1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * V4L2 fwnode binding parsing library
4 *
5 * The origins of the V4L2 fwnode library are in V4L2 OF library that
6 * formerly was located in v4l2-of.c.
7 *
8 * Copyright (c) 2016 Intel Corporation.
9 * Author: Sakari Ailus <sakari.ailus@linux.intel.com>
10 *
11 * Copyright (C) 2012 - 2013 Samsung Electronics Co., Ltd.
12 * Author: Sylwester Nawrocki <s.nawrocki@samsung.com>
13 *
14 * Copyright (C) 2012 Renesas Electronics Corp.
15 * Author: Guennadi Liakhovetski <g.liakhovetski@gmx.de>
16 */
17 #include <linux/acpi.h>
18 #include <linux/kernel.h>
19 #include <linux/mm.h>
20 #include <linux/module.h>
21 #include <linux/of.h>
22 #include <linux/property.h>
23 #include <linux/slab.h>
24 #include <linux/string.h>
25 #include <linux/types.h>
26
27 #include <media/v4l2-async.h>
28 #include <media/v4l2-fwnode.h>
29 #include <media/v4l2-subdev.h>
30
31 #include "v4l2-subdev-priv.h"
32
33 static const struct v4l2_fwnode_bus_conv {
34 enum v4l2_fwnode_bus_type fwnode_bus_type;
35 enum v4l2_mbus_type mbus_type;
36 const char *name;
37 } buses[] = {
38 {
39 V4L2_FWNODE_BUS_TYPE_GUESS,
40 V4L2_MBUS_UNKNOWN,
41 "not specified",
42 }, {
43 V4L2_FWNODE_BUS_TYPE_CSI2_CPHY,
44 V4L2_MBUS_CSI2_CPHY,
45 "MIPI CSI-2 C-PHY",
46 }, {
47 V4L2_FWNODE_BUS_TYPE_CSI1,
48 V4L2_MBUS_CSI1,
49 "MIPI CSI-1",
50 }, {
51 V4L2_FWNODE_BUS_TYPE_CCP2,
52 V4L2_MBUS_CCP2,
53 "compact camera port 2",
54 }, {
55 V4L2_FWNODE_BUS_TYPE_CSI2_DPHY,
56 V4L2_MBUS_CSI2_DPHY,
57 "MIPI CSI-2 D-PHY",
58 }, {
59 V4L2_FWNODE_BUS_TYPE_PARALLEL,
60 V4L2_MBUS_PARALLEL,
61 "parallel",
62 }, {
63 V4L2_FWNODE_BUS_TYPE_BT656,
64 V4L2_MBUS_BT656,
65 "Bt.656",
66 }, {
67 V4L2_FWNODE_BUS_TYPE_DPI,
68 V4L2_MBUS_DPI,
69 "DPI",
70 }
71 };
72
73 static const struct v4l2_fwnode_bus_conv *
get_v4l2_fwnode_bus_conv_by_fwnode_bus(enum v4l2_fwnode_bus_type type)74 get_v4l2_fwnode_bus_conv_by_fwnode_bus(enum v4l2_fwnode_bus_type type)
75 {
76 unsigned int i;
77
78 for (i = 0; i < ARRAY_SIZE(buses); i++)
79 if (buses[i].fwnode_bus_type == type)
80 return &buses[i];
81
82 return NULL;
83 }
84
85 static enum v4l2_mbus_type
v4l2_fwnode_bus_type_to_mbus(enum v4l2_fwnode_bus_type type)86 v4l2_fwnode_bus_type_to_mbus(enum v4l2_fwnode_bus_type type)
87 {
88 const struct v4l2_fwnode_bus_conv *conv =
89 get_v4l2_fwnode_bus_conv_by_fwnode_bus(type);
90
91 return conv ? conv->mbus_type : V4L2_MBUS_INVALID;
92 }
93
94 static const char *
v4l2_fwnode_bus_type_to_string(enum v4l2_fwnode_bus_type type)95 v4l2_fwnode_bus_type_to_string(enum v4l2_fwnode_bus_type type)
96 {
97 const struct v4l2_fwnode_bus_conv *conv =
98 get_v4l2_fwnode_bus_conv_by_fwnode_bus(type);
99
100 return conv ? conv->name : "not found";
101 }
102
103 static const struct v4l2_fwnode_bus_conv *
get_v4l2_fwnode_bus_conv_by_mbus(enum v4l2_mbus_type type)104 get_v4l2_fwnode_bus_conv_by_mbus(enum v4l2_mbus_type type)
105 {
106 unsigned int i;
107
108 for (i = 0; i < ARRAY_SIZE(buses); i++)
109 if (buses[i].mbus_type == type)
110 return &buses[i];
111
112 return NULL;
113 }
114
115 static const char *
v4l2_fwnode_mbus_type_to_string(enum v4l2_mbus_type type)116 v4l2_fwnode_mbus_type_to_string(enum v4l2_mbus_type type)
117 {
118 const struct v4l2_fwnode_bus_conv *conv =
119 get_v4l2_fwnode_bus_conv_by_mbus(type);
120
121 return conv ? conv->name : "not found";
122 }
123
v4l2_fwnode_endpoint_parse_csi2_bus(struct fwnode_handle * fwnode,struct v4l2_fwnode_endpoint * vep,enum v4l2_mbus_type bus_type)124 static int v4l2_fwnode_endpoint_parse_csi2_bus(struct fwnode_handle *fwnode,
125 struct v4l2_fwnode_endpoint *vep,
126 enum v4l2_mbus_type bus_type)
127 {
128 struct v4l2_mbus_config_mipi_csi2 *bus = &vep->bus.mipi_csi2;
129 bool have_clk_lane = false, have_data_lanes = false,
130 have_lane_polarities = false;
131 unsigned int flags = 0, lanes_used = 0;
132 u32 array[1 + V4L2_MBUS_CSI2_MAX_DATA_LANES];
133 u32 clock_lane = 0;
134 unsigned int num_data_lanes = 0;
135 bool use_default_lane_mapping = false;
136 unsigned int i;
137 u32 v;
138 int rval;
139
140 if (bus_type == V4L2_MBUS_CSI2_DPHY ||
141 bus_type == V4L2_MBUS_CSI2_CPHY) {
142 use_default_lane_mapping = true;
143
144 num_data_lanes = min_t(u32, bus->num_data_lanes,
145 V4L2_MBUS_CSI2_MAX_DATA_LANES);
146
147 clock_lane = bus->clock_lane;
148 if (clock_lane)
149 use_default_lane_mapping = false;
150
151 for (i = 0; i < num_data_lanes; i++) {
152 array[i] = bus->data_lanes[i];
153 if (array[i])
154 use_default_lane_mapping = false;
155 }
156
