1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 * Copyright 2014 Joyent, Inc. All rights reserved.
25 */
26
27 #include <sys/types.h>
28 #include <sys/sysmacros.h>
29 #include <sys/kmem.h>
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/errno.h>
33 #include <sys/mman.h>
34 #include <sys/cmn_err.h>
35 #include <sys/cred.h>
36 #include <sys/vmsystm.h>
37 #include <sys/machsystm.h>
38 #include <sys/debug.h>
39 #include <vm/as.h>
40 #include <vm/seg.h>
41 #include <sys/vmparam.h>
42 #include <sys/vfs.h>
43 #include <sys/elf.h>
44 #include <sys/machelf.h>
45 #include <sys/corectl.h>
46 #include <sys/exec.h>
47 #include <sys/exechdr.h>
48 #include <sys/autoconf.h>
49 #include <sys/mem.h>
50 #include <vm/seg_dev.h>
51 #include <sys/vmparam.h>
52 #include <sys/mmapobj.h>
53 #include <sys/atomic.h>
54
55 /*
56 * Theory statement:
57 *
58 * The main driving force behind mmapobj is to interpret and map ELF files
59 * inside of the kernel instead of having the linker be responsible for this.
60 *
61 * mmapobj also supports the AOUT 4.x binary format as well as flat files in
62 * a read only manner.
63 *
64 * When interpreting and mapping an ELF file, mmapobj will map each PT_LOAD
65 * or PT_SUNWBSS segment according to the ELF standard. Refer to the "Linker
66 * and Libraries Guide" for more information about the standard and mapping
67 * rules.
68 *
69 * Having mmapobj interpret and map objects will allow the kernel to make the
70 * best decision for where to place the mappings for said objects. Thus, we
71 * can make optimizations inside of the kernel for specific platforms or
72 * cache mapping information to make mapping objects faster.
73 *
74 * The lib_va_hash will be one such optimization. For each ELF object that
75 * mmapobj is asked to interpret, we will attempt to cache the information
76 * about the PT_LOAD and PT_SUNWBSS sections to speed up future mappings of
77 * the same objects. We will cache up to LIBVA_CACHED_SEGS (see below) program
78 * headers which should cover a majority of the libraries out there without
79 * wasting space. In order to make sure that the cached information is valid,
80 * we check the passed in vnode's mtime and ctime to make sure the vnode
81 * has not been modified since the last time we used it.
82 *
83 * In addition, the lib_va_hash may contain a preferred starting VA for the
84 * object which can be useful for platforms which support a shared context.
85 * This will increase the likelyhood that library text can be shared among
86 * many different processes. We limit the reserved VA space for 32 bit objects
87 * in order to minimize fragmenting the processes address space.
88 *
89 * In addition to the above, the mmapobj interface allows for padding to be
90 * requested before the first mapping and after the last mapping created.
91 * When padding is requested, no additional optimizations will be made for
92 * that request.
93 */
94
95 /*
96 * Threshold to prevent allocating too much kernel memory to read in the
97 * program headers for an object. If it requires more than below,
98 * we will use a KM_NOSLEEP allocation to allocate memory to hold all of the
99 * program headers which could possibly fail. If less memory than below is
100 * needed, then we use a KM_SLEEP allocation and are willing to wait for the
101 * memory if we need to.
102 */
103 size_t mmapobj_alloc_threshold = 65536;
104
105 /* Debug stats for test coverage */
106 #ifdef DEBUG
107 struct mobj_stats {
108 uint_t mobjs_unmap_called;
109 uint_t mobjs_remap_devnull;
110 uint_t mobjs_lookup_start;
111 uint_t mobjs_alloc_start;
112 uint_t mobjs_alloc_vmem;
113 uint_t mobjs_add_collision;
114 uint_t mobjs_get_addr;
115 uint_t mobjs_map_flat_no_padding;
116 uint_t mobjs_map_flat_padding;
117 uint_t mobjs_map_ptload_text;
118 uint_t mobjs_map_ptload_initdata;
119 uint_t mobjs_map_ptload_preread;
120 uint_t mobjs_map_ptload_unaligned_text;
121 uint_t mobjs_map_ptload_unaligned_map_fail;
122 uint_t mobjs_map_ptload_unaligned_read_fail;
123 uint_t mobjs_zfoddiff;
124 uint_t mobjs_zfoddiff_nowrite;
125 uint_t mobjs_zfodextra;
126 uint_t mobjs_ptload_failed;
127 uint_t mobjs_map_elf_no_holes;
128 uint_t mobjs_unmap_hole;
129 uint_t mobjs_nomem_header;
130 uint_t mobjs_inval_header;
131 uint_t mobjs_overlap_header;
132 uint_t mobjs_np2_align;
133 uint_t mobjs_np2_align_overflow;
134 uint_t mobjs_exec_padding;
135 uint_t mobjs_exec_addr_mapped;
136 uint_t mobjs_exec_addr_devnull;
137 uint_t mobjs_exec_addr_in_use;
138 uint_t mobjs_lvp_found;
139 uint_t mobjs_no_loadable_yet;
140 uint_t mobjs_nothing_to_map;
141 uint_t mobjs_e2big;
142 uint_t mobjs_dyn_pad_align;
143 uint_t mobjs_dyn_pad_noalign;
144 uint_t mobjs_alloc_start_fail;
145 uint_t mobjs_lvp_nocache;
146 uint_t mobjs_extra_padding;
147 uint_t mobjs_lvp_not_needed;
148 uint_t mobjs_no_mem_map_sz;
149 uint_t mobjs_check_exec_failed;
150 uint_t mobjs_lvp_used;
151 uint_t mobjs_wrong_model;
152 uint_t mobjs_noexec_fs;
153 uint_t mobjs_e2big_et_rel;
154 uint_t mobjs_et_rel_mapped;
155 uint_t mobjs_unknown_elf_type;
156 uint_t mobjs_phent32_too_small;
157 uint_t mobjs_phent64_too_small;
158 uint_t mobjs_inval_elf_class;
159 uint_t mobjs_too_many_phdrs;
160 uint_t mobjs_no_phsize;
161 uint_t mobjs_phsize_large;
162 uint_t mobjs_phsize_xtralarge;
163 uint_t mobjs_fast_wrong_model;
164 uint_t mobjs_fast_e2big;
165 uint_t mobjs_fast;
166 uint_t mobjs_fast_success;
167 uint_t mobjs_fast_not_now;
168 uint_t mobjs_small_file;
169 uint_t mobjs_read_error;
170 uint_t mobjs_unsupported;
171 uint_t mobjs_flat_e2big;
172 uint_t mobjs_phent_align32;
173 uint_t mobjs_phent_align64;
174 uint_t mobjs_lib_va_find_hit;
175 uint_t mobjs_lib_va_find_delay_delete;
176 uint_t mobjs_lib_va_find_delete;
177 uint_t mobjs_lib_va_add_delay_delete;
178 uint_t mobjs_lib_va_add_delete;
179 uint_t mobjs_lib_va_create_failure;
180 uint_t mobjs_min_align;
181 #if defined(__sparc)
182 uint_t mobjs_aout_uzero_fault;
183 uint_t mobjs_aout_64bit_try;
184 uint_t mobjs_aout_noexec;
185 uint_t mobjs_aout_e2big;
186 uint_t mobjs_aout_lib;
187 uint_t mobjs_aout_fixed;
188 uint_t mobjs_aout_zfoddiff;
189 uint_t mobjs_aout_map_bss;
190 uint_t mobjs_aout_bss_fail;
191 uint_t mobjs_aout_nlist;
192 uint_t mobjs_aout_addr_in_use;
193 #endif
194 } mobj_stats;
195
196 #define MOBJ_STAT_ADD(stat) ((mobj_stats.mobjs_##stat)++)
197 #else
198 #define MOBJ_STAT_ADD(stat)
199 #endif
200
201 /*
202 * Check if addr is at or above the address space reserved for the stack.
203 * The stack is at the top of the address space for all sparc processes
204 * and 64 bit x86 processes. For 32 bit x86, the stack is not at the top
205 * of the address space and thus this check wil always return false for
206 * 32 bit x86 processes.
207 */
208 #if defined(__sparc)
209 #define OVERLAPS_STACK(addr, p) \
210 (addr >= (p->p_usrstack - ((p->p_stk_ctl + PAGEOFFSET) & PAGEMASK)))
211 #elif defined(__amd64)
212 #define OVERLAPS_STACK(addr, p) \
213 ((p->p_model == DATAMODEL_LP64) && \
214 (addr >= (p->p_usrstack - ((p->p_stk_ctl + PAGEOFFSET) & PAGEMASK))))
215 #elif defined(__i386)
216 #define OVERLAPS_STACK(addr, p) 0
217 #endif
218
219 /* lv_flags values - bitmap */
220 #define LV_ELF32 0x1 /* 32 bit ELF file */
221 #define LV_ELF64 0x2 /* 64 bit ELF file */
222 #define LV_DEL 0x4 /* delete when lv_refcnt hits zero */
223
224 /*
225 * Note: lv_num_segs will denote how many segments this file has and will
226 * only be set after the lv_mps array has been filled out.
227 * lv_mps can only be valid if lv_num_segs is non-zero.
228 */
229 struct lib_va {
230 struct lib_va *lv_next;
231 caddr_t lv_base_va; /* start va for library */
232 ssize_t lv_len; /* total va span of library */
233 size_t lv_align; /* minimum alignment */
234 uint64_t lv_nodeid; /* filesystem node id */
235 uint64_t lv_fsid; /* filesystem id */
236 timestruc_t lv_ctime; /* last time file was changed */
237 timestruc_t lv_mtime; /* or modified */
238 mmapobj_result_t lv_mps[LIBVA_CACHED_SEGS]; /* cached pheaders */
239 int lv_num_segs; /* # segs for this file */
240 int lv_flags;
241 uint_t lv_refcnt; /* number of holds on struct */
242 };
243
244 #define LIB_VA_SIZE 1024
245 #define LIB_VA_MASK (LIB_VA_SIZE - 1)
246 #define LIB_VA_MUTEX_SHIFT 3
247
248 #if (LIB_VA_SIZE & (LIB_VA_SIZE - 1))
249 #error "LIB_VA_SIZE is not a power of 2"
250 #endif
251
252 static struct lib_va *lib_va_hash[LIB_VA_SIZE];
253 static kmutex_t lib_va_hash_mutex[LIB_VA_SIZE >> LIB_VA_MUTEX_SHIFT];
254
255 #define LIB_VA_HASH_MUTEX(index) \
256 (&lib_va_hash_mutex[index >> LIB_VA_MUTEX_SHIFT])
257
258 #define LIB_VA_HASH(nodeid) \
259 (((nodeid) ^ ((nodeid) << 7) ^ ((nodeid) << 13)) & LIB_VA_MASK)
260
261 #define LIB_VA_MATCH_ID(arg1, arg2) \
262 ((arg1)->lv_nodeid == (arg2)->va_nodeid && \
263 (arg1)->lv_fsid == (arg2)->va_fsid)
264
265 #define LIB_VA_MATCH_TIME(arg1, arg2) \
266 ((arg1)->lv_ctime.tv_sec == (arg2)->va_ctime.tv_sec && \
267 (arg1)->lv_mtime.tv_sec == (arg2)->va_mtime.tv_sec && \
268 (arg1)->lv_ctime.tv_nsec == (arg2)->va_ctime.tv_nsec && \
269 (arg1)->lv_mtime.tv_nsec == (arg2)->va_mtime.tv_nsec)
270
271 #define LIB_VA_MATCH(arg1, arg2) \
272 (LIB_VA_MATCH_ID(arg1, arg2) && LIB_VA_MATCH_TIME(arg1, arg2))
273
274 /*
275 * lib_va will be used for optimized allocation of address ranges for
276 * libraries, such that subsequent mappings of the same library will attempt
277 * to use the same VA as previous mappings of that library.
278 * In order to map libraries at the same VA in many processes, we need to carve
279 * out our own address space for them which is unique across many processes.
280 * We use different arenas for 32 bit and 64 bit libraries.
281 *
282 * Since the 32 bit address space is relatively small, we limit the number of
283 * libraries which try to use consistent virtual addresses to lib_threshold.
