1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #ifndef _INET_NCA_H 27 #define _INET_NCA_H 28 29 #ifdef __cplusplus 30 extern "C" { 31 #endif 32 33 #include <sys/thread.h> 34 #include <sys/door.h> 35 #include <sys/disp.h> 36 #include <sys/systm.h> 37 #include <sys/processor.h> 38 #include <sys/socket.h> 39 #include <inet/common.h> 40 #include <inet/ip.h> 41 #include <inet/tcp.h> 42 #include <inet/nca/ncadoorhdr.h> 43 44 /* 45 * The NCA debugging facilities provided via ADB and MDB depend on a 46 * number of NCA implementation details. In particular, note that: 47 * 48 * * ADB macros *must* be revised whenever members are added or 49 * removed from the following structures: 50 * 51 * nca_conn_t connf_t nca_cpu_t dcb_t hcb_t nca_if_t nca_io2_t 52 * node_t nodef_t sqfan_t nca_squeue_t tb_t te_t ti_t tw_t 53 * 54 * * ADB macros should be added when new core data structures are 55 * added to NCA. Generally, if you had to put it in here, you 56 * need to write a macro for it. 57 * 58 * * MDB has many dependencies on the way core data structures 59 * are connected. In general, if you break these dependencies, 60 * the MDB NCA module will fail to build. However, breakage 61 * may go undetected (for instance, changing a linked list 62 * into a circularly linked list). If you have any doubts, 63 * inspect the NCA module source before committing your changes. 64 * 65 * * MDB depends on the following variables (and their current 66 * semantics) in order to function correctly: 67 * 68 * nca_conn_fanout nca_conn_fanout_size nca_gv nca_lru 69 * urihash filehash 70 * 71 * If you change the names or *semantics* of these variables, 72 * you must modify the MDB module accordingly. 73 * 74 * In addition, you should consider whether the changes you've 75 * made should be reflected in the MDB dcmds themselves. 76 */ 77 78 /* The queue to make upcall on for NCAfs */ 79 extern queue_t *ncaupcallq; 80 extern kmutex_t ncaupcallq_lock; 81 82 extern int nca_logging_on; 83 extern int nca_conn_fanout_size; 84 extern boolean_t nca_deferred_oq_if; 85 extern boolean_t nca_fanout_iq_if; 86 87 /* Checksum pointer for no checksum */ 88 89 #define NO_CKSUM (void *)-1 90 91 /* undef any tcp.h:tcp_t members overloaded by the Solaris 8 tcp.h */ 92 93 #undef tcp_last_rcv_lbolt 94 #undef tcp_state 95 #undef tcp_rto 96 #undef tcp_snd_ts_ok 97 #undef tcp_snd_ws_ok 98 #undef tcp_snxt 99 #undef tcp_swnd 100 #undef tcp_mss 101 #undef tcp_iss 102 #undef tcp_rnxt 103 #undef tcp_rwnd 104 #undef tcp_lport 105 #undef tcp_fport 106 #undef tcp_ports 107 108 /* the iph_t is no longer defined in ip.h for Solaris 8 ? */ 109 110 /* Unaligned IP header */ 111 typedef struct iph_s { 112 uchar_t iph_version_and_hdr_length; 113 uchar_t iph_type_of_service; 114 uchar_t iph_length[2]; 115 uchar_t iph_ident[2]; 116 uchar_t iph_fragment_offset_and_flags[2]; 117 uchar_t iph_ttl; 118 uchar_t iph_protocol; 119 uchar_t iph_hdr_checksum[2]; 120 uchar_t iph_src[4]; 121 uchar_t iph_dst[4]; 122 } iph_t; 123 124 125 #define true B_TRUE /* used with type boolean_t */ 126 #define false B_FALSE /* used with type boolean_t */ 127 128 /* 129 * Power of 2^N Primes useful for hashing for N of 0-28, 130 * these primes are the nearest prime <= 2^N - 2^(N-2). 131 */ 132 133 #define P2Ps() {0, 0, 0, 5, 11, 23, 47, 89, 191, 383, 761, 1531, 3067, \ 134 6143, 12281, 24571, 49139, 98299, 196597, 393209, \ 135 786431, 1572853, 3145721, 6291449, 12582893, 25165813, \ 136 50331599, 100663291, 201326557, 0} 137 138 /* 139 * Serialization queue type (move to strsubr.h (stream.h?) as a general 140 * purpose lightweight mechanism for mblk_t serialization ?). 141 */ 142 typedef struct nca_squeue_s { 143 uint16_t sq_state; /* state flags */ 144 uint16_t sq_count; /* message count */ 145 uint32_t sq_type; /* type flags */ 146 processorid_t sq_bind; /* processor to bind to */ 147 ddi_softintr_t sq_softid; /* softintr() id */ 148 void (*sq_init)(); /* initialize function */ 149 void *sq_init_arg; /* initialize argument */ 150 void (*sq_proc)(); /* process function */ 151 mblk_t *sq_first; /* first mblk chain or NULL */ 152 mblk_t *sq_last; /* last mblk chain or NULL */ 153 clock_t sq_wait; /* lbolts to wait after a fill() */ 154 clock_t sq_iwait; /* lbolt after nointr() */ 155 clock_t sq_pwait; /* lbolt after pause() */ 156 int sq_isintr; /* is being or was serviced by */ 157 timeout_id_t sq_tid; /* timer id of pending timeout() */ 158 kcondvar_t sq_async; /* async thread blocks on */ 159 kmutex_t sq_lock; /* lock before using any member */ 160 clock_t sq_awaken; /* time async thread was awakened */ 161 void *sq_priv; /* user defined private */ 162 kt_did_t sq_ktid; /* kernel thread id */ 163 } nca_squeue_t; 164 165 /* 166 * State flags and message count (i.e. properties that change) 167 * Note: The MDB NCA module depends on the values of these flags. 168 */ 169 170 #define SQS_CNT_TOOMANY 0x8000 /* message count toomany */ 171 172 /* nca_squeue_t state flags now only 16 bits */ 173 174 #define SQS_PROC 0x0001 /* being processed */ 175 #define SQS_WORKER 0x0002 /* worker thread */ 176 #define SQS_ENTER 0x0004 /* enter thread */ 177 #define SQS_FAST 0x0008 /* enter-fast thread */ 178 #define SQS_PROXY 0x0010 /* proxy thread */ 179 #define SQS_SOFTINTR 0x0020 /* softint thread */ 180 /* 0x00C0 bits not used */ 181 182 #define SQS_NOINTR 0x0100 /* no interrupt processing */ 183 #define SQS_PAUSE 0x0200 /* paused */ 184 #define SQS_INTRWAIT 0x0400 /* interrupt waiting */ 185 #define SQS_NOPROC 0x0800 /* no processing */ 186 /* 0x7000 bits not used */ 187 #define SQS_EXIT 0x8000 /* worker(s) exit */ 188 189 /* 190 * Type flags (i.e. properties that don't change). 191 * Note: The MDB NCA module depends on the values of these flags. 192 */ 193 194 #define SQT_BIND_MASK 0xFF000000 /* bind flags mask */ 195 196 #define SQT_KMEM 0x00000001 /* was kmem_alloc()ed */ 197 #define SQT_DEFERRED 0x00000002 /* deferred processing */ 198 #define SQT_SOFTINTR 0x00000004 /* use softintr() */ 199 200 #define SQT_BIND_ANY 0x01000000 /* bind worker thread to any CPU */ 201 #define SQT_BIND_TO 0x02000000 /* bind worker thread to speced CPU */ 202 203 #define SQ_STATE_IS(sqp, flags) ((sqp)->sq_state & (flags)) 204 #define SQ_TYPE_IS(sqp, flags) ((sqp)->sq_type & (flags)) 205 206 207 typedef struct sqfan_s { 208 uint32_t flg; /* flags only */ 209 uint32_t cnt; /* vector count */ 210 uint32_t ix; /* next sqv[] to process */ 211 uint32_t drain; /* max mblk(s) draind per */ 212 nca_squeue_t **sqv; /* pointer to nca_squeue_t pointer vector */ 213 } sqfan_t; 214 215 #define SQF_DIST_CNT 0x0001 /* sqfan_t dist by queue count */ 216 #define SQF_DIST_IPv4 0x0002 /* sqfan_t dist by IPv4 src addr */ 217 218 /* 219 * A multiphase timer is implemented using the te_t, tb_t, and ti_t structs. 220 * 221 * The multiple phases of timer entry execution are: 222 * 223 * 1) resource, execution is done from resource reclaim when the timer event 224 * is the freeing of the timed resource. 225 * 226 * 2) process, execution is done from process thread yield (idle/return). 227 * 228 * 3) time, execution is done from a timeout callback thread. 229 * 230 * Each of the phases have a seperate timer fire time represented by the 231 * the ti_t members lbolt1, lbolt2, and lbolt3. Each lbolt is an absolute 232 * lbolt value with lbolt1 <= lbolt2 <= lbolt3. 233 */ 234 235 /* 236 * te_t - timer entry. 237 */ 238 239 typedef struct te_s { 240 struct te_s *prev; /* prev te_t */ 241 struct te_s *next; /* next te_t */ 242 struct tb_s *tbp; /* pointer to timer bucket */ 243 void *ep; /* pointer to encapsulating struct */ 244 } te_t; 245 246 /* 247 * tb_t - timer bucket. 248 */ 249 250 typedef struct tb_s { 251 struct tb_s *next; /* next tb_t in ascending time order */ 252 clock_t exec; /* te_t lbolt exec value for bucket */ 253 te_t *head; /* head of te_t list (first timer) */ 254 te_t *tail; /* tail of te_t list (last timer) */ 255 } tb_t; 256 257 /* 258 * ti_t - timer state. 259 */ 260 261 typedef struct ti_s { 262 clock_t exec; /* next te_t exec value (0 = NONE) */ 263 clock_t lbolt1; /* phase1 lbolt1 (0 = NONE) */ 264 clock_t lbolt2; /* phase2 lbolt2 (0 = NONE) */ 265 clock_t lbolt3; /* phase3 lbolt3 (0 = NONE) */ 266 tb_t *head; /* head of tb_t list (first timer bucket) */ 267 tb_t *tail; /* tail of tb_t list (last timer bucket) */ 268 timeout_id_t tid; /* timer id of pending timeout() (0 = NONE) */ 269 void *ep; /* pointer to encapsulating struct */ 270 } ti_t; 271 272 #define NCA_TI_INPROC -1 /* Processing going on */ 273 #define NCA_TI_NONE 0 /* no lbolt */ 274 275 /* 276 * TIME_WAIT grounded doubly linked list of nca_conn_t's awaiting TIME_WAIT 277 * expiration for. This list is used for reclaim, reap, and timer based 278 * processing. 279 * 280 * A multiphase timer is used: 281 * 282 * phase 1) reclaim of connections during connection allocation 283 * 284 * phase 2) reaping of connections during nca_squeue_t inq thread unwind 285 * 286 * phase 3) timeout of connections as a result of a timeout(). 287 * 288 * Each of the phases have a seperate timer fire lbolt represented by the 289 * the members lbolt1, lbolt2, and lbolt3, each is an absolute lbolt value 290 * with lbolt1 <= lbolt2 <= lbolt3. 