1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
25 * Copyright 2020 Joyent, Inc.
26 * Copyright 2025 Oxide Computer Company
27 */
28
29 /* Portions Copyright 2010 Robert Milkowski */
30
31 /*
32 * ZFS_MDB lets dmu.h know that we don't have dmu_ot, and we will define our
33 * own macros to access the target's dmu_ot. Therefore it must be defined
34 * before including any ZFS headers. Note that we don't define
35 * DMU_OT_IS_ENCRYPTED_IMPL() or DMU_OT_BYTESWAP_IMPL(), therefore using them
36 * will result in a compilation error. If they are needed in the future, we
37 * can implement them similarly to mdb_dmu_ot_is_encrypted_impl().
38 */
39 #define ZFS_MDB
40 #define DMU_OT_IS_ENCRYPTED_IMPL(ot) mdb_dmu_ot_is_encrypted_impl(ot)
41
42 #include <mdb/mdb_ctf.h>
43 #include <sys/zfs_context.h>
44 #include <sys/mdb_modapi.h>
45 #include <sys/dbuf.h>
46 #include <sys/dmu_objset.h>
47 #include <sys/dsl_dir.h>
48 #include <sys/dsl_pool.h>
49 #include <sys/metaslab_impl.h>
50 #include <sys/space_map.h>
51 #include <sys/list.h>
52 #include <sys/vdev_impl.h>
53 #include <sys/zap_leaf.h>
54 #include <sys/zap_impl.h>
55 #include <ctype.h>
56 #include <sys/zfs_acl.h>
57 #include <sys/sa_impl.h>
58 #include <sys/multilist.h>
59 #include <sys/btree.h>
60
61 #ifdef _KERNEL
62 #define ZFS_OBJ_NAME "zfs"
63 #else
64 #define ZFS_OBJ_NAME "libzpool.so.1"
65 #endif
66 extern int64_t mdb_gethrtime(void);
67
68 #define ZFS_STRUCT "struct " ZFS_OBJ_NAME "`"
69
70 #ifndef _KERNEL
71 int aok;
72 #endif
73
74 enum spa_flags {
75 SPA_FLAG_CONFIG = 1 << 0,
76 SPA_FLAG_VDEVS = 1 << 1,
77 SPA_FLAG_ERRORS = 1 << 2,
78 SPA_FLAG_METASLAB_GROUPS = 1 << 3,
79 SPA_FLAG_METASLABS = 1 << 4,
80 SPA_FLAG_HISTOGRAMS = 1 << 5
81 };
82
83 /*
84 * If any of these flags are set, call spa_vdevs in spa_print
85 */
86 #define SPA_FLAG_ALL_VDEV \
87 (SPA_FLAG_VDEVS | SPA_FLAG_ERRORS | SPA_FLAG_METASLAB_GROUPS | \
88 SPA_FLAG_METASLABS)
89
90 static int
getmember(uintptr_t addr,const char * type,mdb_ctf_id_t * idp,const char * member,int len,void * buf)91 getmember(uintptr_t addr, const char *type, mdb_ctf_id_t *idp,
92 const char *member, int len, void *buf)
93 {
94 mdb_ctf_id_t id;
95 ulong_t off;
96 char name[64];
97
98 if (idp == NULL) {
99 if (mdb_ctf_lookup_by_name(type, &id) == -1) {
100 mdb_warn("couldn't find type %s", type);
101 return (DCMD_ERR);
102 }
103 idp = &id;
104 } else {
105 type = name;
106 mdb_ctf_type_name(*idp, name, sizeof (name));
107 }
108
109 if (mdb_ctf_offsetof(*idp, member, &off) == -1) {
110 mdb_warn("couldn't find member %s of type %s\n", member, type);
111 return (DCMD_ERR);
112 }
113 if (off % 8 != 0) {
114 mdb_warn("member %s of type %s is unsupported bitfield",
115 member, type);
116 return (DCMD_ERR);
117 }
118 off /= 8;
119
120 if (mdb_vread(buf, len, addr + off) == -1) {
121 mdb_warn("failed to read %s from %s at %p",
122 member, type, addr + off);
123 return (DCMD_ERR);
124 }
125 /* mdb_warn("read %s from %s at %p+%llx\n", member, type, addr, off); */
126
127 return (0);
128 }
129
130 #define GETMEMB(addr, structname, member, dest) \
131 getmember(addr, ZFS_STRUCT structname, NULL, #member, \
132 sizeof (dest), &(dest))
133
134 #define GETMEMBID(addr, ctfid, member, dest) \
135 getmember(addr, NULL, ctfid, #member, sizeof (dest), &(dest))
136
137 static boolean_t
strisprint(const char * cp)138 strisprint(const char *cp)
139 {
140 for (; *cp; cp++) {
141 if (!isprint(*cp))
142 return (B_FALSE);
143 }
144 return (B_TRUE);
145 }
146
147 /*
148 * <addr>::sm_entries <buffer length in bytes>
149 *
150 * Treat the buffer specified by the given address as a buffer that contains
151 * space map entries. Iterate over the specified number of entries and print
152 * them in both encoded and decoded form.
153 */
154 /* ARGSUSED */
155 static int
sm_entries(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)156 sm_entries(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
157 {
158 uint64_t bufsz = 0;
159 boolean_t preview = B_FALSE;
160
161 if (!(flags & DCMD_ADDRSPEC))
162 return (DCMD_USAGE);
163
164 if (argc < 1) {
165 preview = B_TRUE;
166 bufsz = 2;
167 } else if (argc != 1) {
168 return (DCMD_USAGE);
169 } else {
170 switch (argv[0].a_type) {
171 case MDB_TYPE_STRING:
172 bufsz = mdb_strtoull(argv[0].a_un.a_str);
173 break;
174 case MDB_TYPE_IMMEDIATE:
175 bufsz = argv[0].a_un.a_val;
176 break;
177 default:
178 return (DCMD_USAGE);
179 }
180 }
181
182 char *actions[] = { "ALLOC", "FREE", "INVALID" };
183 for (uintptr_t bufend = addr + bufsz; addr < bufend;
184 addr += sizeof (uint64_t)) {
185 uint64_t nwords;
186 uint64_t start_addr = addr;
187
188 uint64_t word = 0;
189 if (mdb_vread(&word, sizeof (word), addr) == -1) {
190 mdb_warn("failed to read space map entry %p", addr);
191 return (DCMD_ERR);
192 }
193
194 if (SM_PREFIX_DECODE(word) == SM_DEBUG_PREFIX) {
195 (void) mdb_printf("\t [%6llu] %s: txg %llu, "
196 "pass %llu\n",
197 (u_longlong_t)(addr),
198 actions[SM_DEBUG_ACTION_DECODE(word)],
199 (u_longlong_t)SM_DEBUG_TXG_DECODE(word),
200 (u_longlong_t)SM_DEBUG_SYNCPASS_DECODE(word));
201 continue;
202 }
203
204 char entry_type;
205 uint64_t raw_offset, raw_run, vdev_id = SM_NO_VDEVID;
206
207 if (SM_PREFIX_DECODE(word) != SM2_PREFIX) {
208 entry_type = (SM_TYPE_DECODE(word) == SM_ALLOC) ?
209 'A' : 'F';
210 raw_offset = SM_OFFSET_DECODE(word);
211 raw_run = SM_RUN_DECODE(word);
212 nwords = 1;
213 } else {
214 ASSERT3U(SM_PREFIX_DECODE(word), ==, SM2_PREFIX);
215
216 raw_run = SM2_RUN_DECODE(word);
217 vdev_id = SM2_VDEV_DECODE(word);
218
219 /* it is a two-word entry so we read another word */
220 addr += sizeof (uint64_t);
221 if (addr >= bufend) {
222 mdb_warn("buffer ends in the middle of a two "
223 "word entry\n", addr);
224 return (DCMD_ERR);
225 }
226
227 if (mdb_vread(&word, sizeof (word), addr) == -1) {
228 mdb_warn("failed to read space map entry %p",
229 addr);
230 return (DCMD_ERR);
231 }
232
233 entry_type = (SM2_TYPE_DECODE(word) == SM_ALLOC) ?
234 'A' : 'F';
235 raw_offset = SM2_OFFSET_DECODE(word);
236 nwords = 2;
237 }
238
239 (void) mdb_printf("\t [%6llx] %c range:"
240 " %010llx-%010llx size: %06llx vdev: %06llu words: %llu\n",
241 (u_longlong_t)start_addr,
242 entry_type, (u_longlong_t)raw_offset,
243 (u_longlong_t)(raw_offset + raw_run),
244 (u_longlong_t)raw_run,
245 (u_longlong_t)vdev_id, (u_longlong_t)nwords);
246
247 if (preview)
248 break;
249 }
250 return (DCMD_OK);
251 }
252
253 static int
mdb_dsl_dir_name(uintptr_t addr,char * buf)254 mdb_dsl_dir_name(uintptr_t addr, char *buf)
255 {
256 static int gotid;
257 static mdb_ctf_id_t dd_id;
258 uintptr_t dd_parent;
259 char dd_myname[ZFS_MAX_DATASET_NAME_LEN];
260
261 if (!gotid) {
262 if (mdb_ctf_lookup_by_name(ZFS_STRUCT "dsl_dir",
263 &dd_id) == -1) {
264 mdb_warn("couldn't find struct dsl_dir");
265 return (DCMD_ERR);
266 }
267 gotid = TRUE;
268 }
269 if (GETMEMBID(addr, &dd_id, dd_parent, dd_parent) ||
270 GETMEMBID(addr, &dd_id, dd_myname, dd_myname)) {
271 return (DCMD_ERR);
272 }
273
274 if (dd_parent) {
275 if (mdb_dsl_dir_name(dd_parent, buf))
276 return (DCMD_ERR);
277 strcat(buf, "/");
278 }
279
280 if (dd_myname[0])
281 strcat(buf, dd_myname);
282 else
283 strcat(buf, "???");
284
285 return (0);
286 }
287
288 static int
objset_name(uintptr_t addr,char * buf)289 objset_name(uintptr_t addr, char *buf)
290 {
291 static int gotid;
292 static mdb_ctf_id_t os_id, ds_id;
293 uintptr_t os_dsl_dataset;
294 char ds_snapname[ZFS_MAX_DATASET_NAME_LEN];
295 uintptr_t ds_dir;
296
297 buf[0] = '\0';
298
299 if (!gotid) {
300 if (mdb_ctf_lookup_by_name(ZFS_STRUCT "objset",
301 &os_id) == -1) {
302 mdb_warn("couldn't find struct objset");
303 return (DCMD_ERR);
304 }
305 if (mdb_ctf_lookup_by_name(ZFS_STRUCT "dsl_dataset",
306 &ds_id) == -1) {
307 mdb_warn("couldn't find struct dsl_dataset");
308 return (DCMD_ERR);
309 }
310
311 gotid = TRUE;
312 }
313
314 if (GETMEMBID(addr, &os_id, os_dsl_dataset, os_dsl_dataset))
315 return (DCMD_ERR);
316
317 if (os_dsl_dataset == 0) {
318 strcat(buf, "mos");
319 return (0);
320 }
321
322 if (GETMEMBID(os_dsl_dataset, &ds_id, ds_snapname, ds_snapname) ||
323 GETMEMBID(os_dsl_dataset, &ds_id, ds_dir, ds_dir)) {
324 return (DCMD_ERR);
325 }
326
327 if (ds_dir && mdb_dsl_dir_name(ds_dir, buf))
328 return (DCMD_ERR);
329
330 if (ds_snapname[0]) {
331 strcat(buf, "@");
332 strcat(buf, ds_snapname);
333 }
334 return (0);
335 }
336
337 static int
enum_lookup(char * type,int val,const char * prefix,size_t size,char * out)338 enum_lookup(char *type, int val, const char *prefix, size_t size, char *out)
339 {
340 const char *cp;
341 size_t len = strlen(prefix);
342 mdb_ctf_id_t enum_type;
343
344 if (mdb_ctf_lookup_by_name(type, &enum_type) != 0) {
345 mdb_warn("Could not find enum for %s", type);
346 return (-1);
347 }
348
349 if ((cp = mdb_ctf_enum_name(enum_type, val)) != NULL) {
350 if (strncmp(cp, prefix, len) == 0)
351 cp += len;
352 (void) strncpy(out, cp, size);
353 } else {
354 mdb_snprintf(out, size, "? (%d)", val);
355 }
356 return (0);
357 }
358
359 /* ARGSUSED */
360 static int
zfs_params(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)361 zfs_params(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
362 {
363 /*
364 * This table can be approximately generated by running:
365 * egrep "^[a-z0-9_]+ [a-z0-9_]+( =.*)?;" *.c | cut -d ' ' -f 2
366 */
367 static const char *params[] = {
368 "arc_lotsfree_percent",
369 "arc_pages_pp_reserve",
370 "arc_reduce_dnlc_percent",
371 "arc_swapfs_reserve",
372 "arc_zio_arena_free_shift",
373 "dbuf_cache_hiwater_pct",
374 "dbuf_cache_lowater_pct",
375 "dbuf_cache_max_bytes",
376 "dbuf_cache_max_shift",
377 "ddt_zap_indirect_blockshift",
378 "ddt_zap_leaf_blockshift",
379 "ditto_same_vdev_distance_shift",
380 "dmu_find_threads",
381 "dmu_rescan_dnode_threshold",
382 "dsl_scan_delay_completion",
383 "fzap_default_block_shift",
384 "l2arc_feed_again",
385 "l2arc_feed_min_ms",
386 "l2arc_feed_secs",
387 "l2arc_headroom",
388 "l2arc_headroom_boost",
389 "l2arc_noprefetch",
390 "l2arc_norw",
391 "l2arc_write_boost",
392 "l2arc_write_max",
393 "metaslab_aliquot",
394 "metaslab_bias_enabled",
395 "metaslab_debug_load",
396 "metaslab_debug_unload",
397 "metaslab_df_alloc_threshold",
398 "metaslab_df_free_pct",
399 "metaslab_fragmentation_factor_enabled",
400 "metaslab_force_ganging",
401 "metaslab_lba_weighting_enabled",
402 "metaslab_load_pct",
403 "metaslab_min_alloc_size",
404 "metaslab_ndf_clump_shift",
405 "metaslab_preload_enabled",
406 "metaslab_preload_limit",
407 "metaslab_trace_enabled",
408 "metaslab_trace_max_entries",
409 "metaslab_unload_delay",
410 "metaslabs_per_vdev",
411 "reference_history",
412 "reference_tracking_enable",
413 "send_holes_without_birth_time",
414 "spa_asize_inflation",
415 "spa_load_verify_data",
416 "spa_load_verify_maxinflight",
417 "spa_load_verify_metadata",
418 "spa_max_replication_override",
419 "spa_min_slop",
420 "spa_mode_global",
421 "spa_slop_shift",
422 "space_map_blksz",
423 "vdev_mirror_shift",
424 "zfetch_max_distance",
425 "zfs_abd_chunk_size",
426 "zfs_abd_scatter_enabled",
427 "zfs_arc_average_blocksize",
428 "zfs_arc_evict_batch_limit",
429 "zfs_arc_grow_retry",
430 "zfs_arc_max",
431 "zfs_arc_meta_limit",
432 "zfs_arc_meta_min",
433 "zfs_arc_min",
434 "zfs_arc_p_min_shift",
435 "zfs_arc_shrink_shift",
436 "zfs_async_block_max_blocks",
437 "zfs_ccw_retry_interval",
438 "zfs_commit_timeout_pct",
439 "zfs_compressed_arc_enabled",
440 "zfs_condense_indirect_commit_entry_delay_ticks",
441 "zfs_condense_indirect_vdevs_enable",
442 "zfs_condense_max_obsolete_bytes",
443 "zfs_condense_min_mapping_bytes",
444 "zfs_condense_pct",
445 "zfs_dbgmsg_maxsize",
446 "zfs_deadman_checktime_ms",
447 "zfs_deadman_enabled",
448 "zfs_deadman_synctime_ms",
449 "zfs_dedup_prefetch",
450 "zfs_default_bs",
451 "zfs_default_ibs",
452 "zfs_delay_max_ns",
453 "zfs_delay_min_dirty_percent",
454 "zfs_delay_resolution_ns",
455 "zfs_delay_scale",
456 "zfs_dirty_data_max",
457 "zfs_dirty_data_max_max",
458 "zfs_dirty_data_max_percent",
459 "zfs_dirty_data_sync",
460 "zfs_flags",
461 "zfs_free_bpobj_enabled",
462 "zfs_free_leak_on_eio",
463 "zfs_free_min_time_ms",
464 "zfs_fsync_sync_cnt",
465 "zfs_immediate_write_sz",
466 "zfs_indirect_condense_obsolete_pct",
467 "zfs_lua_check_instrlimit_interval",
468 "zfs_lua_max_instrlimit",
469 "zfs_lua_max_memlimit",
470 "zfs_max_recordsize",
471 "zfs_mdcomp_disable",
472 "zfs_metaslab_condense_block_threshold",
473 "zfs_metaslab_fragmentation_threshold",
474 "zfs_metaslab_segment_weight_enabled",
475 "zfs_metaslab_switch_threshold",
476 "zfs_mg_fragmentation_threshold",
477 "zfs_mg_noalloc_threshold",
478 "zfs_multilist_num_sublists",
479 "zfs_no_scrub_io",
480 "zfs_no_scrub_prefetch",
481 "zfs_nocacheflush",
482 "zfs_nopwrite_enabled",
483 "zfs_object_remap_one_indirect_delay_ticks",
484 "zfs_obsolete_min_time_ms",
485 "zfs_pd_bytes_max",
486 "zfs_per_txg_dirty_frees_percent",
487 "zfs_prefetch_disable",
488 "zfs_read_chunk_size",
489 "zfs_recover",
490 "zfs_recv_queue_length",
491 "zfs_redundant_metadata_most_ditto_level",
492 "zfs_remap_blkptr_enable",
493 "zfs_remove_max_copy_bytes",
494 "zfs_remove_max_segment",
495 "zfs_resilver_min_time_ms",
496 "zfs_scan_min_time_ms",
497 "zfs_scrub_limit",
498 "zfs_send_corrupt_data",
499 "zfs_send_queue_length",
500 "zfs_send_set_freerecords_bit",
501 "zfs_sync_pass_deferred_free",
502 "zfs_sync_pass_dont_compress",
503 "zfs_sync_pass_rewrite",
504 "zfs_sync_taskq_batch_pct",
505 "zfs_top_maxinflight",
506 "zfs_txg_timeout",
507 "zfs_vdev_aggregation_limit",
508 "zfs_vdev_async_read_max_active",
509 "zfs_vdev_async_read_min_active",
510 "zfs_vdev_async_write_active_max_dirty_percent",
511 "zfs_vdev_async_write_active_min_dirty_percent",
512 "zfs_vdev_async_write_max_active",
513 "zfs_vdev_async_write_min_active",
514 "zfs_vdev_cache_bshift",
515 "zfs_vdev_cache_max",
516 "zfs_vdev_cache_size",
517 "zfs_vdev_max_active",
518 "zfs_vdev_queue_depth_pct",
519 "zfs_vdev_read_gap_limit",
520 "zfs_vdev_removal_max_active",
521 "zfs_vdev_removal_min_active",
522 "zfs_vdev_scrub_max_active",
523 "zfs_vdev_scrub_min_active",
524 "zfs_vdev_sync_read_max_active",
525 "zfs_vdev_sync_read_min_active",
526 "zfs_vdev_sync_write_max_active",
527 "zfs_vdev_sync_write_min_active",
528 "zfs_vdev_write_gap_limit",
529 "zfs_write_implies_delete_child",
530 "zfs_zil_clean_taskq_maxalloc",
531 "zfs_zil_clean_taskq_minalloc",
532 "zfs_zil_clean_taskq_nthr_pct",
533 "zil_replay_disable",
534 "zil_slog_bulk",
535 "zio_buf_debug_limit",
536 "zio_dva_throttle_enabled",
537 "zio_injection_enabled",
538 "zvol_immediate_write_sz",
539 "zvol_maxphys",
540 "zvol_unmap_enabled",
541 "zvol_unmap_sync_enabled",
542 "zfs_max_dataset_nesting",
543 };
544
545 for (int i = 0; i < sizeof (params) / sizeof (params[0]); i++) {
546 int sz;
547 uint64_t val64;
548 uint32_t *val32p = (uint32_t *)&val64;
549
550 sz = mdb_readvar(&val64, params[i]);
551 if (sz == 4) {
552 mdb_printf("%s = 0x%x\n", params[i], *val32p);
553 } else if (sz == 8) {
554 mdb_printf("%s = 0x%llx\n", params[i], val64);
555 } else {
556 mdb_warn("variable %s not found", params[i]);
557 }
558 }
559
560 return (DCMD_OK);
561 }
562
563 /* ARGSUSED */
564 static int
dva(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)565 dva(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
566 {
567 dva_t dva;
568 if (mdb_vread(&dva, sizeof (dva_t), addr) == -1) {
569 mdb_warn("failed to read dva_t");
570 return (DCMD_ERR);
571 }
572 mdb_printf("<%llu:%llx:%llx>\n",
573 (u_longlong_t)DVA_GET_VDEV(&dva),
574 (u_longlong_t)DVA_GET_OFFSET(&dva),
575 (u_longlong_t)DVA_GET_ASIZE(&dva));
576
577 return (DCMD_OK);
578 }
579
580 typedef struct mdb_dmu_object_type_info {
581 boolean_t ot_encrypt;
582 } mdb_dmu_object_type_info_t;
583
584 static boolean_t
mdb_dmu_ot_is_encrypted_impl(dmu_object_type_t ot)585 mdb_dmu_ot_is_encrypted_impl(dmu_object_type_t ot)
586 {
587 mdb_dmu_object_type_info_t mdoti;
588 GElf_Sym sym;
589 size_t sz = mdb_ctf_sizeof_by_name("dmu_object_type_info_t");
590
591 if (mdb_lookup_by_obj(ZFS_OBJ_NAME, "dmu_ot", &sym)) {
592 mdb_warn("failed to find " ZFS_OBJ_NAME "`dmu_ot");
593 return (B_FALSE);
594 }
595
596 if (mdb_ctf_vread(&mdoti, "dmu_object_type_info_t",
597 "mdb_dmu_object_type_info_t", sym.st_value + sz * ot, 0) != 0) {
598 return (B_FALSE);
599 }
600
601 return (mdoti.ot_encrypt);
602 }
603
604 /* ARGSUSED */
605 static int
blkptr(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)606 blkptr(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
607 {
608 char type[80], checksum[80], compress[80];
609 blkptr_t blk, *bp = &blk;
610 char buf[BP_SPRINTF_LEN];
611
612 if (mdb_vread(&blk, sizeof (blkptr_t), addr) == -1) {
613 mdb_warn("failed to read blkptr_t");
614 return (DCMD_ERR);
615 }
616
617 if (enum_lookup("enum dmu_object_type", BP_GET_TYPE(bp), "DMU_OT_",
618 sizeof (type), type) == -1 ||
619 enum_lookup("enum zio_checksum", BP_GET_CHECKSUM(bp),
620 "ZIO_CHECKSUM_", sizeof (checksum), checksum) == -1 ||
621 enum_lookup("enum zio_compress", BP_GET_COMPRESS(bp),
622 "ZIO_COMPRESS_", sizeof (compress), compress) == -1) {
623 mdb_warn("Could not find blkptr enumerated types");
624 return (DCMD_ERR);
625 }
626
627 SNPRINTF_BLKPTR(mdb_snprintf, '\n', buf, sizeof (buf), bp, type,
628 checksum, compress);
629
630 mdb_printf("%s\n", buf);
631
632 return (DCMD_OK);
633 }
634
635 typedef struct mdb_dmu_buf_impl {
636 struct {
637 uint64_t db_object;
638 uintptr_t db_data;
639 } db;
640 uintptr_t db_objset;
641 uint64_t db_level;
642 uint64_t db_blkid;
643 struct {
644 uint64_t rc_count;
645 } db_holds;
646 } mdb_dmu_buf_impl_t;
647
648 /* ARGSUSED */
649 static int
dbuf(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)650 dbuf(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
651 {
652 mdb_dmu_buf_impl_t db;
653 char objectname[32];
654 char blkidname[32];
655 char path[ZFS_MAX_DATASET_NAME_LEN];
656 int ptr_width = (int)(sizeof (void *)) * 2;
657
658 if (DCMD_HDRSPEC(flags))
659 mdb_printf("%*s %8s %3s %9s %5s %s\n",
660 ptr_width, "addr", "object", "lvl", "blkid", "holds", "os");
661
662 if (mdb_ctf_vread(&db, ZFS_STRUCT "dmu_buf_impl", "mdb_dmu_buf_impl_t",
663 addr, 0) == -1)
664 return (DCMD_ERR);
665
666 if (db.db.db_object == DMU_META_DNODE_OBJECT)
667 (void) strcpy(objectname, "mdn");
668 else
669 (void) mdb_snprintf(objectname, sizeof (objectname), "%llx",
670 (u_longlong_t)db.db.db_object);
671
672 if (db.db_blkid == DMU_BONUS_BLKID)
673 (void) strcpy(blkidname, "bonus");
674 else
675 (void) mdb_snprintf(blkidname, sizeof (blkidname), "%llx",
676 (u_longlong_t)db.db_blkid);
677
678 if (objset_name(db.db_objset, path)) {
679 return (DCMD_ERR);
680 }
681
682 mdb_printf("%*p %8s %3u %9s %5llu %s\n", ptr_width, addr,
683 objectname, (int)db.db_level, blkidname,
684 db.db_holds.rc_count, path);
685
686 return (DCMD_OK);
687 }
688
689 /* ARGSUSED */
690 static int
dbuf_stats(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)691 dbuf_stats(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
692 {
693 #define HISTOSZ 32
694 uintptr_t dbp;
695 dmu_buf_impl_t db;
696 dbuf_hash_table_t ht;
697 uint64_t bucket, ndbufs;
698 uint64_t histo[HISTOSZ];
699 uint64_t histo2[HISTOSZ];
700 int i, maxidx;
701
702 if (mdb_readvar(&ht, "dbuf_hash_table") == -1) {
703 mdb_warn("failed to read 'dbuf_hash_table'");
704 return (DCMD_ERR);
705 }
706
707 for (i = 0; i < HISTOSZ; i++) {
708 histo[i] = 0;
709 histo2[i] = 0;
710 }
711
712 ndbufs = 0;
713 for (bucket = 0; bucket < ht.hash_table_mask+1; bucket++) {
714 int len;
715
716 if (mdb_vread(&dbp, sizeof (void *),
717 (uintptr_t)(ht.hash_table+bucket)) == -1) {
718 mdb_warn("failed to read hash bucket %u at %p",
719 bucket, ht.hash_table+bucket);
720 return (DCMD_ERR);
721 }
722
723 len = 0;
724 while (dbp != 0) {
725 if (mdb_vread(&db, sizeof (dmu_buf_impl_t),
726 dbp) == -1) {
727 mdb_warn("failed to read dbuf at %p", dbp);
728 return (DCMD_ERR);
729 }
730 dbp = (uintptr_t)db.db_hash_next;
731 for (i = MIN(len, HISTOSZ - 1); i >= 0; i--)
732 histo2[i]++;
733 len++;
734 ndbufs++;
735 }
736
737 if (len >= HISTOSZ)
738 len = HISTOSZ-1;
739 histo[len]++;
740 }
741
742 mdb_printf("hash table has %llu buckets, %llu dbufs "
743 "(avg %llu buckets/dbuf)\n",
744 ht.hash_table_mask+1, ndbufs,
745 (ht.hash_table_mask+1)/ndbufs);
746
747 mdb_printf("\n");
748 maxidx = 0;
749 for (i = 0; i < HISTOSZ; i++)
750 if (histo[i] > 0)
751 maxidx = i;
752 mdb_printf("hash chain length number of buckets\n");
753 for (i = 0; i <= maxidx; i++)
754 mdb_printf("%u %llu\n", i, histo[i]);
755
756 mdb_printf("\n");
757 maxidx = 0;
758 for (i = 0; i < HISTOSZ; i++)
759 if (histo2[i] > 0)
760 maxidx = i;
761 mdb_printf("hash chain depth number of dbufs\n");
762 for (i = 0; i <= maxidx; i++)
763 mdb_printf("%u or more %llu %llu%%\n",
764 i, histo2[i], histo2[i]*100/ndbufs);
765
766
767 return (DCMD_OK);
768 }
769
770 #define CHAIN_END 0xffff
771 /*
772 * ::zap_leaf [-v]
773 *
774 * Print a zap_leaf_phys_t, assumed to be 16k
775 */
776 /* ARGSUSED */
777 static int
zap_leaf(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)778 zap_leaf(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
779 {
780 char buf[16*1024];
781 int verbose = B_FALSE;
782 int four = B_FALSE;
783 dmu_buf_t l_dbuf;
784 zap_leaf_t l;
785 zap_leaf_phys_t *zlp = (void *)buf;
786 int i;
787
788 if (mdb_getopts(argc, argv,
789 'v', MDB_OPT_SETBITS, TRUE, &verbose,
790 '4', MDB_OPT_SETBITS, TRUE, &four,
791 NULL) != argc)
792 return (DCMD_USAGE);
793
794 l_dbuf.db_data = zlp;
795 l.l_dbuf = &l_dbuf;
796 l.l_bs = 14; /* assume 16k blocks */
797 if (four)
798 l.l_bs = 12;
799
800 if (!(flags & DCMD_ADDRSPEC)) {
801 return (DCMD_USAGE);
802 }
803
804 if (mdb_vread(buf, sizeof (buf), addr) == -1) {
805 mdb_warn("failed to read zap_leaf_phys_t at %p", addr);
806 return (DCMD_ERR);
807 }
808
809 if (zlp->l_hdr.lh_block_type != ZBT_LEAF ||
810 zlp->l_hdr.lh_magic != ZAP_LEAF_MAGIC) {
811 mdb_warn("This does not appear to be a zap_leaf_phys_t");
812 return (DCMD_ERR);
813 }
814
815 mdb_printf("zap_leaf_phys_t at %p:\n", addr);
816 mdb_printf(" lh_prefix_len = %u\n", zlp->l_hdr.lh_prefix_len);
817 mdb_printf(" lh_prefix = %llx\n", zlp->l_hdr.lh_prefix);
818 mdb_printf(" lh_nentries = %u\n", zlp->l_hdr.lh_nentries);
819 mdb_printf(" lh_nfree = %u\n", zlp->l_hdr.lh_nfree,
820 zlp->l_hdr.lh_nfree * 100 / (ZAP_LEAF_NUMCHUNKS(&l)));
821 mdb_printf(" lh_freelist = %u\n", zlp->l_hdr.lh_freelist);
822 mdb_printf(" lh_flags = %x (%s)\n", zlp->l_hdr.lh_flags,
823 zlp->l_hdr.lh_flags & ZLF_ENTRIES_CDSORTED ?
