xref: /linux/fs/dcache.c (revision 9368f0f9419cde028a6e58331065900ff089bc36)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/dcache.c
4  *
5  * Complete reimplementation
6  * (C) 1997 Thomas Schoebel-Theuer,
7  * with heavy changes by Linus Torvalds
8  */
9 
10 /*
11  * Notes on the allocation strategy:
12  *
13  * The dcache is a master of the icache - whenever a dcache entry
14  * exists, the inode will always exist. "iput()" is done either when
15  * the dcache entry is deleted or garbage collected.
16  */
17 
18 #include <linux/ratelimit.h>
19 #include <linux/string.h>
20 #include <linux/mm.h>
21 #include <linux/fs.h>
22 #include <linux/fscrypt.h>
23 #include <linux/fsnotify.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/hash.h>
27 #include <linux/cache.h>
28 #include <linux/export.h>
29 #include <linux/security.h>
30 #include <linux/seqlock.h>
31 #include <linux/memblock.h>
32 #include <linux/bit_spinlock.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/list_lru.h>
35 #include "internal.h"
36 #include "mount.h"
37 
38 #include <asm/runtime-const.h>
39 
40 /*
41  * Usage:
42  * dcache->d_inode->i_lock protects:
43  *   - i_dentry, d_u.d_alias, d_inode of aliases
44  * dcache_hash_bucket lock protects:
45  *   - the dcache hash table
46  * s_roots bl list spinlock protects:
47  *   - the s_roots list (see __d_drop)
48  * dentry->d_sb->s_dentry_lru_lock protects:
49  *   - the dcache lru lists and counters
50  * d_lock protects:
51  *   - d_flags
52  *   - d_name
53  *   - d_lru
54  *   - d_count
55  *   - d_unhashed()
56  *   - d_parent and d_chilren
57  *   - childrens' d_sib and d_parent
58  *   - d_u.d_alias, d_inode
59  *
60  * Ordering:
61  * dentry->d_inode->i_lock
62  *   dentry->d_lock
63  *     dentry->d_sb->s_dentry_lru_lock
64  *     dcache_hash_bucket lock
65  *     s_roots lock
66  *
67  * If there is an ancestor relationship:
68  * dentry->d_parent->...->d_parent->d_lock
69  *   ...
70  *     dentry->d_parent->d_lock
71  *       dentry->d_lock
72  *
73  * If no ancestor relationship:
74  * arbitrary, since it's serialized on rename_lock
75  */
76 static int sysctl_vfs_cache_pressure __read_mostly = 100;
77 static int sysctl_vfs_cache_pressure_denom __read_mostly = 100;
78 
vfs_pressure_ratio(unsigned long val)79 unsigned long vfs_pressure_ratio(unsigned long val)
80 {
81 	return mult_frac(val, sysctl_vfs_cache_pressure, sysctl_vfs_cache_pressure_denom);
82 }
83 EXPORT_SYMBOL_GPL(vfs_pressure_ratio);
84 
85 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
86 
87 EXPORT_SYMBOL(rename_lock);
88 
89 static struct kmem_cache *__dentry_cache __ro_after_init;
90 #define dentry_cache runtime_const_ptr(__dentry_cache)
91 
92 const struct qstr empty_name = QSTR_INIT("", 0);
93 EXPORT_SYMBOL(empty_name);
94 const struct qstr slash_name = QSTR_INIT("/", 1);
95 EXPORT_SYMBOL(slash_name);
96 const struct qstr dotdot_name = QSTR_INIT("..", 2);
97 EXPORT_SYMBOL(dotdot_name);
98 
99 /*
100  * This is the single most critical data structure when it comes
101  * to the dcache: the hashtable for lookups. Somebody should try
102  * to make this good - I've just made it work.
103  *
104  * This hash-function tries to avoid losing too many bits of hash
105  * information, yet avoid using a prime hash-size or similar.
106  *
107  * Marking the variables "used" ensures that the compiler doesn't
108  * optimize them away completely on architectures with runtime
109  * constant infrastructure, this allows debuggers to see their
110  * values. But updating these values has no effect on those arches.
111  */
112 
113 static unsigned int d_hash_shift __ro_after_init __used;
114 
115 static struct hlist_bl_head *dentry_hashtable __ro_after_init __used;
116 
d_hash(unsigned long hashlen)117 static inline struct hlist_bl_head *d_hash(unsigned long hashlen)
118 {
119 	return runtime_const_ptr(dentry_hashtable) +
120 		runtime_const_shift_right_32(hashlen, d_hash_shift);
121 }
122 
123 #define IN_LOOKUP_SHIFT 10
124 static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
125 
in_lookup_hash(const struct dentry * parent,unsigned int hash)126 static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
127 					unsigned int hash)
128 {
129 	hash += (unsigned long) parent / L1_CACHE_BYTES;
130 	return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
131 }
132 
133 struct dentry_stat_t {
134 	long nr_dentry;
135 	long nr_unused;
136 	long age_limit;		/* age in seconds */
137 	long want_pages;	/* pages requested by system */
138 	long nr_negative;	/* # of unused negative dentries */
139 	long dummy;		/* Reserved for future use */
140 };
141 
142 static DEFINE_PER_CPU(long, nr_dentry);
143 static DEFINE_PER_CPU(long, nr_dentry_unused);
144 static DEFINE_PER_CPU(long, nr_dentry_negative);
145 static int dentry_negative_policy;
146 
147 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
148 /* Statistics gathering. */
149 static struct dentry_stat_t dentry_stat = {
150 	.age_limit = 45,
151 };
152 
153 /*
154  * Here we resort to our own counters instead of using generic per-cpu counters
155  * for consistency with what the vfs inode code does. We are expected to harvest
156  * better code and performance by having our own specialized counters.
157  *
158  * Please note that the loop is done over all possible CPUs, not over all online
159  * CPUs. The reason for this is that we don't want to play games with CPUs going
160  * on and off. If one of them goes off, we will just keep their counters.
161  *
162  * glommer: See cffbc8a for details, and if you ever intend to change this,
163  * please update all vfs counters to match.
164  */
get_nr_dentry(void)165 static long get_nr_dentry(void)
166 {
167 	int i;
168 	long sum = 0;
169 	for_each_possible_cpu(i)
170 		sum += per_cpu(nr_dentry, i);
171 	return sum < 0 ? 0 : sum;
172 }
173 
get_nr_dentry_unused(void)174 static long get_nr_dentry_unused(void)
175 {
176 	int i;
177 	long sum = 0;
178 	for_each_possible_cpu(i)
179 		sum += per_cpu(nr_dentry_unused, i);
180 	return sum < 0 ? 0 : sum;
181 }
182 
get_nr_dentry_negative(void)183 static long get_nr_dentry_negative(void)
184 {
185 	int i;
186 	long sum = 0;
187 
188 	for_each_possible_cpu(i)
189 		sum += per_cpu(nr_dentry_negative, i);
190 	return sum < 0 ? 0 : sum;
191 }
192 
proc_nr_dentry(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)193 static int proc_nr_dentry(const struct ctl_table *table, int write, void *buffer,
194 			  size_t *lenp, loff_t *ppos)
195 {
196 	dentry_stat.nr_dentry = get_nr_dentry();
197 	dentry_stat.nr_unused = get_nr_dentry_unused();
198 	dentry_stat.nr_negative = get_nr_dentry_negative();
199 	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
200 }
201 
202 static const struct ctl_table fs_dcache_sysctls[] = {
203 	{
204 		.procname	= "dentry-state",
205 		.data		= &dentry_stat,
206 		.maxlen		= 6*sizeof(long),
207 		.mode		= 0444,
208 		.proc_handler	= proc_nr_dentry,
209 	},
210 	{
211 		.procname	= "dentry-negative",
212 		.data		= &dentry_negative_policy,
213 		.maxlen		= sizeof(dentry_negative_policy),
214 		.mode		= 0644,
215 		.proc_handler	= proc_dointvec_minmax,
216 		.extra1		= SYSCTL_ZERO,
217 		.extra2		= SYSCTL_ONE,
218 	},
219 };
220 
221 static const struct ctl_table vm_dcache_sysctls[] = {
222 	{
223 		.procname	= "vfs_cache_pressure",
224 		.data		= &sysctl_vfs_cache_pressure,
225 		.maxlen		= sizeof(sysctl_vfs_cache_pressure),
226 		.mode		= 0644,
227 		.proc_handler	= proc_dointvec_minmax,
228 		.extra1		= SYSCTL_ZERO,
229 	},
230 	{
231 		.procname	= "vfs_cache_pressure_denom",
232 		.data		= &sysctl_vfs_cache_pressure_denom,
233 		.maxlen		= sizeof(sysctl_vfs_cache_pressure_denom),
234 		.mode		= 0644,
235 		.proc_handler	= proc_dointvec_minmax,
236 		.extra1		= SYSCTL_ONE_HUNDRED,
237 	},
238 };
239 
init_fs_dcache_sysctls(void)240 static int __init init_fs_dcache_sysctls(void)
241 {
242 	register_sysctl_init("vm", vm_dcache_sysctls);
243 	register_sysctl_init("fs", fs_dcache_sysctls);
244 	return 0;
245 }
246 fs_initcall(init_fs_dcache_sysctls);
247 #endif
248 
249 /*
250  * Compare 2 name strings, return 0 if they match, otherwise non-zero.
251  * The strings are both count bytes long, and count is non-zero.
252  */
253 #ifdef CONFIG_DCACHE_WORD_ACCESS
254 
255 #include <asm/word-at-a-time.h>
256 /*
257  * NOTE! 'cs' and 'scount' come from a dentry, so it has a
258  * aligned allocation for this particular component. We don't
259  * strictly need the load_unaligned_zeropad() safety, but it
260  * doesn't hurt either.
261  *
262  * In contrast, 'ct' and 'tcount' can be from a pathname, and do
263  * need the careful unaligned handling.
264  */
dentry_string_cmp(const unsigned char * cs,const unsigned char * ct,unsigned tcount)265 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
266 {
267 	unsigned long a,b,mask;
268 
269 	for (;;) {
270 		a = read_word_at_a_time(cs);
271 		b = load_unaligned_zeropad(ct);
272 		if (tcount < sizeof(unsigned long))
273 			break;
274 		if (unlikely(a != b))
275 			return 1;
276 		cs += sizeof(unsigned long);
277 		ct += sizeof(unsigned long);
278 		tcount -= sizeof(unsigned long);
279 		if (!tcount)
280 			return 0;
281 	}
282 	mask = bytemask_from_count(tcount);
283 	return unlikely(!!((a ^ b) & mask));
284 }
285 
286 #else
287 
dentry_string_cmp(const unsigned char * cs,const unsigned char * ct,unsigned tcount)288 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
289 {
290 	do {
291 		if (*cs != *ct)
292 			return 1;
293 		cs++;
294 		ct++;
295 		tcount--;
296 	} while (tcount);
297 	return 0;
298 }
299 
300 #endif
301 
dentry_cmp(const struct dentry * dentry,const unsigned char * ct,unsigned tcount)302 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
303 {
304 	/*
305 	 * Be careful about RCU walk racing with rename:
306 	 * use 'READ_ONCE' to fetch the name pointer.
307 	 *
308 	 * NOTE! Even if a rename will mean that the length
309 	 * was not loaded atomically, we don't care. The
310 	 * RCU walk will check the sequence count eventually,
311 	 * and catch it. And we won't overrun the buffer,
312 	 * because we're reading the name pointer atomically,
313 	 * and a dentry name is guaranteed to be properly
314 	 * terminated with a NUL byte.
315 	 *
316 	 * End result: even if 'len' is wrong, we'll exit
317 	 * early because the data cannot match (there can
318 	 * be no NUL in the ct/tcount data)
319 	 */
320 	const unsigned char *cs = READ_ONCE(dentry->d_name.name);
321 
322 	return dentry_string_cmp(cs, ct, tcount);
323 }
324 
325 /*
326  * long names are allocated separately from dentry and never modified.
327  * Refcounted, freeing is RCU-delayed.  See take_dentry_name_snapshot()
328  * for the reason why ->count and ->head can't be combined into a union.
329  * dentry_string_cmp() relies upon ->name[] being word-aligned.
330  */
331 struct external_name {
332 	atomic_t count;
333 	struct rcu_head head;
334 	unsigned char name[] __aligned(sizeof(unsigned long));
335 };
336 
external_name(struct dentry * dentry)337 static inline struct external_name *external_name(struct dentry *dentry)
338 {
339 	return container_of(dentry->d_name.name, struct external_name, name[0]);
340 }
341 
__d_free(struct rcu_head * head)342 static void __d_free(struct rcu_head *head)
343 {
344 	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
345 
346 	kmem_cache_free(dentry_cache, dentry);
347 }
348 
__d_free_external(struct rcu_head * head)349 static void __d_free_external(struct rcu_head *head)
350 {
351 	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
352 	kfree(external_name(dentry));
353 	kmem_cache_free(dentry_cache, dentry);
354 }
355 
dname_external(const struct dentry * dentry)356 static inline int dname_external(const struct dentry *dentry)
357 {
358 	return dentry->d_name.name != dentry->d_shortname.string;
359 }
360 
take_dentry_name_snapshot(struct name_snapshot * name,struct dentry * dentry)361 void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
362 {
363 	unsigned seq;
364 	const unsigned char *s;
365 
366 	rcu_read_lock();
367 retry:
368 	seq = read_seqcount_begin(&dentry->d_seq);
369 	s = READ_ONCE(dentry->d_name.name);
370 	name->name.hash_len = dentry->d_name.hash_len;
371 	name->name.name = name->inline_name.string;
372 	if (likely(s == dentry->d_shortname.string)) {
373 		name->inline_name = dentry->d_shortname;
374 	} else {
375 		struct external_name *p;
376 		p = container_of(s, struct external_name, name[0]);
377 		// get a valid reference
378 		if (unlikely(!atomic_inc_not_zero(&p->count)))
379 			goto retry;
380 		name->name.name = s;
381 	}
382 	if (read_seqcount_retry(&dentry->d_seq, seq)) {
383 		release_dentry_name_snapshot(name);
384 		goto retry;
385 	}
386 	rcu_read_unlock();
387 }
388 EXPORT_SYMBOL(take_dentry_name_snapshot);
389 
release_dentry_name_snapshot(struct name_snapshot * name)390 void release_dentry_name_snapshot(struct name_snapshot *name)
391 {
392 	if (unlikely(name->name.name != name->inline_name.string)) {
393 		struct external_name *p;
394 		p = container_of(name->name.name, struct external_name, name[0]);
395 		if (unlikely(atomic_dec_and_test(&p->count)))
396 			kfree_rcu(p, head);
397 	}
398 }
399 EXPORT_SYMBOL(release_dentry_name_snapshot);
400 
__d_set_inode_and_type(struct dentry * dentry,struct inode * inode,unsigned type_flags)401 static inline void __d_set_inode_and_type(struct dentry *dentry,
402 					  struct inode *inode,
403 					  unsigned type_flags)
404 {
405 	unsigned flags;
406 
407 	dentry->d_inode = inode;
408 	flags = READ_ONCE(dentry->d_flags);
409 	flags &= ~DCACHE_ENTRY_TYPE;
410 	flags |= type_flags;
411 	smp_store_release(&dentry->d_flags, flags);
412 }
413 
__d_clear_type_and_inode(struct dentry * dentry)414 static inline void __d_clear_type_and_inode(struct dentry *dentry)
415 {
416 	unsigned flags = READ_ONCE(dentry->d_flags);
417 
418 	flags &= ~DCACHE_ENTRY_TYPE;
419 	WRITE_ONCE(dentry->d_flags, flags);
420 	dentry->d_inode = NULL;
421 	/*
422 	 * The negative counter only tracks dentries on the LRU. Don't inc if
423 	 * d_lru is on another list.