291 */ 292 293 typedef struct tw_s { 294 clock_t lbolt1; /* phase1 lbolt value (0 = NONE) */ 295 clock_t lbolt2; /* phase2 lbolt value */ 296 clock_t lbolt3; /* phase3 lbolt value */ 297 struct nca_conn_s *head; /* Head of nca_conn_t list */ 298 struct nca_conn_s *tail; /* Tail of nca_conn_t list */ 299 timeout_id_t tid; /* Timer id of pending timeout() (0 = NONE) */ 300 void *ep; /* pointer to encapsulating struct */ 301 } tw_t; 302 303 #define NCA_TW_NONE 0 /* no lbolt */ 304 305 #define NCA_TW_MS 1000 306 307 #define NCA_TW_LBOLT MSEC_TO_TICK(NCA_TW_MS) 308 309 #define NCA_TW_LBOLTS(twp, future) { \ 310 clock_t _lbolt = (future); \ 311 clock_t _mod = _lbolt % NCA_TW_LBOLT; \ 312 \ 313 if (_mod) { \ 314 /* Roundup to next TIME_WAIT bucket */ \ 315 _lbolt += NCA_TW_LBOLT - _mod; \ 316 } \ 317 if ((twp)->lbolt1 != _lbolt) { \ 318 (twp)->lbolt1 = _lbolt; \ 319 _lbolt += NCA_TW_LBOLT; \ 320 (twp)->lbolt2 = _lbolt; \ 321 _lbolt += NCA_TW_LBOLT; \ 322 (twp)->lbolt3 = _lbolt; \ 323 if ((twp)->tid != 0) { \ 324 (void) untimeout((twp)->tid); \ 325 (twp)->tid = 0; \ 326 } \ 327 if ((_lbolt) != NCA_TW_NONE) { \ 328 (twp)->tid = timeout((pfv_t)nca_tw_fire, (twp), \ 329 (twp)->lbolt3 - ddi_get_lbolt()); \ 330 } \ 331 } \ 332 } 333 334 /* 335 * The Node Fanout structure. 336 * 337 * The hash tables and their linkage (hashnext) are protected by the 338 * per-bucket lock. Each node_t inserted in the list points back at 339 * the nodef_t that heads the bucket (hashfanout). 340 */ 341 342 typedef struct nodef_s { 343 struct node_s *head; 344 kmutex_t lock; 345 } nodef_t; 346 347 /* 348 * A node_t is used to represent a cached byte-stream object. A node_t is 349 * in one of four active states: 350 * 351 * 1) path != NULL, member of a node_t hash list with an object description 352 * (hashnext, size, path, pathsz members valid). 353 * 354 * 2) pp != NULL, 1) + phys pages allocated (pp, plrupn, plrunn members valid). 355 * 356 * 3) data != NULL, 2) + virt mapping allocated (data, datasz, vlrupn, vlrunn 357 * members valid). 358 * 359 * 4) cksum != NULL 3) + checksum mapping allocated 360 */ 361 362 typedef struct node_s { 363 uint32_t ref; /* ref (see below) state */ 364 uint32_t cnt; /* ref count */ 365 int32_t size; /* object size (-1 = UNKNOWN) */ 366 uint32_t mss; /* mblk(s) in size mss */ 367 uint64_t ctag; /* usr defined cache tag, 0 => no tag */ 368 ipaddr_t laddr; /* local IP, for virtual hosting */ 369 uint16_t lport; /* local port, for virtual hosting */ 370 371 struct node_s *plrunn; /* Phys LRU list next node_t */ 372 struct node_s *plrupn; /* Phys LRU list previous node_t */ 373 struct node_s *vlrunn; /* Virt LRU list next node_t */ 374 struct node_s *vlrupn; /* Virt LRU list previous node_t */ 375 376 nodef_t *hashfanout; /* hash bucket we're part of */ 377 nodef_t *ctaghashfanout; /* ctaghash bucket we're part off */ 378 struct node_s *hashnext; /* hash list next node_t */ 379 struct node_s *ctaghashnext; /* ctaghash list next node_t */ 380 struct nca_conn_s *connhead; /* head of list of conn(s) in miss */ 381 struct nca_conn_s *conntail; /* tail of list of conn(s) in miss */ 382 struct node_s *next; /* needed if data is in chunks */ 383 struct node_s *back; /* needed if data is in chunks */ 384 385 clock_t expire; /* lbolt node_t expires (0 = NOW, -1 = NEVER) */ 386 time_t lastmod; /* HTTP "Last-Modified:" value */ 387 388 mblk_t *req; /* whole HTTP request (including headers) */ 389 int reqsz; /* size of above */ 390 int reqcontl; /* HTTP "Content-Length:" value */ 391 uint32_t rcv_cnt; /* rcv_list byte count */ 392 mblk_t *rcv_head; /* rcv_list head */ 393 mblk_t *rcv_tail; /* rcv_list tail */ 394 mblk_t *rcv_ptr; /* rcv_list pointer */ 395 396 nca_squeue_t *sqp; /* squeue node_t is being processed from */ 397 char *path; /* URI path component */ 398 int pathsz; /* size of above */ 399 uint_t method; /* HTTP request method */ 400 uint_t version; /* HTTP request version */ 401 char *reqhdr; /* HTTP request header(s) */ 402 int reqhdrsz; /* size of above */ 403 char *reqhost; /* HTTP "Host:" string */ 404 int reqhostsz; /* size of above */ 405 char *reqaccept; /* HTTP "Accept:" string */ 406 int reqacceptsz; /* size of above */ 407 char *reqacceptl; /* HTTP "Accept-Language:" string */ 408 int reqacceptlsz; /* size of above */ 409 410 page_t **pp; /* page pointer vector for data */ 411 char *data; /* data buffer */ 412 int datasz; /* size of above */ 413 uint16_t *cksum; /* cksum() vector for data by mss */ 414 size_t cksumlen; /* length of memory block for above vector */ 415 uint_t resbody; /* HTTP response body at &data[resbody] */ 416 417 int hlen; /* data buffer split header len */ 418 int fileoff; /* file include offset */ 419 int filelen; /* length of file */ 420 struct node_s *fileback; /* head node_t of a file list (-1 for death) */ 421 struct node_s *filenext; /* next node_t of a file list */ 422 struct node_s *ctagback; /* head node_t of a ctag list */ 423 struct node_s *ctagnext; /* next node_t of a ctag list */ 424 vnode_t *filevp; /* vnode for the file */ 425 426 kmutex_t lock; /* serializes access to node_t */ 427 frtn_t frtn; /* STREAMS free routine; always node_freeb() */ 428 boolean_t headchunk; /* true if this node is the head chunk */ 429 430 /* 431 * The following 4 fields are used to record node states when 432 * upcalls are preempted. When preempted upcalls are not relevant, 433 * these fields should have default value 0. 434 */ 435 uint8_t advise; /* an interpreted advise from http */ 436 boolean_t last_advisory; /* preempted upcall state -- advisory bit */ 437 boolean_t advisory; /* need advisory from httpd before use */ 438 boolean_t first_upcall; /* node in first upcall, a internal state */ 439 440 kcondvar_t cv; /* sync upcall/downcall process on a node */ 441 int onqueue; /* == 1 if on miss_queue, debug aid */ 442 } node_t; 443 444 /* Note: The MDB NCA module depends on the values of these flags. */ 445 446 #define REF_URI 0x80000000 /* & ref = node_t URI hashed */ 447 #define REF_PHYS 0x40000000 /* & ref = phys mapping in-use */ 448 #define REF_VIRT 0x20000000 /* & ref = virt mapping in-use */ 449 #define REF_CKSUM 0x10000000 /* & ref = checksum mapping in-use */ 450 #define REF_KMEM 0x08000000 /* & ref = kmem mapped (PHYS|VIRT) */ 451 #define REF_DONE 0x04000000 /* & ref = node_t fill is done */ 452 #define REF_SAFED 0x02000000 /* & ref = node_t not safe for use */ 453 #define REF_FILE 0x01000000 /* & ref = node_t filename hashed */ 454 #define REF_RESP 0x00800000 /* & ref = node_t response header parsed */ 455 #define REF_NOLRU 0x00400000 /* & ref = node_t not safe for lru reclaim */ 456 #define REF_MISS 0x00200000 /* & ref = node_t is/will missed() proc */ 457 #define REF_ONPLRU 0x00100000 /* & ref = node_t is on Phys LRU */ 458 #define REF_ONVLRU 0x00080000 /* & ref = node_t is on Virt LRU */ 459 #define REF_PREEMPT 0x00040000 /* & ref = node_t processing preempted */ 460 #define REF_CTAG 0x00020000 /* & ref = node_t CTAG hashed */ 461 #define REF_UPCALL 0x00010000 /* & ref = node_t upcall not yet complete */ 462 #define REF_OWNED 0x00008000 /* & ref = node_t owned (won't be freed) */ 463 #define REF_ERROR 0x00004000 /* & ref = node_t errored */ 464 #define REF_VNODE 0x00002000 /* & ref = node_t vnode hashed */ 465 #define REF_NCAFS 0x00001000 /* & ref = node_t is NCAfs required */ 466 #define REF_SEGMAP 0x00000800 /* & ref = segmapped (PHYS|VIRT) */ 467 #define REF_UNUSED 0x000007FF /* & ref = UNUSED */ 468 /* 469 * Mappings where no seperate PHYS and VIRT, i.e. single mapping with a 470 * virtual address e.g. REF_KMEM and REF_SEGMAP. 471 */ 472 #define REF_NOVIRT (REF_KMEM | REF_SEGMAP) 473 474 /* Is this node safe for reclaim ? */ 475 #define REF_RECLAIM (REF_SAFED | REF_NOLRU | REF_MISS) 476 477 /* 478 * NCA node_t reference counting is more complicated than nca_conn_t reference 479 * counting because we pass parts of node_t's (masquerading as dblk 480 * buffers) into the STREAMS subsystem which eventually get freed by 481 * network drivers just like regular dblk buffers. Also, unlike nca_conn_t's, 482 * we may wish to keep a node_t around even after there are no outstanding 483 * references, since it's possible that it will be requested again. 484 * 485 * Thus, the node_t reference count reflects the number of active codepaths 486 * in Solaris making use of a given node_t -- each codepath that requires 487 * that the node_t stick around once it drops the node_t lock must acquire 488 * a reference via NODE_REFHOLD and drop that reference via NODE_REFRELE 489 * when done. Note that following a NODE_REFRELE the node that was 490 * released may no longer exist and thus it should not be referenced unless 491 * the codepath has another outstanding reference. When a node_t is passed 492 * into the STREAMS subsystem via desballoc() and related interfaces, a 493 * NODE_REFHOLD should be placed on the node_t and the free routine should 494 * be set to node_freeb(), which will in turn call NODE_REFRELE. 495 * 496 * The concept of node ownership allows NCA to express that it would like 497 * this node to hang around, even if there are no "explicit" references to 498 * it (the ownership counts as an implicit reference). All "headchunk" 499 * hashed nodes are owned when they are created. If they subsequently 500 * become disowned (currently via nca_node_del() or nca_reclaim_vlru()), 501 * they may have some or all their resources freed (via node_fr()) as soon 502 * as the last reference to them is removed. Note that it's possible that 503 * a disowned node may become of interest again before some or all of its 504 * resources were reclaimed -- in this case, it must be reowned via 505 * NODE_OWN. Note that an unhashed node should never be owned, though it 506 * of course may be held and released; this is because there is no sense 507 * in owning a node which is merely temporary (i.e., not hashed somewhere). 