1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2019 by Delphix. All rights reserved.
25 * Copyright (c) 2014 Integros [integros.com]
26 * Copyright 2016 Nexenta Systems, Inc.
27 * Copyright (c) 2017, 2018 Lawrence Livermore National Security, LLC.
28 * Copyright (c) 2015, 2017, Intel Corporation.
29 * Copyright (c) 2020 Datto Inc.
30 * Copyright (c) 2020, The FreeBSD Foundation [1]
31 *
32 * [1] Portions of this software were developed by Allan Jude
33 * under sponsorship from the FreeBSD Foundation.
34 * Copyright (c) 2021 Allan Jude
35 * Copyright (c) 2021 Toomas Soome <tsoome@me.com>
36 * Copyright (c) 2023, 2024, Klara Inc.
37 * Copyright (c) 2023, Rob Norris <robn@despairlabs.com>
38 */
39
40 #include <stdio.h>
41 #include <unistd.h>
42 #include <stdlib.h>
43 #include <ctype.h>
44 #include <getopt.h>
45 #include <openssl/evp.h>
46 #include <sys/zfs_context.h>
47 #include <sys/spa.h>
48 #include <sys/spa_impl.h>
49 #include <sys/dmu.h>
50 #include <sys/zap.h>
51 #include <sys/zap_impl.h>
52 #include <sys/fs/zfs.h>
53 #include <sys/zfs_znode.h>
54 #include <sys/zfs_sa.h>
55 #include <sys/sa.h>
56 #include <sys/sa_impl.h>
57 #include <sys/vdev.h>
58 #include <sys/vdev_impl.h>
59 #include <sys/metaslab_impl.h>
60 #include <sys/dmu_objset.h>
61 #include <sys/dsl_dir.h>
62 #include <sys/dsl_dataset.h>
63 #include <sys/dsl_pool.h>
64 #include <sys/dsl_bookmark.h>
65 #include <sys/dbuf.h>
66 #include <sys/zil.h>
67 #include <sys/zil_impl.h>
68 #include <sys/stat.h>
69 #include <sys/resource.h>
70 #include <sys/dmu_send.h>
71 #include <sys/dmu_traverse.h>
72 #include <sys/zio_checksum.h>
73 #include <sys/zio_compress.h>
74 #include <sys/zfs_fuid.h>
75 #include <sys/arc.h>
76 #include <sys/arc_impl.h>
77 #include <sys/ddt.h>
78 #include <sys/ddt_impl.h>
79 #include <sys/zfeature.h>
80 #include <sys/abd.h>
81 #include <sys/blkptr.h>
82 #include <sys/dsl_crypt.h>
83 #include <sys/dsl_scan.h>
84 #include <sys/btree.h>
85 #include <sys/brt.h>
86 #include <sys/brt_impl.h>
87 #include <zfs_comutil.h>
88 #include <sys/zstd/zstd.h>
89 #include <sys/backtrace.h>
90
91 #include <libnvpair.h>
92 #include <libzutil.h>
93 #include <libzfs_core.h>
94
95 #include <libzdb.h>
96
97 #include "zdb.h"
98
99
100 extern int reference_tracking_enable;
101 extern int zfs_recover;
102 extern uint_t zfs_vdev_async_read_max_active;
103 extern boolean_t spa_load_verify_dryrun;
104 extern boolean_t spa_mode_readable_spacemaps;
105 extern uint_t zfs_reconstruct_indirect_combinations_max;
106 extern uint_t zfs_btree_verify_intensity;
107
108 static const char cmdname[] = "zdb";
109 uint8_t dump_opt[256];
110
111 typedef void object_viewer_t(objset_t *, uint64_t, void *data, size_t size);
112
113 static uint64_t *zopt_metaslab = NULL;
114 static unsigned zopt_metaslab_args = 0;
115
116
117 static zopt_object_range_t *zopt_object_ranges = NULL;
118 static unsigned zopt_object_args = 0;
119
120 static int flagbits[256];
121
122
123 static uint64_t max_inflight_bytes = 256 * 1024 * 1024; /* 256MB */
124 static int leaked_objects = 0;
125 static zfs_range_tree_t *mos_refd_objs;
126 static spa_t *spa;
127 static objset_t *os;
128 static boolean_t kernel_init_done;
129
130 static void snprintf_blkptr_compact(char *, size_t, const blkptr_t *,
131 boolean_t);
132 static void mos_obj_refd(uint64_t);
133 static void mos_obj_refd_multiple(uint64_t);
134 static int dump_bpobj_cb(void *arg, const blkptr_t *bp, boolean_t free,
135 dmu_tx_t *tx);
136
137
138
139 static void zdb_print_blkptr(const blkptr_t *bp, int flags);
140 static void zdb_exit(int reason);
141
142 typedef struct sublivelist_verify_block_refcnt {
143 /* block pointer entry in livelist being verified */
144 blkptr_t svbr_blk;
145
146 /*
147 * Refcount gets incremented to 1 when we encounter the first
148 * FREE entry for the svfbr block pointer and a node for it
149 * is created in our ZDB verification/tracking metadata.
150 *
151 * As we encounter more FREE entries we increment this counter
152 * and similarly decrement it whenever we find the respective
153 * ALLOC entries for this block.
154 *
155 * When the refcount gets to 0 it means that all the FREE and
156 * ALLOC entries of this block have paired up and we no longer
157 * need to track it in our verification logic (e.g. the node
158 * containing this struct in our verification data structure
159 * should be freed).
160 *
161 * [refer to sublivelist_verify_blkptr() for the actual code]
162 */
163 uint32_t svbr_refcnt;
164 } sublivelist_verify_block_refcnt_t;
165
166 static int
sublivelist_block_refcnt_compare(const void * larg,const void * rarg)167 sublivelist_block_refcnt_compare(const void *larg, const void *rarg)
168 {
169 const sublivelist_verify_block_refcnt_t *l = larg;
170 const sublivelist_verify_block_refcnt_t *r = rarg;
171 return (livelist_compare(&l->svbr_blk, &r->svbr_blk));
172 }
173
174 static int
sublivelist_verify_blkptr(void * arg,const blkptr_t * bp,boolean_t free,dmu_tx_t * tx)175 sublivelist_verify_blkptr(void *arg, const blkptr_t *bp, boolean_t free,
176 dmu_tx_t *tx)
177 {
178 ASSERT3P(tx, ==, NULL);
179 struct sublivelist_verify *sv = arg;
180 sublivelist_verify_block_refcnt_t current = {
181 .svbr_blk = *bp,
182
183 /*
184 * Start with 1 in case this is the first free entry.
185 * This field is not used for our B-Tree comparisons
186 * anyway.
187 */
188 .svbr_refcnt = 1,
189 };
190
191 zfs_btree_index_t where;
192 sublivelist_verify_block_refcnt_t *pair =
193 zfs_btree_find(&sv->sv_pair, ¤t, &where);
194 if (free) {
195 if (pair == NULL) {
196 /* first free entry for this block pointer */
197 zfs_btree_add(&sv->sv_pair, ¤t);
198 } else {
199 pair->svbr_refcnt++;
200 }
201 } else {
202 if (pair == NULL) {
203 /* block that is currently marked as allocated */
204 for (int i = 0; i < SPA_DVAS_PER_BP; i++) {
205 if (DVA_IS_EMPTY(&bp->blk_dva[i]))
206 break;
207 sublivelist_verify_block_t svb = {
208 .svb_dva = bp->blk_dva[i],
209 .svb_allocated_txg =
210 BP_GET_LOGICAL_BIRTH(bp)
211 };
212
213 if (zfs_btree_find(&sv->sv_leftover, &svb,
214 &where) == NULL) {
215 zfs_btree_add_idx(&sv->sv_leftover,
216 &svb, &where);
217 }
218 }
219 } else {
220 /* alloc matches a free entry */
221 pair->svbr_refcnt--;
222 if (pair->svbr_refcnt == 0) {
223 /* all allocs and frees have been matched */
224 zfs_btree_remove_idx(&sv->sv_pair, &where);
225 }
226 }
227 }
228
229 return (0);
230 }
231
232 static int
sublivelist_verify_func(void * args,dsl_deadlist_entry_t * dle)233 sublivelist_verify_func(void *args, dsl_deadlist_entry_t *dle)
234 {
235 int err;
236 struct sublivelist_verify *sv = args;
237
238 zfs_btree_create(&sv->sv_pair, sublivelist_block_refcnt_compare, NULL,
239 sizeof (sublivelist_verify_block_refcnt_t));
240
241 err = bpobj_iterate_nofree(&dle->dle_bpobj, sublivelist_verify_blkptr,
242 sv, NULL);
243
244 sublivelist_verify_block_refcnt_t *e;
245 zfs_btree_index_t *cookie = NULL;
246 while ((e = zfs_btree_destroy_nodes(&sv->sv_pair, &cookie)) != NULL) {
247 char blkbuf[BP_SPRINTF_LEN];
248 snprintf_blkptr_compact(blkbuf, sizeof (blkbuf),
249 &e->svbr_blk, B_TRUE);
250 (void) printf("\tERROR: %d unmatched FREE(s): %s\n",
251 e->svbr_refcnt, blkbuf);
252 }
253 zfs_btree_destroy(&sv->sv_pair);
254
255 return (err);
256 }
257
258 static int
livelist_block_compare(const void * larg,const void * rarg)259 livelist_block_compare(const void *larg, const void *rarg)
260 {
261 const sublivelist_verify_block_t *l = larg;
262 const sublivelist_verify_block_t *r = rarg;
263
264 if (DVA_GET_VDEV(&l->svb_dva) < DVA_GET_VDEV(&r->svb_dva))
265 return (-1);
266 else if (DVA_GET_VDEV(&l->svb_dva) > DVA_GET_VDEV(&r->svb_dva))
267 return (+1);
268
269 if (DVA_GET_OFFSET(&l->svb_dva) < DVA_GET_OFFSET(&r->svb_dva))
270 return (-1);
271 else if (DVA_GET_OFFSET(&l->svb_dva) > DVA_GET_OFFSET(&r->svb_dva))
272 return (+1);
273
274 if (DVA_GET_ASIZE(&l->svb_dva) < DVA_GET_ASIZE(&r->svb_dva))
275 return (-1);
276 else if (DVA_GET_ASIZE(&l->svb_dva) > DVA_GET_ASIZE(&r->svb_dva))
277 return (+1);
278
279 return (0);
280 }
281
282 /*
283 * Check for errors in a livelist while tracking all unfreed ALLOCs in the
284 * sublivelist_verify_t: sv->sv_leftover
285 */
286 static void
livelist_verify(dsl_deadlist_t * dl,void * arg)287 livelist_verify(dsl_deadlist_t *dl, void *arg)
288 {
289 sublivelist_verify_t *sv = arg;
290 dsl_deadlist_iterate(dl, sublivelist_verify_func, sv);
291 }
292
293 /*
294 * Check for errors in the livelist entry and discard the intermediary
295 * data structures
296 */
297 static int
sublivelist_verify_lightweight(void * args,dsl_deadlist_entry_t * dle)298 sublivelist_verify_lightweight(void *args, dsl_deadlist_entry_t *dle)
299 {
300 (void) args;
301 sublivelist_verify_t sv;
302 zfs_btree_create(&sv.sv_leftover, livelist_block_compare, NULL,
303 sizeof (sublivelist_verify_block_t));
304 int err = sublivelist_verify_func(&sv, dle);
305 zfs_btree_clear(&sv.sv_leftover);
306 zfs_btree_destroy(&sv.sv_leftover);
307 return (err);
308 }
309
310 typedef struct metaslab_verify {
311 /*
312 * Tree containing all the leftover ALLOCs from the livelists
313 * that are part of this metaslab.
314 */
315 zfs_btree_t mv_livelist_allocs;
316
317 /*
318 * Metaslab information.
319 */
320 uint64_t mv_vdid;
321 uint64_t mv_msid;
322 uint64_t mv_start;
323 uint64_t mv_end;
324
325 /*
326 * What's currently allocated for this metaslab.
327 */
328 zfs_range_tree_t *mv_allocated;
329 } metaslab_verify_t;
330
331 typedef void ll_iter_t(dsl_deadlist_t *ll, void *arg);
332
333 typedef int (*zdb_log_sm_cb_t)(spa_t *spa, space_map_entry_t *sme, uint64_t txg,
334 void *arg);
335
336 typedef struct unflushed_iter_cb_arg {
337 spa_t *uic_spa;
338 uint64_t uic_txg;
339 void *uic_arg;
340 zdb_log_sm_cb_t uic_cb;
341 } unflushed_iter_cb_arg_t;
342
343 static int
iterate_through_spacemap_logs_cb(space_map_entry_t * sme,void * arg)344 iterate_through_spacemap_logs_cb(space_map_entry_t *sme, void *arg)
345 {
346 unflushed_iter_cb_arg_t *uic = arg;
347 return (uic->uic_cb(uic->uic_spa, sme, uic->uic_txg, uic->uic_arg));
348 }
349
350 static void
iterate_through_spacemap_logs(spa_t * spa,zdb_log_sm_cb_t cb,void * arg)351 iterate_through_spacemap_logs(spa_t *spa, zdb_log_sm_cb_t cb, void *arg)
352 {
353 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))
354 return;
355
356 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
357 for (spa_log_sm_t *sls = avl_first(&spa->spa_sm_logs_by_txg);
358 sls; sls = AVL_NEXT(&spa->spa_sm_logs_by_txg, sls)) {
359 space_map_t *sm = NULL;
360 VERIFY0(space_map_open(&sm, spa_meta_objset(spa),
361 sls->sls_sm_obj, 0, UINT64_MAX, SPA_MINBLOCKSHIFT));
362
363 unflushed_iter_cb_arg_t uic = {
364 .uic_spa = spa,
365 .uic_txg = sls->sls_txg,
366 .uic_arg = arg,
367 .uic_cb = cb
368 };
369 VERIFY0(space_map_iterate(sm, space_map_length(sm),
370 iterate_through_spacemap_logs_cb, &uic));
371 space_map_close(sm);
372 }
373 spa_config_exit(spa, SCL_CONFIG, FTAG);
374 }
375
376 static void
verify_livelist_allocs(metaslab_verify_t * mv,uint64_t txg,uint64_t offset,uint64_t size)377 verify_livelist_allocs(metaslab_verify_t *mv, uint64_t txg,
378 uint64_t offset, uint64_t size)
379 {
380 sublivelist_verify_block_t svb = {{{0}}};
381 DVA_SET_VDEV(&svb.svb_dva, mv->mv_vdid);
382 DVA_SET_OFFSET(&svb.svb_dva, offset);
383 DVA_SET_ASIZE(&svb.svb_dva, size);
384 zfs_btree_index_t where;
385 uint64_t end_offset = offset + size;
386
387 /*
388 * Look for an exact match for spacemap entry in the livelist entries.
389 * Then, look for other livelist entries that fall within the range
390 * of the spacemap entry as it may have been condensed
391 */
392 sublivelist_verify_block_t *found =
393 zfs_btree_find(&mv->mv_livelist_allocs, &svb, &where);
394 if (found == NULL) {
395 found = zfs_btree_next(&mv->mv_livelist_allocs, &where, &where);
396 }
397 for (; found != NULL && DVA_GET_VDEV(&found->svb_dva) == mv->mv_vdid &&
398 DVA_GET_OFFSET(&found->svb_dva) < end_offset;
399 found = zfs_btree_next(&mv->mv_livelist_allocs, &where, &where)) {
400 if (found->svb_allocated_txg <= txg) {
401 (void) printf("ERROR: Livelist ALLOC [%llx:%llx] "
402 "from TXG %llx FREED at TXG %llx\n",
403 (u_longlong_t)DVA_GET_OFFSET(&found->svb_dva),
404 (u_longlong_t)DVA_GET_ASIZE(&found->svb_dva),
405 (u_longlong_t)found->svb_allocated_txg,
406 (u_longlong_t)txg);
407 }
408 }
409 }
410
411 static int
metaslab_spacemap_validation_cb(space_map_entry_t * sme,void * arg)412 metaslab_spacemap_validation_cb(space_map_entry_t *sme, void *arg)
413 {
414 metaslab_verify_t *mv = arg;
415 uint64_t offset = sme->sme_offset;
416 uint64_t size = sme->sme_run;
417 uint64_t txg = sme->sme_txg;
418
419 if (sme->sme_type == SM_ALLOC) {
420 if (zfs_range_tree_contains(mv->mv_allocated,
421 offset, size)) {
422 (void) printf("ERROR: DOUBLE ALLOC: "
423 "%llu [%llx:%llx] "
424 "%llu:%llu LOG_SM\n",
425 (u_longlong_t)txg, (u_longlong_t)offset,
426 (u_longlong_t)size, (u_longlong_t)mv->mv_vdid,
427 (u_longlong_t)mv->mv_msid);
428 } else {
429 zfs_range_tree_add(mv->mv_allocated,
430 offset, size);
431 }
432 } else {
433 if (!zfs_range_tree_contains(mv->mv_allocated,
434 offset, size)) {
435 (void) printf("ERROR: DOUBLE FREE: "
436 "%llu [%llx:%llx] "
437 "%llu:%llu LOG_SM\n",
438 (u_longlong_t)txg, (u_longlong_t)offset,
439 (u_longlong_t)size, (u_longlong_t)mv->mv_vdid,
440 (u_longlong_t)mv->mv_msid);
441 } else {
442 zfs_range_tree_remove(mv->mv_allocated,
443 offset, size);
444 }
445 }
446
447 if (sme->sme_type != SM_ALLOC) {
448 /*
449 * If something is freed in the spacemap, verify that
450 * it is not listed as allocated in the livelist.
451 */
452 verify_livelist_allocs(mv, txg, offset, size);
453 }
454 return (0);
455 }
456
457 static int
spacemap_check_sm_log_cb(spa_t * spa,space_map_entry_t * sme,uint64_t txg,void * arg)458 spacemap_check_sm_log_cb(spa_t *spa, space_map_entry_t *sme,
459 uint64_t txg, void *arg)
460 {
461 metaslab_verify_t *mv = arg;
462 uint64_t offset = sme->sme_offset;
463 uint64_t vdev_id = sme->sme_vdev;
464
465 vdev_t *vd = vdev_lookup_top(spa, vdev_id);
466
467 /* skip indirect vdevs */
468 if (!vdev_is_concrete(vd))
469 return (0);
470
471 if (vdev_id != mv->mv_vdid)
472 return (0);
473
474 metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift];
475 if (ms->ms_id != mv->mv_msid)
476 return (0);
477
478 if (txg < metaslab_unflushed_txg(ms))
479 return (0);
480
481
482 ASSERT3U(txg, ==, sme->sme_txg);
483 return (metaslab_spacemap_validation_cb(sme, mv));
484 }
485
486 static void
spacemap_check_sm_log(spa_t * spa,metaslab_verify_t * mv)487 spacemap_check_sm_log(spa_t *spa, metaslab_verify_t *mv)
488 {
489 iterate_through_spacemap_logs(spa, spacemap_check_sm_log_cb, mv);
490 }
491
492 static void
spacemap_check_ms_sm(space_map_t * sm,metaslab_verify_t * mv)493 spacemap_check_ms_sm(space_map_t *sm, metaslab_verify_t *mv)
494 {
495 if (sm == NULL)
496 return;
497
498 VERIFY0(space_map_iterate(sm, space_map_length(sm),
499 metaslab_spacemap_validation_cb, mv));
500 }
501
502 static void iterate_deleted_livelists(spa_t *spa, ll_iter_t func, void *arg);
503
504 /*
505 * Transfer blocks from sv_leftover tree to the mv_livelist_allocs if
506 * they are part of that metaslab (mv_msid).
507 */
508 static void
mv_populate_livelist_allocs(metaslab_verify_t * mv,sublivelist_verify_t * sv)509 mv_populate_livelist_allocs(metaslab_verify_t *mv, sublivelist_verify_t *sv)
510 {
511 zfs_btree_index_t where;
512 sublivelist_verify_block_t *svb;
513 ASSERT3U(zfs_btree_numnodes(&mv->mv_livelist_allocs), ==, 0);
514 for (svb = zfs_btree_first(&sv->sv_leftover, &where);
515 svb != NULL;
516 svb = zfs_btree_next(&sv->sv_leftover, &where, &where)) {
517 if (DVA_GET_VDEV(&svb->svb_dva) != mv->mv_vdid)
518 continue;
519
520 if (DVA_GET_OFFSET(&svb->svb_dva) < mv->mv_start &&
521 (DVA_GET_OFFSET(&svb->svb_dva) +
522 DVA_GET_ASIZE(&svb->svb_dva)) > mv->mv_start) {
523 (void) printf("ERROR: Found block that crosses "
524 "metaslab boundary: <%llu:%llx:%llx>\n",
525 (u_longlong_t)DVA_GET_VDEV(&svb->svb_dva),
526 (u_longlong_t)DVA_GET_OFFSET(&svb->svb_dva),
527 (u_longlong_t)DVA_GET_ASIZE(&svb->svb_dva));
528 continue;
529 }
530
531 if (DVA_GET_OFFSET(&svb->svb_dva) < mv->mv_start)
532 continue;
533
534 if (DVA_GET_OFFSET(&svb->svb_dva) >= mv->mv_end)
535 continue;
536
537 if ((DVA_GET_OFFSET(&svb->svb_dva) +
538 DVA_GET_ASIZE(&svb->svb_dva)) > mv->mv_end) {
539 (void) printf("ERROR: Found block that crosses "
540 "metaslab boundary: <%llu:%llx:%llx>\n",
541 (u_longlong_t)DVA_GET_VDEV(&svb->svb_dva),
542 (u_longlong_t)DVA_GET_OFFSET(&svb->svb_dva),
543 (u_longlong_t)DVA_GET_ASIZE(&svb->svb_dva));
544 continue;
545 }
546
547 zfs_btree_add(&mv->mv_livelist_allocs, svb);
548 }
549
550 for (svb = zfs_btree_first(&mv->mv_livelist_allocs, &where);
551 svb != NULL;
552 svb = zfs_btree_next(&mv->mv_livelist_allocs, &where, &where)) {
553 zfs_btree_remove(&sv->sv_leftover, svb);
554 }
555 }
556
557 /*
558 * [Livelist Check]
559 * Iterate through all the sublivelists and:
560 * - report leftover frees (**)
561 * - record leftover ALLOCs together with their TXG [see Cross Check]
562 *
563 * (**) Note: Double ALLOCs are valid in datasets that have dedup
564 * enabled. Similarly double FREEs are allowed as well but
565 * only if they pair up with a corresponding ALLOC entry once
566 * we our done with our sublivelist iteration.
567 *
568 * [Spacemap Check]
569 * for each metaslab:
570 * - iterate over spacemap and then the metaslab's entries in the
571 * spacemap log, then report any double FREEs and ALLOCs (do not
572 * blow up).
573 *
574 * [Cross Check]
575 * After finishing the Livelist Check phase and while being in the
576 * Spacemap Check phase, we find all the recorded leftover ALLOCs
577 * of the livelist check that are part of the metaslab that we are
578 * currently looking at in the Spacemap Check. We report any entries
579 * that are marked as ALLOCs in the livelists but have been actually
580 * freed (and potentially allocated again) after their TXG stamp in
581 * the spacemaps. Also report any ALLOCs from the livelists that
582 * belong to indirect vdevs (e.g. their vdev completed removal).
583 *
584 * Note that this will miss Log Spacemap entries that cancelled each other
585 * out before being flushed to the metaslab, so we are not guaranteed
586 * to match all erroneous ALLOCs.
587 */
588 static void
livelist_metaslab_validate(spa_t * spa)589 livelist_metaslab_validate(spa_t *spa)
590 {
591 (void) printf("Verifying deleted livelist entries\n");
592
593 sublivelist_verify_t sv;
594 zfs_btree_create(&sv.sv_leftover, livelist_block_compare, NULL,
595 sizeof (sublivelist_verify_block_t));
596 iterate_deleted_livelists(spa, livelist_verify, &sv);
597
598 (void) printf("Verifying metaslab entries\n");
599 vdev_t *rvd = spa->spa_root_vdev;
600 for (uint64_t c = 0; c < rvd->vdev_children; c++) {
601 vdev_t *vd = rvd->vdev_child[c];
602
603 if (!vdev_is_concrete(vd))
604 continue;
605
606 for (uint64_t mid = 0; mid < vd->vdev_ms_count; mid++) {
607 metaslab_t *m = vd->vdev_ms[mid];
608
609 (void) fprintf(stderr,
610 "\rverifying concrete vdev %llu, "
611 "metaslab %llu of %llu ...",
612 (longlong_t)vd->vdev_id,
613 (longlong_t)mid,
614 (longlong_t)vd->vdev_ms_count);
615
616 uint64_t shift, start;
617 zfs_range_seg_type_t type =
618 metaslab_calculate_range_tree_type(vd, m,
619 &start, &shift);
620 metaslab_verify_t mv;
621 mv.mv_allocated = zfs_range_tree_create(NULL,
622 type, NULL, start, shift);
623 mv.mv_vdid = vd->vdev_id;
624 mv.mv_msid = m->ms_id;
625 mv.mv_start = m->ms_start;
626 mv.mv_end = m->ms_start + m->ms_size;
627 zfs_btree_create(&mv.mv_livelist_allocs,
628 livelist_block_compare, NULL,
629 sizeof (sublivelist_verify_block_t));
630
631 mv_populate_livelist_allocs(&mv, &sv);
632
633 spacemap_check_ms_sm(m->ms_sm, &mv);
634 spacemap_check_sm_log(spa, &mv);
635
636 zfs_range_tree_vacate(mv.mv_allocated, NULL, NULL);
637 zfs_range_tree_destroy(mv.mv_allocated);
638 zfs_btree_clear(&mv.mv_livelist_allocs);
639 zfs_btree_destroy(&mv.mv_livelist_allocs);
640 }
641 }
642 (void) fprintf(stderr, "\n");
643
644 /*
645 * If there are any segments in the leftover tree after we walked
646 * through all the metaslabs in the concrete vdevs then this means
647 * that we have segments in the livelists that belong to indirect
648 * vdevs and are marked as allocated.
649 */
650 if (zfs_btree_numnodes(&sv.sv_leftover) == 0) {
651 zfs_btree_destroy(&sv.sv_leftover);
652 return;
653 }
654 (void) printf("ERROR: Found livelist blocks marked as allocated "
655 "for indirect vdevs:\n");
656
657 zfs_btree_index_t *where = NULL;
658 sublivelist_verify_block_t *svb;
659 while ((svb = zfs_btree_destroy_nodes(&sv.sv_leftover, &where)) !=
660 NULL) {
661 int vdev_id = DVA_GET_VDEV(&svb->svb_dva);
662 ASSERT3U(vdev_id, <, rvd->vdev_children);
663 vdev_t *vd = rvd->vdev_child[vdev_id];
664 ASSERT(!vdev_is_concrete(vd));
665 (void) printf("<%d:%llx:%llx> TXG %llx\n",
666 vdev_id, (u_longlong_t)DVA_GET_OFFSET(&svb->svb_dva),
667 (u_longlong_t)DVA_GET_ASIZE(&svb->svb_dva),
668 (u_longlong_t)svb->svb_allocated_txg);
669 }
670 (void) printf("\n");
671 zfs_btree_destroy(&sv.sv_leftover);
672 }
673
674 /*
675 * These libumem hooks provide a reasonable set of defaults for the allocator's
676 * debugging facilities.
677 */
678 const char *
_umem_debug_init(void)679 _umem_debug_init(void)
680 {
681 return ("default,verbose"); /* $UMEM_DEBUG setting */
682 }
683
684 const char *
_umem_logging_init(void)685 _umem_logging_init(void)
686 {
687 return ("fail,contents"); /* $UMEM_LOGGING setting */
688 }
689
690 static void
usage(void)691 usage(void)
692 {
693 (void) fprintf(stderr,
694 "Usage:\t%s [-AbcdDFGhikLMPsvXy] [-e [-V] [-p <path> ...]] "
695 "[-I <inflight I/Os>]\n"
696 "\t\t[-o <var>=<value>]... [-t <txg>] [-U <cache>] [-x <dumpdir>]\n"
697 "\t\t[-K <key>]\n"
698 "\t\t[<poolname>[/<dataset | objset id>] [<object | range> ...]]\n"
699 "\t%s [-AdiPv] [-e [-V] [-p <path> ...]] [-U <cache>] [-K <key>]\n"
700 "\t\t[<poolname>[/<dataset | objset id>] [<object | range> ...]\n"
701 "\t%s -B [-e [-V] [-p <path> ...]] [-I <inflight I/Os>]\n"
702 "\t\t[-o <var>=<value>]... [-t <txg>] [-U <cache>] [-x <dumpdir>]\n"
703 "\t\t[-K <key>] <poolname>/<objset id> [<backupflags>]\n"
704 "\t%s [-v] <bookmark>\n"
705 "\t%s -C [-A] [-U <cache>] [<poolname>]\n"
706 "\t%s -l [-Aqu] <device>\n"
707 "\t%s -m [-AFLPX] [-e [-V] [-p <path> ...]] [-t <txg>] "
708 "[-U <cache>]\n\t\t<poolname> [<vdev> [<metaslab> ...]]\n"
709 "\t%s -O [-K <key>] <dataset> <path>\n"
710 "\t%s -r [-K <key>] <dataset> <path> <destination>\n"
711 "\t%s -R [-A] [-e [-V] [-p <path> ...]] [-U <cache>]\n"
712 "\t\t<poolname> <vdev>:<offset>:<size>[:<flags>]\n"
713 "\t%s -E [-A] word0:word1:...:word15\n"
714 "\t%s -S [-AP] [-e [-V] [-p <path> ...]] [-U <cache>] "
715 "<poolname>\n\n",
716 cmdname, cmdname, cmdname, cmdname, cmdname, cmdname, cmdname,
717 cmdname, cmdname, cmdname, cmdname, cmdname);
718
719 (void) fprintf(stderr, " Dataset name must include at least one "
720 "separator character '/' or '@'\n");
721 (void) fprintf(stderr, " If dataset name is specified, only that "
722 "dataset is dumped\n");
723 (void) fprintf(stderr, " If object numbers or object number "
724 "ranges are specified, only those\n"
725 " objects or ranges are dumped.\n\n");
726 (void) fprintf(stderr,
727 " Object ranges take the form <start>:<end>[:<flags>]\n"
728 " start Starting object number\n"
729 " end Ending object number, or -1 for no upper bound\n"
730 " flags Optional flags to select object types:\n"
731 " A All objects (this is the default)\n"
732 " d ZFS directories\n"
733 " f ZFS files \n"
734 " m SPA space maps\n"
735 " z ZAPs\n"
736 " - Negate effect of next flag\n\n");
737 (void) fprintf(stderr, " Options to control amount of output:\n");
738 (void) fprintf(stderr, " -b --block-stats "
739 "block statistics\n");
740 (void) fprintf(stderr, " -B --backup "
741 "backup stream\n");
742 (void) fprintf(stderr, " -c --checksum "
743 "checksum all metadata (twice for all data) blocks\n");
744 (void) fprintf(stderr, " -C --config "
745 "config (or cachefile if alone)\n");
746 (void) fprintf(stderr, " -d --datasets "
747 "dataset(s)\n");
748 (void) fprintf(stderr, " -D --dedup-stats "
749 "dedup statistics\n");
750 (void) fprintf(stderr, " -E --embedded-block-pointer=INTEGER\n"
751 " decode and display block "
752 "from an embedded block pointer\n");
753 (void) fprintf(stderr, " -h --history "
754 "pool history\n");
755 (void) fprintf(stderr, " -i --intent-logs "
756 "intent logs\n");
757 (void) fprintf(stderr, " -l --label "
758 "read label contents\n");
759 (void) fprintf(stderr, " -k --checkpointed-state "
760 "examine the checkpointed state of the pool\n");
761 (void) fprintf(stderr, " -L --disable-leak-tracking "
762 "disable leak tracking (do not load spacemaps)\n");
763 (void) fprintf(stderr, " -m --metaslabs "
764 "metaslabs\n");
765 (void) fprintf(stderr, " -M --metaslab-groups "
766 "metaslab groups\n");
767 (void) fprintf(stderr, " -O --object-lookups "
768 "perform object lookups by path\n");
769 (void) fprintf(stderr, " -r --copy-object "
770 "copy an object by path to file\n");
771 (void) fprintf(stderr, " -R --read-block "
772 "read and display block from a device\n");
773 (void) fprintf(stderr, " -s --io-stats "
774 "report stats on zdb's I/O\n");
775 (void) fprintf(stderr, " -S --simulate-dedup "
776 "simulate dedup to measure effect\n");
777 (void) fprintf(stderr, " -v --verbose "
778 "verbose (applies to all others)\n");
779 (void) fprintf(stderr, " -y --livelist "
780 "perform livelist and metaslab validation on any livelists being "
781 "deleted\n\n");
782 (void) fprintf(stderr, " Below options are intended for use "
783 "with other options:\n");
784 (void) fprintf(stderr, " -A --ignore-assertions "
785 "ignore assertions (-A), enable panic recovery (-AA) or both "
786 "(-AAA)\n");
787 (void) fprintf(stderr, " -e --exported "
788 "pool is exported/destroyed/has altroot/not in a cachefile\n");
789 (void) fprintf(stderr, " -F --automatic-rewind "
790 "attempt automatic rewind within safe range of transaction "
791 "groups\n");
792 (void) fprintf(stderr, " -G --dump-debug-msg "
793 "dump zfs_dbgmsg buffer before exiting\n");
794 (void) fprintf(stderr, " -I --inflight=INTEGER "
795 "specify the maximum number of checksumming I/Os "
796 "[default is 200]\n");
797 (void) fprintf(stderr, " -K --key=KEY "
798 "decryption key for encrypted dataset\n");
799 (void) fprintf(stderr, " -o --option=\"OPTION=INTEGER\" "
800 "set global variable to an unsigned 32-bit integer\n");
801 (void) fprintf(stderr, " -p --path==PATH "
802 "use one or more with -e to specify path to vdev dir\n");
803 (void) fprintf(stderr, " -P --parseable "
804 "print numbers in parseable form\n");
805 (void) fprintf(stderr, " -q --skip-label "
806 "don't print label contents\n");
807 (void) fprintf(stderr, " -t --txg=INTEGER "
808 "highest txg to use when searching for uberblocks\n");
809 (void) fprintf(stderr, " -T --brt-stats "
810 "BRT statistics\n");
811 (void) fprintf(stderr, " -u --uberblock "
812 "uberblock\n");
813 (void) fprintf(stderr, " -U --cachefile=PATH "
814 "use alternate cachefile\n");
815 (void) fprintf(stderr, " -V --verbatim "
816 "do verbatim import\n");
817 (void) fprintf(stderr, " -x --dump-blocks=PATH "
818 "dump all read blocks into specified directory\n");
819 (void) fprintf(stderr, " -X --extreme-rewind "
820 "attempt extreme rewind (does not work with dataset)\n");
821 (void) fprintf(stderr, " -Y --all-reconstruction "
822 "attempt all reconstruction combinations for split blocks\n");
823 (void) fprintf(stderr, " -Z --zstd-headers "
824 "show ZSTD headers \n");
825 (void) fprintf(stderr, "Specify an option more than once (e.g. -bb) "
826 "to make only that option verbose\n");
827 (void) fprintf(stderr, "Default is to dump everything non-verbosely\n");
828 zdb_exit(1);
829 }
830
831 static void
dump_debug_buffer(void)832 dump_debug_buffer(void)
833 {
834 ssize_t ret __attribute__((unused));
835
836 if (!dump_opt['G'])
837 return;
838 /*
839 * We use write() instead of printf() so that this function
840 * is safe to call from a signal handler.
841 */
842 ret = write(STDERR_FILENO, "\n", 1);
843 zfs_dbgmsg_print(STDERR_FILENO, "zdb");
844 }
845
sig_handler(int signo)846 static void sig_handler(int signo)
847 {
848 struct sigaction action;
849
850 libspl_backtrace(STDERR_FILENO);
851 dump_debug_buffer();
852
853 /*
854 * Restore default action and re-raise signal so SIGSEGV and
855 * SIGABRT can trigger a core dump.
856 */
857 action.sa_handler = SIG_DFL;
858 sigemptyset(&action.sa_mask);
859 action.sa_flags = 0;
860 (void) sigaction(signo, &action, NULL);
861 raise(signo);
862 }
863
864 /*
865 * Called for usage errors that are discovered after a call to spa_open(),
866 * dmu_bonus_hold(), or pool_match(). abort() is called for other errors.
867 */
868
869 static void
fatal(const char * fmt,...)870 fatal(const char *fmt, ...)
871 {
872 va_list ap;
873
874 va_start(ap, fmt);
875 (void) fprintf(stderr, "%s: ", cmdname);
876 (void) vfprintf(stderr, fmt, ap);
877 va_end(ap);
878 (void) fprintf(stderr, "\n");
879
880 dump_debug_buffer();
881
882 zdb_exit(1);
883 }
884
885 static void
dump_packed_nvlist(objset_t * os,uint64_t object,void * data,size_t size)886 dump_packed_nvlist(objset_t *os, uint64_t object, void *data, size_t size)
887 {
888 (void) size;
889 nvlist_t *nv;
890 size_t nvsize = *(uint64_t *)data;
891 char *packed = umem_alloc(nvsize, UMEM_NOFAIL);
892
893 VERIFY(0 == dmu_read(os, object, 0, nvsize, packed, DMU_READ_PREFETCH));
894
895 VERIFY(nvlist_unpack(packed, nvsize, &nv, 0) == 0);
896
897 umem_free(packed, nvsize);
898
899 dump_nvlist(nv, 8);
900
901 nvlist_free(nv);
902 }
903
904 static void
dump_history_offsets(objset_t * os,uint64_t object,void * data,size_t size)905 dump_history_offsets(objset_t *os, uint64_t object, void *data, size_t size)
906 {
907 (void) os, (void) object, (void) size;
908 spa_history_phys_t *shp = data;
909
910 if (shp == NULL)
911 return;
912
913 (void) printf("\t\tpool_create_len = %llu\n",
914 (u_longlong_t)shp->sh_pool_create_len);
915 (void) printf("\t\tphys_max_off = %llu\n",
916 (u_longlong_t)shp->sh_phys_max_off);
917 (void) printf("\t\tbof = %llu\n",
918 (u_longlong_t)shp->sh_bof);
919 (void) printf("\t\teof = %llu\n",
920 (u_longlong_t)shp->sh_eof);
921 (void) printf("\t\trecords_lost = %llu\n",
922 (u_longlong_t)shp->sh_records_lost);
923 }
924
925 static void
zdb_nicenum(uint64_t num,char * buf,size_t buflen)926 zdb_nicenum(uint64_t num, char *buf, size_t buflen)
927 {
928 if (dump_opt['P'])
929 (void) snprintf(buf, buflen, "%llu", (longlong_t)num);
930 else
931 nicenum(num, buf, buflen);
932 }
933
934 static void
zdb_nicebytes(uint64_t bytes,char * buf,size_t buflen)935 zdb_nicebytes(uint64_t bytes, char *buf, size_t buflen)
936 {
937 if (dump_opt['P'])
938 (void) snprintf(buf, buflen, "%llu", (longlong_t)bytes);
939 else
940 zfs_nicebytes(bytes, buf, buflen);
941 }
942
943 static const char histo_stars[] = "****************************************";
944 static const uint64_t histo_width = sizeof (histo_stars) - 1;
945
946 static void
dump_histogram(const uint64_t * histo,int size,int offset)947 dump_histogram(const uint64_t *histo, int size, int offset)
948 {
949 int i;
950 int minidx = size - 1;
951 int maxidx = 0;
952 uint64_t max = 0;
953
954 for (i = 0; i < size; i++) {
955 if (histo[i] == 0)
956 continue;
957 if (histo[i] > max)
958 max = histo[i];
959 if (i > maxidx)
960 maxidx = i;
961 if (i < minidx)
962 minidx = i;
963 }
964
965 if (max < histo_width)
966 max = histo_width;
967
968 for (i = minidx; i <= maxidx; i++) {
969 (void) printf("\t\t\t%3u: %6llu %s\n",
970 i + offset, (u_longlong_t)histo[i],
971 &histo_stars[(max - histo[i]) * histo_width / max]);
972 }
973 }
974
975 static void
dump_zap_stats(objset_t * os,uint64_t object)976 dump_zap_stats(objset_t *os, uint64_t object)
977 {
978 int error;
979 zap_stats_t zs;
980
981 error = zap_get_stats(os, object, &zs);
982 if (error)
983 return;
984
985 if (zs.zs_ptrtbl_len == 0) {
986 ASSERT(zs.zs_num_blocks == 1);
987 (void) printf("\tmicrozap: %llu bytes, %llu entries\n",
988 (u_longlong_t)zs.zs_blocksize,
989 (u_longlong_t)zs.zs_num_entries);
990 return;
991 }
992
993 (void) printf("\tFat ZAP stats:\n");
994
995 (void) printf("\t\tPointer table:\n");
996 (void) printf("\t\t\t%llu elements\n",
997 (u_longlong_t)zs.zs_ptrtbl_len);
998 (void) printf("\t\t\tzt_blk: %llu\n",
999 (u_longlong_t)zs.zs_ptrtbl_zt_blk);
1000 (void) printf("\t\t\tzt_numblks: %llu\n",
1001 (u_longlong_t)zs.zs_ptrtbl_zt_numblks);
1002 (void) printf("\t\t\tzt_shift: %llu\n",
1003 (u_longlong_t)zs.zs_ptrtbl_zt_shift);
1004 (void) printf("\t\t\tzt_blks_copied: %llu\n",
1005 (u_longlong_t)zs.zs_ptrtbl_blks_copied);
1006 (void) printf("\t\t\tzt_nextblk: %llu\n",
1007 (u_longlong_t)zs.zs_ptrtbl_nextblk);
1008
1009 (void) printf("\t\tZAP entries: %llu\n",
1010 (u_longlong_t)zs.zs_num_entries);
1011 (void) printf("\t\tLeaf blocks: %llu\n",
1012 (u_longlong_t)zs.zs_num_leafs);
1013 (void) printf("\t\tTotal blocks: %llu\n",
1014 (u_longlong_t)zs.zs_num_blocks);
1015 (void) printf("\t\tzap_block_type: 0x%llx\n",
1016 (u_longlong_t)zs.zs_block_type);
1017 (void) printf("\t\tzap_magic: 0x%llx\n",
1018 (u_longlong_t)zs.zs_magic);
1019 (void) printf("\t\tzap_salt: 0x%llx\n",
1020 (u_longlong_t)zs.zs_salt);
1021
1022 (void) printf("\t\tLeafs with 2^n pointers:\n");
1023 dump_histogram(zs.zs_leafs_with_2n_pointers, ZAP_HISTOGRAM_SIZE, 0);
1024
1025 (void) printf("\t\tBlocks with n*5 entries:\n");
1026 dump_histogram(zs.zs_blocks_with_n5_entries, ZAP_HISTOGRAM_SIZE, 0);
1027
1028 (void) printf("\t\tBlocks n/10 full:\n");
1029 dump_histogram(zs.zs_blocks_n_tenths_full, ZAP_HISTOGRAM_SIZE, 0);
1030
1031 (void) printf("\t\tEntries with n chunks:\n");
1032 dump_histogram(zs.zs_entries_using_n_chunks, ZAP_HISTOGRAM_SIZE, 0);
1033
1034 (void) printf("\t\tBuckets with n entries:\n");
1035 dump_histogram(zs.zs_buckets_with_n_entries, ZAP_HISTOGRAM_SIZE, 0);
1036 }
1037
1038 static void
dump_none(objset_t * os,uint64_t object,void * data,size_t size)1039 dump_none(objset_t *os, uint64_t object, void *data, size_t size)
1040 {
1041 (void) os, (void) object, (void) data, (void) size;
1042 }
1043
1044 static void
dump_unknown(objset_t * os,uint64_t object,void * data,size_t size)1045 dump_unknown(objset_t *os, uint64_t object, void *data, size_t size)
1046 {
1047 (void) os, (void) object, (void) data, (void) size;
1048 (void) printf("\tUNKNOWN OBJECT TYPE\n");
1049 }
1050
1051 static void
dump_uint8(objset_t * os,uint64_t object,void * data,size_t size)1052 dump_uint8(objset_t *os, uint64_t object, void *data, size_t size)
1053 {
1054 (void) os, (void) object, (void) data, (void) size;
1055 }
1056
1057 static void
dump_uint64(objset_t * os,uint64_t object,void * data,size_t size)1058 dump_uint64(objset_t *os, uint64_t object, void *data, size_t size)
1059 {
1060 uint64_t *arr;
1061 uint64_t oursize;
1062 if (dump_opt['d'] < 6)
1063 return;
1064
1065 if (data == NULL) {
1066 dmu_object_info_t doi;
1067
1068 VERIFY0(dmu_object_info(os, object, &doi));
1069 size = doi.doi_max_offset;
1070 /*
1071 * We cap the size at 1 mebibyte here to prevent
1072 * allocation failures and nigh-infinite printing if the
1073 * object is extremely large.
1074 */
1075 oursize = MIN(size, 1 << 20);
1076 arr = kmem_alloc(oursize, KM_SLEEP);
1077
1078 int err = dmu_read(os, object, 0, oursize, arr, 0);
1079 if (err != 0) {
1080 (void) printf("got error %u from dmu_read\n", err);
1081 kmem_free(arr, oursize);
1082 return;
1083 }
1084 } else {
1085 /*
1086 * Even though the allocation is already done in this code path,
1087 * we still cap the size to prevent excessive printing.
