xref: /linux/drivers/hid/hid-core.c (revision b80a75cf6999fb79971b41eaec7af2bb4b514714)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  HID support for Linux
4  *
5  *  Copyright (c) 1999 Andreas Gal
6  *  Copyright (c) 2000-2005 Vojtech Pavlik <vojtech@suse.cz>
7  *  Copyright (c) 2005 Michael Haboustak <mike-@cinci.rr.com> for Concept2, Inc
8  *  Copyright (c) 2006-2012 Jiri Kosina
9  */
10 
11 /*
12  */
13 
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 
16 #include <linux/module.h>
17 #include <linux/slab.h>
18 #include <linux/init.h>
19 #include <linux/kernel.h>
20 #include <linux/list.h>
21 #include <linux/mm.h>
22 #include <linux/spinlock.h>
23 #include <linux/unaligned.h>
24 #include <asm/byteorder.h>
25 #include <linux/input.h>
26 #include <linux/wait.h>
27 #include <linux/vmalloc.h>
28 #include <linux/sched.h>
29 #include <linux/semaphore.h>
30 
31 #include <linux/hid.h>
32 #include <linux/hiddev.h>
33 #include <linux/hid-debug.h>
34 #include <linux/hidraw.h>
35 
36 #include "hid-ids.h"
37 
38 /*
39  * Version Information
40  */
41 
42 #define DRIVER_DESC "HID core driver"
43 
44 static int hid_ignore_special_drivers = 0;
45 module_param_named(ignore_special_drivers, hid_ignore_special_drivers, int, 0600);
46 MODULE_PARM_DESC(ignore_special_drivers, "Ignore any special drivers and handle all devices by generic driver");
47 
48 /*
49  * Convert a signed n-bit integer to signed 32-bit integer.
50  */
51 
snto32(__u32 value,unsigned int n)52 static s32 snto32(__u32 value, unsigned int n)
53 {
54 	if (!value || !n)
55 		return 0;
56 
57 	if (n > 32)
58 		n = 32;
59 
60 	return sign_extend32(value, n - 1);
61 }
62 
63 /*
64  * Convert a signed 32-bit integer to a signed n-bit integer.
65  */
66 
s32ton(__s32 value,unsigned int n)67 static u32 s32ton(__s32 value, unsigned int n)
68 {
69 	s32 a;
70 
71 	if (!value || !n)
72 		return 0;
73 
74 	a = value >> (n - 1);
75 	if (a && a != -1)
76 		return value < 0 ? 1 << (n - 1) : (1 << (n - 1)) - 1;
77 	return value & ((1 << n) - 1);
78 }
79 
80 /*
81  * Register a new report for a device.
82  */
83 
hid_register_report(struct hid_device * device,enum hid_report_type type,unsigned int id,unsigned int application)84 struct hid_report *hid_register_report(struct hid_device *device,
85 				       enum hid_report_type type, unsigned int id,
86 				       unsigned int application)
87 {
88 	struct hid_report_enum *report_enum = device->report_enum + type;
89 	struct hid_report *report;
90 
91 	if (id >= HID_MAX_IDS)
92 		return NULL;
93 	if (report_enum->report_id_hash[id])
94 		return report_enum->report_id_hash[id];
95 
96 	report = kzalloc(sizeof(struct hid_report), GFP_KERNEL);
97 	if (!report)
98 		return NULL;
99 
100 	if (id != 0)
101 		report_enum->numbered = 1;
102 
103 	report->id = id;
104 	report->type = type;
105 	report->size = 0;
106 	report->device = device;
107 	report->application = application;
108 	report_enum->report_id_hash[id] = report;
109 
110 	list_add_tail(&report->list, &report_enum->report_list);
111 	INIT_LIST_HEAD(&report->field_entry_list);
112 
113 	return report;
114 }
115 EXPORT_SYMBOL_GPL(hid_register_report);
116 
117 /*
118  * Register a new field for this report.
119  */
120 
hid_register_field(struct hid_report * report,unsigned usages)121 static struct hid_field *hid_register_field(struct hid_report *report, unsigned usages)
122 {
123 	struct hid_field *field;
124 
125 	if (report->maxfield == HID_MAX_FIELDS) {
126 		hid_err(report->device, "too many fields in report\n");
127 		return NULL;
128 	}
129 
130 	field = kvzalloc((sizeof(struct hid_field) +
131 			  usages * sizeof(struct hid_usage) +
132 			  3 * usages * sizeof(unsigned int)), GFP_KERNEL);
133 	if (!field)
134 		return NULL;
135 
136 	field->index = report->maxfield++;
137 	report->field[field->index] = field;
138 	field->usage = (struct hid_usage *)(field + 1);
139 	field->value = (s32 *)(field->usage + usages);
140 	field->new_value = (s32 *)(field->value + usages);
141 	field->usages_priorities = (s32 *)(field->new_value + usages);
142 	field->report = report;
143 
144 	return field;
145 }
146 
147 /*
148  * Open a collection. The type/usage is pushed on the stack.
149  */
150 
open_collection(struct hid_parser * parser,unsigned type)151 static int open_collection(struct hid_parser *parser, unsigned type)
152 {
153 	struct hid_collection *collection;
154 	unsigned usage;
155 	int collection_index;
156 
157 	usage = parser->local.usage[0];
158 
159 	if (parser->collection_stack_ptr == parser->collection_stack_size) {
160 		unsigned int *collection_stack;
161 		unsigned int new_size = parser->collection_stack_size +
162 					HID_COLLECTION_STACK_SIZE;
163 
164 		collection_stack = krealloc(parser->collection_stack,
165 					    new_size * sizeof(unsigned int),
166 					    GFP_KERNEL);
167 		if (!collection_stack)
168 			return -ENOMEM;
169 
170 		parser->collection_stack = collection_stack;
171 		parser->collection_stack_size = new_size;
172 	}
173 
174 	if (parser->device->maxcollection == parser->device->collection_size) {
175 		collection = kmalloc(
176 				array3_size(sizeof(struct hid_collection),
177 					    parser->device->collection_size,
178 					    2),
179 				GFP_KERNEL);
180 		if (collection == NULL) {
181 			hid_err(parser->device, "failed to reallocate collection array\n");
182 			return -ENOMEM;
183 		}
184 		memcpy(collection, parser->device->collection,
185 			sizeof(struct hid_collection) *
186 			parser->device->collection_size);
187 		memset(collection + parser->device->collection_size, 0,
188 			sizeof(struct hid_collection) *
189 			parser->device->collection_size);
190 		kfree(parser->device->collection);
191 		parser->device->collection = collection;
192 		parser->device->collection_size *= 2;
193 	}
194 
195 	parser->collection_stack[parser->collection_stack_ptr++] =
196 		parser->device->maxcollection;
197 
198 	collection_index = parser->device->maxcollection++;
199 	collection = parser->device->collection + collection_index;
200 	collection->type = type;
201 	collection->usage = usage;
202 	collection->level = parser->collection_stack_ptr - 1;
203 	collection->parent_idx = (collection->level == 0) ? -1 :
204 		parser->collection_stack[collection->level - 1];
205 
206 	if (type == HID_COLLECTION_APPLICATION)
207 		parser->device->maxapplication++;
208 
209 	return 0;
210 }
211 
212 /*
213  * Close a collection.
214  */
215 
close_collection(struct hid_parser * parser)216 static int close_collection(struct hid_parser *parser)
217 {
218 	if (!parser->collection_stack_ptr) {
219 		hid_err(parser->device, "collection stack underflow\n");
220 		return -EINVAL;
221 	}
222 	parser->collection_stack_ptr--;
223 	return 0;
224 }
225 
226 /*
227  * Climb up the stack, search for the specified collection type
228  * and return the usage.
229  */
230 
hid_lookup_collection(struct hid_parser * parser,unsigned type)231 static unsigned hid_lookup_collection(struct hid_parser *parser, unsigned type)
232 {
233 	struct hid_collection *collection = parser->device->collection;
234 	int n;
235 
236 	for (n = parser->collection_stack_ptr - 1; n >= 0; n--) {
237 		unsigned index = parser->collection_stack[n];
238 		if (collection[index].type == type)
239 			return collection[index].usage;
240 	}
241 	return 0; /* we know nothing about this usage type */
242 }
243 
244 /*
245  * Concatenate usage which defines 16 bits or less with the
246  * currently defined usage page to form a 32 bit usage
247  */
248 
complete_usage(struct hid_parser * parser,unsigned int index)249 static void complete_usage(struct hid_parser *parser, unsigned int index)
250 {
251 	parser->local.usage[index] &= 0xFFFF;
252 	parser->local.usage[index] |=
253 		(parser->global.usage_page & 0xFFFF) << 16;
254 }
255 
256 /*
257  * Add a usage to the temporary parser table.
258  */
259 
hid_add_usage(struct hid_parser * parser,unsigned usage,u8 size)260 static int hid_add_usage(struct hid_parser *parser, unsigned usage, u8 size)
261 {
262 	if (parser->local.usage_index >= HID_MAX_USAGES) {
263 		hid_err(parser->device, "usage index exceeded\n");
264 		return -1;
265 	}
266 	parser->local.usage[parser->local.usage_index] = usage;
267 
268 	/*
269 	 * If Usage item only includes usage id, concatenate it with
270 	 * currently defined usage page
271 	 */
272 	if (size <= 2)
273 		complete_usage(parser, parser->local.usage_index);
274 
275 	parser->local.usage_size[parser->local.usage_index] = size;
276 	parser->local.collection_index[parser->local.usage_index] =
277 		parser->collection_stack_ptr ?
278 		parser->collection_stack[parser->collection_stack_ptr - 1] : 0;
279 	parser->local.usage_index++;
280 	return 0;
281 }
282 
283 /*
284  * Register a new field for this report.
285  */
286 
hid_add_field(struct hid_parser * parser,unsigned report_type,unsigned flags)287 static int hid_add_field(struct hid_parser *parser, unsigned report_type, unsigned flags)
288 {
289 	struct hid_report *report;
290 	struct hid_field *field;
291 	unsigned int max_buffer_size = HID_MAX_BUFFER_SIZE;
292 	unsigned int usages;
293 	unsigned int offset;
294 	unsigned int i;
295 	unsigned int application;
296 
297 	application = hid_lookup_collection(parser, HID_COLLECTION_APPLICATION);
298 
299 	report = hid_register_report(parser->device, report_type,
300 				     parser->global.report_id, application);
301 	if (!report) {
302 		hid_err(parser->device, "hid_register_report failed\n");
303 		return -1;
304 	}
305 
306 	/* Handle both signed and unsigned cases properly */
307 	if ((parser->global.logical_minimum < 0 &&
308 		parser->global.logical_maximum <
309 		parser->global.logical_minimum) ||
310 		(parser->global.logical_minimum >= 0 &&
311 		(__u32)parser->global.logical_maximum <
312 		(__u32)parser->global.logical_minimum)) {
313 		dbg_hid("logical range invalid 0x%x 0x%x\n",
314 			parser->global.logical_minimum,
315 			parser->global.logical_maximum);
316 		return -1;
317 	}
318 
319 	offset = report->size;
320 	report->size += parser->global.report_size * parser->global.report_count;
321 
322 	if (parser->device->ll_driver->max_buffer_size)
323 		max_buffer_size = parser->device->ll_driver->max_buffer_size;
324 
325 	/* Total size check: Allow for possible report index byte */
326 	if (report->size > (max_buffer_size - 1) << 3) {
327 		hid_err(parser->device, "report is too long\n");
328 		return -1;
329 	}
330 
331 	if (!parser->local.usage_index) /* Ignore padding fields */
332 		return 0;
333 
334 	usages = max_t(unsigned, parser->local.usage_index,
335 				 parser->global.report_count);
336 
337 	field = hid_register_field(report, usages);
338 	if (!field)
339 		return 0;
340 
341 	field->physical = hid_lookup_collection(parser, HID_COLLECTION_PHYSICAL);
342 	field->logical = hid_lookup_collection(parser, HID_COLLECTION_LOGICAL);
343 	field->application = application;
344 
345 	for (i = 0; i < usages; i++) {
346 		unsigned j = i;
347 		/* Duplicate the last usage we parsed if we have excess values */
348 		if (i >= parser->local.usage_index)
349 			j = parser->local.usage_index - 1;
350 		field->usage[i].hid = parser->local.usage[j];
351 		field->usage[i].collection_index =
352 			parser->local.collection_index[j];
353 		field->usage[i].usage_index = i;
354 		field->usage[i].resolution_multiplier = 1;
355 	}
356 
357 	field->maxusage = usages;
358 	field->flags = flags;
359 	field->report_offset = offset;
360 	field->report_type = report_type;
361 	field->report_size = parser->global.report_size;
362 	field->report_count = parser->global.report_count;
363 	field->logical_minimum = parser->global.logical_minimum;
364 	field->logical_maximum = parser->global.logical_maximum;
365 	field->physical_minimum = parser->global.physical_minimum;
366 	field->physical_maximum = parser->global.physical_maximum;
367 	field->unit_exponent = parser->global.unit_exponent;
368 	field->unit = parser->global.unit;
369 
370 	return 0;
371 }
372 
373 /*
374  * Read data value from item.
375  */
376 
item_udata(struct hid_item * item)377 static u32 item_udata(struct hid_item *item)
378 {
379 	switch (item->size) {
380 	case 1: return item->data.u8;
381 	case 2: return item->data.u16;
382 	case 4: return item->data.u32;
383 	}
384 	return 0;
385 }
386 
item_sdata(struct hid_item * item)387 static s32 item_sdata(struct hid_item *item)
388 {
389 	switch (item->size) {
390 	case 1: return item->data.s8;
391 	case 2: return item->data.s16;
392 	case 4: return item->data.s32;
393 	}
394 	return 0;
395 }
396 
397 /*
398  * Process a global item.