824 "ENTRIES_CDSORTED" : "");
825
826 if (verbose) {
827 mdb_printf(" hash table:\n");
828 for (i = 0; i < ZAP_LEAF_HASH_NUMENTRIES(&l); i++) {
829 if (zlp->l_hash[i] != CHAIN_END)
830 mdb_printf(" %u: %u\n", i, zlp->l_hash[i]);
831 }
832 }
833
834 mdb_printf(" chunks:\n");
835 for (i = 0; i < ZAP_LEAF_NUMCHUNKS(&l); i++) {
836 /* LINTED: alignment */
837 zap_leaf_chunk_t *zlc = &ZAP_LEAF_CHUNK(&l, i);
838 switch (zlc->l_entry.le_type) {
839 case ZAP_CHUNK_FREE:
840 if (verbose) {
841 mdb_printf(" %u: free; lf_next = %u\n",
842 i, zlc->l_free.lf_next);
843 }
844 break;
845 case ZAP_CHUNK_ENTRY:
846 mdb_printf(" %u: entry\n", i);
847 if (verbose) {
848 mdb_printf(" le_next = %u\n",
849 zlc->l_entry.le_next);
850 }
851 mdb_printf(" le_name_chunk = %u\n",
852 zlc->l_entry.le_name_chunk);
853 mdb_printf(" le_name_numints = %u\n",
854 zlc->l_entry.le_name_numints);
855 mdb_printf(" le_value_chunk = %u\n",
856 zlc->l_entry.le_value_chunk);
857 mdb_printf(" le_value_intlen = %u\n",
858 zlc->l_entry.le_value_intlen);
859 mdb_printf(" le_value_numints = %u\n",
860 zlc->l_entry.le_value_numints);
861 mdb_printf(" le_cd = %u\n",
862 zlc->l_entry.le_cd);
863 mdb_printf(" le_hash = %llx\n",
864 zlc->l_entry.le_hash);
865 break;
866 case ZAP_CHUNK_ARRAY:
867 mdb_printf(" %u: array", i);
868 if (strisprint((char *)zlc->l_array.la_array))
869 mdb_printf(" \"%s\"", zlc->l_array.la_array);
870 mdb_printf("\n");
871 if (verbose) {
872 int j;
873 mdb_printf(" ");
874 for (j = 0; j < ZAP_LEAF_ARRAY_BYTES; j++) {
875 mdb_printf("%02x ",
876 zlc->l_array.la_array[j]);
877 }
878 mdb_printf("\n");
879 }
880 if (zlc->l_array.la_next != CHAIN_END) {
881 mdb_printf(" lf_next = %u\n",
882 zlc->l_array.la_next);
883 }
884 break;
885 default:
886 mdb_printf(" %u: undefined type %u\n",
887 zlc->l_entry.le_type);
888 }
889 }
890
891 return (DCMD_OK);
892 }
893
894 typedef struct dbufs_data {
895 mdb_ctf_id_t id;
896 uint64_t objset;
897 uint64_t object;
898 uint64_t level;
899 uint64_t blkid;
900 char *osname;
901 } dbufs_data_t;
902
903 #define DBUFS_UNSET (0xbaddcafedeadbeefULL)
904
905 /* ARGSUSED */
906 static int
dbufs_cb(uintptr_t addr,const void * unknown,void * arg)907 dbufs_cb(uintptr_t addr, const void *unknown, void *arg)
908 {
909 dbufs_data_t *data = arg;
910 uintptr_t objset;
911 dmu_buf_t db;
912 uint8_t level;
913 uint64_t blkid;
914 char osname[ZFS_MAX_DATASET_NAME_LEN];
915
916 if (GETMEMBID(addr, &data->id, db_objset, objset) ||
917 GETMEMBID(addr, &data->id, db, db) ||
918 GETMEMBID(addr, &data->id, db_level, level) ||
919 GETMEMBID(addr, &data->id, db_blkid, blkid)) {
920 return (WALK_ERR);
921 }
922
923 if ((data->objset == DBUFS_UNSET || data->objset == objset) &&
924 (data->osname == NULL || (objset_name(objset, osname) == 0 &&
925 strcmp(data->osname, osname) == 0)) &&
926 (data->object == DBUFS_UNSET || data->object == db.db_object) &&
927 (data->level == DBUFS_UNSET || data->level == level) &&
928 (data->blkid == DBUFS_UNSET || data->blkid == blkid)) {
929 mdb_printf("%#lr\n", addr);
930 }
931 return (WALK_NEXT);
932 }
933
934 /* ARGSUSED */
935 static int
dbufs(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)936 dbufs(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
937 {
938 dbufs_data_t data;
939 char *object = NULL;
940 char *blkid = NULL;
941
942 data.objset = data.object = data.level = data.blkid = DBUFS_UNSET;
943 data.osname = NULL;
944
945 if (mdb_getopts(argc, argv,
946 'O', MDB_OPT_UINT64, &data.objset,
947 'n', MDB_OPT_STR, &data.osname,
948 'o', MDB_OPT_STR, &object,
949 'l', MDB_OPT_UINT64, &data.level,
950 'b', MDB_OPT_STR, &blkid,
951 NULL) != argc) {
952 return (DCMD_USAGE);
953 }
954
955 if (object) {
956 if (strcmp(object, "mdn") == 0) {
957 data.object = DMU_META_DNODE_OBJECT;
958 } else {
959 data.object = mdb_strtoull(object);
960 }
961 }
962
963 if (blkid) {
964 if (strcmp(blkid, "bonus") == 0) {
965 data.blkid = DMU_BONUS_BLKID;
966 } else {
967 data.blkid = mdb_strtoull(blkid);
968 }
969 }
970
971 if (mdb_ctf_lookup_by_name(ZFS_STRUCT "dmu_buf_impl", &data.id) == -1) {
972 mdb_warn("couldn't find struct dmu_buf_impl_t");
973 return (DCMD_ERR);
974 }
975
976 if (mdb_walk("dmu_buf_impl_t", dbufs_cb, &data) != 0) {
977 mdb_warn("can't walk dbufs");
978 return (DCMD_ERR);
979 }
980
981 return (DCMD_OK);
982 }
983
984 typedef struct abuf_find_data {
985 dva_t dva;
986 mdb_ctf_id_t id;
987 } abuf_find_data_t;
988
989 /* ARGSUSED */
990 static int
abuf_find_cb(uintptr_t addr,const void * unknown,void * arg)991 abuf_find_cb(uintptr_t addr, const void *unknown, void *arg)
992 {
993 abuf_find_data_t *data = arg;
994 dva_t dva;
995
996 if (GETMEMBID(addr, &data->id, b_dva, dva)) {
997 return (WALK_ERR);
998 }
999
1000 if (dva.dva_word[0] == data->dva.dva_word[0] &&
1001 dva.dva_word[1] == data->dva.dva_word[1]) {
1002 mdb_printf("%#lr\n", addr);
1003 }
1004 return (WALK_NEXT);
1005 }
1006
1007 typedef struct mdb_arc_state {
1008 uintptr_t arcs_list[ARC_BUFC_NUMTYPES];
1009 } mdb_arc_state_t;
1010
1011 /* ARGSUSED */
1012 static int
abuf_find(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)1013 abuf_find(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1014 {
1015 abuf_find_data_t data;
1016 GElf_Sym sym;
1017 int i, j;
1018 const char *syms[] = {
1019 "ARC_mru",
1020 "ARC_mru_ghost",
1021 "ARC_mfu",
1022 "ARC_mfu_ghost",
1023 };
1024
1025 if (argc != 2)
1026 return (DCMD_USAGE);
1027
1028 for (i = 0; i < 2; i ++) {
1029 switch (argv[i].a_type) {
1030 case MDB_TYPE_STRING:
1031 data.dva.dva_word[i] = mdb_strtoull(argv[i].a_un.a_str);
1032 break;
1033 case MDB_TYPE_IMMEDIATE:
1034 data.dva.dva_word[i] = argv[i].a_un.a_val;
1035 break;
1036 default:
1037 return (DCMD_USAGE);
1038 }
1039 }
1040
1041 if (mdb_ctf_lookup_by_name(ZFS_STRUCT "arc_buf_hdr", &data.id) == -1) {
1042 mdb_warn("couldn't find struct arc_buf_hdr");
1043 return (DCMD_ERR);
1044 }
1045
1046 for (i = 0; i < sizeof (syms) / sizeof (syms[0]); i++) {
1047 mdb_arc_state_t mas;
1048
1049 if (mdb_lookup_by_obj(ZFS_OBJ_NAME, syms[i], &sym)) {
1050 mdb_warn("can't find symbol %s", syms[i]);
1051 return (DCMD_ERR);
1052 }
1053
1054 if (mdb_ctf_vread(&mas, "arc_state_t", "mdb_arc_state_t",
1055 sym.st_value, 0) != 0) {
1056 mdb_warn("can't read arcs_list of %s", syms[i]);
1057 return (DCMD_ERR);
1058 }
1059
1060 for (j = 0; j < ARC_BUFC_NUMTYPES; j++) {
1061 uintptr_t addr = mas.arcs_list[j];
1062
1063 if (addr == 0)
1064 continue;
1065
1066 if (mdb_pwalk("multilist", abuf_find_cb, &data,
1067 addr) != 0) {
1068 mdb_warn("can't walk %s", syms[i]);
1069 return (DCMD_ERR);
1070 }
1071 }
1072 }
1073
1074 return (DCMD_OK);
1075 }
1076
1077 typedef struct dbgmsg_arg {
1078 boolean_t da_address;
1079 boolean_t da_hrtime;
1080 boolean_t da_timedelta;
1081 boolean_t da_time;
1082 boolean_t da_whatis;
1083
1084 hrtime_t da_curtime;
1085 } dbgmsg_arg_t;
1086
1087 static int
dbgmsg_cb(uintptr_t addr,const void * unknown __unused,void * arg)1088 dbgmsg_cb(uintptr_t addr, const void *unknown __unused, void *arg)
1089 {
1090 static mdb_ctf_id_t id;
1091 static boolean_t gotid;
1092 static ulong_t off;
1093
1094 dbgmsg_arg_t *da = arg;
1095 time_t timestamp;
1096 hrtime_t hrtime;
1097 char buf[1024];
1098
1099 if (!gotid) {
1100 if (mdb_ctf_lookup_by_name(ZFS_STRUCT "zfs_dbgmsg", &id) ==
1101 -1) {
1102 mdb_warn("couldn't find struct zfs_dbgmsg");
1103 return (WALK_ERR);
1104 }
1105 gotid = TRUE;
1106 if (mdb_ctf_offsetof(id, "zdm_msg", &off) == -1) {
1107 mdb_warn("couldn't find zdm_msg");
1108 return (WALK_ERR);
1109 }
1110 off /= 8;
1111 }
1112
1113 if (GETMEMBID(addr, &id, zdm_timestamp, timestamp)) {
1114 return (WALK_ERR);
1115 }
1116
1117 if (da->da_hrtime || da->da_timedelta) {
1118 if (GETMEMBID(addr, &id, zdm_hrtime, hrtime)) {
1119 return (WALK_ERR);
1120 }
1121 }
1122
1123 if (mdb_readstr(buf, sizeof (buf), addr + off) == -1) {
1124 mdb_warn("failed to read zdm_msg at %p\n", addr + off);
1125 return (DCMD_ERR);
1126 }
1127
1128 if (da->da_address)
1129 mdb_printf("%p ", addr);
1130
1131 if (da->da_timedelta) {
1132 int64_t diff;
1133 char dbuf[32] = { 0 };
1134
1135 if (da->da_curtime == 0)
1136 da->da_curtime = mdb_gethrtime();
1137
1138 diff = (int64_t)hrtime - da->da_curtime;
1139 mdb_nicetime(diff, dbuf, sizeof (dbuf));
1140 mdb_printf("%-20s ", dbuf);
1141 } else if (da->da_hrtime) {
1142 mdb_printf("%016x ", hrtime);
1143 } else if (da->da_time) {
1144 mdb_printf("%Y ", timestamp);
1145 }
1146
1147 mdb_printf("%s\n", buf);
1148
1149 if (da->da_whatis)
1150 (void) mdb_call_dcmd("whatis", addr, DCMD_ADDRSPEC, 0, NULL);
1151
1152 return (WALK_NEXT);
1153 }
1154
1155 static int
dbgmsg(uintptr_t addr,uint_t flags __unused,int argc,const mdb_arg_t * argv)1156 dbgmsg(uintptr_t addr, uint_t flags __unused, int argc, const mdb_arg_t *argv)
1157 {
1158 GElf_Sym sym;
1159 dbgmsg_arg_t da = { 0 };
1160 boolean_t verbose = B_FALSE;
1161
1162 if (mdb_getopts(argc, argv,
1163 'a', MDB_OPT_SETBITS, B_TRUE, &da.da_address,
1164 'r', MDB_OPT_SETBITS, B_TRUE, &da.da_hrtime,
1165 't', MDB_OPT_SETBITS, B_TRUE, &da.da_timedelta,
1166 'T', MDB_OPT_SETBITS, B_TRUE, &da.da_time,
1167 'v', MDB_OPT_SETBITS, B_TRUE, &verbose,
1168 'w', MDB_OPT_SETBITS, B_TRUE, &da.da_whatis,
1169 NULL) != argc) {
1170 return (DCMD_USAGE);
1171 }
1172
1173 if (verbose)
1174 da.da_address = da.da_time = B_TRUE;
1175
1176 if (mdb_lookup_by_obj(ZFS_OBJ_NAME, "zfs_dbgmsgs", &sym)) {
1177 mdb_warn("can't find zfs_dbgmsgs");
1178 return (DCMD_ERR);
1179 }
1180
1181 if (mdb_pwalk("list", dbgmsg_cb, &da, sym.st_value) != 0) {
1182 mdb_warn("can't walk zfs_dbgmsgs");
1183 return (DCMD_ERR);
1184 }
1185
1186 return (DCMD_OK);
1187 }
1188
1189
1190 static void
dbgmsg_help(void)1191 dbgmsg_help(void)
1192 {
1193 mdb_printf("Print entries from the ZFS debug log.\n\n"
1194 "%<b>OPTIONS%</b>\n"
1195 "\t-a\tInclude the address of each zfs_dbgmsg_t.\n"
1196 "\t-r\tDisplay high-resolution timestamps.\n"
1197 "\t-t\tInclude the age of the message.\n"
1198 "\t-T\tInclude the date/time of the message.\n"
1199 "\t-v\tEquivalent to -aT.\n"
1200 "\t-w\tRun ::whatis on each zfs_dbgmsg_t. Useful in DEBUG kernels\n"
1201 "\t\tto show the origin of the message.\n");
1202 }
1203
1204 /*ARGSUSED*/
1205 static int
arc_print(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)1206 arc_print(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1207 {
1208 kstat_named_t *stats;
1209 GElf_Sym sym;
1210 int nstats, i;
1211 uint_t opt_a = FALSE;
1212 uint_t opt_b = FALSE;
1213 uint_t shift = 0;
1214 const char *suffix;
1215
1216 static const char *bytestats[] = {
1217 "p", "c", "c_min", "c_max", "size", "duplicate_buffers_size",
1218 "arc_meta_used", "arc_meta_limit", "arc_meta_max",
1219 "arc_meta_min", "hdr_size", "data_size", "metadata_size",
1220 "other_size", "anon_size", "anon_evictable_data",
1221 "anon_evictable_metadata", "mru_size", "mru_evictable_data",
1222 "mru_evictable_metadata", "mru_ghost_size",
1223 "mru_ghost_evictable_data", "mru_ghost_evictable_metadata",
1224 "mfu_size", "mfu_evictable_data", "mfu_evictable_metadata",
1225 "mfu_ghost_size", "mfu_ghost_evictable_data",
1226 "mfu_ghost_evictable_metadata", "evict_l2_cached",
1227 "evict_l2_eligible", "evict_l2_ineligible", "l2_read_bytes",
1228 "l2_write_bytes", "l2_size", "l2_asize", "l2_hdr_size",
1229 "compressed_size", "uncompressed_size", "overhead_size",
1230 NULL
1231 };
1232
1233 static const char *extras[] = {
1234 "arc_no_grow", "arc_tempreserve",
1235 NULL
1236 };
1237
1238 if (mdb_lookup_by_obj(ZFS_OBJ_NAME, "arc_stats", &sym) == -1) {
1239 mdb_warn("failed to find 'arc_stats'");
1240 return (DCMD_ERR);
1241 }
1242
1243 stats = mdb_zalloc(sym.st_size, UM_SLEEP | UM_GC);
1244
1245 if (mdb_vread(stats, sym.st_size, sym.st_value) == -1) {
1246 mdb_warn("couldn't read 'arc_stats' at %p", sym.st_value);
1247 return (DCMD_ERR);
1248 }
1249
1250 nstats = sym.st_size / sizeof (kstat_named_t);
1251
1252 /* NB: -a / opt_a are ignored for backwards compatability */
1253 if (mdb_getopts(argc, argv,
1254 'a', MDB_OPT_SETBITS, TRUE, &opt_a,
1255 'b', MDB_OPT_SETBITS, TRUE, &opt_b,
1256 'k', MDB_OPT_SETBITS, 10, &shift,
1257 'm', MDB_OPT_SETBITS, 20, &shift,
1258 'g', MDB_OPT_SETBITS, 30, &shift,
1259 NULL) != argc)
1260 return (DCMD_USAGE);
1261
1262 if (!opt_b && !shift)
1263 shift = 20;
1264
1265 switch (shift) {
1266 case 0:
1267 suffix = "B";
1268 break;
1269 case 10:
1270 suffix = "KB";
1271 break;
1272 case 20:
1273 suffix = "MB";
1274 break;
1275 case 30:
1276 suffix = "GB";
1277 break;
1278 default:
1279 suffix = "XX";
1280 }
1281
1282 for (i = 0; i < nstats; i++) {
1283 int j;
1284 boolean_t bytes = B_FALSE;
1285
1286 for (j = 0; bytestats[j]; j++) {
1287 if (strcmp(stats[i].name, bytestats[j]) == 0) {
1288 bytes = B_TRUE;
1289 break;
1290 }
1291 }
1292
1293 if (bytes) {
1294 mdb_printf("%-25s = %9llu %s\n", stats[i].name,
1295 stats[i].value.ui64 >> shift, suffix);
1296 } else {
1297 mdb_printf("%-25s = %9llu\n", stats[i].name,
1298 stats[i].value.ui64);
1299 }
1300 }
1301
1302 for (i = 0; extras[i]; i++) {
1303 uint64_t buf;
1304
1305 if (mdb_lookup_by_obj(ZFS_OBJ_NAME, extras[i], &sym) == -1) {
1306 mdb_warn("failed to find '%s'", extras[i]);
1307 return (DCMD_ERR);
1308 }
1309
1310 if (sym.st_size != sizeof (uint64_t) &&
1311 sym.st_size != sizeof (uint32_t)) {
1312 mdb_warn("expected scalar for variable '%s'\n",
1313 extras[i]);
1314 return (DCMD_ERR);
1315 }
1316
1317 if (mdb_vread(&buf, sym.st_size, sym.st_value) == -1) {
1318 mdb_warn("couldn't read '%s'", extras[i]);
1319 return (DCMD_ERR);
1320 }
1321
1322 mdb_printf("%-25s = ", extras[i]);
1323
1324 /* NB: all the 64-bit extras happen to be byte counts */
1325 if (sym.st_size == sizeof (uint64_t))
1326 mdb_printf("%9llu %s\n", buf >> shift, suffix);
1327
1328 if (sym.st_size == sizeof (uint32_t))
1329 mdb_printf("%9d\n", *((uint32_t *)&buf));
1330 }
1331 return (DCMD_OK);
1332 }
1333
1334 typedef struct mdb_spa_print {
1335 pool_state_t spa_state;
1336 char spa_name[ZFS_MAX_DATASET_NAME_LEN];
1337 uintptr_t spa_normal_class;
1338 } mdb_spa_print_t;
1339
1340
1341 const char histo_stars[] = "****************************************";
1342 const int histo_width = sizeof (histo_stars) - 1;
1343
1344 static void
dump_histogram(const uint64_t * histo,int size,int offset)1345 dump_histogram(const uint64_t *histo, int size, int offset)
1346 {
1347 int i;
1348 int minidx = size - 1;
1349 int maxidx = 0;
1350 uint64_t max = 0;
1351
1352 for (i = 0; i < size; i++) {
1353 if (histo[i] > max)
1354 max = histo[i];
1355 if (histo[i] > 0 && i > maxidx)
1356 maxidx = i;
1357 if (histo[i] > 0 && i < minidx)
1358 minidx = i;
1359 }
1360
1361 if (max < histo_width)
1362 max = histo_width;
1363
1364 for (i = minidx; i <= maxidx; i++) {
1365 mdb_printf("%3u: %6llu %s\n",
1366 i + offset, (u_longlong_t)histo[i],
1367 &histo_stars[(max - histo[i]) * histo_width / max]);
1368 }
1369 }
1370
1371 typedef struct mdb_metaslab_class {
1372 uint64_t mc_histogram[RANGE_TREE_HISTOGRAM_SIZE];
1373 } mdb_metaslab_class_t;
1374
1375 /*
1376 * spa_class_histogram(uintptr_t class_addr)
1377 *
1378 * Prints free space histogram for a device class
1379 *
1380 * Returns DCMD_OK, or DCMD_ERR.