284 * For 64 bit libraries there is no such limit since the address space is large.
285 */
286 static vmem_t *lib_va_32_arena;
287 static vmem_t *lib_va_64_arena;
288 uint_t lib_threshold = 20; /* modifiable via /etc/system */
289
290 static kmutex_t lib_va_init_mutex; /* no need to initialize */
291
292 /*
293 * Number of 32 bit and 64 bit libraries in lib_va hash.
294 */
295 static uint_t libs_mapped_32 = 0;
296 static uint_t libs_mapped_64 = 0;
297
298 /*
299 * Free up the resources associated with lvp as well as lvp itself.
300 * We also decrement the number of libraries mapped via a lib_va
301 * cached virtual address.
302 */
303 void
lib_va_free(struct lib_va * lvp)304 lib_va_free(struct lib_va *lvp)
305 {
306 int is_64bit = lvp->lv_flags & LV_ELF64;
307 ASSERT(lvp->lv_refcnt == 0);
308
309 if (lvp->lv_base_va != NULL) {
310 vmem_xfree(is_64bit ? lib_va_64_arena : lib_va_32_arena,
311 lvp->lv_base_va, lvp->lv_len);
312 if (is_64bit) {
313 atomic_dec_32(&libs_mapped_64);
314 } else {
315 atomic_dec_32(&libs_mapped_32);
316 }
317 }
318 kmem_free(lvp, sizeof (struct lib_va));
319 }
320
321 /*
322 * See if the file associated with the vap passed in is in the lib_va hash.
323 * If it is and the file has not been modified since last use, then
324 * return a pointer to that data. Otherwise, return NULL if the file has
325 * changed or the file was not found in the hash.
326 */
327 static struct lib_va *
lib_va_find(vattr_t * vap)328 lib_va_find(vattr_t *vap)
329 {
330 struct lib_va *lvp;
331 struct lib_va *del = NULL;
332 struct lib_va **tmp;
333 uint_t index;
334 index = LIB_VA_HASH(vap->va_nodeid);
335
336 mutex_enter(LIB_VA_HASH_MUTEX(index));
337 tmp = &lib_va_hash[index];
338 while (*tmp != NULL) {
339 lvp = *tmp;
340 if (LIB_VA_MATCH_ID(lvp, vap)) {
341 if (LIB_VA_MATCH_TIME(lvp, vap)) {
342 ASSERT((lvp->lv_flags & LV_DEL) == 0);
343 lvp->lv_refcnt++;
344 MOBJ_STAT_ADD(lib_va_find_hit);
345 } else {
346 /*
347 * file was updated since last use.
348 * need to remove it from list.
349 */
350 del = lvp;
351 *tmp = del->lv_next;
352 del->lv_next = NULL;
353 /*
354 * If we can't delete it now, mark it for later
355 */
356 if (del->lv_refcnt) {
357 MOBJ_STAT_ADD(lib_va_find_delay_delete);
358 del->lv_flags |= LV_DEL;
359 del = NULL;
360 }
361 lvp = NULL;
362 }
363 mutex_exit(LIB_VA_HASH_MUTEX(index));
364 if (del) {
365 ASSERT(del->lv_refcnt == 0);
366 MOBJ_STAT_ADD(lib_va_find_delete);
367 lib_va_free(del);
368 }
369 return (lvp);
370 }
371 tmp = &lvp->lv_next;
372 }
373 mutex_exit(LIB_VA_HASH_MUTEX(index));
374 return (NULL);
375 }
376
377 /*
378 * Add a new entry to the lib_va hash.
379 * Search the hash while holding the appropriate mutex to make sure that the
380 * data is not already in the cache. If we find data that is in the cache
381 * already and has not been modified since last use, we return NULL. If it
382 * has been modified since last use, we will remove that entry from
383 * the hash and it will be deleted once it's reference count reaches zero.
384 * If there is no current entry in the hash we will add the new entry and
385 * return it to the caller who is responsible for calling lib_va_release to
386 * drop their reference count on it.
387 *
388 * lv_num_segs will be set to zero since the caller needs to add that
389 * information to the data structure.
390 */
391 static struct lib_va *
lib_va_add_hash(caddr_t base_va,ssize_t len,size_t align,vattr_t * vap)392 lib_va_add_hash(caddr_t base_va, ssize_t len, size_t align, vattr_t *vap)
393 {
394 struct lib_va *lvp;
395 uint_t index;
396 model_t model;
397 struct lib_va **tmp;
398 struct lib_va *del = NULL;
399
400 model = get_udatamodel();
401 index = LIB_VA_HASH(vap->va_nodeid);
402
403 lvp = kmem_alloc(sizeof (struct lib_va), KM_SLEEP);
404
405 mutex_enter(LIB_VA_HASH_MUTEX(index));
406
407 /*
408 * Make sure not adding same data a second time.
409 * The hash chains should be relatively short and adding
410 * is a relatively rare event, so it's worth the check.
411 */
412 tmp = &lib_va_hash[index];
413 while (*tmp != NULL) {
414 if (LIB_VA_MATCH_ID(*tmp, vap)) {
415 if (LIB_VA_MATCH_TIME(*tmp, vap)) {
416 mutex_exit(LIB_VA_HASH_MUTEX(index));
417 kmem_free(lvp, sizeof (struct lib_va));
418 return (NULL);
419 }
420
421 /*
422 * We have the same nodeid and fsid but the file has
423 * been modified since we last saw it.
424 * Need to remove the old node and add this new
425 * one.
426 * Could probably use a callback mechanism to make
427 * this cleaner.
428 */
429 ASSERT(del == NULL);
430 del = *tmp;
431 *tmp = del->lv_next;
432 del->lv_next = NULL;
433
434 /*
435 * Check to see if we can free it. If lv_refcnt
436 * is greater than zero, than some other thread
437 * has a reference to the one we want to delete
438 * and we can not delete it. All of this is done
439 * under the lib_va_hash_mutex lock so it is atomic.
440 */
441 if (del->lv_refcnt) {
442 MOBJ_STAT_ADD(lib_va_add_delay_delete);
443 del->lv_flags |= LV_DEL;
444 del = NULL;
445 }
446 /* tmp is already advanced */
447 continue;
448 }
449 tmp = &((*tmp)->lv_next);
450 }
451
452 lvp->lv_base_va = base_va;
453 lvp->lv_len = len;
454 lvp->lv_align = align;
455 lvp->lv_nodeid = vap->va_nodeid;
456 lvp->lv_fsid = vap->va_fsid;
457 lvp->lv_ctime.tv_sec = vap->va_ctime.tv_sec;
458 lvp->lv_ctime.tv_nsec = vap->va_ctime.tv_nsec;
459 lvp->lv_mtime.tv_sec = vap->va_mtime.tv_sec;
460 lvp->lv_mtime.tv_nsec = vap->va_mtime.tv_nsec;
461 lvp->lv_next = NULL;
462 lvp->lv_refcnt = 1;
463
464 /* Caller responsible for filling this and lv_mps out */
465 lvp->lv_num_segs = 0;
466
467 if (model == DATAMODEL_LP64) {
468 lvp->lv_flags = LV_ELF64;
469 } else {
470 ASSERT(model == DATAMODEL_ILP32);
471 lvp->lv_flags = LV_ELF32;
472 }
473
474 if (base_va != NULL) {
475 if (model == DATAMODEL_LP64) {
476 atomic_inc_32(&libs_mapped_64);
477 } else {
478 ASSERT(model == DATAMODEL_ILP32);
479 atomic_inc_32(&libs_mapped_32);
480 }
481 }
482 ASSERT(*tmp == NULL);
483 *tmp = lvp;
484 mutex_exit(LIB_VA_HASH_MUTEX(index));
485 if (del) {
486 ASSERT(del->lv_refcnt == 0);
487 MOBJ_STAT_ADD(lib_va_add_delete);
488 lib_va_free(del);
489 }
490 return (lvp);
491 }
492
493 /*
494 * Release the hold on lvp which was acquired by lib_va_find or lib_va_add_hash.
495 * In addition, if this is the last hold and lvp is marked for deletion,
496 * free up it's reserved address space and free the structure.
497 */
498 static void
lib_va_release(struct lib_va * lvp)499 lib_va_release(struct lib_va *lvp)
500 {
501 uint_t index;
502 int to_del = 0;
503
504 ASSERT(lvp->lv_refcnt > 0);
505
506 index = LIB_VA_HASH(lvp->lv_nodeid);
507 mutex_enter(LIB_VA_HASH_MUTEX(index));
508 if (--lvp->lv_refcnt == 0 && (lvp->lv_flags & LV_DEL)) {
509 to_del = 1;
510 }
511 mutex_exit(LIB_VA_HASH_MUTEX(index));
512 if (to_del) {
513 ASSERT(lvp->lv_next == 0);
514 lib_va_free(lvp);
515 }
516 }
517
518 /*
519 * Dummy function for mapping through /dev/null
520 * Normally I would have used mmmmap in common/io/mem.c
521 * but that is a static function, and for /dev/null, it
522 * just returns -1.
523 */
524 /* ARGSUSED */
525 static int
mmapobj_dummy(dev_t dev,off_t off,int prot)526 mmapobj_dummy(dev_t dev, off_t off, int prot)
527 {
528 return (-1);
529 }
530
531 /*
532 * Called when an error occurred which requires mmapobj to return failure.
533 * All mapped objects will be unmapped and /dev/null mappings will be
534 * reclaimed if necessary.
535 * num_mapped is the number of elements of mrp which have been mapped, and
536 * num_segs is the total number of elements in mrp.
537 * For e_type ET_EXEC, we need to unmap all of the elements in mrp since
538 * we had already made reservations for them.
539 * If num_mapped equals num_segs, then we know that we had fully mapped
540 * the file and only need to clean up the segments described.
541 * If they are not equal, then for ET_DYN we will unmap the range from the
542 * end of the last mapped segment to the end of the last segment in mrp
543 * since we would have made a reservation for that memory earlier.
544 * If e_type is passed in as zero, num_mapped must equal num_segs.
545 */
546 void
mmapobj_unmap(mmapobj_result_t * mrp,int num_mapped,int num_segs,ushort_t e_type)547 mmapobj_unmap(mmapobj_result_t *mrp, int num_mapped, int num_segs,
548 ushort_t e_type)
549 {
550 int i;
551 struct as *as = curproc->p_as;
552 caddr_t addr;
553 size_t size;
554
555 if (e_type == ET_EXEC) {
556 num_mapped = num_segs;
557 }
558 #ifdef DEBUG
559 if (e_type == 0) {
560 ASSERT(num_mapped == num_segs);
561 }
562 #endif
563
564 MOBJ_STAT_ADD(unmap_called);
565 for (i = 0; i < num_mapped; i++) {
566
567 /*
568 * If we are going to have to create a mapping we need to
569 * make sure that no one else will use the address we
570 * need to remap between the time it is unmapped and
571 * mapped below.
572 */
573 if (mrp[i].mr_flags & MR_RESV) {
574 as_rangelock(as);
575 }
576 /* Always need to unmap what we mapped */
577 (void) as_unmap(as, mrp[i].mr_addr, mrp[i].mr_msize);
578
579 /* Need to reclaim /dev/null reservation from earlier */
580 if (mrp[i].mr_flags & MR_RESV) {
581 struct segdev_crargs dev_a;
582
583 ASSERT(e_type != ET_DYN);
584 /*
585 * Use seg_dev segment driver for /dev/null mapping.
586 */
587 dev_a.mapfunc = mmapobj_dummy;
588 dev_a.dev = makedevice(mm_major, M_NULL);
589 dev_a.offset = 0;
590 dev_a.type = 0; /* neither PRIVATE nor SHARED */
591 dev_a.prot = dev_a.maxprot = (uchar_t)PROT_NONE;
592 dev_a.hat_attr = 0;
593 dev_a.hat_flags = 0;
594
595 (void) as_map(as, mrp[i].mr_addr, mrp[i].mr_msize,
596 segdev_create, &dev_a);
597 MOBJ_STAT_ADD(remap_devnull);
598 as_rangeunlock(as);
599 }
600 }
601
602 if (num_mapped != num_segs) {
603 ASSERT(e_type == ET_DYN);
604 /* Need to unmap any reservation made after last mapped seg */
605 if (num_mapped == 0) {
606 addr = mrp[0].mr_addr;
607 } else {
608 addr = mrp[num_mapped - 1].mr_addr +
609 mrp[num_mapped - 1].mr_msize;
610 }
611 size = (size_t)mrp[num_segs - 1].mr_addr +
612 mrp[num_segs - 1].mr_msize - (size_t)addr;
613 (void) as_unmap(as, addr, size);
614
615 /*
616 * Now we need to unmap the holes between mapped segs.
