1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * HID support for Linux
4 *
5 * Copyright (c) 1999 Andreas Gal
6 * Copyright (c) 2000-2005 Vojtech Pavlik <vojtech@suse.cz>
7 * Copyright (c) 2005 Michael Haboustak <mike-@cinci.rr.com> for Concept2, Inc
8 * Copyright (c) 2006-2012 Jiri Kosina
9 */
10
11 /*
12 */
13
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15
16 #include <linux/module.h>
17 #include <linux/slab.h>
18 #include <linux/init.h>
19 #include <linux/kernel.h>
20 #include <linux/list.h>
21 #include <linux/mm.h>
22 #include <linux/spinlock.h>
23 #include <linux/unaligned.h>
24 #include <asm/byteorder.h>
25 #include <linux/input.h>
26 #include <linux/wait.h>
27 #include <linux/vmalloc.h>
28 #include <linux/sched.h>
29 #include <linux/semaphore.h>
30
31 #include <linux/hid.h>
32 #include <linux/hiddev.h>
33 #include <linux/hid-debug.h>
34 #include <linux/hidraw.h>
35
36 #include "hid-ids.h"
37
38 /*
39 * Version Information
40 */
41
42 #define DRIVER_DESC "HID core driver"
43
44 static int hid_ignore_special_drivers = 0;
45 module_param_named(ignore_special_drivers, hid_ignore_special_drivers, int, 0600);
46 MODULE_PARM_DESC(ignore_special_drivers, "Ignore any special drivers and handle all devices by generic driver");
47
48 /*
49 * Convert a signed n-bit integer to signed 32-bit integer.
50 */
51
snto32(__u32 value,unsigned int n)52 static s32 snto32(__u32 value, unsigned int n)
53 {
54 if (!value || !n)
55 return 0;
56
57 if (n > 32)
58 n = 32;
59
60 return sign_extend32(value, n - 1);
61 }
62
63 /*
64 * Convert a signed 32-bit integer to a signed n-bit integer.
65 */
66
s32ton(__s32 value,unsigned int n)67 static u32 s32ton(__s32 value, unsigned int n)
68 {
69 s32 a;
70
71 if (!value || !n)
72 return 0;
73
74 a = value >> (n - 1);
75 if (a && a != -1)
76 return value < 0 ? 1 << (n - 1) : (1 << (n - 1)) - 1;
77 return value & ((1 << n) - 1);
78 }
79
80 /*
81 * Register a new report for a device.
82 */
83
hid_register_report(struct hid_device * device,enum hid_report_type type,unsigned int id,unsigned int application)84 struct hid_report *hid_register_report(struct hid_device *device,
85 enum hid_report_type type, unsigned int id,
86 unsigned int application)
87 {
88 struct hid_report_enum *report_enum = device->report_enum + type;
89 struct hid_report *report;
90
91 if (id >= HID_MAX_IDS)
92 return NULL;
93 if (report_enum->report_id_hash[id])
94 return report_enum->report_id_hash[id];
95
96 report = kzalloc(sizeof(struct hid_report), GFP_KERNEL);
97 if (!report)
98 return NULL;
99
100 if (id != 0)
101 report_enum->numbered = 1;
102
103 report->id = id;
104 report->type = type;
105 report->size = 0;
106 report->device = device;
107 report->application = application;
108 report_enum->report_id_hash[id] = report;
109
110 list_add_tail(&report->list, &report_enum->report_list);
111 INIT_LIST_HEAD(&report->field_entry_list);
112
113 return report;
114 }
115 EXPORT_SYMBOL_GPL(hid_register_report);
116
117 /*
118 * Register a new field for this report.
119 */
120
hid_register_field(struct hid_report * report,unsigned usages)121 static struct hid_field *hid_register_field(struct hid_report *report, unsigned usages)
122 {
123 struct hid_field *field;
124
125 if (report->maxfield == HID_MAX_FIELDS) {
126 hid_err(report->device, "too many fields in report\n");
127 return NULL;
128 }
129
130 field = kvzalloc((sizeof(struct hid_field) +
131 usages * sizeof(struct hid_usage) +
132 3 * usages * sizeof(unsigned int)), GFP_KERNEL);
133 if (!field)
134 return NULL;
135
136 field->index = report->maxfield++;
137 report->field[field->index] = field;
138 field->usage = (struct hid_usage *)(field + 1);
139 field->value = (s32 *)(field->usage + usages);
140 field->new_value = (s32 *)(field->value + usages);
141 field->usages_priorities = (s32 *)(field->new_value + usages);
142 field->report = report;
143
144 return field;
145 }
146
147 /*
148 * Open a collection. The type/usage is pushed on the stack.
149 */
150
open_collection(struct hid_parser * parser,unsigned type)151 static int open_collection(struct hid_parser *parser, unsigned type)
152 {
153 struct hid_collection *collection;
154 unsigned usage;
155 int collection_index;
156
157 usage = parser->local.usage[0];
158
159 if (parser->collection_stack_ptr == parser->collection_stack_size) {
160 unsigned int *collection_stack;
161 unsigned int new_size = parser->collection_stack_size +
162 HID_COLLECTION_STACK_SIZE;
163
164 collection_stack = krealloc(parser->collection_stack,
165 new_size * sizeof(unsigned int),
166 GFP_KERNEL);
167 if (!collection_stack)
168 return -ENOMEM;
169
170 parser->collection_stack = collection_stack;
171 parser->collection_stack_size = new_size;
172 }
173
174 if (parser->device->maxcollection == parser->device->collection_size) {
175 collection = kmalloc(
176 array3_size(sizeof(struct hid_collection),
177 parser->device->collection_size,
178 2),
179 GFP_KERNEL);
180 if (collection == NULL) {
181 hid_err(parser->device, "failed to reallocate collection array\n");
182 return -ENOMEM;
183 }
184 memcpy(collection, parser->device->collection,
185 sizeof(struct hid_collection) *
186 parser->device->collection_size);
187 memset(collection + parser->device->collection_size, 0,
188 sizeof(struct hid_collection) *
189 parser->device->collection_size);
190 kfree(parser->device->collection);
191 parser->device->collection = collection;
192 parser->device->collection_size *= 2;
193 }
194
195 parser->collection_stack[parser->collection_stack_ptr++] =
196 parser->device->maxcollection;
197
198 collection_index = parser->device->maxcollection++;
199 collection = parser->device->collection + collection_index;
200 collection->type = type;
201 collection->usage = usage;
202 collection->level = parser->collection_stack_ptr - 1;
203 collection->parent_idx = (collection->level == 0) ? -1 :
204 parser->collection_stack[collection->level - 1];
205
206 if (type == HID_COLLECTION_APPLICATION)
207 parser->device->maxapplication++;
208
209 return 0;
210 }
211
212 /*
213 * Close a collection.
214 */
215
close_collection(struct hid_parser * parser)216 static int close_collection(struct hid_parser *parser)
217 {
218 if (!parser->collection_stack_ptr) {
219 hid_err(parser->device, "collection stack underflow\n");
220 return -EINVAL;
221 }
222 parser->collection_stack_ptr--;
223 return 0;
224 }
225
226 /*
227 * Climb up the stack, search for the specified collection type
228 * and return the usage.
229 */
230
hid_lookup_collection(struct hid_parser * parser,unsigned type)231 static unsigned hid_lookup_collection(struct hid_parser *parser, unsigned type)
232 {
233 struct hid_collection *collection = parser->device->collection;
234 int n;
235
236 for (n = parser->collection_stack_ptr - 1; n >= 0; n--) {
237 unsigned index = parser->collection_stack[n];
238 if (collection[index].type == type)
239 return collection[index].usage;
240 }
241 return 0; /* we know nothing about this usage type */
242 }
243
244 /*
245 * Concatenate usage which defines 16 bits or less with the
246 * currently defined usage page to form a 32 bit usage
247 */
248
complete_usage(struct hid_parser * parser,unsigned int index)249 static void complete_usage(struct hid_parser *parser, unsigned int index)
250 {
251 parser->local.usage[index] &= 0xFFFF;
252 parser->local.usage[index] |=
253 (parser->global.usage_page & 0xFFFF) << 16;
254 }
255
256 /*
257 * Add a usage to the temporary parser table.
258 */
259
hid_add_usage(struct hid_parser * parser,unsigned usage,u8 size)260 static int hid_add_usage(struct hid_parser *parser, unsigned usage, u8 size)
261 {
262 if (parser->local.usage_index >= HID_MAX_USAGES) {
263 hid_err(parser->device, "usage index exceeded\n");
264 return -1;
265 }
266 parser->local.usage[parser->local.usage_index] = usage;
267
268 /*
269 * If Usage item only includes usage id, concatenate it with
270 * currently defined usage page
271 */
272 if (size <= 2)
273 complete_usage(parser, parser->local.usage_index);
274
275 parser->local.usage_size[parser->local.usage_index] = size;
276 parser->local.collection_index[parser->local.usage_index] =
277 parser->collection_stack_ptr ?
278 parser->collection_stack[parser->collection_stack_ptr - 1] : 0;
279 parser->local.usage_index++;
280 return 0;
281 }
282
283 /*
284 * Register a new field for this report.
285 */
286
hid_add_field(struct hid_parser * parser,unsigned report_type,unsigned flags)287 static int hid_add_field(struct hid_parser *parser, unsigned report_type, unsigned flags)
288 {
289 struct hid_report *report;
290 struct hid_field *field;
291 unsigned int max_buffer_size = HID_MAX_BUFFER_SIZE;
292 unsigned int usages;
293 unsigned int offset;
294 unsigned int i;
295 unsigned int application;
296
297 application = hid_lookup_collection(parser, HID_COLLECTION_APPLICATION);
298
299 report = hid_register_report(parser->device, report_type,
300 parser->global.report_id, application);
301 if (!report) {
302 hid_err(parser->device, "hid_register_report failed\n");
303 return -1;
304 }
305
306 /* Handle both signed and unsigned cases properly */
307 if ((parser->global.logical_minimum < 0 &&
308 parser->global.logical_maximum <
309 parser->global.logical_minimum) ||
310 (parser->global.logical_minimum >= 0 &&
311 (__u32)parser->global.logical_maximum <
312 (__u32)parser->global.logical_minimum)) {
313 dbg_hid("logical range invalid 0x%x 0x%x\n",
314 parser->global.logical_minimum,
315 parser->global.logical_maximum);
316 return -1;
317 }
318
319 offset = report->size;
320 report->size += parser->global.report_size * parser->global.report_count;
321
322 if (parser->device->ll_driver->max_buffer_size)
323 max_buffer_size = parser->device->ll_driver->max_buffer_size;
324
325 /* Total size check: Allow for possible report index byte */
326 if (report->size > (max_buffer_size - 1) << 3) {
327 hid_err(parser->device, "report is too long\n");
328 return -1;
329 }
330
331 if (!parser->local.usage_index) /* Ignore padding fields */
332 return 0;
333
334 usages = max_t(unsigned, parser->local.usage_index,
335 parser->global.report_count);
336
337 field = hid_register_field(report, usages);
338 if (!field)
339 return 0;
340
341 field->physical = hid_lookup_collection(parser, HID_COLLECTION_PHYSICAL);
342 field->logical = hid_lookup_collection(parser, HID_COLLECTION_LOGICAL);
343 field->application = application;
344
345 for (i = 0; i < usages; i++) {
346 unsigned j = i;
347 /* Duplicate the last usage we parsed if we have excess values */
348 if (i >= parser->local.usage_index)
349 j = parser->local.usage_index - 1;
350 field->usage[i].hid = parser->local.usage[j];
351 field->usage[i].collection_index =
352 parser->local.collection_index[j];
353 field->usage[i].usage_index = i;
354 field->usage[i].resolution_multiplier = 1;
355 }
356
357 field->maxusage = usages;
358 field->flags = flags;
359 field->report_offset = offset;
360 field->report_type = report_type;
361 field->report_size = parser->global.report_size;
362 field->report_count = parser->global.report_count;
363 field->logical_minimum = parser->global.logical_minimum;
364 field->logical_maximum = parser->global.logical_maximum;
365 field->physical_minimum = parser->global.physical_minimum;
366 field->physical_maximum = parser->global.physical_maximum;
367 field->unit_exponent = parser->global.unit_exponent;
368 field->unit = parser->global.unit;
369
370 return 0;
371 }
372
373 /*
374 * Read data value from item.
375 */
376
item_udata(struct hid_item * item)377 static u32 item_udata(struct hid_item *item)
378 {
379 switch (item->size) {
380 case 1: return item->data.u8;
381 case 2: return item->data.u16;
382 case 4: return item->data.u32;
383 }
384 return 0;
385 }
386
item_sdata(struct hid_item * item)387 static s32 item_sdata(struct hid_item *item)
388 {
389 switch (item->size) {
390 case 1: return item->data.s8;
391 case 2: return item->data.s16;
392 case 4: return item->data.s32;
393 }
394 return 0;
395 }
396
397 /*
398 * Process a global item.