399  */
400 
hid_parser_global(struct hid_parser * parser,struct hid_item * item)401 static int hid_parser_global(struct hid_parser *parser, struct hid_item *item)
402 {
403 	__s32 raw_value;
404 	switch (item->tag) {
405 	case HID_GLOBAL_ITEM_TAG_PUSH:
406 
407 		if (parser->global_stack_ptr == HID_GLOBAL_STACK_SIZE) {
408 			hid_err(parser->device, "global environment stack overflow\n");
409 			return -1;
410 		}
411 
412 		memcpy(parser->global_stack + parser->global_stack_ptr++,
413 			&parser->global, sizeof(struct hid_global));
414 		return 0;
415 
416 	case HID_GLOBAL_ITEM_TAG_POP:
417 
418 		if (!parser->global_stack_ptr) {
419 			hid_err(parser->device, "global environment stack underflow\n");
420 			return -1;
421 		}
422 
423 		memcpy(&parser->global, parser->global_stack +
424 			--parser->global_stack_ptr, sizeof(struct hid_global));
425 		return 0;
426 
427 	case HID_GLOBAL_ITEM_TAG_USAGE_PAGE:
428 		parser->global.usage_page = item_udata(item);
429 		return 0;
430 
431 	case HID_GLOBAL_ITEM_TAG_LOGICAL_MINIMUM:
432 		parser->global.logical_minimum = item_sdata(item);
433 		return 0;
434 
435 	case HID_GLOBAL_ITEM_TAG_LOGICAL_MAXIMUM:
436 		if (parser->global.logical_minimum < 0)
437 			parser->global.logical_maximum = item_sdata(item);
438 		else
439 			parser->global.logical_maximum = item_udata(item);
440 		return 0;
441 
442 	case HID_GLOBAL_ITEM_TAG_PHYSICAL_MINIMUM:
443 		parser->global.physical_minimum = item_sdata(item);
444 		return 0;
445 
446 	case HID_GLOBAL_ITEM_TAG_PHYSICAL_MAXIMUM:
447 		if (parser->global.physical_minimum < 0)
448 			parser->global.physical_maximum = item_sdata(item);
449 		else
450 			parser->global.physical_maximum = item_udata(item);
451 		return 0;
452 
453 	case HID_GLOBAL_ITEM_TAG_UNIT_EXPONENT:
454 		/* Many devices provide unit exponent as a two's complement
455 		 * nibble due to the common misunderstanding of HID
456 		 * specification 1.11, 6.2.2.7 Global Items. Attempt to handle
457 		 * both this and the standard encoding. */
458 		raw_value = item_sdata(item);
459 		if (!(raw_value & 0xfffffff0))
460 			parser->global.unit_exponent = snto32(raw_value, 4);
461 		else
462 			parser->global.unit_exponent = raw_value;
463 		return 0;
464 
465 	case HID_GLOBAL_ITEM_TAG_UNIT:
466 		parser->global.unit = item_udata(item);
467 		return 0;
468 
469 	case HID_GLOBAL_ITEM_TAG_REPORT_SIZE:
470 		parser->global.report_size = item_udata(item);
471 		if (parser->global.report_size > 256) {
472 			hid_err(parser->device, "invalid report_size %d\n",
473 					parser->global.report_size);
474 			return -1;
475 		}
476 		return 0;
477 
478 	case HID_GLOBAL_ITEM_TAG_REPORT_COUNT:
479 		parser->global.report_count = item_udata(item);
480 		if (parser->global.report_count > HID_MAX_USAGES) {
481 			hid_err(parser->device, "invalid report_count %d\n",
482 					parser->global.report_count);
483 			return -1;
484 		}
485 		return 0;
486 
487 	case HID_GLOBAL_ITEM_TAG_REPORT_ID:
488 		parser->global.report_id = item_udata(item);
489 		if (parser->global.report_id == 0 ||
490 		    parser->global.report_id >= HID_MAX_IDS) {
491 			hid_err(parser->device, "report_id %u is invalid\n",
492 				parser->global.report_id);
493 			return -1;
494 		}
495 		return 0;
496 
497 	default:
498 		hid_err(parser->device, "unknown global tag 0x%x\n", item->tag);
499 		return -1;
500 	}
501 }
502 
503 /*
504  * Process a local item.
505  */
506 
hid_parser_local(struct hid_parser * parser,struct hid_item * item)507 static int hid_parser_local(struct hid_parser *parser, struct hid_item *item)
508 {
509 	__u32 data;
510 	unsigned n;
511 	__u32 count;
512 
513 	data = item_udata(item);
514 
515 	switch (item->tag) {
516 	case HID_LOCAL_ITEM_TAG_DELIMITER:
517 
518 		if (data) {
519 			/*
520 			 * We treat items before the first delimiter
521 			 * as global to all usage sets (branch 0).
522 			 * In the moment we process only these global
523 			 * items and the first delimiter set.
524 			 */
525 			if (parser->local.delimiter_depth != 0) {
526 				hid_err(parser->device, "nested delimiters\n");
527 				return -1;
528 			}
529 			parser->local.delimiter_depth++;
530 			parser->local.delimiter_branch++;
531 		} else {
532 			if (parser->local.delimiter_depth < 1) {
533 				hid_err(parser->device, "bogus close delimiter\n");
534 				return -1;
535 			}
536 			parser->local.delimiter_depth--;
537 		}
538 		return 0;
539 
540 	case HID_LOCAL_ITEM_TAG_USAGE:
541 
542 		if (parser->local.delimiter_branch > 1) {
543 			dbg_hid("alternative usage ignored\n");
544 			return 0;
545 		}
546 
547 		return hid_add_usage(parser, data, item->size);
548 
549 	case HID_LOCAL_ITEM_TAG_USAGE_MINIMUM:
550 
551 		if (parser->local.delimiter_branch > 1) {
552 			dbg_hid("alternative usage ignored\n");
553 			return 0;
554 		}
555 
556 		parser->local.usage_minimum = data;
557 		return 0;
558 
559 	case HID_LOCAL_ITEM_TAG_USAGE_MAXIMUM:
560 
561 		if (parser->local.delimiter_branch > 1) {
562 			dbg_hid("alternative usage ignored\n");
563 			return 0;
564 		}
565 
566 		count = data - parser->local.usage_minimum;
567 		if (count + parser->local.usage_index >= HID_MAX_USAGES) {
568 			/*
569 			 * We do not warn if the name is not set, we are
570 			 * actually pre-scanning the device.
571 			 */
572 			if (dev_name(&parser->device->dev))
573 				hid_warn(parser->device,
574 					 "ignoring exceeding usage max\n");
575 			data = HID_MAX_USAGES - parser->local.usage_index +
576 				parser->local.usage_minimum - 1;
577 			if (data <= 0) {
578 				hid_err(parser->device,
579 					"no more usage index available\n");
580 				return -1;
581 			}
582 		}
583 
584 		for (n = parser->local.usage_minimum; n <= data; n++)
585 			if (hid_add_usage(parser, n, item->size)) {
586 				dbg_hid("hid_add_usage failed\n");
587 				return -1;
588 			}
589 		return 0;
590 
591 	default:
592 
593 		dbg_hid("unknown local item tag 0x%x\n", item->tag);
594 		return 0;
595 	}
596 	return 0;
597 }
598 
599 /*
600  * Concatenate Usage Pages into Usages where relevant:
601  * As per specification, 6.2.2.8: "When the parser encounters a main item it
602  * concatenates the last declared Usage Page with a Usage to form a complete
603  * usage value."
604  */
605 
hid_concatenate_last_usage_page(struct hid_parser * parser)606 static void hid_concatenate_last_usage_page(struct hid_parser *parser)
607 {
608 	int i;
609 	unsigned int usage_page;
610 	unsigned int current_page;
611 
612 	if (!parser->local.usage_index)
613 		return;
614 
615 	usage_page = parser->global.usage_page;
616 
617 	/*
618 	 * Concatenate usage page again only if last declared Usage Page
619 	 * has not been already used in previous usages concatenation
620 	 */
621 	for (i = parser->local.usage_index - 1; i >= 0; i--) {
622 		if (parser->local.usage_size[i] > 2)
623 			/* Ignore extended usages */
624 			continue;
625 
626 		current_page = parser->local.usage[i] >> 16;
627 		if (current_page == usage_page)
628 			break;
629 
630 		complete_usage(parser, i);
631 	}
632 }
633 
634 /*
635  * Process a main item.
636  */
637 
hid_parser_main(struct hid_parser * parser,struct hid_item * item)638 static int hid_parser_main(struct hid_parser *parser, struct hid_item *item)
639 {
640 	__u32 data;
641 	int ret;
642 
643 	hid_concatenate_last_usage_page(parser);
644 
645 	data = item_udata(item);
646 
647 	switch (item->tag) {
648 	case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
649 		ret = open_collection(parser, data & 0xff);
650 		break;
651 	case HID_MAIN_ITEM_TAG_END_COLLECTION:
652 		ret = close_collection(parser);
653 		break;
654 	case HID_MAIN_ITEM_TAG_INPUT:
655 		ret = hid_add_field(parser, HID_INPUT_REPORT, data);
656 		break;
657 	case HID_MAIN_ITEM_TAG_OUTPUT:
658 		ret = hid_add_field(parser, HID_OUTPUT_REPORT, data);
659 		break;
660 	case HID_MAIN_ITEM_TAG_FEATURE:
661 		ret = hid_add_field(parser, HID_FEATURE_REPORT, data);
662 		break;
663 	default:
664 		if (item->tag >= HID_MAIN_ITEM_TAG_RESERVED_MIN &&
665 			item->tag <= HID_MAIN_ITEM_TAG_RESERVED_MAX)
666 			hid_warn_ratelimited(parser->device, "reserved main item tag 0x%x\n", item->tag);
667 		else
668 			hid_warn_ratelimited(parser->device, "unknown main item tag 0x%x\n", item->tag);
669 		ret = 0;
670 	}
671 
672 	memset(&parser->local, 0, sizeof(parser->local));	/* Reset the local parser environment */
673 
674 	return ret;
675 }
676 
677 /*
678  * Process a reserved item.
679  */
680 
hid_parser_reserved(struct hid_parser * parser,struct hid_item * item)681 static int hid_parser_reserved(struct hid_parser *parser, struct hid_item *item)
682 {
683 	dbg_hid("reserved item type, tag 0x%x\n", item->tag);
684 	return 0;
685 }
686 
687 /*
688  * Free a report and all registered fields. The field->usage and
689  * field->value table's are allocated behind the field, so we need
690  * only to free(field) itself.
691  */
692 
hid_free_report(struct hid_report * report)693 static void hid_free_report(struct hid_report *report)
694 {
695 	unsigned n;
696 
697 	kfree(report->field_entries);
698 
699 	for (n = 0; n < report->maxfield; n++)
700 		kvfree(report->field[n]);
701 	kfree(report);
702 }
703 
704 /*
705  * Close report. This function returns the device
706  * state to the point prior to hid_open_report().
707  */
hid_close_report(struct hid_device * device)708 static void hid_close_report(struct hid_device *device)
709 {
710 	unsigned i, j;
711 
712 	for (i = 0; i < HID_REPORT_TYPES; i++) {
713 		struct hid_report_enum *report_enum = device->report_enum + i;
714 
715 		for (j = 0; j < HID_MAX_IDS; j++) {
716 			struct hid_report *report = report_enum->report_id_hash[j];
717 			if (report)
718 				hid_free_report(report);
719 		}
720 		memset(report_enum, 0, sizeof(*report_enum));
721 		INIT_LIST_HEAD(&report_enum->report_list);
722 	}
723 
724 	/*
725 	 * If the HID driver had a rdesc_fixup() callback, dev->rdesc
726 	 * will be allocated by hid-core and needs to be freed.
727 	 * Otherwise, it is either equal to dev_rdesc or bpf_rdesc, in
728 	 * which cases it'll be freed later on device removal or destroy.
729 	 */
730 	if (device->rdesc != device->dev_rdesc && device->rdesc != device->bpf_rdesc)
731 		kfree(device->rdesc);
732 	device->rdesc = NULL;
733 	device->rsize = 0;
734 
735 	kfree(device->collection);
736 	device->collection = NULL;
737 	device->collection_size = 0;
738 	device->maxcollection = 0;
739 	device->maxapplication = 0;
740 
741 	device->status &= ~HID_STAT_PARSED;
742 }
743 
hid_free_bpf_rdesc(struct hid_device * hdev)744 static inline void hid_free_bpf_rdesc(struct hid_device *hdev)
745 {
746 	/* bpf_rdesc is either equal to dev_rdesc or allocated by call_hid_bpf_rdesc_fixup() */
747 	if (hdev->bpf_rdesc != hdev->dev_rdesc)
748 		kfree(hdev->bpf_rdesc);
749 	hdev->bpf_rdesc = NULL;
750 }
751 
752 /*
753  * Free a device structure, all reports, and all fields.
754  */
755 
hiddev_free(struct kref * ref)756 void hiddev_free(struct kref *ref)
757 {
758 	struct hid_device *hid = container_of(ref, struct hid_device, ref);
759 
760 	hid_close_report(hid);
761 	hid_free_bpf_rdesc(hid);
762 	kfree(hid->dev_rdesc);
763 	kfree(hid);
764 }
765 
hid_device_release(struct device * dev)766 static void hid_device_release(struct device *dev)
767 {
768 	struct hid_device *hid = to_hid_device(dev);
769 
770 	kref_put(&hid->ref, hiddev_free);
771 }
772 
773 /*
774  * Fetch a report description item from the data stream. We support long
775  * items, though they are not used yet.
776  */
777 
fetch_item(const __u8 * start,const __u8 * end,struct hid_item * item)778 static const u8 *fetch_item(const __u8 *start, const __u8 *end, struct hid_item *item)
779 {
780 	u8 b;
781 
782 	if ((end - start) <= 0)
783 		return NULL;
784 
785 	b = *start++;
786 
787 	item->type = (b >> 2) & 3;
788 	item->tag  = (b >> 4) & 15;
789 
790 	if (item->tag == HID_ITEM_TAG_LONG) {
791 
792 		item->format = HID_ITEM_FORMAT_LONG;
793 
794 		if ((end - start) < 2)
795 			return NULL;
796 
797 		item->size = *start++;
798 		item->tag  = *start++;
799 
800 		if ((end - start) < item->size)
801 			return NULL;
802 
803 		item->data.longdata = start;
804 		start += item->size;
805 		return start;
806 	}
807 
808 	item->format = HID_ITEM_FORMAT_SHORT;
809 	item->size = BIT(b & 3) >> 1; /* 0, 1, 2, 3 -> 0, 1, 2, 4 */
810 
811 	if (end - start < item->size)
812 		return NULL;
813 
814 	switch (item->size) {
815 	case 0:
816 		break;
817 
818 	case 1:
819 		item->data.u8 = *start;
820 		break;
821 
822 	case 2:
823 		item->data.u16 = get_unaligned_le16(start);
824 		break;
825 
826 	case 4:
827 		item->data.u32 = get_unaligned_le32(start);
828 		break;
829 	}
830 
831 	return start + item->size;
832 }
833 
hid_scan_input_usage(struct hid_parser * parser,u32 usage)834 static void hid_scan_input_usage(struct hid_parser *parser, u32 usage)
835 {
836 	struct hid_device *hid = parser->device;
837 
838 	if (usage == HID_DG_CONTACTID)
839 		hid->group = HID_GROUP_MULTITOUCH;
840 }
841 
hid_scan_feature_usage(struct hid_parser * parser,u32 usage)842 static void hid_scan_feature_usage(struct hid_parser *parser, u32 usage)
843 {
844 	if (usage == 0xff0000c5 && parser->global.report_count == 256 &&
845 	    parser->global.report_size == 8)
846 		parser->scan_flags |= HID_SCAN_FLAG_MT_WIN_8;
847 
848 	if (usage == 0xff0000c6 && parser->global.report_count == 1 &&
849 	    parser->global.report_size == 8)
850 		parser->scan_flags |= HID_SCAN_FLAG_MT_WIN_8;
851 }
852 
hid_scan_collection(struct hid_parser * parser,unsigned type)853 static void hid_scan_collection(struct hid_parser *parser, unsigned type)
854 {
855 	struct hid_device *hid = parser->device;
856 	int i;
857 
858 	if (((parser->global.usage_page << 16) == HID_UP_SENSOR) &&
859 	    (type == HID_COLLECTION_PHYSICAL ||
860 	     type == HID_COLLECTION_APPLICATION))
861 		hid->group = HID_GROUP_SENSOR_HUB;
862 
863 	if (hid->vendor == USB_VENDOR_ID_MICROSOFT &&
864 	    hid->product == USB_DEVICE_ID_MS_POWER_COVER &&
865 	    hid->group == HID_GROUP_MULTITOUCH)
866 		hid->group = HID_GROUP_GENERIC;
867 
868 	if ((parser->global.usage_page << 16) == HID_UP_GENDESK)
869 		for (i = 0; i < parser->local.usage_index; i++)
870 			if (parser->local.usage[i] == HID_GD_POINTER)
871 				parser->scan_flags |= HID_SCAN_FLAG_GD_POINTER;
872 
873 	if ((parser->global.usage_page << 16) >= HID_UP_MSVENDOR)
874 		parser->scan_flags |= HID_SCAN_FLAG_VENDOR_SPECIFIC;
875 
876 	if ((parser->global.usage_page << 16) == HID_UP_GOOGLEVENDOR)
877 		for (i = 0; i < parser->local.usage_index; i++)
878 			if (parser->local.usage[i] ==
879 					(HID_UP_GOOGLEVENDOR | 0x0001))
880 				parser->device->group =
881 					HID_GROUP_VIVALDI;
882 }
883 
hid_scan_main(struct hid_parser * parser,struct hid_item * item)884 static int hid_scan_main(struct hid_parser *parser, struct hid_item *item)
885 {
886 	__u32 data;
887 	int i;
888 
889 	hid_concatenate_last_usage_page(parser);
890 
891 	data = item_udata(item);
892 
893 	switch (item->tag) {
894 	case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
895 		hid_scan_collection(parser, data & 0xff);
896 		break;
897 	case HID_MAIN_ITEM_TAG_END_COLLECTION:
898 		break;
899 	case HID_MAIN_ITEM_TAG_INPUT:
900 		/* ignore constant inputs, they will be ignored by hid-input */
901 		if (data & HID_MAIN_ITEM_CONSTANT)
902 			break;
903 		for (i = 0; i < parser->local.usage_index; i++)
904 			hid_scan_input_usage(parser, parser->local.usage[i]);
905 		break;
906 	case HID_MAIN_ITEM_TAG_OUTPUT:
907 		break;
908 	case HID_MAIN_ITEM_TAG_FEATURE:
909 		for (i = 0; i < parser->local.usage_index; i++)
910 			hid_scan_feature_usage(parser, parser->local.usage[i]);
911 		break;
912 	}
913 
914 	/* Reset the local parser environment */
915 	memset(&parser->local, 0, sizeof(parser->local));
916 
917 	return 0;
918 }
919 
920 /*
921  * Scan a report descriptor before the device is added to the bus.