617 * Note that we have not mapped all of the segments and thus
618 * the holes between segments would not have been unmapped
619 * yet. If num_mapped == num_segs, then all of the holes
620 * between segments would have already been unmapped.
621 */
622
623 for (i = 1; i < num_mapped; i++) {
624 addr = mrp[i - 1].mr_addr + mrp[i - 1].mr_msize;
625 size = mrp[i].mr_addr - addr;
626 (void) as_unmap(as, addr, size);
627 }
628 }
629 }
630
631 /*
632 * We need to add the start address into mrp so that the unmap function
633 * has absolute addresses to use.
634 */
635 static void
mmapobj_unmap_exec(mmapobj_result_t * mrp,int num_mapped,caddr_t start_addr)636 mmapobj_unmap_exec(mmapobj_result_t *mrp, int num_mapped, caddr_t start_addr)
637 {
638 int i;
639
640 for (i = 0; i < num_mapped; i++) {
641 mrp[i].mr_addr += (size_t)start_addr;
642 }
643 mmapobj_unmap(mrp, num_mapped, num_mapped, ET_EXEC);
644 }
645
646 static caddr_t
mmapobj_lookup_start_addr(struct lib_va * lvp)647 mmapobj_lookup_start_addr(struct lib_va *lvp)
648 {
649 proc_t *p = curproc;
650 struct as *as = p->p_as;
651 struct segvn_crargs crargs = SEGVN_ZFOD_ARGS(PROT_USER, PROT_ALL);
652 int error;
653 uint_t ma_flags = _MAP_LOW32;
654 caddr_t base = NULL;
655 size_t len;
656 size_t align;
657
658 ASSERT(lvp != NULL);
659 MOBJ_STAT_ADD(lookup_start);
660
661 as_rangelock(as);
662
663 base = lvp->lv_base_va;
664 len = lvp->lv_len;
665
666 /*
667 * If we don't have an expected base address, or the one that we want
668 * to use is not available or acceptable, go get an acceptable
669 * address range.
670 */
671 if (base == NULL || as_gap(as, len, &base, &len, 0, NULL) ||
672 valid_usr_range(base, len, PROT_ALL, as, as->a_userlimit) !=
673 RANGE_OKAY || OVERLAPS_STACK(base + len, p)) {
674 if (lvp->lv_flags & LV_ELF64) {
675 ma_flags = 0;
676 }
677
678 align = lvp->lv_align;
679 if (align > 1) {
680 ma_flags |= MAP_ALIGN;
681 }
682
683 base = (caddr_t)align;
684 map_addr(&base, len, 0, 1, ma_flags);
685 }
686
687 /*
688 * Need to reserve the address space we're going to use.
689 * Don't reserve swap space since we'll be mapping over this.
690 */
691 if (base != NULL) {
692 crargs.flags |= MAP_NORESERVE;
693 error = as_map(as, base, len, segvn_create, &crargs);
694 if (error) {
695 base = NULL;
696 }
697 }
698
699 as_rangeunlock(as);
700 return (base);
701 }
702
703 /*
704 * Get the starting address for a given file to be mapped and return it
705 * to the caller. If we're using lib_va and we need to allocate an address,
706 * we will attempt to allocate it from the global reserved pool such that the
707 * same address can be used in the future for this file. If we can't use the
708 * reserved address then we just get one that will fit in our address space.
709 *
710 * Returns the starting virtual address for the range to be mapped or NULL
711 * if an error is encountered. If we successfully insert the requested info
712 * into the lib_va hash, then *lvpp will be set to point to this lib_va
713 * structure. The structure will have a hold on it and thus lib_va_release
714 * needs to be called on it by the caller. This function will not fill out
715 * lv_mps or lv_num_segs since it does not have enough information to do so.
716 * The caller is responsible for doing this making sure that any modifications
717 * to lv_mps are visible before setting lv_num_segs.
718 */
719 static caddr_t
mmapobj_alloc_start_addr(struct lib_va ** lvpp,size_t len,int use_lib_va,size_t align,vattr_t * vap)720 mmapobj_alloc_start_addr(struct lib_va **lvpp, size_t len, int use_lib_va,
721 size_t align, vattr_t *vap)
722 {
723 proc_t *p = curproc;
724 struct as *as = p->p_as;
725 struct segvn_crargs crargs = SEGVN_ZFOD_ARGS(PROT_USER, PROT_ALL);
726 int error;
727 model_t model;
728 uint_t ma_flags = _MAP_LOW32;
729 caddr_t base = NULL;
730 vmem_t *model_vmem;
731 size_t lib_va_start;
732 size_t lib_va_end;
733 size_t lib_va_len;
734
735 ASSERT(lvpp != NULL);
736
737 MOBJ_STAT_ADD(alloc_start);
738 model = get_udatamodel();
739
740 if (model == DATAMODEL_LP64) {
741 ma_flags = 0;
742 model_vmem = lib_va_64_arena;
743 } else {
744 ASSERT(model == DATAMODEL_ILP32);
745 model_vmem = lib_va_32_arena;
746 }
747
748 if (align > 1) {
749 ma_flags |= MAP_ALIGN;
750 }
751 if (use_lib_va) {
752 /*
753 * The first time through, we need to setup the lib_va arenas.
754 * We call map_addr to find a suitable range of memory to map
755 * the given library, and we will set the highest address
756 * in our vmem arena to the end of this adddress range.
757 * We allow up to half of the address space to be used
758 * for lib_va addresses but we do not prevent any allocations
759 * in this range from other allocation paths.
760 */
761 if (lib_va_64_arena == NULL && model == DATAMODEL_LP64) {
762 mutex_enter(&lib_va_init_mutex);
763 if (lib_va_64_arena == NULL) {
764 base = (caddr_t)align;
765 as_rangelock(as);
766 map_addr(&base, len, 0, 1, ma_flags);
767 as_rangeunlock(as);
768 if (base == NULL) {
769 mutex_exit(&lib_va_init_mutex);
770 MOBJ_STAT_ADD(lib_va_create_failure);
771 goto nolibva;
772 }
773 lib_va_end = (size_t)base + len;
774 lib_va_len = lib_va_end >> 1;
775 lib_va_len = P2ROUNDUP(lib_va_len, PAGESIZE);
776 lib_va_start = lib_va_end - lib_va_len;
777
778 /*
779 * Need to make sure we avoid the address hole.
780 * We know lib_va_end is valid but we need to
781 * make sure lib_va_start is as well.
782 */
783 if ((lib_va_end > (size_t)hole_end) &&
784 (lib_va_start < (size_t)hole_end)) {
785 lib_va_start = P2ROUNDUP(
786 (size_t)hole_end, PAGESIZE);
787 lib_va_len = lib_va_end - lib_va_start;
788 }
789 lib_va_64_arena = vmem_create("lib_va_64",
790 (void *)lib_va_start, lib_va_len, PAGESIZE,
791 NULL, NULL, NULL, 0,
792 VM_NOSLEEP | VMC_IDENTIFIER);
793 if (lib_va_64_arena == NULL) {
794 mutex_exit(&lib_va_init_mutex);
795 goto nolibva;
796 }
797 }
798 model_vmem = lib_va_64_arena;
799 mutex_exit(&lib_va_init_mutex);
800 } else if (lib_va_32_arena == NULL &&
801 model == DATAMODEL_ILP32) {
802 mutex_enter(&lib_va_init_mutex);
803 if (lib_va_32_arena == NULL) {
804 base = (caddr_t)align;
805 as_rangelock(as);
806 map_addr(&base, len, 0, 1, ma_flags);
807 as_rangeunlock(as);
808 if (base == NULL) {
809 mutex_exit(&lib_va_init_mutex);
810 MOBJ_STAT_ADD(lib_va_create_failure);
811 goto nolibva;
812 }
813 lib_va_end = (size_t)base + len;
814 lib_va_len = lib_va_end >> 1;
815 lib_va_len = P2ROUNDUP(lib_va_len, PAGESIZE);
816 lib_va_start = lib_va_end - lib_va_len;
817 lib_va_32_arena = vmem_create("lib_va_32",
818 (void *)lib_va_start, lib_va_len, PAGESIZE,
819 NULL, NULL, NULL, 0,
820 VM_NOSLEEP | VMC_IDENTIFIER);
821 if (lib_va_32_arena == NULL) {
822 mutex_exit(&lib_va_init_mutex);
823 goto nolibva;
824 }
825 }
826 model_vmem = lib_va_32_arena;
827 mutex_exit(&lib_va_init_mutex);
828 }
829
830 if (model == DATAMODEL_LP64 || libs_mapped_32 < lib_threshold) {
831 base = vmem_xalloc(model_vmem, len, align, 0, 0, NULL,
832 NULL, VM_NOSLEEP | VM_ENDALLOC);
833 MOBJ_STAT_ADD(alloc_vmem);
834 }
835
836 /*
837 * Even if the address fails to fit in our address space,
838 * or we can't use a reserved address,
839 * we should still save it off in lib_va_hash.
840 */
841 *lvpp = lib_va_add_hash(base, len, align, vap);
842
843 /*
844 * Check for collision on insertion and free up our VA space.
845 * This is expected to be rare, so we'll just reset base to
846 * NULL instead of looking it up in the lib_va hash.
847 */
848 if (*lvpp == NULL) {
849 if (base != NULL) {
850 vmem_xfree(model_vmem, base, len);
851 base = NULL;
852 MOBJ_STAT_ADD(add_collision);
853 }
854 }
855 }
856
857 nolibva:
858 as_rangelock(as);
859
860 /*
861 * If we don't have an expected base address, or the one that we want
862 * to use is not available or acceptable, go get an acceptable
863 * address range.
864 */
865 if (base == NULL || as_gap(as, len, &base, &len, 0, NULL) ||
866 valid_usr_range(base, len, PROT_ALL, as, as->a_userlimit) !=
867 RANGE_OKAY || OVERLAPS_STACK(base + len, p)) {
868 MOBJ_STAT_ADD(get_addr);
869 base = (caddr_t)align;
870 map_addr(&base, len, 0, 1, ma_flags);
871 }
872
873 /*
874 * Need to reserve the address space we're going to use.
875 * Don't reserve swap space since we'll be mapping over this.
876 */
877 if (base != NULL) {
878 /* Don't reserve swap space since we'll be mapping over this */
879 crargs.flags |= MAP_NORESERVE;
880 error = as_map(as, base, len, segvn_create, &crargs);
881 if (error) {
882 base = NULL;
883 }
884 }
885
886 as_rangeunlock(as);
887 return (base);
888 }
889
890 /*
891 * Map the file associated with vp into the address space as a single
892 * read only private mapping.
893 * Returns 0 for success, and non-zero for failure to map the file.