508 * Note that the corollary of this statement is not true -- that is, just 509 * because a node is hashed does not mean it is owned (it may have been 510 * disowned via nca_reclaim_vlru()) -- this is why code must always reown 511 * hashed nodes if it's desirable to have them stick around. 512 * 513 * All four macros *must* be called with the node lock held. However, 514 * NODE_DISOWN and NODE_REFRELE return with the lock unlocked (if there is 515 * still a lock at all), because the operation may have just removed the 516 * final reference to a node and it may no longer exist. 517 * 518 * A version of NODE_REFRELE is provided which doesn't unlock the lock but 519 * can only be used when the caller can gaurantee that it's not the last ref 520 * (e.g. the caller has another outstanding reference) as if it's the last 521 * ref the node_t may no longer exist. The new macro is NODE_REFRELE_LOCKED. 522 */ 523 524 #define NODE_DISOWN(np) { \ 525 \ 526 NODE_T_TRACE((np), NODE_T_TRACE_DISOWN); \ 527 ASSERT(mutex_owned(&(np)->lock)); \ 528 \ 529 if ((np)->ref & REF_OWNED) { \ 530 if ((np)->cnt == 0) { \ 531 panic("nca NODE_DISOWN: %p has no references", \ 532 (void *)(np)); \ 533 } \ 534 (np)->ref &= ~REF_OWNED; \ 535 NODE_REFRELE(np); \ 536 } else { \ 537 mutex_exit(&(np)->lock); \ 538 } \ 539 } 540 541 #define NODE_OWN(np) { \ 542 \ 543 NODE_T_TRACE((np), NODE_T_TRACE_OWN); \ 544 ASSERT(mutex_owned(&(np)->lock)); \ 545 \ 546 if (!((np)->ref & REF_OWNED)) { \ 547 if ((np)->cnt == UINT_MAX) \ 548 panic( \ 549 "nca NODE_OWN: %p has too many references", \ 550 (void *)(np)); \ 551 (np)->ref |= REF_OWNED; \ 552 (np)->cnt++; \ 553 } \ 554 } 555 556 #define NODE_REFHOLD(np) { \ 557 \ 558 NODE_T_TRACE((np), NODE_T_TRACE_REFHOLD | ((np)->cnt + 1)); \ 559 ASSERT(mutex_owned(&(np)->lock)); \ 560 \ 561 if ((np)->cnt == UINT_MAX) \ 562 panic("nca NODE_REFHOLD: %p has too many references", \ 563 (void *)(np)); \ 564 (np)->cnt++; \ 565 } 566 567 #define NODE_REFRELE(np) { \ 568 \ 569 NODE_T_TRACE((np), NODE_T_TRACE_REFRELE | ((np)->cnt - 1)); \ 570 ASSERT(mutex_owned(&(np)->lock)); \ 571 \ 572 if (((np)->ref & REF_OWNED) && (np)->cnt == 1) \ 573 panic( \ 574 "nca NODE_REFRELE: %p has only OWNED reference", \ 575 (void *)(np)); \ 576 if ((np)->cnt == 0) \ 577 panic("nca NODE_REFRELE: %p has no references", \ 578 (void *)(np)); \ 579 (np)->cnt--; \ 580 if ((np)->cnt == 0) { \ 581 ASSERT(((np)->ref & REF_OWNED) == 0); \ 582 node_fr(np); /* node_fr unlocks the lock */ \ 583 } else { \ 584 mutex_exit(&(np)->lock); \ 585 } \ 586 } 587 588 #define NODE_REFRELE_LOCKED(np) { \ 589 uint_t _cnt = (np)->cnt; \ 590 \ 591 NODE_T_TRACE((np), NODE_T_TRACE_REFRELE | (_cnt - 1)); \ 592 ASSERT(mutex_owned(&(np)->lock)); \ 593 \ 594 if ((np)->ref & REF_OWNED) \ 595 _cnt--; \ 596 if (((np)->ref & REF_OWNED) && _cnt == 0) \ 597 panic("nca NODE_REFRELE_LOCKED: " \ 598 "%p has only OWNED reference", (void *)(np)); \ 599 if (_cnt == 0) \ 600 panic("nca NODE_REFRELEL_LOCKED: " \ 601 "%p has no references", (void *)(np)); \ 602 if (_cnt == 1) \ 603 panic("nca NODE_REFRELEL_LOCKED: " \ 604 "%p has only one reference", (void *)(np)); \ 605 (np)->cnt--; \ 606 } 607 608 609 /* 610 * NODE_T_TRACE - trace node_t events. 611 * 612 * adb: 613 * 32 bit 614 * *node_tp,0t8192-(((*node_tp)-node_tv)%0t48)/PXXDDnPnPnPnPnPnPnPnn 615 * node_tv,((*node_tp)-node_tv)%0t48/PXXDDnPnPnPnPnPnPnPnn 616 * 617 * 64 bit 618 * *node_tp,0t8192-(((*node_tp)-node_tv)%0t56)/PXXDDnXnXnXnXnXnXnXnn 619 * node_tv,((*node_tp)-node_tv)%0t56/PXXDDnXnXnXnXnXnXnXnn 620 * 621 * For incremental node tracing, note the value of node_tp (node_tp/X) after 622 * a run, then replace that in the 2nd line for node_tv. 623 */ 624 625 #define NODE_T_STK_DEPTH 6 626 627 struct node_ts { 628 node_t *node; 629 unsigned action; 630 unsigned ref; 631 unsigned cnt; 632 int cpu; 633 pc_t stk[NODE_T_STK_DEPTH + 1]; 634 }; 635 636 #undef NODE_T_TRACE_ON 637 638 #ifdef NODE_T_TRACE_ON 639 640 #define NODE_T_TRACE_ALLOC 0xFF000000 /* kmem_alloc() of */ 641 #define NODE_T_TRACE_ADD 0xFE000000 /* node_add() */ 642 643 #define NODE_T_TRACE_OWN 0xEF000000 /* node has been owned */ 644 #define NODE_T_TRACE_DISOWN 0xEE000000 /* node has been disowned */ 645 #define NODE_T_TRACE_DESBALLOC 0xED000000 /* desballoc() */ 646 #define NODE_T_TRACE_REFRELE 0xEC000000 /* refrele */ 647 #define NODE_T_TRACE_REFHOLD 0xEB000000 /* refhold */ 648 #define NODE_T_TRACE_NODE_FR 0xEA000000 /* node_fr() */ 649 650 #define NODE_T_TRACE_TEMPNODE 0xDF000000 /* node_temp() */ 651 #define NODE_T_TRACE_REPLACE 0xDE000000 /* node_replace() */ 652 #define NODE_T_TRACE_FLUSH 0xDD000000 /* node_flush() */ 653 #define NODE_T_TRACE_DOWNCALL 0xDC000000 /* downcall_service() */ 654 #define NODE_T_TRACE_DOWNCALL_2 0xDB000000 /* dcall_service->httpd_data */ 655 656 #define NODE_T_TRACE_DATA 0xCF000000 /* httpd_data() */ 657 658 #define NODE_T_TRACE_LRU 0xAF000000 /* nca_lru insert */ 659 #define NODE_T_TRACE_HTTPD 0xAE000000 /* call nca_httpd() */ 660 #define NODE_T_TRACE_MISS 0xAD000000 /* http_miss() */ 661 #define NODE_T_TRACE_TEMP 0xAC000000 /* np != *npp */ 662 #define NODE_T_TRACE_XMIT 0xAB000000 /* tcp_xmit() */ 663 #define NODE_T_TRACE_MISSED 0xAA000000 /* nca_missed() */ 664 665 #define NODE_T_TRACE_DEL 0x00000000 /* node_del() */ 666 667 #if defined(__i386) || defined(__amd64) 668 #define NODE_T_TRACE_STK() { \ 669 _ix = getpcstack(&_p->stk[0], NODE_T_STK_DEPTH + 1); \ 670 if (_ix < NODE_T_STK_DEPTH + 1) { \ 671 _p->stk[_ix + 1] = 0; \ 672 } \ 673 } 674 #else 675 #define NODE_T_TRACE_STK() { \ 676 _p->stk[0] = (pc_t)callee(); \ 677 _ix = getpcstack(&_p->stk[1], NODE_T_STK_DEPTH); \ 678 if (_ix < NODE_T_STK_DEPTH) { \ 679 _p->stk[_ix + 1] = 0; \ 680 } \ 681 } 682 #endif 683 684 #define NODE_TV_SZ 8192 685 686 extern struct node_ts node_tv[NODE_TV_SZ]; 687 extern struct node_ts *node_tp; 688 689 #define NODE_T_TRACE(p, a) { \ 690 struct node_ts *_p; \ 691 struct node_ts *_np; \ 692 int _ix; \ 693 \ 694 do { \ 695 _p = node_tp; \ 696 if ((_np = _p + 1) == &node_tv[NODE_TV_SZ]) \ 697 _np = node_tv; \ 698 } while (atomic_cas_ptr(&node_tp, _p, _np) != _p); \ 699 _p->node = (p); \ 700 _p->action = (a); \ 701 _p->ref = (p) ? (p)->ref : 0; \ 702 _p->cnt = (p) ? (p)->cnt : 0; \ 703 _p->cpu = CPU->cpu_seqid; \ 704 NODE_T_TRACE_STK(); \ 705 } 706 707 #else /* NODE_T_TRACE_ON */ 708 709 #define NODE_T_TRACE(p, a) 710 711 #endif /* NODE_T_TRACE_ON */ 712 713 /* 714 * DOOR_TRACE - trace door node_t events. 715 * 716 * adb: 717 * 32 bit 718 * *door_tp,0t8192-(((*door_tp)-door_tv)%0t112)/5XnPnPnPnPnPnPnPn64cnn 719 * door_tv,((*door_tp)-door_tv)%0t112/5XnPnPnPnPnPnPnPn64cnn 720 * 64 bit 721 * *door_tp,0t8192-(((*door_tp)-door_tv)%0t128)/PXPXXnXnXnXnXnXnXnXn64cnn 722 * door_tv,((*door_tp)-door_tv)%0t128/PXPXXnXnXnXnXnXnXnXn64cnn 723 */ 724 725 #define DOOR_STK_DEPTH 6 726 727 struct door_ts { 728 struct nca_conn_s *cp; 729 unsigned action; 730 node_t *np; 731 int ref; 732 unsigned state; 733 pc_t stk[DOOR_STK_DEPTH + 1]; 734 char data[64]; 735 }; 736 737 #undef DOOR_TRACE_ON 738 739 #ifdef DOOR_TRACE_ON 740 741 #define DOOR_TRACE_UPCALL 0xF0000000 /* upcall() */ 742 #define DOOR_TRACE_UPCALL_RAW 0xF1000000 /* upcall() RAW ? */ 743 #define DOOR_TRACE_UPCALL_RET 0xFF000000 /* upcall() return */ 744 745 #define DOOR_TRACE_DOWNCALL 0xE0000000 /* downcall() */ 746 #define DOOR_TRACE_CONNECT 0xE1000000 /* connect() */ 747 #define DOOR_TRACE_CONNECT_DATA 0xE2000000 /* connect() */ 748 #define DOOR_TRACE_DIRECTFROM 0xE3000000 /* tee_splice() from */ 749 #define DOOR_TRACE_DIRECTTO 0xE4000000 /* tee_splice() to */ 750 #define DOOR_TRACE_DOWNCALL_RET 0xEF000000 /* downcall() return */ 751 752 #define DOOR_TRACE_INIT 0x80000000 /* doorcall_init() */ 753 #define DOOR_TRACE_INIT_RET 0x88000000 /* doorcall_init() return */ 754 755 #if defined(__i386) || defined(__amd64) 756 #define DOOR_TRACE_STK() { \ 757 _ix = getpcstack(&_p->stk[0], DOOR_STK_DEPTH + 1); \ 758 if (_ix < DOOR_STK_DEPTH + 1) { \ 759 _p->stk[_ix] = 0; \ 760 } \ 761 } 762 #else 763 #define DOOR_TRACE_STK() { \ 764 _p->stk[0] = (pc_t)callee(); \ 765 _ix = getpcstack(&_p->stk[1], DOOR_STK_DEPTH); \ 766 if (_ix < DOOR_STK_DEPTH) { \ 767 _p->stk[_ix + 1] = 0; \ 768 } \ 769 } 770 #endif 771 772 #define DOOR_TV_SZ 8192 773 774 extern struct door_ts door_tv[DOOR_TV_SZ]; 775 extern struct door_ts *door_tp; 776 777 #define DOOR_TRACE(io, d, d_sz, a) { \ 778 nca_conn_t *_cp = (io) ? (nca_conn_t *)(io)->cid : (nca_conn_t *)NULL; \ 779 node_t *_req_np = _cp ? _cp->req_np : (node_t *)NULL; \ 780 struct door_ts *_p; \ 781 struct door_ts *_np; \ 782 int _ix; \ 783 \ 784 do { \ 785 _p = door_tp; \ 786 if ((_np = _p + 1) == &door_tv[DOOR_TV_SZ]) \ 787 _np = door_tv; \ 788 } while (atomic_cas_ptr(&door_tp, _p, _np) != _p); \ 789 _p->cp = _cp; \ 790 _p->np = _req_np; \ 791 _p->action = (a); \ 792 _p->ref = _req_np ? _req_np->ref : 0; \ 793 if ((io)) { \ 794 _p->state = ((io)->op == http_op ? 0x80000000 : 0) | \ 795 ((io)->more ? 0x40000000 : 0) | \ 796 ((io)->first ? 