1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * fs/dcache.c
4 *
5 * Complete reimplementation
6 * (C) 1997 Thomas Schoebel-Theuer,
7 * with heavy changes by Linus Torvalds
8 */
9
10 /*
11 * Notes on the allocation strategy:
12 *
13 * The dcache is a master of the icache - whenever a dcache entry
14 * exists, the inode will always exist. "iput()" is done either when
15 * the dcache entry is deleted or garbage collected.
16 */
17
18 #include <linux/ratelimit.h>
19 #include <linux/string.h>
20 #include <linux/mm.h>
21 #include <linux/fs.h>
22 #include <linux/fscrypt.h>
23 #include <linux/fsnotify.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/hash.h>
27 #include <linux/cache.h>
28 #include <linux/export.h>
29 #include <linux/security.h>
30 #include <linux/seqlock.h>
31 #include <linux/memblock.h>
32 #include <linux/bit_spinlock.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/list_lru.h>
35 #include "internal.h"
36 #include "mount.h"
37
38 #include <asm/runtime-const.h>
39
40 /*
41 * Usage:
42 * dcache->d_inode->i_lock protects:
43 * - i_dentry, d_u.d_alias, d_inode of aliases
44 * dcache_hash_bucket lock protects:
45 * - the dcache hash table
46 * s_roots bl list spinlock protects:
47 * - the s_roots list (see __d_drop)
48 * dentry->d_sb->s_dentry_lru_lock protects:
49 * - the dcache lru lists and counters
50 * d_lock protects:
51 * - d_flags
52 * - d_name
53 * - d_lru
54 * - d_count
55 * - d_unhashed()
56 * - d_parent and d_chilren
57 * - childrens' d_sib and d_parent
58 * - d_u.d_alias, d_inode
59 *
60 * Ordering:
61 * dentry->d_inode->i_lock
62 * dentry->d_lock
63 * dentry->d_sb->s_dentry_lru_lock
64 * dcache_hash_bucket lock
65 * s_roots lock
66 *
67 * If there is an ancestor relationship:
68 * dentry->d_parent->...->d_parent->d_lock
69 * ...
70 * dentry->d_parent->d_lock
71 * dentry->d_lock
72 *
73 * If no ancestor relationship:
74 * arbitrary, since it's serialized on rename_lock
75 */
76 static int sysctl_vfs_cache_pressure __read_mostly = 100;
77 static int sysctl_vfs_cache_pressure_denom __read_mostly = 100;
78
vfs_pressure_ratio(unsigned long val)79 unsigned long vfs_pressure_ratio(unsigned long val)
80 {
81 return mult_frac(val, sysctl_vfs_cache_pressure, sysctl_vfs_cache_pressure_denom);
82 }
83 EXPORT_SYMBOL_GPL(vfs_pressure_ratio);
84
85 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
86
87 EXPORT_SYMBOL(rename_lock);
88
89 static struct kmem_cache *__dentry_cache __ro_after_init;
90 #define dentry_cache runtime_const_ptr(__dentry_cache)
91
92 const struct qstr empty_name = QSTR_INIT("", 0);
93 EXPORT_SYMBOL(empty_name);
94 const struct qstr slash_name = QSTR_INIT("/", 1);
95 EXPORT_SYMBOL(slash_name);
96 const struct qstr dotdot_name = QSTR_INIT("..", 2);
97 EXPORT_SYMBOL(dotdot_name);
98
99 /*
100 * This is the single most critical data structure when it comes
101 * to the dcache: the hashtable for lookups. Somebody should try
102 * to make this good - I've just made it work.
103 *
104 * This hash-function tries to avoid losing too many bits of hash
105 * information, yet avoid using a prime hash-size or similar.
106 *
107 * Marking the variables "used" ensures that the compiler doesn't
108 * optimize them away completely on architectures with runtime
109 * constant infrastructure, this allows debuggers to see their
110 * values. But updating these values has no effect on those arches.
111 */
112
113 static unsigned int d_hash_shift __ro_after_init __used;
114
115 static struct hlist_bl_head *dentry_hashtable __ro_after_init __used;
116
d_hash(unsigned long hashlen)117 static inline struct hlist_bl_head *d_hash(unsigned long hashlen)
118 {
119 return runtime_const_ptr(dentry_hashtable) +
120 runtime_const_shift_right_32(hashlen, d_hash_shift);
121 }
122
123 #define IN_LOOKUP_SHIFT 10
124 static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
125
in_lookup_hash(const struct dentry * parent,unsigned int hash)126 static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
127 unsigned int hash)
128 {
129 hash += (unsigned long) parent / L1_CACHE_BYTES;
130 return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
131 }
132
133 struct dentry_stat_t {
134 long nr_dentry;
135 long nr_unused;
136 long age_limit; /* age in seconds */
137 long want_pages; /* pages requested by system */
138 long nr_negative; /* # of unused negative dentries */
139 long dummy; /* Reserved for future use */
140 };
141
142 static DEFINE_PER_CPU(long, nr_dentry);
143 static DEFINE_PER_CPU(long, nr_dentry_unused);
144 static DEFINE_PER_CPU(long, nr_dentry_negative);
145 static int dentry_negative_policy;
146
147 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
148 /* Statistics gathering. */
149 static struct dentry_stat_t dentry_stat = {
150 .age_limit = 45,
151 };
152
153 /*
154 * Here we resort to our own counters instead of using generic per-cpu counters
155 * for consistency with what the vfs inode code does. We are expected to harvest
156 * better code and performance by having our own specialized counters.
157 *
158 * Please note that the loop is done over all possible CPUs, not over all online
159 * CPUs. The reason for this is that we don't want to play games with CPUs going
160 * on and off. If one of them goes off, we will just keep their counters.
161 *
162 * glommer: See cffbc8a for details, and if you ever intend to change this,
163 * please update all vfs counters to match.
164 */
get_nr_dentry(void)165 static long get_nr_dentry(void)
166 {
167 int i;
168 long sum = 0;
169 for_each_possible_cpu(i)
170 sum += per_cpu(nr_dentry, i);
171 return sum < 0 ? 0 : sum;
172 }
173
get_nr_dentry_unused(void)174 static long get_nr_dentry_unused(void)
175 {
176 int i;
177 long sum = 0;
178 for_each_possible_cpu(i)
179 sum += per_cpu(nr_dentry_unused, i);
180 return sum < 0 ? 0 : sum;
181 }
182
get_nr_dentry_negative(void)183 static long get_nr_dentry_negative(void)
184 {
185 int i;
186 long sum = 0;
187
188 for_each_possible_cpu(i)
189 sum += per_cpu(nr_dentry_negative, i);
190 return sum < 0 ? 0 : sum;
191 }
192
proc_nr_dentry(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)193 static int proc_nr_dentry(const struct ctl_table *table, int write, void *buffer,
194 size_t *lenp, loff_t *ppos)
195 {
196 dentry_stat.nr_dentry = get_nr_dentry();
197 dentry_stat.nr_unused = get_nr_dentry_unused();
198 dentry_stat.nr_negative = get_nr_dentry_negative();
199 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
200 }
201
202 static const struct ctl_table fs_dcache_sysctls[] = {
203 {
204 .procname = "dentry-state",
205 .data = &dentry_stat,
206 .maxlen = 6*sizeof(long),
207 .mode = 0444,
208 .proc_handler = proc_nr_dentry,
209 },
210 {
211 .procname = "dentry-negative",
212 .data = &dentry_negative_policy,
213 .maxlen = sizeof(dentry_negative_policy),
214 .mode = 0644,
215 .proc_handler = proc_dointvec_minmax,
216 .extra1 = SYSCTL_ZERO,
217 .extra2 = SYSCTL_ONE,
218 },
219 };
220
221 static const struct ctl_table vm_dcache_sysctls[] = {
222 {
223 .procname = "vfs_cache_pressure",
224 .data = &sysctl_vfs_cache_pressure,
225 .maxlen = sizeof(sysctl_vfs_cache_pressure),
226 .mode = 0644,
227 .proc_handler = proc_dointvec_minmax,
228 .extra1 = SYSCTL_ZERO,
229 },
230 {
231 .procname = "vfs_cache_pressure_denom",
232 .data = &sysctl_vfs_cache_pressure_denom,
233 .maxlen = sizeof(sysctl_vfs_cache_pressure_denom),
234 .mode = 0644,
235 .proc_handler = proc_dointvec_minmax,
236 .extra1 = SYSCTL_ONE_HUNDRED,
237 },
238 };
239
init_fs_dcache_sysctls(void)240 static int __init init_fs_dcache_sysctls(void)
241 {
242 register_sysctl_init("vm", vm_dcache_sysctls);
243 register_sysctl_init("fs", fs_dcache_sysctls);
244 return 0;
245 }
246 fs_initcall(init_fs_dcache_sysctls);
247 #endif
248
249 /*
250 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
251 * The strings are both count bytes long, and count is non-zero.
252 */
253 #ifdef CONFIG_DCACHE_WORD_ACCESS
254
255 #include <asm/word-at-a-time.h>
256 /*
257 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
258 * aligned allocation for this particular component. We don't
259 * strictly need the load_unaligned_zeropad() safety, but it
260 * doesn't hurt either.
261 *
262 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
263 * need the careful unaligned handling.
264 */
dentry_string_cmp(const unsigned char * cs,const unsigned char * ct,unsigned tcount)265 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
266 {
267 unsigned long a,b,mask;
268
269 for (;;) {
270 a = read_word_at_a_time(cs);
271 b = load_unaligned_zeropad(ct);
272 if (tcount < sizeof(unsigned long))
273 break;
274 if (unlikely(a != b))
275 return 1;
276 cs += sizeof(unsigned long);
277 ct += sizeof(unsigned long);
278 tcount -= sizeof(unsigned long);
279 if (!tcount)
280 return 0;
281 }
282 mask = bytemask_from_count(tcount);
283 return unlikely(!!((a ^ b) & mask));
284 }
285
286 #else
287
dentry_string_cmp(const unsigned char * cs,const unsigned char * ct,unsigned tcount)288 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
289 {
290 do {
291 if (*cs != *ct)
292 return 1;
293 cs++;
294 ct++;
295 tcount--;
296 } while (tcount);
297 return 0;
298 }
299
300 #endif
301
dentry_cmp(const struct dentry * dentry,const unsigned char * ct,unsigned tcount)302 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
303 {
304 /*
305 * Be careful about RCU walk racing with rename:
306 * use 'READ_ONCE' to fetch the name pointer.
307 *
308 * NOTE! Even if a rename will mean that the length
309 * was not loaded atomically, we don't care. The
310 * RCU walk will check the sequence count eventually,
311 * and catch it. And we won't overrun the buffer,
312 * because we're reading the name pointer atomically,
313 * and a dentry name is guaranteed to be properly
314 * terminated with a NUL byte.
315 *
316 * End result: even if 'len' is wrong, we'll exit
317 * early because the data cannot match (there can
318 * be no NUL in the ct/tcount data)
319 */
320 const unsigned char *cs = READ_ONCE(dentry->d_name.name);
321
322 return dentry_string_cmp(cs, ct, tcount);
323 }
324
325 /*
326 * long names are allocated separately from dentry and never modified.
327 * Refcounted, freeing is RCU-delayed. See take_dentry_name_snapshot()
328 * for the reason why ->count and ->head can't be combined into a union.
329 * dentry_string_cmp() relies upon ->name[] being word-aligned.
330 */
331 struct external_name {
332 atomic_t count;
333 struct rcu_head head;
334 unsigned char name[] __aligned(sizeof(unsigned long));
335 };
336
external_name(struct dentry * dentry)337 static inline struct external_name *external_name(struct dentry *dentry)
338 {
339 return container_of(dentry->d_name.name, struct external_name, name[0]);
340 }
341
__d_free(struct rcu_head * head)342 static void __d_free(struct rcu_head *head)
343 {
344 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
345
346 kmem_cache_free(dentry_cache, dentry);
347 }
348
__d_free_external(struct rcu_head * head)349 static void __d_free_external(struct rcu_head *head)
350 {
351 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
352 kfree(external_name(dentry));
353 kmem_cache_free(dentry_cache, dentry);
354 }
355
dname_external(const struct dentry * dentry)356 static inline int dname_external(const struct dentry *dentry)
357 {
358 return dentry->d_name.name != dentry->d_shortname.string;
359 }
360
take_dentry_name_snapshot(struct name_snapshot * name,struct dentry * dentry)361 void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
362 {
363 unsigned seq;
364 const unsigned char *s;
365
366 rcu_read_lock();
367 retry:
368 seq = read_seqcount_begin(&dentry->d_seq);
369 s = READ_ONCE(dentry->d_name.name);
370 name->name.hash_len = dentry->d_name.hash_len;
371 name->name.name = name->inline_name.string;
372 if (likely(s == dentry->d_shortname.string)) {
373 name->inline_name = dentry->d_shortname;
374 } else {
375 struct external_name *p;
376 p = container_of(s, struct external_name, name[0]);
377 // get a valid reference
378 if (unlikely(!atomic_inc_not_zero(&p->count)))
379 goto retry;
380 name->name.name = s;
381 }
382 if (read_seqcount_retry(&dentry->d_seq, seq)) {
383 release_dentry_name_snapshot(name);
384 goto retry;
385 }
386 rcu_read_unlock();
387 }
388 EXPORT_SYMBOL(take_dentry_name_snapshot);
389
release_dentry_name_snapshot(struct name_snapshot * name)390 void release_dentry_name_snapshot(struct name_snapshot *name)
391 {
392 if (unlikely(name->name.name != name->inline_name.string)) {
393 struct external_name *p;
394 p = container_of(name->name.name, struct external_name, name[0]);
395 if (unlikely(atomic_dec_and_test(&p->count)))
396 kfree_rcu(p, head);
397 }
398 }
399 EXPORT_SYMBOL(release_dentry_name_snapshot);
400
__d_set_inode_and_type(struct dentry * dentry,struct inode * inode,unsigned type_flags)401 static inline void __d_set_inode_and_type(struct dentry *dentry,
402 struct inode *inode,
403 unsigned type_flags)
404 {
405 unsigned flags;
406
407 dentry->d_inode = inode;
408 flags = READ_ONCE(dentry->d_flags);
409 flags &= ~DCACHE_ENTRY_TYPE;
410 flags |= type_flags;
411 smp_store_release(&dentry->d_flags, flags);
412 }
413
__d_clear_type_and_inode(struct dentry * dentry)414 static inline void __d_clear_type_and_inode(struct dentry *dentry)
415 {
416 unsigned flags = READ_ONCE(dentry->d_flags);
417
418 flags &= ~DCACHE_ENTRY_TYPE;
419 WRITE_ONCE(dentry->d_flags, flags);
420 dentry->d_inode = NULL;
421 /*
422 * The negative counter only tracks dentries on the LRU. Don't inc if
423 * d_lru is on another list.
