1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright 2015 Nexenta Systems, Inc. All rights reserved.
24 * Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
25 */
26
27 #include <assert.h>
28 #include <stddef.h>
29 #include <strings.h>
30 #include <libuutil.h>
31 #include <libzfs.h>
32 #include <fm/fmd_api.h>
33 #include <fm/libtopo.h>
34 #include <sys/types.h>
35 #include <sys/time.h>
36 #include <sys/fs/zfs.h>
37 #include <sys/fm/protocol.h>
38 #include <sys/fm/fs/zfs.h>
39
40 /*
41 * Our serd engines are named 'zfs_<pool_guid>_<vdev_guid>_{checksum,io}'. This
42 * #define reserves enough space for two 64-bit hex values plus the length of
43 * the longest string.
44 */
45 #define MAX_SERDLEN (16 * 2 + sizeof ("zfs___checksum"))
46
47 /*
48 * On-disk case structure. This must maintain backwards compatibility with
49 * previous versions of the DE. By default, any members appended to the end
50 * will be filled with zeros if they don't exist in a previous version.
51 */
52 typedef struct zfs_case_data {
53 uint64_t zc_version;
54 uint64_t zc_ena;
55 uint64_t zc_pool_guid;
56 uint64_t zc_vdev_guid;
57 int zc_has_timer; /* defunct */
58 int zc_pool_state;
59 char zc_serd_checksum[MAX_SERDLEN];
60 char zc_serd_io[MAX_SERDLEN];
61 int zc_has_remove_timer;
62 } zfs_case_data_t;
63
64 /*
65 * Time-of-day
66 */
67 typedef struct er_timeval {
68 uint64_t ertv_sec;
69 uint64_t ertv_nsec;
70 } er_timeval_t;
71
72 /*
73 * In-core case structure.
74 */
75 typedef struct zfs_case {
76 boolean_t zc_present;
77 uint32_t zc_version;
78 zfs_case_data_t zc_data;
79 fmd_case_t *zc_case;
80 uu_list_node_t zc_node;
81 id_t zc_remove_timer;
82 char *zc_fru;
83 er_timeval_t zc_when;
84 } zfs_case_t;
85
86 #define CASE_DATA "data"
87 #define CASE_FRU "fru"
88 #define CASE_DATA_VERSION_INITIAL 1
89 #define CASE_DATA_VERSION_SERD 2
90
91 typedef struct zfs_de_stats {
92 fmd_stat_t old_drops;
93 fmd_stat_t dev_drops;
94 fmd_stat_t vdev_drops;
95 fmd_stat_t import_drops;
96 fmd_stat_t resource_drops;
97 } zfs_de_stats_t;
98
99 zfs_de_stats_t zfs_stats = {
100 { "old_drops", FMD_TYPE_UINT64, "ereports dropped (from before load)" },
101 { "dev_drops", FMD_TYPE_UINT64, "ereports dropped (dev during open)"},
102 { "vdev_drops", FMD_TYPE_UINT64, "ereports dropped (weird vdev types)"},
103 { "import_drops", FMD_TYPE_UINT64, "ereports dropped (during import)" },
104 { "resource_drops", FMD_TYPE_UINT64, "resource related ereports" }
105 };
106
107 static hrtime_t zfs_remove_timeout;
108
109 uu_list_pool_t *zfs_case_pool;
110 uu_list_t *zfs_cases;
111
112 #define ZFS_MAKE_RSRC(type) \
113 FM_RSRC_CLASS "." ZFS_ERROR_CLASS "." type
114 #define ZFS_MAKE_EREPORT(type) \
115 FM_EREPORT_CLASS "." ZFS_ERROR_CLASS "." type
116
117 /*
118 * Write out the persistent representation of an active case.
119 */
120 static void
zfs_case_serialize(fmd_hdl_t * hdl,zfs_case_t * zcp)121 zfs_case_serialize(fmd_hdl_t *hdl, zfs_case_t *zcp)
122 {
123 /*
124 * Always update cases to the latest version, even if they were the
125 * previous version when unserialized.
126 */
127 zcp->zc_data.zc_version = CASE_DATA_VERSION_SERD;
128 fmd_buf_write(hdl, zcp->zc_case, CASE_DATA, &zcp->zc_data,
129 sizeof (zcp->zc_data));
130
131 if (zcp->zc_fru != NULL)
132 fmd_buf_write(hdl, zcp->zc_case, CASE_FRU, zcp->zc_fru,
133 strlen(zcp->zc_fru));
134 }
135
136 /*
137 * Read back the persistent representation of an active case.
138 */
139 static zfs_case_t *
zfs_case_unserialize(fmd_hdl_t * hdl,fmd_case_t * cp)140 zfs_case_unserialize(fmd_hdl_t *hdl, fmd_case_t *cp)
141 {
142 zfs_case_t *zcp;
143 size_t frulen;
144
145 zcp = fmd_hdl_zalloc(hdl, sizeof (zfs_case_t), FMD_SLEEP);
146 zcp->zc_case = cp;
147
148 fmd_buf_read(hdl, cp, CASE_DATA, &zcp->zc_data,
149 sizeof (zcp->zc_data));
150
151 if (zcp->zc_data.zc_version > CASE_DATA_VERSION_SERD) {
152 fmd_hdl_free(hdl, zcp, sizeof (zfs_case_t));
153 return (NULL);
154 }
155
156 if ((frulen = fmd_buf_size(hdl, zcp->zc_case, CASE_FRU)) > 0) {
157 zcp->zc_fru = fmd_hdl_alloc(hdl, frulen + 1, FMD_SLEEP);
158 fmd_buf_read(hdl, zcp->zc_case, CASE_FRU, zcp->zc_fru,
159 frulen);
160 zcp->zc_fru[frulen] = '\0';
161 }
162
163 /*
164 * fmd_buf_read() will have already zeroed out the remainder of the
165 * buffer, so we don't have to do anything special if the version
166 * doesn't include the SERD engine name.
