum) == -1) {
2591 		mdb_warn("failed to lookup zio enums");
2592 		return (WALK_ERR);
2593 	}
2594 
2595 	if ((type = mdb_ctf_enum_name(type_enum, zio.io_type)) != NULL)
2596 		type += sizeof ("ZIO_TYPE_") - 1;
2597 	else
2598 		type = "?";
2599 
2600 	if (zio.io_error == 0) {
2601 		stage = mdb_ctf_enum_name(stage_enum, zio.io_stage);
2602 		if (stage != NULL)
2603 			stage += sizeof ("ZIO_STAGE_") - 1;
2604 		else
2605 			stage = "?";
2606 	} else {
2607 		stage = "FAILED";
2608 	}
2609 
2610 	if (zpa->zpa_current_depth >= zpa->zpa_min_depth) {
2611 		if (zpa->zpa_flags & DCMD_PIPE_OUT) {
2612 			mdb_printf("%?p\n", addr);
2613 		} else {
2614 			mdb_printf("%*s%-*p %-5s %-16s ", indent, "",
2615 			    ZIO_MAXWIDTH - indent, addr, type, stage);
2616 			if (zio.io_waiter != 0)
2617 				mdb_printf("%-16lx ", zio.io_waiter);
2618 			else
2619 				mdb_printf("%-16s ", "-");
2620 #ifdef _KERNEL
2621 			if (zio_timestamp.io_timestamp != 0) {
2622 				mdb_printf("%llums", (mdb_gethrtime() -
2623 				    zio_timestamp.io_timestamp) /
2624 				    1000000);
2625 			} else {
2626 				mdb_printf("%-12s ", "-");
2627 			}
2628 #else
2629 			mdb_printf("%-12s ", "-");
2630 #endif
2631 			mdb_printf("\n");
2632 		}
2633 	}
2634 
2635 	if (zpa->zpa_current_depth >= zpa->zpa_max_depth)
2636 		return (WALK_NEXT);
2637 
2638 	if (zpa->zpa_type == ZIO_WALK_PARENT)
2639 		laddr = addr + mdb_ctf_offsetof_by_name(ZFS_STRUCT "zio",
2640 		    "io_parent_list");
2641 	else
2642 		laddr = addr + mdb_ctf_offsetof_by_name(ZFS_STRUCT "zio",
2643 		    "io_child_list");
2644 
2645 	zpa->zpa_current_depth++;
2646 	if (mdb_pwalk("list", zio_child_cb, zpa, laddr) != 0) {
2647 		mdb_warn("failed to walk zio_t children at %p\n", laddr);
2648 		return (WALK_ERR);
2649 	}
2650 	zpa->zpa_current_depth--;
2651 
2652 	return (WALK_NEXT);
2653 }
2654 
2655 /* ARGSUSED */
2656 static int
zio_child_cb(uintptr_t addr,const void * unknown,void * arg)2657 zio_child_cb(uintptr_t addr, const void *unknown, void *arg)
2658 {
2659 	zio_link_t zl;
2660 	uintptr_t ziop;
2661 	zio_print_args_t *zpa = arg;
2662 
2663 	if (mdb_vread(&zl, sizeof (zl), addr) == -1) {
2664 		mdb_warn("failed to read zio_link_t at %p", addr);
2665 		return (WALK_ERR);
2666 	}
2667 
2668 	if (zpa->zpa_type == ZIO_WALK_PARENT)
2669 		ziop = (uintptr_t)zl.zl_parent;
2670 	else
2671 		ziop = (uintptr_t)zl.zl_child;
2672 
2673 	return (zio_print_cb(ziop, zpa));
2674 }
2675 
2676 /* ARGSUSED */
2677 static int
zio_print(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)2678 zio_print(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
2679 {
2680 	zio_print_args_t zpa = { 0 };
2681 
2682 	if (!(flags & DCMD_ADDRSPEC))
2683 		return (DCMD_USAGE);
2684 
2685 	if (mdb_getopts(argc, argv,
2686 	    'r', MDB_OPT_SETBITS, INT_MAX, &zpa.zpa_max_depth,
2687 	    'c', MDB_OPT_SETBITS, ZIO_WALK_CHILD, &zpa.zpa_type,
2688 	    'p', MDB_OPT_SETBITS, ZIO_WALK_PARENT, &zpa.zpa_type,
2689 	    NULL) != argc)
2690 		return (DCMD_USAGE);
2691 
2692 	zpa.zpa_flags = flags;
2693 	if (zpa.zpa_max_depth != 0) {
2694 		if (zpa.zpa_type == ZIO_WALK_SELF)
2695 			zpa.zpa_type = ZIO_WALK_CHILD;
2696 	} else if (zpa.zpa_type != ZIO_WALK_SELF) {
2697 		zpa.zpa_min_depth = 1;
2698 		zpa.zpa_max_depth = 1;
2699 	}
2700 
2701 	if (!(flags & DCMD_PIPE_OUT) && DCMD_HDRSPEC(flags)) {
2702 		mdb_printf("%<u>%-*s %-5s %-16s %-16s %-12s%</u>\n",
2703 		    ZIO_MAXWIDTH, "ADDRESS", "TYPE", "STAGE", "WAITER",
2704 		    "TIME_ELAPSED");
2705 	}
2706 
2707 	if (zio_print_cb(addr, &zpa) != WALK_NEXT)
2708 		return (DCMD_ERR);
2709 
2710 	return (DCMD_OK);
2711 }
2712 
2713 /*
2714  * [addr]::zio_state
2715  *
2716  * Print a summary of all zio_t structures on the system, or for a particular
2717  * pool.  This is equivalent to '::walk zio_root | ::zio'.
2718  */
2719 /*ARGSUSED*/
2720 static int
zio_state(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)2721 zio_state(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
2722 {
2723 	/*
2724 	 * MDB will remember the last address of the pipeline, so if we don't
2725 	 * zero this we'll end up trying to walk zio structures for a
2726 	 * non-existent spa_t.
2727 	 */
2728 	if (!(flags & DCMD_ADDRSPEC))
2729 		addr = 0;
2730 
2731 	return (mdb_pwalk_dcmd("zio_root", "zio", argc, argv, addr));
2732 }
2733 
2734 
2735 typedef struct mdb_zfs_btree_hdr {
2736 	uintptr_t		bth_parent;
2737 	boolean_t		bth_core;
2738 	/*
2739 	 * For both leaf and core nodes, represents the number of elements in
2740 	 * the node. For core nodes, they will have bth_count + 1 children.
2741 	 */
2742 	uint32_t		bth_count;
2743 } mdb_zfs_btree_hdr_t;
2744 
2745 typedef struct mdb_zfs_btree_core {
2746 	mdb_zfs_btree_hdr_t	btc_hdr;
2747 	uintptr_t		btc_children[BTREE_CORE_ELEMS + 1];
2748 	uint8_t			btc_elems[];
2749 } mdb_zfs_btree_core_t;
2750 
2751 typedef struct mdb_zfs_btree_leaf {
2752 	mdb_zfs_btree_hdr_t	btl_hdr;
2753 	uint8_t			btl_elems[];
2754 } mdb_zfs_btree_leaf_t;
2755 
2756 typedef struct mdb_zfs_btree {
2757 	uintptr_t		bt_root;
2758 	size_t			bt_elem_size;
2759 } mdb_zfs_btree_t;
2760 
2761 typedef struct btree_walk_data {
2762 	mdb_zfs_btree_t		bwd_btree;
2763 	mdb_zfs_btree_hdr_t	*bwd_node;
2764 	uint64_t		bwd_offset; // In units of bt_node_size
2765 } btree_walk_data_t;
2766 
2767 static uintptr_t
btree_leftmost_child(uintptr_t addr,mdb_zfs_btree_hdr_t * buf)2768 btree_leftmost_child(uintptr_t addr, mdb_zfs_btree_hdr_t *buf)
2769 {
2770 	size_t size = offsetof(zfs_btree_core_t, btc_children) +
2771 	    sizeof (uintptr_t);
2772 	for (;;) {
2773 		if (mdb_vread(buf, size, addr) == -1) {
2774 			mdb_warn("failed to read at %p\n", addr);
2775 			return ((uintptr_t)0ULL);
2776 		}
2777 		if (!buf->bth_core)
2778 			return (addr);
2779 		mdb_zfs_btree_core_t *node = (mdb_zfs_btree_core_t *)buf;
2780 		addr = node->btc_children[0];
2781 	}
2782 }
2783 
2784 static int
btree_walk_step(mdb_walk_state_t * wsp)2785 btree_walk_step(mdb_walk_state_t *wsp)
2786 {
2787 	btree_walk_data_t *bwd = wsp->walk_data;
2788 	size_t elem_size = bwd->bwd_btree.bt_elem_size;
2789 	if (wsp->walk_addr == 0ULL)
2790 		return (WALK_DONE);
2791 
2792 	if (!bwd->bwd_node->bth_core) {
2793 		/*
2794 		 * For the first element in a leaf node, read in the full
2795 		 * leaf, since we only had part of it read in before.