0x20000000 : 0) | \ 797 ((io)->advisory ? 0x10000000 : 0) | \ 798 ((io)->nocache ? 0x08000000 : 0) | \ 799 ((io)->preempt ? 0x04000000 : 0) | \ 800 ((io)->peer_len ? 0x02000000 : 0) | \ 801 ((io)->local_len ? 0x01000000 : 0) | \ 802 ((io)->data_len ? 0x00800000 : 0) | \ 803 (((io)->direct_type << 20) & 0x00700000) | \ 804 ((io)->direct_len ? 0x00080000 : 0) | \ 805 ((io)->trailer_len ? 0x00040000 : 0) | \ 806 (((io)->peer_len + (io)->local_len + \ 807 (io)->data_len + (io)->direct_len + \ 808 (io)->trailer_len) & 0x3FFFF); \ 809 } else { \ 810 _p->state = 0; \ 811 } \ 812 if ((d_sz)) { \ 813 int _n = MIN((d_sz), 63); \ 814 \ 815 bcopy((d), _p->data, _n); \ 816 bzero(&_p->data[_n], 64 - _n); \ 817 } else { \ 818 bzero(_p->data, 64); \ 819 } \ 820 DOOR_TRACE_STK(); \ 821 } 822 823 #else /* DOOR_TRACE_ON */ 824 825 #define DOOR_TRACE(io, d, d_sz, a) 826 827 #endif /* DOOR_TRACE_ON */ 828 829 /* 830 * NCA node LRU cache. Defined here so that the NCA mdb module can use it. 831 */ 832 typedef struct lru_s { 833 node_t *phead; /* Phys LRU list head (MRU) */ 834 node_t *ptail; /* Phys LRU list tail (LRU) */ 835 node_t *vhead; /* Virt LRU list head (MRU) */ 836 node_t *vtail; /* Virt LRU list tail (LRU) */ 837 838 uint32_t pcount; /* Phys count of node_t members */ 839 uint32_t vcount; /* Virt count of node_t members */ 840 841 kmutex_t lock; /* Guarantee atomic access of above */ 842 } lru_t; 843 844 /* 845 * Per CPU instance structure. 846 * 847 * 32-bit adb: XXXnnDnnXXnnXXnnXDnnXXnn228+na 848 * 64-bit adb: PPPnnD4+nnPPnnPPnnJDnnJ180+na 849 */ 850 851 typedef struct nca_cpu_s { 852 853 node_t *persist_hdr_none; 854 node_t *persist_hdr_close; 855 node_t *persist_hdr_ka; 856 857 uint32_t dcb_readers; /* count of dcb_list readers for this CPU */ 858 859 nca_squeue_t *if_inq; /* if_t input nca_squeue_t */ 860 nca_squeue_t *if_ouq; /* if_t output nca_squeue_t */ 861 862 ti_t *tcp_ti; /* TCP TIMER list */ 863 tw_t *tcp_tw; /* TCP TIME_WAIT list */ 864 865 ddi_softintr_t soft_id; /* soft interrupt id for if_inq worker */ 866 int if_inq_cnt; /* count of if_t.inq references */ 867 868 char pad[256 - sizeof (node_t *) - sizeof (node_t *) - 869 sizeof (node_t *) - sizeof (uint32_t) - 870 sizeof (nca_squeue_t *) - sizeof (nca_squeue_t *) - 871 sizeof (ti_t *) - sizeof (tw_t *) - 872 sizeof (ddi_softintr_t) - sizeof (int)]; 873 } nca_cpu_t; 874 875 extern nca_cpu_t *nca_gv; /* global per CPU state indexed by cpu_seqid */ 876 877 /* 878 * hcb_t - host control block. 879 * 880 * Used early on in packet switching to select packets to be serviced by NCA 881 * and optionally later on by the HTTP protocol layer to further select HTTP 882 * request to be serviced. 883 * 884 * dcb_t - door control block. 885 * 886 * Used to associate one or more hcb_t(s) with a given httpd door instance. 887 * 888 * dcb_list - dcb_t global list, a singly linked grounded list of dcb_t's. 889 * 890 * Used to search for a hcb_t match, currently a singly linked grounded list 891 * of dcb_t's with a linear walk of the list. While this is adequate for the 892 * current httpd support (i.e. a single door) a move to either a hash or tree 893 * will be required for multiple httpd instance support (i.e. multiple doors). 894 * 895 * The dcb_list is protected by a custom reader/writer lock, the motivation 896 * for using a custom lock instead of a krwlock_t is that this lock is the 897 * single hot spot in NCA (i.e. all in-bound packets must acquire this lock) 898 * and a nonlocking atomic readers count scheme is used in the common case 899 * (i.e. reader lock) with a fall-back to a conventional kmutex_t for writer 900 * (i.e. ndd list add/delete). 901 */ 902 903 typedef struct hcb_s { 904 struct hcb_s *next; /* Next hcb_t (none: NULL) */ 905 ipaddr_t addr; /* IP address (any: INADDR_ANY or 0) */ 906 uint16_t port; /* TCP port number */ 907 char *host; /* Host: name (any: NULL) */ 908 ssize_t hostsz; /* Size of above */ 909 char *root; /* Document root ("/": NULL) */ 910 ssize_t rootsz; /* Size of above */ 911 } hcb_t; 912 913 typedef struct dcb_s { 914 struct dcb_s *next; /* Next dcb_t (none: NULL) */ 915 char *door; /* Door file (default: NULL) */ 916 ssize_t doorsz; /* Size of above */ 917 door_handle_t hand; /* Door handle (default: NULL) */ 918 hcb_t list; /* Head of a hcb_t list (any: NULL) */ 919 } dcb_t; 920 921 extern dcb_t dcb_list; 922 extern kmutex_t nca_dcb_lock; 923 extern kcondvar_t nca_dcb_wait; 924 extern kmutex_t nca_dcb_readers; 925 926 #define NOHANDLE ((door_handle_t)-1) 927 928 #define DCB_COUNT_USELOCK 0x80000000 929 #define DCB_COUNT_MASK 0x3FFFFFFF 930 931 #define DCB_RD_ENTER(cpu) { \ 932 uint32_t *rp; \ 933 \ 934 cpu = CPU->cpu_seqid; \ 935 rp = &nca_gv[cpu].dcb_readers; \ 936 while (atomic_add_32_nv(rp, 1) & DCB_COUNT_USELOCK) { \ 937 /* Need to use the lock, so do the dance */ \ 938 mutex_enter(&nca_dcb_lock); \ 939 if (atomic_add_32_nv(rp, -1) == DCB_COUNT_USELOCK && \ 940 CV_HAS_WAITERS(&nca_dcb_wait)) { \ 941 /* May be the last reader for this CPU */ \ 942 cv_signal(&nca_dcb_wait); \ 943 } \ 944 mutex_exit(&nca_dcb_lock); \ 945 mutex_enter(&nca_dcb_readers); \ 946 /* \ 947 * We block above waiting for the writer to exit the \ 948 * readers lock, if we didn't block then while we were \ 949 * away in the nca_dcb_lock enter the writer exited, \ 950 * we could optimize for this case by checking USELOCK \ 951 * after the decrement, but as this is an exceptional \ 952 * case not in the fast-path we'll just take the hit \ 953 * of a needless readers enter/exit. \ 954 */ \ 955 mutex_exit(&nca_dcb_readers); \ 956 } \ 957 } 958 959 #define DCB_RD_EXIT(cpu) { \ 960 uint32_t *rp = &nca_gv[cpu].dcb_readers; \ 961 \ 962 if (atomic_dec_32_nv(rp) == DCB_COUNT_USELOCK) { \ 963 mutex_enter(&nca_dcb_lock); \ 964 if (CV_HAS_WAITERS(&nca_dcb_wait)) { \ 965 /* May be the last reader for this CPU */ \ 966 cv_signal(&nca_dcb_wait); \ 967 } \ 968 mutex_exit(&nca_dcb_lock); \ 969 } \ 970 } 971 972 #define DCB_WR_ENTER() { \ 973 int cpu; \ 974 int readers; \ 975 \ 976 mutex_enter(&nca_dcb_readers); \ 977 mutex_enter(&nca_dcb_lock); \ 978 for (;;) { \ 979 readers = 0; \ 980 for (cpu = 0; cpu < max_ncpus; cpu++) { \ 981 int new; \ 982 uint32_t *rp = &nca_gv[cpu].dcb_readers; \ 983 int old = *rp; \ 984 \ 985 if (old & DCB_COUNT_USELOCK) { \ 986 readers += old & DCB_COUNT_MASK; \ 987 continue; \ 988 } \ 989 new = old | DCB_COUNT_USELOCK; \ 990 while (atomic_cas_32(rp, old, new) != old) { \ 991 old = *rp; \ 992 new = old | DCB_COUNT_USELOCK; \ 993 } \ 994 readers += (new & DCB_COUNT_MASK); \ 995 } \ 996 if (readers == 0) \ 997 break; \ 998 cv_wait(&nca_dcb_wait, &nca_dcb_lock); \ 999 } \ 1000 mutex_exit(&nca_dcb_lock); \ 1001 } 1002 1003 #define DCB_WR_EXIT() { \ 1004 int cpu; \ 1005 \ 1006 mutex_enter(&nca_dcb_lock); \ 1007 for (cpu = 0; cpu < max_ncpus; cpu++) { \ 1008 int new; \ 1009 uint32_t *rp = &nca_gv[cpu].dcb_readers; \ 1010 int old = *rp; \ 1011 \ 1012 new = old & ~DCB_COUNT_USELOCK; \ 1013 while (atomic_cas_32(rp, old, new) != old) { \ 1014 old = *rp; \ 1015 new = old & ~DCB_COUNT_USELOCK; \ 1016 } \ 1017 } \ 1018 mutex_exit(&nca_dcb_lock); \ 1019 mutex_exit(&nca_dcb_readers); \ 1020 } 1021 1022 typedef struct nca_door_s { 1023 door_handle_t handle; /* The door handle */ 1024 char *name; /* The door name */ 1025 kmutex_t lock; /* The door lock */ 1026 kcondvar_t cv_writer; /* condvar for thread waiting */ 1027 /* to do door_init */ 1028 kcondvar_t cv_reader; /* condvar for thread waiting */ 1029 /* for a door_init to finish */ 1030 uint32_t upcalls; /* Number of upcalls in progress */ 1031 boolean_t init_waiting; /* door_init thread wanting to */ 1032 /* be exclusive */ 1033 } nca_door_t; 1034 1035 /* 1036 * if_t - interface per instance data. 1037 */ 1038 1039 typedef struct if_s { 1040 1041 boolean_t dev; /* is a device instance */ 1042 1043 queue_t *rqp; /* our read-side STREAMS queue */ 1044 queue_t *wqp; /* our write-side STREAMS queue */ 1045 1046 /* DLPI M_DATA IP fastpath template */ 1047 size_t mac_length; 1048 mblk_t *mac_mp; 1049 int32_t mac_mtu; 1050 int32_t mac_addr_len; 1051 1052 uint32_t ip_ident; /* our IP ident value */ 1053 1054 boolean_t hwcksum; /* underlying NIC supports checksum offload */ 1055 1056 nca_squeue_t *inq; /* in-bound nca_squeue_t */ 1057 nca_squeue_t *ouq; /* out-bound nca_squeue_t */ 1058 1059 /* 1060 * All if_t are associated with a CPU and have a default 1061 * router on link are chained in a circular linked list. 1062 */ 1063 struct if_s *next_if; 1064 struct if_s *prev_if; 1065 ipaddr_t local_addr; /* This interface's IP address. */ 1066 uchar_t router_ether_addr[6]; 1067 1068 uint_t hdr_ioc_id; /* id of DL_IOC_HDR_INFO M_IOCTL sent down */ 1069 boolean_t info_req_pending; 1070 1071 int32_t capab_state; /* Capability probe state */ 1072 1073 /* Bound local address of a NCAfs instance. */ 1074 struct sockaddr_in bound_addr; 1075 } if_t; 1076 1077 /* 1078 * connf_t - connection fanout data. 1079 * 1080 * The hash tables and their linkage (hashnextp, hashprevp) are protected 1081 * by the per-bucket lock. Each nca_conn_t inserted in the list points back at 1082 * the connf_t that heads the bucket. 1083 */ 1084 1085 typedef struct connf_s { 1086 uint32_t max; 1087 struct nca_conn_s *head; 1088 kmutex_t lock; 1089 } connf_t; 1090 1091 #ifdef CONNP_T_TRACE_ON 1092 1093 #define CONNP_TV_SZ 32 1094 1095 /* 1096 * Per nca_conn_t packet tracing. 