922  * Sets device groups and other properties that determine what driver
923  * to load.
924  */
hid_scan_report(struct hid_device * hid)925 static int hid_scan_report(struct hid_device *hid)
926 {
927 	struct hid_parser *parser;
928 	struct hid_item item;
929 	const __u8 *start = hid->dev_rdesc;
930 	const __u8 *end = start + hid->dev_rsize;
931 	static int (*dispatch_type[])(struct hid_parser *parser,
932 				      struct hid_item *item) = {
933 		hid_scan_main,
934 		hid_parser_global,
935 		hid_parser_local,
936 		hid_parser_reserved
937 	};
938 
939 	parser = vzalloc(sizeof(struct hid_parser));
940 	if (!parser)
941 		return -ENOMEM;
942 
943 	parser->device = hid;
944 	hid->group = HID_GROUP_GENERIC;
945 
946 	/*
947 	 * The parsing is simpler than the one in hid_open_report() as we should
948 	 * be robust against hid errors. Those errors will be raised by
949 	 * hid_open_report() anyway.
950 	 */
951 	while ((start = fetch_item(start, end, &item)) != NULL)
952 		dispatch_type[item.type](parser, &item);
953 
954 	/*
955 	 * Handle special flags set during scanning.
956 	 */
957 	if ((parser->scan_flags & HID_SCAN_FLAG_MT_WIN_8) &&
958 	    (hid->group == HID_GROUP_MULTITOUCH))
959 		hid->group = HID_GROUP_MULTITOUCH_WIN_8;
960 
961 	/*
962 	 * Vendor specific handlings
963 	 */
964 	switch (hid->vendor) {
965 	case USB_VENDOR_ID_WACOM:
966 		hid->group = HID_GROUP_WACOM;
967 		break;
968 	case USB_VENDOR_ID_SYNAPTICS:
969 		if (hid->group == HID_GROUP_GENERIC)
970 			if ((parser->scan_flags & HID_SCAN_FLAG_VENDOR_SPECIFIC)
971 			    && (parser->scan_flags & HID_SCAN_FLAG_GD_POINTER))
972 				/*
973 				 * hid-rmi should take care of them,
974 				 * not hid-generic
975 				 */
976 				hid->group = HID_GROUP_RMI;
977 		break;
978 	}
979 
980 	kfree(parser->collection_stack);
981 	vfree(parser);
982 	return 0;
983 }
984 
985 /**
986  * hid_parse_report - parse device report
987  *
988  * @hid: hid device
989  * @start: report start
990  * @size: report size
991  *
992  * Allocate the device report as read by the bus driver. This function should
993  * only be called from parse() in ll drivers.
994  */
hid_parse_report(struct hid_device * hid,const __u8 * start,unsigned size)995 int hid_parse_report(struct hid_device *hid, const __u8 *start, unsigned size)
996 {
997 	hid->dev_rdesc = kmemdup(start, size, GFP_KERNEL);
998 	if (!hid->dev_rdesc)
999 		return -ENOMEM;
1000 	hid->dev_rsize = size;
1001 	return 0;
1002 }
1003 EXPORT_SYMBOL_GPL(hid_parse_report);
1004 
1005 static const char * const hid_report_names[] = {
1006 	"HID_INPUT_REPORT",
1007 	"HID_OUTPUT_REPORT",
1008 	"HID_FEATURE_REPORT",
1009 };
1010 /**
1011  * hid_validate_values - validate existing device report's value indexes
1012  *
1013  * @hid: hid device
1014  * @type: which report type to examine
1015  * @id: which report ID to examine (0 for first)
1016  * @field_index: which report field to examine
1017  * @report_counts: expected number of values
1018  *
1019  * Validate the number of values in a given field of a given report, after
1020  * parsing.
1021  */
hid_validate_values(struct hid_device * hid,enum hid_report_type type,unsigned int id,unsigned int field_index,unsigned int report_counts)1022 struct hid_report *hid_validate_values(struct hid_device *hid,
1023 				       enum hid_report_type type, unsigned int id,
1024 				       unsigned int field_index,
1025 				       unsigned int report_counts)
1026 {
1027 	struct hid_report *report;
1028 
1029 	if (type > HID_FEATURE_REPORT) {
1030 		hid_err(hid, "invalid HID report type %u\n", type);
1031 		return NULL;
1032 	}
1033 
1034 	if (id >= HID_MAX_IDS) {
1035 		hid_err(hid, "invalid HID report id %u\n", id);
1036 		return NULL;
1037 	}
1038 
1039 	/*
1040 	 * Explicitly not using hid_get_report() here since it depends on
1041 	 * ->numbered being checked, which may not always be the case when
1042 	 * drivers go to access report values.
1043 	 */
1044 	if (id == 0) {
1045 		/*
1046 		 * Validating on id 0 means we should examine the first
1047 		 * report in the list.
1048 		 */
1049 		report = list_first_entry_or_null(
1050 				&hid->report_enum[type].report_list,
1051 				struct hid_report, list);
1052 	} else {
1053 		report = hid->report_enum[type].report_id_hash[id];
1054 	}
1055 	if (!report) {
1056 		hid_err(hid, "missing %s %u\n", hid_report_names[type], id);
1057 		return NULL;
1058 	}
1059 	if (report->maxfield <= field_index) {
1060 		hid_err(hid, "not enough fields in %s %u\n",
1061 			hid_report_names[type], id);
1062 		return NULL;
1063 	}
1064 	if (report->field[field_index]->report_count < report_counts) {
1065 		hid_err(hid, "not enough values in %s %u field %u\n",
1066 			hid_report_names[type], id, field_index);
1067 		return NULL;
1068 	}
1069 	return report;
1070 }
1071 EXPORT_SYMBOL_GPL(hid_validate_values);
1072 
hid_calculate_multiplier(struct hid_device * hid,struct hid_field * multiplier)1073 static int hid_calculate_multiplier(struct hid_device *hid,
1074 				     struct hid_field *multiplier)
1075 {
1076 	int m;
1077 	__s32 v = *multiplier->value;
1078 	__s32 lmin = multiplier->logical_minimum;
1079 	__s32 lmax = multiplier->logical_maximum;
1080 	__s32 pmin = multiplier->physical_minimum;
1081 	__s32 pmax = multiplier->physical_maximum;
1082 
1083 	/*
1084 	 * "Because OS implementations will generally divide the control's
1085 	 * reported count by the Effective Resolution Multiplier, designers
1086 	 * should take care not to establish a potential Effective
1087 	 * Resolution Multiplier of zero."
1088 	 * HID Usage Table, v1.12, Section 4.3.1, p31
1089 	 */
1090 	if (lmax - lmin == 0)
1091 		return 1;
1092 	/*
1093 	 * Handling the unit exponent is left as an exercise to whoever
1094 	 * finds a device where that exponent is not 0.
1095 	 */
1096 	m = ((v - lmin)/(lmax - lmin) * (pmax - pmin) + pmin);
1097 	if (unlikely(multiplier->unit_exponent != 0)) {
1098 		hid_warn(hid,
1099 			 "unsupported Resolution Multiplier unit exponent %d\n",
1100 			 multiplier->unit_exponent);
1101 	}
1102 
1103 	/* There are no devices with an effective multiplier > 255 */
1104 	if (unlikely(m == 0 || m > 255 || m < -255)) {
1105 		hid_warn(hid, "unsupported Resolution Multiplier %d\n", m);
1106 		m = 1;
1107 	}
1108 
1109 	return m;
1110 }
1111 
hid_apply_multiplier_to_field(struct hid_device * hid,struct hid_field * field,struct hid_collection * multiplier_collection,int effective_multiplier)1112 static void hid_apply_multiplier_to_field(struct hid_device *hid,
1113 					  struct hid_field *field,
1114 					  struct hid_collection *multiplier_collection,
1115 					  int effective_multiplier)
1116 {
1117 	struct hid_collection *collection;
1118 	struct hid_usage *usage;
1119 	int i;
1120 
1121 	/*
1122 	 * If multiplier_collection is NULL, the multiplier applies
1123 	 * to all fields in the report.
1124 	 * Otherwise, it is the Logical Collection the multiplier applies to
1125 	 * but our field may be in a subcollection of that collection.
1126 	 */
1127 	for (i = 0; i < field->maxusage; i++) {
1128 		usage = &field->usage[i];
1129 
1130 		collection = &hid->collection[usage->collection_index];
1131 		while (collection->parent_idx != -1 &&
1132 		       collection != multiplier_collection)
1133 			collection = &hid->collection[collection->parent_idx];
1134 
1135 		if (collection->parent_idx != -1 ||
1136 		    multiplier_collection == NULL)
1137 			usage->resolution_multiplier = effective_multiplier;
1138 
1139 	}
1140 }
1141 
hid_apply_multiplier(struct hid_device * hid,struct hid_field * multiplier)1142 static void hid_apply_multiplier(struct hid_device *hid,
1143 				 struct hid_field *multiplier)
1144 {
1145 	struct hid_report_enum *rep_enum;
1146 	struct hid_report *rep;
1147 	struct hid_field *field;
1148 	struct hid_collection *multiplier_collection;
1149 	int effective_multiplier;
1150 	int i;
1151 
1152 	/*
1153 	 * "The Resolution Multiplier control must be contained in the same
1154 	 * Logical Collection as the control(s) to which it is to be applied.
1155 	 * If no Resolution Multiplier is defined, then the Resolution
1156 	 * Multiplier defaults to 1.  If more than one control exists in a
1157 	 * Logical Collection, the Resolution Multiplier is associated with
1158 	 * all controls in the collection. If no Logical Collection is
1159 	 * defined, the Resolution Multiplier is associated with all
1160 	 * controls in the report."
1161 	 * HID Usage Table, v1.12, Section 4.3.1, p30
1162 	 *
1163 	 * Thus, search from the current collection upwards until we find a
1164 	 * logical collection. Then search all fields for that same parent
1165 	 * collection. Those are the fields the multiplier applies to.
1166 	 *
1167 	 * If we have more than one multiplier, it will overwrite the
1168 	 * applicable fields later.
1169 	 */
1170 	multiplier_collection = &hid->collection[multiplier->usage->collection_index];
1171 	while (multiplier_collection->parent_idx != -1 &&
1172 	       multiplier_collection->type != HID_COLLECTION_LOGICAL)
1173 		multiplier_collection = &hid->collection[multiplier_collection->parent_idx];
1174 	if (multiplier_collection->type != HID_COLLECTION_LOGICAL)
1175 		multiplier_collection = NULL;
1176 
1177 	effective_multiplier = hid_calculate_multiplier(hid, multiplier);
1178 
1179 	rep_enum = &hid->report_enum[HID_INPUT_REPORT];
1180 	list_for_each_entry(rep, &rep_enum->report_list, list) {
1181 		for (i = 0; i < rep->maxfield; i++) {
1182 			field = rep->field[i];
1183 			hid_apply_multiplier_to_field(hid, field,
1184 						      multiplier_collection,
1185 						      effective_multiplier);
1186 		}
1187 	}
1188 }
1189 
1190 /*
1191  * hid_setup_resolution_multiplier - set up all resolution multipliers
1192  *
1193  * @device: hid device
1194  *
1195  * Search for all Resolution Multiplier Feature Reports and apply their
1196  * value to all matching Input items. This only updates the internal struct
1197  * fields.
1198  *
1199  * The Resolution Multiplier is applied by the hardware. If the multiplier
1200  * is anything other than 1, the hardware will send pre-multiplied events
1201  * so that the same physical interaction generates an accumulated
1202  *	accumulated_value = value * * multiplier
1203  * This may be achieved by sending
1204  * - "value * multiplier" for each event, or
1205  * - "value" but "multiplier" times as frequently, or
1206  * - a combination of the above
1207  * The only guarantee is that the same physical interaction always generates
1208  * an accumulated 'value * multiplier'.
1209  *
1210  * This function must be called before any event processing and after
1211  * any SetRequest to the Resolution Multiplier.
1212  */
hid_setup_resolution_multiplier(struct hid_device * hid)1213 void hid_setup_resolution_multiplier(struct hid_device *hid)
1214 {
1215 	struct hid_report_enum *rep_enum;
1216 	struct hid_report *rep;
1217 	struct hid_usage *usage;
1218 	int i, j;
1219 
1220 	rep_enum = &hid->report_enum[HID_FEATURE_REPORT];
1221 	list_for_each_entry(rep, &rep_enum->report_list, list) {
1222 		for (i = 0; i < rep->maxfield; i++) {
1223 			/* Ignore if report count is out of bounds. */
1224 			if (rep->field[i]->report_count < 1)
1225 				continue;
1226 
1227 			for (j = 0; j < rep->field[i]->maxusage; j++) {
1228 				usage = &rep->field[i]->usage[j];
1229 				if (usage->hid == HID_GD_RESOLUTION_MULTIPLIER)
1230 					hid_apply_multiplier(hid,
1231 							     rep->field[i]);
1232 			}
1233 		}
1234 	}
1235 }
1236 EXPORT_SYMBOL_GPL(hid_setup_resolution_multiplier);
1237 
1238 /**
1239  * hid_open_report - open a driver-specific device report
1240  *
1241  * @device: hid device
1242  *
1243  * Parse a report description into a hid_device structure. Reports are
1244  * enumerated, fields are attached to these reports.