399 */
400
hid_parser_global(struct hid_parser * parser,struct hid_item * item)401 static int hid_parser_global(struct hid_parser *parser, struct hid_item *item)
402 {
403 __s32 raw_value;
404 switch (item->tag) {
405 case HID_GLOBAL_ITEM_TAG_PUSH:
406
407 if (parser->global_stack_ptr == HID_GLOBAL_STACK_SIZE) {
408 hid_err(parser->device, "global environment stack overflow\n");
409 return -1;
410 }
411
412 memcpy(parser->global_stack + parser->global_stack_ptr++,
413 &parser->global, sizeof(struct hid_global));
414 return 0;
415
416 case HID_GLOBAL_ITEM_TAG_POP:
417
418 if (!parser->global_stack_ptr) {
419 hid_err(parser->device, "global environment stack underflow\n");
420 return -1;
421 }
422
423 memcpy(&parser->global, parser->global_stack +
424 --parser->global_stack_ptr, sizeof(struct hid_global));
425 return 0;
426
427 case HID_GLOBAL_ITEM_TAG_USAGE_PAGE:
428 parser->global.usage_page = item_udata(item);
429 return 0;
430
431 case HID_GLOBAL_ITEM_TAG_LOGICAL_MINIMUM:
432 parser->global.logical_minimum = item_sdata(item);
433 return 0;
434
435 case HID_GLOBAL_ITEM_TAG_LOGICAL_MAXIMUM:
436 if (parser->global.logical_minimum < 0)
437 parser->global.logical_maximum = item_sdata(item);
438 else
439 parser->global.logical_maximum = item_udata(item);
440 return 0;
441
442 case HID_GLOBAL_ITEM_TAG_PHYSICAL_MINIMUM:
443 parser->global.physical_minimum = item_sdata(item);
444 return 0;
445
446 case HID_GLOBAL_ITEM_TAG_PHYSICAL_MAXIMUM:
447 if (parser->global.physical_minimum < 0)
448 parser->global.physical_maximum = item_sdata(item);
449 else
450 parser->global.physical_maximum = item_udata(item);
451 return 0;
452
453 case HID_GLOBAL_ITEM_TAG_UNIT_EXPONENT:
454 /* Many devices provide unit exponent as a two's complement
455 * nibble due to the common misunderstanding of HID
456 * specification 1.11, 6.2.2.7 Global Items. Attempt to handle
457 * both this and the standard encoding. */
458 raw_value = item_sdata(item);
459 if (!(raw_value & 0xfffffff0))
460 parser->global.unit_exponent = snto32(raw_value, 4);
461 else
462 parser->global.unit_exponent = raw_value;
463 return 0;
464
465 case HID_GLOBAL_ITEM_TAG_UNIT:
466 parser->global.unit = item_udata(item);
467 return 0;
468
469 case HID_GLOBAL_ITEM_TAG_REPORT_SIZE:
470 parser->global.report_size = item_udata(item);
471 if (parser->global.report_size > 256) {
472 hid_err(parser->device, "invalid report_size %d\n",
473 parser->global.report_size);
474 return -1;
475 }
476 return 0;
477
478 case HID_GLOBAL_ITEM_TAG_REPORT_COUNT:
479 parser->global.report_count = item_udata(item);
480 if (parser->global.report_count > HID_MAX_USAGES) {
481 hid_err(parser->device, "invalid report_count %d\n",
482 parser->global.report_count);
483 return -1;
484 }
485 return 0;
486
487 case HID_GLOBAL_ITEM_TAG_REPORT_ID:
488 parser->global.report_id = item_udata(item);
489 if (parser->global.report_id == 0 ||
490 parser->global.report_id >= HID_MAX_IDS) {
491 hid_err(parser->device, "report_id %u is invalid\n",
492 parser->global.report_id);
493 return -1;
494 }
495 return 0;
496
497 default:
498 hid_err(parser->device, "unknown global tag 0x%x\n", item->tag);
499 return -1;
500 }
501 }
502
503 /*
504 * Process a local item.
505 */
506
hid_parser_local(struct hid_parser * parser,struct hid_item * item)507 static int hid_parser_local(struct hid_parser *parser, struct hid_item *item)
508 {
509 __u32 data;
510 unsigned n;
511 __u32 count;
512
513 data = item_udata(item);
514
515 switch (item->tag) {
516 case HID_LOCAL_ITEM_TAG_DELIMITER:
517
518 if (data) {
519 /*
520 * We treat items before the first delimiter
521 * as global to all usage sets (branch 0).
522 * In the moment we process only these global
523 * items and the first delimiter set.
524 */
525 if (parser->local.delimiter_depth != 0) {
526 hid_err(parser->device, "nested delimiters\n");
527 return -1;
528 }
529 parser->local.delimiter_depth++;
530 parser->local.delimiter_branch++;
531 } else {
532 if (parser->local.delimiter_depth < 1) {
533 hid_err(parser->device, "bogus close delimiter\n");
534 return -1;
535 }
536 parser->local.delimiter_depth--;
537 }
538 return 0;
539
540 case HID_LOCAL_ITEM_TAG_USAGE:
541
542 if (parser->local.delimiter_branch > 1) {
543 dbg_hid("alternative usage ignored\n");
544 return 0;
545 }
546
547 return hid_add_usage(parser, data, item->size);
548
549 case HID_LOCAL_ITEM_TAG_USAGE_MINIMUM:
550
551 if (parser->local.delimiter_branch > 1) {
552 dbg_hid("alternative usage ignored\n");
553 return 0;
554 }
555
556 parser->local.usage_minimum = data;
557 return 0;
558
559 case HID_LOCAL_ITEM_TAG_USAGE_MAXIMUM:
560
561 if (parser->local.delimiter_branch > 1) {
562 dbg_hid("alternative usage ignored\n");
563 return 0;
564 }
565
566 count = data - parser->local.usage_minimum;
567 if (count + parser->local.usage_index >= HID_MAX_USAGES) {
568 /*
569 * We do not warn if the name is not set, we are
570 * actually pre-scanning the device.
571 */
572 if (dev_name(&parser->device->dev))
573 hid_warn(parser->device,
574 "ignoring exceeding usage max\n");
575 data = HID_MAX_USAGES - parser->local.usage_index +
576 parser->local.usage_minimum - 1;
577 if (data <= 0) {
578 hid_err(parser->device,
579 "no more usage index available\n");
580 return -1;
581 }
582 }
583
584 for (n = parser->local.usage_minimum; n <= data; n++)
585 if (hid_add_usage(parser, n, item->size)) {
586 dbg_hid("hid_add_usage failed\n");
587 return -1;
588 }
589 return 0;
590
591 default:
592
593 dbg_hid("unknown local item tag 0x%x\n", item->tag);
594 return 0;
595 }
596 return 0;
597 }
598
599 /*
600 * Concatenate Usage Pages into Usages where relevant:
601 * As per specification, 6.2.2.8: "When the parser encounters a main item it
602 * concatenates the last declared Usage Page with a Usage to form a complete
603 * usage value."
604 */
605
hid_concatenate_last_usage_page(struct hid_parser * parser)606 static void hid_concatenate_last_usage_page(struct hid_parser *parser)
607 {
608 int i;
609 unsigned int usage_page;
610 unsigned int current_page;
611
612 if (!parser->local.usage_index)
613 return;
614
615 usage_page = parser->global.usage_page;
616
617 /*
618 * Concatenate usage page again only if last declared Usage Page
619 * has not been already used in previous usages concatenation
620 */
621 for (i = parser->local.usage_index - 1; i >= 0; i--) {
622 if (parser->local.usage_size[i] > 2)
623 /* Ignore extended usages */
624 continue;
625
626 current_page = parser->local.usage[i] >> 16;
627 if (current_page == usage_page)
628 break;
629
630 complete_usage(parser, i);
631 }
632 }
633
634 /*
635 * Process a main item.
636 */
637
hid_parser_main(struct hid_parser * parser,struct hid_item * item)638 static int hid_parser_main(struct hid_parser *parser, struct hid_item *item)
639 {
640 __u32 data;
641 int ret;
642
643 hid_concatenate_last_usage_page(parser);
644
645 data = item_udata(item);
646
647 switch (item->tag) {
648 case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
649 ret = open_collection(parser, data & 0xff);
650 break;
651 case HID_MAIN_ITEM_TAG_END_COLLECTION:
652 ret = close_collection(parser);
653 break;
654 case HID_MAIN_ITEM_TAG_INPUT:
655 ret = hid_add_field(parser, HID_INPUT_REPORT, data);
656 break;
657 case HID_MAIN_ITEM_TAG_OUTPUT:
658 ret = hid_add_field(parser, HID_OUTPUT_REPORT, data);
659 break;
660 case HID_MAIN_ITEM_TAG_FEATURE:
661 ret = hid_add_field(parser, HID_FEATURE_REPORT, data);
662 break;
663 default:
664 if (item->tag >= HID_MAIN_ITEM_TAG_RESERVED_MIN &&
665 item->tag <= HID_MAIN_ITEM_TAG_RESERVED_MAX)
666 hid_warn_ratelimited(parser->device, "reserved main item tag 0x%x\n", item->tag);
667 else
668 hid_warn_ratelimited(parser->device, "unknown main item tag 0x%x\n", item->tag);
669 ret = 0;
670 }
671
672 memset(&parser->local, 0, sizeof(parser->local)); /* Reset the local parser environment */
673
674 return ret;
675 }
676
677 /*
678 * Process a reserved item.
679 */
680
hid_parser_reserved(struct hid_parser * parser,struct hid_item * item)681 static int hid_parser_reserved(struct hid_parser *parser, struct hid_item *item)
682 {
683 dbg_hid("reserved item type, tag 0x%x\n", item->tag);
684 return 0;
685 }
686
687 /*
688 * Free a report and all registered fields. The field->usage and
689 * field->value table's are allocated behind the field, so we need
690 * only to free(field) itself.
691 */
692
hid_free_report(struct hid_report * report)693 static void hid_free_report(struct hid_report *report)
694 {
695 unsigned n;
696
697 kfree(report->field_entries);
698
699 for (n = 0; n < report->maxfield; n++)
700 kvfree(report->field[n]);
701 kfree(report);
702 }
703
704 /*
705 * Close report. This function returns the device
706 * state to the point prior to hid_open_report().
707 */
hid_close_report(struct hid_device * device)708 static void hid_close_report(struct hid_device *device)
709 {
710 unsigned i, j;
711
712 for (i = 0; i < HID_REPORT_TYPES; i++) {
713 struct hid_report_enum *report_enum = device->report_enum + i;
714
715 for (j = 0; j < HID_MAX_IDS; j++) {
716 struct hid_report *report = report_enum->report_id_hash[j];
717 if (report)
718 hid_free_report(report);
719 }
720 memset(report_enum, 0, sizeof(*report_enum));
721 INIT_LIST_HEAD(&report_enum->report_list);
722 }
723
724 /*
725 * If the HID driver had a rdesc_fixup() callback, dev->rdesc
726 * will be allocated by hid-core and needs to be freed.
727 * Otherwise, it is either equal to dev_rdesc or bpf_rdesc, in
728 * which cases it'll be freed later on device removal or destroy.
729 */
730 if (device->rdesc != device->dev_rdesc && device->rdesc != device->bpf_rdesc)
731 kfree(device->rdesc);
732 device->rdesc = NULL;
733 device->rsize = 0;
734
735 kfree(device->collection);
736 device->collection = NULL;
737 device->collection_size = 0;
738 device->maxcollection = 0;
739 device->maxapplication = 0;
740
741 device->status &= ~HID_STAT_PARSED;
742 }
743
hid_free_bpf_rdesc(struct hid_device * hdev)744 static inline void hid_free_bpf_rdesc(struct hid_device *hdev)
745 {
746 /* bpf_rdesc is either equal to dev_rdesc or allocated by call_hid_bpf_rdesc_fixup() */
747 if (hdev->bpf_rdesc != hdev->dev_rdesc)
748 kfree(hdev->bpf_rdesc);
749 hdev->bpf_rdesc = NULL;
750 }
751
752 /*
753 * Free a device structure, all reports, and all fields.
754 */
755
hiddev_free(struct kref * ref)756 void hiddev_free(struct kref *ref)
757 {
758 struct hid_device *hid = container_of(ref, struct hid_device, ref);
759
760 hid_close_report(hid);
761 hid_free_bpf_rdesc(hid);
762 kfree(hid->dev_rdesc);
763 kfree(hid);
764 }
765
hid_device_release(struct device * dev)766 static void hid_device_release(struct device *dev)
767 {
768 struct hid_device *hid = to_hid_device(dev);
769
770 kref_put(&hid->ref, hiddev_free);
771 }
772
773 /*
774 * Fetch a report description item from the data stream. We support long
775 * items, though they are not used yet.
776 */
777
fetch_item(const __u8 * start,const __u8 * end,struct hid_item * item)778 static const u8 *fetch_item(const __u8 *start, const __u8 *end, struct hid_item *item)
779 {
780 u8 b;
781
782 if ((end - start) <= 0)
783 return NULL;
784
785 b = *start++;
786
787 item->type = (b >> 2) & 3;
788 item->tag = (b >> 4) & 15;
789
790 if (item->tag == HID_ITEM_TAG_LONG) {
791
792 item->format = HID_ITEM_FORMAT_LONG;
793
794 if ((end - start) < 2)
795 return NULL;
796
797 item->size = *start++;
798 item->tag = *start++;
799
800 if ((end - start) < item->size)
801 return NULL;
802
803 item->data.longdata = start;
804 start += item->size;
805 return start;
806 }
807
808 item->format = HID_ITEM_FORMAT_SHORT;
809 item->size = BIT(b & 3) >> 1; /* 0, 1, 2, 3 -> 0, 1, 2, 4 */
810
811 if (end - start < item->size)
812 return NULL;
813
814 switch (item->size) {
815 case 0:
816 break;
817
818 case 1:
819 item->data.u8 = *start;
820 break;
821
822 case 2:
823 item->data.u16 = get_unaligned_le16(start);
824 break;
825
826 case 4:
827 item->data.u32 = get_unaligned_le32(start);
828 break;
829 }
830
831 return start + item->size;
832 }
833
hid_scan_input_usage(struct hid_parser * parser,u32 usage)834 static void hid_scan_input_usage(struct hid_parser *parser, u32 usage)
835 {
836 struct hid_device *hid = parser->device;
837
838 if (usage == HID_DG_CONTACTID)
839 hid->group = HID_GROUP_MULTITOUCH;
840 }
841
hid_scan_feature_usage(struct hid_parser * parser,u32 usage)842 static void hid_scan_feature_usage(struct hid_parser *parser, u32 usage)
843 {
844 if (usage == 0xff0000c5 && parser->global.report_count == 256 &&
845 parser->global.report_size == 8)
846 parser->scan_flags |= HID_SCAN_FLAG_MT_WIN_8;
847
848 if (usage == 0xff0000c6 && parser->global.report_count == 1 &&
849 parser->global.report_size == 8)
850 parser->scan_flags |= HID_SCAN_FLAG_MT_WIN_8;
851 }
852
hid_scan_collection(struct hid_parser * parser,unsigned type)853 static void hid_scan_collection(struct hid_parser *parser, unsigned type)
854 {
855 struct hid_device *hid = parser->device;
856 int i;
857
858 if (((parser->global.usage_page << 16) == HID_UP_SENSOR) &&
859 (type == HID_COLLECTION_PHYSICAL ||
860 type == HID_COLLECTION_APPLICATION))
861 hid->group = HID_GROUP_SENSOR_HUB;
862
863 if (hid->vendor == USB_VENDOR_ID_MICROSOFT &&
864 hid->product == USB_DEVICE_ID_MS_POWER_COVER &&
865 hid->group == HID_GROUP_MULTITOUCH)
866 hid->group = HID_GROUP_GENERIC;
867
868 if ((parser->global.usage_page << 16) == HID_UP_GENDESK)
869 for (i = 0; i < parser->local.usage_index; i++)
870 if (parser->local.usage[i] == HID_GD_POINTER)
871 parser->scan_flags |= HID_SCAN_FLAG_GD_POINTER;
872
873 if ((parser->global.usage_page << 16) >= HID_UP_MSVENDOR)
874 parser->scan_flags |= HID_SCAN_FLAG_VENDOR_SPECIFIC;
875
876 if ((parser->global.usage_page << 16) == HID_UP_GOOGLEVENDOR)
877 for (i = 0; i < parser->local.usage_index; i++)
878 if (parser->local.usage[i] ==
879 (HID_UP_GOOGLEVENDOR | 0x0001))
880 parser->device->group =
881 HID_GROUP_VIVALDI;
882 }
883
hid_scan_main(struct hid_parser * parser,struct hid_item * item)884 static int hid_scan_main(struct hid_parser *parser, struct hid_item *item)
885 {
886 __u32 data;
887 int i;
888
889 hid_concatenate_last_usage_page(parser);
890
891 data = item_udata(item);
892
893 switch (item->tag) {
894 case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
895 hid_scan_collection(parser, data & 0xff);
896 break;
897 case HID_MAIN_ITEM_TAG_END_COLLECTION:
898 break;
899 case HID_MAIN_ITEM_TAG_INPUT:
900 /* ignore constant inputs, they will be ignored by hid-input */
901 if (data & HID_MAIN_ITEM_CONSTANT)
902 break;
903 for (i = 0; i < parser->local.usage_index; i++)
904 hid_scan_input_usage(parser, parser->local.usage[i]);
905 break;
906 case HID_MAIN_ITEM_TAG_OUTPUT:
907 break;
908 case HID_MAIN_ITEM_TAG_FEATURE:
909 for (i = 0; i < parser->local.usage_index; i++)
910 hid_scan_feature_usage(parser, parser->local.usage[i]);
911 break;
912 }
913
914 /* Reset the local parser environment */
915 memset(&parser->local, 0, sizeof(parser->local));
916
917 return 0;
918 }
919
920 /*
921 * Scan a report descriptor before the device is added to the bus.