167 */
168
169 if (zcp->zc_data.zc_has_remove_timer)
170 zcp->zc_remove_timer = fmd_timer_install(hdl, zcp,
171 NULL, zfs_remove_timeout);
172
173 (void) uu_list_insert_before(zfs_cases, NULL, zcp);
174
175 fmd_case_setspecific(hdl, cp, zcp);
176
177 return (zcp);
178 }
179
180 /*
181 * Iterate over any active cases. If any cases are associated with a pool or
182 * vdev which is no longer present on the system, close the associated case.
183 */
184 static void
zfs_mark_vdev(uint64_t pool_guid,nvlist_t * vd,er_timeval_t * loaded)185 zfs_mark_vdev(uint64_t pool_guid, nvlist_t *vd, er_timeval_t *loaded)
186 {
187 uint64_t vdev_guid;
188 uint_t c, children;
189 nvlist_t **child;
190 zfs_case_t *zcp;
191 int ret;
192
193 ret = nvlist_lookup_uint64(vd, ZPOOL_CONFIG_GUID, &vdev_guid);
194 assert(ret == 0);
195
196 /*
197 * Mark any cases associated with this (pool, vdev) pair.
198 */
199 for (zcp = uu_list_first(zfs_cases); zcp != NULL;
200 zcp = uu_list_next(zfs_cases, zcp)) {
201 if (zcp->zc_data.zc_pool_guid == pool_guid &&
202 zcp->zc_data.zc_vdev_guid == vdev_guid) {
203 zcp->zc_present = B_TRUE;
204 zcp->zc_when = *loaded;
205 }
206 }
207
208 /*
209 * Iterate over all children.
210 */
211 if (nvlist_lookup_nvlist_array(vd, ZPOOL_CONFIG_CHILDREN, &child,
212 &children) == 0) {
213 for (c = 0; c < children; c++)
214 zfs_mark_vdev(pool_guid, child[c], loaded);
215 }
216
217 if (nvlist_lookup_nvlist_array(vd, ZPOOL_CONFIG_L2CACHE, &child,
218 &children) == 0) {
219 for (c = 0; c < children; c++)
220 zfs_mark_vdev(pool_guid, child[c], loaded);
221 }
222
223 if (nvlist_lookup_nvlist_array(vd, ZPOOL_CONFIG_SPARES, &child,
224 &children) == 0) {
225 for (c = 0; c < children; c++)
226 zfs_mark_vdev(pool_guid, child[c], loaded);
227 }
228 }
229
230 /*ARGSUSED*/
231 static int
zfs_mark_pool(zpool_handle_t * zhp,void * unused)232 zfs_mark_pool(zpool_handle_t *zhp, void *unused)
233 {
234 zfs_case_t *zcp;
235 uint64_t pool_guid;
236 uint64_t *tod;
237 er_timeval_t loaded = { 0 };
238 nvlist_t *config, *vd;
239 uint_t nelem = 0;
240 int ret;
241
242 pool_guid = zpool_get_prop_int(zhp, ZPOOL_PROP_GUID, NULL);
243 /*
244 * Mark any cases associated with just this pool.
245 */
246 for (zcp = uu_list_first(zfs_cases); zcp != NULL;
247 zcp = uu_list_next(zfs_cases, zcp)) {
248 if (zcp->zc_data.zc_pool_guid == pool_guid &&
249 zcp->zc_data.zc_vdev_guid == 0)
250 zcp->zc_present = B_TRUE;
251 }
252
253 if ((config = zpool_get_config(zhp, NULL)) == NULL) {
254 zpool_close(zhp);
255 return (-1);
256 }
257
258 (void) nvlist_lookup_uint64_array(config, ZPOOL_CONFIG_LOADED_TIME,
259 &tod, &nelem);
260 if (nelem == 2) {
261 loaded.ertv_sec = tod[0];
262 loaded.ertv_nsec = tod[1];
263 for (zcp = uu_list_first(zfs_cases); zcp != NULL;
264 zcp = uu_list_next(zfs_cases, zcp)) {
265 if (zcp->zc_data.zc_pool_guid == pool_guid &&
266 zcp->zc_data.zc_vdev_guid == 0) {
267 zcp->zc_when = loaded;
268 }
269 }
270 }
271
272 ret = nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &vd);
273 assert(ret == 0);
274
275 zfs_mark_vdev(pool_guid, vd, &loaded);
276
277 zpool_close(zhp);
278
279 return (0);
280 }
281
282 struct load_time_arg {
283 uint64_t lt_guid;
284 er_timeval_t *lt_time;
285 boolean_t lt_found;
286 };
287
288 static int
zpool_find_load_time(zpool_handle_t * zhp,void * arg)289 zpool_find_load_time(zpool_handle_t *zhp, void *arg)
290 {
291 struct load_time_arg *lta = arg;
292 uint64_t pool_guid;
293 uint64_t *tod;
294 nvlist_t *config;
295 uint_t nelem;
296
297 if (lta->lt_found) {
298 zpool_close(zhp);
299 return (0);
300 }
301
302 pool_guid = zpool_get_prop_int(zhp, ZPOOL_PROP_GUID, NULL);
303 if (pool_guid != lta->lt_guid) {
304 zpool_close(zhp);
305 return (0);
306 }
307
308 if ((config = zpool_get_config(zhp, NULL)) == NULL) {
309 zpool_close(zhp);
310 return (-1);
311 }
312
313 if (nvlist_lookup_uint64_array(config, ZPOOL_CONFIG_LOADED_TIME,