894 */
895 static int
mmapobj_map_flat(vnode_t * vp,mmapobj_result_t * mrp,size_t padding,cred_t * fcred)896 mmapobj_map_flat(vnode_t *vp, mmapobj_result_t *mrp, size_t padding,
897 cred_t *fcred)
898 {
899 int error = 0;
900 struct as *as = curproc->p_as;
901 caddr_t addr = NULL;
902 caddr_t start_addr;
903 size_t len;
904 size_t pad_len;
905 int prot = PROT_USER | PROT_READ;
906 uint_t ma_flags = _MAP_LOW32;
907 vattr_t vattr;
908 struct segvn_crargs crargs = SEGVN_ZFOD_ARGS(PROT_USER, PROT_ALL);
909
910 if (get_udatamodel() == DATAMODEL_LP64) {
911 ma_flags = 0;
912 }
913
914 vattr.va_mask = AT_SIZE;
915 error = VOP_GETATTR(vp, &vattr, 0, fcred, NULL);
916 if (error) {
917 return (error);
918 }
919
920 len = vattr.va_size;
921
922 ma_flags |= MAP_PRIVATE;
923 if (padding == 0) {
924 MOBJ_STAT_ADD(map_flat_no_padding);
925 error = VOP_MAP(vp, 0, as, &addr, len, prot, PROT_ALL,
926 ma_flags, fcred, NULL);
927 if (error == 0) {
928 mrp[0].mr_addr = addr;
929 mrp[0].mr_msize = len;
930 mrp[0].mr_fsize = len;
931 mrp[0].mr_offset = 0;
932 mrp[0].mr_prot = prot;
933 mrp[0].mr_flags = 0;
934 }
935 return (error);
936 }
937
938 /* padding was requested so there's more work to be done */
939 MOBJ_STAT_ADD(map_flat_padding);
940
941 /* No need to reserve swap space now since it will be reserved later */
942 crargs.flags |= MAP_NORESERVE;
943
944 /* Need to setup padding which can only be in PAGESIZE increments. */
945 ASSERT((padding & PAGEOFFSET) == 0);
946 pad_len = len + (2 * padding);
947
948 as_rangelock(as);
949 map_addr(&addr, pad_len, 0, 1, ma_flags);
950 error = as_map(as, addr, pad_len, segvn_create, &crargs);
951 as_rangeunlock(as);
952 if (error) {
953 return (error);
954 }
955 start_addr = addr;
956 addr += padding;
957 ma_flags |= MAP_FIXED;
958 error = VOP_MAP(vp, 0, as, &addr, len, prot, PROT_ALL, ma_flags,
959 fcred, NULL);
960 if (error == 0) {
961 mrp[0].mr_addr = start_addr;
962 mrp[0].mr_msize = padding;
963 mrp[0].mr_fsize = 0;
964 mrp[0].mr_offset = 0;
965 mrp[0].mr_prot = 0;
966 mrp[0].mr_flags = MR_PADDING;
967
968 mrp[1].mr_addr = addr;
969 mrp[1].mr_msize = len;
970 mrp[1].mr_fsize = len;
971 mrp[1].mr_offset = 0;
972 mrp[1].mr_prot = prot;
973 mrp[1].mr_flags = 0;
974
975 mrp[2].mr_addr = addr + P2ROUNDUP(len, PAGESIZE);
976 mrp[2].mr_msize = padding;
977 mrp[2].mr_fsize = 0;
978 mrp[2].mr_offset = 0;
979 mrp[2].mr_prot = 0;
980 mrp[2].mr_flags = MR_PADDING;
981 } else {
982 /* Need to cleanup the as_map from earlier */
983 (void) as_unmap(as, start_addr, pad_len);
984 }
985 return (error);
986 }
987
988 /*
989 * Map a PT_LOAD or PT_SUNWBSS section of an executable file into the user's
990 * address space.
991 * vp - vnode to be mapped in
992 * addr - start address
993 * len - length of vp to be mapped
994 * zfodlen - length of zero filled memory after len above
995 * offset - offset into file where mapping should start
996 * prot - protections for this mapping
997 * fcred - credentials for the file associated with vp at open time.
998 */
999 static int
mmapobj_map_ptload(struct vnode * vp,caddr_t addr,size_t len,size_t zfodlen,off_t offset,int prot,cred_t * fcred)1000 mmapobj_map_ptload(struct vnode *vp, caddr_t addr, size_t len, size_t zfodlen,
1001 off_t offset, int prot, cred_t *fcred)
1002 {
1003 int error = 0;
1004 caddr_t zfodbase, oldaddr;
1005 size_t oldlen;
1006 size_t end;
1007 size_t zfoddiff;
1008 label_t ljb;
1009 struct as *as = curproc->p_as;
1010 model_t model;
1011 int full_page;
1012
1013 /*
1014 * See if addr and offset are aligned such that we can map in
1015 * full pages instead of partial pages.
1016 */
1017 full_page = (((uintptr_t)addr & PAGEOFFSET) ==
1018 ((uintptr_t)offset & PAGEOFFSET));
1019
1020 model = get_udatamodel();
1021
1022 oldaddr = addr;
1023 addr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK);
1024 if (len) {
1025 spgcnt_t availm, npages;
1026 int preread;
1027 uint_t mflag = MAP_PRIVATE | MAP_FIXED;
1028
1029 if (model == DATAMODEL_ILP32) {
1030 mflag |= _MAP_LOW32;
1031 }
1032 /* We may need to map in extra bytes */
1033 oldlen = len;
1034 len += ((size_t)oldaddr & PAGEOFFSET);
1035
1036 if (full_page) {
1037 offset = (off_t)((uintptr_t)offset & PAGEMASK);
1038 if ((prot & (PROT_WRITE | PROT_EXEC)) == PROT_EXEC) {
1039 mflag |= MAP_TEXT;
1040 MOBJ_STAT_ADD(map_ptload_text);
1041 } else {
1042 mflag |= MAP_INITDATA;
1043 MOBJ_STAT_ADD(map_ptload_initdata);
1044 }
1045
1046 /*
1047 * maxprot is passed as PROT_ALL so that mdb can
1048 * write to this segment.
1049 */
1050 if (error = VOP_MAP(vp, (offset_t)offset, as, &addr,
1051 len, prot, PROT_ALL, mflag, fcred, NULL)) {
1052 return (error);
1053 }
1054
1055 /*
1056 * If the segment can fit and is relatively small, then
1057 * we prefault the entire segment in. This is based
1058 * on the model that says the best working set of a
1059 * small program is all of its pages.
1060 * We only do this if freemem will not drop below
1061 * lotsfree since we don't want to induce paging.
1062 */
1063 npages = (spgcnt_t)btopr(len);
1064 availm = freemem - lotsfree;
1065 preread = (npages < availm && len < PGTHRESH) ? 1 : 0;
1066
1067 /*
1068 * If we aren't prefaulting the segment,
1069 * increment "deficit", if necessary to ensure
1070 * that pages will become available when this
1071 * process starts executing.
1072 */
1073 if (preread == 0 && npages > availm &&
1074 deficit < lotsfree) {
1075 deficit += MIN((pgcnt_t)(npages - availm),
1076 lotsfree - deficit);
1077 }
1078
1079 if (preread) {
1080 (void) as_faulta(as, addr, len);
1081 MOBJ_STAT_ADD(map_ptload_preread);
1082 }
1083 } else {
1084 /*
1085 * addr and offset were not aligned such that we could
1086 * use VOP_MAP, thus we need to as_map the memory we
1087 * need and then read the data in from disk.
1088 * This code path is a corner case which should never
1089 * be taken, but hand crafted binaries could trigger
1090 * this logic and it needs to work correctly.
1091 */
1092 MOBJ_STAT_ADD(map_ptload_unaligned_text);
1093 as_rangelock(as);
1094 (void) as_unmap(as, addr, len);
1095
1096 /*
1097 * We use zfod_argsp because we need to be able to
1098 * write to the mapping and then we'll change the
1099 * protections later if they are incorrect.
1100 */
1101 error = as_map(as, addr, len, segvn_create, zfod_argsp);
1102 as_rangeunlock(as);
1103 if (error) {
1104 MOBJ_STAT_ADD(map_ptload_unaligned_map_fail);
1105 return (error);
1106 }
1107
1108 /* Now read in the data from disk */
1109 error = vn_rdwr(UIO_READ, vp, oldaddr, oldlen, offset,
1110 UIO_USERSPACE, 0, (rlim64_t)0, fcred, NULL);
1111 if (error) {
1112 MOBJ_STAT_ADD(map_ptload_unaligned_read_fail);
1113 return (error);
1114 }
1115
1116 /*
1117 * Now set protections.
1118 */
1119 if (prot != PROT_ZFOD) {
1120 (void) as_setprot(as, addr, len, prot);
1121 }
1122 }
1123 }
1124
1125 if (zfodlen) {
1126 end = (size_t)addr + len;
1127 zfodbase = (caddr_t)P2ROUNDUP(end, PAGESIZE);
1128 zfoddiff = (uintptr_t)zfodbase - end;
1129 if (zfoddiff) {
1130 /*
1131 * Before we go to zero the remaining space on the last
1132 * page, make sure we have write permission.
1133 *
1134 * We need to be careful how we zero-fill the last page
1135 * if the protection does not include PROT_WRITE. Using
1136 * as_setprot() can cause the VM segment code to call
1137 * segvn_vpage(), which must allocate a page struct for
1138 * each page in the segment. If we have a very large
1139 * segment, this may fail, so we check for that, even
1140 * though we ignore other return values from as_setprot.
1141 */
1142 MOBJ_STAT_ADD(zfoddiff);
1143 if ((prot & PROT_WRITE) == 0) {
1144 if (as_setprot(as, (caddr_t)end, zfoddiff,
1145 prot | PROT_WRITE) == ENOMEM)
1146 return (ENOMEM);
1147 MOBJ_STAT_ADD(zfoddiff_nowrite);
1148 }
1149 if (on_fault(&ljb)) {
1150 no_fault();
1151 if ((prot & PROT_WRITE) == 0) {
1152 (void) as_setprot(as, (caddr_t)end,
1153 zfoddiff, prot);
1154 }
1155 return (EFAULT);
1156 }
1157 uzero((void *)end, zfoddiff);
1158 no_fault();
1159
1160 /*
1161 * Remove write protection to return to original state
1162 */
1163 if ((prot & PROT_WRITE) == 0) {
1164 (void) as_setprot(as, (caddr_t)end,
1165 zfoddiff, prot);
1166 }
1167 }
1168 if (zfodlen > zfoddiff) {
1169 struct segvn_crargs crargs =
1170 SEGVN_ZFOD_ARGS(prot, PROT_ALL);
1171
1172 MOBJ_STAT_ADD(zfodextra);
1173 zfodlen -= zfoddiff;
1174 crargs.szc = AS_MAP_NO_LPOOB;
1175
1176
1177 as_rangelock(as);
1178 (void) as_unmap(as, (caddr_t)zfodbase, zfodlen);
1179 error = as_map(as, (caddr_t)zfodbase,
1180 zfodlen, segvn_create, &crargs);
1181 as_rangeunlock(as);
1182 if (error) {
1183 return (error);
1184 }
1185 }
1186 }
1187 return (0);
1188 }
1189
1190 /*
1191 * Map the ELF file represented by vp into the users address space. The
1192 * first mapping will start at start_addr and there will be num_elements
1193 * mappings. The mappings are described by the data in mrp which may be
1194 * modified upon returning from this function.
1195 * Returns 0 for success or errno for failure.