2796 		 */
2797 		if (bwd->bwd_offset == 0) {
2798 			if (mdb_vread(bwd->bwd_node, BTREE_LEAF_SIZE,
2799 			    wsp->walk_addr) == -1) {
2800 				mdb_warn("failed to read at %p\n",
2801 				    wsp->walk_addr);
2802 				return (WALK_ERR);
2803 			}
2804 		}
2805 
2806 		int status = wsp->walk_callback((uintptr_t)(wsp->walk_addr +
2807 		    offsetof(mdb_zfs_btree_leaf_t, btl_elems) +
2808 		    bwd->bwd_offset * elem_size), bwd->bwd_node,
2809 		    wsp->walk_cbdata);
2810 		if (status != WALK_NEXT)
2811 			return (status);
2812 		bwd->bwd_offset++;
2813 
2814 		/* Find the next element, if we're at the end of the leaf. */
2815 		while (bwd->bwd_offset == bwd->bwd_node->bth_count) {
2816 			uintptr_t par = bwd->bwd_node->bth_parent;
2817 			uintptr_t cur = wsp->walk_addr;
2818 			wsp->walk_addr = par;
2819 			if (par == 0ULL)
2820 				return (WALK_NEXT);
2821 
2822 			size_t size = sizeof (zfs_btree_core_t) +
2823 			    BTREE_CORE_ELEMS * elem_size;
2824 			if (mdb_vread(bwd->bwd_node, size, wsp->walk_addr) ==
2825 			    -1) {
2826 				mdb_warn("failed to read at %p\n",
2827 				    wsp->walk_addr);
2828 				return (WALK_ERR);
2829 			}
2830 			mdb_zfs_btree_core_t *node =
2831 			    (mdb_zfs_btree_core_t *)bwd->bwd_node;
2832 			int i;
2833 			for (i = 0; i <= bwd->bwd_node->bth_count; i++) {
2834 				if (node->btc_children[i] == cur)
2835 					break;
2836 			}
2837 			if (i > bwd->bwd_node->bth_count) {
2838 				mdb_warn("btree parent/child mismatch at "
2839 				    "%#lx\n", cur);
2840 				return (WALK_ERR);
2841 			}
2842 			bwd->bwd_offset = i;
2843 		}
2844 		return (WALK_NEXT);
2845 	}
2846 
2847 	if (!bwd->bwd_node->bth_core) {
2848 		mdb_warn("Invalid btree node at %#lx\n", wsp->walk_addr);
2849 		return (WALK_ERR);
2850 	}
2851 	mdb_zfs_btree_core_t *node = (mdb_zfs_btree_core_t *)bwd->bwd_node;
2852 	int status = wsp->walk_callback((uintptr_t)(wsp->walk_addr +
2853 	    offsetof(mdb_zfs_btree_core_t, btc_elems) + bwd->bwd_offset *
2854 	    elem_size), bwd->bwd_node, wsp->walk_cbdata);
2855 	if (status != WALK_NEXT)
2856 		return (status);
2857 
2858 	uintptr_t new_child = node->btc_children[bwd->bwd_offset + 1];
2859 	wsp->walk_addr = btree_leftmost_child(new_child, bwd->bwd_node);
2860 	if (wsp->walk_addr == 0ULL)
2861 		return (WALK_ERR);
2862 
2863 	bwd->bwd_offset = 0;
2864 	return (WALK_NEXT);
2865 }
2866 
2867 static int
btree_walk_init(mdb_walk_state_t * wsp)2868 btree_walk_init(mdb_walk_state_t *wsp)
2869 {
2870 	btree_walk_data_t *bwd;
2871 
2872 	if (wsp->walk_addr == 0ULL) {
2873 		mdb_warn("must supply address of zfs_btree_t\n");
2874 		return (WALK_ERR);
2875 	}
2876 
2877 	bwd = mdb_zalloc(sizeof (btree_walk_data_t), UM_SLEEP);
2878 	if (mdb_ctf_vread(&bwd->bwd_btree, "zfs_btree_t", "mdb_zfs_btree_t",
2879 	    wsp->walk_addr, 0) == -1) {
2880 		mdb_free(bwd, sizeof (*bwd));
2881 		return (WALK_ERR);
2882 	}
2883 
2884 	if (bwd->bwd_btree.bt_elem_size == 0) {
2885 		mdb_warn("invalid or uninitialized btree at %#lx\n",
2886 		    wsp->walk_addr);
2887 		mdb_free(bwd, sizeof (*bwd));
2888 		return (WALK_ERR);
2889 	}
2890 
2891 	size_t size = MAX(BTREE_LEAF_SIZE, sizeof (zfs_btree_core_t) +
2892 	    BTREE_CORE_ELEMS * bwd->bwd_btree.bt_elem_size);
2893 	bwd->bwd_node = mdb_zalloc(size, UM_SLEEP);
2894 
2895 	uintptr_t node = (uintptr_t)bwd->bwd_btree.bt_root;
2896 	if (node == 0ULL) {
2897 		wsp->walk_addr = 0ULL;
2898 		wsp->walk_data = bwd;
2899 		return (WALK_NEXT);
2900 	}
2901 	node = btree_leftmost_child(node, bwd->bwd_node);
2902 	if (node == 0ULL) {
2903 		mdb_free(bwd->bwd_node, size);
2904 		mdb_free(bwd, sizeof (*bwd));
2905 		return (WALK_ERR);
2906 	}
2907 	bwd->bwd_offset = 0;
2908 
2909 	wsp->walk_addr = node;
2910 	wsp->walk_data = bwd;
2911 	return (WALK_NEXT);
2912 }
2913 
2914 static void
btree_walk_fini(mdb_walk_state_t * wsp)2915 btree_walk_fini(mdb_walk_state_t *wsp)
2916 {
2917 	btree_walk_data_t *bwd = (btree_walk_data_t *)wsp->walk_data;
2918 
2919 	if (bwd == NULL)
2920 		return;
2921 
2922 	size_t size = MAX(BTREE_LEAF_SIZE, sizeof (zfs_btree_core_t) +
2923 	    BTREE_CORE_ELEMS * bwd->bwd_btree.bt_elem_size);
2924 	if (bwd->bwd_node != NULL)
2925 		mdb_free(bwd->bwd_node, size);
2926 
2927 	mdb_free(bwd, sizeof (*bwd));
2928 }
2929 
2930 typedef struct mdb_multilist {
2931 	uint64_t ml_num_sublists;
2932 	uintptr_t ml_sublists;
2933 } mdb_multilist_t;
2934 
2935 static int
multilist_walk_step(mdb_walk_state_t * wsp)2936 multilist_walk_step(mdb_walk_state_t *wsp)
2937 {
2938 	return (wsp->walk_callback(wsp->walk_addr, wsp->walk_layer,
2939 	    wsp->walk_cbdata));
2940 }
2941 
2942 static int
multilist_walk_init(mdb_walk_state_t * wsp)2943 multilist_walk_init(mdb_walk_state_t *wsp)
2944 {
2945 	mdb_multilist_t ml;
2946 	ssize_t sublist_sz;
2947 	int list_offset;
2948 	size_t i;
2949 
2950 	if (wsp->walk_addr == 0) {
2951 		mdb_warn("must supply address of multilist_t\n");
2952 		return (WALK_ERR);
2953 	}
2954 
2955 	if (mdb_ctf_vread(&ml, "multilist_t", "mdb_multilist_t",
2956 	    wsp->walk_addr, 0) == -1) {
2957 		return (WALK_ERR);
2958 	}
2959 
2960 	if (ml.ml_num_sublists == 0 || ml.ml_sublists == 0) {
2961 		mdb_warn("invalid or uninitialized multilist at %#lx\n",
2962 		    wsp->walk_addr);
2963 		return (WALK_ERR);
2964 	}
2965 
2966 	/* mdb_ctf_sizeof_by_name() will print an error for us */
2967 	sublist_sz = mdb_ctf_sizeof_by_name("multilist_sublist_t");
2968 	if (sublist_sz == -1)
2969 		return (WALK_ERR);
2970 
2971 	/* mdb_ctf_offsetof_by_name will print an error for us */
2972 	list_offset = mdb_ctf_offsetof_by_name("multilist_sublist_t",
2973 	    "mls_list");
2974 	if (list_offset == -1)
2975 		return (WALK_ERR);
2976 
2977 	for (i = 0; i < ml.ml_num_sublists; i++) {
2978 		wsp->walk_addr = ml.ml_sublists + i * sublist_sz + list_offset;
2979 
2980 		if (mdb_layered_walk("list", wsp) == -1) {
2981 			mdb_warn("can't walk multilist sublist");
2982 			return (WALK_ERR);
2983 		}
2984 	}
2985 
2986 	return (WALK_NEXT);
2987 }
2988 
2989 typedef struct mdb_txg_list {
2990 	size_t		tl_offset;
2991 	uintptr_t	tl_head[TXG_SIZE];
2992 } mdb_txg_list_t;
2993 
2994 typedef struct txg_list_walk_data {
2995 	uintptr_t lw_head[TXG_SIZE];
2996 	int	lw_txgoff;
2997 	int	lw_maxoff;
2998 	size_t	lw_offset;
2999 	void	*lw_obj;
3000 } txg_list_walk_data_t;
3001 
3002 static int
txg_list_walk_init_common(mdb_walk_state_t * wsp,int txg,int maxoff)3003 txg_list_walk_init_common(mdb_walk_state_t *wsp, int txg, int maxoff)
3004 {
3005 	txg_list_walk_data_t *lwd;
3006 	mdb_txg_list_t list;
3007 	int i;
3008 
3009 	lwd = mdb_alloc(sizeof (txg_list_walk_data_t), UM_SLEEP | UM_GC);
3010 	if (mdb_ctf_vread(&list, "txg_list_t", "mdb_txg_list_t", wsp->walk_addr,
3011 	    0) == -1) {
3012 		mdb_warn("failed to read txg_list_t at %#lx", wsp->walk_addr);
3013 		return (WALK_ERR);
3014 	}
3015 
3016 	for (i = 0; i < TXG_SIZE; i++)
3017 		lwd->lw_head[i] = list.tl_head[i];
3018 	lwd->lw_offset = list.tl_offset;
3019 	lwd->lw_obj = mdb_alloc(lwd->lw_offset + sizeof (txg_node_t),
3020 	    UM_SLEEP | UM_GC);
3021 	lwd->lw_txgoff = txg;
3022 	lwd->lw_maxoff = maxoff;
3023 
3024 	wsp->walk_addr = lwd->lw_head[lwd->lw_txgoff];
3025 	wsp->walk_data = lwd;
3026 
3027 	return (WALK_NEXT);
3028 }
3029 
3030 static int
txg_list_walk_init(mdb_walk_state_t * wsp)3031 txg_list_walk_init(mdb_walk_state_t *wsp)
3032 {
3033 	return (txg_list_walk_init_common(wsp, 0, TXG_SIZE-1));
3034 }
3035 
3036 static int
txg_list0_walk_init(mdb_walk_state_t * wsp)3037 txg_list0_walk_init(mdb_walk_state_t *wsp)
3038 {
3039 	return (txg_list_walk_init_common(wsp, 0, 0));
3040 }
3041 
3042 static int
txg_list1_walk_init(mdb_walk_state_t * wsp)3043 txg_list1_walk_init(mdb_walk_state_t *wsp)
3044 {
3045 	return (txg_list_walk_init_common(wsp, 1, 1));
3046 }
3047 
3048 static int
txg_list2_walk_init(mdb_walk_state_t * wsp)3049 txg_list2_walk_init(mdb_walk_state_t *wsp)
3050 {
3051 	return (txg_list_walk_init_common(wsp, 2, 2));
3052 }
3053 
3054 static int
txg_list3_walk_init(mdb_walk_state_t * wsp)3055 txg_list3_walk_init(mdb_walk_state_t *wsp)
3056 {
3057 	return (txg_list_walk_init_common(wsp, 3, 3));
3058 }
3059 
3060 static int
txg_list_walk_step(mdb_walk_state_t * wsp)3061 txg_list_walk_step(mdb_walk_state_t *wsp)
3062 {
3063 	txg_list_walk_data_t *lwd = wsp->walk_data;
3064 	uintptr_t addr;
3065 	txg_node_t *node;
3066 	int status;
3067 
3068 	while (wsp->walk_addr == 0 && lwd->lw_txgoff < lwd->lw_maxoff) {
3069 		lwd->lw_txgoff++;
3070 		wsp->walk_addr = lwd->lw_head[lwd->lw_txgoff];
3071 	}
3072 
3073 	if (wsp->walk_addr == 0)
3074 		return (WALK_DONE);
3075 
3076 	addr = wsp->walk_addr - lwd->lw_offset;
3077 
3078 	if (mdb_vread(lwd->lw_obj,
3079 	    lwd->lw_offset + sizeof (txg_node_t), addr) == -1) {
3080 		mdb_warn("failed to read list element at %#lx", addr);
3081 		return (WALK_ERR);
3082 	}
3083 
3084 	status = wsp->walk_callback(addr, lwd->lw_obj, wsp->walk_cbdata);
3085 	node = (txg_node_t *)((uintptr_t)lwd->lw_obj + lwd->lw_offset);
3086 	wsp->walk_addr = (uintptr_t)node->tn_next[lwd->lw_txgoff];
3087 
3088 	return (status);
3089 }
3090 
3091 /*
3092  * ::walk spa
3093  *
3094  * Walk all named spa_t structures in the namespace.  This is nothing more than
3095  * a layered avl walk.
3096  */
3097 static int
spa_walk_init(mdb_walk_state_t * wsp)3098 spa_walk_init(mdb_walk_state_t *wsp)
3099 {
3100 	GElf_Sym sym;
3101 
3102 	if (wsp->walk_addr != 0) {
3103 		mdb_warn("spa walk only supports global walks\n");
3104 		return (WALK_ERR);
3105 	}
3106 
3107 	if (mdb_lookup_by_obj(ZFS_OBJ_NAME, "spa_namespace_avl", &sym) == -1) {
3108 		mdb_warn("failed to find symbol 'spa_namespace_avl'");
3109 		return (WALK_ERR);
3110 	}
3111 
3112 	wsp->walk_addr = (uintptr_t)sym.st_value;
3113 
3114 	if (mdb_layered_walk("avl", wsp) == -1) {
3115 		mdb_warn("failed to walk 'avl'\n");
3116 		return (WALK_ERR);
3117 	}
3118 
3119 	return (WALK_NEXT);
3120 }
3121 
3122 static int
spa_walk_step(mdb_walk_state_t * wsp)3123 spa_walk_step(mdb_walk_state_t *wsp)
3124 {
3125 	return (wsp->walk_callback(wsp->walk_addr, NULL, wsp->walk_cbdata));
3126 }
3127 
3128 /*
3129  * [addr]::walk zio
3130  *
3131  * Walk all active zio_t structures on the system.  This is simply a layered
3132  * walk on top of ::walk zio_cache, with the optional ability to limit the
3133  * structures to a particular pool.
3134  */
3135 static int
zio_walk_init(mdb_walk_state_t * wsp)3136 zio_walk_init(mdb_walk_state_t *wsp)
3137 {
3138 	wsp->walk_data = (void *)wsp->walk_addr;
3139 
3140 	if (mdb_layered_walk("zio_cache", wsp) == -1) {
3141 		mdb_warn("failed to walk 'zio_cache'\n");
3142 		return (WALK_ERR);
3143 	}
3144 
3145 	return (WALK_NEXT);
3146 }
3147 
3148 static int
zio_walk_step(mdb_walk_state_t * wsp)3149 zio_walk_step(mdb_walk_state_t *wsp)
3150 {
3151 	mdb_zio_t zio;
3152 	uintptr_t spa = (uintptr_t)wsp->walk_data;
3153 
3154 	if (mdb_ctf_vread(&zio, ZFS_STRUCT "zio", "mdb_zio_t",
3155 	    wsp->walk_addr, 0) == -1)
3156 		return (WALK_ERR);
3157 
3158 	if (spa != 0 && spa != zio.io_spa)
3159 		return (WALK_NEXT);
3160 
3161 	return (wsp->walk_callback(wsp->walk_addr, &zio, wsp->walk_cbdata));
3162 }
3163 
3164 /*
3165  * [addr]::walk zio_root
3166  *
3167  * Walk only root zio_t structures, optionally for a particular spa_t.