1097 */ 1098 typedef struct connp_s { 1099 clock_t lbolt; 1100 clock_t tcp_ti; 1101 int32_t len : 16, 1102 dir : 1, 1103 state : 4, 1104 flags : 6, 1105 xmit_np : 1, 1106 xmit_head : 1, 1107 unsent : 1, 1108 tail_unsent : 1, 1109 direct : 1; 1110 uint32_t state1; 1111 uint32_t state2; 1112 uint32_t seq; 1113 uint32_t ack; 1114 uint32_t snxt; 1115 uint32_t swnd; 1116 } connp_t; 1117 1118 #endif /* CONNP_T_TRACE_ON */ 1119 1120 /* 1121 * nca_conn_t - connection per instance data. 1122 * 1123 * Note: hashlock is used to provide atomic access to all nca_conn_t members 1124 * above it. All other members are protected by the per CPU inq nca_squeue_t 1125 * which is used to serialize access to all nca_conn_t's per interface. 1126 * 1127 * Note: the nca_conn_t can have up to 3 NODE_REFHOLDs: 1128 * 1129 * 1) if req_np != NULL then a NODE_REFHOLD(req_np) was done: 1130 * 1131 * 1.1) if http_refed then a NODE_REFHOLD(req_np) was done 1132 * 1133 * 1.2) if http_frefed then a NODE_REFHOLD(req_np->fileback) was done 1134 * 1135 * 1136 * TODO: reorder elements in fast-path code access order. 1137 * 1138 * Dnn4XnXXDnnDnnXXXnnXXXnnUXnnXXXnnXXnnDDXXXDXDXDXnnDnnXXDDnXXXDDnnXXXDDnn 1139 * XXXDDnnXXXDDnnXXXDDnnXXnnDXXnn 1140 * b+++DDnAnDDDDDnnDnnUnnUUDXDUnnDnn20xnnXnnddnnUUUnnXXUnXXnnUUUnn 1141 * DDDDDDnnUUnnXXUXUnn4UD4Unn4UnUUnn 1142 * 64-bit: Xnn4+4pnnppEnEnn3pnn3pnnEJnnXXnnuunn4+ppnnXX3pD4+pD4+pD4+pnnEnnppnnD 1143 */ 1144 1145 #define TCP_XMIT_MAX_IX 5 /* Max xmit descriptors */ 1146 1147 typedef struct nca_conn_s { 1148 1149 int32_t ref; /* Reference counter */ 1150 1151 te_t tcp_ti; /* TCP TIMER timer entry */ 1152 1153 struct nca_conn_s *twnext; /* TIME_WAIT next */ 1154 struct nca_conn_s *twprev; /* TIME_WAIT prev */ 1155 clock_t twlbolt; /* TIME_WAIT lbolt */ 1156 1157 clock_t create; /* Create lbolt time */ 1158 1159 connf_t *hashfanout; /* Hash bucket we're part of */ 1160 struct nca_conn_s *hashnext; /* Hash chain next */ 1161 struct nca_conn_s *hashprev; /* Hash chain prev */ 1162 1163 struct nca_conn_s *bindnext; /* Next conn_s in bind list. */ 1164 struct nca_conn_s *bindprev; /* Prev conn_s in bind list. */ 1165 void *tbf; /* Pointer to bind hash list struct. */ 1166 /* 1167 * Note: atomic access of memebers above is guaranteed by the 1168 * hashfanout->lock of the hash bucket that the nca_conn_t is in. 1169 */ 1170 1171 size_t mac_length; /* MAC prepend length */ 1172 mblk_t *mac_mp; /* MAC prepend data */ 1173 1174 ipaddr_t laddr; /* Local address */ 1175 ipaddr_t faddr; /* Remote address. 0 => not connected */ 1176 1177 union { 1178 struct { 1179 uint16_t u_fport; /* Remote port */ 1180 uint16_t u_lport; /* Local port */ 1181 } u_ports1; 1182 uint32_t u_ports2; /* Rem port, local port */ 1183 /* Used for TCP_MATCH performance */ 1184 } u_port; 1185 #define conn_lport u_port.u_ports1.u_lport 1186 #define conn_fport u_port.u_ports1.u_fport 1187 #define conn_ports u_port.u_ports2 1188 1189 if_t *ifp; /* Interface for this connection */ 1190 nca_squeue_t *inq; /* Per CPU inq for this connection */ 1191 1192 uint32_t req_tag; /* nca_io_t request tag (0 == NONE) */ 1193 int req_parse; /* HTTP request parse state */ 1194 node_t *req_np; /* HTTP request node_t */ 1195 mblk_t *req_mp; /* HTTP request mblk_t */ 1196 char *reqpath; /* HTTP request URI path component */ 1197 int reqpathsz; /* size of above */ 1198 char *reqrefer; /* HTTP "Referer:" string */ 1199 int reqrefersz; /* size of above */ 1200 char *requagent; /* HTTP "User-Agent:" string */ 1201 int requagentsz; /* size of above */ 1202 struct nca_conn_s *nodenext; /* Node_t nca_conn_t list */ 1203 1204 clock_t http_count; /* HTTP Keep-Alive request count */ 1205 1206 /* 1207 * req_np xmit state used accross calls to tcp_xmit(). A reference 1208 * to the req_np and to any inderect node_t (i.e. file/ctag) ... 1209 */ 1210 node_t *xmit_refed; /* have a ref to the uri node_t */ 1211 node_t *xmit_cur; /* current node to transmit */ 1212 1213 int xmit_ix; /* current xmit[] index */ 1214 int xmit_pix; /* past end xmit[] index */ 1215 1216 struct { 1217 node_t *np; /* node_t pointer for ref */ 1218 char *dp; /* data pointer */ 1219 uint16_t *cp; /* cksum array */ 1220 int sz; /* remaining data to xmit */ 1221 int iso; /* initial segment offset (if any) */ 1222 node_t *refed; /* have a ref to the node_t */ 1223 int dsz; /* remaining data for current segment */ 1224 caddr_t *dvp; /* data segment virtual pointer */ 1225 } xmit[TCP_XMIT_MAX_IX]; 1226 1227 /* 1228 * Connection NCA_IO_DIRECT_SPLICE & NCA_IO_DIRECT_TEE reference, 1229 * see direct_splice and direct_tee below for type of send too. 1230 */ 1231 struct nca_conn_s *direct; /* nca_conn_t to send recv data too */ 1232 mblk_t *direct_mp; /* mblk_t to use for tcp_close() */ 1233 1234 /* 1235 * nca_conn_t state. 1236 */ 1237 1238 int32_t tcp_state; 1239 1240 uint32_t 1241 tcp_urp_last_valid : 1, /* Is tcp_urp_last valid? */ 1242 tcp_hard_binding : 1, /* If we've started a full bind */ 1243 tcp_hard_bound : 1, /* If we've done a full bind with IP */ 1244 tcp_fin_acked : 1, /* Has our FIN been acked? */ 1245 1246 tcp_fin_rcvd : 1, /* Have we seen a FIN? */ 1247 tcp_fin_sent : 1, /* Have we sent our FIN yet? */ 1248 tcp_ordrel_done : 1, /* Have we sent the ord_rel upstream? */ 1249 tcp_flow_stopped : 1, /* Have we flow controlled xmitter? */ 1250 1251 tcp_debug : 1, /* SO_DEBUG "socket" option. */ 1252 tcp_dontroute : 1, /* SO_DONTROUTE "socket" option. */ 1253 tcp_broadcast : 1, /* SO_BROADCAST "socket" option. */ 1254 tcp_useloopback : 1, /* SO_USELOOPBACK "socket" option. */ 1255 1256 tcp_oobinline : 1, /* SO_OOBINLINE "socket" option. */ 1257 tcp_dgram_errind : 1, /* SO_DGRAM_ERRIND option */ 1258 tcp_detached : 1, /* If we're detached from a stream */ 1259 tcp_bind_pending : 1, /* Client is waiting for bind ack */ 1260 1261 tcp_unbind_pending : 1, /* Client sent T_UNBIND_REQ */ 1262 tcp_deferred_clean_death : 1, 1263 /* defer tcp endpoint cleanup etc. */ 1264 tcp_co_wakeq_done : 1, /* A strwakeq() has been done */ 1265 tcp_co_wakeq_force : 1, /* A strwakeq() must be done */ 1266 1267 tcp_co_norm : 1, /* In normal mode, putnext() done */ 1268 tcp_co_wakeq_need : 1, /* A strwakeq() needs to be done */ 1269 tcp_snd_ws_ok : 1, /* Received WSCALE from peer */ 1270 tcp_snd_ts_ok : 1, /* Received TSTAMP from peer */ 1271 1272 tcp_linger : 1, /* SO_LINGER turned on */ 1273 tcp_zero_win_probe: 1, /* Zero win probing is in progress */ 1274 tcp_loopback: 1, /* src and dst are the same machine */ 1275 tcp_localnet: 1, /* src and dst are on the same subnet */ 1276 1277 tcp_syn_defense: 1, /* For defense against SYN attack */ 1278 #define tcp_dontdrop tcp_syn_defense 1279 tcp_set_timer : 1, 1280 tcp_1_junk_fill_thru_bit_31 : 2; 1281 1282 uint32_t 1283 tcp_active_open: 1, /* This is a active open */ 1284 tcp_timeout : 1, /* qbufcall failed, qtimeout pending */ 1285 tcp_rexmit : 1, /* TCP is retransmitting */ 1286 tcp_snd_sack_ok : 1, /* Can use SACK for this connection */ 1287 1288 tcp_bind_proxy_addr : 1, /* proxy addr is being used */ 1289 tcp_recvdstaddr : 1, /* return T_EXTCONN_IND with dst addr */ 1290 tcp_refed : 1, /* nca_conn_t refed by TCP */ 1291 tcp_time_wait_comp : 1, /* TIME_WAIT compressed nca_conn_t */ 1292 1293 tcp_close : 1, /* nca_conn_t close */ 1294 http_persist : 3, /* HTTP persistent connection state */ 1295 1296 deferred_xmit_end : 1, /* xmit_end() deferred to xmit() */ 1297 http_direct_splice : 1, /* have a connection to splice too */ 1298 http_direct_tee : 1, /* have a connection to tee too */ 1299 1300 tcp_2_junk_fill_thru_bit_31 : 17; 1301 /* 1302 * Note: all nca_conn_t members to be accessed by a tcp_time_wait_comp 1303 * nca_conn_t must be above this point !!! 1304 */ 1305 1306 uchar_t tcp_timer_backoff; /* Backoff shift count. */ 1307 clock_t tcp_last_recv_time; /* Last time we receive a segment. */ 1308 clock_t tcp_dack_set_time; /* When delayed ACK timer is set. */ 1309 1310 int tcp_ip_hdr_len; /* Byte len of our current IP header */ 1311 clock_t tcp_first_timer_threshold; /* When to prod IP */ 1312 clock_t tcp_second_timer_threshold; /* When to give up completely */ 1313 clock_t tcp_first_ctimer_threshold; /* 1st threshold while connecting */ 1314 clock_t tcp_second_ctimer_threshold; /* 2nd ... while connecting */ 1315 1316 clock_t tcp_last_rcv_lbolt; /* lbolt on last packet, used for PAWS */ 1317 1318 1319 uint32_t tcp_obsegs; /* Outbound segments on this stream */ 1320 1321 uint32_t tcp_mss; /* Max segment size */ 1322 uint32_t tcp_naglim; /* Tunable nagle limit */ 1323 int32_t tcp_hdr_len; /* Byte len of combined TCP/IP hdr */ 1324 tcph_t *tcp_tcph; /* tcp header within combined hdr */ 1325 int32_t tcp_tcp_hdr_len; /* tcp header len within combined */ 1326 uint32_t tcp_valid_bits; 1327 #define TCP_ISS_VALID 0x1 /* Is the tcp_iss seq num active? */ 1328 #define TCP_FSS_VALID 0x2 /* Is the tcp_fss seq num active? */ 1329 #define TCP_URG_VALID 0x4 /* If the tcp_urg seq num active? */ 1330 1331 int32_t tcp_xmit_hiwater; /* Send buffer high water mark. */ 1332 1333 union { /* template ip header */ 1334 ipha_t tcp_u_ipha; 1335 char tcp_u_buf[IP_SIMPLE_HDR_LENGTH+TCP_MIN_HEADER_LENGTH]; 1336 double tcp_u_aligner; 1337 } tcp_u; 1338 #define tcp_ipha tcp_u.tcp_u_ipha 1339 #define tcp_iphc tcp_u.tcp_u_buf 1340 1341 uint32_t tcp_sum; /* checksum to compensate for source */ 1342 /* routed