1196 */
1197 static int
mmapobj_map_elf(struct vnode * vp,caddr_t start_addr,mmapobj_result_t * mrp,int num_elements,cred_t * fcred,ushort_t e_type)1198 mmapobj_map_elf(struct vnode *vp, caddr_t start_addr, mmapobj_result_t *mrp,
1199 int num_elements, cred_t *fcred, ushort_t e_type)
1200 {
1201 int i;
1202 int ret;
1203 caddr_t lo;
1204 caddr_t hi;
1205 struct as *as = curproc->p_as;
1206
1207 for (i = 0; i < num_elements; i++) {
1208 caddr_t addr;
1209 size_t p_memsz;
1210 size_t p_filesz;
1211 size_t zfodlen;
1212 offset_t p_offset;
1213 size_t dif;
1214 int prot;
1215
1216 /* Always need to adjust mr_addr */
1217 addr = start_addr + (size_t)(mrp[i].mr_addr);
1218 mrp[i].mr_addr =
1219 (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK);
1220
1221 /* Padding has already been mapped */
1222 if (MR_GET_TYPE(mrp[i].mr_flags) == MR_PADDING) {
1223 continue;
1224 }
1225 p_memsz = mrp[i].mr_msize;
1226 p_filesz = mrp[i].mr_fsize;
1227 zfodlen = p_memsz - p_filesz;
1228 p_offset = mrp[i].mr_offset;
1229 dif = (uintptr_t)(addr) & PAGEOFFSET;
1230 prot = mrp[i].mr_prot | PROT_USER;
1231 ret = mmapobj_map_ptload(vp, addr, p_filesz, zfodlen,
1232 p_offset, prot, fcred);
1233 if (ret != 0) {
1234 MOBJ_STAT_ADD(ptload_failed);
1235 mmapobj_unmap(mrp, i, num_elements, e_type);
1236 return (ret);
1237 }
1238
1239 /* Need to cleanup mrp to reflect the actual values used */
1240 mrp[i].mr_msize += dif;
1241 mrp[i].mr_offset = (size_t)addr & PAGEOFFSET;
1242 }
1243
1244 /* Also need to unmap any holes created above */
1245 if (num_elements == 1) {
1246 MOBJ_STAT_ADD(map_elf_no_holes);
1247 return (0);
1248 }
1249 if (e_type == ET_EXEC) {
1250 return (0);
1251 }
1252
1253 as_rangelock(as);
1254 lo = start_addr;
1255 hi = mrp[0].mr_addr;
1256
1257 /* Remove holes made by the rest of the segments */
1258 for (i = 0; i < num_elements - 1; i++) {
1259 lo = (caddr_t)P2ROUNDUP((size_t)(mrp[i].mr_addr) +
1260 mrp[i].mr_msize, PAGESIZE);
1261 hi = mrp[i + 1].mr_addr;
1262 if (lo < hi) {
1263 /*
1264 * If as_unmap fails we just use up a bit of extra
1265 * space
1266 */
1267 (void) as_unmap(as, (caddr_t)lo,
1268 (size_t)hi - (size_t)lo);
1269 MOBJ_STAT_ADD(unmap_hole);
1270 }
1271 }
1272 as_rangeunlock(as);
1273
1274 return (0);
1275 }
1276
1277 /* Ugly hack to get STRUCT_* macros to work below */
1278 struct myphdr {
1279 Phdr x; /* native version */
1280 };
1281
1282 struct myphdr32 {
1283 Elf32_Phdr x;
1284 };
1285
1286 /*
1287 * Calculate and return the number of loadable segments in the ELF Phdr
1288 * represented by phdrbase as well as the len of the total mapping and
1289 * the max alignment that is needed for a given segment. On success,
1290 * 0 is returned, and *len, *loadable and *align have been filled out.
1291 * On failure, errno will be returned, which in this case is ENOTSUP
1292 * if we were passed an ELF file with overlapping segments.
1293 */
1294 static int
calc_loadable(Ehdr * ehdrp,caddr_t phdrbase,int nphdrs,size_t * len,int * loadable,size_t * align)1295 calc_loadable(Ehdr *ehdrp, caddr_t phdrbase, int nphdrs, size_t *len,
1296 int *loadable, size_t *align)
1297 {
1298 int i;
1299 int hsize;
1300 model_t model;
1301 ushort_t e_type = ehdrp->e_type; /* same offset 32 and 64 bit */
1302 uint_t p_type;
1303 offset_t p_offset;
1304 size_t p_memsz;
1305 size_t p_align;
1306 caddr_t vaddr;
1307 int num_segs = 0;
1308 caddr_t start_addr = NULL;
1309 caddr_t p_end = NULL;
1310 size_t max_align = 0;
1311 size_t min_align = PAGESIZE; /* needed for vmem_xalloc */
1312 STRUCT_HANDLE(myphdr, mph);
1313 #if defined(__sparc)
1314 extern int vac_size;
1315
1316 /*
1317 * Want to prevent aliasing by making the start address at least be
1318 * aligned to vac_size.
1319 */
1320 min_align = MAX(PAGESIZE, vac_size);
1321 #endif
1322
1323 model = get_udatamodel();
1324 STRUCT_SET_HANDLE(mph, model, (struct myphdr *)phdrbase);
1325
1326 /* hsize alignment should have been checked before calling this func */
1327 if (model == DATAMODEL_LP64) {
1328 hsize = ehdrp->e_phentsize;
1329 if (hsize & 7) {
1330 return (ENOTSUP);
1331 }
1332 } else {
1333 ASSERT(model == DATAMODEL_ILP32);
1334 hsize = ((Elf32_Ehdr *)ehdrp)->e_phentsize;
1335 if (hsize & 3) {
1336 return (ENOTSUP);
1337 }
1338 }
1339
1340 /*
1341 * Determine the span of all loadable segments and calculate the
1342 * number of loadable segments.
1343 */
1344 for (i = 0; i < nphdrs; i++) {
1345 p_type = STRUCT_FGET(mph, x.p_type);
1346 if (p_type == PT_LOAD || p_type == PT_SUNWBSS) {
1347 vaddr = (caddr_t)(uintptr_t)STRUCT_FGET(mph, x.p_vaddr);
1348 p_memsz = STRUCT_FGET(mph, x.p_memsz);
1349
1350 /*
1351 * Skip this header if it requests no memory to be
1352 * mapped.
1353 */
1354 if (p_memsz == 0) {
1355 STRUCT_SET_HANDLE(mph, model,
1356 (struct myphdr *)((size_t)STRUCT_BUF(mph) +
1357 hsize));
1358 MOBJ_STAT_ADD(nomem_header);
1359 continue;
1360 }
1361 if (num_segs++ == 0) {
1362 /*
1363 * The p_vaddr of the first PT_LOAD segment
1364 * must either be NULL or within the first
1365 * page in order to be interpreted.
1366 * Otherwise, its an invalid file.
1367 */
1368 if (e_type == ET_DYN &&
1369 ((caddr_t)((uintptr_t)vaddr &
1370 (uintptr_t)PAGEMASK) != NULL)) {
1371 MOBJ_STAT_ADD(inval_header);
1372 return (ENOTSUP);
1373 }
1374 start_addr = vaddr;
1375 /*
1376 * For the first segment, we need to map from
1377 * the beginning of the file, so we will
1378 * adjust the size of the mapping to include
1379 * this memory.
1380 */
1381 p_offset = STRUCT_FGET(mph, x.p_offset);
1382 } else {
1383 p_offset = 0;
1384 }
1385 /*
1386 * Check to make sure that this mapping wouldn't
1387 * overlap a previous mapping.
1388 */
1389 if (vaddr < p_end) {
1390 MOBJ_STAT_ADD(overlap_header);
1391 return (ENOTSUP);
1392 }
1393
1394 p_end = vaddr + p_memsz + p_offset;
1395 p_end = (caddr_t)P2ROUNDUP((size_t)p_end, PAGESIZE);
1396
1397 p_align = STRUCT_FGET(mph, x.p_align);
1398 if (p_align > 1 && p_align > max_align) {
1399 max_align = p_align;
1400 if (max_align < min_align) {
1401 max_align = min_align;
1402 MOBJ_STAT_ADD(min_align);
1403 }
1404 }
1405 }
1406 STRUCT_SET_HANDLE(mph, model,
1407 (struct myphdr *)((size_t)STRUCT_BUF(mph) + hsize));
1408 }
1409
1410 /*
1411 * The alignment should be a power of 2, if it isn't we forgive it
1412 * and round up. On overflow, we'll set the alignment to max_align
1413 * rounded down to the nearest power of 2.
1414 */
1415 if (max_align > 0 && !ISP2(max_align)) {
1416 MOBJ_STAT_ADD(np2_align);
1417 *align = 2 * (1L << (highbit(max_align) - 1));
1418 if (*align < max_align ||
1419 (*align > UINT_MAX && model == DATAMODEL_ILP32)) {
1420 MOBJ_STAT_ADD(np2_align_overflow);
1421 *align = 1L << (highbit(max_align) - 1);
1422 }
1423 } else {
1424 *align = max_align;
1425 }
1426
1427 ASSERT(*align >= PAGESIZE || *align == 0);
1428
1429 *loadable = num_segs;
1430 *len = p_end - start_addr;
1431 return (0);
1432 }
1433
1434 /*
1435 * Check the address space to see if the virtual addresses to be used are
1436 * available. If they are not, return errno for failure. On success, 0
1437 * will be returned, and the virtual addresses for each mmapobj_result_t
1438 * will be reserved. Note that a reservation could have earlier been made
1439 * for a given segment via a /dev/null mapping. If that is the case, then
1440 * we can use that VA space for our mappings.
1441 * Note: this function will only be used for ET_EXEC binaries.
1442 */
1443 int
check_exec_addrs(int loadable,mmapobj_result_t * mrp,caddr_t start_addr)1444 check_exec_addrs(int loadable, mmapobj_result_t *mrp, caddr_t start_addr)
1445 {
1446 int i;
1447 struct as *as = curproc->p_as;
1448 struct segvn_crargs crargs = SEGVN_ZFOD_ARGS(PROT_ZFOD, PROT_ALL);
1449 int ret;
1450 caddr_t myaddr;
1451 size_t mylen;
1452 struct seg *seg;
1453
1454 /* No need to reserve swap space now since it will be reserved later */
1455 crargs.flags |= MAP_NORESERVE;
1456 as_rangelock(as);
1457 for (i = 0; i < loadable; i++) {
1458
1459 myaddr = start_addr + (size_t)mrp[i].mr_addr;
1460 mylen = mrp[i].mr_msize;
1461
1462 /* See if there is a hole in the as for this range */
1463 if (as_gap(as, mylen, &myaddr, &mylen, 0, NULL) == 0) {
1464 ASSERT(myaddr == start_addr + (size_t)mrp[i].mr_addr);
1465 ASSERT(mylen == mrp[i].mr_msize);
1466
1467 #ifdef DEBUG
1468 if (MR_GET_TYPE(mrp[i].mr_flags) == MR_PADDING) {
1469 MOBJ_STAT_ADD(exec_padding);
1470 }
1471 #endif
1472 ret = as_map(as, myaddr, mylen, segvn_create, &crargs);
1473 if (ret) {
1474 as_rangeunlock(as);
1475 mmapobj_unmap_exec(mrp, i, start_addr);
1476 return (ret);
1477 }
1478 } else {
1479 /*
1480 * There is a mapping that exists in the range
1481 * so check to see if it was a "reservation"
1482 * from /dev/null. The mapping is from
1483 * /dev/null if the mapping comes from
1484 * segdev and the type is neither MAP_SHARED
1485 * nor MAP_PRIVATE.
1486 */
1487 AS_LOCK_ENTER(as, RW_READER);
1488 seg = as_findseg(as, myaddr, 0);
1489 MOBJ_STAT_ADD(exec_addr_mapped);
1490 if (seg && seg->s_ops == &segdev_ops &&
1491 ((SEGOP_GETTYPE(seg, myaddr) &
1492 (MAP_SHARED | MAP_PRIVATE)) == 0) &&
1493 myaddr >= seg->s_base &&
1494 myaddr + mylen <=
1495 seg->s_base + seg->s_size) {
1496 MOBJ_STAT_ADD(exec_addr_devnull);
1497 AS_LOCK_EXIT(as);
1498 (void) as_unmap(as, myaddr, mylen);
1499 ret = as_map(as, myaddr, mylen, segvn_create,
1500 &crargs);
1501 mrp[i].mr_flags |= MR_RESV;
1502 if (ret) {
1503 as_rangeunlock(as);
1504 /* Need to remap what we unmapped */
1505 mmapobj_unmap_exec(mrp, i + 1,
1506 start_addr);
1507 return (ret);
1508 }
1509 } else {
1510 AS_LOCK_EXIT(as);
1511 as_rangeunlock(as);
1512 mmapobj_unmap_exec(mrp, i, start_addr);
1513 MOBJ_STAT_ADD(exec_addr_in_use);
1514 return (EADDRINUSE);
1515 }
1516 }
1517 }
1518 as_rangeunlock(as);
1519 return (0);
1520 }
1521
1522 /*
1523 * Walk through the ELF program headers and extract all useful information
1524 * for PT_LOAD and PT_SUNWBSS segments into mrp.
1525 * Return 0 on success or error on failure.