3168  */
3169 static int
zio_walk_root_step(mdb_walk_state_t * wsp)3170 zio_walk_root_step(mdb_walk_state_t *wsp)
3171 {
3172 	mdb_zio_t zio;
3173 	uintptr_t spa = (uintptr_t)wsp->walk_data;
3174 
3175 	if (mdb_ctf_vread(&zio, ZFS_STRUCT "zio", "mdb_zio_t",
3176 	    wsp->walk_addr, 0) == -1)
3177 		return (WALK_ERR);
3178 
3179 	if (spa != 0 && spa != zio.io_spa)
3180 		return (WALK_NEXT);
3181 
3182 	/* If the parent list is not empty, ignore */
3183 	if (zio.io_parent_list.list_head.list_next !=
3184 	    wsp->walk_addr +
3185 	    mdb_ctf_offsetof_by_name(ZFS_STRUCT "zio", "io_parent_list") +
3186 	    mdb_ctf_offsetof_by_name("struct list", "list_head"))
3187 		return (WALK_NEXT);
3188 
3189 	return (wsp->walk_callback(wsp->walk_addr, &zio, wsp->walk_cbdata));
3190 }
3191 
3192 /*
3193  * ::zfs_blkstats
3194  *
3195  *	-v	print verbose per-level information
3196  *
3197  */
3198 static int
zfs_blkstats(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)3199 zfs_blkstats(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3200 {
3201 	boolean_t verbose = B_FALSE;
3202 	zfs_all_blkstats_t stats;
3203 	dmu_object_type_t t;
3204 	zfs_blkstat_t *tzb;
3205 	uint64_t ditto;
3206 
3207 	if (mdb_getopts(argc, argv,
3208 	    'v', MDB_OPT_SETBITS, TRUE, &verbose,
3209 	    NULL) != argc)
3210 		return (DCMD_USAGE);
3211 
3212 	if (!(flags & DCMD_ADDRSPEC))
3213 		return (DCMD_USAGE);
3214 
3215 	if (GETMEMB(addr, "spa", spa_dsl_pool, addr) ||
3216 	    GETMEMB(addr, "dsl_pool", dp_blkstats, addr) ||
3217 	    mdb_vread(&stats, sizeof (zfs_all_blkstats_t), addr) == -1) {
3218 		mdb_warn("failed to read data at %p;", addr);
3219 		mdb_printf("maybe no stats? run \"zpool scrub\" first.");
3220 		return (DCMD_ERR);
3221 	}
3222 
3223 	tzb = &stats.zab_type[DN_MAX_LEVELS][DMU_OT_TOTAL];
3224 	if (tzb->zb_gangs != 0) {
3225 		mdb_printf("Ganged blocks: %llu\n",
3226 		    (longlong_t)tzb->zb_gangs);
3227 	}
3228 
3229 	ditto = tzb->zb_ditto_2_of_2_samevdev + tzb->zb_ditto_2_of_3_samevdev +
3230 	    tzb->zb_ditto_3_of_3_samevdev;
3231 	if (ditto != 0) {
3232 		mdb_printf("Dittoed blocks on same vdev: %llu\n",
3233 		    (longlong_t)ditto);
3234 	}
3235 
3236 	mdb_printf("\nBlocks\tLSIZE\tPSIZE\tASIZE"
3237 	    "\t  avg\t comp\t%%Total\tType\n");
3238 
3239 	for (t = 0; t <= DMU_OT_TOTAL; t++) {
3240 		char csize[MDB_NICENUM_BUFLEN], lsize[MDB_NICENUM_BUFLEN];
3241 		char psize[MDB_NICENUM_BUFLEN], asize[MDB_NICENUM_BUFLEN];
3242 		char avg[MDB_NICENUM_BUFLEN];
3243 		char comp[MDB_NICENUM_BUFLEN], pct[MDB_NICENUM_BUFLEN];
3244 		char typename[64];
3245 		int l;
3246 
3247 
3248 		if (t == DMU_OT_DEFERRED)
3249 			strcpy(typename, "deferred free");
3250 		else if (t == DMU_OT_OTHER)
3251 			strcpy(typename, "other");
3252 		else if (t == DMU_OT_TOTAL)
3253 			strcpy(typename, "Total");
3254 		else if (enum_lookup("enum dmu_object_type",
3255 		    t, "DMU_OT_", sizeof (typename), typename) == -1) {
3256 			mdb_warn("failed to read type name");
3257 			return (DCMD_ERR);
3258 		}
3259 
3260 		if (stats.zab_type[DN_MAX_LEVELS][t].zb_asize == 0)
3261 			continue;
3262 
3263 		for (l = -1; l < DN_MAX_LEVELS; l++) {
3264 			int level = (l == -1 ? DN_MAX_LEVELS : l);
3265 			zfs_blkstat_t *zb = &stats.zab_type[level][t];
3266 
3267 			if (zb->zb_asize == 0)
3268 				continue;
3269 
3270 			/*
3271 			 * Don't print each level unless requested.
3272 			 */
3273 			if (!verbose && level != DN_MAX_LEVELS)
3274 				continue;
3275 
3276 			/*
3277 			 * If all the space is level 0, don't print the
3278 			 * level 0 separately.
3279 			 */
3280 			if (level == 0 && zb->zb_asize ==
3281 			    stats.zab_type[DN_MAX_LEVELS][t].zb_asize)
3282 				continue;
3283 
3284 			mdb_nicenum(zb->zb_count, csize);
3285 			mdb_nicenum(zb->zb_lsize, lsize);
3286 			mdb_nicenum(zb->zb_psize, psize);
3287 			mdb_nicenum(zb->zb_asize, asize);
3288 			mdb_nicenum(zb->zb_asize / zb->zb_count, avg);
3289 			(void) mdb_snprintfrac(comp, MDB_NICENUM_BUFLEN,
3290 			    zb->zb_lsize, zb->zb_psize, 2);
3291 			(void) mdb_snprintfrac(pct, MDB_NICENUM_BUFLEN,
3292 			    100 * zb->zb_asize, tzb->zb_asize, 2);
3293 
3294 			mdb_printf("%6s\t%5s\t%5s\t%5s\t%5s"
3295 			    "\t%5s\t%6s\t",
3296 			    csize, lsize, psize, asize, avg, comp, pct);
3297 
3298 			if (level == DN_MAX_LEVELS)
3299 				mdb_printf("%s\n", typename);
3300 			else
3301 				mdb_printf("  L%d %s\n",
3302 				    level, typename);
3303 		}
3304 	}
3305 
3306 	return (DCMD_OK);
3307 }
3308 
3309 typedef struct mdb_reference {
3310 	uintptr_t ref_holder;
3311 	uintptr_t ref_removed;
3312 	uint64_t ref_number;
3313 } mdb_reference_t;
3314 
3315 /* ARGSUSED */
3316 static int
reference_cb(uintptr_t addr,const void * ignored,void * arg)3317 reference_cb(uintptr_t addr, const void *ignored, void *arg)
3318 {
3319 	mdb_reference_t ref;
3320 	boolean_t holder_is_str = B_FALSE;
3321 	char holder_str[128];
3322 	boolean_t removed = (boolean_t)arg;
3323 
3324 	if (mdb_ctf_vread(&ref, "reference_t", "mdb_reference_t", addr,
3325 	    0) == -1)
3326 		return (DCMD_ERR);
3327 
3328 	if (mdb_readstr(holder_str, sizeof (holder_str),
3329 	    ref.ref_holder) != -1)
3330 		holder_is_str = strisprint(holder_str);
3331 
3332 	if (removed)
3333 		mdb_printf("removed ");
3334 	mdb_printf("reference ");
3335 	if (ref.ref_number != 1)
3336 		mdb_printf("with count=%llu ", ref.ref_number);
3337 	mdb_printf("with tag %lx", ref.ref_holder);
3338 	if (holder_is_str)
3339 		mdb_printf(" \"%s\"", holder_str);
3340 	mdb_printf(", held at:\n");
3341 
3342 	(void) mdb_call_dcmd("whatis", addr, DCMD_ADDRSPEC, 0, NULL);
3343 
3344 	if (removed) {
3345 		mdb_printf("removed at:\n");
3346 		(void) mdb_call_dcmd("whatis", ref.ref_removed,
3347 		    DCMD_ADDRSPEC, 0, NULL);
3348 	}
3349 
3350 	mdb_printf("\n");
3351 
3352 	return (WALK_NEXT);
3353 }
3354 
3355 typedef struct mdb_zfs_refcount {
3356 	uint64_t rc_count;
3357 } mdb_zfs_refcount_t;
3358 
3359 typedef struct mdb_zfs_refcount_removed {
3360 	uint_t rc_removed_count;
3361 } mdb_zfs_refcount_removed_t;
3362 
3363 typedef struct mdb_zfs_refcount_tracked {
3364 	boolean_t rc_tracked;
3365 } mdb_zfs_refcount_tracked_t;
3366 
3367 /* ARGSUSED */
3368 static int
zfs_refcount(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)3369 zfs_refcount(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3370 {
3371 	mdb_zfs_refcount_t rc;
3372 	mdb_zfs_refcount_removed_t rcr;
3373 	mdb_zfs_refcount_tracked_t rct;
3374 	int off;
3375 	boolean_t released = B_FALSE;
3376 
3377 	if (!(flags & DCMD_ADDRSPEC))
3378 		return (DCMD_USAGE);
3379 
3380 	if (mdb_getopts(argc, argv,
3381 	    'r', MDB_OPT_SETBITS, B_TRUE, &released,
3382 	    NULL) != argc)
3383 		return (DCMD_USAGE);
3384 
3385 	if (mdb_ctf_vread(&rc, "zfs_refcount_t", "mdb_zfs_refcount_t", addr,
3386 	    0) == -1)
3387 		return (DCMD_ERR);
3388 
3389 	if (mdb_ctf_vread(&rcr, "zfs_refcount_t", "mdb_zfs_refcount_removed_t",
3390 	    addr, MDB_CTF_VREAD_QUIET) == -1) {
3391 		mdb_printf("zfs_refcount_t at %p has %llu holds (untracked)\n",
3392 		    addr, (longlong_t)rc.rc_count);
3393 		return (DCMD_OK);
3394 	}
3395 
3396 	if (mdb_ctf_vread(&rct, "zfs_refcount_t", "mdb_zfs_refcount_tracked_t",
3397 	    addr, MDB_CTF_VREAD_QUIET) == -1) {
3398 		/* If this is an old target, it might be tracked. */
3399 		rct.rc_tracked = B_TRUE;
3400 	}
3401 
3402 	mdb_printf("zfs_refcount_t at %p has %llu current holds, "
3403 	    "%llu recently released holds\n",
3404 	    addr, (longlong_t)rc.rc_count, (longlong_t)rcr.rc_removed_count);
3405 
3406 	if (rct.rc_tracked && rc.rc_count > 0)
3407 		mdb_printf("current holds:\n");
3408 	off = mdb_ctf_offsetof_by_name("zfs_refcount_t", "rc_tree");
3409 	if (off == -1)
3410 		return (DCMD_ERR);
3411 	mdb_pwalk("avl", reference_cb, (void *)B_FALSE, addr + off);
3412 
3413 	if (released && rcr.rc_removed_count > 0) {
3414 		mdb_printf("released holds:\n");
3415 
3416 		off = mdb_ctf_offsetof_by_name("zfs_refcount_t", "rc_removed");
3417 		if (off == -1)
3418 			return (DCMD_ERR);
3419 		mdb_pwalk("list", reference_cb, (void *)B_TRUE, addr + off);
3420 	}
3421 
3422 	return (DCMD_OK);
3423 }
3424 
3425 /* ARGSUSED */
3426 static int
sa_attr_table(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)3427 sa_attr_table(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3428 {
3429 	sa_attr_table_t *table;
3430 	sa_os_t sa_os;
3431 	char *name;
3432 	int i;
3433 
3434 	if (mdb_vread(&sa_os, sizeof (sa_os_t), addr) == -1) {
3435 		mdb_warn("failed to read sa_os at %p", addr);