314 &tod, &nelem) == 0 && nelem == 2) {
315 lta->lt_found = B_TRUE;
316 lta->lt_time->ertv_sec = tod[0];
317 lta->lt_time->ertv_nsec = tod[1];
318 }
319
320 zpool_close(zhp);
321
322 return (0);
323 }
324
325 static void
zfs_purge_cases(fmd_hdl_t * hdl)326 zfs_purge_cases(fmd_hdl_t *hdl)
327 {
328 zfs_case_t *zcp;
329 uu_list_walk_t *walk;
330 libzfs_handle_t *zhdl = fmd_hdl_getspecific(hdl);
331
332 /*
333 * There is no way to open a pool by GUID, or lookup a vdev by GUID. No
334 * matter what we do, we're going to have to stomach a O(vdevs * cases)
335 * algorithm. In reality, both quantities are likely so small that
336 * neither will matter. Given that iterating over pools is more
337 * expensive than iterating over the in-memory case list, we opt for a
338 * 'present' flag in each case that starts off cleared. We then iterate
339 * over all pools, marking those that are still present, and removing
340 * those that aren't found.
341 *
342 * Note that we could also construct an FMRI and rely on
343 * fmd_nvl_fmri_present(), but this would end up doing the same search.
344 */
345
346 /*
347 * Mark the cases an not present.
348 */
349 for (zcp = uu_list_first(zfs_cases); zcp != NULL;
350 zcp = uu_list_next(zfs_cases, zcp))
351 zcp->zc_present = B_FALSE;
352
353 /*
354 * Iterate over all pools and mark the pools and vdevs found. If this
355 * fails (most probably because we're out of memory), then don't close
356 * any of the cases and we cannot be sure they are accurate.
357 */
358 if (zpool_iter(zhdl, zfs_mark_pool, NULL) != 0)
359 return;
360
361 /*
362 * Remove those cases which were not found.
363 */
364 walk = uu_list_walk_start(zfs_cases, UU_WALK_ROBUST);
365 while ((zcp = uu_list_walk_next(walk)) != NULL) {
366 if (!zcp->zc_present)
367 fmd_case_close(hdl, zcp->zc_case);
368 }
369 uu_list_walk_end(walk);
370 }
371
372 /*
373 * Construct the name of a serd engine given the pool/vdev GUID and type (io or
374 * checksum).
375 */
376 static void
zfs_serd_name(char * buf,uint64_t pool_guid,uint64_t vdev_guid,const char * type)377 zfs_serd_name(char *buf, uint64_t pool_guid, uint64_t vdev_guid,
378 const char *type)
379 {
380 (void) snprintf(buf, MAX_SERDLEN, "zfs_%llx_%llx_%s", pool_guid,
381 vdev_guid, type);
382 }
383
384 /*
385 * Solve a given ZFS case. This first checks to make sure the diagnosis is
386 * still valid, as well as cleaning up any pending timer associated with the
387 * case.
388 */
389 static void
zfs_case_solve(fmd_hdl_t * hdl,zfs_case_t * zcp,const char * faultname,boolean_t checkunusable)390 zfs_case_solve(fmd_hdl_t *hdl, zfs_case_t *zcp, const char *faultname,
391 boolean_t checkunusable)
392 {
393 libzfs_handle_t *zhdl = fmd_hdl_getspecific(hdl);
394 nvlist_t *detector, *fault;
395 boolean_t serialize;
396 nvlist_t *fmri, *fru;
397 topo_hdl_t *thp;
398 int err;
399
400 /*
401 * Construct the detector from the case data. The detector is in the
402 * ZFS scheme, and is either the pool or the vdev, depending on whether
403 * this is a vdev or pool fault.
404 */
405 detector = fmd_nvl_alloc(hdl, FMD_SLEEP);
406
407 (void) nvlist_add_uint8(detector, FM_VERSION, ZFS_SCHEME_VERSION0);
408 (void) nvlist_add_string(detector, FM_FMRI_SCHEME, FM_FMRI_SCHEME_ZFS);
409 (void) nvlist_add_uint64(detector, FM_FMRI_ZFS_POOL,
410 zcp->zc_data.zc_pool_guid);
411 if (zcp->zc_data.zc_vdev_guid != 0) {
412 (void) nvlist_add_uint64(detector, FM_FMRI_ZFS_VDEV,
413 zcp->zc_data.zc_vdev_guid);
414 }
415
416 /*
417 * We also want to make sure that the detector (pool or vdev) properly
418 * reflects the diagnosed state, when the fault corresponds to internal
419 * ZFS state (i.e. not checksum or I/O error-induced). Otherwise, a
420 * device which was unavailable early in boot (because the driver/file
421 * wasn't available) and is now healthy will be mis-diagnosed.