1526 */
1527 static int
process_phdr(Ehdr * ehdrp,caddr_t phdrbase,int nphdrs,mmapobj_result_t * mrp,vnode_t * vp,uint_t * num_mapped,size_t padding,cred_t * fcred)1528 process_phdr(Ehdr *ehdrp, caddr_t phdrbase, int nphdrs, mmapobj_result_t *mrp,
1529 vnode_t *vp, uint_t *num_mapped, size_t padding, cred_t *fcred)
1530 {
1531 int i;
1532 caddr_t start_addr = NULL;
1533 caddr_t vaddr;
1534 size_t len = 0;
1535 size_t lib_len = 0;
1536 int ret;
1537 int prot;
1538 struct lib_va *lvp = NULL;
1539 vattr_t vattr;
1540 struct as *as = curproc->p_as;
1541 int error;
1542 int loadable = 0;
1543 int current = 0;
1544 int use_lib_va = 1;
1545 size_t align = 0;
1546 size_t add_pad = 0;
1547 int hdr_seen = 0;
1548 ushort_t e_type = ehdrp->e_type; /* same offset 32 and 64 bit */
1549 uint_t p_type;
1550 offset_t p_offset;
1551 size_t p_memsz;
1552 size_t p_filesz;
1553 uint_t p_flags;
1554 int hsize;
1555 model_t model;
1556 STRUCT_HANDLE(myphdr, mph);
1557
1558 model = get_udatamodel();
1559 STRUCT_SET_HANDLE(mph, model, (struct myphdr *)phdrbase);
1560
1561 /*
1562 * Need to make sure that hsize is aligned properly.
1563 * For 32bit processes, 4 byte alignment is required.
1564 * For 64bit processes, 8 byte alignment is required.
1565 * If the alignment isn't correct, we need to return failure
1566 * since it could cause an alignment error panic while walking
1567 * the phdr array.
1568 */
1569 if (model == DATAMODEL_LP64) {
1570 hsize = ehdrp->e_phentsize;
1571 if (hsize & 7) {
1572 MOBJ_STAT_ADD(phent_align64);
1573 return (ENOTSUP);
1574 }
1575 } else {
1576 ASSERT(model == DATAMODEL_ILP32);
1577 hsize = ((Elf32_Ehdr *)ehdrp)->e_phentsize;
1578 if (hsize & 3) {
1579 MOBJ_STAT_ADD(phent_align32);
1580 return (ENOTSUP);
1581 }
1582 }
1583
1584 if (padding != 0) {
1585 use_lib_va = 0;
1586 }
1587 if (e_type == ET_DYN) {
1588 vattr.va_mask = AT_FSID | AT_NODEID | AT_CTIME | AT_MTIME;
1589 error = VOP_GETATTR(vp, &vattr, 0, fcred, NULL);
1590 if (error) {
1591 return (error);
1592 }
1593 /* Check to see if we already have a description for this lib */
1594 lvp = lib_va_find(&vattr);
1595
1596 if (lvp != NULL) {
1597 MOBJ_STAT_ADD(lvp_found);
1598 if (use_lib_va) {
1599 start_addr = mmapobj_lookup_start_addr(lvp);
1600 if (start_addr == NULL) {
1601 lib_va_release(lvp);
1602 return (ENOMEM);
1603 }
1604 }
1605
1606 /*
1607 * loadable may be zero if the original allocator
1608 * of lvp hasn't finished setting it up but the rest
1609 * of the fields will be accurate.
1610 */
1611 loadable = lvp->lv_num_segs;
1612 len = lvp->lv_len;
1613 align = lvp->lv_align;
1614 }
1615 }
1616
1617 /*
1618 * Determine the span of all loadable segments and calculate the
1619 * number of loadable segments, the total len spanned by the mappings
1620 * and the max alignment, if we didn't get them above.
1621 */
1622 if (loadable == 0) {
1623 MOBJ_STAT_ADD(no_loadable_yet);
1624 ret = calc_loadable(ehdrp, phdrbase, nphdrs, &len,
1625 &loadable, &align);
1626 if (ret != 0) {
1627 /*
1628 * Since it'd be an invalid file, we shouldn't have
1629 * cached it previously.
1630 */
1631 ASSERT(lvp == NULL);
1632 return (ret);
1633 }
1634 #ifdef DEBUG
1635 if (lvp) {
1636 ASSERT(len == lvp->lv_len);
1637 ASSERT(align == lvp->lv_align);
1638 }
1639 #endif
1640 }
1641
1642 /* Make sure there's something to map. */
1643 if (len == 0 || loadable == 0) {
1644 /*
1645 * Since it'd be an invalid file, we shouldn't have
1646 * cached it previously.
1647 */
1648 ASSERT(lvp == NULL);
1649 MOBJ_STAT_ADD(nothing_to_map);
1650 return (ENOTSUP);
1651 }
1652
1653 lib_len = len;
1654 if (padding != 0) {
1655 loadable += 2;
1656 }
1657 if (loadable > *num_mapped) {
1658 *num_mapped = loadable;
1659 /* cleanup previous reservation */
1660 if (start_addr) {
1661 (void) as_unmap(as, start_addr, lib_len);
1662 }
1663 MOBJ_STAT_ADD(e2big);
1664 if (lvp) {
1665 lib_va_release(lvp);
1666 }
1667 return (E2BIG);
1668 }
1669
1670 /*
1671 * We now know the size of the object to map and now we need to
1672 * get the start address to map it at. It's possible we already
1673 * have it if we found all the info we need in the lib_va cache.
1674 */
1675 if (e_type == ET_DYN && start_addr == NULL) {
1676 /*
1677 * Need to make sure padding does not throw off
1678 * required alignment. We can only specify an
1679 * alignment for the starting address to be mapped,
1680 * so we round padding up to the alignment and map
1681 * from there and then throw out the extra later.
1682 */
1683 if (padding != 0) {
1684 if (align > 1) {
1685 add_pad = P2ROUNDUP(padding, align);
1686 len += add_pad;
1687 MOBJ_STAT_ADD(dyn_pad_align);
1688 } else {
1689 MOBJ_STAT_ADD(dyn_pad_noalign);
1690 len += padding; /* at beginning */
1691 }
1692 len += padding; /* at end of mapping */
1693 }
1694 /*
1695 * At this point, if lvp is non-NULL, then above we
1696 * already found it in the cache but did not get
1697 * the start address since we were not going to use lib_va.
1698 * Since we know that lib_va will not be used, it's safe
1699 * to call mmapobj_alloc_start_addr and know that lvp
1700 * will not be modified.
1701 */
1702 ASSERT(lvp ? use_lib_va == 0 : 1);
1703 start_addr = mmapobj_alloc_start_addr(&lvp, len,
1704 use_lib_va, align, &vattr);
1705 if (start_addr == NULL) {
1706 if (lvp) {
1707 lib_va_release(lvp);
1708 }
1709 MOBJ_STAT_ADD(alloc_start_fail);
1710 return (ENOMEM);
1711 }
1712 /*
1713 * If we can't cache it, no need to hang on to it.
1714 * Setting lv_num_segs to non-zero will make that
1715 * field active and since there are too many segments
1716 * to cache, all future users will not try to use lv_mps.
1717 */
1718 if (lvp != NULL && loadable > LIBVA_CACHED_SEGS && use_lib_va) {
1719 lvp->lv_num_segs = loadable;
1720 lib_va_release(lvp);
1721 lvp = NULL;
1722 MOBJ_STAT_ADD(lvp_nocache);
1723 }
1724 /*
1725 * Free the beginning of the mapping if the padding
1726 * was not aligned correctly.
1727 */
1728 if (padding != 0 && add_pad != padding) {
1729 (void) as_unmap(as, start_addr,
1730 add_pad - padding);
1731 start_addr += (add_pad - padding);
1732 MOBJ_STAT_ADD(extra_padding);
1733 }
1734 }
1735
1736 /*
1737 * At this point, we have reserved the virtual address space
1738 * for our mappings. Now we need to start filling out the mrp
1739 * array to describe all of the individual mappings we are going
1740 * to return.
1741 * For ET_EXEC there has been no memory reservation since we are
1742 * using fixed addresses. While filling in the mrp array below,
1743 * we will have the first segment biased to start at addr 0
1744 * and the rest will be biased by this same amount. Thus if there
1745 * is padding, the first padding will start at addr 0, and the next
1746 * segment will start at the value of padding.
1747 */
1748
1749 /* We'll fill out padding later, so start filling in mrp at index 1 */
1750 if (padding != 0) {
1751 current = 1;
1752 }
1753
1754 /* If we have no more need for lvp let it go now */
1755 if (lvp != NULL && use_lib_va == 0) {
1756 lib_va_release(lvp);
1757 MOBJ_STAT_ADD(lvp_not_needed);
1758 lvp = NULL;
1759 }
1760
1761 /* Now fill out the mrp structs from the program headers */
1762 STRUCT_SET_HANDLE(mph, model, (struct myphdr *)phdrbase);
1763 for (i = 0; i < nphdrs; i++) {
1764 p_type = STRUCT_FGET(mph, x.p_type);
1765 if (p_type == PT_LOAD || p_type == PT_SUNWBSS) {
1766 vaddr = (caddr_t)(uintptr_t)STRUCT_FGET(mph, x.p_vaddr);
1767 p_memsz = STRUCT_FGET(mph, x.p_memsz);
1768 p_filesz = STRUCT_FGET(mph, x.p_filesz);
1769 p_offset = STRUCT_FGET(mph, x.p_offset);
1770 p_flags = STRUCT_FGET(mph, x.p_flags);
1771
1772 /*
1773 * Skip this header if it requests no memory to be
1774 * mapped.
1775 */
1776 if (p_memsz == 0) {
1777 STRUCT_SET_HANDLE(mph, model,
1778 (struct myphdr *)((size_t)STRUCT_BUF(mph) +
1779 hsize));
1780 MOBJ_STAT_ADD(no_mem_map_sz);
1781 continue;
1782 }
1783
1784 prot = 0;
1785 if (p_flags & PF_R)
1786 prot |= PROT_READ;
1787 if (p_flags & PF_W)
1788 prot |= PROT_WRITE;
1789 if (p_flags & PF_X)
1790 prot |= PROT_EXEC;
1791
1792 ASSERT(current < loadable);
1793 mrp[current].mr_msize = p_memsz;
1794 mrp[current].mr_fsize = p_filesz;
1795 mrp[current].mr_offset = p_offset;
1796 mrp[current].mr_prot = prot;
1797
1798 if (hdr_seen == 0 && p_filesz != 0) {
1799 mrp[current].mr_flags = MR_HDR_ELF;
1800 /*
1801 * We modify mr_offset because we
1802 * need to map the ELF header as well, and if
1803 * we didn't then the header could be left out
1804 * of the mapping that we will create later.
1805 * Since we're removing the offset, we need to
1806 * account for that in the other fields as well
1807 * since we will be mapping the memory from 0
1808 * to p_offset.
1809 */
1810 if (e_type == ET_DYN) {
1811 mrp[current].mr_offset = 0;
1812 mrp[current].mr_msize += p_offset;
1813 mrp[current].mr_fsize += p_offset;
1814 } else {
1815 ASSERT(e_type == ET_EXEC);
1816 /*
1817 * Save off the start addr which will be
1818 * our bias for the rest of the
1819 * ET_EXEC mappings.
1820 */
1821 start_addr = vaddr - padding;
1822 }
1823 mrp[current].mr_addr = (caddr_t)padding;
1824 hdr_seen = 1;
1825 } else {
1826 if (e_type == ET_EXEC) {
1827 /* bias mr_addr */
1828 mrp[current].mr_addr =
1829 vaddr - (size_t)start_addr;
1830 } else {
1831 mrp[current].mr_addr = vaddr + padding;
1832 }
1833 mrp[current].mr_flags = 0;
1834 }
1835 current++;
1836 }
1837
1838 /* Move to next phdr */
1839 STRUCT_SET_HANDLE(mph, model,
1840 (struct myphdr *)((size_t)STRUCT_BUF(mph) +
1841 hsize));
1842 }
1843
1844 /* Now fill out the padding segments */
1845 if (padding != 0) {
1846 mrp[0].mr_addr = NULL;
1847 mrp[0].mr_msize = padding;
1848 mrp[0].mr_fsize = 0;
1849 mrp[0].mr_offset = 0;
1850 mrp[0].mr_prot = 0;
1851 mrp[0].mr_flags = MR_PADDING;
1852
1853 /* Setup padding for the last segment */
1854 ASSERT(current == loadable - 1);
1855 mrp[current].mr_addr = (caddr_t)lib_len + padding;
1856 mrp[current].mr_msize = padding;
1857 mrp[current].mr_fsize = 0;
1858 mrp[current].mr_offset = 0;
1859 mrp[current].mr_prot = 0;
1860 mrp[current].mr_flags = MR_PADDING;
1861 }
1862
1863 /*
1864 * Need to make sure address ranges desired are not in use or
1865 * are previously allocated reservations from /dev/null. For
1866 * ET_DYN, we already made sure our address range was free.