424 	 */
425 	if ((flags & (DCACHE_LRU_LIST|DCACHE_SHRINK_LIST)) == DCACHE_LRU_LIST)
426 		this_cpu_inc(nr_dentry_negative);
427 }
428 
dentry_free(struct dentry * dentry)429 static void dentry_free(struct dentry *dentry)
430 {
431 	WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
432 	if (unlikely(dname_external(dentry))) {
433 		struct external_name *p = external_name(dentry);
434 		if (likely(atomic_dec_and_test(&p->count))) {
435 			call_rcu(&dentry->d_u.d_rcu, __d_free_external);
436 			return;
437 		}
438 	}
439 	/* if dentry was never visible to RCU, immediate free is OK */
440 	if (dentry->d_flags & DCACHE_NORCU)
441 		__d_free(&dentry->d_u.d_rcu);
442 	else
443 		call_rcu(&dentry->d_u.d_rcu, __d_free);
444 }
445 
446 /*
447  * Release the dentry's inode, using the filesystem
448  * d_iput() operation if defined.
449  */
dentry_unlink_inode(struct dentry * dentry)450 static void dentry_unlink_inode(struct dentry * dentry)
451 	__releases(dentry->d_lock)
452 	__releases(dentry->d_inode->i_lock)
453 {
454 	struct inode *inode = dentry->d_inode;
455 
456 	raw_write_seqcount_begin(&dentry->d_seq);
457 	__d_clear_type_and_inode(dentry);
458 	hlist_del_init(&dentry->d_u.d_alias);
459 	raw_write_seqcount_end(&dentry->d_seq);
460 	spin_unlock(&dentry->d_lock);
461 	spin_unlock(&inode->i_lock);
462 	if (!inode->i_nlink)
463 		fsnotify_inoderemove(inode);
464 	if (dentry->d_op && dentry->d_op->d_iput)
465 		dentry->d_op->d_iput(dentry, inode);
466 	else
467 		iput(inode);
468 }
469 
470 /*
471  * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
472  * is in use - which includes both the "real" per-superblock
473  * LRU list _and_ the DCACHE_SHRINK_LIST use.
474  *
475  * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
476  * on the shrink list (ie not on the superblock LRU list).
477  *
478  * The per-cpu "nr_dentry_unused" counters are updated with
479  * the DCACHE_LRU_LIST bit.
480  *
481  * The per-cpu "nr_dentry_negative" counters are only updated
482  * when deleted from or added to the per-superblock LRU list, not
483  * from/to the shrink list. That is to avoid an unneeded dec/inc
484  * pair when moving from LRU to shrink list in select_collect().
485  *
486  * These helper functions make sure we always follow the
487  * rules. d_lock must be held by the caller.
488  */
489 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
d_lru_add(struct dentry * dentry)490 static void d_lru_add(struct dentry *dentry)
491 {
492 	D_FLAG_VERIFY(dentry, 0);
493 	dentry->d_flags |= DCACHE_LRU_LIST;
494 	this_cpu_inc(nr_dentry_unused);
495 	if (d_is_negative(dentry))
496 		this_cpu_inc(nr_dentry_negative);
497 	WARN_ON_ONCE(!list_lru_add_obj(
498 			&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
499 }
500 
d_lru_del(struct dentry * dentry)501 static void d_lru_del(struct dentry *dentry)
502 {
503 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
504 	dentry->d_flags &= ~DCACHE_LRU_LIST;
505 	this_cpu_dec(nr_dentry_unused);
506 	if (d_is_negative(dentry))
507 		this_cpu_dec(nr_dentry_negative);
508 	WARN_ON_ONCE(!list_lru_del_obj(
509 			&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
510 }
511 
d_shrink_del(struct dentry * dentry)512 static void d_shrink_del(struct dentry *dentry)
513 {
514 	D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
515 	list_del_init(&dentry->d_lru);
516 	dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
517 	this_cpu_dec(nr_dentry_unused);
518 }
519 
d_shrink_add(struct dentry * dentry,struct list_head * list)520 static void d_shrink_add(struct dentry *dentry, struct list_head *list)
521 {
522 	D_FLAG_VERIFY(dentry, 0);
523 	list_add(&dentry->d_lru, list);
524 	dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
525 	this_cpu_inc(nr_dentry_unused);
526 }
527 
528 /*
529  * These can only be called under the global LRU lock, ie during the
530  * callback for freeing the LRU list. "isolate" removes it from the
531  * LRU lists entirely, while shrink_move moves it to the indicated
532  * private list.
533  */
d_lru_isolate(struct list_lru_one * lru,struct dentry * dentry)534 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
535 {
536 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
537 	dentry->d_flags &= ~DCACHE_LRU_LIST;
538 	this_cpu_dec(nr_dentry_unused);
539 	if (d_is_negative(dentry))
540 		this_cpu_dec(nr_dentry_negative);
541 	list_lru_isolate(lru, &dentry->d_lru);
542 }
543 
d_lru_shrink_move(struct list_lru_one * lru,struct dentry * dentry,struct list_head * list)544 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
545 			      struct list_head *list)
546 {
547 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
548 	dentry->d_flags |= DCACHE_SHRINK_LIST;
549 	if (d_is_negative(dentry))
550 		this_cpu_dec(nr_dentry_negative);
551 	list_lru_isolate_move(lru, &dentry->d_lru, list);
552 }
553 
___d_drop(struct dentry * dentry)554 static void ___d_drop(struct dentry *dentry)
555 {
556 	struct hlist_bl_head *b;
557 	/*
558 	 * Hashed dentries are normally on the dentry hashtable,
559 	 * with the exception of those newly allocated by
560 	 * d_obtain_root, which are always IS_ROOT:
561 	 */
562 	if (unlikely(IS_ROOT(dentry)))
563 		b = &dentry->d_sb->s_roots;
564 	else
565 		b = d_hash(dentry->d_name.hash);
566 
567 	hlist_bl_lock(b);
568 	__hlist_bl_del(&dentry->d_hash);
569 	hlist_bl_unlock(b);
570 }
571 
__d_drop(struct dentry * dentry)572 void __d_drop(struct dentry *dentry)
573 {
574 	if (!d_unhashed(dentry)) {
575 		___d_drop(dentry);
576 		dentry->d_hash.pprev = NULL;
577 		write_seqcount_invalidate(&dentry->d_seq);
578 	}
579 }
580 EXPORT_SYMBOL(__d_drop);
581 
582 /**
583  * d_drop - drop a dentry
584  * @dentry: dentry to drop
585  *
586  * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
587  * be found through a VFS lookup any more. Note that this is different from
588  * deleting the dentry - d_delete will try to mark the dentry negative if
589  * possible, giving a successful _negative_ lookup, while d_drop will
590  * just make the cache lookup fail.
591  *
592  * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
593  * reason (NFS timeouts or autofs deletes).
594  *
595  * __d_drop requires dentry->d_lock
596  *
597  * ___d_drop doesn't mark dentry as "unhashed"
598  * (dentry->d_hash.pprev will be LIST_POISON2, not NULL).
599  */
d_drop(struct dentry * dentry)600 void d_drop(struct dentry *dentry)
601 {
602 	spin_lock(&dentry->d_lock);
603 	__d_drop(dentry);
604 	spin_unlock(&dentry->d_lock);
605 }
606 EXPORT_SYMBOL(d_drop);
607 
dentry_unlist(struct dentry * dentry)608 static inline void dentry_unlist(struct dentry *dentry)
609 {
610 	struct dentry *next;
611 	/*
612 	 * Inform d_walk() and shrink_dentry_list() that we are no longer
613 	 * attached to the dentry tree
614 	 */
615 	dentry->d_flags |= DCACHE_DENTRY_KILLED;
616 	if (unlikely(hlist_unhashed(&dentry->d_sib)))
617 		return;
618 	__hlist_del(&dentry->d_sib);
619 	/*
620 	 * Cursors can move around the list of children.  While we'd been
621 	 * a normal list member, it didn't matter - ->d_sib.next would've
622 	 * been updated.  However, from now on it won't be and for the
623 	 * things like d_walk() it might end up with a nasty surprise.
624 	 * Normally d_walk() doesn't care about cursors moving around -
625 	 * ->d_lock on parent prevents that and since a cursor has no children
626 	 * of its own, we get through it without ever unlocking the parent.
627 	 * There is one exception, though - if we ascend from a child that
628 	 * gets killed as soon as we unlock it, the next sibling is found
629 	 * using the value left in its ->d_sib.next.  And if _that_
630 	 * pointed to a cursor, and cursor got moved (e.g. by lseek())
631 	 * before d_walk() regains parent->d_lock, we'll end up skipping
632 	 * everything the cursor had been moved past.
633 	 *
634 	 * Solution: make sure that the pointer left behind in ->d_sib.next
635 	 * points to something that won't be moving around.  I.e. skip the
636 	 * cursors.
637 	 */
638 	while (dentry->d_sib.next) {
639 		next = hlist_entry(dentry->d_sib.next, struct dentry, d_sib);
640 		if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
641 			break;
642 		dentry->d_sib.next = next->d_sib.next;
643 	}
644 }
645 
__dentry_kill(struct dentry * dentry)646 static struct dentry *__dentry_kill(struct dentry *dentry)
647 {
648 	struct dentry *parent = NULL;
649 	bool can_free = true;
650 
651 	/*
652 	 * The dentry is now unrecoverably dead to the world.
653 	 */
654 	lockref_mark_dead(&dentry->d_lockref);
655 
656 	/*
657 	 * inform the fs via d_prune that this dentry is about to be
658 	 * unhashed and destroyed.
659 	 */
660 	if (dentry->d_flags & DCACHE_OP_PRUNE)
661 		dentry->d_op->d_prune(dentry);
662 
663 	if (dentry->d_flags & DCACHE_LRU_LIST) {
664 		if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
665 			d_lru_del(dentry);
666 	}
667 	/* if it was on the hash then remove it */
668 	__d_drop(dentry);
669 	if (dentry->d_inode)
670 		dentry_unlink_inode(dentry);
671 	else
672 		spin_unlock(&dentry->d_lock);
673 	this_cpu_dec(nr_dentry);
674 	if (dentry->d_op && dentry->d_op->d_release)
675 		dentry->d_op->d_release(dentry);
676 
677 	cond_resched();
678 	/* now that it's negative, ->d_parent is stable */
679 	if (!IS_ROOT(dentry)) {
680 		parent = dentry->d_parent;
681 		spin_lock(&parent->d_lock);
682 	}
683 	spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
684 	dentry_unlist(dentry);
685 	if (dentry->d_flags & DCACHE_SHRINK_LIST)
686 		can_free = false;
687 	spin_unlock(&dentry->d_lock);
688 	if (likely(can_free))
689 		dentry_free(dentry);
690 	if (parent && --parent->d_lockref.count) {
691 		spin_unlock(&parent->d_lock);
692 		return NULL;
693 	}
694 	return parent;
695 }
696 
697 /*
698  * Lock a dentry for feeding it to __dentry_kill().
699  * Called under rcu_read_lock() and dentry->d_lock; the former
700  * guarantees that nothing we access will be freed under us.
701  * Note that dentry is *not* protected from concurrent dentry_kill(),
702  * d_delete(), etc.
703  *
704  * Return false if dentry is busy.  Otherwise, return true and have
705  * that dentry's inode locked.
706  */
707 
lock_for_kill(struct dentry * dentry)708 static bool lock_for_kill(struct dentry *dentry)
709 {
710 	struct inode *inode = dentry->d_inode;
711 
712 	if (unlikely(dentry->d_lockref.count))
713 		return false;
714 
715 	if (!inode || likely(spin_trylock(&inode->i_lock)))
716 		return true;
717 
718 	do {
719 		spin_unlock(&dentry->d_lock);
720 		spin_lock(&inode->i_lock);
721 		spin_lock(&dentry->d_lock);
722 		if (likely(inode == dentry->d_inode))
723 			break;
724 		spin_unlock(&inode->i_lock);
725 		inode = dentry->d_inode;
726 	} while (inode);
727 	if (likely(!dentry->d_lockref.count))
728 		return true;
729 	if (inode)
730 		spin_unlock(&inode->i_lock);
731 	return false;
732 }
733 
734 /*
735  * Decide if dentry is worth retaining.  Usually this is called with dentry
736  * locked; if not locked, we are more limited and might not be able to tell
737  * without a lock.  False in this case means "punt to locked path and recheck".
738  *
739  * In case we aren't locked, these predicates are not "stable". However, it is
740  * sufficient that at some point after we dropped the reference the dentry was
741  * hashed and the flags had the proper value. Other dentry users may have
742  * re-gotten a reference to the dentry and change that, but our work is done -
743  * we can leave the dentry around with a zero refcount.
744  */
retain_dentry(struct dentry * dentry,bool locked)745 static inline bool retain_dentry(struct dentry *dentry, bool locked)
746 {
747 	unsigned int d_flags;
748 
749 	smp_rmb();
750 	d_flags = READ_ONCE(dentry->d_flags);
751 
752 	// Unreachable? Nobody would be able to look it up, no point retaining
753 	if (unlikely(d_unhashed(dentry)))
754 		return false;
755 
756 	// Same if it's disconnected
757 	if (unlikely(d_flags & DCACHE_DISCONNECTED))
758 		return false;
759 
760 	// ->d_delete() might tell us not to bother, but that requires
761 	// ->d_lock; can't decide without it
762 	if (unlikely(d_flags & DCACHE_OP_DELETE)) {
763 		if (!locked || dentry->d_op->d_delete(dentry))
764 			return false;
765 	}
766 
767 	// Explicitly told not to bother
768 	if (unlikely(d_flags & DCACHE_DONTCACHE))
769 		return false;
770 
771 	// At this point it looks like we ought to keep it.  We also might
772 	// need to do something - put it on LRU if it wasn't there already
773 	// and mark it referenced if it was on LRU, but not marked yet.
774 	// Unfortunately, both actions require ->d_lock, so in lockless
775 	// case we'd have to punt rather than doing those.
776 	if (unlikely(!(d_flags & DCACHE_LRU_LIST))) {
777 		if (!locked)
778 			return false;
779 		d_lru_add(dentry);
780 	} else if (unlikely(!(d_flags & DCACHE_REFERENCED))) {
781 		if (!locked)
782 			return false;
783 		dentry->d_flags |= DCACHE_REFERENCED;
784 	}
785 	return true;
786 }
787 
d_mark_dontcache(struct inode * inode)788 void d_mark_dontcache(struct inode *inode)
789 {
790 	struct dentry *de;
791 
792 	spin_lock(&inode->i_lock);
793 	hlist_for_each_entry(de, &inode->i_dentry, d_u.d_alias) {
794 		spin_lock(&de->d_lock);
795 		de->d_flags |= DCACHE_DONTCACHE;
796 		spin_unlock(&de->d_lock);
797 	}
798 	inode_state_set(inode, I_DONTCACHE);
799 	spin_unlock(&inode->i_lock);
800 }
801 EXPORT_SYMBOL(d_mark_dontcache);
802 
803 /*
804  * Try to do a lockless dput(), and return whether that was successful.
805  *
806  * If unsuccessful, we return false, having already taken the dentry lock.
807  * In that case refcount is guaranteed to be zero and we have already
808  * decided that it's not worth keeping around.
809  *
810  * The caller needs to hold the RCU read lock, so that the dentry is
811  * guaranteed to stay around even if the refcount goes down to zero!
812  */
fast_dput(struct dentry * dentry)813 static inline bool fast_dput(struct dentry *dentry)
814 {
815 	int ret;
816 
817 	/*
818 	 * try to decrement the lockref optimistically.