922 * Sets device groups and other properties that determine what driver
923 * to load.
924 */
hid_scan_report(struct hid_device * hid)925 static int hid_scan_report(struct hid_device *hid)
926 {
927 struct hid_parser *parser;
928 struct hid_item item;
929 const __u8 *start = hid->dev_rdesc;
930 const __u8 *end = start + hid->dev_rsize;
931 static int (*dispatch_type[])(struct hid_parser *parser,
932 struct hid_item *item) = {
933 hid_scan_main,
934 hid_parser_global,
935 hid_parser_local,
936 hid_parser_reserved
937 };
938
939 parser = vzalloc(sizeof(struct hid_parser));
940 if (!parser)
941 return -ENOMEM;
942
943 parser->device = hid;
944 hid->group = HID_GROUP_GENERIC;
945
946 /*
947 * The parsing is simpler than the one in hid_open_report() as we should
948 * be robust against hid errors. Those errors will be raised by
949 * hid_open_report() anyway.
950 */
951 while ((start = fetch_item(start, end, &item)) != NULL)
952 dispatch_type[item.type](parser, &item);
953
954 /*
955 * Handle special flags set during scanning.
956 */
957 if ((parser->scan_flags & HID_SCAN_FLAG_MT_WIN_8) &&
958 (hid->group == HID_GROUP_MULTITOUCH))
959 hid->group = HID_GROUP_MULTITOUCH_WIN_8;
960
961 /*
962 * Vendor specific handlings
963 */
964 switch (hid->vendor) {
965 case USB_VENDOR_ID_WACOM:
966 hid->group = HID_GROUP_WACOM;
967 break;
968 case USB_VENDOR_ID_SYNAPTICS:
969 if (hid->group == HID_GROUP_GENERIC)
970 if ((parser->scan_flags & HID_SCAN_FLAG_VENDOR_SPECIFIC)
971 && (parser->scan_flags & HID_SCAN_FLAG_GD_POINTER))
972 /*
973 * hid-rmi should take care of them,
974 * not hid-generic
975 */
976 hid->group = HID_GROUP_RMI;
977 break;
978 }
979
980 kfree(parser->collection_stack);
981 vfree(parser);
982 return 0;
983 }
984
985 /**
986 * hid_parse_report - parse device report
987 *
988 * @hid: hid device
989 * @start: report start
990 * @size: report size
991 *
992 * Allocate the device report as read by the bus driver. This function should
993 * only be called from parse() in ll drivers.
994 */
hid_parse_report(struct hid_device * hid,const __u8 * start,unsigned size)995 int hid_parse_report(struct hid_device *hid, const __u8 *start, unsigned size)
996 {
997 hid->dev_rdesc = kmemdup(start, size, GFP_KERNEL);
998 if (!hid->dev_rdesc)
999 return -ENOMEM;
1000 hid->dev_rsize = size;
1001 return 0;
1002 }
1003 EXPORT_SYMBOL_GPL(hid_parse_report);
1004
1005 static const char * const hid_report_names[] = {
1006 "HID_INPUT_REPORT",
1007 "HID_OUTPUT_REPORT",
1008 "HID_FEATURE_REPORT",
1009 };
1010 /**
1011 * hid_validate_values - validate existing device report's value indexes
1012 *
1013 * @hid: hid device
1014 * @type: which report type to examine
1015 * @id: which report ID to examine (0 for first)
1016 * @field_index: which report field to examine
1017 * @report_counts: expected number of values
1018 *
1019 * Validate the number of values in a given field of a given report, after
1020 * parsing.
1021 */
hid_validate_values(struct hid_device * hid,enum hid_report_type type,unsigned int id,unsigned int field_index,unsigned int report_counts)1022 struct hid_report *hid_validate_values(struct hid_device *hid,
1023 enum hid_report_type type, unsigned int id,
1024 unsigned int field_index,
1025 unsigned int report_counts)
1026 {
1027 struct hid_report *report;
1028
1029 if (type > HID_FEATURE_REPORT) {
1030 hid_err(hid, "invalid HID report type %u\n", type);
1031 return NULL;
1032 }
1033
1034 if (id >= HID_MAX_IDS) {
1035 hid_err(hid, "invalid HID report id %u\n", id);
1036 return NULL;
1037 }
1038
1039 /*
1040 * Explicitly not using hid_get_report() here since it depends on
1041 * ->numbered being checked, which may not always be the case when
1042 * drivers go to access report values.
1043 */
1044 if (id == 0) {
1045 /*
1046 * Validating on id 0 means we should examine the first
1047 * report in the list.
1048 */
1049 report = list_first_entry_or_null(
1050 &hid->report_enum[type].report_list,
1051 struct hid_report, list);
1052 } else {
1053 report = hid->report_enum[type].report_id_hash[id];
1054 }
1055 if (!report) {
1056 hid_err(hid, "missing %s %u\n", hid_report_names[type], id);
1057 return NULL;
1058 }
1059 if (report->maxfield <= field_index) {
1060 hid_err(hid, "not enough fields in %s %u\n",
1061 hid_report_names[type], id);
1062 return NULL;
1063 }
1064 if (report->field[field_index]->report_count < report_counts) {
1065 hid_err(hid, "not enough values in %s %u field %u\n",
1066 hid_report_names[type], id, field_index);
1067 return NULL;
1068 }
1069 return report;
1070 }
1071 EXPORT_SYMBOL_GPL(hid_validate_values);
1072
hid_calculate_multiplier(struct hid_device * hid,struct hid_field * multiplier)1073 static int hid_calculate_multiplier(struct hid_device *hid,
1074 struct hid_field *multiplier)
1075 {
1076 int m;
1077 __s32 v = *multiplier->value;
1078 __s32 lmin = multiplier->logical_minimum;
1079 __s32 lmax = multiplier->logical_maximum;
1080 __s32 pmin = multiplier->physical_minimum;
1081 __s32 pmax = multiplier->physical_maximum;
1082
1083 /*
1084 * "Because OS implementations will generally divide the control's
1085 * reported count by the Effective Resolution Multiplier, designers
1086 * should take care not to establish a potential Effective
1087 * Resolution Multiplier of zero."
1088 * HID Usage Table, v1.12, Section 4.3.1, p31
1089 */
1090 if (lmax - lmin == 0)
1091 return 1;
1092 /*
1093 * Handling the unit exponent is left as an exercise to whoever
1094 * finds a device where that exponent is not 0.
1095 */
1096 m = ((v - lmin)/(lmax - lmin) * (pmax - pmin) + pmin);
1097 if (unlikely(multiplier->unit_exponent != 0)) {
1098 hid_warn(hid,
1099 "unsupported Resolution Multiplier unit exponent %d\n",
1100 multiplier->unit_exponent);
1101 }
1102
1103 /* There are no devices with an effective multiplier > 255 */
1104 if (unlikely(m == 0 || m > 255 || m < -255)) {
1105 hid_warn(hid, "unsupported Resolution Multiplier %d\n", m);
1106 m = 1;
1107 }
1108
1109 return m;
1110 }
1111
hid_apply_multiplier_to_field(struct hid_device * hid,struct hid_field * field,struct hid_collection * multiplier_collection,int effective_multiplier)1112 static void hid_apply_multiplier_to_field(struct hid_device *hid,
1113 struct hid_field *field,
1114 struct hid_collection *multiplier_collection,
1115 int effective_multiplier)
1116 {
1117 struct hid_collection *collection;
1118 struct hid_usage *usage;
1119 int i;
1120
1121 /*
1122 * If multiplier_collection is NULL, the multiplier applies
1123 * to all fields in the report.
1124 * Otherwise, it is the Logical Collection the multiplier applies to
1125 * but our field may be in a subcollection of that collection.
1126 */
1127 for (i = 0; i < field->maxusage; i++) {
1128 usage = &field->usage[i];
1129
1130 collection = &hid->collection[usage->collection_index];
1131 while (collection->parent_idx != -1 &&
1132 collection != multiplier_collection)
1133 collection = &hid->collection[collection->parent_idx];
1134
1135 if (collection->parent_idx != -1 ||
1136 multiplier_collection == NULL)
1137 usage->resolution_multiplier = effective_multiplier;
1138
1139 }
1140 }
1141
hid_apply_multiplier(struct hid_device * hid,struct hid_field * multiplier)1142 static void hid_apply_multiplier(struct hid_device *hid,
1143 struct hid_field *multiplier)
1144 {
1145 struct hid_report_enum *rep_enum;
1146 struct hid_report *rep;
1147 struct hid_field *field;
1148 struct hid_collection *multiplier_collection;
1149 int effective_multiplier;
1150 int i;
1151
1152 /*
1153 * "The Resolution Multiplier control must be contained in the same
1154 * Logical Collection as the control(s) to which it is to be applied.
1155 * If no Resolution Multiplier is defined, then the Resolution
1156 * Multiplier defaults to 1. If more than one control exists in a
1157 * Logical Collection, the Resolution Multiplier is associated with
1158 * all controls in the collection. If no Logical Collection is
1159 * defined, the Resolution Multiplier is associated with all
1160 * controls in the report."
1161 * HID Usage Table, v1.12, Section 4.3.1, p30
1162 *
1163 * Thus, search from the current collection upwards until we find a
1164 * logical collection. Then search all fields for that same parent
1165 * collection. Those are the fields the multiplier applies to.
1166 *
1167 * If we have more than one multiplier, it will overwrite the
1168 * applicable fields later.
1169 */
1170 multiplier_collection = &hid->collection[multiplier->usage->collection_index];
1171 while (multiplier_collection->parent_idx != -1 &&
1172 multiplier_collection->type != HID_COLLECTION_LOGICAL)
1173 multiplier_collection = &hid->collection[multiplier_collection->parent_idx];
1174 if (multiplier_collection->type != HID_COLLECTION_LOGICAL)
1175 multiplier_collection = NULL;
1176
1177 effective_multiplier = hid_calculate_multiplier(hid, multiplier);
1178
1179 rep_enum = &hid->report_enum[HID_INPUT_REPORT];
1180 list_for_each_entry(rep, &rep_enum->report_list, list) {
1181 for (i = 0; i < rep->maxfield; i++) {
1182 field = rep->field[i];
1183 hid_apply_multiplier_to_field(hid, field,
1184 multiplier_collection,
1185 effective_multiplier);
1186 }
1187 }
1188 }
1189
1190 /*
1191 * hid_setup_resolution_multiplier - set up all resolution multipliers
1192 *
1193 * @device: hid device
1194 *
1195 * Search for all Resolution Multiplier Feature Reports and apply their
1196 * value to all matching Input items. This only updates the internal struct
1197 * fields.
1198 *
1199 * The Resolution Multiplier is applied by the hardware. If the multiplier
1200 * is anything other than 1, the hardware will send pre-multiplied events
1201 * so that the same physical interaction generates an accumulated
1202 * accumulated_value = value * * multiplier
1203 * This may be achieved by sending
1204 * - "value * multiplier" for each event, or
1205 * - "value" but "multiplier" times as frequently, or
1206 * - a combination of the above
1207 * The only guarantee is that the same physical interaction always generates
1208 * an accumulated 'value * multiplier'.
1209 *
1210 * This function must be called before any event processing and after
1211 * any SetRequest to the Resolution Multiplier.
1212 */
hid_setup_resolution_multiplier(struct hid_device * hid)1213 void hid_setup_resolution_multiplier(struct hid_device *hid)
1214 {
1215 struct hid_report_enum *rep_enum;
1216 struct hid_report *rep;
1217 struct hid_usage *usage;
1218 int i, j;
1219
1220 rep_enum = &hid->report_enum[HID_FEATURE_REPORT];
1221 list_for_each_entry(rep, &rep_enum->report_list, list) {
1222 for (i = 0; i < rep->maxfield; i++) {
1223 /* Ignore if report count is out of bounds. */
1224 if (rep->field[i]->report_count < 1)
1225 continue;
1226
1227 for (j = 0; j < rep->field[i]->maxusage; j++) {
1228 usage = &rep->field[i]->usage[j];
1229 if (usage->hid == HID_GD_RESOLUTION_MULTIPLIER)
1230 hid_apply_multiplier(hid,
1231 rep->field[i]);
1232 }
1233 }
1234 }
1235 }
1236 EXPORT_SYMBOL_GPL(hid_setup_resolution_multiplier);
1237
1238 /**
1239 * hid_open_report - open a driver-specific device report
1240 *
1241 * @device: hid device
1242 *
1243 * Parse a report description into a hid_device structure. Reports are
1244 * enumerated, fields are attached to these reports.