1381 */
1382 static int
spa_class_histogram(uintptr_t class_addr)1383 spa_class_histogram(uintptr_t class_addr)
1384 {
1385 mdb_metaslab_class_t mc;
1386 if (mdb_ctf_vread(&mc, "metaslab_class_t",
1387 "mdb_metaslab_class_t", class_addr, 0) == -1)
1388 return (DCMD_ERR);
1389
1390 mdb_inc_indent(4);
1391 dump_histogram(mc.mc_histogram, RANGE_TREE_HISTOGRAM_SIZE, 0);
1392 mdb_dec_indent(4);
1393 return (DCMD_OK);
1394 }
1395
1396 /*
1397 * ::spa
1398 *
1399 * -c Print configuration information as well
1400 * -v Print vdev state
1401 * -e Print vdev error stats
1402 * -m Print vdev metaslab info
1403 * -M print vdev metaslab group info
1404 * -h Print histogram info (must be combined with -m or -M)
1405 *
1406 * Print a summarized spa_t. When given no arguments, prints out a table of all
1407 * active pools on the system.
1408 */
1409 /* ARGSUSED */
1410 static int
spa_print(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)1411 spa_print(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1412 {
1413 const char *statetab[] = { "ACTIVE", "EXPORTED", "DESTROYED",
1414 "SPARE", "L2CACHE", "UNINIT", "UNAVAIL", "POTENTIAL" };
1415 const char *state;
1416 int spa_flags = 0;
1417
1418 if (mdb_getopts(argc, argv,
1419 'c', MDB_OPT_SETBITS, SPA_FLAG_CONFIG, &spa_flags,
1420 'v', MDB_OPT_SETBITS, SPA_FLAG_VDEVS, &spa_flags,
1421 'e', MDB_OPT_SETBITS, SPA_FLAG_ERRORS, &spa_flags,
1422 'M', MDB_OPT_SETBITS, SPA_FLAG_METASLAB_GROUPS, &spa_flags,
1423 'm', MDB_OPT_SETBITS, SPA_FLAG_METASLABS, &spa_flags,
1424 'h', MDB_OPT_SETBITS, SPA_FLAG_HISTOGRAMS, &spa_flags,
1425 NULL) != argc)
1426 return (DCMD_USAGE);
1427
1428 if (!(flags & DCMD_ADDRSPEC)) {
1429 if (mdb_walk_dcmd("spa", "spa", argc, argv) == -1) {
1430 mdb_warn("can't walk spa");
1431 return (DCMD_ERR);
1432 }
1433
1434 return (DCMD_OK);
1435 }
1436
1437 if (flags & DCMD_PIPE_OUT) {
1438 mdb_printf("%#lr\n", addr);
1439 return (DCMD_OK);
1440 }
1441
1442 if (DCMD_HDRSPEC(flags))
1443 mdb_printf("%<u>%-?s %9s %-*s%</u>\n", "ADDR", "STATE",
1444 sizeof (uintptr_t) == 4 ? 60 : 52, "NAME");
1445
1446 mdb_spa_print_t spa;
1447 if (mdb_ctf_vread(&spa, "spa_t", "mdb_spa_print_t", addr, 0) == -1)
1448 return (DCMD_ERR);
1449
1450 if (spa.spa_state < 0 || spa.spa_state > POOL_STATE_UNAVAIL)
1451 state = "UNKNOWN";
1452 else
1453 state = statetab[spa.spa_state];
1454
1455 mdb_printf("%0?p %9s %s\n", addr, state, spa.spa_name);
1456 if (spa_flags & SPA_FLAG_HISTOGRAMS)
1457 spa_class_histogram(spa.spa_normal_class);
1458
1459 if (spa_flags & SPA_FLAG_CONFIG) {
1460 mdb_printf("\n");
1461 mdb_inc_indent(4);
1462 if (mdb_call_dcmd("spa_config", addr, flags, 0,
1463 NULL) != DCMD_OK)
1464 return (DCMD_ERR);
1465 mdb_dec_indent(4);
1466 }
1467
1468 if (spa_flags & SPA_FLAG_ALL_VDEV) {
1469 mdb_arg_t v;
1470 char opts[100] = "-";
1471 int args =
1472 (spa_flags | SPA_FLAG_VDEVS) == SPA_FLAG_VDEVS ? 0 : 1;
1473
1474 if (spa_flags & SPA_FLAG_ERRORS)
1475 strcat(opts, "e");
1476 if (spa_flags & SPA_FLAG_METASLABS)
1477 strcat(opts, "m");
1478 if (spa_flags & SPA_FLAG_METASLAB_GROUPS)
1479 strcat(opts, "M");
1480 if (spa_flags & SPA_FLAG_HISTOGRAMS)
1481 strcat(opts, "h");
1482
1483 v.a_type = MDB_TYPE_STRING;
1484 v.a_un.a_str = opts;
1485
1486 mdb_printf("\n");
1487 mdb_inc_indent(4);
1488 if (mdb_call_dcmd("spa_vdevs", addr, flags, args,
1489 &v) != DCMD_OK)
1490 return (DCMD_ERR);
1491 mdb_dec_indent(4);
1492 }
1493
1494 return (DCMD_OK);
1495 }
1496
1497 typedef struct mdb_spa_config_spa {
1498 uintptr_t spa_config;
1499 } mdb_spa_config_spa_t;
1500
1501 /*
1502 * ::spa_config
1503 *
1504 * Given a spa_t, print the configuration information stored in spa_config.
1505 * Since it's just an nvlist, format it as an indented list of name=value pairs.
1506 * We simply read the value of spa_config and pass off to ::nvlist.
1507 */
1508 /* ARGSUSED */
1509 static int
spa_print_config(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)1510 spa_print_config(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1511 {
1512 mdb_spa_config_spa_t spa;
1513
1514 if (argc != 0 || !(flags & DCMD_ADDRSPEC))
1515 return (DCMD_USAGE);
1516
1517 if (mdb_ctf_vread(&spa, ZFS_STRUCT "spa", "mdb_spa_config_spa_t",
1518 addr, 0) == -1)
1519 return (DCMD_ERR);
1520
1521 if (spa.spa_config == 0) {
1522 mdb_printf("(none)\n");
1523 return (DCMD_OK);
1524 }
1525
1526 return (mdb_call_dcmd("nvlist", spa.spa_config, flags,
1527 0, NULL));
1528 }
1529
1530 typedef struct mdb_range_tree {
1531 struct {
1532 uint64_t bt_num_elems;
1533 uint64_t bt_num_nodes;
1534 } rt_root;
1535 uint64_t rt_space;
1536 range_seg_type_t rt_type;
1537 uint8_t rt_shift;
1538 uint64_t rt_start;
1539 } mdb_range_tree_t;
1540
1541 typedef struct mdb_metaslab_group {
1542 uint64_t mg_fragmentation;
1543 uint64_t mg_histogram[RANGE_TREE_HISTOGRAM_SIZE];
1544 uintptr_t mg_vd;
1545 } mdb_metaslab_group_t;
1546
1547 typedef struct mdb_metaslab {
1548 uint64_t ms_id;
1549 uint64_t ms_start;
1550 uint64_t ms_size;
1551 int64_t ms_deferspace;
1552 uint64_t ms_fragmentation;
1553 uint64_t ms_weight;
1554 uintptr_t ms_allocating[TXG_SIZE];
1555 uintptr_t ms_checkpointing;
1556 uintptr_t ms_freeing;
1557 uintptr_t ms_freed;
1558 uintptr_t ms_allocatable;
1559 uintptr_t ms_unflushed_frees;
1560 uintptr_t ms_unflushed_allocs;
1561 uintptr_t ms_sm;
1562 } mdb_metaslab_t;
1563
1564 typedef struct mdb_space_map_phys_t {
1565 int64_t smp_alloc;
1566 uint64_t smp_histogram[SPACE_MAP_HISTOGRAM_SIZE];
1567 } mdb_space_map_phys_t;
1568
1569 typedef struct mdb_space_map {
1570 uint64_t sm_size;
1571 uint8_t sm_shift;
1572 uintptr_t sm_phys;
1573 } mdb_space_map_t;
1574
1575 typedef struct mdb_vdev {
1576 uint64_t vdev_id;
1577 uint64_t vdev_state;
1578 uintptr_t vdev_ops;
1579 struct {
1580 uint64_t vs_aux;
1581 uint64_t vs_ops[VS_ZIO_TYPES];
1582 uint64_t vs_bytes[VS_ZIO_TYPES];
1583 uint64_t vs_read_errors;
1584 uint64_t vs_write_errors;
1585 uint64_t vs_checksum_errors;
1586 } vdev_stat;
1587 uintptr_t vdev_child;
1588 uint64_t vdev_children;
1589 uint64_t vdev_ms_count;
1590 uintptr_t vdev_mg;
1591 uintptr_t vdev_ms;
1592 uintptr_t vdev_path;
1593 } mdb_vdev_t;
1594
1595 typedef struct mdb_vdev_ops {
1596 char vdev_op_type[16];
1597 } mdb_vdev_ops_t;
1598
1599 static int
metaslab_stats(mdb_vdev_t * vd,int spa_flags)1600 metaslab_stats(mdb_vdev_t *vd, int spa_flags)
1601 {
1602 mdb_inc_indent(4);
1603 mdb_printf("%<u>%-?s %6s %20s %10s %10s %10s%</u>\n", "ADDR", "ID",
1604 "OFFSET", "FREE", "FRAG", "UCMU");
1605
1606 uintptr_t *vdev_ms = mdb_alloc(vd->vdev_ms_count * sizeof (vdev_ms),
1607 UM_SLEEP | UM_GC);
1608 if (mdb_vread(vdev_ms, vd->vdev_ms_count * sizeof (uintptr_t),
1609 vd->vdev_ms) == -1) {
1610 mdb_warn("failed to read vdev_ms at %p\n", vd->vdev_ms);
1611 return (DCMD_ERR);
1612 }
1613
1614 for (int m = 0; m < vd->vdev_ms_count; m++) {
1615 mdb_metaslab_t ms;
1616 mdb_space_map_t sm = { 0 };
1617 mdb_space_map_phys_t smp = { 0 };
1618 mdb_range_tree_t rt;
1619 uint64_t uallocs, ufrees, raw_free, raw_uchanges_mem;
1620 char free[MDB_NICENUM_BUFLEN];
1621 char uchanges_mem[MDB_NICENUM_BUFLEN];
1622
1623 if (mdb_ctf_vread(&ms, "metaslab_t", "mdb_metaslab_t",
1624 vdev_ms[m], 0) == -1)
1625 return (DCMD_ERR);
1626
1627 if (ms.ms_sm != 0 &&
1628 mdb_ctf_vread(&sm, "space_map_t", "mdb_space_map_t",
1629 ms.ms_sm, 0) == -1)
1630 return (DCMD_ERR);
1631
1632 if (mdb_ctf_vread(&rt, "range_tree_t", "mdb_range_tree_t",
1633 ms.ms_unflushed_frees, 0) == -1)
1634 return (DCMD_ERR);
1635 ufrees = rt.rt_space;
1636 raw_uchanges_mem = rt.rt_root.bt_num_nodes * BTREE_LEAF_SIZE;
1637
1638 if (mdb_ctf_vread(&rt, "range_tree_t", "mdb_range_tree_t",
1639 ms.ms_unflushed_allocs, 0) == -1)
1640 return (DCMD_ERR);
1641 uallocs = rt.rt_space;
1642 raw_uchanges_mem += rt.rt_root.bt_num_nodes * BTREE_LEAF_SIZE;
1643 mdb_nicenum(raw_uchanges_mem, uchanges_mem);
1644
1645 raw_free = ms.ms_size;
1646 if (ms.ms_sm != 0 && sm.sm_phys != 0) {
1647 (void) mdb_ctf_vread(&smp, "space_map_phys_t",
1648 "mdb_space_map_phys_t", sm.sm_phys, 0);
1649 raw_free -= smp.smp_alloc;
1650 }
1651 raw_free += ufrees - uallocs;
1652 mdb_nicenum(raw_free, free);
1653
1654 mdb_printf("%0?p %6llu %20llx %10s ", vdev_ms[m], ms.ms_id,
1655 ms.ms_start, free);
1656 if (ms.ms_fragmentation == ZFS_FRAG_INVALID)
1657 mdb_printf("%9s ", "-");
1658 else
1659 mdb_printf("%9llu%% ", ms.ms_fragmentation);
1660 mdb_printf("%10s\n", uchanges_mem);
1661
1662 if ((spa_flags & SPA_FLAG_HISTOGRAMS) && ms.ms_sm != 0 &&
1663 sm.sm_phys != 0) {
1664 dump_histogram(smp.smp_histogram,
1665 SPACE_MAP_HISTOGRAM_SIZE, sm.sm_shift);
1666 }
1667 }
1668 mdb_dec_indent(4);
1669 return (DCMD_OK);
1670 }
1671
1672 static int
metaslab_group_stats(mdb_vdev_t * vd,int spa_flags)1673 metaslab_group_stats(mdb_vdev_t *vd, int spa_flags)
1674 {
1675 mdb_metaslab_group_t mg;
1676 if (mdb_ctf_vread(&mg, "metaslab_group_t", "mdb_metaslab_group_t",
1677 vd->vdev_mg, 0) == -1) {
1678 mdb_warn("failed to read vdev_mg at %p\n", vd->vdev_mg);
1679 return (DCMD_ERR);
1680 }
1681
1682 mdb_inc_indent(4);
1683 mdb_printf("%<u>%-?s %7s %9s%</u>\n", "ADDR", "FRAG", "UCMU");
1684
1685 if (mg.mg_fragmentation == ZFS_FRAG_INVALID)
1686 mdb_printf("%0?p %6s\n", vd->vdev_mg, "-");
1687 else
1688 mdb_printf("%0?p %6llu%%", vd->vdev_mg, mg.mg_fragmentation);
1689
1690
1691 uintptr_t *vdev_ms = mdb_alloc(vd->vdev_ms_count * sizeof (vdev_ms),
1692 UM_SLEEP | UM_GC);
1693 if (mdb_vread(vdev_ms, vd->vdev_ms_count * sizeof (uintptr_t),
1694 vd->vdev_ms) == -1) {
1695 mdb_warn("failed to read vdev_ms at %p\n", vd->vdev_ms);
1696 return (DCMD_ERR);
1697 }
1698
1699 uint64_t raw_uchanges_mem = 0;
1700 char uchanges_mem[MDB_NICENUM_BUFLEN];
1701 for (int m = 0; m < vd->vdev_ms_count; m++) {
1702 mdb_metaslab_t ms;
1703 mdb_range_tree_t rt;
1704
1705 if (mdb_ctf_vread(&ms, "metaslab_t", "mdb_metaslab_t",
1706 vdev_ms[m], 0) == -1)
1707 return (DCMD_ERR);
1708
1709 if (mdb_ctf_vread(&rt, "range_tree_t", "mdb_range_tree_t",
1710 ms.ms_unflushed_frees, 0) == -1)
1711 return (DCMD_ERR);
1712 raw_uchanges_mem += rt.rt_root.bt_num_nodes * BTREE_LEAF_SIZE;
1713
1714 if (mdb_ctf_vread(&rt, "range_tree_t", "mdb_range_tree_t",
1715 ms.ms_unflushed_allocs, 0) == -1)
1716 return (DCMD_ERR);
1717 raw_uchanges_mem += rt.rt_root.bt_num_nodes * BTREE_LEAF_SIZE;
1718 }
1719 mdb_nicenum(raw_uchanges_mem, uchanges_mem);
1720 mdb_printf("%10s\n", uchanges_mem);
1721
1722 if (spa_flags & SPA_FLAG_HISTOGRAMS)
1723 dump_histogram(mg.mg_histogram, RANGE_TREE_HISTOGRAM_SIZE, 0);
1724 mdb_dec_indent(4);
1725 return (DCMD_OK);
1726 }
1727
1728 /*
1729 * ::vdev
1730 *
1731 * Print out a summarized vdev_t, in the following form:
1732 *
1733 * ADDR STATE AUX DESC
1734 * fffffffbcde23df0 HEALTHY - /dev/dsk/c0t0d0
1735 *
1736 * If '-r' is specified, recursively visit all children.
1737 *
1738 * With '-e', the statistics associated with the vdev are printed as well.