1867 */
1868 if (e_type == ET_EXEC) {
1869 ret = check_exec_addrs(loadable, mrp, start_addr);
1870 if (ret != 0) {
1871 ASSERT(lvp == NULL);
1872 MOBJ_STAT_ADD(check_exec_failed);
1873 return (ret);
1874 }
1875 }
1876
1877 /* Finish up our business with lvp. */
1878 if (lvp) {
1879 ASSERT(e_type == ET_DYN);
1880 if (lvp->lv_num_segs == 0 && loadable <= LIBVA_CACHED_SEGS) {
1881 bcopy(mrp, lvp->lv_mps,
1882 loadable * sizeof (mmapobj_result_t));
1883 membar_producer();
1884 }
1885 /*
1886 * Setting lv_num_segs to a non-zero value indicates that
1887 * lv_mps is now valid and can be used by other threads.
1888 * So, the above stores need to finish before lv_num_segs
1889 * is updated. lv_mps is only valid if lv_num_segs is
1890 * greater than LIBVA_CACHED_SEGS.
1891 */
1892 lvp->lv_num_segs = loadable;
1893 lib_va_release(lvp);
1894 MOBJ_STAT_ADD(lvp_used);
1895 }
1896
1897 /* Now that we have mrp completely filled out go map it */
1898 ret = mmapobj_map_elf(vp, start_addr, mrp, loadable, fcred, e_type);
1899 if (ret == 0) {
1900 *num_mapped = loadable;
1901 }
1902
1903 return (ret);
1904 }
1905
1906 /*
1907 * Take the ELF file passed in, and do the work of mapping it.
1908 * num_mapped in - # elements in user buffer
1909 * num_mapped out - # sections mapped and length of mrp array if
1910 * no errors.
1911 */
1912 static int
doelfwork(Ehdr * ehdrp,vnode_t * vp,mmapobj_result_t * mrp,uint_t * num_mapped,size_t padding,cred_t * fcred)1913 doelfwork(Ehdr *ehdrp, vnode_t *vp, mmapobj_result_t *mrp,
1914 uint_t *num_mapped, size_t padding, cred_t *fcred)
1915 {
1916 int error;
1917 offset_t phoff;
1918 int nphdrs;
1919 unsigned char ei_class;
1920 unsigned short phentsize;
1921 ssize_t phsizep;
1922 caddr_t phbasep;
1923 int to_map;
1924 model_t model;
1925
1926 ei_class = ehdrp->e_ident[EI_CLASS];
1927 model = get_udatamodel();
1928 if ((model == DATAMODEL_ILP32 && ei_class == ELFCLASS64) ||
1929 (model == DATAMODEL_LP64 && ei_class == ELFCLASS32)) {
1930 MOBJ_STAT_ADD(wrong_model);
1931 return (ENOTSUP);
1932 }
1933
1934 /* Can't execute code from "noexec" mounted filesystem. */
1935 if (ehdrp->e_type == ET_EXEC &&
1936 (vp->v_vfsp->vfs_flag & VFS_NOEXEC) != 0) {
1937 MOBJ_STAT_ADD(noexec_fs);
1938 return (EACCES);
1939 }
1940
1941 /*
1942 * Relocatable and core files are mapped as a single flat file
1943 * since no interpretation is done on them by mmapobj.
1944 */
1945 if (ehdrp->e_type == ET_REL || ehdrp->e_type == ET_CORE) {
1946 to_map = padding ? 3 : 1;
1947 if (*num_mapped < to_map) {
1948 *num_mapped = to_map;
1949 MOBJ_STAT_ADD(e2big_et_rel);
1950 return (E2BIG);
1951 }
1952 error = mmapobj_map_flat(vp, mrp, padding, fcred);
1953 if (error == 0) {
1954 *num_mapped = to_map;
1955 mrp[padding ? 1 : 0].mr_flags = MR_HDR_ELF;
1956 MOBJ_STAT_ADD(et_rel_mapped);
1957 }
1958 return (error);
1959 }
1960
1961 /* Check for an unknown ELF type */
1962 if (ehdrp->e_type != ET_EXEC && ehdrp->e_type != ET_DYN) {
1963 MOBJ_STAT_ADD(unknown_elf_type);
1964 return (ENOTSUP);
1965 }
1966
1967 if (ei_class == ELFCLASS32) {
1968 Elf32_Ehdr *e32hdr = (Elf32_Ehdr *)ehdrp;
1969 ASSERT(model == DATAMODEL_ILP32);
1970 nphdrs = e32hdr->e_phnum;
1971 phentsize = e32hdr->e_phentsize;
1972 if (phentsize < sizeof (Elf32_Phdr)) {
1973 MOBJ_STAT_ADD(phent32_too_small);
1974 return (ENOTSUP);
1975 }
1976 phoff = e32hdr->e_phoff;
1977 } else if (ei_class == ELFCLASS64) {
1978 Elf64_Ehdr *e64hdr = (Elf64_Ehdr *)ehdrp;
1979 ASSERT(model == DATAMODEL_LP64);
1980 nphdrs = e64hdr->e_phnum;
1981 phentsize = e64hdr->e_phentsize;
1982 if (phentsize < sizeof (Elf64_Phdr)) {
1983 MOBJ_STAT_ADD(phent64_too_small);
1984 return (ENOTSUP);
1985 }
1986 phoff = e64hdr->e_phoff;
1987 } else {
1988 /* fallthrough case for an invalid ELF class */
1989 MOBJ_STAT_ADD(inval_elf_class);
1990 return (ENOTSUP);
1991 }
1992
1993 /*
1994 * nphdrs should only have this value for core files which are handled
1995 * above as a single mapping. If other file types ever use this
1996 * sentinel, then we'll add the support needed to handle this here.
1997 */
1998 if (nphdrs == PN_XNUM) {
1999 MOBJ_STAT_ADD(too_many_phdrs);
2000 return (ENOTSUP);
2001 }
2002
2003 phsizep = nphdrs * phentsize;
2004
2005 if (phsizep == 0) {
2006 MOBJ_STAT_ADD(no_phsize);
2007 return (ENOTSUP);
2008 }
2009
2010 /* Make sure we only wait for memory if it's a reasonable request */
2011 if (phsizep > mmapobj_alloc_threshold) {
2012 MOBJ_STAT_ADD(phsize_large);
2013 if ((phbasep = kmem_alloc(phsizep, KM_NOSLEEP)) == NULL) {
2014 MOBJ_STAT_ADD(phsize_xtralarge);
2015 return (ENOMEM);
2016 }
2017 } else {
2018 phbasep = kmem_alloc(phsizep, KM_SLEEP);
2019 }
2020
2021 if ((error = vn_rdwr(UIO_READ, vp, phbasep, phsizep,
2022 (offset_t)phoff, UIO_SYSSPACE, 0, (rlim64_t)0,
2023 fcred, NULL)) != 0) {
2024 kmem_free(phbasep, phsizep);
2025 return (error);
2026 }
2027
2028 /* Now process the phdr's */
2029 error = process_phdr(ehdrp, phbasep, nphdrs, mrp, vp, num_mapped,
2030 padding, fcred);
2031 kmem_free(phbasep, phsizep);
2032 return (error);
2033 }
2034
2035 #if defined(__sparc)
2036 /*
2037 * Hack to support 64 bit kernels running AOUT 4.x programs.
2038 * This is the sizeof (struct nlist) for a 32 bit kernel.
2039 * Since AOUT programs are 32 bit only, they will never use the 64 bit
2040 * sizeof (struct nlist) and thus creating a #define is the simplest
2041 * way around this since this is a format which is not being updated.
2042 * This will be used in the place of sizeof (struct nlist) below.
2043 */
2044 #define NLIST_SIZE (0xC)
2045
2046 static int
doaoutwork(vnode_t * vp,mmapobj_result_t * mrp,uint_t * num_mapped,struct exec * hdr,cred_t * fcred)2047 doaoutwork(vnode_t *vp, mmapobj_result_t *mrp,
2048 uint_t *num_mapped, struct exec *hdr, cred_t *fcred)
2049 {
2050 int error;
2051 size_t size;
2052 size_t osize;
2053 size_t nsize; /* nlist size */
2054 size_t msize;
2055 size_t zfoddiff;
2056 caddr_t addr;
2057 caddr_t start_addr;
2058 struct as *as = curproc->p_as;
2059 int prot = PROT_USER | PROT_READ | PROT_EXEC;
2060 uint_t mflag = MAP_PRIVATE | _MAP_LOW32;
2061 offset_t off = 0;
2062 int segnum = 0;
2063 uint_t to_map;
2064 int is_library = 0;
2065 struct segvn_crargs crargs = SEGVN_ZFOD_ARGS(PROT_ZFOD, PROT_ALL);
2066
2067 /* Only 32bit apps supported by this file format */
2068 if (get_udatamodel() != DATAMODEL_ILP32) {
2069 MOBJ_STAT_ADD(aout_64bit_try);
2070 return (ENOTSUP);
2071 }
2072
2073 /* Check to see if this is a library */
2074 if (hdr->a_magic == ZMAGIC && hdr->a_entry < PAGESIZE) {
2075 is_library = 1;
2076 }
2077
2078 /* Can't execute code from "noexec" mounted filesystem. */
2079 if (((vp->v_vfsp->vfs_flag & VFS_NOEXEC) != 0) && (is_library == 0)) {
2080 MOBJ_STAT_ADD(aout_noexec);
2081 return (EACCES);
2082 }
2083
2084 /*
2085 * There are 2 ways to calculate the mapped size of executable:
2086 * 1) rounded text size + data size + bss size.
2087 * 2) starting offset for text + text size + data size + text relocation
2088 * size + data relocation size + room for nlist data structure.
2089 *
2090 * The larger of the two sizes will be used to map this binary.
2091 */
2092 osize = P2ROUNDUP(hdr->a_text, PAGESIZE) + hdr->a_data + hdr->a_bss;
2093
2094 off = hdr->a_magic == ZMAGIC ? 0 : sizeof (struct exec);
2095
2096 nsize = off + hdr->a_text + hdr->a_data + hdr->a_trsize +
2097 hdr->a_drsize + NLIST_SIZE;
2098
2099 size = MAX(osize, nsize);
2100 if (size != nsize) {
2101 nsize = 0;
2102 }
2103
2104 /*
2105 * 1 seg for text and 1 seg for initialized data.
2106 * 1 seg for bss (if can't fit in leftover space of init data)
2107 * 1 seg for nlist if needed.
2108 */
2109 to_map = 2 + (nsize ? 1 : 0) +
2110 (hdr->a_bss > PAGESIZE - P2PHASE(hdr->a_data, PAGESIZE) ? 1 : 0);
2111 if (*num_mapped < to_map) {
2112 *num_mapped = to_map;
2113 MOBJ_STAT_ADD(aout_e2big);
2114 return (E2BIG);
2115 }
2116
2117 /* Reserve address space for the whole mapping */
2118 if (is_library) {
2119 /* We'll let VOP_MAP below pick our address for us */
2120 addr = NULL;
2121 MOBJ_STAT_ADD(aout_lib);
2122 } else {
2123 /*
2124 * default start address for fixed binaries from AOUT 4.x
2125 * standard.
2126 */
2127 MOBJ_STAT_ADD(aout_fixed);
2128 mflag |= MAP_FIXED;
2129 addr = (caddr_t)0x2000;
2130 as_rangelock(as);
2131 if (as_gap(as, size, &addr, &size, 0, NULL) != 0) {
2132 as_rangeunlock(as);
2133 MOBJ_STAT_ADD(aout_addr_in_use);
2134 return (EADDRINUSE);
2135 }
2136 crargs.flags |= MAP_NORESERVE;
2137 error = as_map(as, addr, size, segvn_create, &crargs);
2138 ASSERT(addr == (caddr_t)0x2000);
2139 as_rangeunlock(as);
2140 }
2141
2142 start_addr = addr;
2143 osize = size;
2144
2145 /*
2146 * Map as large as we need, backed by file, this will be text, and
2147 * possibly the nlist segment. We map over this mapping for bss and
2148 * initialized data segments.