157 if (use_default_lane_mapping)
158 pr_debug("no lane mapping given, using defaults\n");
159 }
160
161 rval = fwnode_property_count_u32(fwnode, "data-lanes");
162 if (rval > 0) {
163 num_data_lanes =
164 min_t(int, V4L2_MBUS_CSI2_MAX_DATA_LANES, rval);
165
166 fwnode_property_read_u32_array(fwnode, "data-lanes", array,
167 num_data_lanes);
168
169 have_data_lanes = true;
170 if (use_default_lane_mapping) {
171 pr_debug("data-lanes property exists; disabling default mapping\n");
172 use_default_lane_mapping = false;
173 }
174 }
175
176 for (i = 0; i < num_data_lanes; i++) {
177 if (lanes_used & BIT(array[i])) {
178 if (have_data_lanes || !use_default_lane_mapping)
179 pr_warn("duplicated lane %u in data-lanes, using defaults\n",
180 array[i]);
181 use_default_lane_mapping = true;
182 }
183 lanes_used |= BIT(array[i]);
184
185 if (have_data_lanes)
186 pr_debug("lane %u position %u\n", i, array[i]);
187 }
188
189 rval = fwnode_property_count_u32(fwnode, "lane-polarities");
190 if (rval > 0) {
191 if (rval != 1 + num_data_lanes /* clock+data */) {
192 pr_warn("invalid number of lane-polarities entries (need %u, got %u)\n",
193 1 + num_data_lanes, rval);
194 return -EINVAL;
195 }
196
197 have_lane_polarities = true;
198 }
199
200 if (!fwnode_property_read_u32(fwnode, "clock-lanes", &v)) {
201 clock_lane = v;
202 pr_debug("clock lane position %u\n", v);
203 have_clk_lane = true;
204 }
205
206 if (have_clk_lane && lanes_used & BIT(clock_lane) &&
207 !use_default_lane_mapping) {
208 pr_warn("duplicated lane %u in clock-lanes, using defaults\n",
209 v);
210 use_default_lane_mapping = true;
211 }
212
213 if (fwnode_property_present(fwnode, "clock-noncontinuous")) {
214 flags |= V4L2_MBUS_CSI2_NONCONTINUOUS_CLOCK;
215 pr_debug("non-continuous clock\n");
216 }
217
218 if (bus_type == V4L2_MBUS_CSI2_DPHY ||
219 bus_type == V4L2_MBUS_CSI2_CPHY ||
220 lanes_used || have_clk_lane || flags) {
221 /* Only D-PHY has a clock lane. */
222 unsigned int dfl_data_lane_index =
223 bus_type == V4L2_MBUS_CSI2_DPHY;
224
225 bus->flags = flags;
226 if (bus_type == V4L2_MBUS_UNKNOWN)
227 vep->bus_type = V4L2_MBUS_CSI2_DPHY;
228 bus->num_data_lanes = num_data_lanes;
229
230 if (use_default_lane_mapping) {
231 bus->clock_lane = 0;
232 for (i = 0; i < num_data_lanes; i++)
233 bus->data_lanes[i] = dfl_data_lane_index + i;
234 } else {
235 bus->clock_lane = clock_lane;
236 for (i = 0; i < num_data_lanes; i++)
237 bus->data_lanes[i] = array[i];
238 }
239
240 if (have_lane_polarities) {
241 fwnode_property_read_u32_array(fwnode,
242 "lane-polarities", array,
243 1 + num_data_lanes);
244
245 for (i = 0; i < 1 + num_data_lanes; i++) {
246 bus->lane_polarities[i] = array[i];
247 pr_debug("lane %u polarity %sinverted",
248 i, array[i] ? "" : "not ");
249 }
250 } else {
251 pr_debug("no lane polarities defined, assuming not inverted\n");
252 }
253 }
254
255 return 0;
256 }
257
258 #define PARALLEL_MBUS_FLAGS (V4L2_MBUS_HSYNC_ACTIVE_HIGH | \
259 V4L2_MBUS_HSYNC_ACTIVE_LOW | \
260 V4L2_MBUS_VSYNC_ACTIVE_HIGH | \
261 V4L2_MBUS_VSYNC_ACTIVE_LOW | \
262 V4L2_MBUS_FIELD_EVEN_HIGH | \
263 V4L2_MBUS_FIELD_EVEN_LOW)
264
265 static void
v4l2_fwnode_endpoint_parse_parallel_bus(struct fwnode_handle * fwnode,struct v4l2_fwnode_endpoint * vep,enum v4l2_mbus_type bus_type)266 v4l2_fwnode_endpoint_parse_parallel_bus(struct fwnode_handle *fwnode,
267 struct v4l2_fwnode_endpoint *vep,
268 enum v4l2_mbus_type bus_type)
269 {
270 struct v4l2_mbus_config_parallel *bus = &vep->bus.parallel;
271 unsigned int flags = 0;
272 u32 v;
273
274 if (bus_type == V4L2_MBUS_PARALLEL || bus_type == V4L2_MBUS_BT656)
275 flags = bus->flags;
276
277 if (!fwnode_property_read_u32(fwnode, "hsync-active", &v)) {
278 flags &= ~(V4L2_MBUS_HSYNC_ACTIVE_HIGH |
279 V4L2_MBUS_HSYNC_ACTIVE_LOW);
280 flags |= v ? V4L2_MBUS_HSYNC_ACTIVE_HIGH :
281 V4L2_MBUS_HSYNC_ACTIVE_LOW;
282 pr_debug("hsync-active %s\n", v ? "high" : "low");
283 }
284
285 if (!fwnode_property_read_u32(fwnode, "vsync-active", &v)) {
286 flags &= ~(V4L2_MBUS_VSYNC_ACTIVE_HIGH |
287 V4L2_MBUS_VSYNC_ACTIVE_LOW);
288 flags |= v ? V4L2_MBUS_VSYNC_ACTIVE_HIGH :
289 V4L2_MBUS_VSYNC_ACTIVE_LOW;
290 pr_debug("vsync-active %s\n", v ? "high" : "low");
291 }
292
293 if (!fwnode_property_read_u32(fwnode, "field-even-active", &v)) {
294 flags &= ~(V4L2_MBUS_FIELD_EVEN_HIGH |
295 V4L2_MBUS_FIELD_EVEN_LOW);
296 flags |= v ? V4L2_MBUS_FIELD_EVEN_HIGH :
297 V4L2_MBUS_FIELD_EVEN_LOW;
298 pr_debug("field-even-active %s\n", v ? "high" : "low");
299 }
300