3436 		return (DCMD_ERR);
3437 	}
3438 
3439 	table = mdb_alloc(sizeof (sa_attr_table_t) * sa_os.sa_num_attrs,
3440 	    UM_SLEEP | UM_GC);
3441 	name = mdb_alloc(MAXPATHLEN, UM_SLEEP | UM_GC);
3442 
3443 	if (mdb_vread(table, sizeof (sa_attr_table_t) * sa_os.sa_num_attrs,
3444 	    (uintptr_t)sa_os.sa_attr_table) == -1) {
3445 		mdb_warn("failed to read sa_os at %p", addr);
3446 		return (DCMD_ERR);
3447 	}
3448 
3449 	mdb_printf("%<u>%-10s %-10s %-10s %-10s %s%</u>\n",
3450 	    "ATTR ID", "REGISTERED", "LENGTH", "BSWAP", "NAME");
3451 	for (i = 0; i != sa_os.sa_num_attrs; i++) {
3452 		mdb_readstr(name, MAXPATHLEN, (uintptr_t)table[i].sa_name);
3453 		mdb_printf("%5x   %8x %8x %8x          %-s\n",
3454 		    (int)table[i].sa_attr, (int)table[i].sa_registered,
3455 		    (int)table[i].sa_length, table[i].sa_byteswap, name);
3456 	}
3457 
3458 	return (DCMD_OK);
3459 }
3460 
3461 static int
sa_get_off_table(uintptr_t addr,uint32_t ** off_tab,int attr_count)3462 sa_get_off_table(uintptr_t addr, uint32_t **off_tab, int attr_count)
3463 {
3464 	uintptr_t idx_table;
3465 
3466 	if (GETMEMB(addr, "sa_idx_tab", sa_idx_tab, idx_table)) {
3467 		mdb_printf("can't find offset table in sa_idx_tab\n");
3468 		return (-1);
3469 	}
3470 
3471 	*off_tab = mdb_alloc(attr_count * sizeof (uint32_t),
3472 	    UM_SLEEP | UM_GC);
3473 
3474 	if (mdb_vread(*off_tab,
3475 	    attr_count * sizeof (uint32_t), idx_table) == -1) {
3476 		mdb_warn("failed to attribute offset table %p", idx_table);
3477 		return (-1);
3478 	}
3479 
3480 	return (DCMD_OK);
3481 }
3482 
3483 /*ARGSUSED*/
3484 static int
sa_attr_print(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)3485 sa_attr_print(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3486 {
3487 	uint32_t *offset_tab;
3488 	int attr_count;
3489 	uint64_t attr_id;
3490 	uintptr_t attr_addr;
3491 	uintptr_t bonus_tab, spill_tab;
3492 	uintptr_t db_bonus, db_spill;
3493 	uintptr_t os, os_sa;
3494 	uintptr_t db_data;
3495 
3496 	if (argc != 1)
3497 		return (DCMD_USAGE);
3498 
3499 	if (argv[0].a_type == MDB_TYPE_STRING)
3500 		attr_id = mdb_strtoull(argv[0].a_un.a_str);
3501 	else
3502 		return (DCMD_USAGE);
3503 
3504 	if (GETMEMB(addr, "sa_handle", sa_bonus_tab, bonus_tab) ||
3505 	    GETMEMB(addr, "sa_handle", sa_spill_tab, spill_tab) ||
3506 	    GETMEMB(addr, "sa_handle", sa_os, os) ||
3507 	    GETMEMB(addr, "sa_handle", sa_bonus, db_bonus) ||
3508 	    GETMEMB(addr, "sa_handle", sa_spill, db_spill)) {
3509 		mdb_printf("Can't find necessary information in sa_handle "
3510 		    "in sa_handle\n");
3511 		return (DCMD_ERR);
3512 	}
3513 
3514 	if (GETMEMB(os, "objset", os_sa, os_sa)) {
3515 		mdb_printf("Can't find os_sa in objset\n");
3516 		return (DCMD_ERR);
3517 	}
3518 
3519 	if (GETMEMB(os_sa, "sa_os", sa_num_attrs, attr_count)) {
3520 		mdb_printf("Can't find sa_num_attrs\n");
3521 		return (DCMD_ERR);
3522 	}
3523 
3524 	if (attr_id > attr_count) {
3525 		mdb_printf("attribute id number is out of range\n");
3526 		return (DCMD_ERR);
3527 	}
3528 
3529 	if (bonus_tab) {
3530 		if (sa_get_off_table(bonus_tab, &offset_tab,
3531 		    attr_count) == -1) {
3532 			return (DCMD_ERR);
3533 		}
3534 
3535 		if (GETMEMB(db_bonus, "dmu_buf", db_data, db_data)) {
3536 			mdb_printf("can't find db_data in bonus dbuf\n");
3537 			return (DCMD_ERR);
3538 		}
3539 	}
3540 
3541 	if (bonus_tab && !TOC_ATTR_PRESENT(offset_tab[attr_id]) &&
3542 	    spill_tab == 0) {
3543 		mdb_printf("Attribute does not exist\n");
3544 		return (DCMD_ERR);
3545 	} else if (!TOC_ATTR_PRESENT(offset_tab[attr_id]) && spill_tab) {
3546 		if (sa_get_off_table(spill_tab, &offset_tab,
3547 		    attr_count) == -1) {
3548 			return (DCMD_ERR);
3549 		}
3550 		if (GETMEMB(db_spill, "dmu_buf", db_data, db_data)) {
3551 			mdb_printf("can't find db_data in spill dbuf\n");
3552 			return (DCMD_ERR);
3553 		}
3554 		if (!TOC_ATTR_PRESENT(offset_tab[attr_id])) {
3555 			mdb_printf("Attribute does not exist\n");
3556 			return (DCMD_ERR);
3557 		}
3558 	}
3559 	attr_addr = db_data + TOC_OFF(offset_tab[attr_id]);
3560 	mdb_printf("%p\n", attr_addr);
3561 	return (DCMD_OK);
3562 }
3563 
3564 /* ARGSUSED */
3565 static int
zfs_ace_print_common(uintptr_t addr,uint_t flags,uint64_t id,uint32_t access_mask,uint16_t ace_flags,uint16_t ace_type,int verbose)3566 zfs_ace_print_common(uintptr_t addr, uint_t flags,
3567     uint64_t id, uint32_t access_mask, uint16_t ace_flags,
3568     uint16_t ace_type, int verbose)
3569 {
3570 	if (DCMD_HDRSPEC(flags) && !verbose)
3571 		mdb_printf("%<u>%-?s %-8s %-8s %-8s %s%</u>\n",
3572 		    "ADDR", "FLAGS", "MASK", "TYPE", "ID");
3573 
3574 	if (!verbose) {
3575 		mdb_printf("%0?p %-8x %-8x %-8x %-llx\n", addr,
3576 		    ace_flags, access_mask, ace_type, id);
3577 		return (DCMD_OK);
3578 	}
3579 
3580 	switch (ace_flags & ACE_TYPE_FLAGS) {
3581 	case ACE_OWNER:
3582 		mdb_printf("owner@:");
3583 		break;
3584 	case (ACE_IDENTIFIER_GROUP | ACE_GROUP):
3585 		mdb_printf("group@:");
3586 		break;
3587 	case ACE_EVERYONE:
3588 		mdb_printf("everyone@:");
3589 		break;
3590 	case ACE_IDENTIFIER_GROUP:
3591 		mdb_printf("group:%llx:", (u_longlong_t)id);
3592 		break;
3593 	case 0: /* User entry */
3594 		mdb_printf("user:%llx:", (u_longlong_t)id);
3595 		break;
3596 	}
3597 
3598 	/* print out permission mask */
3599 	if (access_mask & ACE_READ_DATA)
3600 		mdb_printf("r");
3601 	else
3602 		mdb_printf("-");
3603 	if (access_mask & ACE_WRITE_DATA)
3604 		mdb_printf("w");
3605 	else
3606 		mdb_printf("-");
3607 	if (access_mask & ACE_EXECUTE)
3608 		mdb_printf("x");
3609 	else
3610 		mdb_printf("-");
3611 	if (access_mask & ACE_APPEND_DATA)
3612 		mdb_printf("p");
3613 	else
3614 		mdb_printf("-");
3615 	if (access_mask & ACE_DELETE)
3616 		mdb_printf("d");
3617 	else
3618 		mdb_printf("-");
3619 	if (access_mask & ACE_DELETE_CHILD)
3620 		mdb_printf("D");
3621 	else
3622 		mdb_printf("-");
3623 	if (access_mask & ACE_READ_ATTRIBUTES)
3624 		mdb_printf("a");
3625 	else
3626 		mdb_printf("-");
3627 	if (access_mask & ACE_WRITE_ATTRIBUTES)
3628 		mdb_printf("A");
3629 	else
3630 		mdb_printf("-");
3631 	if (access_mask & ACE_READ_NAMED_ATTRS)
3632 		mdb_printf("R");
3633 	else
3634 		mdb_printf("-");
3635 	if (access_mask & ACE_WRITE_NAMED_ATTRS)
3636 		mdb_printf("W");
3637 	else
3638 		mdb_printf("-");
3639 	if (access_mask & ACE_READ_ACL)
3640 		mdb_printf("c");
3641 	else
3642 		mdb_printf("-");
3643 	if (access_mask & ACE_WRITE_ACL)
3644 		mdb_printf("C");
3645 	else
3646 		mdb_printf("-");
3647 	if (access_mask & ACE_WRITE_OWNER)
3648 		mdb_printf("o");
3649 	else
3650 		mdb_printf("-");
3651 	if (access_mask & ACE_SYNCHRONIZE)
3652 		mdb_printf("s");
3653 	else
3654 		mdb_printf("-");
3655 
3656 	mdb_printf(":");
3657 
3658 	/* Print out inheritance flags */
3659 	if (ace_flags & ACE_FILE_INHERIT_ACE)
3660 		mdb_printf("f");
3661 	else
3662 		mdb_printf("-");
3663 	if (ace_flags & ACE_DIRECTORY_INHERIT_ACE)
3664 		mdb_printf("d");
3665 	else
3666 		mdb_printf("-");
3667 	if (ace_flags & ACE_INHERIT_ONLY_ACE)
3668 		mdb_printf("i");
3669 	else
3670 		mdb_printf("-");
3671 	if (ace_flags & ACE_NO_PROPAGATE_INHERIT_ACE)
3672 		mdb_printf("n");
3673 	else
3674 		mdb_printf("-");
3675 	if (ace_flags & ACE_SUCCESSFUL_ACCESS_ACE_FLAG)
3676 		mdb_printf("S");
3677 	else
3678 		mdb_printf("-");
3679 	if (ace_flags & ACE_FAILED_ACCESS_ACE_FLAG)
3680 		mdb_printf("F");
3681 	else
3682 		mdb_printf("-");
3683 	if (ace_flags & ACE_INHERITED_ACE)
3684 		mdb_printf("I");
3685 	else
3686 		mdb_printf("-");
3687 
3688 	switch (ace_type) {
3689 	case ACE_ACCESS_ALLOWED_ACE_TYPE:
3690 		mdb_printf(":allow\n");
3691 		break;
3692 	case ACE_ACCESS_DENIED_ACE_TYPE:
3693 		mdb_printf(":deny\n");
3694 		break;
3695 	case ACE_SYSTEM_AUDIT_ACE_TYPE:
3696 		mdb_printf(":audit\n");
3697 		break;
3698 	case ACE_SYSTEM_ALARM_ACE_TYPE:
3699 		mdb_printf(":alarm\n");
3700 		break;
3701 	default:
3702 		mdb_printf(":?\n");
3703 	}
3704 	return (DCMD_OK);
3705 }
3706 
3707 /* ARGSUSED */
3708 static int
zfs_ace_print(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)3709 zfs_ace_print(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3710 {
3711 	zfs_ace_t zace;
3712 	int verbose = FALSE;
3713 	uint64_t id;
3714 
3715 	if (!(flags & DCMD_ADDRSPEC))
3716 		return (DCMD_USAGE);
3717 
3718 	if (mdb_getopts(argc, argv,
3719 	    'v', MDB_OPT_SETBITS, TRUE, &verbose, TRUE, NULL) != argc)
3720 		return (DCMD_USAGE);
3721 
3722 	if (mdb_vread(&zace, sizeof (zfs_ace_t), addr) == -1) {