1245 * 0 returned on success, otherwise nonzero error value.
1246 *
1247 * This function (or the equivalent hid_parse() macro) should only be
1248 * called from probe() in drivers, before starting the device.
1249 */
hid_open_report(struct hid_device * device)1250 int hid_open_report(struct hid_device *device)
1251 {
1252 struct hid_parser *parser;
1253 struct hid_item item;
1254 unsigned int size;
1255 const __u8 *start;
1256 const __u8 *end;
1257 const __u8 *next;
1258 int ret;
1259 int i;
1260 static int (*dispatch_type[])(struct hid_parser *parser,
1261 struct hid_item *item) = {
1262 hid_parser_main,
1263 hid_parser_global,
1264 hid_parser_local,
1265 hid_parser_reserved
1266 };
1267
1268 if (WARN_ON(device->status & HID_STAT_PARSED))
1269 return -EBUSY;
1270
1271 start = device->bpf_rdesc;
1272 if (WARN_ON(!start))
1273 return -ENODEV;
1274 size = device->bpf_rsize;
1275
1276 if (device->driver->report_fixup) {
1277 /*
1278 * device->driver->report_fixup() needs to work
1279 * on a copy of our report descriptor so it can
1280 * change it.
1281 */
1282 __u8 *buf = kmemdup(start, size, GFP_KERNEL);
1283
1284 if (buf == NULL)
1285 return -ENOMEM;
1286
1287 start = device->driver->report_fixup(device, buf, &size);
1288
1289 /*
1290 * The second kmemdup is required in case report_fixup() returns
1291 * a static read-only memory, but we have no idea if that memory
1292 * needs to be cleaned up or not at the end.
1293 */
1294 start = kmemdup(start, size, GFP_KERNEL);
1295 kfree(buf);
1296 if (start == NULL)
1297 return -ENOMEM;
1298 }
1299
1300 device->rdesc = start;
1301 device->rsize = size;
1302
1303 parser = vzalloc(sizeof(struct hid_parser));
1304 if (!parser) {
1305 ret = -ENOMEM;
1306 goto alloc_err;
1307 }
1308
1309 parser->device = device;
1310
1311 end = start + size;
1312
1313 device->collection = kcalloc(HID_DEFAULT_NUM_COLLECTIONS,
1314 sizeof(struct hid_collection), GFP_KERNEL);
1315 if (!device->collection) {
1316 ret = -ENOMEM;
1317 goto err;
1318 }
1319 device->collection_size = HID_DEFAULT_NUM_COLLECTIONS;
1320 for (i = 0; i < HID_DEFAULT_NUM_COLLECTIONS; i++)
1321 device->collection[i].parent_idx = -1;
1322
1323 ret = -EINVAL;
1324 while ((next = fetch_item(start, end, &item)) != NULL) {
1325 start = next;
1326
1327 if (item.format != HID_ITEM_FORMAT_SHORT) {
1328 hid_err(device, "unexpected long global item\n");
1329 goto err;
1330 }
1331
1332 if (dispatch_type[item.type](parser, &item)) {
1333 hid_err(device, "item %u %u %u %u parsing failed\n",
1334 item.format, (unsigned)item.size,
1335 (unsigned)item.type, (unsigned)item.tag);
1336 goto err;
1337 }
1338
1339 if (start == end) {
1340 if (parser->collection_stack_ptr) {
1341 hid_err(device, "unbalanced collection at end of report description\n");
1342 goto err;
1343 }
1344 if (parser->local.delimiter_depth) {
1345 hid_err(device, "unbalanced delimiter at end of report description\n");
1346 goto err;
1347 }
1348
1349 /*
1350 * fetch initial values in case the device's
1351 * default multiplier isn't the recommended 1
1352 */
1353 hid_setup_resolution_multiplier(device);
1354
1355 kfree(parser->collection_stack);
1356 vfree(parser);
1357 device->status |= HID_STAT_PARSED;
1358
1359 return 0;
1360 }
1361 }
1362
1363 hid_err(device, "item fetching failed at offset %u/%u\n",
1364 size - (unsigned int)(end - start), size);
1365 err:
1366 kfree(parser->collection_stack);
1367 alloc_err:
1368 vfree(parser);
1369 hid_close_report(device);
1370 return ret;
1371 }
1372 EXPORT_SYMBOL_GPL(hid_open_report);
1373
1374 /*
1375 * Extract/implement a data field from/to a little endian report (bit array).
1376 *
1377 * Code sort-of follows HID spec:
1378 * http://www.usb.org/developers/hidpage/HID1_11.pdf
1379 *
1380 * While the USB HID spec allows unlimited length bit fields in "report
1381 * descriptors", most devices never use more than 16 bits.
1382 * One model of UPS is claimed to report "LINEV" as a 32-bit field.
1383 * Search linux-kernel and linux-usb-devel archives for "hid-core extract".
1384 */
1385
__extract(u8 * report,unsigned offset,int n)1386 static u32 __extract(u8 *report, unsigned offset, int n)
1387 {
1388 unsigned int idx = offset / 8;
1389 unsigned int bit_nr = 0;
1390 unsigned int bit_shift = offset % 8;
1391 int bits_to_copy = 8 - bit_shift;
1392 u32 value = 0;
1393 u32 mask = n < 32 ? (1U << n) - 1 : ~0U;
1394
1395 while (n > 0) {
1396 value |= ((u32)report[idx] >> bit_shift) << bit_nr;
1397 n -= bits_to_copy;
1398 bit_nr += bits_to_copy;
1399 bits_to_copy = 8;
1400 bit_shift = 0;
1401 idx++;
1402 }
1403
1404 return value & mask;
1405 }
1406
hid_field_extract(const struct hid_device * hid,u8 * report,unsigned offset,unsigned n)1407 u32 hid_field_extract(const struct hid_device *hid, u8 *report,
1408 unsigned offset, unsigned n)
1409 {
1410 if (n > 32) {
1411 hid_warn_once(hid, "%s() called with n (%d) > 32! (%s)\n",
1412 __func__, n, current->comm);
1413 n = 32;
1414 }
1415
1416 return __extract(report, offset, n);
1417 }
1418 EXPORT_SYMBOL_GPL(hid_field_extract);
1419
1420 /*
1421 * "implement" : set bits in a little endian bit stream.
1422 * Same concepts as "extract" (see comments above).
1423 * The data mangled in the bit stream remains in little endian
1424 * order the whole time. It make more sense to talk about
1425 * endianness of register values by considering a register
1426 * a "cached" copy of the little endian bit stream.
1427 */
1428
__implement(u8 * report,unsigned offset,int n,u32 value)1429 static void __implement(u8 *report, unsigned offset, int n, u32 value)
1430 {
1431 unsigned int idx = offset / 8;
1432 unsigned int bit_shift = offset % 8;
1433 int bits_to_set = 8 - bit_shift;
1434
1435 while (n - bits_to_set >= 0) {
1436 report[idx] &= ~(0xff << bit_shift);
1437 report[idx] |= value << bit_shift;
1438 value >>= bits_to_set;
1439 n -= bits_to_set;
1440 bits_to_set = 8;
1441 bit_shift = 0;
1442 idx++;
1443 }
1444
1445 /* last nibble */
1446 if (n) {
1447 u8 bit_mask = ((1U << n) - 1);
1448 report[idx] &= ~(bit_mask << bit_shift);
1449 report[idx] |= value << bit_shift;
1450 }
1451 }
1452
implement(const struct hid_device * hid,u8 * report,unsigned offset,unsigned n,u32 value)1453 static void implement(const struct hid_device *hid, u8 *report,
1454 unsigned offset, unsigned n, u32 value)
1455 {
1456 if (unlikely(n > 32)) {
1457 hid_warn(hid, "%s() called with n (%d) > 32! (%s)\n",
1458 __func__, n, current->comm);
1459 n = 32;
1460 } else if (n < 32) {
1461 u32 m = (1U << n) - 1;
1462
1463 if (unlikely(value > m)) {
1464 hid_warn(hid,
1465 "%s() called with too large value %d (n: %d)! (%s)\n",
1466 __func__, value, n, current->comm);
1467 value &= m;
1468 }
1469 }
1470
1471 __implement(report, offset, n, value);
1472 }
1473
1474 /*
1475 * Search an array for a value.
1476 */
1477
search(__s32 * array,__s32 value,unsigned n)1478 static int search(__s32 *array, __s32 value, unsigned n)
1479 {
1480 while (n--) {
1481 if (*array++ == value)
1482 return 0;
1483 }
1484 return -1;
1485 }
1486
1487 /**
1488 * hid_match_report - check if driver's raw_event should be called
1489 *
1490 * @hid: hid device
1491 * @report: hid report to match against
1492 *
1493 * compare hid->driver->report_table->report_type to report->type
1494 */
hid_match_report(struct hid_device * hid,struct hid_report * report)1495 static int hid_match_report(struct hid_device *hid, struct hid_report *report)
1496 {
1497 const struct hid_report_id *id = hid->driver->report_table;
1498
1499 if (!id) /* NULL means all */
1500 return 1;
1501
1502 for (; id->report_type != HID_TERMINATOR; id++)
1503 if (id->report_type == HID_ANY_ID ||
1504 id->report_type == report->type)
1505 return 1;
1506 return 0;
1507 }
1508
1509 /**
1510 * hid_match_usage - check if driver's event should be called
1511 *
1512 * @hid: hid device
1513 * @usage: usage to match against
1514 *
1515 * compare hid->driver->usage_table->usage_{type,code} to
1516 * usage->usage_{type,code}
1517 */
hid_match_usage(struct hid_device * hid,struct hid_usage * usage)1518 static int hid_match_usage(struct hid_device *hid, struct hid_usage *usage)
1519 {
1520 const struct hid_usage_id *id = hid->driver->usage_table;
1521
1522 if (!id) /* NULL means all */
1523 return 1;
1524
1525 for (; id->usage_type != HID_ANY_ID - 1; id++)
1526 if ((id->usage_hid == HID_ANY_ID ||
1527 id->usage_hid == usage->hid) &&
1528 (id->usage_type == HID_ANY_ID ||
1529 id->usage_type == usage->type) &&
1530 (id->usage_code == HID_ANY_ID ||
1531 id->usage_code == usage->code))
1532 return 1;
1533 return 0;
1534 }
1535
hid_process_event(struct hid_device * hid,struct hid_field * field,struct hid_usage * usage,__s32 value,int interrupt)1536 static void hid_process_event(struct hid_device *hid, struct hid_field *field,
1537 struct hid_usage *usage, __s32 value, int interrupt)
1538 {
1539 struct hid_driver *hdrv = hid->driver;
1540 int ret;
1541
1542 if (!list_empty(&hid->debug_list))
1543 hid_dump_input(hid, usage, value);
1544
1545 if (hdrv && hdrv->event && hid_match_usage(hid, usage)) {
1546 ret = hdrv->event(hid, field, usage, value);
1547 if (ret != 0) {
1548 if (ret < 0)
1549 hid_err(hid, "%s's event failed with %d\n",
1550 hdrv->name, ret);
1551 return;
1552 }
1553 }
1554
1555 if (hid->claimed & HID_CLAIMED_INPUT)
1556 hidinput_hid_event(hid, field, usage, value);
1557 if (hid->claimed & HID_CLAIMED_HIDDEV && interrupt && hid->hiddev_hid_event)
1558 hid->hiddev_hid_event(hid, field, usage, value);
1559 }
1560
1561 /*
1562 * Checks if the given value is valid within this field
1563 */
hid_array_value_is_valid(struct hid_field * field,__s32 value)1564 static inline int hid_array_value_is_valid(struct hid_field *field,
1565 __s32 value)
1566 {
1567 __s32 min = field->logical_minimum;
1568
1569 /*
1570 * Value needs to be between logical min and max, and
1571 * (value - min) is used as an index in the usage array.
1572 * This array is of size field->maxusage
1573 */
1574 return value >= min &&
1575 value <= field->logical_maximum &&
1576 value - min < field->maxusage;
1577 }
1578
1579 /*
1580 * Fetch the field from the data. The field content is stored for next
1581 * report processing (we do differential reporting to the layer).
1582 */
hid_input_fetch_field(struct hid_device * hid,struct hid_field * field,__u8 * data)1583 static void hid_input_fetch_field(struct hid_device *hid,
1584 struct hid_field *field,
1585 __u8 *data)
1586 {
1587 unsigned n;
1588 unsigned count = field->report_count;
1589 unsigned offset = field->report_offset;
1590 unsigned size = field->report_size;
1591 __s32 min = field->logical_minimum;
1592 __s32 *value;
1593
1594 value = field->new_value;
1595 memset(value, 0, count * sizeof(__s32));
1596 field->ignored = false;
1597
1598 for (n = 0; n < count; n++) {
1599
1600 value[n] = min < 0 ?
1601 snto32(hid_field_extract(hid, data, offset + n * size,
1602 size), size) :
1603 hid_field_extract(hid, data, offset + n * size, size);
1604
1605 /* Ignore report if ErrorRollOver */
1606 if (!(field->flags & HID_MAIN_ITEM_VARIABLE) &&
1607 hid_array_value_is_valid(field, value[n]) &&
1608 field->usage[value[n] - min].hid == HID_UP_KEYBOARD + 1) {
1609 field->ignored = true;
1610 return;
1611 }
1612 }
1613 }
1614
1615 /*
1616 * Process a received variable field.
1617 */
1618
hid_input_var_field(struct hid_device * hid,struct hid_field * field,int interrupt)1619 static void hid_input_var_field(struct hid_device *hid,
1620 struct hid_field *field,
1621 int interrupt)
1622 {
1623 unsigned int count = field->report_count;
1624 __s32 *value = field->new_value;
1625 unsigned int n;
1626
1627 for (n = 0; n < count; n++)
1628 hid_process_event(hid,
1629 field,
1630 &field->usage[n],
1631 value[n],
1632 interrupt);
1633
1634 memcpy(field->value, value, count * sizeof(__s32));
1635 }
1636
1637 /*
1638 * Process a received array field. The field content is stored for
1639 * next report processing (we do differential reporting to the layer).