422 */
423 if (!fmd_nvl_fmri_present(hdl, detector) ||
424 (checkunusable && !fmd_nvl_fmri_unusable(hdl, detector))) {
425 fmd_case_close(hdl, zcp->zc_case);
426 nvlist_free(detector);
427 return;
428 }
429
430
431 fru = NULL;
432 if (zcp->zc_fru != NULL &&
433 (thp = fmd_hdl_topo_hold(hdl, TOPO_VERSION)) != NULL) {
434 /*
435 * If the vdev had an associated FRU, then get the FRU nvlist
436 * from the topo handle and use that in the suspect list. We
437 * explicitly lookup the FRU because the fmri reported from the
438 * kernel may not have up to date details about the disk itself
439 * (serial, part, etc).
440 */
441 if (topo_fmri_str2nvl(thp, zcp->zc_fru, &fmri, &err) == 0) {
442 /*
443 * If the disk is part of the system chassis, but the
444 * FRU indicates a different chassis ID than our
445 * current system, then ignore the error. This
446 * indicates that the device was part of another
447 * cluster head, and for obvious reasons cannot be
448 * imported on this system.
449 */
450 if (libzfs_fru_notself(zhdl, zcp->zc_fru)) {
451 fmd_case_close(hdl, zcp->zc_case);
452 nvlist_free(fmri);
453 fmd_hdl_topo_rele(hdl, thp);
454 nvlist_free(detector);
455 return;
456 }
457
458 /*
459 * If the device is no longer present on the system, or
460 * topo_fmri_fru() fails for other reasons, then fall
461 * back to the fmri specified in the vdev.
462 */
463 if (topo_fmri_fru(thp, fmri, &fru, &err) != 0)
464 fru = fmd_nvl_dup(hdl, fmri, FMD_SLEEP);
465 nvlist_free(fmri);
466 }
467
468 fmd_hdl_topo_rele(hdl, thp);
469 }
470
471 fault = fmd_nvl_create_fault(hdl, faultname, 100, detector,
472 fru, detector);
473 fmd_case_add_suspect(hdl, zcp->zc_case, fault);
474
475 nvlist_free(fru);
476
477 fmd_case_solve(hdl, zcp->zc_case);
478
479 serialize = B_FALSE;
480 if (zcp->zc_data.zc_has_remove_timer) {
481 fmd_timer_remove(hdl, zcp->zc_remove_timer);
482 zcp->zc_data.zc_has_remove_timer = 0;
483 serialize = B_TRUE;
484 }
485 if (serialize)
486 zfs_case_serialize(hdl, zcp);
487
488 nvlist_free(detector);
489 }
490
491 /*
492 * This #define and function access a private interface of the FMA
493 * framework. Ereports include a time-of-day upper bound.
494 * We want to look at that so we can compare it to when pools get
495 * loaded.
496 */
497 #define FMD_EVN_TOD "__tod"
498
499 static boolean_t
timeval_earlier(er_timeval_t * a,er_timeval_t * b)500 timeval_earlier(er_timeval_t *a, er_timeval_t *b)
501 {
502 return (a->ertv_sec < b->ertv_sec ||
503 (a->ertv_sec == b->ertv_sec && a->ertv_nsec < b->ertv_nsec));
504 }
505
506 /*ARGSUSED*/
507 static void
zfs_ereport_when(fmd_hdl_t * hdl,nvlist_t * nvl,er_timeval_t * when)508 zfs_ereport_when(fmd_hdl_t *hdl, nvlist_t *nvl, er_timeval_t *when)
509 {
510 uint64_t *tod;
511 uint_t nelem;
512
513 if (nvlist_lookup_uint64_array(nvl, FMD_EVN_TOD, &tod, &nelem) == 0 &&
514 nelem == 2) {
515 when->ertv_sec = tod[0];
516 when->ertv_nsec = tod[1];
517 } else {
518 when->ertv_sec = when->ertv_nsec = UINT64_MAX;
519 }
520 }
521
522 /*
523 * Main fmd entry point.
524 */
525 /*ARGSUSED*/
526 static void
zfs_fm_recv(fmd_hdl_t * hdl,fmd_event_t * ep,nvlist_t * nvl,const char * class)527 zfs_fm_recv(fmd_hdl_t *hdl, fmd_event_t *ep, nvlist_t *nvl, const char *class)
528 {
529 zfs_case_t *zcp, *dcp;
530 int32_t pool_state;
531 uint64_t ena, pool_guid, vdev_guid;
532 er_timeval_t pool_load;
533 er_timeval_t er_when;
534 nvlist_t *detector;
535 boolean_t pool_found = B_FALSE;
536 boolean_t isresource;
537 char *fru, *type;
538
539 /*
540 * We subscribe to notifications for vdev or pool removal. In these
541 * cases, there may be cases that no longer apply. Purge any cases
542 * that no longer apply.
543 */
544 if (fmd_nvl_class_match(hdl, nvl, "resource.sysevent.EC_zfs.*")) {
545 zfs_purge_cases(hdl);
546 zfs_stats.resource_drops.fmds_value.ui64++;
547 return;
548 }
549
550 isresource = fmd_nvl_class_match(hdl, nvl, "resource.fs.zfs.*");
551
552 if (isresource) {
553 /*
554 * For resources, we don't have a normal payload.