1088 */
1089 oursize = MIN(size, 1 << 20);
1090 arr = data;
1091 }
1092
1093 if (size == 0) {
1094 if (data == NULL)
1095 kmem_free(arr, oursize);
1096 (void) printf("\t\t[]\n");
1097 return;
1098 }
1099
1100 (void) printf("\t\t[%0llx", (u_longlong_t)arr[0]);
1101 for (size_t i = 1; i * sizeof (uint64_t) < oursize; i++) {
1102 if (i % 4 != 0)
1103 (void) printf(", %0llx", (u_longlong_t)arr[i]);
1104 else
1105 (void) printf(",\n\t\t%0llx", (u_longlong_t)arr[i]);
1106 }
1107 if (oursize != size)
1108 (void) printf(", ... ");
1109 (void) printf("]\n");
1110
1111 if (data == NULL)
1112 kmem_free(arr, oursize);
1113 }
1114
1115 static void
dump_zap(objset_t * os,uint64_t object,void * data,size_t size)1116 dump_zap(objset_t *os, uint64_t object, void *data, size_t size)
1117 {
1118 (void) data, (void) size;
1119 zap_cursor_t zc;
1120 zap_attribute_t *attrp = zap_attribute_long_alloc();
1121 void *prop;
1122 unsigned i;
1123
1124 dump_zap_stats(os, object);
1125 (void) printf("\n");
1126
1127 for (zap_cursor_init(&zc, os, object);
1128 zap_cursor_retrieve(&zc, attrp) == 0;
1129 zap_cursor_advance(&zc)) {
1130 boolean_t key64 =
1131 !!(zap_getflags(zc.zc_zap) & ZAP_FLAG_UINT64_KEY);
1132
1133 if (key64)
1134 (void) printf("\t\t0x%010" PRIu64 "x = ",
1135 *(uint64_t *)attrp->za_name);
1136 else
1137 (void) printf("\t\t%s = ", attrp->za_name);
1138
1139 if (attrp->za_num_integers == 0) {
1140 (void) printf("\n");
1141 continue;
1142 }
1143 prop = umem_zalloc(attrp->za_num_integers *
1144 attrp->za_integer_length, UMEM_NOFAIL);
1145
1146 if (key64)
1147 (void) zap_lookup_uint64(os, object,
1148 (const uint64_t *)attrp->za_name, 1,
1149 attrp->za_integer_length, attrp->za_num_integers,
1150 prop);
1151 else
1152 (void) zap_lookup(os, object, attrp->za_name,
1153 attrp->za_integer_length, attrp->za_num_integers,
1154 prop);
1155
1156 if (attrp->za_integer_length == 1 && !key64) {
1157 if (strcmp(attrp->za_name,
1158 DSL_CRYPTO_KEY_MASTER_KEY) == 0 ||
1159 strcmp(attrp->za_name,
1160 DSL_CRYPTO_KEY_HMAC_KEY) == 0 ||
1161 strcmp(attrp->za_name, DSL_CRYPTO_KEY_IV) == 0 ||
1162 strcmp(attrp->za_name, DSL_CRYPTO_KEY_MAC) == 0 ||
1163 strcmp(attrp->za_name,
1164 DMU_POOL_CHECKSUM_SALT) == 0) {
1165 uint8_t *u8 = prop;
1166
1167 for (i = 0; i < attrp->za_num_integers; i++) {
1168 (void) printf("%02x", u8[i]);
1169 }
1170 } else {
1171 (void) printf("%s", (char *)prop);
1172 }
1173 } else {
1174 for (i = 0; i < attrp->za_num_integers; i++) {
1175 switch (attrp->za_integer_length) {
1176 case 1:
1177 (void) printf("%u ",
1178 ((uint8_t *)prop)[i]);
1179 break;
1180 case 2:
1181 (void) printf("%u ",
1182 ((uint16_t *)prop)[i]);
1183 break;
1184 case 4:
1185 (void) printf("%u ",
1186 ((uint32_t *)prop)[i]);
1187 break;
1188 case 8:
1189 (void) printf("%lld ",
1190 (u_longlong_t)((int64_t *)prop)[i]);
1191 break;
1192 }
1193 }
1194 }
1195 (void) printf("\n");
1196 umem_free(prop,
1197 attrp->za_num_integers * attrp->za_integer_length);
1198 }
1199 zap_cursor_fini(&zc);
1200 zap_attribute_free(attrp);
1201 }
1202
1203 static void
dump_bpobj(objset_t * os,uint64_t object,void * data,size_t size)1204 dump_bpobj(objset_t *os, uint64_t object, void *data, size_t size)
1205 {
1206 bpobj_phys_t *bpop = data;
1207 uint64_t i;
1208 char bytes[32], comp[32], uncomp[32];
1209
1210 /* make sure the output won't get truncated */
1211 _Static_assert(sizeof (bytes) >= NN_NUMBUF_SZ, "bytes truncated");
1212 _Static_assert(sizeof (comp) >= NN_NUMBUF_SZ, "comp truncated");
1213 _Static_assert(sizeof (uncomp) >= NN_NUMBUF_SZ, "uncomp truncated");
1214
1215 if (bpop == NULL)
1216 return;
1217
1218 zdb_nicenum(bpop->bpo_bytes, bytes, sizeof (bytes));
1219 zdb_nicenum(bpop->bpo_comp, comp, sizeof (comp));
1220 zdb_nicenum(bpop->bpo_uncomp, uncomp, sizeof (uncomp));
1221
1222 (void) printf("\t\tnum_blkptrs = %llu\n",
1223 (u_longlong_t)bpop->bpo_num_blkptrs);
1224 (void) printf("\t\tbytes = %s\n", bytes);
1225 if (size >= BPOBJ_SIZE_V1) {
1226 (void) printf("\t\tcomp = %s\n", comp);
1227 (void) printf("\t\tuncomp = %s\n", uncomp);
1228 }
1229 if (size >= BPOBJ_SIZE_V2) {
1230 (void) printf("\t\tsubobjs = %llu\n",
1231 (u_longlong_t)bpop->bpo_subobjs);
1232 (void) printf("\t\tnum_subobjs = %llu\n",
1233 (u_longlong_t)bpop->bpo_num_subobjs);
1234 }
1235 if (size >= sizeof (*bpop)) {
1236 (void) printf("\t\tnum_freed = %llu\n",
1237 (u_longlong_t)bpop->bpo_num_freed);
1238 }
1239
1240 if (dump_opt['d'] < 5)
1241 return;
1242
1243 for (i = 0; i < bpop->bpo_num_blkptrs; i++) {
1244 char blkbuf[BP_SPRINTF_LEN];
1245 blkptr_t bp;
1246
1247 int err = dmu_read(os, object,
1248 i * sizeof (bp), sizeof (bp), &bp, 0);
1249 if (err != 0) {
1250 (void) printf("got error %u from dmu_read\n", err);
1251 break;
1252 }
1253 snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), &bp,
1254 BP_GET_FREE(&bp));
1255 (void) printf("\t%s\n", blkbuf);
1256 }
1257 }
1258
1259 static void
dump_bpobj_subobjs(objset_t * os,uint64_t object,void * data,size_t size)1260 dump_bpobj_subobjs(objset_t *os, uint64_t object, void *data, size_t size)
1261 {
1262 (void) data, (void) size;
1263 dmu_object_info_t doi;
1264 int64_t i;
1265
1266 VERIFY0(dmu_object_info(os, object, &doi));
1267 uint64_t *subobjs = kmem_alloc(doi.doi_max_offset, KM_SLEEP);
1268
1269 int err = dmu_read(os, object, 0, doi.doi_max_offset, subobjs, 0);
1270 if (err != 0) {
1271 (void) printf("got error %u from dmu_read\n", err);
1272 kmem_free(subobjs, doi.doi_max_offset);
1273 return;
1274 }
1275
1276 int64_t last_nonzero = -1;
1277 for (i = 0; i < doi.doi_max_offset / 8; i++) {
1278 if (subobjs[i] != 0)
1279 last_nonzero = i;
1280 }
1281
1282 for (i = 0; i <= last_nonzero; i++) {
1283 (void) printf("\t%llu\n", (u_longlong_t)subobjs[i]);
1284 }
1285 kmem_free(subobjs, doi.doi_max_offset);
1286 }
1287
1288 static void
dump_ddt_zap(objset_t * os,uint64_t object,void * data,size_t size)1289 dump_ddt_zap(objset_t *os, uint64_t object, void *data, size_t size)
1290 {
1291 (void) data, (void) size;
1292 dump_zap_stats(os, object);
1293 /* contents are printed elsewhere, properly decoded */
1294 }
1295
1296 static void
dump_sa_attrs(objset_t * os,uint64_t object,void * data,size_t size)1297 dump_sa_attrs(objset_t *os, uint64_t object, void *data, size_t size)
1298 {
1299 (void) data, (void) size;
1300 zap_cursor_t zc;
1301 zap_attribute_t *attrp = zap_attribute_alloc();
1302
1303 dump_zap_stats(os, object);
1304 (void) printf("\n");
1305
1306 for (zap_cursor_init(&zc, os, object);
1307 zap_cursor_retrieve(&zc, attrp) == 0;
1308 zap_cursor_advance(&zc)) {
1309 (void) printf("\t\t%s = ", attrp->za_name);
1310 if (attrp->za_num_integers == 0) {
1311 (void) printf("\n");
1312 continue;
1313 }
1314 (void) printf(" %llx : [%d:%d:%d]\n",
1315 (u_longlong_t)attrp->za_first_integer,
1316 (int)ATTR_LENGTH(attrp->za_first_integer),
1317 (int)ATTR_BSWAP(attrp->za_first_integer),
1318 (int)ATTR_NUM(attrp->za_first_integer));
1319 }
1320 zap_cursor_fini(&zc);
1321 zap_attribute_free(attrp);
1322 }
1323
1324 static void
dump_sa_layouts(objset_t * os,uint64_t object,void * data,size_t size)1325 dump_sa_layouts(objset_t *os, uint64_t object, void *data, size_t size)
1326 {
1327 (void) data, (void) size;
1328 zap_cursor_t zc;
1329 zap_attribute_t *attrp = zap_attribute_alloc();
1330 uint16_t *layout_attrs;
1331 unsigned i;
1332
1333 dump_zap_stats(os, object);
1334 (void) printf("\n");
1335
1336 for (zap_cursor_init(&zc, os, object);
1337 zap_cursor_retrieve(&zc, attrp) == 0;
1338 zap_cursor_advance(&zc)) {
1339 (void) printf("\t\t%s = [", attrp->za_name);
1340 if (attrp->za_num_integers == 0) {
1341 (void) printf("\n");
1342 continue;
1343 }
1344
1345 VERIFY(attrp->za_integer_length == 2);
1346 layout_attrs = umem_zalloc(attrp->za_num_integers *
1347 attrp->za_integer_length, UMEM_NOFAIL);
1348
1349 VERIFY(zap_lookup(os, object, attrp->za_name,
1350 attrp->za_integer_length,
1351 attrp->za_num_integers, layout_attrs) == 0);
1352
1353 for (i = 0; i != attrp->za_num_integers; i++)
1354 (void) printf(" %d ", (int)layout_attrs[i]);
1355 (void) printf("]\n");
1356 umem_free(layout_attrs,
1357 attrp->za_num_integers * attrp->za_integer_length);
1358 }
1359 zap_cursor_fini(&zc);
1360 zap_attribute_free(attrp);
1361 }
1362
1363 static void
dump_zpldir(objset_t * os,uint64_t object,void * data,size_t size)1364 dump_zpldir(objset_t *os, uint64_t object, void *data, size_t size)
1365 {
1366 (void) data, (void) size;
1367 zap_cursor_t zc;
1368 zap_attribute_t *attrp = zap_attribute_long_alloc();
1369 const char *typenames[] = {
1370 /* 0 */ "not specified",
1371 /* 1 */ "FIFO",
1372 /* 2 */ "Character Device",
1373 /* 3 */ "3 (invalid)",
1374 /* 4 */ "Directory",
1375 /* 5 */ "5 (invalid)",
1376 /* 6 */ "Block Device",
1377 /* 7 */ "7 (invalid)",
1378 /* 8 */ "Regular File",
1379 /* 9 */ "9 (invalid)",
1380 /* 10 */ "Symbolic Link",
1381 /* 11 */ "11 (invalid)",
1382 /* 12 */ "Socket",
1383 /* 13 */ "Door",
1384 /* 14 */ "Event Port",
1385 /* 15 */ "15 (invalid)",
1386 };
1387
1388 dump_zap_stats(os, object);
1389 (void) printf("\n");
1390
1391 for (zap_cursor_init(&zc, os, object);
1392 zap_cursor_retrieve(&zc, attrp) == 0;
1393 zap_cursor_advance(&zc)) {
1394 (void) printf("\t\t%s = %lld (type: %s)\n",
1395 attrp->za_name, ZFS_DIRENT_OBJ(attrp->za_first_integer),
1396 typenames[ZFS_DIRENT_TYPE(attrp->za_first_integer)]);
1397 }
1398 zap_cursor_fini(&zc);
1399 zap_attribute_free(attrp);
1400 }
1401
1402 static int
get_dtl_refcount(vdev_t * vd)1403 get_dtl_refcount(vdev_t *vd)
1404 {
1405 int refcount = 0;
1406
1407 if (vd->vdev_ops->vdev_op_leaf) {
1408 space_map_t *sm = vd->vdev_dtl_sm;
1409
1410 if (sm != NULL &&
1411 sm->sm_dbuf->db_size == sizeof (space_map_phys_t))
1412 return (1);
1413 return (0);
1414 }
1415
1416 for (unsigned c = 0; c < vd->vdev_children; c++)
1417 refcount += get_dtl_refcount(vd->vdev_child[c]);
1418 return (refcount);
1419 }
1420
1421 static int
get_metaslab_refcount(vdev_t * vd)1422 get_metaslab_refcount(vdev_t *vd)
1423 {
1424 int refcount = 0;
1425
1426 if (vd->vdev_top == vd) {
1427 for (uint64_t m = 0; m < vd->vdev_ms_count; m++) {
1428 space_map_t *sm = vd->vdev_ms[m]->ms_sm;
1429
1430 if (sm != NULL &&
1431 sm->sm_dbuf->db_size == sizeof (space_map_phys_t))
1432 refcount++;
1433 }
1434 }
1435 for (unsigned c = 0; c < vd->vdev_children; c++)
1436 refcount += get_metaslab_refcount(vd->vdev_child[c]);
1437
1438 return (refcount);
1439 }
1440
1441 static int
get_obsolete_refcount(vdev_t * vd)1442 get_obsolete_refcount(vdev_t *vd)
1443 {
1444 uint64_t obsolete_sm_object;
1445 int refcount = 0;
1446
1447 VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
1448 if (vd->vdev_top == vd && obsolete_sm_object != 0) {
1449 dmu_object_info_t doi;
1450 VERIFY0(dmu_object_info(vd->vdev_spa->spa_meta_objset,
1451 obsolete_sm_object, &doi));
1452 if (doi.doi_bonus_size == sizeof (space_map_phys_t)) {
1453 refcount++;
1454 }
1455 } else {
1456 ASSERT3P(vd->vdev_obsolete_sm, ==, NULL);
1457 ASSERT3U(obsolete_sm_object, ==, 0);
1458 }
1459 for (unsigned c = 0; c < vd->vdev_children; c++) {
1460 refcount += get_obsolete_refcount(vd->vdev_child[c]);
1461 }
1462
1463 return (refcount);
1464 }
1465
1466 static int
get_prev_obsolete_spacemap_refcount(spa_t * spa)1467 get_prev_obsolete_spacemap_refcount(spa_t *spa)
1468 {
1469 uint64_t prev_obj =
1470 spa->spa_condensing_indirect_phys.scip_prev_obsolete_sm_object;
1471 if (prev_obj != 0) {
1472 dmu_object_info_t doi;
1473 VERIFY0(dmu_object_info(spa->spa_meta_objset, prev_obj, &doi));
1474 if (doi.doi_bonus_size == sizeof (space_map_phys_t)) {
1475 return (1);
1476 }
1477 }
1478 return (0);
1479 }
1480
1481 static int
get_checkpoint_refcount(vdev_t * vd)1482 get_checkpoint_refcount(vdev_t *vd)
1483 {
1484 int refcount = 0;
1485
1486 if (vd->vdev_top == vd && vd->vdev_top_zap != 0 &&
1487 zap_contains(spa_meta_objset(vd->vdev_spa),
1488 vd->vdev_top_zap, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) == 0)
1489 refcount++;
1490
1491 for (uint64_t c = 0; c < vd->vdev_children; c++)
1492 refcount += get_checkpoint_refcount(vd->vdev_child[c]);
1493
1494 return (refcount);
1495 }
1496
1497 static int
get_log_spacemap_refcount(spa_t * spa)1498 get_log_spacemap_refcount(spa_t *spa)
1499 {
1500 return (avl_numnodes(&spa->spa_sm_logs_by_txg));
1501 }
1502
1503 static int
verify_spacemap_refcounts(spa_t * spa)1504 verify_spacemap_refcounts(spa_t *spa)
1505 {
1506 uint64_t expected_refcount = 0;
1507 uint64_t actual_refcount;
1508
1509 (void) feature_get_refcount(spa,
1510 &spa_feature_table[SPA_FEATURE_SPACEMAP_HISTOGRAM],
1511 &expected_refcount);
1512 actual_refcount = get_dtl_refcount(spa->spa_root_vdev);
1513 actual_refcount += get_metaslab_refcount(spa->spa_root_vdev);
1514 actual_refcount += get_obsolete_refcount(spa->spa_root_vdev);
1515 actual_refcount += get_prev_obsolete_spacemap_refcount(spa);
1516 actual_refcount += get_checkpoint_refcount(spa->spa_root_vdev);
1517 actual_refcount += get_log_spacemap_refcount(spa);
1518
1519 if (expected_refcount != actual_refcount) {
1520 (void) printf("space map refcount mismatch: expected %lld != "
1521 "actual %lld\n",
1522 (longlong_t)expected_refcount,
1523 (longlong_t)actual_refcount);
1524 return (2);
1525 }
1526 return (0);
1527 }
1528
1529 static void
dump_spacemap(objset_t * os,space_map_t * sm)1530 dump_spacemap(objset_t *os, space_map_t *sm)
1531 {
1532 const char *ddata[] = { "ALLOC", "FREE", "CONDENSE", "INVALID",
1533 "INVALID", "INVALID", "INVALID", "INVALID" };
1534
1535 if (sm == NULL)
1536 return;
1537
1538 (void) printf("space map object %llu:\n",
1539 (longlong_t)sm->sm_object);
1540 (void) printf(" smp_length = 0x%llx\n",
1541 (longlong_t)sm->sm_phys->smp_length);
1542 (void) printf(" smp_alloc = 0x%llx\n",
1543 (longlong_t)sm->sm_phys->smp_alloc);
1544
1545 if (dump_opt['d'] < 6 && dump_opt['m'] < 4)
1546 return;
1547
1548 /*
1549 * Print out the freelist entries in both encoded and decoded form.
1550 */
1551 uint8_t mapshift = sm->sm_shift;
1552 int64_t alloc = 0;
1553 uint64_t word, entry_id = 0;
1554 for (uint64_t offset = 0; offset < space_map_length(sm);
1555 offset += sizeof (word)) {
1556
1557 VERIFY0(dmu_read(os, space_map_object(sm), offset,
1558 sizeof (word), &word, DMU_READ_PREFETCH));
1559
1560 if (sm_entry_is_debug(word)) {
1561 uint64_t de_txg = SM_DEBUG_TXG_DECODE(word);
1562 uint64_t de_sync_pass = SM_DEBUG_SYNCPASS_DECODE(word);
1563 if (de_txg == 0) {
1564 (void) printf(
1565 "\t [%6llu] PADDING\n",
1566 (u_longlong_t)entry_id);
1567 } else {
1568 (void) printf(
1569 "\t [%6llu] %s: txg %llu pass %llu\n",
1570 (u_longlong_t)entry_id,
1571 ddata[SM_DEBUG_ACTION_DECODE(word)],
1572 (u_longlong_t)de_txg,
1573 (u_longlong_t)de_sync_pass);
1574 }
1575 entry_id++;
1576 continue;
1577 }
1578
1579 uint8_t words;
1580 char entry_type;
1581 uint64_t entry_off, entry_run, entry_vdev = SM_NO_VDEVID;
1582
1583 if (sm_entry_is_single_word(word)) {
1584 entry_type = (SM_TYPE_DECODE(word) == SM_ALLOC) ?
1585 'A' : 'F';
1586 entry_off = (SM_OFFSET_DECODE(word) << mapshift) +
1587 sm->sm_start;
1588 entry_run = SM_RUN_DECODE(word) << mapshift;
1589 words = 1;
1590 } else {
1591 /* it is a two-word entry so we read another word */
1592 ASSERT(sm_entry_is_double_word(word));
1593
1594 uint64_t extra_word;
1595 offset += sizeof (extra_word);
1596 VERIFY0(dmu_read(os, space_map_object(sm), offset,
1597 sizeof (extra_word), &extra_word,
1598 DMU_READ_PREFETCH));
1599
1600 ASSERT3U(offset, <=, space_map_length(sm));
1601
1602 entry_run = SM2_RUN_DECODE(word) << mapshift;
1603 entry_vdev = SM2_VDEV_DECODE(word);
1604 entry_type = (SM2_TYPE_DECODE(extra_word) == SM_ALLOC) ?
1605 'A' : 'F';
1606 entry_off = (SM2_OFFSET_DECODE(extra_word) <<
1607 mapshift) + sm->sm_start;
1608 words = 2;
1609 }
1610
1611 (void) printf("\t [%6llu] %c range:"
1612 " %010llx-%010llx size: %06llx vdev: %06llu words: %u\n",
1613 (u_longlong_t)entry_id,
1614 entry_type, (u_longlong_t)entry_off,
1615 (u_longlong_t)(entry_off + entry_run),
1616 (u_longlong_t)entry_run,
1617 (u_longlong_t)entry_vdev, words);
1618
1619 if (entry_type == 'A')
1620 alloc += entry_run;
1621 else
1622 alloc -= entry_run;
1623 entry_id++;
1624 }
1625 if (alloc != space_map_allocated(sm)) {
1626 (void) printf("space_map_object alloc (%lld) INCONSISTENT "
1627 "with space map summary (%lld)\n",
1628 (longlong_t)space_map_allocated(sm), (longlong_t)alloc);
1629 }
1630 }
1631
1632 static void
dump_metaslab_stats(metaslab_t * msp)1633 dump_metaslab_stats(metaslab_t *msp)
1634 {
1635 char maxbuf[32];
1636 zfs_range_tree_t *rt = msp->ms_allocatable;
1637 zfs_btree_t *t = &msp->ms_allocatable_by_size;
1638 int free_pct = zfs_range_tree_space(rt) * 100 / msp->ms_size;
1639
1640 /* max sure nicenum has enough space */
1641 _Static_assert(sizeof (maxbuf) >= NN_NUMBUF_SZ, "maxbuf truncated");
1642
1643 zdb_nicenum(metaslab_largest_allocatable(msp), maxbuf, sizeof (maxbuf));
1644
1645 (void) printf("\t %25s %10lu %7s %6s %4s %4d%%\n",
1646 "segments", zfs_btree_numnodes(t), "maxsize", maxbuf,
1647 "freepct", free_pct);
1648 (void) printf("\tIn-memory histogram:\n");
1649 dump_histogram(rt->rt_histogram, ZFS_RANGE_TREE_HISTOGRAM_SIZE, 0);
1650 }
1651
1652 static void
dump_metaslab(metaslab_t * msp)1653 dump_metaslab(metaslab_t *msp)
1654 {
1655 vdev_t *vd = msp->ms_group->mg_vd;
1656 spa_t *spa = vd->vdev_spa;
1657 space_map_t *sm = msp->ms_sm;
1658 char freebuf[32];
1659
1660 zdb_nicenum(msp->ms_size - space_map_allocated(sm), freebuf,
1661 sizeof (freebuf));
1662
1663 (void) printf(
1664 "\tmetaslab %6llu offset %12llx spacemap %6llu free %5s\n",
1665 (u_longlong_t)msp->ms_id, (u_longlong_t)msp->ms_start,
1666 (u_longlong_t)space_map_object(sm), freebuf);
1667
1668 if (dump_opt['m'] > 2 && !dump_opt['L']) {
1669 mutex_enter(&msp->ms_lock);
1670 VERIFY0(metaslab_load(msp));
1671 zfs_range_tree_stat_verify(msp->ms_allocatable);
1672 dump_metaslab_stats(msp);
1673 metaslab_unload(msp);
1674 mutex_exit(&msp->ms_lock);
1675 }
1676
1677 if (dump_opt['m'] > 1 && sm != NULL &&
1678 spa_feature_is_active(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM)) {
1679 /*
1680 * The space map histogram represents free space in chunks
1681 * of sm_shift (i.e. bucket 0 refers to 2^sm_shift).
1682 */
1683 (void) printf("\tOn-disk histogram:\t\tfragmentation %llu\n",
1684 (u_longlong_t)msp->ms_fragmentation);
1685 dump_histogram(sm->sm_phys->smp_histogram,
1686 SPACE_MAP_HISTOGRAM_SIZE, sm->sm_shift);
1687 }
1688
1689 if (vd->vdev_ops == &vdev_draid_ops)
1690 ASSERT3U(msp->ms_size, <=, 1ULL << vd->vdev_ms_shift);
1691 else
1692 ASSERT3U(msp->ms_size, ==, 1ULL << vd->vdev_ms_shift);
1693
1694 dump_spacemap(spa->spa_meta_objset, msp->ms_sm);
1695
1696 if (spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) {
1697 (void) printf("\tFlush data:\n\tunflushed txg=%llu\n\n",
1698 (u_longlong_t)metaslab_unflushed_txg(msp));
1699 }
1700 }
1701
1702 static void
print_vdev_metaslab_header(vdev_t * vd)1703 print_vdev_metaslab_header(vdev_t *vd)
1704 {
1705 vdev_alloc_bias_t alloc_bias = vd->vdev_alloc_bias;
1706 const char *bias_str = "";
1707 if (alloc_bias == VDEV_BIAS_LOG || vd->vdev_islog) {
1708 bias_str = VDEV_ALLOC_BIAS_LOG;
1709 } else if (alloc_bias == VDEV_BIAS_SPECIAL) {
1710 bias_str = VDEV_ALLOC_BIAS_SPECIAL;
1711 } else if (alloc_bias == VDEV_BIAS_DEDUP) {
1712 bias_str = VDEV_ALLOC_BIAS_DEDUP;
1713 }
1714
1715 uint64_t ms_flush_data_obj = 0;
1716 if (vd->vdev_top_zap != 0) {
1717 int error = zap_lookup(spa_meta_objset(vd->vdev_spa),
1718 vd->vdev_top_zap, VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS,
1719 sizeof (uint64_t), 1, &ms_flush_data_obj);
1720 if (error != ENOENT) {
1721 ASSERT0(error);
1722 }
1723 }
1724
1725 (void) printf("\tvdev %10llu %s",
1726 (u_longlong_t)vd->vdev_id, bias_str);
1727
1728 if (ms_flush_data_obj != 0) {
1729 (void) printf(" ms_unflushed_phys object %llu",
1730 (u_longlong_t)ms_flush_data_obj);
1731 }
1732
1733 (void) printf("\n\t%-10s%5llu %-19s %-15s %-12s\n",
1734 "metaslabs", (u_longlong_t)vd->vdev_ms_count,
1735 "offset", "spacemap", "free");
1736 (void) printf("\t%15s %19s %15s %12s\n",
1737 "---------------", "-------------------",
1738 "---------------", "------------");
1739 }
1740
1741 static void
dump_metaslab_groups(spa_t * spa,boolean_t show_special)1742 dump_metaslab_groups(spa_t *spa, boolean_t show_special)
1743 {
1744 vdev_t *rvd = spa->spa_root_vdev;
1745 metaslab_class_t *mc = spa_normal_class(spa);
1746 metaslab_class_t *smc = spa_special_class(spa);
1747 uint64_t fragmentation;
1748
1749 metaslab_class_histogram_verify(mc);
1750
1751 for (unsigned c = 0; c < rvd->vdev_children; c++) {
1752 vdev_t *tvd = rvd->vdev_child[c];
1753 metaslab_group_t *mg = tvd->vdev_mg;
1754
1755 if (mg == NULL || (mg->mg_class != mc &&
1756 (!show_special || mg->mg_class != smc)))
1757 continue;
1758
1759 metaslab_group_histogram_verify(mg);
1760 mg->mg_fragmentation = metaslab_group_fragmentation(mg);
1761
1762 (void) printf("\tvdev %10llu\t\tmetaslabs%5llu\t\t"
1763 "fragmentation",
1764 (u_longlong_t)tvd->vdev_id,
1765 (u_longlong_t)tvd->vdev_ms_count);
1766 if (mg->mg_fragmentation == ZFS_FRAG_INVALID) {
1767 (void) printf("%3s\n", "-");
1768 } else {
1769 (void) printf("%3llu%%\n",
1770 (u_longlong_t)mg->mg_fragmentation);
1771 }
1772 dump_histogram(mg->mg_histogram,
1773 ZFS_RANGE_TREE_HISTOGRAM_SIZE, 0);
1774 }
1775
1776 (void) printf("\tpool %s\tfragmentation", spa_name(spa));
1777 fragmentation = metaslab_class_fragmentation(mc);
1778 if (fragmentation == ZFS_FRAG_INVALID)
1779 (void) printf("\t%3s\n", "-");
1780 else
1781 (void) printf("\t%3llu%%\n", (u_longlong_t)fragmentation);
1782 dump_histogram(mc->mc_histogram, ZFS_RANGE_TREE_HISTOGRAM_SIZE, 0);
1783 }
1784
1785 static void
print_vdev_indirect(vdev_t * vd)1786 print_vdev_indirect(vdev_t *vd)
1787 {
1788 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
1789 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
1790 vdev_indirect_births_t *vib = vd->vdev_indirect_births;
1791
1792 if (vim == NULL) {
1793 ASSERT3P(vib, ==, NULL);
1794 return;
1795 }
1796
1797 ASSERT3U(vdev_indirect_mapping_object(vim), ==,
1798 vic->vic_mapping_object);
1799 ASSERT3U(vdev_indirect_births_object(vib), ==,
1800 vic->vic_births_object);
1801
1802 (void) printf("indirect births obj %llu:\n",
1803 (longlong_t)vic->vic_births_object);
1804 (void) printf(" vib_count = %llu\n",
1805 (longlong_t)vdev_indirect_births_count(vib));
1806 for (uint64_t i = 0; i < vdev_indirect_births_count(vib); i++) {
1807 vdev_indirect_birth_entry_phys_t *cur_vibe =
1808 &vib->vib_entries[i];
1809 (void) printf("\toffset %llx -> txg %llu\n",
1810 (longlong_t)cur_vibe->vibe_offset,
1811 (longlong_t)cur_vibe->vibe_phys_birth_txg);
1812 }
1813 (void) printf("\n");
1814
1815 (void) printf("indirect mapping obj %llu:\n",
1816 (longlong_t)vic->vic_mapping_object);
1817 (void) printf(" vim_max_offset = 0x%llx\n",
1818 (longlong_t)vdev_indirect_mapping_max_offset(vim));
1819 (void) printf(" vim_bytes_mapped = 0x%llx\n",
1820 (longlong_t)vdev_indirect_mapping_bytes_mapped(vim));
1821 (void) printf(" vim_count = %llu\n",
1822 (longlong_t)vdev_indirect_mapping_num_entries(vim));
1823
1824 if (dump_opt['d'] <= 5 && dump_opt['m'] <= 3)
1825 return;
1826
1827 uint32_t *counts = vdev_indirect_mapping_load_obsolete_counts(vim);
1828
1829 for (uint64_t i = 0; i < vdev_indirect_mapping_num_entries(vim); i++) {
1830 vdev_indirect_mapping_entry_phys_t *vimep =
1831 &vim->vim_entries[i];
1832 (void) printf("\t<%llx:%llx:%llx> -> "
1833 "<%llx:%llx:%llx> (%x obsolete)\n",
1834 (longlong_t)vd->vdev_id,
1835 (longlong_t)DVA_MAPPING_GET_SRC_OFFSET(vimep),
1836 (longlong_t)DVA_GET_ASIZE(&vimep->vimep_dst),
1837 (longlong_t)DVA_GET_VDEV(&vimep->vimep_dst),
1838 (longlong_t)DVA_GET_OFFSET(&vimep->vimep_dst),
1839 (longlong_t)DVA_GET_ASIZE(&vimep->vimep_dst),
1840 counts[i]);
1841 }
1842 (void) printf("\n");
1843
1844 uint64_t obsolete_sm_object;
1845 VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
1846 if (obsolete_sm_object != 0) {
1847 objset_t *mos = vd->vdev_spa->spa_meta_objset;
1848 (void) printf("obsolete space map object %llu:\n",
1849 (u_longlong_t)obsolete_sm_object);
1850 ASSERT(vd->vdev_obsolete_sm != NULL);
1851 ASSERT3U(space_map_object(vd->vdev_obsolete_sm), ==,
1852 obsolete_sm_object);
1853 dump_spacemap(mos, vd->vdev_obsolete_sm);
1854 (void) printf("\n");
1855 }
1856 }
1857
1858 static void
dump_metaslabs(spa_t * spa)1859 dump_metaslabs(spa_t *spa)
1860 {
1861 vdev_t *vd, *rvd = spa->spa_root_vdev;
1862 uint64_t m, c = 0, children = rvd->vdev_children;
1863
1864 (void) printf("\nMetaslabs:\n");
1865
1866 if (!dump_opt['d'] && zopt_metaslab_args > 0) {
1867 c = zopt_metaslab[0];
1868
1869 if (c >= children)
1870 (void) fatal("bad vdev id: %llu", (u_longlong_t)c);
1871
1872 if (zopt_metaslab_args > 1) {
1873 vd = rvd->vdev_child[c];
1874 print_vdev_metaslab_header(vd);
1875
1876 for (m = 1; m < zopt_metaslab_args; m++) {
1877 if (zopt_metaslab[m] < vd->vdev_ms_count)
1878 dump_metaslab(
1879 vd->vdev_ms[zopt_metaslab[m]]);
1880 else
1881 (void) fprintf(stderr, "bad metaslab "
1882 "number %llu\n",
1883 (u_longlong_t)zopt_metaslab[m]);
1884 }
1885 (void) printf("\n");
1886 return;
1887 }
1888 children = c + 1;
1889 }
1890 for (; c < children; c++) {
1891 vd = rvd->vdev_child[c];
1892 print_vdev_metaslab_header(vd);
1893
1894 print_vdev_indirect(vd);
1895
1896 for (m = 0; m < vd->vdev_ms_count; m++)
1897 dump_metaslab(vd->vdev_ms[m]);
1898 (void) printf("\n");
1899 }
1900 }
1901
1902 static void
dump_log_spacemaps(spa_t * spa)1903 dump_log_spacemaps(spa_t *spa)
1904 {
1905 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))
1906 return;
1907
1908 (void) printf("\nLog Space Maps in Pool:\n");
1909 for (spa_log_sm_t *sls = avl_first(&spa->spa_sm_logs_by_txg);
1910 sls; sls = AVL_NEXT(&spa->spa_sm_logs_by_txg, sls)) {
1911 space_map_t *sm = NULL;
1912 VERIFY0(space_map_open(&sm, spa_meta_objset(spa),
1913 sls->sls_sm_obj, 0, UINT64_MAX, SPA_MINBLOCKSHIFT));
1914
1915 (void) printf("Log Spacemap object %llu txg %llu\n",
1916 (u_longlong_t)sls->sls_sm_obj, (u_longlong_t)sls->sls_txg);
1917 dump_spacemap(spa->spa_meta_objset, sm);
1918 space_map_close(sm);
1919 }
1920 (void) printf("\n");
1921 }
1922
1923 static void
dump_ddt_entry(const ddt_t * ddt,const ddt_lightweight_entry_t * ddlwe,uint64_t index)1924 dump_ddt_entry(const ddt_t *ddt, const ddt_lightweight_entry_t *ddlwe,
1925 uint64_t index)
1926 {
1927 const ddt_key_t *ddk = &ddlwe->ddlwe_key;
1928 char blkbuf[BP_SPRINTF_LEN];
1929 blkptr_t blk;
1930 int p;
1931
1932 for (p = 0; p < DDT_NPHYS(ddt); p++) {
1933 const ddt_univ_phys_t *ddp = &ddlwe->ddlwe_phys;
1934 ddt_phys_variant_t v = DDT_PHYS_VARIANT(ddt, p);
1935
1936 if (ddt_phys_birth(ddp, v) == 0)
1937 continue;
1938 ddt_bp_create(ddt->ddt_checksum, ddk, ddp, v, &blk);
1939 snprintf_blkptr(blkbuf, sizeof (blkbuf), &blk);
1940 (void) printf("index %llx refcnt %llu phys %d %s\n",
1941 (u_longlong_t)index, (u_longlong_t)ddt_phys_refcnt(ddp, v),
1942 p, blkbuf);
1943 }
1944 }
1945
1946 static void
dump_dedup_ratio(const ddt_stat_t * dds)1947 dump_dedup_ratio(const ddt_stat_t *dds)
1948 {
1949 double rL, rP, rD, D, dedup, compress, copies;
1950
1951 if (dds->dds_blocks == 0)
1952 return;
1953
1954 rL = (double)dds->dds_ref_lsize;
1955 rP = (double)dds->dds_ref_psize;
1956 rD = (double)dds->dds_ref_dsize;
1957 D = (double)dds->dds_dsize;
1958
1959 dedup = rD / D;
1960 compress = rL / rP;
1961 copies = rD / rP;
1962
1963 (void) printf("dedup = %.2f, compress = %.2f, copies = %.2f, "
1964 "dedup * compress / copies = %.2f\n\n",
1965 dedup, compress, copies, dedup * compress / copies);
1966 }
1967
1968 static void
dump_ddt_log(ddt_t * ddt)1969 dump_ddt_log(ddt_t *ddt)
1970 {
1971 if (ddt->ddt_version != DDT_VERSION_FDT ||
1972 !(ddt->ddt_flags & DDT_FLAG_LOG))
1973 return;
1974
1975 for (int n = 0; n < 2; n++) {
1976 ddt_log_t *ddl = &ddt->ddt_log[n];
1977
1978 char flagstr[64] = {0};
1979 if (ddl->ddl_flags > 0) {
1980 flagstr[0] = ' ';
1981 int c = 1;
1982 if (ddl->ddl_flags & DDL_FLAG_FLUSHING)
1983 c += strlcpy(&flagstr[c], " FLUSHING",
1984 sizeof (flagstr) - c);
1985 if (ddl->ddl_flags & DDL_FLAG_CHECKPOINT)
1986 c += strlcpy(&flagstr[c], " CHECKPOINT",
1987 sizeof (flagstr) - c);
1988 if (ddl->ddl_flags &
1989 ~(DDL_FLAG_FLUSHING|DDL_FLAG_CHECKPOINT))
1990 c += strlcpy(&flagstr[c], " UNKNOWN",
1991 sizeof (flagstr) - c);
1992 flagstr[1] = '[';
1993 flagstr[c++] = ']';
1994 }
1995
1996 uint64_t count = avl_numnodes(&ddl->ddl_tree);
1997
1998 printf(DMU_POOL_DDT_LOG ": flags=0x%02x%s; obj=%llu; "
1999 "len=%llu; txg=%llu; entries=%llu\n",
2000 zio_checksum_table[ddt->ddt_checksum].ci_name, n,
2001 ddl->ddl_flags, flagstr,
2002 (u_longlong_t)ddl->ddl_object,
2003 (u_longlong_t)ddl->ddl_length,
2004 (u_longlong_t)ddl->ddl_first_txg, (u_longlong_t)count);
2005
2006 if (ddl->ddl_flags & DDL_FLAG_CHECKPOINT) {
2007 const ddt_key_t *ddk = &ddl->ddl_checkpoint;
2008 printf(" checkpoint: "
2009 "%016llx:%016llx:%016llx:%016llx:%016llx\n",
2010 (u_longlong_t)ddk->ddk_cksum.zc_word[0],
2011 (u_longlong_t)ddk->ddk_cksum.zc_word[1],
2012 (u_longlong_t)ddk->ddk_cksum.zc_word[2],
2013 (u_longlong_t)ddk->ddk_cksum.zc_word[3],
2014 (u_longlong_t)ddk->ddk_prop);
2015 }
2016
2017 if (count == 0 || dump_opt['D'] < 4)
2018 continue;
2019
2020 ddt_lightweight_entry_t ddlwe;
2021 uint64_t index = 0;
2022 for (ddt_log_entry_t *ddle = avl_first(&ddl->ddl_tree);
2023 ddle; ddle = AVL_NEXT(&ddl->ddl_tree, ddle)) {
2024 DDT_LOG_ENTRY_TO_LIGHTWEIGHT(ddt, ddle, &ddlwe);
2025 dump_ddt_entry(ddt, &ddlwe, index++);
2026 }
2027 }
2028 }
2029
2030 static void
dump_ddt_object(ddt_t * ddt,ddt_type_t type,ddt_class_t class)2031 dump_ddt_object(ddt_t *ddt, ddt_type_t type, ddt_class_t class)
2032 {
2033 char name[DDT_NAMELEN];
2034 ddt_lightweight_entry_t ddlwe;
2035 uint64_t walk = 0;
2036 dmu_object_info_t doi;
2037 uint64_t count, dspace, mspace;
2038 int error;
2039
2040 error = ddt_object_info(ddt, type, class, &doi);
2041
2042 if (error == ENOENT)
2043 return;
2044 ASSERT(error == 0);
2045
2046 error = ddt_object_count(ddt, type, class, &count);
2047 ASSERT(error == 0);
2048 if (count == 0)
2049 return;
2050
2051 dspace = doi.doi_physical_blocks_512 << 9;
2052 mspace = doi.doi_fill_count * doi.doi_data_block_size;
2053
2054 ddt_object_name(ddt, type, class, name);
2055
2056 (void) printf("%s: dspace=%llu; mspace=%llu; entries=%llu\n", name,
2057 (u_longlong_t)dspace, (u_longlong_t)mspace, (u_longlong_t)count);
2058
2059 if (dump_opt['D'] < 3)
2060 return;
2061
2062 (void) printf("%s: object=%llu\n", name,
2063 (u_longlong_t)ddt->ddt_object[type][class]);
2064 zpool_dump_ddt(NULL, &ddt->ddt_histogram[type][class]);
2065
2066 if (dump_opt['D'] < 4)
2067 return;
2068
2069 if (dump_opt['D'] < 5 && class == DDT_CLASS_UNIQUE)
2070 return;
2071
2072 (void) printf("%s contents:\n\n", name);
2073
2074 while ((error = ddt_object_walk(ddt, type, class, &walk, &ddlwe)) == 0)
2075 dump_ddt_entry(ddt, &ddlwe, walk);
2076
2077 ASSERT3U(error, ==, ENOENT);
2078
2079 (void) printf("\n");
2080 }
2081
2082 static void
dump_ddt(ddt_t * ddt)2083 dump_ddt(ddt_t *ddt)
2084 {
2085 if (!ddt || ddt->ddt_version == DDT_VERSION_UNCONFIGURED)
2086 return;
2087
2088 char flagstr[64] = {0};
2089 if (ddt->ddt_flags > 0) {
2090 flagstr[0] = ' ';
2091 int c = 1;
2092 if (ddt->ddt_flags & DDT_FLAG_FLAT)
2093 c += strlcpy(&flagstr[c], " FLAT",
2094 sizeof (flagstr) - c);
2095 if (ddt->ddt_flags & DDT_FLAG_LOG)
2096 c += strlcpy(&flagstr[c], " LOG",
2097 sizeof (flagstr) - c);
2098 if (ddt->ddt_flags & ~DDT_FLAG_MASK)
2099 c += strlcpy(&flagstr[c], " UNKNOWN",
2100 sizeof (flagstr) - c);
2101 flagstr[1] = '[';
2102 flagstr[c] = ']';
2103 }
2104
2105 printf("DDT-%s: version=%llu [%s]; flags=0x%02llx%s; rootobj=%llu\n",
2106 zio_checksum_table[ddt->ddt_checksum].ci_name,
2107 (u_longlong_t)ddt->ddt_version,
2108 (ddt->ddt_version == 0) ? "LEGACY" :
2109 (ddt->ddt_version == 1) ? "FDT" : "UNKNOWN",
2110 (u_longlong_t)ddt->ddt_flags, flagstr,
2111 (u_longlong_t)ddt->ddt_dir_object);
2112
2113 for (ddt_type_t type = 0; type < DDT_TYPES; type++)
2114 for (ddt_class_t class = 0; class < DDT_CLASSES; class++)
2115 dump_ddt_object(ddt, type, class);
2116
2117 dump_ddt_log(ddt);
2118 }
2119
2120 static void
dump_all_ddts(spa_t * spa)2121 dump_all_ddts(spa_t *spa)
2122 {
2123 ddt_histogram_t ddh_total = {{{0}}};
2124 ddt_stat_t dds_total = {0};
2125
2126 for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++)
2127 dump_ddt(spa->spa_ddt[c]);
2128
2129 ddt_get_dedup_stats(spa, &dds_total);
2130
2131 if (dds_total.dds_blocks == 0) {
2132 (void) printf("All DDTs are empty\n");
2133 return;
2134 }
2135
2136 (void) printf("\n");
2137
2138 if (dump_opt['D'] > 1) {
2139 (void) printf("DDT histogram (aggregated over all DDTs):\n");
2140 ddt_get_dedup_histogram(spa, &ddh_total);
2141 zpool_dump_ddt(&dds_total, &ddh_total);
2142 }
2143
2144 dump_dedup_ratio(&dds_total);
2145
2146 /*
2147 * Dump a histogram of unique class entry age
2148 */
2149 if (dump_opt['D'] == 3 && getenv("ZDB_DDT_UNIQUE_AGE_HIST") != NULL) {
2150 ddt_age_histo_t histogram;
2151
2152 (void) printf("DDT walk unique, building age histogram...\n");
2153 ddt_prune_walk(spa, 0, &histogram);
2154
2155 /*
2156 * print out histogram for unique entry class birth
2157 */
2158 if (histogram.dah_entries > 0) {
2159 (void) printf("%5s %9s %4s\n",
2160 "age", "blocks", "amnt");
2161 (void) printf("%5s %9s %4s\n",
2162 "-----", "---------", "----");
2163 for (int i = 0; i < HIST_BINS; i++) {
2164 (void) printf("%5d %9d %4d%%\n", 1 << i,
2165 (int)histogram.dah_age_histo[i],
2166 (int)((histogram.dah_age_histo[i] * 100) /
2167 histogram.dah_entries));
2168 }
2169 }
2170 }
2171 }
2172
2173 static void
dump_brt(spa_t * spa)2174 dump_brt(spa_t *spa)
2175 {
2176 if (!spa_feature_is_enabled(spa, SPA_FEATURE_BLOCK_CLONING)) {
2177 printf("BRT: unsupported on this pool\n");
2178 return;
2179 }
2180
2181 if (!spa_feature_is_active(spa, SPA_FEATURE_BLOCK_CLONING)) {
2182 printf("BRT: empty\n");
2183 return;
2184 }
2185
2186 char count[32], used[32], saved[32];
2187 zdb_nicebytes(brt_get_used(spa), used, sizeof (used));
2188 zdb_nicebytes(brt_get_saved(spa), saved, sizeof (saved));
2189 uint64_t ratio = brt_get_ratio(spa);
2190 printf("BRT: used %s; saved %s; ratio %llu.%02llux\n", used, saved,
2191 (u_longlong_t)(ratio / 100), (u_longlong_t)(ratio % 100));
2192
2193 if (dump_opt['T'] < 2)
2194 return;
2195
2196 for (uint64_t vdevid = 0; vdevid < spa->spa_brt_nvdevs; vdevid++) {
2197 brt_vdev_t *brtvd = spa->spa_brt_vdevs[vdevid];
2198 if (!brtvd->bv_initiated) {
2199 printf("BRT: vdev %" PRIu64 ": empty\n", vdevid);
2200 continue;
2201 }
2202
2203 zdb_nicenum(brtvd->bv_totalcount, count, sizeof (count));
2204 zdb_nicebytes(brtvd->bv_usedspace, used, sizeof (used));
2205 zdb_nicebytes(brtvd->bv_savedspace, saved, sizeof (saved));
2206 printf("BRT: vdev %" PRIu64 ": refcnt %s; used %s; saved %s\n",
2207 vdevid, count, used, saved);
2208 }
2209
2210 if (dump_opt['T'] < 3)
2211 return;
2212
2213 /* -TTT shows a per-vdev histograms; -TTTT shows all entries */
2214 boolean_t do_histo = dump_opt['T'] == 3;
2215
2216 char dva[64];
2217
2218 if (!do_histo)
2219 printf("\n%-16s %-10s\n", "DVA", "REFCNT");
2220
2221 for (uint64_t vdevid = 0; vdevid < spa->spa_brt_nvdevs; vdevid++) {
2222 brt_vdev_t *brtvd = spa->spa_brt_vdevs[vdevid];
2223 if (!brtvd->bv_initiated)
2224 continue;
2225
2226 uint64_t counts[64] = {};
2227
2228 zap_cursor_t zc;
2229 zap_attribute_t *za = zap_attribute_alloc();
2230 for (zap_cursor_init(&zc, spa->spa_meta_objset,
2231 brtvd->bv_mos_entries);
2232 zap_cursor_retrieve(&zc, za) == 0;
2233 zap_cursor_advance(&zc)) {
2234 uint64_t refcnt;
2235 VERIFY0(zap_lookup_uint64(spa->spa_meta_objset,
2236 brtvd->bv_mos_entries,
2237 (const uint64_t *)za->za_name, 1,
2238 za->za_integer_length, za->za_num_integers,
2239 &refcnt));
2240
2241 if (do_histo)
2242 counts[highbit64(refcnt)]++;
2243 else {
2244 uint64_t offset =
2245 *(const uint64_t *)za->za_name;
2246
2247 snprintf(dva, sizeof (dva), "%" PRIu64 ":%llx",
2248 vdevid, (u_longlong_t)offset);
2249 printf("%-16s %-10llu\n", dva,
2250 (u_longlong_t)refcnt);
2251 }
2252 }
2253 zap_cursor_fini(&zc);
2254 zap_attribute_free(za);
2255
2256 if (do_histo) {
2257 printf("\nBRT: vdev %" PRIu64
2258 ": DVAs with 2^n refcnts:\n", vdevid);
2259 dump_histogram(counts, 64, 0);
2260 }
2261 }
2262 }
2263
2264 static void
dump_dtl_seg(void * arg,uint64_t start,uint64_t size)2265 dump_dtl_seg(void *arg, uint64_t start, uint64_t size)
2266 {
2267 char *prefix = arg;
2268
2269 (void) printf("%s [%llu,%llu) length %llu\n",
2270 prefix,
2271 (u_longlong_t)start,
2272 (u_longlong_t)(start + size),
2273 (u_longlong_t)(size));
2274 }
2275
2276 static void
dump_dtl(vdev_t * vd,int indent)2277 dump_dtl(vdev_t *vd, int indent)
2278 {
2279 spa_t *spa = vd->vdev_spa;
2280 boolean_t required;
2281 const char *name[DTL_TYPES] = { "missing", "partial", "scrub",
2282 "outage" };
2283 char prefix[256];
2284
2285 spa_vdev_state_enter(spa, SCL_NONE);
2286 required = vdev_dtl_required(vd);
2287 (void) spa_vdev_state_exit(spa, NULL, 0);
2288
2289 if (indent == 0)
2290 (void) printf("\nDirty time logs:\n\n");
2291
2292 (void) printf("\t%*s%s [%s]\n", indent, "",
2293 vd->vdev_path ? vd->vdev_path :
2294 vd->vdev_parent ? vd->vdev_ops->vdev_op_type : spa_name(spa),
2295 required ? "DTL-required" : "DTL-expendable");
2296
2297 for (int t = 0; t < DTL_TYPES; t++) {
2298 zfs_range_tree_t *rt = vd->vdev_dtl[t];
2299 if (zfs_range_tree_space(rt) == 0)
2300 continue;
2301 (void) snprintf(prefix, sizeof (prefix), "\t%*s%s",
2302 indent + 2, "", name[t]);
2303 zfs_range_tree_walk(rt, dump_dtl_seg, prefix);
2304 if (dump_opt['d'] > 5 && vd->vdev_children == 0)
2305 dump_spacemap(spa->spa_meta_objset,
2306 vd->vdev_dtl_sm);
2307 }
2308
2309 for (unsigned c = 0; c < vd->vdev_children; c++)
2310 dump_dtl(vd->vdev_child[c], indent + 4);
2311 }
2312
2313 static void
dump_history(spa_t * spa)2314 dump_history(spa_t *spa)
2315 {
2316 nvlist_t **events = NULL;
2317 char *buf;
2318 uint64_t resid, len, off = 0;
2319 uint_t num = 0;
2320 int error;
2321 char tbuf[30];
2322
2323 if ((buf = malloc(SPA_OLD_MAXBLOCKSIZE)) == NULL) {
2324 (void) fprintf(stderr, "%s: unable to allocate I/O buffer\n",
2325 __func__);
2326 return;
2327 }
2328
2329 do {
2330 len = SPA_OLD_MAXBLOCKSIZE;
2331
2332 if ((error = spa_history_get(spa, &off, &len, buf)) != 0) {
2333 (void) fprintf(stderr, "Unable to read history: "
2334 "error %d\n", error);
2335 free(buf);
2336 return;
2337 }
2338
2339 if (zpool_history_unpack(buf, len, &resid, &events, &num) != 0)
2340 break;
2341
2342 off -= resid;
2343 } while (len != 0);
2344
2345 (void) printf("\nHistory:\n");
2346 for (unsigned i = 0; i < num; i++) {
2347 boolean_t printed = B_FALSE;
2348
2349 if (nvlist_exists(events[i], ZPOOL_HIST_TIME)) {
2350 time_t tsec;
2351 struct tm t;
2352
2353 tsec = fnvlist_lookup_uint64(events[i],
2354 ZPOOL_HIST_TIME);
2355 (void) localtime_r(&tsec, &t);
2356 (void) strftime(tbuf, sizeof (tbuf), "%F.%T", &t);
2357 } else {
2358 tbuf[0] = '\0';
2359 }
2360
2361 if (nvlist_exists(events[i], ZPOOL_HIST_CMD)) {
2362 (void) printf("%s %s\n", tbuf,
2363 fnvlist_lookup_string(events[i], ZPOOL_HIST_CMD));
2364 } else if (nvlist_exists(events[i], ZPOOL_HIST_INT_EVENT)) {
2365 uint64_t ievent;
2366
2367 ievent = fnvlist_lookup_uint64(events[i],
2368 ZPOOL_HIST_INT_EVENT);
2369 if (ievent >= ZFS_NUM_LEGACY_HISTORY_EVENTS)
2370 goto next;
2371
2372 (void) printf(" %s [internal %s txg:%ju] %s\n",
2373 tbuf,
2374 zfs_history_event_names[ievent],
2375 fnvlist_lookup_uint64(events[i],
2376 ZPOOL_HIST_TXG),
2377 fnvlist_lookup_string(events[i],
2378 ZPOOL_HIST_INT_STR));
2379 } else if (nvlist_exists(events[i], ZPOOL_HIST_INT_NAME)) {
2380 (void) printf("%s [txg:%ju] %s", tbuf,
2381 fnvlist_lookup_uint64(events[i],
2382 ZPOOL_HIST_TXG),
2383 fnvlist_lookup_string(events[i],
2384 ZPOOL_HIST_INT_NAME));
2385
2386 if (nvlist_exists(events[i], ZPOOL_HIST_DSNAME)) {
2387 (void) printf(" %s (%llu)",
2388 fnvlist_lookup_string(events[i],
2389 ZPOOL_HIST_DSNAME),
2390 (u_longlong_t)fnvlist_lookup_uint64(
2391 events[i],
2392 ZPOOL_HIST_DSID));
2393 }
2394
2395 (void) printf(" %s\n", fnvlist_lookup_string(events[i],
2396 ZPOOL_HIST_INT_STR));
2397 } else if (nvlist_exists(events[i], ZPOOL_HIST_IOCTL)) {
2398 (void) printf("%s ioctl %s\n", tbuf,
2399 fnvlist_lookup_string(events[i],
2400 ZPOOL_HIST_IOCTL));
2401
2402 if (nvlist_exists(events[i], ZPOOL_HIST_INPUT_NVL)) {
2403 (void) printf(" input:\n");
2404 dump_nvlist(fnvlist_lookup_nvlist(events[i],
2405 ZPOOL_HIST_INPUT_NVL), 8);
2406 }
2407 if (nvlist_exists(events[i], ZPOOL_HIST_OUTPUT_NVL)) {
2408 (void) printf(" output:\n");
2409 dump_nvlist(fnvlist_lookup_nvlist(events[i],
2410 ZPOOL_HIST_OUTPUT_NVL), 8);
2411 }
2412 if (nvlist_exists(events[i], ZPOOL_HIST_ERRNO)) {
2413 (void) printf(" errno: %lld\n",
2414 (longlong_t)fnvlist_lookup_int64(events[i],
2415 ZPOOL_HIST_ERRNO));
2416 }
2417 } else {
2418 goto next;
2419 }
2420
2421 printed = B_TRUE;
2422 next:
2423 if (dump_opt['h'] > 1) {
2424 if (!printed)
2425 (void) printf("unrecognized record:\n");
2426 dump_nvlist(events[i], 2);
2427 }
2428 }
2429 free(buf);
2430 }
2431
2432 static void
dump_dnode(objset_t * os,uint64_t object,void * data,size_t size)2433 dump_dnode(objset_t *os, uint64_t object, void *data, size_t size)
2434 {
2435 (void) os, (void) object, (void) data, (void) size;
2436 }
2437
2438 static uint64_t
blkid2offset(const dnode_phys_t * dnp,const blkptr_t * bp,const zbookmark_phys_t * zb)2439 blkid2offset(const dnode_phys_t *dnp, const blkptr_t *bp,
2440 const zbookmark_phys_t *zb)
2441 {
2442 if (dnp == NULL) {
2443 ASSERT(zb->zb_level < 0);
2444 if (zb->zb_object == 0)
2445 return (zb->zb_blkid);
2446 return (zb->zb_blkid * BP_GET_LSIZE(bp));
2447 }
2448
2449 ASSERT(zb->zb_level >= 0);
2450
2451 return ((zb->zb_blkid <<
2452 (zb->zb_level * (dnp->dn_indblkshift - SPA_BLKPTRSHIFT))) *
2453 dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT);
2454 }
2455
2456 static void
snprintf_zstd_header(spa_t * spa,char * blkbuf,size_t buflen,const blkptr_t * bp)2457 snprintf_zstd_header(spa_t *spa, char *blkbuf, size_t buflen,
2458 const blkptr_t *bp)
2459 {
2460 static abd_t *pabd = NULL;
2461 void *buf;
2462 zio_t *zio;
2463 zfs_zstdhdr_t zstd_hdr;
2464 int error;
2465
2466 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_ZSTD)
2467 return;
2468
2469 if (BP_IS_HOLE(bp))
2470 return;
2471
2472 if (BP_IS_EMBEDDED(bp)) {
2473 buf = malloc(SPA_MAXBLOCKSIZE);
2474 if (buf == NULL) {
2475 (void) fprintf(stderr, "out of memory\n");
2476 zdb_exit(1);
2477 }
2478 decode_embedded_bp_compressed(bp, buf);
2479 memcpy(&zstd_hdr, buf, sizeof (zstd_hdr));
2480 free(buf);
2481 zstd_hdr.c_len = BE_32(zstd_hdr.c_len);
2482 zstd_hdr.raw_version_level = BE_32(zstd_hdr.raw_version_level);
2483 (void) snprintf(blkbuf + strlen(blkbuf),
2484 buflen - strlen(blkbuf),
2485 " ZSTD:size=%u:version=%u:level=%u:EMBEDDED",
2486 zstd_hdr.c_len, zfs_get_hdrversion(&zstd_hdr),
2487 zfs_get_hdrlevel(&zstd_hdr));
2488 return;
2489 }
2490
2491 if (!pabd)
2492 pabd = abd_alloc_for_io(SPA_MAXBLOCKSIZE, B_FALSE);
2493 zio = zio_root(spa, NULL, NULL, 0);
2494
2495 /* Decrypt but don't decompress so we can read the compression header */
2496 zio_nowait(zio_read(zio, spa, bp, pabd, BP_GET_PSIZE(bp), NULL, NULL,
2497 ZIO_PRIORITY_SYNC_READ, ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW_COMPRESS,