301 if (!fwnode_property_read_u32(fwnode, "pclk-sample", &v)) {
302 flags &= ~(V4L2_MBUS_PCLK_SAMPLE_RISING |
303 V4L2_MBUS_PCLK_SAMPLE_FALLING |
304 V4L2_MBUS_PCLK_SAMPLE_DUALEDGE);
305 switch (v) {
306 case 0:
307 flags |= V4L2_MBUS_PCLK_SAMPLE_FALLING;
308 pr_debug("pclk-sample low\n");
309 break;
310 case 1:
311 flags |= V4L2_MBUS_PCLK_SAMPLE_RISING;
312 pr_debug("pclk-sample high\n");
313 break;
314 case 2:
315 flags |= V4L2_MBUS_PCLK_SAMPLE_DUALEDGE;
316 pr_debug("pclk-sample dual edge\n");
317 break;
318 default:
319 pr_warn("invalid argument for pclk-sample");
320 break;
321 }
322 }
323
324 if (!fwnode_property_read_u32(fwnode, "data-active", &v)) {
325 flags &= ~(V4L2_MBUS_DATA_ACTIVE_HIGH |
326 V4L2_MBUS_DATA_ACTIVE_LOW);
327 flags |= v ? V4L2_MBUS_DATA_ACTIVE_HIGH :
328 V4L2_MBUS_DATA_ACTIVE_LOW;
329 pr_debug("data-active %s\n", v ? "high" : "low");
330 }
331
332 if (fwnode_property_present(fwnode, "slave-mode")) {
333 pr_debug("slave mode\n");
334 flags &= ~V4L2_MBUS_MASTER;
335 flags |= V4L2_MBUS_SLAVE;
336 } else {
337 flags &= ~V4L2_MBUS_SLAVE;
338 flags |= V4L2_MBUS_MASTER;
339 }
340
341 if (!fwnode_property_read_u32(fwnode, "bus-width", &v)) {
342 bus->bus_width = v;
343 pr_debug("bus-width %u\n", v);
344 }
345
346 if (!fwnode_property_read_u32(fwnode, "data-shift", &v)) {
347 bus->data_shift = v;
348 pr_debug("data-shift %u\n", v);
349 }
350
351 if (!fwnode_property_read_u32(fwnode, "sync-on-green-active", &v)) {
352 flags &= ~(V4L2_MBUS_VIDEO_SOG_ACTIVE_HIGH |
353 V4L2_MBUS_VIDEO_SOG_ACTIVE_LOW);
354 flags |= v ? V4L2_MBUS_VIDEO_SOG_ACTIVE_HIGH :
355 V4L2_MBUS_VIDEO_SOG_ACTIVE_LOW;
356 pr_debug("sync-on-green-active %s\n", v ? "high" : "low");
357 }
358
359 if (!fwnode_property_read_u32(fwnode, "data-enable-active", &v)) {
360 flags &= ~(V4L2_MBUS_DATA_ENABLE_HIGH |
361 V4L2_MBUS_DATA_ENABLE_LOW);
362 flags |= v ? V4L2_MBUS_DATA_ENABLE_HIGH :
363 V4L2_MBUS_DATA_ENABLE_LOW;
364 pr_debug("data-enable-active %s\n", v ? "high" : "low");
365 }
366
367 switch (bus_type) {
368 default:
369 bus->flags = flags;
370 if (flags & PARALLEL_MBUS_FLAGS)
371 vep->bus_type = V4L2_MBUS_PARALLEL;
372 else
373 vep->bus_type = V4L2_MBUS_BT656;
374 break;
375 case V4L2_MBUS_PARALLEL:
376 vep->bus_type = V4L2_MBUS_PARALLEL;
377 bus->flags = flags;
378 break;
379 case V4L2_MBUS_BT656:
380 vep->bus_type = V4L2_MBUS_BT656;
381 bus->flags = flags & ~PARALLEL_MBUS_FLAGS;
382 break;
383 }
384 }
385
386 static void
v4l2_fwnode_endpoint_parse_csi1_bus(struct fwnode_handle * fwnode,struct v4l2_fwnode_endpoint * vep,enum v4l2_mbus_type bus_type)387 v4l2_fwnode_endpoint_parse_csi1_bus(struct fwnode_handle *fwnode,
388 struct v4l2_fwnode_endpoint *vep,
389 enum v4l2_mbus_type bus_type)
390 {
391 struct v4l2_mbus_config_mipi_csi1 *bus = &vep->bus.mipi_csi1;
392 u32 v;
393
394 if (!fwnode_property_read_u32(fwnode, "clock-inv", &v)) {
395 bus->clock_inv = v;
396 pr_debug("clock-inv %u\n", v);
397 }
398
399 if (!fwnode_property_read_u32(fwnode, "strobe", &v)) {
400 bus->strobe = v;
401 pr_debug("strobe %u\n", v);
402 }
403
404 if (!fwnode_property_read_u32(fwnode, "data-lanes", &v)) {
405 bus->data_lane = v;
406 pr_debug("data-lanes %u\n", v);
407 }
408
409 if (!fwnode_property_read_u32(fwnode, "clock-lanes", &v)) {
410 bus->clock_lane = v;
411 pr_debug("clock-lanes %u\n", v);
412 }
413
414 if (bus_type == V4L2_MBUS_CCP2)
415 vep->bus_type = V4L2_MBUS_CCP2;
416 else
417 vep->bus_type = V4L2_MBUS_CSI1;
418 }
419
__v4l2_fwnode_endpoint_parse(struct fwnode_handle * fwnode,struct v4l2_fwnode_endpoint * vep)420 static int __v4l2_fwnode_endpoint_parse(struct fwnode_handle *fwnode,
421 struct v4l2_fwnode_endpoint *vep)
422 {
423 u32 bus_type = V4L2_FWNODE_BUS_TYPE_GUESS;
424 enum v4l2_mbus_type mbus_type;
425 int rval;
426
427 pr_debug("===== begin parsing endpoint %pfw\n", fwnode);
428
429 fwnode_property_read_u32(fwnode, "bus-type", &bus_type);
430 pr_debug("fwnode video bus type %s (%u), mbus type %s (%u)\n",
431 v4l2_fwnode_bus_type_to_string(bus_type), bus_type,
432 v4l2_fwnode_mbus_type_to_string(vep->bus_type),
433 vep->bus_type);
434 mbus_type = v4l2_fwnode_bus_type_to_mbus(bus_type);
435 if (mbus_type == V4L2_MBUS_INVALID) {
436 pr_debug("unsupported bus type %u\n", bus_type);
437 return -EINVAL;
438 }
439
440 if (vep->bus_type != V4L2_MBUS_UNKNOWN) {
441 if (mbus_type != V4L2_MBUS_UNKNOWN &&
442 vep->bus_type != mbus_type) {
443 pr_debug("expecting bus type %s\n",
444 v4l2_fwnode_mbus_type_to_string(vep->bus_type));
445 return -ENXIO;
446 }
447 } else {
448 vep->bus_type = mbus_type;