1245  * 0 returned on success, otherwise nonzero error value.
1246  *
1247  * This function (or the equivalent hid_parse() macro) should only be
1248  * called from probe() in drivers, before starting the device.
1249  */
hid_open_report(struct hid_device * device)1250 int hid_open_report(struct hid_device *device)
1251 {
1252 	struct hid_parser *parser;
1253 	struct hid_item item;
1254 	unsigned int size;
1255 	const __u8 *start;
1256 	const __u8 *end;
1257 	const __u8 *next;
1258 	int ret;
1259 	int i;
1260 	static int (*dispatch_type[])(struct hid_parser *parser,
1261 				      struct hid_item *item) = {
1262 		hid_parser_main,
1263 		hid_parser_global,
1264 		hid_parser_local,
1265 		hid_parser_reserved
1266 	};
1267 
1268 	if (WARN_ON(device->status & HID_STAT_PARSED))
1269 		return -EBUSY;
1270 
1271 	start = device->bpf_rdesc;
1272 	if (WARN_ON(!start))
1273 		return -ENODEV;
1274 	size = device->bpf_rsize;
1275 
1276 	if (device->driver->report_fixup) {
1277 		/*
1278 		 * device->driver->report_fixup() needs to work
1279 		 * on a copy of our report descriptor so it can
1280 		 * change it.
1281 		 */
1282 		__u8 *buf = kmemdup(start, size, GFP_KERNEL);
1283 
1284 		if (buf == NULL)
1285 			return -ENOMEM;
1286 
1287 		start = device->driver->report_fixup(device, buf, &size);
1288 
1289 		/*
1290 		 * The second kmemdup is required in case report_fixup() returns
1291 		 * a static read-only memory, but we have no idea if that memory
1292 		 * needs to be cleaned up or not at the end.
1293 		 */
1294 		start = kmemdup(start, size, GFP_KERNEL);
1295 		kfree(buf);
1296 		if (start == NULL)
1297 			return -ENOMEM;
1298 	}
1299 
1300 	device->rdesc = start;
1301 	device->rsize = size;
1302 
1303 	parser = vzalloc(sizeof(struct hid_parser));
1304 	if (!parser) {
1305 		ret = -ENOMEM;
1306 		goto alloc_err;
1307 	}
1308 
1309 	parser->device = device;
1310 
1311 	end = start + size;
1312 
1313 	device->collection = kcalloc(HID_DEFAULT_NUM_COLLECTIONS,
1314 				     sizeof(struct hid_collection), GFP_KERNEL);
1315 	if (!device->collection) {
1316 		ret = -ENOMEM;
1317 		goto err;
1318 	}
1319 	device->collection_size = HID_DEFAULT_NUM_COLLECTIONS;
1320 	for (i = 0; i < HID_DEFAULT_NUM_COLLECTIONS; i++)
1321 		device->collection[i].parent_idx = -1;
1322 
1323 	ret = -EINVAL;
1324 	while ((next = fetch_item(start, end, &item)) != NULL) {
1325 		start = next;
1326 
1327 		if (item.format != HID_ITEM_FORMAT_SHORT) {
1328 			hid_err(device, "unexpected long global item\n");
1329 			goto err;
1330 		}
1331 
1332 		if (dispatch_type[item.type](parser, &item)) {
1333 			hid_err(device, "item %u %u %u %u parsing failed\n",
1334 				item.format, (unsigned)item.size,
1335 				(unsigned)item.type, (unsigned)item.tag);
1336 			goto err;
1337 		}
1338 
1339 		if (start == end) {
1340 			if (parser->collection_stack_ptr) {
1341 				hid_err(device, "unbalanced collection at end of report description\n");
1342 				goto err;
1343 			}
1344 			if (parser->local.delimiter_depth) {
1345 				hid_err(device, "unbalanced delimiter at end of report description\n");
1346 				goto err;
1347 			}
1348 
1349 			/*
1350 			 * fetch initial values in case the device's
1351 			 * default multiplier isn't the recommended 1
1352 			 */
1353 			hid_setup_resolution_multiplier(device);
1354 
1355 			kfree(parser->collection_stack);
1356 			vfree(parser);
1357 			device->status |= HID_STAT_PARSED;
1358 
1359 			return 0;
1360 		}
1361 	}
1362 
1363 	hid_err(device, "item fetching failed at offset %u/%u\n",
1364 		size - (unsigned int)(end - start), size);
1365 err:
1366 	kfree(parser->collection_stack);
1367 alloc_err:
1368 	vfree(parser);
1369 	hid_close_report(device);
1370 	return ret;
1371 }
1372 EXPORT_SYMBOL_GPL(hid_open_report);
1373 
1374 /*
1375  * Extract/implement a data field from/to a little endian report (bit array).
1376  *
1377  * Code sort-of follows HID spec:
1378  *     http://www.usb.org/developers/hidpage/HID1_11.pdf
1379  *
1380  * While the USB HID spec allows unlimited length bit fields in "report
1381  * descriptors", most devices never use more than 16 bits.
1382  * One model of UPS is claimed to report "LINEV" as a 32-bit field.
1383  * Search linux-kernel and linux-usb-devel archives for "hid-core extract".
1384  */
1385 
__extract(u8 * report,unsigned offset,int n)1386 static u32 __extract(u8 *report, unsigned offset, int n)
1387 {
1388 	unsigned int idx = offset / 8;
1389 	unsigned int bit_nr = 0;
1390 	unsigned int bit_shift = offset % 8;
1391 	int bits_to_copy = 8 - bit_shift;
1392 	u32 value = 0;
1393 	u32 mask = n < 32 ? (1U << n) - 1 : ~0U;
1394 
1395 	while (n > 0) {
1396 		value |= ((u32)report[idx] >> bit_shift) << bit_nr;
1397 		n -= bits_to_copy;
1398 		bit_nr += bits_to_copy;
1399 		bits_to_copy = 8;
1400 		bit_shift = 0;
1401 		idx++;
1402 	}
1403 
1404 	return value & mask;
1405 }
1406 
hid_field_extract(const struct hid_device * hid,u8 * report,unsigned offset,unsigned n)1407 u32 hid_field_extract(const struct hid_device *hid, u8 *report,
1408 			unsigned offset, unsigned n)
1409 {
1410 	if (n > 32) {
1411 		hid_warn_once(hid, "%s() called with n (%d) > 32! (%s)\n",
1412 			      __func__, n, current->comm);
1413 		n = 32;
1414 	}
1415 
1416 	return __extract(report, offset, n);
1417 }
1418 EXPORT_SYMBOL_GPL(hid_field_extract);
1419 
1420 /*
1421  * "implement" : set bits in a little endian bit stream.
1422  * Same concepts as "extract" (see comments above).
1423  * The data mangled in the bit stream remains in little endian
1424  * order the whole time. It make more sense to talk about
1425  * endianness of register values by considering a register
1426  * a "cached" copy of the little endian bit stream.
1427  */
1428 
__implement(u8 * report,unsigned offset,int n,u32 value)1429 static void __implement(u8 *report, unsigned offset, int n, u32 value)
1430 {
1431 	unsigned int idx = offset / 8;
1432 	unsigned int bit_shift = offset % 8;
1433 	int bits_to_set = 8 - bit_shift;
1434 
1435 	while (n - bits_to_set >= 0) {
1436 		report[idx] &= ~(0xff << bit_shift);
1437 		report[idx] |= value << bit_shift;
1438 		value >>= bits_to_set;
1439 		n -= bits_to_set;
1440 		bits_to_set = 8;
1441 		bit_shift = 0;
1442 		idx++;
1443 	}
1444 
1445 	/* last nibble */
1446 	if (n) {
1447 		u8 bit_mask = ((1U << n) - 1);
1448 		report[idx] &= ~(bit_mask << bit_shift);
1449 		report[idx] |= value << bit_shift;
1450 	}
1451 }
1452 
implement(const struct hid_device * hid,u8 * report,unsigned offset,unsigned n,u32 value)1453 static void implement(const struct hid_device *hid, u8 *report,
1454 		      unsigned offset, unsigned n, u32 value)
1455 {
1456 	if (unlikely(n > 32)) {
1457 		hid_warn(hid, "%s() called with n (%d) > 32! (%s)\n",
1458 			 __func__, n, current->comm);
1459 		n = 32;
1460 	} else if (n < 32) {
1461 		u32 m = (1U << n) - 1;
1462 
1463 		if (unlikely(value > m)) {
1464 			hid_warn(hid,
1465 				 "%s() called with too large value %d (n: %d)! (%s)\n",
1466 				 __func__, value, n, current->comm);
1467 			value &= m;
1468 		}
1469 	}
1470 
1471 	__implement(report, offset, n, value);
1472 }
1473 
1474 /*
1475  * Search an array for a value.
1476  */
1477 
search(__s32 * array,__s32 value,unsigned n)1478 static int search(__s32 *array, __s32 value, unsigned n)
1479 {
1480 	while (n--) {
1481 		if (*array++ == value)
1482 			return 0;
1483 	}
1484 	return -1;
1485 }
1486 
1487 /**
1488  * hid_match_report - check if driver's raw_event should be called
1489  *
1490  * @hid: hid device
1491  * @report: hid report to match against
1492  *
1493  * compare hid->driver->report_table->report_type to report->type
1494  */
hid_match_report(struct hid_device * hid,struct hid_report * report)1495 static int hid_match_report(struct hid_device *hid, struct hid_report *report)
1496 {
1497 	const struct hid_report_id *id = hid->driver->report_table;
1498 
1499 	if (!id) /* NULL means all */
1500 		return 1;
1501 
1502 	for (; id->report_type != HID_TERMINATOR; id++)
1503 		if (id->report_type == HID_ANY_ID ||
1504 				id->report_type == report->type)
1505 			return 1;
1506 	return 0;
1507 }
1508 
1509 /**
1510  * hid_match_usage - check if driver's event should be called
1511  *
1512  * @hid: hid device
1513  * @usage: usage to match against
1514  *
1515  * compare hid->driver->usage_table->usage_{type,code} to
1516  * usage->usage_{type,code}
1517  */
hid_match_usage(struct hid_device * hid,struct hid_usage * usage)1518 static int hid_match_usage(struct hid_device *hid, struct hid_usage *usage)
1519 {
1520 	const struct hid_usage_id *id = hid->driver->usage_table;
1521 
1522 	if (!id) /* NULL means all */
1523 		return 1;
1524 
1525 	for (; id->usage_type != HID_ANY_ID - 1; id++)
1526 		if ((id->usage_hid == HID_ANY_ID ||
1527 				id->usage_hid == usage->hid) &&
1528 				(id->usage_type == HID_ANY_ID ||
1529 				id->usage_type == usage->type) &&
1530 				(id->usage_code == HID_ANY_ID ||
1531 				 id->usage_code == usage->code))
1532 			return 1;
1533 	return 0;
1534 }
1535 
hid_process_event(struct hid_device * hid,struct hid_field * field,struct hid_usage * usage,__s32 value,int interrupt)1536 static void hid_process_event(struct hid_device *hid, struct hid_field *field,
1537 		struct hid_usage *usage, __s32 value, int interrupt)
1538 {
1539 	struct hid_driver *hdrv = hid->driver;
1540 	int ret;
1541 
1542 	if (!list_empty(&hid->debug_list))
1543 		hid_dump_input(hid, usage, value);
1544 
1545 	if (hdrv && hdrv->event && hid_match_usage(hid, usage)) {
1546 		ret = hdrv->event(hid, field, usage, value);
1547 		if (ret != 0) {
1548 			if (ret < 0)
1549 				hid_err(hid, "%s's event failed with %d\n",
1550 						hdrv->name, ret);
1551 			return;
1552 		}
1553 	}
1554 
1555 	if (hid->claimed & HID_CLAIMED_INPUT)
1556 		hidinput_hid_event(hid, field, usage, value);
1557 	if (hid->claimed & HID_CLAIMED_HIDDEV && interrupt && hid->hiddev_hid_event)
1558 		hid->hiddev_hid_event(hid, field, usage, value);
1559 }
1560 
1561 /*
1562  * Checks if the given value is valid within this field
1563  */
hid_array_value_is_valid(struct hid_field * field,__s32 value)1564 static inline int hid_array_value_is_valid(struct hid_field *field,
1565 					   __s32 value)
1566 {
1567 	__s32 min = field->logical_minimum;
1568 
1569 	/*
1570 	 * Value needs to be between logical min and max, and
1571 	 * (value - min) is used as an index in the usage array.
1572 	 * This array is of size field->maxusage
1573 	 */
1574 	return value >= min &&
1575 	       value <= field->logical_maximum &&
1576 	       value - min < field->maxusage;
1577 }
1578 
1579 /*
1580  * Fetch the field from the data. The field content is stored for next
1581  * report processing (we do differential reporting to the layer).
1582  */
hid_input_fetch_field(struct hid_device * hid,struct hid_field * field,__u8 * data)1583 static void hid_input_fetch_field(struct hid_device *hid,
1584 				  struct hid_field *field,
1585 				  __u8 *data)
1586 {
1587 	unsigned n;
1588 	unsigned count = field->report_count;
1589 	unsigned offset = field->report_offset;
1590 	unsigned size = field->report_size;
1591 	__s32 min = field->logical_minimum;
1592 	__s32 *value;
1593 
1594 	value = field->new_value;
1595 	memset(value, 0, count * sizeof(__s32));
1596 	field->ignored = false;
1597 
1598 	for (n = 0; n < count; n++) {
1599 
1600 		value[n] = min < 0 ?
1601 			snto32(hid_field_extract(hid, data, offset + n * size,
1602 			       size), size) :
1603 			hid_field_extract(hid, data, offset + n * size, size);
1604 
1605 		/* Ignore report if ErrorRollOver */
1606 		if (!(field->flags & HID_MAIN_ITEM_VARIABLE) &&
1607 		    hid_array_value_is_valid(field, value[n]) &&
1608 		    field->usage[value[n] - min].hid == HID_UP_KEYBOARD + 1) {
1609 			field->ignored = true;
1610 			return;
1611 		}
1612 	}
1613 }
1614 
1615 /*
1616  * Process a received variable field.
1617  */
1618 
hid_input_var_field(struct hid_device * hid,struct hid_field * field,int interrupt)1619 static void hid_input_var_field(struct hid_device *hid,
1620 				struct hid_field *field,
1621 				int interrupt)
1622 {
1623 	unsigned int count = field->report_count;
1624 	__s32 *value = field->new_value;
1625 	unsigned int n;
1626 
1627 	for (n = 0; n < count; n++)
1628 		hid_process_event(hid,
1629 				  field,
1630 				  &field->usage[n],
1631 				  value[n],
1632 				  interrupt);
1633 
1634 	memcpy(field->value, value, count * sizeof(__s32));
1635 }
1636 
1637 /*
1638  * Process a received array field. The field content is stored for
1639  * next report processing (we do differential reporting to the layer).