2498 NULL));
2499 error = zio_wait(zio);
2500 if (error) {
2501 (void) fprintf(stderr, "read failed: %d\n", error);
2502 return;
2503 }
2504 buf = abd_borrow_buf_copy(pabd, BP_GET_LSIZE(bp));
2505 memcpy(&zstd_hdr, buf, sizeof (zstd_hdr));
2506 zstd_hdr.c_len = BE_32(zstd_hdr.c_len);
2507 zstd_hdr.raw_version_level = BE_32(zstd_hdr.raw_version_level);
2508
2509 (void) snprintf(blkbuf + strlen(blkbuf),
2510 buflen - strlen(blkbuf),
2511 " ZSTD:size=%u:version=%u:level=%u:NORMAL",
2512 zstd_hdr.c_len, zfs_get_hdrversion(&zstd_hdr),
2513 zfs_get_hdrlevel(&zstd_hdr));
2514
2515 abd_return_buf_copy(pabd, buf, BP_GET_LSIZE(bp));
2516 }
2517
2518 static void
snprintf_blkptr_compact(char * blkbuf,size_t buflen,const blkptr_t * bp,boolean_t bp_freed)2519 snprintf_blkptr_compact(char *blkbuf, size_t buflen, const blkptr_t *bp,
2520 boolean_t bp_freed)
2521 {
2522 const dva_t *dva = bp->blk_dva;
2523 int ndvas = dump_opt['d'] > 5 ? BP_GET_NDVAS(bp) : 1;
2524 int i;
2525
2526 if (dump_opt['b'] >= 6) {
2527 snprintf_blkptr(blkbuf, buflen, bp);
2528 if (bp_freed) {
2529 (void) snprintf(blkbuf + strlen(blkbuf),
2530 buflen - strlen(blkbuf), " %s", "FREE");
2531 }
2532 return;
2533 }
2534
2535 if (BP_IS_EMBEDDED(bp)) {
2536 (void) sprintf(blkbuf,
2537 "EMBEDDED et=%u %llxL/%llxP B=%llu",
2538 (int)BPE_GET_ETYPE(bp),
2539 (u_longlong_t)BPE_GET_LSIZE(bp),
2540 (u_longlong_t)BPE_GET_PSIZE(bp),
2541 (u_longlong_t)BP_GET_LOGICAL_BIRTH(bp));
2542 return;
2543 }
2544
2545 blkbuf[0] = '\0';
2546
2547 for (i = 0; i < ndvas; i++)
2548 (void) snprintf(blkbuf + strlen(blkbuf),
2549 buflen - strlen(blkbuf), "%llu:%llx:%llx ",
2550 (u_longlong_t)DVA_GET_VDEV(&dva[i]),
2551 (u_longlong_t)DVA_GET_OFFSET(&dva[i]),
2552 (u_longlong_t)DVA_GET_ASIZE(&dva[i]));
2553
2554 if (BP_IS_HOLE(bp)) {
2555 (void) snprintf(blkbuf + strlen(blkbuf),
2556 buflen - strlen(blkbuf),
2557 "%llxL B=%llu",
2558 (u_longlong_t)BP_GET_LSIZE(bp),
2559 (u_longlong_t)BP_GET_LOGICAL_BIRTH(bp));
2560 } else {
2561 (void) snprintf(blkbuf + strlen(blkbuf),
2562 buflen - strlen(blkbuf),
2563 "%llxL/%llxP F=%llu B=%llu/%llu",
2564 (u_longlong_t)BP_GET_LSIZE(bp),
2565 (u_longlong_t)BP_GET_PSIZE(bp),
2566 (u_longlong_t)BP_GET_FILL(bp),
2567 (u_longlong_t)BP_GET_LOGICAL_BIRTH(bp),
2568 (u_longlong_t)BP_GET_BIRTH(bp));
2569 if (bp_freed)
2570 (void) snprintf(blkbuf + strlen(blkbuf),
2571 buflen - strlen(blkbuf), " %s", "FREE");
2572 (void) snprintf(blkbuf + strlen(blkbuf),
2573 buflen - strlen(blkbuf),
2574 " cksum=%016llx:%016llx:%016llx:%016llx",
2575 (u_longlong_t)bp->blk_cksum.zc_word[0],
2576 (u_longlong_t)bp->blk_cksum.zc_word[1],
2577 (u_longlong_t)bp->blk_cksum.zc_word[2],
2578 (u_longlong_t)bp->blk_cksum.zc_word[3]);
2579 }
2580 }
2581
2582 static void
print_indirect(spa_t * spa,blkptr_t * bp,const zbookmark_phys_t * zb,const dnode_phys_t * dnp)2583 print_indirect(spa_t *spa, blkptr_t *bp, const zbookmark_phys_t *zb,
2584 const dnode_phys_t *dnp)
2585 {
2586 char blkbuf[BP_SPRINTF_LEN];
2587 int l;
2588
2589 if (!BP_IS_EMBEDDED(bp)) {
2590 ASSERT3U(BP_GET_TYPE(bp), ==, dnp->dn_type);
2591 ASSERT3U(BP_GET_LEVEL(bp), ==, zb->zb_level);
2592 }
2593
2594 (void) printf("%16llx ", (u_longlong_t)blkid2offset(dnp, bp, zb));
2595
2596 ASSERT(zb->zb_level >= 0);
2597
2598 for (l = dnp->dn_nlevels - 1; l >= -1; l--) {
2599 if (l == zb->zb_level) {
2600 (void) printf("L%llx", (u_longlong_t)zb->zb_level);
2601 } else {
2602 (void) printf(" ");
2603 }
2604 }
2605
2606 snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), bp, B_FALSE);
2607 if (dump_opt['Z'] && BP_GET_COMPRESS(bp) == ZIO_COMPRESS_ZSTD)
2608 snprintf_zstd_header(spa, blkbuf, sizeof (blkbuf), bp);
2609 (void) printf("%s\n", blkbuf);
2610 }
2611
2612 static int
visit_indirect(spa_t * spa,const dnode_phys_t * dnp,blkptr_t * bp,const zbookmark_phys_t * zb)2613 visit_indirect(spa_t *spa, const dnode_phys_t *dnp,
2614 blkptr_t *bp, const zbookmark_phys_t *zb)
2615 {
2616 int err = 0;
2617
2618 if (BP_GET_LOGICAL_BIRTH(bp) == 0)
2619 return (0);
2620
2621 print_indirect(spa, bp, zb, dnp);
2622
2623 if (BP_GET_LEVEL(bp) > 0 && !BP_IS_HOLE(bp)) {
2624 arc_flags_t flags = ARC_FLAG_WAIT;
2625 int i;
2626 blkptr_t *cbp;
2627 int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT;
2628 arc_buf_t *buf;
2629 uint64_t fill = 0;
2630 ASSERT(!BP_IS_REDACTED(bp));
2631
2632 err = arc_read(NULL, spa, bp, arc_getbuf_func, &buf,
2633 ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL, &flags, zb);
2634 if (err)
2635 return (err);
2636 ASSERT(buf->b_data);
2637
2638 /* recursively visit blocks below this */
2639 cbp = buf->b_data;
2640 for (i = 0; i < epb; i++, cbp++) {
2641 zbookmark_phys_t czb;
2642
2643 SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object,
2644 zb->zb_level - 1,
2645 zb->zb_blkid * epb + i);
2646 err = visit_indirect(spa, dnp, cbp, &czb);
2647 if (err)
2648 break;
2649 fill += BP_GET_FILL(cbp);
2650 }
2651 if (!err)
2652 ASSERT3U(fill, ==, BP_GET_FILL(bp));
2653 arc_buf_destroy(buf, &buf);
2654 }
2655
2656 return (err);
2657 }
2658
2659 static void
dump_indirect(dnode_t * dn)2660 dump_indirect(dnode_t *dn)
2661 {
2662 dnode_phys_t *dnp = dn->dn_phys;
2663 zbookmark_phys_t czb;
2664
2665 (void) printf("Indirect blocks:\n");
2666
2667 SET_BOOKMARK(&czb, dmu_objset_id(dn->dn_objset),
2668 dn->dn_object, dnp->dn_nlevels - 1, 0);
2669 for (int j = 0; j < dnp->dn_nblkptr; j++) {
2670 czb.zb_blkid = j;
2671 (void) visit_indirect(dmu_objset_spa(dn->dn_objset), dnp,
2672 &dnp->dn_blkptr[j], &czb);
2673 }
2674
2675 (void) printf("\n");
2676 }
2677
2678 static void
dump_dsl_dir(objset_t * os,uint64_t object,void * data,size_t size)2679 dump_dsl_dir(objset_t *os, uint64_t object, void *data, size_t size)
2680 {
2681 (void) os, (void) object;
2682 dsl_dir_phys_t *dd = data;
2683 time_t crtime;
2684 char nice[32];
2685
2686 /* make sure nicenum has enough space */
2687 _Static_assert(sizeof (nice) >= NN_NUMBUF_SZ, "nice truncated");
2688
2689 if (dd == NULL)
2690 return;
2691
2692 ASSERT3U(size, >=, sizeof (dsl_dir_phys_t));
2693
2694 crtime = dd->dd_creation_time;
2695 (void) printf("\t\tcreation_time = %s", ctime(&crtime));
2696 (void) printf("\t\thead_dataset_obj = %llu\n",
2697 (u_longlong_t)dd->dd_head_dataset_obj);
2698 (void) printf("\t\tparent_dir_obj = %llu\n",
2699 (u_longlong_t)dd->dd_parent_obj);
2700 (void) printf("\t\torigin_obj = %llu\n",
2701 (u_longlong_t)dd->dd_origin_obj);
2702 (void) printf("\t\tchild_dir_zapobj = %llu\n",
2703 (u_longlong_t)dd->dd_child_dir_zapobj);
2704 zdb_nicenum(dd->dd_used_bytes, nice, sizeof (nice));
2705 (void) printf("\t\tused_bytes = %s\n", nice);
2706 zdb_nicenum(dd->dd_compressed_bytes, nice, sizeof (nice));
2707 (void) printf("\t\tcompressed_bytes = %s\n", nice);
2708 zdb_nicenum(dd->dd_uncompressed_bytes, nice, sizeof (nice));
2709 (void) printf("\t\tuncompressed_bytes = %s\n", nice);
2710 zdb_nicenum(dd->dd_quota, nice, sizeof (nice));
2711 (void) printf("\t\tquota = %s\n", nice);
2712 zdb_nicenum(dd->dd_reserved, nice, sizeof (nice));
2713 (void) printf("\t\treserved = %s\n", nice);
2714 (void) printf("\t\tprops_zapobj = %llu\n",
2715 (u_longlong_t)dd->dd_props_zapobj);
2716 (void) printf("\t\tdeleg_zapobj = %llu\n",
2717 (u_longlong_t)dd->dd_deleg_zapobj);
2718 (void) printf("\t\tflags = %llx\n",
2719 (u_longlong_t)dd->dd_flags);
2720
2721 #define DO(which) \
2722 zdb_nicenum(dd->dd_used_breakdown[DD_USED_ ## which], nice, \
2723 sizeof (nice)); \
2724 (void) printf("\t\tused_breakdown[" #which "] = %s\n", nice)
2725 DO(HEAD);
2726 DO(SNAP);
2727 DO(CHILD);
2728 DO(CHILD_RSRV);
2729 DO(REFRSRV);
2730 #undef DO
2731 (void) printf("\t\tclones = %llu\n",
2732 (u_longlong_t)dd->dd_clones);
2733 }
2734
2735 static void
dump_dsl_dataset(objset_t * os,uint64_t object,void * data,size_t size)2736 dump_dsl_dataset(objset_t *os, uint64_t object, void *data, size_t size)
2737 {
2738 (void) os, (void) object;
2739 dsl_dataset_phys_t *ds = data;
2740 time_t crtime;
2741 char used[32], compressed[32], uncompressed[32], unique[32];
2742 char blkbuf[BP_SPRINTF_LEN];
2743
2744 /* make sure nicenum has enough space */
2745 _Static_assert(sizeof (used) >= NN_NUMBUF_SZ, "used truncated");
2746 _Static_assert(sizeof (compressed) >= NN_NUMBUF_SZ,
2747 "compressed truncated");
2748 _Static_assert(sizeof (uncompressed) >= NN_NUMBUF_SZ,
2749 "uncompressed truncated");
2750 _Static_assert(sizeof (unique) >= NN_NUMBUF_SZ, "unique truncated");
2751
2752 if (ds == NULL)
2753 return;
2754
2755 ASSERT(size == sizeof (*ds));
2756 crtime = ds->ds_creation_time;
2757 zdb_nicenum(ds->ds_referenced_bytes, used, sizeof (used));
2758 zdb_nicenum(ds->ds_compressed_bytes, compressed, sizeof (compressed));
2759 zdb_nicenum(ds->ds_uncompressed_bytes, uncompressed,
2760 sizeof (uncompressed));
2761 zdb_nicenum(ds->ds_unique_bytes, unique, sizeof (unique));
2762 snprintf_blkptr(blkbuf, sizeof (blkbuf), &ds->ds_bp);
2763
2764 (void) printf("\t\tdir_obj = %llu\n",
2765 (u_longlong_t)ds->ds_dir_obj);
2766 (void) printf("\t\tprev_snap_obj = %llu\n",
2767 (u_longlong_t)ds->ds_prev_snap_obj);
2768 (void) printf("\t\tprev_snap_txg = %llu\n",
2769 (u_longlong_t)ds->ds_prev_snap_txg);
2770 (void) printf("\t\tnext_snap_obj = %llu\n",
2771 (u_longlong_t)ds->ds_next_snap_obj);
2772 (void) printf("\t\tsnapnames_zapobj = %llu\n",
2773 (u_longlong_t)ds->ds_snapnames_zapobj);
2774 (void) printf("\t\tnum_children = %llu\n",
2775 (u_longlong_t)ds->ds_num_children);
2776 (void) printf("\t\tuserrefs_obj = %llu\n",
2777 (u_longlong_t)ds->ds_userrefs_obj);
2778 (void) printf("\t\tcreation_time = %s", ctime(&crtime));
2779 (void) printf("\t\tcreation_txg = %llu\n",
2780 (u_longlong_t)ds->ds_creation_txg);
2781 (void) printf("\t\tdeadlist_obj = %llu\n",
2782 (u_longlong_t)ds->ds_deadlist_obj);
2783 (void) printf("\t\tused_bytes = %s\n", used);
2784 (void) printf("\t\tcompressed_bytes = %s\n", compressed);
2785 (void) printf("\t\tuncompressed_bytes = %s\n", uncompressed);
2786 (void) printf("\t\tunique = %s\n", unique);
2787 (void) printf("\t\tfsid_guid = %llu\n",
2788 (u_longlong_t)ds->ds_fsid_guid);
2789 (void) printf("\t\tguid = %llu\n",
2790 (u_longlong_t)ds->ds_guid);
2791 (void) printf("\t\tflags = %llx\n",
2792 (u_longlong_t)ds->ds_flags);
2793 (void) printf("\t\tnext_clones_obj = %llu\n",
2794 (u_longlong_t)ds->ds_next_clones_obj);
2795 (void) printf("\t\tprops_obj = %llu\n",
2796 (u_longlong_t)ds->ds_props_obj);
2797 (void) printf("\t\tbp = %s\n", blkbuf);
2798 }
2799
2800 static int
dump_bptree_cb(void * arg,const blkptr_t * bp,dmu_tx_t * tx)2801 dump_bptree_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
2802 {
2803 (void) arg, (void) tx;
2804 char blkbuf[BP_SPRINTF_LEN];
2805
2806 if (BP_GET_LOGICAL_BIRTH(bp) != 0) {
2807 snprintf_blkptr(blkbuf, sizeof (blkbuf), bp);
2808 (void) printf("\t%s\n", blkbuf);
2809 }
2810 return (0);
2811 }
2812
2813 static void
dump_bptree(objset_t * os,uint64_t obj,const char * name)2814 dump_bptree(objset_t *os, uint64_t obj, const char *name)
2815 {
2816 char bytes[32];
2817 bptree_phys_t *bt;
2818 dmu_buf_t *db;
2819
2820 /* make sure nicenum has enough space */
2821 _Static_assert(sizeof (bytes) >= NN_NUMBUF_SZ, "bytes truncated");
2822
2823 if (dump_opt['d'] < 3)
2824 return;
2825
2826 VERIFY3U(0, ==, dmu_bonus_hold(os, obj, FTAG, &db));
2827 bt = db->db_data;
2828 zdb_nicenum(bt->bt_bytes, bytes, sizeof (bytes));
2829 (void) printf("\n %s: %llu datasets, %s\n",
2830 name, (unsigned long long)(bt->bt_end - bt->bt_begin), bytes);
2831 dmu_buf_rele(db, FTAG);
2832
2833 if (dump_opt['d'] < 5)
2834 return;
2835
2836 (void) printf("\n");
2837
2838 (void) bptree_iterate(os, obj, B_FALSE, dump_bptree_cb, NULL, NULL);
2839 }
2840
2841 static int
dump_bpobj_cb(void * arg,const blkptr_t * bp,boolean_t bp_freed,dmu_tx_t * tx)2842 dump_bpobj_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, dmu_tx_t *tx)
2843 {
2844 (void) arg, (void) tx;
2845 char blkbuf[BP_SPRINTF_LEN];
2846
2847 ASSERT(BP_GET_LOGICAL_BIRTH(bp) != 0);
2848 snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), bp, bp_freed);
2849 (void) printf("\t%s\n", blkbuf);
2850 return (0);
2851 }
2852
2853 static void
dump_full_bpobj(bpobj_t * bpo,const char * name,int indent)2854 dump_full_bpobj(bpobj_t *bpo, const char *name, int indent)
2855 {
2856 char bytes[32];
2857 char comp[32];
2858 char uncomp[32];
2859 uint64_t i;
2860
2861 /* make sure nicenum has enough space */
2862 _Static_assert(sizeof (bytes) >= NN_NUMBUF_SZ, "bytes truncated");
2863 _Static_assert(sizeof (comp) >= NN_NUMBUF_SZ, "comp truncated");
2864 _Static_assert(sizeof (uncomp) >= NN_NUMBUF_SZ, "uncomp truncated");
2865
2866 if (dump_opt['d'] < 3)
2867 return;
2868
2869 zdb_nicenum(bpo->bpo_phys->bpo_bytes, bytes, sizeof (bytes));
2870 if (bpo->bpo_havesubobj && bpo->bpo_phys->bpo_subobjs != 0) {
2871 zdb_nicenum(bpo->bpo_phys->bpo_comp, comp, sizeof (comp));
2872 zdb_nicenum(bpo->bpo_phys->bpo_uncomp, uncomp, sizeof (uncomp));
2873 if (bpo->bpo_havefreed) {
2874 (void) printf(" %*s: object %llu, %llu local "
2875 "blkptrs, %llu freed, %llu subobjs in object %llu, "
2876 "%s (%s/%s comp)\n",
2877 indent * 8, name,
2878 (u_longlong_t)bpo->bpo_object,
2879 (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs,
2880 (u_longlong_t)bpo->bpo_phys->bpo_num_freed,
2881 (u_longlong_t)bpo->bpo_phys->bpo_num_subobjs,
2882 (u_longlong_t)bpo->bpo_phys->bpo_subobjs,
2883 bytes, comp, uncomp);
2884 } else {
2885 (void) printf(" %*s: object %llu, %llu local "
2886 "blkptrs, %llu subobjs in object %llu, "
2887 "%s (%s/%s comp)\n",
2888 indent * 8, name,
2889 (u_longlong_t)bpo->bpo_object,
2890 (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs,
2891 (u_longlong_t)bpo->bpo_phys->bpo_num_subobjs,
2892 (u_longlong_t)bpo->bpo_phys->bpo_subobjs,
2893 bytes, comp, uncomp);
2894 }
2895
2896 for (i = 0; i < bpo->bpo_phys->bpo_num_subobjs; i++) {
2897 uint64_t subobj;
2898 bpobj_t subbpo;
2899 int error;
2900 VERIFY0(dmu_read(bpo->bpo_os,
2901 bpo->bpo_phys->bpo_subobjs,
2902 i * sizeof (subobj), sizeof (subobj), &subobj, 0));
2903 error = bpobj_open(&subbpo, bpo->bpo_os, subobj);
2904 if (error != 0) {
2905 (void) printf("ERROR %u while trying to open "
2906 "subobj id %llu\n",
2907 error, (u_longlong_t)subobj);
2908 continue;
2909 }
2910 dump_full_bpobj(&subbpo, "subobj", indent + 1);
2911 bpobj_close(&subbpo);
2912 }
2913 } else {
2914 if (bpo->bpo_havefreed) {
2915 (void) printf(" %*s: object %llu, %llu blkptrs, "
2916 "%llu freed, %s\n",
2917 indent * 8, name,
2918 (u_longlong_t)bpo->bpo_object,
2919 (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs,
2920 (u_longlong_t)bpo->bpo_phys->bpo_num_freed,
2921 bytes);
2922 } else {
2923 (void) printf(" %*s: object %llu, %llu blkptrs, "
2924 "%s\n",
2925 indent * 8, name,
2926 (u_longlong_t)bpo->bpo_object,
2927 (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs,
2928 bytes);
2929 }
2930 }
2931
2932 if (dump_opt['d'] < 5)
2933 return;
2934
2935
2936 if (indent == 0) {
2937 (void) bpobj_iterate_nofree(bpo, dump_bpobj_cb, NULL, NULL);
2938 (void) printf("\n");
2939 }
2940 }
2941
2942 static int
dump_bookmark(dsl_pool_t * dp,char * name,boolean_t print_redact,boolean_t print_list)2943 dump_bookmark(dsl_pool_t *dp, char *name, boolean_t print_redact,
2944 boolean_t print_list)
2945 {
2946 int err = 0;
2947 zfs_bookmark_phys_t prop;
2948 objset_t *mos = dp->dp_spa->spa_meta_objset;
2949 err = dsl_bookmark_lookup(dp, name, NULL, &prop);
2950
2951 if (err != 0) {
2952 return (err);
2953 }
2954
2955 (void) printf("\t#%s: ", strchr(name, '#') + 1);
2956 (void) printf("{guid: %llx creation_txg: %llu creation_time: "
2957 "%llu redaction_obj: %llu}\n", (u_longlong_t)prop.zbm_guid,
2958 (u_longlong_t)prop.zbm_creation_txg,
2959 (u_longlong_t)prop.zbm_creation_time,
2960 (u_longlong_t)prop.zbm_redaction_obj);
2961
2962 IMPLY(print_list, print_redact);
2963 if (!print_redact || prop.zbm_redaction_obj == 0)
2964 return (0);
2965
2966 redaction_list_t *rl;
2967 VERIFY0(dsl_redaction_list_hold_obj(dp,
2968 prop.zbm_redaction_obj, FTAG, &rl));
2969
2970 redaction_list_phys_t *rlp = rl->rl_phys;
2971 (void) printf("\tRedacted:\n\t\tProgress: ");
2972 if (rlp->rlp_last_object != UINT64_MAX ||
2973 rlp->rlp_last_blkid != UINT64_MAX) {
2974 (void) printf("%llu %llu (incomplete)\n",
2975 (u_longlong_t)rlp->rlp_last_object,
2976 (u_longlong_t)rlp->rlp_last_blkid);
2977 } else {
2978 (void) printf("complete\n");
2979 }
2980 (void) printf("\t\tSnapshots: [");
2981 for (unsigned int i = 0; i < rlp->rlp_num_snaps; i++) {
2982 if (i > 0)
2983 (void) printf(", ");
2984 (void) printf("%0llu",
2985 (u_longlong_t)rlp->rlp_snaps[i]);
2986 }
2987 (void) printf("]\n\t\tLength: %llu\n",
2988 (u_longlong_t)rlp->rlp_num_entries);
2989
2990 if (!print_list) {
2991 dsl_redaction_list_rele(rl, FTAG);
2992 return (0);
2993 }
2994
2995 if (rlp->rlp_num_entries == 0) {
2996 dsl_redaction_list_rele(rl, FTAG);
2997 (void) printf("\t\tRedaction List: []\n\n");
2998 return (0);
2999 }
3000
3001 redact_block_phys_t *rbp_buf;
3002 uint64_t size;
3003 dmu_object_info_t doi;
3004
3005 VERIFY0(dmu_object_info(mos, prop.zbm_redaction_obj, &doi));
3006 size = doi.doi_max_offset;
3007 rbp_buf = kmem_alloc(size, KM_SLEEP);
3008
3009 err = dmu_read(mos, prop.zbm_redaction_obj, 0, size,
3010 rbp_buf, 0);
3011 if (err != 0) {
3012 dsl_redaction_list_rele(rl, FTAG);
3013 kmem_free(rbp_buf, size);
3014 return (err);
3015 }
3016
3017 (void) printf("\t\tRedaction List: [{object: %llx, offset: "
3018 "%llx, blksz: %x, count: %llx}",
3019 (u_longlong_t)rbp_buf[0].rbp_object,
3020 (u_longlong_t)rbp_buf[0].rbp_blkid,
3021 (uint_t)(redact_block_get_size(&rbp_buf[0])),
3022 (u_longlong_t)redact_block_get_count(&rbp_buf[0]));
3023
3024 for (size_t i = 1; i < rlp->rlp_num_entries; i++) {
3025 (void) printf(",\n\t\t{object: %llx, offset: %llx, "
3026 "blksz: %x, count: %llx}",
3027 (u_longlong_t)rbp_buf[i].rbp_object,
3028 (u_longlong_t)rbp_buf[i].rbp_blkid,
3029 (uint_t)(redact_block_get_size(&rbp_buf[i])),
3030 (u_longlong_t)redact_block_get_count(&rbp_buf[i]));
3031 }
3032 dsl_redaction_list_rele(rl, FTAG);
3033 kmem_free(rbp_buf, size);
3034 (void) printf("]\n\n");
3035 return (0);
3036 }
3037
3038 static void
dump_bookmarks(objset_t * os,int verbosity)3039 dump_bookmarks(objset_t *os, int verbosity)
3040 {
3041 zap_cursor_t zc;
3042 zap_attribute_t *attrp;
3043 dsl_dataset_t *ds = dmu_objset_ds(os);
3044 dsl_pool_t *dp = spa_get_dsl(os->os_spa);
3045 objset_t *mos = os->os_spa->spa_meta_objset;
3046 if (verbosity < 4)
3047 return;
3048 attrp = zap_attribute_alloc();
3049 dsl_pool_config_enter(dp, FTAG);
3050
3051 for (zap_cursor_init(&zc, mos, ds->ds_bookmarks_obj);
3052 zap_cursor_retrieve(&zc, attrp) == 0;
3053 zap_cursor_advance(&zc)) {
3054 char osname[ZFS_MAX_DATASET_NAME_LEN];
3055 char buf[ZFS_MAX_DATASET_NAME_LEN];
3056 int len;
3057 dmu_objset_name(os, osname);
3058 len = snprintf(buf, sizeof (buf), "%s#%s", osname,
3059 attrp->za_name);
3060 VERIFY3S(len, <, ZFS_MAX_DATASET_NAME_LEN);
3061 (void) dump_bookmark(dp, buf, verbosity >= 5, verbosity >= 6);
3062 }
3063 zap_cursor_fini(&zc);
3064 dsl_pool_config_exit(dp, FTAG);
3065 zap_attribute_free(attrp);
3066 }
3067
3068 static void
bpobj_count_refd(bpobj_t * bpo)3069 bpobj_count_refd(bpobj_t *bpo)
3070 {
3071 mos_obj_refd(bpo->bpo_object);
3072
3073 if (bpo->bpo_havesubobj && bpo->bpo_phys->bpo_subobjs != 0) {
3074 mos_obj_refd(bpo->bpo_phys->bpo_subobjs);
3075 for (uint64_t i = 0; i < bpo->bpo_phys->bpo_num_subobjs; i++) {
3076 uint64_t subobj;
3077 bpobj_t subbpo;
3078 int error;
3079 VERIFY0(dmu_read(bpo->bpo_os,
3080 bpo->bpo_phys->bpo_subobjs,
3081 i * sizeof (subobj), sizeof (subobj), &subobj, 0));
3082 error = bpobj_open(&subbpo, bpo->bpo_os, subobj);
3083 if (error != 0) {
3084 (void) printf("ERROR %u while trying to open "
3085 "subobj id %llu\n",
3086 error, (u_longlong_t)subobj);
3087 continue;
3088 }
3089 bpobj_count_refd(&subbpo);
3090 bpobj_close(&subbpo);
3091 }
3092 }
3093 }
3094
3095 static int
dsl_deadlist_entry_count_refd(void * arg,dsl_deadlist_entry_t * dle)3096 dsl_deadlist_entry_count_refd(void *arg, dsl_deadlist_entry_t *dle)
3097 {
3098 spa_t *spa = arg;
3099 uint64_t empty_bpobj = spa->spa_dsl_pool->dp_empty_bpobj;
3100 if (dle->dle_bpobj.bpo_object != empty_bpobj)
3101 bpobj_count_refd(&dle->dle_bpobj);
3102 return (0);
3103 }
3104
3105 static int
dsl_deadlist_entry_dump(void * arg,dsl_deadlist_entry_t * dle)3106 dsl_deadlist_entry_dump(void *arg, dsl_deadlist_entry_t *dle)
3107 {
3108 ASSERT(arg == NULL);
3109 if (dump_opt['d'] >= 5) {
3110 char buf[128];
3111 (void) snprintf(buf, sizeof (buf),
3112 "mintxg %llu -> obj %llu",
3113 (longlong_t)dle->dle_mintxg,
3114 (longlong_t)dle->dle_bpobj.bpo_object);
3115
3116 dump_full_bpobj(&dle->dle_bpobj, buf, 0);
3117 } else {
3118 (void) printf("mintxg %llu -> obj %llu\n",
3119 (longlong_t)dle->dle_mintxg,
3120 (longlong_t)dle->dle_bpobj.bpo_object);
3121 }
3122 return (0);
3123 }
3124
3125 static void
dump_blkptr_list(dsl_deadlist_t * dl,const char * name)3126 dump_blkptr_list(dsl_deadlist_t *dl, const char *name)
3127 {
3128 char bytes[32];
3129 char comp[32];
3130 char uncomp[32];
3131 char entries[32];
3132 spa_t *spa = dmu_objset_spa(dl->dl_os);
3133 uint64_t empty_bpobj = spa->spa_dsl_pool->dp_empty_bpobj;
3134
3135 if (dl->dl_oldfmt) {
3136 if (dl->dl_bpobj.bpo_object != empty_bpobj)
3137 bpobj_count_refd(&dl->dl_bpobj);
3138 } else {
3139 mos_obj_refd(dl->dl_object);
3140 dsl_deadlist_iterate(dl, dsl_deadlist_entry_count_refd, spa);
3141 }
3142
3143 /* make sure nicenum has enough space */
3144 _Static_assert(sizeof (bytes) >= NN_NUMBUF_SZ, "bytes truncated");
3145 _Static_assert(sizeof (comp) >= NN_NUMBUF_SZ, "comp truncated");
3146 _Static_assert(sizeof (uncomp) >= NN_NUMBUF_SZ, "uncomp truncated");
3147 _Static_assert(sizeof (entries) >= NN_NUMBUF_SZ, "entries truncated");
3148
3149 if (dump_opt['d'] < 3)
3150 return;
3151
3152 if (dl->dl_oldfmt) {
3153 dump_full_bpobj(&dl->dl_bpobj, "old-format deadlist", 0);
3154 return;
3155 }
3156
3157 zdb_nicenum(dl->dl_phys->dl_used, bytes, sizeof (bytes));
3158 zdb_nicenum(dl->dl_phys->dl_comp, comp, sizeof (comp));
3159 zdb_nicenum(dl->dl_phys->dl_uncomp, uncomp, sizeof (uncomp));
3160 zdb_nicenum(avl_numnodes(&dl->dl_tree), entries, sizeof (entries));
3161 (void) printf("\n %s: %s (%s/%s comp), %s entries\n",
3162 name, bytes, comp, uncomp, entries);
3163
3164 if (dump_opt['d'] < 4)
3165 return;
3166
3167 (void) putchar('\n');
3168
3169 dsl_deadlist_iterate(dl, dsl_deadlist_entry_dump, NULL);
3170 }
3171
3172 static int
verify_dd_livelist(objset_t * os)3173 verify_dd_livelist(objset_t *os)
3174 {
3175 uint64_t ll_used, used, ll_comp, comp, ll_uncomp, uncomp;
3176 dsl_pool_t *dp = spa_get_dsl(os->os_spa);
3177 dsl_dir_t *dd = os->os_dsl_dataset->ds_dir;
3178
3179 ASSERT(!dmu_objset_is_snapshot(os));
3180 if (!dsl_deadlist_is_open(&dd->dd_livelist))
3181 return (0);
3182
3183 /* Iterate through the livelist to check for duplicates */
3184 dsl_deadlist_iterate(&dd->dd_livelist, sublivelist_verify_lightweight,
3185 NULL);
3186
3187 dsl_pool_config_enter(dp, FTAG);
3188 dsl_deadlist_space(&dd->dd_livelist, &ll_used,
3189 &ll_comp, &ll_uncomp);
3190
3191 dsl_dataset_t *origin_ds;
3192 ASSERT(dsl_pool_config_held(dp));
3193 VERIFY0(dsl_dataset_hold_obj(dp,
3194 dsl_dir_phys(dd)->dd_origin_obj, FTAG, &origin_ds));
3195 VERIFY0(dsl_dataset_space_written(origin_ds, os->os_dsl_dataset,
3196 &used, &comp, &uncomp));
3197 dsl_dataset_rele(origin_ds, FTAG);
3198 dsl_pool_config_exit(dp, FTAG);
3199 /*
3200 * It's possible that the dataset's uncomp space is larger than the
3201 * livelist's because livelists do not track embedded block pointers
3202 */
3203 if (used != ll_used || comp != ll_comp || uncomp < ll_uncomp) {
3204 char nice_used[32], nice_comp[32], nice_uncomp[32];
3205 (void) printf("Discrepancy in space accounting:\n");
3206 zdb_nicenum(used, nice_used, sizeof (nice_used));
3207 zdb_nicenum(comp, nice_comp, sizeof (nice_comp));
3208 zdb_nicenum(uncomp, nice_uncomp, sizeof (nice_uncomp));
3209 (void) printf("dir: used %s, comp %s, uncomp %s\n",
3210 nice_used, nice_comp, nice_uncomp);
3211 zdb_nicenum(ll_used, nice_used, sizeof (nice_used));
3212 zdb_nicenum(ll_comp, nice_comp, sizeof (nice_comp));
3213 zdb_nicenum(ll_uncomp, nice_uncomp, sizeof (nice_uncomp));
3214 (void) printf("livelist: used %s, comp %s, uncomp %s\n",
3215 nice_used, nice_comp, nice_uncomp);
3216 return (1);
3217 }
3218 return (0);
3219 }
3220
3221 static char *key_material = NULL;
3222
3223 static boolean_t
zdb_derive_key(dsl_dir_t * dd,uint8_t * key_out)3224 zdb_derive_key(dsl_dir_t *dd, uint8_t *key_out)
3225 {
3226 uint64_t keyformat, salt, iters;
3227 int i;
3228 unsigned char c;
3229
3230 VERIFY0(zap_lookup(dd->dd_pool->dp_meta_objset, dd->dd_crypto_obj,
3231 zfs_prop_to_name(ZFS_PROP_KEYFORMAT), sizeof (uint64_t),
3232 1, &keyformat));
3233
3234 switch (keyformat) {
3235 case ZFS_KEYFORMAT_HEX:
3236 for (i = 0; i < WRAPPING_KEY_LEN * 2; i += 2) {
3237 if (!isxdigit(key_material[i]) ||
3238 !isxdigit(key_material[i+1]))
3239 return (B_FALSE);
3240 if (sscanf(&key_material[i], "%02hhx", &c) != 1)
3241 return (B_FALSE);
3242 key_out[i / 2] = c;
3243 }
3244 break;
3245
3246 case ZFS_KEYFORMAT_PASSPHRASE:
3247 VERIFY0(zap_lookup(dd->dd_pool->dp_meta_objset,
3248 dd->dd_crypto_obj, zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT),
3249 sizeof (uint64_t), 1, &salt));
3250 VERIFY0(zap_lookup(dd->dd_pool->dp_meta_objset,
3251 dd->dd_crypto_obj, zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS),
3252 sizeof (uint64_t), 1, &iters));
3253
3254 if (PKCS5_PBKDF2_HMAC_SHA1(key_material, strlen(key_material),
3255 ((uint8_t *)&salt), sizeof (uint64_t), iters,
3256 WRAPPING_KEY_LEN, key_out) != 1)
3257 return (B_FALSE);
3258
3259 break;
3260
3261 default:
3262 fatal("no support for key format %u\n",
3263 (unsigned int) keyformat);
3264 }
3265
3266 return (B_TRUE);
3267 }
3268
3269 static char encroot[ZFS_MAX_DATASET_NAME_LEN];
3270 static boolean_t key_loaded = B_FALSE;
3271
3272 static void
zdb_load_key(objset_t * os)3273 zdb_load_key(objset_t *os)
3274 {
3275 dsl_pool_t *dp;
3276 dsl_dir_t *dd, *rdd;
3277 uint8_t key[WRAPPING_KEY_LEN];
3278 uint64_t rddobj;
3279 int err;
3280
3281 dp = spa_get_dsl(os->os_spa);
3282 dd = os->os_dsl_dataset->ds_dir;
3283
3284 dsl_pool_config_enter(dp, FTAG);
3285 VERIFY0(zap_lookup(dd->dd_pool->dp_meta_objset, dd->dd_crypto_obj,
3286 DSL_CRYPTO_KEY_ROOT_DDOBJ, sizeof (uint64_t), 1, &rddobj));
3287 VERIFY0(dsl_dir_hold_obj(dd->dd_pool, rddobj, NULL, FTAG, &rdd));
3288 dsl_dir_name(rdd, encroot);
3289 dsl_dir_rele(rdd, FTAG);
3290
3291 if (!zdb_derive_key(dd, key))
3292 fatal("couldn't derive encryption key");
3293
3294 dsl_pool_config_exit(dp, FTAG);
3295
3296 ASSERT3U(dsl_dataset_get_keystatus(dd), ==, ZFS_KEYSTATUS_UNAVAILABLE);
3297
3298 dsl_crypto_params_t *dcp;
3299 nvlist_t *crypto_args;
3300
3301 crypto_args = fnvlist_alloc();
3302 fnvlist_add_uint8_array(crypto_args, "wkeydata",
3303 (uint8_t *)key, WRAPPING_KEY_LEN);
3304 VERIFY0(dsl_crypto_params_create_nvlist(DCP_CMD_NONE,
3305 NULL, crypto_args, &dcp));
3306 err = spa_keystore_load_wkey(encroot, dcp, B_FALSE);
3307
3308 dsl_crypto_params_free(dcp, (err != 0));
3309 fnvlist_free(crypto_args);
3310
3311 if (err != 0)
3312 fatal(
3313 "couldn't load encryption key for %s: %s",
3314 encroot, err == ZFS_ERR_CRYPTO_NOTSUP ?
3315 "crypto params not supported" : strerror(err));
3316
3317 ASSERT3U(dsl_dataset_get_keystatus(dd), ==, ZFS_KEYSTATUS_AVAILABLE);
3318
3319 printf("Unlocked encryption root: %s\n", encroot);
3320 key_loaded = B_TRUE;
3321 }
3322
3323 static void
zdb_unload_key(void)3324 zdb_unload_key(void)
3325 {
3326 if (!key_loaded)
3327 return;
3328
3329 VERIFY0(spa_keystore_unload_wkey(encroot));
3330 key_loaded = B_FALSE;
3331 }
3332
3333 static avl_tree_t idx_tree;
3334 static avl_tree_t domain_tree;
3335 static boolean_t fuid_table_loaded;
3336 static objset_t *sa_os = NULL;
3337 static sa_attr_type_t *sa_attr_table = NULL;
3338
3339 static int
open_objset(const char * path,const void * tag,objset_t ** osp)3340 open_objset(const char *path, const void *tag, objset_t **osp)
3341 {
3342 int err;
3343 uint64_t sa_attrs = 0;
3344 uint64_t version = 0;
3345
3346 VERIFY3P(sa_os, ==, NULL);
3347
3348 /*
3349 * We can't own an objset if it's redacted. Therefore, we do this
3350 * dance: hold the objset, then acquire a long hold on its dataset, then
3351 * release the pool (which is held as part of holding the objset).
3352 */
3353
3354 if (dump_opt['K']) {
3355 /* decryption requested, try to load keys */
3356 err = dmu_objset_hold(path, tag, osp);
3357 if (err != 0) {
3358 (void) fprintf(stderr, "failed to hold dataset "
3359 "'%s': %s\n",
3360 path, strerror(err));
3361 return (err);
3362 }
3363 dsl_dataset_long_hold(dmu_objset_ds(*osp), tag);
3364 dsl_pool_rele(dmu_objset_pool(*osp), tag);
3365
3366 /* succeeds or dies */
3367 zdb_load_key(*osp);
3368
3369 /* release it all */
3370 dsl_dataset_long_rele(dmu_objset_ds(*osp), tag);
3371 dsl_dataset_rele(dmu_objset_ds(*osp), tag);
3372 }
3373
3374 int ds_hold_flags = key_loaded ? DS_HOLD_FLAG_DECRYPT : 0;
3375
3376 err = dmu_objset_hold_flags(path, ds_hold_flags, tag, osp);
3377 if (err != 0) {
3378 (void) fprintf(stderr, "failed to hold dataset '%s': %s\n",
3379 path, strerror(err));
3380 return (err);
3381 }
3382 dsl_dataset_long_hold(dmu_objset_ds(*osp), tag);
3383 dsl_pool_rele(dmu_objset_pool(*osp), tag);
3384
3385 if (dmu_objset_type(*osp) == DMU_OST_ZFS &&
3386 (key_loaded || !(*osp)->os_encrypted)) {
3387 (void) zap_lookup(*osp, MASTER_NODE_OBJ, ZPL_VERSION_STR,
3388 8, 1, &version);
3389 if (version >= ZPL_VERSION_SA) {
3390 (void) zap_lookup(*osp, MASTER_NODE_OBJ, ZFS_SA_ATTRS,
3391 8, 1, &sa_attrs);
3392 }
3393 err = sa_setup(*osp, sa_attrs, zfs_attr_table, ZPL_END,
3394 &sa_attr_table);
3395 if (err != 0) {
3396 (void) fprintf(stderr, "sa_setup failed: %s\n",
3397 strerror(err));
3398 dsl_dataset_long_rele(dmu_objset_ds(*osp), tag);
3399 dsl_dataset_rele_flags(dmu_objset_ds(*osp),
3400 ds_hold_flags, tag);
3401 *osp = NULL;
3402 }
3403 }
3404 sa_os = *osp;
3405
3406 return (err);
3407 }
3408
3409 static void
close_objset(objset_t * os,const void * tag)3410 close_objset(objset_t *os, const void *tag)
3411 {
3412 VERIFY3P(os, ==, sa_os);
3413 if (os->os_sa != NULL)
3414 sa_tear_down(os);
3415 dsl_dataset_long_rele(dmu_objset_ds(os), tag);
3416 dsl_dataset_rele_flags(dmu_objset_ds(os),
3417 key_loaded ? DS_HOLD_FLAG_DECRYPT : 0, tag);
3418 sa_attr_table = NULL;
3419 sa_os = NULL;
3420
3421 zdb_unload_key();
3422 }
3423
3424 static void
fuid_table_destroy(void)3425 fuid_table_destroy(void)
3426 {
3427 if (fuid_table_loaded) {
3428 zfs_fuid_table_destroy(&idx_tree, &domain_tree);
3429 fuid_table_loaded = B_FALSE;
3430 }
3431 }
3432
3433 /*
3434 * Clean up DDT internal state. ddt_lookup() adds entries to ddt_tree, which on
3435 * a live pool are normally cleaned up during ddt_sync(). We can't do that (and
3436 * wouldn't want to anyway), but if we don't clean up the presence of stuff on
3437 * ddt_tree will trip asserts in ddt_table_free(). So, we clean up ourselves.
3438 *
3439 * Note that this is not a particularly efficient way to do this, but
3440 * ddt_remove() is the only public method that can do the work we need, and it
3441 * requires the right locks and etc to do the job. This is only ever called
3442 * during zdb shutdown so efficiency is not especially important.
3443 */
3444 static void
zdb_ddt_cleanup(spa_t * spa)3445 zdb_ddt_cleanup(spa_t *spa)
3446 {
3447 for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) {
3448 ddt_t *ddt = spa->spa_ddt[c];
3449 if (!ddt)
3450 continue;
3451
3452 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3453 ddt_enter(ddt);
3454 ddt_entry_t *dde = avl_first(&ddt->ddt_tree), *next;
3455 while (dde) {
3456 next = AVL_NEXT(&ddt->ddt_tree, dde);
3457 dde->dde_io = NULL;
3458 ddt_remove(ddt, dde);
3459 dde = next;
3460 }
3461 ddt_exit(ddt);
3462 spa_config_exit(spa, SCL_CONFIG, FTAG);
3463 }
3464 }
3465
3466 static void
zdb_exit(int reason)3467 zdb_exit(int reason)
3468 {
3469 if (spa != NULL)
3470 zdb_ddt_cleanup(spa);
3471
3472 if (os != NULL) {
3473 close_objset(os, FTAG);
3474 } else if (spa != NULL) {
3475 spa_close(spa, FTAG);
3476 }
3477
3478 fuid_table_destroy();
3479
3480 if (kernel_init_done)
3481 kernel_fini();
3482
3483 exit(reason);
3484 }
3485
3486 /*
3487 * print uid or gid information.
3488 * For normal POSIX id just the id is printed in decimal format.
3489 * For CIFS files with FUID the fuid is printed in hex followed by
3490 * the domain-rid string.
3491 */
3492 static void
print_idstr(uint64_t id,const char * id_type)3493 print_idstr(uint64_t id, const char *id_type)
3494 {
3495 if (FUID_INDEX(id)) {
3496 const char *domain =
3497 zfs_fuid_idx_domain(&idx_tree, FUID_INDEX(id));
3498 (void) printf("\t%s %llx [%s-%d]\n", id_type,
3499 (u_longlong_t)id, domain, (int)FUID_RID(id));
3500 } else {
3501 (void) printf("\t%s %llu\n", id_type, (u_longlong_t)id);
3502 }
3503
3504 }
3505
3506 static void
dump_uidgid(objset_t * os,uint64_t uid,uint64_t gid)3507 dump_uidgid(objset_t *os, uint64_t uid, uint64_t gid)
3508 {
3509 uint32_t uid_idx, gid_idx;
3510
3511 uid_idx = FUID_INDEX(uid);
3512 gid_idx = FUID_INDEX(gid);
3513
3514 /* Load domain table, if not already loaded */
3515 if (!fuid_table_loaded && (uid_idx || gid_idx)) {
3516 uint64_t fuid_obj;
3517
3518 /* first find the fuid object. It lives in the master node */
3519 VERIFY(zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES,
3520 8, 1, &fuid_obj) == 0);
3521 zfs_fuid_avl_tree_create(&idx_tree, &domain_tree);
3522 (void) zfs_fuid_table_load(os, fuid_obj,
3523 &idx_tree, &domain_tree);
3524 fuid_table_loaded = B_TRUE;
3525 }
3526
3527 print_idstr(uid, "uid");
3528 print_idstr(gid, "gid");
3529 }
3530
3531 static void
dump_znode_sa_xattr(sa_handle_t * hdl)3532 dump_znode_sa_xattr(sa_handle_t *hdl)
3533 {
3534 nvlist_t *sa_xattr;
3535 nvpair_t *elem = NULL;
3536 int sa_xattr_size = 0;
3537 int sa_xattr_entries = 0;
3538 int error;
3539 char *sa_xattr_packed;
3540
3541 error = sa_size(hdl, sa_attr_table[ZPL_DXATTR], &sa_xattr_size);
3542 if (error || sa_xattr_size == 0)
3543 return;
3544
3545 sa_xattr_packed = malloc(sa_xattr_size);
3546 if (sa_xattr_packed == NULL)
3547 return;
3548
3549 error = sa_lookup(hdl, sa_attr_table[ZPL_DXATTR],
3550 sa_xattr_packed, sa_xattr_size);
3551 if (error) {
3552 free(sa_xattr_packed);
3553 return;
3554 }
3555
3556 error = nvlist_unpack(sa_xattr_packed, sa_xattr_size, &sa_xattr, 0);
3557 if (error) {
3558 free(sa_xattr_packed);
3559 return;
3560 }
3561
3562 while ((elem = nvlist_next_nvpair(sa_xattr, elem)) != NULL)
3563 sa_xattr_entries++;
3564
3565 (void) printf("\tSA xattrs: %d bytes, %d entries\n\n",
3566 sa_xattr_size, sa_xattr_entries);
3567 while ((elem = nvlist_next_nvpair(sa_xattr, elem)) != NULL) {
3568 boolean_t can_print = !dump_opt['P'];
3569 uchar_t *value;
3570 uint_t cnt, idx;
3571
3572 (void) printf("\t\t%s = ", nvpair_name(elem));
3573 nvpair_value_byte_array(elem, &value, &cnt);
3574
3575 for (idx = 0; idx < cnt; ++idx) {
3576 if (!isprint(value[idx])) {
3577 can_print = B_FALSE;
3578 break;
3579 }
3580 }
3581
3582 for (idx = 0; idx < cnt; ++idx) {
3583 if (can_print)
3584 (void) putchar(value[idx]);
3585 else
3586 (void) printf("\\%3.3o", value[idx]);
3587 }
3588 (void) putchar('\n');
3589 }
3590
3591 nvlist_free(sa_xattr);
3592 free(sa_xattr_packed);
3593 }
3594
3595 static void
dump_znode_symlink(sa_handle_t * hdl)3596 dump_znode_symlink(sa_handle_t *hdl)
3597 {
3598 int sa_symlink_size = 0;
3599 char linktarget[MAXPATHLEN];
3600 int error;
3601
3602 error = sa_size(hdl, sa_attr_table[ZPL_SYMLINK], &sa_symlink_size);
3603 if (error || sa_symlink_size == 0) {
3604 return;
3605 }
3606 if (sa_symlink_size >= sizeof (linktarget)) {
3607 (void) printf("symlink size %d is too large\n",
3608 sa_symlink_size);
3609 return;
3610 }
3611 linktarget[sa_symlink_size] = '\0';
3612 if (sa_lookup(hdl, sa_attr_table[ZPL_SYMLINK],
3613 &linktarget, sa_symlink_size) == 0)
3614 (void) printf("\ttarget %s\n", linktarget);
3615 }
3616
3617 static void
dump_znode(objset_t * os,uint64_t object,void * data,size_t size)3618 dump_znode(objset_t *os, uint64_t object, void *data, size_t size)
3619 {
3620 (void) data, (void) size;
3621 char path[MAXPATHLEN * 2]; /* allow for xattr and failure prefix */
3622 sa_handle_t *hdl;
3623 uint64_t xattr, rdev, gen;
3624 uint64_t uid, gid, mode, fsize, parent, links;
3625 uint64_t pflags;
3626 uint64_t acctm[2], modtm[2], chgtm[2], crtm[2];
3627 time_t z_crtime, z_atime, z_mtime, z_ctime;
3628 sa_bulk_attr_t bulk[12];
3629 int idx = 0;
3630 int error;
3631
3632 VERIFY3P(os, ==, sa_os);
3633 if (sa_handle_get(os, object, NULL, SA_HDL_PRIVATE, &hdl)) {
3634 (void) printf("Failed to get handle for SA znode\n");
3635 return;
3636 }
3637
3638 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_UID], NULL, &uid, 8);
3639 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_GID], NULL, &gid, 8);
3640 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_LINKS], NULL,
3641 &links, 8);
3642 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_GEN], NULL, &gen, 8);
3643 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_MODE], NULL,
3644 &mode, 8);
3645 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_PARENT],
3646 NULL, &parent, 8);
3647 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_SIZE], NULL,
3648 &fsize, 8);
3649 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_ATIME], NULL,
3650 acctm, 16);
3651 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_MTIME], NULL,
3652 modtm, 16);
3653 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_CRTIME], NULL,
3654 crtm, 16);
3655 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_CTIME], NULL,
3656 chgtm, 16);
3657 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_FLAGS], NULL,
3658 &pflags, 8);
3659
3660 if (sa_bulk_lookup(hdl, bulk, idx)) {
3661 (void) sa_handle_destroy(hdl);
3662 return;
3663 }
3664
3665 z_crtime = (time_t)crtm[0];
3666 z_atime = (time_t)acctm[0];
3667 z_mtime = (time_t)modtm[0];
3668 z_ctime = (time_t)chgtm[0];
3669
3670 if (dump_opt['d'] > 4) {
3671 error = zfs_obj_to_path(os, object, path, sizeof (path));
3672 if (error == ESTALE) {
3673 (void) snprintf(path, sizeof (path), "on delete queue");
3674 } else if (error != 0) {
3675 leaked_objects++;
3676 (void) snprintf(path, sizeof (path),
3677 "path not found, possibly leaked");
3678 }
3679 (void) printf("\tpath %s\n", path);
3680 }
3681
3682 if (S_ISLNK(mode))
3683 dump_znode_symlink(hdl);
3684 dump_uidgid(os, uid, gid);
3685 (void) printf("\tatime %s", ctime(&z_atime));
3686 (void) printf("\tmtime %s", ctime(&z_mtime));
3687 (void) printf("\tctime %s", ctime(&z_ctime));
3688 (void) printf("\tcrtime %s", ctime(&z_crtime));
3689 (void) printf("\tgen %llu\n", (u_longlong_t)gen);
3690 (void) printf("\tmode %llo\n", (u_longlong_t)mode);
3691 (void) printf("\tsize %llu\n", (u_longlong_t)fsize);
3692 (void) printf("\tparent %llu\n", (u_longlong_t)parent);
3693 (void) printf("\tlinks %llu\n", (u_longlong_t)links);
3694 (void) printf("\tpflags %llx\n", (u_longlong_t)pflags);
3695 if (dmu_objset_projectquota_enabled(os) && (pflags & ZFS_PROJID)) {
3696 uint64_t projid;
3697
3698 if (sa_lookup(hdl, sa_attr_table[ZPL_PROJID], &projid,
3699 sizeof (uint64_t)) == 0)
3700 (void) printf("\tprojid %llu\n", (u_longlong_t)projid);
3701 }
3702 if (sa_lookup(hdl, sa_attr_table[ZPL_XATTR], &xattr,
3703 sizeof (uint64_t)) == 0)
3704 (void) printf("\txattr %llu\n", (u_longlong_t)xattr);
3705 if (sa_lookup(hdl, sa_attr_table[ZPL_RDEV], &rdev,
3706 sizeof (uint64_t)) == 0)
3707 (void) printf("\trdev 0x%016llx\n", (u_longlong_t)rdev);
3708 dump_znode_sa_xattr(hdl);
3709 sa_handle_destroy(hdl);
3710 }
3711
3712 static void
dump_acl(objset_t * os,uint64_t object,void * data,size_t size)3713 dump_acl(objset_t *os, uint64_t object, void *data, size_t size)
3714 {
3715 (void) os, (void) object, (void) data, (void) size;
3716 }
3717
3718 static void
dump_dmu_objset(objset_t * os,uint64_t object,void * data,size_t size)3719 dump_dmu_objset(objset_t *os, uint64_t object, void *data, size_t size)
3720 {
3721 (void) os, (void) object, (void) data, (void) size;
3722 }
3723
3724 static object_viewer_t *object_viewer[DMU_OT_NUMTYPES + 1] = {
3725 dump_none, /* unallocated */
3726 dump_zap, /* object directory */
3727 dump_uint64, /* object array */
3728 dump_none, /* packed nvlist */
3729 dump_packed_nvlist, /* packed nvlist size */
3730 dump_none, /* bpobj */
3731 dump_bpobj, /* bpobj header */
3732 dump_none, /* SPA space map header */
3733 dump_none, /* SPA space map */
3734 dump_none, /* ZIL intent log */
3735 dump_dnode, /* DMU dnode */
3736 dump_dmu_objset, /* DMU objset */
3737 dump_dsl_dir, /* DSL directory */
3738 dump_zap, /* DSL directory child map */
3739 dump_zap, /* DSL dataset snap map */
3740 dump_zap, /* DSL props */
3741 dump_dsl_dataset, /* DSL dataset */
3742 dump_znode, /* ZFS znode */
3743 dump_acl, /* ZFS V0 ACL */
3744 dump_uint8, /* ZFS plain file */
3745 dump_zpldir, /* ZFS directory */
3746 dump_zap, /* ZFS master node */
3747 dump_zap, /* ZFS delete queue */
3748 dump_uint8, /* zvol object */
3749 dump_zap, /* zvol prop */
3750 dump_uint8, /* other uint8[] */
3751 dump_uint64, /* other uint64[] */
3752 dump_zap, /* other ZAP */
3753 dump_zap, /* persistent error log */
3754 dump_uint8, /* SPA history */
3755 dump_history_offsets, /* SPA history offsets */
3756 dump_zap, /* Pool properties */
3757 dump_zap, /* DSL permissions */
3758 dump_acl, /* ZFS ACL */
3759 dump_uint8, /* ZFS SYSACL */
3760 dump_none, /* FUID nvlist */
3761 dump_packed_nvlist, /* FUID nvlist size */
3762 dump_zap, /* DSL dataset next clones */
3763 dump_zap, /* DSL scrub queue */
3764 dump_zap, /* ZFS user/group/project used */
3765 dump_zap, /* ZFS user/group/project quota */
3766 dump_zap, /* snapshot refcount tags */
3767 dump_ddt_zap, /* DDT ZAP object */
3768 dump_zap, /* DDT statistics */
3769 dump_znode, /* SA object */
3770 dump_zap, /* SA Master Node */
3771 dump_sa_attrs, /* SA attribute registration */
3772 dump_sa_layouts, /* SA attribute layouts */
3773 dump_zap, /* DSL scrub translations */
3774 dump_none, /* fake dedup BP */
3775 dump_zap, /* deadlist */
3776 dump_none, /* deadlist hdr */
3777 dump_zap, /* dsl clones */
3778 dump_bpobj_subobjs, /* bpobj subobjs */
3779 dump_unknown, /* Unknown type, must be last */
3780 };
3781
3782 static boolean_t
match_object_type(dmu_object_type_t obj_type,uint64_t flags)3783 match_object_type(dmu_object_type_t obj_type, uint64_t flags)
3784 {
3785 boolean_t match = B_TRUE;
3786
3787 switch (obj_type) {
3788 case DMU_OT_DIRECTORY_CONTENTS:
3789 if (!(flags & ZOR_FLAG_DIRECTORY))
3790 match = B_FALSE;
3791 break;
3792 case DMU_OT_PLAIN_FILE_CONTENTS:
3793 if (!(flags & ZOR_FLAG_PLAIN_FILE))
3794 match = B_FALSE;
3795 break;
3796 case DMU_OT_SPACE_MAP:
3797 if (!(flags & ZOR_FLAG_SPACE_MAP))
3798 match = B_FALSE;
3799 break;
3800 default:
3801 if (strcmp(zdb_ot_name(obj_type), "zap") == 0) {
3802 if (!(flags & ZOR_FLAG_ZAP))
3803 match = B_FALSE;
3804 break;
3805 }
3806
3807 /*
3808 * If all bits except some of the supported flags are
3809 * set, the user combined the all-types flag (A) with
3810 * a negated flag to exclude some types (e.g. A-f to
3811 * show all object types except plain files).