555 */
556 if (nvlist_lookup_uint64(nvl, FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID,
557 &vdev_guid) != 0)
558 pool_state = SPA_LOAD_OPEN;
559 else
560 pool_state = SPA_LOAD_NONE;
561 detector = NULL;
562 } else {
563 (void) nvlist_lookup_nvlist(nvl,
564 FM_EREPORT_DETECTOR, &detector);
565 (void) nvlist_lookup_int32(nvl,
566 FM_EREPORT_PAYLOAD_ZFS_POOL_CONTEXT, &pool_state);
567 }
568
569 /*
570 * We also ignore all ereports generated during an import of a pool,
571 * since the only possible fault (.pool) would result in import failure,
572 * and hence no persistent fault. Some day we may want to do something
573 * with these ereports, so we continue generating them internally.
574 */
575 if (pool_state == SPA_LOAD_IMPORT) {
576 zfs_stats.import_drops.fmds_value.ui64++;
577 return;
578 }
579
580 /*
581 * Device I/O errors are ignored during pool open.
582 */
583 if (pool_state == SPA_LOAD_OPEN &&
584 (fmd_nvl_class_match(hdl, nvl,
585 ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_CHECKSUM)) ||
586 fmd_nvl_class_match(hdl, nvl,
587 ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_IO)) ||
588 fmd_nvl_class_match(hdl, nvl,
589 ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_PROBE_FAILURE)))) {
590 zfs_stats.dev_drops.fmds_value.ui64++;
591 return;
592 }
593
594 /*
595 * We ignore ereports for anything except disks and files.
596 */
597 if (nvlist_lookup_string(nvl, FM_EREPORT_PAYLOAD_ZFS_VDEV_TYPE,
598 &type) == 0) {
599 if (strcmp(type, VDEV_TYPE_DISK) != 0 &&
600 strcmp(type, VDEV_TYPE_FILE) != 0) {
601 zfs_stats.vdev_drops.fmds_value.ui64++;
602 return;
603 }
604 }
605
606 /*
607 * Determine if this ereport corresponds to an open case. Previous
608 * incarnations of this DE used the ENA to chain events together as
609 * part of the same case. The problem with this is that we rely on
610 * global uniqueness of cases based on (pool_guid, vdev_guid) pair when
611 * generating SERD engines. Instead, we have a case for each vdev or
612 * pool, regardless of the ENA.
613 */
614 (void) nvlist_lookup_uint64(nvl,
615 FM_EREPORT_PAYLOAD_ZFS_POOL_GUID, &pool_guid);
616 if (nvlist_lookup_uint64(nvl,
617 FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID, &vdev_guid) != 0)
618 vdev_guid = 0;
619 if (nvlist_lookup_uint64(nvl, FM_EREPORT_ENA, &ena) != 0)
620 ena = 0;
621
622 zfs_ereport_when(hdl, nvl, &er_when);
623
624 for (zcp = uu_list_first(zfs_cases); zcp != NULL;
625 zcp = uu_list_next(zfs_cases, zcp)) {
626 if (zcp->zc_data.zc_pool_guid == pool_guid) {
627 pool_found = B_TRUE;
628 pool_load = zcp->zc_when;
629 }
630 if (zcp->zc_data.zc_vdev_guid == vdev_guid)
631 break;
632 }
633
634 if (pool_found) {
635 fmd_hdl_debug(hdl, "pool %llx, "
636 "ereport time %lld.%lld, pool load time = %lld.%lld\n",
637 pool_guid, er_when.ertv_sec, er_when.ertv_nsec,
638 pool_load.ertv_sec, pool_load.ertv_nsec);
639 }
640
641 /*
642 * Avoid falsely accusing a pool of being faulty. Do so by
643 * not replaying ereports that were generated prior to the
644 * current import. If the failure that generated them was
645 * transient because the device was actually removed but we
646 * didn't receive the normal asynchronous notification, we
647 * don't want to mark it as faulted and potentially panic. If
648 * there is still a problem we'd expect not to be able to
649 * import the pool, or that new ereports will be generated
650 * once the pool is used.
651 */
652 if (pool_found && timeval_earlier(&er_when, &pool_load)) {
653 zfs_stats.old_drops.fmds_value.ui64++;
654 return;
655 }
656
657 if (!pool_found) {
658 /*
659 * Haven't yet seen this pool, but same situation
660 * may apply.
661 */
662 libzfs_handle_t *zhdl = fmd_hdl_getspecific(hdl);
663 struct load_time_arg la;
664
665 la.lt_guid = pool_guid;
666 la.lt_time = &pool_load;
667 la.lt_found = B_FALSE;
668
669 if (zhdl != NULL &&
670 zpool_iter(zhdl, zpool_find_load_time, &la) == 0 &&
671 la.lt_found == B_TRUE) {
672 pool_found = B_TRUE;
673 fmd_hdl_debug(hdl, "pool %llx, "
674 "ereport time %lld.%lld, "
675 "pool load time = %lld.%lld\n",
676 pool_guid, er_when.ertv_sec, er_when.ertv_nsec,
677 pool_load.ertv_sec, pool_load.ertv_nsec);
678 if (timeval_earlier(&er_when, &pool_load)) {
679 zfs_stats.old_drops.fmds_value.ui64++;
680 return;
681 }
682 }
683 }
684
685 if (zcp == NULL) {
686 fmd_case_t *cs;
687 zfs_case_data_t data = { 0 };
688
689 /*
690 * If this is one of our 'fake' resource ereports, and there is
691 * no case open, simply discard it.