424 */
425 if ((flags & (DCACHE_LRU_LIST|DCACHE_SHRINK_LIST)) == DCACHE_LRU_LIST)
426 this_cpu_inc(nr_dentry_negative);
427 }
428
dentry_free(struct dentry * dentry)429 static void dentry_free(struct dentry *dentry)
430 {
431 WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
432 if (unlikely(dname_external(dentry))) {
433 struct external_name *p = external_name(dentry);
434 if (likely(atomic_dec_and_test(&p->count))) {
435 call_rcu(&dentry->d_u.d_rcu, __d_free_external);
436 return;
437 }
438 }
439 /* if dentry was never visible to RCU, immediate free is OK */
440 if (dentry->d_flags & DCACHE_NORCU)
441 __d_free(&dentry->d_u.d_rcu);
442 else
443 call_rcu(&dentry->d_u.d_rcu, __d_free);
444 }
445
446 /*
447 * Release the dentry's inode, using the filesystem
448 * d_iput() operation if defined.
449 */
dentry_unlink_inode(struct dentry * dentry)450 static void dentry_unlink_inode(struct dentry * dentry)
451 __releases(dentry->d_lock)
452 __releases(dentry->d_inode->i_lock)
453 {
454 struct inode *inode = dentry->d_inode;
455
456 raw_write_seqcount_begin(&dentry->d_seq);
457 __d_clear_type_and_inode(dentry);
458 hlist_del_init(&dentry->d_u.d_alias);
459 raw_write_seqcount_end(&dentry->d_seq);
460 spin_unlock(&dentry->d_lock);
461 spin_unlock(&inode->i_lock);
462 if (!inode->i_nlink)
463 fsnotify_inoderemove(inode);
464 if (dentry->d_op && dentry->d_op->d_iput)
465 dentry->d_op->d_iput(dentry, inode);
466 else
467 iput(inode);
468 }
469
470 /*
471 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
472 * is in use - which includes both the "real" per-superblock
473 * LRU list _and_ the DCACHE_SHRINK_LIST use.
474 *
475 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
476 * on the shrink list (ie not on the superblock LRU list).
477 *
478 * The per-cpu "nr_dentry_unused" counters are updated with
479 * the DCACHE_LRU_LIST bit.
480 *
481 * The per-cpu "nr_dentry_negative" counters are only updated
482 * when deleted from or added to the per-superblock LRU list, not
483 * from/to the shrink list. That is to avoid an unneeded dec/inc
484 * pair when moving from LRU to shrink list in select_collect().
485 *
486 * These helper functions make sure we always follow the
487 * rules. d_lock must be held by the caller.
488 */
489 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
d_lru_add(struct dentry * dentry)490 static void d_lru_add(struct dentry *dentry)
491 {
492 D_FLAG_VERIFY(dentry, 0);
493 dentry->d_flags |= DCACHE_LRU_LIST;
494 this_cpu_inc(nr_dentry_unused);
495 if (d_is_negative(dentry))
496 this_cpu_inc(nr_dentry_negative);
497 WARN_ON_ONCE(!list_lru_add_obj(
498 &dentry->d_sb->s_dentry_lru, &dentry->d_lru));
499 }
500
d_lru_del(struct dentry * dentry)501 static void d_lru_del(struct dentry *dentry)
502 {
503 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
504 dentry->d_flags &= ~DCACHE_LRU_LIST;
505 this_cpu_dec(nr_dentry_unused);
506 if (d_is_negative(dentry))
507 this_cpu_dec(nr_dentry_negative);
508 WARN_ON_ONCE(!list_lru_del_obj(
509 &dentry->d_sb->s_dentry_lru, &dentry->d_lru));
510 }
511
d_shrink_del(struct dentry * dentry)512 static void d_shrink_del(struct dentry *dentry)
513 {
514 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
515 list_del_init(&dentry->d_lru);
516 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
517 this_cpu_dec(nr_dentry_unused);
518 }
519
d_shrink_add(struct dentry * dentry,struct list_head * list)520 static void d_shrink_add(struct dentry *dentry, struct list_head *list)
521 {
522 D_FLAG_VERIFY(dentry, 0);
523 list_add(&dentry->d_lru, list);
524 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
525 this_cpu_inc(nr_dentry_unused);
526 }
527
528 /*
529 * These can only be called under the global LRU lock, ie during the
530 * callback for freeing the LRU list. "isolate" removes it from the
531 * LRU lists entirely, while shrink_move moves it to the indicated
532 * private list.
533 */
d_lru_isolate(struct list_lru_one * lru,struct dentry * dentry)534 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
535 {
536 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
537 dentry->d_flags &= ~DCACHE_LRU_LIST;
538 this_cpu_dec(nr_dentry_unused);
539 if (d_is_negative(dentry))
540 this_cpu_dec(nr_dentry_negative);
541 list_lru_isolate(lru, &dentry->d_lru);
542 }
543
d_lru_shrink_move(struct list_lru_one * lru,struct dentry * dentry,struct list_head * list)544 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
545 struct list_head *list)
546 {
547 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
548 dentry->d_flags |= DCACHE_SHRINK_LIST;
549 if (d_is_negative(dentry))
550 this_cpu_dec(nr_dentry_negative);
551 list_lru_isolate_move(lru, &dentry->d_lru, list);
552 }
553
___d_drop(struct dentry * dentry)554 static void ___d_drop(struct dentry *dentry)
555 {
556 struct hlist_bl_head *b;
557 /*
558 * Hashed dentries are normally on the dentry hashtable,
559 * with the exception of those newly allocated by
560 * d_obtain_root, which are always IS_ROOT:
561 */
562 if (unlikely(IS_ROOT(dentry)))
563 b = &dentry->d_sb->s_roots;
564 else
565 b = d_hash(dentry->d_name.hash);
566
567 hlist_bl_lock(b);
568 __hlist_bl_del(&dentry->d_hash);
569 hlist_bl_unlock(b);
570 }
571
__d_drop(struct dentry * dentry)572 void __d_drop(struct dentry *dentry)
573 {
574 if (!d_unhashed(dentry)) {
575 ___d_drop(dentry);
576 dentry->d_hash.pprev = NULL;
577 write_seqcount_invalidate(&dentry->d_seq);
578 }
579 }
580 EXPORT_SYMBOL(__d_drop);
581
582 /**
583 * d_drop - drop a dentry
584 * @dentry: dentry to drop
585 *
586 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
587 * be found through a VFS lookup any more. Note that this is different from
588 * deleting the dentry - d_delete will try to mark the dentry negative if
589 * possible, giving a successful _negative_ lookup, while d_drop will
590 * just make the cache lookup fail.
591 *
592 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
593 * reason (NFS timeouts or autofs deletes).
594 *
595 * __d_drop requires dentry->d_lock
596 *
597 * ___d_drop doesn't mark dentry as "unhashed"
598 * (dentry->d_hash.pprev will be LIST_POISON2, not NULL).
599 */
d_drop(struct dentry * dentry)600 void d_drop(struct dentry *dentry)
601 {
602 spin_lock(&dentry->d_lock);
603 __d_drop(dentry);
604 spin_unlock(&dentry->d_lock);
605 }
606 EXPORT_SYMBOL(d_drop);
607
dentry_unlist(struct dentry * dentry)608 static inline void dentry_unlist(struct dentry *dentry)
609 {
610 struct dentry *next;
611 /*
612 * Inform d_walk() and shrink_dentry_list() that we are no longer
613 * attached to the dentry tree
614 */
615 dentry->d_flags |= DCACHE_DENTRY_KILLED;
616 if (unlikely(hlist_unhashed(&dentry->d_sib)))
617 return;
618 __hlist_del(&dentry->d_sib);
619 /*
620 * Cursors can move around the list of children. While we'd been
621 * a normal list member, it didn't matter - ->d_sib.next would've
622 * been updated. However, from now on it won't be and for the
623 * things like d_walk() it might end up with a nasty surprise.
624 * Normally d_walk() doesn't care about cursors moving around -
625 * ->d_lock on parent prevents that and since a cursor has no children
626 * of its own, we get through it without ever unlocking the parent.
627 * There is one exception, though - if we ascend from a child that
628 * gets killed as soon as we unlock it, the next sibling is found
629 * using the value left in its ->d_sib.next. And if _that_
630 * pointed to a cursor, and cursor got moved (e.g. by lseek())
631 * before d_walk() regains parent->d_lock, we'll end up skipping
632 * everything the cursor had been moved past.
633 *
634 * Solution: make sure that the pointer left behind in ->d_sib.next
635 * points to something that won't be moving around. I.e. skip the
636 * cursors.
637 */
638 while (dentry->d_sib.next) {
639 next = hlist_entry(dentry->d_sib.next, struct dentry, d_sib);
640 if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
641 break;
642 dentry->d_sib.next = next->d_sib.next;
643 }
644 }
645
__dentry_kill(struct dentry * dentry)646 static struct dentry *__dentry_kill(struct dentry *dentry)
647 {
648 struct dentry *parent = NULL;
649 bool can_free = true;
650
651 /*
652 * The dentry is now unrecoverably dead to the world.
653 */
654 lockref_mark_dead(&dentry->d_lockref);
655
656 /*
657 * inform the fs via d_prune that this dentry is about to be
658 * unhashed and destroyed.
659 */
660 if (dentry->d_flags & DCACHE_OP_PRUNE)
661 dentry->d_op->d_prune(dentry);
662
663 if (dentry->d_flags & DCACHE_LRU_LIST) {
664 if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
665 d_lru_del(dentry);
666 }
667 /* if it was on the hash then remove it */
668 __d_drop(dentry);
669 if (dentry->d_inode)
670 dentry_unlink_inode(dentry);
671 else
672 spin_unlock(&dentry->d_lock);
673 this_cpu_dec(nr_dentry);
674 if (dentry->d_op && dentry->d_op->d_release)
675 dentry->d_op->d_release(dentry);
676
677 cond_resched();
678 /* now that it's negative, ->d_parent is stable */
679 if (!IS_ROOT(dentry)) {
680 parent = dentry->d_parent;
681 spin_lock(&parent->d_lock);
682 }
683 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
684 dentry_unlist(dentry);
685 if (dentry->d_flags & DCACHE_SHRINK_LIST)
686 can_free = false;
687 spin_unlock(&dentry->d_lock);
688 if (likely(can_free))
689 dentry_free(dentry);
690 if (parent && --parent->d_lockref.count) {
691 spin_unlock(&parent->d_lock);
692 return NULL;
693 }
694 return parent;
695 }
696
697 /*
698 * Lock a dentry for feeding it to __dentry_kill().
699 * Called under rcu_read_lock() and dentry->d_lock; the former
700 * guarantees that nothing we access will be freed under us.
701 * Note that dentry is *not* protected from concurrent dentry_kill(),
702 * d_delete(), etc.
703 *
704 * Return false if dentry is busy. Otherwise, return true and have
705 * that dentry's inode locked.
706 */
707
lock_for_kill(struct dentry * dentry)708 static bool lock_for_kill(struct dentry *dentry)
709 {
710 struct inode *inode = dentry->d_inode;
711
712 if (unlikely(dentry->d_lockref.count))
713 return false;
714
715 if (!inode || likely(spin_trylock(&inode->i_lock)))
716 return true;
717
718 do {
719 spin_unlock(&dentry->d_lock);
720 spin_lock(&inode->i_lock);
721 spin_lock(&dentry->d_lock);
722 if (likely(inode == dentry->d_inode))
723 break;
724 spin_unlock(&inode->i_lock);
725 inode = dentry->d_inode;
726 } while (inode);
727 if (likely(!dentry->d_lockref.count))
728 return true;
729 if (inode)
730 spin_unlock(&inode->i_lock);
731 return false;
732 }
733
734 /*
735 * Decide if dentry is worth retaining. Usually this is called with dentry
736 * locked; if not locked, we are more limited and might not be able to tell
737 * without a lock. False in this case means "punt to locked path and recheck".
738 *
739 * In case we aren't locked, these predicates are not "stable". However, it is
740 * sufficient that at some point after we dropped the reference the dentry was
741 * hashed and the flags had the proper value. Other dentry users may have
742 * re-gotten a reference to the dentry and change that, but our work is done -
743 * we can leave the dentry around with a zero refcount.
744 */
retain_dentry(struct dentry * dentry,bool locked)745 static inline bool retain_dentry(struct dentry *dentry, bool locked)
746 {
747 unsigned int d_flags;
748
749 smp_rmb();
750 d_flags = READ_ONCE(dentry->d_flags);
751
752 // Unreachable? Nobody would be able to look it up, no point retaining
753 if (unlikely(d_unhashed(dentry)))
754 return false;
755
756 // Same if it's disconnected
757 if (unlikely(d_flags & DCACHE_DISCONNECTED))
758 return false;
759
760 // ->d_delete() might tell us not to bother, but that requires
761 // ->d_lock; can't decide without it
762 if (unlikely(d_flags & DCACHE_OP_DELETE)) {
763 if (!locked || dentry->d_op->d_delete(dentry))
764 return false;
765 }
766
767 // Explicitly told not to bother
768 if (unlikely(d_flags & DCACHE_DONTCACHE))
769 return false;
770
771 // At this point it looks like we ought to keep it. We also might
772 // need to do something - put it on LRU if it wasn't there already
773 // and mark it referenced if it was on LRU, but not marked yet.
774 // Unfortunately, both actions require ->d_lock, so in lockless
775 // case we'd have to punt rather than doing those.
776 if (unlikely(!(d_flags & DCACHE_LRU_LIST))) {
777 if (!locked)
778 return false;
779 d_lru_add(dentry);
780 } else if (unlikely(!(d_flags & DCACHE_REFERENCED))) {
781 if (!locked)
782 return false;
783 dentry->d_flags |= DCACHE_REFERENCED;
784 }
785 return true;
786 }
787
d_mark_dontcache(struct inode * inode)788 void d_mark_dontcache(struct inode *inode)
789 {
790 struct dentry *de;
791
792 spin_lock(&inode->i_lock);
793 hlist_for_each_entry(de, &inode->i_dentry, d_u.d_alias) {
794 spin_lock(&de->d_lock);
795 de->d_flags |= DCACHE_DONTCACHE;
796 spin_unlock(&de->d_lock);
797 }
798 inode_state_set(inode, I_DONTCACHE);
799 spin_unlock(&inode->i_lock);
800 }
801 EXPORT_SYMBOL(d_mark_dontcache);
802
803 /*
804 * Try to do a lockless dput(), and return whether that was successful.
805 *
806 * If unsuccessful, we return false, having already taken the dentry lock.
807 * In that case refcount is guaranteed to be zero and we have already
808 * decided that it's not worth keeping around.
809 *
810 * The caller needs to hold the RCU read lock, so that the dentry is
811 * guaranteed to stay around even if the refcount goes down to zero!