1739 */
1740 static int
do_print_vdev(uintptr_t addr,int flags,int depth,boolean_t recursive,int spa_flags)1741 do_print_vdev(uintptr_t addr, int flags, int depth, boolean_t recursive,
1742 int spa_flags)
1743 {
1744 mdb_vdev_t vd;
1745 if (mdb_ctf_vread(&vd, "vdev_t", "mdb_vdev_t",
1746 (uintptr_t)addr, 0) == -1)
1747 return (DCMD_ERR);
1748
1749 if (flags & DCMD_PIPE_OUT) {
1750 mdb_printf("%#lr\n", addr);
1751 } else {
1752 char desc[MAXNAMELEN];
1753 if (vd.vdev_path != 0) {
1754 if (mdb_readstr(desc, sizeof (desc),
1755 (uintptr_t)vd.vdev_path) == -1) {
1756 mdb_warn("failed to read vdev_path at %p\n",
1757 vd.vdev_path);
1758 return (DCMD_ERR);
1759 }
1760 } else if (vd.vdev_ops != 0) {
1761 vdev_ops_t ops;
1762 if (mdb_vread(&ops, sizeof (ops),
1763 (uintptr_t)vd.vdev_ops) == -1) {
1764 mdb_warn("failed to read vdev_ops at %p\n",
1765 vd.vdev_ops);
1766 return (DCMD_ERR);
1767 }
1768 (void) strcpy(desc, ops.vdev_op_type);
1769 } else {
1770 (void) strcpy(desc, "<unknown>");
1771 }
1772
1773 if (depth == 0 && DCMD_HDRSPEC(flags))
1774 mdb_printf("%<u>%-?s %-9s %-12s %-*s%</u>\n",
1775 "ADDR", "STATE", "AUX",
1776 sizeof (uintptr_t) == 4 ? 43 : 35,
1777 "DESCRIPTION");
1778
1779 mdb_printf("%0?p ", addr);
1780
1781 const char *state, *aux;
1782 switch (vd.vdev_state) {
1783 case VDEV_STATE_CLOSED:
1784 state = "CLOSED";
1785 break;
1786 case VDEV_STATE_OFFLINE:
1787 state = "OFFLINE";
1788 break;
1789 case VDEV_STATE_CANT_OPEN:
1790 state = "CANT_OPEN";
1791 break;
1792 case VDEV_STATE_DEGRADED:
1793 state = "DEGRADED";
1794 break;
1795 case VDEV_STATE_HEALTHY:
1796 state = "HEALTHY";
1797 break;
1798 case VDEV_STATE_REMOVED:
1799 state = "REMOVED";
1800 break;
1801 case VDEV_STATE_FAULTED:
1802 state = "FAULTED";
1803 break;
1804 default:
1805 state = "UNKNOWN";
1806 break;
1807 }
1808
1809 switch (vd.vdev_stat.vs_aux) {
1810 case VDEV_AUX_NONE:
1811 aux = "-";
1812 break;
1813 case VDEV_AUX_OPEN_FAILED:
1814 aux = "OPEN_FAILED";
1815 break;
1816 case VDEV_AUX_CORRUPT_DATA:
1817 aux = "CORRUPT_DATA";
1818 break;
1819 case VDEV_AUX_NO_REPLICAS:
1820 aux = "NO_REPLICAS";
1821 break;
1822 case VDEV_AUX_BAD_GUID_SUM:
1823 aux = "BAD_GUID_SUM";
1824 break;
1825 case VDEV_AUX_TOO_SMALL:
1826 aux = "TOO_SMALL";
1827 break;
1828 case VDEV_AUX_BAD_LABEL:
1829 aux = "BAD_LABEL";
1830 break;
1831 case VDEV_AUX_VERSION_NEWER:
1832 aux = "VERS_NEWER";
1833 break;
1834 case VDEV_AUX_VERSION_OLDER:
1835 aux = "VERS_OLDER";
1836 break;
1837 case VDEV_AUX_UNSUP_FEAT:
1838 aux = "UNSUP_FEAT";
1839 break;
1840 case VDEV_AUX_SPARED:
1841 aux = "SPARED";
1842 break;
1843 case VDEV_AUX_ERR_EXCEEDED:
1844 aux = "ERR_EXCEEDED";
1845 break;
1846 case VDEV_AUX_IO_FAILURE:
1847 aux = "IO_FAILURE";
1848 break;
1849 case VDEV_AUX_BAD_LOG:
1850 aux = "BAD_LOG";
1851 break;
1852 case VDEV_AUX_EXTERNAL:
1853 aux = "EXTERNAL";
1854 break;
1855 case VDEV_AUX_SPLIT_POOL:
1856 aux = "SPLIT_POOL";
1857 break;
1858 case VDEV_AUX_CHILDREN_OFFLINE:
1859 aux = "CHILDREN_OFFLINE";
1860 break;
1861 default:
1862 aux = "UNKNOWN";
1863 break;
1864 }
1865
1866 mdb_printf("%-9s %-12s %*s%s\n", state, aux, depth, "", desc);
1867
1868 if (spa_flags & SPA_FLAG_ERRORS) {
1869 int i;
1870
1871 mdb_inc_indent(4);
1872 mdb_printf("\n");
1873 mdb_printf("%<u> %12s %12s %12s %12s "
1874 "%12s%</u>\n", "READ", "WRITE", "FREE", "CLAIM",
1875 "IOCTL");
1876 mdb_printf("OPS ");
1877 for (i = 1; i < VS_ZIO_TYPES; i++)
1878 mdb_printf("%11#llx%s",
1879 vd.vdev_stat.vs_ops[i],
1880 i == VS_ZIO_TYPES - 1 ? "" : " ");
1881 mdb_printf("\n");
1882 mdb_printf("BYTES ");
1883 for (i = 1; i < VS_ZIO_TYPES; i++)
1884 mdb_printf("%11#llx%s",
1885 vd.vdev_stat.vs_bytes[i],
1886 i == VS_ZIO_TYPES - 1 ? "" : " ");
1887
1888
1889 mdb_printf("\n");
1890 mdb_printf("EREAD %10#llx\n",
1891 vd.vdev_stat.vs_read_errors);
1892 mdb_printf("EWRITE %10#llx\n",
1893 vd.vdev_stat.vs_write_errors);
1894 mdb_printf("ECKSUM %10#llx\n",
1895 vd.vdev_stat.vs_checksum_errors);
1896 mdb_dec_indent(4);
1897 mdb_printf("\n");
1898 }
1899
1900 if ((spa_flags & SPA_FLAG_METASLAB_GROUPS) &&
1901 vd.vdev_mg != 0) {
1902 metaslab_group_stats(&vd, spa_flags);
1903 }
1904 if ((spa_flags & SPA_FLAG_METASLABS) && vd.vdev_ms != 0) {
1905 metaslab_stats(&vd, spa_flags);
1906 }
1907 }
1908
1909 uint64_t children = vd.vdev_children;
1910 if (children == 0 || !recursive)
1911 return (DCMD_OK);
1912
1913 uintptr_t *child = mdb_alloc(children * sizeof (child),
1914 UM_SLEEP | UM_GC);
1915 if (mdb_vread(child, children * sizeof (void *), vd.vdev_child) == -1) {
1916 mdb_warn("failed to read vdev children at %p", vd.vdev_child);
1917 return (DCMD_ERR);
1918 }
1919
1920 for (uint64_t c = 0; c < children; c++) {
1921 if (do_print_vdev(child[c], flags, depth + 2, recursive,
1922 spa_flags)) {
1923 return (DCMD_ERR);
1924 }
1925 }
1926
1927 return (DCMD_OK);
1928 }
1929
1930 static int
vdev_print(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)1931 vdev_print(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1932 {
1933 uint64_t depth = 0;
1934 boolean_t recursive = B_FALSE;
1935 int spa_flags = 0;
1936
1937 if (mdb_getopts(argc, argv,
1938 'e', MDB_OPT_SETBITS, SPA_FLAG_ERRORS, &spa_flags,
1939 'm', MDB_OPT_SETBITS, SPA_FLAG_METASLABS, &spa_flags,
1940 'M', MDB_OPT_SETBITS, SPA_FLAG_METASLAB_GROUPS, &spa_flags,
1941 'h', MDB_OPT_SETBITS, SPA_FLAG_HISTOGRAMS, &spa_flags,
1942 'r', MDB_OPT_SETBITS, TRUE, &recursive,
1943 'd', MDB_OPT_UINT64, &depth, NULL) != argc)
1944 return (DCMD_USAGE);
1945
1946 if (!(flags & DCMD_ADDRSPEC)) {
1947 mdb_warn("no vdev_t address given\n");
1948 return (DCMD_ERR);
1949 }
1950
1951 return (do_print_vdev(addr, flags, (int)depth, recursive, spa_flags));
1952 }
1953
1954 typedef struct mdb_metaslab_alloc_trace {
1955 uintptr_t mat_mg;
1956 uintptr_t mat_msp;
1957 uint64_t mat_size;
1958 uint64_t mat_weight;
1959 uint64_t mat_offset;
1960 uint32_t mat_dva_id;
1961 int mat_allocator;
1962 } mdb_metaslab_alloc_trace_t;
1963
1964 static void
metaslab_print_weight(uint64_t weight)1965 metaslab_print_weight(uint64_t weight)
1966 {
1967 char buf[100];
1968
1969 if (WEIGHT_IS_SPACEBASED(weight)) {
1970 mdb_nicenum(
1971 weight & ~(METASLAB_ACTIVE_MASK | METASLAB_WEIGHT_TYPE),
1972 buf);
1973 } else {
1974 char size[MDB_NICENUM_BUFLEN];
1975 mdb_nicenum(1ULL << WEIGHT_GET_INDEX(weight), size);
1976 (void) mdb_snprintf(buf, sizeof (buf), "%llu x %s",
1977 WEIGHT_GET_COUNT(weight), size);
1978 }
1979 mdb_printf("%11s ", buf);
1980 }
1981
1982 /* ARGSUSED */
1983 static int
metaslab_weight(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)1984 metaslab_weight(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1985 {
1986 uint64_t weight = 0;
1987 char active;
1988
1989 if (argc == 0 && (flags & DCMD_ADDRSPEC)) {
1990 if (mdb_vread(&weight, sizeof (uint64_t), addr) == -1) {
1991 mdb_warn("failed to read weight at %p\n", addr);
1992 return (DCMD_ERR);
1993 }
1994 } else if (argc == 1 && !(flags & DCMD_ADDRSPEC)) {
1995 weight = (uint64_t)mdb_argtoull(&argv[0]);
1996 } else {
1997 return (DCMD_USAGE);
1998 }
1999
2000 if (DCMD_HDRSPEC(flags)) {
2001 mdb_printf("%<u>%-6s %9s %9s%</u>\n",
2002 "ACTIVE", "ALGORITHM", "WEIGHT");
2003 }
2004
2005 if (weight & METASLAB_WEIGHT_PRIMARY)
2006 active = 'P';
2007 else if (weight & METASLAB_WEIGHT_SECONDARY)
2008 active = 'S';
2009 else
2010 active = '-';
2011 mdb_printf("%6c %8s ", active,
2012 WEIGHT_IS_SPACEBASED(weight) ? "SPACE" : "SEGMENT");
2013 metaslab_print_weight(weight);
2014 mdb_printf("\n");
2015
2016 return (DCMD_OK);
2017 }
2018
2019 /* ARGSUSED */
2020 static int
metaslab_trace(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)2021 metaslab_trace(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
2022 {
2023 mdb_metaslab_alloc_trace_t mat;
2024 mdb_metaslab_group_t mg = { 0 };
2025 char result_type[100];
2026
2027 if (mdb_ctf_vread(&mat, "metaslab_alloc_trace_t",
2028 "mdb_metaslab_alloc_trace_t", addr, 0) == -1) {
2029 return (DCMD_ERR);
2030 }
2031
2032 if (!(flags & DCMD_PIPE_OUT) && DCMD_HDRSPEC(flags)) {
2033 mdb_printf("%<u>%6s %6s %8s %11s %11s %18s %18s%</u>\n",
2034 "MSID", "DVA", "ASIZE", "ALLOCATOR", "WEIGHT", "RESULT",
2035 "VDEV");
2036 }
2037
2038 if (mat.mat_msp != 0) {
2039 mdb_metaslab_t ms;
2040
2041 if (mdb_ctf_vread(&ms, "metaslab_t", "mdb_metaslab_t",
2042 mat.mat_msp, 0) == -1) {
2043 return (DCMD_ERR);
2044 }
2045 mdb_printf("%6llu ", ms.ms_id);
2046 } else {
2047 mdb_printf("%6s ", "-");
2048 }
2049
2050 mdb_printf("%6d %8llx %11llx ", mat.mat_dva_id, mat.mat_size,
2051 mat.mat_allocator);
2052
2053 metaslab_print_weight(mat.mat_weight);
2054
2055 if ((int64_t)mat.mat_offset < 0) {
2056 if (enum_lookup("enum trace_alloc_type", mat.mat_offset,
2057 "TRACE_", sizeof (result_type), result_type) == -1) {
2058 mdb_warn("Could not find enum for trace_alloc_type");
2059 return (DCMD_ERR);
2060 }
2061 mdb_printf("%18s ", result_type);
2062 } else {
2063 mdb_printf("%<b>%18llx%</b> ", mat.mat_offset);
2064 }
2065
2066 if (mat.mat_mg != 0 &&
2067 mdb_ctf_vread(&mg, "metaslab_group_t", "mdb_metaslab_group_t",
2068 mat.mat_mg, 0) == -1) {
2069 return (DCMD_ERR);
2070 }
2071
2072 if (mg.mg_vd != 0) {
2073 mdb_vdev_t vdev;
2074 char desc[MAXNAMELEN];
2075
2076 if (mdb_ctf_vread(&vdev, "vdev_t", "mdb_vdev_t",
2077 mg.mg_vd, 0) == -1) {
2078 return (DCMD_ERR);
2079 }
2080
2081 if (vdev.vdev_path != 0) {
2082 char path[MAXNAMELEN];
2083
2084 if (mdb_readstr(path, sizeof (path),
2085 vdev.vdev_path) == -1) {
2086 mdb_warn("failed to read vdev_path at %p\n",
2087 vdev.vdev_path);
2088 return (DCMD_ERR);
2089 }
2090 char *slash;
2091 if ((slash = strrchr(path, '/')) != NULL) {
2092 strcpy(desc, slash + 1);
2093 } else {
2094 strcpy(desc, path);
2095 }
2096 } else if (vdev.vdev_ops != 0) {
2097 mdb_vdev_ops_t ops;
2098 if (mdb_ctf_vread(&ops, "vdev_ops_t", "mdb_vdev_ops_t",
2099 vdev.vdev_ops, 0) == -1) {
2100 mdb_warn("failed to read vdev_ops at %p\n",
2101 vdev.vdev_ops);
2102 return (DCMD_ERR);
2103 }
2104 (void) mdb_snprintf(desc, sizeof (desc),
2105 "%s-%llu", ops.vdev_op_type, vdev.vdev_id);
2106 } else {
2107 (void) strcpy(desc, "<unknown>");
2108 }
2109 mdb_printf("%18s\n", desc);
2110 }
2111
2112 return (DCMD_OK);
2113 }
2114
2115 typedef struct metaslab_walk_data {
2116 uint64_t mw_numvdevs;
2117 uintptr_t *mw_vdevs;
2118 int mw_curvdev;
2119 uint64_t mw_nummss;
2120 uintptr_t *mw_mss;
2121 int mw_curms;
2122 } metaslab_walk_data_t;
2123
2124 static int
metaslab_walk_step(mdb_walk_state_t * wsp)2125 metaslab_walk_step(mdb_walk_state_t *wsp)
2126 {
2127 metaslab_walk_data_t *mw = wsp->walk_data;
2128 metaslab_t ms;
2129 uintptr_t msp;
2130
2131 if (mw->mw_curvdev >= mw->mw_numvdevs)
2132 return (WALK_DONE);
2133
2134 if (mw->mw_mss == NULL) {
2135 uintptr_t mssp;
2136 uintptr_t vdevp;
2137
2138 ASSERT(mw->mw_curms == 0);
2139 ASSERT(mw->mw_nummss == 0);
2140
2141 vdevp = mw->mw_vdevs[mw->mw_curvdev];
2142 if (GETMEMB(vdevp, "vdev", vdev_ms, mssp) ||
2143 GETMEMB(vdevp, "vdev", vdev_ms_count, mw->mw_nummss)) {
2144 return (WALK_ERR);
2145 }
2146
2147 mw->mw_mss = mdb_alloc(mw->mw_nummss * sizeof (void*),
2148 UM_SLEEP | UM_GC);
2149 if (mdb_vread(mw->mw_mss, mw->mw_nummss * sizeof (void*),
2150 mssp) == -1) {
2151 mdb_warn("failed to read vdev_ms at %p", mssp);
2152 return (WALK_ERR);
2153 }
2154 }
2155
2156 if (mw->mw_curms >= mw->mw_nummss) {
2157 mw->mw_mss = NULL;
2158 mw->mw_curms = 0;
2159 mw->mw_nummss = 0;
2160 mw->mw_curvdev++;
2161 return (WALK_NEXT);
2162 }
2163
2164 msp = mw->mw_mss[mw->mw_curms];
2165 if (mdb_vread(&ms, sizeof (metaslab_t), msp) == -1) {
2166 mdb_warn("failed to read metaslab_t at %p", msp);
2167 return (WALK_ERR);
2168 }
2169
2170 mw->mw_curms++;
2171
2172 return (wsp->walk_callback(msp, &ms, wsp->walk_cbdata));
2173 }
2174
2175 static int
metaslab_walk_init(mdb_walk_state_t * wsp)2176 metaslab_walk_init(mdb_walk_state_t *wsp)
2177 {
2178 metaslab_walk_data_t *mw;
2179 uintptr_t root_vdevp;
2180 uintptr_t childp;
2181
2182 if (wsp->walk_addr == 0) {
2183 mdb_warn("must supply address of spa_t\n");
2184 return (WALK_ERR);
2185 }
2186
2187 mw = mdb_zalloc(sizeof (metaslab_walk_data_t), UM_SLEEP | UM_GC);
2188
2189 if (GETMEMB(wsp->walk_addr, "spa", spa_root_vdev, root_vdevp) ||
2190 GETMEMB(root_vdevp, "vdev", vdev_children, mw->mw_numvdevs) ||
2191 GETMEMB(root_vdevp, "vdev", vdev_child, childp)) {
2192 return (DCMD_ERR);
2193 }
2194
2195 mw->mw_vdevs = mdb_alloc(mw->mw_numvdevs * sizeof (void *),
2196 UM_SLEEP | UM_GC);
2197 if (mdb_vread(mw->mw_vdevs, mw->mw_numvdevs * sizeof (void *),
2198 childp) == -1) {
2199 mdb_warn("failed to read root vdev children at %p", childp);
2200 return (DCMD_ERR);
2201 }
2202
2203 wsp->walk_data = mw;
2204
2205 return (WALK_NEXT);
2206 }
2207
2208 typedef struct mdb_spa {
2209 uintptr_t spa_dsl_pool;
2210 uintptr_t spa_root_vdev;
2211 } mdb_spa_t;
2212
2213 typedef struct mdb_dsl_pool {
2214 uintptr_t dp_root_dir;
2215 } mdb_dsl_pool_t;
2216
2217 typedef struct mdb_dsl_dir {
2218 uintptr_t dd_dbuf;
2219 int64_t dd_space_towrite[TXG_SIZE];
2220 } mdb_dsl_dir_t;
2221
2222 typedef struct mdb_dsl_dir_phys {
2223 uint64_t dd_used_bytes;
2224 uint64_t dd_compressed_bytes;
2225 uint64_t dd_uncompressed_bytes;
2226 } mdb_dsl_dir_phys_t;
2227
2228 typedef struct space_data {
2229 uint64_t ms_allocating[TXG_SIZE];
2230 uint64_t ms_checkpointing;
2231 uint64_t ms_freeing;
2232 uint64_t ms_freed;
2233 uint64_t ms_unflushed_frees;
2234 uint64_t ms_unflushed_allocs;
2235 uint64_t ms_allocatable;
2236 int64_t ms_deferspace;
2237 uint64_t avail;
2238 } space_data_t;
2239
2240 /* ARGSUSED */
2241 static int
space_cb(uintptr_t addr,const void * unknown,void * arg)2242 space_cb(uintptr_t addr, const void *unknown, void *arg)
2243 {
2244 space_data_t *sd = arg;
2245 mdb_metaslab_t ms;
2246 mdb_range_tree_t rt;
2247 mdb_space_map_t sm = { 0 };
2248 mdb_space_map_phys_t smp = { 0 };
2249 uint64_t uallocs, ufrees;
2250 int i;
2251
2252 if (mdb_ctf_vread(&ms, "metaslab_t", "mdb_metaslab_t",
2253 addr, 0) == -1)
2254 return (WALK_ERR);
2255
2256 for (i = 0; i < TXG_SIZE; i++) {
2257 if (mdb_ctf_vread(&rt, "range_tree_t",
2258 "mdb_range_tree_t", ms.ms_allocating[i], 0) == -1)
2259 return (WALK_ERR);
2260 sd->ms_allocating[i] += rt.rt_space;
2261 }
2262
2263 if (mdb_ctf_vread(&rt, "range_tree_t",
2264 "mdb_range_tree_t", ms.ms_checkpointing, 0) == -1)
2265 return (WALK_ERR);
2266 sd->ms_checkpointing += rt.rt_space;
2267
2268 if (mdb_ctf_vread(&rt, "range_tree_t",
2269 "mdb_range_tree_t", ms.ms_freeing, 0) == -1)
2270 return (WALK_ERR);
2271 sd->ms_freeing += rt.rt_space;
2272
2273 if (mdb_ctf_vread(&rt, "range_tree_t",
2274 "mdb_range_tree_t", ms.ms_freed, 0) == -1)
2275 return (WALK_ERR);
2276 sd->ms_freed += rt.rt_space;
2277
2278 if (mdb_ctf_vread(&rt, "range_tree_t",
2279 "mdb_range_tree_t", ms.ms_allocatable, 0) == -1)
2280 return (WALK_ERR);
2281 sd->ms_allocatable += rt.rt_space;
2282
2283 if (mdb_ctf_vread(&rt, "range_tree_t",
2284 "mdb_range_tree_t", ms.ms_unflushed_frees, 0) == -1)
2285 return (WALK_ERR);
2286 sd->ms_unflushed_frees += rt.rt_space;
2287 ufrees = rt.rt_space;
2288
2289 if (mdb_ctf_vread(&rt, "range_tree_t",
2290 "mdb_range_tree_t", ms.ms_unflushed_allocs, 0) == -1)
2291 return (WALK_ERR);
2292 sd->ms_unflushed_allocs += rt.rt_space;
2293 uallocs = rt.rt_space;
2294
2295 if (ms.ms_sm != 0 &&
2296 mdb_ctf_vread(&sm, "space_map_t",
2297 "mdb_space_map_t", ms.ms_sm, 0) == -1)
2298 return (WALK_ERR);
2299
2300 if (sm.sm_phys != 0) {
2301 (void) mdb_ctf_vread(&smp, "space_map_phys_t",
2302 "mdb_space_map_phys_t", sm.sm_phys, 0);
2303 }
2304
2305 sd->ms_deferspace += ms.ms_deferspace;
2306 sd->avail += sm.sm_size - smp.smp_alloc + ufrees - uallocs;
2307
2308 return (WALK_NEXT);
2309 }
2310
2311 /*
2312 * ::spa_space [-b]
2313 *
2314 * Given a spa_t, print out it's on-disk space usage and in-core
2315 * estimates of future usage. If -b is given, print space in bytes.
2316 * Otherwise print in megabytes.
2317 */
2318 /* ARGSUSED */
2319 static int
spa_space(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)2320 spa_space(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
2321 {
2322 mdb_spa_t spa;
2323 mdb_dsl_pool_t dp;
2324 mdb_dsl_dir_t dd;
2325 mdb_dmu_buf_impl_t db;
2326 mdb_dsl_dir_phys_t dsp;
2327 space_data_t sd;
2328 int shift = 20;
2329 char *suffix = "M";
2330 int bytes = B_FALSE;
2331
2332 if (mdb_getopts(argc, argv, 'b', MDB_OPT_SETBITS, TRUE, &bytes, NULL) !=
2333 argc)
2334 return (DCMD_USAGE);
2335 if (!(flags & DCMD_ADDRSPEC))
2336 return (DCMD_USAGE);
2337
2338 if (bytes) {
2339 shift = 0;
2340 suffix = "";
2341 }
2342
2343 if (mdb_ctf_vread(&spa, ZFS_STRUCT "spa", "mdb_spa_t",
2344 addr, 0) == -1 ||
2345 mdb_ctf_vread(&dp, ZFS_STRUCT "dsl_pool", "mdb_dsl_pool_t",
2346 spa.spa_dsl_pool, 0) == -1 ||
2347 mdb_ctf_vread(&dd, ZFS_STRUCT "dsl_dir", "mdb_dsl_dir_t",
2348 dp.dp_root_dir, 0) == -1 ||
2349 mdb_ctf_vread(&db, ZFS_STRUCT "dmu_buf_impl", "mdb_dmu_buf_impl_t",
2350 dd.dd_dbuf, 0) == -1 ||
2351 mdb_ctf_vread(&dsp, ZFS_STRUCT "dsl_dir_phys",
2352 "mdb_dsl_dir_phys_t", db.db.db_data, 0) == -1) {
2353 return (DCMD_ERR);
2354 }
2355
2356 mdb_printf("dd_space_towrite = %llu%s %llu%s %llu%s %llu%s\n",
2357 dd.dd_space_towrite[0] >> shift, suffix,
2358 dd.dd_space_towrite[1] >> shift, suffix,
2359 dd.dd_space_towrite[2] >> shift, suffix,
2360 dd.dd_space_towrite[3] >> shift, suffix);
2361
2362 mdb_printf("dd_phys.dd_used_bytes = %llu%s\n",
2363 dsp.dd_used_bytes >> shift, suffix);
2364 mdb_printf("dd_phys.dd_compressed_bytes = %llu%s\n",
2365 dsp.dd_compressed_bytes >> shift, suffix);
2366 mdb_printf("dd_phys.dd_uncompressed_bytes = %llu%s\n",
2367 dsp.dd_uncompressed_bytes >> shift, suffix);
2368
2369 bzero(&sd, sizeof (sd));
2370 if (mdb_pwalk("metaslab", space_cb, &sd, addr) != 0) {
2371 mdb_warn("can't walk metaslabs");
2372 return (DCMD_ERR);
2373 }
2374
2375 mdb_printf("ms_allocmap = %llu%s %llu%s %llu%s %llu%s\n",
2376 sd.ms_allocating[0] >> shift, suffix,
2377 sd.ms_allocating[1] >> shift, suffix,
2378 sd.ms_allocating[2] >> shift, suffix,
2379 sd.ms_allocating[3] >> shift, suffix);
2380 mdb_printf("ms_checkpointing = %llu%s\n",
2381 sd.ms_checkpointing >> shift, suffix);
2382 mdb_printf("ms_freeing = %llu%s\n",
2383 sd.ms_freeing >> shift, suffix);
2384 mdb_printf("ms_freed = %llu%s\n",
2385 sd.ms_freed >> shift, suffix);
2386 mdb_printf("ms_unflushed_frees = %llu%s\n",
2387 sd.ms_unflushed_frees >> shift, suffix);
2388 mdb_printf("ms_unflushed_allocs = %llu%s\n",
2389 sd.ms_unflushed_allocs >> shift, suffix);
2390 mdb_printf("ms_allocatable = %llu%s\n",
2391 sd.ms_allocatable >> shift, suffix);
2392 mdb_printf("ms_deferspace = %llu%s\n",
2393 sd.ms_deferspace >> shift, suffix);
2394 mdb_printf("current avail = %llu%s\n",
2395 sd.avail >> shift, suffix);
2396
2397 return (DCMD_OK);
2398 }
2399
2400 typedef struct mdb_spa_aux_vdev {
2401 int sav_count;
2402 uintptr_t sav_vdevs;
2403 } mdb_spa_aux_vdev_t;
2404
2405 typedef struct mdb_spa_vdevs {
2406 uintptr_t spa_root_vdev;
2407 mdb_spa_aux_vdev_t spa_l2cache;
2408 mdb_spa_aux_vdev_t spa_spares;
2409 } mdb_spa_vdevs_t;
2410
2411 static int
spa_print_aux(mdb_spa_aux_vdev_t * sav,uint_t flags,mdb_arg_t * v,const char * name)2412 spa_print_aux(mdb_spa_aux_vdev_t *sav, uint_t flags, mdb_arg_t *v,
2413 const char *name)
2414 {
2415 uintptr_t *aux;
2416 size_t len;
2417 int ret, i;
2418
2419 /*
2420 * Iterate over aux vdevs and print those out as well. This is a
2421 * little annoying because we don't have a root vdev to pass to ::vdev.
2422 * Instead, we print a single line and then call it for each child
2423 * vdev.
2424 */
2425 if (sav->sav_count != 0) {
2426 v[1].a_type = MDB_TYPE_STRING;
2427 v[1].a_un.a_str = "-d";
2428 v[2].a_type = MDB_TYPE_IMMEDIATE;
2429 v[2].a_un.a_val = 2;
2430
2431 len = sav->sav_count * sizeof (uintptr_t);
2432 aux = mdb_alloc(len, UM_SLEEP);
2433 if (mdb_vread(aux, len, sav->sav_vdevs) == -1) {
2434 mdb_free(aux, len);
2435 mdb_warn("failed to read l2cache vdevs at %p",
2436 sav->sav_vdevs);
2437 return (DCMD_ERR);
2438 }
2439
2440 mdb_printf("%-?s %-9s %-12s %s\n", "-", "-", "-", name);
2441
2442 for (i = 0; i < sav->sav_count; i++) {
2443 ret = mdb_call_dcmd("vdev", aux[i], flags, 3, v);
2444 if (ret != DCMD_OK) {
2445 mdb_free(aux, len);
2446 return (ret);
2447 }
2448 }
2449
2450 mdb_free(aux, len);
2451 }
2452
2453 return (0);
2454 }
2455
2456 /*
2457 * ::spa_vdevs
2458 *
2459 * -e Include error stats
2460 * -m Include metaslab information
2461 * -M Include metaslab group information
2462 * -h Include histogram information (requires -m or -M)
2463 *
2464 * Print out a summarized list of vdevs for the given spa_t.
2465 * This is accomplished by invoking "::vdev -re" on the root vdev, as well as
2466 * iterating over the cache devices.