692 */
693 if (isresource) {
694 zfs_stats.resource_drops.fmds_value.ui64++;
695 return;
696 }
697
698 /*
699 * Open a new case.
700 */
701 cs = fmd_case_open(hdl, NULL);
702
703 /*
704 * Initialize the case buffer. To commonize code, we actually
705 * create the buffer with existing data, and then call
706 * zfs_case_unserialize() to instantiate the in-core structure.
707 */
708 fmd_buf_create(hdl, cs, CASE_DATA,
709 sizeof (zfs_case_data_t));
710
711 data.zc_version = CASE_DATA_VERSION_SERD;
712 data.zc_ena = ena;
713 data.zc_pool_guid = pool_guid;
714 data.zc_vdev_guid = vdev_guid;
715 data.zc_pool_state = (int)pool_state;
716
717 fmd_buf_write(hdl, cs, CASE_DATA, &data, sizeof (data));
718
719 zcp = zfs_case_unserialize(hdl, cs);
720 assert(zcp != NULL);
721 if (pool_found)
722 zcp->zc_when = pool_load;
723 }
724
725
726 /*
727 * If this is an ereport for a case with an associated vdev FRU, make
728 * sure it is accurate and up to date.
729 */
730 if (nvlist_lookup_string(nvl, FM_EREPORT_PAYLOAD_ZFS_VDEV_FRU,
731 &fru) == 0) {
732 topo_hdl_t *thp = fmd_hdl_topo_hold(hdl, TOPO_VERSION);
733 if (zcp->zc_fru == NULL ||
734 !topo_fmri_strcmp(thp, zcp->zc_fru, fru)) {
735 if (zcp->zc_fru != NULL) {
736 fmd_hdl_strfree(hdl, zcp->zc_fru);
737 fmd_buf_destroy(hdl, zcp->zc_case, CASE_FRU);
738 }
739 zcp->zc_fru = fmd_hdl_strdup(hdl, fru, FMD_SLEEP);
740 zfs_case_serialize(hdl, zcp);
741 }
742 fmd_hdl_topo_rele(hdl, thp);
743 }
744
745 if (isresource) {
746 if (fmd_nvl_class_match(hdl, nvl,
747 ZFS_MAKE_RSRC(FM_RESOURCE_AUTOREPLACE))) {
748 /*
749 * The 'resource.fs.zfs.autoreplace' event indicates
750 * that the pool was loaded with the 'autoreplace'
751 * property set. In this case, any pending device
752 * failures should be ignored, as the asynchronous
753 * autoreplace handling will take care of them.
754 */
755 fmd_case_close(hdl, zcp->zc_case);
756 } else if (fmd_nvl_class_match(hdl, nvl,
757 ZFS_MAKE_RSRC(FM_RESOURCE_REMOVED))) {
758 /*
759 * The 'resource.fs.zfs.removed' event indicates that
760 * device removal was detected, and the device was
761 * closed asynchronously. If this is the case, we
762 * assume that any recent I/O errors were due to the
763 * device removal, not any fault of the device itself.
764 * We reset the SERD engine, and cancel any pending
765 * timers.
766 */
767 if (zcp->zc_data.zc_has_remove_timer) {
768 fmd_timer_remove(hdl, zcp->zc_remove_timer);
769 zcp->zc_data.zc_has_remove_timer = 0;
770 zfs_case_serialize(hdl, zcp);
771 }
772 if (zcp->zc_data.zc_serd_io[0] != '\0')
773 fmd_serd_reset(hdl,
774 zcp->zc_data.zc_serd_io);
775 if (zcp->zc_data.zc_serd_checksum[0] != '\0')
776 fmd_serd_reset(hdl,
777 zcp->zc_data.zc_serd_checksum);
778 }
779 zfs_stats.resource_drops.fmds_value.ui64++;
780 return;
781 }
782
783 /*
784 * Associate the ereport with this case.
785 */
786 fmd_case_add_ereport(hdl, zcp->zc_case, ep);
787
788 /*
789 * Don't do anything else if this case is already solved.
790 */
791 if (fmd_case_solved(hdl, zcp->zc_case))
792 return;
793
794 /*
795 * Determine if we should solve the case and generate a fault. We solve
796 * a case if:
797 *
798 * a. A pool failed to open (ereport.fs.zfs.pool)
799 * b. A device failed to open (ereport.fs.zfs.pool) while a pool
800 * was up and running.
801 *
802 * We may see a series of ereports associated with a pool open, all
803 * chained together by the same ENA. If the pool open succeeds, then
804 * we'll see no further ereports. To detect when a pool open has
805 * succeeded, we associate a timer with the event. When it expires, we
806 * close the case.
807 */
808 if (fmd_nvl_class_match(hdl, nvl,
809 ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_POOL))) {
810 /*
811 * Pool level fault. Before solving the case, go through and
812 * close any open device cases that may be pending.