2149 */
2150 error = VOP_MAP(vp, off, as, &addr, size, prot, PROT_ALL,
2151 mflag, fcred, NULL);
2152 if (error) {
2153 if (!is_library) {
2154 (void) as_unmap(as, start_addr, osize);
2155 }
2156 return (error);
2157 }
2158
2159 /* pickup the value of start_addr and osize for libraries */
2160 start_addr = addr;
2161 osize = size;
2162
2163 /*
2164 * We have our initial reservation/allocation so we need to use fixed
2165 * addresses from now on.
2166 */
2167 mflag |= MAP_FIXED;
2168
2169 mrp[0].mr_addr = addr;
2170 mrp[0].mr_msize = hdr->a_text;
2171 mrp[0].mr_fsize = hdr->a_text;
2172 mrp[0].mr_offset = 0;
2173 mrp[0].mr_prot = PROT_READ | PROT_EXEC;
2174 mrp[0].mr_flags = MR_HDR_AOUT;
2175
2176
2177 /*
2178 * Map initialized data. We are mapping over a portion of the
2179 * previous mapping which will be unmapped in VOP_MAP below.
2180 */
2181 off = P2ROUNDUP((offset_t)(hdr->a_text), PAGESIZE);
2182 msize = off;
2183 addr += off;
2184 size = hdr->a_data;
2185 error = VOP_MAP(vp, off, as, &addr, size, PROT_ALL, PROT_ALL,
2186 mflag, fcred, NULL);
2187 if (error) {
2188 (void) as_unmap(as, start_addr, osize);
2189 return (error);
2190 }
2191 msize += size;
2192 mrp[1].mr_addr = addr;
2193 mrp[1].mr_msize = size;
2194 mrp[1].mr_fsize = size;
2195 mrp[1].mr_offset = 0;
2196 mrp[1].mr_prot = PROT_READ | PROT_WRITE | PROT_EXEC;
2197 mrp[1].mr_flags = 0;
2198
2199 /* Need to zero out remainder of page */
2200 addr += hdr->a_data;
2201 zfoddiff = P2PHASE((size_t)addr, PAGESIZE);
2202 if (zfoddiff) {
2203 label_t ljb;
2204
2205 MOBJ_STAT_ADD(aout_zfoddiff);
2206 zfoddiff = PAGESIZE - zfoddiff;
2207 if (on_fault(&ljb)) {
2208 no_fault();
2209 MOBJ_STAT_ADD(aout_uzero_fault);
2210 (void) as_unmap(as, start_addr, osize);
2211 return (EFAULT);
2212 }
2213 uzero(addr, zfoddiff);
2214 no_fault();
2215 }
2216 msize += zfoddiff;
2217 segnum = 2;
2218
2219 /* Map bss */
2220 if (hdr->a_bss > zfoddiff) {
2221 struct segvn_crargs crargs =
2222 SEGVN_ZFOD_ARGS(PROT_ZFOD, PROT_ALL);
2223 MOBJ_STAT_ADD(aout_map_bss);
2224 addr += zfoddiff;
2225 size = hdr->a_bss - zfoddiff;
2226 as_rangelock(as);
2227 (void) as_unmap(as, addr, size);
2228 error = as_map(as, addr, size, segvn_create, &crargs);
2229 as_rangeunlock(as);
2230 msize += size;
2231
2232 if (error) {
2233 MOBJ_STAT_ADD(aout_bss_fail);
2234 (void) as_unmap(as, start_addr, osize);
2235 return (error);
2236 }
2237 mrp[2].mr_addr = addr;
2238 mrp[2].mr_msize = size;
2239 mrp[2].mr_fsize = 0;
2240 mrp[2].mr_offset = 0;
2241 mrp[2].mr_prot = PROT_READ | PROT_WRITE | PROT_EXEC;
2242 mrp[2].mr_flags = 0;
2243
2244 addr += size;
2245 segnum = 3;
2246 }
2247
2248 /*
2249 * If we have extra bits left over, we need to include that in how
2250 * much we mapped to make sure the nlist logic is correct
2251 */
2252 msize = P2ROUNDUP(msize, PAGESIZE);
2253
2254 if (nsize && msize < nsize) {
2255 MOBJ_STAT_ADD(aout_nlist);
2256 mrp[segnum].mr_addr = addr;
2257 mrp[segnum].mr_msize = nsize - msize;
2258 mrp[segnum].mr_fsize = 0;
2259 mrp[segnum].mr_offset = 0;
2260 mrp[segnum].mr_prot = PROT_READ | PROT_EXEC;
2261 mrp[segnum].mr_flags = 0;
2262 }
2263
2264 *num_mapped = to_map;
2265 return (0);
2266 }
2267 #endif
2268
2269 /*
2270 * These are the two types of files that we can interpret and we want to read
2271 * in enough info to cover both types when looking at the initial header.
2272 */
2273 #define MAX_HEADER_SIZE (MAX(sizeof (Ehdr), sizeof (struct exec)))
2274
2275 /*
2276 * Map vp passed in in an interpreted manner. ELF and AOUT files will be
2277 * interpreted and mapped appropriately for execution.
2278 * num_mapped in - # elements in mrp
2279 * num_mapped out - # sections mapped and length of mrp array if
2280 * no errors or E2BIG returned.
2281 *
2282 * Returns 0 on success, errno value on failure.
2283 */
2284 static int
mmapobj_map_interpret(vnode_t * vp,mmapobj_result_t * mrp,uint_t * num_mapped,size_t padding,cred_t * fcred)2285 mmapobj_map_interpret(vnode_t *vp, mmapobj_result_t *mrp,
2286 uint_t *num_mapped, size_t padding, cred_t *fcred)
2287 {
2288 int error = 0;
2289 vattr_t vattr;
2290 struct lib_va *lvp;
2291 caddr_t start_addr;
2292 model_t model;
2293
2294 /*
2295 * header has to be aligned to the native size of ulong_t in order
2296 * to avoid an unaligned access when dereferencing the header as
2297 * a ulong_t. Thus we allocate our array on the stack of type
2298 * ulong_t and then have header, which we dereference later as a char
2299 * array point at lheader.
2300 */
2301 ulong_t lheader[(MAX_HEADER_SIZE / (sizeof (ulong_t))) + 1];
2302 caddr_t header = (caddr_t)&lheader;
2303
2304 vattr.va_mask = AT_FSID | AT_NODEID | AT_CTIME | AT_MTIME | AT_SIZE;
2305 error = VOP_GETATTR(vp, &vattr, 0, fcred, NULL);
2306 if (error) {
2307 return (error);
2308 }
2309
2310 /*
2311 * Check lib_va to see if we already have a full description
2312 * for this library. This is the fast path and only used for
2313 * ET_DYN ELF files (dynamic libraries).
2314 */
2315 if (padding == 0 && (lvp = lib_va_find(&vattr)) != NULL) {
2316 int num_segs;
2317
2318 model = get_udatamodel();
2319 if ((model == DATAMODEL_ILP32 &&
2320 lvp->lv_flags & LV_ELF64) ||
2321 (model == DATAMODEL_LP64 &&
2322 lvp->lv_flags & LV_ELF32)) {
2323 lib_va_release(lvp);
2324 MOBJ_STAT_ADD(fast_wrong_model);
2325 return (ENOTSUP);
2326 }
2327 num_segs = lvp->lv_num_segs;
2328 if (*num_mapped < num_segs) {
2329 *num_mapped = num_segs;
2330 lib_va_release(lvp);
2331 MOBJ_STAT_ADD(fast_e2big);
2332 return (E2BIG);
2333 }
2334
2335 /*
2336 * Check to see if we have all the mappable program headers
2337 * cached.
2338 */
2339 if (num_segs <= LIBVA_CACHED_SEGS && num_segs != 0) {
2340 MOBJ_STAT_ADD(fast);
2341 start_addr = mmapobj_lookup_start_addr(lvp);
2342 if (start_addr == NULL) {
2343 lib_va_release(lvp);
2344 return (ENOMEM);
2345 }
2346
2347 bcopy(lvp->lv_mps, mrp,
2348 num_segs * sizeof (mmapobj_result_t));
2349
2350 error = mmapobj_map_elf(vp, start_addr, mrp,
2351 num_segs, fcred, ET_DYN);
2352
2353 lib_va_release(lvp);
2354 if (error == 0) {
2355 *num_mapped = num_segs;
2356 MOBJ_STAT_ADD(fast_success);
2357 }
2358 return (error);
2359 }
2360 MOBJ_STAT_ADD(fast_not_now);
2361
2362 /* Release it for now since we'll look it up below */
2363 lib_va_release(lvp);
2364 }
2365
2366 /*
2367 * Time to see if this is a file we can interpret. If it's smaller
2368 * than this, then we can't interpret it.
2369 */
2370 if (vattr.va_size < MAX_HEADER_SIZE) {
2371 MOBJ_STAT_ADD(small_file);
2372 return (ENOTSUP);
2373 }
2374
2375 if ((error = vn_rdwr(UIO_READ, vp, header, MAX_HEADER_SIZE, 0,
2376 UIO_SYSSPACE, 0, (rlim64_t)0, fcred, NULL)) != 0) {
2377 MOBJ_STAT_ADD(read_error);
2378 return (error);
2379 }
2380
2381 /* Verify file type */
2382 if (header[EI_MAG0] == ELFMAG0 && header[EI_MAG1] == ELFMAG1 &&
2383 header[EI_MAG2] == ELFMAG2 && header[EI_MAG3] == ELFMAG3) {
2384 return (doelfwork((Ehdr *)lheader, vp, mrp, num_mapped,
2385 padding, fcred));
2386 }
2387
2388 #if defined(__sparc)
2389 /* On sparc, check for 4.X AOUT format */
2390 switch (((struct exec *)header)->a_magic) {
2391 case OMAGIC:
2392 case ZMAGIC:
2393 case NMAGIC:
2394 return (doaoutwork(vp, mrp, num_mapped,
2395 (struct exec *)lheader, fcred));
2396 }
2397 #endif
2398
2399 /* Unsupported type */
2400 MOBJ_STAT_ADD(unsupported);
2401 return (ENOTSUP);
2402 }
2403
2404 /*
2405 * Given a vnode, map it as either a flat file or interpret it and map
2406 * it according to the rules of the file type.
2407 * *num_mapped will contain the size of the mmapobj_result_t array passed in.
2408 * If padding is non-zero, the mappings will be padded by that amount
2409 * rounded up to the nearest pagesize.
2410 * If the mapping is successful, *num_mapped will contain the number of
2411 * distinct mappings created, and mrp will point to the array of
2412 * mmapobj_result_t's which describe these mappings.
2413 *
2414 * On error, -1 is returned and errno is set appropriately.
2415 * A special error case will set errno to E2BIG when there are more than
2416 * *num_mapped mappings to be created and *num_mapped will be set to the
2417 * number of mappings needed.
2418 */
2419 int
mmapobj(vnode_t * vp,uint_t flags,mmapobj_result_t * mrp,uint_t * num_mapped,size_t padding,cred_t * fcred)2420 mmapobj(vnode_t *vp, uint_t flags, mmapobj_result_t *mrp,
2421 uint_t *num_mapped, size_t padding, cred_t *fcred)
2422 {
2423 int to_map;
2424 int error = 0;
2425
2426 ASSERT((padding & PAGEOFFSET) == 0);
2427 ASSERT((flags & ~MMOBJ_ALL_FLAGS) == 0);
2428 ASSERT(num_mapped != NULL);
2429 ASSERT((flags & MMOBJ_PADDING) ? padding != 0 : padding == 0);
2430
2431 if ((flags & MMOBJ_INTERPRET) == 0) {
2432 to_map = padding ? 3 : 1;
2433 if (*num_mapped < to_map) {
2434 *num_mapped = to_map;
2435 MOBJ_STAT_ADD(flat_e2big);
2436 return (E2BIG);
2437 }
2438 error = mmapobj_map_flat(vp, mrp, padding, fcred);
2439
2440 if (error) {
2441 return (error);
2442 }
2443 *num_mapped = to_map;
2444 return (0);
2445 }
2446
2447 error = mmapobj_map_interpret(vp, mrp, num_mapped, padding, fcred);
2448 return (error);
2449 }
2450