3812 */
3813 if ((flags | ZOR_SUPPORTED_FLAGS) != ZOR_FLAG_ALL_TYPES)
3814 match = B_FALSE;
3815
3816 break;
3817 }
3818
3819 return (match);
3820 }
3821
3822 static void
dump_object(objset_t * os,uint64_t object,int verbosity,boolean_t * print_header,uint64_t * dnode_slots_used,uint64_t flags)3823 dump_object(objset_t *os, uint64_t object, int verbosity,
3824 boolean_t *print_header, uint64_t *dnode_slots_used, uint64_t flags)
3825 {
3826 dmu_buf_t *db = NULL;
3827 dmu_object_info_t doi;
3828 dnode_t *dn;
3829 boolean_t dnode_held = B_FALSE;
3830 void *bonus = NULL;
3831 size_t bsize = 0;
3832 char iblk[32], dblk[32], lsize[32], asize[32], fill[32], dnsize[32];
3833 char bonus_size[32];
3834 char aux[50];
3835 int error;
3836
3837 /* make sure nicenum has enough space */
3838 _Static_assert(sizeof (iblk) >= NN_NUMBUF_SZ, "iblk truncated");
3839 _Static_assert(sizeof (dblk) >= NN_NUMBUF_SZ, "dblk truncated");
3840 _Static_assert(sizeof (lsize) >= NN_NUMBUF_SZ, "lsize truncated");
3841 _Static_assert(sizeof (asize) >= NN_NUMBUF_SZ, "asize truncated");
3842 _Static_assert(sizeof (bonus_size) >= NN_NUMBUF_SZ,
3843 "bonus_size truncated");
3844
3845 if (*print_header) {
3846 (void) printf("\n%10s %3s %5s %5s %5s %6s %5s %6s %s\n",
3847 "Object", "lvl", "iblk", "dblk", "dsize", "dnsize",
3848 "lsize", "%full", "type");
3849 *print_header = 0;
3850 }
3851
3852 if (object == 0) {
3853 dn = DMU_META_DNODE(os);
3854 dmu_object_info_from_dnode(dn, &doi);
3855 } else {
3856 /*
3857 * Encrypted datasets will have sensitive bonus buffers
3858 * encrypted. Therefore we cannot hold the bonus buffer and
3859 * must hold the dnode itself instead.
3860 */
3861 error = dmu_object_info(os, object, &doi);
3862 if (error)
3863 fatal("dmu_object_info() failed, errno %u", error);
3864
3865 if (!key_loaded && os->os_encrypted &&
3866 DMU_OT_IS_ENCRYPTED(doi.doi_bonus_type)) {
3867 error = dnode_hold(os, object, FTAG, &dn);
3868 if (error)
3869 fatal("dnode_hold() failed, errno %u", error);
3870 dnode_held = B_TRUE;
3871 } else {
3872 error = dmu_bonus_hold(os, object, FTAG, &db);
3873 if (error)
3874 fatal("dmu_bonus_hold(%llu) failed, errno %u",
3875 object, error);
3876 bonus = db->db_data;
3877 bsize = db->db_size;
3878 dn = DB_DNODE((dmu_buf_impl_t *)db);
3879 }
3880 }
3881
3882 /*
3883 * Default to showing all object types if no flags were specified.
3884 */
3885 if (flags != 0 && flags != ZOR_FLAG_ALL_TYPES &&
3886 !match_object_type(doi.doi_type, flags))
3887 goto out;
3888
3889 if (dnode_slots_used)
3890 *dnode_slots_used = doi.doi_dnodesize / DNODE_MIN_SIZE;
3891
3892 zdb_nicenum(doi.doi_metadata_block_size, iblk, sizeof (iblk));
3893 zdb_nicenum(doi.doi_data_block_size, dblk, sizeof (dblk));
3894 zdb_nicenum(doi.doi_max_offset, lsize, sizeof (lsize));
3895 zdb_nicenum(doi.doi_physical_blocks_512 << 9, asize, sizeof (asize));
3896 zdb_nicenum(doi.doi_bonus_size, bonus_size, sizeof (bonus_size));
3897 zdb_nicenum(doi.doi_dnodesize, dnsize, sizeof (dnsize));
3898 (void) snprintf(fill, sizeof (fill), "%6.2f", 100.0 *
3899 doi.doi_fill_count * doi.doi_data_block_size / (object == 0 ?
3900 DNODES_PER_BLOCK : 1) / doi.doi_max_offset);
3901
3902 aux[0] = '\0';
3903
3904 if (doi.doi_checksum != ZIO_CHECKSUM_INHERIT || verbosity >= 6) {
3905 (void) snprintf(aux + strlen(aux), sizeof (aux) - strlen(aux),
3906 " (K=%s)", ZDB_CHECKSUM_NAME(doi.doi_checksum));
3907 }
3908
3909 if (doi.doi_compress == ZIO_COMPRESS_INHERIT &&
3910 ZIO_COMPRESS_HASLEVEL(os->os_compress) && verbosity >= 6) {
3911 const char *compname = NULL;
3912 if (zfs_prop_index_to_string(ZFS_PROP_COMPRESSION,
3913 ZIO_COMPRESS_RAW(os->os_compress, os->os_complevel),
3914 &compname) == 0) {
3915 (void) snprintf(aux + strlen(aux),
3916 sizeof (aux) - strlen(aux), " (Z=inherit=%s)",
3917 compname);
3918 } else {
3919 (void) snprintf(aux + strlen(aux),
3920 sizeof (aux) - strlen(aux),
3921 " (Z=inherit=%s-unknown)",
3922 ZDB_COMPRESS_NAME(os->os_compress));
3923 }
3924 } else if (doi.doi_compress == ZIO_COMPRESS_INHERIT && verbosity >= 6) {
3925 (void) snprintf(aux + strlen(aux), sizeof (aux) - strlen(aux),
3926 " (Z=inherit=%s)", ZDB_COMPRESS_NAME(os->os_compress));
3927 } else if (doi.doi_compress != ZIO_COMPRESS_INHERIT || verbosity >= 6) {
3928 (void) snprintf(aux + strlen(aux), sizeof (aux) - strlen(aux),
3929 " (Z=%s)", ZDB_COMPRESS_NAME(doi.doi_compress));
3930 }
3931
3932 (void) printf("%10lld %3u %5s %5s %5s %6s %5s %6s %s%s\n",
3933 (u_longlong_t)object, doi.doi_indirection, iblk, dblk,
3934 asize, dnsize, lsize, fill, zdb_ot_name(doi.doi_type), aux);
3935
3936 if (doi.doi_bonus_type != DMU_OT_NONE && verbosity > 3) {
3937 (void) printf("%10s %3s %5s %5s %5s %5s %5s %6s %s\n",
3938 "", "", "", "", "", "", bonus_size, "bonus",
3939 zdb_ot_name(doi.doi_bonus_type));
3940 }
3941
3942 if (verbosity >= 4) {
3943 (void) printf("\tdnode flags: %s%s%s%s\n",
3944 (dn->dn_phys->dn_flags & DNODE_FLAG_USED_BYTES) ?
3945 "USED_BYTES " : "",
3946 (dn->dn_phys->dn_flags & DNODE_FLAG_USERUSED_ACCOUNTED) ?
3947 "USERUSED_ACCOUNTED " : "",
3948 (dn->dn_phys->dn_flags & DNODE_FLAG_USEROBJUSED_ACCOUNTED) ?
3949 "USEROBJUSED_ACCOUNTED " : "",
3950 (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR) ?
3951 "SPILL_BLKPTR" : "");
3952 (void) printf("\tdnode maxblkid: %llu\n",
3953 (longlong_t)dn->dn_phys->dn_maxblkid);
3954
3955 if (!dnode_held) {
3956 object_viewer[ZDB_OT_TYPE(doi.doi_bonus_type)](os,
3957 object, bonus, bsize);
3958 } else {
3959 (void) printf("\t\t(bonus encrypted)\n");
3960 }
3961
3962 if (key_loaded ||
3963 (!os->os_encrypted || !DMU_OT_IS_ENCRYPTED(doi.doi_type))) {
3964 object_viewer[ZDB_OT_TYPE(doi.doi_type)](os, object,
3965 NULL, 0);
3966 } else {
3967 (void) printf("\t\t(object encrypted)\n");
3968 }
3969
3970 *print_header = B_TRUE;
3971 }
3972
3973 if (verbosity >= 5) {
3974 if (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
3975 char blkbuf[BP_SPRINTF_LEN];
3976 snprintf_blkptr_compact(blkbuf, sizeof (blkbuf),
3977 DN_SPILL_BLKPTR(dn->dn_phys), B_FALSE);
3978 (void) printf("\nSpill block: %s\n", blkbuf);
3979 }
3980 dump_indirect(dn);
3981 }
3982
3983 if (verbosity >= 5) {
3984 /*
3985 * Report the list of segments that comprise the object.
3986 */
3987 uint64_t start = 0;
3988 uint64_t end;
3989 uint64_t blkfill = 1;
3990 int minlvl = 1;
3991
3992 if (dn->dn_type == DMU_OT_DNODE) {
3993 minlvl = 0;
3994 blkfill = DNODES_PER_BLOCK;
3995 }
3996
3997 for (;;) {
3998 char segsize[32];
3999 /* make sure nicenum has enough space */
4000 _Static_assert(sizeof (segsize) >= NN_NUMBUF_SZ,
4001 "segsize truncated");
4002 error = dnode_next_offset(dn,
4003 0, &start, minlvl, blkfill, 0);
4004 if (error)
4005 break;
4006 end = start;
4007 error = dnode_next_offset(dn,
4008 DNODE_FIND_HOLE, &end, minlvl, blkfill, 0);
4009 zdb_nicenum(end - start, segsize, sizeof (segsize));
4010 (void) printf("\t\tsegment [%016llx, %016llx)"
4011 " size %5s\n", (u_longlong_t)start,
4012 (u_longlong_t)end, segsize);
4013 if (error)
4014 break;
4015 start = end;
4016 }
4017 }
4018
4019 out:
4020 if (db != NULL)
4021 dmu_buf_rele(db, FTAG);
4022 if (dnode_held)
4023 dnode_rele(dn, FTAG);
4024 }
4025
4026 static void
count_dir_mos_objects(dsl_dir_t * dd)4027 count_dir_mos_objects(dsl_dir_t *dd)
4028 {
4029 mos_obj_refd(dd->dd_object);
4030 mos_obj_refd(dsl_dir_phys(dd)->dd_child_dir_zapobj);
4031 mos_obj_refd(dsl_dir_phys(dd)->dd_deleg_zapobj);
4032 mos_obj_refd(dsl_dir_phys(dd)->dd_props_zapobj);
4033 mos_obj_refd(dsl_dir_phys(dd)->dd_clones);
4034
4035 /*
4036 * The dd_crypto_obj can be referenced by multiple dsl_dir's.
4037 * Ignore the references after the first one.
4038 */
4039 mos_obj_refd_multiple(dd->dd_crypto_obj);
4040 }
4041
4042 static void
count_ds_mos_objects(dsl_dataset_t * ds)4043 count_ds_mos_objects(dsl_dataset_t *ds)
4044 {
4045 mos_obj_refd(ds->ds_object);
4046 mos_obj_refd(dsl_dataset_phys(ds)->ds_next_clones_obj);
4047 mos_obj_refd(dsl_dataset_phys(ds)->ds_props_obj);
4048 mos_obj_refd(dsl_dataset_phys(ds)->ds_userrefs_obj);
4049 mos_obj_refd(dsl_dataset_phys(ds)->ds_snapnames_zapobj);
4050 mos_obj_refd(ds->ds_bookmarks_obj);
4051
4052 if (!dsl_dataset_is_snapshot(ds)) {
4053 count_dir_mos_objects(ds->ds_dir);
4054 }
4055 }
4056
4057 static const char *const objset_types[DMU_OST_NUMTYPES] = {
4058 "NONE", "META", "ZPL", "ZVOL", "OTHER", "ANY" };
4059
4060 /*
4061 * Parse a string denoting a range of object IDs of the form
4062 * <start>[:<end>[:flags]], and store the results in zor.
4063 * Return 0 on success. On error, return 1 and update the msg
4064 * pointer to point to a descriptive error message.
4065 */
4066 static int
parse_object_range(char * range,zopt_object_range_t * zor,const char ** msg)4067 parse_object_range(char *range, zopt_object_range_t *zor, const char **msg)
4068 {
4069 uint64_t flags = 0;
4070 char *p, *s, *dup, *flagstr, *tmp = NULL;
4071 size_t len;
4072 int i;
4073 int rc = 0;
4074
4075 if (strchr(range, ':') == NULL) {
4076 zor->zor_obj_start = strtoull(range, &p, 0);
4077 if (*p != '\0') {
4078 *msg = "Invalid characters in object ID";
4079 rc = 1;
4080 }
4081 zor->zor_obj_start = ZDB_MAP_OBJECT_ID(zor->zor_obj_start);
4082 zor->zor_obj_end = zor->zor_obj_start;
4083 return (rc);
4084 }
4085
4086 if (strchr(range, ':') == range) {
4087 *msg = "Invalid leading colon";
4088 rc = 1;
4089 return (rc);
4090 }
4091
4092 len = strlen(range);
4093 if (range[len - 1] == ':') {
4094 *msg = "Invalid trailing colon";
4095 rc = 1;
4096 return (rc);
4097 }
4098
4099 dup = strdup(range);
4100 s = strtok_r(dup, ":", &tmp);
4101 zor->zor_obj_start = strtoull(s, &p, 0);
4102
4103 if (*p != '\0') {
4104 *msg = "Invalid characters in start object ID";
4105 rc = 1;
4106 goto out;
4107 }
4108
4109 s = strtok_r(NULL, ":", &tmp);
4110 zor->zor_obj_end = strtoull(s, &p, 0);
4111
4112 if (*p != '\0') {
4113 *msg = "Invalid characters in end object ID";
4114 rc = 1;
4115 goto out;
4116 }
4117
4118 if (zor->zor_obj_start > zor->zor_obj_end) {
4119 *msg = "Start object ID may not exceed end object ID";
4120 rc = 1;
4121 goto out;
4122 }
4123
4124 s = strtok_r(NULL, ":", &tmp);
4125 if (s == NULL) {
4126 zor->zor_flags = ZOR_FLAG_ALL_TYPES;
4127 goto out;
4128 } else if (strtok_r(NULL, ":", &tmp) != NULL) {
4129 *msg = "Invalid colon-delimited field after flags";
4130 rc = 1;
4131 goto out;
4132 }
4133
4134 flagstr = s;
4135 for (i = 0; flagstr[i]; i++) {
4136 int bit;
4137 boolean_t negation = (flagstr[i] == '-');
4138
4139 if (negation) {
4140 i++;
4141 if (flagstr[i] == '\0') {
4142 *msg = "Invalid trailing negation operator";
4143 rc = 1;
4144 goto out;
4145 }
4146 }
4147 bit = flagbits[(uchar_t)flagstr[i]];
4148 if (bit == 0) {
4149 *msg = "Invalid flag";
4150 rc = 1;
4151 goto out;
4152 }
4153 if (negation)
4154 flags &= ~bit;
4155 else
4156 flags |= bit;
4157 }
4158 zor->zor_flags = flags;
4159
4160 zor->zor_obj_start = ZDB_MAP_OBJECT_ID(zor->zor_obj_start);
4161 zor->zor_obj_end = ZDB_MAP_OBJECT_ID(zor->zor_obj_end);
4162
4163 out:
4164 free(dup);
4165 return (rc);
4166 }
4167
4168 static void
dump_objset(objset_t * os)4169 dump_objset(objset_t *os)
4170 {
4171 dmu_objset_stats_t dds = { 0 };
4172 uint64_t object, object_count;
4173 uint64_t refdbytes, usedobjs, scratch;
4174 char numbuf[32];
4175 char blkbuf[BP_SPRINTF_LEN + 20];
4176 char osname[ZFS_MAX_DATASET_NAME_LEN];
4177 const char *type = "UNKNOWN";
4178 int verbosity = dump_opt['d'];
4179 boolean_t print_header;
4180 unsigned i;
4181 int error;
4182 uint64_t total_slots_used = 0;
4183 uint64_t max_slot_used = 0;
4184 uint64_t dnode_slots;
4185 uint64_t obj_start;
4186 uint64_t obj_end;
4187 uint64_t flags;
4188
4189 /* make sure nicenum has enough space */
4190 _Static_assert(sizeof (numbuf) >= NN_NUMBUF_SZ, "numbuf truncated");
4191
4192 dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
4193 dmu_objset_fast_stat(os, &dds);
4194 dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
4195
4196 print_header = B_TRUE;
4197
4198 if (dds.dds_type < DMU_OST_NUMTYPES)
4199 type = objset_types[dds.dds_type];
4200
4201 if (dds.dds_type == DMU_OST_META) {
4202 dds.dds_creation_txg = TXG_INITIAL;
4203 usedobjs = BP_GET_FILL(os->os_rootbp);
4204 refdbytes = dsl_dir_phys(os->os_spa->spa_dsl_pool->dp_mos_dir)->
4205 dd_used_bytes;
4206 } else {
4207 dmu_objset_space(os, &refdbytes, &scratch, &usedobjs, &scratch);
4208 }
4209
4210 ASSERT3U(usedobjs, ==, BP_GET_FILL(os->os_rootbp));
4211
4212 zdb_nicenum(refdbytes, numbuf, sizeof (numbuf));
4213
4214 if (verbosity >= 4) {
4215 (void) snprintf(blkbuf, sizeof (blkbuf), ", rootbp ");
4216 (void) snprintf_blkptr(blkbuf + strlen(blkbuf),
4217 sizeof (blkbuf) - strlen(blkbuf), os->os_rootbp);
4218 } else {
4219 blkbuf[0] = '\0';
4220 }
4221
4222 dmu_objset_name(os, osname);
4223
4224 (void) printf("Dataset %s [%s], ID %llu, cr_txg %llu, "
4225 "%s, %llu objects%s%s\n",
4226 osname, type, (u_longlong_t)dmu_objset_id(os),
4227 (u_longlong_t)dds.dds_creation_txg,
4228 numbuf, (u_longlong_t)usedobjs, blkbuf,
4229 (dds.dds_inconsistent) ? " (inconsistent)" : "");
4230
4231 for (i = 0; i < zopt_object_args; i++) {
4232 obj_start = zopt_object_ranges[i].zor_obj_start;
4233 obj_end = zopt_object_ranges[i].zor_obj_end;
4234 flags = zopt_object_ranges[i].zor_flags;
4235
4236 object = obj_start;
4237 if (object == 0 || obj_start == obj_end)
4238 dump_object(os, object, verbosity, &print_header, NULL,
4239 flags);
4240 else
4241 object--;
4242
4243 while ((dmu_object_next(os, &object, B_FALSE, 0) == 0) &&
4244 object <= obj_end) {
4245 dump_object(os, object, verbosity, &print_header, NULL,
4246 flags);
4247 }
4248 }
4249
4250 if (zopt_object_args > 0) {
4251 (void) printf("\n");
4252 return;
4253 }
4254
4255 if (dump_opt['i'] != 0 || verbosity >= 2)
4256 dump_intent_log(dmu_objset_zil(os));
4257
4258 if (dmu_objset_ds(os) != NULL) {
4259 dsl_dataset_t *ds = dmu_objset_ds(os);
4260 dump_blkptr_list(&ds->ds_deadlist, "Deadlist");
4261 if (dsl_deadlist_is_open(&ds->ds_dir->dd_livelist) &&
4262 !dmu_objset_is_snapshot(os)) {
4263 dump_blkptr_list(&ds->ds_dir->dd_livelist, "Livelist");
4264 if (verify_dd_livelist(os) != 0)
4265 fatal("livelist is incorrect");
4266 }
4267
4268 if (dsl_dataset_remap_deadlist_exists(ds)) {
4269 (void) printf("ds_remap_deadlist:\n");
4270 dump_blkptr_list(&ds->ds_remap_deadlist, "Deadlist");
4271 }
4272 count_ds_mos_objects(ds);
4273 }
4274
4275 if (dmu_objset_ds(os) != NULL)
4276 dump_bookmarks(os, verbosity);
4277
4278 if (verbosity < 2)
4279 return;
4280
4281 if (BP_IS_HOLE(os->os_rootbp))
4282 return;
4283
4284 dump_object(os, 0, verbosity, &print_header, NULL, 0);
4285 object_count = 0;
4286 if (DMU_USERUSED_DNODE(os) != NULL &&
4287 DMU_USERUSED_DNODE(os)->dn_type != 0) {
4288 dump_object(os, DMU_USERUSED_OBJECT, verbosity, &print_header,
4289 NULL, 0);
4290 dump_object(os, DMU_GROUPUSED_OBJECT, verbosity, &print_header,
4291 NULL, 0);
4292 }
4293
4294 if (DMU_PROJECTUSED_DNODE(os) != NULL &&
4295 DMU_PROJECTUSED_DNODE(os)->dn_type != 0)
4296 dump_object(os, DMU_PROJECTUSED_OBJECT, verbosity,
4297 &print_header, NULL, 0);
4298
4299 object = 0;
4300 while ((error = dmu_object_next(os, &object, B_FALSE, 0)) == 0) {
4301 dump_object(os, object, verbosity, &print_header, &dnode_slots,
4302 0);
4303 object_count++;
4304 total_slots_used += dnode_slots;
4305 max_slot_used = object + dnode_slots - 1;
4306 }
4307
4308 (void) printf("\n");
4309
4310 (void) printf(" Dnode slots:\n");
4311 (void) printf("\tTotal used: %10llu\n",
4312 (u_longlong_t)total_slots_used);
4313 (void) printf("\tMax used: %10llu\n",
4314 (u_longlong_t)max_slot_used);
4315 (void) printf("\tPercent empty: %10lf\n",
4316 (double)(max_slot_used - total_slots_used)*100 /
4317 (double)max_slot_used);
4318 (void) printf("\n");
4319
4320 if (error != ESRCH) {
4321 (void) fprintf(stderr, "dmu_object_next() = %d\n", error);
4322 abort();
4323 }
4324
4325 ASSERT3U(object_count, ==, usedobjs);
4326
4327 if (leaked_objects != 0) {
4328 (void) printf("%d potentially leaked objects detected\n",
4329 leaked_objects);
4330 leaked_objects = 0;
4331 }
4332 }
4333
4334 static void
dump_uberblock(uberblock_t * ub,const char * header,const char * footer)4335 dump_uberblock(uberblock_t *ub, const char *header, const char *footer)
4336 {
4337 time_t timestamp = ub->ub_timestamp;
4338
4339 (void) printf("%s", header ? header : "");
4340 (void) printf("\tmagic = %016llx\n", (u_longlong_t)ub->ub_magic);
4341 (void) printf("\tversion = %llu\n", (u_longlong_t)ub->ub_version);
4342 (void) printf("\ttxg = %llu\n", (u_longlong_t)ub->ub_txg);
4343 (void) printf("\tguid_sum = %llu\n", (u_longlong_t)ub->ub_guid_sum);
4344 (void) printf("\ttimestamp = %llu UTC = %s",
4345 (u_longlong_t)ub->ub_timestamp, ctime(×tamp));
4346
4347 char blkbuf[BP_SPRINTF_LEN];
4348 snprintf_blkptr(blkbuf, sizeof (blkbuf), &ub->ub_rootbp);
4349 (void) printf("\tbp = %s\n", blkbuf);
4350
4351 (void) printf("\tmmp_magic = %016llx\n",
4352 (u_longlong_t)ub->ub_mmp_magic);
4353 if (MMP_VALID(ub)) {
4354 (void) printf("\tmmp_delay = %0llu\n",
4355 (u_longlong_t)ub->ub_mmp_delay);
4356 if (MMP_SEQ_VALID(ub))
4357 (void) printf("\tmmp_seq = %u\n",
4358 (unsigned int) MMP_SEQ(ub));
4359 if (MMP_FAIL_INT_VALID(ub))
4360 (void) printf("\tmmp_fail = %u\n",
4361 (unsigned int) MMP_FAIL_INT(ub));
4362 if (MMP_INTERVAL_VALID(ub))
4363 (void) printf("\tmmp_write = %u\n",
4364 (unsigned int) MMP_INTERVAL(ub));
4365 /* After MMP_* to make summarize_uberblock_mmp cleaner */
4366 (void) printf("\tmmp_valid = %x\n",
4367 (unsigned int) ub->ub_mmp_config & 0xFF);
4368 }
4369
4370 if (dump_opt['u'] >= 4) {
4371 char blkbuf[BP_SPRINTF_LEN];
4372 snprintf_blkptr(blkbuf, sizeof (blkbuf), &ub->ub_rootbp);
4373 (void) printf("\trootbp = %s\n", blkbuf);
4374 }
4375 (void) printf("\tcheckpoint_txg = %llu\n",
4376 (u_longlong_t)ub->ub_checkpoint_txg);
4377
4378 (void) printf("\traidz_reflow state=%u off=%llu\n",
4379 (int)RRSS_GET_STATE(ub),
4380 (u_longlong_t)RRSS_GET_OFFSET(ub));
4381
4382 (void) printf("%s", footer ? footer : "");
4383 }
4384
4385 static void
dump_config(spa_t * spa)4386 dump_config(spa_t *spa)
4387 {
4388 dmu_buf_t *db;
4389 size_t nvsize = 0;
4390 int error = 0;
4391
4392
4393 error = dmu_bonus_hold(spa->spa_meta_objset,
4394 spa->spa_config_object, FTAG, &db);
4395
4396 if (error == 0) {
4397 nvsize = *(uint64_t *)db->db_data;
4398 dmu_buf_rele(db, FTAG);
4399
4400 (void) printf("\nMOS Configuration:\n");
4401 dump_packed_nvlist(spa->spa_meta_objset,
4402 spa->spa_config_object, (void *)&nvsize, 1);
4403 } else {
4404 (void) fprintf(stderr, "dmu_bonus_hold(%llu) failed, errno %d",
4405 (u_longlong_t)spa->spa_config_object, error);
4406 }
4407 }
4408
4409 static void
dump_cachefile(const char * cachefile)4410 dump_cachefile(const char *cachefile)
4411 {
4412 int fd;
4413 struct stat64 statbuf;
4414 char *buf;
4415 nvlist_t *config;
4416
4417 if ((fd = open64(cachefile, O_RDONLY)) < 0) {
4418 (void) printf("cannot open '%s': %s\n", cachefile,
4419 strerror(errno));
4420 zdb_exit(1);
4421 }
4422
4423 if (fstat64(fd, &statbuf) != 0) {
4424 (void) printf("failed to stat '%s': %s\n", cachefile,
4425 strerror(errno));
4426 zdb_exit(1);
4427 }
4428
4429 if ((buf = malloc(statbuf.st_size)) == NULL) {
4430 (void) fprintf(stderr, "failed to allocate %llu bytes\n",
4431 (u_longlong_t)statbuf.st_size);
4432 zdb_exit(1);
4433 }
4434
4435 if (read(fd, buf, statbuf.st_size) != statbuf.st_size) {
4436 (void) fprintf(stderr, "failed to read %llu bytes\n",
4437 (u_longlong_t)statbuf.st_size);
4438 zdb_exit(1);
4439 }
4440
4441 (void) close(fd);
4442
4443 if (nvlist_unpack(buf, statbuf.st_size, &config, 0) != 0) {
4444 (void) fprintf(stderr, "failed to unpack nvlist\n");
4445 zdb_exit(1);
4446 }
4447
4448 free(buf);
4449
4450 dump_nvlist(config, 0);
4451
4452 nvlist_free(config);
4453 }
4454
4455 /*
4456 * ZFS label nvlist stats
4457 */
4458 typedef struct zdb_nvl_stats {
4459 int zns_list_count;
4460 int zns_leaf_count;
4461 size_t zns_leaf_largest;
4462 size_t zns_leaf_total;
4463 nvlist_t *zns_string;
4464 nvlist_t *zns_uint64;
4465 nvlist_t *zns_boolean;
4466 } zdb_nvl_stats_t;
4467
4468 static void
collect_nvlist_stats(nvlist_t * nvl,zdb_nvl_stats_t * stats)4469 collect_nvlist_stats(nvlist_t *nvl, zdb_nvl_stats_t *stats)
4470 {
4471 nvlist_t *list, **array;
4472 nvpair_t *nvp = NULL;
4473 const char *name;
4474 uint_t i, items;
4475
4476 stats->zns_list_count++;
4477
4478 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) {
4479 name = nvpair_name(nvp);
4480
4481 switch (nvpair_type(nvp)) {
4482 case DATA_TYPE_STRING:
4483 fnvlist_add_string(stats->zns_string, name,
4484 fnvpair_value_string(nvp));
4485 break;
4486 case DATA_TYPE_UINT64:
4487 fnvlist_add_uint64(stats->zns_uint64, name,
4488 fnvpair_value_uint64(nvp));
4489 break;
4490 case DATA_TYPE_BOOLEAN:
4491 fnvlist_add_boolean(stats->zns_boolean, name);
4492 break;
4493 case DATA_TYPE_NVLIST:
4494 if (nvpair_value_nvlist(nvp, &list) == 0)
4495 collect_nvlist_stats(list, stats);
4496 break;
4497 case DATA_TYPE_NVLIST_ARRAY:
4498 if (nvpair_value_nvlist_array(nvp, &array, &items) != 0)
4499 break;
4500
4501 for (i = 0; i < items; i++) {
4502 collect_nvlist_stats(array[i], stats);
4503
4504 /* collect stats on leaf vdev */
4505 if (strcmp(name, "children") == 0) {
4506 size_t size;
4507
4508 (void) nvlist_size(array[i], &size,
4509 NV_ENCODE_XDR);
4510 stats->zns_leaf_total += size;
4511 if (size > stats->zns_leaf_largest)
4512 stats->zns_leaf_largest = size;
4513 stats->zns_leaf_count++;
4514 }
4515 }
4516 break;
4517 default:
4518 (void) printf("skip type %d!\n", (int)nvpair_type(nvp));
4519 }
4520 }
4521 }
4522
4523 static void
dump_nvlist_stats(nvlist_t * nvl,size_t cap)4524 dump_nvlist_stats(nvlist_t *nvl, size_t cap)
4525 {
4526 zdb_nvl_stats_t stats = { 0 };
4527 size_t size, sum = 0, total;
4528 size_t noise;
4529
4530 /* requires nvlist with non-unique names for stat collection */
4531 VERIFY0(nvlist_alloc(&stats.zns_string, 0, 0));
4532 VERIFY0(nvlist_alloc(&stats.zns_uint64, 0, 0));
4533 VERIFY0(nvlist_alloc(&stats.zns_boolean, 0, 0));
4534 VERIFY0(nvlist_size(stats.zns_boolean, &noise, NV_ENCODE_XDR));
4535
4536 (void) printf("\n\nZFS Label NVList Config Stats:\n");
4537
4538 VERIFY0(nvlist_size(nvl, &total, NV_ENCODE_XDR));
4539 (void) printf(" %d bytes used, %d bytes free (using %4.1f%%)\n\n",
4540 (int)total, (int)(cap - total), 100.0 * total / cap);
4541
4542 collect_nvlist_stats(nvl, &stats);
4543
4544 VERIFY0(nvlist_size(stats.zns_uint64, &size, NV_ENCODE_XDR));
4545 size -= noise;
4546 sum += size;
4547 (void) printf("%12s %4d %6d bytes (%5.2f%%)\n", "integers:",
4548 (int)fnvlist_num_pairs(stats.zns_uint64),
4549 (int)size, 100.0 * size / total);
4550
4551 VERIFY0(nvlist_size(stats.zns_string, &size, NV_ENCODE_XDR));
4552 size -= noise;
4553 sum += size;
4554 (void) printf("%12s %4d %6d bytes (%5.2f%%)\n", "strings:",
4555 (int)fnvlist_num_pairs(stats.zns_string),
4556 (int)size, 100.0 * size / total);
4557
4558 VERIFY0(nvlist_size(stats.zns_boolean, &size, NV_ENCODE_XDR));
4559 size -= noise;
4560 sum += size;
4561 (void) printf("%12s %4d %6d bytes (%5.2f%%)\n", "booleans:",
4562 (int)fnvlist_num_pairs(stats.zns_boolean),
4563 (int)size, 100.0 * size / total);
4564
4565 size = total - sum; /* treat remainder as nvlist overhead */
4566 (void) printf("%12s %4d %6d bytes (%5.2f%%)\n\n", "nvlists:",
4567 stats.zns_list_count, (int)size, 100.0 * size / total);
4568
4569 if (stats.zns_leaf_count > 0) {
4570 size_t average = stats.zns_leaf_total / stats.zns_leaf_count;
4571
4572 (void) printf("%12s %4d %6d bytes average\n", "leaf vdevs:",
4573 stats.zns_leaf_count, (int)average);
4574 (void) printf("%24d bytes largest\n",
4575 (int)stats.zns_leaf_largest);
4576
4577 if (dump_opt['l'] >= 3 && average > 0)
4578 (void) printf(" space for %d additional leaf vdevs\n",
4579 (int)((cap - total) / average));
4580 }
4581 (void) printf("\n");
4582
4583 nvlist_free(stats.zns_string);
4584 nvlist_free(stats.zns_uint64);
4585 nvlist_free(stats.zns_boolean);
4586 }
4587
4588 typedef struct cksum_record {
4589 zio_cksum_t cksum;
4590 boolean_t labels[VDEV_LABELS];
4591 avl_node_t link;
4592 } cksum_record_t;
4593
4594 static int
cksum_record_compare(const void * x1,const void * x2)4595 cksum_record_compare(const void *x1, const void *x2)
4596 {
4597 const cksum_record_t *l = (cksum_record_t *)x1;
4598 const cksum_record_t *r = (cksum_record_t *)x2;
4599 int arraysize = ARRAY_SIZE(l->cksum.zc_word);
4600 int difference = 0;
4601
4602 for (int i = 0; i < arraysize; i++) {
4603 difference = TREE_CMP(l->cksum.zc_word[i], r->cksum.zc_word[i]);
4604 if (difference)
4605 break;
4606 }
4607
4608 return (difference);
4609 }
4610
4611 static cksum_record_t *
cksum_record_alloc(zio_cksum_t * cksum,int l)4612 cksum_record_alloc(zio_cksum_t *cksum, int l)
4613 {
4614 cksum_record_t *rec;
4615
4616 rec = umem_zalloc(sizeof (*rec), UMEM_NOFAIL);
4617 rec->cksum = *cksum;
4618 rec->labels[l] = B_TRUE;
4619
4620 return (rec);
4621 }
4622
4623 static cksum_record_t *
cksum_record_lookup(avl_tree_t * tree,zio_cksum_t * cksum)4624 cksum_record_lookup(avl_tree_t *tree, zio_cksum_t *cksum)
4625 {
4626 cksum_record_t lookup = { .cksum = *cksum };
4627 avl_index_t where;
4628
4629 return (avl_find(tree, &lookup, &where));
4630 }
4631
4632 static cksum_record_t *
cksum_record_insert(avl_tree_t * tree,zio_cksum_t * cksum,int l)4633 cksum_record_insert(avl_tree_t *tree, zio_cksum_t *cksum, int l)
4634 {
4635 cksum_record_t *rec;
4636
4637 rec = cksum_record_lookup(tree, cksum);
4638 if (rec) {
4639 rec->labels[l] = B_TRUE;
4640 } else {
4641 rec = cksum_record_alloc(cksum, l);
4642 avl_add(tree, rec);
4643 }
4644
4645 return (rec);
4646 }
4647
4648 static int
first_label(cksum_record_t * rec)4649 first_label(cksum_record_t *rec)
4650 {
4651 for (int i = 0; i < VDEV_LABELS; i++)
4652 if (rec->labels[i])
4653 return (i);
4654
4655 return (-1);
4656 }
4657
4658 static void
print_label_numbers(const char * prefix,const cksum_record_t * rec)4659 print_label_numbers(const char *prefix, const cksum_record_t *rec)
4660 {
4661 fputs(prefix, stdout);
4662 for (int i = 0; i < VDEV_LABELS; i++)
4663 if (rec->labels[i] == B_TRUE)
4664 printf("%d ", i);
4665 putchar('\n');
4666 }
4667
4668 #define MAX_UBERBLOCK_COUNT (VDEV_UBERBLOCK_RING >> UBERBLOCK_SHIFT)
4669
4670 typedef struct zdb_label {
4671 vdev_label_t label;
4672 uint64_t label_offset;
4673 nvlist_t *config_nv;
4674 cksum_record_t *config;
4675 cksum_record_t *uberblocks[MAX_UBERBLOCK_COUNT];
4676 boolean_t header_printed;
4677 boolean_t read_failed;
4678 boolean_t cksum_valid;
4679 } zdb_label_t;
4680
4681 static void
print_label_header(zdb_label_t * label,int l)4682 print_label_header(zdb_label_t *label, int l)
4683 {
4684
4685 if (dump_opt['q'])
4686 return;
4687
4688 if (label->header_printed == B_TRUE)
4689 return;
4690
4691 (void) printf("------------------------------------\n");
4692 (void) printf("LABEL %d %s\n", l,
4693 label->cksum_valid ? "" : "(Bad label cksum)");
4694 (void) printf("------------------------------------\n");
4695
4696 label->header_printed = B_TRUE;
4697 }
4698
4699 static void
print_l2arc_header(void)4700 print_l2arc_header(void)
4701 {
4702 (void) printf("------------------------------------\n");
4703 (void) printf("L2ARC device header\n");
4704 (void) printf("------------------------------------\n");
4705 }
4706
4707 static void
print_l2arc_log_blocks(void)4708 print_l2arc_log_blocks(void)
4709 {
4710 (void) printf("------------------------------------\n");
4711 (void) printf("L2ARC device log blocks\n");
4712 (void) printf("------------------------------------\n");
4713 }
4714
4715 static void
dump_l2arc_log_entries(uint64_t log_entries,l2arc_log_ent_phys_t * le,uint64_t i)4716 dump_l2arc_log_entries(uint64_t log_entries,
4717 l2arc_log_ent_phys_t *le, uint64_t i)
4718 {
4719 for (int j = 0; j < log_entries; j++) {
4720 dva_t dva = le[j].le_dva;
4721 (void) printf("lb[%4llu]\tle[%4d]\tDVA asize: %llu, "
4722 "vdev: %llu, offset: %llu\n",
4723 (u_longlong_t)i, j + 1,
4724 (u_longlong_t)DVA_GET_ASIZE(&dva),
4725 (u_longlong_t)DVA_GET_VDEV(&dva),
4726 (u_longlong_t)DVA_GET_OFFSET(&dva));
4727 (void) printf("|\t\t\t\tbirth: %llu\n",
4728 (u_longlong_t)le[j].le_birth);
4729 (void) printf("|\t\t\t\tlsize: %llu\n",
4730 (u_longlong_t)L2BLK_GET_LSIZE((&le[j])->le_prop));
4731 (void) printf("|\t\t\t\tpsize: %llu\n",
4732 (u_longlong_t)L2BLK_GET_PSIZE((&le[j])->le_prop));
4733 (void) printf("|\t\t\t\tcompr: %llu\n",
4734 (u_longlong_t)L2BLK_GET_COMPRESS((&le[j])->le_prop));
4735 (void) printf("|\t\t\t\tcomplevel: %llu\n",
4736 (u_longlong_t)(&le[j])->le_complevel);
4737 (void) printf("|\t\t\t\ttype: %llu\n",
4738 (u_longlong_t)L2BLK_GET_TYPE((&le[j])->le_prop));
4739 (void) printf("|\t\t\t\tprotected: %llu\n",
4740 (u_longlong_t)L2BLK_GET_PROTECTED((&le[j])->le_prop));
4741 (void) printf("|\t\t\t\tprefetch: %llu\n",
4742 (u_longlong_t)L2BLK_GET_PREFETCH((&le[j])->le_prop));
4743 (void) printf("|\t\t\t\taddress: %llu\n",
4744 (u_longlong_t)le[j].le_daddr);
4745 (void) printf("|\t\t\t\tARC state: %llu\n",
4746 (u_longlong_t)L2BLK_GET_STATE((&le[j])->le_prop));
4747 (void) printf("|\n");
4748 }
4749 (void) printf("\n");
4750 }
4751
4752 static void
dump_l2arc_log_blkptr(const l2arc_log_blkptr_t * lbps)4753 dump_l2arc_log_blkptr(const l2arc_log_blkptr_t *lbps)
4754 {
4755 (void) printf("|\t\tdaddr: %llu\n", (u_longlong_t)lbps->lbp_daddr);
4756 (void) printf("|\t\tpayload_asize: %llu\n",
4757 (u_longlong_t)lbps->lbp_payload_asize);
4758 (void) printf("|\t\tpayload_start: %llu\n",
4759 (u_longlong_t)lbps->lbp_payload_start);
4760 (void) printf("|\t\tlsize: %llu\n",
4761 (u_longlong_t)L2BLK_GET_LSIZE(lbps->lbp_prop));
4762 (void) printf("|\t\tasize: %llu\n",
4763 (u_longlong_t)L2BLK_GET_PSIZE(lbps->lbp_prop));
4764 (void) printf("|\t\tcompralgo: %llu\n",
4765 (u_longlong_t)L2BLK_GET_COMPRESS(lbps->lbp_prop));
4766 (void) printf("|\t\tcksumalgo: %llu\n",
4767 (u_longlong_t)L2BLK_GET_CHECKSUM(lbps->lbp_prop));
4768 (void) printf("|\n\n");
4769 }
4770
4771 static void
dump_l2arc_log_blocks(int fd,const l2arc_dev_hdr_phys_t * l2dhdr,l2arc_dev_hdr_phys_t * rebuild)4772 dump_l2arc_log_blocks(int fd, const l2arc_dev_hdr_phys_t *l2dhdr,
4773 l2arc_dev_hdr_phys_t *rebuild)
4774 {
4775 l2arc_log_blk_phys_t this_lb;
4776 uint64_t asize;
4777 l2arc_log_blkptr_t lbps[2];
4778 zio_cksum_t cksum;
4779 int failed = 0;
4780 l2arc_dev_t dev;
4781
4782 if (!dump_opt['q'])
4783 print_l2arc_log_blocks();
4784 memcpy(lbps, l2dhdr->dh_start_lbps, sizeof (lbps));
4785
4786 dev.l2ad_evict = l2dhdr->dh_evict;
4787 dev.l2ad_start = l2dhdr->dh_start;
4788 dev.l2ad_end = l2dhdr->dh_end;
4789
4790 if (l2dhdr->dh_start_lbps[0].lbp_daddr == 0) {
4791 /* no log blocks to read */
4792 if (!dump_opt['q']) {
4793 (void) printf("No log blocks to read\n");
4794 (void) printf("\n");
4795 }
4796 return;
4797 } else {
4798 dev.l2ad_hand = lbps[0].lbp_daddr +
4799 L2BLK_GET_PSIZE((&lbps[0])->lbp_prop);
4800 }
4801
4802 dev.l2ad_first = !!(l2dhdr->dh_flags & L2ARC_DEV_HDR_EVICT_FIRST);
4803
4804 for (;;) {
4805 if (!l2arc_log_blkptr_valid(&dev, &lbps[0]))
4806 break;
4807
4808 /* L2BLK_GET_PSIZE returns aligned size for log blocks */
4809 asize = L2BLK_GET_PSIZE((&lbps[0])->lbp_prop);
4810 if (pread64(fd, &this_lb, asize, lbps[0].lbp_daddr) != asize) {
4811 if (!dump_opt['q']) {
4812 (void) printf("Error while reading next log "
4813 "block\n\n");
4814 }
4815 break;
4816 }
4817
4818 fletcher_4_native_varsize(&this_lb, asize, &cksum);
4819 if (!ZIO_CHECKSUM_EQUAL(cksum, lbps[0].lbp_cksum)) {
4820 failed++;
4821 if (!dump_opt['q']) {
4822 (void) printf("Invalid cksum\n");
4823 dump_l2arc_log_blkptr(&lbps[0]);
4824 }
4825 break;
4826 }
4827
4828 switch (L2BLK_GET_COMPRESS((&lbps[0])->lbp_prop)) {
4829 case ZIO_COMPRESS_OFF:
4830 break;
4831 default: {
4832 abd_t *abd = abd_alloc_linear(asize, B_TRUE);
4833 abd_copy_from_buf_off(abd, &this_lb, 0, asize);
4834 abd_t dabd;
4835 abd_get_from_buf_struct(&dabd, &this_lb,
4836 sizeof (this_lb));
4837 int err = zio_decompress_data(L2BLK_GET_COMPRESS(
4838 (&lbps[0])->lbp_prop), abd, &dabd,
4839 asize, sizeof (this_lb), NULL);
4840 abd_free(&dabd);
4841 abd_free(abd);
4842 if (err != 0) {
4843 (void) printf("L2ARC block decompression "
4844 "failed\n");
4845 goto out;
4846 }
4847 break;
4848 }
4849 }
4850
4851 if (this_lb.lb_magic == BSWAP_64(L2ARC_LOG_BLK_MAGIC))
4852 byteswap_uint64_array(&this_lb, sizeof (this_lb));
4853 if (this_lb.lb_magic != L2ARC_LOG_BLK_MAGIC) {
4854 if (!dump_opt['q'])
4855 (void) printf("Invalid log block magic\n\n");
4856 break;
4857 }
4858
4859 rebuild->dh_lb_count++;
4860 rebuild->dh_lb_asize += asize;
4861 if (dump_opt['l'] > 1 && !dump_opt['q']) {
4862 (void) printf("lb[%4llu]\tmagic: %llu\n",
4863 (u_longlong_t)rebuild->dh_lb_count,
4864 (u_longlong_t)this_lb.lb_magic);
4865 dump_l2arc_log_blkptr(&lbps[0]);
4866 }
4867
4868 if (dump_opt['l'] > 2 && !dump_opt['q'])
4869 dump_l2arc_log_entries(l2dhdr->dh_log_entries,
4870 this_lb.lb_entries,
4871 rebuild->dh_lb_count);
4872
4873 if (l2arc_range_check_overlap(lbps[1].lbp_payload_start,
4874 lbps[0].lbp_payload_start, dev.l2ad_evict) &&
4875 !dev.l2ad_first)
4876 break;
4877
4878 lbps[0] = lbps[1];
4879 lbps[1] = this_lb.lb_prev_lbp;
4880 }
4881 out:
4882 if (!dump_opt['q']) {
4883 (void) printf("log_blk_count:\t %llu with valid cksum\n",
4884 (u_longlong_t)rebuild->dh_lb_count);
4885 (void) printf("\t\t %d with invalid cksum\n", failed);
4886 (void) printf("log_blk_asize:\t %llu\n\n",
4887 (u_longlong_t)rebuild->dh_lb_asize);
4888 }
4889 }
4890
4891 static int
dump_l2arc_header(int fd)4892 dump_l2arc_header(int fd)
4893 {
4894 l2arc_dev_hdr_phys_t l2dhdr = {0}, rebuild = {0};
4895 int error = B_FALSE;
4896
4897 if (pread64(fd, &l2dhdr, sizeof (l2dhdr),
4898 VDEV_LABEL_START_SIZE) != sizeof (l2dhdr)) {
4899 error = B_TRUE;
4900 } else {
4901 if (l2dhdr.dh_magic == BSWAP_64(L2ARC_DEV_HDR_MAGIC))
4902 byteswap_uint64_array(&l2dhdr, sizeof (l2dhdr));
4903
4904 if (l2dhdr.dh_magic != L2ARC_DEV_HDR_MAGIC)
4905 error = B_TRUE;
4906 }
4907
4908 if (error) {
4909 (void) printf("L2ARC device header not found\n\n");
4910 /* Do not return an error here for backward compatibility */
4911 return (0);
4912 } else if (!dump_opt['q']) {
4913 print_l2arc_header();
4914
4915 (void) printf(" magic: %llu\n",
4916 (u_longlong_t)l2dhdr.dh_magic);
4917 (void) printf(" version: %llu\n",
4918 (u_longlong_t)l2dhdr.dh_version);
4919 (void) printf(" pool_guid: %llu\n",
4920 (u_longlong_t)l2dhdr.dh_spa_guid);
4921 (void) printf(" flags: %llu\n",
4922 (u_longlong_t)l2dhdr.dh_flags);
4923 (void) printf(" start_lbps[0]: %llu\n",
4924 (u_longlong_t)
4925 l2dhdr.dh_start_lbps[0].lbp_daddr);
4926 (void) printf(" start_lbps[1]: %llu\n",
4927 (u_longlong_t)
4928 l2dhdr.dh_start_lbps[1].lbp_daddr);
4929 (void) printf(" log_blk_ent: %llu\n",
4930 (u_longlong_t)l2dhdr.dh_log_entries);
4931 (void) printf(" start: %llu\n",
4932 (u_longlong_t)l2dhdr.dh_start);
4933 (void) printf(" end: %llu\n",
4934 (u_longlong_t)l2dhdr.dh_end);
4935 (void) printf(" evict: %llu\n",
4936 (u_longlong_t)l2dhdr.dh_evict);
4937 (void) printf(" lb_asize_refcount: %llu\n",
4938 (u_longlong_t)l2dhdr.dh_lb_asize);
4939 (void) printf(" lb_count_refcount: %llu\n",
4940 (u_longlong_t)l2dhdr.dh_lb_count);
4941 (void) printf(" trim_action_time: %llu\n",
4942 (u_longlong_t)l2dhdr.dh_trim_action_time);
4943 (void) printf(" trim_state: %llu\n\n",
4944 (u_longlong_t)l2dhdr.dh_trim_state);
4945 }
4946
4947 dump_l2arc_log_blocks(fd, &l2dhdr, &rebuild);
4948 /*
4949 * The total aligned size of log blocks and the number of log blocks
4950 * reported in the header of the device may be less than what zdb
4951 * reports by dump_l2arc_log_blocks() which emulates l2arc_rebuild().