813 */
814 for (dcp = uu_list_first(zfs_cases); dcp != NULL;
815 dcp = uu_list_next(zfs_cases, dcp)) {
816 if (dcp->zc_data.zc_pool_guid ==
817 zcp->zc_data.zc_pool_guid &&
818 dcp->zc_data.zc_vdev_guid != 0)
819 fmd_case_close(hdl, dcp->zc_case);
820 }
821
822 zfs_case_solve(hdl, zcp, "fault.fs.zfs.pool", B_TRUE);
823 } else if (fmd_nvl_class_match(hdl, nvl,
824 ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_LOG_REPLAY))) {
825 /*
826 * Pool level fault for reading the intent logs.
827 */
828 zfs_case_solve(hdl, zcp, "fault.fs.zfs.log_replay", B_TRUE);
829 } else if (fmd_nvl_class_match(hdl, nvl, "ereport.fs.zfs.vdev.*")) {
830 /*
831 * Device fault.
832 */
833 zfs_case_solve(hdl, zcp, "fault.fs.zfs.device", B_TRUE);
834 } else if (fmd_nvl_class_match(hdl, nvl,
835 ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_IO)) ||
836 fmd_nvl_class_match(hdl, nvl,
837 ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_CHECKSUM)) ||
838 fmd_nvl_class_match(hdl, nvl,
839 ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_IO_FAILURE)) ||
840 fmd_nvl_class_match(hdl, nvl,
841 ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_PROBE_FAILURE))) {
842 char *failmode = NULL;
843 boolean_t checkremove = B_FALSE;
844
845 /*
846 * If this is a checksum or I/O error, then toss it into the
847 * appropriate SERD engine and check to see if it has fired.
848 * Ideally, we want to do something more sophisticated,
849 * (persistent errors for a single data block, etc). For now,
850 * a single SERD engine is sufficient.
851 */
852 if (fmd_nvl_class_match(hdl, nvl,
853 ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_IO))) {
854 if (zcp->zc_data.zc_serd_io[0] == '\0') {
855 zfs_serd_name(zcp->zc_data.zc_serd_io,
856 pool_guid, vdev_guid, "io");
857 fmd_serd_create(hdl, zcp->zc_data.zc_serd_io,
858 fmd_prop_get_int32(hdl, "io_N"),
859 fmd_prop_get_int64(hdl, "io_T"));
860 zfs_case_serialize(hdl, zcp);
861 }
862 if (fmd_serd_record(hdl, zcp->zc_data.zc_serd_io, ep))
863 checkremove = B_TRUE;
864 } else if (fmd_nvl_class_match(hdl, nvl,
865 ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_CHECKSUM))) {
866 if (zcp->zc_data.zc_serd_checksum[0] == '\0') {
867 zfs_serd_name(zcp->zc_data.zc_serd_checksum,
868 pool_guid, vdev_guid, "checksum");
869 fmd_serd_create(hdl,
870 zcp->zc_data.zc_serd_checksum,
871 fmd_prop_get_int32(hdl, "checksum_N"),
872 fmd_prop_get_int64(hdl, "checksum_T"));
873 zfs_case_serialize(hdl, zcp);
874 }
875 if (fmd_serd_record(hdl,
876 zcp->zc_data.zc_serd_checksum, ep)) {
877 zfs_case_solve(hdl, zcp,
878 "fault.fs.zfs.vdev.checksum", B_FALSE);
879 }
880 } else if (fmd_nvl_class_match(hdl, nvl,
881 ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_IO_FAILURE)) &&
882 (nvlist_lookup_string(nvl,
883 FM_EREPORT_PAYLOAD_ZFS_POOL_FAILMODE, &failmode) == 0) &&
884 failmode != NULL) {
885 if (strncmp(failmode, FM_EREPORT_FAILMODE_CONTINUE,
886 strlen(FM_EREPORT_FAILMODE_CONTINUE)) == 0) {
887 zfs_case_solve(hdl, zcp,
888 "fault.fs.zfs.io_failure_continue",
889 B_FALSE);
890 } else if (strncmp(failmode, FM_EREPORT_FAILMODE_WAIT,
891 strlen(FM_EREPORT_FAILMODE_WAIT)) == 0) {
892 zfs_case_solve(hdl, zcp,
893 "fault.fs.zfs.io_failure_wait", B_FALSE);
894 }
895 } else if (fmd_nvl_class_match(hdl, nvl,
896 ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_PROBE_FAILURE))) {
897 checkremove = B_TRUE;
898 }
899
900 /*
901 * Because I/O errors may be due to device removal, we postpone
902 * any diagnosis until we're sure that we aren't about to
903 * receive a 'resource.fs.zfs.removed' event.
904 */
905 if (checkremove) {
906 if (zcp->zc_data.zc_has_remove_timer)
907 fmd_timer_remove(hdl, zcp->zc_remove_timer);
908 zcp->zc_remove_timer = fmd_timer_install(hdl, zcp, NULL,
909 zfs_remove_timeout);
910 if (!zcp->zc_data.zc_has_remove_timer) {
911 zcp->zc_data.zc_has_remove_timer = 1;
912 zfs_case_serialize(hdl, zcp);
913 }
914 }
915 }
916 }
917
918 /*
919 * The timeout is fired when we diagnosed an I/O error, and it was not due to
920 * device removal (which would cause the timeout to be cancelled).