812 */
fast_dput(struct dentry * dentry)813 static inline bool fast_dput(struct dentry *dentry)
814 {
815 int ret;
816
817 /*
818 * try to decrement the lockref optimistically.
819 */
820 ret = lockref_put_return(&dentry->d_lockref);
821
822 /*
823 * If the lockref_put_return() failed due to the lock being held
824 * by somebody else, the fast path has failed. We will need to
825 * get the lock, and then check the count again.
826 */
827 if (unlikely(ret < 0)) {
828 spin_lock(&dentry->d_lock);
829 if (WARN_ON_ONCE(dentry->d_lockref.count <= 0)) {
830 spin_unlock(&dentry->d_lock);
831 return true;
832 }
833 dentry->d_lockref.count--;
834 goto locked;
835 }
836
837 /*
838 * If we weren't the last ref, we're done.
839 */
840 if (ret)
841 return true;
842
843 /*
844 * Can we decide that decrement of refcount is all we needed without
845 * taking the lock? There's a very common case when it's all we need -
846 * dentry looks like it ought to be retained and there's nothing else
847 * to do.
848 */
849 if (retain_dentry(dentry, false))
850 return true;
851
852 /*
853 * Either not worth retaining or we can't tell without the lock.
854 * Get the lock, then. We've already decremented the refcount to 0,
855 * but we'll need to re-check the situation after getting the lock.
856 */
857 spin_lock(&dentry->d_lock);
858
859 /*
860 * Did somebody else grab a reference to it in the meantime, and
861 * we're no longer the last user after all? Alternatively, somebody
862 * else could have killed it and marked it dead. Either way, we
863 * don't need to do anything else.
864 */
865 locked:
866 if (dentry->d_lockref.count || retain_dentry(dentry, true)) {
867 spin_unlock(&dentry->d_lock);
868 return true;
869 }
870 return false;
871 }
872
873
874 /*
875 * This is dput
876 *
877 * This is complicated by the fact that we do not want to put
878 * dentries that are no longer on any hash chain on the unused
879 * list: we'd much rather just get rid of them immediately.
880 *
881 * However, that implies that we have to traverse the dentry
882 * tree upwards to the parents which might _also_ now be
883 * scheduled for deletion (it may have been only waiting for
884 * its last child to go away).
885 *
886 * This tail recursion is done by hand as we don't want to depend
887 * on the compiler to always get this right (gcc generally doesn't).
888 * Real recursion would eat up our stack space.
889 */
890
891 /*
892 * dput - release a dentry
893 * @dentry: dentry to release
894 *
895 * Release a dentry. This will drop the usage count and if appropriate
896 * call the dentry unlink method as well as removing it from the queues and
897 * releasing its resources. If the parent dentries were scheduled for release
898 * they too may now get deleted.
899 */
dput(struct dentry * dentry)900 void dput(struct dentry *dentry)
901 {
902 if (!dentry)
903 return;
904 might_sleep();
905 rcu_read_lock();
906 if (likely(fast_dput(dentry))) {
907 rcu_read_unlock();
908 return;
909 }
910 while (lock_for_kill(dentry)) {
911 rcu_read_unlock();
912 dentry = __dentry_kill(dentry);
913 if (!dentry)
914 return;
915 if (retain_dentry(dentry, true)) {
916 spin_unlock(&dentry->d_lock);
917 return;
918 }
919 rcu_read_lock();
920 }
921 rcu_read_unlock();
922 spin_unlock(&dentry->d_lock);
923 }
924 EXPORT_SYMBOL(dput);
925
to_shrink_list(struct dentry * dentry,struct list_head * list)926 static void to_shrink_list(struct dentry *dentry, struct list_head *list)
927 __must_hold(&dentry->d_lock)
928 {
929 if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) {
930 if (dentry->d_flags & DCACHE_LRU_LIST)
931 d_lru_del(dentry);
932 d_shrink_add(dentry, list);
933 }
934 }
935
dput_to_list(struct dentry * dentry,struct list_head * list)936 void dput_to_list(struct dentry *dentry, struct list_head *list)
937 {
938 rcu_read_lock();
939 if (likely(fast_dput(dentry))) {
940 rcu_read_unlock();
941 return;
942 }
943 rcu_read_unlock();
944 to_shrink_list(dentry, list);
945 spin_unlock(&dentry->d_lock);
946 }
947
dget_parent(struct dentry * dentry)948 struct dentry *dget_parent(struct dentry *dentry)
949 {
950 int gotref;
951 struct dentry *ret;
952 unsigned seq;
953
954 /*
955 * Do optimistic parent lookup without any
956 * locking.
957 */
958 rcu_read_lock();
959 seq = raw_seqcount_begin(&dentry->d_seq);
960 ret = READ_ONCE(dentry->d_parent);
961 gotref = lockref_get_not_zero(&ret->d_lockref);
962 rcu_read_unlock();
963 if (likely(gotref)) {
964 if (!read_seqcount_retry(&dentry->d_seq, seq))
965 return ret;
966 dput(ret);
967 }
968
969 repeat:
970 /*
971 * Don't need rcu_dereference because we re-check it was correct under
972 * the lock.
973 */
974 rcu_read_lock();
975 ret = dentry->d_parent;
976 spin_lock(&ret->d_lock);
977 if (unlikely(ret != dentry->d_parent)) {
978 spin_unlock(&ret->d_lock);
979 rcu_read_unlock();
980 goto repeat;
981 }
982 rcu_read_unlock();
983 BUG_ON(!ret->d_lockref.count);
984 ret->d_lockref.count++;
985 spin_unlock(&ret->d_lock);
986 return ret;
987 }
988 EXPORT_SYMBOL(dget_parent);
989
__d_find_any_alias(struct inode * inode)990 static struct dentry * __d_find_any_alias(struct inode *inode)
991 {
992 struct dentry *alias;
993
994 if (hlist_empty(&inode->i_dentry))
995 return NULL;
996 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
997 lockref_get(&alias->d_lockref);
998 return alias;
999 }
1000
1001 /**
1002 * d_find_any_alias - find any alias for a given inode
1003 * @inode: inode to find an alias for
1004 *
1005 * If any aliases exist for the given inode, take and return a
1006 * reference for one of them. If no aliases exist, return %NULL.
1007 */
d_find_any_alias(struct inode * inode)1008 struct dentry *d_find_any_alias(struct inode *inode)
1009 {
1010 struct dentry *de;
1011
1012 spin_lock(&inode->i_lock);
1013 de = __d_find_any_alias(inode);
1014 spin_unlock(&inode->i_lock);
1015 return de;
1016 }
1017 EXPORT_SYMBOL(d_find_any_alias);
1018
__d_find_alias(struct inode * inode)1019 static struct dentry *__d_find_alias(struct inode *inode)
1020 {
1021 struct dentry *alias;
1022
1023 if (S_ISDIR(inode->i_mode))
1024 return __d_find_any_alias(inode);
1025
1026 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
1027 spin_lock(&alias->d_lock);
1028 if (!d_unhashed(alias)) {
1029 dget_dlock(alias);
1030 spin_unlock(&alias->d_lock);
1031 return alias;
1032 }
1033 spin_unlock(&alias->d_lock);
1034 }
1035 return NULL;
1036 }
1037
1038 /**
1039 * d_find_alias - grab a hashed alias of inode
1040 * @inode: inode in question
1041 *
1042 * If inode has a hashed alias, or is a directory and has any alias,
1043 * acquire the reference to alias and return it. Otherwise return NULL.
1044 * Notice that if inode is a directory there can be only one alias and
1045 * it can be unhashed only if it has no children, or if it is the root
1046 * of a filesystem, or if the directory was renamed and d_revalidate
1047 * was the first vfs operation to notice.
1048 *
1049 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
1050 * any other hashed alias over that one.
1051 */
d_find_alias(struct inode * inode)1052 struct dentry *d_find_alias(struct inode *inode)
1053 {
1054 struct dentry *de = NULL;
1055
1056 if (!hlist_empty(&inode->i_dentry)) {
1057 spin_lock(&inode->i_lock);
1058 de = __d_find_alias(inode);
1059 spin_unlock(&inode->i_lock);
1060 }
1061 return de;
1062 }
1063 EXPORT_SYMBOL(d_find_alias);
1064
1065 /*
1066 * Caller MUST be holding rcu_read_lock() and be guaranteed
1067 * that inode won't get freed until rcu_read_unlock().
1068 */
d_find_alias_rcu(struct inode * inode)1069 struct dentry *d_find_alias_rcu(struct inode *inode)
1070 {
1071 struct hlist_head *l = &inode->i_dentry;
1072 struct dentry *de = NULL;
1073
1074 spin_lock(&inode->i_lock);
1075 // ->i_dentry and ->i_rcu are colocated, but the latter won't be
1076 // used without having I_FREEING set, which means no aliases left
1077 if (likely(!(inode_state_read(inode) & I_FREEING) && !hlist_empty(l))) {
1078 if (S_ISDIR(inode->i_mode)) {
1079 de = hlist_entry(l->first, struct dentry, d_u.d_alias);
1080 } else {
1081 hlist_for_each_entry(de, l, d_u.d_alias)
1082 if (!d_unhashed(de))
1083 break;
1084 }
1085 }
1086 spin_unlock(&inode->i_lock);
1087 return de;
1088 }
1089
1090 /*
1091 * Try to kill dentries associated with this inode.
1092 * WARNING: you must own a reference to inode.
1093 */
d_prune_aliases(struct inode * inode)1094 void d_prune_aliases(struct inode *inode)
1095 {
1096 LIST_HEAD(dispose);
1097 struct dentry *dentry;
1098
1099 spin_lock(&inode->i_lock);
1100 hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
1101 spin_lock(&dentry->d_lock);
1102 if (!dentry->d_lockref.count)
1103 to_shrink_list(dentry, &dispose);
1104 spin_unlock(&dentry->d_lock);
1105 }
1106 spin_unlock(&inode->i_lock);
1107 shrink_dentry_list(&dispose);
1108 }
1109 EXPORT_SYMBOL(d_prune_aliases);
1110
shrink_kill(struct dentry * victim)1111 static inline void shrink_kill(struct dentry *victim)
1112 {
1113 do {
1114 rcu_read_unlock();
1115 victim = __dentry_kill(victim);
1116 rcu_read_lock();
1117 } while (victim && lock_for_kill(victim));
1118 rcu_read_unlock();
1119 if (victim)
1120 spin_unlock(&victim->d_lock);
1121 }
1122
shrink_dentry_list(struct list_head * list)1123 void shrink_dentry_list(struct list_head *list)
1124 {
1125 while (!list_empty(list)) {
1126 struct dentry *dentry;
1127
1128 dentry = list_entry(list->prev, struct dentry, d_lru);
1129 spin_lock(&dentry->d_lock);
1130 rcu_read_lock();
1131 if (!lock_for_kill(dentry)) {
1132 bool can_free;
1133 rcu_read_unlock();
1134 d_shrink_del(dentry);
1135 can_free = dentry->d_flags & DCACHE_DENTRY_KILLED;
1136 spin_unlock(&dentry->d_lock);
1137 if (can_free)
1138 dentry_free(dentry);
1139 continue;
1140 }
1141 d_shrink_del(dentry);
1142 shrink_kill(dentry);
1143 }
1144 }
1145
dentry_lru_isolate(struct list_head * item,struct list_lru_one * lru,void * arg)1146 static enum lru_status dentry_lru_isolate(struct list_head *item,
1147 struct list_lru_one *lru, void *arg)
1148 {
1149 struct list_head *freeable = arg;
1150 struct dentry *dentry = container_of(item, struct dentry, d_lru);
1151
1152
1153 /*
1154 * we are inverting the lru lock/dentry->d_lock here,
1155 * so use a trylock. If we fail to get the lock, just skip
1156 * it
1157 */
1158 if (!spin_trylock(&dentry->d_lock))
1159 return LRU_SKIP;
1160
1161 /*
1162 * Referenced dentries are still in use. If they have active
1163 * counts, just remove them from the LRU. Otherwise give them
1164 * another pass through the LRU.
1165 */
1166 if (dentry->d_lockref.count) {
1167 d_lru_isolate(lru, dentry);
1168 spin_unlock(&dentry->d_lock);
1169 return LRU_REMOVED;
1170 }
1171
1172 if (dentry->d_flags & DCACHE_REFERENCED) {
1173 dentry->d_flags &= ~DCACHE_REFERENCED;
1174 spin_unlock(&dentry->d_lock);
1175
1176 /*
1177 * The list move itself will be made by the common LRU code. At
1178 * this point, we've dropped the dentry->d_lock but keep the
1179 * lru lock. This is safe to do, since every list movement is
1180 * protected by the lru lock even if both locks are held.
1181 *
1182 * This is guaranteed by the fact that all LRU management
1183 * functions are intermediated by the LRU API calls like
1184 * list_lru_add_obj and list_lru_del_obj. List movement in this file
1185 * only ever occur through this functions or through callbacks
1186 * like this one, that are called from the LRU API.
1187 *
1188 * The only exceptions to this are functions like
1189 * shrink_dentry_list, and code that first checks for the
1190 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be
1191 * operating only with stack provided lists after they are
1192 * properly isolated from the main list. It is thus, always a
1193 * local access.
1194 */
1195 return LRU_ROTATE;
1196 }
1197
1198 d_lru_shrink_move(lru, dentry, freeable);
1199 spin_unlock(&dentry->d_lock);
1200
1201 return LRU_REMOVED;
1202 }
1203
1204 /**
1205 * prune_dcache_sb - shrink the dcache
1206 * @sb: superblock
1207 * @sc: shrink control, passed to list_lru_shrink_walk()
1208 *
1209 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1210 * is done when we need more memory and called from the superblock shrinker
1211 * function.
1212 *
1213 * This function may fail to free any resources if all the dentries are in
1214 * use.
1215 */
prune_dcache_sb(struct super_block * sb,struct shrink_control * sc)1216 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
1217 {
1218 LIST_HEAD(dispose);
1219 long freed;
1220
1221 freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1222 dentry_lru_isolate, &dispose);
1223 shrink_dentry_list(&dispose);
1224 return freed;
1225 }
1226
dentry_lru_isolate_shrink(struct list_head * item,struct list_lru_one * lru,void * arg)1227 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1228 struct list_lru_one *lru, void *arg)
1229 {
1230 struct list_head *freeable = arg;
1231 struct dentry *dentry = container_of(item, struct dentry, d_lru);
1232
1233 /*
1234 * we are inverting the lru lock/dentry->d_lock here,
1235 * so use a trylock. If we fail to get the lock, just skip
1236 * it
1237 */
1238 if (!spin_trylock(&dentry->d_lock))
1239 return LRU_SKIP;
1240
1241 d_lru_shrink_move(lru, dentry, freeable);
1242 spin_unlock(&dentry->d_lock);
1243
1244 return LRU_REMOVED;
1245 }
1246
1247
1248 /**
1249 * shrink_dcache_sb - shrink dcache for a superblock
1250 * @sb: superblock
1251 *
1252 * Shrink the dcache for the specified super block. This is used to free
1253 * the dcache before unmounting a file system.