1640 */
1641
hid_input_array_field(struct hid_device * hid,struct hid_field * field,int interrupt)1642 static void hid_input_array_field(struct hid_device *hid,
1643 struct hid_field *field,
1644 int interrupt)
1645 {
1646 unsigned int n;
1647 unsigned int count = field->report_count;
1648 __s32 min = field->logical_minimum;
1649 __s32 *value;
1650
1651 value = field->new_value;
1652
1653 /* ErrorRollOver */
1654 if (field->ignored)
1655 return;
1656
1657 for (n = 0; n < count; n++) {
1658 if (hid_array_value_is_valid(field, field->value[n]) &&
1659 search(value, field->value[n], count))
1660 hid_process_event(hid,
1661 field,
1662 &field->usage[field->value[n] - min],
1663 0,
1664 interrupt);
1665
1666 if (hid_array_value_is_valid(field, value[n]) &&
1667 search(field->value, value[n], count))
1668 hid_process_event(hid,
1669 field,
1670 &field->usage[value[n] - min],
1671 1,
1672 interrupt);
1673 }
1674
1675 memcpy(field->value, value, count * sizeof(__s32));
1676 }
1677
1678 /*
1679 * Analyse a received report, and fetch the data from it. The field
1680 * content is stored for next report processing (we do differential
1681 * reporting to the layer).
1682 */
hid_process_report(struct hid_device * hid,struct hid_report * report,__u8 * data,int interrupt)1683 static void hid_process_report(struct hid_device *hid,
1684 struct hid_report *report,
1685 __u8 *data,
1686 int interrupt)
1687 {
1688 unsigned int a;
1689 struct hid_field_entry *entry;
1690 struct hid_field *field;
1691
1692 /* first retrieve all incoming values in data */
1693 for (a = 0; a < report->maxfield; a++)
1694 hid_input_fetch_field(hid, report->field[a], data);
1695
1696 if (!list_empty(&report->field_entry_list)) {
1697 /* INPUT_REPORT, we have a priority list of fields */
1698 list_for_each_entry(entry,
1699 &report->field_entry_list,
1700 list) {
1701 field = entry->field;
1702
1703 if (field->flags & HID_MAIN_ITEM_VARIABLE)
1704 hid_process_event(hid,
1705 field,
1706 &field->usage[entry->index],
1707 field->new_value[entry->index],
1708 interrupt);
1709 else
1710 hid_input_array_field(hid, field, interrupt);
1711 }
1712
1713 /* we need to do the memcpy at the end for var items */
1714 for (a = 0; a < report->maxfield; a++) {
1715 field = report->field[a];
1716
1717 if (field->flags & HID_MAIN_ITEM_VARIABLE)
1718 memcpy(field->value, field->new_value,
1719 field->report_count * sizeof(__s32));
1720 }
1721 } else {
1722 /* FEATURE_REPORT, regular processing */
1723 for (a = 0; a < report->maxfield; a++) {
1724 field = report->field[a];
1725
1726 if (field->flags & HID_MAIN_ITEM_VARIABLE)
1727 hid_input_var_field(hid, field, interrupt);
1728 else
1729 hid_input_array_field(hid, field, interrupt);
1730 }
1731 }
1732 }
1733
1734 /*
1735 * Insert a given usage_index in a field in the list
1736 * of processed usages in the report.
1737 *
1738 * The elements of lower priority score are processed
1739 * first.
1740 */
__hid_insert_field_entry(struct hid_device * hid,struct hid_report * report,struct hid_field_entry * entry,struct hid_field * field,unsigned int usage_index)1741 static void __hid_insert_field_entry(struct hid_device *hid,
1742 struct hid_report *report,
1743 struct hid_field_entry *entry,
1744 struct hid_field *field,
1745 unsigned int usage_index)
1746 {
1747 struct hid_field_entry *next;
1748
1749 entry->field = field;
1750 entry->index = usage_index;
1751 entry->priority = field->usages_priorities[usage_index];
1752
1753 /* insert the element at the correct position */
1754 list_for_each_entry(next,
1755 &report->field_entry_list,
1756 list) {
1757 /*
1758 * the priority of our element is strictly higher
1759 * than the next one, insert it before
1760 */
1761 if (entry->priority > next->priority) {
1762 list_add_tail(&entry->list, &next->list);
1763 return;
1764 }
1765 }
1766
1767 /* lowest priority score: insert at the end */
1768 list_add_tail(&entry->list, &report->field_entry_list);
1769 }
1770
hid_report_process_ordering(struct hid_device * hid,struct hid_report * report)1771 static void hid_report_process_ordering(struct hid_device *hid,
1772 struct hid_report *report)
1773 {
1774 struct hid_field *field;
1775 struct hid_field_entry *entries;
1776 unsigned int a, u, usages;
1777 unsigned int count = 0;
1778
1779 /* count the number of individual fields in the report */
1780 for (a = 0; a < report->maxfield; a++) {
1781 field = report->field[a];
1782
1783 if (field->flags & HID_MAIN_ITEM_VARIABLE)
1784 count += field->report_count;
1785 else
1786 count++;
1787 }
1788
1789 /* allocate the memory to process the fields */
1790 entries = kcalloc(count, sizeof(*entries), GFP_KERNEL);
1791 if (!entries)
1792 return;
1793
1794 report->field_entries = entries;
1795
1796 /*
1797 * walk through all fields in the report and
1798 * store them by priority order in report->field_entry_list
1799 *
1800 * - Var elements are individualized (field + usage_index)
1801 * - Arrays are taken as one, we can not chose an order for them
1802 */
1803 usages = 0;
1804 for (a = 0; a < report->maxfield; a++) {
1805 field = report->field[a];
1806
1807 if (field->flags & HID_MAIN_ITEM_VARIABLE) {
1808 for (u = 0; u < field->report_count; u++) {
1809 __hid_insert_field_entry(hid, report,
1810 &entries[usages],
1811 field, u);
1812 usages++;
1813 }
1814 } else {
1815 __hid_insert_field_entry(hid, report, &entries[usages],
1816 field, 0);
1817 usages++;
1818 }
1819 }
1820 }
1821
hid_process_ordering(struct hid_device * hid)1822 static void hid_process_ordering(struct hid_device *hid)
1823 {
1824 struct hid_report *report;
1825 struct hid_report_enum *report_enum = &hid->report_enum[HID_INPUT_REPORT];
1826
1827 list_for_each_entry(report, &report_enum->report_list, list)
1828 hid_report_process_ordering(hid, report);
1829 }
1830
1831 /*
1832 * Output the field into the report.
1833 */
1834
hid_output_field(const struct hid_device * hid,struct hid_field * field,__u8 * data)1835 static void hid_output_field(const struct hid_device *hid,
1836 struct hid_field *field, __u8 *data)
1837 {
1838 unsigned count = field->report_count;
1839 unsigned offset = field->report_offset;
1840 unsigned size = field->report_size;
1841 unsigned n;
1842
1843 for (n = 0; n < count; n++) {
1844 if (field->logical_minimum < 0) /* signed values */
1845 implement(hid, data, offset + n * size, size,
1846 s32ton(field->value[n], size));
1847 else /* unsigned values */
1848 implement(hid, data, offset + n * size, size,
1849 field->value[n]);
1850 }
1851 }
1852
1853 /*
1854 * Compute the size of a report.
1855 */
hid_compute_report_size(struct hid_report * report)1856 static size_t hid_compute_report_size(struct hid_report *report)
1857 {
1858 if (report->size)
1859 return ((report->size - 1) >> 3) + 1;
1860
1861 return 0;
1862 }
1863
1864 /*
1865 * Create a report. 'data' has to be allocated using
1866 * hid_alloc_report_buf() so that it has proper size.
1867 */
1868
hid_output_report(struct hid_report * report,__u8 * data)1869 void hid_output_report(struct hid_report *report, __u8 *data)
1870 {
1871 unsigned n;
1872
1873 if (report->id > 0)
1874 *data++ = report->id;
1875
1876 memset(data, 0, hid_compute_report_size(report));
1877 for (n = 0; n < report->maxfield; n++)
1878 hid_output_field(report->device, report->field[n], data);
1879 }
1880 EXPORT_SYMBOL_GPL(hid_output_report);
1881
1882 /*
1883 * Allocator for buffer that is going to be passed to hid_output_report()
1884 */
hid_alloc_report_buf(struct hid_report * report,gfp_t flags)1885 u8 *hid_alloc_report_buf(struct hid_report *report, gfp_t flags)
1886 {
1887 /*
1888 * 7 extra bytes are necessary to achieve proper functionality
1889 * of implement() working on 8 byte chunks
1890 * 1 extra byte for the report ID if it is null (not used) so
1891 * we can reserve that extra byte in the first position of the buffer
1892 * when sending it to .raw_request()
1893 */
1894
1895 u32 len = hid_report_len(report) + 7 + (report->id == 0);
1896
1897 return kzalloc(len, flags);
1898 }
1899 EXPORT_SYMBOL_GPL(hid_alloc_report_buf);
1900
1901 /*
1902 * Set a field value. The report this field belongs to has to be
1903 * created and transferred to the device, to set this value in the
1904 * device.
1905 */
1906
hid_set_field(struct hid_field * field,unsigned offset,__s32 value)1907 int hid_set_field(struct hid_field *field, unsigned offset, __s32 value)
1908 {
1909 unsigned size;
1910
1911 if (!field)
1912 return -1;
1913
1914 size = field->report_size;
1915
1916 hid_dump_input(field->report->device, field->usage + offset, value);
1917
1918 if (offset >= field->report_count) {
1919 hid_err(field->report->device, "offset (%d) exceeds report_count (%d)\n",
1920 offset, field->report_count);
1921 return -1;
1922 }
1923 if (field->logical_minimum < 0) {
1924 if (value != snto32(s32ton(value, size), size)) {
1925 hid_err(field->report->device, "value %d is out of range\n", value);
1926 return -1;
1927 }
1928 }
1929 field->value[offset] = value;
1930 return 0;
1931 }
1932 EXPORT_SYMBOL_GPL(hid_set_field);
1933
hid_find_field(struct hid_device * hdev,unsigned int report_type,unsigned int application,unsigned int usage)1934 struct hid_field *hid_find_field(struct hid_device *hdev, unsigned int report_type,
1935 unsigned int application, unsigned int usage)
1936 {
1937 struct list_head *report_list = &hdev->report_enum[report_type].report_list;
1938 struct hid_report *report;
1939 int i, j;
1940
1941 list_for_each_entry(report, report_list, list) {
1942 if (report->application != application)
1943 continue;
1944
1945 for (i = 0; i < report->maxfield; i++) {
1946 struct hid_field *field = report->field[i];
1947
1948 for (j = 0; j < field->maxusage; j++) {
1949 if (field->usage[j].hid == usage)
1950 return field;
1951 }
1952 }
1953 }
1954
1955 return NULL;
1956 }
1957 EXPORT_SYMBOL_GPL(hid_find_field);
1958
hid_get_report(struct hid_report_enum * report_enum,const u8 * data)1959 static struct hid_report *hid_get_report(struct hid_report_enum *report_enum,
1960 const u8 *data)
1961 {
1962 struct hid_report *report;
1963 unsigned int n = 0; /* Normally report number is 0 */
1964
1965 /* Device uses numbered reports, data[0] is report number */
1966 if (report_enum->numbered)
1967 n = *data;
1968
1969 report = report_enum->report_id_hash[n];
1970 if (report == NULL)
1971 dbg_hid("undefined report_id %u received\n", n);
1972
1973 return report;
1974 }
1975
1976 /*
1977 * Implement a generic .request() callback, using .raw_request()
1978 * DO NOT USE in hid drivers directly, but through hid_hw_request instead.