819 	 */
820 	ret = lockref_put_return(&dentry->d_lockref);
821 
822 	/*
823 	 * If the lockref_put_return() failed due to the lock being held
824 	 * by somebody else, the fast path has failed. We will need to
825 	 * get the lock, and then check the count again.
826 	 */
827 	if (unlikely(ret < 0)) {
828 		spin_lock(&dentry->d_lock);
829 		if (WARN_ON_ONCE(dentry->d_lockref.count <= 0)) {
830 			spin_unlock(&dentry->d_lock);
831 			return true;
832 		}
833 		dentry->d_lockref.count--;
834 		goto locked;
835 	}
836 
837 	/*
838 	 * If we weren't the last ref, we're done.
839 	 */
840 	if (ret)
841 		return true;
842 
843 	/*
844 	 * Can we decide that decrement of refcount is all we needed without
845 	 * taking the lock?  There's a very common case when it's all we need -
846 	 * dentry looks like it ought to be retained and there's nothing else
847 	 * to do.
848 	 */
849 	if (retain_dentry(dentry, false))
850 		return true;
851 
852 	/*
853 	 * Either not worth retaining or we can't tell without the lock.
854 	 * Get the lock, then.  We've already decremented the refcount to 0,
855 	 * but we'll need to re-check the situation after getting the lock.
856 	 */
857 	spin_lock(&dentry->d_lock);
858 
859 	/*
860 	 * Did somebody else grab a reference to it in the meantime, and
861 	 * we're no longer the last user after all? Alternatively, somebody
862 	 * else could have killed it and marked it dead. Either way, we
863 	 * don't need to do anything else.
864 	 */
865 locked:
866 	if (dentry->d_lockref.count || retain_dentry(dentry, true)) {
867 		spin_unlock(&dentry->d_lock);
868 		return true;
869 	}
870 	return false;
871 }
872 
873 
874 /*
875  * This is dput
876  *
877  * This is complicated by the fact that we do not want to put
878  * dentries that are no longer on any hash chain on the unused
879  * list: we'd much rather just get rid of them immediately.
880  *
881  * However, that implies that we have to traverse the dentry
882  * tree upwards to the parents which might _also_ now be
883  * scheduled for deletion (it may have been only waiting for
884  * its last child to go away).
885  *
886  * This tail recursion is done by hand as we don't want to depend
887  * on the compiler to always get this right (gcc generally doesn't).
888  * Real recursion would eat up our stack space.
889  */
890 
891 /*
892  * dput - release a dentry
893  * @dentry: dentry to release
894  *
895  * Release a dentry. This will drop the usage count and if appropriate
896  * call the dentry unlink method as well as removing it from the queues and
897  * releasing its resources. If the parent dentries were scheduled for release
898  * they too may now get deleted.
899  */
dput(struct dentry * dentry)900 void dput(struct dentry *dentry)
901 {
902 	if (!dentry)
903 		return;
904 	might_sleep();
905 	rcu_read_lock();
906 	if (likely(fast_dput(dentry))) {
907 		rcu_read_unlock();
908 		return;
909 	}
910 	while (lock_for_kill(dentry)) {
911 		rcu_read_unlock();
912 		dentry = __dentry_kill(dentry);
913 		if (!dentry)
914 			return;
915 		if (retain_dentry(dentry, true)) {
916 			spin_unlock(&dentry->d_lock);
917 			return;
918 		}
919 		rcu_read_lock();
920 	}
921 	rcu_read_unlock();
922 	spin_unlock(&dentry->d_lock);
923 }
924 EXPORT_SYMBOL(dput);
925 
to_shrink_list(struct dentry * dentry,struct list_head * list)926 static void to_shrink_list(struct dentry *dentry, struct list_head *list)
927 __must_hold(&dentry->d_lock)
928 {
929 	if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) {
930 		if (dentry->d_flags & DCACHE_LRU_LIST)
931 			d_lru_del(dentry);
932 		d_shrink_add(dentry, list);
933 	}
934 }
935 
dput_to_list(struct dentry * dentry,struct list_head * list)936 void dput_to_list(struct dentry *dentry, struct list_head *list)
937 {
938 	rcu_read_lock();
939 	if (likely(fast_dput(dentry))) {
940 		rcu_read_unlock();
941 		return;
942 	}
943 	rcu_read_unlock();
944 	to_shrink_list(dentry, list);
945 	spin_unlock(&dentry->d_lock);
946 }
947 
dget_parent(struct dentry * dentry)948 struct dentry *dget_parent(struct dentry *dentry)
949 {
950 	int gotref;
951 	struct dentry *ret;
952 	unsigned seq;
953 
954 	/*
955 	 * Do optimistic parent lookup without any
956 	 * locking.
957 	 */
958 	rcu_read_lock();
959 	seq = raw_seqcount_begin(&dentry->d_seq);
960 	ret = READ_ONCE(dentry->d_parent);
961 	gotref = lockref_get_not_zero(&ret->d_lockref);
962 	rcu_read_unlock();
963 	if (likely(gotref)) {
964 		if (!read_seqcount_retry(&dentry->d_seq, seq))
965 			return ret;
966 		dput(ret);
967 	}
968 
969 repeat:
970 	/*
971 	 * Don't need rcu_dereference because we re-check it was correct under
972 	 * the lock.
973 	 */
974 	rcu_read_lock();
975 	ret = dentry->d_parent;
976 	spin_lock(&ret->d_lock);
977 	if (unlikely(ret != dentry->d_parent)) {
978 		spin_unlock(&ret->d_lock);
979 		rcu_read_unlock();
980 		goto repeat;
981 	}
982 	rcu_read_unlock();
983 	BUG_ON(!ret->d_lockref.count);
984 	ret->d_lockref.count++;
985 	spin_unlock(&ret->d_lock);
986 	return ret;
987 }
988 EXPORT_SYMBOL(dget_parent);
989 
__d_find_any_alias(struct inode * inode)990 static struct dentry * __d_find_any_alias(struct inode *inode)
991 {
992 	struct dentry *alias;
993 
994 	if (hlist_empty(&inode->i_dentry))
995 		return NULL;
996 	alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
997 	lockref_get(&alias->d_lockref);
998 	return alias;
999 }
1000 
1001 /**
1002  * d_find_any_alias - find any alias for a given inode
1003  * @inode: inode to find an alias for
1004  *
1005  * If any aliases exist for the given inode, take and return a
1006  * reference for one of them.  If no aliases exist, return %NULL.
1007  */
d_find_any_alias(struct inode * inode)1008 struct dentry *d_find_any_alias(struct inode *inode)
1009 {
1010 	struct dentry *de;
1011 
1012 	spin_lock(&inode->i_lock);
1013 	de = __d_find_any_alias(inode);
1014 	spin_unlock(&inode->i_lock);
1015 	return de;
1016 }
1017 EXPORT_SYMBOL(d_find_any_alias);
1018 
__d_find_alias(struct inode * inode)1019 static struct dentry *__d_find_alias(struct inode *inode)
1020 {
1021 	struct dentry *alias;
1022 
1023 	if (S_ISDIR(inode->i_mode))
1024 		return __d_find_any_alias(inode);
1025 
1026 	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
1027 		spin_lock(&alias->d_lock);
1028  		if (!d_unhashed(alias)) {
1029 			dget_dlock(alias);
1030 			spin_unlock(&alias->d_lock);
1031 			return alias;
1032 		}
1033 		spin_unlock(&alias->d_lock);
1034 	}
1035 	return NULL;
1036 }
1037 
1038 /**
1039  * d_find_alias - grab a hashed alias of inode
1040  * @inode: inode in question
1041  *
1042  * If inode has a hashed alias, or is a directory and has any alias,
1043  * acquire the reference to alias and return it. Otherwise return NULL.
1044  * Notice that if inode is a directory there can be only one alias and
1045  * it can be unhashed only if it has no children, or if it is the root
1046  * of a filesystem, or if the directory was renamed and d_revalidate
1047  * was the first vfs operation to notice.
1048  *
1049  * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
1050  * any other hashed alias over that one.
1051  */
d_find_alias(struct inode * inode)1052 struct dentry *d_find_alias(struct inode *inode)
1053 {
1054 	struct dentry *de = NULL;
1055 
1056 	if (!hlist_empty(&inode->i_dentry)) {
1057 		spin_lock(&inode->i_lock);
1058 		de = __d_find_alias(inode);
1059 		spin_unlock(&inode->i_lock);
1060 	}
1061 	return de;
1062 }
1063 EXPORT_SYMBOL(d_find_alias);
1064 
1065 /*
1066  *  Caller MUST be holding rcu_read_lock() and be guaranteed
1067  *  that inode won't get freed until rcu_read_unlock().
1068  */
d_find_alias_rcu(struct inode * inode)1069 struct dentry *d_find_alias_rcu(struct inode *inode)
1070 {
1071 	struct hlist_head *l = &inode->i_dentry;
1072 	struct dentry *de = NULL;
1073 
1074 	spin_lock(&inode->i_lock);
1075 	// ->i_dentry and ->i_rcu are colocated, but the latter won't be
1076 	// used without having I_FREEING set, which means no aliases left
1077 	if (likely(!(inode_state_read(inode) & I_FREEING) && !hlist_empty(l))) {
1078 		if (S_ISDIR(inode->i_mode)) {
1079 			de = hlist_entry(l->first, struct dentry, d_u.d_alias);
1080 		} else {
1081 			hlist_for_each_entry(de, l, d_u.d_alias)
1082 				if (!d_unhashed(de))
1083 					break;
1084 		}
1085 	}
1086 	spin_unlock(&inode->i_lock);
1087 	return de;
1088 }
1089 
1090 /*
1091  *	Try to kill dentries associated with this inode.
1092  * WARNING: you must own a reference to inode.
1093  */
d_prune_aliases(struct inode * inode)1094 void d_prune_aliases(struct inode *inode)
1095 {
1096 	LIST_HEAD(dispose);
1097 	struct dentry *dentry;
1098 
1099 	spin_lock(&inode->i_lock);
1100 	hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
1101 		spin_lock(&dentry->d_lock);
1102 		if (!dentry->d_lockref.count)
1103 			to_shrink_list(dentry, &dispose);
1104 		spin_unlock(&dentry->d_lock);
1105 	}
1106 	spin_unlock(&inode->i_lock);
1107 	shrink_dentry_list(&dispose);
1108 }
1109 EXPORT_SYMBOL(d_prune_aliases);
1110 
shrink_kill(struct dentry * victim)1111 static inline void shrink_kill(struct dentry *victim)
1112 {
1113 	do {
1114 		rcu_read_unlock();
1115 		victim = __dentry_kill(victim);
1116 		rcu_read_lock();
1117 	} while (victim && lock_for_kill(victim));
1118 	rcu_read_unlock();
1119 	if (victim)
1120 		spin_unlock(&victim->d_lock);
1121 }
1122 
shrink_dentry_list(struct list_head * list)1123 void shrink_dentry_list(struct list_head *list)
1124 {
1125 	while (!list_empty(list)) {
1126 		struct dentry *dentry;
1127 
1128 		dentry = list_entry(list->prev, struct dentry, d_lru);
1129 		spin_lock(&dentry->d_lock);
1130 		rcu_read_lock();
1131 		if (!lock_for_kill(dentry)) {
1132 			bool can_free;
1133 			rcu_read_unlock();
1134 			d_shrink_del(dentry);
1135 			can_free = dentry->d_flags & DCACHE_DENTRY_KILLED;
1136 			spin_unlock(&dentry->d_lock);
1137 			if (can_free)
1138 				dentry_free(dentry);
1139 			continue;
1140 		}
1141 		d_shrink_del(dentry);
1142 		shrink_kill(dentry);
1143 	}
1144 }
1145 
dentry_lru_isolate(struct list_head * item,struct list_lru_one * lru,void * arg)1146 static enum lru_status dentry_lru_isolate(struct list_head *item,
1147 		struct list_lru_one *lru, void *arg)
1148 {
1149 	struct list_head *freeable = arg;
1150 	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
1151 
1152 
1153 	/*
1154 	 * we are inverting the lru lock/dentry->d_lock here,
1155 	 * so use a trylock. If we fail to get the lock, just skip
1156 	 * it
1157 	 */
1158 	if (!spin_trylock(&dentry->d_lock))
1159 		return LRU_SKIP;
1160 
1161 	/*
1162 	 * Referenced dentries are still in use. If they have active
1163 	 * counts, just remove them from the LRU. Otherwise give them
1164 	 * another pass through the LRU.
1165 	 */
1166 	if (dentry->d_lockref.count) {
1167 		d_lru_isolate(lru, dentry);
1168 		spin_unlock(&dentry->d_lock);
1169 		return LRU_REMOVED;
1170 	}
1171 
1172 	if (dentry->d_flags & DCACHE_REFERENCED) {
1173 		dentry->d_flags &= ~DCACHE_REFERENCED;
1174 		spin_unlock(&dentry->d_lock);
1175 
1176 		/*
1177 		 * The list move itself will be made by the common LRU code. At
1178 		 * this point, we've dropped the dentry->d_lock but keep the
1179 		 * lru lock. This is safe to do, since every list movement is
1180 		 * protected by the lru lock even if both locks are held.
1181 		 *
1182 		 * This is guaranteed by the fact that all LRU management
1183 		 * functions are intermediated by the LRU API calls like
1184 		 * list_lru_add_obj and list_lru_del_obj. List movement in this file
1185 		 * only ever occur through this functions or through callbacks
1186 		 * like this one, that are called from the LRU API.
1187 		 *
1188 		 * The only exceptions to this are functions like
1189 		 * shrink_dentry_list, and code that first checks for the
1190 		 * DCACHE_SHRINK_LIST flag.  Those are guaranteed to be
1191 		 * operating only with stack provided lists after they are
1192 		 * properly isolated from the main list.  It is thus, always a
1193 		 * local access.
1194 		 */
1195 		return LRU_ROTATE;
1196 	}
1197 
1198 	d_lru_shrink_move(lru, dentry, freeable);
1199 	spin_unlock(&dentry->d_lock);
1200 
1201 	return LRU_REMOVED;
1202 }
1203 
1204 /**
1205  * prune_dcache_sb - shrink the dcache
1206  * @sb: superblock
1207  * @sc: shrink control, passed to list_lru_shrink_walk()
1208  *
1209  * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1210  * is done when we need more memory and called from the superblock shrinker
1211  * function.
1212  *
1213  * This function may fail to free any resources if all the dentries are in
1214  * use.
1215  */
prune_dcache_sb(struct super_block * sb,struct shrink_control * sc)1216 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
1217 {
1218 	LIST_HEAD(dispose);
1219 	long freed;
1220 
1221 	freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1222 				     dentry_lru_isolate, &dispose);
1223 	shrink_dentry_list(&dispose);
1224 	return freed;
1225 }
1226 
dentry_lru_isolate_shrink(struct list_head * item,struct list_lru_one * lru,void * arg)1227 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1228 		struct list_lru_one *lru, void *arg)
1229 {
1230 	struct list_head *freeable = arg;
1231 	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
1232 
1233 	/*
1234 	 * we are inverting the lru lock/dentry->d_lock here,
1235 	 * so use a trylock. If we fail to get the lock, just skip
1236 	 * it
1237 	 */
1238 	if (!spin_trylock(&dentry->d_lock))
1239 		return LRU_SKIP;
1240 
1241 	d_lru_shrink_move(lru, dentry, freeable);
1242 	spin_unlock(&dentry->d_lock);
1243 
1244 	return LRU_REMOVED;
1245 }
1246 
1247 
1248 /**
1249  * shrink_dcache_sb - shrink dcache for a superblock
1250  * @sb: superblock
1251  *
1252  * Shrink the dcache for the specified super block. This is used to free
1253  * the dcache before unmounting a file system.