2467 */
2468 /* ARGSUSED */
2469 static int
spa_vdevs(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)2470 spa_vdevs(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
2471 {
2472 mdb_arg_t v[3];
2473 int ret;
2474 char opts[100] = "-r";
2475 int spa_flags = 0;
2476
2477 if (mdb_getopts(argc, argv,
2478 'e', MDB_OPT_SETBITS, SPA_FLAG_ERRORS, &spa_flags,
2479 'm', MDB_OPT_SETBITS, SPA_FLAG_METASLABS, &spa_flags,
2480 'M', MDB_OPT_SETBITS, SPA_FLAG_METASLAB_GROUPS, &spa_flags,
2481 'h', MDB_OPT_SETBITS, SPA_FLAG_HISTOGRAMS, &spa_flags,
2482 NULL) != argc)
2483 return (DCMD_USAGE);
2484
2485 if (!(flags & DCMD_ADDRSPEC))
2486 return (DCMD_USAGE);
2487
2488 mdb_spa_vdevs_t spa;
2489 if (mdb_ctf_vread(&spa, "spa_t", "mdb_spa_vdevs_t", addr, 0) == -1)
2490 return (DCMD_ERR);
2491
2492 /*
2493 * Unitialized spa_t structures can have a NULL root vdev.
2494 */
2495 if (spa.spa_root_vdev == 0) {
2496 mdb_printf("no associated vdevs\n");
2497 return (DCMD_OK);
2498 }
2499
2500 if (spa_flags & SPA_FLAG_ERRORS)
2501 strcat(opts, "e");
2502 if (spa_flags & SPA_FLAG_METASLABS)
2503 strcat(opts, "m");
2504 if (spa_flags & SPA_FLAG_METASLAB_GROUPS)
2505 strcat(opts, "M");
2506 if (spa_flags & SPA_FLAG_HISTOGRAMS)
2507 strcat(opts, "h");
2508
2509 v[0].a_type = MDB_TYPE_STRING;
2510 v[0].a_un.a_str = opts;
2511
2512 ret = mdb_call_dcmd("vdev", (uintptr_t)spa.spa_root_vdev,
2513 flags, 1, v);
2514 if (ret != DCMD_OK)
2515 return (ret);
2516
2517 if (spa_print_aux(&spa.spa_l2cache, flags, v, "cache") != 0 ||
2518 spa_print_aux(&spa.spa_spares, flags, v, "spares") != 0)
2519 return (DCMD_ERR);
2520
2521 return (DCMD_OK);
2522 }
2523
2524 /*
2525 * ::zio
2526 *
2527 * Print a summary of zio_t and all its children. This is intended to display a
2528 * zio tree, and hence we only pick the most important pieces of information for
2529 * the main summary. More detailed information can always be found by doing a
2530 * '::print zio' on the underlying zio_t. The columns we display are:
2531 *
2532 * ADDRESS TYPE STAGE WAITER TIME_ELAPSED
2533 *
2534 * The 'address' column is indented by one space for each depth level as we
2535 * descend down the tree.
2536 */
2537
2538 #define ZIO_MAXINDENT 7
2539 #define ZIO_MAXWIDTH (sizeof (uintptr_t) * 2 + ZIO_MAXINDENT)
2540 #define ZIO_WALK_SELF 0
2541 #define ZIO_WALK_CHILD 1
2542 #define ZIO_WALK_PARENT 2
2543
2544 typedef struct zio_print_args {
2545 int zpa_current_depth;
2546 int zpa_min_depth;
2547 int zpa_max_depth;
2548 int zpa_type;
2549 uint_t zpa_flags;
2550 } zio_print_args_t;
2551
2552 typedef struct mdb_zio {
2553 enum zio_type io_type;
2554 enum zio_stage io_stage;
2555 uintptr_t io_waiter;
2556 uintptr_t io_spa;
2557 struct {
2558 struct {
2559 uintptr_t list_next;
2560 } list_head;
2561 } io_parent_list;
2562 int io_error;
2563 } mdb_zio_t;
2564
2565 typedef struct mdb_zio_timestamp {
2566 hrtime_t io_timestamp;
2567 } mdb_zio_timestamp_t;
2568
2569 static int zio_child_cb(uintptr_t addr, const void *unknown, void *arg);
2570
2571 static int
zio_print_cb(uintptr_t addr,zio_print_args_t * zpa)2572 zio_print_cb(uintptr_t addr, zio_print_args_t *zpa)
2573 {
2574 mdb_ctf_id_t type_enum, stage_enum;
2575 int indent = zpa->zpa_current_depth;
2576 const char *type, *stage;
2577 uintptr_t laddr;
2578 mdb_zio_t zio;
2579 mdb_zio_timestamp_t zio_timestamp = { 0 };
2580
2581 if (mdb_ctf_vread(&zio, ZFS_STRUCT "zio", "mdb_zio_t", addr, 0) == -1)
2582 return (WALK_ERR);
2583 (void) mdb_ctf_vread(&zio_timestamp, ZFS_STRUCT "zio",
2584 "mdb_zio_timestamp_t", addr, MDB_CTF_VREAD_QUIET);
2585
2586 if (indent > ZIO_MAXINDENT)
2587 indent = ZIO_MAXINDENT;
2588
2589 if (mdb_ctf_lookup_by_name("enum zio_type", &type_enum) == -1 ||
2590 mdb_ctf_lookup_by_name("enum zio_stage", &stage_enum) == -1) {
2591 mdb_warn("failed to lookup zio enums");
2592 return (WALK_ERR);
2593 }
2594
2595 if ((type = mdb_ctf_enum_name(type_enum, zio.io_type)) != NULL)
2596 type += sizeof ("ZIO_TYPE_") - 1;
2597 else
2598 type = "?";
2599
2600 if (zio.io_error == 0) {
2601 stage = mdb_ctf_enum_name(stage_enum, zio.io_stage);
2602 if (stage != NULL)
2603 stage += sizeof ("ZIO_STAGE_") - 1;
2604 else
2605 stage = "?";
2606 } else {
2607 stage = "FAILED";
2608 }
2609
2610 if (zpa->zpa_current_depth >= zpa->zpa_min_depth) {
2611 if (zpa->zpa_flags & DCMD_PIPE_OUT) {
2612 mdb_printf("%?p\n", addr);
2613 } else {
2614 mdb_printf("%*s%-*p %-5s %-16s ", indent, "",
2615 ZIO_MAXWIDTH - indent, addr, type, stage);
2616 if (zio.io_waiter != 0)
2617 mdb_printf("%-16lx ", zio.io_waiter);
2618 else
2619 mdb_printf("%-16s ", "-");
2620 #ifdef _KERNEL
2621 if (zio_timestamp.io_timestamp != 0) {
2622 mdb_printf("%llums", (mdb_gethrtime() -
2623 zio_timestamp.io_timestamp) /
2624 1000000);
2625 } else {
2626 mdb_printf("%-12s ", "-");
2627 }
2628 #else
2629 mdb_printf("%-12s ", "-");
2630 #endif
2631 mdb_printf("\n");
2632 }
2633 }
2634
2635 if (zpa->zpa_current_depth >= zpa->zpa_max_depth)
2636 return (WALK_NEXT);
2637
2638 if (zpa->zpa_type == ZIO_WALK_PARENT)
2639 laddr = addr + mdb_ctf_offsetof_by_name(ZFS_STRUCT "zio",
2640 "io_parent_list");
2641 else
2642 laddr = addr + mdb_ctf_offsetof_by_name(ZFS_STRUCT "zio",
2643 "io_child_list");
2644
2645 zpa->zpa_current_depth++;
2646 if (mdb_pwalk("list", zio_child_cb, zpa, laddr) != 0) {
2647 mdb_warn("failed to walk zio_t children at %p\n", laddr);
2648 return (WALK_ERR);
2649 }
2650 zpa->zpa_current_depth--;
2651
2652 return (WALK_NEXT);
2653 }
2654
2655 /* ARGSUSED */
2656 static int
zio_child_cb(uintptr_t addr,const void * unknown,void * arg)2657 zio_child_cb(uintptr_t addr, const void *unknown, void *arg)
2658 {
2659 zio_link_t zl;
2660 uintptr_t ziop;
2661 zio_print_args_t *zpa = arg;
2662
2663 if (mdb_vread(&zl, sizeof (zl), addr) == -1) {
2664 mdb_warn("failed to read zio_link_t at %p", addr);
2665 return (WALK_ERR);
2666 }
2667
2668 if (zpa->zpa_type == ZIO_WALK_PARENT)
2669 ziop = (uintptr_t)zl.zl_parent;
2670 else
2671 ziop = (uintptr_t)zl.zl_child;
2672
2673 return (zio_print_cb(ziop, zpa));
2674 }
2675
2676 /* ARGSUSED */
2677 static int
zio_print(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)2678 zio_print(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
2679 {
2680 zio_print_args_t zpa = { 0 };
2681
2682 if (!(flags & DCMD_ADDRSPEC))
2683 return (DCMD_USAGE);
2684
2685 if (mdb_getopts(argc, argv,
2686 'r', MDB_OPT_SETBITS, INT_MAX, &zpa.zpa_max_depth,
2687 'c', MDB_OPT_SETBITS, ZIO_WALK_CHILD, &zpa.zpa_type,
2688 'p', MDB_OPT_SETBITS, ZIO_WALK_PARENT, &zpa.zpa_type,
2689 NULL) != argc)
2690 return (DCMD_USAGE);
2691
2692 zpa.zpa_flags = flags;
2693 if (zpa.zpa_max_depth != 0) {
2694 if (zpa.zpa_type == ZIO_WALK_SELF)
2695 zpa.zpa_type = ZIO_WALK_CHILD;
2696 } else if (zpa.zpa_type != ZIO_WALK_SELF) {
2697 zpa.zpa_min_depth = 1;
2698 zpa.zpa_max_depth = 1;
2699 }
2700
2701 if (!(flags & DCMD_PIPE_OUT) && DCMD_HDRSPEC(flags)) {
2702 mdb_printf("%<u>%-*s %-5s %-16s %-16s %-12s%</u>\n",
2703 ZIO_MAXWIDTH, "ADDRESS", "TYPE", "STAGE", "WAITER",
2704 "TIME_ELAPSED");
2705 }
2706
2707 if (zio_print_cb(addr, &zpa) != WALK_NEXT)
2708 return (DCMD_ERR);
2709
2710 return (DCMD_OK);
2711 }
2712
2713 /*
2714 * [addr]::zio_state
2715 *
2716 * Print a summary of all zio_t structures on the system, or for a particular
2717 * pool. This is equivalent to '::walk zio_root | ::zio'.
2718 */
2719 /*ARGSUSED*/
2720 static int
zio_state(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)2721 zio_state(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
2722 {
2723 /*
2724 * MDB will remember the last address of the pipeline, so if we don't
2725 * zero this we'll end up trying to walk zio structures for a
2726 * non-existent spa_t.
2727 */
2728 if (!(flags & DCMD_ADDRSPEC))
2729 addr = 0;
2730
2731 return (mdb_pwalk_dcmd("zio_root", "zio", argc, argv, addr));
2732 }
2733
2734
2735 typedef struct mdb_zfs_btree_hdr {
2736 uintptr_t bth_parent;
2737 boolean_t bth_core;
2738 /*
2739 * For both leaf and core nodes, represents the number of elements in
2740 * the node. For core nodes, they will have bth_count + 1 children.
2741 */
2742 uint32_t bth_count;
2743 } mdb_zfs_btree_hdr_t;
2744
2745 typedef struct mdb_zfs_btree_core {
2746 mdb_zfs_btree_hdr_t btc_hdr;
2747 uintptr_t btc_children[BTREE_CORE_ELEMS + 1];
2748 uint8_t btc_elems[];
2749 } mdb_zfs_btree_core_t;
2750
2751 typedef struct mdb_zfs_btree_leaf {
2752 mdb_zfs_btree_hdr_t btl_hdr;
2753 uint8_t btl_elems[];
2754 } mdb_zfs_btree_leaf_t;
2755
2756 typedef struct mdb_zfs_btree {
2757 uintptr_t bt_root;
2758 size_t bt_elem_size;
2759 } mdb_zfs_btree_t;
2760
2761 typedef struct btree_walk_data {
2762 mdb_zfs_btree_t bwd_btree;
2763 mdb_zfs_btree_hdr_t *bwd_node;
2764 uint64_t bwd_offset; // In units of bt_node_size
2765 } btree_walk_data_t;
2766
2767 static uintptr_t
btree_leftmost_child(uintptr_t addr,mdb_zfs_btree_hdr_t * buf)2768 btree_leftmost_child(uintptr_t addr, mdb_zfs_btree_hdr_t *buf)
2769 {
2770 size_t size = offsetof(zfs_btree_core_t, btc_children) +
2771 sizeof (uintptr_t);
2772 for (;;) {
2773 if (mdb_vread(buf, size, addr) == -1) {
2774 mdb_warn("failed to read at %p\n", addr);
2775 return ((uintptr_t)0ULL);
2776 }
2777 if (!buf->bth_core)
2778 return (addr);
2779 mdb_zfs_btree_core_t *node = (mdb_zfs_btree_core_t *)buf;
2780 addr = node->btc_children[0];
2781 }
2782 }
2783
2784 static int
btree_walk_step(mdb_walk_state_t * wsp)2785 btree_walk_step(mdb_walk_state_t *wsp)
2786 {
2787 btree_walk_data_t *bwd = wsp->walk_data;
2788 size_t elem_size = bwd->bwd_btree.bt_elem_size;
2789 if (wsp->walk_addr == 0ULL)
2790 return (WALK_DONE);
2791
2792 if (!bwd->bwd_node->bth_core) {
2793 /*
2794 * For the first element in a leaf node, read in the full
2795 * leaf, since we only had part of it read in before.
2796 */
2797 if (bwd->bwd_offset == 0) {
2798 if (mdb_vread(bwd->bwd_node, BTREE_LEAF_SIZE,
2799 wsp->walk_addr) == -1) {
2800 mdb_warn("failed to read at %p\n",
2801 wsp->walk_addr);
2802 return (WALK_ERR);
2803 }
2804 }
2805
2806 int status = wsp->walk_callback((uintptr_t)(wsp->walk_addr +
2807 offsetof(mdb_zfs_btree_leaf_t, btl_elems) +
2808 bwd->bwd_offset * elem_size), bwd->bwd_node,
2809 wsp->walk_cbdata);
2810 if (status != WALK_NEXT)
2811 return (status);
2812 bwd->bwd_offset++;
2813
2814 /* Find the next element, if we're at the end of the leaf. */
2815 while (bwd->bwd_offset == bwd->bwd_node->bth_count) {
2816 uintptr_t par = bwd->bwd_node->bth_parent;
2817 uintptr_t cur = wsp->walk_addr;
2818 wsp->walk_addr = par;
2819 if (par == 0ULL)
2820 return (WALK_NEXT);
2821
2822 size_t size = sizeof (zfs_btree_core_t) +
2823 BTREE_CORE_ELEMS * elem_size;
2824 if (mdb_vread(bwd->bwd_node, size, wsp->walk_addr) ==
2825 -1) {
2826 mdb_warn("failed to read at %p\n",
2827 wsp->walk_addr);
2828 return (WALK_ERR);
2829 }
2830 mdb_zfs_btree_core_t *node =
2831 (mdb_zfs_btree_core_t *)bwd->bwd_node;
2832 int i;
2833 for (i = 0; i <= bwd->bwd_node->bth_count; i++) {
2834 if (node->btc_children[i] == cur)
2835 break;
2836 }
2837 if (i > bwd->bwd_node->bth_count) {
2838 mdb_warn("btree parent/child mismatch at "
2839 "%#lx\n", cur);
2840 return (WALK_ERR);
2841 }
2842 bwd->bwd_offset = i;
2843 }
2844 return (WALK_NEXT);
2845 }
2846
2847 if (!bwd->bwd_node->bth_core) {
2848 mdb_warn("Invalid btree node at %#lx\n", wsp->walk_addr);
2849 return (WALK_ERR);
2850 }
2851 mdb_zfs_btree_core_t *node = (mdb_zfs_btree_core_t *)bwd->bwd_node;
2852 int status = wsp->walk_callback((uintptr_t)(wsp->walk_addr +
2853 offsetof(mdb_zfs_btree_core_t, btc_elems) + bwd->bwd_offset *
2854 elem_size), bwd->bwd_node, wsp->walk_cbdata);
2855 if (status != WALK_NEXT)
2856 return (status);
2857
2858 uintptr_t new_child = node->btc_children[bwd->bwd_offset + 1];
2859 wsp->walk_addr = btree_leftmost_child(new_child, bwd->bwd_node);
2860 if (wsp->walk_addr == 0ULL)
2861 return (WALK_ERR);
2862
2863 bwd->bwd_offset = 0;
2864 return (WALK_NEXT);
2865 }
2866
2867 static int
btree_walk_init(mdb_walk_state_t * wsp)2868 btree_walk_init(mdb_walk_state_t *wsp)
2869 {
2870 btree_walk_data_t *bwd;
2871
2872 if (wsp->walk_addr == 0ULL) {
2873 mdb_warn("must supply address of zfs_btree_t\n");
2874 return (WALK_ERR);
2875 }
2876
2877 bwd = mdb_zalloc(sizeof (btree_walk_data_t), UM_SLEEP);
2878 if (mdb_ctf_vread(&bwd->bwd_btree, "zfs_btree_t", "mdb_zfs_btree_t",
2879 wsp->walk_addr, 0) == -1) {
2880 mdb_free(bwd, sizeof (*bwd));
2881 return (WALK_ERR);
2882 }
2883
2884 if (bwd->bwd_btree.bt_elem_size == 0) {
2885 mdb_warn("invalid or uninitialized btree at %#lx\n",
2886 wsp->walk_addr);
2887 mdb_free(bwd, sizeof (*bwd));
2888 return (WALK_ERR);
2889 }
2890
2891 size_t size = MAX(BTREE_LEAF_SIZE, sizeof (zfs_btree_core_t) +
2892 BTREE_CORE_ELEMS * bwd->bwd_btree.bt_elem_size);
2893 bwd->bwd_node = mdb_zalloc(size, UM_SLEEP);
2894
2895 uintptr_t node = (uintptr_t)bwd->bwd_btree.bt_root;
2896 if (node == 0ULL) {
2897 wsp->walk_addr = 0ULL;
2898 wsp->walk_data = bwd;
2899 return (WALK_NEXT);
2900 }
2901 node = btree_leftmost_child(node, bwd->bwd_node);
2902 if (node == 0ULL) {
2903 mdb_free(bwd->bwd_node, size);
2904 mdb_free(bwd, sizeof (*bwd));
2905 return (WALK_ERR);
2906 }
2907 bwd->bwd_offset = 0;
2908
2909 wsp->walk_addr = node;
2910 wsp->walk_data = bwd;
2911 return (WALK_NEXT);
2912 }
2913
2914 static void
btree_walk_fini(mdb_walk_state_t * wsp)2915 btree_walk_fini(mdb_walk_state_t *wsp)
2916 {
2917 btree_walk_data_t *bwd = (btree_walk_data_t *)wsp->walk_data;
2918
2919 if (bwd == NULL)
2920 return;
2921
2922 size_t size = MAX(BTREE_LEAF_SIZE, sizeof (zfs_btree_core_t) +
2923 BTREE_CORE_ELEMS * bwd->bwd_btree.bt_elem_size);
2924 if (bwd->bwd_node != NULL)
2925 mdb_free(bwd->bwd_node, size);
2926
2927 mdb_free(bwd, sizeof (*bwd));
2928 }
2929
2930 typedef struct mdb_multilist {
2931 uint64_t ml_num_sublists;
2932 uintptr_t ml_sublists;
2933 } mdb_multilist_t;
2934
2935 static int
multilist_walk_step(mdb_walk_state_t * wsp)2936 multilist_walk_step(mdb_walk_state_t *wsp)
2937 {
2938 return (wsp->walk_callback(wsp->walk_addr, wsp->walk_layer,
2939 wsp->walk_cbdata));
2940 }
2941
2942 static int
multilist_walk_init(mdb_walk_state_t * wsp)2943 multilist_walk_init(mdb_walk_state_t *wsp)
2944 {
2945 mdb_multilist_t ml;
2946 ssize_t sublist_sz;
2947 int list_offset;
2948 size_t i;
2949
2950 if (wsp->walk_addr == 0) {
2951 mdb_warn("must supply address of multilist_t\n");
2952 return (WALK_ERR);
2953 }
2954
2955 if (mdb_ctf_vread(&ml, "multilist_t", "mdb_multilist_t",
2956 wsp->walk_addr, 0) == -1) {
2957 return (WALK_ERR);
2958 }
2959
2960 if (ml.ml_num_sublists == 0 || ml.ml_sublists == 0) {
2961 mdb_warn("invalid or uninitialized multilist at %#lx\n",
2962 wsp->walk_addr);
2963 return (WALK_ERR);
2964 }
2965
2966 /* mdb_ctf_sizeof_by_name() will print an error for us */
2967 sublist_sz = mdb_ctf_sizeof_by_name("multilist_sublist_t");
2968 if (sublist_sz == -1)
2969 return (WALK_ERR);
2970
2971 /* mdb_ctf_offsetof_by_name will print an error for us */
2972 list_offset = mdb_ctf_offsetof_by_name("multilist_sublist_t",
2973 "mls_list");
2974 if (list_offset == -1)
2975 return (WALK_ERR);
2976
2977 for (i = 0; i < ml.ml_num_sublists; i++) {
2978 wsp->walk_addr = ml.ml_sublists + i * sublist_sz + list_offset;
2979
2980 if (mdb_layered_walk("list", wsp) == -1) {
2981 mdb_warn("can't walk multilist sublist");
2982 return (WALK_ERR);
2983 }
2984 }
2985
2986 return (WALK_NEXT);
2987 }
2988
2989 typedef struct mdb_txg_list {
2990 size_t tl_offset;
2991 uintptr_t tl_head[TXG_SIZE];
2992 } mdb_txg_list_t;
2993
2994 typedef struct txg_list_walk_data {
2995 uintptr_t lw_head[TXG_SIZE];
2996 int lw_txgoff;
2997 int lw_maxoff;
2998 size_t lw_offset;
2999 void *lw_obj;
3000 } txg_list_walk_data_t;
3001
3002 static int
txg_list_walk_init_common(mdb_walk_state_t * wsp,int txg,int maxoff)3003 txg_list_walk_init_common(mdb_walk_state_t *wsp, int txg, int maxoff)
3004 {
3005 txg_list_walk_data_t *lwd;
3006 mdb_txg_list_t list;
3007 int i;
3008
3009 lwd = mdb_alloc(sizeof (txg_list_walk_data_t), UM_SLEEP | UM_GC);
3010 if (mdb_ctf_vread(&list, "txg_list_t", "mdb_txg_list_t", wsp->walk_addr,
3011 0) == -1) {
3012 mdb_warn("failed to read txg_list_t at %#lx", wsp->walk_addr);
3013 return (WALK_ERR);
3014 }
3015
3016 for (i = 0; i < TXG_SIZE; i++)
3017 lwd->lw_head[i] = list.tl_head[i];
3018 lwd->lw_offset = list.tl_offset;
3019 lwd->lw_obj = mdb_alloc(lwd->lw_offset + sizeof (txg_node_t),
3020 UM_SLEEP | UM_GC);
3021 lwd->lw_txgoff = txg;
3022 lwd->lw_maxoff = maxoff;
3023
3024 wsp->walk_addr = lwd->lw_head[lwd->lw_txgoff];
3025 wsp->walk_data = lwd;
3026
3027 return (WALK_NEXT);
3028 }
3029
3030 static int
txg_list_walk_init(mdb_walk_state_t * wsp)3031 txg_list_walk_init(mdb_walk_state_t *wsp)
3032 {
3033 return (txg_list_walk_init_common(wsp, 0, TXG_SIZE-1));
3034 }
3035
3036 static int
txg_list0_walk_init(mdb_walk_state_t * wsp)3037 txg_list0_walk_init(mdb_walk_state_t *wsp)
3038 {
3039 return (txg_list_walk_init_common(wsp, 0, 0));
3040 }
3041
3042 static int
txg_list1_walk_init(mdb_walk_state_t * wsp)3043 txg_list1_walk_init(mdb_walk_state_t *wsp)
3044 {
3045 return (txg_list_walk_init_common(wsp, 1, 1));
3046 }
3047
3048 static int
txg_list2_walk_init(mdb_walk_state_t * wsp)3049 txg_list2_walk_init(mdb_walk_state_t *wsp)
3050 {
3051 return (txg_list_walk_init_common(wsp, 2, 2));
3052 }
3053
3054 static int
txg_list3_walk_init(mdb_walk_state_t * wsp)3055 txg_list3_walk_init(mdb_walk_state_t *wsp)
3056 {
3057 return (txg_list_walk_init_common(wsp, 3, 3));
3058 }
3059
3060 static int
txg_list_walk_step(mdb_walk_state_t * wsp)3061 txg_list_walk_step(mdb_walk_state_t *wsp)
3062 {
3063 txg_list_walk_data_t *lwd = wsp->walk_data;
3064 uintptr_t addr;
3065 txg_node_t *node;
3066 int status;
3067
3068 while (wsp->walk_addr == 0 && lwd->lw_txgoff < lwd->lw_maxoff) {
3069 lwd->lw_txgoff++;
3070 wsp->walk_addr = lwd->lw_head[lwd->lw_txgoff];
3071 }
3072
3073 if (wsp->walk_addr == 0)
3074 return (WALK_DONE);
3075
3076 addr = wsp->walk_addr - lwd->lw_offset;
3077
3078 if (mdb_vread(lwd->lw_obj,
3079 lwd->lw_offset + sizeof (txg_node_t), addr) == -1) {
3080 mdb_warn("failed to read list element at %#lx", addr);
3081 return (WALK_ERR);
3082 }
3083
3084 status = wsp->walk_callback(addr, lwd->lw_obj, wsp->walk_cbdata);
3085 node = (txg_node_t *)((uintptr_t)lwd->lw_obj + lwd->lw_offset);
3086 wsp->walk_addr = (uintptr_t)node->tn_next[lwd->lw_txgoff];
3087
3088 return (status);
3089 }
3090
3091 /*
3092 * ::walk spa
3093 *
3094 * Walk all named spa_t structures in the namespace. This is nothing more than
3095 * a layered avl walk.