packets. Host byte order */ 1343 1344 uint16_t tcp_last_sent_len; /* Record length for nagle */ 1345 uint16_t tcp_dupack_cnt; /* # of consequtive duplicate acks */ 1346 1347 uint32_t tcp_rnxt; /* Seq we expect to recv next */ 1348 uint32_t tcp_rwnd; /* Current receive window */ 1349 uint32_t tcp_rwnd_max; /* Maximum receive window */ 1350 1351 mblk_t *tcp_rcv_head; /* Queued until push, urgent data or */ 1352 mblk_t *tcp_rcv_tail; /* the count exceeds */ 1353 uint32_t tcp_rcv_cnt; /* tcp_rcv_push_wait. */ 1354 1355 mblk_t *tcp_reass_head; /* Out of order reassembly list head */ 1356 mblk_t *tcp_reass_tail; /* Out of order reassembly list tail */ 1357 1358 uint32_t tcp_cwnd_ssthresh; /* Congestion window */ 1359 uint32_t tcp_cwnd_max; 1360 uint32_t tcp_csuna; /* Clear (no rexmits in window) suna */ 1361 1362 int tcp_rttv_updates; 1363 clock_t tcp_rto; /* Round trip timeout */ 1364 clock_t tcp_rtt_sa; /* Round trip smoothed average */ 1365 clock_t tcp_rtt_sd; /* Round trip smoothed deviation */ 1366 clock_t tcp_rtt_update; /* Round trip update(s) */ 1367 clock_t tcp_ms_we_have_waited; /* Total retrans time */ 1368 1369 uint32_t tcp_swl1; /* These help us avoid using stale */ 1370 uint32_t tcp_swl2; /* packets to update state */ 1371 1372 mblk_t *tcp_xmit_head; /* Head of rexmit list */ 1373 mblk_t *tcp_xmit_last; /* last valid data seen by tcp_wput */ 1374 uint32_t tcp_unsent; /* # of bytes in hand that are unsent */ 1375 mblk_t *tcp_xmit_tail; /* Last rexmit data sent */ 1376 uint32_t tcp_xmit_tail_unsent; /* # of unsent bytes in xmit_tail */ 1377 1378 uint32_t tcp_snxt; /* Senders next seq num */ 1379 uint32_t tcp_suna; /* Sender unacknowledged */ 1380 uint32_t tcp_rexmit_nxt; /* Next rexmit seq num */ 1381 uint32_t tcp_rexmit_max; /* Max retran seq num */ 1382 int32_t tcp_snd_burst; /* Send burst factor */ 1383 uint32_t tcp_swnd; /* Senders window (relative to suna) */ 1384 uint32_t tcp_cwnd; /* Congestion window */ 1385 int32_t tcp_cwnd_cnt; /* cwnd cnt in congestion avoidance */ 1386 uint32_t tcp_ackonly; /* Senders last ack seq num */ 1387 1388 uint32_t tcp_irs; /* Initial recv seq num */ 1389 uint32_t tcp_iss; /* Initial send seq num */ 1390 uint32_t tcp_fss; /* Final/fin send seq num */ 1391 uint32_t tcp_urg; /* Urgent data seq num */ 1392 1393 uint32_t tcp_rack; /* Seq # we have acked */ 1394 uint32_t tcp_rack_cnt; /* # of bytes we have deferred ack */ 1395 1396 uint32_t tcp_max_swnd; /* Maximum swnd we have seen */ 1397 int64_t tcp_rexmit_fire_time; 1398 int64_t tcp_dack_fire_time; 1399 int64_t tcp_ka_fire_time; 1400 int64_t tcp_http_ka_fire_time; 1401 1402 int32_t tcp_keepalive_intrvl; /* Zero means don't bother */ 1403 int32_t tcp_ka_probe_sent; 1404 int32_t tcp_ka_last_intrvl; 1405 1406 #define TCP_DACK_TIMER 0x1 1407 #define TCP_REXMIT_TIMER 0x2 1408 #define TCP_KA_TIMER 0x4 1409 #define TCP_HTTP_KA_TIMER 0x8 1410 int16_t tcp_running_timer; 1411 int16_t tcp_pending_timer; 1412 1413 #ifdef CONNP_T_TRACE_ON 1414 connp_t *pkt_tp; /* Packet tracing pointer */ 1415 connp_t pkt_tv[CONNP_TV_SZ]; /* Packet tracing vector */ 1416 #endif /* CONNP_T_TRACE_ON */ 1417 1418 } nca_conn_t; 1419 1420 /* 1421 * Active stack support parameters to control what ports NCA can use. 1422 * They are declared in ncaproto.c 1423 */ 1424 extern struct nca_tbf_s *nca_tcp_port; 1425 extern in_port_t tcp_lo_port; 1426 extern in_port_t tcp_hi_port; 1427 1428 /* 1429 * nca_conn_t.http_persist values and corresponding HTTP header strings are 1430 * used to determine the connection persistent state of a connection and 1431 * any HTTP header which needs to be sent. 1432 */ 1433 1434 #define PERSIST_NONE 0 /* Not persistent */ 1435 1436 #define PERSIST_CLOSE 1 /* Was persistent, send close header */ 1437 #define PERSIST_TRUE 2 /* Connection is HTTP persistent */ 1438 #define PERSIST_KA 3 /* Persistent, send Keep-Alive header */ 1439 #define PERSIST_UPCALL 4 /* Insert "Connection: close" on */ 1440 /* upcall and clear flag */ 1441 1442 #define PERSIST_HDR_NONE "\r\n" 1443 #define PERSIST_HDR_CLOSE "Connection: close\r\n\r\n" 1444 #define PERSIST_HDR_KA "Connection: Keep-Alive\r\n\r\n" 1445 1446 /* 1447 * nca_conn_t nca_squeue_ctl() flag values: 1448 */ 1449 1450 #define CONN_MISS_DONE 0x0001 /* The conn miss processing is done */ 1451 #define IF_TIME_WAIT 0x0002 /* A TIME_WAIT has fired */ 1452 #define IF_TCP_TIMER 0x0003 /* A TCP TIMER has fired */ 1453 #define NCA_CONN_TCP_TIMER 0x0004 /* A TCP TIMER needs to be execed */ 1454 #define IF_TCP_CONNECT 0x0005 /* TCP connection request */ 1455 #define IF_TCP_SEND 0x0006 /* A new send request. */ 1456 1457 #define IF_TCP_DIRECT_TO 0x0010 /* A TCP direct i/o, step 1 */ 1458 #define IF_TCP_DIRECT_FROM 0x0012 /* A TCP direct i/o, step 2 */ 1459 #define IF_TCP_DIRECT_TEE 0x0001 /* If a tee else a splice */ 1460 #define IF_TCP_DIRECT_CLOSE 0x001F /* A TCP direct i/o close */ 1461 1462 #define NCA_CONN_T_STK_DEPTH 7 /* max stack backtrace depth */ 1463 1464 struct conn_ts { 1465 nca_conn_t *conn; 1466 unsigned action; 1467 int ref; 1468 int cpu; 1469 pc_t stk[NCA_CONN_T_STK_DEPTH + 1]; 1470 }; 1471 1472 #undef NCA_CONN_T_TRACE_ON 1473 1474 #ifdef NCA_CONN_T_TRACE_ON 1475 1476 /* 1477 * adb: 1478 * 32 bit 1479 * *conn_tp,0t4096-(((*conn_tp)-con_tv)%0t48)/PXDDnPnPnPnPnPnPnPnPnn 1480 * con_tv,((*conn_tp)-con_tv)%0t48/PXDDnPnPnPnPnPnPnPnPnn 1481 * 64 bit 1482 * *conn_tp,0t4096-(((*conn_tp)-con_tv)%0t56)/PXDDnXnXnXnXnXnXnXnXnn 1483 * con_tv,((*conn_tp)-con_tv)%0t56/PXDDnXnXnXnXnXnXnXnXnn 1484 */ 1485 1486 #define NCA_CONN_T_REFINIT 0x10000000 /* CONN_REF init() |ref value */ 1487 #define NCA_CONN_T_REFINIT1 0x11000000 /* CONN_REF init() |ref value */ 1488 #define NCA_CONN_T_REFINIT2 0x12000000 /* CONN_REF init() |ref value */ 1489 #define NCA_CONN_T_REFNOTCP 0x13000000 /* CONN_REF no longer tcp_refed */ 1490 #define NCA_CONN_T_REFHOLD 0x1A000000 /* CONN_REFHOLD() | ref value */ 1491 #define NCA_CONN_T_REFRELE 0x1F000000 /* CONN_REFRELE() | ref value */ 1492 1493 #define NCA_CONN_T_HTTPCALL 0x20000000 /* call http() | rbytes */ 1494 #define NCA_CONN_T_HTTPRET1 0x21000000 /* return http() */ 1495 #define NCA_CONN_T_HTTPRET2 0x22000000 /* return ! http() */ 1496 1497 #define NCA_CONN_T_MISSDONE 0x30000000 /* CONN_MISS_DONE */ 1498 #define NCA_CONN_T_TCPTIMER 0x31000000 /* NCA_CONN_TCP_TIMER */ 1499 #define NCA_CONN_T_XMIT_END 0x32000000 /* xmit_end() | tcp_unsent */ 1500 #define NCA_CONN_T_XMIT_BAD 0x33000000 /* xmit_end() bad state |tcp_state */ 1501 #define NCA_CONN_T_XMIT_DEF 0x34000000 /* xmit_end() deferred */ 1502 #define NCA_CONN_T_TIME_WAIT 0x35000000 /* done: tcp_state == TCPS_TIME_WAIT */ 1503 #define NCA_CONN_T_PKT_IN 0x36000000 /* tcp_input() | flags */ 1504 #define NCA_CONN_T_PKT_OUT 0x37000000 /* tcp_input() | flags */ 1505 1506 #define NCA_CONN_T_DIRECT 0x40000000 /* tcp_direct() from conn_t */ 1507 #define NCA_CONN_T_DIRECT1 0x41000000 /* tcp_direct() to conn_t */ 1508 #define NCA_CONN_T_DIRECT2 0x42000000 /* IF_TCP_DIRECT_TO | TEE */ 1509 #define NCA_CONN_T_DIRECT3 0x43000000 /* IF_TCP_DIRECT_FROM | TEE */ 1510 #define NCA_CONN_T_DIRECT4 0x44000000 /* tcp_close() */ 1511 #define NCA_CONN_T_DIRECT5 0x45000000 /* IF_TCP_DIRECT_CLOSE */ 1512 /* from|tcp_state */ 1513 #define NCA_CONN_T_DIRECT6 0x46000000 /* IF_TCP_DIRECT_CLOSE to */ 1514 1515 #if defined(__i386) || defined(__amd64) 1516 #define NCA_CONN_T_TRACE_STK() { \ 1517 _ix = getpcstack(&_p->stk[0], NCA_CONN_T_STK_DEPTH + 1); \ 1518 if (_ix < NCA_CONN_T_STK_DEPTH + 1) { \ 1519 _p->stk[_ix + 1] = 0; \ 1520 } \ 1521 } 1522 #else 1523 #define NCA_CONN_T_TRACE_STK() { \ 1524 _p->stk[0] = (pc_t)callee(); \ 1525 _ix = getpcstack(&_p->stk[1], NCA_CONN_T_STK_DEPTH); \ 1526 if (_ix < NCA_CONN_T_STK_DEPTH) { \ 1527 _p->stk[_ix + 1] = 0; \ 1528 } \ 1529 } 1530 #endif 1531 1532 #define CON_TV_SZ 4096 1533 1534 extern struct conn_ts con_tv[CON_TV_SZ]; 1535 extern struct conn_ts *conn_tp; 1536 1537 #define NCA_CONN_T_TRACE(p, a) { \ 1538 struct conn_ts *_p; \ 1539 struct conn_ts *_np; \ 1540 int _ix; \ 1541 \ 1542 do { \ 1543 _p = conn_tp; \ 1544 if ((_np = _p + 1) == &con_tv[CON_TV_SZ]) \ 1545 _np = con_tv; \ 1546 } while (atomic_cas_ptr(&conn_tp, _p, _np) != _p); \ 1547 _p->conn = (p); \ 1548 _p->action = (a); \ 1549 _p->ref = (p)->ref; \ 1550 _p->cpu = CPU->cpu_seqid; \ 1551 NCA_CONN_T_TRACE_STK(); \ 1552 } 1553 1554 #else /* NCA_CONN_T_TRACE_ON */ 1555 1556 #define NCA_CONN_T_TRACE(p, a) 1557 1558 #endif /* NCA_CONN_T_TRACE_ON */ 1559 1560 1561 #define CONN_REFHOLD(connp) { \ 1562 \ 1563 NCA_CONN_T_TRACE((connp), NCA_CONN_T_REFHOLD | ((connp)->ref + 1)); \ 1564 \ 1565 if ((connp)->ref <= 0) \ 1566 panic("nca CONN_REFHOLD: %p has no references", \ 1567 (void *)(connp)); \ 1568 (connp)->ref++; \ 1569 } 1570 1571 #define CONN_REFRELE(connp) { \ 1572 \ 1573 NCA_CONN_T_TRACE((connp), NCA_CONN_T_REFRELE | ((connp)->ref - 1)); \ 1574 \ 1575 if ((connp)->tcp_refed) { \ 1576 if ((connp)->ref == 1) \ 1577 panic("nca CONN_REFRELE: %p " \ 1578 "has only tcp_refed reference", \ 1579 (void *)(connp)); \ 1580 if ((connp)->ref < 1) \ 1581 panic("nca CONN_REFRELE: %p has no references", \ 1582 (void *)(connp)); \ 1583 } else { \ 1584 if ((connp)->ref <= 0) \ 1585 panic("nca CONN_REFRELE: %p has no references", \ 1586 (void *)(connp)); \ 1587 } \ 1588 (connp)->ref--; \ 1589 if ((connp)->ref == 0) { \ 1590 /* Last ref of a nca_conn_t, so free it */ \ 1591 kmutex_t *lock = &(connp)->hashfanout->lock; \ 1592 mutex_enter(lock); \ 1593 nca_conn_free(connp); \ 1594 /* Note: nca_conn_free exits lock */ \ 1595 } \ 1596 } 1597 1598 /* 1599 * The nca_io2_shadow_t is used by the kernel to contian a copy of a user- 1600 * land nca_io2_t and the the user-land nca_io2_t address and size. 1601 */ 1602 1603 typedef struct nca_io2_shadow_s { 1604 nca_io2_t io; /* copy of user-land nca_io2_t */ 1605 void *data_ptr; /* copy of door_arg_t.data_ptr */ 1606 size_t data_size; /* copy of door_arg_t.data_size */ 1607 } nca_io2_shadow_t; 1608 1609 #define SHADOW_NONE 0x00 /* nca_io2_t.shadow NONE */ 1610 #define SHADOW_DOORSRV 0x01 /* nca_io2_t.shadow door_srv() */ 1611 #define SHADOW_NCAFS 0x02 /* nca_io2_t.shadow NCAfs */ 1612 1613 1614 /* 1615 * Given a ptr to a nca_io2_t, a field and the field_length, write data 1616 * into buffer (Note: word aligned offsets). 