1640  */
1641 
hid_input_array_field(struct hid_device * hid,struct hid_field * field,int interrupt)1642 static void hid_input_array_field(struct hid_device *hid,
1643 				  struct hid_field *field,
1644 				  int interrupt)
1645 {
1646 	unsigned int n;
1647 	unsigned int count = field->report_count;
1648 	__s32 min = field->logical_minimum;
1649 	__s32 *value;
1650 
1651 	value = field->new_value;
1652 
1653 	/* ErrorRollOver */
1654 	if (field->ignored)
1655 		return;
1656 
1657 	for (n = 0; n < count; n++) {
1658 		if (hid_array_value_is_valid(field, field->value[n]) &&
1659 		    search(value, field->value[n], count))
1660 			hid_process_event(hid,
1661 					  field,
1662 					  &field->usage[field->value[n] - min],
1663 					  0,
1664 					  interrupt);
1665 
1666 		if (hid_array_value_is_valid(field, value[n]) &&
1667 		    search(field->value, value[n], count))
1668 			hid_process_event(hid,
1669 					  field,
1670 					  &field->usage[value[n] - min],
1671 					  1,
1672 					  interrupt);
1673 	}
1674 
1675 	memcpy(field->value, value, count * sizeof(__s32));
1676 }
1677 
1678 /*
1679  * Analyse a received report, and fetch the data from it. The field
1680  * content is stored for next report processing (we do differential
1681  * reporting to the layer).
1682  */
hid_process_report(struct hid_device * hid,struct hid_report * report,__u8 * data,int interrupt)1683 static void hid_process_report(struct hid_device *hid,
1684 			       struct hid_report *report,
1685 			       __u8 *data,
1686 			       int interrupt)
1687 {
1688 	unsigned int a;
1689 	struct hid_field_entry *entry;
1690 	struct hid_field *field;
1691 
1692 	/* first retrieve all incoming values in data */
1693 	for (a = 0; a < report->maxfield; a++)
1694 		hid_input_fetch_field(hid, report->field[a], data);
1695 
1696 	if (!list_empty(&report->field_entry_list)) {
1697 		/* INPUT_REPORT, we have a priority list of fields */
1698 		list_for_each_entry(entry,
1699 				    &report->field_entry_list,
1700 				    list) {
1701 			field = entry->field;
1702 
1703 			if (field->flags & HID_MAIN_ITEM_VARIABLE)
1704 				hid_process_event(hid,
1705 						  field,
1706 						  &field->usage[entry->index],
1707 						  field->new_value[entry->index],
1708 						  interrupt);
1709 			else
1710 				hid_input_array_field(hid, field, interrupt);
1711 		}
1712 
1713 		/* we need to do the memcpy at the end for var items */
1714 		for (a = 0; a < report->maxfield; a++) {
1715 			field = report->field[a];
1716 
1717 			if (field->flags & HID_MAIN_ITEM_VARIABLE)
1718 				memcpy(field->value, field->new_value,
1719 				       field->report_count * sizeof(__s32));
1720 		}
1721 	} else {
1722 		/* FEATURE_REPORT, regular processing */
1723 		for (a = 0; a < report->maxfield; a++) {
1724 			field = report->field[a];
1725 
1726 			if (field->flags & HID_MAIN_ITEM_VARIABLE)
1727 				hid_input_var_field(hid, field, interrupt);
1728 			else
1729 				hid_input_array_field(hid, field, interrupt);
1730 		}
1731 	}
1732 }
1733 
1734 /*
1735  * Insert a given usage_index in a field in the list
1736  * of processed usages in the report.
1737  *
1738  * The elements of lower priority score are processed
1739  * first.
1740  */
__hid_insert_field_entry(struct hid_device * hid,struct hid_report * report,struct hid_field_entry * entry,struct hid_field * field,unsigned int usage_index)1741 static void __hid_insert_field_entry(struct hid_device *hid,
1742 				     struct hid_report *report,
1743 				     struct hid_field_entry *entry,
1744 				     struct hid_field *field,
1745 				     unsigned int usage_index)
1746 {
1747 	struct hid_field_entry *next;
1748 
1749 	entry->field = field;
1750 	entry->index = usage_index;
1751 	entry->priority = field->usages_priorities[usage_index];
1752 
1753 	/* insert the element at the correct position */
1754 	list_for_each_entry(next,
1755 			    &report->field_entry_list,
1756 			    list) {
1757 		/*
1758 		 * the priority of our element is strictly higher
1759 		 * than the next one, insert it before
1760 		 */
1761 		if (entry->priority > next->priority) {
1762 			list_add_tail(&entry->list, &next->list);
1763 			return;
1764 		}
1765 	}
1766 
1767 	/* lowest priority score: insert at the end */
1768 	list_add_tail(&entry->list, &report->field_entry_list);
1769 }
1770 
hid_report_process_ordering(struct hid_device * hid,struct hid_report * report)1771 static void hid_report_process_ordering(struct hid_device *hid,
1772 					struct hid_report *report)
1773 {
1774 	struct hid_field *field;
1775 	struct hid_field_entry *entries;
1776 	unsigned int a, u, usages;
1777 	unsigned int count = 0;
1778 
1779 	/* count the number of individual fields in the report */
1780 	for (a = 0; a < report->maxfield; a++) {
1781 		field = report->field[a];
1782 
1783 		if (field->flags & HID_MAIN_ITEM_VARIABLE)
1784 			count += field->report_count;
1785 		else
1786 			count++;
1787 	}
1788 
1789 	/* allocate the memory to process the fields */
1790 	entries = kcalloc(count, sizeof(*entries), GFP_KERNEL);
1791 	if (!entries)
1792 		return;
1793 
1794 	report->field_entries = entries;
1795 
1796 	/*
1797 	 * walk through all fields in the report and
1798 	 * store them by priority order in report->field_entry_list
1799 	 *
1800 	 * - Var elements are individualized (field + usage_index)
1801 	 * - Arrays are taken as one, we can not chose an order for them
1802 	 */
1803 	usages = 0;
1804 	for (a = 0; a < report->maxfield; a++) {
1805 		field = report->field[a];
1806 
1807 		if (field->flags & HID_MAIN_ITEM_VARIABLE) {
1808 			for (u = 0; u < field->report_count; u++) {
1809 				__hid_insert_field_entry(hid, report,
1810 							 &entries[usages],
1811 							 field, u);
1812 				usages++;
1813 			}
1814 		} else {
1815 			__hid_insert_field_entry(hid, report, &entries[usages],
1816 						 field, 0);
1817 			usages++;
1818 		}
1819 	}
1820 }
1821 
hid_process_ordering(struct hid_device * hid)1822 static void hid_process_ordering(struct hid_device *hid)
1823 {
1824 	struct hid_report *report;
1825 	struct hid_report_enum *report_enum = &hid->report_enum[HID_INPUT_REPORT];
1826 
1827 	list_for_each_entry(report, &report_enum->report_list, list)
1828 		hid_report_process_ordering(hid, report);
1829 }
1830 
1831 /*
1832  * Output the field into the report.
1833  */
1834 
hid_output_field(const struct hid_device * hid,struct hid_field * field,__u8 * data)1835 static void hid_output_field(const struct hid_device *hid,
1836 			     struct hid_field *field, __u8 *data)
1837 {
1838 	unsigned count = field->report_count;
1839 	unsigned offset = field->report_offset;
1840 	unsigned size = field->report_size;
1841 	unsigned n;
1842 
1843 	for (n = 0; n < count; n++) {
1844 		if (field->logical_minimum < 0)	/* signed values */
1845 			implement(hid, data, offset + n * size, size,
1846 				  s32ton(field->value[n], size));
1847 		else				/* unsigned values */
1848 			implement(hid, data, offset + n * size, size,
1849 				  field->value[n]);
1850 	}
1851 }
1852 
1853 /*
1854  * Compute the size of a report.
1855  */
hid_compute_report_size(struct hid_report * report)1856 static size_t hid_compute_report_size(struct hid_report *report)
1857 {
1858 	if (report->size)
1859 		return ((report->size - 1) >> 3) + 1;
1860 
1861 	return 0;
1862 }
1863 
1864 /*
1865  * Create a report. 'data' has to be allocated using
1866  * hid_alloc_report_buf() so that it has proper size.
1867  */
1868 
hid_output_report(struct hid_report * report,__u8 * data)1869 void hid_output_report(struct hid_report *report, __u8 *data)
1870 {
1871 	unsigned n;
1872 
1873 	if (report->id > 0)
1874 		*data++ = report->id;
1875 
1876 	memset(data, 0, hid_compute_report_size(report));
1877 	for (n = 0; n < report->maxfield; n++)
1878 		hid_output_field(report->device, report->field[n], data);
1879 }
1880 EXPORT_SYMBOL_GPL(hid_output_report);
1881 
1882 /*
1883  * Allocator for buffer that is going to be passed to hid_output_report()
1884  */
hid_alloc_report_buf(struct hid_report * report,gfp_t flags)1885 u8 *hid_alloc_report_buf(struct hid_report *report, gfp_t flags)
1886 {
1887 	/*
1888 	 * 7 extra bytes are necessary to achieve proper functionality
1889 	 * of implement() working on 8 byte chunks
1890 	 * 1 extra byte for the report ID if it is null (not used) so
1891 	 * we can reserve that extra byte in the first position of the buffer
1892 	 * when sending it to .raw_request()
1893 	 */
1894 
1895 	u32 len = hid_report_len(report) + 7 + (report->id == 0);
1896 
1897 	return kzalloc(len, flags);
1898 }
1899 EXPORT_SYMBOL_GPL(hid_alloc_report_buf);
1900 
1901 /*
1902  * Set a field value. The report this field belongs to has to be
1903  * created and transferred to the device, to set this value in the
1904  * device.
1905  */
1906 
hid_set_field(struct hid_field * field,unsigned offset,__s32 value)1907 int hid_set_field(struct hid_field *field, unsigned offset, __s32 value)
1908 {
1909 	unsigned size;
1910 
1911 	if (!field)
1912 		return -1;
1913 
1914 	size = field->report_size;
1915 
1916 	hid_dump_input(field->report->device, field->usage + offset, value);
1917 
1918 	if (offset >= field->report_count) {
1919 		hid_err(field->report->device, "offset (%d) exceeds report_count (%d)\n",
1920 				offset, field->report_count);
1921 		return -1;
1922 	}
1923 	if (field->logical_minimum < 0) {
1924 		if (value != snto32(s32ton(value, size), size)) {
1925 			hid_err(field->report->device, "value %d is out of range\n", value);
1926 			return -1;
1927 		}
1928 	}
1929 	field->value[offset] = value;
1930 	return 0;
1931 }
1932 EXPORT_SYMBOL_GPL(hid_set_field);
1933 
hid_find_field(struct hid_device * hdev,unsigned int report_type,unsigned int application,unsigned int usage)1934 struct hid_field *hid_find_field(struct hid_device *hdev, unsigned int report_type,
1935 				 unsigned int application, unsigned int usage)
1936 {
1937 	struct list_head *report_list = &hdev->report_enum[report_type].report_list;
1938 	struct hid_report *report;
1939 	int i, j;
1940 
1941 	list_for_each_entry(report, report_list, list) {
1942 		if (report->application != application)
1943 			continue;
1944 
1945 		for (i = 0; i < report->maxfield; i++) {
1946 			struct hid_field *field = report->field[i];
1947 
1948 			for (j = 0; j < field->maxusage; j++) {
1949 				if (field->usage[j].hid == usage)
1950 					return field;
1951 			}
1952 		}
1953 	}
1954 
1955 	return NULL;
1956 }
1957 EXPORT_SYMBOL_GPL(hid_find_field);
1958 
hid_get_report(struct hid_report_enum * report_enum,const u8 * data)1959 static struct hid_report *hid_get_report(struct hid_report_enum *report_enum,
1960 		const u8 *data)
1961 {
1962 	struct hid_report *report;
1963 	unsigned int n = 0;	/* Normally report number is 0 */
1964 
1965 	/* Device uses numbered reports, data[0] is report number */
1966 	if (report_enum->numbered)
1967 		n = *data;
1968 
1969 	report = report_enum->report_id_hash[n];
1970 	if (report == NULL)
1971 		dbg_hid("undefined report_id %u received\n", n);
1972 
1973 	return report;
1974 }
1975 
1976 /*
1977  * Implement a generic .request() callback, using .raw_request()
1978  * DO NOT USE in hid drivers directly, but through hid_hw_request instead.