1254  */
shrink_dcache_sb(struct super_block * sb)1255 void shrink_dcache_sb(struct super_block *sb)
1256 {
1257 	do {
1258 		LIST_HEAD(dispose);
1259 
1260 		list_lru_walk(&sb->s_dentry_lru,
1261 			dentry_lru_isolate_shrink, &dispose, 1024);
1262 		shrink_dentry_list(&dispose);
1263 	} while (list_lru_count(&sb->s_dentry_lru) > 0);
1264 }
1265 EXPORT_SYMBOL(shrink_dcache_sb);
1266 
1267 /**
1268  * enum d_walk_ret - action to talke during tree walk
1269  * @D_WALK_CONTINUE:	contrinue walk
1270  * @D_WALK_QUIT:	quit walk
1271  * @D_WALK_NORETRY:	quit when retry is needed
1272  * @D_WALK_SKIP:	skip this dentry and its children
1273  */
1274 enum d_walk_ret {
1275 	D_WALK_CONTINUE,
1276 	D_WALK_QUIT,
1277 	D_WALK_NORETRY,
1278 	D_WALK_SKIP,
1279 };
1280 
1281 /**
1282  * d_walk - walk the dentry tree
1283  * @parent:	start of walk
1284  * @data:	data passed to @enter() and @finish()
1285  * @enter:	callback when first entering the dentry
1286  *
1287  * The @enter() callbacks are called with d_lock held.
1288  */
d_walk(struct dentry * parent,void * data,enum d_walk_ret (* enter)(void *,struct dentry *))1289 static void d_walk(struct dentry *parent, void *data,
1290 		   enum d_walk_ret (*enter)(void *, struct dentry *))
1291 {
1292 	struct dentry *this_parent, *dentry;
1293 	unsigned seq = 0;
1294 	enum d_walk_ret ret;
1295 	bool retry = true;
1296 
1297 again:
1298 	read_seqbegin_or_lock(&rename_lock, &seq);
1299 	this_parent = parent;
1300 	spin_lock(&this_parent->d_lock);
1301 
1302 	ret = enter(data, this_parent);
1303 	switch (ret) {
1304 	case D_WALK_CONTINUE:
1305 		break;
1306 	case D_WALK_QUIT:
1307 	case D_WALK_SKIP:
1308 		goto out_unlock;
1309 	case D_WALK_NORETRY:
1310 		retry = false;
1311 		break;
1312 	}
1313 repeat:
1314 	dentry = d_first_child(this_parent);
1315 resume:
1316 	hlist_for_each_entry_from(dentry, d_sib) {
1317 		if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1318 			continue;
1319 
1320 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1321 
1322 		ret = enter(data, dentry);
1323 		switch (ret) {
1324 		case D_WALK_CONTINUE:
1325 			break;
1326 		case D_WALK_QUIT:
1327 			spin_unlock(&dentry->d_lock);
1328 			goto out_unlock;
1329 		case D_WALK_NORETRY:
1330 			retry = false;
1331 			break;
1332 		case D_WALK_SKIP:
1333 			spin_unlock(&dentry->d_lock);
1334 			continue;
1335 		}
1336 
1337 		if (!hlist_empty(&dentry->d_children)) {
1338 			spin_unlock(&this_parent->d_lock);
1339 			spin_release(&dentry->d_lock.dep_map, _RET_IP_);
1340 			this_parent = dentry;
1341 			spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1342 			goto repeat;
1343 		}
1344 		spin_unlock(&dentry->d_lock);
1345 	}
1346 	/*
1347 	 * All done at this level ... ascend and resume the search.
1348 	 */
1349 	rcu_read_lock();
1350 ascend:
1351 	if (this_parent != parent) {
1352 		dentry = this_parent;
1353 		this_parent = dentry->d_parent;
1354 
1355 		spin_unlock(&dentry->d_lock);
1356 		spin_lock(&this_parent->d_lock);
1357 
1358 		/* might go back up the wrong parent if we have had a rename. */
1359 		if (need_seqretry(&rename_lock, seq))
1360 			goto rename_retry;
1361 		/* go into the first sibling still alive */
1362 		hlist_for_each_entry_continue(dentry, d_sib) {
1363 			if (likely(!(dentry->d_flags & DCACHE_DENTRY_KILLED))) {
1364 				rcu_read_unlock();
1365 				goto resume;
1366 			}
1367 		}
1368 		goto ascend;
1369 	}
1370 	if (need_seqretry(&rename_lock, seq))
1371 		goto rename_retry;
1372 	rcu_read_unlock();
1373 
1374 out_unlock:
1375 	spin_unlock(&this_parent->d_lock);
1376 	done_seqretry(&rename_lock, seq);
1377 	return;
1378 
1379 rename_retry:
1380 	spin_unlock(&this_parent->d_lock);
1381 	rcu_read_unlock();
1382 	BUG_ON(seq & 1);
1383 	if (!retry)
1384 		return;
1385 	seq = 1;
1386 	goto again;
1387 }
1388 
1389 struct check_mount {
1390 	struct vfsmount *mnt;
1391 	unsigned int mounted;
1392 };
1393 
1394 /* locks: mount_locked_reader && dentry->d_lock */
path_check_mount(void * data,struct dentry * dentry)1395 static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry)
1396 {
1397 	struct check_mount *info = data;
1398 	struct path path = { .mnt = info->mnt, .dentry = dentry };
1399 
1400 	if (likely(!d_mountpoint(dentry)))
1401 		return D_WALK_CONTINUE;
1402 	if (__path_is_mountpoint(&path)) {
1403 		info->mounted = 1;
1404 		return D_WALK_QUIT;
1405 	}
1406 	return D_WALK_CONTINUE;
1407 }
1408 
1409 /**
1410  * path_has_submounts - check for mounts over a dentry in the
1411  *                      current namespace.
1412  * @parent: path to check.
1413  *
1414  * Return true if the parent or its subdirectories contain
1415  * a mount point in the current namespace.
1416  */
path_has_submounts(const struct path * parent)1417 int path_has_submounts(const struct path *parent)
1418 {
1419 	struct check_mount data = { .mnt = parent->mnt, .mounted = 0 };
1420 
1421 	guard(mount_locked_reader)();
1422 	d_walk(parent->dentry, &data, path_check_mount);
1423 
1424 	return data.mounted;
1425 }
1426 EXPORT_SYMBOL(path_has_submounts);
1427 
1428 /*
1429  * Called by mount code to set a mountpoint and check if the mountpoint is
1430  * reachable (e.g. NFS can unhash a directory dentry and then the complete
1431  * subtree can become unreachable).
1432  *
1433  * Only one of d_invalidate() and d_set_mounted() must succeed.  For
1434  * this reason take rename_lock and d_lock on dentry and ancestors.
1435  */
d_set_mounted(struct dentry * dentry)1436 int d_set_mounted(struct dentry *dentry)
1437 {
1438 	struct dentry *p;
1439 	int ret = -ENOENT;
1440 	read_seqlock_excl(&rename_lock);
1441 	for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1442 		/* Need exclusion wrt. d_invalidate() */
1443 		spin_lock(&p->d_lock);
1444 		if (unlikely(d_unhashed(p))) {
1445 			spin_unlock(&p->d_lock);
1446 			goto out;
1447 		}
1448 		spin_unlock(&p->d_lock);
1449 	}
1450 	spin_lock(&dentry->d_lock);
1451 	if (!d_unlinked(dentry)) {
1452 		ret = -EBUSY;
1453 		if (!d_mountpoint(dentry)) {
1454 			dentry->d_flags |= DCACHE_MOUNTED;
1455 			ret = 0;
1456 		}
1457 	}
1458  	spin_unlock(&dentry->d_lock);
1459 out:
1460 	read_sequnlock_excl(&rename_lock);
1461 	return ret;
1462 }
1463 
1464 /*
1465  * Search the dentry child list of the specified parent,
1466  * and move any unused dentries to the end of the unused
1467  * list for prune_dcache(). We descend to the next level
1468  * whenever the d_children list is non-empty and continue
1469  * searching.
1470  *
1471  * It returns zero iff there are no unused children,
1472  * otherwise  it returns the number of children moved to
1473  * the end of the unused list. This may not be the total
1474  * number of unused children, because select_parent can
1475  * drop the lock and return early due to latency
1476  * constraints.
1477  */
1478 
1479 struct select_data {
1480 	struct dentry *start;
1481 	union {
1482 		long found;
1483 		struct dentry *victim;
1484 	};
1485 	struct list_head dispose;
1486 };
1487 
select_collect(void * _data,struct dentry * dentry)1488 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1489 {
1490 	struct select_data *data = _data;
1491 	enum d_walk_ret ret = D_WALK_CONTINUE;
1492 
1493 	if (data->start == dentry)
1494 		goto out;
1495 
1496 	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1497 		data->found++;
1498 	} else if (!dentry->d_lockref.count) {
1499 		to_shrink_list(dentry, &data->dispose);
1500 		data->found++;
1501 	} else if (dentry->d_lockref.count < 0) {
1502 		data->found++;
1503 	}
1504 	/*
1505 	 * We can return to the caller if we have found some (this
1506 	 * ensures forward progress). We'll be coming back to find
1507 	 * the rest.
1508 	 */
1509 	if (!list_empty(&data->dispose))
1510 		ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1511 out:
1512 	return ret;
1513 }
1514 
select_collect2(void * _data,struct dentry * dentry)1515 static enum d_walk_ret select_collect2(void *_data, struct dentry *dentry)
1516 {
1517 	struct select_data *data = _data;
1518 	enum d_walk_ret ret = D_WALK_CONTINUE;
1519 
1520 	if (data->start == dentry)
1521 		goto out;
1522 
1523 	if (!dentry->d_lockref.count) {
1524 		if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1525 			rcu_read_lock();
1526 			data->victim = dentry;
1527 			return D_WALK_QUIT;
1528 		}
1529 		to_shrink_list(dentry, &data->dispose);
1530 	}
1531 	/*
1532 	 * We can return to the caller if we have found some (this
1533 	 * ensures forward progress). We'll be coming back to find
1534 	 * the rest.
1535 	 */
1536 	if (!list_empty(&data->dispose))
1537 		ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1538 out:
1539 	return ret;
1540 }
1541 
1542 /**
1543  * shrink_dcache_parent - prune dcache
1544  * @parent: parent of entries to prune
1545  *
1546  * Prune the dcache to remove unused children of the parent dentry.
1547  */
shrink_dcache_parent(struct dentry * parent)1548 void shrink_dcache_parent(struct dentry *parent)
1549 {
1550 	for (;;) {
1551 		struct select_data data = {.start = parent};
1552 
1553 		INIT_LIST_HEAD(&data.dispose);
1554 		d_walk(parent, &data, select_collect);
1555 
1556 		if (!list_empty(&data.dispose)) {
1557 			shrink_dentry_list(&data.dispose);
1558 			continue;
1559 		}
1560 
1561 		cond_resched();
1562 		if (!data.found)
1563 			break;
1564 		data.victim = NULL;
1565 		d_walk(parent, &data, select_collect2);
1566 		if (data.victim) {
1567 			spin_lock(&data.victim->d_lock);
1568 			if (!lock_for_kill(data.victim)) {
1569 				spin_unlock(&data.victim->d_lock);
1570 				rcu_read_unlock();
1571 			} else {
1572 				shrink_kill(data.victim);
1573 			}
1574 		}
1575 		if (!list_empty(&data.dispose))
1576 			shrink_dentry_list(&data.dispose);
1577 	}
1578 }
1579 EXPORT_SYMBOL(shrink_dcache_parent);
1580 
umount_check(void * _data,struct dentry * dentry)1581 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1582 {
1583 	/* it has busy descendents; complain about those instead */
1584 	if (!hlist_empty(&dentry->d_children))
1585 		return D_WALK_CONTINUE;
1586 
1587 	/* root with refcount 1 is fine */
1588 	if (dentry == _data && dentry->d_lockref.count == 1)
1589 		return D_WALK_CONTINUE;
1590 
1591 	WARN(1, "BUG: Dentry %p{i=%lx,n=%pd} "
1592 			" still in use (%d) [unmount of %s %s]\n",
1593 		       dentry,
1594 		       dentry->d_inode ?
1595 		       dentry->d_inode->i_ino : 0UL,
1596 		       dentry,
1597 		       dentry->d_lockref.count,
1598 		       dentry->d_sb->s_type->name,
1599 		       dentry->d_sb->s_id);
1600 	return D_WALK_CONTINUE;
1601 }
1602 
do_one_tree(struct dentry * dentry)1603 static void do_one_tree(struct dentry *dentry)
1604 {
1605 	shrink_dcache_parent(dentry);
1606 	d_walk(dentry, dentry, umount_check);
1607 	d_drop(dentry);
1608 	dput(dentry);
1609 }
1610 
1611 /*
1612  * destroy the dentries attached to a superblock on unmounting
1613  */
shrink_dcache_for_umount(struct super_block * sb)1614 void shrink_dcache_for_umount(struct super_block *sb)
1615 {
1616 	struct dentry *dentry;
1617 
1618 	rwsem_assert_held_write(&sb->s_umount);
1619 
1620 	dentry = sb->s_root;
1621 	sb->s_root = NULL;
1622 	do_one_tree(dentry);
1623 
1624 	while (!hlist_bl_empty(&sb->s_roots)) {
1625 		dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash));
1626 		do_one_tree(dentry);
1627 	}
1628 }
1629 
find_submount(void * _data,struct dentry * dentry)1630 static enum d_walk_ret find_submount(void *_data, struct dentry *dentry)
1631 {
1632 	struct dentry **victim = _data;
1633 	if (d_mountpoint(dentry)) {
1634 		*victim = dget_dlock(dentry);
1635 		return D_WALK_QUIT;
1636 	}
1637 	return D_WALK_CONTINUE;
1638 }
1639 
1640 /**
1641  * d_invalidate - detach submounts, prune dcache, and drop
1642  * @dentry: dentry to invalidate (aka detach, prune and drop)
1643  */
d_invalidate(struct dentry * dentry)1644 void d_invalidate(struct dentry *dentry)
1645 {
1646 	bool had_submounts = false;
1647 	spin_lock(&dentry->d_lock);
1648 	if (d_unhashed(dentry)) {
1649 		spin_unlock(&dentry->d_lock);
1650 		return;
1651 	}
1652 	__d_drop(dentry);
1653 	spin_unlock(&dentry->d_lock);
1654 
1655 	/* Negative dentries can be dropped without further checks */
1656 	if (!dentry->d_inode)
1657 		return;
1658 
1659 	shrink_dcache_parent(dentry);
1660 	for (;;) {
1661 		struct dentry *victim = NULL;
1662 		d_walk(dentry, &victim, find_submount);
1663 		if (!victim) {
1664 			if (had_submounts)
1665 				shrink_dcache_parent(dentry);
1666 			return;
1667 		}
1668 		had_submounts = true;
1669 		detach_mounts(victim);
1670 		dput(victim);
1671 	}
1672 }
1673 EXPORT_SYMBOL(d_invalidate);
1674 
1675 /**
1676  * __d_alloc	-	allocate a dcache entry
1677  * @sb: filesystem it will belong to
1678  * @name: qstr of the name
1679  *
1680  * Allocates a dentry. It returns %NULL if there is insufficient memory
1681  * available. On a success the dentry is returned. The name passed in is
1682  * copied and the copy passed in may be reused after this call.