1979 */
__hid_request(struct hid_device * hid,struct hid_report * report,enum hid_class_request reqtype)1980 int __hid_request(struct hid_device *hid, struct hid_report *report,
1981 enum hid_class_request reqtype)
1982 {
1983 char *buf, *data_buf;
1984 int ret;
1985 u32 len;
1986
1987 buf = hid_alloc_report_buf(report, GFP_KERNEL);
1988 if (!buf)
1989 return -ENOMEM;
1990
1991 data_buf = buf;
1992 len = hid_report_len(report);
1993
1994 if (report->id == 0) {
1995 /* reserve the first byte for the report ID */
1996 data_buf++;
1997 len++;
1998 }
1999
2000 if (reqtype == HID_REQ_SET_REPORT)
2001 hid_output_report(report, data_buf);
2002
2003 ret = hid_hw_raw_request(hid, report->id, buf, len, report->type, reqtype);
2004 if (ret < 0) {
2005 dbg_hid("unable to complete request: %d\n", ret);
2006 goto out;
2007 }
2008
2009 if (reqtype == HID_REQ_GET_REPORT)
2010 hid_input_report(hid, report->type, buf, ret, 0);
2011
2012 ret = 0;
2013
2014 out:
2015 kfree(buf);
2016 return ret;
2017 }
2018 EXPORT_SYMBOL_GPL(__hid_request);
2019
hid_report_raw_event(struct hid_device * hid,enum hid_report_type type,u8 * data,u32 size,int interrupt)2020 int hid_report_raw_event(struct hid_device *hid, enum hid_report_type type, u8 *data, u32 size,
2021 int interrupt)
2022 {
2023 struct hid_report_enum *report_enum = hid->report_enum + type;
2024 struct hid_report *report;
2025 struct hid_driver *hdrv;
2026 int max_buffer_size = HID_MAX_BUFFER_SIZE;
2027 u32 rsize, csize = size;
2028 u8 *cdata = data;
2029 int ret = 0;
2030
2031 report = hid_get_report(report_enum, data);
2032 if (!report)
2033 goto out;
2034
2035 if (report_enum->numbered) {
2036 cdata++;
2037 csize--;
2038 }
2039
2040 rsize = hid_compute_report_size(report);
2041
2042 if (hid->ll_driver->max_buffer_size)
2043 max_buffer_size = hid->ll_driver->max_buffer_size;
2044
2045 if (report_enum->numbered && rsize >= max_buffer_size)
2046 rsize = max_buffer_size - 1;
2047 else if (rsize > max_buffer_size)
2048 rsize = max_buffer_size;
2049
2050 if (csize < rsize) {
2051 dbg_hid("report %d is too short, (%d < %d)\n", report->id,
2052 csize, rsize);
2053 memset(cdata + csize, 0, rsize - csize);
2054 }
2055
2056 if ((hid->claimed & HID_CLAIMED_HIDDEV) && hid->hiddev_report_event)
2057 hid->hiddev_report_event(hid, report);
2058 if (hid->claimed & HID_CLAIMED_HIDRAW) {
2059 ret = hidraw_report_event(hid, data, size);
2060 if (ret)
2061 goto out;
2062 }
2063
2064 if (hid->claimed != HID_CLAIMED_HIDRAW && report->maxfield) {
2065 hid_process_report(hid, report, cdata, interrupt);
2066 hdrv = hid->driver;
2067 if (hdrv && hdrv->report)
2068 hdrv->report(hid, report);
2069 }
2070
2071 if (hid->claimed & HID_CLAIMED_INPUT)
2072 hidinput_report_event(hid, report);
2073 out:
2074 return ret;
2075 }
2076 EXPORT_SYMBOL_GPL(hid_report_raw_event);
2077
2078
__hid_input_report(struct hid_device * hid,enum hid_report_type type,u8 * data,u32 size,int interrupt,u64 source,bool from_bpf,bool lock_already_taken)2079 static int __hid_input_report(struct hid_device *hid, enum hid_report_type type,
2080 u8 *data, u32 size, int interrupt, u64 source, bool from_bpf,
2081 bool lock_already_taken)
2082 {
2083 struct hid_report_enum *report_enum;
2084 struct hid_driver *hdrv;
2085 struct hid_report *report;
2086 int ret = 0;
2087
2088 if (!hid)
2089 return -ENODEV;
2090
2091 ret = down_trylock(&hid->driver_input_lock);
2092 if (lock_already_taken && !ret) {
2093 up(&hid->driver_input_lock);
2094 return -EINVAL;
2095 } else if (!lock_already_taken && ret) {
2096 return -EBUSY;
2097 }
2098
2099 if (!hid->driver) {
2100 ret = -ENODEV;
2101 goto unlock;
2102 }
2103 report_enum = hid->report_enum + type;
2104 hdrv = hid->driver;
2105
2106 data = dispatch_hid_bpf_device_event(hid, type, data, &size, interrupt, source, from_bpf);
2107 if (IS_ERR(data)) {
2108 ret = PTR_ERR(data);
2109 goto unlock;
2110 }
2111
2112 if (!size) {
2113 dbg_hid("empty report\n");
2114 ret = -1;
2115 goto unlock;
2116 }
2117
2118 /* Avoid unnecessary overhead if debugfs is disabled */
2119 if (!list_empty(&hid->debug_list))
2120 hid_dump_report(hid, type, data, size);
2121
2122 report = hid_get_report(report_enum, data);
2123
2124 if (!report) {
2125 ret = -1;
2126 goto unlock;
2127 }
2128
2129 if (hdrv && hdrv->raw_event && hid_match_report(hid, report)) {
2130 ret = hdrv->raw_event(hid, report, data, size);
2131 if (ret < 0)
2132 goto unlock;
2133 }
2134
2135 ret = hid_report_raw_event(hid, type, data, size, interrupt);
2136
2137 unlock:
2138 if (!lock_already_taken)
2139 up(&hid->driver_input_lock);
2140 return ret;
2141 }
2142
2143 /**
2144 * hid_input_report - report data from lower layer (usb, bt...)
2145 *
2146 * @hid: hid device
2147 * @type: HID report type (HID_*_REPORT)
2148 * @data: report contents
2149 * @size: size of data parameter
2150 * @interrupt: distinguish between interrupt and control transfers
2151 *
2152 * This is data entry for lower layers.
2153 */
hid_input_report(struct hid_device * hid,enum hid_report_type type,u8 * data,u32 size,int interrupt)2154 int hid_input_report(struct hid_device *hid, enum hid_report_type type, u8 *data, u32 size,
2155 int interrupt)
2156 {
2157 return __hid_input_report(hid, type, data, size, interrupt, 0,
2158 false, /* from_bpf */
2159 false /* lock_already_taken */);
2160 }
2161 EXPORT_SYMBOL_GPL(hid_input_report);
2162
hid_match_one_id(const struct hid_device * hdev,const struct hid_device_id * id)2163 bool hid_match_one_id(const struct hid_device *hdev,
2164 const struct hid_device_id *id)
2165 {
2166 return (id->bus == HID_BUS_ANY || id->bus == hdev->bus) &&
2167 (id->group == HID_GROUP_ANY || id->group == hdev->group) &&
2168 (id->vendor == HID_ANY_ID || id->vendor == hdev->vendor) &&
2169 (id->product == HID_ANY_ID || id->product == hdev->product);
2170 }
2171
hid_match_id(const struct hid_device * hdev,const struct hid_device_id * id)2172 const struct hid_device_id *hid_match_id(const struct hid_device *hdev,
2173 const struct hid_device_id *id)
2174 {
2175 for (; id->bus; id++)
2176 if (hid_match_one_id(hdev, id))
2177 return id;
2178
2179 return NULL;
2180 }
2181 EXPORT_SYMBOL_GPL(hid_match_id);
2182
2183 static const struct hid_device_id hid_hiddev_list[] = {
2184 { HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS) },
2185 { HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS1) },
2186 { }
2187 };
2188
hid_hiddev(struct hid_device * hdev)2189 static bool hid_hiddev(struct hid_device *hdev)
2190 {
2191 return !!hid_match_id(hdev, hid_hiddev_list);
2192 }
2193
2194
2195 static ssize_t
report_descriptor_read(struct file * filp,struct kobject * kobj,const struct bin_attribute * attr,char * buf,loff_t off,size_t count)2196 report_descriptor_read(struct file *filp, struct kobject *kobj,
2197 const struct bin_attribute *attr,
2198 char *buf, loff_t off, size_t count)
2199 {
2200 struct device *dev = kobj_to_dev(kobj);
2201 struct hid_device *hdev = to_hid_device(dev);
2202
2203 if (off >= hdev->rsize)
2204 return 0;
2205
2206 if (off + count > hdev->rsize)
2207 count = hdev->rsize - off;
2208
2209 memcpy(buf, hdev->rdesc + off, count);
2210
2211 return count;
2212 }
2213
2214 static ssize_t
country_show(struct device * dev,struct device_attribute * attr,char * buf)2215 country_show(struct device *dev, struct device_attribute *attr,
2216 char *buf)
2217 {
2218 struct hid_device *hdev = to_hid_device(dev);
2219
2220 return sprintf(buf, "%02x\n", hdev->country & 0xff);
2221 }
2222
2223 static const BIN_ATTR_RO(report_descriptor, HID_MAX_DESCRIPTOR_SIZE);
2224
2225 static const DEVICE_ATTR_RO(country);
2226
hid_connect(struct hid_device * hdev,unsigned int connect_mask)2227 int hid_connect(struct hid_device *hdev, unsigned int connect_mask)
2228 {
2229 static const char *types[] = { "Device", "Pointer", "Mouse", "Device",
2230 "Joystick", "Gamepad", "Keyboard", "Keypad",
2231 "Multi-Axis Controller"
2232 };
2233 const char *type, *bus;
2234 char buf[64] = "";
2235 unsigned int i;
2236 int len;
2237 int ret;
2238
2239 ret = hid_bpf_connect_device(hdev);
2240 if (ret)
2241 return ret;
2242
2243 if (hdev->quirks & HID_QUIRK_HIDDEV_FORCE)
2244 connect_mask |= (HID_CONNECT_HIDDEV_FORCE | HID_CONNECT_HIDDEV);
2245 if (hdev->quirks & HID_QUIRK_HIDINPUT_FORCE)
2246 connect_mask |= HID_CONNECT_HIDINPUT_FORCE;
2247 if (hdev->bus != BUS_USB)
2248 connect_mask &= ~HID_CONNECT_HIDDEV;
2249 if (hid_hiddev(hdev))
2250 connect_mask |= HID_CONNECT_HIDDEV_FORCE;
2251
2252 if ((connect_mask & HID_CONNECT_HIDINPUT) && !hidinput_connect(hdev,
2253 connect_mask & HID_CONNECT_HIDINPUT_FORCE))
2254 hdev->claimed |= HID_CLAIMED_INPUT;
2255
2256 if ((connect_mask & HID_CONNECT_HIDDEV) && hdev->hiddev_connect &&
2257 !hdev->hiddev_connect(hdev,
2258 connect_mask & HID_CONNECT_HIDDEV_FORCE))
2259 hdev->claimed |= HID_CLAIMED_HIDDEV;
2260 if ((connect_mask & HID_CONNECT_HIDRAW) && !hidraw_connect(hdev))
2261 hdev->claimed |= HID_CLAIMED_HIDRAW;
2262
2263 if (connect_mask & HID_CONNECT_DRIVER)
2264 hdev->claimed |= HID_CLAIMED_DRIVER;
2265
2266 /* Drivers with the ->raw_event callback set are not required to connect
2267 * to any other listener. */
2268 if (!hdev->claimed && !hdev->driver->raw_event) {
2269 hid_err(hdev, "device has no listeners, quitting\n");
2270 return -ENODEV;
2271 }
2272
2273 hid_process_ordering(hdev);
2274
2275 if ((hdev->claimed & HID_CLAIMED_INPUT) &&
2276 (connect_mask & HID_CONNECT_FF) && hdev->ff_init)
2277 hdev->ff_init(hdev);
2278
2279 len = 0;
2280 if (hdev->claimed & HID_CLAIMED_INPUT)
2281 len += sprintf(buf + len, "input");
2282 if (hdev->claimed & HID_CLAIMED_HIDDEV)
2283 len += sprintf(buf + len, "%shiddev%d", len ? "," : "",
2284 ((struct hiddev *)hdev->hiddev)->minor);
2285 if (hdev->claimed & HID_CLAIMED_HIDRAW)
2286 len += sprintf(buf + len, "%shidraw%d", len ? "," : "",
2287 ((struct hidraw *)hdev->hidraw)->minor);
2288
2289 type = "Device";
2290 for (i = 0; i < hdev->maxcollection; i++) {
2291 struct hid_collection *col = &hdev->collection[i];
2292 if (col->type == HID_COLLECTION_APPLICATION &&
2293 (col->usage & HID_USAGE_PAGE) == HID_UP_GENDESK &&
2294 (col->usage & 0xffff) < ARRAY_SIZE(types)) {
2295 type = types[col->usage & 0xffff];
2296 break;
2297 }
2298 }
2299
2300 switch (hdev->bus) {
2301 case BUS_USB:
2302 bus = "USB";
2303 break;
2304 case BUS_BLUETOOTH:
2305 bus = "BLUETOOTH";
2306 break;
2307 case BUS_I2C:
2308 bus = "I2C";
2309 break;
2310 case BUS_SDW:
2311 bus = "SOUNDWIRE";
2312 break;
2313 case BUS_VIRTUAL:
2314 bus = "VIRTUAL";
2315 break;
2316 case BUS_INTEL_ISHTP:
2317 case BUS_AMD_SFH:
2318 bus = "SENSOR HUB";
2319 break;
2320 default:
2321 bus = "<UNKNOWN>";
2322 }
2323
2324 ret = device_create_file(&hdev->dev, &dev_attr_country);
2325 if (ret)
2326 hid_warn(hdev,
2327 "can't create sysfs country code attribute err: %d\n", ret);
2328
2329 hid_info(hdev, "%s: %s HID v%x.%02x %s [%s] on %s\n",
2330 buf, bus, hdev->version >> 8, hdev->version & 0xff,
2331 type, hdev->name, hdev->phys);
2332
2333 return 0;
2334 }
2335 EXPORT_SYMBOL_GPL(hid_connect);
2336
hid_disconnect(struct hid_device * hdev)2337 void hid_disconnect(struct hid_device *hdev)
2338 {
2339 device_remove_file(&hdev->dev, &dev_attr_country);
2340 if (hdev->claimed & HID_CLAIMED_INPUT)
2341 hidinput_disconnect(hdev);
2342 if (hdev->claimed & HID_CLAIMED_HIDDEV)
2343 hdev->hiddev_disconnect(hdev);
2344 if (hdev->claimed & HID_CLAIMED_HIDRAW)
2345 hidraw_disconnect(hdev);
2346 hdev->claimed = 0;
2347
2348 hid_bpf_disconnect_device(hdev);
2349 }
2350 EXPORT_SYMBOL_GPL(hid_disconnect);
2351
2352 /**
2353 * hid_hw_start - start underlying HW
2354 * @hdev: hid device
2355 * @connect_mask: which outputs to connect, see HID_CONNECT_*
2356 *
2357 * Call this in probe function *after* hid_parse. This will setup HW
2358 * buffers and start the device (if not defeirred to device open).
2359 * hid_hw_stop must be called if this was successful.
2360 */
hid_hw_start(struct hid_device * hdev,unsigned int connect_mask)2361 int hid_hw_start(struct hid_device *hdev, unsigned int connect_mask)
2362 {
2363 int error;
2364
2365 error = hdev->ll_driver->start(hdev);
2366 if (error)
2367 return error;
2368
2369 if (connect_mask) {
2370 error = hid_connect(hdev, connect_mask);
2371 if (error) {
2372 hdev->ll_driver->stop(hdev);
2373 return error;
2374 }
2375 }
2376
2377 return 0;
2378 }
2379 EXPORT_SYMBOL_GPL(hid_hw_start);
2380
2381 /**
2382 * hid_hw_stop - stop underlying HW
2383 * @hdev: hid device
2384 *
2385 * This is usually called from remove function or from probe when something
2386 * failed and hid_hw_start was called already.
2387 */
hid_hw_stop(struct hid_device * hdev)2388 void hid_hw_stop(struct hid_device *hdev)
2389 {
2390 hid_disconnect(hdev);
2391 hdev->ll_driver->stop(hdev);
2392 }
2393 EXPORT_SYMBOL_GPL(hid_hw_stop);
2394
2395 /**
2396 * hid_hw_open - signal underlying HW to start delivering events
2397 * @hdev: hid device
2398 *
2399 * Tell underlying HW to start delivering events from the device.
2400 * This function should be called sometime after successful call
2401 * to hid_hw_start().