1979  */
__hid_request(struct hid_device * hid,struct hid_report * report,enum hid_class_request reqtype)1980 int __hid_request(struct hid_device *hid, struct hid_report *report,
1981 		enum hid_class_request reqtype)
1982 {
1983 	char *buf, *data_buf;
1984 	int ret;
1985 	u32 len;
1986 
1987 	buf = hid_alloc_report_buf(report, GFP_KERNEL);
1988 	if (!buf)
1989 		return -ENOMEM;
1990 
1991 	data_buf = buf;
1992 	len = hid_report_len(report);
1993 
1994 	if (report->id == 0) {
1995 		/* reserve the first byte for the report ID */
1996 		data_buf++;
1997 		len++;
1998 	}
1999 
2000 	if (reqtype == HID_REQ_SET_REPORT)
2001 		hid_output_report(report, data_buf);
2002 
2003 	ret = hid_hw_raw_request(hid, report->id, buf, len, report->type, reqtype);
2004 	if (ret < 0) {
2005 		dbg_hid("unable to complete request: %d\n", ret);
2006 		goto out;
2007 	}
2008 
2009 	if (reqtype == HID_REQ_GET_REPORT)
2010 		hid_input_report(hid, report->type, buf, ret, 0);
2011 
2012 	ret = 0;
2013 
2014 out:
2015 	kfree(buf);
2016 	return ret;
2017 }
2018 EXPORT_SYMBOL_GPL(__hid_request);
2019 
hid_report_raw_event(struct hid_device * hid,enum hid_report_type type,u8 * data,u32 size,int interrupt)2020 int hid_report_raw_event(struct hid_device *hid, enum hid_report_type type, u8 *data, u32 size,
2021 			 int interrupt)
2022 {
2023 	struct hid_report_enum *report_enum = hid->report_enum + type;
2024 	struct hid_report *report;
2025 	struct hid_driver *hdrv;
2026 	int max_buffer_size = HID_MAX_BUFFER_SIZE;
2027 	u32 rsize, csize = size;
2028 	u8 *cdata = data;
2029 	int ret = 0;
2030 
2031 	report = hid_get_report(report_enum, data);
2032 	if (!report)
2033 		goto out;
2034 
2035 	if (report_enum->numbered) {
2036 		cdata++;
2037 		csize--;
2038 	}
2039 
2040 	rsize = hid_compute_report_size(report);
2041 
2042 	if (hid->ll_driver->max_buffer_size)
2043 		max_buffer_size = hid->ll_driver->max_buffer_size;
2044 
2045 	if (report_enum->numbered && rsize >= max_buffer_size)
2046 		rsize = max_buffer_size - 1;
2047 	else if (rsize > max_buffer_size)
2048 		rsize = max_buffer_size;
2049 
2050 	if (csize < rsize) {
2051 		dbg_hid("report %d is too short, (%d < %d)\n", report->id,
2052 				csize, rsize);
2053 		memset(cdata + csize, 0, rsize - csize);
2054 	}
2055 
2056 	if ((hid->claimed & HID_CLAIMED_HIDDEV) && hid->hiddev_report_event)
2057 		hid->hiddev_report_event(hid, report);
2058 	if (hid->claimed & HID_CLAIMED_HIDRAW) {
2059 		ret = hidraw_report_event(hid, data, size);
2060 		if (ret)
2061 			goto out;
2062 	}
2063 
2064 	if (hid->claimed != HID_CLAIMED_HIDRAW && report->maxfield) {
2065 		hid_process_report(hid, report, cdata, interrupt);
2066 		hdrv = hid->driver;
2067 		if (hdrv && hdrv->report)
2068 			hdrv->report(hid, report);
2069 	}
2070 
2071 	if (hid->claimed & HID_CLAIMED_INPUT)
2072 		hidinput_report_event(hid, report);
2073 out:
2074 	return ret;
2075 }
2076 EXPORT_SYMBOL_GPL(hid_report_raw_event);
2077 
2078 
__hid_input_report(struct hid_device * hid,enum hid_report_type type,u8 * data,u32 size,int interrupt,u64 source,bool from_bpf,bool lock_already_taken)2079 static int __hid_input_report(struct hid_device *hid, enum hid_report_type type,
2080 			      u8 *data, u32 size, int interrupt, u64 source, bool from_bpf,
2081 			      bool lock_already_taken)
2082 {
2083 	struct hid_report_enum *report_enum;
2084 	struct hid_driver *hdrv;
2085 	struct hid_report *report;
2086 	int ret = 0;
2087 
2088 	if (!hid)
2089 		return -ENODEV;
2090 
2091 	ret = down_trylock(&hid->driver_input_lock);
2092 	if (lock_already_taken && !ret) {
2093 		up(&hid->driver_input_lock);
2094 		return -EINVAL;
2095 	} else if (!lock_already_taken && ret) {
2096 		return -EBUSY;
2097 	}
2098 
2099 	if (!hid->driver) {
2100 		ret = -ENODEV;
2101 		goto unlock;
2102 	}
2103 	report_enum = hid->report_enum + type;
2104 	hdrv = hid->driver;
2105 
2106 	data = dispatch_hid_bpf_device_event(hid, type, data, &size, interrupt, source, from_bpf);
2107 	if (IS_ERR(data)) {
2108 		ret = PTR_ERR(data);
2109 		goto unlock;
2110 	}
2111 
2112 	if (!size) {
2113 		dbg_hid("empty report\n");
2114 		ret = -1;
2115 		goto unlock;
2116 	}
2117 
2118 	/* Avoid unnecessary overhead if debugfs is disabled */
2119 	if (!list_empty(&hid->debug_list))
2120 		hid_dump_report(hid, type, data, size);
2121 
2122 	report = hid_get_report(report_enum, data);
2123 
2124 	if (!report) {
2125 		ret = -1;
2126 		goto unlock;
2127 	}
2128 
2129 	if (hdrv && hdrv->raw_event && hid_match_report(hid, report)) {
2130 		ret = hdrv->raw_event(hid, report, data, size);
2131 		if (ret < 0)
2132 			goto unlock;
2133 	}
2134 
2135 	ret = hid_report_raw_event(hid, type, data, size, interrupt);
2136 
2137 unlock:
2138 	if (!lock_already_taken)
2139 		up(&hid->driver_input_lock);
2140 	return ret;
2141 }
2142 
2143 /**
2144  * hid_input_report - report data from lower layer (usb, bt...)
2145  *
2146  * @hid: hid device
2147  * @type: HID report type (HID_*_REPORT)
2148  * @data: report contents
2149  * @size: size of data parameter
2150  * @interrupt: distinguish between interrupt and control transfers
2151  *
2152  * This is data entry for lower layers.
2153  */
hid_input_report(struct hid_device * hid,enum hid_report_type type,u8 * data,u32 size,int interrupt)2154 int hid_input_report(struct hid_device *hid, enum hid_report_type type, u8 *data, u32 size,
2155 		     int interrupt)
2156 {
2157 	return __hid_input_report(hid, type, data, size, interrupt, 0,
2158 				  false, /* from_bpf */
2159 				  false /* lock_already_taken */);
2160 }
2161 EXPORT_SYMBOL_GPL(hid_input_report);
2162 
hid_match_one_id(const struct hid_device * hdev,const struct hid_device_id * id)2163 bool hid_match_one_id(const struct hid_device *hdev,
2164 		      const struct hid_device_id *id)
2165 {
2166 	return (id->bus == HID_BUS_ANY || id->bus == hdev->bus) &&
2167 		(id->group == HID_GROUP_ANY || id->group == hdev->group) &&
2168 		(id->vendor == HID_ANY_ID || id->vendor == hdev->vendor) &&
2169 		(id->product == HID_ANY_ID || id->product == hdev->product);
2170 }
2171 
hid_match_id(const struct hid_device * hdev,const struct hid_device_id * id)2172 const struct hid_device_id *hid_match_id(const struct hid_device *hdev,
2173 		const struct hid_device_id *id)
2174 {
2175 	for (; id->bus; id++)
2176 		if (hid_match_one_id(hdev, id))
2177 			return id;
2178 
2179 	return NULL;
2180 }
2181 EXPORT_SYMBOL_GPL(hid_match_id);
2182 
2183 static const struct hid_device_id hid_hiddev_list[] = {
2184 	{ HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS) },
2185 	{ HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS1) },
2186 	{ }
2187 };
2188 
hid_hiddev(struct hid_device * hdev)2189 static bool hid_hiddev(struct hid_device *hdev)
2190 {
2191 	return !!hid_match_id(hdev, hid_hiddev_list);
2192 }
2193 
2194 
2195 static ssize_t
report_descriptor_read(struct file * filp,struct kobject * kobj,const struct bin_attribute * attr,char * buf,loff_t off,size_t count)2196 report_descriptor_read(struct file *filp, struct kobject *kobj,
2197 		       const struct bin_attribute *attr,
2198 		       char *buf, loff_t off, size_t count)
2199 {
2200 	struct device *dev = kobj_to_dev(kobj);
2201 	struct hid_device *hdev = to_hid_device(dev);
2202 
2203 	if (off >= hdev->rsize)
2204 		return 0;
2205 
2206 	if (off + count > hdev->rsize)
2207 		count = hdev->rsize - off;
2208 
2209 	memcpy(buf, hdev->rdesc + off, count);
2210 
2211 	return count;
2212 }
2213 
2214 static ssize_t
country_show(struct device * dev,struct device_attribute * attr,char * buf)2215 country_show(struct device *dev, struct device_attribute *attr,
2216 	     char *buf)
2217 {
2218 	struct hid_device *hdev = to_hid_device(dev);
2219 
2220 	return sprintf(buf, "%02x\n", hdev->country & 0xff);
2221 }
2222 
2223 static const BIN_ATTR_RO(report_descriptor, HID_MAX_DESCRIPTOR_SIZE);
2224 
2225 static const DEVICE_ATTR_RO(country);
2226 
hid_connect(struct hid_device * hdev,unsigned int connect_mask)2227 int hid_connect(struct hid_device *hdev, unsigned int connect_mask)
2228 {
2229 	static const char *types[] = { "Device", "Pointer", "Mouse", "Device",
2230 		"Joystick", "Gamepad", "Keyboard", "Keypad",
2231 		"Multi-Axis Controller"
2232 	};
2233 	const char *type, *bus;
2234 	char buf[64] = "";
2235 	unsigned int i;
2236 	int len;
2237 	int ret;
2238 
2239 	ret = hid_bpf_connect_device(hdev);
2240 	if (ret)
2241 		return ret;
2242 
2243 	if (hdev->quirks & HID_QUIRK_HIDDEV_FORCE)
2244 		connect_mask |= (HID_CONNECT_HIDDEV_FORCE | HID_CONNECT_HIDDEV);
2245 	if (hdev->quirks & HID_QUIRK_HIDINPUT_FORCE)
2246 		connect_mask |= HID_CONNECT_HIDINPUT_FORCE;
2247 	if (hdev->bus != BUS_USB)
2248 		connect_mask &= ~HID_CONNECT_HIDDEV;
2249 	if (hid_hiddev(hdev))
2250 		connect_mask |= HID_CONNECT_HIDDEV_FORCE;
2251 
2252 	if ((connect_mask & HID_CONNECT_HIDINPUT) && !hidinput_connect(hdev,
2253 				connect_mask & HID_CONNECT_HIDINPUT_FORCE))
2254 		hdev->claimed |= HID_CLAIMED_INPUT;
2255 
2256 	if ((connect_mask & HID_CONNECT_HIDDEV) && hdev->hiddev_connect &&
2257 			!hdev->hiddev_connect(hdev,
2258 				connect_mask & HID_CONNECT_HIDDEV_FORCE))
2259 		hdev->claimed |= HID_CLAIMED_HIDDEV;
2260 	if ((connect_mask & HID_CONNECT_HIDRAW) && !hidraw_connect(hdev))
2261 		hdev->claimed |= HID_CLAIMED_HIDRAW;
2262 
2263 	if (connect_mask & HID_CONNECT_DRIVER)
2264 		hdev->claimed |= HID_CLAIMED_DRIVER;
2265 
2266 	/* Drivers with the ->raw_event callback set are not required to connect
2267 	 * to any other listener. */
2268 	if (!hdev->claimed && !hdev->driver->raw_event) {
2269 		hid_err(hdev, "device has no listeners, quitting\n");
2270 		return -ENODEV;
2271 	}
2272 
2273 	hid_process_ordering(hdev);
2274 
2275 	if ((hdev->claimed & HID_CLAIMED_INPUT) &&
2276 			(connect_mask & HID_CONNECT_FF) && hdev->ff_init)
2277 		hdev->ff_init(hdev);
2278 
2279 	len = 0;
2280 	if (hdev->claimed & HID_CLAIMED_INPUT)
2281 		len += sprintf(buf + len, "input");
2282 	if (hdev->claimed & HID_CLAIMED_HIDDEV)
2283 		len += sprintf(buf + len, "%shiddev%d", len ? "," : "",
2284 				((struct hiddev *)hdev->hiddev)->minor);
2285 	if (hdev->claimed & HID_CLAIMED_HIDRAW)
2286 		len += sprintf(buf + len, "%shidraw%d", len ? "," : "",
2287 				((struct hidraw *)hdev->hidraw)->minor);
2288 
2289 	type = "Device";
2290 	for (i = 0; i < hdev->maxcollection; i++) {
2291 		struct hid_collection *col = &hdev->collection[i];
2292 		if (col->type == HID_COLLECTION_APPLICATION &&
2293 		   (col->usage & HID_USAGE_PAGE) == HID_UP_GENDESK &&
2294 		   (col->usage & 0xffff) < ARRAY_SIZE(types)) {
2295 			type = types[col->usage & 0xffff];
2296 			break;
2297 		}
2298 	}
2299 
2300 	switch (hdev->bus) {
2301 	case BUS_USB:
2302 		bus = "USB";
2303 		break;
2304 	case BUS_BLUETOOTH:
2305 		bus = "BLUETOOTH";
2306 		break;
2307 	case BUS_I2C:
2308 		bus = "I2C";
2309 		break;
2310 	case BUS_SDW:
2311 		bus = "SOUNDWIRE";
2312 		break;
2313 	case BUS_VIRTUAL:
2314 		bus = "VIRTUAL";
2315 		break;
2316 	case BUS_INTEL_ISHTP:
2317 	case BUS_AMD_SFH:
2318 		bus = "SENSOR HUB";
2319 		break;
2320 	default:
2321 		bus = "<UNKNOWN>";
2322 	}
2323 
2324 	ret = device_create_file(&hdev->dev, &dev_attr_country);
2325 	if (ret)
2326 		hid_warn(hdev,
2327 			 "can't create sysfs country code attribute err: %d\n", ret);
2328 
2329 	hid_info(hdev, "%s: %s HID v%x.%02x %s [%s] on %s\n",
2330 		 buf, bus, hdev->version >> 8, hdev->version & 0xff,
2331 		 type, hdev->name, hdev->phys);
2332 
2333 	return 0;
2334 }
2335 EXPORT_SYMBOL_GPL(hid_connect);
2336 
hid_disconnect(struct hid_device * hdev)2337 void hid_disconnect(struct hid_device *hdev)
2338 {
2339 	device_remove_file(&hdev->dev, &dev_attr_country);
2340 	if (hdev->claimed & HID_CLAIMED_INPUT)
2341 		hidinput_disconnect(hdev);
2342 	if (hdev->claimed & HID_CLAIMED_HIDDEV)
2343 		hdev->hiddev_disconnect(hdev);
2344 	if (hdev->claimed & HID_CLAIMED_HIDRAW)
2345 		hidraw_disconnect(hdev);
2346 	hdev->claimed = 0;
2347 
2348 	hid_bpf_disconnect_device(hdev);
2349 }
2350 EXPORT_SYMBOL_GPL(hid_disconnect);
2351 
2352 /**
2353  * hid_hw_start - start underlying HW
2354  * @hdev: hid device
2355  * @connect_mask: which outputs to connect, see HID_CONNECT_*
2356  *
2357  * Call this in probe function *after* hid_parse. This will setup HW
2358  * buffers and start the device (if not defeirred to device open).
2359  * hid_hw_stop must be called if this was successful.
2360  */
hid_hw_start(struct hid_device * hdev,unsigned int connect_mask)2361 int hid_hw_start(struct hid_device *hdev, unsigned int connect_mask)
2362 {
2363 	int error;
2364 
2365 	error = hdev->ll_driver->start(hdev);
2366 	if (error)
2367 		return error;
2368 
2369 	if (connect_mask) {
2370 		error = hid_connect(hdev, connect_mask);
2371 		if (error) {
2372 			hdev->ll_driver->stop(hdev);
2373 			return error;
2374 		}
2375 	}
2376 
2377 	return 0;
2378 }
2379 EXPORT_SYMBOL_GPL(hid_hw_start);
2380 
2381 /**
2382  * hid_hw_stop - stop underlying HW
2383  * @hdev: hid device
2384  *
2385  * This is usually called from remove function or from probe when something
2386  * failed and hid_hw_start was called already.
2387  */
hid_hw_stop(struct hid_device * hdev)2388 void hid_hw_stop(struct hid_device *hdev)
2389 {
2390 	hid_disconnect(hdev);
2391 	hdev->ll_driver->stop(hdev);
2392 }
2393 EXPORT_SYMBOL_GPL(hid_hw_stop);
2394 
2395 /**
2396  * hid_hw_open - signal underlying HW to start delivering events
2397  * @hdev: hid device
2398  *
2399  * Tell underlying HW to start delivering events from the device.
2400  * This function should be called sometime after successful call
2401  * to hid_hw_start().