1683  */
1684 
__d_alloc(struct super_block * sb,const struct qstr * name)1685 static struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1686 {
1687 	struct dentry *dentry;
1688 	char *dname;
1689 	int err;
1690 
1691 	dentry = kmem_cache_alloc_lru(dentry_cache, &sb->s_dentry_lru,
1692 				      GFP_KERNEL);
1693 	if (!dentry)
1694 		return NULL;
1695 
1696 	/*
1697 	 * We guarantee that the inline name is always NUL-terminated.
1698 	 * This way the memcpy() done by the name switching in rename
1699 	 * will still always have a NUL at the end, even if we might
1700 	 * be overwriting an internal NUL character
1701 	 */
1702 	dentry->d_shortname.string[DNAME_INLINE_LEN-1] = 0;
1703 	if (unlikely(!name)) {
1704 		name = &slash_name;
1705 		dname = dentry->d_shortname.string;
1706 	} else if (name->len > DNAME_INLINE_LEN-1) {
1707 		size_t size = offsetof(struct external_name, name[1]);
1708 		struct external_name *p = kmalloc(size + name->len,
1709 						  GFP_KERNEL_ACCOUNT |
1710 						  __GFP_RECLAIMABLE);
1711 		if (!p) {
1712 			kmem_cache_free(dentry_cache, dentry);
1713 			return NULL;
1714 		}
1715 		atomic_set(&p->count, 1);
1716 		dname = p->name;
1717 	} else  {
1718 		dname = dentry->d_shortname.string;
1719 	}
1720 
1721 	dentry->__d_name.len = name->len;
1722 	dentry->__d_name.hash = name->hash;
1723 	memcpy(dname, name->name, name->len);
1724 	dname[name->len] = 0;
1725 
1726 	/* Make sure we always see the terminating NUL character */
1727 	smp_store_release(&dentry->__d_name.name, dname); /* ^^^ */
1728 
1729 	dentry->d_flags = 0;
1730 	lockref_init(&dentry->d_lockref);
1731 	seqcount_spinlock_init(&dentry->d_seq, &dentry->d_lock);
1732 	dentry->d_inode = NULL;
1733 	dentry->d_parent = dentry;
1734 	dentry->d_sb = sb;
1735 	dentry->d_op = sb->__s_d_op;
1736 	dentry->d_flags = sb->s_d_flags;
1737 	dentry->d_fsdata = NULL;
1738 	INIT_HLIST_BL_NODE(&dentry->d_hash);
1739 	INIT_LIST_HEAD(&dentry->d_lru);
1740 	INIT_HLIST_HEAD(&dentry->d_children);
1741 	INIT_HLIST_NODE(&dentry->d_u.d_alias);
1742 	INIT_HLIST_NODE(&dentry->d_sib);
1743 
1744 	if (dentry->d_op && dentry->d_op->d_init) {
1745 		err = dentry->d_op->d_init(dentry);
1746 		if (err) {
1747 			if (dname_external(dentry))
1748 				kfree(external_name(dentry));
1749 			kmem_cache_free(dentry_cache, dentry);
1750 			return NULL;
1751 		}
1752 	}
1753 
1754 	this_cpu_inc(nr_dentry);
1755 
1756 	return dentry;
1757 }
1758 
1759 /**
1760  * d_alloc	-	allocate a dcache entry
1761  * @parent: parent of entry to allocate
1762  * @name: qstr of the name
1763  *
1764  * Allocates a dentry. It returns %NULL if there is insufficient memory
1765  * available. On a success the dentry is returned. The name passed in is
1766  * copied and the copy passed in may be reused after this call.
1767  */
d_alloc(struct dentry * parent,const struct qstr * name)1768 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1769 {
1770 	struct dentry *dentry = __d_alloc(parent->d_sb, name);
1771 	if (!dentry)
1772 		return NULL;
1773 	spin_lock(&parent->d_lock);
1774 	/*
1775 	 * don't need child lock because it is not subject
1776 	 * to concurrency here
1777 	 */
1778 	dentry->d_parent = dget_dlock(parent);
1779 	hlist_add_head(&dentry->d_sib, &parent->d_children);
1780 	spin_unlock(&parent->d_lock);
1781 
1782 	return dentry;
1783 }
1784 EXPORT_SYMBOL(d_alloc);
1785 
d_alloc_anon(struct super_block * sb)1786 struct dentry *d_alloc_anon(struct super_block *sb)
1787 {
1788 	return __d_alloc(sb, NULL);
1789 }
1790 EXPORT_SYMBOL(d_alloc_anon);
1791 
d_alloc_cursor(struct dentry * parent)1792 struct dentry *d_alloc_cursor(struct dentry * parent)
1793 {
1794 	struct dentry *dentry = d_alloc_anon(parent->d_sb);
1795 	if (dentry) {
1796 		dentry->d_flags |= DCACHE_DENTRY_CURSOR;
1797 		dentry->d_parent = dget(parent);
1798 	}
1799 	return dentry;
1800 }
1801 
1802 /**
1803  * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1804  * @sb: the superblock
1805  * @name: qstr of the name
1806  *
1807  * For a filesystem that just pins its dentries in memory and never
1808  * performs lookups at all, return an unhashed IS_ROOT dentry.
1809  * This is used for pipes, sockets et.al. - the stuff that should
1810  * never be anyone's children or parents.  Unlike all other
1811  * dentries, these will not have RCU delay between dropping the
1812  * last reference and freeing them.
1813  *
1814  * The only user is alloc_file_pseudo() and that's what should
1815  * be considered a public interface.  Don't use directly.
1816  */
d_alloc_pseudo(struct super_block * sb,const struct qstr * name)1817 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1818 {
1819 	static const struct dentry_operations anon_ops = {
1820 		.d_dname = simple_dname
1821 	};
1822 	struct dentry *dentry = __d_alloc(sb, name);
1823 	if (likely(dentry)) {
1824 		dentry->d_flags |= DCACHE_NORCU;
1825 		/* d_op_flags(&anon_ops) is 0 */
1826 		if (!dentry->d_op)
1827 			dentry->d_op = &anon_ops;
1828 	}
1829 	return dentry;
1830 }
1831 
d_alloc_name(struct dentry * parent,const char * name)1832 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1833 {
1834 	struct qstr q;
1835 
1836 	q.name = name;
1837 	q.hash_len = hashlen_string(parent, name);
1838 	return d_alloc(parent, &q);
1839 }
1840 EXPORT_SYMBOL(d_alloc_name);
1841 
1842 #define DCACHE_OP_FLAGS \
1843 	(DCACHE_OP_HASH | DCACHE_OP_COMPARE | DCACHE_OP_REVALIDATE | \
1844 	 DCACHE_OP_WEAK_REVALIDATE | DCACHE_OP_DELETE | DCACHE_OP_PRUNE | \
1845 	 DCACHE_OP_REAL)
1846 
d_op_flags(const struct dentry_operations * op)1847 static unsigned int d_op_flags(const struct dentry_operations *op)
1848 {
1849 	unsigned int flags = 0;
1850 	if (op) {
1851 		if (op->d_hash)
1852 			flags |= DCACHE_OP_HASH;
1853 		if (op->d_compare)
1854 			flags |= DCACHE_OP_COMPARE;
1855 		if (op->d_revalidate)
1856 			flags |= DCACHE_OP_REVALIDATE;
1857 		if (op->d_weak_revalidate)
1858 			flags |= DCACHE_OP_WEAK_REVALIDATE;
1859 		if (op->d_delete)
1860 			flags |= DCACHE_OP_DELETE;
1861 		if (op->d_prune)
1862 			flags |= DCACHE_OP_PRUNE;
1863 		if (op->d_real)
1864 			flags |= DCACHE_OP_REAL;
1865 	}
1866 	return flags;
1867 }
1868 
d_set_d_op(struct dentry * dentry,const struct dentry_operations * op)1869 static void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1870 {
1871 	unsigned int flags = d_op_flags(op);
1872 	WARN_ON_ONCE(dentry->d_op);
1873 	WARN_ON_ONCE(dentry->d_flags & DCACHE_OP_FLAGS);
1874 	dentry->d_op = op;
1875 	if (flags)
1876 		dentry->d_flags |= flags;
1877 }
1878 
set_default_d_op(struct super_block * s,const struct dentry_operations * ops)1879 void set_default_d_op(struct super_block *s, const struct dentry_operations *ops)
1880 {
1881 	unsigned int flags = d_op_flags(ops);
1882 	s->__s_d_op = ops;
1883 	s->s_d_flags = (s->s_d_flags & ~DCACHE_OP_FLAGS) | flags;
1884 }
1885 EXPORT_SYMBOL(set_default_d_op);
1886 
d_flags_for_inode(struct inode * inode)1887 static unsigned d_flags_for_inode(struct inode *inode)
1888 {
1889 	unsigned add_flags = DCACHE_REGULAR_TYPE;
1890 
1891 	if (!inode)
1892 		return DCACHE_MISS_TYPE;
1893 
1894 	if (S_ISDIR(inode->i_mode)) {
1895 		add_flags = DCACHE_DIRECTORY_TYPE;
1896 		if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1897 			if (unlikely(!inode->i_op->lookup))
1898 				add_flags = DCACHE_AUTODIR_TYPE;
1899 			else
1900 				inode->i_opflags |= IOP_LOOKUP;
1901 		}
1902 		goto type_determined;
1903 	}
1904 
1905 	if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1906 		if (unlikely(inode->i_op->get_link)) {
1907 			add_flags = DCACHE_SYMLINK_TYPE;
1908 			goto type_determined;
1909 		}
1910 		inode->i_opflags |= IOP_NOFOLLOW;
1911 	}
1912 
1913 	if (unlikely(!S_ISREG(inode->i_mode)))
1914 		add_flags = DCACHE_SPECIAL_TYPE;
1915 
1916 type_determined:
1917 	if (unlikely(IS_AUTOMOUNT(inode)))
1918 		add_flags |= DCACHE_NEED_AUTOMOUNT;
1919 	return add_flags;
1920 }
1921 
__d_instantiate(struct dentry * dentry,struct inode * inode)1922 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1923 {
1924 	unsigned add_flags = d_flags_for_inode(inode);
1925 	WARN_ON(d_in_lookup(dentry));
1926 
1927 	spin_lock(&dentry->d_lock);
1928 	/*
1929 	 * The negative counter only tracks dentries on the LRU. Don't dec if
1930 	 * d_lru is on another list.
1931 	 */
1932 	if ((dentry->d_flags &
1933 	     (DCACHE_LRU_LIST|DCACHE_SHRINK_LIST)) == DCACHE_LRU_LIST)
1934 		this_cpu_dec(nr_dentry_negative);
1935 	hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1936 	raw_write_seqcount_begin(&dentry->d_seq);
1937 	__d_set_inode_and_type(dentry, inode, add_flags);
1938 	raw_write_seqcount_end(&dentry->d_seq);
1939 	fsnotify_update_flags(dentry);
1940 	spin_unlock(&dentry->d_lock);
1941 }
1942 
1943 /**
1944  * d_instantiate - fill in inode information for a dentry
1945  * @entry: dentry to complete
1946  * @inode: inode to attach to this dentry
1947  *
1948  * Fill in inode information in the entry.
1949  *
1950  * This turns negative dentries into productive full members
1951  * of society.
1952  *
1953  * NOTE! This assumes that the inode count has been incremented
1954  * (or otherwise set) by the caller to indicate that it is now
1955  * in use by the dcache.
1956  */
1957 
d_instantiate(struct dentry * entry,struct inode * inode)1958 void d_instantiate(struct dentry *entry, struct inode * inode)
1959 {
1960 	BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1961 	if (inode) {
1962 		security_d_instantiate(entry, inode);
1963 		spin_lock(&inode->i_lock);
1964 		__d_instantiate(entry, inode);
1965 		spin_unlock(&inode->i_lock);
1966 	}
1967 }
1968 EXPORT_SYMBOL(d_instantiate);
1969 
1970 /*
1971  * This should be equivalent to d_instantiate() + unlock_new_inode(),
1972  * with lockdep-related part of unlock_new_inode() done before
1973  * anything else.  Use that instead of open-coding d_instantiate()/
1974  * unlock_new_inode() combinations.
1975  */
d_instantiate_new(struct dentry * entry,struct inode * inode)1976 void d_instantiate_new(struct dentry *entry, struct inode *inode)
1977 {
1978 	BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1979 	BUG_ON(!inode);
1980 	lockdep_annotate_inode_mutex_key(inode);
1981 	security_d_instantiate(entry, inode);
1982 	spin_lock(&inode->i_lock);
1983 	__d_instantiate(entry, inode);
1984 	WARN_ON(!(inode_state_read(inode) & I_NEW));
1985 	inode_state_clear(inode, I_NEW | I_CREATING);
1986 	inode_wake_up_bit(inode, __I_NEW);
1987 	spin_unlock(&inode->i_lock);
1988 }
1989 EXPORT_SYMBOL(d_instantiate_new);
1990 
d_make_root(struct inode * root_inode)1991 struct dentry *d_make_root(struct inode *root_inode)
1992 {
1993 	struct dentry *res = NULL;
1994 
1995 	if (root_inode) {
1996 		res = d_alloc_anon(root_inode->i_sb);
1997 		if (res)
1998 			d_instantiate(res, root_inode);
1999 		else
2000 			iput(root_inode);
2001 	}
2002 	return res;
2003 }
2004 EXPORT_SYMBOL(d_make_root);
2005 
__d_obtain_alias(struct inode * inode,bool disconnected)2006 static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected)
2007 {
2008 	struct super_block *sb;
2009 	struct dentry *new, *res;
2010 
2011 	if (!inode)
2012 		return ERR_PTR(-ESTALE);
2013 	if (IS_ERR(inode))
2014 		return ERR_CAST(inode);
2015 
2016 	sb = inode->i_sb;
2017 
2018 	res = d_find_any_alias(inode); /* existing alias? */
2019 	if (res)
2020 		goto out;
2021 
2022 	new = d_alloc_anon(sb);
2023 	if (!new) {
2024 		res = ERR_PTR(-ENOMEM);
2025 		goto out;
2026 	}
2027 
2028 	security_d_instantiate(new, inode);
2029 	spin_lock(&inode->i_lock);
2030 	res = __d_find_any_alias(inode); /* recheck under lock */
2031 	if (likely(!res)) { /* still no alias, attach a disconnected dentry */
2032 		unsigned add_flags = d_flags_for_inode(inode);
2033 
2034 		if (disconnected)
2035 			add_flags |= DCACHE_DISCONNECTED;
2036 
2037 		spin_lock(&new->d_lock);
2038 		__d_set_inode_and_type(new, inode, add_flags);
2039 		hlist_add_head(&new->d_u.d_alias, &inode->i_dentry);
2040 		if (!disconnected) {
2041 			hlist_bl_lock(&sb->s_roots);
2042 			hlist_bl_add_head(&new->d_hash, &sb->s_roots);
2043 			hlist_bl_unlock(&sb->s_roots);
2044 		}
2045 		spin_unlock(&new->d_lock);
2046 		spin_unlock(&inode->i_lock);
2047 		inode = NULL; /* consumed by new->d_inode */
2048 		res = new;
2049 	} else {
2050 		spin_unlock(&inode->i_lock);
2051 		dput(new);
2052 	}
2053 
2054  out:
2055 	iput(inode);
2056 	return res;
2057 }
2058 
2059 /**
2060  * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
2061  * @inode: inode to allocate the dentry for
2062  *
2063  * Obtain a dentry for an inode resulting from NFS filehandle conversion or
2064  * similar open by handle operations.  The returned dentry may be anonymous,
2065  * or may have a full name (if the inode was already in the cache).
2066  *
2067  * When called on a directory inode, we must ensure that the inode only ever
2068  * has one dentry.  If a dentry is found, that is returned instead of
2069  * allocating a new one.