449 }
450
451 switch (vep->bus_type) {
452 case V4L2_MBUS_UNKNOWN:
453 rval = v4l2_fwnode_endpoint_parse_csi2_bus(fwnode, vep,
454 V4L2_MBUS_UNKNOWN);
455 if (rval)
456 return rval;
457
458 if (vep->bus_type == V4L2_MBUS_UNKNOWN)
459 v4l2_fwnode_endpoint_parse_parallel_bus(fwnode, vep,
460 V4L2_MBUS_UNKNOWN);
461
462 pr_debug("assuming media bus type %s (%u)\n",
463 v4l2_fwnode_mbus_type_to_string(vep->bus_type),
464 vep->bus_type);
465
466 break;
467 case V4L2_MBUS_CCP2:
468 case V4L2_MBUS_CSI1:
469 v4l2_fwnode_endpoint_parse_csi1_bus(fwnode, vep, vep->bus_type);
470
471 break;
472 case V4L2_MBUS_CSI2_DPHY:
473 case V4L2_MBUS_CSI2_CPHY:
474 rval = v4l2_fwnode_endpoint_parse_csi2_bus(fwnode, vep,
475 vep->bus_type);
476 if (rval)
477 return rval;
478
479 break;
480 case V4L2_MBUS_PARALLEL:
481 case V4L2_MBUS_BT656:
482 v4l2_fwnode_endpoint_parse_parallel_bus(fwnode, vep,
483 vep->bus_type);
484
485 break;
486 default:
487 pr_warn("unsupported bus type %u\n", mbus_type);
488 return -EINVAL;
489 }
490
491 fwnode_graph_parse_endpoint(fwnode, &vep->base);
492
493 return 0;
494 }
495
v4l2_fwnode_endpoint_parse(struct fwnode_handle * fwnode,struct v4l2_fwnode_endpoint * vep)496 int v4l2_fwnode_endpoint_parse(struct fwnode_handle *fwnode,
497 struct v4l2_fwnode_endpoint *vep)
498 {
499 int ret;
500
501 ret = __v4l2_fwnode_endpoint_parse(fwnode, vep);
502
503 pr_debug("===== end parsing endpoint %pfw\n", fwnode);
504
505 return ret;
506 }
507 EXPORT_SYMBOL_GPL(v4l2_fwnode_endpoint_parse);
508
v4l2_fwnode_endpoint_free(struct v4l2_fwnode_endpoint * vep)509 void v4l2_fwnode_endpoint_free(struct v4l2_fwnode_endpoint *vep)
510 {
511 if (IS_ERR_OR_NULL(vep))
512 return;
513
514 kfree(vep->link_frequencies);
515 vep->link_frequencies = NULL;
516 }
517 EXPORT_SYMBOL_GPL(v4l2_fwnode_endpoint_free);
518
v4l2_fwnode_endpoint_alloc_parse(struct fwnode_handle * fwnode,struct v4l2_fwnode_endpoint * vep)519 int v4l2_fwnode_endpoint_alloc_parse(struct fwnode_handle *fwnode,
520 struct v4l2_fwnode_endpoint *vep)
521 {
522 int rval;
523
524 rval = __v4l2_fwnode_endpoint_parse(fwnode, vep);
525 if (rval < 0)
526 return rval;
527
528 rval = fwnode_property_count_u64(fwnode, "link-frequencies");
529 if (rval > 0) {
530 unsigned int i;
531
532 vep->link_frequencies =
533 kmalloc_array(rval, sizeof(*vep->link_frequencies),
534 GFP_KERNEL);
535 if (!vep->link_frequencies)
536 return -ENOMEM;
537
538 vep->nr_of_link_frequencies = rval;
539
540 rval = fwnode_property_read_u64_array(fwnode,
541 "link-frequencies",
542 vep->link_frequencies,
543 vep->nr_of_link_frequencies);
544 if (rval < 0) {
545 v4l2_fwnode_endpoint_free(vep);
546 return rval;
547 }
548
549 for (i = 0; i < vep->nr_of_link_frequencies; i++)
550 pr_debug("link-frequencies %u value %llu\n", i,
551 vep->link_frequencies[i]);
552 }
553
554 pr_debug("===== end parsing endpoint %pfw\n", fwnode);
555
556 return 0;
557 }
558 EXPORT_SYMBOL_GPL(v4l2_fwnode_endpoint_alloc_parse);
559
v4l2_fwnode_parse_link(struct fwnode_handle * fwnode,struct v4l2_fwnode_link * link)560 int v4l2_fwnode_parse_link(struct fwnode_handle *fwnode,
561 struct v4l2_fwnode_link *link)
562 {
563 struct fwnode_endpoint fwep;
564
565 memset(link, 0, sizeof(*link));
566
567 fwnode_graph_parse_endpoint(fwnode, &fwep);
568 link->local_id = fwep.id;
569 link->local_port = fwep.port;
570 link->local_node = fwnode_graph_get_port_parent(fwnode);
571 if (!link->local_node)
572 return -ENOLINK;
573
574 fwnode = fwnode_graph_get_remote_endpoint(fwnode);
575 if (!fwnode)
576 goto err_put_local_node;
577
578 fwnode_graph_parse_endpoint(fwnode, &fwep);
579 link->remote_id = fwep.id;
580 link->remote_port = fwep.port;
581 link->remote_node = fwnode_graph_get_port_parent(fwnode);
582 if (!link->remote_node)
583 goto err_put_remote_endpoint;
584
585 return 0;
586
587 err_put_remote_endpoint:
588 fwnode_handle_put(fwnode);
589
590 err_put_local_node:
591 fwnode_handle_put(link->local_node);
592
593 return -ENOLINK;
594 }
595 EXPORT_SYMBOL_GPL(v4l2_fwnode_parse_link);
596
v4l2_fwnode_put_link(struct v4l2_fwnode_link * link)597 void v4l2_fwnode_put_link(struct v4l2_fwnode_link *link)
598 {
599 fwnode_handle_put(link->local_node);
600 fwnode_handle_put(link->remote_node);
601 }
602 EXPORT_SYMBOL_GPL(v4l2_fwnode_put_link);
603
604 static const struct v4l2_fwnode_connector_conv {
605 enum v4l2_connector_type type;
606 const char *compatible;
607 } connectors[] = {
608 {
609 .type = V4L2_CONN_COMPOSITE,
610 .compatible = "composite-video-connector",