2402 */
hid_hw_open(struct hid_device * hdev)2403 int hid_hw_open(struct hid_device *hdev)
2404 {
2405 int ret;
2406
2407 ret = mutex_lock_killable(&hdev->ll_open_lock);
2408 if (ret)
2409 return ret;
2410
2411 if (!hdev->ll_open_count++) {
2412 ret = hdev->ll_driver->open(hdev);
2413 if (ret)
2414 hdev->ll_open_count--;
2415
2416 if (hdev->driver->on_hid_hw_open)
2417 hdev->driver->on_hid_hw_open(hdev);
2418 }
2419
2420 mutex_unlock(&hdev->ll_open_lock);
2421 return ret;
2422 }
2423 EXPORT_SYMBOL_GPL(hid_hw_open);
2424
2425 /**
2426 * hid_hw_close - signal underlaying HW to stop delivering events
2427 *
2428 * @hdev: hid device
2429 *
2430 * This function indicates that we are not interested in the events
2431 * from this device anymore. Delivery of events may or may not stop,
2432 * depending on the number of users still outstanding.
2433 */
hid_hw_close(struct hid_device * hdev)2434 void hid_hw_close(struct hid_device *hdev)
2435 {
2436 mutex_lock(&hdev->ll_open_lock);
2437 if (!--hdev->ll_open_count) {
2438 hdev->ll_driver->close(hdev);
2439
2440 if (hdev->driver->on_hid_hw_close)
2441 hdev->driver->on_hid_hw_close(hdev);
2442 }
2443 mutex_unlock(&hdev->ll_open_lock);
2444 }
2445 EXPORT_SYMBOL_GPL(hid_hw_close);
2446
2447 /**
2448 * hid_hw_request - send report request to device
2449 *
2450 * @hdev: hid device
2451 * @report: report to send
2452 * @reqtype: hid request type
2453 */
hid_hw_request(struct hid_device * hdev,struct hid_report * report,enum hid_class_request reqtype)2454 void hid_hw_request(struct hid_device *hdev,
2455 struct hid_report *report, enum hid_class_request reqtype)
2456 {
2457 if (hdev->ll_driver->request)
2458 return hdev->ll_driver->request(hdev, report, reqtype);
2459
2460 __hid_request(hdev, report, reqtype);
2461 }
2462 EXPORT_SYMBOL_GPL(hid_hw_request);
2463
__hid_hw_raw_request(struct hid_device * hdev,unsigned char reportnum,__u8 * buf,size_t len,enum hid_report_type rtype,enum hid_class_request reqtype,u64 source,bool from_bpf)2464 int __hid_hw_raw_request(struct hid_device *hdev,
2465 unsigned char reportnum, __u8 *buf,
2466 size_t len, enum hid_report_type rtype,
2467 enum hid_class_request reqtype,
2468 u64 source, bool from_bpf)
2469 {
2470 unsigned int max_buffer_size = HID_MAX_BUFFER_SIZE;
2471 int ret;
2472
2473 if (hdev->ll_driver->max_buffer_size)
2474 max_buffer_size = hdev->ll_driver->max_buffer_size;
2475
2476 if (len < 1 || len > max_buffer_size || !buf)
2477 return -EINVAL;
2478
2479 ret = dispatch_hid_bpf_raw_requests(hdev, reportnum, buf, len, rtype,
2480 reqtype, source, from_bpf);
2481 if (ret)
2482 return ret;
2483
2484 return hdev->ll_driver->raw_request(hdev, reportnum, buf, len,
2485 rtype, reqtype);
2486 }
2487
2488 /**
2489 * hid_hw_raw_request - send report request to device
2490 *
2491 * @hdev: hid device
2492 * @reportnum: report ID
2493 * @buf: in/out data to transfer
2494 * @len: length of buf
2495 * @rtype: HID report type
2496 * @reqtype: HID_REQ_GET_REPORT or HID_REQ_SET_REPORT
2497 *
2498 * Return: count of data transferred, negative if error
2499 *
2500 * Same behavior as hid_hw_request, but with raw buffers instead.
2501 */
hid_hw_raw_request(struct hid_device * hdev,unsigned char reportnum,__u8 * buf,size_t len,enum hid_report_type rtype,enum hid_class_request reqtype)2502 int hid_hw_raw_request(struct hid_device *hdev,
2503 unsigned char reportnum, __u8 *buf,
2504 size_t len, enum hid_report_type rtype, enum hid_class_request reqtype)
2505 {
2506 return __hid_hw_raw_request(hdev, reportnum, buf, len, rtype, reqtype, 0, false);
2507 }
2508 EXPORT_SYMBOL_GPL(hid_hw_raw_request);
2509
__hid_hw_output_report(struct hid_device * hdev,__u8 * buf,size_t len,u64 source,bool from_bpf)2510 int __hid_hw_output_report(struct hid_device *hdev, __u8 *buf, size_t len, u64 source,
2511 bool from_bpf)
2512 {
2513 unsigned int max_buffer_size = HID_MAX_BUFFER_SIZE;
2514 int ret;
2515
2516 if (hdev->ll_driver->max_buffer_size)
2517 max_buffer_size = hdev->ll_driver->max_buffer_size;
2518
2519 if (len < 1 || len > max_buffer_size || !buf)
2520 return -EINVAL;
2521
2522 ret = dispatch_hid_bpf_output_report(hdev, buf, len, source, from_bpf);
2523 if (ret)
2524 return ret;
2525
2526 if (hdev->ll_driver->output_report)
2527 return hdev->ll_driver->output_report(hdev, buf, len);
2528
2529 return -ENOSYS;
2530 }
2531
2532 /**
2533 * hid_hw_output_report - send output report to device
2534 *
2535 * @hdev: hid device
2536 * @buf: raw data to transfer
2537 * @len: length of buf
2538 *
2539 * Return: count of data transferred, negative if error
2540 */
hid_hw_output_report(struct hid_device * hdev,__u8 * buf,size_t len)2541 int hid_hw_output_report(struct hid_device *hdev, __u8 *buf, size_t len)
2542 {
2543 return __hid_hw_output_report(hdev, buf, len, 0, false);
2544 }
2545 EXPORT_SYMBOL_GPL(hid_hw_output_report);
2546
2547 #ifdef CONFIG_PM
hid_driver_suspend(struct hid_device * hdev,pm_message_t state)2548 int hid_driver_suspend(struct hid_device *hdev, pm_message_t state)
2549 {
2550 if (hdev->driver && hdev->driver->suspend)
2551 return hdev->driver->suspend(hdev, state);
2552
2553 return 0;
2554 }
2555 EXPORT_SYMBOL_GPL(hid_driver_suspend);
2556
hid_driver_reset_resume(struct hid_device * hdev)2557 int hid_driver_reset_resume(struct hid_device *hdev)
2558 {
2559 if (hdev->driver && hdev->driver->reset_resume)
2560 return hdev->driver->reset_resume(hdev);
2561
2562 return 0;
2563 }
2564 EXPORT_SYMBOL_GPL(hid_driver_reset_resume);
2565
hid_driver_resume(struct hid_device * hdev)2566 int hid_driver_resume(struct hid_device *hdev)
2567 {
2568 if (hdev->driver && hdev->driver->resume)
2569 return hdev->driver->resume(hdev);
2570
2571 return 0;
2572 }
2573 EXPORT_SYMBOL_GPL(hid_driver_resume);
2574 #endif /* CONFIG_PM */
2575
2576 struct hid_dynid {
2577 struct list_head list;
2578 struct hid_device_id id;
2579 };
2580
2581 /**
2582 * new_id_store - add a new HID device ID to this driver and re-probe devices
2583 * @drv: target device driver
2584 * @buf: buffer for scanning device ID data
2585 * @count: input size
2586 *
2587 * Adds a new dynamic hid device ID to this driver,
2588 * and causes the driver to probe for all devices again.
2589 */
new_id_store(struct device_driver * drv,const char * buf,size_t count)2590 static ssize_t new_id_store(struct device_driver *drv, const char *buf,
2591 size_t count)
2592 {
2593 struct hid_driver *hdrv = to_hid_driver(drv);
2594 struct hid_dynid *dynid;
2595 __u32 bus, vendor, product;
2596 unsigned long driver_data = 0;
2597 int ret;
2598
2599 ret = sscanf(buf, "%x %x %x %lx",
2600 &bus, &vendor, &product, &driver_data);
2601 if (ret < 3)
2602 return -EINVAL;
2603
2604 dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
2605 if (!dynid)
2606 return -ENOMEM;
2607
2608 dynid->id.bus = bus;
2609 dynid->id.group = HID_GROUP_ANY;
2610 dynid->id.vendor = vendor;
2611 dynid->id.product = product;
2612 dynid->id.driver_data = driver_data;
2613
2614 spin_lock(&hdrv->dyn_lock);
2615 list_add_tail(&dynid->list, &hdrv->dyn_list);
2616 spin_unlock(&hdrv->dyn_lock);
2617
2618 ret = driver_attach(&hdrv->driver);
2619
2620 return ret ? : count;
2621 }
2622 static DRIVER_ATTR_WO(new_id);
2623
2624 static struct attribute *hid_drv_attrs[] = {
2625 &driver_attr_new_id.attr,
2626 NULL,
2627 };
2628 ATTRIBUTE_GROUPS(hid_drv);
2629
hid_free_dynids(struct hid_driver * hdrv)2630 static void hid_free_dynids(struct hid_driver *hdrv)
2631 {
2632 struct hid_dynid *dynid, *n;
2633
2634 spin_lock(&hdrv->dyn_lock);
2635 list_for_each_entry_safe(dynid, n, &hdrv->dyn_list, list) {
2636 list_del(&dynid->list);
2637 kfree(dynid);
2638 }
2639 spin_unlock(&hdrv->dyn_lock);
2640 }
2641
hid_match_device(struct hid_device * hdev,struct hid_driver * hdrv)2642 const struct hid_device_id *hid_match_device(struct hid_device *hdev,
2643 struct hid_driver *hdrv)
2644 {
2645 struct hid_dynid *dynid;
2646
2647 spin_lock(&hdrv->dyn_lock);
2648 list_for_each_entry(dynid, &hdrv->dyn_list, list) {
2649 if (hid_match_one_id(hdev, &dynid->id)) {
2650 spin_unlock(&hdrv->dyn_lock);
2651 return &dynid->id;
2652 }
2653 }
2654 spin_unlock(&hdrv->dyn_lock);
2655
2656 return hid_match_id(hdev, hdrv->id_table);
2657 }
2658 EXPORT_SYMBOL_GPL(hid_match_device);
2659
hid_bus_match(struct device * dev,const struct device_driver * drv)2660 static int hid_bus_match(struct device *dev, const struct device_driver *drv)
2661 {
2662 struct hid_driver *hdrv = to_hid_driver(drv);
2663 struct hid_device *hdev = to_hid_device(dev);
2664
2665 return hid_match_device(hdev, hdrv) != NULL;
2666 }
2667
2668 /**
2669 * hid_compare_device_paths - check if both devices share the same path
2670 * @hdev_a: hid device
2671 * @hdev_b: hid device
2672 * @separator: char to use as separator
2673 *
2674 * Check if two devices share the same path up to the last occurrence of
2675 * the separator char. Both paths must exist (i.e., zero-length paths
2676 * don't match).
2677 */
hid_compare_device_paths(struct hid_device * hdev_a,struct hid_device * hdev_b,char separator)2678 bool hid_compare_device_paths(struct hid_device *hdev_a,
2679 struct hid_device *hdev_b, char separator)
2680 {
2681 int n1 = strrchr(hdev_a->phys, separator) - hdev_a->phys;
2682 int n2 = strrchr(hdev_b->phys, separator) - hdev_b->phys;
2683
2684 if (n1 != n2 || n1 <= 0 || n2 <= 0)
2685 return false;
2686
2687 return !strncmp(hdev_a->phys, hdev_b->phys, n1);
2688 }
2689 EXPORT_SYMBOL_GPL(hid_compare_device_paths);
2690
hid_check_device_match(struct hid_device * hdev,struct hid_driver * hdrv,const struct hid_device_id ** id)2691 static bool hid_check_device_match(struct hid_device *hdev,
2692 struct hid_driver *hdrv,
2693 const struct hid_device_id **id)
2694 {
2695 *id = hid_match_device(hdev, hdrv);
2696 if (!*id)
2697 return false;
2698
2699 if (hdrv->match)
2700 return hdrv->match(hdev, hid_ignore_special_drivers);
2701
2702 /*
2703 * hid-generic implements .match(), so we must be dealing with a
2704 * different HID driver here, and can simply check if
2705 * hid_ignore_special_drivers or HID_QUIRK_IGNORE_SPECIAL_DRIVER
2706 * are set or not.
2707 */
2708 return !hid_ignore_special_drivers && !(hdev->quirks & HID_QUIRK_IGNORE_SPECIAL_DRIVER);
2709 }
2710
__hid_device_probe(struct hid_device * hdev,struct hid_driver * hdrv)2711 static int __hid_device_probe(struct hid_device *hdev, struct hid_driver *hdrv)
2712 {
2713 const struct hid_device_id *id;
2714 int ret;
2715
2716 if (!hdev->bpf_rsize) {
2717 /* in case a bpf program gets detached, we need to free the old one */
2718 hid_free_bpf_rdesc(hdev);
2719
2720 /* keep this around so we know we called it once */
2721 hdev->bpf_rsize = hdev->dev_rsize;
2722
2723 /* call_hid_bpf_rdesc_fixup will always return a valid pointer */
2724 hdev->bpf_rdesc = call_hid_bpf_rdesc_fixup(hdev, hdev->dev_rdesc,
2725 &hdev->bpf_rsize);
2726 }
2727
2728 if (!hid_check_device_match(hdev, hdrv, &id))
2729 return -ENODEV;
2730
2731 hdev->devres_group_id = devres_open_group(&hdev->dev, NULL, GFP_KERNEL);
2732 if (!hdev->devres_group_id)
2733 return -ENOMEM;
2734
2735 /* reset the quirks that has been previously set */
2736 hdev->quirks = hid_lookup_quirk(hdev);
2737 hdev->driver = hdrv;
2738
2739 if (hdrv->probe) {
2740 ret = hdrv->probe(hdev, id);
2741 } else { /* default probe */
2742 ret = hid_open_report(hdev);
2743 if (!ret)
2744 ret = hid_hw_start(hdev, HID_CONNECT_DEFAULT);
2745 }
2746
2747 /*
2748 * Note that we are not closing the devres group opened above so
2749 * even resources that were attached to the device after probe is
2750 * run are released when hid_device_remove() is executed. This is
2751 * needed as some drivers would allocate additional resources,
2752 * for example when updating firmware.