4952 * This happens because dump_l2arc_log_blocks() lacks the memory
4953 * pressure valve that l2arc_rebuild() has. Thus, if we are on a system
4954 * with low memory, l2arc_rebuild will exit prematurely and dh_lb_asize
4955 * and dh_lb_count will be lower to begin with than what exists on the
4956 * device. This is normal and zdb should not exit with an error. The
4957 * opposite case should never happen though, the values reported in the
4958 * header should never be higher than what dump_l2arc_log_blocks() and
4959 * l2arc_rebuild() report. If this happens there is a leak in the
4960 * accounting of log blocks.
4961 */
4962 if (l2dhdr.dh_lb_asize > rebuild.dh_lb_asize ||
4963 l2dhdr.dh_lb_count > rebuild.dh_lb_count)
4964 return (1);
4965
4966 return (0);
4967 }
4968
4969 static void
dump_config_from_label(zdb_label_t * label,size_t buflen,int l)4970 dump_config_from_label(zdb_label_t *label, size_t buflen, int l)
4971 {
4972 if (dump_opt['q'])
4973 return;
4974
4975 if ((dump_opt['l'] < 3) && (first_label(label->config) != l))
4976 return;
4977
4978 print_label_header(label, l);
4979 dump_nvlist(label->config_nv, 4);
4980 print_label_numbers(" labels = ", label->config);
4981
4982 if (dump_opt['l'] >= 2)
4983 dump_nvlist_stats(label->config_nv, buflen);
4984 }
4985
4986 #define ZDB_MAX_UB_HEADER_SIZE 32
4987
4988 static void
dump_label_uberblocks(zdb_label_t * label,uint64_t ashift,int label_num)4989 dump_label_uberblocks(zdb_label_t *label, uint64_t ashift, int label_num)
4990 {
4991
4992 vdev_t vd;
4993 char header[ZDB_MAX_UB_HEADER_SIZE];
4994
4995 vd.vdev_ashift = ashift;
4996 vd.vdev_top = &vd;
4997
4998 for (int i = 0; i < VDEV_UBERBLOCK_COUNT(&vd); i++) {
4999 uint64_t uoff = VDEV_UBERBLOCK_OFFSET(&vd, i);
5000 uberblock_t *ub = (void *)((char *)&label->label + uoff);
5001 cksum_record_t *rec = label->uberblocks[i];
5002
5003 if (rec == NULL) {
5004 if (dump_opt['u'] >= 2) {
5005 print_label_header(label, label_num);
5006 (void) printf(" Uberblock[%d] invalid\n", i);
5007 }
5008 continue;
5009 }
5010
5011 if ((dump_opt['u'] < 3) && (first_label(rec) != label_num))
5012 continue;
5013
5014 if ((dump_opt['u'] < 4) &&
5015 (ub->ub_mmp_magic == MMP_MAGIC) && ub->ub_mmp_delay &&
5016 (i >= VDEV_UBERBLOCK_COUNT(&vd) - MMP_BLOCKS_PER_LABEL))
5017 continue;
5018
5019 print_label_header(label, label_num);
5020 (void) snprintf(header, ZDB_MAX_UB_HEADER_SIZE,
5021 " Uberblock[%d]\n", i);
5022 dump_uberblock(ub, header, "");
5023 print_label_numbers(" labels = ", rec);
5024 }
5025 }
5026
5027 static char curpath[PATH_MAX];
5028
5029 /*
5030 * Iterate through the path components, recursively passing
5031 * current one's obj and remaining path until we find the obj
5032 * for the last one.
5033 */
5034 static int
dump_path_impl(objset_t * os,uint64_t obj,char * name,uint64_t * retobj)5035 dump_path_impl(objset_t *os, uint64_t obj, char *name, uint64_t *retobj)
5036 {
5037 int err;
5038 boolean_t header = B_TRUE;
5039 uint64_t child_obj;
5040 char *s;
5041 dmu_buf_t *db;
5042 dmu_object_info_t doi;
5043
5044 if ((s = strchr(name, '/')) != NULL)
5045 *s = '\0';
5046 err = zap_lookup(os, obj, name, 8, 1, &child_obj);
5047
5048 (void) strlcat(curpath, name, sizeof (curpath));
5049
5050 if (err != 0) {
5051 (void) fprintf(stderr, "failed to lookup %s: %s\n",
5052 curpath, strerror(err));
5053 return (err);
5054 }
5055
5056 child_obj = ZFS_DIRENT_OBJ(child_obj);
5057 err = sa_buf_hold(os, child_obj, FTAG, &db);
5058 if (err != 0) {
5059 (void) fprintf(stderr,
5060 "failed to get SA dbuf for obj %llu: %s\n",
5061 (u_longlong_t)child_obj, strerror(err));
5062 return (EINVAL);
5063 }
5064 dmu_object_info_from_db(db, &doi);
5065 sa_buf_rele(db, FTAG);
5066
5067 if (doi.doi_bonus_type != DMU_OT_SA &&
5068 doi.doi_bonus_type != DMU_OT_ZNODE) {
5069 (void) fprintf(stderr, "invalid bonus type %d for obj %llu\n",
5070 doi.doi_bonus_type, (u_longlong_t)child_obj);
5071 return (EINVAL);
5072 }
5073
5074 if (dump_opt['v'] > 6) {
5075 (void) printf("obj=%llu %s type=%d bonustype=%d\n",
5076 (u_longlong_t)child_obj, curpath, doi.doi_type,
5077 doi.doi_bonus_type);
5078 }
5079
5080 (void) strlcat(curpath, "/", sizeof (curpath));
5081
5082 switch (doi.doi_type) {
5083 case DMU_OT_DIRECTORY_CONTENTS:
5084 if (s != NULL && *(s + 1) != '\0')
5085 return (dump_path_impl(os, child_obj, s + 1, retobj));
5086 zfs_fallthrough;
5087 case DMU_OT_PLAIN_FILE_CONTENTS:
5088 if (retobj != NULL) {
5089 *retobj = child_obj;
5090 } else {
5091 dump_object(os, child_obj, dump_opt['v'], &header,
5092 NULL, 0);
5093 }
5094 return (0);
5095 default:
5096 (void) fprintf(stderr, "object %llu has non-file/directory "
5097 "type %d\n", (u_longlong_t)obj, doi.doi_type);
5098 break;
5099 }
5100
5101 return (EINVAL);
5102 }
5103
5104 /*
5105 * Dump the blocks for the object specified by path inside the dataset.
5106 */
5107 static int
dump_path(char * ds,char * path,uint64_t * retobj)5108 dump_path(char *ds, char *path, uint64_t *retobj)
5109 {
5110 int err;
5111 objset_t *os;
5112 uint64_t root_obj;
5113
5114 err = open_objset(ds, FTAG, &os);
5115 if (err != 0)
5116 return (err);
5117
5118 err = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1, &root_obj);
5119 if (err != 0) {
5120 (void) fprintf(stderr, "can't lookup root znode: %s\n",
5121 strerror(err));
5122 close_objset(os, FTAG);
5123 return (EINVAL);
5124 }
5125
5126 (void) snprintf(curpath, sizeof (curpath), "dataset=%s path=/", ds);
5127
5128 err = dump_path_impl(os, root_obj, path, retobj);
5129
5130 close_objset(os, FTAG);
5131 return (err);
5132 }
5133
5134 static int
dump_backup_bytes(objset_t * os,void * buf,int len,void * arg)5135 dump_backup_bytes(objset_t *os, void *buf, int len, void *arg)
5136 {
5137 const char *p = (const char *)buf;
5138 ssize_t nwritten;
5139
5140 (void) os;
5141 (void) arg;
5142
5143 /* Write the data out, handling short writes and signals. */
5144 while ((nwritten = write(STDOUT_FILENO, p, len)) < len) {
5145 if (nwritten < 0) {
5146 if (errno == EINTR)
5147 continue;
5148 return (errno);
5149 }
5150 p += nwritten;
5151 len -= nwritten;
5152 }
5153
5154 return (0);
5155 }
5156
5157 static void
dump_backup(const char * pool,uint64_t objset_id,const char * flagstr)5158 dump_backup(const char *pool, uint64_t objset_id, const char *flagstr)
5159 {
5160 boolean_t embed = B_FALSE;
5161 boolean_t large_block = B_FALSE;
5162 boolean_t compress = B_FALSE;
5163 boolean_t raw = B_FALSE;
5164
5165 const char *c;
5166 for (c = flagstr; c != NULL && *c != '\0'; c++) {
5167 switch (*c) {
5168 case 'e':
5169 embed = B_TRUE;
5170 break;
5171 case 'L':
5172 large_block = B_TRUE;
5173 break;
5174 case 'c':
5175 compress = B_TRUE;
5176 break;
5177 case 'w':
5178 raw = B_TRUE;
5179 break;
5180 default:
5181 fprintf(stderr, "dump_backup: invalid flag "
5182 "'%c'\n", *c);
5183 return;
5184 }
5185 }
5186
5187 if (isatty(STDOUT_FILENO)) {
5188 fprintf(stderr, "dump_backup: stream cannot be written "
5189 "to a terminal\n");
5190 return;
5191 }
5192
5193 offset_t off = 0;
5194 dmu_send_outparams_t out = {
5195 .dso_outfunc = dump_backup_bytes,
5196 .dso_dryrun = B_FALSE,
5197 };
5198
5199 int err = dmu_send_obj(pool, objset_id, /* fromsnap */0, embed,
5200 large_block, compress, raw, /* saved */ B_FALSE, STDOUT_FILENO,
5201 &off, &out);
5202 if (err != 0) {
5203 fprintf(stderr, "dump_backup: dmu_send_obj: %s\n",
5204 strerror(err));
5205 return;
5206 }
5207 }
5208
5209 static int
zdb_copy_object(objset_t * os,uint64_t srcobj,char * destfile)5210 zdb_copy_object(objset_t *os, uint64_t srcobj, char *destfile)
5211 {
5212 int err = 0;
5213 uint64_t size, readsize, oursize, offset;
5214 ssize_t writesize;
5215 sa_handle_t *hdl;
5216
5217 (void) printf("Copying object %" PRIu64 " to file %s\n", srcobj,
5218 destfile);
5219
5220 VERIFY3P(os, ==, sa_os);
5221 if ((err = sa_handle_get(os, srcobj, NULL, SA_HDL_PRIVATE, &hdl))) {
5222 (void) printf("Failed to get handle for SA znode\n");
5223 return (err);
5224 }
5225 if ((err = sa_lookup(hdl, sa_attr_table[ZPL_SIZE], &size, 8))) {
5226 (void) sa_handle_destroy(hdl);
5227 return (err);
5228 }
5229 (void) sa_handle_destroy(hdl);
5230
5231 (void) printf("Object %" PRIu64 " is %" PRIu64 " bytes\n", srcobj,
5232 size);
5233 if (size == 0) {
5234 return (EINVAL);
5235 }
5236
5237 int fd = open(destfile, O_WRONLY | O_CREAT | O_TRUNC, 0644);
5238 if (fd == -1)
5239 return (errno);
5240 /*
5241 * We cap the size at 1 mebibyte here to prevent
5242 * allocation failures and nigh-infinite printing if the
5243 * object is extremely large.
5244 */
5245 oursize = MIN(size, 1 << 20);
5246 offset = 0;
5247 char *buf = kmem_alloc(oursize, KM_NOSLEEP);
5248 if (buf == NULL) {
5249 (void) close(fd);
5250 return (ENOMEM);
5251 }
5252
5253 while (offset < size) {
5254 readsize = MIN(size - offset, 1 << 20);
5255 err = dmu_read(os, srcobj, offset, readsize, buf, 0);
5256 if (err != 0) {
5257 (void) printf("got error %u from dmu_read\n", err);
5258 kmem_free(buf, oursize);
5259 (void) close(fd);
5260 return (err);
5261 }
5262 if (dump_opt['v'] > 3) {
5263 (void) printf("Read offset=%" PRIu64 " size=%" PRIu64
5264 " error=%d\n", offset, readsize, err);
5265 }
5266
5267 writesize = write(fd, buf, readsize);
5268 if (writesize < 0) {
5269 err = errno;
5270 break;
5271 } else if (writesize != readsize) {
5272 /* Incomplete write */
5273 (void) fprintf(stderr, "Short write, only wrote %llu of"
5274 " %" PRIu64 " bytes, exiting...\n",
5275 (u_longlong_t)writesize, readsize);
5276 break;
5277 }
5278
5279 offset += readsize;
5280 }
5281
5282 (void) close(fd);
5283
5284 if (buf != NULL)
5285 kmem_free(buf, oursize);
5286
5287 return (err);
5288 }
5289
5290 static boolean_t
label_cksum_valid(vdev_label_t * label,uint64_t offset)5291 label_cksum_valid(vdev_label_t *label, uint64_t offset)
5292 {
5293 zio_checksum_info_t *ci = &zio_checksum_table[ZIO_CHECKSUM_LABEL];
5294 zio_cksum_t expected_cksum;
5295 zio_cksum_t actual_cksum;
5296 zio_cksum_t verifier;
5297 zio_eck_t *eck;
5298 int byteswap;
5299
5300 void *data = (char *)label + offsetof(vdev_label_t, vl_vdev_phys);
5301 eck = (zio_eck_t *)((char *)(data) + VDEV_PHYS_SIZE) - 1;
5302
5303 offset += offsetof(vdev_label_t, vl_vdev_phys);
5304 ZIO_SET_CHECKSUM(&verifier, offset, 0, 0, 0);
5305
5306 byteswap = (eck->zec_magic == BSWAP_64(ZEC_MAGIC));
5307 if (byteswap)
5308 byteswap_uint64_array(&verifier, sizeof (zio_cksum_t));
5309
5310 expected_cksum = eck->zec_cksum;
5311 eck->zec_cksum = verifier;
5312
5313 abd_t *abd = abd_get_from_buf(data, VDEV_PHYS_SIZE);
5314 ci->ci_func[byteswap](abd, VDEV_PHYS_SIZE, NULL, &actual_cksum);
5315 abd_free(abd);
5316
5317 if (byteswap)
5318 byteswap_uint64_array(&expected_cksum, sizeof (zio_cksum_t));
5319
5320 if (ZIO_CHECKSUM_EQUAL(actual_cksum, expected_cksum))
5321 return (B_TRUE);
5322
5323 return (B_FALSE);
5324 }
5325
5326 static int
dump_label(const char * dev)5327 dump_label(const char *dev)
5328 {
5329 char path[MAXPATHLEN];
5330 zdb_label_t labels[VDEV_LABELS] = {{{{0}}}};
5331 uint64_t psize, ashift, l2cache;
5332 struct stat64 statbuf;
5333 boolean_t config_found = B_FALSE;
5334 boolean_t error = B_FALSE;
5335 boolean_t read_l2arc_header = B_FALSE;
5336 avl_tree_t config_tree;
5337 avl_tree_t uberblock_tree;
5338 void *node, *cookie;
5339 int fd;
5340
5341 /*
5342 * Check if we were given absolute path and use it as is.
5343 * Otherwise if the provided vdev name doesn't point to a file,
5344 * try prepending expected disk paths and partition numbers.
5345 */
5346 (void) strlcpy(path, dev, sizeof (path));
5347 if (dev[0] != '/' && stat64(path, &statbuf) != 0) {
5348 int error;
5349
5350 error = zfs_resolve_shortname(dev, path, MAXPATHLEN);
5351 if (error == 0 && zfs_dev_is_whole_disk(path)) {
5352 if (zfs_append_partition(path, MAXPATHLEN) == -1)
5353 error = ENOENT;
5354 }
5355
5356 if (error || (stat64(path, &statbuf) != 0)) {
5357 (void) printf("failed to find device %s, try "
5358 "specifying absolute path instead\n", dev);
5359 return (1);
5360 }
5361 }
5362
5363 if ((fd = open64(path, O_RDONLY)) < 0) {
5364 (void) printf("cannot open '%s': %s\n", path, strerror(errno));
5365 zdb_exit(1);
5366 }
5367
5368 if (fstat64_blk(fd, &statbuf) != 0) {
5369 (void) printf("failed to stat '%s': %s\n", path,
5370 strerror(errno));
5371 (void) close(fd);
5372 zdb_exit(1);
5373 }
5374
5375 if (S_ISBLK(statbuf.st_mode) && zfs_dev_flush(fd) != 0)
5376 (void) printf("failed to invalidate cache '%s' : %s\n", path,
5377 strerror(errno));
5378
5379 avl_create(&config_tree, cksum_record_compare,
5380 sizeof (cksum_record_t), offsetof(cksum_record_t, link));
5381 avl_create(&uberblock_tree, cksum_record_compare,
5382 sizeof (cksum_record_t), offsetof(cksum_record_t, link));
5383
5384 psize = statbuf.st_size;
5385 psize = P2ALIGN_TYPED(psize, sizeof (vdev_label_t), uint64_t);
5386 ashift = SPA_MINBLOCKSHIFT;
5387
5388 /*
5389 * 1. Read the label from disk
5390 * 2. Verify label cksum
5391 * 3. Unpack the configuration and insert in config tree.
5392 * 4. Traverse all uberblocks and insert in uberblock tree.
5393 */
5394 for (int l = 0; l < VDEV_LABELS; l++) {
5395 zdb_label_t *label = &labels[l];
5396 char *buf = label->label.vl_vdev_phys.vp_nvlist;
5397 size_t buflen = sizeof (label->label.vl_vdev_phys.vp_nvlist);
5398 nvlist_t *config;
5399 cksum_record_t *rec;
5400 zio_cksum_t cksum;
5401 vdev_t vd;
5402
5403 label->label_offset = vdev_label_offset(psize, l, 0);
5404
5405 if (pread64(fd, &label->label, sizeof (label->label),
5406 label->label_offset) != sizeof (label->label)) {
5407 if (!dump_opt['q'])
5408 (void) printf("failed to read label %d\n", l);
5409 label->read_failed = B_TRUE;
5410 error = B_TRUE;
5411 continue;
5412 }
5413
5414 label->read_failed = B_FALSE;
5415 label->cksum_valid = label_cksum_valid(&label->label,
5416 label->label_offset);
5417
5418 if (nvlist_unpack(buf, buflen, &config, 0) == 0) {
5419 nvlist_t *vdev_tree = NULL;
5420 size_t size;
5421
5422 if ((nvlist_lookup_nvlist(config,
5423 ZPOOL_CONFIG_VDEV_TREE, &vdev_tree) != 0) ||
5424 (nvlist_lookup_uint64(vdev_tree,
5425 ZPOOL_CONFIG_ASHIFT, &ashift) != 0))
5426 ashift = SPA_MINBLOCKSHIFT;
5427
5428 if (nvlist_size(config, &size, NV_ENCODE_XDR) != 0)
5429 size = buflen;
5430
5431 /* If the device is a cache device read the header. */
5432 if (!read_l2arc_header) {
5433 if (nvlist_lookup_uint64(config,
5434 ZPOOL_CONFIG_POOL_STATE, &l2cache) == 0 &&
5435 l2cache == POOL_STATE_L2CACHE) {
5436 read_l2arc_header = B_TRUE;
5437 }
5438 }
5439
5440 fletcher_4_native_varsize(buf, size, &cksum);
5441 rec = cksum_record_insert(&config_tree, &cksum, l);
5442
5443 label->config = rec;
5444 label->config_nv = config;
5445 config_found = B_TRUE;
5446 } else {
5447 error = B_TRUE;
5448 }
5449
5450 vd.vdev_ashift = ashift;
5451 vd.vdev_top = &vd;
5452
5453 for (int i = 0; i < VDEV_UBERBLOCK_COUNT(&vd); i++) {
5454 uint64_t uoff = VDEV_UBERBLOCK_OFFSET(&vd, i);
5455 uberblock_t *ub = (void *)((char *)label + uoff);
5456
5457 if (uberblock_verify(ub))
5458 continue;
5459
5460 fletcher_4_native_varsize(ub, sizeof (*ub), &cksum);
5461 rec = cksum_record_insert(&uberblock_tree, &cksum, l);
5462
5463 label->uberblocks[i] = rec;
5464 }
5465 }
5466
5467 /*
5468 * Dump the label and uberblocks.
5469 */
5470 for (int l = 0; l < VDEV_LABELS; l++) {
5471 zdb_label_t *label = &labels[l];
5472 size_t buflen = sizeof (label->label.vl_vdev_phys.vp_nvlist);
5473
5474 if (label->read_failed == B_TRUE)
5475 continue;
5476
5477 if (label->config_nv) {
5478 dump_config_from_label(label, buflen, l);
5479 } else {
5480 if (!dump_opt['q'])
5481 (void) printf("failed to unpack label %d\n", l);
5482 }
5483
5484 if (dump_opt['u'])
5485 dump_label_uberblocks(label, ashift, l);
5486
5487 nvlist_free(label->config_nv);
5488 }
5489
5490 /*
5491 * Dump the L2ARC header, if existent.
5492 */
5493 if (read_l2arc_header)
5494 error |= dump_l2arc_header(fd);
5495
5496 cookie = NULL;
5497 while ((node = avl_destroy_nodes(&config_tree, &cookie)) != NULL)
5498 umem_free(node, sizeof (cksum_record_t));
5499
5500 cookie = NULL;
5501 while ((node = avl_destroy_nodes(&uberblock_tree, &cookie)) != NULL)
5502 umem_free(node, sizeof (cksum_record_t));
5503
5504 avl_destroy(&config_tree);
5505 avl_destroy(&uberblock_tree);
5506
5507 (void) close(fd);
5508
5509 return (config_found == B_FALSE ? 2 :
5510 (error == B_TRUE ? 1 : 0));
5511 }
5512
5513 static uint64_t dataset_feature_count[SPA_FEATURES];
5514 static uint64_t global_feature_count[SPA_FEATURES];
5515 static uint64_t remap_deadlist_count = 0;
5516
5517 static int
dump_one_objset(const char * dsname,void * arg)5518 dump_one_objset(const char *dsname, void *arg)
5519 {
5520 (void) arg;
5521 int error;
5522 objset_t *os;
5523 spa_feature_t f;
5524
5525 error = open_objset(dsname, FTAG, &os);
5526 if (error != 0)
5527 return (0);
5528
5529 for (f = 0; f < SPA_FEATURES; f++) {
5530 if (!dsl_dataset_feature_is_active(dmu_objset_ds(os), f))
5531 continue;
5532 ASSERT(spa_feature_table[f].fi_flags &
5533 ZFEATURE_FLAG_PER_DATASET);
5534 dataset_feature_count[f]++;
5535 }
5536
5537 if (dsl_dataset_remap_deadlist_exists(dmu_objset_ds(os))) {
5538 remap_deadlist_count++;
5539 }
5540
5541 for (dsl_bookmark_node_t *dbn =
5542 avl_first(&dmu_objset_ds(os)->ds_bookmarks); dbn != NULL;
5543 dbn = AVL_NEXT(&dmu_objset_ds(os)->ds_bookmarks, dbn)) {
5544 mos_obj_refd(dbn->dbn_phys.zbm_redaction_obj);
5545 if (dbn->dbn_phys.zbm_redaction_obj != 0) {
5546 global_feature_count[
5547 SPA_FEATURE_REDACTION_BOOKMARKS]++;
5548 objset_t *mos = os->os_spa->spa_meta_objset;
5549 dnode_t *rl;
5550 VERIFY0(dnode_hold(mos,
5551 dbn->dbn_phys.zbm_redaction_obj, FTAG, &rl));
5552 if (rl->dn_have_spill) {
5553 global_feature_count[
5554 SPA_FEATURE_REDACTION_LIST_SPILL]++;
5555 }
5556 }
5557 if (dbn->dbn_phys.zbm_flags & ZBM_FLAG_HAS_FBN)
5558 global_feature_count[SPA_FEATURE_BOOKMARK_WRITTEN]++;
5559 }
5560
5561 if (dsl_deadlist_is_open(&dmu_objset_ds(os)->ds_dir->dd_livelist) &&
5562 !dmu_objset_is_snapshot(os)) {
5563 global_feature_count[SPA_FEATURE_LIVELIST]++;
5564 }
5565
5566 dump_objset(os);
5567 close_objset(os, FTAG);
5568 fuid_table_destroy();
5569 return (0);
5570 }
5571
5572 /*
5573 * Block statistics.
5574 */
5575 #define PSIZE_HISTO_SIZE (SPA_OLD_MAXBLOCKSIZE / SPA_MINBLOCKSIZE + 2)
5576 typedef struct zdb_blkstats {
5577 uint64_t zb_asize;
5578 uint64_t zb_lsize;
5579 uint64_t zb_psize;
5580 uint64_t zb_count;
5581 uint64_t zb_gangs;
5582 uint64_t zb_ditto_samevdev;
5583 uint64_t zb_ditto_same_ms;
5584 uint64_t zb_psize_histogram[PSIZE_HISTO_SIZE];
5585 } zdb_blkstats_t;
5586
5587 /*
5588 * Extended object types to report deferred frees and dedup auto-ditto blocks.
5589 */
5590 #define ZDB_OT_DEFERRED (DMU_OT_NUMTYPES + 0)
5591 #define ZDB_OT_DITTO (DMU_OT_NUMTYPES + 1)
5592 #define ZDB_OT_OTHER (DMU_OT_NUMTYPES + 2)
5593 #define ZDB_OT_TOTAL (DMU_OT_NUMTYPES + 3)
5594
5595 static const char *zdb_ot_extname[] = {
5596 "deferred free",
5597 "dedup ditto",
5598 "other",
5599 "Total",
5600 };
5601
5602 #define ZB_TOTAL DN_MAX_LEVELS
5603 #define SPA_MAX_FOR_16M (SPA_MAXBLOCKSHIFT+1)
5604
5605 typedef struct zdb_brt_entry {
5606 dva_t zbre_dva;
5607 uint64_t zbre_refcount;
5608 avl_node_t zbre_node;
5609 } zdb_brt_entry_t;
5610
5611 typedef struct zdb_cb {
5612 zdb_blkstats_t zcb_type[ZB_TOTAL + 1][ZDB_OT_TOTAL + 1];
5613 uint64_t zcb_removing_size;
5614 uint64_t zcb_checkpoint_size;
5615 uint64_t zcb_dedup_asize;
5616 uint64_t zcb_dedup_blocks;
5617 uint64_t zcb_clone_asize;
5618 uint64_t zcb_clone_blocks;
5619 uint64_t zcb_psize_count[SPA_MAX_FOR_16M];
5620 uint64_t zcb_lsize_count[SPA_MAX_FOR_16M];
5621 uint64_t zcb_asize_count[SPA_MAX_FOR_16M];
5622 uint64_t zcb_psize_len[SPA_MAX_FOR_16M];
5623 uint64_t zcb_lsize_len[SPA_MAX_FOR_16M];
5624 uint64_t zcb_asize_len[SPA_MAX_FOR_16M];
5625 uint64_t zcb_psize_total;
5626 uint64_t zcb_lsize_total;
5627 uint64_t zcb_asize_total;
5628 uint64_t zcb_embedded_blocks[NUM_BP_EMBEDDED_TYPES];
5629 uint64_t zcb_embedded_histogram[NUM_BP_EMBEDDED_TYPES]
5630 [BPE_PAYLOAD_SIZE + 1];
5631 uint64_t zcb_start;
5632 hrtime_t zcb_lastprint;
5633 uint64_t zcb_totalasize;
5634 uint64_t zcb_errors[256];
5635 int zcb_readfails;
5636 int zcb_haderrors;
5637 spa_t *zcb_spa;
5638 uint32_t **zcb_vd_obsolete_counts;
5639 avl_tree_t zcb_brt;
5640 boolean_t zcb_brt_is_active;
5641 } zdb_cb_t;
5642
5643 /* test if two DVA offsets from same vdev are within the same metaslab */
5644 static boolean_t
same_metaslab(spa_t * spa,uint64_t vdev,uint64_t off1,uint64_t off2)5645 same_metaslab(spa_t *spa, uint64_t vdev, uint64_t off1, uint64_t off2)
5646 {
5647 vdev_t *vd = vdev_lookup_top(spa, vdev);
5648 uint64_t ms_shift = vd->vdev_ms_shift;
5649
5650 return ((off1 >> ms_shift) == (off2 >> ms_shift));
5651 }
5652
5653 /*
5654 * Used to simplify reporting of the histogram data.
5655 */
5656 typedef struct one_histo {
5657 const char *name;
5658 uint64_t *count;
5659 uint64_t *len;
5660 uint64_t cumulative;
5661 } one_histo_t;
5662
5663 /*
5664 * The number of separate histograms processed for psize, lsize and asize.
5665 */
5666 #define NUM_HISTO 3
5667
5668 /*
5669 * This routine will create a fixed column size output of three different
5670 * histograms showing by blocksize of 512 - 2^ SPA_MAX_FOR_16M
5671 * the count, length and cumulative length of the psize, lsize and
5672 * asize blocks.
5673 *
5674 * All three types of blocks are listed on a single line
5675 *
5676 * By default the table is printed in nicenumber format (e.g. 123K) but
5677 * if the '-P' parameter is specified then the full raw number (parseable)
5678 * is printed out.
5679 */
5680 static void
dump_size_histograms(zdb_cb_t * zcb)5681 dump_size_histograms(zdb_cb_t *zcb)
5682 {
5683 /*
5684 * A temporary buffer that allows us to convert a number into
5685 * a string using zdb_nicenumber to allow either raw or human
5686 * readable numbers to be output.
5687 */
5688 char numbuf[32];
5689
5690 /*
5691 * Define titles which are used in the headers of the tables
5692 * printed by this routine.
5693 */
5694 const char blocksize_title1[] = "block";
5695 const char blocksize_title2[] = "size";
5696 const char count_title[] = "Count";
5697 const char length_title[] = "Size";
5698 const char cumulative_title[] = "Cum.";
5699
5700 /*
5701 * Setup the histogram arrays (psize, lsize, and asize).
5702 */
5703 one_histo_t parm_histo[NUM_HISTO];
5704
5705 parm_histo[0].name = "psize";
5706 parm_histo[0].count = zcb->zcb_psize_count;
5707 parm_histo[0].len = zcb->zcb_psize_len;
5708 parm_histo[0].cumulative = 0;
5709
5710 parm_histo[1].name = "lsize";
5711 parm_histo[1].count = zcb->zcb_lsize_count;
5712 parm_histo[1].len = zcb->zcb_lsize_len;
5713 parm_histo[1].cumulative = 0;
5714
5715 parm_histo[2].name = "asize";
5716 parm_histo[2].count = zcb->zcb_asize_count;
5717 parm_histo[2].len = zcb->zcb_asize_len;
5718 parm_histo[2].cumulative = 0;
5719
5720
5721 (void) printf("\nBlock Size Histogram\n");
5722 /*
5723 * Print the first line titles
5724 */
5725 if (dump_opt['P'])
5726 (void) printf("\n%s\t", blocksize_title1);
5727 else
5728 (void) printf("\n%7s ", blocksize_title1);
5729
5730 for (int j = 0; j < NUM_HISTO; j++) {
5731 if (dump_opt['P']) {
5732 if (j < NUM_HISTO - 1) {
5733 (void) printf("%s\t\t\t", parm_histo[j].name);
5734 } else {
5735 /* Don't print trailing spaces */
5736 (void) printf(" %s", parm_histo[j].name);
5737 }
5738 } else {
5739 if (j < NUM_HISTO - 1) {
5740 /* Left aligned strings in the output */
5741 (void) printf("%-7s ",
5742 parm_histo[j].name);
5743 } else {
5744 /* Don't print trailing spaces */
5745 (void) printf("%s", parm_histo[j].name);
5746 }
5747 }
5748 }
5749 (void) printf("\n");
5750
5751 /*
5752 * Print the second line titles
5753 */
5754 if (dump_opt['P']) {
5755 (void) printf("%s\t", blocksize_title2);
5756 } else {
5757 (void) printf("%7s ", blocksize_title2);
5758 }
5759
5760 for (int i = 0; i < NUM_HISTO; i++) {
5761 if (dump_opt['P']) {
5762 (void) printf("%s\t%s\t%s\t",
5763 count_title, length_title, cumulative_title);
5764 } else {
5765 (void) printf("%7s%7s%7s",
5766 count_title, length_title, cumulative_title);
5767 }
5768 }
5769 (void) printf("\n");
5770
5771 /*
5772 * Print the rows
5773 */
5774 for (int i = SPA_MINBLOCKSHIFT; i < SPA_MAX_FOR_16M; i++) {
5775
5776 /*
5777 * Print the first column showing the blocksize
5778 */
5779 zdb_nicenum((1ULL << i), numbuf, sizeof (numbuf));
5780
5781 if (dump_opt['P']) {
5782 printf("%s", numbuf);
5783 } else {
5784 printf("%7s:", numbuf);
5785 }
5786
5787 /*
5788 * Print the remaining set of 3 columns per size:
5789 * for psize, lsize and asize
5790 */
5791 for (int j = 0; j < NUM_HISTO; j++) {
5792 parm_histo[j].cumulative += parm_histo[j].len[i];
5793
5794 zdb_nicenum(parm_histo[j].count[i],
5795 numbuf, sizeof (numbuf));
5796 if (dump_opt['P'])
5797 (void) printf("\t%s", numbuf);
5798 else
5799 (void) printf("%7s", numbuf);
5800
5801 zdb_nicenum(parm_histo[j].len[i],
5802 numbuf, sizeof (numbuf));
5803 if (dump_opt['P'])
5804 (void) printf("\t%s", numbuf);
5805 else
5806 (void) printf("%7s", numbuf);
5807
5808 zdb_nicenum(parm_histo[j].cumulative,
5809 numbuf, sizeof (numbuf));
5810 if (dump_opt['P'])
5811 (void) printf("\t%s", numbuf);
5812 else
5813 (void) printf("%7s", numbuf);
5814 }
5815 (void) printf("\n");
5816 }
5817 }
5818
5819 static void
zdb_count_block(zdb_cb_t * zcb,zilog_t * zilog,const blkptr_t * bp,dmu_object_type_t type)5820 zdb_count_block(zdb_cb_t *zcb, zilog_t *zilog, const blkptr_t *bp,
5821 dmu_object_type_t type)
5822 {
5823 int i;
5824
5825 ASSERT(type < ZDB_OT_TOTAL);
5826
5827 if (zilog && zil_bp_tree_add(zilog, bp) != 0)
5828 return;
5829
5830 /*
5831 * This flag controls if we will issue a claim for the block while
5832 * counting it, to ensure that all blocks are referenced in space maps.
5833 * We don't issue claims if we're not doing leak tracking, because it's
5834 * expensive if the user isn't interested. We also don't claim the
5835 * second or later occurences of cloned or dedup'd blocks, because we
5836 * already claimed them the first time.
5837 */
5838 boolean_t do_claim = !dump_opt['L'];
5839
5840 spa_config_enter(zcb->zcb_spa, SCL_CONFIG, FTAG, RW_READER);
5841
5842 blkptr_t tempbp;
5843 if (BP_GET_DEDUP(bp)) {
5844 /*
5845 * Dedup'd blocks are special. We need to count them, so we can
5846 * later uncount them when reporting leaked space, and we must
5847 * only claim them once.
5848 *
5849 * We use the existing dedup system to track what we've seen.
5850 * The first time we see a block, we do a ddt_lookup() to see
5851 * if it exists in the DDT. If we're doing leak tracking, we
5852 * claim the block at this time.
5853 *
5854 * Each time we see a block, we reduce the refcount in the
5855 * entry by one, and add to the size and count of dedup'd
5856 * blocks to report at the end.
5857 */
5858
5859 ddt_t *ddt = ddt_select(zcb->zcb_spa, bp);
5860
5861 ddt_enter(ddt);
5862
5863 /*
5864 * Find the block. This will create the entry in memory, but
5865 * we'll know if that happened by its refcount.
5866 */
5867 ddt_entry_t *dde = ddt_lookup(ddt, bp);
5868
5869 /*
5870 * ddt_lookup() can return NULL if this block didn't exist
5871 * in the DDT and creating it would take the DDT over its
5872 * quota. Since we got the block from disk, it must exist in
5873 * the DDT, so this can't happen. However, when unique entries
5874 * are pruned, the dedup bit can be set with no corresponding
5875 * entry in the DDT.
5876 */
5877 if (dde == NULL) {
5878 ddt_exit(ddt);
5879 goto skipped;
5880 }
5881
5882 /* Get the phys for this variant */
5883 ddt_phys_variant_t v = ddt_phys_select(ddt, dde, bp);
5884
5885 /*
5886 * This entry may have multiple sets of DVAs. We must claim
5887 * each set the first time we see them in a real block on disk,
5888 * or count them on subsequent occurences. We don't have a
5889 * convenient way to track the first time we see each variant,
5890 * so we repurpose dde_io as a set of "seen" flag bits. We can
5891 * do this safely in zdb because it never writes, so it will
5892 * never have a writing zio for this block in that pointer.
5893 */
5894 boolean_t seen = !!(((uintptr_t)dde->dde_io) & (1 << v));
5895 if (!seen)
5896 dde->dde_io =
5897 (void *)(((uintptr_t)dde->dde_io) | (1 << v));
5898
5899 /* Consume a reference for this block. */
5900 if (ddt_phys_total_refcnt(ddt, dde->dde_phys) > 0)
5901 ddt_phys_decref(dde->dde_phys, v);
5902
5903 /*
5904 * If this entry has a single flat phys, it may have been
5905 * extended with additional DVAs at some time in its life.
5906 * This block might be from before it was fully extended, and
5907 * so have fewer DVAs.
5908 *
5909 * If this is the first time we've seen this block, and we
5910 * claimed it as-is, then we would miss the claim on some
5911 * number of DVAs, which would then be seen as leaked.
5912 *
5913 * In all cases, if we've had fewer DVAs, then the asize would
5914 * be too small, and would lead to the pool apparently using
5915 * more space than allocated.
5916 *
5917 * To handle this, we copy the canonical set of DVAs from the
5918 * entry back to the block pointer before we claim it.
5919 */
5920 if (v == DDT_PHYS_FLAT) {
5921 ASSERT3U(BP_GET_BIRTH(bp), ==,
5922 ddt_phys_birth(dde->dde_phys, v));
5923 tempbp = *bp;
5924 ddt_bp_fill(dde->dde_phys, v, &tempbp,
5925 BP_GET_BIRTH(bp));
5926 bp = &tempbp;
5927 }
5928
5929 if (seen) {
5930 /*
5931 * The second or later time we see this block,
5932 * it's a duplicate and we count it.
5933 */
5934 zcb->zcb_dedup_asize += BP_GET_ASIZE(bp);
5935 zcb->zcb_dedup_blocks++;
5936
5937 /* Already claimed, don't do it again. */
5938 do_claim = B_FALSE;
5939 }
5940
5941 ddt_exit(ddt);
5942 } else if (zcb->zcb_brt_is_active &&
5943 brt_maybe_exists(zcb->zcb_spa, bp)) {
5944 /*
5945 * Cloned blocks are special. We need to count them, so we can
5946 * later uncount them when reporting leaked space, and we must
5947 * only claim them once.
5948 *
5949 * To do this, we keep our own in-memory BRT. For each block
5950 * we haven't seen before, we look it up in the real BRT and
5951 * if its there, we note it and its refcount then proceed as
5952 * normal. If we see the block again, we count it as a clone
5953 * and then give it no further consideration.
5954 */
5955 zdb_brt_entry_t zbre_search, *zbre;
5956 avl_index_t where;
5957
5958 zbre_search.zbre_dva = bp->blk_dva[0];
5959 zbre = avl_find(&zcb->zcb_brt, &zbre_search, &where);
5960 if (zbre == NULL) {
5961 /* Not seen before; track it */
5962 uint64_t refcnt =
5963 brt_entry_get_refcount(zcb->zcb_spa, bp);
5964 if (refcnt > 0) {
5965 zbre = umem_zalloc(sizeof (zdb_brt_entry_t),
5966 UMEM_NOFAIL);
5967 zbre->zbre_dva = bp->blk_dva[0];
5968 zbre->zbre_refcount = refcnt;
5969 avl_insert(&zcb->zcb_brt, zbre, where);
5970 }
5971 } else {
5972 /*
5973 * Second or later occurrence, count it and take a
5974 * refcount.
5975 */
5976 zcb->zcb_clone_asize += BP_GET_ASIZE(bp);
5977 zcb->zcb_clone_blocks++;
5978
5979 zbre->zbre_refcount--;
5980 if (zbre->zbre_refcount == 0) {
5981 avl_remove(&zcb->zcb_brt, zbre);
5982 umem_free(zbre, sizeof (zdb_brt_entry_t));
5983 }
5984
5985 /* Already claimed, don't do it again. */
5986 do_claim = B_FALSE;
5987 }
5988 }
5989
5990 skipped:
5991 for (i = 0; i < 4; i++) {
5992 int l = (i < 2) ? BP_GET_LEVEL(bp) : ZB_TOTAL;
5993 int t = (i & 1) ? type : ZDB_OT_TOTAL;
5994 int equal;
5995 zdb_blkstats_t *zb = &zcb->zcb_type[l][t];
5996
5997 zb->zb_asize += BP_GET_ASIZE(bp);
5998 zb->zb_lsize += BP_GET_LSIZE(bp);
5999 zb->zb_psize += BP_GET_PSIZE(bp);
6000 zb->zb_count++;
6001
6002 /*
6003 * The histogram is only big enough to record blocks up to
6004 * SPA_OLD_MAXBLOCKSIZE; larger blocks go into the last,
6005 * "other", bucket.
6006 */
6007 unsigned idx = BP_GET_PSIZE(bp) >> SPA_MINBLOCKSHIFT;
6008 idx = MIN(idx, SPA_OLD_MAXBLOCKSIZE / SPA_MINBLOCKSIZE + 1);
6009 zb->zb_psize_histogram[idx]++;
6010
6011 zb->zb_gangs += BP_COUNT_GANG(bp);
6012
6013 switch (BP_GET_NDVAS(bp)) {
6014 case 2:
6015 if (DVA_GET_VDEV(&bp->blk_dva[0]) ==
6016 DVA_GET_VDEV(&bp->blk_dva[1])) {
6017 zb->zb_ditto_samevdev++;
6018
6019 if (same_metaslab(zcb->zcb_spa,
6020 DVA_GET_VDEV(&bp->blk_dva[0]),
6021 DVA_GET_OFFSET(&bp->blk_dva[0]),
6022 DVA_GET_OFFSET(&bp->blk_dva[1])))
6023 zb->zb_ditto_same_ms++;
6024 }
6025 break;
6026 case 3:
6027 equal = (DVA_GET_VDEV(&bp->blk_dva[0]) ==
6028 DVA_GET_VDEV(&bp->blk_dva[1])) +
6029 (DVA_GET_VDEV(&bp->blk_dva[0]) ==
6030 DVA_GET_VDEV(&bp->blk_dva[2])) +
6031 (DVA_GET_VDEV(&bp->blk_dva[1]) ==
6032 DVA_GET_VDEV(&bp->blk_dva[2]));
6033 if (equal != 0) {
6034 zb->zb_ditto_samevdev++;
6035
6036 if (DVA_GET_VDEV(&bp->blk_dva[0]) ==
6037 DVA_GET_VDEV(&bp->blk_dva[1]) &&
6038 same_metaslab(zcb->zcb_spa,
6039 DVA_GET_VDEV(&bp->blk_dva[0]),
6040 DVA_GET_OFFSET(&bp->blk_dva[0]),
6041 DVA_GET_OFFSET(&bp->blk_dva[1])))
6042 zb->zb_ditto_same_ms++;
6043 else if (DVA_GET_VDEV(&bp->blk_dva[0]) ==
6044 DVA_GET_VDEV(&bp->blk_dva[2]) &&
6045 same_metaslab(zcb->zcb_spa,
6046 DVA_GET_VDEV(&bp->blk_dva[0]),
6047 DVA_GET_OFFSET(&bp->blk_dva[0]),
6048 DVA_GET_OFFSET(&bp->blk_dva[2])))
6049 zb->zb_ditto_same_ms++;
6050 else if (DVA_GET_VDEV(&bp->blk_dva[1]) ==
6051 DVA_GET_VDEV(&bp->blk_dva[2]) &&
6052 same_metaslab(zcb->zcb_spa,
6053 DVA_GET_VDEV(&bp->blk_dva[1]),
6054 DVA_GET_OFFSET(&bp->blk_dva[1]),
6055 DVA_GET_OFFSET(&bp->blk_dva[2])))
6056 zb->zb_ditto_same_ms++;
6057 }
6058 break;
6059 }
6060 }
6061
6062 spa_config_exit(zcb->zcb_spa, SCL_CONFIG, FTAG);
6063
6064 if (BP_IS_EMBEDDED(bp)) {
6065 zcb->zcb_embedded_blocks[BPE_GET_ETYPE(bp)]++;
6066 zcb->zcb_embedded_histogram[BPE_GET_ETYPE(bp)]
6067 [BPE_GET_PSIZE(bp)]++;
6068 return;
6069 }
6070 /*
6071 * The binning histogram bins by powers of two up to
6072 * SPA_MAXBLOCKSIZE rather than creating bins for
6073 * every possible blocksize found in the pool.