3096 */
3097 static int
spa_walk_init(mdb_walk_state_t * wsp)3098 spa_walk_init(mdb_walk_state_t *wsp)
3099 {
3100 GElf_Sym sym;
3101
3102 if (wsp->walk_addr != 0) {
3103 mdb_warn("spa walk only supports global walks\n");
3104 return (WALK_ERR);
3105 }
3106
3107 if (mdb_lookup_by_obj(ZFS_OBJ_NAME, "spa_namespace_avl", &sym) == -1) {
3108 mdb_warn("failed to find symbol 'spa_namespace_avl'");
3109 return (WALK_ERR);
3110 }
3111
3112 wsp->walk_addr = (uintptr_t)sym.st_value;
3113
3114 if (mdb_layered_walk("avl", wsp) == -1) {
3115 mdb_warn("failed to walk 'avl'\n");
3116 return (WALK_ERR);
3117 }
3118
3119 return (WALK_NEXT);
3120 }
3121
3122 static int
spa_walk_step(mdb_walk_state_t * wsp)3123 spa_walk_step(mdb_walk_state_t *wsp)
3124 {
3125 return (wsp->walk_callback(wsp->walk_addr, NULL, wsp->walk_cbdata));
3126 }
3127
3128 /*
3129 * [addr]::walk zio
3130 *
3131 * Walk all active zio_t structures on the system. This is simply a layered
3132 * walk on top of ::walk zio_cache, with the optional ability to limit the
3133 * structures to a particular pool.
3134 */
3135 static int
zio_walk_init(mdb_walk_state_t * wsp)3136 zio_walk_init(mdb_walk_state_t *wsp)
3137 {
3138 wsp->walk_data = (void *)wsp->walk_addr;
3139
3140 if (mdb_layered_walk("zio_cache", wsp) == -1) {
3141 mdb_warn("failed to walk 'zio_cache'\n");
3142 return (WALK_ERR);
3143 }
3144
3145 return (WALK_NEXT);
3146 }
3147
3148 static int
zio_walk_step(mdb_walk_state_t * wsp)3149 zio_walk_step(mdb_walk_state_t *wsp)
3150 {
3151 mdb_zio_t zio;
3152 uintptr_t spa = (uintptr_t)wsp->walk_data;
3153
3154 if (mdb_ctf_vread(&zio, ZFS_STRUCT "zio", "mdb_zio_t",
3155 wsp->walk_addr, 0) == -1)
3156 return (WALK_ERR);
3157
3158 if (spa != 0 && spa != zio.io_spa)
3159 return (WALK_NEXT);
3160
3161 return (wsp->walk_callback(wsp->walk_addr, &zio, wsp->walk_cbdata));
3162 }
3163
3164 /*
3165 * [addr]::walk zio_root
3166 *
3167 * Walk only root zio_t structures, optionally for a particular spa_t.
3168 */
3169 static int
zio_walk_root_step(mdb_walk_state_t * wsp)3170 zio_walk_root_step(mdb_walk_state_t *wsp)
3171 {
3172 mdb_zio_t zio;
3173 uintptr_t spa = (uintptr_t)wsp->walk_data;
3174
3175 if (mdb_ctf_vread(&zio, ZFS_STRUCT "zio", "mdb_zio_t",
3176 wsp->walk_addr, 0) == -1)
3177 return (WALK_ERR);
3178
3179 if (spa != 0 && spa != zio.io_spa)
3180 return (WALK_NEXT);
3181
3182 /* If the parent list is not empty, ignore */
3183 if (zio.io_parent_list.list_head.list_next !=
3184 wsp->walk_addr +
3185 mdb_ctf_offsetof_by_name(ZFS_STRUCT "zio", "io_parent_list") +
3186 mdb_ctf_offsetof_by_name("struct list", "list_head"))
3187 return (WALK_NEXT);
3188
3189 return (wsp->walk_callback(wsp->walk_addr, &zio, wsp->walk_cbdata));
3190 }
3191
3192 /*
3193 * ::zfs_blkstats
3194 *
3195 * -v print verbose per-level information
3196 *
3197 */
3198 static int
zfs_blkstats(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)3199 zfs_blkstats(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3200 {
3201 boolean_t verbose = B_FALSE;
3202 zfs_all_blkstats_t stats;
3203 dmu_object_type_t t;
3204 zfs_blkstat_t *tzb;
3205 uint64_t ditto;
3206
3207 if (mdb_getopts(argc, argv,
3208 'v', MDB_OPT_SETBITS, TRUE, &verbose,
3209 NULL) != argc)
3210 return (DCMD_USAGE);
3211
3212 if (!(flags & DCMD_ADDRSPEC))
3213 return (DCMD_USAGE);
3214
3215 if (GETMEMB(addr, "spa", spa_dsl_pool, addr) ||
3216 GETMEMB(addr, "dsl_pool", dp_blkstats, addr) ||
3217 mdb_vread(&stats, sizeof (zfs_all_blkstats_t), addr) == -1) {
3218 mdb_warn("failed to read data at %p;", addr);
3219 mdb_printf("maybe no stats? run \"zpool scrub\" first.");
3220 return (DCMD_ERR);
3221 }
3222
3223 tzb = &stats.zab_type[DN_MAX_LEVELS][DMU_OT_TOTAL];
3224 if (tzb->zb_gangs != 0) {
3225 mdb_printf("Ganged blocks: %llu\n",
3226 (longlong_t)tzb->zb_gangs);
3227 }
3228
3229 ditto = tzb->zb_ditto_2_of_2_samevdev + tzb->zb_ditto_2_of_3_samevdev +
3230 tzb->zb_ditto_3_of_3_samevdev;
3231 if (ditto != 0) {
3232 mdb_printf("Dittoed blocks on same vdev: %llu\n",
3233 (longlong_t)ditto);
3234 }
3235
3236 mdb_printf("\nBlocks\tLSIZE\tPSIZE\tASIZE"
3237 "\t avg\t comp\t%%Total\tType\n");
3238
3239 for (t = 0; t <= DMU_OT_TOTAL; t++) {
3240 char csize[MDB_NICENUM_BUFLEN], lsize[MDB_NICENUM_BUFLEN];
3241 char psize[MDB_NICENUM_BUFLEN], asize[MDB_NICENUM_BUFLEN];
3242 char avg[MDB_NICENUM_BUFLEN];
3243 char comp[MDB_NICENUM_BUFLEN], pct[MDB_NICENUM_BUFLEN];
3244 char typename[64];
3245 int l;
3246
3247
3248 if (t == DMU_OT_DEFERRED)
3249 strcpy(typename, "deferred free");
3250 else if (t == DMU_OT_OTHER)
3251 strcpy(typename, "other");
3252 else if (t == DMU_OT_TOTAL)
3253 strcpy(typename, "Total");
3254 else if (enum_lookup("enum dmu_object_type",
3255 t, "DMU_OT_", sizeof (typename), typename) == -1) {
3256 mdb_warn("failed to read type name");
3257 return (DCMD_ERR);
3258 }
3259
3260 if (stats.zab_type[DN_MAX_LEVELS][t].zb_asize == 0)
3261 continue;
3262
3263 for (l = -1; l < DN_MAX_LEVELS; l++) {
3264 int level = (l == -1 ? DN_MAX_LEVELS : l);
3265 zfs_blkstat_t *zb = &stats.zab_type[level][t];
3266
3267 if (zb->zb_asize == 0)
3268 continue;
3269
3270 /*
3271 * Don't print each level unless requested.
3272 */
3273 if (!verbose && level != DN_MAX_LEVELS)
3274 continue;
3275
3276 /*
3277 * If all the space is level 0, don't print the
3278 * level 0 separately.
3279 */
3280 if (level == 0 && zb->zb_asize ==
3281 stats.zab_type[DN_MAX_LEVELS][t].zb_asize)
3282 continue;
3283
3284 mdb_nicenum(zb->zb_count, csize);
3285 mdb_nicenum(zb->zb_lsize, lsize);
3286 mdb_nicenum(zb->zb_psize, psize);
3287 mdb_nicenum(zb->zb_asize, asize);
3288 mdb_nicenum(zb->zb_asize / zb->zb_count, avg);
3289 (void) mdb_snprintfrac(comp, MDB_NICENUM_BUFLEN,
3290 zb->zb_lsize, zb->zb_psize, 2);
3291 (void) mdb_snprintfrac(pct, MDB_NICENUM_BUFLEN,
3292 100 * zb->zb_asize, tzb->zb_asize, 2);
3293
3294 mdb_printf("%6s\t%5s\t%5s\t%5s\t%5s"
3295 "\t%5s\t%6s\t",
3296 csize, lsize, psize, asize, avg, comp, pct);
3297
3298 if (level == DN_MAX_LEVELS)
3299 mdb_printf("%s\n", typename);
3300 else
3301 mdb_printf(" L%d %s\n",
3302 level, typename);
3303 }
3304 }
3305
3306 return (DCMD_OK);
3307 }
3308
3309 typedef struct mdb_reference {
3310 uintptr_t ref_holder;
3311 uintptr_t ref_removed;
3312 uint64_t ref_number;
3313 } mdb_reference_t;
3314
3315 /* ARGSUSED */
3316 static int
reference_cb(uintptr_t addr,const void * ignored,void * arg)3317 reference_cb(uintptr_t addr, const void *ignored, void *arg)
3318 {
3319 mdb_reference_t ref;
3320 boolean_t holder_is_str = B_FALSE;
3321 char holder_str[128];
3322 boolean_t removed = (boolean_t)arg;
3323
3324 if (mdb_ctf_vread(&ref, "reference_t", "mdb_reference_t", addr,
3325 0) == -1)
3326 return (DCMD_ERR);
3327
3328 if (mdb_readstr(holder_str, sizeof (holder_str),
3329 ref.ref_holder) != -1)
3330 holder_is_str = strisprint(holder_str);
3331
3332 if (removed)
3333 mdb_printf("removed ");
3334 mdb_printf("reference ");
3335 if (ref.ref_number != 1)
3336 mdb_printf("with count=%llu ", ref.ref_number);
3337 mdb_printf("with tag %lx", ref.ref_holder);
3338 if (holder_is_str)
3339 mdb_printf(" \"%s\"", holder_str);
3340 mdb_printf(", held at:\n");
3341
3342 (void) mdb_call_dcmd("whatis", addr, DCMD_ADDRSPEC, 0, NULL);
3343
3344 if (removed) {
3345 mdb_printf("removed at:\n");
3346 (void) mdb_call_dcmd("whatis", ref.ref_removed,
3347 DCMD_ADDRSPEC, 0, NULL);
3348 }
3349
3350 mdb_printf("\n");
3351
3352 return (WALK_NEXT);
3353 }
3354
3355 typedef struct mdb_zfs_refcount {
3356 uint64_t rc_count;
3357 } mdb_zfs_refcount_t;
3358
3359 typedef struct mdb_zfs_refcount_removed {
3360 uint_t rc_removed_count;
3361 } mdb_zfs_refcount_removed_t;
3362
3363 typedef struct mdb_zfs_refcount_tracked {
3364 boolean_t rc_tracked;
3365 } mdb_zfs_refcount_tracked_t;
3366
3367 /* ARGSUSED */
3368 static int
zfs_refcount(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)3369 zfs_refcount(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3370 {
3371 mdb_zfs_refcount_t rc;
3372 mdb_zfs_refcount_removed_t rcr;
3373 mdb_zfs_refcount_tracked_t rct;
3374 int off;
3375 boolean_t released = B_FALSE;
3376
3377 if (!(flags & DCMD_ADDRSPEC))
3378 return (DCMD_USAGE);
3379
3380 if (mdb_getopts(argc, argv,
3381 'r', MDB_OPT_SETBITS, B_TRUE, &released,
3382 NULL) != argc)
3383 return (DCMD_USAGE);
3384
3385 if (mdb_ctf_vread(&rc, "zfs_refcount_t", "mdb_zfs_refcount_t", addr,
3386 0) == -1)
3387 return (DCMD_ERR);
3388
3389 if (mdb_ctf_vread(&rcr, "zfs_refcount_t", "mdb_zfs_refcount_removed_t",
3390 addr, MDB_CTF_VREAD_QUIET) == -1) {
3391 mdb_printf("zfs_refcount_t at %p has %llu holds (untracked)\n",
3392 addr, (longlong_t)rc.rc_count);
3393 return (DCMD_OK);
3394 }
3395
3396 if (mdb_ctf_vread(&rct, "zfs_refcount_t", "mdb_zfs_refcount_tracked_t",
3397 addr, MDB_CTF_VREAD_QUIET) == -1) {
3398 /* If this is an old target, it might be tracked. */
3399 rct.rc_tracked = B_TRUE;
3400 }
3401
3402 mdb_printf("zfs_refcount_t at %p has %llu current holds, "
3403 "%llu recently released holds\n",
3404 addr, (longlong_t)rc.rc_count, (longlong_t)rcr.rc_removed_count);
3405
3406 if (rct.rc_tracked && rc.rc_count > 0)
3407 mdb_printf("current holds:\n");
3408 off = mdb_ctf_offsetof_by_name("zfs_refcount_t", "rc_tree");
3409 if (off == -1)
3410 return (DCMD_ERR);
3411 mdb_pwalk("avl", reference_cb, (void *)B_FALSE, addr + off);
3412
3413 if (released && rcr.rc_removed_count > 0) {
3414 mdb_printf("released holds:\n");
3415
3416 off = mdb_ctf_offsetof_by_name("zfs_refcount_t", "rc_removed");
3417 if (off == -1)
3418 return (DCMD_ERR);
3419 mdb_pwalk("list", reference_cb, (void *)B_TRUE, addr + off);
3420 }
3421
3422 return (DCMD_OK);
3423 }
3424
3425 /* ARGSUSED */
3426 static int
sa_attr_table(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)3427 sa_attr_table(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3428 {
3429 sa_attr_table_t *table;
3430 sa_os_t sa_os;
3431 char *name;
3432 int i;
3433
3434 if (mdb_vread(&sa_os, sizeof (sa_os_t), addr) == -1) {
3435 mdb_warn("failed to read sa_os at %p", addr);
3436 return (DCMD_ERR);
3437 }
3438
3439 table = mdb_alloc(sizeof (sa_attr_table_t) * sa_os.sa_num_attrs,
3440 UM_SLEEP | UM_GC);
3441 name = mdb_alloc(MAXPATHLEN, UM_SLEEP | UM_GC);
3442
3443 if (mdb_vread(table, sizeof (sa_attr_table_t) * sa_os.sa_num_attrs,
3444 (uintptr_t)sa_os.sa_attr_table) == -1) {
3445 mdb_warn("failed to read sa_os at %p", addr);
3446 return (DCMD_ERR);
3447 }
3448
3449 mdb_printf("%<u>%-10s %-10s %-10s %-10s %s%</u>\n",
3450 "ATTR ID", "REGISTERED", "LENGTH", "BSWAP", "NAME");
3451 for (i = 0; i != sa_os.sa_num_attrs; i++) {
3452 mdb_readstr(name, MAXPATHLEN, (uintptr_t)table[i].sa_name);
3453 mdb_printf("%5x %8x %8x %8x %-s\n",
3454 (int)table[i].sa_attr, (int)table[i].sa_registered,
3455 (int)table[i].sa_length, table[i].sa_byteswap, name);
3456 }
3457
3458 return (DCMD_OK);
3459 }
3460
3461 static int
sa_get_off_table(uintptr_t addr,uint32_t ** off_tab,int attr_count)3462 sa_get_off_table(uintptr_t addr, uint32_t **off_tab, int attr_count)
3463 {
3464 uintptr_t idx_table;
3465
3466 if (GETMEMB(addr, "sa_idx_tab", sa_idx_tab, idx_table)) {
3467 mdb_printf("can't find offset table in sa_idx_tab\n");
3468 return (-1);
3469 }
3470
3471 *off_tab = mdb_alloc(attr_count * sizeof (uint32_t),
3472 UM_SLEEP | UM_GC);
3473
3474 if (mdb_vread(*off_tab,
3475 attr_count * sizeof (uint32_t), idx_table) == -1) {
3476 mdb_warn("failed to attribute offset table %p", idx_table);
3477 return (-1);
3478 }
3479
3480 return (DCMD_OK);
3481 }
3482
3483 /*ARGSUSED*/
3484 static int
sa_attr_print(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)3485 sa_attr_print(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3486 {
3487 uint32_t *offset_tab;
3488 int attr_count;
3489 uint64_t attr_id;
3490 uintptr_t attr_addr;
3491 uintptr_t bonus_tab, spill_tab;
3492 uintptr_t db_bonus, db_spill;
3493 uintptr_t os, os_sa;
3494 uintptr_t db_data;
3495
3496 if (argc != 1)
3497 return (DCMD_USAGE);
3498
3499 if (argv[0].a_type == MDB_TYPE_STRING)
3500 attr_id = mdb_strtoull(argv[0].a_un.a_str);
3501 else
3502 return (DCMD_USAGE);
3503
3504 if (GETMEMB(addr, "sa_handle", sa_bonus_tab, bonus_tab) ||
3505 GETMEMB(addr, "sa_handle", sa_spill_tab, spill_tab) ||
3506 GETMEMB(addr, "sa_handle", sa_os, os) ||
3507 GETMEMB(addr, "sa_handle", sa_bonus, db_bonus) ||
3508 GETMEMB(addr, "sa_handle", sa_spill, db_spill)) {
3509 mdb_printf("Can't find necessary information in sa_handle "
3510 "in sa_handle\n");
3511 return (DCMD_ERR);
3512 }
3513
3514 if (GETMEMB(os, "objset", os_sa, os_sa)) {
3515 mdb_printf("Can't find os_sa in objset\n");
3516 return (DCMD_ERR);
3517 }
3518
3519 if (GETMEMB(os_sa, "sa_os", sa_num_attrs, attr_count)) {
3520 mdb_printf("Can't find sa_num_attrs\n");
3521 return (DCMD_ERR);
3522 }
3523
3524 if (attr_id > attr_count) {
3525 mdb_printf("attribute id number is out of range\n");
3526 return (DCMD_ERR);
3527 }
3528
3529 if (bonus_tab) {
3530 if (sa_get_off_table(bonus_tab, &offset_tab,
3531 attr_count) == -1) {
3532 return (DCMD_ERR);
3533 }
3534
3535 if (GETMEMB(db_bonus, "dmu_buf", db_data, db_data)) {
3536 mdb_printf("can't find db_data in bonus dbuf\n");
3537 return (DCMD_ERR);
3538 }
3539 }
3540
3541 if (bonus_tab && !TOC_ATTR_PRESENT(offset_tab[attr_id]) &&
3542 spill_tab == 0) {
3543 mdb_printf("Attribute does not exist\n");
3544 return (DCMD_ERR);
3545 } else if (!TOC_ATTR_PRESENT(offset_tab[attr_id]) && spill_tab) {
3546 if (sa_get_off_table(spill_tab, &offset_tab,
3547 attr_count) == -1) {
3548 return (DCMD_ERR);
3549 }
3550 if (GETMEMB(db_spill, "dmu_buf", db_data, db_data)) {
3551 mdb_printf("can't find db_data in spill dbuf\n");
3552 return (DCMD_ERR);
3553 }
3554 if (!TOC_ATTR_PRESENT(offset_tab[attr_id])) {
3555 mdb_printf("Attribute does not exist\n");
3556 return (DCMD_ERR);
3557 }
3558 }
3559 attr_addr = db_data + TOC_OFF(offset_tab[attr_id]);
3560 mdb_printf("%p\n", attr_addr);
3561 return (DCMD_OK);
3562 }
3563
3564 /* ARGSUSED */
3565 static int
zfs_ace_print_common(uintptr_t addr,uint_t flags,uint64_t id,uint32_t access_mask,uint16_t ace_flags,uint16_t ace_type,int verbose)3566 zfs_ace_print_common(uintptr_t addr, uint_t flags,
3567 uint64_t id, uint32_t access_mask, uint16_t ace_flags,
3568 uint16_t ace_type, int verbose)
3569 {
3570 if (DCMD_HDRSPEC(flags) && !verbose)
3571 mdb_printf("%<u>%-?s %-8s %-8s %-8s %s%</u>\n",
3572 "ADDR", "FLAGS", "MASK", "TYPE", "ID");
3573
3574 if (!verbose) {
3575 mdb_printf("%0?p %-8x %-8x %-8x %-llx\n", addr,
3576 ace_flags, access_mask, ace_type, id);
3577 return (DCMD_OK);
3578 }
3579
3580 switch (ace_flags & ACE_TYPE_FLAGS) {
3581 case ACE_OWNER:
3582 mdb_printf("owner@:");
3583 break;
3584 case (ACE_IDENTIFIER_GROUP | ACE_GROUP):
3585 mdb_printf("group@:");
3586 break;
3587 case ACE_EVERYONE:
3588 mdb_printf("everyone@:");
3589 break;
3590 case ACE_IDENTIFIER_GROUP:
3591 mdb_printf("group:%llx:", (u_longlong_t)id);
3592 break;
3593 case 0: /* User entry */
3594 mdb_printf("user:%llx:", (u_longlong_t)id);
3595 break;
3596 }
3597
3598 /* print out permission mask */
3599 if (access_mask & ACE_READ_DATA)
3600 mdb_printf("r");
3601 else
3602 mdb_printf("-");
3603 if (access_mask & ACE_WRITE_DATA)
3604 mdb_printf("w");
3605 else
3606 mdb_printf("-");
3607 if (access_mask & ACE_EXECUTE)
3608 mdb_printf("x");
3609 else
3610 mdb_printf("-");
3611 if (access_mask & ACE_APPEND_DATA)
3612 mdb_printf("p");
3613 else
3614 mdb_printf("-");
3615 if (access_mask & ACE_DELETE)
3616 mdb_printf("d");
3617 else
3618 mdb_printf("-");
3619 if (access_mask & ACE_DELETE_CHILD)
3620 mdb_printf("D");
3621 else
3622 mdb_printf("-");
3623 if (access_mask & ACE_READ_ATTRIBUTES)
3624 mdb_printf("a");
3625 else
3626 mdb_printf("-");
3627 if (access_mask & ACE_WRITE_ATTRIBUTES)
3628 mdb_printf("A");
3629 else
3630 mdb_printf("-");
3631 if (access_mask & ACE_READ_NAMED_ATTRS)
3632 mdb_printf("R");
3633 else
3634 mdb_printf("-");
3635 if (access_mask & ACE_WRITE_NAMED_ATTRS)
3636 mdb_printf("W");
3637 else
3638 mdb_printf("-");
3639 if (access_mask & ACE_READ_ACL)
3640 mdb_printf("c");
3641 else
3642 mdb_printf("-");
3643 if (access_mask & ACE_WRITE_ACL)
3644 mdb_printf("C");
3645 else
3646 mdb_printf("-");
3647 if (access_mask & ACE_WRITE_OWNER)
3648 mdb_printf("o");
3649 else
3650 mdb_printf("-");
3651 if (access_mask & ACE_SYNCHRONIZE)
3652 mdb_printf("s");
3653 else
3654 mdb_printf("-");
3655
3656 mdb_printf(":");
3657
3658 /* Print out inheritance flags */
3659 if (ace_flags & ACE_FILE_INHERIT_ACE)
3660 mdb_printf("f");
3661 else
3662 mdb_printf("-");
3663 if (ace_flags & ACE_DIRECTORY_INHERIT_ACE)
3664 mdb_printf("d");
3665 else
3666 mdb_printf("-");
3667 if (ace_flags & ACE_INHERIT_ONLY_ACE)
3668 mdb_printf("i");
3669 else
3670 mdb_printf("-");
3671 if (ace_flags & ACE_NO_PROPAGATE_INHERIT_ACE)
3672 mdb_printf("n");
3673 else
3674 mdb_printf("-");
3675 if (ace_flags & ACE_SUCCESSFUL_ACCESS_ACE_FLAG)
3676 mdb_printf("S");
3677 else
3678 mdb_printf("-");
3679 if (ace_flags & ACE_FAILED_ACCESS_ACE_FLAG)
3680 mdb_printf("F");
3681 else
3682 mdb_printf("-");
3683 if (ace_flags & ACE_INHERITED_ACE)
3684 mdb_printf("I");
3685 else
3686 mdb_printf("-");
3687
3688 switch (ace_type) {
3689 case ACE_ACCESS_ALLOWED_ACE_TYPE:
3690 mdb_printf(":allow\n");
3691 break;
3692 case ACE_ACCESS_DENIED_ACE_TYPE:
3693 mdb_printf(":deny\n");
3694 break;
3695 case ACE_SYSTEM_AUDIT_ACE_TYPE:
3696 mdb_printf(":audit\n");
3697 break;
3698 case ACE_SYSTEM_ALARM_ACE_TYPE:
3699 mdb_printf(":alarm\n");
3700 break;
3701 default:
3702 mdb_printf(":?\n");
3703 }
3704 return (DCMD_OK);
3705 }
3706
3707 /* ARGSUSED */
3708 static int
zfs_ace_print(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)3709 zfs_ace_print(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3710 {
3711 zfs_ace_t zace;
3712 int verbose = FALSE;
3713 uint64_t id;
3714
3715 if (!(flags & DCMD_ADDRSPEC))
3716 return (DCMD_USAGE);
3717
3718 if (mdb_getopts(argc, argv,
3719 'v', MDB_OPT_SETBITS, TRUE, &verbose, TRUE, NULL) != argc)
3720 return (DCMD_USAGE);
3721
3722 if (mdb_vread(&zace, sizeof (zfs_ace_t), addr) == -1) {
3723 mdb_warn("failed to read zfs_ace_t");
3724 return (DCMD_ERR);
3725 }
3726
3727 if ((zace.z_hdr.z_flags & ACE_TYPE_FLAGS) == 0 ||
3728 (zace.z_hdr.z_flags & ACE_TYPE_FLAGS) == ACE_IDENTIFIER_GROUP)
3729 id = zace.z_fuid;
3730 else
3731 id = -1;
3732
3733 return (zfs_ace_print_common(addr, flags, id, zace.z_hdr.z_access_mask,
3734 zace.z_hdr.z_flags, zace.z_hdr.z_type, verbose));
3735 }
3736
3737 /* ARGSUSED */
3738 static int
zfs_ace0_print(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)3739 zfs_ace0_print(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3740 {
3741 ace_t ace;
3742 uint64_t id;
3743 int verbose = FALSE;
3744
3745 if (!(flags & DCMD_ADDRSPEC))
3746 return (DCMD_USAGE);
3747
3748 if (mdb_getopts(argc, argv,
3749 'v', MDB_OPT_SETBITS, TRUE, &verbose, TRUE, NULL) != argc)
3750 return (DCMD_USAGE);
3751
3752 if (mdb_vread(&ace, sizeof (ace_t), addr) == -1) {
3753 mdb_warn("failed to read ace_t");
3754 return (DCMD_ERR);
3755 }
3756
3757 if ((ace.a_flags & ACE_TYPE_FLAGS) == 0 ||
3758 (ace.a_flags & ACE_TYPE_FLAGS) == ACE_IDENTIFIER_GROUP)
3759 id = ace.a_who;
3760 else
3761 id = -1;
3762
3763 return (zfs_ace_print_common(addr, flags, id, ace.a_access_mask,
3764 ace.a_flags, ace.a_type, verbose));
3765 }
3766
3767 typedef struct acl_dump_args {
3768 int a_argc;
3769 const mdb_arg_t *a_argv;
3770 uint16_t a_version;
3771 int a_flags;
3772 } acl_dump_args_t;
3773
3774 /* ARGSUSED */
3775 static int
acl_aces_cb(uintptr_t addr,const void * unknown,void * arg)3776 acl_aces_cb(uintptr_t addr, const void *unknown, void *arg)
3777 {
3778 acl_dump_args_t *acl_args = (acl_dump_args_t *)arg;
3779
3780 if (acl_args->a_version == 1) {
3781 if (mdb_call_dcmd("zfs_ace", addr,
3782 DCMD_ADDRSPEC|acl_args->a_flags, acl_args->a_argc,
3783 acl_args->a_argv) != DCMD_OK) {
3784 return (WALK_ERR);
3785 }
3786 } else {
3787 if (mdb_call_dcmd("zfs_ace0", addr,
3788 DCMD_ADDRSPEC|acl_args->a_flags, acl_args->a_argc,
3789 acl_args->a_argv) != DCMD_OK) {
3790 return (WALK_ERR);
3791 }
3792 }
3793 acl_args->a_flags = DCMD_LOOP;
3794 return (WALK_NEXT);
3795 }
3796
3797 /* ARGSUSED */
3798 static int
acl_cb(uintptr_t addr,const void * unknown,void * arg)3799 acl_cb(uintptr_t addr, const void *unknown, void *arg)
3800 {
3801 acl_dump_args_t *acl_args = (acl_dump_args_t *)arg;
3802
3803 if (acl_args->a_version == 1) {
3804 if (mdb_pwalk("zfs_acl_node_aces", acl_aces_cb,
3805 arg, addr) != 0) {
3806 mdb_warn("can't walk ACEs");
3807 return (DCMD_ERR);
3808 }
3809 } else {
3810 if (mdb_pwalk("zfs_acl_node_aces0", acl_aces_cb,
3811 arg, addr) != 0) {
3812 mdb_warn("can't walk ACEs");
3813 return (DCMD_ERR);
3814 }
3815 }
3816 return (WALK_NEXT);
3817 }
3818
3819 /* ARGSUSED */
3820 static int
zfs_acl_dump(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)3821 zfs_acl_dump(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3822 {
3823 zfs_acl_t zacl;
3824 int verbose = FALSE;
3825 acl_dump_args_t acl_args;
3826
3827 if (!(flags & DCMD_ADDRSPEC))
3828 return (DCMD_USAGE);
3829
3830 if (mdb_getopts(argc, argv,
3831 'v', MDB_OPT_SETBITS, TRUE, &verbose, NULL) != argc)
3832 return (DCMD_USAGE);
3833
3834 if (mdb_vread(&zacl, sizeof (zfs_acl_t), addr) == -1) {
3835 mdb_warn("failed to read zfs_acl_t");
3836 return (DCMD_ERR);
3837 }
3838
3839 acl_args.a_argc = argc;
3840 acl_args.a_argv = argv;
3841 acl_args.a_version = zacl.z_version;
3842 acl_args.a_flags = DCMD_LOOPFIRST;
3843
3844 if (mdb_pwalk("zfs_acl_node", acl_cb, &acl_args, addr) != 0) {
3845 mdb_warn("can't walk ACL");
3846 return (DCMD_ERR);
3847 }
3848
3849 return (DCMD_OK);
3850 }
3851
3852 /* ARGSUSED */
3853 static int
zfs_acl_node_walk_init(mdb_walk_state_t * wsp)3854 zfs_acl_node_walk_init(mdb_walk_state_t *wsp)
3855 {
3856 if (wsp->walk_addr == 0) {
3857 mdb_warn("must supply address of zfs_acl_node_t\n");
3858 return (WALK_ERR);
3859 }
3860
3861 wsp->walk_addr +=
3862 mdb_ctf_offsetof_by_name(ZFS_STRUCT "zfs_acl", "z_acl");
3863
3864 if (mdb_layered_walk("list", wsp) == -1) {
3865 mdb_warn("failed to walk 'list'\n");
3866 return (WALK_ERR);
3867 }
3868
3869 return (WALK_NEXT);
3870 }
3871
3872 static int
zfs_acl_node_walk_step(mdb_walk_state_t * wsp)3873 zfs_acl_node_walk_step(mdb_walk_state_t *wsp)
3874 {
3875 zfs_acl_node_t aclnode;
3876
3877 if (mdb_vread(&aclnode, sizeof (zfs_acl_node_t),
3878 wsp->walk_addr) == -1) {
3879 mdb_warn("failed to read zfs_acl_node at %p", wsp->walk_addr);
3880 return (WALK_ERR);
3881 }
3882
3883 return (wsp->walk_callback(wsp->walk_addr, &aclnode, wsp->walk_cbdata));
3884 }
3885
3886 typedef struct ace_walk_data {
3887 int ace_count;
3888 int ace_version;
3889 } ace_walk_data_t;
3890
3891 static int
zfs_aces_walk_init_common(mdb_walk_state_t * wsp,int version,int ace_count,uintptr_t ace_data)3892 zfs_aces_walk_init_common(mdb_walk_state_t *wsp, int version,
3893 int ace_count, uintptr_t ace_data)
3894 {
3895 ace_walk_data_t *ace_walk_data;
3896
3897 if (wsp->walk_addr == 0) {
3898 mdb_warn("must supply address of zfs_acl_node_t\n");
3899 return (WALK_ERR);
3900 }
3901
3902 ace_walk_data = mdb_alloc(sizeof (ace_walk_data_t), UM_SLEEP | UM_GC);
3903
3904 ace_walk_data->ace_count = ace_count;
3905 ace_walk_data->ace_version = version;
3906
3907 wsp->walk_addr = ace_data;
3908 wsp->walk_data = ace_walk_data;
3909
3910 return (WALK_NEXT);
3911 }
3912
3913 static int
zfs_acl_node_aces_walk_init_common(mdb_walk_state_t * wsp,int version)3914 zfs_acl_node_aces_walk_init_common(mdb_walk_state_t *wsp, int version)
3915 {
3916 static int gotid;
3917 static mdb_ctf_id_t acl_id;
3918 int z_ace_count;
3919 uintptr_t z_acldata;
3920
3921 if (!gotid) {
3922 if (mdb_ctf_lookup_by_name("struct zfs_acl_node",
3923 &acl_id) == -1) {
3924 mdb_warn("couldn't find struct zfs_acl_node");
3925 return (DCMD_ERR);
3926 }
3927 gotid = TRUE;
3928 }
3929
3930 if (GETMEMBID(wsp->walk_addr, &acl_id, z_ace_count, z_ace_count)) {
3931 return (DCMD_ERR);
3932 }
3933 if (GETMEMBID(wsp->walk_addr, &acl_id, z_acldata, z_acldata)) {
3934 return (DCMD_ERR);
3935 }
3936
3937 return (zfs_aces_walk_init_common(wsp, version,
3938 z_ace_count, z_acldata));
3939 }
3940
3941 /* ARGSUSED */
3942 static int
zfs_acl_node_aces_walk_init(mdb_walk_state_t * wsp)3943 zfs_acl_node_aces_walk_init(mdb_walk_state_t *wsp)
3944 {
3945 return (zfs_acl_node_aces_walk_init_common(wsp, 1));
3946 }
3947
3948 /* ARGSUSED */
3949 static int
zfs_acl_node_aces0_walk_init(mdb_walk_state_t * wsp)3950 zfs_acl_node_aces0_walk_init(mdb_walk_state_t *wsp)
3951 {
3952 return (zfs_acl_node_aces_walk_init_common(wsp, 0));
3953 }
3954
3955 static int
zfs_aces_walk_step(mdb_walk_state_t * wsp)3956 zfs_aces_walk_step(mdb_walk_state_t *wsp)
3957 {
3958 ace_walk_data_t *ace_data = wsp->walk_data;
3959 zfs_ace_t zace;
3960 ace_t *acep;
3961 int status;
3962 int entry_type;
3963 int allow_type;
3964 uintptr_t ptr;
3965
3966 if (ace_data->ace_count == 0)
3967 return (WALK_DONE);
3968
3969 if (mdb_vread(&zace, sizeof (zfs_ace_t), wsp->walk_addr) == -1) {
3970 mdb_warn("failed to read zfs_ace_t at %#lx",
3971 wsp->walk_addr);
3972 return (WALK_ERR);
3973 }
3974
3975 switch (ace_data->ace_version) {
3976 case 0:
3977 acep = (ace_t *)&zace;
3978 entry_type = acep->a_flags & ACE_TYPE_FLAGS;
3979 allow_type = acep->a_type;
3980 break;
3981 case 1:
3982 entry_type = zace.z_hdr.z_flags & ACE_TYPE_FLAGS;
3983 allow_type = zace.z_hdr.z_type;
3984 break;
3985 default:
3986 return (WALK_ERR);
3987 }
3988
3989 ptr = (uintptr_t)wsp->walk_addr;
3990 switch (entry_type) {
3991 case ACE_OWNER:
3992 case ACE_EVERYONE:
3993 case (ACE_IDENTIFIER_GROUP | ACE_GROUP):
3994 ptr += ace_data->ace_version == 0 ?
3995 sizeof (ace_t) : sizeof (zfs_ace_hdr_t);
3996 break;
3997 case ACE_IDENTIFIER_GROUP:
3998 default:
3999 switch (allow_type) {
4000 case ACE_ACCESS_ALLOWED_OBJECT_ACE_TYPE:
4001 case ACE_ACCESS_DENIED_OBJECT_ACE_TYPE:
4002 case ACE_SYSTEM_AUDIT_OBJECT_ACE_TYPE:
4003 case ACE_SYSTEM_ALARM_OBJECT_ACE_TYPE:
4004 ptr += ace_data->ace_version == 0 ?
4005 sizeof (ace_t) : sizeof (zfs_object_ace_t);
4006 break;
4007 default:
4008 ptr += ace_data->ace_version == 0 ?
4009 sizeof (ace_t) : sizeof (zfs_ace_t);
4010 break;
4011 }
4012 }
4013
4014 ace_data->ace_count--;
4015 status = wsp->walk_callback(wsp->walk_addr,
4016 (void *)(uintptr_t)&zace, wsp->walk_cbdata);
4017
4018 wsp->walk_addr = ptr;
4019 return (status);
4020 }
4021
4022 typedef struct mdb_zfs_rrwlock {
4023 uintptr_t rr_writer;
4024 boolean_t rr_writer_wanted;
4025 } mdb_zfs_rrwlock_t;
4026
4027 static uint_t rrw_key;
4028
4029 /* ARGSUSED */
4030 static int
rrwlock(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)4031 rrwlock(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
4032 {
4033 mdb_zfs_rrwlock_t rrw;
4034
4035 if (rrw_key == 0) {
4036 if (mdb_ctf_readsym(&rrw_key, "uint_t", "rrw_tsd_key", 0) == -1)
4037 return (DCMD_ERR);
4038 }
4039
4040 if (mdb_ctf_vread(&rrw, "rrwlock_t", "mdb_zfs_rrwlock_t", addr,
4041 0) == -1)
4042 return (DCMD_ERR);
4043
4044 if (rrw.rr_writer != 0) {
4045 mdb_printf("write lock held by thread %lx\n", rrw.rr_writer);
4046 return (DCMD_OK);
4047 }
4048
4049 if (rrw.rr_writer_wanted) {
4050 mdb_printf("writer wanted\n");
4051 }
4052
4053 mdb_printf("anonymous references:\n");
4054 (void) mdb_call_dcmd("zfs_refcount", addr +
4055 mdb_ctf_offsetof_by_name(ZFS_STRUCT "rrwlock", "rr_anon_rcount"),
4056 DCMD_ADDRSPEC, 0, NULL);
4057
4058 mdb_printf("linked references:\n");
4059 (void) mdb_call_dcmd("zfs_refcount", addr +
4060 mdb_ctf_offsetof_by_name(ZFS_STRUCT "rrwlock", "rr_linked_rcount"),
4061 DCMD_ADDRSPEC, 0, NULL);
4062
4063 /*
4064 * XXX This should find references from
4065 * "::walk thread | ::tsd -v <rrw_key>", but there is no support
4066 * for programmatic consumption of dcmds, so this would be
4067 * difficult, potentially requiring reimplementing ::tsd (both
4068 * user and kernel versions) in this MDB module.
4069 */
4070
4071 return (DCMD_OK);
4072 }
4073
4074 typedef struct mdb_arc_buf_hdr_t {
4075 uint16_t b_psize;
4076 uint16_t b_lsize;
4077 struct {
4078 uint32_t b_bufcnt;
4079 uintptr_t b_state;
4080 } b_l1hdr;
4081 } mdb_arc_buf_hdr_t;
4082
4083 enum arc_cflags {
4084 ARC_CFLAG_VERBOSE = 1 << 0,
4085 ARC_CFLAG_ANON = 1 << 1,
4086 ARC_CFLAG_MRU = 1 << 2,
4087 ARC_CFLAG_MFU = 1 << 3,
4088 ARC_CFLAG_BUFS = 1 << 4,
4089 };
4090
4091 typedef struct arc_compression_stats_data {
4092 GElf_Sym anon_sym; /* ARC_anon symbol */
4093 GElf_Sym mru_sym; /* ARC_mru symbol */
4094 GElf_Sym mrug_sym; /* ARC_mru_ghost symbol */
4095 GElf_Sym mfu_sym; /* ARC_mfu symbol */
4096 GElf_Sym mfug_sym; /* ARC_mfu_ghost symbol */
4097 GElf_Sym l2c_sym; /* ARC_l2c_only symbol */
4098 uint64_t *anon_c_hist; /* histogram of compressed sizes in anon */
4099 uint64_t *anon_u_hist; /* histogram of uncompressed sizes in anon */
4100 uint64_t *anon_bufs; /* histogram of buffer counts in anon state */
4101 uint64_t *mru_c_hist; /* histogram of compressed sizes in mru */
4102 uint64_t *mru_u_hist; /* histogram of uncompressed sizes in mru */
4103 uint64_t *mru_bufs; /* histogram of buffer counts in mru */
4104 uint64_t *mfu_c_hist; /* histogram of compressed sizes in mfu */
4105 uint64_t *mfu_u_hist; /* histogram of uncompressed sizes in mfu */
4106 uint64_t *mfu_bufs; /* histogram of buffer counts in mfu */
4107 uint64_t *all_c_hist; /* histogram of compressed anon + mru + mfu */
4108 uint64_t *all_u_hist; /* histogram of uncompressed anon + mru + mfu */
4109 uint64_t *all_bufs; /* histogram of buffer counts in all states */
4110 int arc_cflags; /* arc compression flags, specified by user */
4111 int hist_nbuckets; /* number of buckets in each histogram */
4112
4113 ulong_t l1hdr_off; /* offset of b_l1hdr in arc_buf_hdr_t */
4114 } arc_compression_stats_data_t;
4115
4116 int
highbit64(uint64_t i)4117 highbit64(uint64_t i)
4118 {
4119 int h = 1;
4120
4121 if (i == 0)
4122 return (0);
4123 if (i & 0xffffffff00000000ULL) {
4124 h += 32; i >>= 32;
4125 }
4126 if (i & 0xffff0000) {
4127 h += 16; i >>= 16;
4128 }
4129 if (i & 0xff00) {
4130 h += 8; i >>= 8;
4131 }
4132 if (i & 0xf0) {
4133 h += 4; i >>= 4;
4134 }
4135 if (i & 0xc) {
4136 h += 2; i >>= 2;
4137 }
4138 if (i & 0x2) {
4139 h += 1;
4140 }
4141 return (h);
4142 }
4143
4144 /* ARGSUSED */
4145 static int
arc_compression_stats_cb(uintptr_t addr,const void * unknown,void * arg)4146 arc_compression_stats_cb(uintptr_t addr, const void *unknown, void *arg)
4147 {
4148 arc_compression_stats_data_t *data = arg;
4149 arc_flags_t flags;
4150 mdb_arc_buf_hdr_t hdr;
4151 int cbucket, ubucket, bufcnt;
4152
4153 /*
4154 * mdb_ctf_vread() uses the sizeof the target type (e.g.
4155 * sizeof (arc_buf_hdr_t) in the target) to read in the entire contents
4156 * of the target type into a buffer and then copy the values of the
4157 * desired members from the mdb typename (e.g. mdb_arc_buf_hdr_t) from
4158 * this buffer. Unfortunately, the way arc_buf_hdr_t is used by zfs,
4159 * the actual size allocated by the kernel for arc_buf_hdr_t is often
4160 * smaller than `sizeof (arc_buf_hdr_t)` (see the definitions of
4161 * l1arc_buf_hdr_t and arc_buf_hdr_t in
4162 * usr/src/uts/common/fs/zfs/arc.c). Attempting to read the entire
4163 * contents of arc_buf_hdr_t from the target (as mdb_ctf_vread() does)
4164 * can cause an error if the allocated size is indeed smaller--it's
4165 * possible that the 'missing' trailing members of arc_buf_hdr_t
4166 * (l1arc_buf_hdr_t and/or arc_buf_hdr_crypt_t) may fall into unmapped
4167 * memory.
4168 *
4169 * We use the GETMEMB macro instead which performs an mdb_vread()
4170 * but only reads enough of the target to retrieve the desired struct
4171 * member instead of the entire struct.
4172 */
4173 if (GETMEMB(addr, "arc_buf_hdr", b_flags, flags) == -1)
4174 return (WALK_ERR);
4175
4176 /*
4177 * We only count headers that have data loaded in the kernel.
4178 * This means an L1 header must be present as well as the data
4179 * that corresponds to the L1 header. If there's no L1 header,
4180 * we can skip the arc_buf_hdr_t completely. If it's present, we
4181 * must look at the ARC state (b_l1hdr.b_state) to determine if
4182 * the data is present.
4183 */
4184 if ((flags & ARC_FLAG_HAS_L1HDR) == 0)
4185 return (WALK_NEXT);
4186
4187 if (GETMEMB(addr, "arc_buf_hdr", b_psize, hdr.b_psize) == -1 ||
4188 GETMEMB(addr, "arc_buf_hdr", b_lsize, hdr.b_lsize) == -1 ||
4189 GETMEMB(addr + data->l1hdr_off, "l1arc_buf_hdr", b_bufcnt,
4190 hdr.b_l1hdr.b_bufcnt) == -1 ||
4191 GETMEMB(addr + data->l1hdr_off, "l1arc_buf_hdr", b_state,
4192 hdr.b_l1hdr.b_state) == -1)
4193 return (WALK_ERR);
4194
4195 /*
4196 * Headers in the ghost states, or the l2c_only state don't have
4197 * arc buffers linked off of them. Thus, their compressed size
4198 * is meaningless, so we skip these from the stats.
4199 */
4200 if (hdr.b_l1hdr.b_state == data->mrug_sym.st_value ||
4201 hdr.b_l1hdr.b_state == data->mfug_sym.st_value ||
4202 hdr.b_l1hdr.b_state == data->l2c_sym.st_value) {
4203 return (WALK_NEXT);
4204 }
4205
4206 /*
4207 * The physical size (compressed) and logical size
4208 * (uncompressed) are in units of SPA_MINBLOCKSIZE. By default,
4209 * we use the log2 of this value (rounded down to the nearest
4210 * integer) to determine the bucket to assign this header to.
4211 * Thus, the histogram is logarithmic with respect to the size
4212 * of the header. For example, the following is a mapping of the
4213 * bucket numbers and the range of header sizes they correspond to:
4214 *
4215 * 0: 0 byte headers
4216 * 1: 512 byte headers
4217 * 2: [1024 - 2048) byte headers
4218 * 3: [2048 - 4096) byte headers
4219 * 4: [4096 - 8192) byte headers
4220 * 5: [8192 - 16394) byte headers
4221 * 6: [16384 - 32768) byte headers
4222 * 7: [32768 - 65536) byte headers
4223 * 8: [65536 - 131072) byte headers
4224 * 9: 131072 byte headers
4225 *
4226 * If the ARC_CFLAG_VERBOSE flag was specified, we use the
4227 * physical and logical sizes directly. Thus, the histogram will
4228 * no longer be logarithmic; instead it will be linear with
4229 * respect to the size of the header. The following is a mapping
4230 * of the first many bucket numbers and the header size they
4231 * correspond to:
4232 *
4233 * 0: 0 byte headers
4234 * 1: 512 byte headers
4235 * 2: 1024 byte headers
4236 * 3: 1536 byte headers
4237 * 4: 2048 byte headers
4238 * 5: 2560 byte headers
4239 * 6: 3072 byte headers
4240 *
4241 * And so on. Keep in mind that a range of sizes isn't used in
4242 * the case of linear scale because the headers can only
4243 * increment or decrement in sizes of 512 bytes. So, it's not
4244 * possible for a header to be sized in between whats listed
4245 * above.
4246 *
4247 * Also, the above mapping values were calculated assuming a
4248 * SPA_MINBLOCKSHIFT of 512 bytes and a SPA_MAXBLOCKSIZE of 128K.