2753 */
2754
2755 if (ret) {
2756 devres_release_group(&hdev->dev, hdev->devres_group_id);
2757 hid_close_report(hdev);
2758 hdev->driver = NULL;
2759 }
2760
2761 return ret;
2762 }
2763
hid_device_probe(struct device * dev)2764 static int hid_device_probe(struct device *dev)
2765 {
2766 struct hid_device *hdev = to_hid_device(dev);
2767 struct hid_driver *hdrv = to_hid_driver(dev->driver);
2768 int ret = 0;
2769
2770 if (down_interruptible(&hdev->driver_input_lock))
2771 return -EINTR;
2772
2773 hdev->io_started = false;
2774 clear_bit(ffs(HID_STAT_REPROBED), &hdev->status);
2775
2776 if (!hdev->driver)
2777 ret = __hid_device_probe(hdev, hdrv);
2778
2779 if (!hdev->io_started)
2780 up(&hdev->driver_input_lock);
2781
2782 return ret;
2783 }
2784
hid_device_remove(struct device * dev)2785 static void hid_device_remove(struct device *dev)
2786 {
2787 struct hid_device *hdev = to_hid_device(dev);
2788 struct hid_driver *hdrv;
2789
2790 down(&hdev->driver_input_lock);
2791 hdev->io_started = false;
2792
2793 hdrv = hdev->driver;
2794 if (hdrv) {
2795 if (hdrv->remove)
2796 hdrv->remove(hdev);
2797 else /* default remove */
2798 hid_hw_stop(hdev);
2799
2800 /* Release all devres resources allocated by the driver */
2801 devres_release_group(&hdev->dev, hdev->devres_group_id);
2802
2803 hid_close_report(hdev);
2804 hdev->driver = NULL;
2805 }
2806
2807 if (!hdev->io_started)
2808 up(&hdev->driver_input_lock);
2809 }
2810
modalias_show(struct device * dev,struct device_attribute * a,char * buf)2811 static ssize_t modalias_show(struct device *dev, struct device_attribute *a,
2812 char *buf)
2813 {
2814 struct hid_device *hdev = container_of(dev, struct hid_device, dev);
2815
2816 return sysfs_emit(buf, "hid:b%04Xg%04Xv%08Xp%08X\n",
2817 hdev->bus, hdev->group, hdev->vendor, hdev->product);
2818 }
2819 static DEVICE_ATTR_RO(modalias);
2820
2821 static struct attribute *hid_dev_attrs[] = {
2822 &dev_attr_modalias.attr,
2823 NULL,
2824 };
2825 static const struct bin_attribute *hid_dev_bin_attrs[] = {
2826 &bin_attr_report_descriptor,
2827 NULL
2828 };
2829 static const struct attribute_group hid_dev_group = {
2830 .attrs = hid_dev_attrs,
2831 .bin_attrs = hid_dev_bin_attrs,
2832 };
2833 __ATTRIBUTE_GROUPS(hid_dev);
2834
hid_uevent(const struct device * dev,struct kobj_uevent_env * env)2835 static int hid_uevent(const struct device *dev, struct kobj_uevent_env *env)
2836 {
2837 const struct hid_device *hdev = to_hid_device(dev);
2838
2839 if (add_uevent_var(env, "HID_ID=%04X:%08X:%08X",
2840 hdev->bus, hdev->vendor, hdev->product))
2841 return -ENOMEM;
2842
2843 if (add_uevent_var(env, "HID_NAME=%s", hdev->name))
2844 return -ENOMEM;
2845
2846 if (add_uevent_var(env, "HID_PHYS=%s", hdev->phys))
2847 return -ENOMEM;
2848
2849 if (add_uevent_var(env, "HID_UNIQ=%s", hdev->uniq))
2850 return -ENOMEM;
2851
2852 if (add_uevent_var(env, "MODALIAS=hid:b%04Xg%04Xv%08Xp%08X",
2853 hdev->bus, hdev->group, hdev->vendor, hdev->product))
2854 return -ENOMEM;
2855
2856 return 0;
2857 }
2858
2859 const struct bus_type hid_bus_type = {
2860 .name = "hid",
2861 .dev_groups = hid_dev_groups,
2862 .drv_groups = hid_drv_groups,
2863 .match = hid_bus_match,
2864 .probe = hid_device_probe,
2865 .remove = hid_device_remove,
2866 .uevent = hid_uevent,
2867 };
2868 EXPORT_SYMBOL(hid_bus_type);
2869
hid_add_device(struct hid_device * hdev)2870 int hid_add_device(struct hid_device *hdev)
2871 {
2872 static atomic_t id = ATOMIC_INIT(0);
2873 int ret;
2874
2875 if (WARN_ON(hdev->status & HID_STAT_ADDED))
2876 return -EBUSY;
2877
2878 hdev->quirks = hid_lookup_quirk(hdev);
2879
2880 /* we need to kill them here, otherwise they will stay allocated to
2881 * wait for coming driver */
2882 if (hid_ignore(hdev))
2883 return -ENODEV;
2884
2885 /*
2886 * Check for the mandatory transport channel.
2887 */
2888 if (!hdev->ll_driver->raw_request) {
2889 hid_err(hdev, "transport driver missing .raw_request()\n");
2890 return -EINVAL;
2891 }
2892
2893 /*
2894 * Read the device report descriptor once and use as template
2895 * for the driver-specific modifications.
2896 */
2897 ret = hdev->ll_driver->parse(hdev);
2898 if (ret)
2899 return ret;
2900 if (!hdev->dev_rdesc)
2901 return -ENODEV;
2902
2903 /*
2904 * Scan generic devices for group information
2905 */
2906 if (hid_ignore_special_drivers) {
2907 hdev->group = HID_GROUP_GENERIC;
2908 } else if (!hdev->group &&
2909 !(hdev->quirks & HID_QUIRK_HAVE_SPECIAL_DRIVER)) {
2910 ret = hid_scan_report(hdev);
2911 if (ret)
2912 hid_warn(hdev, "bad device descriptor (%d)\n", ret);
2913 }
2914
2915 hdev->id = atomic_inc_return(&id);
2916
2917 /* XXX hack, any other cleaner solution after the driver core
2918 * is converted to allow more than 20 bytes as the device name? */
2919 dev_set_name(&hdev->dev, "%04X:%04X:%04X.%04X", hdev->bus,
2920 hdev->vendor, hdev->product, hdev->id);
2921
2922 hid_debug_register(hdev, dev_name(&hdev->dev));
2923 ret = device_add(&hdev->dev);
2924 if (!ret)
2925 hdev->status |= HID_STAT_ADDED;
2926 else
2927 hid_debug_unregister(hdev);
2928
2929 return ret;
2930 }
2931 EXPORT_SYMBOL_GPL(hid_add_device);
2932
2933 /**
2934 * hid_allocate_device - allocate new hid device descriptor
2935 *
2936 * Allocate and initialize hid device, so that hid_destroy_device might be
2937 * used to free it.
2938 *
2939 * New hid_device pointer is returned on success, otherwise ERR_PTR encoded
2940 * error value.
2941 */
hid_allocate_device(void)2942 struct hid_device *hid_allocate_device(void)
2943 {
2944 struct hid_device *hdev;
2945 int ret = -ENOMEM;
2946
2947 hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
2948 if (hdev == NULL)
2949 return ERR_PTR(ret);
2950
2951 device_initialize(&hdev->dev);
2952 hdev->dev.release = hid_device_release;
2953 hdev->dev.bus = &hid_bus_type;
2954 device_enable_async_suspend(&hdev->dev);
2955
2956 hid_close_report(hdev);
2957
2958 init_waitqueue_head(&hdev->debug_wait);
2959 INIT_LIST_HEAD(&hdev->debug_list);
2960 spin_lock_init(&hdev->debug_list_lock);
2961 sema_init(&hdev->driver_input_lock, 1);
2962 mutex_init(&hdev->ll_open_lock);
2963 kref_init(&hdev->ref);
2964
2965 ret = hid_bpf_device_init(hdev);
2966 if (ret)
2967 goto out_err;
2968
2969 return hdev;
2970
2971 out_err:
2972 hid_destroy_device(hdev);
2973 return ERR_PTR(ret);
2974 }
2975 EXPORT_SYMBOL_GPL(hid_allocate_device);
2976
hid_remove_device(struct hid_device * hdev)2977 static void hid_remove_device(struct hid_device *hdev)
2978 {
2979 if (hdev->status & HID_STAT_ADDED) {
2980 device_del(&hdev->dev);
2981 hid_debug_unregister(hdev);
2982 hdev->status &= ~HID_STAT_ADDED;
2983 }
2984 hid_free_bpf_rdesc(hdev);
2985 kfree(hdev->dev_rdesc);
2986 hdev->dev_rdesc = NULL;
2987 hdev->dev_rsize = 0;
2988 hdev->bpf_rsize = 0;
2989 }
2990
2991 /**
2992 * hid_destroy_device - free previously allocated device
2993 *
2994 * @hdev: hid device
2995 *
2996 * If you allocate hid_device through hid_allocate_device, you should ever
2997 * free by this function.
2998 */
hid_destroy_device(struct hid_device * hdev)2999 void hid_destroy_device(struct hid_device *hdev)
3000 {
3001 hid_bpf_destroy_device(hdev);
3002 hid_remove_device(hdev);
3003 put_device(&hdev->dev);
3004 }
3005 EXPORT_SYMBOL_GPL(hid_destroy_device);
3006
3007
__hid_bus_reprobe_drivers(struct device * dev,void * data)3008 static int __hid_bus_reprobe_drivers(struct device *dev, void *data)
3009 {
3010 struct hid_driver *hdrv = data;
3011 struct hid_device *hdev = to_hid_device(dev);
3012
3013 if (hdev->driver == hdrv &&
3014 !hdrv->match(hdev, hid_ignore_special_drivers) &&
3015 !test_and_set_bit(ffs(HID_STAT_REPROBED), &hdev->status))
3016 return device_reprobe(dev);
3017
3018 return 0;
3019 }
3020
__hid_bus_driver_added(struct device_driver * drv,void * data)3021 static int __hid_bus_driver_added(struct device_driver *drv, void *data)
3022 {
3023 struct hid_driver *hdrv = to_hid_driver(drv);
3024
3025 if (hdrv->match) {
3026 bus_for_each_dev(&hid_bus_type, NULL, hdrv,
3027 __hid_bus_reprobe_drivers);
3028 }
3029
3030 return 0;
3031 }
3032
__bus_removed_driver(struct device_driver * drv,void * data)3033 static int __bus_removed_driver(struct device_driver *drv, void *data)
3034 {
3035 return bus_rescan_devices(&hid_bus_type);
3036 }
3037
__hid_register_driver(struct hid_driver * hdrv,struct module * owner,const char * mod_name)3038 int __hid_register_driver(struct hid_driver *hdrv, struct module *owner,
3039 const char *mod_name)
3040 {
3041 int ret;
3042
3043 hdrv->driver.name = hdrv->name;
3044 hdrv->driver.bus = &hid_bus_type;
3045 hdrv->driver.owner = owner;
3046 hdrv->driver.mod_name = mod_name;
3047
3048 INIT_LIST_HEAD(&hdrv->dyn_list);
3049 spin_lock_init(&hdrv->dyn_lock);
3050
3051 ret = driver_register(&hdrv->driver);
3052
3053 if (ret == 0)
3054 bus_for_each_drv(&hid_bus_type, NULL, NULL,
3055 __hid_bus_driver_added);
3056
3057 return ret;
3058 }
3059 EXPORT_SYMBOL_GPL(__hid_register_driver);
3060
hid_unregister_driver(struct hid_driver * hdrv)3061 void hid_unregister_driver(struct hid_driver *hdrv)
3062 {
3063 driver_unregister(&hdrv->driver);
3064 hid_free_dynids(hdrv);
3065
3066 bus_for_each_drv(&hid_bus_type, NULL, hdrv, __bus_removed_driver);
3067 }
3068 EXPORT_SYMBOL_GPL(hid_unregister_driver);
3069
hid_check_keys_pressed(struct hid_device * hid)3070 int hid_check_keys_pressed(struct hid_device *hid)
3071 {
3072 struct hid_input *hidinput;
3073 int i;
3074
3075 if (!(hid->claimed & HID_CLAIMED_INPUT))
3076 return 0;
3077
3078 list_for_each_entry(hidinput, &hid->inputs, list) {
3079 for (i = 0; i < BITS_TO_LONGS(KEY_MAX); i++)
3080 if (hidinput->input->key[i])
3081 return 1;
3082 }
3083
3084 return 0;
3085 }
3086 EXPORT_SYMBOL_GPL(hid_check_keys_pressed);
3087
3088 #ifdef CONFIG_HID_BPF
3089 static const struct hid_ops __hid_ops = {
3090 .hid_get_report = hid_get_report,
3091 .hid_hw_raw_request = __hid_hw_raw_request,
3092 .hid_hw_output_report = __hid_hw_output_report,
3093 .hid_input_report = __hid_input_report,
3094 .owner = THIS_MODULE,
3095 .bus_type = &hid_bus_type,
3096 };
3097 #endif
3098
hid_init(void)3099 static int __init hid_init(void)
3100 {
3101 int ret;
3102
3103 ret = bus_register(&hid_bus_type);
3104 if (ret) {
3105 pr_err("can't register hid bus\n");
3106 goto err;
3107 }
3108
3109 #ifdef CONFIG_HID_BPF
3110 hid_ops = &__hid_ops;
3111 #endif
3112
3113 ret = hidraw_init();
3114 if (ret)
3115 goto err_bus;
3116
3117 hid_debug_init();
3118
3119 return 0;
3120 err_bus:
3121 bus_unregister(&hid_bus_type);
3122 err:
3123 return ret;
3124 }
3125
hid_exit(void)3126 static void __exit hid_exit(void)
3127 {
3128 #ifdef CONFIG_HID_BPF
3129 hid_ops = NULL;
3130 #endif
3131 hid_debug_exit();
3132 hidraw_exit();
3133 bus_unregister(&hid_bus_type);
3134 hid_quirks_exit(HID_BUS_ANY);
3135 }
3136
3137 module_init(hid_init);
3138 module_exit(hid_exit);
3139
3140 MODULE_AUTHOR("Andreas Gal");
3141 MODULE_AUTHOR("Vojtech Pavlik");
3142 MODULE_AUTHOR("Jiri Kosina");
3143 MODULE_DESCRIPTION("HID support for Linux");
3144 MODULE_LICENSE("GPL");
3145