2402  */
hid_hw_open(struct hid_device * hdev)2403 int hid_hw_open(struct hid_device *hdev)
2404 {
2405 	int ret;
2406 
2407 	ret = mutex_lock_killable(&hdev->ll_open_lock);
2408 	if (ret)
2409 		return ret;
2410 
2411 	if (!hdev->ll_open_count++) {
2412 		ret = hdev->ll_driver->open(hdev);
2413 		if (ret)
2414 			hdev->ll_open_count--;
2415 
2416 		if (hdev->driver->on_hid_hw_open)
2417 			hdev->driver->on_hid_hw_open(hdev);
2418 	}
2419 
2420 	mutex_unlock(&hdev->ll_open_lock);
2421 	return ret;
2422 }
2423 EXPORT_SYMBOL_GPL(hid_hw_open);
2424 
2425 /**
2426  * hid_hw_close - signal underlaying HW to stop delivering events
2427  *
2428  * @hdev: hid device
2429  *
2430  * This function indicates that we are not interested in the events
2431  * from this device anymore. Delivery of events may or may not stop,
2432  * depending on the number of users still outstanding.
2433  */
hid_hw_close(struct hid_device * hdev)2434 void hid_hw_close(struct hid_device *hdev)
2435 {
2436 	mutex_lock(&hdev->ll_open_lock);
2437 	if (!--hdev->ll_open_count) {
2438 		hdev->ll_driver->close(hdev);
2439 
2440 		if (hdev->driver->on_hid_hw_close)
2441 			hdev->driver->on_hid_hw_close(hdev);
2442 	}
2443 	mutex_unlock(&hdev->ll_open_lock);
2444 }
2445 EXPORT_SYMBOL_GPL(hid_hw_close);
2446 
2447 /**
2448  * hid_hw_request - send report request to device
2449  *
2450  * @hdev: hid device
2451  * @report: report to send
2452  * @reqtype: hid request type
2453  */
hid_hw_request(struct hid_device * hdev,struct hid_report * report,enum hid_class_request reqtype)2454 void hid_hw_request(struct hid_device *hdev,
2455 		    struct hid_report *report, enum hid_class_request reqtype)
2456 {
2457 	if (hdev->ll_driver->request)
2458 		return hdev->ll_driver->request(hdev, report, reqtype);
2459 
2460 	__hid_request(hdev, report, reqtype);
2461 }
2462 EXPORT_SYMBOL_GPL(hid_hw_request);
2463 
__hid_hw_raw_request(struct hid_device * hdev,unsigned char reportnum,__u8 * buf,size_t len,enum hid_report_type rtype,enum hid_class_request reqtype,u64 source,bool from_bpf)2464 int __hid_hw_raw_request(struct hid_device *hdev,
2465 			 unsigned char reportnum, __u8 *buf,
2466 			 size_t len, enum hid_report_type rtype,
2467 			 enum hid_class_request reqtype,
2468 			 u64 source, bool from_bpf)
2469 {
2470 	unsigned int max_buffer_size = HID_MAX_BUFFER_SIZE;
2471 	int ret;
2472 
2473 	if (hdev->ll_driver->max_buffer_size)
2474 		max_buffer_size = hdev->ll_driver->max_buffer_size;
2475 
2476 	if (len < 1 || len > max_buffer_size || !buf)
2477 		return -EINVAL;
2478 
2479 	ret = dispatch_hid_bpf_raw_requests(hdev, reportnum, buf, len, rtype,
2480 					    reqtype, source, from_bpf);
2481 	if (ret)
2482 		return ret;
2483 
2484 	return hdev->ll_driver->raw_request(hdev, reportnum, buf, len,
2485 					    rtype, reqtype);
2486 }
2487 
2488 /**
2489  * hid_hw_raw_request - send report request to device
2490  *
2491  * @hdev: hid device
2492  * @reportnum: report ID
2493  * @buf: in/out data to transfer
2494  * @len: length of buf
2495  * @rtype: HID report type
2496  * @reqtype: HID_REQ_GET_REPORT or HID_REQ_SET_REPORT
2497  *
2498  * Return: count of data transferred, negative if error
2499  *
2500  * Same behavior as hid_hw_request, but with raw buffers instead.
2501  */
hid_hw_raw_request(struct hid_device * hdev,unsigned char reportnum,__u8 * buf,size_t len,enum hid_report_type rtype,enum hid_class_request reqtype)2502 int hid_hw_raw_request(struct hid_device *hdev,
2503 		       unsigned char reportnum, __u8 *buf,
2504 		       size_t len, enum hid_report_type rtype, enum hid_class_request reqtype)
2505 {
2506 	return __hid_hw_raw_request(hdev, reportnum, buf, len, rtype, reqtype, 0, false);
2507 }
2508 EXPORT_SYMBOL_GPL(hid_hw_raw_request);
2509 
__hid_hw_output_report(struct hid_device * hdev,__u8 * buf,size_t len,u64 source,bool from_bpf)2510 int __hid_hw_output_report(struct hid_device *hdev, __u8 *buf, size_t len, u64 source,
2511 			   bool from_bpf)
2512 {
2513 	unsigned int max_buffer_size = HID_MAX_BUFFER_SIZE;
2514 	int ret;
2515 
2516 	if (hdev->ll_driver->max_buffer_size)
2517 		max_buffer_size = hdev->ll_driver->max_buffer_size;
2518 
2519 	if (len < 1 || len > max_buffer_size || !buf)
2520 		return -EINVAL;
2521 
2522 	ret = dispatch_hid_bpf_output_report(hdev, buf, len, source, from_bpf);
2523 	if (ret)
2524 		return ret;
2525 
2526 	if (hdev->ll_driver->output_report)
2527 		return hdev->ll_driver->output_report(hdev, buf, len);
2528 
2529 	return -ENOSYS;
2530 }
2531 
2532 /**
2533  * hid_hw_output_report - send output report to device
2534  *
2535  * @hdev: hid device
2536  * @buf: raw data to transfer
2537  * @len: length of buf
2538  *
2539  * Return: count of data transferred, negative if error
2540  */
hid_hw_output_report(struct hid_device * hdev,__u8 * buf,size_t len)2541 int hid_hw_output_report(struct hid_device *hdev, __u8 *buf, size_t len)
2542 {
2543 	return __hid_hw_output_report(hdev, buf, len, 0, false);
2544 }
2545 EXPORT_SYMBOL_GPL(hid_hw_output_report);
2546 
2547 #ifdef CONFIG_PM
hid_driver_suspend(struct hid_device * hdev,pm_message_t state)2548 int hid_driver_suspend(struct hid_device *hdev, pm_message_t state)
2549 {
2550 	if (hdev->driver && hdev->driver->suspend)
2551 		return hdev->driver->suspend(hdev, state);
2552 
2553 	return 0;
2554 }
2555 EXPORT_SYMBOL_GPL(hid_driver_suspend);
2556 
hid_driver_reset_resume(struct hid_device * hdev)2557 int hid_driver_reset_resume(struct hid_device *hdev)
2558 {
2559 	if (hdev->driver && hdev->driver->reset_resume)
2560 		return hdev->driver->reset_resume(hdev);
2561 
2562 	return 0;
2563 }
2564 EXPORT_SYMBOL_GPL(hid_driver_reset_resume);
2565 
hid_driver_resume(struct hid_device * hdev)2566 int hid_driver_resume(struct hid_device *hdev)
2567 {
2568 	if (hdev->driver && hdev->driver->resume)
2569 		return hdev->driver->resume(hdev);
2570 
2571 	return 0;
2572 }
2573 EXPORT_SYMBOL_GPL(hid_driver_resume);
2574 #endif /* CONFIG_PM */
2575 
2576 struct hid_dynid {
2577 	struct list_head list;
2578 	struct hid_device_id id;
2579 };
2580 
2581 /**
2582  * new_id_store - add a new HID device ID to this driver and re-probe devices
2583  * @drv: target device driver
2584  * @buf: buffer for scanning device ID data
2585  * @count: input size
2586  *
2587  * Adds a new dynamic hid device ID to this driver,
2588  * and causes the driver to probe for all devices again.
2589  */
new_id_store(struct device_driver * drv,const char * buf,size_t count)2590 static ssize_t new_id_store(struct device_driver *drv, const char *buf,
2591 		size_t count)
2592 {
2593 	struct hid_driver *hdrv = to_hid_driver(drv);
2594 	struct hid_dynid *dynid;
2595 	__u32 bus, vendor, product;
2596 	unsigned long driver_data = 0;
2597 	int ret;
2598 
2599 	ret = sscanf(buf, "%x %x %x %lx",
2600 			&bus, &vendor, &product, &driver_data);
2601 	if (ret < 3)
2602 		return -EINVAL;
2603 
2604 	dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
2605 	if (!dynid)
2606 		return -ENOMEM;
2607 
2608 	dynid->id.bus = bus;
2609 	dynid->id.group = HID_GROUP_ANY;
2610 	dynid->id.vendor = vendor;
2611 	dynid->id.product = product;
2612 	dynid->id.driver_data = driver_data;
2613 
2614 	spin_lock(&hdrv->dyn_lock);
2615 	list_add_tail(&dynid->list, &hdrv->dyn_list);
2616 	spin_unlock(&hdrv->dyn_lock);
2617 
2618 	ret = driver_attach(&hdrv->driver);
2619 
2620 	return ret ? : count;
2621 }
2622 static DRIVER_ATTR_WO(new_id);
2623 
2624 static struct attribute *hid_drv_attrs[] = {
2625 	&driver_attr_new_id.attr,
2626 	NULL,
2627 };
2628 ATTRIBUTE_GROUPS(hid_drv);
2629 
hid_free_dynids(struct hid_driver * hdrv)2630 static void hid_free_dynids(struct hid_driver *hdrv)
2631 {
2632 	struct hid_dynid *dynid, *n;
2633 
2634 	spin_lock(&hdrv->dyn_lock);
2635 	list_for_each_entry_safe(dynid, n, &hdrv->dyn_list, list) {
2636 		list_del(&dynid->list);
2637 		kfree(dynid);
2638 	}
2639 	spin_unlock(&hdrv->dyn_lock);
2640 }
2641 
hid_match_device(struct hid_device * hdev,struct hid_driver * hdrv)2642 const struct hid_device_id *hid_match_device(struct hid_device *hdev,
2643 					     struct hid_driver *hdrv)
2644 {
2645 	struct hid_dynid *dynid;
2646 
2647 	spin_lock(&hdrv->dyn_lock);
2648 	list_for_each_entry(dynid, &hdrv->dyn_list, list) {
2649 		if (hid_match_one_id(hdev, &dynid->id)) {
2650 			spin_unlock(&hdrv->dyn_lock);
2651 			return &dynid->id;
2652 		}
2653 	}
2654 	spin_unlock(&hdrv->dyn_lock);
2655 
2656 	return hid_match_id(hdev, hdrv->id_table);
2657 }
2658 EXPORT_SYMBOL_GPL(hid_match_device);
2659 
hid_bus_match(struct device * dev,const struct device_driver * drv)2660 static int hid_bus_match(struct device *dev, const struct device_driver *drv)
2661 {
2662 	struct hid_driver *hdrv = to_hid_driver(drv);
2663 	struct hid_device *hdev = to_hid_device(dev);
2664 
2665 	return hid_match_device(hdev, hdrv) != NULL;
2666 }
2667 
2668 /**
2669  * hid_compare_device_paths - check if both devices share the same path
2670  * @hdev_a: hid device
2671  * @hdev_b: hid device
2672  * @separator: char to use as separator
2673  *
2674  * Check if two devices share the same path up to the last occurrence of
2675  * the separator char. Both paths must exist (i.e., zero-length paths
2676  * don't match).
2677  */
hid_compare_device_paths(struct hid_device * hdev_a,struct hid_device * hdev_b,char separator)2678 bool hid_compare_device_paths(struct hid_device *hdev_a,
2679 			      struct hid_device *hdev_b, char separator)
2680 {
2681 	int n1 = strrchr(hdev_a->phys, separator) - hdev_a->phys;
2682 	int n2 = strrchr(hdev_b->phys, separator) - hdev_b->phys;
2683 
2684 	if (n1 != n2 || n1 <= 0 || n2 <= 0)
2685 		return false;
2686 
2687 	return !strncmp(hdev_a->phys, hdev_b->phys, n1);
2688 }
2689 EXPORT_SYMBOL_GPL(hid_compare_device_paths);
2690 
hid_check_device_match(struct hid_device * hdev,struct hid_driver * hdrv,const struct hid_device_id ** id)2691 static bool hid_check_device_match(struct hid_device *hdev,
2692 				   struct hid_driver *hdrv,
2693 				   const struct hid_device_id **id)
2694 {
2695 	*id = hid_match_device(hdev, hdrv);
2696 	if (!*id)
2697 		return false;
2698 
2699 	if (hdrv->match)
2700 		return hdrv->match(hdev, hid_ignore_special_drivers);
2701 
2702 	/*
2703 	 * hid-generic implements .match(), so we must be dealing with a
2704 	 * different HID driver here, and can simply check if
2705 	 * hid_ignore_special_drivers or HID_QUIRK_IGNORE_SPECIAL_DRIVER
2706 	 * are set or not.
2707 	 */
2708 	return !hid_ignore_special_drivers && !(hdev->quirks & HID_QUIRK_IGNORE_SPECIAL_DRIVER);
2709 }
2710 
__hid_device_probe(struct hid_device * hdev,struct hid_driver * hdrv)2711 static int __hid_device_probe(struct hid_device *hdev, struct hid_driver *hdrv)
2712 {
2713 	const struct hid_device_id *id;
2714 	int ret;
2715 
2716 	if (!hdev->bpf_rsize) {
2717 		/* in case a bpf program gets detached, we need to free the old one */
2718 		hid_free_bpf_rdesc(hdev);
2719 
2720 		/* keep this around so we know we called it once */
2721 		hdev->bpf_rsize = hdev->dev_rsize;
2722 
2723 		/* call_hid_bpf_rdesc_fixup will always return a valid pointer */
2724 		hdev->bpf_rdesc = call_hid_bpf_rdesc_fixup(hdev, hdev->dev_rdesc,
2725 							   &hdev->bpf_rsize);
2726 	}
2727 
2728 	if (!hid_check_device_match(hdev, hdrv, &id))
2729 		return -ENODEV;
2730 
2731 	hdev->devres_group_id = devres_open_group(&hdev->dev, NULL, GFP_KERNEL);
2732 	if (!hdev->devres_group_id)
2733 		return -ENOMEM;
2734 
2735 	/* reset the quirks that has been previously set */
2736 	hdev->quirks = hid_lookup_quirk(hdev);
2737 	hdev->driver = hdrv;
2738 
2739 	if (hdrv->probe) {
2740 		ret = hdrv->probe(hdev, id);
2741 	} else { /* default probe */
2742 		ret = hid_open_report(hdev);
2743 		if (!ret)
2744 			ret = hid_hw_start(hdev, HID_CONNECT_DEFAULT);
2745 	}
2746 
2747 	/*
2748 	 * Note that we are not closing the devres group opened above so
2749 	 * even resources that were attached to the device after probe is
2750 	 * run are released when hid_device_remove() is executed. This is
2751 	 * needed as some drivers would allocate additional resources,
2752 	 * for example when updating firmware.