611 }, {
612 .type = V4L2_CONN_SVIDEO,
613 .compatible = "svideo-connector",
614 },
615 };
616
617 static enum v4l2_connector_type
v4l2_fwnode_string_to_connector_type(const char * con_str)618 v4l2_fwnode_string_to_connector_type(const char *con_str)
619 {
620 unsigned int i;
621
622 for (i = 0; i < ARRAY_SIZE(connectors); i++)
623 if (!strcmp(con_str, connectors[i].compatible))
624 return connectors[i].type;
625
626 return V4L2_CONN_UNKNOWN;
627 }
628
629 static void
v4l2_fwnode_connector_parse_analog(struct fwnode_handle * fwnode,struct v4l2_fwnode_connector * vc)630 v4l2_fwnode_connector_parse_analog(struct fwnode_handle *fwnode,
631 struct v4l2_fwnode_connector *vc)
632 {
633 u32 stds;
634 int ret;
635
636 ret = fwnode_property_read_u32(fwnode, "sdtv-standards", &stds);
637
638 /* The property is optional. */
639 vc->connector.analog.sdtv_stds = ret ? V4L2_STD_ALL : stds;
640 }
641
v4l2_fwnode_connector_free(struct v4l2_fwnode_connector * connector)642 void v4l2_fwnode_connector_free(struct v4l2_fwnode_connector *connector)
643 {
644 struct v4l2_connector_link *link, *tmp;
645
646 if (IS_ERR_OR_NULL(connector) || connector->type == V4L2_CONN_UNKNOWN)
647 return;
648
649 list_for_each_entry_safe(link, tmp, &connector->links, head) {
650 v4l2_fwnode_put_link(&link->fwnode_link);
651 list_del(&link->head);
652 kfree(link);
653 }
654
655 kfree(connector->label);
656 connector->label = NULL;
657 connector->type = V4L2_CONN_UNKNOWN;
658 }
659 EXPORT_SYMBOL_GPL(v4l2_fwnode_connector_free);
660
661 static enum v4l2_connector_type
v4l2_fwnode_get_connector_type(struct fwnode_handle * fwnode)662 v4l2_fwnode_get_connector_type(struct fwnode_handle *fwnode)
663 {
664 const char *type_name;
665 int err;
666
667 if (!fwnode)
668 return V4L2_CONN_UNKNOWN;
669
670 /* The connector-type is stored within the compatible string. */
671 err = fwnode_property_read_string(fwnode, "compatible", &type_name);
672 if (err)
673 return V4L2_CONN_UNKNOWN;
674
675 return v4l2_fwnode_string_to_connector_type(type_name);
676 }
677
v4l2_fwnode_connector_parse(struct fwnode_handle * fwnode,struct v4l2_fwnode_connector * connector)678 int v4l2_fwnode_connector_parse(struct fwnode_handle *fwnode,
679 struct v4l2_fwnode_connector *connector)
680 {
681 struct fwnode_handle *connector_node;
682 enum v4l2_connector_type connector_type;
683 const char *label;
684 int err;
685
686 if (!fwnode)
687 return -EINVAL;
688
689 memset(connector, 0, sizeof(*connector));
690
691 INIT_LIST_HEAD(&connector->links);
692
693 connector_node = fwnode_graph_get_port_parent(fwnode);
694 connector_type = v4l2_fwnode_get_connector_type(connector_node);
695 if (connector_type == V4L2_CONN_UNKNOWN) {
696 fwnode_handle_put(connector_node);
697 connector_node = fwnode_graph_get_remote_port_parent(fwnode);
698 connector_type = v4l2_fwnode_get_connector_type(connector_node);
699 }
700
701 if (connector_type == V4L2_CONN_UNKNOWN) {
702 pr_err("Unknown connector type\n");
703 err = -ENOTCONN;
704 goto out;
705 }
706
707 connector->type = connector_type;
708 connector->name = fwnode_get_name(connector_node);
709 err = fwnode_property_read_string(connector_node, "label", &label);
710 connector->label = err ? NULL : kstrdup_const(label, GFP_KERNEL);
711
712 /* Parse the connector specific properties. */
713 switch (connector->type) {
714 case V4L2_CONN_COMPOSITE:
715 case V4L2_CONN_SVIDEO:
716 v4l2_fwnode_connector_parse_analog(connector_node, connector);
717 break;
718 /* Avoid compiler warnings */
719 case V4L2_CONN_UNKNOWN:
720 break;
721 }
722
723 out:
724 fwnode_handle_put(connector_node);
725
726 return err;
727 }
728 EXPORT_SYMBOL_GPL(v4l2_fwnode_connector_parse);
729
v4l2_fwnode_connector_add_link(struct fwnode_handle * fwnode,struct v4l2_fwnode_connector * connector)730 int v4l2_fwnode_connector_add_link(struct fwnode_handle *fwnode,
731 struct v4l2_fwnode_connector *connector)
732 {
733 struct fwnode_handle *connector_ep;
734 struct v4l2_connector_link *link;
735 int err;
736
737 if (!fwnode || !connector || connector->type == V4L2_CONN_UNKNOWN)
738 return -EINVAL;
739
740 connector_ep = fwnode_graph_get_remote_endpoint(fwnode);
741 if (!connector_ep)
742 return -ENOTCONN;
743
744 link = kzalloc(sizeof(*link), GFP_KERNEL);
745 if (!link) {
746 err = -ENOMEM;
747 goto err;
748 }
749
750 err = v4l2_fwnode_parse_link(connector_ep, &link->fwnode_link);
751 if (err)
752 goto err;
753
754 fwnode_handle_put(connector_ep);
755
756 list_add(&link->head, &connector->links);
757 connector->nr_of_links++;