2070  *
2071  * On successful return, the reference to the inode has been transferred
2072  * to the dentry.  In case of an error the reference on the inode is released.
2073  * To make it easier to use in export operations a %NULL or IS_ERR inode may
2074  * be passed in and the error will be propagated to the return value,
2075  * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
2076  */
d_obtain_alias(struct inode * inode)2077 struct dentry *d_obtain_alias(struct inode *inode)
2078 {
2079 	return __d_obtain_alias(inode, true);
2080 }
2081 EXPORT_SYMBOL(d_obtain_alias);
2082 
2083 /**
2084  * d_obtain_root - find or allocate a dentry for a given inode
2085  * @inode: inode to allocate the dentry for
2086  *
2087  * Obtain an IS_ROOT dentry for the root of a filesystem.
2088  *
2089  * We must ensure that directory inodes only ever have one dentry.  If a
2090  * dentry is found, that is returned instead of allocating a new one.
2091  *
2092  * On successful return, the reference to the inode has been transferred
2093  * to the dentry.  In case of an error the reference on the inode is
2094  * released.  A %NULL or IS_ERR inode may be passed in and will be the
2095  * error will be propagate to the return value, with a %NULL @inode
2096  * replaced by ERR_PTR(-ESTALE).
2097  */
d_obtain_root(struct inode * inode)2098 struct dentry *d_obtain_root(struct inode *inode)
2099 {
2100 	return __d_obtain_alias(inode, false);
2101 }
2102 EXPORT_SYMBOL(d_obtain_root);
2103 
2104 /**
2105  * d_add_ci - lookup or allocate new dentry with case-exact name
2106  * @dentry: the negative dentry that was passed to the parent's lookup func
2107  * @inode:  the inode case-insensitive lookup has found
2108  * @name:   the case-exact name to be associated with the returned dentry
2109  *
2110  * This is to avoid filling the dcache with case-insensitive names to the
2111  * same inode, only the actual correct case is stored in the dcache for
2112  * case-insensitive filesystems.
2113  *
2114  * For a case-insensitive lookup match and if the case-exact dentry
2115  * already exists in the dcache, use it and return it.
2116  *
2117  * If no entry exists with the exact case name, allocate new dentry with
2118  * the exact case, and return the spliced entry.
2119  */
d_add_ci(struct dentry * dentry,struct inode * inode,struct qstr * name)2120 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
2121 			struct qstr *name)
2122 {
2123 	struct dentry *found, *res;
2124 
2125 	/*
2126 	 * First check if a dentry matching the name already exists,
2127 	 * if not go ahead and create it now.
2128 	 */
2129 	found = d_hash_and_lookup(dentry->d_parent, name);
2130 	if (found) {
2131 		iput(inode);
2132 		return found;
2133 	}
2134 	if (d_in_lookup(dentry)) {
2135 		found = d_alloc_parallel(dentry->d_parent, name,
2136 					dentry->d_wait);
2137 		if (IS_ERR(found) || !d_in_lookup(found)) {
2138 			iput(inode);
2139 			return found;
2140 		}
2141 	} else {
2142 		found = d_alloc(dentry->d_parent, name);
2143 		if (!found) {
2144 			iput(inode);
2145 			return ERR_PTR(-ENOMEM);
2146 		}
2147 	}
2148 	res = d_splice_alias(inode, found);
2149 	if (res) {
2150 		d_lookup_done(found);
2151 		dput(found);
2152 		return res;
2153 	}
2154 	return found;
2155 }
2156 EXPORT_SYMBOL(d_add_ci);
2157 
2158 /**
2159  * d_same_name - compare dentry name with case-exact name
2160  * @dentry: the negative dentry that was passed to the parent's lookup func
2161  * @parent: parent dentry
2162  * @name:   the case-exact name to be associated with the returned dentry
2163  *
2164  * Return: true if names are same, or false
2165  */
d_same_name(const struct dentry * dentry,const struct dentry * parent,const struct qstr * name)2166 bool d_same_name(const struct dentry *dentry, const struct dentry *parent,
2167 		 const struct qstr *name)
2168 {
2169 	if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
2170 		if (dentry->d_name.len != name->len)
2171 			return false;
2172 		return dentry_cmp(dentry, name->name, name->len) == 0;
2173 	}
2174 	return parent->d_op->d_compare(dentry,
2175 				       dentry->d_name.len, dentry->d_name.name,
2176 				       name) == 0;
2177 }
2178 EXPORT_SYMBOL_GPL(d_same_name);
2179 
2180 /*
2181  * This is __d_lookup_rcu() when the parent dentry has
2182  * DCACHE_OP_COMPARE, which makes things much nastier.
2183  */
__d_lookup_rcu_op_compare(const struct dentry * parent,const struct qstr * name,unsigned * seqp)2184 static noinline struct dentry *__d_lookup_rcu_op_compare(
2185 	const struct dentry *parent,
2186 	const struct qstr *name,
2187 	unsigned *seqp)
2188 {
2189 	u64 hashlen = name->hash_len;
2190 	struct hlist_bl_head *b = d_hash(hashlen);
2191 	struct hlist_bl_node *node;
2192 	struct dentry *dentry;
2193 
2194 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2195 		int tlen;
2196 		const char *tname;
2197 		unsigned seq;
2198 
2199 seqretry:
2200 		seq = raw_seqcount_begin(&dentry->d_seq);
2201 		if (dentry->d_parent != parent)
2202 			continue;
2203 		if (d_unhashed(dentry))
2204 			continue;
2205 		if (dentry->d_name.hash != hashlen_hash(hashlen))
2206 			continue;
2207 		tlen = dentry->d_name.len;
2208 		tname = dentry->d_name.name;
2209 		/* we want a consistent (name,len) pair */
2210 		if (read_seqcount_retry(&dentry->d_seq, seq)) {
2211 			cpu_relax();
2212 			goto seqretry;
2213 		}
2214 		if (parent->d_op->d_compare(dentry, tlen, tname, name) != 0)
2215 			continue;
2216 		*seqp = seq;
2217 		return dentry;
2218 	}
2219 	return NULL;
2220 }
2221 
2222 /**
2223  * __d_lookup_rcu - search for a dentry (racy, store-free)
2224  * @parent: parent dentry
2225  * @name: qstr of name we wish to find
2226  * @seqp: returns d_seq value at the point where the dentry was found
2227  * Returns: dentry, or NULL
2228  *
2229  * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2230  * resolution (store-free path walking) design described in
2231  * Documentation/filesystems/path-lookup.txt.
2232  *
2233  * This is not to be used outside core vfs.
2234  *
2235  * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2236  * held, and rcu_read_lock held. The returned dentry must not be stored into
2237  * without taking d_lock and checking d_seq sequence count against @seq
2238  * returned here.
2239  *
2240  * Alternatively, __d_lookup_rcu may be called again to look up the child of
2241  * the returned dentry, so long as its parent's seqlock is checked after the
2242  * child is looked up. Thus, an interlocking stepping of sequence lock checks
2243  * is formed, giving integrity down the path walk.
2244  *
2245  * NOTE! The caller *has* to check the resulting dentry against the sequence
2246  * number we've returned before using any of the resulting dentry state!
2247  */
__d_lookup_rcu(const struct dentry * parent,const struct qstr * name,unsigned * seqp)2248 struct dentry *__d_lookup_rcu(const struct dentry *parent,
2249 				const struct qstr *name,
2250 				unsigned *seqp)
2251 {
2252 	u64 hashlen = name->hash_len;
2253 	const unsigned char *str = name->name;
2254 	struct hlist_bl_head *b = d_hash(hashlen);
2255 	struct hlist_bl_node *node;
2256 	struct dentry *dentry;
2257 
2258 	/*
2259 	 * Note: There is significant duplication with __d_lookup_rcu which is
2260 	 * required to prevent single threaded performance regressions
2261 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
2262 	 * Keep the two functions in sync.
2263 	 */
2264 
2265 	if (unlikely(parent->d_flags & DCACHE_OP_COMPARE))
2266 		return __d_lookup_rcu_op_compare(parent, name, seqp);
2267 
2268 	/*
2269 	 * The hash list is protected using RCU.
2270 	 *
2271 	 * Carefully use d_seq when comparing a candidate dentry, to avoid
2272 	 * races with d_move().
2273 	 *
2274 	 * It is possible that concurrent renames can mess up our list
2275 	 * walk here and result in missing our dentry, resulting in the
2276 	 * false-negative result. d_lookup() protects against concurrent
2277 	 * renames using rename_lock seqlock.
2278 	 *
2279 	 * See Documentation/filesystems/path-lookup.txt for more details.
2280 	 */
2281 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2282 		unsigned seq;
2283 
2284 		/*
2285 		 * The dentry sequence count protects us from concurrent
2286 		 * renames, and thus protects parent and name fields.
2287 		 *
2288 		 * The caller must perform a seqcount check in order
2289 		 * to do anything useful with the returned dentry.
2290 		 *
2291 		 * NOTE! We do a "raw" seqcount_begin here. That means that
2292 		 * we don't wait for the sequence count to stabilize if it
2293 		 * is in the middle of a sequence change. If we do the slow
2294 		 * dentry compare, we will do seqretries until it is stable,
2295 		 * and if we end up with a successful lookup, we actually
2296 		 * want to exit RCU lookup anyway.
2297 		 *
2298 		 * Note that raw_seqcount_begin still *does* smp_rmb(), so
2299 		 * we are still guaranteed NUL-termination of ->d_name.name.
2300 		 */
2301 		seq = raw_seqcount_begin(&dentry->d_seq);
2302 		if (dentry->d_parent != parent)
2303 			continue;
2304 		if (dentry->d_name.hash_len != hashlen)
2305 			continue;
2306 		if (unlikely(dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0))
2307 			continue;
2308 		/*
2309 		 * Check for the dentry being unhashed.
2310 		 *
2311 		 * As tempting as it is, we *can't* skip it because of a race window
2312 		 * between us finding the dentry before it gets unhashed and loading
2313 		 * the sequence counter after unhashing is finished.
2314 		 *
2315 		 * We can at least predict on it.
2316 		 */
2317 		if (unlikely(d_unhashed(dentry)))
2318 			continue;
2319 		*seqp = seq;
2320 		return dentry;
2321 	}
2322 	return NULL;
2323 }
2324 
2325 /**
2326  * d_lookup - search for a dentry
2327  * @parent: parent dentry
2328  * @name: qstr of name we wish to find
2329  * Returns: dentry, or NULL
2330  *
2331  * d_lookup searches the children of the parent dentry for the name in
2332  * question. If the dentry is found its reference count is incremented and the
2333  * dentry is returned. The caller must use dput to free the entry when it has
2334  * finished using it. %NULL is returned if the dentry does not exist.
2335  */
d_lookup(const struct dentry * parent,const struct qstr * name)2336 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2337 {
2338 	struct dentry *dentry;
2339 	unsigned seq;
2340 
2341 	do {
2342 		seq = read_seqbegin(&rename_lock);
2343 		dentry = __d_lookup(parent, name);
2344 		if (dentry)
2345 			break;
2346 	} while (read_seqretry(&rename_lock, seq));
2347 	return dentry;
2348 }
2349 EXPORT_SYMBOL(d_lookup);
2350 
2351 /**
2352  * __d_lookup - search for a dentry (racy)
2353  * @parent: parent dentry
2354  * @name: qstr of name we wish to find
2355  * Returns: dentry, or NULL
2356  *
2357  * __d_lookup is like d_lookup, however it may (rarely) return a
2358  * false-negative result due to unrelated rename activity.
2359  *
2360  * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2361  * however it must be used carefully, eg. with a following d_lookup in
2362  * the case of failure.
2363  *
2364  * __d_lookup callers must be commented.
2365  */
__d_lookup(const struct dentry * parent,const struct qstr * name)2366 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2367 {
2368 	unsigned int hash = name->hash;
2369 	struct hlist_bl_head *b = d_hash(hash);
2370 	struct hlist_bl_node *node;
2371 	struct dentry *found = NULL;
2372 	struct dentry *dentry;
2373 
2374 	/*
2375 	 * Note: There is significant duplication with __d_lookup_rcu which is
2376 	 * required to prevent single threaded performance regressions
2377 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
2378 	 * Keep the two functions in sync.
2379 	 */
2380 
2381 	/*
2382 	 * The hash list is protected using RCU.
2383 	 *
2384 	 * Take d_lock when comparing a candidate dentry, to avoid races
2385 	 * with d_move().
2386 	 *
2387 	 * It is possible that concurrent renames can mess up our list
2388 	 * walk here and result in missing our dentry, resulting in the
2389 	 * false-negative result. d_lookup() protects against concurrent
2390 	 * renames using rename_lock seqlock.
2391 	 *
2392 	 * See Documentation/filesystems/path-lookup.txt for more details.
2393 	 */
2394 	rcu_read_lock();
2395 
2396 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2397 
2398 		if (dentry->d_name.hash != hash)
2399 			continue;
2400 
2401 		spin_lock(&dentry->d_lock);
2402 		if (dentry->d_parent != parent)
2403 			goto next;
2404 		if (d_unhashed(dentry))
2405 			goto next;
2406 
2407 		if (!d_same_name(dentry, parent, name))
2408 			goto next;
2409 
2410 		dentry->d_lockref.count++;
2411 		found = dentry;
2412 		spin_unlock(&dentry->d_lock);
2413 		break;
2414 next:
2415 		spin_unlock(&dentry->d_lock);
2416  	}
2417  	rcu_read_unlock();
2418 
2419  	return found;
2420 }
2421 
2422 /**
2423  * d_hash_and_lookup - hash the qstr then search for a dentry
2424  * @dir: Directory to search in
2425  * @name: qstr of name we wish to find
2426  *
2427  * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2428  */
d_hash_and_lookup(struct dentry * dir,struct qstr * name)2429 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2430 {
2431 	/*
2432 	 * Check for a fs-specific hash function. Note that we must
2433 	 * calculate the standard hash first, as the d_op->d_hash()
2434 	 * routine may choose to leave the hash value unchanged.
2435 	 */
2436 	name->hash = full_name_hash(dir, name->name, name->len);
2437 	if (dir->d_flags & DCACHE_OP_HASH) {
2438 		int err = dir->d_op->d_hash(dir, name);
2439 		if (unlikely(err < 0))
2440 			return ERR_PTR(err);
2441 	}
2442 	return d_lookup(dir, name);
2443 }
2444 
2445 /*
2446  * When a file is deleted, we have two options:
2447  * - turn this dentry into a negative dentry
2448  * - unhash this dentry and free it.
2449  *
2450  * Usually, we want to just turn this into
2451  * a negative dentry, but if anybody else is
2452  * currently using the dentry or the inode
2453  * we can't do that and we fall back on removing
2454  * it from the hash queues and waiting for
2455  * it to be deleted later when it has no users
2456  */
2457 
2458 /**
2459  * d_delete - delete a dentry
2460  * @dentry: The dentry to delete
2461  *
2462  * Turn the dentry into a negative dentry if possible, otherwise
2463  * remove it from the hash queues so it can be deleted later
2464  */
2465 
d_delete(struct dentry * dentry)2466 void d_delete(struct dentry * dentry)
2467 {
2468 	struct inode *inode = dentry->d_inode;
2469 
2470 	spin_lock(&inode->i_lock);
2471 	spin_lock(&dentry->d_lock);
2472 	/*
2473 	 * Are we the only user?