6074 */
6075 int bin = highbit64(BP_GET_PSIZE(bp)) - 1;
6076
6077 zcb->zcb_psize_count[bin]++;
6078 zcb->zcb_psize_len[bin] += BP_GET_PSIZE(bp);
6079 zcb->zcb_psize_total += BP_GET_PSIZE(bp);
6080
6081 bin = highbit64(BP_GET_LSIZE(bp)) - 1;
6082
6083 zcb->zcb_lsize_count[bin]++;
6084 zcb->zcb_lsize_len[bin] += BP_GET_LSIZE(bp);
6085 zcb->zcb_lsize_total += BP_GET_LSIZE(bp);
6086
6087 bin = highbit64(BP_GET_ASIZE(bp)) - 1;
6088
6089 zcb->zcb_asize_count[bin]++;
6090 zcb->zcb_asize_len[bin] += BP_GET_ASIZE(bp);
6091 zcb->zcb_asize_total += BP_GET_ASIZE(bp);
6092
6093 if (!do_claim)
6094 return;
6095
6096 VERIFY0(zio_wait(zio_claim(NULL, zcb->zcb_spa,
6097 spa_min_claim_txg(zcb->zcb_spa), bp, NULL, NULL,
6098 ZIO_FLAG_CANFAIL)));
6099 }
6100
6101 static void
zdb_blkptr_done(zio_t * zio)6102 zdb_blkptr_done(zio_t *zio)
6103 {
6104 spa_t *spa = zio->io_spa;
6105 blkptr_t *bp = zio->io_bp;
6106 int ioerr = zio->io_error;
6107 zdb_cb_t *zcb = zio->io_private;
6108 zbookmark_phys_t *zb = &zio->io_bookmark;
6109
6110 mutex_enter(&spa->spa_scrub_lock);
6111 spa->spa_load_verify_bytes -= BP_GET_PSIZE(bp);
6112 cv_broadcast(&spa->spa_scrub_io_cv);
6113
6114 if (ioerr && !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
6115 char blkbuf[BP_SPRINTF_LEN];
6116
6117 zcb->zcb_haderrors = 1;
6118 zcb->zcb_errors[ioerr]++;
6119
6120 if (dump_opt['b'] >= 2)
6121 snprintf_blkptr(blkbuf, sizeof (blkbuf), bp);
6122 else
6123 blkbuf[0] = '\0';
6124
6125 (void) printf("zdb_blkptr_cb: "
6126 "Got error %d reading "
6127 "<%llu, %llu, %lld, %llx> %s -- skipping\n",
6128 ioerr,
6129 (u_longlong_t)zb->zb_objset,
6130 (u_longlong_t)zb->zb_object,
6131 (u_longlong_t)zb->zb_level,
6132 (u_longlong_t)zb->zb_blkid,
6133 blkbuf);
6134 }
6135 mutex_exit(&spa->spa_scrub_lock);
6136
6137 abd_free(zio->io_abd);
6138 }
6139
6140 static int
zdb_blkptr_cb(spa_t * spa,zilog_t * zilog,const blkptr_t * bp,const zbookmark_phys_t * zb,const dnode_phys_t * dnp,void * arg)6141 zdb_blkptr_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
6142 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
6143 {
6144 zdb_cb_t *zcb = arg;
6145 dmu_object_type_t type;
6146 boolean_t is_metadata;
6147
6148 if (zb->zb_level == ZB_DNODE_LEVEL)
6149 return (0);
6150
6151 if (dump_opt['b'] >= 5 && BP_GET_LOGICAL_BIRTH(bp) > 0) {
6152 char blkbuf[BP_SPRINTF_LEN];
6153 snprintf_blkptr(blkbuf, sizeof (blkbuf), bp);
6154 (void) printf("objset %llu object %llu "
6155 "level %lld offset 0x%llx %s\n",
6156 (u_longlong_t)zb->zb_objset,
6157 (u_longlong_t)zb->zb_object,
6158 (longlong_t)zb->zb_level,
6159 (u_longlong_t)blkid2offset(dnp, bp, zb),
6160 blkbuf);
6161 }
6162
6163 if (BP_IS_HOLE(bp) || BP_IS_REDACTED(bp))
6164 return (0);
6165
6166 type = BP_GET_TYPE(bp);
6167
6168 zdb_count_block(zcb, zilog, bp,
6169 (type & DMU_OT_NEWTYPE) ? ZDB_OT_OTHER : type);
6170
6171 is_metadata = (BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type));
6172
6173 if (!BP_IS_EMBEDDED(bp) &&
6174 (dump_opt['c'] > 1 || (dump_opt['c'] && is_metadata))) {
6175 size_t size = BP_GET_PSIZE(bp);
6176 abd_t *abd = abd_alloc(size, B_FALSE);
6177 int flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCRUB | ZIO_FLAG_RAW;
6178
6179 /* If it's an intent log block, failure is expected. */
6180 if (zb->zb_level == ZB_ZIL_LEVEL)
6181 flags |= ZIO_FLAG_SPECULATIVE;
6182
6183 mutex_enter(&spa->spa_scrub_lock);
6184 while (spa->spa_load_verify_bytes > max_inflight_bytes)
6185 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
6186 spa->spa_load_verify_bytes += size;
6187 mutex_exit(&spa->spa_scrub_lock);
6188
6189 zio_nowait(zio_read(NULL, spa, bp, abd, size,
6190 zdb_blkptr_done, zcb, ZIO_PRIORITY_ASYNC_READ, flags, zb));
6191 }
6192
6193 zcb->zcb_readfails = 0;
6194
6195 /* only call gethrtime() every 100 blocks */
6196 static int iters;
6197 if (++iters > 100)
6198 iters = 0;
6199 else
6200 return (0);
6201
6202 if (dump_opt['b'] < 5 && gethrtime() > zcb->zcb_lastprint + NANOSEC) {
6203 uint64_t now = gethrtime();
6204 char buf[10];
6205 uint64_t bytes = zcb->zcb_type[ZB_TOTAL][ZDB_OT_TOTAL].zb_asize;
6206 uint64_t kb_per_sec =
6207 1 + bytes / (1 + ((now - zcb->zcb_start) / 1000 / 1000));
6208 uint64_t sec_remaining =
6209 (zcb->zcb_totalasize - bytes) / 1024 / kb_per_sec;
6210
6211 /* make sure nicenum has enough space */
6212 _Static_assert(sizeof (buf) >= NN_NUMBUF_SZ, "buf truncated");
6213
6214 zfs_nicebytes(bytes, buf, sizeof (buf));
6215 (void) fprintf(stderr,
6216 "\r%5s completed (%4"PRIu64"MB/s) "
6217 "estimated time remaining: "
6218 "%"PRIu64"hr %02"PRIu64"min %02"PRIu64"sec ",
6219 buf, kb_per_sec / 1024,
6220 sec_remaining / 60 / 60,
6221 sec_remaining / 60 % 60,
6222 sec_remaining % 60);
6223
6224 zcb->zcb_lastprint = now;
6225 }
6226
6227 return (0);
6228 }
6229
6230 static void
zdb_leak(void * arg,uint64_t start,uint64_t size)6231 zdb_leak(void *arg, uint64_t start, uint64_t size)
6232 {
6233 vdev_t *vd = arg;
6234
6235 (void) printf("leaked space: vdev %llu, offset 0x%llx, size %llu\n",
6236 (u_longlong_t)vd->vdev_id, (u_longlong_t)start, (u_longlong_t)size);
6237 }
6238
6239 static metaslab_ops_t zdb_metaslab_ops = {
6240 NULL /* alloc */
6241 };
6242
6243 static int
load_unflushed_svr_segs_cb(spa_t * spa,space_map_entry_t * sme,uint64_t txg,void * arg)6244 load_unflushed_svr_segs_cb(spa_t *spa, space_map_entry_t *sme,
6245 uint64_t txg, void *arg)
6246 {
6247 spa_vdev_removal_t *svr = arg;
6248
6249 uint64_t offset = sme->sme_offset;
6250 uint64_t size = sme->sme_run;
6251
6252 /* skip vdevs we don't care about */
6253 if (sme->sme_vdev != svr->svr_vdev_id)
6254 return (0);
6255
6256 vdev_t *vd = vdev_lookup_top(spa, sme->sme_vdev);
6257 metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift];
6258 ASSERT(sme->sme_type == SM_ALLOC || sme->sme_type == SM_FREE);
6259
6260 if (txg < metaslab_unflushed_txg(ms))
6261 return (0);
6262
6263 if (sme->sme_type == SM_ALLOC)
6264 zfs_range_tree_add(svr->svr_allocd_segs, offset, size);
6265 else
6266 zfs_range_tree_remove(svr->svr_allocd_segs, offset, size);
6267
6268 return (0);
6269 }
6270
6271 static void
claim_segment_impl_cb(uint64_t inner_offset,vdev_t * vd,uint64_t offset,uint64_t size,void * arg)6272 claim_segment_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset,
6273 uint64_t size, void *arg)
6274 {
6275 (void) inner_offset, (void) arg;
6276
6277 /*
6278 * This callback was called through a remap from
6279 * a device being removed. Therefore, the vdev that
6280 * this callback is applied to is a concrete
6281 * vdev.
6282 */
6283 ASSERT(vdev_is_concrete(vd));
6284
6285 VERIFY0(metaslab_claim_impl(vd, offset, size,
6286 spa_min_claim_txg(vd->vdev_spa)));
6287 }
6288
6289 static void
claim_segment_cb(void * arg,uint64_t offset,uint64_t size)6290 claim_segment_cb(void *arg, uint64_t offset, uint64_t size)
6291 {
6292 vdev_t *vd = arg;
6293
6294 vdev_indirect_ops.vdev_op_remap(vd, offset, size,
6295 claim_segment_impl_cb, NULL);
6296 }
6297
6298 /*
6299 * After accounting for all allocated blocks that are directly referenced,
6300 * we might have missed a reference to a block from a partially complete
6301 * (and thus unused) indirect mapping object. We perform a secondary pass
6302 * through the metaslabs we have already mapped and claim the destination
6303 * blocks.
6304 */
6305 static void
zdb_claim_removing(spa_t * spa,zdb_cb_t * zcb)6306 zdb_claim_removing(spa_t *spa, zdb_cb_t *zcb)
6307 {
6308 if (dump_opt['L'])
6309 return;
6310
6311 if (spa->spa_vdev_removal == NULL)
6312 return;
6313
6314 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6315
6316 spa_vdev_removal_t *svr = spa->spa_vdev_removal;
6317 vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
6318 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
6319
6320 ASSERT0(zfs_range_tree_space(svr->svr_allocd_segs));
6321
6322 zfs_range_tree_t *allocs = zfs_range_tree_create(NULL, ZFS_RANGE_SEG64,
6323 NULL, 0, 0);
6324 for (uint64_t msi = 0; msi < vd->vdev_ms_count; msi++) {
6325 metaslab_t *msp = vd->vdev_ms[msi];
6326
6327 ASSERT0(zfs_range_tree_space(allocs));
6328 if (msp->ms_sm != NULL)
6329 VERIFY0(space_map_load(msp->ms_sm, allocs, SM_ALLOC));
6330 zfs_range_tree_vacate(allocs, zfs_range_tree_add,
6331 svr->svr_allocd_segs);
6332 }
6333 zfs_range_tree_destroy(allocs);
6334
6335 iterate_through_spacemap_logs(spa, load_unflushed_svr_segs_cb, svr);
6336
6337 /*
6338 * Clear everything past what has been synced,
6339 * because we have not allocated mappings for
6340 * it yet.
6341 */
6342 zfs_range_tree_clear(svr->svr_allocd_segs,
6343 vdev_indirect_mapping_max_offset(vim),
6344 vd->vdev_asize - vdev_indirect_mapping_max_offset(vim));
6345
6346 zcb->zcb_removing_size += zfs_range_tree_space(svr->svr_allocd_segs);
6347 zfs_range_tree_vacate(svr->svr_allocd_segs, claim_segment_cb, vd);
6348
6349 spa_config_exit(spa, SCL_CONFIG, FTAG);
6350 }
6351
6352 static int
increment_indirect_mapping_cb(void * arg,const blkptr_t * bp,boolean_t bp_freed,dmu_tx_t * tx)6353 increment_indirect_mapping_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
6354 dmu_tx_t *tx)
6355 {
6356 (void) tx;
6357 zdb_cb_t *zcb = arg;
6358 spa_t *spa = zcb->zcb_spa;
6359 vdev_t *vd;
6360 const dva_t *dva = &bp->blk_dva[0];
6361
6362 ASSERT(!bp_freed);
6363 ASSERT(!dump_opt['L']);
6364 ASSERT3U(BP_GET_NDVAS(bp), ==, 1);
6365
6366 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
6367 vd = vdev_lookup_top(zcb->zcb_spa, DVA_GET_VDEV(dva));
6368 ASSERT3P(vd, !=, NULL);
6369 spa_config_exit(spa, SCL_VDEV, FTAG);
6370
6371 ASSERT(vd->vdev_indirect_config.vic_mapping_object != 0);
6372 ASSERT3P(zcb->zcb_vd_obsolete_counts[vd->vdev_id], !=, NULL);
6373
6374 vdev_indirect_mapping_increment_obsolete_count(
6375 vd->vdev_indirect_mapping,
6376 DVA_GET_OFFSET(dva), DVA_GET_ASIZE(dva),
6377 zcb->zcb_vd_obsolete_counts[vd->vdev_id]);
6378
6379 return (0);
6380 }
6381
6382 static uint32_t *
zdb_load_obsolete_counts(vdev_t * vd)6383 zdb_load_obsolete_counts(vdev_t *vd)
6384 {
6385 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
6386 spa_t *spa = vd->vdev_spa;
6387 spa_condensing_indirect_phys_t *scip =
6388 &spa->spa_condensing_indirect_phys;
6389 uint64_t obsolete_sm_object;
6390 uint32_t *counts;
6391
6392 VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
6393 EQUIV(obsolete_sm_object != 0, vd->vdev_obsolete_sm != NULL);
6394 counts = vdev_indirect_mapping_load_obsolete_counts(vim);
6395 if (vd->vdev_obsolete_sm != NULL) {
6396 vdev_indirect_mapping_load_obsolete_spacemap(vim, counts,
6397 vd->vdev_obsolete_sm);
6398 }
6399 if (scip->scip_vdev == vd->vdev_id &&
6400 scip->scip_prev_obsolete_sm_object != 0) {
6401 space_map_t *prev_obsolete_sm = NULL;
6402 VERIFY0(space_map_open(&prev_obsolete_sm, spa->spa_meta_objset,
6403 scip->scip_prev_obsolete_sm_object, 0, vd->vdev_asize, 0));
6404 vdev_indirect_mapping_load_obsolete_spacemap(vim, counts,
6405 prev_obsolete_sm);
6406 space_map_close(prev_obsolete_sm);
6407 }
6408 return (counts);
6409 }
6410
6411 typedef struct checkpoint_sm_exclude_entry_arg {
6412 vdev_t *cseea_vd;
6413 uint64_t cseea_checkpoint_size;
6414 } checkpoint_sm_exclude_entry_arg_t;
6415
6416 static int
checkpoint_sm_exclude_entry_cb(space_map_entry_t * sme,void * arg)6417 checkpoint_sm_exclude_entry_cb(space_map_entry_t *sme, void *arg)
6418 {
6419 checkpoint_sm_exclude_entry_arg_t *cseea = arg;
6420 vdev_t *vd = cseea->cseea_vd;
6421 metaslab_t *ms = vd->vdev_ms[sme->sme_offset >> vd->vdev_ms_shift];
6422 uint64_t end = sme->sme_offset + sme->sme_run;
6423
6424 ASSERT(sme->sme_type == SM_FREE);
6425
6426 /*
6427 * Since the vdev_checkpoint_sm exists in the vdev level
6428 * and the ms_sm space maps exist in the metaslab level,
6429 * an entry in the checkpoint space map could theoretically
6430 * cross the boundaries of the metaslab that it belongs.
6431 *
6432 * In reality, because of the way that we populate and
6433 * manipulate the checkpoint's space maps currently,
6434 * there shouldn't be any entries that cross metaslabs.
6435 * Hence the assertion below.
6436 *
6437 * That said, there is no fundamental requirement that
6438 * the checkpoint's space map entries should not cross
6439 * metaslab boundaries. So if needed we could add code
6440 * that handles metaslab-crossing segments in the future.
6441 */
6442 VERIFY3U(sme->sme_offset, >=, ms->ms_start);
6443 VERIFY3U(end, <=, ms->ms_start + ms->ms_size);
6444
6445 /*
6446 * By removing the entry from the allocated segments we
6447 * also verify that the entry is there to begin with.
6448 */
6449 mutex_enter(&ms->ms_lock);
6450 zfs_range_tree_remove(ms->ms_allocatable, sme->sme_offset,
6451 sme->sme_run);
6452 mutex_exit(&ms->ms_lock);
6453
6454 cseea->cseea_checkpoint_size += sme->sme_run;
6455 return (0);
6456 }
6457
6458 static void
zdb_leak_init_vdev_exclude_checkpoint(vdev_t * vd,zdb_cb_t * zcb)6459 zdb_leak_init_vdev_exclude_checkpoint(vdev_t *vd, zdb_cb_t *zcb)
6460 {
6461 spa_t *spa = vd->vdev_spa;
6462 space_map_t *checkpoint_sm = NULL;
6463 uint64_t checkpoint_sm_obj;
6464
6465 /*
6466 * If there is no vdev_top_zap, we are in a pool whose
6467 * version predates the pool checkpoint feature.
6468 */
6469 if (vd->vdev_top_zap == 0)
6470 return;
6471
6472 /*
6473 * If there is no reference of the vdev_checkpoint_sm in
6474 * the vdev_top_zap, then one of the following scenarios
6475 * is true:
6476 *
6477 * 1] There is no checkpoint
6478 * 2] There is a checkpoint, but no checkpointed blocks
6479 * have been freed yet
6480 * 3] The current vdev is indirect
6481 *
6482 * In these cases we return immediately.
6483 */
6484 if (zap_contains(spa_meta_objset(spa), vd->vdev_top_zap,
6485 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) != 0)
6486 return;
6487
6488 VERIFY0(zap_lookup(spa_meta_objset(spa), vd->vdev_top_zap,
6489 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, sizeof (uint64_t), 1,
6490 &checkpoint_sm_obj));
6491
6492 checkpoint_sm_exclude_entry_arg_t cseea;
6493 cseea.cseea_vd = vd;
6494 cseea.cseea_checkpoint_size = 0;
6495
6496 VERIFY0(space_map_open(&checkpoint_sm, spa_meta_objset(spa),
6497 checkpoint_sm_obj, 0, vd->vdev_asize, vd->vdev_ashift));
6498
6499 VERIFY0(space_map_iterate(checkpoint_sm,
6500 space_map_length(checkpoint_sm),
6501 checkpoint_sm_exclude_entry_cb, &cseea));
6502 space_map_close(checkpoint_sm);
6503
6504 zcb->zcb_checkpoint_size += cseea.cseea_checkpoint_size;
6505 }
6506
6507 static void
zdb_leak_init_exclude_checkpoint(spa_t * spa,zdb_cb_t * zcb)6508 zdb_leak_init_exclude_checkpoint(spa_t *spa, zdb_cb_t *zcb)
6509 {
6510 ASSERT(!dump_opt['L']);
6511
6512 vdev_t *rvd = spa->spa_root_vdev;
6513 for (uint64_t c = 0; c < rvd->vdev_children; c++) {
6514 ASSERT3U(c, ==, rvd->vdev_child[c]->vdev_id);
6515 zdb_leak_init_vdev_exclude_checkpoint(rvd->vdev_child[c], zcb);
6516 }
6517 }
6518
6519 static int
count_unflushed_space_cb(spa_t * spa,space_map_entry_t * sme,uint64_t txg,void * arg)6520 count_unflushed_space_cb(spa_t *spa, space_map_entry_t *sme,
6521 uint64_t txg, void *arg)
6522 {
6523 int64_t *ualloc_space = arg;
6524
6525 uint64_t offset = sme->sme_offset;
6526 uint64_t vdev_id = sme->sme_vdev;
6527
6528 vdev_t *vd = vdev_lookup_top(spa, vdev_id);
6529 if (!vdev_is_concrete(vd))
6530 return (0);
6531
6532 metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift];
6533 ASSERT(sme->sme_type == SM_ALLOC || sme->sme_type == SM_FREE);
6534
6535 if (txg < metaslab_unflushed_txg(ms))
6536 return (0);
6537
6538 if (sme->sme_type == SM_ALLOC)
6539 *ualloc_space += sme->sme_run;
6540 else
6541 *ualloc_space -= sme->sme_run;
6542
6543 return (0);
6544 }
6545
6546 static int64_t
get_unflushed_alloc_space(spa_t * spa)6547 get_unflushed_alloc_space(spa_t *spa)
6548 {
6549 if (dump_opt['L'])
6550 return (0);
6551
6552 int64_t ualloc_space = 0;
6553 iterate_through_spacemap_logs(spa, count_unflushed_space_cb,
6554 &ualloc_space);
6555 return (ualloc_space);
6556 }
6557
6558 static int
load_unflushed_cb(spa_t * spa,space_map_entry_t * sme,uint64_t txg,void * arg)6559 load_unflushed_cb(spa_t *spa, space_map_entry_t *sme, uint64_t txg, void *arg)
6560 {
6561 maptype_t *uic_maptype = arg;
6562
6563 uint64_t offset = sme->sme_offset;
6564 uint64_t size = sme->sme_run;
6565 uint64_t vdev_id = sme->sme_vdev;
6566
6567 vdev_t *vd = vdev_lookup_top(spa, vdev_id);
6568
6569 /* skip indirect vdevs */
6570 if (!vdev_is_concrete(vd))
6571 return (0);
6572
6573 metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift];
6574
6575 ASSERT(sme->sme_type == SM_ALLOC || sme->sme_type == SM_FREE);
6576 ASSERT(*uic_maptype == SM_ALLOC || *uic_maptype == SM_FREE);
6577
6578 if (txg < metaslab_unflushed_txg(ms))
6579 return (0);
6580
6581 if (*uic_maptype == sme->sme_type)
6582 zfs_range_tree_add(ms->ms_allocatable, offset, size);
6583 else
6584 zfs_range_tree_remove(ms->ms_allocatable, offset, size);
6585
6586 return (0);
6587 }
6588
6589 static void
load_unflushed_to_ms_allocatables(spa_t * spa,maptype_t maptype)6590 load_unflushed_to_ms_allocatables(spa_t *spa, maptype_t maptype)
6591 {
6592 iterate_through_spacemap_logs(spa, load_unflushed_cb, &maptype);
6593 }
6594
6595 static void
load_concrete_ms_allocatable_trees(spa_t * spa,maptype_t maptype)6596 load_concrete_ms_allocatable_trees(spa_t *spa, maptype_t maptype)
6597 {
6598 vdev_t *rvd = spa->spa_root_vdev;
6599 for (uint64_t i = 0; i < rvd->vdev_children; i++) {
6600 vdev_t *vd = rvd->vdev_child[i];
6601
6602 ASSERT3U(i, ==, vd->vdev_id);
6603
6604 if (vd->vdev_ops == &vdev_indirect_ops)
6605 continue;
6606
6607 for (uint64_t m = 0; m < vd->vdev_ms_count; m++) {
6608 metaslab_t *msp = vd->vdev_ms[m];
6609
6610 (void) fprintf(stderr,
6611 "\rloading concrete vdev %llu, "
6612 "metaslab %llu of %llu ...",
6613 (longlong_t)vd->vdev_id,
6614 (longlong_t)msp->ms_id,
6615 (longlong_t)vd->vdev_ms_count);
6616
6617 mutex_enter(&msp->ms_lock);
6618 zfs_range_tree_vacate(msp->ms_allocatable, NULL, NULL);
6619
6620 /*
6621 * We don't want to spend the CPU manipulating the
6622 * size-ordered tree, so clear the range_tree ops.
6623 */
6624 msp->ms_allocatable->rt_ops = NULL;
6625
6626 if (msp->ms_sm != NULL) {
6627 VERIFY0(space_map_load(msp->ms_sm,
6628 msp->ms_allocatable, maptype));
6629 }
6630 if (!msp->ms_loaded)
6631 msp->ms_loaded = B_TRUE;
6632 mutex_exit(&msp->ms_lock);
6633 }
6634 }
6635
6636 load_unflushed_to_ms_allocatables(spa, maptype);
6637 }
6638
6639 /*
6640 * vm_idxp is an in-out parameter which (for indirect vdevs) is the
6641 * index in vim_entries that has the first entry in this metaslab.
6642 * On return, it will be set to the first entry after this metaslab.
6643 */
6644 static void
load_indirect_ms_allocatable_tree(vdev_t * vd,metaslab_t * msp,uint64_t * vim_idxp)6645 load_indirect_ms_allocatable_tree(vdev_t *vd, metaslab_t *msp,
6646 uint64_t *vim_idxp)
6647 {
6648 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
6649
6650 mutex_enter(&msp->ms_lock);
6651 zfs_range_tree_vacate(msp->ms_allocatable, NULL, NULL);
6652
6653 /*
6654 * We don't want to spend the CPU manipulating the
6655 * size-ordered tree, so clear the range_tree ops.
6656 */
6657 msp->ms_allocatable->rt_ops = NULL;
6658
6659 for (; *vim_idxp < vdev_indirect_mapping_num_entries(vim);
6660 (*vim_idxp)++) {
6661 vdev_indirect_mapping_entry_phys_t *vimep =
6662 &vim->vim_entries[*vim_idxp];
6663 uint64_t ent_offset = DVA_MAPPING_GET_SRC_OFFSET(vimep);
6664 uint64_t ent_len = DVA_GET_ASIZE(&vimep->vimep_dst);
6665 ASSERT3U(ent_offset, >=, msp->ms_start);
6666 if (ent_offset >= msp->ms_start + msp->ms_size)
6667 break;
6668
6669 /*
6670 * Mappings do not cross metaslab boundaries,
6671 * because we create them by walking the metaslabs.
6672 */
6673 ASSERT3U(ent_offset + ent_len, <=,
6674 msp->ms_start + msp->ms_size);
6675 zfs_range_tree_add(msp->ms_allocatable, ent_offset, ent_len);
6676 }
6677
6678 if (!msp->ms_loaded)
6679 msp->ms_loaded = B_TRUE;
6680 mutex_exit(&msp->ms_lock);
6681 }
6682
6683 static void
zdb_leak_init_prepare_indirect_vdevs(spa_t * spa,zdb_cb_t * zcb)6684 zdb_leak_init_prepare_indirect_vdevs(spa_t *spa, zdb_cb_t *zcb)
6685 {
6686 ASSERT(!dump_opt['L']);
6687
6688 vdev_t *rvd = spa->spa_root_vdev;
6689 for (uint64_t c = 0; c < rvd->vdev_children; c++) {
6690 vdev_t *vd = rvd->vdev_child[c];
6691
6692 ASSERT3U(c, ==, vd->vdev_id);
6693
6694 if (vd->vdev_ops != &vdev_indirect_ops)
6695 continue;
6696
6697 /*
6698 * Note: we don't check for mapping leaks on
6699 * removing vdevs because their ms_allocatable's
6700 * are used to look for leaks in allocated space.
6701 */
6702 zcb->zcb_vd_obsolete_counts[c] = zdb_load_obsolete_counts(vd);
6703
6704 /*
6705 * Normally, indirect vdevs don't have any
6706 * metaslabs. We want to set them up for
6707 * zio_claim().
6708 */
6709 vdev_metaslab_group_create(vd);
6710 VERIFY0(vdev_metaslab_init(vd, 0));
6711
6712 vdev_indirect_mapping_t *vim __maybe_unused =
6713 vd->vdev_indirect_mapping;
6714 uint64_t vim_idx = 0;
6715 for (uint64_t m = 0; m < vd->vdev_ms_count; m++) {
6716
6717 (void) fprintf(stderr,
6718 "\rloading indirect vdev %llu, "
6719 "metaslab %llu of %llu ...",
6720 (longlong_t)vd->vdev_id,
6721 (longlong_t)vd->vdev_ms[m]->ms_id,
6722 (longlong_t)vd->vdev_ms_count);
6723
6724 load_indirect_ms_allocatable_tree(vd, vd->vdev_ms[m],
6725 &vim_idx);
6726 }
6727 ASSERT3U(vim_idx, ==, vdev_indirect_mapping_num_entries(vim));
6728 }
6729 }
6730
6731 static void
zdb_leak_init(spa_t * spa,zdb_cb_t * zcb)6732 zdb_leak_init(spa_t *spa, zdb_cb_t *zcb)
6733 {
6734 zcb->zcb_spa = spa;
6735
6736 if (dump_opt['L'])
6737 return;
6738
6739 dsl_pool_t *dp = spa->spa_dsl_pool;
6740 vdev_t *rvd = spa->spa_root_vdev;
6741
6742 /*
6743 * We are going to be changing the meaning of the metaslab's
6744 * ms_allocatable. Ensure that the allocator doesn't try to
6745 * use the tree.
6746 */
6747 spa->spa_normal_class->mc_ops = &zdb_metaslab_ops;
6748 spa->spa_log_class->mc_ops = &zdb_metaslab_ops;
6749 spa->spa_embedded_log_class->mc_ops = &zdb_metaslab_ops;
6750
6751 zcb->zcb_vd_obsolete_counts =
6752 umem_zalloc(rvd->vdev_children * sizeof (uint32_t *),
6753 UMEM_NOFAIL);
6754
6755 /*
6756 * For leak detection, we overload the ms_allocatable trees
6757 * to contain allocated segments instead of free segments.
6758 * As a result, we can't use the normal metaslab_load/unload
6759 * interfaces.
6760 */
6761 zdb_leak_init_prepare_indirect_vdevs(spa, zcb);
6762 load_concrete_ms_allocatable_trees(spa, SM_ALLOC);
6763
6764 /*
6765 * On load_concrete_ms_allocatable_trees() we loaded all the
6766 * allocated entries from the ms_sm to the ms_allocatable for
6767 * each metaslab. If the pool has a checkpoint or is in the
6768 * middle of discarding a checkpoint, some of these blocks
6769 * may have been freed but their ms_sm may not have been
6770 * updated because they are referenced by the checkpoint. In
6771 * order to avoid false-positives during leak-detection, we
6772 * go through the vdev's checkpoint space map and exclude all
6773 * its entries from their relevant ms_allocatable.
6774 *
6775 * We also aggregate the space held by the checkpoint and add
6776 * it to zcb_checkpoint_size.
6777 *
6778 * Note that at this point we are also verifying that all the
6779 * entries on the checkpoint_sm are marked as allocated in
6780 * the ms_sm of their relevant metaslab.
6781 * [see comment in checkpoint_sm_exclude_entry_cb()]
6782 */
6783 zdb_leak_init_exclude_checkpoint(spa, zcb);
6784 ASSERT3U(zcb->zcb_checkpoint_size, ==, spa_get_checkpoint_space(spa));
6785
6786 /* for cleaner progress output */
6787 (void) fprintf(stderr, "\n");
6788
6789 if (bpobj_is_open(&dp->dp_obsolete_bpobj)) {
6790 ASSERT(spa_feature_is_enabled(spa,
6791 SPA_FEATURE_DEVICE_REMOVAL));
6792 (void) bpobj_iterate_nofree(&dp->dp_obsolete_bpobj,
6793 increment_indirect_mapping_cb, zcb, NULL);
6794 }
6795 }
6796
6797 static boolean_t
zdb_check_for_obsolete_leaks(vdev_t * vd,zdb_cb_t * zcb)6798 zdb_check_for_obsolete_leaks(vdev_t *vd, zdb_cb_t *zcb)
6799 {
6800 boolean_t leaks = B_FALSE;
6801 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
6802 uint64_t total_leaked = 0;
6803 boolean_t are_precise = B_FALSE;
6804
6805 ASSERT(vim != NULL);
6806
6807 for (uint64_t i = 0; i < vdev_indirect_mapping_num_entries(vim); i++) {
6808 vdev_indirect_mapping_entry_phys_t *vimep =
6809 &vim->vim_entries[i];
6810 uint64_t obsolete_bytes = 0;
6811 uint64_t offset = DVA_MAPPING_GET_SRC_OFFSET(vimep);
6812 metaslab_t *msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
6813
6814 /*
6815 * This is not very efficient but it's easy to
6816 * verify correctness.
6817 */
6818 for (uint64_t inner_offset = 0;
6819 inner_offset < DVA_GET_ASIZE(&vimep->vimep_dst);
6820 inner_offset += 1ULL << vd->vdev_ashift) {
6821 if (zfs_range_tree_contains(msp->ms_allocatable,
6822 offset + inner_offset, 1ULL << vd->vdev_ashift)) {
6823 obsolete_bytes += 1ULL << vd->vdev_ashift;
6824 }
6825 }
6826
6827 int64_t bytes_leaked = obsolete_bytes -
6828 zcb->zcb_vd_obsolete_counts[vd->vdev_id][i];
6829 ASSERT3U(DVA_GET_ASIZE(&vimep->vimep_dst), >=,
6830 zcb->zcb_vd_obsolete_counts[vd->vdev_id][i]);
6831
6832 VERIFY0(vdev_obsolete_counts_are_precise(vd, &are_precise));
6833 if (bytes_leaked != 0 && (are_precise || dump_opt['d'] >= 5)) {
6834 (void) printf("obsolete indirect mapping count "
6835 "mismatch on %llu:%llx:%llx : %llx bytes leaked\n",
6836 (u_longlong_t)vd->vdev_id,
6837 (u_longlong_t)DVA_MAPPING_GET_SRC_OFFSET(vimep),
6838 (u_longlong_t)DVA_GET_ASIZE(&vimep->vimep_dst),
6839 (u_longlong_t)bytes_leaked);
6840 }
6841 total_leaked += ABS(bytes_leaked);
6842 }
6843
6844 VERIFY0(vdev_obsolete_counts_are_precise(vd, &are_precise));
6845 if (!are_precise && total_leaked > 0) {
6846 int pct_leaked = total_leaked * 100 /
6847 vdev_indirect_mapping_bytes_mapped(vim);
6848 (void) printf("cannot verify obsolete indirect mapping "
6849 "counts of vdev %llu because precise feature was not "
6850 "enabled when it was removed: %d%% (%llx bytes) of mapping"
6851 "unreferenced\n",
6852 (u_longlong_t)vd->vdev_id, pct_leaked,
6853 (u_longlong_t)total_leaked);
6854 } else if (total_leaked > 0) {
6855 (void) printf("obsolete indirect mapping count mismatch "
6856 "for vdev %llu -- %llx total bytes mismatched\n",
6857 (u_longlong_t)vd->vdev_id,
6858 (u_longlong_t)total_leaked);
6859 leaks |= B_TRUE;
6860 }
6861
6862 vdev_indirect_mapping_free_obsolete_counts(vim,
6863 zcb->zcb_vd_obsolete_counts[vd->vdev_id]);
6864 zcb->zcb_vd_obsolete_counts[vd->vdev_id] = NULL;
6865
6866 return (leaks);
6867 }
6868
6869 static boolean_t
zdb_leak_fini(spa_t * spa,zdb_cb_t * zcb)6870 zdb_leak_fini(spa_t *spa, zdb_cb_t *zcb)
6871 {
6872 if (dump_opt['L'])
6873 return (B_FALSE);
6874
6875 boolean_t leaks = B_FALSE;
6876 vdev_t *rvd = spa->spa_root_vdev;
6877 for (unsigned c = 0; c < rvd->vdev_children; c++) {
6878 vdev_t *vd = rvd->vdev_child[c];
6879
6880 if (zcb->zcb_vd_obsolete_counts[c] != NULL) {
6881 leaks |= zdb_check_for_obsolete_leaks(vd, zcb);
6882 }
6883
6884 for (uint64_t m = 0; m < vd->vdev_ms_count; m++) {
6885 metaslab_t *msp = vd->vdev_ms[m];
6886 ASSERT3P(msp->ms_group, ==, (msp->ms_group->mg_class ==
6887 spa_embedded_log_class(spa)) ?
6888 vd->vdev_log_mg : vd->vdev_mg);
6889
6890 /*
6891 * ms_allocatable has been overloaded
6892 * to contain allocated segments. Now that
6893 * we finished traversing all blocks, any
6894 * block that remains in the ms_allocatable
6895 * represents an allocated block that we
6896 * did not claim during the traversal.
6897 * Claimed blocks would have been removed
6898 * from the ms_allocatable. For indirect
6899 * vdevs, space remaining in the tree
6900 * represents parts of the mapping that are
6901 * not referenced, which is not a bug.
6902 */
6903 if (vd->vdev_ops == &vdev_indirect_ops) {
6904 zfs_range_tree_vacate(msp->ms_allocatable,
6905 NULL, NULL);
6906 } else {
6907 zfs_range_tree_vacate(msp->ms_allocatable,
6908 zdb_leak, vd);
6909 }
6910 if (msp->ms_loaded) {
6911 msp->ms_loaded = B_FALSE;
6912 }
6913 }
6914 }
6915
6916 umem_free(zcb->zcb_vd_obsolete_counts,
6917 rvd->vdev_children * sizeof (uint32_t *));
6918 zcb->zcb_vd_obsolete_counts = NULL;
6919
6920 return (leaks);
6921 }
6922
6923 static int
count_block_cb(void * arg,const blkptr_t * bp,dmu_tx_t * tx)6924 count_block_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
6925 {
6926 (void) tx;
6927 zdb_cb_t *zcb = arg;
6928
6929 if (dump_opt['b'] >= 5) {
6930 char blkbuf[BP_SPRINTF_LEN];
6931 snprintf_blkptr(blkbuf, sizeof (blkbuf), bp);
6932 (void) printf("[%s] %s\n",
6933 "deferred free", blkbuf);
6934 }
6935 zdb_count_block(zcb, NULL, bp, ZDB_OT_DEFERRED);
6936 return (0);
6937 }
6938
6939 /*
6940 * Iterate over livelists which have been destroyed by the user but
6941 * are still present in the MOS, waiting to be freed
6942 */
6943 static void
iterate_deleted_livelists(spa_t * spa,ll_iter_t func,void * arg)6944 iterate_deleted_livelists(spa_t *spa, ll_iter_t func, void *arg)
6945 {
6946 objset_t *mos = spa->spa_meta_objset;
6947 uint64_t zap_obj;
6948 int err = zap_lookup(mos, DMU_POOL_DIRECTORY_OBJECT,
6949 DMU_POOL_DELETED_CLONES, sizeof (uint64_t), 1, &zap_obj);
6950 if (err == ENOENT)
6951 return;
6952 ASSERT0(err);
6953
6954 zap_cursor_t zc;
6955 zap_attribute_t *attrp = zap_attribute_alloc();
6956 dsl_deadlist_t ll;
6957 /* NULL out os prior to dsl_deadlist_open in case it's garbage */
6958 ll.dl_os = NULL;
6959 for (zap_cursor_init(&zc, mos, zap_obj);
6960 zap_cursor_retrieve(&zc, attrp) == 0;
6961 (void) zap_cursor_advance(&zc)) {
6962 VERIFY0(dsl_deadlist_open(&ll, mos, attrp->za_first_integer));
6963 func(&ll, arg);
6964 dsl_deadlist_close(&ll);
6965 }
6966 zap_cursor_fini(&zc);
6967 zap_attribute_free(attrp);
6968 }
6969
6970 static int
bpobj_count_block_cb(void * arg,const blkptr_t * bp,boolean_t bp_freed,dmu_tx_t * tx)6971 bpobj_count_block_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
6972 dmu_tx_t *tx)
6973 {
6974 ASSERT(!bp_freed);
6975 return (count_block_cb(arg, bp, tx));
6976 }
6977
6978 static int
livelist_entry_count_blocks_cb(void * args,dsl_deadlist_entry_t * dle)6979 livelist_entry_count_blocks_cb(void *args, dsl_deadlist_entry_t *dle)
6980 {
6981 zdb_cb_t *zbc = args;
6982 bplist_t blks;
6983 bplist_create(&blks);
6984 /* determine which blocks have been alloc'd but not freed */
6985 VERIFY0(dsl_process_sub_livelist(&dle->dle_bpobj, &blks, NULL, NULL));
6986 /* count those blocks */
6987 (void) bplist_iterate(&blks, count_block_cb, zbc, NULL);
6988 bplist_destroy(&blks);
6989 return (0);
6990 }
6991
6992 static void
livelist_count_blocks(dsl_deadlist_t * ll,void * arg)6993 livelist_count_blocks(dsl_deadlist_t *ll, void *arg)
6994 {
6995 dsl_deadlist_iterate(ll, livelist_entry_count_blocks_cb, arg);
6996 }
6997
6998 /*
6999 * Count the blocks in the livelists that have been destroyed by the user
7000 * but haven't yet been freed.
7001 */
7002 static void
deleted_livelists_count_blocks(spa_t * spa,zdb_cb_t * zbc)7003 deleted_livelists_count_blocks(spa_t *spa, zdb_cb_t *zbc)
7004 {
7005 iterate_deleted_livelists(spa, livelist_count_blocks, zbc);
7006 }
7007
7008 static void
dump_livelist_cb(dsl_deadlist_t * ll,void * arg)7009 dump_livelist_cb(dsl_deadlist_t *ll, void *arg)
7010 {
7011 ASSERT3P(arg, ==, NULL);
7012 global_feature_count[SPA_FEATURE_LIVELIST]++;
7013 dump_blkptr_list(ll, "Deleted Livelist");
7014 dsl_deadlist_iterate(ll, sublivelist_verify_lightweight, NULL);
7015 }
7016
7017 /*
7018 * Print out, register object references to, and increment feature counts for
7019 * livelists that have been destroyed by the user but haven't yet been freed.
7020 */
7021 static void
deleted_livelists_dump_mos(spa_t * spa)7022 deleted_livelists_dump_mos(spa_t *spa)
7023 {
7024 uint64_t zap_obj;
7025 objset_t *mos = spa->spa_meta_objset;
7026 int err = zap_lookup(mos, DMU_POOL_DIRECTORY_OBJECT,
7027 DMU_POOL_DELETED_CLONES, sizeof (uint64_t), 1, &zap_obj);
7028 if (err == ENOENT)
7029 return;
7030 mos_obj_refd(zap_obj);
7031 iterate_deleted_livelists(spa, dump_livelist_cb, NULL);
7032 }
7033
7034 static int
zdb_brt_entry_compare(const void * zcn1,const void * zcn2)7035 zdb_brt_entry_compare(const void *zcn1, const void *zcn2)
7036 {
7037 const dva_t *dva1 = &((const zdb_brt_entry_t *)zcn1)->zbre_dva;
7038 const dva_t *dva2 = &((const zdb_brt_entry_t *)zcn2)->zbre_dva;
7039 int cmp;
7040
7041 cmp = TREE_CMP(DVA_GET_VDEV(dva1), DVA_GET_VDEV(dva2));
7042 if (cmp == 0)
7043 cmp = TREE_CMP(DVA_GET_OFFSET(dva1), DVA_GET_OFFSET(dva2));
7044
7045 return (cmp);
7046 }
7047
7048 static int
dump_block_stats(spa_t * spa)7049 dump_block_stats(spa_t *spa)
7050 {
7051 zdb_cb_t *zcb;
7052 zdb_blkstats_t *zb, *tzb;
7053 uint64_t norm_alloc, norm_space, total_alloc, total_found;
7054 int flags = TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA |
7055 TRAVERSE_NO_DECRYPT | TRAVERSE_HARD;
7056 boolean_t leaks = B_FALSE;
7057 int e, c, err;
7058 bp_embedded_type_t i;
7059
7060 ddt_prefetch_all(spa);
7061
7062 zcb = umem_zalloc(sizeof (zdb_cb_t), UMEM_NOFAIL);
7063
7064 if (spa_feature_is_active(spa, SPA_FEATURE_BLOCK_CLONING)) {
7065 avl_create(&zcb->zcb_brt, zdb_brt_entry_compare,
7066 sizeof (zdb_brt_entry_t),
7067 offsetof(zdb_brt_entry_t, zbre_node));
7068 zcb->zcb_brt_is_active = B_TRUE;
7069 }
7070
7071 (void) printf("\nTraversing all blocks %s%s%s%s%s...\n\n",
7072 (dump_opt['c'] || !dump_opt['L']) ? "to verify " : "",
7073 (dump_opt['c'] == 1) ? "metadata " : "",
7074 dump_opt['c'] ? "checksums " : "",
7075 (dump_opt['c'] && !dump_opt['L']) ? "and verify " : "",
7076 !dump_opt['L'] ? "nothing leaked " : "");
7077
7078 /*
7079 * When leak detection is enabled we load all space maps as SM_ALLOC
7080 * maps, then traverse the pool claiming each block we discover. If
7081 * the pool is perfectly consistent, the segment trees will be empty
7082 * when we're done. Anything left over is a leak; any block we can't
7083 * claim (because it's not part of any space map) is a double
7084 * allocation, reference to a freed block, or an unclaimed log block.
7085 *
7086 * When leak detection is disabled (-L option) we still traverse the
7087 * pool claiming each block we discover, but we skip opening any space
7088 * maps.
7089 */
7090 zdb_leak_init(spa, zcb);
7091
7092 /*
7093 * If there's a deferred-free bplist, process that first.
7094 */
7095 (void) bpobj_iterate_nofree(&spa->spa_deferred_bpobj,
7096 bpobj_count_block_cb, zcb, NULL);
7097
7098 if (spa_version(spa) >= SPA_VERSION_DEADLISTS) {
7099 (void) bpobj_iterate_nofree(&spa->spa_dsl_pool->dp_free_bpobj,
7100 bpobj_count_block_cb, zcb, NULL);
7101 }
7102
7103 zdb_claim_removing(spa, zcb);
7104
7105 if (spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY)) {
7106 VERIFY3U(0, ==, bptree_iterate(spa->spa_meta_objset,
7107 spa->spa_dsl_pool->dp_bptree_obj, B_FALSE, count_block_cb,
7108 zcb, NULL));
7109 }
7110
7111 deleted_livelists_count_blocks(spa, zcb);
7112
7113 if (dump_opt['c'] > 1)
7114 flags |= TRAVERSE_PREFETCH_DATA;
7115
7116 zcb->zcb_totalasize = metaslab_class_get_alloc(spa_normal_class(spa));
7117 zcb->zcb_totalasize += metaslab_class_get_alloc(spa_special_class(spa));
7118 zcb->zcb_totalasize += metaslab_class_get_alloc(spa_dedup_class(spa));
7119 zcb->zcb_totalasize +=
7120 metaslab_class_get_alloc(spa_embedded_log_class(spa));
7121 zcb->zcb_start = zcb->zcb_lastprint = gethrtime();
7122 err = traverse_pool(spa, 0, flags, zdb_blkptr_cb, zcb);
7123
7124 /*
7125 * If we've traversed the data blocks then we need to wait for those
7126 * I/Os to complete. We leverage "The Godfather" zio to wait on
7127 * all async I/Os to complete.
7128 */
7129 if (dump_opt['c']) {
7130 for (c = 0; c < max_ncpus; c++) {
7131 (void) zio_wait(spa->spa_async_zio_root[c]);
7132 spa->spa_async_zio_root[c] = zio_root(spa, NULL, NULL,
7133 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
7134 ZIO_FLAG_GODFATHER);
7135 }
7136 }
7137 ASSERT0(spa->spa_load_verify_bytes);
7138
7139 /*
7140 * Done after zio_wait() since zcb_haderrors is modified in
7141 * zdb_blkptr_done()
7142 */
7143 zcb->zcb_haderrors |= err;
7144
7145 if (zcb->zcb_haderrors) {
7146 (void) printf("\nError counts:\n\n");
7147 (void) printf("\t%5s %s\n", "errno", "count");
7148 for (e = 0; e < 256; e++) {
7149 if (zcb->zcb_errors[e] != 0) {
7150 (void) printf("\t%5d %llu\n",
7151 e, (u_longlong_t)zcb->zcb_errors[e]);
7152 }
7153 }
7154 }
7155
7156 /*
7157 * Report any leaked segments.