1254 */
shrink_dcache_sb(struct super_block * sb)1255 void shrink_dcache_sb(struct super_block *sb)
1256 {
1257 do {
1258 LIST_HEAD(dispose);
1259
1260 list_lru_walk(&sb->s_dentry_lru,
1261 dentry_lru_isolate_shrink, &dispose, 1024);
1262 shrink_dentry_list(&dispose);
1263 } while (list_lru_count(&sb->s_dentry_lru) > 0);
1264 }
1265 EXPORT_SYMBOL(shrink_dcache_sb);
1266
1267 /**
1268 * enum d_walk_ret - action to talke during tree walk
1269 * @D_WALK_CONTINUE: contrinue walk
1270 * @D_WALK_QUIT: quit walk
1271 * @D_WALK_NORETRY: quit when retry is needed
1272 * @D_WALK_SKIP: skip this dentry and its children
1273 */
1274 enum d_walk_ret {
1275 D_WALK_CONTINUE,
1276 D_WALK_QUIT,
1277 D_WALK_NORETRY,
1278 D_WALK_SKIP,
1279 };
1280
1281 /**
1282 * d_walk - walk the dentry tree
1283 * @parent: start of walk
1284 * @data: data passed to @enter() and @finish()
1285 * @enter: callback when first entering the dentry
1286 *
1287 * The @enter() callbacks are called with d_lock held.
1288 */
d_walk(struct dentry * parent,void * data,enum d_walk_ret (* enter)(void *,struct dentry *))1289 static void d_walk(struct dentry *parent, void *data,
1290 enum d_walk_ret (*enter)(void *, struct dentry *))
1291 {
1292 struct dentry *this_parent, *dentry;
1293 unsigned seq = 0;
1294 enum d_walk_ret ret;
1295 bool retry = true;
1296
1297 again:
1298 read_seqbegin_or_lock(&rename_lock, &seq);
1299 this_parent = parent;
1300 spin_lock(&this_parent->d_lock);
1301
1302 ret = enter(data, this_parent);
1303 switch (ret) {
1304 case D_WALK_CONTINUE:
1305 break;
1306 case D_WALK_QUIT:
1307 case D_WALK_SKIP:
1308 goto out_unlock;
1309 case D_WALK_NORETRY:
1310 retry = false;
1311 break;
1312 }
1313 repeat:
1314 dentry = d_first_child(this_parent);
1315 resume:
1316 hlist_for_each_entry_from(dentry, d_sib) {
1317 if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1318 continue;
1319
1320 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1321
1322 ret = enter(data, dentry);
1323 switch (ret) {
1324 case D_WALK_CONTINUE:
1325 break;
1326 case D_WALK_QUIT:
1327 spin_unlock(&dentry->d_lock);
1328 goto out_unlock;
1329 case D_WALK_NORETRY:
1330 retry = false;
1331 break;
1332 case D_WALK_SKIP:
1333 spin_unlock(&dentry->d_lock);
1334 continue;
1335 }
1336
1337 if (!hlist_empty(&dentry->d_children)) {
1338 spin_unlock(&this_parent->d_lock);
1339 spin_release(&dentry->d_lock.dep_map, _RET_IP_);
1340 this_parent = dentry;
1341 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1342 goto repeat;
1343 }
1344 spin_unlock(&dentry->d_lock);
1345 }
1346 /*
1347 * All done at this level ... ascend and resume the search.
1348 */
1349 rcu_read_lock();
1350 ascend:
1351 if (this_parent != parent) {
1352 dentry = this_parent;
1353 this_parent = dentry->d_parent;
1354
1355 spin_unlock(&dentry->d_lock);
1356 spin_lock(&this_parent->d_lock);
1357
1358 /* might go back up the wrong parent if we have had a rename. */
1359 if (need_seqretry(&rename_lock, seq))
1360 goto rename_retry;
1361 /* go into the first sibling still alive */
1362 hlist_for_each_entry_continue(dentry, d_sib) {
1363 if (likely(!(dentry->d_flags & DCACHE_DENTRY_KILLED))) {
1364 rcu_read_unlock();
1365 goto resume;
1366 }
1367 }
1368 goto ascend;
1369 }
1370 if (need_seqretry(&rename_lock, seq))
1371 goto rename_retry;
1372 rcu_read_unlock();
1373
1374 out_unlock:
1375 spin_unlock(&this_parent->d_lock);
1376 done_seqretry(&rename_lock, seq);
1377 return;
1378
1379 rename_retry:
1380 spin_unlock(&this_parent->d_lock);
1381 rcu_read_unlock();
1382 BUG_ON(seq & 1);
1383 if (!retry)
1384 return;
1385 seq = 1;
1386 goto again;
1387 }
1388
1389 struct check_mount {
1390 struct vfsmount *mnt;
1391 unsigned int mounted;
1392 };
1393
1394 /* locks: mount_locked_reader && dentry->d_lock */
path_check_mount(void * data,struct dentry * dentry)1395 static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry)
1396 {
1397 struct check_mount *info = data;
1398 struct path path = { .mnt = info->mnt, .dentry = dentry };
1399
1400 if (likely(!d_mountpoint(dentry)))
1401 return D_WALK_CONTINUE;
1402 if (__path_is_mountpoint(&path)) {
1403 info->mounted = 1;
1404 return D_WALK_QUIT;
1405 }
1406 return D_WALK_CONTINUE;
1407 }
1408
1409 /**
1410 * path_has_submounts - check for mounts over a dentry in the
1411 * current namespace.
1412 * @parent: path to check.
1413 *
1414 * Return true if the parent or its subdirectories contain
1415 * a mount point in the current namespace.
1416 */
path_has_submounts(const struct path * parent)1417 int path_has_submounts(const struct path *parent)
1418 {
1419 struct check_mount data = { .mnt = parent->mnt, .mounted = 0 };
1420
1421 guard(mount_locked_reader)();
1422 d_walk(parent->dentry, &data, path_check_mount);
1423
1424 return data.mounted;
1425 }
1426 EXPORT_SYMBOL(path_has_submounts);
1427
1428 /*
1429 * Called by mount code to set a mountpoint and check if the mountpoint is
1430 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1431 * subtree can become unreachable).
1432 *
1433 * Only one of d_invalidate() and d_set_mounted() must succeed. For
1434 * this reason take rename_lock and d_lock on dentry and ancestors.
1435 */
d_set_mounted(struct dentry * dentry)1436 int d_set_mounted(struct dentry *dentry)
1437 {
1438 struct dentry *p;
1439 int ret = -ENOENT;
1440 read_seqlock_excl(&rename_lock);
1441 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1442 /* Need exclusion wrt. d_invalidate() */
1443 spin_lock(&p->d_lock);
1444 if (unlikely(d_unhashed(p))) {
1445 spin_unlock(&p->d_lock);
1446 goto out;
1447 }
1448 spin_unlock(&p->d_lock);
1449 }
1450 spin_lock(&dentry->d_lock);
1451 if (!d_unlinked(dentry)) {
1452 ret = -EBUSY;
1453 if (!d_mountpoint(dentry)) {
1454 dentry->d_flags |= DCACHE_MOUNTED;
1455 ret = 0;
1456 }
1457 }
1458 spin_unlock(&dentry->d_lock);
1459 out:
1460 read_sequnlock_excl(&rename_lock);
1461 return ret;
1462 }
1463
1464 /*
1465 * Search the dentry child list of the specified parent,
1466 * and move any unused dentries to the end of the unused
1467 * list for prune_dcache(). We descend to the next level
1468 * whenever the d_children list is non-empty and continue
1469 * searching.
1470 *
1471 * It returns zero iff there are no unused children,
1472 * otherwise it returns the number of children moved to
1473 * the end of the unused list. This may not be the total
1474 * number of unused children, because select_parent can
1475 * drop the lock and return early due to latency
1476 * constraints.
1477 */
1478
1479 struct select_data {
1480 struct dentry *start;
1481 union {
1482 long found;
1483 struct dentry *victim;
1484 };
1485 struct list_head dispose;
1486 };
1487
select_collect(void * _data,struct dentry * dentry)1488 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1489 {
1490 struct select_data *data = _data;
1491 enum d_walk_ret ret = D_WALK_CONTINUE;
1492
1493 if (data->start == dentry)
1494 goto out;
1495
1496 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1497 data->found++;
1498 } else if (!dentry->d_lockref.count) {
1499 to_shrink_list(dentry, &data->dispose);
1500 data->found++;
1501 } else if (dentry->d_lockref.count < 0) {
1502 data->found++;
1503 }
1504 /*
1505 * We can return to the caller if we have found some (this
1506 * ensures forward progress). We'll be coming back to find
1507 * the rest.
1508 */
1509 if (!list_empty(&data->dispose))
1510 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1511 out:
1512 return ret;
1513 }
1514
select_collect2(void * _data,struct dentry * dentry)1515 static enum d_walk_ret select_collect2(void *_data, struct dentry *dentry)
1516 {
1517 struct select_data *data = _data;
1518 enum d_walk_ret ret = D_WALK_CONTINUE;
1519
1520 if (data->start == dentry)
1521 goto out;
1522
1523 if (!dentry->d_lockref.count) {
1524 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1525 rcu_read_lock();
1526 data->victim = dentry;
1527 return D_WALK_QUIT;
1528 }
1529 to_shrink_list(dentry, &data->dispose);
1530 }
1531 /*
1532 * We can return to the caller if we have found some (this
1533 * ensures forward progress). We'll be coming back to find
1534 * the rest.
1535 */
1536 if (!list_empty(&data->dispose))
1537 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1538 out:
1539 return ret;
1540 }
1541
1542 /**
1543 * shrink_dcache_parent - prune dcache
1544 * @parent: parent of entries to prune
1545 *
1546 * Prune the dcache to remove unused children of the parent dentry.
1547 */
shrink_dcache_parent(struct dentry * parent)1548 void shrink_dcache_parent(struct dentry *parent)
1549 {
1550 for (;;) {
1551 struct select_data data = {.start = parent};
1552
1553 INIT_LIST_HEAD(&data.dispose);
1554 d_walk(parent, &data, select_collect);
1555
1556 if (!list_empty(&data.dispose)) {
1557 shrink_dentry_list(&data.dispose);
1558 continue;
1559 }
1560
1561 cond_resched();
1562 if (!data.found)
1563 break;
1564 data.victim = NULL;
1565 d_walk(parent, &data, select_collect2);
1566 if (data.victim) {
1567 spin_lock(&data.victim->d_lock);
1568 if (!lock_for_kill(data.victim)) {
1569 spin_unlock(&data.victim->d_lock);
1570 rcu_read_unlock();
1571 } else {
1572 shrink_kill(data.victim);
1573 }
1574 }
1575 if (!list_empty(&data.dispose))
1576 shrink_dentry_list(&data.dispose);
1577 }
1578 }
1579 EXPORT_SYMBOL(shrink_dcache_parent);
1580
umount_check(void * _data,struct dentry * dentry)1581 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1582 {
1583 /* it has busy descendents; complain about those instead */
1584 if (!hlist_empty(&dentry->d_children))
1585 return D_WALK_CONTINUE;
1586
1587 /* root with refcount 1 is fine */
1588 if (dentry == _data && dentry->d_lockref.count == 1)
1589 return D_WALK_CONTINUE;
1590
1591 WARN(1, "BUG: Dentry %p{i=%lx,n=%pd} "
1592 " still in use (%d) [unmount of %s %s]\n",
1593 dentry,
1594 dentry->d_inode ?
1595 dentry->d_inode->i_ino : 0UL,
1596 dentry,
1597 dentry->d_lockref.count,
1598 dentry->d_sb->s_type->name,
1599 dentry->d_sb->s_id);
1600 return D_WALK_CONTINUE;
1601 }
1602
do_one_tree(struct dentry * dentry)1603 static void do_one_tree(struct dentry *dentry)
1604 {
1605 shrink_dcache_parent(dentry);
1606 d_walk(dentry, dentry, umount_check);
1607 d_drop(dentry);
1608 dput(dentry);
1609 }
1610
1611 /*
1612 * destroy the dentries attached to a superblock on unmounting
1613 */
shrink_dcache_for_umount(struct super_block * sb)1614 void shrink_dcache_for_umount(struct super_block *sb)
1615 {
1616 struct dentry *dentry;
1617
1618 rwsem_assert_held_write(&sb->s_umount);
1619
1620 dentry = sb->s_root;
1621 sb->s_root = NULL;
1622 do_one_tree(dentry);
1623
1624 while (!hlist_bl_empty(&sb->s_roots)) {
1625 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash));
1626 do_one_tree(dentry);
1627 }
1628 }
1629
find_submount(void * _data,struct dentry * dentry)1630 static enum d_walk_ret find_submount(void *_data, struct dentry *dentry)
1631 {
1632 struct dentry **victim = _data;
1633 if (d_mountpoint(dentry)) {
1634 *victim = dget_dlock(dentry);
1635 return D_WALK_QUIT;
1636 }
1637 return D_WALK_CONTINUE;
1638 }
1639
1640 /**
1641 * d_invalidate - detach submounts, prune dcache, and drop
1642 * @dentry: dentry to invalidate (aka detach, prune and drop)
1643 */
d_invalidate(struct dentry * dentry)1644 void d_invalidate(struct dentry *dentry)
1645 {
1646 bool had_submounts = false;
1647 spin_lock(&dentry->d_lock);
1648 if (d_unhashed(dentry)) {
1649 spin_unlock(&dentry->d_lock);
1650 return;
1651 }
1652 __d_drop(dentry);
1653 spin_unlock(&dentry->d_lock);
1654
1655 /* Negative dentries can be dropped without further checks */
1656 if (!dentry->d_inode)
1657 return;
1658
1659 shrink_dcache_parent(dentry);
1660 for (;;) {
1661 struct dentry *victim = NULL;
1662 d_walk(dentry, &victim, find_submount);
1663 if (!victim) {
1664 if (had_submounts)
1665 shrink_dcache_parent(dentry);
1666 return;
1667 }
1668 had_submounts = true;
1669 detach_mounts(victim);
1670 dput(victim);
1671 }
1672 }
1673 EXPORT_SYMBOL(d_invalidate);
1674
1675 /**
1676 * __d_alloc - allocate a dcache entry
1677 * @sb: filesystem it will belong to
1678 * @name: qstr of the name
1679 *
1680 * Allocates a dentry. It returns %NULL if there is insufficient memory
1681 * available. On a success the dentry is returned. The name passed in is
1682 * copied and the copy passed in may be reused after this call.