3723 		mdb_warn("failed to read zfs_ace_t");
3724 		return (DCMD_ERR);
3725 	}
3726 
3727 	if ((zace.z_hdr.z_flags & ACE_TYPE_FLAGS) == 0 ||
3728 	    (zace.z_hdr.z_flags & ACE_TYPE_FLAGS) == ACE_IDENTIFIER_GROUP)
3729 		id = zace.z_fuid;
3730 	else
3731 		id = -1;
3732 
3733 	return (zfs_ace_print_common(addr, flags, id, zace.z_hdr.z_access_mask,
3734 	    zace.z_hdr.z_flags, zace.z_hdr.z_type, verbose));
3735 }
3736 
3737 /* ARGSUSED */
3738 static int
zfs_ace0_print(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)3739 zfs_ace0_print(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3740 {
3741 	ace_t ace;
3742 	uint64_t id;
3743 	int verbose = FALSE;
3744 
3745 	if (!(flags & DCMD_ADDRSPEC))
3746 		return (DCMD_USAGE);
3747 
3748 	if (mdb_getopts(argc, argv,
3749 	    'v', MDB_OPT_SETBITS, TRUE, &verbose, TRUE, NULL) != argc)
3750 		return (DCMD_USAGE);
3751 
3752 	if (mdb_vread(&ace, sizeof (ace_t), addr) == -1) {
3753 		mdb_warn("failed to read ace_t");
3754 		return (DCMD_ERR);
3755 	}
3756 
3757 	if ((ace.a_flags & ACE_TYPE_FLAGS) == 0 ||
3758 	    (ace.a_flags & ACE_TYPE_FLAGS) == ACE_IDENTIFIER_GROUP)
3759 		id = ace.a_who;
3760 	else
3761 		id = -1;
3762 
3763 	return (zfs_ace_print_common(addr, flags, id, ace.a_access_mask,
3764 	    ace.a_flags, ace.a_type, verbose));
3765 }
3766 
3767 typedef struct acl_dump_args {
3768 	int a_argc;
3769 	const mdb_arg_t *a_argv;
3770 	uint16_t a_version;
3771 	int a_flags;
3772 } acl_dump_args_t;
3773 
3774 /* ARGSUSED */
3775 static int
acl_aces_cb(uintptr_t addr,const void * unknown,void * arg)3776 acl_aces_cb(uintptr_t addr, const void *unknown, void *arg)
3777 {
3778 	acl_dump_args_t *acl_args = (acl_dump_args_t *)arg;
3779 
3780 	if (acl_args->a_version == 1) {
3781 		if (mdb_call_dcmd("zfs_ace", addr,
3782 		    DCMD_ADDRSPEC|acl_args->a_flags, acl_args->a_argc,
3783 		    acl_args->a_argv) != DCMD_OK) {
3784 			return (WALK_ERR);
3785 		}
3786 	} else {
3787 		if (mdb_call_dcmd("zfs_ace0", addr,
3788 		    DCMD_ADDRSPEC|acl_args->a_flags, acl_args->a_argc,
3789 		    acl_args->a_argv) != DCMD_OK) {
3790 			return (WALK_ERR);
3791 		}
3792 	}
3793 	acl_args->a_flags = DCMD_LOOP;
3794 	return (WALK_NEXT);
3795 }
3796 
3797 /* ARGSUSED */
3798 static int
acl_cb(uintptr_t addr,const void * unknown,void * arg)3799 acl_cb(uintptr_t addr, const void *unknown, void *arg)
3800 {
3801 	acl_dump_args_t *acl_args = (acl_dump_args_t *)arg;
3802 
3803 	if (acl_args->a_version == 1) {
3804 		if (mdb_pwalk("zfs_acl_node_aces", acl_aces_cb,
3805 		    arg, addr) != 0) {
3806 			mdb_warn("can't walk ACEs");
3807 			return (DCMD_ERR);
3808 		}
3809 	} else {
3810 		if (mdb_pwalk("zfs_acl_node_aces0", acl_aces_cb,
3811 		    arg, addr) != 0) {
3812 			mdb_warn("can't walk ACEs");
3813 			return (DCMD_ERR);
3814 		}
3815 	}
3816 	return (WALK_NEXT);
3817 }
3818 
3819 /* ARGSUSED */
3820 static int
zfs_acl_dump(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)3821 zfs_acl_dump(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3822 {
3823 	zfs_acl_t zacl;
3824 	int verbose = FALSE;
3825 	acl_dump_args_t acl_args;
3826 
3827 	if (!(flags & DCMD_ADDRSPEC))
3828 		return (DCMD_USAGE);
3829 
3830 	if (mdb_getopts(argc, argv,
3831 	    'v', MDB_OPT_SETBITS, TRUE, &verbose, NULL) != argc)
3832 		return (DCMD_USAGE);
3833 
3834 	if (mdb_vread(&zacl, sizeof (zfs_acl_t), addr) == -1) {
3835 		mdb_warn("failed to read zfs_acl_t");
3836 		return (DCMD_ERR);
3837 	}
3838 
3839 	acl_args.a_argc = argc;
3840 	acl_args.a_argv = argv;
3841 	acl_args.a_version = zacl.z_version;
3842 	acl_args.a_flags = DCMD_LOOPFIRST;
3843 
3844 	if (mdb_pwalk("zfs_acl_node", acl_cb, &acl_args, addr) != 0) {
3845 		mdb_warn("can't walk ACL");
3846 		return (DCMD_ERR);
3847 	}
3848 
3849 	return (DCMD_OK);
3850 }
3851 
3852 /* ARGSUSED */
3853 static int
zfs_acl_node_walk_init(mdb_walk_state_t * wsp)3854 zfs_acl_node_walk_init(mdb_walk_state_t *wsp)
3855 {
3856 	if (wsp->walk_addr == 0) {
3857 		mdb_warn("must supply address of zfs_acl_node_t\n");
3858 		return (WALK_ERR);
3859 	}
3860 
3861 	wsp->walk_addr +=
3862 	    mdb_ctf_offsetof_by_name(ZFS_STRUCT "zfs_acl", "z_acl");
3863 
3864 	if (mdb_layered_walk("list", wsp) == -1) {
3865 		mdb_warn("failed to walk 'list'\n");
3866 		return (WALK_ERR);
3867 	}
3868 
3869 	return (WALK_NEXT);
3870 }
3871 
3872 static int
zfs_acl_node_walk_step(mdb_walk_state_t * wsp)3873 zfs_acl_node_walk_step(mdb_walk_state_t *wsp)
3874 {
3875 	zfs_acl_node_t	aclnode;
3876 
3877 	if (mdb_vread(&aclnode, sizeof (zfs_acl_node_t),
3878 	    wsp->walk_addr) == -1) {
3879 		mdb_warn("failed to read zfs_acl_node at %p", wsp->walk_addr);
3880 		return (WALK_ERR);
3881 	}
3882 
3883 	return (wsp->walk_callback(wsp->walk_addr, &aclnode, wsp->walk_cbdata));
3884 }
3885 
3886 typedef struct ace_walk_data {
3887 	int		ace_count;
3888 	int		ace_version;
3889 } ace_walk_data_t;
3890 
3891 static int
zfs_aces_walk_init_common(mdb_walk_state_t * wsp,int version,int ace_count,uintptr_t ace_data)3892 zfs_aces_walk_init_common(mdb_walk_state_t *wsp, int version,
3893     int ace_count, uintptr_t ace_data)
3894 {
3895 	ace_walk_data_t *ace_walk_data;
3896 
3897 	if (wsp->walk_addr == 0) {
3898 		mdb_warn("must supply address of zfs_acl_node_t\n");
3899 		return (WALK_ERR);
3900 	}
3901 
3902 	ace_walk_data = mdb_alloc(sizeof (ace_walk_data_t), UM_SLEEP | UM_GC);
3903 
3904 	ace_walk_data->ace_count = ace_count;
3905 	ace_walk_data->ace_version = version;
3906 
3907 	wsp->walk_addr = ace_data;
3908 	wsp->walk_data = ace_walk_data;
3909 
3910 	return (WALK_NEXT);
3911 }
3912 
3913 static int
zfs_acl_node_aces_walk_init_common(mdb_walk_state_t * wsp,int version)3914 zfs_acl_node_aces_walk_init_common(mdb_walk_state_t *wsp, int version)
3915 {
3916 	static int gotid;
3917 	static mdb_ctf_id_t acl_id;
3918 	int z_ace_count;
3919 	uintptr_t z_acldata;
3920 
3921 	if (!gotid) {
3922 		if (mdb_ctf_lookup_by_name("struct zfs_acl_node",
3923 		    &acl_id) == -1) {
3924 			mdb_warn("couldn't find struct zfs_acl_node");
3925 			return (DCMD_ERR);
3926 		}
3927 		gotid = TRUE;
3928 	}
3929 
3930 	if (GETMEMBID(wsp->walk_addr, &acl_id, z_ace_count, z_ace_count)) {
3931 		return (DCMD_ERR);
3932 	}
3933 	if (GETMEMBID(wsp->walk_addr, &acl_id, z_acldata, z_acldata)) {
3934 		return (DCMD_ERR);
3935 	}
3936 
3937 	return (zfs_aces_walk_init_common(wsp, version,
3938 	    z_ace_count, z_acldata));
3939 }
3940 
3941 /* ARGSUSED */
3942 static int
zfs_acl_node_aces_walk_init(mdb_walk_state_t * wsp)3943 zfs_acl_node_aces_walk_init(mdb_walk_state_t *wsp)
3944 {
3945 	return (zfs_acl_node_aces_walk_init_common(wsp, 1));
3946 }
3947 
3948 /* ARGSUSED */
3949 static int
zfs_acl_node_aces0_walk_init(mdb_walk_state_t * wsp)3950 zfs_acl_node_aces0_walk_init(mdb_walk_state_t *wsp)
3951 {
3952 	return (zfs_acl_node_aces_walk_init_common(wsp, 0));
3953 }
3954 
3955 static int
zfs_aces_walk_step(mdb_walk_state_t * wsp)3956 zfs_aces_walk_step(mdb_walk_state_t *wsp)
3957 {
3958 	ace_walk_data_t *ace_data = wsp->walk_data;
3959 	zfs_ace_t zace;
3960 	ace_t *acep;
3961 	int status;
3962 	int entry_type;
3963 	int allow_type;
3964 	uintptr_t ptr;
3965 
3966 	if (ace_data->ace_count == 0)
3967 		return (WALK_DONE);
3968 
3969 	if (mdb_vread(&zace, sizeof (zfs_ace_t), wsp->walk_addr) == -1) {
3970 		mdb_warn("failed to read zfs_ace_t at %#lx",
3971 		    wsp->walk_addr);
3972 		return (WALK_ERR);
3973 	}
3974 
3975 	switch (ace_data->ace_version) {
3976 	case 0:
3977 		acep = (ace_t *)&zace;
3978 		entry_type = acep->a_flags & ACE_TYPE_FLAGS;
3979 		allow_type = acep->a_type;
3980 		break;
3981 	case 1:
3982 		entry_type = zace.z_hdr.z_flags & ACE_TYPE_FLAGS;
3983 		allow_type = zace.z_hdr.z_type;
3984 		break;
3985 	default:
3986 		return (WALK_ERR);
3987 	}
3988 
3989 	ptr = (uintptr_t)wsp->walk_addr;
3990 	switch (entry_type) {
3991 	case ACE_OWNER:
3992 	case ACE_EVERYONE:
3993 	case (ACE_IDENTIFIER_GROUP | ACE_GROUP):
3994 		ptr += ace_data->ace_version == 0 ?
3995 		    sizeof (ace_t) : sizeof (zfs_ace_hdr_t);
3996 		break;
3997 	case ACE_IDENTIFIER_GROUP:
3998 	default:
3999 		switch (allow_type) {
4000 		case ACE_ACCESS_ALLOWED_OBJECT_ACE_TYPE:
4001 		case ACE_ACCESS_DENIED_OBJECT_ACE_TYPE:
4002 		case ACE_SYSTEM_AUDIT_OBJECT_ACE_TYPE:
4003 		case ACE_SYSTEM_ALARM_OBJECT_ACE_TYPE:
4004 			ptr += ace_data->ace_version == 0 ?
4005 			    sizeof (ace_t) : sizeof (zfs_object_ace_t);
4006 			break;
4007 		default:
4008 			ptr += ace_data->ace_version == 0 ?