4249 */
4250
4251 if (data->arc_cflags & ARC_CFLAG_VERBOSE) {
4252 cbucket = hdr.b_psize;
4253 ubucket = hdr.b_lsize;
4254 } else {
4255 cbucket = highbit64(hdr.b_psize);
4256 ubucket = highbit64(hdr.b_lsize);
4257 }
4258
4259 bufcnt = hdr.b_l1hdr.b_bufcnt;
4260 if (bufcnt >= data->hist_nbuckets)
4261 bufcnt = data->hist_nbuckets - 1;
4262
4263 /* Ensure we stay within the bounds of the histogram array */
4264 ASSERT3U(cbucket, <, data->hist_nbuckets);
4265 ASSERT3U(ubucket, <, data->hist_nbuckets);
4266
4267 if (hdr.b_l1hdr.b_state == data->anon_sym.st_value) {
4268 data->anon_c_hist[cbucket]++;
4269 data->anon_u_hist[ubucket]++;
4270 data->anon_bufs[bufcnt]++;
4271 } else if (hdr.b_l1hdr.b_state == data->mru_sym.st_value) {
4272 data->mru_c_hist[cbucket]++;
4273 data->mru_u_hist[ubucket]++;
4274 data->mru_bufs[bufcnt]++;
4275 } else if (hdr.b_l1hdr.b_state == data->mfu_sym.st_value) {
4276 data->mfu_c_hist[cbucket]++;
4277 data->mfu_u_hist[ubucket]++;
4278 data->mfu_bufs[bufcnt]++;
4279 }
4280
4281 data->all_c_hist[cbucket]++;
4282 data->all_u_hist[ubucket]++;
4283 data->all_bufs[bufcnt]++;
4284
4285 return (WALK_NEXT);
4286 }
4287
4288 /* ARGSUSED */
4289 static int
arc_compression_stats(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)4290 arc_compression_stats(uintptr_t addr, uint_t flags, int argc,
4291 const mdb_arg_t *argv)
4292 {
4293 arc_compression_stats_data_t data = { 0 };
4294 unsigned int max_shifted = SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT;
4295 unsigned int hist_size;
4296 char range[32];
4297 int rc = DCMD_OK;
4298 int off;
4299
4300 if (mdb_getopts(argc, argv,
4301 'v', MDB_OPT_SETBITS, ARC_CFLAG_VERBOSE, &data.arc_cflags,
4302 'a', MDB_OPT_SETBITS, ARC_CFLAG_ANON, &data.arc_cflags,
4303 'b', MDB_OPT_SETBITS, ARC_CFLAG_BUFS, &data.arc_cflags,
4304 'r', MDB_OPT_SETBITS, ARC_CFLAG_MRU, &data.arc_cflags,
4305 'f', MDB_OPT_SETBITS, ARC_CFLAG_MFU, &data.arc_cflags,
4306 NULL) != argc)
4307 return (DCMD_USAGE);
4308
4309 if (mdb_lookup_by_obj(ZFS_OBJ_NAME, "ARC_anon", &data.anon_sym) ||
4310 mdb_lookup_by_obj(ZFS_OBJ_NAME, "ARC_mru", &data.mru_sym) ||
4311 mdb_lookup_by_obj(ZFS_OBJ_NAME, "ARC_mru_ghost", &data.mrug_sym) ||
4312 mdb_lookup_by_obj(ZFS_OBJ_NAME, "ARC_mfu", &data.mfu_sym) ||
4313 mdb_lookup_by_obj(ZFS_OBJ_NAME, "ARC_mfu_ghost", &data.mfug_sym) ||
4314 mdb_lookup_by_obj(ZFS_OBJ_NAME, "ARC_l2c_only", &data.l2c_sym)) {
4315 mdb_warn("can't find arc state symbol");
4316 return (DCMD_ERR);
4317 }
4318
4319 /*
4320 * Determine the maximum expected size for any header, and use
4321 * this to determine the number of buckets needed for each
4322 * histogram. If ARC_CFLAG_VERBOSE is specified, this value is
4323 * used directly; otherwise the log2 of the maximum size is
4324 * used. Thus, if using a log2 scale there's a maximum of 10
4325 * possible buckets, while the linear scale (when using
4326 * ARC_CFLAG_VERBOSE) has a maximum of 257 buckets.
4327 */
4328 if (data.arc_cflags & ARC_CFLAG_VERBOSE)
4329 data.hist_nbuckets = max_shifted + 1;
4330 else
4331 data.hist_nbuckets = highbit64(max_shifted) + 1;
4332
4333 hist_size = sizeof (uint64_t) * data.hist_nbuckets;
4334
4335 data.anon_c_hist = mdb_zalloc(hist_size, UM_SLEEP);
4336 data.anon_u_hist = mdb_zalloc(hist_size, UM_SLEEP);
4337 data.anon_bufs = mdb_zalloc(hist_size, UM_SLEEP);
4338
4339 data.mru_c_hist = mdb_zalloc(hist_size, UM_SLEEP);
4340 data.mru_u_hist = mdb_zalloc(hist_size, UM_SLEEP);
4341 data.mru_bufs = mdb_zalloc(hist_size, UM_SLEEP);
4342
4343 data.mfu_c_hist = mdb_zalloc(hist_size, UM_SLEEP);
4344 data.mfu_u_hist = mdb_zalloc(hist_size, UM_SLEEP);
4345 data.mfu_bufs = mdb_zalloc(hist_size, UM_SLEEP);
4346
4347 data.all_c_hist = mdb_zalloc(hist_size, UM_SLEEP);
4348 data.all_u_hist = mdb_zalloc(hist_size, UM_SLEEP);
4349 data.all_bufs = mdb_zalloc(hist_size, UM_SLEEP);
4350
4351 if ((off = mdb_ctf_offsetof_by_name(ZFS_STRUCT "arc_buf_hdr",
4352 "b_l1hdr")) == -1) {
4353 mdb_warn("could not get offset of b_l1hdr from arc_buf_hdr_t");
4354 rc = DCMD_ERR;
4355 goto out;
4356 }
4357 data.l1hdr_off = off;
4358
4359 if (mdb_walk("arc_buf_hdr_t_full", arc_compression_stats_cb,
4360 &data) != 0) {
4361 mdb_warn("can't walk arc_buf_hdr's");
4362 rc = DCMD_ERR;
4363 goto out;
4364 }
4365
4366 if (data.arc_cflags & ARC_CFLAG_VERBOSE) {
4367 rc = mdb_snprintf(range, sizeof (range),
4368 "[n*%llu, (n+1)*%llu)", SPA_MINBLOCKSIZE,
4369 SPA_MINBLOCKSIZE);
4370 } else {
4371 rc = mdb_snprintf(range, sizeof (range),
4372 "[2^(n-1)*%llu, 2^n*%llu)", SPA_MINBLOCKSIZE,
4373 SPA_MINBLOCKSIZE);
4374 }
4375
4376 if (rc < 0) {
4377 /* snprintf failed, abort the dcmd */
4378 rc = DCMD_ERR;
4379 goto out;
4380 } else {
4381 /* snprintf succeeded above, reset return code */
4382 rc = DCMD_OK;
4383 }
4384
4385 if (data.arc_cflags & ARC_CFLAG_ANON) {
4386 if (data.arc_cflags & ARC_CFLAG_BUFS) {
4387 mdb_printf("Histogram of the number of anon buffers "
4388 "that are associated with an arc hdr.\n");
4389 dump_histogram(data.anon_bufs, data.hist_nbuckets, 0);
4390 mdb_printf("\n");
4391 }
4392 mdb_printf("Histogram of compressed anon buffers.\n"
4393 "Each bucket represents buffers of size: %s.\n", range);
4394 dump_histogram(data.anon_c_hist, data.hist_nbuckets, 0);
4395 mdb_printf("\n");
4396
4397 mdb_printf("Histogram of uncompressed anon buffers.\n"
4398 "Each bucket represents buffers of size: %s.\n", range);
4399 dump_histogram(data.anon_u_hist, data.hist_nbuckets, 0);
4400 mdb_printf("\n");
4401 }
4402
4403 if (data.arc_cflags & ARC_CFLAG_MRU) {
4404 if (data.arc_cflags & ARC_CFLAG_BUFS) {
4405 mdb_printf("Histogram of the number of mru buffers "
4406 "that are associated with an arc hdr.\n");
4407 dump_histogram(data.mru_bufs, data.hist_nbuckets, 0);
4408 mdb_printf("\n");
4409 }
4410 mdb_printf("Histogram of compressed mru buffers.\n"
4411 "Each bucket represents buffers of size: %s.\n", range);
4412 dump_histogram(data.mru_c_hist, data.hist_nbuckets, 0);
4413 mdb_printf("\n");
4414
4415 mdb_printf("Histogram of uncompressed mru buffers.\n"
4416 "Each bucket represents buffers of size: %s.\n", range);
4417 dump_histogram(data.mru_u_hist, data.hist_nbuckets, 0);
4418 mdb_printf("\n");
4419 }
4420
4421 if (data.arc_cflags & ARC_CFLAG_MFU) {
4422 if (data.arc_cflags & ARC_CFLAG_BUFS) {
4423 mdb_printf("Histogram of the number of mfu buffers "
4424 "that are associated with an arc hdr.\n");
4425 dump_histogram(data.mfu_bufs, data.hist_nbuckets, 0);
4426 mdb_printf("\n");
4427 }
4428
4429 mdb_printf("Histogram of compressed mfu buffers.\n"
4430 "Each bucket represents buffers of size: %s.\n", range);
4431 dump_histogram(data.mfu_c_hist, data.hist_nbuckets, 0);
4432 mdb_printf("\n");
4433
4434 mdb_printf("Histogram of uncompressed mfu buffers.\n"
4435 "Each bucket represents buffers of size: %s.\n", range);
4436 dump_histogram(data.mfu_u_hist, data.hist_nbuckets, 0);
4437 mdb_printf("\n");
4438 }
4439
4440 if (data.arc_cflags & ARC_CFLAG_BUFS) {
4441 mdb_printf("Histogram of all buffers that "
4442 "are associated with an arc hdr.\n");
4443 dump_histogram(data.all_bufs, data.hist_nbuckets, 0);
4444 mdb_printf("\n");
4445 }
4446
4447 mdb_printf("Histogram of all compressed buffers.\n"
4448 "Each bucket represents buffers of size: %s.\n", range);
4449 dump_histogram(data.all_c_hist, data.hist_nbuckets, 0);
4450 mdb_printf("\n");
4451
4452 mdb_printf("Histogram of all uncompressed buffers.\n"
4453 "Each bucket represents buffers of size: %s.\n", range);
4454 dump_histogram(data.all_u_hist, data.hist_nbuckets, 0);
4455
4456 out:
4457 mdb_free(data.anon_c_hist, hist_size);
4458 mdb_free(data.anon_u_hist, hist_size);
4459 mdb_free(data.anon_bufs, hist_size);
4460
4461 mdb_free(data.mru_c_hist, hist_size);
4462 mdb_free(data.mru_u_hist, hist_size);
4463 mdb_free(data.mru_bufs, hist_size);
4464
4465 mdb_free(data.mfu_c_hist, hist_size);
4466 mdb_free(data.mfu_u_hist, hist_size);
4467 mdb_free(data.mfu_bufs, hist_size);
4468
4469 mdb_free(data.all_c_hist, hist_size);
4470 mdb_free(data.all_u_hist, hist_size);
4471 mdb_free(data.all_bufs, hist_size);
4472
4473 return (rc);
4474 }
4475
4476 typedef struct mdb_range_seg64 {
4477 uint64_t rs_start;
4478 uint64_t rs_end;
4479 } mdb_range_seg64_t;
4480
4481 typedef struct mdb_range_seg32 {
4482 uint32_t rs_start;
4483 uint32_t rs_end;
4484 } mdb_range_seg32_t;
4485
4486 /* ARGSUSED */
4487 static int
range_tree_cb(uintptr_t addr,const void * unknown,void * arg)4488 range_tree_cb(uintptr_t addr, const void *unknown, void *arg)
4489 {
4490 mdb_range_tree_t *rt = (mdb_range_tree_t *)arg;
4491 uint64_t start, end;
4492
4493 if (rt->rt_type == RANGE_SEG64) {
4494 mdb_range_seg64_t rs;
4495
4496 if (mdb_ctf_vread(&rs, ZFS_STRUCT "range_seg64",
4497 "mdb_range_seg64_t", addr, 0) == -1)
4498 return (DCMD_ERR);
4499 start = rs.rs_start;
4500 end = rs.rs_end;
4501 } else {
4502 ASSERT3U(rt->rt_type, ==, RANGE_SEG32);
4503 mdb_range_seg32_t rs;
4504
4505 if (mdb_ctf_vread(&rs, ZFS_STRUCT "range_seg32",
4506 "mdb_range_seg32_t", addr, 0) == -1)
4507 return (DCMD_ERR);
4508 start = ((uint64_t)rs.rs_start << rt->rt_shift) + rt->rt_start;
4509 end = ((uint64_t)rs.rs_end << rt->rt_shift) + rt->rt_start;
4510 }
4511
4512 mdb_printf("\t[%llx %llx) (length %llx)\n", start, end, end - start);
4513
4514 return (0);
4515 }
4516
4517 /* ARGSUSED */
4518 static int
range_tree(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)4519 range_tree(uintptr_t addr, uint_t flags, int argc,
4520 const mdb_arg_t *argv)
4521 {
4522 mdb_range_tree_t rt;
4523 uintptr_t btree_addr;
4524
4525 if (!(flags & DCMD_ADDRSPEC))
4526 return (DCMD_USAGE);
4527
4528 if (mdb_ctf_vread(&rt, ZFS_STRUCT "range_tree", "mdb_range_tree_t",
4529 addr, 0) == -1)
4530 return (DCMD_ERR);
4531
4532 mdb_printf("%p: range tree of %llu entries, %llu bytes\n",
4533 addr, rt.rt_root.bt_num_elems, rt.rt_space);
4534
4535 btree_addr = addr +
4536 mdb_ctf_offsetof_by_name(ZFS_STRUCT "range_tree", "rt_root");
4537
4538 if (mdb_pwalk("zfs_btree", range_tree_cb, &rt, btree_addr) != 0) {
4539 mdb_warn("can't walk range_tree segments");
4540 return (DCMD_ERR);
4541 }
4542 return (DCMD_OK);
4543 }
4544
4545 typedef struct mdb_spa_log_sm {
4546 uint64_t sls_sm_obj;
4547 uint64_t sls_txg;
4548 uint64_t sls_nblocks;
4549 uint64_t sls_mscount;
4550 } mdb_spa_log_sm_t;
4551
4552 /* ARGSUSED */
4553 static int
logsm_stats_cb(uintptr_t addr,const void * unknown,void * arg)4554 logsm_stats_cb(uintptr_t addr, const void *unknown, void *arg)
4555 {
4556 mdb_spa_log_sm_t sls;
4557 if (mdb_ctf_vread(&sls, ZFS_STRUCT "spa_log_sm", "mdb_spa_log_sm_t",
4558 addr, 0) == -1)
4559 return (WALK_ERR);
4560
4561 mdb_printf("%7lld %7lld %7lld %7lld\n",
4562 sls.sls_txg, sls.sls_nblocks, sls.sls_mscount, sls.sls_sm_obj);
4563
4564 return (WALK_NEXT);
4565 }
4566 typedef struct mdb_log_summary_entry {
4567 uint64_t lse_start;
4568 uint64_t lse_blkcount;
4569 uint64_t lse_mscount;
4570 } mdb_log_summary_entry_t;
4571
4572 /* ARGSUSED */
4573 static int
logsm_summary_cb(uintptr_t addr,const void * unknown,void * arg)4574 logsm_summary_cb(uintptr_t addr, const void *unknown, void *arg)
4575 {
4576 mdb_log_summary_entry_t lse;
4577 if (mdb_ctf_vread(&lse, ZFS_STRUCT "log_summary_entry",
4578 "mdb_log_summary_entry_t", addr, 0) == -1)
4579 return (WALK_ERR);
4580
4581 mdb_printf("%7lld %7lld %7lld\n",
4582 lse.lse_start, lse.lse_blkcount, lse.lse_mscount);
4583 return (WALK_NEXT);
4584 }
4585
4586 /* ARGSUSED */
4587 static int
logsm_stats(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)4588 logsm_stats(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
4589 {
4590 if (!(flags & DCMD_ADDRSPEC))
4591 return (DCMD_USAGE);
4592
4593 uintptr_t sls_avl_addr = addr +
4594 mdb_ctf_offsetof_by_name(ZFS_STRUCT "spa", "spa_sm_logs_by_txg");
4595 uintptr_t summary_addr = addr +
4596 mdb_ctf_offsetof_by_name(ZFS_STRUCT "spa", "spa_log_summary");
4597
4598 mdb_printf("Log Entries:\n");
4599 mdb_printf("%7s %7s %7s %7s\n", "txg", "blk", "ms", "obj");
4600 if (mdb_pwalk("avl", logsm_stats_cb, NULL, sls_avl_addr) != 0)
4601 return (DCMD_ERR);
4602
4603 mdb_printf("\nSummary Entries:\n");
4604 mdb_printf("%7s %7s %7s\n", "txg", "blk", "ms");
4605 if (mdb_pwalk("list", logsm_summary_cb, NULL, summary_addr) != 0)
4606 return (DCMD_ERR);
4607
4608 return (DCMD_OK);
4609 }
4610
4611 /*
4612 * MDB module linkage information:
4613 *
4614 * We declare a list of structures describing our dcmds, and a function
4615 * named _mdb_init to return a pointer to our module information.
4616 */
4617
4618 static const mdb_dcmd_t dcmds[] = {
4619 { "arc", "[-bkmg]", "print ARC variables", arc_print },
4620 { "blkptr", ":", "print blkptr_t", blkptr },
4621 { "dva", ":", "print dva_t", dva },
4622 { "dbuf", ":", "print dmu_buf_impl_t", dbuf },
4623 { "dbuf_stats", ":", "dbuf stats", dbuf_stats },
4624 { "dbufs",
4625 "\t[-O objset_t*] [-n objset_name | \"mos\"] "
4626 "[-o object | \"mdn\"] \n"
4627 "\t[-l level] [-b blkid | \"bonus\"]",
4628 "find dmu_buf_impl_t's that match specified criteria", dbufs },
4629 { "abuf_find", "dva_word[0] dva_word[1]",
4630 "find arc_buf_hdr_t of a specified DVA",
4631 abuf_find },
4632 { "logsm_stats", ":", "print log space map statistics of a spa_t",
4633 logsm_stats},
4634 { "spa", "?[-cevmMh]\n"
4635 "\t-c display spa config\n"
4636 "\t-e display vdev statistics\n"
4637 "\t-v display vdev information\n"
4638 "\t-m display metaslab statistics\n"
4639 "\t-M display metaslab group statistics\n"
4640 "\t-h display histogram (requires -m or -M)\n",
4641 "spa_t summary", spa_print },
4642 { "spa_config", ":", "print spa_t configuration", spa_print_config },
4643 { "spa_space", ":[-b]", "print spa_t on-disk space usage", spa_space },
4644 { "spa_vdevs", ":[-emMh]\n"
4645 "\t-e display vdev statistics\n"
4646 "\t-m dispaly metaslab statistics\n"
4647 "\t-M display metaslab group statistic\n"
4648 "\t-h display histogram (requires -m or -M)\n",
4649 "given a spa_t, print vdev summary", spa_vdevs },
4650 { "sm_entries", "<buffer length in bytes>",
4651 "print out space map entries from a buffer decoded",
4652 sm_entries},
4653 { "vdev", ":[-remMh]\n"
4654 "\t-r display recursively\n"
4655 "\t-e display statistics\n"
4656 "\t-m display metaslab statistics (top level vdev only)\n"
4657 "\t-M display metaslab group statistics (top level vdev only)\n"
4658 "\t-h display histogram (requires -m or -M)\n",
4659 "vdev_t summary", vdev_print },
4660 { "zio", ":[-cpr]\n"
4661 "\t-c display children\n"
4662 "\t-p display parents\n"
4663 "\t-r display recursively",
4664 "zio_t summary", zio_print },
4665 { "zio_state", "?", "print out all zio_t structures on system or "
4666 "for a particular pool", zio_state },
4667 { "zfs_blkstats", ":[-v]",
4668 "given a spa_t, print block type stats from last scrub",
4669 zfs_blkstats },
4670 { "zfs_params", "", "print zfs tunable parameters", zfs_params },
4671 { "zfs_refcount", ":[-r]\n"
4672 "\t-r display recently removed references",
4673 "print zfs_refcount_t holders", zfs_refcount },
4674 { "zap_leaf", "", "print zap_leaf_phys_t", zap_leaf },
4675 { "zfs_aces", ":[-v]", "print all ACEs from a zfs_acl_t",
4676 zfs_acl_dump },
4677 { "zfs_ace", ":[-v]", "print zfs_ace", zfs_ace_print },
4678 { "zfs_ace0", ":[-v]", "print zfs_ace0", zfs_ace0_print },
4679 { "sa_attr_table", ":", "print SA attribute table from sa_os_t",
4680 sa_attr_table},
4681 { "sa_attr", ": attr_id",
4682 "print SA attribute address when given sa_handle_t", sa_attr_print},
4683 { "zfs_dbgmsg", ":[-artTvw]",
4684 "print zfs debug log", dbgmsg, dbgmsg_help},
4685 { "rrwlock", ":",
4686 "print rrwlock_t, including readers", rrwlock},
4687 { "metaslab_weight", "weight",
4688 "print metaslab weight", metaslab_weight},
4689 { "metaslab_trace", ":",
4690 "print metaslab allocation trace records", metaslab_trace},
4691 { "arc_compression_stats", ":[-vabrf]\n"
4692 "\t-v verbose, display a linearly scaled histogram\n"
4693 "\t-a display ARC_anon state statistics individually\n"
4694 "\t-r display ARC_mru state statistics individually\n"
4695 "\t-f display ARC_mfu state statistics individually\n"
4696 "\t-b display histogram of buffer counts\n",
4697 "print a histogram of compressed arc buffer sizes",
4698 arc_compression_stats},
4699 { "range_tree", ":",
4700 "print entries in range_tree_t", range_tree},
4701 { NULL }
4702 };
4703
4704 static const mdb_walker_t walkers[] = {
4705 { "txg_list", "given any txg_list_t *, walk all entries in all txgs",
4706 txg_list_walk_init, txg_list_walk_step, NULL },
4707 { "txg_list0", "given any txg_list_t *, walk all entries in txg 0",
4708 txg_list0_walk_init, txg_list_walk_step, NULL },
4709 { "txg_list1", "given any txg_list_t *, walk all entries in txg 1",
4710 txg_list1_walk_init, txg_list_walk_step, NULL },
4711 { "txg_list2", "given any txg_list_t *, walk all entries in txg 2",
4712 txg_list2_walk_init, txg_list_walk_step, NULL },
4713 { "txg_list3", "given any txg_list_t *, walk all entries in txg 3",
4714 txg_list3_walk_init, txg_list_walk_step, NULL },
4715 { "zio", "walk all zio structures, optionally for a particular spa_t",
4716 zio_walk_init, zio_walk_step, NULL },
4717 { "zio_root",
4718 "walk all root zio_t structures, optionally for a particular spa_t",
4719 zio_walk_init, zio_walk_root_step, NULL },
4720 { "spa", "walk all spa_t entries in the namespace",
4721 spa_walk_init, spa_walk_step, NULL },
4722 { "metaslab", "given a spa_t *, walk all metaslab_t structures",
4723 metaslab_walk_init, metaslab_walk_step, NULL },
4724 { "multilist", "given a multilist_t *, walk all list_t structures",
4725 multilist_walk_init, multilist_walk_step, NULL },
4726 { "zfs_acl_node", "given a zfs_acl_t, walk all zfs_acl_nodes",
4727 zfs_acl_node_walk_init, zfs_acl_node_walk_step, NULL },
4728 { "zfs_acl_node_aces", "given a zfs_acl_node_t, walk all ACEs",
4729 zfs_acl_node_aces_walk_init, zfs_aces_walk_step, NULL },
4730 { "zfs_acl_node_aces0",
4731 "given a zfs_acl_node_t, walk all ACEs as ace_t",
4732 zfs_acl_node_aces0_walk_init, zfs_aces_walk_step, NULL },
4733 { "zfs_btree", "given a zfs_btree_t *, walk all entries",
4734 btree_walk_init, btree_walk_step, btree_walk_fini },
4735 { NULL }
4736 };
4737
4738 static const mdb_modinfo_t modinfo = {
4739 MDB_API_VERSION, dcmds, walkers
4740 };
4741
4742 const mdb_modinfo_t *
_mdb_init(void)4743 _mdb_init(void)
4744 {
4745 return (&modinfo);
4746 }
4747