1683 */
1684
__d_alloc(struct super_block * sb,const struct qstr * name)1685 static struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1686 {
1687 struct dentry *dentry;
1688 char *dname;
1689 int err;
1690
1691 dentry = kmem_cache_alloc_lru(dentry_cache, &sb->s_dentry_lru,
1692 GFP_KERNEL);
1693 if (!dentry)
1694 return NULL;
1695
1696 /*
1697 * We guarantee that the inline name is always NUL-terminated.
1698 * This way the memcpy() done by the name switching in rename
1699 * will still always have a NUL at the end, even if we might
1700 * be overwriting an internal NUL character
1701 */
1702 dentry->d_shortname.string[DNAME_INLINE_LEN-1] = 0;
1703 if (unlikely(!name)) {
1704 name = &slash_name;
1705 dname = dentry->d_shortname.string;
1706 } else if (name->len > DNAME_INLINE_LEN-1) {
1707 size_t size = offsetof(struct external_name, name[1]);
1708 struct external_name *p = kmalloc(size + name->len,
1709 GFP_KERNEL_ACCOUNT |
1710 __GFP_RECLAIMABLE);
1711 if (!p) {
1712 kmem_cache_free(dentry_cache, dentry);
1713 return NULL;
1714 }
1715 atomic_set(&p->count, 1);
1716 dname = p->name;
1717 } else {
1718 dname = dentry->d_shortname.string;
1719 }
1720
1721 dentry->__d_name.len = name->len;
1722 dentry->__d_name.hash = name->hash;
1723 memcpy(dname, name->name, name->len);
1724 dname[name->len] = 0;
1725
1726 /* Make sure we always see the terminating NUL character */
1727 smp_store_release(&dentry->__d_name.name, dname); /* ^^^ */
1728
1729 dentry->d_flags = 0;
1730 lockref_init(&dentry->d_lockref);
1731 seqcount_spinlock_init(&dentry->d_seq, &dentry->d_lock);
1732 dentry->d_inode = NULL;
1733 dentry->d_parent = dentry;
1734 dentry->d_sb = sb;
1735 dentry->d_op = sb->__s_d_op;
1736 dentry->d_flags = sb->s_d_flags;
1737 dentry->d_fsdata = NULL;
1738 INIT_HLIST_BL_NODE(&dentry->d_hash);
1739 INIT_LIST_HEAD(&dentry->d_lru);
1740 INIT_HLIST_HEAD(&dentry->d_children);
1741 INIT_HLIST_NODE(&dentry->d_u.d_alias);
1742 INIT_HLIST_NODE(&dentry->d_sib);
1743
1744 if (dentry->d_op && dentry->d_op->d_init) {
1745 err = dentry->d_op->d_init(dentry);
1746 if (err) {
1747 if (dname_external(dentry))
1748 kfree(external_name(dentry));
1749 kmem_cache_free(dentry_cache, dentry);
1750 return NULL;
1751 }
1752 }
1753
1754 this_cpu_inc(nr_dentry);
1755
1756 return dentry;
1757 }
1758
1759 /**
1760 * d_alloc - allocate a dcache entry
1761 * @parent: parent of entry to allocate
1762 * @name: qstr of the name
1763 *
1764 * Allocates a dentry. It returns %NULL if there is insufficient memory
1765 * available. On a success the dentry is returned. The name passed in is
1766 * copied and the copy passed in may be reused after this call.
1767 */
d_alloc(struct dentry * parent,const struct qstr * name)1768 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1769 {
1770 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1771 if (!dentry)
1772 return NULL;
1773 spin_lock(&parent->d_lock);
1774 /*
1775 * don't need child lock because it is not subject
1776 * to concurrency here
1777 */
1778 dentry->d_parent = dget_dlock(parent);
1779 hlist_add_head(&dentry->d_sib, &parent->d_children);
1780 spin_unlock(&parent->d_lock);
1781
1782 return dentry;
1783 }
1784 EXPORT_SYMBOL(d_alloc);
1785
d_alloc_anon(struct super_block * sb)1786 struct dentry *d_alloc_anon(struct super_block *sb)
1787 {
1788 return __d_alloc(sb, NULL);
1789 }
1790 EXPORT_SYMBOL(d_alloc_anon);
1791
d_alloc_cursor(struct dentry * parent)1792 struct dentry *d_alloc_cursor(struct dentry * parent)
1793 {
1794 struct dentry *dentry = d_alloc_anon(parent->d_sb);
1795 if (dentry) {
1796 dentry->d_flags |= DCACHE_DENTRY_CURSOR;
1797 dentry->d_parent = dget(parent);
1798 }
1799 return dentry;
1800 }
1801
1802 /**
1803 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1804 * @sb: the superblock
1805 * @name: qstr of the name
1806 *
1807 * For a filesystem that just pins its dentries in memory and never
1808 * performs lookups at all, return an unhashed IS_ROOT dentry.
1809 * This is used for pipes, sockets et.al. - the stuff that should
1810 * never be anyone's children or parents. Unlike all other
1811 * dentries, these will not have RCU delay between dropping the
1812 * last reference and freeing them.
1813 *
1814 * The only user is alloc_file_pseudo() and that's what should
1815 * be considered a public interface. Don't use directly.
1816 */
d_alloc_pseudo(struct super_block * sb,const struct qstr * name)1817 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1818 {
1819 static const struct dentry_operations anon_ops = {
1820 .d_dname = simple_dname
1821 };
1822 struct dentry *dentry = __d_alloc(sb, name);
1823 if (likely(dentry)) {
1824 dentry->d_flags |= DCACHE_NORCU;
1825 /* d_op_flags(&anon_ops) is 0 */
1826 if (!dentry->d_op)
1827 dentry->d_op = &anon_ops;
1828 }
1829 return dentry;
1830 }
1831
d_alloc_name(struct dentry * parent,const char * name)1832 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1833 {
1834 struct qstr q;
1835
1836 q.name = name;
1837 q.hash_len = hashlen_string(parent, name);
1838 return d_alloc(parent, &q);
1839 }
1840 EXPORT_SYMBOL(d_alloc_name);
1841
1842 #define DCACHE_OP_FLAGS \
1843 (DCACHE_OP_HASH | DCACHE_OP_COMPARE | DCACHE_OP_REVALIDATE | \
1844 DCACHE_OP_WEAK_REVALIDATE | DCACHE_OP_DELETE | DCACHE_OP_PRUNE | \
1845 DCACHE_OP_REAL)
1846
d_op_flags(const struct dentry_operations * op)1847 static unsigned int d_op_flags(const struct dentry_operations *op)
1848 {
1849 unsigned int flags = 0;
1850 if (op) {
1851 if (op->d_hash)
1852 flags |= DCACHE_OP_HASH;
1853 if (op->d_compare)
1854 flags |= DCACHE_OP_COMPARE;
1855 if (op->d_revalidate)
1856 flags |= DCACHE_OP_REVALIDATE;
1857 if (op->d_weak_revalidate)
1858 flags |= DCACHE_OP_WEAK_REVALIDATE;
1859 if (op->d_delete)
1860 flags |= DCACHE_OP_DELETE;
1861 if (op->d_prune)
1862 flags |= DCACHE_OP_PRUNE;
1863 if (op->d_real)
1864 flags |= DCACHE_OP_REAL;
1865 }
1866 return flags;
1867 }
1868
d_set_d_op(struct dentry * dentry,const struct dentry_operations * op)1869 static void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1870 {
1871 unsigned int flags = d_op_flags(op);
1872 WARN_ON_ONCE(dentry->d_op);
1873 WARN_ON_ONCE(dentry->d_flags & DCACHE_OP_FLAGS);
1874 dentry->d_op = op;
1875 if (flags)
1876 dentry->d_flags |= flags;
1877 }
1878
set_default_d_op(struct super_block * s,const struct dentry_operations * ops)1879 void set_default_d_op(struct super_block *s, const struct dentry_operations *ops)
1880 {
1881 unsigned int flags = d_op_flags(ops);
1882 s->__s_d_op = ops;
1883 s->s_d_flags = (s->s_d_flags & ~DCACHE_OP_FLAGS) | flags;
1884 }
1885 EXPORT_SYMBOL(set_default_d_op);
1886
d_flags_for_inode(struct inode * inode)1887 static unsigned d_flags_for_inode(struct inode *inode)
1888 {
1889 unsigned add_flags = DCACHE_REGULAR_TYPE;
1890
1891 if (!inode)
1892 return DCACHE_MISS_TYPE;
1893
1894 if (S_ISDIR(inode->i_mode)) {
1895 add_flags = DCACHE_DIRECTORY_TYPE;
1896 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1897 if (unlikely(!inode->i_op->lookup))
1898 add_flags = DCACHE_AUTODIR_TYPE;
1899 else
1900 inode->i_opflags |= IOP_LOOKUP;
1901 }
1902 goto type_determined;
1903 }
1904
1905 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1906 if (unlikely(inode->i_op->get_link)) {
1907 add_flags = DCACHE_SYMLINK_TYPE;
1908 goto type_determined;
1909 }
1910 inode->i_opflags |= IOP_NOFOLLOW;
1911 }
1912
1913 if (unlikely(!S_ISREG(inode->i_mode)))
1914 add_flags = DCACHE_SPECIAL_TYPE;
1915
1916 type_determined:
1917 if (unlikely(IS_AUTOMOUNT(inode)))
1918 add_flags |= DCACHE_NEED_AUTOMOUNT;
1919 return add_flags;
1920 }
1921
__d_instantiate(struct dentry * dentry,struct inode * inode)1922 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1923 {
1924 unsigned add_flags = d_flags_for_inode(inode);
1925 WARN_ON(d_in_lookup(dentry));
1926
1927 spin_lock(&dentry->d_lock);
1928 /*
1929 * The negative counter only tracks dentries on the LRU. Don't dec if
1930 * d_lru is on another list.
1931 */
1932 if ((dentry->d_flags &
1933 (DCACHE_LRU_LIST|DCACHE_SHRINK_LIST)) == DCACHE_LRU_LIST)
1934 this_cpu_dec(nr_dentry_negative);
1935 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1936 raw_write_seqcount_begin(&dentry->d_seq);
1937 __d_set_inode_and_type(dentry, inode, add_flags);
1938 raw_write_seqcount_end(&dentry->d_seq);
1939 fsnotify_update_flags(dentry);
1940 spin_unlock(&dentry->d_lock);
1941 }
1942
1943 /**
1944 * d_instantiate - fill in inode information for a dentry
1945 * @entry: dentry to complete
1946 * @inode: inode to attach to this dentry
1947 *
1948 * Fill in inode information in the entry.
1949 *
1950 * This turns negative dentries into productive full members
1951 * of society.
1952 *
1953 * NOTE! This assumes that the inode count has been incremented
1954 * (or otherwise set) by the caller to indicate that it is now
1955 * in use by the dcache.
1956 */
1957
d_instantiate(struct dentry * entry,struct inode * inode)1958 void d_instantiate(struct dentry *entry, struct inode * inode)
1959 {
1960 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1961 if (inode) {
1962 security_d_instantiate(entry, inode);
1963 spin_lock(&inode->i_lock);
1964 __d_instantiate(entry, inode);
1965 spin_unlock(&inode->i_lock);
1966 }
1967 }
1968 EXPORT_SYMBOL(d_instantiate);
1969
1970 /*
1971 * This should be equivalent to d_instantiate() + unlock_new_inode(),
1972 * with lockdep-related part of unlock_new_inode() done before
1973 * anything else. Use that instead of open-coding d_instantiate()/
1974 * unlock_new_inode() combinations.
1975 */
d_instantiate_new(struct dentry * entry,struct inode * inode)1976 void d_instantiate_new(struct dentry *entry, struct inode *inode)
1977 {
1978 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1979 BUG_ON(!inode);
1980 lockdep_annotate_inode_mutex_key(inode);
1981 security_d_instantiate(entry, inode);
1982 spin_lock(&inode->i_lock);
1983 __d_instantiate(entry, inode);
1984 WARN_ON(!(inode_state_read(inode) & I_NEW));
1985 inode_state_clear(inode, I_NEW | I_CREATING);
1986 inode_wake_up_bit(inode, __I_NEW);
1987 spin_unlock(&inode->i_lock);
1988 }
1989 EXPORT_SYMBOL(d_instantiate_new);
1990
d_make_root(struct inode * root_inode)1991 struct dentry *d_make_root(struct inode *root_inode)
1992 {
1993 struct dentry *res = NULL;
1994
1995 if (root_inode) {
1996 res = d_alloc_anon(root_inode->i_sb);
1997 if (res)
1998 d_instantiate(res, root_inode);
1999 else
2000 iput(root_inode);
2001 }
2002 return res;
2003 }
2004 EXPORT_SYMBOL(d_make_root);
2005
__d_obtain_alias(struct inode * inode,bool disconnected)2006 static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected)
2007 {
2008 struct super_block *sb;
2009 struct dentry *new, *res;
2010
2011 if (!inode)
2012 return ERR_PTR(-ESTALE);
2013 if (IS_ERR(inode))
2014 return ERR_CAST(inode);
2015
2016 sb = inode->i_sb;
2017
2018 res = d_find_any_alias(inode); /* existing alias? */
2019 if (res)
2020 goto out;
2021
2022 new = d_alloc_anon(sb);
2023 if (!new) {
2024 res = ERR_PTR(-ENOMEM);
2025 goto out;
2026 }
2027
2028 security_d_instantiate(new, inode);
2029 spin_lock(&inode->i_lock);
2030 res = __d_find_any_alias(inode); /* recheck under lock */
2031 if (likely(!res)) { /* still no alias, attach a disconnected dentry */
2032 unsigned add_flags = d_flags_for_inode(inode);
2033
2034 if (disconnected)
2035 add_flags |= DCACHE_DISCONNECTED;
2036
2037 spin_lock(&new->d_lock);
2038 __d_set_inode_and_type(new, inode, add_flags);
2039 hlist_add_head(&new->d_u.d_alias, &inode->i_dentry);
2040 if (!disconnected) {
2041 hlist_bl_lock(&sb->s_roots);
2042 hlist_bl_add_head(&new->d_hash, &sb->s_roots);
2043 hlist_bl_unlock(&sb->s_roots);
2044 }
2045 spin_unlock(&new->d_lock);
2046 spin_unlock(&inode->i_lock);
2047 inode = NULL; /* consumed by new->d_inode */
2048 res = new;
2049 } else {
2050 spin_unlock(&inode->i_lock);
2051 dput(new);
2052 }
2053
2054 out:
2055 iput(inode);
2056 return res;
2057 }
2058
2059 /**
2060 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
2061 * @inode: inode to allocate the dentry for
2062 *
2063 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
2064 * similar open by handle operations. The returned dentry may be anonymous,
2065 * or may have a full name (if the inode was already in the cache).
2066 *
2067 * When called on a directory inode, we must ensure that the inode only ever
2068 * has one dentry. If a dentry is found, that is returned instead of
2069 * allocating a new one.
2070 *
2071 * On successful return, the reference to the inode has been transferred
2072 * to the dentry. In case of an error the reference on the inode is released.