2753 	 */
2754 
2755 	if (ret) {
2756 		devres_release_group(&hdev->dev, hdev->devres_group_id);
2757 		hid_close_report(hdev);
2758 		hdev->driver = NULL;
2759 	}
2760 
2761 	return ret;
2762 }
2763 
hid_device_probe(struct device * dev)2764 static int hid_device_probe(struct device *dev)
2765 {
2766 	struct hid_device *hdev = to_hid_device(dev);
2767 	struct hid_driver *hdrv = to_hid_driver(dev->driver);
2768 	int ret = 0;
2769 
2770 	if (down_interruptible(&hdev->driver_input_lock))
2771 		return -EINTR;
2772 
2773 	hdev->io_started = false;
2774 	clear_bit(ffs(HID_STAT_REPROBED), &hdev->status);
2775 
2776 	if (!hdev->driver)
2777 		ret = __hid_device_probe(hdev, hdrv);
2778 
2779 	if (!hdev->io_started)
2780 		up(&hdev->driver_input_lock);
2781 
2782 	return ret;
2783 }
2784 
hid_device_remove(struct device * dev)2785 static void hid_device_remove(struct device *dev)
2786 {
2787 	struct hid_device *hdev = to_hid_device(dev);
2788 	struct hid_driver *hdrv;
2789 
2790 	down(&hdev->driver_input_lock);
2791 	hdev->io_started = false;
2792 
2793 	hdrv = hdev->driver;
2794 	if (hdrv) {
2795 		if (hdrv->remove)
2796 			hdrv->remove(hdev);
2797 		else /* default remove */
2798 			hid_hw_stop(hdev);
2799 
2800 		/* Release all devres resources allocated by the driver */
2801 		devres_release_group(&hdev->dev, hdev->devres_group_id);
2802 
2803 		hid_close_report(hdev);
2804 		hdev->driver = NULL;
2805 	}
2806 
2807 	if (!hdev->io_started)
2808 		up(&hdev->driver_input_lock);
2809 }
2810 
modalias_show(struct device * dev,struct device_attribute * a,char * buf)2811 static ssize_t modalias_show(struct device *dev, struct device_attribute *a,
2812 			     char *buf)
2813 {
2814 	struct hid_device *hdev = container_of(dev, struct hid_device, dev);
2815 
2816 	return sysfs_emit(buf, "hid:b%04Xg%04Xv%08Xp%08X\n",
2817 			 hdev->bus, hdev->group, hdev->vendor, hdev->product);
2818 }
2819 static DEVICE_ATTR_RO(modalias);
2820 
2821 static struct attribute *hid_dev_attrs[] = {
2822 	&dev_attr_modalias.attr,
2823 	NULL,
2824 };
2825 static const struct bin_attribute *hid_dev_bin_attrs[] = {
2826 	&bin_attr_report_descriptor,
2827 	NULL
2828 };
2829 static const struct attribute_group hid_dev_group = {
2830 	.attrs = hid_dev_attrs,
2831 	.bin_attrs = hid_dev_bin_attrs,
2832 };
2833 __ATTRIBUTE_GROUPS(hid_dev);
2834 
hid_uevent(const struct device * dev,struct kobj_uevent_env * env)2835 static int hid_uevent(const struct device *dev, struct kobj_uevent_env *env)
2836 {
2837 	const struct hid_device *hdev = to_hid_device(dev);
2838 
2839 	if (add_uevent_var(env, "HID_ID=%04X:%08X:%08X",
2840 			hdev->bus, hdev->vendor, hdev->product))
2841 		return -ENOMEM;
2842 
2843 	if (add_uevent_var(env, "HID_NAME=%s", hdev->name))
2844 		return -ENOMEM;
2845 
2846 	if (add_uevent_var(env, "HID_PHYS=%s", hdev->phys))
2847 		return -ENOMEM;
2848 
2849 	if (add_uevent_var(env, "HID_UNIQ=%s", hdev->uniq))
2850 		return -ENOMEM;
2851 
2852 	if (add_uevent_var(env, "MODALIAS=hid:b%04Xg%04Xv%08Xp%08X",
2853 			   hdev->bus, hdev->group, hdev->vendor, hdev->product))
2854 		return -ENOMEM;
2855 
2856 	return 0;
2857 }
2858 
2859 const struct bus_type hid_bus_type = {
2860 	.name		= "hid",
2861 	.dev_groups	= hid_dev_groups,
2862 	.drv_groups	= hid_drv_groups,
2863 	.match		= hid_bus_match,
2864 	.probe		= hid_device_probe,
2865 	.remove		= hid_device_remove,
2866 	.uevent		= hid_uevent,
2867 };
2868 EXPORT_SYMBOL(hid_bus_type);
2869 
hid_add_device(struct hid_device * hdev)2870 int hid_add_device(struct hid_device *hdev)
2871 {
2872 	static atomic_t id = ATOMIC_INIT(0);
2873 	int ret;
2874 
2875 	if (WARN_ON(hdev->status & HID_STAT_ADDED))
2876 		return -EBUSY;
2877 
2878 	hdev->quirks = hid_lookup_quirk(hdev);
2879 
2880 	/* we need to kill them here, otherwise they will stay allocated to
2881 	 * wait for coming driver */
2882 	if (hid_ignore(hdev))
2883 		return -ENODEV;
2884 
2885 	/*
2886 	 * Check for the mandatory transport channel.
2887 	 */
2888 	 if (!hdev->ll_driver->raw_request) {
2889 		hid_err(hdev, "transport driver missing .raw_request()\n");
2890 		return -EINVAL;
2891 	 }
2892 
2893 	/*
2894 	 * Read the device report descriptor once and use as template
2895 	 * for the driver-specific modifications.
2896 	 */
2897 	ret = hdev->ll_driver->parse(hdev);
2898 	if (ret)
2899 		return ret;
2900 	if (!hdev->dev_rdesc)
2901 		return -ENODEV;
2902 
2903 	/*
2904 	 * Scan generic devices for group information
2905 	 */
2906 	if (hid_ignore_special_drivers) {
2907 		hdev->group = HID_GROUP_GENERIC;
2908 	} else if (!hdev->group &&
2909 		   !(hdev->quirks & HID_QUIRK_HAVE_SPECIAL_DRIVER)) {
2910 		ret = hid_scan_report(hdev);
2911 		if (ret)
2912 			hid_warn(hdev, "bad device descriptor (%d)\n", ret);
2913 	}
2914 
2915 	hdev->id = atomic_inc_return(&id);
2916 
2917 	/* XXX hack, any other cleaner solution after the driver core
2918 	 * is converted to allow more than 20 bytes as the device name? */
2919 	dev_set_name(&hdev->dev, "%04X:%04X:%04X.%04X", hdev->bus,
2920 		     hdev->vendor, hdev->product, hdev->id);
2921 
2922 	hid_debug_register(hdev, dev_name(&hdev->dev));
2923 	ret = device_add(&hdev->dev);
2924 	if (!ret)
2925 		hdev->status |= HID_STAT_ADDED;
2926 	else
2927 		hid_debug_unregister(hdev);
2928 
2929 	return ret;
2930 }
2931 EXPORT_SYMBOL_GPL(hid_add_device);
2932 
2933 /**
2934  * hid_allocate_device - allocate new hid device descriptor
2935  *
2936  * Allocate and initialize hid device, so that hid_destroy_device might be
2937  * used to free it.
2938  *
2939  * New hid_device pointer is returned on success, otherwise ERR_PTR encoded
2940  * error value.
2941  */
hid_allocate_device(void)2942 struct hid_device *hid_allocate_device(void)
2943 {
2944 	struct hid_device *hdev;
2945 	int ret = -ENOMEM;
2946 
2947 	hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
2948 	if (hdev == NULL)
2949 		return ERR_PTR(ret);
2950 
2951 	device_initialize(&hdev->dev);
2952 	hdev->dev.release = hid_device_release;
2953 	hdev->dev.bus = &hid_bus_type;
2954 	device_enable_async_suspend(&hdev->dev);
2955 
2956 	hid_close_report(hdev);
2957 
2958 	init_waitqueue_head(&hdev->debug_wait);
2959 	INIT_LIST_HEAD(&hdev->debug_list);
2960 	spin_lock_init(&hdev->debug_list_lock);
2961 	sema_init(&hdev->driver_input_lock, 1);
2962 	mutex_init(&hdev->ll_open_lock);
2963 	kref_init(&hdev->ref);
2964 
2965 	ret = hid_bpf_device_init(hdev);
2966 	if (ret)
2967 		goto out_err;
2968 
2969 	return hdev;
2970 
2971 out_err:
2972 	hid_destroy_device(hdev);
2973 	return ERR_PTR(ret);
2974 }
2975 EXPORT_SYMBOL_GPL(hid_allocate_device);
2976 
hid_remove_device(struct hid_device * hdev)2977 static void hid_remove_device(struct hid_device *hdev)
2978 {
2979 	if (hdev->status & HID_STAT_ADDED) {
2980 		device_del(&hdev->dev);
2981 		hid_debug_unregister(hdev);
2982 		hdev->status &= ~HID_STAT_ADDED;
2983 	}
2984 	hid_free_bpf_rdesc(hdev);
2985 	kfree(hdev->dev_rdesc);
2986 	hdev->dev_rdesc = NULL;
2987 	hdev->dev_rsize = 0;
2988 	hdev->bpf_rsize = 0;
2989 }
2990 
2991 /**
2992  * hid_destroy_device - free previously allocated device
2993  *
2994  * @hdev: hid device
2995  *
2996  * If you allocate hid_device through hid_allocate_device, you should ever
2997  * free by this function.
2998  */
hid_destroy_device(struct hid_device * hdev)2999 void hid_destroy_device(struct hid_device *hdev)
3000 {
3001 	hid_bpf_destroy_device(hdev);
3002 	hid_remove_device(hdev);
3003 	put_device(&hdev->dev);
3004 }
3005 EXPORT_SYMBOL_GPL(hid_destroy_device);
3006 
3007 
__hid_bus_reprobe_drivers(struct device * dev,void * data)3008 static int __hid_bus_reprobe_drivers(struct device *dev, void *data)
3009 {
3010 	struct hid_driver *hdrv = data;
3011 	struct hid_device *hdev = to_hid_device(dev);
3012 
3013 	if (hdev->driver == hdrv &&
3014 	    !hdrv->match(hdev, hid_ignore_special_drivers) &&
3015 	    !test_and_set_bit(ffs(HID_STAT_REPROBED), &hdev->status))
3016 		return device_reprobe(dev);
3017 
3018 	return 0;
3019 }
3020 
__hid_bus_driver_added(struct device_driver * drv,void * data)3021 static int __hid_bus_driver_added(struct device_driver *drv, void *data)
3022 {
3023 	struct hid_driver *hdrv = to_hid_driver(drv);
3024 
3025 	if (hdrv->match) {
3026 		bus_for_each_dev(&hid_bus_type, NULL, hdrv,
3027 				 __hid_bus_reprobe_drivers);
3028 	}
3029 
3030 	return 0;
3031 }
3032 
__bus_removed_driver(struct device_driver * drv,void * data)3033 static int __bus_removed_driver(struct device_driver *drv, void *data)
3034 {
3035 	return bus_rescan_devices(&hid_bus_type);
3036 }
3037 
__hid_register_driver(struct hid_driver * hdrv,struct module * owner,const char * mod_name)3038 int __hid_register_driver(struct hid_driver *hdrv, struct module *owner,
3039 		const char *mod_name)
3040 {
3041 	int ret;
3042 
3043 	hdrv->driver.name = hdrv->name;
3044 	hdrv->driver.bus = &hid_bus_type;
3045 	hdrv->driver.owner = owner;
3046 	hdrv->driver.mod_name = mod_name;
3047 
3048 	INIT_LIST_HEAD(&hdrv->dyn_list);
3049 	spin_lock_init(&hdrv->dyn_lock);
3050 
3051 	ret = driver_register(&hdrv->driver);
3052 
3053 	if (ret == 0)
3054 		bus_for_each_drv(&hid_bus_type, NULL, NULL,
3055 				 __hid_bus_driver_added);
3056 
3057 	return ret;
3058 }
3059 EXPORT_SYMBOL_GPL(__hid_register_driver);
3060 
hid_unregister_driver(struct hid_driver * hdrv)3061 void hid_unregister_driver(struct hid_driver *hdrv)
3062 {
3063 	driver_unregister(&hdrv->driver);
3064 	hid_free_dynids(hdrv);
3065 
3066 	bus_for_each_drv(&hid_bus_type, NULL, hdrv, __bus_removed_driver);
3067 }
3068 EXPORT_SYMBOL_GPL(hid_unregister_driver);
3069 
hid_check_keys_pressed(struct hid_device * hid)3070 int hid_check_keys_pressed(struct hid_device *hid)
3071 {
3072 	struct hid_input *hidinput;
3073 	int i;
3074 
3075 	if (!(hid->claimed & HID_CLAIMED_INPUT))
3076 		return 0;
3077 
3078 	list_for_each_entry(hidinput, &hid->inputs, list) {
3079 		for (i = 0; i < BITS_TO_LONGS(KEY_MAX); i++)
3080 			if (hidinput->input->key[i])
3081 				return 1;
3082 	}
3083 
3084 	return 0;
3085 }
3086 EXPORT_SYMBOL_GPL(hid_check_keys_pressed);
3087 
3088 #ifdef CONFIG_HID_BPF
3089 static const struct hid_ops __hid_ops = {
3090 	.hid_get_report = hid_get_report,
3091 	.hid_hw_raw_request = __hid_hw_raw_request,
3092 	.hid_hw_output_report = __hid_hw_output_report,
3093 	.hid_input_report = __hid_input_report,
3094 	.owner = THIS_MODULE,
3095 	.bus_type = &hid_bus_type,
3096 };
3097 #endif
3098 
hid_init(void)3099 static int __init hid_init(void)
3100 {
3101 	int ret;
3102 
3103 	ret = bus_register(&hid_bus_type);
3104 	if (ret) {
3105 		pr_err("can't register hid bus\n");
3106 		goto err;
3107 	}
3108 
3109 #ifdef CONFIG_HID_BPF
3110 	hid_ops = &__hid_ops;
3111 #endif
3112 
3113 	ret = hidraw_init();
3114 	if (ret)
3115 		goto err_bus;
3116 
3117 	hid_debug_init();
3118 
3119 	return 0;
3120 err_bus:
3121 	bus_unregister(&hid_bus_type);
3122 err:
3123 	return ret;
3124 }
3125 
hid_exit(void)3126 static void __exit hid_exit(void)
3127 {
3128 #ifdef CONFIG_HID_BPF
3129 	hid_ops = NULL;
3130 #endif
3131 	hid_debug_exit();
3132 	hidraw_exit();
3133 	bus_unregister(&hid_bus_type);
3134 	hid_quirks_exit(HID_BUS_ANY);
3135 }
3136 
3137 module_init(hid_init);
3138 module_exit(hid_exit);
3139 
3140 MODULE_AUTHOR("Andreas Gal");
3141 MODULE_AUTHOR("Vojtech Pavlik");
3142 MODULE_AUTHOR("Jiri Kosina");
3143 MODULE_DESCRIPTION("HID support for Linux");
3144 MODULE_LICENSE("GPL");
3145