4009 			    sizeof (ace_t) : sizeof (zfs_ace_t);
4010 			break;
4011 		}
4012 	}
4013 
4014 	ace_data->ace_count--;
4015 	status = wsp->walk_callback(wsp->walk_addr,
4016 	    (void *)(uintptr_t)&zace, wsp->walk_cbdata);
4017 
4018 	wsp->walk_addr = ptr;
4019 	return (status);
4020 }
4021 
4022 typedef struct mdb_zfs_rrwlock {
4023 	uintptr_t	rr_writer;
4024 	boolean_t	rr_writer_wanted;
4025 } mdb_zfs_rrwlock_t;
4026 
4027 static uint_t rrw_key;
4028 
4029 /* ARGSUSED */
4030 static int
rrwlock(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)4031 rrwlock(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
4032 {
4033 	mdb_zfs_rrwlock_t rrw;
4034 
4035 	if (rrw_key == 0) {
4036 		if (mdb_ctf_readsym(&rrw_key, "uint_t", "rrw_tsd_key", 0) == -1)
4037 			return (DCMD_ERR);
4038 	}
4039 
4040 	if (mdb_ctf_vread(&rrw, "rrwlock_t", "mdb_zfs_rrwlock_t", addr,
4041 	    0) == -1)
4042 		return (DCMD_ERR);
4043 
4044 	if (rrw.rr_writer != 0) {
4045 		mdb_printf("write lock held by thread %lx\n", rrw.rr_writer);
4046 		return (DCMD_OK);
4047 	}
4048 
4049 	if (rrw.rr_writer_wanted) {
4050 		mdb_printf("writer wanted\n");
4051 	}
4052 
4053 	mdb_printf("anonymous references:\n");
4054 	(void) mdb_call_dcmd("zfs_refcount", addr +
4055 	    mdb_ctf_offsetof_by_name(ZFS_STRUCT "rrwlock", "rr_anon_rcount"),
4056 	    DCMD_ADDRSPEC, 0, NULL);
4057 
4058 	mdb_printf("linked references:\n");
4059 	(void) mdb_call_dcmd("zfs_refcount", addr +
4060 	    mdb_ctf_offsetof_by_name(ZFS_STRUCT "rrwlock", "rr_linked_rcount"),
4061 	    DCMD_ADDRSPEC, 0, NULL);
4062 
4063 	/*
4064 	 * XXX This should find references from
4065 	 * "::walk thread | ::tsd -v <rrw_key>", but there is no support
4066 	 * for programmatic consumption of dcmds, so this would be
4067 	 * difficult, potentially requiring reimplementing ::tsd (both
4068 	 * user and kernel versions) in this MDB module.
4069 	 */
4070 
4071 	return (DCMD_OK);
4072 }
4073 
4074 typedef struct mdb_arc_buf_hdr_t {
4075 	uint16_t b_psize;
4076 	uint16_t b_lsize;
4077 	struct {
4078 		uint32_t	b_bufcnt;
4079 		uintptr_t	b_state;
4080 	} b_l1hdr;
4081 } mdb_arc_buf_hdr_t;
4082 
4083 enum arc_cflags {
4084 	ARC_CFLAG_VERBOSE		= 1 << 0,
4085 	ARC_CFLAG_ANON			= 1 << 1,
4086 	ARC_CFLAG_MRU			= 1 << 2,
4087 	ARC_CFLAG_MFU			= 1 << 3,
4088 	ARC_CFLAG_BUFS			= 1 << 4,
4089 };
4090 
4091 typedef struct arc_compression_stats_data {
4092 	GElf_Sym anon_sym;	/* ARC_anon symbol */
4093 	GElf_Sym mru_sym;	/* ARC_mru symbol */
4094 	GElf_Sym mrug_sym;	/* ARC_mru_ghost symbol */
4095 	GElf_Sym mfu_sym;	/* ARC_mfu symbol */
4096 	GElf_Sym mfug_sym;	/* ARC_mfu_ghost symbol */
4097 	GElf_Sym l2c_sym;	/* ARC_l2c_only symbol */
4098 	uint64_t *anon_c_hist;	/* histogram of compressed sizes in anon */
4099 	uint64_t *anon_u_hist;	/* histogram of uncompressed sizes in anon */
4100 	uint64_t *anon_bufs;	/* histogram of buffer counts in anon state */
4101 	uint64_t *mru_c_hist;	/* histogram of compressed sizes in mru */
4102 	uint64_t *mru_u_hist;	/* histogram of uncompressed sizes in mru */
4103 	uint64_t *mru_bufs;	/* histogram of buffer counts in mru */
4104 	uint64_t *mfu_c_hist;	/* histogram of compressed sizes in mfu */
4105 	uint64_t *mfu_u_hist;	/* histogram of uncompressed sizes in mfu */
4106 	uint64_t *mfu_bufs;	/* histogram of buffer counts in mfu */
4107 	uint64_t *all_c_hist;	/* histogram of compressed anon + mru + mfu */
4108 	uint64_t *all_u_hist;	/* histogram of uncompressed anon + mru + mfu */
4109 	uint64_t *all_bufs;	/* histogram of buffer counts in all states  */
4110 	int arc_cflags;		/* arc compression flags, specified by user */
4111 	int hist_nbuckets;	/* number of buckets in each histogram */
4112 
4113 	ulong_t l1hdr_off;	/* offset of b_l1hdr in arc_buf_hdr_t */
4114 } arc_compression_stats_data_t;
4115 
4116 int
highbit64(uint64_t i)4117 highbit64(uint64_t i)
4118 {
4119 	int h = 1;
4120 
4121 	if (i == 0)
4122 		return (0);
4123 	if (i & 0xffffffff00000000ULL) {
4124 		h += 32; i >>= 32;
4125 	}
4126 	if (i & 0xffff0000) {
4127 		h += 16; i >>= 16;
4128 	}
4129 	if (i & 0xff00) {
4130 		h += 8; i >>= 8;
4131 	}
4132 	if (i & 0xf0) {
4133 		h += 4; i >>= 4;
4134 	}
4135 	if (i & 0xc) {
4136 		h += 2; i >>= 2;
4137 	}
4138 	if (i & 0x2) {
4139 		h += 1;
4140 	}
4141 	return (h);
4142 }
4143 
4144 /* ARGSUSED */
4145 static int
arc_compression_stats_cb(uintptr_t addr,const void * unknown,void * arg)4146 arc_compression_stats_cb(uintptr_t addr, const void *unknown, void *arg)
4147 {
4148 	arc_compression_stats_data_t *data = arg;
4149 	arc_flags_t flags;
4150 	mdb_arc_buf_hdr_t hdr;
4151 	int cbucket, ubucket, bufcnt;
4152 
4153 	/*
4154 	 * mdb_ctf_vread() uses the sizeof the target type (e.g.
4155 	 * sizeof (arc_buf_hdr_t) in the target) to read in the entire contents
4156 	 * of the target type into a buffer and then copy the values of the
4157 	 * desired members from the mdb typename (e.g. mdb_arc_buf_hdr_t) from
4158 	 * this buffer. Unfortunately, the way arc_buf_hdr_t is used by zfs,
4159 	 * the actual size allocated by the kernel for arc_buf_hdr_t is often
4160 	 * smaller than `sizeof (arc_buf_hdr_t)` (see the definitions of
4161 	 * l1arc_buf_hdr_t and arc_buf_hdr_t in
4162 	 * usr/src/uts/common/fs/zfs/arc.c). Attempting to read the entire
4163 	 * contents of arc_buf_hdr_t from the target (as mdb_ctf_vread() does)
4164 	 * can cause an error if the allocated size is indeed smaller--it's
4165 	 * possible that the 'missing' trailing members of arc_buf_hdr_t
4166 	 * (l1arc_buf_hdr_t and/or arc_buf_hdr_crypt_t) may fall into unmapped
4167 	 * memory.
4168 	 *
4169 	 * We use the GETMEMB macro instead which performs an mdb_vread()
4170 	 * but only reads enough of the target to retrieve the desired struct
4171 	 * member instead of the entire struct.
4172 	 */
4173 	if (GETMEMB(addr, "arc_buf_hdr", b_flags, flags) == -1)
4174 		return (WALK_ERR);
4175 
4176 	/*
4177 	 * We only count headers that have data loaded in the kernel.
4178 	 * This means an L1 header must be present as well as the data
4179 	 * that corresponds to the L1 header. If there's no L1 header,
4180 	 * we can skip the arc_buf_hdr_t completely. If it's present, we
4181 	 * must look at the ARC state (b_l1hdr.b_state) to determine if
4182 	 * the data is present.
4183 	 */
4184 	if ((flags & ARC_FLAG_HAS_L1HDR) == 0)
4185 		return (WALK_NEXT);
4186 
4187 	if (GETMEMB(addr, "arc_buf_hdr", b_psize, hdr.b_psize) == -1 ||
4188 	    GETMEMB(addr, "arc_buf_hdr", b_lsize, hdr.b_lsize) == -1 ||
4189 	    GETMEMB(addr + data->l1hdr_off, "l1arc_buf_hdr", b_bufcnt,
4190 	    hdr.b_l1hdr.b_bufcnt) == -1 ||
4191 	    GETMEMB(addr + data->l1hdr_off, "l1arc_buf_hdr", b_state,
4192 	    hdr.b_l1hdr.b_state) == -1)
4193 		return (WALK_ERR);
4194 
4195 	/*
4196 	 * Headers in the ghost states, or the l2c_only state don't have
4197 	 * arc buffers linked off of them. Thus, their compressed size
4198 	 * is meaningless, so we skip these from the stats.
4199 	 */
4200 	if (hdr.b_l1hdr.b_state == data->mrug_sym.st_value ||
4201 	    hdr.b_l1hdr.b_state == data->mfug_sym.st_value ||
4202 	    hdr.b_l1hdr.b_state == data->l2c_sym.st_value) {
4203 		return (WALK_NEXT);
4204 	}
4205 
4206 	/*
4207 	 * The physical size (compressed) and logical size
4208 	 * (uncompressed) are in units of SPA_MINBLOCKSIZE. By default,
4209 	 * we use the log2 of this value (rounded down to the nearest
4210 	 * integer) to determine the bucket to assign this header to.
4211 	 * Thus, the histogram is logarithmic with respect to the size
4212 	 * of the header. For example, the following is a mapping of the
4213 	 * bucket numbers and the range of header sizes they correspond to:
4214 	 *
4215 	 *	0: 0 byte headers
4216 	 *	1: 512 byte headers
4217 	 *	2: [1024 - 2048) byte headers
4218 	 *	3: [2048 - 4096) byte headers
4219 	 *	4: [4096 - 8192) byte headers
4220 	 *	5: [8192 - 16394) byte headers
4221 	 *	6: [16384 - 32768) byte headers
4222 	 *	7: [32768 - 65536) byte headers
4223 	 *	8: [65536 - 131072) byte headers
4224 	 *	9: 131072 byte headers
4225 	 *
4226 	 * If the ARC_CFLAG_VERBOSE flag was specified, we use the
4227 	 * physical and logical sizes directly. Thus, the histogram will
4228 	 * no longer be logarithmic; instead it will be linear with
4229 	 * respect to the size of the header. The following is a mapping
4230 	 * of the first many bucket numbers and the header size they
4231 	 * correspond to:
4232 	 *
4233 	 *	0: 0 byte headers
4234 	 *	1: 512 byte headers
4235 	 *	2: 1024 byte headers
4236 	 *	3: 1536 byte headers
4237 	 *	4: 2048 byte headers
4238 	 *	5: 2560 byte headers
4239 	 *	6: 3072 byte headers
4240 	 *
4241 	 * And so on. Keep in mind that a range of sizes isn't used in
4242 	 * the case of linear scale because the headers can only
4243 	 * increment or decrement in sizes of 512 bytes. So, it's not
4244 	 * possible for a header to be sized in between whats listed
4245 	 * above.
4246 	 *
4247 	 * Also, the above mapping values were calculated assuming a
4248 	 * SPA_MINBLOCKSHIFT of 512 bytes and a SPA_MAXBLOCKSIZE of 128K.