2474 	 */
2475 	if (dentry->d_lockref.count == 1) {
2476 		if (dentry_negative_policy)
2477 			__d_drop(dentry);
2478 		dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2479 		dentry_unlink_inode(dentry);
2480 	} else {
2481 		__d_drop(dentry);
2482 		spin_unlock(&dentry->d_lock);
2483 		spin_unlock(&inode->i_lock);
2484 	}
2485 }
2486 EXPORT_SYMBOL(d_delete);
2487 
__d_rehash(struct dentry * entry)2488 static void __d_rehash(struct dentry *entry)
2489 {
2490 	struct hlist_bl_head *b = d_hash(entry->d_name.hash);
2491 
2492 	hlist_bl_lock(b);
2493 	hlist_bl_add_head_rcu(&entry->d_hash, b);
2494 	hlist_bl_unlock(b);
2495 }
2496 
2497 /**
2498  * d_rehash	- add an entry back to the hash
2499  * @entry: dentry to add to the hash
2500  *
2501  * Adds a dentry to the hash according to its name.
2502  */
2503 
d_rehash(struct dentry * entry)2504 void d_rehash(struct dentry * entry)
2505 {
2506 	spin_lock(&entry->d_lock);
2507 	__d_rehash(entry);
2508 	spin_unlock(&entry->d_lock);
2509 }
2510 EXPORT_SYMBOL(d_rehash);
2511 
start_dir_add(struct inode * dir)2512 static inline unsigned start_dir_add(struct inode *dir)
2513 {
2514 	preempt_disable_nested();
2515 	for (;;) {
2516 		unsigned n = READ_ONCE(dir->i_dir_seq);
2517 		if (!(n & 1) && try_cmpxchg(&dir->i_dir_seq, &n, n + 1))
2518 			return n;
2519 		cpu_relax();
2520 	}
2521 }
2522 
end_dir_add(struct inode * dir,unsigned int n,wait_queue_head_t * d_wait)2523 static inline void end_dir_add(struct inode *dir, unsigned int n,
2524 			       wait_queue_head_t *d_wait)
2525 {
2526 	smp_store_release(&dir->i_dir_seq, n + 2);
2527 	preempt_enable_nested();
2528 	if (wq_has_sleeper(d_wait))
2529 		wake_up_all(d_wait);
2530 }
2531 
d_wait_lookup(struct dentry * dentry)2532 static void d_wait_lookup(struct dentry *dentry)
2533 {
2534 	if (d_in_lookup(dentry)) {
2535 		DECLARE_WAITQUEUE(wait, current);
2536 		add_wait_queue(dentry->d_wait, &wait);
2537 		do {
2538 			set_current_state(TASK_UNINTERRUPTIBLE);
2539 			spin_unlock(&dentry->d_lock);
2540 			schedule();
2541 			spin_lock(&dentry->d_lock);
2542 		} while (d_in_lookup(dentry));
2543 	}
2544 }
2545 
d_alloc_parallel(struct dentry * parent,const struct qstr * name,wait_queue_head_t * wq)2546 struct dentry *d_alloc_parallel(struct dentry *parent,
2547 				const struct qstr *name,
2548 				wait_queue_head_t *wq)
2549 {
2550 	unsigned int hash = name->hash;
2551 	struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2552 	struct hlist_bl_node *node;
2553 	struct dentry *new = __d_alloc(parent->d_sb, name);
2554 	struct dentry *dentry;
2555 	unsigned seq, r_seq, d_seq;
2556 
2557 	if (unlikely(!new))
2558 		return ERR_PTR(-ENOMEM);
2559 
2560 	new->d_flags |= DCACHE_PAR_LOOKUP;
2561 	spin_lock(&parent->d_lock);
2562 	new->d_parent = dget_dlock(parent);
2563 	hlist_add_head(&new->d_sib, &parent->d_children);
2564 	if (parent->d_flags & DCACHE_DISCONNECTED)
2565 		new->d_flags |= DCACHE_DISCONNECTED;
2566 	spin_unlock(&parent->d_lock);
2567 
2568 retry:
2569 	rcu_read_lock();
2570 	seq = smp_load_acquire(&parent->d_inode->i_dir_seq);
2571 	r_seq = read_seqbegin(&rename_lock);
2572 	dentry = __d_lookup_rcu(parent, name, &d_seq);
2573 	if (unlikely(dentry)) {
2574 		if (!lockref_get_not_dead(&dentry->d_lockref)) {
2575 			rcu_read_unlock();
2576 			goto retry;
2577 		}
2578 		if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2579 			rcu_read_unlock();
2580 			dput(dentry);
2581 			goto retry;
2582 		}
2583 		rcu_read_unlock();
2584 		dput(new);
2585 		return dentry;
2586 	}
2587 	if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2588 		rcu_read_unlock();
2589 		goto retry;
2590 	}
2591 
2592 	if (unlikely(seq & 1)) {
2593 		rcu_read_unlock();
2594 		goto retry;
2595 	}
2596 
2597 	hlist_bl_lock(b);
2598 	if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) {
2599 		hlist_bl_unlock(b);
2600 		rcu_read_unlock();
2601 		goto retry;
2602 	}
2603 	/*
2604 	 * No changes for the parent since the beginning of d_lookup().
2605 	 * Since all removals from the chain happen with hlist_bl_lock(),
2606 	 * any potential in-lookup matches are going to stay here until
2607 	 * we unlock the chain.  All fields are stable in everything
2608 	 * we encounter.
2609 	 */
2610 	hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2611 		if (dentry->d_name.hash != hash)
2612 			continue;
2613 		if (dentry->d_parent != parent)
2614 			continue;
2615 		if (!d_same_name(dentry, parent, name))
2616 			continue;
2617 		hlist_bl_unlock(b);
2618 		/* now we can try to grab a reference */
2619 		if (!lockref_get_not_dead(&dentry->d_lockref)) {
2620 			rcu_read_unlock();
2621 			goto retry;
2622 		}
2623 
2624 		rcu_read_unlock();
2625 		/*
2626 		 * somebody is likely to be still doing lookup for it;
2627 		 * wait for them to finish
2628 		 */
2629 		spin_lock(&dentry->d_lock);
2630 		d_wait_lookup(dentry);
2631 		/*
2632 		 * it's not in-lookup anymore; in principle we should repeat
2633 		 * everything from dcache lookup, but it's likely to be what
2634 		 * d_lookup() would've found anyway.  If it is, just return it;
2635 		 * otherwise we really have to repeat the whole thing.
2636 		 */
2637 		if (unlikely(dentry->d_name.hash != hash))
2638 			goto mismatch;
2639 		if (unlikely(dentry->d_parent != parent))
2640 			goto mismatch;
2641 		if (unlikely(d_unhashed(dentry)))
2642 			goto mismatch;
2643 		if (unlikely(!d_same_name(dentry, parent, name)))
2644 			goto mismatch;
2645 		/* OK, it *is* a hashed match; return it */
2646 		spin_unlock(&dentry->d_lock);
2647 		dput(new);
2648 		return dentry;
2649 	}
2650 	rcu_read_unlock();
2651 	new->d_wait = wq;
2652 	hlist_bl_add_head(&new->d_u.d_in_lookup_hash, b);
2653 	hlist_bl_unlock(b);
2654 	return new;
2655 mismatch:
2656 	spin_unlock(&dentry->d_lock);
2657 	dput(dentry);
2658 	goto retry;
2659 }
2660 EXPORT_SYMBOL(d_alloc_parallel);
2661 
2662 /*
2663  * - Unhash the dentry
2664  * - Retrieve and clear the waitqueue head in dentry
2665  * - Return the waitqueue head
2666  */
__d_lookup_unhash(struct dentry * dentry)2667 static wait_queue_head_t *__d_lookup_unhash(struct dentry *dentry)
2668 {
2669 	wait_queue_head_t *d_wait;
2670 	struct hlist_bl_head *b;
2671 
2672 	lockdep_assert_held(&dentry->d_lock);
2673 
2674 	b = in_lookup_hash(dentry->d_parent, dentry->d_name.hash);
2675 	hlist_bl_lock(b);
2676 	dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
2677 	__hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
2678 	d_wait = dentry->d_wait;
2679 	dentry->d_wait = NULL;
2680 	hlist_bl_unlock(b);
2681 	INIT_HLIST_NODE(&dentry->d_u.d_alias);
2682 	INIT_LIST_HEAD(&dentry->d_lru);
2683 	return d_wait;
2684 }
2685 
__d_lookup_unhash_wake(struct dentry * dentry)2686 void __d_lookup_unhash_wake(struct dentry *dentry)
2687 {
2688 	spin_lock(&dentry->d_lock);
2689 	wake_up_all(__d_lookup_unhash(dentry));
2690 	spin_unlock(&dentry->d_lock);
2691 }
2692 EXPORT_SYMBOL(__d_lookup_unhash_wake);
2693 
2694 /* inode->i_lock held if inode is non-NULL */
2695 
__d_add(struct dentry * dentry,struct inode * inode,const struct dentry_operations * ops)2696 static inline void __d_add(struct dentry *dentry, struct inode *inode,
2697 			   const struct dentry_operations *ops)
2698 {
2699 	wait_queue_head_t *d_wait;
2700 	struct inode *dir = NULL;
2701 	unsigned n;
2702 	spin_lock(&dentry->d_lock);
2703 	if (unlikely(d_in_lookup(dentry))) {
2704 		dir = dentry->d_parent->d_inode;
2705 		n = start_dir_add(dir);
2706 		d_wait = __d_lookup_unhash(dentry);
2707 	}
2708 	if (unlikely(ops))
2709 		d_set_d_op(dentry, ops);
2710 	if (inode) {
2711 		unsigned add_flags = d_flags_for_inode(inode);
2712 		hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2713 		raw_write_seqcount_begin(&dentry->d_seq);
2714 		__d_set_inode_and_type(dentry, inode, add_flags);
2715 		raw_write_seqcount_end(&dentry->d_seq);
2716 		fsnotify_update_flags(dentry);
2717 	}
2718 	__d_rehash(dentry);
2719 	if (dir)
2720 		end_dir_add(dir, n, d_wait);
2721 	spin_unlock(&dentry->d_lock);
2722 	if (inode)
2723 		spin_unlock(&inode->i_lock);
2724 }
2725 
2726 /**
2727  * d_add - add dentry to hash queues
2728  * @entry: dentry to add
2729  * @inode: The inode to attach to this dentry
2730  *
2731  * This adds the entry to the hash queues and initializes @inode.
2732  * The entry was actually filled in earlier during d_alloc().
2733  */
2734 
d_add(struct dentry * entry,struct inode * inode)2735 void d_add(struct dentry *entry, struct inode *inode)
2736 {
2737 	if (inode) {
2738 		security_d_instantiate(entry, inode);
2739 		spin_lock(&inode->i_lock);
2740 	}
2741 	__d_add(entry, inode, NULL);
2742 }
2743 EXPORT_SYMBOL(d_add);
2744 
swap_names(struct dentry * dentry,struct dentry * target)2745 static void swap_names(struct dentry *dentry, struct dentry *target)
2746 {
2747 	if (unlikely(dname_external(target))) {
2748 		if (unlikely(dname_external(dentry))) {
2749 			/*
2750 			 * Both external: swap the pointers
2751 			 */
2752 			swap(target->__d_name.name, dentry->__d_name.name);
2753 		} else {
2754 			/*
2755 			 * dentry:internal, target:external.  Steal target's
2756 			 * storage and make target internal.
2757 			 */
2758 			dentry->__d_name.name = target->__d_name.name;
2759 			target->d_shortname = dentry->d_shortname;
2760 			target->__d_name.name = target->d_shortname.string;
2761 		}
2762 	} else {
2763 		if (unlikely(dname_external(dentry))) {
2764 			/*
2765 			 * dentry:external, target:internal.  Give dentry's
2766 			 * storage to target and make dentry internal
2767 			 */
2768 			target->__d_name.name = dentry->__d_name.name;
2769 			dentry->d_shortname = target->d_shortname;
2770 			dentry->__d_name.name = dentry->d_shortname.string;
2771 		} else {
2772 			/*
2773 			 * Both are internal.
2774 			 */
2775 			for (int i = 0; i < DNAME_INLINE_WORDS; i++)
2776 				swap(dentry->d_shortname.words[i],
2777 				     target->d_shortname.words[i]);
2778 		}
2779 	}
2780 	swap(dentry->__d_name.hash_len, target->__d_name.hash_len);
2781 }
2782 
copy_name(struct dentry * dentry,struct dentry * target)2783 static void copy_name(struct dentry *dentry, struct dentry *target)
2784 {
2785 	struct external_name *old_name = NULL;
2786 	if (unlikely(dname_external(dentry)))
2787 		old_name = external_name(dentry);
2788 	if (unlikely(dname_external(target))) {
2789 		atomic_inc(&external_name(target)->count);
2790 		dentry->__d_name = target->__d_name;
2791 	} else {
2792 		dentry->d_shortname = target->d_shortname;
2793 		dentry->__d_name.name = dentry->d_shortname.string;
2794 		dentry->__d_name.hash_len = target->__d_name.hash_len;
2795 	}
2796 	if (old_name && likely(atomic_dec_and_test(&old_name->count)))
2797 		kfree_rcu(old_name, head);
2798 }
2799 
2800 /*
2801  * __d_move - move a dentry
2802  * @dentry: entry to move
2803  * @target: new dentry
2804  * @exchange: exchange the two dentries
2805  *
2806  * Update the dcache to reflect the move of a file name. Negative dcache
2807  * entries should not be moved in this way. Caller must hold rename_lock, the
2808  * i_rwsem of the source and target directories (exclusively), and the sb->
2809  * s_vfs_rename_mutex if they differ. See lock_rename().
2810  */
__d_move(struct dentry * dentry,struct dentry * target,bool exchange)2811 static void __d_move(struct dentry *dentry, struct dentry *target,
2812 		     bool exchange)
2813 {
2814 	struct dentry *old_parent, *p;
2815 	wait_queue_head_t *d_wait;
2816 	struct inode *dir = NULL;
2817 	unsigned n;
2818 
2819 	WARN_ON(!dentry->d_inode);
2820 	if (WARN_ON(dentry == target))
2821 		return;
2822 
2823 	BUG_ON(d_ancestor(target, dentry));
2824 	old_parent = dentry->d_parent;
2825 	p = d_ancestor(old_parent, target);
2826 	if (IS_ROOT(dentry)) {
2827 		BUG_ON(p);
2828 		spin_lock(&target->d_parent->d_lock);
2829 	} else if (!p) {
2830 		/* target is not a descendent of dentry->d_parent */
2831 		spin_lock(&target->d_parent->d_lock);
2832 		spin_lock_nested(&old_parent->d_lock, DENTRY_D_LOCK_NESTED);
2833 	} else {
2834 		BUG_ON(p == dentry);
2835 		spin_lock(&old_parent->d_lock);
2836 		if (p != target)
2837 			spin_lock_nested(&target->d_parent->d_lock,
2838 					DENTRY_D_LOCK_NESTED);
2839 	}
2840 	spin_lock_nested(&dentry->d_lock, 2);
2841 	spin_lock_nested(&target->d_lock, 3);
2842 
2843 	if (unlikely(d_in_lookup(target))) {
2844 		dir = target->d_parent->d_inode;
2845 		n = start_dir_add(dir);
2846 		d_wait = __d_lookup_unhash(target);
2847 	}
2848 
2849 	write_seqcount_begin(&dentry->d_seq);
2850 	write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2851 
2852 	/* unhash both */
2853 	if (!d_unhashed(dentry))
2854 		___d_drop(dentry);
2855 	if (!d_unhashed(target))
2856 		___d_drop(target);
2857 
2858 	/* ... and switch them in the tree */
2859 	dentry->d_parent = target->d_parent;
2860 	if (!exchange) {
2861 		copy_name(dentry, target);
2862 		target->d_hash.pprev = NULL;
2863 		dentry->d_parent->d_lockref.count++;
2864 		if (dentry != old_parent) /* wasn't IS_ROOT */
2865 			WARN_ON(!--old_parent->d_lockref.count);
2866 	} else {
2867 		target->d_parent = old_parent;
2868 		swap_names(dentry, target);
2869 		if (!hlist_unhashed(&target->d_sib))
2870 			__hlist_del(&target->d_sib);
2871 		hlist_add_head(&target->d_sib, &target->d_parent->d_children);
2872 		__d_rehash(target);
2873 		fsnotify_update_flags(target);
2874 	}
2875 	if (!hlist_unhashed(&dentry->d_sib))
2876 		__hlist_del(&dentry->d_sib);
2877 	hlist_add_head(&dentry->d_sib, &dentry->d_parent->d_children);
2878 	__d_rehash(dentry);
2879 	fsnotify_update_flags(dentry);
2880 	fscrypt_handle_d_move(dentry);
2881 
2882 	write_seqcount_end(&target->d_seq);
2883 	write_seqcount_end(&dentry->d_seq);
2884 
2885 	if (dir)
2886 		end_dir_add(dir, n, d_wait);
2887 
2888 	if (dentry->d_parent != old_parent)
2889 		spin_unlock(&dentry->d_parent->d_lock);
2890 	if (dentry != old_parent)
2891 		spin_unlock(&old_parent->d_lock);
2892 	spin_unlock(&target->d_lock);
2893 	spin_unlock(&dentry->d_lock);
2894 }
2895 
2896 /*
2897  * d_move - move a dentry
2898  * @dentry: entry to move
2899  * @target: new dentry
2900  *
2901  * Update the dcache to reflect the move of a file name. Negative
2902  * dcache entries should not be moved in this way. See the locking
2903  * requirements for __d_move.