1617 */ 1618 #define NCA_IO_WDATA(val, vsize, p, n_used, len, off) \ 1619 /*CONSTCOND*/ \ 1620 if ((val) == NULL) { \ 1621 (p)->len = vsize; \ 1622 (p)->off = 0; \ 1623 } else { \ 1624 (p)->len = (vsize); \ 1625 (p)->off = ((n_used) + sizeof (uint32_t) - 1) & \ 1626 (~(sizeof (uint32_t) - 1)); \ 1627 bcopy((char *)(val), \ 1628 ((char *)(p) + (p)->off), (vsize)); \ 1629 (n_used) = (p)->off + (p)->len; \ 1630 } 1631 1632 /* 1633 * Given a ptr to an nca_io2_t, a field length member name, append data to 1634 * it in the buffer. Note: must be the last field a WDATA() was done for. 1635 * 1636 * Note: a NULL NCA_IO_WDATA() can be followed by a NCA_IO_ADATA() only if 1637 * vsize was == -1. 1638 * 1639 */ 1640 #define NCA_IO_ADATA(val, vsize, p, n_used, len, off) \ 1641 if ((p)->len == -1) { \ 1642 (p)->len = 0; \ 1643 (p)->off = ((n_used) + sizeof (uint32_t) - 1) & \ 1644 (~(sizeof (uint32_t) - 1)); \ 1645 } \ 1646 bcopy((char *)(val), ((char *)(p) + \ 1647 (p)->off + (p)->len), (vsize)); \ 1648 (p)->len += (vsize); \ 1649 (n_used) += (vsize); 1650 1651 /* 1652 * Given a ptr to a nca_io2_t and a field construct a pointer. 1653 */ 1654 #define NCA_IO_PDATA(p, off) ((char *)(p) + (p)->off) 1655 1656 1657 #ifndef isdigit 1658 #define isdigit(c) ((c) >= '0' && (c) <= '9') 1659 #endif 1660 1661 #ifndef tolower 1662 #define tolower(c) ((c) >= 'A' && (c) <= 'Z' ? (c) | 0x20 : (c)) 1663 #endif 1664 1665 #ifndef isalpha 1666 #define isalpha(c) (((c) >= 'A' && (c) <= 'Z') || ((c) >= 'a' && (c) <= 'z')) 1667 #endif 1668 1669 #ifndef isspace 1670 #define isspace(c) ((c) == ' ' || (c) == '\t' || (c) == '\n' || \ 1671 (c) == '\r' || (c) == '\f' || (c) == '\013') 1672 #endif 1673 1674 extern char *strnchr(const char *, int, size_t); 1675 extern char *strnstr(const char *, const char *, size_t); 1676 extern char *strncasestr(const char *, const char *, size_t); 1677 extern char *strrncasestr(const char *, const char *, size_t); 1678 extern int atoin(const char *, size_t); 1679 extern int digits(int); 1680 1681 extern void nca_conn_free(nca_conn_t *); 1682 extern void nca_logit_off(void); 1683 extern void node_fr(node_t *); 1684 1685 extern nca_squeue_t *nca_squeue_init(nca_squeue_t *, uint32_t, 1686 processorid_t, void (*)(), void *, void (*)(), clock_t, pri_t); 1687 extern void nca_squeue_fini(nca_squeue_t *); 1688 extern void nca_squeue_enter(nca_squeue_t *, mblk_t *, void *); 1689 extern void nca_squeue_fill(nca_squeue_t *, mblk_t *, void *); 1690 extern mblk_t *nca_squeue_remove(nca_squeue_t *); 1691 extern void nca_squeue_worker(nca_squeue_t *); 1692 extern mblk_t *nca_squeue_ctl(mblk_t *, void *, unsigned short); 1693 extern void nca_squeue_signal(nca_squeue_t *); 1694 extern void nca_squeue_exit(nca_squeue_t *); 1695 extern void sqfan_init(sqfan_t *, uint32_t, uint32_t, uint32_t); 1696 extern nca_squeue_t *sqfan_ixinit(sqfan_t *, uint32_t, nca_squeue_t *, uint32_t, 1697 processorid_t, void (*)(), void *, void (*)(), clock_t, pri_t); 1698 extern void sqfan_fini(sqfan_t *); 1699 extern void sqfan_fill(sqfan_t *, mblk_t *, void *); 1700 extern mblk_t *sqfan_remove(sqfan_t *); 1701 extern void nca_squeue_nointr(nca_squeue_t *, mblk_t *, void *, int); 1702 extern void nca_squeue_pause(nca_squeue_t *, mblk_t *, void *, int, boolean_t); 1703 extern void nca_squeue_willproxy(nca_squeue_t *); 1704 extern void nca_squeue_proxy(nca_squeue_t *, nca_squeue_t *); 1705 extern void nca_squeue_bind(nca_squeue_t *, uint32_t, processorid_t); 1706 1707 extern int nca_tcp_clean_death(nca_conn_t *, int); 1708 extern nca_conn_t *nca_tcp_connect(ipaddr_t, in_port_t, boolean_t); 1709 extern void nca_tcp_send(nca_conn_t *, mblk_t *); 1710 extern void nca_tcp_direct(nca_conn_t *, nca_conn_t *, uint32_t); 1711 1712 /* Functions prototypes from ncadoorsrv.c */ 1713 extern node_t *nca_node_flush(node_t *); 1714 extern void nca_downcall_service(void *, door_arg_t *, void (**)(void *, 1715 void *), void **, int *); 1716 extern node_t *ctag_lookup(uint64_t, unsigned *); 1717 extern node_t *node_replace(node_t *, nca_conn_t *); 1718 extern node_t *node_temp(node_t *, nca_conn_t *); 1719 extern void find_ctags(node_t *, nca_io2_t *, int *); 1720 extern void nca_ncafs_srv(nca_io2_t *, struct uio *, queue_t *); 1721 extern boolean_t nca_reclaim_vlru(void); 1722 extern boolean_t nca_reclaim_plru(boolean_t, boolean_t); 1723 1724 /* 1725 * NCA_COUNTER() is used to add a signed long value to a unsigned long 1726 * counter, in general these counters are used to maintain NCA state. 1727 * 1728 * NCA_DEBUG_COUNTER() is used like NCA_COUNTER() but for counters used 1729 * to maintain additional debug state, by default these counters aren't 1730 * updated unless the global value nca_debug_counter is set to a value 1731 * other then zero. 1732 * 1733 * Also, if NCA_COUNTER_TRACE is defined a time ordered wrapping trace 1734 * buffer is maintained with hrtime_t stamps, counter address, value to 1735 * add, and new value entries for all NCA_COUNTER() and NCA_DEBUG_COUNTER() 1736 * use. 1737 */ 1738 1739 #undef NCA_COUNTER_TRACE 1740 1741 #ifdef NCA_COUNTER_TRACE 1742 1743 #define NCA_COUNTER_TRACE_SZ 1024 1744 1745 typedef struct nca_counter_s { 1746 hrtime_t t; 1747 unsigned long *p; 1748 unsigned long v; 1749 unsigned long nv; 1750 } nca_counter_t; 1751 1752 extern nca_counter_t nca_counter_tv[]; 1753 extern nca_counter_t *nca_counter_tp; 1754 1755 #define NCA_COUNTER(_p, _v) { \ 1756 unsigned long *p = _p; \ 1757 long v = _v; \ 1758 unsigned long _nv; \ 1759 nca_counter_t *_otp; \ 1760 nca_counter_t *_ntp; \ 1761 \ 1762 _nv = atomic_add_long_nv(p, v); \ 1763 do { \ 1764 _otp = nca_counter_tp; \ 1765 _ntp = _otp + 1; \ 1766 if (_ntp == &nca_counter_tv[NCA_COUNTER_TRACE_SZ]) \ 1767 _ntp = nca_counter_tv; \ 1768 } while (atomic_cas_ptr((void *)&nca_counter_tp, (void *)_otp, \ 1769 (void *)_ntp) != (void *)_otp); \ 1770 _ntp->t = gethrtime(); \ 1771 _ntp->p = p; \ 1772 _ntp->v = v; \ 1773 _ntp->nv = _nv; \ 1774 } 1775 1776 #else /* NCA_COUNTER_TRACE */ 1777 1778 #define NCA_COUNTER(p, v) atomic_add_long((p), (v)) 1779 1780 #endif /* NCA_COUNTER_TRACE */ 1781 1782 1783 /* 1784 * This is the buf used in upcall to httpd. 1785 */ 1786 typedef struct { 1787 uintptr_t tid; 1788 char *buf; 1789 } http_buf_table_t; 1790 1791 /* 1792 * URI and filename hash, a simple static hash bucket array of singly 1793 * linked grounded lists is used with a hashing algorithm which has 1794 * proven to have good distribution properities for strings of ... 1795 * 1796 * Note: NCA_HASH_SZ must be a prime number. 1797 */ 1798 1799 #define NCA_HASH_SZ 8053 1800 #define NCA_HASH_MASK 0xFFFFFF 1801 #define HASH_IX(s, l, hix, hsz) { \ 1802 char *cp = (s); \ 1803 int len = (l); \ 1804 \ 1805 (hix) = 0; \ 1806 while (len-- > 0) { \ 1807 (hix) = (hix) * 33 + *cp++; \ 1808 (hix) &= NCA_HASH_MASK; \ 1809 } \ 1810 (hix) %= (hsz); \ 1811 } 1812 1813 /* 1814 * CTAG hash. 1815 */ 1816 #define NCA_CTAGHASH_SZ 4096 1817 #define CTAGHASH_IX(t, ix) ((ix) = (t) % NCA_CTAGHASH_SZ) 1818 1819 /* 1820 * VNODE hash. 1821 * 1822 * Note: NCA_VNODEHASH_SZ must be a P2Ps() value. 