921 */
922 /* ARGSUSED */
923 static void
zfs_fm_timeout(fmd_hdl_t * hdl,id_t id,void * data)924 zfs_fm_timeout(fmd_hdl_t *hdl, id_t id, void *data)
925 {
926 zfs_case_t *zcp = data;
927
928 if (id == zcp->zc_remove_timer)
929 zfs_case_solve(hdl, zcp, "fault.fs.zfs.vdev.io", B_FALSE);
930 }
931
932 static void
zfs_fm_close(fmd_hdl_t * hdl,fmd_case_t * cs)933 zfs_fm_close(fmd_hdl_t *hdl, fmd_case_t *cs)
934 {
935 zfs_case_t *zcp = fmd_case_getspecific(hdl, cs);
936
937 if (zcp->zc_data.zc_serd_checksum[0] != '\0')
938 fmd_serd_destroy(hdl, zcp->zc_data.zc_serd_checksum);
939 if (zcp->zc_data.zc_serd_io[0] != '\0')
940 fmd_serd_destroy(hdl, zcp->zc_data.zc_serd_io);
941 if (zcp->zc_data.zc_has_remove_timer)
942 fmd_timer_remove(hdl, zcp->zc_remove_timer);
943 uu_list_remove(zfs_cases, zcp);
944 fmd_hdl_free(hdl, zcp, sizeof (zfs_case_t));
945 }
946
947 /*
948 * We use the fmd gc entry point to look for old cases that no longer apply.
949 * This allows us to keep our set of case data small in a long running system.
950 */
951 static void
zfs_fm_gc(fmd_hdl_t * hdl)952 zfs_fm_gc(fmd_hdl_t *hdl)
953 {
954 zfs_purge_cases(hdl);
955 }
956
957 static const fmd_hdl_ops_t fmd_ops = {
958 zfs_fm_recv, /* fmdo_recv */
959 zfs_fm_timeout, /* fmdo_timeout */
960 zfs_fm_close, /* fmdo_close */
961 NULL, /* fmdo_stats */
962 zfs_fm_gc, /* fmdo_gc */
963 };
964
965 static const fmd_prop_t fmd_props[] = {
966 { "checksum_N", FMD_TYPE_UINT32, "10" },
967 { "checksum_T", FMD_TYPE_TIME, "10min" },
968 { "io_N", FMD_TYPE_UINT32, "10" },
969 { "io_T", FMD_TYPE_TIME, "10min" },
970 { "remove_timeout", FMD_TYPE_TIME, "15sec" },
971 { NULL, 0, NULL }
972 };
973
974 static const fmd_hdl_info_t fmd_info = {
975 "ZFS Diagnosis Engine", "1.0", &fmd_ops, fmd_props
976 };
977
978 void
_fmd_init(fmd_hdl_t * hdl)979 _fmd_init(fmd_hdl_t *hdl)
980 {
981 fmd_case_t *cp;
982 libzfs_handle_t *zhdl;
983
984 if ((zhdl = libzfs_init()) == NULL)
985 return;
986
987 if ((zfs_case_pool = uu_list_pool_create("zfs_case_pool",
988 sizeof (zfs_case_t), offsetof(zfs_case_t, zc_node),
989 NULL, 0)) == NULL) {
990 libzfs_fini(zhdl);
991 return;
992 }
993
994 if ((zfs_cases = uu_list_create(zfs_case_pool, NULL, 0)) == NULL) {
995 uu_list_pool_destroy(zfs_case_pool);
996 libzfs_fini(zhdl);
997 return;
998 }
999
1000 if (fmd_hdl_register(hdl, FMD_API_VERSION, &fmd_info) != 0) {
1001 uu_list_destroy(zfs_cases);
1002 uu_list_pool_destroy(zfs_case_pool);
1003 libzfs_fini(zhdl);
1004 return;
1005 }
1006
1007 fmd_hdl_setspecific(hdl, zhdl);
1008
1009 (void) fmd_stat_create(hdl, FMD_STAT_NOALLOC, sizeof (zfs_stats) /
1010 sizeof (fmd_stat_t), (fmd_stat_t *)&zfs_stats);
1011
1012 /*
1013 * Iterate over all active cases and unserialize the associated buffers,
1014 * adding them to our list of open cases.
1015 */
1016 for (cp = fmd_case_next(hdl, NULL);
1017 cp != NULL; cp = fmd_case_next(hdl, cp))
1018 (void) zfs_case_unserialize(hdl, cp);
1019
1020 /*
1021 * Clear out any old cases that are no longer valid.
1022 */
1023 zfs_purge_cases(hdl);
1024
1025 zfs_remove_timeout = fmd_prop_get_int64(hdl, "remove_timeout");
1026 }
1027
1028 void
_fmd_fini(fmd_hdl_t * hdl)1029 _fmd_fini(fmd_hdl_t *hdl)
1030 {
1031 zfs_case_t *zcp;
1032 uu_list_walk_t *walk;
1033 libzfs_handle_t *zhdl;
1034
1035 /*
1036 * Remove all active cases.
1037 */
1038 walk = uu_list_walk_start(zfs_cases, UU_WALK_ROBUST);
1039 while ((zcp = uu_list_walk_next(walk)) != NULL) {
1040 uu_list_remove(zfs_cases, zcp);
1041 fmd_hdl_free(hdl, zcp, sizeof (zfs_case_t));
1042 }
1043 uu_list_walk_end(walk);
1044
1045 uu_list_destroy(zfs_cases);
1046 uu_list_pool_destroy(zfs_case_pool);
1047
1048 zhdl = fmd_hdl_getspecific(hdl);
1049 libzfs_fini(zhdl);
1050 }
1051