2904  */
d_move(struct dentry * dentry,struct dentry * target)2905 void d_move(struct dentry *dentry, struct dentry *target)
2906 {
2907 	write_seqlock(&rename_lock);
2908 	__d_move(dentry, target, false);
2909 	write_sequnlock(&rename_lock);
2910 }
2911 EXPORT_SYMBOL(d_move);
2912 
2913 /*
2914  * d_exchange - exchange two dentries
2915  * @dentry1: first dentry
2916  * @dentry2: second dentry
2917  */
d_exchange(struct dentry * dentry1,struct dentry * dentry2)2918 void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2919 {
2920 	write_seqlock(&rename_lock);
2921 
2922 	WARN_ON(!dentry1->d_inode);
2923 	WARN_ON(!dentry2->d_inode);
2924 	WARN_ON(IS_ROOT(dentry1));
2925 	WARN_ON(IS_ROOT(dentry2));
2926 
2927 	__d_move(dentry1, dentry2, true);
2928 
2929 	write_sequnlock(&rename_lock);
2930 }
2931 EXPORT_SYMBOL(d_exchange);
2932 
2933 /**
2934  * d_ancestor - search for an ancestor
2935  * @p1: ancestor dentry
2936  * @p2: child dentry
2937  *
2938  * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2939  * an ancestor of p2, else NULL.
2940  */
d_ancestor(struct dentry * p1,struct dentry * p2)2941 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2942 {
2943 	struct dentry *p;
2944 
2945 	for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2946 		if (p->d_parent == p1)
2947 			return p;
2948 	}
2949 	return NULL;
2950 }
2951 
2952 /*
2953  * This helper attempts to cope with remotely renamed directories
2954  *
2955  * It assumes that the caller is already holding
2956  * dentry->d_parent->d_inode->i_rwsem, and rename_lock
2957  *
2958  * Note: If ever the locking in lock_rename() changes, then please
2959  * remember to update this too...
2960  */
__d_unalias(struct dentry * dentry,struct dentry * alias)2961 static int __d_unalias(struct dentry *dentry, struct dentry *alias)
2962 {
2963 	struct mutex *m1 = NULL;
2964 	struct rw_semaphore *m2 = NULL;
2965 	int ret = -ESTALE;
2966 
2967 	/* If alias and dentry share a parent, then no extra locks required */
2968 	if (alias->d_parent == dentry->d_parent)
2969 		goto out_unalias;
2970 
2971 	/* See lock_rename() */
2972 	if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2973 		goto out_err;
2974 	m1 = &dentry->d_sb->s_vfs_rename_mutex;
2975 	if (!inode_trylock_shared(alias->d_parent->d_inode))
2976 		goto out_err;
2977 	m2 = &alias->d_parent->d_inode->i_rwsem;
2978 out_unalias:
2979 	if (alias->d_op && alias->d_op->d_unalias_trylock &&
2980 	    !alias->d_op->d_unalias_trylock(alias))
2981 		goto out_err;
2982 	__d_move(alias, dentry, false);
2983 	if (alias->d_op && alias->d_op->d_unalias_unlock)
2984 		alias->d_op->d_unalias_unlock(alias);
2985 	ret = 0;
2986 out_err:
2987 	if (m2)
2988 		up_read(m2);
2989 	if (m1)
2990 		mutex_unlock(m1);
2991 	return ret;
2992 }
2993 
d_splice_alias_ops(struct inode * inode,struct dentry * dentry,const struct dentry_operations * ops)2994 struct dentry *d_splice_alias_ops(struct inode *inode, struct dentry *dentry,
2995 				  const struct dentry_operations *ops)
2996 {
2997 	if (IS_ERR(inode))
2998 		return ERR_CAST(inode);
2999 
3000 	BUG_ON(!d_unhashed(dentry));
3001 
3002 	if (!inode)
3003 		goto out;
3004 
3005 	security_d_instantiate(dentry, inode);
3006 	spin_lock(&inode->i_lock);
3007 	if (S_ISDIR(inode->i_mode)) {
3008 		struct dentry *new = __d_find_any_alias(inode);
3009 		if (unlikely(new)) {
3010 			/* The reference to new ensures it remains an alias */
3011 			spin_unlock(&inode->i_lock);
3012 			write_seqlock(&rename_lock);
3013 			if (unlikely(d_ancestor(new, dentry))) {
3014 				write_sequnlock(&rename_lock);
3015 				dput(new);
3016 				new = ERR_PTR(-ELOOP);
3017 				pr_warn_ratelimited(
3018 					"VFS: Lookup of '%s' in %s %s"
3019 					" would have caused loop\n",
3020 					dentry->d_name.name,
3021 					inode->i_sb->s_type->name,
3022 					inode->i_sb->s_id);
3023 			} else if (!IS_ROOT(new)) {
3024 				struct dentry *old_parent = dget(new->d_parent);
3025 				int err = __d_unalias(dentry, new);
3026 				write_sequnlock(&rename_lock);
3027 				if (err) {
3028 					dput(new);
3029 					new = ERR_PTR(err);
3030 				}
3031 				dput(old_parent);
3032 			} else {
3033 				__d_move(new, dentry, false);
3034 				write_sequnlock(&rename_lock);
3035 			}
3036 			iput(inode);
3037 			return new;
3038 		}
3039 	}
3040 out:
3041 	__d_add(dentry, inode, ops);
3042 	return NULL;
3043 }
3044 
3045 /**
3046  * d_splice_alias - splice a disconnected dentry into the tree if one exists
3047  * @inode:  the inode which may have a disconnected dentry
3048  * @dentry: a negative dentry which we want to point to the inode.
3049  *
3050  * If inode is a directory and has an IS_ROOT alias, then d_move that in
3051  * place of the given dentry and return it, else simply d_add the inode
3052  * to the dentry and return NULL.
3053  *
3054  * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
3055  * we should error out: directories can't have multiple aliases.
3056  *
3057  * This is needed in the lookup routine of any filesystem that is exportable
3058  * (via knfsd) so that we can build dcache paths to directories effectively.
3059  *
3060  * If a dentry was found and moved, then it is returned.  Otherwise NULL
3061  * is returned.  This matches the expected return value of ->lookup.
3062  *
3063  * Cluster filesystems may call this function with a negative, hashed dentry.
3064  * In that case, we know that the inode will be a regular file, and also this
3065  * will only occur during atomic_open. So we need to check for the dentry
3066  * being already hashed only in the final case.
3067  */
d_splice_alias(struct inode * inode,struct dentry * dentry)3068 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
3069 {
3070 	return d_splice_alias_ops(inode, dentry, NULL);
3071 }
3072 EXPORT_SYMBOL(d_splice_alias);
3073 
3074 /*
3075  * Test whether new_dentry is a subdirectory of old_dentry.
3076  *
3077  * Trivially implemented using the dcache structure
3078  */
3079 
3080 /**
3081  * is_subdir - is new dentry a subdirectory of old_dentry
3082  * @new_dentry: new dentry
3083  * @old_dentry: old dentry
3084  *
3085  * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3086  * Returns false otherwise.
3087  * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3088  */
3089 
is_subdir(struct dentry * new_dentry,struct dentry * old_dentry)3090 bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3091 {
3092 	bool subdir;
3093 	unsigned seq;
3094 
3095 	if (new_dentry == old_dentry)
3096 		return true;
3097 
3098 	/* Access d_parent under rcu as d_move() may change it. */
3099 	rcu_read_lock();
3100 	seq = read_seqbegin(&rename_lock);
3101 	subdir = d_ancestor(old_dentry, new_dentry);
3102 	 /* Try lockless once... */
3103 	if (read_seqretry(&rename_lock, seq)) {
3104 		/* ...else acquire lock for progress even on deep chains. */
3105 		read_seqlock_excl(&rename_lock);
3106 		subdir = d_ancestor(old_dentry, new_dentry);
3107 		read_sequnlock_excl(&rename_lock);
3108 	}
3109 	rcu_read_unlock();
3110 	return subdir;
3111 }
3112 EXPORT_SYMBOL(is_subdir);
3113 
d_genocide_kill(void * data,struct dentry * dentry)3114 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3115 {
3116 	struct dentry *root = data;
3117 	if (dentry != root) {
3118 		if (d_unhashed(dentry) || !dentry->d_inode)
3119 			return D_WALK_SKIP;
3120 
3121 		if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3122 			dentry->d_flags |= DCACHE_GENOCIDE;
3123 			dentry->d_lockref.count--;
3124 		}
3125 	}
3126 	return D_WALK_CONTINUE;
3127 }
3128 
d_genocide(struct dentry * parent)3129 void d_genocide(struct dentry *parent)
3130 {
3131 	d_walk(parent, parent, d_genocide_kill);
3132 }
3133 
d_mark_tmpfile(struct file * file,struct inode * inode)3134 void d_mark_tmpfile(struct file *file, struct inode *inode)
3135 {
3136 	struct dentry *dentry = file->f_path.dentry;
3137 
3138 	BUG_ON(dname_external(dentry) ||
3139 		!hlist_unhashed(&dentry->d_u.d_alias) ||
3140 		!d_unlinked(dentry));
3141 	spin_lock(&dentry->d_parent->d_lock);
3142 	spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3143 	dentry->__d_name.len = sprintf(dentry->d_shortname.string, "#%llu",
3144 				(unsigned long long)inode->i_ino);
3145 	spin_unlock(&dentry->d_lock);
3146 	spin_unlock(&dentry->d_parent->d_lock);
3147 }
3148 EXPORT_SYMBOL(d_mark_tmpfile);
3149 
d_tmpfile(struct file * file,struct inode * inode)3150 void d_tmpfile(struct file *file, struct inode *inode)
3151 {
3152 	struct dentry *dentry = file->f_path.dentry;
3153 
3154 	inode_dec_link_count(inode);
3155 	d_mark_tmpfile(file, inode);
3156 	d_instantiate(dentry, inode);
3157 }
3158 EXPORT_SYMBOL(d_tmpfile);
3159 
3160 /*
3161  * Obtain inode number of the parent dentry.
3162  */
d_parent_ino(struct dentry * dentry)3163 ino_t d_parent_ino(struct dentry *dentry)
3164 {
3165 	struct dentry *parent;
3166 	struct inode *iparent;
3167 	unsigned seq;
3168 	ino_t ret;
3169 
3170 	scoped_guard(rcu) {
3171 		seq = raw_seqcount_begin(&dentry->d_seq);
3172 		parent = READ_ONCE(dentry->d_parent);
3173 		iparent = d_inode_rcu(parent);
3174 		if (likely(iparent)) {
3175 			ret = iparent->i_ino;
3176 			if (!read_seqcount_retry(&dentry->d_seq, seq))
3177 				return ret;
3178 		}
3179 	}
3180 
3181 	spin_lock(&dentry->d_lock);
3182 	ret = dentry->d_parent->d_inode->i_ino;
3183 	spin_unlock(&dentry->d_lock);
3184 	return ret;
3185 }
3186 EXPORT_SYMBOL(d_parent_ino);
3187 
3188 static __initdata unsigned long dhash_entries;
set_dhash_entries(char * str)3189 static int __init set_dhash_entries(char *str)
3190 {
3191 	if (!str)
3192 		return 0;
3193 	dhash_entries = simple_strtoul(str, &str, 0);
3194 	return 1;
3195 }
3196 __setup("dhash_entries=", set_dhash_entries);
3197 
dcache_init_early(void)3198 static void __init dcache_init_early(void)
3199 {
3200 	/* If hashes are distributed across NUMA nodes, defer
3201 	 * hash allocation until vmalloc space is available.
3202 	 */
3203 	if (hashdist)
3204 		return;
3205 
3206 	dentry_hashtable =
3207 		alloc_large_system_hash("Dentry cache",
3208 					sizeof(struct hlist_bl_head),
3209 					dhash_entries,
3210 					13,
3211 					HASH_EARLY | HASH_ZERO,
3212 					&d_hash_shift,
3213 					NULL,
3214 					0,
3215 					0);
3216 	d_hash_shift = 32 - d_hash_shift;
3217 
3218 	runtime_const_init(shift, d_hash_shift);
3219 	runtime_const_init(ptr, dentry_hashtable);
3220 }
3221 
dcache_init(void)3222 static void __init dcache_init(void)
3223 {
3224 	/*
3225 	 * A constructor could be added for stable state like the lists,
3226 	 * but it is probably not worth it because of the cache nature
3227 	 * of the dcache.
3228 	 */
3229 	__dentry_cache = KMEM_CACHE_USERCOPY(dentry,
3230 		SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_ACCOUNT,
3231 		d_shortname.string);
3232 	runtime_const_init(ptr, __dentry_cache);
3233 
3234 	/* Hash may have been set up in dcache_init_early */
3235 	if (!hashdist)
3236 		return;
3237 
3238 	dentry_hashtable =
3239 		alloc_large_system_hash("Dentry cache",
3240 					sizeof(struct hlist_bl_head),
3241 					dhash_entries,
3242 					13,
3243 					HASH_ZERO,
3244 					&d_hash_shift,
3245 					NULL,
3246 					0,
3247 					0);
3248 	d_hash_shift = 32 - d_hash_shift;
3249 
3250 	runtime_const_init(shift, d_hash_shift);
3251 	runtime_const_init(ptr, dentry_hashtable);
3252 }
3253 
3254 /* SLAB cache for __getname() consumers */
3255 struct kmem_cache *names_cachep __ro_after_init;
3256 EXPORT_SYMBOL(names_cachep);
3257 
vfs_caches_init_early(void)3258 void __init vfs_caches_init_early(void)
3259 {
3260 	int i;
3261 
3262 	for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++)
3263 		INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]);
3264 
3265 	dcache_init_early();
3266 	inode_init_early();
3267 }
3268 
vfs_caches_init(void)3269 void __init vfs_caches_init(void)
3270 {
3271 	names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0,
3272 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL);
3273 
3274 	dcache_init();
3275 	inode_init();
3276 	files_init();
3277 	files_maxfiles_init();
3278 	mnt_init();
3279 	bdev_cache_init();
3280 	chrdev_init();
3281 }
3282