7158 */
7159 leaks |= zdb_leak_fini(spa, zcb);
7160
7161 tzb = &zcb->zcb_type[ZB_TOTAL][ZDB_OT_TOTAL];
7162
7163 norm_alloc = metaslab_class_get_alloc(spa_normal_class(spa));
7164 norm_space = metaslab_class_get_space(spa_normal_class(spa));
7165
7166 total_alloc = norm_alloc +
7167 metaslab_class_get_alloc(spa_log_class(spa)) +
7168 metaslab_class_get_alloc(spa_embedded_log_class(spa)) +
7169 metaslab_class_get_alloc(spa_special_class(spa)) +
7170 metaslab_class_get_alloc(spa_dedup_class(spa)) +
7171 get_unflushed_alloc_space(spa);
7172 total_found =
7173 tzb->zb_asize - zcb->zcb_dedup_asize - zcb->zcb_clone_asize +
7174 zcb->zcb_removing_size + zcb->zcb_checkpoint_size;
7175
7176 if (total_found == total_alloc && !dump_opt['L']) {
7177 (void) printf("\n\tNo leaks (block sum matches space"
7178 " maps exactly)\n");
7179 } else if (!dump_opt['L']) {
7180 (void) printf("block traversal size %llu != alloc %llu "
7181 "(%s %lld)\n",
7182 (u_longlong_t)total_found,
7183 (u_longlong_t)total_alloc,
7184 (dump_opt['L']) ? "unreachable" : "leaked",
7185 (longlong_t)(total_alloc - total_found));
7186 }
7187
7188 if (tzb->zb_count == 0) {
7189 umem_free(zcb, sizeof (zdb_cb_t));
7190 return (2);
7191 }
7192
7193 (void) printf("\n");
7194 (void) printf("\t%-16s %14llu\n", "bp count:",
7195 (u_longlong_t)tzb->zb_count);
7196 (void) printf("\t%-16s %14llu\n", "ganged count:",
7197 (longlong_t)tzb->zb_gangs);
7198 (void) printf("\t%-16s %14llu avg: %6llu\n", "bp logical:",
7199 (u_longlong_t)tzb->zb_lsize,
7200 (u_longlong_t)(tzb->zb_lsize / tzb->zb_count));
7201 (void) printf("\t%-16s %14llu avg: %6llu compression: %6.2f\n",
7202 "bp physical:", (u_longlong_t)tzb->zb_psize,
7203 (u_longlong_t)(tzb->zb_psize / tzb->zb_count),
7204 (double)tzb->zb_lsize / tzb->zb_psize);
7205 (void) printf("\t%-16s %14llu avg: %6llu compression: %6.2f\n",
7206 "bp allocated:", (u_longlong_t)tzb->zb_asize,
7207 (u_longlong_t)(tzb->zb_asize / tzb->zb_count),
7208 (double)tzb->zb_lsize / tzb->zb_asize);
7209 (void) printf("\t%-16s %14llu ref>1: %6llu deduplication: %6.2f\n",
7210 "bp deduped:", (u_longlong_t)zcb->zcb_dedup_asize,
7211 (u_longlong_t)zcb->zcb_dedup_blocks,
7212 (double)zcb->zcb_dedup_asize / tzb->zb_asize + 1.0);
7213 (void) printf("\t%-16s %14llu count: %6llu\n",
7214 "bp cloned:", (u_longlong_t)zcb->zcb_clone_asize,
7215 (u_longlong_t)zcb->zcb_clone_blocks);
7216 (void) printf("\t%-16s %14llu used: %5.2f%%\n", "Normal class:",
7217 (u_longlong_t)norm_alloc, 100.0 * norm_alloc / norm_space);
7218
7219 if (spa_special_class(spa)->mc_allocator[0].mca_rotor != NULL) {
7220 uint64_t alloc = metaslab_class_get_alloc(
7221 spa_special_class(spa));
7222 uint64_t space = metaslab_class_get_space(
7223 spa_special_class(spa));
7224
7225 (void) printf("\t%-16s %14llu used: %5.2f%%\n",
7226 "Special class", (u_longlong_t)alloc,
7227 100.0 * alloc / space);
7228 }
7229
7230 if (spa_dedup_class(spa)->mc_allocator[0].mca_rotor != NULL) {
7231 uint64_t alloc = metaslab_class_get_alloc(
7232 spa_dedup_class(spa));
7233 uint64_t space = metaslab_class_get_space(
7234 spa_dedup_class(spa));
7235
7236 (void) printf("\t%-16s %14llu used: %5.2f%%\n",
7237 "Dedup class", (u_longlong_t)alloc,
7238 100.0 * alloc / space);
7239 }
7240
7241 if (spa_embedded_log_class(spa)->mc_allocator[0].mca_rotor != NULL) {
7242 uint64_t alloc = metaslab_class_get_alloc(
7243 spa_embedded_log_class(spa));
7244 uint64_t space = metaslab_class_get_space(
7245 spa_embedded_log_class(spa));
7246
7247 (void) printf("\t%-16s %14llu used: %5.2f%%\n",
7248 "Embedded log class", (u_longlong_t)alloc,
7249 100.0 * alloc / space);
7250 }
7251
7252 for (i = 0; i < NUM_BP_EMBEDDED_TYPES; i++) {
7253 if (zcb->zcb_embedded_blocks[i] == 0)
7254 continue;
7255 (void) printf("\n");
7256 (void) printf("\tadditional, non-pointer bps of type %u: "
7257 "%10llu\n",
7258 i, (u_longlong_t)zcb->zcb_embedded_blocks[i]);
7259
7260 if (dump_opt['b'] >= 3) {
7261 (void) printf("\t number of (compressed) bytes: "
7262 "number of bps\n");
7263 dump_histogram(zcb->zcb_embedded_histogram[i],
7264 sizeof (zcb->zcb_embedded_histogram[i]) /
7265 sizeof (zcb->zcb_embedded_histogram[i][0]), 0);
7266 }
7267 }
7268
7269 if (tzb->zb_ditto_samevdev != 0) {
7270 (void) printf("\tDittoed blocks on same vdev: %llu\n",
7271 (longlong_t)tzb->zb_ditto_samevdev);
7272 }
7273 if (tzb->zb_ditto_same_ms != 0) {
7274 (void) printf("\tDittoed blocks in same metaslab: %llu\n",
7275 (longlong_t)tzb->zb_ditto_same_ms);
7276 }
7277
7278 for (uint64_t v = 0; v < spa->spa_root_vdev->vdev_children; v++) {
7279 vdev_t *vd = spa->spa_root_vdev->vdev_child[v];
7280 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
7281
7282 if (vim == NULL) {
7283 continue;
7284 }
7285
7286 char mem[32];
7287 zdb_nicenum(vdev_indirect_mapping_num_entries(vim),
7288 mem, vdev_indirect_mapping_size(vim));
7289
7290 (void) printf("\tindirect vdev id %llu has %llu segments "
7291 "(%s in memory)\n",
7292 (longlong_t)vd->vdev_id,
7293 (longlong_t)vdev_indirect_mapping_num_entries(vim), mem);
7294 }
7295
7296 if (dump_opt['b'] >= 2) {
7297 int l, t, level;
7298 char csize[32], lsize[32], psize[32], asize[32];
7299 char avg[32], gang[32];
7300 (void) printf("\nBlocks\tLSIZE\tPSIZE\tASIZE"
7301 "\t avg\t comp\t%%Total\tType\n");
7302
7303 zfs_blkstat_t *mdstats = umem_zalloc(sizeof (zfs_blkstat_t),
7304 UMEM_NOFAIL);
7305
7306 for (t = 0; t <= ZDB_OT_TOTAL; t++) {
7307 const char *typename;
7308
7309 /* make sure nicenum has enough space */
7310 _Static_assert(sizeof (csize) >= NN_NUMBUF_SZ,
7311 "csize truncated");
7312 _Static_assert(sizeof (lsize) >= NN_NUMBUF_SZ,
7313 "lsize truncated");
7314 _Static_assert(sizeof (psize) >= NN_NUMBUF_SZ,
7315 "psize truncated");
7316 _Static_assert(sizeof (asize) >= NN_NUMBUF_SZ,
7317 "asize truncated");
7318 _Static_assert(sizeof (avg) >= NN_NUMBUF_SZ,
7319 "avg truncated");
7320 _Static_assert(sizeof (gang) >= NN_NUMBUF_SZ,
7321 "gang truncated");
7322
7323 if (t < DMU_OT_NUMTYPES)
7324 typename = dmu_ot[t].ot_name;
7325 else
7326 typename = zdb_ot_extname[t - DMU_OT_NUMTYPES];
7327
7328 if (zcb->zcb_type[ZB_TOTAL][t].zb_asize == 0) {
7329 (void) printf("%6s\t%5s\t%5s\t%5s"
7330 "\t%5s\t%5s\t%6s\t%s\n",
7331 "-",
7332 "-",
7333 "-",
7334 "-",
7335 "-",
7336 "-",
7337 "-",
7338 typename);
7339 continue;
7340 }
7341
7342 for (l = ZB_TOTAL - 1; l >= -1; l--) {
7343 level = (l == -1 ? ZB_TOTAL : l);
7344 zb = &zcb->zcb_type[level][t];
7345
7346 if (zb->zb_asize == 0)
7347 continue;
7348
7349 if (level != ZB_TOTAL && t < DMU_OT_NUMTYPES &&
7350 (level > 0 || DMU_OT_IS_METADATA(t))) {
7351 mdstats->zb_count += zb->zb_count;
7352 mdstats->zb_lsize += zb->zb_lsize;
7353 mdstats->zb_psize += zb->zb_psize;
7354 mdstats->zb_asize += zb->zb_asize;
7355 mdstats->zb_gangs += zb->zb_gangs;
7356 }
7357
7358 if (dump_opt['b'] < 3 && level != ZB_TOTAL)
7359 continue;
7360
7361 if (level == 0 && zb->zb_asize ==
7362 zcb->zcb_type[ZB_TOTAL][t].zb_asize)
7363 continue;
7364
7365 zdb_nicenum(zb->zb_count, csize,
7366 sizeof (csize));
7367 zdb_nicenum(zb->zb_lsize, lsize,
7368 sizeof (lsize));
7369 zdb_nicenum(zb->zb_psize, psize,
7370 sizeof (psize));
7371 zdb_nicenum(zb->zb_asize, asize,
7372 sizeof (asize));
7373 zdb_nicenum(zb->zb_asize / zb->zb_count, avg,
7374 sizeof (avg));
7375 zdb_nicenum(zb->zb_gangs, gang, sizeof (gang));
7376
7377 (void) printf("%6s\t%5s\t%5s\t%5s\t%5s"
7378 "\t%5.2f\t%6.2f\t",
7379 csize, lsize, psize, asize, avg,
7380 (double)zb->zb_lsize / zb->zb_psize,
7381 100.0 * zb->zb_asize / tzb->zb_asize);
7382
7383 if (level == ZB_TOTAL)
7384 (void) printf("%s\n", typename);
7385 else
7386 (void) printf(" L%d %s\n",
7387 level, typename);
7388
7389 if (dump_opt['b'] >= 3 && zb->zb_gangs > 0) {
7390 (void) printf("\t number of ganged "
7391 "blocks: %s\n", gang);
7392 }
7393
7394 if (dump_opt['b'] >= 4) {
7395 (void) printf("psize "
7396 "(in 512-byte sectors): "
7397 "number of blocks\n");
7398 dump_histogram(zb->zb_psize_histogram,
7399 PSIZE_HISTO_SIZE, 0);
7400 }
7401 }
7402 }
7403 zdb_nicenum(mdstats->zb_count, csize,
7404 sizeof (csize));
7405 zdb_nicenum(mdstats->zb_lsize, lsize,
7406 sizeof (lsize));
7407 zdb_nicenum(mdstats->zb_psize, psize,
7408 sizeof (psize));
7409 zdb_nicenum(mdstats->zb_asize, asize,
7410 sizeof (asize));
7411 zdb_nicenum(mdstats->zb_asize / mdstats->zb_count, avg,
7412 sizeof (avg));
7413 zdb_nicenum(mdstats->zb_gangs, gang, sizeof (gang));
7414
7415 (void) printf("%6s\t%5s\t%5s\t%5s\t%5s"
7416 "\t%5.2f\t%6.2f\t",
7417 csize, lsize, psize, asize, avg,
7418 (double)mdstats->zb_lsize / mdstats->zb_psize,
7419 100.0 * mdstats->zb_asize / tzb->zb_asize);
7420 (void) printf("%s\n", "Metadata Total");
7421
7422 /* Output a table summarizing block sizes in the pool */
7423 if (dump_opt['b'] >= 2) {
7424 dump_size_histograms(zcb);
7425 }
7426
7427 umem_free(mdstats, sizeof (zfs_blkstat_t));
7428 }
7429
7430 (void) printf("\n");
7431
7432 if (leaks) {
7433 umem_free(zcb, sizeof (zdb_cb_t));
7434 return (2);
7435 }
7436
7437 if (zcb->zcb_haderrors) {
7438 umem_free(zcb, sizeof (zdb_cb_t));
7439 return (3);
7440 }
7441
7442 umem_free(zcb, sizeof (zdb_cb_t));
7443 return (0);
7444 }
7445
7446 typedef struct zdb_ddt_entry {
7447 /* key must be first for ddt_key_compare */
7448 ddt_key_t zdde_key;
7449 uint64_t zdde_ref_blocks;
7450 uint64_t zdde_ref_lsize;
7451 uint64_t zdde_ref_psize;
7452 uint64_t zdde_ref_dsize;
7453 avl_node_t zdde_node;
7454 } zdb_ddt_entry_t;
7455
7456 static int
zdb_ddt_add_cb(spa_t * spa,zilog_t * zilog,const blkptr_t * bp,const zbookmark_phys_t * zb,const dnode_phys_t * dnp,void * arg)7457 zdb_ddt_add_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
7458 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
7459 {
7460 (void) zilog, (void) dnp;
7461 avl_tree_t *t = arg;
7462 avl_index_t where;
7463 zdb_ddt_entry_t *zdde, zdde_search;
7464
7465 if (zb->zb_level == ZB_DNODE_LEVEL || BP_IS_HOLE(bp) ||
7466 BP_IS_EMBEDDED(bp))
7467 return (0);
7468
7469 if (dump_opt['S'] > 1 && zb->zb_level == ZB_ROOT_LEVEL) {
7470 (void) printf("traversing objset %llu, %llu objects, "
7471 "%lu blocks so far\n",
7472 (u_longlong_t)zb->zb_objset,
7473 (u_longlong_t)BP_GET_FILL(bp),
7474 avl_numnodes(t));
7475 }
7476
7477 if (BP_IS_HOLE(bp) || BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_OFF ||
7478 BP_GET_LEVEL(bp) > 0 || DMU_OT_IS_METADATA(BP_GET_TYPE(bp)))
7479 return (0);
7480
7481 ddt_key_fill(&zdde_search.zdde_key, bp);
7482
7483 zdde = avl_find(t, &zdde_search, &where);
7484
7485 if (zdde == NULL) {
7486 zdde = umem_zalloc(sizeof (*zdde), UMEM_NOFAIL);
7487 zdde->zdde_key = zdde_search.zdde_key;
7488 avl_insert(t, zdde, where);
7489 }
7490
7491 zdde->zdde_ref_blocks += 1;
7492 zdde->zdde_ref_lsize += BP_GET_LSIZE(bp);
7493 zdde->zdde_ref_psize += BP_GET_PSIZE(bp);
7494 zdde->zdde_ref_dsize += bp_get_dsize_sync(spa, bp);
7495
7496 return (0);
7497 }
7498
7499 static void
dump_simulated_ddt(spa_t * spa)7500 dump_simulated_ddt(spa_t *spa)
7501 {
7502 avl_tree_t t;
7503 void *cookie = NULL;
7504 zdb_ddt_entry_t *zdde;
7505 ddt_histogram_t ddh_total = {{{0}}};
7506 ddt_stat_t dds_total = {0};
7507
7508 avl_create(&t, ddt_key_compare,
7509 sizeof (zdb_ddt_entry_t), offsetof(zdb_ddt_entry_t, zdde_node));
7510
7511 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
7512
7513 (void) traverse_pool(spa, 0, TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA |
7514 TRAVERSE_NO_DECRYPT, zdb_ddt_add_cb, &t);
7515
7516 spa_config_exit(spa, SCL_CONFIG, FTAG);
7517
7518 while ((zdde = avl_destroy_nodes(&t, &cookie)) != NULL) {
7519 uint64_t refcnt = zdde->zdde_ref_blocks;
7520 ASSERT(refcnt != 0);
7521
7522 ddt_stat_t *dds = &ddh_total.ddh_stat[highbit64(refcnt) - 1];
7523
7524 dds->dds_blocks += zdde->zdde_ref_blocks / refcnt;
7525 dds->dds_lsize += zdde->zdde_ref_lsize / refcnt;
7526 dds->dds_psize += zdde->zdde_ref_psize / refcnt;
7527 dds->dds_dsize += zdde->zdde_ref_dsize / refcnt;
7528
7529 dds->dds_ref_blocks += zdde->zdde_ref_blocks;
7530 dds->dds_ref_lsize += zdde->zdde_ref_lsize;
7531 dds->dds_ref_psize += zdde->zdde_ref_psize;
7532 dds->dds_ref_dsize += zdde->zdde_ref_dsize;
7533
7534 umem_free(zdde, sizeof (*zdde));
7535 }
7536
7537 avl_destroy(&t);
7538
7539 ddt_histogram_total(&dds_total, &ddh_total);
7540
7541 (void) printf("Simulated DDT histogram:\n");
7542
7543 zpool_dump_ddt(&dds_total, &ddh_total);
7544
7545 dump_dedup_ratio(&dds_total);
7546 }
7547
7548 static int
verify_device_removal_feature_counts(spa_t * spa)7549 verify_device_removal_feature_counts(spa_t *spa)
7550 {
7551 uint64_t dr_feature_refcount = 0;
7552 uint64_t oc_feature_refcount = 0;
7553 uint64_t indirect_vdev_count = 0;
7554 uint64_t precise_vdev_count = 0;
7555 uint64_t obsolete_counts_object_count = 0;
7556 uint64_t obsolete_sm_count = 0;
7557 uint64_t obsolete_counts_count = 0;
7558 uint64_t scip_count = 0;
7559 uint64_t obsolete_bpobj_count = 0;
7560 int ret = 0;
7561
7562 spa_condensing_indirect_phys_t *scip =
7563 &spa->spa_condensing_indirect_phys;
7564 if (scip->scip_next_mapping_object != 0) {
7565 vdev_t *vd = spa->spa_root_vdev->vdev_child[scip->scip_vdev];
7566 ASSERT(scip->scip_prev_obsolete_sm_object != 0);
7567 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
7568
7569 (void) printf("Condensing indirect vdev %llu: new mapping "
7570 "object %llu, prev obsolete sm %llu\n",
7571 (u_longlong_t)scip->scip_vdev,
7572 (u_longlong_t)scip->scip_next_mapping_object,
7573 (u_longlong_t)scip->scip_prev_obsolete_sm_object);
7574 if (scip->scip_prev_obsolete_sm_object != 0) {
7575 space_map_t *prev_obsolete_sm = NULL;
7576 VERIFY0(space_map_open(&prev_obsolete_sm,
7577 spa->spa_meta_objset,
7578 scip->scip_prev_obsolete_sm_object,
7579 0, vd->vdev_asize, 0));
7580 dump_spacemap(spa->spa_meta_objset, prev_obsolete_sm);
7581 (void) printf("\n");
7582 space_map_close(prev_obsolete_sm);
7583 }
7584
7585 scip_count += 2;
7586 }
7587
7588 for (uint64_t i = 0; i < spa->spa_root_vdev->vdev_children; i++) {
7589 vdev_t *vd = spa->spa_root_vdev->vdev_child[i];
7590 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
7591
7592 if (vic->vic_mapping_object != 0) {
7593 ASSERT(vd->vdev_ops == &vdev_indirect_ops ||
7594 vd->vdev_removing);
7595 indirect_vdev_count++;
7596
7597 if (vd->vdev_indirect_mapping->vim_havecounts) {
7598 obsolete_counts_count++;
7599 }
7600 }
7601
7602 boolean_t are_precise;
7603 VERIFY0(vdev_obsolete_counts_are_precise(vd, &are_precise));
7604 if (are_precise) {
7605 ASSERT(vic->vic_mapping_object != 0);
7606 precise_vdev_count++;
7607 }
7608
7609 uint64_t obsolete_sm_object;
7610 VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
7611 if (obsolete_sm_object != 0) {
7612 ASSERT(vic->vic_mapping_object != 0);
7613 obsolete_sm_count++;
7614 }
7615 }
7616
7617 (void) feature_get_refcount(spa,
7618 &spa_feature_table[SPA_FEATURE_DEVICE_REMOVAL],
7619 &dr_feature_refcount);
7620 (void) feature_get_refcount(spa,
7621 &spa_feature_table[SPA_FEATURE_OBSOLETE_COUNTS],
7622 &oc_feature_refcount);
7623
7624 if (dr_feature_refcount != indirect_vdev_count) {
7625 ret = 1;
7626 (void) printf("Number of indirect vdevs (%llu) " \
7627 "does not match feature count (%llu)\n",
7628 (u_longlong_t)indirect_vdev_count,
7629 (u_longlong_t)dr_feature_refcount);
7630 } else {
7631 (void) printf("Verified device_removal feature refcount " \
7632 "of %llu is correct\n",
7633 (u_longlong_t)dr_feature_refcount);
7634 }
7635
7636 if (zap_contains(spa_meta_objset(spa), DMU_POOL_DIRECTORY_OBJECT,
7637 DMU_POOL_OBSOLETE_BPOBJ) == 0) {
7638 obsolete_bpobj_count++;
7639 }
7640
7641
7642 obsolete_counts_object_count = precise_vdev_count;
7643 obsolete_counts_object_count += obsolete_sm_count;
7644 obsolete_counts_object_count += obsolete_counts_count;
7645 obsolete_counts_object_count += scip_count;
7646 obsolete_counts_object_count += obsolete_bpobj_count;
7647 obsolete_counts_object_count += remap_deadlist_count;
7648
7649 if (oc_feature_refcount != obsolete_counts_object_count) {
7650 ret = 1;
7651 (void) printf("Number of obsolete counts objects (%llu) " \
7652 "does not match feature count (%llu)\n",
7653 (u_longlong_t)obsolete_counts_object_count,
7654 (u_longlong_t)oc_feature_refcount);
7655 (void) printf("pv:%llu os:%llu oc:%llu sc:%llu "
7656 "ob:%llu rd:%llu\n",
7657 (u_longlong_t)precise_vdev_count,
7658 (u_longlong_t)obsolete_sm_count,
7659 (u_longlong_t)obsolete_counts_count,
7660 (u_longlong_t)scip_count,
7661 (u_longlong_t)obsolete_bpobj_count,
7662 (u_longlong_t)remap_deadlist_count);
7663 } else {
7664 (void) printf("Verified indirect_refcount feature refcount " \
7665 "of %llu is correct\n",
7666 (u_longlong_t)oc_feature_refcount);
7667 }
7668 return (ret);
7669 }
7670
7671 static void
zdb_set_skip_mmp(char * target)7672 zdb_set_skip_mmp(char *target)
7673 {
7674 spa_t *spa;
7675
7676 /*
7677 * Disable the activity check to allow examination of
7678 * active pools.
7679 */
7680 mutex_enter(&spa_namespace_lock);
7681 if ((spa = spa_lookup(target)) != NULL) {
7682 spa->spa_import_flags |= ZFS_IMPORT_SKIP_MMP;
7683 }
7684 mutex_exit(&spa_namespace_lock);
7685 }
7686
7687 #define BOGUS_SUFFIX "_CHECKPOINTED_UNIVERSE"
7688 /*
7689 * Import the checkpointed state of the pool specified by the target
7690 * parameter as readonly. The function also accepts a pool config
7691 * as an optional parameter, else it attempts to infer the config by
7692 * the name of the target pool.
7693 *
7694 * Note that the checkpointed state's pool name will be the name of
7695 * the original pool with the above suffix appended to it. In addition,
7696 * if the target is not a pool name (e.g. a path to a dataset) then
7697 * the new_path parameter is populated with the updated path to
7698 * reflect the fact that we are looking into the checkpointed state.
7699 *
7700 * The function returns a newly-allocated copy of the name of the
7701 * pool containing the checkpointed state. When this copy is no
7702 * longer needed it should be freed with free(3C). Same thing
7703 * applies to the new_path parameter if allocated.
7704 */
7705 static char *
import_checkpointed_state(char * target,nvlist_t * cfg,char ** new_path)7706 import_checkpointed_state(char *target, nvlist_t *cfg, char **new_path)
7707 {
7708 int error = 0;
7709 char *poolname, *bogus_name = NULL;
7710 boolean_t freecfg = B_FALSE;
7711
7712 /* If the target is not a pool, the extract the pool name */
7713 char *path_start = strchr(target, '/');
7714 if (path_start != NULL) {
7715 size_t poolname_len = path_start - target;
7716 poolname = strndup(target, poolname_len);
7717 } else {
7718 poolname = target;
7719 }
7720
7721 if (cfg == NULL) {
7722 zdb_set_skip_mmp(poolname);
7723 error = spa_get_stats(poolname, &cfg, NULL, 0);
7724 if (error != 0) {
7725 fatal("Tried to read config of pool \"%s\" but "
7726 "spa_get_stats() failed with error %d\n",
7727 poolname, error);
7728 }
7729 freecfg = B_TRUE;
7730 }
7731
7732 if (asprintf(&bogus_name, "%s%s", poolname, BOGUS_SUFFIX) == -1) {
7733 if (target != poolname)
7734 free(poolname);
7735 return (NULL);
7736 }
7737 fnvlist_add_string(cfg, ZPOOL_CONFIG_POOL_NAME, bogus_name);
7738
7739 error = spa_import(bogus_name, cfg, NULL,
7740 ZFS_IMPORT_MISSING_LOG | ZFS_IMPORT_CHECKPOINT |
7741 ZFS_IMPORT_SKIP_MMP);
7742 if (freecfg)
7743 nvlist_free(cfg);
7744 if (error != 0) {
7745 fatal("Tried to import pool \"%s\" but spa_import() failed "
7746 "with error %d\n", bogus_name, error);
7747 }
7748
7749 if (new_path != NULL && path_start != NULL) {
7750 if (asprintf(new_path, "%s%s", bogus_name, path_start) == -1) {
7751 free(bogus_name);
7752 if (path_start != NULL)
7753 free(poolname);
7754 return (NULL);
7755 }
7756 }
7757
7758 if (target != poolname)
7759 free(poolname);
7760
7761 return (bogus_name);
7762 }
7763
7764 typedef struct verify_checkpoint_sm_entry_cb_arg {
7765 vdev_t *vcsec_vd;
7766
7767 /* the following fields are only used for printing progress */
7768 uint64_t vcsec_entryid;
7769 uint64_t vcsec_num_entries;
7770 } verify_checkpoint_sm_entry_cb_arg_t;
7771
7772 #define ENTRIES_PER_PROGRESS_UPDATE 10000
7773
7774 static int
verify_checkpoint_sm_entry_cb(space_map_entry_t * sme,void * arg)7775 verify_checkpoint_sm_entry_cb(space_map_entry_t *sme, void *arg)
7776 {
7777 verify_checkpoint_sm_entry_cb_arg_t *vcsec = arg;
7778 vdev_t *vd = vcsec->vcsec_vd;
7779 metaslab_t *ms = vd->vdev_ms[sme->sme_offset >> vd->vdev_ms_shift];
7780 uint64_t end = sme->sme_offset + sme->sme_run;
7781
7782 ASSERT(sme->sme_type == SM_FREE);
7783
7784 if ((vcsec->vcsec_entryid % ENTRIES_PER_PROGRESS_UPDATE) == 0) {
7785 (void) fprintf(stderr,
7786 "\rverifying vdev %llu, space map entry %llu of %llu ...",
7787 (longlong_t)vd->vdev_id,
7788 (longlong_t)vcsec->vcsec_entryid,
7789 (longlong_t)vcsec->vcsec_num_entries);
7790 }
7791 vcsec->vcsec_entryid++;
7792
7793 /*
7794 * See comment in checkpoint_sm_exclude_entry_cb()
7795 */
7796 VERIFY3U(sme->sme_offset, >=, ms->ms_start);
7797 VERIFY3U(end, <=, ms->ms_start + ms->ms_size);
7798
7799 /*
7800 * The entries in the vdev_checkpoint_sm should be marked as
7801 * allocated in the checkpointed state of the pool, therefore
7802 * their respective ms_allocateable trees should not contain them.
7803 */
7804 mutex_enter(&ms->ms_lock);
7805 zfs_range_tree_verify_not_present(ms->ms_allocatable,
7806 sme->sme_offset, sme->sme_run);
7807 mutex_exit(&ms->ms_lock);
7808
7809 return (0);
7810 }
7811
7812 /*
7813 * Verify that all segments in the vdev_checkpoint_sm are allocated
7814 * according to the checkpoint's ms_sm (i.e. are not in the checkpoint's
7815 * ms_allocatable).
7816 *
7817 * Do so by comparing the checkpoint space maps (vdev_checkpoint_sm) of
7818 * each vdev in the current state of the pool to the metaslab space maps
7819 * (ms_sm) of the checkpointed state of the pool.
7820 *
7821 * Note that the function changes the state of the ms_allocatable
7822 * trees of the current spa_t. The entries of these ms_allocatable
7823 * trees are cleared out and then repopulated from with the free
7824 * entries of their respective ms_sm space maps.
7825 */
7826 static void
verify_checkpoint_vdev_spacemaps(spa_t * checkpoint,spa_t * current)7827 verify_checkpoint_vdev_spacemaps(spa_t *checkpoint, spa_t *current)
7828 {
7829 vdev_t *ckpoint_rvd = checkpoint->spa_root_vdev;
7830 vdev_t *current_rvd = current->spa_root_vdev;
7831
7832 load_concrete_ms_allocatable_trees(checkpoint, SM_FREE);
7833
7834 for (uint64_t c = 0; c < ckpoint_rvd->vdev_children; c++) {
7835 vdev_t *ckpoint_vd = ckpoint_rvd->vdev_child[c];
7836 vdev_t *current_vd = current_rvd->vdev_child[c];
7837
7838 space_map_t *checkpoint_sm = NULL;
7839 uint64_t checkpoint_sm_obj;
7840
7841 if (ckpoint_vd->vdev_ops == &vdev_indirect_ops) {
7842 /*
7843 * Since we don't allow device removal in a pool
7844 * that has a checkpoint, we expect that all removed
7845 * vdevs were removed from the pool before the
7846 * checkpoint.
7847 */
7848 ASSERT3P(current_vd->vdev_ops, ==, &vdev_indirect_ops);
7849 continue;
7850 }
7851
7852 /*
7853 * If the checkpoint space map doesn't exist, then nothing
7854 * here is checkpointed so there's nothing to verify.
7855 */
7856 if (current_vd->vdev_top_zap == 0 ||
7857 zap_contains(spa_meta_objset(current),
7858 current_vd->vdev_top_zap,
7859 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) != 0)
7860 continue;
7861
7862 VERIFY0(zap_lookup(spa_meta_objset(current),
7863 current_vd->vdev_top_zap, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM,
7864 sizeof (uint64_t), 1, &checkpoint_sm_obj));
7865
7866 VERIFY0(space_map_open(&checkpoint_sm, spa_meta_objset(current),
7867 checkpoint_sm_obj, 0, current_vd->vdev_asize,
7868 current_vd->vdev_ashift));
7869
7870 verify_checkpoint_sm_entry_cb_arg_t vcsec;
7871 vcsec.vcsec_vd = ckpoint_vd;
7872 vcsec.vcsec_entryid = 0;
7873 vcsec.vcsec_num_entries =
7874 space_map_length(checkpoint_sm) / sizeof (uint64_t);
7875 VERIFY0(space_map_iterate(checkpoint_sm,
7876 space_map_length(checkpoint_sm),
7877 verify_checkpoint_sm_entry_cb, &vcsec));
7878 if (dump_opt['m'] > 3)
7879 dump_spacemap(current->spa_meta_objset, checkpoint_sm);
7880 space_map_close(checkpoint_sm);
7881 }
7882
7883 /*
7884 * If we've added vdevs since we took the checkpoint, ensure
7885 * that their checkpoint space maps are empty.
7886 */
7887 if (ckpoint_rvd->vdev_children < current_rvd->vdev_children) {
7888 for (uint64_t c = ckpoint_rvd->vdev_children;
7889 c < current_rvd->vdev_children; c++) {
7890 vdev_t *current_vd = current_rvd->vdev_child[c];
7891 VERIFY3P(current_vd->vdev_checkpoint_sm, ==, NULL);
7892 }
7893 }
7894
7895 /* for cleaner progress output */
7896 (void) fprintf(stderr, "\n");
7897 }
7898
7899 /*
7900 * Verifies that all space that's allocated in the checkpoint is
7901 * still allocated in the current version, by checking that everything
7902 * in checkpoint's ms_allocatable (which is actually allocated, not
7903 * allocatable/free) is not present in current's ms_allocatable.
7904 *
7905 * Note that the function changes the state of the ms_allocatable
7906 * trees of both spas when called. The entries of all ms_allocatable
7907 * trees are cleared out and then repopulated from their respective
7908 * ms_sm space maps. In the checkpointed state we load the allocated
7909 * entries, and in the current state we load the free entries.
7910 */
7911 static void
verify_checkpoint_ms_spacemaps(spa_t * checkpoint,spa_t * current)7912 verify_checkpoint_ms_spacemaps(spa_t *checkpoint, spa_t *current)
7913 {
7914 vdev_t *ckpoint_rvd = checkpoint->spa_root_vdev;
7915 vdev_t *current_rvd = current->spa_root_vdev;
7916
7917 load_concrete_ms_allocatable_trees(checkpoint, SM_ALLOC);
7918 load_concrete_ms_allocatable_trees(current, SM_FREE);
7919
7920 for (uint64_t i = 0; i < ckpoint_rvd->vdev_children; i++) {
7921 vdev_t *ckpoint_vd = ckpoint_rvd->vdev_child[i];
7922 vdev_t *current_vd = current_rvd->vdev_child[i];
7923
7924 if (ckpoint_vd->vdev_ops == &vdev_indirect_ops) {
7925 /*
7926 * See comment in verify_checkpoint_vdev_spacemaps()
7927 */
7928 ASSERT3P(current_vd->vdev_ops, ==, &vdev_indirect_ops);
7929 continue;
7930 }
7931
7932 for (uint64_t m = 0; m < ckpoint_vd->vdev_ms_count; m++) {
7933 metaslab_t *ckpoint_msp = ckpoint_vd->vdev_ms[m];
7934 metaslab_t *current_msp = current_vd->vdev_ms[m];
7935
7936 (void) fprintf(stderr,
7937 "\rverifying vdev %llu of %llu, "
7938 "metaslab %llu of %llu ...",
7939 (longlong_t)current_vd->vdev_id,
7940 (longlong_t)current_rvd->vdev_children,
7941 (longlong_t)current_vd->vdev_ms[m]->ms_id,
7942 (longlong_t)current_vd->vdev_ms_count);
7943
7944 /*
7945 * We walk through the ms_allocatable trees that
7946 * are loaded with the allocated blocks from the
7947 * ms_sm spacemaps of the checkpoint. For each
7948 * one of these ranges we ensure that none of them
7949 * exists in the ms_allocatable trees of the
7950 * current state which are loaded with the ranges
7951 * that are currently free.
7952 *
7953 * This way we ensure that none of the blocks that
7954 * are part of the checkpoint were freed by mistake.
7955 */
7956 zfs_range_tree_walk(ckpoint_msp->ms_allocatable,
7957 (zfs_range_tree_func_t *)
7958 zfs_range_tree_verify_not_present,
7959 current_msp->ms_allocatable);
7960 }
7961 }
7962
7963 /* for cleaner progress output */
7964 (void) fprintf(stderr, "\n");
7965 }
7966
7967 static void
verify_checkpoint_blocks(spa_t * spa)7968 verify_checkpoint_blocks(spa_t *spa)
7969 {
7970 ASSERT(!dump_opt['L']);
7971
7972 spa_t *checkpoint_spa;
7973 char *checkpoint_pool;
7974 int error = 0;
7975
7976 /*
7977 * We import the checkpointed state of the pool (under a different
7978 * name) so we can do verification on it against the current state
7979 * of the pool.
7980 */
7981 checkpoint_pool = import_checkpointed_state(spa->spa_name, NULL,
7982 NULL);
7983 ASSERT(strcmp(spa->spa_name, checkpoint_pool) != 0);
7984
7985 error = spa_open(checkpoint_pool, &checkpoint_spa, FTAG);
7986 if (error != 0) {
7987 fatal("Tried to open pool \"%s\" but spa_open() failed with "
7988 "error %d\n", checkpoint_pool, error);
7989 }
7990
7991 /*
7992 * Ensure that ranges in the checkpoint space maps of each vdev
7993 * are allocated according to the checkpointed state's metaslab
7994 * space maps.
7995 */
7996 verify_checkpoint_vdev_spacemaps(checkpoint_spa, spa);
7997
7998 /*
7999 * Ensure that allocated ranges in the checkpoint's metaslab
8000 * space maps remain allocated in the metaslab space maps of
8001 * the current state.
8002 */
8003 verify_checkpoint_ms_spacemaps(checkpoint_spa, spa);
8004
8005 /*
8006 * Once we are done, we get rid of the checkpointed state.
8007 */
8008 spa_close(checkpoint_spa, FTAG);
8009 free(checkpoint_pool);
8010 }
8011
8012 static void
dump_leftover_checkpoint_blocks(spa_t * spa)8013 dump_leftover_checkpoint_blocks(spa_t *spa)
8014 {
8015 vdev_t *rvd = spa->spa_root_vdev;
8016
8017 for (uint64_t i = 0; i < rvd->vdev_children; i++) {
8018 vdev_t *vd = rvd->vdev_child[i];
8019
8020 space_map_t *checkpoint_sm = NULL;
8021 uint64_t checkpoint_sm_obj;
8022
8023 if (vd->vdev_top_zap == 0)
8024 continue;
8025
8026 if (zap_contains(spa_meta_objset(spa), vd->vdev_top_zap,
8027 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) != 0)
8028 continue;
8029
8030 VERIFY0(zap_lookup(spa_meta_objset(spa), vd->vdev_top_zap,
8031 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM,
8032 sizeof (uint64_t), 1, &checkpoint_sm_obj));
8033
8034 VERIFY0(space_map_open(&checkpoint_sm, spa_meta_objset(spa),
8035 checkpoint_sm_obj, 0, vd->vdev_asize, vd->vdev_ashift));
8036 dump_spacemap(spa->spa_meta_objset, checkpoint_sm);
8037 space_map_close(checkpoint_sm);
8038 }
8039 }
8040
8041 static int
verify_checkpoint(spa_t * spa)8042 verify_checkpoint(spa_t *spa)
8043 {
8044 uberblock_t checkpoint;
8045 int error;
8046
8047 if (!spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT))
8048 return (0);
8049
8050 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
8051 DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
8052 sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
8053
8054 if (error == ENOENT && !dump_opt['L']) {
8055 /*
8056 * If the feature is active but the uberblock is missing
8057 * then we must be in the middle of discarding the
8058 * checkpoint.
8059 */
8060 (void) printf("\nPartially discarded checkpoint "
8061 "state found:\n");
8062 if (dump_opt['m'] > 3)
8063 dump_leftover_checkpoint_blocks(spa);
8064 return (0);
8065 } else if (error != 0) {
8066 (void) printf("lookup error %d when looking for "
8067 "checkpointed uberblock in MOS\n", error);
8068 return (error);
8069 }
8070 dump_uberblock(&checkpoint, "\nCheckpointed uberblock found:\n", "\n");
8071
8072 if (checkpoint.ub_checkpoint_txg == 0) {
8073 (void) printf("\nub_checkpoint_txg not set in checkpointed "
8074 "uberblock\n");
8075 error = 3;
8076 }
8077
8078 if (error == 0 && !dump_opt['L'])
8079 verify_checkpoint_blocks(spa);
8080
8081 return (error);
8082 }
8083
8084 static void
mos_leaks_cb(void * arg,uint64_t start,uint64_t size)8085 mos_leaks_cb(void *arg, uint64_t start, uint64_t size)
8086 {
8087 (void) arg;
8088 for (uint64_t i = start; i < size; i++) {
8089 (void) printf("MOS object %llu referenced but not allocated\n",
8090 (u_longlong_t)i);
8091 }
8092 }
8093
8094 static void
mos_obj_refd(uint64_t obj)8095 mos_obj_refd(uint64_t obj)
8096 {
8097 if (obj != 0 && mos_refd_objs != NULL)
8098 zfs_range_tree_add(mos_refd_objs, obj, 1);
8099 }
8100
8101 /*
8102 * Call on a MOS object that may already have been referenced.
8103 */
8104 static void
mos_obj_refd_multiple(uint64_t obj)8105 mos_obj_refd_multiple(uint64_t obj)
8106 {
8107 if (obj != 0 && mos_refd_objs != NULL &&
8108 !zfs_range_tree_contains(mos_refd_objs, obj, 1))
8109 zfs_range_tree_add(mos_refd_objs, obj, 1);
8110 }
8111
8112 static void
mos_leak_vdev_top_zap(vdev_t * vd)8113 mos_leak_vdev_top_zap(vdev_t *vd)
8114 {
8115 uint64_t ms_flush_data_obj;
8116 int error = zap_lookup(spa_meta_objset(vd->vdev_spa),
8117 vd->vdev_top_zap, VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS,
8118 sizeof (ms_flush_data_obj), 1, &ms_flush_data_obj);
8119 if (error == ENOENT)
8120 return;
8121 ASSERT0(error);
8122
8123 mos_obj_refd(ms_flush_data_obj);
8124 }
8125
8126 static void
mos_leak_vdev(vdev_t * vd)8127 mos_leak_vdev(vdev_t *vd)
8128 {
8129 mos_obj_refd(vd->vdev_dtl_object);
8130 mos_obj_refd(vd->vdev_ms_array);
8131 mos_obj_refd(vd->vdev_indirect_config.vic_births_object);
8132 mos_obj_refd(vd->vdev_indirect_config.vic_mapping_object);
8133 mos_obj_refd(vd->vdev_leaf_zap);
8134 if (vd->vdev_checkpoint_sm != NULL)
8135 mos_obj_refd(vd->vdev_checkpoint_sm->sm_object);
8136 if (vd->vdev_indirect_mapping != NULL) {
8137 mos_obj_refd(vd->vdev_indirect_mapping->
8138 vim_phys->vimp_counts_object);
8139 }
8140 if (vd->vdev_obsolete_sm != NULL)
8141 mos_obj_refd(vd->vdev_obsolete_sm->sm_object);
8142
8143 for (uint64_t m = 0; m < vd->vdev_ms_count; m++) {
8144 metaslab_t *ms = vd->vdev_ms[m];
8145 mos_obj_refd(space_map_object(ms->ms_sm));
8146 }
8147
8148 if (vd->vdev_root_zap != 0)
8149 mos_obj_refd(vd->vdev_root_zap);
8150
8151 if (vd->vdev_top_zap != 0) {
8152 mos_obj_refd(vd->vdev_top_zap);
8153 mos_leak_vdev_top_zap(vd);
8154 }
8155
8156 for (uint64_t c = 0; c < vd->vdev_children; c++) {
8157 mos_leak_vdev(vd->vdev_child[c]);
8158 }
8159 }
8160
8161 static void
mos_leak_log_spacemaps(spa_t * spa)8162 mos_leak_log_spacemaps(spa_t *spa)
8163 {
8164 uint64_t spacemap_zap;
8165 int error = zap_lookup(spa_meta_objset(spa),
8166 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_LOG_SPACEMAP_ZAP,
8167 sizeof (spacemap_zap), 1, &spacemap_zap);
8168 if (error == ENOENT)
8169 return;
8170 ASSERT0(error);
8171
8172 mos_obj_refd(spacemap_zap);
8173 for (spa_log_sm_t *sls = avl_first(&spa->spa_sm_logs_by_txg);
8174 sls; sls = AVL_NEXT(&spa->spa_sm_logs_by_txg, sls))
8175 mos_obj_refd(sls->sls_sm_obj);
8176 }
8177
8178 static void
errorlog_count_refd(objset_t * mos,uint64_t errlog)8179 errorlog_count_refd(objset_t *mos, uint64_t errlog)
8180 {
8181 zap_cursor_t zc;
8182 zap_attribute_t *za = zap_attribute_alloc();
8183 for (zap_cursor_init(&zc, mos, errlog);
8184 zap_cursor_retrieve(&zc, za) == 0;
8185 zap_cursor_advance(&zc)) {
8186 mos_obj_refd(za->za_first_integer);
8187 }
8188 zap_cursor_fini(&zc);
8189 zap_attribute_free(za);
8190 }
8191
8192 static int
dump_mos_leaks(spa_t * spa)8193 dump_mos_leaks(spa_t *spa)
8194 {
8195 int rv = 0;
8196 objset_t *mos = spa->spa_meta_objset;
8197 dsl_pool_t *dp = spa->spa_dsl_pool;
8198
8199 /* Visit and mark all referenced objects in the MOS */
8200
8201 mos_obj_refd(DMU_POOL_DIRECTORY_OBJECT);
8202 mos_obj_refd(spa->spa_pool_props_object);
8203 mos_obj_refd(spa->spa_config_object);
8204 mos_obj_refd(spa->spa_ddt_stat_object);
8205 mos_obj_refd(spa->spa_feat_desc_obj);
8206 mos_obj_refd(spa->spa_feat_enabled_txg_obj);
8207 mos_obj_refd(spa->spa_feat_for_read_obj);
8208 mos_obj_refd(spa->spa_feat_for_write_obj);
8209 mos_obj_refd(spa->spa_history);
8210 mos_obj_refd(spa->spa_errlog_last);
8211 mos_obj_refd(spa->spa_errlog_scrub);
8212
8213 if (spa_feature_is_enabled(spa, SPA_FEATURE_HEAD_ERRLOG)) {
8214 errorlog_count_refd(mos, spa->spa_errlog_last);
8215 errorlog_count_refd(mos, spa->spa_errlog_scrub);
8216 }
8217
8218 mos_obj_refd(spa->spa_all_vdev_zaps);
8219 mos_obj_refd(spa->spa_dsl_pool->dp_bptree_obj);
8220 mos_obj_refd(spa->spa_dsl_pool->dp_tmp_userrefs_obj);
8221 mos_obj_refd(spa->spa_dsl_pool->dp_scan->scn_phys.scn_queue_obj);
8222 bpobj_count_refd(&spa->spa_deferred_bpobj);
8223 mos_obj_refd(dp->dp_empty_bpobj);
8224 bpobj_count_refd(&dp->dp_obsolete_bpobj);
8225 bpobj_count_refd(&dp->dp_free_bpobj);
8226 mos_obj_refd(spa->spa_l2cache.sav_object);
8227 mos_obj_refd(spa->spa_spares.sav_object);
8228
8229 if (spa->spa_syncing_log_sm != NULL)
8230 mos_obj_refd(spa->spa_syncing_log_sm->sm_object);
8231 mos_leak_log_spacemaps(spa);
8232
8233 mos_obj_refd(spa->spa_condensing_indirect_phys.
8234 scip_next_mapping_object);
8235 mos_obj_refd(spa->spa_condensing_indirect_phys.
8236 scip_prev_obsolete_sm_object);
8237 if (spa->spa_condensing_indirect_phys.scip_next_mapping_object != 0) {
8238 vdev_indirect_mapping_t *vim =
8239 vdev_indirect_mapping_open(mos,
8240 spa->spa_condensing_indirect_phys.scip_next_mapping_object);
8241 mos_obj_refd(vim->vim_phys->vimp_counts_object);
8242 vdev_indirect_mapping_close(vim);
8243 }
8244 deleted_livelists_dump_mos(spa);
8245
8246 if (dp->dp_origin_snap != NULL) {
8247 dsl_dataset_t *ds;
8248
8249 dsl_pool_config_enter(dp, FTAG);
8250 VERIFY0(dsl_dataset_hold_obj(dp,
8251 dsl_dataset_phys(dp->dp_origin_snap)->ds_next_snap_obj,
8252 FTAG, &ds));
8253 count_ds_mos_objects(ds);
8254 dump_blkptr_list(&ds->ds_deadlist, "Deadlist");
8255 dsl_dataset_rele(ds, FTAG);
8256 dsl_pool_config_exit(dp, FTAG);
8257
8258 count_ds_mos_objects(dp->dp_origin_snap);
8259 dump_blkptr_list(&dp->dp_origin_snap->ds_deadlist, "Deadlist");
8260 }
8261 count_dir_mos_objects(dp->dp_mos_dir);
8262 if (dp->dp_free_dir != NULL)
8263 count_dir_mos_objects(dp->dp_free_dir);
8264 if (dp->dp_leak_dir != NULL)
8265 count_dir_mos_objects(dp->dp_leak_dir);
8266
8267 mos_leak_vdev(spa->spa_root_vdev);
8268
8269 for (uint64_t c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) {
8270 ddt_t *ddt = spa->spa_ddt[c];
8271 if (!ddt || ddt->ddt_version == DDT_VERSION_UNCONFIGURED)
8272 continue;
8273
8274 /* DDT store objects */
8275 for (ddt_type_t type = 0; type < DDT_TYPES; type++) {
8276 for (ddt_class_t class = 0; class < DDT_CLASSES;
8277 class++) {
8278 mos_obj_refd(ddt->ddt_object[type][class]);
8279 }
8280 }
8281
8282 /* FDT container */
8283 if (ddt->ddt_version == DDT_VERSION_FDT)
8284 mos_obj_refd(ddt->ddt_dir_object);
8285
8286 /* FDT log objects */
8287 if (ddt->ddt_flags & DDT_FLAG_LOG) {
8288 mos_obj_refd(ddt->ddt_log[0].ddl_object);
8289 mos_obj_refd(ddt->ddt_log[1].ddl_object);
8290 }
8291 }
8292
8293 for (uint64_t vdevid = 0; vdevid < spa->spa_brt_nvdevs; vdevid++) {
8294 brt_vdev_t *brtvd = spa->spa_brt_vdevs[vdevid];
8295 if (brtvd->bv_initiated) {
8296 mos_obj_refd(brtvd->bv_mos_brtvdev);
8297 mos_obj_refd(brtvd->bv_mos_entries);
8298 }
8299 }
8300
8301 /*
8302 * Visit all allocated objects and make sure they are referenced.
8303 */
8304 uint64_t object = 0;
8305 while (dmu_object_next(mos, &object, B_FALSE, 0) == 0) {
8306 if (zfs_range_tree_contains(mos_refd_objs, object, 1)) {
8307 zfs_range_tree_remove(mos_refd_objs, object, 1);
8308 } else {
8309 dmu_object_info_t doi;
8310 const char *name;
8311 VERIFY0(dmu_object_info(mos, object, &doi));
8312 if (doi.doi_type & DMU_OT_NEWTYPE) {
8313 dmu_object_byteswap_t bswap =
8314 DMU_OT_BYTESWAP(doi.doi_type);
8315 name = dmu_ot_byteswap[bswap].ob_name;
8316 } else {
8317 name = dmu_ot[doi.doi_type].ot_name;
8318 }
8319
8320 (void) printf("MOS object %llu (%s) leaked\n",
8321 (u_longlong_t)object, name);
8322 rv = 2;
8323 }
8324 }
8325 (void) zfs_range_tree_walk(mos_refd_objs, mos_leaks_cb, NULL);
8326 if (!zfs_range_tree_is_empty(mos_refd_objs))
8327 rv = 2;
8328 zfs_range_tree_vacate(mos_refd_objs, NULL, NULL);
8329 zfs_range_tree_destroy(mos_refd_objs);
8330 return (rv);
8331 }
8332
8333 typedef struct log_sm_obsolete_stats_arg {
8334 uint64_t lsos_current_txg;
8335
8336 uint64_t lsos_total_entries;
8337 uint64_t lsos_valid_entries;
8338
8339 uint64_t lsos_sm_entries;
8340 uint64_t lsos_valid_sm_entries;
8341 } log_sm_obsolete_stats_arg_t;
8342
8343 static int
log_spacemap_obsolete_stats_cb(spa_t * spa,space_map_entry_t * sme,uint64_t txg,void * arg)8344 log_spacemap_obsolete_stats_cb(spa_t *spa, space_map_entry_t *sme,
8345 uint64_t txg, void *arg)
8346 {
8347 log_sm_obsolete_stats_arg_t *lsos = arg;
8348
8349 uint64_t offset = sme->sme_offset;
8350 uint64_t vdev_id = sme->sme_vdev;
8351
8352 if (lsos->lsos_current_txg == 0) {
8353 /* this is the first log */
8354 lsos->lsos_current_txg = txg;
8355 } else if (lsos->lsos_current_txg < txg) {
8356 /* we just changed log - print stats and reset */
8357 (void) printf("%-8llu valid entries out of %-8llu - txg %llu\n",
8358 (u_longlong_t)lsos->lsos_valid_sm_entries,
8359 (u_longlong_t)lsos->lsos_sm_entries,
8360 (u_longlong_t)lsos->lsos_current_txg);
8361 lsos->lsos_valid_sm_entries = 0;
8362 lsos->lsos_sm_entries = 0;
8363 lsos->lsos_current_txg = txg;
8364 }
8365 ASSERT3U(lsos->lsos_current_txg, ==, txg);
8366
8367 lsos->lsos_sm_entries++;
8368 lsos->lsos_total_entries++;
8369
8370 vdev_t *vd = vdev_lookup_top(spa, vdev_id);
8371 if (!vdev_is_concrete(vd))
8372 return (0);
8373
8374 metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift];
8375 ASSERT(sme->sme_type == SM_ALLOC || sme->sme_type == SM_FREE);
8376
8377 if (txg < metaslab_unflushed_txg(ms))
8378 return (0);
8379 lsos->lsos_valid_sm_entries++;
8380 lsos->lsos_valid_entries++;
8381 return (0);
8382 }
8383
8384 static void
dump_log_spacemap_obsolete_stats(spa_t * spa)8385 dump_log_spacemap_obsolete_stats(spa_t *spa)
8386 {
8387 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))
8388 return;
8389
8390 log_sm_obsolete_stats_arg_t lsos = {0};
8391
8392 (void) printf("Log Space Map Obsolete Entry Statistics:\n");
8393
8394 iterate_through_spacemap_logs(spa,
8395 log_spacemap_obsolete_stats_cb, &lsos);
8396
8397 /* print stats for latest log */
8398 (void) printf("%-8llu valid entries out of %-8llu - txg %llu\n",
8399 (u_longlong_t)lsos.lsos_valid_sm_entries,
8400 (u_longlong_t)lsos.lsos_sm_entries,
8401 (u_longlong_t)lsos.lsos_current_txg);
8402
8403 (void) printf("%-8llu valid entries out of %-8llu - total\n\n",
8404 (u_longlong_t)lsos.lsos_valid_entries,
8405 (u_longlong_t)lsos.lsos_total_entries);
8406 }
8407
8408 static void
dump_zpool(spa_t * spa)8409 dump_zpool(spa_t *spa)
8410 {
8411 dsl_pool_t *dp = spa_get_dsl(spa);
8412 int rc = 0;
8413
8414 if (dump_opt['y']) {
8415 livelist_metaslab_validate(spa);
8416 }
8417
8418 if (dump_opt['S']) {
8419 dump_simulated_ddt(spa);
8420 return;
8421 }
8422
8423 if (!dump_opt['e'] && dump_opt['C'] > 1) {
8424 (void) printf("\nCached configuration:\n");
8425 dump_nvlist(spa->spa_config, 8);
8426 }
8427
8428 if (dump_opt['C'])
8429 dump_config(spa);
8430
8431 if (dump_opt['u'])
8432 dump_uberblock(&spa->spa_uberblock, "\nUberblock:\n", "\n");
8433
8434 if (dump_opt['D'])
8435 dump_all_ddts(spa);
8436
8437 if (dump_opt['T'])
8438 dump_brt(spa);
8439
8440 if (dump_opt['d'] > 2 || dump_opt['m'])
8441 dump_metaslabs(spa);
8442 if (dump_opt['M'])
8443 dump_metaslab_groups(spa, dump_opt['M'] > 1);
8444 if (dump_opt['d'] > 2 || dump_opt['m']) {
8445 dump_log_spacemaps(spa);
8446 dump_log_spacemap_obsolete_stats(spa);
8447 }
8448
8449 if (dump_opt['d'] || dump_opt['i']) {
8450 spa_feature_t f;
8451 mos_refd_objs = zfs_range_tree_create(NULL, ZFS_RANGE_SEG64,
8452 NULL, 0, 0);
8453 dump_objset(dp->dp_meta_objset);
8454
8455 if (dump_opt['d'] >= 3) {
8456 dsl_pool_t *dp = spa->spa_dsl_pool;
8457 dump_full_bpobj(&spa->spa_deferred_bpobj,
8458 "Deferred frees", 0);
8459 if (spa_version(spa) >= SPA_VERSION_DEADLISTS) {
8460 dump_full_bpobj(&dp->dp_free_bpobj,
8461 "Pool snapshot frees", 0);
8462 }
8463 if (bpobj_is_open(&dp->dp_obsolete_bpobj)) {
8464 ASSERT(spa_feature_is_enabled(spa,
8465 SPA_FEATURE_DEVICE_REMOVAL));
8466 dump_full_bpobj(&dp->dp_obsolete_bpobj,
8467 "Pool obsolete blocks", 0);
8468 }
8469
8470 if (spa_feature_is_active(spa,
8471 SPA_FEATURE_ASYNC_DESTROY)) {
8472 dump_bptree(spa->spa_meta_objset,
8473 dp->dp_bptree_obj,
8474 "Pool dataset frees");
8475 }
8476 dump_dtl(spa->spa_root_vdev, 0);
8477 }
8478
8479 for (spa_feature_t f = 0; f < SPA_FEATURES; f++)
8480 global_feature_count[f] = UINT64_MAX;
8481 global_feature_count[SPA_FEATURE_REDACTION_BOOKMARKS] = 0;
8482 global_feature_count[SPA_FEATURE_REDACTION_LIST_SPILL] = 0;
8483 global_feature_count[SPA_FEATURE_BOOKMARK_WRITTEN] = 0;
8484 global_feature_count[SPA_FEATURE_LIVELIST] = 0;
8485
8486 (void) dmu_objset_find(spa_name(spa), dump_one_objset,
8487 NULL, DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN);
8488
8489 if (rc == 0 && !dump_opt['L'])
8490 rc = dump_mos_leaks(spa);
8491
8492 for (f = 0; f < SPA_FEATURES; f++) {
8493 uint64_t refcount;
8494
8495 uint64_t *arr;
8496 if (!(spa_feature_table[f].fi_flags &
8497 ZFEATURE_FLAG_PER_DATASET)) {
8498 if (global_feature_count[f] == UINT64_MAX)
8499 continue;
8500 if (!spa_feature_is_enabled(spa, f)) {
8501 ASSERT0(global_feature_count[f]);
8502 continue;
8503 }
8504 arr = global_feature_count;
8505 } else {
8506 if (!spa_feature_is_enabled(spa, f)) {
8507 ASSERT0(dataset_feature_count[f]);
8508 continue;
8509 }
8510 arr = dataset_feature_count;
8511 }
8512 if (feature_get_refcount(spa, &spa_feature_table[f],
8513 &refcount) == ENOTSUP)
8514 continue;
8515 if (arr[f] != refcount) {
8516 (void) printf("%s feature refcount mismatch: "
8517 "%lld consumers != %lld refcount\n",
8518 spa_feature_table[f].fi_uname,
8519 (longlong_t)arr[f], (longlong_t)refcount);
8520 rc = 2;
8521 } else {
8522 (void) printf("Verified %s feature refcount "
8523 "of %llu is correct\n",
8524 spa_feature_table[f].fi_uname,
8525 (longlong_t)refcount);
8526 }
8527 }
8528
8529 if (rc == 0)
8530 rc = verify_device_removal_feature_counts(spa);
8531 }
8532
8533 if (rc == 0 && (dump_opt['b'] || dump_opt['c']))
8534 rc = dump_block_stats(spa);
8535
8536 if (rc == 0)
8537 rc = verify_spacemap_refcounts(spa);
8538
8539 if (dump_opt['s'])
8540 show_pool_stats(spa);
8541
8542 if (dump_opt['h'])
8543 dump_history(spa);
8544
8545 if (rc == 0)
8546 rc = verify_checkpoint(spa);
8547
8548 if (rc != 0) {
8549 dump_debug_buffer();
8550 zdb_exit(rc);
8551 }
8552 }
8553
8554 #define ZDB_FLAG_CHECKSUM 0x0001
8555 #define ZDB_FLAG_DECOMPRESS 0x0002
8556 #define ZDB_FLAG_BSWAP 0x0004
8557 #define ZDB_FLAG_GBH 0x0008
8558 #define ZDB_FLAG_INDIRECT 0x0010
8559 #define ZDB_FLAG_RAW 0x0020
8560 #define ZDB_FLAG_PRINT_BLKPTR 0x0040
8561 #define ZDB_FLAG_VERBOSE 0x0080
8562
8563 static int flagbits[256];
8564 static char flagbitstr[16];
8565
8566 static void
zdb_print_blkptr(const blkptr_t * bp,int flags)8567 zdb_print_blkptr(const blkptr_t *bp, int flags)
8568 {
8569 char blkbuf[BP_SPRINTF_LEN];
8570
8571 if (flags & ZDB_FLAG_BSWAP)
8572 byteswap_uint64_array((void *)bp, sizeof (blkptr_t));
8573
8574 snprintf_blkptr(blkbuf, sizeof (blkbuf), bp);
8575 (void) printf("%s\n", blkbuf);
8576 }
8577
8578 static void
zdb_dump_indirect(blkptr_t * bp,int nbps,int flags)8579 zdb_dump_indirect(blkptr_t *bp, int nbps, int flags)
8580 {
8581 int i;
8582
8583 for (i = 0; i < nbps; i++)
8584 zdb_print_blkptr(&bp[i], flags);
8585 }
8586
8587 static void
zdb_dump_gbh(void * buf,int flags)8588 zdb_dump_gbh(void *buf, int flags)
8589 {
8590 zdb_dump_indirect((blkptr_t *)buf, SPA_GBH_NBLKPTRS, flags);
8591 }
8592
8593 static void
zdb_dump_block_raw(void * buf,uint64_t size,int flags)8594 zdb_dump_block_raw(void *buf, uint64_t size, int flags)
8595 {
8596 if (flags & ZDB_FLAG_BSWAP)
8597 byteswap_uint64_array(buf, size);
8598 VERIFY(write(fileno(stdout), buf, size) == size);
8599 }
8600
8601 static void
zdb_dump_block(char * label,void * buf,uint64_t size,int flags)8602 zdb_dump_block(char *label, void *buf, uint64_t size, int flags)
8603 {
8604 uint64_t *d = (uint64_t *)buf;
8605 unsigned nwords = size / sizeof (uint64_t);
8606 int do_bswap = !!(flags & ZDB_FLAG_BSWAP);
8607 unsigned i, j;
8608 const char *hdr;
8609 char *c;
8610
8611
8612 if (do_bswap)
8613 hdr = " 7 6 5 4 3 2 1 0 f e d c b a 9 8";
8614 else
8615 hdr = " 0 1 2 3 4 5 6 7 8 9 a b c d e f";
8616
8617 (void) printf("\n%s\n%6s %s 0123456789abcdef\n", label, "", hdr);
8618
8619 #ifdef _ZFS_LITTLE_ENDIAN
8620 /* correct the endianness */
8621 do_bswap = !do_bswap;
8622 #endif
8623 for (i = 0; i < nwords; i += 2) {
8624 (void) printf("%06llx: %016llx %016llx ",
8625 (u_longlong_t)(i * sizeof (uint64_t)),
8626 (u_longlong_t)(do_bswap ? BSWAP_64(d[i]) : d[i]),
8627 (u_longlong_t)(do_bswap ? BSWAP_64(d[i + 1]) : d[i + 1]));
8628
8629 c = (char *)&d[i];
8630 for (j = 0; j < 2 * sizeof (uint64_t); j++)
8631 (void) printf("%c", isprint(c[j]) ? c[j] : '.');
8632 (void) printf("\n");
8633 }
8634 }
8635
8636 /*
8637 * There are two acceptable formats:
8638 * leaf_name - For example: c1t0d0 or /tmp/ztest.0a
8639 * child[.child]* - For example: 0.1.1
8640 *
8641 * The second form can be used to specify arbitrary vdevs anywhere
8642 * in the hierarchy. For example, in a pool with a mirror of
8643 * RAID-Zs, you can specify either RAID-Z vdev with 0.0 or 0.1 .