1823 */ 1824 #define NCA_VNODEHASH_SZ 12281 1825 #define VNODEHASH_IX(p, ix) ((ix) = (((uintptr_t)p >> 27) ^ \ 1826 ((uintptr_t)p >> 17) ^ ((uintptr_t)p >> 11) ^ (uintptr_t)p) % \ 1827 ncavnodehash_sz) 1828 1829 extern pgcnt_t nca_ppmax; 1830 extern pgcnt_t nca_vpmax; 1831 extern pgcnt_t nca_pplim; 1832 extern pgcnt_t nca_vplim; 1833 extern pgcnt_t nca_ppmem; 1834 extern pgcnt_t nca_vpmem; 1835 extern ssize_t nca_kbmem; 1836 extern ssize_t nca_spmem; 1837 extern ssize_t nca_ckmem; 1838 extern ssize_t nca_mbmem; 1839 extern ssize_t nca_cbmem; 1840 extern ssize_t nca_lbmem; 1841 extern size_t nca_maxkmem; 1842 extern uint32_t nca_use_segmap; 1843 1844 extern ulong_t nca_hits; 1845 extern ulong_t nca_file; 1846 extern ulong_t nca_ctag; 1847 extern ulong_t nca_miss; 1848 1849 extern ulong_t nca_hit304; 1850 extern ulong_t nca_hitnoV; 1851 extern ulong_t nca_hitnoVfast; 1852 extern ulong_t nca_hitnoVtemp; 1853 1854 extern ulong_t nca_filehits; 1855 extern ulong_t nca_filenoV; 1856 extern ulong_t nca_filenoVfast; 1857 extern ulong_t nca_filemiss; 1858 1859 extern ulong_t nca_missURI; 1860 extern ulong_t nca_missQ; 1861 extern ulong_t nca_missSAFE; 1862 extern ulong_t nca_missnoV; 1863 extern ulong_t nca_missnotcp; 1864 extern ulong_t nca_missfail; 1865 extern ulong_t nca_misstemp; 1866 extern ulong_t nca_missnohash; 1867 extern ulong_t nca_missclean; 1868 extern ulong_t nca_missadvisory; 1869 extern ulong_t nca_missadvNoA; 1870 extern ulong_t nca_missERROR; 1871 1872 extern ulong_t nca_ERROR; 1873 extern ulong_t nca_flushnode; 1874 extern ulong_t nca_replacenode; 1875 extern ulong_t nca_tempnode; 1876 1877 extern ulong_t nca_fail304; 1878 1879 extern ulong_t nca_nocache1; 1880 extern ulong_t nca_nocache2; 1881 extern ulong_t nca_nocache3; 1882 extern ulong_t nca_nocache4; 1883 extern ulong_t nca_nocache5; 1884 extern ulong_t nca_nocache6; 1885 extern ulong_t nca_nocache6nomp; 1886 extern ulong_t nca_nocache7; 1887 extern ulong_t nca_nocache8; 1888 extern ulong_t nca_nocache9; 1889 extern ulong_t nca_nocache10; 1890 extern ulong_t nca_nocache11; 1891 extern ulong_t nca_nocache12; 1892 extern ulong_t nca_nocache13; 1893 extern ulong_t nca_nocache14; 1894 extern ulong_t nca_nocache15; 1895 extern ulong_t nca_nodes; 1896 extern ulong_t nca_desballoc; 1897 1898 extern ulong_t nca_plrucnt; 1899 extern ulong_t nca_vlrucnt; 1900 extern ulong_t nca_rpcall; 1901 extern ulong_t nca_rvcall; 1902 extern ulong_t nca_rpbusy; 1903 extern ulong_t nca_rvbusy; 1904 extern ulong_t nca_rpfail; 1905 extern ulong_t nca_rpempty; 1906 extern ulong_t nca_rvempty; 1907 extern ulong_t nca_rpdone; 1908 extern ulong_t nca_rvdone; 1909 extern ulong_t nca_rmdone; 1910 extern ulong_t nca_rkdone; 1911 extern ulong_t nca_rsdone; 1912 extern ulong_t nca_rndone; 1913 extern ulong_t nca_rpnone; 1914 extern ulong_t nca_rvnone; 1915 extern ulong_t nca_rmnone; 1916 extern ulong_t nca_rknone; 1917 extern ulong_t nca_rsnone; 1918 extern ulong_t nca_rnh; 1919 extern ulong_t nca_ref[]; 1920 extern ulong_t nca_vmap_rpcall; 1921 1922 extern ulong_t nca_node_kmem_fail1; 1923 extern ulong_t nca_node_kmem_fail2; 1924 1925 extern ulong_t doorsrv_nopreempt; 1926 extern ulong_t doorsrv_badconnect; 1927 extern ulong_t doorsrv_invaladvise; 1928 extern ulong_t doorsrv_notupcall; 1929 extern ulong_t doorsrv_badadvise; 1930 extern ulong_t doorsrv_cksum; 1931 extern ulong_t doorsrv_error; 1932 extern ulong_t doorsrv_op; 1933 extern ulong_t doorsrv_badtee; 1934 extern ulong_t doorsrv_badio; 1935 extern ulong_t doorsrv_sz; 1936 1937 extern ulong_t nca_allocfail; 1938 extern ulong_t nca_mapinfail; 1939 extern ulong_t nca_mapinfail1; 1940 extern ulong_t nca_mapinfail2; 1941 extern ulong_t nca_mapinfail3; 1942 1943 extern ulong_t nca_httpd_http; 1944 extern ulong_t nca_httpd_badsz; 1945 extern ulong_t nca_httpd_nosz; 1946 extern ulong_t nca_httpd_filename; 1947 extern ulong_t nca_httpd_filename1; 1948 extern ulong_t nca_httpd_filename2; 1949 extern ulong_t nca_httpd_trailer; 1950 extern ulong_t nca_httpd_preempt; 1951 extern ulong_t nca_httpd_downcall; 1952 extern ulong_t nca_early_downcall; 1953 extern ulong_t nca_httpd_more; 1954 1955 ulong_t nca_logit_noupcall; 1956 1957 ulong_t nca_logit; 1958 ulong_t nca_logit_nomp; 1959 ulong_t nca_logit_no; 1960 ulong_t nca_logit_NULL; 1961 ulong_t nca_logit_fail; 1962 1963 ulong_t nca_logit_flush_NULL1; 1964 ulong_t nca_logit_flush_NULL2; 1965 1966 ulong_t nca_logger_NULL1; 1967 ulong_t nca_logger_NULL2; 1968 1969 ulong_t nca_log_buf_alloc_NULL; 1970 ulong_t nca_log_buf_alloc_fail; 1971 ulong_t nca_log_buf_alloc_part; 1972 1973 ulong_t nca_log_buf_dup; 1974 1975 extern ulong_t nca_upcalls; 1976 extern ulong_t nca_ncafs_upcalls; 1977 1978 extern ulong_t nca_conn_count; 1979 extern ulong_t nca_conn_kmem; 1980 extern ulong_t nca_conn_kmem_fail; 1981 extern ulong_t nca_conn_allocb_fail; 1982 extern ulong_t nca_conn_tw; 1983 extern ulong_t nca_conn_tw1; 1984 extern ulong_t nca_conn_tw2; 1985 extern ulong_t nca_conn_reinit_cnt; 1986 extern ulong_t nca_conn_NULL1; 1987 extern ulong_t nca_conn_Q0; 1988 extern ulong_t nca_conn_FLAGS; 1989 1990 extern ulong_t tcpwronginq; 1991 extern ulong_t ipsendup; 1992 extern ulong_t ipwrongcpu; 1993 extern ulong_t iponcpu; 1994 1995 extern ulong_t nca_tcp_xmit_null; 1996 extern ulong_t nca_tcp_xmit_null1; 1997 1998 extern ulong_t tw_on; 1999 extern ulong_t tw_fire; 2000 extern ulong_t tw_fire1; 2001 extern ulong_t tw_fire2; 2002 extern ulong_t tw_fire3; 2003 extern ulong_t tw_add; 2004 extern ulong_t tw_add1; 2005 extern ulong_t tw_delete; 2006 extern ulong_t tw_reclaim; 2007 extern ulong_t tw_reap; 2008 extern ulong_t tw_reap1; 2009 extern ulong_t tw_reap2; 2010 extern ulong_t tw_reap3; 2011 extern ulong_t tw_reap4; 2012 extern ulong_t tw_reap5; 2013 extern ulong_t tw_timer; 2014 extern ulong_t tw_timer1; 2015 extern ulong_t tw_timer2; 2016 extern ulong_t tw_timer3; 2017 extern ulong_t tw_timer4; 2018 extern ulong_t tw_timer5; 2019 2020 extern ulong_t ti_on; 2021 extern ulong_t ti_fire; 2022 extern ulong_t ti_fire1; 2023 extern ulong_t ti_fire2; 2024 extern ulong_t ti_fire3; 2025 extern ulong_t ti_fire4; 2026 extern ulong_t ti_add; 2027 extern ulong_t ti_add1; 2028 extern ulong_t ti_add2; 2029 extern ulong_t ti_add3; 2030 extern ulong_t ti_add4; 2031 extern ulong_t ti_add5; 2032 extern ulong_t ti_add_reuse; 2033 extern ulong_t ti_delete; 2034 extern ulong_t ti_delete1; 2035 extern ulong_t ti_delete2; 2036 extern ulong_t ti_reap; 2037 extern ulong_t ti_reap1; 2038 extern ulong_t ti_reap2; 2039 extern ulong_t ti_reap3; 2040 extern ulong_t ti_reap4; 2041 extern ulong_t ti_reap5; 2042 extern ulong_t ti_timer; 2043 extern ulong_t ti_timer1; 2044 extern ulong_t ti_timer2; 2045 extern ulong_t ti_timer3; 2046 extern ulong_t ti_timer4; 2047 extern ulong_t ti_timer5; 2048 extern ulong_t ti_timer6; 2049 2050 extern uint32_t nca_conn_q; 2051 extern uint32_t nca_conn_q0; 2052 extern uint32_t nca_conn_req_max_q; 2053 extern uint32_t nca_conn_req_max_q0; 2054 2055 extern char nca_resp_500[]; 2056 extern ssize_t nca_resp_500_sz; 2057 2058 extern uint32_t ncaurihash_sz; 2059 extern uint32_t ncafilehash_sz; 2060 extern uint32_t ncactaghash_sz; 2061 extern uint32_t ncavnodehash_sz; 2062 extern nodef_t *ncaurihash; 2063 extern nodef_t *ncafilehash; 2064 extern nodef_t *ncavnodehash; 2065 extern nodef_t *ncactaghash; 2066 extern char nca_httpd_door_path[]; 2067 extern char nca_httpd_downdoor_path[]; 2068 extern door_handle_t nca_downcall_door_hand; 2069 extern uint32_t n_http_buf_size; 2070 extern door_handle_t nca_httpd_door_hand; 2071 extern sqfan_t nca_miss_fanout1; 2072 extern sqfan_t nca_miss_fanout2; 2073 extern nca_door_t nca_httpd_door; 2074 extern int nca_downdoor_created; 2075 extern int n_http_buf_table; 2076 extern http_buf_table_t *g_http_buf_table; 2077 extern struct kmem_cache *node_cache; 2078 #ifdef DEBUG 2079 extern node_t *nca_http_response(nca_conn_t *, const char *, int, char *, int, 2080 uint_t, const char *); 2081 extern node_t *nca_http_response_node(nca_conn_t *, const char *, int, node_t *, 2082 const char *); 2083 #else 2084 extern node_t *nca_http_response(nca_conn_t *, const char *, int, char *, int, 2085 uint_t); 2086 extern node_t *nca_http_response_node(nca_conn_t *, const char *, int, 2087 node_t *); 2088 #endif 2089 extern void nca_node_del(node_t *); 2090 extern void nca_node_uncache(node_t *); 2091 extern node_t *nca_node_add(char *, int, nodef_t *, int); 2092 extern node_t *node_create(int, boolean_t, char *, int); 2093 extern void nca_reclaim_phys(node_t *, boolean_t, boolean_t); 2094 extern boolean_t nca_http_pmap(node_t *); 2095 extern boolean_t nca_http_vmap(node_t *, int); 2096 extern time_t nca_http_date(char *); 2097 extern node_t *nca_httpd_data(node_t *, nca_conn_t *, nca_io2_t *, int); 2098 extern void nca_missed(node_t *, mblk_t *, nca_squeue_t *); 2099 extern void nca_miss_conn_mv(node_t *, nca_conn_t *); 2100 extern void nca_miss_conn_fr(node_t *, nca_conn_t *); 2101 extern void nca_http_logit(nca_conn_t *); 2102 extern void nca_http_error(nca_conn_t *); 2103 extern void nca_node_xmit(node_t *, nca_conn_t *); 2104 2105 /* 2106 * It contains data for forwarding data to application programs. 2107 * For door case, doorhandle is the upcall door handle and listenerq 2108 * is NULL; for ncafs, listenerq is the upcall listener queue and 2109 * doorhandle is NULL. listenning is always B_TRUE for door and it is 2110 * B_TRUE for ncafs only after the listen system call has been issued. 2111 */ 2112 typedef struct nca_listener_s { 2113 boolean_t listenning; /* is ready for accepting connection */ 2114 door_handle_t doorhandle; /* door handle or NULL for ncafs */ 2115 queue_t *listenerq; /* upcall queue or NULL for door */ 2116 } nca_listener_t; 2117 2118 /* 2119 * Returned values of nca_isnca_data. 2120 * NOT_NCA_DATA: not NCA data. 2121 * NCA_DATA_ANY_ADDR: NCA data, matches INADDR_ANY. 2122 * NCA_DATA_ADDR: NCA data, match an IP address. 2123 */ 2124 #define NOT_NCA_DATA 0 2125 #define NCA_DATA_ANY_ADDR 1 2126 #define NCA_DATA_ADDR 2 2127 2128 extern uint32_t ipportrehashcount1; 2129 extern uint32_t ipportrehashcount2; 2130 extern uint32_t ipportbucketcnt; 2131 extern uint32_t ipporttablesize; 2132 extern uint32_t ncafscount; 2133 extern uint32_t doorcount; 2134 extern int ip_virtual_hosting; 2135 2136 extern nca_listener_t *nca_listener_find(ipaddr_t, uint16_t); 2137 extern nca_listener_t *nca_listener_find2(ipaddr_t, uint16_t); 2138 extern int nca_isnca_data(ipaddr_t, uint16_t); 2139 extern int nca_listener_add(ipaddr_t, uint16_t, void *, boolean_t); 2140 extern int nca_listener_del(ipaddr_t, uint16_t); 2141 extern void nca_listener_report(mblk_t *); 2142 2143 #ifdef __cplusplus 2144 } 2145 #endif 2146 2147 #endif /* _INET_NCA_H */ 2148