758
759 return 0;
760
761 err:
762 kfree(link);
763 fwnode_handle_put(connector_ep);
764
765 return err;
766 }
767 EXPORT_SYMBOL_GPL(v4l2_fwnode_connector_add_link);
768
v4l2_fwnode_device_parse(struct device * dev,struct v4l2_fwnode_device_properties * props)769 int v4l2_fwnode_device_parse(struct device *dev,
770 struct v4l2_fwnode_device_properties *props)
771 {
772 struct fwnode_handle *fwnode = dev_fwnode(dev);
773 u32 val;
774 int ret;
775
776 memset(props, 0, sizeof(*props));
777
778 props->orientation = V4L2_FWNODE_PROPERTY_UNSET;
779 ret = fwnode_property_read_u32(fwnode, "orientation", &val);
780 if (!ret) {
781 switch (val) {
782 case V4L2_FWNODE_ORIENTATION_FRONT:
783 case V4L2_FWNODE_ORIENTATION_BACK:
784 case V4L2_FWNODE_ORIENTATION_EXTERNAL:
785 break;
786 default:
787 dev_warn(dev, "Unsupported device orientation: %u\n", val);
788 return -EINVAL;
789 }
790
791 props->orientation = val;
792 dev_dbg(dev, "device orientation: %u\n", val);
793 }
794
795 props->rotation = V4L2_FWNODE_PROPERTY_UNSET;
796 ret = fwnode_property_read_u32(fwnode, "rotation", &val);
797 if (!ret) {
798 if (val >= 360) {
799 dev_warn(dev, "Unsupported device rotation: %u\n", val);
800 return -EINVAL;
801 }
802
803 props->rotation = val;
804 dev_dbg(dev, "device rotation: %u\n", val);
805 }
806
807 return 0;
808 }
809 EXPORT_SYMBOL_GPL(v4l2_fwnode_device_parse);
810
811 /*
812 * v4l2_fwnode_reference_parse - parse references for async sub-devices
813 * @dev: the device node the properties of which are parsed for references
814 * @notifier: the async notifier where the async subdevs will be added
815 * @prop: the name of the property
816 *
817 * Return: 0 on success
818 * -ENOENT if no entries were found
819 * -ENOMEM if memory allocation failed
820 * -EINVAL if property parsing failed
821 */
v4l2_fwnode_reference_parse(struct device * dev,struct v4l2_async_notifier * notifier,const char * prop)822 static int v4l2_fwnode_reference_parse(struct device *dev,
823 struct v4l2_async_notifier *notifier,
824 const char *prop)
825 {
826 struct fwnode_reference_args args;
827 unsigned int index;
828 int ret;
829
830 for (index = 0;
831 !(ret = fwnode_property_get_reference_args(dev_fwnode(dev), prop,
832 NULL, 0, index, &args));
833 index++) {
834 struct v4l2_async_connection *asd;
835
836 asd = v4l2_async_nf_add_fwnode(notifier, args.fwnode,
837 struct v4l2_async_connection);
838 fwnode_handle_put(args.fwnode);
839 if (IS_ERR(asd)) {
840 /* not an error if asd already exists */
841 if (PTR_ERR(asd) == -EEXIST)
842 continue;
843
844 return PTR_ERR(asd);
845 }
846 }
847
848 /* -ENOENT here means successful parsing */
849 if (ret != -ENOENT)
850 return ret;
851
852 /* Return -ENOENT if no references were found */
853 return index ? 0 : -ENOENT;
854 }
855
856 /*
857 * v4l2_fwnode_reference_get_int_prop - parse a reference with integer
858 * arguments
859 * @fwnode: fwnode to read @prop from
860 * @notifier: notifier for @dev
861 * @prop: the name of the property
862 * @index: the index of the reference to get
863 * @props: the array of integer property names
864 * @nprops: the number of integer property names in @nprops
865 *
866 * First find an fwnode referred to by the reference at @index in @prop.
867 *
868 * Then under that fwnode, @nprops times, for each property in @props,
869 * iteratively follow child nodes starting from fwnode such that they have the
870 * property in @props array at the index of the child node distance from the
871 * root node and the value of that property matching with the integer argument
872 * of the reference, at the same index.
873 *
874 * The child fwnode reached at the end of the iteration is then returned to the
875 * caller.
876 *
877 * The core reason for this is that you cannot refer to just any node in ACPI.
878 * So to refer to an endpoint (easy in DT) you need to refer to a device, then
879 * provide a list of (property name, property value) tuples where each tuple
880 * uniquely identifies a child node. The first tuple identifies a child directly
881 * underneath the device fwnode, the next tuple identifies a child node
882 * underneath the fwnode identified by the previous tuple, etc. until you
883 * reached the fwnode you need.
884 *
885 * THIS EXAMPLE EXISTS MERELY TO DOCUMENT THIS FUNCTION. DO NOT USE IT AS A
886 * REFERENCE IN HOW ACPI TABLES SHOULD BE WRITTEN!! See documentation under
887 * Documentation/firmware-guide/acpi/dsd/ instead and especially graph.txt,
888 * data-node-references.txt and leds.txt .