4249 	 */
4250 
4251 	if (data->arc_cflags & ARC_CFLAG_VERBOSE) {
4252 		cbucket = hdr.b_psize;
4253 		ubucket = hdr.b_lsize;
4254 	} else {
4255 		cbucket = highbit64(hdr.b_psize);
4256 		ubucket = highbit64(hdr.b_lsize);
4257 	}
4258 
4259 	bufcnt = hdr.b_l1hdr.b_bufcnt;
4260 	if (bufcnt >= data->hist_nbuckets)
4261 		bufcnt = data->hist_nbuckets - 1;
4262 
4263 	/* Ensure we stay within the bounds of the histogram array */
4264 	ASSERT3U(cbucket, <, data->hist_nbuckets);
4265 	ASSERT3U(ubucket, <, data->hist_nbuckets);
4266 
4267 	if (hdr.b_l1hdr.b_state == data->anon_sym.st_value) {
4268 		data->anon_c_hist[cbucket]++;
4269 		data->anon_u_hist[ubucket]++;
4270 		data->anon_bufs[bufcnt]++;
4271 	} else if (hdr.b_l1hdr.b_state == data->mru_sym.st_value) {
4272 		data->mru_c_hist[cbucket]++;
4273 		data->mru_u_hist[ubucket]++;
4274 		data->mru_bufs[bufcnt]++;
4275 	} else if (hdr.b_l1hdr.b_state == data->mfu_sym.st_value) {
4276 		data->mfu_c_hist[cbucket]++;
4277 		data->mfu_u_hist[ubucket]++;
4278 		data->mfu_bufs[bufcnt]++;
4279 	}
4280 
4281 	data->all_c_hist[cbucket]++;
4282 	data->all_u_hist[ubucket]++;
4283 	data->all_bufs[bufcnt]++;
4284 
4285 	return (WALK_NEXT);
4286 }
4287 
4288 /* ARGSUSED */
4289 static int
arc_compression_stats(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)4290 arc_compression_stats(uintptr_t addr, uint_t flags, int argc,
4291     const mdb_arg_t *argv)
4292 {
4293 	arc_compression_stats_data_t data = { 0 };
4294 	unsigned int max_shifted = SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT;
4295 	unsigned int hist_size;
4296 	char range[32];
4297 	int rc = DCMD_OK;
4298 	int off;
4299 
4300 	if (mdb_getopts(argc, argv,
4301 	    'v', MDB_OPT_SETBITS, ARC_CFLAG_VERBOSE, &data.arc_cflags,
4302 	    'a', MDB_OPT_SETBITS, ARC_CFLAG_ANON, &data.arc_cflags,
4303 	    'b', MDB_OPT_SETBITS, ARC_CFLAG_BUFS, &data.arc_cflags,
4304 	    'r', MDB_OPT_SETBITS, ARC_CFLAG_MRU, &data.arc_cflags,
4305 	    'f', MDB_OPT_SETBITS, ARC_CFLAG_MFU, &data.arc_cflags,
4306 	    NULL) != argc)
4307 		return (DCMD_USAGE);
4308 
4309 	if (mdb_lookup_by_obj(ZFS_OBJ_NAME, "ARC_anon", &data.anon_sym) ||
4310 	    mdb_lookup_by_obj(ZFS_OBJ_NAME, "ARC_mru", &data.mru_sym) ||
4311 	    mdb_lookup_by_obj(ZFS_OBJ_NAME, "ARC_mru_ghost", &data.mrug_sym) ||
4312 	    mdb_lookup_by_obj(ZFS_OBJ_NAME, "ARC_mfu", &data.mfu_sym) ||
4313 	    mdb_lookup_by_obj(ZFS_OBJ_NAME, "ARC_mfu_ghost", &data.mfug_sym) ||
4314 	    mdb_lookup_by_obj(ZFS_OBJ_NAME, "ARC_l2c_only", &data.l2c_sym)) {
4315 		mdb_warn("can't find arc state symbol");
4316 		return (DCMD_ERR);
4317 	}
4318 
4319 	/*
4320 	 * Determine the maximum expected size for any header, and use
4321 	 * this to determine the number of buckets needed for each
4322 	 * histogram. If ARC_CFLAG_VERBOSE is specified, this value is
4323 	 * used directly; otherwise the log2 of the maximum size is
4324 	 * used. Thus, if using a log2 scale there's a maximum of 10
4325 	 * possible buckets, while the linear scale (when using
4326 	 * ARC_CFLAG_VERBOSE) has a maximum of 257 buckets.
4327 	 */
4328 	if (data.arc_cflags & ARC_CFLAG_VERBOSE)
4329 		data.hist_nbuckets = max_shifted + 1;
4330 	else
4331 		data.hist_nbuckets = highbit64(max_shifted) + 1;
4332 
4333 	hist_size = sizeof (uint64_t) * data.hist_nbuckets;
4334 
4335 	data.anon_c_hist = mdb_zalloc(hist_size, UM_SLEEP);
4336 	data.anon_u_hist = mdb_zalloc(hist_size, UM_SLEEP);
4337 	data.anon_bufs = mdb_zalloc(hist_size, UM_SLEEP);
4338 
4339 	data.mru_c_hist = mdb_zalloc(hist_size, UM_SLEEP);
4340 	data.mru_u_hist = mdb_zalloc(hist_size, UM_SLEEP);
4341 	data.mru_bufs = mdb_zalloc(hist_size, UM_SLEEP);
4342 
4343 	data.mfu_c_hist = mdb_zalloc(hist_size, UM_SLEEP);
4344 	data.mfu_u_hist = mdb_zalloc(hist_size, UM_SLEEP);
4345 	data.mfu_bufs = mdb_zalloc(hist_size, UM_SLEEP);
4346 
4347 	data.all_c_hist = mdb_zalloc(hist_size, UM_SLEEP);
4348 	data.all_u_hist = mdb_zalloc(hist_size, UM_SLEEP);
4349 	data.all_bufs = mdb_zalloc(hist_size, UM_SLEEP);
4350 
4351 	if ((off = mdb_ctf_offsetof_by_name(ZFS_STRUCT "arc_buf_hdr",
4352 	    "b_l1hdr")) == -1) {
4353 		mdb_warn("could not get offset of b_l1hdr from arc_buf_hdr_t");
4354 		rc = DCMD_ERR;
4355 		goto out;
4356 	}
4357 	data.l1hdr_off = off;
4358 
4359 	if (mdb_walk("arc_buf_hdr_t_full", arc_compression_stats_cb,
4360 	    &data) != 0) {
4361 		mdb_warn("can't walk arc_buf_hdr's");
4362 		rc = DCMD_ERR;
4363 		goto out;
4364 	}
4365 
4366 	if (data.arc_cflags & ARC_CFLAG_VERBOSE) {
4367 		rc = mdb_snprintf(range, sizeof (range),
4368 		    "[n*%llu, (n+1)*%llu)", SPA_MINBLOCKSIZE,
4369 		    SPA_MINBLOCKSIZE);
4370 	} else {
4371 		rc = mdb_snprintf(range, sizeof (range),
4372 		    "[2^(n-1)*%llu, 2^n*%llu)", SPA_MINBLOCKSIZE,
4373 		    SPA_MINBLOCKSIZE);
4374 	}
4375 
4376 	if (rc < 0) {
4377 		/* snprintf failed, abort the dcmd */
4378 		rc = DCMD_ERR;
4379 		goto out;
4380 	} else {
4381 		/* snprintf succeeded above, reset return code */
4382 		rc = DCMD_OK;
4383 	}
4384 
4385 	if (data.arc_cflags & ARC_CFLAG_ANON) {
4386 		if (data.arc_cflags & ARC_CFLAG_BUFS) {
4387 			mdb_printf("Histogram of the number of anon buffers "
4388 			    "that are associated with an arc hdr.\n");
4389 			dump_histogram(data.anon_bufs, data.hist_nbuckets, 0);
4390 			mdb_printf("\n");
4391 		}
4392 		mdb_printf("Histogram of compressed anon buffers.\n"
4393 		    "Each bucket represents buffers of size: %s.\n", range);
4394 		dump_histogram(data.anon_c_hist, data.hist_nbuckets, 0);
4395 		mdb_printf("\n");
4396 
4397 		mdb_printf("Histogram of uncompressed anon buffers.\n"
4398 		    "Each bucket represents buffers of size: %s.\n", range);
4399 		dump_histogram(data.anon_u_hist, data.hist_nbuckets, 0);
4400 		mdb_printf("\n");
4401 	}
4402 
4403 	if (data.arc_cflags & ARC_CFLAG_MRU) {
4404 		if (data.arc_cflags & ARC_CFLAG_BUFS) {
4405 			mdb_printf("Histogram of the number of mru buffers "
4406 			    "that are associated with an arc hdr.\n");
4407 			dump_histogram(data.mru_bufs, data.hist_nbuckets, 0);
4408 			mdb_printf("\n");
4409 		}
4410 		mdb_printf("Histogram of compressed mru buffers.\n"
4411 		    "Each bucket represents buffers of size: %s.\n", range);
4412 		dump_histogram(data.mru_c_hist, data.hist_nbuckets, 0);
4413 		mdb_printf("\n");
4414 
4415 		mdb_printf("Histogram of uncompressed mru buffers.\n"
4416 		    "Each bucket represents buffers of size: %s.\n", range);
4417 		dump_histogram(data.mru_u_hist, data.hist_nbuckets, 0);
4418 		mdb_printf("\n");
4419 	}
4420 
4421 	if (data.arc_cflags & ARC_CFLAG_MFU) {
4422 		if (data.arc_cflags & ARC_CFLAG_BUFS) {
4423 			mdb_printf("Histogram of the number of mfu buffers "
4424 			    "that are associated with an arc hdr.\n");
4425 			dump_histogram(data.mfu_bufs, data.hist_nbuckets, 0);
4426 			mdb_printf("\n");
4427 		}
4428 
4429 		mdb_printf("Histogram of compressed mfu buffers.\n"
4430 		    "Each bucket represents buffers of size: %s.\n", range);
4431 		dump_histogram(data.mfu_c_hist, data.hist_nbuckets, 0);
4432 		mdb_printf("\n");
4433 
4434 		mdb_printf("Histogram of uncompressed mfu buffers.\n"
4435 		    "Each bucket represents buffers of size: %s.\n", range);
4436 		dump_histogram(data.mfu_u_hist, data.hist_nbuckets, 0);
4437 		mdb_printf("\n");
4438 	}
4439 
4440 	if (data.arc_cflags & ARC_CFLAG_BUFS) {
4441 		mdb_printf("Histogram of all buffers that "
4442 		    "are associated with an arc hdr.\n");
4443 		dump_histogram(data.all_bufs, data.hist_nbuckets, 0);
4444 		mdb_printf("\n");
4445 	}
4446 
4447 	mdb_printf("Histogram of all compressed buffers.\n"
4448 	    "Each bucket represents buffers of size: %s.\n", range);
4449 	dump_histogram(data.all_c_hist, data.hist_nbuckets, 0);
4450 	mdb_printf("\n");
4451 
4452 	mdb_printf("Histogram of all uncompressed buffers.\n"
4453 	    "Each bucket represents buffers of size: %s.\n", range);
4454 	dump_histogram(data.all_u_hist, data.hist_nbuckets, 0);
4455 
4456 out:
4457 	mdb_free(data.anon_c_hist, hist_size);
4458 	mdb_free(data.anon_u_hist, hist_size);
4459 	mdb_free(data.anon_bufs, hist_size);
4460 
4461 	mdb_free(data.mru_c_hist, hist_size);
4462 	mdb_free(data.mru_u_hist, hist_size);
4463 	mdb_free(data.mru_bufs, hist_size);
4464 
4465 	mdb_free(data.mfu_c_hist, hist_size);
4466 	mdb_free(data.mfu_u_hist, hist_size);
4467 	mdb_free(data.mfu_bufs, hist_size);
4468 
4469 	mdb_free(data.all_c_hist, hist_size);
4470 	mdb_free(data.all_u_hist, hist_size);
4471 	mdb_free(data.all_bufs, hist_size);
4472 
4473 	return (rc);
4474 }
4475 
4476 typedef struct mdb_range_seg64 {
4477 	uint64_t rs_start;
4478 	uint64_t rs_end;
4479 } mdb_range_seg64_t;
4480 
4481 typedef struct mdb_range_seg32 {
4482 	uint32_t rs_start;
4483 	uint32_t rs_end;
4484 } mdb_range_seg32_t;
4485 
4486 /* ARGSUSED */
4487 static int
range_tree_cb(uintptr_t addr,const void * unknown,void * arg)4488 range_tree_cb(uintptr_t addr, const void *unknown, void *arg)
4489 {
4490 	mdb_range_tree_t *rt = (mdb_range_tree_t *)arg;
4491 	uint64_t start, end;
4492 
4493 	if (rt->rt_type == RANGE_SEG64) {
4494 		mdb_range_seg64_t rs;
4495 
4496 		if (mdb_ctf_vread(&rs, ZFS_STRUCT "range_seg64",
4497 		    "mdb_range_seg64_t", addr, 0) == -1)
4498 			return (DCMD_ERR);
4499 		start = rs.rs_start;
4500 		end = rs.rs_end;
4501 	} else {
4502 		ASSERT3U(rt->rt_type, ==, RANGE_SEG32);
4503 		mdb_range_seg32_t rs;
4504 
4505 		if (mdb_ctf_vread(&rs, ZFS_STRUCT "range_seg32",
4506 		    "mdb_range_seg32_t", addr, 0) == -1)
4507 			return (DCMD_ERR);
4508 		start = ((uint64_t)rs.rs_start << rt->rt_shift) + rt->rt_start;
4509 		end = ((uint64_t)rs.rs_end << rt->rt_shift) + rt->rt_start;
4510 	}
4511 