8644 */
8645 static vdev_t *
zdb_vdev_lookup(vdev_t * vdev,const char * path)8646 zdb_vdev_lookup(vdev_t *vdev, const char *path)
8647 {
8648 char *s, *p, *q;
8649 unsigned i;
8650
8651 if (vdev == NULL)
8652 return (NULL);
8653
8654 /* First, assume the x.x.x.x format */
8655 i = strtoul(path, &s, 10);
8656 if (s == path || (s && *s != '.' && *s != '\0'))
8657 goto name;
8658 if (i >= vdev->vdev_children)
8659 return (NULL);
8660
8661 vdev = vdev->vdev_child[i];
8662 if (s && *s == '\0')
8663 return (vdev);
8664 return (zdb_vdev_lookup(vdev, s+1));
8665
8666 name:
8667 for (i = 0; i < vdev->vdev_children; i++) {
8668 vdev_t *vc = vdev->vdev_child[i];
8669
8670 if (vc->vdev_path == NULL) {
8671 vc = zdb_vdev_lookup(vc, path);
8672 if (vc == NULL)
8673 continue;
8674 else
8675 return (vc);
8676 }
8677
8678 p = strrchr(vc->vdev_path, '/');
8679 p = p ? p + 1 : vc->vdev_path;
8680 q = &vc->vdev_path[strlen(vc->vdev_path) - 2];
8681
8682 if (strcmp(vc->vdev_path, path) == 0)
8683 return (vc);
8684 if (strcmp(p, path) == 0)
8685 return (vc);
8686 if (strcmp(q, "s0") == 0 && strncmp(p, path, q - p) == 0)
8687 return (vc);
8688 }
8689
8690 return (NULL);
8691 }
8692
8693 static int
name_from_objset_id(spa_t * spa,uint64_t objset_id,char * outstr)8694 name_from_objset_id(spa_t *spa, uint64_t objset_id, char *outstr)
8695 {
8696 dsl_dataset_t *ds;
8697
8698 dsl_pool_config_enter(spa->spa_dsl_pool, FTAG);
8699 int error = dsl_dataset_hold_obj(spa->spa_dsl_pool, objset_id,
8700 NULL, &ds);
8701 if (error != 0) {
8702 (void) fprintf(stderr, "failed to hold objset %llu: %s\n",
8703 (u_longlong_t)objset_id, strerror(error));
8704 dsl_pool_config_exit(spa->spa_dsl_pool, FTAG);
8705 return (error);
8706 }
8707 dsl_dataset_name(ds, outstr);
8708 dsl_dataset_rele(ds, NULL);
8709 dsl_pool_config_exit(spa->spa_dsl_pool, FTAG);
8710 return (0);
8711 }
8712
8713 static boolean_t
zdb_parse_block_sizes(char * sizes,uint64_t * lsize,uint64_t * psize)8714 zdb_parse_block_sizes(char *sizes, uint64_t *lsize, uint64_t *psize)
8715 {
8716 char *s0, *s1, *tmp = NULL;
8717
8718 if (sizes == NULL)
8719 return (B_FALSE);
8720
8721 s0 = strtok_r(sizes, "/", &tmp);
8722 if (s0 == NULL)
8723 return (B_FALSE);
8724 s1 = strtok_r(NULL, "/", &tmp);
8725 *lsize = strtoull(s0, NULL, 16);
8726 *psize = s1 ? strtoull(s1, NULL, 16) : *lsize;
8727 return (*lsize >= *psize && *psize > 0);
8728 }
8729
8730 #define ZIO_COMPRESS_MASK(alg) (1ULL << (ZIO_COMPRESS_##alg))
8731
8732 static boolean_t
try_decompress_block(abd_t * pabd,uint64_t lsize,uint64_t psize,int flags,int cfunc,void * lbuf,void * lbuf2)8733 try_decompress_block(abd_t *pabd, uint64_t lsize, uint64_t psize,
8734 int flags, int cfunc, void *lbuf, void *lbuf2)
8735 {
8736 if (flags & ZDB_FLAG_VERBOSE) {
8737 (void) fprintf(stderr,
8738 "Trying %05llx -> %05llx (%s)\n",
8739 (u_longlong_t)psize,
8740 (u_longlong_t)lsize,
8741 zio_compress_table[cfunc].ci_name);
8742 }
8743
8744 /*
8745 * We set lbuf to all zeros and lbuf2 to all
8746 * ones, then decompress to both buffers and
8747 * compare their contents. This way we can
8748 * know if decompression filled exactly to
8749 * lsize or if it left some bytes unwritten.
8750 */
8751
8752 memset(lbuf, 0x00, lsize);
8753 memset(lbuf2, 0xff, lsize);
8754
8755 abd_t labd, labd2;
8756 abd_get_from_buf_struct(&labd, lbuf, lsize);
8757 abd_get_from_buf_struct(&labd2, lbuf2, lsize);
8758
8759 boolean_t ret = B_FALSE;
8760 if (zio_decompress_data(cfunc, pabd,
8761 &labd, psize, lsize, NULL) == 0 &&
8762 zio_decompress_data(cfunc, pabd,
8763 &labd2, psize, lsize, NULL) == 0 &&
8764 memcmp(lbuf, lbuf2, lsize) == 0)
8765 ret = B_TRUE;
8766
8767 abd_free(&labd2);
8768 abd_free(&labd);
8769
8770 return (ret);
8771 }
8772
8773 static uint64_t
zdb_decompress_block(abd_t * pabd,void * buf,void * lbuf,uint64_t lsize,uint64_t psize,int flags)8774 zdb_decompress_block(abd_t *pabd, void *buf, void *lbuf, uint64_t lsize,
8775 uint64_t psize, int flags)
8776 {
8777 (void) buf;
8778 uint64_t orig_lsize = lsize;
8779 boolean_t tryzle = ((getenv("ZDB_NO_ZLE") == NULL));
8780 boolean_t found = B_FALSE;
8781 /*
8782 * We don't know how the data was compressed, so just try
8783 * every decompress function at every inflated blocksize.
8784 */
8785 void *lbuf2 = umem_alloc(SPA_MAXBLOCKSIZE, UMEM_NOFAIL);
8786 int cfuncs[ZIO_COMPRESS_FUNCTIONS] = { 0 };
8787 int *cfuncp = cfuncs;
8788 uint64_t maxlsize = SPA_MAXBLOCKSIZE;
8789 uint64_t mask = ZIO_COMPRESS_MASK(ON) | ZIO_COMPRESS_MASK(OFF) |
8790 ZIO_COMPRESS_MASK(INHERIT) | ZIO_COMPRESS_MASK(EMPTY) |
8791 ZIO_COMPRESS_MASK(ZLE);
8792 *cfuncp++ = ZIO_COMPRESS_LZ4;
8793 *cfuncp++ = ZIO_COMPRESS_LZJB;
8794 mask |= ZIO_COMPRESS_MASK(LZ4) | ZIO_COMPRESS_MASK(LZJB);
8795 /*
8796 * Every gzip level has the same decompressor, no need to
8797 * run it 9 times per bruteforce attempt.
8798 */
8799 mask |= ZIO_COMPRESS_MASK(GZIP_2) | ZIO_COMPRESS_MASK(GZIP_3);
8800 mask |= ZIO_COMPRESS_MASK(GZIP_4) | ZIO_COMPRESS_MASK(GZIP_5);
8801 mask |= ZIO_COMPRESS_MASK(GZIP_6) | ZIO_COMPRESS_MASK(GZIP_7);
8802 mask |= ZIO_COMPRESS_MASK(GZIP_8) | ZIO_COMPRESS_MASK(GZIP_9);
8803 for (int c = 0; c < ZIO_COMPRESS_FUNCTIONS; c++)
8804 if (((1ULL << c) & mask) == 0)
8805 *cfuncp++ = c;
8806
8807 /*
8808 * On the one hand, with SPA_MAXBLOCKSIZE at 16MB, this
8809 * could take a while and we should let the user know
8810 * we are not stuck. On the other hand, printing progress
8811 * info gets old after a while. User can specify 'v' flag
8812 * to see the progression.
8813 */
8814 if (lsize == psize)
8815 lsize += SPA_MINBLOCKSIZE;
8816 else
8817 maxlsize = lsize;
8818
8819 for (; lsize <= maxlsize; lsize += SPA_MINBLOCKSIZE) {
8820 for (cfuncp = cfuncs; *cfuncp; cfuncp++) {
8821 if (try_decompress_block(pabd, lsize, psize, flags,
8822 *cfuncp, lbuf, lbuf2)) {
8823 found = B_TRUE;
8824 break;
8825 }
8826 }
8827 if (*cfuncp != 0)
8828 break;
8829 }
8830 if (!found && tryzle) {
8831 for (lsize = orig_lsize; lsize <= maxlsize;
8832 lsize += SPA_MINBLOCKSIZE) {
8833 if (try_decompress_block(pabd, lsize, psize, flags,
8834 ZIO_COMPRESS_ZLE, lbuf, lbuf2)) {
8835 *cfuncp = ZIO_COMPRESS_ZLE;
8836 found = B_TRUE;
8837 break;
8838 }
8839 }
8840 }
8841 umem_free(lbuf2, SPA_MAXBLOCKSIZE);
8842
8843 if (*cfuncp == ZIO_COMPRESS_ZLE) {
8844 printf("\nZLE decompression was selected. If you "
8845 "suspect the results are wrong,\ntry avoiding ZLE "
8846 "by setting and exporting ZDB_NO_ZLE=\"true\"\n");
8847 }
8848
8849 return (lsize > maxlsize ? -1 : lsize);
8850 }
8851
8852 /*
8853 * Read a block from a pool and print it out. The syntax of the
8854 * block descriptor is:
8855 *
8856 * pool:vdev_specifier:offset:[lsize/]psize[:flags]
8857 *
8858 * pool - The name of the pool you wish to read from
8859 * vdev_specifier - Which vdev (see comment for zdb_vdev_lookup)
8860 * offset - offset, in hex, in bytes
8861 * size - Amount of data to read, in hex, in bytes
8862 * flags - A string of characters specifying options
8863 * b: Decode a blkptr at given offset within block
8864 * c: Calculate and display checksums
8865 * d: Decompress data before dumping
8866 * e: Byteswap data before dumping
8867 * g: Display data as a gang block header
8868 * i: Display as an indirect block
8869 * r: Dump raw data to stdout
8870 * v: Verbose
8871 *
8872 */
8873 static void
zdb_read_block(char * thing,spa_t * spa)8874 zdb_read_block(char *thing, spa_t *spa)
8875 {
8876 blkptr_t blk, *bp = &blk;
8877 dva_t *dva = bp->blk_dva;
8878 int flags = 0;
8879 uint64_t offset = 0, psize = 0, lsize = 0, blkptr_offset = 0;
8880 zio_t *zio;
8881 vdev_t *vd;
8882 abd_t *pabd;
8883 void *lbuf, *buf;
8884 char *s, *p, *dup, *flagstr, *sizes, *tmp = NULL;
8885 const char *vdev, *errmsg = NULL;
8886 int i, len, error;
8887 boolean_t borrowed = B_FALSE, found = B_FALSE;
8888
8889 dup = strdup(thing);
8890 s = strtok_r(dup, ":", &tmp);
8891 vdev = s ?: "";
8892 s = strtok_r(NULL, ":", &tmp);
8893 offset = strtoull(s ? s : "", NULL, 16);
8894 sizes = strtok_r(NULL, ":", &tmp);
8895 s = strtok_r(NULL, ":", &tmp);
8896 flagstr = strdup(s ?: "");
8897
8898 if (!zdb_parse_block_sizes(sizes, &lsize, &psize))
8899 errmsg = "invalid size(s)";
8900 if (!IS_P2ALIGNED(psize, DEV_BSIZE) || !IS_P2ALIGNED(lsize, DEV_BSIZE))
8901 errmsg = "size must be a multiple of sector size";
8902 if (!IS_P2ALIGNED(offset, DEV_BSIZE))
8903 errmsg = "offset must be a multiple of sector size";
8904 if (errmsg) {
8905 (void) printf("Invalid block specifier: %s - %s\n",
8906 thing, errmsg);
8907 goto done;
8908 }
8909
8910 tmp = NULL;
8911 for (s = strtok_r(flagstr, ":", &tmp);
8912 s != NULL;
8913 s = strtok_r(NULL, ":", &tmp)) {
8914 len = strlen(flagstr);
8915 for (i = 0; i < len; i++) {
8916 int bit = flagbits[(uchar_t)flagstr[i]];
8917
8918 if (bit == 0) {
8919 (void) printf("***Ignoring flag: %c\n",
8920 (uchar_t)flagstr[i]);
8921 continue;
8922 }
8923 found = B_TRUE;
8924 flags |= bit;
8925
8926 p = &flagstr[i + 1];
8927 if (*p != ':' && *p != '\0') {
8928 int j = 0, nextbit = flagbits[(uchar_t)*p];
8929 char *end, offstr[8] = { 0 };
8930 if ((bit == ZDB_FLAG_PRINT_BLKPTR) &&
8931 (nextbit == 0)) {
8932 /* look ahead to isolate the offset */
8933 while (nextbit == 0 &&
8934 strchr(flagbitstr, *p) == NULL) {
8935 offstr[j] = *p;
8936 j++;
8937 if (i + j > strlen(flagstr))
8938 break;
8939 p++;
8940 nextbit = flagbits[(uchar_t)*p];
8941 }
8942 blkptr_offset = strtoull(offstr, &end,
8943 16);
8944 i += j;
8945 } else if (nextbit == 0) {
8946 (void) printf("***Ignoring flag arg:"
8947 " '%c'\n", (uchar_t)*p);
8948 }
8949 }
8950 }
8951 }
8952 if (blkptr_offset % sizeof (blkptr_t)) {
8953 printf("Block pointer offset 0x%llx "
8954 "must be divisible by 0x%x\n",
8955 (longlong_t)blkptr_offset, (int)sizeof (blkptr_t));
8956 goto done;
8957 }
8958 if (found == B_FALSE && strlen(flagstr) > 0) {
8959 printf("Invalid flag arg: '%s'\n", flagstr);
8960 goto done;
8961 }
8962
8963 vd = zdb_vdev_lookup(spa->spa_root_vdev, vdev);
8964 if (vd == NULL) {
8965 (void) printf("***Invalid vdev: %s\n", vdev);
8966 goto done;
8967 } else {
8968 if (vd->vdev_path)
8969 (void) fprintf(stderr, "Found vdev: %s\n",
8970 vd->vdev_path);
8971 else
8972 (void) fprintf(stderr, "Found vdev type: %s\n",
8973 vd->vdev_ops->vdev_op_type);
8974 }
8975
8976 pabd = abd_alloc_for_io(SPA_MAXBLOCKSIZE, B_FALSE);
8977 lbuf = umem_alloc(SPA_MAXBLOCKSIZE, UMEM_NOFAIL);
8978
8979 BP_ZERO(bp);
8980
8981 DVA_SET_VDEV(&dva[0], vd->vdev_id);
8982 DVA_SET_OFFSET(&dva[0], offset);
8983 DVA_SET_GANG(&dva[0], !!(flags & ZDB_FLAG_GBH));
8984 DVA_SET_ASIZE(&dva[0], vdev_psize_to_asize(vd, psize));
8985
8986 BP_SET_BIRTH(bp, TXG_INITIAL, TXG_INITIAL);
8987
8988 BP_SET_LSIZE(bp, lsize);
8989 BP_SET_PSIZE(bp, psize);
8990 BP_SET_COMPRESS(bp, ZIO_COMPRESS_OFF);
8991 BP_SET_CHECKSUM(bp, ZIO_CHECKSUM_OFF);
8992 BP_SET_TYPE(bp, DMU_OT_NONE);
8993 BP_SET_LEVEL(bp, 0);
8994 BP_SET_DEDUP(bp, 0);
8995 BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
8996
8997 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
8998 zio = zio_root(spa, NULL, NULL, 0);
8999
9000 if (vd == vd->vdev_top) {
9001 /*
9002 * Treat this as a normal block read.
9003 */
9004 zio_nowait(zio_read(zio, spa, bp, pabd, psize, NULL, NULL,
9005 ZIO_PRIORITY_SYNC_READ,
9006 ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW, NULL));
9007 } else {
9008 /*
9009 * Treat this as a vdev child I/O.
9010 */
9011 zio_nowait(zio_vdev_child_io(zio, bp, vd, offset, pabd,
9012 psize, ZIO_TYPE_READ, ZIO_PRIORITY_SYNC_READ,
9013 ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY |
9014 ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW | ZIO_FLAG_OPTIONAL,
9015 NULL, NULL));
9016 }
9017
9018 error = zio_wait(zio);
9019 spa_config_exit(spa, SCL_STATE, FTAG);
9020
9021 if (error) {
9022 (void) printf("Read of %s failed, error: %d\n", thing, error);
9023 goto out;
9024 }
9025
9026 uint64_t orig_lsize = lsize;
9027 buf = lbuf;
9028 if (flags & ZDB_FLAG_DECOMPRESS) {
9029 lsize = zdb_decompress_block(pabd, buf, lbuf,
9030 lsize, psize, flags);
9031 if (lsize == -1) {
9032 (void) printf("Decompress of %s failed\n", thing);
9033 goto out;
9034 }
9035 } else {
9036 buf = abd_borrow_buf_copy(pabd, lsize);
9037 borrowed = B_TRUE;
9038 }
9039 /*
9040 * Try to detect invalid block pointer. If invalid, try
9041 * decompressing.
9042 */
9043 if ((flags & ZDB_FLAG_PRINT_BLKPTR || flags & ZDB_FLAG_INDIRECT) &&
9044 !(flags & ZDB_FLAG_DECOMPRESS)) {
9045 const blkptr_t *b = (const blkptr_t *)(void *)
9046 ((uintptr_t)buf + (uintptr_t)blkptr_offset);
9047 if (zfs_blkptr_verify(spa, b,
9048 BLK_CONFIG_NEEDED, BLK_VERIFY_ONLY)) {
9049 abd_return_buf_copy(pabd, buf, lsize);
9050 borrowed = B_FALSE;
9051 buf = lbuf;
9052 lsize = zdb_decompress_block(pabd, buf,
9053 lbuf, lsize, psize, flags);
9054 b = (const blkptr_t *)(void *)
9055 ((uintptr_t)buf + (uintptr_t)blkptr_offset);
9056 if (lsize == -1 || zfs_blkptr_verify(spa, b,
9057 BLK_CONFIG_NEEDED, BLK_VERIFY_LOG)) {
9058 printf("invalid block pointer at this DVA\n");
9059 goto out;
9060 }
9061 }
9062 }
9063
9064 if (flags & ZDB_FLAG_PRINT_BLKPTR)
9065 zdb_print_blkptr((blkptr_t *)(void *)
9066 ((uintptr_t)buf + (uintptr_t)blkptr_offset), flags);
9067 else if (flags & ZDB_FLAG_RAW)
9068 zdb_dump_block_raw(buf, lsize, flags);
9069 else if (flags & ZDB_FLAG_INDIRECT)
9070 zdb_dump_indirect((blkptr_t *)buf,
9071 orig_lsize / sizeof (blkptr_t), flags);
9072 else if (flags & ZDB_FLAG_GBH)
9073 zdb_dump_gbh(buf, flags);
9074 else
9075 zdb_dump_block(thing, buf, lsize, flags);
9076
9077 /*
9078 * If :c was specified, iterate through the checksum table to
9079 * calculate and display each checksum for our specified
9080 * DVA and length.
9081 */
9082 if ((flags & ZDB_FLAG_CHECKSUM) && !(flags & ZDB_FLAG_RAW) &&
9083 !(flags & ZDB_FLAG_GBH)) {
9084 zio_t *czio;
9085 (void) printf("\n");
9086 for (enum zio_checksum ck = ZIO_CHECKSUM_LABEL;
9087 ck < ZIO_CHECKSUM_FUNCTIONS; ck++) {
9088
9089 if ((zio_checksum_table[ck].ci_flags &
9090 ZCHECKSUM_FLAG_EMBEDDED) ||
9091 ck == ZIO_CHECKSUM_NOPARITY) {
9092 continue;
9093 }
9094 BP_SET_CHECKSUM(bp, ck);
9095 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
9096 czio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
9097 if (vd == vd->vdev_top) {
9098 zio_nowait(zio_read(czio, spa, bp, pabd, psize,
9099 NULL, NULL,
9100 ZIO_PRIORITY_SYNC_READ,
9101 ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW |
9102 ZIO_FLAG_DONT_RETRY, NULL));
9103 } else {
9104 zio_nowait(zio_vdev_child_io(czio, bp, vd,
9105 offset, pabd, psize, ZIO_TYPE_READ,
9106 ZIO_PRIORITY_SYNC_READ,
9107 ZIO_FLAG_DONT_PROPAGATE |
9108 ZIO_FLAG_DONT_RETRY |
9109 ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW |
9110 ZIO_FLAG_SPECULATIVE |
9111 ZIO_FLAG_OPTIONAL, NULL, NULL));
9112 }
9113 error = zio_wait(czio);
9114 if (error == 0 || error == ECKSUM) {
9115 zio_t *ck_zio = zio_null(NULL, spa, NULL,
9116 NULL, NULL, 0);
9117 ck_zio->io_offset =
9118 DVA_GET_OFFSET(&bp->blk_dva[0]);
9119 ck_zio->io_bp = bp;
9120 zio_checksum_compute(ck_zio, ck, pabd, lsize);
9121 printf(
9122 "%12s\t"
9123 "cksum=%016llx:%016llx:%016llx:%016llx\n",
9124 zio_checksum_table[ck].ci_name,
9125 (u_longlong_t)bp->blk_cksum.zc_word[0],
9126 (u_longlong_t)bp->blk_cksum.zc_word[1],
9127 (u_longlong_t)bp->blk_cksum.zc_word[2],
9128 (u_longlong_t)bp->blk_cksum.zc_word[3]);
9129 zio_wait(ck_zio);
9130 } else {
9131 printf("error %d reading block\n", error);
9132 }
9133 spa_config_exit(spa, SCL_STATE, FTAG);
9134 }
9135 }
9136
9137 if (borrowed)
9138 abd_return_buf_copy(pabd, buf, lsize);
9139
9140 out:
9141 abd_free(pabd);
9142 umem_free(lbuf, SPA_MAXBLOCKSIZE);
9143 done:
9144 free(flagstr);
9145 free(dup);
9146 }
9147
9148 static void
zdb_embedded_block(char * thing)9149 zdb_embedded_block(char *thing)
9150 {
9151 blkptr_t bp = {{{{0}}}};
9152 unsigned long long *words = (void *)&bp;
9153 char *buf;
9154 int err;
9155
9156 err = sscanf(thing, "%llx:%llx:%llx:%llx:%llx:%llx:%llx:%llx:"
9157 "%llx:%llx:%llx:%llx:%llx:%llx:%llx:%llx",
9158 words + 0, words + 1, words + 2, words + 3,
9159 words + 4, words + 5, words + 6, words + 7,
9160 words + 8, words + 9, words + 10, words + 11,
9161 words + 12, words + 13, words + 14, words + 15);
9162 if (err != 16) {
9163 (void) fprintf(stderr, "invalid input format\n");
9164 zdb_exit(1);
9165 }
9166 ASSERT3U(BPE_GET_LSIZE(&bp), <=, SPA_MAXBLOCKSIZE);
9167 buf = malloc(SPA_MAXBLOCKSIZE);
9168 if (buf == NULL) {
9169 (void) fprintf(stderr, "out of memory\n");
9170 zdb_exit(1);
9171 }
9172 err = decode_embedded_bp(&bp, buf, BPE_GET_LSIZE(&bp));
9173 if (err != 0) {
9174 (void) fprintf(stderr, "decode failed: %u\n", err);
9175 zdb_exit(1);
9176 }
9177 zdb_dump_block_raw(buf, BPE_GET_LSIZE(&bp), 0);
9178 free(buf);
9179 }
9180
9181 /* check for valid hex or decimal numeric string */
9182 static boolean_t
zdb_numeric(char * str)9183 zdb_numeric(char *str)
9184 {
9185 int i = 0, len;
9186
9187 len = strlen(str);
9188 if (len == 0)
9189 return (B_FALSE);
9190 if (strncmp(str, "0x", 2) == 0 || strncmp(str, "0X", 2) == 0)
9191 i = 2;
9192 for (; i < len; i++) {
9193 if (!isxdigit(str[i]))
9194 return (B_FALSE);
9195 }
9196 return (B_TRUE);
9197 }
9198
9199 static int
dummy_get_file_info(dmu_object_type_t bonustype,const void * data,zfs_file_info_t * zoi)9200 dummy_get_file_info(dmu_object_type_t bonustype, const void *data,
9201 zfs_file_info_t *zoi)
9202 {
9203 (void) data, (void) zoi;
9204
9205 if (bonustype != DMU_OT_ZNODE && bonustype != DMU_OT_SA)
9206 return (ENOENT);
9207
9208 (void) fprintf(stderr, "dummy_get_file_info: not implemented");
9209 abort();
9210 }
9211
9212 int
main(int argc,char ** argv)9213 main(int argc, char **argv)
9214 {
9215 int c;
9216 int dump_all = 1;
9217 int verbose = 0;
9218 int error = 0;
9219 char **searchdirs = NULL;
9220 int nsearch = 0;
9221 char *target, *target_pool, dsname[ZFS_MAX_DATASET_NAME_LEN];
9222 nvlist_t *policy = NULL;
9223 uint64_t max_txg = UINT64_MAX;
9224 int64_t objset_id = -1;
9225 uint64_t object;
9226 int flags = ZFS_IMPORT_MISSING_LOG;
9227 int rewind = ZPOOL_NEVER_REWIND;
9228 char *spa_config_path_env, *objset_str;
9229 boolean_t target_is_spa = B_TRUE, dataset_lookup = B_FALSE;
9230 nvlist_t *cfg = NULL;
9231 struct sigaction action;
9232 boolean_t force_import = B_FALSE;
9233 boolean_t config_path_console = B_FALSE;
9234 char pbuf[MAXPATHLEN];
9235
9236 dprintf_setup(&argc, argv);
9237
9238 /*
9239 * Set up signal handlers, so if we crash due to bad on-disk data we
9240 * can get more info. Unlike ztest, we don't bail out if we can't set
9241 * up signal handlers, because zdb is very useful without them.
9242 */
9243 action.sa_handler = sig_handler;
9244 sigemptyset(&action.sa_mask);
9245 action.sa_flags = 0;
9246 if (sigaction(SIGSEGV, &action, NULL) < 0) {
9247 (void) fprintf(stderr, "zdb: cannot catch SIGSEGV: %s\n",
9248 strerror(errno));
9249 }
9250 if (sigaction(SIGABRT, &action, NULL) < 0) {
9251 (void) fprintf(stderr, "zdb: cannot catch SIGABRT: %s\n",
9252 strerror(errno));
9253 }
9254
9255 /*
9256 * If there is an environment variable SPA_CONFIG_PATH it overrides
9257 * default spa_config_path setting. If -U flag is specified it will
9258 * override this environment variable settings once again.
9259 */
9260 spa_config_path_env = getenv("SPA_CONFIG_PATH");
9261 if (spa_config_path_env != NULL)
9262 spa_config_path = spa_config_path_env;
9263
9264 /*
9265 * For performance reasons, we set this tunable down. We do so before
9266 * the arg parsing section so that the user can override this value if
9267 * they choose.
9268 */
9269 zfs_btree_verify_intensity = 3;
9270
9271 struct option long_options[] = {
9272 {"ignore-assertions", no_argument, NULL, 'A'},
9273 {"block-stats", no_argument, NULL, 'b'},
9274 {"backup", no_argument, NULL, 'B'},
9275 {"checksum", no_argument, NULL, 'c'},
9276 {"config", no_argument, NULL, 'C'},
9277 {"datasets", no_argument, NULL, 'd'},
9278 {"dedup-stats", no_argument, NULL, 'D'},
9279 {"exported", no_argument, NULL, 'e'},
9280 {"embedded-block-pointer", no_argument, NULL, 'E'},
9281 {"automatic-rewind", no_argument, NULL, 'F'},
9282 {"dump-debug-msg", no_argument, NULL, 'G'},
9283 {"history", no_argument, NULL, 'h'},
9284 {"intent-logs", no_argument, NULL, 'i'},
9285 {"inflight", required_argument, NULL, 'I'},
9286 {"checkpointed-state", no_argument, NULL, 'k'},
9287 {"key", required_argument, NULL, 'K'},
9288 {"label", no_argument, NULL, 'l'},
9289 {"disable-leak-tracking", no_argument, NULL, 'L'},
9290 {"metaslabs", no_argument, NULL, 'm'},
9291 {"metaslab-groups", no_argument, NULL, 'M'},
9292 {"numeric", no_argument, NULL, 'N'},
9293 {"option", required_argument, NULL, 'o'},
9294 {"object-lookups", no_argument, NULL, 'O'},
9295 {"path", required_argument, NULL, 'p'},
9296 {"parseable", no_argument, NULL, 'P'},
9297 {"skip-label", no_argument, NULL, 'q'},
9298 {"copy-object", no_argument, NULL, 'r'},
9299 {"read-block", no_argument, NULL, 'R'},
9300 {"io-stats", no_argument, NULL, 's'},
9301 {"simulate-dedup", no_argument, NULL, 'S'},
9302 {"txg", required_argument, NULL, 't'},
9303 {"brt-stats", no_argument, NULL, 'T'},
9304 {"uberblock", no_argument, NULL, 'u'},
9305 {"cachefile", required_argument, NULL, 'U'},
9306 {"verbose", no_argument, NULL, 'v'},
9307 {"verbatim", no_argument, NULL, 'V'},
9308 {"dump-blocks", required_argument, NULL, 'x'},
9309 {"extreme-rewind", no_argument, NULL, 'X'},
9310 {"all-reconstruction", no_argument, NULL, 'Y'},
9311 {"livelist", no_argument, NULL, 'y'},
9312 {"zstd-headers", no_argument, NULL, 'Z'},
9313 {0, 0, 0, 0}
9314 };
9315
9316 while ((c = getopt_long(argc, argv,
9317 "AbBcCdDeEFGhiI:kK:lLmMNo:Op:PqrRsSt:TuU:vVx:XYyZ",
9318 long_options, NULL)) != -1) {
9319 switch (c) {
9320 case 'b':
9321 case 'B':
9322 case 'c':
9323 case 'C':
9324 case 'd':
9325 case 'D':
9326 case 'E':
9327 case 'G':
9328 case 'h':
9329 case 'i':
9330 case 'l':
9331 case 'm':
9332 case 'M':
9333 case 'N':
9334 case 'O':
9335 case 'r':
9336 case 'R':
9337 case 's':
9338 case 'S':
9339 case 'T':
9340 case 'u':
9341 case 'y':
9342 case 'Z':
9343 dump_opt[c]++;
9344 dump_all = 0;
9345 break;
9346 case 'A':
9347 case 'e':
9348 case 'F':
9349 case 'k':
9350 case 'L':
9351 case 'P':
9352 case 'q':
9353 case 'X':
9354 dump_opt[c]++;
9355 break;
9356 case 'Y':
9357 zfs_reconstruct_indirect_combinations_max = INT_MAX;
9358 zfs_deadman_enabled = 0;
9359 break;
9360 /* NB: Sort single match options below. */
9361 case 'I':
9362 max_inflight_bytes = strtoull(optarg, NULL, 0);
9363 if (max_inflight_bytes == 0) {
9364 (void) fprintf(stderr, "maximum number "
9365 "of inflight bytes must be greater "
9366 "than 0\n");
9367 usage();
9368 }
9369 break;
9370 case 'K':
9371 dump_opt[c]++;
9372 key_material = strdup(optarg);
9373 /* redact key material in process table */
9374 while (*optarg != '\0') { *optarg++ = '*'; }
9375 break;
9376 case 'o':
9377 error = set_global_var(optarg);
9378 if (error != 0)
9379 usage();
9380 break;
9381 case 'p':
9382 if (searchdirs == NULL) {
9383 searchdirs = umem_alloc(sizeof (char *),
9384 UMEM_NOFAIL);
9385 } else {
9386 char **tmp = umem_alloc((nsearch + 1) *
9387 sizeof (char *), UMEM_NOFAIL);
9388 memcpy(tmp, searchdirs, nsearch *
9389 sizeof (char *));
9390 umem_free(searchdirs,
9391 nsearch * sizeof (char *));
9392 searchdirs = tmp;
9393 }
9394 searchdirs[nsearch++] = optarg;
9395 break;
9396 case 't':
9397 max_txg = strtoull(optarg, NULL, 0);
9398 if (max_txg < TXG_INITIAL) {
9399 (void) fprintf(stderr, "incorrect txg "
9400 "specified: %s\n", optarg);
9401 usage();
9402 }
9403 break;
9404 case 'U':
9405 config_path_console = B_TRUE;
9406 spa_config_path = optarg;
9407 if (spa_config_path[0] != '/') {
9408 (void) fprintf(stderr,
9409 "cachefile must be an absolute path "
9410 "(i.e. start with a slash)\n");
9411 usage();
9412 }
9413 break;
9414 case 'v':
9415 verbose++;
9416 break;
9417 case 'V':
9418 flags = ZFS_IMPORT_VERBATIM;
9419 break;
9420 case 'x':
9421 vn_dumpdir = optarg;
9422 break;
9423 default:
9424 usage();
9425 break;
9426 }
9427 }
9428
9429 if (!dump_opt['e'] && searchdirs != NULL) {
9430 (void) fprintf(stderr, "-p option requires use of -e\n");
9431 usage();
9432 }
9433 #if defined(_LP64)
9434 /*
9435 * ZDB does not typically re-read blocks; therefore limit the ARC
9436 * to 256 MB, which can be used entirely for metadata.
9437 */
9438 zfs_arc_min = 2ULL << SPA_MAXBLOCKSHIFT;
9439 zfs_arc_max = 256 * 1024 * 1024;
9440 #endif
9441
9442 /*
9443 * "zdb -c" uses checksum-verifying scrub i/os which are async reads.
9444 * "zdb -b" uses traversal prefetch which uses async reads.
9445 * For good performance, let several of them be active at once.
9446 */
9447 zfs_vdev_async_read_max_active = 10;
9448
9449 /*
9450 * Disable reference tracking for better performance.
9451 */
9452 reference_tracking_enable = B_FALSE;
9453
9454 /*
9455 * Do not fail spa_load when spa_load_verify fails. This is needed
9456 * to load non-idle pools.
9457 */
9458 spa_load_verify_dryrun = B_TRUE;
9459
9460 /*
9461 * ZDB should have ability to read spacemaps.
9462 */
9463 spa_mode_readable_spacemaps = B_TRUE;
9464
9465 if (dump_all)
9466 verbose = MAX(verbose, 1);
9467
9468 for (c = 0; c < 256; c++) {
9469 if (dump_all && strchr("ABeEFkKlLNOPrRSXy", c) == NULL)
9470 dump_opt[c] = 1;
9471 if (dump_opt[c])
9472 dump_opt[c] += verbose;
9473 }
9474
9475 libspl_set_assert_ok((dump_opt['A'] == 1) || (dump_opt['A'] > 2));
9476 zfs_recover = (dump_opt['A'] > 1);
9477
9478 argc -= optind;
9479 argv += optind;
9480 if (argc < 2 && dump_opt['R'])
9481 usage();
9482
9483 target = argv[0];
9484
9485 /*
9486 * Automate cachefile
9487 */
9488 if (!spa_config_path_env && !config_path_console && target &&
9489 libzfs_core_init() == 0) {
9490 char *pname = strdup(target);
9491 const char *value;
9492 nvlist_t *pnvl = NULL;
9493 nvlist_t *vnvl = NULL;
9494
9495 if (strpbrk(pname, "/@") != NULL)
9496 *strpbrk(pname, "/@") = '\0';
9497
9498 if (pname && lzc_get_props(pname, &pnvl) == 0) {
9499 if (nvlist_lookup_nvlist(pnvl, "cachefile",
9500 &vnvl) == 0) {
9501 value = fnvlist_lookup_string(vnvl,
9502 ZPROP_VALUE);
9503 } else {
9504 value = "-";
9505 }
9506 strlcpy(pbuf, value, sizeof (pbuf));
9507 if (pbuf[0] != '\0') {
9508 if (pbuf[0] == '/') {
9509 if (access(pbuf, F_OK) == 0)
9510 spa_config_path = pbuf;
9511 else
9512 force_import = B_TRUE;
9513 } else if ((strcmp(pbuf, "-") == 0 &&
9514 access(ZPOOL_CACHE, F_OK) != 0) ||
9515 strcmp(pbuf, "none") == 0) {
9516 force_import = B_TRUE;
9517 }
9518 }
9519 nvlist_free(vnvl);
9520 }
9521
9522 free(pname);
9523 nvlist_free(pnvl);
9524 libzfs_core_fini();
9525 }
9526
9527 dmu_objset_register_type(DMU_OST_ZFS, dummy_get_file_info);
9528 kernel_init(SPA_MODE_READ);
9529 kernel_init_done = B_TRUE;
9530
9531 if (dump_opt['E']) {
9532 if (argc != 1)
9533 usage();
9534 zdb_embedded_block(argv[0]);
9535 error = 0;
9536 goto fini;
9537 }
9538
9539 if (argc < 1) {
9540 if (!dump_opt['e'] && dump_opt['C']) {
9541 dump_cachefile(spa_config_path);
9542 error = 0;
9543 goto fini;
9544 }
9545 usage();
9546 }
9547
9548 if (dump_opt['l']) {
9549 error = dump_label(argv[0]);
9550 goto fini;
9551 }
9552
9553 if (dump_opt['X'] || dump_opt['F'])
9554 rewind = ZPOOL_DO_REWIND |
9555 (dump_opt['X'] ? ZPOOL_EXTREME_REWIND : 0);
9556
9557 /* -N implies -d */
9558 if (dump_opt['N'] && dump_opt['d'] == 0)
9559 dump_opt['d'] = dump_opt['N'];
9560
9561 if (nvlist_alloc(&policy, NV_UNIQUE_NAME_TYPE, 0) != 0 ||
9562 nvlist_add_uint64(policy, ZPOOL_LOAD_REQUEST_TXG, max_txg) != 0 ||
9563 nvlist_add_uint32(policy, ZPOOL_LOAD_REWIND_POLICY, rewind) != 0)
9564 fatal("internal error: %s", strerror(ENOMEM));
9565
9566 error = 0;
9567
9568 if (strpbrk(target, "/@") != NULL) {
9569 size_t targetlen;
9570
9571 target_pool = strdup(target);
9572 *strpbrk(target_pool, "/@") = '\0';
9573
9574 target_is_spa = B_FALSE;
9575 targetlen = strlen(target);
9576 if (targetlen && target[targetlen - 1] == '/')
9577 target[targetlen - 1] = '\0';
9578
9579 /*
9580 * See if an objset ID was supplied (-d <pool>/<objset ID>).
9581 * To disambiguate tank/100, consider the 100 as objsetID
9582 * if -N was given, otherwise 100 is an objsetID iff
9583 * tank/100 as a named dataset fails on lookup.
9584 */
9585 objset_str = strchr(target, '/');
9586 if (objset_str && strlen(objset_str) > 1 &&
9587 zdb_numeric(objset_str + 1)) {
9588 char *endptr;
9589 errno = 0;
9590 objset_str++;
9591 objset_id = strtoull(objset_str, &endptr, 0);
9592 /* dataset 0 is the same as opening the pool */
9593 if (errno == 0 && endptr != objset_str &&
9594 objset_id != 0) {
9595 if (dump_opt['N'])
9596 dataset_lookup = B_TRUE;
9597 }
9598 /* normal dataset name not an objset ID */
9599 if (endptr == objset_str) {
9600 objset_id = -1;
9601 }
9602 } else if (objset_str && !zdb_numeric(objset_str + 1) &&
9603 dump_opt['N']) {
9604 printf("Supply a numeric objset ID with -N\n");
9605 error = 1;
9606 goto fini;
9607 }
9608 } else {
9609 target_pool = target;
9610 }
9611
9612 if (dump_opt['e'] || force_import) {
9613 importargs_t args = { 0 };
9614
9615 /*
9616 * If path is not provided, search in /dev
9617 */
9618 if (searchdirs == NULL) {
9619 searchdirs = umem_alloc(sizeof (char *), UMEM_NOFAIL);
9620 searchdirs[nsearch++] = (char *)ZFS_DEVDIR;
9621 }
9622
9623 args.paths = nsearch;
9624 args.path = searchdirs;
9625 args.can_be_active = B_TRUE;
9626
9627 libpc_handle_t lpch = {
9628 .lpc_lib_handle = NULL,
9629 .lpc_ops = &libzpool_config_ops,
9630 .lpc_printerr = B_TRUE
9631 };
9632 error = zpool_find_config(&lpch, target_pool, &cfg, &args);
9633
9634 if (error == 0) {
9635
9636 if (nvlist_add_nvlist(cfg,
9637 ZPOOL_LOAD_POLICY, policy) != 0) {
9638 fatal("can't open '%s': %s",
9639 target, strerror(ENOMEM));
9640 }
9641
9642 if (dump_opt['C'] > 1) {
9643 (void) printf("\nConfiguration for import:\n");
9644 dump_nvlist(cfg, 8);
9645 }
9646
9647 /*
9648 * Disable the activity check to allow examination of
9649 * active pools.
9650 */
9651 error = spa_import(target_pool, cfg, NULL,
9652 flags | ZFS_IMPORT_SKIP_MMP);
9653 }
9654 }
9655
9656 if (searchdirs != NULL) {
9657 umem_free(searchdirs, nsearch * sizeof (char *));
9658 searchdirs = NULL;
9659 }
9660
9661 /*
9662 * We need to make sure to process -O option or call
9663 * dump_path after the -e option has been processed,
9664 * which imports the pool to the namespace if it's
9665 * not in the cachefile.
9666 */
9667 if (dump_opt['O']) {
9668 if (argc != 2)
9669 usage();
9670 dump_opt['v'] = verbose + 3;
9671 error = dump_path(argv[0], argv[1], NULL);
9672 goto fini;
9673 }
9674
9675 if (dump_opt['r']) {
9676 target_is_spa = B_FALSE;
9677 if (argc != 3)
9678 usage();
9679 dump_opt['v'] = verbose;
9680 error = dump_path(argv[0], argv[1], &object);
9681 if (error != 0)
9682 fatal("internal error: %s", strerror(error));
9683 }
9684
9685 /*
9686 * import_checkpointed_state makes the assumption that the
9687 * target pool that we pass it is already part of the spa
9688 * namespace. Because of that we need to make sure to call
9689 * it always after the -e option has been processed, which
9690 * imports the pool to the namespace if it's not in the
9691 * cachefile.
9692 */
9693 char *checkpoint_pool = NULL;
9694 char *checkpoint_target = NULL;
9695 if (dump_opt['k']) {
9696 checkpoint_pool = import_checkpointed_state(target, cfg,
9697 &checkpoint_target);
9698
9699 if (checkpoint_target != NULL)
9700 target = checkpoint_target;
9701 }
9702
9703 if (cfg != NULL) {
9704 nvlist_free(cfg);
9705 cfg = NULL;
9706 }
9707
9708 if (target_pool != target)
9709 free(target_pool);
9710
9711 if (error == 0) {
9712 if (dump_opt['k'] && (target_is_spa || dump_opt['R'])) {
9713 ASSERT(checkpoint_pool != NULL);
9714 ASSERT(checkpoint_target == NULL);
9715
9716 error = spa_open(checkpoint_pool, &spa, FTAG);
9717 if (error != 0) {
9718 fatal("Tried to open pool \"%s\" but "
9719 "spa_open() failed with error %d\n",
9720 checkpoint_pool, error);
9721 }
9722
9723 } else if (target_is_spa || dump_opt['R'] || dump_opt['B'] ||
9724 objset_id == 0) {
9725 zdb_set_skip_mmp(target);
9726 error = spa_open_rewind(target, &spa, FTAG, policy,
9727 NULL);
9728 if (error) {
9729 /*
9730 * If we're missing the log device then
9731 * try opening the pool after clearing the
9732 * log state.
9733 */
9734 mutex_enter(&spa_namespace_lock);
9735 if ((spa = spa_lookup(target)) != NULL &&
9736 spa->spa_log_state == SPA_LOG_MISSING) {
9737 spa->spa_log_state = SPA_LOG_CLEAR;
9738 error = 0;
9739 }
9740 mutex_exit(&spa_namespace_lock);
9741
9742 if (!error) {
9743 error = spa_open_rewind(target, &spa,
9744 FTAG, policy, NULL);
9745 }
9746 }
9747 } else if (strpbrk(target, "#") != NULL) {
9748 dsl_pool_t *dp;
9749 error = dsl_pool_hold(target, FTAG, &dp);
9750 if (error != 0) {
9751 fatal("can't dump '%s': %s", target,
9752 strerror(error));
9753 }
9754 error = dump_bookmark(dp, target, B_TRUE, verbose > 1);
9755 dsl_pool_rele(dp, FTAG);
9756 if (error != 0) {
9757 fatal("can't dump '%s': %s", target,
9758 strerror(error));
9759 }
9760 goto fini;
9761 } else {
9762 target_pool = strdup(target);
9763 if (strpbrk(target, "/@") != NULL)
9764 *strpbrk(target_pool, "/@") = '\0';
9765
9766 zdb_set_skip_mmp(target);
9767 /*
9768 * If -N was supplied, the user has indicated that
9769 * zdb -d <pool>/<objsetID> is in effect. Otherwise
9770 * we first assume that the dataset string is the
9771 * dataset name. If dmu_objset_hold fails with the
9772 * dataset string, and we have an objset_id, retry the
9773 * lookup with the objsetID.
9774 */
9775 boolean_t retry = B_TRUE;
9776 retry_lookup:
9777 if (dataset_lookup == B_TRUE) {
9778 /*
9779 * Use the supplied id to get the name
9780 * for open_objset.
9781 */
9782 error = spa_open(target_pool, &spa, FTAG);
9783 if (error == 0) {
9784 error = name_from_objset_id(spa,
9785 objset_id, dsname);
9786 spa_close(spa, FTAG);
9787 if (error == 0)
9788 target = dsname;
9789 }
9790 }
9791 if (error == 0) {
9792 if (objset_id > 0 && retry) {
9793 int err = dmu_objset_hold(target, FTAG,
9794 &os);
9795 if (err) {
9796 dataset_lookup = B_TRUE;
9797 retry = B_FALSE;
9798 goto retry_lookup;
9799 } else {
9800 dmu_objset_rele(os, FTAG);
9801 }
9802 }
9803 error = open_objset(target, FTAG, &os);
9804 }
9805 if (error == 0)
9806 spa = dmu_objset_spa(os);
9807 free(target_pool);
9808 }
9809 }
9810 nvlist_free(policy);
9811
9812 if (error)
9813 fatal("can't open '%s': %s", target, strerror(error));
9814
9815 /*
9816 * Set the pool failure mode to panic in order to prevent the pool
9817 * from suspending. A suspended I/O will have no way to resume and
9818 * can prevent the zdb(8) command from terminating as expected.
9819 */
9820 if (spa != NULL)
9821 spa->spa_failmode = ZIO_FAILURE_MODE_PANIC;
9822
9823 argv++;
9824 argc--;
9825 if (dump_opt['r']) {
9826 error = zdb_copy_object(os, object, argv[1]);
9827 } else if (!dump_opt['R']) {
9828 flagbits['d'] = ZOR_FLAG_DIRECTORY;
9829 flagbits['f'] = ZOR_FLAG_PLAIN_FILE;
9830 flagbits['m'] = ZOR_FLAG_SPACE_MAP;
9831 flagbits['z'] = ZOR_FLAG_ZAP;
9832 flagbits['A'] = ZOR_FLAG_ALL_TYPES;
9833
9834 if (argc > 0 && dump_opt['d']) {
9835 zopt_object_args = argc;
9836 zopt_object_ranges = calloc(zopt_object_args,
9837 sizeof (zopt_object_range_t));
9838 for (unsigned i = 0; i < zopt_object_args; i++) {
9839 int err;
9840 const char *msg = NULL;
9841
9842 err = parse_object_range(argv[i],
9843 &zopt_object_ranges[i], &msg);
9844 if (err != 0)
9845 fatal("Bad object or range: '%s': %s\n",
9846 argv[i], msg ?: "");
9847 }
9848 } else if (argc > 0 && dump_opt['m']) {
9849 zopt_metaslab_args = argc;
9850 zopt_metaslab = calloc(zopt_metaslab_args,
9851 sizeof (uint64_t));
9852 for (unsigned i = 0; i < zopt_metaslab_args; i++) {
9853 errno = 0;
9854 zopt_metaslab[i] = strtoull(argv[i], NULL, 0);
9855 if (zopt_metaslab[i] == 0 && errno != 0)
9856 fatal("bad number %s: %s", argv[i],
9857 strerror(errno));
9858 }
9859 }
9860 if (dump_opt['B']) {
9861 dump_backup(target, objset_id,
9862 argc > 0 ? argv[0] : NULL);
9863 } else if (os != NULL) {
9864 dump_objset(os);
9865 } else if (zopt_object_args > 0 && !dump_opt['m']) {
9866 dump_objset(spa->spa_meta_objset);
9867 } else {
9868 dump_zpool(spa);
9869 }
9870 } else {
9871 flagbits['b'] = ZDB_FLAG_PRINT_BLKPTR;
9872 flagbits['c'] = ZDB_FLAG_CHECKSUM;
9873 flagbits['d'] = ZDB_FLAG_DECOMPRESS;
9874 flagbits['e'] = ZDB_FLAG_BSWAP;
9875 flagbits['g'] = ZDB_FLAG_GBH;
9876 flagbits['i'] = ZDB_FLAG_INDIRECT;
9877 flagbits['r'] = ZDB_FLAG_RAW;
9878 flagbits['v'] = ZDB_FLAG_VERBOSE;
9879
9880 for (int i = 0; i < argc; i++)
9881 zdb_read_block(argv[i], spa);
9882 }
9883
9884 if (dump_opt['k']) {
9885 free(checkpoint_pool);
9886 if (!target_is_spa)
9887 free(checkpoint_target);
9888 }
9889
9890 fini:
9891 if (spa != NULL)
9892 zdb_ddt_cleanup(spa);
9893
9894 if (os != NULL) {
9895 close_objset(os, FTAG);
9896 } else if (spa != NULL) {
9897 spa_close(spa, FTAG);
9898 }
9899
9900 fuid_table_destroy();
9901
9902 dump_debug_buffer();
9903
9904 if (kernel_init_done)
9905 kernel_fini();
9906
9907 return (error);
9908 }
9909