889 *
890 * Scope (\_SB.PCI0.I2C2)
891 * {
892 * Device (CAM0)
893 * {
894 * Name (_DSD, Package () {
895 * ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
896 * Package () {
897 * Package () {
898 * "compatible",
899 * Package () { "nokia,smia" }
900 * },
901 * },
902 * ToUUID("dbb8e3e6-5886-4ba6-8795-1319f52a966b"),
903 * Package () {
904 * Package () { "port0", "PRT0" },
905 * }
906 * })
907 * Name (PRT0, Package() {
908 * ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
909 * Package () {
910 * Package () { "port", 0 },
911 * },
912 * ToUUID("dbb8e3e6-5886-4ba6-8795-1319f52a966b"),
913 * Package () {
914 * Package () { "endpoint0", "EP00" },
915 * }
916 * })
917 * Name (EP00, Package() {
918 * ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
919 * Package () {
920 * Package () { "endpoint", 0 },
921 * Package () {
922 * "remote-endpoint",
923 * Package() {
924 * \_SB.PCI0.ISP, 4, 0
925 * }
926 * },
927 * }
928 * })
929 * }
930 * }
931 *
932 * Scope (\_SB.PCI0)
933 * {
934 * Device (ISP)
935 * {
936 * Name (_DSD, Package () {
937 * ToUUID("dbb8e3e6-5886-4ba6-8795-1319f52a966b"),
938 * Package () {
939 * Package () { "port4", "PRT4" },
940 * }
941 * })
942 *
943 * Name (PRT4, Package() {
944 * ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
945 * Package () {
946 * Package () { "port", 4 },
947 * },
948 * ToUUID("dbb8e3e6-5886-4ba6-8795-1319f52a966b"),
949 * Package () {
950 * Package () { "endpoint0", "EP40" },
951 * }
952 * })
953 *
954 * Name (EP40, Package() {
955 * ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
956 * Package () {
957 * Package () { "endpoint", 0 },
958 * Package () {
959 * "remote-endpoint",
960 * Package () {
961 * \_SB.PCI0.I2C2.CAM0,
962 * 0, 0
963 * }
964 * },
965 * }
966 * })
967 * }
968 * }
969 *
970 * From the EP40 node under ISP device, you could parse the graph remote
971 * endpoint using v4l2_fwnode_reference_get_int_prop with these arguments:
972 *
973 * @fwnode: fwnode referring to EP40 under ISP.
974 * @prop: "remote-endpoint"
975 * @index: 0
976 * @props: "port", "endpoint"
977 * @nprops: 2
978 *
979 * And you'd get back fwnode referring to EP00 under CAM0.
980 *
981 * The same works the other way around: if you use EP00 under CAM0 as the
982 * fwnode, you'll get fwnode referring to EP40 under ISP.
983 *
984 * The same example in DT syntax would look like this:
985 *
986 * cam: cam0 {
987 * compatible = "nokia,smia";
988 *
989 * port {
990 * port = <0>;
991 * endpoint {
992 * endpoint = <0>;
993 * remote-endpoint = <&isp 4 0>;
994 * };
995 * };
996 * };
997 *
998 * isp: isp {
999 * ports {
1000 * port@4 {
1001 * port = <4>;
1002 * endpoint {
1003 * endpoint = <0>;
1004 * remote-endpoint = <&cam 0 0>;
1005 * };
1006 * };
1007 * };
1008 * };
1009 *
1010 * Return: 0 on success
1011 * -ENOENT if no entries (or the property itself) were found
1012 * -EINVAL if property parsing otherwise failed
1013 * -ENOMEM if memory allocation failed
1014 */
1015 static struct fwnode_handle *
v4l2_fwnode_reference_get_int_prop(struct fwnode_handle * fwnode,const char * prop,unsigned int index,const char * const * props,unsigned int nprops)1016 v4l2_fwnode_reference_get_int_prop(struct fwnode_handle *fwnode,
1017 const char *prop,
1018 unsigned int index,
1019 const char * const *props,
1020 unsigned int nprops)
1021 {
1022 struct fwnode_reference_args fwnode_args;
1023 u64 *args = fwnode_args.args;
1024 struct fwnode_handle *child;
1025 int ret;
1026
1027 /*
1028 * Obtain remote fwnode as well as the integer arguments.
1029 *
1030 * Note that right now both -ENODATA and -ENOENT may signal
1031 * out-of-bounds access. Return -ENOENT in that case.
1032 */
1033 ret = fwnode_property_get_reference_args(fwnode, prop, NULL, nprops,
1034 index, &fwnode_args);
1035 if (ret)
1036 return ERR_PTR(ret == -ENODATA ? -ENOENT : ret);
1037
1038 /*
1039 * Find a node in the tree under the referred fwnode corresponding to
1040 * the integer arguments.
1041 */
1042 fwnode = fwnode_args.fwnode;
1043 while (nprops--) {
1044 u32 val;
1045
1046 /* Loop over all child nodes under fwnode. */
1047 fwnode_for_each_child_node(fwnode, child) {
1048 if (fwnode_property_read_u32(child, *props, &val))
1049 continue;
1050
1051 /* Found property, see if its value matches. */
1052 if (val == *args)
1053 break;
1054 }
1055
1056 fwnode_handle_put(fwnode);
1057
1058 /* No property found; return an error here. */
1059 if (!child) {
1060 fwnode = ERR_PTR(-ENOENT);
1061 break;
1062 }
1063
1064 props++;
1065 args++;
1066 fwnode = child;
1067 }
1068
1069 return fwnode;
1070 }
1071
1072 struct v4l2_fwnode_int_props {
1073 const char *name;
1074 const char * const *props;
1075 unsigned int nprops;
1076 };
1077
1078 /*
1079 * v4l2_fwnode_reference_parse_int_props - parse references for async
1080 * sub-devices
1081 * @dev: struct device pointer
1082 * @notifier: notifier for @dev
1083 * @prop: the name of the property
1084 * @props: the array of integer property names
1085 * @nprops: the number of integer properties
1086 *
1087 * Use v4l2_fwnode_reference_get_int_prop to find fwnodes through reference in
1088 * property @prop with integer arguments with child nodes matching in properties
1089 * @props. Then, set up V4L2 async sub-devices for those fwnodes in the notifier
1090 * accordingly.
1091 *
1092 * While it is technically possible to use this function on DT, it is only
1093 * meaningful on ACPI. On Device tree you can refer to any node in the tree but
1094 * on ACPI the references are limited to devices.