2073 * To make it easier to use in export operations a %NULL or IS_ERR inode may
2074 * be passed in and the error will be propagated to the return value,
2075 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
2076 */
d_obtain_alias(struct inode * inode)2077 struct dentry *d_obtain_alias(struct inode *inode)
2078 {
2079 return __d_obtain_alias(inode, true);
2080 }
2081 EXPORT_SYMBOL(d_obtain_alias);
2082
2083 /**
2084 * d_obtain_root - find or allocate a dentry for a given inode
2085 * @inode: inode to allocate the dentry for
2086 *
2087 * Obtain an IS_ROOT dentry for the root of a filesystem.
2088 *
2089 * We must ensure that directory inodes only ever have one dentry. If a
2090 * dentry is found, that is returned instead of allocating a new one.
2091 *
2092 * On successful return, the reference to the inode has been transferred
2093 * to the dentry. In case of an error the reference on the inode is
2094 * released. A %NULL or IS_ERR inode may be passed in and will be the
2095 * error will be propagate to the return value, with a %NULL @inode
2096 * replaced by ERR_PTR(-ESTALE).
2097 */
d_obtain_root(struct inode * inode)2098 struct dentry *d_obtain_root(struct inode *inode)
2099 {
2100 return __d_obtain_alias(inode, false);
2101 }
2102 EXPORT_SYMBOL(d_obtain_root);
2103
2104 /**
2105 * d_add_ci - lookup or allocate new dentry with case-exact name
2106 * @dentry: the negative dentry that was passed to the parent's lookup func
2107 * @inode: the inode case-insensitive lookup has found
2108 * @name: the case-exact name to be associated with the returned dentry
2109 *
2110 * This is to avoid filling the dcache with case-insensitive names to the
2111 * same inode, only the actual correct case is stored in the dcache for
2112 * case-insensitive filesystems.
2113 *
2114 * For a case-insensitive lookup match and if the case-exact dentry
2115 * already exists in the dcache, use it and return it.
2116 *
2117 * If no entry exists with the exact case name, allocate new dentry with
2118 * the exact case, and return the spliced entry.
2119 */
d_add_ci(struct dentry * dentry,struct inode * inode,struct qstr * name)2120 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
2121 struct qstr *name)
2122 {
2123 struct dentry *found, *res;
2124
2125 /*
2126 * First check if a dentry matching the name already exists,
2127 * if not go ahead and create it now.
2128 */
2129 found = d_hash_and_lookup(dentry->d_parent, name);
2130 if (found) {
2131 iput(inode);
2132 return found;
2133 }
2134 if (d_in_lookup(dentry)) {
2135 found = d_alloc_parallel(dentry->d_parent, name,
2136 dentry->d_wait);
2137 if (IS_ERR(found) || !d_in_lookup(found)) {
2138 iput(inode);
2139 return found;
2140 }
2141 } else {
2142 found = d_alloc(dentry->d_parent, name);
2143 if (!found) {
2144 iput(inode);
2145 return ERR_PTR(-ENOMEM);
2146 }
2147 }
2148 res = d_splice_alias(inode, found);
2149 if (res) {
2150 d_lookup_done(found);
2151 dput(found);
2152 return res;
2153 }
2154 return found;
2155 }
2156 EXPORT_SYMBOL(d_add_ci);
2157
2158 /**
2159 * d_same_name - compare dentry name with case-exact name
2160 * @dentry: the negative dentry that was passed to the parent's lookup func
2161 * @parent: parent dentry
2162 * @name: the case-exact name to be associated with the returned dentry
2163 *
2164 * Return: true if names are same, or false
2165 */
d_same_name(const struct dentry * dentry,const struct dentry * parent,const struct qstr * name)2166 bool d_same_name(const struct dentry *dentry, const struct dentry *parent,
2167 const struct qstr *name)
2168 {
2169 if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
2170 if (dentry->d_name.len != name->len)
2171 return false;
2172 return dentry_cmp(dentry, name->name, name->len) == 0;
2173 }
2174 return parent->d_op->d_compare(dentry,
2175 dentry->d_name.len, dentry->d_name.name,
2176 name) == 0;
2177 }
2178 EXPORT_SYMBOL_GPL(d_same_name);
2179
2180 /*
2181 * This is __d_lookup_rcu() when the parent dentry has
2182 * DCACHE_OP_COMPARE, which makes things much nastier.
2183 */
__d_lookup_rcu_op_compare(const struct dentry * parent,const struct qstr * name,unsigned * seqp)2184 static noinline struct dentry *__d_lookup_rcu_op_compare(
2185 const struct dentry *parent,
2186 const struct qstr *name,
2187 unsigned *seqp)
2188 {
2189 u64 hashlen = name->hash_len;
2190 struct hlist_bl_head *b = d_hash(hashlen);
2191 struct hlist_bl_node *node;
2192 struct dentry *dentry;
2193
2194 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2195 int tlen;
2196 const char *tname;
2197 unsigned seq;
2198
2199 seqretry:
2200 seq = raw_seqcount_begin(&dentry->d_seq);
2201 if (dentry->d_parent != parent)
2202 continue;
2203 if (d_unhashed(dentry))
2204 continue;
2205 if (dentry->d_name.hash != hashlen_hash(hashlen))
2206 continue;
2207 tlen = dentry->d_name.len;
2208 tname = dentry->d_name.name;
2209 /* we want a consistent (name,len) pair */
2210 if (read_seqcount_retry(&dentry->d_seq, seq)) {
2211 cpu_relax();
2212 goto seqretry;
2213 }
2214 if (parent->d_op->d_compare(dentry, tlen, tname, name) != 0)
2215 continue;
2216 *seqp = seq;
2217 return dentry;
2218 }
2219 return NULL;
2220 }
2221
2222 /**
2223 * __d_lookup_rcu - search for a dentry (racy, store-free)
2224 * @parent: parent dentry
2225 * @name: qstr of name we wish to find
2226 * @seqp: returns d_seq value at the point where the dentry was found
2227 * Returns: dentry, or NULL
2228 *
2229 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2230 * resolution (store-free path walking) design described in
2231 * Documentation/filesystems/path-lookup.txt.
2232 *
2233 * This is not to be used outside core vfs.
2234 *
2235 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2236 * held, and rcu_read_lock held. The returned dentry must not be stored into
2237 * without taking d_lock and checking d_seq sequence count against @seq
2238 * returned here.
2239 *
2240 * Alternatively, __d_lookup_rcu may be called again to look up the child of
2241 * the returned dentry, so long as its parent's seqlock is checked after the
2242 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2243 * is formed, giving integrity down the path walk.
2244 *
2245 * NOTE! The caller *has* to check the resulting dentry against the sequence
2246 * number we've returned before using any of the resulting dentry state!
2247 */
__d_lookup_rcu(const struct dentry * parent,const struct qstr * name,unsigned * seqp)2248 struct dentry *__d_lookup_rcu(const struct dentry *parent,
2249 const struct qstr *name,
2250 unsigned *seqp)
2251 {
2252 u64 hashlen = name->hash_len;
2253 const unsigned char *str = name->name;
2254 struct hlist_bl_head *b = d_hash(hashlen);
2255 struct hlist_bl_node *node;
2256 struct dentry *dentry;
2257
2258 /*
2259 * Note: There is significant duplication with __d_lookup_rcu which is
2260 * required to prevent single threaded performance regressions
2261 * especially on architectures where smp_rmb (in seqcounts) are costly.
2262 * Keep the two functions in sync.
2263 */
2264
2265 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE))
2266 return __d_lookup_rcu_op_compare(parent, name, seqp);
2267
2268 /*
2269 * The hash list is protected using RCU.
2270 *
2271 * Carefully use d_seq when comparing a candidate dentry, to avoid
2272 * races with d_move().
2273 *
2274 * It is possible that concurrent renames can mess up our list
2275 * walk here and result in missing our dentry, resulting in the
2276 * false-negative result. d_lookup() protects against concurrent
2277 * renames using rename_lock seqlock.
2278 *
2279 * See Documentation/filesystems/path-lookup.txt for more details.
2280 */
2281 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2282 unsigned seq;
2283
2284 /*
2285 * The dentry sequence count protects us from concurrent
2286 * renames, and thus protects parent and name fields.
2287 *
2288 * The caller must perform a seqcount check in order
2289 * to do anything useful with the returned dentry.
2290 *
2291 * NOTE! We do a "raw" seqcount_begin here. That means that
2292 * we don't wait for the sequence count to stabilize if it
2293 * is in the middle of a sequence change. If we do the slow
2294 * dentry compare, we will do seqretries until it is stable,
2295 * and if we end up with a successful lookup, we actually
2296 * want to exit RCU lookup anyway.
2297 *
2298 * Note that raw_seqcount_begin still *does* smp_rmb(), so
2299 * we are still guaranteed NUL-termination of ->d_name.name.
2300 */
2301 seq = raw_seqcount_begin(&dentry->d_seq);
2302 if (dentry->d_parent != parent)
2303 continue;
2304 if (dentry->d_name.hash_len != hashlen)
2305 continue;
2306 if (unlikely(dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0))
2307 continue;
2308 /*
2309 * Check for the dentry being unhashed.
2310 *
2311 * As tempting as it is, we *can't* skip it because of a race window
2312 * between us finding the dentry before it gets unhashed and loading
2313 * the sequence counter after unhashing is finished.
2314 *
2315 * We can at least predict on it.
2316 */
2317 if (unlikely(d_unhashed(dentry)))
2318 continue;
2319 *seqp = seq;
2320 return dentry;
2321 }
2322 return NULL;
2323 }
2324
2325 /**
2326 * d_lookup - search for a dentry
2327 * @parent: parent dentry
2328 * @name: qstr of name we wish to find
2329 * Returns: dentry, or NULL
2330 *
2331 * d_lookup searches the children of the parent dentry for the name in
2332 * question. If the dentry is found its reference count is incremented and the
2333 * dentry is returned. The caller must use dput to free the entry when it has
2334 * finished using it. %NULL is returned if the dentry does not exist.
2335 */
d_lookup(const struct dentry * parent,const struct qstr * name)2336 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2337 {
2338 struct dentry *dentry;
2339 unsigned seq;
2340
2341 do {
2342 seq = read_seqbegin(&rename_lock);
2343 dentry = __d_lookup(parent, name);
2344 if (dentry)
2345 break;
2346 } while (read_seqretry(&rename_lock, seq));
2347 return dentry;
2348 }
2349 EXPORT_SYMBOL(d_lookup);
2350
2351 /**
2352 * __d_lookup - search for a dentry (racy)
2353 * @parent: parent dentry
2354 * @name: qstr of name we wish to find
2355 * Returns: dentry, or NULL
2356 *
2357 * __d_lookup is like d_lookup, however it may (rarely) return a
2358 * false-negative result due to unrelated rename activity.
2359 *
2360 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2361 * however it must be used carefully, eg. with a following d_lookup in
2362 * the case of failure.
2363 *
2364 * __d_lookup callers must be commented.
2365 */
__d_lookup(const struct dentry * parent,const struct qstr * name)2366 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2367 {
2368 unsigned int hash = name->hash;
2369 struct hlist_bl_head *b = d_hash(hash);
2370 struct hlist_bl_node *node;
2371 struct dentry *found = NULL;
2372 struct dentry *dentry;
2373
2374 /*
2375 * Note: There is significant duplication with __d_lookup_rcu which is
2376 * required to prevent single threaded performance regressions
2377 * especially on architectures where smp_rmb (in seqcounts) are costly.
2378 * Keep the two functions in sync.
2379 */
2380
2381 /*
2382 * The hash list is protected using RCU.
2383 *
2384 * Take d_lock when comparing a candidate dentry, to avoid races
2385 * with d_move().
2386 *
2387 * It is possible that concurrent renames can mess up our list
2388 * walk here and result in missing our dentry, resulting in the
2389 * false-negative result. d_lookup() protects against concurrent
2390 * renames using rename_lock seqlock.
2391 *
2392 * See Documentation/filesystems/path-lookup.txt for more details.
2393 */
2394 rcu_read_lock();
2395
2396 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2397
2398 if (dentry->d_name.hash != hash)
2399 continue;
2400
2401 spin_lock(&dentry->d_lock);
2402 if (dentry->d_parent != parent)
2403 goto next;
2404 if (d_unhashed(dentry))
2405 goto next;
2406
2407 if (!d_same_name(dentry, parent, name))
2408 goto next;
2409
2410 dentry->d_lockref.count++;
2411 found = dentry;
2412 spin_unlock(&dentry->d_lock);
2413 break;
2414 next:
2415 spin_unlock(&dentry->d_lock);
2416 }
2417 rcu_read_unlock();
2418
2419 return found;
2420 }
2421
2422 /**
2423 * d_hash_and_lookup - hash the qstr then search for a dentry
2424 * @dir: Directory to search in
2425 * @name: qstr of name we wish to find
2426 *
2427 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2428 */
d_hash_and_lookup(struct dentry * dir,struct qstr * name)2429 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2430 {
2431 /*
2432 * Check for a fs-specific hash function. Note that we must
2433 * calculate the standard hash first, as the d_op->d_hash()
2434 * routine may choose to leave the hash value unchanged.
2435 */
2436 name->hash = full_name_hash(dir, name->name, name->len);
2437 if (dir->d_flags & DCACHE_OP_HASH) {
2438 int err = dir->d_op->d_hash(dir, name);
2439 if (unlikely(err < 0))
2440 return ERR_PTR(err);
2441 }
2442 return d_lookup(dir, name);
2443 }
2444
2445 /*
2446 * When a file is deleted, we have two options:
2447 * - turn this dentry into a negative dentry
2448 * - unhash this dentry and free it.
2449 *
2450 * Usually, we want to just turn this into
2451 * a negative dentry, but if anybody else is
2452 * currently using the dentry or the inode
2453 * we can't do that and we fall back on removing
2454 * it from the hash queues and waiting for
2455 * it to be deleted later when it has no users
2456 */
2457
2458 /**
2459 * d_delete - delete a dentry
2460 * @dentry: The dentry to delete
2461 *
2462 * Turn the dentry into a negative dentry if possible, otherwise
2463 * remove it from the hash queues so it can be deleted later
2464 */
2465
d_delete(struct dentry * dentry)2466 void d_delete(struct dentry * dentry)
2467 {
2468 struct inode *inode = dentry->d_inode;
2469
2470 spin_lock(&inode->i_lock);
2471 spin_lock(&dentry->d_lock);
2472 /*
2473 * Are we the only user?