4512 	mdb_printf("\t[%llx %llx) (length %llx)\n", start, end, end - start);
4513 
4514 	return (0);
4515 }
4516 
4517 /* ARGSUSED */
4518 static int
range_tree(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)4519 range_tree(uintptr_t addr, uint_t flags, int argc,
4520     const mdb_arg_t *argv)
4521 {
4522 	mdb_range_tree_t rt;
4523 	uintptr_t btree_addr;
4524 
4525 	if (!(flags & DCMD_ADDRSPEC))
4526 		return (DCMD_USAGE);
4527 
4528 	if (mdb_ctf_vread(&rt, ZFS_STRUCT "range_tree", "mdb_range_tree_t",
4529 	    addr, 0) == -1)
4530 		return (DCMD_ERR);
4531 
4532 	mdb_printf("%p: range tree of %llu entries, %llu bytes\n",
4533 	    addr, rt.rt_root.bt_num_elems, rt.rt_space);
4534 
4535 	btree_addr = addr +
4536 	    mdb_ctf_offsetof_by_name(ZFS_STRUCT "range_tree", "rt_root");
4537 
4538 	if (mdb_pwalk("zfs_btree", range_tree_cb, &rt, btree_addr) != 0) {
4539 		mdb_warn("can't walk range_tree segments");
4540 		return (DCMD_ERR);
4541 	}
4542 	return (DCMD_OK);
4543 }
4544 
4545 typedef struct mdb_spa_log_sm {
4546 	uint64_t sls_sm_obj;
4547 	uint64_t sls_txg;
4548 	uint64_t sls_nblocks;
4549 	uint64_t sls_mscount;
4550 } mdb_spa_log_sm_t;
4551 
4552 /* ARGSUSED */
4553 static int
logsm_stats_cb(uintptr_t addr,const void * unknown,void * arg)4554 logsm_stats_cb(uintptr_t addr, const void *unknown, void *arg)
4555 {
4556 	mdb_spa_log_sm_t sls;
4557 	if (mdb_ctf_vread(&sls, ZFS_STRUCT "spa_log_sm", "mdb_spa_log_sm_t",
4558 	    addr, 0) == -1)
4559 		return (WALK_ERR);
4560 
4561 	mdb_printf("%7lld %7lld %7lld %7lld\n",
4562 	    sls.sls_txg, sls.sls_nblocks, sls.sls_mscount, sls.sls_sm_obj);
4563 
4564 	return (WALK_NEXT);
4565 }
4566 typedef struct mdb_log_summary_entry {
4567 	uint64_t lse_start;
4568 	uint64_t lse_blkcount;
4569 	uint64_t lse_mscount;
4570 } mdb_log_summary_entry_t;
4571 
4572 /* ARGSUSED */
4573 static int
logsm_summary_cb(uintptr_t addr,const void * unknown,void * arg)4574 logsm_summary_cb(uintptr_t addr, const void *unknown, void *arg)
4575 {
4576 	mdb_log_summary_entry_t lse;
4577 	if (mdb_ctf_vread(&lse, ZFS_STRUCT "log_summary_entry",
4578 	    "mdb_log_summary_entry_t", addr, 0) == -1)
4579 		return (WALK_ERR);
4580 
4581 	mdb_printf("%7lld %7lld %7lld\n",
4582 	    lse.lse_start, lse.lse_blkcount, lse.lse_mscount);
4583 	return (WALK_NEXT);
4584 }
4585 
4586 /* ARGSUSED */
4587 static int
logsm_stats(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)4588 logsm_stats(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
4589 {
4590 	if (!(flags & DCMD_ADDRSPEC))
4591 		return (DCMD_USAGE);
4592 
4593 	uintptr_t sls_avl_addr = addr +
4594 	    mdb_ctf_offsetof_by_name(ZFS_STRUCT "spa", "spa_sm_logs_by_txg");
4595 	uintptr_t summary_addr = addr +
4596 	    mdb_ctf_offsetof_by_name(ZFS_STRUCT "spa", "spa_log_summary");
4597 
4598 	mdb_printf("Log Entries:\n");
4599 	mdb_printf("%7s %7s %7s %7s\n", "txg", "blk", "ms", "obj");
4600 	if (mdb_pwalk("avl", logsm_stats_cb, NULL, sls_avl_addr) != 0)
4601 		return (DCMD_ERR);
4602 
4603 	mdb_printf("\nSummary Entries:\n");
4604 	mdb_printf("%7s %7s %7s\n", "txg", "blk", "ms");
4605 	if (mdb_pwalk("list", logsm_summary_cb, NULL, summary_addr) != 0)
4606 		return (DCMD_ERR);
4607 
4608 	return (DCMD_OK);
4609 }
4610 
4611 /*
4612  * MDB module linkage information:
4613  *
4614  * We declare a list of structures describing our dcmds, and a function
4615  * named _mdb_init to return a pointer to our module information.
4616  */
4617 
4618 static const mdb_dcmd_t dcmds[] = {
4619 	{ "arc", "[-bkmg]", "print ARC variables", arc_print },
4620 	{ "blkptr", ":", "print blkptr_t", blkptr },
4621 	{ "dva", ":", "print dva_t", dva },
4622 	{ "dbuf", ":", "print dmu_buf_impl_t", dbuf },
4623 	{ "dbuf_stats", ":", "dbuf stats", dbuf_stats },
4624 	{ "dbufs",
4625 	    "\t[-O objset_t*] [-n objset_name | \"mos\"] "
4626 	    "[-o object | \"mdn\"] \n"
4627 	    "\t[-l level] [-b blkid | \"bonus\"]",
4628 	    "find dmu_buf_impl_t's that match specified criteria", dbufs },
4629 	{ "abuf_find", "dva_word[0] dva_word[1]",
4630 	    "find arc_buf_hdr_t of a specified DVA",
4631 	    abuf_find },
4632 	{ "logsm_stats", ":", "print log space map statistics of a spa_t",
4633 	    logsm_stats},
4634 	{ "spa", "?[-cevmMh]\n"
4635 	    "\t-c display spa config\n"
4636 	    "\t-e display vdev statistics\n"
4637 	    "\t-v display vdev information\n"
4638 	    "\t-m display metaslab statistics\n"
4639 	    "\t-M display metaslab group statistics\n"
4640 	    "\t-h display histogram (requires -m or -M)\n",
4641 	    "spa_t summary", spa_print },
4642 	{ "spa_config", ":", "print spa_t configuration", spa_print_config },
4643 	{ "spa_space", ":[-b]", "print spa_t on-disk space usage", spa_space },
4644 	{ "spa_vdevs", ":[-emMh]\n"
4645 	    "\t-e display vdev statistics\n"
4646 	    "\t-m dispaly metaslab statistics\n"
4647 	    "\t-M display metaslab group statistic\n"
4648 	    "\t-h display histogram (requires -m or -M)\n",
4649 	    "given a spa_t, print vdev summary", spa_vdevs },
4650 	{ "sm_entries", "<buffer length in bytes>",
4651 	    "print out space map entries from a buffer decoded",
4652 	    sm_entries},
4653 	{ "vdev", ":[-remMh]\n"
4654 	    "\t-r display recursively\n"
4655 	    "\t-e display statistics\n"
4656 	    "\t-m display metaslab statistics (top level vdev only)\n"
4657 	    "\t-M display metaslab group statistics (top level vdev only)\n"
4658 	    "\t-h display histogram (requires -m or -M)\n",
4659 	    "vdev_t summary", vdev_print },
4660 	{ "zio", ":[-cpr]\n"
4661 	    "\t-c display children\n"
4662 	    "\t-p display parents\n"
4663 	    "\t-r display recursively",
4664 	    "zio_t summary", zio_print },
4665 	{ "zio_state", "?", "print out all zio_t structures on system or "
4666 	    "for a particular pool", zio_state },
4667 	{ "zfs_blkstats", ":[-v]",
4668 	    "given a spa_t, print block type stats from last scrub",
4669 	    zfs_blkstats },
4670 	{ "zfs_params", "", "print zfs tunable parameters", zfs_params },
4671 	{ "zfs_refcount", ":[-r]\n"
4672 	    "\t-r display recently removed references",
4673 	    "print zfs_refcount_t holders", zfs_refcount },
4674 	{ "zap_leaf", "", "print zap_leaf_phys_t", zap_leaf },
4675 	{ "zfs_aces", ":[-v]", "print all ACEs from a zfs_acl_t",
4676 	    zfs_acl_dump },
4677 	{ "zfs_ace", ":[-v]", "print zfs_ace", zfs_ace_print },
4678 	{ "zfs_ace0", ":[-v]", "print zfs_ace0", zfs_ace0_print },
4679 	{ "sa_attr_table", ":", "print SA attribute table from sa_os_t",
4680 	    sa_attr_table},
4681 	{ "sa_attr", ": attr_id",
4682 	    "print SA attribute address when given sa_handle_t", sa_attr_print},
4683 	{ "zfs_dbgmsg", ":[-artTvw]",
4684 	    "print zfs debug log", dbgmsg, dbgmsg_help},
4685 	{ "rrwlock", ":",
4686 	    "print rrwlock_t, including readers", rrwlock},
4687 	{ "metaslab_weight", "weight",
4688 	    "print metaslab weight", metaslab_weight},
4689 	{ "metaslab_trace", ":",
4690 	    "print metaslab allocation trace records", metaslab_trace},
4691 	{ "arc_compression_stats", ":[-vabrf]\n"
4692 	    "\t-v verbose, display a linearly scaled histogram\n"
4693 	    "\t-a display ARC_anon state statistics individually\n"
4694 	    "\t-r display ARC_mru state statistics individually\n"
4695 	    "\t-f display ARC_mfu state statistics individually\n"
4696 	    "\t-b display histogram of buffer counts\n",
4697 	    "print a histogram of compressed arc buffer sizes",
4698 	    arc_compression_stats},
4699 	{ "range_tree", ":",
4700 	    "print entries in range_tree_t", range_tree},
4701 	{ NULL }
4702 };
4703 
4704 static const mdb_walker_t walkers[] = {
4705 	{ "txg_list", "given any txg_list_t *, walk all entries in all txgs",
4706 	    txg_list_walk_init, txg_list_walk_step, NULL },
4707 	{ "txg_list0", "given any txg_list_t *, walk all entries in txg 0",
4708 	    txg_list0_walk_init, txg_list_walk_step, NULL },
4709 	{ "txg_list1", "given any txg_list_t *, walk all entries in txg 1",
4710 	    txg_list1_walk_init, txg_list_walk_step, NULL },
4711 	{ "txg_list2", "given any txg_list_t *, walk all entries in txg 2",
4712 	    txg_list2_walk_init, txg_list_walk_step, NULL },
4713 	{ "txg_list3", "given any txg_list_t *, walk all entries in txg 3",
4714 	    txg_list3_walk_init, txg_list_walk_step, NULL },
4715 	{ "zio", "walk all zio structures, optionally for a particular spa_t",
4716 	    zio_walk_init, zio_walk_step, NULL },
4717 	{ "zio_root",
4718 	    "walk all root zio_t structures, optionally for a particular spa_t",
4719 	    zio_walk_init, zio_walk_root_step, NULL },
4720 	{ "spa", "walk all spa_t entries in the namespace",
4721 	    spa_walk_init, spa_walk_step, NULL },
4722 	{ "metaslab", "given a spa_t *, walk all metaslab_t structures",
4723 	    metaslab_walk_init, metaslab_walk_step, NULL },
4724 	{ "multilist", "given a multilist_t *, walk all list_t structures",
4725 	    multilist_walk_init, multilist_walk_step, NULL },
4726 	{ "zfs_acl_node", "given a zfs_acl_t, walk all zfs_acl_nodes",
4727 	    zfs_acl_node_walk_init, zfs_acl_node_walk_step, NULL },
4728 	{ "zfs_acl_node_aces", "given a zfs_acl_node_t, walk all ACEs",
4729 	    zfs_acl_node_aces_walk_init, zfs_aces_walk_step, NULL },
4730 	{ "zfs_acl_node_aces0",
4731 	    "given a zfs_acl_node_t, walk all ACEs as ace_t",
4732 	    zfs_acl_node_aces0_walk_init, zfs_aces_walk_step, NULL },
4733 	{ "zfs_btree", "given a zfs_btree_t *, walk all entries",
4734 	    btree_walk_init, btree_walk_step, btree_walk_fini },
4735 	{ NULL }
4736 };
4737 
4738 static const mdb_modinfo_t modinfo = {
4739 	MDB_API_VERSION, dcmds, walkers
4740 };
4741 
4742 const mdb_modinfo_t *
_mdb_init(void)4743 _mdb_init(void)
4744 {
4745 	return (&modinfo);
4746 }
4747