1095 *
1096 * Return: 0 on success
1097 * -ENOENT if no entries (or the property itself) were found
1098 * -EINVAL if property parsing otherwisefailed
1099 * -ENOMEM if memory allocation failed
1100 */
1101 static int
v4l2_fwnode_reference_parse_int_props(struct device * dev,struct v4l2_async_notifier * notifier,const struct v4l2_fwnode_int_props * p)1102 v4l2_fwnode_reference_parse_int_props(struct device *dev,
1103 struct v4l2_async_notifier *notifier,
1104 const struct v4l2_fwnode_int_props *p)
1105 {
1106 struct fwnode_handle *fwnode;
1107 unsigned int index;
1108 int ret;
1109 const char *prop = p->name;
1110 const char * const *props = p->props;
1111 unsigned int nprops = p->nprops;
1112
1113 index = 0;
1114 do {
1115 fwnode = v4l2_fwnode_reference_get_int_prop(dev_fwnode(dev),
1116 prop, index,
1117 props, nprops);
1118 if (IS_ERR(fwnode)) {
1119 /*
1120 * Note that right now both -ENODATA and -ENOENT may
1121 * signal out-of-bounds access. Return the error in
1122 * cases other than that.
1123 */
1124 if (PTR_ERR(fwnode) != -ENOENT &&
1125 PTR_ERR(fwnode) != -ENODATA)
1126 return PTR_ERR(fwnode);
1127 break;
1128 }
1129 fwnode_handle_put(fwnode);
1130 index++;
1131 } while (1);
1132
1133 for (index = 0;
1134 !IS_ERR((fwnode = v4l2_fwnode_reference_get_int_prop(dev_fwnode(dev),
1135 prop, index,
1136 props,
1137 nprops)));
1138 index++) {
1139 struct v4l2_async_connection *asd;
1140
1141 asd = v4l2_async_nf_add_fwnode(notifier, fwnode,
1142 struct v4l2_async_connection);
1143 fwnode_handle_put(fwnode);
1144 if (IS_ERR(asd)) {
1145 ret = PTR_ERR(asd);
1146 /* not an error if asd already exists */
1147 if (ret == -EEXIST)
1148 continue;
1149
1150 return PTR_ERR(asd);
1151 }
1152 }
1153
1154 return !fwnode || PTR_ERR(fwnode) == -ENOENT ? 0 : PTR_ERR(fwnode);
1155 }
1156
1157 /**
1158 * v4l2_async_nf_parse_fwnode_sensor - parse common references on
1159 * sensors for async sub-devices
1160 * @dev: the device node the properties of which are parsed for references
1161 * @notifier: the async notifier where the async subdevs will be added
1162 *
1163 * Parse common sensor properties for remote devices related to the
1164 * sensor and set up async sub-devices for them.
1165 *
1166 * Any notifier populated using this function must be released with a call to
1167 * v4l2_async_nf_release() after it has been unregistered and the async
1168 * sub-devices are no longer in use, even in the case the function returned an
1169 * error.
1170 *
1171 * Return: 0 on success
1172 * -ENOMEM if memory allocation failed
1173 * -EINVAL if property parsing failed
1174 */
1175 static int
v4l2_async_nf_parse_fwnode_sensor(struct device * dev,struct v4l2_async_notifier * notifier)1176 v4l2_async_nf_parse_fwnode_sensor(struct device *dev,
1177 struct v4l2_async_notifier *notifier)
1178 {
1179 static const char * const led_props[] = { "led" };
1180 static const struct v4l2_fwnode_int_props props[] = {
1181 { "flash-leds", led_props, ARRAY_SIZE(led_props) },
1182 { "mipi-img-flash-leds", },
1183 { "lens-focus", },
1184 { "mipi-img-lens-focus", },
1185 };
1186 unsigned int i;
1187
1188 for (i = 0; i < ARRAY_SIZE(props); i++) {
1189 int ret;
1190
1191 if (props[i].props && is_acpi_node(dev_fwnode(dev)))
1192 ret = v4l2_fwnode_reference_parse_int_props(dev,
1193 notifier,
1194 &props[i]);
1195 else
1196 ret = v4l2_fwnode_reference_parse(dev, notifier,
1197 props[i].name);
1198 if (ret && ret != -ENOENT) {
1199 dev_warn(dev, "parsing property \"%s\" failed (%d)\n",
1200 props[i].name, ret);
1201 return ret;
1202 }
1203 }
1204
1205 return 0;
1206 }
1207
v4l2_async_register_subdev_sensor(struct v4l2_subdev * sd)1208 int v4l2_async_register_subdev_sensor(struct v4l2_subdev *sd)
1209 {
1210 struct v4l2_async_notifier *notifier;
1211 int ret;
1212
1213 if (WARN_ON(!sd->dev))
1214 return -ENODEV;
1215
1216 notifier = kzalloc(sizeof(*notifier), GFP_KERNEL);
1217 if (!notifier)
1218 return -ENOMEM;
1219
1220 v4l2_async_subdev_nf_init(notifier, sd);
1221
1222 ret = v4l2_subdev_get_privacy_led(sd);
1223 if (ret < 0)
1224 goto out_cleanup;
1225
1226 ret = v4l2_async_nf_parse_fwnode_sensor(sd->dev, notifier);
1227 if (ret < 0)
1228 goto out_cleanup;
1229
1230 ret = v4l2_async_nf_register(notifier);
1231 if (ret < 0)
1232 goto out_cleanup;
1233
1234 ret = v4l2_async_register_subdev(sd);
1235 if (ret < 0)
1236 goto out_unregister;
1237
1238 sd->subdev_notifier = notifier;
1239
1240 return 0;
1241
1242 out_unregister:
1243 v4l2_async_nf_unregister(notifier);
1244
1245 out_cleanup:
1246 v4l2_subdev_put_privacy_led(sd);
1247 v4l2_async_nf_cleanup(notifier);
1248 kfree(notifier);
1249
1250 return ret;
1251 }
1252 EXPORT_SYMBOL_GPL(v4l2_async_register_subdev_sensor);
1253
1254 MODULE_DESCRIPTION("V4L2 fwnode binding parsing library");
1255 MODULE_LICENSE("GPL");
1256 MODULE_AUTHOR("Sakari Ailus <sakari.ailus@linux.intel.com>");
1257 MODULE_AUTHOR("Sylwester Nawrocki <s.nawrocki@samsung.com>");
1258 MODULE_AUTHOR("Guennadi Liakhovetski <g.liakhovetski@gmx.de>");
1259