2474 */
2475 if (dentry->d_lockref.count == 1) {
2476 if (dentry_negative_policy)
2477 __d_drop(dentry);
2478 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2479 dentry_unlink_inode(dentry);
2480 } else {
2481 __d_drop(dentry);
2482 spin_unlock(&dentry->d_lock);
2483 spin_unlock(&inode->i_lock);
2484 }
2485 }
2486 EXPORT_SYMBOL(d_delete);
2487
__d_rehash(struct dentry * entry)2488 static void __d_rehash(struct dentry *entry)
2489 {
2490 struct hlist_bl_head *b = d_hash(entry->d_name.hash);
2491
2492 hlist_bl_lock(b);
2493 hlist_bl_add_head_rcu(&entry->d_hash, b);
2494 hlist_bl_unlock(b);
2495 }
2496
2497 /**
2498 * d_rehash - add an entry back to the hash
2499 * @entry: dentry to add to the hash
2500 *
2501 * Adds a dentry to the hash according to its name.
2502 */
2503
d_rehash(struct dentry * entry)2504 void d_rehash(struct dentry * entry)
2505 {
2506 spin_lock(&entry->d_lock);
2507 __d_rehash(entry);
2508 spin_unlock(&entry->d_lock);
2509 }
2510 EXPORT_SYMBOL(d_rehash);
2511
start_dir_add(struct inode * dir)2512 static inline unsigned start_dir_add(struct inode *dir)
2513 {
2514 preempt_disable_nested();
2515 for (;;) {
2516 unsigned n = READ_ONCE(dir->i_dir_seq);
2517 if (!(n & 1) && try_cmpxchg(&dir->i_dir_seq, &n, n + 1))
2518 return n;
2519 cpu_relax();
2520 }
2521 }
2522
end_dir_add(struct inode * dir,unsigned int n,wait_queue_head_t * d_wait)2523 static inline void end_dir_add(struct inode *dir, unsigned int n,
2524 wait_queue_head_t *d_wait)
2525 {
2526 smp_store_release(&dir->i_dir_seq, n + 2);
2527 preempt_enable_nested();
2528 if (wq_has_sleeper(d_wait))
2529 wake_up_all(d_wait);
2530 }
2531
d_wait_lookup(struct dentry * dentry)2532 static void d_wait_lookup(struct dentry *dentry)
2533 {
2534 if (d_in_lookup(dentry)) {
2535 DECLARE_WAITQUEUE(wait, current);
2536 add_wait_queue(dentry->d_wait, &wait);
2537 do {
2538 set_current_state(TASK_UNINTERRUPTIBLE);
2539 spin_unlock(&dentry->d_lock);
2540 schedule();
2541 spin_lock(&dentry->d_lock);
2542 } while (d_in_lookup(dentry));
2543 }
2544 }
2545
d_alloc_parallel(struct dentry * parent,const struct qstr * name,wait_queue_head_t * wq)2546 struct dentry *d_alloc_parallel(struct dentry *parent,
2547 const struct qstr *name,
2548 wait_queue_head_t *wq)
2549 {
2550 unsigned int hash = name->hash;
2551 struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2552 struct hlist_bl_node *node;
2553 struct dentry *new = __d_alloc(parent->d_sb, name);
2554 struct dentry *dentry;
2555 unsigned seq, r_seq, d_seq;
2556
2557 if (unlikely(!new))
2558 return ERR_PTR(-ENOMEM);
2559
2560 new->d_flags |= DCACHE_PAR_LOOKUP;
2561 spin_lock(&parent->d_lock);
2562 new->d_parent = dget_dlock(parent);
2563 hlist_add_head(&new->d_sib, &parent->d_children);
2564 if (parent->d_flags & DCACHE_DISCONNECTED)
2565 new->d_flags |= DCACHE_DISCONNECTED;
2566 spin_unlock(&parent->d_lock);
2567
2568 retry:
2569 rcu_read_lock();
2570 seq = smp_load_acquire(&parent->d_inode->i_dir_seq);
2571 r_seq = read_seqbegin(&rename_lock);
2572 dentry = __d_lookup_rcu(parent, name, &d_seq);
2573 if (unlikely(dentry)) {
2574 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2575 rcu_read_unlock();
2576 goto retry;
2577 }
2578 if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2579 rcu_read_unlock();
2580 dput(dentry);
2581 goto retry;
2582 }
2583 rcu_read_unlock();
2584 dput(new);
2585 return dentry;
2586 }
2587 if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2588 rcu_read_unlock();
2589 goto retry;
2590 }
2591
2592 if (unlikely(seq & 1)) {
2593 rcu_read_unlock();
2594 goto retry;
2595 }
2596
2597 hlist_bl_lock(b);
2598 if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) {
2599 hlist_bl_unlock(b);
2600 rcu_read_unlock();
2601 goto retry;
2602 }
2603 /*
2604 * No changes for the parent since the beginning of d_lookup().
2605 * Since all removals from the chain happen with hlist_bl_lock(),
2606 * any potential in-lookup matches are going to stay here until
2607 * we unlock the chain. All fields are stable in everything
2608 * we encounter.
2609 */
2610 hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2611 if (dentry->d_name.hash != hash)
2612 continue;
2613 if (dentry->d_parent != parent)
2614 continue;
2615 if (!d_same_name(dentry, parent, name))
2616 continue;
2617 hlist_bl_unlock(b);
2618 /* now we can try to grab a reference */
2619 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2620 rcu_read_unlock();
2621 goto retry;
2622 }
2623
2624 rcu_read_unlock();
2625 /*
2626 * somebody is likely to be still doing lookup for it;
2627 * wait for them to finish
2628 */
2629 spin_lock(&dentry->d_lock);
2630 d_wait_lookup(dentry);
2631 /*
2632 * it's not in-lookup anymore; in principle we should repeat
2633 * everything from dcache lookup, but it's likely to be what
2634 * d_lookup() would've found anyway. If it is, just return it;
2635 * otherwise we really have to repeat the whole thing.
2636 */
2637 if (unlikely(dentry->d_name.hash != hash))
2638 goto mismatch;
2639 if (unlikely(dentry->d_parent != parent))
2640 goto mismatch;
2641 if (unlikely(d_unhashed(dentry)))
2642 goto mismatch;
2643 if (unlikely(!d_same_name(dentry, parent, name)))
2644 goto mismatch;
2645 /* OK, it *is* a hashed match; return it */
2646 spin_unlock(&dentry->d_lock);
2647 dput(new);
2648 return dentry;
2649 }
2650 rcu_read_unlock();
2651 new->d_wait = wq;
2652 hlist_bl_add_head(&new->d_u.d_in_lookup_hash, b);
2653 hlist_bl_unlock(b);
2654 return new;
2655 mismatch:
2656 spin_unlock(&dentry->d_lock);
2657 dput(dentry);
2658 goto retry;
2659 }
2660 EXPORT_SYMBOL(d_alloc_parallel);
2661
2662 /*
2663 * - Unhash the dentry
2664 * - Retrieve and clear the waitqueue head in dentry
2665 * - Return the waitqueue head
2666 */
__d_lookup_unhash(struct dentry * dentry)2667 static wait_queue_head_t *__d_lookup_unhash(struct dentry *dentry)
2668 {
2669 wait_queue_head_t *d_wait;
2670 struct hlist_bl_head *b;
2671
2672 lockdep_assert_held(&dentry->d_lock);
2673
2674 b = in_lookup_hash(dentry->d_parent, dentry->d_name.hash);
2675 hlist_bl_lock(b);
2676 dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
2677 __hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
2678 d_wait = dentry->d_wait;
2679 dentry->d_wait = NULL;
2680 hlist_bl_unlock(b);
2681 INIT_HLIST_NODE(&dentry->d_u.d_alias);
2682 INIT_LIST_HEAD(&dentry->d_lru);
2683 return d_wait;
2684 }
2685
__d_lookup_unhash_wake(struct dentry * dentry)2686 void __d_lookup_unhash_wake(struct dentry *dentry)
2687 {
2688 spin_lock(&dentry->d_lock);
2689 wake_up_all(__d_lookup_unhash(dentry));
2690 spin_unlock(&dentry->d_lock);
2691 }
2692 EXPORT_SYMBOL(__d_lookup_unhash_wake);
2693
2694 /* inode->i_lock held if inode is non-NULL */
2695
__d_add(struct dentry * dentry,struct inode * inode,const struct dentry_operations * ops)2696 static inline void __d_add(struct dentry *dentry, struct inode *inode,
2697 const struct dentry_operations *ops)
2698 {
2699 wait_queue_head_t *d_wait;
2700 struct inode *dir = NULL;
2701 unsigned n;
2702 spin_lock(&dentry->d_lock);
2703 if (unlikely(d_in_lookup(dentry))) {
2704 dir = dentry->d_parent->d_inode;
2705 n = start_dir_add(dir);
2706 d_wait = __d_lookup_unhash(dentry);
2707 }
2708 if (unlikely(ops))
2709 d_set_d_op(dentry, ops);
2710 if (inode) {
2711 unsigned add_flags = d_flags_for_inode(inode);
2712 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2713 raw_write_seqcount_begin(&dentry->d_seq);
2714 __d_set_inode_and_type(dentry, inode, add_flags);
2715 raw_write_seqcount_end(&dentry->d_seq);
2716 fsnotify_update_flags(dentry);
2717 }
2718 __d_rehash(dentry);
2719 if (dir)
2720 end_dir_add(dir, n, d_wait);
2721 spin_unlock(&dentry->d_lock);
2722 if (inode)
2723 spin_unlock(&inode->i_lock);
2724 }
2725
2726 /**
2727 * d_add - add dentry to hash queues
2728 * @entry: dentry to add
2729 * @inode: The inode to attach to this dentry
2730 *
2731 * This adds the entry to the hash queues and initializes @inode.
2732 * The entry was actually filled in earlier during d_alloc().
2733 */
2734
d_add(struct dentry * entry,struct inode * inode)2735 void d_add(struct dentry *entry, struct inode *inode)
2736 {
2737 if (inode) {
2738 security_d_instantiate(entry, inode);
2739 spin_lock(&inode->i_lock);
2740 }
2741 __d_add(entry, inode, NULL);
2742 }
2743 EXPORT_SYMBOL(d_add);
2744
swap_names(struct dentry * dentry,struct dentry * target)2745 static void swap_names(struct dentry *dentry, struct dentry *target)
2746 {
2747 if (unlikely(dname_external(target))) {
2748 if (unlikely(dname_external(dentry))) {
2749 /*
2750 * Both external: swap the pointers
2751 */
2752 swap(target->__d_name.name, dentry->__d_name.name);
2753 } else {
2754 /*
2755 * dentry:internal, target:external. Steal target's
2756 * storage and make target internal.
2757 */
2758 dentry->__d_name.name = target->__d_name.name;
2759 target->d_shortname = dentry->d_shortname;
2760 target->__d_name.name = target->d_shortname.string;
2761 }
2762 } else {
2763 if (unlikely(dname_external(dentry))) {
2764 /*
2765 * dentry:external, target:internal. Give dentry's
2766 * storage to target and make dentry internal
2767 */
2768 target->__d_name.name = dentry->__d_name.name;
2769 dentry->d_shortname = target->d_shortname;
2770 dentry->__d_name.name = dentry->d_shortname.string;
2771 } else {
2772 /*
2773 * Both are internal.
2774 */
2775 for (int i = 0; i < DNAME_INLINE_WORDS; i++)
2776 swap(dentry->d_shortname.words[i],
2777 target->d_shortname.words[i]);
2778 }
2779 }
2780 swap(dentry->__d_name.hash_len, target->__d_name.hash_len);
2781 }
2782
copy_name(struct dentry * dentry,struct dentry * target)2783 static void copy_name(struct dentry *dentry, struct dentry *target)
2784 {
2785 struct external_name *old_name = NULL;
2786 if (unlikely(dname_external(dentry)))
2787 old_name = external_name(dentry);
2788 if (unlikely(dname_external(target))) {
2789 atomic_inc(&external_name(target)->count);
2790 dentry->__d_name = target->__d_name;
2791 } else {
2792 dentry->d_shortname = target->d_shortname;
2793 dentry->__d_name.name = dentry->d_shortname.string;
2794 dentry->__d_name.hash_len = target->__d_name.hash_len;
2795 }
2796 if (old_name && likely(atomic_dec_and_test(&old_name->count)))
2797 kfree_rcu(old_name, head);
2798 }
2799
2800 /*
2801 * __d_move - move a dentry
2802 * @dentry: entry to move
2803 * @target: new dentry
2804 * @exchange: exchange the two dentries
2805 *
2806 * Update the dcache to reflect the move of a file name. Negative dcache
2807 * entries should not be moved in this way. Caller must hold rename_lock, the
2808 * i_rwsem of the source and target directories (exclusively), and the sb->
2809 * s_vfs_rename_mutex if they differ. See lock_rename().
2810 */
__d_move(struct dentry * dentry,struct dentry * target,bool exchange)2811 static void __d_move(struct dentry *dentry, struct dentry *target,
2812 bool exchange)
2813 {
2814 struct dentry *old_parent, *p;
2815 wait_queue_head_t *d_wait;
2816 struct inode *dir = NULL;
2817 unsigned n;
2818
2819 WARN_ON(!dentry->d_inode);
2820 if (WARN_ON(dentry == target))
2821 return;
2822
2823 BUG_ON(d_ancestor(target, dentry));
2824 old_parent = dentry->d_parent;
2825 p = d_ancestor(old_parent, target);
2826 if (IS_ROOT(dentry)) {
2827 BUG_ON(p);
2828 spin_lock(&target->d_parent->d_lock);
2829 } else if (!p) {
2830 /* target is not a descendent of dentry->d_parent */
2831 spin_lock(&target->d_parent->d_lock);
2832 spin_lock_nested(&old_parent->d_lock, DENTRY_D_LOCK_NESTED);
2833 } else {
2834 BUG_ON(p == dentry);
2835 spin_lock(&old_parent->d_lock);
2836 if (p != target)
2837 spin_lock_nested(&target->d_parent->d_lock,
2838 DENTRY_D_LOCK_NESTED);
2839 }
2840 spin_lock_nested(&dentry->d_lock, 2);
2841 spin_lock_nested(&target->d_lock, 3);
2842
2843 if (unlikely(d_in_lookup(target))) {
2844 dir = target->d_parent->d_inode;
2845 n = start_dir_add(dir);
2846 d_wait = __d_lookup_unhash(target);
2847 }
2848
2849 write_seqcount_begin(&dentry->d_seq);
2850 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2851
2852 /* unhash both */
2853 if (!d_unhashed(dentry))
2854 ___d_drop(dentry);
2855 if (!d_unhashed(target))
2856 ___d_drop(target);
2857
2858 /* ... and switch them in the tree */
2859 dentry->d_parent = target->d_parent;
2860 if (!exchange) {
2861 copy_name(dentry, target);
2862 target->d_hash.pprev = NULL;
2863 dentry->d_parent->d_lockref.count++;
2864 if (dentry != old_parent) /* wasn't IS_ROOT */
2865 WARN_ON(!--old_parent->d_lockref.count);
2866 } else {
2867 target->d_parent = old_parent;
2868 swap_names(dentry, target);
2869 if (!hlist_unhashed(&target->d_sib))
2870 __hlist_del(&target->d_sib);
2871 hlist_add_head(&target->d_sib, &target->d_parent->d_children);
2872 __d_rehash(target);
2873 fsnotify_update_flags(target);
2874 }
2875 if (!hlist_unhashed(&dentry->d_sib))
2876 __hlist_del(&dentry->d_sib);
2877 hlist_add_head(&dentry->d_sib, &dentry->d_parent->d_children);
2878 __d_rehash(dentry);
2879 fsnotify_update_flags(dentry);
2880 fscrypt_handle_d_move(dentry);
2881
2882 write_seqcount_end(&target->d_seq);
2883 write_seqcount_end(&dentry->d_seq);
2884
2885 if (dir)
2886 end_dir_add(dir, n, d_wait);
2887
2888 if (dentry->d_parent != old_parent)
2889 spin_unlock(&dentry->d_parent->d_lock);
2890 if (dentry != old_parent)
2891 spin_unlock(&old_parent->d_lock);
2892 spin_unlock(&target->d_lock);
2893 spin_unlock(&dentry->d_lock);
2894 }
2895
2896 /*
2897 * d_move - move a dentry
2898 * @dentry: entry to move
2899 * @target: new dentry
2900 *
2901 * Update the dcache to reflect the move of a file name. Negative
2902 * dcache entries should not be moved in this way. See the locking
2903 * requirements for __d_move.
2904 */
d_move(struct dentry * dentry,struct dentry * target)2905 void d_move(struct dentry *dentry, struct dentry *target)
2906 {
2907 write_seqlock(&rename_lock);
2908 __d_move(dentry, target, false);
2909 write_sequnlock(&rename_lock);
2910 }
2911 EXPORT_SYMBOL(d_move);
2912
2913 /*
2914 * d_exchange - exchange two dentries
2915 * @dentry1: first dentry
2916 * @dentry2: second dentry
2917 */
d_exchange(struct dentry * dentry1,struct dentry * dentry2)2918 void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2919 {
2920 write_seqlock(&rename_lock);
2921
2922 WARN_ON(!dentry1->d_inode);
2923 WARN_ON(!dentry2->d_inode);
2924 WARN_ON(IS_ROOT(dentry1));
2925 WARN_ON(IS_ROOT(dentry2));
2926
2927 __d_move(dentry1, dentry2, true);
2928
2929 write_sequnlock(&rename_lock);
2930 }
2931 EXPORT_SYMBOL(d_exchange);
2932
2933 /**
2934 * d_ancestor - search for an ancestor
2935 * @p1: ancestor dentry
2936 * @p2: child dentry
2937 *
2938 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2939 * an ancestor of p2, else NULL.
2940 */
d_ancestor(struct dentry * p1,struct dentry * p2)2941 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2942 {
2943 struct dentry *p;
2944
2945 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2946 if (p->d_parent == p1)
2947 return p;
2948 }
2949 return NULL;
2950 }
2951
2952 /*
2953 * This helper attempts to cope with remotely renamed directories
2954 *
2955 * It assumes that the caller is already holding
2956 * dentry->d_parent->d_inode->i_rwsem, and rename_lock
2957 *
2958 * Note: If ever the locking in lock_rename() changes, then please
2959 * remember to update this too...
2960 */
__d_unalias(struct dentry * dentry,struct dentry * alias)2961 static int __d_unalias(struct dentry *dentry, struct dentry *alias)
2962 {
2963 struct mutex *m1 = NULL;
2964 struct rw_semaphore *m2 = NULL;
2965 int ret = -ESTALE;
2966
2967 /* If alias and dentry share a parent, then no extra locks required */
2968 if (alias->d_parent == dentry->d_parent)
2969 goto out_unalias;
2970
2971 /* See lock_rename() */
2972 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2973 goto out_err;
2974 m1 = &dentry->d_sb->s_vfs_rename_mutex;
2975 if (!inode_trylock_shared(alias->d_parent->d_inode))
2976 goto out_err;
2977 m2 = &alias->d_parent->d_inode->i_rwsem;
2978 out_unalias:
2979 if (alias->d_op && alias->d_op->d_unalias_trylock &&
2980 !alias->d_op->d_unalias_trylock(alias))
2981 goto out_err;
2982 __d_move(alias, dentry, false);
2983 if (alias->d_op && alias->d_op->d_unalias_unlock)
2984 alias->d_op->d_unalias_unlock(alias);
2985 ret = 0;
2986 out_err:
2987 if (m2)
2988 up_read(m2);
2989 if (m1)
2990 mutex_unlock(m1);
2991 return ret;
2992 }
2993
d_splice_alias_ops(struct inode * inode,struct dentry * dentry,const struct dentry_operations * ops)2994 struct dentry *d_splice_alias_ops(struct inode *inode, struct dentry *dentry,
2995 const struct dentry_operations *ops)
2996 {
2997 if (IS_ERR(inode))
2998 return ERR_CAST(inode);
2999
3000 BUG_ON(!d_unhashed(dentry));
3001
3002 if (!inode)
3003 goto out;
3004
3005 security_d_instantiate(dentry, inode);
3006 spin_lock(&inode->i_lock);
3007 if (S_ISDIR(inode->i_mode)) {
3008 struct dentry *new = __d_find_any_alias(inode);
3009 if (unlikely(new)) {
3010 /* The reference to new ensures it remains an alias */
3011 spin_unlock(&inode->i_lock);
3012 write_seqlock(&rename_lock);
3013 if (unlikely(d_ancestor(new, dentry))) {
3014 write_sequnlock(&rename_lock);
3015 dput(new);
3016 new = ERR_PTR(-ELOOP);
3017 pr_warn_ratelimited(
3018 "VFS: Lookup of '%s' in %s %s"
3019 " would have caused loop\n",
3020 dentry->d_name.name,
3021 inode->i_sb->s_type->name,
3022 inode->i_sb->s_id);
3023 } else if (!IS_ROOT(new)) {
3024 struct dentry *old_parent = dget(new->d_parent);
3025 int err = __d_unalias(dentry, new);
3026 write_sequnlock(&rename_lock);
3027 if (err) {
3028 dput(new);
3029 new = ERR_PTR(err);
3030 }
3031 dput(old_parent);
3032 } else {
3033 __d_move(new, dentry, false);
3034 write_sequnlock(&rename_lock);
3035 }
3036 iput(inode);
3037 return new;
3038 }
3039 }
3040 out:
3041 __d_add(dentry, inode, ops);
3042 return NULL;
3043 }
3044
3045 /**
3046 * d_splice_alias - splice a disconnected dentry into the tree if one exists
3047 * @inode: the inode which may have a disconnected dentry
3048 * @dentry: a negative dentry which we want to point to the inode.
3049 *
3050 * If inode is a directory and has an IS_ROOT alias, then d_move that in
3051 * place of the given dentry and return it, else simply d_add the inode
3052 * to the dentry and return NULL.
3053 *
3054 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
3055 * we should error out: directories can't have multiple aliases.
3056 *
3057 * This is needed in the lookup routine of any filesystem that is exportable
3058 * (via knfsd) so that we can build dcache paths to directories effectively.
3059 *
3060 * If a dentry was found and moved, then it is returned. Otherwise NULL
3061 * is returned. This matches the expected return value of ->lookup.
3062 *
3063 * Cluster filesystems may call this function with a negative, hashed dentry.
3064 * In that case, we know that the inode will be a regular file, and also this
3065 * will only occur during atomic_open. So we need to check for the dentry
3066 * being already hashed only in the final case.
3067 */
d_splice_alias(struct inode * inode,struct dentry * dentry)3068 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
3069 {
3070 return d_splice_alias_ops(inode, dentry, NULL);
3071 }
3072 EXPORT_SYMBOL(d_splice_alias);
3073
3074 /*
3075 * Test whether new_dentry is a subdirectory of old_dentry.
3076 *
3077 * Trivially implemented using the dcache structure
3078 */
3079
3080 /**
3081 * is_subdir - is new dentry a subdirectory of old_dentry
3082 * @new_dentry: new dentry
3083 * @old_dentry: old dentry
3084 *
3085 * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3086 * Returns false otherwise.
3087 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3088 */
3089
is_subdir(struct dentry * new_dentry,struct dentry * old_dentry)3090 bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3091 {
3092 bool subdir;
3093 unsigned seq;
3094
3095 if (new_dentry == old_dentry)
3096 return true;
3097
3098 /* Access d_parent under rcu as d_move() may change it. */
3099 rcu_read_lock();
3100 seq = read_seqbegin(&rename_lock);
3101 subdir = d_ancestor(old_dentry, new_dentry);
3102 /* Try lockless once... */
3103 if (read_seqretry(&rename_lock, seq)) {
3104 /* ...else acquire lock for progress even on deep chains. */
3105 read_seqlock_excl(&rename_lock);
3106 subdir = d_ancestor(old_dentry, new_dentry);
3107 read_sequnlock_excl(&rename_lock);
3108 }
3109 rcu_read_unlock();
3110 return subdir;
3111 }
3112 EXPORT_SYMBOL(is_subdir);
3113
d_genocide_kill(void * data,struct dentry * dentry)3114 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3115 {
3116 struct dentry *root = data;
3117 if (dentry != root) {
3118 if (d_unhashed(dentry) || !dentry->d_inode)
3119 return D_WALK_SKIP;
3120
3121 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3122 dentry->d_flags |= DCACHE_GENOCIDE;
3123 dentry->d_lockref.count--;
3124 }
3125 }
3126 return D_WALK_CONTINUE;
3127 }
3128
d_genocide(struct dentry * parent)3129 void d_genocide(struct dentry *parent)
3130 {
3131 d_walk(parent, parent, d_genocide_kill);
3132 }
3133
d_mark_tmpfile(struct file * file,struct inode * inode)3134 void d_mark_tmpfile(struct file *file, struct inode *inode)
3135 {
3136 struct dentry *dentry = file->f_path.dentry;
3137
3138 BUG_ON(dname_external(dentry) ||
3139 !hlist_unhashed(&dentry->d_u.d_alias) ||
3140 !d_unlinked(dentry));
3141 spin_lock(&dentry->d_parent->d_lock);
3142 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3143 dentry->__d_name.len = sprintf(dentry->d_shortname.string, "#%llu",
3144 (unsigned long long)inode->i_ino);
3145 spin_unlock(&dentry->d_lock);
3146 spin_unlock(&dentry->d_parent->d_lock);
3147 }
3148 EXPORT_SYMBOL(d_mark_tmpfile);
3149
d_tmpfile(struct file * file,struct inode * inode)3150 void d_tmpfile(struct file *file, struct inode *inode)
3151 {
3152 struct dentry *dentry = file->f_path.dentry;
3153
3154 inode_dec_link_count(inode);
3155 d_mark_tmpfile(file, inode);
3156 d_instantiate(dentry, inode);
3157 }
3158 EXPORT_SYMBOL(d_tmpfile);
3159
3160 /*
3161 * Obtain inode number of the parent dentry.
3162 */
d_parent_ino(struct dentry * dentry)3163 ino_t d_parent_ino(struct dentry *dentry)
3164 {
3165 struct dentry *parent;
3166 struct inode *iparent;
3167 unsigned seq;
3168 ino_t ret;
3169
3170 scoped_guard(rcu) {
3171 seq = raw_seqcount_begin(&dentry->d_seq);
3172 parent = READ_ONCE(dentry->d_parent);
3173 iparent = d_inode_rcu(parent);
3174 if (likely(iparent)) {
3175 ret = iparent->i_ino;
3176 if (!read_seqcount_retry(&dentry->d_seq, seq))
3177 return ret;
3178 }
3179 }
3180
3181 spin_lock(&dentry->d_lock);
3182 ret = dentry->d_parent->d_inode->i_ino;
3183 spin_unlock(&dentry->d_lock);
3184 return ret;
3185 }
3186 EXPORT_SYMBOL(d_parent_ino);
3187
3188 static __initdata unsigned long dhash_entries;
set_dhash_entries(char * str)3189 static int __init set_dhash_entries(char *str)
3190 {
3191 if (!str)
3192 return 0;
3193 dhash_entries = simple_strtoul(str, &str, 0);
3194 return 1;
3195 }
3196 __setup("dhash_entries=", set_dhash_entries);
3197
dcache_init_early(void)3198 static void __init dcache_init_early(void)
3199 {
3200 /* If hashes are distributed across NUMA nodes, defer
3201 * hash allocation until vmalloc space is available.
3202 */
3203 if (hashdist)
3204 return;
3205
3206 dentry_hashtable =
3207 alloc_large_system_hash("Dentry cache",
3208 sizeof(struct hlist_bl_head),
3209 dhash_entries,
3210 13,
3211 HASH_EARLY | HASH_ZERO,
3212 &d_hash_shift,
3213 NULL,
3214 0,
3215 0);
3216 d_hash_shift = 32 - d_hash_shift;
3217
3218 runtime_const_init(shift, d_hash_shift);
3219 runtime_const_init(ptr, dentry_hashtable);
3220 }
3221
dcache_init(void)3222 static void __init dcache_init(void)
3223 {
3224 /*
3225 * A constructor could be added for stable state like the lists,
3226 * but it is probably not worth it because of the cache nature
3227 * of the dcache.
3228 */
3229 __dentry_cache = KMEM_CACHE_USERCOPY(dentry,
3230 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_ACCOUNT,
3231 d_shortname.string);
3232 runtime_const_init(ptr, __dentry_cache);
3233
3234 /* Hash may have been set up in dcache_init_early */
3235 if (!hashdist)
3236 return;
3237
3238 dentry_hashtable =
3239 alloc_large_system_hash("Dentry cache",
3240 sizeof(struct hlist_bl_head),
3241 dhash_entries,
3242 13,
3243 HASH_ZERO,
3244 &d_hash_shift,
3245 NULL,
3246 0,
3247 0);
3248 d_hash_shift = 32 - d_hash_shift;
3249
3250 runtime_const_init(shift, d_hash_shift);
3251 runtime_const_init(ptr, dentry_hashtable);
3252 }
3253
3254 /* SLAB cache for __getname() consumers */
3255 struct kmem_cache *names_cachep __ro_after_init;
3256 EXPORT_SYMBOL(names_cachep);
3257
vfs_caches_init_early(void)3258 void __init vfs_caches_init_early(void)
3259 {
3260 int i;
3261
3262 for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++)
3263 INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]);
3264
3265 dcache_init_early();
3266 inode_init_early();
3267 }
3268
vfs_caches_init(void)3269 void __init vfs_caches_init(void)
3270 {
3271 names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0,
3272 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL);
3273
3274 dcache_init();
3275 inode_init();
3276 files_init();
3277 files_maxfiles_init();
3278 mnt_init();
3279 bdev_cache_init();
3280 chrdev_init();
3281 }
3282